BASELINE

ENVIRONMENTAL CONSULTING

31 January 2006 Y5395-02

Mr. Jeffery Rubin Associate Environmental Scientist Port of Oakland 530 Water Street Oakland, California 94607

Subject: 2005 Fourth Quarter Groundwater Monitoring Report, Port Of Oakland Harbor Facilities Center, 2277 and 2225 Seventh Street, Oakland, California

Dear Mr. Rubin:

Enclosed please find the 2005 Fourth Quarter Groundwater Monitoring Report for 2277 and 2225 Seventh Street. The Alameda County Health Services Local Oversight Program case number for 2277 Seventh Street is RO0000010 and for 2225 Seventh Street RO0000185. The results do not indicate significant changes from previous monitoring events. We have recommended that the Port should request a change in groundwater monitoring frequency from quarterly to semi-annual.

YANE

NORDHAV No. 4009

Sincerely,

Yane Nordhay, P.G.

Principal

YN:JM:km

Enclosure

James McCarty, P.E. Project Engineer

2005 FOURTH QUARTER GROUNDWATER MONITORING REPORT

PORT OF OAKLAND HARBOR FACILITIES CENTER 2277 and 2225 Seventh Street Oakland, California

JANUARY 2006

FOR: Port of Oakland Oakland, California

Y5395-02

TABLE OF CONTENTS

INTI	RODUCTION	1
FIEL	D ACTIVITIES	2
OBS	ERVATIONS AND ANALYTICAL RESULTS TPHg BTEX and MTBE TEPHd and TEPHmo Quality Analysis and Quality Control Groundwater Flow Direction	3 3 3 3 4
CON	CLUSIONS AND RECOMMENDATIONS	4
	APPENDICES	
A: B:	Groundwater Sampling Forms Laboratory Report	
	FIGURES	
1: 2: 3: 3:	Vicinity Map Site Plan Analytical Results December 2005 Groundwater Contours December 2005	
	TABLES	
1: 2:	Groundwater Elevation Data Groundwater Analytical Results	

FOURTH QUARTER GROUNDWATER MONITORING REPORT

PORT OF OAKLAND HARBOR FACILITIES CENTER

2277 and 2255 Seventh Street Oakland, California

INTRODUCTION

This report summarizes the results of the fourth quarter groundwater monitoring for 2005 performed at Port of Oakland's ("Port") two contiguous properties, 2227 and 2225 Seventh Street in Oakland, California ("Site"), (Figure 1). The two properties have been impacted by petroleum releases from past operations of underground storage tanks ("USTs") and regulatory oversight is being provided by the Alameda County Health Services ("ACHS") Local Oversight Program ("LOP"). The ACHS LOP case number for 2277 Seventh Street is RO0000010 and for 2225 Seventh Street RO0000185.

Together, the two properties are approximately 12 acres in size. These properties are currently being redevelopment by the Port. The Port has developed the eight acres on the eastern portion of the Site as the Harbor Facilities Center, with the new address 651 Maritime Street (Figure 2). The remaining four acres are currently being redeveloped for future Port uses.

The USTs that were located at 2277 and 2225 Seventh Street were used to store diesel and oil and were removed between 1990 and 1993. Soil and groundwater investigations at these properties indicated that there had been releases from the USTs, impacting the groundwater with petroleum hydrocarbons. Eight groundwater monitoring wells (MW-1 through MW-8) were installed to monitor groundwater at 2277 Seventh Street and three (MW-1 through MW-3) at 2225 Seventh Street. The groundwater impact from the two addresses is co-mingled and consists of dissolved- and free-phase hydrocarbons in the diesel range south and southwest of building C-401. In addition, one well (MW-4) on the 2277 Seventh Street property has historically contained dissolved hydrocarbons in the gasoline range. In 1996, a remediation system was installed at 2277 Street to recover the free-phase product. In 1998, MW-8 was abandoned to facilitate the expansion of the railroad tracks north of 2277 Seventh Street. A replacement well, MW-8A, was installed in 2001.

Except for building C-401, existing buildings at the Site were demolished prior to construction of the new Harbor Facilities Center. Only the eastern portion of building C-401 had been demolished at the time groundwater monitoring was performed. To facilitate the construction of the new Harbor Facilities Center, groundwater monitoring wells MW-6 and MW-7 at 2277 Seventh Street and MW-1, MW-2, and MW-3 at 2225 Seventh Street were abandoned in 2002. In 2003, the remediation system was also removed.

Construction of the new Harbor Facilities Center was completed in 2004. A new product recovery system was completed in December 2004 consisting of nine product recovery wells (RW-1 through RW-9, Figure 2) equipped with product skimmer pumps. The product recovery system is currently being evaluated and adjusted to maximize performance. A summary of the system status and performance will be included in subsequent groundwater monitoring reports.

FIELD ACTIVITIES

Groundwater quality has been monitored at the Site since 1994. Groundwater monitoring is currently performed on a quarterly basis by a network of six groundwater wells; MW-1, MW-2, MW-3, MW-4, MW-5, and MW-8A (Figure 2). The depths to groundwater in the wells are measured and the wells are checked for the presence of free-phase product. If none is present, groundwater samples are collected and submitted for following analyses:

- Total petroleum hydrocarbons as gasoline ("TPHg") in accordance with EPA Method 8015B;
- Total extractable petroleum hydrocarbons as diesel ("TEPHd") and total extractable petroleum hydrocarbons as motor oil "TEPHmo" in accordance with EPA Method 8015B with a silica gel cleanup; and
- Benzene, toluene, ethylbenzene, and xylenes ("BTEX") and methyl t-butyl ether ("MTBE") in accordance with EPA Method 8260B.

Groundwater monitoring for the fourth quarter of 2005 was performed at the Site on 21 December 2005. Between 9:15 AM and 9:50 AM on 21 December 2005, the depth to groundwater (and product, if present) from the top of the well casing ("TOC") was measured to the nearest one-hundredth of a foot in monitoring wells MW-1, MW-2, MW-3, MW-4, MW-5, and MW-8A using dual-phase interface probes. The results are presented in Table 1. Free-phase product was detected in wells MW-1 and MW-3. The dual-phase interface probes were decontaminated after each use by washing with an AlconoxTM and water solution and then rinsing with deionized water.

Monitoring wells MW-1 and MW-3 contained measurable free-phase product and therefore were not sampled. Monitoring wells MW-2 and MW-4, MW-5 and MW-8A were purged prior to sampling using a peristaltic pump and new disposable polyethylene and silicon tubing. The wells were purged until the electrical conductivity, pH, and temperature of the water had stabilized. Approximately three well casing volumes of groundwater were purged from the wells prior to sampling. The pump intake was initially placed at the bottom of the well to remove sediments. Once the groundwater being removed appeared free of sediments, the pump intake was raised a few feet off the bottom of well to complete the purging process. The monitoring details for each well are provided on the groundwater sampling forms in Appendix B.

Groundwater samples from the wells were collected using the peristaltic pump with the intake of tubing placed a few feet off the bottom of the well. The groundwater samples were collected by decanting directly into certified-clean containers² from discharge end of the tubing. A field duplicate (MW-4d), consisting of a duplicate groundwater sample from monitoring well MW-4, was also prepared. The sample containers were immediately labeled with sample location, date, time and stored in a cooler containing ice. The groundwater samples were submitted under

^{&#}x27;The depths to groundwater in wells MW-1 and MW-3 were measured using a dual-phase interface probe dedicated for use on wells that contain, or are suspected to contain, free-phase product. The dual-phase interface probe used on monitoring wells MW-2 and MW-4, MW-5 and MW-8A is reserved for wells that are not suspected to contain free-phase product.

² Containers were provided by Environmental Sampling Supply, which certifies that the containers meet or exceed the required detection limits established by the US EPA in *Specifications And Guidance For Contaminant-Free Sample Containers*, Publication 9240.05A, EPA/540/R-93/051, December 1992.

chain-of-custody protocol to Curtis & Tompkins, Ltd. of Berkeley, a California-certified analytical laboratory.

Approximately 25 gallons of purge and decontamination water were generated during the fourth quarter 2005 monitoring event. The purge water was placed into a 55-gallon drum, labeled with generator and contact information and stored near the Harbor Facilities Center hazardous materials storage lockers. The Port of Oakland's Environmental Services Contractor will arrange proper purge water disposal.

OBSERVATIONS AND ANALYTICAL RESULTS

Product thickness was measured in MW-1 and MW-3 at 0.20 and 0.06 foot, respectively (Table 1). Analytical results for the groundwater samples are summarized on Figure 3 and Table 2. The laboratory reports are provided in Appendix B.

TPHg

TPHg was reported in the groundwater sample from monitoring well MW-4 at a concentration of 110 micrograms per liter ("µg/L"). TPHg was not reported above the laboratory reporting limits in any of the other monitoring wells sampled.

BTEX and MTBE

Benzene was reported in the groundwater sample from MW-4 at concentration of 76 μ g/L. None of the other groundwater samples contained any BTEX constituents above the laboratory report limits. The laboratory did not report any MTBE above the reporting limit in any of the samples submitted.

TEPHd and TEPHmo

Two of the four groundwater samples contained TEPHd; MW-5 and MW-8A was reported to contain 180 μ g/L and 63 μ g/L, respectively. The laboratory noted that, in both samples; heavier hydrocarbons contributed to the quantitation of the results and the chromatographic patterns did not resemble the standard. TEPHmo was not reported above the laboratory reporting limits in any of the groundwater samples collected.

Quality Analysis and Quality Control

BASELINE reviewed the laboratory data for completeness and accuracy. With the following exceptions, all of the laboratory quality assurance and quality control ("QA/QC") goals were met.

High surrogate recoveries were observed for 1,2-dichloroethane-d4 from the analysis of sample MW-8A and from the matrix spike and the matrix spike duplicate batch QA/QC samples. The toluene-d8 and bromofluorobenzene surrogate recoveries for these samples were within laboratory QA/QC limits.

A duplicate groundwater sample, MW-4d, was collected from monitoring well MW-4. The laboratory reported concentrations of TPHg, and benzene in both samples. The relative percent

difference ("RPD") between the original and the duplicate sample was 37 percent for TPHg and zero percent for benzene:

TPHg RPD |110-160|/[(110+160)/2] = 37%Benzene RPD |76-76|/[(76+76)/2] = 0%

The U.S. Environmental Protection Agency considers an RPD of less than 25 percent acceptable without question for field duplicate water samples.³ An RPD over 25 percent does not necessarily disqualify the validity of the data. The RPD for the TPHg samples exceeded 25 percent; however, the benzene concentrations were the same indicating the sample result were valid and repeatable.

Based on the above QA/QC evaluation, the data collected during the fourth quarter 2005 groundwater monitoring event is considered valid and representative of Site conditions.

Groundwater Flow Direction

The surveyed elevation of the top of each groundwater monitoring well casing and the measured depth to groundwater were used to determine the groundwater elevation. The groundwater elevation data are summarized in Table 1. Groundwater contours are presented on Figure 4. The groundwater flow direction and magnitude were calculated to be towards the north-northwest at magnitude of 0.0067 feet/foot.

CONCLUSIONS AND RECOMMENDATIONS

The results from the fourth quarter 2005 monitoring event indicate that the petroleum hydrocarbon plume is stable as the concentrations are within the historical ranges. Free-phase product was confined to the wells that had previously contained free product. The low levels of TPHg and benzene present appear to be confined to the area of MW-4. The low concentrations of TEPH as diesel reported in the groundwater samples from MW-5 and MW-8A appear to be aged and weathered, as the chromatograms did not match the diesel standard.

Based on the fact that the concentrations of dissolved-phase petroleum hydrocarbons in the groundwater appear stable, it is recommended that the frequency of groundwater monitoring be reduced to semi-annual. Contingent on approval from the ACHS, the groundwater sampling would be performed on the following schedule:

- First Semi-Annual Event June/July
- Second Semi-Annual Event November/December

In addition, to address the TPHg and benzene reported in the groundwater at MW-4, the Port will place a sock containing Oxygen Releasing Compound^T ("ORC"), a product developed by Regenesis, to promote in-situ biodegradation of the TPHg. The sock will be removed two weeks prior to sampling the well. Further use of ORC as a remediation methodology will be evaluated in the first semi-annual report.

³ 2001, US Environmental Protection Agency, Training Course For CLP, Organic Data Validation.

FIGURES

TABLES

TABLE 1 : Groundwater Elevation Data

Port of Oakland Harbor Facilities Center, 2277 and 2225 - 7th Street, Oakland, California

Monitoring Well	Date Measured	Elevation ^L Top of Casing (feet)	Depth to Product (feet btc)	Depth to Water (feet btc)	Product Thickness (feet)	Groundwater Elevation ¹ (feet)
MW-1	12/21/2005	14.14	5.70	5.90	0.20	NC
MW-2	12/21/2005	16.96	NP	9.57	<u></u>	7.39
MW-3	12/21/2005	16.18	8.21	8.28	0.07	NC
MW-4	12/21/2005	13.15	NP	7.30		5.85
MW-5	12/21/2005	13.49	NP	5.91		7.58
MW-8A	12/21/2005	12.94	NP	6.90		6.04

Notes:

NP = no product detected with the interface probe

NC = not calculated due to the presence of free-phase product in the well.

-- = no measurable product in the well.

btc = below top of the well casing.

NA = Not available

¹ Elevation data relative to Port of Oakland datum.

TABLE 2: Groundwater Analytical Results Port of Oakland Harbor Facilities Center, 2277 and 2225 - 7th Street, Oakland, California ($\mu g/L$)

										***************************************		AND THE PROPERTY OF THE PROPER			:							And the second s				10 m 1 m 1 m 1 m 1 m 1 m 1 m 1 m 1 m 1 m		Andrew and the second s		THE PERSON NAMED OF THE PE				MW-2	MW-1	Well ID
	06/02/04	03/05/04	11/26/03	09/03/03	06/18/03	03/17/03	12/12/02	09/26/02	06/13/02	03/08/02	12/05/01	07/10/01	02/21/01	12/19/00	09/06/00	05/22/00	02/11/00	11/12/99	09/28/99	06/24/99	03/19/99	11/06/98	04/13/98	12/31/97	09/18/97	06/13/97	03/28/97	12/03/96	07/10/96	04/04/96	01/08/96	09/06/95	03/29/95	05/27/94	05/22/00	Date
	<50	<50	\$0	<50	\$ 0	<50	<50	69 ²	62 15	<50	<50	<50	<50	200 3,11	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	82	51	<50	<50	<50	<50	<50	<50	<50	87	3,600	TPHg
	<50	<50	<50	<50	<50	<50	<50	<50	< 57	<50	<50	<50	<50	<50	<50	<50	<50	120 2,6	<50	<50	<50	<50	<50	<47	<50	<50	714	230 1.2	120	160	<50	NA	110	470	41,000	ТРН
	<300	<300	<300	<300	<300	<300	<300	<500	<570	<500	<300	<300	<300	<300	<300	<300	<300	<300	<300	<300	<300	<300	<300	<280	<250	<250	<250	<250	1400	320	1200	NA	1,400	NA	<3,000	TPHmo
5	<0.5	<0.5	3.0	3.2	<0.5	<0.5	0.98	1.8	<0.5	<0.5	4.4	<0.5	<0.5	39	0.768	<0.5	5.4	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	1.4	0.56	<0.5	<0.5	<0.5	<0.4	<0.5	<0.4	<0.4	<0.4	<0.5	100	Benzene
,	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	1.8	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.3	<0.5	<0.3	<0.3	<0.3	<0.5	13 8	Toluene
	<0.5	<0.5	<0.5	<0.5	<0.5		<0.5	< 0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.3	<0.5	<0.3	<0.3	<0.3	<0.5	2.9	Ethylbenzene
,	<0.5	<0.5	<0.5	< 0.5	<05	<0.5	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	<0.5	2.6	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	< 0.5	<1.0	<1.0	<1.0	< 1,0	<1.0	<1.0	<0.4	<1.0	<0.4	<0.4	<0.4	<0.5	2.05	Total Xylenes
,	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<5.0	<5.0	<5.0	5.0 14	<2.0	<2.0	< 0.5 10,12	<0.5 10	<2	2	6.3 8,9	<2.0	<2.0	<2.0	<2.0	NA	NA	NA	NA	ŅĄ	NA	NA	NA	NA	NA	NA	AN	3.28	MIBE

TABLE 2: Groundwater Analytical Results
Port of Oakland Harbor Facilities Center, 2277 and 2225 - 7th Street, Oakland, California (µg/I.)

	Dup.		Dup.				Address of the Control of the Contro		THE RESERVE THE STREET, AND THE STREET, STREET							Dup.	management of the comment of the com		The second secon		order management of the control of t		AND THE RESERVE AND THE PROPERTY OF THE PROPER		combinational conditions and in a cast of the date of			MW-4		de mangemente a conference de Adria des des desdeterres a				Monitoring Well ID
12/12/02	09/26/02	09/26/02	06/13/02	06/13/02	03/08/02	12/05/01	07/10/01	02/21/01	12/19/00	12/19/00	09/06/00	05/22/00	02/11/00	11/12/99	09/28/99	06/24/99	03/19/99	11/06/98	04/13/98	12/31/97	09/18/97	06/13/97	03/28/97	12/03/96	07/10/96	04/04/96	01/08/96	09/11/95	12/21/05	09/29/05	08/10/05	03/29/05	12/16/04	Date
580	500 ²	390 ²	820 ²	830 ²	490 2	180	<250	450 13	1,200 3,11	960 3,11	530 2,3	240	200 2	330 ³	750 3,5	190	81	<50	150 ^{2,3}	73 1,2,3	1,300	1,300	440 2	990	1,200	1,100	790	150	<50	<50	<50	<50	<50	ТРНg
<50	<50 16	57	<56	<50	54 ²	<50	110 2,13	<50	<50	70 5	<50	<50	<50	840 ²	63 3,5	<50	<50	<50	<50	<47	150	92 5	<50	220 1,2	120	180	90	<200	<50	<50	<50	<50	96 6,15	TPHd
<300	<500 16	<500	<560	<500	<500	<300	<300	<300	<300	<300	<300	<300	<300	<300	<300	<300	<300	<300	<300	<280	<250	<250	<250	<250	300	300	400	500	<300	<250	<250	<300	<300	TPHmo
240	200	150	240	250	180	61	620	120	440	420	190	500	58	740	280	360	250	250	520	110 1	550	500	190	350	470	320	170	23	<0.5	<0.5	<0.5	<0.5	<0.5	Benzene
1.4	1.5	2.1	<5.0	<5.0	<2.5	<0.5	2.6	<0.5	<2.5	<2.5	0.93	<2.5	0.73	<2.5	1.5	1.4		1.7	2.9	1.0 1	4.9	5.5	1.2	3.3	1.5	1.6	1.2	<0.3	<0.5	< 0.5	<0.5	<0.5	<0.5	Toluene
0.56	<1.0	<1.0	<5.0	<5.0	<2.5	<0.5	2.9	<0.5	<2.5	<2.5	0.6	<2.5	< 0.5	<2.5	<1.0	2.2	1.2	<1.0	<2.5	<0.5	2.1	3.4	0.64	1.3	0.8	1.1	0.6	<0.3	<0.5	<0.5	<0.5	<0.5	<0.5	Ethylbenzene
<0.5	<1.0	<1.0	<5.0	<5.0	<2.5	<0.5	<2,5	<0.5	<2.5	<2.5	0.57	<2.5	<0.5	<2.5	<1.0	1.0	<1.0	<1.0	<5.0	<1.0	2.00	2.8	<1.0	1.3	8.0	1.2	0.6	<0.4	<0.5	<0.5	<0.5	<0.5	<0.5	Ethylbenzene Total Xylenes
<2.0	< 10	<10	<50	< 5 0	<25	3.8 14	<0.5 8,10	<0.5 10	< 0.5 10,12	<0.5 10,12	< 0.5	17	4,48	42 9	<4	24	<4	<4	NA	NA	NA	NA	NA	NA	NA	NA	NA		<0.5	< 0.5	<0.5		<2.0	MIBE

TABLE 2: Groundwater Analytical Results

Port of Oakland Harbor Facilities Center, 2277 and 2225 - 7th Street, Oakland, California (µg/L)

								manufacture and the first of the country of the cou		MW-5	Dup.		Dup.			Dup.		Dup.		Dup.		Dup.		Dup.		Dup.	A CONTRACTOR OF THE CONTRACTOR	Dup.	the spring and the second seco	Dup.		Dup.		Dup.	Monitoring Well ID
03/19/99	11/06/98	04/13/98	12/31/97	09/18/97	06/13/97	03/28/97	12/03/96	07/10/96	04/04/96	09/11/95	12/21/05	12/21/05	09/29/05	09/29/05	08/10/05	03/29/05	03/29/05	12/16/04	12/16/04	09/03/04	09/03/04	06/02/04	06/02/04	03/05/04	03/05/04	11/26/03	11/26/03	09/03/03	09/03/03	06/18/03	06/18/03	03/17/03	03/17/03	12/12/02	Date
<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	90	160	110	420 18	360 18	500 18	540 13	440 13	670	840	370 13, 15	780 13, 15	400 13	620 13	84 11	90 11	120 15	160 15	83 11, 15	140 11, 15	330 11, 15	360 11, 15	82 15	130 15	2,400	ТРНg
<\$0	<50	<47	<47	<50	<50	<50	200 1,2	120	180	<300	<50	<50	\$0	59 20	<50	<\$0	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	68 15	<50	<50	<50	<50	<50	<50	<50	трна
<300	<300	<280	<280	<250	<250	<250	<250	1,500	520	2,500	<300	<300	<250	<250	<250	<300	<300	<300	<300	<300	<300	<300	<300	<300	<300	<300	<300	<300	<300	<300	<300	<300	<300	<300	TPHmo
<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.4	<0.5	3.3	76	76	150	160	180	170	140	230	290	<0.5	<0.5	130	210	180	190	210	320	130	240	140	150	190	320 17	680	Benzene
<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.3	<0.5	<0.3	<0.5	<0.5	<5.0	<\$.0	<2.5	0.72	0.57	1.3 17	1.3 17	<0.5	1.0 17	<0.5	0.55 17	0.81	1.1	0.66 17	0.91 17	0.58 17	1.3	<0.5	<0.5	0.6417	<0.5	5.0	Toluene
<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.3	<0.5	<0.3	<0.5	< 0.5	<5.0	<5.0	<2.5	<0.5	<0.5	<0.5	0.69	<0.5	<0.5	<0.5	<0.5	<0.5	0.55	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.56	<0.5	2.3	Ethylbenzene
<0.5	<0.5	<1,0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.4	<1.0	<0.4	<0.5	<0.5	<5.0	<5.0	<2.5	<0.5	<0.5	<0.5	0.75	<0.5	0.57	<0.5	<0.5	<0.5	0.50 17	<0.5	0.53	<0.5	< 0.5	<0.5	<0.5	0.53	<0.5	1.4	Total Xylenes
<2.0	<2.0	NA	NA	NA	<0.5	<0.5	<5.0	<5.0	<2.5	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	21 14,17, <0.5 10	23 14,17, <0.5 10	<2.0	<2.0	<2.0	<2.0	<2.0	<2,0	<0.5 10	<0.5 10		MIRE						

TABLE 2: Groundwater Analytical Results

Port of Oakland Harbor Facilities Center, 2277 and 2225 - 7th Street, Oakland, California (µg/L)

		Total a major managament (Tabaha) (Tabaha) (Tabaha) managament (Tabaha)			Dup.	Amme manusculus makel subjektiviti ild 1614 sistem (Visitali ild 1614	MW-8A		and the same of the same and th	Dup.	100 (100 pt) - 100 pt	to become a blackers of an abideble of Apile . He's byte of any apile of any analysis represent	Andrew Communication of the Co	And in the contract of the first of the firs	Control of the Contro	THE PARTY OF THE P	non man ny finindra n'amin'ny avon'ny taona dia mandra na mandra mandra ny taona ao	The same of the sa															manument of the state of the st		Monitoring Well ID
06/18/03	03/17/03	12/12/02	09/26/02	06/13/02	03/08/02	03/08/02	12/12/01	12/21/05	09/29/05	08/10/05	08/10/05	03/29/05	12/16/04	09/03/04	06/02/04	03/05/04	11/26/03	09/03/03	06/18/03	03/17/03	12/12/02	09/26/02	06/13/02	03/08/02	12/05/01	07/10/01	02/21/01	12/19/00	09/06/00	05/22/00	02/11/00	11/12/99	09/28/99	06/24/99	Date
<50	<50	<50	<50	<50	<50	<50	68	< 5 0	<50	<50 19	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	TPHg
74 15	<50	160 15	410 2	570 ²	350 ²	760 ²	720 11,15	180 15,22	<50	<50 19	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	. <50	<50	<50	<50	110 2,6	<50	<50	DHÆL
<300	<300	<300	<500	<570	<580	<570	<300	<300	<250	<250	<250	<300	<300	<300	<300	<300	<300	<300	<300	<300	<300	<500	<500	<500	<300	<300	<300	<300	<300	<300	<300	<300	<300	<300	ТРНто
<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	Benzene
<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	Toluene
<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	. <0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	Ethylbenzene
<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	Total Xylenes
<2.0	<0.5 10.	< 2.0	<5.0	<5.0	<5.0	<5.0	<2.0	<0.5	<0.5	<0.5	<0.5	<2.0	2.2 14, <0.5 10	<2.0	<2.0	<2.0	4,1 14 <0,5 10	< 2,0	<2.0	<0.5 10	<2.0	<5.0	<5.0	<5.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	5.5 9	<2.0		МТВБ

TABLE 2: Groundwater Analytical Results

Port of Oakland Harbor Facilities Center, 2277 and 2225 - 7th Street, Oakland, California (µg/L)

Monitoring Well ID	Date	ТРНg	TPHd	ТРНто	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE
	09/03/03	<50	<50	<300	<0.5	<0.5	<0.5	<0.5	3.0 ¹⁴ , <0.5 ¹⁰
	11/26/03	<50	94 15	<300	<0,5	<0.5	<0.5	<0.5	<2.0
	03/05/04	<50	<50	<300	<0.5	<0.5	<0.5	<0.5	<2.0
- II (maka) - Maka ika in santanan in la la mana	06/02/04	<50	67 ¹⁵	<300	<0.5	<0.5	<0.5	<0.5	<2.0
	09/03/04	<50	86 ¹⁵	<300	<0.5	<0.5	<0.5	<0.5	<2.0
	12/16/04	<50	160 ^{6, 15}	<300	<0,5	<0.5	<0.5	<0.5	<2.0
	03/29/05	<50	53	<300	<0.5	<0.5	<0.5	<0.5	<2.0
	08/10/05	<50 ¹⁹	150 ^{15, 19}	<250	<0.5	<0.5	<0.5	<0.5	<0.5
	09/29/05	<50	66 ²¹	<250	<0.5	<0.5	<0.5	<0.5	<0.5
	12/21/05	<50	63 15,22	<300	<0.5	<0.5	<0.5	<0.5	<0.5

Notes:

Data prior to December 2005 from 3rd Quarterly Groundwater Monitoring, and Product Recovery Report dated

8 November 2005, by Innovative Technical Solutions, Inc.

μg/L = micrograms per liter

NA = not analyzed

¹Analyte found in the associated blank as well as in the sample.

²Hydrocarbons present do not match profile of laboratory standard.

³Low-boiling-point/lighter hydrocarbons are present in the sample.

⁴Chromatographic pattern matches known laboratory contaminant.

⁵Hydrocarbons are present in the requested fuel quantification range,

but do not resemble pattern of available fuel standard.

⁶High-boiling-point/heavier hydrocarbons are present in sample.

⁷Sample did not pass laboratory QA/QC and may be biased low.

⁸Presence of this compound confirmed by second column, however, the confirmation concentration differed

from the reported result by more than a factor or two.

⁹Trip blank contained MTBE at a concentration of 4.2 µg/l

¹⁰MTBE detections confirmed by EPA Test Method 8260. 8260 results displayed.

¹¹Sample exhibits unknown single peak or peaks.

¹²EPA Method 8260 confirmation analyzed past holding time.

¹³Lighter hydrocarbons contributed to the quantitation.

¹⁴MTBE results from EPA Test Method 8021B.

¹⁵Sample exhibits fuel pattern which does not resemble standard.

¹⁶Sample extracted out of hold time.

¹⁷Presence confirmed, but Relative Percent Difference (RPD) between columns exceeds 40%.

¹⁸Unmodified or weakly modified gasoline is significant.

¹⁹Liquid Sample contains greater than ~1 vol.% sediment.

²⁰Gasoline compounds are significant.

²¹Diesel range compounds are significant; no recognizable pattern.

²²Heavier hydrocarbons entributed to the quantitation.

APPENDIX A

GROUNDWATER SAMPLING FORMS

Project No. Project name: Location: Recorded by: Weather: Precip. in past 5 days ¹ (inches): Water Level Instrument:	Y5395-02 Harbor Facilities Cer Port of Oakland 2277 7th Street, Oak WKS Overcast, afternoon s 3.58 Dual-phase interface probe (Solinst)	land	Filter pack int TOC elevation om TOC (feet):	(inches): eval bgs (feet): erval bgs (feet): n (feet): 5.90	Date:	12/21/2005 15.5 2 5.5-15.5 4.5-15.5 14.14 9:20
VOLUME OF WATER [(ft) - (well depth well le	ft)] x 0.083 ft) ² x	$\pi \times 7.48 \text{ gal/ft}^3 =$	gallo	ns in one casing volun	ne	
CALIBRATION Calibration Standard: Before Purging: After Puging:		Temp (°C)	рН	NTU	E C (μmho/cm)	
FIELD MEASUREMEN	ITS					
Time	Temp (°C)	рН	E C (μmho/cm)	Cumulative Gallons Removed	Odor	NTU
Measured pr	oduct level only, no g	roundwater sampl	e collected due	to the presence of free	-phase product.	
		•				
Appearance of sample: Duplicate/blank number: Purge method: Sampling equipment: Sample containers:				Time: _ VOA attachment: _		
Sample analyses: Decontamination method:	Alconox and water	, DI water rinse		Laboratory: _ Rinsate disposal: _		

TOC = top of casing

¹ Source: Oakland Fire Service Station "ONO".

Project No.	Y5395-02		Well No.:	MW-2	Date: _	12/21/2005
Project name:	Harbor Facilities C	Center	Depth of well	from TOC (feet):	_	18.1
Location:	Port of Oakland		Well diameter	(inches):	_	2
	2277 7th Street, Oa	akland	Screened inter	val bgs (feet):	_	8.4-18.4
Recorded by:	WKS		Filter pack inte	erval bgs (feet):	_	7.4-18.4
Weather:	Overcast, afternoon	n showers	TOC elevation	(feet):	_	16.96
Precip. in past 5 days ¹			•	,	_	<u> </u>
	3.58	Water Level fi	rom TOC (feet):	9.57	Time:	9:30
(inches):	Dual-phase	- Water Level II	om 100 (1001)	7.57		7,00
•	-					
***	interface probe	Due deset lavel f	rom TOC (feet):	None	Time:	9:30
Water Level Instrument:	(Solmst)	Product level II	tom roc (tect).	TYONG		7.50
VOLUME OF WATER	TO BE REMOVE	D				
(18.10 ft	-9.57 ft)	$(0.083 \text{ ft})^2 \times \pi$	$t \times 7.48 \text{ gal/ft}^3 =$	1.4	gallons in one ca	asing volume
well depth		well radius	•		-	
wen deput	water level	,, on indias				
CALIBRATION		Temp			E C	
	Time	(°C)	pН	NTU	(µmho/cm)	
Calibration Standard:			7.00/4.01	0/100	1,000	
Before Purging:		18.9	7.00/4.01	0/100	1,000	
After Puging:		19.5	6.89/3.88	0/100	1,000	
FIELD MEASUREMEN	ITS					
	Temp		E C	Cumulative		
Time	(°C)	pН	(µmho/cm)	Gallons Removed	Odor	NTU
13:16	19.6	7.58	1599	1	None observed	0.85
13:22	19.7	7.53	1607	2	None observed	0.24
13:28	19.9	7.41	1635	3	None observed	0.21
13:34	20.0	7.35	1663	4	None observed	0.14
Appearance of sample:	Clear			Time		
Duplicate/blank number:			<u></u>	. Time	: <u>NA</u>	
Purge method:		with polyethylene	and silicon tubing			···
Sampling equipment:	Same as purge e	quipment		. VOA attachment	: None	
Sample containers:	4 VOAs, 1 liter					
Sample analyses:		BTEX; & MTBE		Laboratory		
Decontamination method		ter, DI water rinse		Rinsate disposal	: Stored onsite,	
				-	Port contracto	r to remove

¹ Source: Oakland Fire Service Station "ONO".

TOC = top of casing

Project No. Project name: Location: Recorded by: Weather: Precip. in past 5 days 1	Y5395-02 Harbor Facilities Cen Port of Oakland 2277 7th Street, Oakl WKS Overcast, afternoon s	land		l bgs (feet); or (inches); erval bgs (feet); terval bgs (feet);	Date:	12/21/2005 17.5 2 7.5-17.5 6.5-17.5 16.18
(inches):	3.58 Dual-phase interface probe		rom TOC (feet):		Time:	9:15
Water Level Instrument:	(Solinst)	Product level fro	om TOC (feet):	8.21	Time:	9:15
VOLUME OF WATER [(ft) - (well depth well le	ft)] x 0.083 ft) ² x 7	τ x 7.48 gal/ft ³ =	gallo	ons in one casing volum	ne	
CALIBRATION Calibration Standard: Before Purging: After Puging:	:	Temp (°C)	рН	NTU	E C (μmho/cm)	
FIELD MEASUREMEN	ITS					
Time	Temp (°C)	рН	E C (μmho/cm)	Cumulative Gallons Removed	Odor	NTU
Measured product level o	nly, no groundwater sa	imple collected di	ue to the presen	ce of free-phase produ	ct.	
					4.	
Appearance of sample: Duplicate/blank number: Purge method:				Time: _		
Sampling equipment: Sample containers:				VOA attachment: _		
Sample analyses: Decontamination method:	: Alconox and water,	DI water rinse		Laboratory: _ Rinsate disposal: _		

TOC = top of casing

¹ Source: Oakland Fire Service Station "ONO".

						10/01/000
+10,000.	Y5395-02		Well No.:	MW-4	_ Date:	12/21/2005
- + - J	Harbor Facilities (Center		from TOC (feet):	-	18.8
	Port of Oakland		Well diameter		<u>-</u>	2
	2277 7th Street, O	akland	Screened inter	- '		8.0-18.0
Recorded by:	WKS		w	erval bgs (feet):	_	7.0-18.0
Weather:	Overcast, afternoo	n showers	TOC elevation	(feet):	_	13.15
Precip. in past 5 days 1						
(inches):	3.58	Water Level f	rom TOC (feet):	7.30	Time:	9:45
	Dual-phase	17 0000 20 100			-	
	interface probe					
Water Level Instrument:	_	Droduct level f	rom TOC (feet):	None	Time:	9:45
water Level Instrument.	(Sollist)	_ Troduct level i	10111100 (1000).			
VOLUME OF WATER	TO BE REMOVE	D				•
/19 70 f t	-7.30 ft)	$x (0.083 \text{ ft})^2 x$	$\pi \times 7.48 \text{ gal/ft}^3 =$	1.9	gallons in one ca	sing volum
•		well radius		+12	_0 -: -: -: -: -:	5
well depth	water level	well radius				
CALIBRATION		Temp			E C	
Of Amilian Control	Time	(°C)	pН	NTU	(µmho/cm)	
Calibration Standard:		***	7.00/4.01	0/100	1,000	
Before Purging:		18.9	7.00/4.01	0/100	1,000	
After Puging:		19.5	6.89/3.88	0/100	1,000	
And Tuging.	13.30	15,10	2,22,2111		,	
FIELD MEASUREMEN	ITS					
	Temp		E C	Cumulative		
Time	(°C)	pН	(µmho/cm)	Gallons Removed	Odor	NTU
Removed silty/sand sedin	nent from the botto	om of well.				
11:10	20.8	6.67	1793	2	None observed	13
11:16	20.7	6.88	1752	3	None observed	4.0
11:22	20.7	6.65	1732	4	None observed	0.85
11:34	20.7	7.00	1701	6	None observed	0.21
11.51						
				· m·	11-25	•
Appearance of sample:	Clear	<u> </u>		Time		
Duplicate/blank number:	MW-4d			- Time	e: <u>11:40</u>	·
Purge method:		p with polyethylene	and silicon tubing	g	, , , , , , , , , , , , , , , , , , ,	
Sampling equipment:	Same as purge			VOA attachment	t: None	
Sample containers:	4 VOAs, 1 liter		· · · · · · · · · · · · · · · · · · ·	•	a .t o.m	1.1
Sample analyses:		BTEX; & MTBE		Laboratory		pkins
Decontamination method	l: Alconox and w	ater, DI water rinse		Rinsate disposa		
					Port contracto	r to remove

¹ Source: Oakland Fire Service Station "ONO".

TOC = top of casing

Y5395-02		Well No.:	MW-5	Date:	12/21/20
Harbor Facilities	Center		from TOC (feet):		18.4
Port of Oakland		Well diameter	(inches):	-	2
2277 7th Street, C	Dakland	_	•	_	8.0-18.0
WKS		-	- '	-	7.0-18.0
Overcast, afternoo	on showers	-		-	13.49
		-		_	
3.58	Water Level f	rom TOC (feet):	5.91	Time:	9:40
Dual-phase		` ′ •		- -	
interface probe					
(Solinst)	Product level f	rom TOC (feet):	None	Time:	9:40
TO BE REMOVE	E D				
-5 91 ft)	x (0.083 ft) ² x 1	$T \times 7.48 \text{ gal/ft}^3 =$	2.0	gallone in one ca	eina volu
water level	well radius	· · · · · · · · · · · ·	2.0	_ganons in one ca	snig voiu
	m			T.C	
Tima	_	~TT	NTH		
Time	(*C)	_			
	~ ~	7.00/4.01	0/100	1,000	
9:50	18.9	7.00/4.01	0/100	1,000	
13:50	19.5	6.89/3.88	0/100	1,000	
ITS					
Temp		E C	Cumulative		
(°C)	pН	(µmho/cm)	Gallons Removed	Odor	NTU
ent from the botto	m of well, some clay	y below sand.			
18.5	7.20	1877	1	None observed	18
18.8	7.08	1985	2.5	None observed	9.9
18.9	7.00	2024	4	None observed	3.9
18.9	7.05	2060	6	None observed	2.4
			Time:	12:30	
Clear					
Clear None			Time:		
None	with polyethylene a	and silicon tubing			
None		and silicon tubing			
None Peristaltic pump	equipment	and silicon tubing	5.		
None Peristaltic pump Same as purge e 4 VOAs, 1 liter	equipment	and silicon tubing	5.	None	kins
	Harbor Facilities Port of Oakland 2277 7th Street, C WKS Overcast, afternoo 3.58 Dual-phase interface probe (Solinst) TO BE REMOVE -5.91 ft) water level Time 9:50 13:50 TS Temp (°C) nent from the botto 18.5 18.8	Harbor Facilities Center Port of Oakland 2277 7th Street, Oakland WKS Overcast, afternoon showers 3.58 Water Level fill Dual-phase interface probe (Solinst) Product level fill TO BE REMOVED -5.91 ft) x (0.083 ft) ² x fill water level well radius Temp (°C) 9:50 18.9 13:50 19.5 TS Temp (°C) pH nent from the bottom of well, some class 18.5 7.20 18.8 7.08 18.9 7.00	Harbor Facilities Center	Harbor Facilities Center	Harbor Facilities Center

¹ Source: Oakland Fire Service Station "ONO".

TOC = top of casing

bgs = below ground surface

Port contractor to remove

Project No.	Y5395-02		Well No.: _	MW-8A	Date: _	12/21/2005
	Harbor Facilities	Center	Depth of well	from TOC (feet):	_	20.6
	Port of Oakland		Well diameter	(inches):	_	2
	2277 7th Street, 0	Dakland	Screened inter	val bgs (feet):	_	5.0-20.0
	WKS		Filter pack into	erval bgs (feet):	_	4.0-20.8
	Overcast, afterno	on showers	TOC elevation	(feet):	_	12.94
Precip. in past 5 days ¹	<u> </u>		-			
	3.58	Water Level 1	from TOC (feet):	6.90	Time:	9:50
	Dual-phase	— Water 20101	10m 100 (100). [.	
	interface probe					
Water Level Instrument:	•	Product level t	from TOC (feet):	None	Time:	9:50
VOLUME OF WATER 1	IO DE REINION		2			
(20.55 ft	-6.90 ft)	$x (0.083 \text{ ft})^2 x$	$\pi \times 7.48 \text{ gal/ft}^3 =$	2.2	gallons in one ca	sing volum
well depth	water level	well radius				
CALIBRATION		Temp			E C	
OALIDIATION	Time	(°C)	pН	NTU	(µmho/cm)	
			7.00/4.01	0/100	1,000	
Calibration Standard:						
Before Purging:	9:50	18.9	7.00/4.01	0/100	1,000	
After Puging:	13:50	19.5	6.89/3.88	0/100	1,000	,
FIELD MEASUREMEN	тѕ					
	Temp		E C	Cumulative		
Time	(°C)	pН	(µmho/cm)	Gallons Removed	Odor	NTU
Sediment at bottom pump	• •	P	(J)		None observed	
10:08	19.5	7.19	2570	1.5	None observed	10
10:15	19.6	7.20	2532	2.5	None observed	3.7
10:24	19.8	7.15	2480	3.5	None observed	4.2
10:35	20.1	7.14	2453	5	None observed	3.7
10:44	19.9	7.14	2442	6.5	None observed	2.9
Appearance of sample:	Clear			Time		
Duplicate/blank number:	None			. Time		
Purge method:		np with polyethylene	and silicon tubing	ğ		
Sampling equipment:	Same as purge			VOA attachment	: None	
Sample containers:	4 VOAs, 1 lite	er amber		• •	**	
Sample analyses:	TPH-g,-d,-mo	; BTEX; & MTBE		_	: Curtis & Tom	
					: Port contracto	

¹ Source: Oakland Fire Service Station "ONO".

TOC = top of casing

APPENDIX B

LABORATORY REPORT

	,				
					=
					💻 🗎
					<u></u>
	· · · · · · · · · · · · · · · · · · ·				
•	7				
	•			v.	
					en de la completa de La completa de la co
		•			
		*			
		•			
		•		•	***
			and the second s		
•					
	· · · · · · · · · · · · · · · · · · ·				
·					
	•	•			
				100	
				$\{ (x,y) \in \mathbb{R}^{n} \mid x \in \mathbb{R}^{n} \}$	
					
	•				
			and the second		
· · ·					
			•		
		<u> </u>	<u></u>		<u> Program y jedina na pojetnika na pojetnika na p</u>

Quality Control Checklist for Review of Laboratory Report

Job No.: Y5395-02 Site: Harbor Facilities Center, 2277 Seventh Street, Oakland

Laboratory: Curtis and Tompkins, Ltd.

Laboratory Report No: 183972

Report Date: 10-January 2006 BASELINE Review By: JGM

		Yes	No NA
(De	NERAL QUESTIONS scribe "no" responses below in "comments" section. Contact the laboratory, as a lanation or action on "no" responses; document discussion in comments section.)	equired,	for further
la.	Does the report include a case narrative? (A case narrative MUST be prepared by the lab for all analytical work requested by BASELINE)	Х	
16.	Is the number of pages for the lab report as indicated on the case narrative/lab transmittal consistent with the number of pages that are included in report?	Х	
Ic.	Does the case narrative indicate which samples were analyzed by a subcontractor and the subcontractor's name?		Х
1d.	Does the case narrative summarize subsequent requests not shown on the chain-of-custody (e.g., additional analyses requested, release of "hold" samples)?		X
1e.	Does the case narrative explain why requested analyses could not be performed by laboratory (e.g., insufficient sample)?		Х
1 f.	Does the case narrative explain all problems with the QA/QC data as identified in the checklist (as applicable)?	х	
2a.	Is the laboratory report format consistent and legible throughout the report?	х	
2b.	Are the sample and reported dates shown in the laboratory report correct?	х	
3a.	Does the lab report include the original chain-of-custody form?	Х	
3b.	Were all samples appropriately analyzed as requested on the chain-of-custody form?	х	
4.	Was the lab report signed and dated as being reviewed by the laboratory director, QA manager, or other appropriate personnel? (Some lab reports have signature spaces for each page). (This requirement also applies to any analyses subcontracted out by the laboratory)	Х	
5a.	Are preparation methods, cleanup methods (if applicable), and laboratory methods indicated for all analyses?	Х	
5b.	If additional analytes were requested as part of the reporting of the data for an analytical method, were these included in the lab report?		X
6.	Are the units in the lab report provided for each analysis consistent throughout the report?	Х	
7.	Are the detection limits (DL) appropriate based on the intended use of the data?	х	

		Yes	No	NA
	(e.g., DL below applicable MCLs for water quality issues?)			
8a.	Are detection limits appropriate based on the analysis performed? (i.e., not elevated due to dilution effects)	Х		
8b.	If no, is an explanation provided by the laboratory?			X
9a.	Were the samples analyzed within the appropriate holding time? (generally 2 weeks for volatiles, and up to 6 months for total metals)	Х		
9b.	If no, was it flagged in the report?			Х
10.	If samples were composited prior to analysis, does the lab report indicate which samples were composited for each analysis?	Х		
11a.	Do the chromatograms confirm quantitative laboratory results? (petroleum hydrocarbons)	Х		
11b.	Is a standard chromatogram(s) included in the laboratory report?	Х		
11c.	Do the chromatograms confirm laboratory notes, if present (e.g., sample exhibits lighter hydrocarbon than standard)	Х		
12.	Are the results consistent with previous analytical results from the site? (If no, contact the lab and request review/reanalysis of data, as appropriate)	X		
13a.	REVISED LAB REPORTS ONLY. Is the revised lab report or revised pages to a lab report signed and dated as being reviewed by the laboratory director, QA manager, or other appropriate personnel?			Х
13b	REVISED LAB REPORTS ONLY. Does the case narrative indicate the date of revision and provide an explanation for the revision?			X
13c.	REVISED LAB REPORTS ONLY. Does the revised lab report adequately address the problem(s) which triggered the need for a revision?			X
13d	REVISED LAB REPORTS ONLY. Are the data included in the revised report the same as data reported in the original report, except where the report was revised to correct incorrectly reported data?			X
<i>QA</i> Fiel	'QC Questions d/Laboratory Quality Control - Groundwater Analyses		· · · · · · · · · · · · · · · · · · ·	
14.	Are field blanks reported as "ND"? (groundwater samples) A field blank is a sample of DI water which is prepared in the field using the same collection and handling procedures as the other samples collected, and used to demonstrate that the sampling procedure has not contaminated the sample.			X
15.	Are trip blanks reported as "ND"? (groundwater samples/volatile analyses) A trip blank is a sample of contaminant-free matrix placed in an appropriate container by the lab and transported with the field samples collected. Provides information regarding positive interference introduced during sample transport, storage, preservation, and analysis. The sample is NOT opened in the field.			X

	Yes	No	NA
16. Are duplicate sample results consistent with the original sample? (groundwater samples) Field duplicates consist of two independent samples collected at the same sampling location during a single sampling event. Used to evaluate precision of the analytical data and sampling technique. (Differences between the duplicate and sample results may also be attributed to environmental variability).	е		X

Batch Quality Control

(Samples are batched together by matrix [soil, water] and analyses requested. A batch generally consists of 20 or fewer samples of the same matrix type, and is prepared using the same reagents, standards, procedures, and time frame as the samples. QC samples are run with each batch to assess performance of the entire measurement process.)

17. Do the sample batch numbers and corresponding laboratory QA/QC batch numbers match?	Х		
18a. Are method blanks (MB) for the analytical method(s) below the laboratory reporting limits? Used to assess lab contamination and prevent false positive results. MBs should be "ND."	X		
18b. If no, is an explanation provided in the case narrative to validate the data?			х
18c. Are analytes which may be considered laboratory contaminants reported below the laboratory reporting limit? Common lab contaminants include acetone, methylene chloride, diethylhexyl phthalate, and di-n-octyl phthalate.	Х		
18d. If no, was the laboratory contacted to determine whether reported analyte could be a potential laboratory contaminant and was an explanation included in the case narrative?			X
19. Are laboratory control samples (LCS) and LCS duplicate (LCSD) [a.k.a., Blank Spike (BS) and BS duplicates (BSD)] within laboratory reporting limits? Limits should be provided on the report. LCS is a reagent blank spike with a representative selection of target analyte(s) and prepared in the same manner as the samples analyzed. The LCS should be spiked with the same analytes as the matrix spike (below). The LCS is free from interferences from the sample matrix and demonstrates the ability of the lab instruments to recover the target analytes. Accuracy (recovery information) is generally reported as % spike recovery; precision (reproducibility of results) between the LCS and LCSD is generally reported as the relative percent difference (RPD). LCS/LCSD can be run in addition to or in lieu of, matrix QC data.	X		
20a. Are the Matrix QC data (i.e., MS/MSD) within laboratory limits? Limits should be provided on the lab report. The lab selects a sample from the batch and analyzes a spike and a spike duplicate of that sample. Matrix QC data is used to obtain precision and accuracy information and is reported in the same manner as LCS/LCSD. If the MS/MSD fails, the results may still be considered valid if the MB and either the LCS/LCSD or BS/BSD is within the lab's limits (failure is probably due to matrix interference).		X	
20b. If no, is the MB and either LCS/LCSD or BS/BSD within lab limits to validate the data?	Х		

Sample Quality Control		
21a. Are the surrogate spikes reported within the lab's acceptable recovery limits? A surrogate is a non-target analyte, which is similar in chemical structure to the analyte(s) being analyzed for, and which is not commonly found in environmental samples. A known concentration of the surrogate is spike into the sample or QA "sample" prior to extraction or sample preparation. Results are usually reported as % recovery of the spike. Failure to meet lab's limits for primary and secondary surrogates results in rebatching and reanalysis of the sample; failure of only the primary or the secondary surrogate may be acceptable under certain circumstances. Failure generally is due to coelution with the sample matrix.	X	
21b. If no, is an explanation given in the case narrative to validate the data?		Х

Comments:	High surrogate recoveries were reported by the laboratory for 1,2-dichloroethane-d4 in
	the analysis of sample MW-8A and in the MS/MSD for the batch QA/QC sample.
	and analysis states

Curtis & Tompkins, Ltd., Analytical Laboratories, Since 1878

2323 Fifth Street, Berkeley, CA 94710, Phone (510) 486-0900

ANALYTICAL REPORT

RECEIVED

Prepared for:

JAN 13 2006

Baseline Environmental 5900 Hollis St. Suite D

BASELINE

Emeryville, CA 94608

Date: 10-JAN-06

Lab Job Number: 183972 Project ID: STANDARD

Location: Harbor Facilities Center,

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signatures. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis.

Reviewed by:

Reviewed by:

Operations Manager

This package may be reproduced only in its entirety.

NELAP # 01107CA

Page 1 of 28

CASE NARRATIVE

Laboratory number:

183972

Client: Location: Baseline Environmental Harbor Facilities Center,

Request Date:

12/21/05

Samples Received:

12/21/05

This hardcopy data package contains sample and QC results for five water samples, requested for the above referenced project on 12/21/05. The samples were received cold and intact.

TPH-Purgeables and/or BTXE by GC (EPA 8015B):

No analytical problems were encountered.

TPH-Extractables by GC (EPA 8015B):

No analytical problems were encountered.

Volatile Organics by GC/MS (EPA 8260B):

High surrogate recoveries were observed for 1,2-dichloroethane-d4 in MW-8A (lab # 183972-005) and the MS/MSD for batch 109110. No other analytical problems were encountered.

BASELIN E

5900 Hollis Street, Suite D Emeryville, CA 94608 Tel: (510) 420-8686 Fax: (510) 420-1707

CHAIN OF CUSTODY RECORD

Turn-around Time

Lab

BASELINE Contact Person

Standard

Curtis & Tompkins

Bill Scott/James McCarty

Project Number F Y5395-02											TPH as Basoline (8015B) (8015B) Williage R. m.o. BTEX & MTBE 8260B Combosite																
Samplers: (Signature)									Co	ontai	ners	3				7		$\frac{1}{2}$		$\frac{2\pi}{2}$							
Shellera K Dent	<u> </u>				•			Ty	-					ervat			Jaso L	esel,		7							;
Sample ID No. Station	I	Date	ð: 	Time:	Media	No.	SS	L-AG	40-ml VOA	L-Poly 250 ml Poly	500 ml Poly	None			Ŧ		TPH as g	TEPH d.	BTEX	/ ,						Remarks/ Composit	
MW-2	1	12/2/	1/05	13)45	w	4			Х	十			Х	T			х		X						 		
MW-2		1		13:45	W	1	1	x	\sqcap	\top		Х	\top	\top	1	十		X							+-		
MW-4				11:35	W	4			X				Х	I			x		Х					†	 		
MW-4				11:35	W	1		X				Х			\prod	T		Х				<u> </u>	7		_		
MW-4d				11:40	W	4			Χ	I			Х			1	Х		Х					1-	\top		
MW-4d				11:40	W	1	\prod_{\cdot}	X	-	ightharpoons		X		$oxed{\mathbb{L}}$		I		X							 		
MW-5		\dashv		12:30	W	4	\bot	$\overline{}$	X				Х	<u> </u>			Х		Х								
MW-5		\dashv		12:30	W	1	 	X	-	\bot		Χ	\Box	丄	$\perp \downarrow$	丄		X									
MW-8A		_		10:45		4	+-	—	X	\bot	igspace		x	\bot	\coprod		X		Χ			ļ					
MW-8A		1	<u>/ · </u>	10:45	<u>_w_</u>	1	igoplus	X	\vdash	+	\perp	Х		+	$\dashv \downarrow$		_	X					<u> </u>	<u> </u>	ــــــ		
	\longrightarrow			 	 	 	+	+-!	- -	+	+-	oxdot		+	$\dashv \downarrow$	+					_	<u> </u>		 	 		
	\longrightarrow				 	┼	+	+	${oldsymbol{ee}}$		 	Ц	\dashv		++	+						<u> </u>	ļ	 	 		
					 	╀	++	+	\vdash	+	-	\sqcup		+	++	+		-				<u> </u>		 	 	····	
<u> </u>					┼	╄	+	+	$\vdash \vdash$	+			\dashv	+	igapha	_	_						<u> </u>		 		
				<u> </u>	<u> </u>	<u> </u>	$\bot \bot$	$\perp \mid$	\sqcup	_	╜	\sqcup	 		\coprod	丄											
				<u> </u>	<u> </u>	<u></u>		$oldsymbol{\perp}$	Ц	丄				<u> </u>		丄		- 		,		İ					
Relinquished by: (Signa	ıture)		Custody Yes	_	Date/Ti /2//05	/	:3Æ		1	ved t			\mathcal{L}) [) Cu ンシYes	ustody intact s No	Seal t NA	12/2	ite/Tim	1e 2:32	Conc	litions ⁄al at L	of Sar abora	mples (itory:	Upon		
Relinquished by: (Signat	ture)		Custod Yes	ly Seal I	Date/Tir	me		Red	ceiv	ed b	y: (8	Sigr	ıatur	:e)		Custody intac s No	y Seal t	Da	te/Tim		Rea Plea	land	voice	O 202	2386	in at Port	#21
Relinquished by: (Signa	ture)		Custod Yes	dy Seal]	Date/Ti	ime		Re	 ceiv	ved l	bу: (Sig	natu	re)		ustody intact s No		1	ate/Tin	ne	Plea resu	se e-r	nail d jrubi	copy on mapo	of the	e analyti kland.co	cal m
Received at laboratory	with inta	act (custo-	dy seal:	(Signa	ture))		I	Date/	/Tin	1e			Comr	ments	S:	D.	Receive	d Ambient		act					

Total Volatile Hydrocarbons 183972 Harbor Facilities Center, Location: Lab #: Baseline Environmental EPA 5030B Client: Prep: Analysis: EPA 8015B STANDARD Project#: 109005 Batch#: Matrix: Water ug/L Sampled: 12/21/05 Units: Received: 12/21/05 Diln Fac: 1.000

Field ID:

MW-2

Type:

SAMPLE

Lab ID:

183972-001

Analyzed:

12/28/05

Analyte	Result	RL	
Gasoline C7-C12	ND	50	

	Surrogate	%I	REC Limits	
1	Trifluorotoluene (FID)	98	62-141	
	Bromofluorobenzene (FID)	98	78-134	

Field ID:

MW - 4

Type:

SAMPLE

Lab ID:

183972-002

Analyzed:

12/28/05

Analyte	Result	RL	
Gasoline C7-C12	110	50	

Surrogate	%RE	l Limits
Trifluorotoluene (FID)	95	62-141
Bromofluorobenzene (FID)	116	78-134

Field ID:

MW-4D

Type:

SAMPLE

Lab ID:

183972-003

Analyzed:

12/28/05

Analyte	Result	RL	
Gasoline C7-C12	160	50	

		•	·
Surrogate	%REC	Limits	
Trifluorotoluene (FID)	113	62-141	
Bromofluorobenzene (FID)	121	78-134	

GC19 TVH 'X' Data File (FID)

GC19 TVH 'X' Data File (FID)

GC19 TVH 'X' Data File (FID)

Total Volatile Hydrocarbons Location: Harbor Facilities Center, Lab #: 183972 Prep: EPA 5030B Baseline Environmental Client: EPA 8015B STANDARD Analysis: Project#: Batch#: 109005 Matrix: Water Sampled: 12/21/05 Units: ug/L Received: 12/21/05 1.000 Diln Fac:

Field ID:

MW-5

Type:

SAMPLE

Lab ID:

183972-004

Analyzed:

12/28/05

Analyte	Result	RL	
Gasoline C7-C12	ND	50	

Surrogate	%REC	C Limits
Trifluorotoluene (FID)	99	62-141
Bromofluorobenzene (FID)	117	78-134

Field ID:

A8-WM

Type:

SAMPLE

Lab ID:

183972-005

Analyzed:

12/28/05

		F-90-10 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
2000900000	Amalwte	Result	RL	
	miaiyee			
	oline C7-C12	NTD	50	
Gas		1417	J 0	

Surrogate	%REC	Limits	
Trifluorotoluene (FID)	114	62-141	
Bromofluorobenzene (FID)	124	78-134	

Type:

BLANK

Lab ID:

QC322274

Analyzed:

12/27/05

Analyte	Result	RL	
Gasoline C7-C12	ND	50	

Surrogate %REC Limits Trifluorotoluene (FID) 90 62-141				
Trifluorotoluene (FID) 90 62-141	Surrogate	%RF		<i>6</i> 0000
		90	62-141	
Bromotluorobenzene (FID) 109 /8-134	Bromofluorobenzene (FID)	109	78-134	

ND= Not Detected RL= Reporting Limit Page 2 of 2

	Total Mala	-41 - Treedon 1	
	TOTAL VOIA	tile Hydrocarbo	DUB
Lab #:	183972	Location:	Harbor Facilities Center,
Client:	Baseline Environmental	Prep:	EPA 5030B
Project#:	STANDARD	Analysis:	EPA 8015B
Type:	LCS	Diln Fac:	1.000
Lab ID:	QC322276	Batch#:	109005
Matrix:	Water	Analyzed:	12/27/05
Units:	ug/L·		

Gasoline C7-C12	2,000	1,879	94	80-120	tege (tegeneralisation)
					

Surrogate	%RE(: Limits
Trifluorotoluene (FID)	118	62-141
Bromofluorobenzene (FID)	116	78-134

	Total Volat	zile Hydrocarbo	ons
Lab #:	183972	Location:	Harbor Facilities Center,
Client:	Baseline Environmental	Prep:	EPA 5030B
Project#:	STANDARD	Analysis:	EPA 8015B
Field ID:	ZZZZZZZZZZ	Batch#:	109005
MSS Lab ID:	184029-001	Sampled:	12/23/05
Matrix:	Water	Received:	12/27/05
Units:	ug/L	Analyzed:	12/28/05
Diln Fac:	1.000		

Type: MS

Lab ID: QC322353

Analyte MS	3S Result	Spiked	Result	%REC	Limits
Gasoline C7-C12	42.07	2,000	. 2,107	103	80-120

Surrogate	%RE	C Limits
Trifluorotoluene (FID)	124	62-141
Bromofluorobenzene (FID)	130	78-134

Type: MSD

Lab ID: QC322354

Analyte	Spiked	Result	%REC	Limits	RP.	O Lim
Gasoline C7-C12	2,000	2,177	107	80-120	3	20
Gaborine et er						

Surrogate	%REC	Limits
Trifluorotoluene (FID)	127	62-141
Bromofluorobenzene (FID)	132	78-134

Total Extractable Hydrocarbons Lab #: Harbor Facilities Center, EPA 3520C EPA 8015B 183972 Location: Prep: Analysis: Client: Baseline Environmental Project#: STANDARD 12/21/05 12/21/05 Matrix: Water Sampled: Units: ug/L Received: Diln Fac: 1.000 Prepared: 12/22/05 Batch#: 108975

Field ID:

MW-2

Type: ab ID: SAMPLE

183972-001

Analyzed:

12/29/05

Cleanup Method: EPA 3630C

Analyte	Result	RL	
Diesel C10-C24	ND	50	
Motor Oil C24-C36	ND	300	

Surrogate %REC Limits Hexacosane 92 60-135

ield ID: Type: b ID:

MW-4 SAMPLE

183972-002

Analyzed:

12/29/05

Cleanup Method: EPA 3630C

Analyte	Result		RL	
Diesel C10-C24	ND	1. *	50	
Motor Oil C24-C36	ND		300	
		•		

%REC Limits 122 60-135 Surrogate lexacosane

eld ID:

Туре: Lab ID: MW-4D

SAMPLE

183972-003

Analyzed:

12/29/05

Cleanup Method: EPA 3630C

Analyte	Result	RL	
Diesel C10-C24	ND	50	
Motor Oil C24-C36	ND	300	

こいかからかりもの	2000	Timite	
Durragase			
Jevacocane	11/	60-135	
nexacosane	774	00-T22	

eld ID:

me: Lâb ID: MW-5 SAMPLE

183972-004

Analyzed:

12/29/05

Cleanup Method: EPA 3630C

Analyte	Result	₽#####################################	
Diesel C10-C24	180 H Y	50	
Motor Oil C24-C36	ND	300	

Surrogate	*REC	Limits	
Hexacosane	104	60-135	

H= Heavier hydrocarbons contributed to the quantitation
Y= Sample exhibits chromatographic pattern which does not resemble standard

D= Not Detected

L= Reporting Limit age 1 of 2

MW-5

Sample Name: ccv,S2287,mo_500
Data File: \Lims\gdrive\ezchrom\Projects\GC15B\Data\362b004
Sequence File: \Lims\gdrive\ezchrom\Projects\GC15B\Data\362b004
Software Version 3.1.7
Method Name: \Lims\gdrive\ezchrom\Projects\GC15B\Method\bteh349.met
Run Date: 12/28/2005 12:32:03 PM
Analysis Date: 12/28/2005 1:11:59 PM
Instrument: GC15B Vial: 4 Operator: Teh 3. Analyst (lims2k3\teh3)
Sample Amount: 1

Moror On

Total Extractable Hydrocarbons Harbor Facilities Center, EPA 3520C 183972 Location: Lab #: Prep: Client: Baseline Environmental EPA 8015B 12/21/05 12/21/05 STANDARD <u>Analysis:</u> Project#: Sampled: Matrix: Water Received: ug/L Units: 12/22/05 1.000 Diln Fac: Prepared: Batch#: 108975

Field ID: Type:

A8-WM

SAMPLE

Analyzed: Cleanup Method:

12/29/05 EPA 3630C

ab ID: 183972-005

Result RL Analyte 63 H Y Diesel C10-C24 50 <u> 300</u> Motor Oil C24-C36 ND

Surrogate lormites. 98 60-135 Hexacosane

Type: Lab ID: BLANK

Analyzed:

12/28/05 EPA 3630C

Cleanup Method: QC322165

Result RL Analyte 50 Diesel Cl0-C24 ND <u> 300</u> Motor Oil C24-C36 ND

*REC Limits Surrogate 102 60-135 Hexacosane

H= Heavier hydrocarbons contributed to the quantitation Y= Sample exhibits chromatographic pattern which does not resemble standard

D= Not Detected L= Reporting Limit Page 2 of 2

	Total Extra	table Hydrocar	bons
Lab #:	183972	Location:	Harbor Facilities Center,
Client:	Baseline Environmental	Prep:	EPA 3520C
Project#:	STANDARD	Analysis:	EPA 8015B
Matrix:	Water	Batch#:	108975
Units:	uq/L	Prepared:	12/22/05
Diln Fac:	1.000	Analyzed:	12/28/05

Type: Lab ID:

Cleanup Method: EPA 3630C

BS QC322166

Analyte	Spiked	Result	%REC	Limits	
Diesel C10-C24	2,500	2,531	101	53-138	

Surrogate	%RE	C Limits	
Hexacosane	103	60-135	

Type:

BSD

Cleanup Method: EPA 3630C

Type: Lab ID:

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Diesel C10-C24	2,500	2,553	102	53-138	1	36

Surrogate	%REC] Limite
Hexacosane	104	60-135

	Purgeable I	Aromatics by GC	:/MS
Lab #:	183972	Location:	Harbor Facilities Center,
Client:	Baseline Environmental	Prep:	EPA 5030B
Project#:	STANDARD	Analysis:	EPA 8260B
Field ID:	MW-2	Batch#:	109007
Lab ID:	183972-001	Sampled:	12/21/05
Matrix:	Water	Received:	12/21/05
Units:	$\mathtt{ug/L}$	Analyzed:	12/27/05
Diln Fac:	1.000		

Analyte	Result	RL	
MTBE	ND	0.5	
Benzene	ND	0.5	
Toluene	ND	0.5	
Ethylbenzene	ND	0.5	
Ethylbenzene m,p-Xylenes o-Xylene	ND	0.5	
o-Xylene	ND	0.5	

Surrogate	%REC	Limits
1,2-Dichloroethane-d4	105	80-125
Toluene-d8	98	80-120
Bromofluorobenzene	105	80-124

	Purgeable 1	Aromatics by GC	:/MS
Lab #:	183972	Location:	Harbor Facilities Center,
Client:	Baseline Environmental	Prep:	EPA 5030B
Project#:	STANDARD	Analysis:	EPA 8260B
Field ID:	MW-4	Batch#:	109013
Lab ID:	183972-002	Sampled:	12/21/05
Matrix:	Water	Received:	12/21/05
Units:	ug/L	Analyzed:	12/27/05
Diln Fac:	1.000		

Analyte	Result	RL	
MTBE	ND	0.5	
Benzene	76	0.5	
Toluene	ND	0.5	
Ethylbenzene	ND	0.5	
m.p-Xvlenes	ND	0.5	
Toluene Ethylbenzene m,p-Xylenes o-Xylene	ND	0.5	

Surrogate	%REC	Limits
1,2-Dichloroethane-d4	108	80-125
Toluene-d8	103	80-120
Bromofluorobenzene	115	80-124

	Purgeable /	Aromatics by GO	C/MS
Lab #: Client: Project#:	183972 Baseline Environmental STANDARD	Location: Prep: Analysis:	Harbor Facilities Center, EPA 5030B EPA 8260B
Field ID: Lab ID: Matrix: Units: Diln Fac:	MW-4D 183972-003 Water ug/L 1.000	Batch#: Sampled: Received: Analyzed:	109013 12/21/05 12/21/05 12/27/05

Analyte	Regult		
MTBE	ND ND	0.5	
Benzene	76	0.5	
Toluene	ND	0.5	
Ethylbenzene	ND	0.5	
Ethylbenzene m,p-Xylenes o-Xylene	ND	0.5	
o-Xylene	ND	0.5	

Bromofluorobenzene	114	80-124
Toluene-d8	103	80-120
1,2-Dichloroethane-d4	111	80-125
Surrogate	%REC	Limits

	Purgeable !	Aromatics by GC	
Lab #:	183972	Location:	Harbor Facilities Center,
Client:	Baseline Environmental	Prep: Analysis:	EPA 5030B EPA 8260B
Project#: Field ID:	STANDARD MW-5	Batch#:	109013
Lab ID:	183972-004	Sampled:	12/21/05 12/21/05
Matrix:	Water	Received: Analyzed:	12/21/05
Units: Diln Fac:	ug/L 1.000	2110127	

	Result	RL	
Analyte	ND	0.5	
MTBE	ND	0.5	
Benzene	ND	0.5	
Toluene	ND	0.5	
Ethylbenzene m,p-Xylenes o-Xylene	ND	0.5	
m,p-Xylenes	ND	0.5	
o-Xylene	ND		

Surrogate	%REC	Limits
1,2-Dichloroethane-d4	112	80-125
Toluene-d8	102	80-120
Bromofluorobenzene	116	80-124
DIOMOTEGOTOTO		

	Purgeable .	Aromatics by GO	?/MS
Lab #: Client: Project#:	183972 Baseline Environmental STANDARD	Location: Prep: Analysis:	Harbor Facilities Center, EPA 5030B EPA 8260B
Field ID: Lab ID: Matrix:	MW-8A 183972-005	Batch#: Sampled:	109110 12/21/05
Units: Diln Fac:	Water ug/L 1.000	Received: Analyzed:	12/21/05 12/29/05

Analyte	Result	RL
MTBE	ND	0.5
Benzene	ND	0.5
Toluene	ND	0.5
Ethylbenzene	ND	0.5
Ethylbenzene m,p-Xylenes o-Xylene	ND	0.5
o-Xylene	ND	0.5

·			
Bromofluorobenzene	116	80-124	
Toluene-d8	106	80-120	
1,2-Dichloroethane-d4	128 *	80-125	33.333
Surrogate	%REC	Limits	

^{*=} Value outside of QC limits; see narrative

ND= Not Detected

RL= Reporting Limit

Page 1 of 1

	Purgeable A	aromatics by GC	/MS
Lab #: Client:	183972 Baseline Environmental STANDARD	Location: Prep: Analysis:	Harbor Facilities Center, EPA 5030B EPA 8260B
Project#: Type: Lab ID: Matrix: Units:	BLANK QC322285 Water ug/L	Diln Fac: Batch#: Analyzed:	1.000 109007 12/27/05

7441V++ A	Result	RL	
Analyte	ND	0.5	
MTBE	ND	0.5	
Benzene	ND	0.5	,
Interio	ND	0.5	
m n Vulened	ND	0.5	,
Toluene Ethylbenzene m,p-Xylenes o-Xylene	ND	0.5	
O-VATEIIE			

Surrogate	%REC	Limits
1,2-Dichloroethane-d4	99	80-125
Toluene-d8	98	80-120
Bromofluorobenzene	100	80-124
DIOMOTIACI		

	Purgeable .	Aromatics by GK	C/MS
Lab #:	183972	Location:	Harbor Facilities Center,
Client:	Baseline Environmental	Prep:	EPA 5030B
Project#:	STANDARD	Analysis:	EPA 8260B
Type:	BLANK	Diln Fac:	1,000
Lab ID:	QC322313	Batch#:	109013
Matrix:	Water	Analyzed:	12/27/05
Units:	ug/L	1	, 2 . , 03

Result	PL
ND	0.5
ND	0.5
ИD	0.5
ND	0.5
ND	0.5
ND	0.5
	ND ND ND ND ND

Bromofluorobenzene	108	80-124
Toluene-d8	99	80-120
1,2-Dichloroethane-d4	100	80-125
Surrogate	%REC	! Limits

	Purgeable A	Aromatics by GC	?/MS
Lab #: Client: Project#:	183972 Baseline Environmental STANDARD	Location: Prep: Analysis:	Harbor Facilities Center, EPA 5030B EPA 8260B
Type: Lab ID: Matrix: Units:	BLANK QC322659 Water ug/L	Diln Fac: Batch#: Analyzed:	1.000 109110 12/29/05

Analyte	Result	RL
MTBE	ND	0.5
Benzene	ND	0.5
Toluene	ND	′ 0.5 0.5
Ethylbenzene	ND ND	0.5
Ethylbenzene m,p-Xylenes o-Xylene	ND	0.5
O-YATEHE		

Surrogate	%REC	Limits
1,2-Dichloroethane-d4	118	80-125
Toluene-d8	103	80-120
Bromofluorobenzene	119	80-124
DEOMOZZGOZO		

	Purgeable 1	Aromatics by GCC	'/MS
Lab #: Client: Project#:	183972 Baseline Environmental STANDARD	Location: Prep: Analysis:	Harbor Facilities Center, EPA 5030B EPA 8260B
Matrix: Units: Diln Fac:	Water ug/L 1.000	Batch#: Analyzed:	109007 12/27/05

_Type:

BS

Lab ID:

QC322281

o-xylene	25.00	27.50	110	80-120
m,p-Xylenes o-Xylene	50.00	55.64	111	80-121
	25.00	27.46	110	80-120
Ethylbenzene	25.00	25.25	101	80~120
Toluene		24.55	98	80-120
Benzene	25.00			72~120
MTBE	25.00	23.50	94	
Analyte	Spiked	Result	% REC	Limits

Surrogate	%REC	Limits
1,2-Dichloroethane-d4 Toluene-d8	98	80-125
i	96	80-120
Bromofluorobenzene	100	80-124

Туре:

BSD

Lab ID:

MTBE	Spiked	Result	%REC	Limits	RPD	Lin
· ··· — —	25.00.	22.32	89	72-120	5	20
Benzene	25.00	23.58	94	80-120	4	20
Toluene	25.00	25.01	100	80-120	1	
Ethylbenzene	25.00	25.71	103		T	20
m,p-Xylenes	50.00			80-120	7	20
o-Xylene	· · ·	52.04	104	80-121	7	20
O NYTONE	25.00	26.16	105	80-120	5	20

Bromofluorobenzene	100	80-124
Toluene-d8	96	80-120
1,2-Dichloroethane-d4	96	80-125
Surrogate	%REC	Limits

<u> Batch QC Rep</u>		romatics by GC	'/MS
Lab #: Client: Project#:	183972 Baseline Environmental STANDARD	Location: Prep: Analysis:	Harbor Facilities Center, EPA 5030B EPA 8260B
Matrix: Units: Diln Fac:	Water ug/L 1.000	Batch#: Analyzed:	109013 12/27/05

Type:

BS

Lab ID: QC322311

•	Spiked	Result	%REC	Limits	
Analyte	25.00	23.57	94	72-120	
MTBE	25.00	22.95	92	80-120	
Benzene	25.00	25.83	103	80-120	
Coluene	25.00	25.44	102	80-120	
Ethylbenzene	50.00	52.65	105	80-121	
n,p-Xylenes	25.00	27.28	1.09	80-120	
o-Xylene	25.00				

Surrogate	%REC	Limits
1,2-Dichloroethane-d4	89	80-125
Toluene-d8	97	80-120
Bromofluorobenzene	103	80-124

Type:

BSD

Lab ID:

Analyte	Spiked	Result	%REC	Limits	RPD	0.0000.00000000000000000000000000000000
	25.00	22.55	90	72-120	4	20
MTBE	25.00	23.97	96	80-120	4	20
Benzene	25.00	25.20	101	80-120	2	20
Toluene	25.00	24.10	96	80-120	5	20
Ethylbenzene	50.00	50.78	102	80-121	4	20
m,p-Xylenes	25.00	25.59	102	80-120	6	20
o-Xylene	23.00					

Surrogate	%REC	Limits
1,2-Dichloroethane-d4	94	80-125
Toluene-d8	97	80-120
Bromofluorobenzene	100	80-124
D10,,,04,-4-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1		

	Purgeable /	Aromatics by GO	C/MS
Lab #: Client: Project#:	183972 Baseline Environmental STANDARD	Location: Prep:	Harbor Facilities Center, EPA 5030B
Type: Lab ID: Matrix:	LCS QC322658 Water	Analysis: Diln Fac: Batch#: Analyzed:	EPA 8260B 1.000 109110 12/29/05
Units:	ug/L		12/29/05

Analyte	Spiked	Result	%REC	: Limits
MTBE	25.00	20.35	81	72-120
Benzene	25.00	23.35	93	80-120
Toluene	25.00	24.17	97	80-120
Ethylbenzene	25.00	24.50	98	80-120
m,p-Xylenes	50.00	49.27	99	80-121
o-Xylene	25.00	25.49	102	80-120

Surrogate	%REC	Limits	
1,2-Dichloroethane-d4	102	80-125	
Toluene-d8	104	80-120	
Bromofluorobenzene	89	80-124	

Baseline Environmental Prep: EFA 8000 Project#: STANDARD Analysis: EPA 8260B Project#: ZZZZZZZZZ Batch#: 109110 Sampled: 12/21/05 SS Lab ID: 184025-002 Received: 12/22/05 Satrix: Water Analyzed: 12/29/05		Purgeable A	Aromatics by GC	?/MS
Project#: 51ANDARD Field ID: ZZZZZZZZZ Batch#: 109110 MSS Lab ID: 184025-002 Sampled: 12/21/05 Matrix: Water Received: 12/22/05 Analyzed: 12/29/05	Lab #: Client:	Baseline Environmental	Prep:	EPA 5030B
	Project#: Field ID: MSS Lab ID: Matrix: Units:	ZZZZZZZZZ 184025-002	Batch#: Sampled:	12/21/05 12/22/05

Type:

MS

Lab ID: QC322660

	MSS Result	Spiked	Result	%REC	Limits
Analyte	1.938	25.00	27.89	104	74-121
MTBE	<0.1050	25.00	24.69	99	78-120
Benzene	<0.1030	25.00	25.78	103	78-120
Toluene	<0.08280	25.00	27.90	112	77-120
Ethylbenzene	<0.2410	50.00	54.27	109	74-120
m,p-Xylenes	· · · · · · · · · · · · · · · · · · ·	25.00	27.02	108	74-120
o-Xylene	<0.1041	25.00			

Surrogate	%REC	Limits	1999 (1991) 1999 (1991)
1,2-Dichloroethane-d4	128 *	80-125	
Toluene-d8	105	80-120	
Bromofluorobenzene	92	80-124	
BLOWOLINGLODGIZGIC			

Type:

MSD

Lab ID:

	Spiked	Result	%REC	Limits	RPI) Lin
Analyte	25.00	25.43	94	74-121	9	20
MTBE	25.00	24.63	99	78-120	0	20
Benzene	25.00	25.47	102	78-120	1	20
Toluene	25.00	27.26	109	77-120	2	20
Ethylbenzene	50.00	54.47	109	74-120	0	20
m,p-Xylenes	25.00	27.43	110	74-120	2	20
o-Xylene	23.00	···				

Surrogate	%REC	Limits	
1,2-Dichloroethane-d4 Toluene-d8 Bromofluorobenzene	128 * 107 98	80-125 80-120 80-124	

^{*=} Value outside of QC limits; see narrative RPD= Relative Percent Difference Page 1 of 1