

January 21, 2005

Mr. Barney Chan Hazardous Materials Specialist Alameda County Health Care Services Agency 1131 Harbor Bay Parkway, 2nd Floor Alameda, CA 94502

4th Quarter 2004, Quarterly Groundwater Monitoring and Product Recovery RE: Report - 2277 Seventh Street, Oakland, CA

Dear Mr. Chan:

Please find enclosed the subject Port of Oakland (Port) groundwater monitoring and product recovery report for 2277 Seventh Street in Oakland, California. This report is being submitted in accordance with Alameda County Health Care Services Agency (ACHCSA) requirements.

The next monitoring event will be performed during the first quarter of 2005, and will be in accordance with the aforementioned requirements. If you have any questions or comments regarding the results, please contact me at (510) 627-1134.

Sincerely,

Jeffrey L. Rubin, CPSS, REA

Port Associate Environmental Scientist

Environmental Health and Safety Compliance

Enclosure: noted

Cc (w encl.):

Michele Heffes

Cc (w/o encl.):

Jeff Jones

Rogerio Leong (Innovative Technical Solutions, Inc.) Rachel B. Hess (Innovative Technical Solutions, Inc.) Jeffrey D. Hess (Innovative Technical Solutions, Inc.)

January 19, 2005

Mr. Jeff Rubin Associate Environmental Scientist Port of Oakland 530 Water Street Oakland, California 94607

Fourth Quarter of 2004 Quarterly Groundwater Monitoring and Product Monitoring Report 2277 Seventh Street Oakland, California

Dear Mr. Rubin:

Innovative Technical Solutions, Inc. (ITSI) is pleased to submit this report to the Port of Oakland (Port) for the groundwater monitoring and sampling program at 2277 7th Street in Oakland, California (Figure 1). This report summarizes the quarterly monitoring of four groundwater monitoring wells (MW-2, MW-4, MW-5, and MW-8A) at 2277 7th Street. The locations of these wells are shown on Figure 2.

This report also encompasses the operation of the product recovery system at the 2277 7th Street site. The operation of the active product recovery system was stopped since April 2003 when a section of the conveyance system was removed for construction upgrades at the site. Collection of groundwater samples from monitoring wells MW-1 and MW-3 was not performed this quarter due to the presence of separate-phase petroleum hydrocarbons.

BACKGROUND

Monitoring wells were installed to assess groundwater quality following the removal of underground storage tanks (USTs) from the site in September 1993. The former USTs, located on the south side of Building C-401, consisted of two 10,000-gallon gasoline tanks (CF-17 and CF-18), one 500-gallon oil tank (CF-19), and one 300-gallon waste oil tank (CF-20). On April 20, 2000, Harding ESE (Harding) performed oversight of the abandonment of monitoring well MW-8, located at the northern edge of the property. This monitoring well was properly destroyed to accommodate the construction of a railroad track associated with the Port of Oakland Vision 2000 improvements. All surface structures, including the well, needed to be removed.

Harding monitored MW-8 from 1998 until it was abandoned. During this time, no groundwater samples were collected because the well contained a thick, viscous, tar-like petroleum product. After the railroad construction was completed, the Port had a replacement well, MW-8A, installed in the same vicinity on October 2, 2001 by ITSI. MW-8A has been sampled since the Fourth quarter of 2001, and no separate phase petroleum has been detected.

^{1 -} Destruction and abandonment of all monitoring wells were performed in accordance with Alameda County Public Works Agency Guidelines

Site preparation activities for the construction of a new Harbor Facilities Center (HFC) were initiated in November 2002. The eastern side of Building C-401 was demolished, and the asphalt pavement east of the building was removed in December 2002. A concrete ring was placed around each well for protection and prevention from damage by heavy equipment during site demolition. Two monitoring wells (MW-6 and MW-7) were properly destroyed to facilitate the construction plans at the site, and six monitoring wells (MW-1, MW-2, MW-3, MW-4, MW-5, MW-8A) still remain onsite. The surface grade was raised approximately 2 feet in the vicinity of wells MW-2 and MW-3 during the first quarter of 2003.

On April 16, 2003, ITSI on behalf of the Port oversaw the removal of a 100-foot section of the product recovery conveyance system (refer to Figure 2). The Port contracted Dillard Environmental Services (Dillard) to perform the work. The section of product recovery system was removed to minimize interference with site development. A new product removal system will be installed after development activities are completed. The conveyance system consisted of a PVC conduit pipe containing the pneumatic and product recovery lines. These lines connected the system control box and the recovery tank to the skimmer pump installed in well MW-3. Portions of the surface concrete pieces and asphalt from the trench line were appropriately excavated, removed and stockpiled onsite. Sections of the removed conduit pipes and product line were appropriately disposed of and transported offsite by Dillard as non-RCRA hazardous solid waste material under the Uniform Hazardous Waste Manifest.

Monitoring wells were previously installed at the adjacent 2225 7th Street site to assess groundwater quality following the removal of USTs in 1989 and 1992. The 2225 7th Street site is also currently under modification for the construction of the future HFC. Buildings C-406 and C-407 were demolished and the entire surrounding asphalt pavement was removed in November 2002. The three former monitoring wells (MW-1, MW-2, and MW-3) located at the site were properly destroyed to facilitate the Port's construction plans.

On November 17 and 18, 2003, ITSI personnel raised monitoring wells MW-2 and MW-3 to match the asphalt surface elevation of the future HFC parking lot. New traffic rated well boxes were placed on the two wells and the elevation of the top of each well box was set with a laser level instrument. The elevations of the wells were subsequently surveyed on November 26, 2003 to a relative Port of Oakland datum by PLS Surveys, Inc. (PLS).

GROUNDWATER MONITORING

ITSI personnel performed groundwater monitoring and sampling at the 2277 7th Street site on December 16, 2004. Prior to purging and sampling the monitoring wells, the depth to groundwater below the top of the well casing was measured with a water level indicator. After measuring the depth to water, the wells were purged using a disposable bailer. Conductivity, pH, and temperature were monitored periodically during purging. Collection of groundwater samples was performed after removing a minimum of three well-casing volumes of water and upon stabilization of three consecutive measurements of conductivity, pH, and temperature. The depths to groundwater and field parameter measurements were recorded on the respective Monitoring Well Water Level Measurement and Monitoring Well Purging and Sampling forms included as Appendix A. The purge water was stored onsite in the treatment system's product recovery tank. Dillard Environmental Services Company, Inc. (Dillard) periodically removes and appropriately disposes of the purge water along with the product in the tank.

ITSI collected groundwater samples from the monitoring wells using Teflon disposable bailers and then transferred the groundwater into laboratory-provided containers. A duplicate sample was collected for quality assurance. Sample containers were labeled with the sample number, date and time of collection, and sampler's initials, and then placed in an insulated cooler with ice. The samples were accompanied by a laboratory provided trip blank and delivered under chain-of-custody protocol to Curtis & Tompkins in Berkeley, a California certified analytical laboratory.

The fourth quarter 2004 groundwater monitoring event at 2277 7th Street involved monitoring and sampling of monitoring wells MW-2, MW-4, MW-5, and MW-8A, and monitoring of the free-phase petroleum product in wells MW-1 and MW-3. Groundwater level measurements are summarized in Table 1 and product thickness measurements are summarized on Table 2. The groundwater gradient direction is presented on Figure 3. Copies of the respective Monitoring Well Water Level Measurement and Monitoring Well Purging and Sampling forms are included in Appendix A.

LABORATORY ANALYSIS OF GROUNDWATER SAMPLES

Curtis and Tompkins of Berkeley, California performed the chemical analyses of the groundwater samples using the following analytical methods:

- Total petroleum hydrocarbons as gasoline (TPHg) in accordance with EPA Method 8015B.
- Benzene, toluene, ethylbenzene, and xylenes (BTEX) and methyl t-butyl ether (MTBE) in accordance with EPA Method 8021B with confirmation of MTBE by EPA Method 8260B.
- TPH as diesel (TPHd) in accordance with EPA Method 8015B following a silica-gel cleanup procedure.
- TPH as motor oil (TPHmo) in accordance with EPA Method 8015B following a silica-gel cleanup procedure.

The laboratory results for 2277 7th Street are summarized in Table 3 and are shown on Figure 4. Copies of the laboratory results and chain-of-custody forms are provided in Appendix B.

FINDINGS

Groundwater measurements were conducted on December 16, 2004. The water levels are presented in Table 1. The groundwater elevation contour map is presented on Figure 3. According to these contours, the groundwater appears to be flowing towards the north-northeast. The groundwater flow direction observed during December 2004 is consistent with the historic flow direction reported in the previous reports.

Results of the December 16, 2004 groundwater sampling at 2277 7th Street are summarized below:

- TPHg was detected in one well at a concentration of 840 μg/L in MW-4.
- Benzene was detected in one well at a concentration of 290 μg/L in MW-4.
- Toluene was detected in one well at a concentration of 1.3 µg/L in MW-4. This result was classified as presence confirmed, but relative percent difference (RPD) between columns exceeds 40%.
- Ethylbenzene was detected at a concentration of 0.69 μg/L in MW-4.

- Total xylenes was detected at a concentration of 0.75 μg/L in MW-4.
- MTBE was detected in well MW-5 at a concentration of 2.2 µg/L. However, the MTBE result was not confirmed by EPA Method 8260B at which it was reported as not detected.
- TPHd was detected in two wells at concentrations of 96 μg/L and 160 μg/L in MW-2 and MW-8A. Both results, however, were classified as samples with heavier hydrocarbons contributing to the quantitation and exhibiting chromatographic pattern that does not resemble standard.
- TPHmo was not detected above the reporting limit in any of the wells sampled this quarter.

QUALITY ASSURANCE AND QUALITY CONTROL

A duplicate sample was collected simultaneously from monitoring well MW-4 and labeled as MW-4D at 2277 7^{th} Street on December 16, 2004 and submitted to the analytical laboratory to evaluate the precision of the analytical results. Precision is an indication of the reproducibility of results and is assessed by calculating the RPD between the primary sample result (X_1) and the duplicate sample result (X_2) , as follows:

$$RPD = \frac{X_1 - X_2}{(X_1 + X_2)/2} \times 100$$

For example: A low RPD indicates high precision; a RPD of 67 percent indicates the two results differ by a factor of two. As shown below, the RPD was calculated for chemical compounds detected above the reporting limit in either the duplicate or primary sample.

2277	7 th	St
M	W-4	4
12/1	16/0)4

ANALYTE	X_1	X ₂	RPD
			МЪ
MTBE	<2.0	<2.0	
В	290	230	23.0%
T	1.3	1.3	
E	0.69	< 0.50	
X	0.57	< 0.50	
TPHd	0.75	<50	
TPHg	840	670	22.5%

The relative percent difference between the analytical results from MW-4 and its duplicate sample MW-4D was 23.0% for benzene and 22.5% for TPHg. The overall RPD values indicate that the results from the sample and the duplicate analysis are in agreement.

PRODUCT RECOVERY SYSTEM AT 2277 7TH STREET

Until April 16, 2003 the product recovery system at 2277 7th Street consisted of an air-actuated (active) product skimmer in MW-3. The product in MW-3 was discharged to a product recovery 1,000-gallon tank that Foss Environmental Services Company, Inc. (former contractor) emptied at various times throughout a quarter. A passive skimmer was installed in MW-1, although it was removed on May 22, 2000 because no measurable product appeared in the well. The passive skimmer was subsequently replaced in the well during

the following months after free product was measured in MW-1. The active and passive product recovery systems are currently interrupted with both skimmers removed from the wells due to activities related to the construction of the new HFC at the site.

The Port recently replaced the former free product recovery system with the installation of two mitigation systems at the site. Overaa Construction (Overaa) completed the installation of a soil gas venting system beneath the new HFC's building slab, and Beliveau Engineering Contractors, Inc., subcontracted to Dillard, has almost completed a new recovery system designed to recover the product floating on the groundwater beneath the site.

The free-phase petroleum product has been monitored in wells MW-1 and MW-3 on a quarterly basis in conjunction with every quarterly groundwater sampling event. Free-phase petroleum product was measured at 0.17 feet and 0.97 feet in MW-1 and MW-3, respectively, this quarter. Table 2 presents a summary of the product thickness data. A summary of the activities during the past quarters associated with the operation and maintenance of the product recovery system is presented in Table 4.

We appreciate the opportunity to present this report and trust that this document meets with your approval. Please do not hesitate to contact us at (925) 946-3105 with any questions or comments.

Sincerely yours,

IMOVATIVE TECHNICAL SOLUTIONS, INC.

Rogerio Leong Project Geologist

Rachel B. Hess Project Manager

Jeffrey D. Hess, R.G. Senior Geologist -9/1/14 -50/6//1 -50/6//1

Attachments:

Table 1 – Groundwater Elevations Data, 2277 7th Street

Table 2 – Summary of Product Removal and Product Thickness, 2277 7th Street

Table 3 – Groundwater Sample Results, 2277 7th Street

Table 4 – Summary of Operation and Maintenance Activities

Figure 1 – Site Location Map

Figure 2 – Site Plan

Figure 3 – Groundwater Elevations, 2277 7th Street, December 16, 2004 Figure 4 – Groundwater Sample Results, 2277 7th Street, December 16, 2004

Appendix A - Monitoring Well Water Level Measurement Form and Monitoring Well Purging and Sampling Form

Appendix B - Laboratory Reports

Appendix C – Daily Field Activity Report

Table 1
Groundwater Elevations Data
Port of Oakland, 2277 7th Street, Oakland, California

Well	Elevation	Date Of	Depth	Groundwater Elevation
ID Top of Casing (feet)		Monitoring	to Water	
		4/10/0000	(feet)	(feet)
MW-1	14.14	4/18/2000	8.21	5.93
		5/22/2000	8.17	5.97
		7/10/2001	10.00	4.14
		12/12/2001	NA	NA
		3/8/2002	NA	NA
		6/13/2002	NA	NA
		9/26/2002	NA	NA
		12/12/2002	NA	NA
		3/17/2003	NA	NA
		6/18/2003	NA	NA
		9/3/2003	NA	NA
		11/26/2003	NA	NA
		3/5/2004	NA	NA
		6/2/2004	NA	NA
		9/3/2004	NA	NA
		12/16/2004	NA	NA
MW-2	14.36	12/31/1997	8.73	5.63
		4/13/1998	7.72	6.64
		11/6/1998	9.43	4.93
		3/19/1999	8.21	6.15
		6/24/1999	8.91	5.45
		9/28/1999	9.42	4.94
		11/12/1999	9.63	4.73
		2/11/2000	8,54	5.82
		5/22/2000	8.10	6,26
		9/6/2000	8.79	5.57
		12/19/2000	9.19	5.17
		2/21/2001	7.99	6.37
		4/3/2001	8.23	6.13
		7/10/2001	8.70	5.66
		12/12/2001	8.16	6.20
		1/22/2002	7.64	6.72
		3/8/2002	8.31	6.05
		6/13/2002	8.64	5.72
		9/26/2002	8.95	5.41
		12/12/2002	9.17	5.19
		3/17/2003	7.77	6.59
		6/18/2003	8.44	5.92
	·	9/3/2003	8.98	5.38
	17.21	11/26/2003	12.01	5.20
	11.21	3/5/2004	9.75	7.46
		6/2/2004	11.22	5.99
		9/3/2004	11.62	5.59
		12/16/2004	10.80	6.41

Table 1
Groundwater Elevations Data
Port of Oakland, 2277 7th Street, Oakland, California

Well ID	Elevation Top of Casing (feet)	Date Of Monitoring	Depth to Water (feet)	Groundwater Elevation (feet)
MW-4	13.15	12/31/1997	7.09	6.06
		4/13/1998	7.71	5.44
		11/6/1998	8.69	4.46
		3/19/1999	8.00	5.15
		6/24/1999	8.45	4.70
		9/28/1999	8.73	4.42
		11/12/1999	8.83	4.32
		2/11/2000	7.71	5.44
		5/22/2000	8.09	5.06
		9/6/2000	8.32	4.83
		12/19/2000	8.47	4.68
		2/21/2001	7.51	5.64
		4/3/2001	8.13	5.02
		7/10/2001	8.12	5.03
		12/12/2001	7.65	5.50
		1/22/2002	7.60	5.55
		3/8/2002	7.96	5.19
		6/13/2002	8.20	4.95
		9/26/2002	8.21	4.94
		12/12/2002	8,38	4.77
		3/17/2003	7.72	5.43
		6/18/2003	8.02	5.13
		9/3/2003	8.29	4.86
		11/26/2003	8.69	4.46
		3/5/2004	7.45	5.70
		6/2/2004	8.25	4,90
		9/3/2004	8.31	4.84
		12/16/2004	7.96	5.19

Table 1
Groundwater Elevations Data
Port of Oakland, 2277 7th Street, Oakland, California

Well	Elevation	Date Of	Depth	Groundwater
ID	Top of Casing	Monitoring	to Water	Elevation
	(feet)		(feet)	(feet)
MW-5	13.49	12/31/1997	6.38	7.11
		4/13/1998	5,56	7.93
		11/6/1998	6,59	6.90
		3/19/1999	6.20	7.29
		6/24/1999	6.73	6.76
		9/28/1999	6.91	6,58
		11/12/1999	7.06	6.43
		2/11/2000	7.00	6.49
		5/22/2000	6.21	7.28
		9/6/2000	6.56	6.93
		12/19/2000	6.68	6.81
		2/21/2001	6.08	7.41
		4/3/2001	6.38	7.11
		7/10/2001	6.58	6.91
		12/12/2001	6.40	7.09
		1/22/2002	6.10	7.39
		3/8/2002	6.10	7.39
		6/13/2002	6.31	7.18
		9/26/2002	6.60	6.89
		12/12/2002	6.75	6.74
		3/17/2003	5.73	7.76
		6/18/2003	6.10	7.39
		9/3/2003	6.50	6.99
		11/26/2003	6.70	6.79
		3/5/2004	5.70	7.79
		6/2/2004	6.27	7.22
		9/3/2004	6.61	6.88
		12/16/2004	6.02	7.47

Table 1
Groundwater Elevations Data
Port of Oakland, 2277 7th Street, Oakland, California

Well Elevation		Date Of	Depth	Groundwater
ID Top of Casing		Monitoring	to Water	Elevation
	(feet)		(feet)	(feet)
MW-6	14.00	6/24/1999	8.61	5.39
		9/28/1999	9.26	4.74
		11/12/1999	8.01	5.99
		2/11/2000	7.20	6.80
		5/22/2000	7.13	6.87
		9/6/2000	7.12	6.88
		12/19/2000	7.57	6.43
		2/21/2001	7.50	6.50
		4/3/2001	6.88	7.12
		7/10/2001	7.15	6.85
		12/12/2001	9.50	4.50
		1/22/2002	6.69	7.31
		3/8/2002	6.98	7.02
		6/13/2002	7.45	6.55
		9/26/2002	7.95	6.05
		12/12/2002	7.71	6.29
		12/18/2002	Monitoring	well was destroyed
MW-7	14.35	12/31/1997	8.88	5.47
		4/13/1998	7.86	6.49
		11/6/1998	9.55	4.80
		3/19/1999	8.41	5.94
		6/24/1999	9.08	5.27
		9/28/1999	9.60	4.75
		11/12/1999	9. 77	4.58
		2/11/2000	8.67	5.68
		5/22/2000	8.43	5.92
		9/6/2000	8.88	5,47
		12/19/2000	9.21	5.14
		2/21/2001	8.13	6.22
		4/3/2001	8.45	5.90
		7/10/2001	8.87	5.48
		12/12/2001	8.39	5.96
		1/22/2002	7.99	6.36
		3/8/2002	8.51	5.84
		6/13/2002	8.90	5.45
		9/26/2002	9.00	5.35
		12/12/2002	9.28	5.07
		12/18/2002		well was destroyed

Table 1
Groundwater Elevations Data
Port of Oakland, 2277 7th Street, Oakland, California

Well ID	Elevation Top of Casing (feet)	Date Of Monitoring	Depth to Water (feet)	Groundwater Elevation (feet)
MW-8A	12.94	12/12/2001	7.20	NA
		1/22/2002	7.20	5.74
		3/8/2002	7.70	5.24
		6/13/2002	7.72	5.22
		9/26/2002	7.91	5,03
		12/12/2002	8.15	4.79
		3/17/2003	7.28	5.66
		6/18/2003	7.72	5.22
		9/3/2003	8.18	4.76
		11/26/2003	8.55	4.39
		3/5/2004	6.92	6.02
		6/2/2004	7.92	5.02
		9/3/2004	8.16	4.78
		12/16/2004	7.62	5.32

¹ Elevation data relative to Port of Oakland datum; well surveys performed on September 12, 1996, February 4, 1998, and November 26, 2003, by PLS Surveys.

⁻ Data prior to November 6, 1998 taken from Groundwater Monitoring, Sampling and Product Removal System O&M Report dated July 21, 1998, by Innovative Technical Solutions, Inc.

⁻ Monitoring MW-8 was abandoned on April 20, 2000 in order to construct a railroad track associated with the Port of Oakland's New Harbor Facility.

NA = Not available

Table 2 Summary of Product Removal and Product Thickness Port of Oakland, 2277 7th Street, Oakland, California

Well ID	Elevation of Top of Casing	Date Of Monitoring	Depth to Free Product	Depth to Water (feet)	Product Thickness (feet)	Estimated Product Removed	Product Removal Method ²
	(feet)		(feet)	(1501)	(1001)	(gallons)	1
MW-1	14.14	12/31/1997	-	-	-	0.2	passive skimmer
		1/29/1998	-	_	-	0.2	passive skimmer
		3/2/1998	-	· -	-	0.018	passive skimmer
		5/11/1998	-	_	-	0.02	passive skimmer
		6/15/1998	-	-	-	0.2	passive skimmer
		11/6/1998	9.34	10.3	0.96	1.2	passive skimmer
		1/7/1999	-	_	-	0.2	passive skimmer
		2/11/1999	-	-	-	0.2	passive skimmer
		3/12/1999	-	-	-	0.2	passive skimmer
		3/19/1999	NM	8.45	>0.01	0.07	passive skimmer
		4/14/1999	-	-	-	0.2	passive skimmer
		5/11/1999	-	-	-	0.2	passive skimmer
		6/24/1999	8.88	9.63	0.8	0.2	passive skimmer
		7/15/1999				0.2	passive skimmer
		7/16/1999				0.2	passive skimmer
		8/27/1999	***			0.2	passive skimmer
		9/28/1999			0.65	0.2	passive skimmer
		10/5/1999				0.2	passive skimmer
		11/12/1999	9.38	10.27	0.89	0.2	passive skimmer
		12/21/1999			- ***	0.2	passive skimmer
		1/26/2000				0.2	passive skimmer
		1/28/2000	9.22	9.24	0.02		passive skimmer
		2/11/2000		7.00	0.00	0.2	passive skimmer
		3/1/2000		7.45	0.00	0.0	passive skimmer
		3/21/2000	NM	7.34	0.00	0.0	passive skimmer
		4/18/2000	NM	8.21	0.00	0.0	passive skimmer
		5/22/2000 ³	NM	8.51	0.00	0.0	passive skimmer
		9/6/2000 4	8.52	9.24	0.72	0.0	passive skimmer
		9/21/2000	8.71	9.26	0.55	0.0	passive skimmer
		10/11/2000				0.0	passive skimmer
		11/30/2000				0.0	passive skimmer
		12/19/2000	9.5	9.89	0.39	0.0	passive skimmer
		2/22/2001	8.3	8.4	0.13	0.0	passive skimmer
		4/3/2001	8.3	8.55	0.25	0.0	passive skimmer
		4/23/2001				0.0	passive skimmer
		5/11/2001				0.0	passive skimmer
		5/30/2001	8.5	8.9	0.40	0.0	passive skimmer
		6/14/2001			••	0.0	passive skimmer
		7/10/2001	8.8	10	1.20	0.0	passive skimmer
		12/12/2001	NA	NA.	NA	1.0	passive skimmer
		3/8/2002	NA	NA	NA	NA	passive skimmer
		4/3/2002	8.3	9.2	0.90		passive skimmer
		4/23/2002	8.5	9.6	1.10		passive skimmer
		5/10/2002	8.7	9.6	0.90		passive skimmer
		5/24/2002	8.8	10	1.20		passive skimmer

Table 2
Summary of Product Removal and Product Thickness
Port of Oakland, 2277 7th Street, Oakland, California

	Elevation of Top of Casing (feet)	Date Of Monitoring	Depth to Free Product (feet)	Depth to Water (feet)	Product Thickness (feet)	Estimated Product Removed (gallons)	Product Removal Method ²
MW-1	14.14	6/13/2002	8.7	10	1.30		passive skimmer
(Cont'd)	* * * * * * * * * * * * * * * * * * * *	6/21/2002	8.8	10	1.20		passive skimmer
(Conta)		7/5/2002	8.5	9.4	0.90	0.2	passive skimmer
		7/19/2002	8.6	9.6	1.00	0.2	passive skimmer
		7/30/2002	8.5	9.3	0.80	0.2	passive skimmer
		8/14/2002	8.5	9.3	0.80	0.2	passive skimmer
		9/13/2002	8.8	9.6	0.80	0.2	passive skimmer
		9/26/2002	8.6	9.5	0.90	0.2	passive skimmer
		10/14/2002	9.0	10.1	1.10	0.2	passive skimmer
		11/4/2002	9.22	10.12	0.90	0.2	passive skimmer
		11/21/2002	8.48	8.86	0.38	0.2	passive skimmer
		12/6/2002	8.85	9.38	0.53	0.0	passive skimmer
		12/18/2002	8.05	8.26	0.21	0.2	passive skimmer
		12/30/2002	7.61	7.63	0.02	< 0.1	passive skimmer
		1/2/2003	7.36	7.36	sheen	< 0.1	passive skimmer
		1/3/2003	7.35	7.35	sheen	< 0.1	passive skimmer
		1/14/2003	7.35	7.36	sheen	< 0.1	passive skimmer
		1/30/2003	7.75	7.81	0.06	< 0.1	passive skimmer
		2/18/2003	7.81	8.35	0.54	< 0.1	passive skimmer
		2/26/2003	7.72	8.62	0.90	< 0.1	passive skimmer
		3/13/2003	7.80	8.11	0.89	0.2	passive skimmer
		3/17/2003	7.61	8.88	1.27	0.2	passive skimmer
		4/16/2003	7.42	8.71	1.29	< 0.2	passive skimmer
		6/18/2003	8.20	9.44	1.24	< 0.2	passive skimmer
		9/3/2003	8.50	9.40	0.90		8
		11/26/2003	8.85	9.25	0.40		8
		3/5/2004	6.76	7.07	0.31		8
		6/2/2004	8.26	8.71	0.45		8
		9/3/2004	8.70	9.11	0.41		8
		12/16/2004	7.75	7.92	0.17		
		***********		· · · · · · · · · · · · · · · · · · ·			
MW-3	14.22	12/31/1997	-	-	-	30	active skimmer
		1/29/1998	-	-	-	10	active skimmer
		4/13/1998	-	-	•	240	active skimmer
		5/11/1998	-	-	-	1,545	active skimmer
		6/15/1998	-	-	-	1,950	active skimmer
		11/6/1998	8.84	9.94	1.1	500	active skimmer
		1/5/1999	-	-	-	275 ²	active skimmer
		1/14/1999	-	-		400^{2}	active skimmer
		2/3/1999	-	-	-	400 ²	active skimmer
		2/26/1999	_	-	•	570 ²	active skimmer
		3/19/1999	7.52	8.05	0.5	211	active skimmer
		6/16/1999	•		_	310	active skimmer
		6/24/1999	8.38	8.56	0.2	-	active skimmer
		0/24/1777	0.50	0.50	0.2		don to ominimos

Table 2 Summary of Product Removal and Product Thickness Port of Oakland, 2277 7th Street, Oakland, California

Well ID	Elevation of Top of Casing (feet)	Date Of Monitoring	Depth to Free Product (feet)	Depth to Water (feet)	Product Thickness (feet)	Estimated Product Removed (gallons)	Product Removal Method ²
MW-3	14.22	9/28/1999			0.2		active skimmer
(Cont'd)		10/29/1999				125 ²	active skimmer
(11/12/1999	9.14	9.23	0.09		active skimmer
		1/28/2000				135	active skimmer
		2/11/2000	7.97	8.37	0.40	40	active skimmer
		3/1/2000	6.59	7.24	0.65	0.0	active skimmer
		3/21/2000	6.50	6.56	0.06	35	active skimmer
		4/18/2000					active skimmer
		5/22/2000	7.51	8.05	0.54	40	active skimmer
		6/26/2000	7.82	8.2	0.38	90	active skimmer
		7/25/2000	7.90	8.92	1.02	20	active skimmer
		8/31/2000	8.15	9.5	1.35	30	active skimmer
		9/6/2000	8.21	9.42	1.21		active skimmer
		9/21/2000	8.30	8.88	0.58	115	active skimmer
		10/11/2000				170	active skimmer
		11/30/2000				105	active skimmer
		12/19/2000	8.60	9.65	1.05	10	active skimmer
		2/22/2001	6.36	8.15	1.79		active skimmer
		4/3/2001	7.48	8.88	1.40		active skimmer
		4/23/2001	7.85	9.1	1.25	10.50	active skimmer
		5/11/2001					active skimmer
		5/30/2001	7.75	9.1	1.35		active skimmer
		6/14/2001	**		***		active skimmer
		7/10/2001	8.10	9.6	1.50		active skimmer
		12/12/2001	NA	NA	NA	1,000 5	active skimmer
		3/8/2002	7.80	8	0.20	1,000 5	active skimmer
		4/3/2002	7.60	7.7	0.10		active skimmer
		4/23/2002	7.90	8.4	0.50		active skimmer
		4/25/2002	7.90	8.8	0.90		active skimmer
		5/10/2002	8.10	8.2	0.10	***	active skimmer
		5/24/2002	8.05	8.1	0.05		active skimmer
		6/13/2002	8.10	8.7	0.60	1,000 5	active skimmer
		7/5/2002	8.10	8.95	0.85		active skimmer
		7/19/2002	8.10	8.9	0.80		active skimmer
		7/30/2002	8.10	8.9	0.80		active skimmer
		8/14/2002	8.10	8.9	0.80		active skimmer
		9/13/2002	8.30	9.3	1.00	•••	active skimmer
		9/26/2002	8.30	9.0	0.70		active skimmer
		10/14/2002	8.60	9.5	0.90		active skimmer
		11/4/2002	8.75	9.99	1.24		active skimmer
		11/21/2002	8.59	11.29	2.70	150 ⁶	active skimmer
		12/6/2002	8.56	9.3	0.74	150 ⁶	active skimmer
		12/18/2002	7.35	8.43	1.08	25 ⁶	active skimmer
		12/10/2002	1.33	0.73	1.00	20	GOG TO BRITISHOT

Table 2 Summary of Product Removal and Product Thickness Port of Oakland, 2277 7th Street, Oakland, California

Well ID	Elevation of Top of Casing (feet)	Date Of Monitoring	Depth to Free Product (feet)	Depth to Water (feet)	Product Thickness (feet)	Estimated Product Removed (gallons)	Product Removal Method ²
MW-3	14.22	12/30/2002	6.50	7.15	0.65	25 ⁶	active skimmer
(Cont'd)		1/2/2003	6.20	6.20	sheen		active skimmer
` ,		1/3/2003	6.21	6.21	sheen		active skimmer
		1/14/2003	6.20	6.21	0.01		active skimmer
		1/30/2003	6.81	6.85	0.04		active skimmer
		2/18/2002	7.09	7.15	0.06		active skimmer
		2/26/2003	7.04	7.11	0.07		active skimmer
		3/13/2003	7.22	8.11	0.89		active skimmer
		3/17/2003	7.15	7.50	0.35	5 ⁶	active skimmer
		4/16/2003	7.27	8.25	0.98		active skimmer
		6/18/2003	7.78	9.00	1.22		7
		9/3/2003	8.31	9.96	1.65		7
	16.18 ⁹	11/26/2003	10.79	12.85	2.06		7
		3/5/2004	8.39	9.85	1.46	***	7
		6/2/2004	10.03	11.35	1.32	**	7
		9/3/2004	10.46	12.06	1.59		7
		12/16/2004	9,41	(0.38	6.97	-	
MW-6	14.00	13/31/97		-	-	0.0014	passive skimmer
		1/29/1998	-	-	-	0.0014	passive skimmer
		3/2/1998	-	-	-	0.0014	passive skimmer
		11/6/1998	NM	9.62	>0.01	0.0	passive skimmer
		3/19/1999	NM	7.37	>0.01	0.0	passive skimmer
MW-8 1	12.94	12/31/1997	8.49	8.82	0.33	4.38	- :
		11/6/1998	9.25	10.3	1,1	3.48	

- Data prior to November 6, 1998 taken from Groundwater Monitoring, Sampling and Product Removal System O&M Report dated July 21, 1998, by Innovative Technical Solutions, Inc.
- Data prior to November 6, 1998 taken from Groundwater Monitoring, Sampling and Product
- Product removal volumes from 11/6/98 on represent total product removed during that reporting period.
 - Free product in well is too viscous to allow product thickness or groundwater level measurements.
 - Product removal totals for MW-3 are estimated from documentation of product removal from the treatment system performed by Performance Excavators, Inc.
- The passive skimmer was removed from MW-1 on 5/22/00
- The passive skimmer replaced MW-1 on 9/6/00.
- Removal total is the volume of both product and wastewater removed from the treatment system by Foss Environmental Services Company, Inc.
- Product removed is based on volume measured in the 1,000-gallon holding poly-tank.
- The active skimmer was removed from MW-3 on 04/16/2003
- Passive skimmer was removed from MW-1
- Elevation data relative to Port of Oakland datum; well surveys performed on November 26, 2003, by PLS Survey.

NM - Well checked for free product but not able to detect a measurable amount in the well.

Shaded area indicates data from this reporting period.

NA - Not Available

Table 3
Groundwater Sample Results
Port of Oakland, 2277 7th Street, Oakland California

Monitoring Well ID	Date	TPHg (µg/l)	TPHd (µg/1)	TPHmo (μg/1)	Benzene (µg/l)	Toluene (µg/l)	Ethylbenzene (μg/l)	Total Xylenes (μg/1)	MTBE (μg/1)
MW-1	05/22/00	3,600	41,000	<3,000	100	13 8	2.9	2.05	3.2 8
MW-2	05/27/94	87	470	NA	< 0.5	<0.5	<0.5	<0.5	NA
•	03/29/95	<50	110	1,400	<0.4	<0.3	<0.3	<0.4	NA
•	09/06/95	<50	NA	NA	<0.4	<0.3	<0.3	<0.4	NA
•	01/08/96	<50	<50	1200	<0.4	<0.3	< 0.3	<0.4	NA
•	04/04/96	<50	160	320	<0.5	<0.5	<0.5	<1.0	NA
•	07/10/96	<50	120	1400	<0.4	<0.3	< 0.3	<0.4	NA
•	12/03/96	<50	230 12	<250	<0.5	<0.5	<0.5	<1.0	NA
•	03/28/97	<50	714	<250	<0.5	<0.5	<0.5	<1.0	NA
•	06/13/97	51	<50	<250	<0.5	<0.5	<0.5	<1.0	NA
•	09/18/97	82	<50	<250	0.56	<0.5	<0.5	<1.0	NA
•	12/31/97	<50	<47	<280	1.4	<0.5	<0.5	<1.0	NA
	04/13/98	<50	<50	<300	<0.5	<0.5	<0.5	<1.0	NA
•	11/06/98	<50	<50	<300	<0.5	<0.5	<0.5	<0.5	<2
•	03/19/99	<50	<50	<300	<0.5	<0.5	<0.5	<0.5	<2
•	06/24/99	<50	<50	<300	<0.5	<0.5	<0.5	<0.5	<2
•	09/28/99	<50	<50	<300	<0.5	<0.5	<0.5	<0.5	<2
	11/12/99	<50	120 ^{2,6}	<300	<0.5	<0.5	<0.5	<0.5	6.3 8,9
•	02/11/00	<50	<50	<300	5.4	<0.5	<0.5	<0.5	<2
•	05/22/00	<50	<50	<300	<0.5	<0.5	<0.5	<0.5	<2
	09/06/00	<50	<50	<300	0.76 8	<0.5	<0.5	<0.5	< 0.5 10
	12/19/00	200 3,11	<50	<300	3 9	1.8	<0.5	2.6	<0.5 10,12
	02/21/01	<50	<50	<300	<0.5	<0.5	<0.5	<0.5	<2.0
	07/10/01	<50	<50	<300	<0.5	<0.5	<0.5	<0.5	<2.0
	12/05/01	<50	<50	<300	4.4	<0.5	<0.5	<0.5	5.0 14
	03/08/02	<50	<50	<500	<0.5	<0.5	<0.5	<0.5	<5.0
	06/13/02	62 15	<57	<570	<0.5	<0.5	<0.5	<0.5	<5.0
	09/26/02	69 ²	<50	<500	1.8	<0.5	<0.5	<0.5	<5.0
	12/12/02	<50	<50	<300	0.98	<0.5	<0.5	<0.5	<2.0
	03/17/03	<50	<50	<300	<0.5	<0.5	<0.5	<0.5	<2.0
	06/18/03	<50	<50	<300	<0.5	<0.5	<0.5	<0.5	<2.0
	09/03/03	<50	<50	<300	3.2	<0.5	<0.5	<0.5	<2.0
	11/26/03	<50	<50	<300	3.0	<0.5	<0.5	<0.5	<2.0
	03/05/04	<50	<50	<300	<0.5	<0.5	<0.5	<0.5	<2.0
	06/02/04	<50	<50	<300	<0.5	<0.5	<0.5	<0.5	<2.0
	09/03/04	<50	<50	<300	<0.5	<0.5	<0.5	<0.5	<2.0
	12/16/04	<50	96 ^{6, 15}	<300	<0.5	<0.5	<0.5	<0.5	<2.0

Table 3
Groundwater Sample Results
Port of Oakland, 2277 7th Street, Oakland California

Monitoring Well ID	Date	TPHg (µg/l)	TPHd (µg/1)	TPHmo (μg/1)	Benzene (µg/l)	Toluene (µg/l)	Ethylbenzene (μg/l)	Total Xylenes (μg/1)	MTBE (μg/1)
MW-4	09/11/95	150	<200	500	23	<0.3	<0.3	<0.4	NA
	01/08/96	790	90	400	170	1.2	0.6	0.6	NA
,	04/04/96	1,100	180	300	320	1.6	1.1	1.2	NA
	07/10/96	1,200	120	300	470	1.5	0.8	0.8	NA
	12/03/96	990	220 12	<250	350	3.3	1.3	1.3	NA
	03/28/97	440 ²	<50	<250	190	1.2	0.64	<1.0	NA
	06/13/97	1,300	92 5	<250	500	5.5	3.4	2.8	NA NA
	09/18/97	1,300	150	<250	550	4.9	2.1	2.00	NA
	12/31/97	73 123	<47	<280	110 1	1.0 1	<0.5	<1.0	NA
	04/13/98	150 ^{2 3}	<50	<300	520	2.9	<2.5	<5.0	NA
	11/06/98	<50	<50	<300	250	1.7	<1	<1	<4
	03/19/99	81	<50	<300	250	<1	1.2	<1	<4
Dup.	06/24/99	190	<50	<300	360	1.4	2.2	1	24
	09/28/99	750 ^{3,5}	63 3,5	<300	280	1.5	<1	<1	<4
	11/12/99	330 ³	840 ²	<300	740	<2.5	<2.5	<2.5	42 9
	02/11/00	200 1	<50	<300	58	0.73	<0.5	<0.5	4.4 8
	05/22/00	240	<50	<300	500	<2.5	<2.5	<2.5	17
	09/06/00	530 ^{2,3}	<50	<300	190	0.93	0.6	0.57	<0.5 10
	12/19/00	960 ^{3,11}	70 ⁵	<300	420	<2.5	<2.5	<2.5	<0.5 10,12
	12/19/00	1,200 3,11	<50	<300	440	<2.5	<2.5	<2.5	<0.5 10,12
- -	02/21/01	450 ¹³	<50	<300	120	<0.5	<0.5	<0.5	<0.5 10
	07/10/01	<250	110 2,13	<300	620	2.6	2.9	<2.5	<0.5 8,10
	12/05/01	180	<50	<300	61	<0.5	<0.5	<0.5	3.8 14
	03/08/02	490 ²	54 ²	<500	180	<2.5	<2.5	<2.5	<25
	06/13/02	830 ²	<50	<500	250	<5.0	<5.0	<5.0	<50
Dup.	06/13/02	820 ²	<56	<560	240	<5.0	<5.0	<5.0	<50
	09/26/02	390 ²	57	<500	150	2.1	<1.0	<1.0	<10
Dup.	09/26/02	500 ²	<50 ¹⁶	<500 ¹⁶	200	1.5	<1.0	<1.0	<10
	12/12/02	580	<50	<300	240	1.4	0,56	<0.5	<2.0
Dup.	12/12/02	2,400	<50	<300	680	5.0	2.3	1.4	<2.0
	03/17/03	130 ¹⁵	<50	<300	320 ¹⁷	<0.5	<0.5	<0.5	<0.5 10
Dup.	03/17/03	82 15	<50	<300	190	0.64 17	0.56	0.53	<0.5 10
	06/18/03	360 ^{11, 15}	<50	<300	150	<0.5	<0.5	<0.5	<2.0
Dup.	06/18/03	330 11, 15	<50	<300	140	<0.5	<0.5	<0.5	<2.0
	09/03/03	140 11, 15	<50	<300	240	1.3	<0.5	<0.5	<2.0
Dup.	09/03/03	83 11, 15	<50	<300	130	0.58 17	<0.5	<0.5	<2.0
-	11/26/03	160 ¹⁵	68 ¹⁵	<300	320	0.91 17	<0.5	0.53	<2.0
Dup.	11/26/03	120 15	<50	<300	210	0.66 17	<0.5	<0.5	<2.0
p.	03/05/04	90 11	<50	<300	190	1.1	0.55	0.50 17	23 14, 17, <0.5 10
Dup.	03/05/04	84 11	<50	<300	180	0.81	<0.5	<0.5	21 14, 17, <0.5 10
Loup.	06/02/04	620 13	<50	<300	210	0.55 17	<0.5	<0.5	<2.0
Dun	06/02/04	400 13	<50	<300	130	<0.5	<0.5	<0.5	₹2.0
Dup.	09/03/04	780 ^{13, 15}	<50	<300	<0.5	1.0 17	<0.5	0.57	₹2.0
D		370 ^{13, 15}		<300	<0.5	<0.5	<0.5	<0.5	₹2.0
Dup.	09/03/04		<50		290	1.3 17	0.69	0.75	₹2.0
75	12/16/04	840	<50	<300		1.3 17	<0.5	<0.5	₹2.0
Dup.	12/16/04	670	<50	<300	230	7.3	<0.3		¥.0

Table 3
Groundwater Sample Results
Port of Oakland, 2277 7th Street, Oakland California

Monitoring Well ID	Date	TPHg (µg/l)	TPHd (µg/l)	TPHmo (μg/1)	Benzene (µg/l)	Toluene (μg/l)	Ethylbenzene (µg/l)	Total Xylenes (μg/1)	MTBE (µg/l)
MW-5	09/11/95	90	<300	2,500	3.3	<0.3	<0.3	<0.4	NA
•	04/04/96	<50	180	520	<0.5	<0.5	<0.5	<1.0	NA
,	07/10/96	<50	120	1,500	<0.4	<0.3	<0.3	<0.4	NA
•	12/03/96	<50	200 12	<250	<0.5	<0.5	<0.5	<1.0	NA
•	03/28/97	<50	<50	<250	<0.5	<0.5	<0.5	<1.0	NA
•	06/13/97	<50	<50	<250	<0.5	<0.5	<0.5	<1.0	NA
	09/18/97	<50	<50	<250	<0.5	<0.5	<0.5	<1.0	NA
,	12/31/97	<50	<47	<280	<0.5	<0.5	<0.5	<1.0	NA
,	04/13/98	<50	<47	<280	<0.5	<0.5	<0.5	<1.0	NA
	11/06/98	<50	<50	<300	<0.5	<0.5	<0.5	<0.5	<2
	03/19/99	<50	<50	<300	<0.5	<0.5	<0.5	<0.5	<2
	06/24/99	<50	<50	<300	<0.5	<0.5	<0.5	<0.5	3.1
	09/28/99	<50	<50	<300	<0.5	<0.5	<0.5	<0.5	<2
	11/12/99	<50	110 2,6	<300	<0.5	<0.5	<0.5	<0.5	5.5 ⁹
	02/11/00	<50	<50	<300	<0.5	<0.5	<0.5	<0.5	<2
	05/22/00	<50	<50	<300	<0.5	<0.5	<0.5	<0.5	<2
	09/06/00	<50	<50	<300	<0.5	<0.5	<0.5	<0.5	<2.
	12/19/00	<50	< 50 [°]	<300	<0.5	<0.5	<0.5	<0.5	<2
	02/21/01	<50	<50	<300	<0.5	<0.5	<0.5	<0.5	<2
	07/10/01	<50	<50	<300	<0.5	<0.5	<0.5	<0.5	<2
	12/05/01	<50	<50	<300	<0.5	<0.5	<0.5	<0.5	<2
	03/08/02	<50	<50	<500	<0.5	<0.5	<0.5	<0.5	<5.0
	06/13/02	<50	<50	<500	<0.5	<0.5	<0.5	<0.5	<5.0
	09/26/02	<50	<50	<500	<0.5	<0.5	<0.5	<0.5	<5.0
	12/12/02	<50	<50	<300	<0.5	<0.5	<0.5	<0.5	<2.0
	03/17/03	<50	<50	<300	<0.5	<0.5	<0.5	<0.5	<0.5 10
	06/18/03	<50	<50	<300	<0.5	<0.5	<0.5	<0.5	<2.0
	09/03/03	<50	<50	<300	<0.5	<0.5	<0.5	<0.5	<2.0
	11/26/03	<50	<50	<300	<0.5	<0.5	<0.5	<0.5	4.1 ¹⁴ , <0.5 ¹⁰
	03/05/04	<50	<50	<300	<0.5	<0.5	<0.5	<0.5	<2.0
	06/02/04	<50	<50	<300	<0.5	<0.5	<0.5	<0.5	<2.0
	09/03/04	<50	<50	<300	<0.5	<0.5	<0.5	<0.5	<2.0
	12/16/04	<50	<50	<300	<0.5	<0.5	<0.5	<0.5	2.2 ¹⁴ , <0.5 ¹⁰

Table 3
Groundwater Sample Results
Port of Oakland, 2277 7th Street, Oakland California

MW-5	Monitoring Well ID	Date	TPHg (µg/l)	TPHd (µg/1)	TPHmo (µg/1)	Benzene (µg/l)	Toluene (μg/l)	Ethylbenzene (µg/l)	Total Xylenes (μg/l)	MTBE (μg/1)
06/24/99 120 1,700° <300° 18 <0.5 1.0 <0.5 54	MW-6	11/06/98	120	12,000	1,200	19	0.65	1.8	<0.5	<2
09/28/99 130 35 820 300 20 0.51 2.2 40.5 42 11/12/99 150 11,000 30,000 30 27 40.5 2.2 40.5 13 3 20 20 20 20 20 20 20		03/19/99	170			21		1.5		
11/12/99 150 11,000 23 3,000 38 27 <0.5 2.2 <0.5 13 20/11/00 270 2,300 <300 23 0.51 2.7 <0.5 <0.5 8 05/22/00 350 3,000 <300 23 0.51 2.7 <0.5 <0.5 7/7 09/06/00 190 610 <300 26 <0.5 1.7 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <	•	06/24/99	120	1,7007	<300 ⁷	18	<0.5			
02/11/00 270 ⁻¹ 2,300 300 23 0.51 2.7 <0.5 5.8		09/28/99	130 ^{3,5}		<300	20		2.2		
05/22/00 350 3,000 <300 18 0.51 <0.5 <0.5 7,7 09/06/00 190 610 <300 26 <0.5 1.7 <0.5 <0.5 ¹⁰ 121/9/00 130 11 620 <300 24 <0.5 1.6 <0.5 <2 02/21/01 120 440 <300 21 <0.5 0.96 <0.5 <2 07/10/01 120 560 <300 29 <0.5 0.99 <0.5 <2 07/10/01 120 560 <300 29 <0.5 0.99 <0.5 <2 07/10/01 120 560 <300 29 <0.5 0.99 <0.5 <2 03/08/02 160 640 3 <0.00 30 <0.5 <0.5 <0.5 <0.5 <0.5 03/08/02 160 640 3 <0.00 30 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 09/26/02 230 1400 <0.00 43 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 121/20/02 53 110 <0.00 43 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 121/18/02 Monitoring well was destroyed		11/12/99	150	11,000 ^{2,6}	3,000 ^{3,6}					
09/06/00	•	02/11/00	270 ²	2,300					·····	
12/19/00 130 311 620 4300 24 40.5 1.6 40.5 42		05/22/00	350	3,000	<300	18	0.51	<0.5	<0.5	7.7
02/21/01		09/06/00	190	610	<300	26	<0.5	1.7	<0.5	<0.5 10
07/10/01 120 560 <300 29 <0.5 0.99 <0.5 <2 12/12/01 53 550 <300 27 <0.5 1.3 <0.5 <2 03/08/02 160 ² 640 ² <500 30 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 06/13/02 160 ³ 670 ² <500 34 <0.5 <0.5 <0.5 <0.5 <0.5 09/26/02 230 ² 1400 ² <500 40 0.64 0.8 <0.5 <0.5 <0.5 12/12/02 53 110 <300 43 <0.5 <0.5 <0.5 <0.5 12/12/02 53 110 <300 43 <0.5 <0.5 <0.5 <0.5 12/12/02 53 110 <300 43 <0.5 <0.5 <0.5 <0.5 12/12/02 53 110 <300 43 <0.5 <0.5 <0.5 <0.5 12/12/02 53 110 <0.04 <0.3 <0.3 <0.3 <0.4 NA 12/08/05 <50 <300 800 <0.4 <0.3 <0.3 <0.3 <0.4 NA 09/06/95 <50 <300 800 <0.4 <0.3 <0.3 <0.3 <0.4 NA 07/10/96 <50 530 340 <0.5 <0.5 <0.5 <0.5 <1.0 NA 07/10/96 80 840 1,700 <0.4 <0.3 <0.3 <0.3 <0.4 NA 12/03/96 <50 280 ¹² <250 <0.5 <0.5 <0.5 <0.5 <1.0 NA 06/13/97 <50 100 <250 <0.5 <0.5 <0.5 <0.5 <1.0 NA 09/18/97 <50 240 <250 <0.5 <0.5 <0.5 <0.5 <1.0 NA 11/06/98 <50 <48 <290 <0.5 <0.5 <0.5 <0.5 <1.0 NA 11/106/98 <50 <50 <300 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 06/12/99 73 <50 <300 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 09/28/99 <50 <50 <300 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 09/28/99 <50 <50 <300 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 09/11/100 <50 <50 <300 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 09/11/100 <50 <50 <300 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 09/11/100 <50 <50 <300 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 09/11/100 <50 <50 <300 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 09/11/100 <50 <50 <300 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 09/11/100 <50 <50 <300 <0.5 <0.5 <0.5 <0.5	•	12/19/00		620	<300	24	<0.5	1.6	<0.5	<2
12/12/01 53 550 300 27 <0.5 1.3 <0.5 <2.0		02/21/01	12013	440	<300	21	<0.5	0.96	<0.5	<2
03/08/02 160 640 2 2500 30 40.5 40.5 40.5 50.5 50.5 50.5 60.	•	07/10/01	120	560	<300	29	<0.5	0.99	<0.5	<2
06/13/02 160 2 670 2 <500 34 <0.5 <0.5 <0.5 <5.0 09/26/02 230 1400 2 <500 40 0.64 0.8 <0.5 <5.0 12/12/02 53 110 <300 43 <0.5 <0.5 <0.5 <0.5 <2.0 12/12/02 53 110 <300 43 <0.5 <0.5 <0.5 <0.5 <0.5 12/13/02 Monitoring well was destroyed		12/12/01	53	550	<300	27	<0.5	1.3	<0.5	<2.0
09/26/02 230		03/08/02			<500	30	<0.5	<0.5	<0.5	5.0 14
12/12/02 53 110 <300 43 <0.5 <0.5 <0.5 <2.0		06/13/02	160 ²		<500	34	<0.5	<0.5	<0.5	<5.0
MW-7		09/26/02	230 ²	1400 ²	<500	40	0.64	0.8	<0.5	<5.0
MW-7		12/12/02	53	110	<300	43	<0.5	<0.5	<0.5	<2.0
01/08/96 <50 410 110 <0.4 <0.3 <0.3 <0.4 NA NA		12/18/02	Monitor	ing well was	destroyed					
04/04/96 <50 530 340 <0.5 <0.5 <0.5 <1.0 NA 07/10/96 80 840 1,700 <0.4	MW-7	09/06/95	<50	<300	800	<0.4	<0.3	<0.3	<0.4	NA
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		01/08/96	<50	410	110	<0.4	<0.3	<0.3	<0.4	NA
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		04/04/96	<50	530	340	<0.5	<0.5	<0.5	<1.0	NA
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		07/10/96	80	840	1,700	<0.4	<0.3	<0.3	<0.4	NA
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		12/03/96		280 12	<250	<0.5	<0.5	<0.5	<1.0	NΑ
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		03/28/97	65 6	94 ²	<250	<0.5	<0.5	<0.5	<1.0	NA
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		06/13/97	<50	100	<250	<0.5	<0.5	<0.5	<1.0	NA
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		09/18/97	<50	240	<250	<0.5	<0.5	<0.5	<1.0	NA
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		12/31/97	<50	53 23	<280	<0.5	<0.5	<0.5	<1.0	NΑ
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		04/13/98	<50	<48	<290	<0.5	<0.5	<0.5	<1.0	ŅΑ
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		11/06/98	<50	<50	<300	<0.5	<0.5	<0.5	<0.5	₹ 2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		03/19/99	<50	<50	<300	<0.5	<0.5	<0.5	<0.5	5,3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		06/24/99	73	<50	<300	<0.5	<0.5	<0.5	<0.5	12
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		09/28/99	<50	<50		<0.5	<0.5	<0.5	<0.5	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		11/12/99	<50	600 ^{2,6}	420 ³	<0.5	<0.5	<0.5	<0.5	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		02/11/00	<50	<50	<300	<0.5	<0.5	<0.5	<0.5	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		05/22/00		53 ²	<300	<0.5	<0.5	<0.5	<0.5	75
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		09/06/00			<300	<0.5	<0.5	<0.5	<0.5	40 10
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		12/19/00	54 11	51 ⁵	<300	<0.5	<0.5	<0.5	<0.5	47 10,12
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		02/21/01	<50	<50	<300	<0.5	<0.5	<0.5	<0.5	66 10
Dup. $07/10/01$ <50 <50 <300 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	Dup.	02/21/01	<50		<300	<0.5	<0.5	<0.5	<0.5	60 10
Dup.		07/10/01	<50	51 ²	<300	<0.5	<0.5	<0.5	<0.5	76 10
Dup. $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Dup.	07/10/01	<50	<50	<300	<0.5	<0.5	<0.5	<0.5	75 ¹⁰
03/08/02 52 ² <50 <500 <0.5 <0.5 <0.5 <0.5 24 ¹⁴ 06/13/02 87 ² 54 ² <500	-	12/12/01	51	<50	<300	<0.5	<0.5	<0.5	<0.5	98 14
03/08/02 52 ² <50	Dup.	12/12/01	64	52 13, 15	<300	<0.5	<0.5	<0.5	<0.5	96 14
06/13/02 87 2 54 2 <500	-	03/08/02			<500	<0.5	<0.5	<0.5	<0.5	24 14
09/26/02 83 ² 84 ² <500 <0.5 <0.5 <0.5 <0.5 75 ¹⁰				54 ²	<500	<0.5	<0.5	<0.5	<0.5	51
			83 ²	84 ²	<500	<0.5	<0.5	<0.5	<0.5	
		12/12/02	<50	<50	<300	<0.5	<0.5	<0.5	<0.5	58 ¹⁴
12/18/02 Monitoring well was destroyed			Monitor	ing well was	destroyed					

Table 3 Groundwater Sample Results Port of Oakland, 2277 7th Street, Oakland California

Monitoring Well ID	Date	TPHg (µg/l)	TPHd (µg/1)	TPHmo (μg/l)	Benzene (µg/l)	Toluene (μg/l)	Ethylbenzene (µg/l)	Total Xylenes (µg/1)	MTBE (μg/l)
MW-8A	12/12/01	68	720 ^{11,15}	<300	<0.5	<0.5	<0.5	<0.5	<2.0
•	03/08/02	<50	760 ²	<570	<0.5	<0.5	<0.5	<0.5	<5 0
Dup.	03/08/02	<50	350 ²	<580	<0.5	<0.5	<0.5	<0.5	<5 0
•	06/13/02	<50	570 ²	<570	<0.5	<0.5	<0.5	<0.5	. <50
•	09/26/02	<50	410 2	<500	<0.5	<0.5	<0.5	<0.5	<50
•	12/12/02	<50	160 ¹⁵	<300	<0.5	<0.5	<0.5	<0.5	<2.0
•	03/17/03	<50	<50	<300	<0.5	<0.5	<0.5	<0.5	<0.5 10
•	06/18/03	<50	74 15	<300	<0.5	<0.5	<0.5	<0.5	<2.0
•	09/03/03	<50	<50	<300	<0.5	<0.5	<0.5	<0.5	$3.0^{14}, < 0.5^{10}$
•	11/26/03	<50	94 15	<300	<0.5	<0.5	<0.5	<0.5	<2.0
•	03/05/04	<50	<50	<300	<0.5	<0.5	<0.5	<0.5	<2.0
•	06/02/04	<50	67 ¹⁵	<300	<0.5	<0.5	<0.5	<0.5	<2.0
•	09/03/04	<50	86 ¹⁵	<300	<0.5	<0.5	<0.5	<0.5	<2.0
•	12/16/04	<50	160 ^{6, 15}	<300	<0.5	<0.5	<0.5	<0.5	<2,0

- Analyte found in the associated blank as well as in the sample.
- 2 Hydrocarbons present do not match profile of laboratory standard.
- Low-boiling-point/lighter hydrocarbons are present in the sample.
- Chromatographic pattern matches known laboratory contaminant.
- Hydrocarbons are present in the requested fuel quantification range,
 - but do not resemble pattern of available fuel standard.
- High-boiling-point/heavier hydrocarbons are present in sample.
- Sample did not pass laboratory QA/QC and may be biased low
- Presence of this compound confirmed by second column, however, the confirmation concentration differed from the reported result by more than a factor or two.
- Trip blank contained MTBE at a concentration of 4.2 μg/l
- MTBE detections confirmed by EPA Test Method 8260. 8260 results displayed.
- Sample exhibits unknown single peak or peaks
- EPA Method 8260 confirmation analyzed past holding time.
- Lighter hydrocarbons contributed to the quantitation
- MTBE results from EPA Test Method 8021B.
- Sample exhibits fuel pattern which does not resemble standard
- Sample extracted out of hold time
 - Data from December 1997 through April 1998 taken from Groundwater Monitoring, Sampling and Product Removal System O&M Report dated July 21, 1998, by Innovative Technical Solutions, Inc.
 - -Data prior to December 1997 taken from Groundwater Analytical Results, Quarterly Groundwater

Monitoring Report: Third Quarter 1997, Building C-401, 2277 7th Street, Oakland, CA, dated October 24, 1997, by Uribe and Associate

Presence confirmed, but Relative Percent Difference (RPD) between columns exceeds 40% NA Not Analyzed.

Table 4 Summary of Operation and Maintenance Activities Port of Oakland, 2277 7th Street, Oakland, California

Date	System Status	Comments
7/5/2002	Off	System is turned off and is in the process of being moved to new location
7/19/2002	Off	System is moved to new location but is not hooked up to electricity.
7/30/2002	Off	System is moved to new location but is not hooked up to electricity
8/14/2002	Off	System is moved to new location but is not hooked up to electricity.
9/13/2002	On	System is powered and operating.
9/26/2002	On	System operating OK:
10/14/2002	On	System operating OK
11/4/2002	On	System operating OK.
11/21/2002	On	System operating OK
12/6/2002	On	System operating OK.
12/18/2002	On	System operating OK.
12/23/2002	On	System operating OK.
12/27/2002	On	System operating OK
12/30/2002	On	System operating OK.
1/2/2003	Off	System is turned off because no free product was detected in well MW-3
1/3/2003	Off	System is turned off because no free product was detected in well MW-3
1/14/2003	Off	System is turned off because only product sheen was detected in well MW-3
1/30/2003	Off	System is turned off because only product sheen was detected in well MW-3
2/18/2003	Off	System is turned off because only product sheen was detected in well MW-3
2/26/2003	Off	System is turned off because only product sheen was detected in well MW-3
3/13/2003	Off	System is kept off because of the expected rainfall during weekend
3/17/2003	On	System is tested to verify that only product is being recovered from well MW-3
4/16/2003	Off	Product recovery line was removed due to Port's construction upgrades at the site
6/18/2003	Off	Product recovery line was removed on 04/16/2003
9/3/2003	Off	Product recovery line was removed on 04/16/2003
11/26/2003	Off	Product recovery line was removed on 04/16/2003
3/5/2004	Off	Product recovery line was removed on 04/16/2003
6/2/2004	Off	Product recovery line was removed on 04/16/2003
9/3/2004	Off	Product recovery line was removed on 04/16/2003
12/16/2004	Off	Product recovery line was removed on 04/16/2003

APPENDIX A

MONITORING WELL WATER LEVEL MEASUREMENT FORM AND MONITORING WELL PURGING AND SAMPLING FORM

MONITORING WELL WATER LEVEL MEASUREMENT FORM

PROJECT NAME:	2277 7 th Street	PROJECT NO.:	00-152.28	:
MEASURED BY:	R. LEONG	DATE:	12/16/2004	

		Pumper Time of P
10.80	17.75	/3:20
7.96	18.93	//:00
6.02	16.70	11:50
Well was	destroyed on December	18, 2002
Well was	destroyed on December	18, 2002
7.62	20.40	9:50
		•
	10.80 7.96 6.02 Well was	10.80 17.75 7.96 18.93 6.02 16.70 Well was destroyed on December Well was destroyed on December

Documen

PROJECT NAM	ΛE:	PORT	OF	OAKLANI) — 22	277 7 th STREI	ET_	P	ROJECT NO	.: <u>-</u>	0	0-152.25
WELL NO.:	MW-	.2	_	TEST	ED B	14: R160	NET		DATE	: <u>1</u> 3	2/16	12004
		<u> </u>			WE	LL PURGI	NG					
Measuring Poin	t Descri	ption:		Top of Ca	sing	(TOC)	Sta	tic Wate	r Level (ft.):		10	1.80
Total Well Dep	th (ft.):	_		17.75			Pur	ge Meth	od:	Disp	osabl	e Bailer
Water Level Me	easureme	ent Me				W. L. Purge Rate (gpm): 0 50						
Time Start Purg	ge: _		It	1.13:3	0	······································	Tim	e End Pi	urge:	13	:38	
Comments:									-			;
Well Volume Total Depth Depth to Calculation (ft) Water (ft)						Water Column (ft)	x		iplier for Cas Diameter (in)	ing 6	= \	Casing Jolume (gal)
(fill in before purging) 17.75 - 10			10.80		6.75		0.16	} 	.44			
		· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·				1		
Time		13	:32	13:3	3	13:34	13	3:35	13:38			
Cumulative Vo Purged (gals)	lume		ما	1.5	1.5 2		2	.5	3.5			
Cumulative Nu of Casing Volu	1	0.0	90	1.35		1.80	2	.25	3.15			
Temperature (F	G)Co)	6	5. <u>1</u>	66.	5	66.3	6	6.9	67.3			
pH		7	.12	<u>. 7.10</u>)	7.11	구	. i 5	7.15			
Specific Condu (mS/cm)	etivity	3.	OO.	2.9	}	2.96	Z	-94	2.93			
Turbidity (NTU	J)	cl	oan	Clean		clear	c	lear	cleas			<u> </u>
					WE	LL SAMPI	LIN	G				
Sampling Time	»:	14:1	60			S	ampl	ing Met	hod: <u>Dis</u> r	osable	Baile	<u> </u>
Duplicate Sample & Time:									<u>, , </u>		-	
Sample 1	D	V	olum	ne/ Containe	r	Analysis I	Requ	ested	Preservatives		s	Lab
MW-2	•		2 (1	L Amber)		TPHd,	ГРН	no	ne	one		C&T
Nw-a	2			5 voas		TPHg, MT	BE, I	BTEX	н	HCL		

PROJECT NAM	мE:	PORT	OF C	DAKLAND – 2	277 7 th STRE	ET P	ROJECT NO	.: 00-	28 152,25
WELL NO.:	MW	-4	_	TESTED E	34: <u>R.L</u>	EONET_	DATE	12/16	2004
			,	WE	LL PURG	ING			1
Measuring Poin	ıt Descri	ption:	_	Top of Casing	(TOC)	Static Wate	r Level (ft.):	7.9	ь
Total Well Dep	th (ft.):			18.93		Purge Meth	od:	Disposable I	Bailer
Water Level Me	easurem	ent Me	thod:	Solinst	W. L.	Purge Rate	(gpm):	0.50	- !
Time Start Purge:									
Comments:									1
Well Volume Calculation	Total I	•		Depth to Water (ft)	Water Column (ft		iplier for Casi Diameter (in)		Casing lume (gal)
(fill in before purging)	18.9		-	7.96 =	10.97	x 2 0.16	0.64 1	<u>6</u> = }	.75
									·
Time		11:	12	11:14	11:16	11:18	[1:21		
Cumulative Vo Purged (gals)	lume	1	0	2.0	3.0	4,0	5.90		
Cumulative Nu of Casing Volu		0.	6	1.14	1.70	2.3	3,15		
Temperature (F	?)C°)	13	3.C	722	71.9	71.9	71.8		
рН		7.1	0_	6.99	6.99	6.98	6.97		<u> </u>
Specific Condu (mS/cm)	ctivity	2.1	89	2.80	2.65	2.63	2.61		
Turbidity (NT	J)	cla	ar	Clear	Clear	Clear	clear		
				WE	LL SAMP	LING			i i
Sampling Time	»:!	1:3	0_		S	Sampling Met	hod: <u>Disp</u>	osable Bailer	
Duplicate Sam	ple & Ti	me: <u>[</u>	<u> ყ</u>	-4D @	11:40	2			<u> </u>
Sample I	D	V	olume	e/ Container	Analysis	Requested	Preser	vatives	Lab
NW4 & NW				L Amber)	 	ТРНто	no	one	С&Т
	1-40	<u> </u>	<u> </u>	voas	ТРНд, МТ	BE, BTEX	Н	CL	C&T

PROJECT NAM	ИЕ: _	PORT	OF C	DAKLAND –	22	77 7 th STRE	ET_	P	ROJECT N	O.:	00-	152.25	<u>:</u>
WELL NO.:	MW.	-5_		TESTED	В	Y: RLe	01	<u> </u>	DAT	E: <u>13</u>	2/16	1200	4
				W	El	LL PURG	NG			· · · · · ·	, ,	:	
Measuring Poin	t Descrij	ption:	_	Top of Casin	g (TOC)	Sta	tic Wate	r Level (ft.)	·	6.0	2	
Total Well Dep	th (ft.):	_		16.70			Pur	ge Mèth	od:	Disj	posable .	Bailer	
Water Level Me	easureme	ent Me	thod:	Solin	st '	W. L	Pur	ge Rate	(gpm):	0	<u>.50</u>	· +	
Time Start Purg	ge: _		12:	:05		 	Tim	e End P	arge:	12	16	· 	
Comments:													
Well Volume Calculation Total Depth (ft) Depth to Water Column (ft) Water Column (ft) Multiplier for Casing Diameter (in) Casing Volume (gal)													
(fill in before purging)	16	10	-	6.02	=	10.68	х	Q.16	0.64	6 1.44	= 1	.70	
												<u> </u>	
Time		12	:07	12:09	1	12:11	12	.: i3	12:16	<u> </u>		<u> </u>	
Cumulative Vo Purged (gals)	lume	1.	O	2.0		3.0	Ĺ	4.0	5.50				
Cumulative Nu of Casing Volu		Ø.	60	1.14		٦,١	.7 2.3		3.2				
Temperature (F	<i>ြ</i>)င•)	64	.7	66.2		67.6	6	7.7	68.0				
рН		' 7 .1	0	7.08		7.03	7	.06	7.08				•
Specific Condu (mS/cm)	ctivity	2.3	80	3,01		3,21	Ĵ	.26	3.29				
Turbidity (NTU	J)	C	نعم	clear		Cloudy	cì	ordy	cloudy	_	·		
				W	El	LL SAMP	LIN	G				!	
Sampling Time	:	12:	30)	_	s	amp	ling Met	hod: <u>Dis</u>	posabl	e Bailer	<u>;</u>	
Duplicate Samp	ple & Ti	me:	7	oue								<u> </u>	_
								-				:	
Sample I	D	V	olume	e/ Container		Analysis I	equ	ested	Pres	ervative	es	Lal	b
Mw)-5			2 (1 I	L Amber)		TPHd,	ГРН	mo	1	none	·	C&	
MW-5			5	voas		TPHg, MT	BE,	BTEX]	C&	T		

Sheet	1	of	1
			<u>—</u> —

PROJECT NAME:	PORTOF O	AKLAND 2	277 7 th STRE	ET P	ROJECT NO	.:00-	28 152,25	
WELL NO.: MW-8	3A	TESTED E	34: <u>R Lec</u>	NET	DATE	: 12/18/2	2004	
		WE	LL PURG	ING				
Measuring Point Descri	ption: <u>T</u>	op of Casing	(TOC)	Static Wate	r Level (ft.):	7.6	2	
Total Well Depth (ft.):		20.40		Purge Meth	od:	Disposable :	Bailer	
Water Level Measureme	ent Method:	Solinst	W. L.	Purge Rate	(gpm):	0,50		
Time Start Purge:	10	0:00		Time End P	urge:	70.75	<u> </u>	
Comments :					74.0		<u> </u>	
Well Volume Calculation (fill in before purging)) '	Depth to Water (ft)	Water Column (ft		iplier for Casi Diameter (in) 4 0.64 1	Vo	Casing slume (gal)	
Time	10:02	10:04	10:06	10:08	10:00	10:12		
Cumulative Volume Purged (gals)	0,لے	2.0	3.0	4.0	6.0	8.0	:	
Cumulative Number of Casing Volumes	0,5	1.	15	2.0	2.5	3.0	!	
Temperature (F°)C°)	62.7	63.0	62.9	63.1	63.6	63.8		
рН	7.32	7.30	7.29	7.27	7.27	7.26		
Specific Conductivity (mS/cm)	2.76	2.79	2.78	2.78	2.77	2,77		
Turbidity (NTU)	cloudy	cloudy	cloudy	cloudy	Cloudy	cloudy		
		WE	LL SAMP	LING		•	;	
Sampling Time:	10:20		5	Sampling Met	hod: <u>Disp</u>	osable Bailer		
Duplicate Sample & Ti	me: <u>k</u>	Jone						
Sample ID	Volume/	Container	Analysis l	Requested	Preser	Lab		
NW-8A	2 (1 L	Amber)	TPHd,	TPHmo	no	С&Т		
NW-8A	5 v	oas	TPHg, MT	BE, BTEX	Н Н	HCL		

17 apparency Projects 2000 PROJECTS 00-152 Port of Challand As-Need 00-152 25 2003 7th GW Mount-Samphing Forms & Labels Purge & Sample due

APPENDIX B LABORATORY REPORTS

Curtis & Tompkins, Ltd., Analytical Laboratories, Since 1878

2323 Fifth Street, Berkeley, CA 94710, Phone (510) 486-0900

ANALYTICAL REPORT

Prepared for:

Innovative Technical Solutions, Inc. 2730 Shadelands Drive Suite 100 Walnut Creek, CA 94598-2540

Date: 05-JAN-05 Lab Job Number: 176703 Project ID: 00.15220

Location: 2277 7th Port of Oakland

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signatures. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis.

Reviewed by:

Project Manager

Reviewed by:

Operations Manager

This package may be reproduced only in its entirety.

NELAP # 01107CA

Page 1 of 2

CASE NARRATIVE

Laboratory number: 176703

Client: Innovative Technical Solutions, Inc.

Project: 00.15220

Location: 2277 7th Port of Oakland

Request Date: 12/16/04 Samples Received: 12/16/04

This hardcopy data package contains sample and QC results for six water samples, requested for the above referenced project on 12/16/04. The samples were received cold and intact.

TPH-Purgeables and/or BTXE by GC (EPA 8015B and EPA 8021B):

High surrogate recoveries were observed for trifluorotoluene (FID) in the MS/MSD for batch 97612; the corresponding bromofluorobenzene (FID) surrogate recoveries were within limits, and the parent sample was not a project sample. No other analytical problems were encountered.

TPH-Extractables by GC (EPA 8015B):

No analytical problems were encountered.

Volatile Organics by GC/MS (EPA 8260B):

No analytical problems were encountered.

F	Walnut (mock (2)	ve, Suite 111 ifornia 94598 . (925) 256-89		edclar	do De	.Sle 18							(h	aiı	n-(Of-		sto	dy	
	Project Name and Number: 10+0+04 100-152.28 Project Manager: 10+0+05 10-152.28					Laboratory Name: Address: 2323 5th Street					To	Contact Name: Anna Payacillo Page: Phone: (510) 486-0900						1	of _1_			
S	Project Manager: Faculty Street, Oakland, C Site Location: 2277 7th Street, Oakland, C					Analysis:															- 1	
	1	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	1 1 1	! ! ! ! !		1 1 1 1 1		95108 Rajom	9-48 80155 X+ NT8E by 80218	Econfination	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1	1 1	i i i i t	1 1 1 1 1 1	! ! ! 1 1 !	1 1 1 1 1 1 1		Clea	ca Gi wuf ld, n	for	
	Sample I.D. TRIP BLANK NW-2	Sample Depth	12/16/04 12/16/04	11400		ample Matrix	Preservativ	<u>定</u> 14	C1:HC		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1	1 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Spec	ial Instruc	tions/Comr	nents
11		! ! ! !				40 120		×>	< × ×	$\times \times $; - T 1 - T	1 1 1	1		1	 			
73 45	MW-4 NW-4D MW-5 NW-8A	116	12/16/04 12/16/04 12/16/04	1230	7727	1/20	\times	X/> X/>						· !	 	1		 	4-vc	oks are	: Unper	ser ved
<i>,\</i> 0	200-511	1			1			1 1	1 ' - 1- 1 - 1- 1				, , , , , , , , , , , , , , , , , , ,	 	, 	- - - -	 1	-1 - · · · · · · · · · · · · · · · · · ·	-	 	 	
						 - 	-	1	-	- i _ i	1 1 1 1		-i i 1	Cou	ī ! rier/Ai	rbill No).:		1			
	Sampled By: ROGERIO LEONE				Sampler: ROGERIO LEONEY					Date:	Date: Time:		Received By/Affiliation:							Date:	Time:	
	Signature: Special Instructions: Descrit Bill Port of Oak land Contact Jeff Rubin (a) (510) 627 - 1134					Relinquished By/Affiliation: Rogerio Lous / ITSI						- I	5:26 						<u> </u>		12/16/0	4 1512
	Send Results to: Pachel Hess @ (w/fax#) (925) 256-8998 Turnaryund Time: Standard									. – – –					. <u>-</u> -							

Client Services SOP Volume:

1.1.2 Section: 1 of 1 Page:

10-May-99 Effective Date:

Number 1 of 3 Revision:

F:\QC\Forms\QC\Cooler.wpd Filename:

COOLER RECEIPT CHECKLIST

	/ / / ar 1 Coolers:	i e
T - aint	1: 110703 Date Received: 12/16/04 Number of Coolers:	·
Login# Client:	Project:Project:	
Chem.		1
٨	Preliminary Examination Phase (sign)	
A.		YES(NO)
1	Date Opened: 2/16/04 By (pint). 2/07. Did cooler come with a shipping slip (airbill, etc.)?	
1.	Did cooler come with a snipping snp (archi, etc.) If YES, enter carrier name and airbill number:	YES NO
2	Wore custody seals on outside of cooler	
2.	How many and where? Seal date: Seal name. How many and where?	YES NONA
2	How many and where? Sear date. Sear date. Were custody seals unbroken and intact at the date and time of arrival?	(YES) NO
3.	Ware custody papers dry and intact which received	YES NO
4.	Were custody papers dry and intact when received?	YES NO
5. 6.	Did you sign the custody papers in the appropriate place?	YES NO
o. 7.	Was project identifiable from custody parameters	1
/-	Was project identifiable from eastern form. If YES, enter project name at the top of this form. See this word? Samples should be 2-6 degrees C	YES NO
8.	To a mixed awas sufficient ice used: Samples sales	· · · · · · · · · · · · · · · · · · ·
٥.	Type of ice: WET Temperature:	
В.	Login Phase (sign) (sign)	
ъ.	Login Phase Date Logged In: /2/16/04 By (print): Peters (sign) Describe type of packing in cooler: 700 (ac bas 5	
1.	Describe type of packing in cooler: Zie Cochas	YES NO
2.	Did all bottles arrive unbroken? Were labels in good condition and complete (ID, date, time, signature, etc.) Were labels in good condition and complete (ID, date, time, signature, etc.)	YES NO
3.	Were labels in good condition and complete (ID, date, time, signature,	YES NO
3. 4.	Were labels in good condition and complete (ID, date, time, signature) Did bottle labels agree with custody papers?	YES NO
5.	Did bottle labels agree with custody papers?	YES NO
5. 6.	Were correct preservatives added to samples	YES NO
7.	Was sufficient amount of sample sent for tests the sample lds below	YES NO
8.	Was sufficient amount of sample sent for tests indicated?	YES NO
9.	Was the client contacted concerning and sear-po-	
7.	If YES, give details below. By whom? D	ate:
	If YES, give details below. Who was called? By whom? D	
	VY 110 1100 5 110	1
م ۸	lditional Comments:	
Ж	IUI II O I III O I I I I I I I I I I I I	
		
_		Rev. 1, 4/95
 	lename: F:\qc\forms\qc\cooler.doc	1
F1	CHAINE METERS	1

Total Volatile Hydrocarbons 2277 7th Port of Oakland Location: Lab #: 176703 EPA 5030B Client: Innovative Technical Solutions, Inc. Prep: Project#: 00.15220 12/16/04 Sampled: Matrix: Water 12/16/04 12/17/04 ug/L 1.000 Received: Units: Analyzed: Diln Fac: 97612 Batch#:

Field ID:

TRIP BLANK

SAMPLE

Lab ID:

176703-001

٦	Analyte	Result		Analy	3 1 C
Ŧ	Gasoline C7-C12	ND	50	EPA 8015B	
-	MTBE	ND	2.0	EPA 8021B	
- 1	Benzene	ND	0.50	EPA 8021B	
	Toluene	ND	0.50	EPA 8021B	
	Ethylbenzene	ND	0.50	EPA 8021B	
Y	m,p-Xylenes	ND	0.50	EPA 8021B	
Ł	o-Xvlene	ND	0.50	EPA 8021B	
4	O-VATEUR	ND	0.50		

Surrogata	%REC	Limits		Anal	ysis			
Trifluorotoluene (FID)	99	70-141	EPA	8015B				
Bromofluorobenzene (FID)	93	80-143	EPA	8015B			:	
Trifluorotoluene (PID)	94	59-133	EPA	8021B	-		ì	
Bromofluorobenzene (PID)	93	76-128	EPA	8021B		 		
							i	

ield ID: Type: MW-2 SAMPLE Lab ID:

176703-002

	· · · · · · · · · · · · · · · · · · ·	5 5 1 2	Harrison Colors	PP P C C CONTROL OF CO
Analyte See	cesciale is a ca result year		200 - 200 -	A B'T.B' W DWO A Lauren . 118 KINY
Gasoline C7-C12	ND	50	EPA 8015B	1
MTBE	ND	2.0	EPA 8021B	1
Benzene	ND	0.50	EPA 8021B	1
Toluene	ND	0.50	EPA 8021B	•
Ethylbenzene	ND	0.50	EPA 8021B	_
m,p-Xylenes	ND	0.50	EPA 8021B	1
o-Xvlene	ND	0.50	EPA 8021B	

Surrogate	*REC	Limits		Analysis	
Trifluorotoluene (FID)	98	70-141	EPA	8015B	
Bromofluorobenzene (FID)	88	80-143	EPA	8015B	<u> </u>
Trifluorotoluene (PID)	93	59-133	EPA	8021B	
Bromofluorobenzene (PID)	89	76-128	EPA	8021B	

C= Presence confirmed, but RPD between columns exceeds 40% ND= Not Detected RL= Reporting Limit Page 1 of 4

Total Volatile Hydrocarbons 2277 7th Port of Oakland Location: 176703 Lab #: EPA 5030B Innovative Technical Solutions, Inc. Prep: Client: Project#: 00.15220 12/16/04 12/16/04 12/17/04 Sampled: Water Matrix: Received: Units: ug/L Diln Fac: 1.000 Analyzed: 97612 Batch#:

Field ID: Type:

MW - 4

SAMPLE

Lab ID:

176703-003

Analyte	Result	R.	Analysis	
Gasoline C7-C12	840	50	EPA 8015B	
MTBE	ND	2.0	EPA 8021B	
Benzene	290	0.50	EPA 8021B	
Toluene	1.3 C	0.50	EPA 8021B	
Ethylbenzene	0.69	0.50	EPA 8021B	
belly inches	0.75	0.50	EPA 8021B	
m, p-Xylenes	ND	0.50	EPA 8021B	
o-Xylene	TATA	0,30		

Analysis %REC Limits Surrogate EPA 8015B 70-141 Trifluorotoluene (FID) 116 Bromofluorobenzene (FID) 97 80-143 EPA 8015B Trifluorotoluene (PID) 100 59-133 **EPA 8021B** EPA 8021B Bromofluorobenzene (PID) 98 <u>76-128</u>

Field ID: 'ype:

MW-4D SAMPLE Lab ID:

176703-004

Analyte	Result	RE	Analysis	
Gasoline C7-C12	670	50	EPA 8015B	
MTBE	ND	2.0	EPA 8021B	
Benzene	230	0.50	EPA 8021B	
Toluene	1.3 C	0.50	EPA 8021B '	
Ethylbenzene	ND	0.50	EPA 8021B	
m,p-Xylenes	ND	0.50	EPA 8021B	
o-Xylene	ND	0.50	EPA 8021B	

Surrogate	*REC	ao Islands - Cal	Analysia	
Trifluorotoluene (FID)	116	70-141	EPA 8015B	
Bromofluorobenzene (FID)	101	80-143	EPA 8015B	1
Trifluorotoluene (PID)	101	59-133	EPA 8021B	
Bromofluorobenzene (PID)	102	76-128	EPA 8021B	

C= Presence confirmed, but RPD between columns exceeds 40%

ND= Not Detected RL= Reporting Limit Page 2 of 4

Total Volatile Hydrocarbons Lab #: 2277 7th Port of Oakland Location: 176703 EPA 5030B Innovative Technical Solutions, Inc. Client: Prep: Project#: 00.15220 12/16/04 12/16/04 12/17/04 Sampled: Matrix: Water ug/L 1.000 Received: Units: Analyzed: Diln Fac: 97612 Batch#:

Field ID: Type:

MW - 5

SAMPLE

Lab ID:

176703-005

Analy-e	Result		Analysi	(Survivio) de la company
Gasoline C7-C12	ND	50	EPA 8015B	
MTBE	2.2	2.0	EPA 8021B	
Benzene	ND	0.50	EPA 8021B	İ
Toluene	ND	0.50	EPA 8021B	
Ethylbenzene	ND	0.50	EPA 8021B	
m,p-Xylenes	ND	0.50	EPA 8021B	
o-Xylene	ND	0.50	EPA 8021B	

Surrogate	%RI	C Limits		Analysis	
Trifluorotoluene (FID)	94	70-141	EPA	8015B	
Bromofluorobenzene (FID)	86	80-143	EPA	8015B	
Trifluorotoluene (PID)	90	59-133	EPA	8021B	
Bromofluorobenzene (PID)	86	76-128	EPA	8021B	

ield ID: ype:

A8-WM SAMPLE Lab ID:

176703-006

The state of the s	11 July 201 (1991) Name 1981 (1984) Name 1981 (1981) Name 1981 (in anamina ana sy i
Result	and the second of the second o	Analysis	<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>
ND	50	EPA 8015B	
ND	2.0	EPA 8021B	
ND	0.50	EPA 8021B	
	0.50	EPA 8021B	
- · · · · · · · · · · · · · · · · · · ·	0.50	EPA 8021B	
		EPA 8021B	
		EPA 8021B	
		ND 50 ND 2.0 ND 0.50 ND 0.50 ND 0.50 ND 0.50 ND 0.50	ND 50 EPA 8015B ND 2.0 EPA 8021B ND 0.50 EPA 8021B

Surrogate	*REC	Complete S	AnaJ	vais
Trifluorotoluene (FID)	103	70-141	EPA 8015B	
Bromofluorobenzene (FID)	97	80-143	EPA 8015B	
Trifluorotoluene (PID)	98	59-133	EPA 8021B	
Bromofluorobenzene (PID)	98	76-128	EPA 8021B	

C≈ Presence confirmed, but RPD between columns exceeds 40% ND= Not Detected RL= Reporting Limit Page 3 of 4

		Potal Volatil	e Hydrocarbon	s
	176703 Innovative Technical		Location: Prep:	2277 7th Port of Oakland EPA 5030B
Matrix: Units: Diln Fac: Batch#:	Water ug/L 1.000 97612		Sampled: Received: Analyzed:	12/16/04 12/16/04 12/17/04

Type: BLANK Lab ID: QC276817

Analyte	Result.	NEWS SEED SEED SEEDS FOR THE SEEDS SEEDS	Analys	
Gasoline C7-C12	ND	50	EPA 8015B	
MTBE	ND	2.0	EPA 8021B	
Benzene	ND	0.50	EPA 8021B	
Toluene	ND	0.50	EPA 8021B	
Ethylbenzene	ND	0.50	EPA 8021B	
m,p-Xylenes	ND	0.50	EPA 8021B	
o-Xvlene	ND	0.50	EPA 8021B	

Surrocate	∛RE(Limits	AT a	vs13
Trifluorotoluene (FID)	104	70-141	EPA 8015B	
TBromofluorobenzene (FID)	96	80-143	EPA 8015B	!
Trifluorotoluene (PID)	100	59-133	EPA 8021B	
Bromofluorobenzene (PID)	96	76-128	EPA 8021B	

•	.m.			A Company	 · 11	-		ms
	- LC	ıLa.		TOTAL .	ாழ்	نباب ہا	CALL PUR	311 D
			2.2	ARREST N	 and a transition	A	** - N	*#####################################

Lab #:	176703	Location:	2277 7th Port of Oakland
Client:	Innovative Technical Solutions, Inc.	Prep:	EPA 5030B
Project#:	00.15220	Analysis:	EPA 8021B
Type:	LCS	Diln Fac:	1.000
Lab ID:	QC276818	Batch#:	97612
Matrix:	Water	Analyzed:	12/17/04
Units:	ug/L		

Analyte	Spiked	Result	%REC	Limits	
MTBE	20.00	22.69	113	67-124	
Benzene	20.00	19.70	98	80-120	
Toluene	20.00	21.20	106	80-120	
Ethylbenzene	20.00	20.71	104	80-120	
m,p-Xylenes	20.00	19.96	100	80-120	
o-Xylene	20.00	19.85	99	80-120	,

Surrogate	%RE	C Limits	
Trifluorotoluene (PID)	99	59-133	
Bromofluorobenzene (PID)	95	76-128	

	Total	Volatile Hydroca	irbons	
Lab #:	176703	Location:	2277 7th Por	t of Oakland
Client:	Innovative Technical Soluti	ons,Inc. Prep:	EPA 5030B	I
Project#:	00.15220	Analysis:	EPA 8015B	
Type:	LCS	Diln Fac:	1.000	
Lab ID:	QC276819	Batch#:	97612	
Matrix:	Water	Analyzed:	12/17/04	
Units:	ug/L			!
3.6-3-19200	Anelyte	Spiked	Result %REC	Limits
Gasoline G	C7-C12	2,000	2,165 108	80-120

Surrogate	&REC	Limits	
Trifluorotoluene (FID) 120	70-141	
Bromofluorobenzene (F	'ID) 100	80-143	

	Total Volatil	e Hydrocarbons	
Lab #: 17670	3	Location:	2277 7th Port of Oakland
	ative Technical Solutions, Inc.	Prep:	EPA 5030B
Project#: 00.15	220	Analysis:	EPA 8015B
Field ID:	ZZZZZZZZZZ	Batch#:	97612
MSS Lab ID:	176684-008	Sampled:	12/14/04
Matrix:	Water	Received:	12/16/04
Units:	ug/L	Analyzed:	12/18/04
Diln Fac:	1.000		

type:

MS

Lab ID:

QC276830

Analyte	MSS RESULE 1,411	2.000	3.290	94	80-120
Gasoline C7-C12	7,411	2,000	3,230	7-	00 120
Surrogate	%REC Limits				
Trifluorotoluene (FID)	142 * 70-141				
Bromofluorobenzene (FID)	116 80-143				

Type:

MSD

Lab ID:

QC276831

Analyte		Spiked	Result	%RE	Limits	RPD Lim
Gasoline C7-C12		2,000	3,177	88	80-120	3 20
Surrogate	%REC	Limits				
Trifluorotoluene (FID)	144 *	70-141			;	
Bromofluorobenzene (FID)	119	80-143				
			······································			

^{*=} Value outside of QC limits; see narrative
RPD= Relative Percent Difference
Page 1 of 1

		·····		
	Curtis & Tompkins	Laboratories	Analytical Report	
Lab #:	176703	Location		of Qakland
Client:	Innovative Technical Solution		EPA 5030B	İ
Project#:	00.15220	Analysis		
Field ID:	MW - 5	Batch#:	97889	
Matrix:	Water	Sampled:		
Units:	ug/L	Received		
Diln Fac:	1.000	Analyzed	: 12/29/04	
Type:	SAMPLE	Lab ID:	176703-005	
- 2 2 -				
9300 W. 1881	Analyte	sult 4		
MTBE	ND		0.50	
		•		
. X 74. 11. 11. 11. 11. 11. 11. 11. 11. 11. 1	Surrogate %REC 1	imits		
Dibromofl	uoromethane 116 8	30-120		
		-		
Type:	BLANK	Lab ID:	QC277895	İ T
.ypo.			~	1
	Analyte	eult ::		
MTBE	ND		0.50	
			·	
	Surrogate %REC /1			
Dibromofl	uoromethane 109 8	30-120		
				l I
				,
			000	
Type:	BLANK	Lab ID:	QC277961	
			e dan a <u>an aan aan aan aan aan aan aan aan </u>	
		sult		
MTBE	ND		0.50	
		(<u>4</u>		
	Surrogate %REC		<u> Taliania in Turkin kan mangan kan ing mangan kan an ka</u>	
DIDLOWOLT	uoromethane 103	30-120		

Curtis & Tompkins Laboratories Analytical Report

Lab #: 176703 Location: 2277 7th Port of Oakland

Client: Innovative Technical Solutions, Inc. Prep: EPA 5030B Project#: 00.15220 Analysis: EPA 8260B

Matrix: Water Batch#: 97889
Units: ug/L Analyzed: 12/29/04

Diln Fac: 1.000

Type:

BS

Lab ID:

QC277893

 Analyte
 Spiked
 Result
 %REC Limits

 MTBE
 25.00
 21.92
 88
 74-128

Surrogate Carte Ca

Dibromofluoromethane 102 80-120

Type:

BSD

Lab ID:

QC277894

 Analyte
 Spiked
 Result
 *REC Limits
 RPD Lim

 MTBE
 25.00
 20.84
 83
 74-128
 5
 20

Surrogate %REC Limits
Dibromofluoromethane 99 80-120

Total Extractable Hydrocarbons

2277 7th Port of Oakland _ab #: 176703 Location: Prep: EPA 3520C

Innovative Technical Solutions, Inc. Client:

EPA 8015B 12/16/04 12/16/04 00.15220 <u> Analysis:</u> Project#: Sampled: Water Matrix: ug/L Received: Units: 1.000 12/20/04 biln Fac: Prepared: Batch#: 97677

Field ID: Type:

MW-2 SAMPLE

Analyzed:

12/21/04 Cleanup Method: EPA 3630C

176703-002 ab ID:

Diesel C10-C24 Result RL 50 96 H Y ND 300 Motor Oil C24-C36

%REC Limits Surrogate 88 53-143 Hexacosane

ield ID: Type: āb ID:

· MW-4

SAMPLE

176703-003

Analyzed:

12/21/04

Cleanup Method: EPA 3630C

Result Analyte Diesel C10-C24 ND 50 300 ND Motor Oil C24-C36

%REC Limits 70 53-143 Surrogate Hexacosane

ield ID: ype:

MW-4D

SAMPLE 176703-004

Analyzed:

12/21/04

Cleanup Method: EPA 3630C

Result Analyte RI. ИD 50

Diesel Cl0-C24 ND 300 Motor Oil C24-C36

Surrogate *REC Limits 53-143 Hexacosane 54

ield ID: ηpe:

Lab ID:

MW-5 SAMPLE

176703-005

Analyzed:

12/21/04

Cleanup Method: EPA 3630C

Analyte Diesel C10-C24 Result ND 50 Motor Oil C24-C36 ND 300

%REC Limits Surrogate Hexacosane

H= Heavier hydrocarbons contributed to the quantitation

Y= Sample exhibits chromatographic pattern which does not resemble standard

D= Not Detected

L= Reporting Limit age 1 of 2

Chromatogram

Sample Name : 176703-002sg,97677 : G:\GC17\CHA\356A011.RAW Method : ATEH349.MTH Start Time : 0.01 min

End Time : 19.99 min Plot Offset: 16 mV

Sample #: 97677 Page 1 of 1

Date: 12/22/04 08:17 AM

Time of Injection: 12/21/04 07:40 PM

High Point : 284.17 mV Low Point : 16.12 mV

Plot Scale: 268.0 mV

Total Extractable Hydrocarbons

176703 Location: 2277 7th Port of Oakland Lab #: EPA 3520C Client: Innovative Technical Solutions, Inc. Prep: EPA 8015B

Analysis: 00.15220 Project#: 12/16/04 Sampled: Water Matrix: 12/16/04 Received: **Jnits:** ug/L 12/20/04 Diln Fac: 1.000 Prepared: Batch#: 97677

Field ID: Type:

A8-WM SAMPLE

12/22/04 Analyzed: Cleanup Method: EPA 3630C

ab ID: 176703-006 Analyte Result

RL Diesel C10-C24 160 H Y 50 Motor Oil C24-C36 ND 300

*REC Limits Surrogate 66 53-143 Hexacosane

ype: Lab ID: BLANK QC277033 Analyzed: Cleanup Method:

12/22/04 EPA 3630C

Analyte Diesel C10-C24 RL Result ND 50 300 ND Motor Oil C24-C36

REC Limits Surrogate 53-143 exacosane

H= Heavier hydrocarbons contributed to the quantitation

Y= Sample exhibits chromatographic pattern which does not resemble standard

D= Not Detected

L= Reporting Limit age 2 of 2

Chromatogram

Sample Name : 176703-006sg, 97677 FileName

: G:\GC15\CHB\356B031.RAW

: BTEH335S.MTH Method Start Time : 0.01 min

End Time : 19.99 min Plot Offset: 7 mV

Sample #: 97677

Page 1 of 1

Date: 12/22/04 08:42 AM Time of Injection: 12/22/04 01:16 AM

Low Point : 6.89 mV High Point: 286.72 mV

Plot Scale: 279.8 mV

Chromatogram Page 1 of 1 Sample #: 500mg/L Sample Name : ccv,04ws2358,ds1 Date: 12/21/04 11:30 AM : G:\GC15\CHB\356B003.RAW Time of Injection: 12/21/04 10:40 AM FileName High Point : 202.45 mV : BTEH335S.MTH Low Point : 20.74 mV let hod End Time : 19.95 min Start Time : 0.01 min Plot Scale: 181.7 mV Plot Offset: 21 mV 0.0 Scale Factor: Response [mV] nesel PB ONPA ON C10 C12 C-16 C-22 <u>=</u>9.1; <u>=</u>9.3; C-24 -10.: +CB HR C-36 -15

Chromatogram Sample #: 500mg/L Date: 12/21/04 11:30 AM Page 1 of 1 Sample Name : ccv,04ws2365,mo lieName : G:\GC15\CHB\356B004.RAW Time of Injection: 12/21/04 11:10 AM High Point: 118.43 mV Low Point : 20.64 mV End Time : 19.99 min Plot Scale: 97.8 mV Plot Offset: 21 mV Response [mV] PB ONPA ON -5.52

: BTEH335S.MTH

0.0

tart Time : 0.01 min

C10

C12

C-16

C-22

C-24

C-36

MOTOR OIL

et hod

Scale Factor:

gacci. Qc	**CPO10		
	Total Extracta	ble Hydroca	rbons
Lab #:	176703	Location:	2277 7th Port of Oakland
Client:	Innovative Technical Solutions, Inc.	Prep:	EPA 3520C
Project#:	00.15220	Analysis:	EPA 8015B
Type:	LCS	Diln Fac:	1.000
Lab ID:	QC277034	Batch#:	97677
Matrix:	Water	Prepared:	12/20/04
_Units:	ug/L	Analyzed:	12/22/04

leanup Method: EPA 3630C

Analyte	Spiked		%REC	Limite
Diesel C10-C24	2,500	1,892	76	51-131

 In the control of the c	*REC	Limits	
Hexacosane	76	53-143	

	Total Extracta	ore Hydrocar	
Lab #: 1767	03	Location:	2277 7th Port of Oakland
Client: Inno	vative Technical Solutions, Inc.	Prep:	EPA 3520C
Project#: 00.1	5220	Analysis:	EPA 8015B
Field ID:	ZZZZZZZZZZ	Batch#:	97677
MSS Lab ID:	176648-006	Sampled:	12/14/04
Matrix:	Water	Received:	12/15/04
Jnits:	ug/L	Prepared:	12/20/04
Diln Fac:	1.000	Analyzed:	12/21/04

ype:

MS

Lab ID:

QC277035

	Analyte	MSS Result Sp	iked	Result	%REC	Limits
Diesel	C10-C24	40.21 2,	500	2,582	102	38-128

Surrogate	%REC	Limits
Hexacosane	104	53-143

уре:

MSD

Lab ID:

QC277036

Analyte		Result	%REC	Limits	RPD Dim
Diesel Cl0-C24	2,500	2,166	85	38-128	18 45

	%REC	Limits	0.00000
Hexacosane	87	53-143	

APPENDIX C DAILY FIELD ACTIVITY REPORT

2730 Shadelands Drive, Suite 100 Walnut Creek, California 94598 (925) 946-3100 (Tel), (925) 256-8998 (Fax)

PROJECT NAME: 00-152.28	/16/2004
PROJECT NUMBER: Fort at Oakland DAILY ACTIVITY REPORT PAGE /	OF 1
PROJECT NUMBER Fort of Oakland DAILY ACTIVITY REPORT SITE LOCATION: 2277 7ft Street, Oakland DESCRIPTION OF FIELD ACTIVITIES AND EVENTS	
	_
9:00 tass by Hayneda to pick up ice, cooler, and pottles. 9:00 At Sik; realized that bucks is are cracked; leave sike to Ace.	<u> </u>
9:00 At Sik; realized that buckets are cracked; leave sike to Ace.	Hardwase
to buy new buckets.	
9:30 Reduck to sife	!
9:40 Set up at NW-8A	
10:20 Sample NW-8A	
10:50 Set up af MW-4	<u> </u>
11:30 Sample MW-4	ļ
11:40 Set up at Sample NW-4Das duplicate of NW-4	
11:45 Set up at NW-5	ļ
12:30 Sample NW-5	į
13:10 Set up at NW-2	
14:00 Sauple NW-2 1	ļ
14:30 Navitor Free product at NW-3:	
DTP= 7.75'	
DTW = 7.92'	
roduct thickness 0.17' thick	
14:45 Monitor Free product at NW-3	
DTP = 9.41'	
DTW= 10.38'	-
Keeduct Hickory = 0.97'	
15:00 Depart Sik to CST in Berkeley	
,	
15.20 Kelease Jampho to CST.	
<u>'</u>	1
	ļ
	<u> </u>
	<u> </u>
	-
	-
	,
12/1	1 James
PREPARED BY: Kogino Kong DATE: /2//	6/2004
PREPARER'S SIGNATURE	