July 23, 2004

Mr. Barney Chan Hazardous Materials Specialist Alameda County Health Care Services Agency 1131 Harbor Bay Parkway, 2nd Floor Alameda, CA 94502

RE: 2nd Quarter 2004, Quarterly Groundwater Monitoring and Product Recovery Report – 2277 Seventh Street, Oakland, CA

Dear Mr. Chan:

Please find enclosed the subject Port of Oakland (Port) groundwater monitoring and product recovery report for 2277 Seventh Street in Oakland, California. This report is being submitted in accordance with Alameda County Health Care Services Agency (ACHCSA) requirements.

The next monitoring event will be performed during the third quarter of 2004, and will be in accordance with the aforementioned requirements. If you have any questions or comments regarding the results, please contact me at (510) 627-1134.

Sincerely,

Jeffrey L. Rubin, CPSS, REA

Port Associate Environmental Scientist

Environmental Health and Safety Compliance

Enclosure: noted

Cc (w encl.):

Michele Heffes

Cc (w/o encl.):

Jeff Jones

Rogerio Leong (Innovative Technical Solutions, Inc.)
Rachel B. Hess (Innovative Technical Solutions, Inc.)
Jeffrey D. Hess (Innovative Technical Solutions, Inc.)

July 21, 2004

Mr. Jeff Rubin Associate Environmental Scientist Port of Oakland 530 Water Street Oakland, California 94607

Second Quarter of 2004 Quarterly Groundwater Monitoring and Product Monitoring Report 2277 Seventh Street Oakland, California

Dear Mr. Rubin:

Innovative Technical Solutions, Inc. (ITSI) is pleased to submit this report to the Port of Oakland (Port) for the groundwater monitoring and sampling program at 2277 7th Street in Oakland, California (Figure 1). This report summarizes the quarterly monitoring of four groundwater-monitoring wells (MW-2, MW-4, MW-5, and MW-8A) at 2277 7th Street. The locations of these wells are shown on Figure 2.

This report also encompasses the operation of the product recovery system at the 2277 7th Street site. The operation of the active product recovery system was stopped since April 2003 when a section of the conveyance system was removed for construction upgrades at the site. Collection of groundwater samples from monitoring wells MW-1 and MW-3 was not performed this quarter due to the presence of separate-phase petroleum hydrocarbons.

BACKGROUND

Monitoring wells were installed to assess groundwater quality following the removal of underground storage tanks (USTs) from the site in September 1993. The former USTs, located on the south side of Building C-401, consisted of two 10,000-gallon gasoline tanks (CF-17 and CF-18), one 500-gallon oil tank (CF-19), and one 300-gallon waste oil tank (CF-20). On April 20, 2000, Harding ESE (Harding) performed oversight of the abandonment of monitoring well MW-8, located at the northern edge of the property. This monitoring well was properly destroyed to accommodate the construction of a railroad track associated with the Port of Oakland Vision 2000 improvements. All surface structures, including the well, needed to be removed.

Harding monitored MW-8 from 1998 until it was abandoned. During this time, no groundwater samples were collected because the well contained a thick, viscous, tar-like petroleum product. After the railroad construction was completed, the Port had a replacement well, MW-8A, installed in the same vicinity on October 2, 2001 by ITSI. MW-8A has been sampled since the Fourth quarter of 2001, and no separate phase petroleum has been detected.

^{1 -} Destruction and abandonment of all monitoring wells were performed in accordance with Alameda County Public Works Agency Guidelines.

Site preparation activities for the construction of a new Harbor Facilities Center (HFC) were initiated in November 2002. The eastern side of Building C-401 was demolished, and the asphalt pavement east of the building was removed in December 2002. A concrete ring was placed around each well for protection and prevention from damage by heavy equipment during site demolition. Two monitoring wells (MW-6 and MW-7) were properly destroyed to facilitate the construction plans at the site, and six monitoring wells (MW-1, MW-2, MW-3, MW-4, MW-5, MW-8A) still remain onsite. The surface grade was raised approximately 2 feet in the vicinity of wells MW-2 and MW-3 during the first quarter of 2003.

On April 16, 2003, ITSI on behalf of the Port oversaw the removal of a 100-foot section of the product recovery conveyance system (refer to Figure 2). The Port contracted Dillard Environmental Services (Dillard) to perform the work. The section of product recovery system was removed to minimize interference with site development. A new product removal system will be installed after development activities are completed. The conveyance system consisted of a PVC conduit pipe containing the pneumatic and product recovery lines. These lines connected the system control box and the recovery tank to the skimmer pump installed in well MW-3. Portions of the surface concrete pieces and asphalt from the trench line were appropriately excavated, removed and stockpiled onsite. Sections of the removed conduit pipes and product line were appropriately disposed of and transported offsite by Dillard as non-RCRA hazardous solid waste material under the Uniform Hazardous Waste Manifest.

Monitoring wells were previously installed at the adjacent 2225 7th Street site to assess groundwater quality following the removal of USTs in 1989 and 1992. The 2225 7th Street site is also currently under modification for the construction of the future HFC. Buildings C-406 and C-407 were demolished and the entire surrounding asphalt pavement was removed in November 2002. The three former monitoring wells (MW-1, MW-2, and MW-3) located at the site were properly destroyed to facilitate the Port's construction plans.

On November 17 and 18, 2003, ITSI personnel raised monitoring wells MW-2 and MW-3 to match the asphalt surface elevation of the future HFC parking lot. New traffic rated well boxes were placed on the two wells and the elevation of the top of each well box was set with a laser level instrument. The elevations of the wells were subsequently surveyed on November 26, 2003 to a relative Port of Oakland datum by PLS Surveys, Inc. (PLS).

GROUNDWATER MONITORING

ITSI personnel performed groundwater monitoring and sampling at the 2277 7th Street site on June 2, 2004. Prior to purging and sampling the monitoring wells, the depth to groundwater below the top of the well casing was measured with a water level indicator. After measuring the depth to water, the wells were purged using a disposable bailer. Conductivity, pH, and temperature were monitored periodically during purging. Collection of groundwater samples was performed after removing a minimum of three well-casing volumes of water and upon stabilization of three consecutive measurements of conductivity, pH, and temperature. The depths to groundwater and field parameter measurements were recorded on the respective Monitoring Well Water Level Measurement and Monitoring Well Purging and Sampling forms included as Appendix A. The purge water was stored onsite in the treatment system's product recovery tank. Dillard Environmental Services Company, Inc. (Dillard) periodically removes and appropriately disposes of the purge water along with the product in the tank.

ITSI collected groundwater samples from the monitoring wells using Teflon disposable bailers and then transferred the groundwater into laboratory-provided containers. A duplicate sample was collected for quality assurance. Sample containers were labeled with the sample number, date and time of collection, and sampler's initials, and then placed in an insulated cooler with ice. The samples were accompanied by a laboratory provided trip blank and delivered under chain-of-custody protocol to Curtis & Tompkins in Berkeley, a California certified analytical laboratory.

The second quarter 2004 groundwater monitoring event at 2277 7th Street involved monitoring and sampling of monitoring wells MW-2, MW-4, MW-5, and MW-8A, and monitoring of the free-phase petroleum product in wells MW-1 and MW-3. Groundwater level measurements are summarized in Table 1 and product thickness measurements are summarized on Table 2. The groundwater gradient direction is presented on Figure 3. Copies of the respective Monitoring Well Water Level Measurement and Monitoring Well Purging and Sampling forms are included in Appendix A.

LABORATORY ANALYSIS OF GROUNDWATER SAMPLES

Curtis and Tompkins of Berkeley, California performed the chemical analyses of the groundwater samples using the following analytical methods:

- Total petroleum hydrocarbons as gasoline (TPHg) in accordance with EPA Method 8015B.
- Benzene, toluene, ethylbenzene, and xylenes (BTEX) and methyl t-butyl ether (MTBE) in accordance with EPA Method 8021B with confirmation of MTBE by EPA Method 8260B.
- TPH as diesel (TPHd) in accordance with EPA Method 8015B following a silica-gel cleanup procedure.
- TPH as motor oil (TPHmo) in accordance with EPA Method 8015B following a silica-gel cleanup procedure.

The laboratory results for 2277 7th Street are summarized in Table 3 and are shown on Figure 4. Copies of the laboratory results and chain-of-custody forms are provided in Appendix B.

FINDINGS

Groundwater measurements were conducted on June 2, 2004. The water levels are presented in Table 1. The groundwater elevation contour map is presented on Figure 3. According to these contours, the groundwater appears to be flowing towards the north-northeast. The groundwater flow direction observed during June 2004 is consistent with the historic flow direction reported in the previous reports.

Results of the June 2, 2004 groundwater sampling at 2277 7th Street are summarized below:

- TPHg was detected in one well at a concentration of 620 µg/L in MW-4. The laboratory, however, classified the result as lighter hydrocarbons contributed to the quantitation.
- Benzene was detected in one well at a concentration of 210 μg/L in MW-4.
- Toluene was detected in one well at a concentration of 0.55 μg/L in MW-4. This result was classified as presence confirmed, but relative percent difference (RPD) between columns exceeds 40%.

- Ethylbenzene was not detected in any of the wells sampled this quarter.
- Total xylenes was not detected in any of the wells sampled this quarter.
- MTBE was not detected in any of the wells sampled this quarter.
- TPHd was detected in one well at a concentration of 67 µg/L in MW-8A. This result, however, was classified as a sample that exhibits chromatographic pattern which does not resemble standard.
- TPHmo was not detected above the reporting limit in any of the wells sampled this quarter.

QUALITY ASSURANCE AND QUALITY CONTROL

A duplicate sample was collected simultaneously from monitoring well MW-4 and labeled as MW-4D at 2277 7^{th} Street on June 2, 2004 and submitted to the analytical laboratory to evaluate the precision of the analytical results. Precision is an indication of the reproducibility of results and is assessed by calculating the RPD between the primary sample result (X₁) and the duplicate sample result (X₂), as follows:

$$RPD = \frac{X_1 - X_2}{(X_1 + X_2)/2} \times 100$$

For example: A low RPD indicates high precision; a RPD of 67 percent indicates the two results differ by a factor of two. As shown below, the RPD was calculated for chemical compounds detected above the reporting limit in either the duplicate or primary sample.

2277 7th St. MW-4 06/02/04

ANALYTE	\mathbf{X}_{1}	X ₂	RPD
MTBE	<0.5	< 0.5	-
В	210	130	47.06%
Т	0.55	< 0.50	
E	< 0.50	< 0.50	
X	< 0.50	< 0.50	
TPHd	<50	<50	
TPHg	620	400	43.14%

• The relative percent difference between the analytical results from MW-4 and its duplicate sample MW-4D ranged from 43.14% to 47.06% for benzene and diesel analytes. The overall RPD values indicate that the results from the sample and the duplicate analysis are in agreement.

PRODUCT RECOVERY SYSTEM AT 2277 7TH STREET

Until April 16, 2003 the product recovery system at 2277 7th Street consisted of an air-actuated (active) product skimmer in MW-3. The product in MW-3 was discharged to a product recovery 1,000-gallon tank that Foss Environmental Services Company, Inc. (former contractor) emptied at various times throughout a quarter. A passive skimmer was installed in MW-1, although it was removed on May 22, 2000 because no measurable product appeared in the well. The passive skimmer was subsequently replaced in the well during

the following months after free product was measured in MW-1. The active and passive product recovery systems are currently interrupted with both skimmers removed from the wells due to activities related to the construction of the new HFC at the site.

The Port is currently replacing the former free product recovery system with the installation of two mitigation systems at the site. Overaa Construction (Overaa) is completing the installation of a soil gas venting system beneath the new HFC's building slab, and Beliveau Engineering Contractors, Inc., subcontracted to Dillard, is also completing a new recovery system designed to recover the product floating on the groundwater beneath the site.

The free-phase petroleum product has been monitored in wells MW-1 and MW-3 on a quarterly basis in conjunction with every quarterly groundwater sampling event. Free-phase petroleum product was measured at 0.45 feet and 1.32 feet in MW-1 and MW-3, respectively, this quarter. Table 2 presents a summary of the product thickness data. A summary of the activities during the past quarters associated with the operation and maintenance of the product recovery system is presented in Table 4.

We appreciate the opportunity to present this report and trust that this document meets with your approval. Please do not hesitate to contact us at (925) 946-3105 with any questions or comments.

Sincerely yours,

INNOVATIVE TECHNICAL SOLUTIONS, INC.

Rogerio Leong Project Geologist

Rachel B. Hess Project Manager

Jefffey D. Hess, K Senior Geologist EXP. 4/2006

Attachments:

Table 1 – Groundwater Elevations Data, 2277 7th Street

Table 2 – Summary of Product Removal and Product Thickness, 2277 7th Street

Table 3 – Groundwater Sample Results, 2277 7th Street

Table 4 – Summary of Operation and Maintenance Activities

Figure 1 – Site Location Map

Figure 2 – Site Plan

Figure 3 – Groundwater Elevations, 2277 7th Street, June 2, 2004 Figure 4 – Groundwater Sample Results, 2277 7th Street, June 2, 2004

Appendix A – Monitoring Well Water Level Measurement Form and Monitoring Well Purging and Sampling Form

Appendix B - Laboratory Reports

Appendix C - Daily Field Activity Report

Table 1 Groundwater Elevations Data Port of Oakland, 2277 7th Street, Oakland, California

Well Elevation ID Top of Casing (feet)		Date Of Monitoring	Depth to Water (feet)	Groundwater Elevation (feet)	
MW-1	14.14	4/18/2000	8.21	5.93	
212.11		5/22/2000	8.17	5.97	
		7/10/2001	10.00	4.14	
		12/12/2001	NA	NA	
		3/8/2002	NA	NA	
		6/13/2002	NA	NA	
		9/26/2002	NA	NA	
		12/12/2002	NA	NA	
		3/17/2003	NA	NA	
		6/18/2003	NA	NA	
		9/3/2003	NA	NA	
		11/26/2003	NA	NA	
		3/5/2004	NA.	NA	
		6/2/2004	NA	NA	
MW-2	14.36	12/31/1997	8.73	5.63	
		4/13/1998	7.72	6.64	
		11/6/1998	9.43	4.93	
		3/19/1999	8.21	6.15	
		6/24/1999	8.91	5.45	
		9/28/1999	9.42	4.94	
		11/12/1999	9.63	4.73	
		2/11/2000	8.54	5.82	
		5/22/2000	8.10	6.26	
		9/6/2000	8.79	5.57	
		12/19/2000	9.19	5.17	
		2/21/2001	7.99	6.37	
		4/3/2001	8.23	6.13	
		7/10/2001	8.70	5.66	
		12/12/2001	8.16	6.20	
		1/22/2002	7.64	6.72	
		3/8/2002	8.31	6.05	
		6/13/2002	8.64	5.72	
		9/26/2002	8.95	5.41	
		12/12/2002	9.17	5.19	
		3/17/2003	7.77	6.59	
		6/18/2003	8.44	5.92	
		9/3/2003	8.98	5.38	
	17.21	11/26/2003	12.01	5.20	
	11.4/4	3/5/2004	9.75	7.46	
		6/2/2004	11.22	5.99	

Table 1 Groundwater Elevations Data Port of Oakland, 2277 7th Street, Oakland, California

Well	Elevation	Date Of	Depth	Groundwater
ID	Top of Casing	Monitoring	to Water (feet)	Elevation (feet)
	(feet)			
MW-4	13.15	12/31/1997	7:09	6.06
		4/13/1998	7.71	5.44 4.46
		11/6/1998	8.69	
		3/19/1999	8.00	5.15 4.70
		6/24/1999	8.45	
		9/28/1999	8.73	4.42 4.32
		11/12/1999	8.83	4.32 5.44
		2/11/2000	7.71	5.06
		5/22/2000	8.09	4.83
		9/6/2000	8.32	4.68
		12/19/2000	8.47	5.64
		2/21/2001	7.51	5.02
		4/3/2001	8.13	
		7/10/2001	8.12	5.03 5.50
		12/12/2001	7.65	5.55
		1/22/2002	7.60	5.19
		3/8/2002	7.96	4.95
		6/13/2002	8.20	
		9/26/2002	8.21	4.94 4.77
		12/12/2002	8.38 7.72	5.43
		3/17/2003	8.02	5.13
		6/18/2003	8.02 8.29	4.86
		9/3/2003	8.29 8.69	4.46
		11/26/2003	7.45	5.70
		3/5/2004	8.25	4.90
		6/2/2004	8,23	4.50
MW-5	13.49	12/31/1997	6.38	7.11
111,11	25.17	4/13/1998	5.56	7.93
		11/6/1998	6.59	6.90
		3/19/1999	6.20	7.29
		6/24/1999	6.73	6.76
		9/28/1999	6.91	6.58
		11/12/1999	7.06	6.43
		2/11/2000	7.00	6.49
		5/22/2000	6.21	7.28
		9/6/2000	6.56	6.93
		12/19/2000	6.68	6.81
		2/21/2001	6.08	7.41
		4/3/2001	6.38	7.11
		7/10/2001	6.58	6.91
		12/12/2001	6.40	7.09
		1/22/2002	6.10	7.39
		3/8/2002	6.10	7.39
		6/13/2002	6.31	7.18
		9/26/2002	6.60	6.89
		12/12/2002	6.75	6.74
		3/17/2003	5.73	7.76
		6/18/2003	6.10	7.39
		9/3/2003	6.50	6.99
		11/26/2003	6.70	6.79
			5.70	7.79
		3/5/2004	3.70	,,,,

Table 1 Groundwater Elevations Data Port of Oakland, 2277 7th Street, Oakland, California

Well Elevation ID Top of Casing (feet)		Date Of Monitoring	Depth to Water (feet)	Groundwater Elevation (feet)	
MW-6	14.00	6/24/1999	8.61	5.39	
		9/28/1999	9.26	4.74	
		11/12/1999	8.01	5.99	
		2/11/2000	7.20	6.80	
		5/22/2000	7.13	6.87	
		9/6/2000	7.12	6.88	
		12/19/2000	7.57	6.43	
		2/21/2001	7.50	6.50	
		4/3/2001	6.88	7.12	
		7/10/2001	7.15	6.85	
		12/12/2001	9.50	4.50	
		1/22/2002	6.69	7.31	
		3/8/2002	6.98	7.02	
		6/13/2002	7.45	6.55	
		9/26/2002	7.95	6.05	
		12/12/2002	7.71	6.29	
		12/18/2002	Monitoring	well was destroyed	
MW-7	14.35	12/31/1997	8.88	5.47	
		4/13/1998	7.86	6.49	
		11/6/1998	9.55	4.80	
		3/19/1999	8.41	5.94	
		6/24/1999	9.08	5.27	
		9/28/1999	9.60	4.75	
		11/12/1999	9.77	4.58	
		2/11/2000	8.67	5.68	
		5/22/2000	8.43	5.92	
		9/6/2000	8.88	5.47	
		12/19/2000	9.21	5.14	
		2/21/2001	8.13	6.22	
		4/3/2001	8.45	5.90	
		7/10/2001	8.87	5.48	
		12/12/2001	8.39	5.96	
		1/22/2002	7.99	6.36	
		3/8/2002	8.51	5.84	
		6/13/2002	8.90	5.45	
		9/26/2002	9.00	5.35	
		12/12/2002	9.28	5.07	
		12/18/2002		well was destroyed	

Table 1 Groundwater Elevations Data Port of Oakland, 2277 7th Street, Oakland, California

Well ID	Elevation Top of Casing (feet)	Date Of Monitoring	Depth to Water (feet)	Groundwater Elevation (feet)
MW-8A	12.94	12/12/2001	7.20	NA
		1/22/2002	7.20	5.74
		3/8/2002	7.70	5.24
		6/13/2002	7.72	5.22
		9/26/2002	<i>7.</i> 91	5,03
		12/12/2002	8.15	4.79
		3/17/2003	7.28	5.66
		6/18/2003	7.72	5.22
		9/3/2003	8.18	4.76
		11/26/2003	8.55	4.39
		3/5/2004	6.92	6.02
		6/2/2004	7.92	5.02

¹ Elevation data relative to Port of Oakland datum; well surveys performed on September 12, 1996, February 4, 1998, and November 26, 2003, by PLS Surveys.

⁻ Data prior to November 6, 1998 taken from Groundwater Monitoring, Sampling and Product Removal System O&M Report dated July 21, 1998, by Innovative Technical Solutions, Inc

⁻ Monitoring MW-8 was abandoned on April 20, 2000 in order to construct a railroad track associated with the Port of Oakland Vision 2000.

NA = Not available

Table 2 Summary of Product Removal and Product Thickness Port of Oakland, 2277 7th Street, Oakland, California

Well ID	Elevation of Top of Casing (feet)	Date Of Monitoring	Depth to Free Product (feet)	Depth to Water (feet)	Product Thickness (feet)	Estimated Product Removed (gallons)	Product Removal Method ²
MW-1	14.14	12/31/1997	-	-	-	0.2	passive skimmer
		1/29/1998	-	-	-	0.2	passive skimmer
		3/2/1998	-	-	-	0.018	passive skimmer
		5/11/1998	-	-	-	0.02	passive skimmer
		6/15/1998	-	-	-	0.2	passive skimmer
		11/6/1998	9.34	10.3	0.96	1.2	passive skimmer
		1/7/1999	_	-	-	0.2	passive skimmer
		2/11/1999	-	-	-	0.2	passive skimmer
		3/12/1999	•	-	-	0.2	passive skimmer
		3/19/1999	NM	8.45	>0.01	0.07	passive skimmer
		4/14/1999	-	-	-	0.2	passive skimmer
		5/11/1999	-	-	-	0.2	passive skimmer
		6/24/1999	8.88	9.63	0.8	0.2	passive skimmer
		7/15/1999				0.2	passive skimmer
		7/16/1999				0.2	passive skimmer
		8/27/1999			**	0.2	passive skimmer
		9/28/1999			0.65	0.2	passive skimmer
		10/5/1999	***			0.2	passive skimmer
		11/12/1999	9.38	10.27	0.89	0.2	passive skimmer
		12/21/1999				0.2	passive skimmer
		1/26/2000				0.2	passive skimmer
		1/28/2000	9.22	9.24	0.02		passive skimmer
		2/11/2000		7.00	0.00	0.2	passive skimmer
		3/1/2000		7.45	0.00	0.0	passive skimmer
		3/21/2000	NM	7.34	0.00	0.0	passive skimmer
		4/18/2000	NM	8.21	0.00	0.0	passive skimmer
		5/22/2000 ³	NM	8.51	0.00	0 0	passive skimmer
		9/6/2000 4	8.52	9.24	0.72	0 0	passive skimmer
			8.71	9.24	0.72	0.0	passive skimmer
		9/21/2000		9.20 	0.55	0.0	passive skimmer
		10/11/2000				0.0	passive skimmer
		11/30/2000	0.5	9. 8 9	0.39	0.0	passive skimmer
•		12/19/2000	9.5	9.69 8.4	0.39	0.0	passive skimmer
		2/22/2001	8.3		0.15	0.0	passive skimmer
		4/3/2001	8.3	8.55	0.23	0.0	passive skimmer
		4/23/2001				0.0	passive skimmer
		5/11/2001	 0.5		0.40		passive skimmer
	c	5/30/2001	8.5	8.9	0.40	0.0	-
		6/14/2001		10	1.20	0.0	passive skimmer
		7/10/2001	8.8	10	1.20	0.0	passive skimmer
		12/12/2001	NA	NA	NA NA	1.0	passive skimmer
		3/8/2002	NA	NA	NA 0.00	NA	passive skimmer
		4/3/2002	8.3	9.2	0.90		passive skimmer
		4/23/2002	8.5	9.6	1.10		passive skimmer
		5/10/2002	8.7	9.6	0.90		passive skimmer
		5/24/2002	8.8	10	1.20		passive skimmer

Table 2
Summary of Product Removal and Product Thickness
Port of Oakland, 2277 7th Street, Oakland, California

Well ID	Elevation of Top of Casing (feet)	Date Of Monitoring	Depth to Free Product (feet)	Depth to Water (feet)	Product Thickness (feet)	Estimated Product Removed (gallons)	Product Removal Method ²
MW-1	14.14	6/13/2002	8.7	10	1.30		passive skimmer
(Cont'd)		6/21/2002	8.8	10	1.20		passive skimmer
		7/5/2002	8.5	9.4	0.90	0.2	passive skimmer
		7/19/2002	8.6	9.6	1.00	0.2	passive skimmer
		7/30/2002	8.5	9.3	0.80	0.2	passive skimmer
		8/14/2002	8.5	9.3	0.80	0.2	passive skimmer
		9/13/2002	8.8	9.6	0.80	0.2	passive skimmer
		9/26/2002	8.6	9.5	0.90	0.2	passive skimmer
		10/14/2002	9.0	10.1	1.10	0.2	passive skimmer
		11/4/2002	9.22	10.12	0.90	0.2	passive skimmer
		11/21/2002	8.48	8.86	0.38	0.2	passive skimmer
		12/6/2002	8.85	9.38	0.53	0.0	passive skimmer
		12/18/2002	8.05	8.26	0.21	0.2	passive skimmer
		12/30/2002	7.61	7.63	0.02	< 0.1	passive skimmer
		1/2/2003	7.36	7.36	sheen	< 0.1	passive skimmer
		1/3/2003	7.35	7.35	sheen	< 0.1	passive skimmer
		1/14/2003	7.35	7.36	sheen	< 0.1	passive skimmer
		1/30/2003	7.75	7.81	0.06	< 0.1	passive skimmer
		2/18/2003	7.81	8.35	0.54	< 0.1	passive skimmer
		2/26/2003	7.72	8.62	0.90	< 0.1	passive skimmer
		3/13/2003	7.80	8.11	0.89	0.2	passive skimmer
		3/17/2003	7.61	8.88	1.27	0.2	passive skimmer
		4/16/2003	7.42	8.71	1.29	< 0.2	passive skimmer
		6/18/2003	8.20	9.44	1.24	< 0.2	passive skimmer
		9/3/2003	8.50	9.40	0.90		8
		11/26/2003	8.85	9.25	0.40		8
		3/5/2004	6.76	7.07	0.31		8
		- Y20240000000000000000000000000000000000	*****************	C1874004C1V6804C2904X004X004X0	5/364.406466505556650505076575		•
		6/2/2004	8.25	871	0.05		
MW-3	14.22	12/31/1997		_		30	active skimmer
2.2		1/29/1998	-	-	_	10	active skimmer
		4/13/1998	_	-	-	240	active skimmer
		5/11/1998	_	-	_	1,545	active skimmer
		6/15/1998	-	-	•	1,950	active skimmer
		11/6/1998	8.84	9.94	1.1	500	active skimmer
		1/5/1999	_	_	_	275 ²	active skimmer
		1/14/1999	_	_	_	400^{2}	active skimmer
		2/3/1999	_		_	400 ²	active skimmer
			-	-	_	570 ²	active skimmer
		2/26/1999	7 50	9 AE	- 0.5		
		3/19/1999	7.52	8.05	0.5	211	active skimmer
		6/16/1999	0 20	- 0 5 C	0.2	310	active skimmer active skimmer
		6/24/1999	8.38	8.56	0.2	 50 ²	
		7/14/1999				50 ²	active skimmer

Table 2
Summary of Product Removal and Product Thickness
Port of Oakland, 2277 7th Street, Oakland, California

Well ID	Elevation of Top of Casing (feet)	Date Of Monitoring	Depth to Free Product (feet)	Depth to Water (feet)	Product Thickness (feet)	Estimated Product Removed (gallons)	Product Removal Method ²
MW-3	14.22	9/28/1999			0.2		active skimmer
(Cont'd)		10/29/1999				125 ²	active skimmer
` ,		11/12/1999	9.14	9.23	0.09		active skimmer
		1/28/2000				135	active skimmer.
		2/11/2000	7.97	8.37	0.40	40	active skimmer
		3/1/2000	6.59	7.24	0.65	0.0	active skimmer
		3/21/2000	6.50	6.56	0.06	35	active skimmer
		4/18/2000					active skimmer
		5/22/2000	7.51	8.05	0.54	40	active skimmer,
		6/26/2000	7.82	8.2	0.38	90	active skimmer
		7/25/2000	7.90	8.92	1.02	20	active skimmer
		8/31/2000	8.15	9.5	1.35	30	active skimmer
		9/6/2000	8.21	9.42	1.21		active skimmer
		9/21/2000	8.30	8.88	0.58	115	active skimmer
		10/11/2000	***			170	active skimmer
		11/30/2000	***			105	active skimmer
		12/19/2000	8.60	9.65	1.05	10	active skimmer
		2/22/2001	6.36	8.15	1.79		active skimmer
		4/3/2001	7.48	8.88	1.40		active skimmer
		4/23/2001	7.85	9.1	1.25		active skimmer
		5/11/2001					active skimmer
		5/30/2001	7.75	9.1	1.35		active skimmer
		6/14/2001			***		active skimmer
		7/10/2001	8.10	9.6	1.50		active skimmer
		12/12/2001	NA	NA	NA	1,000 5	active skimmer
		3/8/2002	7.80	8	0.20	1,000 5	active skimmer
		4/3/2002	7.60	7.7	0.10		active skimmer
		4/23/2002	7.90	8.4	0.50		active skimmer
		4/25/2002	7.90	8.8	0.90		active skimmer
		5/10/2002	8.10	8.2	0.10		active skimmer
		5/24/2002	8.05	8.1	0.05		active skimmer
		6/13/2002	8.10	8.7	0.60	1,000 5	active skimmer
		7/5/2002	8.10	8.95	0.85		active skimmer
		7/19/2002	8.10	8.9	0.80		active skimmer
		7/30/2002	8.10	8.9	0.80		active skimmer
		8/14/2002	8.10	8.9	0.80		active skimmer
		9/13/2002	8.30	9.3	1.00		active skimmer
		9/26/2002	8.30	9.0	0.70		active skimmer
		10/14/2002	8.60	9.5	0.90		active skimmer
		11/4/2002	8.75	9.99	1.24		active skimmer
		11/21/2002	8.59	11.29	2.70	150 ⁶	active skimmer
		12/6/2002	8.56	9.3	0.74	150 ⁶	active skimmer
		12/0/2002	7.35	8.43	1.08	25 ⁶	active skimmer
		12/10/2002	,,,,,	0.75	1.00	20	active extinition

Table 2
Summary of Product Removal and Product Thickness
Port of Oakland, 2277 7th Street, Oakland, California

Well ID	Elevation of Top of Casing (feet)	Date Of Monitoring	Depth to Free Product (feet)	Depth to Water (feet)	Product Thickness (feet)	Estimated Product Removed (gallons)	Product Removal Method ²
MW-3	14.22	12/30/2002	6.50	7.15	0.65	25 ⁶	active skimmer
(Cont'd)		1/2/2003	6.20	6.20	sheen		active skimmer
(1/3/2003	6.21	6.21	sheen		active skimmer
		1/14/2003	6.20	6.21	0.01		active skimmer
		1/30/2003	6.81	6.85	0.04		active skimmer
		2/18/2002	7.09	7.15	0.06		active skimmer
		2/26/2003	7.04	7.11	0.07		active skimmer
		3/13/2003	7.22	8.11	0.89		active skimmer
		3/17/2003	7.15	7.50	0.35	5 ⁶	active skimmer
		4/16/2003	7.27	8.25	0.98		active skimmer
		6/18/2003	7.78	9.00	1.22		7
		9/3/2003	8.31	9.96	1.65		7
	16.18 ⁹	11/26/2003	10.79	12.85	2.06		7
		3/5/2004	8.39	9.85	1.46		7
		6/2/26#14	10.03	11 35	132		
MW-6	14.00	13/31/97		_	-	0.0014	passive skimmer
		1/29/1998	•	-	-	0.0014	passive skimmer
		3/2/1998	-	_	-	0.0014	passive skimmer
		11/6/1998	NM	9.62	>0.01	0.0	passive skimmer
		3/19/1999	NM	7.37	>0.01	0.0	passive skimmer
MW-8 1	12.94	12/31/1997	8.49	8.82	0.33	4.38	-
		11/6/1998	9.25	10.3	1.1	3.48	

- Data prior to November 6, 1998 taken from Groundwater Monitoring, Sampling and Product Removal System O&M Report dated July 21, 1998, by Innovative Technical Solutions, Inc.
- Data prior to November 6, 1998 taken from Groundwater Monitoring, Sampling and Product
- Product removal volumes from 11/6/98 on represent total product removed during that reporting period.
- 1 Free product in well is too viscous to allow product thickness or groundwater level measurements.
- Product removal totals for MW-3 are estimated from documentation of product removal from the treatment system performed by Performance Excavators, Inc.
- The passive skimmer was removed from MW-1 on 5/22/00.
- The passive skimmer replaced MW-1 on 9/6/00.
- Removal total is the volume of both product and wastewater removed from the treatment system by Foss Environmental Services Company, Inc.
- Product removed is based on volume measured in the 1,000-gallon holding poly-tank.
- The active skimmer was removed from MW-3 on 04/16/2003
- Passive skimmer was removed from MW-1
- Elevation data relative to Port of Oakland datum; well surveys performed on November 26, 2003, by PLS Survey.
- NM Well checked for free product but not able to detect a measurable amount in the well.

 Shaded areas indicate data from this reporting period.

NA - Not Available

Table 3
Groundwater Sample Results
Port of Oakland, 2277 7th Street, Oakland California

Monitoring Well ID	Date	TPHg (μg/l)	TPHd (μg/1)	TPHmo (μg/1)	Benzene (µg/l)	Toluene (μg/l)	Ethylbenzene (µg/l)	Total Xylenes (μg/l)	MTBE (µg/1)
MW-1	05/22/00	3,600	41,000	<3,000	100	13 8	2.9	2.05	3.2
MW-2	05/27/94	87	470	NA	<0.5	<0.5	<0.5	<0.5	NA
	03/29/95	<50	110	1,400	<0.4	<0.3	<0.3	<0.4	NA
	09/06/95	<50	NA	NA.	<0.4	<0.3	<0.3	<0.4	NA NA
•	01/08/96	<50	<50	1200	<0.4	<0.3	<0.3	<0.4	NA
	04/04/96	<50	160	320	<0.5	<0.5	<0.5	<1.0	NA
	07/10/96	<50	120	1400	<0.4	<0.3	<0.3	<0.4	NA
	12/03/96	<50	230 12	<250	<0.5	<0.5	<0.5	<1.0	NA
	03/28/97	<50	714	<250	<0.5	<0.5	<0.5	<1.0	NA
	06/13/97	51	<50	<250	<0.5	<0.5	<0.5	<1.0	NA
	09/18/97	82	<50	<250	0.56	<0.5	<0.5	<1.0	NA
	12/31/97	<50	<47	<280	1.4	<0.5	<0.5	<1.0	NA
	04/13/98	<50	<50	<300	<0.5	<0.5	<0.5	<1.0	NA
	11/06/98	<50	<50	<300	<0.5	<0.5	<0,5	<0.5	<2
	03/19/99	<50	<50	<300	<0.5	<0.5	<0.5	<0.5	<2,
	06/24/99	<50	<50	<300	<0.5	<0.5	<0.5	<0.5	<2
	09/28/99	<50	<50	<300	<0.5	<0.5	<0.5	<0.5	<2,
	11/12/99	<50	120 ^{2,6}	<300	<0.5	<0.5	<0.5	<0.5	6.3 8,9
	02/11/00	<50	<50	<300	5.4	<0.5	<0.5	<0.5	<2
	05/22/00	<50	<50	<300	<0.5	<0.5	<0.5	<0.5	<2
	09/06/00	<50	<50	<300	0.76 8	<0.5	<0.5	<0.5	<0.5 10
	12/19/00	200 3,11	<50	<300	39	1.8	<0.5	2.6	<0.5 10,12
	02/21/01	<50	<50	<300	<0.5	<0.5	<0.5	<0.5	<2,0
	07/10/01	<50	<50	<300	<0.5	<0.5	<0.5	<0.5	<2,0
	12/05/01	<50	<50	<300	4.4	<0.5	<0.5	<0.5	5.0 14
	03/08/02	<50	<50	<500	<0.5	<0.5	<0.5	<0.5	<5,0
	06/13/02	62 15	<57	<570	<0.5	<0.5	<0.5	<0.5	<5,0
	09/26/02	69 ²	<50	<500	1.8	<0.5	<0.5	<0.5	<5,0
	12/12/02	<50	<50	<300	0.98	<0.5	<0.5	<0.5	<2,0
	03/17/03	<50	<50	<300	<0.5	<0.5	<0.5	<0.5	<2 0
	06/18/03	<50	<50	<300	<0.5	<0.5	<0.5	<0.5	<2.0
	09/03/03	<50	<50	<300	3.2	<0.5	<0.5	<0.5	<2.0
	11/26/03	<50	<50	<300	3.0	<0.5	<0.5	<0.5	<2.0
	03/05/04	<50	<50	<300	<0.5	<0.5	<0.5	<0.5	<2.0
	06/02/04	<50	<50	<300	<0.5	<0.5	<0.5	<0.5	<2.0
	4								

Table 3
Groundwater Sample Results
Port of Oakland, 2277 7th Street, Oakland California

Monitoring Well ID	Date	TPHg (μg/l)	TPHd (µg/1)	TPHmo (µg/1)	Benzene (µg/l)	Toluene (μg/l)	Ethylbenzene (µg/l)	Total Xylenes (µg/1)	MTBE (µg/l)
MW-4	09/11/95	150	<200	500	23	<0.3	<0.3	<0.4	NA
•	01/08/96	790	90	400	170	1.2	0.6	0.6	NA
•	04/04/96	1,100	180	300	320	1.6	1.1	1.2	NA
•	07/10/96	1,200	120	300	470	1.5	0.8	0.8	NA
•	12/03/96	990	220 1.2	<250	350	3.3	1.3	1.3	NA NA
	03/28/97	440 ²	<50	<250	190	1.2	0.64	<1.0	NA
•	06/13/97	1,300	92 ⁵	<250	500	5.5	3.4	2.8	NA NA
	09/18/97	1,300	150	<250	550	4.9	2.1	2.00	NA
	12/31/97	73 1.23	<47	<280	110 ¹	1.0 ¹	<0.5	<1.0	NA NA
	04/13/98	150 ²³	<50	<300	520	2.9	<2.5	<5.0	NA NA
	11/06/98	<50	<50	<300	250	1.7	<1	<1	<4 ⁱ
	03/19/99	81	<50	<300	250	<1	1.2	<1	<4
Dup.	06/24/99	190	<50	<300	360	1.4	2.2	1	24
	09/28/99	750 ^{3,5}	63 3,5	<300	280	1.5	<1	<1	<4
	11/12/99	330 ³	840 ²	<300	740	<2.5	<2.5	<2.5	42 3
	02/11/00	200 ²	<50	<300	58	0.73	<0.5	<0.5	4.4 8
	05/22/00	240	<50	<300	500	<2.5	<2.5	<2.5	17
	09/06/00	530 ^{2,3}	<50	<300	190	0.93	0.6	0.57	<0.5 10 12
	12/19/00	960 3,11	70 ⁵	<300	420	<2.5	<2.5	<2.5	<0.5 10,12
	12/19/00	1,200 3,11	<50	<300	440	<2.5	<2.5	<2.5	<0.5 10,12
	02/21/01	450 ¹³	<50	<300	120	<0.5	<0.5	<0.5	<0.5
	07/10/01	<250	110 2,13	<300	620	2.6	2.9	<2.5	<0.5 8,10
	12/05/01	180	<50	<300	61	<0.5	<0.5	<0.5	3.8 14
	03/08/02	490 ²	54 ²	<500	180	<2.5	<2.5	<2.5	<25
	06/13/02	830 ²	<50	<500	250	<5.0	<5.0	<5.0	<50
Dup.	06/13/02	820 ²	<56	<560	240	<5.0	<5.0	<5.0	<50
	09/26/02	390 ²	57	<500	150	2.1	<1.0	<1.0	<10
Dup.	09/26/02	500 ²	<50 ¹⁶	<500 ¹⁶	200	1.5	<1.0	<1.0	<10
	12/12/02	580	<50	<300	240	1.4	0.56	<0.5	<2.0
Dup.	12/12/02	2,400	<50	<300	680	5.0	2.3	1.4	<2.0
	03/17/03	130 ¹⁵	<50	<300	32 ⁰ 17	<0.5	<0.5	<0.5	<0.5 10
Dup.	03/17/03	82 15	<50	<300	190	0.64 17	0.56	0.53	<0.5 10
	06/18/03	360 11, 15	<50	<300	150	<0.5	<0.5	<0.5	<2.0
Dup.	06/18/03	330 11, 15	<50	<300	140	<0.5	<0.5	<0.5	<2.0
	09/03/03	140 ^{11, 15}	<50	<300	240	1.3	<0.5	<0.5	<2.0
Dup.	09/03/03	83 11,15	<50	<300	130	0.58 17	<0.5	<0.5	<2,0
	11/26/03	160 ¹⁵	68 15	<300	320	0.91 ¹⁷	<0.5	0,53	<2.0
Dup.	11/26/03	120 15	<50	<300	210	0.66 17	<0.5	<0.5	<2.0
-	03/05/04	90 11	<50	<300	190	1.1	0.55	0.50 17	23 ^{14, 17} , <0.5 ¹⁰
Dup.	03/05/04	84 11	<50	<300	180	0.81	<0,5	<0.5	21 14, 17, <0.5 10
x	06/02/04	620 13	<50	<300	210	0.55 17	<0.5	<0.5	<2.0
Dup.	06/02/04	400 13	<50	<300	130	<0.5	<0.5	<0.5	<2,0
--									

Table 3
Groundwater Sample Results
Port of Oakland, 2277 7th Street, Oakland California

Monitoring Well ID	Date	TPHg (µg/l)	TPHd (µg/1)	TPHmo (μg/l)	Benzene (µg/l)	Toluene (μg/l)	Ethylbenzene (µg/l)	Total Xylenes (μg/1)	MTBE (µg/1)
MW-5	09/11/95	90	<300	2,500	3.3	<0.3	<0.3	<0.4	NA
	04/04/96	<50	180	520	<0.5	<0.5	<0.5	<1.0	NA
•	07/10/96	<50	120	1,500	<0.4	<0.3	<0.3	<0.4	NA
,	12/03/96	<50	200 1.2	<250	<0.5	<0.5	<0.5	<1.0	NA
	03/28/97	<50	<50	<250	<0.5	<0.5	<0.5	<1.0	NA
	06/13/97	<50	<50	<250	<0.5	<0.5	<0.5	<1.0	NA
	09/18/97	<50	<50	<250	<0.5	<0.5	<0.5	<1.0	NA
	12/31/97	<50	<47	<280	<0.5	<0.5	<0.5	<1.0	NA
	04/13/98	<50	<47	<280	<0.5	<0.5	<0.5	<1.0	NA
	11/06/98	<50	<50	<300	<0.5	<0.5	<0.5	<0.5	<2
	03/19/99	<50	<50	<300	<0.5	<0.5	<0.5	<0.5	<2
	06/24/99	<50	<50	<300	<0.5	<0.5	<0.5	<0.5	3.1
•	09/28/99	<50	<50	<300	<0.5	<0.5	<0.5	<0.5	<2
	11/12/99	<50	110 2,6	<300	<0.5	<0.5	<0.5	<0.5	5.5 9
	02/11/00	<50	<50	<300	<0.5	<0.5	<0.5	<0.5	<2
	05/22/00	<50	<50	<300	<0.5	<0.5	<0.5	<0.5	<2
	09/06/00	<50	<50	<300	<0.5	<0.5	<0.5	<0.5	<2
	12/19/00	<50	<50	<300	<0.5	<0.5	<0.5	<0.5	<2
	02/21/01	<50	<50	<300	<0.5	<0.5	<0.5	<0.5	<2
	07/10/01	<50	<50	<300	<0.5	<0.5	<0.5	<0.5	<2
	12/05/01	<50	<50	<300	<0.5	<0.5	<0.5	<0.5	<2
	03/08/02	<50	<50	<500	<0.5	<0.5	<0.5	<0.5	<5.0
	06/13/02	<50	<50	<500	<0.5	<0.5	<0.5	<0.5	<5.0
	09/26/02	<50	<50	<500	<0.5	<0.5	<0.5	<0.5	<5.0
	12/12/02	<50	<50	<300	<0.5	<0.5	<0.5	<0.5	<2.0
	03/17/03	<50	<50	<300	<0.5	<0.5	<0.5	<0.5	<0.5 10
-	06/18/03	<50	<50	<300	<0.5	<0.5	<0.5	<0.5	<2.0
	09/03/03	<50	<50	<300	<0.5	<0.5	<0.5	<0.5	<2.0
	11/26/03	<50	<50	<300	<0.5	<0.5	<0.5	<0.5	4.1^{14} , $< 0.5^{10}$
	03/05/04	<50	<50	<300	<0.5	<0.5	<0.5	<0.5	<2.0
	06/02/04	<50	<50	<300	<0.5	<0.5	<0.5	<0.5	<2.0

Table 3
Groundwater Sample Results
Port of Oakland, 2277 7th Street, Oakland California

Monitoring Well ID	Date	TPHg (μg/l)	TPHd (μg/l)	TPHmo (μg/1)	Benzene (µg/l)	Toluene (μg/l)	Ethylbenzene (µg/l)	Total Xylenes (μg/1)	MTBE (μg/1)
MW-6	11/06/98	120	12,000	1,200	19	0.65	1.8	<0.5	<2
_	03/19/99	170	3,800	580	21	0.86	1.5	2.9	<2
_	06/24/99	120	1,700 ⁷	<300 ⁷	18	<0.5	1.0	<0.5	54
	09/28/99	130 3,5	820	<300	20	0.51	2.2	<0.5	<2
	11/12/99	150	11,000 ^{2,6}	3,000 3,6	27	<0.5	2.2	<0.5	13 9
	02/11/00	270 ²	2,300	<300	23	0.51	2.7	<0.5	5.8
	05/22/00	350	3,000	<300	18	0.51	<0.5	<0.5	7.7
_	09/06/00	190	610	<300	26	<0.5	1.7	<0.5	<0.5 10
·	12/19/00	130 3,11	620	<300	24	<0.5	1.6	<0.5	<2
	02/21/01	12013	440	<300	21	<0.5	0.96	<0.5	<2
	07/10/01	120	560	<300	29	<0.5	0.99	<0.5	<2
	12/12/01	53	550	<300	27	<0.5	1.3	<0.5	<2.0
	03/08/02	160 ²	640 ²	<500	30	<0.5	<0.5	<0.5	5.0 14
•	06/13/02	160 ²	670 ²	<500	34	<0.5	<0.5	<0.5	<5.0
•	09/26/02	230 ²	1400 ²	<500	40	0.64	0.8	<0.5	<5.0
•	12/12/02	53	110	<300	43	<0.5	<0.5	<0.5	<2.0
	12/18/02	Monitor	ing well was	destroyed					
MW-7	09/06/95	<50	<300	800	<0.4	<0.3	< 0.3	<0.4	NA
•	01/08/96	<50	410	110	<0.4	<0.3	<0.3	<0.4	NA
•	04/04/96	<50	530	340	<0.5	<0.5	<0.5	<1.0	NA
•	07/10/96	80	840	1,700	<0.4	<0.3	<0.3	<0.4	NA
,	12/03/96	<50	280 12	<250	<0.5	<0.5	<0.5	<1.0	NA
•	03/28/97	65 ⁶	94 ²	<250	<0.5	<0.5	<0.5	<1.0	NA
•	06/13/97	<50	100	<250	<0.5	<0.5	<0.5	<1.0	NA
'	09/18/97	<50	240	<250	<0.5	<0.5	<0.5	<1.0	NA
•	12/31/97	<50	53 ²³	<280	<0.5	<0.5	<0.5	<1.0	NA
•	04/13/98	<50	<48	<290	<0.5	<0.5	<0.5	<1.0	NA
	11/06/98	<50	<50	<300	<0.5	<0.5	<0.5	<0.5	<2
	03/19/99	<50	<50	<300	<0.5	<0.5	<0.5	<0.5	5.3
	06/24/99	73	<50	<300	<0.5	<0.5	<0.5	<0.5	12
	09/28/99	<50	<50	<300	<0.5	<0.5	<0.5	<0.5	14
	11/12/99	<50	600 ^{2,6}	420 ³	<0.5	<0.5	<0.5	<0.5	15,9
	02/11/00	<50	<50	<300	<0.5	<0.5	<0.5	<0.5	51
	05/22/00	110	53 ²	<300	<0.5	<0.5	<0.5	<0.5	75
	09/06/00	50 °	<50	<300	<0.5	<0.5	<0.5	<0.5	40 10
	12/19/00	54 11	51 ⁵	<300	<0.5	<0.5	<0.5	<0.5	47 10,12
	02/21/01	<50	<50	<300	<0.5	<0.5	<0.5	<0.5	66 10
Dup.	02/21/01	<50	<50	<300	<0.5	<0.5	<0.5	<0.5	60 10
	07/10/01	<50	51 ²	<300	<0.5	<0.5	<0.5	<0.5	76 10
Dup.	07/10/01	<50	<50	<300	<0.5	<0.5	<0.5	<0.5	75 10
	12/12/01	51	<50	<300	<0.5	<0.5	<0.5	<0.5	98 14
Dup.	12/12/01	64	52 13, 15	<300	<0.5	<0.5	<0.5	<0.5	96 14
	03/08/02	52 ²	<50	<500	<0.5	<0.5	<0.5	<0.5	24 14
	06/13/02	87²	54 ²	<500	<0.5	<0.5	<0.5	<0.5	51
	09/26/02	83 1	84 ²	<500	<0.5	<0.5	<0.5	<0.5	75 10
	12/12/02	<50	<50	<300	<0.5	<0.5	<0.5	<0.5	58 14
	12/18/02	Monitor	ring well was	destroyed					· · · · · · · · · · · · · · · · · · ·

Table 3 Groundwater Sample Results Port of Oakland, 2277 7th Street, Oakland California

Monitoring Well ID	Date	TPHg (μg/l)	TPHd (µg/1)	TPHmo (μg/1)	Benzene (µg/l)	Toluene (µg/l)	Ethylbenzene (µg/l)	Total Xylenes (μg/1)	MTBE (µg/l)
MW-8A	12/12/01	68	720 ^{11,15}	<300	<0.5	<0.5	<0.5	<0.5	<2.0
•	03/08/02	<50	760 ²	<570	<0.5	<0.5	<0.5	<0.5	<5.0
Dup.	03/08/02	<50	350 ²	<580	<0.5	<0.5	<0.5	<0.5	<5.0
•	06/13/02	<50	570 ²	<570	<0.5	<0.5	<0.5	<0.5	<5.0
•	09/26/02	<50	410 ²	<500	<0.5	<0.5	<0.5	<0.5	<5.0
•	12/12/02	<50	160 ¹⁵	<300	<0.5	<0.5	<0.5	<0.5	<2.0
•	03/17/03	<50	<50	<300	<0.5	<0.5	<0.5	<0.5	<0.5 10
	06/18/03	<50	74 ¹⁵	<300	<0.5	<0.5	<0.5	<0.5	<2,0
	09/03/03	<50	<50	<300	<0.5	<0.5	<0.5	<0.5	3.0^{14} , $< 0.5^{10}$
	11/26/03	<50	94 15	<300	<0.5	<0.5	<0.5	<0.5	<2.0
	03/05/04	<50	<50	<300	<0.5	<0.5	<0.5	<0.5	<2.0
	06/02/04	<50	67 ¹⁵	<300	<0.5	<0.5	<0.5	<0.5	<2.0

- Analyte found in the associated blank as well as in the sample.
- 2 Hydrocarbons present do not match profile of laboratory standard.
- Low-boiling-point/lighter hydrocarbons are present in the sample.
- Chromatographic pattern matches known laboratory contaminant.
- Hydrocarbons are present in the requested fuel quantification range, but do not resemble pattern of available fuel standard.
- 6 High-boiling-point/heavier hydrocarbons are present in sample.
- Sample did not pass laboratory QA/QC and may be biased low
- Presence of this compound confirmed by second column, however, the confirmation concentration differed from the reported result by more than a factor or two.
- ⁹ Trip blank contained MTBE at a concentration of 4.2 μg/l
- MTBE detections confirmed by EPA Test Method 8260. 8260 results displayed.
- 11 Sample exhibits unknown single peak or peaks
- EPA Method 8260 confirmation analyzed past holding time.
- Lighter hydrocarbons contributed to the quantitation
- MTBE results from EPA Test Method 8021B.
- Sample exhibits fuel pattern which does not resemble standard
- Sample extracted out of hold time
 - Data from December 1997 through April 1998 taken from Groundwater Monitoring, Sampling and Product Removal System O&M Report dated July 21, 1998, by Innovative Technical Solutions, Inc. -Data prior to December 1997 taken from Groundwater Analytical Results, Quarterly Groundwater

Monitoring Report: Third Quarter 1997, Building C-401, 2277 7th Street, Oakland, CA, dated October 24, 1997, by Uribe and Associate

Presence confirmed, but Relative Percent Difference (RPD) between columns exceeds 40% NA Not Analyzed.

Table 4 Summary of Operation and Maintenance Activities Port of Oakland, 2277 7th Street, Oakland, California

Date	System Status	Comments
7/5/2002	Off	System is turned off and is in the process of being moved to new location.
7/19/2002	Off	System is moved to new location but is not hooked up to electricity.
7/30/2002	Off	System is moved to new location but is not hooked up to electricity.
8/14/2002	Off	System is moved to new location but is not hooked up to electricity.
9/13/2002	On	System is powered and operating
9/26/2002	On	System operating OK
10/14/2002	On	System operating OK.
11/4/2002	On	System operating OK.
11/21/2002	On	System operating OK.
12/6/2002	Оп	System operating OK.
12/18/2002	On	System operating OK.
12/23/2002	On	System operating OK.
12/27/2002	On	System operating OK.
12/30/2002	On	System operating OK
1/2/2003	Off	System is turned off because no free product was detected in well MW-3
1/3/2003	Off	System is turned off because no free product was detected in well MW-3
1/14/2003	Off	System is turned off because only product sheen was detected in well MW-3
1/30/2003	Off	System is turned off because only product sheen was detected in well MW-3
2/18/2003	Off	System is turned off because only product sheen was detected in well MW-3
2/26/2003	Off	System is turned off because only product sheen was detected in well MW-3
3/13/2003	Off	System is kept off because of the expected rainfall during weekend
3/17/2003	On	System is tested to verify that only product is being recovered from well MW-3
4/16/2003	Off	Product recovery line was removed due to Port's construction upgrades at the site
6/18/2003	Off	Product recovery line was removed on 04/16/2003
9/3/2003	Off	Product recovery line was removed on 04/16/2003
11/26/2003	Off	Product recovery line was removed on 04/16/2003
3/5/2004	Off	Product recovery line was removed on 04/16/2003
6/2/2004	Off	Product recovery line was removed on 04/16/2003

APPENDIX A

MONITORING WELL WATER LEVEL MEASUREMENT FORM
AND
MONITORING WELL PURGING AND SAMPLING FORM

MONITORING WELL WATER LEVEL MEASUREMENT FORM

PROJECT NAME:	2277 7 th Street	PROJECT NO.:	00-152.25
MEASURED BY:	RIGONG	DATE: _	06/02/2004

Mejninjin Well	idephi to Water (fest)) હાઇક Well (ઉદ્યુવી) (ઉદયક	Täife
MW-2	11.22	17.10	12:45
MW-4	9.25	18.75	10:47
MW-5	6.27	16.75	11:43
MW-6	Well wa	s destroyed on December	18, 2002
MW-7	Well wa	s destroyed on December	18, 2002
MW-8A	7.92	20.40	O9:55

Documen

PROJECT NAME:	PORTOF O	AKLAND – 22	277 7 th STRE	ET P	ROJECT NO.:	00-	152.25
WELL NO.: MW-	2	TESTED B	sy: Rle	one	DATE: _	06/02	12004
		WE	LL PURG	ING		_	, , , , , , , , , , , , , , , , , , , ,
Measuring Point Descr	iption:	Γορ of Casing ((TOC)	Static Wate	r Level (ft.):	11.2	<u> </u>
Total Well Depth (ft.):		17.10		Purge Meth	od: <u> </u>	Disposable l	Bailer
Water Level Measurem	ent Method:	Solinst	W. L	Purge Rate	(gpm):	0.5	
Time Start Purge:	12	:49		Time End P	urge:/:	2:56	
Comments:							
Well Volume Total Calculation	· 1 1 ,	Depth to Water (ft)	Water Column (ft		iplier for Casing Diameter (in)		Casing lume (gal)
	·	11.22 =	₹.88	x 2 0.16	0.64 1.4	\dashv \sqcup \sqcup	0.95
Time	12:50	12:52	12:54	12:56			
Cumulative Volume Purged (gals)	0.5	1.0	2	3			
Cumulative Number of Casing Volumes	0.5	1	2	3		į	
Temperature (F°C°)	20	19	19	18			
pН	7.2	7.1	6.9	7.0			
Specific Conductivity (mS/cm)	2.1	2.0	۵.1	2.1			
Turbidity (NTU)	16	21	24	56			
		WE	LL SAMP	LING			
Sampling Time:	13:00		5	Sampling Met	hod: <u>Dispos</u>	able Bailer	
Duplicate Sample & T	ime: <u>N</u>	OME		···	····		****
Sample ID	Volume/	Container	Analysis	Requested	Preserva	ıtives	Lab
Mul-2	 	Amber)	<u> </u>	ТРНто	none		С&Т
1101-2	5	voas	трно ма	TRE BTEX	HCI		C&T

come Projects 2000 PROJECTS 00-152 Post of Onbland Au-Need 00-152 25 2003 7th GW MonterSampling Forms & Labels Purge & Sample doc

PROJECT NAM	_			_		ROJECT NO.		00-152.25
WELL NO.:	Mω	1-4	TESTED E	8Y: <u>KLE</u>	ong	DATE	: <u>06/0</u>	2/04
	•		WE	LL PURG	ING			1
Measuring Poin	ıt Descri	ption:	Top of Casing	(TOC)	Static Wate	r Level (ft.):	<u> </u>	25
Total Well Dep	th (ft.):	<u></u>	18.75		Purge Meth	od:	Disposal	ble Bailer
Water Level M	easureme	ent Method:	Solinst	W. L.	Purge Rate	(gpm);	0.5	o
Time Start Purg	ge:	/o:	50		Time End P	urge:	11:00)
Comments:								
Well Volume Calculation (fill in before purging)	Total I (ft /8.7		Depth to Water (ft)	Water Column (ft		 	ng 6 =	Casing Volume (gal)
Time		10:52	10:54	10:56	10:58	//:00	4	<u> </u>
Cumulative Vo Purged (gals)	lume	/	2	3	4	5	7,-1,-1,-1,-1	
Cumulative Nu of Casing Volu		NO.5	~/.3	N/.7	2.3	3		,
Temperature (F	~(Co)	21	20	20	21 7.1	21		
рН		7.1	7.8	7.2.	7.1	7.1		,
Specific Condu (mS/cm)	ctivity	1.5	1.6	1.6	1.6	1.6		
Turbidity (NT	J)	6	10	186	555	486		
			WE	LL SAMP	LING			
Sampling Time	»: <u>II</u>	:15		5	Sampling Met	hod: <u>Disp</u>	osable Ba	i <u>ler</u>
Duplicate Sam	ple & Ti	me: <u>M</u> (N-4D (n 11:50				:
Sample I	D	Volume	/ Container	Analysis	Requested	Preser	vatives	Lab
NW4 /NW	1-4D	<u> </u>	. Amber)	TPHd,	TPHmo	no	ne	C&T
MW-4/Nu	1-40	10/8	voas	трнд, мт	BE, BTEX	H	CL	C&T

12 agracers of Projects 2000 PROVE 1500 152 Port of Outstand As-Seed 00 152 25 2003 7th GW Moust Sampling Forms & Labels Purge & Sample doc

PROJECT NAM	ИЕ: _	PORTOF (OAKLAND – 2	277 7 th STRE	ET P	ROJECT NO	.:0	0-152.25	
WELL NO.:	MW	<u>-5</u>	TESTED B	ov: RLEC	NG	DATE	06/09	2/2004	
			WE	LL PURG	ING			· · · · · · · · · · · · · · · · · · ·	
Measuring Poin	t Descrip	otion:	Top of Casing	(TOC)	Static Wate	er Level (ft.):	6.	27	
Total Well Dep	th (ft.):		16.75		Purge Meth	od:	Disposable	Bailer	
Water Level Me	easureme	ent Method:	Solinst	W. L.	Purge Rate	(gpm):	0.6	٥٠	
Time Start Purg	ge:)):·	46		Time End P	urge:	11:56	,	
Comments:	_								
				1		: 1: C G.:		C	
Well Volume Calculation	Total I	-	Depth to Water (ft)	Water Column (ft		iplier for Casi Diameter (in)		Casing olume (gal)	
(fill in before purging)	16.7		6.27 =	10.48	x 2 0.16	0.64 1	6 =	1.68	
								<u> </u>	
Time		11:48	11:50	11:52	11:54	11:56	····	<u> </u>	
Cumulative Vo Purged (gals)	lume	·	2	3	4	5)	
Cumulative Nu of Casing Volu		0.6	1.2	1.8	2.4	2.98			
Temperature (F	(c_0)	22	22	23	22	22			
рН		7.6	7.4	7.2	7.2	7.2			
Specific Condu (mS/cm)	ctivity	1.3	1.6	1.9	1.9	1.9		!	
Turbidity (NTU	J)	5	398	381	507	660			
			WE	LL SAMP	LING				
Sampling Time	: <u> </u>	00: (S	Sampling Met	hod: <u>Disp</u>	osable Baile	r	
Duplicate Samp		me: Na	le						
								l L	
Sample I	D	Volume	e/ Container	Analysis	Requested	Preser	vatives	Lab	
MW-S		2 (1)	L Amber)	TPHd,	TPHmo	no	С&Т		
NW-5		5	voas	ТРНg, МЛ	BE, BTEX	H	HCL		

PROJECT NAME:	PORTOF C	AKLAND – 2	277 7 th STRE	ET P	ROJECT NO	:00-	-152.25	
WELL NO.: MW	-8A	TESTED I	зү: <u>RLEO</u>	NG	DATE	. 06 02	2004	
		WE	LL PURG	ING	•		ı	
Measuring Point Descr	ription:	Top of Casing	(TOC)	Static Wate	r Level (ft.):	7.9	2	
Total Well Depth (ft.):		20.40		Purge Meth	od:	Disposable	Bailer	
Water Level Measuren	nent Method:	Solinst	t W. L.	Purge Rate	(gpm):	0.25		
Time Start Purge:	10:0	0		Time End P	urge:	10:28		
Comments:					-			
•		1	T		. 1: 6 6	1 1	C:	
امييما	Depth (ft)	Depth to Water (ft)	Water Column (ft		iplier for Casi Diameter (in)		Casing olume (gal)	
	40 -	7.92	12.48	x 2 0.16	}}	6 =	2.0	
Time	10:08	10:12	10:16	/0:20	10:24	10:28	ſ 	
Cumulative Volume Purged (gals)	1	2	3	4	5	6		
Cumulative Number of Casing Volumes	0.5	1	/.5	2	2.5	3	\	
Temperature (F°(C°)	18	18	18	18	18	18	<u> </u>	
pH	6.7	7.1	7.2	7.1	7.3	7.2		
Specific Conductivity (mS/cm)	2.5	2.5	2.5	2.5	2.4	2.4		
Turbidity (NTU)	998	990	910	980	979	999		
		WE	ELL SAMP	LING			•	
	/n · > .	44 T				44 ~ "		
Sampling Time:	/0:30			Sampling Met	hod: <u>Disp</u>	osable Bailer		
Duplicate Sample & T	ime:							
Sample ID	Volume	/ Container	Analysis	Requested	Preser	vatives	Lab	
MW-8A	2 (1 L	Amber)	TPHd,	TPHmo	no	none		
Nul-8A	5	voas	TPHg, MT	BE, BTEX	He	C&T		

					_		-						***		
Tochnical 2730 Shadelands Drive, Suite 10 Walnut Creek, California 94598 (925) 946-3100 – (925) 256-89			Local Addi	ress: A & (ZZZ CINA.	7 S	EVENT CITOR		C	hai	in-(Of-	-Cust	1 1	
Project Name and Number PORT OF OAKLAND	00-15	2.25 La	boratory Nan	ne:	C_0	RTIS		OMKi					Date: 💢	07/04	
Project Manager: RACHEC HESS			dress: Z32	23 6		STREE	<u> </u>	ontact Nam	e: <u>504</u>	n fo	ICTTE		Page:	of	
Site Location: 2277 744 STREET, OAK	(AND)	CA	BE	PKE	ŒΫ.	CAUF	<u> એ(તા)</u> (વ	hone: 🚅	10)48	<u> 36 - C</u>	900				
		i	1		1	Analysis:						1	Special In:	structions/C	omments
		į			1 :	1 00	24880158	1208 Vm	36 Coupinus hour	l l	1 1	1	/ · / - A	611	
		1	1 !	 	1	<u>8</u> ols	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		1 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	} 	i		SILICA CLEAN (,
	! !	1	1		!	اص		آھے۔ ایک اک	£9	1 1	1 I	,			•
) 	1	1	! !	!	TP119-4		2 tech	93	1 1	[i	TOHO,	WO	
	! [1	1	i i	i .	발	31 -	1 × × × × × × × × × × × × × × × × × × ×	34	l L	i !				
	} 	l 	! ! <u>_</u>	i je	! ¹. <u>×</u>	1 6	17H	BTex	두 ¦	l I] ;				
	1 L	1	Sample Depth	No. of Containers	Sample Matrix		- 11	d Hal	· I	i I	1 I		Preservative:		
	ا پوي ا	၊ ၊ <u>မ</u> ွ	nple -	ו ט	n –	14	11+:	. 1 .	<i>t</i>	- 	1 1		Container Type:		
Sample i.D.	Date	Time		1	<u>S</u>	An beril	Linka V	oai Voa	VOLI	i i	!!!		Container Type.		
TRIP BLANK	106/02/	04:0900		12	140		! - -	\times	>	i -i	i i	1			
MW-2		1300	112	17		\times	$\times >$	$\leq \times$	X i	í -1	t 1				
μω-4	1	1115	1/0	[7]			\times	$<$ \times	\times			1			
MW-4D		1/120	170	1 -7		ſŚĠ	\times		\times	!	1 1	- " I			
MW-5	1	1/200	5/1	[-	-1	SS^{\dagger}	$\frac{1}{2}$		\times	- [1 I			
	i [-		129.0	-		i Şi	$\langle \dot{\gamma} \dot{\gamma} \dot{\gamma} \dot{\gamma} \dot{\gamma} \dot{\gamma} \dot{\gamma} \dot{\gamma}$			-1	1 - 1	1			
	V	1/000	1 - 7.0	·	.; - <u>V</u> .	논속님	<u> </u>	> 	-´-` -	-¦	<u> </u>	1	<i> </i>		
	ļ	!	4		-			1	1 1 -	- <mark>1</mark>		i			
			ļ	Ļ		L	1		 -	-	I I	[- -	
	!	1	-1	ļ ļ	-1	 			 -	- <mark> </mark>					
	1		[1	I	1		<u> </u>	<u> </u>		1			·	
Sampled By: KOKTEE'O LEONEY		Courier/Airbill I	ło.:					,							
Simply 1		Relinguished By	/Affiliation:				Date:	Time:	Received	By/Affiliat	tion:			Date:	Time:
Special Instructions: Direct Blu PORT OF DAI	/ I A NO	, ()	,	1			, ,		,	· #	٠,٠٠	7	_		
Special Instructions: JARCT SILL 100T OF VAI	~ ~ ~ ~	Koguio	Con .	TTS	Ī	· †	6/2/04	1430	1/k	200	121	AL	<u> </u>	6-2W	4143
(510) 627-113U			#				· + i -/					_,		[7]	1 1
Send Results to: RACHEL HESS (ITSI)								4	[
(w/fax#) (925) 256 - 8998		<i>-</i>										- 			
Turnaround Time: STANDARD												-			

APPENDIX B

LABORATORY REPORTS

RECEIVED Curtis & Tompkins, Ltd., Analytical Laboratories, Since 1878 2 8 2004

2323 Fifth Street, Berkeley, CA 94710, Phone (510) 486-0900

ANALYTICAL REPORT

Prepared for:

Innovative Technical Solutions, Inc. 2730 Shadelands Drive Suite 100 Walnut Creek, CA 94598-2540

Date: 18-JUN-04 Lab Job Number: 172627

Project ID: 00-152.25

Location: 2277 7th Street POO

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signatures. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis.

Reviewed by:

Reviewed by:

ations Manager

This package may be reproduced only in its entirety.

NELAP # 01107CA

Page 1 of

100

2730 Shadelands Drive, Suite 100 Walnut Creek, California 94598			Local Addr	ess: 2 AKLA	2 Z	7 ≤0 , CA	eventa Lifoen	HST. JìA		Cha	in-	Of	-Cust	ody	
Project Name and Number PORT OF OAKLAND / OPPOJECT Manager: RACHEL HESS Site Location: 2277 7-14 STREET, OAKLAND	OO-15Z	Add	oratory Nam dress: 232	72 5	11 C	etis Steel Cauf	T (M	OM Kinntact Name	. 10	HN G0 .86-0	YETTE 0900	<u> </u>	Date: (1) So Page: 1	of]	_
Site Location: 2277 744 STEGET, CARL	- COW		 	ı	7 -	Analysis:				·		1	Special Instr	uctions/Cor	nments
			Sample Depth	No. of Containers	Sample Matrix	1 TEHA + 80158	- He	F BTEX +NTECT 80218	Hcl				SILICA E CLEAN UP TPHO , M Preservative:	FOR	
Sample I.D.	Date	Time	San	 _	للنتيا		huba Vo	al Vox	VOAI	L L	<u> </u>	1	1		
TRIP BLANK MW-2 MW-4 MW-4D MW-5 MW-8A	06/02/0	1/0900 1/300 1/15 1/200 1/030	12 10 12 190	77777	tho	XXXX	×>> ×>>	XXXXXXX	XXXXX			1	Received P	I On ico	
Sampled By: LOCARDO CONTO		Courier/Airbill						7:	Dani	ved By/Affi	istian		•	Date:	Time:
Signature: Special Instructions: Direct Bir Port of Oak CONTACT JEFF RUBIN @ (510) 627-1134 Send Results to: RACHEL HESS (ITSI) (W/fax#) (925) 256-8998 Turnaround Time: STANDARD	KIAND	Relinquished By	/Affiliation:	1			Date:	Time: -/430	 		<u>•</u>	J WHE	DETS.	6-3p	4143

Total Volatile Hydrocarbons \$4 PK (SA) Location: 2277 7th Street POO Lab #: 172627 EPA 5030B Client: Innovative Technical Solutions, Inc. Prep: 00-152.25 Project#: 91672 06/02/04 06/02/04 Water Batch#: Matrix: ug/L 1.000 Units: Sampled: Received: Diln Fac:

Field ID: Type: Lab ID:

TRIP BLANK

SAMPLE 172627-001 Analyzed: Analysis: 06/04/04

EPA 8021B

Analyte		R4	
MTBE	ND	2.0	!
Benzene	ND	0.50	
Toluene	ND	0.50	
Ethylbenzene	ND	0.50	
m,p-Xylenes	ND	0.50	
o-Xylene	ND	0.50	

%REC Limits 84 55-139 Surrogate
Trifluorotoluene (PID) Bromofluorobenzene (PID)

Field ID: Type:

MW-2 SAMPLE Lab ID: Analyzed: 172627-002 06/03/04

			8 200000000000000000000000000000000
Result	Control of the second s	MIALYBE	Be william in the Source
ND	50	EPA 8015B	į.
ND	2.0	EPA 8021B	
ND	0.50	EPA 8021B	Î
ND	0.50	EPA 8021B	
	ND	ND 2.0 ND 0.50 ND 0.50 ND 0.50 ND 0.50	ND 2.0 EPA 8021B ND 0.50 EPA 8021B

Surrogate	%REC	Limits	1111,15 (60)	Analysi	
Trifluorotoluene (FID)	95	74-142	EPA	8015B	'
Bromofluorobenzene (FID)	96	80-139	EPA	8015B	
Trifluorotoluene (PID)	83	55-139	EPA	8021B	'
Bromofluorobenzene (PID)	89	62-134	EPA	8021B	· · · · · · · · · · · · · · · · · · ·

ND= Not Detected RL= Reporting Limit Page 1 of 4

C= Presence confirmed, but RPD between columns exceeds 40%

L= Lighter hydrocarbons contributed to the quantitation

Total Volatile Hydrocarbons 2277 7th Street POO EPA 5030B 172627 Location: Lab #: Innovative Technical Solutions, Inc. Prep: Client: 00-152.25 Project#: 91672 06/02/04 Batch#: Water Matrix: Sampled: Received: ug/L Units: 06/02/04 Diln Fac: 1.000

Field ID: Type:

MW - 4 SAMPLE

Lab ID: Analyzed: 172627-003 06/03/04

			NO. 1 NO. 1 NO. 1 PROCESSOR AND ADDRESS OF THE PARTY OF T	
Analyte	RESULU			SESTIMA A PROPERTY
Gasoline C7-C12	620 L		EPA 8015B	ı
MTBE	ND	2.0	EPA 8021B	
Benzene	210	0.50	EPA 8021B	1
Toluene	0.55 C	0.50	EPA 8021B	!
	ND		EPA 8021B	1
Ethylbenzene			EPA 8021B	
m,p-Xylenes	ND			
o-Xylene	ND	0.50	EPA 8021B	

Surrogate	*REC	Limits		Ana	ys.is
Trifluorotoluene (FID)	102	74-142		8015B	
Bromofluorobenzene (FID)	99	80-139	EPA	8015B	
Trifluorotoluene (PID)	91	55-139	EPA	8021B	ı
Bromofluorobenzene (PID)	93	62-134	EPA	8021B	

Field ID: Type:

MW-4D SAMPLE Lab ID: Analyzed: 172627-004 06/04/04

= "			<u> </u>	
Analyte	Result	: 11	Analys	108
Gasoline C7-C12	400 L	50	EPA 8015B	
MTBE	ND	2.0	EPA 8021B	1
Benzene	130	0.50	EPA 8021B	
Toluene	ND	0.50	EPA 8021B	
	ND	0.50	EPA 8021B	
Ethylbenzene	ND	0.50	EPA 8021B	
m,p-Xylenes		0.50	EPA 8021B	
lo-Xvlene	ND	0.50	DEN OVERD	

Surrogate	%REC	Limits		Analysis	
Trifluorotoluene (FID)	97	74-142	EPA	8015B	
Bromofluorobenzene (FID)	94	80-139	EPA	8015B	•
Trifluorotoluene (PID)	89	55-139	EPA	8021B	,
Bromofluorobenzene (PID)	88	62-134	EPA	8021B	<u></u>

C= Presence confirmed, but RPD between columns exceeds 40% L= Lighter hydrocarbons contributed to the quantitation

ND= Not Detected RL= Reporting Limit Page 2 of 4

GC07 TVH 'A' Data File RTX 502

GC07 TVH 'A' Data File RTX 502

ample Name : 172627-004,91672

ileName

: G:\GC07\DATA\155A023.raw

Sample #: a1.3

Date: 6/4/04 10:36 AM

Page 1 of 1

: TVHBTXE Time of Injection: 6/4/04 12:11 AM iethod High Point : 264.40 mV Low Point : 2.09 mV End Time : 26.00 min Start Time : 0.00 min Plot Scale: 262.3 mV 1.0 Plot Offset: 2 mV Scale Factor: MW-4D Response [mV] -8:68 -1:16 -1:49 -1:82 C-6 <u>-2:53</u> -4.02-4.74 C-7 -5.26TRIFLUO --6.86-7.35_7.90 C-8 -8.61 -9.03 -9.37 -9.69 -13,49 -13.89-14.29 -15.03BROMOF -C-10 -16.57 -16.87 =17.26-18.46 -18.80 -19.28--19.95 --20.32 --20.70 C-12 -22.98_23.43 -24.23-24.76-25.24-25.69

GC07 TVH 'A' Data File RTX 502

	rotal Volatil		
Lab #: Client: Project#:	172627 Innovative Technical Solutions, Inc. 00-152.25	Location: Prep:	2277 7th Street POO EPA 5030B
Matrix: Units: Diln Fac:	Water ug/L 1.000	Batch#: Sampled: Received:	91672 06/02/04 06/02/04

Type: Lab ID: BLANK QC253138 Analyzed:

06/03/04

	${f R}{f L}$	STATE OF THE STATE	基本的
Analyte		EPA 8015B	
Gasoline C7-C12 ND	50	EPA 8021B	'
MTBE	2.0		T.
Benzene ND	0.50	EPA 8021B	
Toluene ND	0.50	EPA 8021B	!
Ethylbenzene ND	0.50	EPA 8021B	
m, p-Xylenes ND	0.50	EPA 8021B	
o-Xylene ND	0.50	EPA 8021B	

Survogate	*REC	Limits		Analysis	
Trifluorotoluene (FID)	92	74-142	EPA	8015B	·
Bromofluorobenzene (FID)	91	80-139	EPA	8015B	1
Trifluorotoluene (PID)	81	55-139	EPA	8021B	
Bromofluorobenzene (PID)	84	62-134	EPA	8021B	

C= Presence confirmed, but RPD between columns exceeds 40% L= Lighter hydrocarbons contributed to the quantitation ND= Not Detected RL= Reporting Limit Page 4 of 4

\sim	~**	\sim	TOPOLO	
		********	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
	1.7	50.1.5		Total Volatile Hydrocarbons
	• *			1000000000000000000000000000000000000
•			40 / 10 / 10	$1.1 \times 10^{-10} \times 10^$
	200	44 4	10 C 1 Table 1	- 19 - 19 - 19 - 19 - 19 - 19 - 19 - 19
	***		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
			Committee of the commit	
	900			au and the first contact of the

			711 6
Lab #:	172627	Location:	2277 7th Street POO
Client:	Innovative Technical Solutions, Inc.	Prep:	EPA 5030B
Project#:	00-152.25	Analysis:	EPA 8021B
Type:	LCS	Diln Fac:	1.000
Lab ID:	QC253139	Batch#:	91672
Matrix:	Water	Analyzed:	06/03/04
Units:	ug/L		

Analyte	Spiked	Result	*REC	Limits	
MTBE	20.00	19.84	99	59-131	
Benzene	20.00	19.98	100	80-120	
Toluene	20.00	19.93	100	80-120	
Ethylbenzene	20.00	20.49	102	80-120	
m,p-Xylenes	20.00	20.15	101	80-120	
o-Xylene	20.00	20.51	103	80-120	

Surrogate	%R)		
Trifluorotoluene (PII	0) 83	55-139	
Bromofluorobenzene (1	PID) 83	62-134	

	Total Volatil	e Hydrocarbons	
Lab #:	172627	Location:	2277 7th Street POO
Client:	Innovative Technical Solutions, Inc.	Prep:	EPA 5030B
Project#:	00-152.25	Analysis:	EPA 8015B
Type:	LCS	Diln Fac:	1.000
Lab ID:	QC253140	Batch#:	91672
Matrix:	Water	Analyzed:	06/03/04
Units:	ug/L		

Analyte		Spiked	Result	**************************************	Limits	
Gasoline C7-C12		2,000	2,207	110	80-120	
Surrogate	*REC	Limite				00000000000000000000000000000000000000
Trifluorotoluene (FID)	110	74-142			İ	
Bromofluorobenzene (FID)	94	80-139				

Total Volatile Hydrocarbons

<u> </u>	the state of the s	****************	Committee of the Commit
Lab #:	172627	Location:	2277 7th Street POO
Client:	Innovative Technical Solutions, Inc.	Prep:	EPA 5030B
Project#:	00-152.25	Analysis:	EPA 8021B
Field ID:	ZZZZZZZZZZZZ	Batch#:	91672
MSS Lab II	D: 172630-001	Sampled:	06/02/04
Matrix:	Water	Received:	06/02/04
Units:	ug/L	Analyzed:	06/03/04
Diln Fac:	1.000		!

type:

MS

Lab ID:

QC253156

Analyte	MSS Result	Spiked	Result	%R	FC Fimits
MTBE	<0.1000	20.00	20.71	104	63-140
Benzene	<0.0900	20.00	20.49	102	80-120
Toluene	<0.0460	20.00	20.02	100	80-120
Ethylbenzene	<0.0590	20.00	20.15	101	80-120
m,p-Xylenes	<0.0660	20.00	19.86	99	80-120
o-Xylene	<0.0530	20.00	20.23	101	80-120

Surrogata	*REC		
Trifluorotoluene (PID)	85	55-139	
Bromofluorobenzene (PID)	96	62-134	

Гуре:

MSD

Lab ID:

QC253157

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
MTBE	20.00	21.73	109	63-140	5	23
Benzene	20.00	20.46	102	80-120	0	20
Toluene	20.00	19.98	100	80-120	0	20
Ethylbenzene	20.00	20.18	101	80-120	0	20
m,p-Xylenes	20.00	19.70	98	80-120	1	20
o-Xylene	20.00	20.29	101	80-120	0	20

Surrogate	%REC	Limits	
Trifluorotoluene (PID)	85	55-139	
Bromofluorobenzene (PID)	97	62-134	

Total Extractable Hydrocarbons

2277 7th Street POO EPA 3520C 172627 Location: Lab #: Innovative Technical Solutions, Inc. Client: Prep:

EPA 8015B Project#: 00-152.25 Analysis: Sampled: 06/02/04 Matrix: Water ug/L 06/02/04 Received: Units: 06/08/04 Prepared: Diln Fac: 1.000

91790 Batch#:

Field ID: уре: ab ID:

MW-2 SAMPLE

172627-002

06/09/04 Analyzed:

Cleanup Method: EPA 3630C

Result RL Analyte Diesel C10-C24 (SGCU) ND 50 ND 300 Motor Oil C24-C36 (SGCU)

%REC Limits Surrogate Hexacosane (SGCU) 53-142 102

Field ID: Type: ab ID:

MW-4

SAMPLE

172627-003

Analyzed:

06/10/04

Cleanup Method: EPA 3630C

Result Analyte
Diesel C10-C24 (SGCU) 50 ND Motor Oil C24-C36 (SGCU) 30Ô ND

Surrogate Hexacosane (SGCU) %REC Limits

'ield ID:

MW-4D SAMPLE Analyzed:

06/10/04

Type: Lab ID:

172627-004

Cleanup Method: EPA 3630C

Result Analyte Diesel C10-C24 (SGCU) Motor Oil C24-C36 (SGCU) $\overline{\mathrm{ND}}$ 50 300 ND

%REC Limits Surrogate Hexacosane (SGCU) 53-142

ield ID:

MW-5

SAMPLE 172627-005 Analyzed:

06/09/04 .

Cleanup Method: EPA 3630C

RL Analyte Diesel C10-C24 (SGCU) Result ND 50

Motor Oil C24-C36 (SGCU) 300 ND

%REC Limits Surrogate Hexacosane (SGCU) 88 53-142

Y= Sample exhibits chromatographic pattern which does not resemble standard

ND= Not Detected

RL= Reporting Limit GCU= Silica gel cleanup Page 1 of 2

Total Extractable Hydrocarbons 2277 7th Street POO EPA 3520C Lab #: 172627 Location: Client: Innovative Technical Solutions, Inc. Prep: Analysis: EPA 8015B 06/02/04 00-152.25 Project#: Matrix: Units: Sampled: Water 06/02/04 Received: ug/L 06/08/04 Diln Fac: 1.000 Prepared: 91790 Batch#:

Field ID:

MW-8A SAMPLE Analyzed:

06/09/04 Cleanup Method: EPA 3630C

172627-006

Analyte	Result	RL	
Diesel C10-C24 (SGCU)	67 Y	50	1
Motor Oil C24-C36 (SGCU)	ND	300	

Surrogate 90 Hexacosane (SGCU) 53-142

Type: Lab ID: BLANK QC253564

Analyzed: 06/10/04 Cleanup Method: EPA 3630C

Analyte	Result		
Diesel C10-C24 (SGCU)	ND	50	
Motor Oil C24-C36 (SGCU)	ND	300	

Surrogate	%REC		
Hexacosane (SGCU)	90	53-142	

Y= Sample exhibits chromatographic pattern which does not resemble standard

ND= Not Detected
RL= Reporting Limit
GCU= Silica gel cleanup
Page 2 of 2

6.2

Chromatogram

Sample Name: 172627-006sg,91790

: G:\GC11\CHA\161A021.RAW FileName : ATEH156S.MTH

Method Start Time : 0.01 min 0.0

End Time : 20.45 min Plot Offset: 24 mV

Sample #: 91790

Date: 6/10/04 08:23 AM

Time of Injection: 6/9/04 09:12 PM

Low Point : 23.89 mV

High Point : 320.04 mV

Page 1 of 1

Plot Scale: 296.1 mV

Chromatogram

Page 1 of 1 Sample #: 500mg/L ample Name : ccv, 04ws0894, dsl Date: 6/9/04 06:01 PM ; G:\GC13\CHB\161B003.RAW ileName Time of Injection: 6/9/04 04:28 PM : BTEH160S.MTH High Point: 257.57 mV Low Point: 19.72 mV End Time : 19.99 min Start Time : 0.01 min Plot Scale: 237.8 mV . Plot Offset: 20 mV 0.0 Scale Factor: Response [mV])jesel PA ONPB ON C-10 C-12 C-16 C-20 C-22 C-24 -10.18 10.59 +CB HR 10.92 <u>-11.22</u> C-28 -11.74 -12.12C-32 ±12.4€ 12.88 -13.28 C-36 13.74 -14.2 -14.8! C-40 - 15.50 C-44

Chromatogram

	Total Extracta	ble Hydrocarbon	19
Lab #:	172627	Location:	2277 7th Street POO
Client:	Innovative Technical Solutions, Inc.	Prep:	EPA 3520C
Project#:	00-152.25	Analysis:	EPA 8015B
Туре:	LCS	Diln Fac:	1.000
Lab ID:	QC253565	Batch#:	91790
Matrix:	Water	Prepared:	06/08/04
Units:	ug/L	Analyzed:	06/10/04

Cleanup Method: EPA 3630C

	Spiked	Result	%REC	Limite
Diesel C10-C24 (SGCU)	2,500	2,647	106	57-128

urrogate 🕢	%REC	Timate	
(SGCU)	124	53-142	

	Total Extracta	ble Hydrod	arbons
Lab #:	172627	Location:	2277 7th Street POO
	Innovative Technical Solutions, Inc.	Prep:	EPA 3520C
Project#: (00-152.25	Analysis:	EPA 8015B
Field ID:	ZZZZZZZZZZ	Batch#:	91790
MSS Lab ID	: 172511-006	Sampled:	05/25/04
Matrix:	Water	Received:	05/26/04
Units:	ug/L	Prepared:	06/08/04
Diln Fac:	1.000	Analyzed:	06/10/04

Cleanup Method: EPA 3630C

Lab ID:

QC253566

Analyte	MSS Result	Spiked	Result	9;R	EC Limits
Diesel C10-C24 (SGCU)	<35.00	2,500	2,065	83	47-139

			884 84 988 488 48 48 48 48 48 48 48 48 48 48 48		@0000000000000000000000000000000000000
E TANK TANAK MATAN	Sirerogate.	ALIMA A MARIE COMPANIE COMPANI	Limits	::::::::::::::::::::::::::::::::::::::	. N. 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1. 10 1.
Harra acana	(CCCII)	96	53-142		
rnexacosane	(35,00)	20	JJ 142	 	

Type:

þab ID:

MSD

QC253567

Cleanup Method: EPA 3630C

Analyte	Spiked	Result		Limit	s RP	D Lim
Diesel C10-C24 (SGCU)	2,500	2,258	90	47-13	99	45
					20.000	***************************************

	400 C C C C C C C C C C C C C C C C C C	
Surrogate	*************	Limits
(agair)	110	F2 142
Hexacosane (SGCU)	110	53-142

RPD= Relative Percent Difference SGCU= Silica gel cleanup Page 1 of 1

APPENDIX C DAILY FIELD ACTIVITY REPORT

2730 Shadelands Drive, Suite 100 Walnut Creek, California 94598 (925) 946-3100 (Tel), (925) 256-8998 (Fax)

PROJECT NAME: Port of Oakland	DATE: 06/02/04
PROJECT NUMBER: 00-152.25 DAILY ACTIVITY REPORT	PAGE / OF /
SITE LOCATION: 7th Street, Oakland, Ca. DESCRIPTION OF FIELD ACTIVITIES AND EVENTS	
7:30 Pick up bottler and cooler at CFT in Berkeley	1
8:00 At site; buckets are cracked and hading	
8:30 At ACE Hardware to buy new buckets.	l .
9:00 Purchase Ice and my lon strings	
9:30 Back ou sike	
17.7.17.17.17.17.17.17.17.17.17.17.17.17	ove trailer.
10:00 Calibrate Horita U-10, conductivity wester.	
10:30 Sample NW-8A	
11:15 Sample NW-4	
11:20 Souiple NW-4D	1
12:00 Sample NW-5	
13:00 Sawiple MW-2 13:30 Moustor free product in NW-1 : -FP = 8.26	
13:30 Mouitor free product in $MW-1$ = $FP = 8.26$ GW = 8.71	
Product Twickwess = 0.45'	
13:45 Monitor free product in MW-3 : FP = 10.03' GW = 11.35'	
Product Thickors = 1.32'	
14:30 Drop cooks and release samples at C&T lab.	
15:30 Return Horiba U-10 at Equipco, concord.	
	ļ.,
	
	<u> </u>
PREDADED BY PARENTA LANGE	DATE: 06 02 04
7/7/	
PREPARER'S SIGNATURE	