ACDEH RESPONSIVE ENVIRONMENTAL INVESTIGATION AND REQUEST FOR NO FURTHER ACTION Former Dry Cleaners (T10000011188) 305 and 307 63rd Street; and 6251, 6253, and 6255 College Avenue, Oakland, CA 94618

July 17, 2018

Prepared For:

Visilios D. Bouzos and Eleni V. Bouzos, individually and as trustee of the Bouzos Family Living Trust; and Dan Bouzos c/o John R. Till Esq. Paladin Law Group, LLP 1176 Boulevard Way, Suite 200 Walnut Creek, CA 94595

Prepared By:

EnviroAssets, Inc. 1955 Mountain Blvd., #113 Oakland, CA 94611

Michael Harrison, P.E. Principal Engineer

EXECUTIVE SUMMARY

EnviroAssets, Inc. ("EnviroAssets") is pleased to provide the following report of the soil, soil vapor, sub-slab vapor, and groundwater investigation, and a request for No Further Action for the property at 305 and 307 63rd Street; and 6251, 6253, and 6255 College Avenue ("Subject Property"). The investigation was conducted consistent with the *ACDEH Responsive Environmental Investigation Workplan* (EnviroAssets, February 28, 2018) which addressed the requests for new soil, soil vapor, sub-slab vapor and groundwater data communicated by Ms. Roe of the Alameda County Department of Environmental Health ("ACDEH") during a January 29, 2018, meeting. As requested, in addition to the soil, soil vapor, sub-slab vapor, and grab groundwater data, the investigation included a utility survey of the alleyway between the Subject Property and 309 63rd Street (attached) and video surveys of the sanitary sewer inside of 307 63rd Street.

The results of the ACDEH Responsive Environmental Investigation and historical data for the Property vicinity support our request for No Further Action at the Property as follows:

Identified concentrations of chemicals of concern – chlorinated solvents related to historical dry cleaning operations or chlorinated volatile organic compounds ("CVOCs") - are below current guidance concentrations provided by the Regional Water Quality Control Board ("Water Board") for commercial property (environmental screening levels or "ESLs") and State and Federal drinking water standards (maximum contaminant level or "MCLs"). The Water Board intends the ESLs to be conservative so that sites where "concentrations of a limited number of contaminants are well below their respective ESLs"¹ can be screened out from "additional site investigation, remedial action or a more detailed risk assessment"². Drinking water standards, MCLs, are also included in the ESL guidance and are assumed to be safe for daily consumption of water from drinking water systems – and are therefore additionally conservative for the shallow groundwater at the Subject Property which is not currently used for drinking water. As can be inferred from these standards and guidelines, "significant" is meant to refer to a level of risk that would require additional evaluation or remediation. Based on these regulatory criterion, the Subject Property does not pose a significant threat to human health, water resources, or the environment.

¹ Water Board, User's Guide: Derivation and Application of Environmental Screening Levels (ESLs), Interim Final 2016

² Ibid

- Samples collected proximate to the historically important "potential release mechanisms and sources"³ including the former equipment location, sewer lines, and the waste storage area, did not identify impacts above conservative screening levels.
- Based on these data, there is no evidence indicative of a significant release at the Property.
- Additionally, samples located proximate to potential source areas and the Property boundaries demonstrate that contamination migration is not a significant concern.

Furthermore, these data in context of the comprehensive dataset of soil vapor and groundwater data associated with the identified release(s) from the former dry cleaning area, and rear storage area and sewer lateral at 6235-6239 College Avenue (CCV Property) demonstrate concentration gradients that are opposite what would be anticipated if the Subject Property was an upgradient source of the contamination at the CCV Property. Additionally, concentrations of CVOCs proximate to potential release mechanisms and sources at the CCV Property (including former equipment areas, sewer lines and associated clean-outs, and storage areas) demonstrate conclusively that the source of elevated impacts at the CCV Property is the release(s) at the CCV Property itself. Therefore, no further action is warranted at the Subject Property

³ SCVWD, Study of Potential for Groundwater Contamination from Past Dry Cleaner Operations in Santa Clara County, September 2007

TABLE OF CONTENTS

EXEC	UTIVE SUMMARYI
TABL	E OF CONTENTSIII
List	of Figures iv
List	of Tablesiv
List	of Appendices iv
1.0	SUBJECT PROPERTY DESCRIPTION
2.0	REGULATORY HISTORY AND INVESTIGATION SUMMARY – SUBJECT
2.0	
3.0 PROPI	REGULATORY HISTORY AND INVESTIGATION SUMMARY – NEIGHBORING ERTY (CCV PROPERTY)
4.0	HYDROGEOLOGY
5.0	SEISMIC RETROFIT
6.0	INVESTIGATION SCOPE AND APPROACH
6.1	Utility Location Survey and Video Survey7
6.2	Boring Permitting9
6.3	Photoionization Detector (PID) Screening
6.4	Sub-slab Vapor Pin Sampling Beneath 305 and 307 63 rd Street, 6251, 6253, and 6255
Coll	lege Avenue
0.5	Soll, Soll Vapor, and Groundwater Sampling 307 63 rd Street
0. 6	5.2 Soil Sampling
6	5.3 Grab Groundwater Sampling
7.0	DECONTAMINATION 13
8.0	SOIL SOIL VADOR SUR SLAR VADOR AND CROUNDWATER RESULTS
0.0 DISCI	ISSION
81	Soil Sampling Discussion 13
8.2	Soil Vapor Discussion 14
8.3	Sub Slab Vapor
8.4	Groundwater Sampling Discussion
9.0	SUBJECT PROPERTY CONDITIONS RELATIVE TO CCV PROPERTY16
9.1	Groundwater Data16
9.2	Soil Vapor Data17
10.0	CONCLUSION19
11.0	LIMITATIONS
12.0	REFERENCES

List of Figures

Figure 1	Subject Property Vicinity	
0	J 1 J J	

- Figure 2 Subject Property Data Summary
- Figure 3 Subtronic Utility Survey
- Figure 4 Tetrachloroethylene (PCE) in Groundwater Summary

List of Tables

Table 1	Soil and Groundwater Analytical Summary - CVOCs
Table 2	Soil Analytical Summary - Inorganics
Table 3	Soil Vapor and Sub-Slab Vapor Analytical Summary
Table 4	Depth to Groundwater Source Summary

List of Appendices

•

- Appendix A Permits and Field Notes
- Appendix B Waste Documentation
- Appendix C Historical Figures
- Appendix D Laboratory Analytical Reports

1.0 SUBJECT PROPERTY DESCRIPTION

The Property is an approximately 0.7 acre parcel (APN 48A-7069-7) zoned for mixed use and developed with commercial spaces on the first floor and residential apartments on the second and third floors occupying the southwest corner of 63rd Street and College Avenue in Oakland, California (Figure 1).

2.0 REGULATORY HISTORY AND INVESTIGATION SUMMARY – SUBJECT PROPERTY

The Subject Property is currently considered a non-case⁴. In May 2017, the ACDEH notified the owners of the Subject Property that it would host a meeting of responsible parties and neighbors of the Red Hanger Kleaners site at 6235-6239 College Avenue (CCV Property) on May 24, 2017. During the meeting on May 24th, and as documented in its letter of May 24, 2017, the ACDEH communicated to the representatives of the Subject Property that its "primary concern is the potential health risk due to exposure from VOCs via vapor intrusion to indoor air"⁵ and requested a work plan to "evaluate sub-slab/soil gas conditions at your property". As discussed in detail in the following sections, concentrations of CVOCs in sub-slab and soil vapor are below current commercial ESLs and do not pose a significant health risk due to exposure from VOCs via vapor intrusion to indoor air.

In response to the ACDEH, on May 26, 2017, EnviroAssets submitted a *Screening Subslab Vapor Survey* workplan. The workplan objectives were to "support rapid decision making regarding potential threat to indoor air during the time period where retrofit activities are ongoing and access to the building foundation is maximized" by installing slab-penetrating vapor pins® from tenant spaces where the building slab had been retrofited (6251, 6253, and 6255 College) and where the slab was undisturbed (307 63rd Street). A handheld PID was proposed to screen subslab vapor concentrations versus a concentration of 544 ppbv, corresponding to the commercial properties ESL⁶ of 2,100 μ g/m3. Desiccant tubes were proposed for use with the PID in order to minimize the confounding effect of sub-slab moisture on PID readings.

On June 5, 2017, EnviroAssets submitted the *Screening Subslab Vapor Survey* report ("Screening Survey") to the ACDEH summarizing the May 31, 2017, sub-slab vapor survey. During the May 31st survey, four vapor pins were installed consistent with the May 26th workplan (Figure 2). Two of the vapor pins (VP-3 and VP-4, were installed within ten feet of the former location of dry cleaning equipment in 6251 and 6253 College Avenue; identified based upon anecdotal recollections of owners of the Subject Property. Vapor pins VP-1 and VP-4 were also installed within three feet of the Subject Property sanitary sewer line. Based on the lack of detectable organic vapor by handheld PID described in the Screening Survey as "proximate to the estimated location of the historical dry cleaning equipment and garbage can storage area, near the historical and current sewer lateral, and beneath both new and original foundation

⁴ http://geotracker.waterboards.ca.gov/profile_report.asp?global_id=T10000011188

⁵ ACDEH, letter to Dan and Harry Bouzos, May 24, 2017

⁶ Environmental Screening Levels, Regional Water Quality Control Board – San Francisco, February 2016, Rev. 3.

slabs", the Screening Survey concluded "the data suggests that the Property is neither a source of a release of CVOCs to the environment nor has it been significantly impacted by contamination identified proximate to the Property and migrating from the College Claremont Property".

In July 2017, LRM installed a shallow groundwater monitoring well (MW-1, screened from 17-27 feet bgs), and dual-depth vapor well SG-12 (set to 7- and 15-feet bgs) at the southwestern corner of the Subject Property. The area where MW-1 and SG-12 were installed is the downgradient edge of the Subject Property - as the shallow groundwater gradient has been established to flow to the southwest (LRM, 9/27/2017)-, and at the garbage can/waste storage area of the Subject Property. Soil samples collected by LRM during installation of MW-1 at 5, 15, and 25-feet bgs were not detected for PCE, and no indications of contamination were observed by LRM in its continuously cored boring. PCE was also not detected in the 7-foot bgs vapor well at SG-12. PCE was detected at concentrations more than 500 times below commercial ESLs in soil vapor collected near the groundwater capillary fringe (SG-12-15 at 15-feet bgs) and first encountered groundwater; at 3.9 μ g/m3 and 1.2 μ g/L, respectively

On December 20, 2017, the ACDEH transmitted a *Request for Site History Information* to the Subject Property owners. This request, and the status of investigations at the Subject Property and the neighboring property were discussed during a January 29, 2018, meeting between the ACDEH and representatives of the Subject Property. During that meeting, Ms. Roe expressed that additional sampling was needed to confirm that the Bouzos property, a non-case, should not be entered into the voluntary clean-up program.

During the January 29, 2018, meeting, the participants collaboratively scoped an additional investigation that included sample locations distributed near potential release mechanisms and sources and down-gradient property boundaries in order to identify if an on-site environmental problem existed. Consistent with the collaboratively scoped investigation, on February 28, 2018, EnviroAssets submitted an *ACDEH Responsive Environmental Investigation Workplan* on behalf of the Subject Property owners that proposed to: 1) Collect samples of soil, soil gas, and groundwater from two locations and at multiple depths within the 307 63rd Street tenant space during seismic retrofit activities; 2) Collect a shallow soil gas sample on the Subject Property within the small limited access area between 6251 College Avenue and 6241-47 College Avenue; 3) collect sub-slab vapor samples from three existing vapor pins installed beneath 6251, 6253, and 6255 College Avenue; and 4) perform a video survey of Subject Property sanitary sewers and a utility survey of the alleyway to the west of the Subject Property building. Subsequently, it was decided to also collect a sub-slab vapor sample from the vapor pin located within the 307 63rd street tenant space prior to puncturing the building slab for sampling or retrofit activities.

On February 28, 2018, Paladin Law Group provided a *Response to Request for Site History Information* on behalf of the Subject Property owners.

On April 6, 2018, EnviroAssets submitted a *Data Update - ACDEH Responsive Environmental Investigation* providing a summary of investigation work conducted consistent with the February

28th workplan. The shallow soil gas sample proposed for within the unpaved small limited access area between 6251 College Avenue and 6241-47 College Avenue, was not submitted with this summary because it had to be delayed due to rainfall. The April 6th update observed that the soil, soil vapor, sub-slab vapor, and groundwater data collected at the Subject Property are all below applicable regulatory guidance and drinking water standards.

As further discussed below, the remaining soil vapor sample proposed in the *ACDEH Responsive Environmental Investigation Workplan*, the shallow soil vapor sample in the small limited access area between 6251 College Avenue and 6241-47 College Avenue, was collected on May 14, 2018. This sample was found to contain 10.74 μ g/m3, which is well below the applicable commercial (or for that matter, residential) soil vapor ESL.

3.0 REGULATORY HISTORY AND INVESTIGATION SUMMARY – NEIGHBORING PROPERTY (CCV PROPERTY)

Investigations conducted at the property to the south and southwest of the Subject Property – 6235-6239 College Avenue (the CCV Property) – have documented CVOC contamination in soil, sub-slab and soil vapor, and groundwater. Concentrations of CVOCs in groundwater have been observed an order of magnitude higher than MCLs, as high as $48 \ \mu g/L$ (SB1) and $56 \ \mu g/L$ (B10). Soil vapor samples collected prior to soil vapor extraction system operation within 30-feet of potential release mechanisms and sources at the CCV Property, including the former dry cleaning equipment area and rear storage area and sewer lateral, have been as high as $61,000 \ \mu g/m3$ in shallow soil gas (SG6-7) and 120,000 $\mu g/m3$ in deep soil gas (SG2-17) and every sample collected within 30-feet of the dry cleaning area, and rear storage area and associated sewer lateral has contained PCE at concentrations well above Subject Property concentrations and associated regulatory screening levels. Consultants for the CCV Property have observed that the pattern of impacts at the CCV Property are associated with potential release mechanisms and sources at the CCV Property have observed that potential release mechanisms and sources for the dry cleanouts, former equipment locations, and property boundaries opposite from those most proximate to the Subject Property

In 2005, regulatory engagement was initiated at the property to the south and southwest of the Subject Property – 6235-6239 College Avenue (the CCV Property) when a Phase I investigation was performed. Subsequent investigations at the CCV Property have identified elevated soil vapor concentrations of PCE and PCE concentrations in groundwater above MCLs proximate to the former dry cleaning equipment area within the 6235 College Avenue building and its associated sewer lateral that traverses the property from the building's back door north to 63rd Street, and the storage and delivery area behind the cleaning area. Video surveys of the sewer line have identified multiple breaks in the sewer lateral. The following summary of investigations and regulatory engagement at the CCV Property is abridged and substantially excerpted from the GeoTracker⁷ Site History page.

⁷ https://geotracker.waterboards.ca.gov/profile_report.asp?global_id=T10000000416

Following the Phase I, that identified Recognized Environmental Conditions associated with a former gasoline underground storage tank (UST) and historical dry cleaning activities that had been conducted since 1987, a Phase II investigation was conducted by AEI Consultants ("AEI") at the CCV Property in May 2005. During the AEI May 2005 Phase II investigation, a gasoline UST was not identified. However, the dry cleaning solvent tetrachloroethylene ("PCE") was identified in soil samples advanced in the dry cleaning machine area at concentrations up to 0.26 mg/Kg, and in groundwater samples at concentrations up to 48 μ g/L at SB1 in the southwestern portion of the property. AEI concluded that "a small release of PCE has occurred in the area of the dry cleaning facility at the [CCV Property] site".

In June 2005, EFI Global ("EFI"), collected "one grab groundwater sample (SB6) directly down gradient of the dry cleaning units at the [CCV Property]". Based on the detection of PCE at 15 μ g/L in the groundwater sample collected from SB6, EFI requested a No Further Action determination from the Oakland Fire Department as it concluded the "concentrations of PCE appear to be low and not of significant concern at this time".

On July 15, 2005, the Oakland Fire Department issued a letter stating that it would not require further action for the site as the soil concentrations found at the site were below ESLs for commercial properties but that "it is a recommendation that additional site characterization be accomplished should the use of the property changes [sic.]".

In May 2008, P&D Environmental collected soil and groundwater samples at locations B-7 and B-8 located north of the former dry cleaning area between 6241 and 6235 College Avenue (B7) and 6235 College Avenue and 309 63^{rd} Street (B8). A report of this sampling was not identified on GeoTracker, however the web site noted that PCE was detected in soil in boring B-7 at 3 feet bgs at a concentration of 0.0078 mg/Kg and that PCE was detected in groundwater at a maximum concentration of 12 µg/L from B-7. No results or boring log were identified for boring B-9, although it is on the P&D map.

In October and December 2009, ERM performed soil and groundwater sampling from downgradient of the dry cleaning machines and near the UST area. PCE was detected at a maximum concentration of 0.010 mg/Kg from 6.5 feet bgs from soil borings collected in the building interior. Soil samples collected from 25 and 30 feet bgs were below the detection limit. Groundwater was collected from outside the building with the maximum concentration of PCE detected at 1.9 μ g/L.

On January 15, 2009, the Alameda County Environmental Health Services Agency issued a request for a work plan to further investigate the CCV Property noting the concentrations of PCE "detected in both soil and groundwater".

On January 20, 2010, ERM issued a 2009 Site Characterization Summary Report, reporting results from four soil borings (A-1, A-2, AD-3, and AUST-6) and groundwater samples collected from A-1, A-3, and AUST-6. In soil and groundwater samples, PCE was detected at concentrations up to 10.6 μ g/Kg (A-2 at 6.5 feet bgs), and up to 1.9 μ g/L at AD-3, respectively. Based on these data, ERM recommended no further action for the CCV Property.

In June 2010, ERM submitted a *Well Survey Report*, which concluded that the 26 wells within ¹/₄-mile of the CCV Property were unlikely to be "1) potential receptors of groundwater flowing beneath the [CCV Property]; or 2) conduits to influence groundwater migration from the [CCV Property]".

A soil vapor survey and screening level risk assessment was performed by EFI Global in January 2013. Four soil gas samples (and one duplicate) were collected in December 2012. PCE was reported in all four samples with concentration ranging from 200 μ g/m3 to 11,000 μ g/m3. This report was not identified on GeoTracker.

During 2014 a variety of correspondence regarding removal of dry cleaning machines describes a breakdown of communication with the ACDEH resulting in decommissioning of dry cleaning machinery without requested regulatory oversight, culminating on September 29, 2014, with the removal of "the one remaining dry cleaning machine"⁸.

On July 27, 2015, Youngdahl submitted a *Phase II Environmental Site Assessment Soil gas Investigation report*, which documented 11 soil gas samples collected at the depth of 5 feet bgs, 3 sub-slab soil gas samples collected from beneath the building slab, and 7 air sample (5 indoor air and 2 background). All soil gas samples were reported to contain concentration of PCE, ranging from 250 μ g/m3 to 24,000 μ g/m3 for the 5-foot soil gas samples and 610 μ g/m3 to 5,200 μ g/m3 for the sub-slab samples. The report noted that "The highest concentration of PCE in soil gas was found at the sewer cleanout" and that "[t]he highest concentration PCE in the subslab samples was found near the former location of the dry cleaning machines next to a crack in the slab". It was noted the dry cleaner had vacated the premises and the suite was vacant.

In July 2016, P&D Environmental published a *Site Investigation and Soil Vapor Extraction Report*, summarizing installation and sampling of soil gas wells SG1 through SG10 in the fourth quarter of 2015, and start up of a soil vapor extraction ("SVE") system on June 10, 2016. Eight soil gas wells were installed to 7-feet bgs and six to 17-feet bgs. A vapor pin (VP1) was also installed by P&D. PCE was detected in shallow (7-feet bgs) soil gas samples at concentrations up to 61,000 μ g/m3 (SG6-7). In deeper samples (17-feet bgs) the maximum detected concentration

⁸ Email from Keith Nowell to Patrick Ellwood and George Kong, September 29, 2014

was 120,000 µg/m3 (SG2-17). The report concluded that "the highest concentrations of PCE soil gas were consistently detected in the vicinity of the sanitary sewer pipe immediately to the north of the former Red Hanger Kleaners store, with the highest PCE shallow soil gas concentration detected immediately to the south of the sanitary sewer cleanout and the highest deep soil gas concentrations detected adjacent to and immediately downgradient of the sanitary sewer cleanout". Recommendations by P&D included continuous operation of the SVE system and completion of the delineation of the extent of PCE in groundwater.

On September 27, 2017, LRM Consulting Inc., submitted a Supplemental Remedial Investigation Report which described installation and sampling of six groundwater monitoring wells (MW-1 through MW-6), four vapor monitoring wells (SG-12-7, SG-12-15, SG-13-7, and SG-13-14), and sampling of seven existing vapor wells. LRM concluded that "PCE occurs primarily in soil vapor, with limited residual impacts occurring in groundwater and sporadic detections in soils near the groundwater potentiometric surface" and that "PCE remains at above relevant ESLs at various existing vapor monitoring locations on the 6235-6239 property" with the peak concentration of PCE located "along the western boundary of the 6235-6239 College Ave., property". LRM observed that concentrations of PCE in soil vapor have been observed to decline over time with "the largest declines in PCE soil vapor concentrations appear to occur at or near locations where SVE operations have been in effect since June 2016" while "Lesser reductions occur along the norther portion of the site, along the 309 63rd Street property". LRM also recommended partial shut-down of the SVE system, "semi-annual vapor sampling from all existing wells" beginning in December 2017, and "[t]wo additional rounds of groundwater monitoring at newly installed monitoring wells are also recommended; one in February 2018 and the second in August 2018, providing data to help confirm the preliminary conclusion stated herein that groundwater impacts across the various properties remain insignificant and do not warrant remediation".

4.0 HYDROGEOLOGY

The site is located in the City of Oakland, within the Coast Ranges Geomorphic province and underlain by Holocene age fluvial and alluvial fan deposits described as brown or tan, medium dense to dense, gravely sand or sandy gravel that generally grades upward to sandy or silty clay⁹. During the March 2018 investigation, EnviroAssets observed silty sand in the shallow subsurface, extending to between 12 and 13-feet bgs, where it transitioned to sandy silt to a depth of 24-feet bgs interspersed with approximately one foot thick very moist to wet zones. Boring logs are attached. This is generally consistent with soil conditions encountered during the

⁹ Youngdahl, *Phase II Environmental Site Assessment Soil Gas Investigation Work Plan*, October 21, 2014 citing the Geologic Map and Map Database of the Oakland Metropolitan Area, Alameda, Contra Costa, and San Francisco Counties, California, by R.W. Graymer, United States Geological Survey, 2000.

installation of six groundwater monitoring wells on the Subject Property and the adjacent CCV Property by LRM Consulting, Inc., in July and August 2017¹⁰. LRM noted fine grained silts and clays to depths of 29-feet bgs and encountered gravel-sand mixtures in two borings ranging from 4 to 14 feet in thickness. While drilling the six groundwater monitoring wells, groundwater was encountered at depths ranging from 17 to 24-feet bgs and stabilized several days later at depths ranging from 16.15 to 17.8-feet bgs, indicating that groundwater beneath the Subject Property and adjacent properties is present under semi-confined conditions.

5.0 SEISMIC RETROFIT

Seismic retrofit of 6251, 6253, and 6255 College Avenue has been completed, and the spaces are occupied by a nail spa business (6251), a coffee shop (6253) and coffee shop (6255). Seismic retrofit is underway in the 307 63rd Street space. Retrofit activities include demolition of building interiors and constructing a supporting foundation and space frame to provide seismic reinforcement for the building. Per discussions with the owner/builders, during the retrofit work the historical building slabs and approximately 12-inches of soil were removed to make room for a new building slab. The new slab was constructed with 5-inches of concrete foundations over approximately 4-inches of gravel and two inches of sand, with additional or extended footings also constructed within the building. A moisture barrier was used to separate the materials.

During the retrofit activities, the Property sewer lateral was replaced beneath 6251 and 6253 in the first quarter of 2017. During the sewer replacement work beneath 6251 and 6253, the Property sewer lateral was removed by excavation and observed by its owners¹¹ to be in good condition and constructed of cast iron, at approximately five to six feet below grade. No connections to other properties or sewer piping external to the building were observed. Furthermore, no breaks or penetrations were observed. Sewer connections for 6253 and 6255 College collect on the west wall and connect to the Property lateral at the southwest wall of 6253 College within the new portion of the sewer lateral. During retrofit of 307 63rd Street in March 2018, the remaining and final portion of the sewer lateral was replaced beneath the 307 63rd Street space and connecting with the city sewer main in 63rd Street was replaced by pipe bursting. Pipe bursting was chosen to minimize the soil disturbance caused by trench excavating methods proximate to the footings in the area¹².

6.0 INVESTIGATION SCOPE AND APPROACH

6.1 Utility Location Survey and Video Survey

Before the start of the subsurface investigation, Subtronic Corporation was subcontracted by EnviroAssets to perform a utility survey of 307 63rd Street and the alleyway between 307 and 309 63rd Street on March 13, 2018. The utility survey drawing depicting locations, depths,

¹⁰ LRM, Supplemental Remedial Investigation Report, September 27, 2017

¹¹ Conversation with Harilaos and Dan Bouzos

¹² Ibid

diameters, and utility type provided by Subtronic of the alleyway between the Subject Property and 309 63rd Street is attached as Figure 3. C. Cruz Sub Surface Locators, Inc., performed a video survey of the sanitary sewer inside of 307 63rd Street and of the sanitary sewer and storm drain in the alleyway between 307 and 309 63rd Street on March 20, 2018. Both the Subtronic and C. Cruz surveys identified the presence of a sanitary sewer line running from the south side of 309 63rd Street northeast and turning northwest and running down the alleyway between 307 and 309 63rd Street across the sidewalk and to the middle of 63rd Street where it intersects the main sanitary sewer line. Neither the Subtronic nor the C. Cruz surveys identified the presence of the sanitary sewer line depicted on Figure 1 of LRM's September 27, 2017 *Supplemental Remedial Investigation Report* ¹³ (Attachment A) running from beyond the south side of 309 63rd Street northeast beyond the alleyway between 307 and 309 63rd Street beneath 6251 College Avenue and out to College Avenue.

The video survey of the sanitary sewer line running from the south side of 309 63rd Street northeast and then turning northwest and running down the alleyway between 307 and 309 63rd Street identified that the sanitary sewer line was constructed of approximately 2-foot long sections of clay pipe with extensive plant roots in the joints of the pipe from the cleanout behind 309 63rd Street all down the alleyway to 63rd Street. All of the pipe joints appeared to be compromised. Two breaks were identified in the sanitary sewer line: one beneath the sidewalk on the south side of 63rd Street and the other beneath the southern traffic lane on 63rd Street before the connection with the main sanitary sewer line.

The video survey of the storm drain running down the alleyway between 307 and 309 63rd Street and daylighting in the curb on the south side of 63rd Street identified that the storm drain was constructed of approximately 10-foot sections of cast iron pipe and appeared to be in good condition.

The video survey of the sanitary sewer line from the rear (west end) of 6251 College Avenue and running northwest beneath 307 63rd Street and to the middle of 63rd Street where it intersects the main sanitary sewer line was completed before retrofit of the portion of the sewer line running beneath 307 63rd Street and connecting to the sewer main in the Street. The video identified that the sanitary sewer line was constructed of cast iron pipe and was in good condition up to the northeast portion of 307 63rd Street. At this location within the building, the sewer line transitioned to approximately 2-foot long sections of clay pipe with extensive plant roots in the joints of the pipe leading all the way to the middle of 63rd Street where it intersected the main sanitary sewer line. The pipe joints in the clay pipe appeared to be compromised. There are two-45-degree bends as the clay pipe leads towards 63rd Street. This section of pipe was subsequently replaced by the Property owners during the seismic retrofit with pipe bursting and

¹³ Op. cit., LRM 2017

HDPE pipe. It is notable that this section of pipe is proximate and up-gradient of sampling locations B15, B15V, B16, and B16V that did not identify significant contamination in soil, soil vapor, or groundwater.

6.2 Boring Permitting

EnviroAssets obtained boring permits from Alameda County Public Works Agency (ACPWA) prior to commencing temporary vapor probe, soil, and groundwater sampling field activities on March 15 and 16, 2018 and May 14, 2018 (Attachment B). An inspector from ACPWA was present on-site to witness the sealing of the borings with neat cement grout.

Due to the delay in sampling from the unpaved limited access location at B21, an additional boring permit was required by the ACPWA. On May 14, 2018, EnviroAssets installed one temporary soil vapor probe at a depth of 5.5 feet bgs at location B21. An inspector from ACPWA was present on-site to witness the sealing of the boring with Portland cement grout.

6.3 Photoionization Detector (PID) Screening

Photoionization detector (PID) screening was conducted during the investigation. PID screening is understood as qualitative tool "designated for initial screening of soil, soil gas, and groundwater by providing a "yes/no" indication of contamination"¹⁴. The screening supports qualitative analysis by fixed laboratories and may be used to indicate whether samples are suitable for the "low concentration" or "high concentration" procedures in SW-846. PID screening is considered a qualitative tool because it does not measure specific constituents, is sensitive to water vapor, and "may not always be consistent because of the lack of sample control and inherent method variability"¹⁵. Professional experience has shown that PIDs can indicate unreliable results by failing to provide stable results or reproducible readings.

During the March 14, 15, and 16, 2018, investigation work, EnviroAssets used a RAE 3000 PPB Photoionization Detector (PID) in an effort to screen soil vapor beneath the concrete slab, in subslab vapor samples collected from vapor pins, in soil vapor collected from temporary vapor probes, and of soils from borings. However, the PID meter malfunctioned and recorded unstable and highly variable readings that did not accurately reflect field conditions based on their inconsistency with the non-detect and extremely low readings measured by Fugro Consultants, Inc., personnel using a Multi Rae Plus PPM RAE-10 PID meter and as confirmed by samples analyzed by quantitative fixed lab methods. Therefore, PID readings measured by EnviroAssets are not reviewed in this report. It is important to note that accurate PID readings can be used as a field screening tool, but the data provided by certified laboratories for soil vapor, sub-slab vapor,

¹⁴ US EPA, *Expedited Site Assessment Tools For Underground Storage Tank Sites A Guide For Regulators*, October 2016 (EPA 510-B-16-004)

¹⁵ Ibid

soil, and groundwater are more precise and representative of site conditions. Additionally, desiccant tubes were not used by EnviroAssets due to the PID malfunction, or by Fugro, which precluded moisture vapor from being excluded as a confounding factor to screening observations with PIDs.

6.4 Sub-slab Vapor Pin Sampling Beneath 305 and 307 63rd Street, 6251, 6253, and 6255 College Avenue

Prior to penetrating the building slab in preparation for the subsurface investigation, on March 14, 2018 sub-slab soil vapor samples were collected from existing vapor pins within the 307 63rd Street (VP-1), and 6251 (VP-4), 6253 (VP-3), and 6255 (VP-2) College Avenue. Samples were collected in accordance with the *Advisory Active Soil Gas Investigations* (DTSC, July 2015) following a shut in test, with the entire sampling train beneath a sampling shroud using helium as a tracer gas, with a sampling regulator limiting flow to between 100 to 200 milliliters per minute following a purge of approximately 210 mL, and with laboratory supplied Summa canisters submitted for analysis by EPA Method TO-15 of CVOCs plus helium. Field sampling forms are attached as Appendix A.

6.5 Soil, Soil Vapor, and Groundwater Sampling 307 63rd Street

Following completion of the sub-slab vapor sampling on March 14, 2018, sampling of soil, soil vapor, and grab groundwater was initiated at four locations at 307 63rd Street on March 15 and 16, 2018 (Figure 2). Consistent with ACDEH requests, soil and groundwater samples were advanced next to the sanitary sewer, and vapor samples were placed near the western wall proximate to the alleyway.

On March 15, 2018, Gregg Drilling, Inc. (Gregg) provided a track mounted direct push sampling rig (Badger Marl D75). All non-disposable equipment was decontaminated by Gregg off-site prior to on-site field activities. The rig was used to collect continuous 4 ft. sample cores encased in clear acetate liners advanced within 2.25-inch diameter metal drilling rods. Drilling rods were advanced by a combination of hydraulic push and hammering methods through holes cored in the concrete floor following a Site Safety Meeting. Boring logs for these borings and MW-1 are included within Appendix A.

6.5.1 Soil Vapor Probes

On March 15, 2018, temporary soil vapor probes were installed at depths of 7 and 15 feet below ground surface at locations B15V and B16V, proximate to the interior west wall of the building. Soil vapor sample locations were advanced with direct push methods, with drilling rods pulled back six inches revealing Geoprobe 6" stainless steel implants (P/N SVPT96-6PR) connected to 1/4" inside diameter (I.D.) Teflon tubing. This method is similar to the Geoprobe post-run tubing methodology as described in the *ACDEH Responsive Environmental Investigation*

Workplan, except that probe rods were driven with sample tubing already in place. Following probe installation, a minimum of two hours was allowed for the subsurface to equilibrate prior to vapor sampling. Samples were then collected in accordance with the *Advisory Active Soil Gas Investigations* (DTSC, July 2015) following a shut-in test, with the entire sampling train beneath a sampling shroud using helium as a tracer gas, with a sampling regulator limiting flow to between 100 to 200 milliliters per minute following a purge of approximately 210 mL, and with laboratory supplied Summa canisters submitted for analysis by EPA Method TO-15 of CVOCs plus helium. Prior to soil vapor sampling on March 14 and 15, 2018, the following precipitation was measured in Oakland¹⁶: March 15, 2018 (0.28 inches); March 14, 2018 (0.04 inches); March 13, 2018 (0.36 inches); March 12, 2018 (0.13 inches); March 9, 10, and 11, 2018 (0.00 inches). However, the soil vapor samples were collected beneath the existing building during a rainfall event consistent with applicable regulatory guidance, which states "soil gas sampling after rainfall can proceed where infiltration has not occurred, such as under buildings or beneath high-integrity pavement"¹⁷.

EnviroAssets collected a soil vapor sample in the unpaved small limited access area between 6251 College Avenue and 6241 College Avenue on May 14, 2018. A temporary vapor probe was driven to a depth of 5.5 feet bgs then pulled back to 4.5 feet at B21 (Figure 2) using Geoprobe post-run tubing methodology as described in the ACDEH Responsive Environmental Investigation Workplan. After allowing at least 2-hours for the subsurface to equilibrate, samples were collected in accordance with the Advisory Active Soil Gas Investigations (DTSC, July 2015) following a shut in test, with the entire sampling train beneath a sampling shroud using helium as a tracer gas, with a sampling regulator limiting flow to between 100 to 200 milliliters per minute following a purge of approximately 210 mL, and with laboratory supplied Summa canisters submitted for analysis by EPA Method TO-15 of CVOCs plus helium. During purging, helium was noted in purge gas at unacceptable concentrations which led to the decision to replace the PRT tubing and adapter. Following replacement of the PRT tubing and adapter, no helium was observed in purge gas or the laboratory sample. Prior to soil vapor sampling performed within the unpaved small limited access area, the following precipitation was measured in Oakland: from April 18 through May 14, 2018 0.00 inches of precipitation was recorded with the previous significant rain event as defined by the DTSC Soil Gas Advisory was 0.70 inches of precipitation on April 7, 2018 (27 days prior to the May 14, 2018 vapor sampling).

6.5.2 Soil Sampling

Following installation of the four temporary soil vapor probes, continuously cored soil borings were advanced at locations B15 and B16, proximate to the sanitary sewer line. Within this

¹⁶ Weather data recorded at KOAK (Oakland International Airport, Alameda County)

¹⁷ DTSC, Advisory Active Soil Gas Investigations, July 2015

document, soil samples are described from their deepest depth (i.e. a sample collected from 1.5-2 feet deep is described as a 2-foot sample). Shallow soil samples were collected at B15 and B16 from the first soil encountered beneath the concrete slab and base materials at a depth from approximately 1.5-2 foot bgs. These shallow samples were cut from continuous 4 ft. acetate tubes into six inch sections, capped, labeled with sample location with the deepest sample interval depth indicated on the acetate, and immediately placed in iced coolers. These two soil samples were analyzed for the presence of California Assessment Manual (CAM) 17 metals using EPA Test Methods 6010B and 7471A for soil characterization purposes in conjunction with seismic retrofit soil excavation and disposal. Soil samples from both 2 feet bgs and 8 feet bgs (below the sanitary sewer invert shown on attached Subtronic utility survey from 5 to 5.5 feet bgs) were analyzed for CVOCs, with approximate 5-gram aliquots of soil collected from the acetate tubes and field preserved for CVOC analysis. Field preservation of soil samples was consistent with EPA Method 5035A and Method 8260B, using Terra Core Soil Sampler® devices to obtain measured samples that were transferred into 40-ml VOA bottles prepared by the laboratory (two VOAs with 5-ml of deionized water and one VOA with 10-ml of methanol). Boring locations are presented on Figure 2.

On April 18, 2018, four shallow soil samples were collected from four randomized grid locations (B17-B20) within the approximately 350 sf area within 307 63rd Street, resulting in a very conservative grid size of less than $10^{\circ}x10^{\circ}$. Samples were collected with stainless steel trowels and laboratory supplied large mouth glass bottles from the soil surface to approximately 6-inches below the new grade associated with the seismic retrofit work in the space – approximately 12-inches below original sub-slab grade. These samples were collected to identify if residual concentrations of lead identified in samples previously collected immediately below grade prior to foundation excavation work were found in shallow soil post-excavation. The four samples were submitted for lead analysis by EPA Method 6010B.

6.5.3 Grab Groundwater Sampling

On March 15, 2018, grab groundwater sampling was attempted from both continuously cored soil borings, B-15 and B-16. Drilling rods were advanced to a depth of 20 feet bgs in both borings, after which drilling rods were removed and 10-feet of temporary well screen was inserted into the borehole. However, no groundwater was encountered after allowing the borehole to stabilize for more than 45-minutes. Subsequently, drilling rods were reinserted and advanced to depths of 24 feet bgs, followed with 10-feet of screened PVC casing placed in both boreholes. Groundwater was still not present in both borings after 45-minutes. The surfaces of both borings were protected, and the borings were allowed to stabilize overnight. On the morning of March 16, 2018, no groundwater was present in B-16, however groundwater was present in B-15 at a depth of 23.7 feet bgs. A groundwater sample was then collected (B15 S/GW-W) from within the PVC casing using a small diameter polyethylene bailer. The

groundwater sample was collected in three 40-ml VOA vials supplied by the laboratory that were preserved with hydrochloric acid.

7.0 DECONTAMINATION

Drive rods and other reusable components were precleaned and decontaminated prior to transporting them onsite by washing the equipment with a non-phosphate detergent and rinsing with tap water and/or by steam-cleaning. Sampling manifolds were returned to the laboratory for decontamination.

8.0 SOIL, SOIL VAPOR, SUB-SLAB VAPOR, AND GROUNDWATER RESULTS DISCUSSION

Identified concentrations of CVOCs at the Subject Property are below current conservative commercial property screening levels for soil, sub-slab and soil vapor, and drinking water standards. Further, the sampling locations were distributed near potential release mechanisms and sources and down-gradient property boundaries in order to identify if an on-site environmental problem existed. Tables 1, 2, and 3 present results of the soil, soil vapor, sub-slab vapor, and groundwater analyses performed at the Subject Property. Laboratory analytical reports are provided in Appendix D.

8.1 Soil Sampling Discussion

No CVOCs were detected in soil samples collected from three borings completed at the Subject Property (Table 1, B15, B16, and MW-1). Soil samples were collected below sewer inverts in two locations within 307 63rd Street (B15 and B16) and beneath the waste storage area of the Subject Property (MW-1). The lack of detections of CVOCs in soil samples indicates that dry cleaning chemicals were not released proximate to sample locations and depths, which targeted "potential release mechanisms and sources"¹⁸.

Two shallow samples collected at B15 and B16 were analyzed for inorganics (Table 2) to characterize shallow soils anticipated to be removed during seismic retrofit activities - when soil was removed to approximately 12" below grade within the 310 sf 307 63rd Street space. Inorganic chemicals were below regulatorily significant concentrations with the following exceptions: chromium in sample "B15 S/GW-S2-A" and lead in sample "B16 S/GW-S2-A" exceeded the 20x dilution rule-of-thumb used to identify samples that could potentially exceed the toxicity characteristic leaching procedure ("TCLP") that is provided under federal regulations to simulate leaching through a landfill and designate hazardous waste. Consequently, TCLP and soluble threshold limit concentration ("STLC", the California version of the landfill leaching test

¹⁸ SCVWD, Study of Potential for Groundwater Contamination from Past Dry Cleaner Operations in Santa Clara County, September 2007

for state hazardous waste) extraction and analysis were conducted. Only the STLC test for lead in sample "B16 S/GW-S2-A" exceeded regulatory limits for California hazardous waste. The concentrations of lead in samples B15 S/GW-S2-A and B16 S/GW-S2-A were 34 mg/Kg and 240 mg/Kg for and average concentration of 137 mg/Kg. Lead was commonly used in historical building practices during the early 20th century period when the building was constructed. These historical construction practices are the most probably the source of elevated lead in sample B16 S/GW-S2-A, and lead impacts are not associated with historical dry cleaning practices. Based on these results, soil excavated during seismic retrofit activities was disposed of as California Hazardous Waste. Disposal documentation is included in Appendix B.

Following completion of excavation work associated with the seismic retrofit beneath 307 63rd Street, four shallow soil samples were collected and analyzed for lead (Figure 2, Table 2). Lead concentrations in the shallow samples ranged from 30 mg/Kg to 42 mg/Kg. These concentrations are all below the residential Environmental Screening Level (Water Board) and DTSC guidance concentration for lead of 80 mg/Kg. These results indicate that lead impacted soil was removed during the shallow excavation, residual lead concentrations are not significant beneath the 307 63rd Street space, and soil beneath the space can be handled without concern for lead impacts.

8.2 Soil Vapor Discussion

Seven soil vapor samples were collected at the Subject Property – four within 307 63rd Street, two in the alleyway behind 6251 College Avenue, and one in the unpaved small limited access area between 6251 College Avenue and 6241-47 College Avenue. Three samples were obtained from approximately 7-feet bgs, three from approximately 15-feet bgs, and one from approximately 5.5 feet bgs. The samples were collected within 30-feet of the former location of dry cleaning equipment, back storage/waste area, and sanitary sewer lateral. These sampling locations and depths were selected because they are either proximate to a potential release source (such as the sanitary sewer or former dry cleaning equipment area), or are downgradient of these areas. Additionally, the samples are spaced approximately 30-feet or less, which is effective for source identification in low permeability materials and flat groundwater gradients that enhance lateral spreading of contaminants over time – the conditions that exist at the Subject Property. The highest concentration of PCE identified in these subsurface soil vapor samples is 49.04 μ g/m3, and PCE was not detected in vapor samples collected from location B16¹⁹, or in the 7foot sample from SG-12. All concentrations are substantially below the current commercial soil vapor ESL of 2,100 µg/m3 and do not indicate a significant release occurred at the Subject Property. Therefore, the soil vapor samples are sufficient to confirm that a release that presents a significant threat to human health or the environmental and merits remediation does not exist at the Subject Property.

 $^{^{19}}$ TCE was detected at 38.73 $\mu g/m3$ from location B16 at 7-feet bgs.

Additionally, all of the soil vapor samples were collected near Subject Property boundaries in locations between areas associated with potential release mechanisms and sources (sewer laterals, former equipment locations, and the waste storage area) and neighboring properties. If offsite migration of soil vapor was occurring, we would except to detect elevated concentrations of PCE in these locations. Because elevated concentrations of PCE were not detected, the samples results demonstrate that contamination migration is not a significant concern.

8.3 Sub Slab Vapor

Sub-slab vapor sampling is intended to identify if vapor intrusion to indoor air is a concern, and is not conventionally used to understand the nature and extent of contamination in the subsurface because building construction techniques usually create a sub-base composition that is substantially different from underlying undisturbed native soils. The sample ("V-VP-1-A"), collected from immediately beneath the historical building slab within 307 63rd street, contained tetrachloroethylene ("PCE") at 78.87 μ g/m3 (Table 3). No other chlorinated volatile organic compounds ("CVOCs") were detected in the sample. This concentration is substantially beneath the current soil vapor Environmental Screening Level ("ESL") for commercial properties provided by the Water Board of 2,100 μ g/m3²⁰.

Within the portion of the Property where the seismic retrofit was completed previously and a new building slab was installed, PCE was detected within the three samples at concentrations of 270.60 (V-VP-2-A), 239.11 (V-VP-3-A) and 12.69 (V-VP-4-A) μ g/m3. These concentrations are substantially below the current commercial vapor ESL of 2,100 μ g/m3. Consequently, the sub-slab samples indicate that vapor intrusion is not a significant concern at the Subject Property.

8.4 Groundwater Sampling Discussion

Groundwater samples have been collected from two locations on the Subject Property, approximately 30-feet apart and located downgradient of the former dry cleaning area (MW-1, in the alleyway behind 6251 College Avenue) and the Subject Property sanitary sewer lateral (B15, within 307 63^{rd} Street). The concentrations of CVOCs (Table 1) identified in B15 S/GW-W (4.6 μ g/L of PCE and 0.69 μ g/L of TCE) and in MW-1 (1.2 μ g/L of PCE) are below the drinking water standards that are set at 5 μ g/L for both chemicals (drinking water standards are referred to as maximum contaminant levels or "MCLs"). Neither sample concentration suggest that a significant release occurred at the Subject Property, and both are considered de-minimis with respect to environmental guidance.

²⁰ San Francisco Bay Regional Water Quality Board (Water Board), *Environmental Screening Levels (ESLs)*, February 2016.

The two groundwater sampling locations, MW-1 and B15, are located downgradient of the former Subject Property dry cleaning area and the Subject Property sanitary sewer lateral (respectively) in locations well chosen to evaluate the potential for significant releases from the Subject Property. The hydrogeology at the Subject Property is primarily low-permeability clayey soils with a relatively flat groundwater gradient trending to the southeast.²¹ That type of hydrology would allow diffusion and dispersion through low permeability soils to cause lateral spreading of contamination in both groundwater and soil vapor over the potential release timeline of over 30-years (Red Hanger left the Subject Property in approximate to 1987). Consequently, the location and sample spacing of approximately 30-feet is appropriate to confirm that a significant release to groundwater has not occurred at the Subject Property.

9.0 SUBJECT PROPERTY CONDITIONS RELATIVE TO CCV PROPERTY

The following discussion places Subject Property analytical results in context of the neighboring open regulatory site – the CCV Property.

9.1 Groundwater Data

When evaluated in context with historical grab and monitoring well data, as depicted on Figure 4, it is evident that the below drinking water standards detections of CVOCs in B15 and MW-1 are not the source of groundwater concentrations observed downgradient of the Subject Property, which: have been observed an order of magnitude higher, as high as 48 μ g/L (SB1) and 56 μ g/L (B10); were detected at locations proximate to identified releases from the former dry cleaning equipment area, and rear storage area and sewer lateral at the CCV Property. This conclusion is consistent with industry knowledge that concentrations of contaminants will decrease with distance from a source area due to natural attenuation processes, including "biodegradation, dispersion, dilution, adsorption, volatilization and chemical or biological stabilization or destruction of contaminants"²². The groundwater data provided on Figure 4 demonstrate that concentrations *increase* downgradient of the Subject Property with proximity to the former dry cleaning area, and rear storage area and sewer lateral at the CCV Property. This aligns with the source of elevated groundwater contamination being a release at the CCV Property because "the greater the distance between a source of contamination and a ground water source, the more likely that natural processes will reduce the impacts of contamination"²³. As requested by the ACDEH, a companion table with source information regarding the depths to water provided on Figure 4 was prepared (Table 4).

²¹ Op. cit., LRM 2017.

²² ITRC, Natural Attenuation of Chlorinated Solvents in Groundwater, Principles and Practices, September 1999

²³ Belk, Tom, Wellhead Protection: A Guide for Small Communities, 1994

We note that figures and tables provided in its September 2017 report²⁴ and conclusions drawn by LRM²⁵ that there is an absence of PCE impacted groundwater downgradient of the Subject Property were made without considering grab groundwater samples collected for their client from 2008 through 2016 (Figure 4). These samples include detections of PCE ranging from 7 to 18 μ g/L from locations B7, B8, and B13 that were collected in the vicinity of the August 2017 non-detections in monitoring wells MW-2 and MW-3 that LRM relied upon for its conclusion. These concentrations exceed those collected on the Subject Property – and were identified in locations downgradient – which demonstrate an inverse gradient to the Subject Property. Additionally, CCV's own consultant LRM concluded that "groundwater impacts across the various properties remain insignificant and do not warrant remediation"²⁶.

9.2 Soil Vapor Data

In contrast to samples collected at the Subject Property, soil vapor samples collected across the CCV Property have been detected at significantly elevated levels – well above ESLs. Before the soil vapor extraction system started running at CCV's Property, samples collected within 30-feet of potential release mechanisms and sources at the CCV Property, including the former dry cleaning equipment area and rear storage area and sewer lateral, wereas high as $61,000 \mu g/m3$ in shallow soil gas (SG6-7) and 120,000 $\mu g/m3$ in deep soil gas (SG2-17). Furthermore, **every** sample collected within 30-feet of the dry cleaning area, and rear storage area and associated sewer lateral has contained PCE at concentrations well above Subject Property concentrations and associated regulatory screening levels. Consultants for the CCV Property observed that the pattern of impacts at the CCV Property are associated with potential release mechanisms and sources at the CCV Property, including sewer cleanouts, former equipment locations, and property boundaries opposite from those most proximate to the Subject Property including:

- The highest concentration of PCE in soil gas was found at the sewer cleanout" and that "[t]he highest concentration PCE in the subslab samples was found near the former location of the dry cleaning machines next to a crack in the slab" (source: Youngdahl, *Phase II Environmental Site Assessment Soil Gas Investigation Report*, July 27, 2015).
- "the highest concentrations of PCE soil gas were consistently detected in the vicinity of the sanitary sewer pipe immediately to the north of the former Red Hanger Kleaners store, with the highest PCE shallow soil gas concentration detected immediately to the south of the sanitary sewer cleanout and the highest deep soil gas concentrations detected adjacent to and immediately downgradient of the sanitary sewer cleanout" (source: P&D Environmental, *Site Investigation and Soil Vapor Extraction Report*, July 2016).

²⁴ Op. cit., LRM 2017

²⁵ LRM, Response to EnviroAssets, Inc. (EAI) Comments on The Supplemental Remedial Investigation Report, November 6, 2017 [LRM 2017a]

²⁶ Op. cit., LRM 2017

• Peak concentrations of PCE are located "along the western boundary of the 6235-6239 College Ave., property" (source: LRM Consulting Inc., *Supplemental Remedial Investigation Report*, September 27, 2017).

Again, the data demonstrate that concentrations *increase* with distance when moving away from the Subject Property and *increase* with proximately to the former dry cleaning area, and rear storage area and sewer lateral at the CCV Property. This identifies that the source on the CCV Property is a release on the CCV Property, and not migration from the Subject Property, as "[v]apor concentrations generally decrease with increasing distance from a subsurface vapor source"²⁷.

The fact that soil vapor concentrations of PCE increase with proximity to the likely sources – the former dry cleaning equipment area, the CCV Property sewer lateral connection, the storage and delivery area behind the cleaning area, and the sewer lateral that has identified breaks - is conspicuous and self-evident on the two soil vapor contours (shallow and deep) prepared by P&D Environmental and attached to this document (P&D, figures 7 and 8, Appendix C). The contours show concentration peaks near likely source areas. We note also that these contours highlight very elevated soil vapor concentrations (7,000 µg/m3 in SG7-7, and 37,000 µg/m3 at SG7-17) that have been detected on the CCV Property within 30-feet of the Subject Property boundary – presenting a high likelihood that the vapor plume or "mound" emanating from 6235 College Avenue (CCV Property) has "migrate[d] radially in all directions from the source (i.e., upward toward the atmosphere, laterally outward, and downward toward the water table)"²⁸ and spread out laterally onto the Subject Property.

With respect to ACDEH stated interest in clarifying the source of soil vapor at locations SG 11 and SG 4, we note that the soil vapor concentrations observed at these locations (observed as high as $34,000 \ \mu g/m3$) are significantly higher than those on the Subject Property, demonstrating an inverse gradient from the Subject Property. Additionally, SG 4 and SG 11 are within approximately 12-feet of the sewer lateral at the CCV Property and over 60-feet from the Subject Property sewer lateral or former dry cleaning equipment area where soil vapor concentrations have been demonstrated to be very low and would not drive downgradient contamination as observed at the CCV Property. These data demonstrate that the source of soil vapor at these locations is a release from the former dry cleaning area, and rear storage area and sewer lateral at the CCV Property.

²⁷ USEPA, Technical Guide for Addressing Petroleum Vapor Intrusion At Leaking Underground Storage Tank Sites, June 2015

²⁸ USEPA, Conceptual Model Scenarios for the Vapor Intrusion Pathway, February 2012

Please note that during preparation of this report, we were unable to reconcile soil vapor sample locations presented on figures provided by P&D Environmental Inc.²⁹ and LRM Consulting Inc.³⁰ including noting that location SVE3 is depicted as inside the building outlines by LRM and outside the building by P&D. Consequently, we have attached soil vapor figures (Appendix C) provided by the two consultants rather than compiling a comprehensive single figure.

10.0 CONCLUSION

Identified concentrations of chemicals of concern – chlorinated solvents related to historical dry cleaning operations or chlorinated volatile organic compounds ("CVOCs") - are below current guidance concentrations provided by the Regional Water Quality Control Board ("Water Board") for commercial property (environmental screening levels or "ESLs") and State and Federal drinking water standards (maximum contaminant level or "MCLs"). The Water Board intends the ESLs to be conservative so that sites where "concentrations of a limited number of contaminants are well below their respective ESLs"³¹ can be screened out from "additional site investigation, remedial action or a more detailed risk assessment"³². Drinking water standards, MCLs, are assumed to be safe for daily consumption of water from drinking water systems – and are therefore additionally conservative for the shallow groundwater at the Subject Property, which is not currently used for drinking water. Therefore, it can be assumed that the Subject Property does not pose a significant threat to human health, water resources, or the environment – where "significant" refers to a level of risk that would require additional evaluation or remediation.

Given the combination of the laboratory data results, the number and distribution of samples across the Subject Property near potential source areas and the property boundaries, there is no vapor threat to indoor air, no evidence indicative of a significant release at the Subject Property, and nothing indicating a threat of migration from the Subject Property to the CCV Property.

Furthermore, these data in context of the comprehensive dataset of soil vapor and groundwater data associated with the identified release from the former dry cleaning area, and rear storage area and sewer lateral at the CCV Property, demonstrate concentration gradients that are opposite what would be anticipated if the Subject Property was an upgradient source of the contamination at the CCV Property. Additionally, the pattern of impacts at the CCV Property are associated with potential release mechanisms and sources at the CCV Property, including sewer cleanouts, former equipment locations, and property boundaries opposite from those most proximate to the

²⁹ P&D Environmental Inc., Site Investigation and Soil Vapor Extraction Report, July 11, 2016, [P&D 2016], Figures 3-8

³⁰ Op. cit., LRM 2017, Figures 1-4

³¹ Water Board, User's Guide: Derivation and Application of Environmental Screening Levels (ESLs), Interim Final 2016

³² Ibid

Subject Property. Based on these data, the source of elevated soil vapor and groundwater impacts at the CCV Property is the release(s) at the CCV Property.

Based on these data, the Subject Property does not pose a significant threat to human health, water resources, or the environment and it does not require remediation. As clearly intended by the Water Board's ESL document, the Subject Property can be can be screened out from additional site investigation, remedial action, or a more detailed risk assessment. The Subject Property should be given a No Further Action letter, and retain its no-case status.

11.0 LIMITATIONS

This project update is presented in accordance with generally accepted professional environmental practices, based on available data discussed within this report, and within the scope of the project. There is no other warranty, either express or implied.

12.0 REFERENCES

DTSC, Advisory Active Soil Gas Investigations, July 2015

EnviroAssets, ACDEH Responsive Environmental Investigation Workplan, February 28, 2018

EnviroAssets, Screening Subslab Vapor Survey, June 5, 2017

EnviroAssets, Data Update - ACDEH Responsive Environmental Investigation, April 6, 2018

GeoTracker http://geotracker.waterboards.ca.gov/profile_report.asp?global_id=T10000000416

LRM Consulting Inc., *Supplemental Remedial Investigation Report*, September 27, 2017 Regional Water Quality Control Board – San Francisco, *Environmental Screening Levels*, February 2016, Rev. 3.

Santa Clara Valley Water District, *Study of Potential for Groundwater Contamination from Past Dry Cleaner Operations in Santa Clara County*, September 2007

USEPA, Hazardous Waste Test Methods/SW-846

Figures

Scale in Feet

Aerial photograph sourced from Google Earth

ło.	Date	Revision	Approved	Date:	5/26/2017		
				Drawn:	MH		
				E11 31	E + 22 / 0 / 12		
				File Name:	EA22404-17		

PROPERTY VICINITY 6251-6255 College Avenue, 305 & 307 63rd Street Oakland, California

NOTES:

Not all utilities may be shown. Some laterals were not accessible & were therefore not located.

Depths shown are to center of conductive utility & are generally +/-10% of actual depth, when not distorted by adjacent conductors. Accuracy of electronic depth decreases when adjacent utilities are located within 5 ft

Critical depths require verification by potholing. Sanitary & storm depths are measured from rim to invert level.

ABREVIATIONS:

AB	ABANDONED
CA	COMPRESSED AIR
CB	CATCH BASIN
CI	CAST IRON
СМ	COMMUNICATION
CMP	CORRUGATED METAL PIPE
CO	CLEAN OUT
CP	TEST CORROSION PROTECTION BOX
E	ELECTRIC
EOP	END OF PIPE
EOT	END OF TRACE
FH	FIRE HYDRANT
FO	FIBER OPTIC
FW	FIRE WATER
G	GAS
GA	GAS ANODE
GM	GAS METER
GBX	GAS BOX
G RSR	GAS RISER
GV	GAS VALVE
HV	HIGH VOLTAGE
IBX	IRRIGATION BOX
IRC	IRRIGATION CONTROL
ICV	IRRIGATION CONTROL VALVE
IRR	IRRIGATION
LV	LOW VOLTAGE
MH	MANHOLE
NL	NOT LOCATED
OE	OPEN END
PED	PEDESTAL
RCB	REINFORCED CONCRETE BOX
RSR	RISER
SD	STORM DRAIN
SIG	SIGNAL
SL	STREET LIGHT
SS	SANITARY SEWER
Т	TELEPHONE
TOP	TOP OF PIPE
TON	TOP OF VALVE NUT
TR	TRAFFIC SIGNAL
TRP	TRAFFIC SIGNAL POLE
TRBX	TRAFFIC SIGNAL BOX
WBX	WATER BOX
WM	WATER METER
WV	WATER VALVE
UN	UNKNOWN UTILITY

Figure 3 Subtronic Utility Survey

LEGEND:	
Water Gas Unknown Electric Telephone	
DIAMETER (INCHES) -UTILITY NAME -DEPTH	
033410	

Tables

TABLE 1: SOIL AND GROUNDWATER ANALYTICAL SUMMARY - CVOCs

A

307 63rd Street; and 6251, 6253, and 6255 College Avenue

Oakland, California

Sample Location	Matrix	Field Sample ID	Sample Date	Sample Depth	Units	Tetrachloroethylene (PCE)	Trichloroethylene (TCE)	cis-1,2-Dichloroethylene (c-1,2-DCE)	trans-1,2-Dichloroethylene (trans-1,2-DCE)	Vinyl chloride
B15	S	B15 S/GW-S2-A	3/15/2018	2	µg/Kg	<4.6	<4.6	<4.6	<4.6	<4.6
B15	S	B15 S/GW-S8-A	3/15/2018	8	µg/Kg	<3.9	<3.9	<3.9	<3.9	<3.9
B15	W	B15 S/GW-W	3/16/2018	23.5	μg/L	4.6	0.69	<0.50	<0.50	<0.50
B15 B16	W S	B15 S/GW-W B16 S/GW-S2-A	3/16/2018 3/15/2018	23.5 2	μg/L μg/Kg	4.6 <5.8	0.69 <5.8	<0.50 <5.8	<0.50 <5.8	<0.50 <5.8
B15 B16 B16	W S S	B15 S/GW-W B16 S/GW-S2-A B16 S/GW-S8-A	3/16/2018 3/15/2018 3/15/2018	23.5 2 8	μg/L μg/Kg μg/Kg	4.6 <5.8 <3.8	0.69 <5.8 <3.8	<0.50 <5.8 <3.8	<0.50 <5.8 <3.8	<0.50 <5.8 <3.8
B15 B16 B16 MW-1	W S S S	B15 S/GW-W B16 S/GW-S2-A B16 S/GW-S8-A MW-1 @ 5	3/16/2018 3/15/2018 3/15/2018 7/25/2017	23.5 2 8 5	μg/L μg/Kg μg/Kg μg/Kg	4.6 <5.8 <3.8 <5.0	0.69 <5.8 <3.8 <5.0	<0.50 <5.8 <3.8 <5.0	<0.50 <5.8 <3.8 <5.0	<0.50 <5.8 <3.8 <5.0
B15 B16 MW-1 MW-1	W S S S S	B15 S/GW-W B16 S/GW-S2-A B16 S/GW-S8-A MW-1 @ 5 MW-1 @ 15	3/16/2018 3/15/2018 3/15/2018 7/25/2017 7/25/2017	23.5 2 8 5 15	μg/L μg/Kg μg/Kg μg/Kg μg/Kg	4.6 <5.8 <3.8 <5.0 <5.0	0.69 <5.8 <3.8 <5.0 <5.0	<0.50 <5.8 <3.8 <5.0 <5.0	<0.50 <5.8 <3.8 <5.0 <5.0	<0.50 <5.8 <3.8 <5.0 <5.0
B15 B16 MW-1 MW-1 MW-1 MW-1	W S S S S S	B15 S/GW-W B16 S/GW-S2-A B16 S/GW-S8-A MW-1 @ 5 MW-1 @ 15 MW-1-25'	3/16/2018 3/15/2018 3/15/2018 7/25/2017 7/25/2017 7/25/2017	23.5 2 8 5 15 25	μg/L μg/Kg μg/Kg μg/Kg μg/Kg μg/Kg	4.6 <5.8	0.69 <5.8 <3.8 <5.0 <5.0 <10	<0.50 <5.8 <3.8 <5.0 <5.0 <10	<0.50 <5.8 <3.8 <5.0 <5.0 <10	<0.50 <5.8 <3.8 <5.0 <5.0 <10

Note:

S soil

W water

<# not detected below provided detection limit

TABLE 2: SOIL ANALYTICAL SUMMARY - INORGANICS 307 63rd Street; and 6251, 6253, and 6255 College Avenue Oakland, California

1

Sample Location	B15	B16	B17	B18	B19	B20
Sample Name	B15 S/GW-S2-A	B16 S/GW-S2-A	S-B17-0.5-A	S-B18-0.5-A	S-B19-0.5-A	S-B20-0.5-A
Sample Date	3/15/2018	3/15/2018	4/18/2018	4/18/2018	4/18/2018	4/18/2018
Sample Depth	2	2	0.5*	0.5*	0.5*	0.5*
Metals/Inorganics Results Presented in mg/Kg						
Antimony	2.8	<1.8	NA	NA	NA	NA
Arsenic	5.9	4	NA	NA	NA	NA
Barium	150	180	NA	NA	NA	NA
Beryllium	0.47	0.43	NA	NA	NA	NA
Cadmium	<0.41	<0.45	NA	NA	NA	NA
Chromium	140	33	NA	NA	NA	NA
Cobalt	11	8.5	NA	NA	NA	NA
Copper	50	32	NA	NA	NA	NA
Lead	34	240	42	33	30	31
Mercury	0.039	0.085	NA	NA	NA	NA
Molybdenum	16	<1.8	NA	NA	NA	NA
Nickel	51	32	NA	NA	NA	NA
Selenium	<3.3	<3.6	NA	NA	NA	NA
Silver	<0.81	<0.91	NA	NA	NA	NA
Thallium	<1.6	<1.8	NA	NA	NA	NA
Vanadium	41	36	NA	NA	NA	NA
Zinc	80	110	NA	NA	NA	NA
STLC Results Presented in mg/L						
Chromium	0.22	NA	NA	NA	NA	NA
Lead	NA	160	NA	NA	NA	NA
TCLP Results Presented in mg/L						
Chromium	<0.10	NA	NA	NA	NA	NA
Lead	NA	0.29	NA	NA	NA	NA

Note:

<# Not detected below listed detection limit

* Depth below soil elevation following shallow soil excavation for foundation slab - between 12 and 18 inches below original slab elevation NA Not analyzed

TABLE 3: SOIL VAPOR AND SUB-SLAB VAPOR ANALYTICAL SUMMARY

307 63rd Street; and 6251, 6253, and 6255 College Avenue Oakland, California

Sample Location	Field Sample ID	Sample Date	Sample Type	Depth	Units	Tetrachloroethylene (PCE)	Trichloroethylene (TCE)	cis-1,2-Dichloroethylene (c-1,2-DCE)	trans-1,2-Dichloroethylene (trans-1,2-DCE)	vinyl chloride	Helium (presented in %)
Environmental	Screening Level (ES	L) - commercial		-		2,100	3,000	35,000	350,000	160	1%*
B15V	V-B15-7-A	3/15/2018	PRI	7	µg/m3	49.04	12.92	<6.93	<4.65	<4.18	<0.150%
B15V	V D1E 1E A										
L	V-B15-15-A	3/15/2018	PRI	15	µg/m3	14.06	32.85	<6.34	<4.25	<3.82	0.757%
B16V	V-B15-15-A V-B16-7-A	3/15/2018 3/15/2018	PRI PRI	15 7	μg/m3 μg/m3	14.06 <4.12	32.85 38.73	<6.34 <5.33	<4.25 <3.58	<3.82 <3.21	0.757% <0.081%
B16V B16V	V-B15-15-A V-B16-7-A V-B16-15-A	3/15/2018 3/15/2018 3/15/2018	PRI PRI PRI	15 7 15	μg/m3 μg/m3 μg/m3	14.06 <4.12 <4.91	32.85 38.73 <7.44	<6.34 <5.33 <6.34	<4.25 <3.58 <4.25	<3.82 <3.21 <3.82	0.757% <0.081% 0.101 J%
B16V B16V B21	V-B13-15-A V-B16-7-A V-B16-15-A V-B17-5.5	3/15/2018 3/15/2018 3/15/2018 5/14/2018	PRI PRI PRI PRI	15 7 15 5.5	μg/m3 μg/m3 μg/m3 μg/m3	14.06 <4.12 <4.91 10.74	32.85 38.73 <7.44 <6.26	<6.34 <5.33 <6.34 <5.33	<4.25 <3.58 <4.25 <3.58	<3.82 <3.21 <3.82 <3.21	0.757% <0.081% 0.101 J% <0.096
B16V B16V B21 VP-1	V-B15-13-A V-B16-7-A V-B16-15-A V-B17-5.5 V-VP-1-A	3/15/2018 3/15/2018 3/15/2018 5/14/2018 3/14/2018	PRI PRI PRI PRI PRI	15 7 15 5.5 NA	μg/m3 μg/m3 μg/m3 μg/m3 μg/m3	14.06 <4.12 <4.91 10.74 78.87	32.85 38.73 <7.44 <6.26 <7.82	<6.34 <5.33 <6.34 <5.33 <6.66	<4.25 <3.58 <4.25 <3.58 <4.47	<3.82 <3.21 <3.82 <3.21 <4.02	0.757% <0.081% 0.101 J% <0.096 <0.117%
B16V B16V B21 VP-1 VP-2	V-B15-13-A V-B16-7-A V-B16-15-A V-B17-5.5 V-VP-1-A V-VP-2-A	3/15/2018 3/15/2018 3/15/2018 5/14/2018 3/14/2018 3/14/2018	PRI PRI PRI PRI PRI PRI	15 7 15 5.5 NA NA	μg/m3 μg/m3 μg/m3 μg/m3 μg/m3 μg/m3	14.06 <4.12 <4.91 10.74 78.87 270.60	32.85 38.73 <7.44 <6.26 <7.82 <8.13	<6.34 <5.33 <6.34 <5.33 <6.66 <6.93	<4.25 <3.58 <4.25 <3.58 <4.47 <4.65	<3.82 <3.21 <3.82 <3.21 <4.02 <4.18	0.757% <0.081% 0.101 J% <0.096 <0.117% <0.120%
B16V B16V B21 VP-1 VP-2 VP-3	V-B15-15-A V-B16-7-A V-B16-15-A V-B17-5.5 V-VP-1-A V-VP-2-A V-VP-3-A	3/15/2018 3/15/2018 3/15/2018 5/14/2018 3/14/2018 3/14/2018 3/14/2018	PRI PRI PRI PRI PRI PRI PRI	15 7 15 5.5 NA NA NA	μg/m3 μg/m3 μg/m3 μg/m3 μg/m3 μg/m3 μg/m3	14.06 <4.12 <4.91 10.74 78.87 270.60 239.11	32.85 38.73 <7.44 <6.26 <7.82 <8.13 <8.44	<6.34 <5.33 <6.34 <5.33 <6.66 <6.93 <7.19	<4.25 <3.58 <4.25 <3.58 <4.47 <4.65 <4.83	<3.82 <3.21 <3.82 <3.21 <4.02 <4.18 <4.34	0.757% <0.081% 0.101 J% <0.096 <0.117% <0.120% <0.129%
B16V B16V B21 VP-1 VP-2 VP-3 VP-4	V-B15-15-A V-B16-7-A V-B16-15-A V-B17-5.5 V-VP-1-A V-VP-2-A V-VP-2-A V-VP-3-A V-VP-4-A	3/15/2018 3/15/2018 3/15/2018 5/14/2018 3/14/2018 3/14/2018 3/14/2018 3/14/2018	PRI PRI PRI PRI PRI PRI PRI PRI	15 7 15 5.5 NA NA NA NA	μg/m3 μg/m3 μg/m3 μg/m3 μg/m3 μg/m3 μg/m3 μg/m3	14.06 <4.12 <4.91 10.74 78.87 270.60 239.11 12.69	32.85 38.73 <7.44 <6.26 <7.82 <8.13 <8.44 <8.01	<6.34 <5.33 <6.34 <5.33 <6.66 <6.93 <7.19 <6.82	<4.25 <3.58 <4.25 <3.58 <4.47 <4.65 <4.83 <4.58	<3.82 <3.21 <3.82 <3.21 <4.02 <4.18 <4.34 <4.11	0.757% <0.081% 0.101 J% <0.096 <0.117% <0.120% <0.129% <0.123%
B16V B16V B21 VP-1 VP-2 VP-3 VP-4 SG-12	V-B15-13-13-A V-B16-7-A V-B16-15-A V-B17-5.5 V-VP-1-A V-VP-2-A V-VP-2-A V-VP-3-A V-VP-4-A SG-12-7	3/15/2018 3/15/2018 3/15/2018 5/14/2018 3/14/2018 3/14/2018 3/14/2018 3/14/2018 8/7/2017	PRI PRI PRI PRI PRI PRI PRI PRI PRI	15 7 15 5.5 NA NA NA NA 7	μg/m3 μg/m3 μg/m3 μg/m3 μg/m3 μg/m3 μg/m3 μg/m3	14.06 <4.12 <4.91 10.74 78.87 270.60 239.11 12.69 <3.4	32.85 38.73 <7.44 <6.26 <7.82 <8.13 <8.44 <8.01 <2.8	<6.34 <5.33 <6.34 <5.33 <6.66 <6.93 <7.19 <6.82 <2.0	<4.25 <3.58 <4.25 <3.58 <4.47 <4.65 <4.83 <4.58 <2.0	<3.82 <3.21 <3.82 <3.21 <4.02 <4.18 <4.34 <4.11 <1.3	0.757% <0.081% 0.101 J% <0.096 <0.117% <0.120% <0.129% <0.123% <0.0505%

Note:

<# not detected below provided detection limit

NA Not applicable (sub-slab sampling collected immediately beneath building slab)

Use of the subslab ESLs for the subslab line of evidence assumes an intact slab.

* DTSC guidance allows for ambient air leak up to 5%. Tracer concentration of ~20% helium used in sampling shroud

J Estimated concentration

TABLE 4: DEPTH TO GROUNDWATER SOURCE SUMMARY 307 63rd Street; and 6251, 6253, and 6255 College Avenue

Oakland, California

Sample	Sample		PCE		
Location	Date	DTW	(µg/L)	Remarks	DTW Source
MW-1 (screen 17-27)	8/9/2017	17.6	1.2	Semi-confined. Groundwater initially reached at 21 ft bgs	LRM, Supplemental Remedial Investigation Report, September 27, 2017 (Table 1)
				and stabilized at 17.6 ft bgs	
MW-2 (screen 17-27)	8/9/2017	17.4	<0.50	Confined. Groundwater initially reached at 20 ft bgs and	LRM, Supplemental Remedial Investigation Report, September 27, 2017 (Table 1)
				stabilized at 17.4 ft bgs	
MW-3 (screen 17-27)	8/8/2017	17.67	<0.50	Confined. Groundwater initially realced at 23 ft bgs and	LRM, Supplemental Remedial Investigation Report, September 27, 2017 (Table 1)
				stabilized at 17.67 ft bgs	
MW-4 (screen from 17-27)	8/8/2017	16.15	<0.50	Confined. Saturated at 23.5 ft bgs and stabilized at 16.15	LRM, Supplemental Remedial Investigation Report, September 27, 2017 (Table 1)
MM/ E (scroop from 18, 28)	9/9/2017	16 55	<0.50	Confined Groundwater initially reached at 21 ft bgs and	I PM Supplemental Remedial Investigation Report, September 27, 2017 (Table 1)
1010-5 (30166111011116-28)	0/0/2017	10.55	<0.50	stabilized at 16 EE ft bgs. Triangle on boring log is	
				believed to have been placed in the wrong location by	
				C M and M D U	
	0/0/2017	47.0	1.0		
MW-6 (screen 18-28)	8/8/2017	17.8	1.9	Confined. Groundwater initially reached in Saturated clay	LKM, Supplemental Remedial Investigation Report, September 27, 2017 (Table 1)
				at 25 ft bgs and stabilized at 17.8 ft. bgs	
SB1	5/3/2005	15.8	48	Confined. Groundwater initially reached at 17.5 ft bgs	AEI Phase II Subsurface Investigation Report, May 17, 2005 (Boring Logs)
	-, -,			and five minutes later was found at 15.8 ft bgs. *Not	
				much time left for stabilization*	
SB6	6/28/2005	16	15	Confined Groundwater initially reached at 20 ft bgs and	EEL Global Confirmation Sample Results June 28, 2005 (pp. 2/10)
	0,20,2000	10	10	then stabilized at 16 ft bgs	
В7	8/14/2008	22.3	12	Not confined. Groundwater initially reached at 21.3 ft	P&D Environmental Inc., Site Investigation and Soil Vapor Extraction Report, July 11, 2016 (pp. 13/215)
				bgs and stabilized at 22.3 ft bgs	
B8	8/14/2008	21.2	7	Semi-confined. Groundwater initially reached at 22.6 ft	P&D Environmental Inc., Site Investigation and Soil Vapor Extraction Report, July 11, 2016 (pp 13/215)
				bgs and stabilized at 21.2 ft bgs	
A1	10/11/2009	22	0.91	Confined. Groundwater initially reached at 35 ft bgs and	ERM-West Inc., Site Characterization Summary Report, January 20, 2010 (pp 23/190)
				stabilized at 22 ft bgs. Soil mostly dry clayey silts until	
				~33 ft bgs	
AD-3	10/11/2009	22.2	1.9	Confined. Groundwater initially reached at 35 ft bgs and	ERM-West Inc., Site Characterization Summary Report, January 20, 2010 (pp 29/190)
				stabilized at 22.2 ft bgs. Soil mostly dry clayey silts until	
				~33 ft bgs	
В9	3/28/2016	16.2	38	Confined. Groundwater initially reached at 18 ft bgs and	P&D Environmental Inc., Site Investigation and Soil Vapor Extraction Report, July 11, 2016 (Stabilized
				stabilized at 16.2 ft bgs	water level in boring log remarks)
B10	3/28/2016	15.5	56	Confined. Groundwater initially reached at 17.5 ft bgs at	P&D Environmental Inc., Site Investigation and Soil Vapor Extraction Report, July 11, 2016 (Stabilized
				13:00 and stabilized at 15.5 ft bgs.	water level in boring log remarks)
B11	3/28/2016	18.5	18	Not confined. Groundwater initially reached at 18 ft bgs	P&D Environmental Inc., Site Investigation and Soil Vapor Extraction Report, July 11, 2016 (Stabilized
				and stabilized to 18.5 ft bgs	water level in boring log remarks)
B12	3/28/2016	17.1	3	Minimally confined. Groundwater initially reached at	P&D Environmental Inc., Site Investigation and Soil Vapor Extraction Report, July 11, 2016 (Stabilized
				17.5 ft bgs and stabilized at 17.1 ft bgs	water level in boring log remarks)
B13	3/28/2016	17.2	18	Confined. Groundwater initially reached at 19.5 ft bgs	P&D Environmental Inc., Site Investigation and Soil Vapor Extraction Report, July 11, 2016 (Stabilized
				and stabilized at 17.2 ft bgs	water level in boring log remarks)
B14	3/29/2016	19.3	2.1	Not confined. Groundwater initially reached at 18 ft bgs	P&D Environmental Inc., Site Investigation and Soil Vapor Extraction Report, July 11, 2016 (Stabilized
				and stabilized to 19.3 ft bgs after overnight wait	water level in boring log remarks)
B15	3/16/2018	23.7	4.6	Not confined. Groundwater initially reached at 19 ft bgs	EnviroAssets, Inc., Boring log for B15 (attached)
				and stabilized overnight in casing at 23.7 ft bgs	

A

Appendix A Permits and Field Notes

									1				
Proje	ct Nar	ne:Red	d Hang	ger	Clea	aners			Location ID:Oakland, CA	Location:307	63rd S	treet	
Project Number: EA270								General Area:					
Drilli	Drilling Contractor:Gregg Drilling					ng			Geologist:George Mead, P.G.				
Drilli	Drilling Method:Directpush Badger Marl D75					dger Mar	l D75		Certified By:George Mead, P.G.				
Date(s):3/15/2018-3/16/2018								Elevation:	Borehole Dia	meter:2	2.25		
									Total Depth (bgs):24				
DEPTH (ft. BGL)	SAMPLE ID.	BLOW COUNTS	RECOVERY (inches)	Sample Type	Recovery (%)	GRAPHIC LOG	U.S.C.S.		LITHOLOGIC DESCRIPTION		VAPOR (PID).	Water Levels	DEPTH (ft. BGL)
			0				GC	3" Concrete	nn medium dense dark brown verv fin	e-grained	0		
	x		32					Lighter brown moist beyond 6	starting at 4-5 feet. Increasing silt w 3.5 ft	ith depth,	0		
	_		45.6				SM				0		
	_												
	X		48					Silty sand with very dense.	gravel: brown and light brown, damp to	moist, dense to	0		
- 10- 	-						SM	Sub-angular gr	avel lenses 4 to 6" w/ up to 1 inch sub-a	ngular gravel.			- 10-
	-		48					Sandy Silt: mo	ist, hard, light brown to tan. FIne to very	fine sand.	0		
 - 15-	-							particularly mo	ist at 15-16 ft.				
	-		43.2					Very moist, aln	nost wet at 19-20 ft		0		
	-						ML						
20-	-		48								0		
	-												
							_		Bottom of borehole at 24.0 feet.		-		
5													

. .		_			~					Leasting ID: Oakland, CA	Lesstien 207	. co	4	
Project Name:Red Hanger Cleaners			Location ID:Oakland, CA Location:307 63rd Street											
Project Number: EA270								General Area:						
Drillin	Drilling Contractor:Gregg Drilling								Geologist:George Mead, P.G.					
Drilling Method:Directpush Badger Marl D75					Marl	D75		Certified By:George Mead, P.G.						
Date(s):3/15/2018-3/16/2018								Elevation:	Borehole Dia	meter:2	2.25			
DEPTH (ft. BGL)	SAMPLE ID.	BLOW COUNTS	RECOVERY (inches)	Sample Type	Recovery (%)		LOG	U.S.C.S.		LITHOLOGIC DESCRIPTIO	N	VAPOR (PID).	Water Levels	DEPTH (ft. BGL)
5			0				<u> </u>	GC	3" Concrete			0		L _
			78			<u>~~~</u> /	<u> </u>	SM	Silty Sand: dar lenses with me	np brown, medium dense. Sub-angula dium to coarse sand lenses	ır gravel	0		 - 5
			48					SM	SIIty Sand: with to very dense, with up to 1" su	n gravel, damp to moist, brown and lig sub-angular gravel lenses with coarse ıb-angular gravel.	ht brown, dense sand 4" to 6"	0		 10
						<u></u>		<u></u>	Sandy Silt, mo	ist, hard, light brown to tan. Fine to ve	ry fine-grained.	_		
									Increasingly m	oist zone 18-19				
			48											
								ML	Very moist 20-	21.5', stiff				
- 20			48						Gradually hard (Set 1" casing	er with greater depth to 24, 14-24 screen no groundwater)				
										Bottom of borehole at 24.0 feet.				

Works Requesting Permits:

Borehole(s) for Geo Probes-Sampling 24 to 72 hours only (soil and water only) - 2 Boreholes Driller: Gregg Drilling - Lic #: 485165 - Method: DP

Work Total: \$265.00

Permit	Issued Dt	Expire Dt	#	Hole Diam	Max Depth
Number			Boreholes		
W2018-	03/13/2018	06/13/2018	2	2.25 in.	17.00 ft
0161					

Specific Work Permit Conditions

1. Backfill bore hole by tremie with cement grout or cement grout/sand mixture. Upper two-three feet replaced in kind or with compacted cuttings. All cuttings remaining or unused shall be containerized and hauled off site. The containers shall be clearly labeled to the ownership of the container and labeled hazardous or non-hazardous.

2. Boreholes shall not be left open for a period of more than 24 hours. All boreholes left open more than 24 hours will need approval from Alameda County Public Works Agency, Water Resources Section. All boreholes shall be backfilled according to permit destruction requirements and all concrete material and asphalt material shall be to Caltrans Spec or County/City Codes. No borehole(s) shall be left in a manner to act as a conduit at any time.

3. Permittee shall assume entire responsibility for all activities and uses under this permit and shall indemnify, defend and save the Alameda County Public Works Agency, its officers, agents, and employees free and harmless from any and all expense, cost, liability in connection with or resulting from the exercise of this Permit including, but not limited to, properly damage, personal injury and wrongful death.

4. Applicant shall contact assigned inspector listed on the top of the permit at least five (5) working days prior to starting, once the permit has been approved. Confirm the scheduled date(s) at least 24 hours prior to drilling.

5. Permittee, permittee's contractors, consultants or agents shall be responsible to assure that all material or waters generated during drilling, boring destruction, and/or other activities associated with this Permit will be safely handled, properly managed, and disposed of according to all applicable federal, state, and local statutes regulating such. In no case shall these materials and/or waters be allowed to enter, or potentially enter, on or off-site storm sewers, dry wells, or waterways or be allowed to move off the property where work is being completed.

6. Copy of approved drilling permit must be on site at all times. Failure to present or show proof of the approved permit application on site shall result in a fine of \$500.00.

7. NOTE:

Under California laws, the owner/operator are responsible for reporting the contamination to the governmental regulatory agencies under Section 25295(a). The owner/operator is liable for civil penalties under Section 25299(a)(4) and criminal penalties under Section 25299(d) for failure to report a leak. The owner/operator is liable for civil penalties under Section 25299(b)(4) for knowing failure to ensure compliance with the law by the operator. These penalty provisions do not apply to a potential buyer.

8. Prior to any drilling activities onto any public right-of-ways, it shall be the applicants responsibilities to contact and coordinate a Underground Service Alert (USA), obtain encroachment permit(s), excavation permit(s) or any other permits required for that City or to the County and follow all City or County Ordinances. It shall also be the applicants responsibilities to provide to the Cities or to Alameda County a Traffic Safety Plan for any lane closures or detours planned. No work shall begin until all the permits and requirements have been approved or obtained.

9. Permit is valid only for the purpose specified herein. No changes in construction procedures, as described on this permit application. Boreholes shall not be converted to monitoring wells, without a permit application process.

Borehole	e(s) for Inves	stigation-Va	por Sampli	ng 24 to 48	hours only - 2 Boreholes	
Driller: Gregg Drilling - Lic #: 485165 - Method: DP						Work Total: \$265.00
Specificat	tions					
Permit	Issued Dt	Expire Dt	#	Hole Diam	Max Depth	
Number			Boreholes			

15.00 ft

1.40 in.

Specific Work Permit Conditions

03/13/2018 06/13/2018 2

W2018-

0162

1. Boreholes shall not be left open for a period of more than 24 hours. All boreholes left open more than 24 hours will need approval from Alameda County Public Works Agency, Water Resources Section. All boreholes shall be backfilled according to permit destruction requirements and all concrete material and asphalt material shall be to Caltrans Spec or County/City Codes. No borehole(s) shall be left in a manner to act as a conduit at any time.

2. Permittee shall assume entire responsibility for all activities and uses under this permit and shall indemnify, defend and save the Alameda County Public Works Agency, its officers, agents, and employees free and harmless from any and all expense, cost, liability in connection with or resulting from the exercise of this Permit including, but not limited to, properly damage, personal injury and wrongful death.

3. Prior to any drilling activities, it shall be the applicant's responsibility to contact and coordinate an Underground Service Alert (USA), obtain encroachment permit(s), excavation permit(s) or any other permits or agreements required for that Federal, State, County or City, and follow all City or County Ordinances. No work shall begin until all the permits and requirements have been approved or obtained. It shall also be the applicants responsibilities to provide to the Cities or to Alameda County an Traffic Safety Plan for any lane closures or detours planned.

4. Permittee shall assume entire responsibility for all activities and uses under this permit and shall indemnify, defend and save the Alameda County Public Works Agency, its officers, agents, and employees free and harmless from any and all expense, cost and liability in connection with or resulting from the exercise of this Permit including, but not limited to, property damage, personal injury and wrongful death.

5. Applicant shall contact assigned inspector listed on the top of the permit at least five (5) working days prior to starting, once the permit has been approved. Confirm the scheduled date(s) at least 24 hours prior to drilling.

6. Permittee, permittee's contractors, consultants or agents shall be responsible to assure that all material or waters generated during drilling, boring destruction, and/or other activities associated with this Permit will be safely handled, properly managed, and disposed of according to all applicable federal, state, and local statutes regulating such. In no case shall these materials and/or waters be allowed to enter, or potentially enter, on or off-site storm sewers, dry wells, or waterways or be allowed to move off the property where work is being completed.

7. Copy of approved drilling permit must be on site at all times. Failure to present or show proof of the approved permit application on site shall result in a fine of \$500.00.

8. Electronic Reporting Regulations (Chapter 30, Division 3 of Title 23 & Division 3 of Title 27, CCR) require electronic submission of any report or data required by a regulatory agency from a cleanup site. Submission dates are set by a Regional Water Board or by a regulatory agency. Once a report/data is successfully uploaded, as required, you have met the reporting requirement (i.e. the compliance measure for electronic submittals is the actual upload itself). The upload date should be on or prior to the regulatory due date.

9. NOTE:

Under California laws, the owner/operator are responsible for reporting the contamination to the governmental regulatory agencies under Section 25295(a). The owner/operator is liable for civil penalties under Section 25299(a)(4) and criminal penalties under Section 25299(d) for failure to report a leak. The owner/operator is liable for civil penalties under Section 25299(b)(4) for knowing failure to ensure compliance with the law by the operator. These penalty provisions do not apply to a potential buyer.

10. Permit is valid only for the purpose specified herein. No changes in construction procedures, as described on this permit application. Temp Vapor wells shall not be converted to monitoring Vapor wells, without a seperate permit application process.

11. Vapor monitoring wells constructed with tubing shall be decomissioned by complete removal of tubing, grout seal, and fill material of sand or bentonite. Fill material may be removed by hand auger if material can be removed completely.

Vapor monitoring wells constructed with pvc pipe less than 2" shall be overdrilled to total depth.

Vapor monitoring wells constructed with 2" pvc pipe or larger may be grouted by tremie pipe (any depth) or pressure grouted (less than 30', 25 psi for 5 min).

399 Elmhurst Street Hayward, CA 94544-1395 Telephone: (510)670-6633 Fax:(510)782-1939

05/00/0040 D.. :-Apr

Application Approved	a on: 05/03/2016 By Jamesy	Permits Valid from 0	5/08/2018 to 05/11/2018	
Application Id:	1524940719981 6251 College Ave. Ookland, CA 94618, USA	City of Project Site:	Oakland	
Project Start Date: Assigned Inspector:	05/08/2018 Contact Marcelino Vialpando at (510) 670-5760	Completion Date: 05/11/2018 or Marcelino@acpwa.org		
Applicant:	EnviroAssets - Michael Harrison	Phone:	510-390-6518	
Property Owner:	Vasilio Bouzos PO Box 11238, Oakland, CA 94611	Phone:	510-772-2435	
Client:	** same as Property Owner **			
		Total Due:	\$265.00	
	Receipt Number: WR2018-0229	Total Amount Paid:	<u>\$265.00</u>	
	Boyor Nama , Michael E Herricon			

	Total Amount Falu.	\$203.00
Payer Name : Michael E Harrison	Paid By: VISA	PAID IN FULL

Works Requesting Permits:

Borehole(s) for Investigation-Vapor Sampling 24 to 48 hours only - 1 Boreholes Driller: EnviroAssets - Lic #: 000000 - Method: DP

Work Total: \$265.00

Specifications

Permit Number	Issued Dt	Expire Dt	# Boreholes	Hole Diam	Max Depth
W2018-	05/03/2018	08/06/2018	1	2.25 in.	7.00 ft
0376					

Specific Work Permit Conditions

1. Boreholes shall not be left open for a period of more than 24 hours. All boreholes left open more than 24 hours will need approval from Alameda County Public Works Agency, Water Resources Section. All boreholes shall be backfilled according to permit destruction requirements and all concrete material and asphalt material shall be to Caltrans Spec or County/City Codes. No borehole(s) shall be left in a manner to act as a conduit at any time.

2. Permittee shall assume entire responsibility for all activities and uses under this permit and shall indemnify, defend and save the Alameda County Public Works Agency, its officers, agents, and employees free and harmless from any and all expense, cost, liability in connection with or resulting from the exercise of this Permit including, but not limited to, properly damage, personal injury and wrongful death.

3. Prior to any drilling activities, it shall be the applicant's responsibility to contact and coordinate an Underground Service Alert (USA), obtain encroachment permit(s), excavation permit(s) or any other permits or agreements required for that Federal, State, County or City, and follow all City or County Ordinances. No work shall begin until all the permits and requirements have been approved or obtained. It shall also be the applicants responsibilities to provide to the Cities or to Alameda County an Traffic Safety Plan for any lane closures or detours planned.

4. Permittee shall assume entire responsibility for all activities and uses under this permit and shall indemnify, defend and save the Alameda County Public Works Agency, its officers, agents, and employees free and harmless from any and all expense, cost and liability in connection with or resulting from the exercise of this Permit including, but not limited to, property damage, personal injury and wrongful death.

5. Applicant shall contact assigned inspector listed on the top of the permit at least five (5) working days prior to starting,

once the permit has been approved. Confirm the scheduled date(s) at least 24 hours prior to drilling.

6. Permittee, permittee's contractors, consultants or agents shall be responsible to assure that all material or waters generated during drilling, boring destruction, and/or other activities associated with this Permit will be safely handled, properly managed, and disposed of according to all applicable federal, state, and local statutes regulating such. In no case shall these materials and/or waters be allowed to enter, or potentially enter, on or off-site storm sewers, dry wells, or waterways or be allowed to move off the property where work is being completed.

7. Copy of approved drilling permit must be on site at all times. Failure to present or show proof of the approved permit application on site shall result in a fine of \$500.00.

8. Electronic Reporting Regulations (Chapter 30, Division 3 of Title 23 & Division 3 of Title 27, CCR) require electronic submission of any report or data required by a regulatory agency from a cleanup site. Submission dates are set by a Regional Water Board or by a regulatory agency. Once a report/data is successfully uploaded, as required, you have met the reporting requirement (i.e. the compliance measure for electronic submittals is the actual upload itself). The upload date should be on or prior to the regulatory due date.

9. NOTE:

Under California laws, the owner/operator are responsible for reporting the contamination to the governmental regulatory agencies under Section 25295(a). The owner/operator is liable for civil penalties under Section 25299(a)(4) and criminal penalties under Section 25299(d) for failure to report a leak. The owner/operator is liable for civil penalties under Section 25299(b)(4) for knowing failure to ensure compliance with the law by the operator. These penalty provisions do not apply to a potential buyer.

10. Permit is valid only for the purpose specified herein. No changes in construction procedures, as described on this permit application. Temp Vapor wells shall not be converted to monitoring Vapor wells, without a seperate permit application process.

11. Vapor monitoring wells constructed with tubing shall be decomissioned by complete removal of tubing, grout seal, and fill material of sand or bentonite. Fill material may be removed by hand auger if material can be removed completely.

Vapor monitoring wells constructed with pvc pipe less than 2" shall be overdrilled to total depth.

Vapor monitoring wells constructed with 2" pvc pipe or larger may be grouted by tremie pipe (any depth) or pressure grouted (less than 30', 25 psi for 5 min).

	Soil '	Vapor Sa	mpling I	Data Sho	eet	Date:	5/14/18	3
A	Sam	ple Number:	V-B1	7-5.5		Sampled By:	M18 +	MPH
Project Nar Sample Loc Weather: Air Temp: Barometric	ne: cation: Pressure:	Buress Between For 54°	Bldgs	I	Pro PID (M He Detector (n Gr	oject Number: Iodel/Serial #) 1odel/Serial #) ound Surface:	EA 270 RAE 30 MGD 20 duit	00 00 02 4n2
Probe Insta Date/Time: Probe Dept Sample Tra Purge Meth	Illation h: hin Length: hod:	5/14/18 5.5 7 5y(inge	<u>10:55</u> 4	in	PRT adapter Probe Pullba Purge Volum Volume Purg	check: ck: ie: ged: JmL	/ 1 (12") 29.9E.	
		Helium 7	Tracer Leak '	Test Data	<u> </u>		Sample C	Collection
Date	Time	Purge Vol.	He % Shroud Mint/W	He % Shroud Maxf	He in Probe (ppm)	PID in Probe (ppb)	He % Shroud Min	He % Shroud Max
<u>5/14</u>	13 14 13 29 13 65 14 25	Shot in 160 400 560	25 in Ha 29. 4% 21.7 21.3	12/0	8 26 m 350 1.2-%	<u>к</u> 		
	19:39	TLO Can	ister Inform	ation				
Date 5/14	Time 14.40	Sample ID	Canist	er ID	Flow Controller # 2640	Vacuum Guage #	Initial Vacuum 730in	Final Vacuum 7 poi
	14:40 14:45 14:50	He.	20%	2 32.7°, %	6	×1508		
Comments	2020 PC	ST @ 14	20 +	le ne	eder 4	Dipin (s	mbient	
	Posi	_sampt	FID	<u>e</u> lo	7 pm			

EA10893-09.xls

1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -

SERVICE TECHNICIAN:

EQUIPCO

RENTALS

INSTRUMENT INFORMATION

RENTAL ID#: MGD2002. 19 SERIAL NUMBER: 44264

CALIBRATION INFORMATION

VERIFICATION GAS 1:

☑ Helium UHP<u>**99.99**</u>%VOL

√<u>**11.7**</u>%VOL <u>+</u>2%

RESPONSE TO GAS 1:

LOT#:<u>**|\$5:1\$2384863-2**</u> LOT#:**\$5<u>112618</u>**

ZERO AIR RESPONSE:

☑ 0 %VOL

DATE: 5/11/18

THANK YOU FOP RENTING FROM EQUIPCO has been thoroughly tested of any questions or dimiculties plea ary certified service ummed

Your Name:	Matt Harba	d		Well N	No.:_		Page	1 of
Date:	5/7/18			Project N	No.: _	EA270		
Project Name:	BOUZOS	College	Ave_	Red Hanger	Cle.	aneos		
-								

Ę

Time: 8:30 Arrived onsite, Dan Bouzos waiting collected for workers to arrive, FUGRO people at Cole's Coffice eating prestant - Jeci-Anne and Jec 8:55 Sover workers arrive and tegin using instrument to locate sever lines, FUGRO chill eating breakfast 9:11 Worker gave water should be twrad off part of the day on 5/8 and all days of . 9:25 Workers begin include many of 5/8) 9:25 Workers begin include many of 5/8 9:25 Workers begin include many of the street, Dowe JARCHAMMERIANS & Shandlary 10:22 10:30 - Cutting of sidewalk portion incide willing begins with water used to be down in the street in have made it to pipe. 10:30 - Sackhammening out in the solid willing begins with 10:30 - Sackhammening for the solid due to street to the 10:30 - Jackhammening on cut sidewalk pit 10:30 - Jackhammening begins on cut sidewalk pit 10:30 - Jackhammening begins on cut sidewalk pit 10:30 - Jackhammening done. Head chowelling begins on sidewalk pit 10:30 - Jackhammening done. Head chowelling begins on sidewalk pit 10:30 - Jackhammening done. Head chowelling begins on sidewalk pit 10:30 - Jackhammening done. Head chowelling begins on sidewalk pit 10:30 - Jackhammening begins in 63rd st. pit, pipe hit at 27 ft. bgs. 11:45 - Cover 63 rd st. pit v/ metal plate 13:06 - 13:58 - Break fre langh PRINT NAME: Matthew Harband SIGNED: Matthew Arghand	ACTIVITIES	6 (Include event, time, observations, observers, etc.):
 8:30 Arrived Onsite, Dan Bouzze waiting edition for workes to anive, FUGRO people at Cole's Coffee eating breakfast > Jeri-Anne and Jac 8:55 Sower workes arrive and begin using instrument to locate sever lives. FUGRO chill eating breakfast 9:11 Worker gays water should be twend off part of the day on 5/8 and all days[1.	Time:	outside
people at Cole's Coffee eating breakfast - Jeri-Anne and Jec 8:55 Sower workers arrive and begin using instrument to locate sower lines. FUGRo chill eating breakfast 9:11 Worker care worker should be twrned off part of the day on 5/8 and 11 worker care worker should be twrned off part of the day on 5/8 and 11 am - 4pm 5/8 125 Worker begin jackhammering out in the Street, DOME JACKHAMMERIAKS & Shoulding 10:22 125 Worker go down in hole seen to have make it to pipe. 10:32 New plan for excension (cee back of this page for could map). 9:52 Worker go down in hole seen to have make it to pipe. 0:411 down on particulate under movement. 10:32 0:32 0:32 0:33 0:34 10:3 0:411 down on particulate under of other pipe. 0:30 10:30 10:31 0:400 bosting from trach in the aggiddle of sheet to the pit inside building. 10:30 Sterkhammering done. How chareling from there to other pit inside building. 10:30 Sterkhammering done. How chareling begins on side work pit 10:30 Sterkhammering done. How chareling begins on side work pit 10:30 Sterkhamm	8:30	Arrived onsite, Dan Bouzos waiting successo for workers to arrive, FUGRO
8:55 Somer workers anive and begin using instrument to locate somer lives. FUGRO shill eating breakfast 9:11 Worker says water should be twined off part of the day on 5/8 and 11 days[9]. 11 an - 4pm 5/8 1:13 an - 4pm 5/8 1:25 Workers begin jackhammering out in the Street, DONE JACKHAMMERIAKS & Shoulding 10:22 1:52 Workers go down in hole seem to have made if to pipe, 10:32 Catting of sidewalk on the linking begins with water used to be down inside huilding begins with 10:13 Catting of sidewalk on the solidable of sheet to the french along 63 ^{cd} street sidewalk of the solidable of sheet to the 10:30 Jackhammering done. Hand should be fit to other pit inside building. 10:30 Jackhammering done. Hand should be pit. 10:30 Jackhammering done. Hand should parts on sidewalk pit 10:30 Jackhammering done. Hand shoulding begins on sidewalk pit 10:36 Hand-shoulding begins in 63 ^{cd} st. pit, pipe lit at 27ft. bgs. 11:45 Cover 63 ^{cd} st. pit y metal plate 12:06-12:58 Break for lunch PRINT NAME: Matthew Harband SIGNED: Matthew Arstand		people at cole's coffee eating breakforst -> Jeri-Anne and Joe
8:55 Sover workers arrive and begin using instrument to locate sever lives. FUGRO shill caling breakfirst 9:11 Worker gays water should be twrach off part of the day on 5/8 and all daysf. 2:13 an - 4pm 5/8 2:13 an - 4pm 5/8 2:10:22 2:10:22 2:10 borkers begin jackbammering out in the Street, DONE JACKHAMMERIAKS & Shoulding 10:22 2:10:22 2:10:22 2:10:22 2:10:22 2:10:23		
FUGRo shill caling brakthat 9:11 Worber gays water should be twend off part of the day on 5/8 and 11 days 9(9,	8:55	Somer workers arrive and begin using instrument to locate sever lines,
9:11 Worker gave water should be twend off pri of the day on 5/8 and ~11 days[9]. ~11 am - 4pm 5/8 ~ Tige bushing expected transvow (5/8) 9:25 Workers begin jackhammering out in the Street, Dowle JACKHAMMERINGS & Shoulding 10:22 Now plan for excavation (see back of this page for could imap). 9:52 Workers go down in hole, seen to have made it to pipe. Cutting of sidewalk portion inside huilding begins with water used to build down on particulate mather movement. 10:13 Cutting of cidewalk inside, done. Pipe bushing from transh in the Baiddle of sheet to the transh along 63 rd street sidewalk pit 10:30 Jackhammening begins on cut sidewalk pit 10:30 Jackhammening done. Hand chowelling begins on side walk pit 10:36 Hand-showelling begins in 63 rd st. pit, pipe hit at 27 ft. bys. 11:45 Cover 63 rd st. pit y metal plate 12:06-12:58 Brak for land		FUGRO shill eating breakfast
9:11 Worker gays water should be twend off part of the day on 5/8 and +11 days[9]. 7:13 am - 4pm 5/8 7:25 Workers begin jackhammering out in the Street, DONE Incrementations especial Now plan for excavation (see back of this page for could map). 9:52 Workers go down in hole, seen to have make it to pipe. Caffing of sidewalk position inside building begins with Worker used to but down on phonical worker movement. 10:13 - Cutting of sidewalk inside, done. Pipe burshing from trench in the Aniddle of skeet to the grench along 63 ^{cd} street sidewalk pit 10:30 · Jackhammering done that showelling begins on sidewalk pit 10:30 · Jackhammering done that showelling begins on sidewalk pit 10:30 · Jackhammering done that showelling begins on sidewalk pit 10:30 · Jackhammering done that showelling begins on sidewalk pit 10:36 · Hand-showelling begins in 63 rd st. pit, pipe hit at 27 ft. 11:45 · Cover 63 rd st. pit y metal plate 13:06-12:58 · Brok for lunch PRINT NAME: Matthew Harband SIGNED: Matthew Alaston		
 I days 99. 11 am - 4 pm 5/8 Now plan for excavation (5/8) 9:25 Workers begin jackhammering out in the Street, DONE Incrementation (10:22 Now plan for excavation (see back of this page for could map). 9:52 Workers go down in hole, seem to have make it to pipe. Catting of sidewalk portion inside building begins with writer used to cut down on particulate mother more mant. 10:13 Catting of cidewalk inside, done. Pipe bursting from trench in the Aniddle of street to the Arench along 63^{cd} street sidewalk pit 10:30 Jackhammering done that sidewalk pit 10:30 Sackhammering done that sidewalk pit 10:30 Sackhammering done that showelling begins on sidewalk pit 10:30 Sackhammering done that showelling begins on sidewalk pit 10:30 Sackhammering done that showelling begins on sidewalk pit 10:30 Sackhammering done that showelling begins on sidewalk pit 10:30 Sackhammering done that showelling begins on sidewalk pit 10:30 Sackhammering done that showelling begins on sidewalk pit 10:30 Hand-shovelling begins in 63^{cd} st. pit, pipe hit at 27 ft. bgs. 11:45 Caver 63^{cd} st. pit y metal plate 12:06-12:58 Brook free lunch PRINT NAME: Matthew Harband Signal Signed Signal 	9:11	Worker gays water should be twined off part of the day on 5/8 and
 11 an - 4 pm 5/8 Nipo bushing expected tomorrow (5/8) 125 Worker begin jackhammering out in the Street, DONE TACKHAMMERIAKS & Shoulding 10:22 Now plan for excavation (see back of this page for could map). 1:52 Worker go down in hole, seen to have make it to pipe. Cutting of sidewalk portion inside building begins with Water used to cut down on pachiculate mother movement. 10:13 Cutting of sidewalk inside, done. Pipe bursting from tranch in the posidele of skeet to the strench along 62'd street sidewalke pit 10:30 Jackhammering begins on cut sidewalk pit 10:30 Jackhammering begins in 63'd st. pit, pipe bit at 27 ft. bgs. 11:45 Cover 63'A St. pit w/ metal plate 12:06-12:58 Break for lunch 	-11	days/9.
 n lipe bushing expected tomorrow (5/8) 9:25 Workes begin jackhammering out in the Street, DONE JACKHAMMERIAKS & Shoulding 10:22 Now plan for excavation (see back of this page for crede map). 9:52 Workes go down in hole, seen to have make it to pipe. Cutting of sidewalk portion inside building begins with water used to cut down on periodilate mother movement. 10:13 Cathing of cidewalk inside, done. Pipe burshing from trench in the appliedle of street to the strench along 63rd street sidewalke, trenching from there to other pit inside building begins on sidewalk pit. 10:30 Jackhammening begins on cut sidewalk pit. 10:30 Jackhammening done. Hand showelling begins on sidewalk pit. 10:40 Jackhammening done. Hand showelling begins on sidewalk pit. 10:56 Hand-shovelling begins in 63rd st. pit, pipe hit at 27 ft. bgs. 11:45 Cover 63rd st. pit y metal plate. 12:06-12:58 Brok for lunch PRINT NAME: Matthew Harband 		-11 am - 4 pm 5/8
9:25 Workers begin jackhammering out in the Street, DONE Incrementations is the street, DONE Incrementations is the street, DONE Incrementation is a constrained on the street of this page for creater image. 9:52 • Workers go down in hole, seen to have make it to pipe, • Cutting of sidewalk portion inside building begins with water used to cut down on particulate mather movement. 10:13 • Cutting of sidewalk inside, done. • Pipe bursting from trench in the solidable of street to the strench along 63 rd street sidewalke, trenching from there to other pit inside building. 10:30 • Jackhammering begins on cut sidewalk pit 10:40 • Jackhammering begins in 63 rd st. pit, pipe hit at 27ft. bys. 11:45 • Cover 63 rd st. pit w/ metal plate 12:06 - 12:58 • Break for lunch PRINT NAME: Matthew Harband Signed Signed Matthew Alarband		~ Pipe busting expected tomorrow (5/8)
 Now plan for excavation (see back of this page for crude map). 9:52 Now plan for excavation (see back of this page for crude map). 9:52 Writers go down in hole, seem to have make it to pipe. Cuffing of sidewalk portion inside building begins with water used to cut down on particulate motemant. 10:13 Cuffing of sidewalk inside, done. Pipe bursting from tronch in the solidalle of street to the strench along 63rd street sidewalk pit 10:30 Sackhamming begins on cut sidewalk pit 10:40 Jackhamming begins in 63rd st. pit, pipe hit at 27 ft. 10:56 Hand-showelling begins in 63rd st. pit, pipe hit at 27 ft. 10:58 Break for lunch PRINT NAME: Matthew Harband 	9:25	Workers begin includementing out in the Street, DONE JACKHAMMERING + Shovelling
 New plan for excavation (see back of this page for crede map). 9:52 · Wirkers go down in hole, seem to have make it to pipe. Cutting of sidewalk portion inside building begins with water used to cut down on particulate motement. 10:13 · Cutting of sidewalk inside, done. Pipe bursting from tronch in the schiddle of street to the strench along 63rd street sidewalk pit 10:30 · Jackhammening begins on cut sidewalk pit 10:40 · Jackhammening done. Hand chowelling begins on sidewalk pit 10:56 · Hand-showelling begins in 63rd st. pit, pipe hit at 27 ft. bgs. 11:45 · Cover 63rd st. pit y metal plate 12:06 - 12:58 · Break for lunch 		10:22
9:52 · Writers go down in hole, seen to have make it to pipe, · Cutting of sidewalk portion inside huilding begins with water used to cut down on particulate mother movement. 10:13 · Cutting of sidewalk inside, done. · Pipe buisting from trench in the phildle of street to the strench along 63 rd street sidewalk pit 10:30 · Jackhammung begins on cut sidewalk pit 10:40 · Jackhammung begins in 63 rd st. pit, pipe hit at 27 ft. bgs. 11:45 · Cover 63 rd st. pit v/ metal plate 12:06-12:58 · Break fre lunch PRINT NAME: Matthew Harband Start Sidewalk Signed: Matthew Arband		· Now plan for excavation (see back of this page for crude map).
 Cutting of sidewalk portion inside building begins with Water used to cut down on publiculate mother movement. 10:13 - Cutting of cidewalk inside, done. Pipe bursting from trench in the poliddle of street to the	1:52	· Workers go down in hole, seem to have make it to pipe,
Water used to cut down on particulate mother movement. 10:13 Cutting of cidewalk inside, done. • Pipe bursting from trench in the Oniddle of street to the trench along 63 rd street sidewalker, trenching from there to other pit inside building. 10:30 • Jackhammening legins on cutt sidewalk pit 10:40 • Jackhammening legins in 63 rd st. pit, pize hit at 27 ft. 10:56 • Hand-shovelling begins in 63 rd st. pit, pize hit at 27 ft. 10:56 • Break fr lunch 11:45 • Cover 63 rd st. pit w/ metal plate 12:06-12:58 • Break fr lunch PRINT NAME: Matthew Harband		· Cutting of sidewalk portion incide building begins with
10:13 · Cutting of cidewalk inside, done. · Pipe bursting from tronch in the possibile of street to the trench along 63 rd street sidewalks, trenching from there to other pit inside building. 10:30 · Jackhammening begins on cut sidewalk pit 10:40 · Jackhammening begins on cut sidewalk pit 10:56 · Hand-shoulling begins in 63 rd st. pit, pipe hit at 27 ft. bgs. 11:45 · Cover 63 rd st. pit w/ metal plate 12:06-12:58 · Break fr lunch PRINT NAME: Matthew Harband SIGNED: Matthew Alarband	•	water used to just down on particulate mother movement.
 Pipe bursting from trench in the pariddle of skeet to the grench along 63rd street sidewalker, trenching from there to other pit inside building. 10:30 · Jackhammening begins on cut sidewalk pit 10:40 · Jackhammening done · Hand chovelling begins on sidewalk pit 10:56 · Hand-showelling begins in 63rd st. pit, pipe hit at 27 ft. bgs. 11:45 · Cover 63rd st. pit v/ metal plate 12:06-12:58 · Break for lunch PRINT NAME: Matthew Harband SIGNED: Matthew Alarband 	10:13	· Cutting of cidewalk inside, done.
Arrench along 63 rd street sidewalker, trenching from there to other pit inside building. 10:30 Jackhammuning begins on cut sidewalk pit 10:40 Jackhammening done. Hand shovelling begins on sidewalk pit 10:56 Hand-shovelling begins in 63 rd st. pit, pipe hit at 27 ft. bgs. bgs. 11:45 Cover 63 rd st. pit v/ metal plate 12:06-12:58 Brak for lunch PRINT NAME: Matthew Harband		· Pipe bursting from trouch in the assiddle of street to the
pit inside building. 10:30 · Jackhammening begins on cut sidewalk pit 10:40 · Jackhammening done · Hand chovelling begins on sidewalk pit 10:56 · Hand-shovelling begins in 63 rd st. pit, pipe hit at 27 ft. bgs. 11:45 · Cover 63 rd st. pit v/ metal plate 12:06-12:58 · Break for lunch PRINT NAME: Matthew Harband SIGNED: Matthew Alastand		strench along 63rd street sidewalking trenching from there to other
10:30 · Jackhammuning begins on cut sidewalk pit 10:40 · Jackhammening done · Hand showelling begins on sidewalk pit 10:56 · Hand-showelling begins in 63 rd st. pit, pipe hit at 27ft. bys. 11:45 · Cover 63 rd st. pit v/ metal plate 12:06-12:58 · Break for lunch PRINT NAME: Matthew Harband SIGNED: Matthew Alastand		pit inside building
10:40 · Jackhammenteg done · Hand showelling begins in side wilk pit 10:56 · Hand-showelling begins in 63rd st. pit, pipe hit at 27ft. bgs. 11:45 · Cover 63rd st. pit w/ metal plate 12:06-12:58 · Break for lunch PRINT NAME: Matthew Harband SIGNED: Matthew Alaston	10:30	· Jackhammine heaving on curt sidewalk pit
10:56 • Hand-showelling begins in 63rd st. pit, pipe hit at 27ft. bgs. 11:45 • Cover 63rd st. pit v/ metal plate 12:06-12:58 • Break for lunch PRINT NAME: Matthew Harband SIGNED: Matthew Alaston	10:40	· Jackhammente done, Heat charelling Legins in side welk pit
10:56 • Hand-shovelling begins in 63rd st. pit, pipe hit at 27ft. bgs. 11:45 • Cover 63rd st. pit y/ metal plate 12:06-12:58 • Break for lunch PRINT NAME: Matthew Harband SIGNED: Matthew Alastand		
bys. 11:45 · Cover 63th St. pit w/ metal plate 12:06-12:58 · Break for lunch PRINT NAME: Matthew Harband SIGNED: Matthew Alastand	10:56	· Hand-showelling begins in 63rd st. pit, pipe hit at 27ft.
11:45 · Cover 63th St. pit u/ metal plate 12:06-12:58 · Break for lunch PRINT NAME: Matthew Harband SIGNED: Matthew Alarband		bqs.
12:06-12:58 · Break for lunch PRINT NAME: Matthew Harband SIGNED: Matthew Alastand	11:45	· Cover 63th St. pit w/ metal plate
PRINT NAME: Matthew Harband SIGNED: Matthew Harband	12:06-12:5	58 Break for lunch
PRINT NAME: Matthew Harbard SIGNED: Matthew Harbard		
	PRINT NAM	E: Matthew Harband SIGNED: Matthew Horbord

Page 2 of 2

-**E**

Your Name:	Matt Harband	Well No.:			rage 🖌 of 🏒
Date:	5/7/18	Project No.:	EA	270	
Project Name:	Red Hanger Cleanes				
-					

.

ACTIVITIES (Include event, time, observations, observers, etc.):
Time:
1:25 > digging (with jackhammer) resumes in sidewalk pit. Workers beg
digain trench inside by hand and w/ inclehammer
2:08 Hand digging in trench, hit top of pipe
3:10 PM Still digging manually and W/ jackhammers in trench and sidewalls
pit
<u>337M lopot pipe bit in sidewalk pit.</u>
Bug Sample I taken 3:38 : North Rit (sidewalk), 69 from top of slab
at collection - 0.0 ppm right
<u>* some air in bag</u> , before putn
could be moisture, not my Matt + Uciko
Winfles bag 70.8 pm 0.0 ppm
3:53 After wild mins the off
Slott PM Bag sample & taken: South Fit (Inside), <6+7/ fin hom sla
Matt FUGEO
at collection of 0,0 ppm N/A
by after all > Matt FUGRO
mins 0.0 ppm 0.0 ppm
(HOE Dura 10ft cite
TOS Vone, left site
PDINTENAME. Matthe 11 1 1 1 SIGNED $M + 21 L$
PKINI NAME: Matthew Harband SIGNED: Maunum / Your

	Field Activity Report
Ę	Date: $\frac{4/18/18}{18}$
the o	Recorded by. Plati Harbana
Project Name:	Red Hunger Kleanere (EA 270) Project No.: EA 270
Client Name:	Bou zo 5 bro that Date:
ACTIVITIES	
	Activities (include event, time, observations, observers, etc.)
[· 13	- Frenchish all? - 14 inches Occurred Vertrale
9:58	- First sample taken by hand with stainless steel
	trowel, labeled #17 Alcinox and D. I wash used b/w
	samples and before first sample
10.00	- second sample (#10) taken
10102	- This conde (++19) there
	Inter sample (4410 later
10:04	= Fourth cample (#20) taken
10:20	Left site
GONERAL	· Sampled comperclockinge from North West corner, closest
	to 63 th street on since with door.
	· USER ANTING PARA, MILLE MOUTH GLANT SATS
Print Name:	Signature:

|/

Date: 4/17/18 Project No:: EA220 Project Name: Oakland Property Project Leastion: 307 Gird Street, Oakland Project Activitie: Air monitoring during stab removal and excavation Serial Number: 302 Targeted Gas Information Ion participation Correction Factor PEL Ceiling PID Corrected	F.				Page 🖌 of	
Project Name: Oakland Property Project Location: 307 63rd Street. Oakland Project Activities: Air monitoring during slab removal and excavation Type of PID/FID: MaiRae 3000 Serial Number: 302 Serial Number: 302 Calibration Reading: 100 ppm isobutyker: 10.6 eV lamp Targeted Gas Information Ionization Correction Factor PEL Ceiling PID Corrected PID & Orrection Factor PEL Cast Potential (eV) (10.6 eV lamp) (ppm) PCE 9.32 0.57 25 Time Activity/Location PID/FID (ppm) PID/FID (ppm) 7.20 AM Arrifed asside 7.35 An Sill lain Aisturbed here 7.30 AM Arrifed asside 7.30 AM Sill Carine Ashahing soil Sille or vices, B inaully 0.0 aisturbed pipe. In millle of Liniking 1.41 Calibur haves taking buckets of monterial ant 0.0 aistopic Fibre fibre and have fibre 7: 30 AM Single fibre Single fibre 7: 30 AM Sille pipe. In milille of Liniking	Date	:4/17/18	Project No.	: <u>EA270</u>		
Project Activities: Air monitoring during slab removal and excavation Type of PID/PID: Minikas 3000 Serial Number: 302 Calibration Reading: 100 ppm isobutylene. 10.6 eV lamp Targeted Gas Information Open isobutylene. 10.6 eV lamp PID Corrected PID Corrected Gas Potential (eV) (10.6 eV lamp) (ppm) (ppm) PID Corrected PID Corrected PID Corrected Of the PEL Value - Ceiling PID Corrected PID Corrected PID Corrected Of the PEL Value - Ceiling PID Corrected PID Corrected Of the PEL Value - Ceiling PID Corrected Correct PID Corrected PID PID/PID (ppm) PID/PID PID PID/PID PI	Project Name	: Oakland Property Proje	ect Location:	307 63rd Street, Oaklan	nd	
Type of PIDFID: MinRae 3000 Serial Number: 302 Calibration Reading: 100 ppm isobustlene. 10.6 eV lamp Targeted Gas Information Gas Potential (eV) (10.6 eV lamp) (ppm) (ppm) PCE 9.32 0.57 25 100 44 175 TCE 9.45 0.54 25 100 446 185 Time Activity:Location PID/FID (ppm) 7: 20 AM Arrived assile 7: 25 Am Sil him, diffueled here abachaed Inc 0.0 with claw hangest. 7: 30 AM Arrived assile 7: 55 Am Noreco taking Sucheds of protectial aut 0.0 Stopped like of how for digging of the set of space 5: 05 AM Electric jack hangent used to break up 0.0 Si: 05 AM Sit For allow breaking high 1.6 Si: 05 AM Site results of digging of the set of space 5: 06 AM Site results of the break of space 5: 10 For results of your of toon, breaking 2.5 PPM 5: 10 For hight And an of toon, break of space 5: 10 For hight Arrived assite of toon, break of space 5: 10 For hight Arrived assite of toon, break of space 5: 05 PM Site Am Site how of toon, break of space 5: 10 For hight Arrived assite of toon, break of space 5: 10 For hight Arrived assite of toon, break of space 5: 10 For hight Arrived assite of toon, break of space 5: 10 For hight Arrived Stream of toon, break of space 5: 10 For hight Arrived Stream of toon, break of space 5: 10 For hight Arrived Stream of toon, break of space	Project Activities	• Air monitoring during slab removal and excavation				
Calibration Reading: 100 ppm isobustene. 10.6 eV lamp Targeted Gas Information Gas Potential (eV) (10.6 eV lamp) (ppm) (ppm) PCE 9.32 0.57 25 100 44 175 ICE 9.45 0.54 25 100 44 175 ICE 9.45 0.54 25 100 46 185 Time Activity/Location PID/FID (ppm) 7: 20 AM Arifued assile 7: 25 Am Sill bain district New abandored Inc 0.0 with class have a abandored Inc 0.0 with class have a abandored Inc 0.0 with class have a abandored Inc 0.0 Internation Notes and Inc 0.0 Internation Notes and Inc 0.0 Internation Notes and Inc 0.0 Internation Internation PID/FID (ppm) 7: 55 ATU Notes thing backets of material aut 0.0 Ad pathing in glashic Ince dampeter. Internation Internation Internation Sicos AM Site new abandored Inc 0.0 Internation	Type of PID/FID	• MiniRae 3000	erial Number	• 302		
Calibration Reading: 100 ppm isobutylene. 10.6 eV lamp Targeted Gas Information Ionization Correction Factor PEL Ceiling PID Corrected PID Corrected Gas Potential (eV) (10.6 eV lamp) (ppm) (ppm) Value - PEL Value - Ceiling PCE 9.32 0.57 25 100 44 175 TEE 9.45 0.54 25 100 46 185 Time Activityl.ceation PID/FID (ppm) 7: 20 AM · Arrivel assile 7: 25 AM · Arrivel assile 7: 30 AM · Sil laing disturbed hear abandored line 0.0 Alghdring soil difference and line 0.0 Alghdring soil difference and line 0.0 Alghdring soil difference 7: 55 AM Process their Success of material and 0.0 Si 02 AM Electric jack happener used to heak up 0.0 Si 03 AM Site meriding backets Si 02 AM Electric jack happener used to heak up 0.0 Si 05 AM Site meriding backets Si 04 AM Electric jack happener used to heak up 0.0 Si 05 AM Site meriding backets of spree Si 08 AM Site meriding balow breathing hight at gravity for a for back of spree Si 10 For right for a for back of spree Si 10 For right for a	Type of The The					
Targeted Gas Information Information Gas Potential (eV) (10.6 eV lamp) (ppm) (ppm) PID Corrected PID Corrected PID Corrected PCE 9.32 0.57 25 100 44 175 PCE 9.45 0.57 25 100 44 175 Time Activity/Location PID/FID (ppm) 7:25 100 44 175 Time Activity/Location PID/FID (ppm) 7:30 AM Arrivel ansite PID/FID (ppm) 7:35 AM Sile from Evelab any colspan="2">Form Evelab any colspan="2">Form Evelab any colspan="2">Form Sile pipe. To pille of withing 0.0 And Form Evelab any colspan="2">Form Sile pipe. To pille of withing O.0 And Form Evelab any colspan="2">Form Sile pipe. To pille of withing O.0 And Form Sile pipe. To pille of withing and of any colspan="2">Form Siste pipe. To pille of withing <td co<="" td=""><td>Calibration Reading:</td><td>100 ppm isobutylene. 10.6 eV lamp</td><td></td><td></td><td></td></td>	<td>Calibration Reading:</td> <td>100 ppm isobutylene. 10.6 eV lamp</td> <td></td> <td></td> <td></td>	Calibration Reading:	100 ppm isobutylene. 10.6 eV lamp			
Ionization Correction Factor PEL Ceiling PID Corrected PID corrected PID corrected Gas Potential (eV) (10.6 eV lamp) (ppm) (ppm) Value - PEL Value - PEL Value - PEL Value - Ceiling PCE 9.45 0.54 25 100 46 185 Time Activity/Location PID/FID (ppm) 7:20 AM Arrivel assite 9 7:30 AM Scill big disturbed new absordance line 0.0 with class process is insample 0.0 distribution sales free 9 7:30 AM Scill big distribution 0.0 distribution sales free 9 7:30 AM Scill big distribution 0.0 distribution sales free 9 0.0 distribution sales free 9 0.0 sales assortance sales 0.0 distribution sales free 0.0 distribution sales assortance 0.0	Targeted Gas Informatio	a				
Gas Potential (eV) (10.6 eV lamp) (ppm) (ppm) Value - PEL Value - Ceiling PCE 9.32 0.57 25 100 44 175 TCE 9.45 0.54 25 100 46 185 Time Attivity/Location PID/FID (ppm) 7:20 AM Anvived assite 0.0 7:20 AM Soil being disturbed near abandored line 0.0 with clain hangues. 0.0 rith clain hangues. 0.0 disturbing soil disturbed near abandored line 0.0 with clain hangues. 0.0 disturbing soil disturbed near abandored line 0.0 should like pipe. In middle of builting 0.0 should like pipe. In middle of material out 0.0 early clain buckets 0.0 signal 1.0 0.0 disther burge 0.1 1	Ioniz	ation Correction Factor PEL	Ceiling	PID Corrected	PID Corrected	
PCE 9.32 0.57 25 100 44 175 TCE 9.45 0.54 25 100 46 185 Time Activity/Location PID/FID (ppm) 7:20 AM Arrivel assile 7:25 AM Arrivel assile 7:25 AM Sil lain districted new abordored line 0.0 with class humper. 7:30 AM Jel from FUGBo arrives, is meanally 0.0 with class piece In millie of withing 0.0 distributing call assisted subserface and 7:40 Am immervisible pipe. In millie of withing 0.0 should like job from side any from callege 688 7:55 ATA Novees their backs of material out 0.0 and putting in plastic lined dumposter. 5:05 ATA Electric jackhapamer used to break up 0.0 bugh nuk 8:03 AM Electric jackhapamer used to break up 0.0 bugh nuk 8:05 ATA Site measuring below breathing hight at greatsh pipe new back of space 8:06 AM Site measuring below breathing hight at greatsh pipe new back of space 8:05 ATA Site measuring below breathing hight at greatsh pipe new back of space 8:05 ATA Site measuring below breathing hight 8:05 ATA Site measuring below breathing hight 8:06 ATA Site measuring below breathing hight 8:07 AMA Site measuring below breathing hight 8:08 ATA Site measuring below breathing hight 8:10 Fer night Ama of voor 0.5 8:10 Fer night Ama of voor 0.9 ppm	Gas Potent	ial (eV) (10.6 eV lamp) (ppm)	(ppm)	Value - PEL	Value - Ceiling	
TCE 9.45 0.54 25 100 46 185 Time Activity/Location PID/FID (ppm) 7:20 AM Anvived assite 0.0 0.0 7:25 AM • Sill loing disturbed near abandoued line 0.0 0.0 100 dightly anywar. 0.0 0.0 7:30 AM • Jell from FUGLo arrives, is meanally 0.0 101 dightly soil activity subarface 0.0 102 dightly soil activity subarface 0.0 103 Am • Jell from FUGLo arrives, is meanally 0.0 104 and off off off off off off off off off of	PCE 9.	32 0.57 25	100	44	175	
Time Activity/Location PID/FID (ppm) 7:20 AM Anvived assite 0.0 7:25 AM Sill bring disturbed very abandored line 0.0 nith ellew hummar. 0.0 7:30 AM Joel from Filelo prives, is insurally 0.0 distributing soil disturbed very abandored line 0.0 distributing soil disturbed prives, is insurally 0.0 distributing soil disturbed prives, is insurally 0.0 distributing soil disturbed prives, is insurally 0.0 distributing soil distributing subservice distributing 0.0 shaped like file of willing 7:55 ATM Norces training backots of material aut 0.0 add parting in plashic linud dumpater. 0.0 distributing in plashic linud dumpater. 0.0 siog ATM Electric jackhapamer used to break up 0.0 siog ATM Electric jackhapamer used to break up 0.0 siog ATM Electric jackhapamer used to break up 0.0 siog ATM Stearding for digging 1.6 8:05 ATM Ste massing balow breathing height 0.5	TCE 9.	45 0.54 25	100	46	185	
7:20 AM Arrived assite 7:25 Mm Sill being distributed near abandoued line 0.0 with claim humpher. 0.0 7:30 AM Jel from EVGLo empires, is inequally 0.0 distributing soil distributed near abandoued line 0.0 distributing soil distributed near abandoued line 0.0 distributing soil distributed near abandoued line 0.0 distributing soil distributed subserface distributed 0.0 distributing soil distributed subserface distributed 0.0 distributing soil distributed near abandoued line 0.0 distributing soil distributed subserface distributed 0.0 should like of them side away firm 0.0 ealling to the state of material sout 0.0 add putting in plastic thread dum poler. 0.0 add putting in plastic thread dum poler. 0.0 singh male 0.0 building male 0.0 singh male	Time	Activity/Location		PID/FI	D (ppm)	
7:25 hr • Sil laing distributed near abandoued line 0.0 with claw hampuar.	7:20 AM	· Arrived ansite				
with claw hamper. Fr. 30 AM Job From Fulsilo orrives, is manually 12 40 Am dight bing soil added subscrace 12 40 Am non-visible pipe. In mildle of building 0.0 shoped like	7: 25 AM	· Soil being disturbed new abandone	d Ime	0.0	>	
7:30 AM Jel from Fulse arrives, is meanably 0.0 Aighthing soil and subserface Alle of hilding 0.0 7:40 Am Non-visible pipe. In middle of hilding 0.0 should like with subserface and point 0.0 1 Noness taking tackets of material out 0.0 1 Noness taking tackets 0.0 1 Noness taket 0.0 1 Noness taket 0.0 1 Noness taket 0.0 1 Noness taket 0.0 2 1 0.0 <td></td> <td>with daw hammer.</td> <td></td> <td></td> <td></td>		with daw hammer.				
distributy soil sector subserface set 7: 40 Am Non-visible pipe. In middle of building other should like other other other 7: 55 ATU Nonces taking tackets of material out 0.0 and putting in pastic liked dumpster. 0.0 and putting in pastic liked dumpster. 0.0 and putting in pastic liked on pater. 0.0 burge note 8: 02 AM Electric jackhapamer used to break up 0.0 burge note 8: 05 ATM Spray (Survey) paint used on like to spray (Survey) paint used on like to 8: 05 ATM 5: 06 ATM 3: 05 ATM 5: 07 B: 08 ATM 5: 09 B: 00 For vight for of yoon, breathing hight at greenish pipe near book of sprace 8: 10 For vight form of voon, breathing 2. 5 PPM 8: 10 For vight form of voon, breathing 8: 11 Middle of voon 0.9 ppm	7.30 AM	· Job from FUGRO arrives, is ma	innally	0.0		
7: 40 4m imm-visible pipe. In middle of building 0.0 shaped like item side any fim ullege est 7: 55 ATM Norkers taking Suckets of material out 0.0 and putting in plastic lined dumpster. 0.0 4.1 putting in plastic lined dumpster. 0.0 5.55 ATM Electric jackhapamer used to break up 0.0 8: 02 ATM Electric jackhapamer used to break up 0.0 burgh nock 0.0 0.0 8: 05 ATM Spray (Sunce) public used on Livit to 0.0 8: 05 ATM Spray (Sunce) public used on Livit to 0.0 8: 05 ATM Spray (Sunce) public used on Livit to 0.0 8: 06 ATM Stee measuring below breathing height 1.6 8: 08 ATM Stee measuring below breathing height 0.5 8: 08 ATM Stee measuring below breathing height 0.5 8: 10 Fer night Att of Norm 0.5 8: 10 Fer night Att of Norm 0.7 8: 10 Fer night Att of Norm 0.9 8: 11 Middle of Norm 0.9 9: 11 Middle of Norm 0.9		disturbing coil around subsurface of				
should like without side any time willinge 7:55 ATM Norcers taking buckets of material out and putting in plushic third dumpoter. 45 5 gallon buckets 8:02 ATM Electric jackhammer used to break up 0.0 buigh rock 8:05 ATM Spray (Survey) put used on Livt to ack borders for digging 8:06 ATM JUE measuring below breathing height at greenish pipe wor brek of sprace 8:09 (BANAJAANdower new door 5:09 (BANAJAANdower new door 0.5 8:10 Fer right one of voom, breathing 2.5 PPM 8:11 Middle of voom PRINT NAME: Matthew Harband	7: 40 AM	non-visible pipe. In middle of hi	ilding	0.0		
allege 63th 7:55 ATA Norkess taking Suckots of material out 0.0 and patting in plastic lived dumpster. 0.0 is 5 gallon backets 0.0 8:02 AM Electric jackhavamer used to break up 0.0 burgh nock 0.0 8:05 AM Spring (Suncy) paint used to break up 0.0 ack barders for digging 1.6 8:08 AM JEE measuring below breathing height at greenish pipe near break of space 8:08 AM JEE measuring below breathing height at greenish pipe near break of space 8:10 Fer right one of voom, breathing 9:10 Fer right one of voom, breathing 9:10 Fer right one of voom, breathing 9:11 Middle of voom 9:11 Middle of voom		shoped like _ when side away	from			
7:55 ATU Noreces taking Suckots of material out 0.0 and putting in plastic lived dampster. 455 gallon buckets 8:02 AM Electric jackhovemer used to break up 0.0 bugh nock 8:05 AM Spray (Suvey) paint used on Livt to CEO nack bordets for digging 1.6 8:08 AM JEE measuring below breathing height at greenish pipe new break of space 8:09 EMMightMeasure new door 0.5 8:10 Fer right one of room, breathing 2.5 PPM 8:11 Middle of Nom 0.9 ppm		college 63th				
and putting in plushic linud dumpster. 45 5 gallon buckets 8:02 AM Electric jackhapmer used to break up 90 yn nock 8:05 AM 9 yang (suvey) paint used on Livt to 0 ack borders for digging 1.6 8:08 AM 3:08 AM 5:08 AM 5:08 AM 5:08 AM 5:08 AM 5:08 AM 5:09 Bioght pipe hour breathing height at greenish pipe hour breathing height at greenish pipe hour break of space 8:00 For vight form of voor, breathing 2.5 PPM 8:10 For vight form of voor, breathing 2.9 ppm PRINT NAME:	7:55 AM	Norkers taking Suckots of material	out	0.0		
45 5 gallon buckets 8:02 AM Electric jackhappener used to break up 0.0 bugh rock 0.0 8:05 AM Spray (Survey) publit used on Livit to 0.0 mark borders for digging 1.6 8:08 AM 3*E mensuring below breathing height at greenish pipe hour break of space 8:09 Fer night and John Stephen 8:00 Fer night and John Stephen 9:10 Fer night and Stephen 8:10 Fer night and Stephen 9:11 Middle of Norm 8:11 Middle of Norm		and putting in plastic lined dumps	nter,			
8:02 AM Electric jackhammer used to break up 0.0 burgh rock 8:05 AM Spray (Survey) public used on Livit to OLO ack borders for digging 1.6 8:08 AM JEE measuring below breathing height at greaith pipe new breathing height 5:09 OLANIGHANCOMER new door 0.5 8:10 For right one of room, breathing 2.5 PPM 8:11 Middle of room 0.9 ppm PRINT NAME: Matthew Harband SIGNED. Matthew Floreback		45 5 gallon Luckets				
8:02 AM Electric jackhammer used to break up 0.0 tough rock 8:05 AM Spray (Survey) public used on Livit to OLO nack borders for digging 1.6 8:08 AM JEE measuring below breathing height at greenish pipe noor break of space 8:09 (EdMightMore new door 0.5 8:10 For night one of voom, breathing 2.5 PPM 8:11 Middle of voom 0.9 ppm PRINT NAME: Matthew Harband SIGNED: Matthew Horborn						
tough rock 8:05 ATM Spray (Survey) point used on Livt to ack borders for digging 1.6 8:06 ATM 3*E measuring below breathing height at greenish pipe near break of space 8:09 BEMARDAMANCE new door 5:09 For vight form of voom, breathing 2.5 PPM 8:10 For vight form of voom, breathing 9:11 Middle of voom 0.9 ppm	8:02 AM	Electric jackhammer used to 1	reak up	0.0		
8:05 ATM Spiny (Survey) paint used on Livit to ack burders for digging 1.6 8:08 ATM JE mensuring below brenthing height at greenish pipe wood back of space 8:09 BANAight Markover new door 0.5 8:10 For night one of voom, brenthing 2.5 PPM 8:11 Middle of Nom 0.9 ppm PRINT NAME: Matthew Harband SIGNED: Matthew Horborn		bugh nock				
8:08 AM JE mensuring below brenthing height at greenish pipe wood brenthing height 8:09 Edites AM Some new door 0.5 8:10 For right once of voon, brenthing 2.5 PPM 8:11 Middle of Noom 0.9 ppm PRINT NAME: Matthew Harband SIGNED. Matthew Horband	8:05 AM	Sorry (Suver) paint used on Livi	t to	Ct D		
8:08 AM JE mensuring below breathing height at greaish pipe war break of space 8:09 REMAIGHANCORE new door 8:10 For right one of non, breathing 2.5 PPM 8:11 Middle of Nom 0.9 ppm PRINT NAME: Matthew Harband SIGNED: Matthew Horbord	· · · ·	make borders for digging		1.6		
8:08 AM JE mensuring below brenthing height at greenish pipe near back of space 8:09 BANAighANGONNER new door 5.5 8:10 Fer right oner of Noon, brenthing 2.5 PPM 8:11 Middle of Noon 2000 0.9 ppm PRINT NAME: Matthew Harband SIGNED: Maltheur Horbert		<u> </u>				
8:09 EtMight More ner door 0.5 8:10 For right omer of voom, brentting 2.5 PPM 8:11 Middle of voom 20.9 ppm PRINT NAME: Matthew Harband SIGNED: Matthew Horban	8:08 AM	JIE measuring below breathing	height			
8:10 For right one of von, breathing 2.5 PPM 8:10 For right one of von, breathing 2.5 PPM 8:11 Mille of von PRINT NAME: Matthew Harband SIGNED: Matthew Horbert		at greath pine war brek of	f conce			
8:10 For right one of von, brenthing 2.5 PPM 8:10 For right one of von, brenthing 2.5 PPM 8:11 Millle of von PRINT NAME: Matthew Harband SIGNED: Matthew Horbert	,		-4			
8:10 For right come of voon, brenthing Q. 5 PPM 8:11 Middle of Noom 2012 0.9 ppm PRINT NAME: Matthew Harband SIGNED: Matthew Horbert	8:09	Red sight Mariner new Joor		0.5		
8:10 For right one of voon, brentting 2.5 PPM 8:11 Middle of voon PRINTNAME: Matthew Harband SIGNED: Matthew Horborn						
8:11 Middle of Nom 2000 0.9 ppm	8:10	For right some of voom, b	renthing	2.5 1	pM	
PRINTNAME: Matthew Harband SIGNED Matthew Horber	8.11	middle of Nom	Eme	0.9 per	h	
	PRINT NAME MA	HAW Harband SIGNED. 1	Mattheur	Hostral		

Date: 1717 / 2 Project No: EA2/0 Project No: EA2/0 Project No: EA2/0 Project No: EA2/0 Project No: EA2/0 Project Activities: Air monitoring during slab removal and excavation 307.63rd Street, Oakland Type of PID/FID: MiniRue 3000 Serial Number: 302 Calibration Rending: 100 ppm isobutylene, 10.6 eV lamp Targeted Gas Information Ionization Correction Factor PEL Ceiling PID Corrected Gas Potential (eV) PCE 9.32 0.57 25 Time Activity/Location Elevel 9.45 Time Activity/Location Science/L Science/L Science/L Sci	E.	4/12/10			Page 2 of	
Project Name: Oakland Property Project Location: 307 63rd Street, Oakland Project Activities: Air monitoring during stab removal and exeavation Type of PID/FID. MiniRae 3000 Serial Number: 302 Calibration Reading: 100 ppm isobutylene, 10.6 eV lamp Targeted Gas Information Correction Factor PEL Ceiling PID Corrected PID Corrected Gas Potential (eV) (10.6 eV lamp) (ppm) PCE 9.32 0.57 25 100 44 175 PCE 9.45 0.54 25 100 44 175 Time Activity/Location clonwing septers best PID/FID (ppm) 8: 13 Att Course (but et right), behild door, ~6 in 1.7 From graved Sampled, Joe 36 (-4 in bis PLD) 8: 13 Att Aniske of voon, jackHunnening but weres 0.5 hegewing climital kaonely butters 0.5 \$2: 19 Workers 0.5 1.7 \$2: 19 Workers 0.5 1.7 \$2: 19 Workers 0.5 1.7 \$2: 19 Workers 0.5	Date:		Project No.:	EA270		
Project Activities: <u>Air monitoring during slab removal and excavation</u> Type of PID/FID: <u>Minikae 3000</u> Serial Number: <u>302</u> Calibration Reading: <u>100 ppm isobulylene</u> , 10.6 eV lamp Targeted Gas Information Correction Factor <u>PEL</u> Ceiling PID Corrected PID Correct Gas Potential (eV) (10.6 eV lamp) (ppm) (ppm) Value - PEL Value - Ceil PCE 9.32 0.57 25 100 44 175 TCE 9.45 0.54 25 100 46 185 Time <u>Activity/Location</u> <u>Clowely Seriet Value - PEL Value - Ceil PCE 9.45 0.54 25 100 46 185 Time <u>Activity/Location</u> <u>Clowely Seriet Value - PEL Value - Ceil PCE 9.45 0.54 25 100 46 185 Time <u>Activity/Location</u> <u>Clowely Seriet Value - PEL Value - Ceil PCE 9.45 0.54 25 100 46 185 Time <u>Activity/Location</u> <u>Clowely Seriet Value - PEL Value - Ceil PCE 9.45 0.54 25 100 46 185 Time <u>Activity/Location</u> <u>Clowely Seriet Value - PEL Value - Ceil PCE 9.45 0.54 25 100 46 185 Time <u>Activity/Location</u> <u>Clowely Seriet Value - PEL Value - Ceil PCE 9.45 0.54 25 100 46 185 Time <u>Activity/Location</u> <u>Clowely Seriet Value - PEL Value - Ceil PCE 9.45 0.54 0.57 25 100 46 185 Time <u>Activity/Location</u> <u>Clowely Seriet Value - PEL Value - Ceil PCE 9.45 0.54 0.57 25 100 46 185 Time <u>Activity/Location</u> <u>Clowely Seriet Value - PEL Value - Ceil PCE 9.45 0.54 0.57 25 100 46 185 Time <u>Activity/Location</u> <u>Clowely Seriet Value - PEL Value - PEL Value - Ceil PCE 9.45 AM Fige Seriet Value - Ceil PCE 9.45 AM Pige cutting his bea give an ithermittently 0.0 For ~ 15 mikes. highle of new sample Iliquid comisting from undersett live of <u>Multiper PEL PEL Value - PEL Value </u></u></u></u></u></u></u></u></u></u></u>	Project Name:	Oakland Property	Project Location:	307 63rd Street, Oaklar	ıd	
Serial Number: 302 Serial Number: 302 Calibration Reading: 100 ppm isobutylene. 10.6 eV lamp Interaction Correction Factor PEL Ceiling PID Corrected PID Corected PID Corrected PID Corrected PID Corre	Project Activities:	Air monitoring during slab removal and excavation				
Calibration Reading: 100 ppm isobutylene. 10.6 eV lamp Targeted Gas Information Correction Factor PEL Ceiling PID Corrected P	Type of PID/FID:	MiniRae 3000	Serial Number:	302		
Output subditylene. 10.6 eV lamp Targeted Gas Information Ionization Correction Factor PEL Ceiling PID Corrected PID Corrected Gas Potential (eV) (10.6 eV lamp) (ppm) (ppm) Value - PEL Value - Ceil PCE 9.32 0.57 25 100 44 175 TCE 9.45 0.54 25 100 46 185 Time Activity/Location Colored Support Activity/Location Colored Support Bit 13 Am Middle of voin jackhundunky by workers Market Weight Jule Induction of the Weight Support Bit 13 Am Middle of voin jackhundunky by workers Market Weight Jule Induction of the Weight Support Bit 13 Am Middle of voin jackhundunky by workers Middle of voin jackhundunky by workers Support wheelbarrow Support wheelbarrow 8: 13 Am Joe I Cases 0.1 Support workers the Weight of Difference Support workers the Weight of Difference <td colsp<="" td=""><td></td><td></td><td></td><td></td><td></td></td>	<td></td> <td></td> <td></td> <td></td> <td></td>					
Targeted Gas Information Ionization Correction Factor PEL Ceiling PID Corrected PID FID Corrected PID FID Corrected PID FID Correct PID FID CorrectPID FID Corrected PID FID C	Calibration Reading:	100 ppm isobutylene, 10.6 eV lamp				
Ionization Correction Factor PEL Ceiling PID Corrected PID corrected cor	Targeted Gas Information					
Gas Potential (eV) (10.6 eV tamp) (ppm) (ppm) Value - PEL Value - Cell PCE 9.32 0.57 25 100 44 175 TCE 9.45 0.54 25 100 46 185 Time Activity/Location Clowly septer test PID/TD (ppm) 1.7 Nom graund Sampled. Jee of 0.41 wis PLD. 1.7 Nom graund Sampled. Jee of 0.41 wis PLD. 1.7 Nom graund Sampled. Jee of 0.41 wis PLD. 1.7 Nom graund Sampled. Jee of 0.41 wis PLD. 0.5 Notess remove wheelbarrow 0.5 0.5 Notess remove wheelbarrow 0.5 0.1 Scaliment. Scaliment. 0.1 0.1 8: 25 AM Joe leaves 0.0 0.0 8: 25 AM Joe leaves 0.0 0.0 8: 25 AM Joe leaves 0.0 0.0 9: 26 AM Pipe cutting hus been ping an ithermittantly 0.0 10 for n 15 mins. highle of noum sample 0.0	Ioniz	ation Correction Factor PEL	Ceiling	PID Corrected	PID Corrected	
PCE 9.32 0.57 25 100 44 175 TCE 9.45 0.54 25 100 46 185 Time Activity/Location Claming Supples bot PID/TID (ppm) 8:13 AM Cover (back right), behind door, a6 in 1.7 from ground sampled. Joe of a 4 is is P.D. 82 13 Am Middle of voor, jackhamening by workers 0.5 hepening simultationsty 8:19 Workers romeve wheelbarrow weeks of 0.1 Sediment, 8:25 AM JOE leaves 8:30 AM DAN begins pipe cutting 0.0 8:48 AM Pipe cutting his been ging an itervittently 0.0 for a 15 mius, highle of voor sample 1:40 Middle of the voor underest liver of 0.0 9:46 Am Middle of the voor underest liver of 0.0 9:20 AM Final Messerent taken, middle of rowm 9:28 AM Final Messerent taken, middle of rowm 7:000 ROW HARRY WANTS Soil	Gas Potenti	(al (eV) (10.6 eV lamp) (ppm)	(ppm)	Value - PEL	Value - Ceiling	
Time Activity/Location Clowing Septer Septer PDD/FID (ppm) 8:13 AM Correct (back right), behind door, ~6 in Her Get [1,7] PDD/FID (ppm) 8:13 AM Correct (back right), behind door, ~6 in Her Get [1,7] I.7 from ground sampled. Joe got 0.4 in his P.D. I.7 8:13 AM Aride of voor, jackhamaning b workers 0.5 B:13 Am Aridle of voor, jackhamaning b workers 0.5 B:19 Workers vooneve wheelburrow Millie of 0.1 sediment, Sediment, 0.1 8:25 AM Joe leaves 0.0 8:25 AM Joe leaves Sediment, 8:25 AM Joe leaves 0.0 8:48 AM Pipe cutting hus been ging on ithermittently 0.0 6:7 ~ 15 mins. Middle of wown sample I.1 Iliquid coming from underweth liver of Iliquid 9:00 AM 0.0 Sediment, 9:00 AM 0.0 Sediment, 9:00 AM 0.0 Sediment, 9:38 AM Final measurement taken, middle of room 9:38 AM Final measurement taken, middle of room 9:38 AM Final measurement taken, middle of room 10:000000 HABRY WANTS Soilt	PCE 9.1	32 0.57 25	100	44	175	
Time Activity/Location Clowing upper kot 'PiD/FID (ppm) 8:13 AM Concur (back right), behind dor, ~6 in 1.7 from ground sampled. Joe 30t 0.4 in his P.E.D. 1.7 8:13 Am Middle of room, jackhamaning by workers 0.5 beganing simultaneously 0.1 8:19 Worksrs remove wheelbarrow 1.7 8:25 AM JOE leaves 0.1 8:25 AM JOE leaves 0.0 8:30 AM DAN begins pipe cutting 0.0 8:43 AM Pipe cutting hus been ping an itternithetty 0.0 8:43 AM Pipe cutting hus been ping an itternithetty 0.0 9:00 AM 0.0 0.0 9:00 AM 0.0 0.0 9:00 AM Middle of the room underwath live of scholeling 0.0 9:00 AM 0.0 0.0 9:28 AM Final massurement taken, middle of room 0.0 9:28 AM Final massurement taken, middle of room 0.0 9:28 AM Final massurement taken, middle of room 0.0 9:28 AM Final massurement taken, middle of room 0.0 9:28 AM Final massurement taken, middle of room 0.0 9:28 AM Final massurement taken, middle of room 0.0	1CE 9.4	45 0.54 25	100	46	185	
8:13 AM Covar (back right), behind dor, ~6 in 11.7 from grand sampled. Joe 30t 0.4 in his P.E.D. 8:13 Am Middle of room, jackhamanny by workers 0.5 hegening simultaneously 8:19 Workss remove wheelbarrow middle of 0.1 sediment. 8:25 AM JOE leaves 8:30 Am DAN begins pipe cutting 0.0 8:43 AM Pipe cutting his been pin an itermittently 0.0 For ~15 mins. hiddle of room sample 1:quid coving from underenth live of 1.0 9:00 AM 0.0 9:26 AM Middle of the room underenth live of 1.0 9:00 AM 0.0 9:28 AM Final Maswerst taken, middle of room 9:28 AM Final Maswerst taken, middle of room 7:28 AM Final Maswerst taken, middle of room 7:28 AM Final Maswerst taken, middle of room 7:28 AM Final Maswerst taken, middle of room	Time	Activity/Location	Eleanity Su	phis kept _ PID/FI	D (ppm)	
from grand Sampled. Joe zot 0.4 in his P.D. 82 13 Am Middle of voor, jackhumaning by workers 0.5 happening simultahoursly 8:19 Workers remove wheelbarrow failed of 0.1 sediment, 8:25 AM JOE leaves 8:30 AM DAN begins pipe cutting 0.0 8:43 AM Pipe cutting has been ping an ittermittently 0.0 6:43 AM 9:00 AM 9:00 AM 9:00 AM 9:00 AM 9:28 AM 9:28 AM 9:20 AM 9:28 AM 9:20 AM	8:13 AM	Cover (back right), behind door	, ~6 in "	1.7		
82 13 Am Middle of room, jackhummuning by workers 0.5 hegening simultaneously 8:19 Workers romeve wheelburrow fulled of 0.1 sediment. 8:25 AM JOE leaves 9:30 AM DAN begins pipe cutting 0.0 8:43 AM Pipe cutting his been going an itternittently 0.0 for ~15 mins. hiddle of norm sample liquid counting from underenth live of Mille dumpster. 9:00 AM 0.0 9:28 AM Final Mesurement taken, middle of room 9:28 AM Final Mesurement taken, middle of room 7:28 AM Final Mesurement taken, middle of room		from ground sampled. Joe got	0.4 in his p.I.	þ		
Nepening simultaneously 8:19 Workess remove wheelbarrow fields of 0.1 sediment, 8:25 AM JOE leaves 8:30 AM DAN begins pipe cutting 0.0 8:43 AM Pipe cutting has been ping on ittermittantly 0.0 for ~ 15 mins. highle of nour sample Iliquid counting from underwath line of dumpster. 9:00 AM 9:00 AM 9:00 AM Final massurement taken, middle of room 9:28 AM Final massurement taken, middle of room TOMORROW HARRY WANTS Soil	82 13 Am	Middle of noon, jackhummenty	by workers	0.5		
8:19 Workess remove wheelburrow finites of 0.1 sediment,		hopening simultaneously	/			
sediment, 8:25 AM JOE leaves 8:30 AM DAN begins pipe cutting 0.0 8:43 AM Pipe cutting his been ping on ittermittantly 0.0 60r ~ 15 mins. highle of norm sample 0.0 11guid coming from underwath liner of 0.0 9:00 AM 0.0 9:100 AM 0.0 9:28 AM Final masurement taken, middle of room 7:28 AM Final masurement taken, middle of room	8:19	workers remove wheelburrow the	h sf	0.1		
8:25 AM JOE leaves 8:30 AM DAN legins pipe cutting 0.0 8:43 AM Pipe cutting has been ping on ittermittently 0.0 for ~15 mins. highle of non sample liquid coming from underwath line of MMM dumpster. 9:00 AM 0.0 9:28 AM Final Masswerent taken, middle of room JONORROW HARRY WANTS Soil SAMPLES TAKEN		sediment,				
8:30 AM DAN begins pipe cutting 0.0 8:43 AM Pipe cutting his been ping on itternittently 0.0 for ~15 mins. highle of now sample liquid cowing from undereath liver of Mille dumpster. 9:00 AM 0.0 9:28 AM Middle of the noon writers shoreling 0.0 9:28 AM Final measurement taken, middle of room TOMORROW HARRY WANTS Soil	8:25 AM	JOE leaves				
8:43 AM Pipe withing his been ping an ittermittantly 0.0 For ~ 15 mins. highle of nown sample liquid coming from underwath liver at dumpster. 9:00 AM 0.0 9:20 AM 0.0 9:20 AM 0.0 9:20 AM Middle of the year unders shoreling 0.0 9:20 AM 9.0 9:20 AM 9.0 9:20 AM 9.0 9:20 AM 9.0 9:20 AM 10.0 9:20 AM 1	8:30 AM	DAN begins pipe cutting		0.0		
8:43 AM Pipe cutting his been plug on itternittently 0.0 for ~ 15 mins. Ariddle of noun sample liquid coming from underwath liver at dumpster. 9:00 AM 9:00 AM 1000 O 9:00 O 9:00 AM 1000 O 9:00 O 9:00 AM 1000 O 9:00					-	
for ~ 15 mins. highle of norm sample liquid coming from undernath liver of dumpster. 9:00 AM 0.0 9:16 AM Middle of the your unders shoreling 0.0 9:18 AM Middle of the your unders shoreling 0.0 9:28 AM Final measurement taken, middle of room TOMORROW HARRY WANTS Soil	8:43 AM	Pipe cutting has been ping on it	emittently	0.0		
Iliquid country from underwath live of Iliquid country from underwath live of dumpster. 9:00 AM 0.0 9:10 AM 0.0 9:20 AM		for ~15 mins, biddle of norm	sample			
9:28 AM Final measurement taken, middle of room TOMORROW HARRY WANTS SOIL Starpies taken				_		
9:00 AM 9:00 AM 9:0		liquid consider forme readers the li	mer (t	(DV An		
9:28 AM Final masurement taken, middle of room 9:28 AM Final masurement taken, middle of room TOMORROW HARRY WANTS SOIL SAMPLES TAKEN		dum aller	<u>··· </u>			
9:28 AM Middle of the voor unters shoveling 0.0 Sediment by hund into wheelbarrow 9:28 AM Final measurement taken, middle of room TOMORROW HARRY WANTS SOIL SAMPLES TAKEN	9:00 AM	ommessa.		0.0		
9:28 AM Final masurement taken, middle of room TOMORROW HARRY WANTS SOIL SAMPLES TAKEN	9.16 Am	Middle of the new worker die	velika	0.0		
9:28 AM Final masurement taken, middle of room TOMORROW HARRY WANTS SOIL SAMPLES TAKEN		Ediment las hand lite scheelless	aw			
9:28 AM Final masurement taken, middle of room TOMORROW HARRY WANTS SOIL SAMPLES TAKEN		Property runa fair weat pair		·		
TOMORROW HARRY WANTS SOIL SAMPLES TAKEN	9:28 AM	Final measurement taken, middle of	room			
SAMPLES TAKEN		TOMORROW HARRY WANTS S	oil			
		SAMPLES TAKEN.				
9:30 Leave premises	9:30	Leave premises				
Multi III A Att - 210	// //		Mitt.	210		
PRINT NAME: / (ATT New flor bank) SIGNED: // JMIW / otherwich	PRINT NAME: MAT	New Harbanch SIGNED:	17 innew	North		

E.		Page 1 of
Date:	<u>4/16/18</u> Project No.:	EA270
Project Name:	Oakland Property Project Location:	307 63rd Street. Oakland
Project Activities:	Air monitoring during slab removal and excavation	
Type of PID/FID:	MiniRae 3000 Serial Number:	302
Calibration Reading:	100 ppm isobutylene, 10.6 eV lamp	
Targeted Gas Information		
Ioniz	ation Correction Factor PEL Ceiling	PID Corrected PID Corrected
Gas Potenti	al (eV) (10.6 eV lamp) (ppm) (ppm)	Value - PEL Value - Ceiling
PCE 9.3	2 0.57 25 100	44 175
TCE 9.4	45 · 0.54 25 100	46 185
Time	Activity/Location	PID/FID (ppm)
10 20 AM	Arrivel, ange to abrahy exampled + removed	
	(odorstand nome from pipe withing/ grinding; fumes)	
	·FUGRO not here	
10 46	· Breathing zone P.I.D in Space	0.00
	* Floor mixture of gladel and brown livet	
- <u>-</u>	· Abardoned sides and abardond clean out	
10:50	Keith Nevell AREH diversion	
	· Kath Ale (all leaves	
11.00		
	. Jee wherte expected from FUGRO	
	510-604-9452	· .
11:06	· Called Joe, left message saying	
	uncrete removal Nas complete and that	
	excavation starts at 8 Aris tommon (4/17)	
	left information to call back.	
		<u> </u>
	A	
PRINT NAME: MO	Hhew Harband SIGNED: Matthew	Hurton

-

12-14" Excavation 4/18/2018

.

San Francisco									TestAmerica
1220 Quarry Lane				2	•		_		
Discounting CA 04666				Chi	ain oi	I Custody Record			THE LEADER IN ENVIRONMENTAL TESTING
phone 925.484.1919 fax 925.600.3002									TestAmerica Laboratories, Inc.
Client Contact	Project Mana	ager: Micha	el Harriso	-	Site	Contact: M. Harrison	Date:		COC No:
EnviroAssets, Inc.	Tel/Fax: 510.	.346.9500/51	0.346.9501		Lab	Contact: D. Sharma	Carrier		1 of 1 COCs
6037 La Salle Avenue	A	nalysis Turp	around Ti	me					Job No. EA270.B.01
Oakland, CA 94611	Calendar (C) or Work	Days (W)			5			
(510) 346-9500 Phone	TAT if	different from B	3elow 5-day s	tandard					
(510) 346-9501 FAX		2 we	eeks			<u>6</u> 0			SDG No.
Project Name: 307 63rd Street] we	eek		Š.	1			
Site: 307 63rd Street		2 da	ays		ič.	ta			
P O # EA270.B.01	R	1 da	ay		in Pl	10			
		_		_	ia și	(1			
Sample Identification	Sample Date	Sample Sample	Sample Type 1	Matrix C	۽ ۽ Kuler	Lead			Sample Specific Notes:
S-B17-0.5-A	4/18/18	J. 58		s	-	x			24-W TAT
S-B18-0.5 -A	4/18/18	<u>16.0</u> 1		s	-	x			
S-B19-0.5-A	4/18/18	C o :0		s	-	X			
S-B20-0.5 -A	4/18/18	10:04		s	-	x			
				_					
Preservation Used: 1= Ice, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaO	H; 6= Other								
Possible Hazard Identification	Poison B		iknown			Sample Disposal (A fee ma	y be asses:	il By Lab	For Months
Special Instructions/QC Requirements & Comments:									
Clobal ID# T10000011188 Er EV	1							H. 1. c	
Reliantify by:	Company:	Asse	×-	HIN/IM	10.05	Received by		Company:	Date/Time: 4/19/18 /08
Relinquished by: 0	Company:			Date/Time:		Received by:		Company:	Date/Time:
Relinquished by:	Company:			Date/Time		Received by:		Company:	Date/Time:

182794

Calibration and Components Checklist Photoionization Detector

RAE Instrument ID # RAE 2000	
RAE Instrument ID # $\frac{902}{2}$ RAE 3000	D 12
RAE Instrument ID # RAE 3000 P	PB
RAE Instrument ID # Ultra RAE	
Components	
Lamp 9.8 Lamp 10.6 Lamp 11.7	Lamp 11.8
Date Out: 04/13	Date In:
Meter:	Meter
Probe:	Probe
Filter:	Filter
Charger:	Charger
Manual:	Manual
Case:	Case
Calibration Sheet:	Calibration Sheet
Terms & Conditions: 🔟	Terms & Conditions
Parameters	
response ractor	
Calibration Gases Use	ed
100 mm tochatelone	100 Motor Pornesso
100 ppm isobutylene	<u> </u>
100 mm Honore	Meter Kesponse
10 ppm nexane	Meter Kesponse
10 ppm benzene	Meter Kesponse
Uther Gas Used	Meter kesponse
Inspected & Calibrated By:	Date: 04/13

Note: This unit has been tested and is in proper working condition. This unit has been cleaned and should be returned in the same condition. Any components missing upon return of this instrument shall be billed at the current price. If the unit is returned overly dirty or damaged a service order will be issued and your account will be billed. Should the unit malfunction you must notify EILCO within 24 hours or you will be billed for the time the unit was in your possession.

5650 Imhoff Drive, Suite A, Concord, CA. 94520

Phone 800/648-9355 Fax 925/686-4608

Your Name: Date: Project Name:	George Mend 3/13/18 Red Hunger	Well No.: Project No.: ビト こうく	Page of	
ACTIVITIES (Time: フェ	Include event, time, observations, observers, B-15 Arrive -ri Ann Fuyro Devan Don Pouzor orriver 915 14 Z'mide Spanz 15	z high ceiling	oved For rig	
	Seri wants PID realing and when concrete core	y when vuyer pins	ure opened	
	Harry wants expedit	ted (ZULour dep Aispurni	ending on Price)	
	4" sunitura server :- 307 1.5" ss tier in From wert m 41" Ss From Korne- toilet	runs N-Sulary en run hulkway downdo Lier in Erom softma	strun 11 5' deup structure Iding and runs E-w str In runs E-w	'ex t
ر در روح	Jeri leuver Nested SS und SD in Subtranic le aver	alley run N-5 5:	j tier in to rear of 309	
·····				
PRINT NAME	<u>.</u>	SIGNED:		

Ę

.

Page of

North Con Meril	Well No :	Tage Of
Poter 3/14/18	Project No.:	······
Project Name: $ \mathcal{F} \mathcal{F} \mathcal{I} \mathcal{I} \mathcal{I} $		
ACTIVITIES (Include event, time, observations, observers, etc.)	(A) HAA . VOLVE, C	001/2/0009
Time: 2073 - 00	5 7201302 1000	
Harry Lac	<u>z</u>	
Joe Whearty Jori		PperMarry From
		wet Floor cleaning
VP-1 in 307 63rd (tundinewater in pine	curthy
Zuch tested w/suchie an	where in pin	
Ét En rob il al sti di	me and take an	
723 bull here rate	1 Juse 305 m.L.	Juci was lie
	the action of the second secon	description is a per
AS 7352 574		
<u> </u>	بر کم	
· Oppin Fun probe	+;p	· · · · · · · · · · · · · · · · · · ·
Fuero ppm VP-1		
Oilpon w testint	ubing from confluence	L
EA J pob w/ silicon sma	Nur tubin	\frown
	e Chan In b	15
15 minute Tumple Q	(D) ATHSK NE	(Flores less
		1 Da herrigar
	Jinn	100 73 13 -
ZITI VI Jappie		
VP-3 No water in pin	carity	
2200 Fusco Depanin pin	EFT 23 andient 30	4 inpir
- til pressore	27 Final 13	
15 minuter (2) 100	- 128 (125) F-100	
2226 VP-3 Jumpla	152	
1555 VP-2 Freno 02 barb sal	ith Jean anto	~ //
2240 21 1	Gha tube 200	· · · · · · · · · · · · · · · · · · ·
	1522	
	1300 in pro	m teris
- 7309 Sample in Fiel 32 11	o Find	
PRINT NAME: 15 miguter &	100-15.0 125 (145) FIOW SIGNED:	
2322 NO. W. Not C. Vo		
Car a contraction	initia127 /20	@18 minutes
rugo 3,0 EA 3560 Ambie.	. / 15	Q 73 minutes
Zis in pin nitube		
	100-150	82(10)1

	G M			Page of 2
Your Nam	$\frac{12}{2} \frac{12}{2} \frac$	Well No.:	61-212	
Date: Project No			517 512	
I IUJCCI IVA				
ACTIVIT	IES (Include event, time, observations,	observers, etc.):	sprinkles 1115	
Time:		23. 1	- /	
<u> </u>	Jarry Darite		<u>чр)</u> ,/	
-)	>> Greys worives		70 Lov Jorey 5 0	alls yard to
	4> Joz Warriver	Fugro	Tuve controller 50	rrig delivered
	Kuren Fugers	Zouk ConFluence	target tobring	C
	10530	(ourete Evring 1	Deri	F J J - 5
Ę	212 Sufety meeting			
	Joe Fryrs M	1: 1+1 Kne Flus	FFM RAU	-12
	975 Corion Line	ete 6 4"	dinmeter 3"	
r	900 sturt BIS 1	SVP (att:P	and be to site	0 925
Pm 1	Consistent DP	Ph CD reaking	andiest and	by Bad ser
130 9	27 5mg B15 VP	7 arbur	the 45 m	a saska 2 ca.)
		Enon aul		
	and (1.1.1) 979	cale B maile	Jas mor	or I ar Quik, Wyor
		Ser permont		
<u> </u>		VP15 mb 1	9(2) 9	59 50 - 50- 40
	ANT DIO	VI 12 520 AV	(A) (A)	sab be to
_ V _	4555101 010	vr i seran	950 950	1) K
	R12 815 5	Gw Sturk		
	Several	inches mater no	isture Q	······
	1110 drive to	21' no miter	hole collupsed -	to 19'
	1205 respend hole +:	24' set 1" cusing	, m/10' screen 1	リーてリ
o B	15 VP 7 and 15 0	Bid in type after	- spe- vulve F	us and FA
2.07 R	16 VP 7 and 15 0	oid in tybe of	ter ana vulle F	hround EA

1245 to 20 set 1" 1207 1816 Fyroand EM B16 set l'easing Screen 10-20' 5 tort 5 Gr 1213 1232 204 Nº BISNP7 19 minutes 100-150 pre 23 post 106 lab 13 1230 sumple B15VP15 pre 24 post 12 17 minutes 100-160 144 125 1300 No gue B15 slow to 24 B16 slow to 20 Nochsing to 20 screen 10-28 no mater PRINT NAME: 1320 B165 GN to 24 scree 14-21 SIGNED: 125

10miter

EA10893-09.xls

Your Name:	George	Mend	Well No.:	Page ² of ²
Date:	3/1-113		Project No.:	
Project Name:		Ked	Homer	

ACTIVITIES (Include event, time, observations, observers, etc.): Time:

start 32 and 15 BIG VP < 5m 115 Jab 100-150 25 minutes B16 VP7 tates end 1329)0 Sumple 23 minutes 1.5 100-150 115 1415 Ac PW ういう arrives Bis SJGW B 1b to remain 23-5 3 16 Monday 1 necessary . . IG ٩ nerted 1420 2 eγ 3 Du to be ons Aborizer fe ß recessory 40 ar-te-5.1250 Μ alivapor d.) rsster 2.5 チックショル Yw bor 1500 threw Fruch Baj رعد S white arriver 1612 645 leve ri 0 Gr Q, NOJ Ω egy **PRINT NAME:** SIGNED:

10/ 16001 418 BIS-VP7 KIJ COS 0 201°61 1 20 B15 - VP15 UZ SO redd 43 L'LE antiger h BIG-VP7 10-22 0 J 47855 0-137510 15:21 B16-VP15 5 -19(5-9125 5-351 LJA - 9135 63rd St N sund rolch 110 cerepécore pil readings Red Hunger CLZ H7 81/51/2

				F
Your Name: <u>6e</u> Date: Project Name: R	3/16/19 3/16/19 ed Henger	Well No.: Project No.:	EA 270	Page of
ACTIVITIES (Include e Time:	event, time, observations, obser	rvers, etc.):		
BIC	6 5)GW SOUN	ded 00 22		
0935	Whent 3 VOA's	BIS SIGN		I in for curry
JOIX M	larcelino on si Bis si	te witness Gw and B16	grouting or 5/62	
10,				
PRINT NAME:		SIG	SNED:	

Karen/Fugers ChrisCore Jungouros Eg 270 100 karn Jewes Jewes clement sevent sturies behind 309 100 criterior 2' pipe serton slong 100 criterior 60'10" break 1120 EA lots of roots soming in goints every Z feet leave Fron cleanout all don- alley Blailer Bo'4" pipe is broken/crushed 1330 lear La Jule beneath street 37'0 is city main gonie gonie constant street all the main 1530 per 38 miler 1525 160 pipe is in 2' sectors all the may all joints are compromised break Q 60'15' mus pinpointed and spring with X or sidemilh jost north strate ton From behing 309 leading into alleg ir section of 2' pipes staggered to make bend 1 Storndruin hur flut spot From 10' south of gute to the curb cust from 10' sections soud integrity Sanitery from clansol in buch nucl suls, debrir 25's' breakingspe on left and right and is in retrosfit space 357 old pipe possible 25.5" wort of mult \$ 13'3 sight of break inchas

110 11-EA 270 Cast iron no Sseals From Aug Jules to Frend SX 307 escapt one spit likely pierer pipe fell is vertually From laterals leading in to 5' deap cartinon are vertical From above fipe my noble broken Vertici 1 2" 1" O B45 5)GN 1 2 72 ちょくりん ちょう 10,2,5 101 12:71 S. 40% 10× 2'2'

716-11-Video Seguence EA 270 (Vides foiler Flugge Red Hunger Iry Flaks no breaks video sun sewa schind 309 to 63rd \bigcirc video storm server alley to 63rd E (3) video san somer nail sula to 63rd Br Fed Ex EAS Ground 50/5x 1000/6x 90.94 £ 11-0

Appendix B Waste Documentation

P.O. B	NDEI ox 1427, Benicia,	ENTA 5 (Office	SCANNED	INC.	Kort	WORK	For Intern Prevailing Way 6206 (Vaci 7515 (Genera 9403 (Ro	al Use O ge: Yes uum Truc al Mainter II-Off Bir	53 / N :ks) nance) is)))			
USTOMER:		SITE ADDRESS:			JOB NO: 18-110	017		_	DATE: 4-2	24-1	8		
BOIDOS 307-6310, ST.					DAY: Mon. / Tue. / Wed. / Thur. / Fri. / Sat. / Sun.								
BOULUS Oakland				CUSTOMER P.O.:									
NTACT:		4,			PHONE #:				CUSTOMER				
PROVIDE BIN H AREA TO ACESS.	Р/6 135 1726 F Р Rocke	TO MU FROM STA T LAUNC	νε 6 <i>1Ν</i> Ηεκ	G	Commento.								
							1st ME	4L .	2nd MEAL	1			
SERVICE P	SERVICE PROFESSIONALS - LAST / FIRST NAME			CLASS	START / END		TIME OU	T/IN	TIME OUT / IN	S/T	ОЛТ	P/T	
KELTO	W MITCH	ter		D	1130/1500		15	-		3			
DESCRIPTION	EQUIP / TRL #	DESCRIPTION	QTY	HRS / UM	DESCRIPTION	QTY	HRS / UM	SUPPLIE	DESCRIPTION	QTY	HRS	5 / UM	
KUP		MANIFEST		Each	5 GAL BUCKETS		Each			_	-	-	
ON STAKE BED	1	3" VAC HOSE		Each	ABSOR, PADS		BDL						
3BL VAC		4* VAC HOSE		Each	ABSOR BOOM	1	Each						
BL VAC		GAS MTR (4 GAS)		Dally	RESPIRATOR	_	Daily			-			
BBL VAC		BENZENE METER		Daily	CARTRIDGES (DF)	_	Set						
RO EX.		HARNESS		Daily	DEGREASER JPX		Gallons						
M TRUCK		CONTAINMENT (25 ft)		Daily	DRUM LINERS		Each						
DRY VAN		CONTAINMENT (50 ft)		Daily	DUCT TAPE		Each			_			
LOFF CALLER	135	55 GAL DM PLY CT		Each	GLOVES (CUT)		Pair						
LINER		55 GAL DRM STL CT		Each	GLOVES (Impact)		Pair						
ID BIN		55 GAL DRM STL OT		Each	GLOVES (PVC)		Par		IRACELLANEOUR	-		-	
RD BIN		CUBIC VARD FOV		Each	RAIN SUITS (FRC)		LBS/BDL Fach	BRIDGE TO	LL (2 AXLE)	-	-	-	
K 8.5		Same (part and):		Light	TRAIN MAT B		Each	BRIDGE TO	LL (3 AXLE)				
					TYVEK (FRC)		Each	BRIDGE TO	LL (4 AXLE)				
					TYVEK (Poly)		Each	PER DIEM	S / H)				
					VISQUEEN (6 ML)		Roll	FUEL (DIES	EL)		Gr	stions	
					VISQUEEN (10 ML)		Roll	FUEL (GASO	SLINE)		G	alloris	
						_							
						-							
		DISPOSAL / S	UBCON	TRACTO	DRS			1					
VEN	4DOR	DISPOSAL / S	UBCON	TRACTO	DRS MANIFEST # / E	30L#							
VEN	NDOR	DISPOSAL / S P.0	UBCON	TRACTO	DRS MANIFEST #/ E	30L#							

PO . Be	NDEI ox 1427, Benicia,	CA 94510 / 707-7	NME 48-7775	NTA (Office	SCANNED L SERVICES,) / 707-748-7776 (Fax)	INC.	1	56	For Interna Prevailing Wag 6206 (Vacu 7515 (General 9403 (Rol	e: Yes um Truc Mainter I-Off Bin	nly /No :ks) nance) s)	•
USTOMER:		307 63 Rd	ste	ool	JOB NO: 18-1101	18.	1101-	7	DATE: 4/24	IR		
DOUZOS		D.Klund.	in		DAY: Mon. / T	ue.) /	Wed.	/ Thur.	/ Fri. / Sat.	/ Sun.		
construction up newsul con					CUSTOMER P.O.:		010701155					
ONTACT:					PHONE #:				APPROVAL:			
And Tem YARd.	rsported	to Pou	dur	r -	Bin#	ć		1				
· /					1726	r	1st ME	AL	2nd MEAL	1		
SERVICE PROFESSIONALS - LAST / FIRST NAME				CLASS	START / END		TIME OU	T/IN	TIME OUT / IN	S/T	ОЛ	F
Tonos	. Logen	det		2	1200-1500					3		
	FOUR	MENT				_		SUDDUIC	2		-	-
DESCRIPTION	EQUIP	DESCRIPTION	QTY	HRS /	DESCRIPTION	QTY	HRS /	SUPPLIES	S	οτγ	HRS	/ U
DESCRIPTION	EQUIP EQUIP / TRL #	MENT DESCRIPTION	QTY	HRS / UM	DESCRIPTION	QTY	HRS / UM	SUPPLIE	S	Ω ΤΥ	HRS	/ U
DESCRIPTION KUP AR TRUCK	EQUIP EQUIP / TRL #	MENT DESCRIPTION MANUFEST 2* VAC HOSE	QTY	HRS / UM Each Each	DESCRIPTION 5 GAL BUCKETS ABS. (Kitty Litter)	QTY	HRS / UM Each Each	SUPPLIE	S	Δ ΤΥ	HRS	/0
DESCRIPTION KUP AR TRUCK ON STAKE BED	EQUIP EQUIP / TRL #	MENT DESCRIPTION MANIFEST 2* VAC HOSE 3* VAC HOSE	QTY	HRS / UM Each Each	DESCRIPTION 5 GAL BUCKETS ABS. (Kitty Litter) ABSOR. PADS	QTY	HRS / UM Each Each BDL	SUPPLIE	S	QTY	HRS	/ U
DESCRIPTION KUP AR TRUCK ON STAKE BED BBL VAC	EQUIP EQUIP / TRL #	MENT DESCRIPTION MANIFEST 2* VAC HOSE 3* VAC HOSE 4* VAC HOSE	QTY	HRS / UM Each Each Each Each	DESCRIPTION 5 GAL BUCKETS ABS. (Kitty Litter) ABSOR. PADS ABSOR. BOOM	ΩΤΥ	HRS / UM Each Each BDL Each	SUPPLIES	S	QTY	HRS	/ U
DESCRIPTION KUP AR TRUCK ON STAKE BED BBL VAC BBL VAC	EQUIP EQUIP / TRL #	MENT DESCRIPTION MANIFEST 2* VAC HOSE 3* VAC HOSE 4* VAC HOSE GAS MTR (4 GAS)	QTY	HRS / UM Each Each Each Each Dally	DESCRIPTION 5 GAL BUCKETS ABS. (Kitty Litter) ABSOR. PADS ABSOR. BOOM RESPIRATOR	ΩΤΥ	HRS / UM Each Each BDL Each Daily	SUPPLIES	S	ατγ	HRS	/ U
DESCRIPTION KUP AR TRUCK ON STAKE BED BBL VAC BBL VAC	EQUIP EQUIP / TRL #	MENT DESCRIPTION MANIFEST 2* VAC HOSE 3* VAC HOSE 4* VAC HOSE GAS MTR (4 GAS) BENZENE METER	YTQ	HRS / UM Each Each Each Each Daily Daily	DESCRIPTION 5 GAL BUCKETS ABS, (Kitty Litter) ABSOR: PADS ABSOR: BOOM RESPIRATOR CARTRIDGES (DF)	ΩΤΥ	HRS / UM Each Each BDL Each Daily Set	SUPPLIES	S	QTY	HRS	/ U
DESCRIPTION KUP AR TRUCK ON STAKE BED BBL VAC BBL VAC D BBL VAC CTOR	EQUIP / TRL #	MENT DESCRIPTION MANIFEST 2* VAC HOSE 3* VAC HOSE 4* VAC HOSE GAS MTR (4 GAS) BENZENE METER GAS MTR (FD)	QTY	HRS / UM Each Each Each Each Daily Daily Daily	DESCRIPTION 5 GAL BUCKETS ABS. (Kitty Littor) ABSOR. PADS ABSOR. BOOM RESPIRATOR CARTRIDGES (DF) CARTRIDGES (OV)	QTY	HRS / UM Each Each BDL Each Daily Set		S		HRS	10
DESCRIPTION KUP AR TRUCK ON STAKE BED BBL VAC BBL VAC DBL VAC CTOR DRO EX.	EQUIP EQUIP / TRL #	MENT DESCRIPTION MANIFEST 2* VAC HOSE 3* VAC HOSE 4* VAC HOSE GAS MTR (4 GAS) BENZENE METER GAS MTR (FID) HARNESS	QTY	HRS / UM Each Each Each Each Daily Daily Daily	DESCRIPTION 5 GAL BUCKETS ABS. (kitty Litter) ABSOR. PADS ABSOR. BOOM RESPIRATOR CARTRIDGES (DF) CARTRIDGES (DV) DEGREASER JPX	QTY	HRS / UM Each Each BDL Each Daily Set Set Gallons		S		HRS	/ U
DESCRIPTION KUP AR TRUCK ON STAKE BED BBL VAC BBL VAC DBBL VAC CTOR DRO EX. OM TRUCK DRO FX.	EQUIP / TRL #	MENT DESCRIPTION MANIFEST 2* VAC HOSE 3* VAC HOSE 4* VAC HOSE GAS MTR (4 GAS) BENZENE METER GAS MTR (FID) HARNESS CONTAINMENT (25 ft) CONTAINMENT (25 ft)		HRS / UM Each Each Each Each Daily Daily Daily Daily Daily Daily	DESCRIPTION 5 GAL BUCKETS ABS. (Kitty Littor) ABSOR. PADS ABSOR. BOOM RESPIRATOR CARTRIDGES (DF) CARTRIDGES (OV) DEGREASER JPX DRUM LINERS DIGT. TARE	QTY	HRS / UM Each Each BDL Each Daily Set Set Gallons Each		S DESCRIPTION	QTY	HRS	/ U
DESCRIPTION AR TRUCK ON STAKE BED BBL VAC BBL VAC DBBL VAC CTOR DRO EX. OM TRUCK DRY VAN W BOY	EQUIP / TRL #	MENT DESCRIPTION MANIFEST 2* VAC HOSE 3* VAC HOSE 4* VAC HOSE GAS MTR (4 GAS) BENZENE METER GAS MTR (FID) HARNESS CONTAINMENT (25 h) CONTAINMENT (50 h) 55 GAL DM PLY CT		HRS / UM Each Each Each Each Daily Daily Daily Daily Daily Daily Daily Each	DESCRIPTION 5 GAL BUCKETS ABS. (Kitty Litter) ABSOR. PADS ABSOR. BOOM RESPIRATOR CARTRIDGES (DF) CARTRIDGES (DF) CARTRIDGES (OV) DEGREASER JPX DRUM LINERS DUCT TAPE GLOVES (CUT)	QTY	HRS / UM Each Each BDL Each Daily Set Set Gallons Each Each Bair		S	QTY	HRS	/ U
DESCRIPTION AR TRUCK ON STAKE BED BBL VAC BBL VAC DBBL VAC CTOR DRO EX. OM TRUCK DRY VAN W BOY LL OFF (S 100)	EQUIP/TRL#	MENT DESCRIPTION MANIFEST 2* VAC HOSE 3* VAC HOSE 4* VAC HOSE GAS MTR (4 GAS) BENZENE METER GAS MTR (FID) HARNESS CONTAINMENT (25 ft) CONTAINMENT (50 ft) 55 GAL DM PLY OT		HRS / UM Each Each Each Each Daily Daily Daily Daily Daily Daily Daily Each Each	DESCRIPTION 5 GAL BUCKETS ABS. (Kitty Littor) ABSOR. PADS ABSOR. BOOM RESPIRATOR CARTRIDGES (DF) CARTRIDGES (DF) CARTRIDGES (OV) DEGREASER JPX DRUM LINERS DUCT TAPE GLOVES (CUT) GLOVES (Leather)	QTY	HRS / UM Each Each BDL Each Daily Set Set Gallons Each Each Each Pair Pair		S	QTY	HRS	/ U
DESCRIPTION AR TRUCK ON STAKE BED BBL VAC BBL VAC DBBL VAC CTOR DRO EX. CM TRUCK DRY VAN W BOY OLL OFF (S	EQUIP/TRL#	MENT DESCRIPTION MANIFEST 2* VAC HOSE 3* VAC HOSE 4* VAC HOSE GAS MTR (4 GAS) BENZENE METER GAS MTR (FID) HARNESS CONTAINMENT (25 ft) CONTAINMENT (25 ft) CONTAINMENT (50 ft) 55 GAL DM PLY OT 55 GAL DM PLY OT 55 GAL DRM STL CT		HRS / UM Each Each Each Daily Daily Daily Daily Daily Daily Daily Daily Each Each	DESCRIPTION 5 GAL BUCKETS ABS. (kitty Litter) ABSOR. PADS ABSOR. BOOM RESPIRATOR CARTRIDGES (DF) CARTRIDGES (DF) CARTRIDGES (OV) DEGREASER JPX DRUM LINERS DUCT TAPE GLOVES (CUT) GLOVES (Leather) GLOVES (Impact)	QTY	HRS / UM Each Each BOL Each Daily Set Set Gallons Each Each Pair Pair Pair		S DESCRIPTION	QTY	HRS	/ U
DESCRIPTION KUP AR TRUCK ON STAKE BED BBL VAC BBL VAC BBL VAC CTOR DRO EX. OM TRUCK DRY VAN W BOY LL OFF (S (0)) ILINER RD BIN	EQUIP / TRL #	MENT DESCRIPTION MANIFEST 2* VAC HOSE 3* VAC HOSE 4* VAC HOSE 4* VAC HOSE GAS MTR (4 GAS) BENZENE METER GAS MTR (4 GAS) BENZENE METER GAS MTR (FID) HARNESS CONTAINMENT (25 ft) CONTAINMENT (25 ft) CONTAINMENT (50 ft) 55 GAL DR PLY CT 55 GAL DRM STL CT 55 GAL DRM STL CT		HRS / UM Each Each Each Each Daily Daily Daily Daily Daily Daily Daily Daily Each Each Each	DESCRIPTION 5 GAL BUCKETS ABS. (kitty Littor) ABSOR. PADS ABSOR. BOOM RESPIRATOR CARTRIDGES (DF) CARTRIDGES (DF) CARTRIDGES (DF) CARTRIDGES (DV) DEGREASER JPX DRUM LINERS DUCT TAPE GLOVES (CUT) GLOVES (Leather) GLOVES (Impact) GLOVES (PVC)		HRS / UM Each BOL Each Daily Set Set Gallons Each Each Pair Pair Pair Pair Pair		S DESCRIPTION	QTY	HRS	10
DESCRIPTION KUP AR TRUCK ON STAKE BED BBL VAC BBL VAC BBL VAC CTOR DRO EX. OM TRUCK DRY VAN W BOY LL OFF (S (0)) (LINER RD BIN YRD BIN	EQUIP / TRL #	MENT DESCRIPTION MANIFEST 2* VAC HOSE 3* VAC HOSE 4* VAC HOSE 4* VAC HOSE GAS MTR (4 GAS) BENZENE METER GAS MTR (4 GAS) BENZENE METER GAS MTR (FID) HARNESS CONTAINMENT (25 ft) CONTAINMENT (25 ft) CONTAINMENT (50 ft) 55 GAL DRM PLY OT 55 GAL DRM STL OT 55 GAL DRM STL OT 85 GAL SALV DRM		HRS / UM Each Each Each Each Daily Daily Daily Daily Daily Daily Daily Each Each Each Each	DESCRIPTION 5 GAL BUCKETS ABS. (kitty Littor) ABSOR. PADS ABSOR. BOOM RESPIRATOR CARTRIDGES (DF) CARTRIDGES (DF) CARTRIDGES (OV) DEGREASER JPX DRUM LINERS DUCT TAPE GLOVES (CUT) GLOVES (Leather) GLOVES (Leather) GLOVES (Impact) GLOVES (PVC) RAGS		HRS / UM Each Each BDL Each Daily Set Set Gallons Each Each Pair Pair Pair Pair LBS / BDL		S DESCRIPTION SCELLANEOUS:	QTY	HRS	/ U
DESCRIPTION AR TRUCK ON STAKE BED BBL VAC BBL VAC BBL VAC CTOR DRO EX. OM TRUCK DRY VAN W BOY LL OFF (S (D)) ALLNER RD BIN YRD BIN YRD BIN	EQUIP / TRL #	MENT DESCRIPTION MANIFEST 2* VAC HOSE 3* VAC HOSE 4* VAC HOSE GAS MTR (4 GAS) BENZENE METER GAS MTR (4 GAS) BENZENE METER GAS MTR (FID) HARNESS CONTAINMENT (25 ft) CONTAINMENT (50 ft) 55 GAL DM PLY OT 55 GAL DM PLY OT 55 GAL DM PLY OT 55 GAL DM STL OT 55 GAL SALV DRM. CUBIC YARD BOX		HRS / UM Each Each Each Each Daily Daily Daily Daily Daily Daily Daily Daily Daily Daily Each Each Each Each	DESCRIPTION 5 GAL BUCKETS ABS. (Kitty Littor) ABSOR. PADS ABSOR. PADS ABSOR. BOOM RESPIRATOR CARTRIDGES (DF) CARTRIDGES (DF) CARTRIDGES (DF) DEGREASER JPX DRUM LINERS DUCT TAPE GLOVES (CUT) GLOVES (Leather) GLOVES (Leather) GLOVES (Leather) GLOVES (PVC) RAGS RAIN SUITS (FRC)		HRS / UM Each Each BOL Each Daily Set Set Gallons Each Each Pair Pair Pair Pair LBS / BOL Each		S DESCRIPTION SCELLANEOUS: L(2 AXLE) (2 AXLE)	QTY	HRS	/ U
DESCRIPTION AR TRUCK ON STAKE BED BBL VAC BBL VAC DBBL VAC CTOR DRO EX. OM TRUCK DRY VAN W BOY LL OFF (S (0)) (LINER RD BIN YRD BIN YRD BIN NK 8.5	EQUIP/TRL#	MENT DESCRIPTION MANIFEST 2* VAC HOSE 3* VAC HOSE 4* VAC HOSE GAS MTR (4 GAS) BENZENE METER GAS MTR (4 GAS) BENZENE METER GAS MTR (FID) HARNESS CONTAINMENT (25 ft) CONTAINMENT (25 ft) CONTAINMENT (50 ft) 55 GAL DRM PLY OT 55 GAL DRM PLY OT 55 GAL DRM STL OT 55 GAL DRM STL OT 55 GAL ALV DRM CUBIC YARD BOX		HRS / UM Each Each Each Each Daily Daily Daily Daily Daily Daily Daily Daily Daily Each Each Each Each	DESCRIPTION 5 GAL BUCKETS ABS. (Kitty Litter) ABSOR. PADS ABSOR. PADS ABSOR. BOOM RESPIRATOR CARTRIDGES (DF) CARTRIDGES (DF) CARTRIDGES (OV) DEGREASER JPX DRUM LINERS DUCT TAPE GLOVES (CUT) GLOVES (Leather) GLOVES (Leather) GLOVES (Leather) GLOVES (PVC) RAGS RAIN SUITS (FRC) TRAIN MAT 75		HRS / UM Each Each BDL Each Daily Set Set Gallons Each Each Pair Pair Pair Pair LBS / BDL Each Each		S DESCRIPTION SCELLANEOUS: L (2 AXLE) L (3 AXLE) L (3 AXLE)	QTY 	HRS	/ U
DESCRIPTION CKUP CAR TRUCK TON STAKE BED BBL VAC BBL VAC D BBL VAC CTOR DRO EX. KOM TRUCK DRY VAN W BOY DLL OFF (S O) VLINER TRD BIN YRD BIN YRD BIN NK 8.5	EQUIP / TRL #	MENT DESCRIPTION MANIFEST 2* VAC HOSE 3* VAC HOSE 4* VAC HOSE GAS MTR (4 GAS) BENZENE METER GAS MTR (4 GAS) BENZENE METER GAS MTR (FID) HARNESS CONTAINMENT (25 ft) CONTAINMENT (25 ft) CONTAINMENT (50 ft) 55 GAL DM PLY OT 55 GAL DM PLY OT 55 GAL DRM STL OT 55 GAL DRM STL OT 85 GAL SALV DRM CUBIC YARD BOX		HRS / UM Each Each Each Daily Daily Daily Daily Daily Daily Daily Daily Daily Daily Each Each Each Each	DESCRIPTION 5 GAL BUCKETS ABS. (Kitty Littor) ABSOR. PADS ABSOR. PADS ABSOR. BOOM RESPIRATOR CARTRIDGES (DF) CARTRIDGES (DF) CARTRIDGES (OV) DEGREASER JPX DRUM LINERS DUCT TAPE GLOVES (CUT) GLOVES (Leather) GLOVES (Leather) GLOVES (PVC) RAGS RAIN SUITS (FRC) TRAIN MAT 6' TYVEK (FRC)		HRS / UM Each Each BOL Each Daily Set Set Gallons Each Each Pair Pair Pair Pair Dair Pair LBS / BOL Each Each Each	SUPPLIES	S DESCRIPTION SCELLANEOUS: L(2 AXLE) L(3 AXLE) L(4 AXLE) L(5 AXLE) L(5 AXLE)	QTY	HRS	/ U
DESCRIPTION AR TRUCK ON STAKE BED BBL VAC BBL VAC DBBL VAC CTOR DRO EX. OM TRUCK DRY VAN W BOY LL OFF (S RD BIN YRO BIN YRO BIN NK 8.5	EQUIP/TRL#	MENT DESCRIPTION MANIFEST 2* VAC HOSE 3* VAC HOSE 4* VAC HOSE GAS MTR (4 GAS) BENZENE METER GAS MTR (FID) HARNESS CONTAINMENT (25 ft) CONTAINMENT (25 ft) CONTAINMENT (25 ft) CONTAINMENT (25 ft) S5 GAL DM PLY OT 55 GAL DM PLY OT 55 GAL DRM STL OT 85 GAL SALV DRM CUBIC YARD BOX		HRS / UM Each Each Each Each Daily Daily Daily Daily Daily Daily Daily Daily Daily Each Each Each Each	DESCRIPTION 5 GAL BUCKETS ABS. (kitty Littor) ABSOR. PADS ABSOR. PADS ABSOR. BOOM RESPIRATOR CARTRIDGES (DF) CARTRIDGES (DF) CARTRIDGES (DV) DEGREASER JPX DRUM LINERS DUCT TAPE GLOVES (CUT) GLOVES (Leather) GLOVES (Leather) GLOVES (Leather) GLOVES (PVC) RAGS RAIN SUITS (FRC) TRAIN MAT 8' TYVEK (FRC) TYVEK (Poly) TYVEK (White)		HRS / UM Each BOL Each Daily Set Set Gallons Each Each Pair Pair Pair Pair Pair Bair LBS / BOL Each Each Each	SUPPLIES	S DESCRIPTION SCELLANEOUS: L (2 AXLE) L (3 AXLE) L (4 AXLE) L (4 AXLE) L (5 AXLE) L (5 AXLE) S / H)	QTY	HRS	/ U
DESCRIPTION KUP AR TRUCK ON STAKE BED BBL VAC BBL VAC BBL VAC CTOR DRO EX. OM TRUCK DRY VAN W BOY LL OFF (S RD BIN YRD BIN YRD BIN NK 8.5	EQUIP / TRL #	MENT DESCRIPTION MANIFEST 2* VAC HOSE 3* VAC HOSE 4* VAC HOSE GAS MTR (4 GAS) BENZENE METER GAS MTR (4 GAS) BENZENE METER GAS MTR (FID) HARNESS CONTAINMENT (25 ft) CONTAINMENT (25 ft) CONTAINMENT (25 ft) 55 GAL DRM PLY OT 55 GAL DRM PLY OT 55 GAL DRM STL OT 85 GAL DRM STL OT 85 GAL SALV DRM CUBIC YARD BOX		HRS / UM Each Each Each Daily Daily Daily Daily Daily Daily Daily Daily Each Each Each Each Each	DESCRIPTION 5 GAL BUCKETS ABS. (kitty Littor) ABSOR. PADS ABSOR. PADS ABSOR. BOOM RESPIRATOR CARTRIDGES (DF) CARTRIDGES (DF) CARTRIDGES (OV) DEGREASER JPX DRUM LINERS DUCT TAPE GLOVES (CUT) GLOVES (Leather) GLOVES (Leather) GLOVES (Impact) GLOVES (PVC) RAGS RAIN SUITS (FRC) TRAIN MAT 8' TYVEK (FRC) TYVEK (Poly) VISQUEEN (6 ML)		HRS / UM Each Each BDL Each Daily Set Set Gallons Each Each Pair Pair Pair Pair Bair Bair Bair Bair Each Each Each Each Each Roll	SUPPLIES	S DESCRIPTION S SCELLANEOUS: L (2 AXLE) L (3 AXLE) L (4 AXLE) L (5 AXLE) S / H) L)	QTY	HRS	/ U
DESCRIPTION KUP AR TRUCK ON STAKE BED BBL VAC BBL VAC BBL VAC CTOR DRO EX. OM TRUCK DRY VAN W BOY LL OFF (S (D)) ILINER RD BIN YRD BIN YRD BIN NK 8.5	EQUIP / TRL #	MENT DESCRIPTION MANIFEST 2* VAC HOSE 3* VAC HOSE 4* VAC HOSE GAS MTR (4 GAS) BENZENE METER GAS MTR (4 GAS) BENZENE METER GAS MTR (FID) HARNESS CONTAINMENT (25 h) CONTAINMENT (25 h) CONTAINMENT (50 h) 55 GAL DM PLY CT 55 GAL DM PLY CT 55 GAL DRM STL OT 85 GAL DRM STL OT 85 GAL SALV DRM CUBIC YARD BOX		HRS / UM Each Each Each Each Daily Daily Daily Daily Daily Daily Daily Daily Daily Daily Each Each Each Each Each	DESCRIPTION 5 GAL BUCKETS ABS. (Kitty Littor) ABSOR. PADS ABSOR. PADS ABSOR. BOOM RESPIRATOR CARTRIDGES (DF) CARTRIDGES (DF) CARTRIDGES (DF) CARTRIDGES (OV) DEGREASER JPX DRUM LINERS DUCT TAPE GLOVES (CUT) GLOVES (Leather) GLOVES (Leather) GLOVES (Leather) GLOVES (PVC) RAGS RAIN SUITS (FRC) TRAIN MAT 8° TYVEK (FRC) TYVEK (Poly) TYVEK (White) VISQUEEN (6 ML) VISQUEEN (10 ML)		HRS / UM Each Each BOL Each Daily Set Gallons Each Each Pair Pair Pair Pair Pair BS / BOL Each Each Each Each Each Each Roll Roll	SUPPLIES	S DESCRIPTION SCELLANEOUS: L(2 AXLE) L(3 AXLE) L(4 AXLE) L(5 AXLE) S 7 H) L() LINE)	QTY	HRS	/ U
DESCRIPTION KUP AR TRUCK ON STAKE BED BBL VAC BBL VAC CTOR DRO EX. OM TRUCK DRY VAN W BOY LL OFF (S 100) HLINER RD BIN YRD BIN YRD BIN NK 8.5	EQUIP / TRL #	MENT DESCRIPTION MANIFEST 2* VAC HOSE 3* VAC HOSE 4* VAC HOSE GAS MTR (4 GAS) BENZENE METER GAS MTR (4 GAS) BENZENE METER GAS MTR (FID) HARNESS CONTAINMENT (25 ft) CONTAINMENT (25 ft) CONTAINMENT (50 ft) 55 GAL DRM PLY OT 55 GAL DRM PLY OT 55 GAL DRM STL OT 55 GAL STL OT 55 GAL DRM		HRS / UM Each Each Each Each Daily Daily Daily Daily Daily Daily Daily Daily Daily Each Each Each Each Each	DESCRIPTION 5 GAL BUCKETS ABS. (Kitty Littor) ABSOR. PADS ABSOR. PADS ABSOR. BOOM RESPIRATOR CARTRIDGES (DF) CARTRIDGES (DF) CARTRIDGES (OV) DEGREASER JPX DRUM LINERS DUCT TAPE GLOVES (CUT) GLOVES (CUT) GLOVES (CUT) GLOVES (Leather) GLOVES (PC) RAGS RAIN SUITS (FRC) TRAIN MAT S ^e TYVEK (FRC) TYVEK (FRC) TYVEK (Poly) VISQUEEN (6 ML) VISQUEEN (10 ML)		HRS / UM Each Each BDL Each Daily Set Set Gallons Each Each Pair Pair Pair Pair Pair Pair Pair Bair Each Each Each Each Each Each Roll Roll	SUPPLIES	S DESCRIPTION SCELLANEOUS: L (2 AXLE) L (3 AXLE) L (4 AXLE) L (5 AXLE) L (5 AXLE) S 7 H) L) LINE)	QTY	HRS	/ U
DESCRIPTION KUP AR TRUCK ON STAKE BED BBL VAC BBL VAC CTOR DRO EX. OM TRUCK DRY VAN W BOY LL OFF (S O) ILINER RD BIN YRD BIN YRD BIN NK 8.5	EQUIP / TRL #	MENT DESCRIPTION MANIFEST 2* VAC HOSE 3* VAC HOSE 4* VAC HOSE GAS MTR (4 GAS) BENZENE METER GAS MTR (4 GAS) BENZENE METER GAS MTR (FID) HARNESS CONTAINMENT (25 ft) CONTAINMENT (25 ft) CONTAINMENT (25 ft) CONTAINMENT (50 ft) 55 GAL DM PLY OT 55 GAL DM PLY OT 55 GAL DRM STL OT 85 GAL DRM STL OT 85 GAL SALV DRM CUBIC YARD BOX		HRS / UM Each Each Each Daily Daily Daily Daily Daily Daily Daily Daily Daily Each Each Each Each	DESCRIPTION 5 GAL BUCKETS ABS. (Kitty Littor) ABSOR. PADS ABSOR. PADS ABSOR. BOOM RESPIRATOR CARTRIDGES (DF) CARTRIDGES (DF) CARTRIDGES (DV) DEGREASER JPX DRUM LINERS DUCT TAPE GLOVES (CUT) GLOVES (Leather) GLOVES (Leather) GLOVES (CUT) GLOVES (PVC) RAGS RAIN SUITS (FRC) TRAIN MAT 8' TYVEK (FRC) TYVEK (POIV) VISQUEEN (6 ML) VISQUEEN (10 ML)		HRS / UM Each BOL Each Daily Set Set Gallons Each Each Pair Pair Pair Pair Pair Bair LBS / BOL Each Each Each Each Each Each Roll Roll	SUPPLIES	S DESCRIPTION SCELLANEOUS: L (2 AXLE) L (3 AXLE) L (4 AXLE) L (5 AXLE) S 7 H () L) LINE)	QTY	HRS	/ U
DESCRIPTION XUP AR TRUCK ON STAKE BED BBL VAC BBL VAC DRO EX. OM TRUCK DRY VAN W BOY LL OFF (S O) LL OFF (S O) VEN K8.5		MENT DESCRIPTION MANIFEST 2* VAC HOSE 3* VAC HOSE 4* VAC HOSE GAS MTR (4 GAS) BENZENE METER GAS MTR (FID) HARNESS CONTAINMENT (25 ft) CONTAINMENT		HRS / UM Each Each Each Daily Daily Daily Daily Daily Daily Daily Daily Daily Each Each Each Each Each	DESCRIPTION 5 GAL BUCKETS ABS. (kitty Littor) ABSOR. PADS ABSOR. PADS ABSOR. BOOM RESPIRATOR CARTRIDGES (DF) CARTRIDGES (DF) CARTRIDGES (OV) DEGREASER JPX DRUM LINERS DUCT TAPE GLOVES (CUT) GLOVES (Leather) GLOVES (Leather) GLOVES (Impact) GLOVES (PVC) RAGS RAIN SUITS (FRC) TRAIN MAT 8' TYVEK (FRC) TYVEK (FRC) TYVEK (Poly) TYVEK (White) VISQUEEN (10 ML) VISQUEEN (10 ML)		HRS / UM Each Each BDL Each Daily Set Set Gallons Each Each Pair Pair Pair Pair Bair Bair Bair Each Each Each Each Each Each Roll Roll	SUPPLIES	S DESCRIPTION SCELLANEOUS: L (2 AXLE) L (3 AXLE) L (4 AXLE) L (5 AXLE) S / H) L) LINE)		HRS	lons

WHITE - OFFICE COPY

Pol No. 6 TEMATORIES PINK - CUSTOMER COPY

		Daily T	ran	spori	tation & Dispos	sal 1	īme	Ticke	ť			
R								WORK	ORDER - D #:	1	.51:	19
									For Interna	al Use O	nly	_
PO	NDER		NIM						Prevailing Wag	le: Yes	/(No	٧
		ENVIRU	NM		L SERVICES,	INC.			6206 (Vacu	ium Truc	:ks)	
P.O. Bo	ox 1427, Benicia, C	CA 94510 / 707-7	48-777	5 (Office) / 707-748-7776 (Fax)				7515 (Genera	I Mainter	nance)	
								9	9403 (Rol	I-Off Bin	s)	
CUSTOMER:		SITE ADDRESS:			10B NO: 18-11	nr	7	~	DATE: 4-71	0-19	3	
	~	307 - 635	d S-	ŧ,	DAV. Man / Tu	01	Mod	Thur		1 800	<u>e</u>	
BOUZ	05	Public	nd	÷	DAT. MON. / TO	ie. 7	weu.		i rit. i Jat.	7 301.		
		Erennes			CUSTOMER P.O.:	_	_		CULO TONED			
CONTACT:					PHONE #:				APPROVAL:			
JOB DESCRIPTIC	DN:	and the		F	COMMENTS:							
TOKO	. b:u	1 412	20	\sim								
20		Λ	2.6									
4 OLOM	. YAM	1 70										
Kolle	Iman c	ity.										
1	× • 0	6	1	۵								
Emp	y sna	DRIN	19	Y						_		
5ACK	to Po	nder V	jan	N			1st ME	AL	2nd MEAL			
SERVICE P	ROFESSIONALS - L	AST / FIRST NAME		CLASS	START / END		TIME OU	F/IN	TIME OUT / IN	S/T	0/T	P/T
B	IANCO	nen		\mathcal{D}	0500 18:30	4.	<u>S</u>		5			
							ŵ.					
	EQUIP	MENT						SUPPLIE	S			
DESCRIPTION	EQUIP / TRL #	DESCRIPTION	QTY	HRS /	DESCRIPTION	QTY	HRS /		DESCRIPTION	QTY	HRS	/UM
PICKUP		MANIFEST	-	Each	5 GAL BUCKETS	-	Each					
GEAR TRUCK		2" VAC HOSE		Each	ABS, (Kitty Litter)		Each					
5 TON STAKE BED		3" VAC HOSE		Each	ABSOR, PADS		BOL			_		_
50 BBL VAC		4" VAC HOSE		Each	ABSOR BOOM		Each					
70 BEL VAC		GAS MTR (4 GAS)		Dally	RESPIRATOR		Daily			-		-
120 BBL VAC		GAS MERIEN		Daily	CARTRIDGES (DV)		Set					
HYDRO EX.		HARNESS		Daily	DEGREASER JPX		Gallons					
BOOM TRUCK		CONTAINMENT (25 ft)		Daily	DRUM LINERS		Each					
48' DRY VAN		CONTAINMENT (50 ft)	ļ	Daily	DUCT TAPE		Each					-
LOW BOY	126. 00.2	55 GAL DM PLY CT		Each	GLOVES (CUT)	-	Pair			-		
ROLL OFF (S (D)	137-180	55 GAL DRM PLY OT		Each	GLOVES (Leather)	-	Pair					
8 YRD BIN		55 GAL DRM STL OT		Each	GLOVES (PVC)		Pair					
20 YRD BIN		85 GAL SALV DRM		Each	RAGS		LBS/BOL	M	ISCELLANEOUS:			
40 YRD BIN		CUBIC YARD BOX		Each	RAIN SUITS (FRC)	-	Each	BRIDGE TOL	L (2 AXLE)	_		_
TANK 8.5					TRAIN MAT 5'		Each	BRIDGE TOL	L (4 AXLE)	-	-	
					TYVEK (Poly)		Each	BRIDGE TOU	L (SAXLE)	1		
					TYVEK (White)		Each	PER DIEM (S/H)			
				-	VISQUEEN (6 ML)		Roll	FUEL (DIESE	L) M (ME)	-	Ga	tions
				-	VISOUEEN (10 ML)	-	Roll	FUEL (GASC	nen al j	-	Ga	lions
			-					1				-
		DISPOSAL / S	UBCON	ITRACTO	ORS							
VEN	IDOR	P.0),#		MANIFEST #/B	OL#	tiz			_		
Lotter M/	111	190 410			0/67/0595	VL	1					
										-		
											1	

PINK - CUSTOMER COPY

	· ·							
Please print or type. (Form desig	ned for use on elite (12-pitch) typewriter.)					For	Annoved OM	18 No 2050.00
	1. Generator ID Number	2. Page 1 cf 3.	Emergency Respon	se Phone	4. Manifest	Tracking N	umber	
5. Generator's Name and Matin	g Address	Ger	(877) 25 erator's Site Addres	6-8265 s (f different	U]	<u>64 (</u>	0895	JJK
Bouzos Constructi	ŎŊ	30	7 63rd Stree	t 1940				
Oakland, CA 946t	1		manu, CA B	1010				
6. Transporter 1 Company Name		(510) / /2-2431	· .		U.S. EPAID	Number		
Ponder Enviro	nmental Services Inc				1	CAR	00018073	\$7
7. Transporter 2 Company Name)				U.S. EPA ID N	Number		
8. Designated Facility Name and Chemical Waste M 35251 Old Skyline Kettlernan City, CA	Sile Address an agement i no Kettleman Road 93239	(800) 222-2964		_	U.S. EPA ID N	iumber	10064644	7
93 St. U.S. DOT Description	n ûncluding Proper Shipping Name, Hazard Class	S ID Number	10 Contra	hór	<u> </u>		10004011	1
HIM and Packing Group (I an	y))		No.	Type	Quantity	12. Unit V/L/Vol.	13. Waste	Codes
Non-RCRA	hazardous wasle, Solid (Lead Impacted So	i) 001	СМ	ŻO	Y	181	
2.								
3.		<u> </u>						
							1.	
 								
4.							ł	
14. Special Handling Instructions : Profile #CA614	and Additional Information	8	in #1796				i	
PO #740919	reut	U	111 19 1 I ZU	,				
Job #18-11017	7	Tru	*# <u>3</u>	1/2	72			
 GENERATOR'S/OFFEROR' marked and labeled/placarde Exporter, I certify that the cor I certify that the waste minimi 	S CERTIFICATION: I hereby declare that the co d, and are in all respects in proper condition for itents of this consignment conform to the terms of tration statement identified in 40 CFR 262.27(a)	Intents of this consignment are full transport according to applicable in if the attached EPA Acknowledgme (if I am a tame quantity generator)	and accurately des temptional and national of Consent.	cribed shove or al governme	by the proper ship ental regulations. If	ping name, a l'export shipn	nd are classified, j nent and I am the	packaged, Primary
Generator's/Offeror's Prinked/Type	d Name	Signature		quarity gen	era.ory is the		Month	Day Year
Harilaus B	urzo 5		at L	115	~~		1412	7/201
ro. International Snipments	Import ic U.S.	Export from U.S.	Port of ent	yexit				
17. Transporter Acknowledgment of	Receipt of Materials		Oâte leavin	gU.S.:				
Transporter 1 Printed/Typed Name	A. Com	Sgnature	11				Month (Day Year
Transporter 2 Printed/Typed Name	Joher	Simulture	Vw	یے ما	- 72	>	4 2	418
· · · · · · · · · · · · · · · · · · ·	•				-		Month (Day Year
18. Discrepancy	······································							
16a. Discrepency Indication Space	Cuantity	Тура .	Residue		Partial Reject	lion	Full	Rejection
18b. Alternate Facility (or Generato	3	N	angest Reference	unber:	U.S. EPA ID Nun	nber		
.								ľ
Facility's Phone: 18c. Signature of Alternate Facility (or Generator)		e		L		- 1 Manuth	
								vay Year
19. Hazardous Waste Report Mana	gement Method Codes (i.e., codes for hazardous	waste treatment, disposal, and re	cycling systems)					 _
H_{i}	27 ²	3.			4.			
20. Designated Facility Owner or Or	C C	mials covered by the manifest	at as acted to be a		<u>, </u>			
Printed/Typod Name		Signature	pres noted in liem 1	ᡃᢆᠯᠽ	/		Month D	ay Year
<u> </u>	mi AN	Aus I		/ N		~	1412	ia TH
orm 8700-22 (Rev. 3-05) Prev	ious enfitions are obsclete	DESIG	NATED FAC	NTY ZO	DESTINAT	TION ST	ATE OF BE	Offinater - Marriel

DESIGNATED FACILITY TO DESTINATION STATE (IF REQUIRED •

FORM # RT/LFU B18 PHASE IA REV. 5/15

Appendix C Historical Figures

Appendix D Laboratory Analytical Reports

Thursday, May 24, 2018

Sample Delivery Group (SDG218261EAS Project Number:17331

Michael Harrison EnviroAssets, Inc. 6037 La Salle Avenue Oakland, CA 94611

Michael,

Enclosed is the analytical report for the samples received and analyzed by Environmental Analytical Service, Inc. for the following Project.

Client Project Name:PO Number:EA270.B.01Client Project NumberEA270.B.01Sample Event Date:5/14/18

If you have any questions on the report or the analytical data please contact me at (805) 781-3585.

Sincerely Steven D. Hoyt Ph.D.

Laboratory Director

SDH/LIMS

173 Cross Street San Luis Obispo CA 93401-7597 805.781.3585 Fax 805.541.4550

Analytical Service, Inc λ Αλλ Αλλ η Ν

Laboratory Report

Project Name:

EAS SDG Number: 218261

Client Project Manager: Michael Harrison

Prepared For:EnviroAssets, Inc.6037 La Salle AvenueOaklandCA 94611

 Project Number:
 17331

 Sample Event Date:
 5/14/18

 Received Date:
 5/17/2018

 Report Date:
 5/24/2018

Project Number:EA270.B.01PO Number:EA270.B.01

This is the Laboratory Report for the samples in the indicated Sample Delivery Group (SDG). Each sample received in the group is assigned a Laboratory ID number. The combination of the SDG number and the Lab ID number is an unique identifier for the sample.

This Report Contains:

Laboratory Work Order Project Sample Media Laboratory Case Narrative and Chain of Custody Method Description (when applicable) Quality Control Reports Analytical Reports

NELAC Certification: Florida E871125

173 Cross Street, San Luis Obispo, CA 93401 (805) 781-3585

Laboratory Work Order

SDG Number: 218261 Client: Michael Harrison EnviroAssets, Inc. Project Number: 17331 Received: 5/17/2018

SAMPLE DESCRIPTION AND ANALYSIS REQUESTED

Client Sample ID	EAS Lab No	o. Analysis Requested	Date Sampled
V-B17-5.5	218261 1	EPA TO-15 Short Chlorinated List	5/14/2018
V-B17-5.5	218261 1	ASTM D1945 Helium	5/14/2018

Note by EnviroAssets, Inc.

Location renamed to B21 in summary report to accommodate prior sample location nomenclature.

Project Sample Media

SDG Number: 218261

The following sample media was used for this Sample Delivery Group (SDG). The Sample Media column identifies the type of media. For canisters, the Sample Media Batch gives the canister number followed by the cleaning batch number, which is a unique identification. Canisters that are received with sub-ambient pressures are pressurized to about 5 psig. The initial pressure of the canister when it is received is recorded along with the final pressure after pressurization. The canister dilution factor is the ratio of the final to initial pressure. The results are adjusted for the can dilution factor.

		Sample	Pressur	Can		
SDG Lab ID	Client Sample No.	Media	Batch	Initial	Final	Factor
218261 1	V-B17-5.5	132	032018B	698	6	98 1.00

Note by EnviroAssets, Inc.

Location renamed to B21 in summary report to accommodate prior sample location nomenclature.

Laboratory Case Narrative

EAS SDG Number: 218261

Project Number: 17331

Client: EnviroAssets, Inc.

The Laboratory Case Narrative for the SDG is below. The Chain of Custody form(s) follow the Laboratory Case Narrative.

Sample Control Narrative

The samples were all received in good condition and with proper preservation.

Analytical Methods

The methods used for sample analysis are listed on the Analytyical Report header, and have been modified as described in the EAS Quality Manual.

Case Narrative

QC Narrative

All analyses met EAS method criteria as defined in the Quality Manual, except as noted in the report or QC reports with data qualifiers.

Subcontract Narrative

No sample analysis was subcontracted for this project

Laboratory Certification

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness other than the condition(s) noted above. The Laboratory Report is property of EAS and its client. The entire report has been reviewed and approved.

Date Approved:

5/24/2018

Steven D. Hoyt, Ph.D. Environmental Analytical Service Laboratory Director

ENVIRONMENTAL Analytical Service, Inc.

173 Cross Street San Luis Obispo, CA 93401 - 7597 805.781.3585 Fax 805.541.4550

CHAIN OF CUSTODY RECORD

Project Number	<u> </u>	Project	Name:						_	Quote Numb	21.							3 3 96.		/	\square		/	.
REPORT TO:						N	LATRD	(LEGE	ND (
_{Company} EnviroAs	sets, Inc.						- Am Lov	v Level	46. (1. ja		and a second						£]	/ /	/ /	' /	' /			
Address 1955 MO	untain Blvd	l., #113				1.1	- Ind	oor Àir	2 7 2. 2.	L S S S S S S S S S S S S S S S S S S S	9				*??	ج	<u>3</u> /	/ /	/ /	/ /				
City/State/Zip Oaklar	nd, CA 9461	1				S	- Sou Hig	urce Air gh Leve	I ga	RESSL	ESSUI		ORATION CONTRACTOR			3/2	<u>s</u> /					/ 5	1. 19 19 19 19 19 19 19 19 19 19 19 19 19 1	
Phone (510) 346-95	500 _{(F/}	_{AX)} (510) 346-9	501		G	- Gas	/Prodi	ıct '	IIIVIE	AL PR		SLAB				'	/ /	/ /	/ /				
ATTENTION mharris	on@enviroa	assets.c	om			1				N.	Ē		EA		12	5/.Š	\$/					AT I		
SAMPLE DESCRIPTION	SAMPLE ' DATE	SAMPLE TIME	CANISTER NUMBER	C O M P	G R A B	A	MA	TRIX	G			18			ó/.	Ž/		_			3	REMA	RKS	<u>2588</u>
₩B17-5.5	5/14/18	14:15	132		X	X				>30 inHo	g∣7 in⊦	lg	218261-0	ιx	X			<u> </u>		Pre	essur	e gu	age	1308*
5 of 12														_		 				-coi	nnec	tion		
		<u>,</u>																						
NA		<u></u>																				1		
		<u>-</u>																			<u></u>			
COMMENTS	<u> </u>		<u> </u>		<u> </u>	<u> </u>	ļ	<u>ا</u> ا		L							_							
			<u></u>																-					
BILLING INFO	ORMATIC	N	· ·	•	•	SAM	PLED	ВУ: Л		A .		Date	Time	Received	i by:		2017 (2-41-1			مر مر من المر من الم مر من مر من من الم	دهن منابع	Date	ີ າ	ĩme
Company Enviro	Assets, Inc.					Relir	aushe	<u>///</u> ed By:	Ŵ	4		Dake	15 7.75 Time	Received	l by:	-						Date	ī	ime
Address 1955 N	Iountain Bl	vd., #11	3					-1.		3								<u> </u>	<u> </u>			Data		ime
City/State/Zip Oaklan	id, CA 9461	1				Relin	quishe	d By:				Date	Time	Received	l by:							Date	1	
ATTENTION Michae	el Harrison					Relin	quishe	d By:				Date	Time	Received	for lai	b by:	2	•				Date S/_/	T	ime 12:00
Purchase Order/Billing Reference	. EA270.₿	.01								. <u></u>				XA	M	1	A	Δc_{ℓ}	Э. ——			1711	ð	
													ų	/		0						i		

Quality Control Report

EAS SDG Number 218261

Project Number: 17331

QC Narrative

Samples were anlayzed in a daily analytical batch (DAB) designated by a QC batch number, and were analyzed using EAS standard laboratory QC specified in the EAS Quality Manual which may be different then the referrenced agency method. Any deviations from the EAS QC criteria are flagged in the Laboratory Control Reports or in the sample Analytical Reports.

Standard Laboratory QC Report

Unless project specific QC was requested, this Section containing the standard laboratory QC (Level 2) supplied with the Analytical Reports. Each sample is analyzed in a Daily Analytical Batch (DAB) which includes the method blank, a laboratory control spike (LCS) and a laboratory control duplicate (LCD). A Daily Analytical Batch QC report is supplied for each method requested.

Method Blank

A method blank is a laboratory generated sample which assesses the degree to which laboratory operations and procedures cause a false positive. In the method blank, compounds should be present below the reporting limit (RL). Compounds present above the RL are flagged with a "B" in the Analytical Reports in that batch unless the result is greater then ten times the blank value.

Laboratory Control Spike

A laboratory control spike is a well characterized matrix similar to the sample which is spiked and run in duplicate with each Daily Analytical Batch. The laboratory control spike results are reported as a percent recovery. The QC Criteria for the control spike is listed in the Laboratory Control Report. Any results outside the control limits are flagged with a "Q" on the Laboratory Control Report. The control spike contains an abbreviated list of compounds in the method, and may contain compounds not on the target list for the specified report.

Laboratory Control Duplicate

The laboratory control duplicate is a duplicate analysis of the laboratory control spike, a standard, or a sample depending on the method. The results are reported as a relative percent difference (RPD). The criteria for the duplicate is in the Laboratory Control Report for the Daily Analytical Batch. Any results outside the control limits are flagged with a "Q" on the Laboratory Control Report.

METHOD BLANK REPORT

Analytical Method:

EPA Method TO-15 Modified Full Scan GC/MS TO-15

SDG: LABQC Laboratory ID: B05238

File Name: Description: Canister:	B05238D.D METHOD BLANK			Date Date Can Dilutio	Sampled: Analyzed: on Factor:	05/23/18 1.00	Time: Time:	13:48
QC_Batch:	052318-MA1			Ai	r Volume:	200	ml	
e n.		MDL	RL	Amount	MDL	RL	Amount	
CAS#	Compound	PPBV	PPBV	PPBV	UG/M3	UG/M3	UG/M3	Flag
75-01-4	Vinyl chloride	0.25	1.26	ND	0.64	3.21	ND	
75-35-4	1,1-Dichloroethene	0.25	1.24	ND	0.99	4.91	ND	
156-60-5	trans-1,2-Dichloroethene	0.25	0.90	ND	0.99	3.58	ND	
75-34-3	1,1-Dichloroethane	0.25	1.25	ND	1.01	5.05	ND	
156-59-2	cis-1,2-Dichloroethene	0.50	1.35	ND	1.98	5.33	ND	
71-55-6	1,1,1-Trichloroethane	0.25	1.11	ND	1.36	6.05	ND	
107-06-2	1,2-Dichloroethane	0.25	1.14	ND	1.01	4.62	ND	
79-01-6	Trichloroethene	0.15	1.16	ND	0.81	6.26	ND	
127-18-4	Tetrachloroethene	0.15	0.61	ND	1.02	4.12	ND	
	<u> </u>		· · ·	. <u>, , , , , , , , , , , , , , , , , , ,</u>	<u></u>	QC	Limits	
	Surrogate Recovery				% Rec.	LCL	UCL	Flag
2037-26-5	Toluene-d8				83	70	130	

METHOD BLANK REPORT

ENVIRONMENTAL Analytical Service, Inc.

ASTM D 19 Analytical Met	945 GC/TCD hod:	D1945			SDG: Number:	LABQC B05238		
File Name: Description: Can/Tube#: QC_Batch:	B05238A METHOD BLANK 052318-GCO	Date Date	Time: Time:	14:51				
CAS# 7440-59-7	Compound Helium	MDL % 0.020	RL % 0.06	Result % ND	MDL ppmv 200	RL ppmv 600	Result ppmV ND	Flag

QUALITY CONTROL REPORT

Laboratory Control Spike and Spike Duplicate Report

TO15 Volatile Organic Compounds by GC/MS

QC_Batch: 052318-MA1 **Date:** 05/23/18

		LCS		LCD		Spike	Limit		Duplicate	
		Recovery		Recovery		LCL	UCL	Duplicate	Limit	
CAS#	Compound	%	Flag	%	Flag	%	%	%	%	Flag
75-01-4	Vinyl chloride	94		88		70	130	6	25	<u> </u>
75-35-4	1,1-Dichloroethene	104		98		70	130	6	25	
75-09-2	Dichloromethane	105		99		70	130	6	25	
75-34-3	1,1-Dichloroethane	104		99		70	130	5	25	
67-66-3	Chloroform	104		101		70	130	3	25	
71-55-6	1,1,1-Trichloroethane	99		96		70	130	2	25	
107-06-2	1,2-Dichloroethane	99		98		70	130	1	25	
71-43-2	Benzene	103		104		70	130	1	25	
56-23-5	Carbon tetrachloride	99		98		70	130	1	25	
79-01-6	Trichloroethene	97		103		70	130	6	25	
108-88-3	Toluene	100		98		70	130	2	25	
127-18-4	Tetrachloroethene	102		99		70	130	3	25	
100-41-4	Ethylbenzene	102		94		70	130	8	25	
1330-20-7	m,p-Xylenes	101		94		70	130	7	25	
95-47-6	o-Xylene	101		99		70	130	2	25	
108-67-8	1,3,5-Trimethylbenzene	102		98		70	130	3	25	

LCS - Laboratory Control Spike

LCD - Laboratory Control Duplicate

Flag - Q indicated out of Limits

Analytical Reports

EAS SDG Number 218261

Project Number: 17331

The following pages contain the certified Analytical Reports for the samples submitted in the Sample Delivery Group (SDG) and are in order of the EAS Lab ID number. All of the analytical methods used are modifications of the published methods. Procedural method modifications are listed in the method descriptions, and the QC modifications are in the QC Criteria table in the EAS Quality Manual.

The Analytical Report has columns for the method detection limit (MDL), the reporting limit (RL), and the Amount. The Amount is the concentration of the compound in the sample. The report usually has the results reported with two commonly used units. The MDL, RL, and Amount are adjusted for the canister dilution factor and any dilution caused by sample matrix effects.

DETECTION LIMITS

MDL: The MDL is initially determined from the standard deviation of seven replicate measurements, but the value in the report is set from a MDL verification sample run at a level near the calculated MDL.

RL: The reporting limit (RL) is usually the lowest concentration standard on the calibration curve, and represents the lowest concentration that can be measured that will meet all of the QC Criteria for the method.

DATA FLAGS

In the standard report, if a compound is not detected above the method detection limit, a "ND" is in the Amount column. The flag column is used for both the not detect flag and for any data flags. The not detect flag is either a "ND" or a "U". If the "U" flag is selected, the MDL for the compound is reported in the Amount column instead of "ND". Other flags are listed below:

- B This compound was detected in the batch method blank above the reporting limit.
- E This compound exceeds the calibration range for this sample volume.
- J The amount reported is estimated because it was below the RL and above the MDL
- F Higher detection limits because of matrix interference

UNITS

PPBV or PPMV: Parts-per-billion (or million) by volume is a mole (volume) ratio of the moles of analyte divided by the moles of air (gas). This is the primary unit used to report air or gas concentrations and is independent of temperature and pressure. It is different from the ppb unit used to report water or soil data, which is a mass ratio.

UG/M3 OR MG/M3: Micrograms (or milligrams) per cubic meter is a mass/volume ratio and does depend on temperature and pressure of the source at time of sample collection. The reported result was calculated based on 1 atm pressure and a temperature of 25C. The conversion from PPBV is: UG/M3 = PPBV x MW/24.46 where 24.26 is the gas constant and MW is the Compounds Molecular Weight (sometimes called Formula Weight)

EPA Meth Analytical M	nod TO-15 Modified Fu ethod: TO-15	ll Scan G(C/MS			Labo	SDG: pratory ID:	218261 01
File Name: Description: Canister: QC_Batch:	1826101A.D V-B17-5.5 132 052318-MA1			Date Date Can Dilutio Ai	Sampled: Analyzed: on Factor: ir Volume:	05/14/18 05/23/18 1.00 200	Time: Time: ml	14:15 14:23
		MDL	RL	Amount	MDL	RL	Amount	
CAS#	Compound	PPBV	PPBV	PPBV	UG/M3	UG/M3	UG/M3	Flag
75-01-4	Vinyl chloride	0.25	1.26	ND	0.64	3.21	ND	
75-35-4	1,1-Dichloroethene	0.25	1.24	ND	0.99	4.91	ND	
156-60-5	trans-1,2-Dichloroethene	0.25	0.90	ND	0.99	3.58	ND	
75-34-3	1,1-Dichloroethane	0.25	1.25	ND	1.01	5.05	ND	
156-59-2	cis-1,2-Dichloroethene	0.50	1.35	ND	1.98	5.33	ND	
71-55-6	1,1,1-Trichloroethane	0.25	1.11	ND	1.36	6.05	ND	
107-06-2	1,2-Dichloroethane	0.25	1.14	ND	1.01	4.62	ND	
79-01-6	Trichloroethene	0.15	1.16	ND	0.81	6.26	ND	
127-18-4	Tetrachloroethene	0.15	0.61	1.58	1.02	4.12	10.74	
						QC	Limits	
	Surrogate Recovery				% Rec.	LCL	UCL	Flag
2037-26-5	Toluene-d8				77	70	130	

Note by EnviroAssets, Inc.

Location renamed to B21 in summary report to accommodate prior sample location nomenclature.

ENVIRONMENTAL Analytical Service, Inc.

ASTM D 1945 GC/TCD SDG: 218261 Analytical Method: D1945 Laboratory Number: 01 File Name: 1826101A Date Sampled: 05/14/18 Time: 14:15 Description: V-B17-5.5 Date Analyzed: 05/23/18 Time: 15:04 Can/Tube#: 132 QC Batch: 052318-GCO MDL RL Result MDL RL Result Flag CAS# Compound % % % ppmv ppmv ppmV 7440-59-7 Helium 0.032 0.096 ND 320 960 ND

Note by EnviroAssets, Inc.

Location renamed to B21 in summary report to accommodate prior sample location nomenclature.

Laboratory Report

Project Name:

Red Hanger Cleaners

			EAS SDG Number:	218173
Client Project Manager:	Michael	Harrison	Task:	
Prepared For:			Project Number:	17331
EnviroAssets, Inc.			Sample Event Date: 3/14/	18
6037 La Salle Avenue			Received Date:	3/23/2018
Oakland	CA	94611	Report Date:	3/27/2018

Project Number: EA270 PO Number: EA270

This is the Laboratory Report for the samples in the indicated Sample Delivery Group (SDG). Each sample received in the group is assigned a Laboratory ID number. The combination of the SDG number and the Lab ID number is an unique identifier for the sample.

This Report Contains:

Laboratory Work Order Project Sample Media Laboratory Case Narrative and Chain of Custody Method Description (when applicable) Quality Control Reports Analytical Reports

NELAC Certification: Florida E871125

173 Cross Street, San Luis Obispo, CA 93401 (805) 781-3585

Laboratory Work Order

SDG Number: 218173

Client: Michael Harrison EnviroAssets, Inc. Project Number: 17331 Received: 3/23/2018

SAMPLE DESCRIPTION AND ANALYSIS REQUESTED

Client Sample ID	EAS Lab No	o. Analysis Requested	Date Sampled
V-VP-1-A	218173 1	EPA TO-15 Short Chlorinated List	3/14/2018
V-VP-1-A	218173 1	ASTM D1945 Helium	3/14/2018
V-VP-3-A	218173 2	ASTM D1945 Helium	3/14/2018
V-VP-3-A	218173 2	EPA TO-15 Short Chlorinated List	3/14/2018
V-VP-2-A	218173 3	ASTM D1945 Helium	3/14/2018
V-VP-2-A	218173 3	EPA TO-15 Short Chlorinated List	3/14/2018
V-VP-4-A	218173 4	EPA TO-15 Short Chlorinated List	3/14/2018
V-VP-4-A	218173 4	ASTM D1945 Helium	3/14/2018
V-B15-7-A	218173 5	EPA TO-15 Short Chlorinated List	3/15/2018
V-B15-7-A	218173 5	ASTM D1945 Helium	3/15/2018
V-B15-15-A	218173 6	ASTM D1945 Helium	3/15/2018
V-B15-15-A	218173 6	EPA TO-15 Short Chlorinated List	3/15/2018
V-B16-7-A	218173 7	ASTM D1945 Helium	3/15/2018
V-B16-7-A	218173 7	EPA TO-15 Short Chlorinated List	3/15/2018
V-B16-15-A	218173 8	EPA TO-15 Short Chlorinated List	3/15/2018
V-B16-15-A	218173 8	ASTM D1945 Helium	3/15/2018

Project Sample Media

SDG Number: 218173

The following sample media was used for this Sample Delivery Group (SDG). The Sample Media column identifies the type of media. For canisters, the Sample Media Batch gives the canister number followed by the cleaning batch number, which is a unique identification. Canisters that are received with sub-ambient pressures are pressurized to about 5 psig. The initial pressure of the canister when it is received is recorded along with the final pressure after pressurization. The canister dilution factor is the ratio of the final to initial pressure. The results are adjusted for the can dilution factor.

Jun
actor
1.25
1.35
1.30
1.28
1.30
1.19
1.00
1.19

Laboratory Case Narrative

EAS SDG Number: 218173

Client: EnviroAssets, Inc.

The Laboratory Case Narrative for the SDG is below. The Chain of Custody form(s) follow the Laboratory Case Narrative.

Sample Control Narrative

The samples were all received in good condition and with proper preservation.

Analytical Methods

The methods used for sample analysis are listed on the Analytyical Report header, and have been modified as described in the EAS Quality Manual..

Case Narrative

QC Narrative

All analyses met EAS method criteria as defined in the Quality Manual, except as noted in the report or QC reports with data qualifiers.

Subcontract Narrative

No sample analysis was subcontracted for this project

Laboratory Certification

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness other than the condition(s) noted above. The Laboratory Report is property of EAS and its client. The entire report has been reviewed and approved.

Date Approved:

3/27/2018

Steven D. Hoyt, Ph.D. Environmental Analytical Service Laboratory Director

ENVIRONMENTAL Analytical Service, Inc.

173 Cross Street San Luis Obispo, CA 93401 - 7597 805.781.3585 Fax 805.541.4550

CHAIN OF CUSTODY RECORD

ร สุลิกิ สุมา ล กก็		CHAIN C	OF CUSTO	DY RECO	RD		Fax 805.541.4550
Project Number EA270	Project Name: Red Ho	inser Ocaners	Quote Number:				
Company Enviro Assets		MATRIX LEGEND A - Ambient Air, Low Level				Le la	
Address 6037 La Salle	Junve	I - Indoor Air	JRE	2010 1000 11 00 1000		JA A	7
City/State/Zip Oakland CA	94611	S - Source Air, High Level	PRESSI	TUSSE	ORATI	J. S.	
Phone 510 3-16 9500	FAX)	G - Gas/Product	IIIIAL.)	LI TYN	AS LAE	/ jo/ /	/
ATTENTION Mike Harri	502		3		E	14/	
SAMPLE DESCRIPTION SAMPLE DATE	SAMPLE CANISTER O R TIME NUMBER M A	MATRIX A I S G					Regulator #
QUE LA SIJIK	7141 305	X	25	11	218173_01	X	2643
	2226 368	X	27	13	_02	7	2588
	7754 337	X	32	16	_03	7.	2640
UP-U-A L	2350 317	X	27	15	_04	7	2515
BIS-7-A ZIISIK	1237 301	X	28	13	_05	X	2633
BIS- 15-A 1	1730 344	X	24	12	_06	\times	2576
$\frac{1}{1-B} \frac{1}{1-A} = \frac{1}{1-A}$	1329 935	X	25	10	_07	X	2594
Bib - 15-A	1334 378	X	32	15	_08	8	2555
COMMENTS							
							an an an tha an
BILLING INFORMATI	ON					-1-0-0	Dita I Time
Company Envires Accests	, — an in a submitter in setting of setting over the first first of the set	SAMPLED BY: 7 How Second +1	n 10T/2	Date	5/14/15	Received by:	IV Enviro 3/15/18 1415
6037 La Sallo A		Relinquished By	J Envir	Date	Time R	Lecqued by:	Date Time 3)2.)18)613
Address 00 > 1 = 1 ()	+ 9461	Relinquished By:	H Asse	XS 7	Time R	leceived by:	Date Time
City/State/Zip	(in the second s					lessived for lab hir	Date Time
ATTENTION PICKE POST		Relinquished By:		Date	Time R		B-28-18 12:0
Purchase Order/Billing Reference EN 27	J				(www.reg	

Quality Control Report

EAS SDG Number 218173

Project Number: 17331

QC Narrative

Samples were anlayzed in a daily analytical batch (DAB) designated by a QC batch number, and were analyzed using EAS standard laboratory QC specified in the EAS Quality Manual which may be different the referrenced agency method. Any deviations from the EAS QC criteria are flagged in the Laboratory Control Reports or in the sample Analytical Reports.

Standard Laboratory QC Report

Unless project specific QC was requested, this Section containing the standard laboratory QC (Level 2) supplied with the Analytical Reports. Each sample is analyzed in a Daily Analytical Batch (DAB) which includes the method blank, a laboratory control spike (LCS) and a laboratory control duplicate (LCD). A Daily Analytical Batch QC report is supplied for each method requested.

Method Blank

A method blank is a laboratory generated sample which assesses the degree to which laboratory operations and procedures cause a false positive. In the method blank, compounds should be present below the reporting limit (RL). Compounds present above the RL are flagged with a "B" in the Analytical Reports in that batch unless the result is greater then ten times the blank value.

Laboratory Control Spike

A laboratory control spike is a well characterized matrix similar to the sample which is spiked and run in duplicate with each Daily Analytical Batch. The laboratory control spike results are reported as a percent recovery. The QC Criteria for the control spike is listed in the Laboratory Control Report. Any results outside the control limits are flagged with a "Q" on the Laboratory Control Report. The control spike contains an abbreviated list of compounds in the method, and may contain compounds not on the target list for the specified report.

Laboratory Control Duplicate

The laboratory control duplicate is a duplicate analysis of the laboratory control spike, a standard, or a sample depending on the method. The results are reported as a relative percent difference (RPD). The criteria for the duplicate is in the Laboratory Control Report for the Daily Analytical Batch. Any results outside the control limits are flagged with a "Q" on the Laboratory Control Report.

METHOD BLANK REPORT

Analytical Method:

NVIRONMENTAL Analytical Service, Inc.

EPA Method TO-15 Modified Full Scan GC/MS TO-15

SDG: LABQC Laboratory ID: B03268

File Name: Description: Canister: QC_Batch:	B03268B.D METHOD BLANK 032618-MA1			Date Date Can Dilutio Ai	Sampled: Analyzed: on Factor: r Volume:	03/26/18 1.00 200	Time: Time: ml	11:55
<u> </u>		MDL	RL	Amount	MDL	RL	Amount	
CAS#	Compound	PPBV	PPBV	PPBV	UG/M3	UG/M3	UG/M3	Flag
75-01-4	Vinyl chloride	0.25	1.26	ND	0.64	3.21	ND	
75-35-4	1,1-Dichloroethene	0.25	1.24	ND	0.99	4.91	ND	
156-60-5	trans-1,2-Dichloroethene	0.25	0.90	ND	0.99	3.58	ND	
75-34-3	1,1-Dichloroethane	0.25	1.25	ND	1.01	5.05	ND	
156-59-2	cis-1,2-Dichloroethene	0.50	1.35	ND	1.98	5.33	ND	
71-55-6	1,1,1-Trichloroethane	0.25	1.11	ND	1.36	6.05	ND	
107-06-2	1,2-Dichloroethane	0.25	1.14	ND	1.01	4.62	ND	
79-01-6	Trichloroethene	0.15	1.16	ND	0.81	6.26	ND	
127-18-4	Tetrachloroethene	0.15	0.61	ND	1.02	4.12	ND	
						QC	Limits	
	Surrogate Recovery				% Re c .	LCL	UCL	Flag
2037-26-5	Toluene-d8				104	70	130	

METHOD BLANK REPORT

ENVIRONMENTAL Analytical Service, Inc.

ASTM D 19 Analytical Met	945 Helium GC/ hod:	TCD D1945			l	Laboratory	SDG: Number:	LABQC B03278
File Name: Description: Can/Tube#: QC_Batch:	B03278B METHOD BLANK 032718-GCO			Date Sampled: Date Analyzed: 03/27/18			Time: Time:	12:22
CAS# 7440-59-7	Compound Helium	MDL % 0.020	RL % 0.06	Result % ND	MDL ppmv 200	RL ppmv 600	Result ppmV ND	Flag

QUALITY CONTROL REPORT

Laboratory Control Spike and Spike Duplicate Report

TO15 Volatile Organic Compounds by GC/MS

QC_Batch: 032618-MA1 **Date:** 03/26/18

<u></u>		LCS		LCD		Spike	Limit		Duplicate	
		Recovery		Recovery		LCL	UCL	Duplicate	Limit	
CAS#	Compound	%	Flag	%	Flag	%	%	%	%	Flag
75-01-4	Vinyl chloride	94		99		70	130	5	25	
75-35-4	1,1-Dichloroethene	96		99		70	130	4	25	
75-09-2	Dichloromethane	91		96		70	130	5	25	
75-34-3	1,1-Dichloroethane	88		98		70	130	10	25	
67-66-3	Chloroform	89		95		70	130	7	25	
71-55-6	1,1,1-Trichloroethane	91		95		70	130	5	25	
107-06-2	1,2-Dichloroethane	89		90		70	130	1	25	
71-43-2	Benzene	91		91		70	130	0	25	
56-23-5	Carbon tetrachloride	93		92		70	130	1	25	
79-01-6	Trichloroethene	85		91		70	130	6	25	
108-88-3	Toluene	84		90		70	130	8	25	
127-18-4	Tetrachloroethene	89		88		70	130	1	25	
100-41-4	Ethylbenzene	82		88		70	130	7	25	
1330-20-7	m,p-Xylenes	81		87		70	130	7	25	
95-47-6	o-Xylene	85		85		70	130	0	25	
108-67-8	1,3,5-Trimethylbenzene	87		90		70	130	3	25	

LCS - Laboratory Control Spike

LCD - Laboratory Control Duplicate

Flag - Q indicated out of Limits

Analytical Reports

EAS SDG Number 218173

Project Number: 17331

The following pages contain the certified Analytical Reports for the samples submitted in the Sample Delivery Group (SDG) and are in order of the EAS Lab ID number. All of the analytical methods used are modifications of the published methods. Procedural method modifications are listed in the method descriptions, and the QC modifications are in the QC Criteria table in the EAS Quality Manual.

The Analytical Report has columns for the method detection limit (MDL), the reporting limit (RL), and the Amount. The Amount is the concentration of the compound in the sample. The report usually has the results reported with two commonly used units. The MDL, RL, and Amount are adjusted for the canister dilution factor and any dilution caused by sample matrix effects.

DETECTION LIMITS

MDL: The MDL is initially determined from the standard deviation of seven replicate measurements, but the value in the report is set from a MDL verification sample run at a level near the calculated MDL.

RL: The reporting limit (RL) is usually the lowest concentration standard on the calibration curve, and represents the lowest concentration that can be measured that will meet all of the QC Criteria for the method.

DATA FLAGS

In the standard report, if a compound is not detected above the method detection limit, a "ND" is in the Amount column. The flag column is used for both the not detect flag and for any data flags. The not detect flag is either a "ND" or a "U". If the "U" flag is selected, the MDL for the compound is reported in the Amount column instead of "ND". Other flags are listed below:

- B This compound was detected in the batch method blank above the reporting limit.
- E This compound exceeds the calibration range for this sample volume.
- J The amount reported is estimated because it was below the RL and above the MDL
- F Higher detection limits because of matrix interference

UNITS

PPBV or PPMV: Parts-per-billion (or million) by volume is a mole (volume) ratio of the moles of analyte divided by the moles of air (gas). This is the primary unit used to report air or gas concentrations and is independent of temperature and pressure. It is different from the ppb unit used to report water or soil data, which is a mass ratio.

UG/M3 OR MG/M3: Micrograms (or milligrams) per cubic meter is a mass/volume ratio and does depend on temperature and pressure of the source at time of sample collection. The reported result was calculated based on 1 atm pressure and a temperature of 25C. The conversion from PPBV is: UG/M3 = PPBV x MW/24.46 where 24.26 is the gas constant and MW is the Compounds Molecular Weight (sometimes called Formula Weight)

ENVIRONMENTAL Analytical Service, Inc.

EPA Metl	hod TO-15 Modified Fu	C/MS				SDG:	218173	
Analytical M	lethod: TO-15					Labo	oratory ID:	01
File Name:	1817301A.D			Date	Sampled:	03/14/18	Time:	21:41
Description	: V-VP-1-A			Date	Analyzed:	03/26/18	Time:	14:30
Canister:	305			Can Diluti	on Factor:	1.25		
QC_Batch:	032618-MA1			A	ir Volume:	200	ml	
	······································	MDL	RL	Amount	MDL	RL	Amount	· · · ·
CAS#	Compound	PPBV	PPBV	PPBV	UG/M3	UG/M3	UG/M3	Flag
75-01-4	Vinyl chloride	0.31	1.57	ND	0.80	4.02	ND	
75-35-4	1,1-Dichloroethene	0.31	1.55	ND	1.24	6.14	ND	
156-60-5	trans-1,2-Dichloroethene	0.31	1.13	ND	1.24	4.47	ND	
75-34-3	1,1-Dichloroethane	0.31	1.56	ND	1.26	6.31	ND	
156-59-2	cis-1,2-Dichloroethene	0.63	1.68	ND	2.48	6.66	ND	
71-55-6	1,1,1-Trichloroethane	0.31	1.39	ND	1.70	7.57	ND	
107-06-2	1,2-Dichloroethane	0.31	1.43	ND	1.26	5.77	ND	
79-01-6	Trichloroethene	0.19	1.46	ND	1.01	7.82	ND	
127-18-4	Tetrachloroethene	0.19	0.76	11.64	1.27	5.16	78.87	
						QC	Limits	
	Surrogate Recovery				% Rec.	LCL	UCL	Flag
2037-26-5	Toluene-d8				102	70	130	

,

ENVIRONMENTAL Analytical Service, Inc.

ASTM D 1945 Helium GC/TCD SDG: 218173 Laboratory Number: Analytical Method: D1945 01 Date Sampled: 03/14/18 Time: 21:41 File Name: 1817301A **Description:** V-VP-1-A Date Analyzed: 03/27/18 Time: 12:27 Can/Tube#: 305 QC_Batch: 032718-GCO MDL RL MDL RL Result Result Flag CAS# Compound % % % ppmv ppmv ppmV 7440-59-7 0.039 0.117 ND ND Helium 394 1,182

ENVIRONMENTAL Analytical Service, Inc.

EPA Meth Analytical M	nod TO-15 Modified Fu ethod: TO-15	ll Scan GC	C/MS			Labo	218173 02	
File Name: Description: Canister: QC_Batch:	1817302A.D V-VP-3-A 368 032618-MA1			Date Date Can Dilutio Ai	Sampled: Analyzed: on Factor: ir Volume:	03/14/18 03/26/18 1.35 200	Time: Time: ml	22:26 15:07
	na an de y any en are de em area ana a gan en dar este mont e que et y erre man en an este dy de est heit	MDL	RL	Amount	MDL	RL	Amount	
CAS#	Compound	PPBV	PPBV	PPBV	UG/M3	UG/M3	UG/M3	Flag
75-01-4	Vinyl chloride	0.34	1.70	ND	0.86	4.34	ND	
75-35-4	1,1-Dichloroethene	0.34	1.67	ND	1.34	6.63	ND	
156-60-5	trans-1,2-Dichloroethene	0.34	1.22	ND	1.34	4.83	ND	
75-34-3	1,1-Dichloroethane	0.34	1.68	ND	1.37	6.81	ND	
156-59-2	cis-1,2-Dichloroethene	0.68	1,82	ND	2.67	7.19	ND	
71-55-6	1,1,1-Trichloroethane	0.34	1.50	ND	1.84	8.17	ND	
107-06-2	1,2-Dichloroethane	0.34	1.54	ND	1.37	6.23	ND	
79-01-6	Trichloroethene	0.20	1.57	ND	1.09	8.44	ND	
127-18-4	Tetrachloroethene	0.20	0.82	35.28	1.37	5.57	239.11	
	<u> </u>					QC	Limits	<u> </u>
	Surrogate Recovery				% Rec.	LCL	UCL	Flag
2037-26-5	Toluene-d8				103	70	130	

ENVIRONMENTAL Analytical Service, Inc.

ASTM D 19 Analytical Met	945 Helium GC	C /TCD D1945				Laboratory	SDG: Number:	218173 02
File Name: Description: Can/Tube#: QC_Batch:	1817302A V-VP-3-A 368 032718-GCO			Date Date	Sampled: Analyzed:	03/14/18 03/27/18	Time: Time:	22:26 13:41
CAS# 7440-59-7	Compound Helium	MDL % 0.043	RL % 0.129	Result % ND	MDL ppmv 434	RL ppmv 1,302	Result ppmV ND	Flag

EPA Meth Analytical M	nod TO-15 Modified Fu ethod: TO-15	ll Scan GC	C/MS			Labo	SDG: pratory ID:	218173 03
File Name: Description: Canister: QC_Batch:	1817303A.D : V-VP-2-A 332 032618-MA1			Date Date Can Diluti Ai	Sampled: Analyzed: on Factor: ir Volume:	03/14/18 03/26/18 1.30 200	Time: Time: ml	22:54 15:41
		MDL	RL	Amount	MDL	RL	Amount	
CAS#	Compound	PPBV	PPBV	PPBV	UG/M3	UG/M3	UG/M3	Flag
75-01-4	Vinyl chloride	0.33	1.63	ND	0.83	4.18	ND	
75-35-4	1,1-Dichloroethene	0.33	1.61	ND	1.29	6.39	ND	
156-60-5	trans-1,2-Dichloroethene	0.33	1.17	ND	1.29	4.65	ND	
75-34-3	1,1-Dichloroethane	0.33	1.62	ND	1.32	6.56	ND	
156-59-2	cis-1,2-Dichloroethene	0.65	1.75	ND	2.57	6.93	ND	
71-55-6	1,1,1-Trichloroethane	0.33	1.44	ND	1.77	7.87	ND	
107-06-2	1,2-Dichloroethane	0.33	1.48	ND	1.32	6.00	ND	
79-01-6	Trichloroethene	0.20	1.51	ND	1.05	8.13	ND	
127-18-4	Tetrachloroethene	0.20	0.79	39.92	1.32	5.36	270.60	
<u></u>				<u></u>		QC	Limits	
	Surrogate Recovery				<u>% Rec.</u>	LCL	UCL	Flag
2037-26-5	Toluene-d8				106	70	130	

ENVIRONMENTAL Analytical Service, Inc.

ASTM D 1945 Helium GC/TCD SDG: 218173 Laboratory Number: Analytical Method: D1945 03 Date Sampled: File Name: 1817303A 03/14/18 Time: 22:54 **Description:** V-VP-2-A Date Analyzed: 03/27/18 Time: 13:54 **Can/Tube#:** 332 QC_Batch: 032718-GCO MDL RL MDL RL Flag Result Result CAS# Compound % % % ppmv ppmv ppmV 7440-59-7 Helium 0.040 0.12 ND 402 1,206 ND

EPA Meth Analytical M	nod TO-15 Modified Fu ethod: TO-15	ll Scan GC	C/MS			Labo	SDG: pratory ID:	218173 04
File Name: Description: Canister: QC_Batch:	1817304A.D V-VP-4-A 317 032618-MA1			Date Date Can Dilutio Ai	Sampled: Analyzed: on Factor: r Volume:	03/14/18 03/26/18 1.28 200	Time: Time: ml	23:50 16:15
		MDL	RL	Amount	MDL	RL	Amount	
CAS#	Compound	PPBV	PPBV	PPBV	UG/M3	UG/M3	UG/M3	Flag
75-01-4	Vinyl chloride	0.32	1.61	ND	0.82	4.11	ND	
75-35-4	1,1-Dichloroethene	0.32	1.59	ND	1.27	6.29	ND	
156-60-5	trans-1,2-Dichloroethene	0.32	1.16	ND	1.27	4.58	ND	
75-34-3	1,1-Dichloroethane	0.32	1.60	ND	1.30	6.46	ND	
156-59-2	cis-1,2-Dichloroethene	0.64	1.72	ND	2.54	6.82	ND	
71-55-6	1,1,1-Trichloroethane	0.32	1.42	ND	1.75	7.75	ND	
107-06-2	1,2-Dichloroethane	0.32	1.46	ND	1.30	5.91	ND	
79-01-6	Trichloroethene	0.19	1.49	ND	1.03	8.01	ND	
127-18-4	Tetrachloroethene	0.19	0.78	1.87	1.30	5.28	12.69	
						QC	Limits	
	Surrogate Recovery				% Rec.	LCL	UCL	Flag
2037-26-5	Toluene-d8				105	70	130	

ENVIRONMENTAL Analytical Service, Inc.

ASTM D 19 Analytical Met	945 Helium GC	C/TCD D1945			ļ	Laboratory	SDG: Number:	218173 04
File Name: Description: Can/Tube#: QC_Batch:	1817304A V-VP-4-A 317 032718-GCO			Date Date	Sampled: Analyzed:	03/14/18 03/27/18	Time: Time:	23:50 13:59
CAS# 7440-59-7	Compound Helium	MDL % 0.041	RL % 0.123	Result % ND	MDL ppmv 406	RL ppmv 1,218	Result ppmV ND	Flag

ENVIRONMENTAL Analytical Service, Inc.

EPA Meth Analytical Mo	ethod: TO-15 Modified Fu	ll Scan G(C/MS			Labo	SDG: oratory ID:	218173 05
File Name: Description:	1817305B.D V-B15-7-A			Date Date	Sampled: Analyzed:	03/15/18 03/26/18	Time: Time:	12:32 17:25
Canister: QC_Batch:	301 032618-MA1			Can Diluti Ai	on Factor: ir Volume:	1.30 200 ml		
CAS#	Compound	MDL PPBV	RL PPBV	Amount PPBV	MDL UG/M3	RL UG/M3	Amount UG/M3	Flag
75-01-4	Vinyl chloride	0.33	1.63	ND	0.83	4.18	ND	
75-35-4	1,1-Dichloroethene	0.33	1.61	ND	1.29	6.39	ND	
156-60-5	trans-1,2-Dichloroethene	0.33	1.17	ND	1.29	4.65	ND	
75-34-3	1,1-Dichloroethane	0.33	1.62	ND	1.32	6,56	ND	
156-59-2	cis-1,2-Dichloroethene	0.65	1.75	ND	2.57	6.93	ND	
71-55-6	1,1,1-Trichloroethane	0.33	1.44	ND	1.77	7.87	ND	
107-06-2	1,2-Dichloroethane	0.33	1.48	ND	1.32	6.00	ND	
79-01-6	Trichloroethene	0.20	1.51	2.41	1.05	8.13	12.92	
127-18-4	Tetrachloroethene	0.20	0.79	7.24	1.32	5.36	49.04	
						QC	Limits	
	Surrogate Recovery				% Rec.		UCL	Flag
2037-26-5	l'oluene-d8				128	70	130	

Page 19 of 26

ENVIRONMENTAL Analytical Service, Inc.

ASTM D 19	945 Helium GC		SDG:				218173	
		D1940					Number.	
File Name: Description: Can/Tube#: QC_Batch:	1817305A V-B15-7-A 301 032718-GCO		Date Sampled: 03/15/18 Date Analyzed: 03/27/18		03/15/18 03/27/18	Time: Time:	12:32 14:15	
CAS#	Compound	MDL %	RL %	Result %	MDL ppmv	RL ppmv	Result ppmV	Flag
7440-59-7	Helium	0.050	0.15	ND	502	1,506	ND	
ANALYTICAL REPORT

ENVIRONMENTAL Analytical Service, Inc.

EPA Meth Analytical Me	od TO-15 Modified Fu ethod: TO-15	II Scan GC	C/MS			Labo	SDG: pratory ID:	218173 06
File Name: Description: Canister: QC_Batch:	1817306A.D V-B15-15-A 344 032618-MA1			Date Date Can Dilutio Ai	Sampled: Analyzed: on Factor: ir Volume:	03/15/18 03/26/18 1.19 200	Time: Time: ml	12:30 17:59
		MDL	RL	Amount	MDL	RL	Amount	
_ <u>CAS#</u>	Compound	PPBV	PPBV	PPBV	UG/M3	UG/M3	UG/M3	Flag
75-01-4	Vinyl chloride	0.30	1.50	ND	0.76	3.82	ND	
75-35-4	1,1-Dichloroethene	0.30	1.48	ND	1.18	5.85	ND	
156-60-5	trans-1,2-Dichloroethene	0.30	1.07	ND	1.18	4.25	ND	
75-34-3	1,1-Dichloroethane	0.30	1.48	ND	1.20	6.00	ND	
156-59-2	cis-1,2-Dichloroethene	0.60	1.60	ND	2.36	6.34	ND	
71-55-6	1,1,1-Trichloroethane	0.30	1.32	ND	1.62	7.20	ND	
107-06-2	1,2-Dichloroethane	0.30	1.36	ND	1.20	5.49	ND	
79-01-6	Trichloroethene	0.18	1.39	6.12	0.96	7.44	32.85	
127-18-4	Tetrachloroethene	0.18	0.72	2.07	1.21	4.91	14.06	
κ,						QC	Limits	
	Surrogate Recovery				% Rec.	LCL	UCL	Flag
2037-26-5	Toluene-d8				120	70	130	

ENVIRONMENTAL Analytical Service, Inc.

ASTM D 19 Analytical Met	945 Helium GC	D1945			Laboratory	218173 06		
File Name: Description: Can/Tube#: QC_Batch:	1817306A V-B15-15-A 344 032718-GCO			Date Date	Sampled: Analyzed:	03/15/18 03/27/18	Time: Time:	12:30 14:18
CAS# 7440-59-7	Compound Helium	MDL % 0.037	RL % 0.111	Result % 0.757	MDL ppmv 372	RL ppmv 1,116	Result ppmV 7,571	Flag

ANALYTICAL REPORT

ENVIRONMENTAL Analytical Service, Inc.

EPA Method TO-15 Modified Full Scan GC/MS SDG: 218173 **Analytical Method:** TO-15 Laboratory ID: 07 File Name: 1817307A.D Date Sampled: 03/15/18 Time: 13:29 Description: V-B16-7-A Date Analyzed: Time: 18:34 03/26/18 **Canister:** 935 **Can Dilution Factor:** 1.00 QC_Batch: 032618-MA1 Air Volume: 200 ml MDL RL Amount MDL RL Amount PPBV CAS# Compound PPBV PPBV UG/M3 UG/M3 UG/M3 Flag 75-01-4 Vinyl chloride 0.25 1.26 ND 0.64 3.21 ND 75-35-4 1,1-Dichloroethene 0.25 1.24 ND 0.99 4.91 ND 156-60-5 trans-1,2-Dichloroethene 0.25 0.90 ND 0.99 3.58 ND 75-34-3 1,1-Dichloroethane 0.25 1.25 ND 1.01 5.05 ND 0.50 1.35 ND 5.33 156-59-2 cis-1,2-Dichloroethene 1.98 ND 1,1,1-Trichloroethane 0.25 ND 1.36 6.05 ND 71-55-6 1.11 1,2-Dichloroethane 107-06-2 0.25 1.14 ND 1.01 4.62 ND 79-01-6 Trichloroethene 0.15 1.16 7.21 0.81 6.26 38.73 1.02 Tetrachloroethene 0.61 ND ND 127-18-4 0.15 4.12 QC Limits LCL Surrogate Recovery % Rec. UCL Flag 2037-26-5 Toluene-d8 122 70 130

ENVIRONMENTAL Analytical Service, Inc.

ASTM D 19 Analytical Met	945 Helium GC	D1945				Laboratory	218173 07	
File Name: Description: Can/Tube#: QC_Batch:	1817307A V-B16-7-A 935 032718-GCO			Date Date	Sampled: Analyzed:	03/15/18 03/27/18	Time: Time:	13:29 14:22
CAS# 7440-59-7	Compound Helium	MDL % 0.027	RL % 0.081	Result % ND	MDL ppmv 272	RL ppmv 816	Result ppmV ND	Flag

ANALYTICAL REPORT

ENVIRONMENTAL Analytical Service, Inc.

EPA Method TO-15 Modified Full Scan GC/MS SDG: 218173 **Analytical Method:** TO-15 Laboratory ID: 80 File Name: 1817308A.D Date Sampled: 03/15/18 Time: 13:34 Description: V-B16-15-A Date Analyzed: 03/26/18 Time: 19:09 **Can Dilution Factor:** Canister: 378 1.19 Air Volume: 200 ml QC_Batch: 032618-MA1 Amount MDL RL MDL RL Amount PPBV CAS# Compound PPBV PPBV UG/M3 UG/M3 UG/M3 Flag 75-01-4 Vinyl chloride 0.30 1.50 ND 0.76 3.82 ND 75-35-4 1,1-Dichloroethene 0.30 1.48 ND 1.18 5.85 ND 156-60-5 trans-1,2-Dichloroethene 0.30 1.07 ND 1.18 4.25 ND 75-34-3 1,1-Dichloroethane 0.30 1.48 ND 1.20 6.00 ND 0.60 1.60 ND 6.34 156-59-2 cis-1,2-Dichloroethene 2.36 ND 1,1,1-Trichloroethane 0.30 1.32 ND 7.20 ND 71-55-6 1.62 1,2-Dichloroethane 1.36 ND 107-06-2 0.30 ND 1.20 5.49 79-01-6 Trichloroethene 0.18 1.39 ND 0.96 7.44 ND Tetrachloroethene 0.72 4.91 ND 127-18-4 0.18 ND 1.21 QC Limits Surrogate Recovery % Rec. LCL UCL Flag 2037-26-5 Toluene-d8 104 70 130

ENVIRONMENTAL Analytical Service, Inc.

ASTM D 19 Analytical Met	945 Helium GC	C/TCD D1945			1	Laboratory	218173 08	
File Name: Description: Can/Tube#: QC_Batch:	1817308A V-B16-15-A 378 032718-GCO			Date Date	Sampled: Analyzed:	SDG: 218′ Laboratory Number: 13 03/15/18 Time: 13 03/27/18 Time: 14 RL Result Flag ppmv ppmV 1,158 1,012 J	13:34 14:26	
CAS#	Compound	MDL %	RL %	Result %	MDL ppmv	RL ppmv	Result ppmV	Flag
7440-59-7	Helium	0.039	0.117	0.101	386	1,158	1,012	J

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Pleasanton 1220 Quarry Lane Pleasanton, CA 94566 Tel: (925)484-1919

TestAmerica Job ID: 720-85945-1 Client Project/Site: 307 63rd Street

For: EnviroAssets Inc 6037 La Salle Ave Oakland, California 94611-3227

Attn: Michael Harrison

Minint R 5 Sound

Authorized for release by: 4/19/2018 5:41:30 PM

Micah Smith, Project Manager II (916)374-4302 micah.smith@testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

..... Links **Review your project** results through **Total**Access Have a Question? Ask-The Expert Visit us at: www.testamericainc.com

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
QC Sample Results	10
QC Association Summary	11
Lab Chronicle	12
Certification Summary	13
Method Summary	14
Sample Summary	15
Chain of Custody	16
Receipt Checklists	17

Definitions/Glossary

Client: EnviroAssets Inc Project/Site: 307 63rd Street

Glossarv

Glossary		3
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	5
CFL	Contains Free Liquid	J
CNF	Contains No Free Liquid	
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	8
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	9
LOQ	Limit of Quantitation (DoD/DOE)	
MDA	Minimum Detectable Activity (Radiochemistry)	
MDC	Minimum Detectable Concentration (Radiochemistry)	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
NC	Not Calculated	
ND	Not Detected at the reporting limit (or MDL or EDL if shown)	
PQL	Practical Quantitation Limit	
QC	Quality Control	13
RER	Relative Error Ratio (Radiochemistry)	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	

TEQ Toxicity Equivalent Quotient (Dioxin)

TestAmerica Job ID: 720-85945-1

1 2 3 4 5 6 7 8 9 10 11 12

Job ID: 720-85945-1

Laboratory: TestAmerica Pleasanton

Narrative

Job Narrative 720-85945-1

Comments

No additional comments.

Receipt

The samples were received on 4/18/2018 10:55 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 4.1° C.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Detection Summary

Client: EnviroAssets Inc Project/Site: 307 63rd Street TestAmerica Job ID: 720-85945-1

Project/Site: 307 63rd Street						lest/	America Job	ID: 720-85945-1	
Client Sample ID: S-B1	17-0.5-A					Lab S	ample ID:	720-85945-1	
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type	
Lead	42		1.0		mg/Kg	4	6010B	Total/NA	
Client Sample ID: S-B1	18-0.5-A					Lab S	ample ID:	720-85945-2	5
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type	
Lead	33		1.6		mg/Kg	4	6010B	Total/NA	
Client Sample ID: S-B1	19-0.5-A					Lab S	ample ID:	720-85945-3	8
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type	
Lead	30		1.7		mg/Kg	4	6010B	Total/NA	9
Client Sample ID: S-B2	20-0.5-A					Lab S	ample ID:	720-85945-4	
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type	
Lead	31		1.6		mg/Kg	4	6010B	Total/NA	
									13

Client: EnviroAssets Inc Project/Site: 307 63rd Street

Client Sample ID: S-B17-0.5	lient Sample ID: S-B17-0.5-A								Lab Sample ID: 720-85945-1				
Date Collected: 04/18/18 09:58								Matrix	: Solid				
Date Received: 04/18/18 10:55													
Method: 6010B - Metals (ICP)													
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac				
Lead	42		1.0		mg/Kg		04/19/18 08:41	04/19/18 15:32	4				

Client: EnviroAssets Inc Project/Site: 307 63rd Street

Client Sample ID: S-B18-0.5	lient Sample ID: S-B18-0.5-A								Lab Sample ID: 720-85945-2					
Date Collected: 04/18/18 10:00								Matrix	: Solid					
Date Received: 04/18/18 10:55														
Method: 6010B - Metals (ICP)														
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac					
Lead	33		1.6		mg/Kg		04/19/18 08:41	04/19/18 15:37	4					

Client: EnviroAssets Inc Project/Site: 307 63rd Street

Client Sample ID: S-B19-0.5	lient Sample ID: S-B19-0.5-A							D: 720-85	945-3
Date Collected: 04/18/18 10:02	ate Collected: 04/18/18 10:02							Matrix	: Solid
Date Received: 04/18/18 10:55									
Method: 6010B - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	30		1.7		mg/Kg		04/19/18 08:41	04/19/18 15:41	4

Client: EnviroAssets Inc Project/Site: 307 63rd Street

Client Sample ID: S-B20-0.5	lient Sample ID: S-B20-0.5-A								Lab Sample ID: 720-85945-4				
Date Collected: 04/18/18 10:04								Matrix	: Solid				
Date Received: 04/18/18 10:55													
Method: 6010B - Metals (ICP)													
Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac				
Lead	31		1.6		mg/Kg		04/19/18 08:41	04/19/18 15:55	4				

2 3 k 4 2 5 c 1 6 7 4 2 8 9 10 11 12 13 14

Method: 6010B - Metals (ICP)

Lab Sample ID: MB 720-242672/1- Matrix: Solid Analysis Batch: 242715	Α								CI	ient Samp	ole ID: Method Prep Type: To Prep Batch:	l Blank otal/NA 242672
	MB	MB										
Analyte	Result	Qualifier		RL		MDL	Unit		וכ	Prepared	Analyzed	Dil Fac
Lead	ND			0.50			mg/Kg		04/	/19/18 08:41	04/19/18 14:59	1
Lab Sample ID: LCS 720-242672/2 Matrix: Solid Analysis Batch: 242715	!-A							Clie	nt Sa	ample ID:	Lab Control S Prep Type: To Prep Batch:	Sample otal/NA 242672
			Spike		LCS	LCS					%Rec.	
Analyte			Added		Result	Qua	lifier	Unit	D	%Rec	Limits	
Lead			50.0		48.1			mg/Kg		96	80 - 120	

5

TestAmerica Pleasanton

Prep Batch: 242672

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-85945-1	S-B17-0.5-A	Total/NA	Solid	3050B	
720-85945-2	S-B18-0.5-A	Total/NA	Solid	3050B	
720-85945-3	S-B19-0.5-A	Total/NA	Solid	3050B	
720-85945-4	S-B20-0.5-A	Total/NA	Solid	3050B	
MB 720-242672/1-A	Method Blank	Total/NA	Solid	3050B	
LCS 720-242672/2-A	Lab Control Sample	Total/NA	Solid	3050B	
Analysis Batch: 2427 Lab Sample ID	715 Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-85945-1	S-B17-0.5-A	Total/NA	Solid	6010B	242672
720-85945-2	S-B18-0.5-A	Total/NA	Solid	6010B	242672
720-85945-3	S-B19-0.5-A	Total/NA	Solid	6010B	242672
720-85945-4	S-B20-0.5-A	Total/NA	Solid	6010B	242672
MB 720-242672/1-A	Method Blank	Total/NA	Solid	6010B	242672
LCS 720-242672/2-A	Lab Control Sample	Total/NA	Solid	6010B	242672

Lab Sample ID: 720-85945-2

Lab Sample ID: 720-85945-3

Lab Sample ID: 720-85945-1 Matrix: Solid

Matrix: Solid

Matrix: Solid

Date Receive	Date Received: 04/18/18 10:55								
	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Prep	3050B			242672	04/19/18 08:41	MAG	TAL PLS	
Total/NA	Analysis	6010B		4	242715	04/19/18 15:32	OBI	TAL PLS	

Client Sample ID: S-B18-0.5-A Date Collected: 04/18/18 10:00 Date Received: 04/18/18 10:55

Client Sample ID: S-B17-0.5-A Date Collected: 04/18/18 09:58

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			242672	04/19/18 08:41	MAG	TAL PLS
Total/NA	Analysis	6010B		4	242715	04/19/18 15:37	OBI	TAL PLS

Client Sample ID: S-B19-0.5-A Date Collected: 04/18/18 10:02

Date Received:	04/18/18 10:55
----------------	----------------

-	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			242672	04/19/18 08:41	MAG	TAL PLS
Total/NA	Analysis	6010B		4	242715	04/19/18 15:41	OBI	TAL PLS

Client Sample ID: S-B20-0.5-A Date Collected: 04/18/18 10:04 Date Received: 04/18/18 10:55

Lab Sample ID: 720-85945-4 Matrix: Solid

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			242672	04/19/18 08:41	MAG	TAL PLS
Total/NA	Analysis	6010B		4	242715	04/19/18 15:55	OBI	TAL PLS

Laboratory References:

TAL PLS = TestAmerica Pleasanton, 1220 Quarry Lane, Pleasanton, CA 94566, TEL (925)484-1919

Client: EnviroAssets Inc Project/Site: 307 63rd Street

10

Laboratory: TestAmerica Pleasanton

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
California	State Program	9	2496	01-31-20
USDA	Federal		P330-17-00380	12-11-20

Method	Method Description	Protocol	Laboratory
6010B	Metals (ICP)	SW846	TAL PLS
3050B	Preparation, Metals	SW846	TAL PLS

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL PLS = TestAmerica Pleasanton, 1220 Quarry Lane, Pleasanton, CA 94566, TEL (925)484-1919

Sample Summary

Client: EnviroAssets Inc Project/Site: 307 63rd Street

Lab Sample ID	Client Sample ID	Matrix	Collected Received
720-85945-1	S-B17-0.5-A	Solid	04/18/18 09:58 04/18/18 10:55
720-85945-2	S-B18-0.5-A	Solid	04/18/18 10:00 04/18/18 10:55
720-85945-3	S-B19-0.5-A	Solid	04/18/18 10:02 04/18/18 10:55
720-85945-4	S-B20-0.5-A	Solid	04/18/18 10:04 04/18/18 10:55

	١	0 1	3	SAAS		182794
San Francisco 1220 Quarty Lane						TestAmerica
Pleasanton, CA 94566			Chain	of Custody Record		ાતા. દેહેગણના થી કેપળા વ્યાકોન્સિન્સ (Constant)
phone 925 484.1919 fax 925.600 3002					- Marine J	TestAmerica Laboratories, Inc.
Client Contact	Project Manager: M	ichael Harrison	s	ite Contact: M. Harrison	Date:	COC No
EnviroAssets, Inc.	TeVFax: 510.346.950	0/510.346.9501	I	ab Contact: D. Sharma	Carrier:	1 of 1 COCs
6037 La Salle Avenue	Analysis T	Furnaround Time				Job No EA270 B 01
Oakland, CA 94611	Calendar (C) or W	ork Days (W)		5		
(510) 346-9500 Phone	1A1 st different h	rum Below 5-day stand	dard			
(510) 346-9501 FAX		2 weeks		<u> </u>		SDG No
Project Name 307 63rd Street	0	1 week		1		
Site 307 63rd Street		2 days	~			
P O # EA270.B 01	8	l day		t- a {		
Sample Identification	Sample Sample Date Time	Sample Type Mat	Cont.	Lead (Sample Specific Notes:
S-B17-0.5- Å	25.6 ^{81/8/14}	s.		x		24-W TAT
S-B18-0.5 - A	4/18/18 1/6. CC	s l	-	X		
S-B19-0.5-	Co:01 81/8/14	s la		X		
S-B20-0 5-5A	4/18/18 10:04	S	-	X		A
720-85945 Chain of Custody						
Preservation Used: 1= Ice, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaO	lt; 6= Other					
Non-Hazard Flammable Skin Irritant	Poison B	L'nknown		Sample Disposal (A fee may Return To Client	Disposal By Lab	ive For Months
Special Instructions/QC Requirements & Comments:						
	-1)				4.1°C	
Reinarding	Company: SAVAN: ASS	CAS Poll	Time, WIN 12-3	Received by	Company Company	Date/Time: 4.1 8 /18 /cS5
Relinquished by:	Company:	Date	Time:	Received by.	Company	Date/Time:
Relinquished by	Company	Date	e Time:	Received by,	Company	Date Tune

Client: EnviroAssets Inc

Login Number: 85945 List Number: 1 Creator: Arauz, Dennis

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Job Number: 720-85945-1

List Source: TestAmerica Pleasanton

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Pleasanton 1220 Quarry Lane Pleasanton, CA 94566 Tel: (925)484-1919

TestAmerica Job ID: 720-85358-1

Client Project/Site: Red Hanger Cleaners Revision: 1

For:

EnviroAssets Inc 6037 La Salle Ave Oakland, California 94611-3227

Attn: Michael Harrison

Authorized for release by: 4/5/2018 9:34:35 AM Criselda Caparas, Project Management Assistant I criselda.caparas@testamericainc.com

Designee for

Micah Smith, Project Manager II (916)374-4302 micah.smith@testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

..... Links **Review your project** results through **Total**Access Have a Question? Ask-The Expert

Visit us at: www.testamericainc.com

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
QC Sample Results	14
QC Association Summary	29
Lab Chronicle	30
Certification Summary	31
Method Summary	32
Sample Summary	33
Chain of Custody	34
Receipt Checklists	35

3

5

Qualifiers

GC/MS VOA

GC/WIS VOA	
Qualifier	Qualifier Description
*	RPD of the LCS and LCSD exceeds the control limits
*	LCS or LCSD is outside acceptance limits.

Glossary

TEQ

Toxicity Equivalent Quotient (Dioxin)

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)

Job ID: 720-85358-1

Laboratory: TestAmerica Pleasanton

Narrative

Job Narrative 720-85358-1

Comments

Revise report on 04/05/2018 Lab needs to correct sample ID on water. No additional comments.

Receipt

The samples were received on 3/16/2018 2:40 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 5.6° C.

GC/MS VOA

Method(s) 8260B: The continuing calibration verification (CCV) associated with batch 720-240883 recovered above the upper control limit for Dichlorodifluoromethane. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The following samples are impacted: B15 S/GW-S8-A (720-85358-2) and B16 S/GW-S8-A (720-85358-4).

Method(s) 8260B: The following analyte(s) recovered outside control limits for the LCSD associated with analytical batch 720-240961: Trichlorofluoromethane. This is not indicative of a systematic control problem because these were random marginal exceedances. Qualified results have been reported.

Method(s) 8260B: The RPD of the laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) for batch analytical batch 720-240961 recovered outside control limits for the following analytes: 1,2-Dibromo-3-Chloropropane.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Lab Sample ID: 720-85358-2

Lab Sample ID: 720-85358-4

Lab Sample ID: 720-85358-6

Client	Sample		P15	SICINI S8 A	
Client	Sample	: ID.	DIJ	3/GW-30-A	

No Detections.

Client Sample ID: B16 S/GW-S8-A

No Detections.

Client Sample ID: B15 S/GW-W						Lab Sample ID: 720-85358-5				
Analyte	Result (Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Ргер Туре	
Tetrachloroethene	4.6		0.50		ug/L	1	_	8260B	Total/NA	
Trichloroethene	0.69		0.50		ug/L	1		8260B	Total/NA	

Client Sample ID: TRIP BLANK

No Detections.

This Detection Summary does not include radiochemical test results.

Lab Sample ID: 720-85358-2 Matrix: Solid

5 6

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Methyl tert-butyl ether	ND	·	3.9		ug/Kg		03/16/18 16:30	03/19/18 22:48	1	Ē
Acetone	ND		39		ug/Kg		03/16/18 16:30	03/19/18 22:48	1	
Benzene	ND		3.9		ug/Kg		03/16/18 16:30	03/19/18 22:48	1	2
Dichlorobromomethane	ND		3.9		ug/Kg		03/16/18 16:30	03/19/18 22:48	1	
Bromobenzene	ND		3.9		ug/Kg		03/16/18 16:30	03/19/18 22:48	1	-
Chlorobromomethane	ND		15		ug/Kg		03/16/18 16:30	03/19/18 22:48	1	
Bromoform	ND		3.9		ug/Kg		03/16/18 16:30	03/19/18 22:48	1	
Bromomethane	ND		7.7		ug/Kg		03/16/18 16:30	03/19/18 22:48	1	
2-Butanone (MEK)	ND		39		ug/Kg		03/16/18 16:30	03/19/18 22:48	1	
n-Butylbenzene	ND		3.9		ug/Kg		03/16/18 16:30	03/19/18 22:48	1	
sec-Butylbenzene	ND		3.9		ug/Kg		03/16/18 16:30	03/19/18 22:48	1	
tert-Butylbenzene	ND		3.9		ug/Kg		03/16/18 16:30	03/19/18 22:48	1	
Carbon disulfide	ND		3.9		ua/Ka		03/16/18 16:30	03/19/18 22:48		
Carbon tetrachloride	ND		3.9		ug/Kg		03/16/18 16:30	03/19/18 22:48	1	
Chlorobenzene	ND		3.9		ug/Kg		03/16/18 16:30	03/19/18 22:48	1	
Chloroethane	ND		7.7		ug/Kg		03/16/18 16:30	03/19/18 22:48	1	Ē.
Chloroform	ND		3.9		ug/Kg		03/16/18 16:30	03/19/18 22:48	1	
Chloromethane	ND		7.7		ug/Kg		03/16/18 16:30	03/19/18 22:48	1	
2-Chlorotoluene	ND		3.9		ug/Kg		03/16/18 16:30	03/19/18 22:48	1	
4-Chlorotoluene	ND		3.9		ug/Kg		03/16/18 16:30	03/19/18 22:48	1	
Chlorodibromomethane	ND		3.9		ua/Ka		03/16/18 16:30	03/19/18 22:48	1	
1,2-Dichlorobenzene	ND		3.9		ug/Kg		03/16/18 16:30	03/19/18 22:48	1	
1.3-Dichlorobenzene	ND		3.9		ua/Ka		03/16/18 16:30	03/19/18 22:48	1	
1,4-Dichlorobenzene	ND		3.9		ug/Kg		03/16/18 16:30	03/19/18 22:48	1	
1,3-Dichloropropane	ND		3.9		ug/Kg		03/16/18 16:30	03/19/18 22:48	1	
1,1-Dichloropropene	ND		3.9		ug/Kg		03/16/18 16:30	03/19/18 22:48	1	
1.2-Dibromo-3-Chloropropane	ND		7.7		ua/Ka		03/16/18 16:30	03/19/18 22:48	1	
Ethylene Dibromide	ND		3.9		ug/Kg		03/16/18 16:30	03/19/18 22:48	1	
Dibromomethane	ND		7.7		ug/Kg		03/16/18 16:30	03/19/18 22:48	1	
Dichlorodifluoromethane	ND		7.7		ug/Kg		03/16/18 16:30	03/19/18 22:48	1	
1,1-Dichloroethane	ND		3.9		ug/Kg		03/16/18 16:30	03/19/18 22:48	1	
1,2-Dichloroethane	ND		3.9		ug/Kg		03/16/18 16:30	03/19/18 22:48	1	
1,1-Dichloroethene	ND		3.9		ug/Kg		03/16/18 16:30	03/19/18 22:48	1	
cis-1,2-Dichloroethene	ND		3.9		ug/Kg		03/16/18 16:30	03/19/18 22:48	1	
trans-1.2-Dichloroethene	ND		3.9		ug/Kg		03/16/18 16:30	03/19/18 22:48	1	
1,2-Dichloropropane	ND		3.9		ug/Kg		03/16/18 16:30	03/19/18 22:48	1	
cis-1,3-Dichloropropene	ND		3.9		ug/Kg		03/16/18 16:30	03/19/18 22:48	1	
trans-1.3-Dichloropropene	ND		3.9		ua/Ka		03/16/18 16:30	03/19/18 22:48	1	
Ethvlbenzene	ND		3.9		ua/Ka		03/16/18 16:30	03/19/18 22:48	1	
Hexachlorobutadiene	ND		3.9		ua/Ka		03/16/18 16:30	03/19/18 22:48	1	
2-Hexanone	ND		39		ua/Ka		03/16/18 16:30	03/19/18 22:48	1	
Isopropylbenzene	ND		3.9		ua/Ka		03/16/18 16:30	03/19/18 22:48	1	
4-Isopropyltoluene	ND		3.9		ua/Ka		03/16/18 16:30	03/19/18 22:48	1	
Methylene Chloride	ND		7.7		ua/Ka		03/16/18 16:30	03/19/18 22:48	1	
4-Methyl-2-pentanone (MIBK)	ND		39		ug/Ka		03/16/18 16:30	03/19/18 22:48	1	
Naphthalene	ND		7.7		ug/Ka		03/16/18 16:30	03/19/18 22:48	1	
N-Propylbenzene	ND		3.9		ug/Kg		03/16/18 16:30	03/19/18 22:48	1	
Styrene	ND		3.9		ug/Ka		03/16/18 16:30	03/19/18 22:48	1	
1,1,1,2-Tetrachloroethane	ND		3.9		ug/Ka		03/16/18 16:30	03/19/18 22:48		
					5 5					

Client Sample ID: B15 S/GW-S8-A Date Collected: 03/15/18 11:12 Date Received: 03/16/18 14:40

Lab Sample ID: 720-85358-2 Matrix: Solid

Method: 8260B - Volatile Org	anic Compo	unds (GC/	MS) (Continu	ed)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,2,2-Tetrachloroethane	ND		3.9		ug/Kg		03/16/18 16:30	03/19/18 22:48	1
Tetrachloroethene	ND		3.9		ug/Kg		03/16/18 16:30	03/19/18 22:48	1
Toluene	ND		3.9		ug/Kg		03/16/18 16:30	03/19/18 22:48	1
1,2,3-Trichlorobenzene	ND		3.9		ug/Kg		03/16/18 16:30	03/19/18 22:48	1
1,2,4-Trichlorobenzene	ND		3.9		ug/Kg		03/16/18 16:30	03/19/18 22:48	1
1,1,1-Trichloroethane	ND		3.9		ug/Kg		03/16/18 16:30	03/19/18 22:48	1
1,1,2-Trichloroethane	ND		3.9		ug/Kg		03/16/18 16:30	03/19/18 22:48	1
Trichloroethene	ND		3.9		ug/Kg		03/16/18 16:30	03/19/18 22:48	1
Trichlorofluoromethane	ND		3.9		ug/Kg		03/16/18 16:30	03/19/18 22:48	1
1,2,3-Trichloropropane	ND		3.9		ug/Kg		03/16/18 16:30	03/19/18 22:48	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		3.9		ug/Kg		03/16/18 16:30	03/19/18 22:48	1
1,2,4-Trimethylbenzene	ND		3.9		ug/Kg		03/16/18 16:30	03/19/18 22:48	1
1,3,5-Trimethylbenzene	ND		3.9		ug/Kg		03/16/18 16:30	03/19/18 22:48	1
Vinyl acetate	ND		15		ug/Kg		03/16/18 16:30	03/19/18 22:48	1
Vinyl chloride	ND		3.9		ug/Kg		03/16/18 16:30	03/19/18 22:48	1
Xylenes, Total	ND		3.9		ug/Kg		03/16/18 16:30	03/19/18 22:48	1
2,2-Dichloropropane	ND		3.9		ug/Kg		03/16/18 16:30	03/19/18 22:48	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	95		45 - 131				03/16/18 16:30	03/19/18 22:48	1
1,2-Dichloroethane-d4 (Surr)	112		60 - 140				03/16/18 16:30	03/19/18 22:48	1
Toluene-d8 (Surr)	97		58 - 140				03/16/18 16:30	03/19/18 22:48	1

Lab Sample ID: 720-85358-4

Matrix: Solid

Method: 8260B - Volatile Orga	anic Compo	unds (GC/MS)				_			
Analyte	Result	Qualifier		MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND		3.8		ug/Kg		03/16/18 16:30	03/19/18 23:18	1
Acetone	ND		38		ug/Kg		03/16/18 16:30	03/19/18 23:18	1
Benzene	ND		3.8		ug/Kg		03/16/18 16:30	03/19/18 23:18	1
Dichlorobromomethane	ND		3.8		ug/Kg		03/16/18 16:30	03/19/18 23:18	1
Bromobenzene	ND		3.8		ug/Kg		03/16/18 16:30	03/19/18 23:18	1
Chlorobromomethane	ND		15		ug/Kg		03/16/18 16:30	03/19/18 23:18	1
Bromoform	ND		3.8		ug/Kg		03/16/18 16:30	03/19/18 23:18	1
Bromomethane	ND		7.5		ug/Kg		03/16/18 16:30	03/19/18 23:18	1
2-Butanone (MEK)	ND		38		ug/Kg		03/16/18 16:30	03/19/18 23:18	1
n-Butylbenzene	ND		3.8		ug/Kg		03/16/18 16:30	03/19/18 23:18	1
sec-Butylbenzene	ND		3.8		ug/Kg		03/16/18 16:30	03/19/18 23:18	1
tert-Butylbenzene	ND		3.8		ug/Kg		03/16/18 16:30	03/19/18 23:18	1
Carbon disulfide	ND		3.8		ua/Ka		03/16/18 16:30	03/19/18 23:18	1
Carbon tetrachloride	ND		3.8		ug/Ka		03/16/18 16:30	03/19/18 23:18	1
Chlorobenzene	ND		3.8		ua/Ka		03/16/18 16:30	03/19/18 23:18	1
Chloroethane	ND		7.5		ua/Ka		03/16/18 16:30	03/19/18 23.18	· · · · · · · · · · · · · · · · · · ·
Chloroform	ND		3.8		ua/Ka		03/16/18 16:30	03/19/18 23:18	1
Chloromethane	ND		7.5		ug/Kg		03/16/18 16:30	03/10/18 23:18	1
2-Chlorotoluene			3.8		ug/Kg		03/16/18 16:30	03/10/18 23:18	
			3.0		ug/Kg		03/16/18 16:30	03/10/19 23:19	1
Chlorodibromomothana			2.0		ug/rty		03/10/10 10:30	03/19/10 23.10	1
	ND		3.0		ug/r.g		03/10/18 10.30	03/19/16 23.16	۱ ۸
	ND		3.8		ug/Kg		03/16/18 16:30	03/19/18 23:18	1
1,3-Dichlorobenzene	ND		3.8		ug/Kg		03/16/18 16:30	03/19/18 23:18	1
1,4-Dichlorobenzene	ND		3.8		ug/Kg		03/16/18 16:30	03/19/18 23:18	1
1,3-Dichloropropane	ND		3.8		ug/Kg		03/16/18 16:30	03/19/18 23:18	1
1,1-Dichloropropene	ND		3.8		ug/Kg		03/16/18 16:30	03/19/18 23:18	1
1,2-Dibromo-3-Chloropropane	ND		7.5		ug/Kg		03/16/18 16:30	03/19/18 23:18	1
Ethylene Dibromide	ND		3.8		ug/Kg		03/16/18 16:30	03/19/18 23:18	1
Dibromomethane	ND		7.5		ug/Kg		03/16/18 16:30	03/19/18 23:18	1
Dichlorodifluoromethane	ND		7.5		ug/Kg		03/16/18 16:30	03/19/18 23:18	1
1,1-Dichloroethane	ND		3.8		ug/Kg		03/16/18 16:30	03/19/18 23:18	1
1,2-Dichloroethane	ND		3.8		ug/Kg		03/16/18 16:30	03/19/18 23:18	1
1,1-Dichloroethene	ND		3.8		ug/Kg		03/16/18 16:30	03/19/18 23:18	1
cis-1,2-Dichloroethene	ND		3.8		ug/Kg		03/16/18 16:30	03/19/18 23:18	1
trans-1,2-Dichloroethene	ND		3.8		ug/Kg		03/16/18 16:30	03/19/18 23:18	1
1,2-Dichloropropane	ND		3.8		ug/Kg		03/16/18 16:30	03/19/18 23:18	1
cis-1,3-Dichloropropene	ND		3.8		ug/Kg		03/16/18 16:30	03/19/18 23:18	1
trans-1,3-Dichloropropene	ND		3.8		ug/Kg		03/16/18 16:30	03/19/18 23:18	1
Ethylbenzene	ND		3.8		ug/Kg		03/16/18 16:30	03/19/18 23:18	1
Hexachlorobutadiene	ND		3.8		ug/Kg		03/16/18 16:30	03/19/18 23:18	1
2-Hexanone	ND		38		ug/Ka		03/16/18 16:30	03/19/18 23:18	1
Isopropylbenzene	ND		3.8		ug/Ka		03/16/18 16:30	03/19/18 23:18	1
4-Isopropyltoluene	ND		3.8		ua/Ka		03/16/18 16:30	03/19/18 23.18	
Methylene Chloride			7.5		ua/Ka		03/16/18 16:30	03/19/18 23:18	1
4-Methyl-2-pentanone (MIRK)			38		ug/Kg		03/16/18 16:30	03/19/18 23:18	1
Nanhthalene			7.5		ug/Kg		03/16/18 16:30	03/10/18 23.10	····· 1
N. Propylhenzene	םאו שוא		20		ug/Kg		03/16/19 16:30	03/10/10 23.10	1
Sturopo			0.0 2 0		ug/Kg		02/16/10 10:30	03/10/10 23.10	1
	ND		3.X		ug/r\g		03/10/18 10:30	03/19/18 23:18	۲ ۲
1,1,1,2-1 etrachloroethane	ND		3.8		ug/Kg		03/16/18 16:30	03/19/18 23:18	1

Client Sample ID: B16 S/GW-S8-A Date Collected: 03/15/18 13:13 Date Received: 03/16/18 14:40

Lab Sample ID: 720-85358-4 Matrix: Solid

Method: 8260B - Volatile Org	anic Compou	nds (GC/I	MS) (Continu	ed)						
Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	5
1,1,2,2-Tetrachloroethane	ND		3.8		ug/Kg		03/16/18 16:30	03/19/18 23:18	1	-
Tetrachloroethene	ND		3.8		ug/Kg		03/16/18 16:30	03/19/18 23:18	1	6
Toluene	ND		3.8		ug/Kg		03/16/18 16:30	03/19/18 23:18	1	
1,2,3-Trichlorobenzene	ND		3.8		ug/Kg		03/16/18 16:30	03/19/18 23:18	1	
1,2,4-Trichlorobenzene	ND		3.8		ug/Kg		03/16/18 16:30	03/19/18 23:18	1	
1,1,1-Trichloroethane	ND		3.8		ug/Kg		03/16/18 16:30	03/19/18 23:18	1	s
1,1,2-Trichloroethane	ND		3.8		ug/Kg		03/16/18 16:30	03/19/18 23:18	1	
Trichloroethene	ND		3.8		ug/Kg		03/16/18 16:30	03/19/18 23:18	1	C
Trichlorofluoromethane	ND		3.8		ug/Kg		03/16/18 16:30	03/19/18 23:18	1	ž
1,2,3-Trichloropropane	ND		3.8		ug/Kg		03/16/18 16:30	03/19/18 23:18	1	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		3.8		ug/Kg		03/16/18 16:30	03/19/18 23:18	1	
1,2,4-Trimethylbenzene	ND		3.8		ug/Kg		03/16/18 16:30	03/19/18 23:18	1	
1,3,5-Trimethylbenzene	ND		3.8		ug/Kg		03/16/18 16:30	03/19/18 23:18	1	
Vinyl acetate	ND		15		ug/Kg		03/16/18 16:30	03/19/18 23:18	1	
Vinyl chloride	ND		3.8		ug/Kg		03/16/18 16:30	03/19/18 23:18	1	
Xylenes, Total	ND		3.8		ug/Kg		03/16/18 16:30	03/19/18 23:18	1	
2,2-Dichloropropane	ND		3.8		ug/Kg		03/16/18 16:30	03/19/18 23:18	1	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	
4-Bromofluorobenzene	95		45 - 131				03/16/18 16:30	03/19/18 23:18	1	
1,2-Dichloroethane-d4 (Surr)	116		60 - 140				03/16/18 16:30	03/19/18 23:18	1	
Toluene-d8 (Surr)	97		58 - 140				03/16/18 16:30	03/19/18 23:18	1	

Date Collected: 03/16/18 09:35 Date Received: 03/16/18 14:40

Method: 8260B - Volatile Orga Analyte	nic Compou Result	unds (GC/MS) Qualifier RL	MDL Unit	D Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND	0.50	ug/L		03/21/18 03:09	1
Acetone	ND	50	ug/L		03/21/18 03:09	1
Benzene	ND	0.50	ug/L		03/21/18 03:09	1
Dichlorobromomethane	ND	0.50	ug/L		03/21/18 03:09	1
Bromobenzene	ND	1.0	ug/L		03/21/18 03:09	1
Chlorobromomethane	ND	1.0	ug/L		03/21/18 03:09	1
Bromoform	ND	1.0	ug/L		03/21/18 03:09	1
Bromomethane	ND	1.0	ug/L		03/21/18 03:09	1
2-Butanone (MEK)	ND	50	ug/L		03/21/18 03:09	1
n-Butylbenzene	ND	1.0	ug/L		03/21/18 03:09	1
sec-Butylbenzene	ND	1.0	ug/L		03/21/18 03:09	1
tert-Butylbenzene	ND	1.0	ug/L		03/21/18 03:09	1
Carbon disulfide	ND	5.0	ug/L		03/21/18 03:09	1
Carbon tetrachloride	ND	0.50	ug/L		03/21/18 03:09	1
Chlorobenzene	ND	0.50	ug/L		03/21/18 03:09	1
Chloroethane	ND	1.0	ug/L		03/21/18 03:09	1
Chloroform	ND	1.0	ug/L		03/21/18 03:09	1
Chloromethane	ND	1.0	ug/L		03/21/18 03:09	1
2-Chlorotoluene	ND	0.50	ug/L		03/21/18 03:09	1
4-Chlorotoluene	ND	0.50	ug/L		03/21/18 03:09	1
Chlorodibromomethane	ND	0.50	ug/L		03/21/18 03:09	1
1,2-Dichlorobenzene	ND	0.50	ug/L		03/21/18 03:09	1
1,3-Dichlorobenzene	ND	0.50	ug/L		03/21/18 03:09	1
1,4-Dichlorobenzene	ND	0.50	ug/L		03/21/18 03:09	1
1,3-Dichloropropane	ND	1.0	ug/L		03/21/18 03:09	1
1,1-Dichloropropene	ND	0.50	ug/L		03/21/18 03:09	1
1,2-Dibromo-3-Chloropropane	ND	* 1.0	ug/L		03/21/18 03:09	1
Ethylene Dibromide	ND	0.50	ug/L		03/21/18 03:09	1
Dibromomethane	ND	0.50	ug/L		03/21/18 03:09	1
Dichlorodifluoromethane	ND	0.50	ug/L		03/21/18 03:09	1
1,1-Dichloroethane	ND	0.50	ug/L		03/21/18 03:09	1
1,2-Dichloroethane	ND	0.50	ug/L		03/21/18 03:09	1
1,1-Dichloroethene	ND	0.50	ug/L		03/21/18 03:09	1
cis-1,2-Dichloroethene	ND	0.50	ug/L		03/21/18 03:09	1
trans-1,2-Dichloroethene	ND	0.50	ug/L		03/21/18 03:09	1
1,2-Dichloropropane	ND	0.50	ug/L		03/21/18 03:09	1
cis-1,3-Dichloropropene	ND	0.50	ug/L		03/21/18 03:09	1
trans-1,3-Dichloropropene	ND	0.50	ug/L		03/21/18 03:09	1
Ethylbenzene	ND	0.50	ug/L		03/21/18 03:09	1
Hexachlorobutadiene	ND	1.0	ug/L		03/21/18 03:09	1
2-Hexanone	ND	50	ug/L		03/21/18 03:09	1
Isopropylbenzene	ND	0.50	ug/L		03/21/18 03:09	1
4-Isopropyltoluene	ND	1.0	ug/L		03/21/18 03:09	1
Methylene Chloride	ND	5.0	ug/L		03/21/18 03:09	1
4-Methyl-2-pentanone (MIBK)	ND	50	ug/L		03/21/18 03:09	1
Naphthalene	ND	1.0	ug/L		03/21/18 03:09	1
N-Propylbenzene	ND	1.0	ug/L		03/21/18 03:09	1
Styrene	ND	0.50	ug/L		03/21/18 03:09	1
1,1,1,2-Tetrachloroethane	ND	0.50	ug/L		03/21/18 03:09	1

Lab Sample ID: 720-85358-5 Matrix: Water

Client Sample ID: B15 S/GW-W Date Collected: 03/16/18 09:35 Date Received: 03/16/18 14:40

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 720-85358-5 Matrix: Water

ND 0.50 ug/L 03/21/18 03:09 Tetrachloroethene 4.6 0.50 ug/L 03/21/18 03:09 Toluene ND 0.50 ug/L 03/21/18 03:09 Toluene ND 0.50 ug/L 03/21/18 03:09 1,2,3-Trichlorobenzene ND 1.0 ug/L 03/21/18 03:09 1,2,4-Trichlorobenzene ND 1.0 ug/L 03/21/18 03:09 1,1,1-Trichloroethane ND 0.50 ug/L 03/21/18 03:09 1,1,2-Trichloroethane ND 0.50 ug/L 03/21/18 03:09 1,1,2-Trichloroethane ND 0.50 ug/L 03/21/18 03:09	JC
Tetrachloroethene 4.6 0.50 ug/L 03/21/18 03:09 Toluene ND 0.50 ug/L 03/21/18 03:09 1,2,3-Trichlorobenzene ND 1.0 ug/L 03/21/18 03:09 1,2,4-Trichlorobenzene ND 1.0 ug/L 03/21/18 03:09 1,1,1-Trichloroethane ND 0.50 ug/L 03/21/18 03:09 1,1 2-Trichloroethane ND 0.50 ug/L 03/21/18 03:09	1
Toluene ND 0.50 ug/L 03/21/18 03:09 1,2,3-Trichlorobenzene ND 1.0 ug/L 03/21/18 03:09 1,2,4-Trichlorobenzene ND 1.0 ug/L 03/21/18 03:09 1,1,1-Trichloroethane ND 0.50 ug/L 03/21/18 03:09 1,1 2-Trichloroethane ND 0.50 ug/L 03/21/18 03:09	1
1,2,3-Trichlorobenzene ND 1.0 ug/L 03/21/18 03:09 1,2,4-Trichlorobenzene ND 1.0 ug/L 03/21/18 03:09 1,1,1-Trichloroethane ND 0.50 ug/L 03/21/18 03:09 1 1 2-Trichloroethane ND 0.50 ug/L 03/21/18 03:09	1
1,2,4-Trichlorobenzene ND 1.0 ug/L 03/21/18 03:09 1,1,1-Trichloroethane ND 0.50 ug/L 03/21/18 03:09 1,1 2-Trichloroethane ND 0.50 ug/L 03/21/18 03:09	1
1,1,1-Trichloroethane ND 0.50 ug/L 03/21/18 03:09 1.1.2-Trichloroethane ND 0.50 ug/L 03/21/18 03:09	1
1.1.2-Trichloroethane ND 0.50 μg/l 03/21/18.03/09	1
	1
Trichloroethene 0.69 0.50 ug/L 03/21/18 03:09	1
Trichlorofluoromethane ND * 1.0 ug/L 03/21/18 03:09	1
1,2,3-Trichloropropane ND 0.50 ug/L 03/21/18 03:09	1
1,1,2-Trichloro-1,2,2-trifluoroethane ND 0.50 ug/L 03/21/18 03:09	1
1,2,4-Trimethylbenzene ND 0.50 ug/L 03/21/18 03:09	1
1,3,5-Trimethylbenzene ND 0.50 ug/L 03/21/18 03:09	1
Vinyl acetate ND 10 ug/L 03/21/18 03:09	1
Vinyl chloride ND 0.50 ug/L 03/21/18 03:09	1
Xylenes, Total ND 0.50 ug/L 03/21/18 03:09	1
2,2-Dichloropropane ND 0.50 ug/L 03/21/18 03:09	1
Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil F	ас
4-Bromofluorobenzene 77 67 - 130 03/21/18 03:09	1
1,2-Dichloroethane-d4 (Surr) 103 72 - 130 03/21/18 03:09	1
Toluene-d8 (Surr) 84 70 - 130 03/21/18 03:09	1

5 6

Lab Sample ID: 720-85358-6 Matrix: Water

Client Sample ID: TRIP BL	ANK
Date Collected: 03/16/18 00:00	

Date Received: 03/16/18 14:40

Method: 8260B - Volatile Organi	c Compoi	unds (GC/MS)					
Analyte	Result	Qualifier RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND	0.50	ug/L			03/20/18 10:30	1
Acetone	ND	50	ug/L			03/20/18 10:30	1
Benzene	ND	0.50	ug/L			03/20/18 10:30	1
Dichlorobromomethane	ND	0.50	ug/L			03/20/18 10:30	1
Bromobenzene	ND	1.0	ug/L			03/20/18 10:30	1
Chlorobromomethane	ND	1.0	ug/L			03/20/18 10:30	1
Bromoform	ND	1.0	ug/L			03/20/18 10:30	1
Bromomethane	ND	1.0	ug/L			03/20/18 10:30	1
2-Butanone (MEK)	ND	50	ug/L			03/20/18 10:30	1
n-Butylbenzene	ND	1.0	ug/L			03/20/18 10:30	1
sec-Butylbenzene	ND	1.0	ug/L			03/20/18 10:30	1
tert-Butylbenzene	ND	1.0	ug/L			03/20/18 10:30	1
Carbon disulfide	ND	5.0	ug/L			03/20/18 10:30	1
Carbon tetrachloride	ND	0.50	ug/L			03/20/18 10:30	1
Chlorobenzene	ND	0.50	ug/L			03/20/18 10:30	1
Chloroethane	ND	1.0	ug/L			03/20/18 10:30	1
Chloroform	ND	1.0	ug/L			03/20/18 10:30	1
Chloromethane	ND	1.0	ug/L			03/20/18 10:30	1
2-Chlorotoluene	ND	0.50	ua/L			03/20/18 10:30	1
4-Chlorotoluene	ND	0.50	ua/L			03/20/18 10:30	1
Chlorodibromomethane	ND	0.50	ua/L			03/20/18 10:30	1
1.2-Dichlorobenzene	ND	0.50	ua/L			03/20/18 10:30	1
1 3-Dichlorobenzene	ND	0.50	ug/l			03/20/18 10:30	1
1 4-Dichlorobenzene	ND	0.50	ug/l			03/20/18 10:30	1
1 3-Dichloropropane	ND	10	ua/l			03/20/18 10:30	
1 1-Dichloropropene	ND	0.50	ug/l			03/20/18 10:30	1
1 2-Dibromo-3-Chloropropane	ND	1.0	ug/l			03/20/18 10:30	1
Ethylene Dibromide	ND	0.50	ug/l			03/20/18 10:30	
Dibromomethane	ND	0.50	ug/l			03/20/18 10:30	1
Dichlorodifluoromethane	ND	0.50	ug/l			03/20/18 10:30	1
1 1-Dichloroethane	ND	0.50	ug/l			03/20/18 10:30	
1 2-Dichloroethane	ND	0.50	ug/l			03/20/18 10:30	1
1 1-Dichloroethene	ND	0.50	ug/l			03/20/18 10:30	1
cis-1 2-Dichloroethene	ND	0.50	ug/L			03/20/18 10:30	· · · · · · · · · · · · · · · · · · ·
trans-1 2-Dichloroethene	ND	0.50	ug/L			03/20/18 10:30	1
1 2-Dichloropropane	ND	0.50	ug/L			03/20/18 10:30	1
cis-1 3-Dichloropropene	ND	0.50	ug/L			03/20/18 10:30	1
trans_1 3-Dichloronropene		0.50	ug/L			03/20/18 10:30	1
Ethylbenzene		0.50	ug/L			03/20/18 10:30	1
Hexachlorobutadiene	ND	1.0	ug/∟ ug/l			03/20/18 10:30	1
2-Hevanone		50	ug/L			03/20/18 10:30	1
Isopropylbenzene		0.50	ug/L			03/20/18 10:30	1
4-Isopropylitelizerie		1.0	ug/L			03/20/18 10:20	
Hethylene Chloride		1.0 5.0	ug/L			03/20/18 10:30	1
Methylene Chionae		5.0	ug/L			03/20/10 10.30	1
T-Metry-2-pentanone (MIDIX)		50 4 A	uy/L			03/20/10 10.30	۱ ۱
N Propyllonzono		1.0	ug/L			03/20/10 10.30	1
N-FTOPYIDENZENE Sturano		1.0	ug/L			03/20/10 10.30	1
Styrene		0.50	ug/L			03/20/18 10:30	·····
i, i, i, z-i etrachioroethane	ND	0.50	ug/L			03/20/18 10:30	1

Client Sample ID: TRIP BLANK Date Collected: 03/16/18 00:00 Date Received: 03/16/18 14:40

Lab Sample ID: 720-85358-6 Matrix: Water

Method: 8260B - Volatile Org	anic Compo	unds (GC/	MS) (Continu	ed)	Unit	Р	Bronorod	Applyzod	
	- Kesuit	Quaimer	RL	MDL			Frepareu	Analyzeu	
1,1,2,2-1 etrachloroethane	ND		0.50		ug/L			03/20/18 10:30	1
Tetrachloroethene	ND		0.50		ug/L			03/20/18 10:30	1
Toluene	ND		0.50		ug/L			03/20/18 10:30	1
1,2,3-Trichlorobenzene	ND		1.0		ug/L			03/20/18 10:30	1
1,2,4-Trichlorobenzene	ND		1.0		ug/L			03/20/18 10:30	1
1,1,1-Trichloroethane	ND		0.50		ug/L			03/20/18 10:30	1
1,1,2-Trichloroethane	ND		0.50		ug/L			03/20/18 10:30	1
Trichloroethene	ND		0.50		ug/L			03/20/18 10:30	1
Trichlorofluoromethane	ND		1.0		ug/L			03/20/18 10:30	1
1,2,3-Trichloropropane	ND		0.50		ug/L			03/20/18 10:30	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50		ug/L			03/20/18 10:30	1
1,2,4-Trimethylbenzene	ND		0.50		ug/L			03/20/18 10:30	1
1,3,5-Trimethylbenzene	ND		0.50		ug/L			03/20/18 10:30	1
Vinyl acetate	ND		10		ug/L			03/20/18 10:30	1
Vinyl chloride	ND		0.50		ug/L			03/20/18 10:30	1
Xylenes, Total	ND		0.50		ug/L			03/20/18 10:30	1
2,2-Dichloropropane	ND		0.50		ug/L			03/20/18 10:30	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	93		67 - 130			-		03/20/18 10:30	1
1,2-Dichloroethane-d4 (Surr)	93		72 - 130					03/20/18 10:30	1
Toluene-d8 (Surr)	97		70 - 130					03/20/18 10:30	1
Client Sample ID: Method Blank

Prep Type: Total/NA

2 3 4 5 6

Method: 8260B	- Volatile Organic	Compounds	(GC/MS)

Lab Sample ID: MB 720-240883/4

Matrix: Solid

Analysis Batch: 240883									
	MB	МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND		5.0		ug/Kg			03/19/18 19:44	1
Acetone	ND		50		ug/Kg			03/19/18 19:44	1
Benzene	ND		5.0		ug/Kg			03/19/18 19:44	1
Dichlorobromomethane	ND		5.0		ug/Kg			03/19/18 19:44	1
Bromobenzene	ND		5.0		ug/Kg			03/19/18 19:44	1
Chlorobromomethane	ND		20		ug/Kg			03/19/18 19:44	1
Bromoform	ND		5.0		ug/Kg			03/19/18 19:44	1
Bromomethane	ND		10		ug/Kg			03/19/18 19:44	1
2-Butanone (MEK)	ND		50		ug/Kg			03/19/18 19:44	1
n-Butylbenzene	ND		5.0		ug/Kg			03/19/18 19:44	1
sec-Butylbenzene	ND		5.0		ug/Kg			03/19/18 19:44	1
tert-Butylbenzene	ND		5.0		ug/Kg			03/19/18 19:44	1
Carbon disulfide	ND		5.0		ug/Kg			03/19/18 19:44	1
Carbon tetrachloride	ND		5.0		ug/Kg			03/19/18 19:44	1
Chlorobenzene	ND		5.0		ug/Kg			03/19/18 19:44	1
Chloroethane	ND		10		ug/Kg			03/19/18 19:44	1
Chloroform	ND		5.0		ug/Kg			03/19/18 19:44	1
Chloromethane	ND		10		ug/Kg			03/19/18 19:44	1
2-Chlorotoluene	ND		5.0		ug/Kg			03/19/18 19:44	1
4-Chlorotoluene	ND		5.0		ug/Kg			03/19/18 19:44	1
Chlorodibromomethane	ND		5.0		ug/Kg			03/19/18 19:44	1
1,2-Dichlorobenzene	ND		5.0		ug/Kg			03/19/18 19:44	1
1,3-Dichlorobenzene	ND		5.0		ug/Kg			03/19/18 19:44	1
1,4-Dichlorobenzene	ND		5.0		ug/Kg			03/19/18 19:44	1
1,3-Dichloropropane	ND		5.0		ug/Kg			03/19/18 19:44	1
1,1-Dichloropropene	ND		5.0		ug/Kg			03/19/18 19:44	1
1,2-Dibromo-3-Chloropropane	ND		10		ug/Kg			03/19/18 19:44	1
Ethylene Dibromide	ND		5.0		ug/Kg			03/19/18 19:44	1
Dibromomethane	ND		10		ug/Kg			03/19/18 19:44	1
Dichlorodifluoromethane	ND		10		ug/Kg			03/19/18 19:44	1
1,1-Dichloroethane	ND		5.0		ug/Kg			03/19/18 19:44	1
1,2-Dichloroethane	ND		5.0		ug/Kg			03/19/18 19:44	1
1,1-Dichloroethene	ND		5.0		ug/Kg			03/19/18 19:44	1
cis-1,2-Dichloroethene	ND		5.0		ug/Kg			03/19/18 19:44	1
trans-1,2-Dichloroethene	ND		5.0		ug/Kg			03/19/18 19:44	1
1,2-Dichloropropane	ND		5.0		ug/Kg			03/19/18 19:44	1
cis-1,3-Dichloropropene	ND		5.0		ug/Kg			03/19/18 19:44	1
trans-1,3-Dichloropropene	ND		5.0		ug/Kg			03/19/18 19:44	1
Ethylbenzene	ND		5.0		ug/Kg			03/19/18 19:44	1
Hexachlorobutadiene	ND		5.0		ug/Kg			03/19/18 19:44	1
2-Hexanone	ND		50		ug/Kg			03/19/18 19:44	1
Isopropylbenzene	ND		5.0		ug/Kg			03/19/18 19:44	1
4-Isopropyltoluene	ND		5.0		ug/Kg			03/19/18 19:44	1
Methylene Chloride	ND		10		ug/Kg			03/19/18 19:44	1
4-Methyl-2-pentanone (MIBK)	ND		50		ug/Kg			03/19/18 19:44	1
Naphthalene	ND		10		ug/Kg			03/19/18 19:44	1
N-Propylbenzene	ND		5.0		ug/Kg			03/19/18 19:44	1
Styrene	ND		5.0		ug/Kg			03/19/18 19:44	1

Client Sample ID: Method Blank

Prep Type: Total/NA

5

7 8

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

MD MD

Lab Sample	ID: MB	720-240	883/4

Matri	x: S	olid	
Analy	/sis	Batch:	240883

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND		5.0		ug/Kg			03/19/18 19:44	1
1,1,2,2-Tetrachloroethane	ND		5.0		ug/Kg			03/19/18 19:44	1
Tetrachloroethene	ND		5.0		ug/Kg			03/19/18 19:44	1
Toluene	ND		5.0		ug/Kg			03/19/18 19:44	1
1,2,3-Trichlorobenzene	ND		5.0		ug/Kg			03/19/18 19:44	1
1,2,4-Trichlorobenzene	ND		5.0		ug/Kg			03/19/18 19:44	1
1,1,1-Trichloroethane	ND		5.0		ug/Kg			03/19/18 19:44	1
1,1,2-Trichloroethane	ND		5.0		ug/Kg			03/19/18 19:44	1
Trichloroethene	ND		5.0		ug/Kg			03/19/18 19:44	1
Trichlorofluoromethane	ND		5.0		ug/Kg			03/19/18 19:44	1
1,2,3-Trichloropropane	ND		5.0		ug/Kg			03/19/18 19:44	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		5.0		ug/Kg			03/19/18 19:44	1
1,2,4-Trimethylbenzene	ND		5.0		ug/Kg			03/19/18 19:44	1
1,3,5-Trimethylbenzene	ND		5.0		ug/Kg			03/19/18 19:44	1
Vinyl acetate	ND		20		ug/Kg			03/19/18 19:44	1
Vinyl chloride	ND		5.0		ug/Kg			03/19/18 19:44	1
Xylenes, Total	ND		5.0		ug/Kg			03/19/18 19:44	1
2,2-Dichloropropane	ND		5.0		ug/Kg			03/19/18 19:44	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	96		45 - 131		03/19/18 19:44	1
1,2-Dichloroethane-d4 (Surr)	102		60 - 140		03/19/18 19:44	1
Toluene-d8 (Surr)	99		58 - 140		03/19/18 19:44	1

Lab Sample ID: LCS 720-240883/5 Matrix: Solid Analysis Batch: 240883

Spike LCS LCS %Rec. Added Analyte **Result Qualifier** Unit D %Rec Limits Methyl tert-butyl ether 50.0 50.1 100 70 - 144 ug/Kg 250 Acetone 246 98 30 - 162 ug/Kg Benzene 50.0 48.1 ug/Kg 96 70 - 130 Dichlorobromomethane 50.0 51.9 ug/Kg 104 70 - 140 Bromobenzene 50.0 49.1 ug/Kg 98 70 - 130 Chlorobromomethane 50.0 49.6 ug/Kg 99 70 - 130 Bromoform 50.0 52.9 ug/Kg 106 59 - 158 Bromomethane 50.0 56.1 112 59 - 132 ug/Kg 2-Butanone (MEK) 250 250 ug/Kg 100 59 - 159 ug/Kg n-Butylbenzene 50.0 51.7 103 70 - 142 sec-Butylbenzene 50.0 49.8 ug/Kg 100 70 - 136 tert-Butylbenzene 50.0 49.9 ug/Kg 100 70 - 130 60 - 140 Carbon disulfide 50.0 47.3 95 ug/Kg Carbon tetrachloride 50.0 109 70 - 142 54.4 ug/Kg 48.4 ug/Kg 97 Chlorobenzene 50.0 70 - 130 Chloroethane 50.0 56.1 ug/Kg 112 65 - 130 50.0 Chloroform 49.6 ug/Kg 99 77 - 127 Chloromethane 50.0 58.7 ug/Kg 117 55 - 140 2-Chlorotoluene 50.0 48.5 ug/Kg 97 70 - 138

Client Sample ID: Lab Control Sample Prep Type: Total/NA

7

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 720-240883/5 Matrix: Solid

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Analysis Batch: 240883								
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
4-Chlorotoluene	50.0	49.4		ug/Kg		99	70 - 136	
Chlorodibromomethane	50.0	52.7		ug/Kg		105	70 ₋ 146	
1,2-Dichlorobenzene	50.0	49.0		ug/Kg		98	70 ₋ 130	
1,3-Dichlorobenzene	50.0	50.1		ug/Kg		100	70 - 131	
1,4-Dichlorobenzene	50.0	50.3		ug/Kg		101	70 ₋ 130	
1,3-Dichloropropane	50.0	47.7		ug/Kg		95	70 - 140	
1,1-Dichloropropene	50.0	51.1		ug/Kg		102	70 ₋ 130	
1,2-Dibromo-3-Chloropropane	50.0	49.3		ug/Kg		99	60 ₋ 145	
Ethylene Dibromide	50.0	49.9		ug/Kg		100	70 - 140	
Dibromomethane	50.0	50.8		ug/Kg		102	70 - 139	
Dichlorodifluoromethane	50.0	73.5		ug/Kg		147	37 - 158	
1,1-Dichloroethane	50.0	48.8		ug/Kg		98	70 - 130	
1,2-Dichloroethane	50.0	48.7		ug/Kg		97	70 - 130	
1,1-Dichloroethene	50.0	45.7		ug/Kg		91	74 - 122	
cis-1,2-Dichloroethene	50.0	48.0		ug/Kg		96	70 ₋ 138	
trans-1,2-Dichloroethene	50.0	48.3		ug/Kg		97	67 - 130	
1,2-Dichloropropane	50.0	48.8		ug/Kg		98	73 - 127	
cis-1,3-Dichloropropene	50.0	49.7		ug/Kg		99	68 ₋ 147	
trans-1,3-Dichloropropene	50.0	48.5		ug/Kg		97	70 - 155	
Ethylbenzene	50.0	48.4		ug/Kg		97	80 - 137	
Hexachlorobutadiene	50.0	50.2		ug/Kg		100	70 - 132	
2-Hexanone	250	256		ug/Kg		103	62 - 158	
Isopropylbenzene	50.0	50.0		ug/Kg		100	70 ₋ 130	
4-Isopropyltoluene	50.0	50.5		ug/Kg		101	70 ₋ 133	
Methylene Chloride	50.0	44.2		ug/Kg		88	70 ₋ 134	
4-Methyl-2-pentanone (MIBK)	250	257		ug/Kg		103	60 - 160	
Naphthalene	50.0	47.9		ug/Kg		96	60 - 147	
N-Propylbenzene	50.0	50.0		ug/Kg		100	70 ₋ 130	
Styrene	50.0	48.8		ug/Kg		98	70 - 130	
1,1,1,2-Tetrachloroethane	50.0	52.4		ug/Kg		105	70 - 130	
1,1,2,2-Tetrachloroethane	50.0	46.2		ug/Kg		92	70 - 146	
Tetrachloroethene	50.0	50.1		ug/Kg		100	70 - 132	
Toluene	50.0	47.4		ug/Kg		95	75 ₋ 120	
1,2,3-Trichlorobenzene	50.0	50.7		ug/Kg		101	60 - 140	
1,2,4-Trichlorobenzene	50.0	49.8		ug/Kg		100	60 - 140	
1,1,1-Trichloroethane	50.0	51.3		ug/Kg		103	70 - 130	
1,1,2-Trichloroethane	50.0	48.1		uq/Kq		96	70 ₋ 130	
Trichloroethene	50.0	51.5		ug/Kg		103	70 ₋ 133	
Trichlorofluoromethane	50.0	58.0		ua/Ka		116	60 - 140	
1.2.3-Trichloropropane	50.0	48.9		ua/Ka		98	70 - 146	
1 1 2-Trichloro-1 2 2-trifluoroetha	50.0	51.0		ua/Ka		102	60 - 140	
ne				5 5				
1,2,4-Trimethylbenzene	50.0	49.3		ug/Kg		99	70 - 130	
1,3,5-Trimethylbenzene	50.0	49.1		ug/Kg		98	70 ₋ 131	
Vinyl acetate	50.0	56.9		ug/Kg		114	38 ₋ 176	
Vinyl chloride	50.0	55.5		ug/Kg		111	58 ₋ 125	
m-Xylene & p-Xylene	50.0	48.5		ug/Kg		97	70 ₋ 146	
o-Xylene	50.0	49.4		ug/Kg		99	70 ₋ 140	

Spike

Added

50.0

LCS LCS

55.5

Result Qualifier

Unit

ug/Kg

Lab Sample ID: LCS 720-240883/5

Matrix: Solid

2,2-Dichloropropane

Analyte

Analysis Batch: 240883

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

D %Rec

111

%Rec.

Limits

70 - 162

7

Surrogate	%Recovery	Qualifier	Limits	
4-Bromofluorobenzene	96		45 - 131	
1,2-Dichloroethane-d4 (Surr)	95		60 - 140	
Toluene-d8 (Surr)	98		58 - 140	
Lab Sample ID: LCSD 72	0-240883/6			
Analysis Batch: 240883				
			Spike	L

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

LCS LCS

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Analysis Batch: 240883									
-	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Methyl tert-butyl ether	50.0	49.3		ug/Kg		99	70 - 144	2	20
Acetone	250	235		ug/Kg		94	30 - 162	4	30
Benzene	50.0	48.0		ug/Kg		96	70 - 130	0	20
Dichlorobromomethane	50.0	51.1		ug/Kg		102	70 - 140	1	20
Bromobenzene	50.0	48.4		ug/Kg		97	70 - 130	1	20
Chlorobromomethane	50.0	49.1		ug/Kg		98	70 - 130	1	20
Bromoform	50.0	51.1		ug/Kg		102	59 - 158	3	20
Bromomethane	50.0	54.8		ug/Kg		110	59 ₋ 132	2	20
2-Butanone (MEK)	250	234		ug/Kg		93	59 ₋ 159	7	20
n-Butylbenzene	50.0	51.6		ug/Kg		103	70 - 142	0	20
sec-Butylbenzene	50.0	49.9		ug/Kg		100	70 - 136	0	20
tert-Butylbenzene	50.0	49.9		ug/Kg		100	70 ₋ 130	0	20
Carbon disulfide	50.0	46.7		ug/Kg		93	60 - 140	1	20
Carbon tetrachloride	50.0	54.5		ug/Kg		109	70 - 142	0	20
Chlorobenzene	50.0	48.0		ug/Kg		96	70 ₋ 130	1	20
Chloroethane	50.0	54.7		ug/Kg		109	65 - 130	2	20
Chloroform	50.0	49.5		ug/Kg		99	77 - 127	0	20
Chloromethane	50.0	57.9		ug/Kg		116	55 ₋ 140	1	20
2-Chlorotoluene	50.0	48.3		ug/Kg		97	70 - 138	0	20
4-Chlorotoluene	50.0	49.3		ug/Kg		99	70 - 136	0	20
Chlorodibromomethane	50.0	52.6		ug/Kg		105	70 - 146	0	20
1,2-Dichlorobenzene	50.0	48.4		ug/Kg		97	70 - 130	1	20
1,3-Dichlorobenzene	50.0	49.3		ug/Kg		99	70 ₋ 131	2	20
1,4-Dichlorobenzene	50.0	49.7		ug/Kg		99	70 - 130	1	20
1,3-Dichloropropane	50.0	46.9		ug/Kg		94	70 - 140	2	20
1,1-Dichloropropene	50.0	50.5		ug/Kg		101	70 - 130	1	20
1,2-Dibromo-3-Chloropropane	50.0	46.6		ug/Kg		93	60 ₋ 145	6	20
Ethylene Dibromide	50.0	49.5		ug/Kg		99	70 - 140	1	20
Dibromomethane	50.0	49.4		ug/Kg		99	70 - 139	3	20
Dichlorodifluoromethane	50.0	73.6		ug/Kg		147	37 - 158	0	20
1,1-Dichloroethane	50.0	48.8		ug/Kg		98	70 - 130	0	20
1,2-Dichloroethane	50.0	48.2		ug/Kg		96	70 - 130	1	20
1,1-Dichloroethene	50.0	44.8		ug/Kg		90	74 - 122	2	20
cis-1,2-Dichloroethene	50.0	48.0		ug/Kg		96	70 - 138	0	20
trans-1,2-Dichloroethene	50.0	48.4		ug/Kg		97	67 - 130	0	20
1,2-Dichloropropane	50.0	48.6		ug/Kg		97	73 - 127	0	20

7

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 720-240883/6 Matrix: Solid

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Analysis Batch: 240883								
	Spike	LCSD	LCSD			%Rec.		RPD
Analyte	Added	Result	Qualifier Unit	D	%Rec	Limits	RPD	Limit
cis-1,3-Dichloropropene	50.0	49.0	ug/Kg		98	68 - 147	1	20
trans-1,3-Dichloropropene	50.0	47.4	ug/Kg		95	70 ₋ 155	2	20
Ethylbenzene	50.0	48.5	ug/Kg		97	80 - 137	0	20
Hexachlorobutadiene	50.0	50.3	ug/Kg		101	70 - 132	0	20
2-Hexanone	250	242	ug/Kg		97	62 - 158	6	20
Isopropylbenzene	50.0	49.5	ug/Kg		99	70 - 130	1	20
4-Isopropyltoluene	50.0	50.7	ug/Kg		101	70 - 133	0	20
Methylene Chloride	50.0	43.3	ug/Kg		87	70 - 134	2	20
4-Methyl-2-pentanone (MIBK)	250	244	ug/Kg		98	60 - 160	5	20
Naphthalene	50.0	45.8	ug/Kg		92	60 - 147	4	20
N-Propylbenzene	50.0	49.5	ug/Kg		99	70 - 130	1	20
Styrene	50.0	48.4	ug/Kg		97	70 - 130	1	20
1,1,1,2-Tetrachloroethane	50.0	52.3	ug/Kg		105	70 - 130	0	20
1,1,2,2-Tetrachloroethane	50.0	44.1	ug/Kg		88	70 ₋ 146	4	20
Tetrachloroethene	50.0	50.0	ug/Kg		100	70 - 132	0	20
Toluene	50.0	47.0	ug/Kg		94	75 - 120	1	20
1,2,3-Trichlorobenzene	50.0	49.5	ug/Kg		99	60 - 140	2	20
1,2,4-Trichlorobenzene	50.0	49.2	ug/Kg		98	60 - 140	1	20
1,1,1-Trichloroethane	50.0	51.4	ug/Kg		103	70 - 130	0	20
1,1,2-Trichloroethane	50.0	46.8	ug/Kg		94	70 - 130	3	20
Trichloroethene	50.0	51.0	ug/Kg		102	70 - 133	1	20
Trichlorofluoromethane	50.0	56.9	ug/Kg		114	60 - 140	2	20
1,2,3-Trichloropropane	50.0	46.6	ug/Kg		93	70 ₋ 146	5	20
1,1,2-Trichloro-1,2,2-trifluoroetha	50.0	49.2	ug/Kg		98	60 - 140	4	20
ne	FO O	40.4				70 400		
1,2,4- I rimethylbenzene	50.0	49.4	ug/Kg		99	70 - 130	0	20
1,3,5- I rimethylbenzene	50.0	49.4	ug/Kg		99	70 - 131	1	20
Vinyl acetate	50.0	55.7	ug/Kg		111	38 - 176	2	20
Vinyl chloride	50.0	55.1	ug/Kg		110	58 - 125	1	20
m-Xylene & p-Xylene	50.0	48.9	ug/Kg		98	70 - 146	1	20
o-Xylene	50.0	49.2	ug/Kg		98	70 - 140	0	20
2,2-Dichloropropane	50.0	55.5	ug/Kg		111	70 - 162	0	20

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	95		45 - 131
1,2-Dichloroethane-d4 (Surr)	96		60 - 140
Toluene-d8 (Surr)	97		58 - 140

Lab Sample ID: MB 720-240900/4 Matrix: Water Analysis Batch: 240900

Analysis Baton. 240000									
-	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND		0.50	i	ug/L			03/20/18 08:06	1
Acetone	ND		50	I	ug/L			03/20/18 08:06	1
Benzene	ND		0.50	I	ug/L			03/20/18 08:06	1
Dichlorobromomethane	ND		0.50		ug/L			03/20/18 08:06	1
Bromobenzene	ND		1.0	I	ug/L			03/20/18 08:06	1

TestAmerica Pleasanton

Client Sample ID: Method Blank

Prep Type: Total/NA

RL

1.0

MDL Unit

ug/L

D

Prepared

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

MB MB

ND

Result Qualifier

Lab Sample ID: MB 720-240900/4

Matrix: Water

Chlorobromomethane

Analyte

Analysis Batch: 240900

Client Sample ID: Method Blank

Analyzed

03/20/18 08:06

Prep Type: Total/NA

Dil Fac

1

•	/	1	
	1		
		2	

Bromotorm	ND	1.0	ug/L	03/20/18 08:06 1
Bromomethane	ND	1.0	ug/L	03/20/18 08:06 1
2-Butanone (MEK)	ND	50	ug/L	03/20/18 08:06 1
n-Butylbenzene	ND	1.0	ug/L	03/20/18 08:06 1
sec-Butylbenzene	ND	1.0	ug/L	03/20/18 08:06 1
tert-Butylbenzene	ND	1.0	ug/L	03/20/18 08:06 1
Carbon disulfide	ND	5.0	ug/L	03/20/18 08:06 1
Carbon tetrachloride	ND	0.50	ug/L	03/20/18 08:06 1
Chlorobenzene	ND	0.50	ug/L	03/20/18 08:06 1
Chloroethane	ND	1.0	ug/L	03/20/18 08:06 1
Chloroform	ND	1.0	ug/L	03/20/18 08:06 1
Chloromethane	ND	1.0	ug/L	03/20/18 08:06 1
2-Chlorotoluene	ND	0.50	ug/L	03/20/18 08:06 1
4-Chlorotoluene	ND	0.50	ug/L	03/20/18 08:06 1
Chlorodibromomethane	ND	0.50	ug/L	03/20/18 08:06 1
1,2-Dichlorobenzene	ND	0.50	ug/L	03/20/18 08:06 1
1,3-Dichlorobenzene	ND	0.50	ug/L	03/20/18 08:06 1
1,4-Dichlorobenzene	ND	0.50	ug/L	03/20/18 08:06 1
1,3-Dichloropropane	ND	1.0	ug/L	03/20/18 08:06 1
1,1-Dichloropropene	ND	0.50	ug/L	03/20/18 08:06 1
1,2-Dibromo-3-Chloropropane	ND	1.0	ug/L	03/20/18 08:06 1
Ethylene Dibromide	ND	0.50	ug/L	03/20/18 08:06 1
Dibromomethane	ND	0.50	ug/L	03/20/18 08:06 1
Dichlorodifluoromethane	ND	0.50	ug/L	03/20/18 08:06 1
1,1-Dichloroethane	ND	0.50	ug/L	03/20/18 08:06 1
1,2-Dichloroethane	ND	0.50	ug/L	03/20/18 08:06 1
1,1-Dichloroethene	ND	0.50	ug/L	03/20/18 08:06 1
cis-1,2-Dichloroethene	ND	0.50	ug/L	03/20/18 08:06 1
trans-1,2-Dichloroethene	ND	0.50	ug/L	03/20/18 08:06 1
1,2-Dichloropropane	ND	0.50	ug/L	03/20/18 08:06 1
cis-1,3-Dichloropropene	ND	0.50	ug/L	03/20/18 08:06 1
trans-1,3-Dichloropropene	ND	0.50	ug/L	03/20/18 08:06 1
Ethylbenzene	ND	0.50	ug/L	03/20/18 08:06 1
Hexachlorobutadiene	ND	1.0	ug/L	03/20/18 08:06 1
2-Hexanone	ND	50	ug/L	03/20/18 08:06 1
lsopropylbenzene	ND	0.50	ug/L	03/20/18 08:06 1
4-Isopropyltoluene	ND	1.0	ug/L	03/20/18 08:06 1
Methylene Chloride	ND	5.0	ug/L	03/20/18 08:06 1
4-Methyl-2-pentanone (MIBK)	ND	50	ug/L	03/20/18 08:06 1
Naphthalene	ND	1.0	ug/L	03/20/18 08:06 1
N-Propylbenzene	ND	1.0	ug/L	03/20/18 08:06 1
Styrene	ND	0.50	ug/L	03/20/18 08:06 1
1,1,1,2-Tetrachloroethane	ND	0.50	ug/L	03/20/18 08:06 1
1,1,2,2-Tetrachloroethane	ND	0.50	ug/L	03/20/18 08:06 1
Tetrachloroethene	ND	0.50	ug/L	03/20/18 08:06 1
Toluene	ND	0.50	ug/L	03/20/18 08:06 1

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Client Sample ID: Method Blank Prep Type: Total/NA								
			5					
Prepared	Analyzed	Dil Fac						
	03/20/18 08:06	1						
	03/20/18 08:06	1	_					
	03/20/18 08:06	1	7					
	03/20/18 08:06	1	_					
	03/20/18 08:06	1	8					
	03/20/18 08:06	1						
	03/20/18 08:06	1	Q					
	03/20/18 08:06	1						

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Matrix: Water Analysis Batch: 240900

·	МВ	МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,4-Trichlorobenzene	ND		1.0		ug/L			03/20/18 08:06	1
1,1,1-Trichloroethane	ND		0.50		ug/L			03/20/18 08:06	1
1,1,2-Trichloroethane	ND		0.50		ug/L			03/20/18 08:06	1
Trichloroethene	ND		0.50		ug/L			03/20/18 08:06	1
Trichlorofluoromethane	ND		1.0		ug/L			03/20/18 08:06	1
1,2,3-Trichloropropane	ND		0.50		ug/L			03/20/18 08:06	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50		ug/L			03/20/18 08:06	1
1,2,4-Trimethylbenzene	ND		0.50		ug/L			03/20/18 08:06	1
1,3,5-Trimethylbenzene	ND		0.50		ug/L			03/20/18 08:06	1
Vinyl acetate	ND		10		ug/L			03/20/18 08:06	1
Vinyl chloride	ND		0.50		ug/L			03/20/18 08:06	1
Xylenes, Total	ND		0.50		ug/L			03/20/18 08:06	1
2,2-Dichloropropane	ND		0.50		ug/L			03/20/18 08:06	1
	MB	MB							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	89		67 - 130					03/20/18 08:06	1
1,2-Dichloroethane-d4 (Surr)	91		72 - 130					03/20/18 08:06	1
Toluene-d8 (Surr)	97		70 - 130					03/20/18 08:06	1

Lab Sample ID: LCS 720-240900/5 Matrix: Water

Analysis Batch: 240900

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Methyl tert-butyl ether		23.3		ug/L		93	70 - 130	
Acetone	125	104		ug/L		84	58 - 147	
Benzene	25.0	26.5		ug/L		106	84 - 130	
Dichlorobromomethane	25.0	26.3		ug/L		105	81 - 130	
Bromobenzene	25.0	26.5		ug/L		106	84 - 130	
Chlorobromomethane	25.0	23.6		ug/L		94	81 - 130	
Bromoform	25.0	25.4		ug/L		102	79 ₋ 127	
Bromomethane	25.0	23.7		ug/L		95	65 ₋ 151	
2-Butanone (MEK)	125	116		ug/L		92	66 - 133	
n-Butylbenzene	25.0	29.1		ug/L		117	86 - 134	
sec-Butylbenzene	25.0	29.1		ug/L		117	85 ₋ 134	
tert-Butylbenzene	25.0	28.4		ug/L		114	85 - 135	
Carbon disulfide	25.0	26.7		ug/L		107	60 - 159	
Carbon tetrachloride	25.0	28.1		ug/L		112	79 - 133	
Chlorobenzene	25.0	26.4		ug/L		106	85 - 130	
Chloroethane	25.0	26.0		ug/L		104	62 - 148	
Chloroform	25.0	24.8		ug/L		99	82 - 130	
Chloromethane	25.0	24.2		ug/L		97	46 ₋ 147	
2-Chlorotoluene	25.0	28.5		ug/L		114	83 - 130	
4-Chlorotoluene	25.0	30.2		ug/L		121	85 - 130	
Chlorodibromomethane	25.0	25.8		ug/L		103	77 - 133	
1,2-Dichlorobenzene	25.0	26.1		ug/L		104	85 ₋ 130	
1,3-Dichlorobenzene	25.0	26.7		ug/L		107	86 - 130	
1,4-Dichlorobenzene	25.0	25.9		ug/L		104	86 - 130	

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 720-240900/5

Matri	X: W	later	
Analy	/sis	Batch:	240900

····· ································	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,3-Dichloropropane	25.0	25.7		ug/L		103	77 - 130	
1,1-Dichloropropene	25.0	28.0		ug/L		112	83 - 130	
1,2-Dibromo-3-Chloropropane	25.0	21.3		ug/L		85	70 - 136	
Ethylene Dibromide	25.0	25.2		ug/L		101	80 - 130	
Dibromomethane	25.0	24.3		ug/L		97	79 - 130	
Dichlorodifluoromethane	25.0	22.0		ug/L		88	18 - 173	
1,1-Dichloroethane	25.0	25.5		ug/L		102	77 - 130	
1,2-Dichloroethane	25.0	24.6		ug/L		99	66 - 132	
1,1-Dichloroethene	25.0	24.8		ug/L		99	64 - 128	
cis-1,2-Dichloroethene	25.0	25.2		ug/L		101	77 _ 130	
trans-1,2-Dichloroethene	25.0	24.1		ug/L		96	79 - 130	
1,2-Dichloropropane	25.0	26.0		ug/L		104	79 ₋ 130	
cis-1,3-Dichloropropene	25.0	26.8		ug/L		107	82 - 130	
trans-1,3-Dichloropropene	25.0	27.8		ug/L		111	76 - 129	
Ethylbenzene	25.0	27.7		ug/L		111	87 - 127	
Hexachlorobutadiene	25.0	28.5		ug/L		114	78 - 140	
2-Hexanone	125	129		ug/L		103	57 - 140	
Isopropylbenzene	25.0	29.7		ug/L		119	90 - 130	
4-Isopropyltoluene	25.0	30.0		ug/L		120	88 - 130	
Methylene Chloride	25.0	23.6		ug/L		94	75 - 128	
4-Methyl-2-pentanone (MIBK)	125	124		ug/L		99	58 - 140	
Naphthalene	25.0	24.8		ug/L		99	81 - 130	
N-Propylbenzene	25.0	28.5		ug/L		114	84 - 130	
Styrene	25.0	26.8		ug/L		107	84 - 130	
1,1,1,2-Tetrachloroethane	25.0	26.3		ug/L		105	88 - 130	
1,1,2,2-Tetrachloroethane	25.0	25.0		ug/L		100	70 - 130	
Tetrachloroethene	25.0	26.9		ug/L		108	81 - 130	
Toluene	25.0	28.3		ug/L		113	85 - 120	
1,2,3-Trichlorobenzene	25.0	24.8		ug/L		99	87 - 130	
1,2,4-Trichlorobenzene	25.0	25.4		ug/L		102	78 - 138	
1,1,1-Trichloroethane	25.0	26.9		ug/L		107	81 - 130	
1,1,2-Trichloroethane	25.0	24.3		ug/L		97	80 - 130	
Trichloroethene	25.0	26.0		ug/L		104	85 - 130	
Trichlorofluoromethane	25.0	26.4		ug/L		106	75 - 132	
1,2,3-Trichloropropane	25.0	24.1		ug/L		96	77 - 130	
1,1,2-Trichloro-1,2,2-trifluoroetha	25.0	25.4		ug/L		101	70 - 145	
ne								
1,2,4-Trimethylbenzene	25.0	27.3		ug/L		109	87 - 132	
1,3,5-Trimethylbenzene	25.0	27.9		ug/L		112	87 - 130	
Vinyl acetate	25.0	23.9		ug/L		96	43 - 146	
Vinyl chloride	25.0	27.4		ug/L		110	50 ₋ 156	
m-Xylene & p-Xylene	25.0	29.0		ug/L		116	86 - 126	
o-Xylene	25.0	28.1		ug/L		112	86 - 130	
2,2-Dichloropropane	25.0	27.5		ug/L		110	80 - 140	

	203	203	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	100		67 - 130
1,2-Dichloroethane-d4 (Surr)	88		72 - 130

Limits

70 - 130

Lab Sample ID: LCS 720-240900/5

Lab Sample ID: LCSD 720-240900/6

Matrix: Water

Toluene-d8 (Surr)

Surrogate

2-Hexanone

Analysis Batch: 240900

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

2 3 4 5 6 7 8 9

Matrix: Water							Prep Ty	be: Tota	al/NA
Analysis Batch: 240900									
	Spike	LCSD	LCSD		_		%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Methyl tert-butyl ether	25.0	23.9		ug/L		96	70 - 130	3	20
Acetone	125	118		ug/L		95	58 - 147	13	30
Benzene	25.0	26.6		ug/L		106	84 - 130	0	20
Dichlorobromomethane	25.0	26.4		ug/L		106	81 - 130	0	20
Bromobenzene	25.0	27.1		ug/L		108	84 - 130	2	20
Chlorobromomethane	25.0	23.4		ug/L		94	81 - 130	1	20
Bromoform	25.0	27.4		ug/L		110	79 - 127	8	20
Bromomethane	25.0	23.0		ug/L		92	65 - 151	3	20
2-Butanone (MEK)	125	134		ug/L		107	66 - 133	15	22
n-Butylbenzene	25.0	28.1		ug/L		112	86 - 134	4	20
sec-Butylbenzene	25.0	28.1		ug/L		112	85 - 134	4	20
tert-Butylbenzene	25.0	27.8		ug/L		111	85 - 135	2	20
Carbon disulfide	25.0	25.5		ug/L		102	60 - 159	5	20
Carbon tetrachloride	25.0	27.4		ug/L		109	79 - 133	2	20
Chlorobenzene	25.0	26.4		ug/L		105	85 - 130	0	20
Chloroethane	25.0	24.9		ug/L		100	62 - 148	4	20
Chloroform	25.0	24.3		ug/L		97	82 - 130	2	20
Chloromethane	25.0	23.7		ug/L		95	46 - 147	2	20
2-Chlorotoluene	25.0	27.5		ug/L		110	83 - 130	3	20
4-Chlorotoluene	25.0	30.1		ug/L		120	85 - 130	0	20
Chlorodibromomethane	25.0	27.3		ug/L		109	77 - 133	6	20
1,2-Dichlorobenzene	25.0	26.0		ug/L		104	85 - 130	1	20
1,3-Dichlorobenzene	25.0	26.8		ug/L		107	86 - 130	0	20
1,4-Dichlorobenzene	25.0	26.0		ug/L		104	86 - 130	0	20
1,3-Dichloropropane	25.0	27.9		ug/L		112	77 - 130	8	20
1,1-Dichloropropene	25.0	27.8		ug/L		111	83 - 130	1	20
1,2-Dibromo-3-Chloropropane	25.0	24.0		ug/L		96	70 - 136	12	20
Ethylene Dibromide	25.0	27.9		ug/L		112	80 - 130	10	20
Dibromomethane	25.0	25.4		ug/L		102	79 ₋ 130	4	20
Dichlorodifluoromethane	25.0	21.2		ug/L		85	18 - 173	4	20
1,1-Dichloroethane	25.0	25.0		ug/L		100	77 - 130	2	20
1,2-Dichloroethane	25.0	25.2		ug/L		101	66 - 132	2	20
1,1-Dichloroethene	25.0	23.3		ug/L		93	64 - 128	6	20
cis-1,2-Dichloroethene	25.0	24.4		ug/L		97	77 - 130	3	20
trans-1,2-Dichloroethene	25.0	23.5		ug/L		94	79 ₋ 130	3	20
1,2-Dichloropropane	25.0	26.4		ug/L		105	79 ₋ 130	1	20
cis-1,3-Dichloropropene	25.0	28.1		ug/L		112	82 - 130	5	20
trans-1.3-Dichloropropene	25.0	30.4		uq/L		122	76 - 129	9	20
Ethylbenzene	25.0	27.3		ug/L		109	87 - 127	- 1	20
Hexachlorobutadiene	25.0	28.0		ug/L		112	78 - 140	1	20

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

LCS LCS %Recovery Qualifier

104

TestAmerica Pleasanton

57 - 140

127

158

125

ug/L

21

24

7

Client Sample ID: Lab Control Sample Dup

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 720-240900/6 Matrix: Water

Matrix: Water					1		Prep Ty	pe: Tot	al/NA
Analysis Batch: 240900									
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Isopropylbenzene	25.0	28.6		ug/L		114	90 - 130	4	20
4-Isopropyltoluene	25.0	29.0		ug/L		116	88 - 130	3	20
Methylene Chloride	25.0	22.8		ug/L		91	75 - 128	3	20
4-Methyl-2-pentanone (MIBK)	125	138		ug/L		111	58 - 140	11	21
Naphthalene	25.0	25.8		ug/L		103	81 - 130	4	20
N-Propylbenzene	25.0	27.8		ug/L		111	84 - 130	3	20
Styrene	25.0	27.0		ug/L		108	84 - 130	1	20
1,1,1,2-Tetrachloroethane	25.0	25.3		ug/L		101	88 - 130	4	20
1,1,2,2-Tetrachloroethane	25.0	26.4		ug/L		106	70 - 130	5	20
Tetrachloroethene	25.0	27.4		ug/L		109	81 - 130	2	20
Toluene	25.0	28.0		ug/L		112	85 - 120	1	20
1,2,3-Trichlorobenzene	25.0	24.3		ug/L		97	87 - 130	2	20
1,2,4-Trichlorobenzene	25.0	24.9		ug/L		99	78 - 138	2	20
1,1,1-Trichloroethane	25.0	26.1		ug/L		104	81 - 130	3	20
1,1,2-Trichloroethane	25.0	26.3		ug/L		105	80 - 130	8	20
Trichloroethene	25.0	26.2		ug/L		105	85 - 130	1	20
Trichlorofluoromethane	25.0	24.9		ug/L		100	75 - 132	6	20
1,2,3-Trichloropropane	25.0	26.1		ug/L		104	77 - 130	8	20
1,1,2-Trichloro-1,2,2-trifluoroetha	25.0	24.4		ug/L		97	70 - 145	4	20
ne									
1,2,4-Trimethylbenzene	25.0	26.4		ug/L		106	87 - 132	4	20
1,3,5-Trimethylbenzene	25.0	26.8		ug/L		107	87 - 130	4	20
Vinyl acetate	25.0	25.9		ug/L		103	43 - 146	8	20
Vinyl chloride	25.0	26.0		ug/L		104	50 - 156	5	20
m-Xylene & p-Xylene	25.0	28.8		ug/L		115	86 - 126	1	20
o-Xylene	25.0	27.3		ug/L		109	86 - 130	3	20
2,2-Dichloropropane	25.0	26.9		ug/L		108	80 - 140	2	20

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene			67 - 130
1,2-Dichloroethane-d4 (Surr)	89		72 - 130
Toluene-d8 (Surr)	106		70 - 130

Lab Sample ID: MB 720-240961/9 Matrix: Water Analysis Batch: 240961

-	MB	MB						
Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND		0.50	ug/L			03/20/18 21:24	1
Acetone	ND		50	ug/L			03/20/18 21:24	1
Benzene	ND		0.50	ug/L			03/20/18 21:24	1
Dichlorobromomethane	ND		0.50	ug/L			03/20/18 21:24	1
Bromobenzene	ND		1.0	ug/L			03/20/18 21:24	1
Chlorobromomethane	ND		1.0	ug/L			03/20/18 21:24	1
Bromoform	ND		1.0	ug/L			03/20/18 21:24	1
Bromomethane	ND		1.0	ug/L			03/20/18 21:24	1
2-Butanone (MEK)	ND		50	ug/L			03/20/18 21:24	1
n-Butylbenzene	ND		1.0	ug/L			03/20/18 21:24	1

Client Sample ID: Method Blank Prep Type: Total/NA

Client Sample ID: Method Blank

Prep Type: Total/NA

5 6 7

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

....

Lab Sam	ple ID: MB	<mark>3 720-24096</mark> 1/9
---------	------------	------------------------------

Matrix: Water Analysis Batch: 240961

	MB	мв				
Analyte	Result	Qualifier RL	MDL Unit	D Prepared	Analyzed	Dil Fac
sec-Butylbenzene	ND	1.0	ug/L		03/20/18 21:24	1
tert-Butylbenzene	ND	1.0	ug/L		03/20/18 21:24	1
Carbon disulfide	ND	5.0	ug/L		03/20/18 21:24	1
Carbon tetrachloride	ND	0.50	ug/L		03/20/18 21:24	1
Chlorobenzene	ND	0.50	ug/L		03/20/18 21:24	1
Chloroethane	ND	1.0	ug/L		03/20/18 21:24	1
Chloroform	ND	1.0	ug/L		03/20/18 21:24	1
Chloromethane	ND	1.0	ug/L		03/20/18 21:24	1
2-Chlorotoluene	ND	0.50	ug/L		03/20/18 21:24	1
4-Chlorotoluene	ND	0.50	ug/L		03/20/18 21:24	1
Chlorodibromomethane	ND	0.50	ug/L		03/20/18 21:24	1
1,2-Dichlorobenzene	ND	0.50	ug/L		03/20/18 21:24	1
1,3-Dichlorobenzene	ND	0.50	ug/L		03/20/18 21:24	1
1,4-Dichlorobenzene	ND	0.50	ug/L		03/20/18 21:24	1
1,3-Dichloropropane	ND	1.0	ug/L		03/20/18 21:24	1
1,1-Dichloropropene	ND	0.50	ug/L		03/20/18 21:24	1
1,2-Dibromo-3-Chloropropane	ND	1.0	ug/L		03/20/18 21:24	1
Ethylene Dibromide	ND	0.50	ug/L		03/20/18 21:24	1
Dibromomethane	ND	0.50	ug/L		03/20/18 21:24	1
Dichlorodifluoromethane	ND	0.50	ug/L		03/20/18 21:24	1
1,1-Dichloroethane	ND	0.50	ug/L		03/20/18 21:24	1
1,2-Dichloroethane	ND	0.50	ug/L		03/20/18 21:24	1
1,1-Dichloroethene	ND	0.50	ug/L		03/20/18 21:24	1
cis-1.2-Dichloroethene	ND	0.50	ua/L		03/20/18 21:24	1
trans-1.2-Dichloroethene	ND	0.50	ua/L		03/20/18 21:24	1
1.2-Dichloropropane	ND	0.50	ua/L		03/20/18 21:24	1
cis-1.3-Dichloropropene	ND	0.50	ua/L		03/20/18 21:24	
trans-1.3-Dichloropropene	ND	0.50	ug/L		03/20/18 21:24	1
Ethylbenzene	ND	0.50	ug/l		03/20/18 21:24	1
Hexachlorobutadiene	ND	1.0	ua/L		03/20/18 21:24	
2-Hexanone	ND	50	ug/l		03/20/18 21:24	1
Isopropylbenzene	ND	0.50	ug/L		03/20/18 21:24	1
4-Isopropyltoluene	ND	10	ug/L		03/20/18 21:24	
Methylene Chloride	ND	5.0	ug/L		03/20/18 21:24	1
4-Methyl-2-pentanone (MIBK)	ND	50	ug/L		03/20/18 21:24	1
Nanhthalene	ND	10	ug/L		03/20/18 21:24	
N-Propylbenzene	ND	1.0	ug/L		03/20/18 21:24	1
Styrene	ND	0.50	ug/L		03/20/18 21:24	1
1 1 1 2-Tetrachloroethane	ND	0.50	ug/L		03/20/18 21:24	
1 1 2 2-Tetrachloroethane		0.50	ug/L		03/20/18 21:24	1
Totrachloroothono		0.50	ug/L		03/20/18 21:24	1
Toluene		0.50	ug/L		03/20/18 21:24	
1 2 3-Trichlorobenzene		0.50	ug/L		03/20/18 21:24	1
		1.0	ug/L		03/20/10 21.24	1
		I.U 0.50	ug/L		03/20/10 21.24	······
		0.50	ug/L		02/20/10 21.24	1
		0.50	ug/L		03/20/18 21:24	1
		0.50	ug/L		03/20/18 21:24	۲ ۸
inchiorofluoromethane	ND	1.0	ug/L		03/20/18 21:24	1

RL

0.50

0.50

0.50

0.50

0.50

0.50

0.50

Limits

67 - 130

72 - 130

70 - 130

10

MDL Unit

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

D

Prepared

Prepared

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

MB MB Result Qualifier

ND

ND

ND

ND

ND

ND

ND

ND

93

92

98

%Recovery

MB MB

Qualifier

Lab Sample ID: MB 720-240961/9

Matrix: Water

1,2,3-Trichloropropane

1,2,4-Trimethylbenzene

1,3,5-Trimethylbenzene

Analvte

Vinyl acetate

Vinyl chloride

Xylenes, Total

Surrogate

2,2-Dichloropropane

4-Bromofluorobenzene

Toluene-d8 (Surr)

1,2-Dichloroethane-d4 (Surr)

Analysis Batch: 240961

1,1,2-Trichloro-1,2,2-trifluoroethane

Client Sample ID: Method Blank

Analyzed

03/20/18 21:24

03/20/18 21:24

03/20/18 21:24

03/20/18 21:24

03/20/18 21:24

03/20/18 21:24

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

2 3 4 5 6 7

03/20/18 21:24 1 03/20/18 21:24 1 03/20/18 21:24 1 03/20/18 21:24 1 **Analyzed Dil Fac** 03/20/18 21:24 1

Dil Fac

1

1

1

1

1

1

Lab Sample ID: LCS 720-240961/5 Matrix: Water Analysis Batch: 240961

· ·····	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Methyl tert-butyl ether	25.0	25.0		ug/L		100	70 - 130	
Acetone	125	105		ug/L		84	58 - 147	
Benzene	25.0	24.1		ug/L		96	84 - 130	
Dichlorobromomethane	25.0	25.5		ug/L		102	81 - 130	
Bromobenzene	25.0	25.0		ug/L		100	84 - 130	
Chlorobromomethane	25.0	23.3		ug/L		93	81 - 130	
Bromoform	25.0	25.7		ug/L		103	79 - 127	
Bromomethane	25.0	18.0		ug/L		72	65 - 151	
2-Butanone (MEK)	125	118		ug/L		95	66 - 133	
n-Butylbenzene	25.0	25.5		ug/L		102	86 - 134	
sec-Butylbenzene	25.0	24.9		ug/L		100	85 - 134	
tert-Butylbenzene	25.0	24.7		ug/L		99	85 - 135	
Carbon disulfide	25.0	21.5		ug/L		86	60 - 159	
Carbon tetrachloride	25.0	24.7		ug/L		99	79 - 133	
Chlorobenzene	25.0	24.4		ug/L		97	85 - 130	
Chloroethane	25.0	19.1		ug/L		76	62 - 148	
Chloroform	25.0	23.1		ug/L		92	82 - 130	
Chloromethane	25.0	16.2		ug/L		65	46 - 147	
2-Chlorotoluene	25.0	25.6		ug/L		102	83 - 130	
4-Chlorotoluene	25.0	27.6		ug/L		111	85 - 130	
Chlorodibromomethane	25.0	25.6		ug/L		103	77 - 133	
1,2-Dichlorobenzene	25.0	24.9		ug/L		100	85 - 130	
1,3-Dichlorobenzene	25.0	25.0		ug/L		100	86 - 130	
1,4-Dichlorobenzene	25.0	24.7		ug/L		99	86 - 130	
1,3-Dichloropropane	25.0	24.7		ug/L		99	77 _ 130	
1,1-Dichloropropene	25.0	25.5		ug/L		102	83 - 130	
1,2-Dibromo-3-Chloropropane	25.0	24.0		ug/L		96	70 - 136	
Ethylene Dibromide	25.0	25.2		ug/L		101	80 - 130	
Dibromomethane	25.0	23.4		ug/L		94	79 - 130	

7

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 720-240961/5 Matrix: Water

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Analysis Batch: 240961								
	Spike	LCS	LCS		_		%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Dichlorodifluoromethane	25.0	15.0		ug/L		60	18 - 173	
1,1-Dichloroethane	25.0	23.1		ug/L		92	77 - 130	
1,2-Dichloroethane	25.0	23.6		ug/L		94	66 - 132	
1,1-Dichloroethene	25.0	20.5		ug/L		82	64 - 128	
cis-1,2-Dichloroethene	25.0	22.9		ug/L		92	77 - 130	
trans-1,2-Dichloroethene	25.0	22.4		ug/L		90	79 - 130	
1,2-Dichloropropane	25.0	24.1		ug/L		97	79 ₋ 130	
cis-1,3-Dichloropropene	25.0	25.7		ug/L		103	82 - 130	
trans-1,3-Dichloropropene	25.0	27.0		ug/L		108	76 - 129	
Ethylbenzene	25.0	24.7		ug/L		99	87 - 127	
Hexachlorobutadiene	25.0	25.9		ug/L		104	78 - 140	
2-Hexanone	125	139		ug/L		111	57 ₋ 140	
Isopropylbenzene	25.0	26.3		ug/L		105	90 - 130	
4-Isopropyltoluene	25.0	26.5		ug/L		106	88 - 130	
Methylene Chloride	25.0	22.9		ug/L		91	75 ₋ 128	
4-Methyl-2-pentanone (MIBK)	125	130		ug/L		104	58 - 140	
Naphthalene	25.0	25.4		ug/L		102	81 - 130	
N-Propylbenzene	25.0	25.1		ug/L		100	84 ₋ 130	
Styrene	25.0	25.1		ug/L		101	84 - 130	
1,1,1,2-Tetrachloroethane	25.0	25.4		ug/L		102	88 - 130	
1,1,2,2-Tetrachloroethane	25.0	24.6		ug/L		98	70 - 130	
Tetrachloroethene	25.0	24.3		ug/L		97	81 ₋ 130	
Toluene	25.0	25.3		ug/L		101	85 - 120	
1.2.3-Trichlorobenzene	25.0	25.5		ua/L		102	87 - 130	
1.2.4-Trichlorobenzene	25.0	25.2		ua/L		101	78 - 138	
1.1.1-Trichloroethane	25.0	23.9		ua/L		96	81 - 130	
1.1.2-Trichloroethane	25.0	24.4		ua/L		98	80 - 130	
Trichloroethene	25.0	23.6		ua/L		95	85 - 130	
Trichlorofluoromethane	25.0	19.5		ua/L		78	75 - 132	
1.2.3-Trichloropropane	25.0	24.6		ua/L		99	77 - 130	
1 1 2-Trichloro-1 2 2-trifluoroetha	25.0	22.1		ua/l		88	70 - 145	
ne				- 3				
1,2,4-Trimethylbenzene	25.0	24.5		ug/L		98	87 - 132	
1,3,5-Trimethylbenzene	25.0	24.8		ug/L		99	87 - 130	
Vinyl acetate	25.0	21.8		ug/L		87	43 - 146	
Vinyl chloride	25.0	17.5		ug/L		70	50 ₋ 156	
m-Xylene & p-Xylene	25.0	26.3		ug/L		105	86 - 126	
o-Xylene	25.0	25.5		ug/L		102	86 - 130	
2,2-Dichloropropane	25.0	24.6		ug/L		99	80 - 140	
105	LCS							
1,2,3-Trichloropropane 1,1,2-Trichloro-1,2,2-trifluoroetha ne 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene Vinyl acetate Vinyl chloride m-Xylene & p-Xylene o-Xylene 2,2-Dichloropropane <i>LCS</i>	25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	24.6 22.1 24.5 24.8 21.8 17.5 26.3 25.5 24.6		ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L		99 88 98 99 87 70 105 102 99	77 - 130 70 - 145 87 - 132 87 - 130 43 - 146 50 - 156 86 - 126 86 - 130 80 - 140	

	200	200	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	101		67 - 130
1,2-Dichloroethane-d4 (Surr)	94		72 - 130
Toluene-d8 (Surr)	105		70 - 130

7

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 720-240961/6 Matrix: Water Analysis Batch: 240961

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Analysis Baton: 240001	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Methyl tert-butyl ether	25.0	20.9		ug/L		84	70 - 130	18	20
Acetone	125	81.1		ug/L		65	58 - 147	26	30
Benzene	25.0	23.3		ug/L		93	84 - 130	3	20
Dichlorobromomethane	25.0	24.1		ug/L		97	81 - 130	6	20
Bromobenzene	25.0	24.2		ug/L		97	84 - 130	3	20
Chlorobromomethane	25.0	21.1		ug/L		84	81 - 130	10	20
Bromoform	25.0	22.8		ug/L		91	79 - 127	12	20
Bromomethane	25.0	16.9		ug/L		68	65 - 151	6	20
2-Butanone (MEK)	125	95.6		ug/L		77	66 - 133	21	22
n-Butylbenzene	25.0	25.4		ug/L		102	86 - 134	0	20
sec-Butylbenzene	25.0	24.3		ug/L		97	85 - 134	3	20
tert-Butylbenzene	25.0	24.4		ug/L		98	85 - 135	1	20
Carbon disulfide	25.0	20.4		ug/L		81	60 - 159	6	20
Carbon tetrachloride	25.0	23.4		ug/L		94	79 ₋ 133	5	20
Chlorobenzene	25.0	24.0		ug/L		96	85 - 130	2	20
Chloroethane	25.0	18.0		ug/L		72	62 - 148	6	20
Chloroform	25.0	21.8		ug/L		87	82 - 130	6	20
Chloromethane	25.0	15.2		ug/L		61	46 - 147	6	20
2-Chlorotoluene	25.0	24.4		ug/L		98	83 - 130	5	20
4-Chlorotoluene	25.0	27.5		ug/L		110	85 - 130	0	20
Chlorodibromomethane	25.0	24.1		ug/L		96	77 - 133	6	20
1.2-Dichlorobenzene	25.0	23.5		ug/L		94	85 - 130	6	20
1.3-Dichlorobenzene	25.0	24.5		ug/L		98	86 - 130	2	20
1,4-Dichlorobenzene	25.0	24.5		ug/L		98	86 - 130	1	20
1.3-Dichloropropane	25.0	23.5		ug/L		94	77 - 130	5	20
1,1-Dichloropropene	25.0	25.0		ug/L		100	83 - 130	2	20
1,2-Dibromo-3-Chloropropane	25.0	19.0	*	ug/L		76	70 - 136	23	20
Ethylene Dibromide	25.0	23.8		ug/L		95	80 - 130	6	20
Dibromomethane	25.0	21.1		ug/L		84	79 ₋ 130	11	20
Dichlorodifluoromethane	25.0	13.5		ua/L		54	18 - 173	11	20
1.1-Dichloroethane	25.0	21.9		ug/L		88	77 - 130	5	20
1.2-Dichloroethane	25.0	21.6		ua/L		86	66 - 132	9	20
1.1-Dichloroethene	25.0	19.4		ug/L		77	64 - 128	6	20
cis-1.2-Dichloroethene	25.0	21.3		ug/L		85	77 - 130	7	20
trans-1.2-Dichloroethene	25.0	21.2		ua/L		85	79 - 130	6	20
1.2-Dichloropropane	25.0	23.2		ua/L		93	79 - 130	4	20
cis-1.3-Dichloropropene	25.0	25.3		ua/L		101	82 - 130	2	20
trans-1.3-Dichloropropene	25.0	26.9		ua/L		108	76 - 129	0	20
Ethylbenzene	25.0	24.3		ua/L		97	87 - 127	2	20
Hexachlorobutadiene	25.0	26.0		ug/l		104	78_140	0	20
2-Hexanone	125	131		ug/L		105	57 - 140	6	24
Isopropylbenzene	25.0	25.5		ug/L		102	90 - 130	3	20
4-Isopropyltoluene	25.0	25.0		ug/L		102	88 130	2	20
Methylene Chloride	25.0	20.0		ug/l		82	75_128	11	20
4-Methyl-2-pentanone (MIRK)	125	10.4		ug/L		88	58 140	18	20
Nanhthalene	25 0	21 7		ug/L		87	81 130	16	20
	25.0	21.7		ug/L		07	8/ 120	2	20
Styrene	25.0	24.4		ug/L		100	8/ 120	J 1	20
Styrene	25.0	24.9		uy/L		100	04 - 130	1	20

6 7

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 720-240961/6 Matrix: Water			(Client Sa	ample	ID: Lat	Control Prep Ty	Sample pe: Tot	e Dup al/NA
Analysis Batch: 240961									
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1,1,2-Tetrachloroethane	25.0	23.4		ug/L		94	88 - 130	8	20
1,1,2,2-Tetrachloroethane	25.0	20.8		ug/L		83	70 - 130	17	20
Tetrachloroethene	25.0	24.6		ug/L		99	81 - 130	1	20
Toluene	25.0	25.0		ug/L		100	85 - 120	1	20
1,2,3-Trichlorobenzene	25.0	22.7		ug/L		91	87 - 130	12	20
1,2,4-Trichlorobenzene	25.0	23.3		ug/L		93	78 - 138	8	20
1,1,1-Trichloroethane	25.0	22.5		ug/L		90	81 - 130	6	20
1,1,2-Trichloroethane	25.0	22.9		ug/L		92	80 - 130	6	20
Trichloroethene	25.0	23.3		ug/L		93	85 - 130	2	20
Trichlorofluoromethane	25.0	18.5	*	ug/L		74	75 - 132	6	20
1,2,3-Trichloropropane	25.0	20.5		ug/L		82	77 - 130	18	20
1,1,2-Trichloro-1,2,2-trifluoroetha ne	25.0	20.9		ug/L		84	70 ₋ 145	5	20
1,2,4-Trimethylbenzene	25.0	23.4		ug/L		94	87 - 132	4	20
1,3,5-Trimethylbenzene	25.0	23.8		ug/L		95	87 - 130	4	20
Vinyl acetate	25.0	19.5		ug/L		78	43 - 146	11	20
Vinyl chloride	25.0	17.2		ug/L		69	50 - 156	2	20
m-Xylene & p-Xylene	25.0	25.9		ug/L		104	86 - 126	1	20
o-Xylene	25.0	24.6		ug/L		98	86 - 130	4	20
2,2-Dichloropropane	25.0	23.2		ug/L		93	80 - 140	6	20
LCSD LCSD)								

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	103		67 - 130
1,2-Dichloroethane-d4 (Surr)	88		72 - 130
Toluene-d8 (Surr)	107		70 - 130

GC/MS VOA

Prep Batch: 240846

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-85358-2	B15 S/GW-S8-A	Total/NA	Solid	5035	
720-85358-4	B16 S/GW-S8-A	Total/NA	Solid	5035	

Analysis Batch: 240883

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-85358-2	B15 S/GW-S8-A	Total/NA	Solid	8260B	240846
720-85358-4	B16 S/GW-S8-A	Total/NA	Solid	8260B	240846
MB 720-240883/4	Method Blank	Total/NA	Solid	8260B	
LCS 720-240883/5	Lab Control Sample	Total/NA	Solid	8260B	
LCSD 720-240883/6	Lab Control Sample Dup	Total/NA	Solid	8260B	

Analysis Batch: 240900

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-85358-6	TRIP BLANK	Total/NA	Water	8260B	
MB 720-240900/4	Method Blank	Total/NA	Water	8260B	
LCS 720-240900/5	Lab Control Sample	Total/NA	Water	8260B	
LCSD 720-240900/6	Lab Control Sample Dup	Total/NA	Water	8260B	

Analysis Batch: 240961

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-85358-5	B15 S/GW-W	Total/NA	Water	8260B	
MB 720-240961/9	Method Blank	Total/NA	Water	8260B	
LCS 720-240961/5	Lab Control Sample	Total/NA	Water	8260B	
LCSD 720-240961/6	Lab Control Sample Dup	Total/NA	Water	8260B	

			L	_ab Chro	onicle						
Client: Enviro Project/Site: R	Assets Inc Red Hanger C	leaners					Test/	America Job	ID: 720-85358-1	2	
Client Sam	Client Sample ID: B15 S/GW-S8-A Lab Sample ID: 720-85358										
Date Collecte	d: 03/15/18 1	1:12							Matrix: Solid		
Date Receive	d: 03/16/18 1	4:40									
	Batch	Batch		Dilution	Batch	Prepared				5	
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab			
Total/NA	Prep	5035			240846	03/16/18 16:30	AJS	TAL PLS			
Total/NA	Analysis	8260B		1	240883	03/19/18 22:48	AJS	TAL PLS			
Client Sam	ple ID: B16	S/GW-S8-A					LabS	Sample ID:	720-85358-4		
Date Collecte	d: 03/15/18 1	3.13							Matrix: Solid	2	
Date Receive	d: 03/16/18 1	4:40								0	
	Batch	Batch		Dilution	Batch	Prenared				9	
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab			
Total/NA	Prep	5035			240846	03/16/18 16:30	AJS	TAL PLS			
Total/NA	Analysis	8260B		1	240883	03/19/18 23:18	AJS	TAL PLS			
Client Sam	ple ID: B15	5 S/GW-W					Lab S	Sample ID:	720-85358-5		
Date Collecte	d: 03/16/18 0	9:35						-	Matrix: Water		
Date Receive	d: 03/16/18 1	4:40								13	
	Batch	Batch		Dilution	Batch	Prepared					
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab			
Total/NA	Analysis	8260B		1 _	240961	03/21/18 03:09	JRM	TAL PLS			
Client Sam	ple ID: TRI	P BLANK					Lab S	Sample ID:	720-85358-6		
Date Collecte	d: 03/16/18 0	0:00							Matrix: Water		
Date Receive	d: 03/16/18 1	4:40									
	Batch	Batch		Dilution	Batch	Prepared					
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab			
Total/NA	Analysis	8260B		1	240900	03/20/18 10:30	A1C	TAL PLS			

Laboratory References:

TAL PLS = TestAmerica Pleasanton, 1220 Quarry Lane, Pleasanton, CA 94566, TEL (925)484-1919

Client: EnviroAssets Inc Project/Site: Red Hanger Cleaners

10

Laboratory: TestAmerica Pleasanton

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
California	State Program	9	2496	01-31-20
USDA	Federal		P330-17-00380	12-11-20

Client: EnviroAssets Inc Project/Site: Red Hanger Cleaners

5
8
9
11
13

Method	Method Description	Protocol	Laboratory
8260B	Volatile Organic Compounds (GC/MS)	SW846	TAL PLS

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL PLS = TestAmerica Pleasanton, 1220 Quarry Lane, Pleasanton, CA 94566, TEL (925)484-1919

Sample Summary

Client: EnviroAssets Inc Project/Site: Red Hanger Cleaners

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
720-85358-2	B15 S/GW-S8-A	Solid	03/15/18 11:12	03/16/18 14:40
720-85358-4	B16 S/GW-S8-A	Solid	03/15/18 13:13	03/16/18 14:40
720-85358-5	B15 S/GW-W	Water	03/16/18 09:35	03/16/18 14:40
720-85358-6	TRIP BLANK	Water	03/16/18 00:00	03/16/18 14:40

	See Terms and Conditions on reverse	Report: □ Routine □ Level 3 □ Level 4 □ EDD □ EDF Special Instructions / Comments: □ Global ID		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	VIN: If yes, please call with payment information ASAP	PO#. Temp: 5.6 °C	ER270 Head Space:	Project Name/ #: # of Containers:	Broiart Info			Tripplan 3/16/18 W X	× × × × × × × × × × × × ×	B16 5/6W-SB-A 3/11118 1313 5 X	× > 1021 81/2/12 1-25-29/5912	BIF 3 GN-SE 12 3/1-18 1112 5 X	B15 5/5-A 3/6/18 1252 5 X	Attn Phone: Sample ID Date Time Mat Preserv Volatile	Mike Harriss George Mead	Email: mharrisson Benviro assets. com 6	Address 6037 La Salve Ara, Dakland C/7 M	Company. Envice Assets	Attn: Mike Harrisson	Report To the second		THE LEADER IN ENVIRONMENTAL TESTING	TestAnorin
	Company	Printed Name Date	Signature Time	1) Received by: (440	Company	Enviro Assars	George Mean 3/16/18	HALK 1440	1) Relinquisher by									EPA 826 FOR 826 SemiVc Diss SemiVc EPA 10 Oil and (EPA 10 Pesticic	A 8260B s by GOB C G genates I EPA 80 eI D Mc Diatile O A 8270C AH's by Grease 664/907 des C	EPA Gas D E D DCA 15B E totor O rganic 8 2 71) EPA	8260 3TEX 3 Sili 1 C C C 270C 270C 270C 0 Pr 8081	B □ Etha ca Ge bther SIM sims	anol al	のかってはない、「こう」の主要なのである。	T HOHIG: (220) 404-1818 ♥ L AX	1220 Quarry Lane Pleasanton Dhone: (025) 484-1010	720-85
	Company	Printed Name Date	Signature	2) Received by:	Company	Printed Name Date		Cimatura	2) Relinquished by:	r 720-85358 Chain of Custody					X		X	PCBs CAM17 (EPA 60 D Lead Other: (ICP-M: D W D W Hex Ch	Metals 010/747 010/74 010/7 0	EPA 4 70/747 0B C T C 00 C 2 00 C C 00 C C C C	8082 (1) 1200.7 RCR/ 00.8 TCL PA 71 - EPA	7 A [] P 196 7199		Analysis Request	Date 7 1	CA 94566-4756 3//6	358 Reference #
Re	Company	Printed Name Da	Signature	3) Received by:	Company	Printed Name Dat		Ciandling	3) Relinguished by:						X		X	COD COD Turbi	□ S Cond. □ S Cl □ S Cl Cl □ S Cl □ S Cl □ S Cl □ S Cl □ S Cl □ S		20 √/kalîn D₄ □ P D₄ □ P D₄ □ P A 31. PA 31. PA 31. PA 31. PA 31.	ify FDS NO₃ E PO₄ 4 0 M5220) F		Page of		181823
		ite	ē			ē					Pa	ge 3	4 o	f 35				Numbe	er of Co	ontair	ners			4	1/5/2	018 (I	Rev. 1)

13

Client: EnviroAssets Inc

Login Number: 85358 List Number: 1 Creator: Arauz, Dennis

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

List Source: TestAmerica Pleasanton

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Pleasanton 1220 Quarry Lane Pleasanton, CA 94566 Tel: (925)484-1919

TestAmerica Job ID: 720-85358-2 Client Project/Site: Red Hanger Cleaners

For: EnviroAssets Inc 6037 La Salle Ave Oakland, California 94611-3227

Attn: Michael Harrison

Minint R 5 Sound

Authorized for release by: 3/21/2018 2:32:19 PM

Micah Smith, Project Manager II (916)374-4302 micah.smith@testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

..... Links **Review your project** results through **Total**Access Have a Question? Ask-The Expert Visit us at: www.testamericainc.com

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
Surrogate Summary	10
QC Sample Results	11
QC Association Summary	19
Lab Chronicle	21
Certification Summary	22
Method Summary	23
Sample Summary	24
Chain of Custody	25
Receipt Checklists	26

Client: EnviroAssets Inc Project/Site: Red Hanger Cleaners

3

Qualifiers

Motola

Metals	
Qualifier	Qualifier Description
F1	MS and/or MSD Recovery is outside acceptance limits.
F2	MS/MSD RPD exceeds control limits

Glossary

Qualifier	Qualifier Description	
F1	MS and/or MSD Recovery is outside acceptance limits.	
F2	MS/MSD RPD exceeds control limits	3
Glossary		6
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	8
CFL	Contains Free Liquid	
CNF	Contains No Free Liquid	9
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	
LOQ	Limit of Quantitation (DoD/DOE)	
MDA	Minimum Detectable Activity (Radiochemistry)	
MDC	Minimum Detectable Concentration (Radiochemistry)	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
NC	Not Calculated	
ND	Not Detected at the reporting limit (or MDL or EDL if shown)	
PQL	Practical Quantitation Limit	
QC	Quality Control	
RER	Relative Error Ratio (Radiochemistry)	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEE	Toxicity Equivalent Factor (Dioxin)	

ч TEQ Toxicity Equivalent Quotient (Dioxin)

Job ID: 720-85358-2

Laboratory: TestAmerica Pleasanton

Narrative

Job Narrative 720-85358-2

Comments

No additional comments.

Receipt

The samples were received on 3/16/2018 2:40 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 5.6° C.

GC/MS VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Metals

Method(s) 6010B: The matrix spike / matrix spike duplicate (MS/MSD) recoveries and precision for preparation batch 720-240847 and analytical batch 720-240955 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) precision was within acceptance limits.

Method(s) 6010B: The following sample was diluted due to the abundance of non-target analyte: B15 S/GW-S2-A (720-85358-1). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Detection Summary

Client Sample ID: B15 S/GW-S2-A

Lab Sample ID: 720-85358-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type	
Antimony	2.8	F1	1.6		mg/Kg	4	_	6010B	Total/NA	
Arsenic	5.9		3.3		mg/Kg	4		6010B	Total/NA	5
Barium	150	F1	1.6		mg/Kg	4		6010B	Total/NA	5
Beryllium	0.47		0.33		mg/Kg	4		6010B	Total/NA	
Chromium	140	F1 F2	1.6		mg/Kg	4		6010B	Total/NA	
Cobalt	11		0.65		mg/Kg	4		6010B	Total/NA	
Copper	50	F1 F2	4.9		mg/Kg	4		6010B	Total/NA	
Lead	34	F1	1.6		mg/Kg	4		6010B	Total/NA	
Molybdenum	16	F1 F2	1.6		mg/Kg	4		6010B	Total/NA	8
Nickel	51		1.6		mg/Kg	4		6010B	Total/NA	
Vanadium	41		1.6		mg/Kg	4		6010B	Total/NA	9
Zinc	80	F1	4.9		mg/Kg	4		6010B	Total/NA	
Mercury	0.039		0.015		mg/Kg	1		7471A	Total/NA	

Client Sample ID: B16 S/GW-S2-A

Lab Sample ID: 720-85358-3

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
Arsenic	4.0		3.6		mg/Kg	4	6010B	Total/NA
Barium	180		1.8		mg/Kg	4	6010B	Total/NA
Beryllium	0.43		0.36		mg/Kg	4	6010B	Total/NA
Chromium	33		1.8		mg/Kg	4	6010B	Total/NA
Cobalt	8.5		0.73		mg/Kg	4	6010B	Total/NA
Copper	32		5.5		mg/Kg	4	6010B	Total/NA
Lead	240		1.8		mg/Kg	4	6010B	Total/NA
Nickel	32		1.8		mg/Kg	4	6010B	Total/NA
Vanadium	36		1.8		mg/Kg	4	6010B	Total/NA
Zinc	110		5.5		mg/Kg	4	6010B	Total/NA
Mercury	0.085		0.016		mg/Kg	1	7471A	Total/NA

This Detection Summary does not include radiochemical test results.

Method: 8260B - Volatile Org Analyte	ganic Compounds (GC/MS Result Qualifier	S) RL	MDL Unit	D	Prepared	Analyzed	Dil Fac	5
Methyl tert-butyl ether	ND	4.6	ug/Kg		03/16/18 16:30	03/16/18 22:06	1	
Acetone	ND	46	ug/Kg		03/16/18 16:30	03/16/18 22:06	1	6
Benzene	ND	4.6	ug/Kg		03/16/18 16:30	03/16/18 22:06	1	
Dichlorobromomethane	ND	4.6	ug/Kg		03/16/18 16:30	03/16/18 22:06	1	
Bromobenzene	ND	4.6	ug/Kg		03/16/18 16:30	03/16/18 22:06	1	
Chlorobromomethane	ND	18	ug/Kg		03/16/18 16:30	03/16/18 22:06	1	8
Bromoform	ND	4.6	ug/Kg		03/16/18 16:30	03/16/18 22:06	1	
Bromomethane	ND	9.2	ug/Kg		03/16/18 16:30	03/16/18 22:06	1	0
2-Butanone (MEK)	ND	46	ug/Kg		03/16/18 16:30	03/16/18 22:06	1	3
n-Butylbenzene	ND	4.6	ug/Kg		03/16/18 16:30	03/16/18 22:06	1	
sec-Butylbenzene	ND	4.6	ug/Kg		03/16/18 16:30	03/16/18 22:06	1	
tert-Butvlbenzene	ND	4.6	ua/Ka		03/16/18 16:30	03/16/18 22:06	1	
Carbon disulfide	ND	4.6	ua/Ka		03/16/18 16:30	03/16/18 22:06		
Carbon tetrachloride	ND	4.6	ua/Ka		03/16/18 16:30	03/16/18 22:06	1	
Chlorobenzene	ND	4.6	ua/Ka		03/16/18 16:30	03/16/18 22:06	1	
Chloroethane	ND	9.2	ua/Ka		03/16/18 16:30	03/16/18 22:06	1	
Chloroform	ND	4.6	ua/Ka		03/16/18 16:30	03/16/18 22:06	1	13
Chloromethane	ND	9.2	ua/Ka		03/16/18 16:30	03/16/18 22:06	1	
2-Chlorotoluene	ND	4.6	ua/Ka		03/16/18 16:30	03/16/18 22:06		
4-Chlorotoluene	ND	4.6	ua/Ka		03/16/18 16:30	03/16/18 22:06	1	
Chlorodibromomethane	ND	4.6	ua/Ka		03/16/18 16:30	03/16/18 22:06	1	
1 2-Dichlorobenzene	ND	4.6	ua/Ka		03/16/18 16:30	03/16/18 22:06	· · · · · · · · · · · · · · · · · · ·	
1 3-Dichlorobenzene	ND	4.6	ug/Kg		03/16/18 16:30	03/16/18 22:06	1	
1 4-Dichlorobenzene	ND	4.6	ua/Ka		03/16/18 16:30	03/16/18 22:06	1	
1 3-Dichloropropane	ND	4.6	ua/Ka		03/16/18 16:30	03/16/18 22:06	· · · · · · · · · · · · · · · · · · ·	
1 1-Dichloropropene	ND	4.6	ug/Kg		03/16/18 16:30	03/16/18 22:06	1	
1 2-Dibromo-3-Chloropropane	ND	9.2	ua/Ka		03/16/18 16:30	03/16/18 22:06	1	
Ethylene Dibromide	ND	4.6	ug/Kg		03/16/18 16:30	03/16/18 22:06		
Dibromomethane	ND	9.2	ua/Ka		03/16/18 16:30	03/16/18 22:06	1	
Dichlorodifluoromethane	ND	9.2	ua/Ka		03/16/18 16:30	03/16/18 22:06	1	
1 1-Dichloroethane	ND	4.6	ua/Ka		03/16/18 16:30	03/16/18 22.06		
1.2-Dichloroethane	ND	4.6	ua/Ka		03/16/18 16:30	03/16/18 22:06	1	
1.1-Dichloroethene	ND	4.6	ua/Ka		03/16/18 16:30	03/16/18 22:06	1	
cis-1.2-Dichloroethene	ND	4.6	ua/Ka		03/16/18 16:30	03/16/18 22:06		
trans-1.2-Dichloroethene	ND	4.6	ua/Ka		03/16/18 16:30	03/16/18 22:06	1	
1.2-Dichloropropane	ND	4.6	ua/Ka		03/16/18 16:30	03/16/18 22:06	1	
cis-1.3-Dichloropropene	ND	4.6	ua/Ka		03/16/18 16:30	03/16/18 22:06	1	
trans-1.3-Dichloropropene	ND	4.6	ua/Ka		03/16/18 16:30	03/16/18 22:06	1	
Ethylbenzene	ND	4.6	ua/Ka		03/16/18 16:30	03/16/18 22:06	1	
Hexachlorobutadiene	ND	4.6	ug/Kg		03/16/18 16:30	03/16/18 22:06	1	
2-Hexanone	ND	46	ua/Ka		03/16/18 16:30	03/16/18 22:06	1	
Isopropylbenzene	ND	4.6	ug/Kg		03/16/18 16:30	03/16/18 22:06	1	
4-Isopropyltoluene	ND	4.6	ug/Kg		03/16/18 16:30	03/16/18 22:06	1	
Methylene Chloride	ND	9.2	ug/Kg		03/16/18 16:30	03/16/18 22:06	1	
4-Methyl-2-pentanone (MIBK)	ND	46	ug/Ka		03/16/18 16:30	03/16/18 22:06	1	
Naphthalene	ND	9.2	ug/Kg		03/16/18 16:30	03/16/18 22:06	1	
N-Propylbenzene	ND	4.6	ug/Kg		03/16/18 16:30	03/16/18 22:06	1	
Styrene	ND	4.6	ug/Kg		03/16/18 16:30	03/16/18 22:06	1	
1,1,1,2-Tetrachloroethane	ND	4.6	ug/Kg		03/16/18 16:30	03/16/18 22:06	1	

Lab Sample ID: 720-85358-1 Matrix: Solid

TestAmerica Job ID: 720-85358-2

RL

MDL Unit

Analyte

Lead

Nickel

Silver

Zinc

Selenium

Thallium

Vanadium

Molybdenum

Client Sample ID: B15 S/GW-S2-A Date Collected: 03/15/18 10:50 Date Received: 03/16/18 14:40

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Result Qualifier

34 F1

51

ND

ND

ND

41

80 F1

16 F1 F2

Lab Sample ID: 720-85358-1 Matrix: Solid

Analyzed

Prepared

D

Dil Fac

1,1,2,2-Tetrachloroethane	ND		4.6	ug/Kg		03/16/18 16:30	03/16/18 22:06	1
Tetrachloroethene	ND		4.6	ug/Kg		03/16/18 16:30	03/16/18 22:06	1
Toluene	ND		4.6	ug/Kg		03/16/18 16:30	03/16/18 22:06	1
1,2,3-Trichlorobenzene	ND		4.6	ug/Kg		03/16/18 16:30	03/16/18 22:06	1
1,2,4-Trichlorobenzene	ND		4.6	ug/Kg		03/16/18 16:30	03/16/18 22:06	1
1,1,1-Trichloroethane	ND		4.6	ug/Kg		03/16/18 16:30	03/16/18 22:06	1
1,1,2-Trichloroethane	ND		4.6	ug/Kg		03/16/18 16:30	03/16/18 22:06	1
Trichloroethene	ND		4.6	ug/Kg		03/16/18 16:30	03/16/18 22:06	1
Trichlorofluoromethane	ND		4.6	ug/Kg		03/16/18 16:30	03/16/18 22:06	1
1,2,3-Trichloropropane	ND		4.6	ug/Kg		03/16/18 16:30	03/16/18 22:06	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		4.6	ug/Kg		03/16/18 16:30	03/16/18 22:06	1
1,2,4-Trimethylbenzene	ND		4.6	ug/Kg		03/16/18 16:30	03/16/18 22:06	1
1,3,5-Trimethylbenzene	ND		4.6	ug/Kg		03/16/18 16:30	03/16/18 22:06	1
Vinyl acetate	ND		18	ug/Kg		03/16/18 16:30	03/16/18 22:06	1
Vinyl chloride	ND		4.6	ug/Kg		03/16/18 16:30	03/16/18 22:06	1
Xylenes, Total	ND		4.6	ug/Kg		03/16/18 16:30	03/16/18 22:06	1
2.2-Dichloropropane	ND		4.6	ug/Kg		03/16/18 16:30	03/16/18 22:06	1
)								
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
Surrogate 4-Bromofluorobenzene	%Recovery 83	Qualifier	Limits 45 - 131			Prepared 03/16/18 16:30	Analyzed 03/16/18 22:06	Dil Fac
Surrogate 4-Bromofluorobenzene 1,2-Dichloroethane-d4 (Surr)	%Recovery 83 111	Qualifier	Limits 45 - 131 60 - 140			Prepared 03/16/18 16:30 03/16/18 16:30	Analyzed 03/16/18 22:06 03/16/18 22:06	Dil Fac
Surrogate 4-Bromofluorobenzene 1,2-Dichloroethane-d4 (Surr) Toluene-d8 (Surr)	%Recovery 83 111 97	Qualifier	Limits 45 - 131 60 - 140 58 - 140			Prepared 03/16/18 16:30 03/16/18 16:30 03/16/18 16:30	Analyzed 03/16/18 22:06 03/16/18 22:06 03/16/18 22:06	Dil Fac 1 1 1
Surrogate 4-Bromofluorobenzene 1,2-Dichloroethane-d4 (Surr) Toluene-d8 (Surr) Method: 6010B - Metals (ICP)	%Recovery 83 111 97	Qualifier	Limits 45 - 131 60 - 140 58 - 140			Prepared 03/16/18 16:30 03/16/18 16:30 03/16/18 16:30	Analyzed 03/16/18 22:06 03/16/18 22:06 03/16/18 22:06	Dil Fac 1 1 1
Surrogate 4-Bromofluorobenzene 1,2-Dichloroethane-d4 (Surr) Toluene-d8 (Surr) Method: 6010B - Metals (ICP) Analyte	%Recovery 83 111 97 Result	<u>Qualifier</u> Qualifier	Limits 45 - 131 60 - 140 58 - 140 RL	MDL Unit	D	Prepared 03/16/18 16:30 03/16/18 16:30 03/16/18 16:30 Prepared	Analyzed 03/16/18 22:06 03/16/18 22:06 03/16/18 22:06 Analyzed	Dil Fac
Surrogate 4-Bromofluorobenzene 1,2-Dichloroethane-d4 (Surr) Toluene-d8 (Surr) Method: 6010B - Metals (ICP) Analyte Antimony	%Recovery 83 111 97 Result 2.8	Qualifier Qualifier F1	Limits 45 - 131 60 - 140 58 - 140 RL 1.6	MDL Unit mg/Kg	D	Prepared 03/16/18 16:30 03/16/18 16:30 03/16/18 16:30 Prepared 03/20/18 10:30	Analyzed 03/16/18 22:06 03/16/18 22:06 03/16/18 22:06 Analyzed 03/20/18 15:24	Dil Fac
Surrogate 4-Bromofluorobenzene 1,2-Dichloroethane-d4 (Surr) Toluene-d8 (Surr) Method: 6010B - Metals (ICP) Analyte Antimony Arsenic	%Recovery 83 111 97 Result 2.8 5.9	Qualifier Qualifier F1	Limits 45 - 131 60 - 140 58 - 140 RL 1.6 3.3	MDL Unit mg/Kg mg/Kg	<u>D</u>	Prepared 03/16/18 16:30 03/16/18 16:30 03/16/18 16:30 Prepared 03/20/18 10:30 03/20/18 10:30	Analyzed 03/16/18 22:06 03/16/18 22:06 03/16/18 22:06 03/16/18 22:06 Maalyzed 03/20/18 15:24	Dil Fac 1 1 1 1 1 1 1 1 1 1 1 1 1
Surrogate 4-Bromofluorobenzene 1,2-Dichloroethane-d4 (Surr) Toluene-d8 (Surr) Method: 6010B - Metals (ICP) Analyte Antimony Arsenic Barium	%Recovery 83 111 97 Result 2.8 5.9 150	Qualifier Qualifier F1 F1	Limits 45 - 131 60 - 140 58 - 140 RL 1.6 3.3 1.6	MDL Unit mg/Kg mg/Kg mg/Kg	D	Prepared 03/16/18 16:30 03/16/18 16:30 03/16/18 16:30 Prepared 03/20/18 10:30 03/20/18 10:30	Analyzed 03/16/18 22:06 03/16/18 22:06 03/16/18 22:06 03/20/18 15:24 03/20/18 15:24 03/20/18 15:24	Dil Fac 1 1 1 1 1 1 1 1 1 1 1 1 1
Surrogate 4-Bromofluorobenzene 1,2-Dichloroethane-d4 (Surr) Toluene-d8 (Surr) Method: 6010B - Metals (ICP) Analyte Antimony Arsenic Barium Beryllium	%Recovery 83 111 97 Result 2.8 5.9 150 0.47	Qualifier Qualifier F1 F1	Limits 45 - 131 60 - 140 58 - 140 RL 1.6 3.3 1.6 0.33	MDL Unit mg/Kg mg/Kg mg/Kg mg/Kg	D	Prepared 03/16/18 16:30 03/16/18 16:30 03/16/18 16:30 03/20/18 10:30 03/20/18 10:30 03/20/18 10:30 03/20/18 10:30 03/20/18 10:30 03/20/18 10:30 03/20/18 10:30	Analyzed 03/16/18 22:06 03/16/18 22:06 03/16/18 22:06 03/20/18 15:24 03/20/18 15:24 03/20/18 15:24 03/20/18 15:24	Dil Fac 1 1 1 1 Dil Fac 4 4 4 4 4 4
Surrogate 4-Bromofluorobenzene 1,2-Dichloroethane-d4 (Surr) Toluene-d8 (Surr) Method: 6010B - Metals (ICP) Analyte Antimony Arsenic Barium Beryllium Cadmium	%Recovery 83 111 97 Result 2.8 5.9 150 0.47 ND	Qualifier Qualifier F1 F1	Limits 45 - 131 60 - 140 58 - 140 RL 1.6 0.33 0.41	MDL Unit mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	D	Prepared 03/16/18 16:30 03/16/18 16:30 03/16/18 16:30 Prepared 03/20/18 10:30 03/20/18 10:30 03/20/18 10:30 03/20/18 10:30	Analyzed 03/16/18 22:06 03/16/18 22:06 03/16/18 22:06 Analyzed 03/20/18 15:24 03/20/18 15:24 03/20/18 15:24 03/20/18 15:24 03/20/18 15:24	Dil Fac 1 1 1 Dil Fac 4 4 4 4 4 4 4
Surrogate 4-Bromofluorobenzene 1,2-Dichloroethane-d4 (Surr) Toluene-d8 (Surr) Method: 6010B - Metals (ICP) Analyte Antimony Arsenic Barium Beryllium Cadmium Chromium	%Recovery 83 111 97 Result 2.8 5.9 150 0.47 ND 140	Qualifier Qualifier F1 F1 F1 F2	Limits 45 - 131 60 - 140 58 - 140 RL 1.6 0.33 0.41 1.6	MDL Unit mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	Prepared 03/16/18 16:30 03/16/18 16:30 03/16/18 16:30 Prepared 03/20/18 10:30 03/20/18 10:30 03/20/18 10:30 03/20/18 10:30 03/20/18 10:30	Analyzed 03/16/18 22:06 03/16/18 22:06 03/16/18 22:06 03/20/18 15:24 03/20/18 15:24 03/20/18 15:24 03/20/18 15:24 03/20/18 15:24 03/20/18 15:24	Dil Fac 1 1 1 1 1 1 1 1 1 1 1 1 1
Surrogate 4-Bromofluorobenzene 1,2-Dichloroethane-d4 (Surr) Toluene-d8 (Surr) Method: 6010B - Metals (ICP) Analyte Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt	%Recovery 83 111 97 Result 2.8 5.9 150 0.47 ND 140 11	Qualifier Qualifier F1 F1 F1	Limits 45 - 131 60 - 140 58 - 140 RL 1.6 0.33 0.41 1.6 0.65	MDL Unit mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	D_	Prepared 03/16/18 16:30 03/16/18 16:30 03/16/18 16:30 Prepared 03/20/18 10:30 03/20/18 10:30 03/20/18 10:30 03/20/18 10:30 03/20/18 10:30 03/20/18 10:30	Analyzed 03/16/18 22:06 03/16/18 22:06 03/16/18 22:06 03/20/18 15:24 03/20/18 15:24 03/20/18 15:24 03/20/18 15:24 03/20/18 15:24 03/20/18 15:24 03/20/18 15:24	Dil Fac 1 1 1 1 Dil Fac 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

Method: 7471A - Mercury (CVA	A)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.039		0.015		mg/Kg		03/20/18 08:27	03/20/18 15:30	1

1.6

1.6

1.6

3.3

0.81

1.6

1.6

4.9

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

TestAmerica Pleasanton

03/20/18 10:30 03/20/18 15:24

03/20/18 10:30 03/20/18 15:24

03/20/18 10:30 03/20/18 15:24

03/20/18 10:30 03/20/18 15:24

03/20/18 10:30 03/20/18 15:24

03/20/18 10:30 03/20/18 15:24

03/20/18 10:30 03/20/18 15:24

03/20/18 10:30 03/20/18 15:24

4

4

4

4

4

4

4

4

Method: 8260B - Volatile Orga	nic Compo	unds (GC/M	S)					
Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND		5.8	ug/Kg		03/16/18 16:30	03/16/18 22:37	1
Acetone	ND		58	ug/Kg		03/16/18 16:30	03/16/18 22:37	1
Benzene	ND		5.8	ug/Kg		03/16/18 16:30	03/16/18 22:37	1
Dichlorobromomethane	ND		5.8	ug/Kg		03/16/18 16:30	03/16/18 22:37	1
Bromobenzene	ND		5.8	ug/Kg		03/16/18 16:30	03/16/18 22:37	1
Chlorobromomethane	ND		23	ug/Kg		03/16/18 16:30	03/16/18 22:37	1
Bromoform	ND		5.8	ug/Kg		03/16/18 16:30	03/16/18 22:37	1
Bromomethane	ND		12	ug/Kg		03/16/18 16:30	03/16/18 22:37	1
2-Butanone (MEK)	ND		58	ug/Kg		03/16/18 16:30	03/16/18 22:37	1
n-Butylbenzene	ND		5.8	ug/Kg		03/16/18 16:30	03/16/18 22:37	1
sec-Butylbenzene	ND		5.8	ug/Kg		03/16/18 16:30	03/16/18 22:37	1
tert-Butylbenzene	ND		5.8	ug/Kg		03/16/18 16:30	03/16/18 22:37	1
Carbon disulfide	ND		5.8	ug/Kg		03/16/18 16:30	03/16/18 22:37	1
Carbon tetrachloride	ND		5.8	ug/Kg		03/16/18 16:30	03/16/18 22:37	1
Chlorobenzene	ND		5.8	ug/Kg		03/16/18 16:30	03/16/18 22:37	1
Chloroethane	ND		12	ug/Kg		03/16/18 16:30	03/16/18 22:37	1
Chloroform	ND		5.8	ug/Kg		03/16/18 16:30	03/16/18 22:37	1
Chloromethane	ND		12	ug/Kg		03/16/18 16:30	03/16/18 22:37	1
2-Chlorotoluene	ND		5.8	ug/Kg		03/16/18 16:30	03/16/18 22:37	1
4-Chlorotoluene	ND		5.8	ug/Kg		03/16/18 16:30	03/16/18 22:37	1
Chlorodibromomethane	ND		5.8	ug/Kg		03/16/18 16:30	03/16/18 22:37	1
1,2-Dichlorobenzene	ND		5.8	ug/Kg		03/16/18 16:30	03/16/18 22:37	1
1,3-Dichlorobenzene	ND		5.8	ug/Kg		03/16/18 16:30	03/16/18 22:37	1
1,4-Dichlorobenzene	ND		5.8	ug/Kg		03/16/18 16:30	03/16/18 22:37	1
1,3-Dichloropropane	ND		5.8	ug/Kg		03/16/18 16:30	03/16/18 22:37	1
1,1-Dichloropropene	ND		5.8	ug/Kg		03/16/18 16:30	03/16/18 22:37	1
1,2-Dibromo-3-Chloropropane	ND		12	ug/Kg		03/16/18 16:30	03/16/18 22:37	1
Ethylene Dibromide	ND		5.8	ug/Kg		03/16/18 16:30	03/16/18 22:37	1
Dibromomethane	ND		12	ug/Kg		03/16/18 16:30	03/16/18 22:37	1
Dichlorodifluoromethane	ND		12	ug/Kg		03/16/18 16:30	03/16/18 22:37	1
1,1-Dichloroethane	ND		5.8	ug/Kg		03/16/18 16:30	03/16/18 22:37	1
1,2-Dichloroethane	ND		5.8	ug/Kg		03/16/18 16:30	03/16/18 22:37	1
1,1-Dichloroethene	ND		5.8	ug/Kg		03/16/18 16:30	03/16/18 22:37	1
cis-1,2-Dichloroethene	ND		5.8	ug/Kg		03/16/18 16:30	03/16/18 22:37	1
trans-1,2-Dichloroethene	ND		5.8	ug/Kg		03/16/18 16:30	03/16/18 22:37	1
1,2-Dichloropropane	ND		5.8	ug/Kg		03/16/18 16:30	03/16/18 22:37	1
cis-1,3-Dichloropropene	ND		5.8	ug/Kg		03/16/18 16:30	03/16/18 22:37	1
trans-1,3-Dichloropropene	ND		5.8	ug/Kg		03/16/18 16:30	03/16/18 22:37	1
Ethylbenzene	ND		5.8	ug/Kg		03/16/18 16:30	03/16/18 22:37	1
Hexachlorobutadiene	ND		5.8	ug/Kg		03/16/18 16:30	03/16/18 22:37	1
2-Hexanone	ND		58	ug/Kg		03/16/18 16:30	03/16/18 22:37	1
Isopropylbenzene	ND		5.8	ug/Kg		03/16/18 16:30	03/16/18 22:37	1
4-Isopropyltoluene	ND		5.8	ug/Kg		03/16/18 16:30	03/16/18 22:37	1
Methylene Chloride	ND		12	ug/Kg		03/16/18 16:30	03/16/18 22:37	1
4-Methyl-2-pentanone (MIBK)	ND		58	ug/Kg		03/16/18 16:30	03/16/18 22:37	1
Naphthalene	ND		12	ug/Kg		03/16/18 16:30	03/16/18 22:37	1
N-Propylbenzene	ND		5.8	ug/Kg		03/16/18 16:30	03/16/18 22:37	1
Styrene	ND		5.8	ua/Ka		03/16/18 16:30	03/16/18 22:37	1
1,1,1,2-Tetrachloroethane	ND		5.8	ug/Kg		03/16/18 16:30	03/16/18 22:37	1
				5 5				

Lab Sample ID: 720-85358-3 Matrix: Solid

5

6

Analyte

Client Sample ID: B16 S/GW-S2-A Date Collected: 03/15/18 13:07 Date Received: 03/16/18 14:40

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Result Qualifier

Lab Sample ID: 720-85358-3 Matrix: Solid

Analyzed

6

Dil Fac

						00/40/40 00:07		
1,1,2,2-1 etrachioroethane	ND		5.8	ug/Kg	03/16/18 16:30	03/16/18 22:37	1	
Tetrachloroethene	ND		5.8	ug/Kg	03/16/18 16:30	03/16/18 22:37	1	
Toluene	ND		5.8	ug/Kg	03/16/18 16:30	03/16/18 22:37	1	5
1,2,3-Trichlorobenzene	ND		5.8	ug/Kg	03/16/18 16:30	03/16/18 22:37	1	
1,2,4-Trichlorobenzene	ND		5.8	ug/Kg	03/16/18 16:30	03/16/18 22:37	1	2
1,1,1-Trichloroethane	ND		5.8	ug/Kg	03/16/18 16:30	03/16/18 22:37	1	
1,1,2-Trichloroethane	ND		5.8	ug/Kg	03/16/18 16:30	03/16/18 22:37	1	
Trichloroethene	ND		5.8	ug/Kg	03/16/18 16:30	03/16/18 22:37	1	
Trichlorofluoromethane	ND		5.8	ug/Kg	03/16/18 16:30	03/16/18 22:37	1	
1,2,3-Trichloropropane	ND		5.8	ug/Kg	03/16/18 16:30	03/16/18 22:37	1	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		5.8	ug/Kg	03/16/18 16:30	03/16/18 22:37	1	
1,2,4-Trimethylbenzene	ND		5.8	ug/Kg	03/16/18 16:30	03/16/18 22:37	1	
1,3,5-Trimethylbenzene	ND		5.8	ug/Kg	03/16/18 16:30	03/16/18 22:37	1	
Vinyl acetate	ND		23	ug/Kg	03/16/18 16:30	03/16/18 22:37	1	
Vinyl chloride	ND		5.8	ug/Kg	03/16/18 16:30	03/16/18 22:37	1	
Xylenes, Total	ND		5.8	ug/Kg	03/16/18 16:30	03/16/18 22:37	1	ī
2,2-Dichloropropane	ND		5.8	ug/Kg	03/16/18 16:30	03/16/18 22:37	1	
Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac	
4-Bromofluorobenzene	90		45 - 131		03/16/18 16:30	03/16/18 22:37	1	
1,2-Dichloroethane-d4 (Surr)	116		60 - 140		03/16/18 16:30	03/16/18 22:37	1	
Toluene-d8 (Surr)	96		58 - 140		03/16/18 16:30	03/16/18 22:37	1	

RL

MDL Unit

D

Prepared

Method: 6010B - Metals (ICP)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		1.8		mg/Kg		03/20/18 10:30	03/20/18 18:16	4
Arsenic	4.0		3.6		mg/Kg		03/20/18 10:30	03/20/18 18:16	4
Barium	180		1.8		mg/Kg		03/20/18 10:30	03/20/18 18:16	4
Beryllium	0.43		0.36		mg/Kg		03/20/18 10:30	03/20/18 18:16	4
Cadmium	ND		0.45		mg/Kg		03/20/18 10:30	03/20/18 18:16	4
Chromium	33		1.8		mg/Kg		03/20/18 10:30	03/20/18 18:16	4
Cobalt	8.5		0.73		mg/Kg		03/20/18 10:30	03/20/18 18:16	4
Copper	32		5.5		mg/Kg		03/20/18 10:30	03/20/18 18:16	4
Lead	240		1.8		mg/Kg		03/20/18 10:30	03/20/18 18:16	4
Molybdenum	ND		1.8		mg/Kg		03/20/18 10:30	03/20/18 18:16	4
Nickel	32		1.8		mg/Kg		03/20/18 10:30	03/20/18 18:16	4
Selenium	ND		3.6		mg/Kg		03/20/18 10:30	03/20/18 18:16	4
Silver	ND		0.91		mg/Kg		03/20/18 10:30	03/20/18 18:16	4
Thallium	ND		1.8		mg/Kg		03/20/18 10:30	03/20/18 18:16	4
Vanadium	36		1.8		mg/Kg		03/20/18 10:30	03/20/18 18:16	4
Zinc	110		5.5		mg/Kg		03/20/18 10:30	03/20/18 18:16	4
Method: 7471A - Mercury (CVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.085		0.016		mg/Kg		03/20/18 08:27	03/20/18 15:32	1

Method: 8260B - Volatile Organic Compounds (GC/MS)

Matrix: Solid					Prep Type: Total/NA
_			Pe	ercent Surre	ogate Recovery (Acceptance Limits)
		BFB	DCA	TOL	
Lab Sample ID	Client Sample ID	(45-131)	(60-140)	(58-140)	
720-85358-1	B15 S/GW-S2-A	83	111	97	
720-85358-3	B16 S/GW-S2-A	90	116	96	
LCS 720-240775/5	Lab Control Sample	95	99	98	
LCSD 720-240775/6	Lab Control Sample Dup	96	101	98	
MB 720-240775/4	Method Blank	100	106	99	
Surrogate Legend					
BFB = 4-Bromofluorob	enzene				

DCA = 1,2-Dichloroethane-d4 (Surr)

TOL = Toluene-d8 (Surr)

RL

5.0

50

5.0

5.0

MDL Unit

ug/Kg

ug/Kg

ug/Kg

ug/Kg

D

Prepared

Matrix: Solid

Methyl tert-butyl ether

Dichlorobromomethane

Analyte

Acetone

Benzene

Styrene

Analysis Batch: 240775

Client Sample ID: Method Blank

Analyzed

03/16/18 19:34

03/16/18 19:34

03/16/18 19:34

03/16/18 19:34

Prep Type: Total/NA

5

8

Dil Fac

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Bromobenzene	ND	5.0	ug/Kg	03/16/18 19:34
Chlorobromomethane	ND	20	ug/Kg	03/16/18 19:34
Bromoform	ND	5.0	ug/Kg	03/16/18 19:34
Bromomethane	ND	10	ug/Kg	03/16/18 19:34
2-Butanone (MEK)	ND	50	ug/Kg	03/16/18 19:34
n-Butylbenzene	ND	5.0	ug/Kg	03/16/18 19:34
sec-Butylbenzene	ND	5.0	ug/Kg	03/16/18 19:34
tert-Butylbenzene	ND	5.0	ug/Kg	03/16/18 19:34
Carbon disulfide	ND	5.0	ug/Kg	03/16/18 19:34
Carbon tetrachloride	ND	5.0	ug/Kg	03/16/18 19:34
Chlorobenzene	ND	5.0	ug/Kg	03/16/18 19:34
Chloroethane	ND	10	ug/Kg	03/16/18 19:34
Chloroform	ND	5.0	ug/Kg	03/16/18 19:34
Chloromethane	ND	10	ug/Kg	03/16/18 19:34
2-Chlorotoluene	ND	5.0	ug/Kg	03/16/18 19:34
4-Chlorotoluene	ND	5.0	ug/Kg	03/16/18 19:34
Chlorodibromomethane	ND	5.0	ug/Kg	03/16/18 19:34
1,2-Dichlorobenzene	ND	5.0	ug/Kg	03/16/18 19:34
1,3-Dichlorobenzene	ND	5.0	ug/Kg	03/16/18 19:34
1,4-Dichlorobenzene	ND	5.0	ug/Kg	03/16/18 19:34
1,3-Dichloropropane	ND	5.0	ug/Kg	03/16/18 19:34
1,1-Dichloropropene	ND	5.0	ug/Kg	03/16/18 19:34
1,2-Dibromo-3-Chloropropane	ND	10	ug/Kg	03/16/18 19:34
Ethylene Dibromide	ND	5.0	ug/Kg	03/16/18 19:34
Dibromomethane	ND	10	ug/Kg	03/16/18 19:34
Dichlorodifluoromethane	ND	10	ug/Kg	03/16/18 19:34
1,1-Dichloroethane	ND	5.0	ug/Kg	03/16/18 19:34
1,2-Dichloroethane	ND	5.0	ug/Kg	03/16/18 19:34
1,1-Dichloroethene	ND	5.0	ug/Kg	03/16/18 19:34
cis-1,2-Dichloroethene	ND	5.0	ug/Kg	03/16/18 19:34
trans-1,2-Dichloroethene	ND	5.0	ug/Kg	03/16/18 19:34
1,2-Dichloropropane	ND	5.0	ug/Kg	03/16/18 19:34
cis-1,3-Dichloropropene	ND	5.0	ug/Kg	03/16/18 19:34
trans-1,3-Dichloropropene	ND	5.0	ug/Kg	03/16/18 19:34
Ethylbenzene	ND	5.0	ug/Kg	03/16/18 19:34
Hexachlorobutadiene	ND	5.0	ug/Kg	03/16/18 19:34
2-Hexanone	ND	50	ug/Kg	03/16/18 19:34
Isopropylbenzene	ND	5.0	ug/Kg	03/16/18 19:34
4-Isopropyltoluene	ND	5.0	ug/Kg	03/16/18 19:34
Methylene Chloride	ND	10	ug/Kg	03/16/18 19:34
4-Methyl-2-pentanone (MIBK)	ND	50	ug/Kg	03/16/18 19:34
Naphthalene	ND	10	ug/Kg	03/16/18 19:34
N-Propylbenzene	ND	5.0	ug/Kg	03/16/18 19:34

5.0

Method: 8260B - Volatile Organic Compounds (GC/MS)

MB MB

ND

ND

ND

ND

ND

Result Qualifier

Lab Sample ID: MB 720-240775/4

ug/Kg

03/16/18 19:34

RL

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

20

5.0

5.0

5.0

MDL Unit

ug/Kg

D

Prepared

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

MB MB Result Qualifier

ND

MB MB

Lab Sample ID: MB 720-240775/4

Analysis Batch: 240775

1,1,1,2-Tetrachloroethane

1,1,2,2-Tetrachloroethane

1,2,3-Trichlorobenzene

1,2,4-Trichlorobenzene

1,1,1-Trichloroethane

1,1,2-Trichloroethane

Trichlorofluoromethane

1,2,3-Trichloropropane

1,2,4-Trimethylbenzene

1,3,5-Trimethylbenzene

1,1,2-Trichloro-1,2,2-trifluoroethane

Trichloroethene

Vinyl acetate

Vinyl chloride

Xylenes, Total

2,2-Dichloropropane

Tetrachloroethene

Matrix: Solid

Analvte

Toluene

Client Sample ID: Method Blank

Analyzed

03/16/18 19:34

03/16/18 19:34

03/16/18 19:34

03/16/18 19:34

03/16/18 19:34

03/16/18 19:34

03/16/18 19:34

03/16/18 19:34

03/16/18 19:34

03/16/18 19:34

03/16/18 19:34

03/16/18 19:34

03/16/18 19:34

03/16/18 19:34

03/16/18 19:34

03/16/18 19:34

03/16/18 19:34

03/16/18 19:34

Prep Type: Total/NA

Dil Fac

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

2 3 4 5

5 6 7 8 9 10

13

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac	
4-Bromofluorobenzene	100		45 - 131		03/16/18 19:34	1	
1,2-Dichloroethane-d4 (Surr)	106		60 - 140		03/16/18 19:34	1	
Toluene-d8 (Surr)	99		58 - 140		03/16/18 19:34	1	

Lab Sample ID: LCS 720-240775/5 Matrix: Solid Analysis Batch: 240775

Client Sample ID: Lab Control Sample Prep Type: Total/NA

· ······	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Methyl tert-butyl ether	50.0	50.9		ug/Kg		102	70 - 144	
Acetone	250	226		ug/Kg		90	30 - 162	
Benzene	50.0	46.5		ug/Kg		93	70 ₋ 130	
Dichlorobromomethane	50.0	49.6		ug/Kg		99	70 - 140	
Bromobenzene	50.0	49.4		ug/Kg		99	70 ₋ 130	
Chlorobromomethane	50.0	49.9		ug/Kg		100	70 ₋ 130	
Bromoform	50.0	51.2		ug/Kg		102	59 ₋ 158	
Bromomethane	50.0	50.6		ug/Kg		101	59 ₋ 132	
2-Butanone (MEK)	250	248		ug/Kg		99	59 - 159	
n-Butylbenzene	50.0	50.0		ug/Kg		100	70 - 142	
sec-Butylbenzene	50.0	48.5		ug/Kg		97	70 - 136	
tert-Butylbenzene	50.0	48.2		ug/Kg		96	70 ₋ 130	
Carbon disulfide	50.0	46.9		ug/Kg		94	60 - 140	
Carbon tetrachloride	50.0	51.1		ug/Kg		102	70 - 142	
Chlorobenzene	50.0	46.8		ug/Kg		94	70 ₋ 130	
Chloroethane	50.0	49.7		ug/Kg		99	65 ₋ 130	
Chloroform	50.0	49.0		ug/Kg		98	77 ₋ 127	
Chloromethane	50.0	52.6		ug/Kg		105	55 ₋ 140	
2-Chlorotoluene	50.0	48.0		ug/Kg		96	70 - 138	

8

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 720-240775/5 Matrix: Solid

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Analysis Batch: 240775							
	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
4-Chlorotoluene	50.0	49.3		ug/Kg		99	70 - 136
Chlorodibromomethane	50.0	52.9		ug/Kg		106	70 - 146
1,2-Dichlorobenzene	50.0	47.9		ug/Kg		96	70 - 130
1,3-Dichlorobenzene	50.0	48.7		ug/Kg		97	70 - 131
1,4-Dichlorobenzene	50.0	48.6		ug/Kg		97	70 - 130
1,3-Dichloropropane	50.0	48.9		ug/Kg		98	70 - 140
1,1-Dichloropropene	50.0	47.4		ug/Kg		95	70 - 130
1,2-Dibromo-3-Chloropropane	50.0	46.3		ug/Kg		93	60 - 145
Ethylene Dibromide	50.0	49.6		ug/Kg		99	70 - 140
Dibromomethane	50.0	51.5		ug/Kg		103	70 - 139
Dichlorodifluoromethane	50.0	57.4		ug/Kg		115	37 - 158
1,1-Dichloroethane	50.0	47.9		ug/Kg		96	70 - 130
1,2-Dichloroethane	50.0	48.9		ug/Kg		98	70 - 130
1,1-Dichloroethene	50.0	44.5		ug/Kg		89	74 - 122
cis-1,2-Dichloroethene	50.0	47.9		ug/Kg		96	70 ₋ 138
trans-1,2-Dichloroethene	50.0	45.9		ug/Kg		92	67 - 130
1,2-Dichloropropane	50.0	48.6		ug/Kg		97	73 - 127
cis-1,3-Dichloropropene	50.0	48.6		ug/Kg		97	68 - 147
trans-1,3-Dichloropropene	50.0	49.1		ug/Kg		98	70 - 155
Ethylbenzene	50.0	46.7		ug/Kg		93	80 - 137
Hexachlorobutadiene	50.0	46.1		ug/Kg		92	70 - 132
2-Hexanone	250	256		ug/Kg		103	62 - 158
Isopropylbenzene	50.0	47.5		ug/Kg		95	70 - 130
4-Isopropyltoluene	50.0	48.8		ug/Kg		98	70 - 133
Methylene Chloride	50.0	42.0		ug/Kg		84	70 - 134
4-Methyl-2-pentanone (MIBK)	250	253		ua/Ka		101	60 - 160
Naphthalene	50.0	46.2		ug/Kg		92	60 - 147
N-Propylbenzene	50.0	49.1		ug/Kg		98	70 - 130
Styrene	50.0	47.5		ua/Ka		95	70 - 130
1,1,1,2-Tetrachloroethane	50.0	50.2		ug/Kg		100	70 - 130
1.1.2.2-Tetrachloroethane	50.0	47.0		ua/Ka		94	70 - 146
Tetrachloroethene	50.0	47.5		ua/Ka		95	70 - 132
Toluene	50.0	45.7		ua/Ka		91	75 - 120
1.2.3-Trichlorobenzene	50.0	47.4		ua/Ka		95	60 - 140
1.2.4-Trichlorobenzene	50.0	48.4		ua/Ka		97	60 - 140
1.1.1-Trichloroethane	50.0	48.9		ua/Ka		98	70 - 130
1.1.2-Trichloroethane	50.0	47.1		ua/Ka		94	70 - 130
Trichloroethene	50.0	48.9		ua/Ka		98	70 - 133
Trichlorofluoromethane	50.0	50.5		ua/Ka		101	60 - 140
1.2.3-Trichloropropane	50.0	49.1		ua/Ka		98	70 - 146
1 1 2-Trichloro-1 2 2-trifluoroetha	50.0	47.0		ua/Ka		94	60 - 140
ne	0010			~ <u>9</u> ,9			
1,2,4-Trimethylbenzene	50.0	48.9		ug/Kg		98	70 - 130
1,3,5-Trimethylbenzene	50.0	49.3		ug/Kg		99	70 - 131
Vinyl acetate	50.0	58.0		ug/Kg		116	38 - 176
Vinyl chloride	50.0	49.4		ug/Kg		99	58 - 125
m-Xylene & p-Xylene	50.0	46.6		ug/Kg		93	70 - 146
o-Xylene	50.0	47.5		ug/Kg		95	70 - 140

LCS LCS

53.5

Result Qualifier

Unit

ug/Kg

D

%Rec

107

Spike

Added

Limits

45 - 131

60 - 140

58 - 140

50.0

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

LCS LCS

95

99

98

%Recovery

Qualifier

Lab Sample ID: LCS 720-240775/5

Matrix: Solid

2,2-Dichloropropane

4-Bromofluorobenzene

Ethylene Dibromide Dibromomethane Dichlorodifluoromethane 1,1-Dichloroethane

1,2-Dichloroethane

1,1-Dichloroethene

cis-1.2-Dichloroethene

1,2-Dichloropropane

trans-1,2-Dichloroethene

Toluene-d8 (Surr)

1,2-Dichloroethane-d4 (Surr)

Analyte

Surrogate

Analysis Batch: 240775

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

%Rec.

Limits

70 - 162

8

- Lah Samula ID: LCSD 720 240775/6				Nient Co	mala		Control	Comple	Dun	
Lab Sample ID: LCSD /20-240/75/6										
Analysis Batch: 240775							Prep iy	pe. Tot	al/INA	
Allalysis Balcil. 240775	Snike	LCSD	LCSD				%Rec		RPD	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Methyl tert-butyl ether	50.0	51.3		ug/Kg		103	70 - 144	1	20	
Acetone	250	243		ug/Kg		97	30 - 162	7	30	
Benzene	50.0	45.5		ug/Kg		91	70 - 130	2	20	
Dichlorobromomethane	50.0	50.4		ug/Kg		101	70 - 140	2	20	
Bromobenzene	50.0	48.7		ug/Kg		97	70 - 130	1	20	
Chlorobromomethane	50.0	49.1		ug/Kg		98	70 - 130	2	20	
Bromoform	50.0	53.2		ug/Kg		106	59 - 158	4	20	
Bromomethane	50.0	49.9		ug/Kg		100	59 - 132	1	20	
2-Butanone (MEK)	250	264		ug/Kg		106	59 - 159	7	20	
n-Butylbenzene	50.0	49.6		ug/Kg		99	70 - 142	1	20	
sec-Butylbenzene	50.0	48.2		ug/Kg		96	70 - 136	1	20	
tert-Butylbenzene	50.0	48.0		ug/Kg		96	70 - 130	0	20	
Carbon disulfide	50.0	46.0		ug/Kg		92	60 - 140	2	20	
Carbon tetrachloride	50.0	49.7		ug/Kg		99	70 - 142	3	20	
Chlorobenzene	50.0	46.5		ug/Kg		93	70 - 130	1	20	
Chloroethane	50.0	48.8		ug/Kg		98	65 - 130	2	20	
Chloroform	50.0	48.0		ug/Kg		96	77 - 127	2	20	
Chloromethane	50.0	50.7		ug/Kg		101	55 - 140	4	20	
2-Chlorotoluene	50.0	47.2		ug/Kg		94	70 - 138	2	20	
4-Chlorotoluene	50.0	48.4		ug/Kg		97	70 - 136	2	20	
Chlorodibromomethane	50.0	53.5		ug/Kg		107	70 - 146	1	20	
1,2-Dichlorobenzene	50.0	47.8		ug/Kg		96	70 - 130	0	20	
1,3-Dichlorobenzene	50.0	48.9		ug/Kg		98	70 - 131	0	20	
1,4-Dichlorobenzene	50.0	48.4		ug/Kg		97	70 - 130	0	20	
1,3-Dichloropropane	50.0	49.1		ug/Kg		98	70 - 140	0	20	
1,1-Dichloropropene	50.0	46.6		ug/Kg		93	70 - 130	2	20	
1,2-Dibromo-3-Chloropropane	50.0	49.5		ug/Kg		99	60 - 145	7	20	
Ethylene Dibromide	50.0	50.4		ug/Kg		101	70 - 140	2	20	
Dibromomethane	50.0	51.3		ug/Kg		103	70 - 139	0	20	
Dichlorodifluoromethane	50.0	56.1		ug/Kg		112	37 - 158	2	20	

TestAmerica Pleasanton

95

99

86

93

90

96

70 - 130

70 - 130

74 - 122

70 - 138

67 - 130

73 - 127

-
Lab Sample ID: LCSD 720-240775/
Matrix: Solid
Analysis Batch: 240775

Page 14 of 26

50.0

50.0

50.0

50.0

50.0

50.0

47.3

49.3

43.2

46.7

45.1

47.9

ug/Kg

ug/Kg

ug/Kg

ug/Kg

ug/Kg

ug/Kg

20

20

20

20

20

20

1

1

3

2

2

1
8

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 720-240775/6 Matrix: Solid

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Analysis Batch: 240775											
			Spike	LCSD	LCSD				%Rec.		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
cis-1,3-Dichloropropene			50.0	48.7		ug/Kg		97	68 - 147	0	20
trans-1,3-Dichloropropene			50.0	49.2		ug/Kg		98	70 - 155	0	20
Ethylbenzene			50.0	46.5		ug/Kg		93	80 - 137	0	20
Hexachlorobutadiene			50.0	46.4		ug/Kg		93	70 - 132	1	20
2-Hexanone			250	269		ug/Kg		108	62 - 158	5	20
Isopropylbenzene			50.0	47.0		ug/Kg		94	70 - 130	1	20
4-Isopropyltoluene			50.0	49.1		ug/Kg		98	70 - 133	1	20
Methylene Chloride			50.0	41.5		ug/Kg		83	70 - 134	1	20
4-Methyl-2-pentanone (MIBK)			250	266		ug/Kg		106	60 - 160	5	20
Naphthalene			50.0	48.1		ug/Kg		96	60 - 147	4	20
N-Propylbenzene			50.0	48.3		ug/Kg		97	70 - 130	2	20
Styrene			50.0	47.2		ug/Kg		94	70 - 130	1	20
1,1,1,2-Tetrachloroethane			50.0	49.9		ug/Kg		100	70 - 130	1	20
1,1,2,2-Tetrachloroethane			50.0	48.4		ug/Kg		97	70 ₋ 146	3	20
Tetrachloroethene			50.0	47.3		ug/Kg		95	70 - 132	0	20
Toluene			50.0	45.7		ug/Kg		91	75 - 120	0	20
1,2,3-Trichlorobenzene			50.0	47.8		ug/Kg		96	60 - 140	1	20
1,2,4-Trichlorobenzene			50.0	48.1		ug/Kg		96	60 - 140	1	20
1,1,1-Trichloroethane			50.0	47.4		ug/Kg		95	70 - 130	3	20
1,1,2-Trichloroethane			50.0	47.6		ug/Kg		95	70 - 130	1	20
Trichloroethene			50.0	49.3		ug/Kg		99	70 - 133	1	20
Trichlorofluoromethane			50.0	49.3		ug/Kg		99	60 - 140	2	20
1,2,3-Trichloropropane			50.0	50.4		ug/Kg		101	70 - 146	3	20
1,1,2-Trichloro-1,2,2-trifluoroetha			50.0	45.3		ug/Kg		91	60 - 140	4	20
ne											
1,2,4-Trimethylbenzene			50.0	48.5		ug/Kg		97	70 - 130	1	20
1,3,5-Trimethylbenzene			50.0	48.1		ug/Kg		96	70 - 131	2	20
Vinyl acetate			50.0	57.4		ug/Kg		115	38 - 176	1	20
Vinyl chloride			50.0	48.6		ug/Kg		97	58 - 125	2	20
m-Xylene & p-Xylene			50.0	46.6		ug/Kg		93	70 - 146	0	20
o-Xylene			50.0	47.4		ug/Kg		95	70 - 140	0	20
2,2-Dichloropropane			50.0	51.9		ug/Kg		104	70 - 162	3	20
	LCSD	LCSD									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene	96		45 - 131								

Method: 6010B - Metals (ICP)

101

98

1,2-Dichloroethane-d4 (Surr)

Toluene-d8 (Surr)

Lab Sample ID: MB 720-240 Matrix: Solid Analysis Batch: 240955	1847/1-A						Client Samp	le ID: Method Prep Type: To Prep Batch: :	l Blank otal/NA 240847
	MB	MB							
Analyte	Result	Qualifier	RL	MDL I	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		0.50	r	mg/Kg		03/20/18 10:30	03/20/18 14:57	1
Arsenic	ND		1.0	r	mg/Kg		03/20/18 10:30	03/20/18 14:57	1
Barium	ND		0.50	r	mg/Kg		03/20/18 10:30	03/20/18 14:57	1

60 - 140

58 - 140

TestAmerica Pleasanton

Matrix: Solid

Analyte

Beryllium

Cadmium

Chromium

Molybdenum

Cobalt

Copper

Lead

Nickel

Silver

Zinc

Selenium

Thallium

Vanadium

Analysis Batch: 240955

Lab Sample ID: MB 720-240847/1-A

Client Sample ID: Method Blank

03/20/18 10:30 03/20/18 14:57

03/20/18 10:30 03/20/18 14:57

03/20/18 10:30 03/20/18 14:57

03/20/18 10:30 03/20/18 14:57

03/20/18 10:30 03/20/18 14:57

03/20/18 10:30 03/20/18 14:57

03/20/18 10:30 03/20/18 14:57

03/20/18 10:30 03/20/18 14:57

03/20/18 10:30 03/20/18 14:57

Client Sample ID: Lab Control Sample

Analyzed

Prep Type: Total/NA Prep Batch: 240847

Dil Fac

1

1

1

1

1

1

1

1

1

1

03/20/18 10:30 03/20/18 14:57 03/20/18 10:30 03/20/18 14:57 1 03/20/18 10:30 03/20/18 14:57 1 03/20/18 10:30 03/20/18 14:57 1

Prep Type: Total/NA

Prep Batch: 240847

Lab Sample ID: LCS 720-240847/2-A Matrix: Solid Analysis Batch: 240955

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Antimony	50.0	45.4		mg/Kg		91	80 - 120	
Arsenic	50.0	46.9		mg/Kg		94	80 - 120	
Barium	50.0	49.1		mg/Kg		98	80 - 120	
Beryllium	50.0	48.9		mg/Kg		98	80 - 120	
Cadmium	50.0	47.6		mg/Kg		95	80 - 120	
Chromium	50.0	48.9		mg/Kg		98	80 - 120	
Cobalt	50.0	49.2		mg/Kg		98	80 - 120	
Copper	50.0	49.4		mg/Kg		99	80 - 120	
Lead	50.0	48.9		mg/Kg		98	80 - 120	
Molybdenum	50.0	48.8		mg/Kg		98	80 - 120	
Nickel	50.0	48.9		mg/Kg		98	80 - 120	
Selenium	50.0	46.0		mg/Kg		92	80 - 120	
Silver	25.0	23.7		mg/Kg		95	80 - 120	
Thallium	50.0	48.3		mg/Kg		97	80 - 120	
Vanadium	50.0	49.1		mg/Kg		98	80 - 120	
Zinc	50.0	46.9		mg/Kg		94	80 - 120	

Lab Sample ID: 720-85358-1 MS **Matrix: Solid** Amelia Detale 040055

Sample	Sample	Spike	MS	MS				%Rec.
Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
2.8	F1	41.7	15.4	F1	mg/Kg		30	75 - 125
5.9		41.7	41.4		mg/Kg		85	75 - 125
150	F1	41.7	200	F1	mg/Kg		126	75 - 125
0.47		41.7	38.5		mg/Kg		91	75 - 125
ND		41.7	37.4		mg/Kg		89	75 - 125
140	F1 F2	41.7	257	F1	mg/Kg		282	75 - 125
11		41.7	48.6		mg/Kg		91	75 - 125
50	F1 F2	41.7	109	F1	mg/Kg		141	75 - 125
	Sample Result 2.8 5.9 150 0.47 ND 140 11 50	Sample Sample Result Qualifier 2.8 F1 5.9 59 150 F1 0.47 ND 140 F1 F2 11 50 50 F1 F2	Sample Sample Spike Result Qualifier Added 2.8 F1 41.7 5.9 41.7 150 F1 41.7 0.47 41.7 ND 41.7 140 F1 F2 41.7 11 41.7 50 F1 F2 41.7	Sample Sample Spike MS Result Qualifier Added Result 2.8 F1 41.7 15.4 5.9 41.7 41.4 150 F1 41.7 200 0.47 41.7 38.5 ND 41.7 37.4 140 F1 F2 41.7 257 11 41.7 48.6 50 F1 F2 41.7 109	Sample Result Sample Qualifier Spike Added MS MS 2.8 F1 41.7 15.4 F1 5.9 41.7 41.4 F1 150 F1 41.7 200 F1 0.47 41.7 38.5 F1 37.4 140 F1 F2 41.7 257 F1 11 41.7 48.6 50 F1 F2 41.7 109 F1	Sample Sample Spike MS MS Result Qualifier Added Result Qualifier Unit 2.8 F1 41.7 15.4 F1 mg/Kg 5.9 41.7 41.4 mg/Kg 150 F1 41.7 200 F1 mg/Kg 0.47 41.7 38.5 mg/Kg ND 41.7 37.4 mg/Kg 140 F1 F2 41.7 257 F1 mg/Kg 11 41.7 48.6 mg/Kg mg/Kg 50 F1 F2 41.7 109 F1 mg/Kg	Sample Sample Spike MS MS Result Qualifier Added Result Qualifier Unit D 2.8 F1 41.7 15.4 F1 mg/Kg D 5.9 41.7 41.4 mg/Kg D 150 F1 41.7 200 F1 mg/Kg 0.47 41.7 38.5 mg/Kg D ND 41.7 37.4 mg/Kg Img/Kg 140 F1 F2 41.7 257 F1 mg/Kg 11 41.7 48.6 mg/Kg Img/Kg 50 F1 F2 41.7 109 F1 mg/Kg	Sample Sample Spike MS MS Result Qualifier Added Result Qualifier Unit D %Rec 2.8 F1 41.7 15.4 F1 mg/Kg 85 5.9 41.7 41.4 mg/Kg 85 150 F1 41.7 200 F1 mg/Kg 91 0.47 41.7 38.5 mg/Kg 91 91 ND 41.7 37.4 mg/Kg 89 140 F1 F2 41.7 257 F1 mg/Kg 91 50 F1 F2 41.7 48.6 mg/Kg 91 50 F1 F2 41.7 109 F1 mg/Kg 91

TestAmerica Pleasanton

Client Sample ID: B15 S/GW-S2-A

Prep Type: Total/NA

D-4-1- 040047

RL

0.10

0.13

0.50

0.20

1.5

0.50

0.50

0.50

1.0

0.25

0.50

0.50

1.5

MDL Unit

mg/Kg

D

Prepared

Method: 6010B - Metals (ICP) (Continued)

MB MB Result Qualifier

ND

																N	D
																NI	C
																NI	C

Spike

Added

41.7

41.7

Lab Sample ID: 720-85358-1 MS

Analysis Batch: 240955

Matrix: Solid

Analyte

Molybdenum

Lead

Nickel

Silver

Zinc

Selenium

Thallium

Vanadium

Method: 6010B - Metals (ICP) (Continued)

Sample Sample

34 F1

51

ND

ND

ND

41

80 F1

Result Qualifier

16 F1 F2

Client Sample ID: B15 S/GW-S2-A

%Rec.

Limits

75 - 125

75 - 125

75 - 125

75 - 125

75 - 125

75 - 125

75 - 125

75 - 125

D %Rec

56

117

Prep Type: Total/NA

Prep Batch: 240847

2 3 4 5 6

8

41.7 96.1 mg/Kg 108 41.7 35.9 mg/Kg 86 20.8 18.3 mg/Kg 88 41.7 37.0 mg/Kg 86 73.9 41.7 mg/Kg 78 41.7 99.7 F1 mg/Kg 47

MS MS

57.1 F1

64.3

Result Qualifier

Unit

mg/Kg

mg/Kg

Lab Sample ID: 720-85358-1 MSD Matrix: Solid Analysis Batch: 240955

Client Sample ID: B15 S/GW-S2-A Prep Type: Total/NA Prep Batch: 240847

Analysis Baton. 240000									т тер Бе		10041
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Antimony	2.8	F1	41.7	12.9	F1	mg/Kg		24	75 - 125	18	20
Arsenic	5.9		41.7	45.9		mg/Kg		96	75 - 125	11	20
Barium	150	F1	41.7	193		mg/Kg		110	75 - 125	3	20
Beryllium	0.47		41.7	42.9		mg/Kg		102	75 - 125	11	20
Cadmium	ND		41.7	41.0		mg/Kg		98	75 - 125	9	20
Chromium	140	F1 F2	41.7	86.3	F1 F2	mg/Kg		-129	75 - 125	100	20
Cobalt	11		41.7	52.7		mg/Kg		101	75 - 125	8	20
Copper	50	F1 F2	41.7	68.7	F1 F2	mg/Kg		44	75 - 125	45	20
Lead	34	F1	41.7	64.2	F1	mg/Kg		73	75 - 125	12	20
Molybdenum	16	F1 F2	41.7	38.4	F1 F2	mg/Kg		55	75 - 125	50	20
Nickel	51		41.7	83.4		mg/Kg		78	75 - 125	14	20
Selenium	ND		41.7	38.7		mg/Kg		93	75 - 125	7	20
Silver	ND		20.8	19.1		mg/Kg		92	75 - 125	4	20
Thallium	ND		41.7	40.5		mg/Kg		94	75 - 125	9	20
Vanadium	41		41.7	84.3		mg/Kg		103	75 - 125	13	20
Zinc	80	F1	41.7	113		mg/Kg		78	75 - 125	12	20

Method: 7471A - Mercury (CVAA)

Lab Sample ID: MB 720-2409 Matrix: Solid Analysis Batch: 240962	11/1-А мв	МВ						Clie	ent Sam	ole ID: Method Prep Type: To Prep Batch: 3	l Blank otal/NA 240911
Analyte	Result	Qualifier		RL	MDL	Unit	D	Р	repared	Analyzed	Dil Fac
Mercury	ND		0.	017		mg/Kg		03/2	0/18 08:27	03/20/18 15:13	1
Lab Sample ID: LCS 720-2409 Matrix: Solid Analysis Batch: 240962	911/2-A						Clien	t Saı	nple ID:	Lab Control S Prep Type: To Prep Batch:	Sample otal/NA 240911
			Spike	LC	S LCS					%Rec.	
Analyte			Added	Resu	t Qua	lifier	Unit	D	%Rec	Limits	
Mercury			0.833	0.89	0		mg/Kg		107	80 - 120	

Method: 7471A - Mercury (CVAA) (Continued)

Lab Sample ID: 720-85358- Matrix: Solid Analysis Batch: 240962	1 MS Sample	Sample	Spike	MS	MS		Clien	t Samp	le ID: B15 Prep Ty Prep Ba %Rec.	S/GW pe: Tot atch: 24	-S2-A al/NA 40911
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Mercury	0.039		0.746	0.905		mg/Kg		116	75 - 125		
	1 MSD						Clien	t Samp	le ID: B15	S/GW	-S2-A
Matrix: Solid									Prep Ty	pe: Tot	al/NA
Analysis Batch: 240962									Prep Ba	atch: 24	40911
-	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Mercury	0.039		0.735	0.930		mg/Kg		121	75 - 125	3	20

TestAmerica Pleasanton

Prep Type

Total/NA

Total/NA

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Matrix

Solid

Solid

Matrix

Solid

Solid

Solid

Solid

Solid

Client Sample ID

B15 S/GW-S2-A

B16 S/GW-S2-A

Client Sample ID

B15 S/GW-S2-A

B16 S/GW-S2-A

Lab Control Sample

Lab Control Sample Dup

Method Blank

GC/MS VOA

Lab Sample ID

Lab Sample ID

MB 720-240775/4 LCS 720-240775/5

LCSD 720-240775/6

720-85358-1

720-85358-3

720-85358-1

720-85358-3

Prep Batch: 240617

Analysis Batch: 240775

Method

Method

8260B

8260B

8260B

8260B

8260B

5035

5035

Prep Batch

Prep Batch

240617

240617

Metals

Prep Batch: 240847

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
720-85358-1	B15 S/GW-S2-A	Total/NA	Solid	3050B	
720-85358-3	B16 S/GW-S2-A	Total/NA	Solid	3050B	
MB 720-240847/1-A	Method Blank	Total/NA	Solid	3050B	
LCS 720-240847/2-A	Lab Control Sample	Total/NA	Solid	3050B	
720-85358-1 MS	B15 S/GW-S2-A	Total/NA	Solid	3050B	
720-85358-1 MSD	B15 S/GW-S2-A	Total/NA	Solid	3050B	

Prep Batch: 240911

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-85358-1	B15 S/GW-S2-A	Total/NA	Solid	7471A	
720-85358-3	B16 S/GW-S2-A	Total/NA	Solid	7471A	
MB 720-240911/1-A	Method Blank	Total/NA	Solid	7471A	
LCS 720-240911/2-A	Lab Control Sample	Total/NA	Solid	7471A	
720-85358-1 MS	B15 S/GW-S2-A	Total/NA	Solid	7471A	
720-85358-1 MSD	B15 S/GW-S2-A	Total/NA	Solid	7471A	

Analysis Batch: 240955

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
720-85358-1	B15 S/GW-S2-A	Total/NA	Solid	6010B	240847
MB 720-240847/1-A	Method Blank	Total/NA	Solid	6010B	240847
LCS 720-240847/2-A	Lab Control Sample	Total/NA	Solid	6010B	240847
720-85358-1 MS	B15 S/GW-S2-A	Total/NA	Solid	6010B	240847
720-85358-1 MSD	B15 S/GW-S2-A	Total/NA	Solid	6010B	240847

Analysis Batch: 240962

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-85358-1	B15 S/GW-S2-A	Total/NA	Solid	7471A	240911
720-85358-3	B16 S/GW-S2-A	Total/NA	Solid	7471A	240911
MB 720-240911/1-A	Method Blank	Total/NA	Solid	7471A	240911
LCS 720-240911/2-A	Lab Control Sample	Total/NA	Solid	7471A	240911
720-85358-1 MS	B15 S/GW-S2-A	Total/NA	Solid	7471A	240911
720-85358-1 MSD	B15 S/GW-S2-A	Total/NA	Solid	7471A	240911

QC Association Summary

9

Metals (Continued)

Analysis Batch: 240987

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-85358-3	B16 S/GW-S2-A	Total/NA	Solid	6010B	240847

TestAmerica Pleasanton

Dilution

Factor

1

4

1

Run

Batch

Number

Prepared

or Analyzed

240617 03/16/18 16:30 MJK

240775 03/16/18 22:06 A1C

240847 03/20/18 10:30 LRC

240955 03/20/18 15:24 OBI

240911 03/20/18 08:27 MAG

240962 03/20/18 15:30 OBI

Analyst

Lab

TAL PLS

TAL PLS

TAL PLS

TAL PLS

TAL PLS

TAL PLS

Lab Sample ID: 720-85358-3

Date Collected: 03/15/18 10:50

Date Received: 03/16/18 14:40

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Client Sample ID: B15 S/GW-S2-A

Batch

Туре

Prep

Prep

Prep

Analysis

Analysis

Analysis

Batch

5035

8260B

3050B

6010B

7471A

7471A

Method

Lab Sample ID: 720-85358-1

Matrix: Solid

Matrix: Solid

5

10

Client Sample ID: B16 S/GW-S2-A Date Collected: 03/15/18 13:07

Date Received: 03/16/18 14:40

	Batch	Batch		Dilution	Batch	Prepared		
Prep Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			240617	03/16/18 16:30	MJK	TAL PLS
Total/NA	Analysis	8260B		1	240775	03/16/18 22:37	A1C	TAL PLS
Total/NA	Prep	3050B			240847	03/20/18 10:30	LRC	TAL PLS
Total/NA	Analysis	6010B		4	240987	03/20/18 18:16	OBI	TAL PLS
Total/NA	Prep	7471A			240911	03/20/18 08:27	MAG	TAL PLS
Total/NA	Analysis	7471A		1	240962	03/20/18 15:32	OBI	TAL PLS

Laboratory References:

TAL PLS = TestAmerica Pleasanton, 1220 Quarry Lane, Pleasanton, CA 94566, TEL (925)484-1919

Client: EnviroAssets Inc Project/Site: Red Hanger Cleaners

Laboratory: TestAmerica Pleasanton

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
California	State Program	9	2496	01-31-20
USDA	Federal		P330-17-00380	12-11-20

Client: EnviroAssets Inc Project/Site: Red Hanger Cleaners

Method	Method Description	Protocol	Laboratory
8260B	Volatile Organic Compounds (GC/MS)	SW846	TAL PLS
6010B	Metals (ICP)	SW846	TAL PLS
7471A	Mercury (CVAA)	SW846	TAL PLS

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL PLS = TestAmerica Pleasanton, 1220 Quarry Lane, Pleasanton, CA 94566, TEL (925)484-1919

Sample Summary

TestAmerica Job ID: 720-85358-2

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
720-85358-1	B15 S/GW-S2-A	Solid	03/15/18 10:50	03/16/18 14:40
720-85358-3	B16 S/GW-S2-A	Solid	03/15/18 13:07	03/16/18 14:40

See Terms and Conditions on reverse		Report: Report: Routine Level 3 Level 4 EDD EDF Special Instructions / Comments: Global ID	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Y/N: If yes, please call with payment information ASAP	PO#. Temp: 5.6 °C	ER 270 Head Space:	Project Info. Sample Receipt Project Name/ #: # of Containers:	Report ToAthM:K: HarrissCompany. Enviro $MS(2,Y)$ Address 6037 (a Salle Are Deleviro $MS(2,Y)$ Email: mharriss Deleviro $MS(2,Y)$ Sampled By:Phone:Mit To:Sampled DDateThe Sample DDateThe Sample DDateThe Mar PreserverPhone:Phone:Phone:Phone:Plif S (GV-S2-RSlipile 1: $25'$ Sampled By:Phone:Place V S3 (VSample DDateThe Note:Place V S3 (VSampled By:Phone:Place V S3 (VSampled By:Note:Place V S3 (VSampled By:Note:Place V S3 (VSample DDateThe Note:Place V S3 (VSample DNote:Sample DNote:Note:Note:Note:Note:Note: <th col<="" th=""><th>THE LEADER IN ENVIRONMENTAL TESTING</th></th>	<th>THE LEADER IN ENVIRONMENTAL TESTING</th>	THE LEADER IN ENVIRONMENTAL TESTING
Company	AA 720	Printed Name Date Date	1) Received by: (440	Company	Enviro Assars	George Mean 3/16/18	1) Relinquished by I 1445	Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system	1220 Quarry Lane • Pleasantor Phone: (925) 484-1919 • Fax	
Company		Printed Name Date	2) Received by:	Company	Printed Name Date	signature	2) Relinquished by:	PCBs EPA 8082 CAM17 Metals (EPA 6010/7470/7471) Another the second s	: (925) 600-3002 Date 3/)6/(<	
Re	Company	Printed Name Date	3) Received by:	Company	Printed Name Date	Signature	3) Relinquished by:		Page of 1	

14

T2 - **T5 5 5 5 5 TESTAMERICA** *Pleasanton Chain of Custody* 1220 Quarry Lane • *Pleasanton* CA 94566-4756 Phone: (925) 484-1919 • Fax: (925) 600-3002

Reference #: <u>(919</u>23

3/21/2018

Client: EnviroAssets Inc

Login Number: 85358 List Number: 1 Creator: Arauz, Dennis

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Job Number: 720-85358-2

List Source: TestAmerica Pleasanton

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Pleasanton 1220 Quarry Lane Pleasanton, CA 94566 Tel: (925)484-1919

TestAmerica Job ID: 720-85358-3 Client Project/Site: Red Hanger Cleaners

For: EnviroAssets Inc 6037 La Salle Ave Oakland, California 94611-3227

Attn: Michael Harrison

Minint R 5 Sound

Authorized for release by: 3/29/2018 5:13:19 PM

Micah Smith, Project Manager II (916)374-4302 micah.smith@testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

..... Links **Review your project** results through **Total**Access Have a Question? Ask-The Expert Visit us at: www.testamericainc.com

Table of Contents

Table of Contents2Definitions/Glossary3Case Narrative4Detection Summary5Client Sample Results6QC Sample Results8QC Association Summary9Lab Chronicle10Certification Summary11Method Summary12Sample Summary13	Cover Page	1
Definitions/Glossary3Case Narrative4Detection Summary5Client Sample Results6QC Sample Results8QC Association Summary9Lab Chronicle10Certification Summary11Method Summary12Sample Summary13	Table of Contents	2
Case Narrative4Detection Summary5Client Sample Results6QC Sample Results8QC Association Summary9Lab Chronicle10Certification Summary11Method Summary12Sample Summary13	Definitions/Glossary	3
Detection Summary5Client Sample Results6QC Sample Results8QC Association Summary9Lab Chronicle10Certification Summary11Method Summary12Sample Summary13	Case Narrative	4
Client Sample Results6QC Sample Results8QC Association Summary9Lab Chronicle10Certification Summary11Method Summary12Sample Summary13	Detection Summary	5
QC Sample Results8QC Association Summary9Lab Chronicle10Certification Summary11Method Summary12Sample Summary13	Client Sample Results	6
QC Association Summary9Lab Chronicle10Certification Summary11Method Summary12Sample Summary13	QC Sample Results 8	8
Lab Chronicle10Certification Summary11Method Summary12Sample Summary13	QC Association Summary	Э
Certification Summary11Method Summary12Sample Summary13	Lab Chronicle	10
Method Summary 12 Sample Summary 13	Certification Summary	11
Sample Summary 13	Method Summary	12
	Sample Summary	13
Chain of Custody 14	Chain of Custody	14
Receipt Checklists 17	Receipt Checklists	17

Definitions/Glossary

Client: EnviroAssets Inc Project/Site: Red Hanger Cleaners

Glossary	
----------	--

Clossary		
Abbreviation	These commonly used abbreviations may or may not be present in this report.	ī
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
CFL	Contains Free Liquid	
CNF	Contains No Free Liquid	
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	Ē
DLC	Decision Level Concentration (Radiochemistry)	
EDL	Estimated Detection Limit (Dioxin)	ī
LOD	Limit of Detection (DoD/DOE)	
LOQ	Limit of Quantitation (DoD/DOE)	
MDA	Minimum Detectable Activity (Radiochemistry)	
MDC	Minimum Detectable Concentration (Radiochemistry)	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
NC	Not Calculated	
ND	Not Detected at the reporting limit (or MDL or EDL if shown)	
PQL	Practical Quantitation Limit	
QC	Quality Control	
RER	Relative Error Ratio (Radiochemistry)	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	
TEQ	Toxicity Equivalent Quotient (Dioxin)	

Job ID: 720-85358-3

Laboratory: TestAmerica Pleasanton

Narrative

Job Narrative 720-85358-3

Case Narrative

Comments

No additional comments.

Receipt

The samples were received on 3/16/2018 2:40 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 5.6° C.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Detection Summary

Lab Sample ID: 720-85358-1

5

Client Sample ID: B15 S/GW-S2-A Analyte Result Qualifier MDL Unit Dil Fac D Method RL Prep Type 0.22 0.10 6010B STLC Citrate Chromium mg/L 1 Client Sample ID: B16 S/GW-S2-A Lab Sample ID: 720-85358-3 Dil Fac D Method Analyte **Result Qualifier** RL MDL Unit Prep Type 0.29 TCLP Lead 0.050 mg/L 1 6010B 160 0.050 6010B STLC Citrate Lead mg/L 1

This Detection Summary does not include radiochemical test results.

Client Sample ID: B15 S/GW-S2-A							Lab Sample ID: 720-85358-1				
Date Collected: 03/15/18 10:50		-	Matrix	: Solid							
Date Received: 03/16/18 14:40											
Method: 6010B - Metals (ICP)	- TCLP										
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac		
Chromium	ND		0.10		mg/L		03/24/18 12:01	03/26/18 15:42	1		
Method: 6010B - Metals (ICP)	- STLC Citra	ate									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac		
Chromium	0.22		0.10		mg/L		03/26/18 14:52	03/26/18 17:52	1		

TestAmerica Pleasanton

Client Sample ID: B16 S/GW-S2-A						Lab Sample ID: 720-85358-3				
Date Collected: 03/15/18 13:07		-	Matrix	: Solid						
Date Received: 03/16/18 14:40										
Method: 6010B - Metals (ICP)	- TCLP									
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac		
Lead	0.29	0.050		mg/L		03/24/18 12:01	03/26/18 15:46	1		
Method: 6010B - Metals (ICP)	- STLC Citrate									
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac		
Lead	160	0.050		mg/L		03/26/18 14:52	03/26/18 17:56	1		

Method:	6010B	- Metals	(ICP)

Lab Sample ID: MB 720-241222/1-A Matrix: Solid								Client Samp	ole ID: Method Prep Type: To	d Blank otal/NA
Analysis Batch: 241285	MD	МР							Prep Batch:	241222
Analyte	Result	Qualifier	RL	MDL	Unit		D	Prepared	Analyzed	Dil Fac
Chromium	ND		0.010		mg/L		_	03/24/18 12:01	03/26/18 14:25	1
Lead	ND		0.0050		mg/L			03/24/18 12:01	03/26/18 14:25	1
Lab Sample ID: LCS 720-241222/2-/ Matrix: Solid Analysis Batch: 241285	4		Spike			Clie	ent	Sample ID:	Lab Control S Prep Type: To Prep Batch: 3	Sample otal/NA 241222
Analyto			Spike	Result Out) alifior	Unit		D %Rec	%ReC.	
			1 00			ma/l		- <u></u>	80 120	
Lead			1.00	0.900		mg/L		90	80 - 120	
Lab Sample ID: MB 720-241276/1-A Matrix: Solid Analysis Batch: 241291	MD	мв						Client Samp Prep Type	ole ID: Method e: Total Recov Prep Batch: :	d Blank verable 241276
Analyte	Result	NID Qualifier	RI	МП	Unit		п	Prenared	Analyzed	Dil Fac
Chromium			0010		ma/l		_	1100000000000000000000000000000000000	03/26/18 16:19	1
Lead	ND		0.0050		mg/L			03/26/18 14:49	03/26/18 16:19	1
Lab Sample ID: LCS 720-241276/2-/ Matrix: Solid Analysis Batch: 241291	4		Sniko		2	Clie	ent	Sample ID: Prep Type	Lab Control S e: Total Recov Prep Batch: 3	Sample verable 241276
Lab Sample ID: LCS 720-241276/2-/ Matrix: Solid Analysis Batch: 241291 Analyte	A		Spike Added	LCS LCS Result Qua	Salifier	Clie	ent	Sample ID: Prep Type	Lab Control S : Total Recov Prep Batch: : %Rec. Limits	Sample verable 241276
Lab Sample ID: LCS 720-241276/2-4 Matrix: Solid Analysis Batch: 241291 Analyte Chromium	4 		Spike Added 1.00	LCS LCS Result Qua	6 alifier	Clie Unit mg/L	ent	Sample ID: Prep Type	Lab Control S e: Total Recov Prep Batch: 2 %Rec. Limits 80 - 120	Sample verable 241276
Lab Sample ID: LCS 720-241276/2-4 Matrix: Solid Analysis Batch: 241291 Analyte Chromium Lead	A 		Spike Added 1.00 1.00	LCS LCS Result Qua 0.928 0.938	S alifier	Clie Unit mg/L mg/L	ent	Sample ID: Prep Type - -	Lab Control S : Total Recov Prep Batch: : %Rec. Limits 80 - 120 80 - 120	Sample verable 241276
Lab Sample ID: LCS 720-241276/2-4 Matrix: Solid Analysis Batch: 241291 Analyte Chromium Lead Lab Sample ID: LB 720-241173/1-B Matrix: Solid Analysis Batch: 241285	A 		Spike Added 1.00 1.00	LCS LCS Result Qua 0.928 0.938	S alifier	Clie Unit mg/L mg/L	ent	Sample ID: Prep Type - D %Rec 93 94 Client Samp	Lab Control S : Total Recov Prep Batch: : %Rec. Limits 80 - 120 80 - 120 ble ID: Methoo Prep Type Prep Batch: :	Sample verable 241276
Lab Sample ID: LCS 720-241276/2-/ Matrix: Solid Analysis Batch: 241291 Analyte Chromium Lead Lab Sample ID: LB 720-241173/1-B Matrix: Solid Analysis Batch: 241285 Analyte	A LB Result	LB Qualifier	Spike Added 1.00 1.00	LCS LCS Result Qua 0.928 0.938	S alifier Unit	Clie Unit mg/L mg/L	D	Sample ID: Prep Type D %Rec 93 94 Client Samp	Lab Control S : Total Recov Prep Batch: : %Rec. Limits 80 - 120 ble ID: Method Prep Type Prep Batch: : Analyzed	Sample verable 241276 d Blank :: TCLP 241222 Dil Fac
Lab Sample ID: LCS 720-241276/2-4 Matrix: Solid Analysis Batch: 241291 Analyte Chromium Lead Lab Sample ID: LB 720-241173/1-B Matrix: Solid Analysis Batch: 241285 Analyte Chromium	LB Result ND	LB Qualifier	Spike Added 1.00 1.00 2.00 8.00 8.00 9.00 9.00	LCS LCS Result Qua 0.928 0.938	S alifier Unit mg/L	Clie Mg/L mg/L	D_	Sample ID: Prep Type D %Rec 93 94 Client Samp Prepared 03/24/18 12:01	Lab Control S :: Total Recov Prep Batch: : %Rec. Limits 80 - 120 80 - 120 ble ID: Method Prep Type Prep Batch: : Analyzed 03/26/18 14:34	Sample verable 241276 d Blank : TCLP 241222 Dil Fac 1
Lab Sample ID: LCS 720-241276/2-4 Matrix: Solid Analysis Batch: 241291 Analyte Chromium Lead Lab Sample ID: LB 720-241173/1-B Matrix: Solid Analysis Batch: 241285 Analyte Chromium Lead	LB Result ND ND	LB Qualifier	Spike Added 1.00 1.00 0.00 RL 0.10 0.050	LCS LCS Result Qua 0.928 0.938	S alifier Unit mg/L mg/L	Clie Mg/L mg/L	D_	Sample ID: Prep Type D %Rec 93 94 Client Samp 03/24/18 12:01 03/24/18 12:01	Lab Control S : Total Recov Prep Batch: : %Rec. Limits 80 - 120 ble ID: Method Prep Type Prep Batch: : Analyzed 03/26/18 14:34 03/26/18 14:34	Sample verable 241276 d Blank : TCLP 241222 <u>Dil Fac</u> 1 1
Lab Sample ID: LCS 720-241276/2-4 Matrix: Solid Analysis Batch: 241291 Analyte Chromium Lead Lab Sample ID: LB 720-241173/1-B Matrix: Solid Analysis Batch: 241285 Analyte Chromium Lead Lab Sample ID: LB 720-241173/1-B Matrix: Solid Analyte Chromium Lead Lab Sample ID: LB4 720-241169/1-B Matrix: Solid Analysis Batch: 241291	LB Result ND ND 3	LB Qualifier	Spike Added 1.00 1.00 0.10 0.10 0.050	LCS LCS Result Qua 0.928 0.938	S alifier Unit mg/L mg/L	Clie Mg/L mg/L	<u>D</u>	Sample ID: Prep Type D %Rec 93 94 Client Samp 03/24/18 12:01 03/24/18 12:01 Client Samp Prepared	Lab Control S :: Total Recov Prep Batch: : %Rec. Limits 80 - 120 80 - 120 ole ID: Method 03/26/18 14:34 03/26/18 14:34 03/26/18 14:34 ole ID: Method o Type: STLC Prep Batch: :	Sample verable 241276 241276 241276 241222 Dil Fac 1 1 1 3 Blank Citrate 241276
Lab Sample ID: LCS 720-241276/2-4 Matrix: Solid Analysis Batch: 241291 Analyte Chromium Lead Lab Sample ID: LB 720-241173/1-B Matrix: Solid Analysis Batch: 241285 Analyte Chromium Lead Lab Sample ID: LB 720-241173/1-B Matrix: Solid Analysis Batch: 241285 Analyte Chromium Lead Lab Sample ID: LB4 720-241169/1-E Matrix: Solid Analysis Batch: 241291 Analysis Batch: 241291	LB Result ND ND S LB4 Result	LB Qualifier LB4 Qualifier	Spike Added 1.00 1.00 2.010 0.050 RL	LCS LCS Result Qua 0.928 0.938	S alifier Unit mg/L mg/L Unit	Clie mg/L mg/L	D D	Sample ID: Prep Type D %Rec 93 94 Client Samp 03/24/18 12:01 03/24/18 12:01 Client Samp Prepared 03/24/18 12:01 Client Samp Prepared	Lab Control S : Total Recov Prep Batch: : %Rec. Limits 80 - 120 ble ID: Method Prep Type Prep Batch: : Analyzed 03/26/18 14:34 03/26/18 14:34 ble ID: Method D Type: STLC Prep Batch: : Analyzed	Sample verable 241276 241276 d Blank : TCLP 241222 Dil Fac 1 1 d Blank Citrate 241276 Dil Fac Dil Fac
Lab Sample ID: LCS 720-241276/2-4 Matrix: Solid Analysis Batch: 241291 Analyte Chromium Lead Lab Sample ID: LB 720-241173/1-B Matrix: Solid Analysis Batch: 241285 Analyte Chromium Lead Lab Sample ID: LB 720-241173/1-B Matrix: Solid Analyte Chromium Lead Lab Sample ID: LB4 720-241169/1-B Matrix: Solid Analysis Batch: 241291 Analyte Chromium Lead	LB Result ND ND B LB4 Result ND	LB Qualifier LB4 Qualifier	Spike Added 1.00 1.00 0.10 0.10 0.050	LCS ECS Result Qua 0.928 0.938	S alifier Unit mg/L Unit mg/L	Clie mg/L mg/L	D_	Prep Type D %Rec 93 94 Client Samp 03/24/18 12:01 03/24/18 12:01 Client Samp Prepared 03/24/18 12:01 Client Samp Prepared 03/24/18 12:01 Client Samp Prepared 03/24/18 12:01	Lab Control S : Total Recov Prep Batch: : %Rec. Limits 80 - 120 80 - 120 ble ID: Method Prep Type Prep Batch: : Analyzed 03/26/18 14:34 ble ID: Method o Type: STLC Prep Batch: : Analyzed 03/26/18 16:28	Sample verable 241276 241276 d Blank : TCLP 241222 Dil Fac 1 1 1 d Blank Citrate 241276 <u>Dil Fac</u> 1

8 9 10 11 12

Metals

Leach Batch: 241169

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-85358-1	B15 S/GW-S2-A	STLC Citrate	Solid	CA WET Citrate	
720-85358-3	B16 S/GW-S2-A	STLC Citrate	Solid	CA WET Citrate	
LB4 720-241169/1-B	Method Blank	STLC Citrate	Solid	CA WET Citrate	
Leach Batch: 24117	3				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-85358-1	B15 S/GW-S2-A	TCLP	Solid	1311	
720-85358-3	B16 S/GW-S2-A	TCLP	Solid	1311	
LB 720-241173/1-B	Method Blank	TCLP	Solid	1311	
Prep Batch: 241222					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-85358-1	B15 S/GW-S2-A	TCLP	Solid	3010A	241173
720-85358-3	B16 S/GW-S2-A	TCLP	Solid	3010A	241173
LB 720-241173/1-B	Method Blank	TCLP	Solid	3010A	241173
MB 720-241222/1-A	Method Blank	Total/NA	Solid	3010A	
LCS 720-241222/2-A	Lab Control Sample	Total/NA	Solid	3010A	
Prep Batch: 241276					
Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
720-85358-1	B15 S/GW-S2-A	STLC Citrate	Solid	3005A	241169
720-85358-3	B16 S/GW-S2-A	STLC Citrate	Solid	3005A	241169
LB4 720-241169/1-B	Method Blank	STLC Citrate	Solid	3005A	241169
MB 720-241276/1-A	Method Blank	Total Recoverable	Solid	3005A	
LCS 720-241276/2-A	Lab Control Sample	Total Recoverable	Solid	3005A	
Analysis Batch: 241	285				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-85358-1	B15 S/GW-S2-A	TCLP	Solid	6010B	241222
720-85358-3	B16 S/GW-S2-A	TCLP	Solid	6010B	241222
LB 720-241173/1-B	Method Blank	TCLP	Solid	6010B	241222
MB 720-241222/1-A	Method Blank	Total/NA	Solid	6010B	241222
LCS 720-241222/2-A	Lab Control Sample	Total/NA	Solid	6010B	241222
Analysis Batch: 241	291				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-85358-1	B15 S/GW-S2-A	STLC Citrate	Solid	6010B	241276
720-85358-3	B16 S/GW-S2-A	STLC Citrate	Solid	6010B	241276
LB4 720-241169/1-B	Method Blank	STLC Citrate	Solid	6010B	241276
MB 720-241276/1-A	Method Blank	Total Recoverable	Solid	6010B	241276
LCS 720-241276/2-A	Lab Control Sample	Total Recoverable	Solid	6010B	241276

Lab Sample ID: 720-85358-1

Lab Sample ID: 720-85358-3

Matrix: Solid

Matrix: Solid

1 2 3 4 5 6 7 8 8 9

Client Sample ID: B15 S/GW-S2-A Date Collected: 03/15/18 10:50

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
STLC Citrate	Leach	CA WET Citrate			241169	03/24/18 10:32	AAP	TAL PLS
STLC Citrate	Prep	3005A			241276	03/26/18 14:52	MAG	TAL PLS
STLC Citrate	Analysis	6010B		1	241291	03/26/18 17:52	OBI	TAL PLS
TCLP	Leach	1311			241173	03/23/18 17:10	AAP	TAL PLS
TCLP	Prep	3010A			241222	03/24/18 12:01	AAP	TAL PLS
TCLP	Analysis	6010B		1	241285	03/26/18 15:42	BKR	TAL PLS

Client Sample ID: B16 S/GW-S2-A Date Collected: 03/15/18 13:07 Date Received: 03/16/18 14:40

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
STLC Citrate	Leach	CA WET Citrate			241169	03/24/18 10:32	AAP	TAL PLS
STLC Citrate	Prep	3005A			241276	03/26/18 14:52	MAG	TAL PLS
STLC Citrate	Analysis	6010B		1	241291	03/26/18 17:56	OBI	TAL PLS
TCLP	Leach	1311			241173	03/23/18 17:10	AAP	TAL PLS
TCLP	Prep	3010A			241222	03/24/18 12:01	AAP	TAL PLS
TCLP	Analysis	6010B		1	241285	03/26/18 15:46	BKR	TAL PLS

Laboratory References:

TAL PLS = TestAmerica Pleasanton, 1220 Quarry Lane, Pleasanton, CA 94566, TEL (925)484-1919

Client: EnviroAssets Inc Project/Site: Red Hanger Cleaners

10

Laboratory: TestAmerica Pleasanton

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
California	State Program	9	2496	01-31-20
USDA	Federal		P330-17-00380	12-11-20

Method Summary

Client: EnviroAssets Inc Project/Site: Red Hanger Cleaners

5
8
9
11
13

Method	Method Description	Protocol	Laboratory
6010B	Metals (ICP)	SW846	TAL PLS

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL PLS = TestAmerica Pleasanton, 1220 Quarry Lane, Pleasanton, CA 94566, TEL (925)484-1919

TestAmerica Pleasanton

Sample Summary

Client: EnviroAssets Inc Project/Site: Red Hanger Cleaners

Lab Sample ID	Client Sample ID	Matrix	Collected Received
720-85358-1	B15 S/GW-S2-A	Solid	03/15/18 10:50 03/16/18 14:40
720-85358-3	B16 S/GW-S2-A	Solid	03/15/18 13:07 03/16/18 14:40

Smith, Micah

From:Michael Harrison <mharrison@enviroassets.com>Sent:Thursday, March 22, 2018 10:02 AMTo:Smith, MicahSubject:RE: TestAmerica EDD and report files from 720-85358-2 Red Hanger Cleaners

-External Email-

Dear Micah:

Thank you for the expedited results. Please perform the following additional leaching analyses:

- Client sample B15 S/GW-S2-A (Lab Sample ID: 720-85358-1): TCLP and STLC for Chromium
- Client sample B16 S/GW-S2-A (Lab Sample ID: 720-85358-3): TCLP and STLC for Lead

Please let me know an ETA for these analyses.

Sincerely,

Michael Harrison, P.E., QSD/QSP, LEED AP Principal **EnviroAssets, Inc.** (888) 748-8820 Web: http://www.enviroassets.com/

From: Smith, Micah <<u>micah.smith@testamericainc.com</u>>
Sent: Wednesday, March 21, 2018 2:36 PM
To: Michael Harrison <<u>mharrison@enviroassets.com</u>>
Subject: TestAmerica EDD and report files from 720-85358-2 Red Hanger Cleaners

Hello,

Attached please find the EDD and report files for job 720-85358-2; Red Hanger Cleaners

Please feel free to contact me if you have any questions.

Thank you.

Please let us know if we met your expectations by rating the service you received from TestAmerica on this project by visiting our website at: <u>Project Feedback</u>

MICAH SMITH Project Manager

TestAmerica Pleasanton THE LEADER IN ENVIRONMENTAL TESTING Tel: 916.374.4302 www.testamericainc.com

Reference: [272463] Attachments: 3

See Terms and Conditions on reverse	Special Instructions / Comments:	Report DRoutline Ditevel 3 Ditevel 4 DEDD DEDE	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Viedit Caro Y/N: If yes, please call with payment information ASAP	PO#. Temp: 5.6 °C	ER 270 Head Space:	Project Info. Sample Receipt Project Name/ #: # of Containers:	Report ToAttrM:K: HarrisonCompany. Enviro $Rs(z,Y_{3})$ Address 6037 (a Salle Are Dakland C)Email: mharrison Derviro $Rs(z,Y_{3})$ Bull To:Mill To:Sampled By:Bull To:Sampled By:M:X:Harrison Derviro $Rs(z,Y_{3})$ Bull To:Sampled By:Bull S:S(GV-S2-RB)15S(GV-S2-RB)15S(GV-S2-RB)15S(GV-S2-RB)16S(M-S-S-RB)15S(GV WB)15S(GV WAAttriSampled By:None:Phone:Note:Note:Note:Note:ASignet:Note:ASignet:Signet:Note:Note:Note:Note:Note:Note: <td< th=""><th>THE LEADER IN ENVIRONMENTAL TESTING</th></td<>	THE LEADER IN ENVIRONMENTAL TESTING
Company	Printed Name Date	Usignature Time	1) Received by: (440	Company	Enviro Assers	George Mean 3/16/18	1) Relinquished by IH45	Image: Construction of the system Image: Construction of the system Image: Construction of the system Image: Construction of the system Image: Construction of the system Image: Construction of the system Image: Construction of the system Image: Construction of the system Image: Construction of the system Image: Construction of the system Image: Construction of the system Image: Construction of the system Image: Construction of the system Image: Construction of the system Image: Construction of the system Image: Construction of the system Image: Construction of the system Image: Construction of the system Image: Construction of the system Image: Construction of the system Image: Construction of the system Image: Construction of the system Image: Construction of the system Image: Construction of the system Image: Construction of the system Image: Construction of the system Image: Construction of the system Image: Construction of the system Image: Construction of the system Image: Construction of the system Image: Construction of the system Image: Construction of the system Image: Construction of the system Image: Construction of the system Image: Construction of the	1220 Quarry Lane ● Pleasantor Phone: (925) 484-1919 ● Fay
Company	Printed Name Date	Signature Time	2) Received by:	Company	Printed Name Date	Signature	2) Refinquished by:	i visition PCBs EPA 8082 X X CAM17 Metals (EPA 6010/7470/7471) Analysis Metals: G 6010B D200.7 D Lead D UUFT DRCRA D Other: Visit Metals: G 6020 D 200.8 (ICP-MS): Constrained Cest Ces Ces Cest	n CA 94566-4756 :: (925) 600-3002 Date 3/)6/(<
Company Re	Printed Name Date	Signature Time	3) Received by:	Company	Printed Name Date	Signature	3) Relinquished by:		S Page of 3/2

13

TESTAMERICA Pleasanton Chain of Custody 1220 Quarry Lane • Pleasanton CA 94566-4756 Phone: (925) 484-1919 • Fax: (925) 600-3002

Reference #: <u>(919</u>23

3/29/2018

Client: EnviroAssets Inc

Login Number: 85358 List Number: 1 Creator: Arauz, Dennis

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Job Number: 720-85358-3

List Source: TestAmerica Pleasanton