Phase-1 Environmental Services

Taking the complexity out of environmental due diligence

Silicon Valley Environmental Group

LIMITED PHASE II INVESTIGATION

August 30, 2017

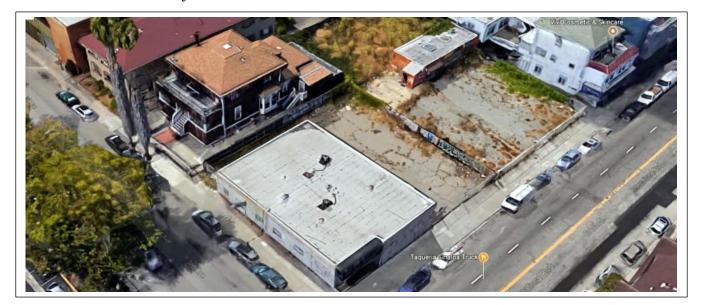
229 - 255 INTERNATIONAL BLVD.

Oakland, CA 94606

Prepared for:

Raymond Zhang Inc. 229 International Blvd. Oakland, CA 94606

Prepared by:


Phase-1 Environmental Services 5216 Harwood Rd San Jose, CA 95124 (831) 422-2290

August 30, 2017

Raymond Zhang, Inc. 2295 International Blvd. Oakland, CA 94606 Contact: Harry Zhang (Ph: 415-671-9932)

Subject: Limited Phase II Site Investigation 229-255 International Blvd. Oakland, California 94606 P-1 ES Project #: P5-07-28-17

5216 Harwood Road, San Jose, CA 95124

Introduction

Phase-1 Environmental Services (Phase-1 ES) has performed a Limited Phase II Site Investigation for the Subject Property. The work scope was based on findings and recommendations made in a Phase I ESA performed on the Property by Phase-1 ES in May 2017. Specifically; 1) Maps and records indicate that an Oil and Gas Service Station existed on the Property at 255 International Blvd. (then E. 14th St.) from 1926 to 1957; 2) two printing companies occupied 237 E. 14th St. from 1937 through 1952, and; 3) an Auto Service Repair Garage occupied 229-245 E. 14th St. from 1951 to at least as late as 1952. Each of these occupancies were at times during which petroleum and printing chemical use and storage were not regulated by government. In addition, during the Phase I site inspection, the parking areas of the Property were filled with mostly wrecked or abandoned vehicles, and the surface areas beneath them was not able to be inspected. It was recommended that the vehicles and debris on the Property be cleared, and the building and site be fully accessible. The Phase I recommended that a subsurface investigation be performed in the areas of the previous businesses referenced above.

Table of Contents – 229-255 International Blvd., Oakland, California

Ir	ntroduction	1
1)	Subsurface Borings and Their Positioning	2
2)	Borings and Sample Collection Protocols	3
	2.1) Boring Cuttings	4
	2.2) Borehole Sealing	4
3)	Tank Probing	4
4)	Laboratory Analyses and Discussion of Results	4
	3.1) Laboratory Analyses	4
	3.2) Laboratory Results and Discussion	5
5)	Opinions and Recommendations	
	4.1) Opinions	5
	4.2) Recommendations	6
6)	Certification and Limitations	6
F	igures	7
Т	ables	7
A	ppendices	7

1) Subsurface Borings and Their Positioning

Under Permit by the Alameda County Department of Public Works (**Appendix C**), Phase-1 ES advanced a total of 8 borings in locations shown on **Figure 2**. Two of the borings were advanced within the 255 International Blvd. building, where the previous gasoline service station existed. One of these borings (WS-1) was advanced to the depth of groundwater, and a sample of the water collected. Depth to groundwater was 150" (12' 6"). A soil sample from WS-2 (also within the building) was collected at a depth of 113" (9' 5"). Eight 3/8" steel probes were inserted into the subsurface soils in the areas within the building where previous fuel tanks may have been positioned to help determine if underground tanks still existed on site. The probes were inserted to a depth of 7 ft. below grade surface. None of the probes encountered refusal at any depth where they were inserted – indicating that there were no likely steel underground tanks in areas that were probed.

The remaining 6 borings were positioned in areas outside of the building corresponding with: 1) The known positioning of the previous Auto Service Repair Garage; 2) the positioning of the previous

Printing Company building, and; 3) areas where there was notable surface oil staining where vehicles had been located. These borings were each advanced to 30" (2' 6") below grade, and soil samples collected from this depth.

2) Borings and Sample Collection Protocols

Using a 4-inch diameter concrete coring machine, Phase-1 ES cored through the concrete slab in the 2 designated areas within the 255 International Blvd. building as shown on **Figure 2**. Asphalt over the remaining 6 outside building borings was broken out to expose the soil beneath it.

Soil Sample Borings: Borings were advanced using a clean 3-inch diameter hand auger. Soil tailings from each boring were placed on plastic sheeting on site. The borings were advanced to their desired depths BGS. Samples were collected by advancing a pre-cleaned slide hammer soil sampler containing two 2" diameter by 3-inch length stainless steel soil collection tubes. Soil collection tubes were immediately removed from the sampler using new latex disposable gloves for each sample, capped with Teflon sheeting and sealed with plastic caps. The sample tubes were labeled and logged onto a Chain of Custody. The sampler was cleaned with a solution of TSP and clean water before and after each sample retrieval. Soils from each boring were field inspected, noting lithology, discoloration, odor, and any abnormal conditions. A total of 7 soil samples were collected for laboratory analyses and immediately placed in a pre-chilled ice chest for transportation to a state certified analytical testing laboratory.

Soils from the boreholes were logged using the Unified Soil Classification System (USCS). Site specific soils encountered during this investigation were identified as silty clay (SC) mostly light brown, medium density. There was no physical evidence noted of chemical discoloration, obvious chemical odors, or other evidence of contamination noted in the 6 borings that were exterior to the building. Soils from the WS-2 boring was noted as having; a slight degraded petroleum odor beginning from approximately 5 ft. BGS to its termination depth at 9ft. 5". Soils from this boring were not discolored.

Water Sample Boring: Soil from the water sample boring (WS-1) was noted have a degraded petroleum odor and gray colored soil beginning at 18 inches BGS. At 36 inches, the soil was greenish-gray, and at 60 inches BGS the petroleum odor was strong, and soil was gray. This condition continued to the depth of water. To collect the water sample, a new, weighted, 36-inch by 1.6 in. diameter SinkFast bailer was lowered to the bottom of the boring, and a water sample collected. Two glass VOS sample containers and one amber glass 750 ml. bottle were immediately filled, sealed with caps, and immediately placed in the pre-chilled ice chest for transportation to a state-certified analytical testing laboratory.

A description of the subsurface materials encountered in the boreholes is depicted on the boring logs in **Appendix A**. A copy of the Chain-of-Custody is included in this appendix.

2.1) Boring Cuttings

Soil cuttings from each of the borings were placed on plastic 6 mil. Visquine plastic sheeting on site, and wrapped and covered, pending the results of the laboratory analyses.

2.2) Borehole Sealing

Each of the borings was sealed to the surface using neat Portland cement – witnessed by the Alameda County Department of Public Works.

3) Tank Probing

8 tank probes were installed by drilling a ³/₄ inch diameter hole through the concrete slab and into the soil beneath it. A clean 7 ft. long 3/8-inch diameter pointed steel probe rod with a T-handle was inserted into each drill hole, and physically pushed vertically through the soil. Underground steel fuel tanks were generally buried where their tops would be between 2 ft. and 3 ft. BGS. The idea of steel probing is that; if the probe-rod encounters refusal or significant resistance during its vertical push down the 7-ft. vertical depth (as a steel tank surface or its rounded siding will cause refusal), this is indication that a tank could be present. If refusal is encountered, the depth is noted and charted. Additional probing is performed in the vicinity, making note and charting all depths of the refusals. By evaluating the chart, a determination can often be made as to the direction the tank sits underground. Once its direction is determined, its length can often be detected by following and probing in the direction it is laying, until there is no refusal, which indicates the tank end point.

The tank probing performed at this site was inconclusive. There were no refusals to 7 ft. BGS in any of the 8 areas probed, however, the areas probed were not the only areas on site where tanks could have been installed. Additional tank locator measures will need to be employed after the building has been demolished.

4) Laboratory Analyses and Discussion of Results

3.1) Laboratory Analyses

The samples were transported to BC Laboratories, Inc. in Bakersfield, CA - a state Certified Analytical Laboratory, under Chain-of-Custody. All of the soil samples, including the groundwater sample were analyzed under EPA Method 8015B/Fuel Fingerprint Total Recoverable Petroleum Hydrocarbons. Water sample WS-1 and soil samples WS-2 and B-5 were also tested under EPA Method 8260 for Benzene, Toluene, Ethylbenzene, and Total Xylene. The B-5 sample was also analyzed for Silver by EPA Method 6010B.

3.2) Laboratory Results and Discussion

All soil samples were below laboratory detection limits (Non-Detect) for all constituents tested for. The water sample from WS-1 detected 6,800 parts per billion (PPB) of TPH-gasoline in groundwater.

That there was detectable gasoline in groundwater, but no detectable gasoline VOCs (BTEX) indicates that there was petroleum impact to groundwater resultant from the previous gasoline service station operation(s) at the Property.

Please refer to **Table 1** for the laboratory results summary, and **Appendix B** for the complete BC Laboratory results report.

5) Opinions and Recommendations

4.1) Opinions

It is our opinion that borings were positioned and samples of soil collected from appropriate locations and depths. Laboratory testing that was performed covered a broad range of chemical constituents that would be associated with current and past known automotive and printing operations on site. Based on the results, with the exception of the area of the previous gasoline service station, it would appear that the shallow subsurface in most areas of the site has not been significantly impacted by past operations. This is not to say that all areas on site have been represented, as the investigation was limited, and did not cover all areas.

The Maximum Contaminant Level (MCL) for Gasoline in groundwater in the Bay Area is 220 ppb. WS-1 detected 6800 ppb of TPH Gasoline in groundwater. The Odor Nuisance Level for gasoline in nondrinking water is 5000 ppb. The groundwater, however, does not contain the volatile (VOC) Chemicals of Concern (COCs) in gasoline, which are; Benzene, Toluene, Ethylbenzene, and Xylene (BTEX). These VOCs were non-detect (ND) in the groundwater sample, as well as in the soil sample collected from the WS-2 which was 3 ft. above the groundwater, and had significant soils discoloration and petroleum odors noted. The absence of VOCs in both soils and groundwater indicates that these constituents have biologically degraded over the 60+ years since their release into soils and (consequently) groundwater under the site.

Because the TPHg in groundwater exceeds both the permissible MCL and Odor Nuisance levels, this case will be referred by the City to the Alameda County Department of Environmental Health (ACDEH) for determination of what (if any) further investigation and/or mitigation measures will be needed for its development. It is our opinion and experience that; at a minimum, the agency will likely require further delineation of the extent of the groundwater contamination plume. Lead sampling in soils will also likely be a requirement. A Site Management Plan will likely need to be employed and followed during

construction activities. If an underground parking structure is planned, the County will likely require that a sub-slab barrier be used to block odor intrusion from entering the planned development structures.

Based on the current, limited sampling that has been performed, it appears that excavated soils at the site could possibly be candidate for non-hazardous disposal. The soils will need to be characterized in accordance with the disposal facility profiling requirements prior to its disposal.

The tank probing performed at this site was inconclusive. The areas probed that were reasonably accessible where tanks could have been located were not the only areas on site where tanks may have been installed. Additional tank locator measures will need to be taken after the building has been demolished to assure that none exist.

4.2) Recommendations

The discovery of elevated petroleum in groundwater at the Property will necessitate County Environmental Health Department oversight and their approval for the planned project. To avoid unnecessary delays, we recommend that this case be opened with the ACDEH without delay. Development plans and subsurface sampling results will need to be submitted for their review and approval before the project can effectively move forward.

6) Certification and Limitations

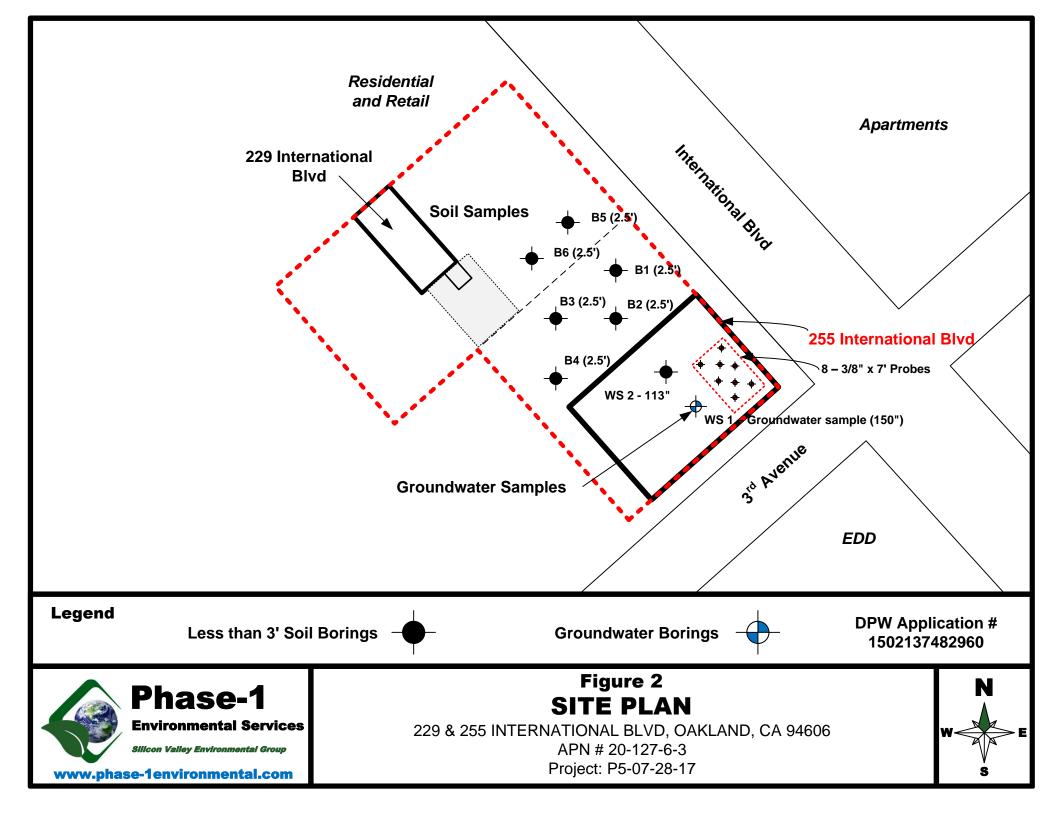
To the best of our knowledge, all statements made in this Report are true and correct. This report is based on data provided by the client and others, site conditions observed, samples collected and analytical data. No warranty whatsoever is made that this report addresses all contamination existing on the site.

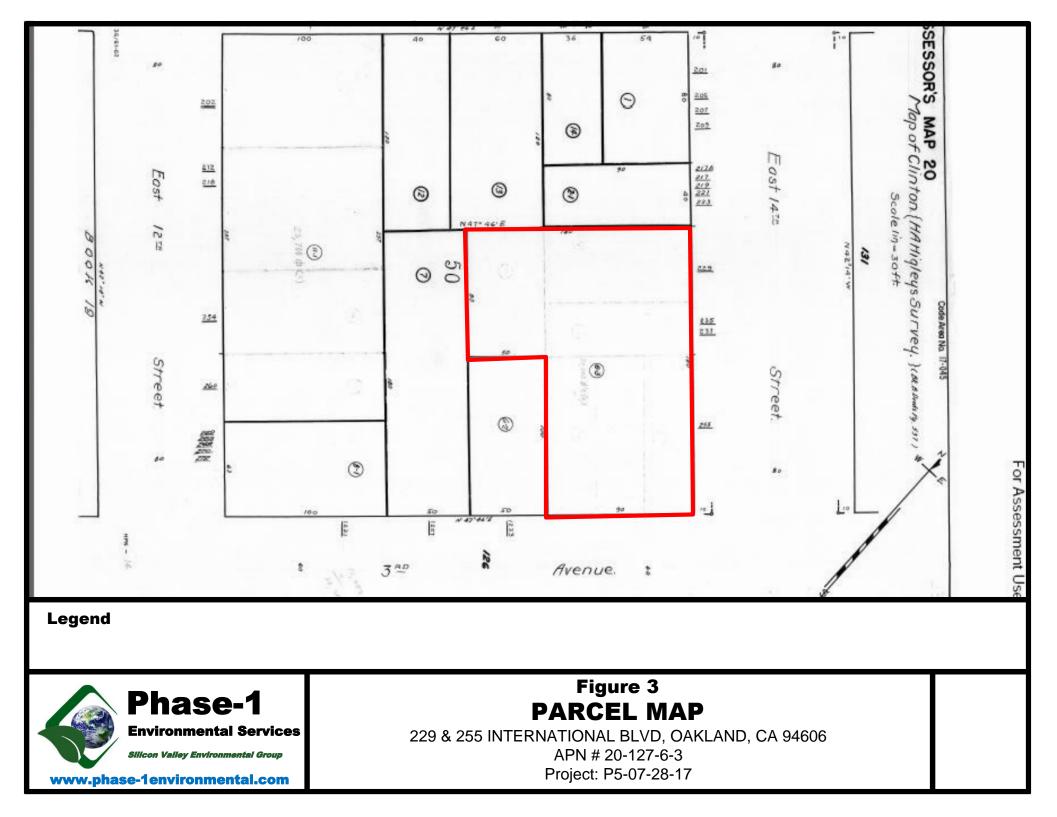
Respectfully submitted this 30th day of August 2017 Phase-1 Environmental Services

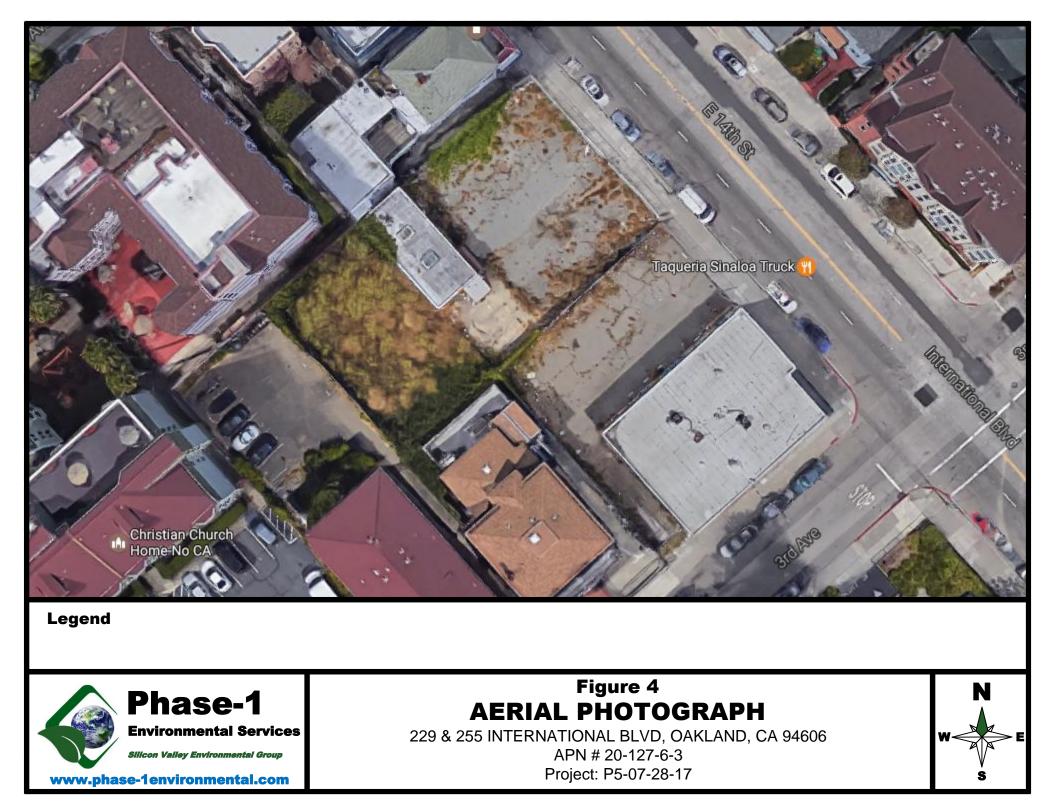
Stuart G. Solomon – Environmental Professional Senior Partner

Figures

- 1) Site Vicinity Map
- 2) Boring Locations Site Plan
- 3) Parcel Outline Map
- 4) Aerial Photograph
- 5) Topographical Map


Tables


1) Laboratory Sample Summary


Appendices

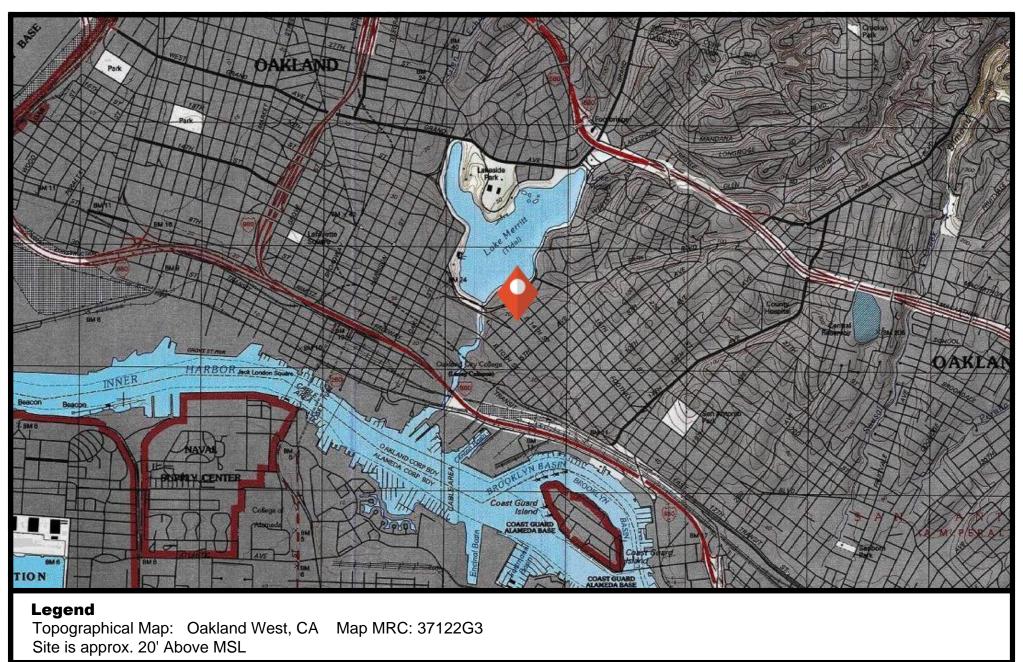

- A) Boring Logs and Chain-of-Custody
- **B)** Analytical Laboratory Sample Testing Report
- C) Alameda County DPW Boring Permit

Figure 5 TOPOGRAPHICAL MAP

229 & 255 INTERNATIONAL BLVD, OAKLAND, CA 94606 APN # 20-127-6-3 Project: P5-07-28-17

Property Photographs 229 & 255 International Blvd, Oakland, CA

Photo Collection #1

Subject Site 229 & 255 International Blvd

Northern portion of the 255 International lot - Borings B1-B4

View os WS 1 Interior of 255 International Blvd

WS 2 Interior of 255 International Blvd

View of boring tailings At the Northwest portion of the building

Another view of the tailings

		•					
SAMPLE ID-Depth	SAMP_DATE	ANALYTE	RESULT	UNITS	PQL	MDL	METHOD
WS1-150"- GWater	08/10/2017	Benzene	ND	ug/L	5.0	0.83	EPA-8260B
		Ethylbenzene	ND	ug/L	5.0	0.98	EPA-8260B
		Toluene	ND	ug/L	5.0	0.93	EPA-8260B
		Total Xylenes	ND	ug/L	10	3.6	EPA-8260B
		p- & m-Xylenes	ND	ug/L	5.0	2.8	EPA-8260B
		o-Xylene	ND	ug/L	5.0	0.82	EPA-8260B
		1,2-Dichloroethane-d4 (Surrogate)	112	%Rec			EPA-8260B
		Toluene-d8 (Surrogate)	97.3	%Rec			EPA-8260B
		4-Bromofluorobenzene (Surrogate)	93.0	%Rec			EPA-8260B
		TPH - Light Naptha	ND	ug/L	1000	400	EPA-8015B/FFP
		TPH - Aviation Gas	ND	ug/L	1000	400	EPA-8015B/FFP
		TPH - Stoddard Solvent	ND	ug/L	400	200	EPA-8015B/FFP
		TPH - Heavy Naptha	ND	ug/L	400	200	EPA-8015B/FFP
		TPH - Gasoline	6800	ug/L	1000	400	EPA-8015B/FFP
		TPH - Jet Fuel (JP4)	ND	ug/L	400	200	EPA-8015B/FFP
		TPH - Jet Fuel (JP5)	ND	ug/L	400	260	EPA-8015B/FFP
		TPH - Jet Fuel (JP8)	ND	ug/L	400	200	EPA-8015B/FFP
		TPH - Kerosene	ND	ug/L	400	110	EPA-8015B/FFP
		TPH - Diesel (FFP)	ND	ug/L	400	68	EPA-8015B/FFP
		TPH - Fuel Oil #6	ND	ug/L	100	50	EPA-8015B/FFP
		TPH - Crude Oil	ND	ug/L	1000	280	EPA-8015B/FFP
		TPH - Hydraulic Oil / Motor Oil	ND	ug/L	1000	130	EPA-8015B/FFP
		TPH - WD-40	ND	ug/L	400	200	EPA-8015B/FFP
		Tetracosane (Surrogate)	75.6	%Rec			EPA-8015B/FFP
WS2- 110" - Soil	08/10/2017	Benzene	ND	mg/kg	0.0050	0.0013	EPA-8260B
		Ethylbenzene	ND	mg/kg	0.0050	0.0015	EPA-8260B
		Toluene	ND	mg/kg	0.0050	0.0012	EPA-8260B
		Total Xylenes	ND	mg/kg	0.010	0.0034	EPA-8260B
		p- & m-Xylenes	ND	mg/kg	0.0050	0.0022	EPA-8260B
		o-Xylene	ND	mg/kg	0.0050	0.0012	EPA-8260B
		1,2-Dichloroethane-d4 (Surrogate)	109	%Rec			EPA-8260B
		Toluene-d8 (Surrogate)	98.6	%Rec			EPA-8260B
		4-Bromofluorobenzene (Surrogate)	99.0	%Rec			EPA-8260B
		TPH - Light Naptha	ND	mg/kg	50	20	EPA-8015B/FFP
		TPH - Aviation Gas	ND	mg/kg	50	20	EPA-8015B/FFP
		TPH - Stoddard Solvent	ND	mg/kg	20	5.0	EPA-8015B/FFP
		TPH - Heavy Naptha	ND	mg/kg	10	5.0	EPA-8015B/FFP
		TPH - Gasoline	ND	mg/kg	20	5.0	EPA-8015B/FFP
		TPH - Jet Fuel (JP4)	ND	mg/kg	10	5.0	EPA-8015B/FFP
		TPH - Jet Fuel (JP5)	ND	mg/kg	10	4.6	EPA-8015B/FFP
		TPH - Jet Fuel (JP8)	ND	mg/kg	10	5.0	EPA-8015B/FFP
		TPH - Kerosene	ND	mg/kg	10	1.4	EPA-8015B/FFP
		TPH - Diesel (FFP)	ND	mg/kg	10	1.2	EPA-8015B/FFP

Table 1 - Lab Sample Summary - 229-255 Intenational Blvd., Oakland, CA

				-			
		TPH - Fuel Oil #6	ND	mg/kg	10	5.0	EPA-8015B/FFP
		TPH - Crude Oil	ND	mg/kg	20	2.8	EPA-8015B/FFP
		TPH - Hydraulic Oil / Motor Oil	ND	mg/kg	20	6.5	EPA-8015B/FFP
		TPH - WD-40	ND	mg/kg	10	5.0	EPA-8015B/FFP
		Tetracosane (Surrogate)	80.6	%Rec			EPA-8015B/FFP
		-					
B1- 2.5' - Soil	08/10/2017		ND	mg/kg	50	20	EPA-8015B/FFP
		TPH - Aviation Gas	ND	mg/kg	50	20	EPA-8015B/FFP
		TPH - Stoddard Solvent	ND	mg/kg	20	5.0	EPA-8015B/FFP
		TPH - Heavy Naptha	ND	mg/kg	10	5.0	EPA-8015B/FFP
		TPH - Gasoline	ND	mg/kg	20	5.0	EPA-8015B/FFP
		TPH - Jet Fuel (JP4)	ND	mg/kg	10	5.0	EPA-8015B/FFP
		TPH - Jet Fuel (JP5)	ND	mg/kg	10	4.6	EPA-8015B/FFP
		TPH - Jet Fuel (JP8)	ND	mg/kg	10	5.0	EPA-8015B/FFP
		TPH - Kerosene	ND	mg/kg	10	1.4	EPA-8015B/FFP
		TPH - Diesel (FFP)	ND	mg/kg	10	1.2	EPA-8015B/FFP
		TPH - Fuel Oil #6	ND	mg/kg	10	5.0	EPA-8015B/FFP
		TPH - Crude Oil	ND	mg/kg	20	2.8	EPA-8015B/FFP
		TPH - Hydraulic Oil / Motor Oil	8.5	mg/kg	20	6.5	EPA-8015B/FFP
		TPH - WD-40	ND	mg/kg	10	5.0	EPA-8015B/FFP
		Tetracosane (Surrogate)	74.9	%Rec			EPA-8015B/FFP
					_		
B2- 2.5' Soil	08/10/2017	TPH - Light Naptha	ND	mg/kg	50	20	EPA-8015B/FFP
		TPH - Aviation Gas	ND	mg/kg	50	20	EPA-8015B/FFP
		TPH - Stoddard Solvent	ND	mg/kg	20	5.0	EPA-8015B/FFP
		TPH - Heavy Naptha	ND	mg/kg	10	5.0	EPA-8015B/FFP
		TPH - Gasoline	ND	mg/kg	20	5.0	EPA-8015B/FFP
		TPH - Jet Fuel (JP4)	ND	mg/kg	10	5.0	EPA-8015B/FFP
		TPH - Jet Fuel (JP5)	ND	mg/kg	10	4.6	EPA-8015B/FFP
		TPH - Jet Fuel (JP8)	ND	mg/kg	10	5.0	EPA-8015B/FFP
		TPH - Kerosene	ND	mg/kg	10	1.4	EPA-8015B/FFP
		TPH - Diesel (FFP)	ND		10	1.2	EPA-8015B/FFP
		TPH - Fuel Oil #6	ND	mg/kg	10	5.0	EPA-8015B/FFP
		TPH - Crude Oil	ND	mg/kg	20	2.8	EPA-8015B/FFP
		TPH - Hydraulic Oil / Motor Oil	ND	mg/kg	20	6.5	EPA-8015B/FFP
		TPH - WD-40	ND	mg/kg	10	5.0	EPA-8015B/FFP
		Tetracosane (Surrogate)	77.0	%Rec			EPA-8015B/FFP
	00/10/2017				50	20	
B3- 2.5' - Soil	08/10/2017		ND	mg/kg	50	20	EPA-8015B/FFP
		TPH - Aviation Gas	ND	mg/kg	50	20	EPA-8015B/FFP
		TPH - Stoddard Solvent	ND	mg/kg	20	5.0	EPA-8015B/FFP
		TPH - Heavy Naptha	ND	mg/kg	10	5.0	EPA-8015B/FFP
		TPH - Gasoline	ND	mg/kg	20	5.0	EPA-8015B/FFP
		TPH - Jet Fuel (JP4)	ND	mg/kg	10	5.0	EPA-8015B/FFP
		TPH - Jet Fuel (JP5)	ND	mg/kg	10	4.6	EPA-8015B/FFP
		TPH - Jet Fuel (JP8)	ND	mg/kg	10	5.0	EPA-8015B/FFP
		TPH - Kerosene	ND	mg/kg	10	1.4	EPA-8015B/FFP

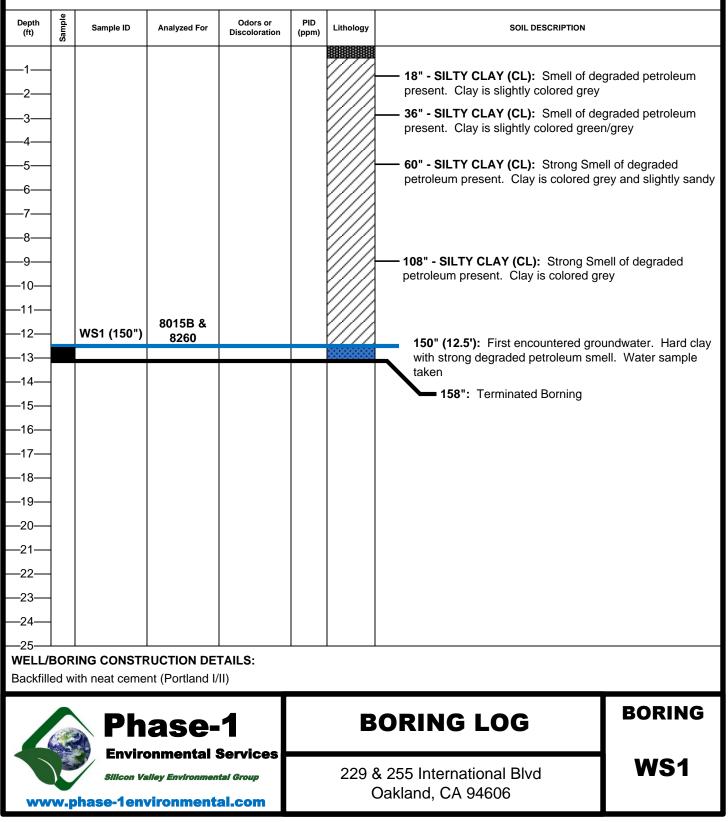
	4-Bromofluorobenzene (Surrogate)	98.9	%Rec			EPA-8260B
	Toluene-d8 (Surrogate)	103	%Rec			EPA-8260B
	1,2-Dichloroethane-d4 (Surrogate)	105	%Rec			EPA-8260B
	o-Xylene	ND	mg/kg	0.0050	0.0012	EPA-8260B
	p- & m-Xylenes	ND	mg/kg	0.0050	0.0022	EPA-8260B
	Total Xylenes	ND	mg/kg	0.010	0.0034	EPA-8260B
	Toluene	ND	mg/kg	0.0050	0.0012	EPA-8260B
	Ethylbenzene	ND	mg/kg	0.0050	0.0015	EPA-8260B
B5- 2.5' - Soil	08/10/2017 Benzene	ND	mg/kg	0.0050	0.0013	EPA-8260B
		-	-			,
	Tetracosane (Surrogate)	69.0	%Rec			EPA-8015B/FFP
	TPH - WD-40	ND	mg/kg	10	5.0	EPA-8015B/FFP
	TPH - Hydraulic Oil / Motor Oil	13	mg/kg	20	6.5	EPA-8015B/FFP
	TPH - Crude Oil	ND	mg/kg	20	2.8	EPA-8015B/FFP
	TPH - Fuel Oil #6	ND	mg/kg	10	5.0	EPA-8015B/FFP
	TPH - Diesel (FFP)	ND	mg/kg	10	1.2	EPA-8015B/FFP
	TPH - Kerosene	ND	mg/kg	10	1.4	EPA-8015B/FFP
	TPH - Jet Fuel (JP8)	ND	mg/kg	10	5.0	EPA-8015B/FFP
	TPH - Jet Fuel (JP5)	ND	mg/kg	10	4.6	EPA-8015B/FFP
	TPH - Jet Fuel (JP4)	ND	mg/kg	10	5.0	EPA-8015B/FFP
	TPH - Gasoline	ND	mg/kg	20	5.0	EPA-8015B/FFP
	TPH - Heavy Naptha	ND	mg/kg	10	5.0	EPA-8015B/FFP
	TPH - Stoddard Solvent	ND	mg/kg	20	5.0	EPA-8015B/FFP
	TPH - Aviation Gas	ND	mg/kg		20	EPA-8015B/FFP
B4- 2.5' - Soil	08/10/2017 TPH - Light Naptha	ND	mg/kg	50	20	EPA-8015B/FFP
	Tetracosane (Surrogate)	71.4	%Rec			EPA-8015B/FFP
	TPH - WD-40	ND	mg/kg	10	5.0	EPA-8015B/FFP
	TPH - Hydraulic Oil / Motor Oil	ND	mg/kg	20	6.5	EPA-8015B/FFP
	TPH - Crude Oil	ND	mg/kg	20	2.8	EPA-8015B/FFP
	TPH - Fuel Oil #6	ND	mg/kg	10	5.0	EPA-8015B/FFP
	TPH - Diesel (FFP)	ND	mg/kg	10	1.2	EPA-8015B/FFP

Silver	ND	mg/kg	0.50	0.067	EPA-6010B
B6- 2.5' - Soil 08/10/2017 TPH - Light Naptha	ND	mg/kg	50	20	EPA-8015B/FFP
TPH - Aviation Gas	ND	mg/kg	50	20	EPA-8015B/FFP
TPH - Stoddard Solvent	ND	mg/kg	20	5.0	EPA-8015B/FFP
TPH - Heavy Naptha	ND	mg/kg	10	5.0	EPA-8015B/FFP
TPH - Gasoline	ND	mg/kg	20	5.0	EPA-8015B/FFP
TPH - Jet Fuel (JP4)	ND	mg/kg	10	5.0	EPA-8015B/FFP
TPH - Jet Fuel (JP5)	ND	mg/kg	10	4.6	EPA-8015B/FFP
TPH - Jet Fuel (JP8)	ND	mg/kg	10	5.0	EPA-8015B/FFP
TPH - Kerosene	ND	mg/kg	10	1.4	EPA-8015B/FFP
TPH - Diesel (FFP)	ND	mg/kg	10	1.2	EPA-8015B/FFP
TPH - Fuel Oil #6	ND	mg/kg	10	5.0	EPA-8015B/FFP
TPH - Crude Oil	ND	mg/kg	20	2.8	EPA-8015B/FFP
TPH - Hydraulic Oil / Motor Oil	24	mg/kg	20	6.5	EPA-8015B/FFP
TPH - WD-40	ND	mg/kg	10	5.0	EPA-8015B/FFP
Tetracosane (Surrogate)) 68.1	%Rec			EPA-8015B/FFP

PROJECT NAME International Blvd Phase II
PROJECT NUMBER P5-07-28-17

PROJECT LOCATION 229 & 255 International Blvd

GROUND ELEVATION _26' Above MSL


BORING DEPTH 158"

GROUND WATER LEVEL:

1ST ENCOUNTERED 150"

DRILLING CONTRACTOR Phase-1 Environmental DRILLING METHOD 4" Hand Auger LOGGED BY CGS

FIELD NOTES _____

PROJECT NAME International Blvd Phase II PROJECT NUMBER P5-07-28-17

PROJECT LOCATION 229 & 255 International Blvd

GROUND ELEVATION 26' Above MSL

BORING DEPTH 113"

GROUND WATER LEVEL:

1ST ENCOUNTERED NA

DRILLING CONTRACTOR Phase-1 Environmental DRILLING METHOD 4" Hand Auger LOGGED BY CGS FIELD NOTES

Sample PID Depth Odors or Sample ID Lithology Analyzed For SOIL DESCRIPTION (ft) Discoloration (ppm) -1-- 18" - SILTY CLAY (CL): Light brown. No odors .2. 36" - SILTY CLAY (CL): Light brown. No odors -3-60" - SILTY CLAY (CL): Light brown. Very slight -5degraded petroleum odor smell -6--7--8-8015B & WS2 (113") -9-8260 113" - SILTY CLAY (CL): Boring Terminated ·10-Clay is colored brown. Soil sample taken ·11· ·12--13-·14-·15-·16--17-·18-·19--20-·21· -22--23--24--25 WELL/BORING CONSTRUCTION DETAILS: Backfilled with neat cement (Portland I/II) BORING **BORING LOG** Phase-1

Environmental Services

Silicon Valley Environmental Group

www.phase-1environmental.com

229 & 255 International Blvd Oakland, CA 94606

WS2

PROJECT NAME International Blvd Phase II

PROJECT NUMBER P5-07-28-17

PROJECT LOCATION 229 & 255 International Blvd

GROUND ELEVATION 26' Above MSL

BORING DEPTH 33"

GROUND WATER LEVEL:

1ST ENCOUNTERED NA

DRILLING CONTRACTOR Phase-1 Environmental DRILLING METHOD 4" Hand Auger LOGGED BY CGS FIELD NOTES _____

	I ENCOUN						
Depth (ft)	e G E Sample ID S	Analyzed For	Odors or Discoloration	PID (ppm)	Lithology	SOIL DESCRIPTION	
1	B1 (30")	8015B				—— SILTY CLAY (CL): No odors	
2						30" - Boring Terminated (Soil Sam)	ole 30-33")
3							
4							
5							
6							
7							
8							
9							
—10—							
—11—							
—12—							
—13—							
—14—							
—15—							
—16—							
17							
18							
19							
20							
21							
-22							
-23							
—24—							
			TAILS:	I			
		ent (Portland I/					
	_		_			ORING LOG	BORING
	A STATE LED	lase-			B	BURING	
	💓 Envi	ronmental (Services		000	B1	
		Valley Environmen			229 8		
www	phase-1e	nvironment	al.com			Dakland, CA 94606	

PROJECT NAME International Blvd Phase II

PROJECT NUMBER P5-07-28-17

PROJECT LOCATION 229 & 255 International Blvd

GROUND ELEVATION 26' Above MSL

BORING DEPTH 33"

GROUND WATER LEVEL:

1ST ENCOUNTERED NA

DRILLING CONTRACTOR Phase-1 Environmental DRILLING METHOD 4" Hand Auger LOGGED BY CGS

FIELD NOTES _____

Depth (ft)	Sample	Sample ID	Analyzed For	Odors or Discoloration	PID (ppm)	Lithology	SOIL DESCRIPTION	
1								
2		B2 (30")	8015B				SILTY CLAY (CL): No odors 30" - Boring Terminated (Soil Sam)	20 22")
							- 30 - Boring Terminated (Son Sam	bie 30-33)
3								
—4— _								
_5								
6								
—7——								
8								
_9								
—10—								
—11—								
—12—								
—13—								
—14—								
—15—								
—16—								
—17—								
—18—								
—19—								
—20—								
—21—								
—22—								
-23								
-24								
WELL/I			RUCTION DE					
Backfille	ed wi	th neat ceme	nt (Portland I/	II)				
		Ph	ase-	1		В	BORING	
			onmental \$			220 s	& 255 International Blvd	B2
			niley Environmen vironment					

PROJECT NAME International Blvd Phase II

PROJECT NUMBER P5-07-28-17

PROJECT LOCATION 229 & 255 International Blvd

GROUND ELEVATION 26' Above MSL ____

BORING DEPTH _33"

GROUND WATER LEVEL:

1ST ENCOUNTERED NA

DRILLING CONTRACTOR Phase-1 Environmental DRILLING METHOD 4" Hand Auger LOGGED BY CGS FIELD NOTES _____

	e la	Liteooitit			1	1			
Depth (ft)	Sample	Sample ID	Analyzed For	Odors or Discoloration	PID (ppm)	Lithology	SOIL DESCRIPTION		
4									
		B3 (30")	8015B				SILTY CLAY (CL): No odors		
2							30" - Boring Terminated (Soil Sample)	ole 30-33")	
3									
4									
5									
6									
—7—									
8									
9									
—10—									
—11—									
—12—									
—13—									
—14—									
—15—									
—16—									
—17—									
—18—									
—19—									
—20—									
—21—									
—22—									
—23—									
—24—									
25									
WELL/			RUCTION DE						
Backfille	ed w	ith neat ceme	nt (Portland I/	1I) 					
		DL	~ ~~	A		P	ORING LOG	BORING	
			ase-						
			onmental \$			000	B 3		
			niley Environmen			229 8 (
ww	w.p	hase-1env	vironment	al.com	Oakland, CA 94606				

PROJECT NAME International Blvd Phase II

PROJECT NUMBER P5-07-28-17

PROJECT LOCATION 229 & 255 International Blvd

GROUND ELEVATION 26' Above MSL

BORING DEPTH 33"

GROUND WATER LEVEL:

DRILLING CONTRACTOR Phase-1 Environmental DRILLING METHOD 4" Hand Auger LOGGED BY CGS FIELD NOTES _____

I ILLU NUIES

	·							
Depth (ft)	Sample	Sample ID	Analyzed For	Odors or Discoloration	PID (ppm)	Lithology	SOIL DESCRIPTION	
		B4 (30")	8015B				SILTY CLAY (CL): No odors	
2							30" - Boring Terminated (Soil Sample)	ole 30-33")
3								
4								
5								
6								
—7—								
8								
9								
—10—								
—11—								
—12—								
—13—								
—14—								
—15—								
—16—								
—17—								
—18—								
—19—								
—20—								
—21—								
—22—								
—23—								
—24—								
25								
WELL/			RUCTION DE					
Backfille	ed w	th neat ceme	nt (Portland I/	11)				
		Ph	ase-	1		B	ORING LOG	BORING
		14.80	onmental \$					
			niley Environmen			229 8	B4	
						(
ww	w.p	nase-1en\	vironment	ai.com				

PROJECT NAME International Blvd Phase II

PROJECT NUMBER P5-07-28-17

PROJECT LOCATION 229 & 255 International Blvd

GROUND ELEVATION 26' Above MSL

BORING DEPTH 33"

GROUND WATER LEVEL:

1ST ENCOUNTERED NA

DRILLING CONTRACTOR Phase-1 Environmental DRILLING METHOD 4" Hand Auger LOGGED BY CGS

FIELD NOTES _____

		LINCOUNTL						
Depth (ft)	Sample	Sample ID	Analyzed For	Odors or Discoloration	PID (ppm)	Lithology	SOIL DESCRIPTION	
1		B5 (30")					—— SILTY CLAY (CL): No odors	
2							30" - Boring Terminated (Soil Sam	ole 30-33")
3			8015B, 8260 &					
4			6010B -					
5			Silver					
6								
7								
8								
9								
10								
11								
—12—								
—13—								
—14—								
—15—								
—16—								
—17—								
—18—								
—19—								
—20—								
<u> </u>								
—22—								
23								
24								
24								
	BOR		RUCTION DE	TAILS:				
Backfille	ed wi	th neat ceme	nt (Portland I/	11)				
	Phase-1 Environmental Services					B	BORING	
		Silicon Va	niley Environmen	tal Group		229 8	B 5	
ww	w.p	hase-1en	vironment	al.com			Dakland, CA 94606	

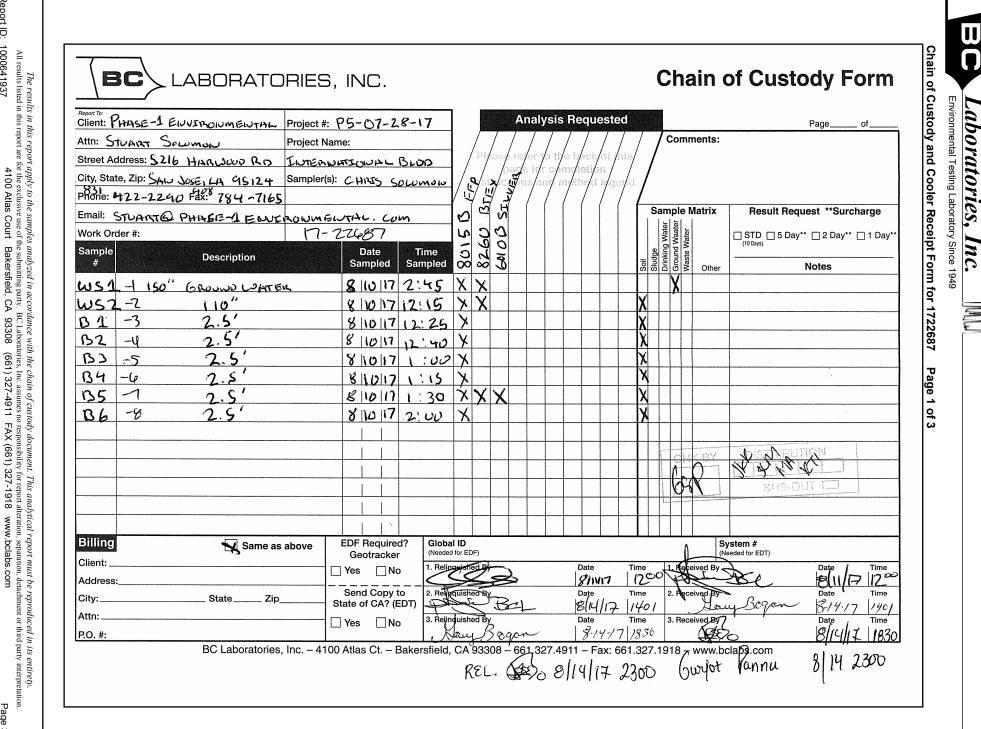
PROJECT NAME International Blvd Phase II

PROJECT NUMBER P5-07-28-17

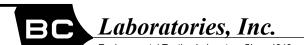
PROJECT LOCATION 229 & 255 International Blvd

GROUND ELEVATION 26' Above MSL ____

BORING DEPTH _33"


GROUND WATER LEVEL:

1ST ENCOUNTERED <u>NA</u>


DRILLING CONTRACTOR Phase-1 Environmental DRILLING METHOD _ 4" Hand Auger _____ LOGGED BY CGS FIELD NOTES _____

Depth du g (ft) s	Sample ID	Analyzed For	Odors or Discoloration	PID (ppm)	Lithology	SOIL DESCRIPTION		
	B6 (30")	8015B				SILTY CLAY (CL): No odors		
2						30" - Boring Terminated (Soil Sample)	ole 30-33")	
3								
4								
5								
6								
7								
8								
9								
—10—								
—11—								
—12—								
—13—								
—14—								
—15—								
—16—								
—17—								
—18—								
—19—								
—20—								
—21—								
22								
 23								
24								
WELL/BOR								
Backfilled v	vith neat ceme	nt (Portland I/	II)					
		ase-			B	BORING		
		onmental s	tal Group		229 8 (B 6		
W W W .	1111234-114N	MUNIMENT	alicum	Oakland, CA 94606				

Laboratories,

Date of Report: 08/28/2017

Stuart Solomon

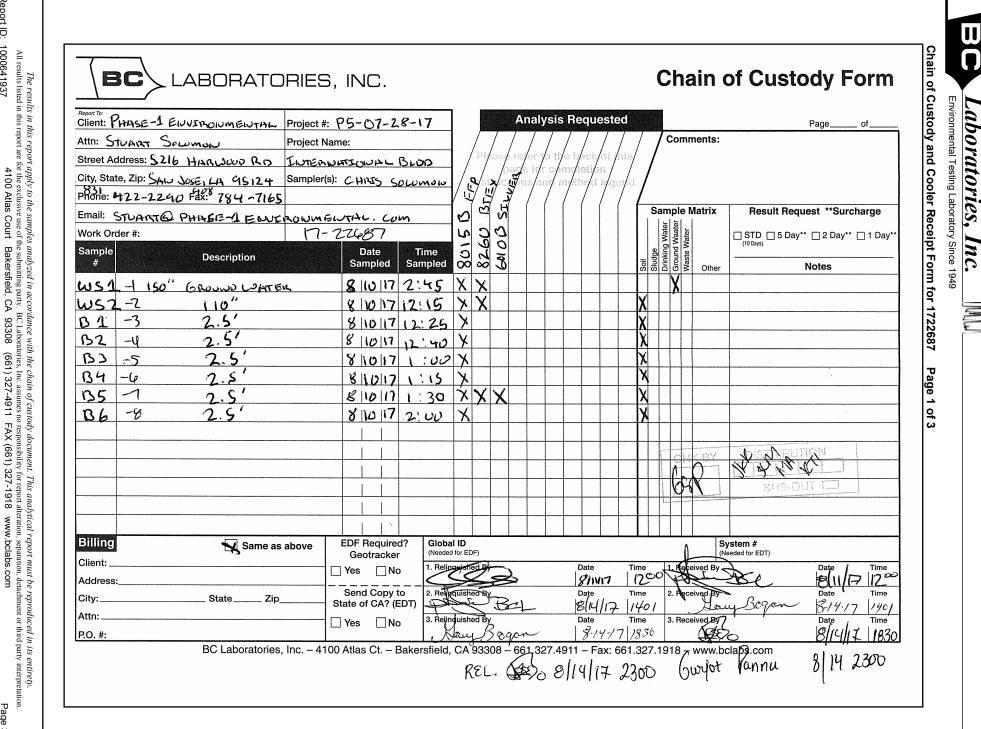
Phase-1 Environmental Services5216 Hardwood RoadSilicon Valley Environmental GroupSan Jose, CA 95124Client Project:P5-07-28-17 International BDDBCL Project:MiscBCL Work Order:1722687Invoice ID:B277493

Enclosed are the results of analyses for samples received by the laboratory on 8/14/2017. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Felicia Johnan

Contact Person: Felicia Johnson Client Service Rep


Stuart Buttram Technical Director

Certifications: CA ELAP #1186; NV #CA00014; OR ELAP #4032-001; AK UST101

Table of Contents

Sample Information	
Chain of Custody and Cooler Receipt form	
Laboratory / Client Sample Cross Reference	
Sample Results	
1722687-01 - WS1 150" Ground Water	
Volatile Organic Analysis (EPA Method 8260B)	
Total Petroleum Hydrocarbons	
1722687-02 - WS2 110"	
Volatile Organic Analysis (EPA Method 8260B)	
Total Petroleum Hydrocarbons	
1722687-03 - B1 2.5'	
Total Petroleum Hydrocarbons	
1722687-04 - B2 2.5'	
Total Petroleum Hydrocarbons	
1722687-05 - B3 2.5'	
Total Petroleum Hydrocarbons	
1722687-06 - B4 2.5'	
Total Petroleum Hydrocarbons	
1722687-07 - B5 2.5'	
Volatile Organic Analysis (EPA Method 8260B)	
Total Petroleum Hydrocarbons	
Total Concentrations (TTLC)	
1722687-08 - B6 2.5'	
Total Petroleum Hydrocarbons	
Quality Control Reports	
Volatile Organic Analysis (EPA Method 8260B)	
Method Blank Analysis	
Laboratory Control Sample	21
Precision and Accuracy	
Total Petroleum Hydrocarbons	
Method Blank Analysis	
Laboratory Control Sample	
Precision and Accuracy	25
Total Concentrations (TTLC)	
Method Blank Analysis	
Laboratory Control Sample	
Precision and Accuracy	
Notes	
Notes and Definitions	

Laboratories,

Chain of Custody and Cooler Receipt Form for 1722687 Page 2 of 3

BC LABORATORIES INC.		C	OOLER	RECEIPT	FORM			Pag	e	<u> 0f Z</u>		
Submission #: 17-2268	7											
SHIPPING INFO Fed Ex	ic⊡ Han	d Delivery y)	· D	Ice Ch	est) 🖄	CONTAI None 🗆 cify)	Box 🗆		FREE LIQUID YES INO I (W) / S			
Refrigerant: Ice 🕱 Blue Ice	□ None	• 🗆 🖸)ther 🗆	Com	nents:	•						
Custody Seals Ice Chest I	Contain		None	Com	ments:							
All samples received? Yes 🕱 No 🗆	All samples	containers	intact? Y	es ØK No	ò	Descrip	tion(s) mat	ch COC?	Yes 🖄 No			
COC Received ^I ☑ YES □ NO	Emisșivity: <u>(</u> Temperature:).90 c	ontainer:	annber	_ Thermor	neter ID: _	208	Date/Ti		1 2300		
					SAMPLE	E NUMBERS						
SAMPLE CONTAINERS	1	2	3	4	5	6	7	8	9	10		
QT PE UNPRES												
4oz / 8oz / 16oz PE UNPRES					 	<u> </u>		· · ·				
2oz Cr*6									<u> </u>			
QT INORGANIC CHEMICAL METALS					· · · ·							
INORGANIC CHEMICAL METALS 40z / 80z / 10	Soz					 						
PT CYANIDE												
PT NITROGEN FORMS								<u> </u>	<u> </u>			
PT TOTAL SULFIDE												
202. NITRATE / NITRITE	· .											
PT TOTAL ORGANIC CARBON						 						
PT CHEMICAL OXYGEN DEMAND									<u> </u>			
PIA PHENOLICS							<u> </u>					
40ml VOA VIAL TRAVEL BLANK	ABC					·		ļ	<u> </u>			
40ml VOA VIAL	AR	<u> </u>										
QT EPA 1664												
PT ODOR												
RADIOLOGICAL									<u> </u>			
BACTERIOLOGICAL							· · · ·					
40 ml VOA VIAL- 504												
QT EPA 508/608/8080												
QT EPA 515.1/8150												
QT EPA 525									<u> </u>			
QT EPA 525 TRAVEL BLANK												
10ml EPA 547		<u>↓</u>										
10ml EPA 531.1	1	╂────┤							ļ			
Noz EPA 548		 										
OT EPA 549 '	ρ	<u>├</u>										
2T EPA 8015M		╂╂	-					······				
DT EPA 8270		┟										
oz / 16oz / 32oz AMBER		┠────┤								+		
02 / 1602 / 3202 JAR		-										
OILSLEEVE		 										
CB VIAL		├										
LASTIC BAG		-										
EDLAR BAG												
ERROUS IRON		<u>├</u>										
NCORE												
MART KIT												
UMMA CANISTER		I T	T						-	T		

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. 1000641937 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com

Chain of Custody and Cooler Receipt Form for 1722687 Page 3 of 3

Submission #: 17 - 220 SHIPPING INF	ORMA	TION								FREE LI	
	trac 🗆 ther 🗆 (f Deliver	ry 🗆	ice Ch Oth		None 🗆 ecify)			YES □ W /(
Refrigerant: Ice 🕱 Blue I	ce 🗆	None		Other 🗆	Com	ments:					
Custody Seals Ice Chest			rs.⊡ ⊐No⊡	None	🕅 Con	nments:					
All samples received? Yes 🎘 No 🗆	All :	samples	container	s intact?	res 🖄 No) D	Descrip	tion(s) ma	tch COC?	Yes X No	0
COC Received	Emissi	vity: _0	.95	Container	PE	Thermo	meter ID:	208			17 2300
🞾 YES 🗆 NO							1-2				
	T			Ť			E NUMBERS		1 /		
SAMPLE CONTAINERS	F	1	2] з	4	5	6	7	8	9	1
QT PE UNPRES	T		T	1		1	1	†—́—	1 °	+	1 10
4oz / 8oz / 16oz PE UNPRES				1	1		1			1	
2oz Cr ⁺⁶					1			1		1	1
QT INORGANIC CHEMICAL METALS					1	,	1		1		
INORGANIC CHEMICAL METALS 402 / 802 /	/ 16oz			1	1	1	1	1	1	1	+
PT CYANIDE				1		1	1		1	1	1
PT NITROGEN FORMS					1					1	
PT TOTAL SULFIDE						1			1	+	+
202. NITRATE / NITRITE				1						+	
PT TOTAL ORGANIC CARBON				1		1			1	1	1
PT CHEMICAL OXYGEN DEMAND							1				1
PIA PHENOLICS							1				1
40ml VOA VIAL TRAVEL BLANK						1			1	1	1
40ml VOA VIAL							1			1	1
QT EPA 1664						1	1				1
PT ODOR (
RADIOLOGICAL							1		1		1
BACTERIOLOGICAL									1		
40 ml VOA VIAL- 504											
QT EPA 508/608/8080									1	1	
QT EPA 515.1/8150											
2T EPA 525											
OT EPA 525 TRAVEL BLANK									1		
0ml EPA 547									1		
0ml EPA 531.1									1		
oz EPA 548	1								1		
OT EPA 549 ·								•			
DT EPA 8015M				-							
DT EPA 8270											
02/1602/3202 AMBER											
oz / 160z / 320z JAR											
OIL SLEEVE XOY			A	A	A	A	A	A	A		
CB VIAL											
LASTIC BAG											
EDLAR BAG											
ERROUS IRON											
NCORE											
MART KIT								· · · · · ·			
JMMA CANISTER					<i>§</i>						
		1			<u>}</u>	·				-	

 The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

 All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation.

 1000641937
 4100 Atlas Court
 Bakersfield, CA
 93308
 (661) 327-4911
 FAX (661) 327-1918
 www.bclabs.com
 P.

Phase-1 Environmental Services 5216 Hardwood Road Silicon Valley Environmental Group San Jose, CA 95124

Reported: 08/28/2017 11:41 Project: Misc Project Number: P5-07-28-17 International BDD Project Manager: Stuart Solomon

Laboratory / Client Sample Cross Reference

Laboratory	Client Sample Informati	, ,		
1722687-01	COC Number:		Receive Date:	08/14/2017 23:00
	Project Number:		Sampling Date:	08/10/2017 14:45
	Sampling Location:		Sample Depth:	
	Sampling Point:	WS1 150" Ground Water	Lab Matrix:	Water
	Sampled By:	Chris Solomon	Sample Type:	Groundwater
722687-02	COC Number:		Receive Date:	08/14/2017 23:00
	Project Number:		Sampling Date:	08/10/2017 12:15
	Sampling Location:		Sample Depth:	
	Sampling Point:	WS2 110"	Lab Matrix:	Solids
	Sampled By:	Chris Solomon	Sample Type:	Soil
722687-03	COC Number:		Receive Date:	08/14/2017 23:00
	Project Number:		Sampling Date:	08/10/2017 12:25
	Sampling Location:		Sample Depth:	
	Sampling Point:	B1 2.5'	Lab Matrix:	Solids
	Sampled By:	Chris Solomon	Sample Type:	Soil
1722687-04	COC Number:		Receive Date:	08/14/2017 23:00
	Project Number:		Sampling Date:	08/10/2017 12:40
	Sampling Location:		Sample Depth:	
	Sampling Point:	B2 2.5'	Lab Matrix:	Solids
	Sampled By:	Chris Solomon	Sample Type:	Soil
722687-05	COC Number:		Receive Date:	08/14/2017 23:00
	Project Number:		Sampling Date:	08/10/2017 13:00
	Sampling Location:		Sample Depth:	
	Sampling Point:	B3 2.5'	Lab Matrix:	Solids
	Sampled By:	Chris Solomon	Sample Type:	Soil
722687-06	COC Number:		Receive Date:	08/14/2017 23:00
	Project Number:		Sampling Date:	08/10/2017 13:15
	Sampling Location:		Sample Depth:	
	Sampling Point:	B4 2.5'	Lab Matrix:	Solids
	Sampled By:	Chris Solomon	Sample Type:	Soil
722687-07	COC Number:		Receive Date:	08/14/2017 23:00
	Project Number:		Sampling Date:	08/10/2017 13:30
	Sampling Location:		Sample Depth:	
	Sampling Point:	B5 2.5'	Lab Matrix:	Solids
	Sampled By:	Chris Solomon	Sample Type:	Soil

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, generation, detachment or third party interpretation. 1000641937 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com

Phase-1 Environmental Services 5216 Hardwood Road Silicon Valley Environmental Group San Jose, CA 95124

Reported: 08/28/2017 11:41 Project: Misc Project Number: P5-07-28-17 International BDD Project Manager: Stuart Solomon

Laboratory / Client Sample Cross Reference

Laboratory	Client Sample Informati	on		
1722687-08	COC Number:		Receive Date:	08/14/2017 23:00
	Project Number:		Sampling Date:	08/10/2017 14:00
	Sampling Location:		Sample Depth:	
	Sampling Point: Sampled By:	B6 2.5' Chris Solomon	Lab Matrix: Sample Type:	Solids Soil

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, generation, detachment or third party interpretation. 1000641937 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com

Phase-1 Environmental Services 5216 Hardwood Road Silicon Valley Environmental Group San Jose, CA 95124 Reported:08/28/201711:41Project:MiscProject Number:P5-07-28-17 International BDDProject Manager:Stuart Solomon

Volatile Organic Analysis (EPA Method 8260B)

BCL Sample ID:	1722687-01	Client Sampl	e Name:	WS1 150'	Ground W	/ater, 8/10/2017	2:45:00PM, 0	Chris Solomon	
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	Run #
Benzene		ND	ug/L	5.0	0.83	EPA-8260B	ND	A01	1
Ethylbenzene		ND	ug/L	5.0	0.98	EPA-8260B	ND	A01	1
Toluene		ND	ug/L	5.0	0.93	EPA-8260B	ND	A01	1
Total Xylenes		ND	ug/L	10	3.6	EPA-8260B	ND	A01	1
p- & m-Xylenes		ND	ug/L	5.0	2.8	EPA-8260B	ND	A01	1
o-Xylene		ND	ug/L	5.0	0.82	EPA-8260B	ND	A01	1
1,2-Dichloroethane-d4 (Su	rrogate)	112	%	75 - 125 (LC	L - UCL)	EPA-8260B			1
Toluene-d8 (Surrogate)		97.3	%	80 - 120 (LC	L - UCL)	EPA-8260B			1
4-Bromofluorobenzene (Su	rrogate)	93.0	%	80 - 120 (LC	L - UCL)	EPA-8260B			1

			Run					
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8260B	08/16/17	08/18/17 12:51	JPT	MS-V12	10	B[H1652	

Phase-1 Environmental Services 5216 Hardwood Road Silicon Valley Environmental Group San Jose, CA 95124

Reported:08/28/201711:41Project:MiscProject Number:P5-07-28-17 International BDDProject Manager:Stuart Solomon

Total Petroleum Hydrocarbons

BCL Sample ID:	1722687-01	Client Sample	e Name:	WS1 150"	Ground W	/ater, 8/10/2017	2:45:00PM, 0	Chris Solomon	
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	Run #
TPH - Light Naptha		ND	ug/L	1000	400	EPA-8015B/FFP	ND	A01	1
TPH - Aviation Gas		ND	ug/L	1000	400	EPA-8015B/FFP	ND	A01	1
TPH - Stoddard Solvent		ND	ug/L	400	200	EPA-8015B/FFP	ND	A01	1
TPH - Heavy Naptha		ND	ug/L	400	200	EPA-8015B/FFP	ND	A01	1
TPH - Gasoline		<mark>6800</mark>	ug/L	1000	400	EPA-8015B/FFP	ND	A01,A53	1
TPH - Jet Fuel (JP4)		ND	ug/L	400	200	EPA-8015B/FFP	ND	A01	1
TPH - Jet Fuel (JP5)		ND	ug/L	400	260	EPA-8015B/FFP	ND	A01	1
TPH - Jet Fuel (JP8)		ND	ug/L	400	200	EPA-8015B/FFP	ND	A01	1
TPH - Kerosene		ND	ug/L	400	110	EPA-8015B/FFP	ND	A01	1
TPH - Diesel (FFP)		ND	ug/L	400	68	EPA-8015B/FFP	ND	A01	1
TPH - Fuel Oil #6		ND	ug/L	100	50	EPA-8015B/FFP	ND	A01	1
TPH - Crude Oil		ND	ug/L	1000	280	EPA-8015B/FFP	ND	A01	1
TPH - Hydraulic Oil / Moto	or Oil	ND	ug/L	1000	130	EPA-8015B/FFP	ND	A01	1
TPH - WD-40		ND	ug/L	400	200	EPA-8015B/FFP	ND	A01	1
Tetracosane (Surrogate)		75.6	%	40 - 140 (LC	L - UCL)	EPA-8015B/FFP		A01	1

			Run		QC			
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8015B/FFP	08/17/17	08/25/17 18:51	AS1	GC-2	2	B[H2154	

Phase-1 Environmental Services 5216 Hardwood Road Silicon Valley Environmental Group San Jose, CA 95124
 Reported:
 08/28/2017
 11:41

 Project:
 Misc

 Project Number:
 P5-07-28-17
 International BDD

Project Manager: Stuart Solomon

Volatile Organic Analysis (EPA Method 8260B)

BCL Sample ID:	1722687-02	Client Sampl	e Name:	WS2 110"	<mark>,</mark> 8/10/2017	7 12:15:00PM, C	hris Solomon		
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	Run #
Benzene		ND	mg/kg	0.0050	0.0013	EPA-8260B	ND		1
Ethylbenzene		ND	mg/kg	0.0050	0.0015	EPA-8260B	ND		1
Toluene		ND	mg/kg	0.0050	0.0012	EPA-8260B	ND		1
Total Xylenes		ND	mg/kg	0.010	0.0034	EPA-8260B	ND		1
p- & m-Xylenes		ND	mg/kg	0.0050	0.0022	EPA-8260B	ND		1
o-Xylene		ND	mg/kg	0.0050	0.0012	EPA-8260B	ND		1
1,2-Dichloroethane-d4 (S	Surrogate)	109	%	70 - 121 (LC	L - UCL)	EPA-8260B			1
Toluene-d8 (Surrogate)		98.6	%	81 - 117 (LC	L - UCL)	EPA-8260B			1
4-Bromofluorobenzene (Surrogate)	99.0	%	74 - 121 (LC	L - UCL)	EPA-8260B			1

			Run				QC	
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8260B	08/16/17	08/16/17 10:15	ADC	MS-V3	1	B[H1230	

Phase-1 Environmental Services 5216 Hardwood Road Silicon Valley Environmental Group San Jose, CA 95124

Reported:08/28/201711:41Project:MiscProject Number:P5-07-28-17 International BDDProject Manager:Stuart Solomon

BCL Sample ID:	1722687-02	Client Sampl	e Name:	WS2 110'	<mark>'</mark> , 8/10/2017	7 12:15:00PM, Ch	ris Solomon		
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	Run #
TPH - Light Naptha		ND	mg/kg	50	20	EPA-8015B/FFP	ND		1
TPH - Aviation Gas		ND	mg/kg	50	20	EPA-8015B/FFP	ND		1
TPH - Stoddard Solvent		ND	mg/kg	20	5.0	EPA-8015B/FFP	ND		1
TPH - Heavy Naptha		ND	mg/kg	10	5.0	EPA-8015B/FFP	ND		1
TPH - Gasoline		ND	mg/kg	20	5.0	EPA-8015B/FFP	ND		1
TPH - Jet Fuel (JP4)		ND	mg/kg	10	5.0	EPA-8015B/FFP	ND		1
TPH - Jet Fuel (JP5)		ND	mg/kg	10	4.6	EPA-8015B/FFP	ND		1
TPH - Jet Fuel (JP8)		ND	mg/kg	10	5.0	EPA-8015B/FFP	ND		1
TPH - Kerosene		ND	mg/kg	10	1.4	EPA-8015B/FFP	ND		1
TPH - Diesel (FFP)		ND	mg/kg	10	1.2	EPA-8015B/FFP	ND		1
TPH - Fuel Oil #6		ND	mg/kg	10	5.0	EPA-8015B/FFP	ND		1
TPH - Crude Oil		ND	mg/kg	20	2.8	EPA-8015B/FFP	ND		1
TPH - Hydraulic Oil / Mot	or Oil	ND	mg/kg	20	6.5	EPA-8015B/FFP	ND		1
TPH - WD-40		ND	mg/kg	10	5.0	EPA-8015B/FFP	ND		1
Tetracosane (Surrogate)		80.6	%	30 - 130 (LC	L - UCL)	EPA-8015B/FFP			1

	Run							
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8015B/FFP	08/17/17	08/21/17 12:12	AS1	GC-13	1.017	B[H2485	

Phase-1 Environmental Services 5216 Hardwood Road Silicon Valley Environmental Group San Jose, CA 95124

Reported:08/28/201711:41Project:MiscProject Number:P5-07-28-17 International BDDProject Manager:Stuart Solomon

BCL Sample ID:	1722687-03	Client Sampl	e Name:	<mark>B1 2.5',</mark> 8/	/10/2017	12:25:00PM, Chris	Solomon		
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	Run #
TPH - Light Naptha		ND	mg/kg	50	20	EPA-8015B/FFP	ND		1
TPH - Aviation Gas		ND	mg/kg	50	20	EPA-8015B/FFP	ND		1
TPH - Stoddard Solvent		ND	mg/kg	20	5.0	EPA-8015B/FFP	ND		1
TPH - Heavy Naptha		ND	mg/kg	10	5.0	EPA-8015B/FFP	ND		1
TPH - Gasoline		ND	mg/kg	20	5.0	EPA-8015B/FFP	ND		1
TPH - Jet Fuel (JP4)		ND	mg/kg	10	5.0	EPA-8015B/FFP	ND		1
TPH - Jet Fuel (JP5)		ND	mg/kg	10	4.6	EPA-8015B/FFP	ND		1
TPH - Jet Fuel (JP8)		ND	mg/kg	10	5.0	EPA-8015B/FFP	ND		1
TPH - Kerosene		ND	mg/kg	10	1.4	EPA-8015B/FFP	ND		1
TPH - Diesel (FFP)		ND	mg/kg	10	1.2	EPA-8015B/FFP	ND		1
TPH - Fuel Oil #6		ND	mg/kg	10	5.0	EPA-8015B/FFP	ND		1
TPH - Crude Oil		ND	mg/kg	20	2.8	EPA-8015B/FFP	ND		1
TPH - Hydraulic Oil / Moto	or Oil	<mark>8.5</mark>	mg/kg	20	6.5	EPA-8015B/FFP	ND	J	1
TPH - WD-40		ND	mg/kg	10	5.0	EPA-8015B/FFP	ND		1
Tetracosane (Surrogate)		74.9	%	30 - 130 (LC	L - UCL)	EPA-8015B/FFP			1

			QC				
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID
1	EPA-8015B/FFP	08/17/17	08/21/17 12:35	AS1	GC-13	0.997	B[H2485

Phase-1 Environmental Services 5216 Hardwood Road Silicon Valley Environmental Group San Jose, CA 95124

Reported:08/28/201711:41Project:MiscProject Number:P5-07-28-17 International BDDProject Manager:Stuart Solomon

BCL Sample ID:	1722687-04	Client Sampl	e Name:	<mark>B2 2.5'</mark> , 8	/10/2017	12:40:00PM, Chris	Solomon		
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	Run #
TPH - Light Naptha		ND	mg/kg	50	20	EPA-8015B/FFP	ND		1
TPH - Aviation Gas		ND	mg/kg	50	20	EPA-8015B/FFP	ND		1
TPH - Stoddard Solvent		ND	mg/kg	20	5.0	EPA-8015B/FFP	ND		1
TPH - Heavy Naptha		ND	mg/kg	10	5.0	EPA-8015B/FFP	ND		1
TPH - Gasoline		ND	mg/kg	20	5.0	EPA-8015B/FFP	ND		1
TPH - Jet Fuel (JP4)		ND	mg/kg	10	5.0	EPA-8015B/FFP	ND		1
TPH - Jet Fuel (JP5)		ND	mg/kg	10	4.6	EPA-8015B/FFP	ND		1
TPH - Jet Fuel (JP8)		ND	mg/kg	10	5.0	EPA-8015B/FFP	ND		1
TPH - Kerosene		ND	mg/kg	10	1.4	EPA-8015B/FFP	ND		1
TPH - Diesel (FFP)		ND	mg/kg	10	1.2	EPA-8015B/FFP	ND		1
TPH - Fuel Oil #6		ND	mg/kg	10	5.0	EPA-8015B/FFP	ND		1
TPH - Crude Oil		ND	mg/kg	20	2.8	EPA-8015B/FFP	ND		1
TPH - Hydraulic Oil / Moto	r Oil	ND	mg/kg	20	6.5	EPA-8015B/FFP	ND		1
TPH - WD-40		ND	mg/kg	10	5.0	EPA-8015B/FFP	ND		1
Tetracosane (Surrogate)		77.0	%	30 - 130 (LC	CL - UCL)	EPA-8015B/FFP			1

			QC				
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID
1	EPA-8015B/FFP	08/17/17	08/21/17 12:57	AS1	GC-13	0.990	B[H2485

Phase-1 Environmental Services 5216 Hardwood Road Silicon Valley Environmental Group San Jose, CA 95124

Reported:08/28/201711:41Project:MiscProject Number:P5-07-28-17 International BDDProject Manager:Stuart Solomon

BCL Sample ID:	1722687-05	Client Sampl	e Name:	<mark>B3 2.5'</mark> , 8	3/10/2017	1:00:00PM, Chris	Solomon		
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	Run #
TPH - Light Naptha		ND	mg/kg	50	20	EPA-8015B/FFP	ND		1
TPH - Aviation Gas		ND	mg/kg	50	20	EPA-8015B/FFP	ND		1
TPH - Stoddard Solvent		ND	mg/kg	20	5.0	EPA-8015B/FFP	ND		1
TPH - Heavy Naptha		ND	mg/kg	10	5.0	EPA-8015B/FFP	ND		1
TPH - Gasoline		ND	mg/kg	20	5.0	EPA-8015B/FFP	ND		1
TPH - Jet Fuel (JP4)		ND	mg/kg	10	5.0	EPA-8015B/FFP	ND		1
TPH - Jet Fuel (JP5)		ND	mg/kg	10	4.6	EPA-8015B/FFP	ND		1
TPH - Jet Fuel (JP8)		ND	mg/kg	10	5.0	EPA-8015B/FFP	ND		1
TPH - Kerosene		ND	mg/kg	10	1.4	EPA-8015B/FFP	ND		1
TPH - Diesel (FFP)		ND	mg/kg	10	1.2	EPA-8015B/FFP	ND		1
TPH - Fuel Oil #6		ND	mg/kg	10	5.0	EPA-8015B/FFP	ND		1
TPH - Crude Oil		ND	mg/kg	20	2.8	EPA-8015B/FFP	ND		1
TPH - Hydraulic Oil / Mot	or Oil	ND	mg/kg	20	6.5	EPA-8015B/FFP	ND		1
TPH - WD-40		ND	mg/kg	10	5.0	EPA-8015B/FFP	ND		1
Tetracosane (Surrogate)		71.4	%	30 - 130 (L0	CL - UCL)	EPA-8015B/FFP			1

			QC				
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID
1	EPA-8015B/FFP	08/17/17	08/21/17 13:20	AS1	GC-13	0.993	B[H2485

Phase-1 Environmental Services 5216 Hardwood Road Silicon Valley Environmental Group San Jose, CA 95124

Reported:08/28/201711:41Project:MiscProject Number:P5-07-28-17 International BDDProject Manager:Stuart Solomon

BCL Sample ID:	1722687-06	Client Sampl	e Name:	<mark>B4 2.5',</mark> 8	8/10/2017	1:15:00PM, Chris	Solomon		
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	Run #
TPH - Light Naptha		ND	mg/kg	50	20	EPA-8015B/FFP	ND		1
TPH - Aviation Gas		ND	mg/kg	50	20	EPA-8015B/FFP	ND		1
TPH - Stoddard Solvent		ND	mg/kg	20	5.0	EPA-8015B/FFP	ND		1
TPH - Heavy Naptha		ND	mg/kg	10	5.0	EPA-8015B/FFP	ND		1
TPH - Gasoline		ND	mg/kg	20	5.0	EPA-8015B/FFP	ND		1
TPH - Jet Fuel (JP4)		ND	mg/kg	10	5.0	EPA-8015B/FFP	ND		1
TPH - Jet Fuel (JP5)		ND	mg/kg	10	4.6	EPA-8015B/FFP	ND		1
TPH - Jet Fuel (JP8)		ND	mg/kg	10	5.0	EPA-8015B/FFP	ND		1
TPH - Kerosene		ND	mg/kg	10	1.4	EPA-8015B/FFP	ND		1
TPH - Diesel (FFP)		ND	mg/kg	10	1.2	EPA-8015B/FFP	ND		1
TPH - Fuel Oil #6		ND	mg/kg	10	5.0	EPA-8015B/FFP	ND		1
TPH - Crude Oil		ND	mg/kg	20	2.8	EPA-8015B/FFP	ND		1
TPH - Hydraulic Oil / Mot	or Oil	<mark>13</mark>	mg/kg	20	6.5	EPA-8015B/FFP	ND	J	1
TPH - WD-40		ND	mg/kg	10	5.0	EPA-8015B/FFP	ND		1
Tetracosane (Surrogate)		69.0	%	30 - 130 (LC	CL - UCL)	EPA-8015B/FFP			1

		QC					
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID
1	EPA-8015B/FFP	08/17/17	08/21/17 13:43	AS1	GC-13	1.010	B[H2485

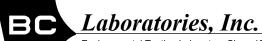
Phase-1 Environmental Services 5216 Hardwood Road Silicon Valley Environmental Group San Jose, CA 95124 Reported:08/28/201711:41Project:MiscProject Number:P5-07-28-17 International BDD

Project Manager: Stuart Solomon

Volatile Organic Analysis (EPA Method 8260B)

BCL Sample ID:	1722687-07	Client Sampl	e Name:	<mark>B5 2.5'</mark> , 8/	B5 2.5 ['] , 8/10/2017 1:30:00PM, Chris Solomon				
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	Run #
Benzene		ND	mg/kg	0.0050	0.0013	EPA-8260B	ND		1
Ethylbenzene		ND	mg/kg	0.0050	0.0015	EPA-8260B	ND		1
Toluene		ND	mg/kg	0.0050	0.0012	EPA-8260B	ND		1
Total Xylenes		ND	mg/kg	0.010	0.0034	EPA-8260B	ND		1
p- & m-Xylenes		ND	mg/kg	0.0050	0.0022	EPA-8260B	ND		1
o-Xylene		ND	mg/kg	0.0050	0.0012	EPA-8260B	ND		1
1,2-Dichloroethane-d4 (Surrogate)	105	%	70 - 121 (LC	L - UCL)	EPA-8260B			1
Toluene-d8 (Surrogate)		103	%	81 - 117 (LC	L - UCL)	EPA-8260B			1
4-Bromofluorobenzene	(Surrogate)	98.9	%	74 - 121 (LC	L - UCL)	EPA-8260B			1

		Run		QC				
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8260B	08/16/17	08/16/17 10:38	ADC	MS-V3	1	B[H1230	



Phase-1 Environmental Services 5216 Hardwood Road Silicon Valley Environmental Group San Jose, CA 95124

Reported:08/28/201711:41Project:MiscProject Number:P5-07-28-17 International BDDProject Manager:Stuart Solomon

BCL Sample ID:	1722687-07	Client Sampl	e Name:	<mark>B5 2.5',</mark> 8	8/10/2017	1:30:00PM, Chris Solomon			
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	Run #
TPH - Light Naptha		ND	mg/kg	50	20	EPA-8015B/FFP	ND		1
TPH - Aviation Gas		ND	mg/kg	50	20	EPA-8015B/FFP	ND		1
TPH - Stoddard Solvent		ND	mg/kg	20	5.0	EPA-8015B/FFP	ND		1
TPH - Heavy Naptha		ND	mg/kg	10	5.0	EPA-8015B/FFP	ND		1
TPH - Gasoline		ND	mg/kg	20	5.0	EPA-8015B/FFP	ND		1
TPH - Jet Fuel (JP4)		ND	mg/kg	10	5.0	EPA-8015B/FFP	ND		1
TPH - Jet Fuel (JP5)		ND	mg/kg	10	4.6	EPA-8015B/FFP	ND		1
TPH - Jet Fuel (JP8)		ND	mg/kg	10	5.0	EPA-8015B/FFP	ND		1
TPH - Kerosene		ND	mg/kg	10	1.4	EPA-8015B/FFP	ND		1
TPH - Diesel (FFP)		ND	mg/kg	10	1.2	EPA-8015B/FFP	ND		1
TPH - Fuel Oil #6		ND	mg/kg	10	5.0	EPA-8015B/FFP	ND		1
TPH - Crude Oil		ND	mg/kg	20	2.8	EPA-8015B/FFP	ND		1
TPH - Hydraulic Oil / Mot	or Oil	ND	mg/kg	20	6.5	EPA-8015B/FFP	ND		1
TPH - WD-40		ND	mg/kg	10	5.0	EPA-8015B/FFP	ND		1
Tetracosane (Surrogate)		77.3	%	30 - 130 (LC	CL - UCL)	EPA-8015B/FFP			1

			Run				QC
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID
1	EPA-8015B/FFP	08/17/17	08/21/17 14:06	AS1	GC-13	0.997	B[H2485

Phase-1 Environmental Services 5216 Hardwood Road Silicon Valley Environmental Group San Jose, CA 95124 Reported:08/28/201711:41Project:MiscProject Number:P5-07-28-17 International BDD

Project Manager: Stuart Solomon

Total Concentrations (TTLC)

BCL Sample ID:	1722687-07	Client Sampl	e Name:	<mark>B5 2.5',</mark> 8/	10/2017	1:30:00PM, Chris	s Solomon		
Constituent		Result	Units	PQL	MDL	Method	TTLC Limits	Lab Quals	Run #
Silver		ND	mg/kg	0.50	0.067	EPA-6010B	500		1

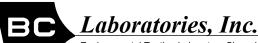
			Run			QC		
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-6010B	08/23/17	08/24/17 16:25	JCC	PE-OP3	0.917	B[H2416	

Phase-1 Environmental Services 5216 Hardwood Road Silicon Valley Environmental Group San Jose, CA 95124

Reported:08/28/201711:41Project:MiscProject Number:P5-07-28-17 International BDDProject Manager:Stuart Solomon

BCL Sample ID:	1722687-08	Client Sampl	e Name:	<mark>B6 2.5',</mark> 8/	/10/2017	2:00:00PM, Chris Solomon			
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	Run #
TPH - Light Naptha		ND	mg/kg	50	20	EPA-8015B/FFP	ND		1
TPH - Aviation Gas		ND	mg/kg	50	20	EPA-8015B/FFP	ND		1
TPH - Stoddard Solvent		ND	mg/kg	20	5.0	EPA-8015B/FFP	ND		1
TPH - Heavy Naptha		ND	mg/kg	10	5.0	EPA-8015B/FFP	ND		1
TPH - Gasoline		ND	mg/kg	20	5.0	EPA-8015B/FFP	ND		1
TPH - Jet Fuel (JP4)		ND	mg/kg	10	5.0	EPA-8015B/FFP	ND		1
TPH - Jet Fuel (JP5)		ND	mg/kg	10	4.6	EPA-8015B/FFP	ND		1
TPH - Jet Fuel (JP8)		ND	mg/kg	10	5.0	EPA-8015B/FFP	ND		1
TPH - Kerosene		ND	mg/kg	10	1.4	EPA-8015B/FFP	ND		1
TPH - Diesel (FFP)		ND	mg/kg	10	1.2	EPA-8015B/FFP	ND		1
TPH - Fuel Oil #6		ND	mg/kg	10	5.0	EPA-8015B/FFP	ND		1
TPH - Crude Oil		ND	mg/kg	20	2.8	EPA-8015B/FFP	ND		1
TPH - Hydraulic Oil / Moto	or Oil	<mark>24</mark>	mg/kg	20	6.5	EPA-8015B/FFP	ND		1
TPH - WD-40		ND	mg/kg	10	5.0	EPA-8015B/FFP	ND		1
Tetracosane (Surrogate)		68.1	%	30 - 130 (LC	CL - UCL)	EPA-8015B/FFP			1

			QC					
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8015B/FFP	08/17/17	08/21/17 15:55	AS1	GC-13	1.014	B[H2485	

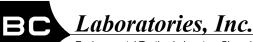


Phase-1 Environmental Services 5216 Hardwood Road Silicon Valley Environmental Group San Jose, CA 95124

Reported: 08/28/2017 11:41 Project: Misc Project Number: P5-07-28-17 International BDD Project Manager: Stuart Solomon

Volatile Organic Analysis (EPA Method 8260B)

	Quality Control	Report - Met	hod Blank	Analysis		
Constituent	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
QC Batch ID: B[H1230						
Benzene	B[H1230-BLK1	ND	mg/kg	0.0050	0.0013	
Ethylbenzene	B[H1230-BLK1	ND	mg/kg	0.0050	0.0015	
Toluene	B[H1230-BLK1	ND	mg/kg	0.0050	0.0012	
Total Xylenes	B[H1230-BLK1	ND	mg/kg	0.010	0.0034	
p- & m-Xylenes	B[H1230-BLK1	ND	mg/kg	0.0050	0.0022	
o-Xylene	B[H1230-BLK1	ND	mg/kg	0.0050	0.0012	
1,2-Dichloroethane-d4 (Surrogate)	B[H1230-BLK1	101	%	70 - 12	1 (LCL - UCL)	
Toluene-d8 (Surrogate)	B[H1230-BLK1	101	%	81 - 11	7 (LCL - UCL)	
4-Bromofluorobenzene (Surrogate)	B[H1230-BLK1	101	%	74 - 12	1 (LCL - UCL)	
QC Batch ID: B[H1652						
Benzene	B[H1652-BLK1	ND	ug/L	0.50	0.083	
Ethylbenzene	B[H1652-BLK1	ND	ug/L	0.50	0.098	
Toluene	B[H1652-BLK1	ND	ug/L	0.50	0.093	
Total Xylenes	B[H1652-BLK1	ND	ug/L	1.0	0.36	
p- & m-Xylenes	B[H1652-BLK1	ND	ug/L	0.50	0.28	
o-Xylene	B[H1652-BLK1	ND	ug/L	0.50	0.082	
1,2-Dichloroethane-d4 (Surrogate)	B[H1652-BLK1	109	%	75 - 12	5 (LCL - UCL)	
Toluene-d8 (Surrogate)	B[H1652-BLK1	94.0	%	80 - 12	0 (LCL - UCL)	
4-Bromofluorobenzene (Surrogate)	B[H1652-BLK1	108	%	80 - 12	0 (LCL - UCL)	



Phase-1 Environmental Services 5216 Hardwood Road Silicon Valley Environmental Group San Jose, CA 95124 Reported:08/28/201711:41Project:MiscProject Number:P5-07-28-17 International BDDProject Manager:Stuart Solomon

Volatile Organic Analysis (EPA Method 8260B)

Quality Control Report - Laboratory Control Sample

						Control Limits			
QC Sample ID	Туре	Result	Spike Level	Units	Percent Recovery	RPD	Percent Recovery	RPD	Lab Quals
B[H1230-BS1	LCS	0.14150	0.12500	mg/kg	113		70 - 130		
B[H1230-BS1	LCS	0.12491	0.12500	mg/kg	99.9		70 - 130		
B[H1230-BS1	LCS	0.046970	0.050000	mg/kg	93.9		70 - 121		
B[H1230-BS1	LCS	0.050560	0.050000	mg/kg	101		81 - 117		
B[H1230-BS1	LCS	0.049570	0.050000	mg/kg	99.1		74 - 121		
B[H1652-BS1	LCS	21.060	25.000	ug/L	84.2		70 - 130		
B[H1652-BS1	LCS	22.810	25.000	ug/L	91.2		70 - 130		
B[H1652-BS1	LCS	9.1300	10.000	ug/L	91.3		75 - 125		
B[H1652-BS1	LCS	9.8800	10.000	ug/L	98.8		80 - 120		
B[H1652-BS1	LCS	11.260	10.000	ug/L	113		80 - 120		
	B[H1230-BS1 B[H1230-BS1 B[H1230-BS1 B[H1230-BS1 B[H1230-BS1 B[H1652-BS1 B[H1652-BS1 B[H1652-BS1 B[H1652-BS1	B[H1230-BS1 LCS B[H1652-BS1 LCS B[H1652-BS1 LCS B[H1652-BS1 LCS B[H1652-BS1 LCS B[H1652-BS1 LCS B[H1652-BS1 LCS	B[H1230-BS1 LCS 0.14150 B[H1230-BS1 LCS 0.12491 B[H1230-BS1 LCS 0.046970 B[H1230-BS1 LCS 0.050560 B[H1230-BS1 LCS 0.049570 B[H1230-BS1 LCS 0.049570 B[H1652-BS1 LCS 21.060 B[H1652-BS1 LCS 22.810 B[H1652-BS1 LCS 9.1300 B[H1652-BS1 LCS 9.8800	QC Sample ID Type Result Level B[H1230-BS1 LCS 0.14150 0.12500 B[H1230-BS1 LCS 0.12491 0.12500 B[H1230-BS1 LCS 0.046970 0.050000 B[H1230-BS1 LCS 0.050560 0.050000 B[H1230-BS1 LCS 0.049570 0.050000 B[H1230-BS1 LCS 0.049570 0.050000 B[H1652-BS1 LCS 21.060 25.000 B[H1652-BS1 LCS 22.810 25.000 B[H1652-BS1 LCS 9.1300 10.000 B[H1652-BS1 LCS 9.8800 10.000	QC Sample ID Type Result Level Units B[H1230-BS1 LCS 0.14150 0.12500 mg/kg B[H1230-BS1 LCS 0.12491 0.12500 mg/kg B[H1230-BS1 LCS 0.046970 0.050000 mg/kg B[H1230-BS1 LCS 0.050560 0.050000 mg/kg B[H1230-BS1 LCS 0.046970 0.050000 mg/kg B[H1230-BS1 LCS 0.049570 0.050000 mg/kg B[H1230-BS1 LCS 21.060 25.000 ug/L B[H1652-BS1 LCS 22.810 25.000 ug/L B[H1652-BS1 LCS 9.1300 10.000 ug/L B[H1652-BS1 LCS 9.8800 10.000 ug/L	QC Sample ID Type Result Level Units Recovery B[H1230-BS1 LCS 0.14150 0.12500 mg/kg 113 B[H1230-BS1 LCS 0.12491 0.12500 mg/kg 99.9 B[H1230-BS1 LCS 0.046970 0.050000 mg/kg 93.9 B[H1230-BS1 LCS 0.050560 0.050000 mg/kg 90.1 B[H1230-BS1 LCS 0.049570 0.050000 mg/kg 90.1 B[H1230-BS1 LCS 21.060 25.000 mg/L 84.2 B[H1652-BS1 LCS 22.810 25.000 ug/L 91.2 B[H1652-BS1 LCS 9.1300 10.000 ug/L 91.3 B[H1652-BS1 LCS 9.8800 10.000 ug/L 98.8	QC Sample ID Type Result Level Units Recovery RPD B[H1230-BS1 LCS 0.14150 0.12500 mg/kg 113 113 B[H1230-BS1 LCS 0.12491 0.12500 mg/kg 99.9 113 B[H1230-BS1 LCS 0.046970 0.050000 mg/kg 93.9 101 B[H1230-BS1 LCS 0.050560 0.050000 mg/kg 99.1 101 B[H1230-BS1 LCS 0.040970 0.050000 mg/kg 99.1 101 B[H1230-BS1 LCS 0.049570 0.050000 mg/kg 99.1 101 B[H1652-BS1 LCS 21.060 25.000 ug/L 84.2 101 B[H1652-BS1 LCS 22.810 25.000 ug/L 91.3 101 B[H1652-BS1 LCS 9.1300 10.000 ug/L 98.8 10.000 10.00/L 10.3	QC Sample IDTypeResultLevelUnitsRecoveryRPDRecoveryB[H1230-BS1LCS0.141500.12500mg/kg11370 - 130B[H1230-BS1LCS0.124910.12500mg/kg99.970 - 130B[H1230-BS1LCS0.0469700.050000mg/kg93.970 - 121B[H1230-BS1LCS0.0505600.050000mg/kg10181 - 117B[H1230-BS1LCS0.0495700.050000mg/kg99.174 - 121B[H1230-BS1LCS0.0495700.050000mg/kg99.174 - 121B[H1652-BS1LCS21.06025.000ug/L84.270 - 130B[H1652-BS1LCS22.81025.000ug/L91.375 - 125B[H1652-BS1LCS9.130010.000ug/L98.880 - 120	QC Sample IDTypeResultLevelUnitsRecoveryRPDRecoveryRPDB[H1230-BS1LCS0.141500.12500mg/kg11370 - 130B[H1230-BS1LCS0.124910.12500mg/kg99.970 - 130B[H1230-BS1LCS0.0469700.050000mg/kg93.970 - 121B[H1230-BS1LCS0.0505600.050000mg/kg10181 - 117B[H1230-BS1LCS0.0495700.050000mg/kg99.174 - 121B[H1230-BS1LCS21.06025.000ug/L84.270 - 130B[H1652-BS1LCS22.81025.000ug/L91.375 - 125B[H1652-BS1LCS9.130010.000ug/L98.880 - 120

Phase-1 Environmental Services 5216 Hardwood Road Silicon Valley Environmental Group San Jose, CA 95124 Reported:08/28/201711:41Project:MiscProject Number:P5-07-28-17 International BDDProject Manager:Stuart Solomon

Volatile Organic Analysis (EPA Method 8260B)

Quality Control Report - Precision & Accuracy

									Cont	rol Limits	
		Source	Source		Spike			Percent		Percent	Lab
Constituent	Туре	Sample ID	Result	Result	Added	Units	RPD	Recovery	RPD	Recovery	Quals
QC Batch ID: B[H1230	Use	d client samp	le: N								
Benzene	 MS	1721660-08	ND	0.10350	0.12500	mg/kg		82.8		70 - 130	
	MSD	1721660-08	ND	0.11266	0.12500	mg/kg	8.5	90.1	20	70 - 130	
Toluene	MS	1721660-08	ND	0.099840	0.12500	mg/kg		79.9		70 - 130	
	MSD	1721660-08	ND	0.099230	0.12500	mg/kg	0.6	79.4	20	70 - 130	
1,2-Dichloroethane-d4 (Surrogate)	MS	1721660-08	ND	0.049540	0.050000	mg/kg		99.1		70 - 121	
	MSD	1721660-08	ND	0.051100	0.050000	mg/kg	3.1	102		70 - 121	
Toluene-d8 (Surrogate)	MS	1721660-08	ND	0.050340	0.050000	mg/kg		101		81 - 117	
	MSD	1721660-08	ND	0.050940	0.050000	mg/kg	1.2	102		81 - 117	
4-Bromofluorobenzene (Surrogate)	MS	1721660-08	ND	0.050990	0.050000	mg/kg		102		74 - 121	
	MSD	1721660-08	ND	0.048600	0.050000	mg/kg	4.8	97.2		74 - 121	
QC Batch ID: B[H1652	Use	d client samp	ole: N								
Benzene	MS	1722106-28	ND	21.190	25.000	ug/L		84.8		70 - 130	
	MSD	1722106-28	ND	20.430	25.000	ug/L	3.7	81.7	20	70 - 130	
Toluene	MS	1722106-28	ND	22.810	25.000	ug/L		91.2		70 - 130	
	MSD	1722106-28	ND	22.150	25.000	ug/L	2.9	88.6	20	70 - 130	
1,2-Dichloroethane-d4 (Surrogate)	MS	1722106-28	ND	9.2000	10.000	ug/L		92.0		75 - 125	
	MSD	1722106-28	ND	8.5500	10.000	ug/L	7.3	85.5		75 - 125	
Toluene-d8 (Surrogate)	MS	1722106-28	ND	9.7100	10.000	ug/L		97.1		80 - 120	
	MSD	1722106-28	ND	9.5100	10.000	ug/L	2.1	95.1		80 - 120	
4-Bromofluorobenzene (Surrogate)	MS	1722106-28	ND	11.780	10.000	ug/L		118		80 - 120	
	MSD	1722106-28	ND	11.830	10.000	ug/L	0.4	118		80 - 120	

Phase-1 Environmental Services 5216 Hardwood Road Silicon Valley Environmental Group San Jose, CA 95124

Reported:08/28/201711:41Project:MiscProject Number:P5-07-28-17Project Manager:Stuart Solomon

Total Petroleum Hydrocarbons

Quality Control Report - Method Blank Analysis

Constituent	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
QC Batch ID: B[H2154						
TPH - Light Naptha	B[H2154-BLK1	ND	ug/L	500	200	
TPH - Aviation Gas	B[H2154-BLK1	ND	ug/L	500	200	
TPH - Stoddard Solvent	B[H2154-BLK1	ND	ug/L	200	100	
TPH - Heavy Naptha	B[H2154-BLK1	ND	ug/L	200	100	
TPH - Gasoline	B[H2154-BLK1	ND	ug/L	500	200	
TPH - Jet Fuel (JP4)	B[H2154-BLK1	ND	ug/L	200	100	
TPH - Jet Fuel (JP5)	B[H2154-BLK1	ND	ug/L	200	130	
TPH - Jet Fuel (JP8)	B[H2154-BLK1	ND	ug/L	200	100	
TPH - Kerosene	B[H2154-BLK1	ND	ug/L	200	57	
TPH - Diesel (FFP)	B[H2154-BLK1	ND	ug/L	200	34	
TPH - Fuel Oil #6	B[H2154-BLK1	ND	ug/L	50	25	
TPH - Crude Oil	B[H2154-BLK1	ND	ug/L	500	140	
TPH - Hydraulic Oil / Motor Oil	B[H2154-BLK1	ND	ug/L	500	66	
TPH - WD-40	B[H2154-BLK1	ND	ug/L	200	100	
Tetracosane (Surrogate)	B[H2154-BLK1	79.0	%	40 - 14	0 (LCL - UCL)	
QC Batch ID: B[H2485						
TPH - Light Naptha	B[H2485-BLK1	ND	mg/kg	50	20	
TPH - Aviation Gas	B[H2485-BLK1	ND	mg/kg	50	20	
TPH - Stoddard Solvent	B[H2485-BLK1	ND	mg/kg	20	5.0	
TPH - Heavy Naptha	B[H2485-BLK1	ND	mg/kg	10	5.0	
TPH - Gasoline	B[H2485-BLK1	ND	mg/kg	20	5.0	
TPH - Jet Fuel (JP4)	B[H2485-BLK1	ND	mg/kg	10	5.0	
TPH - Jet Fuel (JP5)	B[H2485-BLK1	ND	mg/kg	10	4.6	
TPH - Jet Fuel (JP8)	B[H2485-BLK1	ND	mg/kg	10	5.0	
TPH - Kerosene	B[H2485-BLK1	ND	mg/kg	10	1.4	
TPH - Diesel (FFP)	B[H2485-BLK1	ND	mg/kg	10	1.2	
TPH - Fuel Oil #6	B[H2485-BLK1	ND	mg/kg	10	5.0	
TPH - Crude Oil	B[H2485-BLK1	ND	mg/kg	20	2.8	
TPH - Hydraulic Oil / Motor Oil	B[H2485-BLK1	ND	mg/kg	20	6.5	
 TPH - WD-40	B[H2485-BLK1	ND	mg/kg	10	5.0	
Tetracosane (Surrogate)	B[H2485-BLK1	73.1	%	30 - 13	0 (LCL - UCL)	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation.

Phase-1 Environmental Services 5216 Hardwood Road Silicon Valley Environmental Group San Jose, CA 95124

Reported: 08/28/2017 11:41 Project: Misc Project Number: P5-07-28-17 International BDD Project Manager: Stuart Solomon

Total Petroleum Hydrocarbons

Quality Control Report - Laboratory Control Sample

							Control Limits				
				Spike		Percent		Percent		Lab	
Constituent	QC Sample ID	Туре	Result	Level	Units	Recovery	RPD	Recovery	RPD	Quals	
QC Batch ID: B[H2154											
TPH - Diesel (FFP)	B[H2154-BS1	LCS	1818.9	2500.0	ug/L	72.8		52 - 128			
Tetracosane (Surrogate)	B[H2154-BS1	LCS	75.360	100.04	ug/L	75.3		40 - 140			
QC Batch ID: B[H2485											
TPH - Diesel (FFP)	B[H2485-BS1	LCS	64.040	83.333	mg/kg	76.8		64 - 124			
Tetracosane (Surrogate)	B[H2485-BS1	LCS	2.5907	3.3347	mg/kg	77.7		30 - 130			

Phase-1 Environmental Services 5216 Hardwood Road Silicon Valley Environmental Group San Jose, CA 95124 Reported:08/28/201711:41Project:MiscProject Number:P5-07-28-17 International BDDProject Manager:Stuart Solomon

Total Petroleum Hydrocarbons

Quality Control Report - Precision & Accuracy

								Control Limits				
		Source	Source		Spike			Percent		Percent	Lab	
Constituent	Туре	Sample ID	Result	Result	Added	Units	RPD	Recovery	RPD	Recovery	Quals	
QC Batch ID: B[H2154	Use	d client samp	ole: N									
TPH - Diesel (FFP)	MS	1722106-43	ND	1990.7	2500.0	ug/L		79.6		50 - 127		
	MSD	1722106-43	ND	1979.0	2500.0	ug/L	0.6	79.2	24	50 - 127		
Tetracosane (Surrogate)	MS	1722106-43	ND	79.690	100.04	ug/L		79.7		40 - 140		
	MSD	1722106-43	ND	79.435	100.04	ug/L	0.3	79.4		40 - 140		
QC Batch ID: B[H2485	Use	d client samp	ole: Y - Des	cription: B1	2.5', 08/10/2	2017 12:25	5					
TPH - Diesel (FFP)	MS	1722687-03	ND	61.616	83.333	mg/kg		73.9		52 - 131		
	MSD	1722687-03	ND	63.068	83.056	mg/kg	2.3	75.9	30	52 - 131		
Tetracosane (Surrogate)	MS	1722687-03	ND	2.4268	3.3347	mg/kg		72.8		30 - 130		
	MSD	1722687-03	ND	2.4593	3.3236	mg/kg	1.3	74.0		30 - 130		

Phase-1 Environmental Services 5216 Hardwood Road Silicon Valley Environmental Group San Jose, CA 95124

Reported: 08/28/2017 11:41 Project: Misc Project Number: P5-07-28-17 International BDD Project Manager: Stuart Solomon

Total Concentrations (TTLC)

Quality Control Report - Method Blank Analysis

Constituent	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
QC Batch ID: B[H2416						
Silver	B[H2416-BLK1	ND	mg/kg	0.50	0.067	

Phase-1 Environmental Services 5216 Hardwood Road Silicon Valley Environmental Group San Jose, CA 95124

Reported: 08/28/2017 11:41 Project: Misc Project Number: P5-07-28-17 International BDD Project Manager: Stuart Solomon

Total Concentrations (TTLC)

Quality Control Report - Laboratory Control Sample

							Control Limits			
Constituent	QC Sample ID	Туре	Result	Spike Level	Units	Percent Recovery	RPD	Percent Recovery	RPD	Lab Quals
QC Batch ID: B[H2416										
Silver	B[H2416-BS1	LCS	9.1877	10.000	mg/kg	91.9		75 - 125		

Phase-1 Environmental Services 5216 Hardwood Road Silicon Valley Environmental Group San Jose, CA 95124

Reported:08/28/201711:41Project:MiscProject Number:P5-07-28-17 International BDDProject Manager:Stuart Solomon

Total Concentrations (TTLC)

Quality Control Report - Precision & Accuracy

								Control Limits			
		Source	Source		Spike			Percent		Percent	Lab
Constituent	Туре	Sample ID	Result	Result	Added	Units	RPD	Recovery	RPD	Recovery	Quals
			Jet N								
QC Batch ID: B[H2416	Use	d client samp	ne: N								
Silver	DUP	1722556-06	ND	ND		mg/kg			20		
	MS	1722556-06	ND	8.5123	10.000	mg/kg		85.1		75 - 125	
	MSD	1722556-06	ND	8.3923	10.000	mg/kg	1.4	83.9	20	75 - 125	

Phase-1 Environmental Services 5216 Hardwood Road Silicon Valley Environmental Group San Jose, CA 95124

Reported: 08/28/2017 11:41 Project: Misc Project Number: P5-07-28-17 International BDD Project Manager: Stuart Solomon

Notes And Definitions

- MDL Method Detection Limit
- ND Analyte Not Detected
- PQL Practical Quantitation Limit
- A01 Detection and quantitation limits are raised due to sample dilution.
- A53 Chromatogram not typical of gasoline.

Alameda County Public Works Agency - Water Resources Well Permit

399 Elmhurst Street Hayward, CA 94544-1395 Telephone: (510)670-6633 Fax:(510)782-1939

Application Approved	l on: 08/11/2017 By jamesy	Permit Numbers: W2017-0640 Permits Valid from 08/18/2017 to 08/18/2017				
Application Id: Site Location:	1502137482960 255 International Blvd., Oakland, CA 94606	City of Project Site:Oakland				
Project Start Date: Assigned Inspector:	Building and Lot 08/18/2017 Contact Marcelino Vialpando at (510) 670-5760 o	Completion Date:08/18/2017 or Marcelino@acpwa.org				
Applicant:	Phase-1 Environmental Services - Stuart	Phone: 408-406-3850				
Property Owner: Client: Contact:	Solomon 5216 Harwood Road, San Jose, CA 95124 Raymond Zhang 229 International Blvd., Oakland, CA 94606 Raymond Zhang 229 International Blvd., Oakland, CA 94606 Chris Solomon	Phone: 415-671-9932 Phone: 415-671-9932 Phone: 831-422-2290 Cell: 408-406-0833				
	Receipt Number: WR2017-0374	Total Due:	\$265.00 \$265.00			

Receipt Number: WR2017-0374	Total Amount Paid:	\$265.00
Payer Name : Stuart Solomon	Paid By: VISA	PAID IN FULL

Works Requesting Permits:

C---

Borehole(s) for Investigation-Contamination Study - 8 Boreholes Driller: Environmental Restoration Services - Lic #: 589652 - Method: Hand

Work Total: \$265.00

Specificatio	ins					
Permit	Issued Dt	Expire Dt	#	Hole Diam	Max Depth	
Number			Boreholes			
W2017-	08/11/2017	11/16/2017	8	3.00 in.	10 00 ft	
0640						

Specific Work Permit Conditions

1. Backfill bore hole by tremie with cement grout or cement grout/sand mixture. Upper two-three feet replaced in kind or with compacted cuttings. All cuttings remaining or unused shall be containerized and hauled off site. The containers shall be clearly labeled to the ownership of the container and labeled hazardous or non-hazardous.

2. Boreholes shall not be left open for a period of more than 24 hours. All boreholes left open more than 24 hours will need approval from Alameda County Public Works Agency, Water Resources Section. All boreholes shall be backfilled according to permit destruction requirements and all concrete material and asphalt material shall be to Caltrans Spec or County/City Codes. No borehole(s) shall be left in a manner to act as a conduit at any time.

3. Permittee shall assume entire responsibility for all activities and uses under this permit and shall indemnify, defend and save the Alameda County Public Works Agency, its officers, agents, and employees free and harmless from any and all expense, cost, liability in connection with or resulting from the exercise of this Permit including, but not limited to, properly damage, personal injury and wrongful death.

Prior to any drilling activities, it shall be the applicant's responsibility to contact and coordinate an Underground. Service Alert (USA), obtain encroachment permit(s), excavation permit(s) or any other permits or agreements required for that Federal, State, County or City, and follow all City or County Ordinances. No work shall begin until all the permits and requirements have been approved or obtained. It shall also be the applicants responsibilities to provide to the Cities

Alameda County Public Works Agency - Water Resources Well Permit

or to Alameda County an Traffic Safety Plan for any lane closures or detours planned. No work shall begin until all the permits and requirements have been approved or obtained.

5. Applicant shall contact assigned inspector listed on the top of the permit at least five (5) working days prior to starting, once the permit has been approved. Confirm the scheduled date(s) at least 24 hours prior to drilling.

6. Copy of approved drilling permit must be on site at all times. Failure to present or show proof of the approved permit application on site shall result in a fine of \$500.00.

7. Electronic Reporting Regulations (Chapter 30, Division 3 of Title 23 & Division 3 of Title 27, CCR) require electronic submission of any report or data required by a regulatory agency from a cleanup site. Submission dates are set by a Regional Water Board or by a regulatory agency. Once a report/data is successfully uploaded, as required, you have met the reporting requirement (i.e. the compliance measure for electronic submittals is the actual upload itself). The upload date should be on or prior to the regulatory due date.

8. NOTE:

Under California laws, the owner/operator are responsible for reporting the contamination to the governmental regulatory agencies under Section 25295(a). The owner/operator is liable for civil penalties under Section 25299(a)(4) and criminal penalties under Section 25299(d) for failure to report a leak. The owner/operator is liable for civil penalties under Section 25299(b)(4) for knowing failure to ensure compliance with the law by the operator. These penalty provisions do not apply to a potential buyer.

9. Permit is valid only for the purpose specified herein. No changes in construction procedures, as described on this permit application. Boreholes shall not be converted to monitoring wells, without a permit application process.