October 20, 2017

Paresh Khatri Senior Hazardous Materials Specialist, PG, CEG Alameda County Department of Environmental Health 1131 Harbor Bay Parkway Alameda, CA 94502

Email: paresh.khatri@acgov.orq

Subject: 230-240 W. Mac Arthur Blvd Predevelopment Environmental Investigation Summary Alameda County Environmental Health Case Number R00003259 230-240 W. Mac Arthur Blvd, Oakland, CA

Dear Mr. Khatri:

As per your September 6, 2017 email we have enclosed the environmental summary report. I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document is true and correct to the best of my knowledge.

Sincerely,

Stuart Gruendl Principal Bayrock PHG Piedmont, LLC



October 20, 2017 Cardno E317100700.L01

Bayrock PHG Piedmont, LLC 411 Pendleton Way, Suite C Oakland, California 94621

SUBJECT Predevelopment Environmental Investigation Summary Alameda County Environmental Health Case Number RO0003259 230-240 W. Mac Arthur Blvd. Oakland. CA

## Introduction

At the request of Rock Ride Geotechnical, on behalf of Bayrock PHG Piedmont, LLC, Cardno prepared this assessment summary detailing the drilling and sampling of three soil borings at the subject site as part of a coordinated geotechnical and environmental drilling project. The work was performed in accordance with the *Geotechnical Investigation Work Plan*, dated August 16, 2016 (Cardno, 2016).

The purpose of the investigation was to evaluate geotechnical and environmental conditions that may affect site development and to provide preliminary information regarding foundation type and design for a proposed new building at the site. This assessment summary documents field work and environmental conditions encountered. The geotechnical evaluation will be discussed separately.

## **Environmental Assessment**

In September 2017, Cardno performed assessment activities under the direction of the field engineer and in accordance with the *Geotechnical Investigation Work Plan* (Cardno, 2016). Assessment locations were chosen based on historic sampling data, historic site operations locations, and the footprint of the proposed building.

## **Pre-Drilling Activities**

Prior to performing the field work, Underground Service Alert (USA) was notified and a private utility locator was contracted to confirm boring locations were clear of existing utilities.

Rock Ridge Geotechnical obtained the required drilling permit from the Alameda County Public Works Agency.

## Soil Borings

On September 9, 2017, Cardno observed the drilling of 8-inch borings B1 through B3 to 30 feet below ground surface using a truck-mounted drill rig with hollow-stem augers. The augers were steam-cleaned before use and between borings. The borings were continuously logged during drilling. A detailed lithology of the borings is provided in the attached boring logs and cross section maps.

Soil samples were collected from the borings at 1-foot intervals and placed in a self-sealing plastic bag to allow the pore space to volatilize. The headspace in the plastic bags was screened in the field for volatile organic compounds using an organic vapor monitor with a photo-ionization detector equipped with a 10.6 eV bulb. Soil samples with the

Cardno

601 N. McDowell Boulevard Petaluma, CA 94954 USA

 Phone:
 +1 800 382 9105

 Fax:
 +1 707 789 0414

 Contractor:
 #997036

www.cardno.com

October 20, 2017 Cardno E317100700.L01



highest readings and soil samples collected from approximately 17 feet below ground surface (the estimated bottom of the proposed development's lower level parking area) were retained for laboratory analysis.

Groundwater was observed at 6.5 feet below ground surface in boring B1. Groundwater was not observed in borings B2 or B3 during drilling. The borings were left open for two hours to accumulate sufficient groundwater for sample collection. Groundwater samples were obtained from all three borings using dedicated disposal bailers.

#### **Backfilling and Waste Disposal Documentation**

Upon completion, the borings were backfilled with neat cement grout. Soil cuttings from the borings were placed in 55-gallon drums that were temporarily stored on site pending analytical results of the drum contents. Rock Ridge Geotechnical arranged for the off-site disposal of the drums.

#### Laboratory Analysis and Results

The soil and groundwater samples were submitted under chain-of-custody protocol to Eurofins Calscience, Inc., of Garden Grove, California, a state-certified analytical laboratory. Soil and groundwater analytical results from the September 9, 2017 sampling event are summarized in Tables 1 through 3. Soil boring details are included in Table 4. Cumulative historic groundwater data is included in Table 5. Laboratory results and methods are detailed in the attached laboratory reports.

Petroleum hydrocarbons were not detected in soil samples collected from the three borings. Petroleum hydrocarbons and/or chlorinated solvents were detected in groundwater samples collected from the three borings. Maximum concentrations were reported in groundwater samples collected from borings B1 and B2, which were drilled in the location of the former waste oil underground storage tank at Oakland Auto Works and the maximum historic concentrations at the former Shell station, respectively.

## **Conclusions**

The results of the investigation as compared to historic data indicate that residual petroleum concentrations have attenuated since the previous collection of soil samples in similar areas. Based on available data and as shown on the attached cross sections, Cardno believes that an excavation to approximately 17 feet below ground surface to accommodate a subgrade parking garage will remove the majority of residual petroleum concentrations.

As shown on the benzene and total petroleum hydrocarbon as gasoline figures, the dissolved-phase concentrations indicate attenuation since the previous collection of groundwater samples in similar areas (230 West MacArthur in 2011 and 240 West MacArthur in January 2016). The remaining concentrations appear limited in extent. The reported concentrations of tetrachloroethene do not appear to be spatially associated with the petroleum hydrocarbons. The tetrachloroethene concentrations have been previously attributed to the former waste oil underground storage tank but not confirmed.

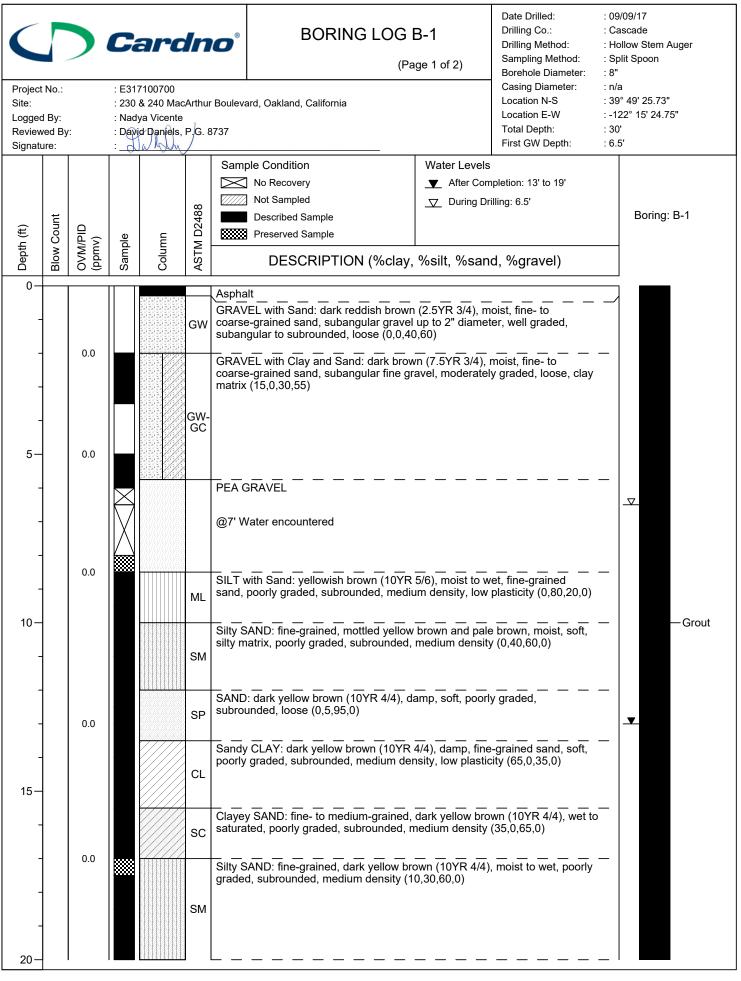
October 20, 2017 Cardno E317100700.L01

Please contact Ms. Janice A. Jacobson, Cardno's project manager for this site, at <u>janice.jacobson@cardno.com</u> or at (707) 766-2000 with any questions.

Sincerely,

Janice A. Jacobson Senior Project Manager for Cardno 707 766 2000 Email: janice.jacobson@cardno.com

David R. Daniels P.G. 8737 for Cardno 707 766 2000 Email: <u>david.daniels@cardno.com</u>

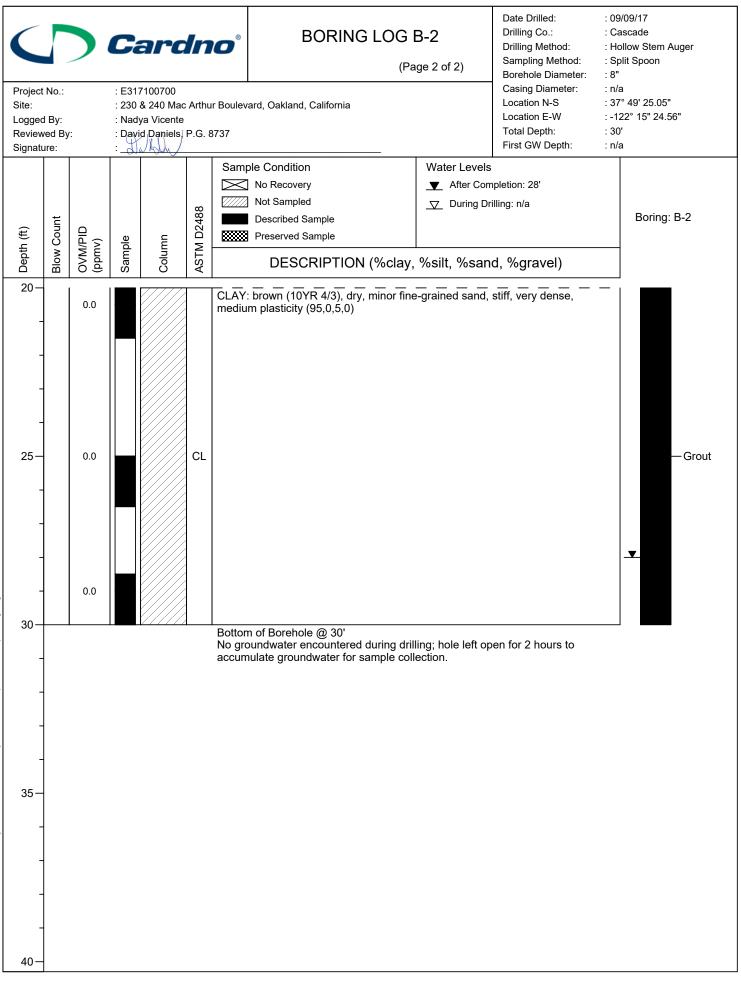



## **Reference:**

 Cardno, Inc. (Cardno). August 16, 2016. Geotechnical Investigation Work Plan, 230 & 240 MacArthur Avenue, Oakland, California.

### **Enclosures:**

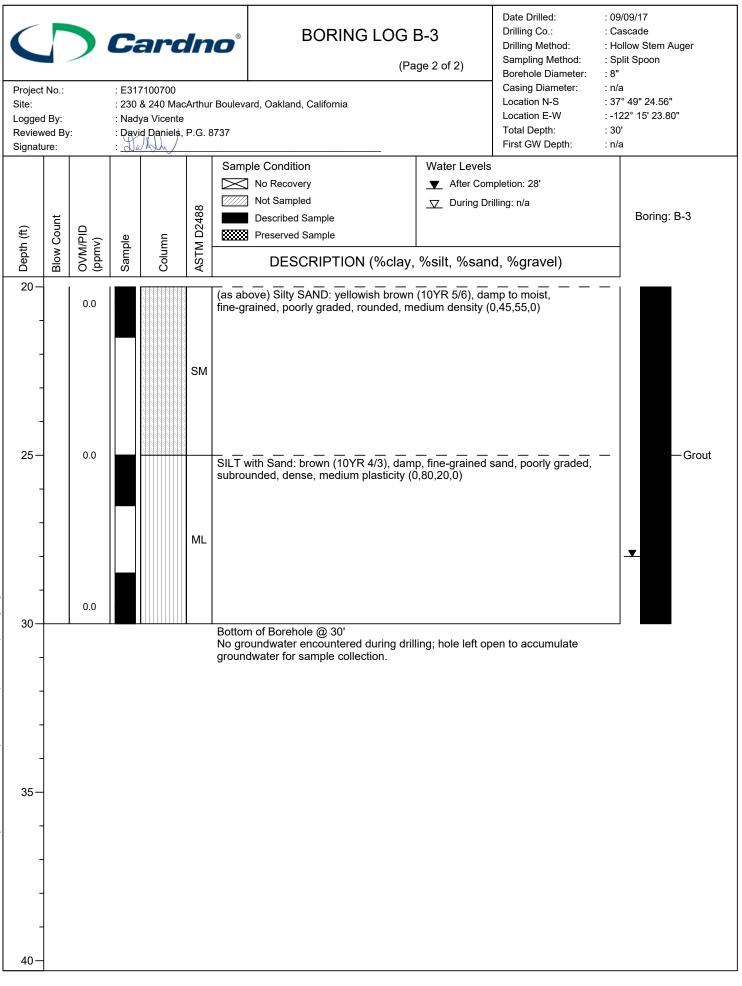
- Boring Logs B1 through B3
- Laboratory Analytical Reports 17-09-0867 and 17-09-0868
- MacArthur Boulevard Tables
- Figures




10-11-2017 L:\CLIENTS\Client Projects\Cardno NRHS\Bayrock Oakland (E317100700)\Boring Logs\B-1.bor

| Project<br>Site:<br>Logged<br>Review<br>Signat | d By:<br>wed By |                   | : E31<br>: 230<br>: Nady<br>: Davi | 7100700<br>& 240 Mac<br>ya Vicente<br>id Daniels, | Arthur     | Bouleva           | BORIN<br>ard, Oakland, California                                                                                                          | IG LOG I<br>(Pa  | B-1<br>ge 2 of 2)                                     | Date Drilled:<br>Drilling Co.:<br>Drilling Method:<br>Sampling Method:<br>Borehole Diameter:<br>Casing Diameter:<br>Location N-S<br>Location E-W<br>Total Depth:<br>First GW Depth: | : 09/09/17<br>: Cascade<br>: Hollow Stem Auger<br>: Split Spoon<br>: 8"<br>: n/a<br>: 39° 49' 25.73"<br>: -122° 15' 24.75"<br>: 30'<br>: 6.5' |
|------------------------------------------------|-----------------|-------------------|------------------------------------|---------------------------------------------------|------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| Depth (ft)                                     | Blow Count      | OVM/PID<br>(ppmv) | Sample                             | Column                                            | ASTM D2488 |                   | ple Condition          No Recovery         Not Sampled         Described Sample         Preserved Sample                                   | )N (%clay,       | During Dri                                            |                                                                                                                                                                                     | Boring: B-1                                                                                                                                   |
| 20-                                            | -               | 0.0               |                                    |                                                   | ML         | grade             | / SILT: yellow brown (<br>d, subrounded, dense<br>brown (10YR 5/3), da                                                                     | , low plasticit  | ty (0,70,30,0)                                        |                                                                                                                                                                                     |                                                                                                                                               |
| 25-                                            | -               |                   |                                    |                                                   | SM<br>CL   | Silty S<br>subrou | y SAND: fine- to medi<br>, poorly graded, subro<br>AND: fine-grained, ye<br>unded, medium densi<br>. brown (10YR 5/6), m<br>ity (95,5,5,0) | bunded, medi<br> | ium density (40,<br>m (10YR 5/4), m<br>)<br>— — — — — | ,0,60,0)<br>noist, poorly graded,<br>                                                                                                                                               | -                                                                                                                                             |
| 30 -                                           | -               |                   |                                    |                                                   |            |                   | n of Borehole @ 30'                                                                                                                        |                  |                                                       |                                                                                                                                                                                     |                                                                                                                                               |
|                                                | -               |                   |                                    |                                                   |            |                   |                                                                                                                                            |                  |                                                       |                                                                                                                                                                                     |                                                                                                                                               |
| 40-                                            |                 |                   |                                    |                                                   |            |                   |                                                                                                                                            |                  |                                                       |                                                                                                                                                                                     |                                                                                                                                               |

|                                                 |                 |                   | Cá             | arc                       | In         | o®                        | BORING LOG I                                                                                                                                                   | <b>3-2</b><br>ge 1 of 2)                                | Date Drilled:<br>Drilling Co.:<br>Drilling Method:<br>Sampling Method:<br>Borehole Diameter: | : 09/09/17<br>: Cascade<br>: Hollow Stem Auger<br>: Split Spoon<br>: 8" |  |
|-------------------------------------------------|-----------------|-------------------|----------------|---------------------------|------------|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|--|
| Project<br>Site:<br>Loggec<br>Review<br>Signatu | l By:<br>ved By | :                 | : 230<br>: Nad | ya Vicente<br>id Daniels, |            |                           | levard, Oakland, California                                                                                                                                    |                                                         | Casing Diameter:<br>Location N-S<br>Location E-W<br>Total Depth:<br>First GW Depth:          | : n/a<br>: 37° 49' 25.05"<br>: -122° 15" 24.56"<br>: 30'<br>: n/a       |  |
| Depth (ft)                                      | Blow Count      | OVM/PID<br>(ppmv) | Sample         | Column                    | ASTM D2488 |                           | ple Condition No Recovery Not Sampled Described Sample Preserved Sample DESCRIPTION (%clay,                                                                    | Water Levels<br>After Com<br>During Dri<br>%silt, %sand | lling: n/a                                                                                   | Boring: B-2                                                             |  |
| 0                                               |                 |                   |                |                           | CL         | coarse                    | with Sand and Gravel: dark red br<br>e-grained sand, fine gravel, modera<br>unded, loose (60,0,25,15)                                                          |                                                         |                                                                                              | -                                                                       |  |
| -                                               |                 |                   |                |                           | CL         | very d                    | : dark yellow brown (10YR 4/6), da<br>lense, low to medium plasticity (95                                                                                      | ,0,5,0)                                                 |                                                                                              | _                                                                       |  |
| -<br>5-                                         |                 | 0.0               | $\times$       |                           | CL         | sand,                     | / CLAY: mottled dark yellow brown<br>stiff, poorly graded, subrounded, v<br>0,30,0)                                                                            | and pale gray,<br>ery dense, low                        | damp, fine-grained<br>plasticity                                                             |                                                                         |  |
| - 5                                             |                 | 0.0               |                |                           | GW<br>ML   | diame<br>(10,0,1<br>Sandy | /EL with Sand: light gray, yellow br<br>ter, fine- to medium-grained sand,<br>20,70)<br>/ SILT: pale gray and yellow brown<br>poorly graded, subrounded, dense | well graded, su                                         | bangular, loose                                                                              |                                                                         |  |
| -                                               |                 |                   |                |                           | SM         | Silty S<br>grade          | AND: fine-grained, dark yellow bro<br>d, subrounded, medium density (0,                                                                                        | own (10YR 4/4),<br>45,55,0)                             |                                                                                              |                                                                         |  |
| -                                               |                 |                   |                |                           | SM         | grade                     | SAND: fine-grained, pale brown (10<br>d, subrounded, medium density (0,                                                                                        | 40,60,0)                                                | slity matrix, poorly                                                                         |                                                                         |  |
| 10—<br>-                                        |                 | 0.3<br>0.8        |                |                           | CL         | sand,                     | / CLAY: grayish green (10Y to 5GY<br>soft, poorly graded, subrounded, n<br>ity (60,0,40,0)                                                                     | 75/2), moist, fin<br>nedium density                     | e- to medium-grained<br>to dense, low                                                        | Grout                                                                   |  |
| -                                               |                 | 0.0               |                |                           | SM         | Silty S<br>subro          | AND: fine-grained, grayish brown<br>unded, loose (0,45,55,0)                                                                                                   | (10YR 5/2), soft                                        | t, poorly graded,                                                                            | -                                                                       |  |
| 15—                                             |                 | 0.2               |                |                           |            |                           | Grayish green<br>                                                                                                                                              | <br>subrounded, ve                                      | ry dense, medium                                                                             | _                                                                       |  |
| -                                               |                 | 1.2<br>0.8        |                |                           | CL         |                           | city (95,0,5,0)                                                                                                                                                |                                                         |                                                                                              |                                                                         |  |
| 20—                                             |                 |                   |                |                           |            |                           |                                                                                                                                                                |                                                         |                                                                                              |                                                                         |  |


10-11-2017 L:/CLIENTS/Client Projects/Cardno NRHS/Bayrock Oakland (E317100700)/Boring Logs/B-2.bor



10-11-2017 L:\CLIENTS\Client Projects\Cardno NRHS\Bayrock Oakland (E317100700)\Boring Logs\B-2.bor

|                                                 |                 |                   | Cá             | arc                                              | In         | 0                 | BORING LO                                                                                                                     |                          | <b>B-3</b><br>ge 1 of 2)                                                            | Date Drilled:<br>Drilling Co.:<br>Drilling Method:<br>Sampling Method:<br>Borehole Diameter: | : Cas<br>: Hol                         | 09/17<br>scade<br>low Stem Auger<br>it Spoon |
|-------------------------------------------------|-----------------|-------------------|----------------|--------------------------------------------------|------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------|--------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------|----------------------------------------------|
| Project<br>Site:<br>Logged<br>Review<br>Signatu | l By:<br>/ed By | :                 | : 230<br>: Nad | 7100700<br>& 240 Mac<br>ya Vicente<br>d Daniels, |            |                   | ard, Oakland, California                                                                                                      |                          | Casing Diameter:<br>Location N-S<br>Location E-W<br>Total Depth:<br>First GW Depth: | : n/a<br>: 37°<br>: -12<br>: 30'                                                             | : 37° 49" 24.56"<br>: -122° 15' 23.80" |                                              |
| Depth (ft)                                      | Blow Count      | OVM/PID<br>(ppmv) | Sample         | Column                                           | ASTM D2488 | Samı              | ble Condition<br>No Recovery<br>Not Sampled<br>Described Sample<br>Preserved Sample<br>DESCRIPTION (%c                        | slay,                    | Water Levels<br>After Com<br>During Dri<br>%silt, %san                              | lling: n/a                                                                                   |                                        | Boring: B-3                                  |
| 0                                               |                 |                   |                |                                                  |            | coarse<br>(60,0,2 | with Sand and Gravel: dark re-<br>e-grained sand, fine gravel, m                                                              | oder                     | ately graded, su                                                                    | ıbangular, loose                                                                             | _                                      |                                              |
| -                                               |                 |                   |                |                                                  | CL         | Sandy<br>sand,    | CLAY: mottled yellow brown<br>poorly graded, subrounded, k                                                                    | and<br>oose,             | pale gray, fine-<br>, low plasticity (6                                             | to medium-grained<br>50,0,40,0)                                                              | -                                      |                                              |
| 5—                                              |                 | 0.0               |                |                                                  | SM         | grade<br>Silty S  | with Sand: dark brown (7.5YI<br>d, subrounded, medium densi<br>AND with Gravel: fine-grained<br>ne gravel, moderately graded, | ity <u>,</u> lo<br>d, mo | w plasticity (80,<br>ottled yellow bro                                              | 10,20,0)<br>wn and pale gray,                                                                |                                        |                                              |
| _                                               |                 | 0.0               |                |                                                  | SМ         | Silty S<br>matrix | AND: fine- to medium-grained<br>, poorly graded, rounded, me                                                                  | d, gra<br>dium           | ayish brown (2.5<br>density (0,30,7                                                 | 5¥ 5/2), moist, silty<br>0,0)                                                                | _                                      |                                              |
| -<br>10—                                        |                 | 0.0               |                |                                                  |            | grade             | v SILT: yellow brown (10YR 5/<br>d, subrounded, medium densi<br>Grayish brown (2.5YR 5/2)                                     | /6), d<br>ity (0         | amp, fine-graine<br>,60,40,0)                                                       | ed sand, soft, poorly                                                                        |                                        | — Grout                                      |
| -                                               |                 | 0.0               |                |                                                  |            | SILT              | er coarse-grained sand and gi<br>vith Sand: olive gray (5Y 5/5),<br>unded, medium density, low p                              | , moi                    | st, fine-grained                                                                    | <br>sand, poorly graded,                                                                     |                                        |                                              |
| -<br>15—                                        |                 | 0.0               |                |                                                  | ML         |                   |                                                                                                                               |                          |                                                                                     |                                                                                              | _                                      |                                              |
| -                                               |                 |                   |                |                                                  | sw         | moist,            | with Gravel: fine- to coarse-g<br>fine gravel, moderately grade                                                               | ed, su                   | ubrounded, loos                                                                     | e (0,0,75,25)                                                                                | _                                      |                                              |
| -                                               |                 |                   |                |                                                  | CL         | (95,0,            |                                                                                                                               |                          |                                                                                     |                                                                                              | _                                      |                                              |
| -<br>20—                                        |                 |                   |                |                                                  | SM         | grade             |                                                                                                                               | 0,45,                    | 55,0)<br>                                                                           |                                                                                              | _                                      |                                              |

10-11-2017 L:/CLIENTS/Client Projects/Cardno NRHS/Bayrock Oakland (E317100700)/Boring Logs/B-3.bor



10-11-2017 L:\CLIENTS\Client Projects\Cardno NRHS\Bayrock Oakland (E317100700)\Boring Logs\B-3.bor

# Calscience

# WORK ORDER NUMBER: 17-09-0867

## The difference is service

🔅 eurofins



AIR | SOIL | WATER | MARINE CHEMISTRY

Analytical Report For Client: Cardno ERI Client Project Name: E317100700 Attention: Glen Smith 601 North McDowell Blvd. Petaluma, CA 94954-2312

Nicole Scott

Approved for release on 09/21/2017 by: Nicole Scott Project Manager

ResultLink ▶

Email your PM >

Eurofins Calscience, Inc. (Calscience) certifies that the test results provided in this report meet all NELAC requirements for parameters for which accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The original report of subcontracted analyses, if any, is attached to this report. The results in this report are limited to the sample(s) tested and any reproduction thereof must be made in its entirety. The client or recipient of this report is specifically prohibited from making material changes to said report and, to the extent that such changes are made, Calscience is not responsible, legally or otherwise. The client or recipient agrees to indemnify Calscience for any defense to any litigation which may arise.

7440 Lincoln Way, Garden Grove, CA 92841-1432 \* TEL: (714) 895-5494 \* FAX: (714) 894-7501 \* www.calscience.com

CA ELAP ID: 2944 | ACLASS DoD-ELAP ID: ADE-1864 (ISO/IEC 17025:2005) | CSDLAC ID: 10109

## 🔅 eurofins

Calscience

## Contents

| Client Project Name: | E317100700 |
|----------------------|------------|
| Work Order Number:   | 17-09-0867 |

| 1 | Work Order Narrative                 | 3                |
|---|--------------------------------------|------------------|
| 2 | Client Sample Data                   | 4<br>4<br>6<br>8 |
| 3 | Quality Control Sample Data          | 29<br>29<br>33   |
| 4 | Sample Analysis Summary              | 37               |
| 5 | Glossary of Terms and Qualifiers.    | 38               |
| 6 | Chain-of-Custody/Sample Receipt Form | 39               |

Work Order: 17-09-0867

Page 1 of 1

## **Condition Upon Receipt:**

Samples were received under Chain-of-Custody (COC) on 09/13/17. They were assigned to Work Order 17-09-0867.

Unless otherwise noted on the Sample Receiving forms all samples were received in good condition and within the recommended EPA temperature criteria for the methods noted on the COC. The COC and Sample Receiving Documents are integral elements of the analytical report and are presented at the back of the report.

## Holding Times:

All samples were analyzed within prescribed holding times (HT) and/or in accordance with the Calscience Sample Acceptance Policy unless otherwise noted in the analytical report and/or comprehensive case narrative, if required.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

## **Quality Control:**

All quality control parameters (QC) were within established control limits except where noted in the QC summary forms or described further within this report.

## Subcontractor Information:

Unless otherwise noted below (or on the subcontract form), no samples were subcontracted.

## Additional Comments:

Air - Sorbent-extracted air methods (EPA TO-4A, EPA TO-10, EPA TO-13A, EPA TO-17): Analytical results are converted from mass/sample basis to mass/volume basis using client-supplied air volumes.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are always reported on a wet weight basis.



## **Analytical Report**

| S-17-B1                             | 17-09-0867-2-A       | 09/09/17<br>09:50      | Solid       | GC 47             | 09/15/17           | 09/18/17<br>15:49     | 170915B06B  |  |
|-------------------------------------|----------------------|------------------------|-------------|-------------------|--------------------|-----------------------|-------------|--|
|                                     |                      |                        |             |                   |                    |                       |             |  |
| n-Octacosane                        |                      | 93                     |             | 61-145            |                    |                       |             |  |
| Surrogate                           |                      | <u>Rec. (%)</u>        |             | Control Limits    | <u>Qualifiers</u>  |                       |             |  |
| TPH as Motor Oil                    |                      | ND                     |             | 4.9               | 1.00               |                       |             |  |
| TPH as Diesel                       |                      | ND                     |             | 4.9               | 1.00               |                       |             |  |
| Parameter                           |                      | <u>Result</u>          |             | <u>RL</u>         | DF                 | Qua                   | lifiers     |  |
| Comment(s): - Motor Oil Range Organ | ics (C17-C44) uses a | Diesel Range (         | Organics (C | C10-C28) standard | for quantitation a | and quality cont      | rol.        |  |
| S-8-B1                              | 17-09-0867-1-A       | 09/09/17<br>09:00      | Solid       | GC 47             | 09/15/17           | 09/18/17<br>15:28     | 170915B06B  |  |
| Client Sample Number                | Lab Sample<br>Number | Date/Time<br>Collected | Matrix      | Instrument        | Date<br>Prepared   | Date/Time<br>Analyzed | QC Batch ID |  |
| Project: E317100700                 |                      |                        |             |                   |                    | Pa                    | ge 1 of 2   |  |
|                                     |                      |                        | Units:      |                   |                    |                       | mg/k        |  |
|                                     |                      |                        | Method:     |                   |                    | E                     | PA 8015B (N |  |
| Petaluma, CA 94954-2312             |                      |                        | Preparat    |                   | EPA 3550           |                       |             |  |
| 601 North McDowell Blvd.            |                      |                        | Work Or     |                   |                    | 17-09-08              |             |  |
| Cardno ERI                          |                      |                        | Date Re     |                   |                    |                       | 09/13/1     |  |
| a ·                                 |                      |                        |             |                   |                    |                       | 00/40/4     |  |

| Comment(s):    | - Motor Oil Range Organics (C17-C44) uses a D | Diesel Range Organics | (C10-C28) standard fo | r quantitation and quali | ty control.       |
|----------------|-----------------------------------------------|-----------------------|-----------------------|--------------------------|-------------------|
| Parameter      |                                               | <u>Result</u>         | <u>RL</u>             | DF                       | <u>Qualifiers</u> |
| TPH as Diesel  |                                               | ND                    | 5.0                   | 1.00                     |                   |
| TPH as Motor C | Dil                                           | ND                    | 5.0                   | 1.00                     |                   |
|                |                                               |                       |                       |                          |                   |
| Surrogate      |                                               | <u>Rec. (%)</u>       | Control Limits        | <u>Qualifiers</u>        |                   |
| n-Octacosane   |                                               | 95                    | 61-145                |                          |                   |
|                |                                               |                       |                       |                          |                   |

| S-11-B2                               | 17-09-0867-3-A       | 09/09/17<br>13:40 | Solid GC          | 47 09/15/17              | 09/18/17<br>16:11 | 170915B06B      |
|---------------------------------------|----------------------|-------------------|-------------------|--------------------------|-------------------|-----------------|
| Comment(s): - Motor Oil Range Organic | s (C17-C44) uses a l | Diesel Range O    | rganics (C10-C28) | standard for quantitatio | n and quality con | trol.           |
| Parameter                             |                      | <u>Result</u>     | <u>RL</u>         | DF                       | <u>Qu</u>         | <u>alifiers</u> |
| TPH as Diesel                         |                      | ND                | 5.0               | 1.00                     |                   |                 |
| TPH as Motor Oil                      |                      | ND                | 5.0               | 1.00                     |                   |                 |
|                                       |                      |                   |                   |                          |                   |                 |
| Surrogate                             |                      | <u>Rec. (%)</u>   | <u>Control L</u>  | <u>_imits</u> Qualifiers | <u>6</u>          |                 |
| n-Octacosane                          |                      | 90                | 61-145            |                          |                   |                 |

| S-16.5-B2                             | 17-09-0867-4-A       | 09/09/17<br>14:00 | Solid         | GC 47         | 09/15/17           | 09/18/17<br>16:33 | 170915B06B      |
|---------------------------------------|----------------------|-------------------|---------------|---------------|--------------------|-------------------|-----------------|
| Comment(s): - Motor Oil Range Organic | s (C17-C44) uses a l | Diesel Range Or   | ganics (C10-0 | C28) standard | d for quantitation | and quality con   | trol.           |
| Parameter                             |                      | <u>Result</u>     | <u>RL</u>     |               | <u>DF</u>          | <u>Qua</u>        | <u>alifiers</u> |
| TPH as Diesel                         |                      | ND                | 5.0           |               | 1.00               |                   |                 |
| TPH as Motor Oil                      |                      | ND                | 5.0           |               | 1.00               |                   |                 |
|                                       |                      |                   |               |               |                    |                   |                 |
| <u>Surrogate</u>                      |                      | <u>Rec. (%)</u>   | <u>Cor</u>    | ntrol Limits  | <u>Qualifiers</u>  |                   |                 |
| n-Octacosane                          |                      | 88                | 61-           | 145           |                    |                   |                 |



| Cardno ERI                                                                                                                                               |                      |                                                                                              | Date Re     | ceived:                                                                                                                                         |                                                                                  |                                              | 09/13/17                      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------------------------------------------------------------------------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------|-------------------------------|
| 601 North McDowell Blvd.                                                                                                                                 |                      |                                                                                              | Work Or     | der:                                                                                                                                            |                                                                                  |                                              | 17-09-0867                    |
| Petaluma, CA 94954-2312                                                                                                                                  |                      |                                                                                              | Preparat    | ion:                                                                                                                                            |                                                                                  |                                              | EPA 3550B                     |
|                                                                                                                                                          |                      |                                                                                              | Method:     |                                                                                                                                                 |                                                                                  | E                                            | PA 8015B (M)                  |
|                                                                                                                                                          |                      |                                                                                              | Units:      |                                                                                                                                                 |                                                                                  |                                              | mg/kg                         |
| Project: E317100700                                                                                                                                      |                      |                                                                                              |             |                                                                                                                                                 |                                                                                  | Pa                                           | ge 2 of 2                     |
|                                                                                                                                                          | Lab Sample<br>Number | Date/Time<br>Collected                                                                       | Matrix      | Instrument                                                                                                                                      | Date<br>Prepared                                                                 | Date/Time<br>Analyzed                        | QC Batch ID                   |
| S-17-B2                                                                                                                                                  | 17-09-0867-5-A       | 09/09/17<br>14:10                                                                            | Solid       | GC 47                                                                                                                                           | 09/15/17                                                                         | 09/18/17<br>16:54                            | 170915B06B                    |
| Comment(s): - Motor Oil Range Organics (                                                                                                                 | C17-C44) uses a D    | Diesel Range C                                                                               | Drganics (C | 10-C28) standard                                                                                                                                | for quantitation a                                                               | and quality cont                             | rol.                          |
| Parameter                                                                                                                                                |                      | Result                                                                                       |             | <u>RL</u>                                                                                                                                       | <u>DF</u>                                                                        | Qua                                          | lifiers                       |
| TPH as Diesel                                                                                                                                            |                      | ND                                                                                           |             | 5.1                                                                                                                                             | 1.00                                                                             |                                              |                               |
| TPH as Motor Oil                                                                                                                                         |                      | ND                                                                                           |             | 5.1                                                                                                                                             | 1.00                                                                             |                                              |                               |
| Surrogate                                                                                                                                                |                      | <u>Rec. (%)</u>                                                                              |             | Control Limits                                                                                                                                  | <u>Qualifiers</u>                                                                |                                              |                               |
| n-Octacosane                                                                                                                                             |                      | 89                                                                                           |             | 61-145                                                                                                                                          |                                                                                  |                                              |                               |
| S-17-B3                                                                                                                                                  | 17-09-0867-6-A       | 09/09/17<br>16:00                                                                            | Solid       | GC 47                                                                                                                                           | 09/15/17                                                                         | 09/18/17<br>17:17                            | 170915B06B                    |
| Comment(s): - Motor Oil Range Organics (                                                                                                                 | C17-C44) uses a D    | Diesel Range (                                                                               | )ranning (C | 10.000) standard                                                                                                                                | for quantitation a                                                               | and quality cont                             | rol.                          |
| Parameter                                                                                                                                                |                      | leser range e                                                                                | Jiganics (C | (10-C28) standard                                                                                                                               |                                                                                  |                                              |                               |
|                                                                                                                                                          | ,                    | Result                                                                                       | Jiganics (C | <u>RL</u>                                                                                                                                       | DF                                                                               |                                              | <u>llifiers</u>               |
| TPH as Diesel                                                                                                                                            | . ,                  | •                                                                                            | Jiganics (C | ,                                                                                                                                               |                                                                                  |                                              | lifiers                       |
|                                                                                                                                                          |                      | Result                                                                                       | nganics (C  | RL                                                                                                                                              | DF                                                                               |                                              | <u>lifiers</u>                |
| TPH as Diesel                                                                                                                                            |                      | <u>Result</u><br>ND                                                                          | organics (C | <u>RL</u><br>5.0                                                                                                                                | <u>DF</u><br>1.00                                                                |                                              | lifiers                       |
| TPH as Diesel<br>TPH as Motor Oil                                                                                                                        |                      | <u>Result</u><br>ND<br>ND                                                                    | organics (C | <u>RL</u><br>5.0<br>5.0                                                                                                                         | DE<br>1.00<br>1.00                                                               |                                              | <u>llifiers</u>               |
| TPH as Diesel<br>TPH as Motor Oil<br><u>Surrogate</u><br>n-Octacosane                                                                                    | 099-14-353-35        | <u>Result</u><br>ND<br>ND<br><u>Rec. (%)</u>                                                 | Solid       | RL<br>5.0<br>5.0<br>Control Limits                                                                                                              | DE<br>1.00<br>1.00                                                               | Qua<br>09/18/17                              | <u>llifiers</u><br>170915B06B |
| TPH as Diesel<br>TPH as Motor Oil<br><u>Surrogate</u><br>n-Octacosane                                                                                    | 099-14-353-35        | Result           ND           Rec. (%)           81                                          | Solid       | RL           5.0         5.0           5.0         61-145           GC 47                                                                       | DF<br>1.00<br>1.00<br>Qualifiers<br>09/15/17                                     | Qua<br>09/18/17<br>11:27                     | 170915B06B                    |
| TPH as Diesel<br>TPH as Motor Oil<br><u>Surrogate</u><br>n-Octacosane<br>Method Blank                                                                    | 099-14-353-35        | Result           ND           Rec. (%)           81                                          | Solid       | RL           5.0         5.0           5.0         61-145           GC 47                                                                       | DF<br>1.00<br>1.00<br>Qualifiers<br>09/15/17                                     | Qua<br>09/18/17<br>11:27<br>and quality cont | 170915B06B                    |
| TPH as Diesel<br>TPH as Motor Oil<br><u>Surrogate</u><br>n-Octacosane<br>Method Blank<br>Comment(s): - Motor Oil Range Organics (                        | 099-14-353-35        | Result<br>ND<br>ND<br><u>Rec. (%)</u><br>81<br><b>N/A</b><br>Diesel Range C                  | Solid       | RL           5.0           5.0           61-145           GC 47           C10-C28) standard                                                     | DE<br>1.00<br>1.00<br>Qualifiers<br>09/15/17<br>for quantitation a               | Qua<br>09/18/17<br>11:27<br>and quality cont | <b>170915B06B</b><br>rol.     |
| TPH as Diesel TPH as Motor Oil Surrogate n-Octacosane Method Blank Comment(s): - Motor Oil Range Organics ( Parameter                                    | 099-14-353-35        | Result<br>ND<br>ND<br><u>Rec. (%)</u><br>81<br><b>N/A</b><br>Diesel Range C<br><u>Result</u> | Solid       | RL           5.0           5.0           Control Limits           61-145           GC 47           C10-C28) standard           RL               | DF<br>1.00<br>1.00<br>Qualifiers<br>09/15/17<br>for quantitation a<br>DF         | Qua<br>09/18/17<br>11:27<br>and quality cont | <b>170915B06B</b><br>rol.     |
| TPH as Diesel<br>TPH as Motor Oil<br>Surrogate<br>n-Octacosane<br>Method Blank<br>Comment(s): - Motor Oil Range Organics (<br>Parameter<br>TPH as Diesel | 099-14-353-35        | Result<br>ND<br>ND<br>81<br><b>N/A</b><br>Diesel Range C<br><u>Result</u><br>ND              | Solid       | RL           5.0           5.0           Control Limits           61-145           GC 47           C10-C28) standard           RL           5.0 | DF<br>1.00<br>1.00<br>Qualifiers<br>09/15/17<br>for quantitation a<br>DF<br>1.00 | Qua<br>09/18/17<br>11:27<br>and quality cont | <b>170915B06B</b><br>rol.     |

**Return to Contents** 



| Cardno ERI                   |                      |                        | Date Re | eceived:       |                   |                       | 09/13/17     |  |
|------------------------------|----------------------|------------------------|---------|----------------|-------------------|-----------------------|--------------|--|
| 601 North McDowell Blvd.     |                      |                        | Work O  | rder:          |                   |                       | 17-09-0867   |  |
| Petaluma, CA 94954-2312      |                      |                        | Prepara | ition:         |                   | EPA 5030C             |              |  |
|                              |                      |                        | Method: | :              |                   | E                     | PA 8015B (M) |  |
|                              |                      |                        | Units:  |                |                   |                       | mg/kg        |  |
| Project: E317100700          |                      |                        |         |                |                   | Pa                    | age 1 of 2   |  |
| Client Sample Number         | Lab Sample<br>Number | Date/Time<br>Collected | Matrix  | Instrument     | Date<br>Prepared  | Date/Time<br>Analyzed | QC Batch ID  |  |
| S-8-B1                       | 17-09-0867-1-A       | 09/09/17<br>09:00      | Solid   | GC 57          | 09/13/17          | 09/14/17<br>17:01     | 170914L020   |  |
| Parameter                    |                      | Result                 |         | RL             | DE                | Qua                   | alifiers     |  |
| TPH as Gasoline              |                      | ND                     |         | 0.49           | 1.00              |                       |              |  |
| Surrogate                    |                      | <u>Rec. (%)</u>        |         | Control Limits | Qualifiers        |                       |              |  |
| 1,4-Bromofluorobenzene - FID |                      | 54                     |         | 42-126         |                   |                       |              |  |
| S-17-B1                      | 17-09-0867-2-A       | 09/09/17<br>09:50      | Solid   | GC 57          | 09/15/17          | 09/15/17<br>12:12     | 170915L019   |  |
| Parameter                    |                      | Result                 |         | RL             | DF                | Qua                   | alifiers     |  |
| TPH as Gasoline              |                      | ND                     |         | 0.51           | 1.00              |                       |              |  |
| Surrogate                    |                      | <u>Rec. (%)</u>        |         | Control Limits | Qualifiers        |                       |              |  |
| 1,4-Bromofluorobenzene - FID |                      | 53                     |         | 42-126         |                   |                       |              |  |
| S-11-B2                      | 17-09-0867-3-A       | 09/09/17<br>13:40      | Solid   | GC 57          | 09/13/17          | 09/14/17<br>18:05     | 170914L020   |  |
| Parameter                    |                      | Result                 |         | RL             | DF                | Qua                   | alifiers     |  |
| TPH as Gasoline              |                      | ND                     |         | 0.51           | 1.00              |                       |              |  |
| Surrogate                    |                      | <u>Rec. (%)</u>        |         | Control Limits | <u>Qualifiers</u> |                       |              |  |
| 1,4-Bromofluorobenzene - FID |                      | 59                     |         | 42-126         |                   |                       |              |  |
| S-16.5-B2                    | 17-09-0867-4-A       | 09/09/17<br>14:00      | Solid   | GC 57          | 09/13/17          | 09/14/17<br>12:38     | 170914L020   |  |
| Parameter                    |                      | Result                 |         | RL             | DF                | Qua                   | alifiers     |  |
| TPH as Gasoline              |                      | ND                     |         | 0.50           | 1.00              |                       |              |  |
| Surrogate                    |                      | <u>Rec. (%)</u>        |         | Control Limits | <u>Qualifiers</u> |                       |              |  |
| 1,4-Bromofluorobenzene - FID |                      | 52                     |         | 42-126         |                   |                       |              |  |
| S-17-B2                      | 17-09-0867-5-A       | 09/09/17<br>14:10      | Solid   | GC 57          | 09/13/17          | 09/14/17<br>18:37     | 170914L020   |  |
| Parameter                    |                      | Result                 |         | RL             | DF                | Qua                   | alifiers     |  |
| TPH as Gasoline              |                      | ND                     |         | 0.48           | 1.00              |                       |              |  |
|                              |                      |                        |         |                | 0                 |                       |              |  |
| Surrogate                    |                      | <u>Rec. (%)</u>        |         | Control Limits | <u>Qualifiers</u> |                       |              |  |



|                              |                      |                        |         |                |                   |                       | 00/40/47     |
|------------------------------|----------------------|------------------------|---------|----------------|-------------------|-----------------------|--------------|
| Cardno ERI                   |                      |                        | Date Re |                |                   |                       | 09/13/17     |
| 601 North McDowell Blvd.     |                      |                        | Work O  |                |                   |                       | 17-09-0867   |
| Petaluma, CA 94954-2312      |                      |                        | Prepara | tion:          |                   |                       | EPA 5030C    |
|                              |                      |                        | Method: |                |                   | E                     | PA 8015B (M) |
|                              |                      |                        | Units:  |                |                   |                       | mg/kg        |
| Project: E317100700          |                      |                        |         |                |                   | Pa                    | age 2 of 2   |
| Client Sample Number         | Lab Sample<br>Number | Date/Time<br>Collected | Matrix  | Instrument     | Date<br>Prepared  | Date/Time<br>Analyzed | QC Batch ID  |
| S-17-B3                      | 17-09-0867-6-A       | 09/09/17<br>16:00      | Solid   | GC 57          | 09/13/17          | 09/14/17<br>19:09     | 170914L020   |
| Parameter                    |                      | Result                 |         | RL             | DF                | Qua                   | alifiers     |
| TPH as Gasoline              |                      | ND                     |         | 0.50           | 1.00              |                       |              |
| Surrogate                    |                      | <u>Rec. (%)</u>        |         | Control Limits | Qualifiers        |                       |              |
| 1,4-Bromofluorobenzene - FID |                      | 59                     |         | 42-126         |                   |                       |              |
| Method Blank                 | 099-14-571-3843      | N/A                    | Solid   | GC 57          | 09/14/17          | 09/14/17<br>11:34     | 170914L020   |
| Parameter                    |                      | Result                 |         | RL             | DF                | Qua                   | alifiers     |
| TPH as Gasoline              |                      | ND                     |         | 0.50           | 1.00              |                       |              |
| Surrogate                    |                      | <u>Rec. (%)</u>        |         | Control Limits | <u>Qualifiers</u> |                       |              |
| 1,4-Bromofluorobenzene - FID |                      | 60                     |         | 42-126         |                   |                       |              |
| Method Blank                 | 099-14-571-3848      | N/A                    | Solid   | GC 57          | 09/15/17          | 09/15/17<br>11:09     | 170915L019   |
| Parameter                    |                      | Result                 |         | RL             | DF                | Qua                   | alifiers     |
| TPH as Gasoline              |                      | ND                     |         | 0.50           | 1.00              |                       |              |
| Surrogate                    |                      | <u>Rec. (%)</u>        |         | Control Limits | Qualifiers        |                       |              |
|                              |                      |                        |         |                |                   |                       |              |

Return to Contents



| Analytical F | Report |
|--------------|--------|
|--------------|--------|

| Cardno ERI                  |                      | Date Received:         |            |            |                  |                       | 09/13/17    |
|-----------------------------|----------------------|------------------------|------------|------------|------------------|-----------------------|-------------|
| 601 North McDowell Blvd.    |                      | Work Order:            |            |            |                  |                       | 17-09-0867  |
| Petaluma, CA 94954-2312     |                      |                        | Preparatio | n:         |                  |                       | EPA 5030C   |
|                             |                      |                        | Method:    |            |                  |                       | EPA 8260B   |
|                             |                      |                        | Units:     |            |                  |                       | ug/kg       |
| Project: E317100700         |                      |                        |            |            |                  | Pa                    | ge 1 of 21  |
| Client Sample Number        | Lab Sample<br>Number | Date/Time<br>Collected | Matrix     | Instrument | Date<br>Prepared | Date/Time<br>Analyzed | QC Batch ID |
| S-8-B1                      | 17-09-0867-1-A       | 09/09/17<br>09:00      | Solid      | GC/MS OO   | 09/13/17         | 09/14/17<br>01:03     | 170913L032  |
| Parameter                   | ,                    | Result                 | <u>R</u>   | <u>L</u>   | DF               | Qua                   | lifiers     |
| Acetone                     |                      | ND                     | 1:         | 30         | 1.00             |                       |             |
| Benzene                     |                      | ND                     | 5.         | .1         | 1.00             |                       |             |
| Bromobenzene                |                      | ND                     | 5.         | .1         | 1.00             |                       |             |
| Bromochloromethane          |                      | ND                     | 5.         | .1         | 1.00             |                       |             |
| Bromodichloromethane        |                      | ND                     | 5.         | .1         | 1.00             |                       |             |
| Bromoform                   |                      | ND                     | 5.         | .1         | 1.00             |                       |             |
| Bromomethane                |                      | ND                     | 2          | 5          | 1.00             |                       |             |
| 2-Butanone                  |                      | ND                     | 5          | 1          | 1.00             |                       |             |
| n-Butylbenzene              |                      | ND                     | 5.         | .1         | 1.00             |                       |             |
| sec-Butylbenzene            |                      | ND                     | 5.         | .1         | 1.00             |                       |             |
| tert-Butylbenzene           |                      | ND                     | 5.         | .1         | 1.00             |                       |             |
| Carbon Disulfide            |                      | ND                     | 5          | 1          | 1.00             |                       |             |
| Carbon Tetrachloride        |                      | ND                     | 5.         | .1         | 1.00             |                       |             |
| Chlorobenzene               |                      | ND                     | 5.         | .1         | 1.00             |                       |             |
| Chloroethane                |                      | ND                     | 5.         | .1         | 1.00             |                       |             |
| Chloroform                  |                      | ND                     | 5.         | .1         | 1.00             |                       |             |
| Chloromethane               |                      | ND                     | 25         | 5          | 1.00             |                       |             |
| 2-Chlorotoluene             |                      | ND                     | 5.         | .1         | 1.00             |                       |             |
| 4-Chlorotoluene             |                      | ND                     | 5.         | .1         | 1.00             |                       |             |
| Dibromochloromethane        |                      | ND                     | 5.         | .1         | 1.00             |                       |             |
| 1,2-Dibromo-3-Chloropropane |                      | ND                     | 1(         | 0          | 1.00             |                       |             |
| 1,2-Dibromoethane           |                      | ND                     | 5.         | .1         | 1.00             |                       |             |
| Dibromomethane              |                      | ND                     | 5.         | .1         | 1.00             |                       |             |
| 1,2-Dichlorobenzene         |                      | ND                     | 5.         | .1         | 1.00             |                       |             |
| 1,3-Dichlorobenzene         |                      | ND                     | 5.         | .1         | 1.00             |                       |             |
| 1,4-Dichlorobenzene         |                      | ND                     | 5.         | .1         | 1.00             |                       |             |
| Dichlorodifluoromethane     |                      | ND                     | 5.         | .1         | 1.00             |                       |             |
| 1,1-Dichloroethane          |                      | ND                     | 5.         | .1         | 1.00             |                       |             |
| 1,2-Dichloroethane          |                      | ND                     | 5.         | .1         | 1.00             |                       |             |
| 1,1-Dichloroethene          |                      | ND                     | 5.         |            | 1.00             |                       |             |
| c-1,2-Dichloroethene        |                      | ND                     | 5.         | .1         | 1.00             |                       |             |
| t-1,2-Dichloroethene        |                      | ND                     | 5.         | .1         | 1.00             |                       |             |
| 1,2-Dichloropropane         |                      | ND                     | 5.         | .1         | 1.00             |                       |             |
| 1,3-Dichloropropane         |                      | ND                     | 5.         | .1         | 1.00             |                       |             |
| 2,2-Dichloropropane         |                      | ND                     | 5.         | .1         | 1.00             |                       |             |



| Cardno ERI                            | Da              | te Received:   |            | 09/13/17<br>17-09-0867 |  |  |
|---------------------------------------|-----------------|----------------|------------|------------------------|--|--|
| 601 North McDowell Blvd.              | Wo              | ork Order:     |            |                        |  |  |
| Petaluma, CA 94954-2312               | Pre             |                | EPA 5030C  |                        |  |  |
|                                       |                 | ethod:         |            | EPA 8260B              |  |  |
|                                       |                 | its:           |            | ug/kg                  |  |  |
| Project: E317100700                   |                 |                |            | Page 2 of 21           |  |  |
| Parameter                             | <u>Result</u>   | RL             | DF         | Qualifiers             |  |  |
| 1,1-Dichloropropene                   | ND              | 5.1            | 1.00       | <u></u>                |  |  |
| c-1,3-Dichloropropene                 | ND              | 5.1            | 1.00       |                        |  |  |
| t-1,3-Dichloropropene                 | ND              | 5.1            | 1.00       |                        |  |  |
| Ethylbenzene                          | ND              | 5.1            | 1.00       |                        |  |  |
| 2-Hexanone                            | ND              | 51             | 1.00       |                        |  |  |
| Isopropylbenzene                      | ND              | 5.1            | 1.00       |                        |  |  |
| p-Isopropyltoluene                    | ND              | 5.1            | 1.00       |                        |  |  |
| Methylene Chloride                    | ND              | 51             | 1.00       |                        |  |  |
| 4-Methyl-2-Pentanone                  | ND              | 51             | 1.00       |                        |  |  |
| Naphthalene                           | ND              | 51             | 1.00       |                        |  |  |
| n-Propylbenzene                       | ND              | 5.1            | 1.00       |                        |  |  |
| Styrene                               | ND              | 5.1            | 1.00       |                        |  |  |
| 1,1,1,2-Tetrachloroethane             | ND              | 5.1            | 1.00       |                        |  |  |
| 1,1,2,2-Tetrachloroethane             | ND              | 5.1            | 1.00       |                        |  |  |
| Tetrachloroethene                     | ND              | 5.1            | 1.00       |                        |  |  |
| Toluene                               | ND              | 5.1            | 1.00       |                        |  |  |
| 1,2,3-Trichlorobenzene                | ND              | 10             | 1.00       |                        |  |  |
| 1,2,4-Trichlorobenzene                | ND              | 5.1            | 1.00       |                        |  |  |
| 1,1,1-Trichloroethane                 | ND              | 5.1            | 1.00       |                        |  |  |
| 1,1,2-Trichloroethane                 | ND              | 5.1            | 1.00       |                        |  |  |
| 1,1,2-Trichloro-1,2,2-Trifluoroethane | ND              | 51             | 1.00       |                        |  |  |
| Trichloroethene                       | ND              | 5.1            | 1.00       |                        |  |  |
| 1,2,3-Trichloropropane                | ND              | 5.1            | 1.00       |                        |  |  |
| 1,2,4-Trimethylbenzene                | ND              | 5.1            | 1.00       |                        |  |  |
| Trichlorofluoromethane                | ND              | 51             | 1.00       |                        |  |  |
| 1,3,5-Trimethylbenzene                | ND              | 5.1            | 1.00       |                        |  |  |
| Vinyl Acetate                         | ND              | 51             | 1.00       |                        |  |  |
| Vinyl Chloride                        | ND              | 5.1            | 1.00       |                        |  |  |
| p/m-Xylene                            | ND              | 5.1            | 1.00       |                        |  |  |
| o-Xylene                              | ND              | 5.1            | 1.00       |                        |  |  |
| Methyl-t-Butyl Ether (MTBE)           | ND              | 5.1            | 1.00       |                        |  |  |
| Tert-Butyl Alcohol (TBA)              | ND              | 51             | 1.00       |                        |  |  |
| Diisopropyl Ether (DIPE)              | ND              | 10             | 1.00       |                        |  |  |
| Ethyl-t-Butyl Ether (ETBE)            | ND              | 10             | 1.00       |                        |  |  |
| Tert-Amyl-Methyl Ether (TAME)         | ND              | 10             | 1.00       |                        |  |  |
| Ethanol                               | ND              | 250            | 1.00       |                        |  |  |
| Surrogate                             | <u>Rec. (%)</u> | Control Limits | Qualifiers |                        |  |  |
| 1,4-Bromofluorobenzene                | 101             | 80-120         |            |                        |  |  |

Return to Contents



| Cardno ERI               | D           |                | 09/13/17   |              |
|--------------------------|-------------|----------------|------------|--------------|
| 601 North McDowell Blvd. | Work Order: |                |            | 17-09-0867   |
| Petaluma, CA 94954-2312  | Р           | reparation:    |            | EPA 5030C    |
|                          | Method:     |                |            | EPA 8260B    |
|                          | U           |                | ug/kg      |              |
| Project: E317100700      |             |                |            | Page 3 of 21 |
| Surrogate                | Rec. (%)    | Control Limits | Qualifiers |              |
| Dibromofluoromethane     | 94          | 79-133         |            |              |
| 1,2-Dichloroethane-d4    | 97          | 71-155         |            |              |
| Toluene-d8               | 100         | 80-120         |            |              |



| Analytical F | Report |
|--------------|--------|
|--------------|--------|

| Cardno ERI                  |                      |                        | Date Rece  | eived:     |                  |                       | 09/13/17    |
|-----------------------------|----------------------|------------------------|------------|------------|------------------|-----------------------|-------------|
| 601 North McDowell Blvd.    |                      | Work Order:            |            |            |                  |                       | 17-09-0867  |
| Petaluma, CA 94954-2312     |                      |                        | Preparatio | on:        |                  |                       | EPA 5030C   |
|                             |                      |                        | Method:    |            |                  |                       | EPA 8260B   |
|                             |                      |                        | Units:     |            |                  |                       | ug/kg       |
| Project: E317100700         |                      |                        |            |            |                  | Pa                    | ige 4 of 21 |
| Client Sample Number        | Lab Sample<br>Number | Date/Time<br>Collected | Matrix     | Instrument | Date<br>Prepared | Date/Time<br>Analyzed | QC Batch ID |
| S-17-B1                     | 17-09-0867-2-A       | 09/09/17<br>09:50      | Solid      | GC/MS OO   | 09/13/17         | 09/14/17<br>01:32     | 170913L032  |
| Parameter                   |                      | Result                 | <u> </u>   | <u></u>    | DF               | Qua                   | alifiers    |
| Acetone                     |                      | ND                     | 1          | 20         | 1.00             |                       |             |
| Benzene                     |                      | ND                     | 4          | .9         | 1.00             |                       |             |
| Bromobenzene                |                      | ND                     | 4          | .9         | 1.00             |                       |             |
| Bromochloromethane          |                      | ND                     | 4          | .9         | 1.00             |                       |             |
| Bromodichloromethane        |                      | ND                     | 4          | .9         | 1.00             |                       |             |
| Bromoform                   |                      | ND                     | 4          | .9         | 1.00             |                       |             |
| Bromomethane                |                      | ND                     | 2          | 5          | 1.00             |                       |             |
| 2-Butanone                  |                      | ND                     | 4          | .9         | 1.00             |                       |             |
| n-Butylbenzene              |                      | ND                     | 4          | .9         | 1.00             |                       |             |
| sec-Butylbenzene            |                      | ND                     | 4          | .9         | 1.00             |                       |             |
| tert-Butylbenzene           |                      | ND                     | 4          | .9         | 1.00             |                       |             |
| Carbon Disulfide            |                      | ND                     | 4          | .9         | 1.00             |                       |             |
| Carbon Tetrachloride        |                      | ND                     | 4          | .9         | 1.00             |                       |             |
| Chlorobenzene               |                      | ND                     | 4          | .9         | 1.00             |                       |             |
| Chloroethane                |                      | ND                     | 4          | .9         | 1.00             |                       |             |
| Chloroform                  |                      | ND                     | 4          | .9         | 1.00             |                       |             |
| Chloromethane               |                      | ND                     | 2          | 5          | 1.00             |                       |             |
| 2-Chlorotoluene             |                      | ND                     | 4          | .9         | 1.00             |                       |             |
| 4-Chlorotoluene             |                      | ND                     | 4          | .9         | 1.00             |                       |             |
| Dibromochloromethane        |                      | ND                     | 4          | .9         | 1.00             |                       |             |
| 1,2-Dibromo-3-Chloropropane |                      | ND                     | 9          | .9         | 1.00             |                       |             |
| 1,2-Dibromoethane           |                      | ND                     | 4          | .9         | 1.00             |                       |             |
| Dibromomethane              |                      | ND                     | 4          | .9         | 1.00             |                       |             |
| 1,2-Dichlorobenzene         |                      | ND                     | 4          | .9         | 1.00             |                       |             |
| 1,3-Dichlorobenzene         |                      | ND                     | 4          | .9         | 1.00             |                       |             |
| 1,4-Dichlorobenzene         |                      | ND                     | 4          | .9         | 1.00             |                       |             |
| Dichlorodifluoromethane     |                      | ND                     | 4          | .9         | 1.00             |                       |             |
| 1,1-Dichloroethane          |                      | ND                     | 4          | .9         | 1.00             |                       |             |
| 1,2-Dichloroethane          |                      | ND                     | 4          | .9         | 1.00             |                       |             |
| 1,1-Dichloroethene          |                      | ND                     | 4          | .9         | 1.00             |                       |             |
| c-1,2-Dichloroethene        |                      | ND                     | 4          | .9         | 1.00             |                       |             |
| t-1,2-Dichloroethene        |                      | ND                     | 4          | .9         | 1.00             |                       |             |
| 1,2-Dichloropropane         |                      | ND                     | 4          | .9         | 1.00             |                       |             |
| 1,3-Dichloropropane         |                      | ND                     | 4          | .9         | 1.00             |                       |             |
| 2,2-Dichloropropane         |                      | ND                     | 4          | .9         | 1.00             |                       |             |
|                             |                      |                        |            |            |                  |                       |             |



| Cardno ERI                            | Da              | ate Received:  |                   | 09/13/17<br>17-09-0867 |  |
|---------------------------------------|-----------------|----------------|-------------------|------------------------|--|
| 601 North McDowell Blvd.              | W               | ork Order:     |                   |                        |  |
| Petaluma, CA 94954-2312               | Pr              |                | EPA 50300         |                        |  |
|                                       |                 | ethod:         |                   | EPA 8260B              |  |
|                                       |                 | nits:          |                   | ug/kg                  |  |
| Project: E317100700                   |                 |                |                   | Page 5 of 21           |  |
| Parameter                             | <u>Result</u>   | <u>RL</u>      | DF                | Qualifiers             |  |
| 1,1-Dichloropropene                   | ND              | 4.9            | 1.00              |                        |  |
| c-1,3-Dichloropropene                 | ND              | 4.9            | 1.00              |                        |  |
| t-1,3-Dichloropropene                 | ND              | 4.9            | 1.00              |                        |  |
| Ethylbenzene                          | ND              | 4.9            | 1.00              |                        |  |
| 2-Hexanone                            | ND              | 49             | 1.00              |                        |  |
| Isopropylbenzene                      | ND              | 4.9            | 1.00              |                        |  |
| p-Isopropyltoluene                    | ND              | 4.9            | 1.00              |                        |  |
| Methylene Chloride                    | ND              | 49             | 1.00              |                        |  |
| 4-Methyl-2-Pentanone                  | ND              | 49             | 1.00              |                        |  |
| Naphthalene                           | ND              | 49             | 1.00              |                        |  |
| n-Propylbenzene                       | ND              | 4.9            | 1.00              |                        |  |
| Styrene                               | ND              | 4.9            | 1.00              |                        |  |
| 1,1,1,2-Tetrachloroethane             | ND              | 4.9            | 1.00              |                        |  |
| 1,1,2,2-Tetrachloroethane             | ND              | 4.9            | 1.00              |                        |  |
| Tetrachloroethene                     | ND              | 4.9            | 1.00              |                        |  |
| Toluene                               | ND              | 4.9            | 1.00              |                        |  |
| 1,2,3-Trichlorobenzene                | ND              | 9.9            | 1.00              |                        |  |
| 1,2,4-Trichlorobenzene                | ND              | 4.9            | 1.00              |                        |  |
| 1,1,1-Trichloroethane                 | ND              | 4.9            | 1.00              |                        |  |
| 1,1,2-Trichloroethane                 | ND              | 4.9            | 1.00              |                        |  |
| 1,1,2-Trichloro-1,2,2-Trifluoroethane | ND              | 49             | 1.00              |                        |  |
| Trichloroethene                       | ND              | 4.9            | 1.00              |                        |  |
| 1,2,3-Trichloropropane                | ND              | 4.9            | 1.00              |                        |  |
| 1,2,4-Trimethylbenzene                | ND              | 4.9            | 1.00              |                        |  |
| Trichlorofluoromethane                | ND              | 49             | 1.00              |                        |  |
| 1,3,5-Trimethylbenzene                | ND              | 4.9            | 1.00              |                        |  |
| Vinyl Acetate                         | ND              | 49             | 1.00              |                        |  |
| Vinyl Chloride                        | ND              | 4.9            | 1.00              |                        |  |
| p/m-Xylene                            | ND              | 4.9            | 1.00              |                        |  |
| o-Xylene                              | ND              | 4.9            | 1.00              |                        |  |
| Methyl-t-Butyl Ether (MTBE)           | ND              | 4.9            | 1.00              |                        |  |
| Tert-Butyl Alcohol (TBA)              | ND              | 49             | 1.00              |                        |  |
| Diisopropyl Ether (DIPE)              | ND              | 9.9            | 1.00              |                        |  |
| Ethyl-t-Butyl Ether (ETBE)            | ND              | 9.9            | 1.00              |                        |  |
| Tert-Amyl-Methyl Ether (TAME)         | ND              | 9.9            | 1.00              |                        |  |
| Ethanol                               | ND              | 250            | 1.00              |                        |  |
| Surrogate                             | <u>Rec. (%)</u> | Control Limits | <u>Qualifiers</u> |                        |  |
| 1,4-Bromofluorobenzene                | 98              | 80-120         |                   |                        |  |



| Cardno ERI               | Dat             |                | 09/13/17          |              |
|--------------------------|-----------------|----------------|-------------------|--------------|
| 601 North McDowell Blvd. | Wo              | rk Order:      |                   | 17-09-0867   |
| Petaluma, CA 94954-2312  | Pre             | paration:      |                   | EPA 5030C    |
|                          | Method:         |                |                   | EPA 8260B    |
|                          | Uni             |                | ug/kg             |              |
| Project: E317100700      |                 |                |                   | Page 6 of 21 |
|                          |                 |                |                   |              |
| Surrogate                | <u>Rec. (%)</u> | Control Limits | <u>Qualifiers</u> |              |
| Dibromofluoromethane     | 96              | 79-133         |                   |              |
| 1,2-Dichloroethane-d4    | 99              | 71-155         |                   |              |
| Toluene-d8               | 101             | 80-120         |                   |              |



| Cardno ERI                  |                      | Date Received: 09/     |         |                                         |                  |                       |             |  |  |
|-----------------------------|----------------------|------------------------|---------|-----------------------------------------|------------------|-----------------------|-------------|--|--|
| 601 North McDowell Blvd.    |                      | Work Order:            |         |                                         |                  |                       | 17-09-0867  |  |  |
| Petaluma, CA 94954-2312     |                      | Preparation:           |         |                                         |                  |                       | EPA 5030C   |  |  |
|                             |                      |                        | Method: |                                         |                  |                       | EPA 8260B   |  |  |
|                             |                      |                        | Units:  |                                         |                  |                       | ug/kg       |  |  |
| Project: E317100700         |                      |                        |         |                                         |                  | Pa                    | age 7 of 21 |  |  |
| Client Sample Number        | Lab Sample<br>Number | Date/Time<br>Collected | Matrix  | Instrument                              | Date<br>Prepared | Date/Time<br>Analyzed | QC Batch ID |  |  |
| S-11-B2                     | 17-09-0867-3-A       | 09/09/17<br>13:40      | Solid   | GC/MS OO                                | 09/13/17         | 09/14/17<br>02:01     | 170913L032  |  |  |
| Parameter                   |                      | Result                 |         | -                                       | DF               | Qua                   | alifiers    |  |  |
| Acetone                     |                      | ND                     | 12      | 0                                       | 1.00             |                       |             |  |  |
| Benzene                     |                      | ND                     | 5.0     | D                                       | 1.00             |                       |             |  |  |
| Bromobenzene                |                      | ND                     | 5.0     | D                                       | 1.00             |                       |             |  |  |
| Bromochloromethane          |                      | ND                     | 5.0     | D                                       | 1.00             |                       |             |  |  |
| Bromodichloromethane        |                      | ND                     | 5.0     | D                                       | 1.00             |                       |             |  |  |
| Bromoform                   |                      | ND                     | 5.0     | D                                       | 1.00             |                       |             |  |  |
| Bromomethane                |                      | ND                     | 25      | i                                       | 1.00             |                       |             |  |  |
| 2-Butanone                  |                      | ND                     | 50      | l i i i i i i i i i i i i i i i i i i i | 1.00             |                       |             |  |  |
| n-Butylbenzene              |                      | ND                     | 5.0     | D                                       | 1.00             |                       |             |  |  |
| sec-Butylbenzene            |                      | ND                     | 5.0     | D                                       | 1.00             |                       |             |  |  |
| tert-Butylbenzene           |                      | ND                     | 5.0     | D                                       | 1.00             |                       |             |  |  |
| Carbon Disulfide            |                      | ND                     | 50      | 1                                       | 1.00             |                       |             |  |  |
| Carbon Tetrachloride        |                      | ND                     | 5.0     | D                                       | 1.00             |                       |             |  |  |
| Chlorobenzene               |                      | ND                     | 5.0     | D                                       | 1.00             |                       |             |  |  |
| Chloroethane                |                      | ND                     | 5.0     | D                                       | 1.00             |                       |             |  |  |
| Chloroform                  |                      | ND                     | 5.0     | D                                       | 1.00             |                       |             |  |  |
| Chloromethane               |                      | ND                     | 25      | i                                       | 1.00             |                       |             |  |  |
| 2-Chlorotoluene             |                      | ND                     | 5.0     | D                                       | 1.00             |                       |             |  |  |
| 4-Chlorotoluene             |                      | ND                     | 5.0     | D                                       | 1.00             |                       |             |  |  |
| Dibromochloromethane        |                      | ND                     | 5.0     | D                                       | 1.00             |                       |             |  |  |
| 1,2-Dibromo-3-Chloropropane |                      | ND                     | 9.9     | Э                                       | 1.00             |                       |             |  |  |
| 1,2-Dibromoethane           |                      | ND                     | 5.0     | D                                       | 1.00             |                       |             |  |  |
| Dibromomethane              |                      | ND                     | 5.0     | D                                       | 1.00             |                       |             |  |  |
| 1,2-Dichlorobenzene         |                      | ND                     | 5.0     | D                                       | 1.00             |                       |             |  |  |
| 1,3-Dichlorobenzene         |                      | ND                     | 5.0     | D                                       | 1.00             |                       |             |  |  |
| 1,4-Dichlorobenzene         |                      | ND                     | 5.0     | D                                       | 1.00             |                       |             |  |  |
| Dichlorodifluoromethane     |                      | ND                     | 5.0     | D                                       | 1.00             |                       |             |  |  |
| 1,1-Dichloroethane          |                      | ND                     | 5.0     | D                                       | 1.00             |                       |             |  |  |
| 1,2-Dichloroethane          |                      | ND                     | 5.0     | 0                                       | 1.00             |                       |             |  |  |
| 1,1-Dichloroethene          |                      | ND                     | 5.0     | 0                                       | 1.00             |                       |             |  |  |
| c-1,2-Dichloroethene        |                      | ND                     | 5.0     | 0                                       | 1.00             |                       |             |  |  |
| t-1,2-Dichloroethene        |                      | ND                     | 5.0     | 0                                       | 1.00             |                       |             |  |  |
| 1,2-Dichloropropane         |                      | ND                     | 5.0     | 0                                       | 1.00             |                       |             |  |  |
| 1,3-Dichloropropane         |                      | ND                     | 5.0     | 0                                       | 1.00             |                       |             |  |  |
| 2,2-Dichloropropane         |                      | ND                     | 5.0     | D                                       | 1.00             |                       |             |  |  |



| Cardno ERI                            | Da              | te Received:   |            | 09/13/17<br>17-09-0867 |  |  |
|---------------------------------------|-----------------|----------------|------------|------------------------|--|--|
| 601 North McDowell Blvd.              | Wo              | ork Order:     |            |                        |  |  |
| Petaluma, CA 94954-2312               | Pre             |                | EPA 5030C  |                        |  |  |
| ,                                     |                 | thod:          |            | EPA 8260B              |  |  |
|                                       | Un              |                |            | ug/kg                  |  |  |
| Project: E317100700                   |                 |                |            | Page 8 of 21           |  |  |
| Parameter                             | Result          | <u>RL</u>      | DF         | Qualifiers             |  |  |
| 1,1-Dichloropropene                   | ND              | 5.0            | 1.00       |                        |  |  |
| c-1,3-Dichloropropene                 | ND              | 5.0            | 1.00       |                        |  |  |
| t-1,3-Dichloropropene                 | ND              | 5.0            | 1.00       |                        |  |  |
| Ethylbenzene                          | ND              | 5.0            | 1.00       |                        |  |  |
| 2-Hexanone                            | ND              | 50             | 1.00       |                        |  |  |
| Isopropylbenzene                      | ND              | 5.0            | 1.00       |                        |  |  |
| p-Isopropyltoluene                    | ND              | 5.0            | 1.00       |                        |  |  |
| Methylene Chloride                    | ND              | 50             | 1.00       |                        |  |  |
| 4-Methyl-2-Pentanone                  | ND              | 50             | 1.00       |                        |  |  |
| Naphthalene                           | ND              | 50             | 1.00       |                        |  |  |
| n-Propylbenzene                       | ND              | 5.0            | 1.00       |                        |  |  |
| Styrene                               | ND              | 5.0            | 1.00       |                        |  |  |
| 1,1,1,2-Tetrachloroethane             | ND              | 5.0            | 1.00       |                        |  |  |
| 1,1,2,2-Tetrachloroethane             | ND              | 5.0            | 1.00       |                        |  |  |
| Tetrachloroethene                     | ND              | 5.0            | 1.00       |                        |  |  |
| Toluene                               | ND              | 5.0            | 1.00       |                        |  |  |
| 1,2,3-Trichlorobenzene                | ND              | 9.9            | 1.00       |                        |  |  |
| 1,2,4-Trichlorobenzene                | ND              | 5.0            | 1.00       |                        |  |  |
| 1,1,1-Trichloroethane                 | ND              | 5.0            | 1.00       |                        |  |  |
| 1,1,2-Trichloroethane                 | ND              | 5.0            | 1.00       |                        |  |  |
| 1,1,2-Trichloro-1,2,2-Trifluoroethane | ND              | 50             | 1.00       |                        |  |  |
| Trichloroethene                       | ND              | 5.0            | 1.00       |                        |  |  |
| 1,2,3-Trichloropropane                | ND              | 5.0            | 1.00       |                        |  |  |
| 1,2,4-Trimethylbenzene                | ND              | 5.0            | 1.00       |                        |  |  |
| Trichlorofluoromethane                | ND              | 50             | 1.00       |                        |  |  |
| 1,3,5-Trimethylbenzene                | ND              | 5.0            | 1.00       |                        |  |  |
| Vinyl Acetate                         | ND              | 50             | 1.00       |                        |  |  |
| Vinyl Chloride                        | ND              | 5.0            | 1.00       |                        |  |  |
| p/m-Xylene                            | ND              | 5.0            | 1.00       |                        |  |  |
| o-Xylene                              | ND              | 5.0            | 1.00       |                        |  |  |
| Methyl-t-Butyl Ether (MTBE)           | ND              | 5.0            | 1.00       |                        |  |  |
| Tert-Butyl Alcohol (TBA)              | ND              | 50             | 1.00       |                        |  |  |
| Diisopropyl Ether (DIPE)              | ND              | 9.9            | 1.00       |                        |  |  |
| Ethyl-t-Butyl Ether (ETBE)            | ND              | 9.9            | 1.00       |                        |  |  |
| Tert-Amyl-Methyl Ether (TAME)         | ND              | 9.9            | 1.00       |                        |  |  |
| Ethanol                               | ND              | 250            | 1.00       |                        |  |  |
| Surrogate                             | <u>Rec. (%)</u> | Control Limits | Qualifiers |                        |  |  |
| 1,4-Bromofluorobenzene                | 100             | 80-120         |            |                        |  |  |

Return to Contents



| Cardno ERI               | D           |                | 09/13/17   |              |
|--------------------------|-------------|----------------|------------|--------------|
| 601 North McDowell Blvd. | Work Order: |                |            | 17-09-0867   |
| Petaluma, CA 94954-2312  | P           | reparation:    |            | EPA 5030C    |
|                          | Method:     |                |            | EPA 8260B    |
|                          | U           |                | ug/kg      |              |
| Project: E317100700      |             |                |            | Page 9 of 21 |
| Surrogate                | Rec. (%)    | Control Limits | Qualifiers |              |
| Dibromofluoromethane     | 96          | 79-133         |            |              |
| 1,2-Dichloroethane-d4    | 99          | 71-155         |            |              |
| Toluene-d8               | 101         | 80-120         |            |              |



Cardno ERI

## **Analytical Report**

| Date Received: | 09/13/17      |
|----------------|---------------|
| Work Order:    | 17-09-0867    |
| Preparation:   | EPA 5030C     |
| Method:        | EPA 8260B     |
| Units:         | ug/kg         |
|                | Page 10 of 21 |

Petaluma, CA 94954-2312

601 North McDowell Blvd.

Project: E317100700

| Client Sample Number        | Lab Sample<br>Number | Date/Time<br>Collected | Matrix | Instrument | Date<br>Prepared | Date/Time<br>Analyzed | QC Batch ID |
|-----------------------------|----------------------|------------------------|--------|------------|------------------|-----------------------|-------------|
| S-16.5-B2                   | 17-09-0867-4-A       | 09/09/17<br>14:00      | Solid  | GC/MS OO   | 09/13/17         | 09/14/17<br>02:29     | 170913L032  |
| Parameter                   |                      | Result                 | RL     | =          | DF               | Qua                   | lifiers     |
| Acetone                     |                      | ND                     | 12     | 0          | 1.00             |                       |             |
| Benzene                     |                      | ND                     | 5.0    | D          | 1.00             |                       |             |
| Bromobenzene                |                      | ND                     | 5.0    | D          | 1.00             |                       |             |
| Bromochloromethane          |                      | ND                     | 5.0    | D          | 1.00             |                       |             |
| Bromodichloromethane        |                      | ND                     | 5.0    | D          | 1.00             |                       |             |
| Bromoform                   |                      | ND                     | 5.0    | D          | 1.00             |                       |             |
| Bromomethane                |                      | ND                     | 25     | i          | 1.00             |                       |             |
| 2-Butanone                  |                      | ND                     | 50     | 1          | 1.00             |                       |             |
| n-Butylbenzene              |                      | ND                     | 5.0    | C          | 1.00             |                       |             |
| sec-Butylbenzene            |                      | ND                     | 5.0    | C          | 1.00             |                       |             |
| tert-Butylbenzene           |                      | ND                     | 5.0    | C          | 1.00             |                       |             |
| Carbon Disulfide            |                      | ND                     | 50     | 1          | 1.00             |                       |             |
| Carbon Tetrachloride        |                      | ND                     | 5.0    | C          | 1.00             |                       |             |
| Chlorobenzene               |                      | ND                     | 5.0    | C          | 1.00             |                       |             |
| Chloroethane                |                      | ND                     | 5.0    | C          | 1.00             |                       |             |
| Chloroform                  |                      | ND                     | 5.0    | C          | 1.00             |                       |             |
| Chloromethane               |                      | ND                     | 25     | i          | 1.00             |                       |             |
| 2-Chlorotoluene             |                      | ND                     | 5.0    | D          | 1.00             |                       |             |
| 4-Chlorotoluene             |                      | ND                     | 5.0    | C          | 1.00             |                       |             |
| Dibromochloromethane        |                      | ND                     | 5.0    | C          | 1.00             |                       |             |
| 1,2-Dibromo-3-Chloropropane |                      | ND                     | 10     | 1          | 1.00             |                       |             |
| 1,2-Dibromoethane           |                      | ND                     | 5.0    |            | 1.00             |                       |             |
| Dibromomethane              |                      | ND                     | 5.0    | C          | 1.00             |                       |             |
| 1,2-Dichlorobenzene         |                      | ND                     | 5.0    |            | 1.00             |                       |             |
| 1,3-Dichlorobenzene         |                      | ND                     | 5.0    | C          | 1.00             |                       |             |
| 1,4-Dichlorobenzene         |                      | ND                     | 5.0    | C          | 1.00             |                       |             |
| Dichlorodifluoromethane     |                      | ND                     | 5.0    | C          | 1.00             |                       |             |
| 1,1-Dichloroethane          |                      | ND                     | 5.0    | C          | 1.00             |                       |             |
| 1,2-Dichloroethane          |                      | ND                     | 5.0    | C          | 1.00             |                       |             |
| 1,1-Dichloroethene          |                      | ND                     | 5.0    | D          | 1.00             |                       |             |
| c-1,2-Dichloroethene        |                      | ND                     | 5.0    | C          | 1.00             |                       |             |
| t-1,2-Dichloroethene        |                      | ND                     | 5.0    | )          | 1.00             |                       |             |
| 1,2-Dichloropropane         |                      | ND                     | 5.0    |            | 1.00             |                       |             |
| 1,3-Dichloropropane         |                      | ND                     | 5.0    |            | 1.00             |                       |             |
| 2,2-Dichloropropane         |                      | ND                     | 5.0    |            | 1.00             |                       |             |



| Cardno ERI                            | Da              | te Received:   |            | 09/13/17      |  |  |
|---------------------------------------|-----------------|----------------|------------|---------------|--|--|
| 601 North McDowell Blvd.              | Wo              | ork Order:     |            | 17-09-0867    |  |  |
| Petaluma, CA 94954-2312               | Pre             |                | EPA 5030C  |               |  |  |
|                                       |                 | thod:          |            | EPA 8260B     |  |  |
|                                       | Un              |                |            | ug/kg         |  |  |
| Project: E317100700                   |                 |                |            | Page 11 of 21 |  |  |
| Parameter                             | Result          | <u>RL</u>      | DF         | Qualifiers    |  |  |
| 1,1-Dichloropropene                   | ND              | 5.0            | 1.00       |               |  |  |
| c-1,3-Dichloropropene                 | ND              | 5.0            | 1.00       |               |  |  |
| t-1,3-Dichloropropene                 | ND              | 5.0            | 1.00       |               |  |  |
| Ethylbenzene                          | ND              | 5.0            | 1.00       |               |  |  |
| 2-Hexanone                            | ND              | 50             | 1.00       |               |  |  |
| Isopropylbenzene                      | ND              | 5.0            | 1.00       |               |  |  |
| p-Isopropyltoluene                    | ND              | 5.0            | 1.00       |               |  |  |
| Methylene Chloride                    | ND              | 50             | 1.00       |               |  |  |
| 4-Methyl-2-Pentanone                  | ND              | 50             | 1.00       |               |  |  |
| Naphthalene                           | ND              | 50             | 1.00       |               |  |  |
| n-Propylbenzene                       | ND              | 5.0            | 1.00       |               |  |  |
| Styrene                               | ND              | 5.0            | 1.00       |               |  |  |
| 1,1,1,2-Tetrachloroethane             | ND              | 5.0            | 1.00       |               |  |  |
| 1,1,2,2-Tetrachloroethane             | ND              | 5.0            | 1.00       |               |  |  |
| Tetrachloroethene                     | ND              | 5.0            | 1.00       |               |  |  |
| Toluene                               | ND              | 5.0            | 1.00       |               |  |  |
| 1,2,3-Trichlorobenzene                | ND              | 10             | 1.00       |               |  |  |
| 1,2,4-Trichlorobenzene                | ND              | 5.0            | 1.00       |               |  |  |
| 1,1,1-Trichloroethane                 | ND              | 5.0            | 1.00       |               |  |  |
| 1,1,2-Trichloroethane                 | ND              | 5.0            | 1.00       |               |  |  |
| 1,1,2-Trichloro-1,2,2-Trifluoroethane | ND              | 50             | 1.00       |               |  |  |
| Trichloroethene                       | ND              | 5.0            | 1.00       |               |  |  |
| 1,2,3-Trichloropropane                | ND              | 5.0            | 1.00       |               |  |  |
| 1,2,4-Trimethylbenzene                | ND              | 5.0            | 1.00       |               |  |  |
| Trichlorofluoromethane                | ND              | 50             | 1.00       |               |  |  |
| 1,3,5-Trimethylbenzene                | ND              | 5.0            | 1.00       |               |  |  |
| Vinyl Acetate                         | ND              | 50             | 1.00       |               |  |  |
| Vinyl Chloride                        | ND              | 5.0            | 1.00       |               |  |  |
| p/m-Xylene                            | ND              | 5.0            | 1.00       |               |  |  |
| o-Xylene                              | ND              | 5.0            | 1.00       |               |  |  |
| Methyl-t-Butyl Ether (MTBE)           | ND              | 5.0            | 1.00       |               |  |  |
| Tert-Butyl Alcohol (TBA)              | ND              | 50             | 1.00       |               |  |  |
| Diisopropyl Ether (DIPE)              | ND              | 10             | 1.00       |               |  |  |
| Ethyl-t-Butyl Ether (ETBE)            | ND              | 10             | 1.00       |               |  |  |
| Tert-Amyl-Methyl Ether (TAME)         | ND              | 10             | 1.00       |               |  |  |
| Ethanol                               | ND              | 250            | 1.00       |               |  |  |
| Surrogate                             | <u>Rec. (%)</u> | Control Limits | Qualifiers |               |  |  |
| 1,4-Bromofluorobenzene                | 99              | 80-120         |            |               |  |  |



| Cardno ERI               | Date            | 09/13/17       |                   |               |
|--------------------------|-----------------|----------------|-------------------|---------------|
| 601 North McDowell Blvd. | Work Order:     |                |                   | 17-09-0867    |
| Petaluma, CA 94954-2312  | Prep            | paration:      |                   | EPA 5030C     |
|                          | Meth            |                | EPA 8260B         |               |
|                          | Unite           |                | ug/kg             |               |
| Project: E317100700      |                 |                |                   | Page 12 of 21 |
|                          |                 |                |                   |               |
| Surrogate                | <u>Rec. (%)</u> | Control Limits | <u>Qualifiers</u> |               |
| Dibromofluoromethane     | 96              | 79-133         |                   |               |
| 1,2-Dichloroethane-d4    | 99              | 71-155         |                   |               |
| Toluene-d8               | 99              | 80-120         |                   |               |



| Cardno ERI                  |                      |                        | Date Rece  |            |                  |                       | 09/13/17    |
|-----------------------------|----------------------|------------------------|------------|------------|------------------|-----------------------|-------------|
| 601 North McDowell Blvd.    |                      |                        | Work Orde  | er:        |                  |                       | 17-09-0867  |
| Petaluma, CA 94954-2312     |                      |                        | Preparatio | n:         |                  |                       | EPA 5030C   |
|                             |                      |                        | Method:    |            |                  |                       | EPA 8260B   |
|                             |                      |                        | Units:     |            |                  |                       | ug/kg       |
| Project: E317100700         |                      |                        |            |            |                  | Pag                   | je 13 of 21 |
| Client Sample Number        | Lab Sample<br>Number | Date/Time<br>Collected | Matrix     | Instrument | Date<br>Prepared | Date/Time<br>Analyzed | QC Batch ID |
| S-17-B2                     | 17-09-0867-5-A       | 09/09/17<br>14:10      | Solid      | GC/MS OO   | 09/13/17         | 09/14/17<br>02:58     | 170913L032  |
| Parameter                   |                      | Result                 | <u>R</u>   | <u>L</u>   | DF               |                       | alifiers    |
| Acetone                     |                      | ND                     | 1:         | 20         | 1.00             |                       |             |
| Benzene                     |                      | ND                     | 4          | .9         | 1.00             |                       |             |
| Bromobenzene                |                      | ND                     | 4          | .9         | 1.00             |                       |             |
| Bromochloromethane          |                      | ND                     | 4          | .9         | 1.00             |                       |             |
| Bromodichloromethane        |                      | ND                     | 4          | .9         | 1.00             |                       |             |
| Bromoform                   |                      | ND                     | 4          | .9         | 1.00             |                       |             |
| Bromomethane                |                      | ND                     | 2          |            | 1.00             |                       |             |
| 2-Butanone                  |                      | ND                     | 4          | 9          | 1.00             |                       |             |
| n-Butylbenzene              |                      | ND                     | 4          | .9         | 1.00             |                       |             |
| sec-Butylbenzene            |                      | ND                     |            | .9         | 1.00             |                       |             |
| tert-Butylbenzene           |                      | ND                     |            | .9         | 1.00             |                       |             |
| Carbon Disulfide            |                      | ND                     | 4          |            | 1.00             |                       |             |
| Carbon Tetrachloride        |                      | ND                     |            | .9         | 1.00             |                       |             |
| Chlorobenzene               |                      | ND                     |            | .9         | 1.00             |                       |             |
| Chloroethane                |                      | ND                     |            | .9         | 1.00             |                       |             |
| Chloroform                  |                      | ND                     |            | .9         | 1.00             |                       |             |
| Chloromethane               |                      | ND                     | 2          |            | 1.00             |                       |             |
| 2-Chlorotoluene             |                      | ND                     |            | .9         | 1.00             |                       |             |
| 4-Chlorotoluene             |                      | ND                     |            | .9         | 1.00             |                       |             |
| Dibromochloromethane        |                      | ND                     |            | .9         | 1.00             |                       |             |
| 1,2-Dibromo-3-Chloropropane |                      | ND                     |            | .8         | 1.00             |                       |             |
| 1.2-Dibromoethane           |                      | ND                     |            | .9         | 1.00             |                       |             |
| Dibromomethane              |                      | ND                     |            | .9         | 1.00             |                       |             |
| 1,2-Dichlorobenzene         |                      | ND                     |            | .9         | 1.00             |                       |             |
| 1,3-Dichlorobenzene         |                      | ND                     |            | .9         | 1.00             |                       |             |
| 1,4-Dichlorobenzene         |                      | ND                     |            | .9<br>.9   | 1.00             |                       |             |
| Dichlorodifluoromethane     |                      | ND                     |            | .9<br>.9   | 1.00             |                       |             |
| 1,1-Dichloroethane          |                      | ND                     |            | .9<br>.9   | 1.00             |                       |             |
| 1,2-Dichloroethane          |                      | ND                     |            | .9<br>.9   | 1.00             |                       |             |
| 1,1-Dichloroethene          |                      | ND                     |            | .9<br>.9   |                  |                       |             |
| •                           |                      |                        |            |            | 1.00             |                       |             |
| c-1,2-Dichloroethene        |                      | ND                     |            | .9         | 1.00             |                       |             |
| t-1,2-Dichloroethene        |                      | ND                     |            | .9         | 1.00             |                       |             |
| 1,2-Dichloropropane         |                      | ND                     |            | .9         | 1.00             |                       |             |
| 1,3-Dichloropropane         |                      | ND                     |            | .9         | 1.00             |                       |             |
| 2,2-Dichloropropane         |                      | ND                     | 4          | .9         | 1.00             |                       |             |



| Cardno ERI                            | Da              | te Received:   |            | 09/13/17                |  |  |
|---------------------------------------|-----------------|----------------|------------|-------------------------|--|--|
| 601 North McDowell Blvd.              |                 | ork Order:     |            | 17-09-0867<br>EPA 5030C |  |  |
| Petaluma, CA 94954-2312               | Pre             |                |            |                         |  |  |
|                                       | Me              | thod:          |            | EPA 8260B               |  |  |
|                                       | Un              | its:           |            | ug/kg                   |  |  |
| Project: E317100700                   |                 |                |            | Page 14 of 21           |  |  |
| Parameter                             | <u>Result</u>   | <u>RL</u>      | <u>DF</u>  | Qualifiers              |  |  |
| 1,1-Dichloropropene                   | ND              | 4.9            | 1.00       |                         |  |  |
| c-1,3-Dichloropropene                 | ND              | 4.9            | 1.00       |                         |  |  |
| t-1,3-Dichloropropene                 | ND              | 4.9            | 1.00       |                         |  |  |
| Ethylbenzene                          | ND              | 4.9            | 1.00       |                         |  |  |
| 2-Hexanone                            | ND              | 49             | 1.00       |                         |  |  |
| Isopropylbenzene                      | ND              | 4.9            | 1.00       |                         |  |  |
| p-Isopropyltoluene                    | ND              | 4.9            | 1.00       |                         |  |  |
| Methylene Chloride                    | ND              | 49             | 1.00       |                         |  |  |
| 4-Methyl-2-Pentanone                  | ND              | 49             | 1.00       |                         |  |  |
| Naphthalene                           | ND              | 49             | 1.00       |                         |  |  |
| n-Propylbenzene                       | ND              | 4.9            | 1.00       |                         |  |  |
| Styrene                               | ND              | 4.9            | 1.00       |                         |  |  |
| 1,1,1,2-Tetrachloroethane             | ND              | 4.9            | 1.00       |                         |  |  |
| 1,1,2,2-Tetrachloroethane             | ND              | 4.9            | 1.00       |                         |  |  |
| Tetrachloroethene                     | ND              | 4.9            | 1.00       |                         |  |  |
| Toluene                               | ND              | 4.9            | 1.00       |                         |  |  |
| 1,2,3-Trichlorobenzene                | ND              | 9.8            | 1.00       |                         |  |  |
| 1,2,4-Trichlorobenzene                | ND              | 4.9            | 1.00       |                         |  |  |
| 1,1,1-Trichloroethane                 | ND              | 4.9            | 1.00       |                         |  |  |
| 1,1,2-Trichloroethane                 | ND              | 4.9            | 1.00       |                         |  |  |
| 1,1,2-Trichloro-1,2,2-Trifluoroethane | ND              | 49             | 1.00       |                         |  |  |
| Trichloroethene                       | ND              | 4.9            | 1.00       |                         |  |  |
| 1,2,3-Trichloropropane                | ND              | 4.9            | 1.00       |                         |  |  |
| 1,2,4-Trimethylbenzene                | ND              | 4.9            | 1.00       |                         |  |  |
| Trichlorofluoromethane                | ND              | 49             | 1.00       |                         |  |  |
| 1,3,5-Trimethylbenzene                | ND              | 4.9            | 1.00       |                         |  |  |
| Vinyl Acetate                         | ND              | 49             | 1.00       |                         |  |  |
| Vinyl Chloride                        | ND              | 4.9            | 1.00       |                         |  |  |
| p/m-Xylene                            | ND              | 4.9            | 1.00       |                         |  |  |
| o-Xylene                              | ND              | 4.9            | 1.00       |                         |  |  |
| Methyl-t-Butyl Ether (MTBE)           | ND              | 4.9            | 1.00       |                         |  |  |
| Tert-Butyl Alcohol (TBA)              | ND              | 49             | 1.00       |                         |  |  |
| Diisopropyl Ether (DIPE)              | ND              | 9.8            | 1.00       |                         |  |  |
| Ethyl-t-Butyl Ether (ETBE)            | ND              | 9.8            | 1.00       |                         |  |  |
| Tert-Amyl-Methyl Ether (TAME)         | ND              | 9.8            | 1.00       |                         |  |  |
| Ethanol                               | ND              | 250            | 1.00       |                         |  |  |
| Surrogate                             | <u>Rec. (%)</u> | Control Limits | Qualifiers |                         |  |  |
| 1,4-Bromofluorobenzene                | 98              | 80-120         |            |                         |  |  |



| Cardno ERI               | Da          | 09/13/17       |            |               |
|--------------------------|-------------|----------------|------------|---------------|
| 601 North McDowell Blvd. | Work Order: |                |            | 17-09-0867    |
| Petaluma, CA 94954-2312  | Pre         | eparation:     |            | EPA 5030C     |
|                          | Method:     |                |            | EPA 8260B     |
|                          | Un          |                | ug/kg      |               |
| Project: E317100700      |             |                |            | Page 15 of 21 |
| Surrogate                | Rec. (%)    | Control Limits | Qualifiers |               |
| Dibromofluoromethane     | 95          | 79-133         |            |               |
| 1,2-Dichloroethane-d4    | 100         | 71-155         |            |               |
| Toluene-d8               | 100         | 80-120         |            |               |



Cardno ERI

Date Received:

09/13/17

| Project: E317100700         |                      | Deta (Tirae            | Method:<br>Units: |            | Dete             |                       | EPA 8260B<br>ug/kg<br>Page 16 of 21 |  |  |
|-----------------------------|----------------------|------------------------|-------------------|------------|------------------|-----------------------|-------------------------------------|--|--|
| Client Sample Number        | Lab Sample<br>Number | Date/Time<br>Collected | Matrix            | Instrument | Date<br>Prepared | Date/Time<br>Analyzed | QC Batch ID                         |  |  |
| S-17-B3                     | 17-09-0867-6-A       | 09/09/17<br>16:00      | Solid             | GC/MS OO   | 09/13/17         | 09/14/17<br>03:27     | 170913L032                          |  |  |
| Parameter                   |                      | Result                 | Ē                 | <u>kL</u>  | DF               | Qua                   | alifiers                            |  |  |
| Acetone                     |                      | ND                     | 1                 | 30         | 1.00             |                       |                                     |  |  |
| Benzene                     |                      | ND                     | 5                 | .0         | 1.00             |                       |                                     |  |  |
| Bromobenzene                |                      | ND                     | 5                 | .0         | 1.00             |                       |                                     |  |  |
| Bromochloromethane          |                      | ND                     | 5                 | .0         | 1.00             |                       |                                     |  |  |
| Bromodichloromethane        |                      | ND                     | 5                 | .0         | 1.00             |                       |                                     |  |  |
| Bromoform                   |                      | ND                     | 5                 | .0         | 1.00             |                       |                                     |  |  |
| Bromomethane                |                      | ND                     | 2                 | 5          | 1.00             |                       |                                     |  |  |
| 2-Butanone                  |                      | ND                     | 5                 | 0          | 1.00             |                       |                                     |  |  |
| n-Butylbenzene              |                      | ND                     | 5                 | .0         | 1.00             |                       |                                     |  |  |
| sec-Butylbenzene            |                      | ND                     | 5                 | .0         | 1.00             |                       |                                     |  |  |
| tert-Butylbenzene           |                      | ND                     | 5                 | .0         | 1.00             |                       |                                     |  |  |
| Carbon Disulfide            |                      | ND                     | 5                 | 0          | 1.00             |                       |                                     |  |  |
| Carbon Tetrachloride        |                      | ND                     | 5                 | .0         | 1.00             |                       |                                     |  |  |
| Chlorobenzene               |                      | ND                     | 5                 | .0         | 1.00             |                       |                                     |  |  |
| Chloroethane                |                      | ND                     | 5                 | .0         | 1.00             |                       |                                     |  |  |
| Chloroform                  |                      | ND                     | 5                 | .0         | 1.00             |                       |                                     |  |  |
| Chloromethane               |                      | ND                     | 2                 | 5          | 1.00             |                       |                                     |  |  |
| 2-Chlorotoluene             |                      | ND                     | 5                 | .0         | 1.00             |                       |                                     |  |  |
| 4-Chlorotoluene             |                      | ND                     | 5                 | .0         | 1.00             |                       |                                     |  |  |
| Dibromochloromethane        |                      | ND                     | 5                 | .0         | 1.00             |                       |                                     |  |  |
| 1,2-Dibromo-3-Chloropropane |                      | ND                     | 1                 | 0          | 1.00             |                       |                                     |  |  |
| 1,2-Dibromoethane           |                      | ND                     | 5                 | .0         | 1.00             |                       |                                     |  |  |
| Dibromomethane              |                      | ND                     | 5                 | .0         | 1.00             |                       |                                     |  |  |
| 1,2-Dichlorobenzene         |                      | ND                     | 5                 | .0         | 1.00             |                       |                                     |  |  |
| 1,3-Dichlorobenzene         |                      | ND                     | 5                 | .0         | 1.00             |                       |                                     |  |  |
| 1,4-Dichlorobenzene         |                      | ND                     | 5                 | .0         | 1.00             |                       |                                     |  |  |
| Dichlorodifluoromethane     |                      | ND                     | 5                 | .0         | 1.00             |                       |                                     |  |  |
| 1,1-Dichloroethane          |                      | ND                     | 5                 | .0         | 1.00             |                       |                                     |  |  |
| 1,2-Dichloroethane          |                      | ND                     | 5                 | .0         | 1.00             |                       |                                     |  |  |
| 1,1-Dichloroethene          |                      | ND                     | 5                 | .0         | 1.00             |                       |                                     |  |  |
| c-1,2-Dichloroethene        |                      | ND                     |                   | .0         | 1.00             |                       |                                     |  |  |
| t-1,2-Dichloroethene        |                      | ND                     |                   | .0         | 1.00             |                       |                                     |  |  |
| 1,2-Dichloropropane         |                      | ND                     |                   | .0         | 1.00             |                       |                                     |  |  |
| 1,3-Dichloropropane         |                      | ND                     |                   | .0         | 1.00             |                       |                                     |  |  |
| 2,2-Dichloropropane         |                      | ND                     |                   | .0         | 1.00             |                       |                                     |  |  |



| Cardno ERI                            | Da              | te Received:   |            | 09/13/17                |  |  |
|---------------------------------------|-----------------|----------------|------------|-------------------------|--|--|
| 601 North McDowell Blvd.              |                 | ork Order:     |            | 17-09-0867<br>EPA 5030C |  |  |
| Petaluma, CA 94954-2312               | Pr              |                |            |                         |  |  |
|                                       |                 | ethod:         |            | EPA 8260B               |  |  |
|                                       |                 | iits:          |            | ug/kg                   |  |  |
| Project: E317100700                   | -               |                |            | Page 17 of 21           |  |  |
| Parameter                             | Result          | <u>RL</u>      | DF         | Qualifiers              |  |  |
| 1,1-Dichloropropene                   | ND              | 5.0            | 1.00       |                         |  |  |
| c-1,3-Dichloropropene                 | ND              | 5.0            | 1.00       |                         |  |  |
| t-1,3-Dichloropropene                 | ND              | 5.0            | 1.00       |                         |  |  |
| Ethylbenzene                          | ND              | 5.0            | 1.00       |                         |  |  |
| 2-Hexanone                            | ND              | 50             | 1.00       |                         |  |  |
| Isopropylbenzene                      | ND              | 5.0            | 1.00       |                         |  |  |
| p-Isopropyltoluene                    | ND              | 5.0            | 1.00       |                         |  |  |
| Methylene Chloride                    | ND              | 50             | 1.00       |                         |  |  |
| 4-Methyl-2-Pentanone                  | ND              | 50             | 1.00       |                         |  |  |
| Naphthalene                           | ND              | 50             | 1.00       |                         |  |  |
| n-Propylbenzene                       | ND              | 5.0            | 1.00       |                         |  |  |
| Styrene                               | ND              | 5.0            | 1.00       |                         |  |  |
| 1,1,1,2-Tetrachloroethane             | ND              | 5.0            | 1.00       |                         |  |  |
| 1,1,2,2-Tetrachloroethane             | ND              | 5.0            | 1.00       |                         |  |  |
| Tetrachloroethene                     | ND              | 5.0            | 1.00       |                         |  |  |
| Toluene                               | ND              | 5.0            | 1.00       |                         |  |  |
| 1,2,3-Trichlorobenzene                | ND              | 10             | 1.00       |                         |  |  |
| 1,2,4-Trichlorobenzene                | ND              | 5.0            | 1.00       |                         |  |  |
| 1,1,1-Trichloroethane                 | ND              | 5.0            | 1.00       |                         |  |  |
| 1,1,2-Trichloroethane                 | ND              | 5.0            | 1.00       |                         |  |  |
| 1,1,2-Trichloro-1,2,2-Trifluoroethane | ND              | 50             | 1.00       |                         |  |  |
| Trichloroethene                       | ND              | 5.0            | 1.00       |                         |  |  |
| 1,2,3-Trichloropropane                | ND              | 5.0            | 1.00       |                         |  |  |
| 1,2,4-Trimethylbenzene                | ND              | 5.0            | 1.00       |                         |  |  |
| Trichlorofluoromethane                | ND              | 50             | 1.00       |                         |  |  |
| 1,3,5-Trimethylbenzene                | ND              | 5.0            | 1.00       |                         |  |  |
| Vinyl Acetate                         | ND              | 50             | 1.00       |                         |  |  |
| Vinyl Chloride                        | ND              | 5.0            | 1.00       |                         |  |  |
| p/m-Xylene                            | ND              | 5.0            | 1.00       |                         |  |  |
| o-Xylene                              | ND              | 5.0            | 1.00       |                         |  |  |
| Methyl-t-Butyl Ether (MTBE)           | ND              | 5.0            | 1.00       |                         |  |  |
| Tert-Butyl Alcohol (TBA)              | ND              | 50             | 1.00       |                         |  |  |
| Diisopropyl Ether (DIPE)              | ND              | 10             | 1.00       |                         |  |  |
| Ethyl-t-Butyl Ether (ETBE)            | ND              | 10             | 1.00       |                         |  |  |
| Tert-Amyl-Methyl Ether (TAME)         | ND              | 10             | 1.00       |                         |  |  |
| Ethanol                               | ND              | 250            | 1.00       |                         |  |  |
| Surrogate                             | <u>Rec. (%)</u> | Control Limits | Qualifiers |                         |  |  |
| 1,4-Bromofluorobenzene                | 98              | 80-120         |            |                         |  |  |



| Cardno ERI               | Date Received:  |                |                   | 09/13/17      |
|--------------------------|-----------------|----------------|-------------------|---------------|
| 601 North McDowell Blvd. | Work Order:     |                |                   | 17-09-0867    |
| Petaluma, CA 94954-2312  | Prepar          | ation:         |                   | EPA 5030C     |
|                          | Method:         |                |                   | EPA 8260B     |
|                          | Units:          |                | ug/kg             |               |
| Project: E317100700      |                 |                |                   | Page 18 of 21 |
|                          |                 |                |                   |               |
| Surrogate                | <u>Rec. (%)</u> | Control Limits | <u>Qualifiers</u> |               |
| Dibromofluoromethane     | 98              | 79-133         |                   |               |
| 1,2-Dichloroethane-d4    | 101             | 71-155         |                   |               |
| Toluene-d8               | 99              | 80-120         |                   |               |



| Ana | lytical | Report |  |
|-----|---------|--------|--|
|-----|---------|--------|--|

| Cardno ERI                         |                      |                        | Date Rece  | eived:     |                  |                       | 09/13/17    |
|------------------------------------|----------------------|------------------------|------------|------------|------------------|-----------------------|-------------|
| 601 North McDowell Blvd.           |                      |                        | Work Orde  | er:        |                  |                       | 17-09-0867  |
| Petaluma, CA 94954-2312            |                      |                        | Preparatio | n:         |                  |                       | EPA 5030C   |
|                                    |                      |                        | Method:    |            |                  |                       | EPA 8260B   |
|                                    |                      |                        | Units:     |            |                  |                       | ug/kg       |
| Project: E317100700                |                      |                        |            |            |                  | Pag                   | e 19 of 21  |
| Client Sample Number               | Lab Sample<br>Number | Date/Time<br>Collected | Matrix     | Instrument | Date<br>Prepared | Date/Time<br>Analyzed | QC Batch ID |
| Method Blank                       | 099-12-796-13176     | N/A                    | Solid      | GC/MS OO   | 09/13/17         | 09/13/17<br>17:22     | 170913L032  |
| Parameter                          |                      | Result                 | <u>R</u>   | <u> </u>   | DF               |                       | alifiers    |
| Acetone                            |                      | ND                     | 12         | 20         | 1.00             |                       |             |
| Benzene                            |                      | ND                     | 5.         | .0         | 1.00             |                       |             |
| Bromobenzene                       |                      | ND                     | 5.         | .0         | 1.00             |                       |             |
| Bromochloromethane                 |                      | ND                     | 5.         | .0         | 1.00             |                       |             |
| Bromodichloromethane               |                      | ND                     | 5.         | .0         | 1.00             |                       |             |
| Bromoform                          |                      | ND                     | 5.         | .0         | 1.00             |                       |             |
| Bromomethane                       |                      | ND                     | 25         | 5          | 1.00             |                       |             |
| 2-Butanone                         |                      | ND                     | 50         | 0          | 1.00             |                       |             |
| n-Butylbenzene                     |                      | ND                     | 5.         |            | 1.00             |                       |             |
| sec-Butylbenzene                   |                      | ND                     | 5.         |            | 1.00             |                       |             |
| tert-Butylbenzene                  |                      | ND                     | 5.         |            | 1.00             |                       |             |
| Carbon Disulfide                   |                      | ND                     | 50         |            | 1.00             |                       |             |
| Carbon Tetrachloride               |                      | ND                     | 5.         |            | 1.00             |                       |             |
| Chlorobenzene                      |                      | ND                     | 5.         |            | 1.00             |                       |             |
| Chloroethane                       |                      | ND                     | 5.         |            | 1.00             |                       |             |
| Chloroform                         |                      | ND                     | 5.         |            | 1.00             |                       |             |
| Chloromethane                      |                      | ND                     | 25<br>5.   |            | 1.00             |                       |             |
| 2-Chlorotoluene<br>4-Chlorotoluene |                      | ND<br>ND               | 5.<br>5.   |            | 1.00<br>1.00     |                       |             |
| Dibromochloromethane               |                      | ND                     | 5.         |            | 1.00             |                       |             |
| 1,2-Dibromo-3-Chloropropane        |                      | ND                     | J.<br>1(   |            | 1.00             |                       |             |
| 1,2-Dibromoethane                  |                      | ND                     | 5.         |            | 1.00             |                       |             |
| Dibromomethane                     |                      | ND                     | 5.         |            | 1.00             |                       |             |
| 1,2-Dichlorobenzene                |                      | ND                     | 5.         |            | 1.00             |                       |             |
| 1,3-Dichlorobenzene                |                      | ND                     | 5.         |            | 1.00             |                       |             |
| 1,4-Dichlorobenzene                |                      | ND                     | 5.         |            | 1.00             |                       |             |
| Dichlorodifluoromethane            |                      | ND                     | 5.         |            | 1.00             |                       |             |
| 1,1-Dichloroethane                 |                      | ND                     | 5.         |            | 1.00             |                       |             |
| 1,2-Dichloroethane                 |                      | ND                     | 5.         |            | 1.00             |                       |             |
| 1,1-Dichloroethene                 |                      | ND                     | 5.         |            | 1.00             |                       |             |
| c-1,2-Dichloroethene               |                      | ND                     | 5.         |            | 1.00             |                       |             |
| t-1,2-Dichloroethene               |                      | ND                     | 5.         | .0         | 1.00             |                       |             |
| 1,2-Dichloropropane                |                      | ND                     | 5.         | .0         | 1.00             |                       |             |
| 1,3-Dichloropropane                |                      | ND                     | 5.         | .0         | 1.00             |                       |             |
| 2,2-Dichloropropane                |                      | ND                     | 5.         | .0         | 1.00             |                       |             |



| Cardno ERI                            | Da              | te Received:   |            | 09/13/17           |  |  |  |
|---------------------------------------|-----------------|----------------|------------|--------------------|--|--|--|
| 601 North McDowell Blvd.              | Wo              | ork Order:     |            | 17-09-0867         |  |  |  |
| Petaluma, CA 94954-2312               | Pre             | eparation:     |            | EPA 5030C          |  |  |  |
|                                       |                 | Method:        |            |                    |  |  |  |
|                                       |                 | its:           |            | EPA 8260B<br>ug/kg |  |  |  |
| Project: E317100700                   | 0               |                |            | Page 20 of 21      |  |  |  |
| Parameter                             | <u>Result</u>   | <u>RL</u>      | DF         | Qualifiers         |  |  |  |
| 1,1-Dichloropropene                   | ND              | 5.0            | 1.00       |                    |  |  |  |
| c-1,3-Dichloropropene                 | ND              | 5.0            | 1.00       |                    |  |  |  |
| t-1,3-Dichloropropene                 | ND              | 5.0            | 1.00       |                    |  |  |  |
| Ethylbenzene                          | ND              | 5.0            | 1.00       |                    |  |  |  |
| 2-Hexanone                            | ND              | 50             | 1.00       |                    |  |  |  |
| Isopropylbenzene                      | ND              | 5.0            | 1.00       |                    |  |  |  |
| p-Isopropyltoluene                    | ND              | 5.0            | 1.00       |                    |  |  |  |
| Methylene Chloride                    | ND              | 50             | 1.00       |                    |  |  |  |
| 4-Methyl-2-Pentanone                  | ND              | 50             | 1.00       |                    |  |  |  |
| Naphthalene                           | ND              | 50             | 1.00       |                    |  |  |  |
| n-Propylbenzene                       | ND              | 5.0            | 1.00       |                    |  |  |  |
| Styrene                               | ND              | 5.0            | 1.00       |                    |  |  |  |
| 1,1,1,2-Tetrachloroethane             | ND              | 5.0            | 1.00       |                    |  |  |  |
| 1,1,2,2-Tetrachloroethane             | ND              | 5.0            | 1.00       |                    |  |  |  |
| Tetrachloroethene                     | ND              | 5.0            | 1.00       |                    |  |  |  |
| Toluene                               | ND              | 5.0            | 1.00       |                    |  |  |  |
| 1,2,3-Trichlorobenzene                | ND              | 10             | 1.00       |                    |  |  |  |
| 1,2,4-Trichlorobenzene                | ND              | 5.0            | 1.00       |                    |  |  |  |
| 1,1,1-Trichloroethane                 | ND              | 5.0            | 1.00       |                    |  |  |  |
| 1,1,2-Trichloroethane                 | ND              | 5.0            | 1.00       |                    |  |  |  |
| 1,1,2-Trichloro-1,2,2-Trifluoroethane | ND              | 50             | 1.00       |                    |  |  |  |
| Trichloroethene                       | ND              | 5.0            | 1.00       |                    |  |  |  |
| 1,2,3-Trichloropropane                | ND              | 5.0            | 1.00       |                    |  |  |  |
| 1,2,4-Trimethylbenzene                | ND              | 5.0            | 1.00       |                    |  |  |  |
| Trichlorofluoromethane                | ND              | 50             | 1.00       |                    |  |  |  |
| 1,3,5-Trimethylbenzene                | ND              | 5.0            | 1.00       |                    |  |  |  |
| Vinyl Acetate                         | ND              | 50             | 1.00       |                    |  |  |  |
| Vinyl Chloride                        | ND              | 5.0            | 1.00       |                    |  |  |  |
| p/m-Xylene                            | ND              | 5.0            | 1.00       |                    |  |  |  |
| o-Xylene                              | ND              | 5.0            | 1.00       |                    |  |  |  |
| Methyl-t-Butyl Ether (MTBE)           | ND              | 5.0            | 1.00       |                    |  |  |  |
| Tert-Butyl Alcohol (TBA)              | ND              | 50             | 1.00       |                    |  |  |  |
| Diisopropyl Ether (DIPE)              | ND              | 10             | 1.00       |                    |  |  |  |
| Ethyl-t-Butyl Ether (ETBE)            | ND              | 10             | 1.00       |                    |  |  |  |
| Tert-Amyl-Methyl Ether (TAME)         | ND              | 10             | 1.00       |                    |  |  |  |
| Ethanol                               | ND              | 250            | 1.00       |                    |  |  |  |
| Surrogate                             | <u>Rec. (%)</u> | Control Limits | Qualifiers |                    |  |  |  |
| 1,4-Bromofluorobenzene                | 98              | 80-120         |            |                    |  |  |  |



| Cardno ERI               | Da              | te Received:   |                   | 09/13/17      |
|--------------------------|-----------------|----------------|-------------------|---------------|
| 601 North McDowell Blvd. | Wo              | ork Order:     |                   | 17-09-0867    |
| Petaluma, CA 94954-2312  | eparation:      | EPA 5030C      |                   |               |
|                          | Me              | ethod:         |                   | EPA 8260B     |
|                          | Un              | its:           |                   | ug/kg         |
| Project: E317100700      |                 |                |                   | Page 21 of 21 |
|                          |                 |                |                   |               |
| Surrogate                | <u>Rec. (%)</u> | Control Limits | <u>Qualifiers</u> |               |
| Dibromofluoromethane     | 103             | 79-133         |                   |               |
| 1,2-Dichloroethane-d4    | 106             | 71-155         |                   |               |
| Toluene-d8               | 100             | 80-120         |                   |               |



| Cardno ERI                |                               |                       |                    | Date F             | Received            | :                   |                       |            |               | 09/13/17          |
|---------------------------|-------------------------------|-----------------------|--------------------|--------------------|---------------------|---------------------|-----------------------|------------|---------------|-------------------|
| 601 North McDowell Blvd.  |                               |                       |                    | Work               | Order:              |                     |                       |            | 17            | 7-09-0867         |
| Petaluma, CA 94954-2312   |                               |                       |                    | Prepa              | ration:             |                     |                       |            | El            | PA 3550B          |
|                           |                               |                       |                    | Metho              | d:                  |                     |                       |            | EPA 8         | 3015B (M)         |
| Project: E317100700       |                               |                       |                    |                    |                     |                     |                       |            | Page 1        | of 4              |
| Quality Control Sample ID | Туре                          |                       | Matrix             | Inst               | rument              | Date Prepared       | Date Anal             | lyzed      | MS/MSD Bat    | ch Number         |
| 17-09-1120-1              | Sample                        |                       | Solid              | GC                 | 47                  | 09/15/17            | 09/18/17 <sup>-</sup> | 12:54      | 170915S06     |                   |
| 17-09-1120-1              | Matrix Spike                  |                       | Solid              | GC                 | 47                  | 09/15/17            | 09/18/17 <sup>-</sup> | 12:10      | 170915S06     |                   |
| 17-09-1120-1              | Matrix Spike                  | Duplicate             | Solid              | GC                 | 47                  | 09/15/17            | <b>09/18/17</b>       | 12:33      | 170915S06     |                   |
| Parameter                 | <u>Sample</u><br><u>Conc.</u> | <u>Spike</u><br>Added | <u>MS</u><br>Conc. | <u>MS</u><br>%Rec. | <u>MSD</u><br>Conc. | <u>MSD</u><br>%Rec. | <u>%Rec. CL</u>       | <u>RPD</u> | <u>RPD CL</u> | <u>Qualifiers</u> |
| TPH as Diesel             | ND                            | 400.0                 | 362.4              | 91                 | 359.0               | 90                  | 64-130                | 1          | 0-15          |                   |

Return to Contents



| Cardno ERI                |                        |                              |                    | Date F             | Received            | :                          |                       |            |            | 09/13/17          |
|---------------------------|------------------------|------------------------------|--------------------|--------------------|---------------------|----------------------------|-----------------------|------------|------------|-------------------|
| 601 North McDowell Blvd.  |                        |                              |                    | Work               | Order:              |                            |                       |            | 17         | 7-09-0867         |
| Petaluma, CA 94954-2312   |                        |                              |                    | Prepa              | ration:             |                            |                       |            | EF         | PA 5030C          |
|                           |                        |                              |                    | Metho              | d:                  |                            |                       |            | EPA 8      | 015B (M)          |
| Project: E317100700       |                        |                              |                    |                    |                     |                            |                       |            | Page 2     | of 4              |
| Quality Control Sample ID | Туре                   |                              | Matrix             | Inst               | rument              | Date Prepared              | Date Anal             | lyzed      | MS/MSD Bat | ch Number         |
| S-16.5-B2                 | Sample                 |                              | Solid              | GC                 | 57                  | 09/13/17                   | 09/14/17 <sup>-</sup> | 12:38      | 170914S008 |                   |
| S-16.5-B2                 | Matrix Spike           |                              | Solid              | GC                 | 57                  | 09/13/17                   | 09/14/17 <sup>-</sup> | 13:09      | 170914S008 |                   |
| S-16.5-B2                 | Matrix Spike           | Duplicate                    | Solid              | GC                 | 57                  | 09/13/17                   | 09/14/17 <sup>-</sup> | 13:41      | 170914S008 |                   |
| Parameter                 | <u>Sample</u><br>Conc. | <u>Spike</u><br><u>Added</u> | <u>MS</u><br>Conc. | <u>MS</u><br>%Rec. | <u>MSD</u><br>Conc. | <u>MSD</u><br><u>%Rec.</u> | <u>%Rec. CL</u>       | <u>RPD</u> | RPD CL     | <u>Qualifiers</u> |
| TPH as Gasoline           | ND                     | 10.00                        | 9.791              | 98                 | 9.682               | 97                         | 48-114                | 1          | 0-23       |                   |



| Cardno ERI                |                        |                       |                    | Date F             | Received            | :                   |                 |            |             | 09/13/17          |
|---------------------------|------------------------|-----------------------|--------------------|--------------------|---------------------|---------------------|-----------------|------------|-------------|-------------------|
| 601 North McDowell Blvd.  |                        |                       |                    | Work               | Order:              |                     |                 |            | 17          | 7-09-0867         |
| Petaluma, CA 94954-2312   |                        |                       |                    | Prepa              | ration:             |                     |                 |            | EF          | PA 5030C          |
|                           |                        |                       |                    | Metho              | d:                  |                     |                 |            | EPA 8       | 015B (M)          |
| Project: E317100700       |                        |                       |                    |                    |                     |                     |                 |            | Page 3      | of 4              |
| Quality Control Sample ID | Туре                   |                       | Matrix             | Inst               | rument              | Date Prepared       | Date Ana        | lyzed      | MS/MSD Bate | ch Number         |
| 17-09-0298-5              | Sample                 |                       | Solid              | GC                 | 57                  | 09/15/17            | 09/15/17        | 12:44      | 170915S011  |                   |
| 17-09-0298-5              | Matrix Spike           |                       | Solid              | GC                 | 57                  | 09/15/17            | 09/15/17        | 13:16      | 170915S011  |                   |
| 17-09-0298-5              | Matrix Spike           | Duplicate             | Solid              | GC                 | 57                  | 09/15/17            | 09/15/17        | 13:48      | 170915S011  |                   |
| Parameter                 | <u>Sample</u><br>Conc. | <u>Spike</u><br>Added | <u>MS</u><br>Conc. | <u>MS</u><br>%Rec. | <u>MSD</u><br>Conc. | <u>MSD</u><br>%Rec. | <u>%Rec. CL</u> | <u>RPD</u> | RPD CL      | <u>Qualifiers</u> |
| TPH as Gasoline           | ND                     | 10.00                 | 9.231              | 92                 | 9.862               | 99                  | 48-114          | 7          | 0-23        |                   |

Return to Contents



| Cardno ERI               | Date Received: | 09/13/17    |
|--------------------------|----------------|-------------|
| 601 North McDowell Blvd. | Work Order:    | 17-09-0867  |
| Petaluma, CA 94954-2312  | Preparation:   | EPA 5030C   |
|                          | Method:        | EPA 8260B   |
| Project: E317100700      |                | Page 4 of 4 |

| Quality Control Sample ID     | Туре                          |                       | Matrix             | Inst               | rument              | Date Prepared       | Date Ana        | lyzed      | MS/MSD Bat | ch Number         |
|-------------------------------|-------------------------------|-----------------------|--------------------|--------------------|---------------------|---------------------|-----------------|------------|------------|-------------------|
| 17-09-0937-3                  | Sample                        |                       | Solid              | GC/                | MS OO               | 09/13/17            | 09/13/17        | 20:43      | 170913S018 |                   |
| 17-09-0937-3                  | Matrix Spike                  |                       | Solid              | GC/                | MS OO               | 09/13/17            | 09/13/17        | 18:48      | 170913S018 |                   |
| 17-09-0937-3                  | Matrix Spike                  | Duplicate             | Solid              | GC/                | MS OO               | 09/13/17            | 09/13/17        | 19:17      | 170913S018 |                   |
| Parameter                     | <u>Sample</u><br><u>Conc.</u> | <u>Spike</u><br>Added | <u>MS</u><br>Conc. | <u>MS</u><br>%Rec. | <u>MSD</u><br>Conc. | <u>MSD</u><br>%Rec. | <u>%Rec. CL</u> | <u>RPD</u> | RPD CL     | <u>Qualifiers</u> |
| Benzene                       | ND                            | 50.00                 | 45.40              | 91                 | 40.85               | 82                  | 61-127          | 11         | 0-20       |                   |
| Carbon Tetrachloride          | ND                            | 50.00                 | 45.49              | 91                 | 41.31               | 83                  | 51-135          | 10         | 0-29       |                   |
| Chlorobenzene                 | ND                            | 50.00                 | 43.25              | 86                 | 37.27               | 75                  | 57-123          | 15         | 0-20       |                   |
| 1,2-Dibromoethane             | ND                            | 50.00                 | 46.35              | 93                 | 39.64               | 79                  | 64-124          | 16         | 0-20       |                   |
| 1,2-Dichlorobenzene           | ND                            | 50.00                 | 41.09              | 82                 | 32.55               | 65                  | 35-131          | 23         | 0-25       |                   |
| 1,2-Dichloroethane            | ND                            | 50.00                 | 44.78              | 90                 | 39.16               | 78                  | 80-120          | 13         | 0-20       | 3                 |
| 1,1-Dichloroethene            | ND                            | 50.00                 | 44.93              | 90                 | 41.47               | 83                  | 47-143          | 8          | 0-25       |                   |
| Ethylbenzene                  | ND                            | 50.00                 | 44.52              | 89                 | 38.12               | 76                  | 57-129          | 15         | 0-22       |                   |
| Toluene                       | ND                            | 50.00                 | 46.93              | 94                 | 41.00               | 82                  | 63-123          | 13         | 0-20       |                   |
| Trichloroethene               | ND                            | 50.00                 | 49.18              | 98                 | 42.98               | 86                  | 44-158          | 13         | 0-20       |                   |
| Vinyl Chloride                | ND                            | 50.00                 | 50.76              | 102                | 50.35               | 101                 | 49-139          | 1          | 0-47       |                   |
| p/m-Xylene                    | ND                            | 100.0                 | 90.64              | 91                 | 76.87               | 77                  | 70-130          | 16         | 0-30       |                   |
| o-Xylene                      | ND                            | 50.00                 | 46.01              | 92                 | 39.20               | 78                  | 70-130          | 16         | 0-30       |                   |
| Methyl-t-Butyl Ether (MTBE)   | ND                            | 50.00                 | 45.62              | 91                 | 41.18               | 82                  | 57-123          | 10         | 0-21       |                   |
| Tert-Butyl Alcohol (TBA)      | ND                            | 250.0                 | 226.1              | 90                 | 178.0               | 71                  | 30-168          | 24         | 0-34       |                   |
| Diisopropyl Ether (DIPE)      | ND                            | 50.00                 | 47.10              | 94                 | 42.45               | 85                  | 57-129          | 10         | 0-20       |                   |
| Ethyl-t-Butyl Ether (ETBE)    | ND                            | 50.00                 | 47.31              | 95                 | 42.95               | 86                  | 55-127          | 10         | 0-20       |                   |
| Tert-Amyl-Methyl Ether (TAME) | ND                            | 50.00                 | 46.55              | 93                 | 41.31               | 83                  | 58-124          | 12         | 0-20       |                   |
| Ethanol                       | ND                            | 500.0                 | 445.4              | 89                 | 348.0               | 70                  | 17-167          | 25         | 0-47       |                   |

**Qualifiers** 



| 099-14-353-35             | LCS  | Solid  | GC 47       | 09/15/17      | 09/18/17 11:49 | 170915B06B       |
|---------------------------|------|--------|-------------|---------------|----------------|------------------|
| Quality Control Sample ID | Туре | Matrix | Instrument  | Date Prepared | Date Analyzed  | LCS Batch Number |
| Project: E317100700       |      |        |             |               |                | Page 1 of 4      |
|                           |      |        | Method:     |               |                | EPA 8015B (M)    |
| Petaluma, CA 94954-2312   |      |        | Preparation | :             |                | EPA 3550B        |
| 601 North McDowell Blvd.  |      |        | Work Order  | :             |                | 17-09-0867       |
| Cardno ERI                |      |        | Date Receiv | ved:          |                | 09/13/17         |

Conc. Recovered

378.0

LCS %Rec.

94

%Rec. CL

61-145

| 099-14-353-35 | LCS | Solid       |
|---------------|-----|-------------|
| Parameter     |     | Spike Added |
| TPH as Diesel |     | 400.0       |





| Cardno ERI                |      |             | Date Receiv  | red:          |                 | 09/13/17         |
|---------------------------|------|-------------|--------------|---------------|-----------------|------------------|
| 601 North McDowell Blvd.  |      |             | Work Order:  |               |                 | 17-09-0867       |
| Petaluma, CA 94954-2312   | 2    |             | Preparation: | :             |                 | EPA 5030C        |
|                           |      |             | Method:      |               |                 | EPA 8015B (M)    |
| Project: E317100700       |      |             |              |               |                 | Page 2 of 4      |
| Quality Control Sample ID | Туре | Matrix      | Instrument   | Date Prepared | Date Analyzed   | LCS Batch Number |
| 099-14-571-3843           | LCS  | Solid       | GC 57        | 09/14/17      | 09/14/17 11:02  | 170914L020       |
| Parameter                 |      | Spike Added | Conc. Recove | ered LCS %R   | ec. <u>%Rec</u> | . CL Qualifiers  |

10.04

100

70-124

10.00





| Cardno ERI                |      |             | Date Receive | ed:           |                 | 09/13/17         |
|---------------------------|------|-------------|--------------|---------------|-----------------|------------------|
| 601 North McDowell Blvd.  |      |             | Work Order:  |               |                 | 17-09-0867       |
| Petaluma, CA 94954-2312   | 2    |             | Preparation: |               |                 | EPA 5030C        |
|                           |      |             | Method:      |               |                 | EPA 8015B (M)    |
| Project: E317100700       |      |             |              |               |                 | Page 3 of 4      |
| Quality Control Sample ID | Туре | Matrix      | Instrument   | Date Prepared | Date Analyzed   | LCS Batch Number |
| 099-14-571-3848           | LCS  | Solid       | GC 57        | 09/15/17      | 09/15/17 10:37  | 170915L019       |
| <u>Parameter</u>          |      | Spike Added | Conc. Recove | ered LCS %R   | ec. <u>%Rec</u> | . CL Qualifiers  |

10.59

106

70-124

10.00

|     |      | -       |
|-----|------|---------|
| TPH | as G | asoline |

Return to Contents





| Cardno ERI               | Date Received: | 09/13/17    |
|--------------------------|----------------|-------------|
| 601 North McDowell Blvd. | Work Order:    | 17-09-0867  |
| Petaluma, CA 94954-2312  | Preparation:   | EPA 5030C   |
|                          | Method:        | EPA 8260B   |
| Project: E317100700      |                | Page 4 of 4 |

| Quality Control Sample ID     | Туре         | Matrix             | Instrument    | Date Prepared           | Date Analyzed  | LCS Batch Nu | mber       |
|-------------------------------|--------------|--------------------|---------------|-------------------------|----------------|--------------|------------|
| 099-12-796-13176              | LCS          | Solid              | GC/MS OO      | 09/13/17                | 09/13/17 16:18 | 170913L032   |            |
| Parameter                     | <u>Spike</u> | Added <u>Conc.</u> | Recovered LCS | <u>%Rec.</u> <u>%</u> R | ec. CL ME      | E CL         | Qualifiers |
| Benzene                       | 50.00        | 51.69              | 103           | 80-                     | 120 73         | -127         |            |
| Carbon Tetrachloride          | 50.00        | 52.21              | 104           | 65-                     | 137 53         | -149         |            |
| Chlorobenzene                 | 50.00        | 49.15              | 98            | 80-                     | 120 73         | -127         |            |
| 1,2-Dibromoethane             | 50.00        | 49.78              | 100           | 80-                     | 120 73         | -127         |            |
| 1,2-Dichlorobenzene           | 50.00        | 48.02              | 96            | 80-                     | 120 73         | -127         |            |
| 1,2-Dichloroethane            | 50.00        | 49.15              | 98            | 80-                     | 120 73         | -127         |            |
| 1,1-Dichloroethene            | 50.00        | 49.83              | 100           | 68-                     | 128 58         | -138         |            |
| Ethylbenzene                  | 50.00        | 51.00              | 102           | 80-                     | 120 73         | -127         |            |
| Toluene                       | 50.00        | 53.00              | 106           | 80-                     | 120 73         | -127         |            |
| Trichloroethene               | 50.00        | 51.81              | 104           | 80-                     | 120 73         | -127         |            |
| Vinyl Chloride                | 50.00        | 53.68              | 107           | 67-                     | 127 57         | -137         |            |
| p/m-Xylene                    | 100.0        | 103.7              | 104           | 75-                     | 125 67         | -133         |            |
| o-Xylene                      | 50.00        | 52.72              | 105           | 75-                     | 125 67         | -133         |            |
| Methyl-t-Butyl Ether (MTBE)   | 50.00        | 49.60              | 99            | 70-                     | 124 61         | -133         |            |
| Tert-Butyl Alcohol (TBA)      | 250.0        | 227.4              | 91            | 73-                     | 121 65         | -129         |            |
| Diisopropyl Ether (DIPE)      | 50.00        | 51.76              | 104           | 69-                     | 129 59         | -139         |            |
| Ethyl-t-Butyl Ether (ETBE)    | 50.00        | 52.44              | 105           | 70-                     | 124 61         | -133         |            |
| Tert-Amyl-Methyl Ether (TAME) | 50.00        | 51.39              | 103           | 74-                     | 122 66         | -130         |            |
| Ethanol                       | 500.0        | 417.8              | 84            | 51-                     | 135 37         | -149         |            |

Total number of LCS compounds: 19 Total number of ME compounds: 0 Total number of ME compounds allowed: 1 LCS ME CL validation result: Pass



Calscience

| Work Order: 17-09-0867 |            |                   |                   | Page 1 of 1         |
|------------------------|------------|-------------------|-------------------|---------------------|
| Method                 | Extraction | <u>Chemist ID</u> | <u>Instrument</u> | Analytical Location |
| EPA 8015B (M)          | EPA 3550B  | 682               | GC 47             | 1                   |
| EPA 8015B (M)          | EPA 5030C  | 933               | GC 57             | 2                   |
| EPA 8260B              | EPA 5030C  | 849               | GC/MS OO          | 2                   |

Return to Contents

Location 1: 7440 Lincoln Way, Garden Grove, CA 92841 Location 2: 7445 Lampson Avenue, Garden Grove, CA 92841

### Calscience

#### Work Order: 17-09-0867

**Glossary of Terms and Qualifiers** 

| Work Order:       | : 17-09-0867 Page 1 of 1                                                                                                                                                                                                                                                                                                                                                            |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <u>Qualifiers</u> | Definition                                                                                                                                                                                                                                                                                                                                                                          |
| *                 | See applicable analysis comment.                                                                                                                                                                                                                                                                                                                                                    |
| <                 | Less than the indicated value.                                                                                                                                                                                                                                                                                                                                                      |
| >                 | Greater than the indicated value.                                                                                                                                                                                                                                                                                                                                                   |
| 1                 | Surrogate compound recovery was out of control due to a required sample dilution. Therefore, the sample data was reported without further clarification.                                                                                                                                                                                                                            |
| 2                 | Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.                                                                                                                                                          |
| 3                 | Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to suspected matrix interference. The associated LCS recovery was in control.                                                                                                                                                                                                     |
| 4                 | The MS/MSD RPD was out of control due to suspected matrix interference.                                                                                                                                                                                                                                                                                                             |
| 5                 | The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to suspected matrix interference.                                                                                                                                                                                                                                                             |
| 6                 | Surrogate recovery below the acceptance limit.                                                                                                                                                                                                                                                                                                                                      |
| 7                 | Surrogate recovery above the acceptance limit.                                                                                                                                                                                                                                                                                                                                      |
| В                 | Analyte was present in the associated method blank.                                                                                                                                                                                                                                                                                                                                 |
| BU                | Sample analyzed after holding time expired.                                                                                                                                                                                                                                                                                                                                         |
| BV                | Sample received after holding time expired.                                                                                                                                                                                                                                                                                                                                         |
| CI                | See case narrative.                                                                                                                                                                                                                                                                                                                                                                 |
| Е                 | Concentration exceeds the calibration range.                                                                                                                                                                                                                                                                                                                                        |
| ET                | Sample was extracted past end of recommended max. holding time.                                                                                                                                                                                                                                                                                                                     |
| HD                | The chromatographic pattern was inconsistent with the profile of the reference fuel standard.                                                                                                                                                                                                                                                                                       |
| HDH               | The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but heavier hydrocarbons were also present (or detected).                                                                                                                                                                                                                  |
| HDL               | The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but lighter hydrocarbons were also present (or detected).                                                                                                                                                                                                                  |
| J                 | Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.                                                                                                                                                                                                                                     |
| JA                | Analyte positively identified but quantitation is an estimate.                                                                                                                                                                                                                                                                                                                      |
| ME                | LCS Recovery Percentage is within Marginal Exceedance (ME) Control Limit range (+/- 4 SD from the mean).                                                                                                                                                                                                                                                                            |
| ND                | Parameter not detected at the indicated reporting limit.                                                                                                                                                                                                                                                                                                                            |
| Q                 | Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.                                                                                                                                                                                                       |
| SG                | The sample extract was subjected to Silica Gel treatment prior to analysis.                                                                                                                                                                                                                                                                                                         |
| Х                 | % Recovery and/or RPD out-of-range.                                                                                                                                                                                                                                                                                                                                                 |
| Z                 | Analyte presence was not confirmed by second column or GC/MS analysis.                                                                                                                                                                                                                                                                                                              |
|                   | Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are reported on a wet weight basis.                                                                                                                                                                                                           |
|                   | Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time. |
|                   |                                                                                                                                                                                                                                                                                                                                                                                     |

A calculated total result (Example: Total Pesticides) is the summation of each component concentration and/or, if "J" flags are reported, estimated concentration. Component concentrations showing not detected (ND) are summed into the calculated total result as zero concentrations.

| କ<br>କ<br>୍ଷ୍ଣ କ   | eurofins                                                                                                                                                  |                                        |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                    |                                      |                                                                                                                 |                  |                              |                                             | Ö,                 | CHAIN OF CUSTODY RECORD | STOD          | X REC   | 0<br>2<br>0       |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------------|--------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------|------------------------------|---------------------------------------------|--------------------|-------------------------|---------------|---------|-------------------|
| 0)<br>0)           |                                                                                                                                                           | Calscience                             | e<br>LC                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                    |                                      | >                                                                                                               | 0#/LAB.          | ISE ONLY                     |                                             | DATE:              | 9-9-17                  |               |         |                   |
| 7440 Li<br>Eor col | 7440 Lincoln Way, Garden Grove, CA 92841-1427 • (714) 895-5494<br>Ecr convice conviced formed dreamed in provident us26, calae@arrefinetus.com or call us | 11-1427 • (714) (<br>ation contact us? | 895-5494<br>26. salas@aurofins | su le com or call us                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |                    |                                      | a la desta de l |                  | PP                           | 1/980-60-/1                                 | PAGE:              | (                       | OF<br>OF      | _       |                   |
|                    | RATORY CLIENT:                                                                                                                                            |                                        | 20 2010-0011                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                    |                                      | :                                                                                                               | LIENT PRO        | CLIENT PROJECT NAME / NUMBER | NUMBER:                                     |                    | P.O. NO.:               |               |         |                   |
| VDDDCCC            |                                                                                                                                                           |                                        |                                | Weight Provide the State of the |            |                    |                                      |                                                                                                                 | E3171            | E317100700                   |                                             |                    |                         |               |         |                   |
|                    | 2300 Clayton Road, Suite 200                                                                                                                              | , Suite 200                            |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                    |                                      | Ē                                                                                                               | PROJECT CONTACT: | DNTACT:                      |                                             |                    | SAMPLER(S): (PRINT      | ): (PRINT)    |         |                   |
| CITY:              | Concord                                                                                                                                                   |                                        |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | STATE:     | CA <sup>ZIP:</sup> | 94520                                |                                                                                                                 | Glen             | Glen Smith                   |                                             |                    | Nadya                   | Nadya Vicente |         |                   |
| TEL:               | (510) 362- 2170                                                                                                                                           |                                        | E-MAIL:<br>Gle                 | glen.smith@cardno.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | cardno.c   | com                |                                      |                                                                                                                 |                  |                              | RE                                          | QUESTED /          | REQUESTED ANALYSES      |               |         |                   |
|                    | TURNAROUND TIME (Rush surcharges may apply to any TAT not "STANDARD");                                                                                    | apply to any TAT not "                 |                                | 5 DAYS 🛛                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | X STANDARD | Q                  |                                      |                                                                                                                 | (                |                              | Please check box or fill in blank as needed | fill in blank as n | eeded.                  |               |         |                   |
|                    | = GLOBAL ID:<br>T10000                                                                                                                                    |                                        |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                    | LOG CODE:                            | **(0)                                                                                                           | GF08)            |                              |                                             | ······             |                         |               |         |                   |
| SPEC               | SPECIAL INSTRUCTIONS:                                                                                                                                     |                                        |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                    |                                      | 928/ 9                                                                                                          | 928) s           |                              |                                             |                    |                         |               | ,e,     |                   |
| ¥*                 | **Full Scan VOC: including but not limited to BTEX, fuel oxygenates,                                                                                      | ig but not li                          | imited to BT                   | EX, fuel ox)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ygenates,  |                    |                                      | 507                                                                                                             |                  |                              |                                             |                    |                         |               |         |                   |
| Ple E              | lead scavengers, naphthalene, TCE, and PCE, chlorinated VOC<br>Please email PDF files to: norcallabs@eri-us.com                                           | <b>ilene, TCE,</b><br>allabs@eri-u     | and PCE, ch<br>s.com           | nlorinated V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 20         |                    | eq                                   | tered                                                                                                           |                  |                              |                                             |                    |                         |               |         |                   |
| LAB                |                                                                                                                                                           | Field Point                            |                                | SAMPLING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            | NO.                | serv                                 |                                                                                                                 |                  |                              |                                             |                    |                         |               |         |                   |
| ONLY               | SAMPLE ID                                                                                                                                                 | Name                                   | DATE                           | TIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MAIKIX     | CONT.              |                                      |                                                                                                                 |                  |                              |                                             |                    |                         |               |         |                   |
|                    | 5-8-81                                                                                                                                                    | 6-1                                    | 6-9-17                         | 0900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Soil       | - 100              |                                      |                                                                                                                 | ×<br>×           |                              |                                             |                    |                         |               |         |                   |
| 0                  | 5-17-81                                                                                                                                                   | 8-1                                    | 4-9-17                         | 0950                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5011       | 1                  |                                      |                                                                                                                 | ×                |                              |                                             |                    |                         |               |         |                   |
| 3                  | 5 - 11-82                                                                                                                                                 | 8-2                                    | 4.9-17                         | 1340                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | So.1       | ~ thighigh         |                                      | ~                                                                                                               | XX               |                              |                                             |                    |                         |               |         |                   |
| 4                  | 5-16.5-82                                                                                                                                                 | 8-2                                    | 6-9-17                         | 1400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Soil       | ţ                  |                                      | <u>^</u>                                                                                                        | ×                |                              |                                             |                    |                         | 1             |         |                   |
| 5                  | 5-17-82                                                                                                                                                   | 8-2                                    | 6-9-17                         | 1410                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Seil       |                    |                                      | ×                                                                                                               | ×                |                              |                                             |                    |                         |               |         |                   |
| ى                  | 5-17-83                                                                                                                                                   | 6-3                                    | 9-9-17                         | 1600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Soil       | - Canado           |                                      |                                                                                                                 | ×                |                              |                                             |                    |                         |               |         |                   |
|                    |                                                                                                                                                           |                                        |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                    |                                      |                                                                                                                 |                  | -                            |                                             |                    |                         |               |         |                   |
|                    |                                                                                                                                                           |                                        |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                    |                                      |                                                                                                                 |                  |                              |                                             |                    |                         |               |         |                   |
|                    |                                                                                                                                                           |                                        |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                    |                                      |                                                                                                                 |                  |                              |                                             |                    |                         |               |         |                   |
|                    |                                                                                                                                                           |                                        |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                    |                                      |                                                                                                                 |                  |                              |                                             |                    |                         |               |         |                   |
| Relin              | Relinquished by: (Signature)                                                                                                                              | R                                      |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | Rece               |                                      | nature/Affili                                                                                                   | lation)          | S                            | Ect                                         |                    | して、して                   | F             |         | Pag               |
| Reind              | Nisteday (Sonature)                                                                                                                                       | T. 18                                  | Dal.                           | ر<br>بر<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 27         | Rece               | Received by. (Sig                    | Signature/Affiliation)                                                                                          | iation)          | þ                            |                                             |                    | Date:                   | F             | Time:   | e 39              |
| Reg                | named by: (Signature)                                                                                                                                     | <b>N</b>                               | 01+1                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | Rece               | Received by: (Signature/Affiliation) | Inature/Affili                                                                                                  | iation)          |                              | IL M                                        | A                  | Date: 12 /17            | F<br>X        | Time OO | of 41             |
|                    |                                                                                                                                                           |                                        |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                    |                                      |                                                                                                                 |                  |                              | A s                                         | <u> </u>           |                         |               | 06/02/1 | 06/02/14 Revision |
|                    |                                                                                                                                                           |                                        |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                    |                                      |                                                                                                                 |                  |                              |                                             |                    |                         |               |         |                   |

Return to Contents



Ship From CAL SCIENCE- CONCORD ALAN KEMP 5063 COMMERCIAL CIRCLE #H CONCORD, CA 94520

Ship To CEL SAMPLE RECEIVING 7440 LINCOLN WAY GARDEN GROVE, CA 92841

COD: \$0.00 Weight: 0 lb(s) Reference: CARDNO Delivery Instructions:

Signature Type: REQUIRED

800-322-5555 www.gso.com (



NPS

Tracking #: 537577341







D92845A

72117114

Print Date: 9/12/2017 3:45 PM

### LABEL INSTRUCTIONS:

**Do not copy or reprint this label for additional shipments - each package must have a unique barcode.** Step 1: Use the "Send Label to Printer" button on this page to print the shipping label on a laser or inkjet printer. Step 2: Fold this page in half.

Step 2. Four this page in half. Step 3: Securely attach this label to your package and do not cover the barcode.

### TERMS AND CONDITIONS:

By giving us your shipment to deliver, you agree to all of the GSO service terms & conditions including, but not limited to; limits of liability, declared value conditions, and claim procedures which are available on our website at www.gso.com.

| seurofins                                                                                                                                                                                                                       |                                                                                                                                                                               | WORK ORDE                                                                                                              | R NUMBER                                                     | : <u>17-0</u>          | e 41 of<br><b>)9−€</b>  | 1867          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|------------------------|-------------------------|---------------|
| Calscien                                                                                                                                                                                                                        | SAMPLE RECEIPT                                                                                                                                                                | CHECKLIST                                                                                                              | с                                                            | OOLER                  | (                       | of /          |
| CLIENT: Card                                                                                                                                                                                                                    | N Ø                                                                                                                                                                           |                                                                                                                        |                                                              | ≣: <u>09</u> /         |                         | -             |
| TEMPERATURE: (Criteria: 0.0°C<br>Thermometer ID: SC6 (CF: +0.2°<br>□ Sample(s) outside temperat                                                                                                                                 | -                                                                                                                                                                             | 2°C (w/ CF): _2<br>py:)                                                                                                | <u>?_</u> 4_℃;                                               |                        |                         | Sample        |
| □ Sample(s) received at ambient<br>Ambient Temperature: □ Air □ I                                                                                                                                                               |                                                                                                                                                                               | ansport by courier                                                                                                     |                                                              | Checke                 | d by:                   | <u>s</u>      |
| CUSTODY SEAL:<br>Cooler Present and Inta<br>Sample(s) Present and Inta                                                                                                                                                          |                                                                                                                                                                               | □ Not Present<br>☑ Not Present                                                                                         | □ N/A<br>□ N/A                                               | Checke<br>Checke       |                         | 15<br>562     |
|                                                                                                                                                                                                                                 |                                                                                                                                                                               | ontainers                                                                                                              |                                                              | 1 <b>1</b>             | No<br>D                 | N/A<br>D<br>D |
| Sampler's name indicated on CO<br>Sample container label(s) consist<br>Sample container(s) intact and in<br>Proper containers for analyses re<br>Sufficient volume/mass for analys                                              | C<br>ent with COC<br>good condition<br>quested<br>es requested                                                                                                                |                                                                                                                        |                                                              | ф<br>Ф<br>Ф            |                         |               |
| □ pH □ Residual Chlorine I<br>Proper preservation chemical(s) r                                                                                                                                                                 | nalyses received within 15-minut<br>Dissolved Sulfide Dissolved<br>noted on COC and/or sample con<br>(s) received for certain analyses                                        | e holding time<br>d Oxygen                                                                                             |                                                              |                        |                         | D<br>V.V      |
| Acid/base preserved samples - pl<br>Container(s) for certain analysis fi<br>□ Volatile Organics □ Dissol                                                                                                                        | H within acceptable range<br>ree of headspace<br>ved Gases (RSK-175)                                                                                                          | ved Oxygen (SM 45<br>lydrogen Sulfide (Ha                                                                              | 00)<br>ch)                                                   | . 🗆                    |                         | ф<br>ф<br>ф   |
| CONTAINER TYPE:<br>Aqueous: □ VOA □ VOAh □ VOAr<br>□ 250AGB □ 250CGB □ 250CGBs<br>□ 1AGB □ 1AGBna₂ □ 1AGBs (pH<br>Solid: □ 4ozCGJ □ 8ozCGJ □ 16oz<br>Air: □ Tedlar™ □ Canister □ Sorbe<br>Container: A = Amber, B = Bottle, C = | na₂ □ 100PJ □ 100PJna₂ □ 125AG8<br>(pH2) □ 250PB □ 250PBn (pH<br>2) □ 1AGBs (O&G) □ 1PB □ 1PB<br>zCGJ □ Sleeve ( <u>S</u> ) □ EnCores <sup>®</sup> (<br>nt Tube □ PUF □ Other | (Trip Blan<br>B □ 125AGBh □ 125/<br>_2) □ 500AGB □ 500<br>na (pH12) □<br>) □ TerraCores <sup>®</sup> (_<br>r Matrix () | k Lot Numbe<br>AGBp 🗆 125P<br>AGJ 🗆 500AG<br>🗆<br>) 🗆<br>: 🗆 | er:<br>B               | PBznna (<br>2)          | 0PB           |
| Container: <b>A</b> = Amber, <b>B</b> = Bottle, <b>C</b> =<br>Preservative: <b>b</b> = buffered, <b>f</b> = filtered                                                                                                            | = Clear, E = Envelope, G = Glass, J :                                                                                                                                         | = Jar, $\mathbf{P}$ = Plastic, and<br>$\mathbf{a}_2 = Na_2S_2O_3$ , $\mathbf{p} = H_3P_2$                              | <b>Z</b> = Ziploc/Res<br>D <sub>4</sub> , Labeleo            | ealable Ba<br>d/Checke | ag<br>ed by: _ <b>{</b> | 12            |

٠

٠

# WORK ORDER NUMBER: 17-09-0868

**Calscience** 

# The difference is service

🔅 eurofins



AIR | SOIL | WATER | MARINE CHEMISTRY

Analytical Report For Client: Cardno ERI Client Project Name: E317100700 Attention: Glen Smith 601 North McDowell Blvd. Petaluma, CA 94954-2312

Nicole Scott

Approved for release on 09/21/2017 by: Nicole Scott Project Manager

ResultLink ▶

Email your PM >

Eurofins Calscience, Inc. (Calscience) certifies that the test results provided in this report meet all NELAC requirements for parameters for which accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The original report of subcontracted analyses, if any, is attached to this report. The results in this report are limited to the sample(s) tested and any reproduction thereof must be made in its entirety. The client or recipient of this report is specifically prohibited from making material changes to said report and, to the extent that such changes are made, Calscience is not responsible, legally or otherwise. The client or recipient agrees to indemnify Calscience for any defense to any litigation which may arise.

7440 Lincoln Way, Garden Grove, CA 92841-1432 \* TEL: (714) 895-5494 \* FAX: (714) 894-7501 \* www.calscience.com

CA ELAP ID: 2944 | ACLASS DoD-ELAP ID: ADE-1864 (ISO/IEC 17025:2005) | CSDLAC ID: 10109

# 🛟 eurofins

4

5

6

### Calscience

# Contents

3

4

4

5

6

21

21

26

32

33

34

| Client I | Project Name: E317100700                                                                                                     |   |
|----------|------------------------------------------------------------------------------------------------------------------------------|---|
| Work C   | Order Number: 17-09-0868                                                                                                     |   |
| 1        | Work Order Narrative                                                                                                         |   |
| 2        | Client Sample Data.                                                                                                          |   |
|          | <ul><li>2.1 EPA 8015B (M) Diesel and Motor Oil Ranges (Aqueous).</li><li>2.2 EPA 8015B (M) TPH Gasoline (Aqueous).</li></ul> |   |
|          | 2.3 EPA 8260B Volatile Organics + Oxygenates (Aqueous).                                                                      |   |
| 3        | Quality Control Sample Data.                                                                                                 | • |
|          | 3.1 MS/MSD                                                                                                                   |   |
|          | 3.2 LCS/LCSD                                                                                                                 |   |

Sample Analysis Summary.

Glossary of Terms and Qualifiers.

Chain-of-Custody/Sample Receipt Form.

Work Order: 17-09-0868

Page 1 of 1

### **Condition Upon Receipt:**

Samples were received under Chain-of-Custody (COC) on 09/13/17. They were assigned to Work Order 17-09-0868.

Unless otherwise noted on the Sample Receiving forms all samples were received in good condition and within the recommended EPA temperature criteria for the methods noted on the COC. The COC and Sample Receiving Documents are integral elements of the analytical report and are presented at the back of the report.

### Holding Times:

All samples were analyzed within prescribed holding times (HT) and/or in accordance with the Calscience Sample Acceptance Policy unless otherwise noted in the analytical report and/or comprehensive case narrative, if required.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

### **Quality Control:**

All quality control parameters (QC) were within established control limits except where noted in the QC summary forms or described further within this report.

### Subcontractor Information:

Unless otherwise noted below (or on the subcontract form), no samples were subcontracted.

### Additional Comments:

Air - Sorbent-extracted air methods (EPA TO-4A, EPA TO-10, EPA TO-13A, EPA TO-17): Analytical results are converted from mass/sample basis to mass/volume basis using client-supplied air volumes.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are always reported on a wet weight basis.



| Cardno ERI                             |                      |                        | Date Recei      | ved:          |                      |                       | 09/13/17     |
|----------------------------------------|----------------------|------------------------|-----------------|---------------|----------------------|-----------------------|--------------|
| 601 North McDowell Blvd.               |                      |                        | Work Order      | r:            |                      |                       | 17-09-0868   |
| Petaluma, CA 94954-2312                |                      |                        | Preparatior     | 1:            |                      |                       | EPA 3510C    |
|                                        |                      |                        | Method:         |               |                      | E                     | PA 8015B (M) |
|                                        |                      |                        | Units:          |               |                      | _                     | ug/L         |
| Project: E317100700                    |                      |                        | ormo.           |               |                      | Pa                    | ige 1 of 1   |
| Client Sample Number                   | Lab Sample<br>Number | Date/Time<br>Collected | Matrix          | Instrument    | Date<br>Prepared     | Date/Time<br>Analyzed | QC Batch ID  |
| B1                                     | 17-09-0868-1-A       | 09/09/17<br>10:50      | Aqueous         | GC 45         | 09/15/17             | 09/18/17<br>19:06     | 170915B01B   |
| Comment(s): - Motor Oil Range Organics | s (C17-C44) uses a   | Diesel Range C         | Organics (C10-  | C28) standard | for quantitation a   | and quality cont      | trol.        |
| Parameter                              |                      | <u>Result</u>          | RL              | :             | DF                   | Qua                   | alifiers     |
| TPH as Diesel                          |                      | 320                    | 12              | 0             | 1.00                 | HD                    |              |
| TPH as Motor Oil                       |                      | 170                    | 12              | 0             | 1.00                 | HD                    |              |
| Surrogate                              |                      | <u>Rec. (%)</u>        | <u>Co</u>       | ntrol Limits  | <u>Qualifiers</u>    |                       |              |
| n-Octacosane                           |                      | 109                    | 68              | -140          |                      |                       |              |
| B2                                     | 17-09-0868-2-A       | 09/09/17<br>16:45      | Aqueous         | GC 45         | 09/15/17             | 09/18/17<br>19:28     | 170915B01B   |
| Comment(s): - Motor Oil Range Organics | s (C17-C44) uses a   | Diesel Range C         | Organics (C10-  | C28) standard | I for quantitation a | and quality cont      | trol.        |
| Parameter                              |                      | <u>Result</u>          | RL              |               | DE                   | Qua                   | alifiers     |
| TPH as Diesel                          |                      | ND                     | 52              |               | 1.00                 |                       |              |
| TPH as Motor Oil                       |                      | ND                     | 52              |               | 1.00                 |                       |              |
| Surrogate                              |                      | <u>Rec. (%)</u>        | <u>Co</u>       | ntrol Limits  | <u>Qualifiers</u>    |                       |              |
| n-Octacosane                           |                      | 111                    | 68              | -140          |                      |                       |              |
| B3                                     | 17-09-0868-3-A       | 09/09/17<br>17:30      | Aqueous         | GC 45         | 09/15/17             | 09/18/17<br>19:50     | 170915B01B   |
| Comment(s): - Motor Oil Range Organics | s (C17-C44) uses a   | Diesel Range C         | Organics (C10-  | C28) standard | for quantitation a   | and quality cont      | trol.        |
| Parameter                              |                      | <u>Result</u>          | <u>RL</u>       | :             | DF                   | Qua                   | alifiers     |
| TPH as Diesel                          |                      | ND                     | 52              |               | 1.00                 |                       |              |
| TPH as Motor Oil                       |                      | ND                     | 52              |               | 1.00                 |                       |              |
| Surrogate                              |                      | <u>Rec. (%)</u>        | Co              | ntrol Limits  | <u>Qualifiers</u>    |                       |              |
| n-Octacosane                           |                      | 101                    | 68              | -140          |                      |                       |              |
| Method Blank                           | 099-14-355-25        | N/A                    | Aqueous         | GC 45         | 09/15/17             | 09/18/17<br>13:37     | 170915B01B   |
| Comment(s): - Motor Oil Range Organics | s (C17-C44) uses a   | Diesel Range C         | Organics (C10-  | C28) standard | for quantitation a   | and quality cont      | trol.        |
| Parameter                              |                      | Result                 | RL              |               | DF                   | Qua                   | alifiers     |
| TPH as Diesel                          |                      | ND                     | 10              | 0             | 1.00                 |                       |              |
| TPH as Motor Oil                       |                      | ND                     | 10              | 0             | 1.00                 |                       |              |
| Surrogate                              |                      | <u>Rec. (%)</u>        | Co              | ntrol Limits  | <u>Qualifiers</u>    |                       |              |
| n-Octacosane                           |                      | 98                     | 68 <sup>.</sup> | -140          |                      |                       |              |
|                                        |                      |                        |                 |               |                      |                       |              |



| <b>Analytical Rep</b> | ort  |
|-----------------------|------|
|                       | •••• |

| Cardno ERI               |                      |                        | Date Recei  | ved:         |                   |                       | 09/13/17     |
|--------------------------|----------------------|------------------------|-------------|--------------|-------------------|-----------------------|--------------|
| 601 North McDowell Blvd. |                      |                        | Work Orde   | r:           |                   |                       | 17-09-0868   |
| Petaluma, CA 94954-2312  |                      |                        | Preparatior | n:           |                   |                       | EPA 5030C    |
|                          |                      |                        | Method:     |              |                   | E                     | PA 8015B (M) |
|                          |                      |                        | Units:      |              |                   |                       | ug/L         |
| Project: E317100700      |                      |                        |             |              |                   | Pa                    | ige 1 of 1   |
| Client Sample Number     | Lab Sample<br>Number | Date/Time<br>Collected | Matrix      | Instrument   | Date<br>Prepared  | Date/Time<br>Analyzed | QC Batch ID  |
| B1                       | 17-09-0868-1-H       | 09/09/17<br>10:50      | Aqueous     | GC 42        | 09/15/17          | 09/15/17<br>18:05     | 170915L035   |
| Parameter                |                      | Result                 | RL          |              | DF                | Qua                   | alifiers     |
| TPH as Gasoline          |                      | ND                     | 50          |              | 1.00              |                       |              |
| Surrogate                |                      | <u>Rec. (%)</u>        | Co          | ntrol Limits | <u>Qualifiers</u> |                       |              |
| 1,4-Bromofluorobenzene   |                      | 71                     | 38          | -134         |                   |                       |              |
| B2                       | 17-09-0868-2-H       | 09/09/17<br>16:45      | Aqueous     | GC 42        | 09/15/17          | 09/15/17<br>22:09     | 170915L035   |
| Parameter                |                      | Result                 |             |              | DF                | Qua                   | alifiers     |
| TPH as Gasoline          |                      | 92                     | 50          |              | 1.00              | HD                    |              |
| Surrogate                |                      | <u>Rec. (%)</u>        | <u>Co</u>   | ntrol Limits | <u>Qualifiers</u> |                       |              |
| 1,4-Bromofluorobenzene   |                      | 71                     | 38          | -134         |                   |                       |              |
| B3                       | 17-09-0868-3-H       | 09/09/17<br>17:30      | Aqueous     | GC 42        | 09/15/17          | 09/15/17<br>18:40     | 170915L035   |
| Parameter                |                      | Result                 | RL          |              | DF                | Qua                   | alifiers     |
| TPH as Gasoline          |                      | ND                     | 50          |              | 1.00              |                       |              |
| Surrogate                |                      | <u>Rec. (%)</u>        | Co          | ntrol Limits | <u>Qualifiers</u> |                       |              |
| 1,4-Bromofluorobenzene   |                      | 60                     | 38          | -134         |                   |                       |              |
| Method Blank             | 099-12-436-11617     | N/A                    | Aqueous     | GC 42        | 09/15/17          | 09/15/17<br>15:11     | 170915L035   |
| Parameter                |                      | Result                 | <u></u>     |              | DF                |                       | alifiers     |
| TPH as Gasoline          |                      | ND                     | 50          |              | 1.00              |                       |              |
| Surrogate                |                      | <u>Rec. (%)</u>        | <u>Co</u>   | ntrol Limits | <u>Qualifiers</u> |                       |              |
| 1,4-Bromofluorobenzene   |                      | 58                     |             | -134         |                   |                       |              |
|                          |                      |                        |             |              |                   |                       |              |



| Analytical R | eport |
|--------------|-------|
|--------------|-------|

| Cardno ERI                  |                      |                        | Date Recei  | ved:       |                  |                       | 09/13/17    |
|-----------------------------|----------------------|------------------------|-------------|------------|------------------|-----------------------|-------------|
| 601 North McDowell Blvd.    |                      |                        | Work Order  | r:         |                  |                       | 17-09-0868  |
| Petaluma, CA 94954-2312     |                      |                        | Preparatior | n:         |                  |                       | EPA 5030C   |
|                             |                      |                        | Method:     |            |                  |                       | EPA 8260B   |
|                             |                      |                        | Units:      |            |                  |                       | ug/L        |
| Project: E317100700         |                      |                        |             |            |                  | Pa                    | ige 1 of 15 |
| Client Sample Number        | Lab Sample<br>Number | Date/Time<br>Collected | Matrix      | Instrument | Date<br>Prepared | Date/Time<br>Analyzed | QC Batch ID |
| B1                          | 17-09-0868-1-B       | 09/09/17<br>10:50      | Aqueous     | GC/MS Q    | 09/15/17         | 09/15/17<br>22:55     | 170915L054  |
| Parameter                   |                      | Result                 | <u>RL</u>   |            | DF               | Qua                   | alifiers    |
| Acetone                     |                      | 22                     | 20          |            | 1.00             |                       |             |
| Benzene                     |                      | ND                     | 0.5         | 50         | 1.00             |                       |             |
| Bromobenzene                |                      | ND                     | 1.0         | )          | 1.00             |                       |             |
| Bromochloromethane          |                      | ND                     | 1.0         | )          | 1.00             |                       |             |
| Bromodichloromethane        |                      | ND                     | 1.0         | )          | 1.00             |                       |             |
| Bromoform                   |                      | ND                     | 1.0         | )          | 1.00             |                       |             |
| Bromomethane                |                      | ND                     | 10          |            | 1.00             |                       |             |
| 2-Butanone                  |                      | ND                     | 10          |            | 1.00             |                       |             |
| n-Butylbenzene              |                      | ND                     | 1.0         | )          | 1.00             |                       |             |
| sec-Butylbenzene            |                      | ND                     | 1.0         | )          | 1.00             |                       |             |
| tert-Butylbenzene           |                      | ND                     | 1.0         | )          | 1.00             |                       |             |
| Carbon Disulfide            |                      | ND                     | 10          |            | 1.00             |                       |             |
| Carbon Tetrachloride        |                      | ND                     | 0.5         | 50         | 1.00             |                       |             |
| Chlorobenzene               |                      | ND                     | 1.0         | )          | 1.00             |                       |             |
| Chloroethane                |                      | ND                     | 5.0         | )          | 1.00             |                       |             |
| Chloroform                  |                      | ND                     | 1.0         | )          | 1.00             |                       |             |
| Chloromethane               |                      | ND                     | 10          |            | 1.00             |                       |             |
| 2-Chlorotoluene             |                      | ND                     | 1.0         | )          | 1.00             |                       |             |
| 4-Chlorotoluene             |                      | ND                     | 1.0         | )          | 1.00             |                       |             |
| Dibromochloromethane        |                      | ND                     | 1.0         | )          | 1.00             |                       |             |
| 1,2-Dibromo-3-Chloropropane |                      | ND                     | 5.0         |            | 1.00             |                       |             |
| 1,2-Dibromoethane           |                      | ND                     | 1.0         |            | 1.00             |                       |             |
| Dibromomethane              |                      | ND                     | 1.0         |            | 1.00             |                       |             |
| 1,2-Dichlorobenzene         |                      | ND                     | 1.0         |            | 1.00             |                       |             |
| 1,3-Dichlorobenzene         |                      | ND                     | 1.0         |            | 1.00             |                       |             |
| 1,4-Dichlorobenzene         |                      | ND                     | 1.0         |            | 1.00             |                       |             |
| Dichlorodifluoromethane     |                      | ND                     | 1.0         |            | 1.00             |                       |             |
| 1,1-Dichloroethane          |                      | ND                     | 1.0         |            | 1.00             |                       |             |
| 1,2-Dichloroethane          |                      | ND                     | 0.5         |            | 1.00             |                       |             |
| 1,1-Dichloroethene          |                      | ND                     | 1.0         |            | 1.00             |                       |             |
| c-1,2-Dichloroethene        |                      | 2.2                    | 1.0         |            | 1.00             |                       |             |
| t-1,2-Dichloroethene        |                      | ND                     | 1.0         |            | 1.00             |                       |             |
| 1,2-Dichloropropane         |                      | ND                     | 1.0         |            | 1.00             |                       |             |
| 1,3-Dichloropropane         |                      | ND                     | 1.0         |            | 1.00             |                       |             |
| 2,2-Dichloropropane         |                      | ND                     | 1.0         | )          | 1.00             |                       |             |



| Cardno ERI                            | Da              | ite Received:           |                   | 09/13/17          |  |  |
|---------------------------------------|-----------------|-------------------------|-------------------|-------------------|--|--|
| 601 North McDowell Blvd.              | Wo              | ork Order:              |                   | 17-09-0868        |  |  |
| Petaluma, CA 94954-2312               | Pre             | Preparation:<br>Method: |                   |                   |  |  |
|                                       |                 |                         |                   |                   |  |  |
|                                       |                 | nits:                   |                   | EPA 8260B<br>ug/L |  |  |
| Project: E317100700                   |                 |                         |                   | Page 2 of 15      |  |  |
| Parameter                             | Result          | RL                      | DF                | Qualifiers        |  |  |
| 1,1-Dichloropropene                   | ND              | 1.0                     | 1.00              |                   |  |  |
| c-1,3-Dichloropropene                 | ND              | 0.50                    | 1.00              |                   |  |  |
| t-1,3-Dichloropropene                 | ND              | 0.50                    | 1.00              |                   |  |  |
| Ethylbenzene                          | ND              | 1.0                     | 1.00              |                   |  |  |
| 2-Hexanone                            | ND              | 10                      | 1.00              |                   |  |  |
| Isopropylbenzene                      | ND              | 1.0                     | 1.00              |                   |  |  |
| p-Isopropyltoluene                    | ND              | 1.0                     | 1.00              |                   |  |  |
| Methylene Chloride                    | ND              | 10                      | 1.00              |                   |  |  |
| 4-Methyl-2-Pentanone                  | ND              | 10                      | 1.00              |                   |  |  |
| Naphthalene                           | ND              | 10                      | 1.00              |                   |  |  |
| n-Propylbenzene                       | ND              | 1.0                     | 1.00              |                   |  |  |
| Styrene                               | ND              | 1.0                     | 1.00              |                   |  |  |
| 1,1,1,2-Tetrachloroethane             | ND              | 1.0                     | 1.00              |                   |  |  |
| 1,1,2,2-Tetrachloroethane             | ND              | 1.0                     | 1.00              |                   |  |  |
| Tetrachloroethene                     | 10              | 1.0                     | 1.00              |                   |  |  |
| Toluene                               | 1.3             | 1.0                     | 1.00              |                   |  |  |
| 1,2,3-Trichlorobenzene                | ND              | 1.0                     | 1.00              |                   |  |  |
| 1,2,4-Trichlorobenzene                | ND              | 1.0                     | 1.00              |                   |  |  |
| 1,1,1-Trichloroethane                 | ND              | 1.0                     | 1.00              |                   |  |  |
| 1,1,2-Trichloro-1,2,2-Trifluoroethane | ND              | 10                      | 1.00              |                   |  |  |
| 1,1,2-Trichloroethane                 | ND              | 1.0                     | 1.00              |                   |  |  |
| Trichloroethene                       | ND              | 1.0                     | 1.00              |                   |  |  |
| Trichlorofluoromethane                | ND              | 10                      | 1.00              |                   |  |  |
| 1,2,3-Trichloropropane                | ND              | 5.0                     | 1.00              |                   |  |  |
| 1,2,4-Trimethylbenzene                | ND              | 1.0                     | 1.00              |                   |  |  |
| 1,3,5-Trimethylbenzene                | ND              | 1.0                     | 1.00              |                   |  |  |
| Vinyl Acetate                         | ND              | 10                      | 1.00              |                   |  |  |
| Vinyl Chloride                        | ND              | 0.50                    | 1.00              |                   |  |  |
| p/m-Xylene                            | ND              | 1.0                     | 1.00              |                   |  |  |
| o-Xylene                              | ND              | 1.0                     | 1.00              |                   |  |  |
| Methyl-t-Butyl Ether (MTBE)           | ND              | 1.0                     | 1.00              |                   |  |  |
| Tert-Butyl Alcohol (TBA)              | ND              | 10                      | 1.00              |                   |  |  |
| Diisopropyl Ether (DIPE)              | ND              | 2.0                     | 1.00              |                   |  |  |
| Ethyl-t-Butyl Ether (ETBE)            | ND              | 2.0                     | 1.00              |                   |  |  |
| Tert-Amyl-Methyl Ether (TAME)         | ND              | 2.0                     | 1.00              |                   |  |  |
| Ethanol                               | ND              | 100                     | 1.00              |                   |  |  |
| Surrogate                             | <u>Rec. (%)</u> | Control Limits          | <u>Qualifiers</u> |                   |  |  |
| 1,4-Bromofluorobenzene                | 98              | 77-120                  |                   |                   |  |  |



| Cardno ERI               | Date F          |                | 09/13/17          |              |
|--------------------------|-----------------|----------------|-------------------|--------------|
| 601 North McDowell Blvd. | Work Order:     |                |                   | 17-09-0868   |
| Petaluma, CA 94954-2312  | Prepa           |                | EPA 5030C         |              |
|                          | Metho           |                | EPA 8260B         |              |
|                          | Units:          |                | ug/L              |              |
| Project: E317100700      |                 |                |                   | Page 3 of 15 |
|                          |                 |                |                   |              |
| <u>Surrogate</u>         | <u>Rec. (%)</u> | Control Limits | <u>Qualifiers</u> |              |
| Dibromofluoromethane     | 103             | 80-128         |                   |              |
| 1,2-Dichloroethane-d4    | 104             | 80-129         |                   |              |
| Toluene-d8               | 98              | 80-120         |                   |              |



| Analytical Repo | rt |
|-----------------|----|
|-----------------|----|

| Cardno ERI                               |                      |                        | Date Recei  |            |                  |                       | 09/13/17    |
|------------------------------------------|----------------------|------------------------|-------------|------------|------------------|-----------------------|-------------|
| 601 North McDowell Blvd.                 |                      |                        | Work Orde   |            |                  |                       | 17-09-0868  |
| Petaluma, CA 94954-2312                  |                      |                        | Preparation | ו:         |                  |                       | EPA 5030C   |
|                                          |                      |                        | Method:     |            |                  |                       | EPA 8260B   |
|                                          |                      |                        | Units:      |            |                  | _                     | ug/L        |
| Project: E317100700                      |                      |                        |             |            |                  | Pa                    | age 4 of 15 |
| Client Sample Number                     | Lab Sample<br>Number | Date/Time<br>Collected | Matrix      | Instrument | Date<br>Prepared | Date/Time<br>Analyzed | QC Batch ID |
| B2                                       | 17-09-0868-2-C       | 09/09/17<br>16:45      | Aqueous     | GC/MS CC   | 09/14/17         | 09/14/17<br>23:20     | 170914L025  |
| Parameter                                |                      | Result                 | RL          | -          | DF               | Qua                   | alifiers    |
| Acetone                                  |                      | ND                     | 20          |            | 1.00             |                       |             |
| Benzene                                  |                      | ND                     | 0.5         | 50         | 1.00             |                       |             |
| Bromobenzene                             |                      | ND                     | 1.0         | )          | 1.00             |                       |             |
| Bromochloromethane                       |                      | ND                     | 1.0         |            | 1.00             |                       |             |
| Bromodichloromethane                     |                      | ND                     | 1.0         |            | 1.00             |                       |             |
| Bromoform                                |                      | ND                     | 1.0         |            | 1.00             |                       |             |
| Bromomethane                             |                      | ND                     | 10          |            | 1.00             |                       |             |
| 2-Butanone                               |                      | ND                     | 10          |            | 1.00             |                       |             |
| n-Butylbenzene                           |                      | ND                     | 1.0         |            | 1.00             |                       |             |
| sec-Butylbenzene                         |                      | ND                     | 1.0         |            | 1.00             |                       |             |
| tert-Butylbenzene                        |                      | ND                     | 1.0         |            | 1.00             |                       |             |
| Carbon Disulfide<br>Carbon Tetrachloride |                      | ND                     | 10          |            | 1.00             |                       |             |
| Chlorobenzene                            |                      | ND<br>ND               | 0.5<br>1.0  |            | 1.00<br>1.00     |                       |             |
| Chloroethane                             |                      | ND                     | 5.0         |            | 1.00             |                       |             |
| Chloroform                               |                      | ND                     | 1.0         |            | 1.00             |                       |             |
| Chloromethane                            |                      | ND                     | 10          |            | 1.00             |                       |             |
| 2-Chlorotoluene                          |                      | ND                     | 1.0         |            | 1.00             |                       |             |
| 4-Chlorotoluene                          |                      | ND                     | 1.0         |            | 1.00             |                       |             |
| Dibromochloromethane                     |                      | ND                     | 1.0         |            | 1.00             |                       |             |
| 1,2-Dibromo-3-Chloropropane              |                      | ND                     | 5.0         |            | 1.00             |                       |             |
| 1,2-Dibromoethane                        |                      | ND                     | 1.0         | )          | 1.00             |                       |             |
| Dibromomethane                           |                      | ND                     | 1.0         | )          | 1.00             |                       |             |
| 1,2-Dichlorobenzene                      |                      | ND                     | 1.0         | )          | 1.00             |                       |             |
| 1,3-Dichlorobenzene                      |                      | ND                     | 1.0         | )          | 1.00             |                       |             |
| 1,4-Dichlorobenzene                      |                      | ND                     | 1.0         | )          | 1.00             |                       |             |
| Dichlorodifluoromethane                  |                      | ND                     | 1.0         | )          | 1.00             |                       |             |
| 1,1-Dichloroethane                       |                      | ND                     | 1.0         | )          | 1.00             |                       |             |
| 1,2-Dichloroethane                       |                      | ND                     | 0.5         | 50         | 1.00             |                       |             |
| 1,1-Dichloroethene                       |                      | ND                     | 1.0         |            | 1.00             |                       |             |
| c-1,2-Dichloroethene                     |                      | 7.4                    | 1.0         |            | 1.00             |                       |             |
| t-1,2-Dichloroethene                     |                      | ND                     | 1.0         |            | 1.00             |                       |             |
| 1,2-Dichloropropane                      |                      | ND                     | 1.0         |            | 1.00             |                       |             |
| 1,3-Dichloropropane                      |                      | ND                     | 1.0         |            | 1.00             |                       |             |
| 2,2-Dichloropropane                      |                      | ND                     | 1.0         | )          | 1.00             |                       |             |

Return to Contents



| Cardno ERI                            | Da              | te Received:   |            | 09/13/17     |
|---------------------------------------|-----------------|----------------|------------|--------------|
| 601 North McDowell Blvd.              | Wo              | ork Order:     |            | 17-09-0868   |
| Petaluma, CA 94954-2312               | Pre             | eparation:     |            | EPA 5030C    |
|                                       |                 | thod:          |            | EPA 8260B    |
|                                       | Un              |                |            | ug/L         |
| Project: E317100700                   |                 |                |            | Page 5 of 15 |
| Parameter                             | Result          | <u>RL</u>      | DF         | Qualifiers   |
| 1,1-Dichloropropene                   | ND              | 1.0            | 1.00       |              |
| c-1,3-Dichloropropene                 | ND              | 0.50           | 1.00       |              |
| t-1,3-Dichloropropene                 | ND              | 0.50           | 1.00       |              |
| Ethylbenzene                          | ND              | 1.0            | 1.00       |              |
| 2-Hexanone                            | ND              | 10             | 1.00       |              |
| Isopropylbenzene                      | ND              | 1.0            | 1.00       |              |
| p-Isopropyltoluene                    | ND              | 1.0            | 1.00       |              |
| Methylene Chloride                    | ND              | 10             | 1.00       |              |
| 4-Methyl-2-Pentanone                  | ND              | 10             | 1.00       |              |
| Naphthalene                           | ND              | 10             | 1.00       |              |
| n-Propylbenzene                       | ND              | 1.0            | 1.00       |              |
| Styrene                               | ND              | 1.0            | 1.00       |              |
| 1,1,1,2-Tetrachloroethane             | ND              | 1.0            | 1.00       |              |
| 1,1,2,2-Tetrachloroethane             | ND              | 1.0            | 1.00       |              |
| Tetrachloroethene                     | 11              | 1.0            | 1.00       |              |
| Toluene                               | 2.1             | 1.0            | 1.00       |              |
| 1,2,3-Trichlorobenzene                | ND              | 1.0            | 1.00       |              |
| 1,2,4-Trichlorobenzene                | ND              | 1.0            | 1.00       |              |
| 1,1,1-Trichloroethane                 | ND              | 1.0            | 1.00       |              |
| 1,1,2-Trichloro-1,2,2-Trifluoroethane | ND              | 10             | 1.00       |              |
| 1,1,2-Trichloroethane                 | ND              | 1.0            | 1.00       |              |
| Trichloroethene                       | 2.0             | 1.0            | 1.00       |              |
| Trichlorofluoromethane                | ND              | 10             | 1.00       |              |
| 1,2,3-Trichloropropane                | ND              | 5.0            | 1.00       |              |
| 1,2,4-Trimethylbenzene                | ND              | 1.0            | 1.00       |              |
| 1,3,5-Trimethylbenzene                | ND              | 1.0            | 1.00       |              |
| Vinyl Acetate                         | ND              | 10             | 1.00       |              |
| Vinyl Chloride                        | ND              | 0.50           | 1.00       |              |
| p/m-Xylene                            | ND              | 1.0            | 1.00       |              |
| o-Xylene                              | ND              | 1.0            | 1.00       |              |
| Methyl-t-Butyl Ether (MTBE)           | ND              | 1.0            | 1.00       |              |
| Tert-Butyl Alcohol (TBA)              | ND              | 10             | 1.00       |              |
| Diisopropyl Ether (DIPE)              | ND              | 2.0            | 1.00       |              |
| Ethyl-t-Butyl Ether (ETBE)            | ND              | 2.0            | 1.00       |              |
| Tert-Amyl-Methyl Ether (TAME)         | ND              | 2.0            | 1.00       |              |
| Ethanol                               | ND              | 100            | 1.00       |              |
| Surrogate                             | <u>Rec. (%)</u> | Control Limits | Qualifiers |              |
| 1,4-Bromofluorobenzene                | 92              | 77-120         |            |              |

Return to Contents



| Cardno ERI               | Date            |                | 09/13/17          |              |
|--------------------------|-----------------|----------------|-------------------|--------------|
| 601 North McDowell Blvd. | Wor             | 17-09-0868     |                   |              |
| Petaluma, CA 94954-2312  | Prep            |                | EPA 5030C         |              |
|                          | Met             |                | EPA 8260B         |              |
|                          | Unit            |                | ug/L              |              |
| Project: E317100700      |                 |                |                   | Page 6 of 15 |
|                          | - ()            |                |                   |              |
| Surrogate                | <u>Rec. (%)</u> | Control Limits | <u>Qualifiers</u> |              |
| Dibromofluoromethane     | 102             | 80-128         |                   |              |
| 1,2-Dichloroethane-d4    | 101             | 80-129         |                   |              |
| Toluene-d8               | 99              | 80-120         |                   |              |



| Analytical Repo | rt |
|-----------------|----|
|-----------------|----|

| Units:         Page 7 of 8           Client Sample Number         Lab Sample<br>Number         Option Time<br>Number         Matrix         Instrument<br>Instrument         Date of 100<br>Perpared         Option 170<br>Perpared         Option 170<br>Perp | Cardno ERI<br>601 North McDowell Blvd.<br>Petaluma, CA 94954-2312 |          | Date Recei<br>Work Ordei<br>Preparatior | r:         |      |          | 09/13/17<br>17-09-0868<br>EPA 5030C |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|----------|-----------------------------------------|------------|------|----------|-------------------------------------|
| Project: E317100700         Page 7 of 15           Client Sample Number         Lab Sample<br>Number         Date/Time<br>Collected         Matrix         Instrument<br>Prepared         Date/Time<br>Analyzed         QC Batch<br>Analyzed           B3         17-09-0868-3-B         0/00/17         Aqueous         GC/MS Q         09/15/17         QI CB Batch<br>Analyzed           Eatameter         Result         RL         DE         Qualifier           Acetone         ND         0.50         1.00         Batch         Collected         Qualifier           Bromode/horomethane         ND         0.50         1.00         Batch         Qualifier           Bromode/horomethane         ND         1.0         1.00         1.00         1.00           Bromode/horomethane         ND         1.0         1.00         1.00         1.00           Bromode/horomethane         ND         1.0         1.00         1.00         1.00         1.00         1.00         1.00           Bromode/horomethane         ND         1.0         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                   |          |                                         |            |      |          | EPA 8260B                           |
| Number         Collected         Prepared         Analyzed           B3         17-09-0868-3-B         09/09/17         Aqueous         GC/MS Q         09/15/17         09/15/17         23:22         170915LC           Eatametier         Result         RL         DE         Qualifiers         23:22         Qualifiers           Acetore         ND         20         1.00         100         100         100           Bromochioromethane         ND         1.0         1.00         1.00         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Project: E317100700                                               |          | Units:                                  |            |      | Pa       | ug/L<br>uge 7 of 15                 |
| B3         17-09-0868-3-B         09/09/17<br>/7.30         Aqueous         GC/MS Q         09/15/17         09/15/17<br>23:23         170915LC           Parameter         Result         RL         DE         Qualifiers           Acetone         ND         20         1.00           Benzene         ND         0.50         1.00           Bromobinomethane         ND         1.0         1.00           Bromodichloromethane         ND         1.0         1.00           Caton Disulfide         ND         1.0         1.00           Caton Disulfide         ND         1.0         1.00           Chlorototuene         ND         1.0         1.00           Chlorototuene </th <th>Client Sample Number</th> <th></th> <th>Matrix</th> <th>Instrument</th> <th></th> <th></th> <th>QC Batch ID</th>                                                                                                                                                                                                                                                                                                                                                                                                          | Client Sample Number                                              |          | Matrix                                  | Instrument |      |          | QC Batch ID                         |
| Parameter         Result         RL         DE         Qualifiers           Acetone         ND         20         1.00         1.00           Benzene         ND         0.50         1.00           Bromobenzene         ND         1.0         1.00           Bromochicornethane         ND         1.0         1.00           Bromodichloromethane         ND         1.0         1.00           Bromochicornethane         ND         1.0         1.00           Bromodichloromethane         ND         1.0         1.00           Bromodichloromethane         ND         1.0         1.00           Bromodichloromethane         ND         1.0         1.00           Bromomethane         ND         1.0         1.00           SecButylbenzene         ND         1.0         1.00           et-Butylbenzene         ND         1.0         1.00           Carbon Disulfide         ND         1.0         1.00           Carbon Disulfide         ND         5.0         1.00           Chlorothenzene         ND         5.0         1.00           Chlorothenzene         ND         1.0         1.00           Chlorothenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | B3                                                                | 09/09/17 | Aqueous                                 | GC/MS Q    | · ·  | 09/15/17 | 170915L054                          |
| BenzeneND0.501.00BromobenzeneND1.01.00BromochloromethaneND1.01.00BromochloromethaneND1.01.00BromotichloromethaneND1.01.00BromotormND1.01.00BromotormND1.01.00BromotormND1.01.00PathoneND1.01.00PathoneND1.01.00n-ButylbenzeneND1.01.00Sec-ButylbenzeneND1.01.00Carbon DisulfideND1.01.00ChlorobenzeneND1.01.00ChlorobenzeneND1.01.00ChlorobenzeneND1.01.00ChlorobenzeneND1.01.00ChloroblueneND1.01.00ChloroblueneND1.01.00ChloroblueneND1.01.00DibromochloromethaneND1.01.001,2-Dibrono-3-ChloropropaneND1.01.001,2-DibromochlaneND1.01.001,2-DibromoethaneND1.01.001,2-DibromoethaneND1.01.001,2-DibromoethaneND1.01.001,2-DibromoethaneND1.01.001,2-DibromoethaneND1.01.001,2-DibromoethaneND1.01.001,2-DibrohorobenzeneND1.0 <td>Parameter</td> <td></td> <td><u></u></td> <td></td> <td>DF</td> <td>· · ·</td> <td>alifiers</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Parameter                                                         |          | <u></u>                                 |            | DF   | · · ·    | alifiers                            |
| BromobenzeneND1.01.00BromochloromethaneND1.01.00BromochloromethaneND1.01.00BromochloromethaneND1.01.00BromochhaneND101.002-ButanoneND101.00n-ButylbenzeneND1.01.00see-ButylbenzeneND1.01.00carbon DisulfideND1.01.00Carbon DisulfideND0.501.00ChlorobenzeneND0.501.00ChlorobenzeneND1.01.00ChlorobenzeneND1.01.00ChlorobenzeneND1.01.00ChlorobenzeneND1.01.00ChlorobenzeneND1.01.00ChlorobenzeneND1.01.00ChlorobenzeneND1.01.002-ChlorobuneND1.01.002-ChlorobuneND1.01.002-ChlorobuneND1.01.001,2-Dibromo-3-ChloropropaneND1.01.001,2-Dibromo-3-ChloropropaneND1.01.001,2-Dibromo-BaneND1.01.001,2-Dibromo-BaneND1.01.001,2-Dibromo-BaneND1.01.001,2-Dibromo-BaneND1.01.001,2-Dibromo-BaneND1.01.001,4-DichlorobenzeneND1.01.001,4-Dichlorobenzene <td>Acetone</td> <td>ND</td> <td>20</td> <td></td> <td>1.00</td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Acetone                                                           | ND       | 20                                      |            | 1.00 |          |                                     |
| BromochloromethaneND1.01.00BromodichloromethaneND1.01.00BromodrmND1.01.00BromomethaneND1.01.002-ButanoneND1.01.00-ButylbenzeneND1.01.00sec-ButylbenzeneND1.01.00Carbon DisulfideND1.01.00Carbon DisulfideND1.01.00ChlorobenzeneND1.01.00ChlorobenzeneND1.01.00ChlorobenzeneND1.01.00ChlorobenzeneND1.01.00ChlorobenzeneND1.01.00ChlorobenzeneND1.01.00ChlorobenzeneND1.01.00ChlorobenzeneND1.01.00ChlorobenzeneND1.01.00ChlorobenzeneND1.01.00J2-Dibromo-S-ChloropopaneND1.01.001,2-DibromoethaneND1.01.001,2-DibromethaneND1.01.001,2-DibromoethaneND1.01.001,2-DibromoethaneND1.01.001,2-DibromoethaneND1.01.001,2-DibromoethaneND1.01.001,2-DibromoethaneND1.01.001,2-DibromoethaneND1.01.001,2-DibromoethaneND1.01.001,2-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Benzene                                                           | ND       | 0.5                                     | 50         | 1.00 |          |                                     |
| BromodichloromethaneND1.01.00BromoformND1.01.00BromomethaneND101.002-ButanoneND101.00n-ButylbenzeneND1.01.00sec-ButylbenzeneND1.01.00carbon DisulfideND1.01.00Carbon DisulfideND1.01.00Carbon DisulfideND1.01.00ChlorobenzeneND1.01.00ChlorobenzeneND1.01.00ChlorobenzeneND1.01.00ChlorobenzeneND1.01.00ChlorobenzeneND1.01.00ChlorobenzeneND1.01.00ChlorobenzeneND1.01.00ChlorobenzeneND1.01.00ChlorobenzeneND1.01.00ChlorobenzeneND1.01.002-ChlorobuleneND1.01.001,2-Dibromo-S-ChloropopaneND1.01.001,2-DibromoethaneND1.01.001,2-DichlorobenzeneND1.01.001,3-DichlorobenzeneND1.01.001,4-DichlorobenzeneND1.01.001,4-DichlorobenzeneND1.01.001,4-DichlorobenzeneND1.01.001,4-DichlorobenzeneND1.01.001,4-DichlorobenzeneND1.01.001,1-Dichlorometha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Bromobenzene                                                      | ND       | 1.0                                     | )          | 1.00 |          |                                     |
| BromoformND1.01.00BromomethaneND101.002-ButanoneND101.00n-ButylbenzeneND1.01.00sec-ButylbenzeneND1.01.00tert-ButylbenzeneND1.01.00Carbon DisulfideND1.01.00Carbon DisulfideND0.501.00ChlorobenzeneND1.01.00ChlorobenzeneND1.01.00ChloroformND1.01.00ChloroformND1.01.00ChloroformND1.01.00ChlorotolueneND1.01.002-ChlorotolueneND1.01.001,2-Dibromo-3-ChloropropaneND1.01.001,2-DibromoethaneND1.01.001,2-DibromoethaneND1.01.001,2-DibromoethaneND1.01.001,2-DibromoethaneND1.01.001,2-DibromoethaneND1.01.001,2-DibromoethaneND1.01.001,3-DichlorobenzeneND1.01.001,4-DichlorobenzeneND1.01.001,4-DichlorobenzeneND1.01.001,4-DichlorobenzeneND1.01.001,4-DichlorobenzeneND1.01.001,4-DichlorobenzeneND1.01.001,1-DichlorobenzeneND1.01.001,1-Dichl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Bromochloromethane                                                | ND       | 1.0                                     | )          | 1.00 |          |                                     |
| BromomethaneND101.002-ButanoneND1.01.00n-ButylbenzeneND1.01.00see-ButylbenzeneND1.01.00tert-ButylbenzeneND1.01.00Carbon DisulfideND1.01.00Carbon DisulfideND0.501.00ChlorobenzeneND1.01.00ChlorobenzeneND1.01.00ChloroformND1.01.00ChloroformND1.01.00ChloroformND1.01.00ChlorotolueneND1.01.002-ChlorotolueneND1.01.001.2-Dibromo-A-ChloropropaneND1.01.001.2-DibromoethaneND1.01.001.2-DibromoethaneND1.01.001.2-DibromoethaneND1.01.001.2-DibromoethaneND1.01.001.2-DibromoethaneND1.01.001.2-DibromoethaneND1.01.001.2-DibromoethaneND1.01.001.2-DichlorobenzeneND1.01.001.3-DichlorobenzeneND1.01.001.4-DichlorobenzeneND1.01.001.4-DichlorobenzeneND1.01.001.4-DichlorobenzeneND1.01.001.4-DichlorobenzeneND1.01.001.4-DichlorobenzeneND1.01.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Bromodichloromethane                                              | ND       | 1.0                                     | )          | 1.00 |          |                                     |
| 2-ButanoneND101.00n-ButylbenzeneND1.01.00sec-ButylbenzeneND1.01.00tert-ButylbenzeneND1.01.00Carbon DisulfideND1.01.00Carbon TetrachlorideND0.501.00ChlorobenzeneND5.01.00ChlorobentaneND1.01.00ChlorobertaneND1.01.00ChlorobertaneND1.01.00ChlorobertaneND1.01.00ChlorobertaneND1.01.00ChlorobertaneND1.01.00ChlorobertaneND1.01.002-ChloroblueneND1.01.001,2-Dibromo-3-ChloropropaneND1.01.001,2-DibromoethaneND1.01.001,2-DichlorobenzeneND1.01.001,3-DichlorobenzeneND1.01.001,3-DichlorobenzeneND1.01.001,4-DichlorobenzeneND1.01.001,4-DichlorobenzeneND1.01.001,4-DichlorobenzeneND1.01.001,4-DichlorobenzeneND1.01.001,1-DichlorobenzeneND1.01.001,1-DichlorobenzeneND1.01.001,1-DichlorobenzeneND1.01.001,1-DichlorobenzeneND1.01.001,1-DichlorobenzeneND1.01.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Bromoform                                                         | ND       | 1.0                                     | )          | 1.00 |          |                                     |
| n-ButylbenzeneND1.01.00sec-ButylbenzeneND1.01.00tert-ButylbenzeneND1.01.00Carbon DisulfideND1.01.00Carbon TetrachlorideND0.501.00ChlorobenzeneND1.01.00ChlorobenzeneND1.01.00ChlorobenzeneND1.01.00ChlorobenzeneND1.01.00ChlorobenzeneND1.01.00ChlorobenzeneND1.01.00ChlorobenzeneND1.01.00ChlorobenzeneND1.01.00ChlorobenzeneND1.01.002-ChlorotolueneND1.01.001,2-Dibromo-3-ChloropropaneND1.01.001,2-DibromoethaneND1.01.001,2-DibromoethaneND1.01.001,2-DibromoethaneND1.01.001,2-DibromoethaneND1.01.001,2-DibromoethaneND1.01.001,3-DichlorobenzeneND1.01.001,3-DichlorobenzeneND1.01.001,4-DichlorobenzeneND1.01.001,1-DichloroethaneND1.01.001,1-DichloroethaneND1.01.001,1-DichloroethaneND1.01.001,1-DichloroethaneND1.01.001,1-DichloroethaneND1.01.00 </td <td>Bromomethane</td> <td>ND</td> <td>10</td> <td></td> <td>1.00</td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Bromomethane                                                      | ND       | 10                                      |            | 1.00 |          |                                     |
| sec-Butylbenzene         ND         1.0         1.00           tert-Butylbenzene         ND         1.0         1.00           Carbon Disulfide         ND         10         1.00           Carbon Tetrachloride         ND         0.50         1.00           Chlorobenzene         ND         1.0         1.00           Chlorotethane         ND         5.0         1.00           Chloroform         ND         1.0         1.00           Chlorothane         ND         1.0         1.00           Chlorothane         ND         1.0         1.00           Chlorothuene         ND         1.0         1.00           2-Chlorothuene         ND         1.0         1.00           2-Chlorothuene         ND         1.0         1.00           1.2-Dibromo-S-Chloropopane         ND         1.0         1.00           1.3-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2-Butanone                                                        | ND       | 10                                      |            | 1.00 |          |                                     |
| tert-Buylbenzene         ND         1.0         1.00           Carbon Disulfide         ND         10         1.00           Carbon Tetrachloride         ND         0.50         1.00           Chlorobenzene         ND         1.0         1.00           Chlorothane         ND         5.0         1.00           Chlorothane         ND         1.0         1.00           Chlorothane         ND         1.0         1.00           Chlorothuene         ND         1.0         1.00           2-Chlorothuene         ND         1.0         1.00           4-Chlorothuene         ND         1.0         1.00           1,2-Dibromo-3-Chloropropane         ND         1.0         1.00           1,2-Dibromo-4-Chloroppane         ND         1.0         1.00           1,2-Dibromoethane         ND         1.0         1.00           1,2-Dibromoethane         ND         1.0         1.00           1,2-Dibromoethane         ND         1.0         1.00           1,3-Dichlorobenzene         ND         1.0         1.00           1,4-Dichlorobenzene         ND         1.0         1.00           1,4-Dichloroethane         ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | n-Butylbenzene                                                    |          |                                         |            | 1.00 |          |                                     |
| Carbon Disulfide         ND         10         1.00           Carbon Tetrachloride         ND         0.50         1.00           Chlorobenzene         ND         1.0         1.00           Chlorotetnane         ND         5.0         1.00           Chlorotetnane         ND         1.0         1.00           Chlorotoluene         ND         1.0         1.00           2-Chlorotoluene         ND         1.0         1.00           4-Chlorotoluene         ND         1.0         1.00           1.2-Dibromo-3-Chloropropane         ND         1.0         1.00           1.2-Dibromo-sthane         ND         1.0         1.00           1.2-Dibromoethane         ND         1.0         1.00           1.2-Dibromoethane         ND         1.0         1.00           1.2-Dibromoethane         ND         1.0         1.00           1.2-Dibromoethane         ND         1.0         1.00           1.3-Dichlorobenzene         ND         1.0         1.00           1.4-Dichlorobenzene         ND         1.0         1.00           1.4-Dichlorobenzene         ND         1.0         1.00           1.1-Dichloroethane <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                   |          |                                         |            |      |          |                                     |
| Carbon TetrachlorideND0.501.00ChlorobenzeneND1.01.00ChloroethaneND5.01.00ChloroformND1.01.00ChloromethaneND1.01.002-ChlorotolueneND1.01.004-ChlorotolueneND1.01.00DibromochloromethaneND1.01.001,2-Dibromo-3-ChloropropaneND5.01.001,2-DibromethaneND1.01.001,2-DibromethaneND1.01.001,2-DibromethaneND1.01.001,2-DibromethaneND1.01.001,2-DibromethaneND1.01.001,2-DibromethaneND1.01.001,2-DichlorobenzeneND1.01.001,3-DichlorobenzeneND1.01.001,4-DichlorobenzeneND1.01.001,1-DichloroethaneND1.01.001,1-DichloroethaneND1.01.001,1-DichloroethaneND1.01.001,1-DichloroethaneND1.01.001,1-DichloroethaneND1.01.001,1-DichloroethaneND1.01.001,1-DichloroethaneND1.01.001,1-DichloroethaneND1.01.001,1-DichloroethaneND1.01.001,1-DichloroethaneND1.01.001,1-DichloroethaneND1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                   |          |                                         |            |      |          |                                     |
| Chlorobenzene         ND         1.0         1.00           Chloroethane         ND         5.0         1.00           Chloroform         ND         1.0         1.00           Chloromethane         ND         1.0         1.00           2-Chlorotoluene         ND         1.0         1.00           2-Chlorotoluene         ND         1.0         1.00           4-Chlorotoluene         ND         1.0         1.00           1.2-Dibromo-S-Chloropropane         ND         1.0         1.00           1,2-Dibromo-S-Chloropropane         ND         1.0         1.00           1,2-Dibromoethane         ND         1.0         1.00           1,2-Dibromoethane         ND         1.0         1.00           1,2-Dibromoethane         ND         1.0         1.00           1,2-Dichlorobenzene         ND         1.0         1.00           1,3-Dichlorobenzene         ND         1.0         1.00           1,4-Dichlorobenzene         ND         1.0         1.00           1,1-Dichloroethane         ND         1.0         1.00           1,1-Dichloroethane         ND         1.0         1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                   |          |                                         |            |      |          |                                     |
| Chloroethane       ND       5.0       1.00         Chloroform       ND       1.0       1.00         Chloromethane       ND       10       1.00         2-Chlorotoluene       ND       1.0       1.00         4-Chlorotoluene       ND       1.0       1.00         10bromochloromethane       ND       1.0       1.00         12-Dibromochloromethane       ND       1.0       1.00         1,2-Dibromo-3-Chloropropane       ND       5.0       1.00         1,2-Dibromoethane       ND       1.0       1.00         1,2-Dibromoethane       ND       1.0       1.00         1,2-Dibromoethane       ND       1.0       1.00         1,2-Dibromoethane       ND       1.0       1.00         1,2-Dichlorobenzene       ND       1.0       1.00         1,3-Dichlorobenzene       ND       1.0       1.00         1,4-Dichlorobenzene       ND       1.0       1.00         Dichlorodifluoromethane       ND       1.0       1.00         1,1-Dichloroethane       ND       1.0       1.00         1,1-Dichloroethane       ND       1.0       1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                   |          |                                         |            |      |          |                                     |
| Chloroform         ND         1.0         1.00           Chloromethane         ND         10         1.00           2-Chlorotoluene         ND         1.0         1.00           4-Chlorotoluene         ND         1.0         1.00           4-Chlorotoluene         ND         1.0         1.00           Dibromochloromethane         ND         1.0         1.00           1,2-Dibromo-3-Chloropropane         ND         5.0         1.00           1,2-Dibromoethane         ND         1.0         1.00           1,2-Dichlorobenzene         ND         1.0         1.00           1,3-Dichlorobenzene         ND         1.0         1.00           1,4-Dichloromethane         ND         1.0         1.00           Dichlorodifluoromethane         ND         1.0         1.00           1,1-Dichloroethane         ND         1.0         1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                   |          |                                         |            |      |          |                                     |
| Chloromethane       ND       10       1.00         2-Chlorotoluene       ND       1.0       1.00         4-Chlorotoluene       ND       1.0       1.00         Dibromochloromethane       ND       1.0       1.00         1,2-Dibromo-3-Chloropropane       ND       5.0       1.00         1,2-Dibromoethane       ND       1.0       1.00         1,2-Dichlorobenzene       ND       1.0       1.00         1,3-Dichlorobenzene       ND       1.0       1.00         1,4-Dichlorobenzene       ND       1.0       1.00         Dichlorodifluoromethane       ND       1.0       1.00         Dichlorothane       ND       1.0       1.00         1,1-Dichloroethane       ND       1.0       1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                   |          |                                         |            |      |          |                                     |
| 2-ChlorotolueneND1.01.004-ChlorotolueneND1.01.00DibromochloromethaneND1.01.001,2-Dibromo-3-ChloropropaneND5.01.001,2-DibromoethaneND1.01.001,2-DibromoethaneND1.01.001,2-DibromoethaneND1.01.001,2-DibromoethaneND1.01.001,2-DichlorobenzeneND1.01.001,3-DichlorobenzeneND1.01.001,4-DichlorobenzeneND1.01.001,1-DichloroethaneND1.01.001,1-DichloroethaneND1.01.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                   |          |                                         |            |      |          |                                     |
| 4-ChlorotolueneND1.01.00DibromochloromethaneND1.01.001,2-Dibromo-3-ChloropropaneND5.01.001,2-DibromoethaneND1.01.00DibromomethaneND1.01.00DibromomethaneND1.01.001,2-DichlorobenzeneND1.01.001,3-DichlorobenzeneND1.01.001,4-DichlorobenzeneND1.01.00DichlorodifluoromethaneND1.01.001,1-DichloroethaneND1.01.001,1-DichloroethaneND1.01.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                   |          |                                         |            |      |          |                                     |
| Dibromochloromethane         ND         1.0         1.00           1,2-Dibromo-3-Chloropropane         ND         5.0         1.00           1,2-Dibromoethane         ND         1.0         1.00           Dibromoethane         ND         1.0         1.00           Dibromoethane         ND         1.0         1.00           1,2-Dichlorobenzene         ND         1.0         1.00           1,2-Dichlorobenzene         ND         1.0         1.00           1,3-Dichlorobenzene         ND         1.0         1.00           1,4-Dichlorobenzene         ND         1.0         1.00           Dichlorodifluoromethane         ND         1.0         1.00           Dichlorodifluoromethane         ND         1.0         1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                   |          |                                         |            |      |          |                                     |
| 1,2-Dibromo-3-ChloropropaneND5.01.001,2-DibromoethaneND1.01.00DibromomethaneND1.01.001,2-DichlorobenzeneND1.01.001,3-DichlorobenzeneND1.01.001,4-DichlorobenzeneND1.01.00DichlorodifluoromethaneND1.01.001,1-DichloroethaneND1.01.001,1-DichloroethaneND1.01.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                   |          |                                         |            |      |          |                                     |
| 1,2-Dibromoethane       ND       1.0       1.00         Dibromomethane       ND       1.0       1.00         1,2-Dichlorobenzene       ND       1.0       1.00         1,3-Dichlorobenzene       ND       1.0       1.00         1,4-Dichlorobenzene       ND       1.0       1.00         Dichlorodifluoromethane       ND       1.0       1.00         1,1-Dichlorobenzene       ND       1.0       1.00         Dichlorodifluoromethane       ND       1.0       1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                   |          |                                         |            |      |          |                                     |
| Dibromomethane         ND         1.0         1.00           1,2-Dichlorobenzene         ND         1.0         1.00           1,3-Dichlorobenzene         ND         1.0         1.00           1,4-Dichlorobenzene         ND         1.0         1.00           Dichlorodifluoromethane         ND         1.0         1.00           1,1-Dichloroethane         ND         1.0         1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                   |          |                                         |            |      |          |                                     |
| 1,2-DichlorobenzeneND1.01.001,3-DichlorobenzeneND1.01.001,4-DichlorobenzeneND1.01.00DichlorodifluoromethaneND1.01.001,1-DichloroethaneND1.01.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | •                                                                 |          |                                         |            |      |          |                                     |
| 1,3-Dichlorobenzene       ND       1.0       1.00         1,4-Dichlorobenzene       ND       1.0       1.00         Dichlorodifluoromethane       ND       1.0       1.00         1,1-Dichloroethane       ND       1.0       1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                   |          |                                         |            |      |          |                                     |
| 1,4-DichlorobenzeneND1.01.00DichlorodifluoromethaneND1.01.001,1-DichloroethaneND1.01.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                   |          |                                         |            |      |          |                                     |
| Dichlorodifluoromethane         ND         1.0         1.00           1,1-Dichloroethane         ND         1.0         1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                   |          |                                         |            |      |          |                                     |
| 1,1-Dichloroethane ND 1.0 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                   |          |                                         |            |      |          |                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                   |          |                                         |            |      |          |                                     |
| 1,2-Dichloroethane ND 0.50 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1,2-Dichloroethane                                                | ND       |                                         |            | 1.00 |          |                                     |
| 1,1-Dichloroethene ND 1.0 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                   |          |                                         |            |      |          |                                     |
| c-1,2-Dichloroethene 3.3 1.0 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                   |          |                                         |            |      |          |                                     |
| t-1,2-Dichloroethene ND 1.0 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                   |          |                                         |            |      |          |                                     |
| 1,2-Dichloropropane ND 1.0 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                   |          |                                         |            |      |          |                                     |
| 1,3-Dichloropropane ND 1.0 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                   |          |                                         |            |      |          |                                     |
| 2,2-Dichloropropane ND 1.0 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                   |          |                                         |            |      |          |                                     |



| Cardno ERI                            | Dat             | te Received:   |                   | 09/13/17     |
|---------------------------------------|-----------------|----------------|-------------------|--------------|
| 601 North McDowell Blvd.              | Wa              | ork Order:     |                   | 17-09-0868   |
| Petaluma, CA 94954-2312               | Pre             |                | EPA 5030C         |              |
|                                       | Ме              | thod:          |                   | EPA 8260E    |
|                                       | Uni             |                |                   | ug/L         |
| Project: E317100700                   | -               |                |                   | Page 8 of 15 |
| Parameter                             | <u>Result</u>   | <u>RL</u>      | DF                | Qualifiers   |
| 1,1-Dichloropropene                   | ND              | 1.0            | 1.00              |              |
| c-1,3-Dichloropropene                 | ND              | 0.50           | 1.00              |              |
| t-1,3-Dichloropropene                 | ND              | 0.50           | 1.00              |              |
| Ethylbenzene                          | ND              | 1.0            | 1.00              |              |
| 2-Hexanone                            | ND              | 10             | 1.00              |              |
| Isopropylbenzene                      | ND              | 1.0            | 1.00              |              |
| p-Isopropyltoluene                    | ND              | 1.0            | 1.00              |              |
| Methylene Chloride                    | ND              | 10             | 1.00              |              |
| 4-Methyl-2-Pentanone                  | ND              | 10             | 1.00              |              |
| Naphthalene                           | ND              | 10             | 1.00              |              |
| n-Propylbenzene                       | ND              | 1.0            | 1.00              |              |
| Styrene                               | ND              | 1.0            | 1.00              |              |
| 1,1,1,2-Tetrachloroethane             | ND              | 1.0            | 1.00              |              |
| 1,1,2,2-Tetrachloroethane             | ND              | 1.0            | 1.00              |              |
| Tetrachloroethene                     | 1.3             | 1.0            | 1.00              |              |
| Toluene                               | ND              | 1.0            | 1.00              |              |
| 1,2,3-Trichlorobenzene                | ND              | 1.0            | 1.00              |              |
| 1,2,4-Trichlorobenzene                | ND              | 1.0            | 1.00              |              |
| 1,1,1-Trichloroethane                 | ND              | 1.0            | 1.00              |              |
| 1,1,2-Trichloro-1,2,2-Trifluoroethane | ND              | 10             | 1.00              |              |
| 1,1,2-Trichloroethane                 | ND              | 1.0            | 1.00              |              |
| Trichloroethene                       | ND              | 1.0            | 1.00              |              |
| Trichlorofluoromethane                | ND              | 10             | 1.00              |              |
| 1,2,3-Trichloropropane                | ND              | 5.0            | 1.00              |              |
| 1,2,4-Trimethylbenzene                | ND              | 1.0            | 1.00              |              |
| 1,3,5-Trimethylbenzene                | ND              | 1.0            | 1.00              |              |
| Vinyl Acetate                         | ND              | 10             | 1.00              |              |
| Vinyl Chloride                        | ND              | 0.50           | 1.00              |              |
| p/m-Xylene                            | ND              | 1.0            | 1.00              |              |
| o-Xylene                              | ND              | 1.0            | 1.00              |              |
| Methyl-t-Butyl Ether (MTBE)           | ND              | 1.0            | 1.00              |              |
| Tert-Butyl Alcohol (TBA)              | ND              | 10             | 1.00              |              |
| Diisopropyl Ether (DIPE)              | ND              | 2.0            | 1.00              |              |
| Ethyl-t-Butyl Ether (ETBE)            | ND              | 2.0            | 1.00              |              |
| Tert-Amyl-Methyl Ether (TAME)         | ND              | 2.0            | 1.00              |              |
| Ethanol                               | ND              | 100            | 1.00              |              |
| Surrogate                             | <u>Rec. (%)</u> | Control Limits | <u>Qualifiers</u> |              |
| 1,4-Bromofluorobenzene                | 97              | 77-120         |                   |              |



| Cardno ERI               | Date            | 09/13/17       |                   |              |
|--------------------------|-----------------|----------------|-------------------|--------------|
| 601 North McDowell Blvd. | Work Order:     |                |                   | 17-09-0868   |
| Petaluma, CA 94954-2312  | Prepa           |                | EPA 5030C         |              |
|                          | Meth            |                | EPA 8260B         |              |
|                          | Units           |                | ug/L              |              |
| Project: E317100700      |                 |                |                   | Page 9 of 15 |
|                          |                 |                |                   |              |
| Surrogate                | <u>Rec. (%)</u> | Control Limits | <u>Qualifiers</u> |              |
| Dibromofluoromethane     | 103             | 80-128         |                   |              |
| 1,2-Dichloroethane-d4    | 105             | 80-129         |                   |              |
| Toluene-d8               | 98              | 80-120         |                   |              |



| Cardno ERI                  |                      |                        | Date Recei  |            |                  |                       | 09/13/17    |
|-----------------------------|----------------------|------------------------|-------------|------------|------------------|-----------------------|-------------|
| 601 North McDowell Blvd.    |                      |                        | Work Order  | r:         |                  |                       | 17-09-0868  |
| Petaluma, CA 94954-2312     |                      |                        | Preparation | 1:         |                  |                       | EPA 5030C   |
|                             |                      |                        | Method:     |            |                  |                       | EPA 8260B   |
|                             |                      |                        | Units:      |            |                  |                       | ug/L        |
| Project: E317100700         |                      |                        |             |            |                  | Pag                   | je 10 of 15 |
| Client Sample Number        | Lab Sample<br>Number | Date/Time<br>Collected | Matrix      | Instrument | Date<br>Prepared | Date/Time<br>Analyzed | QC Batch ID |
| Method Blank                | 099-14-001-24102     | N/A                    | Aqueous     | GC/MS CC   | 09/14/17         | 09/14/17<br>16:11     | 170914L025  |
| Parameter                   |                      | Result                 | RL          |            | DE               |                       | alifiers    |
| Acetone                     |                      | ND                     | 20          |            | 1.00             |                       |             |
| Benzene                     |                      | ND                     | 0.5         | 50         | 1.00             |                       |             |
| Bromobenzene                |                      | ND                     | 1.0         | )          | 1.00             |                       |             |
| Bromochloromethane          |                      | ND                     | 1.0         | )          | 1.00             |                       |             |
| Bromodichloromethane        |                      | ND                     | 1.0         | )          | 1.00             |                       |             |
| Bromoform                   |                      | ND                     | 1.0         | )          | 1.00             |                       |             |
| Bromomethane                |                      | ND                     | 10          |            | 1.00             |                       |             |
| 2-Butanone                  |                      | ND                     | 10          |            | 1.00             |                       |             |
| n-Butylbenzene              |                      | ND                     | 1.0         | )          | 1.00             |                       |             |
| sec-Butylbenzene            |                      | ND                     | 1.0         | )          | 1.00             |                       |             |
| tert-Butylbenzene           |                      | ND                     | 1.0         | )          | 1.00             |                       |             |
| Carbon Disulfide            |                      | ND                     | 10          |            | 1.00             |                       |             |
| Carbon Tetrachloride        |                      | ND                     | 0.5         | 50         | 1.00             |                       |             |
| Chlorobenzene               |                      | ND                     | 1.0         | )          | 1.00             |                       |             |
| Chloroethane                |                      | ND                     | 5.0         | )          | 1.00             |                       |             |
| Chloroform                  |                      | ND                     | 1.0         | )          | 1.00             |                       |             |
| Chloromethane               |                      | ND                     | 10          |            | 1.00             |                       |             |
| 2-Chlorotoluene             |                      | ND                     | 1.0         | )          | 1.00             |                       |             |
| 4-Chlorotoluene             |                      | ND                     | 1.0         | )          | 1.00             |                       |             |
| Dibromochloromethane        |                      | ND                     | 1.0         | )          | 1.00             |                       |             |
| 1,2-Dibromo-3-Chloropropane |                      | ND                     | 5.0         | )          | 1.00             |                       |             |
| 1,2-Dibromoethane           |                      | ND                     | 1.0         | )          | 1.00             |                       |             |
| Dibromomethane              |                      | ND                     | 1.0         | )          | 1.00             |                       |             |
| 1,2-Dichlorobenzene         |                      | ND                     | 1.0         | )          | 1.00             |                       |             |
| 1,3-Dichlorobenzene         |                      | ND                     | 1.0         | )          | 1.00             |                       |             |
| 1,4-Dichlorobenzene         |                      | ND                     | 1.0         | )          | 1.00             |                       |             |
| Dichlorodifluoromethane     |                      | ND                     | 1.0         | )          | 1.00             |                       |             |
| 1,1-Dichloroethane          |                      | ND                     | 1.0         | )          | 1.00             |                       |             |
| 1,2-Dichloroethane          |                      | ND                     | 0.5         | 50         | 1.00             |                       |             |
| 1,1-Dichloroethene          |                      | ND                     | 1.0         | )          | 1.00             |                       |             |
| c-1,2-Dichloroethene        |                      | ND                     | 1.0         | )          | 1.00             |                       |             |
| t-1,2-Dichloroethene        |                      | ND                     | 1.0         | )          | 1.00             |                       |             |
| 1,2-Dichloropropane         |                      | ND                     | 1.0         | )          | 1.00             |                       |             |
| 1,3-Dichloropropane         |                      | ND                     | 1.0         | )          | 1.00             |                       |             |
| 2,2-Dichloropropane         |                      | ND                     | 1.0         | )          | 1.00             |                       |             |



| Cardno ERI                            | Da              | te Received:   |                   | 09/13/17          |
|---------------------------------------|-----------------|----------------|-------------------|-------------------|
| 601 North McDowell Blvd.              | Wo              | ork Order:     |                   | 17-09-0868        |
| Petaluma, CA 94954-2312               | Pre             | eparation:     |                   | EPA 5030C         |
|                                       |                 | ethod:         |                   | EPA 8260B         |
|                                       | Un              |                |                   | ug/L              |
| Project: E317100700                   |                 |                |                   | Page 11 of 15     |
| Parameter                             | <u>Result</u>   | <u>RL</u>      | DF                | <u>Qualifiers</u> |
| 1,1-Dichloropropene                   | ND              | 1.0            | 1.00              |                   |
| c-1,3-Dichloropropene                 | ND              | 0.50           | 1.00              |                   |
| t-1,3-Dichloropropene                 | ND              | 0.50           | 1.00              |                   |
| Ethylbenzene                          | ND              | 1.0            | 1.00              |                   |
| 2-Hexanone                            | ND              | 10             | 1.00              |                   |
| Isopropylbenzene                      | ND              | 1.0            | 1.00              |                   |
| p-Isopropyltoluene                    | ND              | 1.0            | 1.00              |                   |
| Methylene Chloride                    | ND              | 10             | 1.00              |                   |
| 4-Methyl-2-Pentanone                  | ND              | 10             | 1.00              |                   |
| Naphthalene                           | ND              | 10             | 1.00              |                   |
| n-Propylbenzene                       | ND              | 1.0            | 1.00              |                   |
| Styrene                               | ND              | 1.0            | 1.00              |                   |
| 1,1,1,2-Tetrachloroethane             | ND              | 1.0            | 1.00              |                   |
| 1,1,2,2-Tetrachloroethane             | ND              | 1.0            | 1.00              |                   |
| Tetrachloroethene                     | ND              | 1.0            | 1.00              |                   |
| Toluene                               | ND              | 1.0            | 1.00              |                   |
| 1,2,3-Trichlorobenzene                | ND              | 1.0            | 1.00              |                   |
| 1,2,4-Trichlorobenzene                | ND              | 1.0            | 1.00              |                   |
| 1,1,1-Trichloroethane                 | ND              | 1.0            | 1.00              |                   |
| 1,1,2-Trichloro-1,2,2-Trifluoroethane | ND              | 10             | 1.00              |                   |
| 1,1,2-Trichloroethane                 | ND              | 1.0            | 1.00              |                   |
| Trichloroethene                       | ND              | 1.0            | 1.00              |                   |
| Trichlorofluoromethane                | ND              | 10             | 1.00              |                   |
| 1,2,3-Trichloropropane                | ND              | 5.0            | 1.00              |                   |
| 1,2,4-Trimethylbenzene                | ND              | 1.0            | 1.00              |                   |
| 1,3,5-Trimethylbenzene                | ND              | 1.0            | 1.00              |                   |
| Vinyl Acetate                         | ND              | 10             | 1.00              |                   |
| Vinyl Chloride                        | ND              | 0.50           | 1.00              |                   |
| p/m-Xylene                            | ND              | 1.0            | 1.00              |                   |
| o-Xylene                              | ND              | 1.0            | 1.00              |                   |
| Methyl-t-Butyl Ether (MTBE)           | ND              | 1.0            | 1.00              |                   |
| Tert-Butyl Alcohol (TBA)              | ND              | 10             | 1.00              |                   |
| Diisopropyl Ether (DIPE)              | ND              | 2.0            | 1.00              |                   |
| Ethyl-t-Butyl Ether (ETBE)            | ND              | 2.0            | 1.00              |                   |
| Tert-Amyl-Methyl Ether (TAME)         | ND              | 2.0            | 1.00              |                   |
| Ethanol                               | ND              | 100            | 1.00              |                   |
| Surrogate                             | <u>Rec. (%)</u> | Control Limits | <u>Qualifiers</u> |                   |
| 1,4-Bromofluorobenzene                | 91              | 77-120         |                   |                   |



| Cardno ERI               | Da              | 09/13/17       |                   |               |  |  |
|--------------------------|-----------------|----------------|-------------------|---------------|--|--|
| 601 North McDowell Blvd. | Work Order:     |                |                   | 17-09-0868    |  |  |
| Petaluma, CA 94954-2312  | Pre             |                | EPA 5030C         |               |  |  |
|                          | Me              | EPA 8260B      |                   |               |  |  |
|                          | Un              | ug/L           |                   |               |  |  |
| Project: E317100700      |                 |                |                   | Page 12 of 15 |  |  |
|                          |                 |                |                   |               |  |  |
| Surrogate                | <u>Rec. (%)</u> | Control Limits | <u>Qualifiers</u> |               |  |  |
| Dibromofluoromethane     | 98              | 80-128         |                   |               |  |  |
| 1,2-Dichloroethane-d4    | 97              | 80-129         |                   |               |  |  |
| Toluene-d8               | 97              | 80-120         |                   |               |  |  |



| Cardno ERI<br>601 North McDowell Blvd.<br>Petaluma, CA 94954-2312 |                      | Date Recei<br>Work Order<br>Preparation | 09/13/17<br>17-09-0868<br>EPA 5030C |            |                  |                       |                   |
|-------------------------------------------------------------------|----------------------|-----------------------------------------|-------------------------------------|------------|------------------|-----------------------|-------------------|
| Felaluma, CA 94954-2512                                           |                      |                                         | Method:<br>Units:                   |            |                  |                       | EPA 8260B<br>ug/L |
| Project: E317100700                                               |                      |                                         |                                     |            |                  | Pag                   | je 13 of 15       |
| Client Sample Number                                              | Lab Sample<br>Number | Date/Time<br>Collected                  | Matrix                              | Instrument | Date<br>Prepared | Date/Time<br>Analyzed | QC Batch ID       |
| Method Blank                                                      | 099-14-001-24121     | N/A                                     | Aqueous                             | GC/MS Q    | 09/15/17         | 09/15/17<br>20:11     | 170915L054        |
| Parameter                                                         |                      | Result                                  | RL                                  |            | DE               |                       | alifiers          |
| Acetone                                                           |                      | ND                                      | 20                                  |            | 1.00             |                       |                   |
| Benzene                                                           |                      | ND                                      | 0.5                                 | 50         | 1.00             |                       |                   |
| Bromobenzene                                                      |                      | ND                                      | 1.0                                 | )          | 1.00             |                       |                   |
| Bromochloromethane                                                |                      | ND                                      | 1.0                                 | )          | 1.00             |                       |                   |
| Bromodichloromethane                                              |                      | ND                                      | 1.0                                 | )          | 1.00             |                       |                   |
| Bromoform                                                         |                      | ND                                      | 1.0                                 | )          | 1.00             |                       |                   |
| Bromomethane                                                      |                      | ND                                      | 10                                  |            | 1.00             |                       |                   |
| 2-Butanone                                                        |                      | ND                                      | 10                                  |            | 1.00             |                       |                   |
| n-Butylbenzene                                                    |                      | ND                                      | 1.0                                 | )          | 1.00             |                       |                   |
| sec-Butylbenzene                                                  |                      | ND                                      | 1.0                                 | )          | 1.00             |                       |                   |
| tert-Butylbenzene                                                 |                      | ND                                      | 1.0                                 | )          | 1.00             |                       |                   |
| Carbon Disulfide                                                  |                      | ND                                      | 10                                  |            | 1.00             |                       |                   |
| Carbon Tetrachloride                                              |                      | ND                                      | 0.5                                 | 50         | 1.00             |                       |                   |
| Chlorobenzene                                                     |                      | ND                                      | 1.0                                 | )          | 1.00             |                       |                   |
| Chloroethane                                                      |                      | ND                                      | 5.0                                 | )          | 1.00             |                       |                   |
| Chloroform                                                        |                      | ND                                      | 1.0                                 | )          | 1.00             |                       |                   |
| Chloromethane                                                     |                      | ND                                      | 10                                  |            | 1.00             |                       |                   |
| 2-Chlorotoluene                                                   |                      | ND                                      | 1.0                                 | )          | 1.00             |                       |                   |
| 4-Chlorotoluene                                                   |                      | ND                                      | 1.0                                 | )          | 1.00             |                       |                   |
| Dibromochloromethane                                              |                      | ND                                      | 1.0                                 | )          | 1.00             |                       |                   |
| 1,2-Dibromo-3-Chloropropane                                       |                      | ND                                      | 5.0                                 | )          | 1.00             |                       |                   |
| 1,2-Dibromoethane                                                 |                      | ND                                      | 1.0                                 | )          | 1.00             |                       |                   |
| Dibromomethane                                                    |                      | ND                                      | 1.0                                 | )          | 1.00             |                       |                   |
| 1,2-Dichlorobenzene                                               |                      | ND                                      | 1.0                                 | )          | 1.00             |                       |                   |
| 1,3-Dichlorobenzene                                               |                      | ND                                      | 1.0                                 |            | 1.00             |                       |                   |
| 1,4-Dichlorobenzene                                               |                      | ND                                      | 1.0                                 |            | 1.00             |                       |                   |
| Dichlorodifluoromethane                                           |                      | ND                                      | 1.0                                 | )          | 1.00             |                       |                   |
| 1,1-Dichloroethane                                                |                      | ND                                      | 1.0                                 |            | 1.00             |                       |                   |
| 1,2-Dichloroethane                                                |                      | ND                                      | 0.5                                 | 50         | 1.00             |                       |                   |
| 1,1-Dichloroethene                                                |                      | ND                                      | 1.0                                 | )          | 1.00             |                       |                   |
| c-1,2-Dichloroethene                                              |                      | ND                                      | 1.0                                 | )          | 1.00             |                       |                   |
| t-1,2-Dichloroethene                                              |                      | ND                                      | 1.0                                 | )          | 1.00             |                       |                   |
| 1,2-Dichloropropane                                               |                      | ND                                      | 1.0                                 | )          | 1.00             |                       |                   |
| 1,3-Dichloropropane                                               |                      | ND                                      | 1.0                                 | )          | 1.00             |                       |                   |
| 2,2-Dichloropropane                                               |                      | ND                                      | 1.0                                 |            | 1.00             |                       |                   |



| Cardno ERI                            |                 |                |                   | 09/13/17              |  |  |  |
|---------------------------------------|-----------------|----------------|-------------------|-----------------------|--|--|--|
| 601 North McDowell Blvd.              |                 |                |                   | 17-09-0868            |  |  |  |
| Petaluma, CA 94954-2312               | Pre             |                | EPA 5030C         |                       |  |  |  |
|                                       | Ме              | Method:        |                   |                       |  |  |  |
|                                       | Uni             | Units:         |                   |                       |  |  |  |
| Project: E317100700                   | -               |                |                   | ug/L<br>Page 14 of 15 |  |  |  |
| Parameter                             | Result          | <u>RL</u>      | DF                | <u>Qualifiers</u>     |  |  |  |
| 1,1-Dichloropropene                   | ND              | 1.0            | 1.00              |                       |  |  |  |
| c-1,3-Dichloropropene                 | ND              | 0.50           | 1.00              |                       |  |  |  |
| t-1,3-Dichloropropene                 | ND              | 0.50           | 1.00              |                       |  |  |  |
| Ethylbenzene                          | ND              | 1.0            | 1.00              |                       |  |  |  |
| 2-Hexanone                            | ND              | 10             | 1.00              |                       |  |  |  |
| Isopropylbenzene                      | ND              | 1.0            | 1.00              |                       |  |  |  |
| p-Isopropyltoluene                    | ND              | 1.0            | 1.00              |                       |  |  |  |
| Methylene Chloride                    | ND              | 10             | 1.00              |                       |  |  |  |
| 4-Methyl-2-Pentanone                  | ND              | 10             | 1.00              |                       |  |  |  |
| Naphthalene                           | ND              | 10             | 1.00              |                       |  |  |  |
| n-Propylbenzene                       | ND              | 1.0            | 1.00              |                       |  |  |  |
| Styrene                               | ND              | 1.0            | 1.00              |                       |  |  |  |
| 1,1,1,2-Tetrachloroethane             | ND              | 1.0            | 1.00              |                       |  |  |  |
| 1,1,2,2-Tetrachloroethane             | ND              | 1.0            | 1.00              |                       |  |  |  |
| Tetrachloroethene                     | ND              | 1.0            | 1.00              |                       |  |  |  |
| Toluene                               | ND              | 1.0            | 1.00              |                       |  |  |  |
| 1,2,3-Trichlorobenzene                | ND              | 1.0            | 1.00              |                       |  |  |  |
| 1,2,4-Trichlorobenzene                | ND              | 1.0            | 1.00              |                       |  |  |  |
| 1,1,1-Trichloroethane                 | ND              | 1.0            | 1.00              |                       |  |  |  |
| 1,1,2-Trichloro-1,2,2-Trifluoroethane | ND              | 10             | 1.00              |                       |  |  |  |
| 1,1,2-Trichloroethane                 | ND              | 1.0            | 1.00              |                       |  |  |  |
| Trichloroethene                       | ND              | 1.0            | 1.00              |                       |  |  |  |
| Trichlorofluoromethane                | ND              | 10             | 1.00              |                       |  |  |  |
| 1,2,3-Trichloropropane                | ND              | 5.0            | 1.00              |                       |  |  |  |
| 1,2,4-Trimethylbenzene                | ND              | 1.0            | 1.00              |                       |  |  |  |
| 1,3,5-Trimethylbenzene                | ND              | 1.0            | 1.00              |                       |  |  |  |
| Vinyl Acetate                         | ND              | 10             | 1.00              |                       |  |  |  |
| Vinyl Chloride                        | ND              | 0.50           | 1.00              |                       |  |  |  |
| p/m-Xylene                            | ND              | 1.0            | 1.00              |                       |  |  |  |
| o-Xylene                              | ND              | 1.0            | 1.00              |                       |  |  |  |
| Methyl-t-Butyl Ether (MTBE)           | ND              | 1.0            | 1.00              |                       |  |  |  |
| Tert-Butyl Alcohol (TBA)              | ND              | 10             | 1.00              |                       |  |  |  |
| Diisopropyl Ether (DIPE)              | ND              | 2.0            | 1.00              |                       |  |  |  |
| Ethyl-t-Butyl Ether (ETBE)            | ND              | 2.0            | 1.00              |                       |  |  |  |
| Tert-Amyl-Methyl Ether (TAME)         | ND              | 2.0            | 1.00              |                       |  |  |  |
| Ethanol                               | ND              | 100            | 1.00              |                       |  |  |  |
| Surrogate                             | <u>Rec. (%)</u> | Control Limits | <u>Qualifiers</u> |                       |  |  |  |
| 1,4-Bromofluorobenzene                | 99              | 77-120         |                   |                       |  |  |  |



| Cardno ERI               | Date            | 09/13/17       |                   |               |  |  |
|--------------------------|-----------------|----------------|-------------------|---------------|--|--|
| 601 North McDowell Blvd. | Work Order:     |                |                   | 17-09-0868    |  |  |
| Petaluma, CA 94954-2312  | Prep            |                | EPA 5030C         |               |  |  |
|                          | Meth            | EPA 8260B      |                   |               |  |  |
|                          | Unite           | ug/L           |                   |               |  |  |
| Project: E317100700      |                 |                |                   | Page 15 of 15 |  |  |
|                          |                 |                |                   |               |  |  |
| Surrogate                | <u>Rec. (%)</u> | Control Limits | <u>Qualifiers</u> |               |  |  |
| Dibromofluoromethane     | 101             | 80-128         |                   |               |  |  |
| 1,2-Dichloroethane-d4    | 105             | 80-129         |                   |               |  |  |
| Toluene-d8               | 98              | 80-120         |                   |               |  |  |



| Cardno ERI                |                  |                                    | Date               | Received            |               |          |            |               | 09/13/17          |
|---------------------------|------------------|------------------------------------|--------------------|---------------------|---------------|----------|------------|---------------|-------------------|
| 601 North McDowell Blvd.  |                  |                                    | Work               | Order:              |               |          |            | 17            | -09-0868          |
| Petaluma, CA 94954-2312   |                  |                                    | Prepa              | aration:            |               |          |            | EF            | PA 5030C          |
|                           |                  |                                    | Meth               | od:                 |               |          |            | EPA 8         | 015B (M)          |
| Project: E317100700       |                  |                                    |                    |                     |               |          |            | Page 1        | of 5              |
| Quality Control Sample ID | Туре             | Matrix                             | In                 | strument            | Date Prepared | Date Ana | lyzed      | MS/MSD Bat    | ch Number         |
| 17-09-0854-1              | Sample           | Aqueo                              | us G               | C 42                | 09/15/17      | 09/15/17 | 15:46      | 170915S016    |                   |
| 17-09-0854-1              | Matrix Spike     | Aqueo                              | us G               | C 42                | 09/15/17      | 09/15/17 | 16:21      | 170915S016    |                   |
| 17-09-0854-1              | Matrix Spike Dup | licate Aqueo                       | us G               | C 42                | 09/15/17      | 09/15/17 | 16:56      | 170915S016    |                   |
| Parameter                 |                  | ike <u>MS</u><br>Ided <u>Conc.</u> | <u>MS</u><br>%Rec. | <u>MSD</u><br>Conc. | MSD<br>%Rec.  | %Rec. CL | <u>RPD</u> | <u>RPD CL</u> | <u>Qualifiers</u> |
| TPH as Gasoline           | ND 20            | 00 2018                            | 101                | 2003                | 100           | 68-122   | 1          | 0-18          |                   |

Return to Contents



| Cardno ERI               | Date Received: | 09/13/17    |
|--------------------------|----------------|-------------|
| 601 North McDowell Blvd. | Work Order:    | 17-09-0868  |
| Petaluma, CA 94954-2312  | Preparation:   | EPA 5030C   |
|                          | Method:        | EPA 8260B   |
| Project: E317100700      |                | Page 2 of 5 |

| Quality Control Sample ID   | Туре            |                       | Matrix      | In                 | strument     | Date Prepared              | Date Ana        | lyzed      | MS/MSD Ba  | tch Number |
|-----------------------------|-----------------|-----------------------|-------------|--------------------|--------------|----------------------------|-----------------|------------|------------|------------|
| 17-09-1082-1                | Sample          |                       | Aqueous     | G                  | C/MS Q       | 09/15/17                   | 09/15/17        | 20:38      | 170915S024 | L .        |
| 17-09-1082-1                | Matrix Spike    |                       | Aqueous     | G                  | C/MS Q       | 09/15/17                   | 09/15/17        | 21:33      | 170915S024 | Ļ          |
| 17-09-1082-1                | Matrix Spike    | Duplicate             | Aqueous     | G                  | C/MS Q       | 09/15/17                   | 09/15/17        | 22:00      | 170915S024 | L I        |
| Parameter                   | Sample<br>Conc. | <u>Spike</u><br>Added | MS<br>Conc. | <u>MS</u><br>%Rec. | MSD<br>Conc. | <u>MSD</u><br><u>%Rec.</u> | <u>%Rec. CL</u> | <u>RPD</u> | RPD CL     | Qualifiers |
| Acetone                     | ND              | 50.00                 | 50.89       | 102                | 51.25        | 103                        | 34-166          | 1          | 0-33       |            |
| Benzene                     | ND              | 50.00                 | 48.77       | 98                 | 48.75        | 97                         | 75-125          | 0          | 0-20       |            |
| Bromobenzene                | ND              | 50.00                 | 50.28       | 101                | 49.86        | 100                        | 75-125          | 1          | 0-20       |            |
| Bromochloromethane          | ND              | 50.00                 | 50.52       | 101                | 50.20        | 100                        | 75-125          | 1          | 0-20       |            |
| Bromodichloromethane        | ND              | 50.00                 | 52.91       | 106                | 52.81        | 106                        | 75-134          | 0          | 0-20       |            |
| Bromoform                   | ND              | 50.00                 | 42.36       | 85                 | 44.37        | 89                         | 74-134          | 5          | 0-20       |            |
| Bromomethane                | ND              | 50.00                 | 47.25       | 94                 | 43.63        | 87                         | 20-168          | 8          | 0-40       |            |
| 2-Butanone                  | ND              | 50.00                 | 49.92       | 100                | 50.97        | 102                        | 37-157          | 2          | 0-20       |            |
| n-Butylbenzene              | ND              | 50.00                 | 49.21       | 98                 | 49.28        | 99                         | 73-145          | 0          | 0-20       |            |
| sec-Butylbenzene            | ND              | 50.00                 | 49.05       | 98                 | 49.30        | 99                         | 75-135          | 1          | 0-20       |            |
| tert-Butylbenzene           | ND              | 50.00                 | 49.13       | 98                 | 49.90        | 100                        | 75-136          | 2          | 0-20       |            |
| Carbon Disulfide            | ND              | 50.00                 | 50.40       | 101                | 49.90        | 100                        | 50-152          | 1          | 0-27       |            |
| Carbon Tetrachloride        | ND              | 50.00                 | 51.52       | 103                | 51.54        | 103                        | 70-154          | 0          | 0-20       |            |
| Chlorobenzene               | ND              | 50.00                 | 48.81       | 98                 | 48.54        | 97                         | 75-125          | 1          | 0-20       |            |
| Chloroethane                | ND              | 50.00                 | 50.22       | 100                | 49.05        | 98                         | 41-167          | 2          | 0-26       |            |
| Chloroform                  | ND              | 50.00                 | 50.63       | 101                | 50.72        | 101                        | 75-127          | 0          | 0-20       |            |
| Chloromethane               | ND              | 50.00                 | 44.98       | 90                 | 44.05        | 88                         | 41-149          | 2          | 0-20       |            |
| 2-Chlorotoluene             | ND              | 50.00                 | 49.04       | 98                 | 48.74        | 97                         | 75-128          | 1          | 0-20       |            |
| 4-Chlorotoluene             | ND              | 50.00                 | 48.38       | 97                 | 48.70        | 97                         | 75-125          | 1          | 0-20       |            |
| Dibromochloromethane        | ND              | 50.00                 | 48.71       | 97                 | 49.21        | 98                         | 75-131          | 1          | 0-20       |            |
| 1,2-Dibromo-3-Chloropropane | ND              | 50.00                 | 48.86       | 98                 | 51.06        | 102                        | 64-142          | 4          | 0-20       |            |
| 1,2-Dibromoethane           | ND              | 50.00                 | 51.23       | 102                | 51.87        | 104                        | 75-129          | 1          | 0-20       |            |
| Dibromomethane              | ND              | 50.00                 | 51.50       | 103                | 51.26        | 103                        | 75-125          | 0          | 0-20       |            |
| 1,2-Dichlorobenzene         | ND              | 50.00                 | 48.98       | 98                 | 50.13        | 100                        | 75-125          | 2          | 0-20       |            |
| 1,3-Dichlorobenzene         | ND              | 50.00                 | 47.93       | 96                 | 48.39        | 97                         | 75-125          | 1          | 0-20       |            |
| 1,4-Dichlorobenzene         | ND              | 50.00                 | 47.23       | 94                 | 47.91        | 96                         | 75-125          | 1          | 0-20       |            |
| Dichlorodifluoromethane     | ND              | 50.00                 | 44.83       | 90                 | 44.12        | 88                         | 25-157          | 2          | 0-26       |            |
| 1,1-Dichloroethane          | ND              | 50.00                 | 51.64       | 103                | 51.04        | 102                        | 73-139          | 1          | 0-20       |            |
| 1,2-Dichloroethane          | ND              | 50.00                 | 51.31       | 103                | 51.78        | 104                        | 75-125          | 1          | 0-20       |            |
| 1,1-Dichloroethene          | 1.877           | 50.00                 | 50.71       | 98                 | 50.08        | 96                         | 61-145          | 1          | 0-20       |            |
| c-1,2-Dichloroethene        | ND              | 50.00                 | 50.30       | 101                | 50.70        | 101                        | 75-125          | 1          | 0-20       |            |
| t-1,2-Dichloroethene        | ND              | 50.00                 | 50.08       | 100                | 49.38        | 99                         | 64-142          | 1          | 0-20       |            |
| 1,2-Dichloropropane         | ND              | 50.00                 | 52.32       | 105                | 51.93        | 104                        | 75-127          | 1          | 0-20       |            |
| 1,3-Dichloropropane         | ND              | 50.00                 | 48.81       | 98                 | 48.74        | 97                         | 75-125          | 0          | 0-20       |            |
| 2,2-Dichloropropane         | ND              | 50.00                 | 45.30       | 91                 | 46.10        | 92                         | 24-180          | 2          | 0-20       |            |
|                             |                 |                       |             |                    |              |                            |                 |            |            |            |



| Cardno ERI                            |                               |                       |                    | Date F                    | Received:           |                            |                 |            |        | 09/13/17          |
|---------------------------------------|-------------------------------|-----------------------|--------------------|---------------------------|---------------------|----------------------------|-----------------|------------|--------|-------------------|
| 601 North McDowell Blvd.              |                               |                       |                    | Work                      | Order:              |                            |                 |            | 1      | 7-09-0868         |
| Petaluma, CA 94954-2312               |                               |                       |                    | Prepa                     | ration:             |                            |                 |            | E      | PA 5030C          |
|                                       |                               |                       |                    | Metho                     |                     |                            |                 |            |        | PA 8260B          |
| Project: E317100700                   |                               |                       |                    | Wethe                     |                     |                            |                 |            | Page   |                   |
| Parameter                             | <u>Sample</u><br><u>Conc.</u> | <u>Spike</u><br>Added | <u>MS</u><br>Conc. | <u>MS</u><br><u>%Rec.</u> | <u>MSD</u><br>Conc. | <u>MSD</u><br><u>%Rec.</u> | <u>%Rec. CL</u> | <u>RPD</u> | RPD CL | <u>Qualifiers</u> |
| 1,1-Dichloropropene                   | ND                            | 50.00                 | 49.47              | 99                        | 49.10               | 98                         | 75-135          | 1          | 0-20   |                   |
| c-1,3-Dichloropropene                 | ND                            | 50.00                 | 51.14              | 102                       | 52.13               | 104                        | 75-137          | 2          | 0-20   |                   |
| t-1,3-Dichloropropene                 | ND                            | 50.00                 | 48.66              | 97                        | 48.82               | 98                         | 74-146          | 0          | 0-20   |                   |
| Ethylbenzene                          | ND                            | 50.00                 | 49.35              | 99                        | 48.92               | 98                         | 75-129          | 1          | 0-20   |                   |
| 2-Hexanone                            | ND                            | 50.00                 | 49.09              | 98                        | 49.08               | 98                         | 47-161          | 0          | 0-20   |                   |
| Isopropylbenzene                      | ND                            | 50.00                 | 49.77              | 100                       | 49.23               | 98                         | 75-135          | 1          | 0-20   |                   |
| p-lsopropyltoluene                    | ND                            | 50.00                 | 49.27              | 99                        | 49.64               | 99                         | 75-136          | 1          | 0-20   |                   |
| Methylene Chloride                    | ND                            | 50.00                 | 49.41              | 99                        | 49.00               | 98                         | 63-141          | 1          | 0-20   |                   |
| 4-Methyl-2-Pentanone                  | ND                            | 50.00                 | 48.31              | 97                        | 49.21               | 98                         | 66-138          | 2          | 0-20   |                   |
| Naphthalene                           | ND                            | 50.00                 | 47.88              | 96                        | 49.48               | 99                         | 59-143          | 3          | 0-20   |                   |
| n-Propylbenzene                       | ND                            | 50.00                 | 49.36              | 99                        | 48.92               | 98                         | 75-133          | 1          | 0-20   |                   |
| Styrene                               | ND                            | 50.00                 | 49.23              | 98                        | 47.48               | 95                         | 70-142          | 4          | 0-28   |                   |
| 1,1,1,2-Tetrachloroethane             | ND                            | 50.00                 | 54.12              | 108                       | 54.32               | 109                        | 75-139          | 0          | 0-20   |                   |
| 1,1,2,2-Tetrachloroethane             | ND                            | 50.00                 | 51.80              | 104                       | 53.08               | 106                        | 61-145          | 2          | 0-20   |                   |
| Tetrachloroethene                     | 165.1                         | 50.00                 | 177.8              | 25                        | 173.3               | 16                         | 47-143          | 3          | 0-20   | 3                 |
| Toluene                               | ND                            | 50.00                 | 49.33              | 99                        | 49.30               | 99                         | 75-125          | 0          | 0-20   |                   |
| 1,2,3-Trichlorobenzene                | ND                            | 50.00                 | 47.51              | 95                        | 48.71               | 97                         | 73-133          | 2          | 0-20   |                   |
| 1,2,4-Trichlorobenzene                | ND                            | 50.00                 | 48.43              | 97                        | 49.01               | 98                         | 71-137          | 1          | 0-20   |                   |
| 1,1,1-Trichloroethane                 | ND                            | 50.00                 | 48.64              | 97                        | 48.63               | 97                         | 75-136          | 0          | 0-20   |                   |
| 1,1,2-Trichloro-1,2,2-Trifluoroethane | ND                            | 50.00                 | 49.62              | 99                        | 49.48               | 99                         | 42-168          | 0          | 0-22   |                   |
| 1,1,2-Trichloroethane                 | ND                            | 50.00                 | 50.68              | 101                       | 50.50               | 101                        | 75-125          | 0          | 0-20   |                   |
| Trichloroethene                       | 12.97                         | 50.00                 | 60.43              | 95                        | 59.81               | 94                         | 67-139          | 1          | 0-20   |                   |
| Trichlorofluoromethane                | ND                            | 50.00                 | 52.06              | 104                       | 50.94               | 102                        | 59-155          | 2          | 0-20   |                   |
| 1,2,3-Trichloropropane                | ND                            | 50.00                 | 50.43              | 101                       | 51.06               | 102                        | 75-127          | 1          | 0-20   |                   |
| 1,2,4-Trimethylbenzene                | ND                            | 50.00                 | 48.65              | 97                        | 48.83               | 98                         | 75-133          | 0          | 0-20   |                   |
| 1,3,5-Trimethylbenzene                | ND                            | 50.00                 | 49.15              | 98                        | 48.76               | 98                         | 75-135          | 1          | 0-20   |                   |
| Vinyl Acetate                         | ND                            | 50.00                 | 34.17              | 68                        | 34.24               | 68                         | 54-180          | 0          | 0-25   |                   |
| Vinyl Chloride                        | ND                            | 50.00                 | 49.90              | 100                       | 48.91               | 98                         | 51-153          | 2          | 0-20   |                   |
| p/m-Xylene                            | ND                            | 100.0                 | 98.08              | 98                        | 96.87               | 97                         | 75-133          | 1          | 0-20   |                   |
| o-Xylene                              | ND                            | 50.00                 | 50.28              | 101                       | 49.90               | 100                        | 75-134          | 1          | 0-20   |                   |
| Methyl-t-Butyl Ether (MTBE)           | ND                            | 50.00                 | 49.40              | 99                        | 49.72               | 99                         | 64-136          | 1          | 0-20   |                   |
| Tert-Butyl Alcohol (TBA)              | ND                            | 250.0                 | 273.6              | 109                       | 279.4               | 112                        | 75-136          | 2          | 0-20   |                   |
| Diisopropyl Ether (DIPE)              | ND                            | 50.00                 | 52.71              | 105                       | 52.96               | 106                        | 73-139          | 0          | 0-20   |                   |
| Ethyl-t-Butyl Ether (ETBE)            | ND                            | 50.00                 | 48.94              | 98                        | 48.91               | 98                         | 69-135          | 0          | 0-20   |                   |
| Tert-Amyl-Methyl Ether (TAME)         | ND                            | 50.00                 | 47.60              | 95                        | 47.66               | 95                         | 69-135          | 0          | 0-20   |                   |
| Ethanol                               | ND                            | 500.0                 | 557.4              | 111                       | 538.1               | 108                        | 29-179          | 4          | 0-25   |                   |
|                                       |                               |                       |                    |                           |                     |                            |                 |            |        |                   |



| Cardno ERI               | Date Received: | 09/13/17    |
|--------------------------|----------------|-------------|
| 601 North McDowell Blvd. | Work Order:    | 17-09-0868  |
| Petaluma, CA 94954-2312  | Preparation:   | EPA 5030C   |
|                          | Method:        | EPA 8260B   |
| Project: E317100700      |                | Page 4 of 5 |

| 17-09-0688-12         Sample<br>Matrix Spike         Aqueous<br>Aqueous         GCMS CC         09/14/17         09/14/17         16.38         17/09-1688-12           17-09-0688-12         Matrix Spike         Lupicato         Aqueous         GCMS CC         09/14/17         09/14/17         15/014/10         09/14/17         15/014/10         09/14/17         15/014/17         09/14/17         15/014/17         09/14/17         15/014/17         09/14/17         15/014/17         09/14/17         15/014/17         09/14/17         15/014/17         15/014/17         15/014/17         15/014/17         15/014/17         15/014/17         15/014/17         15/014/17         15/014/17         15/014/17         15/014/17         15/014/17         15/014/17         15/014/17         15/014/17         15/014/17         15/014/17         15/014/17         15/014/17         15/014/17         15/014/17         15/014/17         15/014/17         15/014/17         15/014/17         15/014/17         15/014/17         15/014/17         15/014/17         15/014/17         15/014/17         15/014/17         15/014/17         15/014/17         15/014/17         15/014/17         15/014/17         15/014/17         15/014/17         15/014/17         15/014/17         15/014/17         15/014/17         15/014/17         15/014/17 | Quality Control Sample ID   | Туре         |                       | Matrix             | Ins                | trument | Date Prepare               | ed Date Ana | lyzed      | MS/MSD Ba  | tch Number |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------------|-----------------------|--------------------|--------------------|---------|----------------------------|-------------|------------|------------|------------|
| 17-09-0688-12Matrix Spike UserAqueouGC/M S C09/14/1709/14/1717-14/15/10ParameterConcSample<br>AddedMS<br>AddedMS<br>ConcMSD<br>SurgerMSD<br>SurgerMSD<br>SurgerMSD<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 17-09-0688-12               | Sample       |                       | Aqueous            | GC                 | /MS CC  | 09/14/17                   | 09/14/17    | 16:38      | 170914S009 | )          |
| Parameter         Sample<br>Cons.         Sample<br>Added<br>Cons.         MS<br>WRes.         MSD<br>WRes.         MSD<br>WRes.         MSD<br>WRes.         MSD<br>WRes.         MSD<br>WRes.         Rep.         Rep.         Rep.         L.         Qualifiers           Actone         ND         50.00         47.82         96         47.92         96         75-125         0         0.20           Bromochoromethane         ND         50.00         47.26         95         48.17         96         75-125         1         0.20           Bromochoromethane         ND         50.00         47.26         95         48.17         96         75-125         2         0.20           Bromochoromethane         ND         50.00         47.26         95         42.17         85         20-168         0         0.40           2-Burnone         ND         50.00         42.52         85         42.47         85         20-168         0         0.40           2-Burnone         ND         50.00         42.33         87         48.46         97         75-136         0         0.20           Carbon Teirachioride         ND         50.00         51.13         102         49.92         100         75-136                                                                                                                                           | 17-09-0688-12               | Matrix Spike |                       | Aqueous            | GC                 | /MS CC  | 09/14/17                   | 09/14/17    | 17:59      | 170914S009 | )          |
| Cance,<br>ActioneCance,<br>ValueCance,<br>ValueCance,<br>ValueSubsectSubsectSubsectSubsectSubsectSubsectSubsectSubsectSubsectSubsectSubsectSubsectSubsectSubsectSubsectSubsectSubsectSubsectSubsectSubsectSubsectSubsectSubsectSubsectSubsectSubsectSubsectSubsectSubsectSubsectSubsectSubsectSubsectSubsectSubsectSubsectSubsectSubsectSubsectSubsectSubsectSubsectSubsectSubsectSubsectSubsectSubsectSubsectSubsectSubsectSubsectSubsectSubsectSubsectSubsectSubsectSubsectSubsectSubsectSubsectSubsectSubsectSubsectSubsectSubsectSubsectSubsectSubsectSubsectSubsectSubsectSubsectSubsectSubsectSubsectSubsectSubsectSubsectSubsectSubsectSubsectSubsectSubsectSubsectSubsectSubsectSubsectSubsectSubsectSubsectSubsectSubsectSubsectSubsectSubsectSubsectSubsectSubsectSubsectSubsectSubsectSubsectSubsectSubsectSubsectSubsectSubsectSubsectSubsectSubsectSubsectSubsectSubsectSubsectSubsectSubsectSubsectSubsectSubsectSubsectSubsect<                                                                                                                                                                                                                                                                                                                                                                                                                                               | 17-09-0688-12               | Matrix Spike | Duplicate             | Aqueous            | GC                 | /MS CC  | 09/14/17                   | 09/14/17    | 18:26      | 170914S009 | )          |
| BenzeneND50.0047.929647.929675.12510.20BromochoromethaneND50.0052.4210652.7610675.12510.20BromochoromethaneND50.0047.269548.179675.12520.20BromochoromethaneND50.0049.9010052.6210574.13450.20BromochoromethaneND50.0042.528542.478410973.14530.20BromochoromethaneND50.0043.0310654.4510973.14530.20Sec-ButybenzeneND50.0061.1310249.2210075.13620.20Carbon DisulfideND50.0061.1310249.2210075.13620.20Carbon DisulfideND50.0041.949044.769060.15210.20ChioroethaneND50.0041.928946.969441.16750.20ChioroethaneND50.0041.698946.749375.12510.20ChioroethaneND50.0041.698946.749375.12510.20ChioroethaneND50.0041.698946.749375.12510.20ChioroethaneND50.0041.698946.749375.1251<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Parameter                   |              | <u>Spike</u><br>Added | <u>MS</u><br>Conc. | <u>MS</u><br>%Rec. |         | <u>MSD</u><br><u>%Rec.</u> | %Rec. CL    | <u>RPD</u> | RPD CL     | Qualifiers |
| BromobenzeneND50.0053.2410652.7610675-12510.20BromochloromethaneND50.0047.269548.179675-12520.20BromochloromethaneND50.0049.9910451.9110475.13400.20BromochromethaneND50.0042.528542.478520.16800.402-ButanoneND50.0042.738547.229437.157100.20sec-ButylbenzeneND50.0053.0010654.4510975.13600.20sec-ButylbenzeneND50.0061.1310249.9210075.13600.20carbon DisulfideND50.0063.3510752.6210075.13600.20ChiorobenzeneND50.0063.3510752.6010676.15410.20ChiorobenzeneND50.0044.949044.769441.16750.20ChiorobenzeneND50.0047.298447.059447.127100.20ChiorobenzeneND50.0047.298341.198541.14960.20ChiorobenzeneND50.0047.498341.198441.4960.20ChiorobenzeneND50.0047.498341.198542.190.20 <t< td=""><td>Acetone</td><td>ND</td><td>50.00</td><td>46.87</td><td>94</td><td>56.46</td><td>113</td><td>34-166</td><td>19</td><td>0-33</td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Acetone                     | ND           | 50.00                 | 46.87              | 94                 | 56.46   | 113                        | 34-166      | 19         | 0-33       |            |
| BromochloromethaneND50.0047.269548.179675-12520-20BromochloromethaneND50.0041.9310451.9110475.13400-20BromorthaneND50.0042.528542.478520-16800-402-ButanoneND50.0042.528547.229437.157100-20n-ButylenzeneND50.0043.339748.469775.13500-20carbon DisulfideND50.0061.1310249.9210075.13500-20Carbon DisulfideND50.0063.3510752.8010670.15410-20ChlorobenzeneND50.0063.7510250.0310075.12510-20ChlorobenzeneND50.0047.229447.059474.12450-20ChlorobenzeneND50.0047.229447.059474.12450-20ChlorobenzeneND50.0047.429546.749375.12510-20ChlorobenzeneND50.0047.449546.749375.12510-20ChlorobenzeneND50.0047.449546.749375.12510-20ChlorobenzeneND50.0047.449546.749375.12510-20 <t< td=""><td>Benzene</td><td>ND</td><td>50.00</td><td>47.92</td><td>96</td><td>47.92</td><td>96</td><td>75-125</td><td>0</td><td>0-20</td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Benzene                     | ND           | 50.00                 | 47.92              | 96                 | 47.92   | 96                         | 75-125      | 0          | 0-20       |            |
| BromodichloromethaneND50.0051.9310451.9110475.13400.20BromodromND50.0049.9910052.6210574.13450.20BromomethaneND50.0042.738542.729437.157100.20n-ButylbenzeneND50.0043.339748.4610973.14530.20sec-ButylbenzeneND50.0063.3510248.469057.13500.20Carbon DisulfideND50.0044.349044.769050.15200.20Carbon TetrachlorideND50.0053.3510752.8010670.15410.20ChlorobenzeneND50.0044.949044.769051.15210.20ChlorobenzeneND50.0047.229447.059441.16750.26ChlorobenzeneND50.0047.498341.498441.4960.20ChlorobethaneND50.0047.498544.198341.4960.20ChlorobethaneND50.0047.498545.1410875.12510.20ChlorobethaneND50.0047.498140.749375.12510.20LibrobethaneND50.0047.498140.749375.12520.20 <td>Bromobenzene</td> <td>ND</td> <td>50.00</td> <td>53.24</td> <td>106</td> <td>52.76</td> <td>106</td> <td>75-125</td> <td>1</td> <td>0-20</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Bromobenzene                | ND           | 50.00                 | 53.24              | 106                | 52.76   | 106                        | 75-125      | 1          | 0-20       |            |
| BronoformND50.0049.9910052.6210574.13450.20BromomethaneND50.0042.528542.478520-16800.402-ButanoneND50.0042.738647.229437.157100.20ne-ButylbenzeneND50.0048.339748.469775.13500.20sec-ButylbenzeneND50.0051.1310249.9210075.13620.20Carbon DisulfideND50.0053.5110752.8010670.15410.20Carbon TetracholnideND50.0050.7510250.0310075.15210.20ChlorobenzeneND50.0044.598946.969441.16750.26ChlorobethaneND50.0047.229447.059475.12700.202-ChloroburenND50.0047.449546.749375.12810.202-ChloroburenND50.0047.449546.749375.12810.201/2-DibromothaneND50.0046.819749.629975.12800.201/2-DibromothaneND50.0046.819749.629975.12500.201/2-DibromothaneND50.0046.819749.629875.12500.20 </td <td>Bromochloromethane</td> <td>ND</td> <td>50.00</td> <td>47.26</td> <td>95</td> <td>48.17</td> <td>96</td> <td>75-125</td> <td>2</td> <td>0-20</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Bromochloromethane          | ND           | 50.00                 | 47.26              | 95                 | 48.17   | 96                         | 75-125      | 2          | 0-20       |            |
| BromomethaneND50.0042.528542.478520.16800.402-ButanoneND50.0042.738547.229437.157100.20n-ButylbenzeneND50.0048.339748.469775.13500.20tert-ButylbenzeneND50.0041.9110249.9210075.13620.20Carbon DisulfideND50.0051.3110249.9210075.13620.20Carbon DisulfideND50.0053.5510250.0310670.15410.20ChlorobenzeneND50.0047.929447.659441.16750.20ChlorobertaneND50.0047.229447.059475.12700.20ChlorobertaneND50.0047.229447.059475.12700.20ChlorobertaneND50.0047.229447.059475.12700.20ChlorobertaneND50.0047.429546.749375.12510.20ChlorobertaneND50.0047.449546.749375.12510.20L'ChloroblureneND50.0046.819749.629975.12920.20L'DibromochloromethaneND50.0046.819749.629375.12500.20 </td <td>Bromodichloromethane</td> <td>ND</td> <td>50.00</td> <td>51.93</td> <td>104</td> <td>51.91</td> <td>104</td> <td>75-134</td> <td>0</td> <td>0-20</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Bromodichloromethane        | ND           | 50.00                 | 51.93              | 104                | 51.91   | 104                        | 75-134      | 0          | 0-20       |            |
| 2-ButanoneND50.0042.738547.229437.157100.20n-ButybenzeneND50.0053.0010654.4510973.14530.20sec-ButybenzeneND50.0048.339748.609775.13500.20Carbon DisulfideND50.0041.949044.769050.15200.27Carbon DisulfideND50.0053.3510752.8010670.15410.20ChlorobenzeneND50.0047.228447.059475.12700.20ChlorobenzeneND50.0047.228447.059475.12700.20ChlorobenzeneND50.0047.228447.059475.12700.20ChlorobuneND50.0047.458344.198841.14960.20ChlorobuneND50.0047.449546.1410875.12700.201/2-DibronobuneND50.0048.439749.629975.12810.201/2-DibronoburenthaneND50.0048.439749.629975.12500.201/2-DibronoburenthaneND50.0048.439749.629975.12500.201/2-DibronoburenthaneND50.0048.439749.629875.12500.20<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Bromoform                   | ND           | 50.00                 | 49.99              | 100                | 52.62   | 105                        | 74-134      | 5          | 0-20       |            |
| n-ButylbenzeneND50.0053.0010654.4510973-14530-20sec-ButylbenzeneND50.0048.339748.469775-13600-20Carbon DisulfideND50.0051.1310249.9210075-13600-20Carbon DisulfideND50.0053.5110250.0150.15200-27Carbon TetrachlorideND50.0050.7510250.3310075-12510-20ChlorobenzeneND50.0041.598946.969441.16750-26ChloroformND50.0047.229447.059475-12700-20ChloroformND50.0047.229447.059475-12700-20ChlorotolueneND50.0047.449546.749375-12510-202-ChlorotolueneND50.0050.3610150.1110075-12510-201/2-Dibromo-dhoromethaneND50.0047.449546.749375-12510-201/2-Dibromo-dhoromethaneND50.0048.439749.629975-12500-201/2-Dibromo-dhoromethaneND50.0048.439749.629875-12500-201/2-Dibromo-dhoromethaneND50.0049.289949.229875-125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Bromomethane                | ND           | 50.00                 | 42.52              | 85                 | 42.47   | 85                         | 20-168      | 0          | 0-40       |            |
| sec-Butylbenzene         ND         50.00         48.33         97         48.46         97         75-135         0         0-20           tert-Butylbenzene         ND         50.00         51.13         102         49.92         100         75-136         2         0-20           Carbon Disulfide         ND         50.00         44.94         90         44.76         90         50-152         0         0-27           Carbon Disulfide         ND         50.00         53.35         107         52.80         106         70-154         1         0-20           Chlorobenzene         ND         50.00         44.59         89         46.96         94         41-167         5         0-26           Chlorobrame         ND         50.00         47.22         94         47.05         94         75-125         1         0-20           Chlorobrame         ND         50.00         47.44         95         46.74         93         75-125         1         0-20           Chlorobromethane         ND         50.00         47.44         95         46.74         93         75-125         1         0-20           L/Chlorobluene         ND         50.                                                                                                                                                                                                | 2-Butanone                  | ND           | 50.00                 | 42.73              | 85                 | 47.22   | 94                         | 37-157      | 10         | 0-20       |            |
| terl-ButylbenzeneND50.0051.1310249.9210075.13620.20Carbon DisulfideND50.0043.949044.769050.15200.27Carbon TetrachlorideND50.0053.3510752.8010670.15410.20ChlorobenzeneND50.0047.598946.969441.16750.26ChlorobentaneND50.0047.229447.059475.12700.20ChlorobentaneND50.0047.229447.059475.12810.20ChlorobentaneND50.0047.449567.4110075.12810.202-ChlorobuleneND50.0047.449567.4110075.12510.202-ChlorobuleneND50.0047.449546.749375.12510.201/2-Dibromo-3-ChloropropaneND50.0048.439749.629975.12500.201/2-DichlorobenzeneND50.0050.4810151.2810375.12500.201/2-DichlorobenzeneND50.0050.4810151.2810375.12500.201/2-DichlorobenzeneND50.0050.4810151.2810375.12500.201/3-DichlorobenzeneND50.0050.4810151.86112 </td <td>n-Butylbenzene</td> <td>ND</td> <td>50.00</td> <td>53.00</td> <td>106</td> <td>54.45</td> <td>109</td> <td>73-145</td> <td>3</td> <td>0-20</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | n-Butylbenzene              | ND           | 50.00                 | 53.00              | 106                | 54.45   | 109                        | 73-145      | 3          | 0-20       |            |
| Carbon DisulfideND50.0044.949044.769050.15200.27Carbon TetrachlorideND50.0053.3510752.8010670.15410.20ChlorobenzeneND50.0050.7510250.0310075.12510.20ChlorobentaneND50.0044.598946.969441.16750.26ChlorobentaneND50.0047.229447.059475.12700.20ChlorobrormND50.0047.429447.059475.12810.20ChlorobrueneND50.0047.449546.749375.12510.204-ChloroblueneND50.0052.9510654.2110875.13120.201/2-Dibromo-3-ChloropropaneND50.0048.439749.629975.12500.201/2-DibromoethaneND50.0049.3310049.719975.12500.201/2-DibromoethaneND50.0050.3210151.2810375.12500.201/2-DibromoethaneND50.0050.3210151.7811225.15730.201/2-DibromoethaneND50.0054.4410955.9611225.15730.201/2-DibromoethaneND50.0054.4410955.9611225.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | sec-Butylbenzene            | ND           | 50.00                 | 48.33              | 97                 | 48.46   | 97                         | 75-135      | 0          | 0-20       |            |
| Carbon TetrachlorideND50.0053.3510752.8010670-15410-20ChlorobenzeneND50.0050.7510250.0310075-12510-20ChloroethaneND50.0044.598946.969441.16750-26ChloroothaneND50.0047.229447.059475-12700-20ChloroothaneND50.0041.698344.198841.14960-202-ChlorotolueneND50.0047.449546.749375-12510-20DibromchloromethaneND50.0047.449546.749375-12510-201,2-DibromoethaneND50.0048.439749.629975-12520-201,2-DibromoethaneND50.0049.3310049.719975-12500-201,2-DibromoethaneND50.0049.3310151.2810375-12500-201,2-DibromoethaneND50.0050.3210150.7910275-12500-201,4-DichlorobenzeneND50.0050.3210150.7910275-12500-201,4-DichlorobenzeneND50.0051.3810451.9611225-15730-201,4-DichlorobenzeneND50.0051.7810451.96114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | tert-Butylbenzene           | ND           | 50.00                 | 51.13              | 102                | 49.92   | 100                        | 75-136      | 2          | 0-20       |            |
| ChlorobenzeneND50.0050.7510250.0310075-12510-20ChloroethaneND50.0047.229447.059441.16750-26ChlorotormND50.0047.229447.059475-12700-20ChloromethaneND50.0047.249447.059475-12810-202-ChlorotolueneND50.0050.3610150.0110075-12810-204-ChlorotolueneND50.0062.9510654.2110875-13120-20DibromochloromethaneND50.0048.439749.629975-12500-201,2-Dibromo-5-ChloropropaneND50.0048.439749.629975-12500-201,2-DibromoethaneND50.0048.439149.229875-12500-201,2-DichlorobenzeneND50.0050.3210151.2810375-12500-201,4-DichlorobenzeneND50.0050.3210150.7912275-12500-201,4-DichlorobenzeneND50.0050.3210150.7912275-12510-201,4-DichloroethaneND50.0051.7810451.9611225-15730-201,4-DichloroethaneND50.0051.7810451.96112<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Carbon Disulfide            | ND           | 50.00                 | 44.94              | 90                 | 44.76   | 90                         | 50-152      | 0          | 0-27       |            |
| ChloroethaneND50.0044.598946.969441.16750.26ChloroformND50.0047.229447.059475.12700.20ChloromethaneND50.0041.698344.198841.14960.202-ChlorotolueneND50.0047.449546.749375.12510.204-ChlorotolueneND50.0047.449546.749375.12510.201/2-DibromochloromethaneND50.0046.629349.109864.14250.201/2-Dibromo-3-ChloropropaneND50.0048.439749.629975.12500.201/2-Dibromo-thaneND50.0048.439749.629975.12500.201/2-DichlorobenzeneND50.0049.8310049.719975.12500.201/2-DichlorobenzeneND50.0050.3210150.7910275.12510.201/4-DichlorobenzeneND50.0051.3210150.9611225.15730.261/4-DichloroethaneND50.0051.7810451.9611475.12500.201/4-DichloroethaneND50.0051.7810451.9611475.12500.201/4-DichloroethaneND50.0048.789044.979                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Carbon Tetrachloride        | ND           | 50.00                 | 53.35              | 107                | 52.80   | 106                        | 70-154      | 1          | 0-20       |            |
| ChloroformND50.0047.229447.059475-12700-20ChloromethaneND50.0041.698344.198841.14960-202-ChlorotolueneND50.0050.3610150.0110075-12810-204-ChlorotolueneND50.0047.449546.749375-12510-20DibromochloromethaneND50.0052.9510654.2110875-13120-201,2-Dibromo-3-ChloropropaneND50.0048.439749.629975-12500-201,2-DibromoethaneND50.0049.9310049.719975-12500-201,2-DibromoethaneND50.0049.9310049.719975-12500-201,2-DichlorobenzeneND50.0049.9310151.2810375-12500-201,3-DichlorobenzeneND50.0049.9310151.2810375-12510-201,4-DichlorobenzeneND50.0049.289949.229875-12500-201,4-DichlorobenzeneND50.0045.989246.319375-12510-201,1-DichloroethaneND50.0045.989246.319373-13910-201,2-DichloroethaneND50.0045.989445.98 <t< td=""><td>Chlorobenzene</td><td>ND</td><td>50.00</td><td>50.75</td><td>102</td><td>50.03</td><td>100</td><td>75-125</td><td>1</td><td>0-20</td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Chlorobenzene               | ND           | 50.00                 | 50.75              | 102                | 50.03   | 100                        | 75-125      | 1          | 0-20       |            |
| ChloromethaneND50.0041.698344.198841.14960-202-ChlorotolueneND50.0050.3610150.0110075.12810-204-ChlorotolueneND50.0047.449546.749375.12510-20DibromochloromethaneND50.0052.9510654.2110875.13120-201,2-Dibromo-3-ChloropropaneND50.0046.629349.109864.14250-201,2-DibromoethaneND50.0048.439749.629975.12500-20DibromomethaneND50.0049.9310049.719975.12500-201,2-DichlorobenzeneND50.0050.4810151.2810375.12500-201,4-DichlorobenzeneND50.0050.3210151.7910275.12500-201,4-DichlorobenzeneND50.0051.7810455.9611225.15730-201,4-DichlorobenzeneND50.0051.7810451.9610475.12500-201,1-DichloroethaneND50.0054.4410451.9610475.12500-201,1-DichloroethaneND50.0054.749044.319373.13810-201,2-DichloroethaneND50.0054.749044                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Chloroethane                | ND           | 50.00                 | 44.59              | 89                 | 46.96   | 94                         | 41-167      | 5          | 0-26       |            |
| 2-ChlorotolueneND50.0050.3610150.0110075-12810-204-ChlorotolueneND50.0047.449546.749375-12510-20DibromochloromethaneND50.0052.9510654.2110875-13120-201,2-Dibromo-3-ChloropropaneND50.0046.629349.109864-14250-201,2-DibromoethaneND50.0048.439749.629975-12920-20DibromoethaneND50.0049.9310049.719975-12500-201,2-DichlorobenzeneND50.0050.4810151.2810375-12520-201,3-DichlorobenzeneND50.0050.3210150.7910275-12510-201,4-DichlorobenzeneND50.0054.4410955.9611225-15730-261,1-DichloroethaneND50.0051.7810451.9610475-12500-201,2-DichloroethaneND50.0048.679044.979061-14500-201,1-DichloroetheneND50.0048.659648.269764-14200-201,2-DichloroetheneND50.0048.059648.859875-12530-201,2-DichloroetheneND50.0048.05964                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Chloroform                  | ND           | 50.00                 | 47.22              | 94                 | 47.05   | 94                         | 75-127      | 0          | 0-20       |            |
| 4-ChlorotolueneND50.0047.449546.749375-12510-20DibromochloromethaneND50.0052.9510654.2110875-13120-201,2-Dibromo-3-ChloropropaneND50.0046.629349.109864.14250-201,2-DibromoethaneND50.0048.439749.629975.12920-20DibromoethaneND50.0049.9310049.719975.12500-201,2-DichlorobenzeneND50.0050.4810151.2810375.12520-201,3-DichlorobenzeneND50.0049.289949.229875.12510-201,4-DichlorobenzeneND50.0050.3210150.7910275.12510-201,4-DichlorobethaneND50.0054.4410955.9611225.15730-201,1-DichloroethaneND50.0051.7810451.9610475.12500-201,2-DichloroethaneND50.0044.879061.14500-201,1-DichloroetheneND50.0044.879061.14500-201,2-DichloroetheneND50.0045.619146.939475.12530-201,2-DichloroetheneND50.0048.559648.269764.1420 <td< td=""><td>Chloromethane</td><td>ND</td><td>50.00</td><td>41.69</td><td>83</td><td>44.19</td><td>88</td><td>41-149</td><td>6</td><td>0-20</td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Chloromethane               | ND           | 50.00                 | 41.69              | 83                 | 44.19   | 88                         | 41-149      | 6          | 0-20       |            |
| DibromochloromethaneND50.0052.9510654.2110875.13120-201,2-Dibromo-3-ChloropropaneND50.0046.629349.109864.14250201,2-DibromoethaneND50.0048.439749.629975.12920-20DibromoethaneND50.0049.9310049.719975.12500-201,2-DichlorobenzeneND50.0050.4810151.2810375.12520-201,3-DichlorobenzeneND50.0049.289949.229875.12500-201,4-DichlorobenzeneND50.0050.3210150.7910275.12510-201,4-DichlorobenzeneND50.0054.4410955.9611225.15730-201,1-DichloroethaneND50.0051.7810451.9610475.12500-201,2-DichloroethaneND50.0051.7810451.9610475.12500-201,1-DichloroethaneND50.0045.619146.939475.12530-201,1-DichloroetheneND50.0045.619146.939475.12530-201,1-DichloroetheneND50.0045.619146.939475.12530-201,2-DichloroetheneND50.0045.6191 <td>2-Chlorotoluene</td> <td>ND</td> <td>50.00</td> <td>50.36</td> <td>101</td> <td>50.01</td> <td>100</td> <td>75-128</td> <td>1</td> <td>0-20</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2-Chlorotoluene             | ND           | 50.00                 | 50.36              | 101                | 50.01   | 100                        | 75-128      | 1          | 0-20       |            |
| 1,2-Dibromo-3-ChloropropaneND50.0046.629349.109864-14250-201,2-DibromoethaneND50.0048.439749.629975-12920-20DibromomethaneND50.0049.9310049.719975-12500-201,2-DichlorobenzeneND50.0050.4810151.2810375-12520-201,3-DichlorobenzeneND50.0049.289949.229875-12500-201,4-DichlorobenzeneND50.0050.3210150.7910275-12510-201,4-DichlorobenzeneND50.0054.4410955.9611225-15730-261,1-DichloroethaneND50.0051.7810451.9610475-12500-201,2-DichloroethaneND50.0044.879044.979061-14500-201,1-DichloroetheneND50.0045.619146.939475-12530-201,1-DichloroetheneND50.0048.059648.269764-14200-201,2-DichloroetheneND50.0047.169448.439775-12530-201,2-DichloroetheneND50.0048.059648.269764-14200-201,2-DichloroetheneND50.0048.1596 <td< td=""><td>4-Chlorotoluene</td><td>ND</td><td>50.00</td><td>47.44</td><td>95</td><td>46.74</td><td>93</td><td>75-125</td><td>1</td><td>0-20</td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4-Chlorotoluene             | ND           | 50.00                 | 47.44              | 95                 | 46.74   | 93                         | 75-125      | 1          | 0-20       |            |
| 1,2-DibromoethaneND50.0048.439749.629975-12920-20DibromomethaneND50.0049.9310049.719975-12500-201,2-DichlorobenzeneND50.0050.4810151.2810375-12520-201,3-DichlorobenzeneND50.0049.289949.229875-12500-201,4-DichlorobenzeneND50.0050.3210150.7910275-12510-201,4-DichlorobenzeneND50.0054.4410955.9611225-15730-261,1-DichloroethaneND50.0051.7810451.9610475-12500-201,2-DichloroethaneND50.0044.879044.979061-14500-201,1-DichloroethaneND50.0045.619146.939475-12530-201,1-DichloroetheneND50.0048.619146.939475-12530-201,1-DichloroetheneND50.0048.059648.269764-14200-201,2-DichloroetheneND50.0047.169448.439775-12530-201,2-DichloropropaneND50.0048.159648.859875-12510-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Dibromochloromethane        | ND           | 50.00                 | 52.95              | 106                | 54.21   | 108                        | 75-131      | 2          | 0-20       |            |
| DibromomethaneND50.0049.9310049.719975-12500-201,2-DichlorobenzeneND50.0050.4810151.2810375-12520-201,3-DichlorobenzeneND50.0049.289949.229875-12500-201,4-DichlorobenzeneND50.0050.3210150.7910275-12510-20DichlorodifluoromethaneND50.0054.4410955.9611225-15730-261,1-DichloroethaneND50.0045.989246.319373-13910-201,2-DichloroethaneND50.0051.7810451.9610475-12500-201,1-DichloroethaneND50.0044.879044.979061-14500-20c-1,2-DichloroetheneND50.0045.619146.939475-12530-20t-1,2-DichloroetheneND50.0048.059648.269764-14200-201,2-DichloropropaneND50.0048.159448.439775-12530-201,3-DichloropropaneND50.0048.159648.859875-12510-201,3-DichloropropaneND50.0048.159648.859875-12510-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1,2-Dibromo-3-Chloropropane | ND           | 50.00                 | 46.62              | 93                 | 49.10   | 98                         | 64-142      | 5          | 0-20       |            |
| 1,2-DichlorobenzeneND50.0050.4810151.2810375-12520-201,3-DichlorobenzeneND50.0049.289949.229875-12500-201,4-DichlorobenzeneND50.0050.3210150.7910275-12510-20DichlorodifluoromethaneND50.0054.4410955.9611225-15730-261,1-DichloroethaneND50.0045.989246.319373-13910-201,2-DichloroethaneND50.0051.7810451.9610475-12500-201,1-DichloroethaneND50.0044.879044.979061-14500-20c-1,2-DichloroetheneND50.0045.619146.939475-12530-20t-1,2-DichloroetheneND50.0048.059648.269764-14200-201,2-DichloropropaneND50.0047.169448.439775-12730-201,3-DichloropropaneND50.0048.159648.859875-12510-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1,2-Dibromoethane           | ND           | 50.00                 | 48.43              | 97                 | 49.62   | 99                         | 75-129      | 2          | 0-20       |            |
| 1,3-DichlorobenzeneND50.0049.289949.229875-12500-201,4-DichlorobenzeneND50.0050.3210150.7910275-12510-20DichlorodifluoromethaneND50.0054.4410955.9611225-15730-261,1-DichloroethaneND50.0045.989246.319373-13910-201,2-DichloroethaneND50.0051.7810451.9610475-12500-201,1-DichloroethaneND50.0044.879044.979061-14500-20c-1,2-DichloroetheneND50.0045.619146.939475-12530-20t-1,2-DichloroetheneND50.0048.059648.269764-14200-201,2-DichloropropaneND50.0047.169448.439775-12730-201,3-DichloropropaneND50.0048.159648.859875-12510-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Dibromomethane              | ND           | 50.00                 | 49.93              | 100                | 49.71   | 99                         | 75-125      | 0          | 0-20       |            |
| 1,4-DichlorobenzeneND50.0050.3210150.7910275-12510-20DichlorodifluoromethaneND50.0054.4410955.9611225-15730-261,1-DichloroethaneND50.0045.989246.319373-13910-201,2-DichloroethaneND50.0051.7810451.9610475-12500-201,1-DichloroethaneND50.0044.879044.979061-14500-20c-1,2-DichloroetheneND50.0045.619146.939475-12530-20t-1,2-DichloroetheneND50.0048.059648.269764-14200-201,2-DichloropropaneND50.0047.169448.439775-12730-201,3-DichloropropaneND50.0048.159648.859875-12510-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1,2-Dichlorobenzene         | ND           | 50.00                 | 50.48              | 101                | 51.28   | 103                        | 75-125      | 2          | 0-20       |            |
| DichlorodifluoromethaneND50.0054.4410955.9611225.15730-261,1-DichloroethaneND50.0045.989246.319373.13910-201,2-DichloroethaneND50.0051.7810451.9610475.12500-201,1-DichloroethaneND50.0044.879044.979061.14500-20c-1,2-DichloroetheneND50.0045.619146.939475.12530-20t-1,2-DichloroetheneND50.0048.059648.269764.14200-201,2-DichloropropaneND50.0047.169448.439775.12730-201,3-DichloropropaneND50.0048.159648.859875.12510-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1,3-Dichlorobenzene         | ND           | 50.00                 | 49.28              | 99                 | 49.22   | 98                         | 75-125      | 0          | 0-20       |            |
| 1,1-DichloroethaneND50.0045.989246.319373-13910-201,2-DichloroethaneND50.0051.7810451.9610475-12500-201,1-DichloroetheneND50.0044.879044.979061-14500-20c-1,2-DichloroetheneND50.0045.619146.939475-12530-20t-1,2-DichloroetheneND50.0048.059648.269764-14200-201,2-DichloropropaneND50.0047.169448.439775-12730-201,3-DichloropropaneND50.0048.159648.859875-12510-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1,4-Dichlorobenzene         | ND           | 50.00                 | 50.32              | 101                | 50.79   | 102                        | 75-125      | 1          | 0-20       |            |
| 1,2-DichloroethaneND50.0051.7810451.9610475-12500-201,1-DichloroetheneND50.0044.879044.979061-14500-20c-1,2-DichloroetheneND50.0045.619146.939475-12530-20t-1,2-DichloroetheneND50.0048.059648.269764-14200-201,2-DichloroptopaneND50.0047.169448.439775-12730-201,3-DichloroptopaneND50.0048.159648.859875-12510-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Dichlorodifluoromethane     | ND           | 50.00                 | 54.44              | 109                | 55.96   | 112                        | 25-157      | 3          | 0-26       |            |
| 1,1-DichloroetheneND50.0044.879044.979061-14500-20c-1,2-DichloroetheneND50.0045.619146.939475-12530-20t-1,2-DichloroetheneND50.0048.059648.269764-14200-201,2-DichloropropaneND50.0047.169448.439775-12730-201,3-DichloropropaneND50.0048.159648.859875-12510-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1,1-Dichloroethane          | ND           | 50.00                 | 45.98              | 92                 | 46.31   | 93                         | 73-139      | 1          | 0-20       |            |
| c-1,2-DichloroetheneND50.0045.619146.939475-12530-20t-1,2-DichloroetheneND50.0048.059648.269764-14200-201,2-DichloropropaneND50.0047.169448.439775-12730-201,3-DichloropropaneND50.0048.159648.859875-12510-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1,2-Dichloroethane          | ND           | 50.00                 | 51.78              | 104                | 51.96   | 104                        | 75-125      | 0          | 0-20       |            |
| t-1,2-DichloroetheneND50.0048.059648.269764-14200-201,2-DichloropropaneND50.0047.169448.439775-12730-201,3-DichloropropaneND50.0048.159648.859875-12510-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1,1-Dichloroethene          | ND           | 50.00                 | 44.87              | 90                 | 44.97   | 90                         | 61-145      | 0          | 0-20       |            |
| 1,2-DichloropropaneND50.0047.169448.439775-12730-201,3-DichloropropaneND50.0048.159648.859875-12510-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | c-1,2-Dichloroethene        | ND           | 50.00                 | 45.61              | 91                 | 46.93   | 94                         | 75-125      | 3          | 0-20       |            |
| 1,3-Dichloropropane ND 50.00 48.15 96 48.85 98 75-125 1 0-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | t-1,2-Dichloroethene        | ND           | 50.00                 | 48.05              | 96                 | 48.26   | 97                         | 64-142      | 0          | 0-20       |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1,2-Dichloropropane         | ND           | 50.00                 | 47.16              | 94                 | 48.43   | 97                         | 75-127      | 3          | 0-20       |            |
| 2.2 Dichlarapropaga ND 50.00 44.57 90 44.67 90 24.490 0 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1,3-Dichloropropane         | ND           | 50.00                 | 48.15              | 96                 | 48.85   | 98                         | 75-125      | 1          | 0-20       |            |
| 2,2-Dichlorophopane ND 30.00 44.37 69 44.67 69 24-160 0 U-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2,2-Dichloropropane         | ND           | 50.00                 | 44.57              | 89                 | 44.67   | 89                         | 24-180      | 0          | 0-20       |            |



| Cardno ERI                            |                        |                       |                    | Date                      | Received:    |                            |                 |            |        | 09/13/17          |
|---------------------------------------|------------------------|-----------------------|--------------------|---------------------------|--------------|----------------------------|-----------------|------------|--------|-------------------|
| 601 North McDowell Blvd.              |                        |                       |                    | Work                      | Order:       |                            |                 |            |        | 17-09-0868        |
| Petaluma, CA 94954-2312               |                        |                       |                    | Prepa                     | ration:      |                            |                 |            |        | EPA 5030C         |
|                                       |                        |                       |                    | Metho                     |              |                            |                 |            |        | EPA 8260B         |
| Project: E317100700                   |                        |                       |                    | Metho                     |              |                            |                 |            |        | 5 of 5            |
| Parameter                             | <u>Sample</u><br>Conc. | <u>Spike</u><br>Added | <u>MS</u><br>Conc. | <u>MS</u><br><u>%Rec.</u> | MSD<br>Conc. | <u>MSD</u><br><u>%Rec.</u> | <u>%Rec. CL</u> | <u>RPD</u> | RPD CL | <u>Qualifiers</u> |
| 1,1-Dichloropropene                   | ND                     | 50.00                 | 47.54              | 95                        | 46.55        | 93                         | 75-135          | 2          | 0-20   |                   |
| c-1,3-Dichloropropene                 | ND                     | 50.00                 | 48.66              | 97                        | 49.53        | 99                         | 75-137          | 2          | 0-20   |                   |
| t-1,3-Dichloropropene                 | ND                     | 50.00                 | 48.43              | 97                        | 49.45        | 99                         | 74-146          | 2          | 0-20   |                   |
| Ethylbenzene                          | ND                     | 50.00                 | 50.03              | 100                       | 49.70        | 99                         | 75-129          | 1          | 0-20   |                   |
| 2-Hexanone                            | ND                     | 50.00                 | 45.04              | 90                        | 49.77        | 100                        | 47-161          | 10         | 0-20   |                   |
| Isopropylbenzene                      | ND                     | 50.00                 | 51.57              | 103                       | 50.86        | 102                        | 75-135          | 1          | 0-20   |                   |
| p-Isopropyltoluene                    | ND                     | 50.00                 | 50.96              | 102                       | 50.57        | 101                        | 75-136          | 1          | 0-20   |                   |
| Methylene Chloride                    | ND                     | 50.00                 | 46.24              | 92                        | 45.61        | 91                         | 63-141          | 1          | 0-20   |                   |
| 4-Methyl-2-Pentanone                  | ND                     | 50.00                 | 46.02              | 92                        | 48.99        | 98                         | 66-138          | 6          | 0-20   |                   |
| Naphthalene                           | ND                     | 50.00                 | 44.48              | 89                        | 53.63        | 107                        | 59-143          | 19         | 0-20   |                   |
| n-Propylbenzene                       | ND                     | 50.00                 | 52.32              | 105                       | 51.80        | 104                        | 75-133          | 1          | 0-20   |                   |
| Styrene                               | ND                     | 50.00                 | 51.94              | 104                       | 51.68        | 103                        | 70-142          | 1          | 0-28   |                   |
| 1,1,1,2-Tetrachloroethane             | ND                     | 50.00                 | 55.43              | 111                       | 55.40        | 111                        | 75-139          | 0          | 0-20   |                   |
| 1,1,2,2-Tetrachloroethane             | ND                     | 50.00                 | 47.87              | 96                        | 49.47        | 99                         | 61-145          | 3          | 0-20   |                   |
| Tetrachloroethene                     | ND                     | 50.00                 | 42.36              | 85                        | 42.52        | 85                         | 47-143          | 0          | 0-20   |                   |
| Toluene                               | ND                     | 50.00                 | 50.24              | 100                       | 49.19        | 98                         | 75-125          | 2          | 0-20   |                   |
| 1,2,3-Trichlorobenzene                | ND                     | 50.00                 | 51.22              | 102                       | 56.13        | 112                        | 73-133          | 9          | 0-20   |                   |
| 1,2,4-Trichlorobenzene                | ND                     | 50.00                 | 54.78              | 110                       | 58.04        | 116                        | 71-137          | 6          | 0-20   |                   |
| 1,1,1-Trichloroethane                 | ND                     | 50.00                 | 47.70              | 95                        | 48.23        | 96                         | 75-136          | 1          | 0-20   |                   |
| 1,1,2-Trichloro-1,2,2-Trifluoroethane | ND                     | 50.00                 | 50.77              | 102                       | 50.34        | 101                        | 42-168          | 1          | 0-22   |                   |
| 1,1,2-Trichloroethane                 | ND                     | 50.00                 | 48.16              | 96                        | 49.39        | 99                         | 75-125          | 3          | 0-20   |                   |
| Trichloroethene                       | ND                     | 50.00                 | 47.82              | 96                        | 47.44        | 95                         | 67-139          | 1          | 0-20   |                   |
| Trichlorofluoromethane                | ND                     | 50.00                 | 56.69              | 113                       | 57.83        | 116                        | 59-155          | 2          | 0-20   |                   |
| 1,2,3-Trichloropropane                | ND                     | 50.00                 | 48.69              | 97                        | 49.68        | 99                         | 75-127          | 2          | 0-20   |                   |
| 1,2,4-Trimethylbenzene                | ND                     | 50.00                 | 47.57              | 95                        | 47.14        | 94                         | 75-133          | 1          | 0-20   |                   |
| 1,3,5-Trimethylbenzene                | ND                     | 50.00                 | 51.92              | 104                       | 51.81        | 104                        | 75-135          | 0          | 0-20   |                   |
| Vinyl Acetate                         | ND                     | 50.00                 | 37.62              | 75                        | 39.18        | 78                         | 54-180          | 4          | 0-25   |                   |
| Vinyl Chloride                        | ND                     | 50.00                 | 47.36              | 95                        | 49.88        | 100                        | 51-153          | 5          | 0-20   |                   |
| p/m-Xylene                            | ND                     | 100.0                 | 102.6              | 103                       | 102.2        | 102                        | 75-133          | 0          | 0-20   |                   |
| o-Xylene                              | ND                     | 50.00                 | 50.80              | 102                       | 50.05        | 100                        | 75-134          | 1          | 0-20   |                   |
| Methyl-t-Butyl Ether (MTBE)           | ND                     | 50.00                 | 43.34              | 87                        | 44.92        | 90                         | 64-136          | 4          | 0-20   |                   |
| Tert-Butyl Alcohol (TBA)              | ND                     | 250.0                 | 335.7              | 134                       | 338.1        | 135                        | 75-136          | 1          | 0-20   |                   |
| Diisopropyl Ether (DIPE)              | ND                     | 50.00                 | 44.63              | 89                        | 44.94        | 90                         | 73-139          | 1          | 0-20   |                   |
| Ethyl-t-Butyl Ether (ETBE)            | ND                     | 50.00                 | 32.42              | 65                        | 32.84        | 66                         | 69-135          | 1          | 0-20   | 3                 |
| Tert-Amyl-Methyl Ether (TAME)         | ND                     | 50.00                 | 34.56              | 69                        | 34.16        | 68                         | 69-135          | 1          | 0-20   | 3                 |
| Ethanol                               | ND                     | 500.0                 | 668.5              | 134                       | 719.3        | 144                        | 29-179          | 7          | 0-25   |                   |
|                                       |                        |                       |                    |                           |              |                            |                 | -          |        |                   |



| Cardno ERI                              |             |                |      | Date Receiv         | red:                  |         |                                  |             | 09/13/17    |
|-----------------------------------------|-------------|----------------|------|---------------------|-----------------------|---------|----------------------------------|-------------|-------------|
| 601 North McDowell Blvd.                |             |                |      | Work Order:         |                       |         |                                  | 1           | 7-09-0868   |
| Petaluma, CA 94954-2312                 |             |                |      | Preparation         |                       |         |                                  | E           | PA 3510C    |
|                                         |             |                |      | Method:             |                       |         |                                  | EPA         | 8015B (M)   |
| Project: E317100700                     |             |                |      |                     |                       |         |                                  | Page        | 1 of 6      |
|                                         |             |                |      |                     |                       |         |                                  |             |             |
| Quality Control Sample ID               | Туре        | Matrix         | ix   | Instrument          | Date Prep             | bared D | Date Analyzed                    | LCS/LCSD Ba | atch Number |
| Quality Control Sample ID 099-14-355-25 | Type<br>LCS | Matrix<br>Aque |      | Instrument<br>GC 45 | Date Prep<br>09/15/17 |         | Date Analyzed                    | •           | atch Number |
|                                         |             |                | eous |                     |                       | 0       | ,                                | 170915B01B  | atch Number |
| 099-14-355-25                           | LCS         | Aque<br>Aque   | eous | GC 45               | 09/15/17              | 0       | 99/18/17 13:58<br>99/18/17 14:20 | 170915B01B  | atch Number |





| Cardno ERI                |      |             | Date Receiv | ved:          |                 | 09/13/17         |
|---------------------------|------|-------------|-------------|---------------|-----------------|------------------|
| 601 North McDowell Blvd.  |      |             | Work Order  | :             |                 | 17-09-0868       |
| Petaluma, CA 94954-2312   | 2    |             | Preparation | :             |                 | EPA 5030C        |
|                           |      |             | Method:     |               |                 | EPA 8015B (M)    |
| Project: E317100700       |      |             |             |               |                 | Page 2 of 6      |
| Quality Control Sample ID | Туре | Matrix      | Instrument  | Date Prepared | Date Analyzed   | LCS Batch Number |
| 099-12-436-11617          | LCS  | Aqueous     | GC 42       | 09/15/17      | 09/15/17 14:36  | 170915L035       |
| Parameter                 |      | Spike Added | Conc. Recov | vered LCS %Re | ec. <u>%Rec</u> | . CL Qualifiers  |

2103

105

78-120

2000

| Falameter       |  |
|-----------------|--|
| TPH as Gasoline |  |

Return to Contents





| Cardno ERI               | Date Received: | 09/13/17    |
|--------------------------|----------------|-------------|
| 601 North McDowell Blvd. | Work Order:    | 17-09-0868  |
| Petaluma, CA 94954-2312  | Preparation:   | EPA 5030C   |
|                          | Method:        | EPA 8260B   |
| Project: E317100700      |                | Page 3 of 6 |

| Quality Control Sample ID   | Туре         | Matrix      | Instrument    | Date Prepared Date           | Analyzed LCS Batch N  | lumber            |
|-----------------------------|--------------|-------------|---------------|------------------------------|-----------------------|-------------------|
| 099-14-001-24121            | LCS          | Aqueous     | GC/MS Q       | 09/15/17 09/15               | 5/17 19:16 170915L054 | ļ                 |
| Parameter                   | <u>Spike</u> | Added Conc. | Recovered LCS | <u>%Rec.</u> <u>%Rec. Cl</u> | <u>ME CL</u>          | <u>Qualifiers</u> |
| Acetone                     | 50.00        | 50.52       | 101           | 53-137                       | 39-151                |                   |
| Benzene                     | 50.00        | 49.47       | 99            | 79-121                       | 72-128                |                   |
| Bromobenzene                | 50.00        | 51.73       | 103           | 80-120                       | 73-127                |                   |
| Bromochloromethane          | 50.00        | 51.54       | 103           | 80-122                       | 73-129                |                   |
| Bromodichloromethane        | 50.00        | 53.88       | 108           | 80-124                       | 73-131                |                   |
| Bromoform                   | 50.00        | 44.64       | 89            | 73-127                       | 64-136                |                   |
| Bromomethane                | 50.00        | 45.58       | 91            | 50-150                       | 33-167                |                   |
| 2-Butanone                  | 50.00        | 50.45       | 101           | 60-126                       | 49-137                |                   |
| n-Butylbenzene              | 50.00        | 51.18       | 102           | 72-138                       | 61-149                |                   |
| sec-Butylbenzene            | 50.00        | 50.92       | 102           | 77-131                       | 68-140                |                   |
| tert-Butylbenzene           | 50.00        | 50.97       | 102           | 80-125                       | 72-132                |                   |
| Carbon Disulfide            | 50.00        | 50.62       | 101           | 50-150                       | 33-167                |                   |
| Carbon Tetrachloride        | 50.00        | 52.06       | 104           | 65-143                       | 52-156                |                   |
| Chlorobenzene               | 50.00        | 49.71       | 99            | 80-120                       | 73-127                |                   |
| Chloroethane                | 50.00        | 50.38       | 101           | 62-128                       | 51-139                |                   |
| Chloroform                  | 50.00        | 51.18       | 102           | 80-120                       | 73-127                |                   |
| Chloromethane               | 50.00        | 45.15       | 90            | 43-133                       | 28-148                |                   |
| 2-Chlorotoluene             | 50.00        | 50.57       | 101           | 80-121                       | 73-128                |                   |
| 4-Chlorotoluene             | 50.00        | 50.52       | 101           | 80-120                       | 73-127                |                   |
| Dibromochloromethane        | 50.00        | 49.89       | 100           | 80-123                       | 73-130                |                   |
| 1,2-Dibromo-3-Chloropropane | 50.00        | 52.10       | 104           | 66-126                       | 56-136                |                   |
| 1,2-Dibromoethane           | 50.00        | 53.94       | 108           | 80-120                       | 73-127                |                   |
| Dibromomethane              | 50.00        | 52.25       | 105           | 80-120                       | 73-127                |                   |
| 1,2-Dichlorobenzene         | 50.00        | 51.19       | 102           | 80-120                       | 73-127                |                   |
| 1,3-Dichlorobenzene         | 50.00        | 49.95       | 100           | 80-120                       | 73-127                |                   |
| 1,4-Dichlorobenzene         | 50.00        | 49.57       | 99            | 80-120                       | 73-127                |                   |
| Dichlorodifluoromethane     | 50.00        | 44.92       | 90            | 50-150                       | 33-167                |                   |
| 1,1-Dichloroethane          | 50.00        | 52.21       | 104           | 72-126                       | 63-135                |                   |
| 1,2-Dichloroethane          | 50.00        | 52.44       | 105           | 76-120                       | 69-127                |                   |
| 1,1-Dichloroethene          | 50.00        | 49.56       | 99            | 66-132                       | 55-143                |                   |
| c-1,2-Dichloroethene        | 50.00        | 50.80       | 102           | 78-120                       | 71-127                |                   |
| t-1,2-Dichloroethene        | 50.00        | 50.80       | 102           | 66-132                       | 55-143                |                   |
| 1,2-Dichloropropane         | 50.00        | 53.49       | 107           | 80-120                       | 73-127                |                   |
| 1,3-Dichloropropane         | 50.00        | 51.50       | 103           | 80-120                       | 73-127                |                   |
| 2,2-Dichloropropane         | 50.00        | 49.19       | 98            | 50-150                       | 33-167                |                   |
| 1,1-Dichloropropene         | 50.00        | 50.01       | 100           | 75-123                       | 67-131                |                   |
| c-1,3-Dichloropropene       | 50.00        | 54.40       | 109           | 77-131                       | 68-140                |                   |
| t-1,3-Dichloropropene       | 50.00        | 51.68       | 103           | 76-136                       | 66-146                |                   |
|                             |              |             |               |                              |                       |                   |



| Cardno ERI                            | Date Received: |                 |      |                 |        |             |  |  |  |  |  |
|---------------------------------------|----------------|-----------------|------|-----------------|--------|-------------|--|--|--|--|--|
| 601 North McDowell Blvd.              |                | Work Or         | der: |                 |        | 17-09-0868  |  |  |  |  |  |
| Petaluma, CA 94954-2312               |                | Preparat        | ion: |                 |        | EPA 5030C   |  |  |  |  |  |
|                                       |                | Method:         |      |                 |        | EPA 8260B   |  |  |  |  |  |
| Project: E317100700                   |                | mourou          |      |                 |        | Page 4 of 6 |  |  |  |  |  |
|                                       |                |                 |      |                 |        |             |  |  |  |  |  |
| Parameter                             | Spike Added    | Conc. Recovered |      | <u>%Rec. CL</u> | ME CL  | Qualifiers  |  |  |  |  |  |
| Ethylbenzene                          | 50.00          | 50.52           | 101  | 80-120          | 73-127 |             |  |  |  |  |  |
| 2-Hexanone                            | 50.00          | 52.86           | 106  | 63-123          | 53-133 |             |  |  |  |  |  |
| Isopropylbenzene                      | 50.00          | 50.82           | 102  | 80-128          | 72-136 |             |  |  |  |  |  |
| p-Isopropyltoluene                    | 50.00          | 51.24           | 102  | 73-133          | 63-143 |             |  |  |  |  |  |
| Methylene Chloride                    | 50.00          | 50.03           | 100  | 61-133          | 49-145 |             |  |  |  |  |  |
| 4-Methyl-2-Pentanone                  | 50.00          | 52.11           | 104  | 65-125          | 55-135 |             |  |  |  |  |  |
| Naphthalene                           | 50.00          | 52.07           | 104  | 69-129          | 59-139 |             |  |  |  |  |  |
| n-Propylbenzene                       | 50.00          | 50.63           | 101  | 80-128          | 72-136 |             |  |  |  |  |  |
| Styrene                               | 50.00          | 51.77           | 104  | 80-126          | 72-134 |             |  |  |  |  |  |
| 1,1,1,2-Tetrachloroethane             | 50.00          | 54.88           | 110  | 80-129          | 72-137 |             |  |  |  |  |  |
| 1,1,2,2-Tetrachloroethane             | 50.00          | 53.15           | 106  | 74-122          | 66-130 |             |  |  |  |  |  |
| Tetrachloroethene                     | 50.00          | 47.10           | 94   | 55-139          | 41-153 |             |  |  |  |  |  |
| Toluene                               | 50.00          | 50.10           | 100  | 80-120          | 73-127 |             |  |  |  |  |  |
| 1,2,3-Trichlorobenzene                | 50.00          | 51.31           | 103  | 72-132          | 62-142 |             |  |  |  |  |  |
| 1,2,4-Trichlorobenzene                | 50.00          | 51.64           | 103  | 74-134          | 64-144 |             |  |  |  |  |  |
| 1,1,1-Trichloroethane                 | 50.00          | 49.70           | 99   | 76-124          | 68-132 |             |  |  |  |  |  |
| 1,1,2-Trichloro-1,2,2-Trifluoroethane | 50.00          | 49.84           | 100  | 54-150          | 38-166 |             |  |  |  |  |  |
| 1,1,2-Trichloroethane                 | 50.00          | 52.24           | 104  | 80-120          | 73-127 |             |  |  |  |  |  |
| Trichloroethene                       | 50.00          | 50.20           | 100  | 79-121          | 72-128 |             |  |  |  |  |  |
| Trichlorofluoromethane                | 50.00          | 51.20           | 102  | 72-132          | 62-142 |             |  |  |  |  |  |
| 1,2,3-Trichloropropane                | 50.00          | 53.00           | 106  | 75-123          | 67-131 |             |  |  |  |  |  |
| 1,2,4-Trimethylbenzene                | 50.00          | 50.46           | 101  | 74-128          | 65-137 |             |  |  |  |  |  |
| 1,3,5-Trimethylbenzene                | 50.00          | 50.53           | 101  | 77-131          | 68-140 |             |  |  |  |  |  |
| Vinyl Acetate                         | 50.00          | 39.02           | 78   | 50-150          | 33-167 |             |  |  |  |  |  |
| Vinyl Chloride                        | 50.00          | 50.66           | 101  | 63-129          | 52-140 |             |  |  |  |  |  |
| p/m-Xylene                            | 100.0          | 100.2           | 100  | 80-122          | 73-129 |             |  |  |  |  |  |
| o-Xylene                              | 50.00          | 51.58           | 103  | 80-128          | 72-136 |             |  |  |  |  |  |
| Methyl-t-Butyl Ether (MTBE)           | 50.00          | 52.30           | 105  | 69-123          | 60-132 |             |  |  |  |  |  |
| Tert-Butyl Alcohol (TBA)              | 250.0          | 268.4           | 107  | 80-124          | 73-131 |             |  |  |  |  |  |
| Diisopropyl Ether (DIPE)              | 50.00          | 54.25           | 108  | 79-121          | 72-128 |             |  |  |  |  |  |
| Ethyl-t-Butyl Ether (ETBE)            | 50.00          | 51.45           | 103  | 71-125          | 62-134 |             |  |  |  |  |  |
| Tert-Amyl-Methyl Ether (TAME)         | 50.00          | 50.13           | 100  | 70-124          | 61-133 |             |  |  |  |  |  |
| Ethanol                               | 500.0          | 512.2           | 102  | 53-149          | 37-165 |             |  |  |  |  |  |
| -                                     |                | -               | -    |                 |        |             |  |  |  |  |  |

Total number of LCS compounds: 71 Total number of ME compounds: 0 Total number of ME compounds allowed: 4 LCS ME CL validation result: Pass





| Cardno ERI               | Date Received: | 09/13/17    |
|--------------------------|----------------|-------------|
| 601 North McDowell Blvd. | Work Order:    | 17-09-0868  |
| Petaluma, CA 94954-2312  | Preparation:   | EPA 5030C   |
|                          | Method:        | EPA 8260B   |
| Project: E317100700      |                | Page 5 of 6 |

| Quality Control Sample ID   | Туре         | Matrix      | Instrument    | Date Prepared Date    | Analyzed LCS Batch N | umber             |
|-----------------------------|--------------|-------------|---------------|-----------------------|----------------------|-------------------|
| 099-14-001-24102            | LCS          | Aqueous     | GC/MS CC      | 09/14/17 09/14        | /17 14:51 170914L025 |                   |
| Parameter                   | <u>Spike</u> | Added Conc. | Recovered LCS | %Rec. <u>%Rec. CL</u> | ME CL                | <u>Qualifiers</u> |
| Acetone                     | 50.00        | 47.22       | 94            | 53-137                | 39-151               |                   |
| Benzene                     | 50.00        | 47.97       | 96            | 79-121                | 72-128               |                   |
| Bromobenzene                | 50.00        | 54.07       | 108           | 80-120                | 73-127               |                   |
| Bromochloromethane          | 50.00        | 47.50       | 95            | 80-122                | 73-129               |                   |
| Bromodichloromethane        | 50.00        | 52.45       | 105           | 80-124                | 73-131               |                   |
| Bromoform                   | 50.00        | 53.37       | 107           | 73-127                | 64-136               |                   |
| Bromomethane                | 50.00        | 40.94       | 82            | 50-150                | 33-167               |                   |
| 2-Butanone                  | 50.00        | 44.92       | 90            | 60-126                | 49-137               |                   |
| n-Butylbenzene              | 50.00        | 53.79       | 108           | 72-138                | 61-149               |                   |
| sec-Butylbenzene            | 50.00        | 48.51       | 97            | 77-131                | 68-140               |                   |
| tert-Butylbenzene           | 50.00        | 50.72       | 101           | 80-125                | 72-132               |                   |
| Carbon Disulfide            | 50.00        | 44.64       | 89            | 50-150                | 33-167               |                   |
| Carbon Tetrachloride        | 50.00        | 51.73       | 103           | 65-143                | 52-156               |                   |
| Chlorobenzene               | 50.00        | 51.15       | 102           | 80-120                | 73-127               |                   |
| Chloroethane                | 50.00        | 45.61       | 91            | 62-128                | 51-139               |                   |
| Chloroform                  | 50.00        | 46.95       | 94            | 80-120                | 73-127               |                   |
| Chloromethane               | 50.00        | 43.81       | 88            | 43-133                | 28-148               |                   |
| 2-Chlorotoluene             | 50.00        | 50.90       | 102           | 80-121                | 73-128               |                   |
| 4-Chlorotoluene             | 50.00        | 48.18       | 96            | 80-120                | 73-127               |                   |
| Dibromochloromethane        | 50.00        | 54.26       | 109           | 80-123                | 73-130               |                   |
| 1,2-Dibromo-3-Chloropropane | 50.00        | 48.60       | 97            | 66-126                | 56-136               |                   |
| 1,2-Dibromoethane           | 50.00        | 49.55       | 99            | 80-120                | 73-127               |                   |
| Dibromomethane              | 50.00        | 49.74       | 99            | 80-120                | 73-127               |                   |
| 1,2-Dichlorobenzene         | 50.00        | 50.69       | 101           | 80-120                | 73-127               |                   |
| 1,3-Dichlorobenzene         | 50.00        | 49.84       | 100           | 80-120                | 73-127               |                   |
| 1,4-Dichlorobenzene         | 50.00        | 51.07       | 102           | 80-120                | 73-127               |                   |
| Dichlorodifluoromethane     | 50.00        | 51.74       | 103           | 50-150                | 33-167               |                   |
| 1,1-Dichloroethane          | 50.00        | 46.17       | 92            | 72-126                | 63-135               |                   |
| 1,2-Dichloroethane          | 50.00        | 51.90       | 104           | 76-120                | 69-127               |                   |
| 1,1-Dichloroethene          | 50.00        | 44.43       | 89            | 66-132                | 55-143               |                   |
| c-1,2-Dichloroethene        | 50.00        | 46.35       | 93            | 78-120                | 71-127               |                   |
| t-1,2-Dichloroethene        | 50.00        | 48.34       | 97            | 66-132                | 55-143               |                   |
| 1,2-Dichloropropane         | 50.00        | 48.19       | 96            | 80-120                | 73-127               |                   |
| 1,3-Dichloropropane         | 50.00        | 49.10       | 98            | 80-120                | 73-127               |                   |
| 2,2-Dichloropropane         | 50.00        | 47.14       | 94            | 50-150                | 33-167               |                   |
| 1,1-Dichloropropene         | 50.00        | 45.88       | 92            | 75-123                | 67-131               |                   |
| c-1,3-Dichloropropene       | 50.00        | 49.98       | 100           | 77-131                | 68-140               |                   |
| t-1,3-Dichloropropene       | 50.00        |             | 102           | 76-136                | 66-146               |                   |
|                             |              |             |               |                       |                      |                   |



| Cardno ERI<br>601 North McDowell Blvd. |             | Date Red<br>Work Ord |           |                 |        | 09/13/17<br>17-09-0868 |  |  |  |
|----------------------------------------|-------------|----------------------|-----------|-----------------|--------|------------------------|--|--|--|
| Petaluma, CA 94954-2312                |             | Preparat             |           |                 |        | EPA 5030C              |  |  |  |
|                                        |             | Method:              |           |                 |        |                        |  |  |  |
| Project: E317100700                    |             | Method.              | Pag       |                 |        |                        |  |  |  |
| Parameter                              | Spike Added | Conc. Recovered      | LCS %Rec. | <u>%Rec. CL</u> | ME CL  | <u>Qualifiers</u>      |  |  |  |
| Ethylbenzene                           | 50.00       | 50.55                | 101       | 80-120          | 73-127 |                        |  |  |  |
| 2-Hexanone                             | 50.00       | 45.45                | 91        | 63-123          | 53-133 |                        |  |  |  |
| Isopropylbenzene                       | 50.00       | 51.34                | 103       | 80-128          | 72-136 |                        |  |  |  |
| p-Isopropyltoluene                     | 50.00       | 50.84                | 102       | 73-133          | 63-143 |                        |  |  |  |
| Methylene Chloride                     | 50.00       | 46.58                | 93        | 61-133          | 49-145 |                        |  |  |  |
| 4-Methyl-2-Pentanone                   | 50.00       | 44.78                | 90        | 65-125          | 55-135 |                        |  |  |  |
| Naphthalene                            | 50.00       | 53.77                | 108       | 69-129          | 59-139 |                        |  |  |  |
| n-Propylbenzene                        | 50.00       | 52.28                | 105       | 80-128          | 72-136 |                        |  |  |  |
| Styrene                                | 50.00       | 53.88                | 108       | 80-126          | 72-134 |                        |  |  |  |
| 1,1,1,2-Tetrachloroethane              | 50.00       | 56.71                | 113       | 80-129          | 72-137 |                        |  |  |  |
| 1,1,2,2-Tetrachloroethane              | 50.00       | 52.29                | 105       | 74-122          | 66-130 |                        |  |  |  |
| Tetrachloroethene                      | 50.00       | 40.14                | 80        | 55-139          | 41-153 |                        |  |  |  |
| Toluene                                | 50.00       | 49.43                | 99        | 80-120          | 73-127 |                        |  |  |  |
| 1,2,3-Trichlorobenzene                 | 50.00       | 56.26                | 113       | 72-132          | 62-142 |                        |  |  |  |
| 1,2,4-Trichlorobenzene                 | 50.00       | 59.47                | 119       | 74-134          | 64-144 |                        |  |  |  |
| 1,1,1-Trichloroethane                  | 50.00       | 47.10                | 94        | 76-124          | 68-132 |                        |  |  |  |
| 1,1,2-Trichloro-1,2,2-Trifluoroethane  | 50.00       | 48.59                | 97        | 54-150          | 38-166 |                        |  |  |  |
| 1,1,2-Trichloroethane                  | 50.00       | 49.12                | 98        | 80-120          | 73-127 |                        |  |  |  |
| Trichloroethene                        | 50.00       | 45.73                | 91        | 79-121          | 72-128 |                        |  |  |  |
| Trichlorofluoromethane                 | 50.00       | 53.74                | 107       | 72-132          | 62-142 |                        |  |  |  |
| 1,2,3-Trichloropropane                 | 50.00       | 50.96                | 102       | 75-123          | 67-131 |                        |  |  |  |
| 1,2,4-Trimethylbenzene                 | 50.00       | 48.56                | 97        | 74-128          | 65-137 |                        |  |  |  |
| 1,3,5-Trimethylbenzene                 | 50.00       | 52.60                | 105       | 77-131          | 68-140 |                        |  |  |  |
| Vinyl Acetate                          | 50.00       | 39.99                | 80        | 50-150          | 33-167 |                        |  |  |  |
| Vinyl Chloride                         | 50.00       | 47.60                | 95        | 63-129          | 52-140 |                        |  |  |  |
| p/m-Xylene                             | 100.0       | 102.4                | 102       | 80-122          | 73-129 |                        |  |  |  |
| o-Xylene                               | 50.00       | 50.89                | 102       | 80-128          | 72-136 |                        |  |  |  |
| Methyl-t-Butyl Ether (MTBE)            | 50.00       | 45.16                | 90        | 69-123          | 60-132 |                        |  |  |  |
| Tert-Butyl Alcohol (TBA)               | 250.0       | 289.6                | 116       | 80-124          | 73-131 |                        |  |  |  |
| Diisopropyl Ether (DIPE)               | 50.00       | 45.24                | 90        | 79-121          | 72-128 |                        |  |  |  |
| Ethyl-t-Butyl Ether (ETBE)             | 50.00       | 36.68                | 73        | 71-125          | 62-134 |                        |  |  |  |
| Tert-Amyl-Methyl Ether (TAME)          | 50.00       | 38.21                | 76        | 70-124          | 61-133 |                        |  |  |  |
| Ethanol                                | 500.0       | 558.7                | 112       | 53-149          | 37-165 |                        |  |  |  |

Total number of LCS compounds: 71 Total number of ME compounds: 0 Total number of ME compounds allowed: 4 LCS ME CL validation result: Pass

Page 1 of 1



Calscience

| Work Orde | : 17-09-0868 |
|-----------|--------------|
|-----------|--------------|

| Method        | Extraction | <u>Chemist ID</u> | <u>Instrument</u> | Analytical Location |
|---------------|------------|-------------------|-------------------|---------------------|
| EPA 8015B (M) | EPA 3510C  | 972               | GC 45             | 1                   |
| EPA 8015B (M) | EPA 5030C  | 1063              | GC 42             | 2                   |
| EPA 8260B     | EPA 5030C  | 1055              | GC/MS Q           | 2                   |
| EPA 8260B     | EPA 5030C  | 1055              | GC/MS CC          | 2                   |



Location 1: 7440 Lincoln Way, Garden Grove, CA 92841 Location 2: 7445 Lampson Avenue, Garden Grove, CA 92841

### Calscience

### Work Order: 17-09-0868

**Glossary of Terms and Qualifiers** 

| Work Order:       | 17-09-0868 Page 1 of 1                                                                                                                                                                                                                                                                                                                                                              |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <u>Qualifiers</u> | Definition                                                                                                                                                                                                                                                                                                                                                                          |
| *                 | See applicable analysis comment.                                                                                                                                                                                                                                                                                                                                                    |
| <                 | Less than the indicated value.                                                                                                                                                                                                                                                                                                                                                      |
| >                 | Greater than the indicated value.                                                                                                                                                                                                                                                                                                                                                   |
| 1                 | Surrogate compound recovery was out of control due to a required sample dilution. Therefore, the sample data was reported without further clarification.                                                                                                                                                                                                                            |
| 2                 | Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.                                                                                                                                                          |
| 3                 | Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to suspected matrix interference. The associated LCS recovery was in control.                                                                                                                                                                                                     |
| 4                 | The MS/MSD RPD was out of control due to suspected matrix interference.                                                                                                                                                                                                                                                                                                             |
| 5                 | The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to suspected matrix interference.                                                                                                                                                                                                                                                             |
| 6                 | Surrogate recovery below the acceptance limit.                                                                                                                                                                                                                                                                                                                                      |
| 7                 | Surrogate recovery above the acceptance limit.                                                                                                                                                                                                                                                                                                                                      |
| В                 | Analyte was present in the associated method blank.                                                                                                                                                                                                                                                                                                                                 |
| BU                | Sample analyzed after holding time expired.                                                                                                                                                                                                                                                                                                                                         |
| BV                | Sample received after holding time expired.                                                                                                                                                                                                                                                                                                                                         |
| CI                | See case narrative.                                                                                                                                                                                                                                                                                                                                                                 |
| E                 | Concentration exceeds the calibration range.                                                                                                                                                                                                                                                                                                                                        |
| ET                | Sample was extracted past end of recommended max. holding time.                                                                                                                                                                                                                                                                                                                     |
| HD                | The chromatographic pattern was inconsistent with the profile of the reference fuel standard.                                                                                                                                                                                                                                                                                       |
| HDH               | The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but heavier hydrocarbons were also present (or detected).                                                                                                                                                                                                                  |
| HDL               | The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but lighter hydrocarbons were<br>also present (or detected).                                                                                                                                                                                                               |
| J                 | Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.                                                                                                                                                                                                                                     |
| JA                | Analyte positively identified but quantitation is an estimate.                                                                                                                                                                                                                                                                                                                      |
| ME                | LCS Recovery Percentage is within Marginal Exceedance (ME) Control Limit range (+/- 4 SD from the mean).                                                                                                                                                                                                                                                                            |
| ND                | Parameter not detected at the indicated reporting limit.                                                                                                                                                                                                                                                                                                                            |
| Q                 | Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.                                                                                                                                                                                                       |
| SG                | The sample extract was subjected to Silica Gel treatment prior to analysis.                                                                                                                                                                                                                                                                                                         |
| х                 | % Recovery and/or RPD out-of-range.                                                                                                                                                                                                                                                                                                                                                 |
| Z                 | Analyte presence was not confirmed by second column or GC/MS analysis.                                                                                                                                                                                                                                                                                                              |
|                   | Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are reported on a wet weight basis.                                                                                                                                                                                                           |
|                   | Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time. |

A calculated total result (Example: Total Pesticides) is the summation of each component concentration and/or, if "J" flags are reported, estimated concentration. Component concentrations showing not detected (ND) are summed into the calculated total result as zero concentrations.

| eurofins                                                                      | Calscie             | anna              |                 |          |                    |             |           |                |               | /LAB US           | e only  |          |              | · · · · · · · · · | DA               |            |        |       | 9-13      | UST<br>7    | ODY        | ' RE     | COF             | RD |
|-------------------------------------------------------------------------------|---------------------|-------------------|-----------------|----------|--------------------|-------------|-----------|----------------|---------------|-------------------|---------|----------|--------------|-------------------|------------------|------------|--------|-------|-----------|-------------|------------|----------|-----------------|----|
| 0 Lincoln Way, Garden Grove, CA                                               | 92841-1427 • (714   | ) 895-5494        |                 |          |                    |             |           |                |               | 7-(               | )9-     | 08       | 6            | 8                 |                  |            |        |       |           | OF          | )          |          |                 |    |
| courier service / sample drop off in<br>BORATORY CLIENT:<br>Cardno            |                     | s26_sales@eurofir | sus.com or call | us.      |                    |             |           |                | CLIEN         | T PROJE           | CT NAME | / NUMBEI | <del>.</del> |                   |                  |            |        |       | P.O. NO.; |             |            |          |                 |    |
| DRESS:                                                                        |                     |                   |                 |          |                    |             |           |                |               |                   | 0700    | )        |              |                   |                  |            |        |       |           |             |            |          |                 |    |
| 2300 Clayton Ro                                                               | bad, Suite 200      |                   |                 | STATE:   | ZIP                |             |           |                |               | ECT CON           |         |          |              |                   |                  |            |        |       |           | r(s): (prii | ·          |          |                 |    |
| Concord                                                                       |                     | ,                 |                 | 01/112.  | CA                 | 9452        | 20        |                | G             | en S              | mith    |          |              |                   |                  |            |        |       | Nady      | ya Vice     | ente       |          |                 |    |
| (510) 362- 2170                                                               |                     | E-MAIL:           | en.smith@       | )cardno. | com                |             |           |                |               |                   |         |          |              | REQ               | UES <sup>-</sup> | <b>FED</b> | ANA    | LYS   | ES        | *********   |            |          |                 |    |
| JRNAROUND TIME (Rush surcharges m                                             |                     |                   |                 |          |                    |             |           |                |               |                   |         | Please o | check b      | ox or fil         | l in bla         | nk as n    | eeded. |       |           |             |            |          |                 |    |
| SAME DAY 24 HR                                                                |                     | 」72 HR □ (        | 5 DAYS 🗠        | ] STANDA | RD                 | LOG         | CODE:     |                | ××(09         | (8015)            |         |          |              |                   |                  |            |        |       |           |             |            |          |                 |    |
|                                                                               | 0010741             |                   |                 |          |                    |             |           |                | 60            | 3                 |         |          |              |                   |                  |            |        |       |           |             |            |          |                 |    |
| ECIAL INSTRUCTIONS:                                                           |                     |                   |                 |          |                    |             |           |                | (82           | e<br>W            |         |          |              |                   |                  |            |        |       |           |             |            |          |                 |    |
| *Full Scan VOC: inclu<br>ead scavengers, naph<br>Please email PDF files to: r | halene, TCE,        | and PCE , a       |                 |          |                    | erved       | ved       | iltered        | FULL SCAN VOC | Tphy, Tpha, Tphmo |         |          |              |                   |                  |            |        |       |           |             |            |          |                 | r. |
| B:<br>SAMPLE ID                                                               | Field Point<br>Name | SAMI<br>DATE      | PLING<br>TIME   | MATRIX   | NO.<br>OF<br>CONT. | Unpreserved | Preserved | Field Filtered | FULL          | Toha              |         |          |              |                   |                  |            |        |       |           |             |            |          |                 |    |
| BI                                                                            | B-1                 | 9-9-17            | 1050            | W        | 9                  |             |           |                | X             | X                 |         |          |              |                   |                  |            |        |       |           |             | 1          |          | -               |    |
| 2 B2                                                                          | B-2                 | 9-9-17            | 1645            | W        | 9                  |             |           |                | Х             | ×                 |         |          |              |                   |                  |            |        |       |           |             | 1.         |          |                 |    |
| B3                                                                            | B-3                 | 9-9-17            | 1730            | W        | 9                  |             |           |                | X             | X                 | ·       |          |              |                   |                  |            | •      |       |           |             | 1          |          |                 |    |
|                                                                               |                     |                   |                 |          | ·                  |             |           |                |               |                   |         |          |              |                   |                  |            |        |       |           |             | 1          |          |                 |    |
|                                                                               |                     |                   |                 |          |                    |             |           |                |               |                   |         |          |              |                   |                  |            |        |       |           |             | 1          |          |                 |    |
|                                                                               |                     |                   |                 |          |                    |             |           |                |               |                   |         |          |              |                   |                  |            |        |       |           |             | 1          |          | $\neg \uparrow$ |    |
|                                                                               |                     |                   |                 |          |                    |             |           |                |               |                   |         |          |              |                   |                  |            |        |       |           |             |            |          | -               |    |
|                                                                               |                     |                   |                 |          |                    |             |           |                |               |                   |         |          |              |                   |                  |            |        |       |           |             | -          |          |                 |    |
|                                                                               |                     |                   |                 |          |                    |             |           |                |               |                   |         |          |              |                   |                  |            |        |       | -         |             |            |          | -+              |    |
|                                                                               |                     |                   |                 |          | · · · ·            |             |           |                |               |                   | ·       |          | 1            |                   |                  |            |        |       |           |             | +          |          |                 |    |
| linquished by: (Signature)                                                    |                     |                   | L               |          | Rec                | xelved by   | r: (Sign  | nature//       | Affiliation   |                   | <br>_ × | <br>2    | 1            | 20                | 1                |            |        | Date: | 2/1       | <u> </u>    | Time       | )<br>47  |                 | (  |
| inquished by: (Signature)                                                     |                     | GSD .             |                 | , 173    |                    | Ched by     | r (Sign   | nature/A       | Affiliation   | 1)                | K       | -        | <b>`</b>     |                   | <u>×</u>         |            |        | Date: | ~ 11      | <u></u>     | Time       | <u> </u> | r               | (  |
| inquisited by: (Digitatule)                                                   | 7                   |                   |                 |          |                    |             |           |                |               |                   |         |          |              | 1 71              |                  |            | 1      |       |           |             | 1          |          |                 | 9  |
| elinquened by (Signature)                                                     | 2-62                | GOU               | 11121=          | <u>}</u> | Rec                | eived by    | /: (Sign  | nature/A       | Affiliation   | 1)                |         |          | 11           | H                 | XA               | <u> </u>   |        | Date: | 3/13      | 7-          | Time<br>10 | W        |                 | (  |

### Return to Contents

Page 16 f 1 37



800-322-5555 www.gso.com



Ship From CAL SCIENCE- CONCORD ALAN KEMP 5063 COMMERCIAL CIRCLE #H CONCORD, CA 94520

Ship To CEL SAMPLE RECEIVING 7440 LINCOLN WAY GARDEN GROVE, CA 92841

COD: \$0.00 Weight: 0 lb(s) Reference: CARDNO Delivery Instructions:

Signature Type: REQUIRED





Print Date: 9/12/2017 3:45 PM

### LABEL INSTRUCTIONS:

**Do not copy or reprint this label for additional shipments - each package must have a unique barcode.** Step 1: Use the "Send Label to Printer" button on this page to print the shipping label on a laser or inkjet printer. Step 2: Fold this page in half.

72117114

Step 2: Four this page in han. Step 3: Securely attach this label to your package and do not cover the barcode.

### TERMS AND CONDITIONS:

By giving us your shipment to deliver, you agree to all of the GSO service terms & conditions including, but not limited to; limits of liability, declared value conditions, and claim procedures which are available on our website at www.gso.com.

| 🔹 eurofins                                                                                                                                                                                                                                                                   |                                                                                                                 | WORK ORDE                                                                                | R NUMBER                             | Pa<br>: <u>17-</u>   | ge 36 of<br>09-C  | 37<br>)868  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|--------------------------------------|----------------------|-------------------|-------------|
|                                                                                                                                                                                                                                                                              | <sup>e</sup> SAMPLE RECEIPT                                                                                     | CHECKLIST                                                                                | с                                    | OOLEI                | ₹_( (             | of /        |
| CLIENT: <u>Cardy</u>                                                                                                                                                                                                                                                         | \ <i>0</i>                                                                                                      |                                                                                          |                                      |                      | 131               |             |
| □ Sample(s) outside temperatu                                                                                                                                                                                                                                                | ;); Temperature (w/o CF):<br>re criteria (PM/APM contacted b<br>re criteria but received on ice/ch              | 2°C (w/ CF):<br>by:)<br>hilled on same day o                                             |                                      | Bla                  | nk 🗆              | Sample      |
| □ Sample(s) received at ambient t<br>Ambient Temperature: □ Air □ F                                                                                                                                                                                                          |                                                                                                                 | ansport by courier                                                                       |                                      | Check                | ed by:            | 15          |
| CUSTODY SEAL:<br>Cooler Present and Intac<br>Sample(s) Present and Intac                                                                                                                                                                                                     |                                                                                                                 | □ Not Present<br>☑ Not Present                                                           | □ N/A<br>□ N/A                       |                      | ed by:<br>ed by:  | 15<br>863   |
| SAMPLE CONDITION:                                                                                                                                                                                                                                                            |                                                                                                                 |                                                                                          |                                      | Yes                  | No                | N/A         |
| Chain-of-Custody (COC) documen<br>COC document(s) received comple<br>Sampling date Sampling                                                                                                                                                                                  | ete                                                                                                             |                                                                                          |                                      | 1.                   |                   |             |
| □ No analysis requested □ No                                                                                                                                                                                                                                                 |                                                                                                                 |                                                                                          | auished time                         |                      |                   |             |
| Sampler's name indicated on COC                                                                                                                                                                                                                                              |                                                                                                                 |                                                                                          | •                                    | ø                    |                   |             |
| Sample container label(s) consister                                                                                                                                                                                                                                          |                                                                                                                 |                                                                                          |                                      | /                    |                   |             |
| Sample container(s) intact and in g                                                                                                                                                                                                                                          |                                                                                                                 |                                                                                          |                                      | / .                  |                   |             |
| Proper containers for analyses requ                                                                                                                                                                                                                                          |                                                                                                                 |                                                                                          |                                      |                      |                   |             |
| Sufficient volume/mass for analyse                                                                                                                                                                                                                                           | s requested                                                                                                     |                                                                                          |                                      | ź                    |                   |             |
| Samples received within holding tir                                                                                                                                                                                                                                          |                                                                                                                 |                                                                                          |                                      |                      |                   |             |
| Aqueous samples for certain an                                                                                                                                                                                                                                               |                                                                                                                 |                                                                                          |                                      | /                    |                   |             |
| □ pH □ Residual Chlorine □                                                                                                                                                                                                                                                   |                                                                                                                 |                                                                                          |                                      |                      |                   | ø           |
| Proper preservation chemical(s) no                                                                                                                                                                                                                                           | ted on COC and/or sample con                                                                                    | ainer                                                                                    |                                      | Ø                    |                   |             |
| Unpreserved aqueous sample(s<br>□ Volatile Organics □ Total M                                                                                                                                                                                                                |                                                                                                                 |                                                                                          |                                      | /                    |                   |             |
| Acid/base preserved samples - pH                                                                                                                                                                                                                                             |                                                                                                                 |                                                                                          |                                      |                      |                   | ø           |
| Container(s) for certain analysis fre                                                                                                                                                                                                                                        |                                                                                                                 |                                                                                          |                                      |                      | Ŕ                 |             |
|                                                                                                                                                                                                                                                                              | ed Gases (RSK-175) 🛛 Dissol                                                                                     | ved Oxygen (SM 45                                                                        | 00)                                  |                      |                   |             |
| Tedlar™ bag(s) free of condensation                                                                                                                                                                                                                                          |                                                                                                                 |                                                                                          |                                      |                      |                   | ø           |
| CONTAINER TYPE                                                                                                                                                                                                                                                               |                                                                                                                 | (Trip Blan                                                                               | k Lot Numbe                          | r:                   |                   |             |
| Aqueous:       □ VOA       □ VOAh       □ VOAh         □ 250AGB       □ 250CGB       □ 250CGBs (p         □ 1AGB       □ 1AGBna₂       □ 1AGBs (pH_         Solid:       □ 4ozCGJ       □ 8ozCGJ       □ 16ozC         Air:       □ Tedlar™       □ Canister       □ Sorbent | 0H2) □ 250PB □ 250PB <b>n</b> (pH<br>_2) □ 1AGBs (O&G) □ 1PB □ 1PBI<br>CGJ □ Sleeve () □ EnCores <sup>®</sup> ( | 3 □ 125AGBh □ 125/<br>2) □ 500AGB   2500<br>na (pH12) □<br>) □ TerraCores <sup>®</sup> ( | AGBp 🗆 125PI<br>AGJ 🗆 500AG<br>🗆     | 3 □ 125<br>Js (pH    | 5PBznna (†<br>_2) | pH9)<br>0PB |
| Container: <b>A</b> = Amber, <b>B</b> = Bottle, <b>C</b> =<br>Preservative: <b>b</b> = buffered, <b>f</b> = filtered,                                                                                                                                                        | Clear, E = Envelope, G = Glass, J =                                                                             | Jar, $P = Plastic, and$<br>$_2 = Na_2S_2O_3, p = H_3PC_2$                                | <b>Z</b> = Ziploc/Res<br>D₄, Labelec | ealable E<br>I/Check | Bag               | 363         |

.

Page 37 of 37 WORK ORDER NUMBER: 17-09-066

Calscience

🔹 eurofins

SAMPLE ANOMALY REPORT

## DATE: 09//3/2017

| SAMPLES, CONTAINERS, AND LABELS:                                      | Comments |
|-----------------------------------------------------------------------|----------|
| □ Sample(s) NOT RECEIVED but listed on COC                            |          |
| □ Sample(s) received but NOT LISTED on COC                            |          |
| □ Holding time expired (list client or ECI sample ID and analysis)    |          |
| Insufficient sample amount for requested analysis (list analysis)     |          |
| □ Improper container(s) used (list analysis)                          |          |
| Improper preservative used (list analysis)                            |          |
| □ pH outside acceptable range (list analysis)                         | ·        |
| No preservative noted on COC or label (list analysis and notify lab)  |          |
| Sample container(s) not labeled                                       |          |
| □ Client sample label(s) illegible (list container type and analysis) |          |
| Client sample label(s) do not match COC (comment)                     |          |
| Project information                                                   |          |
| □ Client sample ID                                                    | :        |
| □ Sampling date and/or time                                           |          |
| □ Number of container(s)                                              |          |
| Requested analysis                                                    |          |
| Sample container(s) compromised (comment)                             |          |
| Broken                                                                |          |
| Water present in sample container                                     |          |
| □ Air sample container(s) compromised (comment)                       |          |
| □ Flat                                                                |          |
| □ Very low in volume                                                  |          |
| Leaking (not transferred; duplicate bag submitted)                    |          |
| □ Leaking (transferred into ECI Tedlar™ bags*)                        |          |
| □ Leaking (transferred into client's Tedlar™ bags*)                   |          |
| * Transferred at client's request.                                    |          |
| MISCELLANEOUS: (Describe)                                             | Comments |

### HEADSPACE:

(Containers with bubble > 6 mm or ¼ inch for volatile organic or dissolved gas analysis)

| ECI<br>Sample ID | ECI<br>Container ID | Total<br>Number** | ECI<br>Sample ID | ECI<br>Container ID | Total<br>Number** |
|------------------|---------------------|-------------------|------------------|---------------------|-------------------|
|                  | BTOIL               | 8                 |                  |                     |                   |
|                  |                     |                   |                  |                     |                   |
|                  |                     |                   |                  |                     |                   |
|                  |                     |                   |                  |                     |                   |

| ECI<br>Sample ID | ECI<br>Container ID | Total<br>Number** | Requested Analysis |
|------------------|---------------------|-------------------|--------------------|
|                  |                     |                   |                    |
|                  |                     |                   |                    |
|                  |                     |                   |                    |
|                  |                     |                   |                    |
|                  |                     |                   |                    |

Comments: \_

Reported by: <u>863</u> Reviewed by: <u>77</u>

\*\* Record the total number of containers (i.e., vials or bottles) for the affected sample.

2017-08-29 Revision

# TABLE 1CURRENT GROUNDWATER ANALYTICAL RESULTSBayrock Oakland230 and 240 West MacArthur BoulevardOakland, California(Page 1 of 1)

|                |                  |        | 8015B  |        |        |        |        |        | 8      | 260B    |           |        |        |        |
|----------------|------------------|--------|--------|--------|--------|--------|--------|--------|--------|---------|-----------|--------|--------|--------|
| Well           | Date             | TPHmo  | TPHd   | TPHg   | В      | Т      | Е      | Х      | MTBE   | Acetone | c-1,2-DCA | PCE    | TCE    | VOCs   |
| ID             | Sampled          | (µg/L)  | (µg/L)    | (µg/L) | (µg/L) | (µg/L) |
|                |                  |        |        |        |        |        |        |        |        |         |           |        |        |        |
| 230 Mac        | Arthur Bo        | ouleva | rd     |        |        |        |        |        |        |         |           |        |        |        |
| 2017 Subsurfac | ce Investigation |        |        |        |        |        |        |        |        |         |           |        |        |        |
| B2             | 09/09/17         | <52    | <52    | 92e    | <0.50  | 2.1    | <1.0   | <2.0   | <1.0   | <20     | 7.4       | 11     | 2.0    | ND     |
| B3             | 09/09/17         | <52    | <52    | <50    | <0.50  | <0.50  | <1.0   | <2.0   | <1.0   | <20     | 3.3       | 1.3    | <1.0   | ND     |
| 240 Mac        | Arthur Bo        | ouleva | rd     |        |        |        |        |        |        |         |           |        |        |        |
| 2017 Subsurfac | ce Investigation |        |        |        |        |        |        |        |        |         |           |        |        |        |
| B1             | 09/09/17         | 170e   | 320e   | <50    | <0.50  | 1.3    | <0.50  | <2.0   | <1.0   | 22      | 2.2       | 10     | <1.0   | ND     |
|                |                  |        |        |        |        |        |        |        |        |         |           |        |        |        |

| Notes:    |   |                                                    |
|-----------|---|----------------------------------------------------|
| TPHd      | = | Total petroleum hydrocarbons as diesel.            |
| TPHg      | = | Total petroleum hydrocarbons as gasoline.          |
| BTEX      | = | Benzene, toluene, ethylbenzene, and total xylenes. |
| MTBE      | = | Methyl tertiary butyl ether.                       |
| c-1,2-DCA | = | cis-1,2-dichloroethane.                            |
| PCE       | = | Tetrachloroethene.                                 |
| TCE       | = | Trichloroethene.                                   |
| VOCs      | = | Volatile organic compounds.                        |
| ND        | = | Not detected.                                      |
| µg/L      | = | Micrograms per cubic liter.                        |
| <         | = | Less than the stated laboratory reporting limit.   |

# TABLE 2 CURRENT SOIL ANALYTICAL RESULTS Bayrock Oakland 230 and 240 West MacArthur Boulevard Oakland, California (Page 1 of 1)

|        |        |         |         | 8015    |         | 8260B   |         |         |         |         |         | 8260B   | OB      |         |         |         |         |         |
|--------|--------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
|        |        |         |         |         |         |         |         |         |         |         |         |         |         |         |         |         | Naph-   |         |
| Sample | Depth  | Date    | TPHmo   | TPHd    | TPHg    | В       | Т       | E       | Х       | MTBE    | 1,2-DCA | EDB     | ETBE    | DIPE    | TAME    | TBA     | thalene | VOCs    |
| ID     | (feet) | Sampled | (mg/kg) |

### 230 MacArthur Boulevard

### 2017 Subsurface Investigation

| S-11-B2   | 11   | 09/09/17 | <5.0 | <5.0 | <0.51 | <0.0050  | <0.0050 | <0.0050 | <0.010  | <0.0050 | <0.0050 | <0.0050 | <0.0099 | <0.0099 | <0.0099 | < 0.050 | <0.050 | ND |
|-----------|------|----------|------|------|-------|----------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|--------|----|
| S-16.5-B2 | 16.5 | 09/09/17 | <5.0 | <5.0 | <0.50 | < 0.0050 | <0.0050 | <0.0050 | <0.010  | <0.0050 | <0.0050 | <0.0050 | <0.010  | <0.010  | <0.010  | < 0.050 | <0.050 | ND |
| S-17-B2   | 17   | 09/09/17 | <5.1 | <5.1 | <0.48 | <0.0049  | <0.0049 | <0.0049 | <0.0098 | <0.0049 | <0.0049 | <0.0049 | <0.0098 | <0.0098 | <0.0098 | <0.049  | <0.049 | ND |
| S-17-B3   | 17   | 09/09/17 | <5.0 | <5.0 | <0.50 | <0.0050  | <0.0050 | <0.0050 | <0.010  | <0.0050 | <0.0050 | <0.0050 | <0.010  | <0.010  | <0.010  | <0.050  | <0.050 | ND |

### 240 MacArthur Boulevard

### 2017 Subsurface Investigation

| S-8-B1  | 8  | 09/09/17 | <4.9 | <4.9 | <0.49 | <0.0051 | <0.0051 | <0.0051 | <0.0102 | <0.0051 | <0.0051 | <0.0051 | <0.010  | <0.010  | <0.010  | <0.051 | <0.051 | ND |
|---------|----|----------|------|------|-------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|--------|--------|----|
| S-17-B1 | 17 | 09/09/17 | <5.0 | <5.0 | <0.51 | <0.0049 | <0.0049 | <0.0049 | <0.0098 | <0.0049 | <0.0049 | <0.0049 | <0.0099 | <0.0099 | <0.0099 | <0.049 | <0.049 | ND |

- Notes:
- TPHmo = Total petroleum hydrocarbons as motor oil.

TPHg = Total petroleum hydrocarbons as gasoline.

- BTEX = Benzene, toluene, ethylbenzene, and total xylenes.
- MTBE = Methyl tertiary butyl ether.
- 1,2-DCA = 1,2-dichloroethane.
- EDB = 1,2-dibromoethane.
- ETBE = Ethyl tertiary butyl ether.
- DIPE = Di-isopropyl ether.
- TAME = Tertiary amyl methyl ether.
- TBA = Tertiary butyl alcohol.
- mg/kg = Milligrams per kilogram.
- ND = Not detected.
- < = Less than the stated laboratory reporting limit.
- --- = Not sampled/Not analyzed.

### TABLE 3 SOIL BORING DETAILS

Bayrock Oakland

230 and 240 West MacArthur Boulevard

Oakland, California

(Page 1 of 1)

| \A/oll | Well Depth | Well Screen Interval |                  |  |  |  |
|--------|------------|----------------------|------------------|--|--|--|
| Well   | (feet)     | Depth (feet)         | Elevation (feet) |  |  |  |

### 230 MacArthur Boulevard

| MW-1 | 30 | 10 to 30     |  |
|------|----|--------------|--|
| MW-2 | 28 | 10 to 28     |  |
| MW-3 | 29 | 11.5 to 28.5 |  |
| MW-4 | 25 | 15 to 25     |  |
| MW-5 | 25 | 10 to 25     |  |

### 240 MacArthur Boulevard

| MW-1 | 25 | 19.5 to 24.5 | 54.5 to 49.5 |
|------|----|--------------|--------------|
| MW-2 | 25 | 14.5 to 24.5 | 64.2 to 54.2 |
| MW-3 | 25 | 14.5 to 24.5 | 63.4 to 53.4 |
| MW-4 | 25 | 14.5 to 24.5 | 63.6 to 53.6 |
| MW-5 | 20 | 9 to 19      | 70.6 to 60.6 |
| MW-6 | 20 | 9 to 19      | 69.7 to 59.7 |
| MW-7 | 20 | 9 to 19      | 69.6 to 59.6 |
| MW-8 | 20 | 9 to 19      | 67.7 to 57.7 |
|      |    |              |              |

Oakland, California

(Page 1 of 13)

| Well   | Measuring    | TOC Elevation    | Depth to Water                 | Groundwater Elevation |
|--------|--------------|------------------|--------------------------------|-----------------------|
| ID     | Date         | (feet below msl) | (feet below TOC)               | (feet below msl)      |
| 30 Mac | Arthur Boule | vard             |                                |                       |
|        |              | vara             |                                |                       |
| MW-1   | 07/14/88     | 73.89            | 13.30                          | 60.59                 |
| MW-1   | 04/10/88     | 73.89            | 13.65                          | 60.24                 |
| MW-1   | 10/11/88     | 73.89            | 13.55                          | 60.34                 |
| MW-1   | 09/12/88     | 73.89            | 13.22                          | 60.67                 |
| MW-1   | 10/01/89     | 73.89            | 12.86                          | 61.03                 |
| MW-1   | 01/20/89     | 73.89            | 12.91                          | 60.98                 |
| MW-1   | 06/02/89     | 73.89            | 12.94                          | 60.95                 |
| MW-1   | 10/03/89     | 73.89            | 12.59                          | 61.30                 |
| MW-1   | 06/06/89     | 73.89            | 14.05                          | 59.84                 |
| MW-1   | 07/09/89     | 73.89            | 14.92                          | 58.97                 |
| MW-1   | 12/18/89     | 73.89            | 14.88                          | 59.01                 |
| MW-1   | 08/03/90     | 73.89            | 14.08                          | 59.81                 |
| MW-1   | 07/06/90     | 73.89            | 13.89                          | 60.00                 |
| MW-1   | 05/09/90     | 73.89            | 14.83                          | 59.06                 |
| MW-1   | 03/12/90     | 73.89            | 15.05                          | 58.84                 |
| MW-1   | 01/03/91     | 73.89            | 14.34                          | 59.55                 |
| MW-1   | 03/06/91     | 73.89            | 14.16                          | 59.73                 |
| MW-1   | 04/09/91     | 73.89            | 14.60                          | 59.29                 |
| MW-1   | 03/13/92     | 73.89            | 13.40                          | 60.49                 |
| MW-1   | 03/06/92     | 73.89            | 13.76                          | 60.13                 |
| MW-1   | 08/19/92     | 73.89            | 14.57                          | 59.32                 |
| MW-1   | 11/16/92     | 73.89            | 14.78                          | 59.11                 |
| MW-1   | 02/18/93     | 73.89            | 12.14                          | 61.75                 |
| MW-1   | 01/06/93     | 73.89            | 13.30                          | 60.59                 |
| MW-1   | 08/30/93     | 73.89            | 14.32                          | 59.57                 |
| MW-1   | 12/13/93     | 73.89            | 14.06                          | 59.83                 |
| MW-1   | 03/03/94     | 73.89            | 13.12                          | 60.77                 |
| MW-1   | 06/06/94     | 73.89            | 14.20                          | 59.69                 |
| MW-1   | 12/09/94     | 73.89            | 15.72                          | 58.17                 |
| MW-1   | 12/15/94     | 73.89            | 12.98                          | 60.91                 |
| MW-1   | 03/13/95     | 73.89            | 11.74                          | 62.15                 |
| MW-1   | 04/21/95     | 73.89            |                                |                       |
| MW-1   | 06/26/95     | 73.89            | 13.00                          | 60.89                 |
| MW-1   | 12/09/95     | 73.89            | 14.14                          | 59.75                 |
| MW-1   | 03/21/96     | 73.89            | 11.03                          | 62.86                 |
| MW-1   | 06/28/96     | 73.89            | 13.53                          | 60.36                 |
| MW-1   | 09/19/96     | 73.89            | 14.33                          | 59.56                 |
| MW-1   | 12/19/96     | 73.89            | 13.20                          | 60.69                 |
| MW-1   | 05/12/97     | 73.89            | 12.39                          | 61.50                 |
| MW-1   | 12/24/98     | 73.89            | 13.59                          | 60.30                 |
| MW-1   | 12/23/99     | 73.89            | 15.63                          | 58.26                 |
| MW-1   | 11/12/00     | 73.89            | 15.36                          | 58.53                 |
| MW-1   | 12/27/01     | 73.89            | 12.09                          | 61.80                 |
| MW-1   | 01/30/02     | 76.92            | Surveyed by Virgil Chavez Land |                       |
| MW-1   | 12/03/02     | 76.92            | 12.33                          | 64.59                 |
| MW-1   | 03/14/02     | 76.92            | 12.08                          | 64.84                 |
| MW-1   | 06/13/02     | 76.92            | 13.47                          | 63.45                 |
| MW-1   | 09/09/02     | 76.92            | 14.30                          | 62.62                 |
| MW-1   | 12/12/02     | 76.92            | 14.30                          | 62.44                 |
|        |              |                  |                                |                       |
| MW-1   | 10/03/03     | 76.92            | 12.76                          | 64.16<br>63.75        |
| MW-1   | 10/06/03     | 76.92            | 13.17                          | 63.75                 |
| MW-1   | 09/16/03     | 76.92            | 14.10                          | 62.82                 |
| MW-1   | 03/12/03     | 76.92            | 13.93                          | 62.99                 |
| MW-1   | 11/03/04     | 76.92            | 12.04                          | 64.88                 |
| MW-1   | 06/17/04     | 76.92            | 13.75                          | 63.17                 |

Oakland, California (Page 2 of 13)

| Well             | Measuring | TOC Elevation    | Depth to Water   | Groundwater Elevation |
|------------------|-----------|------------------|------------------|-----------------------|
| ID               | Date      | (feet below msl) | (feet below TOC) | (feet below msl)      |
|                  |           | . ,              | . ,              |                       |
| MW-1             | 09/13/04  | 76.92            | 14.47            | 62.45                 |
| MW-1             | 07/12/04  | 76.92            | 13.04            | 63.88                 |
| MW-1             | 03/03/05  | 76.92            | 11.31            | 65.61                 |
| MW-1             | 06/14/05  | 76.92            | 11.87            | 65.05                 |
| MW-1             | 09/19/05  | 76.92            | 13.91            | 63.01                 |
| MW-1             | 03/30/06  | 76.92            | 10.60            | 66.32                 |
| MW-1             | 09/27/06  | 76.92            | 14.06            | 62.86                 |
| MW-1             | 09/28/06  | 76.92            |                  |                       |
| MW-1             | 12/26/06  | 76.92            | 13.05            | 63.87                 |
| MW-1             | 03/29/07  | 76.92            | 12.87            | 64.05                 |
| MW-1             | 07/06/07  | 76.92            | 15.53            | 61.39                 |
| MW-1             | 09/18/07  | 76.92            | 15.64            | 61.28                 |
| MW-1             | 12/17/07  | 76.92            | 15.15            | 61.77                 |
| MW-1             | 02/27/08  | 76.92            | 14.41            | 62.51                 |
| MW-1             | 05/28/08  | 76.92            | 14.40            | 62.52                 |
| MW-1             | 09/19/08  | 76.92            | 14.74            | 62.18                 |
| MW-1             | 04/12/08  | 76.92            | 14.80            | 62.12                 |
| MW-1             | 02/25/09  | 76.92            | 11.91            | 65.01                 |
| MW-1             | 05/26/09  | 76.92            | 12.73            | 64.19                 |
| MW-1             | 09/18/09  | 76.92            | 13.82            | 63.10                 |
| MW-1             | 03/16/10  | 76.92            | 14.60            | 62.32                 |
| MW-1             | 09/27/10  | 76.92            | 15.46            | 61.46                 |
| MW-1             | 03/25/11  | 76.92            | 13.35            | 63.57                 |
|                  |           |                  |                  |                       |
| MW-2             | 07/14/88  | 75.24            | 15.18            | 60.06                 |
| MW-2             | 04/10/88  | 75.24            | 15.30            | 59.94                 |
| MW-2             | 10/11/88  | 75.24            | 15.17            | 60.07                 |
| MW-2             | 09/12/88  | 75.24            | 14.82            | 60.42                 |
| MW-2             | 01/20/89  | 75.24            | 14.54            | 60.70                 |
| MW-2             | 06/02/89  | 75.24            | 14.59            | 60.65                 |
| MW-2             | 10/03/89  | 75.24            | 14.88            | 60.36                 |
| MW-2             | 06/06/89  | 75.24            | 15.30            | 59.94                 |
| MW-2             | 07/09/89  | 75.24            | 16.76            | 58.48                 |
| MW-2             | 12/18/89  | 75.24            | 16.65            | 58.59                 |
| MW-2             | 08/03/90  | 75.24            | 15.92            | 59.32                 |
| MW-2             | 07/06/90  | 75.24            | 16.10            | 59.14                 |
| MW-2             | 05/09/90  | 75.24            | 16.61            | 58.63                 |
| MW-2             | 03/12/90  | 75.24            | 17.06            | 58.18                 |
| MW-2             | 01/03/91  | 75.24            | 16.62            | 58.62                 |
| MW-2             | 03/06/91  | 75.24            | 16.65            | 58.59                 |
| MW-2             | 04/09/91  | 75.24            | 16.57            | 58.67                 |
| MW-2             | 03/13/92  | 75.24            | 14.66            | 60.58                 |
| MW-2             | 03/06/92  | 75.24            | 15.90            | 59.34                 |
| MW-2             | 08/19/92  | 75.24            | 16.72            | 58.52                 |
| MW-2             | 11/16/92  | 75.24            | 16.66            | 58.58                 |
| MW-2             | 02/18/93  | 75.24            | 13.88            | 61.36                 |
| MW-2 Dup         | 02/18/93  | 75.24            | 13.88            | 61.36                 |
| MW-2             | 01/06/93  | 75.24            | 14.74            | 60.50                 |
| MW-2             | 08/30/93  | 75.24            | 15.85            | 59.39                 |
| MW-2             | 12/13/93  | 75.24            | 15.83            | 59.41                 |
| MW-2             | 03/03/94  | 75.24            | 14.80            | 60.44                 |
| MW-2             | 06/06/94  | 75.24            | 16.65            | 58.59                 |
| MW-2             | 12/09/94  | 75.24            | 16.72            | 58.52                 |
| MW-2             | 12/15/94  | 75.24            | 15.25            | 59.99                 |
| MW-2             | 03/13/95  | 75.24            | 15.32            | 59.92                 |
| MW-2             | 04/21/95  | 75.24            |                  |                       |
| MW-2             | 06/26/95  | 75.24            | 14.65            | 60.59                 |
| MW-2             | 12/09/95  | 75.24            | 15.78            | 59.46                 |
| ····· • <b>—</b> |           |                  |                  |                       |

### TABLE 4 CUMULATIVE GROUNDWATER MONITORING DATA Bayrock Oakland

230 and 240 West MacArthur Boulevard

Oakland, California (Page 3 of 13)

| Well           | Measuring | TOC Elevation    | Depth to Water                 | Groundwater Elevation |
|----------------|-----------|------------------|--------------------------------|-----------------------|
| ID             | Date      | (feet below msl) | (feet below TOC)               | (feet below msl)      |
| <u>.</u>       |           | . ,              | · · · · · ·                    |                       |
| MW-2           | 03/21/96  | 75.24            | 12.72                          | 62.52                 |
| MW-2           | 06/28/96  | 75.24            | 14.95                          | 60.29                 |
| MW-2           | 09/19/96  | 75.24            | 15.64                          | 59.60                 |
| MW-2           | 12/19/96  | 75.24            | 14.47                          | 60.77                 |
| MW-2           | 05/12/97  | 75.24            | 14.22                          | 61.02                 |
| MW-2           | 12/24/98  | 75.24            | 14.97                          | 60.27                 |
| MW-2           | 12/23/99  | 75.24            | 16.07                          | 59.17                 |
| MW-2           | 11/12/00  | 75.24            | 15.78                          | 59.46                 |
| MW-2           | 12/27/01  | 75.24            | 14.25                          | 60.99                 |
| MW-2           | 01/30/02  | 78.25            | Surveyed by Virgil Chavez Land |                       |
| MW-2           | 03/14/02  | 78.25            | 14.59                          | 63.66                 |
| MW-2           | 06/13/02  | 78.25            | 14.58                          | 63.67                 |
| MW-2           | 09/09/02  | 78.25            | 15.49                          | 62.76                 |
| MW-2           | 12/12/02  | 78.25            | 16.21                          | 62.04                 |
| MW-2           | 10/03/03  | 78.25            | 14.33                          | 63.92                 |
| MW-2           | 10/06/03  | 78.25            | 14.48                          | 63.77                 |
| MW-2           | 09/16/03  | 78.25            | 15.45                          | 62.80                 |
| MW-2           | 03/12/03  | 78.25            | 15.60                          | 62.65                 |
| MW-2           | 11/03/04  | 78.25            | 13.78                          | 64.47                 |
| MW-2           | 06/17/04  | 78.25            | 14.87                          | 63.38                 |
| MW-2           | 09/13/04  | 78.25            | 15.85                          | 62.40                 |
| MW-2           | 07/12/04  | 78.25            | 15.17                          | 63.08                 |
| MW-2           | 03/03/05  | 78.25            | 13.38                          | 64.87                 |
| MW-2           | 06/14/05  | 78.25            | 13.95                          | 64.30                 |
| MW-2           | 09/19/05  | 78.25            | 14.78                          | 63.47                 |
| MW-2           | 03/30/06  | 78.25            | 11.60                          | 66.65                 |
| MW-2           | 09/27/06  | 78.25            | 15.42                          | 62.83                 |
| MW-2           | 09/28/06  | 78.25            |                                |                       |
| MW-2           | 12/26/06  | 78.25            | 14.60                          | 63.65                 |
| MW-2           | 03/29/07  | 78.25            | 14.28                          | 63.97                 |
| MW-2           | 07/06/07  | 78.25            | 18.20                          | 60.05                 |
| MW-2           | 09/18/07  | 78.25            | 19.70                          | 58.55                 |
| MW-2           | 12/17/07  | 78.25            | 15.50                          | 62.75                 |
| MW-2           | 02/27/08  | 78.25            | 18.12                          | 60.13                 |
| MW-2           | 05/28/08  | 78.25            | 18.75                          | 59.50                 |
| MW-2           | 09/19/08  | 78.25            | 17.35                          | 60.90                 |
| MW-2           | 04/12/08  | 78.25            | 16.78                          | 61.47                 |
| MW-2           | 02/25/09  | 78.25            | 13.92                          | 64.33                 |
| MW-2           | 05/26/09  | 78.25            | 14.50                          | 63.75                 |
| MW-2           | 09/18/09  | 78.25            | 14.92                          | 63.33                 |
| MW-2           | 03/16/10  | 78.25            | 18.16                          | 60.09                 |
| MW-2           | 09/27/10  | 78.25            | 20.81                          | 57.44                 |
| MW-2           | 03/25/11  | 78.25            | 17.98                          | 60.27                 |
| ····· <b>–</b> |           |                  |                                |                       |
| MW-3           | 07/14/88  | 74.68            | 14.05                          | 60.63                 |
| MW-3           | 04/10/88  | 74.68            | 14.60                          | 60.08                 |
| MW-3           | 10/11/88  | 74.68            | 14.35                          | 60.33                 |
| MW-3           | 09/12/88  | 74.68            | 14.04                          | 60.64                 |
| MW-3           | 10/01/89  | 74.68            | 13.70                          | 60.98                 |
| MW-3           | 01/20/89  | 74.68            | 13.72                          | 60.96                 |
| MW-3           | 06/02/89  | 74.68            | 13.75                          | 60.93                 |
| MW-3           | 10/03/89  | 74.68            | 13.42                          | 61.26                 |
| MW-3           | 06/06/89  | 74.68            | 14.52                          | 60.16                 |
| MW-3           | 07/09/89  | 74.68            | 14.52                          | 59.16                 |
| MW-3           | 12/18/89  | 74.68            | 19.59                          | 55.09                 |
| MW-3           | 08/03/90  | 74.68            | 14.72                          | 59.96                 |
| MW-3           | 07/06/90  | 74.68            | 14.72                          | 60.03                 |
| MW-3           | 05/09/90  | 74.68            | 15.51                          | 59.17                 |
| 10100-3        | 00/09/90  | 14.00            | 15.51                          | 59.17                 |

Oakland, California

(Page 4 of 13)

| Well         |     | Measuring            | TOC Elevation    | Depth to Water   | Groundwater Elevation |
|--------------|-----|----------------------|------------------|------------------|-----------------------|
| ID           |     | Date                 | (feet below msl) | (feet below TOC) | (feet below msl)      |
|              |     |                      |                  |                  |                       |
| MW-3         |     | 03/12/90             | 74.68            | 14.85            | 59.83                 |
| MW-3         |     | 01/03/91             | 74.68            | 14.92            | 59.76                 |
| MW-3         |     | 03/06/91             | 74.68            | 14.75            | 59.93                 |
| MW-3         |     | 04/09/91             | 74.68            | 15.14            | 59.54                 |
| MW-3         |     | 03/13/92             | 74.68            | 13.50            | 61.18                 |
| MW-3         |     | 03/06/92             | 74.68            | 14.39            | 60.29                 |
| MW-3         | _   | 08/19/92             | 74.68            | 15.08            | 59.60                 |
| MW-3         | Dup | 08/19/92             | 74.68            | 15.08            | 59.60                 |
| MW-3         | _   | 11/16/92             | 74.68            | 15.43            | 59.25                 |
| MW-3         | Dup | 11/16/92             | 74.68            | 15.43            | 59.25                 |
| MW-3         |     | 02/18/93             | 74.68            | 12.96            | 61.72                 |
| MW-3         | D   | 01/06/93             | 74.68            | 13.98            | 60.70                 |
| MW-3         | Dup | 01/06/93             | 74.68            | 13.98            | 60.70                 |
| MW-3         |     | 08/30/93             | 74.68            | 14.82            | 59.86                 |
| MW-3         | D   | 12/13/93             | 74.68            | 14.70            | 59.98                 |
| MW-3         | Dup | 12/13/93             | 74.68            | 14.70            | 59.98                 |
| MW-3         |     | 03/03/94             | 74.68            | 13.92            | 60.76                 |
| MW-3         |     | 06/06/94             | 74.68            | 14.73            | 59.95                 |
| MW-3         |     | 12/09/94             | 74.68            | 15.42            | 59.26                 |
| MW-3         |     | 12/15/94             | 74.68            | 13.80            | 60.88                 |
| MW-3         |     | 03/13/95             | 74.68            | 12.41            | 62.27                 |
| MW-3         |     | 04/21/95             | 74.68            |                  |                       |
| MW-3         |     | 06/26/95             | 74.68            | 13.79            | 60.89                 |
| MW-3         |     | 09/12/95             | 74.68            | 14.77            | 59.91                 |
| MW-3         |     | 03/21/96             | 74.68            | 11.80            | 62.88                 |
| MW-3         |     | 06/28/96             | 74.68            | 14.19            | 60.49                 |
| MW-3         |     | 09/19/96             | 74.68            | 14.85            | 59.83                 |
| MW-3<br>MW-3 |     | 12/19/96             | 74.68<br>74.68   | 13.61<br>13.16   | 61.07<br>61.52        |
| MW-3         |     | 05/12/97             |                  |                  |                       |
| MW-3         |     | 12/24/98<br>12/23/99 | 74.68<br>74.68   | 14.08<br>15.92   | 60.60<br>58.76        |
| MW-3         |     | 11/12/00             | 74.68            | 15.31            | 59.37                 |
| MW-3         |     | 12/27/01             | 74.68            | 12.84            | 61.84                 |
| MW-3         |     | 12/03/01             | 74.68            | 12.54            | 62.14                 |
| MW-3         |     | 03/14/02             | 74.68            | 12.54            | 61.90                 |
| MW-3         |     | 06/13/02             | 74.68            | 14.06            | 60.62                 |
| MW-3         |     | 09/09/02             | 77.69            | 14.77            | 62.92                 |
| MW-3         |     | 12/12/02             | 77.69            | 15.11            | 62.58                 |
| MW-3         |     | 10/03/03             | 77.69            | 13.52            | 64.17                 |
| MW-3         |     | 10/06/03             | 77.69            | 13.82            | 63.87                 |
| MW-3         |     | 09/16/03             | 77.69            | 14.60            | 63.09                 |
| MW-3         |     | 03/12/03             | 77.69            | 14.53            | 63.16                 |
| MW-3         |     | 11/03/04             | 77.69            | 12.38            | 65.31                 |
| MW-3         |     | 06/17/04             | 77.69            | 14.28            | 63.41                 |
| MW-3         |     | 09/13/04             | 77.69            | 14.78            | 62.91                 |
| MW-3         |     | 07/12/04             | 77.69            | 13.77            | 63.92                 |
| MW-3         |     | 03/03/05             | 77.69            | 11.84            | 65.85                 |
| MW-3         |     | 06/14/05             | 77.69            | 12.29            | 65.40                 |
| MW-3         |     | 09/19/05             | 77.69            | 14.33            | 63.36                 |
| MW-3         |     | 03/30/06             | 77.69            | 10.30            | 67.39                 |
| MW-3         |     | 09/27/06             | 77.69            | 14.62            | 63.07                 |
| MW-3         |     | 09/28/06             | 77.69            |                  |                       |
| MW-3         |     | 12/26/06             | 77.69            | 13.82            | 63.87                 |
| MW-3         |     | 03/29/07             | 77.69            | 13.55            | 64.14                 |
| MW-3         |     | 07/06/07             | 77.69            | 16.38            | 61.31                 |
| MW-3         |     | 09/18/07             | 77.69            | 16.24            | 61.45                 |
| MW-3         |     | 12/17/07             | 77.69            | 19.24            | 58.45                 |
| MW-3         |     | 02/27/08             | 77.69            | 14.65            | 63.04                 |
| -            |     |                      |                  |                  |                       |

Oakland, California (Page 5 of 13)

| Well |     | Measuring            | TOC Elevation    | Depth to Water                 | Groundwater Elevation |
|------|-----|----------------------|------------------|--------------------------------|-----------------------|
| ID   |     | Date                 | (feet below msl) | (feet below TOC)               | (feet below msl)      |
|      |     |                      |                  |                                |                       |
| MW-3 |     | 05/28/08             | 77.69            | 15.33                          | 62.36                 |
| MW-3 |     | 09/19/08             | 77.69            | 15.53                          | 62.16                 |
| MW-3 |     | 04/12/08             | 77.69            | 15.38                          | 62.31                 |
| MW-3 |     | 02/25/09             | 77.69            | 12.60                          | 65.09                 |
| MW-3 |     | 05/26/09             | 77.69            | 13.40                          | 64.29                 |
| MW-3 |     | 09/18/09             | 77.69            | 14.66                          | 63.03                 |
| MW-3 |     | 03/16/10             | 77.69            | 14.73                          | 62.96                 |
| MW-3 |     | 09/27/10             | 77.69            | 16.09                          | 61.60                 |
| MW-3 |     | 03/25/11             | 77.69            | 14.16                          | 63.53                 |
| MW-4 |     | 01/23/90             | 73.83            | 14.68                          | 59.15                 |
| MW-4 |     | 08/03/90             | 73.83            | 14.38                          | 59.45                 |
| MW-4 |     | 07/06/90             | 73.83            | 14.27                          | 59.56                 |
| MW-4 |     | 05/09/90             | 73.83            | 15.40                          | 58.43                 |
| MW-4 |     | 03/12/90             | 73.83            | 15.90                          | 57.93                 |
| MW-4 |     | 03/06/91             | 73.83            | 14.60                          | 59.23                 |
| MW-4 |     | 04/09/91             | 73.83            | 15.25                          | 58.58                 |
| MW-4 |     | 03/13/92             | 73.83            | 12.72                          | 61.11                 |
| MW-4 |     | 03/06/92             | 73.83            | 14.33                          | 59.50                 |
| MW-4 |     | 08/19/92             | 73.83            | 15.18                          | 58.65                 |
| MW-4 |     | 11/16/92             | 73.83            | 15.39                          | 58.44                 |
| MW-4 |     | 02/18/93             | 73.83            | 12.62                          | 61.21                 |
| MW-4 |     | 01/06/93             | 73.83            | 13.68                          | 60.15                 |
| MW-4 |     | 08/30/93             | 73.83            | 14.83                          | 59.00                 |
| MW-4 | Dup | 08/30/93             | 73.83            | 14.83                          | 59.00                 |
| MW-4 |     | 12/13/93             | 73.83            | 14.50                          | 59.33                 |
| MW-4 |     | 03/03/94             | 73.83            | 13.48                          | 60.35                 |
| MW-4 | Dup | 03/03/94             | 73.83            | 13.48                          | 60.35                 |
| MW-4 | Dup | 06/06/94             | 73.83            | 14.26                          | 59.57                 |
| MW-4 | Dup | 06/06/94             | 73.83            | 14.26                          | 59.57                 |
| MW-4 | Dup | 12/09/94             | 73.83            | 15.42                          | 58.41                 |
| MW-4 | Dup | 12/09/94             | 73.83            | 15.42                          | 58.41                 |
| MW-4 | Dup | 12/15/94             | 73.83            | 13.43                          | 60.40                 |
| MW-4 | Dup | 12/15/94             | 73.83            | 13.43                          | 60.40                 |
| MW-4 | Dup |                      | 73.83            | 12.13                          | 61.70                 |
| MW-4 | Dun | 03/13/95<br>03/13/95 | 73.83            | 12.13                          | 61.70                 |
| MW-4 | Dup | 06/25/95             | 73.83            | 13.26                          |                       |
|      | Dun |                      |                  |                                | 60.57                 |
| MW-4 | Dup | 06/25/95             | 73.83            | 13.26                          | 60.57                 |
| MW-4 | Dun | 09/12/95             | 73.83            | 14.64                          | 59.19<br>50.10        |
| MW-4 | Dup | 09/12/95             | 73.83            | 14.64                          | 59.19                 |
| MW-4 | Dur | 03/21/96             | 73.83            | 11.55                          | 62.28                 |
| MW-4 | Dup | 03/21/96             | 73.83            | 11.55                          | 62.28                 |
| MW-4 | Dur | 06/28/96             | 73.83            | 13.86                          | 59.97                 |
| MW-4 | Dup | 06/28/96             | 73.83            | 13.86                          | 59.97                 |
| MW-4 | D   | 09/19/96             | 73.83            | 14.72                          | 59.11                 |
| MW-4 | Dup | 09/19/96             | 73.83            | 14.72                          | 59.11                 |
| MW-4 |     | 12/19/96             | 73.83            | 13.06                          | 60.77                 |
| MW-4 |     | 05/12/97             | 73.83            | 12.89                          | 60.94                 |
| MW-4 |     | 12/24/98             | 73.83            | 13.92                          | 59.91                 |
| MW-4 |     | 12/17/99             | 73.83            | 14.28                          | 59.55                 |
| MW-4 |     | 12/23/99             | 73.83            | 16.24                          | 57.59                 |
| MW-4 |     | 11/12/00             | 73.83            | 14.15                          | 59.68                 |
| MW-4 |     | 12/27/01             | 73.83            | 12.61                          | 61.22                 |
| MW-4 |     | 01/30/02             | 76.82            | Surveyed by Virgil Chavez Land | Surveying of Vallejo. |
| MW-4 |     | 03/14/02             | 76.82            | 12.35                          | 64.47                 |
| MW-4 |     | 06/13/02             | 76.82            | 13.72                          | 63.10                 |
| MW-4 |     | 09/09/02             | 76.82            | 14.56                          | 62.26                 |
| MW-4 |     | 12/12/02             | 76.82            | 14.82                          | 62.00                 |

Oakland, California

(Page 6 of 13)

| Well | Measuring | TOC Elevation    | Depth to Water                   | Groundwater Elevation |
|------|-----------|------------------|----------------------------------|-----------------------|
| ID   | Date      | (feet below msl) | (feet below TOC)                 | (feet below msl)      |
|      |           | · /              | · /                              | · /                   |
| MW-4 | 10/03/03  | 76.82            | 13.63                            | 63.19                 |
| MW-4 | 10/06/03  | 76.82            | 13.68                            | 63.14                 |
| MW-4 | 09/16/03  | 76.82            | 14.35                            | 62.47                 |
| MW-4 | 03/12/03  | 76.82            | 14.27                            | 62.55                 |
| MW-4 | 11/03/04  | 76.82            | 12.62                            | 64.20                 |
| MW-4 | 06/17/04  | 76.82            | 13.90                            | 62.92                 |
| MW-4 | 09/13/04  | 76.82            | 14.67                            | 62.15                 |
| MW-4 | 07/12/04  | 76.82            | 13.92                            | 62.90                 |
| MW-4 | 03/03/05  | 76.82            | 11.75                            | 65.07                 |
| MW-4 | 06/14/05  | 76.82            | 12.20                            | 64.62                 |
| MW-4 | 09/19/05  | 76.82            | 14.08                            | 62.74                 |
| MW-4 | 03/30/06  | 76.82            | 10.25                            | 66.57                 |
| MW-4 | 09/27/06  | 76.82            | 14.18                            | 62.64                 |
| MW-4 | 09/28/06  | 76.82            |                                  |                       |
| MW-4 | 12/26/06  | 76.82            | 13.25                            | 63.57                 |
| MW-4 | 03/29/07  | 76.82            | 13.18                            | 63.64                 |
| MW-4 | 07/06/07  | 76.82            | 18.01                            | 58.81                 |
| MW-4 | 09/18/07  | 76.82            | 18.80                            | 58.02                 |
| MW-4 | 12/17/07  | 76.82            | 18.50                            | 58.32                 |
| MW-4 | 02/27/08  | 76.82            | 17.85                            | 58.97                 |
| MW-4 | 05/28/08  | 76.82            | 18.26                            | 58.56                 |
| MW-4 | 09/19/08  | 76.82            | 16.16                            | 60.66                 |
| MW-4 | 04/12/08  | 76.82            | 15.67                            | 61.15                 |
| MW-4 | 02/25/09  | 76.82            | 12.44                            | 64.38                 |
| MW-4 | 05/26/09  | 76.82            | 13.30                            | 63.52                 |
| MW-4 | 09/18/09  | 76.82            | 14.30                            | 62.52                 |
| MW-4 | 03/16/10  | 76.82            | 18.14                            | 58.68                 |
| MW-4 | 09/27/10  | 76.82            | 18.99                            | 57.83                 |
| MW-4 | 03/25/11  | 76.82            | 17.65                            | 59.17                 |
|      |           |                  |                                  |                       |
| MW-5 | 05/10/06  | 76.97            | Surveyed by Virgil Chavez Land S | Surveying of Vallejo. |
| MW-5 | 09/22/06  | 76.97            | 14.21                            | 62.76                 |
| MW-5 | 09/27/06  | 76.97            | 14.35                            | 62.62                 |
| MW-5 | 09/28/06  | 76.97            |                                  |                       |
| MW-5 | 12/26/06  | 76.97            | 13.32                            | 63.65                 |
| MW-5 | 03/29/07  | 76.97            | 13.22                            | 63.75                 |
| MW-5 | 07/06/07  | 76.97            | 17.88                            | 59.09                 |
| MW-5 | 09/18/07  | 76.97            | 19.00                            | 57.97                 |
| MW-5 | 12/17/07  | 76.97            | 18.25                            | 58.72                 |
| MW-5 | 02/27/08  | 76.97            | 17.32                            | 59.65                 |
| MW-5 | 05/28/08  | 76.97            | 17.94                            | 59.03                 |
| MW-5 | 09/19/08  | 76.97            | 16.32                            | 60.65                 |
| MW-5 | 04/12/08  | 76.97            | 15.80                            | 61.17                 |
| MW-5 | 02/25/09  | 76.97            | 12.41                            | 64.56                 |
| MW-5 | 05/26/09  | 76.97            | 13.28                            | 63.69                 |
| MW-5 | 09/18/09  | 76.97            | 14.35                            | 62.62                 |
| MW-5 | 03/16/10  | 76.97            | 17.46                            | 59.51                 |
| MW-5 | 09/27/10  | 76.97            | 18.90                            | 58.07                 |
| MW-5 | 03/25/11  | 76.97            | 16.82                            | 60.15                 |

## 240 MacArthur Boulevard

| MW-1 | Aug-97 | 79.15 | 16.83 | 62.32 |
|------|--------|-------|-------|-------|
| MW-1 | Dec-97 | 79.15 |       |       |
| MW-1 | Mar-98 | 79.15 | 13.58 | 65.57 |
| MW-1 | Jul-98 | 79.15 | 15.55 | 63.60 |
| MW-1 | Oct-98 | 79.15 | 15.70 | 63.45 |

Oakland, California (Page 7 of 13)

| Well         | Measuring        | TOC Elevation    | Depth to Water   | Groundwater Elevation |  |  |
|--------------|------------------|------------------|------------------|-----------------------|--|--|
| ID           | Date             | (feet below msl) | (feet below TOC) | (feet below msl)      |  |  |
|              |                  | ·                | ·                | ·                     |  |  |
| MW-1         | Jan-99           | 79.15            | 15.21            | 63.94                 |  |  |
| MW-1         | Jun-00           | 79.15            | 15.41            | 63.74                 |  |  |
| MW-1         | Dec-00           | 79.15            |                  |                       |  |  |
| MW-1         | Feb-01           | 79.15            |                  |                       |  |  |
| MW-1         | May-01           | 79.15            | 15.57            | 63.58                 |  |  |
| MW-1         | Jul-01           | 79.15            | 16.42            | 62.73                 |  |  |
| MW-1         | Oct-01           | 79.15            | 16.82            | 62.33                 |  |  |
| MW-1         | Dec-01           | 79.15            | 15.08            | 64.07                 |  |  |
| MW-1         | Mar-02           | 79.15            | 14.53            | 64.62                 |  |  |
| MW-1         | May-02           | 79.15            |                  |                       |  |  |
| MW-1         | Jul-02           | 79.15            | 16.39            | 62.76                 |  |  |
| MW-1         | Oct-02           | 79.15            | 17.03            | 62.12                 |  |  |
| MW-1         | Jan-03           | 79.15            | 14.91            | 64.24                 |  |  |
| MW-1         | Mar-03           | 79.15            | 15.26            | 63.89                 |  |  |
| MW-1         | Aug-03           | 79.15            | 16.24            | 62.91                 |  |  |
| MW-1         | Dec-03           | 79.15            | 16.90            | 62.25                 |  |  |
| MW-1         | Mar-04           | 79.15            | 14.33            | 64.82                 |  |  |
| MW-1         | Jun-04           | 79.15            | 16.28            | 62.87                 |  |  |
| MW-1         | Sep-04           | 79.15            | 17.03            | 62.12                 |  |  |
| MW-1         | Dec-04           | 79.15            | 16.38            | 62.77                 |  |  |
| MW-1         | Mar-05           | 79.15            | 14.30            | 64.85                 |  |  |
| MW-1         | Jun-05           | 79.15            | 15.53            | 63.62                 |  |  |
| MW-1         | Sep-05           | 79.15            | 16.42            | 62.73                 |  |  |
| MW-1         | Dec-05           | 79.15            | 15.67            | 63.48                 |  |  |
| MW-1         | Mar-06           | 79.15            | 12.75            | 66.40                 |  |  |
| MW-1<br>MW-1 | Jun-06           | 79.15            | 14.60            | 64.55                 |  |  |
| MW-1         | Sep-06           | 79.15            | 16.52            | 62.63                 |  |  |
| MW-1         | Dec-06<br>Mor 07 | 79.15            | 15.89            | 63.26                 |  |  |
| MW-1         | Mar-07           | 79.15            | 15.50<br>20.90   | 63.65<br>58.25        |  |  |
| MW-1         | Jun-07           | 79.15<br>79.15   | 23.30            | 55.85                 |  |  |
| MW-1         | Sep-07<br>Dec-07 | 79.15            | 23.30            | 55.65<br>56.64        |  |  |
| MW-1         | Mar-08           | 79.15            | 20.70            | 58.45                 |  |  |
| MW-1         | Jun-08           | 79.15            | 20.70            | Dry                   |  |  |
| MW-1         | Sep-08           | 79.15            | 22.20            | 56.95                 |  |  |
| MW-1         | Dec-08           | 79.15            | 17.90            | 61.25                 |  |  |
| MW-1         | Mar-09           | 79.15            | 14.93            | 64.22                 |  |  |
| MW-1         | Sep-09           | 79.15            | 15.70            | 63.45                 |  |  |
| MW-1         | Sep-10           | 79.15            | 23.36            | 55.79                 |  |  |
| MW-1         | Apr-11           | 79.15            | 20.61            | 58.54                 |  |  |
| MW-1         | Sep-11           | 79.15            | 22.86            | 56.29                 |  |  |
| MW-1         | Mar-12           | 79.15            | 22.86            | 56.29                 |  |  |
| MW-1         | Sep-12           | 79.15            | 19.50            | 59.65                 |  |  |
| MW-1         | 03/23/13         | 79.15            | 19.23            | 59.92                 |  |  |
| MW-1         | 01/26/16         | 79.15            | 18.83            | 60.32                 |  |  |
|              | 5.120,10         |                  |                  |                       |  |  |
| MW-2         | Aug-97           | 78.45            | 16.32            | 62.13                 |  |  |
| MW-2         | Dec-97           | 78.45            |                  |                       |  |  |
| MW-2         | Mar-98           | 78.45            | 13.05            | 65.40                 |  |  |
| MW-2         | Jul-98           | 78.45            | 14.95            | 63.50                 |  |  |
| MW-2         | Oct-98           | 78.45            | 15.09            | 63.36                 |  |  |
| MW-2         | Jan-99           | 78.45            | 14.61            | 63.84                 |  |  |
| MW-2         | Jun-00           | 78.45            | 14.80            | 63.65                 |  |  |
| MW-2         | Dec-00           | 78.45            |                  |                       |  |  |
| MW-2         | Feb-01           | 78.45            |                  |                       |  |  |
| MW-2         | May-01           | 78.45            | 14.98            | 63.47                 |  |  |
| MW-2         | Jul-01           | 78.45            | 15.86            | 62.59                 |  |  |
| MW-2         | Oct-01           | 78.45            | 16.69            | 61.76                 |  |  |
|              |                  |                  |                  | 00                    |  |  |

Oakland, California (Page 8 of 13)

| Well | Measuring        | TOC Elevation    | Depth to Water   | Groundwater Elevation |  |  |
|------|------------------|------------------|------------------|-----------------------|--|--|
| ID   | Date             | (feet below msl) | (feet below TOC) | (feet below msl)      |  |  |
| I    |                  | ( ,              | (                | ( /                   |  |  |
| MW-2 | Dec-01           | 78.45            | 13.49            | 64.96                 |  |  |
| MW-2 | Mar-02           | 78.45            | 13.07            | 65.38                 |  |  |
| MW-2 | May-02           | 78.45            |                  |                       |  |  |
| MW-2 | Jul-02           | 78.45            | 15.86            | 62.59                 |  |  |
| MW-2 | Oct-02           | 78.45            | 16.54            | 61.91                 |  |  |
| MW-2 | Jan-03           | 78.45            | 14.37            | 64.08                 |  |  |
| MW-2 | Mar-03           | 78.45            | 14.74            | 63.71                 |  |  |
| MW-2 | Aug-03           | 78.45            | 15.75            | 62.70                 |  |  |
| MW-2 | Dec-03           | 78.45            | 16.11            | 62.34                 |  |  |
| MW-2 | Mar-04           | 78.45            | 13.83            | 64.62                 |  |  |
| MW-2 | Jun-04           | 78.45            | 15.76            | 62.69                 |  |  |
| MW-2 |                  | 78.45            |                  |                       |  |  |
| MW-2 | Sep-04           |                  | 16.48            | 61.97                 |  |  |
| MW-2 | Dec-04           | 78.45            | 15.74            | 62.71                 |  |  |
|      | Mar-05           | 78.45            | 13.48            | 64.97                 |  |  |
| MW-2 | Jun-05           | 78.45            | 14.48            | 63.97                 |  |  |
| MW-2 | Sep-05           | 78.45            | 16.00            | 62.45                 |  |  |
| MW-2 | Dec-05           | 78.45            | 14.88            | 63.57                 |  |  |
| MW-2 | Mar-06           | 78.45            | 12.20            | 66.25                 |  |  |
| MW-2 | Jun-06           | 78.45            | 14.15            | 64.30                 |  |  |
| MW-2 | Sep-06           | 78.45            | 16.00            | 62.45                 |  |  |
| MW-2 | Dec-06           | 78.45            | 15.19            | 63.26                 |  |  |
| MW-2 | Mar-07           | 78.45            | 14.78            | 63.67                 |  |  |
| MW-2 | Jun-07           | 78.45            | 20.60            | 57.85                 |  |  |
| MW-2 | Sep-07           | 78.45            | 23.80            | 54.65                 |  |  |
| MW-2 | Dec-07           | 78.45            | 22.36            | 56.09                 |  |  |
| MW-2 | Mar-08           | 78.45            | 20.15            | 58.30                 |  |  |
| MW-2 | Jun-08           | 78.45            | 20.60            | 57.85                 |  |  |
| MW-2 | Sep-08           | 78.45            | 22.23            | 56.22                 |  |  |
| MW-2 | Dec-08           | 78.45            | 17.94            | 60.51                 |  |  |
| MW-2 | Mar-09           | 78.45            | 14.45            | 64.00                 |  |  |
| MW-2 | Sep-09           | 78.45            | 15.90            | 62.55                 |  |  |
| MW-2 | Sep-10           | 78.45            | 23.51            | 54.94                 |  |  |
| MW-2 | Apr-11           | 78.45            | 20.64            | 57.81                 |  |  |
| MW-2 | Sep-11           | 78.45            | 23.05            | 55.40                 |  |  |
| MW-2 | Mar-12           | 78.45            | 23.05            | 55.40                 |  |  |
| MW-2 | Sep-12           | 78.45            | 19.56            | 58.89                 |  |  |
| MW-2 | 03/23/13         | 78.45            | 19.35            | 59.10                 |  |  |
| MW-2 | 01/26/16         | 78.45            | 18.67            | 59.78                 |  |  |
|      | 01/20/10         | 10.10            | 10.07            | 00.10                 |  |  |
| MW-3 | Aug-97           | 77.58            | 15.36            | 62.22                 |  |  |
| MW-3 | Dec-97           | 77.58            |                  |                       |  |  |
| MW-3 | Mar-98           | 77.58            | 12.18            | 65.40                 |  |  |
| MW-3 |                  |                  |                  |                       |  |  |
| MW-3 | Jul-98<br>Oct 08 | 77.58            | 14.08            | 63.50<br>63.34        |  |  |
|      | Oct-98           | 77.58            | 14.24            | 63.34                 |  |  |
| MW-3 | Jan-99           | 77.58            | 13.74            | 63.84                 |  |  |
| MW-3 | Jun-00           | 77.58            | 13.94            | 63.64                 |  |  |
| MW-3 | Dec-00           | 77.58            |                  |                       |  |  |
| MW-3 | Feb-01           | 77.58            |                  |                       |  |  |
| MW-3 | May-01           | 77.58            | 14.08            | 63.50                 |  |  |
| MW-3 | Jul-01           | 77.58            | 14.99            | 62.59                 |  |  |
| MW-3 | Oct-01           | 77.58            | 16.26            | 61.32                 |  |  |
| MW-3 | Dec-01           | 77.58            | 13.62            | 63.96                 |  |  |
| MW-3 | Mar-02           | 77.58            | 13.19            | 64.39                 |  |  |
| MW-3 | May-02           | 77.58            |                  |                       |  |  |
| MW-3 | Jul-02           | 77.58            | 14.97            | 62.61                 |  |  |
| MW-3 | Oct-02           | 77.58            | 15.44            | 62.14                 |  |  |
| MW-3 | Jan-03           | 77.58            | 13.49            | 64.09                 |  |  |
| MW-3 | Mar-03           | 77.58            | 13.83            | 63.75                 |  |  |
|      |                  |                  |                  |                       |  |  |

Oakland, California (Page 9 of 13)

| Well | Measuring | TOC Elevation    | Depth to Water   | Groundwater Elevation |
|------|-----------|------------------|------------------|-----------------------|
| ID   | Date      | (feet below msl) | (feet below TOC) | (feet below msl)      |
| J    |           | · · · · /        |                  |                       |
| MW-3 | Aug-03    | 77.58            | 14.90            | 62.68                 |
| MW-3 | Dec-03    | 77.58            | 15.10            | 62.48                 |
| MW-3 | Mar-04    | 77.58            | 12.93            | 64.65                 |
| MW-3 | Jun-04    | 77.58            | 14.90            | 62.68                 |
| MW-3 | Sep-04    | 77.58            | 15.61            | 61.97                 |
| MW-3 | Dec-04    | 77.58            | 14.77            | 62.81                 |
| MW-3 | Mar-05    | 77.58            | 12.60            | 64.98                 |
| MW-3 | Jun-05    | 77.58            | 13.73            | 63.85                 |
| MW-3 | Sep-05    | 77.58            | 15.14            | 62.44                 |
| MW-3 | Dec-05    | 77.58            | 13.94            | 63.64                 |
| MW-3 |           | 77.58            |                  |                       |
| MW-3 | Mar-06    |                  | 11.25            | 66.33                 |
|      | Jun-06    | 77.58            | 13.27            | 64.31                 |
| MW-3 | Sep-06    | 77.58            | 15.12            | 62.46                 |
| MW-3 | Dec-06    | 77.58            | 14.34            | 63.24                 |
| MW-3 | Mar-07    | 77.58            | 13.96            | 63.62                 |
| MW-3 | Jun-07    | 77.58            | 19.60            | 57.98                 |
| MW-3 | Sep-07    | 77.58            | 22.90            | 54.68                 |
| MW-3 | Dec-07    | 77.58            | 21.45            | 56.13                 |
| MW-3 | Mar-08    | 77.58            | 19.20            | 58.38                 |
| MW-3 | Jun-08    | 77.58            | 18.80            | 58.78                 |
| MW-3 | Sep-08    | 77.58            | 21.97            | 55.61                 |
| MW-3 | Dec-08    | 77.58            | 16.74            | 60.84                 |
| MW-3 | Mar-09    | 77.58            | 13.68            | 63.90                 |
| MW-3 | Sep-09    | 77.58            | 15.10            | 62.48                 |
| MW-3 | Sep-10    | 77.58            | 22.53            | 55.05                 |
| MW-3 | Apr-11    | 77.58            | 19.80            | 57.78                 |
| MW-3 | Sep-11    | 77.58            | 22.12            | 55.46                 |
| MW-3 | Mar-12    | 77.58            | 22.12            | 55.46                 |
| MW-3 | Sep-12    | 77.58            | 19.88            | 57.70                 |
| MW-3 | 03/23/13  | 77.58            | 18.55            | 59.03                 |
| MW-3 | 01/26/16  | 77.58            | 18.09            | 59.49                 |
|      |           |                  |                  |                       |
| MW-4 | Aug-97    | 77.74            |                  |                       |
| MW-4 | Dec-97    | 77.74            |                  |                       |
| MW-4 | Mar-98    | 77.74            | 11.87            | 65.87                 |
| MW-4 | Jul-98    | 77.74            | 13.90            | 63.84                 |
| MW-4 | Oct-98    | 77.74            | 14.10            | 63.64                 |
| MW-4 | Jan-99    | 77.74            | 13.56            | 64.18                 |
| MW-4 | Jun-00    | 77.74            | 13.75            | 63.99                 |
| MW-4 | Dec-00    | 77.74            |                  |                       |
| MW-4 | Feb-01    | 77.74            |                  |                       |
| MW-4 |           |                  | 13.65            | 64.09                 |
| MW-4 | May-01    | 77.74            |                  |                       |
|      | Jul-01    | 77.74            | 14.87            | 62.87                 |
| MW-4 | Oct-01    | 77.74            | 15.78            | 61.96                 |
| MW-4 | Dec-01    | 77.74            | 13.54            | 64.20                 |
| MW-4 | Mar-02    | 77.74            | 13.02            | 64.72                 |
| MW-4 | May-02    | 77.74            |                  |                       |
| MW-4 | Jul-02    | 77.74            | 14.81            | 62.93                 |
| MW-4 | Oct-02    | 77.74            | 15.56            | 62.18                 |
| MW-4 | Jan-03    | 77.74            | 13.39            | 64.35                 |
| MW-4 | Mar-03    | 77.74            | 13.75            | 63.99                 |
| MW-4 | Aug-03    | 77.74            | 14.75            | 62.99                 |
| MW-4 | Dec-03    | 77.74            | 15.11            | 62.63                 |
| MW-4 | Mar-04    | 77.74            | 12.78            | 64.96                 |
| MW-4 | Jun-04    | 77.74            | 14.68            | 63.06                 |
| MW-4 | Sep-04    | 77.74            | 15.17            | 62.57                 |
| MW-4 | Dec-04    | 77.74            | 14.90            | 62.84                 |
| MW-4 | Mar-05    | 77.74            | 12.57            | 65.17                 |
|      |           |                  |                  |                       |

Oakland, California (Page 10 of 13)

| Well | Measuring   | TOC Elevation                         | Depth to Water                        | Groundwater Elevation                 |
|------|-------------|---------------------------------------|---------------------------------------|---------------------------------------|
| ID   | Date        | (feet below msl)                      | (feet below TOC)                      | (feet below msl)                      |
|      |             | , , , , , , , , , , , , , , , , , , , | , , , , , , , , , , , , , , , , , , , | , , , , , , , , , , , , , , , , , , , |
| MW-4 | Jun-05      | 77.74                                 | 13.43                                 | 64.31                                 |
| MW-4 | Sep-05      | 77.74                                 | 15.13                                 | 62.61                                 |
| MW-4 | Dec-05      | 77.74                                 | 13.83                                 | 63.91                                 |
| MW-4 | Mar-06      | 77.74                                 | 10.90                                 | 66.84                                 |
| MW-4 | Jun-06      | 77.74                                 | 13.02                                 | 64.72                                 |
| MW-4 | Sep-06      | 77.74                                 | 15.16                                 | 62.58                                 |
| MW-4 | Dec-06      | 77.74                                 | 14.35                                 | 63.39                                 |
| MW-4 | Mar-07      | 77.74                                 | 13.85                                 | 63.89                                 |
| MW-4 | Jun-07      | 77.74                                 | 18.41                                 | 59.33                                 |
| MW-4 | Sep-07      | 77.74                                 | 19.36                                 | 58.38                                 |
| MW-4 | Dec-07      | 77.74                                 | 19.13                                 | 58.61                                 |
| MW-4 | Mar-08      | 77.74                                 | 17.91                                 | 59.83                                 |
| MW-4 | Jun-08      | 77.74                                 | 18.23                                 | 59.51                                 |
| MW-4 | Sep-08      | 77.74                                 | 19.89                                 | 57.85                                 |
| MW-4 | Dec-08      | 77.74                                 | 16.41                                 | 61.33                                 |
| MW-4 | Mar-09      | 77.74                                 | 13.30                                 | 64.44                                 |
| MW-4 | Sep-09      | 77.74                                 | 14.88                                 | 62.86                                 |
| MW-4 | Sep-10      | 77.74                                 | 19.63                                 | 58.11                                 |
| MW-4 | Apr-11      | 77.74                                 | 17.90                                 | 59.84                                 |
| MW-4 | Sep-11      | 77.74                                 | 19.20                                 | 58.54                                 |
| MW-4 | Mar-12      | 77.74                                 | 19.20                                 | 58.54                                 |
| MW-4 | Sep-12      | 77.74                                 | 17.97                                 | 59.77                                 |
| MW-4 | 03/23/13    | 77.74                                 | 17.63                                 | 60.11                                 |
| MW-4 | 01/26/16    | 77.74                                 | 17.58                                 | 60.16                                 |
|      | • • • • • • |                                       |                                       |                                       |
| MW-5 | Feb-01      | 79.36                                 |                                       |                                       |
| MW-5 | May-01      | 79.36                                 | 15.65                                 | 63.71                                 |
| MW-5 | Jul-01      | 79.36                                 | 16.50                                 | 62.86                                 |
| MW-5 | Oct-01      | 79.36                                 | 17.46                                 | 61.90                                 |
| MW-5 | Dec-01      | 79.36                                 | 15.28                                 | 64.08                                 |
| MW-5 | Mar-02      | 79.36                                 | 14.62                                 | 64.74                                 |
| MW-5 | May-02      | 79.36                                 |                                       |                                       |
| MW-5 | Jul-02      | 79.36                                 | 16.46                                 | 62.90                                 |
| MW-5 | Oct-02      | 79.36                                 | 17.18                                 | 62.18                                 |
| MW-5 | Jan-03      | 79.36                                 | 14.99                                 | 64.37                                 |
| MW-5 | Mar-03      | 79.36                                 | 15.33                                 | 64.03                                 |
| MW-5 | Aug-03      | 79.36                                 | 16.34                                 | 63.02                                 |
| MW-5 | Dec-03      | 79.36                                 | 16.90                                 | 62.46                                 |
| MW-5 | Mar-04      | 79.36                                 | 14.44                                 | 64.92                                 |
| MW-5 | Jun-04      | 79.36                                 | 16.43                                 | 62.93                                 |
| MW-5 | Sep-04      | 79.36                                 | 17.07                                 | 62.29                                 |
| MW-5 | Dec-04      | 79.36                                 | 16.59                                 | 62.77                                 |
| MW-5 | Mar-05      | 79.36                                 | 14.08                                 | 65.28                                 |
| MW-5 | Jun-05      | 79.36                                 | 15.33                                 | 64.03                                 |
| MW-5 | Sep-05      | 79.36                                 | 16.61                                 | 62.75                                 |
| MW-5 | Dec-05      | 79.36                                 | 15.81                                 | 63.55                                 |
| MW-5 | Mar-06      | 79.36                                 | 12.75                                 | 66.61                                 |
| MW-5 | Jun-06      | 79.36                                 | 14.65                                 | 64.71                                 |
| MW-5 | Sep-06      | 79.36                                 | 16.66                                 | 62.70                                 |
| MW-5 | Dec-06      | 79.36                                 | 16.10                                 | 63.26                                 |
| MW-5 | Mar-07      | 79.36                                 | 15.22                                 | 64.14                                 |
| MW-5 | Jun-07      | 79.36                                 | 19.29                                 | 60.07                                 |
| MW-5 | Sep-07      | 79.36                                 |                                       | Dry                                   |
| MW-5 | Dec-07      | 79.36                                 |                                       | Dry                                   |
| MW-5 | Mar-08      | 79.36                                 |                                       | Dry                                   |
| MW-5 | Jun-08      | 79.36                                 |                                       | Dry                                   |
| MW-5 | Sep-08      | 79.36                                 |                                       | Dry                                   |
| MW-5 | Dec-08      | 79.36                                 | 17.81                                 | 61.55                                 |
|      | 200.00      |                                       |                                       | 000                                   |

Oakland, California

(Page 11 of 13)

| Well | Measuring        | TOC Elevation    | Depth to Water                | Groundwater Elevation |
|------|------------------|------------------|-------------------------------|-----------------------|
| ID   | Date             | (feet below msl) | (feet below TOC)              | (feet below msl)      |
|      |                  |                  |                               |                       |
| MW-5 | Mar-09           | 79.36            | 15.02                         | 64.34                 |
| MW-5 | Sep-09           | 79.36            | 16.50                         | 62.86 (c)             |
| MW-5 | Sep-10           | 79.36            | 19.23                         | 60.13                 |
| MW-5 | Apr-11           | 79.36            |                               | Dry                   |
| MW-5 | Sep-11           | 79.36            |                               | Dry                   |
| MW-5 | Mar-12           | 79.36            |                               | Dry                   |
| MW-5 | Sep-12           | 79.36            | 19.27                         | Dry                   |
| MW-5 | 03/23/13         | 79.36            | 19.13                         | 60.23                 |
| MW-5 | 01/26/16         | 79.36            | 18.96                         | 60.40                 |
| MW-6 | Feb-01           | 78.43            |                               |                       |
| MW-6 | May-01           | 78.43            | 15.54                         | 62.89                 |
| MW-6 | Jul-01           | 78.43            | 15.56                         | 62.87                 |
| MW-6 | Oct-01           | 78.43            | 16.41                         | 62.02                 |
| MW-6 | Dec-01           | 78.43            | 14.37                         | 64.06                 |
| MW-6 | 01/30/02         |                  | Land Surveying of Vallejo, CA |                       |
| MW-6 | Mar-02           | 78.43            | 13.75                         | 64.68                 |
| MW-6 | May-02           | 78.43            |                               |                       |
| MW-6 | Jul-02           | 78.43            | 15.55                         | 62.88                 |
| MW-6 | Oct-02           | 78.43            | 16.24                         | 62.19                 |
| MW-6 | Jan-03           | 78.43            | 14.17                         | 64.26                 |
| MW-6 | Mar-03           | 78.43            | 14.52                         | 63.91                 |
| MW-6 | Aug-03           | 78.43            | 15.50                         | 62.93                 |
| MW-6 | Dec-03           | 78.43            | 16.19                         | 62.24                 |
| MW-6 | Mar-04           | 78.43            | 13.51                         | 64.92                 |
| MW-6 | Jun-04           | 78.43            | 15.42                         | 63.01                 |
| MW-6 | Sep-04           | 78.43            | 16.13                         | 62.30                 |
| MW-6 | Dec-04           | 78.43            | 15.40                         | 63.03                 |
| MW-6 | Mar-05           | 78.43            | 13.28                         | 65.15                 |
| MW-6 | Jun-05           | 78.43            | 14.14                         | 64.29                 |
| MW-6 | Sep-05           | 78.43            | 15.61                         | 62.82                 |
| MW-6 | Dec-05           | 78.43            | 14.90                         | 63.53                 |
| MW-6 | Mar-06           | 78.43            | 11.85                         | 66.58                 |
| MW-6 | Jun-06           | 78.43            | 13.73                         | 64.70                 |
| MW-6 |                  | 78.43            | 15.71                         | 62.72                 |
| MW-6 | Sep-06<br>Dec-06 |                  | 15.71                         |                       |
| MW-6 |                  | 78.43<br>78.43   |                               | 63.28                 |
| MW-6 | Mar-07           |                  | 14.58                         | 63.85<br>59.03        |
| MW-6 | Jun-07           | 78.43            | 19.40                         |                       |
|      | Sep-07           | 78.43            | 20.00                         | Dry                   |
| MW-6 | Dec-07           | 78.43            |                               | Dry                   |
| MW-6 | Mar-08           | 78.43            |                               | Dry                   |
| MW-6 | Jun-08           | 78.43            |                               | Dry                   |
| MW-6 | Sep-08           | 78.43            |                               | Dry                   |
| MW-6 | Dec-08           | 78.43            | 16.91                         | 61.52                 |
| MW-6 | Mar-09           | 78.43            | 14.32                         | 64.11                 |
| MW-6 | Sep-09           | 78.43            | 15.55                         | 62.88                 |
| MW-6 | Sep-10           | 78.43            | 19.23                         | 59.20                 |
| MW-6 | Apr-11           | 78.43            |                               | Dry                   |
| MW-6 | Sep-11           | 78.43            |                               | Dry                   |
| MW-6 | Mar-12           | 78.43            |                               | Dry                   |
| MW-6 | Sep-12           | 78.43            | 19.06                         | 59.37                 |
| MW-6 | 03/23/13         | 78.43            | 18.87                         | 59.56                 |
| MW-6 | 01/26/16         | 78.43            | 18.79                         | 59.64                 |
| MW-7 | Feb-01           | 78.27            |                               |                       |
| MW-7 | May-01           | 78.27            | 15.04                         | 63.23                 |
| MW-7 | Jul-01           | 78.27            | 15.69                         | 62.58                 |
| MW-7 | Oct-01           | 78.27            | 16.59                         | 61.68                 |
|      |                  |                  |                               |                       |

Oakland, California

(Page 12 of 13)

| Well         | Measuring        | TOC Elevation    | Depth to Water                | Groundwater Elevation |
|--------------|------------------|------------------|-------------------------------|-----------------------|
| ID           | Date             | (feet below msl) | (feet below TOC)              | (feet below msl)      |
| <u> </u>     |                  |                  | · · · · · /                   | · · · /               |
| MW-7         | Dec-01           | 78.27            | 14.30                         | 63.97                 |
| MW-7         | Mar-02           | 78.27            | 13.87                         | 64.40                 |
| MW-7         | May-02           | 78.27            |                               |                       |
| MW-7         | Jul-02           | 78.27            | 15.72                         | 62.55                 |
| MW-7         | Oct-02           | 78.27            | 16.36                         | 61.91                 |
| MW-7         | Jan-03           | 78.27            | 14.22                         | 64.05                 |
| MW-7         | Mar-03           | 78.27            | 14.57                         | 63.70                 |
| MW-7         | Aug-03           | 78.27            | 15.61                         | 62.66                 |
| MW-7         | Dec-03           | 78.27            | 16.04                         | 62.23                 |
| MW-7         | Mar-04           | 78.27            | 13.57                         | 64.70                 |
| MW-7         | Jun-04           | 78.27            | 15.63                         | 62.64                 |
| MW-7         | Sep-04           | 78.27            | 16.33                         | 61.94                 |
| MW-7         | Dec-04           | 78.27            | 15.70                         | 62.57                 |
| MW-7         | Mar-05           | 78.27            | 13.42                         | 64.85                 |
| MW-7         | Jun-05           | 78.27            | 14.53                         | 63.74                 |
| MW-7         | Sep-05           | 78.27            | 15.81                         | 62.46                 |
| MW-7         | Dec-05           | 78.27            | 14.88                         | 63.39                 |
| MW-7         | Mar-06           | 78.27            | 13.00                         | 65.27                 |
| MW-7         | Jun-06           | 78.27            | 13.98                         | 64.29                 |
| MW-7         | Sep-06           | 78.27            | 15.82                         | 62.45                 |
| MW-7         | Dec-06           | 78.27            | 15.12                         | 63.15                 |
| MW-7         | Mar-07           | 78.27            | 14.66                         | 63.61                 |
| MW-7         | Jun-07           | 78.27            | 19.18                         | 59.09                 |
| MW-7         | Sep-07           | 78.27            | 19.96                         | Dry                   |
| MW-7         | Dec-07           | 78.27            |                               | Dry                   |
| MW-7         | Mar-08           | 78.27            |                               | Dry                   |
| MW-7         | Jun-08           | 78.27            |                               | Dry                   |
| MW-7         | Sep-08           | 78.27            |                               | Dry                   |
| MW-7         | Dec-08           | 78.27            | 17.25                         | 61.02                 |
| MW-7         | Mar-09           | 78.27            | 14.30                         | 63.97                 |
| MW-7<br>MW-7 | Sep-09           | 78.27            | 15.71                         | 62.56                 |
| MW-7         | Sep-10           | 78.27<br>78.27   | 19.52                         | 58.75<br>Dr/          |
| MW-7         | Apr-11<br>Sep-11 | 78.27            |                               | Dry                   |
| MW-7         | Mar-12           | 78.27            |                               | Dry<br>Dry            |
| MW-7         | Sep-12           | 78.27            | 18.78                         | 59.49                 |
| MW-7         | 03/23/13         | 78.27            | 18.70                         | 59.57                 |
| MW-7         | 01/26/16         | 78.27            | 17.65                         | 60.62                 |
| 10100-7      | 01/20/10         | 10.21            | 17.05                         | 00.02                 |
| MW-8         | May-01           | 76.39            | 12.75                         | 63.64                 |
| MW-8         | Jul-01           | 76.39            | 13.84                         | 62.55                 |
| MW-8         | Oct-01           | 76.39            | 14.65                         | 61.74                 |
| MW-8         | Dec-01           | 76.39            | 12.39                         | 64.00                 |
| MW-8         | 01/30/02         |                  | Land Surveying of Vallejo, CA |                       |
| MW-8         | Mar-02           | 76.39            | 11.89                         | 64.50                 |
| MW-8         | May-02           | 76.39            |                               |                       |
| MW-8         | Jul-02           | 76.39            | 13.96                         | 62.43                 |
| MW-8         | Oct-02           | 76.39            | 14.48                         | 61.91                 |
| MW-8         | Jan-03           | 76.39            | 12.49                         | 63.90                 |
| MW-8         | Mar-03           | 76.39            | 12.85                         | 63.54                 |
| MW-8         | Aug-03           | 76.39            | 13.75                         | 62.64                 |
| MW-8         | Dec-03           | 76.39            | 14.50                         | 61.89                 |
| MW-8         | Mar-04           | 76.39            | 11.78                         | 64.61                 |
| MW-8         | Jun-04           | 76.39            | 13.71                         | 62.68                 |
| MW-8         | Sep-04           | 76.39            | 14.43                         | 61.96                 |
| MW-8         | Dec-04           | 76.39            | 13.64                         | 62.75                 |
| MW-8         | Mar-05           | 76.39            | 11.52                         | 64.87                 |
| MW-8         | Jun-05           | 76.39            | 12.50                         | 63.89                 |
|              |                  |                  |                               |                       |

Oakland, California

(Page 13 of 13)

| Well | Measuring | TOC Elevation    | Depth to Water   | Groundwater Elevation |
|------|-----------|------------------|------------------|-----------------------|
| ID   | Date      | (feet below msl) | (feet below TOC) | (feet below msl)      |
| MW-8 | Sep-05    | 76.39            | 13.90            | 62.49                 |
| MW-8 | Dec-05    | 76.39            | 12.75            | 63.64                 |
| MW-8 | Mar-06    | 76.39            | 10.80            | 65.59                 |
| MW-8 | Jun-06    | 76.39            | 12.10            | 64.29                 |
| MW-8 | Sep-06    | 76.39            | 13.93            | 62.46                 |
| MW-8 | Dec-06    | 76.39            | 13.12            | 63.27                 |
| MW-8 | Mar-07    | 76.39            | 12.76            | 63.63                 |
| MW-8 | Jun-07    | 76.39            | 18.40            | Dry                   |
| MW-8 | Sep-07    | 76.39            | 19.12            | Dry                   |
| MW-8 | Dec-07    | 76.39            |                  | Dry                   |
| MW-8 | Mar-08    | 76.39            |                  | Dry                   |
| MW-8 | Jun-08    | 76.39            |                  | Dry                   |
| MW-8 | Sep-08    | 76.39            |                  | Dry                   |
| MW-8 | Dec-08    | 76.39            | 17.21            | 59.18                 |
| MW-8 | Mar-09    | 76.39            | 12.60            | 63.79                 |
| MW-8 | Sep-09    | 76.39            | 13.95            | 62.44                 |
| MW-8 | Sep-10    | 76.39            | 19.29            | 57.10                 |
| MW-8 | Apr-11    | 76.39            |                  | Dry                   |
| MW-8 | Sep-11    | 76.39            |                  | Dry                   |
| MW-8 | Mar-12    | 76.39            | 18.38            | 58.01                 |
| MW-8 | Sep-12    | 76.39            | 17.98            | 58.41                 |
| MW-8 | 03/23/13  | 76.39            | 17.77            | 58.62                 |
| MW-8 | 01/26/16  | 76.39            | 17.07            | 59.32                 |

Notes: Data prior to August 2003 at 240 MacArthur Boulevard are likely not valid as well elevations were not surveyed.

msl = Mean sea level.

TOC = Top of casing.

# TABLE 5A CUMULATIVE GROUNDWATER ANALYTICAL RESULTS Bayrock Oakland 230 and 240 West MacArthur Boulevard Oakland, California Oakland, California

(Page 1 of 14)

|      |         | 5520E&F | E&F 8015B |        |        | 8260B 8021B/8260B |        |        |        |        | 8021B  | 8260B  |
|------|---------|---------|-----------|--------|--------|-------------------|--------|--------|--------|--------|--------|--------|
| Well | Date    | O&G     | TPHmo     | TPHd   | TPHg   | TPPH              | В      | Т      | E      | Х      | MTBE   | MTBE   |
| ID   | Sampled | (µg/L)  | (µg/L)    | (µg/L) | (µg/L) | (µg/L)            | (µg/L) | (µg/L) | (µg/L) | (µg/L) | (µg/L) | (µg/L) |

### 230 MacArthur Boulevard

| MW-1    | 07/14/88 | <br> | <br>ND         |     | ND    | ND    | ND    | ND    |      |       |
|---------|----------|------|----------------|-----|-------|-------|-------|-------|------|-------|
| MW-1    | 04/10/88 | <br> | <br>ND         |     | 8     | 4.3   | ND    | 9     |      |       |
| MW-1    | 10/11/88 | <br> | <br>ND         |     | ND    | ND    | ND    | ND    |      |       |
| MW-1    | 09/12/88 | <br> | <br>ND         |     | ND    | ND    | ND    | ND    |      |       |
| MW-1    | 10/01/89 | <br> | <br>ND         |     | ND    | ND    | ND    |       |      |       |
| MW-1    | 01/20/89 | <br> | <br>ND         |     | ND    |       |       | ND    |      |       |
| MW-1    | 06/02/89 |      | <br>ND         |     | ND    | ND    | ND    | ND    |      |       |
|         |          | <br> |                |     |       |       |       |       |      |       |
| MW-1    | 10/03/89 | <br> | <br>ND         |     | ND    | ND    | ND    | ND    |      |       |
| MW-1    | 06/06/89 | <br> | <br>ND         |     | ND    | ND    | ND    | ND    |      |       |
| MW-1    | 07/09/89 | <br> | <br>ND         |     | ND    | ND    | ND    | ND    |      |       |
| MW-1    | 12/18/89 | <br> | <br>ND         |     | ND    | ND    | ND    | ND    |      |       |
| MW-1    | 08/03/90 | <br> | <br>ND         |     | ND    | ND    | ND    | ND    |      |       |
| MW-1    | 07/06/90 | <br> | <br>ND         |     | ND    | ND    | ND    | ND    |      |       |
| MW-1    | 05/09/90 | <br> | <br>ND         |     | ND    | ND    | ND    | ND    |      |       |
| MW-1    | 03/12/90 | <br> | <br>ND         |     | ND    | ND    | ND    | ND    |      |       |
| MW-1    | 01/03/91 | <br> | <br>ND         |     | ND    | ND    | ND    | ND    |      |       |
| MW-1    | 03/06/91 | <br> | <br>ND         |     | ND    | ND    | ND    | ND    |      |       |
| MW-1    | 04/09/91 | <br> | <br>ND         |     | ND    | ND    | ND    | ND    |      |       |
| MW-1    | 03/13/92 | <br> | <br>ND         |     | ND    | ND    | ND    | ND    |      |       |
| MW-1    | 03/06/92 | <br> | <br>ND         |     | ND    | ND    | ND    | ND    |      |       |
| MW-1    | 08/19/92 | <br> | <br>87         |     | ND    | ND    | ND    | ND    |      |       |
| MW-1    | 11/16/92 | <br> | <br>ND         |     | ND    | ND    | ND    | ND    |      |       |
| MW-1    | 02/18/93 | <br> | <br>59e        |     | ND    | ND    | ND    | ND    |      |       |
| MW-1    | 01/06/93 | <br> | <br>ND         |     | ND    | ND    | ND    | ND    |      |       |
| MW-1    | 08/30/93 | <br> | <br>ND         |     | ND    | ND    | ND    | ND    |      |       |
| MW-1    | 12/13/93 | <br> | <br>ND         |     | ND    | ND    | ND    | ND    |      |       |
| MW-1    | 03/03/94 | <br> | <br>100        |     | ND    | ND    | ND    | ND    |      |       |
| MW-1    | 06/06/94 | <br> | <br>ND         |     | ND    | ND    | ND    | ND    |      |       |
| MW-1    | 12/09/94 | <br> | <br>ND         |     | ND    | ND    | ND    | ND    |      |       |
| MW-1    | 12/15/94 | <br> | <br>ND         |     | ND    | ND    | ND    | ND    |      |       |
| MW-1    | 03/13/95 | <br> | <br>60         |     | 4.7   | 9.8   | ND    | 2.9   |      |       |
| MW-1    | 04/21/95 | <br> | <br>ND         |     | ND    | ND    | ND    | ND    |      |       |
| MW-1    | 06/26/95 | <br> | <br>ND         |     | ND    | ND    | ND    | ND    |      |       |
| MW-1    | 12/09/95 | <br> | <br>ND         |     | ND    | ND    | ND    | ND    |      |       |
| MW-1    | 03/21/96 |      | <50            |     | <0.5  | <0.5  | <0.5  | <0.5  | ND   |       |
|         |          | <br> | <br><50<br><50 |     |       |       |       |       |      |       |
| MW-1    | 06/28/96 | <br> |                |     | <0.5  | < 0.5 | <0.5  | <0.5  | <2.5 |       |
| MW-1    | 09/19/96 | <br> | <br><50        |     | <0.5  | <0.5  | <0.5  | <0.5  | <2.5 |       |
| MW-1    | 12/19/96 | <br> | <br>           |     |       |       |       |       |      |       |
| MW-1    | 05/12/97 | <br> | <br>           |     |       |       |       |       |      |       |
| MW-1    | 12/24/98 | <br> | <br>           |     |       |       |       |       |      |       |
| MW-1    | 12/23/99 | <br> | <br>           |     |       |       |       |       |      |       |
| MW-1    | 11/12/00 | <br> | <br>           |     |       |       |       |       |      |       |
| MW-1    | 12/27/01 | <br> | <br>           |     |       |       |       |       |      |       |
| MW-1    | 12/03/02 | <br> | <br>           |     |       |       |       |       |      |       |
| MW-1    | 03/14/02 | <br> | <br>           | <50 | <0.50 | <0.50 | <0.50 | <0.50 |      | <5.0  |
| MW-1    | 06/13/02 | <br> | <br>           |     |       |       |       |       |      |       |
| MW-1    | 09/09/02 | <br> | <br>           |     |       |       |       |       |      |       |
| MW-1    | 12/12/02 | <br> | <br>           |     |       |       |       |       |      |       |
| MW-1    | 10/03/03 | <br> | <br>           | <50 | <0.50 | <0.50 | <0.50 | <0.50 |      | <5.0  |
| MW-1    | 10/06/03 | <br> | <br>           |     |       |       |       |       |      |       |
| MW-1    | 09/16/03 | <br> | <br>           |     |       |       |       |       |      |       |
| MW-1    | 03/12/03 | <br> | <br>           |     |       |       |       |       |      |       |
| MW-1    | 11/03/04 | <br> | <br>           | <50 | <0.50 | <0.50 | <0.50 | <1.0  |      | <0.50 |
| MW-1    | 06/17/04 | <br> | <br>           |     |       |       |       |       |      |       |
| MW-1    | 09/13/04 | <br> | <br>           |     |       |       |       |       |      |       |
| MW-1    | 07/12/04 | <br> | <br>           |     |       |       |       |       |      |       |
| MW-1    | 03/03/05 | <br> | <br>           | <50 | <0.50 | <0.50 | <0.50 | <1.0  |      | <0.50 |
| MW-1    | 06/14/05 | <br> | <br>           | <50 |       | <0.50 | <0.50 |       |      | <0.50 |
| MW-1    | 09/19/05 | <br> | <br>           |     |       |       |       |       |      |       |
| 17177-1 | 00/10/00 | <br> | <br>           |     |       |       |       |       |      |       |

# TABLE 5A CUMULATIVE GROUNDWATER ANALYTICAL RESULTS Bayrock Oakland 230 and 240 West MacArthur Boulevard Oakland, California

(Page 2 of 14)

|              |     |                      | 5520E&F |        | 8015B  |            | 8260B   | 8021B/8260B  |              |              |              | 8021B  | 8260B  |
|--------------|-----|----------------------|---------|--------|--------|------------|---------|--------------|--------------|--------------|--------------|--------|--------|
| Well         |     | Date                 | O&G     | TPHmo  | TPHd   | TPHg       | TPPH    | В            | Т            | E            | Х            | MTBE   | MTBE   |
| ID           |     | Sampled              | (µg/L)  | (µg/L) | (µg/L) | (µg/L)     | (µg/L)  | (µg/L)       | (µg/L)       | (µg/L)       | (µg/L)       | (µg/L) | (µg/L) |
|              |     |                      |         |        |        |            |         |              |              |              |              |        |        |
| MW-1         |     | 03/30/06             |         |        |        |            | <50.0   | <0.500       | <0.500       | <0.500       | <0.500       |        | <0.500 |
| MW-1         |     | 09/27/06             |         |        |        |            |         |              |              |              |              |        |        |
| MW-1         |     | 09/28/06             |         |        |        |            | <50.0   | <0.500       | <0.500       | <0.500       | <0.500       |        | <0.500 |
| MW-1         |     | 12/26/06             |         |        |        |            |         |              |              |              |              |        |        |
| MW-1         |     | 03/29/07             |         |        |        |            | <50     | <0.50        | <1.0         | <1.0         | <1.0         |        | <1.0   |
| MW-1         |     | 07/06/07             |         |        |        |            |         |              |              |              |              |        |        |
| MW-1         |     | 09/18/07             |         |        |        |            | <50     | <0.50        | <1.0         | <1.0         | <1.0         |        | <1.0   |
| MW-1<br>MW-1 |     | 12/17/07             |         |        |        |            |         |              |              |              |              |        |        |
| MW-1         |     | 02/27/08<br>05/28/08 |         |        |        |            | <50<br> | <0.50<br>    | <1.0<br>     | <1.0         | <1.0<br>     |        | <1.0   |
| MW-1         |     | 09/19/08             |         |        |        |            | <br>59  | <0.50        | <1.0         | <1.0         | <1.0         |        | <1.0   |
| MW-1         |     | 04/12/08             |         |        |        |            |         |              |              |              |              |        |        |
| MW-1         |     | 02/25/09             |         |        |        |            | <50     | <0.50        | <1.0         | <1.0         | <1.0         |        | <1.0   |
| MW-1         |     | 05/26/09             |         |        |        |            |         |              |              |              |              |        |        |
| MW-1         |     | 09/18/09             |         |        |        |            | <50     | <0.50        | <1.0         | <1.0         | <1.0         |        | <1.0   |
| MW-1         |     | 03/16/10             |         |        |        |            | <50     | <0.50        | <1.0         | <1.0         | <1.0         |        | <1.0   |
| MW-1         |     | 09/27/10             |         |        |        |            | <50     | <0.50        | <1.0         | <1.0         | <1.0         |        | <1.0   |
| MW-1         |     | 03/25/11             |         |        |        |            | <50     | <0.50        | <.0.50       | <0.50        | <1.0         |        | <1.0   |
|              |     |                      |         |        |        |            |         |              |              |              |              |        |        |
| MW-2         |     | 07/14/88             |         |        |        | ND         |         | 7.9          | 2.6          | 1.1          | 4            |        |        |
| MW-2         |     | 04/10/88             |         |        |        | 90         |         | ND           | 1.3          | 2.3          | 12           |        |        |
| MW-2         |     | 10/11/88             |         |        |        | ND         |         | ND           | ND           | ND           | 2            |        |        |
| MW-2         |     | 09/12/88             |         |        |        | ND         |         | ND           | 0.6          | ND           | 3            |        |        |
| MW-2         |     | 01/20/89             |         |        |        | ND         |         | ND           | ND           | ND           | ND           |        |        |
| MW-2         |     | 06/02/89             |         |        |        |            |         | ND           | ND           | ND           | ND           |        |        |
| MW-2         |     | 10/03/89             |         |        |        | ND         |         | ND           | ND           | ND           | ND           |        |        |
| MW-2         |     | 06/06/89             |         |        |        | ND         |         | ND           | 0.5          | ND           | ND           |        |        |
| MW-2         |     | 07/09/89             |         |        |        | ND         |         | ND           | ND           | ND           | ND           |        |        |
| MW-2         |     | 12/18/89             |         |        |        | ND         |         | ND           | ND           | ND           | ND           |        |        |
| MW-2<br>MW-2 |     | 08/03/90<br>07/06/90 |         |        |        | ND         |         | ND           | ND           | ND<br>ND     | ND           |        |        |
| MW-2         |     | 07/06/90<br>05/09/90 |         |        |        | ND<br>ND   |         | ND<br>ND     | ND<br>ND     | ND<br>ND     | ND<br>ND     |        |        |
| MW-2         |     | 03/12/90             |         |        |        | ND         |         | ND           | ND           | ND           | ND           |        |        |
| MW-2         |     | 03/12/90             |         |        |        | ND         |         | ND           | ND           | ND           | ND           |        |        |
| MW-2         |     | 03/06/91             |         |        |        | ND         |         | ND           | ND           | ND           | ND           |        |        |
| MW-2         |     | 04/09/91             |         |        |        | ND         |         | ND           | ND           | ND           | ND           |        |        |
| MW-2         |     | 03/13/92             |         |        |        | ND         |         | ND           | ND           | ND           | ND           |        |        |
| MW-2         |     | 03/06/92             |         |        |        | ND         |         | ND           | ND           | ND           | ND           |        |        |
| MW-2         |     | 08/19/92             |         |        |        | 67         |         | ND           | ND           | ND           | ND           |        |        |
| MW-2         |     | 11/16/92             |         |        |        | 50         |         | ND           | ND           | ND           | 1.2          |        |        |
| MW-2         |     | 02/18/93             |         |        |        | 52e        |         | ND           | ND           | ND           | ND           |        |        |
| MW-2         | Dup | 02/18/93             |         |        |        | 52e        |         | ND           | ND           | ND           | ND           |        |        |
| MW-2         |     | 01/06/93             |         |        |        | ND         |         | ND           | ND           | ND           | ND           |        |        |
| MW-2         |     | 08/30/93             |         |        |        | 70e        |         | ND           | ND           | ND           | ND           |        |        |
| MW-2         |     | 12/13/93             |         |        |        | 68e        |         | ND           | ND           | ND           | ND           |        |        |
| MW-2         |     | 03/03/94             |         |        |        | 280e       |         | ND           | ND           | ND           | ND           |        |        |
| MW-2         |     | 06/06/94             |         |        |        | ND         |         | ND           | ND           | ND           | ND           |        |        |
| MW-2         |     | 12/09/94             |         |        |        | ND         |         | ND           | ND           | ND           | ND           |        |        |
| MW-2         |     | 12/15/94             |         |        |        | 230e       |         | ND           | ND           | ND           | ND           |        |        |
| MW-2         |     | 03/13/95             |         |        |        | ND         |         | 2.9          | 6.3          | ND           | 2.7          |        |        |
| MW-2         |     | 04/21/95             |         |        |        | ND         |         | ND           | ND           | ND           | ND           |        |        |
| MW-2<br>MW-2 |     | 06/26/95<br>12/09/95 |         |        |        | ND<br>ND   |         | ND<br>ND     | ND<br>ND     | ND<br>ND     | ND<br>ND     |        |        |
| MW-2         |     | 03/21/96             |         |        |        | <50        |         | <0.5         | <0.5         | <0.5         | <0.5         | <br>ND |        |
| MW-2         |     | 06/28/96             |         |        |        | <50<br><50 |         | <0.5<br><0.5 | <0.5<br><0.5 | <0.5<br><0.5 | <0.5<br><0.5 | 160    |        |
| MW-2         |     | 09/19/96             |         |        |        | <50<br><50 |         | <0.5<br><0.5 | <0.5<br><0.5 | <0.5<br><0.5 | <0.5<br><0.5 | 27     |        |
| MW-2         |     | 12/19/96             |         |        |        |            |         |              |              |              |              |        |        |
| MW-2         |     | 05/12/97             |         |        |        |            |         |              |              |              |              |        |        |
| MW-2         |     | 12/24/98             |         |        |        |            |         |              |              |              |              |        |        |
| MW-2         |     | 12/23/99             |         |        |        |            |         |              |              |              |              |        |        |
| MW-2         |     | 11/12/00             |         |        |        |            |         |              |              |              |              |        |        |
|              |     |                      |         |        |        |            |         |              |              |              |              |        |        |

# TABLE 5A CUMULATIVE GROUNDWATER ANALYTICAL RESULTS Bayrock Oakland 230 and 240 West MacArthur Boulevard Oakland, California

(Page 3 of 14)

|              |     |                      | 5520E&F |        | 8015B  |              | 8260B       | 8021B/8260B    |                |                | 8021B        | 8260B  |          |
|--------------|-----|----------------------|---------|--------|--------|--------------|-------------|----------------|----------------|----------------|--------------|--------|----------|
| Well         |     | Date                 | O&G     | TPHmo  | TPHd   | TPHg         | TPPH        | В              | Т              | E              | Х            | MTBE   | MTBE     |
| ID           |     | Sampled              | (µg/L)  | (µg/L) | (µg/L) | (µg/L)       | (µg/L)      | (µg/L)         | (µg/L)         | (µg/L)         | (µg/L)       | (µg/L) | (µg/L)   |
|              |     |                      |         |        |        |              |             |                |                |                |              |        |          |
| MW-2         |     | 12/27/01             |         |        |        |              |             |                |                |                |              |        | 95       |
| MW-2         |     | 03/14/02             |         |        |        |              | 120         | <0.50          | <0.50          | <0.50          | <0.50        |        | 31       |
| MW-2         |     | 06/13/02             |         |        |        |              | 100         | <0.50          | <0.50          | <0.50          | <0.50        |        | 32       |
| MW-2         |     | 09/09/02             |         |        |        |              | 90          | <0.50          | <0.50          | <0.50          | <0.50        |        | 54       |
| MW-2         |     | 12/12/02             |         |        |        |              | 92          | <0.50          | <0.50          | < 0.50         | <0.50        |        | 21       |
| MW-2         |     | 10/03/03             |         |        |        |              | 110         | <0.50          | <0.50          | < 0.50         | <0.50        |        | 33       |
| MW-2         |     | 10/06/03             |         |        |        |              | <50         | <0.50          | <0.50          | < 0.50         | <1.0         |        | 49       |
| MW-2         |     | 09/16/03             |         |        |        |              | <50         | <0.50          | <0.50          | <0.50          | <1.0         |        | 39       |
| MW-2         |     | 03/12/03             |         |        |        |              | 56e         | <0.50          | <0.50          | <0.50          | <1.0         |        | 3.6      |
| MW-2         |     | 11/03/04             |         |        |        |              | 58e         | <0.50          | <0.50          | <0.50          | <1.0         |        | 67<br>40 |
| MW-2         |     | 06/17/04             |         |        |        |              | <50         | <0.50          | <0.50          | <0.50          | <1.0         |        | 40       |
| MW-2         |     | 09/13/04             |         |        |        |              | 68 I        | <0.50          | <0.50          | <0.50          | <1.0         |        | 44<br>54 |
| MW-2         |     | 07/12/04             |         |        |        |              | <50e        | <0.50          | <0.50          | <0.50          | <1.0         |        | 54       |
| MW-2         |     | 03/03/05             |         |        |        |              | 110e        | <0.50          | <0.50          | <0.50          | <1.0         |        | 82<br>20 |
| MW-2<br>MW-2 |     | 06/14/05<br>09/19/05 |         |        |        |              | <50e<br><50 | <0.50<br><0.50 | <0.50<br><0.50 | <0.50<br><0.50 | <1.0<br><1.0 |        | 29<br>31 |
| MW-2         |     | 03/30/06             |         |        |        |              | <50.0       | <0.500         | <0.500         | <0.500         | <0.500       |        | 39.1     |
| MW-2         |     | 03/30/06             |         |        |        |              | <50.0       | <0.500         | <0.500         | <0.500         | <0.500       |        |          |
| MW-2         |     | 09/27/08             |         |        |        |              | <br><50.0   | <0.500         | <0.500         | <0.500         | <0.500       |        | 16.7     |
| MW-2         |     | 12/26/06             |         |        |        |              | <50.0       | <0.500         | <0.500         | <0.500         | <0.500       |        |          |
| MW-2         |     | 03/29/07             |         |        |        |              | <50         | <0.50          | <1.0           | <1.0           | <1.0         |        | 13       |
| MW-2         |     | 07/06/07             |         |        |        |              |             |                |                |                |              |        |          |
| MW-2         |     | 09/18/07             |         |        |        |              | 72          | <0.50          | <1.0           | <1.0           | <1.0         |        | 1.3      |
| MW-2         |     | 12/17/07             |         |        |        |              |             |                |                |                |              |        |          |
| MW-2         |     | 02/27/08             |         |        |        |              | 60          | <0.50          | <1.0           | <1.0           | <1.0         |        | 18       |
| MW-2         |     | 05/28/08             |         |        |        |              |             |                |                |                |              |        |          |
| MW-2         |     | 09/19/08             |         |        |        |              | 210         | <0.50          | <1.0           | <1.0           | <1.0         |        | 15       |
| MW-2         |     | 04/12/08             |         |        |        |              |             |                |                |                |              |        |          |
| MW-2         |     | 02/25/09             |         |        |        |              | 120         | <0.50          | <1.0           | <1.0           | <1.0         |        | 11       |
| MW-2         |     | 05/26/09             |         |        |        |              |             |                |                |                |              |        |          |
| MW-2         |     | 09/18/09             |         |        |        |              | 130         | <0.50          | <1.0           | <1.0           | <1.0         |        | 5.6      |
| MW-2         |     | 03/16/10             |         |        |        |              | 110         | <0.50          | <1.0           | <1.0           | <1.0         |        | 7.6      |
| MW-2         |     | 09/27/10             |         |        |        |              | 270         | <0.50          | <1.0           | <1.0           | <1.0         |        | <1.0     |
| MW-2         |     | 03/25/11             |         |        |        |              | 120m        | <0.50          | <0.50          | <0.50          | <1.0         |        | 1.8      |
|              |     |                      |         |        |        |              |             |                |                |                |              |        |          |
| MW-3         |     | 07/14/88             |         |        |        | ND           |             | ND             | ND             | ND             | ND           |        |          |
| MW-3         |     | 04/10/88             |         |        |        | ND           |             | ND             | ND             | ND             | 5            |        |          |
| MW-3         |     | 10/11/88             |         |        |        | ND           |             | ND             | ND             | ND             | ND           |        |          |
| MW-3         |     | 09/12/88             |         |        |        | ND           |             | ND             | ND             | ND             | ND           |        |          |
| MW-3         |     | 10/01/89             |         |        |        | ND           |             | ND             | ND             | ND             |              |        |          |
| MW-3         |     | 01/20/89             |         |        |        |              |             |                | ND             | ND             | ND           |        |          |
| MW-3         |     | 06/02/89             |         |        |        | 70           |             | ND             | ND             | ND             | ND           |        |          |
| MW-3         |     | 10/03/89             |         |        |        | 150          |             | ND             | ND             | ND             | ND           |        |          |
| MW-3         |     | 06/06/89             |         |        |        | ND           |             | ND             | ND             | ND             | ND           |        |          |
| MW-3         |     | 07/09/89             |         |        |        | ND           |             | 0.65           | ND             | ND             | ND           |        |          |
| MW-3         |     | 12/18/89             |         |        |        | 46           |             | 1.3            | ND             | 0.44           | 0.66         |        |          |
| MW-3         |     | 08/03/90             |         |        |        | ND           |             | ND             | ND             | ND             | ND           |        |          |
| MW-3         |     | 07/06/90             |         |        |        | ND           |             |                | ND             | ND             | ND           |        |          |
| MW-3         |     | 05/09/90             |         |        |        | ND           |             |                | ND             | ND             | ND           |        |          |
| MW-3         |     | 03/12/90             |         |        |        | ND           |             | ND             | ND             | ND<br>22       | ND           |        |          |
| MW-3         |     | 01/03/91             |         |        |        | 1.9<br>ND    |             | 59<br>ND       |                | 22<br>ND       | ND           |        |          |
| MW-3<br>MW-3 |     | 03/06/91<br>04/09/91 |         |        |        | ND<br>ND     |             | ND<br>ND       | ND<br>ND       | ND<br>ND       | ND<br>ND     |        |          |
| MW-3         |     | 03/13/92             |         |        |        | ND           |             | ND             | ND             | ND             | ND           |        |          |
| MW-3         |     | 03/13/92<br>03/06/92 |         |        |        | ND           |             | ND             | ND             | ND             | ND           |        |          |
| MW-3         |     | 03/06/92<br>08/19/92 |         |        |        | ND<br>92     |             | ND             | ND             | ND<br>ND       | ND           |        |          |
| MW-3         | Dup | 08/19/92             |         |        |        | 92<br>76     |             | ND             | ND             | ND             | ND           |        |          |
| MW-3         | Dup | 11/16/92             |         |        |        | 200e         |             | ND             | ND             | ND             | ND           |        |          |
| MW-3         | Dup | 11/16/92             |         |        |        | 200e<br>140e |             | ND             | ND             | ND             | ND           |        |          |
| MW-3         | Dup | 02/18/93             |         |        |        | 680e         |             | ND             | ND             | ND             | ND           |        |          |
| MW-3         |     | 01/06/93             |         |        |        | 160e         |             | ND             | ND             | ND             | ND           |        |          |
|              |     | 01/00/00             |         |        |        | 1000         |             |                |                |                |              |        |          |

# TABLE 5A CUMULATIVE GROUNDWATER ANALYTICAL RESULTS Bayrock Oakland 230 and 240 West MacArthur Boulevard Oakland, California

(Page 4 of 14)

|      |     |           | 5520E&F |        | 8015B  |        | 8260B   | 8021B/8260B |        |        | 8021B  | 8260B  |         |
|------|-----|-----------|---------|--------|--------|--------|---------|-------------|--------|--------|--------|--------|---------|
| Well |     | Date      | O&G     | TPHmo  | TPHd   | TPHg   | TPPH    | В           | Т      | Е      | Х      | MTBE   | MTBE    |
| ID   |     | Sampled   | (µg/L)  | (µg/L) | (µg/L) | (µg/L) | (µg/L)  | (µg/L)      | (µg/L) | (µg/L) | (µg/L) | (µg/L) | (µg/L)  |
|      |     |           |         |        |        |        |         |             |        |        |        |        |         |
| MW-3 | Dup | 01/06/93  |         |        |        | 150e   |         | ND          | ND     | ND     | ND     |        |         |
| MW-3 |     | 08/30/93  |         |        |        | 110e   |         | ND          | ND     | ND     | ND     |        |         |
| MW-3 |     | 12/13/93  |         |        |        | 140e   |         | ND          | ND     | ND     | ND     |        |         |
| MW-3 | Dup | 12/13/93  |         |        |        | 110e   |         | ND          | ND     | ND     | ND     |        |         |
| MW-3 |     | 03/03/94  |         |        |        | 61e    |         | ND          | ND     | ND     | ND     |        |         |
| MW-3 |     | 06/06/94  |         |        |        | ND     |         | ND          | ND     | ND     | ND     |        |         |
| MW-3 |     | 12/09/94  |         |        |        | ND     |         | ND          | ND     | ND     | ND     |        |         |
| MW-3 |     | 12/15/94  |         |        |        | ND     |         | ND          | 0.9    | ND     | 0.6    |        |         |
| MW-3 |     | 03/13/95  |         |        |        | 100e   |         | 7.9         | 17     | 0.7    | 6.1    |        |         |
| MW-3 |     | 04/21/95  |         |        |        | 60     |         | 0.9         | 1.1    | ND     | 1      |        |         |
| MW-3 |     | 06/26/95  |         |        |        | ND     |         | ND          | ND     | ND     | ND     |        |         |
| MW-3 |     | 09/12/95  |         |        |        | ND     |         | ND          | ND     | ND     | ND     |        |         |
| MW-3 |     | 03/21/96  |         |        |        | <50    |         | <0.5        | <0.5   | <0.5   | <0.5   | 17     |         |
| MW-3 |     | 06/28/96  |         |        |        | <50    |         | <0.5        | <0.5   | <0.5   | <0.5   | <0.5   |         |
| MW-3 |     | 09/19/96  |         |        |        | <50    |         | <0.5        | <0.5   | <0.5   | <0.5   | <2.5   |         |
| MW-3 |     | 12/19/96  |         |        |        |        |         |             |        |        |        |        |         |
| MW-3 |     | 05/12/97  |         |        |        |        |         |             |        |        |        |        |         |
| MW-3 |     | 12/24/98  |         |        |        |        |         |             |        |        |        |        |         |
| MW-3 |     | 12/24/90  |         |        |        |        |         |             |        |        |        |        |         |
| MW-3 |     | 11/12/00  |         |        |        |        |         |             |        |        |        |        |         |
| MW-3 |     | 12/27/01  |         |        |        |        |         |             |        |        |        |        |         |
| MW-3 |     | 12/03/02  |         |        |        |        |         |             |        |        |        |        |         |
| MW-3 |     | 03/14/02  |         |        |        |        | <br><50 | <0.50       | <0.50  | <0.50  | <0.50  |        | 40      |
| MW-3 |     | 06/13/02  |         |        |        |        |         |             | <0.50  | <0.50  | <0.50  |        | 40      |
| MW-3 |     | 09/09/02  |         |        |        |        |         |             |        |        |        |        |         |
| MW-3 |     | 12/12/02  |         |        |        |        |         |             |        |        |        |        |         |
|      |     |           |         |        |        |        |         |             |        |        |        |        | <br>E A |
| MW-3 |     | 10/03/03  |         |        |        |        | <50     | <0.50       | <0.50  | <0.50  | <0.50  |        | 5.4     |
| MW-3 |     | 10/06/03  |         |        |        |        |         |             |        |        |        |        |         |
| MW-3 |     | 09/16/03  |         |        |        |        |         |             |        |        |        |        |         |
| MW-3 |     | 03/12/03  |         |        |        |        |         |             |        |        |        |        |         |
| MW-3 |     | 11/03/04  |         |        |        |        | <50     | <0.50       | <0.50  | <0.50  | <1.0   |        | 3.5     |
| MW-3 |     | 06/17/04  |         |        |        |        |         |             |        |        |        |        |         |
| MW-3 |     | 09/13/04  |         |        |        |        |         |             |        |        |        |        |         |
| MW-3 |     | 07/12/04  |         |        |        |        |         |             |        |        |        |        |         |
| MW-3 |     | 03/03/05  |         |        |        |        | 120     | 1.3         | <0.50  | <0.50  | 2.7    |        | 2.3     |
| MW-3 |     | 06/14/05  |         |        |        |        |         |             |        |        |        |        |         |
| MW-3 |     | 09/19/05  |         |        |        |        |         |             |        |        |        |        |         |
| MW-3 |     | 03/30/06  |         |        |        |        | <50.0   | <0.500      | <0.500 | <0.500 | <0.500 |        | 1.72    |
| MW-3 |     | 09/27/06  |         |        |        |        |         |             |        |        |        |        |         |
| MW-3 |     | 09/28/06  |         |        |        |        | 610     | <0.500      | <0.500 | <0.500 | <0.500 |        | 2.83    |
| MW-3 |     | 12/26/06  |         |        |        |        |         |             |        |        |        |        |         |
| MW-3 |     | 03/29/07  |         |        |        |        | <50     | <0.50       | <1.0   | <1.0   | <1.0   |        | 0.78k   |
| MW-3 |     | 07/06/07  |         |        |        |        |         |             |        |        |        |        |         |
| MW-3 |     | 09/18/07  |         |        |        |        | <50     | <0.50       | <1.0   | <1.0   | <1.0   |        | 1.1     |
| MW-3 |     | 12/17/07  |         |        |        |        |         |             |        |        |        |        |         |
| MW-3 |     | 02/27/08  |         |        |        |        | <50     | <0.50       | <1.0   | <1.0   | <1.0   |        | 1.4     |
| MW-3 |     | 05/28/08  |         |        |        |        |         |             |        |        |        |        |         |
| MW-3 |     | 09/19/08  |         |        |        |        | 100     | <0.50       | <1.0   | <1.0   | <1.0   |        | <1.0    |
| MW-3 |     | 04/12/08  |         |        |        |        |         |             |        |        |        |        |         |
| MW-3 |     | 02/25/09  |         |        |        |        | 88      | <0.50       | <1.0   | <1.0   | <1.0   |        | <1.0    |
| MW-3 |     | 05/26/09  |         |        |        |        |         |             |        |        |        |        |         |
| MW-3 |     | 09/18/09  |         |        |        |        | 330     | <0.50       | <1.0   | <1.0   | <1.0   |        | <1.0    |
| MW-3 |     | 03/16/10  |         |        |        |        | 170     | <0.50       | <1.0   | <1.0   | <1.0   |        | <1.0    |
| MW-3 |     | 09/27/10  |         |        |        |        | <50     | <0.50       | <1.0   | <1.0   | <1.0   |        | <1.0    |
| MW-3 |     | 03/25/11  |         |        |        |        | <50     | <0.50       | <0.50  | <0.50  | <1.0   |        | <1.0    |
| -    |     |           |         |        |        |        |         | -           | -      | -      | -      |        |         |
| MW-4 |     | 01/23/90  |         |        |        | 1,600  |         | 100         | 10     | 30     | 20     |        |         |
| MW-4 |     | 08/03/90  |         |        |        | 4,200  |         | 260         | 18     | 88     | 39     |        |         |
| MW-4 |     | 07/06/90  |         |        |        | 2,000  |         | 150         | 6.9    | 14     | 17     |        |         |
| MW-4 |     | 05/09/90  |         |        |        | 1,700  |         | 130         | 10     | 7.2    | 19     |        |         |
| MW-4 |     | 03/12/90  |         |        |        | 2,600  |         | 108         | 41     | 17     | 59     |        |         |
|      |     | 00, 12,00 |         |        |        | _,000  |         |             | ••     |        |        |        |         |

# TABLE 5A CUMULATIVE GROUNDWATER ANALYTICAL RESULTS Bayrock Oakland 230 and 240 West MacArthur Boulevard Oakland, California (Page 5 of 14)

|              |     |                      | 5520E&F          |                  | 8015B             |                | 8260B     |           | 8021B             | /8260B             |              | 8021B      | 8260B    |
|--------------|-----|----------------------|------------------|------------------|-------------------|----------------|-----------|-----------|-------------------|--------------------|--------------|------------|----------|
| Well         |     | Date                 | O&G              | TPHmo            | TPHd              | TPHg           | TPPH      | В         | Т                 | E                  | Х            | MTBE       | MTBE     |
| ID           |     | Sampled              | (µg/L)           | (µg/L)           | (µg/L)            | (µg/L)         | (µg/L)    | (µg/L)    | (µg/L)            | (µg/L)             | (µg/L)       | (µg/L)     | (µg/L)   |
|              |     | 02/00/04             |                  |                  |                   | 0.000          |           | 400       | 45                | 0.0                | 20           |            |          |
| MW-4<br>MW-4 |     | 03/06/91<br>04/09/91 | <br>Well not san | <br>apled due te | <br>proconco of a | 2,800          |           | 160       | 15                | 8.8                | 32           |            |          |
| MW-4         |     | 03/13/92             |                  | ipied due to     |                   | 2,700          |           | 180       | 70                | 5.9                | 29           |            |          |
| MW-4         |     | 03/06/92             |                  |                  |                   | 2,700          |           | 190       | ND                | 30                 | 29           |            |          |
| MW-4         |     | 03/06/92<br>08/19/92 |                  |                  |                   | 1,700          |           | 4.2       | ND                | 0.6                | 23<br>1      |            |          |
| MW-4         |     | 11/16/92             |                  |                  |                   | 2,600          |           | 92        | 49                | 50                 | 81           |            |          |
| MW-4         |     | 02/18/93             |                  |                  |                   | 2,000<br>7,400 |           | 120       | 38                | 50                 | 87           |            |          |
| MW-4         |     | 01/06/93             |                  |                  |                   | 7,000          |           | 1,800     | 1,700             | 1,600              | 1,700        |            |          |
| MW-4         |     | 08/30/93             |                  |                  |                   | 2,100          |           | 80        | 11                | ND                 | 11           |            |          |
| MW-4         | Dup | 08/30/93             |                  |                  |                   | 2,100          |           | 77        | 5.6               | ND                 | 5.5          |            |          |
| MW-4         |     | 12/13/93             |                  |                  |                   | 2,000e         |           | 20        | ND                | 21                 | 52           |            |          |
| MW-4         |     | 03/03/94             |                  |                  |                   | 3,500          |           | 150       | 86                | 85                 | 90           |            |          |
| MW-4         | Dup | 03/03/94             |                  |                  |                   | 3,200          |           | 130       | 73                | 74                 | 76           |            |          |
| MW-4         |     | 06/06/94             |                  |                  |                   | 590            |           | 25        | ND                | ND                 | ND           |            |          |
| MW-4         | Dup | 06/06/94             |                  |                  |                   | 400            |           | 16        | ND                | ND                 | ND           |            |          |
| MW-4         |     | 12/09/94             |                  |                  |                   | 1,800          |           | 42        | ND                | 3.7                | 4.7          |            |          |
| MW-4         | Dup | 12/09/94             |                  |                  |                   | 2,000          |           | 40        | ND                | 5.7                | 8            |            |          |
| MW-4         |     | 12/15/94             |                  |                  |                   | 2,900          |           | 78        | 14                | 94                 | 17           |            |          |
| MW-4         | Dup | 12/15/94             |                  |                  |                   | 2,900          |           | 90        | 7                 | 96                 | 18           |            |          |
| MW-4         |     | 03/13/95             |                  |                  |                   | 2,700          |           | 240       | 24                | 99                 | 34           |            |          |
| MW-4         | Dup | 03/13/95             |                  |                  |                   | 2,500          |           | 300       | 24                | 140                | 28           |            |          |
| MW-4         |     | 06/25/95             |                  |                  |                   | 2,100          |           | 87        | 10                | 67                 | 25           |            |          |
| MW-4         | Dup | 06/25/95             |                  |                  |                   | 2,300          |           | 92        | 12                | 74                 | 26           |            |          |
| MW-4         |     | 09/12/95             |                  |                  |                   | 1,300          |           | 33        | 13                | 9.3                | 15           |            |          |
| MW-4         | Dup | 09/12/95             |                  |                  |                   | 1,500          |           | 2.1       | 16                | 11                 | 17           |            |          |
| MW-4         | -   | 03/21/96             |                  |                  |                   | 2,100          |           | 50        | 3.2               | 40                 | 5.4          | ND         |          |
| MW-4         | Dup | 03/21/96             |                  |                  |                   | 1,700          |           | 24        | <0.5              | 39                 | 7.2          | 740        |          |
| MW-4         | D   | 06/28/96             |                  |                  |                   | 1,300          |           | 61        | 6.2               | 53                 | 11           | 1,000      |          |
| MW-4         | Dup | 06/28/96             |                  |                  |                   | 1,200          |           | 29        | 6.2               | 50                 | 8.3          | 1,000      |          |
| MW-4         | Dur | 09/19/96             |                  |                  |                   | 820            |           | 12        | <2.5              | 2.8                | 4.3          | 720        |          |
| MW-4<br>MW-4 | Dup | 09/19/96<br>12/19/96 |                  |                  |                   | 580<br>1,200   |           | 9.6<br>28 | <2.5<br><5.0      | <2.5<br><5.0       | <2.5<br><5.0 | 760<br><25 | 1,200    |
| MW-4         |     | 05/12/97             |                  |                  |                   | 1,200          |           | 36        | < <u>5.0</u><br>9 | < <u>5.0</u><br>16 | 18           | <25<br>630 |          |
| MW-4         |     | 12/24/98             |                  |                  |                   | 1,300          |           | 23        | 5.3               | 38                 | 7.9          | 1,100      |          |
| MW-4         |     | 12/17/99             |                  |                  |                   | 1,100          |           | 22        | 21                | 13                 | 11           | 3,800      | 3,200    |
| MW-4         |     | 12/23/99             |                  |                  |                   |                |           |           |                   |                    |              |            |          |
| MW-4         |     | 11/12/00             |                  |                  |                   | 975            |           | 25.0      | 11.3              | <5.00              | <5.00        | 1,960      | 1,730k   |
| MW-4         |     | 12/27/01             |                  |                  |                   |                | 2,000     | 9.9       | <5.0              | 18                 | <5.0         |            | 1,400    |
| MW-4         |     | 03/14/02             |                  |                  |                   |                | 1,700     | 6.6       | <2.0              | 2.1                | 2.1          |            | 1,100    |
| MW-4         |     | 06/13/02             |                  |                  |                   |                | 1,200     | 4.7       | <2.0              | <2.0               | <2.0         |            | 1,100    |
| MW-4         |     | 09/09/02             |                  |                  |                   |                | 620       | 3.7       | <2.0              | <2.0               | <2.0         |            | 760      |
| MW-4         |     | 12/12/02             |                  |                  |                   |                | 1,500     | 3.9       | <2.0              | <2.0               | <2.0         |            | 880      |
| MW-4         |     | 10/03/03             |                  |                  |                   |                | 2,300     | 5.7       | 0.95              | 3.8                | 0.63         |            | 1,200    |
| MW-4         |     | 10/06/03             |                  |                  |                   |                | 2,200     | 5.3       | <5.0              | <5.0               | <10          |            | 880      |
| MW-4         |     | 09/16/03             |                  |                  |                   |                | 1,400     | <5.0      | <5.0              | <5.0               | <10          |            | 420      |
| MW-4         |     | 03/12/03             |                  |                  |                   |                | 2,600     | 5.0       | <5.0              | <5.0               | <10          |            | 840      |
| MW-4         |     | 11/03/04             |                  |                  |                   |                | 1,900e    | 6.3       | <5.0              | <5.0               | <10          |            | 800      |
| MW-4         |     | 06/17/04             |                  |                  |                   |                | 1,000     | 7.4       | <2.5              | <2.5               | <5.0         |            | 460      |
| MW-4         |     | 09/13/04             |                  |                  |                   |                | 1,100     | 4.6       | <2.5              | <2.5               | <5.0         |            | 300      |
| MW-4         |     | 07/12/04             |                  |                  |                   |                | 2,200     | 4.6       | <2.5              | <2.5               | <5.0         |            | 430      |
| MW-4         |     | 03/03/05             |                  |                  |                   |                | 2,500     | 5.3       | <2.5              | <2.5               | <5.0         |            | 620      |
| MW-4         |     | 06/14/05             |                  |                  |                   |                | <50       | < 0.50    | <0.50             | <0.50              | <1.0         |            | 51       |
| MW-4         |     | 09/19/05             |                  |                  |                   |                | 1,200     | 2.7       | <0.50             | <0.50              | <1.0         |            | 140      |
| MW-4         |     | 03/30/06             |                  |                  |                   |                | 2,740     | 2.01      | <0.500            | <0.500             | <0.500       |            | 222      |
| MW-4<br>MW-4 |     | 09/27/06<br>09/28/06 |                  |                  |                   |                |           | <br>0.950 | <br><0.500        |                    | <br><0.500   |            | <br>73.3 |
| MW-4         |     | 09/28/06<br>12/26/06 |                  |                  |                   |                | 1,660<br> | 0.950     | <0.500            | <0.500<br>         | <0.500       |            |          |
| MW-4         |     | 03/29/07             |                  |                  |                   |                | 2,100     | 12        | <br>0.49k         | <1.0               | <br>0.21k    |            | 150      |
| MW-4         |     | 03/29/07<br>07/06/07 |                  |                  |                   |                | 2,100     |           | 0.49K             | <1.0               | 0.2 IK       |            |          |
| MW-4         |     | 09/18/07             |                  |                  |                   |                | 330       | 1.7       | <1.0              | <1.0               | <1.0         |            | 9.2      |
| MW-4         |     | 12/17/07             |                  |                  |                   |                |           |           |                   |                    |              |            |          |
|              |     |                      |                  |                  |                   |                |           |           |                   |                    |              |            |          |

#### TABLE 5A CUMULATIVE GROUNDWATER ANALYTICAL RESULTS Bayrock Oakland 230 and 240 West MacArthur Boulevard Oakland, California (Page 6 of 14)

|               |                      | 5520E&F |        | 8015B  |        | 8260B  |                |              | /8260B       |              | 8021B  | 8260     |
|---------------|----------------------|---------|--------|--------|--------|--------|----------------|--------------|--------------|--------------|--------|----------|
| Well          | Date                 | O&G     | TPHmo  | TPHd   | TPHg   | TPPH   | В              | Т            | E            | X            | MTBE   | MTB      |
| ID            | Sampled              | (µg/L)  | (µg/L) | (µg/L) | (µg/L) | (µg/L) | (µg/L)         | (µg/L)       | (µg/L)       | (µg/L)       | (µg/L) | (µg/L    |
| MW-4          | 02/27/08             |         |        |        |        | 210    | 0.61           | <1.0         | <1.0         | <1.0         |        | <1.0     |
| MW-4          | 05/28/08             |         |        |        |        |        |                |              |              |              |        |          |
| MW-4          | 09/19/08             |         |        |        |        | 200    | 4.5            | <1.0         | <1.0         | 1.3          |        | 8.9      |
| MW-4          | 04/12/08             |         |        |        |        |        | 4.5            |              |              |              |        |          |
| MW-4          | 04/12/08             |         |        |        |        | 1,700  | 12             | <2.0         | 4.2          |              |        | 160      |
| MW-4          |                      |         |        |        |        |        |                |              | 4.2          | <2.0<br>     |        |          |
|               | 05/26/09             |         |        |        |        |        |                |              |              |              |        |          |
| MW-4          | 09/18/09             |         |        |        |        | 1,300  | 0.72           | <1.0         | <1.0         | <1.0         |        | 150      |
| MW-4          | 03/16/10             |         |        |        |        | 300    | 1.2            | <1.0         | <1.0         | <1.0         |        | 2.4      |
| MW-4          | 09/27/10             |         |        |        |        | 150    | 1.3            | <1.0         | <1.0         | <1.0         |        | 6.6      |
| MW-4          | 03/25/11             |         |        |        |        | 770    | 9.5            | 0.59         | 11           | 1.3          |        | 2.3      |
| MW-5          | 09/22/06             |         |        |        |        |        |                |              |              |              |        |          |
| MW-5          | 09/27/06             |         |        |        |        |        |                |              |              |              |        |          |
| MW-5          | 09/28/06             |         |        |        |        | 10,800 | 36.6           | 2.08         | 119          | 9.04         |        | 15.      |
| MW-5          | 12/26/06             |         |        |        |        | 5,000  | 150            | 5.2          | 70           | 16           |        | 35       |
| MW-5          | 03/29/07             |         |        |        |        | 7,700  | 320            | 10           | 70           | 19.0k        |        | 32       |
| MW-5          | 07/06/07             |         |        |        |        | 7,600  | 47             | 4.6          | 71           | 13.7         |        | 40       |
| MW-5          | 07/08/07<br>09/18/07 |         |        |        |        | 4,300  | 47<br>7.0      | 4.6<br>1.1   | 20           | 1.93k        |        | 40<br>21 |
| MW-5          | 12/17/07             |         |        |        |        |        |                |              |              |              |        |          |
|               |                      |         |        |        |        | 6,900  | 58.0           | 9.9          | 410          | 15.8         |        | <5.      |
| MW-5          | 02/27/08             |         |        |        |        | 6,500  | 100            | 13           | 510          | 32.1         |        | 26       |
| MW-5          | 05/28/08             |         |        |        |        | 3,200  | 66             | 5.7          | 140          | 6.7          |        | 46       |
| MW-5          | 09/19/08             |         |        |        |        | 3,200  | 110            | 6.3          | 110          | 12.0         |        | <1.      |
| MW-5          | 04/12/08             |         |        |        |        | 5,900  | 250            | 14           | 220          | 28.3         |        | <2.      |
| MW-5          | 02/25/09             |         |        |        |        | 7,400  | 430            | 28           | 240          | 73           |        | 17       |
| MW-5          | 05/26/09             |         |        |        |        | 6,800  | 190            | 18           | 210          | 83           |        | 5.5      |
| MW-5          | 09/18/09             |         |        |        |        | 4,200  | 44             | <5.0         | 140          | 20           |        | 6.0      |
| MW-5          | 03/16/10             |         |        |        |        | 15,000 | 64             | 5.7          | 280          | 21           |        | 6.4      |
| MW-5          | 09/27/10             |         |        |        |        | 6,100  | 82             | <10          | 65           | 13           |        | <1       |
| MW-5          | 03/25/11             |         |        |        |        | 7,600  | 150            | 10           | 270          | 43           |        | <5.      |
| rab Groundwa  | ator Samplas         |         |        |        |        |        |                |              |              |              |        |          |
| 989 Groundwa  | -                    |         |        |        |        |        |                |              |              |              |        |          |
| GS-1          | 10/17/89             |         |        |        | <50    |        | <0.5           | <0.5         | <0.6         | <1.5         |        |          |
| GS-1<br>GS-2  |                      |         |        |        |        |        |                |              |              |              |        |          |
|               | 10/17/89             |         |        |        | 5,600  |        | 340            | 27           | 1,200        | 62           |        |          |
| GS-3          | 10/17/89             |         |        |        | 8,800  |        | 380            | 6            | 580          | 42           |        |          |
|               | e Investigation      |         |        |        |        |        |                |              |              |              |        |          |
| Probe 1       | 05/19/90             |         |        |        | <50    |        | <0.5           | <0.5         | <0.5         | <0.5         |        |          |
| Probe 2       | 05/19/90             |         |        |        | 25,000 |        | 280            | 290          | 160          | 470          |        |          |
| Probe 3       | 05/19/90             |         |        |        | <50    |        | <0.5           | <0.5         | <0.5         | <0.5         |        |          |
| Probe 4       | 05/19/90             |         |        |        | <50    |        | 5              | <0.5         | 2            | <0.5         |        |          |
| Probe 5       | 05/19/90             |         |        |        | <50    |        | 1              | 2            | 1            | 4            |        |          |
| Probe 6       | 05/19/90             |         |        |        | 31,000 |        | 430            | 600          | 240          | 1,400        |        |          |
| 004 Subsurfac | e Investigation      |         |        |        |        |        |                |              |              |              |        |          |
| SB-1-W        | 03/24/04             |         |        |        |        | 10,000 | 430            | 75           | 98           | 44           |        | 11(      |
| SB-2-W        | 03/24/04             |         |        |        |        | 520    | 4.9            | <1.0         | <1.0         | <2.0         |        | 320      |
| 006 Subsurfac | e Investigation      |         |        |        |        |        |                |              |              |              |        |          |
| SB-4-W1       | 05/04/06             |         |        |        |        | <50.0  | <1.00          | 50.4         | 3.92         | 13.3         |        | 29.      |
| SB-7-W1       | 06/04/06             |         |        |        |        | <50.0  | <1.00          | <1.00        | <1.00        | <3.00        |        | <1.0     |
| SB-8-W1       | 06/04/06             |         |        |        |        | 34,000 | 404            | 22.5         | 110          | 56.8         |        | 15.      |
|               | e Investigation      |         |        |        |        | ,000   |                |              |              | 20.0         |        | .0.      |
| SB-9          | 01/02/08             |         |        |        |        | 1,700  | <0.50          | <1.0         | <1.0         | <1.0         |        | 120      |
| SB-9<br>SB-10 | 01/02/08             |         |        |        |        | <50    | <0.50<br><0.50 | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 |        | 94       |
|               |                      |         |        |        |        |        |                |              |              |              |        |          |
| SB-11         | 01/02/08             |         |        |        |        | <50    | <0.50          | 14           | <1.0         | <1.0         |        | 2.6      |
| SB-12         | 01/02/08             |         |        |        |        | 4,900  | 120            | 11           | 170          | 42.2         |        | 33       |
|               | e Investigation      |         |        |        |        |        | /              |              |              |              |        | -        |
| B2            | 09/09/17             |         | <52    | <52    | 92e    |        | <0.50          | 2.1          | <1.0         | <2.0         |        | <1.      |
| B3            | 09/09/17             |         | <52    | <52    | <50    |        | <0.50          | <0.50        | <1.0         | <2.0         |        | <1.      |

| MW-1 | 08/08/97 |  |  | <1,000 | 1,140 |  | 110 | 16 | 15 | 112 | 43 |  |
|------|----------|--|--|--------|-------|--|-----|----|----|-----|----|--|
|------|----------|--|--|--------|-------|--|-----|----|----|-----|----|--|

#### TABLE 5A CUMULATIVE GROUNDWATER ANALYTICAL RESULTS Bayrock Oakland 230 and 240 West MacArthur Boulevard Oakland, California (Page 7 of 14)

| <b></b> |     |          | 5520E&F |        | 8015B  |         | 8260B  |        | 8021B  | /8260B |        | 8021B  | 8260B  |
|---------|-----|----------|---------|--------|--------|---------|--------|--------|--------|--------|--------|--------|--------|
| Well    |     | Date     | O&G     | TPHmo  | TPHd   | TPHg    | TPPH   | В      | Т      | Е      | Х      | MTBE   | MTBE   |
| ID      |     | Sampled  | (µg/L)  | (µg/L) | (µg/L) | (µg/L)  | (µg/L) | (µg/L) | (µg/L) | (µg/L) | (µg/L) | (µg/L) | (µg/L) |
|         |     |          |         |        |        |         |        |        |        |        |        |        |        |
| MW-1    |     | 12/03/97 |         |        |        | ND      |        | ND     | ND     | ND     | 31     |        |        |
| MW-1    |     | 03/16/98 |         |        |        | 370     |        | 8.9    | <0.5   | <0.5   | 2.2    | 18     |        |
| MW-1    |     | Jul-98   |         |        |        | 6,400   |        | 1,300  | 23     | 3.7    | 58     | 97     |        |
| MW-1    |     | Oct-98   |         |        |        | 2,500   |        | 360    | 44     | 1.3    | 150    | <0.5   |        |
| MW-1    |     | Jan-99   |         |        |        | 2,700   |        | 1,200  | 28     | 140    | 78     | 130    |        |
| MW-1    |     | Jun-00   |         |        |        | 27,000  |        | 5,200  | 500    | 320    | 3,100  | 1,300  |        |
| MW-1    |     | Dec-00   |         |        |        | 976,000 |        | 2,490  | 1,420  | 3,640  | 10,100 | <150   |        |
| MW-1    |     | Feb-01   |         |        |        |         |        |        |        |        |        |        |        |
| MW-1    |     | May-01   |         |        |        | 20,000  |        | 2,900  | 310    | 230    | 1,900  | <30    |        |
| MW-1    |     | Jul-01   |         |        |        | 92,000  |        | 2,900  | 580    | 2,800  | 20,000 | 560    |        |
| MW-1    | HV- | 10/22/01 |         |        |        | 20,000  |        | 3,700  | 560    | 410    | 4,600  | 2,600  |        |
| MW-1    | HV+ | 10/26/01 |         |        |        | <0.05   |        | <0.5   | <0.5   | <0.5   | <0.5   | <0.5   |        |
| MW-1    |     | Dec-01   |         |        |        | 3,300   |        | 200    | 12     | 5.7    | 43     | 44     |        |
| MW-1    | NP  | Mar-02   |         |        |        | 4,600   |        | 820    | 4.4    | 100    | 300    | 210    |        |
| MW-1    | NP  | May-02   |         |        |        | 1,600   |        | 100    | 23     | 20     | 190    | 7.7    |        |
| MW-1    | NP  | Jul-02   |         |        |        | 2,300   |        | 250    | 15     | 13     | 180    | 180    |        |
| MW-1    | NP  | Oct-02   |         |        |        | 1,820   |        | 222    | 16     | <0.3   | 59     | 58     |        |
| MW-1    | NP  | Jan-03   |         |        |        | 2,880   |        | 188    | <50    | <50    | 157    | 20     |        |
| MW-1    | NP  | Mar-03   |         |        |        | 6,700   |        | 607    | 64     | 64     | 288    | <0.18  |        |
| MW-1    | NP  | Aug-03   |         |        | 5,000  | 4,900   |        | 740    | 45     | 85     | 250    | 14     |        |
| MW-1    |     | Dec-03   |         |        | 800    | 8,930   |        | 1,030  | 55     | 127    | 253    | 212    |        |
| MW-1    |     | Mar-04   |         |        | 1,100  | 11,300  |        | 483    | 97     | 122    | 452    | 67     |        |
| MW-1    |     | Jun-04   |         |        | 4,000  | 9,300   |        | 1,700  | 75     | 92     | 350    | 6.0    |        |
| MW-1    |     | Sep-04   |         |        | 97     | 9,100   |        | 920    | 19     | 82     | 201    |        | 7.2    |
| MW-1    |     | Dec-04   |         |        | 3,300  | 11,000  |        | 830    | 21     | 74     | 118    |        | 7.9    |
| MW-1    |     | Mar-05   |         |        | 3,500  | 4,700   |        | 450    | 28     | 42     | 97     |        | 6.7    |
| MW-1    |     | Jun-05   |         |        | 6,800  | 21,000  |        | 1,900  | 270    | 320    | 2,800  |        | <13    |
| MW-1    |     | Sep-05   |         |        | 2,500  | 23,000  |        | 2,100  | 100    | 200    | 880    |        | <2.5   |
| MW-1    |     | Dec-05   |         |        | 3,000  | 4,300   |        | 500    | 22     | 72     | 228    |        | 5.5    |
| MW-1    |     | Mar-06   |         |        | 3,000  | 11,000  |        | 340    | 45     | 89     | 630    |        | 4.3    |
| MW-1    |     | Jun-06   |         |        | 8,500  | 21,000  |        | 1,600  | 160    | 170    | 1,000  |        | <2.5   |
| MW-1    |     | Sep-06   |         |        | 6,200  | 13,000  |        | 1,700  | 76     | 110    | 440    |        | <13    |
| MW-1    |     | Dec-06   |         |        | 4,100  | 16,000  |        | 1,500  | 100    | 160    | 670    |        | <13    |
| MW-1    |     | Mar-07   |         |        | 6,200  | 22,000  |        | 1,700  | 140    | 180    | 1,100  |        | <13    |
| MW-1    |     | Jun-07   |         |        | 1,500  | 3,600   |        | 210    | 10     | 19     | 61     |        | 3.2    |
| MW-1    |     | Sep-07   |         |        | 1,700  | 1,400   |        | 50     | <0.5   | 1.3    | <0.5   |        | 4.1    |
| MW-1    |     | Dec-07   |         |        | 840    | 2,700   |        | 170    | 5.5    | 7.5    | 34.6   |        | 3.1    |
| MW-1    |     | Mar-08   |         |        | 1,000  | 2,300   |        | 77     | <2.5   | 8.2    | 10     |        | <2.5   |
| MW-1    | NP  | Jun-08   |         |        |        |         |        |        |        |        |        |        |        |
| MW-1    |     | Sep-08   |         |        | 2,600  | 1,700   |        | 170    | 5      | 3      | 19     |        | <1.3   |
| MW-1    |     | Dec-08   |         |        | 1,100  | 4,300   |        | 180    | 6.7    | 12     | 27.3   |        | <1.3   |
| MW-1    |     | Mar-09   |         |        | 5,200  | 9,200   |        | 84     | 6.4    | 29     | 54.0   |        | 1.0    |
| MW-1    |     | Sep-09   |         |        | 5,200  | 4,300   |        | 370    | 14.0   | 52     | 33.0   |        | 0.5    |
| MW-1    |     | Sep-10   |         |        | 2,100  | 3,400   |        | 190    | 10.0   | 16     | 84.0   |        | 2.5    |
| MW-1    |     | Apr-11   |         |        | 1,400  | 2,500   |        | 75     | 2.3    | 9      | 24.3   |        | <0.5   |
| MW-1    |     | Sep-11   |         |        | 410    | 2,100   |        | 200    | 10.0   | 13     | 49.0   |        | <1.3   |
| MW-1    |     | Mar-12   |         |        | 570    | 2,800   |        | 91     | 4.1    | 9      | 23.1   |        | <1.6   |
| MW-1    |     | 09/07/12 |         |        | 950    | 1,200   |        | 43     | 4.2    | 8.1    | 40.0   |        | <0.5   |
| MW-1    |     | 03/20/13 |         |        | 940    | 560     |        | 40     | 2.5    | 4.5    | 25.3   |        | <0.5   |
| MW-1    |     | 01/26/16 |         |        | <53    | 150     |        | 2.4    | <0.5   | <0.5   | 1.6    |        | <0.5   |
| MW-2    |     | 08/08/97 |         |        | <1,000 | 5,350   |        | 108    | 36     | 33     | 144    | 925    |        |
| MW-2    |     | 12/03/97 |         |        |        | 1,600   |        | 73     | ND     | ND     | ND     |        |        |
| MW-2    |     | 03/16/98 |         |        |        | 3,400   |        | 830    | 100    | 210    | 240    | 870    |        |
| MW-2    |     | Jul-98   |         |        |        | 3,100   |        | 25     | 2.2    | <0.5   | 0.9    | 1,900  |        |
| MW-2    |     | Oct-98   |         |        |        | 4,300   |        | <0.5   | 1.2    | <0.5   | 1      | 4,200  |        |
| MW-2    |     | Jan-99   |         |        |        | 2,900   |        | 160    | 8.9    | 6.9    | 78.4   | 2,100  |        |
| MW-2    |     | Jun-00   |         |        |        | 2,700   |        | 200    | 17     | 30     | 16     | 680    |        |
| MW-2    |     | Dec-00   |         |        |        | 3,020   |        | 56.7   | <1.5   | <1.5   | <3.0   | 3,040  |        |
| MW-2    |     | Feb-01   |         |        |        |         |        |        |        |        |        |        |        |
| MW-2    |     | May-01   |         |        |        | 720     |        | 49     | <3.0   | 4.6    | <3.0   | 380    |        |
|         |     |          |         |        |        |         |        |        |        |        |        |        |        |

#### TABLE 5A CUMULATIVE GROUNDWATER ANALYTICAL RESULTS Bayrock Oakland 230 and 240 West MacArthur Boulevard Oakland, California (Page 8 of 14)

|      |     |                  | 5520E&F |        | 8015B      |        | 8260B  |           | 8021B  | /8260B |             | 8021B  | 8260B  |
|------|-----|------------------|---------|--------|------------|--------|--------|-----------|--------|--------|-------------|--------|--------|
| Well |     | Date             | O&G     | TPHmo  | TPHd       | TPHg   | TPPH   | В         | Т      | Е      | Х           | MTBE   | MTBE   |
| ID   |     | Sampled          | (µg/L)  | (µg/L) | (µg/L)     | (µg/L) | (µg/L) | (µg/L)    | (µg/L) | (µg/L) | (µg/L)      | (µg/L) | (µg/L) |
|      |     |                  |         |        |            |        |        |           |        |        |             |        |        |
| MW-2 |     | Jul-01           |         |        |            | 8,400  |        | 350       | 44     | 77     | 78          | 550    |        |
| MW-2 | HV- | 10/22/01         |         |        |            | 850    |        | 170       | 4.9    | 5.1    | 14          | 260    |        |
| MW-2 | HV+ | 10/26/01         |         |        |            | 770    |        | 86        | 5.5    | 9.6    | 8.5         | 310    |        |
| MW-2 |     | Dec-01           |         |        |            | 1,300  |        | 9.2       | <2.0   | <2.0   | <2.0        | 370    |        |
| MW-2 | NP  | Mar-02           |         |        |            | 1,300  |        | 76        | 3.8    | 21     | 15          | 460    |        |
| MW-2 | NP  | May-02           |         |        |            | 320    |        | 12        | 1.1    | 4.6    | 4.8         | 160    |        |
| MW-2 | NP  | Jul-02           |         |        |            | 1,300  |        | 130       | 1      | 9.4    | 5.6         | 420    |        |
| MW-2 | NP  | Oct-02           |         |        |            | 1,060  |        | 12        | 2.2    | 4.2    | 3.5         | 270    |        |
| MW-2 | NP  | Jan-03           |         |        |            | 581    |        | 6.5       | <5.0   | <5.0   | <5.0        | 130    |        |
| MW-2 | NP  | Mar-03           |         |        |            | 1,250  |        | <0.22     | <0.32  | <0.31  | <0.4        | 155    |        |
| MW-2 | NP  | Aug-03           |         |        | 730        | 2,200  |        | 58        | 9.2    | <0.5   | 28          | 240    |        |
| MW-2 |     | Dec-03           |         |        | 100        | 1,980  |        | 29        | 22.0   | 7.4    | 13          | 295    |        |
| MW-2 |     | Mar-04           |         |        | 100        | 2,700  |        | 12        | 16.0   | 9      | 12          | 249    |        |
| MW-2 |     | Jun-04           |         |        | 370        | 1,200  |        | 42        | 0.7    | 2.6    | 0.9         | 170    |        |
| MW-2 |     | Sep-04           |         |        | 280        | 1,500  |        | 14        | <0.5   | <0.5   | 0.6         |        | 130    |
| MW-2 |     | Dec-04           |         |        | 540        | 1,400  |        | 26        | 1.1    | 1.8    | 3.5         |        | 91     |
| MW-2 |     | Mar-05           |         |        | 420        | 2,300  |        | 5.3       | <1.0   | 3.7    | <2.0        |        | 120    |
| MW-2 |     | Jun-05           |         |        | 500        | 1,600  |        | 14        | <0.5   | 1.8    | 0.68        |        | 66     |
| MW-2 |     | Sep-05           |         |        | 210        | 1,400  |        | 30        | 1.3    | 12     | 26          |        | 58     |
| MW-2 |     | Dec-05           |         |        | 800        | 1,300  |        | 4.9       | 0.6    | 0.7    | 0.8         |        | 74     |
| MW-2 |     | Mar-06           |         |        | 400        | 1,300  |        | 3.2       | <0.7   | <0.7   | <1.4        |        | 120    |
| MW-2 |     | Jun-06           |         |        | 1,200      | 1,400  |        | 33.0      | 1.3    | 3.5    | <1.6        |        | 84     |
| MW-2 |     | Sep-06           |         |        | 1,600      | 8,300  |        | 67.0      | 4.1    | 4.6    | 15.4        |        | 64     |
| MW-2 |     | Dec-06           |         |        | 940        | 1,500  |        | 22.0      | 2.9    | 2.6    | 3.5         |        | 67     |
| MW-2 |     | Mar-07           |         |        | 760        | 1,200  |        | 65        | 1.9    | 3.7    | 1.6         |        | 59     |
| MW-2 |     | Jun-07           |         |        | 1,000      | 2,900  |        | 67        | 3.2    | 14.0   | 7.5         |        | 49     |
| MW-2 | NP  | Sep-07           |         |        |            | _,     |        |           |        |        |             |        |        |
| MW-2 |     | Dec-07           |         |        | 510        | 1,200  |        | 14        | <0.5   | <0.5   | 0.5         |        | 33     |
| MW-2 |     | Mar-08           |         |        | 3,800      | 1,100  |        | 13        | 0.9    | 0.9    | 2.3         |        | 61     |
| MW-2 |     | Jun-08           |         |        | 4,300      | 2,400  |        | 3.9       | 2.2    | 3      | 9.4         |        | 73     |
| MW-2 |     | Sep-08           |         |        | 1,800      | 1,300  |        | 12        | 8.6    | 10     | 34.6        |        | 72     |
| MW-2 |     | Dec-08           |         |        | 620        | 2,100  |        | 46        | 22     | 39     | 73          |        | 41     |
| MW-2 |     | Mar-09           |         |        | 1,600      | 2,100  |        | 22        | 3      | 10     | 16          |        | 17     |
| MW-2 |     | Sep-09           |         |        | 940        | 750    |        | 11        | 1      | 5      | 3           |        | 11     |
| MW-2 |     | Sep-09<br>Sep-10 |         |        | 940<br>840 | 1,400  |        | 9         | 2.6    | 1.7    | 9.1         |        | 30     |
| MW-2 |     | •                |         |        |            | 810    |        | 9<br><0.5 |        | <0.5   | 9.1<br><0.5 |        | 22     |
|      |     | Apr-11           |         |        | 520        |        |        |           | <0.5   |        |             |        |        |
| MW-2 |     | Sep-11           |         |        | 440        | 620    |        | 1.3       | <0.5   | 10     | 0.9         |        | 9.1    |
| MW-2 |     | Mar-12           |         |        | 230        | 260    |        | 1.0       | <0.5   | 1      | <0.5        |        | 1.7    |
| MW-2 |     | 09/07/12         |         |        | 230        | 820    |        | 12        | 6.8    | 19     | 47          |        | 0.5    |
| MW-2 |     | 03/20/13         |         |        | 210        | 590    |        | 8.3       | 4.9    | 12     | 42.7        |        | 0.5    |
| MW-2 |     | 01/26/16         |         |        | 120e       | 240    |        | 0.52      | <0.5   | 0.72   | 0.71        |        | <0.5   |
|      |     | 00/00/07         |         |        | 4 000      | 0 500  |        | 450       | 00     | 50     | 400         | 4 000  |        |
| MW-3 |     | 08/08/97         |         |        | <1,000     | 8,500  |        | 450       | 30     | 53     | 106         | 1,080  |        |
| MW-3 |     | 12/03/97         |         |        |            | 5,200  |        | 180       | 6      | 5      | 9.3         |        |        |
| MW-3 |     | 03/16/98         |         |        |            | 1,000  |        | 6.0       | <0.5   | <0.5   | <0.5        | 810    |        |
| MW-3 |     | Jul-98           |         |        |            | 6,400  |        | 490       | 57     | 23     | 78          | 220    |        |
| MW-3 |     | Oct-98           |         |        |            | 2,100  |        | <5.0      | <5.0   | <5.0   | <5.0        | 2,100  |        |
| MW-3 |     | Jan-99           |         |        |            | 4,400  |        | 450       | 65     | 26     | 42          | 1,300  |        |
| MW-3 |     | Jun-00           |         |        |            | 1,700  |        | 110       | 13     | 34     | 13          | 96     |        |
| MW-3 |     | Dec-00           |         |        |            | 5,450  |        | 445       | <7.5   | 23.8   | <7.5        | 603    |        |
| MW-3 |     | Feb-01           |         |        |            |        |        |           |        |        |             |        |        |
| MW-3 |     | May-01           |         |        |            | 1,900  |        | 180       | 12     | <3.0   | 19          | 330    |        |
| MW-3 |     | Jul-01           |         |        |            | 10,000 |        | 830       | 160    | 150    | 260         | 560    |        |
| MW-3 | HV- | 10/22/01         |         |        |            | 1,400  |        | 240       | 7.8    | 4.1    | 15          | 220    |        |
| MW-3 | HV+ | 10/26/01         |         |        |            | 1,900  |        | 200       | 16     | 51     | 30          | 290    |        |
| MW-3 |     | Dec-01           |         |        |            | 5,800  |        | 93        | <20    | 31     | <20         | 330    |        |
| MW-3 | NP  | Mar-02           |         |        |            | 1,900  |        | 220       | 16     | 31     | 24          | 400    |        |
| MW-3 | NP  | May-02           |         |        |            | 1,600  |        | 110       | 3.4    | 29     | 14          | 320    |        |
| MW-3 | NP  | Jul-02           |         |        |            | 1,900  |        | 210       | 27     | 30     | 55          | 200    |        |
| MW-3 | NP  | Oct. 2002        |         |        |            | 3,030  |        | 178       | 19     | 6.2    | 36          | 178    |        |
| MW-3 | NP  | Jan-03           |         |        |            | 2,980  |        | 47        | <5.0   | 7.6    | 6.3         | 105    |        |
|      |     |                  |         |        |            | -      |        |           |        |        |             |        |        |

#### TABLE 5A CUMULATIVE GROUNDWATER ANALYTICAL RESULTS Bayrock Oakland 230 and 240 West MacArthur Boulevard Oakland, California (Page 9 of 14)

| <b></b>      |     |                  | 5520E&F |        | 8015B          |                | 8260B  |             | 8021B        | /8260B       |            | 8021B  | 8260B        |
|--------------|-----|------------------|---------|--------|----------------|----------------|--------|-------------|--------------|--------------|------------|--------|--------------|
| Well         |     | Date             | O&G     | TPHmo  | TPHd           | TPHg           | TPPH   | В           | Т            | Е            | Х          | MTBE   | MTBE         |
| ID           |     | Sampled          | (µg/L)  | (µg/L) | (µg/L)         | (µg/L)         | (µg/L) | (µg/L)      | (µg/L)       | (µg/L)       | (µg/L)     | (µg/L) | (µg/L)       |
|              |     |                  |         |        |                |                |        |             |              |              |            |        |              |
| MW-3         | NP  | Mar-03           |         |        |                | 3,620          |        | 124         | <0.32        | 22           | 12         | 139    |              |
| MW-3         | NP  | Aug-03           |         |        | 2,400          | 3,800          |        | 170         | 28           | 31           | 31         | 170    |              |
| MW-3         |     | Dec-03           |         |        | 500            | 6,860          |        | 312         | 20           | 55           | 58         | 309    |              |
| MW-3         |     | Mar-04           |         |        | 500            | 5,490          |        | 82          | 34           | 46           | 49         | 249    |              |
| MW-3         |     | Jun-04           |         |        | 1,100          | 5,400          |        | 150         | 30           | 45           | 66         | 130    |              |
| MW-3         |     | Sep-04           |         |        | 1,500          | 5,400          |        | 70          | 3.2          | 16           | 13         |        | 110          |
| MW-3         |     | Dec-04           |         |        | 2,400          | 5,300          |        | 91          | 7.4          | 21           | 19         |        | 92           |
| MW-3         |     | Mar-05           |         |        | 2,000          | 4,700          |        | 19          | 1.1          | 10           | 3.7        |        | 76           |
| MW-3         |     | Jun-05           |         |        | 1,800          | 4,200          |        | 49          | 4.5          | 23           | 16         |        | 66           |
| MW-3         |     | Sep-05           |         |        | 950            | 5,000          |        | 60          | 3.1          | 12           | 26         |        | 59           |
| MW-3         |     | Dec-05           |         |        | 1,800          | 3,200          |        | 29          | 1.3          | 6.6          | 5.6        |        | 80           |
| MW-3         |     | Mar-06           |         |        | 1,200          | 4,100          |        | 24          | 1.1          | 8.5          | 3.4        |        | 99<br>35     |
| MW-3         |     | Jun-06           |         |        | 1,400          | 4,000          |        | 89.0        | 8.4          | 14.0         | 16.7       |        | 75           |
| MW-3         |     | Sep-06           |         |        | 2,600          | 6,100          |        | 190         | 15.0         | 24.0         | 59.0       |        | 51           |
| MW-3         |     | Dec-06           |         |        | 2,000          | 4,500          |        | 110         | 4.0          | 7.3          | 19.1       |        | 47<br>51     |
| MW-3         |     | Mar-07           |         |        | 2,400          | 3,800          |        | 90          | 3.7          | 9.8          | 11.1       |        | 51<br>77     |
| MW-3         |     | Jun-07           |         |        | 2,100          | 4,500          |        | 8.9         | 1.4<br>-0.5  | 14.0         | 4.0        |        | 77<br>75     |
| MW-3         |     | Sep-07           |         |        |                | 4,000          |        | 4.6         | <0.5         | 1.3          | <0.5       |        | 75<br>84     |
| MW-3         |     | Dec-07<br>Mor 08 |         |        | 2,600          | 1,400          |        | 11.0        | 0.8          | 0.7<br><0.5  | 3.9        |        | 84<br>100    |
| MW-3<br>MW-3 |     | Mar-08<br>Jun-08 |         |        | 9,600<br>1,200 | 1,700<br>2,100 |        | 19.0<br>7.9 | <0.5<br><0.5 | <0.5<br><0.5 | 0.6<br>0.8 |        | 100<br>86    |
| MW-3         |     | Sep-08           |         |        | 2,600          | 2,100          |        | 170         | <0.5<br>5    | <0.5<br>3    | 0.8<br>19  |        | <1.3         |
| MW-3         |     | Dec-08           |         |        | 2,800          | 4,300          |        | 180         | 6.7          | 3<br>12      | 27.3       |        | <1.3<br><1.3 |
| MW-3         |     | Sep-08           |         |        | 4,300          | 4,300<br>1,400 |        | 14.0        | <0.5         | 0.7          | 1.5        |        | 75           |
| MW-3         |     | Dec-08           |         |        | 4,300          | 1,400          |        | 79          | 1.6          | 5.2          | 10.6       |        | 47           |
| MW-3         |     | Mar-09           |         |        | 4,100<br>5,100 | 1,100          |        | 41          | 0.6          | 5.2<br>2.4   | 3.0        |        | 47           |
| MW-3         |     | Sep-09           |         |        | 1,700          | 1,100          |        | 23          | <0.5         | 1.8          | 1.9        |        | 19           |
| MW-3         |     | Sep-09<br>Sep-10 |         |        | 890            | 1,300          |        | <0.5        | <0.5         | <0.5         | <0.5       |        | 7.3          |
| MW-3         |     | Apr-11           |         |        | 910            | 1,100          |        | <0.5        | <0.5         | <0.5         | <0.5       |        | 19.0         |
| MW-3         |     | Sep-11           |         |        | 860            | 660            |        | <0.5        | <0.5         | <0.5         | <0.5       |        | 9.0          |
| MW-3         |     | Mar-12           |         |        | 1,300          | 1,100          |        | <0.5        | <0.5         | <0.5         | 0.6        |        | 1.4          |
| MW-3         |     | 09/07/12         |         |        | 510            | 520            |        | 1.9         | <0.5         | <0.5         | <0.5       |        | <0.5         |
| MW-3         |     | 03/20/13         |         |        | 250            | 380            |        | <0.5        | <0.5         | <0.5         | <0.5       |        | <0.5         |
| MW-3         |     | 01/26/16         |         |        | 430e           | 900            |        | 0.58        | <0.5         | <0.5         | <0.5       |        | <0.5         |
| -            |     |                  |         |        |                |                |        |             |              |              |            |        |              |
| MW-4         |     | 08/08/97         |         |        | <1,000         | <500           |        | <0.5        | <0.5         | <0.5         | <1.5       | <20    |              |
| MW-4         |     | 12/03/97         |         |        |                | ND             |        | ND          | ND           | ND           | ND         |        |              |
| MW-4         |     | 03/16/98         |         |        |                | <50            |        | <0.5        | <0.5         | <0.5         | <0.5       | <0.5   |              |
| MW-4         |     | Jul-98           |         |        |                | <50            |        | <0.5        | <0.5         | <0.5         | <0.5       | <0.5   |              |
| MW-4         |     | Oct-98           |         |        |                | <50            |        | <0.5        | <0.5         | <0.5         | <0.5       | <0.5   |              |
| MW-4         |     | Jan-99           |         |        |                | <50            |        | <0.5        | <0.5         | <0.5         | <0.5       | <0.5   |              |
| MW-4         |     | Jun-00           |         |        |                | <50            |        | <0.5        | <0.5         | <0.5         | <0.5       | <0.5   |              |
| MW-4         |     | Dec-00           |         |        |                | <500           |        | <0.3        | <0.3         | <0.6         | <0.3       | <0.3   |              |
| MW-4         |     | Feb-01           |         |        |                |                |        |             |              |              |            |        |              |
| MW-4         |     | May-01           |         |        |                | <50            |        | 1.2         | <0.3         | 0.55         | 1.2        | 2.9    |              |
| MW-4         |     | Jul-01           |         |        |                | <5.0           |        | <0.5        | <0.5         | <0.5         | <0.5       | <0.5   |              |
| MW-4         | HV- | 10/22/01         |         |        |                | <5.0           |        | <0.5        | <0.5         | <0.5         | <0.5       | <0.5   |              |
| MW-4         | HV+ | 10/26/01         |         |        |                | <5.0           |        | <0.5        | <0.5         | <0.5         | <0.5       | <0.5   |              |
| MW-4         |     | Dec-01           |         |        |                | ND             |        | ND          | ND           | ND           | ND         | ND     |              |
| MW-4         | NP  | Mar-02           |         |        |                | <50            |        | <1          | <1           | <1           | <1         | <1     |              |
| MW-4         | NP  | May-02           |         |        |                | <50            |        | <0.5        | <0.5         | <0.5         | <0.5       | <0.5   |              |
| MW-4         | NP  | Jul-02           |         |        |                | <50            |        | <0.5        | <0.5         | <0.5         | <0.5       | <0.5   |              |
| MW-4         | NP  | Oct-02           |         |        |                | <100           |        | <0.3        | <0.3         | <0.3         | <0.6       | <0.3   |              |
| MW-4         | NP  | Jan-03           |         |        |                | <100           |        | <0.3        | <0.3         | <0.3         | <0.6       | 14     |              |
| MW-4         | NP  | Mar-03           |         |        |                | <15            |        | <0.4        | <0.02        | <0.02        | <0.06      | 5.2    |              |
| MW-4         | NP  | Aug-03           |         |        |                | <50            |        | <0.5        | <0.5         | <0.5         | <0.5       | <0.5   |              |
| MW-4         |     | Dec-03           |         |        |                | 63             |        | <0.3        | <0.3         | <0.3         | <0.6       | <5.0   |              |
| MW-4         |     | Mar-04           |         |        |                | <50            |        | <0.3        | <0.3         | < 0.3        | <0.6       | <5.0   |              |
| MW-4         |     | Jun-04           |         |        |                | <50            |        | <0.5        | <0.5         | <0.5         | <0.5       | 0.9    |              |
| MW-4         |     | Sep-04           |         |        |                | <50            |        | <0.5        | <0.5         | <0.5         | <0.5       |        | 2.3          |
| MW-4         |     | Dec-04           |         |        |                | <50            |        |             |              |              |            |        |              |
|              |     |                  |         |        |                |                |        |             |              |              |            |        |              |

# TABLE 5ACUMULATIVE GROUNDWATER ANALYTICAL RESULTSBayrock Oakland230 and 240 West MacArthur BoulevardOakland, California(Page 10 of 14)

|              |          |                  | 5520E&F |        | 8015B  |                | 8260B  |            | 8021B     | 8/8260B   |            | 8021B       | 8260B  |
|--------------|----------|------------------|---------|--------|--------|----------------|--------|------------|-----------|-----------|------------|-------------|--------|
| Well         |          | Date             | O&G     | TPHmo  | TPHd   | TPHg           | TPPH   | В          | Т         | E         | Х          | MTBE        | MTBE   |
| ID           |          | Sampled          | (µg/L)  | (µg/L) | (µg/L) | (µg/L)         | (µg/L) | (µg/L)     | (µg/L)    | (µg/L)    | (µg/L)     | (µg/L)      | (µg/L) |
| P.           |          | •                |         |        |        |                |        |            |           |           |            |             |        |
| MW-4         |          | Mar-05           |         |        |        | <50            |        |            |           |           |            |             |        |
| MW-4         |          | Jun-05           |         |        |        | <50            |        |            |           |           |            |             |        |
| MW-4         |          | Sep-05           |         |        |        | <50            |        |            |           |           |            |             |        |
| MW-4         |          | Dec-05           |         |        |        | <50            |        |            |           |           |            |             |        |
| MW-4         |          | Mar-06           |         |        |        | <50            |        |            |           |           |            |             |        |
| MW-4         |          | Jun-06           |         |        |        | <50            |        |            |           |           |            |             |        |
| MW-4         |          | Sep-06           |         |        |        | <50            |        |            |           |           |            |             |        |
| MW-4         |          | Dec-06           |         |        |        | 59             |        |            |           |           |            |             |        |
| MW-4         |          | Mar-07           |         |        |        | <50            |        |            |           |           |            |             |        |
| MW-4         |          | Jun-07           |         |        |        | 57             |        |            |           |           |            |             |        |
| MW-4         |          | Sep-07           |         |        |        | 70             |        |            |           |           |            |             |        |
| MW-4         |          | Dec-07           |         |        |        | 90             |        |            |           |           |            |             |        |
| MW-4         |          | Mar-08           |         |        |        | 120            |        |            |           |           |            |             |        |
| MW-4         |          | Jun-08           |         |        |        | 190            |        |            |           |           |            |             |        |
| MW-4         |          | Sep-08           |         |        |        | 140            |        |            |           |           |            |             |        |
| MW-4         |          | Dec-08           |         |        |        | 130            |        |            |           |           |            |             |        |
| MW-4         |          | Mar-09           |         |        |        | 81             |        |            |           |           |            |             |        |
| MW-4         |          | Sep-09           |         |        |        | <50            |        |            |           |           |            |             |        |
| MW-4         |          | Sep-10           |         |        |        | 160            |        |            |           |           |            |             |        |
| MW-4         |          | Apr-11           |         |        |        | 150            |        |            |           |           |            |             |        |
| MW-4         |          | Sep-11           |         |        |        | 130            |        |            |           |           |            |             |        |
| MW-4         |          | Mar-12           |         |        |        | 110            |        |            |           |           |            |             |        |
| MW-4         |          | 09/07/12         |         |        |        | 100            |        |            |           |           |            |             |        |
| MW-4         |          | 03/20/13         |         |        |        | 120            |        |            |           |           |            |             |        |
| MW-4         |          | 01/26/16         |         |        | <53    | 860d           |        | <0.5       | <0.5      | <0.5      | <0.5       |             | <0.5   |
|              |          | 00/44/04         |         |        |        | 5 000          |        | 70.0       | 04.4      | 47.0      | 040        |             |        |
| MW-5         |          | 02/14/01         |         |        |        | 5,660          |        | 76.9       | 21.1      | 47.3      | 312        | <0.3        |        |
| MW-5         |          | May-01           |         |        |        | 22,000         |        | 2,600      | 480       | 220       | 2,700      | <30         |        |
| MW-5         | 1.15.7   | Jul-01           |         |        |        | 72,000         |        | 3,500      | 1,100     | 4,300     | 22,000     | 2,500       |        |
| MW-5         | HV-      | 10/22/01         |         |        |        | 26,000         |        | 2,800      | 980       | 6,000     | 950        | 2,300       |        |
| MW-5         | HV+      | 10/26/01         |         |        |        | 17,000         |        | 1,200      | 470       | 2,900     | 440        | 900         |        |
| MW-5         |          | Dec-01           |         |        |        | 2,000          |        | 620        | 190       | 110       | 910        | <20         |        |
| MW-5<br>MW-5 | NP<br>NP | Mar-02           |         |        |        | 8,800<br>2,000 |        | 1,200      | 72<br>38  | 7.4<br>21 | 350<br>260 | 1,200<br>13 |        |
| MW-5         | NP       | May-02<br>Jul-02 |         |        |        | 2,000<br>4,200 |        | 150<br>480 | 50<br>68  | 21        | 280        | 450         |        |
| MW-5         | NP       | Oct-02           |         |        |        |                |        | 480<br>236 |           | 29        | 39         | 430<br>135  |        |
| MW-5         | NP       | Jan-03           |         |        |        | 5,370<br>8,270 |        | 230<br>615 | 45<br>156 | 23<br>174 | 1,010      | <10         |        |
| MW-5         | NP       | Mar-03           |         |        |        | 12,400         |        | 824        | 195       | 213       | 1,010      | <0.18       |        |
| MW-5         | NP       | Aug-03           |         |        | 10,000 | 18,000         |        | 950        | 290       | 330       | 1,820      | <2.0        |        |
| MW-5         | INI      | Dec-03           |         |        | 800    | 11,900         |        | 627        | 263       | 288       | 1,230      | 595         |        |
| MW-5         |          | Mar-04           |         |        | 850    | 20,700         |        | 867        | 266       | 305       | 678        | 145         |        |
| MW-5         |          | Jun-04           |         |        | 1,700  | 12,000         |        | 920        | 200       | 260       | 1,150      | <3.1        |        |
| MW-5         |          | Sep-04           |         |        | 1,700  | 12,000         |        | 580        | 240       | 260       | 1,130      |             | <4.2   |
| MW-5         |          | Dec-04           |         |        | 3,300  | 16,000         |        | 730        | 240       | 250       | 1,200      |             | <4.2   |
| MW-5         |          | Mar-05           |         |        | 4,600  | 6,300          |        | 190        | 28        | 42        | 280        |             | <1.7   |
| MW-5         |          | Jun-05           |         |        | 4,100  | 16,000         |        | 1,100      | 260       | 380       | 1,590      |             | <7.1   |
| MW-5         |          | Sep-05           |         |        | 3,600  | 15,000         |        | 810        | 210       | 300       | 1,300      |             | <1.3   |
| MW-5         |          | Dec-05           |         |        | 3,600  | 9,600          |        | 270        | 80        | 110       | 710        |             | <1.7   |
| MW-5         |          | Mar-06           |         |        | 5,100  | 9,800          |        | 240        | 47        | 97        | 590        |             | <2.0   |
| MW-5         |          | Jun-06           |         |        | 4,900  | 28,000         |        | 920.0      | 250.0     | 350.0     | 1,480      |             | <2.0   |
| MW-5         |          | Sep-06           |         |        | 2,400  | 12,000         |        | 580        | 170       | 230       | 980        |             | <3.6   |
| MW-5         |          | Dec-06           |         |        | 3,400  | 15,000         |        | 510        | 160       | 260       | 1,190      |             | <3.6   |
| MW-5         |          | Mar-07           |         |        | 4,600  | 20,000         |        | 910        | 230       | 360       | 1,560      |             | <3.6   |
| MW-5         | NP       | Jun-07           |         |        |        |                |        |            |           |           |            |             |        |
| MW-5         | NP       | Sep-07           |         |        |        |                |        |            |           |           |            |             |        |
| MW-5         | NP       | Dec-07           |         |        |        |                |        |            |           |           |            |             |        |
| MW-5         | NP       | Mar-08           |         |        |        |                |        |            |           |           |            |             |        |
| MW-5         | NP       | Jun-08           |         |        |        |                |        |            |           |           |            |             |        |
| MW-5         | NP       | Sep-08           |         |        |        |                |        |            |           |           |            |             |        |
| MW-5         |          | Dec-08           |         |        | 34,000 | 32,000         |        | 400        | 90        | 64        | 640        |             | <6.3   |
| MW-5         |          | Mar-09           |         |        | 9,000  | 9,700          |        | 140        | 34        | 38        | 280        |             | <107   |
| -            |          |                  |         |        |        | ,              |        | -          |           |           |            |             | -      |

#### TABLE 5A CUMULATIVE GROUNDWATER ANALYTICAL RESULTS Bayrock Oakland 230 and 240 West MacArthur Boulevard Oakland, California (Page 11 of 14)

| <b></b> |      |          | 5520E&F |        | 8015B   |         | 8260B  |          | 8021B  | /8260B     |            | 8021B      | 8260B  |
|---------|------|----------|---------|--------|---------|---------|--------|----------|--------|------------|------------|------------|--------|
| Well    |      | Date     | O&G     | TPHmo  | TPHd    | TPHg    | TPPH   | В        | Т      | Е          | Х          | MTBE       | MTBE   |
| ID      |      | Sampled  | (µg/L)  | (µg/L) | (µg/L)  | (µg/L)  | (µg/L) | (µg/L)   | (µg/L) | (µg/L)     | (µg/L)     | (µg/L)     | (µg/L) |
|         |      |          |         |        |         |         |        |          |        |            |            |            |        |
| MW-5    |      | Sep-09   |         |        | 44,000  | 210,000 |        | 730      | 160    | 270        | 2,000      |            | <10    |
| MW-5    | NP   | Sep-10   |         |        | 480,000 | 140,000 |        | 68       | 10.0   | 16         | 84.0       |            | 2.5    |
| MW-5    | NP   | Apr-11   |         |        |         |         |        |          |        |            |            |            |        |
| MW-5    | NP   | Sep-11   |         |        |         |         |        |          |        |            |            |            |        |
| MW-5    | NP   | Mar-12   |         |        |         |         |        |          |        |            |            |            |        |
| MW-5    | NP   | 09/07/12 |         |        |         |         |        |          |        |            |            |            |        |
| MW-5    | NP   | 03/20/13 |         |        |         | 26,000  |        | 270      | 57     | 27         | 540        |            | <2.5   |
| MW-5    |      | 01/26/16 |         |        | 3,700   | 1,700   |        | 13       | 2.0    | 1.0        | 14         |            | <0.5   |
|         |      |          |         |        | -,      | ,       |        |          |        |            |            |            |        |
| MW-6    |      | Feb-01   |         |        |         | 1,340   |        | 17       | 0.967  | 11.1       | 51.4       | <0.3       |        |
| MW-6    |      | May-01   |         |        |         | 610     |        | 15       | 0.97   | <0.5       | 46         | <0.5       |        |
| MW-6    |      | Jul-01   |         |        |         | 2,500   |        | 130      | 4.7    | 53         | 170        | 120        |        |
| MW-6    | HV-  | 10/22/01 |         |        |         | 280     |        | 18       | 1.2    | 6.2        | 4.7        | 6          |        |
| MW-6    | HV+  | 10/26/01 |         |        |         | 3,600   |        | 210      | 20     | 170        | 62         | 120        |        |
| MW-6    | 110+ | Dec-01   |         |        |         |         |        |          |        |            |            |            |        |
|         |      |          |         |        |         | 5,300   |        | 69<br>54 | 5.6    | 14<br>27   | 17<br>17   | <2.0       |        |
| MW-6    | NP   | Mar-02   |         |        |         | 71      |        | 54       | 4.2    | 27<br>-0 5 | 17<br>-0 5 | 8.5<br>1 5 |        |
| MW-6    | NP   | May-02   |         |        |         | 150     |        | 9.3      | <0.5   | <0.5       | <0.5       | 1.5        |        |
| MW-6    | NP   | Jul-02   |         |        |         | 2,200   |        | 98       | 32     | 46         | 150        | 66         |        |
| MW-6    | NP   | Oct-02   |         |        |         | 786     |        | 48       | 5.0    | 2.2        | 44         | 16         |        |
| MW-6    | NP   | Jan-03   |         |        |         | 497     |        | 6.8      | <5.0   | <5.0       | 11         | <1.0       |        |
| MW-6    | NP   | Mar-03   |         |        |         | 258     |        | 5.4      | <0.32  | 3.3        | <1.1       | <0.18      |        |
| MW-6    | NP   | Aug-03   |         |        | 2,800   | 1,600   |        | 37       | 4      | 23         | 58         | <0.5       |        |
| MW-6    |      | Dec-03   |         |        | 200     | 365     |        | 2.5      | 3.8    | 1.4        | 6.1        | <5.0       |        |
| MW-6    |      | Mar-04   |         |        | 140     | 215     |        | 4.0      | 1.2    | 1.4        | 1.4        | 3.7        |        |
| MW-6    |      | Jun-04   |         |        | 830     | 710     |        | 14.0     | 0.7    | 5.2        | 6.6        | <0.5       |        |
| MW-6    |      | Sep-04   |         |        | 600     | 350     |        | <0.5     | 2.4    | <0.5       | <0.5       |            | <0.5   |
| MW-6    |      | Dec-04   |         |        | 1,100   | 280     |        | 4.9      | <0.5   | 1.4        | 4.4        |            | <0.5   |
| MW-6    |      | Mar-05   |         |        | 980     | 300     |        | 5.4      | <0.5   | 3.3        | 2.3        |            | <0.5   |
| MW-6    |      | Jun-05   |         |        | 1,100   | 150     |        | <0.5     | <0.5   | <0.5       | 0.77       |            | 28     |
| MW-6    |      | Sep-05   |         |        | 200     | 680     |        | 13       | 0.9    | 6.6        | 13         |            | <0.5   |
| MW-6    |      | Dec-05   |         |        | 890     | 240     |        | 3.6      | <0.5   | 0.7        | 2.4        |            | 0.5    |
| MW-6    |      | Mar-06   |         |        | 950     | 530     |        | 8.3      | <0.5   | 4.0        | 2.1        |            | 0.6    |
| MW-6    |      | Jun-06   |         |        | 1,300   | 460     |        | 8.3      | <0.5   | 1.4        | 2.6        |            | <0.5   |
| MW-6    |      | Sep-06   |         |        | 730     | 530     |        | 10.0     | 0.8    | 4.1        | 7.5        |            | <0.5   |
| MW-6    |      | Dec-06   |         |        | 750     | 500     |        | 7.5      | <0.5   | 2.6        | 2.5        |            | <0.5   |
| MW-6    |      | Mar-07   |         |        | 530     | 430     |        | 7.1      | <0.5   | 1.7        | 0.8        |            | <0.5   |
| MW-6    | NP   | Jun-07   |         |        |         |         |        |          |        |            |            |            |        |
| MW-6    | NP   | Sep-07   |         |        |         |         |        |          |        |            |            |            |        |
|         | NP   |          |         |        |         |         |        |          |        |            |            |            |        |
| MW-6    |      | Dec-07   |         |        |         |         |        |          |        |            |            |            |        |
| MW-6    | NP   | Mar-08   |         |        |         |         |        |          |        |            |            |            |        |
| MW-6    | NP   | Jun-08   |         |        |         |         |        |          |        |            |            |            |        |
| MW-6    | NP   | Sep-08   |         |        |         |         |        |          |        |            |            |            |        |
| MW-6    |      | Dec-08   |         |        | 810     | 810     |        | 2.6      | <0.5   | 0.8        | 3.1        |            | 1.1    |
| MW-6    |      | Mar-09   |         |        | 3,300   | 740     |        | 14.0     | <0.5   | 1.6        | 8.6        |            | 2.6    |
| MW-6    | · ·- | Sep-09   |         |        | 1,600   | 340     |        | 2.7      | <0.5   | 0.9        | 1.2        |            | 1.3    |
| MW-6    | NP   | Sep-10   |         |        |         |         |        |          |        |            |            |            |        |
| MW-6    | NP   | Apr-11   |         |        |         |         |        |          |        |            |            |            |        |
| MW-6    | NP   | Sep-11   |         |        |         |         |        |          |        |            |            |            |        |
| MW-6    | NP   | Mar-12   |         |        |         |         |        |          |        |            |            |            |        |
| MW-6    |      | 09/07/12 |         |        |         | 1,100   |        | 16       | 0.6    | 1.8        | 3.1        |            | 1.1    |
| MW-6    |      | 03/20/13 |         |        | 18,000  | 570     |        | 7.4      | <0.5   | 1.0        | 0.7        |            | 0.9    |
| MW-6    |      | 01/26/16 |         |        | 5,200   | 2,900   |        | 180      | 4.4    | <1.7       | 20.8       |            | <1.7   |
|         |      |          |         |        |         |         |        |          |        |            |            |            |        |
| MW-7    |      | 02/14/01 |         |        |         | <500    |        | <0.3     | <0.3   | <0.3       | <0.3       | 284        |        |
| MW-7    |      | May-01   |         |        |         | <50     |        | 0.75     | 0.77   | 0.48       | 2.4        | 1.1        |        |
| MW-7    |      | Jul-01   |         |        |         | <5.0    |        | <0.5     | <0.5   | <0.5       | <0.5       | <0.5       |        |
| MW-7    | HV-  | 10/22/01 |         |        |         | <5.0    |        | <0.5     | <0.5   | <0.5       | <0.5       | <0.5       |        |
| MW-7    | HV+  | 10/26/01 |         |        |         | 6,000   |        | 170      | 550    | 110        | 120        | 970        |        |
| MW-7    |      | Dec-01   |         |        |         | <50     |        | <0.5     | <0.5   | <0.5       | <0.5       | 43         |        |
| MW-7    | NP   | Mar-02   |         |        |         | <50     |        | <1.0     | <1.0   | <1.0       | <1.0       | <1.0       |        |
| MW-7    | NP   | May-02   |         |        |         | <50     |        | <0.5     | <0.5   | <0.5       | <0.5       | <0.5       |        |
|         |      |          |         |        |         |         |        |          | -0.0   |            |            |            |        |

#### TABLE 5A CUMULATIVE GROUNDWATER ANALYTICAL RESULTS Bayrock Oakland 230 and 240 West MacArthur Boulevard Oakland, California (Page 12 of 14)

|            |     |                  | 5520E&F |        | 8015B     |            | 8260B  |              | 8021B        | /8260B       |              | 8021B  | 8260B    |
|------------|-----|------------------|---------|--------|-----------|------------|--------|--------------|--------------|--------------|--------------|--------|----------|
| Well       |     | Date             | O&G     | TPHmo  | TPHd      | TPHg       | TPPH   | В            | Т            | Е            | Х            | MTBE   | MTBE     |
| ID         |     | Sampled          | (µg/L)  | (µg/L) | (µg/L)    | (µg/L)     | (µg/L) | (µg/L)       | (µg/L)       | (µg/L)       | (µg/L)       | (µg/L) | (µg/L)   |
|            |     |                  |         |        |           |            |        | ÷            |              |              |              |        | ·        |
| MW-7       | NP  | Jul-02           |         |        |           | <50        |        | <0.5         | <0.5         | <0.5         | <0.5         | <0.5   |          |
| MW-7       | NP  | Oct-02           |         |        |           | <100       |        | <0.3         | <0.3         | <0.3         | <0.6         | <5.0   |          |
| MW-7       | NP  | Jan-03           |         |        |           |            |        |              |              |              |              |        |          |
| MW-7       | NP  | Mar-03           |         |        |           | <15        |        | <0.04        | <0.02        | <0.02        | <0.06        | < 0.03 |          |
| MW-7       | NP  | Aug-03           |         |        |           | <50        |        | <0.5         | <0.5         | <0.5         | <0.5         | <0.5   |          |
| MW-7       |     | Dec-03           |         |        |           | <50        |        | <0.3         | <0.3         | <0.3         | <0.6         | <5.0   |          |
| MW-7       |     | Mar-04           |         |        |           | 86         |        | <0.3         | <0.3         | <0.3         | <0.6         | 57     |          |
| MW-7       |     | Jun-04           |         |        |           | <50        |        | <0.5         | <0.5         | <0.5         | <0.5         | <0.5   |          |
| MW-7       |     | Sep-04           |         |        |           | <50        |        | <0.5         | <0.5         | <0.5         | <0.5         |        | <0.5     |
| MW-7       |     | Dec-04           |         |        |           | <50        |        |              |              |              |              |        |          |
| MW-7       |     | Mar-05           |         |        |           | <50        |        |              |              |              |              |        |          |
| MW-7       |     | Jun-05           |         |        |           | <50        |        |              |              |              |              |        |          |
| MW-7       |     | Sep-05           |         |        |           | <50        |        |              |              |              |              |        |          |
| MW-7       |     | Dec-05           |         |        |           | <50        |        |              |              |              |              |        |          |
| MW-7       |     | Mar-06           |         |        |           | <50        |        |              |              |              |              |        |          |
| MW-7       |     | Jun-06           |         |        |           | <50        |        |              |              |              |              |        |          |
| MW-7       |     | Sep-06           |         |        |           | <50        |        |              |              |              |              |        |          |
| MW-7       |     | Dec-06           |         |        |           | <50<br><50 |        |              |              |              |              |        |          |
| MW-7       |     | Mar-07           |         |        |           | <50<br><50 |        |              |              |              |              |        |          |
| MW-7       | NP  | Jun-07           |         |        |           |            |        |              |              |              |              |        |          |
| MW-7       | NP  |                  |         |        |           |            |        |              |              |              |              |        |          |
| MW-7       | NP  | Sep-07<br>Dec-07 |         |        |           |            |        |              |              |              |              |        |          |
|            |     |                  |         |        |           |            |        |              |              |              |              |        |          |
| MW-7       | NP  | Mar-08           |         |        |           |            |        |              |              |              |              |        |          |
| MW-7       | NP  | Jun-08           |         |        |           |            |        |              |              |              |              |        |          |
| MW-7       | NP  | Sep-08           |         |        |           |            |        |              |              |              |              |        |          |
| MW-7       |     | Dec-08           |         |        |           | <50        |        |              |              |              |              |        |          |
| MW-7       |     | Mar-09           |         |        |           | <50        |        |              |              |              |              |        |          |
| MW-7       |     | Sep-09           |         |        |           | <50        |        |              |              |              |              |        |          |
| MW-7       | NP  | Sep-10           |         |        |           |            |        |              |              |              |              |        |          |
| MW-7       | NP  | Apr-11           |         |        |           |            |        |              |              |              |              |        |          |
| MW-7       | NP  | Sep-11           |         |        |           |            |        |              |              |              |              |        |          |
| MW-7       | NP  | Mar-12           |         |        |           |            |        |              |              |              |              |        |          |
| MW-7       |     | 09/07/12         |         |        |           | <50        |        |              |              |              |              |        |          |
| MW-7       |     | 03/20/13         |         |        |           | <50        |        |              |              |              |              |        |          |
| MW-7       |     | 01/26/16         |         |        | <51       | <50        |        | <0.5         | <0.5         | <0.5         | <0.5         |        | <0.5     |
|            |     |                  |         |        |           |            |        |              |              |              |              |        |          |
| MW-8       |     | 02/14/01         |         |        |           | 1,000      |        | 3.97         | <0.3         | 3.78         | 1.63         | 620    |          |
| MW-8       |     | May-01           |         |        |           | <50        |        | <0.5         | <0.5         | <0.5         | <0.5         | 4.4    |          |
| MW-8       |     | Jul-01           |         |        |           | <5.0       |        | <0.5         | <0.5         | <0.5         | <0.5         | <0.5   |          |
| MW-8       | HV- | 10/22/01         |         |        |           | <5.0       |        | <0.5         | <0.5         | <0.5         | <0.5         | <0.5   |          |
| MW-8       | HV+ | 10/26/01         |         |        |           | <5.0       |        | <0.5         | <0.5         | <0.5         | <0.5         | <0.5   |          |
| MW-8       |     | Dec-01           |         |        |           | <50        |        | <0.5         | <0.5         | <0.5         | <0.5         | <0.5   |          |
| MW-8       | NP  | Mar-02           |         |        |           | <50        |        | <1.0         | <1.0         | <1.0         | <1.0         | <1.0   |          |
| MW-8       | NP  | May-02           |         |        |           | <50        |        | <0.5         | <0.5         | <0.5         | <0.5         | <0.5   |          |
| MW-8       | NP  | Jul-02           |         |        |           | <50        |        | <0.5         | <0.5         | <0.5         | <0.5         | <0.5   |          |
| MW-8       | NP  | Oct-02           |         |        |           | 458        |        | 1.7          | <0.3         | <0.3         | <0.6         | 233    |          |
| MW-8       | NP  | Jan-03           |         |        |           | <100       |        | <0.3         | <0.3         | <0.3         | <0.6         | <5.0   |          |
| MW-8       | NP  | Mar-03           |         |        |           | <15        |        | <0.22        | <0.32        | <0.31        | <0.4         | <0.18  |          |
| MW-8       | NP  | Aug-03           |         |        | <50       | 190        |        | <0.5         | <0.5         | <0.5         | 0.6          | <0.5   |          |
| MW-8       |     | Dec-03           |         |        | <100      | 163        |        | <0.3         | <0.3         | < 0.3        | <0.6         | 66     |          |
| MW-8       |     | Mar-04           |         |        | <100      | 412        |        | 1.2          | <0.3         | 1.7          | 3.9          | 66     |          |
| MW-8       |     | Jun-04           |         |        | 68        | 320        |        | <0.5         | <0.5         | <0.5         | <0.5         | 120    |          |
| MW-8       |     | Sep-04           |         |        | 2,600     | 280        |        | <0.5         | <0.5         | <0.5         | <0.5         |        | 120      |
| MW-8       |     | Dec-04           |         |        | 84        | 270        |        | <0.5         | <0.5         | <0.5         | <0.5         |        | 94       |
| MW-8       |     | Mar-05           |         |        | 120       | 270        |        | <0.5         | <0.5         | <0.5         | <1.0         |        | 66       |
| MW-8       |     | Jun-05           |         |        | 63        | 510        |        | 6.8          | <0.5<br><0.5 | 2.4          | 5.3          |        | <0.5     |
| MW-8       |     | Sep-05           |         |        | <50       | 520        |        | <0.5         | <0.5<br><0.5 | <0.5         | <1.0         |        | 65       |
| MW-8       |     | Dec-05           |         |        | <50<br>57 | 65         |        | <0.5<br><0.5 | <0.5<br><0.5 | <0.5<br><0.5 | <1.0<br><1.0 |        | 29       |
| MW-8       |     | Mar-06           |         |        | 120       | 140        |        | <0.5<br><0.5 | <0.5<br><0.5 | <0.5<br><0.5 | <1.0<br>0.6  |        | 29<br>24 |
| MW-8       |     | Jun-06           |         |        | 120       | 710        |        | <0.5<br><0.5 | <0.5<br><0.5 | <0.5<br><0.5 |              |        | 24<br>81 |
| MW-8       |     |                  |         |        | 260       | 330        |        | <0.5<br><0.5 | <0.5<br><0.5 | <0.5<br><0.5 | <1.0         |        | 81<br>44 |
| IVI V V -0 |     | Sep-06           |         |        | 200       | 330        |        | <0.5         | <0.5         | <0.5         | <0.5         |        | 44       |

# TABLE 5ACUMULATIVE GROUNDWATER ANALYTICAL RESULTSBayrock Oakland230 and 240 West MacArthur BoulevardOakland, California(Page 13 of 14)

|                               |          |                      | 5520E&F |        | 8015B         |                 | 8260B  |                | 8021B       | /8260B     |             | 8021B       | 8260B  |
|-------------------------------|----------|----------------------|---------|--------|---------------|-----------------|--------|----------------|-------------|------------|-------------|-------------|--------|
| Well                          |          | Date                 | O&G     | TPHmo  | TPHd          | TPHg            | TPPH   | В              | Т           | E          | Х           | MTBE        | MTBE   |
| ID                            |          | Sampled              | (µg/L)  | (µg/L) | (µg/L)        | (µg/L)          | (µg/L) | (µg/L)         | (µg/L)      | (µg/L)     | (µg/L)      | (µg/L)      | (µg/L) |
|                               |          |                      |         |        |               |                 |        |                |             |            |             |             |        |
| MW-8                          |          | Dec-06               |         |        | <50           | 63              |        | <0.5           | <0.5        | <0.5       | <0.5        |             | 21     |
| MW-8                          |          | Mar-07               |         |        | 130           | 250             |        | <0.5           | <0.5        | <0.5       | 0.5         |             | 5      |
| MW-8                          | NP       | Jun-07               |         |        | 150           | 320             |        | 5.2            | <0.5        | <0.5       | 0.7         |             | 89     |
| MW-8                          | NP       | Sep-07               |         |        |               |                 |        |                |             |            |             |             |        |
| MW-8                          | NP       | Dec-07               |         |        |               |                 |        |                |             |            |             |             |        |
| MW-8                          | NP       | Mar-08               |         |        |               |                 |        |                |             |            |             |             |        |
| MW-8                          | NP       | Jun-08               |         |        |               |                 |        |                |             |            |             |             |        |
| MW-8                          | NP       | Sep-08               |         |        |               |                 |        |                |             |            |             |             |        |
| MW-8                          |          | Dec-08               |         |        | 280           | 350             |        | <0.5           | <0.5        | <0.5       | <0.5        |             | 22     |
| MW-8                          |          | Mar-09               |         |        | 1,000         | 110             |        | <0.5           | <0.5        | <0.5       | <0.5        |             | 5.2    |
| MW-8                          |          | Sep-09               |         |        | 1,300         | 190             |        | <0.5           | <0.5        | <0.5       | <0.5        |             | 5.7    |
| MW-8                          | NP       | Sep-10               |         |        |               |                 |        |                |             |            |             |             |        |
| MW-8                          | NP       | Apr-11               |         |        |               |                 |        |                |             |            |             |             |        |
| MW-8                          | NP       | Sep-11               |         |        |               |                 |        |                |             |            |             |             |        |
| MW-8                          |          | Mar-12               |         |        |               | <50             |        | <0.5           | <0.5        | <0.5       | <0.5        |             | 1.1    |
| MW-8                          |          | 09/07/12             |         |        | 720           | <50             |        | <0.5           | <0.5        | <0.5       | <0.5        |             | <0.5   |
| MW-8                          |          | 03/20/13             |         |        | 340           | <50             |        | <0.5           | <0.5        | <0.5       | <0.5        |             | 1.4    |
| MW-8                          |          | 01/26/16             |         |        | <50           | <50             |        | <0.5           | <0.5        | <0.5       | <0.5        |             | <0.5   |
| <b>Grab Gro</b><br>1997 Subsu |          | vater Sam            | ples    |        |               |                 |        |                |             |            |             |             |        |
| BH1W                          |          | 01/08/97             |         |        | 490g,d,i      | 330c,i,n        |        | 2.0            | 0.72        | <0.5       | 1.3         | 220         |        |
| BH2W                          |          | 01/08/97             | <5,000i |        | 320g,b,i      | <50             |        | <0.5           | <0.5        | <0.5       | <0.5        | <5.0        |        |
| BH4W                          |          | 01/08/97             |         |        |               | 6,600b,d        |        | 58             | 13          | 110        | 270         | 170         |        |
| BH6W                          |          | 01/08/97             |         |        | 450,000d,h    | 13,000a,h       |        | 870            | 65          | 130        | 570         | 320         |        |
|                               |          |                      |         |        |               |                 |        |                |             |            |             |             |        |
|                               | nd Grou  | Indwater Inve        | -       |        | .100          | 70              |        |                | 0.5         | 4.0        | 7.0         | 00          |        |
| BH-10-GW<br>BH-11-GW          |          | 04/29/04<br>04/29/04 |         |        | <100          | 78<br>74        |        | 1.4<br>3.4     | 6.5         | 1.8        | 7.0         | 20          |        |
|                               |          |                      |         |        | <100          |                 |        |                | 8.4         | 2.0        | 8.5         | <5.0        |        |
| BH-12-GW                      |          | 04/29/04             |         |        | <100          | 77              |        | 1.4            | 7.7         | 2.0        | 9.2         | <5.0        |        |
| BH-13-GW                      |          | 04/29/04             |         |        | 300           | 68,300          |        | 617<br>12      | 527         | 668<br>6 1 | 4,680       | 548         |        |
| BH-14-GW                      |          | 04/29/04             |         |        | 170           | 923<br>742      |        | 13             | 5.1         | 6.1        | 8.5         | 189         |        |
| BH-15-GW                      |          | 04/29/04             |         |        | <100          | 26,800          |        | 1.8<br>72      | 2.7         | 1.7        | 4.7         | 400         |        |
| BH-16-GW<br>BH-17-GW          |          | 04/29/04<br>04/29/04 |         |        | 300<br><100   | 26,800<br>206   |        | 73<br><1.0     | 138<br>2.9j | 222<br><5  | 946<br>3.0j | 288<br>143  |        |
| BH-17-GW<br>BH-18-GW          |          | 04/29/04             |         |        | <100<br>1,000 | 3,220           |        | <1.0<br><10    | 2.9j<br><10 | <5<br>76   | 3.0J<br>232 | 348         |        |
| BH-18-GW<br>BH-19-GW          |          | 04/29/04             |         |        | 1,300         | 3,220<br>10,000 |        | <10<br>24      | <10<br><50  | 65         | 108         | 340<br><10  |        |
| BH-19-GW<br>BH-20-GW          |          | 04/29/04             |         |        | 2,700         | 122,000         |        | 24<br>1,830    | <50<br>69   | 227        | 1,430       | <10<br>18.0 |        |
| BH-20-GW<br>BH-21-GW          |          | 04/29/04             |         |        | 2,700         | 10,300          |        | 485            | 09<br>70    | 474        | 2,620       | <10         |        |
|                               | nd Grov  | Indwater Inve        |         |        | 1,300         | 10,000          |        | -00            | 10          | 7/7        | 2,020       | ~10         |        |
| B24-GW                        |          | 05/24/07             |         |        | 0.25          | 3,410           |        | 44             | 35          | 70         | 35          | 79.0        |        |
| B24-GW<br>B25-GW              |          | 05/24/07             |         |        | 0.22          | 62              |        | 2.5            | 4.3         | <0.09      | <0.26       | <0.75       |        |
| B23-GW<br>B27-GW              |          | 05/23/07             |         |        | < 0.032       | <5.6            |        | <0.15          | <0.12       | <0.09      | <0.20       | 191.0       |        |
| B28-GW                        |          | 05/24/07             |         |        | < 0.032       | <5.6            |        | <0.15<br><0.15 | <0.12       | <0.09      | <0.26       | 588.0       |        |
| B29-GW                        |          | 05/24/07             |         |        | < 0.032       | <5.6            |        | <0.15          | <0.12       | <0.09      | <0.26       | <0.75       |        |
| B30-GW                        |          | 05/23/07             |         |        | 0.25          | 9,460           |        | 66             | 89          | 63         | 48          | 260.0       |        |
| B31-GW                        |          | 05/23/07             |         |        | 0.20          | 1,290           |        | 362            | 9.4         | 18         | 27          | 39.0        |        |
| B32-GW                        |          | 05/23/07             |         |        | 0.10          | 2,330           |        | 86             | 29          | 41         | 185         | 77.0        |        |
| 2017 Subsu                    | rface Ir |                      |         |        |               | _,000           |        |                | _0          |            |             |             |        |
| B1                            |          | 09/09/17             |         | 170e   | 320e          | <50             |        | <0.50          | 1.3         | <0.50      | <2.0        |             | <1.0   |
| 21                            |          | 00,00,11             |         |        | 0200          |                 |        |                |             |            | -2.0        |             |        |

# TABLE 5ACUMULATIVE GROUNDWATER ANALYTICAL RESULTSBayrock Oakland230 and 240 West MacArthur BoulevardOakland, California(Page 14 of 14)

| Notes:    |   |                                                                                        |
|-----------|---|----------------------------------------------------------------------------------------|
| O&G       | = | Oil and grease.                                                                        |
| TPHd      | = | Total petroleum hydrocarbons as diesel.                                                |
| TPHg      | = | Total petroleum hydrocarbons as gasoline.                                              |
| BTEX      | = | Benzene, toluene, ethylbenzene, and total xylenes.                                     |
| MTBE      | = | Methyl tertiary butyl ether.                                                           |
| 1,2-DCA   | = | 1,2-dichloroethane.                                                                    |
| EDB       | = | 1,2-dibromoethane.                                                                     |
| ETBE      | = | Ethyl tertiary butyl ether.                                                            |
| DIPE      | = | Di-isopropyl ether.                                                                    |
| TAME      | = | Tertiary amyl methyl ether.                                                            |
| TBA       | = | Tertiary butyl alcohol.                                                                |
| c-1,2-DCA | = | cis-1,2-dichloroethane.                                                                |
| PCE       | = | Tetrachloroethene.                                                                     |
| TCE       | = | Trichloroethene.                                                                       |
| VOCs      | = | Volatile organic compounds.                                                            |
| PAHs      | = | Polyaromatic hydrocarbons.                                                             |
| ND        | = | Not detected.                                                                          |
| µg/L      | = | Micrograms per cubic liter.                                                            |
| <         | = | Less than the stated laboratory reporting limit.                                       |
|           | = | Not sampled/Not analyzed.                                                              |
| NP        | = | "No Purge" means no purging was conducted before the groundwater sample was collected. |
| HV-       | = | Pre"hi-vac"                                                                            |
| HV+       | = | Post "hi-vac"                                                                          |
| а         | = | Unmodified or weakly modified gasoline is significant.                                 |
| b         | = | Heavier gasoline-range compounds are significant.                                      |
| С         | = | Lighter gasoline-range compounds (the most mobile fraction) are significant.           |
| d         | = | Gasoline-range compounds having broad chromatographic peaks are significant.           |
| е         | = | Chromatographic pattern does not match that of the specified standard.                 |
| f         | = | Analyzed outside of recommended hold time.                                             |
| g         | = | Oil-range compounds are significant.                                                   |
| h         | = | Lighter than water immeiscible sheen is present.                                       |
| i         | = | Liquid sample that contains greater than ~5 vol. % sediment.                           |
| j         | = | Estimated value below the reporting limit and above the method detection limit.        |
| k         | = | Estimated value above the method dection limit but below the reporting limit.          |
| 1         | _ | Sample contains discrete peak in dasoline range                                        |

- I = Sample contains discrete peak in gasoline range.
- m = Hydrocarbon result partly due to individual peak(s) in the quantitation range.
- n = No recognizable pattern.

## TABLE 5B CUMULATIVE GROUNDWATER ANALYTICAL RESULTS Bayrock Oakland 230 and 240 West MacArthur Boulevard Oakland, California

(Page 1 of 14)

|          |           |        |         |        |        |        |        | 260B    |         |           |        |        |        | 8270   | 6010     |
|----------|-----------|--------|---------|--------|--------|--------|--------|---------|---------|-----------|--------|--------|--------|--------|----------|
| Well     | Date      | EDB    | 1,2-DCA | ETBE   | DIPE   | TAME   | TBA    | Ethanol | Acetone | c-1,2-DCA | PCE    | TCE    | VOCs   | PAHs   | Total Le |
| ID       | Sampled   | (µg/L) | (µg/L)  | (µg/L) | (µg/L) | (µg/L) | (µg/L) | (µg/L)  | (µg/L)  | (µg/L)    | (µg/L) | (µg/L) | (µg/L) | (µg/L) | (mg/L    |
| 30 Mac   | Arthur Bo | oulev  | ard     |        |        |        |        |         |         |           |        |        |        |        |          |
| MW-1     | 07/14/88  |        |         |        |        |        |        |         |         |           |        |        |        |        |          |
| MW-1     | 04/10/88  |        |         |        |        |        |        |         |         |           |        |        |        |        |          |
| MW-1     | 10/11/88  |        |         |        |        |        |        |         |         |           |        |        |        |        |          |
| MW-1     | 09/12/88  |        |         |        |        |        |        |         |         |           |        |        |        |        |          |
|          |           |        |         |        |        |        |        |         |         |           |        |        |        |        |          |
| MW-1     | 10/01/89  |        |         |        |        |        |        |         |         |           |        |        |        |        |          |
| MW-1     | 01/20/89  |        |         |        |        |        |        |         |         |           |        |        |        |        |          |
| MW-1     | 06/02/89  |        |         |        |        |        |        |         |         |           |        |        |        |        |          |
| MW-1     | 10/03/89  |        |         |        |        |        |        |         |         |           |        |        |        |        |          |
| MW-1     | 06/06/89  |        |         |        |        |        |        |         |         |           |        |        |        |        |          |
| MW-1     | 07/09/89  |        |         |        |        |        |        |         |         |           |        |        |        |        |          |
| MW-1     | 12/18/89  |        |         |        |        |        |        |         |         |           |        |        |        |        |          |
| MW-1     | 08/03/90  |        |         |        |        |        |        |         |         |           |        |        |        |        |          |
| MW-1     | 07/06/90  |        |         |        |        |        |        |         |         |           |        |        |        |        |          |
| MW-1     | 05/09/90  |        |         |        |        |        |        |         |         |           |        |        |        |        |          |
| MW-1     |           |        |         |        |        |        |        |         |         |           |        |        |        |        |          |
|          | 03/12/90  |        |         |        |        |        |        |         |         |           |        |        |        |        |          |
| MW-1     | 01/03/91  |        |         |        |        |        |        |         |         |           |        |        |        |        |          |
| MW-1     | 03/06/91  |        |         |        |        |        |        |         |         |           |        |        |        |        |          |
| MW-1     | 04/09/91  |        |         |        |        |        |        |         |         |           |        |        |        |        |          |
| MW-1     | 03/13/92  |        |         |        |        |        |        |         |         |           |        |        |        |        |          |
| MW-1     | 03/06/92  |        |         |        |        |        |        |         |         |           |        |        |        |        |          |
| MW-1     | 08/19/92  |        |         |        |        |        |        |         |         |           |        |        |        |        |          |
| MW-1     | 11/16/92  |        |         |        |        |        |        |         |         |           |        |        |        |        |          |
| MW-1     | 02/18/93  |        |         |        |        |        |        |         |         |           |        |        |        |        |          |
|          |           |        |         |        |        |        |        |         |         |           |        |        |        |        |          |
| MW-1     | 01/06/93  |        |         |        |        |        |        |         |         |           |        |        |        |        |          |
| MW-1     | 08/30/93  |        |         |        |        |        |        |         |         |           |        |        |        |        |          |
| MW-1     | 12/13/93  |        |         |        |        |        |        |         |         |           |        |        |        |        |          |
| MW-1     | 03/03/94  |        |         |        |        |        |        |         |         |           |        |        |        |        |          |
| MW-1     | 06/06/94  |        |         |        |        |        |        |         |         |           |        |        |        |        |          |
| MW-1     | 12/09/94  |        |         |        |        |        |        |         |         |           |        |        |        |        |          |
| MW-1     | 12/15/94  |        |         |        |        |        |        |         |         |           |        |        |        |        |          |
| MW-1     | 03/13/95  |        |         |        |        |        |        |         |         |           |        |        |        |        |          |
| MW-1     | 04/21/95  |        |         |        |        |        |        |         |         |           |        |        |        |        |          |
|          |           |        |         |        |        |        |        |         |         |           |        |        |        |        |          |
| MW-1     | 06/26/95  |        |         |        |        |        |        |         |         |           |        |        |        |        |          |
| MW-1     | 12/09/95  |        |         |        |        |        |        |         |         |           |        |        |        |        |          |
| MW-1     | 03/21/96  |        |         |        |        |        |        |         |         |           |        |        |        |        |          |
| MW-1     | 06/28/96  |        |         |        |        |        |        |         |         |           |        |        |        |        |          |
| MW-1     | 09/19/96  |        |         |        |        |        |        |         |         |           |        |        |        |        |          |
| MW-1     | 12/19/96  |        |         |        |        |        |        |         |         |           |        |        |        |        |          |
| MW-1     | 05/12/97  |        |         |        |        |        |        |         |         |           |        |        |        |        |          |
| MW-1     | 12/24/98  |        |         |        |        |        |        |         |         |           |        |        |        |        |          |
|          |           |        |         |        |        |        |        |         |         |           |        |        |        |        |          |
| MW-1     | 12/23/99  |        |         |        |        |        |        |         |         |           |        |        |        |        |          |
| MW-1     | 11/12/00  |        |         |        |        |        |        |         |         |           |        |        |        |        |          |
| MW-1     | 12/27/01  |        |         |        |        |        |        |         |         |           |        |        |        |        |          |
| MW-1     | 12/03/02  |        |         |        |        |        |        |         |         |           |        |        |        |        |          |
| MW-1     | 03/14/02  |        |         |        |        |        |        |         |         |           |        |        |        |        |          |
| MW-1     | 06/13/02  |        |         |        |        |        |        |         |         |           |        |        |        |        |          |
| MW-1     | 09/09/02  |        |         |        |        |        |        |         |         |           |        |        |        |        |          |
| MW-1     | 12/12/02  |        |         |        |        |        |        |         |         |           |        |        |        |        |          |
|          |           |        |         |        |        |        |        |         |         |           |        |        |        |        |          |
| MW-1     | 10/03/03  |        |         |        |        |        |        |         |         |           |        |        |        |        |          |
| MW-1     | 10/06/03  |        |         |        |        |        |        |         |         |           |        |        |        |        |          |
| MW-1     | 09/16/03  |        |         |        |        |        |        |         |         |           |        |        |        |        |          |
| MW-1     | 03/12/03  |        |         |        |        |        |        |         |         |           |        |        |        |        |          |
| MW-1     | 11/03/04  |        |         |        |        |        |        |         |         |           |        |        |        |        |          |
| MW-1     | 06/17/04  |        |         |        |        |        |        |         |         |           |        |        |        |        |          |
| MW-1     | 09/13/04  |        |         |        |        |        |        |         |         |           |        |        |        |        |          |
| MW-1     | 07/12/04  |        |         |        |        |        |        |         |         |           |        |        |        |        |          |
|          |           |        |         |        |        |        |        |         |         |           |        |        |        |        |          |
| MW-1     | 03/03/05  |        |         | <2.0   | <2.0   | <2.0   | <5.0   |         |         |           |        |        |        |        |          |
| N/IN// 1 | 06/14/05  |        |         |        |        |        |        |         |         |           |        |        |        |        |          |

MW-1

MW-1

06/14/05

09/19/05

----

---

---

----

---

----

---

---

---

---

---

---

---

---

----

---

---

---

---

---

---

----

---

----

----

---

---

---

### TABLE 5B CUMULATIVE GROUNDWATER ANALYTICAL RESULTS Bayrock Oakland 230 and 240 West MacArthur Boulevard Oakland, California (Page 2 of 14)

|              |     |                      |        |         |        |        |        | 82     | 260B    |         |           |        |        |        | 8270   | 6010       |
|--------------|-----|----------------------|--------|---------|--------|--------|--------|--------|---------|---------|-----------|--------|--------|--------|--------|------------|
| Well         |     | Date                 | EDB    | 1,2-DCA | ETBE   | DIPE   | TAME   | TBA    | Ethanol | Acetone | c-1,2-DCA | PCE    | TCE    | VOCs   | PAHs   | Total Lead |
| ID           |     | Sampled              | (µg/L) | (µg/L)  | (µg/L) | (µg/L) | (µg/L) | (µg/L) | (µg/L)  | (µg/L)  | (µg/L)    | (µg/L) | (µg/L) | (µg/L) | (µg/L) | (mg/L)     |
|              |     |                      |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-1         |     | 03/30/06             | <0.500 | <0.500  |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-1<br>MW-1 |     | 09/27/06             |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-1         |     | 09/28/06             |        |         | <0.500 | <0.500 | <0.500 | <10.0  |         |         |           |        |        |        |        |            |
| MW-1         |     | 12/26/06<br>03/29/07 |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-1         |     | 07/06/07             |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-1         |     | 09/18/07             |        |         | <2.0   | <2.0   | <2.0   | <10    |         |         |           |        |        |        |        |            |
| MW-1         |     | 12/17/07             |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-1         |     | 02/27/08             |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-1         |     | 05/28/08             |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-1         |     | 09/19/08             |        |         | <2.0   | <2.0   | <2.0   | <10    |         |         |           |        |        |        |        |            |
| MW-1         |     | 04/12/08             |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-1         |     | 02/25/09             |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-1         |     | 05/26/09             |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-1         |     | 09/18/09             |        |         | <2.0   | <2.0   | <2.0   | <10    |         |         |           |        |        |        |        |            |
| MW-1         |     | 03/16/10             |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-1         |     | 09/27/10             |        |         | <2.0   | <2.0   | <2.0   | <10    |         |         |           |        |        |        |        |            |
| MW-1         |     | 03/25/11             |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-2         |     | 07/14/88             |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-2         |     | 07/14/88<br>04/10/88 |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-2         |     | 10/11/88             |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-2         |     | 09/12/88             |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-2         |     | 01/20/89             |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-2         |     | 06/02/89             |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-2         |     | 10/03/89             |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-2         |     | 06/06/89             |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-2         |     | 07/09/89             |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-2         |     | 12/18/89             |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-2         |     | 08/03/90             |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-2         |     | 07/06/90             |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-2         |     | 05/09/90             |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-2         |     | 03/12/90             |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-2<br>MW-2 |     | 01/03/91<br>03/06/91 |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-2         |     | 03/06/91<br>04/09/91 |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-2         |     | 03/13/92             |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-2         |     | 03/06/92             |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-2         |     | 08/19/92             |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-2         |     | 11/16/92             |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-2         |     | 02/18/93             |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-2         | Dup | 02/18/93             |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-2         |     | 01/06/93             |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-2         |     | 08/30/93             |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-2         |     | 12/13/93             |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-2         |     | 03/03/94             |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-2         |     | 06/06/94             |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-2         |     | 12/09/94             |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-2<br>MW-2 |     | 12/15/94             |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-2         |     | 03/13/95<br>04/21/95 |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-2         |     | 04/21/95<br>06/26/95 |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-2         |     | 12/09/95             |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-2         |     | 03/21/96             |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-2         |     | 06/28/96             |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-2         |     | 09/19/96             |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-2         |     | 12/19/96             |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-2         |     | 05/12/97             |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-2         |     | 12/24/98             |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-2         |     | 12/23/99             |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-2         |     | 11/12/00             |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
|              |     |                      |        |         |        |        |        |        |         |         |           |        |        |        |        |            |

## TABLE 5B CUMULATIVE GROUNDWATER ANALYTICAL RESULTS Bayrock Oakland 230 and 240 West MacArthur Boulevard Oakland, California

(Page 3 of 14)

|              |      |                      |        |         |          |        |          | 82      | 260B    |         |           |        |        |        | 8270   | 6010       |
|--------------|------|----------------------|--------|---------|----------|--------|----------|---------|---------|---------|-----------|--------|--------|--------|--------|------------|
| Well         |      | Date                 | EDB    | 1,2-DCA | ETBE     | DIPE   | TAME     | TBA     | Ethanol | Acetone | c-1,2-DCA | PCE    | TCE    | VOCs   | PAHs   | Total Lead |
| ID           |      | Sampled              | (µg/L) | (µg/L)  | (µg/L)   | (µg/L) | (µg/L)   | (µg/L)  | (µg/L)  | (µg/L)  | (µg/L)    | (µg/L) | (µg/L) | (µg/L) | (µg/L) | (mg/L)     |
|              |      |                      | -      |         |          |        |          |         |         |         |           |        |        |        |        |            |
| MW-2         |      | 12/27/01             |        |         |          |        |          |         |         |         |           |        |        |        |        |            |
| MW-2         |      | 03/14/02             |        |         |          |        |          |         |         |         |           |        |        |        |        |            |
| MW-2         |      | 06/13/02             |        |         |          |        |          |         |         |         |           |        |        |        |        |            |
| MW-2<br>MW-2 |      | 09/09/02             |        |         |          |        |          |         |         |         |           |        |        |        |        |            |
| MW-2         |      | 12/12/02<br>10/03/03 |        |         |          |        |          |         |         |         |           |        |        |        |        |            |
| MW-2         |      | 10/06/03             |        |         |          |        |          |         |         |         |           |        |        |        |        |            |
| MW-2         |      | 09/16/03             |        |         |          |        |          |         |         |         |           |        |        |        |        |            |
| MW-2         |      | 03/12/03             |        |         |          |        |          |         |         |         |           |        |        |        |        |            |
| MW-2         |      | 11/03/04             |        |         |          |        |          |         |         |         |           |        |        |        |        |            |
| MW-2         |      | 06/17/04             |        |         |          |        |          |         |         |         |           |        |        |        |        |            |
| MW-2         |      | 09/13/04             |        |         | <2.0     | <2.0   | <2.0     | <5.0    |         |         |           |        |        |        |        |            |
| MW-2         |      | 07/12/04             |        |         |          |        |          |         |         |         |           |        |        |        |        |            |
| MW-2         |      | 03/03/05             |        |         |          |        |          |         |         |         |           |        |        |        |        |            |
| MW-2         |      | 06/14/05             |        |         |          |        |          |         |         |         |           |        |        |        |        |            |
| MW-2         |      | 09/19/05             |        |         | <2.0     | <2.0   | <2.0     | 5.6     |         |         |           |        |        |        |        |            |
| MW-2         |      | 03/30/06             | <0.500 | <0.500  |          |        |          |         |         |         |           |        |        |        |        |            |
| MW-2         |      | 09/27/06             |        |         |          |        |          |         |         |         |           |        |        |        |        |            |
| MW-2<br>MW-2 |      | 09/28/06<br>12/26/06 |        |         | <0.500   | <0.500 | <0.500   | <10.0   |         |         |           |        |        |        |        |            |
| MW-2         |      | 03/29/07             |        |         |          |        |          |         |         |         |           |        |        |        |        |            |
| MW-2         |      | 07/06/07             |        |         |          |        |          |         |         |         |           |        |        |        |        |            |
| MW-2         |      | 09/18/07             |        |         | <2.0     | <2.0   | <2.0     | <10     |         |         |           |        |        |        |        |            |
| MW-2         |      | 12/17/07             |        |         |          |        |          |         |         |         |           |        |        |        |        |            |
| MW-2         |      | 02/27/08             |        |         |          |        |          |         |         |         |           |        |        |        |        |            |
| MW-2         |      | 05/28/08             |        |         |          |        |          |         |         |         |           |        |        |        |        |            |
| MW-2         |      | 09/19/08             |        |         | <2.0     | <2.0   | <2.0     | <10     |         |         |           |        |        |        |        |            |
| MW-2         |      | 04/12/08             |        |         |          |        |          |         |         |         |           |        |        |        |        |            |
| MW-2         |      | 02/25/09             |        |         |          |        |          |         |         |         |           |        |        |        |        |            |
| MW-2         |      | 05/26/09             |        |         |          |        |          |         |         |         |           |        |        |        |        |            |
| MW-2         |      | 09/18/09             |        |         | <2.0     | <2.0   | <2.0     | <10     |         |         |           |        |        |        |        |            |
| MW-2         |      | 03/16/10             |        |         |          |        |          |         |         |         |           |        |        |        |        |            |
| MW-2<br>MW-2 |      | 09/27/10<br>03/25/11 |        |         | <2.0<br> | <2.0   | <2.0<br> | <10<br> |         |         |           |        |        |        |        |            |
| 10100-2      |      | 03/23/11             |        |         |          |        |          |         |         |         |           |        |        |        |        |            |
| MW-3         |      | 07/14/88             |        |         |          |        |          |         |         |         |           |        |        |        |        |            |
| MW-3         |      | 04/10/88             |        |         |          |        |          |         |         |         |           |        |        |        |        |            |
| MW-3         |      | 10/11/88             |        |         |          |        |          |         |         |         |           |        |        |        |        |            |
| MW-3         |      | 09/12/88             |        |         |          |        |          |         |         |         |           |        |        |        |        |            |
| MW-3         |      | 10/01/89             |        |         |          |        |          |         |         |         |           |        |        |        |        |            |
| MW-3         |      | 01/20/89             |        |         |          |        |          |         |         |         |           |        |        |        |        |            |
| MW-3         |      | 06/02/89             |        |         |          |        |          |         |         |         |           |        |        |        |        |            |
| MW-3<br>MW-3 |      | 10/03/89             |        |         |          |        |          |         |         |         |           |        |        |        |        |            |
| MW-3         |      | 06/06/89<br>07/09/89 |        |         |          |        |          |         |         |         |           |        |        |        |        |            |
| MW-3         |      | 12/18/89             |        |         |          |        |          |         |         |         |           |        |        |        |        |            |
| MW-3         |      | 08/03/90             |        |         |          |        |          |         |         |         |           |        |        |        |        |            |
| MW-3         |      | 07/06/90             |        |         |          |        |          |         |         |         |           |        |        |        |        |            |
| MW-3         |      | 05/09/90             |        |         |          |        |          |         |         |         |           |        |        |        |        |            |
| MW-3         |      | 03/12/90             |        |         |          |        |          |         |         |         |           |        |        |        |        |            |
| MW-3         |      | 01/03/91             |        |         |          |        |          |         |         |         |           |        |        |        |        |            |
| MW-3         |      | 03/06/91             |        |         |          |        |          |         |         |         |           |        |        |        |        |            |
| MW-3         |      | 04/09/91             |        |         |          |        |          |         |         |         |           |        |        |        |        |            |
| MW-3         |      | 03/13/92             |        |         |          |        |          |         |         |         |           |        |        |        |        |            |
| MW-3         |      | 03/06/92             |        |         |          |        |          |         |         |         |           |        |        |        |        |            |
| MW-3<br>MW-3 | Dup  | 08/19/92<br>08/19/92 |        |         |          |        |          |         |         |         |           |        |        |        |        |            |
| MW-3         | Dup  | 08/19/92<br>11/16/92 |        |         |          |        |          |         |         |         |           |        |        |        |        |            |
| MW-3         | Dup  | 11/16/92             |        |         |          |        |          |         |         |         |           |        |        |        |        |            |
| MW-3         | - dh | 02/18/93             |        |         |          |        |          |         |         |         |           |        |        |        |        |            |
| MW-3         |      | 01/06/93             |        |         |          |        |          |         |         |         |           |        |        |        |        |            |
|              |      |                      |        |         |          |        |          |         |         |         |           |        |        |        |        |            |

## TABLE 5B CUMULATIVE GROUNDWATER ANALYTICAL RESULTS Bayrock Oakland 230 and 240 West MacArthur Boulevard Oakland, California

(Page 4 of 14)

| <b></b>      |     |                      | r –    |         |        |            |        | 82     | 260B    |         |           |        |        |        | 8270   | 6010       |
|--------------|-----|----------------------|--------|---------|--------|------------|--------|--------|---------|---------|-----------|--------|--------|--------|--------|------------|
| Well         |     | Date                 | EDB    | 1,2-DCA | ETBE   | DIPE       | TAME   | TBA    | Ethanol | Acetone | c-1,2-DCA | PCE    | TCE    | VOCs   | PAHs   | Total Lead |
| ID           |     | Sampled              | (µg/L) | (µg/L)  | (µg/L) | (µg/L)     | (µg/L) | (µg/L) | (µg/L)  | (µg/L)  | (µg/L)    | (µg/L) | (µg/L) | (µg/L) | (µg/L) | (mg/L)     |
| N/14/ 0      | D   | 04/00/00             |        |         |        |            |        |        |         |         |           |        |        |        |        |            |
| MW-3<br>MW-3 | Dup | 01/06/93<br>08/30/93 |        |         |        |            |        |        |         |         |           |        |        |        |        |            |
| MW-3         |     | 12/13/93             |        |         |        |            |        |        |         |         |           |        |        |        |        |            |
| MW-3         | Dup | 12/13/93             |        |         |        |            |        |        |         |         |           |        |        |        |        |            |
| MW-3         |     | 03/03/94             |        |         |        |            |        |        |         |         |           |        |        |        |        |            |
| MW-3         |     | 06/06/94             |        |         |        |            |        |        |         |         |           |        |        |        |        |            |
| MW-3         |     | 12/09/94             |        |         |        |            |        |        |         |         |           |        |        |        |        |            |
| MW-3         |     | 12/15/94             |        |         |        |            |        |        |         |         |           |        |        |        |        |            |
| MW-3         |     | 03/13/95             |        |         |        |            |        |        |         |         |           |        |        |        |        |            |
| MW-3         |     | 04/21/95             |        |         |        |            |        |        |         |         |           |        |        |        |        |            |
| MW-3<br>MW-3 |     | 06/26/95<br>09/12/95 |        |         |        |            |        |        |         |         |           |        |        |        |        |            |
| MW-3         |     | 03/21/96             |        |         |        |            |        |        |         |         |           |        |        |        |        |            |
| MW-3         |     | 06/28/96             |        |         |        |            |        |        |         |         |           |        |        |        |        |            |
| MW-3         |     | 09/19/96             |        |         |        |            |        |        |         |         |           |        |        |        |        |            |
| MW-3         |     | 12/19/96             |        |         |        |            |        |        |         |         |           |        |        |        |        |            |
| MW-3         |     | 05/12/97             |        |         |        |            |        |        |         |         |           |        |        |        |        |            |
| MW-3         |     | 12/24/98             |        |         |        |            |        |        |         |         |           |        |        |        |        |            |
| MW-3         |     | 12/23/99             |        |         |        |            |        |        |         |         |           |        |        |        |        |            |
| MW-3<br>MW-3 |     | 11/12/00<br>12/27/01 |        |         |        |            |        |        |         |         |           |        |        |        |        |            |
| MW-3         |     | 12/27/01             |        |         |        |            |        |        |         |         |           |        |        |        |        |            |
| MW-3         |     | 03/14/02             |        |         |        |            |        |        |         |         |           |        |        |        |        |            |
| MW-3         |     | 06/13/02             |        |         |        |            |        |        |         |         |           |        |        |        |        |            |
| MW-3         |     | 09/09/02             |        |         |        |            |        |        |         |         |           |        |        |        |        |            |
| MW-3         |     | 12/12/02             |        |         |        |            |        |        |         |         |           |        |        |        |        |            |
| MW-3         |     | 10/03/03             |        |         |        |            |        |        |         |         |           |        |        |        |        |            |
| MW-3         |     | 10/06/03             |        |         |        |            |        |        |         |         |           |        |        |        |        |            |
| MW-3         |     | 09/16/03             |        |         |        |            |        |        |         |         |           |        |        |        |        |            |
| MW-3<br>MW-3 |     | 03/12/03             |        |         |        |            |        |        |         |         |           |        |        |        |        |            |
| MW-3         |     | 11/03/04<br>06/17/04 |        |         |        |            |        |        |         |         |           |        |        |        |        |            |
| MW-3         |     | 09/13/04             |        |         |        |            |        |        |         |         |           |        |        |        |        |            |
| MW-3         |     | 07/12/04             |        |         |        |            |        |        |         |         |           |        |        |        |        |            |
| MW-3         |     | 03/03/05             |        |         | <2.0   | <2.0       | <2.0   | 37     |         |         |           |        |        |        |        |            |
| MW-3         |     | 06/14/05             |        |         |        |            |        |        |         |         |           |        |        |        |        |            |
| MW-3         |     | 09/19/05             |        |         |        |            |        |        |         |         |           |        |        |        |        |            |
| MW-3         |     | 03/30/06             | <0.500 | <0.500  |        |            |        |        |         |         |           |        |        |        |        |            |
| MW-3         |     | 09/27/06             |        |         |        |            |        |        |         |         |           |        |        |        |        |            |
| MW-3<br>MW-3 |     | 09/28/06<br>12/26/06 |        |         | <0.500 | <0.500<br> | <0.500 | <10.0  |         |         |           |        |        |        |        |            |
| MW-3         |     | 03/29/07             |        |         |        |            |        |        |         |         |           |        |        |        |        |            |
| MW-3         |     | 07/06/07             |        |         |        |            |        |        |         |         |           |        |        |        |        |            |
| MW-3         |     | 09/18/07             |        |         | <2.0   | <2.0       | <2.0   | <10    |         |         |           |        |        |        |        |            |
| MW-3         |     | 12/17/07             |        |         |        |            |        |        |         |         |           |        |        |        |        |            |
| MW-3         |     | 02/27/08             |        |         |        |            |        |        |         |         |           |        |        |        |        |            |
| MW-3         |     | 05/28/08             |        |         |        |            |        |        |         |         |           |        |        |        |        |            |
| MW-3         |     | 09/19/08             |        |         | <2.0   | <2.0       | <2.0   | <10    |         |         |           |        |        |        |        |            |
| MW-3<br>MW-3 |     | 04/12/08<br>02/25/09 |        |         |        |            |        |        |         |         |           |        |        |        |        |            |
| MW-3         |     | 02/23/09             |        |         |        |            |        |        |         |         |           |        |        |        |        |            |
| MW-3         |     | 09/18/09             |        |         | <2.0   | <2.0       | <2.0   | <10    |         |         |           |        |        |        |        |            |
| MW-3         |     | 03/16/10             |        |         |        |            |        |        |         |         |           |        |        |        |        |            |
| MW-3         |     | 09/27/10             |        |         | <2.0   | <2.0       | <2.0   | <10    |         |         |           |        |        |        |        |            |
| MW-3         |     | 03/25/11             |        |         |        |            |        |        |         |         |           |        |        |        |        |            |
|              |     | 04/00/               |        |         |        |            |        |        |         |         |           |        |        |        |        |            |
| MW-4         |     | 01/23/90             |        |         |        |            |        |        |         |         |           |        |        |        |        |            |
| MW-4<br>MW-4 |     | 08/03/90<br>07/06/90 |        |         |        |            |        |        |         |         |           |        |        |        |        |            |
| MW-4         |     | 07/06/90             |        |         |        |            |        |        |         |         |           |        |        |        |        |            |
| MW-4         |     | 03/12/90             |        |         |        |            |        |        |         |         |           |        |        |        |        |            |
|              |     | 00, 12,00            |        |         |        |            |        |        |         |         |           |        |        |        |        |            |

## TABLE 5B CUMULATIVE GROUNDWATER ANALYTICAL RESULTS Bayrock Oakland 230 and 240 West MacArthur Boulevard Oakland, California (Page 5 of 14)

|              |             |                      |        |         |          |        |          | 82      | 260B    |         |           |        |        |        | 8270   | 6010       |
|--------------|-------------|----------------------|--------|---------|----------|--------|----------|---------|---------|---------|-----------|--------|--------|--------|--------|------------|
| Well         |             | Date                 | EDB    | 1,2-DCA | ETBE     | DIPE   | TAME     | TBA     | Ethanol | Acetone | c-1,2-DCA | PCE    | TCE    | VOCs   | PAHs   | Total Lead |
| ID           |             | Sampled              | (µg/L) | (µg/L)  | (µg/L)   | (µg/L) | (µg/L)   | (µg/L)  | (µg/L)  | (µg/L)  | (µg/L)    | (µg/L) | (µg/L) | (µg/L) | (µg/L) | (mg/L)     |
|              |             |                      |        |         |          |        |          |         |         |         |           |        |        |        |        |            |
| MW-4         |             | 03/06/91             |        |         |          |        |          |         |         |         |           |        |        |        |        |            |
| MW-4         |             | 04/09/91             |        |         |          |        |          |         |         |         |           |        |        |        |        |            |
| MW-4<br>MW-4 |             | 03/13/92             |        |         |          |        |          |         |         |         |           |        |        |        |        |            |
| MW-4         |             | 03/06/92<br>08/19/92 |        |         |          |        |          |         |         |         |           |        |        |        |        |            |
| MW-4         |             | 11/16/92             |        |         |          |        |          |         |         |         |           |        |        |        |        |            |
| MW-4         |             | 02/18/93             |        |         |          |        |          |         |         |         |           |        |        |        |        |            |
| MW-4         |             | 01/06/93             |        |         |          |        |          |         |         |         |           |        |        |        |        |            |
| MW-4         |             | 08/30/93             |        |         |          |        |          |         |         |         |           |        |        |        |        |            |
| MW-4         | Dup         | 08/30/93             |        |         |          |        |          |         |         |         |           |        |        |        |        |            |
| MW-4         | <b>2</b> ap | 12/13/93             |        |         |          |        |          |         |         |         |           |        |        |        |        |            |
| MW-4         |             | 03/03/94             |        |         |          |        |          |         |         |         |           |        |        |        |        |            |
| MW-4         | Dup         | 03/03/94             |        |         |          |        |          |         |         |         |           |        |        |        |        |            |
| MW-4         |             | 06/06/94             |        |         |          |        |          |         |         |         |           |        |        |        |        |            |
| MW-4         | Dup         | 06/06/94             |        |         |          |        |          |         |         |         |           |        |        |        |        |            |
| MW-4         |             | 12/09/94             |        |         |          |        |          |         |         |         |           |        |        |        |        |            |
| MW-4         | Dup         | 12/09/94             |        |         |          |        |          |         |         |         |           |        |        |        |        |            |
| MW-4         |             | 12/15/94             |        |         |          |        |          |         |         |         |           |        |        |        |        |            |
| MW-4         | Dup         | 12/15/94             |        |         |          |        |          |         |         |         |           |        |        |        |        |            |
| MW-4         |             | 03/13/95             |        |         |          |        |          |         |         |         |           |        |        |        |        |            |
| MW-4         | Dup         | 03/13/95             |        |         |          |        |          |         |         |         |           |        |        |        |        |            |
| MW-4         | _           | 06/25/95             |        |         |          |        |          |         |         |         |           |        |        |        |        |            |
| MW-4         | Dup         | 06/25/95             |        |         |          |        |          |         |         |         |           |        |        |        |        |            |
| MW-4         | D           | 09/12/95             |        |         |          |        |          |         |         |         |           |        |        |        |        |            |
| MW-4<br>MW-4 | Dup         | 09/12/95             |        |         |          |        |          |         |         |         |           |        |        |        |        |            |
| MW-4         | Dup         | 03/21/96<br>03/21/96 |        |         |          |        |          |         |         |         |           |        |        |        |        |            |
| MW-4         | Dup         | 06/28/96             |        |         |          |        |          |         |         |         |           |        |        |        |        |            |
| MW-4         | Dup         | 06/28/96             |        |         |          |        |          |         |         |         |           |        |        |        |        |            |
| MW-4         | Dup         | 09/19/96             |        |         |          |        |          |         |         |         |           |        |        |        |        |            |
| MW-4         | Dup         | 09/19/96             |        |         |          |        |          |         |         |         |           |        |        |        |        |            |
| MW-4         | - 1         | 12/19/96             |        |         |          |        |          |         |         |         |           |        |        |        |        |            |
| MW-4         |             | 05/12/97             |        |         |          |        |          |         |         |         |           |        |        |        |        |            |
| MW-4         |             | 12/24/98             |        |         |          |        |          |         |         |         |           |        |        |        |        |            |
| MW-4         |             | 12/17/99             |        |         |          |        |          |         |         |         |           |        |        |        |        |            |
| MW-4         |             | 12/23/99             |        |         |          |        |          |         |         |         |           |        |        |        |        |            |
| MW-4         |             | 11/12/00             |        |         |          |        |          |         |         |         |           |        |        |        |        |            |
| MW-4         |             | 12/27/01             |        |         |          |        |          |         |         |         |           |        |        |        |        |            |
| MW-4         |             | 03/14/02             |        |         |          |        |          |         |         |         |           |        |        |        |        |            |
| MW-4         |             | 06/13/02             |        |         |          |        |          |         |         |         |           |        |        |        |        |            |
| MW-4         |             | 09/09/02             |        |         |          |        |          |         |         |         |           |        |        |        |        |            |
| MW-4         |             | 12/12/02             |        |         |          |        |          |         |         |         |           |        |        |        |        |            |
| MW-4<br>MW-4 |             | 10/03/03<br>10/06/03 |        |         |          |        |          |         |         |         |           |        |        |        |        |            |
| MW-4         |             | 10/06/03<br>09/16/03 |        |         |          |        |          |         |         |         |           |        |        |        |        |            |
| MW-4         |             | 03/12/03             |        |         |          |        |          |         |         |         |           |        |        |        |        |            |
| MW-4         |             | 11/03/04             |        |         |          |        |          |         |         |         |           |        |        |        |        |            |
| MW-4         |             | 06/17/04             |        |         |          |        |          |         |         |         |           |        |        |        |        |            |
| MW-4         |             | 09/13/04             |        |         | <10      | <10    | <10      | 160     |         |         |           |        |        |        |        |            |
| MW-4         |             | 07/12/04             |        |         |          |        |          |         |         |         |           |        |        |        |        |            |
| MW-4         |             | 03/03/05             |        |         |          |        |          |         |         |         |           |        |        |        |        |            |
| MW-4         |             | 06/14/05             |        |         |          |        |          |         |         |         |           |        |        |        |        |            |
| MW-4         |             | 09/19/05             |        |         | <2.0     | 8.4    | <2.0     | 280     |         |         |           |        |        |        |        |            |
| MW-4         |             | 03/30/06             | <0.500 | <0.500  |          |        |          |         |         |         |           |        |        |        |        |            |
| MW-4         |             | 09/27/06             |        |         |          |        |          |         |         |         |           |        |        |        |        |            |
| MW-4         |             | 09/28/06             |        |         | <0.500   | 6.92   | <0.500   | 77.0    |         |         |           |        |        |        |        |            |
| MW-4         |             | 12/26/06             |        |         |          |        |          |         |         |         |           |        |        |        |        |            |
| MW-4         |             | 03/29/07             |        |         |          |        |          |         |         |         |           |        |        |        |        |            |
| MW-4<br>MW-4 |             | 07/06/07             |        |         |          |        |          |         |         |         |           |        |        |        |        |            |
| MW-4         |             | 09/18/07<br>12/17/07 |        |         | <2.0<br> | 0.86k  | <2.0<br> | <10<br> |         |         |           |        |        |        |        |            |
| 11114-4      |             | 12/11/01             |        |         |          |        |          |         |         |         |           |        |        |        |        |            |

## TABLE 5BCUMULATIVE GROUNDWATER ANALYTICAL RESULTSBayrock Oakland230 and 240 West MacArthur Boulevard

Oakland, California (Page 6 of 14)

|                    |                      |        |         |          |        |          | 82      | 260B    |         |           |        |        |        | 8270   | 6010       |
|--------------------|----------------------|--------|---------|----------|--------|----------|---------|---------|---------|-----------|--------|--------|--------|--------|------------|
| Well               | Date                 | EDB    | 1,2-DCA | ETBE     | DIPE   | TAME     | TBA     | Ethanol | Acetone | c-1,2-DCA | PCE    | TCE    | VOCs   | PAHs   | Total Lead |
| ID                 | Sampled              | (µg/L) | (µg/L)  | (µg/L)   | (µg/L) | (µg/L)   | (µg/L)  | (µg/L)  | (µg/L)  | (µg/L)    | (µg/L) | (µg/L) | (µg/L) | (µg/L) | (mg/L)     |
|                    |                      |        |         |          |        |          |         |         |         |           |        |        |        |        |            |
| MW-4               | 02/27/08             |        |         |          |        |          |         |         |         |           |        |        |        |        |            |
| MW-4               | 05/28/08             |        |         |          |        |          |         |         |         |           |        |        |        |        |            |
| MW-4               | 09/19/08             |        |         | <2.0     | <2.0   | <2.0     | <10     |         |         |           |        |        |        |        |            |
| MW-4               | 04/12/08             |        |         |          |        |          |         |         |         |           |        |        |        |        |            |
| MW-4               | 02/25/09             |        |         |          |        |          |         |         |         |           |        |        |        |        |            |
| MW-4               | 05/26/09             |        |         |          |        |          |         |         |         |           |        |        |        |        |            |
| MW-4<br>MW-4       | 09/18/09<br>03/16/10 |        |         | <2.0<br> | 56<br> | <2.0<br> | 160<br> |         |         |           |        |        |        |        |            |
| MW-4               | 03/10/10             |        |         | <2.0     | <2.0   | <2.0     | <10     |         |         |           |        |        |        |        |            |
| MW-4               | 03/25/11             |        |         | <2.0     | <2.0   | <2.0     |         |         |         |           |        |        |        |        |            |
| 10100-4            | 03/23/11             |        |         |          |        |          |         |         |         |           |        |        |        |        |            |
| MW-5               | 09/22/06             |        |         |          |        |          |         |         |         |           |        |        |        |        |            |
| MW-5               | 09/27/06             |        |         |          |        |          |         |         |         |           |        |        |        |        |            |
| MW-5               | 09/28/06             |        |         | <0.500   | 3.61   | <0.500   | <10.0   |         |         |           |        |        |        |        |            |
| MW-5               | 12/26/06             |        |         |          |        |          |         |         |         |           |        |        |        |        |            |
| MW-5               | 03/29/07             |        |         |          |        |          |         |         |         |           |        |        |        |        |            |
| MW-5               | 07/06/07             |        |         |          |        |          |         |         |         |           |        |        |        |        |            |
| MW-5               | 09/18/07             |        |         | <2.0     | 0.82k  | <2.0     | 15      |         |         |           |        |        |        |        |            |
| MW-5               | 12/17/07             |        |         |          |        |          |         |         |         |           |        |        |        |        |            |
| MW-5               | 02/27/08             |        |         |          |        |          |         |         |         |           |        |        |        |        |            |
| MW-5               | 05/28/08             |        |         |          |        |          |         |         |         |           |        |        |        |        |            |
| MW-5               | 09/19/08             |        |         | <2.0     | 7.0    | <2.0     | 10      |         |         |           |        |        |        |        |            |
| MW-5               | 04/12/08             |        |         |          |        |          |         |         |         |           |        |        |        |        |            |
| MW-5               | 02/25/09             |        |         |          |        |          |         |         |         |           |        |        |        |        |            |
| MW-5               | 05/26/09             |        |         |          |        |          |         |         |         |           |        |        |        |        |            |
| MW-5               | 09/18/09             |        |         | <10      | <10    | <10      | <50     |         |         |           |        |        |        |        |            |
| MW-5               | 03/16/10             |        |         |          |        |          |         |         |         |           |        |        |        |        |            |
| MW-5<br>MW-5       | 09/27/10             |        |         | <20      | <20    | <20      | <100    |         |         |           |        |        |        |        |            |
| C-VVIVI            | 03/25/11             |        |         |          |        |          |         |         |         |           |        |        |        |        |            |
| Grab Groundwat     | er Samples           |        |         |          |        |          |         |         |         |           |        |        |        |        |            |
| 1989 Groundwate    | •                    |        |         |          |        |          |         |         |         |           |        |        |        |        |            |
| GS-1               | 10/17/89             |        |         |          |        |          |         |         |         |           |        |        |        |        |            |
| GS-2               | 10/17/89             |        |         |          |        |          |         |         |         |           |        |        |        |        |            |
| GS-3               | 10/17/89             |        |         |          |        |          |         |         |         |           |        |        |        |        |            |
| 1990 Subsurface    |                      |        |         |          |        |          |         |         |         |           |        |        |        |        |            |
| Probe 1            | 05/19/90             |        |         |          |        |          |         |         |         |           |        |        |        |        |            |
| Probe 2            | 05/19/90             |        |         |          |        |          |         |         |         |           |        |        |        |        |            |
| Probe 3            | 05/19/90             |        |         |          |        |          |         |         |         |           |        |        |        |        |            |
| Probe 4            | 05/19/90             |        |         |          |        |          |         |         |         |           |        |        |        |        |            |
| Probe 5<br>Probe 6 | 05/19/90<br>05/19/90 |        |         |          |        |          |         |         |         |           |        |        |        |        |            |
| 2004 Subsurface    |                      |        |         |          |        |          |         |         |         |           |        |        |        |        |            |
| SB-1-W             | 03/24/04             |        |         |          |        |          |         |         |         |           |        |        |        |        |            |
| SB-2-W             | 03/24/04             |        |         |          |        |          |         |         |         |           |        |        |        |        |            |
| 2006 Subsurface    |                      |        |         |          |        |          |         |         |         |           |        |        |        |        |            |
| SB-4-W1            | 05/04/06             |        |         | <1.00    | <1.00  | <1.00    |         |         |         |           |        |        |        |        |            |
| SB-7-W1            | 06/04/06             |        |         | <1.00    | <1.00  | <1.00    |         |         |         |           |        |        |        |        |            |
| SB-8-W1            | 06/04/06             |        |         | <1.00    | 26.6   | <1.00    |         |         |         |           |        |        |        |        |            |
| 2008 Subsurface    |                      |        |         |          | -      |          |         |         |         |           |        |        |        |        |            |
| SB-9               | 01/02/08             |        |         | <2.0     | <2.0   | <2.0     |         |         |         |           |        |        |        |        |            |
| SB-10              | 01/02/08             |        |         | <2.0     | <2.0   | <2.0     |         |         |         |           |        |        |        |        |            |
| SB-11              | 01/02/08             |        |         | <2.0     | <2.0   | <2.0     |         |         |         |           |        |        |        |        |            |
| SB-12              | 01/02/08             |        |         | <2.0     | 11     | <2.0     |         |         |         |           |        |        |        |        |            |
| 2017 Subsurface    | Investigation        |        |         |          |        |          |         |         |         |           |        |        |        |        |            |
| B2                 | 09/09/17             | <1.0   | <0.50   | <2.0     | <2.0   | <2.0     | <10     | <100    | <20     | 7.4       | 11     | 2.0    | ND     |        |            |
| B3                 | 09/09/17             | <1.0   | <0.50   | <2.0     | <2.0   | <2.0     | <10     | <100    | <20     | 3.3       | 1.3    | <1.0   | ND     |        |            |
|                    |                      |        |         |          |        |          |         |         |         |           |        |        |        |        |            |

## TABLE 5B CUMULATIVE GROUNDWATER ANALYTICAL RESULTS Bayrock Oakland 230 and 240 West MacArthur Boulevard Oakland, California Oakland, California

(Page 7 of 14)

|       |      |          |        |         |        |        |        | 8      | 260B    |         |           |        |        |        | 8270   | 6010      |
|-------|------|----------|--------|---------|--------|--------|--------|--------|---------|---------|-----------|--------|--------|--------|--------|-----------|
| Well  |      | Date     | EDB    | 1,2-DCA | ETBE   | DIPE   | TAME   | TBA    | Ethanol | Acetone | c-1,2-DCA | PCE    | TCE    | VOCs   | PAHs   | Total Lea |
| ID    |      | Sampled  | (µg/L) | (µg/L)  | (µg/L) | (µg/L) | (µg/L) | (µg/L) | (µg/L)  | (µg/L)  | (µg/L)    | (µg/L) | (µg/L) | (µg/L) | (µg/L) | (mg/L)    |
| 40 Ma | acAr | thur Bo  | ouleva | ard     |        |        |        |        |         |         |           |        |        |        |        |           |
| MW-1  |      | 08/08/97 |        |         |        |        |        |        |         |         |           |        |        |        |        |           |
| MW-1  |      | 12/03/97 |        |         |        |        |        |        |         |         |           |        |        |        |        |           |
| MW-1  |      | 03/16/98 |        |         |        |        |        |        |         |         |           |        |        |        |        |           |
| MW-1  |      | Jul-98   |        |         |        |        |        |        |         |         |           |        |        |        |        |           |
| MW-1  |      | Oct-98   |        |         |        |        |        |        |         |         |           |        |        |        |        |           |
| MW-1  |      | Jan-99   |        |         |        |        |        |        |         |         |           |        |        |        |        |           |
| MW-1  |      | Jun-00   |        |         |        |        |        |        |         |         |           |        |        |        |        |           |
| MW-1  |      | Dec-00   |        |         |        |        |        |        |         |         |           |        |        |        |        |           |
| MW-1  |      | Feb-01   |        |         |        |        |        |        |         |         |           |        |        |        |        |           |
| MW-1  |      | May-01   |        |         |        |        |        |        |         |         |           |        |        |        |        |           |
| MW-1  |      | Jul-01   |        |         |        |        |        |        |         |         |           |        |        |        |        |           |
| MW-1  | HV-  | 10/22/01 |        |         |        |        |        |        |         |         |           |        |        |        |        |           |
| MW-1  | HV+  | 10/26/01 |        |         |        |        |        |        |         |         |           |        |        |        |        |           |
| MW-1  |      | Dec-01   |        |         |        |        |        |        |         |         |           |        |        |        |        |           |
| MW-1  | NP   | Mar-02   |        |         |        |        |        |        |         |         |           |        |        |        |        |           |
| MW-1  | NP   | May-02   |        |         |        |        |        |        |         |         |           |        |        |        |        |           |
| MW-1  | NP   | Jul-02   |        |         |        |        |        |        |         |         |           |        |        |        |        |           |
| MW-1  | NP   | Oct-02   |        |         |        |        |        |        |         |         |           |        |        |        |        |           |
| MW-1  | NP   | Jan-03   |        |         |        |        |        |        |         |         |           |        |        |        |        |           |
| MW-1  | NP   | Mar-03   |        |         |        |        |        |        |         |         |           |        |        |        |        |           |
| MW-1  | NP   | Aug-03   |        |         |        |        |        |        |         |         |           |        |        |        |        |           |
| MW-1  |      | Dec-03   |        |         |        |        |        |        |         |         |           |        |        |        |        |           |
| MW-1  |      | Mar-04   |        |         |        |        |        |        |         |         |           |        |        |        |        |           |
| MW-1  |      | Jun-04   |        |         |        |        |        |        |         |         |           |        |        |        |        |           |
| MW-1  |      | Sep-04   |        |         |        |        |        |        |         |         |           |        |        |        |        |           |
| MW-1  |      | Dec-04   |        |         |        |        |        |        |         |         |           |        |        |        |        |           |
| MW-1  |      | Mar-05   |        |         |        |        |        |        |         |         |           |        |        |        |        |           |
| MW-1  |      | Jun-05   |        |         |        |        |        |        |         |         |           |        |        |        |        |           |
| MW-1  |      | Sep-05   |        |         |        |        |        |        |         |         |           |        |        |        |        |           |
| MW-1  |      | Dec-05   |        |         |        |        |        |        |         |         |           |        |        |        |        |           |
| MW-1  |      | Mar-06   |        |         |        |        |        |        |         |         |           |        |        |        |        |           |
| MW-1  |      | Jun-06   |        |         |        |        |        |        |         |         |           |        |        |        |        |           |
|       |      |          |        |         |        |        |        |        |         |         |           |        |        |        |        |           |
| MW-1  |      | Sep-06   |        |         |        |        |        |        |         |         |           |        |        |        |        |           |
| MW-1  |      | Dec-06   |        |         |        |        |        |        |         |         |           |        |        |        |        |           |
| MW-1  |      | Mar-07   |        |         |        |        |        |        |         |         |           |        |        |        |        |           |
| MW-1  |      | Jun-07   |        |         |        |        |        |        |         |         |           |        |        |        |        |           |
| MW-1  |      | Sep-07   |        |         |        |        |        |        |         |         |           |        |        |        |        |           |
| MW-1  |      | Dec-07   |        |         |        |        |        |        |         |         |           |        |        |        |        |           |
| MW-1  |      | Mar-08   |        |         |        |        |        |        |         |         |           |        |        |        |        |           |
| MW-1  | NP   | Jun-08   |        |         |        |        |        |        |         |         |           |        |        |        |        |           |
| MW-1  |      | Sep-08   |        |         |        |        |        |        |         |         |           |        |        |        |        |           |
| MW-1  |      | Dec-08   |        |         |        |        |        |        |         |         |           |        |        |        |        |           |
| MW-1  |      | Mar-09   |        |         |        |        |        |        |         |         |           |        |        |        |        |           |
| MW-1  |      | Sep-09   |        |         |        |        |        |        |         |         |           |        |        |        |        |           |
| MW-1  |      | Sep-10   |        |         |        |        |        |        |         |         |           |        |        |        |        |           |
| MW-1  |      | Apr-11   |        |         |        |        |        |        |         |         |           |        |        |        |        |           |
| MW-1  |      | Sep-11   |        |         |        |        |        |        |         |         |           |        |        |        |        |           |
| MW-1  |      | Mar-12   |        |         |        |        |        |        |         |         |           |        |        |        |        |           |
| MW-1  |      | 09/07/12 |        |         |        |        |        |        |         |         |           |        |        |        |        |           |
| MW-1  |      | 03/20/13 |        |         |        |        |        |        |         |         |           |        |        |        |        |           |
| MW-1  |      | 01/26/16 | <0.5   | <0.5    | <0.5   | <0.5   | <0.5   | <10    | <1,000  |         |           |        |        |        |        |           |
| MW-2  |      | 08/08/97 |        |         |        |        |        |        |         |         |           |        |        |        |        |           |
| MW-2  |      | 12/03/97 |        |         |        |        |        |        |         |         |           |        |        |        |        |           |
| MW-2  |      | 03/16/98 |        |         |        |        |        |        |         |         |           |        |        |        |        |           |
| MW-2  |      | Jul-98   |        |         |        |        |        |        |         |         |           |        |        |        |        |           |
|       |      |          |        |         |        |        |        |        |         |         |           |        |        |        |        |           |

----

----

---

---

----

---

---

---

---

----

---

---

----

----

----

----

----

---

---

---

---

MW-2

MW-2

MW-2

Oct-98

Jan-99

Jun-00

----

----

---

----

---

---

----

----

---

----

---

---

---

----

---

----

----

---

---

---

---

#### TABLE 5B CUMULATIVE GROUNDWATER ANALYTICAL RESULTS Bayrock Oakland 230 and 240 West MacArthur Boulevard Oakland, California (Page 8 of 14)

|      |     |          |        |         |        |        |        | 82     | 260B    |         |           |        |        |        | 8270   | 6010       |
|------|-----|----------|--------|---------|--------|--------|--------|--------|---------|---------|-----------|--------|--------|--------|--------|------------|
| Well |     | Date     | EDB    | 1,2-DCA | ETBE   | DIPE   | TAME   | TBA    | Ethanol | Acetone | c-1,2-DCA | PCE    | TCE    | VOCs   | PAHs   | Total Lead |
| ID   |     | Sampled  | (µg/L) | (µg/L)  | (µg/L) | (µg/L) | (µg/L) | (µg/L) | (µg/L)  | (µg/L)  | (µg/L)    | (µg/L) | (µg/L) | (µg/L) | (µg/L) | (mg/L)     |
|      |     |          |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-2 |     | Dec-00   |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-2 |     | Feb-01   |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-2 |     | May-01   |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-2 |     | Jul-01   |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-2 | HV- | 10/22/01 |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-2 | HV+ | 10/26/01 |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-2 |     | Dec-01   |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-2 | NP  | Mar-02   |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-2 | NP  | May-02   |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-2 | NP  | Jul-02   |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-2 | NP  | Oct-02   |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-2 | NP  | Jan-03   |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-2 | NP  | Mar-03   |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-2 | NP  | Aug-03   |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-2 |     | Dec-03   |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-2 |     | Mar-04   |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-2 |     | Jun-04   |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-2 |     | Sep-04   |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-2 |     | Dec-04   |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-2 |     | Mar-05   |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-2 |     | Jun-05   |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-2 |     | Sep-05   |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-2 |     | Dec-05   |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-2 |     | Mar-06   |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-2 |     | Jun-06   |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-2 |     | Sep-06   |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-2 |     | Dec-06   |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-2 |     | Mar-07   |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-2 |     | Jun-07   |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-2 | NP  | Sep-07   |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-2 |     | Dec-07   |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-2 |     | Mar-08   |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-2 |     | Jun-08   |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-2 |     | Sep-08   |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-2 |     | Dec-08   |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-2 |     | Mar-09   |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-2 |     | Sep-09   |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-2 |     | Sep-10   |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-2 |     | Apr-11   |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-2 |     | Sep-11   |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-2 |     | Mar-12   |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-2 |     | 09/07/12 |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-2 |     | 03/20/13 |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-2 |     | 01/26/16 | <0.5   | <0.5    | <0.5   | <0.5   | <0.5   | <10    | <1,000  |         |           |        |        |        |        |            |
|      |     |          |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-3 |     | 08/08/97 |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-3 |     | 12/03/97 |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-3 |     | 03/16/98 |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-3 |     | Jul-98   |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-3 |     | Oct-98   |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-3 |     | Jan-99   |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-3 |     | Jun-00   |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-3 |     | Dec-00   |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-3 |     | Feb-01   |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-3 |     | May-01   |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-3 |     | Jul-01   |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-3 | HV- | 10/22/01 |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-3 | HV+ | 10/26/01 |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-3 |     | Dec-01   |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-3 | NP  | Mar-02   |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-3 | NP  | May-02   |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
|      |     |          |        |         |        |        |        |        |         |         |           |        |        |        |        |            |

### TABLE 5B CUMULATIVE GROUNDWATER ANALYTICAL RESULTS Bayrock Oakland 230 and 240 West MacArthur Boulevard Oakland, California (Page 9 of 14)

|              |          |                     |        |         |        |        |        | 82     | 260B    |         |           |        |        |        | 8270   | 6010       |
|--------------|----------|---------------------|--------|---------|--------|--------|--------|--------|---------|---------|-----------|--------|--------|--------|--------|------------|
| Well         |          | Date                | EDB    | 1,2-DCA | ETBE   | DIPE   | TAME   | TBA    | Ethanol | Acetone | c-1,2-DCA | PCE    | TCE    | VOCs   | PAHs   | Total Lead |
| ID           |          | Sampled             | (µg/L) | (µg/L)  | (µg/L) | (µg/L) | (µg/L) | (µg/L) | (µg/L)  | (µg/L)  | (µg/L)    | (µg/L) | (µg/L) | (µg/L) | (µg/L) | (mg/L)     |
|              |          |                     |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-3<br>MW-3 | NP<br>NP | Jul-02              |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-3         | NP       | Oct. 2002<br>Jan-03 |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-3         | NP       | Mar-03              |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-3         | NP       | Aug-03              |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-3         |          | Dec-03              |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-3         |          | Mar-04              |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-3         |          | Jun-04              |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-3         |          | Sep-04              |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-3         |          | Dec-04              |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-3         |          | Mar-05              |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-3         |          | Jun-05              |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-3         |          | Sep-05              |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-3         |          | Dec-05              |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-3         |          | Mar-06              |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-3         |          | Jun-06              |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-3         |          | Sep-06              |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-3         |          | Dec-06              |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-3         |          | Mar-07              |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-3         |          | Jun-07              |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-3         |          | Sep-07              |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-3         |          | Dec-07              |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-3         |          | Mar-08              |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-3         |          | Jun-08              |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-3<br>MW-3 |          | Sep-08<br>Dec-08    |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-3         |          | Sep-08              |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-3         |          | Dec-08              |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-3         |          | Mar-09              |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-3         |          | Sep-09              |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-3         |          | Sep-10              |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-3         |          | Apr-11              |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-3         |          | Sep-11              |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-3         |          | Mar-12              |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-3         |          | 09/07/12            |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-3         |          | 03/20/13            |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-3         |          | 01/26/16            | <0.5   | <0.5    | <0.5   | <0.5   | <0.5   | <10    | <1,000  |         |           |        |        |        |        |            |
|              |          |                     |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-4         |          | 08/08/97            |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-4         |          | 12/03/97            |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-4         |          | 03/16/98            |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-4         |          | Jul-98              |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-4         |          | Oct-98              |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-4         |          | Jan-99              |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-4<br>MW-4 |          | Jun-00<br>Dec-00    |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-4         |          | Feb-01              |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-4         |          | May-01              |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-4         |          | Jul-01              |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-4         | HV-      | 10/22/01            |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-4         | HV+      | 10/26/01            |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-4         |          | Dec-01              |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-4         | NP       | Mar-02              |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-4         | NP       | May-02              |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-4         | NP       | Jul-02              |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-4         | NP       | Oct-02              |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-4         | NP       | Jan-03              |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-4         | NP       | Mar-03              |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-4         | NP       | Aug-03              |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-4         |          | Dec-03              |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-4         |          | Mar-04              |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
|              |          |                     |        |         |        |        |        |        |         |         |           |        |        |        |        |            |

# TABLE 5BCUMULATIVE GROUNDWATER ANALYTICAL RESULTSBayrock Oakland230 and 240 West MacArthur BoulevardOakland, California(Page 10 of 14)

|              |     |                  |        |         |        |        |        | 82     | 260B    |         |           |        |        |        | 8270   | 6010       |
|--------------|-----|------------------|--------|---------|--------|--------|--------|--------|---------|---------|-----------|--------|--------|--------|--------|------------|
| Well         |     | Date             | EDB    | 1,2-DCA | ETBE   | DIPE   | TAME   | TBA    | Ethanol | Acetone | c-1,2-DCA | PCE    | TCE    | VOCs   | PAHs   | Total Lead |
| ID           |     | Sampled          | (µg/L) | (µg/L)  | (µg/L) | (µg/L) | (µg/L) | (µg/L) | (µg/L)  | (µg/L)  | (µg/L)    | (µg/L) | (µg/L) | (µg/L) | (µg/L) | (mg/L)     |
| MW-4         |     | lun 04           |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-4         |     | Jun-04<br>Sep-04 |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-4         |     | Dec-04           |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-4         |     | Mar-05           |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-4         |     | Jun-05           |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-4         |     | Sep-05           |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-4         |     | Dec-05           |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-4         |     | Mar-06           |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-4         |     | Jun-06           |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-4         |     | Sep-06           |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-4<br>MW-4 |     | Dec-06<br>Mar-07 |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-4         |     | Jun-07           |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-4         |     | Sep-07           |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-4         |     | Dec-07           |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-4         |     | Mar-08           |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-4         |     | Jun-08           |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-4         |     | Sep-08           |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-4         |     | Dec-08           |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-4         |     | Mar-09           |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-4<br>MW-4 |     | Sep-09<br>Sep-10 |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-4         |     | Apr-11           |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-4         |     | Sep-11           |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-4         |     | Mar-12           |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-4         |     | 09/07/12         |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-4         |     | 03/20/13         |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-4         |     | 01/26/16         | <0.5   | <0.5    | <0.5   | <0.5   | <0.5   | <10    | <1,000  |         |           |        |        |        |        |            |
| MW-5         |     | 02/14/01         |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-5         |     | May-01           |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-5         |     | Jul-01           |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-5         | HV- | 10/22/01         |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-5<br>MW-5 | HV+ | 10/26/01         |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-5         | NP  | Dec-01<br>Mar-02 |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-5         | NP  | May-02           |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-5         | NP  | Jul-02           |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-5         | NP  | Oct-02           |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-5         | NP  | Jan-03           |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-5         | NP  | Mar-03           |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-5         | NP  | Aug-03           |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-5<br>MW-5 |     | Dec-03           |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-5<br>MW-5 |     | Mar-04<br>Jun-04 |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-5         |     | Sep-04           |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-5         |     | Dec-04           |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-5         |     | Mar-05           |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-5         |     | Jun-05           |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-5         |     | Sep-05           |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-5         |     | Dec-05           |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-5         |     | Mar-06           |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-5<br>MW-5 |     | Jun-06<br>Sep-06 |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-5<br>MW-5 |     | Sep-06<br>Dec-06 |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-5         |     | Mar-07           |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-5         | NP  | Jun-07           |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-5         | NP  | Sep-07           |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-5         | NP  | Dec-07           |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-5         | NP  | Mar-08           |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-5         | NP  | Jun-08           |        |         |        |        |        |        |         |         |           |        |        |        |        |            |

## TABLE 5B CUMULATIVE GROUNDWATER ANALYTICAL RESULTS Bayrock Oakland 230 and 240 West MacArthur Boulevard Oakland, California (Page 11 of 14)

|              |          |                  |        |         |        |        |        | 8      | 260B    |         |           |        |        |        | 8270   | 6010       |
|--------------|----------|------------------|--------|---------|--------|--------|--------|--------|---------|---------|-----------|--------|--------|--------|--------|------------|
| Well         |          | Date             | EDB    | 1,2-DCA | ETBE   | DIPE   | TAME   | TBA    | Ethanol | Acetone | c-1,2-DCA | PCE    | TCE    | VOCs   | PAHs   | Total Lead |
| ID           |          | Sampled          | (µg/L) | (µg/L)  | (µg/L) | (µg/L) | (µg/L) | (µg/L) | (µg/L)  | (µg/L)  | (µg/L)    | (µg/L) | (µg/L) | (µg/L) | (µg/L) | (mg/L)     |
|              |          | • • • •          |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-5         | NP       | Sep-08<br>Dec-08 |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-5<br>MW-5 |          | Mar-09           |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-5         |          | Sep-09           |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-5         | NP       | Sep-09<br>Sep-10 |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-5         | NP       | Apr-11           |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-5         | NP       | Sep-11           |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-5         | NP       | Mar-12           |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-5         | NP       | 09/07/12         |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-5         | NP       | 03/20/13         |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-5         |          | 01/26/16         | <0.5   | <0.5    | <0.5   | <0.5   | <0.5   | <10    | <1,000  |         |           |        |        |        |        |            |
|              |          |                  |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-6         |          | Feb-01           |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-6         |          | May-01           |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-6         |          | Jul-01           |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-6         | HV-      | 10/22/01         |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-6         | HV+      | 10/26/01         |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-6         |          | Dec-01           |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-6         | NP       | Mar-02           |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-6         | NP       | May-02           |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-6         | NP       | Jul-02           |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-6         | NP       | Oct-02           |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-6         | NP       | Jan-03           |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-6         | NP       | Mar-03           |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-6         | NP       | Aug-03           |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-6<br>MW-6 |          | Dec-03<br>Mar-04 |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-6         |          | Jun-04           |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-6         |          | Sep-04           |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-6         |          | Dec-04           |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-6         |          | Mar-05           |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-6         |          | Jun-05           |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-6         |          | Sep-05           |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-6         |          | Dec-05           |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-6         |          | Mar-06           |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-6         |          | Jun-06           |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-6         |          | Sep-06           |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-6         |          | Dec-06           |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-6         |          | Mar-07           |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-6         | NP       | Jun-07           |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-6         | NP       | Sep-07           |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-6         | NP       | Dec-07           |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-6         | NP       | Mar-08           |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-6         | NP       | Jun-08           |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-6         | NP       | Sep-08           |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-6         |          | Dec-08           |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-6         |          | Mar-09           |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-6         | NP       | Sep-09           |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-6<br>MW-6 | NP<br>NP | Sep-10<br>Apr-11 |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-6         | NP       | Sep-11           |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-6         | NP       | Mar-12           |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-6         | 1.11     | 09/07/12         |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-6         |          | 03/20/13         |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-6         |          | 01/26/16         | <1.7   | 7.9     | <1.7   | <1.7   | <1.7   | <33    | <3,300  |         |           |        |        |        |        |            |
|              |          |                  |        |         |        |        |        |        | -,      |         |           |        |        |        |        |            |
| MW-7         |          | 02/14/01         |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-7         |          | May-01           |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-7         |          | Jul-01           |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-7         | HV-      | 10/22/01         |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-7         | HV+      | 10/26/01         |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
|              |          |                  |        |         |        |        |        |        |         |         |           |        |        |        |        |            |

### TABLE 5B CUMULATIVE GROUNDWATER ANALYTICAL RESULTS Bayrock Oakland 230 and 240 West MacArthur Boulevard Oakland, California (Page 12 of 14)

|              |          |                  |        |         |        |        |        | 82     | 260B    |         |           |        |        |        | 8270   | 6010       |
|--------------|----------|------------------|--------|---------|--------|--------|--------|--------|---------|---------|-----------|--------|--------|--------|--------|------------|
| Well         |          | Date             | EDB    | 1,2-DCA | ETBE   | DIPE   | TAME   | TBA    | Ethanol | Acetone | c-1,2-DCA | PCE    | TCE    | VOCs   | PAHs   | Total Lead |
| ID           |          | Sampled          | (µg/L) | (µg/L)  | (µg/L) | (µg/L) | (µg/L) | (µg/L) | (µg/L)  | (µg/L)  | (µg/L)    | (µg/L) | (µg/L) | (µg/L) | (µg/L) | (mg/L)     |
|              |          | D 04             |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-7<br>MW-7 | NP       | Dec-01<br>Mar-02 |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
|              |          |                  |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-7         | NP       | May-02           |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-7         | NP       | Jul-02           |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-7         | NP       | Oct-02           |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-7         | NP       | Jan-03           |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-7<br>MW-7 | NP<br>NP | Mar-03           |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
|              | INP      | Aug-03           |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-7<br>MW-7 |          | Dec-03<br>Mar-04 |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-7         |          | Jun-04           |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-7         |          | Sep-04           |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-7         |          | Dec-04           |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-7         |          | Mar-05           |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-7         |          | Jun-05           |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-7         |          | Sep-05           |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-7         |          | Dec-05           |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-7         |          | Mar-06           |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-7         |          | Jun-06           |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-7         |          | Sep-06           |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-7         |          | Dec-06           |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-7         |          | Mar-07           |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-7         | NP       | Jun-07           |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-7         | NP       | Sep-07           |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-7         | NP       | Dec-07           |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-7         | NP       | Mar-08           |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-7         | NP       | Jun-08           |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-7         | NP       | Sep-08           |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-7         |          | Dec-08           |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-7         |          | Mar-09           |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-7         |          | Sep-09           |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-7         | NP       | Sep-10           |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-7         | NP       | Apr-11           |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-7         | NP       | Sep-11           |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-7         | NP       | Mar-12           |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-7         |          | 09/07/12         |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-7         |          | 03/20/13         |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-7         |          | 01/26/16         | <0.5   | <0.5    | <0.5   | <0.5   | <0.5   | <10    | <1,000  |         |           |        |        |        |        |            |
|              |          |                  |        |         |        |        |        |        | ,       |         |           |        |        |        |        |            |
| MW-8         |          | 02/14/01         |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-8         |          | May-01           |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-8         |          | Jul-01           |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-8         | HV-      | 10/22/01         |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-8         | HV+      | 10/26/01         |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-8         |          | Dec-01           |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-8         | NP       | Mar-02           |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-8         | NP       | May-02           |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-8         | NP       | Jul-02           |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-8         | NP       | Oct-02           |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-8         | NP       | Jan-03           |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-8         | NP       | Mar-03           |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-8         | NP       | Aug-03           |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-8         |          | Dec-03           |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-8         |          | Mar-04           |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-8         |          | Jun-04           |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-8         |          | Sep-04           |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-8         |          | Dec-04           |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-8         |          | Mar-05           |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-8         |          | Jun-05           |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-8         |          | Sep-05           |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
| MW-8         |          | Dec-05           |        |         |        |        |        |        |         |         |           |        |        |        |        |            |
|              |          |                  |        |         |        |        |        |        |         |         |           |        |        |        |        |            |

## TABLE 5B CUMULATIVE GROUNDWATER ANALYTICAL RESULTS Bayrock Oakland 230 and 240 West MacArthur Boulevard Oakland, California 0akland, California

(Page 13 of 14)

|                                          |         |                                     |          |          |          |          |          | 8       | 260B       |         |           |        |        |        | 8270   | 6010               |
|------------------------------------------|---------|-------------------------------------|----------|----------|----------|----------|----------|---------|------------|---------|-----------|--------|--------|--------|--------|--------------------|
| Well                                     |         | Date                                | EDB      | 1,2-DCA  | ETBE     | DIPE     | TAME     | TBA     | Ethanol    | Acetone | c-1,2-DCA | PCE    | TCE    | VOCs   | PAHs   | Total Lead         |
| ID                                       |         | Sampled                             | (µg/L)   | (µg/L)   | (µg/L)   | (µg/L)   | (µg/L)   | (µg/L)  | (µg/L)     | (µg/L)  | (µg/L)    | (µg/L) | (µg/L) | (µg/L) | (µg/L) | (mg/L)             |
|                                          |         |                                     |          |          |          |          |          |         |            |         |           |        |        |        |        |                    |
| MW-8                                     |         | Mar-06                              |          |          |          |          |          |         |            |         |           |        |        |        |        |                    |
| MW-8                                     |         | Jun-06                              |          |          |          |          |          |         |            |         |           |        |        |        |        |                    |
| MW-8                                     |         | Sep-06                              |          |          |          |          |          |         |            |         |           |        |        |        |        |                    |
| MW-8                                     |         | Dec-06                              |          |          |          |          |          |         |            |         |           |        |        |        |        |                    |
| MW-8                                     |         | Mar-07                              |          |          |          |          |          |         |            |         |           |        |        |        |        |                    |
| MW-8                                     | NP      | Jun-07                              |          |          |          |          |          |         |            |         |           |        |        |        |        |                    |
| MW-8                                     | NP      | Sep-07                              |          |          |          |          |          |         |            |         |           |        |        |        |        |                    |
| MW-8                                     | NP      | Dec-07                              |          |          |          |          |          |         |            |         |           |        |        |        |        |                    |
| MW-8                                     | NP      | Mar-08                              |          |          |          |          |          |         |            |         |           |        |        |        |        |                    |
| MW-8                                     | NP      | Jun-08                              |          |          |          |          |          |         |            |         |           |        |        |        |        |                    |
| MW-8                                     | NP      | Sep-08                              |          |          |          |          |          |         |            |         |           |        |        |        |        |                    |
| MW-8                                     |         | Dec-08                              |          |          |          |          |          |         |            |         |           |        |        |        |        |                    |
| MW-8                                     |         | Mar-09                              |          |          |          |          |          |         |            |         |           |        |        |        |        |                    |
| MW-8                                     |         | Sep-09                              |          |          |          |          |          |         |            |         |           |        |        |        |        |                    |
| MW-8                                     | NP      | Sep-10                              |          |          |          |          |          |         |            |         |           |        |        |        |        |                    |
| MW-8                                     | NP      | Apr-11                              |          |          |          |          |          |         |            |         |           |        |        |        |        |                    |
| MW-8                                     | NP      | Sep-11                              |          |          |          |          |          |         |            |         |           |        |        |        |        |                    |
| MW-8<br>MW-8                             |         | Mar-12<br>09/07/12                  |          |          |          |          |          |         |            |         |           |        |        |        |        |                    |
|                                          |         |                                     |          |          |          |          |          |         |            |         |           |        |        |        |        |                    |
| MW-8<br>MW-8                             |         | 03/20/13<br>01/26/16                | <br><0.5 | <br><0.5 | <br><0.5 | <br><0.5 | <br><0.5 | <br><10 | <br><1,000 |         |           |        |        |        |        |                    |
| 10100-0                                  |         | 01/20/10                            | <0.5     | <0.5     | <0.5     | <0.5     | <0.5     | <10     | <1,000     |         |           |        |        |        |        |                    |
| Grab Grou<br>1997 Subsur<br>BH1W<br>BH2W |         | vestigation<br>01/08/97<br>01/08/97 |          |          |          |          |          |         |            |         |           |        |        |        | <br>ND | <0.005i<br><0.005i |
| BH4W                                     |         | 01/08/97                            |          |          |          |          |          |         |            |         |           |        |        |        |        |                    |
| BH6W                                     |         | 01/08/97                            |          |          |          |          |          |         |            |         |           |        |        |        |        | <0.005             |
| 2004 Soil and                            | d Groui |                                     | -        |          |          |          |          |         |            |         |           |        |        |        |        |                    |
| BH-10-GW<br>BH-11-GW                     |         | 04/29/04                            |          |          |          |          |          |         |            |         |           |        |        |        |        |                    |
| BH-11-GW<br>BH-12-GW                     |         | 04/29/04<br>04/29/04                |          |          |          |          |          |         |            |         |           |        |        |        |        |                    |
| BH-12-GW<br>BH-13-GW                     |         | 04/29/04                            |          |          |          |          |          |         |            |         |           |        |        |        |        |                    |
| BH-14-GW                                 |         | 04/29/04                            |          |          |          |          |          |         |            |         |           |        |        |        |        |                    |
| BH-15-GW                                 |         | 04/29/04                            |          |          |          |          |          |         |            |         |           |        |        |        |        |                    |
| BH-16-GW                                 |         | 04/29/04                            |          |          |          |          |          |         |            |         |           |        |        |        |        |                    |
| BH-17-GW                                 |         | 04/29/04                            | <5.0     | <5.0     | <1       | <1       | <1       | <10     |            |         |           |        |        |        |        |                    |
| BH-18-GW                                 |         | 04/29/04                            | <50      | <50      | <10      | <10      | <10      | <100    |            |         |           |        |        |        |        |                    |
| BH-19-GW                                 |         | 04/29/04                            | <50      | <50      | <10      | <10      | <10      | <100    |            |         |           |        |        |        |        |                    |
| BH-20-GW                                 |         | 04/29/04                            | <50      | <50      | <10      | <10      | <10      | 114     |            |         |           |        |        |        |        |                    |
| BH-21-GW                                 |         | 04/29/04                            | <50      | <50      | <10      | <10      | <10      | <100    |            |         |           |        |        |        |        |                    |
| 2007 Soil an                             | d Groui |                                     |          |          |          |          |          |         |            |         |           |        |        |        |        |                    |
| B24-GW                                   |         | 05/24/07                            | <0.19    | <0.20    | <0.23    | 3.4      | <0.19    | <10     |            |         |           |        |        |        |        |                    |
| B25-GW                                   |         | 05/24/07                            | <0.19    | <0.20    | <0.23    | <0.20    | <0.19    | <10     |            |         |           |        |        |        |        |                    |
| B27-GW                                   |         | 05/23/07                            | <0.19    | <0.20    | <0.23    | <0.20    | <0.19    | <10     |            |         |           |        |        |        |        |                    |
| B28-GW                                   |         | 05/24/07                            | <0.19    | <0.20    | <0.23    | <0.20    | <0.19    | 11      |            |         |           |        |        |        |        |                    |
| B29-GW                                   |         | 05/24/07                            | <0.19    | <0.20    | <0.23    | <0.20    | <0.19    | <10     |            |         |           |        |        |        |        |                    |
| B30-GW                                   |         | 05/23/07                            | <0.19    | <0.20    | <0.23    | 4.8      | <0.19    | <10     |            |         |           |        |        |        |        |                    |
| B31-GW                                   |         | 05/23/07                            | <0.19    | 7.5      | <0.23    | <0.20    | <0.19    | 262     |            |         |           |        |        |        |        |                    |
| B32-GW                                   |         | 05/23/07                            | <0.19    | <0.20    | <0.23    | <0.20    | <0.19    | 82      |            |         |           |        |        |        |        |                    |
| 2017 Subsur                              | face In | vestigation                         |          |          |          |          |          |         |            |         |           |        |        |        |        |                    |
| B1                                       |         | 09/09/17                            | <1.0     | <0.50    | <2.0     | <2.0     | <2.0     | <10     | <100       | 22      | 2.2       | 10     | <1.0   | ND     |        |                    |

# TABLE 5BCUMULATIVE GROUNDWATER ANALYTICAL RESULTSBayrock Oakland230 and 240 West MacArthur BoulevardOakland, California(Page 14 of 14)

| Notes:    |   |                                                                                        |
|-----------|---|----------------------------------------------------------------------------------------|
| O&G       | = | Oil and grease.                                                                        |
| TPHd      | = | Total petroleum hydrocarbons as diesel.                                                |
| TPHg      | = | Total petroleum hydrocarbons as gasoline.                                              |
| BTEX      | = | Benzene, toluene, ethylbenzene, and total xylenes.                                     |
| MTBE      | = | Methyl tertiary butyl ether.                                                           |
| 1,2-DCA   | = | 1,2-dichloroethane.                                                                    |
| EDB       | = | 1,2-dibromoethane.                                                                     |
| ETBE      | = | Ethyl tertiary butyl ether.                                                            |
| DIPE      | = | Di-isopropyl ether.                                                                    |
| TAME      | = | Tertiary amyl methyl ether.                                                            |
| TBA       | = | Tertiary butyl alcohol.                                                                |
| c-1,2-DCA | = | cis-1,2-dichloroethane.                                                                |
| PCE       | = | Tetrachloroethene.                                                                     |
| TCE       | = | Trichloroethene.                                                                       |
| VOCs      | = | Volatile organic compounds.                                                            |
| PAHs      | = | Polyaromatic hydrocarbons.                                                             |
| ND        | = | Not detected.                                                                          |
| µg/L      | = | Micrograms per cubic liter.                                                            |
| <         | = | Less than the stated laboratory reporting limit.                                       |
|           | = | Not sampled/Not analyzed.                                                              |
| NP        | = | "No Purge" means no purging was conducted before the groundwater sample was collected. |
| HV-       | = | Pre"hi-vac"                                                                            |
| HV+       | = | Post "hi-vac"                                                                          |
| а         | = | Unmodified or weakly modified gasoline is significant.                                 |
| b         | = | Heavier gasoline-range compounds are significant.                                      |
| С         | = | Lighter gasoline-range compounds (the most mobile fraction) are significant.           |
| d         | = | Gasoline-range compounds having broad chromatographic peaks are significant.           |
| е         | = | Chromatographic pattern does not match that of the specified standard.                 |
| f         | = | Analyzed outside of recommended hold time.                                             |
| g         | = | Oil-range compounds are significant.                                                   |
| h         | = | Lighter than water immeiscible sheen is present.                                       |
| i         | = | Liquid sample that contains greater than ~5 vol. % sediment.                           |
| j         | = | Estimated value below the reporting limit and above the method detection limit.        |
| k         | = | Estimated value above the method dection limit but below the reporting limit.          |
| I         | = | Sample contains discrete peak in gasoline range.                                       |
| m         | _ | Hydrocarbon result partly due to individual peak(s) in the guantitation range          |

- m = Hydrocarbon result partly due to individual peak(s) in the quantitation range.
- n = No recognizable pattern.

 TABLE 6A

 CUMULATIVE SOIL ANALYTICAL RESULTS - PETROLEUM HYDROCARBONS

 Bayrock Oakland

 230 and 240 West MacArthur Boulevard

Oakland, California (Page 1 of 8)

| space       Desc/       Desc/ <thdesc <="" th=""> <thdesc <="" th=""> <thd< th=""><th>-</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></thd<></thdesc></thdesc>                                                                                                                                                                                                                                                                                                                                                        | -             |                  |          |         |           |           |           |           |           |             |              |               |         |           |         |           |           |           |           |         |         |           |           |           |           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------------------|----------|---------|-----------|-----------|-----------|-----------|-----------|-------------|--------------|---------------|---------|-----------|---------|-----------|-----------|-----------|-----------|---------|---------|-----------|-----------|-----------|-----------|
| Barrie D         Dest                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |                  |          | 5520E&F | DHS L     | UFT       |           | 8015      |           |             | 8260         | )B/8020 (Pre- | 2004)   |           |         |           |           | 8260      | 3         |         |         |           | 8240      | 82        | :70       |
| net         synest         (nyty                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Comple        | Dorth            | Data     | 0.0     | Korazza   |           | TDUm      |           |           | P           | <b>–</b>     | F             | V       | MTOF      | 10004   |           | FTOF      | סוסר      |           |         | •       |           | Voca      | SV/OOr    |           |
| 290 MacArthur Boulevard<br>1986 A 66 0 Mirkes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |                  |          |         |           |           |           |           | -         |             | l<br>(ma/ka) |               |         |           |         |           |           |           |           |         |         |           |           |           |           |
| Ski husije       Ski husije <th>ID</th> <th>(leet)</th> <th>Sampleu</th> <th>(mg/kg)</th> <th>(IIIg/Kg)</th> <th>(iiig/kg)</th> <th>(ilig/kg)</th> <th>(iiig/kg)</th> <th>(IIIg/Kg)</th> <th>(mg/kg)</th> <th>(iiig/kg)</th> <th>(mg/kg)</th> <th>(mg/kg)</th> <th>(IIIg/Kg)</th> <th>(mg/kg)</th> <th>(iiig/kg)</th> <th>(iiig/kg)</th> <th>(iiig/kg)</th> <th>(iiig/kg)</th> <th>(mg/kg)</th> <th>(mg/kg)</th> <th>(iiig/kg)</th> <th>(IIIg/Kg)</th> <th>(iiig/kg)</th> <th>(iiig/kg)</th> | ID            | (leet)           | Sampleu  | (mg/kg) | (IIIg/Kg) | (iiig/kg) | (ilig/kg) | (iiig/kg) | (IIIg/Kg) | (mg/kg)     | (iiig/kg)    | (mg/kg)       | (mg/kg) | (IIIg/Kg) | (mg/kg) | (iiig/kg) | (iiig/kg) | (iiig/kg) | (iiig/kg) | (mg/kg) | (mg/kg) | (iiig/kg) | (IIIg/Kg) | (iiig/kg) | (iiig/kg) |
| 8.8       4.6.5       0e1466       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       - <t< td=""><td>230 Mac/</td><td>Arthur Boul</td><td>levard</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 230 Mac/      | Arthur Boul      | levard   |         |           |           |           |           |           |             |              |               |         |           |         |           |           |           |           |         |         |           |           |           |           |
| SA       S5-50<br>13.1       S61-60<br>24.2                                                                                                                                                                                                                      | 1986 Site Inv | estigation       |          |         |           |           |           |           |           |             |              |               |         |           |         |           |           |           |           |         |         |           |           |           |           |
| SA       11/2.5       QP/400       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a <t< td=""><td>S-A</td><td>4-5.5</td><td>04/14/86</td><td></td><td></td><td></td><td></td><td></td><td>17</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | S-A           | 4-5.5            | 04/14/86 |         |           |           |           |           | 17        |             |              |               |         |           |         |           |           |           |           |         |         |           |           |           |           |
| SA       105-15       Ort109       -a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               |                  | 04/14/86 |         |           |           |           |           | 1,200     |             |              |               |         |           |         |           |           |           |           |         |         |           |           |           |           |
| 88       8183       81430       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | 11-12.5          | 04/14/86 |         |           |           |           |           | 4,300     |             |              |               |         |           |         |           |           |           |           |         |         |           |           |           |           |
| S8       0.01       0.014086       a       a       a       b       b       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a <t< td=""><td>S-A</td><td>13.5-15</td><td>04/14/86</td><td></td><td></td><td></td><td></td><td></td><td>ND</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | S-A           | 13.5-15          | 04/14/86 |         |           |           |           |           | ND        |             |              |               |         |           |         |           |           |           |           |         |         |           |           |           |           |
| S4       12-13       04/1486       -n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | S-B           | 5-6.5            | 04/14/86 |         |           |           |           |           | 36        |             |              |               |         |           |         |           |           |           |           |         |         |           |           |           |           |
| SC       45.5       64.14.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | S-B           | 8-9.5            | 04/14/86 |         |           |           |           |           | 78        |             |              |               |         |           |         |           |           |           |           |         |         |           |           |           |           |
| Sc       445.5       041066       iii       iiii                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | S-B           | 12-13            | 04/14/86 |         |           |           |           |           | 6.4       |             |              |               |         |           |         |           |           |           |           |         |         |           |           |           |           |
| Sc       77.5.5       06/1498       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1       -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | S-C           | 4-5.5            | 04/14/86 |         |           |           |           |           | ND        |             |              |               |         |           |         |           |           |           |           |         |         |           |           |           |           |
| Sc       11-125       041-488       a.       a.       a.       N.0       a.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |                  |          |         |           |           |           |           |           |             |              |               |         |           |         |           |           |           |           |         |         |           |           |           |           |
| SC       13.615       041460                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |                  |          |         |           |           |           |           |           |             |              |               |         |           |         |           |           |           |           |         |         |           |           |           |           |
| P37 Subar/a       P4       0       022887       11       11       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1 <th1< th="">       1       1</th1<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |                  |          |         |           |           |           |           |           |             |              |               |         |           |         |           |           |           |           |         |         |           |           |           |           |
| B-1       4       08/287         4/12       -0.05       -0.05       -0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | S-D           | Composite        | 04/14/86 |         |           |           |           |           | 571       |             |              |               |         |           |         |           |           |           |           |         |         |           |           |           |           |
| B-1       4       08/287         4/12       -0.05       -0.05       -0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1987 Subsur   | face Investigati | on       |         |           |           |           |           |           |             |              |               |         |           |         |           |           |           |           |         |         |           |           |           |           |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               | -                |          |         |           |           |           |           | 412       | <0.05       | <0.05        | <01           | 54      |           |         |           |           |           |           |         |         |           |           |           |           |
| b-1       8       002887          1       1       2       0 <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |                  |          |         |           |           |           |           |           |             |              |               |         |           |         |           |           |           |           |         |         |           |           |           |           |
| b1 = 010       00       082887          010       0.05       0.05       0.05       0.01 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |                  |          |         |           |           |           |           |           |             |              |               |         |           |         |           |           |           |           |         |         |           |           |           |           |
| B-1       12       062       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |                  |          |         |           |           |           |           |           |             |              |               |         |           |         |           |           |           |           |         |         |           |           |           |           |
| B-1       14       04/28/7 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |                  |          |         |           |           |           |           |           |             |              |               |         |           |         |           |           |           |           |         |         |           |           |           |           |
| b2:0       6-7       082887           +10       -0.05       0.37       0.55       0.1                                                                                                          -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |                  |          |         |           |           |           |           |           |             |              |               |         |           |         |           |           |           |           |         |         |           |           |           |           |
| b2:0       6-7       082887           +10       -0.05       0.37       0.55       0.1                                                                                                          -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | B 2 @ 5'      | 5                | 08/28/87 |         |           |           |           |           | -10       | <0.05       | 15           | 57            | -0.1    |           |         |           |           |           |           |         |         |           |           |           |           |
| B-9       08/28/87 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |                  |          |         |           |           |           |           |           |             |              |               |         |           |         |           |           |           |           |         |         |           |           |           |           |
| B-2       01       0       08/28/87         -10       <0.05       <0.05       <0.1       <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |                  |          |         |           |           |           |           |           |             |              |               |         |           |         |           |           |           |           |         |         |           |           |           |           |
| B-2       12       08/28/87         -       -       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |                  |          |         |           |           |           |           |           |             |              |               |         |           |         |           |           |           |           |         |         |           |           |           |           |
| 1987 UST Replacement       A.1       15       11/05/87           380       1.6       2.2        55 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |                  |          |         |           |           |           |           |           |             |              |               |         |           |         |           |           |           |           |         |         |           |           |           |           |
| A-1       15       1105/87          380       1.6       2.2        55 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |                  |          |         |           |           |           |           |           |             |              |               |         |           |         |           |           |           |           |         |         |           |           |           |           |
| A-2       15       11/05/87          310       1.3       1.3        33                                                                                                      <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |                  | 11/05/97 |         |           |           |           |           | 200       | 16          | 2.2          |               | 55      |           |         |           |           |           |           |         |         |           |           |           |           |
| B-1       15       11/05/87          480       4.3       0.5        22 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |                  |          |         |           |           |           |           |           |             |              |               |         |           |         |           |           |           |           |         |         |           |           |           |           |
| B-2       15       11/05/87          0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |                  |          |         |           |           |           |           |           |             |              |               |         |           |         |           |           |           |           |         |         |           |           |           |           |
| C-1       15       11/05/87          12       1.5       <0.1        1.1                1.1 <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |                  |          |         |           |           |           |           |           |             |              |               |         |           |         |           |           |           |           |         |         |           |           |           |           |
| C-2       15       11/05/87          170       4.1       <0.1        2.4                                            2.4               2.4                                                           <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | B-2           | 15               | 11/05/87 |         |           |           |           |           | 9.1       | 1.6         | 0.3          |               | 0.1     |           |         |           |           |           |           |         |         |           |           |           |           |
| D-1       15       11/05/87                                                                                                              <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |                  |          |         |           |           |           |           |           |             |              |               |         |           |         |           |           |           |           |         |         |           |           |           |           |
| D-2       15       11/05/87          44       <0.1       <0.1        5.3                                                                                                     <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C-2           | 15               | 11/05/87 |         |           |           |           |           | 170       | 4.1         | <0.1         |               | 2.4     |           |         |           |           |           |           |         |         |           |           |           |           |
| D-2       15       11/05/87          44       <0.1       <0.1        5.3                                                                                                     <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | D_1           | 15               | 11/05/97 |         |           |           |           |           | 86        | ~0.1        | -01          |               | ~0 1    |           |         |           |           |           |           |         |         |           |           |           |           |
| Comp 1        11/03/87         24       0.2       <0.1        5.7                    5.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |                  |          |         |           |           |           |           |           |             |              |               |         |           |         |           |           |           |           |         |         |           |           |           |           |
| Comp 2        11/04/87          26       <0.1       0.2        12                          12        12                       130       1.8       1.9        36                                                           <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <u>D'</u> Z   | 10               | 1703/07  |         |           |           |           |           |           | <b>NO.1</b> | <b>NO.1</b>  |               | 0.0     |           |         |           |           |           |           |         |         |           |           |           |           |
| Comp 3        11/04/87         150       1.8       1.9        36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |                  |          |         |           |           |           |           |           |             |              |               |         |           |         |           |           |           |           |         |         |           |           |           |           |
| Comp 4 11/04/87 8.4 0.1 0.1 2.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |                  |          |         |           |           |           |           |           |             |              |               |         |           |         |           |           |           |           |         |         |           |           |           |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |                  |          |         |           |           |           |           |           |             |              |               |         |           |         |           |           |           |           |         |         |           |           |           |           |
| Comp 5 11/05/87 250 1.8 9.3 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |                  |          |         |           |           |           |           |           |             |              |               |         |           |         |           |           |           |           |         |         |           |           |           |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Comp 5        |                  | 11/05/87 |         |           |           |           |           | 250       | 1.8         | 9.3          |               | 52      |           |         |           |           |           |           |         |         |           |           |           |           |

CUMULATIVE SOIL ANALYTICAL RESULTS - PETROLEUM HYDROCARBONS

Bayrock Oakland 230 and 240 West MacArthur Boulevard

Oakland, California (Page 2 of 8)

|                    |                    |          | 5520E&F | DHS L    | .UFT    |         | 8015    |              |                    | 8260     | 0B/8020 (Pre-2 | 2004)              |                    |         |         |         | 8260    | В       |         |         |         | 8240    | 82      | 270     |
|--------------------|--------------------|----------|---------|----------|---------|---------|---------|--------------|--------------------|----------|----------------|--------------------|--------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
|                    |                    |          |         |          |         |         |         |              |                    |          |                |                    |                    |         |         |         |         |         |         | Naph-   |         |         |         |         |
| Sample             | Depth              | Date     | O&G     | Kerosene | TPHd    | TPHmo   | TPHd    | TPHg         | В                  | Т        | E              | Х                  | MTBE               | 1,2-DCA | EDB     | ETBE    | DIPE    | TAME    | TBA     | thalene | VOCs    | VOCs    | SVOCs   | PAHs    |
| ID                 | (feet)             | Sampled  | (mg/kg) | (mg/kg)  | (mg/kg) | (mg/kg) | (mg/kg) | (mg/kg)      | (mg/kg)            | (mg/kg)  | (mg/kg)        | (mg/kg)            | (mg/kg)            | (mg/kg) | (mg/kg) | (mg/kg) | (mg/kg) | (mg/kg) | (mg/kg) | (mg/kg) | (mg/kg) | (mg/kg) | (mg/kg) | (mg/kg) |
| 1000 Subou         | rface Investigatio |          |         |          |         |         |         |              |                    |          |                |                    |                    |         |         |         |         |         |         |         |         |         |         |         |
|                    | -                  |          |         |          |         |         |         | 10           | 0.000              | 0.0110   | 0.000          | .0.000             |                    |         |         |         |         |         |         |         |         |         |         |         |
| MW1-2              | 10                 | 11/07/88 |         |          |         |         |         | <10          | <0.003             | 0.0116   | <0.003         | < 0.003            |                    |         |         |         |         |         |         |         |         |         |         |         |
| MW1-3              | 15                 | 11/07/88 |         |          |         |         |         | <10          | <0.003             | 0.0129   | <0.003         | 0.0051             |                    |         |         |         |         |         |         |         |         |         |         |         |
| MW1-4              | 20                 | 11/07/88 |         |          |         |         |         | <10          | <0.003             | 0.0230   | <0.003         | <0.003             |                    |         |         |         |         |         |         |         |         |         |         |         |
| MW2-1              | 5                  | 11/07/88 |         |          |         |         |         | <10          | <0.003             | 0.0161   | <0.003         | <0.003             |                    |         |         |         |         |         |         |         |         |         |         |         |
| MW2-2              | 10                 | 11/07/88 |         |          |         |         |         | <10          | <0.003             | 0.0093   | <0.003         | < 0.003            |                    |         |         |         |         |         |         |         |         |         |         |         |
| MW2-3              | 15                 | 11/07/88 |         |          |         |         |         | <10          | <0.003             | 0.010    | < 0.003        | < 0.003            |                    |         |         |         |         |         |         |         |         |         |         |         |
| 101002-5           | 15                 | 11/07/00 |         |          |         |         |         | <10          | <0.003             | 0.010    | <0.003         | <0.003             |                    |         |         |         |         |         |         |         |         |         |         |         |
| MW3-1              | 10                 | 12/07/88 |         |          |         |         |         | 278          | <0.050             | 0.388    | <0.003         | 0.411              |                    |         |         |         |         |         |         |         |         |         |         |         |
| MW3-2              | 15                 | 12/07/88 |         |          |         |         |         | <10          | <0.003             | 0.0367   | < 0.003        | < 0.003            |                    |         |         |         |         |         |         |         |         |         |         |         |
| MW3-3              | 20                 | 12/07/88 |         |          |         |         |         | <10          | <0.003             | 0.0304   | 0.0076         | <0.003             |                    |         |         |         |         |         |         |         |         |         |         |         |
|                    |                    |          |         |          |         |         |         |              |                    |          |                |                    |                    |         |         |         |         |         |         |         |         |         |         |         |
|                    | rface Investigatio |          |         |          |         |         |         | 4.0          | 0.05               | <u> </u> | <u> </u>       | <u> </u>           |                    |         |         |         |         |         |         |         |         |         |         |         |
| SB1-1              | 5                  | 08/16/89 |         |          |         |         |         | <1.0         | <0.05              | <0.1     | <0.1           | <0.1               |                    |         |         |         |         |         |         |         |         |         |         |         |
| SB1-2              | 10                 | 08/16/89 |         |          |         |         |         | <1.0         | <0.05              | <0.1     | <0.1           | <0.1               |                    |         |         |         |         |         |         |         |         |         |         |         |
| SB1-3              | 15                 | 08/16/89 |         |          |         |         |         | <1.0         | <0.05              | <0.1     | <0.1           | <0.1               |                    |         |         |         |         |         |         |         |         |         |         |         |
| SB1                | Composite          | 08/16/89 |         |          |         |         |         |              |                    |          |                |                    |                    |         |         |         |         |         |         |         |         |         |         |         |
| SB2-1              | 5.5                | 08/16/89 |         |          |         |         |         | <1.0         | <0.05              | <0.1     | <0.1           | <0.1               |                    |         |         |         |         |         |         |         |         |         |         |         |
| SB2-1              | 10.5               | 08/16/89 |         |          |         |         |         | <1.0         | <0.05              | <0.1     | <0.1<br><0.1   | <0.1               |                    |         |         |         |         |         |         |         |         |         |         |         |
| SB2-2<br>SB2-3     | 15.5               | 08/16/89 |         |          |         |         |         | 490          |                    |          |                |                    |                    |         |         |         |         |         |         |         |         |         |         |         |
| SB2-3              | Composite          | 08/16/89 |         |          |         |         |         | 490          | <0.05              | 0.28     | 1.3<br>        | 1.0                |                    |         |         |         |         |         |         |         |         |         |         |         |
|                    |                    |          |         |          |         |         |         |              |                    |          |                |                    |                    |         |         |         |         |         |         |         |         |         |         |         |
| SB3-1              | 4.5                | 08/16/89 |         |          |         |         |         | 6.6          | <0.05              | 0.26     | 0.14           | 0.63               |                    |         |         |         |         |         |         |         |         |         |         |         |
| SB3-2              | 9.5                | 08/16/89 |         |          |         |         |         | <1.0         | <0.05              | <0.1     | <0.1           | <0.1               |                    |         |         |         |         |         |         |         |         |         |         |         |
| SB3-3              | 15.5               | 08/16/89 |         |          |         |         |         | <1.0         | <0.05              | <0.1     | <0.1           | <0.1               |                    |         |         |         |         |         |         |         |         |         |         |         |
| SB3                | Composite          | 08/16/89 |         |          |         |         |         |              |                    |          |                |                    |                    |         |         |         |         |         |         |         |         |         |         |         |
| 0004.0             |                    |          |         |          |         |         |         |              |                    |          |                |                    |                    |         |         |         |         |         |         |         |         |         |         |         |
|                    | rface Investigatio |          |         |          |         |         |         |              |                    |          |                |                    |                    |         |         |         |         |         |         |         |         |         |         |         |
| SB-1-5'            | 5                  | 03/24/04 |         |          |         |         |         | <1.0         | <0.0050            | <0.0050  | <0.0050        | <0.0050            | <0.0050            |         |         |         |         |         |         |         |         |         |         |         |
| SB-1-10'           | 10                 | 03/24/04 |         |          |         |         |         | <1.0         | <0.0050            | <0.0050  | <0.0050        | <0.0050            | <0.0050            |         |         |         |         |         |         |         |         |         |         |         |
| SB-1-15'           | 15                 | 03/24/04 |         |          |         |         |         | <1.0         | <0.0050            | <0.0050  | <0.0050        | <0.0050            | 0.0078             |         |         |         |         |         |         |         |         |         |         |         |
| SB-1-17'           | 17                 | 03/24/04 |         |          |         |         |         | 12           | <0.025             | <0.025   | <0.025         | <0.025             | <0.025             |         |         |         |         |         |         |         |         |         |         |         |
| SB-1-19.5'         | 19.5               | 03/24/04 |         |          |         |         |         | 43           | <0.024             | <0.024   | <0.024         | <0.024             | <0.024             |         |         |         |         |         |         |         |         |         |         |         |
| SB-2-5'            | 5                  | 03/24/04 |         |          |         |         |         | <1.0         | <0.0050            | <0.0050  | <0.0050        | <0.0050            | <0.0050            |         |         |         |         |         |         |         |         |         |         |         |
| SB-2-5<br>SB-2-10' | 10                 | 03/24/04 |         |          |         |         |         | <1.0<br><1.0 | <0.0050<br><0.0050 | < 0.0050 | <0.0050        | <0.0050<br><0.0050 | <0.0050<br><0.0050 |         |         |         |         |         |         |         |         |         |         |         |
|                    |                    |          |         |          |         |         |         |              |                    |          |                |                    |                    |         |         |         |         |         |         |         |         |         |         |         |
| SB-2-15'           | 15                 | 03/24/04 |         |          |         |         |         | <1.0         | <0.0050            | <0.0050  | <0.0050        | <0.0050            | <0.0050            |         |         |         |         |         |         |         |         |         |         |         |
| SB-2-17'           | 17                 | 03/24/04 |         |          |         |         |         | <1.0         | <0.0050            | <0.0050  | <0.0050        | <0.0050            | 0.0099             |         |         |         |         |         |         |         |         |         |         |         |
| SB-2-19.5'         | 19.5               | 03/24/04 |         |          |         |         |         | 10           | <0.025             | <0.025   | <0.025         | <0.025             | <0.025             |         |         |         |         |         |         |         |         |         |         |         |
| 2005 Fueling       | g System Upgrad    | e        |         |          |         |         |         |              |                    |          |                |                    |                    |         |         |         |         |         |         |         |         |         |         |         |
| D-1-4.0            | 4.0                | 04/18/05 |         |          |         |         |         | <1.0         | <0.0050            | <0.0050  | <0.0050        | <0.0050            | <0.0050            |         |         | <0.0050 | <0.0050 | <0.0050 | <0.0050 |         |         |         |         |         |
|                    |                    |          |         |          |         |         |         |              |                    |          |                |                    |                    |         |         |         |         |         |         |         |         |         |         |         |
| D-2-1.5            | 1.5                | 04/18/05 |         |          |         |         |         | 1,700        | <0.40              | 2.4      | 3.8            | 5.4                | <0.40              |         |         | <0.40   | <0.40   | <0.40   | <2.0    |         |         |         |         |         |
| D-2-3.5            | 3.5                | 04/18/05 |         |          |         |         |         | 940          | 0.060              | 6.6      | 9.5            | 85                 | <0.025             |         |         | <0.025  | <0.025  | <0.025  | <0.15   |         |         |         |         |         |
|                    | 0.0                | 04/40/05 |         |          |         |         |         | 0.5          | 0.0050             | 0.0050   | 0.0050         | 0.0050             | 0.0050             |         |         | 0.0050  | 0.0050  | 0.0050  | 0.0050  |         |         |         |         |         |
| D-3-3.0            | 3.0                | 04/18/05 |         |          |         |         |         | 2.5          | <0.0050            | <0.0050  | <0.0050        | <0.0050            | <0.0050            |         |         | <0.0050 | <0.0050 | <0.0050 | <0.0050 |         |         |         |         |         |
| D-4-4.0            | 4.0                | 04/18/05 |         |          |         |         |         | <1.0         | <0.0050            | <0.0050  | <0.0050        | <0.0050            | 0.0050             |         |         | <0.0050 | <0.0050 | <0.0050 | <0.0050 |         |         |         |         |         |
|                    |                    |          |         |          |         |         |         |              |                    |          |                |                    |                    |         |         |         |         |         |         |         |         |         |         |         |

#### CUMULATIVE SOIL ANALYTICAL RESULTS - PETROLEUM HYDROCARBONS

Bayrock Oakland 230 and 240 West MacArthur Boulevard

Oakland, California (Page 3 of 8)

|               |                 |          | 5520E&F | DHS L    | UFT     |       | 8015    |         |              | 8260         | )B/8020 (Pre- | 2004)        |          |         |                |          | 8260     | В        |         |                  |         | 8240    | 82      | 270     |
|---------------|-----------------|----------|---------|----------|---------|-------|---------|---------|--------------|--------------|---------------|--------------|----------|---------|----------------|----------|----------|----------|---------|------------------|---------|---------|---------|---------|
| Sampla        | Depth           | Date     | O&G     | Kerosene | TPHd    | TPHmo | TPHd    | TPHa    | В            | т            | E             | х            | MTBE     | 1,2-DCA | EDB            | ETBE     | DIPE     | TAME     | ТВА     | Naph-<br>thalene | VOCs    | VOCs    | SVOCs   | PAHs    |
| Sample<br>ID  | (feet)          | Sampled  | (mg/kg) | (mg/kg)  | (mg/kg) |       | (mg/kg) | (mg/kg) | ь<br>(mg/kg) | ı<br>(mg/kg) | ⊏<br>(mg/kg)  | ^<br>(mg/kg) | (mg/kg)  | (mg/kg) | срв<br>(mg/kg) | (mg/kg)  | (mg/kg)  | (mg/kg)  | (mg/kg) | (mg/kg)          | (mg/kg) | (mg/kg) | (mg/kg) | (mg/kg) |
| P-1-2.0       | 2.0             | 04/18/05 |         |          |         |       |         | <1.0    | <0.0050      | <0.0050      | <0.0050       | <0.0050      | <0.0050  |         |                | <0.0050  | <0.0050  | <0.0050  | <0.0050 |                  |         |         |         |         |
| P-2-4.5       | 4.5             | 04/18/05 |         |          |         |       |         | <1.0    | <0.0050      | <0.0050      | <0.0050       | <0.0050      | <0.0050  |         |                | <0.0050  | <0.0050  | <0.0050  | <0.0050 |                  |         |         |         |         |
| P-3-3.5       | 3.5             | 04/18/05 |         |          |         |       |         | 620     | <0.025       | 0.20         | 1.6           | 6.1          | 0.066    |         |                | <0.025   | <0.025   | <0.025   | 0.18    |                  |         |         |         |         |
| P-4-4.0       | 4.0             | 04/18/05 |         |          |         |       |         | 2,700   | 4.2          | 1.6          | 39            | 78           | 0.30     |         |                | <0.25    | <0.25    | <0.25    | <1.5    |                  |         |         |         |         |
| P-5-4.0       | 4.0             | 04/18/05 |         |          |         |       |         | 1,600   | 0.98         | 0.28         | 7.4           | 13           | <0.25    |         |                | <0.25    | <0.25    | <0.25    | <1.5    |                  |         |         |         |         |
| EX-1-6        | 6.0             | 04/28/05 |         |          |         |       |         | 830     | <0.50        | 1.4          | 4.1           | <0.50        | <0.50    |         |                | <0.50    | <1.0     | <0.50    | <2.5    |                  |         |         |         |         |
| EX-2-6        | 6.0             | 04/28/05 |         |          |         |       |         | 200     | <0.50        | <0.50        | <0.50         | <0.50        | <0.50    |         |                | <0.50    | <1.0     | <0.50    | <2.5    |                  |         |         |         |         |
| EX-3-6        | 6.0             | 04/28/05 |         |          |         |       |         | 7.3     | <0.0050      | <0.0050      | <0.0050       | <0.0050      | <0.0050  |         |                | <0.0050  | <0.010   | <0.0050  | 0.015   |                  |         |         |         |         |
| EX-4-6        | 6.0             | 04/28/05 |         |          |         |       |         | 21      | <0.023       | <0.023       | <0.023        | <0.023       | <0.023   |         |                | <0.023   | <0.023   | <0.023   | <0.046  |                  |         |         |         |         |
| EX-B-6.5      | 6.5             | 04/28/05 |         |          |         |       |         | <1.0    | <0.0050      | <0.0050      | <0.0050       | <0.0050      | <0.0050  |         |                | <0.0050  | <0.010   | <0.0050  | 0.017   |                  |         |         |         |         |
| EX-5-6        | 6.0             | 04/28/05 |         |          |         |       |         | 7.6     | <0.019       | <0.019       | <0.019        | 0.10         | <0.019   |         |                | <0.019   | <0.038   | <0.019   | <0.038  |                  |         |         |         |         |
| EX-6-6        | 6.0             | 04/28/05 |         |          |         |       |         | <1.0    | <0.0050      | <0.0050      | <0.0050       | <0.0050      | <0.0050  |         |                | <0.0050  | <0.010   | <0.0050  | 0.013   |                  |         |         |         |         |
| EX-B2-6.5     | 6.5             | 04/28/05 |         |          |         |       |         | 260     | <0.50        | <0.50        | 1.6           | 1.5          | <0.50    |         |                | <0.50    | 3.3      | <0.50    | <2.5    |                  |         |         |         |         |
| 2006 Subsurfa | ace Investigati | ion      |         |          |         |       |         |         |              |              |               |              |          |         |                |          |          |          |         |                  |         |         |         |         |
| SB-4-5        | 5.0             | 04/04/06 |         |          |         |       |         | <0.100  | <0.00200     | <0.00200     | <0.00200      | <0.00500     | <0.00200 |         |                | <0.00500 | <0.00200 | <0.00200 | <0.0500 |                  |         |         |         |         |
| SB-4-11.5     | 11.5            | 04/05/06 |         |          |         |       |         | <0.100  | <0.00200     | <0.00200     | <0.00200      | <0.00500     | <0.00200 |         |                | <0.00500 | <0.00200 | <0.00200 | <0.0500 |                  |         |         |         |         |
| SB-4-15.5     | 15.5            | 04/05/06 |         |          |         |       |         | 0.544   | <0.00200     | 0.119        | 0.00995       | 0.0388       | <0.00200 |         |                | <0.00500 | <0.00200 | <0.00200 | <0.0500 |                  |         |         |         |         |
| SB-5-3        | 3.0             | 04/04/06 |         |          |         |       |         | 1,510f  | 2.90f        | 9.47f        | 9.46f         | 70.6f        | 0.00403  |         |                | <0.00500 | 0.0142   | <0.00200 | <0.0500 |                  |         |         |         |         |
| SB-6-3        | 3.0             | 04/04/06 |         |          |         |       |         | 0.638   | <0.00200     | <0.00200     | <0.00200      | <0.00500     | <0.00200 |         |                | <0.00500 | <0.00200 | <0.00200 | <0.0500 |                  |         |         |         |         |
| SB-6-6.5      | 6.5             | 04/05/06 |         |          |         |       |         | <0.100  | <0.00200     | <0.00200     | <0.00200      | <0.00500     | 0.00418  |         |                | <0.00500 | <0.00200 | <0.00200 | <0.0500 |                  |         |         |         |         |
| SB-6-9.5      | 9.5             | 04/05/06 |         |          |         |       |         | 2.43    | 0.0168       | <0.00200     | 0.00746       | <0.00500     | 0.00970  |         |                | <0.00500 | <0.00200 | <0.00200 | <0.0500 |                  |         |         |         |         |
| SB-6-12       | 12.0            | 04/06/06 |         |          |         |       |         | 6.16    | 0.0160       | <0.00200     | 0.0319        | 0.0222       | 0.00541  |         |                | <0.00500 | <0.00200 | <0.00200 | <0.0500 |                  |         |         |         |         |
| SB-7-5        | 5.0             | 04/04/06 |         |          |         |       |         | 0.452   | <0.00200     | <0.00200     | 0.00325       | 0.0199       | <0.00200 |         |                | <0.00500 | <0.00200 | <0.00200 | <0.0500 |                  |         |         |         |         |
| SB-7-10       | 10.0            | 04/06/06 |         |          |         |       |         | <0.100  | <0.00200     | <0.00200     | <0.00320      | < 0.00500    | 0.00200  |         |                | <0.00500 | <0.00200 | <0.00200 | <0.0500 |                  |         |         |         |         |
| SB-7-15       | 15.0            | 04/06/06 |         |          |         |       |         | <0.100  | <0.00200     | <0.00200     | <0.00200      | <0.00500     | <0.00200 |         |                | <0.00500 | <0.00200 | <0.00200 | <0.0500 |                  |         |         |         |         |
| SB-8-5        | 5.0             | 04/04/06 |         |          |         |       |         | <0.100  | <0.00200     | <0.00200     | <0.00200      | <0.00500     | <0.00200 |         |                | <0.00500 | <0.00200 | <0.00200 | <0.0500 |                  |         |         |         |         |
| SB-8-10       | 10.0            | 04/06/06 |         |          |         |       |         | <0.100  | 0.00200      | <0.00200     | <0.00200      | <0.00500     | <0.00200 |         |                | <0.00500 | <0.00200 | <0.00200 | <0.0500 |                  |         |         |         |         |
| SB-8-14       | 14.0            | 04/06/06 |         |          |         |       |         | 0.942   | 0.0588       | 0.00204      | 0.00416       | <0.00500     | 0.00855  |         |                | <0.00500 | 0.0132   | <0.00200 | <0.0500 |                  |         |         |         |         |
| 2008 Subsurfa | ace Investigati | ion      |         |          |         |       |         |         |              |              |               |              |          |         |                |          |          |          |         |                  |         |         |         |         |
| SB-9-7        | 7               | 02/01/08 |         |          |         |       |         | <0.50   | <0.0050      | <0.0050      | <0.0050       | <0.010       | <0.0050  |         |                | <0.010   | <0.010   | <0.010   | <0.050  |                  |         |         |         |         |
| SB-9-11.5     | 11.5            | 02/01/08 |         |          |         |       |         | <0.50   | <0.0050      | <0.0050      | <0.0050       | <0.010       | <0.0050  |         |                | <0.010   | <0.010   | <0.010   | <0.050  |                  |         |         |         |         |
| SB-9-15.5     | 15.5            | 02/01/08 |         |          |         |       |         | <0.50   | < 0.0050     | <0.0050      | < 0.0050      | <0.010       | < 0.0050 |         |                | <0.010   | <0.010   | <0.010   | <0.050  |                  |         |         |         |         |
|               |                 |          |         |          |         |       |         |         |              |              |               |              |          |         |                |          |          |          |         |                  |         |         |         |         |
| SB-10-7       | 7               | 02/01/08 |         |          |         |       |         | <0.50   | <0.0050      | <0.0050      | <0.0050       | <0.010       | <0.0050  |         |                | <0.010   | <0.010   | <0.010   | <0.050  |                  |         |         |         |         |
| SB-10-11.5    | 11.5            | 02/01/08 |         |          |         |       |         | <0.50   | <0.0050      | <0.0050      | <0.0050       | <0.010       | <0.0050  |         |                | <0.010   | <0.010   | <0.010   | <0.050  |                  |         |         |         |         |
| SB-10-15.5    | 15.5            | 02/01/08 |         |          |         |       |         | <0.50   | <0.0050      | <0.0050      | <0.0050       | <0.010       | <0.0050  |         |                | <0.010   | <0.010   | <0.010   | <0.050  |                  |         |         |         |         |
| SB-11-7.5     | 7.5             | 02/01/08 |         |          |         |       |         | <0.50   | <0.0050      | <0.0050      | <0.0050       | <0.010       | <0.0050  |         |                | <0.010   | <0.010   | <0.010   | <0.050  |                  |         |         |         |         |
| SB-11-11.5    | 11.5            | 02/01/08 |         |          |         |       |         | <0.50   | <0.0050      | <0.0050      | <0.0050       | <0.010       | <0.0050  |         |                | < 0.010  | <0.010   | <0.010   | <0.050  |                  |         |         |         |         |
| SB-11-15.5    | 15.5            | 02/01/08 |         |          |         |       |         | <0.50   | < 0.0050     | < 0.0050     | < 0.0050      | <0.010       | < 0.0050 |         |                | <0.010   | <0.010   | <0.010   | <0.050  |                  |         |         |         |         |
|               |                 |          |         |          |         |       |         |         |              |              |               |              |          |         |                |          |          |          |         |                  |         |         |         |         |

#### CUMULATIVE SOIL ANALYTICAL RESULTS - PETROLEUM HYDROCARBONS

Bayrock Oakland 230 and 240 West MacArthur Boulevard

Oakland, California (Page 4 of 8)

|                 |                          |                  | 5520E&F     | DHS L     | UFT      | <u> </u> | 8015      | I       |               | 8260          | )B/8020 (Pre-2 | 2004)      |              |            |           |            | 8260      | B         |           |            |           | 8240      | 80        | 70        |
|-----------------|--------------------------|------------------|-------------|-----------|----------|----------|-----------|---------|---------------|---------------|----------------|------------|--------------|------------|-----------|------------|-----------|-----------|-----------|------------|-----------|-----------|-----------|-----------|
|                 |                          |                  | 3320LQI     | DINGL     | -011     |          | 0015      |         |               | 0200          |                | 2004)      |              |            |           |            | 0200      | 5         |           | Naph-      |           | 0240      | 02        | 10        |
| Sample          | Depth                    | Date             | O&G         | Kerosene  | TPHd     | TPHmo    | TPHd      | TPHg    | В             | т             | F              | х          | MTBE         | 1,2-DCA    | EDB       | ETBE       | DIPE      | TAME      | TBA       | thalene    | VOCs      | VOCs      | SVOCs     | PAHs      |
| ID              | (feet)                   | Sampled          | (mg/kg)     | (mg/kg)   | (mg/kg)  | (mg/kg)  | (mg/kg)   | Ŭ       | (mg/kg)       | (mg/kg)       | (mg/kg)        | (mg/kg)    | (mg/kg)      | (mg/kg)    | (mg/kg)   | (mg/kg)    | (mg/kg)   | (mg/kg)   | (mg/kg)   | (mg/kg)    | (mg/kg)   | (mg/kg)   | (mg/kg)   | (mg/kg)   |
|                 | ()                       | eampied          | (119/119)   | (119/119) | (119/19) | (119/19) | (119/119) | (       | (119/119)     | (119/119)     | (119/119)      | (1119/119) | (119/19)     | (1119/119) | (119/119) | (1119/119) | (119/119) | (119/119) | (119/119) | (1119/119) | (119/119/ | (119/119) | (119/119) | (119/119) |
| SB-12-7.5       | 7.5                      | 02/01/08         |             |           |          |          |           | <0.50   | <0.0050       | <0.0050       | <0.0050        | <0.010     | <0.0050      |            |           | <0.010     | <0.010    | <0.010    | <0.050    |            |           |           |           |           |
| SB-12-11        | 11                       | 02/01/08         |             |           |          |          |           | <0.50   | <0.0050       | <0.0050       | <0.0050        | <0.010     | <0.0050      |            |           | <0.010     | <0.010    | <0.010    | <0.050    |            |           |           |           |           |
| SB-12-15.5      | 15.5                     | 02/01/08         |             |           |          |          |           | <0.50   | <0.0050       | <0.0050       | <0.0050        | <0.010     | 0.0053       |            |           | <0.010     | <0.010    | <0.010    | <0.050    |            |           |           |           |           |
| 17 Subsurfa     | ace Investigat           | ion              |             |           |          |          |           |         |               |               |                |            |              |            |           |            |           |           |           |            |           |           |           |           |
| S-11-B2         | 11                       | 09/09/17         |             |           |          | <5.0     | <5.0      | <0.51   | <0.0050       | <0.0050       | <0.0050        | <0.010     | <0.0050      | <0.0050    | <0.0050   | <0.0099    | <0.0099   | <0.0099   | <0.050    | <0.050     | ND        |           |           |           |
| S-16.5-B2       | 16.5                     | 09/09/17         |             |           |          | <5.0     | <5.0      | <0.50   | <0.0050       | <0.0050       | <0.0050        | <0.010     | <0.0050      | <0.0050    | <0.0050   | <0.010     | <0.010    | <0.010    | <0.050    | <0.050     | ND        |           |           |           |
| S-17-B2         | 17                       | 09/09/17         |             |           |          | <5.1     | <5.1      | <0.48   | <0.0049       | <0.0049       | <0.0049        | <0.0098    | <0.0049      | <0.0049    | <0.0049   | <0.0098    | <0.0098   | <0.0098   | <0.049    | <0.049     | ND        |           |           |           |
| S-17-B3         | 17                       | 09/09/17         |             |           |          | <5.0     | <5.0      | <0.50   | <0.0050       | <0.0050       | <0.0050        | <0.010     | <0.0050      | <0.0050    | <0.0050   | <0.010     | <0.010    | <0.010    | <0.050    | <0.050     | ND        |           |           |           |
| 40 MacA         | rthur Bou                | levard           |             |           |          |          |           |         |               |               |                |            |              |            |           |            |           |           |           |            |           |           |           |           |
| 91 Used-Oi      | l and Used-Oi            | I Sump Remova    | al          |           |          |          |           |         |               |               |                |            |              |            |           |            |           |           |           |            |           |           |           |           |
| West Wall       |                          | 03/13/91         | <50         | <1        | <1       |          |           |         |               |               |                |            |              |            |           |            |           |           |           |            |           |           |           |           |
| East Wall       |                          | 03/13/91         | 150         | <1        | <1       |          |           |         |               |               |                |            |              |            |           |            |           |           |           |            |           |           |           |           |
| ottom West      |                          | 03/13/91         | 630         | <1        | <1       |          |           |         |               |               |                |            |              |            |           |            |           |           |           |            |           |           |           |           |
| ottom East      |                          | 03/13/91         | 2,600       | <1        | <1       |          |           |         |               |               |                |            |              |            |           |            |           |           |           |            |           |           |           |           |
| 1522-3          |                          | 03/19-24/91      | <10         |           |          |          |           |         |               |               |                |            |              |            |           |            |           |           |           |            |           |           |           |           |
| 1522-4          |                          | 03/19-24/91      | <10         |           |          |          |           |         |               |               |                |            |              |            |           |            |           |           |           |            |           |           |           |           |
| 1522-C          |                          | 03/19-24/91      | 360         |           |          |          |           |         |               |               |                |            |              |            |           |            |           |           |           |            |           |           |           |           |
| 996 Tank Re     | moval (350-qa            | allon used-oil U | ST)         |           |          |          |           |         |               |               |                |            |              |            |           |            |           |           |           |            |           |           |           |           |
| cavation Botton | • •                      |                  | -           |           |          |          |           |         |               |               |                |            |              |            |           |            |           |           |           |            |           |           |           |           |
| EB (7')         | 7.0                      | 10/03/96         | 7,000       |           |          |          | 510g      |         | <0.005        | 0.006         | 0.009          | 0.033      | <0.05        |            |           |            |           |           |           |            |           |           |           |           |
| EB (8')         | 8.0                      | 10/03/96         | <50         |           |          |          | <1.0      |         | <0.005        | <0.005        | <0.005         | <0.005     | <0.05        |            |           |            |           |           |           |            |           |           | ND        |           |
| cavation Stock  | pile Composite Sa        | •                |             |           |          |          |           |         |               |               |                |            |              |            |           |            |           |           |           |            |           |           |           |           |
| STKP            | 1-4                      | 10/03/96         | 580         |           |          |          | 31g       |         | <0.005        | <0.005        | <0.005         | <0.005     | <0.05        |            |           |            |           |           |           |            |           |           |           |           |
| STKP-2          | 1-4                      | 10/03/96         | 1,300       |           |          |          | 100g      |         | <0.005        | <0.005        | <0.005         | 0.012      | <0.05        |            |           |            |           |           |           |            |           |           |           |           |
| STKP-3          | 1-4                      | 10/03/96         |             |           |          |          |           |         |               |               |                |            |              |            |           |            |           |           |           |            |           | ND        | 0.21m     | ND        |
| 96 Tank Re      | moval Over-E             | xcavation (350-  | gallon us   | ed-oil US | Г)       |          |           |         |               |               |                |            |              |            |           |            |           |           |           |            |           |           |           |           |
| cavation Sidew  | ,                        |                  |             |           |          |          |           |         |               |               |                |            |              |            |           |            |           |           |           |            |           |           |           |           |
| SW1             | 8.5                      | 11/13/96         | <50         |           |          |          | <1.0      | <1.0    | <0.005        | <0.005        | <0.005         | <0.005     | <0.05        |            |           |            |           |           |           |            |           |           |           | ND        |
| SW2             | 8.5                      | 11/13/96         | <50         |           |          |          | 8.9g      | <1.0    | <0.005        | <0.005        | <0.005         | <0.005     | <0.05        |            |           |            |           |           |           |            |           |           |           | ND        |
| SW3             | 8.5                      | 11/13/96         | <50         |           |          |          | <1.0      | <1.0    | <0.005        | <0.005        | <0.005         | < 0.005    | <0.05        |            |           |            |           |           |           |            |           |           |           | ND        |
| SW4             | 8.5                      | 11/13/96         | <50         |           |          |          | <1.0      | 1.0b,d  | <0.005        | <0.005        | 0.014          | 0.046      | <0.05        |            |           |            |           |           |           |            |           |           |           | ND        |
| cavation Botton | ,                        |                  |             |           |          |          |           |         |               |               |                |            |              |            |           |            |           |           |           |            |           |           |           |           |
| EB (9')         | 9.0                      | , 11/13/96       | <50         |           |          |          | <1.0      | <1.0    | <0.005        | <0.005        | <0.005         | <0.005     | <0.05        |            |           |            |           |           |           |            |           |           |           | ND        |
| STKP            | pile Composite Sa<br>1-4 | 11/13/96         | <50         |           |          |          | 6.9a      | 2.1g    | <0.005        | <0.005        | <0.005         | 0.007      | <0.05        |            |           |            |           |           |           |            |           |           |           | ND        |
| UTK             | 14                       | 11/10/00         | <b>~</b> 50 |           |          |          | 0.94      | 2.19    | <b>\U.UUU</b> | <b>NO.000</b> | <b>NO.000</b>  | 0.007      | <b>NO.00</b> |            |           |            |           |           |           |            |           |           |           | ND        |
|                 | Subsurface In            | -                |             |           |          |          | -10       | -1.0    | <0.005        | <0.00E        | <0.00E         | <0.00E     | <0.05        |            |           |            |           |           |           |            |           |           |           |           |
| BH-1            | 15                       | 01/08/97         |             |           |          |          | <1.0      | <1.0    | <0.005        | <0.005        | <0.005         | <0.005     | <0.05        |            |           |            |           |           |           |            |           |           |           |           |
| BH-2            | 15                       | 01/08/97         | <50         |           |          |          | <1.0      | <1.0    | <0.005        | <0.005        | <0.005         | <0.005     | <0.05        |            |           |            |           |           |           |            |           |           |           |           |
| BH-3            | 15                       | 01/08/97         | <50         |           |          |          | <1.0      | <1.0    | <0.005        | <0.005        | <0.005         | <0.005     | <0.05        |            |           |            |           |           |           |            |           |           |           | ND        |
| BH-4            | 15                       | 01/08/97         |             |           |          |          | 370d      | 1,100 o | < 0.02        | < 0.02        | 4.4            | 14         | <3.0         |            |           |            |           |           |           |            |           |           |           |           |
| BH-5            | 15                       | 01/08/97         |             |           |          |          | 1.9d      | 2.1 o   | 0.009         | 0.006         | < 0.005        | 0.016      | < 0.05       |            |           |            |           |           |           |            |           |           |           |           |
| BH-6            | 15                       | 01/08/97         |             |           |          |          | 140d      | 190 o   | 0.25          | 0.50          | 0.84           | 3.6        | <0.6         |            |           |            |           |           |           |            |           |           |           |           |

#### CUMULATIVE SOIL ANALYTICAL RESULTS - PETROLEUM HYDROCARBONS

Bayrock Oakland 230 and 240 West MacArthur Boulevard

Oakland, California (Page 5 of 8)

|                |               |                      | 5520E&F | DHS L    | UFT             |         | 8015       |              |                  | 8260             | )B/8020 (Pre-2   | 2004)            |                  |         |         |         | 8260    | В       |         |                  |         | 8240    | 82      | 270     |
|----------------|---------------|----------------------|---------|----------|-----------------|---------|------------|--------------|------------------|------------------|------------------|------------------|------------------|---------|---------|---------|---------|---------|---------|------------------|---------|---------|---------|---------|
| Sample         | Depth         | Date                 | O&G     | Kerosene | TPHd<br>(mg/kg) | TPHmo   |            | TPHg         | B                | T<br>(mg////2)   | E<br>(mg//Jap)   | X<br>(mg/kg)     | MTBE             | 1,2-DCA | EDB     | ETBE    | DIPE    | TAME    | TBA     | Naph-<br>thalene | VOCs    | VOCs    | SVOCs   | PAHs    |
| ID             | (feet)        | Sampled              | (mg/kg) | (mg/kg)  | (mg/kg)         | (mg/kg) | (mg/kg)    | (mg/kg)      | (mg/kg)          | (mg/kg)          | (mg/kg)          | (mg/kg)          | (mg/kg)          | (mg/kg) | (mg/kg) | (mg/kg) | (mg/kg) | (mg/kg) | (mg/kg) | (mg/kg)          | (mg/kg) | (mg/kg) | (mg/kg) | (mg/kg) |
| 1997 Addition  | al Site Chara | cterization          |         |          |                 |         |            |              |                  |                  |                  |                  |                  |         |         |         |         |         |         |                  |         |         |         |         |
| BH-7           | 12            | 08/07/97             |         |          |                 |         | <10        | <5.0         | <0.005           | <0.005           | <0.005           | <0.015           | <0.005           |         |         |         |         |         |         |                  |         |         |         |         |
| BH-7           | 16            | 08/07/97             |         |          |                 |         | <10        | <5.0         | <0.005           | <0.005           | <0.005           | <0.015           | <0.005           |         |         |         |         |         |         |                  |         |         |         |         |
|                |               |                      |         |          |                 |         |            |              |                  |                  |                  |                  |                  |         |         |         |         |         |         |                  |         |         |         |         |
| BH-8           | 8             | 08/07/97             |         |          |                 |         | <10        | <5.0         | <0.005           | <0.005           | <0.005           | <0.015           | <0.005           |         |         |         |         |         |         |                  |         |         |         |         |
| BH-8           | 12            | 08/07/97             |         |          |                 |         | <10        | 168          | 0.02             | <0.005           | 0.45             | 5.1              | <0.005           |         |         |         |         |         |         |                  |         |         |         |         |
| BH-8           | 16            | 08/07/97             |         |          |                 |         | <10        | 21           | 0.027            | 0.070            | <0.005           | 0.75             | < 0.005          |         |         |         |         |         |         |                  |         |         |         |         |
|                |               |                      |         |          |                 |         |            |              |                  |                  |                  |                  |                  |         |         |         |         |         |         |                  |         |         |         |         |
| BH-9           | 8             | 08/07/97             |         |          |                 |         | <10        | <5.0         | <0.005           | 0.032            | 0.029            | 0.28             | <0.005           |         |         |         |         |         |         |                  |         |         |         |         |
| BH-9           | 12            | 08/07/97             |         |          |                 |         | <10        | <5.0         | <0.005           | 0.012            | <0.005           | <0.015           | <0.005           |         |         |         |         |         |         |                  |         |         |         |         |
| BH-9           | 16            | 08/07/97             |         |          |                 |         | <10        | <5.0         | <0.005           | <0.005           | <0.005           | <0.015           | <0.005           |         |         |         |         |         |         |                  |         |         |         |         |
| MW-1           | 10            | 08/07/97             |         |          |                 |         | <10        | <5.0         | <0.005           | <0.005           | <0.005           | <0.015           | <0.005           |         |         |         |         |         |         |                  |         |         |         |         |
| MW-1           | 17            | 08/07/97             |         |          |                 |         | <10        | <5.0         | <0.005           | 0.031            | <0.005           | <0.015           | <0.005           |         |         |         |         |         |         |                  |         |         |         |         |
|                |               |                      |         |          |                 |         |            |              |                  |                  |                  |                  |                  |         |         |         |         |         |         |                  |         |         |         |         |
| MW-2           | 10            | 08/07/97             |         |          |                 |         | <10        | <5.0         | <0.005           | <0.005           | <0.005           | <0.015           | < 0.005          |         |         |         |         |         |         |                  |         |         |         |         |
| MW-2           | 17            | 08/07/97             |         |          |                 |         | <10        | 16           | 0.035            | 0.037            | 0.018            | 0.15             | <0.005           |         |         |         |         |         |         |                  |         |         |         |         |
|                |               |                      |         |          |                 |         |            |              |                  |                  |                  |                  |                  |         |         |         |         |         |         |                  |         |         |         |         |
| MW-3           | 10            | 08/07/97             |         |          |                 |         | <10        | <5.0         | <0.005           | <0.005           | < 0.005          | <0.015           | <0.005           |         |         |         |         |         |         |                  |         |         |         |         |
| MW-3           | 15            | 08/07/97             |         |          |                 |         | <10        | <5.0         | 0.027            | <0.005           | <0.005           | <0.015           | <0.005           |         |         |         |         |         |         |                  |         |         |         |         |
| MW-4           | 10            | 08/07/97             |         |          |                 |         | <10        | <5.0         | <0.005           | <0.005           | <0.005           | <0.015           | <0.005           |         |         |         |         |         |         |                  |         |         |         |         |
| MW-4           | 17            | 08/07/97             |         |          |                 |         | <10        | <5.0         | <0.005           | < 0.005          | < 0.005          | <0.015           | < 0.005          |         |         |         |         |         |         |                  |         |         |         |         |
|                |               |                      |         |          |                 |         |            |              |                  |                  |                  |                  |                  |         |         |         |         |         |         |                  |         |         |         |         |
| 2001 Addition  | al Site Chara | cterization          |         |          |                 |         |            |              |                  |                  |                  |                  |                  |         |         |         |         |         |         |                  |         |         |         |         |
| MW-5           | 5             | 02/13/01             |         |          |                 |         |            | <10          | <0.005           | <0.005           | <0.005           | <0.015           | <0.005           |         |         |         |         |         |         |                  |         |         |         |         |
| MW-5           | 10            | 02/13/01             |         |          |                 |         |            | <10          | <0.005           | <0.005           | <0.005           | <0.015           | <0.005           |         |         |         |         |         |         |                  |         |         |         |         |
| MW-5           | 15            | 02/13/01             |         |          |                 |         |            | 11,700       | 25.6             | 12               | 55.8             | 38.6             | <3.0             |         |         |         |         |         |         |                  |         |         |         |         |
| MW-5           | 20            | 02/13/01             |         |          |                 |         |            | <10          | <0.005           | <0.005           | <0.005           | <0.015           | <0.005           |         |         |         |         |         |         |                  |         |         |         |         |
| MW-7           | 10            | 02/13/01             |         |          |                 |         |            | <10          | <0.005           | <0.005           | <0.005           | <0.015           | <0.005           |         |         |         |         |         |         |                  |         |         |         |         |
| MW-7           | 15            | 02/13/01             |         |          |                 |         |            | <10          | <0.005           | <0.005           | <0.005           | <0.015           | <0.005           |         |         |         |         |         |         |                  |         |         |         |         |
| MW-7           | 20            | 02/13/01             |         |          |                 |         |            | <10          | < 0.005          | <0.005           | < 0.005          | <0.015           | < 0.005          |         |         |         |         |         |         |                  |         |         |         |         |
|                |               |                      |         |          |                 |         |            |              |                  |                  |                  |                  |                  |         |         |         |         |         |         |                  |         |         |         |         |
| MW-8           | 10            | 02/13/01             |         |          |                 |         |            | <10          | <0.005           | <0.005           | <0.005           | <0.015           | <0.005           |         |         |         |         |         |         |                  |         |         |         |         |
| MW-8           | 15            | 02/13/01             |         |          |                 |         |            | <10          | <0.005           | <0.005           | <0.005           | <0.015           | <0.005           |         |         |         |         |         |         |                  |         |         |         |         |
| MW-8           | 20            | 02/13/01             |         |          |                 |         |            | <10          | <0.005           | <0.005           | <0.005           | <0.015           | <0.0723          |         |         |         |         |         |         |                  |         |         |         |         |
| 2004 Soil and  | Groundwater   | r Investigation      |         |          |                 |         |            |              |                  |                  |                  |                  |                  |         |         |         |         |         |         |                  |         |         |         |         |
| BH-10          | 4.5           | 04/29/04             |         |          |                 |         | 1.5        | <3.0         | <0.005           | <0.005           | <0.005           | <0.015           | <0.035           |         |         |         |         |         |         |                  |         |         |         |         |
| BH-10          | 9.5           | 04/29/04             |         |          |                 |         | 1.4        | <3.0         | <0.005           | <0.005           | <0.005           | <0.015           | < 0.035          |         |         |         |         |         |         |                  |         |         |         |         |
| BH-10          | 12            | 04/29/04             |         |          |                 |         | 1.4        | <3.0         | < 0.005          | <0.005           | < 0.005          | <0.015           | < 0.035          |         |         |         |         |         |         |                  |         |         |         |         |
| BH-10          | 17            | 04/29/04             |         |          |                 |         | 1.3        | <3.0         | <0.005           | <0.005           | <0.005           | <0.015           | <0.035           |         |         |         |         |         |         |                  |         |         |         |         |
| BH-10          | 20.5          | * 04/29/04           |         |          |                 |         | 2.2        | <3.0         | < 0.005          | <0.005           | < 0.005          | <0.015           | < 0.035          |         |         |         |         |         |         |                  |         |         |         |         |
| BH-10          |               | ** 04/29/04          |         |          |                 |         | 1.2        | <3.0         | <0.005           | <0.005           | <0.005           | <0.015           | < 0.035          |         |         |         |         |         |         |                  |         |         |         |         |
|                | A E           | 04/00/04             |         |          |                 |         | 4.0        | -2.0         | -0.005           | -0.005           |                  | -0.045           | -0.005           |         |         |         |         |         |         |                  |         |         |         |         |
| BH-11          | 4.5           | 04/29/04             |         |          |                 |         | 1.6<br>1 1 | <3.0<br><3.0 | <0.005<br><0.005 | <0.005<br><0.005 | <0.005<br><0.005 | <0.015<br><0.015 | <0.035           |         |         |         |         |         |         |                  |         |         |         |         |
| BH-11<br>BH-11 | 9.5<br>15     | 04/29/04<br>04/29/04 |         |          |                 |         | 1.1<br>1 4 | <3.0<br><3.0 | <0.005<br><0.005 | <0.005<br><0.005 | <0.005<br><0.005 | <0.015<br><0.015 | <0.035<br><0.035 |         |         |         |         |         |         |                  |         |         |         |         |
| BH-11<br>BH-11 | 15<br>21.5    | * 04/29/04           |         |          |                 |         | 1.4<br>2.5 | <3.0<br><3.0 | <0.005<br><0.005 | <0.005<br><0.005 | <0.005<br><0.005 | <0.015<br><0.015 | <0.035<br><0.035 |         |         |         |         |         |         |                  |         |         |         |         |
| BH-11<br>BH-11 |               | ** 04/29/04          |         |          |                 |         | 2.5<br>1.0 | <3.0<br><3.0 | <0.005<br><0.005 | <0.005<br><0.005 | <0.005<br><0.005 | <0.015<br><0.015 | <0.035<br><0.035 |         |         |         |         |         |         |                  |         |         |         |         |
|                | 20.0          | 04/23/04             |         |          |                 |         | 1.0        | <b>~</b> 0.0 | ~0.000           | ~0.000           | ~0.000           | ~0.015           | ~0.030           |         |         | ===     |         |         |         |                  |         |         |         |         |

#### CUMULATIVE SOIL ANALYTICAL RESULTS - PETROLEUM HYDROCARBONS

Bayrock Oakland 230 and 240 West MacArthur Boulevard Oakland, California (Page 6 of 8)

| <b></b> |              |    |          | 5520E&F | DHS L    | UFT     |         | 8015        |         |         | 8260    | B/8020 (Pre-2 | 2004)   |         |         |         |         | 8260    | 3       |         |         |         | 8240    | 82      | 270     |
|---------|--------------|----|----------|---------|----------|---------|---------|-------------|---------|---------|---------|---------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
|         |              |    |          | 1       |          |         |         |             |         |         |         |               |         |         |         |         |         |         |         |         | Naph-   |         |         |         |         |
| Sample  | Depth        |    | Date     | O&G     | Kerosene | TPHd    | TPHmo   | TPHd        | TPHg    | В       | T       | E             | X       | MTBE    | 1,2-DCA | EDB     | ETBE    | DIPE    | TAME    | TBA     | thalene | VOCs    | VOCs    | SVOCs   | PAHs    |
| ID      | (feet)       |    | Sampled  | (mg/kg) | (mg/kg)  | (mg/kg) | (mg/kg) | (mg/kg)     | (mg/kg) | (mg/kg) | (mg/kg) | (mg/kg)       | (mg/kg) | (mg/kg) | (mg/kg) | (mg/kg) | (mg/kg) | (mg/kg) | (mg/kg) | (mg/kg) | (mg/kg) | (mg/kg) | (mg/kg) | (mg/kg) | (mg/kg) |
| BH-12   | 4.5          |    | 04/29/04 |         |          |         |         | 2.2         | <3.0    | <0.005  | <0.005  | <0.005        | <0.015  | <0.035  |         |         |         |         |         |         |         |         |         |         |         |
| BH-12   | 9.5          |    | 04/29/04 |         |          |         |         | 1.1         | <3.0    | <0.005  | <0.005  | <0.005        | <0.015  | <0.035  |         |         |         |         |         |         |         |         |         |         |         |
| BH-12   | 12           |    | 04/29/04 |         |          |         |         | 1.5         | <3.0    | <0.005  | <0.005  | <0.005        | <0.015  | <0.035  |         |         |         |         |         |         |         |         |         |         |         |
| BH-12   | 20           | е  | 04/29/04 |         |          |         |         | 1.8         | <3.0    | <0.005  | <0.005  | <0.005        | <0.015  | <0.035  |         |         |         |         |         |         |         |         |         |         |         |
| BH-12   | 20.5         | *  | 04/29/04 |         |          |         |         | 1.6         | <3.0    | <0.005  | <0.005  | <0.005        | <0.015  | <0.035  |         |         |         |         |         |         |         |         |         |         |         |
| BH-12   | 23.5         | ** | 04/29/04 |         |          |         |         | 1.0         | <3.0    | <0.005  | <0.005  | <0.005        | <0.015  | <0.035  |         |         |         |         |         |         |         |         |         |         |         |
| BH-13   | 4.5          |    | 04/29/04 |         |          |         |         | 1.0         | <3.0    | <0.005  | <0.005  | <0.005        | <0.015  | <0.035  |         |         |         |         |         |         |         |         |         |         |         |
| BH-13   | 9.5          |    | 04/29/04 |         |          |         |         | 1.5         | <3.0    | <0.005  | <0.005  | <0.005        | <0.015  | <0.035  |         |         |         |         |         |         |         |         |         |         |         |
| BH-13   | 15.5         |    | 04/29/04 |         |          |         |         | 215         | 3,240   | 3.3     | 6.5     | 14            | 142     | <3.5    |         |         |         |         |         |         |         |         |         |         |         |
| BH-13   | 19.5         |    | 04/29/04 |         |          |         |         | 3.0         | <3.0    | 0.21    | <0.005  | <0.005        | <0.015  | <0.035  |         |         |         |         |         |         |         |         |         |         |         |
| BH-13   | 23.5         | ** | 04/29/04 |         |          |         |         | <1.0        | <3.0    | <0.005  | <0.005  | <0.005        | <0.015  | <0.035  |         |         |         |         |         |         |         |         |         |         |         |
| BH-14   | 4.5          |    | 04/29/04 |         |          |         |         | <1.0        | <3.0    | <0.005  | <0.005  | <0.005        | <0.015  | <0.035  |         |         |         |         |         |         |         |         |         |         |         |
| BH-14   | 9.5          |    | 04/29/04 |         |          |         |         | <1.0        | <3.0    | <0.005  | <0.005  | <0.005        | <0.015  | <0.035  |         |         |         |         |         |         |         |         |         |         |         |
| BH-14   | 16           |    | 04/29/04 |         |          |         |         | <1.0        | <3.0    | <0.005  | < 0.005 | < 0.005       | <0.015  | <0.035  |         |         |         |         |         |         |         |         |         |         |         |
| BH-14   | 20           | ** | 04/29/04 |         |          |         |         | <1.0        | <3.0    | <0.005  | <0.005  | < 0.005       | < 0.015 | < 0.035 |         |         |         |         |         |         |         |         |         |         |         |
| BH-14   | 21.5         |    | 04/29/04 |         |          |         |         | <1.0        | <3.0    | < 0.005 | <0.005  | <0.005        | <0.015  | <0.035  |         |         |         |         |         |         |         |         |         |         |         |
| BH-14   | 4.5          |    | 04/29/04 |         |          |         |         | <1.0        | <3.0    | <0.005  | <0.005  | <0.005        | <0.015  | <0.035  |         |         |         |         |         |         |         |         |         |         |         |
| BH-15   | 9.5          |    | 04/29/04 |         |          |         |         | 1.2         | <3.0    | <0.005  | <0.005  | <0.005        | <0.015  | <0.035  |         |         |         |         |         |         |         |         |         |         |         |
| BH-15   | 15           |    | 04/29/04 |         |          |         |         | <1.0        | <3.0    | <0.005  | <0.005  | <0.005        | <0.015  | <0.035  |         |         |         |         |         |         |         |         |         |         |         |
| BH-15   | 20           | *  | 04/29/04 |         |          |         |         | <1.0        | <3.0    | <0.005  | <0.005  | <0.005        | <0.015  | <0.035  |         |         |         |         |         |         |         |         |         |         |         |
| BH-15   | 23.5         | ** | 04/29/04 |         |          |         |         | <1.0        | <3.0    | <0.005  | <0.005  | <0.005        | <0.015  | <0.035  |         |         |         |         |         |         |         |         |         |         |         |
| BH-16   | 4.5          |    | 04/29/04 |         |          |         |         | <1.0        | <3.0    | <0.005  | <0.005  | <0.005        | <0.015  | <0.035  |         |         |         |         |         |         |         |         |         |         |         |
| BH-16   | 9.5          |    | 04/29/04 |         |          |         |         | 1.2         | <3.0    | <0.005  | <0.005  | <0.005        | <0.015  | <0.035  |         |         |         |         |         |         |         |         |         |         |         |
| BH-16   | 15           |    | 04/29/04 |         |          |         |         | 10          | 2,950   | 2.8     | 12      | 19            | 72      | <17.5   |         |         |         |         |         |         |         |         |         |         |         |
| BH-16   | 20           | *  | 04/29/04 |         |          |         |         | 10          | 352     | <0.25   | 1.2     | <0.25         | 6.9     | <1.75   |         |         |         |         |         |         |         |         |         |         |         |
| BH-16   | 23.5<br>27.5 | ** | 04/29/04 |         |          |         |         | 1.8<br>~1.0 | 4       | <0.005  | 0.015   | 0.027         | 0.081   | < 0.035 |         |         |         |         |         |         |         |         |         |         |         |
| BH-16   | 27.5         |    | 04/29/04 |         |          |         |         | <1.0        | <3.0    | <0.005  | <0.005  | <0.005        | <0.005  | 0.043   |         |         |         |         |         |         |         |         |         |         |         |
| BH-17   | 4.5          |    | 04/29/04 |         |          |         |         | <1.0        | <3.0    | <0.005  | <0.005  | <0.005        | <0.015  | <0.035  |         |         |         |         |         |         |         |         |         |         |         |
| BH-17   | 9.5          |    | 04/30/04 |         |          |         |         | 1.4         | <3.0    | <0.005  | <0.005  | <0.005        | <0.015  | <0.035  |         |         |         |         |         |         |         |         |         |         |         |
| BH-17   | 15           |    | 04/30/04 |         |          |         |         | <1.0        | <3.0    | <0.005  | <0.005  | <0.005        | <0.015  | <0.035  |         |         |         |         |         |         |         |         |         |         |         |
| BH-17   | 20           | *  | 04/30/04 |         |          |         |         | <1.0        | <3.0    | <0.005  | <0.005  | < 0.005       | < 0.015 | <0.035  |         |         |         |         |         |         |         |         |         |         |         |
| BH-17   | 23.5         | ** | 04/30/04 |         |          |         |         | 1.1         | <3.0    | <0.005  | <0.005  | <0.005        | <0.015  | <0.035  |         |         |         |         |         |         |         |         |         |         |         |
| BH-18   | 4.5          |    | 04/30/04 |         |          |         |         | 1.0         | <3.0    | <0.005  | <0.005  | <0.005        | <0.015  | <0.035  |         |         |         |         |         |         |         |         |         |         |         |
| BH-18   | 9.5          |    | 04/30/04 |         |          |         |         | 1.0         | <3.0    | <0.005  | <0.005  | <0.005        | <0.015  | <0.035  |         |         |         |         |         |         |         |         |         |         |         |
| BH-18   | 17           |    | 04/30/04 |         |          |         |         | 6.0         | 17      | <0.005  | 0.035   | 0.12          | 0.29    | 0.25    |         |         |         |         |         |         |         |         |         |         |         |
| BH-18   | 20           | *  | 04/30/04 |         |          |         |         | 3.8         | 45      | 0.049   | 0.15    | 0.24          | 0.56    | 0.84    |         |         |         |         |         |         |         |         |         |         |         |
| BH-19   | 4.5          |    | 04/30/04 |         |          |         |         | 1.7         | <3.0    | <0.005  | <0.005  | <0.005        | <0.005  | <0.005  | <0.005  | <0.005  | <0.010  | <0.010  | <0.010  | <0.050  |         |         |         |         |         |
| BH-19   | 9            |    | 04/30/04 |         |          |         |         | <1.0        | <3.0    | <0.005  | <0.005  | <0.005        | <0.005  | <0.005  | <0.005  | <0.005  | <0.010  | <0.010  | <0.010  | <0.050  |         |         |         |         |         |
| BH-19   | 13           |    | 04/30/04 |         |          |         |         | <1.0        | 105     | <0.005  | <0.005  | <0.005        | <0.005  | <0.005  | <0.005  | <0.005  | <0.010  | <0.010  | <0.010  | <0.050  |         |         |         |         |         |
| BH-19   | 18           |    | 04/30/04 |         |          |         |         | 66          | 859     | <0.500  | <0.500  | 0.616         | 0.714   | <0.500  | <0.500  | <0.500  | <1.0    | <1.0    | <1.0    | <5.0    |         |         |         |         |         |
| BH-19   | 21           | *  | 04/30/04 |         |          |         |         | <1.0        | <3.0    | <0.005  | <0.005  | < 0.005       | < 0.005 | <0.005  | < 0.005 | < 0.005 | < 0.010 | <0.010  | <0.010  | <0.050  |         |         |         |         |         |
| BH-19   | 23.5         | ** | 04/30/04 |         |          |         |         | <1.0        | <3.0    | <0.005  | <0.005  | <0.005        | <0.005  | <0.005  | <0.005  | <0.005  | <0.010  | <0.010  | <0.010  | <0.050  |         |         |         |         |         |

#### CUMULATIVE SOIL ANALYTICAL RESULTS - PETROLEUM HYDROCARBONS

Bayrock Oakland 230 and 240 West MacArthur Boulevard

Oakland, California (Page 7 of 8)

|                |                 |         |                      | 5520E&F        | DHS L               | UFT             |                  | 8015            |                 |                  | 8260             | )B/8020 (Pre-2    | 2004)            |                  |                    |                  |                  | 8260E            | 3                |                 |                    |                 | 8240            | 82               | 270             |
|----------------|-----------------|---------|----------------------|----------------|---------------------|-----------------|------------------|-----------------|-----------------|------------------|------------------|-------------------|------------------|------------------|--------------------|------------------|------------------|------------------|------------------|-----------------|--------------------|-----------------|-----------------|------------------|-----------------|
|                |                 |         |                      | 0.00           | K.                  | TD: · ·         | TDU              | TD: · ·         | TOU             |                  | -                | _                 |                  |                  | 4.0.001            |                  | <b>FTN-</b>      | DIDE             | <b>T</b>         |                 | Naph-              | Vac             |                 | 0./02            | <b>D</b> 417    |
| Sample<br>ID   | Depth<br>(feet) |         | Date<br>Sampled      | O&G<br>(mg/kg) | Kerosene<br>(mg/kg) | TPHd<br>(mg/kg) | TPHmo<br>(mg/kg) | TPHd<br>(mg/kg) | TPHg<br>(mg/kg) | B<br>(mg/kg)     | l<br>(mg/kg)     | E<br>(mg/kg)      | X<br>(mg/kg)     | MTBE<br>(mg/kg)  | 1,2-DCA<br>(mg/kg) | EDB<br>(mg/kg)   | ETBE<br>(mg/kg)  | DIPE<br>(mg/kg)  | TAME<br>(mg/kg)  | TBA<br>(mg/kg)  | thalene<br>(mg/kg) | VOCs<br>(mg/kg) | VOCs<br>(mg/kg) | SVOCs<br>(mg/kg) | PAHs<br>(mg/kg) |
|                |                 |         |                      | (              | (                   | (               | (                | (               | (               |                  |                  |                   |                  |                  | (                  | (9,9)            | (                | (9,9)            | (                | (               | (                  | (               | (               | (                | (               |
| BH-20          | 4.5             |         | 04/30/04             |                |                     |                 |                  | <1.0            | <3.0            | <0.005           | < 0.005          | < 0.005           | < 0.005          | <0.005           | < 0.005            | < 0.005          | < 0.010          | < 0.010          | < 0.010          | < 0.050         |                    |                 |                 |                  |                 |
| BH-20<br>BH-20 | 9<br>13         |         | 04/30/04<br>04/30/04 |                |                     |                 |                  | 21<br><1.0      | 12<br>9.5       | <0.025<br><0.005 | <0.025<br><0.005 | <0.025<br><0.005  | <0.025<br><0.005 | <0.025<br><0.005 | <0.025<br><0.005   | <0.025<br><0.005 | <0.050           | <0.050<br><0.010 | <0.050           | <0.25<br><0.050 |                    |                 |                 |                  |                 |
| BH-20<br>BH-20 | 20              |         | 04/30/04             |                |                     |                 |                  | <1.0<br>20      | 9.5<br>353      | <0.003           | <0.005           | <0.003<br>0.0075j | <0.003<br>0.039j | <0.003           | <0.005             | <0.005<br><0.050 | <0.010<br><0.100 | <0.010           | <0.010<br><0.100 | <0.050          |                    |                 |                 |                  |                 |
| BH-20          | 21.5            | *       | 04/30/04             |                |                     |                 |                  | 50              | 1,060           | <0.500           | < 0.500          | < 0.500           | 5.34             | <0.500           | <0.500             | <0.500           | <1.0             | <1.0             | <1.0             | <0.0<br><5.0    |                    |                 |                 |                  |                 |
| BH-20          | 23.5            | **      | 04/30/04             |                |                     |                 |                  | <1.0            | <3.0            | <0.005           | <0.005           | <0.005            | <0.005           | <0.005           | <0.005             | <0.005           | <0.010           | <0.010           | <0.010           | <0.050          |                    |                 |                 |                  |                 |
| BH-21          | 4.5             |         | 04/30/04             |                |                     |                 |                  | 1.0             | <3.0            | <0.005           | <0.005           | <0.005            | <0.005           | <0.005           | <0.005             | <0.005           | <0.010           | <0.010           | <0.010           | <0.050          |                    |                 |                 |                  |                 |
| BH-21          | 9.5             |         | 04/30/04             |                |                     |                 |                  | 1.2             | <3.0            | <0.005           | <0.005           | <0.005            | <0.005           | <0.005           | <0.005             | <0.005           | <0.010           | <0.010           | <0.010           | <0.050          |                    |                 |                 |                  |                 |
| BH-21          | 15.5            |         | 04/30/04             |                |                     |                 |                  | 43              | 690             | <0.500           | <0.500           | 0.823             | 3.98             | <0.500           | <0.500             | <0.500           | <1.0             | <1.0             | <1.0             | <5.0            |                    |                 |                 |                  |                 |
| BH-21          | 20.5            | *       | 04/30/04             |                |                     |                 |                  | <1.0            | 84              | 0.056            | <0.025           | 0.06              | 0.245            | <0.025           | <0.025             | <0.025           | <0.050           | <0.050           | <0.050           | <0.250          |                    |                 |                 |                  |                 |
| BH-21          | 21.5            | **      | 04/30/04             |                |                     |                 |                  | <1.0            | <3.0            | <0.005           | <0.005           | <0.005            | <0.005           | <0.005           | <0.005             | <0.005           | <0.010           | <0.010           | <0.010           | <0.050          |                    |                 |                 |                  |                 |
| 2007 Soil and  | d Groundwate    | er Inve | estigation           |                |                     |                 |                  |                 |                 |                  |                  |                   |                  |                  |                    |                  |                  |                  |                  |                 |                    |                 |                 |                  |                 |
| B27-11         | 11-12           |         | 05/23/07             |                |                     |                 |                  | <0.37           | <0.022          | <0.0009          | <0.0008          | <0.0007           | <0.0019          | <0.0008          | <0.00014           | <0.00012         | <0.00025         | <0.00017         | <0.00013         | <0.010          |                    |                 |                 |                  |                 |
| B27-13         | 13-14           |         | 05/23/07             |                |                     |                 |                  | <0.37           | <0.022          | <0.0009          | <0.0008          | <0.0007           | <0.0019          | <0.0008          | <0.00014           | <0.00012         | <0.00025         | <0.00017         | <0.00013         | <0.010          |                    |                 |                 |                  |                 |
| B27-15         | 15-16           |         | 05/23/07             |                |                     |                 |                  | <0.37           | <0.022          | <0.0009          | <0.0008          | <0.0007           | <0.0019          | <0.0008          | <0.00014           | <0.00012         | <0.00025         | <0.00017         | <0.00013         | <0.010          |                    |                 |                 |                  |                 |
| B27-17         | 17-18           |         | 05/23/07             |                |                     |                 |                  | <0.37           | <0.022          | <0.0009          | <0.0008          | <0.0007           | <0.0019          | <0.0008          | <0.00014           | <0.00012         | <0.00025         | <0.00017         | <0.00013         | <0.010          |                    |                 |                 |                  |                 |
| B27-19         | 19-20           |         | 05/23/07             |                |                     |                 |                  | <0.37           | <0.022          | <0.0009          | <0.0008          | <0.0007           | <0.0019          | 0.06             | <0.00014           | <0.00012         | <0.00025         | <0.00017         | <0.00013         | <0.010          |                    |                 |                 |                  |                 |
| B29-11         | 11-12           |         | 05/24/07             |                |                     |                 |                  | <0.37           | <0.022          | <0.0009          | <0.0008          | <0.0007           | <0.0019          | <0.0008          | <0.00014           | <0.00012         | <0.00025         | <0.00017         | <0.00013         | <0.010          |                    |                 |                 |                  |                 |
| B29-13         | 13-14           |         | 05/24/07             |                |                     |                 |                  | <0.37           | <0.022          | <0.0009          | <0.0008          | <0.0007           | <0.0019          | <0.0008          | <0.00014           | <0.00012         | <0.00025         | <0.00017         | <0.00013         | <0.010          |                    |                 |                 |                  |                 |
| B29-15         | 15-16           |         | 05/24/07             |                |                     |                 |                  | <0.37           | <0.022          | <0.0009          | <0.0008          | <0.0007           | <0.0019          | <0.0008          | <0.00014           | <0.00012         | <0.00025         | <0.00017         | <0.00013         | <0.010          |                    |                 |                 |                  |                 |
| B29-17         | 17-18           |         | 05/24/07             |                |                     |                 |                  | <0.37           | <0.022          | <0.0009          | <0.0008          | <0.0007           | <0.0019          | <0.0008          | <0.00014           | <0.00012         | <0.00025         | <0.00017         | <0.00013         | <0.010          |                    |                 |                 |                  |                 |
| B29-19         | 19-20           |         | 05/24/07             |                |                     |                 |                  | 1.8             | <0.022          | <0.0009          | <0.0008          | <0.0007           | <0.0019          | <0.0008          | <0.00014           | <0.00012         | <0.00025         | <0.00017         | <0.00013         | <0.010          |                    |                 |                 |                  |                 |
| B30-11         | 11-12           |         | 05/23/07             |                |                     |                 |                  | <0.37           | <0.022          | <0.0009          | <0.0008          | <0.0007           | <0.0019          | <0.0008          | <0.00014           | <0.00012         | <0.00025         | <0.00017         | <0.00013         | <0.010          |                    |                 |                 |                  |                 |
| B30-14         | 14-15           |         | 05/23/07             |                |                     |                 |                  | 4.2             | 518             | <0.0009          | 2.6              | 12                | 14               | <0.0008          | <0.00014           | <0.00012         | <0.00025         | <0.00017         | <0.00013         | <0.010          |                    |                 |                 |                  |                 |
| B30-15         | 15-16           |         | 05/23/07             |                |                     |                 |                  | 3.0             | 21              | 0.09             | 0.04             | 0.09              | 0.33             | <0.0008          | <0.00014           | <0.00012         | <0.00025         | <0.00017         | <0.00013         | <0.010          |                    |                 |                 |                  |                 |
| B30-17         | 17-18           |         | 05/23/07             |                |                     |                 |                  | 702             | 3790            | 7.8              | 36               | 37                | 148              | 24               | <0.00014           | <0.00012         | <0.00025         | <0.00017         | <0.00013         | <0.010          |                    |                 |                 |                  |                 |
| B30-19         | 19-20           |         | 05/23/07             |                |                     |                 |                  | 98              | 1520            | 1.3              | 14               | 6.7               | 31               | 4.2              | <0.00014           | <0.00012         | <0.00025         | <0.00017         | <0.00013         | <0.010          |                    |                 |                 |                  |                 |
| B30-25         | 25-26           | *       | 05/23/07             |                |                     |                 |                  | <0.37           | <0.022          | <0.0009          | <0.0008          | <0.0007           | <0.0019          | <0.0008          | <0.00014           | <0.00012         | <0.00025         | <0.00017         | <0.00013         | <0.010          |                    |                 |                 |                  |                 |
| B31-27         | 27-28           | *       | 05/23/07             |                |                     |                 |                  | <0.37           | <0.022          | <0.0009          | <0.0008          | <0.0007           | <0.0019          | <0.0008          | <0.00014           | <0.00012         | <0.00025         | <0.00017         | <0.00013         | <0.010          |                    |                 |                 |                  |                 |
| B31-32         | 32-33           | *       | 05/23/07             |                |                     |                 |                  | <0.37           | <0.022          | <0.0009          | <0.0008          | <0.0007           | <0.0019          | <0.0008          | <0.00014           | <0.00012         | <0.00025         | <0.00017         | <0.00013         | <0.010          |                    |                 |                 |                  |                 |
| B32-27         | 27-28           | *       | 05/23/07             |                |                     |                 |                  | <0.37           | <0.022          | <0.0009          | <0.0008          | 0.007             | 0.02             | <0.0008          | <0.00014           | <0.00012         | <0.00025         | <0.00017         | <0.00013         | <0.010          |                    |                 |                 |                  |                 |
| B32-32         | 32-33           | *       | 05/23/07             |                |                     |                 |                  | <0.37           | <0.022          | <0.0009          | <0.0008          | <0.0007           | <0.0019          | <0.0008          | <0.00014           | <0.00012         | <0.00025         | <0.00017         | <0.00013         | <0.010          |                    |                 |                 |                  |                 |
| 2016 Soil Va   | por Investiga   | tion    |                      |                |                     |                 |                  |                 |                 |                  |                  |                   |                  |                  |                    |                  |                  |                  |                  |                 |                    |                 |                 |                  |                 |
| SV-1           | 5               |         | 08/15/16             |                |                     |                 |                  | 19n             | <0.94           | <0.0046          | <0.0046          | <0.0046           | <0.0046          | <0.0046          | <0.0046            | <0.0046          | <0.0046          | <0.0046          | <0.0046          | <0.093          | <0.0046            |                 | NDp             |                  |                 |
| SV-2           | 5               |         | 08/15/16             |                |                     |                 |                  | <1.0            | <0.97           | <0.0047          | <0.0047          | <0.0047           | <0.0047          | <0.0047          | <0.0047            | <0.0047          | <0.0047          | <0.0047          | <0.0047          | <0.094          | <0.0047            |                 | NDp             |                  |                 |
| SV-3           | 1.5             |         | 08/15/16             |                |                     |                 |                  | 32n             | 190n            | <0.052           | <0.052           | 0.066             | <0.052           | <0.052           | <0.052             | <0.052           | <0.052           | <0.052           | <0.052           | <1.0            | 0.150              |                 | NDp             |                  |                 |
| SV-3           | 5               |         | 08/15/16             |                |                     |                 |                  | 1.2n            | <0.96           | <0.0049          | <0.0049          | <0.0049           | <0.0049          | <0.0049          | <0.0049            | <0.0049          | <0.0049          | <0.0049          | <0.0049          | <0.099          | <0.0049            |                 | NDp             |                  |                 |
| SV-4           | 5               |         | 08/15/16             |                |                     |                 |                  | 1.4n            | <0.99           | <0.0048          | <0.0048          | <0.0048           | <0.0048          | <0.0048          | <0.0048            | <0.0048          | <0.0048          | <0.0048          | <0.0048          | <0.097          | <0.0048            |                 | NDp             |                  |                 |
| SV-5           | 3               |         | 08/15/16             |                |                     |                 |                  | 720             | 16n             | <0.051           | <0.051           | <0.051            | 0.072            | <0.051           | <0.051             | <0.051           | <0.051           | <0.051           | <0.051           | <1.0            | 0.630              |                 | NDp             |                  |                 |
| SV-5           | 5               |         | 08/15/16             |                |                     |                 |                  | 2,000           | 560n            | <0.05            | <0.050           | <0.050            | 0.820            | <0.050           | <0.050             | <0.050           | <0.050           | <0.050           | <0.050           | <1.0            | 3.8                |                 | NDp             |                  |                 |
| 2017 Subsur    | face Investig   | ation   |                      |                |                     |                 |                  |                 |                 |                  |                  |                   |                  |                  |                    |                  |                  |                  |                  |                 |                    |                 |                 |                  |                 |
| S-8-B1         | 8               |         | 09/09/17             |                |                     |                 | <4.9             | <4.9            | <0.49           | <0.0051          | <0.0051          | <0.0051           | <0.0102          | <0.0051          | <0.0051            | <0.0051          | <0.010           | <0.010           | <0.010           | <0.051          | <0.051             | ND              |                 |                  |                 |
| S-17-B1        | 17              |         | 09/09/17             |                |                     |                 | <5.0             | <5.0            | <0.51           | <0.0049          | <0.0049          | <0.0049           | <0.0098          | <0.0049          | <0.0049            | <0.0049          | <0.0099          | <0.0099          | <0.0099          | <0.049          | <0.049             | ND              |                 |                  |                 |

 TABLE 6A

 CUMULATIVE SOIL ANALYTICAL RESULTS - PETROLEUM HYDROCARBONS

 Bayrock Oakland

 230 and 240 West MacArthur Boulevard

 Oakland, California

 (Page 8 of 8)

| O&G     | = Oil and grease.                                                                                                   |
|---------|---------------------------------------------------------------------------------------------------------------------|
| TPHd    | <ul> <li>Total petroleum hydrocarbons as diesel.</li> </ul>                                                         |
| TPHmo   | <ul> <li>Total petroleum hydrocarbons as motor oil.</li> </ul>                                                      |
| TPHg    | <ul> <li>Total petroleum hydrocarbons as gasoline.</li> </ul>                                                       |
| BTEX    | <ul> <li>Benzene, toluene, ethylbenzene, and total xylenes.</li> </ul>                                              |
| MTBE    | = Methyl tertiary butyl ether.                                                                                      |
| 1,2-DCA | = 1,2-dichloroethane.                                                                                               |
| EDB     | = 1,2-dibromoethane.                                                                                                |
| ETBE    | = Ethyl tertiary butyl ether.                                                                                       |
| DIPE    | = Di-isopropyl ether.                                                                                               |
| TAME    | = Tertiary amyl methyl ether.                                                                                       |
| TBA     | = Tertiary butyl alcohol.                                                                                           |
| VOCs    | <ul> <li>Volatile organic compounds.</li> </ul>                                                                     |
| SVOCs   | <ul> <li>Semi-volatile organic compounds.</li> </ul>                                                                |
| PAHs    | <ul> <li>Polyaromatic hydrocarbons.</li> </ul>                                                                      |
| STLC    | <ul> <li>Soluble Threshold Limit Concentration.</li> </ul>                                                          |
| mg/kg   | <ul> <li>Milligrams per kilogram.</li> </ul>                                                                        |
| ND      | = Not detected.                                                                                                     |
| <       | <ul> <li>Less than the stated laboratory reporting limit.</li> </ul>                                                |
|         | = Not sampled/Not analyzed.                                                                                         |
| *       | = Sample collected within the saturated zone                                                                        |
| **      | = Sample collected beneath the saturated zone                                                                       |
| а       | <ul> <li>Unmodified or weakly modified gasoline is significant.</li> </ul>                                          |
| b       | <ul> <li>Heavier gasoline-range compounds are significant.</li> </ul>                                               |
| С       | <ul> <li>Lighter gasoline-range compounds (the most mobile fraction) are significant.</li> </ul>                    |
| d       | = Gasoline-range compounds having broad chromatographic peaks are significant.                                      |
| е       | <ul> <li>Depth of sample uncertain due to minimal recovery in sampling sleeve.</li> </ul>                           |
| f       | = Initial analysis within holding time. Reanalysis for the required dilution or confirmation was past holding time. |
| g       | = Oil-range compounds are significant.                                                                              |
| h       | = Lighter than water immeiscible sheen is present.                                                                  |
| i       | = Liquid sample that contains greater than ~5 vol. % sediment.                                                      |
| j       | = Estimated value below the reporting limit and above the method detection limit.                                   |
| k       | = Analyzed by EPA Method 7421.                                                                                      |
| I       | = Total lead analyzed by EPA Method 7240                                                                            |
|         |                                                                                                                     |

2-methylnaphthalene.

m

n = Chromatographic pattern does not match that of the specified standard.

Highlighted data is representative of soil removed from the site.

Notes:

- o = No recognizable pattern.
- p = Analyzed for ethanol only.

## TABLE 6B CUMULATIVE SOIL ANALYTICAL RESULTS - METALS Bayrock Oakland 230 and 240 West MacArthur Boulevard Oakland, California

| Sample<br>ID<br>230 MacAr<br>1986 Site Inves<br>S-A<br>S-A<br>S-A<br>S-A<br>S-A<br>S-A | Depth<br>(feet)<br>Arthur Boul<br>estigation<br>4-5.5<br>8.5-10 | Date<br>Sampled | Total<br>Antimony<br>(mg/kg) | Total<br>Arsenic<br>(mg/kg) |         | Total<br>Beryllium<br>(mg/kg) | Total<br>Cadmium<br>(mg/kg) | Total<br>Chromium       |         | Total<br>Copper | Total<br>Lead | STLC<br>Lead | Total<br>Molybdenum | Total<br>Nickel | Total<br>Selenium | Total<br>Silver | Total<br>Thallium | Total<br>Vanadium | Total<br>Zinc | Total<br>Mercury | Organic<br>Lead | Reactivity | pН | Ignitability |
|----------------------------------------------------------------------------------------|-----------------------------------------------------------------|-----------------|------------------------------|-----------------------------|---------|-------------------------------|-----------------------------|-------------------------|---------|-----------------|---------------|--------------|---------------------|-----------------|-------------------|-----------------|-------------------|-------------------|---------------|------------------|-----------------|------------|----|--------------|
| ID<br>230 MacAr<br>1986 Site Inves<br>S-A<br>S-A<br>S-A<br>S-A                         | (feet)<br>Arthur Boul<br>estigation<br>4-5.5                    | Sampled         | -                            |                             |         | •                             |                             |                         |         |                 | Lead          | Lead         | Molyhdenum          | Niekol          | Salanium          | Silver          | Thallium          | Vanadium          | Zinc          | Mercury          | Lead            | Reactivity | pН | Ignitability |
| 230 MacAr<br>986 Site Inves<br>S-A<br>S-A<br>S-A<br>S-A                                | Arthur Boul<br>estigation<br>4-5.5                              | · ·             | (mg/kg)                      | (mg/kg)                     | (mg/kg) | (mg/kg)                       | (mg/kg)                     | $(m \alpha / l \alpha)$ |         |                 |               |              | worybuenum          | INICKEI         | Selenium          | 0               | mainain           | vanaalam          | 200           | moreary          |                 |            |    |              |
| 986 Site Inves<br>S-A<br>S-A<br>S-A<br>S-A                                             | estigation<br>4-5.5                                             | evard           |                              |                             |         |                               |                             | (mg/kg)                 | (mg/kg) | (mg/kg)         | (mg/kg)       | (mg/L)       | (mg/kg)             | (mg/kg)         | (mg/kg)           | (mg/kg)         | (mg/kg)           | (mg/kg)           | (mg/kg)       | (mg/kg)          | (mg/L)          |            |    |              |
| S-A<br>S-A<br>S-A                                                                      | 4-5.5                                                           |                 |                              |                             |         |                               |                             |                         |         |                 |               |              |                     |                 |                   |                 |                   |                   |               |                  |                 |            |    |              |
| S-A<br>S-A<br>S-A                                                                      | 4-5.5                                                           |                 |                              |                             |         |                               |                             |                         |         |                 |               |              |                     |                 |                   |                 |                   |                   |               |                  |                 |            |    |              |
| S-A<br>S-A                                                                             |                                                                 | 04/14/86        |                              |                             |         |                               |                             |                         |         |                 |               |              |                     |                 |                   |                 |                   |                   |               |                  |                 |            |    |              |
| S-A                                                                                    |                                                                 | 04/14/86        |                              |                             |         |                               |                             |                         |         |                 |               |              |                     |                 |                   |                 |                   |                   |               |                  |                 |            |    |              |
|                                                                                        | 11-12.5                                                         | 04/14/86        |                              |                             |         |                               |                             |                         |         |                 |               |              |                     |                 |                   |                 |                   |                   |               |                  |                 |            |    |              |
|                                                                                        | 13.5-15                                                         | 04/14/86        |                              |                             |         |                               |                             |                         |         |                 |               |              |                     |                 |                   |                 |                   |                   |               |                  |                 |            |    |              |
| S-B                                                                                    | 5-6.5                                                           | 04/14/86        |                              |                             |         |                               |                             |                         |         |                 |               |              |                     |                 |                   |                 |                   |                   |               |                  |                 |            |    |              |
| S-B                                                                                    | 8-9.5                                                           | 04/14/86        |                              |                             |         |                               |                             |                         |         |                 |               |              |                     |                 |                   |                 |                   |                   |               |                  |                 |            |    |              |
| S-B                                                                                    | 12-13                                                           | 04/14/86        |                              |                             |         |                               |                             |                         |         |                 | 11.0          |              |                     |                 |                   |                 |                   |                   |               |                  |                 |            |    |              |
| 5.0                                                                                    | 4 5 5                                                           | 04/14/96        |                              |                             |         |                               |                             |                         |         |                 |               |              |                     |                 |                   |                 |                   |                   |               |                  |                 |            |    |              |
| S-C                                                                                    | 4-5.5                                                           | 04/14/86        |                              |                             |         |                               |                             |                         |         |                 |               |              |                     |                 |                   |                 |                   |                   |               |                  |                 |            |    |              |
| S-C                                                                                    | 7-8.5                                                           | 04/14/86        |                              |                             |         |                               |                             |                         |         |                 |               |              |                     |                 |                   |                 |                   |                   |               |                  |                 |            |    |              |
| S-C<br>S-C                                                                             | 11-12.5<br>13.5-15                                              | 04/14/86        |                              |                             |         |                               |                             |                         |         |                 |               |              |                     |                 |                   |                 |                   |                   |               |                  |                 |            |    |              |
| 3-0                                                                                    | 13.5-15                                                         | 04/14/86        |                              |                             |         |                               |                             |                         |         |                 |               |              |                     |                 |                   |                 |                   |                   |               |                  |                 |            |    |              |
| S-D                                                                                    | Composite                                                       | 04/14/86        |                              |                             |         |                               |                             |                         |         |                 |               |              |                     |                 |                   |                 |                   |                   |               |                  |                 |            |    |              |
| 987 Subsurfa                                                                           | ace Investigati                                                 | on              |                              |                             |         |                               |                             |                         |         |                 |               |              |                     |                 |                   |                 |                   |                   |               |                  |                 |            |    |              |
| B-1 @ 4'                                                                               | 4 4                                                             | 08/28/87        |                              |                             |         |                               |                             |                         |         |                 | 65.9k         |              |                     |                 |                   |                 |                   |                   |               |                  |                 |            |    |              |
| B-1 @ 6'                                                                               | 6                                                               | 08/28/87        |                              |                             |         |                               |                             |                         |         |                 | 26.4k         |              |                     |                 |                   |                 |                   |                   |               |                  |                 |            |    |              |
| B-1 @ 8'                                                                               | 8                                                               | 08/28/87        |                              |                             |         |                               |                             |                         |         |                 | 14.3k         |              |                     |                 |                   |                 |                   |                   |               |                  |                 |            |    |              |
| B-1 @ 10'                                                                              | 10                                                              | 08/28/87        |                              |                             |         |                               |                             |                         |         |                 | <5k           |              |                     |                 |                   |                 |                   |                   |               |                  |                 |            |    |              |
| B-1 @ 12'                                                                              | 12                                                              | 08/28/87        |                              |                             |         |                               |                             |                         |         |                 | <5k           |              |                     |                 |                   |                 |                   |                   |               |                  |                 |            |    |              |
| B-1 @ 14'                                                                              | 14                                                              | 08/28/87        |                              |                             |         |                               |                             |                         |         |                 | <5k           |              |                     |                 |                   |                 |                   |                   |               |                  |                 |            |    |              |
| B-2 @ 5'                                                                               | 5                                                               | 08/28/87        |                              |                             |         |                               |                             |                         |         |                 | <5k           |              |                     |                 |                   |                 |                   |                   |               |                  |                 |            |    |              |
| B-2 @ 5<br>B-2 @ 6-7'                                                                  | 6-7                                                             | 08/28/87        |                              |                             |         |                               |                             |                         |         |                 |               |              |                     |                 |                   |                 |                   |                   |               |                  |                 |            |    |              |
| B-2 @ 8-9'                                                                             |                                                                 | 08/28/87        |                              |                             |         |                               |                             |                         |         |                 | <5k           |              |                     |                 |                   |                 |                   |                   |               |                  |                 |            |    |              |
| в-2 @ 8-9<br>В-2 @ 10'                                                                 | 8-9<br>10                                                       | 08/28/87        |                              |                             |         |                               |                             |                         |         |                 | <5k<br><5k    |              |                     |                 |                   |                 |                   |                   |               |                  |                 |            |    |              |
| B-2 @ 10<br>B-2 @ 12'                                                                  | 12                                                              | 08/28/87        |                              |                             |         |                               |                             |                         |         |                 | <5k           |              |                     |                 |                   |                 |                   |                   |               |                  |                 |            |    |              |
| <b>1987 UST Repl</b><br>Not analyzed for the                                           |                                                                 |                 |                              |                             |         |                               |                             |                         |         |                 |               |              |                     |                 |                   |                 |                   |                   |               |                  |                 |            |    |              |
|                                                                                        | ace Investigati                                                 |                 |                              |                             |         |                               |                             |                         |         |                 |               |              |                     |                 |                   |                 |                   |                   |               |                  |                 |            |    |              |
| MW1-2                                                                                  | 10                                                              | 11/07/88        |                              |                             |         |                               |                             |                         |         |                 |               |              |                     |                 |                   |                 |                   |                   |               |                  |                 |            |    |              |
| MW1-3                                                                                  | 15                                                              | 11/07/88        |                              |                             |         |                               |                             |                         |         |                 |               |              |                     |                 |                   |                 |                   |                   |               |                  |                 |            |    |              |
| MW1-4                                                                                  | 20                                                              | 11/07/88        |                              |                             |         |                               |                             |                         |         |                 |               |              |                     |                 |                   |                 |                   |                   |               |                  |                 |            |    |              |
| MW2-1                                                                                  | 5                                                               | 11/07/88        |                              |                             |         |                               |                             |                         |         |                 |               |              |                     |                 |                   |                 |                   |                   |               |                  |                 |            |    |              |
| MW2-2                                                                                  | 10                                                              | 11/07/88        |                              |                             |         |                               |                             |                         |         |                 |               |              |                     |                 |                   |                 |                   |                   |               |                  |                 |            |    |              |
| MW2-3                                                                                  | 15                                                              | 11/07/88        |                              |                             |         |                               |                             |                         |         |                 |               |              |                     |                 |                   |                 |                   |                   |               |                  |                 |            |    |              |
| MW3-1                                                                                  | 10                                                              | 12/07/88        |                              |                             |         |                               |                             |                         |         |                 | 111           |              |                     |                 |                   |                 |                   |                   |               |                  |                 |            |    |              |
| MW3-2                                                                                  | 15                                                              | 12/07/88        |                              |                             |         |                               |                             |                         |         |                 | 8.31          |              |                     |                 |                   |                 |                   |                   |               |                  |                 |            |    |              |
| MW3-3                                                                                  | 20                                                              | 12/07/88        |                              |                             |         |                               |                             |                         |         |                 |               |              |                     |                 |                   |                 |                   |                   |               |                  |                 |            |    |              |

#### TABLE 6B CUMULATIVE SOIL ANALYTICAL RESULTS - METALS Bayrock Oakland 230 and 240 West MacArthur Boulevard Oakland, California (Page 2 of 5)

|                |                    |                      |          |         |         |           |         |          |         | 6       | 6010/6010 | )B     |            |         |          |         |          |          |         | 7470    | Cal LUFT | CA Title 22, | Section 6626 | 1.21-66261.23 |
|----------------|--------------------|----------------------|----------|---------|---------|-----------|---------|----------|---------|---------|-----------|--------|------------|---------|----------|---------|----------|----------|---------|---------|----------|--------------|--------------|---------------|
|                |                    |                      | Total    | Total   | Total   | Total     | Total   | Total    | Total   | Total   | Total     | STLC   | Total      | Total   | Total    | Total   | Total    | Total    | Total   | Total   | Organic  |              |              |               |
| Sample         | Depth              | Date                 | Antimony | Arsenic | Barium  | Beryllium | Cadmium | Chromium | Cobalt  | Copper  | Lead      | Lead   | Molybdenum | Nickel  | Selenium | Silver  | Thallium | Vanadium | Zinc    | Mercury | Lead     | Reactivity   | pН           | Ignitabilit   |
| ID             | (feet)             | Sampled              | (mg/kg)  | (mg/kg) | (mg/kg) | (mg/kg)   | (mg/kg) | (mg/kg)  | (mg/kg) | (mg/kg) | (mg/kg)   | (mg/L) | (mg/kg)    | (mg/kg) | (mg/kg)  | (mg/kg) | (mg/kg)  | (mg/kg)  | (mg/kg) | (mg/kg) | (mg/L)   |              |              |               |
| 89 Subsur      | face Investigation | on                   |          |         |         |           |         |          |         |         |           |        |            |         |          |         |          |          |         |         |          |              |              |               |
| SB1-1          | 5                  | 08/16/89             |          |         |         |           |         |          |         |         |           |        |            |         |          |         |          |          |         |         |          |              |              |               |
| SB1-2          | 10                 | 08/16/89             |          |         |         |           |         |          |         |         |           |        |            |         |          |         |          |          |         |         |          |              |              |               |
| SB1-3          | 15                 | 08/16/89             |          |         |         |           |         |          |         |         |           |        |            |         |          |         |          |          |         |         |          |              |              |               |
| SB1            | Composite          | 08/16/89             |          |         |         |           |         |          |         |         | 4.5       |        |            |         |          |         |          |          |         |         | <0.05    |              |              |               |
| 0004           |                    | 00/40/00             |          |         |         |           |         |          |         |         |           |        |            |         |          |         |          |          |         |         |          |              |              |               |
| SB2-1<br>SB2-2 | 5.5<br>10.5        | 08/16/89<br>08/16/89 |          |         |         |           |         |          |         |         |           |        |            |         |          |         |          |          |         |         |          |              |              |               |
| SB2-2<br>SB2-3 | 10.5               | 08/16/89             |          |         |         |           |         |          |         |         |           |        |            |         |          |         |          |          |         |         |          |              |              |               |
| SB2-3          | Composite          | 08/16/89             |          |         |         |           |         |          |         |         | 2.5       |        |            |         |          |         |          |          |         |         | < 0.05   |              |              |               |
| 022            | Composito          |                      |          |         |         |           |         |          |         |         | 2.0       |        |            |         |          |         |          |          |         |         | 10100    |              |              |               |
| SB3-1          | 4.5                | 08/16/89             |          |         |         |           |         |          |         |         |           |        |            |         |          |         |          |          |         |         |          |              |              |               |
| SB3-2          | 9.5                | 08/16/89             |          |         |         |           |         |          |         |         |           |        |            |         |          |         |          |          |         |         |          |              |              |               |
| SB3-3          | 15.5               | 08/16/89             |          |         |         |           |         |          |         |         |           |        |            |         |          |         |          |          |         |         |          |              |              |               |
| SB3            | Composite          | 08/16/89             |          |         |         |           |         |          |         |         | 5.5       |        |            |         |          |         |          |          |         |         | < 0.05   |              |              |               |

|  | 2005 | Fueling \$ | System | Upgrade |
|--|------|------------|--------|---------|
|--|------|------------|--------|---------|

| 4 | 2005 Fueling Sys | stem Upgrade |          |      |      |      |      |     |      |      |      |  |
|---|------------------|--------------|----------|------|------|------|------|-----|------|------|------|--|
|   | D-1-4.0          | 4.0          | 04/18/05 | <br> | <br> | <br> | <br> | 6.2 | <br> | <br> | <br> |  |
|   | D-2-1.5          | 1.5          | 04/18/05 | <br> | <br> | <br> | <br> | 130 | <br> | <br> | <br> |  |
|   | D-2-3.5          | 3.5          | 04/18/05 | <br> | <br> | <br> | <br> | 8.0 | <br> | <br> | <br> |  |
|   |                  |              |          |      |      |      |      |     |      |      |      |  |
|   | D-3-3.0          | 3.0          | 04/18/05 | <br> | <br> | <br> | <br> | 6.5 | <br> | <br> | <br> |  |
|   | D-4-4.0          | 4.0          | 04/18/05 | <br> | <br> | <br> | <br> | 8.1 | <br> | <br> | <br> |  |
|   | P-1-2.0          | 2.0          | 04/18/05 | <br> | <br> | <br> | <br> | 4.2 | <br> | <br> | <br> |  |
|   | P-2-4.5          | 4.5          | 04/18/05 | <br> | <br> | <br> | <br> | 9.7 | <br> | <br> | <br> |  |
|   | P-3-3.5          | 3.5          | 04/18/05 | <br> | <br> | <br> | <br> | 22  | <br> | <br> | <br> |  |
|   | P-4-4.0          | 4.0          | 04/18/05 | <br> | <br> | <br> | <br> | 140 | <br> | <br> | <br> |  |
|   | P-5-4.0          | 4.0          | 04/18/05 | <br> | <br> | <br> | <br> | 11  | <br> | <br> | <br> |  |
|   |                  |              |          |      |      |      |      |     |      |      |      |  |
|   | EX-1-6           | 6.0          | 04/28/05 | <br> | <br> | <br> | <br> | 7.2 | <br> | <br> | <br> |  |
|   | EX-2-6           | 6.0          | 04/28/05 | <br> | <br> | <br> | <br> | 7.1 | <br> | <br> | <br> |  |
|   | EX-3-6           | 6.0          | 04/28/05 | <br> | <br> | <br> | <br> | 4.1 | <br> | <br> | <br> |  |
|   | EX-4-6           | 6.0          | 04/28/05 | <br> | <br> | <br> | <br> | 12  | <br> | <br> | <br> |  |
|   |                  | 6 F          | 04/28/05 |      |      |      |      | 2.6 |      |      |      |  |
|   | EX-B-6.5         | 6.5          | 04/28/05 | <br> | <br> | <br> | <br> | 3.6 | <br> | <br> | <br> |  |
|   | EX-5-6           | 6.0          | 04/28/05 | <br> | <br> | <br> | <br> | 4.1 | <br> | <br> | <br> |  |
|   | EX-6-6           | 6.0<br>6.5   | 04/28/05 | <br> | <br> | <br> | <br> | 7.3 | <br> | <br> | <br> |  |
|   | EX-B2-6.5        | 6.5          | 04/28/05 | <br> | <br> | <br> | <br> | 4.0 | <br> | <br> | <br> |  |

## **2006 Subsurface Investigation** Not analyzed for these analytes.

| <br> | <br> | <br> |
|------|------|------|
| <br> | <br> | <br> |
| <br> | <br> | <br> |
|      |      |      |
| <br> | <br> | <br> |
|      |      |      |
| <br> | <br> | <br> |

#### TABLE 6B CUMULATIVE SOIL ANALYTICAL RESULTS - METALS Bayrock Oakland 230 and 240 West MacArthur Boulevard Oakland, California (Page 3 of 5)

|        |        |         |          |         |         |           |         |          |         |         | 6010/6010 | )B     |            |         |          |         |          |          |         | 7470    | Cal LUFT | CA Title 22, S | Section 6626 | 1.21-66261.23 |
|--------|--------|---------|----------|---------|---------|-----------|---------|----------|---------|---------|-----------|--------|------------|---------|----------|---------|----------|----------|---------|---------|----------|----------------|--------------|---------------|
|        |        |         | Total    | Total   | Total   | Total     | Total   | Total    | Total   | Total   | Total     | STLC   | Total      | Total   | Total    | Total   | Total    | Total    | Total   | Total   | Organic  |                |              |               |
| Sample | Depth  | n Date  | Antimony | Arsenic | Barium  | Beryllium | Cadmium | Chromium | Cobalt  | Copper  | Lead      | Lead   | Molybdenum | Nickel  | Selenium | Silver  | Thallium | Vanadium | Zinc    | Mercury | Lead     | Reactivity     | pН           | Ignitability  |
| ID     | (feet) | Sampled | (mg/kg)  | (mg/kg) | (mg/kg) | (mg/kg)   | (mg/kg) | (mg/kg)  | (mg/kg) | (mg/kg) | (mg/kg)   | (mg/L) | (mg/kg)    | (mg/kg) | (mg/kg)  | (mg/kg) | (mg/kg)  | (mg/kg)  | (mg/kg) | (mg/kg) | (mg/L)   |                |              |               |

### **2008 Subsurface Investigation** Not analyzed for these analytes.

#### 2017 Subsurface Investigation

Not analyzed for these analytes.

#### 240 MacArthur Boulevard

#### 1991 Used-Oil and Used-Oil Sump Removal

Not analyzed for these analytes.

#### 1996 Tank Removal (350-gallon used-oil UST)

Excavation Bottom Samples

| Excavation Botton | n Samples          |                  |           |           |     |      |      |       |      |      |      |      |      |      |      |      |      |      |     |
|-------------------|--------------------|------------------|-----------|-----------|-----|------|------|-------|------|------|------|------|------|------|------|------|------|------|-----|
| EB (7')           | 7.0                | 10/03/96         |           |           |     |      |      |       |      |      |      | 3.4  |      |      |      |      |      |      |     |
| EB (8')           | 8.0                | 10/03/96         |           |           |     |      |      |       |      |      |      | <0.2 |      |      |      |      |      |      |     |
| Excavation Stock  | pile Composite Sar | nples            |           |           |     |      |      |       |      |      |      |      |      |      |      |      |      |      |     |
| STKP              | 1-4                | 10/03/96         |           |           |     |      | <0.5 |       |      |      |      | 2.8  |      |      |      |      |      |      |     |
| STKP-2            | 1-4                | 10/03/96         |           |           |     |      |      |       |      |      |      | 1.3  |      |      |      |      |      |      |     |
| STKP-3            | 1-4                | 10/03/96         | <2.5      | 4.5       | 78  | <0.5 | <0.5 | 33    | 9.1  | 14   | 62   |      | <2.0 | 39   | <2.0 | <1.0 | <2.0 | 33   | 13  |
|                   |                    |                  |           |           |     |      |      |       |      |      |      |      |      |      |      |      |      |      |     |
| 1996 Tank Re      | moval Over-E       | xcavation (350-g | gallon us | ed-oil US | ST) |      |      |       |      |      |      |      |      |      |      |      |      |      |     |
| Excavation Sidew  | •                  |                  |           |           |     |      |      |       |      |      |      |      |      |      |      |      |      |      |     |
| SW1               | 8.5                | 11/13/96         |           |           |     |      | <0.5 | 36    |      |      | 3.9  |      |      | 35   |      |      |      |      | 26  |
| SW2               | 8.5                | 11/13/96         |           |           |     |      | <0.5 | 33    |      |      | 4.5  |      |      | 44   |      |      |      |      | 28  |
| SW3               | 8.5                | 11/13/96         |           |           |     |      | <0.5 | 44    |      |      | 8.7  |      |      | 57   |      |      |      |      | 48  |
| SW4               | 8.5                | 11/13/96         |           |           |     |      | <0.5 | 26    |      |      | 6.3  |      |      | 40   |      |      |      |      | 37  |
| Excavation Botton | n Samples          |                  |           |           |     |      |      |       |      |      |      |      |      |      |      |      |      |      |     |
| EB (9')           | 9.0                | 11/13/96         |           |           |     |      | <0.5 | 29    |      |      | 3.4  |      |      | 39   |      |      |      |      | 35  |
|                   | pile Composite Sar |                  |           |           |     |      |      |       |      |      |      |      |      |      |      |      |      |      |     |
| STKP              | 1-4                | 11/13/96         | <2.5      | <2.5      | 5.5 | <0.5 | <0.5 | 0.057 | 0.42 | 0.25 | <3.0 |      | <2.0 | 0.74 | <2.5 | <1.0 | <0.5 | 0.37 | 0.5 |
|                   |                    |                  |           |           |     |      |      |       |      |      |      |      |      |      |      |      |      |      |     |
| 1997 Phase II     | Subsurface In      | vestigation      |           |           |     |      |      |       |      |      |      |      |      |      |      |      |      |      |     |
| BH-1              | 15                 | 01/08/97         |           |           |     |      |      |       |      |      | 15   |      |      |      |      |      |      |      |     |
| BH-2              | 15                 | 01/08/97         |           |           |     |      |      |       |      |      | 8.4  |      |      |      |      |      |      |      |     |
| BH-3              | 15                 | 01/08/97         |           |           |     |      |      |       |      |      | 7.6  |      |      |      |      |      |      |      |     |
| BH-4              | 15                 | 01/08/97         |           |           |     |      |      |       |      |      | 6.2  |      |      |      |      |      |      |      |     |
| BH-5              | 15                 | 01/08/97         |           |           |     |      |      |       |      |      | 4.6  |      |      |      |      |      |      |      |     |
| BH-6              | 15                 | 01/08/97         |           |           |     |      |      |       |      |      | 23   |      |      |      |      |      |      |      |     |
| 1007 Addition     | al Site Charac     | torization       |           |           |     |      |      |       |      |      |      |      |      |      |      |      |      |      |     |
| BH-7              | 12                 | 08/07/97         |           |           |     |      |      |       |      |      |      |      |      |      |      |      |      |      |     |
| BH-7<br>BH-7      | 12                 | 08/07/97         |           |           |     |      |      |       |      |      |      |      |      |      |      |      |      |      |     |
| DU-1              | 10                 | 00/07/97         |           |           |     |      |      |       |      |      |      |      |      |      |      |      |      |      |     |
| BH-8              | 8                  | 08/07/97         |           |           |     |      |      |       |      |      |      |      |      |      |      |      |      |      |     |
| BH-8              | 12                 | 08/07/97         |           |           |     |      |      |       |      |      | 12.8 |      |      |      |      |      |      |      |     |
| BH-8              | 16                 | 08/07/97         |           |           |     |      |      |       |      |      | 47.8 |      |      |      |      |      |      |      |     |
| BH-9              | 8                  | 08/07/97         |           |           |     |      |      |       |      |      |      |      |      |      |      |      |      |      |     |
| BH-9              | 12                 | 08/07/97         |           |           |     |      |      |       |      |      |      |      |      |      |      |      |      |      |     |
| BH-9              | 16                 | 08/07/97         |           |           |     |      |      |       |      |      |      |      |      |      |      |      |      |      |     |
|                   |                    |                  |           |           |     |      |      |       |      |      |      |      |      |      |      |      |      |      |     |

|     |       | <br> | <br> |
|-----|-------|------|------|
|     |       | <br> | <br> |
|     |       |      |      |
|     |       | <br> | <br> |
|     |       | <br> | <br> |
| 130 | <0.06 | <br> | <br> |

| 26             |      | <br> |  |
|----------------|------|------|--|
| 28<br>48<br>37 | <br> | <br> |  |
| 48             | <br> | <br> |  |
| 37             | <br> | <br> |  |
|                |      |      |  |
| 35             | <br> | <br> |  |
|                |      |      |  |

| 0.52 | <0.06 | <br>Negative | 7.58 | Negative |
|------|-------|--------------|------|----------|
|      |       |              |      |          |
|      |       |              |      |          |
|      |       |              |      |          |
|      |       | <br>         |      |          |
|      |       |              |      |          |
|      |       |              |      |          |
|      |       |              |      |          |
|      |       | <br>         |      |          |
|      |       | <br>         |      |          |
|      |       |              |      |          |
|      |       |              |      |          |
|      |       | <br>         |      |          |
|      |       | <br>         |      |          |
|      |       | <br>         |      |          |
|      |       |              |      |          |
|      |       |              |      |          |
|      |       | <br>         |      |          |
|      |       | <br>         |      |          |
|      |       | <br>         |      |          |
|      |       |              |      |          |

#### TABLE 6B CUMULATIVE SOIL ANALYTICAL RESULTS - METALS Bayrock Oakland 230 and 240 West MacArthur Boulevard Oakland, California (Page 4 of 5)

|        |        |          |          |         |         |           |         |          |         |         | 6010/6010 | )B     |            |         |          |         |          |          |         | 7470    | Cal LUFT | CA Title 22, | Section 66261 | .21-66261.23 |
|--------|--------|----------|----------|---------|---------|-----------|---------|----------|---------|---------|-----------|--------|------------|---------|----------|---------|----------|----------|---------|---------|----------|--------------|---------------|--------------|
|        |        |          | Total    | Total   | Total   | Total     | Total   | Total    | Total   | Total   | Total     | STLC   | Total      | Total   | Total    | Total   | Total    | Total    | Total   | Total   | Organic  |              |               |              |
| Sample | Depth  | Date     | Antimony | Arsenic | Barium  | Beryllium | Cadmium | Chromium | Cobalt  | Copper  | Lead      | Lead   | Molybdenum | Nickel  | Selenium | Silver  | Thallium | Vanadium | Zinc    | Mercury | Lead     | Reactivity   | pН            | Ignitability |
| ID     | (feet) | Sampled  | (mg/kg)  | (mg/kg) | (mg/kg) | (mg/kg)   | (mg/kg) | (mg/kg)  | (mg/kg) | (mg/kg) | (mg/kg)   | (mg/L) | (mg/kg)    | (mg/kg) | (mg/kg)  | (mg/kg) | (mg/kg)  | (mg/kg)  | (mg/kg) | (mg/kg) | (mg/L)   |              |               |              |
|        | 10     |          |          |         |         |           |         |          |         |         |           |        |            |         |          |         |          |          |         |         |          |              |               |              |
| MW-1   | 10     | 08/07/97 |          |         |         |           |         |          |         |         |           |        |            |         |          |         |          |          |         |         |          |              |               |              |
| MW-1   | 17     | 08/07/97 |          |         |         |           |         |          |         |         |           |        |            |         |          |         |          |          |         |         |          |              |               |              |
| MW-2   | 10     | 08/07/97 |          |         |         |           |         |          |         |         |           |        |            |         |          |         |          |          |         |         |          |              |               |              |
| MW-2   | 17     | 08/07/97 |          |         |         |           |         |          |         |         |           |        |            |         |          |         |          |          |         |         |          |              |               |              |
| MW-3   | 10     | 08/07/97 |          |         |         |           |         |          |         |         |           |        |            |         |          |         |          |          |         |         |          |              |               |              |
|        | 10     |          |          |         |         |           |         |          |         |         |           |        |            |         |          |         |          |          |         |         |          |              |               |              |
| MW-3   | 15     | 08/07/97 |          |         |         |           |         |          |         |         |           |        |            |         |          |         |          |          |         |         |          |              |               |              |
| MW-4   | 10     | 08/07/97 |          |         |         |           |         |          |         |         |           |        |            |         |          |         |          |          |         |         |          |              |               |              |
| MW-4   | 17     | 08/07/97 |          |         |         |           |         |          |         |         |           |        |            |         |          |         |          |          |         |         |          |              |               |              |

#### 2001 Additional Site Characterization

Not analyzed for these analytes.

## **2004 Soil and Groundwater Investigation** Not analyzed for these analytes.

#### 2007 Soil and Groundwater Investigation

Not analyzed for these analytes.

### **2016 Soil Vapor Investigation** Not analyzed for these analytes.

### **2017 Subsurface Investigation** Not analyzed for these analytes.

 TABLE 6B

 CUMULATIVE SOIL ANALYTICAL RESULTS - METALS

 Bayrock Oakland

 230 and 240 West MacArthur Boulevard

 Oakland, California

 (Page 5 of 5)

- O&G = Oil and grease.
- TPHd = Total petroleum hydrocarbons as diesel.
- TPHg= Total petroleum hydrocarbons as gasoline.BTEX= Benzene, toluene, ethylbenzene, and total xylenes.
- MTBE = Methyl tertiary butyl ether.
- 1,2-DCA = 1,2-dichloroethane.
- EDB = 1,2-dibromoethane.
- ETBE = Ethyl tertiary butyl ether.
- DIPE = Di-isopropyl ether.
- TAME = Tertiary amyl methyl ether.
- TBA = Tertiary butyl alcohol.
- VOCs = Volatile organic compounds.
- SVOCs = Semi-volatile organic compounds.
- PAHs = Polyaromatic hydrocarbons.
- STLC = Soluble Threshold Limit Concentration.
- mg/kg = Milligrams per kilogram.
- ND = Not detected.
- < = Less than the stated laboratory reporting limit.
- --- = Not sampled/Not analyzed.
- \* = Sample collected within the saturated zone
- \*\* = Sample collected beneath the saturated zone
- a = Unmodified or weakly modified gasoline is significant.
- b = Heavier gasoline-range compounds are significant.
- c = Lighter gasoline-range compounds (the most mobile fraction) are significant.
- d = Gasoline-range compounds having broad chromatographic peaks are significant.
- e = Depth of sample uncertain due to minimal recovery in sampling sleeve.
- = Initial analysis within holding time. Reanalysis for the required dilution or confirmation was past holding time.
- g = Oil-range compounds are significant.
- h = Lighter than water immeiscible sheen is present.
  - = Liquid sample that contains greater than ~5 vol. % sediment.
- = Estimated value below the reporting limit and above the method detection limit.
- k = Analyzed by EPA Method 7421.
- = Total lead analyzed by EPA Method 7240
- m = 2-methylnaphthalene.

i.

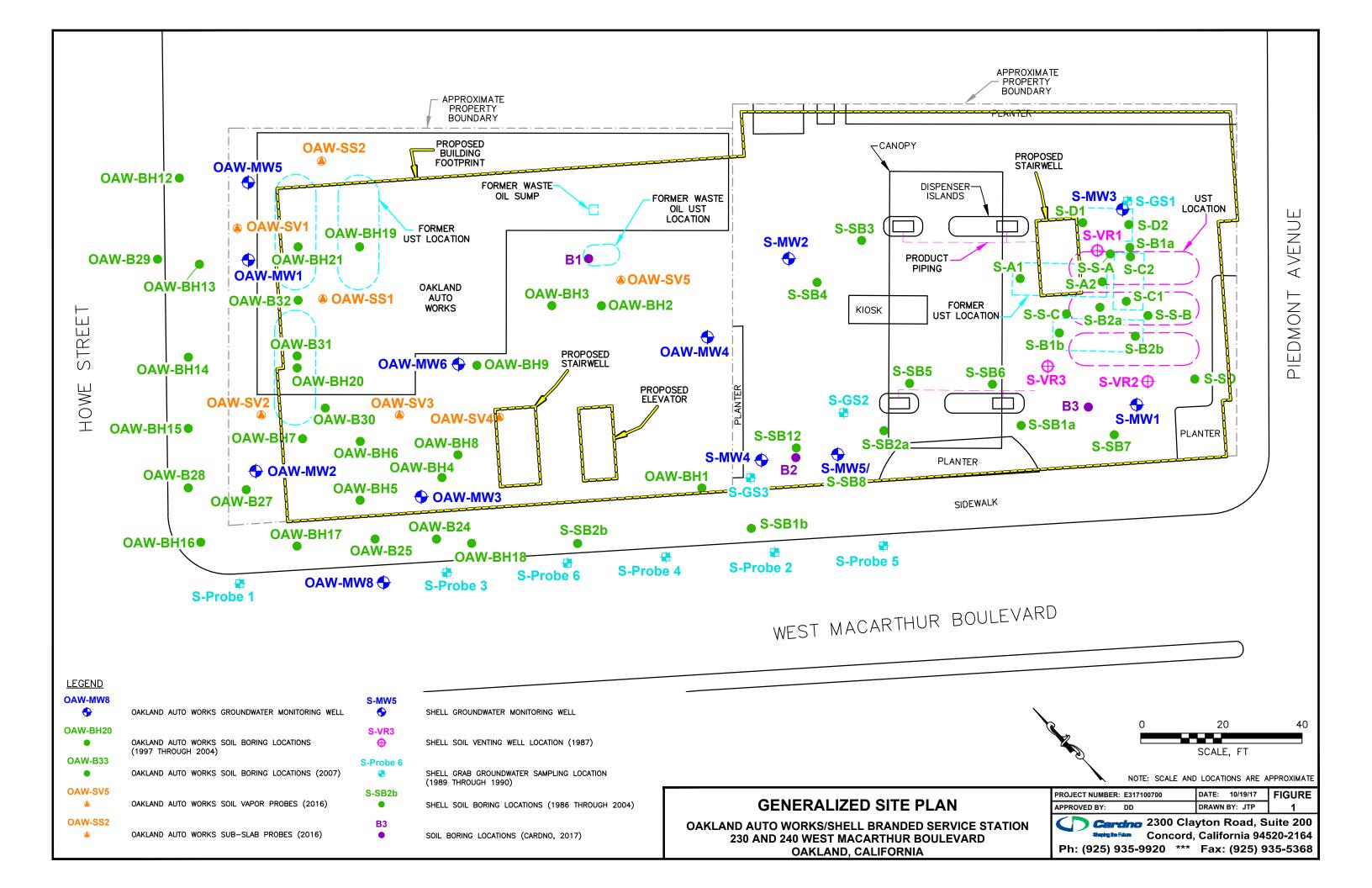
Т

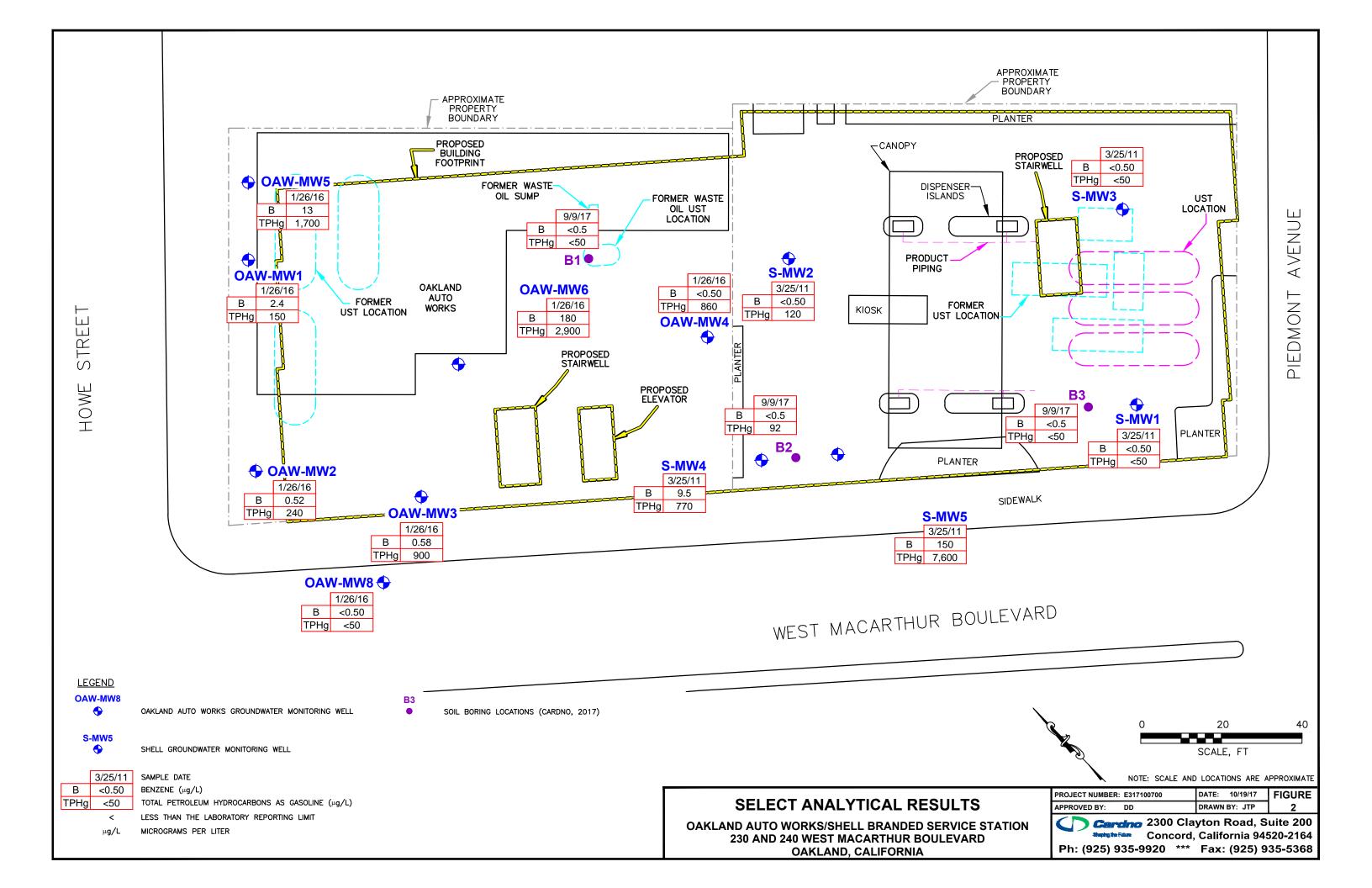
- n = Chromatographic pattern does not match that of the specified standard.
- o = No recognizable pattern.
- p = Analyzed for ethanol only.

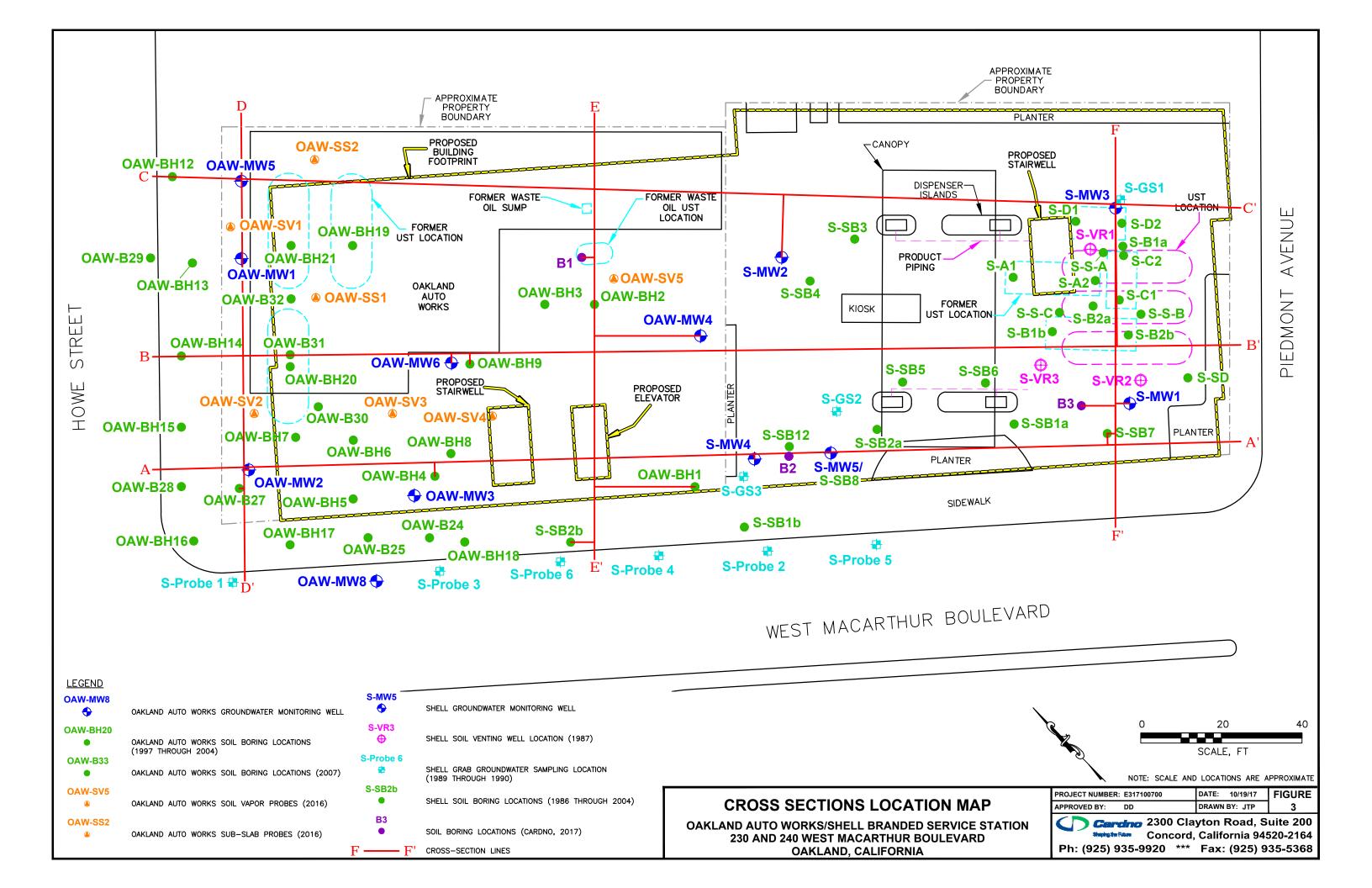
## TABLE 7CUMULATIVE SOIL VAPOR ANALYTICAL RESULTSBayrock Oakland230 and 240 West MacArthur BoulevardOakland, California(Page 1 of 2)

|        |        |         | TC                   | )-17                 |                      |                      |                      |                      | 802                  | IB (VOCs)            | ) and 8015           | (TPHg)/TO-1          | 5 (2016)             |                      |                      |                      |        | AST     | V 1946  |        |
|--------|--------|---------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|--------|---------|---------|--------|
|        |        |         |                      |                      |                      |                      |                      |                      |                      |                      |                      |                      | Naph-                |                      | 1,1-difluoro-        | Add'l                | 1      | Carbon  |         |        |
| Sample | Depth  | Date    | TPHd                 | TPHg                 | TPHg                 | В                    | Т                    | Е                    | o-X                  | pm-X                 | Х                    | MTBE                 | thalene              | PCE                  | ethane               | VOCs                 | Oxygen | Dioxide | Methane | Helium |
| ID     | (feet) | Sampled | (µg/m <sup>3</sup> ) | (%)    | (%)     | (%)     | (%)    |

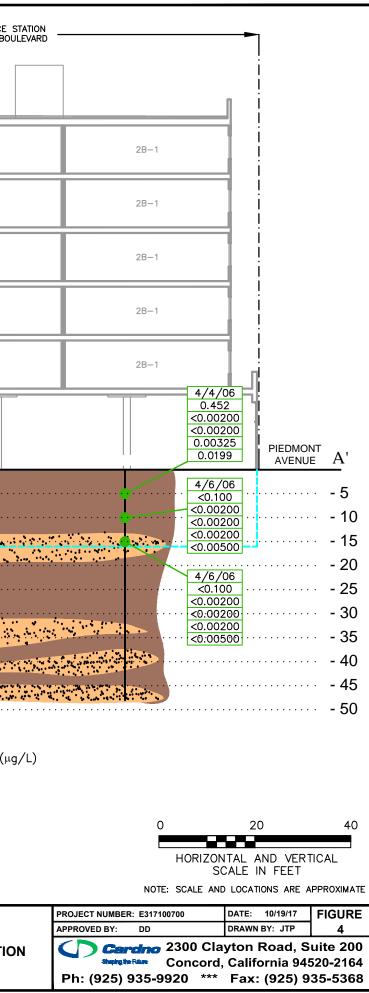
## 230 MacArthur Boulevard


Soil vapor samples not collected.


## 240 MacArthur Boulevard

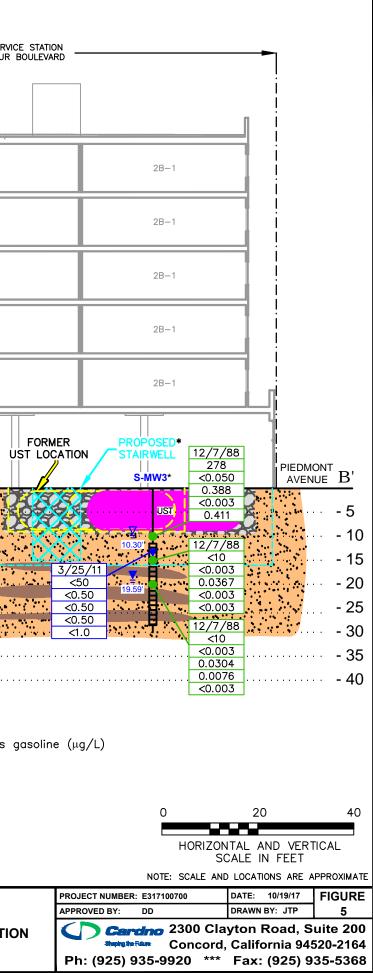

| 2007 Soil V | apor In  |             | on      |         |              |           |        |         |        |        |        |            |         |         |    |                      |      |      |        |         |
|-------------|----------|-------------|---------|---------|--------------|-----------|--------|---------|--------|--------|--------|------------|---------|---------|----|----------------------|------|------|--------|---------|
| B30-SG-10   |          | 05/23/07    |         |         | <25,000      | <250      | <250   | <250    |        |        | <250   | <2,500     |         |         |    |                      |      |      |        |         |
| B30-SG-14   |          | 05/23/07    |         |         | <25,000      | <250      | <250   | <250    |        |        | <250   | <2,500     |         |         |    |                      |      |      |        |         |
| B30-SG-18   |          | 05/23/07    |         |         | 130,000,000k | 1,000,000 | 29,000 | 41,000  |        |        | 40,000 | <4,000,000 |         |         |    |                      |      |      |        |         |
| B31-SG-10   |          | 05/23/07    |         |         | <25,000      | <250      | <250   | <250    |        |        | <250   | <2,500     |         |         |    |                      |      |      |        |         |
| B31-SG-14   |          | 05/23/07    |         |         | <25,000      | <250      | <250   | <250    |        |        | <250   | <2,500     |         |         |    |                      |      |      |        |         |
| B32-SG-10   |          | 05/23/07    |         |         | <25,000      | <250      | <250   | <250    |        |        | <250   | <2,500     |         |         |    |                      |      |      |        |         |
| B32-SG-14   |          | 05/23/07    |         |         | 33,000 l     | <250      | <250   | <250    |        |        | <250   | <2,500     |         |         |    |                      |      |      |        |         |
| B32-SG-18   |          | 05/23/07    |         |         | 53,000 l     | <250      | <250   | <250    |        |        | <250   | <2,500     |         |         |    |                      |      |      |        |         |
|             |          |             |         |         |              |           |        |         |        |        |        |            |         |         |    |                      |      |      |        |         |
| 2012 Soil V | apor In  | vestigaito  | on      |         |              |           |        |         |        |        |        |            |         |         |    |                      |      |      |        |         |
| MW-5-SV     | 9-19     | 09/14/12    |         |         | 8,300,000    | ND        | ND     | ND      | ND     | ND     |        | ND         | ND      |         | ND |                      | 5.18 |      |        |         |
| MW-6-SV     | 9-19     | 09/14/12    |         |         | 5,600,000    | ND        | ND     | ND      | ND     | ND     |        | ND         | ND      |         | ND |                      | 3.03 |      |        |         |
| MW-7-SV     | 9-19     | 09/14/12    |         |         | 290          | ND        | ND     | ND      | 11.7   | ND     |        | ND         | ND      |         | ND |                      | 10.2 |      |        |         |
| MW-8-SV     | 9-18     | 09/14/12    |         |         | 2,800,000    | ND        | ND     | ND      | ND     | ND     |        | ND         | ND      |         | ND |                      | 8.31 |      |        |         |
| B32-SV      | 11-16    | 09/14/12    |         |         | ND           | ND        | ND     | ND      | ND     | ND     |        | ND         | ND      |         | ND |                      | 3.07 |      |        |         |
|             |          |             |         |         |              |           |        |         |        |        |        |            |         |         |    |                      |      |      |        |         |
| 2016 Soil V | apor In  | vestigatio  | on      |         |              |           |        |         |        |        |        |            |         |         |    |                      |      |      |        |         |
| SV-1        | •<br>0-5 | 09/23/16    |         |         | 830b         | <0.87     | <1.5   | <1.3    | <0.61  | <2.0   | <2.0   | <0.89      | <2.5    | 520     |    | NDa                  | 20   | 0.64 | <0.049 | <0.0047 |
| SV-2        | 0-5      | 09/23/16    |         |         | 3,100b       | 2.7       | <1.7   | <1.4    | 2.4j   | 4.6j   | 7.0    | <0.89      | 4.0     | 28      |    | 78c, 5.4d, 7.9e, 44m | 4.1  | 3.8  | <0.052 | <0.0049 |
| SV-3        | 0-5      | 09/23/16    |         |         | 17,600,000b  | 9,400j    | <6,000 | 11,000j | 2,400  | <7,800 | <7,800 | <3,600     | <10,000 | <12,000 |    | 91,000h              | 2.6  | 5.9  | <0.047 | <0.0045 |
| SV-4        | 0-5      | 09/23/16    |         |         | 1,350,000b   | 100       | <150   | <130    | <61    | <200   | <200   | <0.89      | <250    | <290    |    | 580h                 | 2.5  | 5.4  | <0.047 | <0.0045 |
| SV-5        | 0-5      | 09/23/16    | <270    | 787,000 | 13,000,000g  | <870      | <1,500 | 3,500j  | 25,000 | 55,000 | 80,000 | <890       | 8,000   | <2,900  |    | ND                   | 1.2  | 11   | 0.12   | <0.0045 |
| SV-5 Dup    | 0-5      | 09/23/16    |         |         | 12,200,000g  | <870      | <1,500 | 2,900j  | 19,000 | 45,000 | 64,000 | <890       | 5,300   | <2,900  |    | 37,000e, 18,000f     | 1.7  | 11   | <0.047 | <0.0045 |
|             |          |             |         |         |              |           |        |         |        |        |        |            |         |         |    |                      |      |      |        |         |
| 2016 Sub-S  | Slab Soi | il Vapor In | vestiga | ation   |              |           |        |         |        |        |        |            |         |         |    |                      |      |      |        |         |
| SS-1        |          | -           | -       | 5,600   |              |           |        |         |        |        |        |            |         |         |    |                      |      |      |        |         |
| SS-2 i      |          | 09/23/16    |         |         |              |           |        |         |        |        |        |            |         |         |    |                      |      |      |        |         |

## Notes:

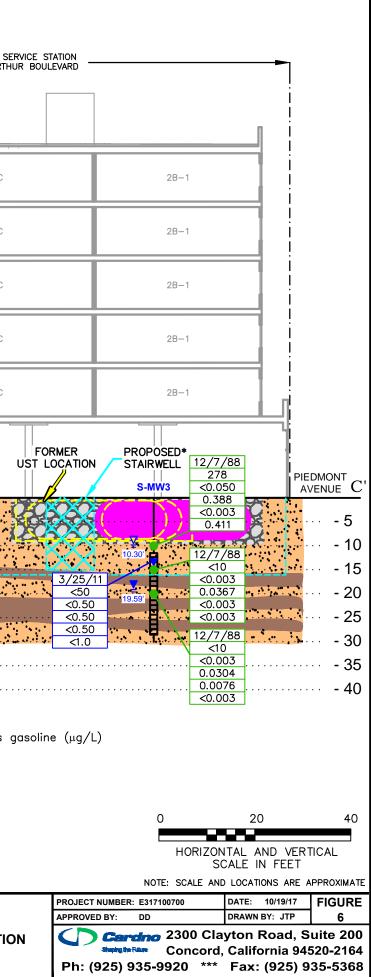

- TPHd = Total petroleum hydrocarbons as diesel.
- TPHg = Total petroleum hydrocarbons as gasoline.
- BTEX = Benzene, toluene, ethylbenzene, and xylenes.
- MTBE = Methyl tertiary butyl ether.
- PCE = Tetrachloroethene.
- ASTM = American Society for Testing and Materials.
- $\mu g/m^3$  = Micrograms per cubit meter.
- ND = Not detected.
- < = Less than the stated laboratory reporting limit.
- --- = Not sampled/Not analyzed.
- a = Additional VOCs reported below the reporting limit not listed.
- b = Does not match the gasoline reference standard but is within the C5-C12 quantitation range (discrete peak).
- c = Carbon disulfide.
- d = 4-Methyl-2-Pentanone (MIBK).
- e = 1,2,4-Trimethylbenzene
- f = 1,3,5-Trimethylbenzene.
- g = Although TPHg constituents are present, the pattern is not a match to gasoline standard but is within the C5-C12 quantitation range (possible aged gasoline or fuel heavier than gasoline but lighter than diesel).
- h = Hexane.
- i = Samples collected from well could not be analyzed due to laboratory equipment issues.
- j = Estimated value below the reporting limit and above the method detection limit.
- k = Unmodified or weakly modified gasoline is significant; lighter gasoline range compounds (the most mobile fraction) are significant.
- I = No recognizable pattern.
- m = Chloroform.





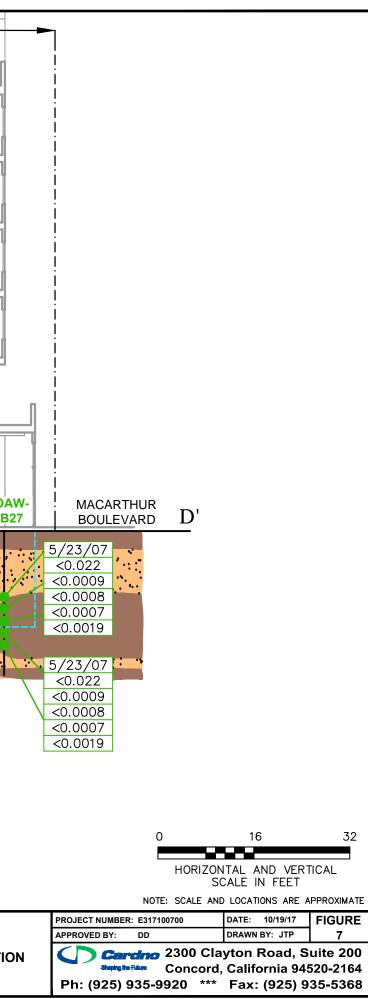



|                                                  |                                                                         |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _               |                              |                                                                        |                                                                                                                                            |                                                         |                                                                                                                                                        |
|--------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------------------------------|------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| SAMPLE                                           | DATE                                                                    | DEPTH                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | В               | Т                            | E                                                                      | Х                                                                                                                                          |                                                         |                                                                                                                                                        |
| OAW-MW2                                          | 8/7/97                                                                  | 10                                                                    | <5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <0.005          | <0.005                       | <0.005                                                                 | <0.005                                                                                                                                     | OAKLAND AUTO WORKS                                      | SHELL BRANDED SERVICE 230 WEST MACARTHUR BOL                                                                                                           |
| OAW-MW2                                          | 8/7/97                                                                  | 17                                                                    | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.035           | 0.037                        | 0.018                                                                  | 0.15                                                                                                                                       |                                                         |                                                                                                                                                        |
| OAW-MW2                                          | 1/26/16                                                                 | 18.67                                                                 | 240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.52            | <0.5                         | 0.72                                                                   | 0.71                                                                                                                                       |                                                         |                                                                                                                                                        |
| OAW-BH4                                          | 1/8/97                                                                  | 15                                                                    | 1,100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <0.02           | <0.02                        | 4.4                                                                    | 14                                                                                                                                         | ]                                                       |                                                                                                                                                        |
| S-MW4                                            | 3/25/11                                                                 | 17.65                                                                 | 770                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9.5             | 0.59                         | 11                                                                     | 1.3                                                                                                                                        |                                                         |                                                                                                                                                        |
| S-MW5/SB8                                        | 4/4/06                                                                  | 5                                                                     | <0.100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <0.00200        | <0.00200                     | <0.00200                                                               | <0.00500                                                                                                                                   |                                                         |                                                                                                                                                        |
| S-MW5/SB8                                        | 4/6/06                                                                  | 10                                                                    | <0.100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.00340         | <0.00200                     | <0.00200                                                               | < 0.00500                                                                                                                                  | 2A                                                      | 2A 2A 2C                                                                                                                                               |
| S-MW5/SB8                                        | 4/6/06                                                                  | 14                                                                    | 0.942                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0588          | 0.00204                      | 0.00416                                                                | <0.00500                                                                                                                                   | A                                                       |                                                                                                                                                        |
| S-MW5/SB8                                        | 3/25/11                                                                 | 16.82                                                                 | 7,600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 150             | 10                           | 270                                                                    | 43                                                                                                                                         |                                                         |                                                                                                                                                        |
|                                                  |                                                                         | 1                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1               |                              | I                                                                      |                                                                                                                                            |                                                         | · · · · · · · · · · · · · · · · · · ·                                                                                                                  |
| S-SB7                                            | 4/4/06                                                                  | 5                                                                     | 0.452                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <0.00200        | <0.00200                     | 0.00325                                                                | 0.0199                                                                                                                                     | 2A                                                      | 2A 2A 2C                                                                                                                                               |
| S-SB7                                            | 4/6/06                                                                  | 10                                                                    | <0.100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <0.00200        | <0.00200                     | <0.00200                                                               | <0.00500                                                                                                                                   |                                                         |                                                                                                                                                        |
| S-SB7                                            | 4/6/06                                                                  | 15                                                                    | <0.100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <0.00200        | <0.00200                     | <0.00200                                                               | <0.00500                                                                                                                                   |                                                         |                                                                                                                                                        |
| B2                                               | 9/9/17                                                                  | 11                                                                    | <0.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <0.0050         | <0.0050                      | <0.0050                                                                | <0.010                                                                                                                                     | 2A                                                      | 2A 2A 2C                                                                                                                                               |
| B2                                               | 9/9/17                                                                  | 16.5                                                                  | <0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <0.0050         | <0.0050                      | <0.0050                                                                | <0.010                                                                                                                                     |                                                         |                                                                                                                                                        |
| B2                                               | 9/9/17                                                                  | 17                                                                    | <0.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <0.0049         | <0.0049                      | <0.0049                                                                | <0.0098                                                                                                                                    |                                                         |                                                                                                                                                        |
| Soil analytica                                   | l results rep                                                           | orted in n                                                            | ng/kg and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | groundwater     | analytical da                | ta reported in                                                         |                                                                                                                                            | 2A                                                      | 2A 2A 2C                                                                                                                                               |
| Italics =                                        | Groundwa                                                                |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -               |                              |                                                                        |                                                                                                                                            | 24                                                      |                                                                                                                                                        |
| Depth =                                          | Feet below                                                              |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                              |                                                                        |                                                                                                                                            |                                                         |                                                                                                                                                        |
| TPHg =                                           |                                                                         |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | as gasoline     |                              |                                                                        |                                                                                                                                            |                                                         | i                                                                                                                                                      |
| BTEX =                                           |                                                                         |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ene, and Tota   | l Xvlenes                    |                                                                        | EXERCISE                                                                                                                                   | 2A                                                      | 2A 9/9/17 <sup>2A</sup> 2C                                                                                                                             |
| < =                                              |                                                                         |                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | y reporting lim | -                            |                                                                        |                                                                                                                                            |                                                         | <0.51 <0.0050 4/4/06                                                                                                                                   |
| LEGEND                                           | 5<br>10<br>15<br>20<br>25<br>30<br>35<br>40<br>45<br>50                 |                                                                       | EET<br>7/97<br>(5.0)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005)<br>(0.005) | 23.80'          | 0.52<br><0.5<br>0.72<br>0.71 |                                                                        |                                                                                                                                            | PROPOSED<br>STAIRWELL<br>BH4<br>PROPO<br>ELEVA<br>ELEVA | S-MW4         B2         S-SB8         <0.00200<br><0.00500                                                                                            |
| OAW-MW2<br>S-MW5<br>OAW-BH4<br>S-SB8<br>B2<br>B2 | MONITC<br>SHELL<br>OAKLAI<br>LOCATI<br>SHELL<br>(1986<br>SOIL E<br>WELL | DRING WEL<br>GROUNDW<br>ND AUTO N<br>ONS (1997<br>SOIL BOR<br>THROUGH | L<br>ATER MONI'<br>WORKS SOIL<br>7 THROUGH<br>ING LOCATI<br>2004)<br>CATION (CA<br>INTERVAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2004)           | 0                            | <0.02<br><0.02<br>4.4<br>Less tl<br>reportin<br>/kg Milligra<br>No rec | 70 Total<br>2 Benzer<br>2 Toluen<br>2 Toluen<br>4 Total<br>4 Total<br>4 Total<br>4 mg limit<br>5 ms per kil<br>5 ognizable<br>1 OF GROUNDW | pattern                                                 | B     150     Benzene (μg/L)       T     10     Toluene (μg/L)       E     270     Ethylbenzene (μg/L)       X     43     Total xylenes (μg/L)       < |
|                                                  |                                                                         |                                                                       | OPERTY BC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DUNDARY         | 12.20' (I<br>▼ M             | FEET BELOW T<br>AXIMUM DEPTH<br>FEET BELOW T                           | OP OF CASING                                                                                                                               |                                                         | CROSS SECTION A-A'<br>OAKLAND AUTO WORKS/SHELL BRANDED SERVICE STATIC<br>230 AND 240 WEST MACARTHUR BOULEVARD                                          |

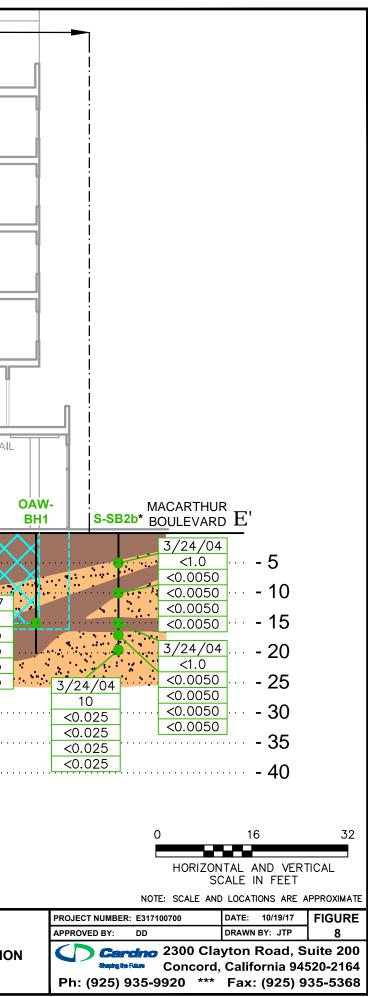



OAKLAND, CALIFORNIA

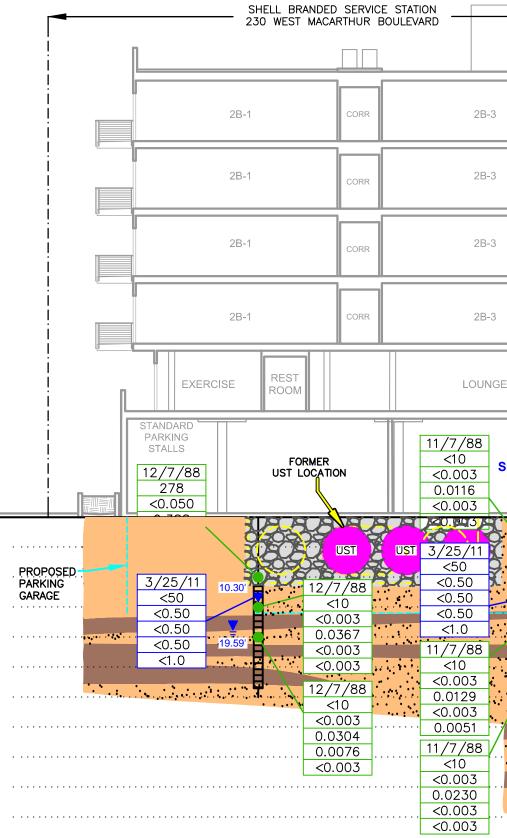
| SAMPLE             | DATE          | DEPTH                      | TPHg                | В               | Т              | E                  | Х               | _                     |                          |                     |          |        |                                 |            |                                                                                                                                                             |           |                |                                           |                                              |  |  |  |  |  |  |
|--------------------|---------------|----------------------------|---------------------|-----------------|----------------|--------------------|-----------------|-----------------------|--------------------------|---------------------|----------|--------|---------------------------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------------|-------------------------------------------|----------------------------------------------|--|--|--|--|--|--|
| OAW-BH14           | 4/29/04       | 4.5                        | <3.0                | <0.005          | <0.005         | <0.005             | <0.015          | 4                     |                          |                     |          |        |                                 |            |                                                                                                                                                             |           |                |                                           |                                              |  |  |  |  |  |  |
| OAW-BH14           | 4/29/04       | 9.5                        | <3.0                | <0.005          | <0.005         | <0.005             | <0.015          |                       |                          |                     |          |        |                                 |            |                                                                                                                                                             |           |                |                                           |                                              |  |  |  |  |  |  |
| OAW-BH14           | 4/29/04       | 16                         | <3.0                | <0.005          | <0.005         | <0.005             | <0.015          |                       |                          | UTO WORKS           |          |        |                                 |            |                                                                                                                                                             |           |                |                                           | - SHELL BRANDED SERVIC<br>230 WEST MACARTHUR |  |  |  |  |  |  |
| OAW-BH14           | 4/29/04       | 20                         | <3.0                | <0.005          | <0.005         | <0.005             | <0.015          | 240 W                 | WEST MACAN               |                     | EVARD    |        | ]                               |            |                                                                                                                                                             |           |                |                                           | 230 WEST MACARIHUR                           |  |  |  |  |  |  |
| OAW-BH14           | 4/29/04       | 21.5                       | <3.0                | <0.005          | <0.005         | <0.005             | <0.015          |                       | Г                        |                     |          |        |                                 |            |                                                                                                                                                             | :         |                |                                           |                                              |  |  |  |  |  |  |
| OAW-B31            | 5/23/07       | 27                         | <0.022              | <0.0009         | <0.0008        | <0.0007            | <0.0019         | 7                     |                          |                     |          |        |                                 |            |                                                                                                                                                             | 1         |                |                                           |                                              |  |  |  |  |  |  |
| OAW-B31            | 5/23/07       | 32                         | <0.022              | <0.0009         | <0.0008        | <0.0007            | <0.0019         | 1                     |                          |                     |          |        |                                 |            |                                                                                                                                                             | :         |                |                                           |                                              |  |  |  |  |  |  |
|                    |               | 1<br>1                     |                     | 1               |                | i i                | I               |                       |                          |                     |          |        |                                 |            |                                                                                                                                                             | -         |                |                                           |                                              |  |  |  |  |  |  |
| OAW-MW6            | 1/26/16       | 18.79                      | 2,900               | 180             | 4.4            | <1.7               | 20.8            |                       |                          |                     |          |        | _                               |            |                                                                                                                                                             |           |                |                                           | • •                                          |  |  |  |  |  |  |
| OAW-BH9            | 8/7/97        | 8                          | <5.0                | <0.005          | 0.032          | 0.029              | 0.28            |                       |                          | 2A                  |          |        |                                 |            | 2A                                                                                                                                                          | !         | 2A             |                                           | 2C                                           |  |  |  |  |  |  |
| OAW-BH9            | 8/7/97        | 12                         | <5.0                | <0.005          | 0.012          | <0.005             | <0.015          | 1                     |                          | ZA                  |          |        |                                 | 4          | LA                                                                                                                                                          | !         | ZA             |                                           | 20                                           |  |  |  |  |  |  |
| OAW-BH9            | 8/7/97        | 16                         | <5.0                | <0.005          | <0.005         | <0.005             | <0.015          |                       |                          |                     |          |        |                                 |            |                                                                                                                                                             |           |                |                                           |                                              |  |  |  |  |  |  |
| OAW-MW4            | 8/7/97        | 10                         | <5.0                | <0.005          | <0.005         | <0.005             | <0.015          | -<br>-                |                          |                     |          |        |                                 |            |                                                                                                                                                             | !         |                |                                           |                                              |  |  |  |  |  |  |
| OAW-MW4            | 8/7/97        |                            |                     |                 |                |                    |                 | -                     |                          | 2A                  |          |        |                                 | 4          | 2A                                                                                                                                                          | !         | 2A             |                                           | 2C                                           |  |  |  |  |  |  |
|                    |               | 17                         | <5.0                | <0.005          | <0.005         | <0.005             | <0.015          |                       |                          |                     |          |        |                                 |            |                                                                                                                                                             | !         |                |                                           |                                              |  |  |  |  |  |  |
| OAW-MW4            | 1/26/16       | 17.58                      | 860 <sup>d</sup>    | <0.5            | <0.5           | <0.5               | <0.5            |                       |                          |                     |          |        |                                 |            |                                                                                                                                                             |           |                |                                           |                                              |  |  |  |  |  |  |
| S-MW3              | 12/7/88       | 10                         | 278                 | <0.050          | 0.388          | <0.003             | 0.411           |                       |                          | 2A                  |          |        |                                 | 2          | 2A                                                                                                                                                          | !         | 2A             |                                           | 2C                                           |  |  |  |  |  |  |
| S-MW3              | 12/7/88       | 15                         | <10                 | <0.003          | 0.0367         | <0.003             | <0.003          |                       |                          |                     |          |        |                                 |            |                                                                                                                                                             | 1         |                |                                           |                                              |  |  |  |  |  |  |
| S-MW3              | 12/7/88       | 20                         | <10                 | <0.003          | 0.0304         | 0.0076             | <0.003          |                       |                          |                     |          |        |                                 |            |                                                                                                                                                             |           |                |                                           |                                              |  |  |  |  |  |  |
| S-MW3              | 3/25/11       | 14.16                      | <50                 | <0.50           | <0.50          | <0.50              | <1.0            |                       |                          | 2A                  |          |        |                                 | ,          | 2A                                                                                                                                                          | i         | 2A             |                                           | 2C                                           |  |  |  |  |  |  |
| Soil analytica     | l results rep | orted in n                 | ng/kg and           | groundwater     | analytical dat | ta reported in     | μg/L            |                       |                          | ZA                  |          |        |                                 | 4          | 2A                                                                                                                                                          | 1         | ZA             |                                           | 20                                           |  |  |  |  |  |  |
| Italics =          | Groundwa      | ter analyti                | cal data            | i               |                |                    |                 |                       |                          |                     |          |        |                                 |            |                                                                                                                                                             | i –       |                |                                           |                                              |  |  |  |  |  |  |
| Depth =            | Feet below    | round s                    | urface              | İ               |                |                    |                 |                       |                          |                     |          |        |                                 |            |                                                                                                                                                             | i         |                |                                           |                                              |  |  |  |  |  |  |
| TPHg =             | Total petro   | leum hyd                   | rocarbons           | as gasoline     |                |                    | EXERCISE        |                       |                          | 2A                  |          |        |                                 | 4          | 2A                                                                                                                                                          | i 📕       | 2A             |                                           | 20                                           |  |  |  |  |  |  |
| BTEX =             | Benzene,      | Toluene, E                 | Ethylbenze          | ene, and Tota   | I Xylenes      |                    |                 |                       |                          | _                   |          |        |                                 |            |                                                                                                                                                             | i l       |                |                                           |                                              |  |  |  |  |  |  |
| < =                | Less than     | the stated                 | laboratory          | y reporting lin | nit            |                    |                 |                       |                          | 8/7/9               |          |        | STANDA                          | RD         |                                                                                                                                                             | ;<br>     |                |                                           |                                              |  |  |  |  |  |  |
| d =                |               |                            |                     | aving broad     |                | FORMER             |                 | PROPOS<br>STAIRW      |                          | <5.0<br><0.005      |          | F      | PARKING S                       | TALLS      |                                                                                                                                                             | İ         |                |                                           |                                              |  |  |  |  |  |  |
|                    | chromatog     | raphic pe                  | aks are sig         | gnificant.      |                | UST LOCAT          | ION             |                       |                          | 0.032               |          |        |                                 | OSED*      |                                                                                                                                                             | i         |                |                                           | U                                            |  |  |  |  |  |  |
|                    | , н           | OWE 0                      | AW-                 | <b>n</b>        | OAW-           |                    |                 | OAW- O                |                          | 0.029               |          |        |                                 | ATOK       | OAW-                                                                                                                                                        | <br>  8/7 | /07            |                                           |                                              |  |  |  |  |  |  |
| E                  | ÷.            | REET B                     |                     |                 | B31            |                    |                 | MW6 E                 | BH9                      | 0.28                |          |        |                                 |            | MW4                                                                                                                                                         |           |                |                                           |                                              |  |  |  |  |  |  |
| _                  | 4/29          | 0/04                       | 4/2                 | 0 /04           | 250303         |                    |                 |                       |                          | 8/7/9               |          | XX     |                                 | -98        |                                                                                                                                                             | <0.0      | 005            |                                           |                                              |  |  |  |  |  |  |
| 5 -                | <3            |                            |                     | 3.0             |                |                    | <b>}</b>        |                       | 1. 1.                    | <5.0                | <u>/</u> | XX     | · · · · · · · · · · · · · · · · |            |                                                                                                                                                             | <0.0      |                |                                           | · · · · · · · · · · · · · · · · · · ·        |  |  |  |  |  |  |
| 10 -               |               |                            | <b></b> <0.         | .005 📖 🕵        |                |                    | <b>S</b>        |                       |                          | <0.005              | 5        |        | 1/2                             | 6/16       | .∆.                                                                                                                                                         | <0.0      |                |                                           | N                                            |  |  |  |  |  |  |
| 45                 | <0.0          | 005                        |                     | .005            | 000            | nac                | <b>X</b> .      | 11.85'                |                          | 0.012               |          | $\sim$ | . 8                             | 60ª 1      | 0.90'                                                                                                                                                       |           |                | 1. S. |                                              |  |  |  |  |  |  |
| 15 -               |               | 015                        |                     | .005            | 5              | /23/07             | 1/26/16         |                       |                          | <0.000              | 5        |        | <                               | 0.5<br>0.5 |                                                                                                                                                             | 8/7       | /97<br>0       |                                           |                                              |  |  |  |  |  |  |
| 20 -               |               | 0/04                       |                     |                 |                | <0.022             | 2,900           |                       |                          | <0.015              |          |        |                                 | 0.5        |                                                                                                                                                             | <5        | .0<br>005      |                                           |                                              |  |  |  |  |  |  |
| 25                 |               | 5.0<br>205                 | 4/2                 | 9/04            |                | <0.0009<br><0.0008 | 180<br>4.4      | 20.00'                | 8/7/97                   |                     | i., î.,  |        | <                               | 0.5        | 9.89                                                                                                                                                        | <0.0      | 005            | N                                         |                                              |  |  |  |  |  |  |
| 25 -               | · · <0.0      | 005                        | · · · · <b>&lt;</b> | 3.0             |                | <0.0007            | <1.7            | · · · · · · · · [     | <5.0                     |                     | ••••     |        |                                 |            | · · · · · · · · · · · · · · · · · · ·                                                                                                                       | <0.0      | 500            |                                           |                                              |  |  |  |  |  |  |
| 30 -               | <0.0          |                            |                     | .005            |                | <0.0019            | 20.8            |                       | <0.005<br><0.005         |                     |          |        |                                 |            |                                                                                                                                                             | . <0.     | 015            |                                           |                                              |  |  |  |  |  |  |
| 35 -               | <0.           |                            |                     | .005            | 5              | /23/07             |                 |                       | <0.005                   |                     |          |        |                                 |            |                                                                                                                                                             |           |                |                                           |                                              |  |  |  |  |  |  |
| - 35               | .,            |                            |                     | .015            |                | <0.022             |                 |                       | <0.015                   |                     |          |        |                                 |            |                                                                                                                                                             |           |                | PARKIN                                    | IG                                           |  |  |  |  |  |  |
| 40 -               | · · <0.0      | 5.0<br>205 <sup>····</sup> |                     |                 |                | (0.0009            |                 |                       |                          |                     |          |        |                                 |            |                                                                                                                                                             |           |                | GARAG                                     | E                                            |  |  |  |  |  |  |
|                    | <0.0          | 005                        |                     |                 |                | <0.0008<br><0.0007 |                 |                       |                          |                     |          |        |                                 |            |                                                                                                                                                             |           |                |                                           |                                              |  |  |  |  |  |  |
|                    | <0.0          |                            |                     |                 |                | <0.0019            |                 |                       |                          |                     |          |        |                                 |            |                                                                                                                                                             |           |                |                                           |                                              |  |  |  |  |  |  |
| <u>LEGEND</u>      | <0.           | 015                        |                     |                 |                |                    |                 |                       |                          |                     |          |        |                                 |            |                                                                                                                                                             |           | 1/26/16        | Sampling date                             | 2                                            |  |  |  |  |  |  |
| OAW-MW6            | OAKLAN        | ND AUTO W                  | ORKS GRO            | UNDWATER        |                |                    | 40 /7           | (00 Sam               | nalina da                | + -                 |          |        |                                 |            |                                                                                                                                                             | TPH       | g 860d 1       | lotal petroleu                            | m hydrocarbons as g                          |  |  |  |  |  |  |
|                    | MONITO        | RING WELL                  | -                   |                 |                | TP                 | 12/7,<br>Hg <10 |                       | npling da<br>11. petrole | eum hydr            | ocarh    | ons c  | ne naso                         | oline (n   | na/ka)                                                                                                                                                      | B         | <0.5 E         | Benzene (µg/                              | L)                                           |  |  |  |  |  |  |
| S-MW3              | SHELL         | GROUNDW                    | ATER MONIT          | FORING WELL     |                | E                  |                 | 03 Benz               | zene (mg                 | g/kg)               | ooure    |        | u guoo                          |            | 9/ 19/                                                                                                                                                      | T<br>E    | <0.5<br><0.5 E | ſoluene (μ̃g/́L<br>Ethylbenzene           | .)<br>(ug/L)                                 |  |  |  |  |  |  |
| OAW-BH14           |               |                            |                     | BORING LOC      | ATIONS         | 1                  |                 | 04 Tolu               | iene (mg                 | j/kg)               | 、        |        |                                 |            |                                                                                                                                                             | X         | <0.5           | Total xylenes                             | (μg/L)                                       |  |  |  |  |  |  |
| _                  | (1997         | THROUGH                    | 2004)               |                 |                | E                  |                 | 176 Ethy              |                          | é (mg/kg<br>s (mg/k | 1)<br>1) |        |                                 |            |                                                                                                                                                             | 1         |                | he stated lat                             |                                              |  |  |  |  |  |  |
|                    | WELL S        | SCREENED                   | INTERVAL            |                 |                |                    |                 |                       | -                        |                     |          |        |                                 |            |                                                                                                                                                             |           | reporting lir  |                                           | ,                                            |  |  |  |  |  |  |
|                    |               |                            |                     |                 |                | <                  |                 | than the<br>ing limit | stated h                 | aboratory           | /        |        |                                 |            |                                                                                                                                                             | μg/       | L Micrograms   | per cubic lit                             | er                                           |  |  |  |  |  |  |
| B — E              | 3' cross      | -SECTION                   | LINE                |                 |                |                    | •               | •                     | hile come                |                     |          |        |                                 |            |                                                                                                                                                             | µg/<br>d  | -              | -                                         | ids having broad                             |  |  |  |  |  |  |
|                    |               |                            | OPERTY BC           | UNDARY          |                | mg,                | /kg Milligro    | ams per               | кнодгат                  | l                   |          |        |                                 |            |                                                                                                                                                             | 5         |                |                                           | are significant                              |  |  |  |  |  |  |
| -                  |               |                            |                     |                 |                |                    |                 | DOF 00                |                          |                     |          |        |                                 | <b></b>    |                                                                                                                                                             |           |                | , Fearro ,                                | 3                                            |  |  |  |  |  |  |
| <u>₹</u><br>11.85' |               | M DEPTH<br>F CASING)       | UF GROUNI           | OWATER (FEET    | BELOW          |                    | COA             | ARSE GRAINEI          | U MATERIAL               |                     |          |        |                                 | 1          |                                                                                                                                                             |           | <b>CROSS S</b> |                                           | B-B'                                         |  |  |  |  |  |  |
|                    |               |                            | OF GROUN            | DWATER (FEET    | BELOW          |                    | FINE            | E GRAINED M           |                          |                     |          |        |                                 | 1          |                                                                                                                                                             |           |                |                                           |                                              |  |  |  |  |  |  |
| 20.00'             |               | F CASING)                  | 2. 0.000            |                 | 222011         |                    |                 |                       |                          |                     |          |        |                                 | 0          |                                                                                                                                                             |           |                |                                           | ED SERVICE STATIC                            |  |  |  |  |  |  |
| *                  | BOREH         | OLE AND F                  | PROPOSED            | ELEVATOR/STA    | ARWELL         |                    | BAC             | K FILL MATE           | ERIAL                    |                     |          |        |                                 |            | 23                                                                                                                                                          | 30 AN     |                |                                           |                                              |  |  |  |  |  |  |
|                    | PROJE         | CTED INTO                  | CROSS-SE            | CTION           |                |                    |                 |                       |                          |                     |          |        |                                 | 1          | BOREHOLE AND PROPOSED ELEVATOR/STAIRWELL BACK FILL MATERIAL OAKLAND, CALIFORNIA |           |                |                                           |                                              |  |  |  |  |  |  |




| SAMPLE [                        | DATE DEPT                    | H TPHg     | В                     | Т              | E          | Х                   |                         |           |               |                                       |         |                    |                 |                                      |            |                        |                                |                                       |                        |
|---------------------------------|------------------------------|------------|-----------------------|----------------|------------|---------------------|-------------------------|-----------|---------------|---------------------------------------|---------|--------------------|-----------------|--------------------------------------|------------|------------------------|--------------------------------|---------------------------------------|------------------------|
| OAW-BH12 4                      | /29/04 4.5                   | <3.0       | <0.005                | <0.005         | <0.005     | <0.015              |                         |           |               |                                       |         |                    |                 |                                      |            |                        |                                |                                       |                        |
|                                 | /29/04 9.5                   | <3.0       | <0.005                | <0.005         | <0.005     | <0.015              |                         |           |               |                                       |         |                    |                 |                                      |            |                        |                                |                                       |                        |
|                                 | /29/04 12                    | <3.0       | <0.005                | <0.005         | <0.005     | <0.015              |                         |           | AUTO WO       |                                       |         |                    |                 |                                      |            |                        |                                |                                       | SHELL BRANDED SE       |
|                                 | /29/04 20                    | <3.0       | <0.005                | <0.005         | <0.005     | <0.015              | 240                     | WEST MAC  | CARTHUR E     | BOULEVAR                              | ,       |                    |                 |                                      |            |                        |                                |                                       | 230 WEST MACARTHU      |
|                                 | /29/04 20.5                  |            | <0.005                | <0.005         | <0.005     | <0.015              |                         |           |               |                                       |         |                    |                 | !                                    |            |                        |                                |                                       |                        |
| OAW-BH12 4,                     | /29/04 23.5                  | <3.0       | <0.005                | <0.005         | <0.005     | <0.015              |                         |           |               |                                       |         |                    |                 |                                      |            |                        |                                |                                       |                        |
| OAW-MW5 2                       | 2/13/01 5                    | <10        | <0.005                | <0.005         | <0.005     | <0.015              | ]                       |           |               |                                       |         |                    |                 | !                                    |            |                        |                                |                                       |                        |
| OAW-MW5 2                       | 2/13/01 10                   | <10        | <0.005                | <0.005         | <0.005     | <0.015              |                         |           |               |                                       |         |                    |                 | I                                    |            |                        |                                |                                       |                        |
| OAW-MW5 2                       | 2/13/01 15                   | 11,700     | 25.6                  | 12             | 55.8       | 38.6                |                         |           |               |                                       |         |                    |                 |                                      | _          |                        |                                |                                       |                        |
| OAW-MW5 2                       | 2/13/01 20                   | <5.0       | <0.005                | <0.005         | <0.005     | <0.015              | 1                       |           | 2             | ۵                                     |         |                    | 2A              |                                      |            |                        | 2A                             | _                                     | 2C                     |
| OAW-MW5 1/                      | /26/16 17.5                  | 8 1,700    | 13                    | 2.0            | 1.0        | 14                  |                         |           | 2             | ~                                     |         |                    | 20              | :                                    |            |                        | 27                             | _                                     | 20                     |
| S-MW2 1                         | 1/7/88 5                     | <10        | < 0.003               | 0.0161         | < 0.003    | < 0.003             |                         |           |               |                                       |         |                    |                 |                                      | -          |                        |                                | _                                     |                        |
|                                 | 1/7/88 10                    | <10        | <0.003                | 0.0093         | <0.003     | <0.003              |                         |           |               |                                       |         |                    |                 | :                                    |            |                        |                                | _                                     | 00                     |
|                                 | 1/7/88 15                    | <10        | < 0.003               | 0.010          | <0.003     | < 0.003             | 1                       |           | 2             | 9                                     |         |                    | 2A              |                                      |            |                        | 2A                             | _                                     | 20                     |
|                                 | 25/11 17.5                   |            | < 0.50                | <0.50          | < 0.50     | <1.0                |                         |           |               |                                       |         |                    |                 |                                      | _          |                        |                                | _                                     |                        |
|                                 |                              |            | 1                     |                |            |                     | ן<br>ר                  |           |               |                                       |         |                    |                 |                                      |            |                        |                                | _                                     |                        |
|                                 | 2/7/88 10                    | 278        | < 0.050               | 0.388          | < 0.003    | 0.411               | -                       |           | 2             | 4                                     |         |                    | 2A              | :                                    |            |                        | 2A                             | _                                     | 2C                     |
|                                 | 2/7/88 15                    | <10        | < 0.003               | 0.0367         | < 0.003    | <0.003              |                         |           |               |                                       |         |                    |                 |                                      |            |                        |                                |                                       |                        |
|                                 | 2/7/88 20                    | <10        | <0.003                | 0.0304         | 0.0076     | <0.003              |                         |           |               |                                       |         |                    |                 |                                      |            |                        |                                |                                       |                        |
| S-MW3 3.<br>Soil analytical res | 2/25/11 14.1                 |            | <0.50                 | <0.50          | <0.50      | <1.0                |                         |           | 2             | Ą                                     |         |                    | 2A              |                                      |            |                        | 2A                             | _                                     | 2C                     |
| -                               | oundwater ana                |            | groundwater           |                |            | r μg/L              |                         |           |               |                                       |         |                    |                 | !                                    |            |                        |                                |                                       |                        |
|                                 | et below groun               | -          |                       | ų              |            |                     |                         |           |               |                                       |         |                    |                 |                                      |            |                        |                                |                                       |                        |
|                                 | otal petroleum h             |            | I<br>Anilosep se s    |                |            | EXERC               | ISE                     |           | 2             | Ą                                     |         |                    | 2A              | :                                    |            |                        | 2A                             | _                                     | 2C                     |
| -                               | enzene, Toluene              | -          | -                     | n<br>I Xylenes |            |                     |                         |           |               |                                       |         |                    |                 |                                      |            |                        |                                | _                                     |                        |
|                                 | ess than the stat            | -          |                       |                |            |                     |                         |           |               | -                                     |         |                    |                 |                                      | _          |                        |                                |                                       |                        |
|                                 | /drocarbon resu              |            |                       |                |            |                     |                         |           |               |                                       | /ER*    | STANDA<br>ARKING S |                 |                                      |            |                        | 11/7/88                        |                                       |                        |
|                                 | ak(s) in the qua             |            |                       |                |            | ORMER               |                         |           |               |                                       |         | N                  |                 |                                      |            |                        | <10<br><0.003                  |                                       |                        |
|                                 | c                            | AW- HOW    | E OAW-                | 2/13/0         |            |                     |                         |           |               |                                       |         | 'IN                |                 |                                      |            |                        | 0.0116                         |                                       |                        |
|                                 | С в                          | H12 STRE   | ET MW5                | <10            |            |                     |                         |           |               |                                       |         |                    |                 |                                      |            | S-MW2                  | <0.003                         |                                       |                        |
| _                               | 4/29/04                      |            |                       | <0.00          |            | <b>FC</b>           |                         |           |               | · · · · · · · · · · · · · · · · · · · |         | Çi .               |                 |                                      |            |                        | <0.003                         |                                       |                        |
| 5 -                             |                              |            | ····· 📬 🕺             | <0.00          | 5          | <b>19</b> 2         |                         | All a she |               | - <del>G</del>                        |         | <u>d</u>           |                 |                                      |            | <b></b>                | 11/7/88                        |                                       |                        |
| 10 -                            | <0.005                       |            |                       | <0.01          |            |                     |                         |           |               |                                       | RE      | <b>a</b>           |                 | 3/25/11<br>120 <sup>m</sup><br><0.50 | <b>- v</b> |                        | <10                            |                                       |                        |
|                                 | < 0.005                      |            | 12 75                 |                | 100        |                     |                         |           | 1 10 11 1 6   |                                       | - · · · |                    |                 | <0.50                                | 11.6       |                        | <0.003                         | · · · · · · · · · · · · · · · · · · · | s                      |
| 15 -                            | <0.015                       |            |                       |                | 2 /1 7 /01 |                     |                         |           |               |                                       | • • •   |                    |                 | <0.50                                |            |                        | 0.0093                         |                                       | and the second         |
| 20 -                            | • • • <mark>4/29/04</mark>   |            | 19.29                 |                | 11,700     |                     |                         |           |               |                                       |         |                    |                 | <0.50<br><1.0                        |            |                        | <0.003                         |                                       | the state of the state |
| 25 -                            |                              | 2/         | /13/01 1/             |                | 25.6       |                     |                         |           |               |                                       |         |                    |                 |                                      | 20.8       | "∃.∖.                  | 11/7/88                        |                                       |                        |
|                                 | <0.005                       |            | <10                   | 1,700 -        | 12<br>55.8 |                     |                         |           |               |                                       |         |                    |                 |                                      |            | Ë. V                   | <10                            |                                       |                        |
| 30 -                            | <0.005                       |            | 0.005 .               | <u>13</u>      | 38.6       |                     |                         |           |               |                                       |         |                    |                 |                                      |            | <b>.</b>               | <0.003<br>0.010                |                                       |                        |
| 35 -                            | <0.015                       | 🤇          | 0.005 .               | 1.0            |            |                     |                         |           |               |                                       |         |                    |                 |                                      |            |                        | <0.003                         |                                       |                        |
|                                 |                              | <          | 0.015                 | 14             |            |                     |                         |           |               |                                       |         |                    |                 |                                      |            |                        | <0.003                         |                                       |                        |
| 40 -                            | • • • • • • • • • • • • •    |            |                       | ••••           |            |                     |                         |           |               |                                       |         |                    |                 |                                      |            |                        | •••••                          |                                       |                        |
| <u>LEGEND</u>                   |                              |            |                       |                |            |                     |                         |           |               |                                       |         |                    |                 |                                      |            |                        |                                |                                       |                        |
| OAW-MW5                         | OAKLAND AUTO                 |            | DUNDWATER             |                |            |                     | /01 Sampl               | ing date  | e<br>Inn hudi |                                       |         | accelia            | e (mg/k         | ~) <b>T</b>                          |            | 3/25/11                | Sampling o                     | date<br>Javan hvd                     | rocarbons as c         |
|                                 | MONITORING W                 | ELL        |                       |                |            | 9Hg 11,70<br>3 25.0 |                         | ne (mg    |               | ocarbo                                | ns as   | gasolin            | e (mg/k         | g) <u>i</u>                          | PHg<br>B   | 120m<br><0.50          | Benzene (µ                     |                                       | rocarbons as g         |
| S-MW3                           | SHELL GROUN                  | WATER MONI | TORING WELL           |                |            | T 12                | Toluen                  | ie (mg/   | /kg)          |                                       |         |                    |                 |                                      | Т          | <0.50                  | Toluene (µ                     | g/L)                                  |                        |
| OAW-BH12                        |                              |            | L BORING LOC          | ATIONS         |            | E 55.8              | B Ethylbo               | enzene    | (mg/kg        | J)                                    |         |                    |                 |                                      | E          | <0.50                  | Ethylbenzer                    | ne (μg/L)                             | N N                    |
|                                 | (1997 THROUG                 | H 2004)    |                       |                |            | X 38.0              |                         | xylenes   |               |                                       |         |                    |                 |                                      | X          | <1.0                   | ] Total xylen                  |                                       |                        |
|                                 | WELL SCREEN                  | D INTERVAL |                       |                | •          |                     | han the st<br>ing limit | ated Iai  | borator       | У                                     |         |                    |                 |                                      |            | _ess that<br>reporting | n the stated                   | laborator                             | У                      |
|                                 |                              |            |                       |                |            | •                   | •                       |           |               |                                       |         |                    |                 |                                      |            |                        | ns per cubic                   | litor                                 |                        |
| C - C                           | CROSS-SECTIO                 | N LINE     |                       |                | mg         | /kg milligro        | ams per ki              | logram    |               |                                       |         |                    |                 | μ                                    | •.         | -                      |                                |                                       |                        |
|                                 | APPROXIMATE                  | PROPERTY B | OUNDARY               |                |            |                     |                         |           |               |                                       |         |                    |                 |                                      |            |                        | bon result po<br>in the quanti |                                       |                        |
|                                 |                              |            |                       |                |            | COARSE G            | RAINED MATERI           | AL        |               |                                       |         |                    |                 |                                      | ŀ          | Jeak(S)                |                                |                                       | ige                    |
| ₩ <u>₹</u>                      | MINIMUM DEPT<br>TOP OF CASIN |            | DWATER (FEET          | BELOW          |            |                     |                         |           |               |                                       |         | Г                  |                 |                                      |            |                        |                                |                                       |                        |
|                                 |                              |            |                       |                |            | FINE GRAIN          | NED MATERIAL            |           |               |                                       |         |                    |                 |                                      | CF         | ROSS                   | SECTIO                         | N C-C'                                |                        |
| 20.81'                          | MAXIMUM DEP<br>TOP OF CASIN  |            | NDWATER (FEET         | BELOW          |            |                     |                         |           |               |                                       |         |                    | <b>O A</b> 1/21 |                                      |            |                        |                                |                                       |                        |
| 20.01                           |                              |            |                       |                |            | BACK FILL           | MATERIAL                |           |               |                                       |         |                    | UAKL            |                                      |            |                        | MACARTH                        |                                       | RVICE STATIO           |
| *                               | PROPOSED ST<br>PROJECTED IN  | ARWELL AND | FORMER WAST<br>ECTION | L OIL UST      |            |                     |                         |           |               |                                       |         |                    |                 | 230 A                                |            |                        | ND, CALIFO                     |                                       |                        |
|                                 |                              | •          |                       |                |            |                     |                         |           |               |                                       |         |                    |                 |                                      |            | UANLA                  | ND, CALIFU                     | AINIA                                 |                        |




| SAMPLE        | DATE           | DEPTH      | TPHg       | В                 | Т              | E              | Х       |           |                        |            |               |        |             | OAK             | LAND AUTO W | ORKS              |                      |           |
|---------------|----------------|------------|------------|-------------------|----------------|----------------|---------|-----------|------------------------|------------|---------------|--------|-------------|-----------------|-------------|-------------------|----------------------|-----------|
| OAW-MW5       | 2/13/01        | 5          | <10        | <0.005            | < 0.005        | < 0.005        | <0.015  | 1         |                        |            |               |        | ·           |                 | MACARTHUR   |                   |                      |           |
| OAW-MW5       | 2/13/01        | 10         | <10        | <0.005            | <0.005         | <0.005         | <0.015  | 1         |                        |            |               |        |             |                 |             |                   |                      |           |
| OAW-MW5       | 2/13/01        | 15         | 11,700     | 25.6              | 12             | 55.8           | 38.6    | 1         |                        | ļ          |               | Π      |             |                 |             |                   |                      | п         |
| OAW-MW5       | 2/13/01        | 20         | <5.0       | <0.005            | <0.005         | <0.005         | <0.015  |           |                        | 1          |               |        |             |                 |             |                   |                      |           |
| OAW-MW5       | 1/26/16        | 17.58      | 1,700      | 13                | 2.0            | 1.0            | 14      | 1         |                        | ļ          |               |        |             |                 |             | 1                 |                      |           |
|               |                | 1          |            |                   |                |                |         | ]         |                        | I          |               | T      |             |                 |             |                   |                      | 1         |
| OAW-MW1       | 8/7/97         | 10         | <5.0       | <0.005            | < 0.005        | <0.005         | <0.015  | -         |                        | ļ          | 17            |        | 28          | B-1             | CORR        |                   | 2B-3                 |           |
| OAW-MW1       | 8/7/97         | 17         | <5.0       | <0.005            | 0.031          | <0.005         | <0.015  | -         |                        | i          |               |        |             |                 |             |                   |                      |           |
| OAW-MW1       | 1/26/16        | 18.83      | 150        | 2.4               | <0.5           | <0.5           | 1.6     | J         |                        | I          |               |        |             |                 |             |                   |                      |           |
| OAW-MW2       | 8/7/97         | 10         | <5.0       | <0.005            | <0.005         | <0.005         | <0.015  | ]         |                        | i          |               | -      |             |                 |             |                   |                      | 1         |
| OAW-MW2       | 8/7/97         | 17         | 16         | 0.035             | 0.037          | 0.018          | 0.15    | 1         |                        | Í          |               |        | 28          | B-1             | CORR        |                   | 2B-3                 |           |
| OAW-MW2       | 1/26/16        | 18.67      | 240        | 0.52              | <0.5           | 0.72           | 0.71    |           |                        | i          |               | Γ      |             |                 |             |                   |                      | 1         |
|               | E/00/07        |            |            | .0.0000           | .0.0000        | 0.0007         | .0.0010 | ]         |                        | i          |               | ·      |             |                 |             |                   |                      |           |
| OAW-B27       | 5/23/07        | 11         | < 0.022    | < 0.0009          | <0.0008        | < 0.0007       | <0.0019 | -         |                        | i          |               | μ      |             |                 |             | 1                 |                      |           |
| OAW-B27       | 5/23/07        | 13         | <0.022     | <0.0009           | <0.0008        | <0.0007        | <0.0019 | -         |                        | i          |               |        | 28          | B-1             | CORR        |                   | 2B-3                 |           |
| OAW-B27       | 5/23/07        | 15         | <0.022     | <0.0009           | <0.0008        | <0.0007        | <0.0019 | -         |                        | ÷          |               | ſ      |             |                 | 001111      |                   |                      |           |
| OAW-B27       | 5/23/07        | 17         | <0.022     | <0.0009           | <0.0008        | <0.0007        | <0.0019 | -         |                        |            |               |        |             |                 |             |                   |                      |           |
| OAW-B27       | 5/23/07        | 19         | <0.022     | <0.0009           | <0.0008        | <0.0007        | <0.0019 | J         |                        |            |               | l      |             |                 |             | 1                 |                      |           |
| -             |                |            |            | groundwater       | analytical dat | ta reported in | μg/L    |           |                        |            |               |        | 0.5         |                 |             |                   | 00.0                 |           |
| Italics =     | Groundwa       | •          |            |                   |                |                |         |           |                        | :          |               | r      | 26          | B-1             | CORR        |                   | 2B-3                 |           |
| Depth =       | Feet below     | -          |            |                   |                |                |         |           |                        | 1          |               |        |             |                 |             |                   |                      |           |
| TPHg =        |                | -          |            | as gasoline       |                |                |         |           |                        | !          | լլլ           |        |             |                 |             |                   |                      |           |
| BTEX =        | Benzene,       | Toluene, E | Ethylbenze | ene, and Tota     | l Xylenes      |                |         |           |                        | ļ          |               |        |             | REST            |             |                   |                      |           |
| < =           | Less than      | the stated | laboratory | / reporting lin   | nit            |                |         |           |                        | ļ          |               |        | EXERCISE    | ROOM            |             | LC                | DUNGE                |           |
|               |                |            |            |                   |                |                |         |           |                        | 1          |               |        |             |                 |             |                   |                      |           |
| <u>LEGEND</u> |                |            |            |                   |                |                |         |           |                        | ļ          |               | STANE  |             |                 |             |                   |                      |           |
| OAW-MW        |                |            | ORKS GRO   | UNDWATER          |                |                |         |           |                        | I          | - 11          | PARK   | KING        |                 | 8/7/97      |                   |                      | RETAIL    |
|               | MONITO         | RING WELL  |            |                   |                |                |         |           |                        |            | - 11          | STAI   |             |                 | <5.0        |                   | 5.0                  |           |
| OAW-B27       | OAKLAN         | ID AUTO W  | ORKS SOIL  | BORING LOC        | ATIONS         |                |         |           |                        | i          | - 11          |        | FORMER      |                 | <0.005      |                   | 005                  |           |
| _             |                | THROUGH    | 2004)      |                   |                |                |         |           |                        |            | 1 <b>OA</b>   |        |             | AW-             | <0.005      |                   | 005                  | OAW- O    |
|               |                |            |            |                   |                |                |         | D         | 2                      | 2/13/01    |               |        |             | IW1             | <0.005      |                   | 000                  | MW2 B     |
|               | WELL S         | SCREENED   | INTERVAL   |                   |                |                |         |           |                        | <10        |               |        |             |                 | <0.015      |                   | .015                 |           |
|               |                |            |            |                   |                |                |         |           |                        | <0.005     |               | XA     | CACACA      | TA/A            | 8/7/97      |                   | /97                  |           |
| D             | D' CROSS-      | -SECTION   | LINE       |                   |                |                |         |           |                        | <0.005     |               | 0      | 000000      | 09090           |             |                   | 6                    | <b>``</b> |
|               |                |            |            |                   |                |                |         |           |                        | <0.005     |               | 1<br>C | aar         |                 | <0.005      |                   | )35 <mark>"</mark> * |           |
|               | APPRO2         | XIMATE PRO | OPERTY BO  | UNDARY            |                |                |         |           |                        | <0.015     |               |        |             |                 | 0.031       |                   |                      | · 🗸 🌔 🖕   |
|               |                |            |            |                   |                |                |         |           |                        |            | - <u>64</u> - | 12.75  | A A A A     | 12.75           | <0.005      |                   | 018 1                | 2.20'     |
| ₽<br>12.20'   |                | F CASING)  | JF GROUNL  | WATER (FEET       | BELOW          |                |         |           |                        |            |               |        |             | <b>B</b>        | <0.015      | 0                 | 15                   |           |
|               |                |            |            |                   |                |                |         |           | 2/13/0                 |            | Š. 1 🗖        | k 🏆 .  |             |                 | 1/26/16     | 1/2               | 6/16                 |           |
| 23.80'        |                | T CASING)  | OF GROUNI  | DWATER (FEET      | BELOW          |                |         |           | 11,700                 | )          |               | 19.29  |             | 23.36           | • 150       |                   | 40                   | - 日 - 1   |
| 23.00         |                | ,          |            |                   |                |                |         |           | 25.6                   | 2/1        | 3/01          | 1/2    | 26/16       | <b>B</b> 23.36' | 2.4         |                   |                      |           |
|               | 1              |            |            |                   |                |                |         |           | 12                     |            | 10            |        | ,700        | 20100           | <0.5        |                   | 02<br>D.5            | .3.00     |
|               | COARSE         | E GRAINED  | MATERIAL   |                   |                |                |         |           | 55.8                   | <0.        | .005          |        | 13          |                 | <0.5        |                   | 72                   |           |
|               | 1              |            |            |                   |                |                |         |           | 38.6                   | <0.        | .005          |        | 2.0         |                 | 1.6         |                   | .71                  |           |
|               | FINE G         | RAINED MA  | TERIAL     |                   |                |                |         |           |                        |            | .005          |        | 1.0         |                 |             |                   |                      |           |
|               |                |            |            |                   |                |                |         |           |                        | <0.        | .015          |        | 14          |                 |             | -PROPOSED         |                      |           |
|               | BACK F         | FILL MATER | IAL        |                   |                |                |         |           |                        |            |               |        |             |                 |             | PARKING<br>GARAGE |                      |           |
|               |                |            |            |                   |                |                |         |           |                        |            |               |        |             |                 |             | GANAGE            |                      |           |
|               |                |            |            |                   |                |                |         | _         |                        |            |               |        |             |                 |             |                   |                      |           |
| TOUL          |                | I Samp     | oling dat  | e                 |                |                |         |           |                        | ampling    |               |        |             |                 |             |                   |                      |           |
| TPHg<br>B     | 11,700<br>25.6 | Benze      | ene (mg    | um nyaroc<br>/ka) | arbons as      | gasoline (     | mg/kg)  | TPHg<br>B | <u>1,700</u> T<br>13 B | enzene (   | ua/L)         | nyaroc | arbons as g | gasoline (µ     | IG/L)       |                   |                      |           |
| T             | 12             | Tolue      | ne (mg/    | /kg)              |                |                |         | T         | 2.0 T                  | oluene (µ  | (q/L)         |        |             |                 |             |                   |                      |           |
| E             | 55.8           | Ethylt     | benzene    | (mq/kq)           |                |                |         | E         | 1.0 E                  | thylbenze  | ne (µg        | /L)    |             |                 |             |                   |                      |           |
| L X           | 38.6           |            |            | (mg/kg)           |                |                |         | Х         |                        | otal xyler |               |        |             |                 |             |                   |                      |           |
| <             | Less the       |            | stated la  | iboratory         |                |                |         | < Le      | ess than t             | he stated  | labora        | atory  |             |                 |             |                   |                      |           |
| 1             | reporting      |            |            |                   |                |                |         |           | porting lin            |            |               |        |             |                 |             |                   |                      |           |
| mg/kg         | Milligram      | is per k   | ilogram    |                   |                |                |         | µg∕L Mi   | icrograms              | per cubio  | c liter       |        | 1           |                 | CROSS 9     | SECTION D         | )-D'                 |           |
| 1             |                |            |            |                   |                |                |         |           |                        |            |               |        |             |                 |             |                   |                      |           |
| 1             |                |            |            |                   |                |                |         |           |                        |            |               |        |             |                 |             | HELL BRANDE       |                      |           |
| 1             |                |            |            |                   |                |                |         |           |                        |            |               |        | 1           | 230 ANI         |             |                   |                      | AKU       |
| -             |                |            |            |                   |                |                |         |           |                        |            |               |        | -           |                 |             |                   |                      |           |


OAKLAND, CALIFORNIA



| SAMPLE                   | DATE                    | DEPTH                 | TPHg                | В                  | Т              | E             | Х       |           |                        |                            |           |           |                     |                            |                         |                      |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |
|--------------------------|-------------------------|-----------------------|---------------------|--------------------|----------------|---------------|---------|-----------|------------------------|----------------------------|-----------|-----------|---------------------|----------------------------|-------------------------|----------------------|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| OAW-BH1                  | 1/8/97                  | 15                    | <1.0                | <0.005             | <0.005         | <0.005        | <0.005  |           |                        |                            |           |           |                     |                            | OAKLAND AU<br>EST MACAR |                      |                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |
| OAW-BH2                  | 1/8/97                  | 15                    | <1.0                | <0.005             | < 0.005        | < 0.005       | < 0.005 |           |                        |                            |           |           |                     | 240 W                      | LOT MACAR               | THUR BUC             | JLEVARD                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |
| OAW-MW4                  | 8/7/97                  | 10                    | <5.0                | <0.005             | < 0.005        | < 0.005       | <0.015  |           |                        |                            |           | [         | ]                   |                            | [                       |                      |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |
| OAW-MW4                  | 8/7/97                  | 17                    | <5.0                | <0.005             | <0.005         | <0.005        | <0.015  |           |                        |                            | 1         |           |                     |                            |                         |                      |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |
| OAW-MW4                  | 1/26/16                 | 17.58                 | 860 <sup>d</sup>    | <0.5               | <0.5           | <0.5          | < 0.5   |           |                        |                            | :<br>1    |           |                     |                            | Ir                      |                      |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |
| S-SB2b                   | 3/24/04                 | 5                     | <1.0                | <0.0050            | <0.0050        | <0.0050       | <0.0050 |           |                        |                            | i         |           |                     | 2B-1                       |                         | CORR                 |                                  | 2B-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| S-SB2b                   | 3/24/04                 | 10                    | <1.0                | <0.0050            | <0.0050        | <0.0050       | <0.0050 |           |                        |                            | i         |           |                     |                            |                         |                      |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |
| S-SB2b                   | 3/24/04                 | 15                    | <1.0                | <0.0050            | <0.0050        | <0.0050       | <0.0050 |           |                        |                            | ļ         |           |                     |                            |                         |                      |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |
| S-SB2b                   | 3/24/04                 | 17                    | <1.0                | <0.0050            | <0.0050        | <0.0050       | <0.0050 |           |                        |                            | l         |           |                     | 2B-1                       |                         |                      |                                  | 2B-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| S-SB2b                   | 3/24/04                 | 19.5                  | 10                  | <0.025             | <0.025         | <0.025        | <0.025  |           |                        |                            | <br>;     |           |                     | 201                        |                         | CORR                 |                                  | 20 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| B1                       | 9/9/17                  | 8                     | <0.49               | <0.0051            | <0.0051        | <0.0051       | <0.0102 |           |                        |                            | <br>      |           |                     |                            |                         |                      |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |
| B1                       | 9/9/17                  | 17                    | <0.51               | <0.0049            | <0.0049        | <0.0049       | <0.0098 |           |                        |                            | :<br>1    |           |                     |                            | Ir                      |                      |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |
| Soil analytica           |                         |                       |                     | groundwater        | analytical dat | a reported in | μg/L    |           |                        |                            | i         |           |                     | 2B-1                       |                         | CORR                 |                                  | 2B-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| <i>Italics</i> = Depth = | Groundwat<br>Feet below | -                     |                     |                    |                |               |         |           |                        |                            | i         |           |                     |                            |                         |                      |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |
| TPHg =                   |                         | -                     |                     | as gasoline        |                |               |         |           |                        |                            | ļ         |           |                     |                            |                         |                      |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |
| BTEX =                   |                         | •                     |                     | ene, and Tota      | I Xylenes      |               |         |           |                        |                            |           |           |                     |                            |                         |                      |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |
| < =                      |                         |                       |                     | y reporting lin    | nit            |               |         |           |                        |                            | ļ         |           |                     | 2B-1                       |                         | CORR                 |                                  | 2B-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| d =                      | Gasoline-ra             |                       |                     | aving broad        |                |               |         |           |                        |                            | <br>      |           |                     |                            |                         |                      |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |
|                          | onnonnatog              |                       |                     | grinourit.         |                |               |         |           |                        |                            | :<br>     |           |                     |                            |                         |                      |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |
| <u>LEGEND</u>            |                         |                       |                     |                    |                |               |         |           |                        |                            | i –       | _         | EXER                |                            | ST OM                   |                      | LC                               | UNGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| OAW-MW4                  | 4 OAKLA                 | ND AUTO               | WORKS GR            | OUNDWATER M        | IONITORING WE  | LL            |         |           |                        |                            | i         | 1         |                     | 1/8/97                     |                         |                      |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |
| OAW-BH2                  | 2 OAKLA<br>(1997        | ND AUTO<br>THROUGH    | WORKS SO<br>I 2004) | DIL BORING LO      | CATIONS        |               |         |           |                        |                            | l<br>İ    |           | STANDARD<br>PARKING | <1.0                       |                         |                      |                                  | RE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ETAIL             |
| S-SB2b                   | SHELL                   | . SOIL BOF            | RING LOCAT          | TIONS (1986 T      | HROUGH 2004    | ·)            |         |           |                        |                            | <br> <br> |           | STALLS              | <0.005<br><0.005           |                         |                      |                                  | OPOSED*<br>EVATOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |
| B1                       | SOIL                    | BORING LC             | CATION (C           | ARDNO, 2017)       |                |               |         |           |                        |                            | ļ         | FORM      |                     | <0.005                     | OAW-                    | OAW-                 |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (                 |
| ₿                        | WELL                    | SCREENED              | ) INTERVAL          |                    |                |               |         |           | E                      | FORMI                      |           | UST LOC   |                     | B1                         | BH2                     | MW4                  | 8/7/97<br><5.0                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |
| Е ——                     | E' cross                | S-SECTION             | LINE                |                    |                |               |         |           | 5 -                    | WASTE                      |           |           |                     |                            |                         |                      | <0.005                           | $\times$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\langle \rangle$ |
|                          | APPRO                   | DXIMATE PI            | ROPERTY E           | BOUNDARY           |                |               |         |           | 10 -                   |                            | · · · · · |           | 9/9/17<br><0.49     |                            |                         | • <b>♀</b><br>10.90' | <0.005<br><0.015                 | 1/8/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 97                |
|                          | COARS                   | SE GRAINEI            | d material          | L                  |                |               |         |           | 15 -                   | PROPOSI<br>PARKIN<br>GARAG | ED<br>NG  |           | <0.0051             |                            |                         |                      | 8/7/97                           | <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> | 0                 |
|                          | FINE (                  | GRAINED N             | IATERIAL            |                    |                |               |         |           | 20 -                   |                            |           | <u> </u>  | <0.0051<br><0.0102  |                            |                         | 19.89                | <0.005                           | <0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 05                |
|                          |                         |                       |                     |                    |                |               |         |           | 25 -                   |                            | • • • •   |           | 9/9/17              | -                          | 1/26/16                 |                      | <0.005                           | <0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 25                |
|                          | BACK                    | FILL MATE             | RIAL                |                    |                |               |         |           | 30 -                   |                            |           |           | <0.51               | · · · <b>I</b> · · · · · · | 860ď                    |                      | <0.015                           | ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |
| <b>∑</b><br>10.90'       |                         | JM DEPTH              |                     | NDWATER (FEE       | T BELOW        |               |         |           | 35 -                   |                            |           |           |                     | )                          | <0.5<br><0.5            |                      |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |
| 19.89'                   |                         | um depth<br>DF casing |                     | INDWATER (FEE      | T BELOW        |               |         |           | 40 -                   |                            |           |           | <0.0049<br><0.0098  |                            | <0.5<br><0.5            |                      |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |
|                          | 12/7/88                 | ] Samp                | ling date           | e                  |                |               |         |           | 1/26/16                | Sampling                   | date      |           |                     |                            |                         |                      |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |
| TPHg                     | <10                     | Total                 | petroleu            | ım hydroco         | arbons as      | gasoline (r   | ng/kg)  | TPHg<br>B | 860ª                   |                            | roleur    | n hydroca | rbons as ga         | soline (μg/L               | )                       |                      |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |
| B                        | <0.003<br>0.0304        | Toluer                | ne (mg,<br>ne (mg/  | ′kg)               |                |               |         | T         | <0.5<br><0.5           | Toluene (                  | μg/L      | )         |                     |                            |                         |                      |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |
| E<br>X                   | 0.0076                  | Ethylb                | enzene              | (mg/kg)<br>(mg/kg) |                |               | F       | E         | <0.5<br><0.5           | Ethylbenzo<br>Total xyle   | ene (     | μg/L)     |                     |                            |                         |                      |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |
| <                        | <0.003<br>Less thai     | n the s               | -                   |                    |                |               | L       |           | Less than              | the state                  |           |           |                     |                            |                         |                      |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |
|                          | reporting<br>Milligrams |                       | logram              |                    |                |               |         |           | reporting<br>Microgram | limit<br>Is per cub        | ic lite   | er        |                     | C                          | ROSS                    | SECTI                | ON E-E'                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |
| 575                      | <b>J</b>                | •                     | -                   |                    |                |               |         | d         | Gasoline-              | range com                  | poun      | ds        | <b></b>             |                            |                         |                      |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |
|                          |                         |                       |                     |                    |                |               |         |           | having bro             | oad chrom<br>significan    | atogr     |           | OAKLA               |                            |                         | MACART               | ANDED SER<br>HUR BOULI<br>FORNIA |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TION              |
| <b>-</b>                 |                         |                       |                     |                    |                |               |         |           |                        |                            |           |           |                     |                            |                         | ,                    |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |



| SAMPLE               | DATE                     | DEPTH                                 | TPHg                | В                      | Т                    | E                        | Х                |                                           |                |
|----------------------|--------------------------|---------------------------------------|---------------------|------------------------|----------------------|--------------------------|------------------|-------------------------------------------|----------------|
| S-MW3                | 11/7/88                  | 10                                    | <10                 | <0.003                 | 0.0116               | <0.003                   | <0.003           | -                                         |                |
| S-MW3                | 11/7/88                  | 15                                    | <10                 | < 0.003                | 0.0129               | < 0.003                  | 0.0051           |                                           |                |
| S-MW3                | 11/7/88                  | 20                                    | <10                 | <0.003                 | 0.0230               | <0.003                   | < 0.003          |                                           | 1              |
| S-MW1                | 3/25/11                  | 13.35                                 | <50                 | <0.50                  | <0.50                | <0.50                    | <1.0             |                                           |                |
| S-MW3                | 12/7/88                  | 10                                    | 278                 | < 0.050                | 0.388                | < 0.003                  | 0.411            |                                           |                |
| S-MW3<br>S-MW3       | 12/7/88<br>12/7/88       | 15<br>20                              | <10<br><10          | <0.003<br><0.003       | 0.0367<br>0.0304     | <0.003<br>0.0076         | <0.003<br><0.003 |                                           |                |
| S-1010/3             | 3/25/11                  | 14.16                                 | <50                 | <0.003                 | <0.0304              | <0.50                    | <0.003           |                                           |                |
|                      |                          | !<br>r                                |                     | 1                      |                      | 1                        |                  |                                           |                |
| S-SB7<br>S-SB7       | 4/4/06<br>4/6/06         | 5<br>10                               | 0.452               | <0.00200<br><0.00200   | <0.00200<br><0.00200 | 0.00325                  | 0.0199 <0.00500  | i                                         |                |
| S-SB7                | 4/6/06                   | 15                                    | <0.100              | <0.00200               | <0.00200             | <0.00200                 | <0.00500         |                                           |                |
|                      |                          | i i i i i i i i i i i i i i i i i i i | I                   | 1                      |                      | 1                        |                  |                                           |                |
| B3<br>Soil analytica | 9/9/17<br>al results rep | 17<br>orted in m                      | <0.50               | <0.0050<br>groundwater | <0.0050              | <0.0050<br>a reported in | <0.010           | 4 <u> </u>                                |                |
| Italics =            | Groundwat                |                                       |                     | groundwater            | anaryticar da        |                          | µg/ L            |                                           |                |
| Depth =              | Feet below               | •                                     |                     |                        |                      |                          |                  |                                           |                |
| TPHg =               | Total petro              | leum hyd                              | rocarbons           | as gasoline            |                      |                          |                  |                                           |                |
| BTEX =               | Benzene, 1               | Foluene, E                            | Ethylbenze          | ene, and Tota          | l Xylenes            |                          |                  |                                           | 1              |
| < =                  | Less than t              | he stated                             | laboratory          | / reporting lin        | nit                  |                          |                  | İ                                         |                |
| LEGEND               |                          |                                       |                     |                        |                      |                          |                  |                                           |                |
| S-MW3                | SHEL                     | L GROUND                              | WATER MON           | NITORING WELL          |                      |                          |                  |                                           |                |
| S-SB7                | SHEL                     | L SOIL BO                             | RING LOCA           | TIONS (1986            | THROUGH 200          | 4)                       |                  |                                           |                |
| B3                   |                          |                                       |                     | ARDNO, 2017            |                      |                          |                  | i N                                       |                |
| _                    |                          |                                       |                     |                        |                      |                          |                  |                                           | STANDA         |
|                      | WELL                     | SCREENE                               | D INTERVAL          |                        |                      |                          |                  |                                           | PARKI<br>STALL |
| F ——                 | F' cros                  | S-SECTION                             |                     |                        |                      |                          |                  |                                           |                |
| г ——                 | _                        |                                       | ROPERTY             |                        |                      |                          |                  |                                           | 12/7           |
|                      | APPR                     | UXIMALE P                             | RUPERIT             | BOUNDART               |                      |                          |                  | F                                         | <0.0           |
|                      | COAR                     | SE GRAINE                             | D MATERIA           | L                      |                      |                          |                  |                                           |                |
|                      | FINE                     | GRAINED I                             | MATERIAL            |                        |                      |                          |                  | 5                                         |                |
|                      |                          |                                       |                     |                        |                      |                          |                  | 10 - PROPOSED<br>PARKING                  | 3/25           |
|                      | BACK                     | FILL MATI                             | ERIAL               |                        |                      |                          |                  | GARAGE                                    | <5             |
|                      |                          |                                       |                     |                        |                      |                          |                  | 15                                        | <0.5           |
| ∑<br>10.30'          |                          | UM DEPTH<br>OF CASING                 |                     | NDWATER (FEE           | T BELOW              |                          |                  | 20 -                                      | <0.5           |
|                      |                          |                                       |                     |                        |                      |                          |                  |                                           | <0.5<br><1.    |
| 19.59'               |                          | OF CASING                             |                     | INDWATER (FE           | LI BELOW             |                          |                  | 25 -                                      |                |
|                      | 12/7/88                  | 3 Samp                                | oling dat           | e                      |                      |                          |                  | 30 -                                      |                |
| TPHg                 | 278                      | Total                                 | petrole             | um hydroc              | arbons as            | gasoline (               | (mg/kg)          | 35 -                                      |                |
| B<br>T               | <0.050<br>0.388          | _ Benzo                               | ene (mg<br>ne (mg   | / кд)<br>/kq)          |                      |                          |                  | 35 <b>-</b>                               |                |
| E                    | <0.003                   | Ethyll                                | benzene             | (mg/kg)                |                      |                          |                  | 40 -                                      |                |
| <u> </u>             | 0.411<br>Less tho        |                                       | -                   | (mg/kg)<br>aboratory   |                      |                          |                  | 45 <b>-</b>                               |                |
|                      | reporting                | ı limit                               |                     | -                      |                      |                          |                  |                                           |                |
| mg/kg                | , Milligram              | s per k                               | ilogram             |                        |                      |                          |                  | 50 -                                      |                |
|                      | 3/25/11                  |                                       | oling dat           |                        |                      |                          |                  |                                           |                |
| TPHg<br>B            | <50<br><0.50             | Total                                 | petrole<br>ene (µg, | um hydroc<br>/L)       | arbons as            | gasoline (               | (µg/L)           |                                           |                |
| T                    | <0.50                    | Tolue                                 | ne (μg/             | , μ)<br>μ)             |                      |                          |                  |                                           |                |
| E                    | <0.50                    | Ethyll                                | benzene             | (µg/L)                 |                      |                          |                  | 0 16 32                                   |                |
| X                    | <1.0<br>Less tho         |                                       | xylenes             |                        |                      |                          |                  |                                           |                |
| <                    | reporting                |                                       |                     | boratory               |                      |                          |                  | HORIZONTAL AND VERTICAL OAK               | KLAND          |
| μg/L                 | Microgra                 |                                       | cubic li            | iter                   |                      |                          |                  | SCALE IN FEET                             | 23             |
| ,                    | -                        |                                       |                     |                        |                      |                          |                  | NOTE: SCALE AND LOCATIONS ARE APPROXIMATE |                |



**CROSS SECTION F-F'** 

OAKLAND AUTO WORKS/SHELL BRANDED SERVICE STATI 230 AND 240 WEST MACARTHUR BOULEVARD OAKLAND, CALIFORNIA

| -3                         |                                                     |
|----------------------------|-----------------------------------------------------|
|                            | i i I                                               |
|                            |                                                     |
| -3                         |                                                     |
|                            |                                                     |
|                            |                                                     |
| -3                         | Ĩ I                                                 |
|                            |                                                     |
|                            |                                                     |
|                            | 1 I                                                 |
| -3                         |                                                     |
|                            |                                                     |
|                            |                                                     |
| IGE                        | Π                                                   |
|                            |                                                     |
| RET                        | AIL                                                 |
| S-MW1                      | B3                                                  |
| 3-11101                    |                                                     |
|                            | S-SB7 BOULEVARD F'                                  |
| I.                         |                                                     |
|                            | 4/4/06<br>0.452 ··· - 5                             |
| 9 ⊽ ∕                      | <0.00200 10                                         |
| 10.60                      |                                                     |
| 15.72                      | 0.00325 - 15                                        |
|                            | 4/6/06 - 20                                         |
| ··· ··/                    | <0.100                                              |
| /                          | <0.00200                                            |
|                            | ······································              |
| • / • • • •                | <0.00500 - 35                                       |
|                            | 9/17                                                |
|                            | 0.50 <0.100 - 40<br>0050 <0.00200                   |
| · · · <mark>· ·</mark> <0. | 0050 <a></a>                                        |
| $\sim$                     | 0050 <b>.</b> <0.00200<br>.010 <0.00500 <b>- 50</b> |
|                            |                                                     |
|                            |                                                     |
|                            |                                                     |
|                            | PROJECT NUMBER: E317100700 DATE: 10/19/17 FIGURE    |
|                            | APPROVED BY: DD DRAWN BY: JTP 9                     |
| ΓΙΟΝ                       | Cardno 2300 Clayton Road, Suite 200                 |
|                            | Ph: (925) 935-9920 *** Fax: (925) 935-5368          |
|                            |                                                     |