Soil and Ground Water Investigation Report

> The Home of Truth 1300 Grand Street Alameda, CA 94501

Fuel Leak Case No. RO0003248 GeoTracker Global ID T10000010386

May 2018

The Home of Truth Spiritual Center

1300 Grand St. Alameda, CA 94501 510-522-3366 ~ <u>alamedahomeoftruth@gmail.com</u> <u>http://www.thehomeoftruth.org</u>

Alameda County Environmental Health 1131 Harbor Bay Parkway Alameda, CA 94502-6577

Re: The Home of Truth Alameda ACEH LOP RO#3248 1300 Grand Street, Alameda, California 94501

To Whom It May Concern,

I have read and acknowledge the content, recommendations and/or conclusions contained in the attached document or report submitted on our behalf to ACDEH's FTP server and the SWRCB's GeoTracker website.

Sincerely,

Reedman

Judi Friedman, Administrator Authorized Representative The Home of Truth

Attachment: Report

Soil and Ground Water Investigation Report

1300 Grand Street, Alameda, CA

Fuel Leak Case No. RO0003248 GeoTracker Global ID T10000010386

> Prepared for: The Home of Truth

> > May 2018

Prepared by: AWR Environmental 2363 Mariner Square Dr. Suite 245 Alameda, CA 94501

Steven Michelson, PG

TABLE OF CONTENTS

1.	INTRODUCTION1
2.	SITE BACKGROUND.12.1Site History.12.2Site Setting.22.3Utilities.22.4Conceptual Site Model.2
3.	SOIL AND GROUND WATER SITE INVESTIGATION
4.	FINDINGS34.1Screening Criteria Selection44.2Soil Conditions44.3Ground Water Conditions44.4General Observations54.5Evaluation of Potential Risks to Human Health5
5.	CONCLUSIONS
6.	RECOMMENDATIONS
7.	REFERENCES6

Results

TABLES

Table 1.	Soil Analytical Results
Table 2.	Ground Water Analytical
Table 3.	Conceptual Site Model

FIGURES

- Figure 1. Vicinity Map
- Figure 2. Site Map
- Figure 3. Hydrocarbon Concentrations in Ground Water

APPENDICES

- Appendix A. Permits
- Appendix B. Boring Logs
- Appendix C. Laboratory Analytical Reports

1. INTRODUCTION

This Soil and Ground Water Investigation Report (SWI) was prepared by AWR Environmental (AWR) on behalf of The Home of Truth Alameda (THOT). This Report describes soil and ground water sampling performed at 1300 Grand Street, Alameda, California (Site). The scope of the investigation is outlined in the Site Investigation Work Plan (AWR, 2017), which Alameda County Department of Environmental Health (ACDEH) approved by letter in October 2017 letter.

The purpose of the investigation was to assess the existence and extent of petroleum in soil and or ground water due to the likely UST identified in the sidewalk. The objectives of the investigation were to sample and analyze soil and ground water, evaluate analytical results to characterize Site conditions, and delineate the extent of primary and secondary sources of contamination if present.

2. SITE BACKGROUND

2.1 SITE HISTORY

The Site is located on the southwest corner of the intersection of Alameda Avenue and Grand Street in Alameda, California (Figure 1). THOT is a church with residential units and is located in a residential neighborhood. The building is over 100 years old.

THOT management revealed that the basement previously contained a boiler fueled with heating oil. A small sump, or pit, is present in the basement that extends approximately 1 foot below the floor, and likely contained the boiler, which is no longer present in the basement. Two approximately 1-inch diameter fuel lines enter the pit from underground. A vent line is presently attached to the exterior of the building. The building is now heated using natural gas.

In the winter of 2017, ground water rose and infiltrated the church's basement and a petroleum sheen was observed on the water's surface. On April 26th, 2017, a geophysical survey was performed to identify a possible underground storage tank and pipelines. The survey identified a likely 1,000-gallon underground storage tank (UST) underneath the sidewalk along Alameda Ave with piping leading into the basement of the church (Figure 2). The likely UST and its piping were estimated to be 5 ft bgs and the likely UST was estimated to be 5 to 6 feet in diameter and 12 feet long. On May 1, 2017, a water sample collected from the basement revealed concentrations of petroleum hydrocarbons in the diesel range at 41,400 μ g/L (Table 1).

2.2 SITE SETTING

The Site is essentially flat at an approximate elevation of 35 feet above mean sea level. The property is approximately 2 feet above the elevation of the street. The nearest significant surface water features are the Alameda Lagoon, 0.35 miles to the south, and the Oakland Estuary, 0.65 miles to the north. Potable water is provided by the East Bay Municipal Utility District.

Depth to ground water was measured in May 2016 in monitor wells located at 2006 Encinal Ave at approximately 7 feet bgs, with a gradient toward the south-southwest. Ground water gradient at the Site is currently unknown.

Based on the recent drilling, the shallow geologic materials to a depth of approximately 16 ft bgs consist largely of fine to medium sand with silt ranging from about 5% to 35%. In some borings, a thin layer of clayey silt was encountered.

Ground water on the property was encountered at about 6 to 6.5 feet bgs. Ground water beneath the sidewalk was encountered at about 4.5 feet bgs. Ground water is likely about 1 to 2 feet below the basement.

2.3 UTILITIES

Based on the April 26th 2017 geophysical survey, Underground Services Alert (USA) markings, and April 25th 2018 utility location, one above ground and two underground utilities cross over and/or are immediately adjacent to the likely UST (Figure 2).

- PG&E natural gas line crosses directly over the likely UST. In early 2018, PG&E confirmed the location of the gas line and estimated that moving the line would cost more than \$50,000.
- Sanitary sewer crosses over the vent pipe immediately east of the likely UST.
- Alameda Power electrical power line crosses above the likely UST, approximately 15 to 20 feet above ground.

Due to complications presented by utilities on Site, Ms. Jakub with the ACDEH Local Oversight Program authorized closure of the tank in place barring a release.

2.4 CONCEPTUAL SITE MODEL

The Conceptual Site Model (CSM) is a representation of site conditions developed using available data, interpretations, and assumptions based on experience to demonstrate the relationship between contaminants of concern, transport media and mechanisms, and potential receptors. The updated major CSM elements, are highlighted in tabular format (Table 3). This CSM will be updated as new information becomes available.

3. SOIL AND GROUND WATER SITE INVESTIGATION

The Site was marked with paint and Underground Service Alert was notified at least 48 hours prior to work commencing to identify public utilities in the work area. A private utility locator was also mobilized prior to drilling to identify any additional utilities on Site. Right-of-Way permit EX18-0010 was obtained from the City of Alameda, and Well Permit W2018-0282 was obtained from the Alameda County Public Works Agency (ACPW) (Appendix A).

On April 25th, 2018, AWR advanced a total of six vertical borings to enable the collection of eleven soil and seven ground water samples (Figure 2). Drilling was performed by Cascade Drilling, a California C57 licensed drilling contractor.

Borings SB1 through SB4 were advanced using a hand auger to between 5 and 6 ft bgs, and further advanced by a truck mounted direct push drill rig to 16 ft bgs. Borings SB5 and SB6 were advanced to 12 ft bgs using a hand auger. Soil in each boring was logged and classified during drilling operations according to the Unified Soil Classification System (USCS) (Appendix B), and screened for Volatile Organic Compounds (VOCs) using a photo-ionization detector (PID).

Soil samples were collected from borings SB1 through SB4 into laboratory supplied jars and EP Method 5035 compliant Terracore sampling containers. Sample depths were selected based on requirements presented in the State Water Resources Control Board's August 2012 Low Threat Closure Policy (LTCP), as well as field observations such as PID readings, odors, as well as color changes from native brown to grey staining.

Grab ground water samples were collected from SB1 through SB4, and SB6 at 10 ft bgs, and from SB5 at 5 and 10 ft bgs, within new polyvinyl chloride (PVC) screen installed in each borehole. Ground water was collected from each boring using clean soft tubing and a peristaltic pump into three 40mL laboratory provided containers.

Following collection, soil and ground water samples were labeled and transferred to a prechilled insulated container. All samples were transported under chain-of-custody by a courier service to a California certified laboratory for analysis. After completion of drilling and sample collection, each boring location was abandoned with neat cement tremie grouted to the surface under ACPW supervision.

4. FINDINGS

Laboratory analytical results are summarized in Table 1, and the laboratory's reports are in Appendix C.

4.1 SCREENING CRITERIA SELECTION

LTCP descriptive scenarios 1-4 are not applicable at this Site because the depth to water is less than 5 ft below ground surface adjacent to the likely UST. Therefore, both the LTCP criteria and the RWQCB Environmental Screening Levels (ESLs) are used herein to evaluate the significance of the measured concentrations.

Concentrations in soil are compared to the LTCP concentrations of petroleum constituents in soil that will have no significant risk of adversely affecting human health residential scenario (Table 1), and to ESLs (Table S-2) for evaluating leaching from soil to drinking and nondrinking ground water resources.

Chemical concentrations in ground water are compared to Vapor Intrusion ESLs (Table GW-4, RWQCB, 2016). Concentrations of total petroleum hydrocarbons in groundwater are compared to gross contamination levels (Table GW-4); there are no vapor intrusion ESLs for total petroleum hydrocarbons.

The laboratory measured total petroleum hydrocarbons in three carbon chain ranges:

- C5-C12 corresponds with total petroleum hydrocarbons in the gasoline range
- C12-C22 corresponds with total petroleum hydrocarbons in the heating oil range
- C22-C23 corresponds with total petroleum hydrocarbons in motor oil range
- C32-C40 corresponds with heavy range total petroleum hydrocarbons

4.2 SOIL CONDITIONS

- The soil sample collected from 13 feet bgs in SB-3 contained concentrations of C12-C22, ethylbenzene, and naphthalene above ESLs for protecting potable ground water and TPHg for protecting non-potable ground water.
- The soil sample collected from 13 feet bgs in SB-3 contained measurable concentrations below ESLs of C5-C12, C22-C40 and toluene, and xylenes, among other relatively low concentrations of VOCs.
- Concentrations of acetone below the ESLs were present in soil collected from SB1 at 9.5 and 11 ft bgs, SB2 at 4.5 and 5.5 ft bgs, and SB3 at 4 ft bgs.

4.3 GROUND WATER CONDITIONS

• Ground water collected from SB-1 and SB-4 contained concentrations of C12-C40 petroleum hydrocarbons below ESLs and no measurable concentrations of C5-C12 petroleum hydrocarbons.

- Ground water collected from SB-2, SB-5, and SB-6 contained no measurable concentrations of petroleum hydrocarbons.
- Concentrations of C12-C22 and C22-C32 petroleum hydrocarbons in ground water collected form SB-3 and from the standing ground water collected from the basement in May 2017 above the gross contamination ESLs and at concentrations indicative of potential separate phase petroleum.
- Concentration of C5-C12 and C32-C40 petroleum hydrocarbons were measured below the gross contamination ESLs in the groundwater sample from SB3.
- No concentrations of BTEX were detected in any of the ground water samples.

4.4 GENERAL OBSERVATIONS

- Visible contamination, odors, measurable PID concentrations, and measurable laboratory concentrations of petroleum in soil and ground water are limited to the three borings (SB-1, SB-3, SB-4) advanced adjacent to the likely UST.
- No measurable petroleum was found in soil or ground water samples collected from the three borings advanced near the THOT building and northeast of the likely UST.
- The only measurable concentration of petroleum in soil was in the sample collected from 13 feet bgs in SB3, which is likely near the bottom of the suspected UST.
- Concentrations of petroleum hydrocarbons in ground water collected from SB-1 and SB-3 are indicative of possible separate phase hydrocarbons.

4.5 EVALUATION OF POTENTIAL RISKS TO HUMAN HEALTH

Based on the data, there is no significant risk to residential and recreational human health because the:

- dermal exposure pathway to soil with petroleum is severed due to the presence of hardscape and the depth to petroleum in soil exceeds 5 feet
- ingestion exposure pathway is severed due to potable water supply from EBMUD
- inhalation risk is incomplete between concentrations of volatile constituents in soil and ground water are below inhalation ESL screening criteria, although soil vapor samples have not been collected.

5. CONCLUSIONS

The following conclusions are based on field observations and analytical results to date:

- The likely UST has released heating oil to soil and ground water beneath the sidewalk.
- Concentrations of C12-C22 petroleum in saturated soil and ground water near the likely UST are indicative of potential separate phase petroleum.
- Depth to ground water at the likely UST is less than 5 feet bgs.
- Ground water gradient direction is likely to the south to southwest.
- Benzene, toluene, ethyl benzene, and xylenes are not present at concentrations likely to pose a significant risk
- Risk to human health due to ground water ingestion is unlikely because EBMUD provides potable water to the area.

6. **RECOMMENDATIONS**

- No significant risk to human health is apparent based on the data.
- Due to the likely presence of separate phase petroleum hydrocarbons, remedial action is recommended.
- Additional delineation of the impacts to soil and ground water in the immediate vicinity of the likely UST is needed to inform the design of the remedy. On Site above and below ground utilities should be assessed as potential obstacles to the remedy.
- Due to the likely southerly ground water gradient direction, delineation of impacts to ground water to the south is recommended.
- Assess possible release of fuel beneath the basement due to product lines.
- Perform a survey to identify ground water supply wells in the area.

Figure 4 depicts suggested additional sampling locations pursuant to the above recommendations.

7. REFERENCES

Applied Water Resources, *Site Investigation Work Plan,* 1300 Grand Street, Alameda CA, August 2017.

TABLES

1300 Grand Street Alameda, CA

A-BUTYLBENZENE ETHYLBENZENE ETHYLBENZENE BENZENE T,2,3-TRIMETHYLBENZENE T2-BUTANONE (MEK) P-ISOPROPYLBENZENE P-ISOPROPYLBENZENE TRICHLOROETHENE TRICHLOROETHENE TRICHLOROETHENE T,2,3-TRIMETHYLBENZENE TRICHLOROETHENE T,2,3-TRIMETHYLBENZENE TRICHLOROETHENE	mg/kg	7165 <0.00537 <0.00132 <0.00132 <0.00667 <0.00866 <0.0337 <0.0165 <0.00337 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.00667 <0.0067 <0.00677 <0.00677 <0.00677 <0.00677 <0.00677 <0.00677 <0.00677 <	7157 <0.00302 <0.00302 <0.00121 <0.00603 <0.00784 <0.00302 <0.0151 <0.00302 <0.00603 <0.00603 <0.00603 <0.00603 <0.00603 <0.00603 <0.00603 <0.00603	0146 <0.00146 <0.00222 <0.00146 <0.00282 <0.00146 <0.00292 <0.0146 <0.00285 <0.00585 <0.00117 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585 <0.00585	0156 <0.00311 <0.00125 <0.00623 <0.00623 <0.0081 0.0356 <0.0156 <0.00311 <0.00623 <0.00623 <0.00125 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0.00623 <0	0154 <0.00154 <0.00123 <0.000153 <0.000616 <0.000001 <0.0308 <0.0154 <0.00308 <0.00616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616 <0.000616	7149 <0.00299 <0.00299 <0.00119 <0.00597 <0.00776 <0.00299 <0.0149 <0.00299 <0.00297 <0.00597 <0.00119 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597 <0.00597	015 < G005 < G003 < G00120 < G00601 < G00501 < G0051 < G0051 < G00501 < G00601 < G00	7148 <0.00297 <0.00297 <0.00149 <0.00297 <0.00149 <0.00297 <0.0148 <0.00297 <0.00293 <0.00149 <0.00593 <0.00149 <0.00593 <0.00149 <0.00593 <0.00149 <0.00593 <0.00149 <0.00593 <0.00149 <0.00593 <0.00149 <0.00593 <0.00149 <0.00593 <0.00149 <0.00593 <0.00149 <0.00593 <0.00149 <0.00593 <0.00149 <0.00593 <0.00149 <0.00593 <0.00149 <0.00593 <0.00149 <0.00593 <0.00149 <0.00593 <0.00149 <0.00593 <0.00149 <0.00593 <0.00149 <0.00593 <0.00149 <0.00593 <0.00149 <0.00593 <0.00149 <0.00593 <0.00149 <0.00593 <0.00149 <0.00593 <0.00149 <0.00593 <0.00149 <0.00593 <0.00149 <0.00593 <0.00149 <0.00593 <0.00149 <0.00593 <0.00149 <0.00593 <0.00149 <0.00593 <0.00149 <0.00593 <0.00149 <0.00593 <0.00149 <0.00593 <0.00149 <0.00593 <0.00149 <0.00593 <0.00149 <0.00149 <0.00593 <0.00149 <0.00593 <0.00149 <0.00149 <0.00593 <0.00149 <0.00149 <0.00149 <0.00149 <0.00149 <0.00149 <0.00149 <0.00149 <0.00149 <0.00149 <0.00149 <0.00149 <0.00149 <0.00149 <0.00149 <0.00149 <0.00149 <0.00149 <0.00149 <0.00149 <0.00149 <0.00149 <0.00149 <0.00149 <0.00149 <0.00149 <0.00149 <0.00149 <0.00149 <0.00149 <0.00149 <0.00149 <0.00149 <0.00149 <0.00149 <0.00149 <0.00149 <0.00149 <0.00149 <0.00149 <0.00149 <0.00149 <0.00149 <0.00149 <0.00149 <0.00149 <0.00149 <0.00149 <0.00149 <0.00149 <0.00149 <0.00149 <0.00149 <0.00149 <0.00149 <0.00149 <0.00149 <0.00149 <0.00149 <0.00149 <0.00149 <0.00149 <0.00149 <0.00149 <0.00149 <0.00149 <0.00149 <0.00149 <0.00149 <0.00149 <0.00149 <0.00149 <0.00149 <0.00149 <0.00149 <0.00149 <0.00149 <0.00149 <0.00149 <0.00149 <0.00149 <0.00149 <0.00149 <0.00149 <0.00149 <0.00149 <0.00149 <0.00149 <0.00149 <0.00149 <0.00149 <0.00149 <0.00149 <0.00149 <0.00149 <0.00149 <0.00149 <0.00149 <0.00149 <0.00149 <0.00149 <0.00149 <0.00149 <0.00149 <0.00149 <0.00149 <0.00149 <0.00149 <0.00149 <0.00149 <0.00149 <0.00149 <0.00149 <0.00149 <0.00149 <0.00149 <0.00149 <0.00149 <0.00149 <0.00149 <0.00149 <0.00149 <0.00149 <0.00149 <0.00149 <0.00149 <0.00149 <0.00149 <0.00149 <0.00149 <0.00149 <0.00149 <0.00149 <0.00149 <0.00149 <0.00149 <0.00149 <0.00149	86 2.99 1.80 <0.0243 0.15 0.44 <0.609 40.30 1.85 3.64 3.50 0.12 3.76 0.85 5.99	70163 <0.0163 <0.00326 <0.00130 <0.00652 <0.00847 <0.0326 <0.0163 <0.0163 <0.0052 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0.00652 <0	7165 <0.00165 <0.00331 <0.00132 <0.00662 <0.0086 <0.0331 <0.0165 <0.00331 <0.01662 <0.00362 <0.00662 <0.00762 <0.00662 <0.00662 <0.00765 <0.00765 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.007662 <0.0076600000000000000000000000000000000	21 1.9 9.7	32 2.8	14 0.044 2.9 2.3 0.033 0.46	1.4 0.049 9.3 11 - 3.9 - 0.51 - 0.51
XYLENES, TOTAL	g/kg	-0.0086 <		-	1	9.00807 <	92200	1	- 12			-0.0086 <1	1	1	2.3	11
	m	< 0.00667 <	3	10	3			7			\sim	<0.00662 <	1	-	2.9	9.3
		<0.00132	< 0.00121	< 0.00117	<0.00125	< 0.00123	< 0.00119	< 0.00120		<0.0243	< 0.00130	<0.00132	1.9	2.8	0.044	0.049
етнугвеизеие		<0.00331	< 0.00302	<0.00292	<0.00311	< 0.00308	< 0.00299	< 0.003	< 0.00297	1.80	<0.00326	<0.00331	21	32	1.4	1.4
ZEC-BOLLARBENZENE		<0.0165	<0.0151	<0.0146	<0.0156	<0.0154	<0.	<0.015		2.99	<0.0163	<0.0165	1	-	-	
И-ВЛТҮГВЕИZЕИЕ		<0.0165	<0.0151	< 0.0146	<0.0156	< 0.0154	<0.0149	<0.015	<0.0148	3.86	< 0.0163	<0.0165	:		-	
ACETONE		< 0.0331	0.0453	0.0375	< 0.0311	0.0376	0.0764	0.036	< 0.0297	< 0.609	< 0.0326	<0.0331	:	-	0.5	0.5
С32-С40 НХDКОСАКВОИ		<4.81	<4.82	<4.68	<4.98	<4.74	<4.78	<4.81	<4.75	56	<4.42	<5.09	1	1	1	
С22-С32 НАДКОСАКВОИ		<4.81	<4.82	<4.68	<4.98	<4.74	<4.78	<4.81	<4.75	1,610	<4.42	<5.09	1	1	570	3,600
C12-C22 HYDROCARBON		<4.81	<4.82	<4.68	<4.98	<4.74	<4.78	<4.81	<4.75	13,400	<4.42	<5.09	1	1	1,000	6,500
CS - C12 HYDROCARBON		<0.12	<0.121	<0.117	<0.125	<0.118	<0.119	<0.12	<0.119	2,430	<0.113	<0.127	-	1	770	3,400
Sample Date		4/25/18	4/25/18	4/25/18	4/25/18	4/25/18	4/25/18	4/25/18	4/25/18	4/25/18	4/25/18	4/25/18	0-5 ft bgs	5-10ft bgs	Leaching to drinking GW ¹	Leaching to non drinking (
Sample Depth (ft bgs)		4	9.5	11	13	4.5	5.5	4	6	13	4	6	Residential 0-5 ft bgs	Residential 5-10ft bgs	Leaching to	Leaching to
Location ID		101	100		CDO	700		SB3		100	204	LTCP	LTCP	ESL	ESL	

Bold where above Leaching to drinking ground water ESL Highlighted where above leaching to non drinking ground water ESL LTCP State Water Board Low Threat Closure Policy Table 1: Concentrations of Petroleum Constituents in Soil That Will Have No Significant Risk of Adversely Affecting Human Health EIC S SFB asy RWQCB Table Goroundwater Vapon Intrusion Human Health Risk Screening Levels (Volatile Chemicals Only) Feb 2016 1: Leaching to Ground Water Levels (Table S-2) - Drinking Water 2 Leaching to Ground Water Levels (Table S-2) - Nondrinking Water 2 Leaching to Ground Water Levels (Table S-2) - Nondrinking Water

	Table	e 2: Ground Wate	er Analytic	al Results			
Location ID	Sample Depth (ft bgs)	Sample Date	C5-C12 HYDROCARBONS	C12-C22 HYDROCARBON	C22-C32 HYDROCARBON	C32-C40 HYDROCARBON	OTHER VOCS
					µg/L		
THOT-GW	Basement surface	5/1/2017	363	41,400	4,050	<1000	<5
SB1	10	4/25/18	<100	957	527	<182	<50
SB2	10	4/25/18	<100	<100	<100	<100	<50
SB3	10	4/25/18	2,690	25,800	4,300	170	<50
SB4	10	4/25/18	<100	221	161	<103	<50
SB5	5	4/25/18	<100	<100	<100	<100	<50
SB6	5	4/25/18	<100	<105	<105	<105	<50
300	10	4/25/18	<100	<206	<206	<206	<50
ESL	Gross Contamination Lev	/els1	50,000	2,500	2,500	50,000	

Notes

ESLs Ca SF Bay RWQCB Table GW-3 Groundwater Vapor Intrusion Human Health Risk Screening Levels (Volatile Chemicals Only) Feb 2016

¹ Hydrocarbons do not have an ESL for Vapor Intrusion Risk so Groundwater Gross Contamination ESL from table GW-4 has been used

Bold where measured above reporting limit

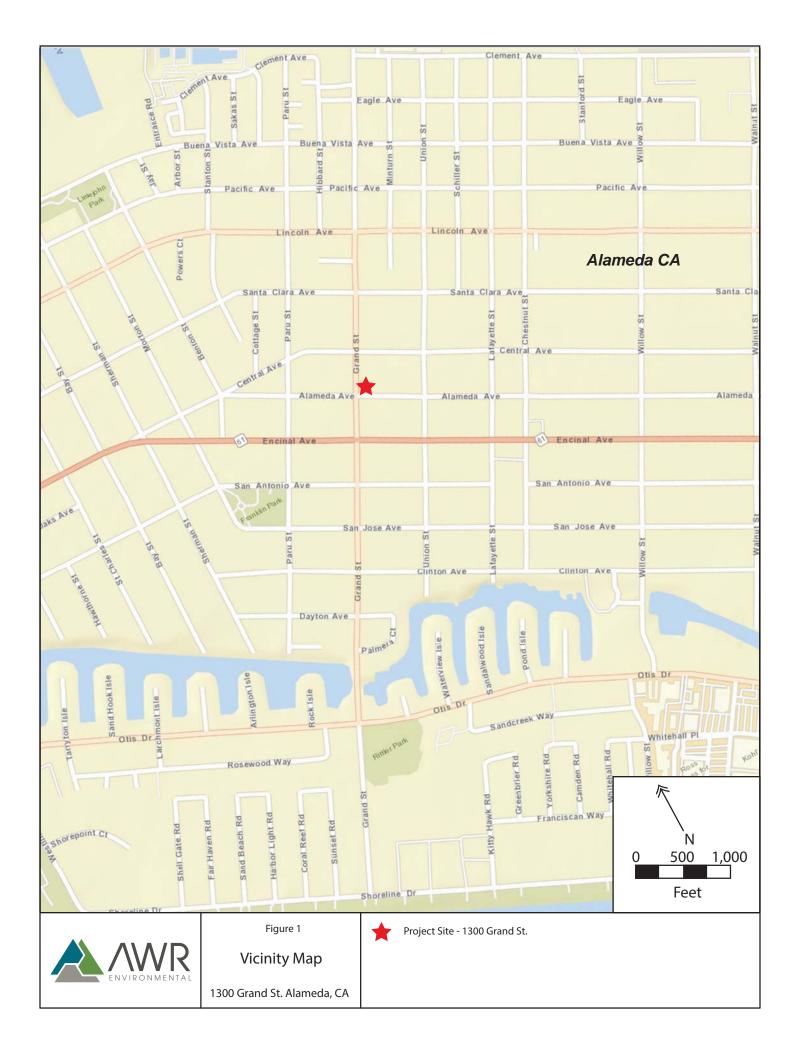
Highlighted where above ESL

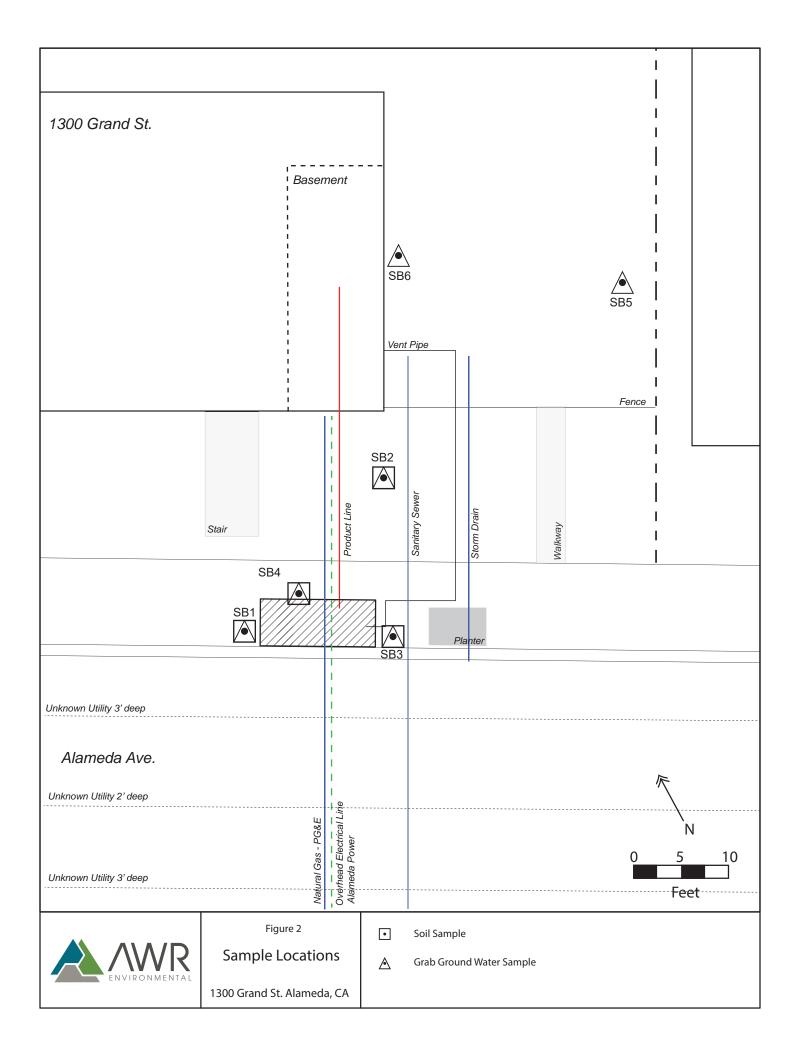
Soil and Ground Water Investigation Report The Home of Truth

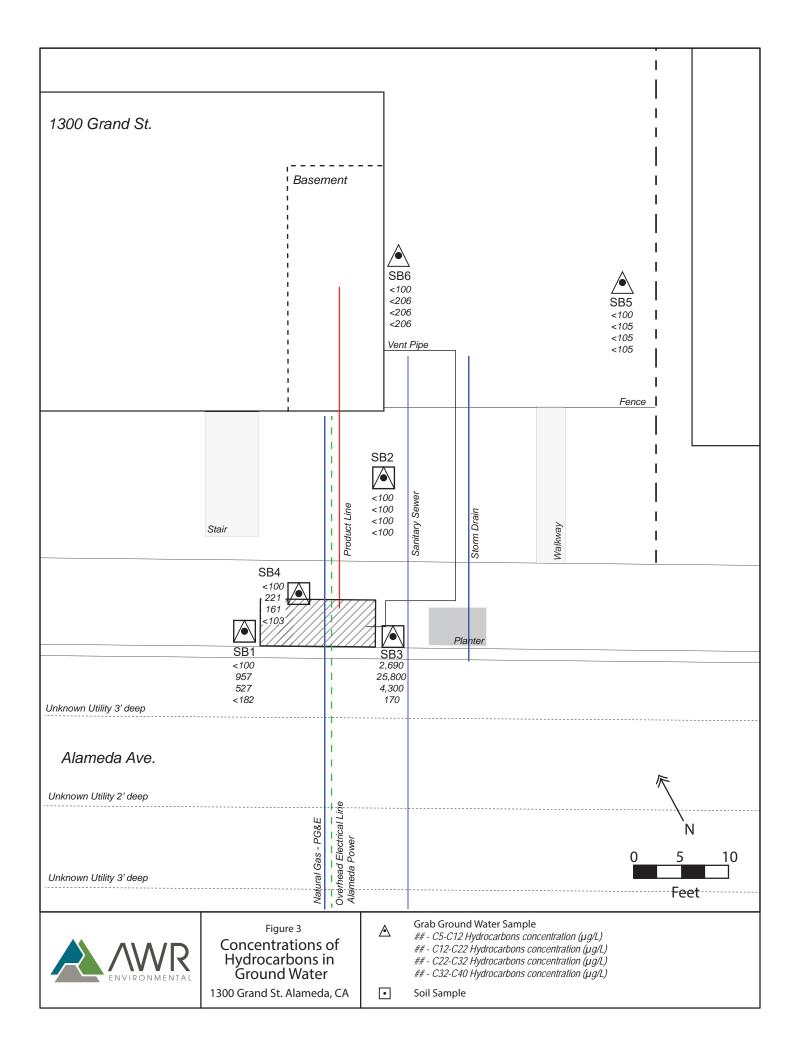
1300 Grand Street Alameda, CA

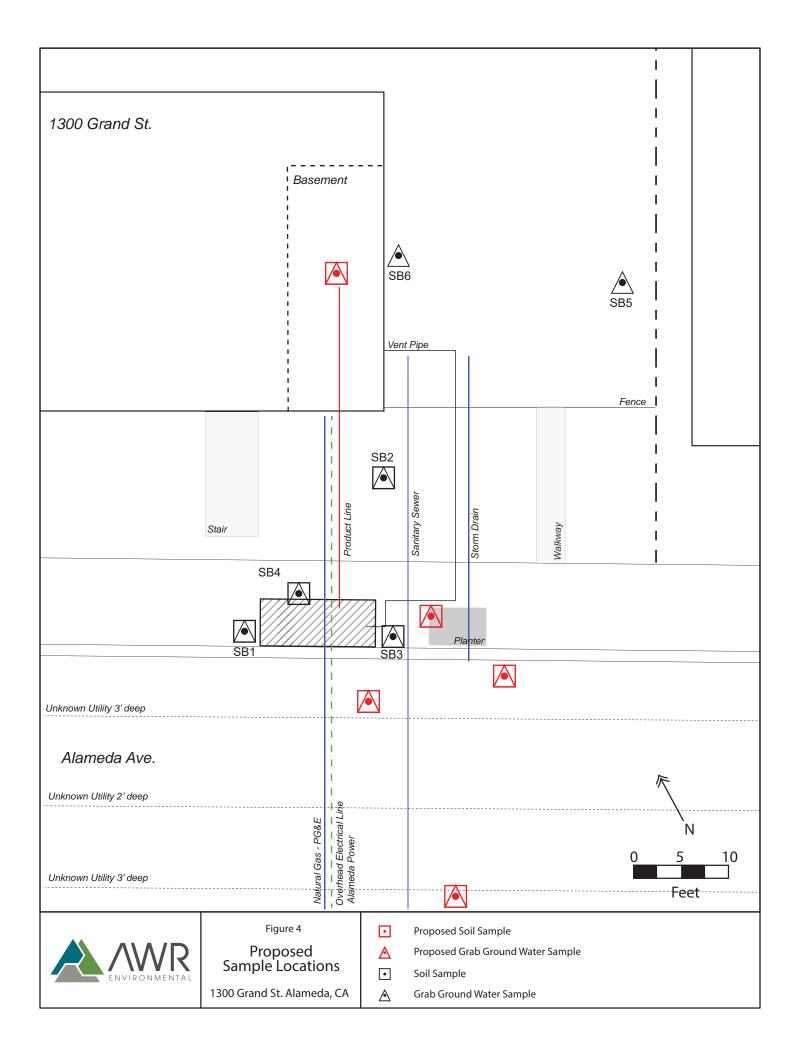
		Table 3: Conceptual Site Model		
CSM Element	CSM Sub- Element	Description	Data Gap	How to Address
Background and	Site	The Site is located in the City of Alameda on the southwest corner of the intersection of Alameda Ave and Grand Street in Alameda, California (Figure 1). The Site is a church with residential units and is located in a residential neighborhood. The church's basement previously contained a boiler fueled with heating oil. A small sump, or pit, is present in the basement that extends approximately 1 foot below the floor, and likely contained the boiler, which is no longer present in the basement. A vent line is presently attached to the exterior of the building. The building is now heated using natural gas.	None	ΨZ
Setting	Adjacent Properties	Residences are located adjacent to the Site.	None	NA
	Nearby Properties	The surrounding area is made up of residenital homes and apartments.	None	NA
	Underground Infrastructure	An inactive UST that once held heating oil is likely located beneath the sidewalk on Alameda Ave and its piping leads to the church to the street and overlies the UST.	None	NA
Geology and	Regional	This Site is located on the western margin of the East Bay Plain Subbasin of the Santa Clara Valley Ground Water Basin. The East Bay Plain subbasin aquifer system consists of unconsolidated sediments of Quatermary age. Deposits include the early Pleistocene Santa Clara Formation, the late Pleistocene Alameda Formation, the early Holocene Temescal Formation, and Artificial Fill (DWR 2004). Soil in the vicinity consists of Pleistocene beach and dune deposits (Merritt sand) consisting of loose, well sorted fine to medium sand (Helley and others 1979).	None	ΝA
туагодеогоду	Site	Soil encountered at the Site consisted mostly of poorly sorted, fine grained sand to sandy slit to maximum explored depth of approximately 16 feet below ground surface (ft bgs) with an approximate 6" clay seen at approximately 7.5 ft bgs in SBS and SBG. Ground water was measured in May 2016 in monitor wells located at 2006 Encinal Ave at approximately 7 ft bgs and the gradient is towards the south-southwest direction.	Ground water gradient at the Site is currently unknown.	Pending characterization of significant impact to ground water, monitor wells may be installed.
Surface Water Bodies		The nearest significant surface water features are the Alameda Lagoon, 0.35 miles to the south, and the Oakland Estuary, 0.65 miles to the north. The Site is essentially flat at an approximate elevation of 35 feet above mean sea level (ft msl).	None	NA
Nearby Wells		According to GeoTracker's Groundwater Ambient Monitoring and Assessment (GAMA) database, the nearest water supply well is approximately 0.7 miles east of the Site. This well is located at Alameda High School at 2201 Central Ave. The well is located upgradient of the Site and there does not appear to be any water supply wells located downgradient of the Site.	A well survey through DWR has I not been completed.	A well survey through DWR has Request a well survey through DWR for nearby not been completed.
Sensitive Receptors		The Site is located in a residential neighborhood surrounded by several residences and apartment buildings. There is a preschool located approximately 650 feet north of the Site and another preschool located 1,150 feet west of the Site. An elementary school is located 900 feet southwest of the Site.	Possible receptors are building occupants and nearby residents.	Evaulate soil vapor and ground water quality.
Sources	On-Site	Likely consisting of the UST beneath the sidewalk, piping to former boiler in basement, and/or former boiler. Concentrations of hydrocarbons were detected in groundwater in SB1, SB3, and SB4, and in soil in SB3 at 13' bgs Concentrations of hydrocarbons and VOCs were detected in soil in SB3 at 13 ft bgs	Actual source(s)	Collection and analysis of soil, ground water, and soil vapor samples.
	Off-Site	None	None	NA
Distribution of	Soil	Concentrations of hydrocarbons were detected in soil in SB3 at 13 ft bgs	Extent of soil contamination is currently unknown.	Borings in the vicinity of the UST and collect soil samples for analysis.
Petroleum Hydrocarbons	Ground Water	Distribution unknown, however a sheen was observed on ground water that infilitrated the basement during the winter. Concentrations of hydrocarbons were detected in groundwater in SB1, SB3, and SB4	Extent of ground water contamination is currently unknown.	Borings in the vicinity of the UST and collect soil samples for analysis.

May 2018


Soil and Ground Water Investigation Report The Home of Truth


1300 Grand Street Alameda, CA


		Table 3: Conceptual Site Model		
CSM Element	CSM Sub- Element	Description	Data Gap	How to Address
Distribution of Petroleum Hydrocarbons	Soil Vapor	Unknown	Extent of soil vapor contamination is currently unknown.	Install sub-slab pin in the basement of the church. Depending on grab ground water samples, soil vapor wells may be installed to assess risk to nearby residences.
	Soil	Concentrations of hydrocarbons and VOCs were detected in soil in SB3 at 13 ft bgs	Extent of soil contamination is currently unknown.	Borings in the vicinity of the UST and collect soil samples for analysis.
Distribution of Risk	Ground Water	Concentrations of petroleum hydrocarbons in ground water are significant and indicate that ground water may serve as a source to soil vapor contamination, which in turn poses a vapor intrusion risk to indoor air. Risk by direct exposure to ground water is not a concern due to the fact that ground in the vicinity is not used for drinking water purposes and the City of Alameda is served by a municipal water supply. Concentrations of hydrocarbons were detected in groundwater in SB1, SB3, and SB4	Extent of ground water contamination is currently unknown.	Borings in the vicinity of the UST as well as the surrounding area and collect ground water for analysis.
	Soil Vapor	Unknown	Extent of soil vapor contamination is currently unknown.	Install sub-slab pin in the basement of the church. Depending on grab ground water samples, soil vapor wells may be installed to assess risk to nearby residences.


FIGURES

APPENDIX A PERMITS

May 2018

Alameda County Public Works Agency - Water Resources Well Permit

399 Elmhurst Street Hayward, CA 94544-1395 Telephone: (510)670-6633 Fax:(510)782-1939

Application Approved	d on: 04/17/2018 By jamesy	Permits Va	Permit Numbers: W2018-0282 lid from 04/25/2018 to 04/25/2018		
Application Id: Site Location:	1523058969771 1300 Grand St, Alameda, CA 94501, USA	City of Project Site:Alameda Completion Date:04/25/2018			
Project Start Date:	04/25/2018				
Assigned Inspector:	Contact Eneyew Amberber at (510) 670-5759 o	r eneyew@acp	wa.org		
Applicant:	AWR Environmental - Yola Bayram 2363 Mariner Square Drive, Suite 245, Alameda	CA 04501	Phone: 510-671-2088 x51067		
Property Owner:	The Home of Truth Of Alameda 1300 Grand Street, Alameda, CA 94501	I, OA 94501	Phone:		
Client:	** same as Property Owner **				
		Total Due:	\$265.00		

 Total Due:
 \$265.00

 Receipt Number: WR2018-0193
 Total Amount Paid:
 \$265.00

 Payer Name : Steve Michelson
 Paid By: VISA
 PAID IN FULL

Works Requesting Permits:

Borehole(s) for Investigation-Contamination Study - 6 Boreholes Driller: Cascade Drilling - Lic #: 938110 - Method: DP

Work Total: \$265.00

Specifications

Permit	Issued Dt	Expire Dt	#	Hole Diam	Max Depth
Number			Boreholes		- 1999 (1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999
W2018-	04/17/2018	07/24/2018	6	2.00 in.	15.00 ft
0282					

Specific Work Permit Conditions

1. Backfill bore hole by tremie with cement grout or cement grout/sand mixture. Upper two-three feet replaced in kind or with compacted cuttings. All cuttings remaining or unused shall be containerized and hauled off site. The containers shall be clearly labeled to the ownership of the container and labeled hazardous or non-hazardous.

2. Boreholes shall not be left open for a period of more than 24 hours. All boreholes left open more than 24 hours will need approval from Alameda County Public Works Agency, Water Resources Section. All boreholes shall be backfilled according to permit destruction requirements and all concrete material and asphalt material shall be to Caltrans Spec or County/City Codes. No borehole(s) shall be left in a manner to act as a conduit at any time.

3. Permittee shall assume entire responsibility for all activities and uses under this permit and shall indemnify, defend and save the Alameda County Public Works Agency, its officers, agents, and employees free and harmless from any and all expense, cost, liability in connection with or resulting from the exercise of this Permit including, but not limited to, properly damage, personal injury and wrongful death.

4. Prior to any drilling activities, it shall be the applicant's responsibility to contact and coordinate an Underground Service Alert (USA), obtain encroachment permit(s), excavation permit(s) or any other permits or agreements required for that Federal, State, County or City, and follow all City or County Ordinances. No work shall begin until all the permits and requirements have been approved or obtained. It shall also be the applicants responsibilities to provide to the Cities or to Alameda County an Traffic Safety Plan for any lane closures or detours planned.

5. Applicant shall contact assigned inspector listed on the top of the permit at least five (5) working days prior to starting, once the permit has been approved. Confirm the scheduled date(s) at least 24 hours prior to drilling.

Alameda County Public Works Agency - Water Resources Well Permit

6. Copy of approved drilling permit must be on site at all times. Failure to present or show proof of the approved permit application on site shall result in a fine of \$500.00.

7. Electronic Reporting Regulations (Chapter 30, Division 3 of Title 23 & Division 3 of Title 27, CCR) require electronic submission of any report or data required by a regulatory agency from a cleanup site. Submission dates are set by a Regional Water Board or by a regulatory agency. Once a report/data is successfully uploaded, as required, you have met the reporting requirement (i.e. the compliance measure for electronic submittals is the actual upload itself). The upload date should be on or prior to the regulatory due date.

8. NOTE:

Under California laws, the owner/operator are responsible for reporting the contamination to the governmental regulatory agencies under Section 25295(a). The owner/operator is liable for civil penalties under Section 25299(a)(4) and criminal penalties under Section 25299(d) for failure to report a leak. The owner/operator is liable for civil penalties under Section 25299(d) for failure to report a leak. The owner/operator is liable for civil penalties under Section 25299(d) for failure to report a leak. The owner/operator is liable for civil penalties under Section 25299(b)(4) for knowing failure to ensure compliance with the law by the operator. These penalty provisions do not apply to a potential buyer.

9. Permit is valid only for the purpose specified herein. No changes in construction procedures, as described on this permit application. Boreholes shall not be converted to monitoring wells, without a permit application process.

City of Alameda

Interdepartmental Memorandum

Date: February 2, 2018

To: Permit Office

From: Oskar Garcia Public Works Department

Re: Permit No. EX18-0010, removal of underground storage tank from property.

Job Address: 1300 Grand Street

Applicant: Yola Bayram 2363 Mariner Square Drive Suite 245 Alameda CA 94501

APPROVAL NOTICE

Public Works staff has reviewed and approved the application for Permit No. EX18-0010. The following comments are the City's requirements for approval and shall be enforced, as necessary. The permittee and/or his contractor(s) shall abide by the following provisions:

Specific Comments

Civil

- 1. The Public Works Inspector shall enforce all general comments addressing restoration within the public right-of-way.
- 2. The replacement of curb, gutter, and sidewalk within the public right-of-way shall conform to City of Alameda Standard Plan 6297-24.
- 3. Applicant shall accommodate utility companies if additional access space is required to access their utility boxes that are nearby.

Traffic

1. Work hours shall be 9 am to 4 pm.

The posting of "No-Parking" signs, as applicable, is required 48 hours in advance of the work. "No-Parking" signs are available at the Planning and Building Department, Room 190, City Hall. A fee will be charged for the signs. Only City of Alameda issued "No-Parking" signs are permitted for use within the public right-of-way.

General Comments:

- 1. <u>1. Public Notifications</u>: All property owners within the immediate vicinity of the work area must be notified in writing at least 5 days prior to the start of construction. The notification letter or door hanger must include a brief description of the work and the anticipated project completion date. All public notifications must include contractor information, including company name, license number, contact person's name, and phone number, for citizens to report their concerns while work is in progress.
- 2. <u>Coordination Notification</u>: The permittee shall notify Maria DiMeglio of the Public Works Environmental Services Division at (510) 747-7958, 48-hours prior to beginning of any work within the public right-of-way.
- 3. <u>Additional Permits</u>: The Contractor shall be responsible for obtaining all additional permits prior to beginning construction for any work not contained within the scope of this permit.
- 4. <u>Designated Truck Routes</u>: All truck deliveries to the proposed work site must remain on established truck routes.
- 5. <u>USA</u>: All utilities within the work area shall be located and marked by USA prior to commencing excavation, trenching, micro-tunneling, or boring operations.
- 6. <u>Work Hours</u>: Unless stated otherwise in the specific comments, work hours are limited to the hours of 8:30 a.m. to 4:30 p.m., Monday through Friday. Be advised that uninterrupted traffic circulation within the public right-of-way is mandatory during the commute hour of 7:30 a.m. to 9:00 a.m. and 3:00 p.m. to 4:30 p.m. Work done on Saturdays, requiring inspection, is prohibited unless approved by the City Engineer and an inspector is available. Requests to work Saturday require two-week minimum prior notice. Inspection fees for Saturday work will be at time and a half (1-1/2) with a four-hour minimum. Said fee will be in accordance with the latest public works fee overtime schedule. No construction activity shall be permitted on Sundays or State and Federal holidays.
- 7. <u>Construction Staging</u>: Storage of construction materials and equipment within the public right-of-way is not permitted.

- 7. <u>Construction Staging</u>: Storage of construction materials and equipment within the public right-of-way is not permitted.
- 8. <u>URCWP (General/As Applicable)</u>: Construction materials (i.e. cement bags, paints, flammables, oils, fertilizers, pesticides, or any other materials that have potential for being discharged into the storm drain system by wind or as the result of a material spill) shall be kept in a contained and covered area on-site, as is practical, while construction is in progress. When feasible, tarps shall be used on the ground to collect fallen debris or splatters that could contribute to stormwater pollution. All temporary construction piles may remain on-site no more than 48 hours (continuous) and shall be securely covered overnight with a tarp or other device to contain debris. All construction debris shall be gathered and properly disposed of off-site on a regular basis.
- 9. <u>Noise Generating Construction Activity</u>: Maintain construction noise, dust control and cleanup to City acceptable levels. Construction equipment shall be properly muffled. Unnecessary idling of excavation and/or grading equipment is prohibited. Stationary noise-generating construction equipment such as compressors shall be located as far as practical from occupied residential housing units. Contractor shall be responsible for responding to any local complaints about construction noise.
- 10. <u>Daily Work Site Cleanup</u>: Trash and debris shall be cleaned up daily. Work area and haul routes shall be swept daily (with water sweepers) to remove construction-related materials. All construction debris shall be gathered on a regular basis and placed in a dumpster which is emptied or removed weekly. Any temporary on-site construction piles shall be securely covered with a tarp or other device to contain debris. Construction and demolition debris, and recycling, disposal shall be in accordance to the Alameda Municipal Code, Chapter XXI.
- 11. <u>Storm Water BMP</u>: Construction equipment, tools, etc. shall not be cleaned or rinsed into a street, gutter or storm drain. Concrete trucks and concrete finishing operations shall not discharge wash water into the street gutters or drains. There shall be no debris in the gutters. A contained and covered area on-site shall be used for storage of cement bags, paints, flammables, oils, fertilizers, pesticides, or any other materials that have potential for being discharged to the storm drain system by wind or in the event of a material spill. When feasible, tarps shall be used on the ground to collect fallen debris or splatters that could contribute to storm water pollution. Construction best management practices (BMP) for control of storm water runoff (e.g. straw waddles at catch basin inlets) shall be used where applicable. Contact the Public Works Environmental Services Division, at (510) 749-7930 for information on best management practices.
- 12. <u>Pavement, Traffic Striping & Detectors</u>: If the street pavement in the vicinity of the job site is damaged as a result of construction activity, then either pavement repair/reconstruction or an asphalt concrete overlay shall be required, as determined by

the City Engineer or assigned representative. Additionally, traffic striping & marking, signal detectors, curb, gutter and other concrete improvements, damaged as a result of construction shall be replaced to the satisfaction of the City Engineer or assigned representative. Installation and maintenance of temporary striping and pavement markers is required while work is ongoing.

13. <u>Traffic Control</u>: If construction work encroaches within the right-of-way, the applicant must submit a traffic control plan that conforms to the following requirements:

- The traffic control plan shall follow the standards and guidelines provided by the most recent version of the CA MUTCD and Caltrans Standard Plans.
- If a lane is to remain open, the lane width shall be at least:
 - o 12 feet on truck routes, bus routes, and paratransit routes
 - o 10 feet otherwise.
- Base the taper lengths, delineator spacing, and sign spacing on a traffic speed equal to the posted speed limit plus 5 MPH.
- Notify Joseph Robinson at AC Transit (510-891-4908) if the work zone is in a bus stop, near a bus stop, or on a bus route. The work shall not interfere with AC Transit bus service in the area. Joseph Robinson shall be notified at least 2 weeks in advance of the work.
- Notify Rochelle Wheeler at (510-747-7442) if the work zone is in or near a City of Alameda Paratransit Shuttle stop.
- Pedestrians shall be properly detoured at **appropriate crossing locations** whenever a sidewalk/crosswalk is closed. See the California MUTCD for guidance. Please keep in mind those pedestrians that may be disabled. Only one crossing at an intersection shall be closed at any time.
- Applicant shall conform to all ADA standards.
- If flaggers are used in the detour plan, they shall be shown in the drawings.
- The applicant must obtain approval from the property owner of any driveways being blocked.
- If the work is encroaching onto private properties, the applicant shall get approval from the appropriate property owners before proceeding with the work.
- If the work is on State Route 61, the applicant shall get the proper approved permits from Caltrans
- Applicant shall not park their vehicle, and not on/over curb or on the sidewalk or paths.
- 14. <u>Open Trench Excavation</u>: At no time shall there be more than 200 lineal feet of the trench opened along any single conduit alignment, including the section opened ahead of the pipe laying and the section behind the pipe laying which has not been completely backfilled and has a temporary cap. This also dictates the maximum length of right-of-way that may be posted with no parking signs at any one time.
- 15. <u>Excavation Restoration</u>: Excavation restoration in the roadway shall conform to City of Alameda Standard Plan 2930-22 and the following condition: At the direction of the City

Engineer or assigned agent, pavement restoration may extend to a maximum 18" beyond the standard plan limits where existing adjacent pavement is raveled or alligatored. Pavement restoration shall include sawcut, removal of asphalt concrete, and replacement in kind in conjunction with the trench restoration/paving course. The limits of the area within the roadway to be repaved must be pre-approved by the City Inspector. All work shall be done to the satisfaction of the City Engineer or his assigned agent.

- 16. <u>Hardscape Restoration</u>: A concrete permit is required for the demolition and restoration of concrete curb, gutter and sidewalk within the public right-of-way. Concrete restoration of concrete curb, gutter, sidewalk and/or driveway within City right-of-way shall conform to City of Alameda Standard Plan 6297-24. Also, existing decorative concrete (e.g. tinted concrete, etc.) shall be replaced in kind and to the nearest expansion joint.
- 17. <u>Site Restoration</u>: Upon completion of the work all existing improvements within the project area (e.g. landscaping, irrigation, utilities, paths, area drainage, etc.) shall be completely restored to prior condition, or better, within five (5) working days of installation. Any damage within the public-right-of-way shall be replaced at the permittee's expense to the satisfaction of the City Engineer or his designated agent.
- 18. <u>Construction Inspection</u>: The permittee shall notify the Public Works Inspector (510) 747-7930, 48-hours prior to beginning of any work within the City right-of-way. Work performed or covered without adequate notice will be subject to rejection.

Should you require further clarification regarding these comments, contact Oskar Garcia at (510) 747-7964.

OG:lk

G:\pubworks\Permits\2018\Excavation\EX18-0010.1300 Grand.Removal of underground storage tank\EX18-0010.(A).1300 Grand.Removal of underground storage tank.s1.doc

			2263 SANTA CLARA	ALAMEDA A AVENUE, ROOM 1 A, CA 94501	×.)	PUBLIC W	(510) 747-6800 4X (510) 747-6804 4X (510) 747-6804
PLAN	CHECK R	OUTE SHEET			Ĥ	ermit Numbe	EN17-0518
Application Date:11/21/2017Property Address:1300 GRAND ST ALAMEDA, CA 9450Work Description:REMOVAL OF UND			1	Buildin	g Type: Additi Conv and N		ire: and idential
VVOIR Dest	cription.	REMOVAL OF UND		AOL TANKI INC			
	Owner Information: HOME OF TRUTH A 1300 GRAND ST ALAMEDA, CA 9450				H/O Assoc. Comments:	Required: _	
Applicant I	Information:	YOLA BAYRAM 2363 MARINER SQU ALAMEDA CA, 9450			1/18/19)	ressued in	der new #
ISSUE	REVIEWING	G DEP. SENT	RET'D	HOLD	SENT	RET'D	HOLD
	Public Works	s <u>Ilþill</u>	1 11/29/17	ag	1.16.18	2/1/18 01	
RW	Risk Manage	ement <u>11/31</u>	<u>a 12/11/19</u>	- KA	12/13/17	12/14/19	
	÷	đ		0		1	

Weld Add Institled

Ch Page 1 of 17

2:19:58PM

1300 grand St.

2363 Mariner Square Drive, Suite 245 Alameda, CA 94501 el: 925 426-1112 ~ Fax 510 227-5495

MEMORANDUM

DATE:	JANUARY 3, 2018
TO:	PERMIT CENTER
FROM:	YOLA BAYRAM
RE:	Permit No. EN17-0518, Hold Notice

Message:

Please find attached two figures in response to the Hold Notice issued on November 29, 2017.

The Site Map shows the excavation plan for the removal of the underground storage tank.

The Traffic Control Plan shows the traffic control proposed for pedestrians since the sidewalk will be closed during the work. Also shown are the areas where equipment and vehicles will be parked. All vehicles and equipment will be parked in the parking lane of Alameda Ave and no impact will be made to the traffic lanes during the work.

PUBLIC WORKS

This facsimile message is for exclusive use of the addressee. This message may contain information that is privileged, confidential, and/or exempt from disclosure under applicable law. Any action to use, disclose, disseminate, distribute, or copy this communication, is limited to the addressee and is strictly prohibited by all others. If you have received this communication in error, please immediately notify the sender (above) by telephone and destroy the original. Thank you.

City of Alameda

Interdepartmental Memorandum

Date: November 29, 2017

To: Permit Office

From: Oskar Garcia Public Works Department

Re: Permit No. EN17-0518, removal of underground storage tank from property.

Job Address: 1300 Grand Street

Applicant: Yola Bayram 2363 Mariner Square Drive Suite 245 Alameda CA 94501

HOLD NOTICE

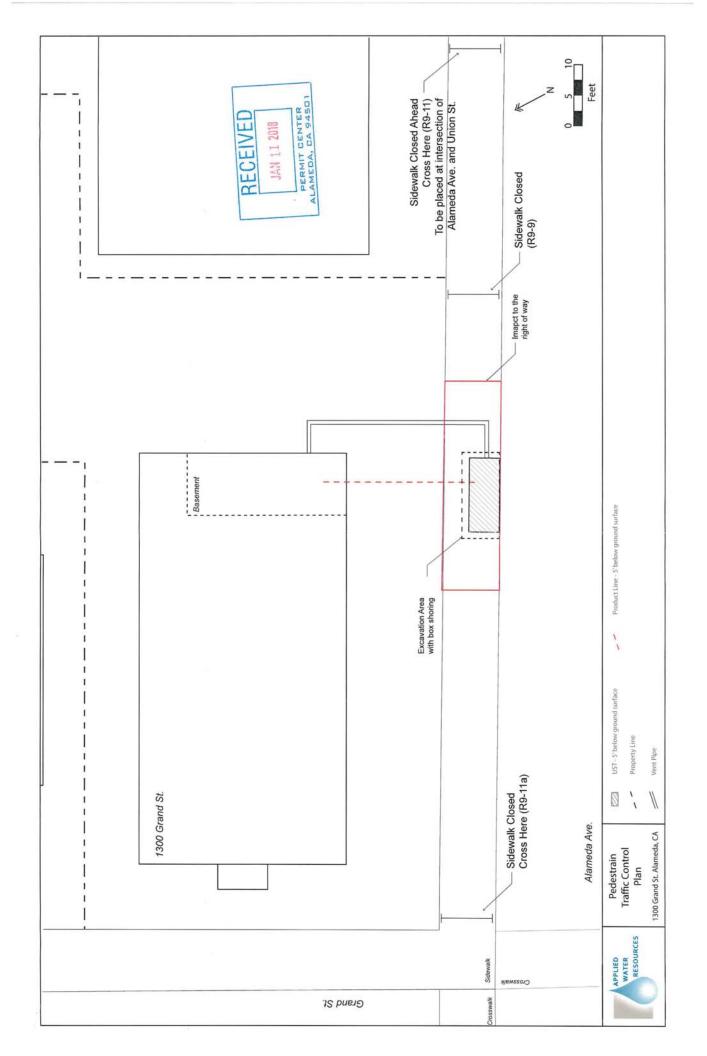
Public Works staff reviewed the submittal of permit EN17-0518 and determined that additional information is needed before this application can be approved. This permit is now placed on hold pending revisions to address the following comments:

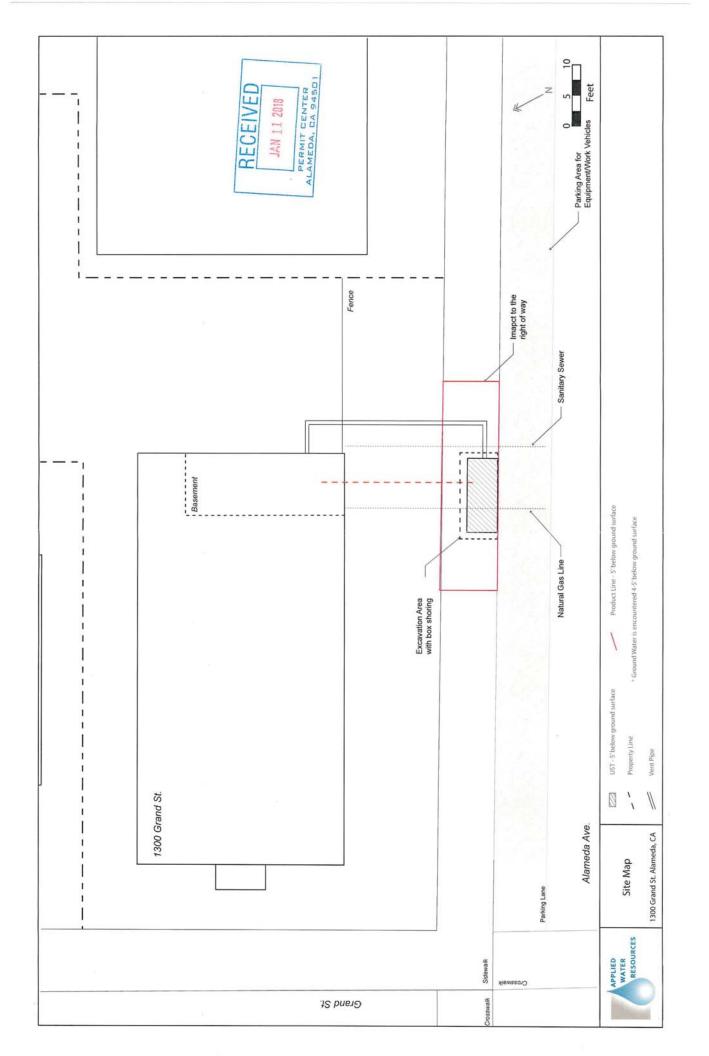
Please review the following comments and respond to each item in writing, indicating where and how each item has been addressed. Resubmittals without written responses to the specific comments will not be accepted and will result in significant delays.

Specific Comments

Traffic

- 1. It is unclear the extent and scope of the work requirements on the public right of way.
- Provide a clear excavation plan if the job requires digging to remove the tank.
- Provide a traffic control plan if the job requires the use of the public road for equipment storage or work vehicles parking.
- Provide a traffic control for pedestrians if the work requires the closure of the sidewalk. Pedestrians shall be properly detoured at **appropriate crossing locations** whenever a sidewalk/crosswalk is closed. See the California MUTCD for guidance. Please keep in mind those pedestrians that may be disabled. Only one crossing at an intersection shall


be closed at any time.


Additional hold notices may be forthcoming from other departments. When responding to Hold Notices, submit ALL information to Community Development Department Room 190, City Hall, 2263 Santa Clara Avenue to ensure correct processing of your application.

Should you require further clarification regarding these comments, contact Oskar Garcia at (510) 747-7964.

OG:lk

G:\pubworks\Permits\2017\Bncroachment\EN17-0518.1300 Grand.Removal of underground storage tank\EN17-0518.(H).1300 Grand.Removal of underground storage tank.s1.doc

APPENDIX B BORING LOGS

Locati	ion:	130) Gra	and S	treet, Ala	meda	Date: 04/25/2018	
Client							Drilling Company: Cascade	
Logge							Driller: Art	
						d: Peristaltic Pump	Drilling Method: Hand Auger/	Direct Push
Ground Water Sampling Method:Peristaltic PumpDrilling Method:Hand Auger/DSoil Sampling Method:NAGrout Materials and Method:N								
Depth (ft)	PID (ppm)	Sample	Saturated Zone	USCS	Graphic Log		Naterial Description	Remarks
01	0					Concrete		
1 2	0			SP		Fine grain sand, brown, organic content	poorly sorted, dry, 5-10%	
3 4	• 0 • 0 	SS				Fine grain sand, brown silts and clay	, poorly sorted, dry, 5-10%	
5 6	• 0 • 0		☑					
0 7	0							Modeling visible 6-13 ft bg
8 — 9 —	• 0 • 0	SS						
_ 0	- 0 - 0	GW		SP				
1 2	0	SS		5				
3	- 0 - 0	SS						
4 5	0							
6	0							Total Depth: 10
7 — 	_							
18 — _ 19 —	-							
	-							
20	rp.net						of 1	

Location: 1300 Grand Street, Alameda Date: 04/25/2018 Client: The Home of Truth Drilling Company: Cascade Logged by: Cheryl Cary Driller: Art Ground Water Sampling Method: Peristaltic Pump Content Hand Auger/Direct Push Soil Sampling Method: Push Soil Sampling Method:	Boring	J ID:	SB	2					
Logged by: Cheryl Cary Driller: Art Ground Water Sampling Method: Peristaltic Pump Drilling Method: Hand Auger/Direct Push Soil Sampling Method: NA Ground Materials and Method: Neat Cement/Tremie E	Locatio	on:	130	0 Gra	and S	treet, Ala	ameda	Date: 04/25/2018	
Ground Water Sampling Method: NA Drilling Method: Hand Auger/Direct Push Soil Sampling Method: NA Grout Materials and Method: Neat Cement/Tremie Image: Soil Sampling Method: NA Grout Materials and Method: Neat Cement/Tremie Image: Soil Sampling Method: Na Edited Sampling Method: Neat Cement/Tremie Image: Soil Sampling Method: Na Edited Sampling Method: Neat Cement/Tremie Image: Soil Sampling Method: Na Edited Sampling Method: Neat Cement/Tremie Image: Soil Sampling Method: Na Edited Sampling Method: Neat Cement/Tremie Image: Soil Sampling Method: Image: Soil Sampling Method: Neat Cement/Tremie Remarks Image: Soil Sampling Method: Image: Soil Sampling Method: Fine grain sand, brown, poorly sorted, dry, 5-10% DTW: 6.31 ft bgs at time of ground water sample Image: Soil Sampling Method: Image: Soil Sampling Method: Material Discription Material Discription Total Depth: 12' Image: Soil Sampling Method: Image: Soil Sampling Method: Material Discription Total Depth: 12' Image: Soil Sampling Method: Image: Soil Sampling Method: Material Disampling Method: Material Discription </td <td>Client:</td> <td>The</td> <td>e Ho</td> <td>me o</td> <td>of Tru</td> <td>ıth</td> <td></td> <td>Drilling Company: Cascade</td> <td></td>	Client:	The	e Ho	me o	of Tru	ıth		Drilling Company: Cascade	
Soil Sampling Method: NA Grout Materials and Method: Neat Cement/Tremie	Logge	d by	: Cl	heryl	Cary	,		Driller: Art	
End Base Base Base Base Base Base Base DTW: 6.31 ft bgs at time of ground water sample 1 1 5 1 56 1 56 1 57 1 57 1 56 1 57 1 56 1 57 1 56 1 57 1 57 1 57 1 <th>Groun</th> <th>d W</th> <th>ater</th> <th>Sam</th> <th>pling</th> <th>g Metho</th> <th>d: Peristaltic Pump</th> <th></th> <th></th>	Groun	d W	ater	Sam	pling	g Metho	d: Peristaltic Pump		
0 1	Soil Sa					NA		Grout Materials and Method: N	eat Cement/Tremie
0 1	Depth (ft)	PID (ppm)	Sample	Saturated Zone	USCS	Graphic Log		Material Description	Remarks
2 1 3 0 4 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 5 1 5 6 7 0 8 0 8 0 8 10 0 6 7 0 8 10 0 8 11 0 8 10 10 0 8 11 12 13 14 15 16 17 18 19 20 0 11 12 13 14 15 16 17 18 19 20 0 10 10	0						Landscaping Soil, Orga	anic matter	
4 1 silts and clay 5 1 ss 6 0 X 7 0 8 0 0 0 9 0 0 0 11 5 12 0 12 0 13 14 14 15 16 1 17 1 18 1 19 2 20 0	-	-			SP			a, poorly sorted, dry, 5-10%	
6 - - S - DTW: 6.31 ft bgs at time of ground water sample 7 0 -	4	-	SS	-	d'a			n, poorly sorted, dry, 5-10%	
8 0 9 0 Fine grain sand, brown, poorly sorted, dry, 5-10% silts and clay 9 0 6w 6w Fine grain sand, brown, poorly sorted, dry, 5-10% 10 0 6w 6w Fine grain sand, brown, poorly sorted, dry, 5-10% 11 0 6w Fine grain sand, brown, poorly sorted, dry, 5-10% 12 0 6w Fine grain sand, brown, poorly sorted, dry, 5-10% 12 0 10 6w Fine grain sand, brown, poorly sorted, dry, 5-10% 12 0 0 6w Fine grain sand, brown, poorly sorted, dry, 5-10% 12 0 0 6w Fine grain sand, brown, poorly sorted, dry, 5-10% 13 14 15 16 17 16 18 19 10 10 19 10 10 10 10 10 20 0 10 10 10 10	_	-	SS						DTW: 6.31 ft bgs at time of ground water sample
9 0 0 6W 5 11 0 6W 7 11 0 7 12 12 13 14 14 15 15 16 14 15 16 16 17 17 18 16 16 16 16 16 16 16 16 16 16 16 16 16	8—				SC				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		• 0	GW	-	SP			n, poorly sorted, dry, 5-10%	
14 14 15 16 17 18 19 20 0	12 —	-							Total Depth: 12'
	15 16 17 18								
	שיי – אי								
		•							

Boring ID: SB3	
Location: 1300 Grand Street, Alameda	Date: 04/25/2018
Client: The Home of Truth	Drilling Company: Cascade
Logged by: Cheryl Cary	Driller: Art
Ground Water Sampling Method: Per	Itic Pump Drilling Method: Hand Auger/Direct Push
Soil Sampling Method: NA	Grout Materials and Method: Neat Cement/Tremie
Depth (ft) PID (ppm) Sample Zone USCS Graphic Log	Material Description Remarks
1	
	n sand, brown, poorly sorted, dry, 5-10%
2 다 다 다 다 다 다 다 다 다 다 다 다 다 다 다 다 다	content
30 Fine	n sand, brown, poorly sorted, dry, 5-10%
silts	
4 ss	DTW: 4.84 ft bgs at time of
	ground water sample
6 105	Modeling visible 6-13 ft bgs
6 105 - 23	Discoloration seen in hand
7	auger cuttings at 6 ft bgs
8	Discoloration seen in core
9 98 SS &	from 7.5 to 13 ft bgs
998 SS ↔	
10 GW	
-•30	
10 12	
13 ss	
150	
16	Total Depth: 16'
17	
18	
19	
20 0	
ww.awrcorp.net 510) 671-2090	1 of 1

Locati	ion:	130) Gra	and St	treet, Ala	imeda	Date: 04/25/2018	
Client							Drilling Company: Cascade	
Logge							Driller: Art	
						d: Peristaltic Pump	Drilling Method: Hand Auger	r/Direct Push
Soil Sa						·	Grout Materials and Method:	
Depth (ft)	PID (ppm)	Sample	Saturated Zone	USCS	Graphic Log	Ν	laterial Description	Remarks
0	0					Concrete		
1 2	• 0			SP		Fine grain sand, brown, organic content	poorly sorted, dry, 5-10%	
3 — - 4 —	• 0 • 0					Fine grain sand, brown silts and clay	, poorly sorted, dry, 5-10%	DTW: 5.28 ft bgs at time of
4 — 5 —	0	SS	☑					ground water sample
6								
7 8	• 0 • 0							
9	• 0	SS		SP				
10 — - 11 —	• 0 • 0	GW						
_ 12	• 0							
13 — _ 14 —	0							
14 — 15 —	• 0							
_ 16								Total Depth: 16
17 — _ 18 —								
10 — 								
20	0							
ww.awrco	_	1			L]	4	of 1	

Boring	ID:	SB	5					
-				and S	Street, Ala	ameda	Date: 04/25/2018	
Client:	The	e Ho	me	of Tru	uth		Drilling Company: Cascade	
Logged	d by	: Cł	heryl	Cary	1		Driller: Art	
				-	-	d: Peristaltic Pump	Drilling Method: Hand Auger	
Soil Sa					NA		Grout Materials and Method: N	eat Cement/Tremie
Depth (ft)	PID (ppm)	Sample	Saturated Zone	USCS	Graphic Log	Ν	Naterial Description	Remarks
0	• 0					Landscaping Soil, Orga	anic matter	
1 2	• 0 • 0			SP		Fine grain sand, brown organic content	, poorly sorted, dry, 5-10%	
3 4	• 0 					Fine grain sand, brown silts and clay	, poorly sorted, dry, 5-10%	
5	• 0		∇	SP				
б —	• 0							
7	0	GW						DTW: 5.85 ft bgs at time of sample
8 —	0			SC		40-50% clay, 10-15% s		
9 10 11	• 0 • 0 • 0	GW	-	SP		Fine grain sand, brown silts and clay	a, poorly sorted, dry, 5-10%	
 12	• 0							Total Depth: 12'
13 14								
15	-							
 16	-							
17 18	-							
18 19	_							
20								
www.awrcorp (510) 671-209						1	of 1	

Boring	ID:	SB	6					
-				and S	treet, Ala	ameda	Date: 04/25/2018	
Client:	The	e Ho	me d	of Tru	ıth		Drilling Company: Cascade	
Logge	-		-				Driller: Art	
						d: Peristaltic Pump	Drilling Method: Hand Auger	
Soil Sa					NA		Grout Materials and Method:	Neat Cement/Tremie
Depth (ft)	PID (ppm)	Sample	Saturated Zone	USCS	Graphic Log	Ν	Naterial Description	Remarks
0	-					Landscaping Soil, Orga	nic matter	
1 2	• 0			SP		Fine grain sand, brown, organic content	, poorly sorted, dry, 5-10%	
3 4 5	• 0 • 0 • 0			SP		Fine grain sand, brown silts and clay	, poorly sorted, dry, 5-10%	
6 7	• 0	GW						DTW: 6.05 ft bgs at time of ground water sample
8				SC		40-50% clay, 10-15% sa	and	 Ground water sample collected in open hole
9 10	 0 0 0 0 0 0 0 	GW		SP			, poorly sorted, dry, 5-10%	
 12	• 0							Total Depth: 12'
13 14 15 15 16 17 18 19 20								
20 www.awrcorp (510) 671-20					I	1	of 1	

APPENDIX C

LABORATORY ANALYTICAL REPORTS

ANALYTICAL REPORT

Applied Water Resources AWR- Alameda, CA

Sample Delivery Group: Samples Received:

Project Number:

Description:

L989458 04/27/2018 THOT The Home of Truth

Report To:

Yola Bayram 2363 Mariner Square Dr Suite 245 Alameda, CA 94501

Entire Report Reviewed By:

Brian Ford

Brian Ford Technical Service Representative

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by ESC is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

TABLE OF CONTENTS

1

2

*	
¹ Cp	
² Tc	
³ Ss	
⁴ Cn	
⁵Sr	
⁶ Qc	
⁷ Gl	
⁸ Al	
°Sc	

Cn: Case Narrative Sr: Sample Results	6
Sr: Sample Results	-
	7
SB1-GW L989458-01	7
SB1-4 L989458-02	9
SB1-9.5 L989458-03	11
SB1-11 L989458-04	13
SB1-13 L989458-05	15
SB2-GW L989458-06	17
SB2-4.5 L989458-07	19
SB2-5.5 L989458-08	21
SB3-GW L989458-09	23
SB3-4 L989458-10	25
SB3-9 L989458-11	27
SB3-13 L989458-12	29
SB4-GW L989458-13	31
SB4-4 L989458-14	33
SB4-9 L989458-15	35
SB5-GW5 L989458-16	37
SB6-GW5 L989458-17	39
SB6-GW10 L989458-18	41
Qc: Quality Control Summary	43
Total Solids by Method 2540 G-2011	43
Volatile Organic Compounds (GC) by Method 8015	46
Volatile Organic Compounds (GC/MS) by Method 8260B	48
Semi-Volatile Organic Compounds (GC) by Method 3511/8015	62
Semi-Volatile Organic Compounds (GC) by Method 8015	63
GI: Glossary of Terms	64
Al: Accreditations & Locations	65
Sc: Sample Chain of Custody	66

Cp: Cover Page

Tc: Table of Contents

PROJECT: THOT SDG: L989458 DATE/TIME: 05/10/18 19:34

SAMPLE SUMMARY

ONE LAB. NATIONWIDE.

*

Ср

Тс

Ss

Cn

Sr

Qc

GI

ΆI

Sc

	SAMPLE SI	JIVIIVIAI	τ Ι	ON	E LAB. NATIONW
SB1-GW L989458-01 GW			Collected by CC / TRF	Collected date/time 04/25/18 16:00	Received date/time 04/27/18 08:45
Nethod	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Volatile Organic Compounds (GC) by Method 8015	WG1104689	1	04/29/18 14:33	04/29/18 14:33	JHH
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1104570	1	04/28/18 23:59	04/28/18 23:59	RAS
Semi-Volatile Organic Compounds (GC) by Method 3511/8015	WG1104930	1.82	04/30/18 14:56	04/30/18 21:18	SHG
SB1-4 L989458-02 Solid			Collected by CC / TRF	Collected date/time 04/25/18 11:55	Received date/time 04/27/18 08:45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Total Solids by Method 2540 G-2011	WG1105483	1	05/01/18 17:09	05/01/18 17:14	KS
Volatile Organic Compounds (GC) by Method 8015	WG1104737	1	04/25/18 11:55	04/30/18 01:02	BMB
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1106089	1.1	04/25/18 11:55	05/03/18 06:06	HAL
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1105376	1	05/02/18 09:57	05/03/18 16:24	MTJ
			Collected by	Collected date/time	Received date/tim
SB1-9.5 L989458-03 Solid			CC / TRF	04/25/18 14:25	04/27/18 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Total Solids by Method 2540 G-2011	WG1105483	1	05/01/18 17:09	05/01/18 17:14	KS
Volatile Organic Compounds (GC) by Method 8015	WG1104737	1	04/25/18 14:25	04/30/18 01:25	BMB
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1106089	1	04/25/18 14:25	05/03/18 06:27	JAH
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1105376	1	05/02/18 09:57	05/03/18 16:40	MTJ
SB1-11 L989458-04 Solid			Collected by CC / TRF	Collected date/time 04/25/18 14:35	Received date/tim 04/27/18 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Total Solids by Method 2540 G-2011	WG1105483	1	05/01/18 17:09	05/01/18 17:14	KS
Volatile Organic Compounds (GC) by Method 8015	WG1104737	1	04/25/18 14:35	04/30/18 01:48	BMB
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1106089	1	04/25/18 14:35	05/03/18 06:47	JAH
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1105376	1	05/02/18 09:57	05/03/18 19:26	MTJ
			Collected by	Collected date/time	Received date/tim
SB1-13 L989458-05 Solid			CC / TRF	04/25/18 14:45	04/27/18 08:45
Method	Batch	Dilution	Preparation date/time	Analysis dato/timo	Analyst
Fotal Solids by Method 2540 G-2011	WG1105483	1	05/01/18 17:09	date/time 05/01/18 17:14	KS
/olatile Organic Compounds (GC) by Method 8015	WG1105485 WG1104737	1	04/25/18 14:45	04/30/18 02:12	BMB
Volatile Organic Compounds (GC/MS) by Method 8015	WG1104737 WG1106089	1	04/25/18 14:45	05/03/18 07:08	JAH
Semi-Volatile Organic Compounds (GC/MS) by Method 82008	WG1105376	1	05/02/18 09:57	05/03/18 07:55	MTJ
		,	00,02,10,00.07		mið
			Collected by CC / TRF	Collected date/time 04/25/18 16:25	Received date/tim 04/27/18 08:45
SB2-GW L989458-06 GW					
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Volatile Organic Compounds (GC) by Method 8015	WG1104689	1	04/29/18 14:55	04/29/18 14:55	JHH
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1104570	1	04/29/18 00:20	04/29/18 00:20	RAS
relative organice compounds (como) by method of cob			04/30/18 14:56	04/30/18 21:34	SHG

PROJECT: THOT SDG: L989458 DATE/TIME: 05/10/18 19:34 **PAGE**: 3 of 67

SAMPLE SUMMARY

	SAMPLE SU	JMMA	2Y	ON	IE LAB. NATIONWID)E. 🗮
SB2-4.5 L989458-07 Solid			Collected by CC / TRF	Collected date/time 04/25/18 10:40	Received date/time 04/27/18 08:45	¹ Cp
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	- ² Tc
Total Solids by Method 2540 G-2011 Volatile Organic Compounds (GC) by Method 8015 Volatile Organic Compounds (GC/MS) by Method 8260B Semi-Volatile Organic Compounds (GC) by Method 8015	WG1105483 WG1104737 WG1106089 WG1105376	1 1 1.04 1	05/01/18 17:09 04/25/18 10:40 04/25/18 10:40 05/02/18 09:57	05/01/18 17:14 04/30/18 02:35 05/03/18 07:29 05/03/18 18:10	KS BMB JAH MTJ	³ Ss
SB2-5.5 L989458-08 Solid			Collected by CC / TRF	Collected date/time 04/25/18 11:05	Received date/time 04/27/18 08:45	⁵ Sr
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	6
Total Solids by Method 2540 G-2011 Volatile Organic Compounds (GC) by Method 8015 Volatile Organic Compounds (GC/MS) by Method 8260B Semi-Volatile Organic Compounds (GC) by Method 8015	WG1105483 WG1104737 WG1106089 WG1105376	1 1 1 1	05/01/18 17:09 04/25/18 11:05 04/25/18 11:05 05/02/18 09:57	05/01/18 17:14 04/30/18 06:49 05/03/18 07:50 05/03/18 19:41	KS BMB JAH MTJ	- Qc ⁷ Gl ⁸ Al
SB3-GW L989458-09 GW			Collected by CC / TRF	Collected date/time 04/25/18 15:33	Received date/time 04/27/18 08:45	⁹ Sc
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	
Volatile Organic Compounds (GC) by Method 8015 Volatile Organic Compounds (GC/MS) by Method 8260B Semi-Volatile Organic Compounds (GC) by Method 3511/8015 Semi-Volatile Organic Compounds (GC) by Method 3511/8015	WG1104689 WG1104570 WG1104930 WG1104930	1 1 1.25 6.25	04/30/18 17:20 04/29/18 00:41 04/30/18 14:56 04/30/18 14:56	04/30/18 17:20 04/29/18 00:41 04/30/18 21:50 05/01/18 15:22	ACG RAS SHG MTJ	
SB3-4 L989458-10 Solid			Collected by CC / TRF	Collected date/time 04/25/18 11:45	Received date/time 04/27/18 08:45	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	-
Total Solids by Method 2540 G-2011 Volatile Organic Compounds (GC) by Method 8015 Volatile Organic Compounds (GC/MS) by Method 8260B Semi-Volatile Organic Compounds (GC) by Method 8015	WG1105483 WG1104737 WG1106089 WG1105376	1 1 1 1	05/01/18 17:09 04/25/18 11:45 04/25/18 11:45 05/02/18 09:57	05/01/18 17:14 04/30/18 07:13 05/03/18 08:11 05/03/18 18:23	KS BMB JAH MTJ	
SB3-9 L989458-11 Solid			Collected by CC / TRF	Collected date/time 04/25/18 13:30	Received date/time 04/27/18 08:45	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	-
Total Solids by Method 2540 G-2011 Volatile Organic Compounds (GC) by Method 8015 Volatile Organic Compounds (GC/MS) by Method 8260B Semi-Volatile Organic Compounds (GC) by Method 8015	WG1105483 WG1104737 WG1106089 WG1105376	1 1 1 1	05/01/18 17:09 04/25/18 13:30 04/25/18 13:30 05/02/18 09:57	05/01/18 17:14 04/30/18 07:36 05/03/18 08:32 05/03/18 18:39	KS BMB JAH MTJ	
SB3-13 L989458-12 Solid			Collected by CC / TRF	Collected date/time 04/25/18 13:45	Received date/time 04/27/18 08:45	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	-
Total Solids by Method 2540 G-2011 Volatile Organic Compounds (GC) by Method 8015 Volatile Organic Compounds (GC/MS) by Method 8260B Semi-Volatile Organic Compounds (GC) by Method 8015 Semi-Volatile Organic Compounds (GC) by Method 8015	WG1105483 WG1104737 WG1106111 WG1105376 WG1105376	1 500 20 100 2	05/01/18 17:09 04/25/18 13:45 04/25/18 13:45 05/02/18 09:57 05/02/18 09:57	05/01/18 17:14 05/02/18 02:41 05/03/18 03:50 05/03/18 21:32 05/03/18 19:54	KS DWR DWR MTJ MTJ	-
ACCOUNT: Applied Water Resources AWR- Alameda, CA	PROJECT: THOT		SDG: L989458	DATE/TIME: 05/10/18 19:34		PAGE: of 67

SAMPLE SUMMARY

ONE LAB. NATIONWIDE.

*

Ср

Тс

Ss

Cn

Sr

Qc

GI

ΆI

Sc

	SAMPLE SU	JININA	ΥΎ	ON	E LAB. NATIONW
SB4-GW L989458-13 GW			Collected by CC / TRF	Collected date/time 04/25/18 16:15	Received date/time 04/27/18 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
/olatile Organic Compounds (GC) by Method 8015	WG1104689	1	04/29/18 15:17	04/29/18 15:17	JHH
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1104570	1	04/29/18 01:02	04/29/18 01:02	RAS
Semi-Volatile Organic Compounds (GC) by Method 3511/8015	WG1104930	1.03	04/30/18 14:56	04/30/18 22:06	SHG
SB4-4 L989458-14 Solid			Collected by CC / TRF	Collected date/time 04/25/18 15:05	Received date/time 04/27/18 08:45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Fotal Solids by Method 2540 G-2011	WG1105499	1	05/02/18 15:24	05/02/18 15:32	KS
/olatile Organic Compounds (GC) by Method 8015	WG1104737	1.02	04/25/18 15:05	05/02/18 03:59	DWR
/olatile Organic Compounds (GC/MS) by Method 8260B	WG1106111	1.18	04/25/18 15:05	05/02/18 23:29	DWR
iemi-Volatile Organic Compounds (GC) by Method 8015	WG1105376	1	05/02/18 09:57	05/03/18 18:55	MTJ
SB4-9 L989458-15 Solid			Collected by CC / TRF	Collected date/time 04/25/18 15:15	Received date/tim 04/27/18 08:45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Fotol Calido hy Mothed 2F40 C 2011	WC110C2E1	1			KC.
Fotal Solids by Method 2540 G-2011	WG1106251 WG1104737	1	05/03/18 13:35 04/25/18 15:15	05/03/18 13:44	KS DWR
/olatile Organic Compounds (GC) by Method 8015 /olatile Organic Compounds (GC/MS) by Method 8260B	WG1104737 WG1106111	1 1.04	04/25/18 15:15	05/02/18 04:23 05/02/18 23:48	DWR
Semi-Volatile Organic Compounds (GC/MS) by Method 8200B	WG1105376	1.04	05/02/18 09:57	05/03/18 19:11	MTJ
			Collected by	Collected date/time	Received date/tim
SB5-GW5 L989458-16 GW			CC / TRF	04/25/18 16:30	04/27/18 08:45
Nethod	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
/olatile Organic Compounds (GC) by Method 8015	WG1104689	1	04/29/18 15:39	04/29/18 15:39	JHH
olatile Organic Compounds (GC/MS) by Method 8260B	WG1104570	1	04/29/18 01:24	04/29/18 01:24	RAS
emi-Volatile Organic Compounds (GC) by Method 3511/8015	WG1104930	1	04/30/18 14:56	04/30/18 22:22	SHG
			Collected by	Collected date/time	Received date/tim
SB6-GW5 L989458-17 GW			CC / TRF	04/25/18 11:23	04/27/18 08:45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
/olatile Organic Compounds (GC) by Method 8015	WG1104689	1	04/29/18 16:01	04/29/18 16:01	JHH
/olatile Organic Compounds (GC/MS) by Method 8260B	WG1104570	1	04/29/18 01:45	04/29/18 01:45	RAS
Semi-Volatile Organic Compounds (GC) by Method 3511/8015	WG1104930	1.05	04/30/18 14:56	04/30/18 22:38	SHG
			Collected by CC / TRF	Collected date/time 04/25/18 16:45	Received date/tim 04/27/18 08:45
SB6-GW10 L989458-18 GW				UT/23/10 10.43	07/27/10 00.43
Nethod	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Volatile Organic Compounds (GC) by Method 8015	WG1104689	1	04/29/18 16:23	04/29/18 16:23	JHH
Volatile Organic Compounds (GC) by Method 8015 Volatile Organic Compounds (GC/MS) by Method 8260B	WG1104689 WG1104570	1 1	04/29/18 16:23 04/29/18 02:06	04/29/18 16:23 04/29/18 02:06	RAS

PROJECT: THOT SDG: L989458 DATE/TIME: 05/10/18 19:34


CASE NARRATIVE

*

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All radiochemical sample results for solids are reported on a dry weight basis with the exception of tritium, carbon-14 and radon, unless wet weight was requested by the client. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Brian Ford

Brian Ford Technical Service Representative

SDG: L989458 DATE/TIME: 05/10/18 19:34 PAGE:

6 of 67

SAMPLE RESULTS - 01 L989458

Volatile Organic Compounds (GC) by Method 8015

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l		date / time		2
TPHG C5 - C12	ND		100	1	04/29/2018 14:33	WG1104689	² .
(S) a,a,a-Trifluorotoluene(FID)	92.7		77.0-122		04/29/2018 14:33	WG1104689	
Volatile Organic Comp							3

Volatile Organic Compounds (GC/MS) by Method 8260B

AnalyteugAcetoneNCAcroleinNCAcrylonitrileNCBenzeneNCBromobenzeneNCBromodichloromethaneNCBromomethaneNCBromomethaneNCBromomethaneNCBromomethaneNCBromomethaneNCChlorobenzeneNCChlorobenzeneNCChlorobenzeneNCChlorobenzeneNCChlorodibromomethaneNCChlorodibromomethaneNCChlorodolureneNCChlorotolueneNC1,2-Dibromo-3-ChloropropaneNC1,2-DichlorobenzeneNC1,3-DichlorobenzeneNC1,3-DichlorobenzeneNC1,1-DichloroethaneNC1,1-DichloropropaneNC1,1-Dichl		ug/l 50.0 50.0 10.0 1.00 1.00 1.00 5.00 1.00 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	date / time 04/28/2018 23:59	WG1104570 WG1104570	⁵ Sr ⁶ Qc ⁷ Gl ⁸ Al ⁹ Sc
Acrolein NC Acrylonitrile NC Benzene NC Bromobenzene NC Bromodichloromethane NC Bromodichloromethane NC Bromodichloromethane NC Bromodichloromethane NC Bromodichloromethane NC Bromodethane NC n-Butylbenzene NC Sec-Butylbenzene NC Carbon tetrachloride NC Chlorobenzene NC Chlorodibromomethane NC Chlorodibromomethane NC Chlorodoluene NC 1,2-Dibromo-3-Chloropropane NC 1,2-Dibromo-3-Chloropropane NC 1,2-Dibromo-3-Chloropropane NC 1,2-Dibromoethane NC 1,2-Dichlorobenzene NC 1,1-Dichlorobenzene NC 1,1-Dichlorobenzene NC 1,1-Dichloroethane NC 1,2-Dichloroethane NC 1,1-Dichloroethane NC 1,2-Dichloroethene NC 1,2-Dichloroethene NC		50.0 10.0 1.00 1.00 1.00 5.00 1.00 1.00	1 1 1 1 1 1 1 1 1 1 1 1 1 1	04/28/2018 23:59 04/28/2018 23:59	WG1104570	⁶ Qc ⁷ Gl ⁸ Al
Acrylonitrile NE Benzene NE Benzene NE Bromobenzene NE Bromodichloromethane NE Bromodichloromethane NE Bromonform NE Bromomethane NE Bromomethane NE Bromomethane NE Sec-Butylbenzene NE Carbon tetrachloride NE Chlorobenzene NE Chlorodibromomethane NE Chlorodibromomethane NE Chlorodoluene NE 1,2-Dibromo-3-Chloropropane NE 1,2-Dibromo-3-Chloropropane NE 1,2-Dibromoethane NE 1,2-Dibromoethane NE 1,2-Dibromoethane NE 1,2-Dichlorobenzene NE 1,1-Dichlorobenzene NE 1,2-Dichlorobenzene NE 1,1-Dichloroethane NE 1,2-Dichloroethane NE 1,1-Dichloroethene NE 1,2-Dichloroethene NE 1,2-Dichloropenpane NE <t< td=""><td></td><td>10.0 1.00 1.00 1.00 5.00 1.00 1.00 1.00 1.00 1.00 1.00 5.00 2.50 1.00 1.00 1.00 5.00 2.50 1.00 1.00</td><td>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td><td>04/28/2018 23:59 04/28/2018 23:59</td><td>WG1104570 WG1104570 WG1104570</td><td>⁶Qc ⁷Gl ⁸Al</td></t<>		10.0 1.00 1.00 1.00 5.00 1.00 1.00 1.00 1.00 1.00 1.00 5.00 2.50 1.00 1.00 1.00 5.00 2.50 1.00 1.00	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	04/28/2018 23:59 04/28/2018 23:59	WG1104570	⁶ Qc ⁷ Gl ⁸ Al
Benzene NC Bromobenzene NC Bromodichloromethane NC Bromoform NC Bromomethane NC Bromomethane NC Bromomethane NC Bromomethane NC sec-Butylbenzene NC carbon tetrachloride NC Chlorobenzene NC Chlorodibromomethane NC Chlorodothane NC Chlorodothane NC Chlorotoluene NC 4-Chlorotoluene NC 1,2-Dibromo-3-Chloropropane NC 1,2-Dibromoethane NC 1,2-Dibromoethane NC 1,2-Dichlorobenzene NC 1,3-Dichlorobenzene NC 1,4-Dichlorobenzene NC 1,1-Dichlorobenzene NC 1,2-Dichlorobenzene NC 1,1-Dichlorobenzene NC 1,1-Dichlorobenzene NC 1,1-Dichlorobethane NC 1,2-Dichlorobethane NC 1,2-Dichlorobethane NC 1,2-Dichloropethane NC 1,1-Dichloropethene NC 1,2-Dichloropethene NC 1,2-Dichloropethene NC <t< td=""><td></td><td>1.00 1.00 1.00 5.00 1.00 1.00 1.00 1.00 1.00 1.00 5.00 2.50 1.00 1.00 1.00 5.00 2.50 1.00</td><td>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td><td>04/28/2018 23:59 04/28/2018 23:59</td><td>WG1104570 WG1104570 WG1104570</td><td>⁷GI ⁸AI</td></t<>		1.00 1.00 1.00 5.00 1.00 1.00 1.00 1.00 1.00 1.00 5.00 2.50 1.00 1.00 1.00 5.00 2.50 1.00	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	04/28/2018 23:59 04/28/2018 23:59	WG1104570	⁷ GI ⁸ AI
Bromobenzene NE Bromodichloromethane NE Bromoform NE Bromomethane NE Bromomethane NE n-Butylbenzene NE sec-Butylbenzene NE Carbon tetrachloride NE Chlorobenzene NE Chlorodibromomethane NE Chlorodoform NE Chlorodoform NE Chlorodoluene NE 4-Chlorotoluene NE 1,2-Dibromo-3-Chloropropane NE 1,2-Dibromoethane NE 1,2-Dibromoethane NE 1,2-Dichlorobenzene NE 1,2-Dibromoethane NE 1,2-Dibromoethane NE 1,2-Dichlorobenzene NE 1,4-Dichlorobenzene NE 1,4-Dichlorobenzene NE 1,1-Dichlorobenzene NE 1,1-Dichloroethane NE 1,2-Dichloroethane NE 1,2-Dichloroethane NE 1,2-Dichloropenzene NE 1,1-Dichloropethane NE		1.00 1.00 5.00 1.00 1.00 1.00 1.00 1.00	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	04/28/2018 23:59 04/28/2018 23:59 04/28/2018 23:59 04/28/2018 23:59 04/28/2018 23:59 04/28/2018 23:59 04/28/2018 23:59 04/28/2018 23:59 04/28/2018 23:59 04/28/2018 23:59 04/28/2018 23:59 04/28/2018 23:59 04/28/2018 23:59 04/28/2018 23:59 04/28/2018 23:59 04/28/2018 23:59 04/28/2018 23:59 04/28/2018 23:59 04/28/2018 23:59	WG1104570	⁷ GI ⁸ AI
Bromodichloromethane NC Bromooform NC Bromooform NC Bromooform NC Bromomethane NC n-Butylbenzene NC sec-Butylbenzene NC Carbon tetrachloride NC Carbon tetrachloride NC Chlorobenzene NC Chlorodibromomethane NC Chloroothane NC Chlorodotluene NC 1,2-Dibromo-3-Chloropropane NC 1,2-Dibromoethane NC 1,2-Dibromoethane NC 1,2-Dibromoethane NC 1,2-Dibromoethane NC 1,2-Dibromoethane NC 1,2-Dibromoethane NC 1,2-Dichlorobenzene NC 1,3-Dichlorobenzene NC 1,4-Dichlorobenzene NC 1,1-Dichloroethane NC 1,2-Dichloroethane NC 1,1-Dichloroethane NC 1,2-Dichloroperpane NC 1,2-Dichloropethene NC 1,2-Dichloropethene NC		1.00 1.00 5.00 1.00 1.00 1.00 1.00 1.00 5.00 5.00 2.50 1.00 1.00 5.00 2.50	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	04/28/2018 23:59 04/28/2018 23:59 04/28/2018 23:59 04/28/2018 23:59 04/28/2018 23:59 04/28/2018 23:59 04/28/2018 23:59 04/28/2018 23:59 04/28/2018 23:59 04/28/2018 23:59 04/28/2018 23:59 04/28/2018 23:59 04/28/2018 23:59 04/28/2018 23:59 04/28/2018 23:59 04/28/2018 23:59 04/28/2018 23:59 04/28/2018 23:59	WG1104570	⁷ GI ⁸ AI
Bromoform NE Bromomethane NE n-Butylbenzene NE sec-Butylbenzene NE tert-Butylbenzene NE Carbon tetrachloride NE Chlorobenzene NE Chlorodibromomethane NE Chlorodibromomethane NE Chlorodethane NE Chlorodolucne NE 2-Chlorotoluene NE 1,2-Dibromo-3-Chloropropane NE 1,2-Dibromo-3-Chloropropane NE 1,2-Dibromo-3-Chloropropane NE 1,2-Dibromo-thane NE 1,2-Dibromo-thane NE 1,2-Dichlorobenzene NE 1,3-Dichlorobenzene NE 1,1-Dichlorobenzene NE 1,1-Dichlorobenzene NE 1,1-Dichloroethane NE 1,2-Dichloroethane NE 1,2-Dichloroethane NE 1,2-Dichloroethene NE 1,2-Dichloropropane NE 1,2-Dichloropropane NE 1,3-Dichloropropane NE 1,2-Dichloropropane		1.00 5.00 1.00 1.00 1.00 1.00 1.00 5.00 5	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	04/28/2018 23:59 04/28/2018 23:59 04/28/2018 23:59 04/28/2018 23:59 04/28/2018 23:59 04/28/2018 23:59 04/28/2018 23:59 04/28/2018 23:59 04/28/2018 23:59 04/28/2018 23:59 04/28/2018 23:59 04/28/2018 23:59 04/28/2018 23:59 04/28/2018 23:59 04/28/2018 23:59 04/28/2018 23:59 04/28/2018 23:59 04/28/2018 23:59	WG1104570	⁸ Al
Bromomethane NC n-Butylbenzene NC sec-Butylbenzene NC tert-Butylbenzene NC Carbon tetrachloride NC Chlorobenzene NC Chlorodibromomethane NC Chlorodibromomethane NC Chlorodibromomethane NC Chlorodibromomethane NC Chlorodoluene NC 2-Chlorotoluene NC 1,2-Dibromo-3-Chloropropane NC 1,2-Dibromo-3-Chloropropane NC 1,2-Dibromo-dthane NC 1,2-Dibromo-dthane NC 1,2-Dichlorobenzene NC 1,3-Dichlorobenzene NC 1,4-Dichlorobenzene NC 1,1-Dichloroethane NC 1,1-Dichloroethane NC 1,1-Dichloroethane NC 1,2-Dichloroethane NC 1,2-Dichloroethane NC 1,2-Dichloroethene NC 1,2-Dichloropethene NC 1,2-Dichloropethene NC 1,2-Dichloropethene NC 1,2-Dichloropethene		5.00 1.00 1.00 1.00 1.00 1.00 5.00 5.00	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	04/28/2018 23:59 04/28/2018 23:59 04/28/2018 23:59 04/28/2018 23:59 04/28/2018 23:59 04/28/2018 23:59 04/28/2018 23:59 04/28/2018 23:59 04/28/2018 23:59 04/28/2018 23:59 04/28/2018 23:59 04/28/2018 23:59 04/28/2018 23:59 04/28/2018 23:59 04/28/2018 23:59 04/28/2018 23:59	WG1104570	⁸ Al
n-Butylbenzene NC sec-Butylbenzene NC carbon tetrachloride NC Carbon tetrachloride NC Chlorobenzene NC Chlorodibromomethane NC Chlorodibromomethane NC Chloroethane NC Chloroethane NC 2-Chlorotoluene NC 2-Chlorotoluene NC 4-Chlorotoluene NC 1,2-Dibromo-3-Chloropropane NC 1,2-Dibromoethane NC 1,2-Dibromoethane NC 1,2-Dichlorobenzene NC 1,3-Dichlorobenzene NC 1,4-Dichlorobenzene NC 1,4-Dichlorobenzene NC 1,4-Dichloroethane NC 1,1-Dichloroethane NC 1,2-Dichloroethane NC 1,2-Dichloroethane NC 1,2-Dichloroethane NC 1,2-Dichloroethane NC 1,2-Dichloroethane NC		1.00 1.00 1.00 1.00 1.00 5.00 5.00 2.50 1.00 1.00 5.00	1 1 1 1 1 1 1 1 1 1 1 1 1	04/28/2018 23:59 04/28/2018 23:59 04/28/2018 23:59 04/28/2018 23:59 04/28/2018 23:59 04/28/2018 23:59 04/28/2018 23:59 04/28/2018 23:59 04/28/2018 23:59 04/28/2018 23:59 04/28/2018 23:59 04/28/2018 23:59 04/28/2018 23:59 04/28/2018 23:59	WG1104570	Al
sec-Butylbenzene NC tert-Butylbenzene NC Carbon tetrachloride NC Chlorobenzene NC Chlorodibromomethane NC Chlorodibromomethane NC Chloroothane NC Chloroform NC Chloroform NC Chloroform NC Chloroform NC 2-Chlorotoluene NC 4-Chlorotoluene NC 4-Chlorotoluene NC 1,2-Dibromo-3-Chloropropane NC 1,2-Dibromo-3-Chloropropane NC 1,2-Dibromo-3-Chloropropane NC 1,2-Dibromo-thane NC 1,2-Dichlorobenzene NC 1,2-Dichlorobenzene NC 1,4-Dichlorobenzene NC 1,4-Dichloroethane NC 1,1-Dichloroethane NC 1,2-Dichloroethane NC 1,2-Dichloroethane NC 1,2-Dichloroethane NC 1,2-Dichloroethane NC 1,2-Dichloroethane NC 1,2-Dichloroethane NC 1,2-Dichloroethane NC 1,2-Dichloroethane NC		1.00 1.00 1.00 1.00 5.00 5.00 2.50 1.00 1.00 5.00	1 1 1 1 1 1 1 1 1 1 1	04/28/2018 23:59 04/28/2018 23:59 04/28/2018 23:59 04/28/2018 23:59 04/28/2018 23:59 04/28/2018 23:59 04/28/2018 23:59 04/28/2018 23:59 04/28/2018 23:59 04/28/2018 23:59 04/28/2018 23:59 04/28/2018 23:59	WG1104570	A
tert-Butylbenzene NE Carbon tetrachloride NE Chlorobenzene NE Chlorodibromomethane NE Chlorodibromomethane NE Chloroethane NE Chloroform NE Chloroform NE Chlorotoluene NE 2-Chlorotoluene NE 2-Chlorotoluene NE 2-Chlorotoluene NE 2-Chlorotoluene NE 1,2-Dibromo-3-Chloropropane NE 1,2-Dibromoethane NE 1,2-Dibromoethane NE 1,2-Dibromoethane NE 1,2-Dichlorobenzene NE 1,3-Dichlorobenzene NE 1,4-Dichlorobenzene NE 1,4-Dichlorobenzene NE 1,1-Dichloroethane NE 1,2-Dichloroethane NE 1,2-Dichloroethane NE 1,2-Dichloroethane NE 1,2-Dichloroethane NE 1,2-Dichloroethene NE 1,2-Dichloropropane NE		1.00 1.00 1.00 5.00 5.00 2.50 1.00 1.00 5.00	1 1 1 1 1 1 1 1 1	04/28/2018 23:59 04/28/2018 23:59 04/28/2018 23:59 04/28/2018 23:59 04/28/2018 23:59 04/28/2018 23:59 04/28/2018 23:59	WG1104570	9
Carbon tetrachloride NE Chlorobenzene NE Chlorodibromomethane NE Chlorodibromomethane NE Chloroethane NE Chloroothane NE Chloroothane NE Chloroothane NE Chloroothane NE Chloroothane NE 2-Chlorotoluene NE 4-Chlorotoluene NE 1,2-Dibromo-3-Chloropropane NE 1,2-Dibromoethane NE 1,2-Dibromoethane NE 1,2-Dichlorobenzene NE 1,3-Dichlorobenzene NE 1,4-Dichlorobenzene NE 1,1-Dichloroethane NE 1,2-Dichloroethane NE 1,1-Dichloroethane NE 1,2-Dichloropethene NE 1,2-Dichloropethene NE 1,2-Dichloropethene NE 1,2-Dichloropropane NE 1,2-Dichloropropane NE 1,3-Dichloropropane NE 1,3-Dichloropropane NE 1,3-Dichloropropane NE <td></td> <td>1.00 1.00 5.00 5.00 2.50 1.00 1.00 5.00</td> <td>1 1 1 1 1 1 1 1</td> <td>04/28/2018 23:59 04/28/2018 23:59 04/28/2018 23:59 04/28/2018 23:59 04/28/2018 23:59 04/28/2018 23:59</td> <td>WG1104570 WG1104570 WG1104570 WG1104570 WG1104570 WG1104570 WG1104570 WG1104570</td> <td>⁹Sc</td>		1.00 1.00 5.00 5.00 2.50 1.00 1.00 5.00	1 1 1 1 1 1 1 1	04/28/2018 23:59 04/28/2018 23:59 04/28/2018 23:59 04/28/2018 23:59 04/28/2018 23:59 04/28/2018 23:59	WG1104570 WG1104570 WG1104570 WG1104570 WG1104570 WG1104570 WG1104570 WG1104570	⁹ Sc
Chlorobenzene NE Chlorodibromomethane NE Chlorodibromomethane NE Chloroethane NE Chloroform NE Chloromethane NE Chloromethane NE 2-Chlorotoluene NE 4-Chlorotoluene NE 1,2-Dibromo-3-Chloropropane NE 1,2-Dibromo-3-Chloropropane NE 1,2-Dibromoethane NE 1,2-Dibromoethane NE 1,2-Dichlorobenzene NE 1,3-Dichlorobenzene NE 1,4-Dichlorobenzene NE 1,1-Dichloroethane NE 1,2-Dichloroethane NE 1,1-Dichloroethane NE 1,2-Dichloroethene NE 1,2-Dichloropenpene NE 1,2-Dichloropropane NE 1,1-Dichloropropane NE 1,2-Dichloropropane NE 1,3-Dichloropropane NE 1,3-Dichloropropane NE 1,3-Dichloropropane NE 1,3-Dichloropropane NE 1,3-Dichloropropane		1.00 1.00 5.00 2.50 1.00 1.00 5.00	1 1 1 1 1 1 1	04/28/2018 23:59 04/28/2018 23:59 04/28/2018 23:59 04/28/2018 23:59 04/28/2018 23:59	WG1104570 WG1104570 WG1104570 WG1104570 WG1104570	Sc
Chlorodibromomethane NE Chlorodibromomethane NE Chloroform NE Chloroform NE Chloromethane NE 2-Chlorotoluene NE 4-Chlorotoluene NE 1,2-Dibromo-3-Chloropropane NE 1,2-Dibromo-3-Chloropropane NE 1,2-Dibromoethane NE 1,2-Dichlorobenzene NE 1,3-Dichlorobenzene NE 1,4-Dichlorobenzene NE 1,1-Dichloroethane NE 1,2-Dichloroethane NE 1,1-Dichloroethane NE 1,2-Dichloroethane NE 1,1-Dichloroethane NE 1,2-Dichloropethene NE 1,2-Dichloropethene NE 1,2-Dichloropethene NE 1,2-Dichloropropane NE 1,3-Dichloropropane NE 1,3-Dichloropropane NE 1,3-Dichloropropane NE 1,3-Dichloropropane NE 1,3-Dichloropropane NE 1,3-Dichloropropane NE 1,3-Dichloropropane<		1.00 5.00 2.50 1.00 1.00 5.00	1 1 1 1 1	04/28/2018 23:59 04/28/2018 23:59 04/28/2018 23:59 04/28/2018 23:59	WG1104570 WG1104570 WG1104570 WG1104570	
Chloroethane NE Chloroform NE Chloromethane NE 2-Chlorotoluene NE 2-Chlorotoluene NE 4-Chlorotoluene NE 1,2-Dibromo-3-Chloropropane NE 1,2-Dibromoethane NE 1,2-Dibromoethane NE 1,2-Dichlorobenzene NE 1,3-Dichlorobenzene NE 1,4-Dichlorobenzene NE 1,1-Dichloroethane NE 1,2-Dichloroethane NE 1,1-Dichloroethane NE 1,2-Dichloroethane NE 1,1-Dichloroethane NE 1,2-Dichloroethane NE 1,1-Dichloroethane NE 1,2-Dichloroethene NE 1,2-Dichloropenpane NE 1,2-Dichloropropane NE 1,1-Dichloropropane NE 1,3-Dichloropropane NE 1,3-Dichloropropane NE 1,3-Dichloropropane NE 1,3-Dichloropropane NE 1,3-Dichloropropane NE 1,3-Dichloropropane NE		5.00 5.00 2.50 1.00 1.00 5.00	1 1 1 1	04/28/2018 23:59 04/28/2018 23:59 04/28/2018 23:59	WG1104570 WG1104570 WG1104570	
Chloroform NC Chloroform NC Chloromethane NC 2-Chlorotoluene NC 4-Chlorotoluene NC 1,2-Dibromo-3-Chloropropane NC 1,2-Dibromoethane NC 1,2-Dibromoethane NC 1,2-Dichlorobenzene NC 1,3-Dichlorobenzene NC 1,4-Dichlorobenzene NC 1,4-Dichlorobenzene NC 1,1-Dichloroethane NC 1,2-Dichloroethane NC 1,2-Dichloroethane NC 1,2-Dichloroethane NC 1,2-Dichloroethane NC 1,1-Dichloropethene NC 1,2-Dichloropethene NC 1,3-Dichloropropane NC 1,3-Dichloroperopane NC		5.00 2.50 1.00 1.00 5.00	1 1 1	04/28/2018 23:59 04/28/2018 23:59	WG1104570 WG1104570	
Chloromethane NE 2-Chlorotoluene NE 2-Chlorotoluene NE 4-Chlorotoluene NE 1,2-Dibromo-3-Chloropropane NE 1,2-Dibromoethane NE 1,2-Dibromoethane NE 1,2-Dichlorobenzene NE 1,3-Dichlorobenzene NE 1,4-Dichlorobenzene NE 1,4-Dichlorobenzene NE 1,1-Dichloroethane NE 1,2-Dichloroethane NE 1,1-Dichloroethane NE 1,1-Dichloroethane NE 1,1-Dichloroethene NE 1,2-Dichloroethene NE 1,2-Dichloropropane NE 1,2-Dichloropropane NE 1,3-Dichloropropane		2.50 1.00 1.00 5.00	1 1	04/28/2018 23:59	WG1104570	
2-Chlorotoluene NE 4-Chlorotoluene NE 1,2-Dibromo-3-Chloropropane NE 1,2-Dibromoethane NE Dibromomethane NE 1,2-Dichlorobenzene NE 1,3-Dichlorobenzene NE 1,4-Dichlorobenzene NE 1,4-Dichlorobenzene NE 1,1-Dichlorobenzene NE 1,1-Dichloroethane NE 1,2-Dichloroethane NE 1,1-Dichloroethene NE 1,2-Dichloroethene NE 1,2-Dichloropropane NE 1,2-Dichloropropane NE 1,2-Dichloropropane NE		1.00 1.00 5.00	1			
4-Chlorotoluene NE 1,2-Dibromo-3-Chloropropane NE 1,2-Dibromoethane NE Dibromomethane NE Dibromomethane NE 1,2-Dichlorobenzene NE 1,3-Dichlorobenzene NE 1,4-Dichlorobenzene NE 1,4-Dichlorobenzene NE 1,4-Dichlorobenzene NE 1,1-Dichloroethane NE 1,2-Dichloroethane NE 1,2-Dichloroethene NE 1,2-Dichloropropane NE 1,2-Dichloropropane NE 1,3-Dichloropropane NE		1.00 5.00		04/28/2018 23:59	11/0110 1530	
1,2-Dibromo-3-Chloropropane NC 1,2-Dibromoethane NC Dibromomethane NC 1,2-Dichlorobenzene NC 1,3-Dichlorobenzene NC 1,4-Dichlorobenzene NC 1,4-Dichlorobenzene NC 1,4-Dichlorobenzene NC 1,4-Dichlorobenzene NC 1,1-Dichloroethane NC 1,2-Dichloroethane NC 1,1-Dichloroethane NC 1,1-Dichloroethene NC 1,2-Dichloroethene NC 1,2-Dichloropropane NC 1,3-Dichloropropane NC		5.00	1		WG1104570	
1,2-Dibromoethane NE Dibromomethane NE 1,2-Dichlorobenzene NE 1,3-Dichlorobenzene NE 1,4-Dichlorobenzene NE 1,4-Dichlorobenzene NE 1,4-Dichlorobenzene NE 1,4-Dichloroethane NE 1,1-Dichloroethane NE 1,2-Dichloroethane NE 1,1-Dichloroethene NE trans-1,2-Dichloroethene NE 1,2-Dichloropropane NE)			04/28/2018 23:59	WG1104570	
Dibromomethane NC 1,2-Dichlorobenzene NC 1,3-Dichlorobenzene NC 1,4-Dichlorobenzene NC 1,4-Dichlorobenzene NC 1,4-Dichlorobenzene NC 1,1-Dichloroethane NC 1,2-Dichloroethane NC 1,1-Dichloroethane NC 1,1-Dichloroethene NC trans-1,2-Dichloroethene NC 1,2-Dichloropropane NC 1,3-Dichloropropane NC)	1.00	1	04/28/2018 23:59	WG1104570	
1,2-Dichlorobenzene NC 1,3-Dichlorobenzene NC 1,4-Dichlorobenzene NC Dichlorodifluoromethane NC 1,1-Dichloroethane NC 1,1-Dichloroethane NC 1,1-Dichloroethene NC cis-1,2-Dichloroethene NC trans-1,2-Dichloroethene NC 1,2-Dichloropropane NC		1.00	1	04/28/2018 23:59	WG1104570	
I,3-DichlorobenzeneNEI,4-DichlorobenzeneNEDichlorodifluoromethaneNEI,1-DichloroethaneNEI,2-DichloroethaneNEI,1-DichloroetheneNEI,1-DichloroetheneNEI,2-DichloroetheneNEI,2-DichloroetheneNEI,2-DichloropropaneNEI,3-DichloropropaneNE		1.00	1	04/28/2018 23:59	WG1104570	
I,4-Dichlorobenzene NE Dichlorodifluoromethane NE I,1-Dichloroethane NE I,2-Dichloroethane NE I,1-Dichloroethane NE I,1-Dichloroethene NE cis-1,2-Dichloroethene NE I,2-Dichloroethene NE I,2-Dichloroethene NE I,2-Dichloropropane NE I,1-Dichloropropane NE)	1.00	1	04/28/2018 23:59	WG1104570	
Dichlorodifluoromethane NE I,1-Dichloroethane NE I,2-Dichloroethane NE I,1-Dichloroethene NE cis-1,2-Dichloroethene NE rans-1,2-Dichloroethene NE I,2-Dichloropropane NE I,1-Dichloropropane NE I,3-Dichloropropane NE)	1.00	1	04/28/2018 23:59	WG1104570	
1,1-Dichloroethane NE 1,2-Dichloroethane NE 1,1-Dichloroethene NE cis-1,2-Dichloroethene NE trans-1,2-Dichloroethene NE 1,2-Dichloropropane NE 1,2-Dichloropropane NE 1,3-Dichloropropane NE)	1.00	1	04/28/2018 23:59	WG1104570	
1,2-DichloroethaneNC1,1-DichloroetheneNCcis-1,2-DichloroetheneNCtrans-1,2-DichloroetheneNC1,2-DichloropropaneNC1,1-DichloropropaneNC1,3-DichloropropaneNC)	5.00	1	04/28/2018 23:59	WG1104570	
1,1-DichloroetheneNCcis-1,2-DichloroetheneNCtrans-1,2-DichloroetheneNC1,2-DichloropropaneNC1,1-DichloropropaneNC1,3-DichloropropaneNC)	1.00	1	04/28/2018 23:59	WG1104570	
cis-1,2-Dichloroethene NC trans-1,2-Dichloroethene NC 1,2-Dichloropropane NC 1,1-Dichloropropene NC 1,3-Dichloropropane NC)	1.00	1	04/28/2018 23:59	WG1104570	
cis-1,2-Dichloroethene NC trans-1,2-Dichloroethene NC 1,2-Dichloropropane NC 1,1-Dichloropropene NC 1,3-Dichloropropane NC)	1.00	1	04/28/2018 23:59	WG1104570	
1,2-DichloropropaneNC1,1-DichloropropeneNC1,3-DichloropropaneNC)	1.00	1	04/28/2018 23:59	WG1104570	
1,1-Dichloropropene NC 1,3-Dichloropropane NC)	1.00	1	04/28/2018 23:59	WG1104570	
1,3-Dichloropropane NC)	1.00	1	04/28/2018 23:59	WG1104570	
1,3-Dichloropropane NE)	1.00	1	04/28/2018 23:59	WG1104570	
)	1.00	1	04/28/2018 23:59	WG1104570	
cis-1,3-Dichloropropene NC		1.00	1	04/28/2018 23:59	WG1104570	
trans-1,3-Dichloropropene NE)	1.00	1	04/28/2018 23:59	WG1104570	
2,2-Dichloropropane ND		1.00	1	04/28/2018 23:59	WG1104570	
Di-isopropyl ether NE		1.00	1	04/28/2018 23:59	WG1104570	
Ethylbenzene ND		1.00	1	04/28/2018 23:59	WG1104570	
Hexachloro-1,3-butadiene ND		1.00	1	04/28/2018 23:59	WG1104570	
Isopropylbenzene NE		1.00	1	04/28/2018 23:59	WG1104570	
p-lsopropyltoluene NC		1.00	1	04/28/2018 23:59	WG1104570	
2-Butanone (MEK) NC		10.0	1	04/28/2018 23:59	WG1104570	
Methylene Chloride NE		5.00	1	04/28/2018 23:59	WG1104570	
4-Methyl-2-pentanone (MIBK) ND		10.0	1	04/28/2018 23:59	WG1104570	
Methyl tert-butyl ether ND		1.00	1	04/28/2018 23:59	WG1104570	
Naphthalene NE		5.00	1	04/28/2018 23:59	WG1104570	
n-Propylbenzene ND		1.00	1	04/28/2018 23:59	WG1104570	
Styrene NE		1.00	1	04/28/2018 23:59	WG1104570	
NL		1.00		5 1/20/2010 20.00		

ACCOUNT:

PROJECT:

тнот

SDG:

L989458

PAGE: 7 of 67

*

Volatile Organic Compounds (GC/MS) by Method 8260B

J.2-Tetrachloroethane ND 1.00 1 04/28/2018 23:59 WG1104570 2 2,2-Tetrachloroethane ND 1.00 1 04/28/2018 23:59 WG1104570 3 2-Tichloroethane ND 1.00 1 04/28/2018 23:59 WG1104570 3 2-Tichloroethane ND 1.00 1 04/28/2018 23:59 WG1104570 3 2-Tichloroethane ND 1.00 1 04/28/2018 23:59 WG1104570 4 archloroethane ND 1.00 1 04/28/2018 23:59 WG1104570 4 artichlorobenzene ND 1.00 1 04/28/2018 23:59 WG1104570 4 4.Tichlorobenzene ND 1.00 1 04/28/2018 23:59 WG1104570 4 1.richloroethane ND 1.00 1 04/28/2018 23:59 WG1104570 4 2-Tichloroethane ND 1.00 1 04/28/2018 23:59 WG1104570 3 2-Tichlororoethane ND 1.00		Result	Qualifier	RDL	Dilution	Analysis	Batch	C
2.2-Tetrachloroethane ND 1.00 1 04/28/2018 23:59 WGt104570 2-Trichloroethane ND 1.00 1 04/28/2018 23:59 WGt104570 1 rachloroethene ND 1.00 1 04/28/2018 23:59 WGt104570 1	Analyte	ug/l		ug/l		date / time		
2,2-TetrachloroethaneND1.00104/28/2018 23:59WG11045702-TrichloroethaneND1.00104/28/2018 23:59WG1104570rachloroethaneND1.00104/28/2018 23:59WG1104570ueneND1.00104/28/2018 23:59WG11045703-TrichloroethaneND1.00104/28/2018 23:59WG11045704-TrichloroethaneND1.00104/28/2018 23:59WG11045704-TrichloroethaneND1.00104/28/2018 23:59WG11045701-TrichloroethaneND1.00104/28/2018 23:59WG11045702-TrichloroethaneND1.00104/28/2018 23:59WG11045702-TrichloroethaneND1.00104/28/2018 23:59WG11045702-TrichloroethaneND1.00104/28/2018 23:59WG11045702-TrichloroethaneND1.00104/28/2018 23:59WG11045702-TrichloroethaneND1.00104/28/2018 23:59WG11045702-TrichloropropaneND1.00104/28/2018 23:59WG11045703-TrithethylbenzeneND1.00104/28/2018 23:59WG11045703-TrithethylbenzeneND1.00104/28/2018 23:59WG11045703-TrithethylbenzeneND1.00104/28/2018 23:59WG11045703-TrithethylbenzeneND1.00104/28/2018 23:59WG11045703-Trithethylbenze	1,1,1,2-Tetrachloroethane	ND		1.00	1	04/28/2018 23:59	WG1104570	²
rachloroetheneND1.0010/4/28/2018 23:59WG1104570ueneND1.0010/4/28/2018 23:59WG11045703.3-TrichlorobenzeneND1.0010/4/28/2018 23:59WG11045704.4-TrichlorobenzeneND1.0010/4/28/2018 23:59WG11045701.1-TrichloroethaneND1.0010/4/28/2018 23:59WG11045702-TrichloroethaneND1.0010/4/28/2018 23:59WG11045702-TrichloroethaneND1.0010/4/28/2018 23:59WG11045702-TrichloroethaneND1.0010/4/28/2018 23:59WG11045702-TrichloropthaneND1.0010/4/28/2018 23:59WG11045702-TrichloropthaneND1.0010/4/28/2018 23:59WG11045703-TrichloroptopaneND1.0010/4/28/2018 23:59WG11045703-TrintehlylbenzeneND1.0010/4/28/2018 23:59WG11045705-TrimtehlylbenzeneND1.0010/4/28/2018 23:59WG1104570yl chlorideND1.0010/4/28/2018 23:59WG1104570yl chlorideND1.0010/4/28/2018 23:59WG1104570yl chlorideND1.0010/4/28/2018 23:59WG1104570yl chlorideND1.0010/4/28/2018 23:59WG1104570yl chlorideND3.0010/4/28/2018 23:59WG1104570yl chlorideND <t< td=""><td>1,1,2,2-Tetrachloroethane</td><td>ND</td><td></td><td>1.00</td><td>1</td><td>04/28/2018 23:59</td><td>WG1104570</td><td></td></t<>	1,1,2,2-Tetrachloroethane	ND		1.00	1	04/28/2018 23:59	WG1104570	
ueneND1.00104/28/2018 23:59WG11045703-TrichlorobenzeneND1.00104/28/2018 23:59WG11045704-TrichlorobenzeneND1.00104/28/2018 23:59WG11045701-TrichlorobenzeneND1.00104/28/2018 23:59WG11045702-TrichlorobenzeneND1.00104/28/2018 23:59WG11045702-TrichlorobenzeneND1.00104/28/2018 23:59WG11045702-TrichlorobenzeneND5.00104/28/2018 23:59WG11045702-TrichloropropaneND5.00104/28/2018 23:59WG11045703-TrichloropropaneND1.00104/28/2018 23:59WG11045703-TrinbtylbenzeneND1.00104/28/2018 23:59WG11045705-TrimethylbenzeneND1.00104/28/2018 23:59WG11045705-TrimethylbenzeneND1.00104/28/2018 23:59WG11045705-TrimethylbenzeneND1.00104/28/2018 23:59WG11045705-TrimethylbenzeneND1.00104/28/2018 23:59WG11045705-TrimethylbenzeneND3.00104/28/2018 23:59WG11045706S) Toluen-d895.280.0-120V/28/2018 23:59WG11045705) Toluen-d895.280.0-120V/28/2018 23:59WG11045705) Toluendbane11576.0-123V/28/2018 23:59WG1104570	1,1,2-Trichlorotrifluoroethane	ND		1.00	1	04/28/2018 23:59	WG1104570	3
3-TrichlorobenzeneND1.0010.4/28/2018 23:59WG110457044-TrichlorobenzeneND1.0010.4/28/2018 23:59WG110457011-TrichloroethaneND1.0010.4/28/2018 23:59WG110457012-TrichloroethaneND1.0010.4/28/2018 23:59WG110457012-TrichloroethaneND1.0010.4/28/2018 23:59WG110457012-TrichloroethaneND1.0010.4/28/2018 23:59WG110457012-TrichloropenethaneND5.0010.4/28/2018 23:59WG110457012-TrichloropopaneND5.0010.4/28/2018 23:59WG110457014-TrimethylbenzeneND1.0010.4/28/2018 23:59WG110457015-TrimethylbenzeneND1.0010.4/28/2018 23:59WG110457015-TrimethylbenzeneND1.0010.4/28/2018 23:59WG110457015-TrimethylbenzeneND1.0010.4/28/2018 23:59WG110457015-TrimethylbenzeneND1.0010.4/28/2018 23:59WG1104570161.001.0010.4/28/2018 23:59WG1104570161.001.0010.4/28/2018 23:59WG1104570161.001.0010.4/28/2018 23:59WG1104570161.001.0010.4/28/2018 23:59WG11045701 <td>Tetrachloroethene</td> <td>ND</td> <td></td> <td>1.00</td> <td>1</td> <td>04/28/2018 23:59</td> <td>WG1104570</td> <td></td>	Tetrachloroethene	ND		1.00	1	04/28/2018 23:59	WG1104570	
A-TrichlorobenzeneND1.00104/28/2018 23:59WG11045701-TrichloroethaneND1.00104/28/2018 23:59WG11045702-TrichloroethaneND1.00104/28/2018 23:59WG11045702-TrichloroethaneND1.00104/28/2018 23:59WG1104570chloroetheneND5.00104/28/2018 23:59WG1104570chlorofluoromethaneND5.00104/28/2018 23:59WG11045703-TrichloropropaneND2.50104/28/2018 23:59WG11045704-TrimethylbenzeneND1.00104/28/2018 23:59WG11045705-TrimethylbenzeneND1.00104/28/2018 23:59WG11045705-TrimethylbenzeneND1.00104/28/2018 23:59WG1104570yl chlorideND1.00104/28/2018 23:59WG11045705-TrimethylbenzeneND1.00104/28/2018 23:59WG1104570yl chlorideND1.00104/28/2018 23:59WG1104570yl chlorideND1.00104/28/2018 23:59WG1104570s) Toluene-d895.280.0-12004/28/2018 23:59WG1104570s) Dibromofluoromethane11576.0-12304/28/2018 23:59WG1104570	Toluene	ND		1.00	1	04/28/2018 23:59	WG1104570	
4-TrichlorobenzeneND1.00104/28/2018 23:59WG11045701-TrichloroethaneND1.00104/28/2018 23:59WG11045702-TrichloroethaneND1.00104/28/2018 23:59WG11045702-TrichloroethaneND1.00104/28/2018 23:59WG1104570chlorofluoromethaneND5.00104/28/2018 23:59WG11045703-TrichloropropaneND2.50104/28/2018 23:59WG11045704-TrimethylbenzeneND1.00104/28/2018 23:59WG11045705-TrimethylbenzeneND1.00104/28/2018 23:59WG11045705-TrimethylbenzeneND1.00104/28/2018 23:59WG11045705-TrimethylbenzeneND1.00104/28/2018 23:59WG11045705-TrimethylbenzeneND1.00104/28/2018 23:59WG11045705-TrimethylbenzeneND1.00104/28/2018 23:59WG11045705-TrimethylbenzeneND3.00104/28/2018 23:59WG11045705-TrimethylbenzeneND3.00104/28/2018 23:59WG11045705-TrimethylbenzeneND3.00104/28/2018 23:59WG11045705) Toluene-d895.280.0-12004/28/2018 23:59WG11045705) Dibromofluoromethane11576.0-12304/28/2018 23:59WG1104570	1,2,3-Trichlorobenzene	ND		1.00	1	04/28/2018 23:59	WG1104570	4
2-TrichloroethaneND1.00104/28/2018 23:59WG1104570chloroetheneND1.00104/28/2018 23:59WG1104570chlorofluoromethaneND5.00104/28/2018 23:59WG11045703-TrichloropropaneND2.50104/28/2018 23:59WG11045704-TrimethylbenzeneND1.00104/28/2018 23:59WG11045703-TrinethylbenzeneND1.00104/28/2018 23:59WG11045705-TrimethylbenzeneND1.00104/28/2018 23:59WG1104570yl chlorideND1.00104/28/2018 23:59WG1104570yl chlorideND3.00104/28/2018 23:59WG1104570S) Toluene-d895.280.0-12004/28/2018 23:59WG1104570S) Dibromofluoromethane11576.0-12304/28/2018 23:59WG1104570	1,2,4-Trichlorobenzene	ND		1.00	1	04/28/2018 23:59	WG1104570	
Indecoduction Indecodu	1,1,1-Trichloroethane	ND		1.00	1	04/28/2018 23:59	WG1104570	5
khlorofluoromethane ND 5.00 1 04/28/2018 23:59 WG1104570 3-Trichloropropane ND 2.50 1 04/28/2018 23:59 WG1104570 4-Trimethylbenzene ND 1.00 1 04/28/2018 23:59 WG1104570 3-Trimethylbenzene ND 1.00 1 04/28/2018 23:59 WG1104570 5-Trimethylbenzene ND 1.00 1 04/28/2018 23:59 WG1104570 5-Trimethylbenzene ND 1.00 1 04/28/2018 23:59 WG1104570 5-Trimethylbenzene ND 1.00 1 04/28/2018 23:59 WG1104570 yl chloride ND 1.00 1 04/28/2018 23:59 WG1104570 yl chloride ND 3.00 1 04/28/2018 23:59 WG1104570 s) Toluene-d8 95.2 80.0-120 04/28/2018 23:59 WG1104570 s) Dibromofluoromethane 115 76.0-123 04/28/2018 23:59 WG1104570	1,1,2-Trichloroethane	ND		1.00	1	04/28/2018 23:59	WG1104570	
Introductorine function ND S.00 I 04/28/2018 23.59 Wein04570 3.3-Trichloropropane ND 2.50 1 04/28/2018 23.59 WG1104570 4-Trimethylbenzene ND 1.00 1 04/28/2018 23.59 WG1104570 3.3-Trimethylbenzene ND 1.00 1 04/28/2018 23.59 WG1104570 5.5-Trimethylbenzene ND 1.00 1 04/28/2018 23.59 WG1104570 9.5-Trimethylbenzene ND 1.00 1 04/28/2018 23.59 WG1104570 9.104070 1.00 1 04/28/2018 23.59 WG1104570 Image: Comparison of the com	Trichloroethene	ND		1.00	1	04/28/2018 23:59	WG1104570	
3-Trichloropropane ND 2.50 1 04/28/2018 23:59 WG1104570 4-Trimethylbenzene ND 1.00 1 04/28/2018 23:59 WG1104570 3-Trimethylbenzene ND 1.00 1 04/28/2018 23:59 WG1104570 5-Trimethylbenzene ND 1.00 1 04/28/2018 23:59 WG1104570 5-Trimethylbenzene ND 1.00 1 04/28/2018 23:59 WG1104570 yl chloride ND 1.00 1 04/28/2018 23:59 WG1104570 enes, Total ND 3.00 1 04/28/2018 23:59 WG1104570 S) Toluene-d8 95.2 80.0-120 04/28/2018 23:59 WG1104570 S) Dibromofluoromethane 115 76.0-123 04/28/2018 23:59 WG1104570	Trichlorofluoromethane	ND		5.00	1	04/28/2018 23:59	WG1104570	6
3-Trimethylbenzene ND 1.00 1 04/28/2018 23:59 WG1104570 5-Trimethylbenzene ND 1.00 1 04/28/2018 23:59 WG1104570 yl chloride ND 1.00 1 04/28/2018 23:59 WG1104570 enes, Total ND 3.00 1 04/28/2018 23:59 WG1104570 S) Toluene-d8 95.2 80.0-120 04/28/2018 23:59 WG1104570 Image: Single	1,2,3-Trichloropropane	ND		2.50	1	04/28/2018 23:59	WG1104570	
initial initinitial initinitial initinitial initial initial initial initial ini	1,2,4-Trimethylbenzene	ND		1.00	1	04/28/2018 23:59	WG1104570	7
yl chloride ND 1.00 1 04/28/2018 23:59 WG1104570 Image: Constraint of the state of the s	1,2,3-Trimethylbenzene	ND		1.00	1	04/28/2018 23:59	WG1104570	Í (
ND 3.00 1 04/28/2018 23:59 WG1104570 (S) Toluene-d8 95.2 80.0-120 04/28/2018 23:59 WG1104570 (S) Dibromofluoromethane 115 76.0-123 04/28/2018 23:59 WG1104570	1,3,5-Trimethylbenzene	ND		1.00	1	04/28/2018 23:59	WG1104570	
enes, Total ND 3.00 1 04/28/2018 23:59 WG1104570 S) Toluene-d8 95.2 80.0-120 04/28/2018 23:59 WG1104570 S) Dibromofluoromethane 115 76.0-123 04/28/2018 23:59 WG1104570	Vinyl chloride	ND		1.00	1	04/28/2018 23:59	WG1104570	8
S) Dibromofluoromethane 115 76.0-123 04/28/2018 23:59 WG1104570	Xylenes, Total	ND		3.00	1	04/28/2018 23:59	WG1104570	Ľ
	(S) Toluene-d8	95.2		80.0-120		04/28/2018 23:59	WG1104570	9
S) 4-Bromofluorobenzene 95.2 80.0-120 04/28/2018 23:59 WG1104570	(S) Dibromofluoromethane	115		76.0-123		04/28/2018 23:59	WG1104570	
	(S) 4-Bromofluorobenzene	95.2		80.0-120		04/28/2018 23:59	WG1104570	

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
C12-C22 Hydrocarbons	957		182	1.82	04/30/2018 21:18	WG1104930
C22-C32 Hydrocarbons	527		182	1.82	04/30/2018 21:18	WG1104930
C32-C40 Hydrocarbons	ND		182	1.82	04/30/2018 21:18	WG1104930
(S) o-Terphenyl	69.0		52.0-156		04/30/2018 21:18	WG1104930

Collected date/time: 04/25/18 11:55

SAMPLE RESULTS - 02 L989458

ONE LAB. NATIONWIDE.

Ср

Qc

Gl

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	
Analyte	%			date / time		2
Total Solids	83.2		1	05/01/2018 17:14	WG1105483	1

Volatile Organic Compounds (GC) by Method 8015

Analyte	%		date	/ time			2
Total Solids	83.2	1	05/01	/2018 17:14	WG1105483		Tc
Volatile Organic Comp	oounds (GC) ł	by Method	8015				³ Ss
	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		⁴ Cn
TPHG C5 - C12	ND		0.120	1	04/30/2018 01:02	WG1104737	CII
(S) a,a,a-Trifluorotoluene(FID)	103		77.0-120		04/30/2018 01:02	WG1104737	5
							⁵Sr

Volatile Organic Compounds (GC/MS) by Method 8260B

Analyte	Result (dry) mg/kg	Qualifier	RDL (dry) mg/kg	Dilution	Analysis date / time	Batch	
Acetone	ND		0.0331	1.1	05/03/2018 06:06	WG1106089	
Acrylonitrile	ND		0.0165	1.1	05/03/2018 06:06	WG1106089	
Benzene	ND		0.00132	1.1	05/03/2018 06:06	WG1106089	
Bromobenzene	ND		0.0165	1.1	05/03/2018 06:06	WG1106089	
Bromodichloromethane	ND		0.00331	1.1	05/03/2018 06:06	WG1106089	
Bromoform	ND		0.0331	1.1	05/03/2018 06:06	WG1106089	
Bromomethane	ND		0.0165	1.1	05/03/2018 06:06	WG1106089	
n-Butylbenzene	ND		0.0165	1.1	05/03/2018 06:06	WG1106089	
sec-Butylbenzene	ND		0.0165	1.1	05/03/2018 06:06	WG1106089	
tert-Butylbenzene	ND		0.00661	1.1	05/03/2018 06:06	WG1106089	
Carbon tetrachloride	ND		0.00661	1.1	05/03/2018 06:06	WG1106089	
Chlorobenzene	ND		0.00331	1.1	05/03/2018 06:06	WG1106089	
Chlorodibromomethane	ND		0.00331	1.1	05/03/2018 06:06	WG1106089	
Chloroethane	ND		0.00661	1.1	05/03/2018 06:06	WG1106089	
Chloroform	ND		0.00331	1.1	05/03/2018 06:06	WG1106089	
Chloromethane	ND		0.0165	1.1	05/03/2018 06:06	WG1106089	
2-Chlorotoluene	ND		0.00331	1.1	05/03/2018 06:06	WG1106089	
4-Chlorotoluene	ND		0.00661	1.1	05/03/2018 06:06	WG1106089	
1,2-Dibromo-3-Chloropropane	ND		0.0331	1.1	05/03/2018 06:06	WG1106089	
1,2-Dibromoethane	ND		0.00331	1.1	05/03/2018 06:06	WG1106089	
Dibromomethane	ND		0.00661	1.1	05/03/2018 06:06	WG1106089	
1,2-Dichlorobenzene	ND		0.00661	1.1	05/03/2018 06:06	WG1106089	
1,3-Dichlorobenzene	ND		0.00661	1.1	05/03/2018 06:06	WG1106089	
1,4-Dichlorobenzene	ND		0.00661	1.1	05/03/2018 06:06	WG1106089	
Dichlorodifluoromethane	ND		0.00331	1.1	05/03/2018 06:06	WG1106089	
1,1-Dichloroethane	ND		0.00331	1.1	05/03/2018 06:06	WG1106089	
1,2-Dichloroethane	ND		0.00331	1.1	05/03/2018 06:06	WG1106089	
1,1-Dichloroethene	ND		0.00331	1.1	05/03/2018 06:06	WG1106089	
cis-1,2-Dichloroethene	ND		0.00331	1.1	05/03/2018 06:06	WG1106089	
trans-1,2-Dichloroethene	ND		0.00661	1.1	05/03/2018 06:06	WG1106089	
1,2-Dichloropropane	ND		0.00661	1.1	05/03/2018 06:06	WG1106089	
1,1-Dichloropropene	ND		0.00331	1.1	05/03/2018 06:06	WG1106089	
1,3-Dichloropropane	ND		0.00661	1.1	05/03/2018 06:06	WG1106089	
cis-1,3-Dichloropropene	ND		0.00331	1.1	05/03/2018 06:06	WG1106089	
trans-1,3-Dichloropropene	ND		0.00661	1.1	05/03/2018 06:06	WG1106089	
2,2-Dichloropropane	ND		0.00331	1.1	05/03/2018 06:06	WG1106089	
Di-isopropyl ether	ND		0.00132	1.1	05/03/2018 06:06	WG1106089	
Ethylbenzene	ND		0.00331	1.1	05/03/2018 06:06	WG1106089	
Hexachloro-1,3-butadiene	ND		0.0331	1.1	05/03/2018 06:06	WG1106089	
Isopropylbenzene	ND		0.00331	1.1	05/03/2018 06:06	WG1106089	
p-lsopropyltoluene	ND		0.00661	1.1	05/03/2018 06:06	WG1106089	
2-Butanone (MEK)	ND		0.0331	1.1	05/03/2018 06:06	WG1106089	
Methylene Chloride	ND		0.0331	1.1	05/03/2018 06:06	WG1106089	
4-Methyl-2-pentanone (MIBK)	ND		0.0331	1.1	05/03/2018 06:06	WG1106089	

*

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	<u> </u>
Analyte	mg/kg		mg/kg		date / time		
Methyl tert-butyl ether	ND		0.00132	1.1	05/03/2018 06:06	WG1106089	2
Naphthalene	ND		0.0165	1.1	05/03/2018 06:06	<u>WG1106089</u>	
n-Propylbenzene	ND		0.00661	1.1	05/03/2018 06:06	WG1106089	3
Styrene	ND		0.0165	1.1	05/03/2018 06:06	<u>WG1106089</u>	5
1,1,1,2-Tetrachloroethane	ND		0.00331	1.1	05/03/2018 06:06	WG1106089	
1,1,2,2-Tetrachloroethane	ND		0.00331	1.1	05/03/2018 06:06	<u>WG1106089</u>	4
1,1,2-Trichlorotrifluoroethane	ND		0.00331	1.1	05/03/2018 06:06	WG1106089	
Tetrachloroethene	ND		0.00331	1.1	05/03/2018 06:06	<u>WG1106089</u>	5
Toluene	ND		0.00661	1.1	05/03/2018 06:06	WG1106089	5
1,2,3-Trichlorobenzene	ND		0.00331	1.1	05/03/2018 06:06	WG1106089	
1,2,4-Trichlorobenzene	ND		0.0165	1.1	05/03/2018 06:06	WG1106089	6
1,1,1-Trichloroethane	ND		0.00331	1.1	05/03/2018 06:06	<u>WG1106089</u>	
1,1,2-Trichloroethane	ND		0.00331	1.1	05/03/2018 06:06	WG1106089	7
Trichloroethene	ND		0.00132	1.1	05/03/2018 06:06	<u>WG1106089</u>	ĺ,
Trichlorofluoromethane	ND		0.00331	1.1	05/03/2018 06:06	WG1106089	
1,2,3-Trichloropropane	ND		0.0165	1.1	05/03/2018 06:06	<u>WG1106089</u>	8
1,2,4-Trimethylbenzene	ND		0.00661	1.1	05/03/2018 06:06	WG1106089	
1,2,3-Trimethylbenzene	ND		0.00661	1.1	05/03/2018 06:06	<u>WG1106089</u>	9
1,3,5-Trimethylbenzene	ND		0.00661	1.1	05/03/2018 06:06	WG1106089	
Vinyl chloride	ND		0.00331	1.1	05/03/2018 06:06	<u>WG1106089</u>	
Xylenes, Total	ND		0.00860	1.1	05/03/2018 06:06	WG1106089	
(S) Toluene-d8	112		80.0-120		05/03/2018 06:06	<u>WG1106089</u>	
(S) Dibromofluoromethane	94.9		74.0-131		05/03/2018 06:06	WG1106089	
(S) 4-Bromofluorobenzene	105		64.0-132		05/03/2018 06:06	<u>WG1106089</u>	

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
C12-C22 Hydrocarbons	ND		4.81	1	05/03/2018 16:24	WG1105376
C22-C32 Hydrocarbons	ND		4.81	1	05/03/2018 16:24	WG1105376
C32-C40 Hydrocarbons	ND		4.81	1	05/03/2018 16:24	WG1105376
(S) o-Terphenyl	82.3		18.0-148		05/03/2018 16:24	WG1105376

SDG: L989458 DATE/TIME: 05/10/18 19:34 Collected date/time: 04/25/18 14:25

SAMPLE RESULTS - 03 L989458

ONE LAB. NATIONWIDE.

Ср

Qc

Gl

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	
Analyte	%			date / time		2
Total Solids	82.9		1	05/01/2018 17:14	WG1105483	T

Volatile Organic Compounds (GC) by Method 8015

Analyte	%		date	/ time			2
Total Solids	82.9	1	05/0	1/2018 17:14	WG1105483		Tc
Volatile Organic Comp	oounds (GC) k	by Method	8015				³ Ss
	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		4 Cn
TPHG C5 - C12	ND		0.121	1	04/30/2018 01:25	WG1104737	Cn
(S) a,a,a-Trifluorotoluene(FID)	103		77.0-120		04/30/2018 01:25	WG1104737	5
							⁵Sr

Volatile Organic Compounds (GC/MS) by Method 8260B

Analyte	Result (dry) mg/kg	Qualifier	RDL (dry) mg/kg	Dilution	Analysis date / time	<u>Batch</u>	
Acetone	0.0453		0.0302	1	05/03/2018 06:27	WG1106089	
Acrylonitrile	ND		0.0151	1	05/03/2018 06:27	WG1106089	
Benzene	ND		0.00121	1	05/03/2018 06:27	WG1106089	
Bromobenzene	ND		0.0151	1	05/03/2018 06:27	WG1106089	
Bromodichloromethane	ND		0.00302	1	05/03/2018 06:27	WG1106089	
Bromoform	ND		0.0302	1	05/03/2018 06:27	WG1106089	
Bromomethane	ND		0.0151	1	05/03/2018 06:27	WG1106089	
n-Butylbenzene	ND		0.0151	1	05/03/2018 06:27	WG1106089	
sec-Butylbenzene	ND		0.0151	1	05/03/2018 06:27	WG1106089	
tert-Butylbenzene	ND		0.00603	1	05/03/2018 06:27	WG1106089	
Carbon tetrachloride	ND		0.00603	1	05/03/2018 06:27	WG1106089	
Chlorobenzene	ND		0.00302	1	05/03/2018 06:27	WG1106089	
Chlorodibromomethane	ND		0.00302	1	05/03/2018 06:27	WG1106089	
Chloroethane	ND		0.00603	1	05/03/2018 06:27	WG1106089	
Chloroform	ND		0.00302	1	05/03/2018 06:27	WG1106089	
Chloromethane	ND		0.0151	1	05/03/2018 06:27	WG1106089	
2-Chlorotoluene	ND		0.00302	1	05/03/2018 06:27	WG1106089	
4-Chlorotoluene	ND		0.00603	1	05/03/2018 06:27	WG1106089	
1,2-Dibromo-3-Chloropropane	ND		0.0302	1	05/03/2018 06:27	WG1106089	
1,2-Dibromoethane	ND		0.00302	1	05/03/2018 06:27	WG1106089	
Dibromomethane	ND		0.00603	1	05/03/2018 06:27	WG1106089	
1,2-Dichlorobenzene	ND		0.00603	1	05/03/2018 06:27	WG1106089	
1,3-Dichlorobenzene	ND		0.00603	1	05/03/2018 06:27	WG1106089	
1,4-Dichlorobenzene	ND		0.00603	1	05/03/2018 06:27	WG1106089	
Dichlorodifluoromethane	ND		0.00302	1	05/03/2018 06:27	WG1106089	
1,1-Dichloroethane	ND		0.00302	1	05/03/2018 06:27	WG1106089	
1,2-Dichloroethane	ND		0.00302	1	05/03/2018 06:27	WG1106089	
1,1-Dichloroethene	ND		0.00302	1	05/03/2018 06:27	WG1106089	
cis-1,2-Dichloroethene	ND		0.00302	1	05/03/2018 06:27	WG1106089	
trans-1,2-Dichloroethene	ND		0.00603	1	05/03/2018 06:27	WG1106089	
1,2-Dichloropropane	ND		0.00603	1	05/03/2018 06:27	WG1106089	
1,1-Dichloropropene	ND		0.00302	1	05/03/2018 06:27	WG1106089	
1,3-Dichloropropane	ND		0.00603	1	05/03/2018 06:27	WG1106089	
cis-1,3-Dichloropropene	ND		0.00302	1	05/03/2018 06:27	WG1106089	
trans-1,3-Dichloropropene	ND		0.00603	1	05/03/2018 06:27	WG1106089	
2,2-Dichloropropane	ND		0.00302	1	05/03/2018 06:27	WG1106089	
Di-isopropyl ether	ND		0.00121	1	05/03/2018 06:27	WG1106089	
Ethylbenzene	ND		0.00302	1	05/03/2018 06:27	WG1106089	
Hexachloro-1,3-butadiene	ND		0.0302	1	05/03/2018 06:27	WG1106089	
Isopropylbenzene	ND		0.00302	1	05/03/2018 06:27	WG1106089	
p-lsopropyltoluene	ND		0.00603	1	05/03/2018 06:27	WG1106089	
2-Butanone (MEK)	ND		0.0302	1	05/03/2018 06:27	WG1106089	
Methylene Chloride	ND		0.0302	1	05/03/2018 06:27	WG1106089	
4-Methyl-2-pentanone (MIBK)	ND		0.0302	1	05/03/2018 06:27	WG1106089	
	τ.			т.	SDG:		PAGE

*

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	_ [`C
Analyte	mg/kg		mg/kg		date / time		
Methyl tert-butyl ether	ND		0.00121	1	05/03/2018 06:27	WG1106089	² T
Naphthalene	ND		0.0151	1	05/03/2018 06:27	WG1106089	
n-Propylbenzene	ND		0.00603	1	05/03/2018 06:27	WG1106089	3
Styrene	ND		0.0151	1	05/03/2018 06:27	<u>WG1106089</u>	ູ
1,1,1,2-Tetrachloroethane	ND		0.00302	1	05/03/2018 06:27	WG1106089	
1,1,2,2-Tetrachloroethane	ND		0.00302	1	05/03/2018 06:27	<u>WG1106089</u>	4
1,1,2-Trichlorotrifluoroethane	ND		0.00302	1	05/03/2018 06:27	WG1106089	Ì
Tetrachloroethene	ND		0.00302	1	05/03/2018 06:27	<u>WG1106089</u>	5
Toluene	ND		0.00603	1	05/03/2018 06:27	WG1106089	5
1,2,3-Trichlorobenzene	ND		0.00302	1	05/03/2018 06:27	WG1106089	
1,2,4-Trichlorobenzene	ND		0.0151	1	05/03/2018 06:27	WG1106089	6
1,1,1-Trichloroethane	ND		0.00302	1	05/03/2018 06:27	WG1106089	
1,1,2-Trichloroethane	ND		0.00302	1	05/03/2018 06:27	WG1106089	7
Trichloroethene	ND		0.00121	1	05/03/2018 06:27	<u>WG1106089</u>	Í (
Trichlorofluoromethane	ND		0.00302	1	05/03/2018 06:27	WG1106089	
1,2,3-Trichloropropane	ND		0.0151	1	05/03/2018 06:27	WG1106089	8
1,2,4-Trimethylbenzene	ND		0.00603	1	05/03/2018 06:27	WG1106089	- Ľ
1,2,3-Trimethylbenzene	ND		0.00603	1	05/03/2018 06:27	WG1106089	9
1,3,5-Trimethylbenzene	ND		0.00603	1	05/03/2018 06:27	WG1106089	Ĩ
Vinyl chloride	ND		0.00302	1	05/03/2018 06:27	WG1106089	
Xylenes, Total	ND		0.00784	1	05/03/2018 06:27	WG1106089	
(S) Toluene-d8	113		80.0-120		05/03/2018 06:27	WG1106089	
(S) Dibromofluoromethane	94.5		74.0-131		05/03/2018 06:27	WG1106089	
(S) 4-Bromofluorobenzene	110		64.0-132		05/03/2018 06:27	WG1106089	

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
C12-C22 Hydrocarbons	ND		4.82	1	05/03/2018 16:40	WG1105376
C22-C32 Hydrocarbons	ND		4.82	1	05/03/2018 16:40	WG1105376
C32-C40 Hydrocarbons	ND		4.82	1	05/03/2018 16:40	WG1105376
(S) o-Terphenyl	84.5		18.0-148		05/03/2018 16:40	WG1105376

Collected date/time: 04/25/18 14:35

SAMPLE RESULTS - 04 L989458

ONE LAB. NATIONWIDE.

.

Qc

Gl

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	
Analyte	%	quanto	Diración	date / time		2
Total Solids	85.5		1	05/01/2018 17:14	WG1105483	¯Τc

Volatile Organic Compounds (GC) by Method 8015

	Result	Qualifier	Dilution	Analysis	Batch		
Analyte	%			date / time			
Total Solids	85.5		1	05/01/2018 17:14	WG1105483		
Volatile Organic Comp	oounds (GC)	by Metho	d 8015				
	Result (dry)	by Metho <u>Qualifier</u>	RDL (c	lry) Dilution	Analysis	Batch	
Analyte	Result (dry) mg/kg	-	RDL (c mg/kg	lry) Dilution	date / time		
Analyte	Result (dry)	-	RDL (c	lry) Dilution		Batch WG1104737	
Analyte TPHG C5 - C12 (S) a,a,a-Trifluorotoluene(FID)	Result (dry) mg/kg	-	RDL (c mg/kg	lry) Dilution	date / time		

Volatile Organic Compounds (GC/MS) by Method 8260B

Analyte	Result (dry) mg/kg	Qualifier	RDL (dry) mg/kg	Dilution	Analysis date / time	Batch	
Acetone	0.0375		0.0292	1	05/03/2018 06:47	WG1106089	
Acrylonitrile	ND		0.0292	1	05/03/2018 06:47	WG1106089	
Benzene	ND		0.00117	1	05/03/2018 06:47	WG1106089	
Bromobenzene	ND		0.0146	1	05/03/2018 06:47	WG1106089	
Bromodichloromethane	ND		0.00292	1	05/03/2018 06:47	WG1106089	
Bromoform	ND		0.0292	1	05/03/2018 06:47	WG1106089	
Bromomethane	ND		0.0232	1	05/03/2018 06:47	WG1106089	
n-Butylbenzene	ND		0.0146	1	05/03/2018 06:47	WG1106089	
sec-Butylbenzene	ND		0.0146	1	05/03/2018 06:47	WG1106089	
tert-Butylbenzene	ND		0.00585	1	05/03/2018 06:47	WG1106089	
Carbon tetrachloride	ND		0.00585	1	05/03/2018 06:47	WG1106089	
Chlorobenzene	ND		0.00292	1	05/03/2018 06:47	WG1106089	
Chlorodibromomethane	ND		0.00292	1	05/03/2018 06:47	WG1106089	
Chloroethane	ND		0.00585	1	05/03/2018 06:47	WG1106089	
Chloroform	ND		0.00292	1	05/03/2018 06:47	WG1106089	
Chloromethane	ND		0.0146	1	05/03/2018 06:47	WG1106089	
2-Chlorotoluene	ND		0.00292	1	05/03/2018 06:47	WG1106089	
4-Chlorotoluene	ND		0.00585	1	05/03/2018 06:47	WG1106089	
1,2-Dibromo-3-Chloropropane	ND		0.0292	1	05/03/2018 06:47	WG1106089	
1,2-Dibromoethane	ND		0.00292	1	05/03/2018 06:47	WG1106089	
Dibromomethane	ND		0.00232	1	05/03/2018 06:47	WG1106089	
1,2-Dichlorobenzene	ND		0.00585	1	05/03/2018 06:47	WG1106089	
1,3-Dichlorobenzene	ND		0.00585	1	05/03/2018 06:47	WG1106089	
1,4-Dichlorobenzene	ND		0.00585	1	05/03/2018 06:47	WG1106089	
Dichlorodifluoromethane	ND		0.00292	1	05/03/2018 06:47	WG1106089	
1,1-Dichloroethane	ND		0.00292	1	05/03/2018 06:47	WG1106089	
1,2-Dichloroethane	ND		0.00292	1	05/03/2018 06:47	WG1106089	
1,1-Dichloroethene	ND		0.00292	1	05/03/2018 06:47	WG1106089	
cis-1,2-Dichloroethene	ND		0.00292	1	05/03/2018 06:47	WG1106089	
trans-1,2-Dichloroethene	ND		0.00585	1	05/03/2018 06:47	WG1106089	
1,2-Dichloropropane	ND		0.00585	1	05/03/2018 06:47	WG1106089	
1,1-Dichloropropene	ND		0.00292	1	05/03/2018 06:47	WG1106089	
1,3-Dichloropropane	ND		0.00585	1	05/03/2018 06:47	WG1106089	
cis-1,3-Dichloropropene	ND		0.00292	1	05/03/2018 06:47	WG1106089	
trans-1,3-Dichloropropene	ND		0.00585	1	05/03/2018 06:47	WG1106089	
2,2-Dichloropropane	ND		0.00292	1	05/03/2018 06:47	WG1106089	
Di-isopropyl ether	ND		0.00117	1	05/03/2018 06:47	WG1106089	
Ethylbenzene	ND		0.00292	1	05/03/2018 06:47	WG1106089	
Hexachloro-1,3-butadiene	ND		0.0292	1	05/03/2018 06:47	WG1106089	
Isopropylbenzene	ND		0.0292	1	05/03/2018 06:47	WG1106089	
p-lsopropyltoluene	ND		0.00292	1	05/03/2018 06:47	WG1106089	
2-Butanone (MEK)	ND		0.0292	1	05/03/2018 06:47	WG1106089	
Methylene Chloride	ND		0.0292	1	05/03/2018 06:47	WG1106089	
4-Methyl-2-pentanone (MIBK)	ND		0.0292	1	05/03/2018 06:47	WG1106089	
- יווכנוואו־ב-אכוונמווטוופ (ואווסג)	NU		0.0292	I	03/03/2010 00.47	w01100089	
	-			-	SDG.		PAGE

*

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	- [`C
Analyte	mg/kg		mg/kg		date / time		
Methyl tert-butyl ether	ND		0.00117	1	05/03/2018 06:47	WG1106089	² T
Naphthalene	ND		0.0146	1	05/03/2018 06:47	WG1106089	
n-Propylbenzene	ND		0.00585	1	05/03/2018 06:47	WG1106089	3
Styrene	ND		0.0146	1	05/03/2018 06:47	WG1106089	ິເ
1,1,1,2-Tetrachloroethane	ND		0.00292	1	05/03/2018 06:47	WG1106089	
1,1,2,2-Tetrachloroethane	ND		0.00292	1	05/03/2018 06:47	<u>WG1106089</u>	4
1,1,2-Trichlorotrifluoroethane	ND		0.00292	1	05/03/2018 06:47	WG1106089	
Tetrachloroethene	ND		0.00292	1	05/03/2018 06:47	<u>WG1106089</u>	5
Toluene	ND		0.00585	1	05/03/2018 06:47	WG1106089	⁵ S
1,2,3-Trichlorobenzene	ND		0.00292	1	05/03/2018 06:47	WG1106089	
1,2,4-Trichlorobenzene	ND		0.0146	1	05/03/2018 06:47	WG1106089	6
1,1,1-Trichloroethane	ND		0.00292	1	05/03/2018 06:47	WG1106089	
1,1,2-Trichloroethane	ND		0.00292	1	05/03/2018 06:47	WG1106089	7
Trichloroethene	ND		0.00117	1	05/03/2018 06:47	WG1106089	Ĺ
Trichlorofluoromethane	ND		0.00292	1	05/03/2018 06:47	WG1106089	
1,2,3-Trichloropropane	ND		0.0146	1	05/03/2018 06:47	WG1106089	8
1,2,4-Trimethylbenzene	ND		0.00585	1	05/03/2018 06:47	WG1106089	Ľ
1,2,3-Trimethylbenzene	ND		0.00585	1	05/03/2018 06:47	<u>WG1106089</u>	9
1,3,5-Trimethylbenzene	ND		0.00585	1	05/03/2018 06:47	WG1106089	Ĩ
Vinyl chloride	ND		0.00292	1	05/03/2018 06:47	WG1106089	
Xylenes, Total	ND		0.00760	1	05/03/2018 06:47	WG1106089	
(S) Toluene-d8	115		80.0-120		05/03/2018 06:47	<u>WG1106089</u>	
(S) Dibromofluoromethane	95.4		74.0-131		05/03/2018 06:47	WG1106089	
(S) 4-Bromofluorobenzene	106		64.0-132		05/03/2018 06:47	WG1106089	

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
C12-C22 Hydrocarbons	ND		4.68	1	05/03/2018 19:26	WG1105376
C22-C32 Hydrocarbons	ND		4.68	1	05/03/2018 19:26	WG1105376
C32-C40 Hydrocarbons	ND		4.68	1	05/03/2018 19:26	WG1105376
(S) o-Terphenyl	74.2		18.0-148		05/03/2018 19:26	WG1105376

Collected date/time: 04/25/18 14:45

SAMPLE RESULTS - 05 L989458

ONE LAB. NATIONWIDE.

1

Qc

Gl

Â

Sc

	Result	Qualifier	Dilution	Analysis	Batch		Ct
Analyte	%			date / time		2	
Total Solids	80.3		1	05/01/2018 17:14	<u>WG1105483</u>		Тс

Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
TPHG C5 - C12	ND		0.125	1	04/30/2018 02:12	WG1104737
(S) a,a,a-Trifluorotoluene(FID)	103		77.0-120		04/30/2018 02:12	WG1104737

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
Acetone	ND		0.0311	1	05/03/2018 07:08	WG1106089	
Acrylonitrile	ND		0.0156	1	05/03/2018 07:08	<u>WG1106089</u>	
Benzene	ND		0.00125	1	05/03/2018 07:08	WG1106089	
Bromobenzene	ND		0.0156	1	05/03/2018 07:08	<u>WG1106089</u>	
Bromodichloromethane	ND		0.00311	1	05/03/2018 07:08	WG1106089	
Bromoform	ND		0.0311	1	05/03/2018 07:08	<u>WG1106089</u>	
Bromomethane	ND		0.0156	1	05/03/2018 07:08	WG1106089	
n-Butylbenzene	ND		0.0156	1	05/03/2018 07:08	<u>WG1106089</u>	
sec-Butylbenzene	ND		0.0156	1	05/03/2018 07:08	<u>WG1106089</u>	
tert-Butylbenzene	ND		0.00623	1	05/03/2018 07:08	<u>WG1106089</u>	
Carbon tetrachloride	ND		0.00623	1	05/03/2018 07:08	WG1106089	
Chlorobenzene	ND		0.00311	1	05/03/2018 07:08	<u>WG1106089</u>	
Chlorodibromomethane	ND		0.00311	1	05/03/2018 07:08	WG1106089	
Chloroethane	ND		0.00623	1	05/03/2018 07:08	WG1106089	
Chloroform	ND		0.00311	1	05/03/2018 07:08	WG1106089	
Chloromethane	ND		0.0156	1	05/03/2018 07:08	WG1106089	
2-Chlorotoluene	ND		0.00311	1	05/03/2018 07:08	WG1106089	
1-Chlorotoluene	ND		0.00623	1	05/03/2018 07:08	<u>WG1106089</u>	
,2-Dibromo-3-Chloropropane	ND		0.0311	1	05/03/2018 07:08	WG1106089	
,2-Dibromoethane	ND		0.00311	1	05/03/2018 07:08	<u>WG1106089</u>	
Dibromomethane	ND		0.00623	1	05/03/2018 07:08	WG1106089	
l,2-Dichlorobenzene	ND		0.00623	1	05/03/2018 07:08	WG1106089	
1,3-Dichlorobenzene	ND		0.00623	1	05/03/2018 07:08	WG1106089	
I,4-Dichlorobenzene	ND		0.00623	1	05/03/2018 07:08	WG1106089	
Dichlorodifluoromethane	ND		0.00311	1	05/03/2018 07:08	WG1106089	
I,1-Dichloroethane	ND		0.00311	1	05/03/2018 07:08	WG1106089	
1,2-Dichloroethane	ND		0.00311	1	05/03/2018 07:08	WG1106089	
1,1-Dichloroethene	ND		0.00311	1	05/03/2018 07:08	WG1106089	
cis-1,2-Dichloroethene	ND		0.00311	1	05/03/2018 07:08	WG1106089	
rans-1,2-Dichloroethene	ND		0.00623	1	05/03/2018 07:08	WG1106089	
1,2-Dichloropropane	ND		0.00623	1	05/03/2018 07:08	WG1106089	
l,1-Dichloropropene	ND		0.00311	1	05/03/2018 07:08	WG1106089	
l,3-Dichloropropane	ND		0.00623	1	05/03/2018 07:08	WG1106089	
cis-1,3-Dichloropropene	ND		0.00311	1	05/03/2018 07:08	WG1106089	
rans-1,3-Dichloropropene	ND		0.00623	1	05/03/2018 07:08	WG1106089	
2,2-Dichloropropane	ND		0.00311	1	05/03/2018 07:08	WG1106089	
Di-isopropyl ether	ND		0.00125	1	05/03/2018 07:08	WG1106089	
Ethylbenzene	ND		0.00311	1	05/03/2018 07:08	WG1106089	
Hexachloro-1,3-butadiene	ND		0.0311	1	05/03/2018 07:08	WG1106089	
sopropylbenzene	ND		0.00311	1	05/03/2018 07:08	WG1106089	
p-lsopropyltoluene	ND		0.00623	1	05/03/2018 07:08	WG1106089	
2-Butanone (MEK)	0.0356		0.0311	1	05/03/2018 07:08	WG1106089	
Methylene Chloride	ND		0.0311	1	05/03/2018 07:08	WG1106089	
4-Methyl-2-pentanone (MIBK)	ND		0.0311	1	05/03/2018 07:08	WG1106089	

*

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	C C
Analyte	mg/kg		mg/kg		date / time		
Methyl tert-butyl ether	ND		0.00125	1	05/03/2018 07:08	WG1106089	² Tc
Naphthalene	ND		0.0156	1	05/03/2018 07:08	WG1106089	
n-Propylbenzene	ND		0.00623	1	05/03/2018 07:08	WG1106089	3
Styrene	ND		0.0156	1	05/03/2018 07:08	<u>WG1106089</u>	ິSs
1,1,1,2-Tetrachloroethane	ND		0.00311	1	05/03/2018 07:08	WG1106089	
1,1,2,2-Tetrachloroethane	ND		0.00311	1	05/03/2018 07:08	<u>WG1106089</u>	⁴ Cr
1,1,2-Trichlorotrifluoroethane	ND		0.00311	1	05/03/2018 07:08	WG1106089	01
Tetrachloroethene	ND		0.00311	1	05/03/2018 07:08	<u>WG1106089</u>	5
Toluene	ND		0.00623	1	05/03/2018 07:08	WG1106089	⁵Sr
1,2,3-Trichlorobenzene	ND		0.00311	1	05/03/2018 07:08	<u>WG1106089</u>	
1,2,4-Trichlorobenzene	ND		0.0156	1	05/03/2018 07:08	WG1106089	⁶ Q
1,1,1-Trichloroethane	ND		0.00311	1	05/03/2018 07:08	<u>WG1106089</u>	
1,1,2-Trichloroethane	ND		0.00311	1	05/03/2018 07:08	WG1106089	7
Trichloroethene	ND		0.00125	1	05/03/2018 07:08	WG1106089	΄G
Trichlorofluoromethane	ND		0.00311	1	05/03/2018 07:08	WG1106089	
1,2,3-Trichloropropane	ND		0.0156	1	05/03/2018 07:08	<u>WG1106089</u>	⁸ Al
1,2,4-Trimethylbenzene	ND		0.00623	1	05/03/2018 07:08	WG1106089	7.0
1,2,3-Trimethylbenzene	ND		0.00623	1	05/03/2018 07:08	<u>WG1106089</u>	9
1,3,5-Trimethylbenzene	ND		0.00623	1	05/03/2018 07:08	WG1106089	ິິິ
Vinyl chloride	ND		0.00311	1	05/03/2018 07:08	<u>WG1106089</u>	
Xylenes, Total	ND		0.00810	1	05/03/2018 07:08	WG1106089	
(S) Toluene-d8	118		80.0-120		05/03/2018 07:08	WG1106089	
(S) Dibromofluoromethane	88.9		74.0-131		05/03/2018 07:08	WG1106089	
(S) 4-Bromofluorobenzene	104		64.0-132		05/03/2018 07:08	WG1106089	

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
C12-C22 Hydrocarbons	ND		4.98	1	05/03/2018 17:55	<u>WG1105376</u>
C22-C32 Hydrocarbons	ND		4.98	1	05/03/2018 17:55	<u>WG1105376</u>
C32-C40 Hydrocarbons	ND		4.98	1	05/03/2018 17:55	WG1105376
(S) o-Terphenyl	84.9		18.0-148		05/03/2018 17:55	WG1105376

SAMPLE RESULTS - 06 L989458

Volatile Organic Compounds (GC) by Method 8015

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l		date / time		2
TPHG C5 - C12	ND		100	1	04/29/2018 14:55	WG1104689	Tc
(S) a,a,a-Trifluorotoluene(FID)	92.6		77.0-122		04/29/2018 14:55	WG1104689	
							³ Ss

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	RDL	Dilution	Analysis	Batch	⁴ Cr
Analyte	ug/l		ug/l		date / time		
Acetone	ND		50.0	1	04/29/2018 00:20	WG1104570	5
Acrolein	ND		50.0	1	04/29/2018 00:20	WG1104570	ືSr
Acrylonitrile	ND		10.0	1	04/29/2018 00:20	WG1104570	
Benzene	ND		1.00	1	04/29/2018 00:20	WG1104570	⁶ Q¢
Bromobenzene	ND		1.00	1	04/29/2018 00:20	WG1104570	
Bromodichloromethane	ND		1.00	1	04/29/2018 00:20	WG1104570	7
Bromoform	ND		1.00	1	04/29/2018 00:20	WG1104570	Í GI
Bromomethane	ND		5.00	1	04/29/2018 00:20	WG1104570	
n-Butylbenzene	ND		1.00	1	04/29/2018 00:20	WG1104570	⁸ AI
sec-Butylbenzene	ND		1.00	1	04/29/2018 00:20	WG1104570	A
tert-Butylbenzene	ND		1.00	1	04/29/2018 00:20	WG1104570	9
Carbon tetrachloride	ND		1.00	1	04/29/2018 00:20	WG1104570	Šc
Chlorobenzene	ND		1.00	1	04/29/2018 00:20	WG1104570	
Chlorodibromomethane	ND		1.00	1	04/29/2018 00:20	WG1104570	
Chloroethane	ND		5.00	1	04/29/2018 00:20	WG1104570	
Chloroform	ND		5.00	1	04/29/2018 00:20	WG1104570	
Chloromethane	ND		2.50	1	04/29/2018 00:20	WG1104570	
2-Chlorotoluene	ND		1.00	1	04/29/2018 00:20	WG1104570	
4-Chlorotoluene	ND		1.00	1	04/29/2018 00:20	WG1104570	
1,2-Dibromo-3-Chloropropane	ND		5.00	1	04/29/2018 00:20	WG1104570	
1,2-Dibromoethane	ND		1.00	1	04/29/2018 00:20	WG1104570	
Dibromomethane	ND		1.00	1	04/29/2018 00:20	WG1104570	
l,2-Dichlorobenzene	ND		1.00	1	04/29/2018 00:20	WG1104570	
I,3-Dichlorobenzene	ND		1.00	1	04/29/2018 00:20	WG1104570	
1,4-Dichlorobenzene	ND		1.00	1	04/29/2018 00:20	WG1104570	
Dichlorodifluoromethane	ND		5.00	1	04/29/2018 00:20	WG1104570	
1,1-Dichloroethane	ND		1.00	1	04/29/2018 00:20	WG1104570	
1,2-Dichloroethane	ND		1.00	1	04/29/2018 00:20	WG1104570	
1,1-Dichloroethene	ND		1.00	1	04/29/2018 00:20	WG1104570	
cis-1,2-Dichloroethene	ND		1.00	1	04/29/2018 00:20	WG1104570	
trans-1,2-Dichloroethene	ND		1.00	1	04/29/2018 00:20	WG1104570	
1,2-Dichloropropane	ND		1.00	1	04/29/2018 00:20	WG1104570	
1,1-Dichloropropene	ND		1.00	1	04/29/2018 00:20	WG1104570	
1,3-Dichloropropane	ND		1.00	1	04/29/2018 00:20	WG1104570	
cis-1,3-Dichloropropene	ND		1.00	1	04/29/2018 00:20	WG1104570	
trans-1,3-Dichloropropene	ND		1.00	1	04/29/2018 00:20	WG1104570	
2,2-Dichloropropane	ND		1.00	1	04/29/2018 00:20	WG1104570	
Di-isopropyl ether	ND		1.00	1	04/29/2018 00:20	WG1104570	
Ethylbenzene	ND		1.00	1	04/29/2018 00:20	WG1104570	
Hexachloro-1,3-butadiene	ND		1.00	1	04/29/2018 00:20	WG1104570	
sopropylbenzene	ND		1.00	1	04/29/2018 00:20	WG1104570	
p-Isopropyltoluene	ND		1.00	1	04/29/2018 00:20	WG1104570	
2-Butanone (MEK)	ND		10.0	1	04/29/2018 00:20	WG1104570	
Methylene Chloride	ND		5.00	1	04/29/2018 00:20	WG1104570	
4-Methyl-2-pentanone (MIBK)	ND		10.0	1	04/29/2018 00:20	WG1104570	
Methyl tert-butyl ether	ND		1.00	1	04/29/2018 00:20	WG1104570	
Naphthalene	ND		5.00	1	04/29/2018 00:20	WG1104570	
	ND		1.00	1	04/29/2018 00:20	WG1104570	
			1.00	1	07/23/2010 00.20	WU1104370	
n-Propylbenzene Styrene	ND		1.00	1	04/29/2018 00:20	WG1104570	

Applied Water Resources AWR- Alameda, CA

ACCOUNT:

PROJECT: THOT

SDG: L989458

DATE/TIME: 05/10/18 19:34 PAGE: 17 of 67

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	RDL	Dilution	Analysis	Batch	C
Analyte	ug/l		ug/l		date / time		
1,1,1,2-Tetrachloroethane	ND		1.00	1	04/29/2018 00:20	WG1104570	²
1,1,2,2-Tetrachloroethane	ND		1.00	1	04/29/2018 00:20	WG1104570	Ľ
1,1,2-Trichlorotrifluoroethane	ND		1.00	1	04/29/2018 00:20	WG1104570	3
Tetrachloroethene	ND		1.00	1	04/29/2018 00:20	WG1104570	ິ
Toluene	ND		1.00	1	04/29/2018 00:20	WG1104570	
1,2,3-Trichlorobenzene	ND		1.00	1	04/29/2018 00:20	WG1104570	4
1,2,4-Trichlorobenzene	ND		1.00	1	04/29/2018 00:20	WG1104570	
1,1,1-Trichloroethane	ND		1.00	1	04/29/2018 00:20	WG1104570	5
1,1,2-Trichloroethane	ND		1.00	1	04/29/2018 00:20	WG1104570	5
Trichloroethene	ND		1.00	1	04/29/2018 00:20	WG1104570	
Trichlorofluoromethane	ND		5.00	1	04/29/2018 00:20	WG1104570	6
1,2,3-Trichloropropane	ND		2.50	1	04/29/2018 00:20	WG1104570	
1,2,4-Trimethylbenzene	ND		1.00	1	04/29/2018 00:20	WG1104570	7
1,2,3-Trimethylbenzene	ND		1.00	1	04/29/2018 00:20	WG1104570	ľ (
1,3,5-Trimethylbenzene	ND		1.00	1	04/29/2018 00:20	WG1104570	
Vinyl chloride	ND		1.00	1	04/29/2018 00:20	WG1104570	8
Xylenes, Total	ND		3.00	1	04/29/2018 00:20	WG1104570	Ľ
(S) Toluene-d8	95.9		80.0-120		04/29/2018 00:20	WG1104570	9
(S) Dibromofluoromethane	116		76.0-123		04/29/2018 00:20	WG1104570	Ĩ
(S) 4-Bromofluorobenzene	95.9		80.0-120		04/29/2018 00:20	WG1104570	

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
C12-C22 Hydrocarbons	ND		100	1	04/30/2018 21:34	<u>WG1104930</u>
C22-C32 Hydrocarbons	ND		100	1	04/30/2018 21:34	WG1104930
C32-C40 Hydrocarbons	ND		100	1	04/30/2018 21:34	WG1104930
(S) o-Terphenyl	83.4		52.0-156		04/30/2018 21:34	WG1104930

Collected date/time: 04/25/18 10:40

SAMPLE RESULTS - 07 L989458

ONE LAB. NATIONWIDE.

⁶Qc

Gl

ΆI

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	
Analyte	%			date / time		
Total Solids	84.4		1	05/01/2018 17:14	WG1105483	2

Volatile Organic Compounds (GC) by Method 8015

Volatile Organic Com	pounds (GC) k	by Method	8015			
	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
TPHG C5 - C12	ND		0.118	1	04/30/2018 02:35	WG1104737
(S) a,a,a-Trifluorotoluene(FID)	103		77.0-120		04/30/2018 02:35	WG1104737
				_		

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
Acetone	0.0376		0.0308	1.04	05/03/2018 07:29	WG1106089	
Acrylonitrile	ND		0.0154	1.04	05/03/2018 07:29	WG1106089	
Benzene	ND		0.00123	1.04	05/03/2018 07:29	WG1106089	
Bromobenzene	ND		0.0154	1.04	05/03/2018 07:29	WG1106089	
Bromodichloromethane	ND		0.00308	1.04	05/03/2018 07:29	WG1106089	
Bromoform	ND		0.0308	1.04	05/03/2018 07:29	WG1106089	
Bromomethane	ND		0.0154	1.04	05/03/2018 07:29	WG1106089	
n-Butylbenzene	ND		0.0154	1.04	05/03/2018 07:29	WG1106089	
sec-Butylbenzene	ND		0.0154	1.04	05/03/2018 07:29	WG1106089	
tert-Butylbenzene	ND		0.00616	1.04	05/03/2018 07:29	WG1106089	
Carbon tetrachloride	ND		0.00616	1.04	05/03/2018 07:29	WG1106089	
Chlorobenzene	ND		0.00308	1.04	05/03/2018 07:29	WG1106089	
Chlorodibromomethane	ND		0.00308	1.04	05/03/2018 07:29	WG1106089	
Chloroethane	ND		0.00616	1.04	05/03/2018 07:29	WG1106089	
Chloroform	ND		0.00308	1.04	05/03/2018 07:29	WG1106089	
Chloromethane	ND		0.0154	1.04	05/03/2018 07:29	WG1106089	
2-Chlorotoluene	ND		0.00308	1.04	05/03/2018 07:29	WG1106089	
4-Chlorotoluene	ND		0.00616	1.04	05/03/2018 07:29	WG1106089	
,2-Dibromo-3-Chloropropane	ND		0.0308	1.04	05/03/2018 07:29	WG1106089	
,2-Dibromoethane	ND		0.00308	1.04	05/03/2018 07:29	WG1106089	
Dibromomethane	ND		0.00616	1.04	05/03/2018 07:29	WG1106089	
,2-Dichlorobenzene	ND		0.00616	1.04	05/03/2018 07:29	WG1106089	
,3-Dichlorobenzene	ND		0.00616	1.04	05/03/2018 07:29	WG1106089	
,4-Dichlorobenzene	ND		0.00616	1.04	05/03/2018 07:29	WG1106089	
Dichlorodifluoromethane	ND		0.00308	1.04	05/03/2018 07:29	WG1106089	
,1-Dichloroethane	ND		0.00308	1.04	05/03/2018 07:29	WG1106089	
l,2-Dichloroethane	ND		0.00308	1.04	05/03/2018 07:29	WG1106089	
I,1-Dichloroethene	ND		0.00308	1.04	05/03/2018 07:29	WG1106089	
cis-1,2-Dichloroethene	ND		0.00308	1.04	05/03/2018 07:29	WG1106089	
rans-1,2-Dichloroethene	ND		0.00616	1.04	05/03/2018 07:29	WG1106089	
l,2-Dichloropropane	ND		0.00616	1.04	05/03/2018 07:29	WG1106089	
l,1-Dichloropropene	ND		0.00308	1.04	05/03/2018 07:29	WG1106089	
l,3-Dichloropropane	ND		0.00616	1.04	05/03/2018 07:29	WG1106089	
cis-1,3-Dichloropropene	ND		0.00308	1.04	05/03/2018 07:29	WG1106089	
rans-1,3-Dichloropropene	ND		0.00616	1.04	05/03/2018 07:29	WG1106089	
2,2-Dichloropropane	ND		0.00308	1.04	05/03/2018 07:29	WG1106089	
Di-isopropyl ether	ND		0.00123	1.04	05/03/2018 07:29	WG1106089	
Ethylbenzene	ND		0.00308	1.04	05/03/2018 07:29	WG1106089	
Hexachloro-1,3-butadiene	ND		0.0308	1.04	05/03/2018 07:29	WG1106089	
sopropylbenzene	ND		0.00308	1.04	05/03/2018 07:29	WG1106089	
p-Isopropyltoluene	ND		0.00616	1.04	05/03/2018 07:29	WG1106089	
2-Butanone (MEK)	ND		0.0308	1.04	05/03/2018 07:29	WG1106089	
Nethylene Chloride	ND		0.0308	1.04	05/03/2018 07:29	WG1106089	
4-Methyl-2-pentanone (MIBK)	ND		0.0308	1.04	05/03/2018 07:29	WG1106089	

Applied Water Resources AWR- Alameda, CA

PROJECT: тнот

SDG: L989458

DATE/TIME: 05/10/18 19:34

PAGE: 19 of 67

*

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	Cp
Analyte	mg/kg		mg/kg		date / time		
Methyl tert-butyl ether	ND		0.00123	1.04	05/03/2018 07:29	WG1106089	² Tc
Naphthalene	ND		0.0154	1.04	05/03/2018 07:29	WG1106089	
n-Propylbenzene	ND		0.00616	1.04	05/03/2018 07:29	WG1106089	3
Styrene	ND		0.0154	1.04	05/03/2018 07:29	WG1106089	ິSs
1,1,1,2-Tetrachloroethane	ND		0.00308	1.04	05/03/2018 07:29	WG1106089	
1,1,2,2-Tetrachloroethane	ND		0.00308	1.04	05/03/2018 07:29	WG1106089	⁴ Cr
1,1,2-Trichlorotrifluoroethane	ND		0.00308	1.04	05/03/2018 07:29	WG1106089	01
Tetrachloroethene	ND		0.00308	1.04	05/03/2018 07:29	<u>WG1106089</u>	5
Toluene	ND		0.00616	1.04	05/03/2018 07:29	<u>WG1106089</u>	⁵Sr
1,2,3-Trichlorobenzene	ND		0.00308	1.04	05/03/2018 07:29	WG1106089	
1,2,4-Trichlorobenzene	ND		0.0154	1.04	05/03/2018 07:29	WG1106089	⁶ Qo
1,1,1-Trichloroethane	ND		0.00308	1.04	05/03/2018 07:29	WG1106089	<u> </u>
1,1,2-Trichloroethane	ND		0.00308	1.04	05/03/2018 07:29	WG1106089	7
Trichloroethene	ND		0.00123	1.04	05/03/2018 07:29	WG1106089	΄ GΙ
Trichlorofluoromethane	ND		0.00308	1.04	05/03/2018 07:29	WG1106089	
1,2,3-Trichloropropane	ND		0.0154	1.04	05/03/2018 07:29	WG1106089	⁸ Al
1,2,4-Trimethylbenzene	ND		0.00616	1.04	05/03/2018 07:29	WG1106089	7.4
1,2,3-Trimethylbenzene	ND		0.00616	1.04	05/03/2018 07:29	WG1106089	9
1,3,5-Trimethylbenzene	ND		0.00616	1.04	05/03/2018 07:29	WG1106089	ຶSc
Vinyl chloride	ND		0.00308	1.04	05/03/2018 07:29	WG1106089	
Xylenes, Total	ND		0.00801	1.04	05/03/2018 07:29	WG1106089	
(S) Toluene-d8	115		80.0-120		05/03/2018 07:29	WG1106089	
(S) Dibromofluoromethane	88.0		74.0-131		05/03/2018 07:29	WG1106089	
(S) 4-Bromofluorobenzene	107		64.0-132		05/03/2018 07:29	WG1106089	

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
C12-C22 Hydrocarbons	ND		4.74	1	05/03/2018 18:10	WG1105376
C22-C32 Hydrocarbons	ND		4.74	1	05/03/2018 18:10	WG1105376
C32-C40 Hydrocarbons	ND		4.74	1	05/03/2018 18:10	WG1105376
(S) o-Terphenyl	77.5		18.0-148		05/03/2018 18:10	WG1105376

Collected date/time: 04/25/18 11:05

SAMPLE RESULTS - 08 L989458

ONE LAB. NATIONWIDE.

.

Qc

Gl

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	
Analyte	%			date / time		2
Total Solids	83.7		1	05/01/2018 17:14	WG1105483	T

Volatile Organic Compounds (GC) by Method 8015

	Result	Qualifier	Dilution	Analysis	Batch		
Analyte	%			date / time			
Total Solids	83.7		1	05/01/2018 17:14	WG1105483		
Volatile Organic Comr	ounds (GC)	hy Metho	d 8015				
Volatile Organic Comp	Result (dry)	by Metho <u>Qualifier</u>	d 8015 RDL (c		Analysis	Batch	
	. ,	-		Iry) Dilution	Analysis date / time	Batch	
Analyte	Result (dry)	-	RDL (c	Iry) Dilution		Batch WG1104737	
Volatile Organic Comp Analyte TPHG C5 - C12 (S) a,a,a-Trifluorotoluene(FID)	Result (dry) mg/kg	-	RDL (c mg/kg	Iry) Dilution	date / time		

Volatile Organic Compounds (GC/MS) by Method 8260B

Analista	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
Acetone	0.0764		0.0299	1	05/03/2018 07:50	WG1106089	
Acrylonitrile	ND		0.0149	1	05/03/2018 07:50	WG1106089	
Benzene	ND		0.00119	1	05/03/2018 07:50	WG1106089	
Bromobenzene	ND		0.0149	1	05/03/2018 07:50	WG1106089	
Bromodichloromethane	ND		0.00299	1	05/03/2018 07:50	WG1106089	
Bromoform	ND		0.0299	1	05/03/2018 07:50	<u>WG1106089</u>	
Bromomethane	ND		0.0149	1	05/03/2018 07:50	WG1106089	
n-Butylbenzene	ND		0.0149	1	05/03/2018 07:50	<u>WG1106089</u>	
sec-Butylbenzene	ND		0.0149	1	05/03/2018 07:50	WG1106089	
tert-Butylbenzene	ND		0.00597	1	05/03/2018 07:50	WG1106089	
Carbon tetrachloride	ND		0.00597	1	05/03/2018 07:50	WG1106089	
Chlorobenzene	ND		0.00299	1	05/03/2018 07:50	WG1106089	
Chlorodibromomethane	ND		0.00299	1	05/03/2018 07:50	WG1106089	
Chloroethane	ND		0.00597	1	05/03/2018 07:50	WG1106089	
Chloroform	ND		0.00299	1	05/03/2018 07:50	WG1106089	
Chloromethane	ND		0.0149	1	05/03/2018 07:50	WG1106089	
2-Chlorotoluene	ND		0.00299	1	05/03/2018 07:50	WG1106089	
4-Chlorotoluene	ND		0.00597	1	05/03/2018 07:50	WG1106089	
I,2-Dibromo-3-Chloropropane	ND		0.0299	1	05/03/2018 07:50	WG1106089	
1,2-Dibromoethane	ND		0.00299	1	05/03/2018 07:50	WG1106089	
Dibromomethane	ND		0.00597	1	05/03/2018 07:50	WG1106089	
1,2-Dichlorobenzene	ND		0.00597	1	05/03/2018 07:50	WG1106089	
1,3-Dichlorobenzene	ND		0.00597	1	05/03/2018 07:50	WG1106089	
1,4-Dichlorobenzene	ND		0.00597	1	05/03/2018 07:50	WG1106089	
Dichlorodifluoromethane	ND		0.00299	1	05/03/2018 07:50	WG1106089	
1,1-Dichloroethane	ND		0.00299	1	05/03/2018 07:50	WG1106089	
1,2-Dichloroethane	ND		0.00299	1	05/03/2018 07:50	WG1106089	
1,1-Dichloroethene	ND		0.00299	1	05/03/2018 07:50	WG1106089	
cis-1,2-Dichloroethene	ND		0.00299	1	05/03/2018 07:50	WG1106089	
trans-1,2-Dichloroethene	ND		0.00597	1	05/03/2018 07:50	WG1106089	
1,2-Dichloropropane	ND		0.00597	1	05/03/2018 07:50	WG1106089	
1,1-Dichloropropene	ND		0.00299	1	05/03/2018 07:50	WG1106089	
I,3-Dichloropropane	ND		0.00597	1	05/03/2018 07:50	WG1106089	
cis-1,3-Dichloropropene	ND		0.00299	1	05/03/2018 07:50	WG1106089	
trans-1,3-Dichloropropene	ND		0.00597	1	05/03/2018 07:50	WG1106089	
2,2-Dichloropropane	ND		0.00299	1	05/03/2018 07:50	WG1106089	
Di-isopropyl ether	ND		0.00119	1	05/03/2018 07:50	WG1106089	
Ethylbenzene	ND		0.00299	1	05/03/2018 07:50	WG1106089	
Hexachloro-1,3-butadiene	ND		0.0299	1	05/03/2018 07:50	WG1106089	
Isopropylbenzene	ND		0.00299	1	05/03/2018 07:50	WG1106089	
p-lsopropyltoluene	ND		0.00597	1	05/03/2018 07:50	WG1106089	
2-Butanone (MEK)	ND		0.0299	1	05/03/2018 07:50	WG1106089	
Methylene Chloride	ND		0.0299	1	05/03/2018 07:50	WG1106089	
4-Methyl-2-pentanone (MIBK)	ND		0.0299	1	05/03/2018 07:50	WG1106089	

SDG: L989458

21 of 67

*

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	_ [`C
Analyte	mg/kg		mg/kg		date / time		
Methyl tert-butyl ether	ND		0.00119	1	05/03/2018 07:50	WG1106089	2
Naphthalene	ND		0.0149	1	05/03/2018 07:50	WG1106089	
n-Propylbenzene	ND		0.00597	1	05/03/2018 07:50	<u>WG1106089</u>	3
Styrene	ND		0.0149	1	05/03/2018 07:50	<u>WG1106089</u>	ິເ
1,1,1,2-Tetrachloroethane	ND		0.00299	1	05/03/2018 07:50	<u>WG1106089</u>	
1,1,2,2-Tetrachloroethane	ND		0.00299	1	05/03/2018 07:50	<u>WG1106089</u>	4
1,1,2-Trichlorotrifluoroethane	ND		0.00299	1	05/03/2018 07:50	WG1106089	
Tetrachloroethene	ND		0.00299	1	05/03/2018 07:50	<u>WG1106089</u>	5
Toluene	ND		0.00597	1	05/03/2018 07:50	<u>WG1106089</u>	5
1,2,3-Trichlorobenzene	ND		0.00299	1	05/03/2018 07:50	<u>WG1106089</u>	
1,2,4-Trichlorobenzene	ND		0.0149	1	05/03/2018 07:50	<u>WG1106089</u>	6
1,1,1-Trichloroethane	ND		0.00299	1	05/03/2018 07:50	<u>WG1106089</u>	
1,1,2-Trichloroethane	ND		0.00299	1	05/03/2018 07:50	<u>WG1106089</u>	7
Trichloroethene	ND		0.00119	1	05/03/2018 07:50	<u>WG1106089</u>	ľ.
Trichlorofluoromethane	ND		0.00299	1	05/03/2018 07:50	<u>WG1106089</u>	
1,2,3-Trichloropropane	ND		0.0149	1	05/03/2018 07:50	<u>WG1106089</u>	8
1,2,4-Trimethylbenzene	ND		0.00597	1	05/03/2018 07:50	<u>WG1106089</u>	Ľ
1,2,3-Trimethylbenzene	ND		0.00597	1	05/03/2018 07:50	<u>WG1106089</u>	9
1,3,5-Trimethylbenzene	ND		0.00597	1	05/03/2018 07:50	WG1106089	
Vinyl chloride	ND		0.00299	1	05/03/2018 07:50	WG1106089	
Xylenes, Total	ND		0.00776	1	05/03/2018 07:50	WG1106089	
(S) Toluene-d8	117		80.0-120		05/03/2018 07:50	WG1106089	
(S) Dibromofluoromethane	90.6		74.0-131		05/03/2018 07:50	WG1106089	
(S) 4-Bromofluorobenzene	107		64.0-132		05/03/2018 07:50	<u>WG1106089</u>	

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
C12-C22 Hydrocarbons	ND		4.78	1	05/03/2018 19:41	WG1105376
C22-C32 Hydrocarbons	ND		4.78	1	05/03/2018 19:41	WG1105376
C32-C40 Hydrocarbons	ND		4.78	1	05/03/2018 19:41	WG1105376
(S) o-Terphenyl	80.4		18.0-148		05/03/2018 19:41	WG1105376

SAMPLE RESULTS - 09 L989458

Volatile Organic Compounds (GC) by Method 8015

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
analyte	ug/l		ug/l		date / time		2
PHG C5 - C12	2690		100	1	04/30/2018 17:20	WG1104689	
(S) a,a,a-Trifluorotoluene(FID)	97.4		77.0-122		04/30/2018 17:20	WG1104689	
							3

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	RDL	Dilution	Analysis	Batch	⁴ Cr
Analyte	ug/l		ug/l		date / time		
Acetone	ND		50.0	1	04/29/2018 00:41	WG1104570	5
Acrolein	ND		50.0	1	04/29/2018 00:41	WG1104570	ືSr
Acrylonitrile	ND		10.0	1	04/29/2018 00:41	WG1104570	
Benzene	ND		1.00	1	04/29/2018 00:41	WG1104570	⁶ Q
Bromobenzene	ND		1.00	1	04/29/2018 00:41	WG1104570	
Bromodichloromethane	ND		1.00	1	04/29/2018 00:41	WG1104570	7
Bromoform	ND		1.00	1	04/29/2018 00:41	WG1104570	Í GI
Bromomethane	ND		5.00	1	04/29/2018 00:41	WG1104570	
n-Butylbenzene	ND		1.00	1	04/29/2018 00:41	WG1104570	⁸ AI
sec-Butylbenzene	ND		1.00	1	04/29/2018 00:41	WG1104570	A
tert-Butylbenzene	ND		1.00	1	04/29/2018 00:41	WG1104570	0
Carbon tetrachloride	ND		1.00	1	04/29/2018 00:41	WG1104570	ຶິິິ
Chlorobenzene	ND		1.00	1	04/29/2018 00:41	WG1104570	
Chlorodibromomethane	ND		1.00	1	04/29/2018 00:41	WG1104570	
Chloroethane	ND		5.00	1	04/29/2018 00:41	WG1104570	
Chloroform	ND		5.00	1	04/29/2018 00:41	WG1104570	
Chloromethane	ND		2.50	1	04/29/2018 00:41	WG1104570	
2-Chlorotoluene	ND		1.00	1	04/29/2018 00:41	WG1104570	
4-Chlorotoluene	ND		1.00	1	04/29/2018 00:41	WG1104570	
l,2-Dibromo-3-Chloropropane	ND		5.00	1	04/29/2018 00:41	WG1104570	
,2-Dibromoethane	ND		1.00	1	04/29/2018 00:41	WG1104570	
Dibromomethane	ND		1.00	1	04/29/2018 00:41	WG1104570	
,2-Dichlorobenzene	ND		1.00	1	04/29/2018 00:41	WG1104570	
,3-Dichlorobenzene	ND		1.00	1	04/29/2018 00:41	WG1104570	
,4-Dichlorobenzene	ND		1.00	1	04/29/2018 00:41	WG1104570	
Dichlorodifluoromethane	ND		5.00	1	04/29/2018 00:41	WG1104570	
,1-Dichloroethane	ND		1.00	1	04/29/2018 00:41	WG1104570	
,2-Dichloroethane	ND		1.00	1	04/29/2018 00:41	WG1104570	
I,1-Dichloroethene	ND		1.00	1	04/29/2018 00:41	WG1104570	
cis-1,2-Dichloroethene	ND		1.00	1	04/29/2018 00:41	WG1104570	
rans-1,2-Dichloroethene	ND		1.00	1	04/29/2018 00:41	WG1104570	
1,2-Dichloropropane	ND		1.00	1	04/29/2018 00:41	WG1104570	
l,1-Dichloropropene	ND		1.00	1	04/29/2018 00:41	WG1104570	
I,3-Dichloropropane	ND		1.00	1	04/29/2018 00:41	WG1104570	
cis-1,3-Dichloropropene	ND		1.00	1	04/29/2018 00:41	WG1104570	
rans-1,3-Dichloropropene	ND		1.00	1	04/29/2018 00:41	WG1104570	
2,2-Dichloropropane	ND		1.00	1	04/29/2018 00:41	WG1104570	
Di-isopropyl ether	ND		1.00	1	04/29/2018 00:41	WG1104570	
Ethylbenzene	ND		1.00	1	04/29/2018 00:41	WG1104570	
Hexachloro-1,3-butadiene	ND		1.00	1	04/29/2018 00:41	WG1104570	
sopropylbenzene	ND		1.00	1	04/29/2018 00:41	WG1104570	
p-lsopropyltoluene	ND		1.00	1	04/29/2018 00:41	WG1104570	
2-Butanone (MEK)	ND		10.0	1	04/29/2018 00:41	WG1104570	
Methylene Chloride	ND		5.00	1	04/29/2018 00:41	WG1104570	
1-Methyl-2-pentanone (MIBK)	ND		10.0	1	04/29/2018 00:41	WG1104570	
Methyl tert-butyl ether	ND		1.00	1	04/29/2018 00:41	WG1104570	
Vaphthalene	ND		5.00	1	04/29/2018 00:41	WG1104570	
n-Propylbenzene	ND		1.00	1	04/29/2018 00:41	WG1104570	
Styrene	ND		1.00	1	04/29/2018 00:41	WG1104570	
/I VI \. II \.	IND.		1.00	1	U T/2J/2010 UU.41	IVUIIUTU/U	

ACCOUNT: Applied Water Resources AWR- Alameda, CA PROJECT: THOT

SDG: L989458

DATE/TIME: 05/10/18 19:34

*

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	RDL	Dilution	Analysis	Batch	(
Analyte	ug/l		ug/l		date / time		
1,1,1,2-Tetrachloroethane	ND		1.00	1	04/29/2018 00:41	WG1104570	2
1,1,2,2-Tetrachloroethane	ND		1.00	1	04/29/2018 00:41	WG1104570	
1,1,2-Trichlorotrifluoroethane	ND		1.00	1	04/29/2018 00:41	WG1104570	3
Tetrachloroethene	ND		1.00	1	04/29/2018 00:41	WG1104570	3
Toluene	ND		1.00	1	04/29/2018 00:41	WG1104570	
1,2,3-Trichlorobenzene	ND		1.00	1	04/29/2018 00:41	WG1104570	4
1,2,4-Trichlorobenzene	ND		1.00	1	04/29/2018 00:41	WG1104570	
1,1,1-Trichloroethane	ND		1.00	1	04/29/2018 00:41	WG1104570	5
1,1,2-Trichloroethane	ND		1.00	1	04/29/2018 00:41	WG1104570	5
Trichloroethene	ND		1.00	1	04/29/2018 00:41	WG1104570	
Trichlorofluoromethane	ND		5.00	1	04/29/2018 00:41	WG1104570	6
1,2,3-Trichloropropane	ND		2.50	1	04/29/2018 00:41	WG1104570	
1,2,4-Trimethylbenzene	ND		1.00	1	04/29/2018 00:41	WG1104570	7
1,2,3-Trimethylbenzene	ND		1.00	1	04/29/2018 00:41	WG1104570	1
1,3,5-Trimethylbenzene	ND		1.00	1	04/29/2018 00:41	WG1104570	
Vinyl chloride	ND		1.00	1	04/29/2018 00:41	WG1104570	8
Xylenes, Total	ND		3.00	1	04/29/2018 00:41	WG1104570	
(S) Toluene-d8	96.5		80.0-120		04/29/2018 00:41	WG1104570	9
(S) Dibromofluoromethane	116		76.0-123		04/29/2018 00:41	WG1104570	
(S) 4-Bromofluorobenzene	96.8		80.0-120		04/29/2018 00:41	WG1104570	L

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
C12-C22 Hydrocarbons	25800		625	6.25	05/01/2018 15:22	WG1104930
C22-C32 Hydrocarbons	4300		125	1.25	04/30/2018 21:50	WG1104930
C32-C40 Hydrocarbons	170		125	1.25	04/30/2018 21:50	WG1104930
(S) o-Terphenyl	93.0		52.0-156		05/01/2018 15:22	WG1104930
(S) o-Terphenyl	1.79	<u>J2</u>	52.0-156		04/30/2018 21:50	WG1104930

Sample Narrative:

L989458-09 WG1104930: Low surrogate due to matrix interference.

Collected date/time: 04/25/18 11:45

SAMPLE RESULTS - 10 L989458

ONE LAB. NATIONWIDE.

Qc

Gl

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	 C
Analyte	%			date / time		2
Total Solids	83.2		1	05/01/2018 17:14	WG1105483	ŤΤ

Volatile Organic Compounds (GC) by Method 8015

	Result	Qualifier	Dilution	Analysis	Batch		
Analyte	%			date / time			
Total Solids	83.2		1	05/01/2018 17:14	WG1105483		
Volatile Organic Comp	. ,			v) Dilution	Analysis	Batch	
	Result (GC) mg/kg	by Metho Qualifier	d 8015 RDL (dr mg/kg	ry) Dilution	Analysis date / time	Batch	
Analyte	Result (dry)		RDL (dı	ry) Dilution		Batch WG1104737	
Volatile Organic Comp Analyte TPHG C5 - C12 (S) a,a,a-Trifluorotoluene(FID)	Result (dry) mg/kg		RDL (d ı mg/kg	1	date / time		

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
Acetone	0.0360		0.0300	1	05/03/2018 08:11	WG1106089	
Acrylonitrile	ND		0.0150	1	05/03/2018 08:11	WG1106089	
Benzene	ND		0.00120	1	05/03/2018 08:11	WG1106089	
Bromobenzene	ND		0.0150	1	05/03/2018 08:11	WG1106089	
Bromodichloromethane	ND		0.00300	1	05/03/2018 08:11	WG1106089	
Bromoform	ND		0.0300	1	05/03/2018 08:11	WG1106089	
Bromomethane	ND		0.0150	1	05/03/2018 08:11	WG1106089	
n-Butylbenzene	ND		0.0150	1	05/03/2018 08:11	WG1106089	
sec-Butylbenzene	ND		0.0150	1	05/03/2018 08:11	WG1106089	
tert-Butylbenzene	ND		0.00601	1	05/03/2018 08:11	WG1106089	
Carbon tetrachloride	ND		0.00601	1	05/03/2018 08:11	WG1106089	
Chlorobenzene	ND		0.00300	1	05/03/2018 08:11	WG1106089	
Chlorodibromomethane	ND		0.00300	1	05/03/2018 08:11	WG1106089	
Chloroethane	ND		0.00601	1	05/03/2018 08:11	WG1106089	
Chloroform	ND		0.00300	1	05/03/2018 08:11	WG1106089	
Chloromethane	ND		0.0150	1	05/03/2018 08:11	WG1106089	
2-Chlorotoluene	ND		0.00300	1	05/03/2018 08:11	WG1106089	
4-Chlorotoluene	ND		0.00601	1	05/03/2018 08:11	WG1106089	
1,2-Dibromo-3-Chloropropane	ND		0.0300	1	05/03/2018 08:11	WG1106089	
1,2-Dibromoethane	ND		0.00300	1	05/03/2018 08:11	WG1106089	
Dibromomethane	ND		0.00601	1	05/03/2018 08:11	WG1106089	
1,2-Dichlorobenzene	ND		0.00601	1	05/03/2018 08:11	WG1106089	
1,3-Dichlorobenzene	ND		0.00601	1	05/03/2018 08:11	WG1106089	
1,4-Dichlorobenzene	ND		0.00601	1	05/03/2018 08:11	WG1106089	
Dichlorodifluoromethane	ND		0.00300	1	05/03/2018 08:11	WG1106089	
1,1-Dichloroethane	ND		0.00300	1	05/03/2018 08:11	WG1106089	
1,2-Dichloroethane	ND		0.00300	1	05/03/2018 08:11	WG1106089	
1,1-Dichloroethene	ND		0.00300	1	05/03/2018 08:11	WG1106089	
cis-1,2-Dichloroethene	ND		0.00300	1	05/03/2018 08:11	WG1106089	
trans-1,2-Dichloroethene	ND		0.00601	1	05/03/2018 08:11	WG1106089	
1,2-Dichloropropane	ND		0.00601	1	05/03/2018 08:11	WG1106089	
1,1-Dichloropropene	ND		0.00300	1	05/03/2018 08:11	WG1106089	
1,3-Dichloropropane	ND		0.00601	1	05/03/2018 08:11	WG1106089	
cis-1,3-Dichloropropene	ND		0.00300	1	05/03/2018 08:11	WG1106089	
trans-1,3-Dichloropropene	ND		0.00601	1	05/03/2018 08:11	WG1106089	
2,2-Dichloropropane	ND		0.00300	1	05/03/2018 08:11	WG1106089	
Di-isopropyl ether	ND		0.00120	1	05/03/2018 08:11	WG1106089	
Ethylbenzene	ND		0.00300	1	05/03/2018 08:11	WG1106089	
Hexachloro-1,3-butadiene	ND		0.0300	1	05/03/2018 08:11	WG1106089	
Isopropylbenzene	ND		0.00300	1	05/03/2018 08:11	WG1106089	
p-lsopropyltoluene	ND		0.00300	1	05/03/2018 08:11		
2-Butanone (MEK)			0.00601			WG1106089	
	ND			1	05/03/2018 08:11	WG1106089	
Methylene Chloride	ND		0.0300	1	05/03/2018 08:11	WG1106089	
4-Methyl-2-pentanone (MIBK)	ND		0.0300	1	05/03/2018 08:11	<u>WG1106089</u>	
	т.			т.	SDG		PAC

*

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	i
Analyte	mg/kg		mg/kg		date / time		
Methyl tert-butyl ether	ND		0.00120	1	05/03/2018 08:11	WG1106089	2
Naphthalene	ND		0.0150	1	05/03/2018 08:11	WG1106089	
n-Propylbenzene	ND		0.00601	1	05/03/2018 08:11	WG1106089	3
Styrene	ND		0.0150	1	05/03/2018 08:11	WG1106089	
1,1,1,2-Tetrachloroethane	ND		0.00300	1	05/03/2018 08:11	WG1106089	L
1,1,2,2-Tetrachloroethane	ND		0.00300	1	05/03/2018 08:11	WG1106089	2
1,1,2-Trichlorotrifluoroethane	ND		0.00300	1	05/03/2018 08:11	WG1106089	
Tetrachloroethene	ND		0.00300	1	05/03/2018 08:11	WG1106089	5
Toluene	ND		0.00601	1	05/03/2018 08:11	WG1106089	ę
1,2,3-Trichlorobenzene	ND		0.00300	1	05/03/2018 08:11	WG1106089	
1,2,4-Trichlorobenzene	ND		0.0150	1	05/03/2018 08:11	WG1106089	e
1,1,1-Trichloroethane	ND		0.00300	1	05/03/2018 08:11	WG1106089	
1,1,2-Trichloroethane	ND		0.00300	1	05/03/2018 08:11	WG1106089	E
Trichloroethene	ND		0.00120	1	05/03/2018 08:11	WG1106089	
Trichlorofluoromethane	ND		0.00300	1	05/03/2018 08:11	WG1106089	_ L
1,2,3-Trichloropropane	ND		0.0150	1	05/03/2018 08:11	WG1106089	8
1,2,4-Trimethylbenzene	ND		0.00601	1	05/03/2018 08:11	WG1106089	
1,2,3-Trimethylbenzene	ND		0.00601	1	05/03/2018 08:11	WG1106089	5
1,3,5-Trimethylbenzene	ND		0.00601	1	05/03/2018 08:11	WG1106089	
Vinyl chloride	ND		0.00300	1	05/03/2018 08:11	WG1106089	L
Xylenes, Total	ND		0.00781	1	05/03/2018 08:11	WG1106089	
(S) Toluene-d8	116		80.0-120		05/03/2018 08:11	WG1106089	
(S) Dibromofluoromethane	81.6		74.0-131		05/03/2018 08:11	WG1106089	
(S) 4-Bromofluorobenzene	104		64.0-132		05/03/2018 08:11	WG1106089	

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
C12-C22 Hydrocarbons	ND		4.81	1	05/03/2018 18:23	WG1105376
C22-C32 Hydrocarbons	ND		4.81	1	05/03/2018 18:23	WG1105376
C32-C40 Hydrocarbons	ND		4.81	1	05/03/2018 18:23	WG1105376
(S) o-Terphenyl	76.8		18.0-148		05/03/2018 18:23	WG1105376

SDG: L989458 DATE/TIME: 05/10/18 19:34

Collected date/time: 04/25/18 13:30

SAMPLE RESULTS - 11 L989458

ONE LAB. NATIONWIDE.

Qc

Gl

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	C
Analyte	%			date / time		2
Total Solids	84.3		1	05/01/2018 17:14	WG1105483	ŤΤ

Volatile Organic Compounds (GC) by Method 8015

	Result	Qualifier	Dilution	Analysis	Batch	
Analyte	%			date / time		
Total Solids	84.3		1	05/01/2018 17:14	WG1105483	
Volanie Ordanic Comu	DOUNDS (GC)	by Metho	d 8015			
Volatile Organic Comp	Result (dry)	by Metho Qualifier	a 8015 RDL (d		Analysis	Batch
Analyte		-		lry) Dilution	Analysis date / time	Batch
	Result (dry)	-	RDL (c	lry) Dilution		Batch WG1104737
Analyte	Result (dry) mg/kg	-	RDL (c mg/kg	lry) Dilution	date / time	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
Acetone	ND		0.0297	1	05/03/2018 08:32	WG1106089	
Acrylonitrile	ND		0.0148	1	05/03/2018 08:32	WG1106089	
Benzene	ND		0.00119	1	05/03/2018 08:32	WG1106089	
Bromobenzene	ND		0.0148	1	05/03/2018 08:32	WG1106089	
Bromodichloromethane	ND		0.00297	1	05/03/2018 08:32	WG1106089	
Bromoform	ND		0.0297	1	05/03/2018 08:32	WG1106089	
Bromomethane	ND		0.0148	1	05/03/2018 08:32	WG1106089	
-Butylbenzene	ND		0.0148	1	05/03/2018 08:32	WG1106089	
ec-Butylbenzene	ND		0.0148	1	05/03/2018 08:32	WG1106089	
ert-Butylbenzene	ND		0.00593	1	05/03/2018 08:32	WG1106089	
Carbon tetrachloride	ND		0.00593	1	05/03/2018 08:32	WG1106089	
Chlorobenzene	ND		0.00297	1	05/03/2018 08:32	WG1106089	
hlorodibromomethane	ND		0.00297	1	05/03/2018 08:32	WG1106089	
Chloroethane	ND		0.00593	1	05/03/2018 08:32	WG1106089	
Chloroform	ND		0.00297	1	05/03/2018 08:32	WG1106089	
Chloromethane	ND		0.0148	1	05/03/2018 08:32	WG1106089	
-Chlorotoluene	ND		0.00297	1	05/03/2018 08:32	WG1106089	
-Chlorotoluene	ND		0.00593	1	05/03/2018 08:32	WG1106089	
2-Dibromo-3-Chloropropane	ND		0.0297	1	05/03/2018 08:32	WG1106089	
2-Dibromoethane	ND		0.00297	1	05/03/2018 08:32	WG1106089	
ibromomethane	ND		0.00593	1	05/03/2018 08:32	WG1106089	
2-Dichlorobenzene	ND		0.00593	1	05/03/2018 08:32	WG1106089	
3-Dichlorobenzene	ND		0.00593	1	05/03/2018 08:32	WG1106089	
4-Dichlorobenzene	ND		0.00593	1	05/03/2018 08:32	WG1106089	
Vichlorodifluoromethane	ND		0.00297	1	05/03/2018 08:32	WG1106089	
1-Dichloroethane	ND		0.00297	1	05/03/2018 08:32	WG1106089	
2-Dichloroethane	ND		0.00297	1	05/03/2018 08:32	WG1106089	
1-Dichloroethene	ND		0.00297	1	05/03/2018 08:32	WG1106089	
is-1,2-Dichloroethene	ND		0.00297	1	05/03/2018 08:32	WG1106089	
ans-1,2-Dichloroethene	ND		0.00593	1	05/03/2018 08:32	WG1106089	
2-Dichloropropane	ND		0.00593	1	05/03/2018 08:32	WG1106089	
1-Dichloropropene	ND		0.00297	1	05/03/2018 08:32	WG1106089	
3-Dichloropropane	ND		0.00593	1	05/03/2018 08:32	WG1106089	
s-1,3-Dichloropropene	ND		0.00297	1	05/03/2018 08:32	WG1106089	
ans-1,3-Dichloropropene	ND		0.00593	1	05/03/2018 08:32	WG1106089	
,2-Dichloropropane	ND		0.00297	1	05/03/2018 08:32	WG1106089	
i-isopropyl ether	ND		0.00119	1	05/03/2018 08:32	WG1106089	
thylbenzene	ND		0.00297	1	05/03/2018 08:32	WG1106089	
exachloro-1,3-butadiene	ND		0.0297	1	05/03/2018 08:32	WG1106089	
opropylbenzene	ND		0.00297	1	05/03/2018 08:32	WG1106089	
-Isopropyltoluene	ND		0.00593	1	05/03/2018 08:32	WG1106089	
-Butanone (MEK)	ND		0.0297	1	05/03/2018 08:32	WG1106089	
lethylene Chloride	ND		0.0297	1	05/03/2018 08:32	WG1106089	
-Methyl-2-pentanone (MIBK)	ND		0.0297	1	05/03/2018 08:32	WG1106089	

PROJECT: тнот

SDG: L989458

DATE/TIME: 05/10/18 19:34

PAGE: 27 of 67

*

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
Methyl tert-butyl ether	ND		0.00119	1	05/03/2018 08:32	WG1106089	²
Naphthalene	ND		0.0148	1	05/03/2018 08:32	WG1106089	'
n-Propylbenzene	ND		0.00593	1	05/03/2018 08:32	WG1106089	3
Styrene	ND		0.0148	1	05/03/2018 08:32	<u>WG1106089</u>	ິເ
1,1,1,2-Tetrachloroethane	ND		0.00297	1	05/03/2018 08:32	WG1106089	
1,1,2,2-Tetrachloroethane	ND		0.00297	1	05/03/2018 08:32	WG1106089	4
1,1,2-Trichlorotrifluoroethane	ND		0.00297	1	05/03/2018 08:32	WG1106089	
Tetrachloroethene	ND		0.00297	1	05/03/2018 08:32	<u>WG1106089</u>	5
Toluene	ND		0.00593	1	05/03/2018 08:32	WG1106089	5
1,2,3-Trichlorobenzene	ND		0.00297	1	05/03/2018 08:32	<u>WG1106089</u>	
1,2,4-Trichlorobenzene	ND		0.0148	1	05/03/2018 08:32	WG1106089	6
1,1,1-Trichloroethane	ND		0.00297	1	05/03/2018 08:32	WG1106089	
1,1,2-Trichloroethane	ND		0.00297	1	05/03/2018 08:32	WG1106089	7
Trichloroethene	ND		0.00119	1	05/03/2018 08:32	<u>WG1106089</u>	Ú (
Trichlorofluoromethane	ND		0.00297	1	05/03/2018 08:32	WG1106089	
1,2,3-Trichloropropane	ND		0.0148	1	05/03/2018 08:32	<u>WG1106089</u>	8
1,2,4-Trimethylbenzene	ND		0.00593	1	05/03/2018 08:32	WG1106089	Ľ
1,2,3-Trimethylbenzene	ND		0.00593	1	05/03/2018 08:32	<u>WG1106089</u>	9
1,3,5-Trimethylbenzene	ND		0.00593	1	05/03/2018 08:32	WG1106089	³
Vinyl chloride	ND		0.00297	1	05/03/2018 08:32	<u>WG1106089</u>	
Xylenes, Total	ND		0.00771	1	05/03/2018 08:32	WG1106089	
(S) Toluene-d8	111		80.0-120		05/03/2018 08:32	<u>WG1106089</u>	
(S) Dibromofluoromethane	84.3		74.0-131		05/03/2018 08:32	WG1106089	
(S) 4-Bromofluorobenzene	103		64.0-132		05/03/2018 08:32	<u>WG1106089</u>	

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
C12-C22 Hydrocarbons	ND		4.75	1	05/03/2018 18:39	WG1105376
C22-C32 Hydrocarbons	ND		4.75	1	05/03/2018 18:39	WG1105376
C32-C40 Hydrocarbons	ND		4.75	1	05/03/2018 18:39	WG1105376
(S) o-Terphenyl	75.8		18.0-148		05/03/2018 18:39	WG1105376

Collected date/time: 04/25/18 13:45

SAMPLE RESULTS - 12 L989458

ONE LAB. NATIONWIDE.

.

	Result	Qualifier	Dilution	Analysis	Batch	 Ср
Analyte	%			date / time		2
Total Solids	82.2		1	05/01/2018 17:14	<u>WG1105483</u>	Tc

Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
TPHG C5 - C12	2430		60.9	500	05/02/2018 02:41	WG1104737
(S) a,a,a-Trifluorotoluene(FID)	107		77.0-120		05/02/2018 02:41	WG1104737
Volatile Organic Comp	ounds (GC/N	1S) by Met	hod 8260	В		
	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch

Volatile Organic Compounds (GC/MS) by Method 8260B

Analyte	Result (dry) Quali mg/kg	fier RDL (dry) mg/kg	Dilution	Analysis date / time	Batch	
Acetone	ND	0.609	20	05/03/2018 03:50	WG1106111	7
crylonitrile	ND	0.304	20	05/03/2018 03:50	WG1106111	
lenzene	ND	0.0243	20	05/03/2018 03:50	WG1106111	
romobenzene	ND	0.304	20	05/03/2018 03:50	WG1106111	2
romodichloromethane	ND	0.0609	20	05/03/2018 03:50	WG1106111	L
Bromoform	ND	0.609	20	05/03/2018 03:50	WG1106111	ç
Bromomethane	ND	0.304	20	05/03/2018 03:50	WG1106111	
-Butylbenzene	3.86	0.304	20	05/03/2018 03:50	WG1106111	
ec-Butylbenzene	2.99	0.304	20	05/03/2018 03:50	WG1106111	
ert-Butylbenzene	ND	0.122	20	05/03/2018 03:50	WG1106111	
Carbon tetrachloride	ND	0.122	20	05/03/2018 03:50	WG1106111	
hlorobenzene	ND	0.0609	20	05/03/2018 03:50	WG1106111	
Chlorodibromomethane	ND	0.0609	20	05/03/2018 03:50	WG1106111	
Chloroethane	ND	0.122	20	05/03/2018 03:50	WG1106111	
Chloroform	ND	0.0609	20	05/03/2018 03:50	WG1106111	
Chloromethane	ND	0.304	20	05/03/2018 03:50	WG1106111	
-Chlorotoluene	ND	0.0609	20	05/03/2018 03:50	WG1106111	
-Chlorotoluene	ND	0.122	20	05/03/2018 03:50	WG1106111	
,2-Dibromo-3-Chloropropane	ND	0.609	20	05/03/2018 03:50	WG1106111	
2-Dibromoethane	ND	0.0609	20	05/03/2018 03:50	WG1106111	
ibromomethane	ND	0.122	20	05/03/2018 03:50	WG1106111	
2-Dichlorobenzene	ND	0.122	20	05/03/2018 03:50	WG1106111	
3-Dichlorobenzene	ND	0.122	20	05/03/2018 03:50	WG1106111	
,4-Dichlorobenzene	ND	0.122	20	05/03/2018 03:50	WG1106111	
Dichlorodifluoromethane	ND	0.0609	20	05/03/2018 03:50	WG1106111	
,1-Dichloroethane	ND	0.0609	20	05/03/2018 03:50	WG1106111	
,2-Dichloroethane	ND	0.0609	20	05/03/2018 03:50	WG1106111	
,1-Dichloroethene	ND	0.0609	20	05/03/2018 03:50	WG1106111	
is-1,2-Dichloroethene	ND	0.0609	20	05/03/2018 03:50	WG1106111	
rans-1,2-Dichloroethene	ND	0.122	20	05/03/2018 03:50	WG1106111	
,2-Dichloropropane	ND	0.122	20	05/03/2018 03:50	WG1106111	
,1-Dichloropropene	ND	0.0609	20	05/03/2018 03:50	WG1106111	
,3-Dichloropropane	ND	0.122	20	05/03/2018 03:50	WG1106111	
is-1,3-Dichloropropene	ND	0.0609	20	05/03/2018 03:50	WG1106111	
rans-1,3-Dichloropropene	ND	0.122	20	05/03/2018 03:50	WG1106111	
,2-Dichloropropane	ND	0.0609	20	05/03/2018 03:50	WG1106111	
Di-isopropyl ether	ND	0.0243	20	05/03/2018 03:50	WG1106111	
thylbenzene	1.80	0.0609	20	05/03/2018 03:50	WG1106111	
lexachloro-1,3-butadiene	ND	0.609	20	05/03/2018 03:50	WG1106111	
sopropylbenzene	1.85	0.0609	20	05/03/2018 03:50	WG1106111	
-Isopropyltoluene	3.64	0.122	20	05/03/2018 03:50	WG1106111	
-Butanone (MEK)	ND	0.609	20	05/03/2018 03:50	WG1106111	
Aethylene Chloride	ND	0.609	20	05/03/2018 03:50	WG1106111	
I-Methyl-2-pentanone (MIBK)	ND	0.609	20	05/03/2018 03:50	WG1106111	

Applied Water Resources AWR- Alameda, CA

PROJECT: тнот

SDG: L989458

PAGE: 29 of 67

*

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
Methyl tert-butyl ether	ND		0.0243	20	05/03/2018 03:50	WG1106111	2.
Naphthalene	40.3		0.304	20	05/03/2018 03:50	WG1106111	
n-Propylbenzene	3.50		0.122	20	05/03/2018 03:50	WG1106111	3
Styrene	ND		0.304	20	05/03/2018 03:50	WG1106111	J
1,1,1,2-Tetrachloroethane	ND		0.0609	20	05/03/2018 03:50	WG1106111	
1,1,2,2-Tetrachloroethane	ND		0.0609	20	05/03/2018 03:50	WG1106111	4
1,1,2-Trichlorotrifluoroethane	ND		0.0609	20	05/03/2018 03:50	WG1106111	
Tetrachloroethene	ND		0.0609	20	05/03/2018 03:50	WG1106111	5
Toluene	0.147		0.122	20	05/03/2018 03:50	WG1106111	5
1,2,3-Trichlorobenzene	ND		0.0609	20	05/03/2018 03:50	WG1106111	
1,2,4-Trichlorobenzene	ND		0.304	20	05/03/2018 03:50	WG1106111	6
1,1,1-Trichloroethane	ND		0.0609	20	05/03/2018 03:50	WG1106111	
1,1,2-Trichloroethane	ND		0.0609	20	05/03/2018 03:50	WG1106111	7
Trichloroethene	0.116		0.0243	20	05/03/2018 03:50	WG1106111	Í
Trichlorofluoromethane	ND		0.0609	20	05/03/2018 03:50	WG1106111	
1,2,3-Trichloropropane	ND		0.304	20	05/03/2018 03:50	<u>WG1106111</u>	8
1,2,4-Trimethylbenzene	3.76		0.122	20	05/03/2018 03:50	WG1106111	
1,2,3-Trimethylbenzene	0.849		0.122	20	05/03/2018 03:50	<u>WG1106111</u>	9
1,3,5-Trimethylbenzene	5.99		0.122	20	05/03/2018 03:50	WG1106111	9
Vinyl chloride	ND		0.0609	20	05/03/2018 03:50	<u>WG1106111</u>	
Xylenes, Total	0.436		0.158	20	05/03/2018 03:50	WG1106111	
(S) Toluene-d8	107		80.0-120		05/03/2018 03:50	<u>WG1106111</u>	
(S) Dibromofluoromethane	116		74.0-131		05/03/2018 03:50	<u>WG1106111</u>	
(S) 4-Bromofluorobenzene	119		64.0-132		05/03/2018 03:50	<u>WG1106111</u>	

Sample Narrative:

L989458-12 WG1106111: Non-target compounds too high to run at a lower dilution.

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
C12-C22 Hydrocarbons	13400		487	100	05/03/2018 21:32	WG1105376
C22-C32 Hydrocarbons	1610		487	100	05/03/2018 21:32	WG1105376
C32-C40 Hydrocarbons	56.2		9.74	2	05/03/2018 19:54	WG1105376
(S) o-Terphenyl	0.000	<u>J7</u>	18.0-148		05/03/2018 21:32	WG1105376
(S) o-Terphenyl	14.4	<u>J2</u>	18.0-148		05/03/2018 19:54	WG1105376

Sample Narrative:

L989458-12 WG1105376: Low surrogate due to matrix interference.

SAMPLE RESULTS - 13 L989458

Volatile Organic Compounds (GC) by Method 8015

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l		date / time		2
TPHG C5 - C12	ND		100	1	04/29/2018 15:17	WG1104689	Tc
(S) a,a,a-Trifluorotoluene(FID)	92.7		77.0-122		04/29/2018 15:17	<u>WG1104689</u>	
							³ Ss

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	RDL	Dilution	Analysis	Batch		⁴ Cr
Analyte	ug/l		ug/l		date / time			
Acetone	ND		50.0	1	04/29/2018 01:02	WG1104570		5
Acrolein	ND		50.0	1	04/29/2018 01:02	WG1104570		ੈSr
Acrylonitrile	ND		10.0	1	04/29/2018 01:02	WG1104570		
Benzene	ND		1.00	1	04/29/2018 01:02	WG1104570		
Bromobenzene	ND		1.00	1	04/29/2018 01:02	WG1104570		
Bromodichloromethane	ND		1.00	1	04/29/2018 01:02	WG1104570	[7
Bromoform	ND		1.00	1	04/29/2018 01:02	WG1104570		Γ GI
Bromomethane	ND		5.00	1	04/29/2018 01:02	WG1104570	L	
n-Butylbenzene	ND		1.00	1	04/29/2018 01:02	WG1104570		⁸ Al
sec-Butylbenzene	ND		1.00	1	04/29/2018 01:02	WG1104570		
tert-Butylbenzene	ND		1.00	1	04/29/2018 01:02	WG1104570	[0
Carbon tetrachloride	ND		1.00	1	04/29/2018 01:02	WG1104570		Sc
Chlorobenzene	ND		1.00	1	04/29/2018 01:02	WG1104570		
Chlorodibromomethane	ND		1.00	1	04/29/2018 01:02	WG1104570		
Chloroethane	ND		5.00	1	04/29/2018 01:02	WG1104570		
Chloroform	ND		5.00	1	04/29/2018 01:02	WG1104570		
Chloromethane	ND		2.50	1	04/29/2018 01:02	WG1104570		
2-Chlorotoluene	ND		1.00	1	04/29/2018 01:02	WG1104570		
4-Chlorotoluene	ND		1.00	1	04/29/2018 01:02	WG1104570		
I,2-Dibromo-3-Chloropropane	ND		5.00	1	04/29/2018 01:02	WG1104570		
,2-Dibromoethane	ND		1.00	1	04/29/2018 01:02	WG1104570		
)ibromomethane	ND		1.00	1	04/29/2018 01:02	WG1104570		
l,2-Dichlorobenzene	ND		1.00	1	04/29/2018 01:02	WG1104570		
,3-Dichlorobenzene	ND		1.00	1	04/29/2018 01:02	WG1104570		
,4-Dichlorobenzene	ND		1.00	1	04/29/2018 01:02	WG1104570		
Dichlorodifluoromethane	ND		5.00	1	04/29/2018 01:02	WG1104570		
,1-Dichloroethane	ND		1.00	1	04/29/2018 01:02	WG1104570		
,2-Dichloroethane	ND		1.00	1	04/29/2018 01:02	WG1104570		
I,1-Dichloroethene	ND		1.00	1	04/29/2018 01:02	WG1104570		
cis-1,2-Dichloroethene	ND		1.00	1	04/29/2018 01:02	WG1104570		
trans-1,2-Dichloroethene	ND		1.00	1	04/29/2018 01:02	WG1104570		
,	ND		1.00	1	04/29/2018 01:02			
1,2-Dichloropropane						WG1104570		
l,1-Dichloropropene	ND		1.00	1	04/29/2018 01:02	WG1104570		
I,3-Dichloropropane	ND		1.00	1	04/29/2018 01:02	WG1104570		
cis-1,3-Dichloropropene	ND		1.00	1	04/29/2018 01:02	WG1104570		
rans-1,3-Dichloropropene	ND		1.00	1	04/29/2018 01:02	WG1104570		
2,2-Dichloropropane	ND		1.00	1	04/29/2018 01:02	WG1104570		
Di-isopropyl ether	ND		1.00	1	04/29/2018 01:02	WG1104570		
Ethylbenzene	ND		1.00	1	04/29/2018 01:02	WG1104570		
Hexachloro-1,3-butadiene	ND		1.00	1	04/29/2018 01:02	WG1104570		
sopropylbenzene	ND		1.00	1	04/29/2018 01:02	WG1104570		
p-lsopropyltoluene	ND		1.00	1	04/29/2018 01:02	WG1104570		
2-Butanone (MEK)	ND		10.0	1	04/29/2018 01:02	WG1104570		
Methylene Chloride	ND		5.00	1	04/29/2018 01:02	WG1104570		
4-Methyl-2-pentanone (MIBK)	ND		10.0	1	04/29/2018 01:02	WG1104570		
Methyl tert-butyl ether	ND		1.00	1	04/29/2018 01:02	WG1104570		
Naphthalene	ND		5.00	1	04/29/2018 01:02	WG1104570		
	ND		1.00	1	04/29/2018 01:02	WG1104570		
n-Propylbenzene Styrene	ND		1.00	1	04/29/2018 01:02	WG1104570		

ACCOUNT: Applied Water Resources AWR- Alameda, CA PROJECT: THOT

SDG: L989458

SAMPLE RESULTS - 13 L989458

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l		date / time		
1,1,1,2-Tetrachloroethane	ND		1.00	1	04/29/2018 01:02	WG1104570	2.
1,1,2,2-Tetrachloroethane	ND		1.00	1	04/29/2018 01:02	WG1104570	
1,1,2-Trichlorotrifluoroethane	ND		1.00	1	04/29/2018 01:02	WG1104570	3
Tetrachloroethene	ND		1.00	1	04/29/2018 01:02	WG1104570	3
Toluene	ND		1.00	1	04/29/2018 01:02	WG1104570	
1,2,3-Trichlorobenzene	ND		1.00	1	04/29/2018 01:02	WG1104570	4
1,2,4-Trichlorobenzene	ND		1.00	1	04/29/2018 01:02	WG1104570	
1,1,1-Trichloroethane	ND		1.00	1	04/29/2018 01:02	WG1104570	5
1,1,2-Trichloroethane	ND		1.00	1	04/29/2018 01:02	WG1104570	5
Trichloroethene	ND		1.00	1	04/29/2018 01:02	WG1104570	
Trichlorofluoromethane	ND		5.00	1	04/29/2018 01:02	WG1104570	6
1,2,3-Trichloropropane	ND		2.50	1	04/29/2018 01:02	WG1104570	
1,2,4-Trimethylbenzene	ND		1.00	1	04/29/2018 01:02	WG1104570	7
1,2,3-Trimethylbenzene	ND		1.00	1	04/29/2018 01:02	WG1104570	ĺ
1,3,5-Trimethylbenzene	ND		1.00	1	04/29/2018 01:02	WG1104570	
Vinyl chloride	ND		1.00	1	04/29/2018 01:02	WG1104570	8
Xylenes, Total	ND		3.00	1	04/29/2018 01:02	WG1104570	L
(S) Toluene-d8	93.6		80.0-120		04/29/2018 01:02	WG1104570	9
(S) Dibromofluoromethane	115		76.0-123		04/29/2018 01:02	WG1104570	
(S) 4-Bromofluorobenzene	95.3		80.0-120		04/29/2018 01:02	WG1104570	L

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
C12-C22 Hydrocarbons	221		103	1.03	04/30/2018 22:06	<u>WG1104930</u>
C22-C32 Hydrocarbons	161		103	1.03	04/30/2018 22:06	<u>WG1104930</u>
C32-C40 Hydrocarbons	ND		103	1.03	04/30/2018 22:06	<u>WG1104930</u>
(S) o-Terphenyl	88.0		52.0-156		04/30/2018 22:06	WG1104930

Sample Narrative:

L989458-13 WG1104930: Dilution due to sample volume

SDG: L989458 Collected date/time: 04/25/18 15:05

SAMPLE RESULTS - 14 L989458

ONE LAB. NATIONWIDE.

*

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	
Analyte	%			date / time		2
Fotal Solids	90.5		1	05/02/2018 15:32	WG1105499	ŤΤ

Volatile Organic Compounds (GC) by Method 8015

	Result	Qualifier	Dilution	Analysis	Batch		
Analyte	%			date / time			
Total Solids	90.5		1	05/02/2018 15:32	WG1105499		
Volatile Organic Comp	ounds (GC)	by Metho	d 8015				
	Result (dry)	Qualifier	RDL (dr) Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
TPHG C5 - C12	ND		0.113	1.02	05/02/2018 03:59	WG1104737	
(S) a,a,a-Trifluorotoluene(FID)	106		77.0-120)	05/02/2018 03:59	WG1104737	
Volatile Organic Comp	ounds (GC/	MS) by Me	ethod 82	260B			
	Result (dry)	Qualifier	RDL (dr) Dilution	Analysis	Batch	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry) Qualifier		Dilution	Analysis	Batch	Ĭ
Analyte	mg/kg	mg/kg		date / time		L_
Acetone	ND	0.0326	1.18	05/02/2018 23:29	WG1106111	7
Acrylonitrile	ND	0.0163	1.18	05/02/2018 23:29	WG1106111	
Benzene	ND	0.00130	1.18	05/02/2018 23:29	<u>WG1106111</u>	8
Bromobenzene	ND	0.0163	1.18	05/02/2018 23:29	WG1106111	1
Bromodichloromethane	ND	0.00326	1.18	05/02/2018 23:29	WG1106111	
Bromoform	ND	0.0326	1.18	05/02/2018 23:29	WG1106111	9
Bromomethane	ND	0.0163	1.18	05/02/2018 23:29	WG1106111	
n-Butylbenzene	ND	0.0163	1.18	05/02/2018 23:29	WG1106111	
sec-Butylbenzene	ND	0.0163	1.18	05/02/2018 23:29	WG1106111	
ert-Butylbenzene	ND	0.00652	1.18	05/02/2018 23:29	WG1106111	
Carbon tetrachloride	ND	0.00652	1.18	05/02/2018 23:29	WG1106111	
Chlorobenzene	ND	0.00326	1.18	05/02/2018 23:29	WG1106111	
Chlorodibromomethane	ND	0.00326	1.18	05/02/2018 23:29	WG1106111	
Chloroethane	ND	0.00652	1.18	05/02/2018 23:29	WG1106111	
Chloroform	ND	0.00326	1.18	05/02/2018 23:29	WG1106111	
Chloromethane	ND	0.0163	1.18	05/02/2018 23:29	<u>WG1106111</u>	
-Chlorotoluene	ND	0.00326	1.18	05/02/2018 23:29	WG1106111	
-Chlorotoluene	ND	0.00652	1.18	05/02/2018 23:29	WG1106111	
2-Dibromo-3-Chloropropane	ND	0.0326	1.18	05/02/2018 23:29	WG1106111	
2-Dibromoethane	ND	0.00326	1.18	05/02/2018 23:29	<u>WG1106111</u>	
Vibromomethane	ND	0.00652	1.18	05/02/2018 23:29	<u>WG1106111</u>	
2-Dichlorobenzene	ND	0.00652	1.18	05/02/2018 23:29	<u>WG1106111</u>	
,3-Dichlorobenzene	ND	0.00652	1.18	05/02/2018 23:29	<u>WG1106111</u>	
4-Dichlorobenzene	ND	0.00652	1.18	05/02/2018 23:29	<u>WG1106111</u>	
Dichlorodifluoromethane	ND	0.00326	1.18	05/02/2018 23:29	<u>WG1106111</u>	
1-Dichloroethane	ND	0.00326	1.18	05/02/2018 23:29	<u>WG1106111</u>	
,2-Dichloroethane	ND	0.00326	1.18	05/02/2018 23:29	<u>WG1106111</u>	
,1-Dichloroethene	ND	0.00326	1.18	05/02/2018 23:29	<u>WG1106111</u>	
is-1,2-Dichloroethene	ND	0.00326	1.18	05/02/2018 23:29	<u>WG1106111</u>	
ans-1,2-Dichloroethene	ND	0.00652	1.18	05/02/2018 23:29	<u>WG1106111</u>	
,2-Dichloropropane	ND	0.00652	1.18	05/02/2018 23:29	<u>WG1106111</u>	
1-Dichloropropene	ND	0.00326	1.18	05/02/2018 23:29	WG1106111	
,3-Dichloropropane	ND	0.00652	1.18	05/02/2018 23:29	<u>WG1106111</u>	
is-1,3-Dichloropropene	ND	0.00326	1.18	05/02/2018 23:29	WG1106111	
rans-1,3-Dichloropropene	ND	0.00652	1.18	05/02/2018 23:29	WG1106111	
,2-Dichloropropane	ND	0.00326	1.18	05/02/2018 23:29	WG1106111	
)i-isopropyl ether	ND	0.00130	1.18	05/02/2018 23:29	WG1106111	
thylbenzene	ND	0.00326	1.18	05/02/2018 23:29	WG1106111	
lexachloro-1,3-butadiene	ND	0.0326	1.18	05/02/2018 23:29	WG1106111	
sopropylbenzene	ND	0.00326	1.18	05/02/2018 23:29	WG1106111	
-Isopropyltoluene	ND	0.00652	1.18	05/02/2018 23:29	WG1106111	
-Butanone (MEK)	ND	0.0326	1.18	05/02/2018 23:29	WG1106111	
Nethylene Chloride	ND	0.0326	1.18	05/02/2018 23:29	WG1106111	
-Methyl-2-pentanone (MIBK)	ND	0.0326	1.18	05/02/2018 23:29	WG1106111	
ACCOUN	T:	PROJEC	CT:	SDG:	DATE/TIME:	PAGE:

THOT

L989458

Collected date/time: 04/25/18 15:05

SAMPLE RESULTS - 14

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		L
Methyl tert-butyl ether	ND		0.00130	1.18	05/02/2018 23:29	WG1106111	2
Naphthalene	ND		0.0163	1.18	05/02/2018 23:29	<u>WG1106111</u>	
n-Propylbenzene	ND		0.00652	1.18	05/02/2018 23:29	WG1106111	3
Styrene	ND		0.0163	1.18	05/02/2018 23:29	<u>WG1106111</u>	Ĩ
1,1,1,2-Tetrachloroethane	ND		0.00326	1.18	05/02/2018 23:29	WG1106111	Ľ
1,1,2,2-Tetrachloroethane	ND		0.00326	1.18	05/02/2018 23:29	<u>WG1106111</u>	4
1,1,2-Trichlorotrifluoroethane	ND		0.00326	1.18	05/02/2018 23:29	WG1106111	
Tetrachloroethene	ND		0.00326	1.18	05/02/2018 23:29	<u>WG1106111</u>	5
Toluene	ND		0.00652	1.18	05/02/2018 23:29	WG1106111	Ę
1,2,3-Trichlorobenzene	ND		0.00326	1.18	05/02/2018 23:29	<u>WG1106111</u>	
1,2,4-Trichlorobenzene	ND		0.0163	1.18	05/02/2018 23:29	WG1106111	e
1,1,1-Trichloroethane	ND		0.00326	1.18	05/02/2018 23:29	WG1106111	
1,1,2-Trichloroethane	ND		0.00326	1.18	05/02/2018 23:29	WG1106111	7
Trichloroethene	ND		0.00130	1.18	05/02/2018 23:29	<u>WG1106111</u>	ľ
Trichlorofluoromethane	ND		0.00326	1.18	05/02/2018 23:29	WG1106111	Ľ
1,2,3-Trichloropropane	ND		0.0163	1.18	05/02/2018 23:29	<u>WG1106111</u>	8
1,2,4-Trimethylbenzene	ND		0.00652	1.18	05/02/2018 23:29	WG1106111	
1,2,3-Trimethylbenzene	ND		0.00652	1.18	05/02/2018 23:29	<u>WG1106111</u>	g
1,3,5-Trimethylbenzene	ND		0.00652	1.18	05/02/2018 23:29	WG1106111	
Vinyl chloride	ND		0.00326	1.18	05/02/2018 23:29	WG1106111	L
Xylenes, Total	ND		0.00847	1.18	05/02/2018 23:29	WG1106111	
(S) Toluene-d8	113		80.0-120		05/02/2018 23:29	WG1106111	
(S) Dibromofluoromethane	105		74.0-131		05/02/2018 23:29	WG1106111	
(S) 4-Bromofluorobenzene	110		64.0-132		05/02/2018 23:29	WG1106111	

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
C12-C22 Hydrocarbons	ND		4.42	1	05/03/2018 18:55	WG1105376
C22-C32 Hydrocarbons	ND		4.42	1	05/03/2018 18:55	WG1105376
C32-C40 Hydrocarbons	ND		4.42	1	05/03/2018 18:55	WG1105376
(S) o-Terphenyl	83.8		18.0-148		05/03/2018 18:55	WG1105376

SDG: L989458

Collected date/time: 04/25/18 15:15

SAMPLE RESULTS - 15 L989458

ONE LAB. NATIONWIDE.

Total Solids by Method 2540 G-2011

-		Result	Qualifier	Dilution	Analysis	Batch		C
/	Analyte	%			date / time		2	_
	otal Solids	78.6		1	05/03/2018 13:44	WG1106251	-	To

Volatile Organic Compounds (GC) by Method 8015

	Result	Qualifier	Dilution	Analysis	Batch	
Analyte	%			date / time		
Total Solids	78.6		1	05/03/2018 13:44	WG1106251	
Volatile Organic Comp	. ,	-				
	Result (dry)	Qualifier	RDL (d	dry) Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
TPHG C5 - C12	ND		0.127	1	05/02/2018 04:23	WG1104737
(S) a,a,a-Trifluorotoluene(FID)	106		77.0-1.	20	05/02/2018 04:23	WG1104737
Volatile Organic Comp	ounds (GC/	MS) by Me	ethod 8	260B		
	Result (dry)	Qualifier	RDL (d	dry) Dilution	Analysis	Batch

Volatile Organic Compounds (GC/MS) by Method 8260B

		alifier RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg	mg/kg		date / time		L
cetone	ND	0.0331	1.04	05/02/2018 23:48	<u>WG1106111</u>	
Acrylonitrile	ND	0.0165	1.04	05/02/2018 23:48	WG1106111	
lenzene	ND	0.00132	1.04	05/02/2018 23:48	<u>WG1106111</u>	
Bromobenzene	ND	0.0165	1.04	05/02/2018 23:48	<u>WG1106111</u>	
Bromodichloromethane	ND	0.00331	1.04	05/02/2018 23:48	<u>WG1106111</u>	L
romoform	ND	0.0331	1.04	05/02/2018 23:48	<u>WG1106111</u>	1
romomethane	ND	0.0165	1.04	05/02/2018 23:48	<u>WG1106111</u>	
-Butylbenzene	ND	0.0165	1.04	05/02/2018 23:48	WG1106111	
ec-Butylbenzene	ND	0.0165	1.04	05/02/2018 23:48	WG1106111	
ert-Butylbenzene	ND	0.00662	1.04	05/02/2018 23:48	WG1106111	
arbon tetrachloride	ND	0.00662	1.04	05/02/2018 23:48	<u>WG1106111</u>	
hlorobenzene	ND	0.00331	1.04	05/02/2018 23:48	<u>WG1106111</u>	
hlorodibromomethane	ND	0.00331	1.04	05/02/2018 23:48	WG1106111	
hloroethane	ND	0.00662	1.04	05/02/2018 23:48	<u>WG1106111</u>	
hloroform	ND	0.00331	1.04	05/02/2018 23:48	WG1106111	
nloromethane	ND	0.0165	1.04	05/02/2018 23:48	<u>WG1106111</u>	
Chlorotoluene	ND	0.00331	1.04	05/02/2018 23:48	WG1106111	
Chlorotoluene	ND	0.00662	1.04	05/02/2018 23:48	WG1106111	
2-Dibromo-3-Chloropropane	ND	0.0331	1.04	05/02/2018 23:48	WG1106111	
2-Dibromoethane	ND	0.00331	1.04	05/02/2018 23:48	WG1106111	
bromomethane	ND	0.00662	1.04	05/02/2018 23:48	WG1106111	
2-Dichlorobenzene	ND	0.00662	1.04	05/02/2018 23:48	WG1106111	
3-Dichlorobenzene	ND	0.00662	1.04	05/02/2018 23:48	WG1106111	
1-Dichlorobenzene	ND	0.00662	1.04	05/02/2018 23:48	WG1106111	
chlorodifluoromethane	ND	0.00331	1.04	05/02/2018 23:48	WG1106111	
-Dichloroethane	ND	0.00331	1.04	05/02/2018 23:48	WG1106111	
2-Dichloroethane	ND	0.00331	1.04	05/02/2018 23:48	WG1106111	
I-Dichloroethene	ND	0.00331	1.04	05/02/2018 23:48	WG1106111	
s-1,2-Dichloroethene	ND	0.00331	1.04	05/02/2018 23:48	WG1106111	
ans-1,2-Dichloroethene	ND	0.00662	1.04	05/02/2018 23:48	WG1106111	
2-Dichloropropane	ND	0.00662	1.04	05/02/2018 23:48	WG1106111	
-Dichloropropene	ND	0.00331	1.04	05/02/2018 23:48	WG1106111	
3-Dichloropropane	ND	0.00662	1.04	05/02/2018 23:48	WG1106111	
s-1,3-Dichloropropene	ND	0.00331	1.04	05/02/2018 23:48	WG1106111	
ans-1,3-Dichloropropene	ND	0.00662	1.04	05/02/2018 23:48	WG1106111	
2-Dichloropropane	ND	0.00331	1.04	05/02/2018 23:48	WG1106111	
i-isopropyl ether	ND	0.00132	1.04	05/02/2018 23:48	WG1106111	
hylbenzene	ND	0.00331	1.04	05/02/2018 23:48	WG1106111	
exachloro-1,3-butadiene	ND	0.0331	1.04	05/02/2018 23:48	WG1106111	
opropylbenzene	ND	0.00331	1.04	05/02/2018 23:48	WG1106111	
Isopropyltoluene	ND	0.00662	1.04	05/02/2018 23:48	WG1106111	
Butanone (MEK)	ND	0.0331	1.04	05/02/2018 23:48	WG1106111	
ethylene Chloride	ND	0.0331	1.04	05/02/2018 23:48	WG1106111	
-Methyl-2-pentanone (MIBK)	ND	0.0331	1.04	05/02/2018 23:48	WG1106111	

Applied Water Resources AWR- Alameda, CA

PROJECT: тнот

L989458

05/10/18 19:34

SAMPLE RESULTS - 15

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
Methyl tert-butyl ether	ND		0.00132	1.04	05/02/2018 23:48	WG1106111	2.
Naphthalene	ND		0.0165	1.04	05/02/2018 23:48	WG1106111	
n-Propylbenzene	ND		0.00662	1.04	05/02/2018 23:48	WG1106111	3
Styrene	ND		0.0165	1.04	05/02/2018 23:48	WG1106111	
1,1,1,2-Tetrachloroethane	ND		0.00331	1.04	05/02/2018 23:48	WG1106111	
1,1,2,2-Tetrachloroethane	ND		0.00331	1.04	05/02/2018 23:48	WG1106111	4
1,1,2-Trichlorotrifluoroethane	ND		0.00331	1.04	05/02/2018 23:48	WG1106111	
Tetrachloroethene	ND		0.00331	1.04	05/02/2018 23:48	WG1106111	5
Toluene	ND		0.00662	1.04	05/02/2018 23:48	WG1106111	5
1,2,3-Trichlorobenzene	ND		0.00331	1.04	05/02/2018 23:48	WG1106111	
1,2,4-Trichlorobenzene	ND		0.0165	1.04	05/02/2018 23:48	WG1106111	6
1,1,1-Trichloroethane	ND		0.00331	1.04	05/02/2018 23:48	WG1106111	
1,1,2-Trichloroethane	ND		0.00331	1.04	05/02/2018 23:48	WG1106111	7
Trichloroethene	ND		0.00132	1.04	05/02/2018 23:48	WG1106111	,
Trichlorofluoromethane	ND		0.00331	1.04	05/02/2018 23:48	WG1106111	
1,2,3-Trichloropropane	ND		0.0165	1.04	05/02/2018 23:48	WG1106111	8
1,2,4-Trimethylbenzene	ND		0.00662	1.04	05/02/2018 23:48	WG1106111	
1,2,3-Trimethylbenzene	ND		0.00662	1.04	05/02/2018 23:48	WG1106111	9
1,3,5-Trimethylbenzene	ND		0.00662	1.04	05/02/2018 23:48	WG1106111	5
Vinyl chloride	ND		0.00331	1.04	05/02/2018 23:48	WG1106111	
Xylenes, Total	ND		0.00860	1.04	05/02/2018 23:48	WG1106111	
(S) Toluene-d8	114		80.0-120		05/02/2018 23:48	WG1106111	
(S) Dibromofluoromethane	101		74.0-131		05/02/2018 23:48	WG1106111	
(S) 4-Bromofluorobenzene	116		64.0-132		05/02/2018 23:48	WG1106111	

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
C12-C22 Hydrocarbons	ND		5.09	1	05/03/2018 19:11	WG1105376
C22-C32 Hydrocarbons	ND		5.09	1	05/03/2018 19:11	WG1105376
C32-C40 Hydrocarbons	ND		5.09	1	05/03/2018 19:11	WG1105376
(S) o-Terphenyl	85.3		18.0-148		05/03/2018 19:11	WG1105376

SDG: L989458

SAMPLE RESULTS - 16 L989458

Volatile Organic Compounds (GC) by Method 8015

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l		date / time		2
TPHG C5 - C12	ND		100	1	04/29/2018 15:39	WG1104689	² T
(S) a,a,a-Trifluorotoluene(FID)	92.8		77.0-122		04/29/2018 15:39	WG1104689	
							^³ S

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	RDL	Dilution	Analysis	Batch	4
Analyte	ug/l		ug/l		date / time		
Acetone	ND		50.0	1	04/29/2018 01:24	WG1104570	5
Acrolein	ND		50.0	1	04/29/2018 01:24	WG1104570	⁵ S
Acrylonitrile	ND		10.0	1	04/29/2018 01:24	WG1104570	
Benzene	ND		1.00	1	04/29/2018 01:24	WG1104570	6
Bromobenzene	ND		1.00	1	04/29/2018 01:24	WG1104570	
Bromodichloromethane	ND		1.00	1	04/29/2018 01:24	WG1104570	7
Bromoform	ND		1.00	1	04/29/2018 01:24	WG1104570	ľ 🤆
Bromomethane	ND		5.00	1	04/29/2018 01:24	WG1104570	
n-Butylbenzene	ND		1.00	1	04/29/2018 01:24	WG1104570	⁸ 4
sec-Butylbenzene	ND		1.00	1	04/29/2018 01:24	WG1104570	
ert-Butylbenzene	ND		1.00	1	04/29/2018 01:24	WG1104570	9
Carbon tetrachloride	ND		1.00	1	04/29/2018 01:24	WG1104570	ľS
Chlorobenzene	ND		1.00	1	04/29/2018 01:24	WG1104570	
Chlorodibromomethane	ND		1.00	1	04/29/2018 01:24	WG1104570	
Chloroethane	ND		5.00	1	04/29/2018 01:24	WG1104570	
Chloroform	ND		5.00	1	04/29/2018 01:24	WG1104570	
Chloromethane	ND		2.50	1	04/29/2018 01:24	WG1104570	
2-Chlorotoluene	ND		1.00	1	04/29/2018 01:24	WG1104570	
I-Chlorotoluene	ND		1.00	1	04/29/2018 01:24	WG1104570	
,2-Dibromo-3-Chloropropane	ND		5.00	1	04/29/2018 01:24	WG1104570	
,2-Dibromoethane	ND		1.00	1	04/29/2018 01:24	WG1104570	
Dibromomethane	ND		1.00	1	04/29/2018 01:24	WG1104570	
2-Dichlorobenzene	ND		1.00	1	04/29/2018 01:24	WG1104570	
3-Dichlorobenzene	ND		1.00	1	04/29/2018 01:24	WG1104570	
,4-Dichlorobenzene	ND		1.00	1	04/29/2018 01:24	WG1104570	
Dichlorodifluoromethane	ND		5.00	1	04/29/2018 01:24	WG1104570	
,1-Dichloroethane	ND		1.00	1	04/29/2018 01:24	WG1104570	
,2-Dichloroethane	ND		1.00	1	04/29/2018 01:24	WG1104570	
,1-Dichloroethene	ND		1.00	1	04/29/2018 01:24	WG1104570	
cis-1,2-Dichloroethene	ND		1.00	1	04/29/2018 01:24	WG1104570	
rans-1,2-Dichloroethene	ND		1.00	1	04/29/2018 01:24	WG1104570	
,2-Dichloropropane	ND		1.00	1	04/29/2018 01:24	WG1104570	
,1-Dichloropropene	ND		1.00	1	04/29/2018 01:24	WG1104570	
,3-Dichloropropane	ND		1.00	1	04/29/2018 01:24	WG1104570	
sis-1,3-Dichloropropene	ND		1.00	1	04/29/2018 01:24	WG1104570	
rans-1,3-Dichloropropene	ND		1.00	1	04/29/2018 01:24	WG1104570	
2,2-Dichloropropane	ND		1.00	1	04/29/2018 01:24	WG1104570	
Di-isopropyl ether	ND		1.00	1	04/29/2018 01:24	WG1104570	
thylbenzene	ND		1.00	1	04/29/2018 01:24	WG1104570	
lexachloro-1,3-butadiene	ND		1.00	1	04/29/2018 01:24	WG1104570	
sopropylbenzene	ND		1.00	1	04/29/2018 01:24	WG1104570	
-Isopropyltoluene	ND		1.00	1	04/29/2018 01:24	WG1104570	
-Butanone (MEK)	ND		10.0	1	04/29/2018 01:24	WG1104570	
1ethylene Chloride	ND		5.00	1	04/29/2018 01:24	WG1104570	
-Methyl-2-pentanone (MIBK)	ND		10.0	1	04/29/2018 01:24	WG1104570	
fethyl tert-butyl ether	ND		1.00	1	04/29/2018 01:24	WG1104570	
laphthalene	ND		5.00	1	04/29/2018 01:24	WG1104570	
-Propylbenzene	ND		1.00	1	04/29/2018 01:24	WG1104570	
ityrene	ND		1.00	1	04/29/2018 01:24	WG1104570	
Grene	nu		1.00		5 1/23/2010 UI.27	40101070	

ACCOUNT: Applied Water Resources AWR- Alameda, CA PROJECT: THOT

SDG: L989458

DATE/TIME: 05/10/18 19:34 PAGE:

37 of 67

SB5-GW5 Collected date/time: 04/25/18 16:30

SAMPLE RESULTS - 16

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	RDL	Dilution	Analysis	Batch	C
Analyte	ug/l		ug/l		date / time		
1,1,1,2-Tetrachloroethane	ND		1.00	1	04/29/2018 01:24	WG1104570	2 To
1,1,2,2-Tetrachloroethane	ND		1.00	1	04/29/2018 01:24	WG1104570	
1,1,2-Trichlorotrifluoroethane	ND		1.00	1	04/29/2018 01:24	<u>WG1104570</u>	3
Tetrachloroethene	ND		1.00	1	04/29/2018 01:24	WG1104570	³ Ss
Toluene	ND		1.00	1	04/29/2018 01:24	<u>WG1104570</u>	
1,2,3-Trichlorobenzene	ND		1.00	1	04/29/2018 01:24	WG1104570	⁴ C
1,2,4-Trichlorobenzene	ND		1.00	1	04/29/2018 01:24	<u>WG1104570</u>	Ŭ
1,1,1-Trichloroethane	ND		1.00	1	04/29/2018 01:24	WG1104570	5
1,1,2-Trichloroethane	ND		1.00	1	04/29/2018 01:24	<u>WG1104570</u>	⁵ SI
Trichloroethene	ND		1.00	1	04/29/2018 01:24	WG1104570	
Trichlorofluoromethane	ND		5.00	1	04/29/2018 01:24	<u>WG1104570</u>	⁶ Q
1,2,3-Trichloropropane	ND		2.50	1	04/29/2018 01:24	WG1104570	
1,2,4-Trimethylbenzene	ND		1.00	1	04/29/2018 01:24	<u>WG1104570</u>	7
1,2,3-Trimethylbenzene	ND		1.00	1	04/29/2018 01:24	WG1104570	Í G
1,3,5-Trimethylbenzene	ND		1.00	1	04/29/2018 01:24	<u>WG1104570</u>	
Vinyl chloride	ND		1.00	1	04/29/2018 01:24	WG1104570	⁸ A
Xylenes, Total	ND		3.00	1	04/29/2018 01:24	WG1104570	
(S) Toluene-d8	95.4		80.0-120		04/29/2018 01:24	WG1104570	9
(S) Dibromofluoromethane	115		76.0-123		04/29/2018 01:24	WG1104570	[°] S(
(S) 4-Bromofluorobenzene	95.1		80.0-120		04/29/2018 01:24	WG1104570	

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
C12-C22 Hydrocarbons	ND		100	1	04/30/2018 22:22	<u>WG1104930</u>
C22-C32 Hydrocarbons	ND		100	1	04/30/2018 22:22	<u>WG1104930</u>
C32-C40 Hydrocarbons	ND		100	1	04/30/2018 22:22	WG1104930
(S) o-Terphenyl	94.4		52.0-156		04/30/2018 22:22	WG1104930

SDG: L989458

SAMPLE RESULTS - 17 L989458

Volatile Organic Compounds (GC) by Method 8015

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l		date / time		2
TPHG C5 - C12	ND		100	1	04/29/2018 16:01	WG1104689	ĺΤ
(S) a,a,a-Trifluorotoluene(FID)	92.7		77.0-122		04/29/2018 16:01	WG1104689	
							3

Volatile Organic Compounds (GC/MS) by Method 8260B

Result	Qualifier	RDL	Dilution	Analysis	Batch	⁴ Cr
ug/l		ug/l		date / time		
ND		50.0	1	04/29/2018 01:45	WG1104570	5
ND		50.0	1	04/29/2018 01:45	WG1104570	°Sr
ND		10.0	1	04/29/2018 01:45	WG1104570	
ND		1.00	1	04/29/2018 01:45	WG1104570	⁶ Qc
ND		1.00	1	04/29/2018 01:45	WG1104570	
ND		1.00	1	04/29/2018 01:45	WG1104570	7
ND		1.00	1	04/29/2018 01:45	WG1104570	Í GI
ND		5.00	1	04/29/2018 01:45	WG1104570	
ND		1.00	1	04/29/2018 01:45	WG1104570	⁸ Al
ND		1.00	1	04/29/2018 01:45	WG1104570	A
ND		1.00	1	04/29/2018 01:45	WG1104570	9
ND		1.00	1	04/29/2018 01:45	WG1104570	Sc
ND		1.00	1	04/29/2018 01:45	WG1104570	
ND		1.00	1	04/29/2018 01:45	WG1104570	
ND		5.00	1	04/29/2018 01:45	WG1104570	
ND		5.00	1	04/29/2018 01:45	WG1104570	
ND		2.50	1	04/29/2018 01:45	WG1104570	
ND		1.00	1	04/29/2018 01:45	WG1104570	
ND		1.00	1	04/29/2018 01:45	WG1104570	
ND		5.00	1	04/29/2018 01:45	WG1104570	
ND		1.00	1	04/29/2018 01:45		
ND		1.00	1	04/29/2018 01:45		
ND		1.00	1	04/29/2018 01:45		
ND		1.00	1	04/29/2018 01:45		
ND		1.00	1	04/29/2018 01:45		
			1			
ND		1.00	1	04/29/2018 01:45		
ND		1.00	1	04/29/2018 01:45		
			1			
			1			
			1			
ND		1.00	1	04/29/2018 01:45	WG1104570	
	ug/l ND ND	ug/lND<	ug/l ug/l ND 50.0 ND 50.0 ND 10.0 ND 1.00 ND 5.00 ND 1.00 ND	ug/iug/iND50.01ND50.01ND10.01ND1.00 </td <td>ug/l ug/l date / time ND 50.0 1 04/29/2018 01:45 ND 10.0 1 04/29/2018 01:45 ND 5.00 1 04/29/2018 01:45 ND 5.00 1 04/29/2018 01:45 ND 10.0 1 04/29/2018 01:45 ND 10.0 1 04/29/2018 01:45</td> <td>ugit ugit date / time ND 50.0 1 0.473/2018 01-45 WG104570 ND 50.0 1 0.473/2018 01-45 WG104570 ND 10.0 1 0.473/2018 01-45 WG104570</td>	ug/l ug/l date / time ND 50.0 1 04/29/2018 01:45 ND 10.0 1 04/29/2018 01:45 ND 5.00 1 04/29/2018 01:45 ND 5.00 1 04/29/2018 01:45 ND 10.0 1 04/29/2018 01:45 ND 10.0 1 04/29/2018 01:45	ugit ugit date / time ND 50.0 1 0.473/2018 01-45 WG104570 ND 50.0 1 0.473/2018 01-45 WG104570 ND 10.0 1 0.473/2018 01-45 WG104570

ACCOUNT: Applied Water Resources AWR- Alameda, CA PROJECT: THOT

SDG: L989458

DATE/TIME: 05/10/18 19:34

PAGE: 39 of 67

SB6-GW5

Collected date/time: 04/25/18 11:23

SAMPLE RESULTS - 17 L989458

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	RDL	Dilution	Analysis	Batch	_ [`C
Analyte	ug/l		ug/l		date / time		
1,1,1,2-Tetrachloroethane	ND		1.00	1	04/29/2018 01:45	WG1104570	^{2}T
1,1,2,2-Tetrachloroethane	ND		1.00	1	04/29/2018 01:45	WG1104570	
1,1,2-Trichlorotrifluoroethane	ND		1.00	1	04/29/2018 01:45	<u>WG1104570</u>	3
Tetrachloroethene	ND		1.00	1	04/29/2018 01:45	WG1104570	ິS
Toluene	ND		1.00	1	04/29/2018 01:45	WG1104570	
1,2,3-Trichlorobenzene	ND		1.00	1	04/29/2018 01:45	WG1104570	⁴ C
1,2,4-Trichlorobenzene	ND		1.00	1	04/29/2018 01:45	WG1104570	
1,1,1-Trichloroethane	ND		1.00	1	04/29/2018 01:45	WG1104570	5_
1,1,2-Trichloroethane	ND		1.00	1	04/29/2018 01:45	WG1104570	⁵S
Trichloroethene	ND		1.00	1	04/29/2018 01:45	WG1104570	
Trichlorofluoromethane	ND		5.00	1	04/29/2018 01:45	<u>WG1104570</u>	⁶ G
1,2,3-Trichloropropane	ND		2.50	1	04/29/2018 01:45	WG1104570	
1,2,4-Trimethylbenzene	ND		1.00	1	04/29/2018 01:45	WG1104570	7
1,2,3-Trimethylbenzene	ND		1.00	1	04/29/2018 01:45	WG1104570	– Í G
1,3,5-Trimethylbenzene	ND		1.00	1	04/29/2018 01:45	<u>WG1104570</u>	
Vinyl chloride	ND		1.00	1	04/29/2018 01:45	WG1104570	⁸ A
Xylenes, Total	ND		3.00	1	04/29/2018 01:45	WG1104570	
(S) Toluene-d8	95.5		80.0-120		04/29/2018 01:45	WG1104570	9
(S) Dibromofluoromethane	114		76.0-123		04/29/2018 01:45	WG1104570	ٌS
(S) 4-Bromofluorobenzene	95.4		80.0-120		04/29/2018 01:45	WG1104570	

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
C12-C22 Hydrocarbons	ND		105	1.05	04/30/2018 22:38	<u>WG1104930</u>
C22-C32 Hydrocarbons	ND		105	1.05	04/30/2018 22:38	<u>WG1104930</u>
C32-C40 Hydrocarbons	ND		105	1.05	04/30/2018 22:38	WG1104930
(S) o-Terphenyl	87.2		52.0-156		04/30/2018 22:38	<u>WG1104930</u>

Sample Narrative:

L989458-17 WG1104930: Dilution due to sample volume

SDG: L989458

SAMPLE RESULTS - 18 L989458

Volatile Organic Compounds (GC) by Method 8015

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l		date / time		2
TPHG C5 - C12	ND		100	1	04/29/2018 16:23	WG1104689	² T(
(S) a,a,a-Trifluorotoluene(FID)	92.8		77.0-122		04/29/2018 16:23	WG1104689	
							³ Ss

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	RDL	Dilution	Analysis	Batch	⁴ C
Analyte	ug/l		ug/l		date / time		
Acetone	ND		50.0	1	04/29/2018 02:06	WG1104570	5
Acrolein	ND		50.0	1	04/29/2018 02:06	WG1104570	ືSr
Acrylonitrile	ND		10.0	1	04/29/2018 02:06	WG1104570	
Benzene	ND		1.00	1	04/29/2018 02:06	WG1104570	⁶ Q
Bromobenzene	ND		1.00	1	04/29/2018 02:06	WG1104570	
Bromodichloromethane	ND		1.00	1	04/29/2018 02:06	WG1104570	7
Bromoform	ND		1.00	1	04/29/2018 02:06	WG1104570	΄G
Bromomethane	ND		5.00	1	04/29/2018 02:06	WG1104570	
n-Butylbenzene	ND		1.00	1	04/29/2018 02:06	WG1104570	⁸ A
sec-Butylbenzene	ND		1.00	1	04/29/2018 02:06	WG1104570	A
ert-Butylbenzene	ND		1.00	1	04/29/2018 02:06	WG1104570	0
Carbon tetrachloride	ND		1.00	1	04/29/2018 02:06	WG1104570	Š
Chlorobenzene	ND		1.00	1	04/29/2018 02:06	WG1104570	
Chlorodibromomethane	ND		1.00	1	04/29/2018 02:06	WG1104570	
Chloroethane	ND		5.00	1	04/29/2018 02:06	WG1104570	
Chloroform	ND		5.00	1	04/29/2018 02:06	WG1104570	
Chloromethane	ND		2.50	1	04/29/2018 02:06	WG1104570	
2-Chlorotoluene	ND		1.00	1	04/29/2018 02:06	WG1104570	
4-Chlorotoluene	ND		1.00	1	04/29/2018 02:06	WG1104570	
l,2-Dibromo-3-Chloropropane	ND		5.00	1	04/29/2018 02:06	WG1104570	
,2-Dibromoethane	ND		1.00	1	04/29/2018 02:06	WG1104570	
Dibromomethane	ND		1.00	1	04/29/2018 02:06	WG1104570	
,2-Dichlorobenzene	ND		1.00	1	04/29/2018 02:06	WG1104570	
,3-Dichlorobenzene	ND		1.00	1	04/29/2018 02:06	WG1104570	
,4-Dichlorobenzene	ND		1.00	1	04/29/2018 02:06	WG1104570	
Dichlorodifluoromethane	ND		5.00	1	04/29/2018 02:06	WG1104570	
,1-Dichloroethane	ND		1.00	1	04/29/2018 02:06	WG1104570	
,2-Dichloroethane	ND		1.00	1	04/29/2018 02:06	WG1104570	
,1-Dichloroethene	ND		1.00	1	04/29/2018 02:06	WG1104570	
cis-1,2-Dichloroethene	ND		1.00	1	04/29/2018 02:06	WG1104570	
rans-1,2-Dichloroethene	ND		1.00	1	04/29/2018 02:06	WG1104570	
I,2-Dichloropropane	ND		1.00	1	04/29/2018 02:06	WG1104570	
I,1-Dichloropropene	ND		1.00	1	04/29/2018 02:06	WG1104570	
,3-Dichloropropane	ND		1.00	1	04/29/2018 02:06	WG1104570	
cis-1,3-Dichloropropene	ND		1.00	1	04/29/2018 02:06	WG1104570	
rans-1,3-Dichloropropene	ND		1.00	1	04/29/2018 02:06	WG1104570	
2,2-Dichloropropane	ND		1.00	1	04/29/2018 02:06	WG1104570	
Di-isopropyl ether	ND		1.00	1	04/29/2018 02:06	WG1104570	
Ethylbenzene	ND		1.00	1	04/29/2018 02:06	WG1104570	
Hexachloro-1,3-butadiene	ND		1.00	1	04/29/2018 02:06	WG1104570	
sopropylbenzene	ND		1.00	1	04/29/2018 02:06	WG1104570	
p-Isopropyltoluene	ND		1.00	1	04/29/2018 02:06	WG1104570	
2-Butanone (MEK)	ND		10.0	1	04/29/2018 02:06	WG1104570	
Methylene Chloride	ND		5.00	1	04/29/2018 02:06	WG1104570	
4-Methyl-2-pentanone (MIBK)	ND		10.0	1	04/29/2018 02:06	WG1104570	
Methyl tert-butyl ether	ND		1.00	1	04/29/2018 02:06	WG1104570	
laphthalene	ND		5.00	1	04/29/2018 02:06	WG1104570	
n-Propylbenzene	ND		1.00	1	04/29/2018 02:00	WG1104570	
	110						
Styrene	ND		1.00	1	04/29/2018 02:06	WG1104570	

SDG: L989458

DATE/TIME: 05/10/18 19:34

PAGE: 41 of 67

SB6-GW10 Collected date/time: 04/25/18 16:45

SAMPLE RESULTS - 18 L989458

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	RDL	Dilution	Analysis	Batch	C
Analyte	ug/l		ug/l		date / time		
1,1,1,2-Tetrachloroethane	ND		1.00	1	04/29/2018 02:06	WG1104570	2
1,1,2,2-Tetrachloroethane	ND		1.00	1	04/29/2018 02:06	WG1104570	
1,1,2-Trichlorotrifluoroethane	ND		1.00	1	04/29/2018 02:06	WG1104570	3
Tetrachloroethene	ND		1.00	1	04/29/2018 02:06	WG1104570	ິ
Toluene	ND		1.00	1	04/29/2018 02:06	WG1104570	
1,2,3-Trichlorobenzene	ND		1.00	1	04/29/2018 02:06	WG1104570	4
1,2,4-Trichlorobenzene	ND		1.00	1	04/29/2018 02:06	WG1104570	
1,1,1-Trichloroethane	ND		1.00	1	04/29/2018 02:06	WG1104570	5
1,1,2-Trichloroethane	ND		1.00	1	04/29/2018 02:06	WG1104570	5
Trichloroethene	ND		1.00	1	04/29/2018 02:06	WG1104570	_
Trichlorofluoromethane	ND		5.00	1	04/29/2018 02:06	WG1104570	6
1,2,3-Trichloropropane	ND		2.50	1	04/29/2018 02:06	WG1104570	
1,2,4-Trimethylbenzene	ND		1.00	1	04/29/2018 02:06	WG1104570	7
1,2,3-Trimethylbenzene	ND		1.00	1	04/29/2018 02:06	WG1104570	Ĺ
1,3,5-Trimethylbenzene	ND		1.00	1	04/29/2018 02:06	WG1104570	
Vinyl chloride	ND		1.00	1	04/29/2018 02:06	WG1104570	8
Xylenes, Total	ND		3.00	1	04/29/2018 02:06	WG1104570	Ľ
(S) Toluene-d8	96.0		80.0-120		04/29/2018 02:06	WG1104570	9
(S) Dibromofluoromethane	115		76.0-123		04/29/2018 02:06	WG1104570	Ĭ,
(S) 4-Bromofluorobenzene	94.7		80.0-120		04/29/2018 02:06	WG1104570	

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l		date / time	
C12-C22 Hydrocarbons	ND		206	2.06	04/30/2018 22:54	<u>WG1104930</u>
C22-C32 Hydrocarbons	ND		206	2.06	04/30/2018 22:54	<u>WG1104930</u>
C32-C40 Hydrocarbons	ND		206	2.06	04/30/2018 22:54	WG1104930
(S) o-Terphenyl	87.4		52.0-156		04/30/2018 22:54	<u>WG1104930</u>

Sample Narrative:

L989458-18 WG1104930: Dilution due to matrix impact during extraction procedure

SDG: L989458

	G-2011
	2540
833	Method
4	bу
WG1105	Total Solids

QUALITY CONTROL SUMMARY 1989458-02.03.04.05.07.08.10.11.12

*

Method Blank (MR)

n	ì
>	
<	
0	5
)
1	
>	

Method Blank (MB)	< (MB)				-	(
(MB) R3306377-1 05/01/18 17:14	05/01/18 17:14					с С
	MB Result	MB Qualifier	MB MDL	MB RDL		
Analyte	%		%	8	4	ЧU
Total Solids	0.00100					
					m	Ss
L989458-02	L989458-02 Original Sample (OS) • Duplicate (DUP)	e (OS) • Dup	olicate (DUF		4	4)
(OS) L989458-02	(OS) L989458-02 05/01/18 17:14 • (DUP) R3306377-3 05/01/18 17:14) R3306377-3 C	15/01/18 17:14	7		5
	Orininal Rosu	Orininal Recult DI ID Recult	Dilution DIIP RPD	DUP RPD DUP CDD RPD		
					(1)	ر ب
Analyte	%	%	%	%		5

DUP Qualifier DUP RPD Limits	%	5
Dilution DUP RPD	%	1 1.45
Original Result DUP Result	%	84.4
Origin	Analyte %	lids 83.2

ŠQ

Laboratory Control Sample (LCS)

۲ G		0	₹		SC
		LCS Qualifier			
		Rec. Limits	%	85 0-115	01-0.00
		LCS Rec.	%	100	00
LCS)		Spike Amount LCS Result LCS Rec.	%	ED D	0.00
trol Sample (5/01/18 17:14	Spike Amour	%	ED D	0.00
Laboratory Control Sample (LCS)	(LCS) R3306377-2 05/01/18 17:14		Analyte	Total Solide	

σ
σ
4
വ
0
~
5
9
\leq
-

QUALITY CONTROL SUMMARY

1

0 U Ч Ss Б ğ ភ $\overline{\mathbb{O}}$ DUP RPD Limits % ഹ DUP Qualifier MB RDL Dilution DUP RPD % L989443-34 Original Sample (OS) • Duplicate (DUP) 3.45 (OS) L989443-34 05/02/18 15:32 • (DUP) R3306720-3 05/02/18 15:32 % MB MDL % MB Qualifier Original Result DUP Result 85.2 Laboratory Control Sample (LCS) % Total Solids by Method 2540 G-2011 **MB** Result 0.00100 (MB) R3306720-1 05/02/18 15:32 82.3 % % Method Blank (MB) Total Solids Total Solids Analyte Analyte

LCS Qualifier Rec. Limits 85.0-115 % LCS Rec. 100 % Spike Amount LCS Result 50.0 % (LCS) R3306720-2 05/02/18 15:32 50.0 % Total Solids Analyte

Sc

₹

	G-2011
	2540
51	Method
62	bу
G1100	Il Solids
Š	Tota

QUALITY CONTROL SUMMARY

*

Method Blank (MB)

-	
2	
Ē	
<	
σ	
ב	
ζ	
2	
נ	
>	

					<u> </u>
(MB) R3307054-1 05/03/18 13:44	5/03/18 13:44				<u>}</u>
	MB Result	MB Qualifier	MB MDL	MDL MB RDL	¢
Analyte	%		%	8	TC
Total Solids	0.00100				ບ ບ ຫ
	(((3
L989256-01 Original Sample (OS) • Duplicate (DUP)	'iginal Sample	dna • (so)	licate (DUF	ie (DUP)	4
			75/02/10 12.4		5

(OS) L989256-01 05/03/18 13:44 • (DUP) R3307054-3 05/03/18 13:44	3/18 13:44 • (DL	JP) R3307054-3	05/03/18 1	13:44			С О
	Original Res	Original Result DUP Result Dilution DUP RPD	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits	: م
Analyte	%	%		%		%	Ŋ
Total Solids	75.2	75.4	-	0.239		D	0 C C

Laboratory Control Sample (LCS)

۲ G		0	4	° S C	
		LCS Qualifier			
		Rec. Limits	%	85.0-115	
		LCS Rec.	%	100	
CS)		Spike Amount LCS Result LCS Rec.	%	50.0	
ol Sample (L	J3/18 13:44	Spike Amount	%	50.0	
Laboratory Control Sample (LCS)	(LCS) R3307054-2 05/03/18 13:44		Analyte	Total Solids	

ດ
∞
ဖ
4
0
5
5
>

Volatile Organic Compounds (GC) by Method

QUALITY CONTROL SUMMARY L989458-01.06.09.13.16.17.18

*

Volatile Organic Compounds (GC) by Method 8015	pounds (GC) b	y Method 80	15		F 9 8 5	L989458-01,06,09,13,16,17,18	13,16,17,18			
Method Blank (MB)	3)									(
(MB) R3305722-3 04/29/18 12:21	1/18 12:21									<u>ר</u>
	MB Result	MB Qualifier	MB MDL	MB RDL						~
Analyte	l/bn		l/bn	l/bn						Ч Ч
TPHG C5 - C12	36.8	-1	30.4	100						
(S) a, a, a-Trifluorotoluene(FID)	92.6			77.0-122						°SS
Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)	al Sample (LC	S) • Labor	atory Contr	ol Sample	Duplicate	(LCSD)				CD ⁴
(LCS) R3305722-1 04/29/18 11:15 • (LCSD) R3305722-2 04/29/18 11:37	1/18 11:15 • (LCSD)	R3305722-2	04/29/18 11:37							ں ر
	Spike Amount	LCS Result	Spike Amount LCS Result LCSD Result LCS Rec.	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	Rec. Limits LCS Qualifier LCSD Qualifier RPD	RPD Limits	ō
Analyte	l/bn	l/bn	l/bn	%	%	%		%	%	g
TPHG C5 - C12	5500	5290	5570	96.1	101	71.0-130		5.28	20	ğ
(S) a,a,a-Trifluorotoluene(FID)				99.5	101	77.0-122				Č
										פ
										8
										Ī

SC 0

> ACCOUNT: Applied Water Resources AWR- Alameda, CA

PROJECT: THOT

SDG: L989458

DATE/TIME: 05/10/18 19:34

PAGE: 46 of 67

WG1104737 Volatile Organic Compounds (GC) by Method 8015

QUALITY CONTROL SUMMARY ^{1989458-02.03.04.05.07.08.10.11.12.14.15}

*

Volatile Organic Compounds (GC) by Method 8015	ıpounds (GC) t	oy Method 8	015		L989458-(L989458-02,03,04,05,07,08,10,11,12,14,15	7,08,10,11,12	2,14,15				
Method Blank (MB)	3)) (
(MB) R3306092-3 04/29/18 23:06	9/18 23:06											3
	MB Result	MB Qualifier	MB MDL	MB RDL								
Analyte	mg/kg		mg/kg	mg/kg								² Tc
TPHG C5 - C12	n		0.0332	0.100								
(S) a,a,a-Trifluorotoluene(FID)	104			77.0-120								³ SS
												4 C
Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)	ol Sample (Lo	CS) • Labo	ratory Con	trol Sample	e Duplicate	e (LCSD)						Ĵ
(LCS) R3306092-1 04/29/18 21:57 • (LCSD) R3306092-2 04/29/18 22:19	9/18 21:57 • (LCSI	D) R3306092 [.]	-2 04/29/18 22	19								ر م
	Spike Amount LCS Result	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	er LCSD Qualifier	RPD	RPD Limits		ō
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%		Q
TPHG C5 - C12	5.50	4.90	5.08	89.0	92.4	75.0-128			3.75	20		g
(S) a, a, a-Trifluorotoluene(FID)				97.8	98.1	77.0-120						
												J
L989372-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)	nal Sample (OS) • Matr	rix Spike (M	S) • Matrix	Spike Dup	olicate (MSE	Ô					β
(OS) L989372-01 04/30/18 13:33 • (MS) R3306092-4 04/30/18 13:57 • (MSD) R3306092-5 04/30/18 14:20	/18 13:33 • (MS) R	3306092-4 C	14/30/18 13:57 •	(MSD) R33060	92-5 04/30/18	3 14:20						
	Spike Amount	Spike Amount Original Result MS Result	t MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Dilution Rec. Limits MS (MS Qualifier MS	MSD Qualifier RPD	RPD Limits	U o
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%		%	%	2
TPHG C5 - C12	5.50	559	764	746	37.1	33.9	100	10.0-146		2.39	35	

77.0-120

102

102

(S) a, a, a-Trifluorotoluene(FID)

WG1104570 Volatile Organic Compounds (GC/MS) by Method 8260B

QUALITY CONTROL SUMMARY L989458-01,06,09,13,16,17,18

*

Volatile Organic Compounds (GC/MS) by Method 8260B	SC/MS) by Methoo	1 8260B		L989458-01,06,09,13,16,17,18	ωI	
Method Blank (MB)						-
(MB) R3306751-3 04/28/18 20:48						5
MB Result	t MB Qualifier	MB MDL	MB RDL			2
Analyte ug/l		l/gu	l/bn			Ч
Acetone U		10.0	50.0][
Acrolein U		8.87	50.0			ي ک ک
Acrylonitrile		1.87	10.0			}
Benzene U		0.331	1.00			4
Bromobenzene		0.352	1.00			Ü
Bromodichloromethane U		0.380	1.00			
		0.469	1.00			л С
Bromomethane		0.866	5.00			5
		0.361	1.00			9
		0.365	1.00			ğ
tert-Butylbenzene U		0.399	1.00			
Carbon tetrachloride U		0.379	1.00			⁷ G
		0.348	1.00			
Chlorodibromomethane U		0.327	1.00			8
le		0.453	5.00			Ā
		0.324	5.00			,
		0.276	2.50			SC
		0.375	1.00			
		0.351	1.00			
ropropane		1.33	5.00			
1,2-Dibromoethane U		0.381	1.00			
Dibromomethane		0.346	1.00			
1,2-Dichlorobenzene U		0.349	1.00			
1,3-Dichlorobenzene U		0.220	1.00			
1,4-Dichlorobenzene U		0.274	1.00			
Dichlorodifluoromethane		0.551	5.00			
		0.259	1.00			
1,2-Dichloroethane U		0.361	1.00			
		0.398	1.00			
cis-1,2-Dichloroethene U		0.260	1.00			
ene		0.396	1.00			
		0.306	1.00			
1,1-Dichloropropene U		0.352	1.00			
1,3-Dichloropropane U		0.366	1.00			
cis-1,3-Dichloropropene U		0.418	1.00			
trans-1,3-Dichloropropene U		0.419	1.00			
2,2-Dichloropropane U		0.321	1.00			
Di-isopropyl ether U		0.320	1.00			
		0.384	1.00			
Hexachloro-1,3-butadiene U		0.256	1.00			
AccOUNT:					SUG:	PAGE:
			2			000

0
57
04
51
$\stackrel{\scriptstyle{\scriptstyle{\sim}}}{\scriptstyle{\scriptstyle{\sim}}}$

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (GC/MS) by Method 8260B

Method Blank (MB)

Method Blank (MB)					((
(MB) R3306751-3 04/28/18 20:48	3 20:48				ר גר
	MB Result	MB Qualifier	MB MDL	MDL MB RDL	5
Analyte	l/bn		l/bn	l/gu	ЧU
Isopropylbenzene	N		0.326	26 1.00	
p-lsopropyltoluene	Π		0.350	50 1.00	ູ້
2-Butanone (MEK)	N		3.93	3 10.0))
Methylene Chloride	N		1.00	5.00	4
4-Methyl-2-pentanone (MIBK)	N		2.14	10.0	Ь С
Methyl tert-butyl ether	N		0.367	57 1.00	
Naphthalene	Π		1.00	5.00	л С
n-Propylbenzene	N		0.349	1.00	5
Styrene	Π		0.307	7 1.00	9
1,1,2-Tetrachloroethane	Π		0.385	55 1.00	ğ
1,1,2,2-Tetrachloroethane	Π		0.130	0 1.00	
Tetrachloroethene	N		0.372	2 1.00	ے ا
Toluene	П		0.412	2 1.00)
1,1,2-Trichlorotrifluoroethane	Π		0.303	33 1.00	
1,2,3-Trichlorobenzene	Π		0.230	30 1.00	₹
1,2,4-Trichlorobenzene	Π		0.355		
1,1,1-Trichloroethane	N		0.319	9 1.00	° S
1,1,2-Trichloroethane	Π		0.383	33 1.00)
Trichloroethene	Π		0.398		
Trichlorofluoromethane	N		1.20		
1,2,3-Trichloropropane	Π		0.807		
1,2,3-Trimethylbenzene	N		0.321		
1,2,4-Trimethylbenzene	N		0.373	3 1.00	
1,3,5-Trimethylbenzene	N		0.387	57 1.00	
Vinyl chloride	П		0.259	59 1.00	
Xylenes, Total	Π		1.06		
(S) Toluene-d8	92.7			80.0-120	
(S) Dibromofluoromethane	117			76.0-123	
(S) 4-Bromofluorobenzene	96.4			80.0-120	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3306751-1 04/28/18 19:23 • (LCSD) R3306751-2 04/28/18 19:44

	20/10 13.20 · (LCOL		++.C. 0. 07/+O							
	Spike Amount LCS Result	LCS Result	LCSD Result LCS Rec.	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier RPD	RPD Limits	
Analyte	ng/l	l/gu	ng/l	%	%	%		%	%	
Acetone	125	110	115	88.0	92.3	10.0-160		4.79	23	
Acrolein	125	87.7	90.1	70.1	72.1	10.0-160		2.70	20	
Acrylonitrile	125	151	138	121	111	60.0-142		9.02	20	
Benzene	25.0	28.2	26.9	113	107	69.0-123		4.87	20	
					H (Ĺ (
	ACCOUNT:			ראר			2016			LAGE
Applied Water	Applied Water Resources AWR- Alameda, CA	meda, CA		Ţ	THOT		L989458	00	05/10/18 19:34	49 of 67

WG1104570 Volatile Organic Compounds (GC/MS) by Method 8260B

QUALITY CONTROL SUMMARY 1989458-01.06.09.13.16.17.18

ONE LAB. NATIONWIDE.

*

(LCSD)	
licate (
e Dup	
Sampl	
ontrol	
tory C	
_abora	
CS) • L	
nple (L	
ol San	
/ Conti	
Laboratory	

Laboratory Control Sample (LCS) • Laboratory Control Sample	Sample (LCS)	• Labora	atory Cont	rol Sample	e Duplicate (LCSD)	(LCSD)				-
(LCS) R3306751-1 04/28/18 19:23 • (LCSD) R3306751-2	19:23 • (LCSD) R3		04/28/18 19:44							
	Spike Amount LC	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier RPD	RPD Limits	2
Analyte	l/gu l/gu	N	l/gu	%	%	%		%	%	U
Bromobenzene	25.0 21.6	.6	21.5	86.2	86.2	79.0-120		0.0789	20	
Bromodichloromethane	25.0 24	24.6	23.3	98.4	93.1	76.0-120		5.53	20	ູ້
Bromoform	25.0 21.2	.2	21.7	84.7	86.8	67.0-132		2.52	20)
Bromomethane	25.0 33	33.0	31.0	132	124	18.0-160		6.27	20	4
n-Butylbenzene		23.4	23.3	93.7	93.1	72.0-126		0.666	20	Ľ
sec-Butylbenzene	25.0 22	22.2	21.6	88.9	86.5	74.0-121		2.73	20][
tert-Butylbenzene	25.0 21.8	00	21.1	87.0	84.4	75.0-122		3.05	20	S V
Carbon tetrachloride	25.0 28	28.2	26.5	113	106	63.0-122		6.12	20	5
Chlorobenzene	25.0 22	22.8	21.9	91.1	87.4	79.0-121		4.18	20	ى
Chlorodibromomethane	25.0 23	23.3	22.6	93.1	90.3	75.0-125		2.98	20	တိ
Chloroethane	25.0 32	32.9	29.8	132	119	47.0-152		9.90	20	
Chloroform	25.0 26	26.5	24.8	106	99.4	72.0-121		6.64	20	
Chloromethane	25.0 25	25.2	24.2	101	96.9	48.0-139		3.88	20	5
2-Chlorotoluene	25.0 22	22.8	22.5	91.4	90.1	74.0-122		1.43	20	
4-Chlorotoluene	25.0 21.8	80	21.6	87.1	86.6	79.0-120		0.630	20	A
1,2-Dibromo-3-Chloropropane	25.0 21.7	7	22.0	86.8	87.9	64.0-127		1.32	20	
1,2-Dibromoethane	25.0 23	23.0	22.8	92.0	91.2	77.0-123		0.924	20	ر ص
Dibromomethane	25.0 27.7	Γ.	26.2	111	105	78.0-120		5.70	20	}
1,2-Dichlorobenzene	25.0 23	23.2	23.5	92.9	94.2	80.0-120		1.36	20	
1,3-Dichlorobenzene	25.0 22	22.0	21.9	88.0	87.8	72.0-123		0.302	20	
1,4-Dichlorobenzene	25.0 23	23.1	23.1	92.5	92.5	77.0-120		0.00946	20	
Dichlorodifluoromethane	25.0 22	22.2	21.5	88.6	86.0	49.0-155		2.97	20	
1,1-Dichloroethane	25.0 30	30.2	28.2	121	113	70.0-126		6.70	20	
1,2-Dichloroethane	25.0 28	28.8	27.9	115	111	67.0-126		3.27	20	
1,1-Dichloroethene	25.0 25	25.2	24.2	101	96.9	64.0-129		3.99	20	
cis-1,2-Dichloroethene	25.0 25	25.4	25.1	101	100	73.0-120		1.09	20	
trans-1,2-Dichloroethene	25.0 26	26.5	24.7	106	98.7	71.0-121		7.26	20	
1,2-Dichloropropane	25.0 26	26.4	25.7	106	103	75.0-125		2.52	20	
1,1-Dichloropropene	25.0 29	29.9	28.4	120	114	71.0-129		5.24	20	
1,3-Dichloropropane	25.0 24	24.9	24.3	9.6	97.2	80.0-121		2.44	20	
cis-1,3-Dichloropropene	25.0 24	24.4	23.4	97.4	93.4	79.0-123		4.20	20	
trans-1,3-Dichloropropene	25.0 23	23.9	23.1	95.7	92.6	74.0-127		3.36	20	
2,2-Dichloropropane	25.0 28	28.4	25.4	114	101	60.0-125		11.3	20	
Di-isopropyl ether	25.0 29	29.8	28.1	119	112	59.0-133		5.94	20	
Ethylbenzene	25.0 22	22.2	21.4	88.7	85.7	77.0-120		3.50	20	
Hexachloro-1,3-butadiene	25.0 16.3	53	17.2	65.3	69.0	64.0-131		5.44	20	
Isopropylbenzene	25.0 22	22.8	22.3	91.2	89.3	75.0-120		2.17	20	
p-Isopropyltoluene	25.0 20	20.9	20.6	83.6	82.2	74.0-126		1.59	20	
2-Butanone (MEK)	125 157	7	156	126	125	37.0-158		0.456	20	
Methylene Chloride	25.0 26	26.0	24.7	104	98.8	66.0-121		4.97	20	
	EN C				- LO LI					Ĺ
AC		Č								
Applied Water Resources AWR- Alameda, CA	Irces AWR- Alamed	a, CA		-	THOT		L989458	00	05/10/18 19:34	50 of 67

WG1104570

Volatile Organic Compounds (GC/MS) by Method 8260B

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

*

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)	l Sample (l	LCS) • Labo	ratory Cont	trol Sample	e Duplicate	(LCSD)					-
(LCS) R3306751-1 04/28/18 19:23 • (LCSD) R3306751-2 04/28/18 19:44	18 19:23 • (LCS	3D) R3306751-2	04/28/18 19:44	_							
	Spike Amount	it LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier RPD	Q	RPD Limits	<i>د</i>
Analyte	l/ɓn	l/bn	l/bn	%	%	%		%		%	[±] Tc
4-Methyl-2-pentanone (MIBK)	125	131	127	105	102	59.0-143		2.80	30	20	
Methyl tert-butyl ether	25.0	27.6	26.0	110	104	64.0-123		6.1	0	20	ູ້
Naphthalene	25.0	19.2	20.1	76.7	80.5	62.0-128		4.88	88	20)
n-Propylbenzene	25.0	22.7	22.6	91.0	90.2	79.0-120		0.7	0.798	20	4
Styrene	25.0	20.1	20.6	80.5	82.2	78.0-124		2.1	4	20	5
1,1,1,2-Tetrachloroethane	25.0	22.9	21.1	91.5	84.4	75.0-122		8.1	5	20	
1,1,2,2-Tetrachloroethane	25.0	20.9	20.5	83.5	82.0	71.0-122		1.77	7	20	ى ۲
Tetrachloroethene	25.0	22.5	21.4	0.06	85.7	70.0-127		4.8	36	20	5
Toluene	25.0	23.5	22.3	93.9	89.0	77.0-120		5.5	30	20	9
1,1,2-Trichlorotrifluoroethane	25.0	32.2	30.0	129	120	61.0-136		6.8	33	20	ğ
1,2,3-Trichlorobenzene	25.0	17.8	18.1	71.4	72.4	61.0-133		1.47	7	20	
1,2,4-Trichlorobenzene	25.0	18.0	18.5	72.2	73.8	69.0-129		2.2	26	20	ل م
1,1,1-Trichloroethane	25.0	27.3	25.6	109	102	68.0-122		6.53	53	20	5
1,1,2-Trichloroethane	25.0	22.2	20.9	88.8	83.6	78.0-120		6.(00	20	0
Trichloroethene	25.0	25.5	24.4	102	97.4	78.0-120		4.56	56	20	A
Trichlorofluoromethane	25.0	31.9	30.3	128	121	56.0-137		5.1	ç	20	
1, 2, 3-Trichloropropane	25.0	22.1	22.6	88.2	90.3	72.0-124		2.26	26	20	° S
1, 2, 3-Trimethylbenzene	25.0	24.8	24.4	99.3	97.4	75.0-120		1.95	Q	20)
1,2,4-Trimethylbenzene	25.0	21.5	21.3	85.9	85.1	75.0-120		1.02	12	20	
1,3,5-Trimethylbenzene	25.0	22.7	21.8	6.06	87.1	75.0-120		4.31	11	20	
Vinyl chloride	25.0	28.6	26.6	114	107	64.0-133		7.00	0(20	
Xylenes, Total	75.0	68.8	64.9	91.7	86.5	77.0-120		5.83	33	20	
(S) Toluene-d8				93.4	92.3	80.0-120					
(S) Dibromofluoromethane				111	110	76.0-123					
(S) 4-Bromofluorobenzene				88.3	89.7	80.0-120					

WG1106089 Volatile Organic Compounds (GC/MS) by Method 8260B

QUALITY CONTROL SUMMARY 1989458-02.03.04.05.07.08.10.11

ONE LAB. NATIONWIDE.

*

Method Blank (MB)						-
(MB) R3306908-3 05/02/18 23:40	0					0
MB Result	ssult MB Qualifier	MB MDL	MB RDL			
Analyte mg/kg		mg/kg	mg/kg			² Tc
Acetone U		0.0137	0.0250			
le		0.00190	0.0125			SS
		0.000400	0.00100			}
Bromobenzene		0.00105	0.0125			4
Bromodichloromethane		0.000788	0.00250			Ū
Bromoform U		0.00598	0.0250			
Bromomethane		0.00370	0.0125			5 C L
n-Butylbenzene U		0.00384	0.0125			5
sec-Butylbenzene U		0.00253	0.0125			9
tert-Butylbenzene U		0.00155	0.00500			g
Carbon tetrachloride U		0.00108	0.00500			
Chlorobenzene		0.000573	0.00250			7 GI
Chlorodibromomethane		0.000450	0.00250			5
Chloroethane U		0.00108	0.00500			
		0.000415	0.00250			A
Chloromethane		0.00139	0.0125][
		0.000920	0.00250			e S
		0.00113	0.00500			}
opropane		0.00510	0.0250			
a		0.000525	0.00250			
		0.00100	0.00500			
		0.00145	0.00500			
1,3-Dichlorobenzene U		0.00170	0.00500			
1,4-Dichlorobenzene U		0.00197	0.00500			
Dichlorodifluoromethane		0.000818	0.00250			
1,1-Dichloroethane U		0.000575	0.00250			
		0.000475	0.00250			
		0.000500	0.00250			
		0.000690	0.00250			
ene		0.00143	0.00500			
		0.00127	0.00500			
		0.000700	0.00250			
		0.00175	0.00500			
cis-1,3-Dichloropropene U		0.000678	0.00250			
trans-1,3-Dichloropropene U		0.00153	0.00500			
2,2-Dichloropropane U		0.000793	0.00250			
Di-isopropyl ether U		0.000350	0.00100			
Ethylbenzene U		0.000530	0.00250			
Hexachloro-1,3-butadiene U		0.0127	0.0250			
Isopropylbenzene U		0.000863	0.00250			
ACCOUNT:	Ë		PROJECT:	SDG:		PAGE:
Applied Water Resources AWR- Alameda, CA	aWR- Alameda, CA		THOT	L989458	05/10/18 19:34	52 of 67

σ)
α)
C)
Q)
C)
~	_
ີບ	5
2	>
-	>

QUALITY CONTROL SUMMARY 1989458-02.03.04.05.07.08.10.11

-

Volatile Organic Compounds (GC/MS) by Method 8260B

Method Blank (MB)

Method Blank (MB)					- -
(MB) R3306908-3 05/02/18 23:40	18 23:40				<u>}</u>
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	mg/kg		mg/kg	mg/kg	Ч
p-lsopropyltoluene	N		0.00233	0.00500	
2-Butanone (MEK)	Π		0.0125	0.0250	ی ک
Methylene Chloride	Π		0.00664	0.0250)
4-Methyl-2-pentanone (MIBK)	Π		0.0100	0.0250	4
Methyl tert-butyl ether	Π		0.000295	0.00100	5
Naphthalene	N		0.00312	0.0125	
n-Propylbenzene	Π		0.00118	0.00500	ى م
Styrene	Π		0.00273	0.0125	5
1,1,2-Tetrachloroethane	Π		0.000500	0.00250	Q
1,1,2,2-Tetrachloroethane			0.000390	0.00250	ğ
Tetrachloroethene	Π		0.000700	0.00250	
Toluene	Π		0.00125	0.00500	ل م
1,1,2-Trichlorotrifluoroethane	Π		0.000675	0.00250	5
1,2,3-Trichlorobenzene	Π		0.000625	0.00250	0
1,2,4-Trichlorobenzene	Π		0.00482	0.0125	A
1,1,1-Trichloroethane	Π		0.000275	0.00250	
1,1,2-Trichloroethane	N		0.000883	0.00250	° C
Trichloroethene	Π		0.000400	0.00100)
Trichlorofluoromethane			0.000500	0.00250	
1,2,3-Trichloropropane	П		0.00510	0.0125	
1,2,3-Trimethylbenzene	Π		0.00115	0.00500	
1,2,4-Trimethylbenzene	Π		0.00116	0.00500	
1,3,5-Trimethylbenzene	П		0.00108	0.00500	
Vinyl chloride	Π		0.000683	0.00250	
Xylenes, Total	Π		0.00478	0.00650	
(S) Toluene-d8	107			80.0-120	
(S) Dibromofluoromethane	96.5			74.0-131	
(S) 4-Bromofluorobenzene	109			64.0-132	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3306908-1 05/02/18 22:08 • (LCSD) R3306908-2 05/02/18 22:28	2/18 22:08 • (LCS	3D) R3306908	-2 05/02/18 22	2:28							
	Spike Amount	Spike Amount LCS Result	LCSD Result LCS Rec.	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%	
Acetone	0.625	0.625	0.693	100	111	11.0-160			10.3	23	
Acrylonitrile	0.625	0.652	0.702	104	112	61.0-143			7.52	20	
Benzene	0.125	0.122	0.128	97.3	102	71.0-124			5.12	20	
Bromobenzene	0.125	0.122	0.131	97.6	105	78.0-120			7.29	20	
Bromodichloromethane	0.125	0.128	0.128	103	103	75.0-120			0.0577	20	
1	ACCOUNT:			PRC	PROJECT:		SDG:			DATE/TIME:	PAGE:
Applied Water Re	Applied Water Resources AWR- Alameda, CA	meda, CA		Ĺ	THOT		L989458	0		05/10/18 19:34	53 of 67

WG1106089 Volatile Organic Compounds (GC/MS) by Method 8260B

QUALITY CONTROL SUMMARY 1989458-02.03.04.05.07.08.10.11

*

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)	ample (LC	S) • Labor	atory Cont	rol Sample	e Duplicate	(LCSD)				C.
(LCS) R3306908-1 05/02/18 22:08 • (LCSD) R3306908-2 05/02/18 22:28	22:08 • (LCSL) R3306908-	2 05/02/18 22	:28)
-,	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier RPD	RPD Limits	2
Analyte	mg/kg	mg/kg	mg/kg	%	%	%		%	%	Ч
Bromoform	0.125	0.116	0.124	92.8	99.4	65.0-133		6.90	20	
Bromomethane	0.125	0.133	0.123	107	98.4	26.0-160		7.97	20	3 2 2
n-Butylbenzene (0.125	0.129	0.140	103	112	73.0-126		77.7	20	3
sec-Butylbenzene	0.125	0.124	0.138	99.3	110	75.0-121		10.4	20	4
tert-Butylbenzene (0.125	0.130	0.134	104	107	74.0-122		3.00	20	G
Carbon tetrachloride (0.125	0.136	0.137	109	109	66.0-123		0.401	20][
Chlorobenzene	0.125	0.124	0.126	99.4	101	79.0-121		1.55	20	ى ك
Chlorodibromomethane	0.125	0.124	0.124	98.9	99.3	74.0-128		0.341	20	5
Chloroethane	0.125	0.114	0.128	91.3	102	51.0-147		11.5	20	G
Chloroform	0.125	0.121	0.124	96.8	98.8	73.0-123		2.02	20	တိ
Chloromethane	0.125	0.0995	0.105	79.6	84.3	51.0-138		5.64	20	
2-Chlorotoluene	0.125	0.120	0.124	96.0	99.5	72.0-124		3.56	20	ے ا
4-Chlorotoluene (0.125	0.120	0.132	96.2	105	78.0-120		9.05	20	5
1,2-Dibromo-3-Chloropropane (0.125	0.157	0.142	126	113	65.0-126		10.1	20	
1,2-Dibromoethane (0.125	0.130	0.127	104	102	78.0-122		2.08	20	A
Dibromomethane	0.125	0.131	0.120	104	96.4	79.0-120		8.07	20	
1,2-Dichlorobenzene (0.125	0.116	0.124	93.2	99.4	80.0-120		6.46	20	ر س
1,3-Dichlorobenzene		0.115	0.123	91.6	98.7	72.0-123		7.44	20)
1,4-Dichlorobenzene (0.125	0.111	0.120	88.5	96.3	77.0-120		8.41	20	
Dichlorodifluoromethane (0.125	0.111	0.110	89.1	87.7	49.0-155		1.57	20	
1,1-Dichloroethane (0.125	0.130	0.138	104	111	70.0-128		6.29	20	
1,2-Dichloroethane (0.125	0.129	0.139	104	111	69.0-128		7.11	20	
1,1-Dichloroethene (0.124	0.137	99.5	110	63.0-131		9.84	20	
		0.114	0.124	91.2	9.66	74.0-123		8.85	20	
ene		0.116	0.119	92.6	95.6	72.0-122		3.16	20	
		0.132	0.135	105	108	75.0-126		2.52	20	
	0.125	0.134	0.138	107	110	72.0-130		3.05	20	
1,3-Dichloropropane (0.137	0.136	110	109	80.0-121		0.761	20	
		0.113	0.118	90.6	94.4	80.0-125		4.11	20	
oene		0.112	0.119	89.3	95.2	75.0-129		6.37	20	
2,2-Dichloropropane	0.125	0.125	0.128	100	102	60.0-129		2.37	20	
ther		0.127	0.137	102	109	62.0-133		7.20	20	
Ethylbenzene	0.125	0.131	0.133	105	106	77.0-120		1.08	20	
Hexachloro-1,3-butadiene (0.126	0.146	101	117	68.0-128		14.5	20	
Isopropylbenzene (0.125	0.124	0.131	99.5	105	75.0-120		5.10	20	
p-lsopropyltoluene (0.125	0.129	0.140	103	112	74.0-125		8.43	20	
2-Butanone (MEK) (0.625	0.629	0.633	101	101	37.0-159		0.612	21.3	
		0.109	0.127	87.2	101	67.0-123		15.0	20	
4-Methyl-2-pentanone (MIBK) (0.625	0.725	0.721	116	115	60.0-144		0.548	20	
Methyl tert-butyl ether	0.125	0.125	0.130	6.66	104	66.0-125		4.12	20	
							.000			DACE.
Applied water kesources AWK- Alameda, CA	Ces AVVR- Alall	Ieda, CA			INCI		L989498		U2/10/18 19:34	24 01 0/

σ)
α)
C)
G)
Ĉ	5
Ţ	
ۍ ا)
N	>
-	2

QUALITY CONTROL SUMMARY 1989458-02.03.04.05.07.08.10.11

ONE LAB. NATIONWIDE.

٢.

Volatile Organic Compounds (GC/MS) by Method 8260B

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3306908-1 05/02/18 22:08 • (LCSD) R3306908-2 05/02/18 22:28	18 22:08 • (L	CSD) R3306908	-2 05/02/18 22	2:28						<u>)</u>)
	Spike Amoui	Spike Amount LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier RPD	RPD Limits	~
Analyte	mg/kg	mg/kg	mg/kg	%	%	%		%	%	Tc
Naphthalene	0.125	0.129	0.140	103	112	64.0-125		8.32	20	
n-Propylbenzene	0.125	0.124	0.130	0.66	104	78.0-120		5.27	20	ی ک ع
Styrene	0.125	0.112	0.119	89.9	95.3	78.0-124		5.90	20)
1,1,2-Tetrachloroethane	0.125	0.113	0.126	90.7	101	74.0-124		10.7	20	4
1,1,2,2-Tetrachloroethane	0.125	0.119	0.131	94.8	105	73.0-120		9.96	20	5
Tetrachloroethene	0.125	0.131	0.130	105	104	70.0-127		0.836	20	
Toluene	0.125	0.125	0.126	100	101	70.0-120		0.487	20	ى ك
1,1,2-Trichlorotrifluoroethane	0.125	0.112	0.114	89.5	91.1	64.0-135		1.69	20	5
1,2,3-Trichlorobenzene	0.125	0.121	0.136	96.7	108	68.0-126		11.4	20	9
1,2,4-Trichlorobenzene	0.125	0.122	0.132	97.8	106	70.0-127		7.98	20	ğ
1,1,1-Trichloroethane	0.125	0.129	0.147	103	117	69.0-125		13.0	20	
1,1,2-Trichloroethane	0.125	0.134	0.135	107	108	78.0-120		0.976	20	۲ ۲
Trichloroethene	0.125	0.138	0.137	110	110	79.0-120		0.716	20	ō
Trichlorofluoromethane	0.125	0.122	0.137	97.3	110	59.0-136		11.8	20	ω
1,2,3-Trichloropropane	0.125	0.125	0.133	100	107	73.0-124		6.14	20	Ā
1,2,3-Trimethylbenzene	0.125	0.127	0.137	102	110	76.0-120		7.85	20	
1,2,4-Trimethylbenzene	0.125	0.124	0.135	9.6	108	75.0-120		7.75	20	ر س
1,3,5-Trimethylbenzene	0.125	0.123	0.135	98.4	108	75.0-120		9.59	20)
Vinyl chloride	0.125	0.124	0.130	99.4	104	63.0-134		4.17	20	
Xylenes, Total	0.375	0.377	0.376	101	100	77.0-120		0.266	20	
(S) Toluene-d8				108	106	80.0-120				
(S) Dibromofluoromethane				95.3	104	74.0-131				
(S) 4-Bromofluorobenzene				101	105	64.0-132				

L989443-34 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L989443-34 05/03/18 05:03 • (MS) R3306908-4 05/03/18 08:53 • (MSD) R3306908-5 05/03/18 09:13)3/18 05:03 • (MS)	R3306908-4 (05/03/18 08:53	• (MSD) R3306	3908-5 05/03	3/18 09:13							
	Spike Amount (dry)	Spike Amount Original Result (dry) (dry)	t MS Result (dry) MSD Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Dilution Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%	
Acetone	0.759	ND	0.796	0.589	85.8	62.8	1.19	10.0-160			29.9	36	
Acrylonitrile	0.759	ND	0.652	0.764	72.2	84.6	1.19	14.0-160			15.7	33	
Benzene	0.152	ND	0.170	0.182	94.2	101	1.19	13.0-146			6.50	27	
Bromobenzene	0.152	ND	0.200	0.204	111	113	1.19	10.0-149			1.91	33	
Bromodichloromethane	0.152	ND	0.189	0.202	105	112	1.19	15.0-142			6.67	28	
Bromoform	0.152	ND	0.189	0.182	105	101	1.19	10.0-147			3.90	31	
Bromomethane	0.152	ND	0.128	0.150	70.8	83.0	1.19	10.0-160			15.8	32	
n-Butylbenzene	0.152	ND	0.230	0.244	127	135	1.19	10.0-154			5.98	37	
sec-Butylbenzene	0.152	ND	0.217	0.241	120	133	1.19	10.0-151			10.3	36	
tert-Butylbenzene	0.152	QN	0.223	0.246	124	136	1.19	10.0-152			9.60	35	
	ACCOUNT:			PRO	PROJECT:		0)	SDG:		DATE/TIME:	TIME:		PAGE
Applied Water F	Applied Water Resources AWR- Alameda. CA	meda. CA		HL	THOT		36J	L989458		05/10/18 19:34	3 19:34		55 of 67

	od 8260B
	by Meth
	(GC/MS)
89	Compounds
G1106089	atile Organic
≥	Vo

QUALITY CONTROL SUMMARY 1989458-02.03.04.05.07.08.10.11

*

L989443-34 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

OS11 989443-34 05/03/18 05:03 (MS) R3306908-4 05/03/18 08:53 (MSD) R3306908-5 05/03/18 09/13	05-03 • (MS) I	R3306908-4 (05/03/18 08:53 •		908-5 05/03/	18 09-13						ප
	Spike Amount	Original Result	MS Result (dry)	MSD Result	MS Rec.	ن	Dilution Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	2
Analyte	(ury) mg/kg	(ury) mg/kg		(ury) mg/kg	%	%	%			%	%	<u>ں</u>
Carbon tetrachloride	0.152	ND	0.211	0.209	117	116 1.	1.19 13.0-140			0.761	30	e e
Chlorobenzene	0.152	ND	0.183	0.197	101	109 1.	1.19 10.0-149			7.54	31	Ss
Chlorodibromomethane	0.152	ND	0.184	0.202	102	112 1.	1.19 12.0-147			9.02	29	
Chloroethane	0.152	ND	0.146	0.157	80.6	87.1 1.	1.19 10.0-159			7.79	33	0 C
Chloroform	0.152	ND	0.176	0.187	96.8	103 1.	1.19 18.0-148			6.06	28	
Chloromethane	0.152	ND	0.141 (0.150	77.8	83.3 1.	1.19 10.0-146			6.76	29) در
2-Chlorotoluene	0.152	ND	0.208	0.219	115	121 1.	1.19 10.0-151			5.17	35	አ
4-Chlorotoluene	0.152	ND	0.202	0.210	112	117 1.	1.19 10.0-150			4.03	35	
1,2-Dibromo-3-Chloropropane	0.152	ND	0.154	0.162	85.3	89.5 1.	1.19 10.0-149			4.76	34	° O
1,2-Dibromoethane	0.152	ND	0.186	0.195	103	108 1.	1.19 14.0-145			5.01	28	
Dibromomethane	0.152	ND	0.184	0.195	102	108 1.	1.19 18.0-144			5.94	27	ے <mark>ک</mark>
1,2-Dichlorobenzene	0.152	ND	0.194	0.195	107	108 1.	1.19 10.0-153			0.690	34	ס
1,3-Dichlorobenzene	0.152	ND	0.198	0.204	109	113 1.	1.19 10.0-150			3.05	35	
1,4-Dichlorobenzene	0.152	ND	0.188	0.199	104	11 1.	1.19 10.0-148			5.62	34	A ۳
Dichlorodifluoromethane	0.152	ND	0.195	0.200	108	111 1.	1.19 10.0-162			2.57	30	
1,1-Dichloroethane	0.152	ND	0.181	0.190	100	105 1.	1.19 19.0-148			4.52	28	, б
1,2-Dichloroethane	0.152	ND	0.169	0.192	93.6	107 1.	1.19 17.0-147			12.9	27	U N
1,1-Dichloroethene	0.152	ND	0.179	0.186	99.0		1.19 10.0-150			4.17	31]
	0.152	ND		0.183	99.5					1.58	28	
ene	0.152	ND	0.157	0.161	86.9	.1. 1.	1.19 11.0-142			2.55	29	
	0.152	ND	0.183	0.203	101		1.19 17.0-148			10.5	28	
1,1-Dichloropropene	0.152	ND	0.175	0.194	96.8	107 1.	1.19 10.0-150			10.2	30	
1,3-Dichloropropane	0.152	ND	0.201	0.204	111	113 1.	1.19 16.0-148			1.37	27	
cis-1,3-Dichloropropene	0.152	ND	0.182	0.193	101	107 1.	1.19 13.0-150			5.49	28	
oene	0.152	ND		0.193	97.5					8.98	29	
2,2-Dichloropropane	0.152	ND	0.184	0.197	102		1.19 16.0-143			7.16	30	
ther	0.152	ND		0.189	101					2.98	28	
	0.152	ND		0.226	115					8.12	31	
Hexachloro-1,3-butadiene	0.152	ND		0.235	129					0.573	40	
	0.152	ND		0.224	121					2.65	33	
	0.152	ND		0.232	119					7.69	37	
	0.759	ND		0.643	63.4					11.5	33	
	0.152	ND		0.172	88.5					7.37	29	
: (MIBK)	0.759	ND		0.981	97.6					10.6	32	
Methyl tert-butyl ether	0.152	ND		0.173	92.1	. +				3.50	29	
Naphthalene	0.152	ND	0.177	0.182	97.9	101 1.	1.19 10.0-153			2.74	36	
n-Propylbenzene	0.152	ND	0.206	0.214	114					4.13	34	
Styrene	0.152	ND	0.204	0.219	113	121 1.	1.19 10.0-155			6.72	34	
1,1,1,2-Tetrachloroethane	0.152	ND	0.179	0.187	99.1	104 1.	1.19 10.0-147			4.55	30	
ACC	ACCOUNT:			PROJECT:	ECT:		SDG:		DATE/TIME:	TIME:	P.	PAGE:
Applied Water Resources AWR- Alameda, CA	rces AWR- Ala	meda, CA		THOT	DΤ		L989458		05/10/18 19:34	3 19:34	56	56 of 67

WG1106089

Volatile Organic Compounds (GC/MS) by Method 8260B

QUALITY CONTROL SUMMARY 1989458-02.03.04.05.07.08.10.11

ONE LAB. NATIONWIDE.

*

0 U

L989443-34 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L989443-34 05/03/18 05:03 • (MS) R3306908-4 05/03/18 08:53 • (MSD) R3306908-5 05/03/18 09:13	8 05:03 • (MS) I	R3306908-4 0	5/03/18 08:53 •	(MSD) R3306	3908-5 05/03/	18 09:13							<u>)</u>)
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	² Tc
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%	
1,1,2,2-Tetrachloroethane	0.152	ND	0.193	0.217	107	120	1.19	10.0-155			11.7	31	ر س
Tetrachloroethene	0.152	ND	0.188	0.195	104	108	1.19	10.0-144			3.67	32	SS
Toluene	0.152	ND	0.194	0.200	107	111	1.19	10.0-144			3.33	28	
1,1,2-Trichlorotrifluoroethane	0.152	ND	0.163	0.178	90.3	98.8	1.19	10.0-153			9.01	33	0 D
1,2,3-Trichlorobenzene	0.152	ND	0.188	0.193	104	107	1.19	10.0-153			2.69	40	
1,2,4-Trichlorobenzene	0.152	ND	0.188	0.196	104	108	1.19	10.0-156			4.00	40	2)
1,1,1-Trichloroethane	0.152	ND	0.203	0.207	112	115	1.19	18.0-145			2.02	29	5
1,1,2-Trichloroethane	0.152	ND	0.208	0.222	115	123	1.19	12.0-151			6.60	28	
Trichloroethene	0.152	ND	0.181	0.200	100	111	1.19	11.0-148			9.58	29	ő
Trichlorofluoromethane	0.152	ND	0.202	0.212	112	117	1.19	10.0-157			4.81	34	
1,2,3-Trichloropropane	0.152	ND	0.168	0.185	92.7	102	1.19	10.0-154			9.82	32	7
1,2,3-Trimethylbenzene	0.152	ND	0.216	0.217	120	120	1.19	10.0-150			0.248	33	פ
1,2,4-Trimethylbenzene	0.152	ND	0.199	0.218	110	121	1.19	10.0-151			9.21	34	
1,3,5-Trimethylbenzene	0.152	ND	0.204	0.215	113	119	1.19	10.0-150			5.39	33	ک ۳
Vinyl chloride	0.152	ND	0.138	0.135	76.3	74.7	1.19	10.0-150			2.07	29	
Xylenes, Total	0.455	ND	0.564	0.615	104	113	1.19	10.0-150			8.66	31	, б
(S) Toluene-d8					107	110		80.0-120					с Л
(S) Dibromofluoromethane					89.6	95.3		74.0-131				-]
(S) 4-Bromofluorobenzene					110	106		64.0-132					

DATE/TIME: 05/10/18 19:34 SDG: L989458 PROJECT: THOT Applied Water Resources AWR- Alameda, CA ACCOUNT:

PAGE: 57 of 67

WG1106111 Volatile Organic Compounds (GC/MS) by Method 8260B

QUALITY CONTROL SUMMARY

*

Method Blank (MB)

	05/02/18 20.34
	C
	0
	CC C
	5
`	0
	È
	\sim
	L
	C
	R3306635-3
	<i>a</i>
	Q
	C
	Ć
	ç
	Ω
	ñ
	α
	\geq
	-
. 1	

Method Blank (MB)						-
(MB) R3306635-3 05/02/18 20:34						<u>}</u>
MB Result	t <u>MB Qualifier</u>	MB MDL	MB RDL			2
Analyte mg/kg		mg/kg	mg/kg			U
Acetone U		0.0137	0.0250][
Acrylonitrile U		0.00190	0.0125			°SS
Benzene U		0.000400	0.00100			
		0.00105	0.0125			4
oromethane		0.000788	0.00250			5
Bromoform		0.00598	0.0250][
		0.00370	0.0125			л С
n-Butylbenzene U		0.00384	0.0125			5
sec-Butylbenzene U		0.00253	0.0125			9
tert-Butylbenzene U		0.00155	0.00500			g
Carbon tetrachloride U		0.00108	0.00500			
Chlorobenzene U		0.000573	0.00250			
Chlorodibromomethane		0.000450	0.00250			ō
Chloroethane U		0.00108	0.00500			
Chloroform		0.000415	0.00250			A
Chloromethane U		0.00139	0.0125			
2-Chlorotoluene U		0.000920	0.00250			0 0
4-Chlorotoluene U		0.00113	0.00500			3
1,2-Dibromo-3-Chloropropane U		0.00510	0.0250			
1,2-Dibromoethane U		0.000525	0.00250			
Dibromomethane		0.00100	0.00500			
		0.00145	0.00500			
		0.00170	0.00500			
1,4-Dichlorobenzene U		0.00197	0.00500			
Dichlorodifluoromethane		0.000818	0.00250			
		0.000575	0.00250			
		0.000475	0.00250			
		0.000500	0.00250			
		0.000690	0.00250			
ene		0.00143	0.00500			
1,2-Dichloropropane U		0.00127	0.00500			
		0.000700	0.00250			
		0.00175	0.00500			
cis-1,3-Dichloropropene U		0.000678	0.00250			
trans-1,3-Dichloropropene U		0.00153	0.00500			
2,2-Dichloropropane U		0.000793	0.00250			
Di-isopropyl ether U		0.000350	0.00100			
Ethylbenzene U		0.000530	0.00250			
Hexachloro-1,3-butadiene U		0.0127	0.0250			
lsopropylbenzene U		0.000863	0.00250			
ACCOUNT:			PROJECT:	SDG:	DATE/TIME:	PAGE:
Applied Water Resources AWR- Alameda, CA	≺- Alameda, CA		IHOI	L989458	05/10/18 19:34	58 of 67

-
-
ဖ
0
7
വ
-
\leq
-

QUALITY CONTROL SUMMARY

*

Volatile Organic Compounds (GC/MS) by Method 8260B

4
(!)
~
μ
02/
0
05/
\circ
ကု
m
Q
g
б
R3306635
Ê
≥

(MB) R3306635-3 05/02/18 20:34 MB Result Analyte mg/kg				3
				<u>)</u>
	MB Qualifier	MB MDL	MB RDL	5
		mg/kg	mg/kg	с Н
ne U		0.00233	0.00500	
2-Butanone (MEK) U		0.0125	0.0250	ູ້
Methylene Chloride 0.0103	ا ر	0.00664	0.0250)
4-Methyl-2-pentanone (MIBK) U		0.0100	0.0250	4
Methyl tert-butyl ether U		0.000295	0.00100	Б С
Π		0.00312	0.0125	
n-Propylbenzene U		0.00118	0.00500	л С
П		0.00273	0.0125	ō
1,1,1,2-Tetrachloroethane U		0.000500	0.00250	9
1,1,2,2-Tetrachloroethane U		0.000390	0.00250	ğ
Tetrachloroethene		0.000700	0.00250	
П		0.00125	0.00500	ل ح
1,1,2-Trichlorotrifluoroethane U		0.000675	0.00250	ō
1,2,3-Trichlorobenzene U		0.000625	0.00250	
l,2,4-Trichlorobenzene U		0.00482	0.0125	∢
1,1,1-Trichloroethane		0.000275	0.00250	
,1,2-Trichloroethane		0.000883	0.00250	о С
l'richloroethene U		0.000400	0.00100)
Trichlorofluoromethane U		0.000500	0.00250	
1,2,3-Trichloropropane U		0.00510	0.0125	
I,2,3-Trimethylbenzene U		0.00115	0.00500	
,2,4-Trimethylbenzene U		0.00116	0.00500	
,3,5-Trimethylbenzene U		0.00108	0.00500	
Π		0.000683	0.00250	
Π		0.00478	0.00650	
(S) Toluene-d8 111			80.0-120	
(S) Dibromofluoromethane 107			74.0-131	
(S) 4-Bromofluorobenzene 110			64.0-132	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3306635-1 05/02/18 19:19 • (LCSD) R3306635-2 05/02/18 19:38	12/18 19:19 • (LCSL	D) R3306635	2 05/02/18 19:3	8							
	Spike Amount	Spike Amount LCS Result	LCSD Result LCS Rec.	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%	
Acetone	0.625	0.723	0.724	116	116	11.0-160			0.176	23	
Acrylonitrile	0.625	0.540	0.569	86.4	91.0	61.0-143			5.23	20	
Benzene	0.125	0.123	0.115	98.2	92.1	71.0-124			6.46	20	
Bromobenzene	0.125	0.132	0.131	105	105	78.0-120			0.216	20	
Bromodichloromethane	0.125	0.115	0.120	92.3	96.0	75.0-120			3.93	20	
	ACCOUNT:			PRC	PROJECT:		SDG:			DATE/TIME:	PAGE
Applied Water Re	Applied Water Resources AWR- Alameda, CA	meda CA		F	THOT		1 989458	00		05/10/18 19:34	59 of 67

WG1106111 Volatile Organic Compounds (GC/MS) by Method 8260B

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

*

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

LCS Rec. LCSD Rec. Rec. Limits LCS Qualifier LCS % % %	LCSD Qualifier RPD RPD Limits % %	Limits
86.9 88.7 65.0-133	2.04 20	
95.2 26.0-160	7.11 20	
92.5 92.1 73.0-126	0.486 20	
92.2		
97.8		
91.8		
95.4		<u>.</u>
95.2 94.8 74.0-128	0.396 20	
94.1		
95.7 90.0 73.0-123	6.14 20	g
96.5 51.0-138	7.43 20	
97.8 99.6 72.0-124	1.83 20	
94.7 94.7 78.0-120	0.0482 20	
91.0 88.3 65.0-126	2.99 20	
90.7 92.8 78.0-122	2.30 20	
98.8 99.7 79.0-120	0.842 20	
97.1 94.6 80.0-120	2.60 20	
96.3 96.2 72.0-123	0.0623 20	
89.9 91.4 77.0-120	1.58 20	
88.8 83.9 49.0-155	5.72 20	
99.3 96.6 70.0-128	2.77 20	
92.6 89.1 69.0-128	3.80 20	
95.2 96.0 63.0-131	0.821 20	
103 101 74.0-123	2.27 20	
93.2 95.1 72.0-122		
104 101 75.0-126	3.50 20	
99.7 96.0 72.0-130	3.82 20	
94.5 94.4 80.0-121	0.0838 20	
104 105 80.0-125	0	
97.1 99.0 75.0-129	1.97 20	
103 94.1 60.0-129		
105 100 62.0-133	4.29 20	
96.5 96.9 77.0-120	0.462 20	
92.7 90.3 68.0-128	2.60 20	
91.5 89.7 75.0-120	1.94 20	
88.4 89.7 74.0-125	1.36 20	
91.5 101 37.0-159	9.64 21.3	
96.0 67.0-123	5.42 20	
92.3 93.6 60.0-144	1.40 20	
93.5 66.0-125	7.99 20	
PROJECT: SDG:	DA	DATE/TIME: PAGE:
	02/1	-
	39458	

WG1106111

Volatile Organic Compounds (GC/MS) by Method 8260B

QUALITY CONTROL SUMMARY

*

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplic	l Sample (L	.CS) • Labo	ratory Cont	trol Sample	e Duplicate	ate (LCSD)) -
(LCS) R3306635-1 05/02/18 19:19 • (LCSD) R3306635-2 05/02/18 19:38	18 19:19 • (LCS)	D) R3306635-2	2 05/02/18 19:3.	8						<u>ר</u>
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier RPD	RPD Limits	~
Analyte	mg/kg	mg/kg	mg/kg	%	%	%		%	%	U H
Naphthalene	0.125	0.114	0.116	91.6	92.5	64.0-125		1.00	20	
n-Propylbenzene	0.125	0.114	0.115	91.1	92.1	78.0-120		1.15	20	ູ້
Styrene	0.125	0.113	0.114	90.3	6.06	78.0-124		0.645	20)
1,1,1,2-Tetrachloroethane	0.125	0.123	0.124	98.4	99.2	74.0-124		0.839	20	4
1,1,2,2-Tetrachloroethane	0.125	0.118	0.116	94.2	92.5	73.0-120		1.84	20	ő
Tetrachloroethene	0.125	0.112	0.116	89.3	93.2	70.0-127		4.31	20	
Toluene	0.125	0.112	0.117	89.9	93.4	70.0-120		3.81	20	ں ۲
1,1,2-Trichlorotrifluoroethane	0.125	0.127	0.131	102	105	64.0-135		3.25	20	5
1,2,3-Trichlorobenzene	0.125	0.118	0.115	94.7	91.9	68.0-126		3.00	20	9
1,2,4-Trichlorobenzene	0.125	0.114	0.116	91.3	93.1	70.0-127		1.91	20	ğ
1,1,1-Trichloroethane	0.125	0.118	0.109	94.0	87.4	69.0-125		7.30	20	
1,1,2-Trichloroethane	0.125	0.116	0.120	92.5	96.1	78.0-120		3.75	20	<u>ت</u>
Trichloroethene	0.125	0.121	0.116	97.2	92.4	79.0-120		5.00	20	ō
Trichlorofluoromethane	0.125	0.125	0.121	100	96.8	59.0-136		3.37	20	0
1,2,3-Trichloropropane	0.125	0.123	0.123	98.2	98.3	73.0-124		0.133	20	Ā
1,2,3-Trimethylbenzene	0.125	0.117	0.116	93.3	92.4	76.0-120		0.919	20	
1,2,4-Trimethylbenzene	0.125	0.117	0.114	93.6	91.2	75.0-120		2.58	20	о С
1,3,5-Trimethylbenzene	0.125	0.118	0.114	94.4	91.6	75.0-120		3.05	20)
Vinyl chloride	0.125	0.129	0.128	104	102	63.0-134		1.20	20	
Xylenes, Total	0.375	0.345	0.341	92.0	6.06	77.0-120		1.17	20	
(S) Toluene-d8				109	114	80.0-120				
(S) Dibromofluoromethane				106	107	74.0-131				
(S) 4-Bromofluorobenzene				011	113	64.0-132				

	Ċ
0	o in coro
	0
∞	5
σ	
4	0
0	Somi-Volatilo
Ť	6
	>
Ċ	
>	2
\geq	U

QUALITY CONTROL SUMMARY

*

Semi-Volatile Organic Compounds (GC) by Method 3511/8015	ic Compound:	s (GC) by Mei	thod 3511/80	15	L989	L989458-01,06,09,13,16,17,18	,13,16,17,18			
Method Blank (MB)	B))
(MB) R3306012-1 04/30/18 18:39)/18 18:39									} }
	MB Result	MB Qualifier	MB MDL	MB RDL						c
Analyte	l/bn		l/bn	l/bn						TC
C12-C22 Hydrocarbons	Л		33.0	100						
C22-C32 Hydrocarbons			33.0	100						ູ້
C32-C40 Hydrocarbons	n		33.0	100)
(S) o-Terphenyl	111			52.0-156						4
										ő
Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)	ol Sample (I	LCS) • Labo	iratory Coni	trol Sample [Duplicate	(LCSD)				ی ک ۲
(LCS) R3306012-2 04/30/18 18:55 • (LCSD) R3306012-3 04/30/18 19:11	30/18 18:55 • (LC	SD) R3306012-3	3 04/30/18 19:1	-						5
	Spike Amoun	Spike Amount LCS Result LCSD Result LCS Rec.	LCSD Result		LCSD Rec.	Rec. Limits	LCS Qualifier	Rec. Limits LCS Qualifier LCSD Qualifier RPD	RPD Limits	o O O
A		1/~		/0	0/	0		/0	č	うう

	Spike Amount LCS Result	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	l/gu	l/gu	l/bn	%	%	%			%	%
C22-C32 Hydrocarbons	750	717	746	95.5	99.5	50.0-150			4.08	20
C12-C22 Hydrocarbons	750	693	726	92.4	96.9	50.0-150			4.72	20
(S) o-Terphenyl				91.0	93.4	52.0-156				

Ū

<u>ک</u>

SC

DATE/TIME: 05/10/18 19:34

PAGE: 62 of 67

ဖ
\sim
$^{\circ}$
വ
0
\sum
C
_
\leq
-

QUALITY CONTROL SUMMARY 1989458-02,03,04,05,07,08,10,11,12,14,15

.

0 0 Ч Ss Б ğ ភ $\overline{\mathbb{O}}$ **RPD** Limits 20 20 % 5.33 2.98 LCSD Qualifier RPD % LCS Qualifier Rec. Limits Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD) 50.0-150 50.0-150 18.0-148 % LCSD Rec. 78.6 94.3 83.1 % 18.0-148 LCS Rec. MB RDL mg/kg 4.00 4.00 85.6 4.00 99.5 77.8 % (LCS) R3306814-2 05/03/18 13:07 • (LCSD) R3306814-3 05/03/18 13:23 LCSD Result Semi-Volatile Organic Compounds (GC) by Method 8015 MB MDL mg/kg mg/kg 0.733 23.6 20.8 1.33 1.33 MB Qualifier Spike Amount LCS Result mg/kg 21.4 24.9 **MB** Result mg/kg 25.0 mg/kg 25.0 84.5 (MB) R3306814-1 05/03/18 12:52 \supset \supset \supset Method Blank (MB) C22-C32 Hydrocarbons C32-C40 Hydrocarbons C22-C32 Hydrocarbons C12-C22 Hydrocarbons C12-C22 Hydrocarbons (S) o-Terphenyl (S) o-Terphenyl Analyte Analyte

SC

₹

PAGE: 63 of 67

GLOSSARY OF TERMS

×

Τс

Ss

Cn

Sr

ʹQc

GI

AI

Sc

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Abbreviations and Definitions

(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
RDL (dry)	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality contro sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the resure reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates an times of preparation and/or analysis.

Qualifier	Description
J	The identification of the analyte is acceptable; the reported value is an estimate.
J2	Surrogate recovery limits have been exceeded; values are outside lower control limits.
J7	Surrogate recovery cannot be used for control limit evaluation due to dilution.

PROJECT: THOT SDG: L989458 DATE/TIME: 05/10/18 19:34 PAGE: 64 of 67

ACCREDITATIONS & LOCATIONS

Τс

Ss

Cn

Sr

Qc

Gl

ΑI

Sc

ESC Lab Sciences is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE. * Not all certifications held by the laboratory are applicable to the results reported in the attached report. * Accreditation is only applicable to the test methods specified on each scope of accreditation held by ESC Lab Sciences.

State Accreditations

Alabama	40660
Alaska	17-026
Arizona	AZ0612
Arkansas	88-0469
California	2932
Colorado	TN00003
Connecticut	PH-0197
Florida	E87487
Georgia	NELAP
Georgia ¹	923
ldaho	TN00003
Illinois	200008
Indiana	C-TN-01
lowa	364
Kansas	E-10277
Kentucky ¹⁶	90010
Kentucky ²	16
Louisiana	AI30792
Louisiana ¹	LA180010
Maine	TN0002
Maryland	324
Massachusetts	M-TN003
Michigan	9958
Minnesota	047-999-395
Mississippi	TN00003
Missouri	340
Montana	CERT0086

Nebraska	NE-OS-15-05
Nevada	TN-03-2002-34
New Hampshire	2975
New Jersey–NELAP	TN002
New Mexico 1	n/a
New York	11742
North Carolina	Env375
North Carolina ¹	DW21704
North Carolina ³	41
North Dakota	R-140
Ohio-VAP	CL0069
Oklahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	LAO00356
South Carolina	84004
South Dakota	n/a
Tennessee ¹⁴	2006
Texas	T 104704245-17-14
Texas⁵	LAB0152
Utah	TN00003
Vermont	VT2006
Virginia	460132
Washington	C847
West Virginia	233
Wisconsin	9980939910
Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA-Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

Applied Water Resources AWR- Alameda, CA

ESC Lab Sciences has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. ESC Lab Sciences performs all testing at our central laboratory.

THOT

L989458

DATE/TIME: 05/10/18 19:34

				Billing Inf	Billing Information;	1000				Analysis / Con	Analysis / Container / Preservative	Chain of Custody	Page_of
Imatrix Final TC: (Payrameawronp.net, marrier Final TC: (Payrame	AWR Environmental 2363 Mariner Square D Alameda, CA 94501	hr, Suite 2	45	AWR Er 2363 M Alameo	nvironmental ariner Square la, CA 94501	Dr, Suite 24						*	•
of Tetuth Converses <	Report to: Yola Bayram			Email To: ybayrar	n@awrcorp.n	et,			anais			12065 Lebanon Rd Mount Juliet, TN 371	
Contribute Lab Projecta Lab Projecta <td>Project Description: The Home of Truth</td> <td>200</td> <td></td> <td></td> <td>City/State Alar Collected:</td> <td>neda / CA</td> <td></td> <td></td> <td>bucu</td> <td></td> <td></td> <td>Phone: 615-758-585 Phone: 800-767-585 Fax: 615-758-5859</td> <td></td>	Project Description: The Home of Truth	200			City/State Alar Collected:	neda / CA			bucu			Phone: 615-758-585 Phone: 800-767-585 Fax: 615-758-5859	
HOT And And <td>Phone: 510-671-2088</td> <td>Client Project</td> <td>14</td> <td></td> <td></td> <td></td> <td>Τ</td> <td>-11</td> <td>PN</td> <td></td> <td></td> <td></td> <td>es a</td>	Phone: 510-671-2088	Client Project	14				Τ	-11	PN				es a
Refisting to an interval interval P.O. M State interval Distribution Distribution <thdistredistribution< th=""> Distribution</thdistredistribution<>	Fax: 510-227-5495	THOT							+ 09			C	
Rush/ (ab MUST file Notified) Quote # So in the interment of the int	ort: TR	Site/Facility	# 0		P.O.#							Acctnum: AR	ALLER BCH
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Collected by (signature):	Rush?	(Lab MUST B	e Notified) e Day	Quote #							Template:	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$, 	Next D Two Di Three	11	ay (Rad Only) Day (Rad Only)	Date Resi	ilts Needed	1	11.00	-0.11			TSR: TSR: DR-	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Sample ID	Comp/Grab	-	-	Date	Time			2010200	3		Shipped Via:	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	SB1-GW	Grab	GW	10	04/25/2018	1600	1		1000			Remarks	Sample # (leb only)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	SB1-4	Grab	SS	4	04/25/2018	1155	1	-	0.0000				0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	SB1-9.5	Grab	SS	9.5	04/25/2018	1425							2 2
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	SB1-11	Grab	SS	11	04/25/2018	1435		1000	12059				5
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	SB1-13	Grab	SS	13	04/25/2018	1445			00000				5
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	SB2-GW	Grab	GW	10	04/25/2018	1625		-	10000				-02
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	SB2-4.5	Grab	SS	4.5	04/25/2018	1040	12		1				40
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	SB2-5.5	Grab	SS	5.5	04/25/2018	1105			-				10
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	SB3-GW	Grab	GW	10	04/25/2018	1533			2000				-0-54
er Remarks: B3-GW high expected concentrations. Provide chromatograms for 8015. pH Temp Emmi Escentor Checklist Dissay 583-GW high expected concentrations. Provide chromatograms for 8015. pH Temp Cost Stand Aresent/Intract: WAY Dissay 583-GW high expected concentrations. Provide chromatograms for 8015. pH Temp Cost Stand Aresent/Intract: WAY Dissay 583-GW high expected concentrations. Provide chromatograms for 8015. Flow Other Cost Stand Aresent/Intract: WAY Samples returned vis: UPS Fedix Counter Tracking # V/4 2.5 Jup S Fedix Counter Tracking # V/4 2.6 0 Jup S Fedix Counter Tracking # V/4 2.6 0 Date: Time: Received by: (Signature) Temp. Temp. Bank Received: Yes/No Yes/No Date: Time: Received by: (Signature) Temp. Temp. Bank Received: Yes/No Yes/No Date: Time: Received by: (Signature) Temp. Bank Received: Yes/No Temp. Yes/No Date: Time: Received by: (Signature) Date: Time Hother Yes/No Date: Time: R	SB3-4	Grab	SS	4	04/25/2018	1145		1.0					4
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1.1	Remarks: Limited Sa SB3-GW hi	mple Vol gh expec	ume, SB1- ted conce	9.5, SB1-11, S ntrations. Pro	81-13, SB1-G vide chroma	W, SB:	8-9, SB.	3-13 an 015.		Temp	Receipt nt/Inta urate:	494
$\frac{1}{10000000000000000000000000000000000$	DW - Drinking Water DT - Other	Samples retur		telate		1. 1. 1			9	Flow	Other	an s	4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
$\frac{1}{10000000000000000000000000000000000$	Relimenshed by : (Signature)	111	1 2	1	1	cking# 4/7	9	225	X	3349		VOA Zero Headspace:	A
$\frac{1}{1000} \frac{1}{1000} \frac{1}{1000$	Railing under the Remarking	- (4/26	18		erved by: (Signatu	CCUDY	10	NX	Trip Blank Rec	>	Preservation Correct/Che	edi _Y
4/36/18 Time: Received for tab by Signature) 82 bate: Time: 4-193	MICHAR WOODY	X	0 2/ F	168	:35	Bived by: (Signatu	(a)	0 (2	Temp	C Bottles Received:	If preservation required by Logi	: Date/Time
	Contactor ingrame	2	96 H	-	20	Por tab by:	Briature	0	830	-	12	4-193	Condition

Dr. Suite 245 Ware Environmental Martinication Provincemental Control (C) 49(50) Provincemental Control (C) 49(50) Provincemental Control (C) 49(50) Dial Initial (Dial Training) Provincemental Control (C) 49(50) Provincemental Control (C) 49(50) Provincemental Control (C) 49(50) Provincemental Control (C) 49(50) Dial Initial (Dial Training) Provincemental Control (C)				Billing In	Billing Information:					Analysis / Conta	Analysis / Container / Preservative	Chain of Custody Page
Image: Section of the secting of the secting of the sectin	AWR Environmental 2363 Mariner Square Alameda, CA 94501	Dr, Suite 2	245	AWR E 2363 A Alame	nvironental Aariner Square da, CA 94501	Dr, Suite 24	the second s					rri
Home of Truth Op/Pare Alameda / CA Alameda / CA 1-308 Terr P Lab Protect Lab Protect Lab Protect 545 HOT Lab Protect Lab Protect Lab Protect Lab Protect 545 HOT Lab Protect Lab Protect Lab Protect Lab Protect 645 Lab Protect Lab Protect Lab Protect Lab Protect Lab Protect 0.01 Terr Protect Lab Protect L	Report to: Yola Bayram			Email To ybayra	m@awrcorp.n	et,			əuəle			2.2065 Loberton Rd
1-2088 Terr Project a Lab Project a<	Project Description; The Home of Trui	-			City/State Alar Collected:	neda / CA		1.1	yıyd			
The Stee/Faculty (D.4 P.O.8	Phone: 510-671-2088 Fax: 510-227-5495	Client Proje THOT	ct #		Lab Project #				PN + 0			
Muth Math? Law Over The North For North Content Control Search M S	Collected by (print): Cheryl Cary + R	Site/Facility	# 01		P.O.#			_				Table #
Norm Tentom Tentom <td>Collected by (signature):</td> <td>Rush?</td> <td>(Lab MUST</td> <td>Be Notified)</td> <td>Quote #</td> <td></td> <td></td> <td>_</td> <td>_</td> <td>2</td> <td></td> <td>Template:</td>	Collected by (signature):	Rush?	(Lab MUST	Be Notified)	Quote #			_	_	2		Template:
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2	Next I Wo I	111	ve Day Day (Rad Only) Day (Rad Only)	Date F	its Needed	No.					Prelogin: TSR:
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Sample ID	Comp/Gra	-	-	Date	Time	Critrs	1.121.201				aped Via:
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	SB3-9	Grab	SS	6	04/25/2018	1330	s	1.00	-			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	SB3-13	Grab	SS	13	04/25/2018	1345	ŝ		-			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	SB4-GW	Grab	GW	10	04/25/2018	1615	ŝ	1000				
Grab SS 9 04/25/2018 1515 5 X X N N N Grab GW 7 04/25/2018 1019 5 X X N	SB4-4	Grab	SS	4	04/25/2018	1505	ŝ					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	SB4-9	Grab	SS	6	04/25/2018	1515	s	line.				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	SB5-GW5	Grab	GW	7		1019	5					R
Grab Gw 5 V X X N Remarks: Filter Grab GW 10 04/25/2018 1123 5 X X X N N Remarks:	SB5-GW10	Grab	GW	10	04/25/2018	1630	-	-				
Grab Gw 10 04/25/2018 1645 5 X X X F. Filter Remarks: Remarks: Remarks: Remarks: Remarks: Remarks: F. Filter Limited Sample Volume, SB1-9.5, SB1-11, SB1-13, SB1-GW, SB3-9, SB3-13 and biological states in the second state is the second state in the second sta	SB6-GW5	Grab	GW	S	04/25/2018	1123	ŝ	1000	10.00			
F-filter B- Bloasely Remarks: Initiated Sample Volume, SB1-9.5, SB1-11, SB1-GW, SB3-9, SB3-13 and B- Bloasely PH Temp Sample Receiver Chronobiliat Samples returned with the concentrations. Provide chromatograms for 8015, SB3-GW high expected for lab for. Signature fignature PH	586-GW10	Grab	GW	10		1645	in	1220	10000			CR
Samples returned via: Flow Other Bott Less arrive ittact: UPS FedEx Counter Tracking at 1/16 3.2.5 3.3.5 3.3.5 3.3.5 UPS FedEx Counter Tracking at 1/16 3.2.5 3.3.5 3.3.5 3.3.5 UPS FedEx Counter Tracking at 1/16 3.2.5 3.3.5 3.3.5 3.3.5 UPS Pate: Time: Received by: (Signature) Trip Blank Received: Yes/ No Not Asero Readapace: Y Date: Time: Received by: (Signature) Trip Blank Received: Yes/ No Yes Yes Date: Time: Received by: (Signature) Tenp. C Butters Received: Yes/ No Date: Time: Received by: (Signature) Tenp. C Butters Received: Yes/ No Date: Time: Received for lab/bi: Signature) Tenp. C Butters Received: Yes/ No Date: Time: Received for lab/bi: Signature) Tenp. C Butters Received: Yes/ No Date: Time: Received for lab/bi: Signature) Tenp. C Butters Received: Yes/ No Date: Time: Received for lab/bi: Signature) C Butters Received: Yes/ No Hold: <td>1.000</td> <td>Remarks: Limited S SB3-GW h</td> <td>ample Vo igh expe</td> <td>olume, SB1</td> <td>-9.5, SB1-11, S entrations. Pro</td> <td>B1-13, SB1-6 vide chroma</td> <td>SW, SB.</td> <td>3-9, SB: 15 for 8</td> <td>3-13 an</td> <td></td> <td>Temp</td> <td>Sample Receipt Checklight COC Seal Present/Intact: AP Y COC Signed/Accurate: X</td>	1.000	Remarks: Limited S SB3-GW h	ample Vo igh expe	olume, SB1	-9.5, SB1-11, S entrations. Pro	B1-13, SB1-6 vide chroma	SW, SB.	3-9, SB: 15 for 8	3-13 an		Temp	Sample Receipt Checklight COC Seal Present/Intact: AP Y COC Signed/Accurate: X
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	W - Drinking Water 11 - Other	Samples retu	edExC	ourier	Tra	cking# 419	2	225	N	103	Other	Bottles arrive intact: Correct bottles used: Sufficient volume sent:
$\frac{1}{200} \sum \frac{1}{200} \frac{1}{200} \frac{1}{100} \frac{1}{100} \frac{1}{100} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{10000} \frac{1}{10000} \frac{1}{100000} \frac{1}{10000000000000000000000000000000000$	(elimquished by : (Signature)		Date:	and the second se	5	eived by: (Signat	B	10	'NY	Trip Blank Receiv		Zero Head
4/30/18 1800 0/00 1000 04/01/00 04/07/10 08 1000	MICHING LOCA	A	460	21/2	35			X	10	5		If preservation required by Login: Date/Tim
	Emil Va		the second s	18	00	erved for lab by:	Renature	J.	EL L	04/27119	Time: Could	