RECEIVED

By Alameda County Environmental Health 12:10 pm, Oct 30, 2017

October 26, 2017

Alameda County Department of Environmental Health 1131 Harbor Bay Parkway, 2nd Floor Alameda, CA 94502

Attention:

Mark Detterman

Subject:

Report of Soil Gas Sampling Activities

3800 San Pablo Avenue, Emeryville, California

ACEH RO# 00003237; Global ID: T10000010062

Ladies and Gentlemen:

Attached please find a copy of the *Report of Soil Gas Sampling Activities*, prepared by Gribi Associates. I have read and acknowledge the content, recommendations and/or conclusions contained in the attached document or report submitted on my behalf to ACDEH's FTP server and the SWRCB's GeoTracker website.

Very truly yours,

Kevin Brown

3800 San Pablo LLC

1201 Pine Street, #151

Oakland, CA 94507

October 26, 2017

Alameda County Department of Environmental Health 1131 Harbor Bay Parkway, 2nd Floor Alameda, CA 94502

Attention: Mr. Mark Detterman

Subject: Report of Soil Gas Sampling Activities

3800 San Pablo Avenue, Emeryville, California

ACEH Fuel Leak Case RO# 00003237; Global ID: T10000010062

Ladies and Gentlemen:

Gribi Associates is pleased to submit this letter report documenting the installation and sampling of two temporary soil gas wells on behalf of the site owners for the property located at 3800 San Pablo Avenue in Emeryville, California (Site) (see Figure 1 and Figure 2).

1.0 INTRODUCTION

1.1 General Site Description

According to the USGS Oakland, West, California 7.5-Minute Quadrangle Map, the Site lies on a gently southwest-sloping plain approximately one mile east from San Francisco Bay. The elevation at the Site is approximately 40 feet above mean sea level. Based on site topography and location, we would expect groundwater flow in the site area to generally be to the west towards San Francisco Bay.

Subsurface soils at the site and in the site area generally consist of clays, with occasional thin, discontinuous silts, sands, and gravels. Groundwater at the site is generally encountered at depths below 15 feet below surface grade, held under confining pressure.

1.2 Site Background

In April 2012, a 1,000-gallon UST was discovered in the West MacArthur Boulevard sidewalk on the south side of the Site ("MacArthur Boulevard UST") (see Figure 3). A date stamp in the overlying concrete sidewalk indicated that this UST may have pre-dated the mid-1930s. This

San Francisco Bay Regional Water Quality Control Board October 26, 2017 Page 2

UST was removed on August 9, 2012. The tank showed no evidence of leakage, and soils beneath the removed UST exhibited slight to occasionally moderate hydrocarbon odors. Laboratory analytical results from sidewall and pit bottom soil samples showed no significant hydrocarbon detections (see Table 1). The only hydrocarbon detection in any of the samples was 0.520 milligrams per kilogram (mg/kg) (detection level = 0.500 mg/kg) of Total Petroleum Hydrocarbons as Gasoline (TPH-G) in the north sidewall soil sample. Subsequent soil gas sampling in SG-4, located immediately north from the former UST, showed elevated concentrations of TPH-G and methane.

During soil gas and sub-slab vapor sampling in 2014 and 2015, elevated concentrations of methane were encountered in soil gas well SG-4 and sub-slab vapor well SS-7, located adjacent to the former MacArthur Boulevard UST. Methane concentrations in these vapor wells ranged from 0.0121 percent (%) to 43 %.

On September 25, 2015, AEI Consultants excavated soil immediately north of the MacArthur Boulevard UST, between the UST excavation cavity and the Site building (see Figure 3). The goal of the soil removal activities was to attempt to mitigate continued generation of methane vapor concentrations present in shallow soils in the vicinity of soil gas well SG-4 and SS-7. The excavation extended south from the Site building footing to the former UST excavation cavity and measured approximately 15 feet by 6 feet by 9.5 feet in depth. Soils from the excavation generally consisted of dense brown to olive grey clays. Soils exhibited no unusual staining and no hydrocarbon odors. The pit bottom and sidewall samples showed no detectable concentrations of TPH-G/BTEX, TPH-D, and TOG. Upon completion, the excavation cavity was backfilled with clean imported fill and re-surfaced with concrete.

In April 2016, an area measuring approximately 12 feet by 6 feet was excavated inside the Site building in the area of SG-4, immediately north from the former MacArthur Boulevard UST excavation and September 2015 excavation (see Figure 3). The area was excavated to a maximum depth of approximately 10 feet below surface grade. Soils encountered during excavation activities generally consisted of 1 to 2 feet of base rock and gravel, followed by dark grey to black clayey silt (Bay Mud) to 5 feet in depth, and then by olive grey to brown silt and silty clay to 10 feet, the total excavation depth. Very slight hydrocarbon odors were noted in soils from 8 to 10 feet in depth. Groundwater did not enter the excavation cavity. In total, approximately 41 tons of excavated soil was profiled and transported to Keller Canyon Landfill for disposal. Upon completion, the excavation cavity was backfilled with clean imported fill and left unpaved.

2.0 DESCRIPTION OF FIELD ACTIVITIES

On September 29, 2017, Gribi Associates installed and sampled two temporary soil gas wells, VS-1 and VS-2, at the Site. All vapor sampling activities were conducted in accordance with

San Francisco Bay Regional Water Quality Control Board October 26, 2017 Page 3

Guidance for the Evaluation and Mitigation of Subsurface Vapor Intrusion to Indoor Air (DTSC, Final, October 2011) and Advisory - Active Soil Vapor Investigations (DTSC, July 2015).

2.1 Location of Soil Gas Samples

Locations of the two soil gas samples, VS-1 and VS-2, are shown on Figure 3. VS-1 was located in the concrete-paved West MacArthur Boulevard sidewalk immediately adjacent to the Site building, in the approximate location of former sub-slab vapor well SS-7. VS-2 was located in the within the former April 2016 backfilled excavation area inside the southwest corner of the Site building, in the approximate location of former soil gas well SG-4.

2.2 Installation and Sampling of Temporary Soil Gas Wells

On September 27, 2017, two soil gas wells (VS-1 and VS-2) were installed and sampled as follows:

- Soil gas sampling was not to be collected within 72 hours following a significant (>0.5 inches rain) precipitation event.
- An electric hand drill was used to drill a 1.5-inch diameter hole to approximately 18-inchs in depth.
- Approximately 2-inches of filter sand was placed at the bottom of the hole, and a vapor sampling diffuser connected to 1/4-inch diameter Teflon tubing was placed at the bottom of the hole. Approximately 4-inches of sand was then added to fully cover the diffuser to a depth of approximately 12 inches. Approximately 2-inches of dry, granular bentonite was then placed above the sand followed by wet, pourable/pliable bentonite to the surface.
- A "T" valve was placed in line at the ground surface to allow for system purging and for pressure testing of the above ground portion of the sampling train. The sampling tubing was attached to a 200-milliliter (ml) per minute maximum flow controller, then a one liter laboratory-supplied Summa Canister™ (evacuated to 29 inches mercury vacuum) with vacuum pressure valve.
- In order to ensure sample train integrity, the above-ground portion of the sample train was pressure tested using a separate Summa Canister. Pressure was maintained on the sample train for at least five minutes.
- Prior to and during sampling, the entire probe and sampling train was then placed under a shroud and a leak test was conducted. Helium from a compressed gas cylinder was

pumped into the shroud, and the helium concentration inside the shroud was maintained at approximately 10,000 ppmV (the detection level for the ASTM Method D-1946 is 100 ppmV). Helium monitoring was conducted using a Mark Radiodetection MGD-2002 helium detector with internal pump (or equivalent). For the sampling train leak test, the helium monitor was attached to the purge tube and the T-valve opened. No positive readings of helium were detected, thus indicating no leaks in the sampling train prior to sampling.

- After allowing the soil gas sampling wells to equilibrate for a minimum of two hour, the wells were purged of approximately three purge volumes using a dedicated Summa Canister.
- Following purging, the soil gas sample was collected by opening the sampling Summa Canister and allowing the soil gas to fill the canister until the vacuum pressure in the canister reaches approximately 20 percent of initial (approximately 5 to 6 inches mercury). A flow controller (200 ml per minute or less) was placed inline on the Summa Canister to ensure the canister filled fill slowly so that a representative soil gas sample would be obtained. Prior to, at start time and during sampling, periodic vacuum measurements were recorded on a field data sheet, and initial and final vacuum pressures were noted on chain-of-custody records.

2.3 Laboratory Analysis of Soil Gas Samples

Two vapor samples were analyzed for the following parameters with appropriate detection levels which were below regulatory environmental screening levels (ESLs).

- USEPA TO-3/TO-14M Total Petroleum Hydrocarbons as Gasoline
- USEPA TO-15 Volatile Organic Compounds
- ASTM D1946-90 Oxygen, Carbon Dioxide, Helium

All analyses were conducted by McCampbell Analytical, a California-certified analytical laboratory, with standard turnaround on results.

3.0 RESULTS OF INVESTIGATION

Soil gas laboratory analytical results are summarized in Table 1 and on Figure 3. The laboratory data reports are provided as Attachment A.

The soil gas sample from VS-1 showed 1,200 micrograms per cubic meter ($\mu g/m^3$) of TPH-G, nondetectable benzene, 2.8 $\mu g/m^3$ of toluene, and nondetectable ethylbenzene and total xylenes. This sample also showed 0.016 % of methane and 14 % of oxygen.

San Francisco Bay Regional Water Quality Control Board October 26, 2017 Page 5

The soil gas sample from VS-2 showed 200,000 $\mu g/m^3$ of TPH-G, 75 $\mu g/m^3$ of benzene, 73 $\mu g/m^3$ of toluene, 63 $\mu g/m^3$ of ethylbenzene, and 180 $\mu g/m^3$ of total xylenes. This sample also showed 0.00022 % of methane and 14 % of oxygen.

4.0 CONCLUSIONS AND RECOMMENDATIONS

Whereas vapor samples from previous soil gas/sub-slab vapor wells at SS-7 and SG-4 showed elevated methane concentrations, samples VS-1 and VS-2 from this investigation showed very low concentrations of methane. In addition, both vapor samples showed relatively high levels of oxygen. Based on these results, it appears that soil removal actions in the former UST area in September 2015 and April 2016 were effective in mitigating methane impacts in shallow soil gas beneath the Site. Further, since oxygen degrades methane to carbon dioxide, the presence of high levels of oxygen in shallow soil vapors in these areas will act as a reactive barrier against upward methane migration, in the event that biogenic methane is ever generated in the future.

Based on these results and conclusions, we recommend that the previously-proposed and approved sub-slab depressurization system (SSDS) not be required for this Site.

We appreciate this opportunity to provide this report for your review. Please contact us if there are questions or if additional information is required.

Very truly yours,

Matthew A. Rosman Project Engineer

James E. Gribi
Professional Geologist
California No. 5843

c: Mr. Bill Banker

Mr. Tom Graf, GrafCon

TABLES

Table 1 CUMULATIVE SOIL GAS LABORATORY ANALYTICAL RESULTS

Former Maz Glass UST Site

						Fo	ormer Maz	Glass UST Si	te					
Sample ID	Date	Sample Depth	TPH-D (ug/m ³)	TPH-G (ug/m³)	B (ug/m ³)	T (ug/m³)	E (ug/m ³)	X (ug/m³)	Other (ug/m³)	Methane (%)	CO ₂ (%)	N (%)	O ₂ (%)	Helium (%)
S	SOIL GAS SAMP	LES		1	i		i			1				
SG-1	8/28/2014	5.5 ft	NA	<7,170	<3.3	<3.8	<4.4	<8.8	Heptane = 5.1	<0.00081	<1.62	62.1	14.2	<1.62
	12/7/2014							Sucked water	; did not sample					
	1/29/2015							Sucked water	; did not sample					
SG-2	9/15/2014	5.5 ft	NA	7,600	<3.3	<3.8	<4.4	<8.8	Cyclohexane = 310 Heptane = 46 Hexane = 1,000 1,3,5-TMB = 56	0.017	3.87	51.0	13.2	<1.57
	9/25/2014	5.5 ft	NA	<7,170	<160	<190	<220	<220	Cyclohexane = 1,900 Hexane = 1,000	0.0077	5.3	58.3	2.01	0.00
	12/7/2014							Sucked water	; did not sample					
	1/29/2015		NA	<7,170	<3.3	<3.8	<4.4	<8.8	Cyclohexane = 53 Heptane = 14 Hexane = 42 TCE = 16	0.0493	<1.75	59.2	2.11	0.00
SG-3	8/28/2014	5.5 ft	NA	<7,170	<3.3	<3.8	<4.4	<8.8	All ND	<0.00076	<1.51	49.7	16.6	<1.51
	12/7/2014					Did	not attempt	to sample due	to shallow groundwater depths					
	1/29/2015							Sucked water	; did not sample					
SG-4	8/28/2014	5.5 ft	NA	<7,170	<3.3	<3.8	<4.4	<8.8	1,2,4-TMB = 13	0.024	<1.54	52.3	5.87	<1.54
	12/7/2014					Did	not attempt	to sample due	to shallow groundwater depths	<u> </u>				
	1/29/2015		NA	440,000	<160	<190	<220	<220	Cyclohexane = 52,000 Heptane = 9,800 Hexane = 26,000	0.0121	6.49	64.5	<1.72	0.00
	3/11/2015		120,000 (A)	420,000	<160	<190	<220	<220	Cyclohexane = 35,000 Heptane = 150,000 Hexane = 9,700	38	8.01	68.5	2.08	0.00
(Dup)	3/11/2015		NA	485,000	<160	<190	<220	<220	Cyclohexane = 48,000 Heptane = 37,000 Hexane = 20,000	43	8.64	70.9	<1.72	0.00

Table 1 CUMULATIVE SOIL GAS LABORATORY ANALYTICAL RESULTS

Former Maz Glass UST Site

							JITTICI IVIAZ	01033 031 3	itte					
Sample ID	Date	Sample Depth	TPH-D (ug/m³)	TPH-G (ug/m³)	B (ug/m ³)	T (ug/m³)	E (ug/m³)	X (ug/m³)	Other (ug/m³)	Methane (%)	CO ₂ (%)	N (%)	O ₂ (%)	Helium (%)
	3/18/2015		NA	NA	<10,000	<10,000	<10,000	<10,000	All ND	26	14.0	NA	0.93	0.00
	10/13/2015		NA	174,000	<3.3	<3.8	<4.4	<8.8	All ND	1.3	NA	NA	NA	NA
(Dup)	10/13/2015		NA	201,000	<3.3	<3.8	<4.4	<8.8	All ND	1.5	NA	NA	NA	NA
	11/18/2015		NA	576,000	<160	<190	<220	<220	All ND	0.34	3.84	80.6	<1.0	<5.0
SG-5	8/28/2014	5.5 ft	NA	<7,170	1,700	5,600	1,200	4,570	All ND	0.015	<1.53	49.7	12.5	<1.53
	9/25/2014		NA	<7,170	<3.3	<3.8	<4.4	<8.8	All ND	0.0018	2.01	54.7	9.28	0.00
(Dup)	9/25/2014		NA	<7,170	<3.3	<3.8	<4.4	<8.9	All ND	<0.00079	2.01	53.5	10.8	0.00
	12/7/2014							Sucked wate	r; did not sample					
	1/29/2015		NA	<7,170	<3.3	<3.8	<4.4	<8.8	Tetrahydrofuran = 47 Tetrachloroethene = 8.7 2-Butanone (MEK) = 47	0.00031	<1.54	41.9	2.1	0.00
	3/11/2015		<1,000	<7,170	<3.3	<3.8	<4.4	<8.8	Heptane = 4.8 Hexane = 4.0 Tetrachloroethene = 39 1,1,2-Trichloroethane = 17 Trichloroethene = 11	0.17	<1.85	71.1	11	0.00
VS-1	9/27/2017	1.5 ft	NA	1,200	<1.6	2.8	<2.2	<6.6	Ethyl Acetate = 3.6	0.016	<0.0040	NA	14	<0.050
VS-2	9/27/2017	1.5 ft	NA	200,000	75	73	63	180	Cyclohexane = 260 Hexane = 440 1,1,1,2-Tetrachloroethane = 8,300 1,2,4-Trimethylbenzene = 29	0.00022	0.35	NA	14	2.2
S	SUB-SLAB VAPO	R SAMPLES												
SS-1	3/18/2015	0.5 ft	NA	NA	17	23	<22	<66	All ND	5.8	10.0	NA	1.0	0.00
	10/13/2015	0.5 FT	NA	<7,170	<3.3	<3.8	<4.4	<8.8	All ND	<0.00050	NA	NA	NA	NA
	11/18/2015	0.5 ft	NA	<7,170	<3.3	<3.8	<4.4	<8.8	All ND	0.44	4.14	88.7	<1.0	<5.0

Table 1 CUMULATIVE SOIL GAS LABORATORY ANALYTICAL RESULTS

Former Maz Glass UST Site

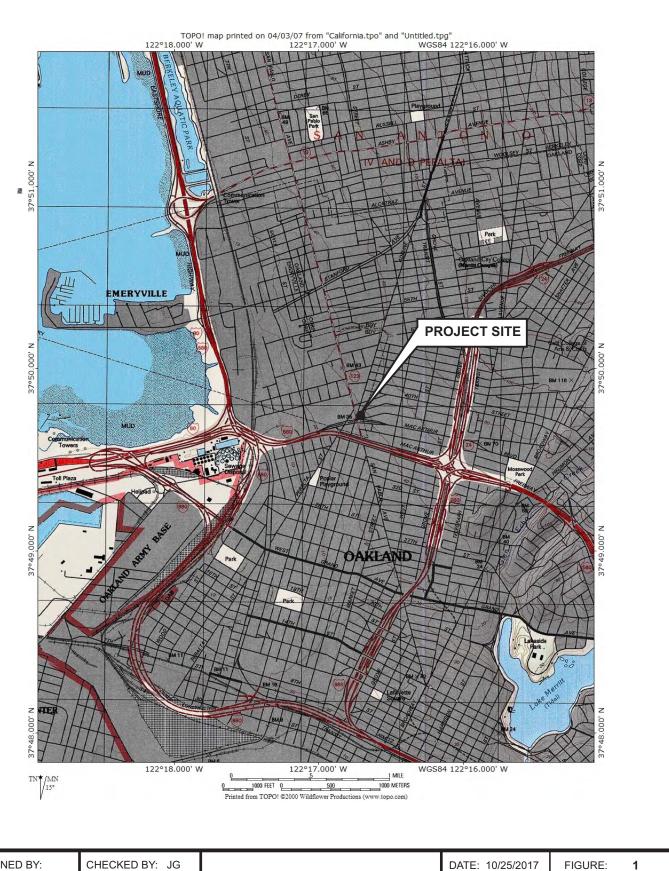
						Г	Jilliei iviaz	Glass UST 3	ite					
Sample ID	Date	Sample Depth	TPH-D (ug/m³)	TPH-G (ug/m³)	B (ug/m³)	T (ug/m³)	E (ug/m³)	X (ug/m³)	Other (ug/m³)	Methane (%)	CO ₂ (%)	N (%)	O ₂ (%)	Helium (%)
SS-2	3/18/2015	0.5 ft	NA	NA	<16	35	<22	130	Chloroform = 36 4-Ethyltoluene = 31 1,2,4-Trimethylbenzene = 140 1,3,5-Trimethylbenzene = 74	0.0047	3.2	NA	14	0.00
SS-3	3/18/2015	0.5 ft	NA	NA	4.0	4.3	5.4	32	Chloroform = 27 4-Ethyltoluene = 6.3 MIBK = 5.1 Tetrachloroethene = 4.3 1,2,4-Trimethylbenzene = 19 1,3,5-Trimethylbenzene = 6.8	0.0003	9.6	NA	9.0	0.00
SS-4	3/25/2015	0.5 ft	NA	1,100	8.6	86	40	330	Acetone = 66 2-Butanone (MEK) = 19 4-Methyl-2-pentanone = 1,300 Cumene = 6.1 4-Ethyltoluene = 7.6 1,2,4-Trimethylbenzene = 19	<0.00021	6.8	NA	12	<0.11
SS-5	3/25/2015	0.5 ft	NA	<430	<3.4	<4.0	<4.6	<4.6	Acetone = 27 4-Methyl-2-pentanone = 5.9	<0.00021	5.7	NA	14	<0.11
SS-6	3/25/2015	0.5 ft	NA	9,000	<3.4	25	30	252	Acetone = 120 2-Butanone (MEK) = 14 Tetrahydrofuran = 7.7 2,2,4-Trimethylpentane = 16 4-Methyl-2-pentanone = 500 4-Ethyltoluene = 5.4 1,2,4-Trimethylbenzene =8.1	0.32	13	NA	1.6	<0.11
SS-7	3/25/2015	0.5 ft	NA	260,000	<27	<32	<37	<37	Acetone = 410	20	9.9	NA	1.1	<0.14
SS-8	3/25/2015	0.5 ft	NA	490	<3.4	<4.0	<4.6	<4.6	4-Methyl-2-pentanone = 5.8	0.015	0.58	NA	20	<0.13

	Table 1 CUMULATIVE SOIL GAS LABORATORY ANALYTICAL RESULTS Former Maz Glass UST Site													
Sample ID	Date	Sample Depth	TPH-D (ug/m³)	TPH-G (ug/m³)	B (ug/m³)	T (ug/m³)	E (ug/m³)	X (ug/m³)	Other (ug/m³)	Methane (%)	CO ₂ (%)	N (%)	O ₂ (%)	Helium (%)
SS-9	3/25/2015	0.5 ft	NA	<430	4.6	<4.0	<4.6	6.5	Acetone = 34 Chloroform = 9.1 Carbon Tetrachloride = 78 4-Methyl-2-pentanone = 12	<0.00021	1.2	NA	19	<0.10
SS-10	3/25/2015	0.5 ft	NA	2,500	<3.4	6.6	5.5	48	4-Methyl-2-pentanone = 34	<0.00021	0.12		20	<0.10
SS-11	3/25/2015	0.5 ft	NA	<440	6.0	6.2	6.0	28	Aceton = 38 Carbon Disulfide = 68 4-Methyl-2-pentanone = 52 Tetrachloroethene = 62	<0.00021	0.14	NA	19	<0.11
	Soil Gas ESL	-	2.5E+06	2.5E+06	420	1.3E+06	4,900	4.4E+05	Various	LEL = 4.4				

Table Notes

B = Benzene 1,2,4-TMB = 1,2,4-Trimethylbenzene Other = Other VOCs, includes approxmately 47 individual VOC compounds

T = Toluene ug/m3 = micrograms per cubic meter <7,170 = Not detected at or above the expressed value.

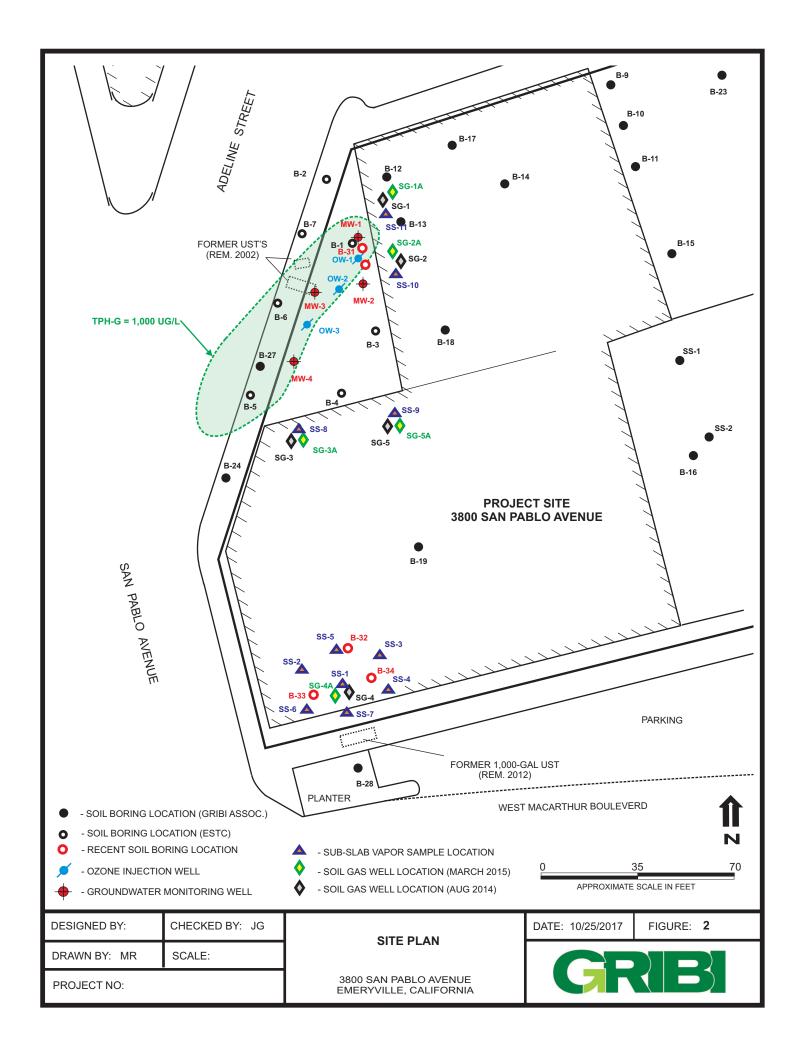

E = Ethylhbenzene ppmv = parts per million by volume ND = Not detected above laboratory detection levels.

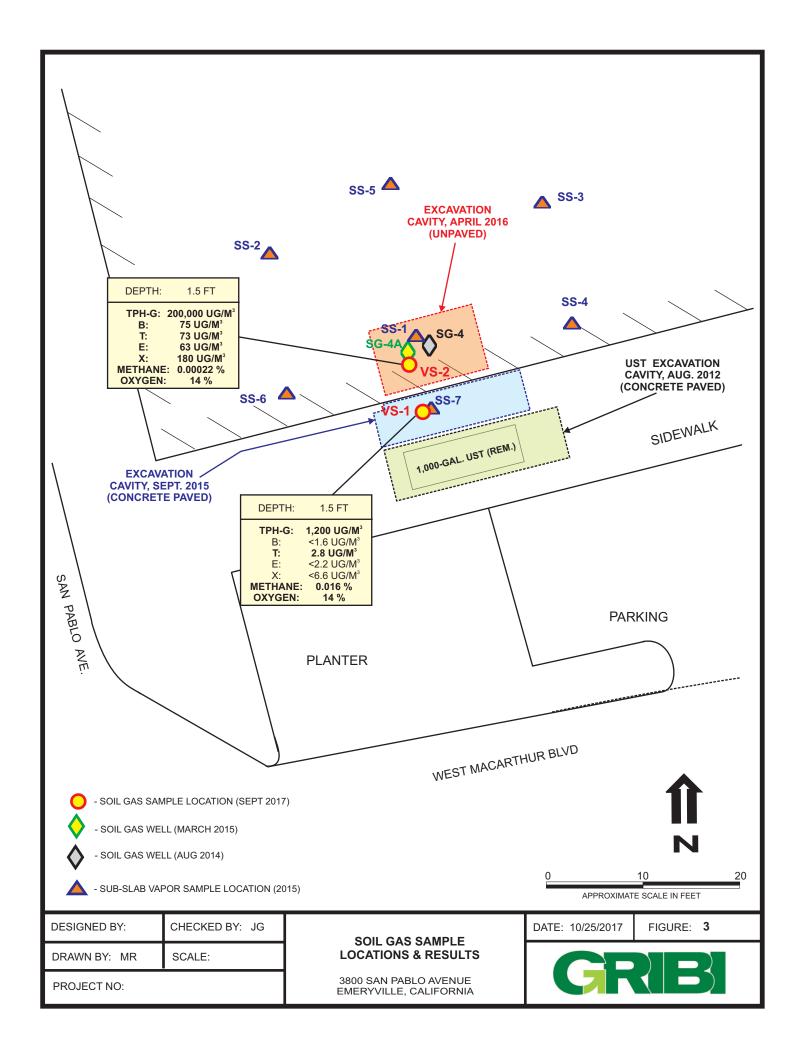
X = Xylenes % = Percent NA = Not analyzed for this analyte

(A) = The McCampbell Analytical report states: "Due to the high organic content observed in the sample, a quantification of the internal standards were unobtainable. The quantitated TPH-diesel and naphthalene concentrations are calculated using a modified TO-17 analytical procedure which includes an external calibration. The TPH-diesel and naphthalene results are estimated. It is noted that the majority of the calculated TPH-diesel concentration is derived from an observed lighter eluting TPH-gas range pattern."

FIGURES

DESIGNED BY: CHECKED BY: JG


DRAWN BY: MR SCALE:


PROJECT NO:

SITE VICINITY MAP

3800 SAN PABLO AVENUE EMERYVILLE, CALIFORNIA

ATTACHMENT A

LABORATORY DATA REPORT AND CHAIN-OF-CUSTODY RECORDS

McCampbell Analytical, Inc.

"When Quality Counts"

Analytical Report

WorkOrder: 1709B87

Report Created for: Gribi Associates

1090 Adams St., Suite K

Benicia, CA 94510

Project Contact: Jim Gribi

Project P.O.:

narrative.

Project Name: Holliday Development

Project Received: 09/27/2017

Analytical Report reviewed & approved for release on 10/09/2017 by:

Angela Rydelius, Laboratory Manager

The report shall not be reproduced except in full, without the written approval of the laboratory. The analytical results relate only to the items tested. Results reported conform to the most current NELAP standards, where applicable, unless otherwise stated in the case

1534 Willow Pass Rd. Pittsburg, CA 94565 ♦ TEL: (877) 252-9262 ♦ FAX: (925) 252-9269 ♦ www.mccampbell.com

CA ELAP 1644 ♦ NELAP 4033 ORELAP

Glossary of Terms & Qualifier Definitions

Client: Gribi Associates

Project: Holliday Development

WorkOrder: 1709B87

Glossary Abbreviation

%D Serial Dilution Percent Difference

95% Interval 95% Confident Interval

DF Dilution Factor

DI WET (DISTLC) Waste Extraction Test using DI water

DISS Dissolved (direct analysis of 0.45 µm filtered and acidified water sample)

DLT Dilution Test (Serial Dilution)

DUP Duplicate

EDL Estimated Detection Limit

ERS External reference sample. Second source calibration verification.

ITEF International Toxicity Equivalence Factor

LCS Laboratory Control Sample

MB Method Blank

MB % Rec % Recovery of Surrogate in Method Blank, if applicable

MDL Method Detection Limit

ML Minimum Level of Quantitation

MS Matrix Spike

MSD Matrix Spike Duplicate

N/A Not Applicable

ND Not detected at or above the indicated MDL or RL

NR Data Not Reported due to matrix interference or insufficient sample amount.

PDS Post Digestion Spike

PDSD Post Digestion Spike Duplicate

PF Prep Factor

RD Relative Difference

RL Reporting Limit (The RL is the lowest calibration standard in a multipoint calibration.)

RPD Relative Percent Deviation
RRT Relative Retention Time

SPK Val Spike Value

SPKRef Val Spike Reference Value

SPLP Synthetic Precipitation Leachate Procedure

ST Sorbent Tube

TCLP Toxicity Characteristic Leachate Procedure

TEQ Toxicity Equivalents

WET (STLC) Waste Extraction Test (Soluble Threshold Limit Concentration)

Glossary of Terms & Qualifier Definitions

Client: Gribi Associates

Project: Holliday Development

WorkOrder: 1709B87

Analytical Qualifiers

S Surrogate spike recovery outside accepted recovery limits

c2 Surrogate recovery outside of the control limits due to matrix interference.

j1 See attached narrative

Quality Control Qualifiers

F2 LCS/LCSD recovery and/or RPD is out of acceptance criteria.

Case Narrative

Client: Gribi Associates Work Order: 1709B87

Project: Holliday Development October 06, 2017

TO-15 ANALYSIS

All summa canisters are EVACUATED 5 days after the reporting of the results. Please call or email if a longer retention time is required.

In an effort to attain the lowest reporting limits possible for the majority of the TO-15 target list, high level compounds may be analyzed using EPA Method 8260B.

Polymer (Tedlar) bags are not recommended for TO15 samples. The disadvantages are listed in Appendix B of the DTSC Active Soil Gas Advisory of July 2015.

1709B87-002A:

The value of 1,1,1,2-Tetrachloroethane is estimated due to coelution with another peak(s) / cluttered chromatogram.

Analytical Report

Client: Gribi Associates WorkOrder: 1709B87

 Date Received:
 9/27/17 14:10
 Extraction Method:
 ASTM D 1946-90

 Date Prepared:
 10/2/17-10/9/17
 Analytical Method:
 ASTM D 1946-90

Project: Holliday Development Unit: 9

		Helium				
Client ID	Lab ID	Matrix	Date Collected	Instru	ıment	Batch ID
VS-1	1709B87-001A	SoilGas	09/27/2017 11:36	GC26	1002171205.D	146412
Initial Pressure (psia)	Final Pressure	e (psia)				Analyst(s)
12.47	24.95					НК
<u>Analytes</u>		Result		<u>RL</u>	<u>DF</u>	Date Analyzed
Helium		ND		0.050	1	10/02/2017 13:30

VS-2	1709B87-002A SoilGas	09/27/2017 12:42 GC26 1009170906.D	146412
Initial Pressure (psia)	Final Pressure (psia)		Analyst(s)
11.78	23.55		нк
Analytes	Result	<u>RL</u> <u>DF</u>	Date Analyzed
Helium	2.2	1.7 34	10/09/2017 10:27

Analytical Report

Client: Gribi Associates WorkOrder: 1709B87

Date Received:9/27/17 14:10Extraction Method:ASTM D 1946-90Date Prepared:9/29/17Analytical Method:ASTM D 1946-90

Project: Holliday Development Unit:

		Light Gas	ses			
Client ID	Lab ID	Matrix	Date Collected	Instrum	ent	Batch ID
VS-1	1709B87-001A	SoilGas	09/27/2017 11:36	GC26 09	29170606.D	146373
Initial Pressure (psia)	Final Pressur	e (psia)				Analyst(s)
12.47	24.95					НК
Analytes		Result		<u>RL</u>	<u>DF</u>	Date Analyzed
Carbon Dioxide		ND		0.0040	1	09/29/2017 09:26
Methane		0.016		0.00020	1	09/29/2017 09:26

VS-2	1709B87-002A SoilGas	09/27/2017 12:42 GC26 0929170608.D	146373
Initial Pressure (psia)	Final Pressure (psia)		Analyst(s)
11.78	23.55		нк
<u>Analytes</u>	Result	<u>RL</u> <u>DF</u>	Date Analyzed
Carbon Dioxide	0.35	0.0040 1	09/29/2017 10:00
Methane	0.00022	0.00020 1	09/29/2017 10:00

Analytical Report

Client: Gribi Associates

Date Received: 9/27/17 14:10

Date Prepared: 10/6/17

Project: Holliday Development

WorkOrder: 1709B87
Extraction Method: TO15
Analytical Method: TO15

Unit: $\mu g/m^3$

		TPH gas	\$			
Client ID	Lab ID	Matrix	Date Collected	Instru	nent	Batch II
VS-1	1709B87-001A	SoilGas	09/27/2017 11:36	GC43 1	0051722.D	146647
Initial Pressure (psia)	Final Pressure	e (psia)				Analyst(s)
12.47	24.95					нк
<u>Analytes</u>		Result		<u>RL</u>	<u>DF</u>	Date Analyzed
TPH(g)		1200		720	1	10/06/2017 10:26
Surrogates		REC (%)		<u>Limits</u>		
1,2-DCA-d4		113		70-130		10/06/2017 10:26
VS-2	1709B87-002A	SoilGas	09/27/2017 12:42	GC43 1	0051720.D	146647
Initial Pressure (psia)	Final Pressure	e (psia)				Analyst(s)
11.78	23.55					НК
<u>Analytes</u>		<u>Result</u>		<u>RL</u>	<u>DF</u>	Date Analyzed
TPH(g)		200,000		7200	10	10/06/2017 08:59
<u>Surrogates</u>		REC (%)		<u>Limits</u>		
1,2-DCA-d4		112		70-130		10/06/2017 08:59

Analytical Report

Client: Gribi Associates **Date Received:** 9/27/17 14:10 **Date Prepared:** 10/6/17

Project: Holliday Development WorkOrder: 1709B87

Extraction Method: TO15 Analytical Method: TO15

Unit: $\mu g/m^3$

Client ID Lab ID Matrix Date Collected Instrument VS-1 1709B87-001A SoilGas 09/27/2017 11:36 GC43 10051722 Initial Pressure (psia) Final Pressure (psia) Final Pressure (psia) 12.47 11.78 Analytes Acatone ND 60 1 Acrolein ND 5.8 1 Acrylonitrile ND 1.1 1 Letr-Amyl methyl ether (TAME) ND 2.1 1 Benzene ND 1.6 1 Benzyl chloride ND 2.6 1 Bromodichloromethane ND 3.5 1 Bromodichloromethane ND 3.5 1 Bromodichloromethane ND 5.2 1 Bromodichloromethane ND 3.5 1 Bromodichloromethane ND 3.5 1 Bromodichloromethane ND 3.1 1 Cabron Disulfide ND 3.2 1				Compounds	le Organic C	Volatil	
Initial Pressure (psia) Final Pressure (psia) 12.47	Batch ID	ment	ected Instru	Date Collected	Matrix	Lab ID	Client ID
11.78	D 146647	10051722.D	11:36 GC43 [^]	09/27/2017 11:36	SoilGas	1709B87-001A	VS-1
Analytes Result RL DE Acetone ND 60 1 Acrolein ND 5.8 1 Acrylonitrile ND 1.1 1 tert-Amyl methyl ether (TAME) ND 2.1 1 Benzene ND 1.6 1 Benzene ND 1.6 1 Bromodichloromethane ND 2.6 1 Bromoform ND 3.5 1 Bromoform ND 5.2 1 Bromomethane ND 5.2 1 Bromomethane ND 1.1 1 1.3-Butadiene ND 1.1 1 2-Butanone (MEK) ND 1.1 1 2-Butanone (MEK) ND 3.1 1 1-Butyl alcohol (TBA) ND 3.1 1 1-Butyl alcohol (TBA) ND 3.2 1 1-Butyl alcohol (TBA) ND 3.2 1 1-Butyl alcohol (TBA) <th>Analyst(s)</th> <th></th> <th></th> <th></th> <th>e (psia)</th> <th>Final Pressure</th> <th>Initial Pressure (psia)</th>	Analyst(s)				e (psia)	Final Pressure	Initial Pressure (psia)
Acetone ND 60 1 Acrolein ND 5.8 1 Acrylonitrile ND 1.1 1 tert-Amyl methyl ether (TAME) ND 2.1 1 Benzene ND 1.6 1 Benzyl chloride ND 2.6 1 Bromodichloromethane ND 3.5 1 Bromodichloromethane ND 5.2 1 Bromodichloromethane ND 5.2 1 Bromodichloromethane ND 5.2 1 Bromodichloromethane ND 2.0 1 1,3-Butadiene ND 5.2 1 1,3-Butadiene ND 1.1 1 2-Butanone (MEK) ND 75 1 t-Butyl alcohol (TBA) ND 31 1 Carbon Disulfide ND 3.2 1 Carbon Tetrachloride ND 3.2 1 Chlorobenzene ND 1.3 1	нк					11.78	12.47
Acrolein ND 5.8 1 Acrylonitrile ND 1.1 1 tert-Amyl methyl ether (TAME) ND 2.1 1 Benzene ND 1.6 1 Benzene ND 1.6 1 Benzyl chloride ND 2.6 1 Bromodichloromethane ND 3.5 1 Bromodichloromethane ND 3.5 1 Bromoform ND 5.2 1 Bromomethane ND 2.0 1 1,3-Butadiene ND 1.1 1 2-Butanone (MEK) ND 7.5 1 1-Butyl alcohol (TBA) ND 31 1 1-Butyl alcohol (TBA) ND 31 1 1-Butyl alcohol (TBA) ND 3.2 1 <	Date Analyzed	<u>DF</u>	<u>RL</u>		<u>Result</u>		<u>Analytes</u>
Acrylonitrile ND 1.1 1 tert-Amyl methyl ether (TAME) ND 2.1 1 Benzene ND 1.6 1 Benzyl chloride ND 2.6 1 Bromodichloromethane ND 3.5 1 Bromoform ND 3.5 1 Bromomethane ND 5.2 1 Bromomethane ND 2.0 1 1,3-Butadiene ND 1.1 1 2-Butanone (MEK) ND 75 1 1-Butyl alcohol (TBA) ND 31 1 Carbon Disulfide ND 31 1 Carbon Etrachloride ND 3.2 1 Chlorobenzene ND 3.2 1 Chlorotethane ND 3.2 1 Chloroform ND 2.4 1 Chlorotethane ND 1.3 1 Chlorotethane ND 1.0 1 Chlorotethane <td>10/06/2017 10:26</td> <td>1</td> <td>60</td> <td></td> <td>ND</td> <td></td> <td>Acetone</td>	10/06/2017 10:26	1	60		ND		Acetone
tert-Amyl methyl ether (TAME) ND 2.1 1 Benzene ND 1.6 1 Benzyl chloride ND 2.6 1 Bromodichloromethane ND 3.5 1 Bromoform ND 5.2 1 Bromomethane ND 2.0 1 1,3-Butadiene ND 1.1 1 2-Butanone (MEK) ND 75 1 t-Butyl alcohol (TBA) ND 31 1 Carbon Disulfide ND 3.2 1 Carbon Tetrachloride ND 3.2 1 Chlorobenzene ND 3.2 1 Chlorobenzene ND 3.2 1 Chlorobenzene ND 1.3 1 Chloroform ND 1.3 1 Chloroformethane ND 1.0 1 Chloromethane ND 1.0 1 Cyclohexane ND 1.8 1 Dibromochlor	10/06/2017 10:26	1	5.8		ND		Acrolein
Benzene ND 1.6 1 Benzyl chloride ND 2.6 1 Bromodichloromethane ND 3.5 1 Bromoform ND 5.2 1 Bromomethane ND 2.0 1 1,3-Butadiene ND 1.1 1 2-Butanone (MEK) ND 75 1 t-Butyl alcohol (TBA) ND 31 1 Carbon Disulfide ND 3.1 1 Carbon Tetrachloride ND 3.2 1 Chlorobenzene ND 3.2 1 Chlorobenzene ND 2.4 1 Chloroform ND 1.3 1 Chloroformethane ND 1.0 1 Cyclohexane ND 1.0 1 Dibromochloromethane ND 4.4 1 1,2-Dibromo-3-chloropropane ND 3.9 1 1,2-Dibromoethane (EDB) ND 3.0 1 <	10/06/2017 10:26	1	1.1		ND		Acrylonitrile
Benzyl chloride ND 2.6 1 Bromodichloromethane ND 3.5 1 Bromoform ND 5.2 1 Bromomethane ND 2.0 1 1,3-Butadiene ND 1.1 1 2-Butanone (MEK) ND 75 1 t-Butyl alcohol (TBA) ND 31 1 Carbon Disulfide ND 3.1 1 Carbon Tetrachloride ND 3.2 1 Chlorobenzene ND 3.2 1 Chlorobenzene ND 2.4 1 Chloroform ND 1.3 1 Chloroform ND 1.0 1 Chloromethane ND 1.0 1 Cyclohexane ND 1.8 1 Dibromochloromethane ND 4.4 1 1,2-Dibromo-3-chloropropane ND 3.9 1 1,2-Dibromoethane (EDB) ND 3.0 1 <	10/06/2017 10:26	1	2.1		ND		tert-Amyl methyl ether (TAME)
Bromodichloromethane ND 3.5 1 Bromoform ND 5.2 1 Bromomethane ND 2.0 1 1,3-Butadiene ND 1.1 1 2-Butanone (MEK) ND 75 1 t-Butyl alcohol (TBA) ND 31 1 Carbon Disulfide ND 3.2 1 Carbon Tetrachloride ND 3.2 1 Chlorobenzene ND 3.2 1 Chlorobenzene ND 2.4 1 Chloroform ND 1.3 1 Chloroform ND 1.3 1 Chloromethane ND 1.0 1 Cyclohexane ND 1.0 1 Dibromochloromethane ND 4.4 1 1,2-Dibromo-3-chloropropane ND 3.9 1 1,2-Dibromoethane (EDB) ND 3.0 1 1,3-Dichlorobenzene ND 3.0 1	10/06/2017 10:26	1	1.6		ND		Benzene
Bromoform ND 5.2 1 Bromomethane ND 2.0 1 1,3-Butadiene ND 1.1 1 2-Butanone (MEK) ND 75 1 t-Butyl alcohol (TBA) ND 31 1 Carbon Disulfide ND 1.6 1 Carbon Tetrachloride ND 3.2 1 Chlorobenzene ND 2.4 1 Chlorotethane ND 1.3 1 Chloroform ND 1.3 1 Chloromethane ND 1.0 1 Cyclohexane ND 1.0 1 Dibromochloromethane ND 4.4 1 1,2-Dibromo-3-chloropropane ND 3.9 1 1,2-Dibromoethane (EDB) ND 3.0 1 1,2-Dichlorobenzene ND 3.0 1 1,3-Dichlorobenzene ND 3.0 1 1,4-Dichlorobenzene ND 3.0 1 <t< td=""><td>10/06/2017 10:26</td><td>1</td><td>2.6</td><td></td><td>ND</td><td></td><td>Benzyl chloride</td></t<>	10/06/2017 10:26	1	2.6		ND		Benzyl chloride
Bromomethane ND 2.0 1 1,3-Butadiene ND 1.1 1 2-Butanone (MEK) ND 75 1 t-Butyl alcohol (TBA) ND 31 1 Carbon Disulfide ND 1.6 1 Carbon Tetrachloride ND 3.2 1 Chlorobenzene ND 2.4 1 Chlorothane ND 1.3 1 Chloroform ND 1.3 1 Chloromethane ND 1.0 1 Cyclohexane ND 18 1 Dibromochloromethane ND 4.4 1 1,2-Dibromo-3-chloropropane ND 3.9 1 1,2-Dibromoethane (EDB) ND 3.9 1 1,2-Dichlorobenzene ND 3.0 1 1,3-Dichlorobenzene ND 3.0 1 1,4-Dichlorobenzene ND 3.0 1 1,4-Dichlorodifluoromethane ND 2.5 1	10/06/2017 10:26	1	3.5		ND		Bromodichloromethane
1,3-Butadiene ND 1.1 1 2-Butanone (MEK) ND 75 1 t-Butyl alcohol (TBA) ND 31 1 Carbon Disulfide ND 1.6 1 Carbon Tetrachloride ND 3.2 1 Chlorobenzene ND 2.4 1 Chloroethane ND 1.3 1 Chloroform ND 2.4 1 Chloromethane ND 1.0 1 Cyclohexane ND 18 1 Dibromochloromethane ND 4.4 1 1,2-Dibromo-3-chloropropane ND 3.9 1 1,2-Dibromoethane (EDB) ND 3.9 1 1,2-Dichlorobenzene ND 3.0 1 1,3-Dichlorobenzene ND 3.0 1 1,4-Dichlorobenzene ND 3.0 1 Dichlorodifluoromethane ND 2.5 1	10/06/2017 10:26	1	5.2		ND		Bromoform
2-Butanone (MEK) ND 75 1 t-Butyl alcohol (TBA) ND 31 1 Carbon Disulfide ND 1.6 1 Carbon Tetrachloride ND 3.2 1 Chlorobenzene ND 2.4 1 Chloroethane ND 1.3 1 Chloroform ND 1.0 1 Chloromethane ND 1.0 1 Cyclohexane ND 18 1 Dibromochloromethane ND 4.4 1 1,2-Dibromo-3-chloropropane ND 3.9 1 1,2-Dibromoethane (EDB) ND 3.9 1 1,2-Dichlorobenzene ND 3.0 1 1,3-Dichlorobenzene ND 3.0 1 1,4-Dichlorobenzene ND 3.0 1 Dichlorodifluoromethane ND 2.5 1	10/06/2017 10:26	1	2.0		ND		Bromomethane
t-Butyl alcohol (TBA) ND 31 1 Carbon Disulfide ND 1.6 1 Carbon Tetrachloride ND 3.2 1 Chlorobenzene ND 2.4 1 Chloroethane ND 1.3 1 Chloroform ND 2.4 1 Chloromethane ND 1.0 1 Cyclohexane ND 18 1 Dibromochloromethane ND 4.4 1 1,2-Dibromo-3-chloropropane ND 0.12 1 1,2-Dibromoethane (EDB) ND 3.9 1 1,2-Dichlorobenzene ND 3.0 1 1,3-Dichlorobenzene ND 3.0 1 1,4-Dichlorobenzene ND 3.0 1 Dichlorodifluoromethane ND 2.5 1	10/06/2017 10:26	1	1.1		ND		1,3-Butadiene
Carbon Disulfide ND 1.6 1 Carbon Tetrachloride ND 3.2 1 Chlorobenzene ND 2.4 1 Chloroethane ND 1.3 1 Chloroform ND 2.4 1 Chloromethane ND 1.0 1 Cyclohexane ND 18 1 Dibromochloromethane ND 4.4 1 1,2-Dibromo-3-chloropropane ND 0.12 1 1,2-Dibromoethane (EDB) ND 3.9 1 1,2-Dichlorobenzene ND 3.0 1 1,3-Dichlorobenzene ND 3.0 1 1,4-Dichlorobenzene ND 3.0 1 Dichlorodifluoromethane ND 2.5 1	10/06/2017 10:26	1	75		ND		2-Butanone (MEK)
Carbon Disulfide ND 1.6 1 Carbon Tetrachloride ND 3.2 1 Chlorobenzene ND 2.4 1 Chloroethane ND 1.3 1 Chloroform ND 2.4 1 Chloromethane ND 1.0 1 Cyclohexane ND 18 1 Dibromochloromethane ND 4.4 1 1,2-Dibromo-3-chloropropane ND 0.12 1 1,2-Dibromoethane (EDB) ND 3.9 1 1,2-Dichlorobenzene ND 3.0 1 1,3-Dichlorobenzene ND 3.0 1 1,4-Dichlorobenzene ND 3.0 1 Dichlorodifluoromethane ND 2.5 1	10/06/2017 10:26	1	31		ND		t-Butyl alcohol (TBA)
Chlorobenzene ND 2.4 1 Chloroethane ND 1.3 1 Chloroform ND 2.4 1 Chloromethane ND 1.0 1 Cyclohexane ND 18 1 Dibromochloromethane ND 4.4 1 1,2-Dibromo-3-chloropropane ND 0.12 1 1,2-Dibromoethane (EDB) ND 3.9 1 1,2-Dichlorobenzene ND 3.0 1 1,3-Dichlorobenzene ND 3.0 1 1,4-Dichlorobenzene ND 3.0 1 Dichlorodifluoromethane ND 2.5 1	10/06/2017 10:26	1	1.6		ND		Carbon Disulfide
Chloroethane ND 1.3 1 Chloroform ND 2.4 1 Chloromethane ND 1.0 1 Cyclohexane ND 18 1 Dibromochloromethane ND 4.4 1 1,2-Dibromo-3-chloropropane ND 0.12 1 1,2-Dibromoethane (EDB) ND 3.9 1 1,2-Dichlorobenzene ND 3.0 1 1,3-Dichlorobenzene ND 3.0 1 1,4-Dichlorobenzene ND 3.0 1 Dichlorodifluoromethane ND 2.5 1	10/06/2017 10:26	1	3.2		ND		Carbon Tetrachloride
Chloroform ND 2.4 1 Chloromethane ND 1.0 1 Cyclohexane ND 18 1 Dibromochloromethane ND 4.4 1 1,2-Dibromo-3-chloropropane ND 0.12 1 1,2-Dibromoethane (EDB) ND 3.9 1 1,2-Dichlorobenzene ND 3.0 1 1,3-Dichlorobenzene ND 3.0 1 1,4-Dichlorobenzene ND 3.0 1 Dichlorodifluoromethane ND 2.5 1	10/06/2017 10:26	1	2.4		ND		Chlorobenzene
Chloromethane ND 1.0 1 Cyclohexane ND 18 1 Dibromochloromethane ND 4.4 1 1,2-Dibromo-3-chloropropane ND 0.12 1 1,2-Dibromoethane (EDB) ND 3.9 1 1,2-Dichlorobenzene ND 3.0 1 1,3-Dichlorobenzene ND 3.0 1 1,4-Dichlorobenzene ND 3.0 1 Dichlorodifluoromethane ND 2.5 1	10/06/2017 10:26	1	1.3		ND		Chloroethane
Cyclohexane ND 18 1 Dibromochloromethane ND 4.4 1 1,2-Dibromo-3-chloropropane ND 0.12 1 1,2-Dibromoethane (EDB) ND 3.9 1 1,2-Dichlorobenzene ND 3.0 1 1,3-Dichlorobenzene ND 3.0 1 1,4-Dichlorobenzene ND 3.0 1 Dichlorodifluoromethane ND 2.5 1	10/06/2017 10:26	1	2.4		ND		Chloroform
Dibromochloromethane ND 4.4 1 1,2-Dibromo-3-chloropropane ND 0.12 1 1,2-Dibromoethane (EDB) ND 3.9 1 1,2-Dichlorobenzene ND 3.0 1 1,3-Dichlorobenzene ND 3.0 1 1,4-Dichlorobenzene ND 3.0 1 Dichlorodifluoromethane ND 2.5 1	10/06/2017 10:26	1	1.0		ND		Chloromethane
1,2-Dibromo-3-chloropropane ND 0.12 1 1,2-Dibromoethane (EDB) ND 3.9 1 1,2-Dichlorobenzene ND 3.0 1 1,3-Dichlorobenzene ND 3.0 1 1,4-Dichlorobenzene ND 3.0 1 Dichlorodifluoromethane ND 2.5 1	10/06/2017 10:26	1	18		ND		Cyclohexane
1,2-Dibromoethane (EDB) ND 3.9 1 1,2-Dichlorobenzene ND 3.0 1 1,3-Dichlorobenzene ND 3.0 1 1,4-Dichlorobenzene ND 3.0 1 Dichlorodifluoromethane ND 2.5 1	10/06/2017 10:26	1	4.4		ND		Dibromochloromethane
1,2-Dibromoethane (EDB) ND 3.9 1 1,2-Dichlorobenzene ND 3.0 1 1,3-Dichlorobenzene ND 3.0 1 1,4-Dichlorobenzene ND 3.0 1 Dichlorodifluoromethane ND 2.5 1	10/06/2017 10:26	1	0.12		ND		1,2-Dibromo-3-chloropropane
1,3-Dichlorobenzene ND 3.0 1 1,4-Dichlorobenzene ND 3.0 1 Dichlorodifluoromethane ND 2.5 1	10/06/2017 10:26	1	3.9		ND		1,2-Dibromoethane (EDB)
1,4-Dichlorobenzene ND 3.0 1 Dichlorodifluoromethane ND 2.5 1	10/06/2017 10:26	1	3.0		ND		1,2-Dichlorobenzene
Dichlorodifluoromethane ND 2.5 1	10/06/2017 10:26	1	3.0		ND		1,3-Dichlorobenzene
	10/06/2017 10:26	1	3.0		ND		1,4-Dichlorobenzene
	10/06/2017 10:26	1	2.5		ND		Dichlorodifluoromethane
1,1-Dichloroethane ND 2.0 1	10/06/2017 10:26	1	2.0		ND		1,1-Dichloroethane
1,2-Dichloroethane (1,2-DCA) ND 2.0 1	10/06/2017 10:26	1	2.0		ND		1,2-Dichloroethane (1,2-DCA)
1,1-Dichloroethene ND 2.0 1	10/06/2017 10:26	1	2.0		ND		1,1-Dichloroethene
cis-1,2-Dichloroethene ND 2.0 1	10/06/2017 10:26	1	2.0		ND		cis-1,2-Dichloroethene
trans-1,2-Dichloroethene ND 2.0 1	10/06/2017 10:26	1	2.0		ND		trans-1,2-Dichloroethene
1,2-Dichloropropane ND 2.4 1	10/06/2017 10:26	1			ND		1,2-Dichloropropane
cis-1,3-Dichloropropene ND 2.3 1	10/06/2017 10:26	1					cis-1,3-Dichloropropene
trans-1,3-Dichloropropene ND 2.3 1	10/06/2017 10:26	1	2.3		ND		trans-1,3-Dichloropropene

(Cont.)

Analytical Report

Client: Gribi Associates

Date Received: 9/27/17 14:10

Date Prepared: 10/6/17

Project: Holliday Development

WorkOrder: 1709B87

Extraction Method: TO15 **Analytical Method:** TO15

Unit: $\mu g/m^3$

		0	•		
Client ID	Lab ID	Matrix	Date Collected In	strument	Batch ID
VS-1	1709B87-001A	SoilGas	09/27/2017 11:36 GC	C43 10051722.D	146647

	1.00501 001A		35,2.,231, 11.00 304		110017
Initial Pressure (psia)	Final Pressure	e (psia)			Analyst(s)
12.47	11.78				нк
<u>Analytes</u>		Result	<u>RL</u>	<u>DF</u>	Date Analyzed
1,2-Dichloro-1,1,2,2-tetrafluoroethane		ND	3.6	1	10/06/2017 10:26
Diisopropyl ether (DIPE)		ND	2.1	1	10/06/2017 10:26
1,4-Dioxane		ND	1.8	1	10/06/2017 10:26
Ethanol		ND	96	1	10/06/2017 10:26
Ethyl acetate		3.6	1.8	1	10/06/2017 10:26
Ethyl tert-butyl ether (ETBE)		ND	2.1	1	10/06/2017 10:26
Ethylbenzene		ND	2.2	1	10/06/2017 10:26
4-Ethyltoluene		ND	2.5	1	10/06/2017 10:26
Freon 113		ND	3.9	1	10/06/2017 10:26
Heptane		ND	21	1	10/06/2017 10:26
Hexachlorobutadiene		ND	5.4	1	10/06/2017 10:26
Hexane		ND	18	1	10/06/2017 10:26
2-Hexanone		ND	2.1	1	10/06/2017 10:26
4-Methyl-2-pentanone (MIBK)		ND	2.1	1	10/06/2017 10:26
Methyl-t-butyl ether (MTBE)		ND	1.8	1	10/06/2017 10:26
Methylene chloride		ND	8.8	1	10/06/2017 10:26
Methyl methacrylate		ND	2.1	1	10/06/2017 10:26
Naphthalene		ND	5.3	1	10/06/2017 10:26
Propene		ND	88	1	10/06/2017 10:26
Styrene		ND	2.2	1	10/06/2017 10:26
1,1,1,2-Tetrachloroethane		ND	3.5	1	10/06/2017 10:26
1,1,2,2-Tetrachloroethane		ND	3.5	1	10/06/2017 10:26
Tetrachloroethene		ND	3.4	1	10/06/2017 10:26
Tetrahydrofuran		ND	3.0	1	10/06/2017 10:26
Toluene		2.8	1.9	1	10/06/2017 10:26
1,2,4-Trichlorobenzene		ND	3.8	1	10/06/2017 10:26
1,1,1-Trichloroethane		ND	2.8	1	10/06/2017 10:26
1,1,2-Trichloroethane		ND	2.8	1	10/06/2017 10:26
Trichloroethene		ND	2.8	1	10/06/2017 10:26
Trichlorofluoromethane		ND	2.8	1	10/06/2017 10:26
1,2,4-Trimethylbenzene		ND	2.5	1	10/06/2017 10:26
1,3,5-Trimethylbenzene		ND	2.5	1	10/06/2017 10:26
Vinyl Acetate		ND	18	1	10/06/2017 10:26
Vinyl Chloride		ND	1.3	1	10/06/2017 10:26

(Cont.)

Analytical Report

Client: Gribi Associates

Date Received: 9/27/17 14:10

Date Prepared: 10/6/17

Project: Holliday Development

WorkOrder: 1709B87
Extraction Method: TO15

Analytical Method: TO15 **Unit:** $\mu g/m^3$

Volatile Organic Compounds								
Client ID	Lab ID	Matrix	Date Collected	Instr	rument	Batch II		
VS-1	1709B87-001A	SoilGas	09/27/2017 11:36	GC43	10051722.D	146647		
Initial Pressure (psia)	Final Pressure	e (psia)				Analyst(s)		
12.47	11.78					НК		
<u>Analytes</u>		Result		<u>RL</u>	<u>DF</u>	Date Analyzed		
Xylenes, Total		ND		6.6	1	10/06/2017 10:26		
<u>Surrogates</u>		REC (%)		Limits	<u>i</u>			
1,2-DCA-d4		125		70-13	0	10/06/2017 10:26		
Toluene-d8		96		70-13	0	10/06/2017 10:26		
4-BFB		119		70-13	0	10/06/2017 10:26		

Analytical Report

Client: Gribi Associates

Date Received: 9/27/17 14:10

Date Prepared: 10/6/17

Project: Holliday Development

WorkOrder: 1709B87

Extraction Method: TO15 **Analytical Method:** TO15

Unit: $\mu g/m^3$

	Volati	le Organic (Compounds	_			
Client ID	Lab ID	Matrix	Date Collected	Instr	ument	Batch ID	
VS-2	1709B87-002A	SoilGas	09/27/2017 12:42	GC43	10051720.D	146647	
Initial Pressure (psia)	Final Pressure	e (psia)				Analyst(s)	
11.78	23.55					НК	
<u>Analytes</u>		<u>Result</u>		<u>RL</u>	<u>DF</u>	Date Analyzed	
Acetone		ND		600	10	10/06/2017 08:59	
Acrolein		ND		58	10	10/06/2017 08:59	
Acrylonitrile		ND		11	10	10/06/2017 08:59	
tert-Amyl methyl ether (TAME)		ND		21	10	10/06/2017 08:59	
Benzene		75		16	10	10/06/2017 08:59	
Benzyl chloride		ND		26	10	10/06/2017 08:59	
Bromodichloromethane		ND		35	10	10/06/2017 08:59	
Bromoform		ND		52	10	10/06/2017 08:59	
Bromomethane		ND		20	10	10/06/2017 08:59	
1,3-Butadiene		ND		11	10	10/06/2017 08:59	
2-Butanone (MEK)		ND		750	10	10/06/2017 08:59	
t-Butyl alcohol (TBA)		ND		310	10	10/06/2017 08:59	
Carbon Disulfide		ND		16	10	10/06/2017 08:59	
Carbon Tetrachloride		ND		32	10	10/06/2017 08:59	
Chlorobenzene		ND		24	10	10/06/2017 08:59	
Chloroethane		ND		13	10	10/06/2017 08:59	
Chloroform		ND		24	10	10/06/2017 08:59	
Chloromethane		ND		10	10	10/06/2017 08:59	
Cyclohexane		260		180	10	10/06/2017 08:59	
Dibromochloromethane		ND		44	10	10/06/2017 08:59	
1,2-Dibromo-3-chloropropane		ND		1.2	10	10/06/2017 08:59	
1,2-Dibromoethane (EDB)		ND		39	10	10/06/2017 08:59	
1,2-Dichlorobenzene		ND		30	10	10/06/2017 08:59	
1,3-Dichlorobenzene		ND		30	10	10/06/2017 08:59	
1,4-Dichlorobenzene		ND		30	10	10/06/2017 08:59	
Dichlorodifluoromethane		ND		25	10	10/06/2017 08:59	
1,1-Dichloroethane		ND		20	10	10/06/2017 08:59	
1,2-Dichloroethane (1,2-DCA)		ND		20	10	10/06/2017 08:59	
1,1-Dichloroethene		ND		20	10	10/06/2017 08:59	
cis-1,2-Dichloroethene		ND		20	10	10/06/2017 08:59	
trans-1,2-Dichloroethene		ND		20	10	10/06/2017 08:59	
1,2-Dichloropropane		ND		24	10	10/06/2017 08:59	
cis-1,3-Dichloropropene		ND		23	10	10/06/2017 08:59	
trans-1,3-Dichloropropene		ND		23	10	10/06/2017 08:59	

(Cont.)

Angela Rydelius, Lab Manager

Analytical Report

Client: Gribi Associates

Date Received: 9/27/17 14:10

Date Prepared: 10/6/17

Project: Holliday Development

WorkOrder: 1709B87

Extraction Method: TO15

Analytical Method: TO15 **Unit:** μ g/m³

X7 1 4 1 1	•	α
Volatile (Irganic	Compounds
, oregine ,	- 5 mill	Compound

		U	•	
Client ID	Lab ID	Matrix	Date Collected Instrument	Batch ID
VS-2	1709B87-002A	SoilGas	09/27/2017 12:42 GC43 10051720.D	146647

102	TTOODOT GOZA	Conous	05/21/2011 12:42 00-	10001720.	140047
Initial Pressure (psia)	Final Pressure	e (psia)			Analyst(s)
11.78	23.55				нк
<u>Analytes</u>		Result	<u>RL</u>	<u>DF</u>	Date Analyzed
1,2-Dichloro-1,1,2,2-tetrafluoroethane		ND	36	10	10/06/2017 08:59
Diisopropyl ether (DIPE)		ND	21	10	10/06/2017 08:59
1,4-Dioxane		ND	18	10	10/06/2017 08:59
Ethanol		ND	960	10	10/06/2017 08:59
Ethyl acetate		ND	18	10	10/06/2017 08:59
Ethyl tert-butyl ether (ETBE)		ND	21	10	10/06/2017 08:59
Ethylbenzene		63	22	10	10/06/2017 08:59
4-Ethyltoluene		ND	25	10	10/06/2017 08:59
Freon 113		ND	39	10	10/06/2017 08:59
Heptane		ND	210	10	10/06/2017 08:59
Hexachlorobutadiene		ND	54	10	10/06/2017 08:59
Hexane		440	180	10	10/06/2017 08:59
2-Hexanone		ND	21	10	10/06/2017 08:59
4-Methyl-2-pentanone (MIBK)		ND	21	10	10/06/2017 08:59
Methyl-t-butyl ether (MTBE)		ND	18	10	10/06/2017 08:59
Methylene chloride		ND	88	10	10/06/2017 08:59
Methyl methacrylate		ND	21	10	10/06/2017 08:59
Naphthalene		ND	53	10	10/06/2017 08:59
Propene		ND	880	10	10/06/2017 08:59
Styrene		ND	22	10	10/06/2017 08:59
1,1,1,2-Tetrachloroethane		8300	35	10	10/06/2017 08:59
1,1,2,2-Tetrachloroethane		ND	35	10	10/06/2017 08:59
Tetrachloroethene		ND	34	10	10/06/2017 08:59
Tetrahydrofuran		ND	30	10	10/06/2017 08:59
Toluene		73	19	10	10/06/2017 08:59
1,2,4-Trichlorobenzene		ND	38	10	10/06/2017 08:59
1,1,1-Trichloroethane		ND	28	10	10/06/2017 08:59
1,1,2-Trichloroethane		ND	28	10	10/06/2017 08:59
Trichloroethene		ND	28	10	10/06/2017 08:59
Trichlorofluoromethane		ND	29	10	10/06/2017 08:59
1,2,4-Trimethylbenzene		29	25	10	10/06/2017 08:59
1,3,5-Trimethylbenzene		ND	25	10	10/06/2017 08:59
Vinyl Acetate		ND	180	10	10/06/2017 08:59
Vinyl Chloride		ND	13	10	10/06/2017 08:59

(Cont.)

Analytical Report

Client: Gribi Associates

Date Received: 9/27/17 14:10

Date Prepared: 10/6/17

Project: Holliday Development

WorkOrder: 1709B87

Extraction Method: TO15 **Analytical Method:** TO15

Unit: $\mu g/m^3$

	Volati	le Organic	Compounds			
Client ID	Lab ID	Matrix	Date Collected	Instr	ument	Batch II
VS-2	1709B87-002A	SoilGas	09/27/2017 12:42	GC43	10051720.D	146647
Initial Pressure (psia)	Final Pressure	e (psia)				Analyst(s)
11.78	23.55					нк
<u>Analytes</u>		<u>Result</u>		<u>RL</u>	<u>DF</u>	Date Analyzed
Xylenes, Total		180		66	10	10/06/2017 08:59
Surrogates		REC (%)	<u>Qualifiers</u>	<u>Limits</u>		
1,2-DCA-d4		117		70-13	0	10/06/2017 08:59
Toluene-d8		98		70-13	0	10/06/2017 08:59
4-BFB		142	S	70-13	0	10/06/2017 08:59
			Analytical Comments: c	2,j1		

1709B87

Quality Control Report

Client: Gribi Associates WorkOrder:

Date Prepared: 10/2/17 **BatchID:** 146412

Date Analyzed:10/2/17Extraction Method:ASTM D 1946-90Instrument:GC26Analytical Method:ASTM D 1946-90

Matrix: Soilgas Unit: %

Project: Holliday Development **Sample ID:** MB/LCS-146412

QC Summary Report for ASTM D1946-90

Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
Helium	ND	0.110	0.025	0.10	_	109	60-140

1709B87

Quality Control Report

Client: Gribi Associates WorkOrder:

Date Prepared: 9/29/17 **BatchID:** 146373

Date Analyzed:9/29/17Extraction Method:ASTM D 1946-90Instrument:GC26Analytical Method:ASTM D 1946-90

Matrix: SoilGas Unit: %

Project: Holliday Development **Sample ID:** MB/LCS-146373

QC Summary Report for ASTM D1946-90

Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
Carbon Dioxide	ND	0.00946	0.0020	0.010	-	95	70-130
Methane	ND	0.00896	0.00010	0.010	-	90	70-130

Quality Control Report

Client: Gribi Associates **Date Prepared:** 10/5/17 - 10/6/17 **Date Analyzed:** 10/5/17 - 10/6/17

Instrument: GC43 **Matrix:** Soilgas

Project: Holliday Development

WorkOrder: 1709B87
BatchID: 146647
Extraction Method: TO15
Analytical Method: TO15
Unit: µg/m³

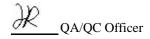
Sample ID: MB/LCS-146647

	QC Summary R	Report for TO15				
Analyte	MB Result	RL	SPK Val	MB SS %REC	MB SS Limits	
TPH(g)	ND	360	-	-	-	
Surrogate Recovery						
1,2-DCA-d4	534.3		500	107	70-130	

Quality Control Report

 Client:
 Gribi Associates
 WorkOrder:
 1709B87

 Date Prepared:
 10/5/17 - 10/6/17
 BatchID:
 146647


 Date Analyzed:
 10/5/17 - 10/6/17
 Extraction Method:
 TO15

 Instrument:
 GC43
 Analytical Method:
 TO15

Project: Holliday Development **Sample ID:** MB/LCS-146647

QC Summary Report for TO15

Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
Acetone	ND	75.4	30	60	-	126	60-140
Acrolein	ND	48.6	2.9	58.25	-	83	60-140
Acrylonitrile	ND	49.3	0.55	55	-	90	60-140
tert-Amyl methyl ether (TAME)	ND	106	1.0	105	-	100	60-140
Benzene	ND	63.9	0.80	80	-	80	60-140
Benzyl chloride	ND	107	1.3	132.5	-	81	60-140
Bromodichloromethane	ND	170	1.8	175	-	97	60-140
Bromoform	ND	264	2.6	262.5	-	100	60-140
Bromomethane	ND	69.7	1.0	97.5	-	71	60-140
1,3-Butadiene	ND	28.3	0.55	55	-	52, F2	60-140
2-Butanone (MEK)	ND	65.7	38	75	-	88	60-140
t-Butyl alcohol (TBA)	ND	77.4	16	77.5	-	100	60-140
Carbon Disulfide	ND	78.5	0.80	80	-	98	60-140
Carbon Tetrachloride	ND	168	1.6	160	-	105	60-140
Chlorobenzene	ND	109	1.2	117.5	-	93	60-140
Chloroethane	ND	60.7	0.65	67.5	-	90	60-140
Chloroform	ND	114	1.2	122.5	-	93	60-140
Chloromethane	ND	54.9	0.50	52.5	-	105	60-140
Cyclohexane	ND	85.4	9.0	87.5	-	98	60-140
Dibromochloromethane	ND	219	2.2	217.5	-	101	60-140
1,2-Dibromo-3-chloropropane	ND	206	0.060	245	-	84	60-140
1,2-Dibromoethane (EDB)	ND	171	2.0	195	-	87	60-140
1,2-Dichlorobenzene	ND	158	1.5	152.5	-	103	60-140
1,3-Dichlorobenzene	ND	158	1.5	152.5	-	104	60-140
1,4-Dichlorobenzene	ND	141	1.5	152.5	-	92	60-140
Dichlorodifluoromethane	ND	132	1.2	125	-	105	60-140
1,1-Dichloroethane	ND	98.1	1.0	102.5	-	96	60-140
1,2-Dichloroethane (1,2-DCA)	ND	103	1.0	102.5	-	101	60-140
1,1-Dichloroethene	ND	90.5	1.0	100	-	91	60-140
cis-1,2-Dichloroethene	ND	95.7	1.0	100	-	96	60-140
trans-1,2-Dichloroethene	ND	92.9	1.0	100	-	93	60-140
1,2-Dichloropropane	ND	95.6	1.2	117.5	-	81	60-140
cis-1,3-Dichloropropene	ND	117	1.2	115	-	101	60-140
trans-1,3-Dichloropropene	ND	115	1.2	115	-	100	60-140
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	149	1.8	177.5	-	84	60-140
Diisopropyl ether (DIPE)	ND	93.5	1.0	105	-	89	60-140
1,4-Dioxane	ND	80.2	0.90	92.5	-	87	60-140

Quality Control Report

 Client:
 Gribi Associates
 WorkOrder:
 1709B87

 Date Prepared:
 10/5/17 - 10/6/17
 BatchID:
 146647

 Date Analyzed:
 10/5/17 - 10/6/17
 Extraction Method:
 TO15

 Instrument:
 GC43
 Applying Method:
 TO15

Instrument:GC43Analytical Method:TO15Matrix:SoilGasUnit:μg/m³

Project: Holliday Development **Sample ID:** MB/LCS-146647

QC Summary Report for TO15

Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
Ethanol	ND	32.8	48	47.5	-	69	60-140
Ethyl acetate	ND	85.2	0.90	92.5	=	92	60-140
Ethyl tert-butyl ether (ETBE)	ND	108	1.0	105	-	103	60-140
Ethylbenzene	ND	110	1.1	110	-	100	60-140
4-Ethyltoluene	ND	143	1.2	125	-	115	60-140
Freon 113	ND	179	2.0	195	-	92	60-140
Heptane	ND	97.4	10	105	-	93	60-140
Hexachlorobutadiene	ND	172	2.7	270	-	64	60-140
Hexane	ND	94.9	9.0	90	-	105	60-140
2-Hexanone	ND	90.6	1.0	105	-	86	60-140
Isopropyl Alcohol	ND	60.4	25	62.5	-	97	60-140
4-Methyl-2-pentanone (MIBK)	ND	94.8	1.0	105	-	90	60-140
Methyl-t-butyl ether (MTBE)	ND	96.7	0.90	92.5	-	105	60-140
Methylene chloride	ND	77.5	4.4	87.5	-	89	60-140
Methyl methacrylate	ND	89.9	1.0	104	-	86	60-140
Naphthalene	ND	205	2.6	265	-	77	60-140
Propene	ND	44.2	44	42.5	-	104	60-140
Styrene	ND	97.5	1.1	107.5	-	91	60-140
1,1,1,2-Tetrachloroethane	ND	157	1.8	175	-	90	60-140
1,1,2,2-Tetrachloroethane	ND	145	1.8	175	-	83	60-140
Tetrachloroethene	ND	167	1.7	172	-	97	60-140
Tetrahydrofuran	ND	73.1	1.5	75	-	97	60-140
Toluene	ND	89.7	0.95	95	-	94	60-140
1,2,4-Trichlorobenzene	ND	165	1.9	187.5	-	88	60-140
1,1,1-Trichloroethane	ND	150	1.4	137.5	-	109	60-140
1,1,2-Trichloroethane	ND	120	1.4	137.5	-	87	60-140
Trichloroethene	ND	118	1.4	137.5	-	85	60-140
Trichlorofluoromethane	ND	151	1.4	142.5	-	106	60-140
1,2,4-Trimethylbenzene	ND	146	1.2	125	-	117	60-140
1,3,5-Trimethylbenzene	ND	136	1.2	125	-	109	60-140
Vinyl Acetate	ND	112	9.0	90	-	124	60-140
Vinyl Chloride	ND	35.7	0.65	65	-	55, F2	60-140
Xylenes, Total	ND	316	3.3	330	-	96	60-140

Quality Control Report

Client: Gribi Associates **Date Prepared:** 10/5/17 - 10/6/17 **Date Analyzed:** 10/5/17 - 10/6/17

Instrument: GC43 **Matrix:** SoilGas

Project: Holliday Development

WorkOrder: 1709B87
BatchID: 146647
Extraction Method: TO15

Analytical Method: TO15 Unit: $\mu g/m^3$

Sample ID: MB/LCS-146647

	QC Sum	mary Report for	TO15				
Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
Surrogate Recovery							
1,2-DCA-d4	538.6	557		500	108	111	70-130
Toluene-d8	487.3	477		500	97	95	70-130
4-BFB	537.3	546		500	107	109	70-130

McCampbell Analytical, Inc.

1534 Willow Pass Rd
Pittsburg, CA 94565-1701
(925) 252-9262

CHAIN-OF-CUSTODY RECORD

ClientCode: GRIB

☐ HardCopy

VorkOr	der:	1709B87	ClientCode:	GRIB

✓ Email

Detection Summary Dry-Weight

EQuIS

Report to: Bill to: Requested TAT: 5 days;

□ EDF

 Jim Gribi
 Email:
 jgribi@gribiassociates.com; TFerrell@gribi
 Terry Ferrell

 Gribi Associates
 cc/3rd Party:
 Gribi Associates

☐ WriteOn

□WaterTrax

1090 Adams St., Suite K PO: 1090 Adams St., Suite K Date Received: 09/27/2017
Benicia, CA 94510 ProjectNo: Holliday Development Benicia, CA 94510 Date Logged: 09/28/2017

Excel

(707) 748-7743 FAX: (707) 748-7763

					Requested Tests (See legend below)										
Lab ID	Client ID	Matrix	Collection Date H	lold 1	2	3	4	5	6	7	8	9	10	11	12
1709B87-001	VS-1	SoilGas	9/27/2017 11:36	A	Α	Α	Α	Α							
1709B87-002	VS-2	SoilGas	9/27/2017 12:42	A	Α	Α	Α	Α							

Test Legend:

1	HELIUM_LC_SOILGAS(%)	2	LG_SUMMA_SOILGAS(%)	3 TO15_	Scan-SIM_SOIL(UG/M3) [N]	4	TO15-8260_SOIL(UG/M3) [N]
5	TO15GAS_Scan-SIM_SOIL(UG/M3)	6		7		8	
9		10		11		12	

Prepared by: Jena Alfaro

1 of 1

□ J-flag

☐ ThirdParty

The following SampIDs: 001A, 002A contain testgroup TO15He_gas_O2_CO2_Ch4_SG.

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days).

Hazardous samples will be returned to client or disposed of at client expense.

McCampbell Analytical, Inc.

"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

WORK ORDER SUMMARY

Client Name:	GRIBI ASSOCIATES	Project	: Holliday D	Development	Work Order: 1709	9B87
--------------	------------------	---------	--------------	-------------	------------------	------

Client Contact: Jim Gribi

QC Level: LEVEL 2

Contact's Email: jgribi@gribiassociates.com; Comments: Date Logged: 9/28/2017

TFerrell@gribiassociates.com

		WaterTrax	☐ WriteOn ☐ EDF	Excel	Fax Fmail	HardC	opyThirdPart	yJ-	flag
Lab ID	Client ID	Matrix	Test Name	Containers /Composites	Bottle & Preservative	De- chlorinated	Collection Date & Time	TAT	Sediment Hold SubOut Content
1709B87-001A	VS-1	SoilGas	TO15+GAS w/ Helium, O2, CO2 and Methane	d 1	1L Summa		9/27/2017 11:36	5 days	
1709B87-002A	VS-2	SoilGas	TO15+GAS w/ Helium, O2, CO2 and Methane	d 1	1L Summa		9/27/2017 12:42	5 days	

NOTES: - STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- MAI assumes that all material present in the provided sampling container is considered part of the sample - MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

-	100	188	1
	U	DU	

McCA	MPB	ELL	ANA	LYTICAL	L, INC.						СН	AIN (OF (CUST	TODY I	RECO	ORD		
				urg, Ca. 94565-170		Turn /	Around	d Time	:1 Day	Rush		2 Day 1	Rush		3 Day Rus	h	STD	Quote #	
	Telephone	: (877) 25	2-9262/	Fax: (925) 252-926	59	J	-Flag /	MDL		ESL		C	leanu	ір Арр	roved		В	ottle Order#	
www.mce	campbell.	com		main@mccampb	ell.com	Delive	ery For	mat:	PDF		Geo	Fracker	EDF		EDD	Wi	ite On (D	W)	EQuIS
Report To: Jim Conbi			Bill To:						A	nalys	is Re	queste	d			Helium	Shroud S	V#	
Company: Cobi Masa	scick	2							-	J.							Leak C	Check Default is	IPA
Email: JGn'> 1 @ 9			Les-c	on		1			e, CC	hylen		(circl				1000		pecify units if di	
Alt Email:			Tele:			otes			ehyd	ne, Et	00)	atic		e, 1,1				is reported in µg	/m³, fixed
Project Name: Holliday D	extop	nost	Project#:			See N			mald	Etha	0	Arom		oran	3	is rep	orted in 9	/o.	
Project Location: 3800 Sa	- Pasle	· se	PO#			4.	(H		For	thane	%	d/or ,	к %	Norf	3				
Sampler Signature:	10					(µg/n	S (Fig	~	PCH	Me, One, C	N, C	ic an	Chec	PA,	thank		Matrix	Car	nister
SAMPLE ID	Sampli	ing Start	End		Sample Kit /	0-15	TO-1	(ug/m	ine. 4	s (CC	o) :si	iphat n,	Leak	eck (7	sa	Air		/ Vacuum
Location / Field Point	Date	Time	Time	Canister SN#	Manifold #	VOCs TO-15 (µg/m³) - See Notes	8010 by TO-15 (µg/m³)	ГРП(g) (µg/m³)	LEED: (inc. 4PCH, Formaldehyde, CO, Total VOCs)	Fixed Gas (CO2, Methane, Ethane, Ethylene, Acetylene, Propane, CO) %	Fixed Gas: (O2, N2) %	APH: Aliphatic and/or Aromatic (circle one) μg/m³	Helium Leak Check %	Leak Check (IPA, Norflorane, 1,1-difluroethane) µg/m³	ne	Soilgas	Indoor Air	Initial	Final
			200			>	- 8	-	3.5	도 곡	E	A 10	н	7.9		_			
VS-1	9/27	1130	1136	5806-737		×		×			X		X		×	X		29	5
VS-2		1735			7	X		×			X		>		X	×		29	5
	1 /	1023	1 - 1 -					-					-		-				
													-			-			
						_										+			
									-										
**MAI clients MUST disclose any dangeror staff. Non-d				heir submitted samples i urcharge and the client i														n air, sample hand	ling by MAI
Relinquished By / Co	ompany Nam	ne		Date	Time		R	eceive	d By /	Comp	any Na	me		D	ate ,	Time		Comments / Instr	uctions
N/42	7			9/27/2017	1400			-			-	-117		9/2		110	1		

Relinquished By / Company Name	Date	Time	Received By / Company Name	Date	Time	Comments / Instructions
NAP	927/2017	1400	1	9/27/17	1410	
			0)			
				7		

Sample Receipt Checklist

Project Name:	Holliday Development			Date Logged:	9/27/2017 14:10
WorkOrder №: Carrier:	1709B87 Matrix: SoilGas Client Drop-In			Received by: Logged by:	Jena Alfaro Jena Alfaro
	Chain of C	ustody	/ (COC) Infor	<u>mation</u>	
Chain of custody	present?	Yes	✓	No 🗌	
Chain of custody	signed when relinquished and received?	Yes	✓	No 🗆	
Chain of custody	agrees with sample labels?	Yes	✓	No 🗌	
Sample IDs note	d by Client on COC?	Yes	✓	No 🗌	
Date and Time o	f collection noted by Client on COC?	Yes	•	No 🗌	
Sampler's name	noted on COC?	Yes	✓	No 🗌	
COC agrees with	Quote?	Yes		No 🗆	NA 🗹
	Sampl	e Rece	eipt Informati	<u>ion</u>	
Custody seals int	tact on shipping container/cooler?	Yes		No 🗌	NA 🗹
Shipping contain	er/cooler in good condition?	Yes	✓	No 🗆	
Samples in prope	er containers/bottles?	Yes	✓	No 🗆	
Sample containe	rs intact?	Yes	✓	No 🗆	
Sufficient sample	e volume for indicated test?	Yes	✓	No 🗌	
	Sample Preservation	on and	Hold Time (HT) Information	
All samples recei	ived within holding time?	Yes	✓	No 🗆	NA 🗆
Sample/Temp Bl	ank temperature		Temp:		NA 🗹
Water - VOA vial	s have zero headspace / no bubbles?	Yes		No 🗌	NA 🗹
Sample labels ch	necked for correct preservation?	Yes	✓	No 🗌	
pH acceptable up	oon receipt (Metal: <2; 522: <4; 218.7: >8)?	Yes		No 🗌	NA 🗹
Samples Receive	ed on Ice?	Yes		No 🗹	
UCMR Samples:					
	tested and acceptable upon receipt for EPA 522?	Yes		No 🗌	NA 🗸
Free Chlorine t 300.1, 537, 539	ested and acceptable upon receipt for EPA 218.7, 9?	Yes		No 🗆	na 🗹
:	=======================================		====	========	=======
Comments:					

McCampbell Analytical, Inc.

"When Quality Counts"

Analytical Report

1709B87 A WorkOrder:

Report Created for: Gribi Associates

1090 Adams St., Suite K

Benicia, CA 94510

Project Contact: Jim Gribi

Project P.O.:

Project Name: Holliday Development

Project Received: 09/27/2017

Analytical Report reviewed & approved for release on 10/10/2017 by:

Angela Rydelius,

Laboratory Manager

The report shall not be reproduced except in full, without the written approval of the laboratory. The analytical results relate only to the items tested. Results reported conform to the most current NELAP standards, where applicable, unless otherwise stated in the case narrative.

1534 Willow Pass Rd. Pittsburg, CA 94565 ♦ TEL: (877) 252-9262 ♦ FAX: (925) 252-9269 ♦ www.mccampbell.com

CA ELAP 1644 ♦ NELAP 4033 ORELAP

Glossary of Terms & Qualifier Definitions

Client: Gribi Associates

Project: Holliday Development

WorkOrder: 1709B87 A

Glossary Abbreviation

%D Serial Dilution Percent Difference

95% Interval 95% Confident Interval

DF Dilution Factor

DI WET (DISTLC) Waste Extraction Test using DI water

DISS Dissolved (direct analysis of 0.45 µm filtered and acidified water sample)

DLT Dilution Test (Serial Dilution)

DUP Duplicate

EDL Estimated Detection Limit

ERS External reference sample. Second source calibration verification.

ITEF International Toxicity Equivalence Factor

LCS Laboratory Control Sample

MB Method Blank

MB % Rec % Recovery of Surrogate in Method Blank, if applicable

MDL Method Detection Limit

ML Minimum Level of Quantitation

MS Matrix Spike

MSD Matrix Spike Duplicate

N/A Not Applicable

ND Not detected at or above the indicated MDL or RL

NR Data Not Reported due to matrix interference or insufficient sample amount.

PDS Post Digestion Spike

PDSD Post Digestion Spike Duplicate

PF Prep Factor
RD Relative Difference

RL Reporting Limit (The RL is the lowest calibration standard in a multipoint calibration.)

RPD Relative Percent Deviation
RRT Relative Retention Time

SPK Val Spike Value

SPKRef Val Spike Reference Value

SPLP Synthetic Precipitation Leachate Procedure

ST Sorbent Tube

TCLP Toxicity Characteristic Leachate Procedure

TEQ Toxicity Equivalents

WET (STLC) Waste Extraction Test (Soluble Threshold Limit Concentration)

Analytical Report

Client: Gribi Associates WorkOrder: 1709B87

 Date Received:
 9/27/17 14:10
 Extraction Method:
 ASTM D 1946-90

 Date Prepared:
 10/10/17
 Analytical Method:
 ASTM D 1946-90

Project: Holliday Development Unit: 9

Atmospheric Gases										
Client ID	Lab ID	Matrix	Date Collected	Instr	ument	Batch ID				
VS-1	1709B87-001A	SoilGas	09/27/2017 11:36	GC26	1010170912.D	146830				
Initial Pressure (psia)	Final Pressure	e (psia)				Analyst(s)				
12.47	24.95					НК				
<u>Analytes</u>		Result		<u>RL</u>	<u>DF</u>	Date Analyzed				
Oxygen		14		0.40	1	10/10/2017 11:53				

VS-2	1709B87-002A SoilGas	09/27/2017 12:42 GC26 1010170914.D	146830
Initial Pressure (psia)	Final Pressure (psia)		Analyst(s)
11.78	23.55		нк
Analytes	<u>Result</u>	<u>RL</u> <u>DF</u>	Date Analyzed
Oxygen	14	0.68 1.7	10/10/2017 12:14

Quality Control Report

 Client:
 Gribi Associates
 WorkOrder:
 1709B87

 Date Prepared:
 10/10/17
 BatchID:
 146830

Date Analyzed:10/10/17Extraction Method:ASTM D 1946-90Instrument:GC26Analytical Method:ASTM D 1946-90

Matrix: SoilGas Unit: %

Project: Holliday Development **Sample ID:** MB/LCS-146830

QC Summary Report for ASTM D1946-90 MB LCS RL**SPK** LCS Analyte MB SS **LCS** Result %REC %REC Result Val Limits Oxygen ND 0.570 0.20 0.70 81 70-130

McCampbell Analytical, Inc.

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

CHAIN-OF-CUSTODY RECORD

1 of 1

5 days:

WorkOrder: 1709B87 A

□ EDF

igribi@gribiassociates.com; TFerrell@gribi

WriteOn

ProjectNo: Holliday Development

□WaterTrax

Email:

PO:

cc/3rd Party:

ClientCode: GRIB

Excel □Fax Detection Summary

✓ Email ☐ HardCopy

Dry-Weight

☐ ThirdParty □ J-flag

Report to:

Jim Gribi Gribi Associates 1090 Adams St., Suite K

Benicia, CA 94510

(707) 748-7743 FAX: (707) 748-7763 Bill to:

Terry Ferrell

Gribi Associates

1090 Adams St., Suite K

Benicia, CA 94510

Date Received: 09/27/2017 Date Logged: 09/28/2017

Requested TAT:

Date Add-On: 10/10/2017

					Requested Tests (See legend below)											
Lab ID	Client ID	Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
1709B87-001	VS-1	SoilGas	9/27/2017 11:36		Α											
1709B87-002	VS-2	SoilGas	9/27/2017 12:42		Α											

Test Legend:

1	ATMOSPHERICGAS_SG(%)	2	3	4
5		6	7	8
9		10	11	12

Prepared by: Jena Alfaro

Add-On Prepared By: Jena Alfaro

Comments: O2 added 10/10/17 STAT

> NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

Client Contact: Jim Gribi

McCampbell Analytical, Inc.

"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

WORK ORDER SUMMARY

Client Name: GRIBI ASSOCIATES Project: Holliday Development Work Order: 1709B87

OC Level: LEVEL 2

Contact's Email jgribi@gribiassociates.com; Comments: O2 added 10/10/17 STAT Date Logged: 9/28/2017

TFerrell@gribiassociates.com

Date Add-On: 10/10/2017

Lab ID	Client ID	Matrix	Test Name	Containers /Composites	Bottle & Preservative	Collection Date & Time	TAT	Sediment Hold SubOut Content
1709B87-001A	VS-1	SoilGas	ASTM D1946-90 (N2 O2) <oxygen></oxygen>	1	1L Summa	9/27/2017 11:36	5 days	
1709B87-002A	VS-2	SoilGas	ASTM D1946-90 (N2 O2) <oxygen></oxygen>	1	1L Summa	9/27/2017 12:42	5 days	

NOTES: - STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- MAI assumes that all material present in the provided sampling container is considered part of the sample - MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

MAI Work Order #	1700	138	1
MAI Work Order # _	110	20	

McC.	McCAMPBELL ANALYTICAL, INC.										СН	AIN	OF	CUS	TODY R	ECC	ORD						
	1534 Wille	ow Pass F	Rd. Pittsbu	irg, Ca. 94565-170	1	Turn	Aroun	d Time	:1 Day	Rush	-	2 Day	Rush		3 Day Rush		STD	1	Quote #				
	Telephone	: (877) 25	2-9262 /	Fax: (925) 252-926	59	J	-Flag	MDL		ESL		500	Clean	up App	proved		В	_	Order#				
www.m	ccampbell.	com		main@mccampb	ell.com	Deliv	ery For	rmat:	PDF		Geo	Tracke	r EDF		EDD	W	rite On (D	W)	E	EQuIS			
Report To: Jim Conb	1		Bill To:						A	nalys	is Re	quest	ted			Heliun	n Shroud S	N#	N#				
Company: Crib. Ass	sociak	S						0.00	ć	, j		9					Leak (Check!	Default is	IPA			
Email: Jen's @			Lest C	on		1			e, C	thyler		Aromatic (circle		2		2.000				fferent than			
Alt Email:	j		Tele:			Notes			chyd	ine, E	9	natic		e, 1,1					orted in µg/	m ³ , fixed			
Project Name: Holliday I	Develop	nont	Project#:			See			mald	, Edh	0	Aron	1	loran	2	is rep	orted in	70.					
Project Location: 3800 Sar Pable Me PO#							(m)		For	lethane CO) %	%	d/or	% 4	Norf									
Sampler Signature:					l/an)	5 (µg	5 (ug	PCH	Fixed Gas (CO, Methane, Ethane, Ethylene Acetylene, Propane, CO) %	5	ic an	Helium Leak Check %	Leak Check (IPA, Ndiffuroethane) µg/m³	tha		Matrix		Canister					
SAMPLE ID	Sampli	ng Start	End	1	Sample Kit /	VOCs TO-15 (µg/m³)	8010 by TO-15 (µg/m³)	гРН(g) (µg/m³)	LEED: (inc. 4PCH, Formaldehyde, CO, Fotal VOCs)	S (CC	9	iphat n³	eak	Leak Check (IPA, Norflorane, 1,1- lifluroethane) µg/m³	2	35	Air		Pressure / Vacuum				
Location / Field Point		Loan III		Canister SN#	Manifold #	Cs T	0 by	(g) _F	LEED: (inc. Fotal VOCs)	Fixed Gas (C	Fixed Gas: (O ₁ , N ₂) %	APH: Alipl one) µg/m³	ium l	ak Ch uroet	3	Soilgas	Indopr	-		-			
Education / Trota Total	Date	Time	Time		Trialitiona ii	ΛO	801	TPI	LE	Fix		AP	Hel	Lea	7	20	E	+	Initial	Final			
100	11.7	len.	/	em	-	V		×			V					~		+	-0	_			
1/2-1	9/27			5806-737		×					×		_		×	1		_	29)			
VS-2	4/27	1735	1545	5808-73	7	~		×			X		7		×	×			29	5			
										5													
																		十					
						-	-											-					
						-	_			-		-	_			-		+					
																		+					
**MAI clients MUST disclose any dange staff. No				heir submitted samples turcharge and the client i		ACCOUNT ON THE							7 7 7 7 7 7	-			4.	n air, sa	mple handli	ng by MAI			
Deliani 4-1 Berl	Commont No.			Data	Time		n	anaire	d Dor	Compa	mr. M.	ma			nto T	ima		omme	nts / Instruc	ctione			
Relinquished By /	Company Nan	10		Date	Time	-	R	eceive	а Бу/	Compa	my IV	inc	-	Ol D	ate T	ime			A s of	ALIONS .			

Relinquished By / Company Name	Date	Time	Received By / Company Name	Date	Time	Comments / Instructions
NAR	92712017	1400	1	9/27/17	1410	m Added
			0)			IDIO1175TAT
				1 1		