

REPORT OF LIMITED PHASE II ENVIRONMENTAL SITE ASSESSMENT JACKSON TOWER OAKLAND, CALIFORNIA

Prepared for:

D.R. HORTON, INC. 5790 FLEET STREET, SUITE 200 CARLSBAD, CALIFORNIA 92008

Prepared by:

TETRA TECH EM INC. 10860 GOLD CENTER DRIVE, SUITE 200 RANCHO CORDOVA, CALIFORNIA 95670

TETRA TECH PROJECT P2261.06.1.BAD0.0030.2C

JANUARY 18, 2006

January 18, 2006

Mr. Chris Chambers Northern California Region President D.R. Horton, Inc. 5790 Fleet Street, Suite 200 Carlsbad, California 92008

Subject: REPORT OF LIMITED PHASE II ENVIRONMENTAL SITE ASSESSMENT Jackson Tower Oakland, California Tetra Tech Project: P2261.06.1.BAD0.0030.2C

Dear Mr. Chambers:

Tetra Tech EM Inc. (Tetra Tech) is pleased to provide this letter report of a Limited Phase II Environmental Site Assessment (ESA) for the above-referenced property (target property) shown in Figure 1. The purpose of the Limited Phase II ESA was to evaluate the potential for petroleum contamination at the target property associated with an adjacent property, the Alcopark Garage Parking Facility (Alcopark Garage), located at 165 13th Street. The Alcopark Garage was listed on several environmental databases including the leaking underground storage tank (LUST) database and has impacted groundwater in the vicinity of the target property (Figure 2). The Limited Phase II ESA scope of work was authorized by Mr. Adam Fritz on December 9, 2005.

PROJECT BACKGROUND

The target property consists of three contiguous parcels of commercially developed land, configured in an L-shape totaling approximately 0.66 acres. The northern portion of the target property is improved with a one-story office building and a parking lot. The southern portion of the target property is improved with an Asian food store and a two-story office building with a small asphalt parking lot between them. The target property is located northeast of the intersection of Jackson Street and 11th Street in Oakland, California. The target property is addressed as 1110 Jackson Street, 198 11th Street, and 176 11th Street.

IDENTIFICATION OF OFF-SITE RECOGNIZED ENVIRONMENTAL CONDITION

The target property is bordered to the north by Alcopark Garage, an eight-story garage that serves the surrounding downtown area. This site is adjacent to the target property and has two 10,000-gallon underground fuel tanks. The garage was constructed sometime between 1960 and 1964. This site appears on several environmental databases, including the Hazardous Waste Information System, California Facility Inventory Database, LUST, "Cortese" Hazardous Waste & Substances Sites List, and Underground Storage Tank database.

Based on a file review conducted at the Oakland Fire Department, no further action is required concerning the soil at Alcopark Garage. However, elevated concentrations of total petroleum hydrocarbons (TPH) as gasoline (TPH-g) and other volatile organic compounds (VOC) including benzene, toluene, ethylbenzene, and xylene (BTEX), and methyl tert-butyl ether (MTBE) were detected in groundwater samples collected from on-site monitoring wells. Due to the location of this site adjacent to the target property, the varying groundwater flow direction, and the shallow groundwater level in the vicinity, less than 20 feet below ground surface (bgs), Tetra Tech concluded that an off-site release from Alcopark Garage may have impacted groundwater beneath the target property. Therefore, the Alcopark Garage was considered an off-site recognized environmental condition (REC) to the target property and Tetra Tech recommended further assessment of the groundwater conditions beneath the target property.

LIMITED PHASE II ESA ACTIVITES

Prior to advancing the soil borings, Tetra Tech contacted Underground Service Alert to locate underground utilities in the work area. In addition, Subtronic Corporation conducted a utility clearance survey of the boring locations and surrounding area. Precision Sampling Inc., of Richmond, California, conducted the direct-push drilling services. A soil boring permit was obtained from Alameda County Public Works Agency – Water Resources (ACPWA) for drilling activities. The soil boring permit is included as Attachment A. Soil boring locations are presented on Figure 2.

On December 27, 2005, soil borings SB-1, SB-2, and SB-3 were advanced to groundwater to a maximum depth of 25 feet bgs to assess soil and groundwater conditions at the target property. Soil borings SB-1 and SB-2 were advanced in the parking lot for the building located at 1110 Jackson Street, and soil boring SB-3 was advanced in the parking lot for the Asian food store located at 198 11th Street (Figure 2). Field screening of soil samples using visual and olfactory observations did not indicated petroleum hydrocarbon contamination in the borings. In addition, field screening of soil samples was conducted using a photoionization detector (PID). Only very low PID readings (0.2 and 0.7 parts per million) were measured in one soil boring (SB-1) at depths between 20 and 22 feet bgs. Groundwater was encountered at a depth of approximately 18 to 21 feet bgs.

Soil borings were continuously cored and logged in general accordance with the Unified Soil Classification System, by a staff geologist under supervision of a California-professional geologist, and in accordance with Tetra Tech standard operating procedures. Soil boring logs are included as Attachment B. Tetra Tech retained soil samples in acetate sleeves and covered the ends with Teflon[™] film, capped by polyvinyl chloride (PVC) end caps. Soil samples from approximately 12 feet bgs from each boring were retained for chemical analyses. At each borehole, water samples were collected from temporary, 1-inch diameter PVC casing using a bailer. Water samples were contained in laboratory supplied 250-milliliter (ml) polyethylene bottles and pre-preserved 40-ml volatile organic analyses vials. The samples were labeled, packaged, and stored on ice in an insulated cooler for transport under chain-of-custody protocol to SunStar Laboratories Inc. (SunStar), a California-certified analytical laboratory.

Three soil and three groundwater samples were collected and submitted to SunStar for analysis of TPH-g, TPH as diesel (TPH-d), and TPH as motor oil (TPH-mo) using U.S. Environmental Protection Agency (EPA) Method 8015; California Assessment Manual (CAM 17) metals using EPA Method 6010B and 7470/7471; and VOCs including fuel oxygenates using EPA Method 8260B. Groundwater samples for metals analyses were filtered at the laboratory. Certified analytical reports and chain-of-custody documentation are included as Attachment C.

All drilling and sampling equipment was decontaminated before advancing each boring using alconox detergent followed by a double rinse of deionized water.

All soil borings were sealed to the surface with neat cement by tremmie pipe. ACPWA personnel authorized the sealing of all borings without inspection.

Soils encountered from ground surface to approximately 5 feet bgs consisted of silty sand. From approximately 5 to approximately 22 feet bgs soils alternated from clay with sand to sand with clay. Soils from approximately 22 to the total depth drilled (25 feet bgs) consisted of sand with silt. A perched water zone was encountered at approximately 3 to 4 feet bgs, and wet zones were encountered at various depths; however, saturated conditions were encountered at depths of approximately 18 to 21 feet bgs.

Investigation Derived Waste

Soil cuttings were placed into one 55-gallon Department of Transportation specified drum. The 55-gallon drum is currently stored on-site at the 1110 Jackson Street property pending an evaluation of disposal options. Decontamination water was disposed of by the driller.

Investigation Results

Laboratory results of soil samples indicate concentrations of TPH-g, TPH-d, TPH-mo, and VOCs including fuel oxygenates were below laboratory reporting limits, and metals were below laboratory reporting limits or within reported California background concentrations.

Laboratory results of groundwater samples indicate concentrations of TPH-g, TPH-d, TPH-mo, VOCs including fuel oxygenates, and metals were below laboratory reporting limits or below California Department of Health Services Maximum Contaminant Levels (MCL), where established. Tetrachloroethene (PERC) and trichloroethene (TCE) were both detected at concentrations of 4.1 micrograms per liter (μ g/L) in the groundwater sample collected beneath the parking lot of the Asian food store. These concentrations are below the MCL of 5.0 μ g/L for both constituents; however, it should be noted that if construction dewatering is necessary during the planned development of the target property, the extracted groundwater will likely require testing for presence of contaminants such as PERC and TCE. Pumping and discharge of extracted groundwater should be done pursuant to a National Pollutant Discharge Elimination System (NPDES) permit issued by the Regional Water Quality Control Board (RWQCB).

No further assessment of the target property is warranted.

CONCLUSIONS AND RECOMMENDATIONS

Tetra Tech conducted a Limited Phase II ESA at the target property. Based on the investigation results discussed above, our conclusions and recommendations are summarized below:

Laboratory results of soil samples indicate concentrations of TPH and VOCs were below laboratory reporting limits, and metals were below laboratory reporting limits or within reported California background concentrations.

Laboratory results of groundwater samples indicate concentrations of TPH, VOCs, and metals were below laboratory reporting limits or below MCLs, where established. PERC and TCE were both detected at concentrations of 4.1 μ g/L in the groundwater sample collected beneath the parking lot of the Asian food store. These concentrations are below the MCL of 5.0 μ g/L for both constituents; however, it should be noted that if construction dewatering is necessary during the planned development of the target property, the extracted groundwater will likely require testing for presence of contaminants such as PERC and TCE. Pumping and discharge of extracted groundwater should be done pursuant to a NPDES permit issued by the RWQCB. Additionally, engineering controls may be required for planned subsurface structures.

No further assessment of the target property is warranted.

This report is intended only for the use of D. R. Horton Inc. (DHI) and its subsidiaries. If other parties wish to rely on this report, please have them contact us so that a mutual understanding and agreement of the terms and conditions for our services may be established prior to their use of this information.

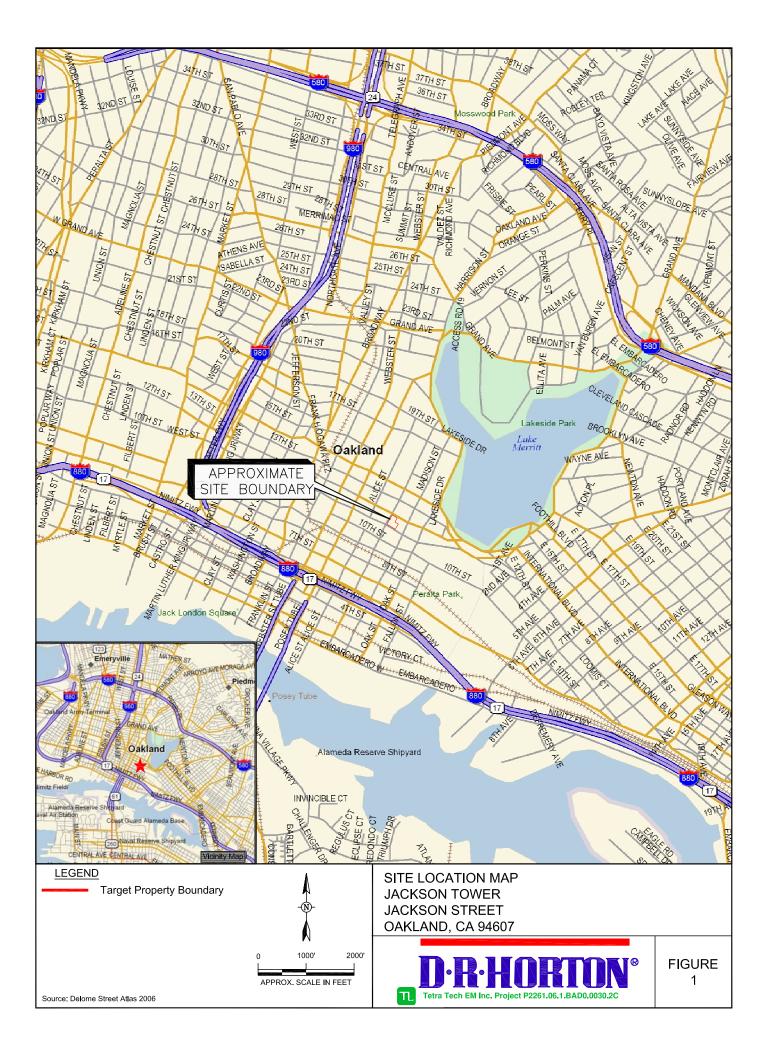
This report is based on available information and was prepared in accordance with currently accepted geologic, hydrogeologic, and engineering practices. No other warranty is implied or intended. This report has been prepared for the sole use of DHI and applies only to the target property. Use of this report by third parties shall be at their sole risk.

If you have any questions or concerns, please contact Mr. David M. Foley at 916-853-4522 or via email at <u>david.foley@ttemi.com</u>.

Sincerely,

TETRA TECH EM INC.

) m? tolen


David M. Foley, P.G. Project Manager

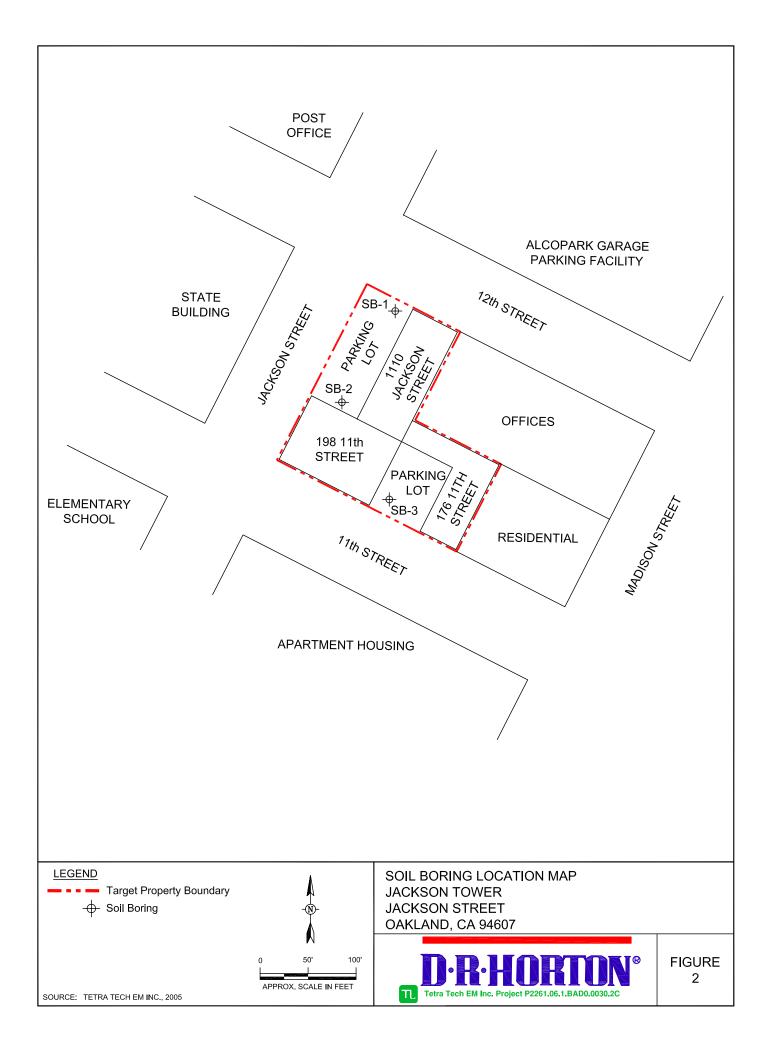

- Attached:
 Figure 1

 Figure 2
 Attachment A Soil Boring Permit

 Attachment B Soil Boring Logs
 Attachment C Certified Analytical Reports and Chain-of-Custody Documentation
- Cc: Mr. Ed Perez DHI, Fort Worth Tetra Tech File Copy – Rancho Cordova

FIGURES

ATTACHMENT A SOIL BORING PERMIT

Alameda County Public Works Agency - Water Resources Well Permit

PUBLIC WORKS	399 Elmhurst Street Hayward, CA 94544-139 Telephone: (510)670-6633 Fax:(5			
Application Approved Permits Issued:	on: 12/19/2005 By jamesy W2005-1195		r: WR2005-2253 om 12/21/2005 to 12/2	7/2005
Application Id: Site Location:	1135013238254 11th St. to the South, Jackson St. to the West, 1	City of Proje 2th St. to the Nor	ect Site:Oakland th (L-shaped property w	// 3
Project Start Date:	businesses), Oakland, CA 12/21/2005	Completio	n Date:12/27/2005	
Applicant:	Tetra Tech EM Inc Robert Azam 10860 Gold Center Dr #200, Rancho Cordova, 0		Phone: 916-769-3688	
Property Owner:	Properties (see attached list) Three Seperate 3 Seperate Tenants & Owners, Oakland, CA 01	I	Phone:	
Client: Contact:	** same as Property Owner ** David Foley		Phone: Cell:	
		Total Due:	aid	\$200.00 \$200.00

Paid By: CHECK

Works Requesting Permits:

Borehole(s) for Investigation-Contamination Study - 3 Boreholes Driller: Precision Sampling Inc. - Lic #: 636387 - Method: DP

Specifications

Permit Number	Issued Dt	Expire Dt	# Boreholes	Hole Diam	Max Depth
W2005-	12/19/2005	03/21/2006	3	2.00 in.	21.00 ft
1195					

Specific Work Permit Conditions

1. Boreholes shall not be left open for a period of more than 24 hours. All boreholes left open more than 24 hours will need approval from Alameda County Public Works Agency, Water Resources Section. All boreholes shall be backfilled according to permit destruction requirements and all concrete material and asphalt material shall be to Caltrans Spec or County/City Codes. No borehole(s) shall be left in a manner to act as a conduit at any time.

2. Permittee shall assume entire responsibility for all activities and uses under this permit and shall indemnify, defend and save the Alameda County Public Works Agency, its officers, agents, and employees free and harmless from any and all expense, cost, liability in connection with or resulting from the exercise of this Permit including, but not limited to, properly damage, personal injury and wrongful death.

3. Applicant shall contact George Bolton for an inspection time at 510-670-5594 at least five (5) working days prior to starting, once the permit has been approved. Confirm the scheduled date(s) at least 24 hours prior to drilling.

4. Copy of approved drilling permit must be on site at all times. Failure to present or show proof of the approved permit application on site shall result in a fine of \$500.00.

5. Permit is valid only for the purpose specified herein. No changes in construction procedures, as described on this permit application. Boreholes shall not be converted to monitoring wells, without a permit application process.

Work Total: \$200.00

PAID IN FULL

ATTACHMENT B SOIL BORING LOGS

		Tetra Tec	h EM Inc.		E	3C)R	IN	IG	; L	0.	G	BC	RING NO.:
		10670 White Rock Road Rancho Cordova, Califo		PROJE	CT NAM	-	-				<u>Jer</u>		\leq	B-1
		(916) 852-8300		PROJE	CT NUM	BER: P	226	21.00	é.l.Ē	3AD9	6.00	3Ø.2C		D-1
PR	DJECT LOCATION	1		SOIL B	ORING	\mathbf{X}		Ring We]			SHE	ET 1 OF
		son Street					2-21	7-0	5			COMPLETION D		
1	2aKlan	d, Alameda	County, CA				PLETED		<u> </u>		· _ · · · ·	GROUNDWATE		
DRI	LING CONTRACT	TOR	DRILLER				, 		25	<u> </u>		(FEET) 191	<u>e 110</u>	,5
	PSI		Roberto Cot	rad	4				v	VELL	CONS	TRUCTION		
	LING EQUIPMENT		BORING DIAMETER	 .		TYPE .	AND DIA	METER	OF WE	LL CAS	NG			
	Valuan	xD-1	Inder = 13/4"			Tei	mpore	ary	{ "	Sch	ed 4	OPUC		
	PLING METHOD					SLOT S	SIZE					FILTER MATERIA		
	alifornia Mod	Hand		DP	\boxtimes	6	9.01	0				None		
· _	0) Aza		BACKFILL MATERIAL Crowled Tosi	<i>infa</i> c	e	WELL (PERFORATED		
<u> </u>	00172-	.m	by tremie				2	.5'					- 75	/
Тім	-	DECODIDE	~		(FEET)						NGS			
		DESCRIPTIC	JN	SB NA	EPTH (F	SAMPLE	UCSC SOIL TYPE			PID/FID	KEAD	REN	MARKS	
083		haltsurface		200	B	SAM		HI-	MELL	OV/ (ppr	¥			
	Sand w	ith trace silt,	darle brown, very		_	4				ø		- /		
	3'= colo	pose, no oder.	very fine sand isht brown. Wetat	100	% -	4	SM			ļφ				
	31	Country to 1			-	4				Ø	Y P	ercled wat	er 3.5	-ul
OBSE	, 									2				
	Clay with	- 5-10% very	fine sand, lisht	+	-15-	╁──		+-	+	+			·····	
	no odo	ery moist g-	tiff, high plusticity	1, 100		1	CL			ø				
		same as a born	P Mar Property		ΤΞ					ø	NO	odor		1
	W N	oisture. Trace	- orange mottles	100							NO	free wate		
┝	- <u> </u>		moisture to mois	<u></u>	-10-	1			<u> </u>	ø	<u> </u>			
		Very maist; he	ard increase in	100	-			.		ø		o der		
0905		5 and 15-200	lo ;	1		58-1.	1.20			ø	NO	a a <i>c</i> ₁		
	Lowple	My sand 13-	-14,5':70 30% 3'		1 -]"			ø	Hare	drilling.	13-16'	
	SAND WI	th CLAS broz	M, Verymoist	4			<u>}</u> −−−			Ø	Verya	noisteina	+ fra	n131
	P Wet	inot scaturated	b) moderately		15-		sc			ø	Fine	-med, suban	oric fun	<u>e</u>
	plastici	no odor, 30- Y. Jucreas	-40% Clay, some	1			2			1	noc	oder		sand
A () / //	10-14:1	tecreasing a la	to 25%, some	100	_					Ø				
0940	Contraction of the International Action										Hard	brilling fre	5m 19'	
	brown, we	et, high olastic	sum to orange - its, soft, no o dor		20]		<u> </u>			0.2	Tor 1	easing me	i'store	2
1010	10-150%	very fire san	d	100			CL			1	19-	22'= 51	oush	
	Saudwit	4 Silt, brown.	to lish t brown,			ŀ		{		0.7	no t	ree water	Han	d drilling
	wet(sa	turated), mode	wately dense, no	80			SM			ø		15 ulmando		
055	coor. Dr	ense cot 24';	trace Clay		~					Ø				
					Ξ						33-1	1-GW1 0	21110	
	÷				_								_	
											v w	e1210=1	8.2	

i

ž

Protect Look of the server and a server and a server and a server of t							<u> </u>							T
Product advance catalants seered Product reader Product r				•		E							G	BORING NO.:
$\frac{1}{120000000000000000000000000000000000$		TC	Rancho Cordova, Califo											5B-2
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		\square	(0.00) 002 0000			¢.		V DZ	61.0	<u>6.].</u>	BAD	.0039	1.ac	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							لجبك		KING W	ELL [SHEET 1 OF
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1								-					
Distline contraction Description Description <thdescript< td=""><td></td><td></td><td>, Alameda C</td><td>winty, CA</td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td>GROUNDWATER</td><td></td></thdescript<>			, Alameda C	winty, CA							1		GROUNDWATER	
Della No Bedinnestr Della No Bedinnestr Della No Bedinnestr Della No Bedinnestr Della No Bedinnestr Direct David Direct David Direct David Direct David David Links Method Hand Auger DP Direct David Direct David Direct David California Modified Hand Auger DP DP Direct David Direct David Direct David Collection Borna Durine Material DI Direct David Direct David Direct David Direct David Collection Borna Durine Material Direct David <	i.		TOR	1				<u></u>	·	27			25	2101245
Checopole x 0 -1 United 7: 21,6 " The Mail DAWELE ROT WELL COSMIC Dated Local Failer of Well Cosmic d 40 pVC SMEMIAN REFINO Samer: 18,4 " SMEMIAN REFINO Hand Auger DP X Colloge 20 Dates Lines Looge 20 Dates Lines Balance Lines Looge 20 Description More Lines Looge 20 Description Description More Lines Looge 20 Description Description Description None Lines Looge 20 Description Description Description Description None Lines Looge 20 Description Description Description Description Description Looge					9					١	WELL	CONS	TRUCTION	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Ge	eoprobe x		outer = 21/2"			TYPE A	AND DIA	METER		ELL CAS		3 41/C	
Collomia Modified Hand Auger DP DP D.010" Montes Collomia Modified Hand Auger DP DP D.010" Montes Collomia Modified Hand Auger DP DP Description Montes Collomia Modified DESCRIPTION Montes Description DESCRIPTION Performance 125 Appendix Surface DESCRIPTION Buger Buger Description	SAM	<u>Val Wall</u> PLING METHOD		Inner = 18/4"					0					
Income to source to the source to t	Ca	alifornia Moc	lified 🗌 Hand	Auger	02	R	01010		010"					
Les y H zam by trenic 25 TIME DESCRIPTION grad grad REMARKS 125 Aspeal Surface (u 4') grad grad REMARKS 125 Aspeal Surface (u 4') grad grad REMARKS 125 Aspeal Surface (u 4') grad grad grad REMARKS 125 Aspeal Surface (u 4') grad grad <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td>WELL D</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						_	WELL D							
TIME DESCRIPTION $\frac{125}{125} \frac{1}{250} \frac{1}$		sob Aza	m		₹21 Q				25				INTERVAL	-7
$\frac{d25}{2^{11}} \frac{1}{125} \frac{1}{125}$					۴							<u></u>		
$\frac{d25}{2^{11}} \frac{1}{125} \frac{1}{125}$	ТІМ	E	DESCRIPTIC	ON		EE	ш	La la			0.FU	ADIN	DEM	
21 (ayer of Concrete Sithy Sand, Darwin, losse, moistino ador Changes color to light bown tobrowning; 5% - 5M 0 -4%. material ellipting slower, Sand Cather ald not cather waterial Very maist, shift bown tobrowning; 5% - 5M 0 -4%. material ellipting slower, Wet 3-4%; gore bod water Very maist, shift bown tobrowning; 5% - 5M 0 -4%. Met 3-4%; gore bod water Very maist, shift bown tobrowning; 5% - 5M 0 -4%. Met 3-4%; gore bod water Very maist, shift bown tobrowning; 5% - 5M 0 -4%. Met 3-4%; gore bod water Very maist, shift bown tobrowning; 5% - 64 0 -4% - 5M 0 -4%; gore bod water in workthe to very moist in workthe to very moist 100% - 60 - 60 - 60 - 60 - 60 - 60 - 60 -	1120	- Acarda	a fra (<i>u</i> \	₹0	EPTH	AMPL		HOL	Ē		Ш А		AKKS
Drivy June, Ulaw, 1605C, proist, 100 odor 5% 5% 5% Changes color to light boun to bound of 5% 5% 5% Clay with send, 13ht boun to bound of 100% 5% Very most, shtf, med plasticity, ne oder 100% trace sit 5% in most shtf, med plasticity, ne oder 100% in most shtf, med plasticity, ne oder 100% in most shtf, ined plasticity, ne oder 100% in most shtf, ined plasticity, ne oder 100% in most shtf, ined plasticity, ne oder 100% in most state to very most	1000	2" (aye	sonat concrete	<u> </u>				1 20	<u>} -</u>		(pp		11. nearbain Q	
Images Color to insut view with some some some some some some some some		Siltys	and, brown, loc	se, moistino odor	5%	-	-	SM			0		sand cat	her did not catch
Clay with sand, light bown tobaconymoist to Very most, shift, we dy lawicity, no oclar trace sit charge can be and moisture in moisture to very moist 1000 12 5ml 0 11.5-12.5': very moist to we to 1000 12 5ml 0 11.5-12.5': very moist to we to 1150 10 0 20 moist losse to sinkity dones of 1157 10 20 moist losse to sinkity done of 1157 10 20 moist form 17 100 moist 1215 Very moist to weet from 19 1 No clar 1215 Very moist to weet from 19 1 No clar 1215 Very moist to weet from 19 1 No clar 1215 Very moist to weet from 19 1 No clar 1215 Very moist to weet from 19 1 No clar 1215 Very moist to weet from 19 1 No clar 1215 Very moist to weet from 19 1 No clar 1215 Very moist to weet from 19 1 No clar 1215 Very moist to weet from 19 1 No clar 1215 Very moist de 10 fool of 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		change	s color to lish	thown to how with]							(ic) (in the i
Very moist Sills plan in 2000 having to 1002 Very moist Sills in edge brown at 8', include in moist ne to very moist includes and and moisture Silty Sand with claus light brown to enauge brown, very moist, losse to light brown to enauge in claus light brown to enauge 100 1150 12.57: Claus with gift and sead, light brown to enauge brown, very moist, losse to light brown to enauge 150 12.57: Claus with gift and sead, light brown to enauge 150 12.57: Claus with gift and sead, light brown to arrange brown, very moist, slight brown to 12.57: Claus with gift and sead, light brown to 12.57: Claus with gift and sead of light brown to 12.57: Claus with gift and sead of light brown to 12.57: Claus with gift and sead of light brown to 12.57: Claus with gift and sead of light brown to 12.57: Claus with gift and sead of light brown to 12.57: Claus with gift and sead of light brown to 12.57: Claus with gift and sead of light brown to 12.57: Claus with gift and sead of light brown to 12.57: Claus with gift and sead of light brown to 12.57: Very anoist to wet frown 19'. No dor 12.57: Dift weight woist to wet frown 19'. No dor 12.57: Dift wo of the sand 12.57: Dift wo of the			-			· _			-	1	Ø	Me	rg-a : ferc	Vec ward
Very fine 5 sht ; med plasticity, ne oder trace sit charges color to orange brown ats', increase in moistice to very moist Increasing sand and moisture in moistice to very moist Increasing sand and moisture in moistice to very moist Increasing sand and moisture No oder Increasing moisture Increasing moisture Increasing moisture Second for sand for sand Increasing moisture Second for sand for sand Increasing moisture Increasing moisture Second for sand Increasing moisture Increasing moisture Increa		Claywit	n sand, light br	own to brown moist to		-		<u> </u>	┾		-			1
in moisture to very moist in creasing sand and moisture Silty Sand with Clear, light Wount corrange Brown, very moist, loose to slightly denses 12.57: Clay with silt and sand, light Brown to a clay it the silt and sand, light Brown to to clay with silt and sand, light Brown to to clay with silt and sand, light Brown to to medium plasticity SAND with clear, no oder, 35-40% clay, some Clay Some 12.15 Very moist to wet from 17/100 12.15 Very moist to wet from 19! No clay to rease brown at 21', decreasing clay to medium, wet (saturated), loose, no oder Sand with silt, trace clay, light glay in Sand with silt, trace clay, light glay in 12.15 Very moist to wet from 19! No clay 14.15 - 20 25 25 25 25 25 25 25 25 25 25		Varymo	ist, shift, wed	lasticity, no oder	100	" <u> </u>]	a			Φ	Very	Fine sand 1	0 30%
Increasing sand and moisture 100% Silty sand with clay, light lown to cauge 10 ISD 11.5-12.5': Very moist to wet ISD 12.5': Clay with silt can be send, light lown to cauge ISD 10 115D 10.5 115D 10.5 115D 11.5-12.5': Very moist to wet 115D 11.5-		charges a	color to orange	brown at 8', increase	2	1 _					0		н. 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 -	
III creasing Sand and moisture Silty Sand with Clay, light blown to range brown, very moist, loose to Sight blown to range 12.57: Clay with silt and send, light brown to every brown, very moist, slight flow into a coder with silt and send, light brown to a coder born and sight brown to show the silt and send, light brown to a coder born and sight brown to show the silt and send, light brown to a coder born and sight brown to show the silt and send, light brown to a coder born and silt brown to show the silt and send, light brown to a coder born and silt and send, light brown to a coder born and silt and send, light brown to a coder born and silt and send, light brown to a coder born and silt and send, light brown to a coder born and silt and send, light brown to a coder born and silt and send, light brown to a coder born and silt and send light brown to a coder born and silt and send light brown to a coder brown and silt and send light brown to a coder brown at 21', decreasing clay to 10% 12.57 12		in mois	ture to very mois	st .	100%	-					1			
Silty sand with clear light Wown to crange 100 War and with clear light Wown to crange 100 12.57: Clay with silt can see belightly dones, 5 12.57: Clay with silt can see belightly dones, 5 12.57: Clay with silt can see belightly dones, 5 12.57: Clay with silt can see brown, levy moist, slightly shift, 100 10.57: Clay with silt can see brown, levy moist, slightly shift, 100 10.57: Clay with silt can see brown, levy moist, slightly shift, 100 SAND with clay, orange brown, levy moist, slightly shift, 100 11.57: Clay with silt can see brown, levy moist, slightly shift, 100 11.57: Clay with silt can see brown, levy moist, slightly shift, 100 11.57: Clay with silt second 171 12.57: Clay moist brown light brown at 171 12.15 Very moist to used from 191 100 12.15 Very moist to used from 192 NO odor 100 12.15 Very fine to fine sand 12.25 0 12.25 0		increases	ing sand and	moisture	+	10	}			+	0			
115D No char millist, passe toslightly dense, 13 X Se 12.57: Clary with siltan's send, light brown te strange brown, very moist, slightly still, law 100 5 AWD with Cley, orange-brown, very moist, Shightly losse, no odor, 35-40% cley, some Change color to horown - light brown d 171 1215 Very anoist to wet from 171 100 1215 Very anoist to wet from 191 No odor 0 Clary brown at 21', decreasing clay 100 1235 1235 1235 1235 1235 1235 1235 125 127 127 127 127 127 127 127 127		Silty 50	nd with cian	1:4-11a - 1	- 100		1			4				
12.5°: Clay withsiltand sand, light brown to arange brown, very moist, slightly still, law low 15 MB diven plasticity. SANDwith Clay, orange-brown, very moist, slightly loose, no oder, 35-40% clay, some Changebrook of the brown - light brown at 17' 1215 Very minist to wet from 19'. No oder 0 and with gilt, trace clay, light glay ish Wrown, wet (saturated), loose, no oder 1205 000 and 21', decreasing clay 1205 000 and 25' 000 and 25' 000 and 100' and 25' 000 and 10	1150	NO Ode	CT 1110(ST, 100.	se toslishtly dense, r	-		\mathbf{X}			-		5B-2	-12.5": UETY Z-12' P. 115	moist to wet
SANDWith Clay, orange-brown, Verymoist, Slightly loose, no odor, 35-40% clay, some Changebcolor to brown-light brownat 171 172 ce silt; 15-208 clay from 171 1215 Verymoist to wet from 19! No odor - 19 - 4 not enough moisture topraduce Orange brown at 21', decreasing clay 100 - 4 No odor Sand with gilt, trace clay, light glayish Wrown, wet (saturated), loose, no odor 100' - 25 - 0 1235 - 58-2-GWZe 1250		12.500	Lay with silts	ad sound licht brownth							Ø			,
Platticity, color, 35-40% clay, some Cuaused color to brown-lisht brown at 17' I'race sitt; 15-208 clay from 17' 1215 Verymoist to wet from 19! NO ador - 19 to 10% Sound with silt, trace clay, light glayish Wrown, wet (saturated), loose, no odor 100' 1235 25 D'B-2-GWZE 1250		SAND WIT	Lion plasticity	the state of the s	100	15					Ø	Incre	ecsing mois	ture
1215 Very avoist to wet from 19! No odor 19 1215 Very avoist to wet from 19! No odor 19 1215 Very avoist to wet from 19! No odor 19 0range brown at 21', decreasing clay 100 Sand with gilt, trace clay, light glayish Wrown, wet (saturated), loose, no odor 100' 1235 BB-2-GWZE 1250		Diastrate	, noodor,	55-40% Clay, some		• -					Ø	fine	stained san	d
1215 Verymoist to wet from 19! No dor 19 20 B not enough moisture toproduce Orange brown at 21', decreasing ciay 100 B No oder to 10% B No oder Sand with Gilt, trace cicuy, light glayish Wrown, wet (saturated), 1005e, noodor 100' B Very fine to fine sand 1235 B B 2-GWZ e 1250	12 	Traces	it: 15-202 (10)	-light browned 171	100						Ø	(Dec	rease in moi	store 16-17.57
Orange brown at 21', decreasing in 20 to 10% Sand with Gilt, trace clay, light glayish brown, wet (saturated), 1005e, no odor 100' - 0 1235 Brown & Brown	1215	veryono	ist to wet fro	mig! is dec	100	,					d			
Orange brown at 21', decreasing in 100 - B No oder B No oder Sound with Gilt, trace clay, light grayish Wrown, wet (saturated), loose, no oder 1235 B No oder B												Wed	er	store produce
Sand with Gilt, trace clay, light glayish Brown, wet (saturated), 10050, noodor 100' - 0 1235 - 0 		orange br	own at 21', de	creasingclay	100	1					1			
1235 1235 1235 1235 1235 1235 1235 1235			· ·	×	·	4					2	ND 0	Col."	
1235 Ø 25 Ø 5B-2-GW2e1250		Sandwit	ugilt, trace c			Ť	f				ø	very	fine to fine :	sand
25 	1235	101020 mj W		USC, NOOdor							Ø			
			,		2	25-	-+							
$\frac{1}{1}$ DTWe1310 = 19.07		•										SB.	-2-GWZe	1200
						Ξ						DTU	Je1318 -	19.07
						_					(₇		-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,	UG T
						-								

ŗ

	Tetra Tec 10670 White Rock Roak Rancho Cordova, Califo	d, Suite 100	PROJE		_				5 L	OG	BORING NO	D.:
	(916) 852-8300	,' '		CT NUME	BER:	<u>P22</u>	-61.	06		4Dd. 0036-2C	<u>_58-3</u>	>
	ECT LOCATION	1	SOIL BO	RING	START		RING WE		<u> </u>	COMPLETION DAT	SHEET 1 OF	<u></u>
	76 NIth Street			12 22 42						IZ-27- GROUNDWATER D	-	
	Dakland, Alameda	cornty, CH			(FEET)		DEPTH	22	L.	GROUNDWATER D	600. 19.17	eikis
PS	ING CONTRACTOR	Roberto Estra	odq				<u> </u>	v	VELL	CONSTRUCTION	600.	
Ge	NG EQUIPMENT EO MOBE XD-1 Jal Wall	BORING DIAMETER $\partial U = 2^{1/2}$ Enner = $ ^{3}/4$,	· ·	TYPE A	MD DIA	METER	of WE	LL CASIN	40 pvc, 1"	************************	
	ING METHOD		R		SLOT SI	ZE), ()	010	<u> </u>		FILTER MATERIAL		
LOGGE		BACKFILL MATERIAL			WELL DI	EPTH				PERFORATED INTERVAL	70-25	
	306 Azam	by tremie	<u> </u>	<u> </u>		—	λ_{-}	- 2	-5	17-	70-25 - 22	
TIME			OR COUNTS	ЭЕРТН (FEET)	SAMPLE	UCSC SOIL TYPE	LTTHOLOGY	WELL	A PID/FID		ARKS	7
1900	Silty sand, trace cle	= 7-6" Thick			- ³	132	3 5	8	(ppm))		
	loose, no oder. The	3 5: { =	20%	/o		Sr				Veryfine to fin recovery. 0,0 trom top of ha	e sond.Low 5'piDreadm ple	9
	4.5': Claywith sav	d lidet and		1 -				4	Ø			1
	Verymoist forwet, sti no oder. Trace sil-	flymed planticity.	75%	5		cu	1	·	ø	fine sand 20-25	~%	-
	7-10': Same as above Sand to 150/0; d	with decreasing h							Ø			
	8.5% Verysht	f to hard 7-10'	1000						ø	Trace silt		
1435		25% Clau decrease	100	1,1,1,1	X	SC		θ.,	\$	Fine-medium 506 SB-3-12'C 14	rounded /suitans	dar.
	in clay with depth; t wet from 141 - note	noush to produce	75%						ø			
	17-191. 10-15% clay	Water		/5 					Ø	brown to orange-		- (V) (Pr. 386)
	18': Charge color to lisht	grayish-brown	<i>₿0</i> %,				14 - 14 14 - 14 14 - 14		6	Noodor		
~	191: increasing clay co	nent and moisture	T I]		ÉE		۵	6 Ø			· · ·
	moist to wet hand, gray moist to wet hand, me hand with clay, gray is very moist to wet 5 hi		100%	20 		5C.			Ø Ø	no oder. Note	roducing	} 56054 19-22'
	20-22' send with					-				Water Very hard drillin Driller suggests f	19 from 22'	put is reme straficture
	grayish-	torown, wet, loss				N	Je.	el P	25 .	fine sand.		
	rot sate	Rates boot top							1	1555 set tay	well 05	

51005

ATTACHMENT C CERTIFIED ANALYTICAL REPORTS AND CHAIN-OF-CUSTODY DOCUMENTATION 30 December 2005

David Foley Tetra Tech -- Sacramento 10860 Gold Center Drive #200 Rancho Cordova, CA 95670 RE: Jackson Towers

Enclosed are the results of analyses for samples received by the laboratory on 12/28/05 10:00. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Joh J. lpt

John Shepler Laboratory Director

Tetra Tech Sacramento	Project: Jackson Towers	
10860 Gold Center Drive #200	Project Number: [none]	Reported:
Rancho Cordova CA, 95670	Project Manager: David Foley	12/30/05 10:24

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
SB-1-12'	T501565-01	Soil	12/27/05 09:05	12/28/05 10:00
SB-1-GW1	T501565-02	Water	12/27/05 11:10	12/28/05 10:00
SB-2-12'	T501565-03	Soil	12/27/05 11:55	12/28/05 10:00
SB-2-GW2	T501565-04	Water	12/27/05 12:50	12/28/05 10:00
SB-3-12'	T501565-05	Soil	12/27/05 14:35	12/28/05 10:00
SB-3-GW3	T501565-06	Water	12/27/05 16:05	12/28/05 10:00

SunStar Laboratories, Inc.

J. eht John

John Shepler, Laboratory Director

Tetra Tech Sacramento		U		on Towers						
10860 Gold Center Drive #200		roject Numł		-				Reported		
Rancho Cordova CA, 95670	Pr	oject Manag	ger: David	Foley				12/30/05 10	12/30/05 10:24	
		S	B-1-12'							
		T5015	565-01 (S	oil)						
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note	
		SunStar L	aborator	ies, Inc.		*				
Extractable Petroleum Hydrocarbo				,						
C6-C12 (GRO)	ND	10	mg/kg	1	5122818	12/28/05	12/29/05	EPA 8015m		
C13-C28 (DRO)	ND	10	"	"	"	"	"	"		
C29-C40 (MORO)	ND	10	"	"		"	"	"		
Metals by EPA 6010B										
Antimony	ND	3.0	mg/kg	1	5122822	12/28/05	12/29/05	EPA 6010B		
Silver	ND	2.0	"	"	"	"	"	"		
Arsenic	ND	5.0	"	"	"	"	"	"		
Barium	70	1.0	"	"	"	"	"	"		
Beryllium	ND	1.0	"	"	"	"	12/29/05	"		
Cadmium	ND	2.0	"	"	"	"	12/29/05	"		
Chromium	63	2.0	"	"	"	"	"	"		
Cobalt	7.1	2.0	"	"	"	"	"	"		
Copper	4.4	1.0	"	"	"	"	"	"		
Lead	ND	3.0	"	"	"	"	"	"		
Molybdenum	ND	1.0	"	"		"	"	"		
Nickel	40	2.0	"	"	"	"	"	"		
Selenium	ND	5.0	"	"	"	"	"	"		
Гhallium	ND	2.0	"	"	"	"	"	"		
Vanadium	17	5.0	"	"	"	"	"	"		
Zinc	20	1.0	"	"	"	"	"	"		
Cold Vapor Extraction EPA 7470/2	7471									
Mercury	ND	0.10	mg/kg	1	5122821	12/28/05	12/30/05	EPA 7471A Soil		

John J. life

John Shepler, Laboratory Director

Tetra Tech Sacramento		-		on Towers						
10860 Gold Center Drive #200		Project Numb	-	-				Reported:		
Rancho Cordova CA, 95670		Project Manag	er: David	l Foley				12/30/05 10	:24	
			B-1-12' 65-01 (S	oil)						
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note	
		SunStar La	aborato	ies. Inc.						
Volatile Organic Compounds by EP	A Method 826			,						
Bromobenzene	ND	2.0	ug/kg	1	5122817	12/28/05	12/28/05	EPA 8260B		
Bromochloromethane	ND	2.0	"	"	"	"	"	"		
Bromodichloromethane	ND	2.0		"	"			"		
Bromoform	ND	2.0			"		"	"		
Bromomethane	ND	2.0		"						
n-Butylbenzene	ND	2.0		"	"			"		
sec-Butylbenzene	ND	2.0		"	"			"		
tert-Butylbenzene	ND	2.0		"	"			"		
Carbon tetrachloride	ND	2.0		"	"			"		
Chlorobenzene	ND	2.0		"	"			"		
Chloroethane	ND	2.0		"						
Chloroform	ND	2.0		"	"			"		
Chloromethane	ND	2.0		"	"			"		
2-Chlorotoluene	ND	2.0	"	"	"					
4-Chlorotoluene	ND	2.0		"						
Dibromochloromethane	ND	2.0		"						
1,2-Dibromo-3-chloropropane	ND	2.0	"	"	"					
1,2-Dibromoethane (EDB)	ND	2.0		"						
Dibromomethane	ND	2.0		"						
1,2-Dichlorobenzene	ND	2.0			"					
1,3-Dichlorobenzene	ND	2.0		"			"			
1,4-Dichlorobenzene	ND	2.0		"			"			
Dichlorodifluoromethane	ND	2.0		"			"			
1,1-Dichloroethane	ND	2.0						"		
1,2-Dichloroethane	ND	2.0								
1,1-Dichloroethene	ND	2.0		"				"		
cis-1,2-Dichloroethene	ND	2.0		"				"		
trans-1,2-Dichloroethene	ND	2.0								
1,2-Dichloropropane	ND	2.0						"		
1,3-Dichloropropane	ND	2.0						"		
2,2-Dichloropropane	ND	2.0						"		
1,1-Dichloropropene	ND	2.0								
cis-1,3-Dichloropropene	ND	2.0		"				"		
trans-1,3-Dichloropropene	ND	2.0	"				"			
Hexachlorobutadiene	ND	2.0				"	"			
Isopropylbenzene	ND ND	2.0 2.0				"	"			
p-Isopropyltoluene	ND ND	2.0				"	"			
Methylene chloride	ND ND	2.0 2.0								
Naphthalene	ND ND	2.0 2.0				"	"			
n-Propylbenzene	ND ND	2.0 2.0			"					

J. eht John

Tetra Tech Sacramento 10860 Gold Center Drive #200 Rancho Cordova CA, 95670	Gold Center Drive #200 Project Number: [none]								
			B-1-12' 65-01 (S	oil)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		SunStar La	aborato	ies. Inc.					
Volatile Organic Compounds by E									
Styrene	ND	2.0	ug/kg	1	5122817	12/28/05	12/28/05	EPA 8260B	
1,1,2,2-Tetrachloroethane	ND	2.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	2.0		"	"	"	"	"	
Tetrachloroethene	ND	2.0		"	"	"	"		
1,2,3-Trichlorobenzene	ND	2.0		"	"	"	"		
1,2,4-Trichlorobenzene	ND	2.0	"	"	"	"	"		
1,1,2-Trichloroethane	ND	2.0		"	"	"	"		
1,1,1-Trichloroethane	ND	2.0		"	"	"	"		
Trichloroethene	ND	2.0	"	"	"	"	"		
Trichlorofluoromethane	ND	2.0	"	"	"	"	"		
1,2,3-Trichloropropane	ND	2.0	"	"	"	"	"		
1,3,5-Trimethylbenzene	ND	2.0	"	"	"	"	"		
1,2,4-Trimethylbenzene	ND	2.0	"	"	"	"	"		
Vinyl chloride	ND	2.0	"	"	"	"	"		
Benzene	ND	2.0	"	"	"	"	"		
Toluene	ND	2.0	"	"	"	"	"		
Ethylbenzene	ND	2.0	"	"	"	"	"		
m,p-Xylene	ND	4.0	"	"	"	"	"		
o-Xylene	ND	2.0	"	"	"	"	"		
Tert-amyl methyl ether	ND	5.0	"	"	"	"	"		
Tert-butyl alcohol	ND	20	"	"	"	"	"		
Di-isopropyl ether	ND	5.0	"	"	"	"	"		
Ethyl tert-butyl ether	ND	5.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	5.0		"	"	"	"	"	
Surrogate: Toluene-d8		98.2 %	85.8	-113	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		106 %	73.5	-115	"	"	"	"	
Surrogate: Dibromofluoromethane		104 %	79-	126	"	"	"	"	

John J. life

John Shepler, Laboratory Director

Tetra Tech Sacramento 10860 Gold Center Drive #200 Rancho Cordova CA, 95670		Proje roject Numb oject Manag	er: [none					Reported 12/30/05 10	
		SB- T50156	-1-GW1 5-02 (W						
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	!	SunStar La	aborato	ries, Inc.					
Extractable Petroleum Hydrocarbo	ons by 8015								
C6-C12 (GRO)	ND	0.050	mg/l	1	5122823	12/28/05	12/29/05	EPA 8015m	
C13-C28 (DRO)	ND	0.050	"	"	"	"	"	"	
C29-C40 (MORO)	ND	0.10	"	"	"	"	"	"	
Metals by EPA 6010B									
Antimony	ND	50	ug/l	1	5122819	12/28/05	12/29/05	EPA 6010B	
Silver	ND	50	"	"	"	"	"	"	
Arsenic	ND	50	"	"	"	"	"	"	
Barium	94	50	"	"	"	"	"	"	
Beryllium	ND	50	"	"	"	"	12/29/05	"	
Cadmium	ND	50	"	"	"	"	12/29/05	"	
Chromium	ND	50	"	"	"	"	"	"	
Cobalt	ND	50	"	"	"	"	"	"	
Copper	ND	50	"	"	"	"	"	"	
Lead	ND	50	"	"	"	"	"	"	
Molybdenum	ND	50	"	"	"	"	"	"	
Nickel	ND	50	"	"	"	"	"	"	
Selenium	ND	50	"	"	"	"	"	"	
Thallium	ND	50	"	"	"	"	"	"	
Vanadium	ND	50	"	"	"	"	"	"	
Zinc	ND	50	"	"	"	"	"	"	
Cold Vapor Extraction EPA 7470/7	7471								
Mercury	ND	0.50	ug/l	1	5122820	12/28/05	12/28/05	EPA 7470A Water	

John J. life

John Shepler, Laboratory Director

Tetra Tech Sacramento 10860 Gold Center Drive #200 Rancho Cordova CA, 95670		Proje Project Numb Project Manag	er: [none					Reported 12/30/05 10	
		SB- T50156	-1-GW 5-02 (W						
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aborato	ries. Inc.					
Volatile Organic Compounds by E	PA Method 826								
Bromobenzene	ND	1.0	ug/l	1	5122824	12/28/05	12/28/05	EPA 8260B	
Bromochloromethane	ND	1.0	"	"	"	"	"	"	
Bromodichloromethane	ND	1.0						"	
Bromoform	ND	1.0						"	
Bromomethane	ND	1.0						"	
n-Butylbenzene	ND	1.0		"			"	"	
sec-Butylbenzene	ND	1.0		"			"	"	
tert-Butylbenzene	ND	1.0						"	
Carbon tetrachloride	ND	0.50						"	
Chlorobenzene	ND	1.0						"	
Chloroethane	ND	1.0						"	
Chloroform	ND	1.0						"	
Chloromethane	ND	1.0						"	
2-Chlorotoluene	ND	1.0						"	
4-Chlorotoluene	ND	1.0						"	
Dibromochloromethane	ND	1.0						"	
1,2-Dibromo-3-chloropropane	ND	1.0						"	
1,2-Dibromoethane (EDB)	ND	1.0						"	
Dibromomethane	ND	1.0						"	
1,2-Dichlorobenzene	ND	1.0						"	
1,3-Dichlorobenzene	ND	1.0						"	
1,4-Dichlorobenzene	ND	1.0						"	
Dichlorodifluoromethane	ND	0.50						"	
1,1-Dichloroethane	ND	1.0						"	
1,2-Dichloroethane	ND	0.50						"	
1,1-Dichloroethene	ND	1.0						"	
cis-1,2-Dichloroethene	ND	1.0					"	"	
trans-1,2-Dichloroethene	ND	1.0					"	"	
1,2-Dichloropropane	ND	1.0						"	
1,3-Dichloropropane	ND	1.0					"	"	
2,2-Dichloropropane	ND	1.0					"	"	
1,1-Dichloropropene	ND	1.0					"	"	
cis-1,3-Dichloropropene	ND	0.50					"	"	
trans-1,3-Dichloropropene	ND	0.50		"				"	
Hexachlorobutadiene	ND	1.0		"				"	
Isopropylbenzene	ND	1.0		"		"	"	"	
p-Isopropyltoluene	ND	1.0		"		"	"	"	
Methylene chloride	ND	1.0		"			"	"	
Naphthalene	ND	1.0		"			"	"	
n-Propylbenzene	ND	1.0						"	

J. eht John

Tetra Tech Sacramento 10860 Gold Center Drive #200 Rancho Cordova CA, 95670	F Pi	Reported: 12/30/05 10:24							
		SB- T50156	-1-GW2 5-02 (W						
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		SunStar La	aborato	ries. Inc.					
Volatile Organic Compounds by E				,					
Styrene	ND	1.0	ug/l	1	5122824	12/28/05	12/28/05	EPA 8260B	
1,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	1.0		"			"		
Tetrachloroethene	ND	1.0	"		"		"		
1,2,3-Trichlorobenzene	ND	1.0	"		"		"		
1,2,4-Trichlorobenzene	ND	1.0	"		"		"		
1,1,2-Trichloroethane	ND	1.0	"		"	"	"		
1,1,1-Trichloroethane	ND	1.0	"		"	"	"		
Trichloroethene	ND	1.0	"		"	"	"		
Trichlorofluoromethane	ND	1.0		"	"	"	"		
1,2,3-Trichloropropane	ND	1.0	"		"	"	"		
1,3,5-Trimethylbenzene	ND	1.0	"		"	"	"		
1,2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"		
Vinyl chloride	ND	0.50	"	"	"	"	"		
Benzene	ND	0.50	"		"	"	"		
Toluene	ND	0.50	"	"	"	"	"		
Ethylbenzene	ND	0.50	"	"	"	"	"		
m,p-Xylene	ND	1.0	"	"	"	"	"		
o-Xylene	ND	0.50	"	"	"	"	"		
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"		
Tert-butyl alcohol	ND	10	"	"	"	"	"		
Di-isopropyl ether	ND	2.0	"	"	"	"	"		
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"		
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"		
Surrogate: Toluene-d8		102 %	87.6	5-115	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		103 %	80-	112	"	"	"	"	
Surrogate: Dibromofluoromethane		114 %	78.6	5-122	"	"	"	"	

John J. life

John Shepler, Laboratory Director

Tetra Tech Sacramento 10860 Gold Center Drive #200		Proje oject Numb	ect: Jackso					Reported		
Rancho Cordova CA, 95670		oject Manag						12/30/05 10:24		
			B-2-12'							
			565-03 (S	oil)						
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	
		unStar L	aborator	ies, Inc.		1				
Extractable Petroleum Hydrocarb	ons by 8015									
C6-C12 (GRO)	ND	10	mg/kg	1	5122818	12/28/05	12/29/05	EPA 8015m		
C13-C28 (DRO)	ND	10	"	"			"	"		
C29-C40 (MORO)	ND	10	"	"	"	"	"	"		
Metals by EPA 6010B										
Antimony	ND	3.0	mg/kg	1	5122822	12/28/05	12/29/05	EPA 6010B		
Silver	ND	2.0	"	"	"	"	"	"		
Arsenic	ND	5.0	"	"	"	"	"	"		
Barium	36	1.0	"	"	"	"	"	"		
Beryllium	ND	1.0	"	"	"	"	12/29/05	"		
Cadmium	ND	2.0	"	"	"	"	12/29/05	"		
Chromium	48	2.0	"	"	"	"	"	"		
Cobalt	7.8	2.0	"	"	"	"	"	"		
Copper	2.6	1.0	"	"	"	"	"	"		
Lead	ND	3.0	"	"	"	"	"	"		
Molybdenum	ND	1.0	"	"	"	"	"	"		
Nickel	35	2.0	"	"	"	"	"	"		
Selenium	ND	5.0	"	"	"		"	"		
Thallium	ND	2.0	"	"	"	"	"	"		
Vanadium	16	5.0	"	"	"	"	"	"		
Zinc	18	1.0	"			"	"	"		
Cold Vapor Extraction EPA 7470/	7471									
Mercury	ND	0.10	mg/kg	1	5122821	12/28/05	12/30/05	EPA 7471A Soil		

John J. life

John Shepler, Laboratory Director

Tetra Tech Sacramento		U		on Towers						
10860 Gold Center Drive #200		Project Numb						Reported:		
Rancho Cordova CA, 95670		Project Manag	er: David	l Foley				12/30/05 10	:24	
			B-2-12' 65-03 (S	oil)						
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note	
		SunStar La	aborato	ies. Inc.						
Volatile Organic Compounds by E	PA Method 826									
Bromobenzene	ND	2.0	ug/kg	1	5122817	12/28/05	12/29/05	EPA 8260B		
Bromochloromethane	ND	2.0	ug/кд "	"	"	"	"	LI A 8200D		
Bromodichloromethane	ND	2.0		"						
Bromoform	ND	2.0		"						
Bromomethane	ND	2.0		"						
n-Butylbenzene	ND	2.0		"						
sec-Butylbenzene	ND	2.0		"						
tert-Butylbenzene	ND	2.0		"						
Carbon tetrachloride	ND	2.0		"						
Chlorobenzene	ND	2.0		"						
Chloroethane	ND	2.0		"						
Chloroform	ND	2.0		"						
Chloromethane	ND	2.0		"						
2-Chlorotoluene	ND	2.0		"				"		
4-Chlorotoluene	ND	2.0		"				"		
Dibromochloromethane	ND	2.0		"				"		
	ND	2.0								
1,2-Dibromo-3-chloropropane 1,2-Dibromoethane (EDB)	ND ND	2.0								
Dibromomethane	ND ND	2.0		"						
	ND ND	2.0								
1,2-Dichlorobenzene	ND ND	2.0								
1,3-Dichlorobenzene										
1,4-Dichlorobenzene	ND	2.0		"						
Dichlorodifluoromethane 1,1-Dichloroethane	ND	2.0		"						
	ND	2.0						"		
1,2-Dichloroethane	ND	2.0								
1,1-Dichloroethene cis-1,2-Dichloroethene	ND	2.0		"				"		
	ND	2.0								
trans-1,2-Dichloroethene	ND	2.0		"						
1,2-Dichloropropane	ND	2.0		"						
1,3-Dichloropropane	ND	2.0		"				"		
2,2-Dichloropropane	ND	2.0		"						
1,1-Dichloropropene	ND	2.0								
cis-1,3-Dichloropropene	ND	2.0								
trans-1,3-Dichloropropene	ND	2.0								
Hexachlorobutadiene	ND	2.0								
Isopropylbenzene	ND	2.0								
p-Isopropyltoluene	ND	2.0								
Methylene chloride	ND	2.0								
Naphthalene	ND	2.0								
n-Propylbenzene	ND	2.0		"			"			

J. eht John

Tetra Tech Sacramento 10860 Gold Center Drive #200 Rancho Cordova CA, 95670		Project: Jackson Towers Project Number: [none] Project Manager: David Foley								
			B-2-12' 65-03 (S	oil)						
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	
Anaryte		SunStar La			Daten	Ttepared	Anaryzed	Wiethod	Notes	
Volatile Organic Compounds by E				ics, me.						
Styrene	ND	2.0	ug/kg	1	5122817	12/28/05	12/29/05	EPA 8260B		
1,1,2,2-Tetrachloroethane	ND	2.0	ug/ Kg "	"	"	"	"	LI A 0200D		
1,1,1,2-Tetrachloroethane	ND	2.0					"			
Tetrachloroethene	ND	2.0		"			"			
1,2,3-Trichlorobenzene	ND	2.0		"			"			
1,2,4-Trichlorobenzene	ND	2.0		"			"			
1,1,2-Trichloroethane	ND	2.0				"	"	"		
1,1,1-Trichloroethane	ND	2.0				"	"	"		
Trichloroethene	ND	2.0	"	"		"	"	"		
Trichlorofluoromethane	ND	2.0	"	"		"	"	"		
1,2,3-Trichloropropane	ND	2.0	"	"		"	"			
1,3,5-Trimethylbenzene	ND	2.0	"	"		"	"	"		
1,2,4-Trimethylbenzene	ND	2.0		"	"	"	"	"		
Vinyl chloride	ND	2.0		"	"	"	"	"		
Benzene	ND	2.0		"	"	"	"			
Toluene	ND	2.0	"	"	"	"	"	"		
Ethylbenzene	ND	2.0	"	"	"	"	"	"		
m,p-Xylene	ND	4.0	"	"	"	"	"	"		
o-Xylene	ND	2.0	"	"	"	"	"	"		
Tert-amyl methyl ether	ND	5.0	"	"	"	"	"	"		
Tert-butyl alcohol	ND	20	"	"	"	"	"			
Di-isopropyl ether	ND	5.0	"	"	"	"	"	"		
Ethyl tert-butyl ether	ND	5.0	"	"	"	"	"	"		
Methyl tert-butyl ether	ND	5.0	"	"	"	"	"	"		
Surrogate: Toluene-d8		96.6 %	85.8	-113	"	"	"	"		
Surrogate: 4-Bromofluorobenzene		95.2 %	73.5	-115	"	"	"	"		
Surrogate: Dibromofluoromethane		123 %	79-	126	"	"	"	"		

John J. life

John Shepler, Laboratory Director

Tetra Tech Sacramento 10860 Gold Center Drive #200	P	Proje roject Numb		on Towers]				Reported	:	
Rancho Cordova CA, 95670	Pr	oject Manag	er: David	l Foley				12/30/05 10:24		
		SB- T50156	-2-GW2 5-04 (W							
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note	
	Ś	SunStar La	aborato	ries, Inc.						
Extractable Petroleum Hydrocarbo	ons by 8015									
C6-C12 (GRO)	ND	0.050	mg/l	1	5122823	12/28/05	12/29/05	EPA 8015m		
C13-C28 (DRO)	ND	0.050	"	"	"	"	"	"		
C29-C40 (MORO)	ND	0.10	"	"	"	"	"	"		
Metals by EPA 6010B										
Antimony	ND	50	ug/l	1	5122819	12/28/05	12/29/05	EPA 6010B		
Silver	ND	50		"	"	"	"	"		
Arsenic	ND	50	"	"	"	"	"	"		
Barium	110	50	"	"	"	"	"	"		
Beryllium	ND	50	"	"	"	"	"	"		
Cadmium	ND	50	"	"	"	"	"	"		
Chromium	ND	50	"	"	"	"	"	"		
Cobalt	ND	50	"	"	"	"	"	"		
Copper	ND	50	"	"	"	"	"	"		
Lead	ND	50	"	"	"	"	"	"		
Molybdenum	ND	50	"	"	"	"	"	"		
Nickel	ND	50		"	"	"	"	"		
Selenium	ND	50	"	"	"	"	"	"		
Fhallium	ND	50	"	"	"	"	"	"		
Vanadium	ND	50	"	"	"	"	"	"		
Zinc	ND	50	"	"	"	"	"	"		
Cold Vapor Extraction EPA 7470/7	7471									
Mercury	ND	0.50	ug/l	1	5122820	12/28/05	12/28/05	EPA 7470A Water		

John J. life

John Shepler, Laboratory Director

Tetra Tech Sacramento 10860 Gold Center Drive #200		Project: Jackson Towers Project Number: [none]								
Rancho Cordova CA, 95670		Project Manage						12/30/05 10:24		
		SB- T50156	-2-GW2 5-04 (W							
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note	
		SunStar La	aborato	ries, Inc.						
Volatile Organic Compounds by E	PA Method 826			,						
Bromobenzene	ND	1.0	ug/l	1	5122824	12/28/05	12/28/05	EPA 8260B		
Bromochloromethane	ND	1.0	"		"	"	"	"		
Bromodichloromethane	ND	1.0	"					"		
Bromoform	ND	1.0	"					"		
Bromomethane	ND	1.0						"		
n-Butylbenzene	ND	1.0						"		
sec-Butylbenzene	ND	1.0	"					"		
tert-Butylbenzene	ND	1.0						"		
Carbon tetrachloride	ND	0.50	"					"		
Chlorobenzene	ND	1.0	"					"		
Chloroethane	ND	1.0						"		
Chloroform	ND	1.0						"		
Chloromethane	ND	1.0	"					"		
2-Chlorotoluene	ND	1.0						"		
4-Chlorotoluene	ND	1.0						"		
Dibromochloromethane	ND	1.0	"					"		
1,2-Dibromo-3-chloropropane	ND	1.0						"		
1,2-Dibromoethane (EDB)	ND	1.0	"					"		
Dibromomethane	ND	1.0	"					"		
1,2-Dichlorobenzene	ND	1.0						"		
1,3-Dichlorobenzene	ND	1.0	"					"		
1,4-Dichlorobenzene	ND	1.0	"					"		
Dichlorodifluoromethane	ND	0.50						"		
1,1-Dichloroethane	ND	1.0						"		
1,2-Dichloroethane	ND	0.50						"		
1,1-Dichloroethene	ND	1.0	"					"		
cis-1,2-Dichloroethene	ND	1.0	"					"		
trans-1,2-Dichloroethene	ND	1.0	"					"		
1,2-Dichloropropane	ND	1.0						"		
1,3-Dichloropropane	ND	1.0						"		
2,2-Dichloropropane	ND	1.0	"					"		
1,1-Dichloropropene	ND	1.0	"					"		
cis-1,3-Dichloropropene	ND	0.50	"					"		
trans-1,3-Dichloropropene	ND	0.50						"		
Hexachlorobutadiene	ND	1.0						"		
Isopropylbenzene	ND	1.0						"		
p-Isopropyltoluene	ND	1.0						"		
Methylene chloride	ND	1.0		"		"	"	"		
Naphthalene	ND	1.0						"		
n-Propylbenzene	ND	1.0		"		"	"	"		

J. eht John

Tetra Tech Sacramento 10860 Gold Center Drive #200 Rancho Cordova CA, 95670		Project: Jackson Towers Project Number: [none] Project Manager: David Foley							
		SB- T50156	-2-GW2 5-04 (W						
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		SunStar La	aborato	ries, Inc.					
Volatile Organic Compounds by E	PA Method 8260			,					
Styrene	ND	1.0	ug/l	1	5122824	12/28/05	12/28/05	EPA 8260B	
1,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	1.0	"			"	"	"	
Tetrachloroethene	ND	1.0	"		"	"	"		
1,2,3-Trichlorobenzene	ND	1.0	"			"	"	"	
1,2,4-Trichlorobenzene	ND	1.0			"	"	"	"	
1,1,2-Trichloroethane	ND	1.0	"		"	"	"		
1,1,1-Trichloroethane	ND	1.0	"		"	"	"		
Trichloroethene	ND	1.0	"	"	"	"	"		
Trichlorofluoromethane	ND	1.0	"			"	"		
1,2,3-Trichloropropane	ND	1.0	"		"	"	"	"	
1,3,5-Trimethylbenzene	ND	1.0	"			"	"		
1,2,4-Trimethylbenzene	ND	1.0	"			"	"		
Vinyl chloride	ND	0.50	"			"	"		
Benzene	ND	0.50	"	"	"	"	"	"	
Toluene	ND	0.50	"	"	"	"	"	"	
Ethylbenzene	ND	0.50	"	"	"	"	"	"	
m,p-Xylene	ND	1.0	"	"	"	"	"	"	
o-Xylene	ND	0.50	"	"	"	"	"	"	
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"	
Tert-butyl alcohol	ND	10	"	"	"	"	"	"	
Di-isopropyl ether	ND	2.0		"	"	"	"	"	
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"	
Surrogate: Toluene-d8		104 %	87.6	<i>5-115</i>	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		99.8 %	80-	112	"	"	"	"	
Surrogate: Dibromofluoromethane		115 %	78.6	5-122	"	"	"	"	

John J. life

John Shepler, Laboratory Director

Tetra Tech Sacramento 10860 Gold Center Drive #200	Dr	Proje oject Numł	ect: Jackso					Reported	
Rancho Cordova CA, 95670		oject Manag						12/30/05 10:24	
		<u> </u>	B-3-12'						
			565-05 (S	oil)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
· · · ·	S	unStar L	aborator	ies, Inc.		1	2		
Extractable Petroleum Hydrocarbo	ons by 8015								
C6-C12 (GRO)	ND	10	mg/kg	1	5122818	12/28/05	12/29/05	EPA 8015m	
C13-C28 (DRO)	ND	10	"	"	"	"	"	"	
C29-C40 (MORO)	ND	10	"	"	"		"	"	
Metals by EPA 6010B									
Antimony	ND	3.0	mg/kg	1	5122822	12/28/05	12/29/05	EPA 6010B	
Silver	ND	2.0	"	"	"	"	"	"	
Arsenic	ND	5.0	"	"	"	"	"	"	
Barium	56	1.0	"	"	"	"	12/29/05	"	
Beryllium	ND	1.0	"	"	"	"	"	"	
Cadmium	ND	2.0	"	"	"	"	12/29/05	"	
Chromium	66	2.0	"	"	"	"	"	"	
Cobalt	6.5	2.0	"	"	"	"	"	"	
Copper	4.3	1.0	"	"	"	"	"	"	
Lead	ND	3.0	"	"	"	"	"	"	
Molybdenum	ND	1.0	"	"	"	"	"	"	
Nickel	33	2.0	"	"	"	"	"	"	
Selenium	ND	5.0	"	"	"	"	"	"	
Гhallium	ND	2.0	"	"	"	"	"	"	
Vanadium	24	5.0	"	"		"	"	"	
Zinc	20	1.0	"	"	"	"	"	"	
Cold Vapor Extraction EPA 7470/	7471								
Mercury	ND	0.10	mg/kg	1	5122821	12/28/05	12/30/05	EPA 7471A Soil	

John J. life

John Shepler, Laboratory Director

Tetra Tech Sacramento		-		on Towers						
10860 Gold Center Drive #200		Project Numb						Reported: 12/30/05 10:24		
Rancho Cordova CA, 95670		Project Manag	ger: David	l Foley						
			B-3-12' 65-05 (S	50il)						
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note	
		SunStar L	aborato	ries. Inc.						
Volatile Organic Compounds by EF	PA Method 826									
Bromobenzene	ND	2.0	ug/kg	1	5122817	12/28/05	12/28/05	EPA 8260B		
Bromochloromethane	ND	2.0	"	"	"	"	"	"		
Bromodichloromethane	ND	2.0		"				"		
Bromoform	ND	2.0		"				"		
Bromomethane	ND	2.0		"				"		
n-Butylbenzene	ND	2.0		"				"		
sec-Butylbenzene	ND	2.0		"				"		
ert-Butylbenzene	ND	2.0		"				"		
Carbon tetrachloride	ND	2.0		"				"		
Chlorobenzene	ND	2.0		"				"		
Chloroethane	ND	2.0		"						
Chloroform	ND	2.0		"				"		
Chloromethane	ND	2.0		"				"		
2-Chlorotoluene	ND	2.0								
4-Chlorotoluene	ND	2.0								
Dibromochloromethane	ND	2.0								
1,2-Dibromo-3-chloropropane	ND	2.0								
1,2-Dibromoethane (EDB)	ND	2.0								
Dibromomethane	ND	2.0								
I,2-Dichlorobenzene	ND	2.0								
1,3-Dichlorobenzene	ND	2.0								
1,4-Dichlorobenzene	ND	2.0								
Dichlorodifluoromethane	ND	2.0						"		
I,1-Dichloroethane	ND	2.0		"						
1,2-Dichloroethane	ND	2.0						"		
1,1-Dichloroethene	ND	2.0								
cis-1,2-Dichloroethene	ND	2.0						"		
rans-1,2-Dichloroethene	ND	2.0								
I,2-Dichloropropane	ND	2.0		"						
1,3-Dichloropropane	ND	2.0		"						
2,2-Dichloropropane	ND	2.0		"						
I,1-Dichloropropene	ND	2.0		"						
cis-1,3-Dichloropropene	ND	2.0								
rans-1,3-Dichloropropene	ND	2.0		"						
Hexachlorobutadiene	ND ND	2.0 2.0		"						
sopropylbenzene	ND ND			"				"		
	ND ND	2.0								
p-Isopropyltoluene		2.0								
Methylene chloride	ND	2.0								
Naphthalene Bromylhangana	ND	2.0								
n-Propylbenzene	ND	2.0								

J. eht John

Tetra Tech Sacramento 10860 Gold Center Drive #200 Rancho Cordova CA, 95670		Proje Project Numb roject Manag	er: [none	-				Reported: 12/30/05 10:24	
			B-3-12' 65-05 (S	oil)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
- Indiyte		SunStar La			Duten	Tieparea	7 mary 20a	Method	11010
Volatile Organic Compounds by E				ies, inc.					
Styrene	ND	2.0	ug/kg	1	5122817	12/28/05	12/28/05	EPA 8260B	
1,1,2,2-Tetrachloroethane	ND	2.0	ug/kg	"	"	"	"	LI A 0200D	
1,1,1,2-Tetrachloroethane	ND	2.0		"			"		
Tetrachloroethene	ND	2.0	"	"		"	"		
1,2,3-Trichlorobenzene	ND	2.0	"	"		"	"		
1,2,4-Trichlorobenzene	ND	2.0	"	"		"	"		
1,1,2-Trichloroethane	ND	2.0	"	"		"	"		
1,1,1-Trichloroethane	ND	2.0	"	"		"	"		
Trichloroethene	ND	2.0	"	"		"	"		
Trichlorofluoromethane	ND	2.0	"	"	"	"	"		
1,2,3-Trichloropropane	ND	2.0		"	"	"	"		
1,3,5-Trimethylbenzene	ND	2.0	"	"	"	"	"		
1,2,4-Trimethylbenzene	ND	2.0	"	"	"	"	"		
Vinyl chloride	ND	2.0	"	"	"	"	"		
Benzene	ND	2.0	"	"	"	"	"		
Toluene	ND	2.0	"	"	"	"	"		
Ethylbenzene	ND	2.0	"	"	"	"	"		
m,p-Xylene	ND	4.0	"	"	"	"	"		
o-Xylene	ND	2.0	"	"	"	"	"		
Tert-amyl methyl ether	ND	5.0	"	"	"	"	"		
Tert-butyl alcohol	ND	20	"	"	"	"	"		
Di-isopropyl ether	ND	5.0	"	"	"	"	"		
Ethyl tert-butyl ether	ND	5.0	"	"	"	"	"		
Methyl tert-butyl ether	ND	5.0	"	"	"	"	"	"	
Surrogate: Toluene-d8		96.0 %	85.8	-113	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		95.0 %	73.5	-115	"	"	"	"	
Surrogate: Dibromofluoromethane		114 %	79-	126	"	"	"	"	

John J. life

John Shepler, Laboratory Director

Tetra Tech Sacramento 10860 Gold Center Drive #200		roject Numb	er: [none					Reported	
Rancho Cordova CA, 95670	Pr	oject Manag	er: David	Foley				12/30/05 10	:24
		SB- T50156	-3-GW3 5-06 (W						
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
	:	SunStar La	aborator	ries, Inc.					
Extractable Petroleum Hydrocarbo	ons by 8015								
C6-C12 (GRO)	ND	0.050	mg/l	1	5122823	12/28/05	12/29/05	EPA 8015m	
C13-C28 (DRO)	ND	0.050	"	"	"	"	"	"	
C29-C40 (MORO)	ND	0.10	"	"	"		"	"	
Metals by EPA 6010B									
Antimony	ND	50	ug/l	1	5122819	12/28/05	12/29/05	EPA 6010B	
Silver	ND	50	"	"	"	"		"	
Arsenic	ND	50	"	"		"	"		
Barium	150	50	"	"	"	"		"	
Beryllium	ND	50	"	"	"	"	"	"	
Cadmium	ND	50	"	"	"	"	"	"	
Chromium	ND	50	"	"	"	"	"	"	
Cobalt	ND	50	"	"	"	"	"	"	
Copper	ND	50	"	"	"	"	"	"	
Lead	ND	50	"	"	"	"	"	"	
Molybdenum	ND	50	"	"	"	"	"	"	
Nickel	ND	50	"	"	"	"	"	"	
Selenium	ND	50	"	"	"	"	"	"	
Гhallium	ND	50	"	"	"	"	"	"	
Vanadium	ND	50	"	"		"		"	
Zinc	ND	50	"	"				"	
Cold Vapor Extraction EPA 7470/7	7471								
Mercury	ND	0.50	ug/l	1	5122820	12/28/05	12/28/05	EPA 7470A Water	

John J. life

John Shepler, Laboratory Director

Tetra Tech Sacramento 10860 Gold Center Drive #200 Rancho Cordova CA, 95670		Proje Project Numb Project Manag	er: [none					Reported 12/30/05 10	
		SB- T50156	-3-GW. 5-06 (W						
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aborato	ries. Inc.					
Volatile Organic Compounds by E	PA Method 826			,					
Bromobenzene	ND	1.0	ug/l	1	5122824	12/28/05	12/28/05	EPA 8260B	
Bromochloromethane	ND	1.0	"	"	"	"	"	"	
Bromodichloromethane	ND	1.0						"	
Bromoform	ND	1.0						"	
Bromomethane	ND	1.0					"		
n-Butylbenzene	ND	1.0		"				"	
sec-Butylbenzene	ND	1.0		"				"	
tert-Butylbenzene	ND	1.0							
Carbon tetrachloride	ND	0.50					"		
Chlorobenzene	ND	1.0					"		
Chloroethane	ND	1.0							
Chloroform	ND	1.0							
Chloromethane	ND	1.0							
2-Chlorotoluene	ND	1.0							
4-Chlorotoluene	ND	1.0							
Dibromochloromethane	ND	1.0							
1,2-Dibromo-3-chloropropane	ND	1.0						"	
1,2-Dibromoethane (EDB)	ND	1.0							
Dibromomethane	ND	1.0							
1,2-Dichlorobenzene	ND	1.0						"	
1,3-Dichlorobenzene	ND	1.0						"	
1,4-Dichlorobenzene	ND	1.0						"	
Dichlorodifluoromethane	ND	0.50							
1,1-Dichloroethane	ND	1.0						"	
1,2-Dichloroethane	ND	0.50							
1,1-Dichloroethene	ND	1.0							
cis-1,2-Dichloroethene	ND	1.0						"	
trans-1,2-Dichloroethene	ND	1.0						"	
1,2-Dichloropropane	ND	1.0		"				"	
1,3-Dichloropropane	ND	1.0		"				"	
2,2-Dichloropropane	ND	1.0							
1,1-Dichloropropene	ND	1.0							
cis-1,3-Dichloropropene	ND ND	0.50		"					
trans-1,3-Dichloropropene	ND	0.50		"					
Hexachlorobutadiene	ND	1.0		"					
Isopropylbenzene	ND ND	1.0		"					
	ND ND	1.0						"	
p-Isopropyltoluene									
Methylene chloride	ND	1.0							
Naphthalene n Propylhonzono	ND	1.0							
n-Propylbenzene	ND	1.0							

J. eht John

Tetra Tech Sacramento 10860 Gold Center Drive #200 Rancho Cordova CA, 95670	Project: Jackson Towers Project Number: [none] Project Manager: David Foley							Reported: 12/30/05 10:24				
SB-3-GW3 T501565-06 (Water)												
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes			
		SunStar La	aborato	ries. Inc.								
Volatile Organic Compounds by E	PA Method 8260			,								
Styrene	ND	1.0	ug/l	1	5122824	12/28/05	12/28/05	EPA 8260B				
1,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"				
1,1,1,2-Tetrachloroethane	ND	1.0				"	"					
Tetrachloroethene	4.1	1.0				"	"					
1,2,3-Trichlorobenzene	ND	1.0				"	"	"				
1,2,4-Trichlorobenzene	ND	1.0	"			"	"	"				
1,1,2-Trichloroethane	ND	1.0	"			"	"	"				
1,1,1-Trichloroethane	ND	1.0			"	"	"					
Trichloroethene	4.1	1.0	"	"	"	"	"	"				
Trichlorofluoromethane	ND	1.0	"			"	"	"				
1,2,3-Trichloropropane	ND	1.0	"			"	"					
1,3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"					
1,2,4-Trimethylbenzene	ND	1.0	"			"	"					
Vinyl chloride	ND	0.50	"	"	"	"	"	"				
Benzene	ND	0.50	"			"	"					
Toluene	ND	0.50	"	"	"	"	"	"				
Ethylbenzene	ND	0.50		"	"	"	"	"				
m,p-Xylene	ND	1.0		"	"	"	"	"				
o-Xylene	ND	0.50		"	"	"	"	"				
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"				
Tert-butyl alcohol	ND	10		"	"	"	"	"				
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"				
Ethyl tert-butyl ether	ND	2.0		"	"	"	"	"				
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"				
Surrogate: Toluene-d8		104 %	87.6	5-115	"	"	"	"				
Surrogate: 4-Bromofluorobenzene		96.0 %	80-	112	"	"	"	"				
Surrogate: Dibromofluoromethane		117 %	78.6	5-122	"	"	"	"				

John J. life

John Shepler, Laboratory Director

Extractable Petroleum Hydrocarbons by 8015 - Quality Control

SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5122818 - EPA 3550B GC										
Blank (5122818-BLK1)				Prepared:	12/28/05	Analyzed:	12/29/05			
C6-C12 (GRO)	ND	10	mg/kg							
C13-C28 (DRO)	ND	10	"							
C29-C40 (MORO)	ND	10	"							
LCS (5122818-BS1)				Prepared:	12/28/05	Analyzed:	12/29/05			
C13-C28 (DRO)	510	10	mg/kg	500		102	75-125			
Matrix Spike (5122818-MS1)	Source: T501565-01			Prepared:	12/28/05	Analyzed:	12/29/05			
C13-C28 (DRO)	530	10	mg/kg	500	ND	106	75-125			
Matrix Spike Dup (5122818-MSD1)	Source: T501565-01			Prepared:	12/28/05	Analyzed:	12/29/05			
C13-C28 (DRO)	550	10	mg/kg	500	ND	110	75-125	3.70	20	
Batch 5122823 - EPA 3510C GC										
Blank (5122823-BLK1)				Prepared:						
C6-C12 (GRO)	ND	0.050	mg/l							
C13-C28 (DRO)	ND	0.050	"							
C29-C40 (MORO)	ND	0.10	"							
LCS (5122823-BS1)				Prepared:	12/28/05	Analyzed:	12/29/05			
C13-C28 (DRO)	22.8	0.050	mg/l	20.0		114	75-125			
Matrix Spike (5122823-MS1)	Source: T501565-02		Prepared:	12/28/05	Analyzed:	12/29/05				
C13-C28 (DRO)	21.9	0.050	mg/l	20.0	ND	110	75-125			
Matrix Spike Dup (5122823-MSD1)	Source: T501565-02			Prepared: 12/28/05 Analyzed: 12/29/05						
C13-C28 (DRO)	21.9	0.050	mg/l	20.0	ND	110	75-125	0.00	20	

SunStar Laboratories, Inc.

J. eht John

John Shepler, Laboratory Director

Tetra Tech Sacramento	Project: Jackson Towers	
10860 Gold Center Drive #200	Project Number: [none]	Reported:
Rancho Cordova CA, 95670	Project Manager: David Foley	12/30/05 10:24

Metals by EPA 6010B - Quality Control

SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5122819 - EPA 3010A										
Blank (5122819-BLK1)				Prepared:	12/28/05	Analyzed	: 12/29/05			
Antimony	ND	50	ug/l							
Silver	ND	50	"							
Arsenic	ND	50	"							
Barium	ND	50	"							
Beryllium	ND	50	"							
Cadmium	ND	50	"							
Chromium	ND	50	"							
Cobalt	ND	50	"							
Copper	ND	50	"							
Lead	ND	50	"							
Molybdenum	ND	50	"							
Nickel	ND	50								
Selenium	ND	50	"							
Thallium	ND	50								
Vanadium	ND	50	"							
Zinc	ND	50	"							
LCS (5122819-BS1)				Prepared:	12/28/05	Analyzed	: 12/29/05			
Arsenic	1060	50	ug/l	1110		95.5	75-125			
Barium	1150	50	"	1110		104	75-125			
Cadmium	1150	50	"	1110		104	75-125			
Chromium	1100	50	"	1110		99.1	75-125			
Lead	1140	50	"	1110		103	75-125			
Matrix Spike (5122819-MS1)	So	urce: T50156	5-02	Prepared:	12/28/05	Analyzed	: 12/29/05			
Arsenic	1180	50	ug/l	1110	ND	106	75-125			
Barium	1190	50	"	1110	94	98.7	75-125			
Cadmium	1090	50		1110	ND	98.2	75-125			
Chromium	1030	50		1110	ND	92.8	75-125			
Lead	998	50		1110	ND	89.9	75-125			

SunStar Laboratories, Inc.

J. eht John

John Shepler, Laboratory Director

Tetra Tech Sacramento	Project: Jackson Towers	
10860 Gold Center Drive #200	Project Number: [none]	Reported:
Rancho Cordova CA, 95670	Project Manager: David Foley	12/30/05 10:24

Metals by EPA 6010B - Quality Control

SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5122819 - EPA 3010A										
Matrix Spike Dup (5122819-MSD1)	Sour	ce: T50156	5-02	Prepared:	12/28/05	Analyzed	1: 12/29/05			
Arsenic	1150	50	ug/l	1110	ND	104	75-125	2.58	20	
Barium	1210	50	"	1110	94	101	75-125	1.67	20	
Cadmium	1110	50		1110	ND	100	75-125	1.82	20	
Chromium	1020	50	"	1110	ND	91.9	75-125	0.976	20	
	983	50	"	1110	ND	88.6	75-125	1.51	20	

Blank (5122822-BLK1) Prepared: 12/28/05 Analyzed: 12/29/05 Antimony ND 3.0 mg/kg Silver 2.0 ND 5.0 •• Arsenic ND Barium ND 1.0 .. Beryllium ND 1.0 Cadmium ND 2.0 Chromium ND 2.0Cobalt ND 2.0 Copper ND 1.0 ND Lead 3.0 Molybdenum ND 1.0Nickel ND 2.0 Selenium ND 5.0 Thallium ND 2.0 Vanadium 5.0 ND .. Zinc ND 1.0

Matrix Spike (5122822-MS1)	Source	e: T50156	5-01	Prepared:	12/28/05	Analyzed:	12/29/05
Arsenic	103	5.0	mg/kg	100	ND	103	75-125
Barium	175	1.0		100	70	105	75-125
Cadmium	108	2.0	"	100	0.40	108	75-125
Chromium	157	2.0		100	63	94.0	75-125
Lead	109	3.0	"	100	1.7	107	75-125

SunStar Laboratories, Inc.

J. eht

John Shepler, Laboratory Director

Tetra Tech Sacramento	Project: Jackson Towers	
10860 Gold Center Drive #200	Project Number: [none]	Reported:
Rancho Cordova CA, 95670	Project Manager: David Foley	12/30/05 10:24

Metals by EPA 6010B - Quality Control

SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5122822 - EPA 3051										
Matrix Spike Dup (5122822-MSD1)	Sour	ce: T50156	55-01	Prepared:	12/28/05	Analyzed	1: 12/29/05			
Arsenic	101	5.0	mg/kg	100	ND	101	75-125	1.96	20	
Barium	177	1.0	"	100	70	107	75-125	1.14	20	
Cadmium	107	2.0	"	100	0.40	107	75-125	0.930	20	
Chromium	171	2.0	"	100	63	108	75-125	8.54	20	
Lead	110	3.0	"	100	1.7	108	75-125	0.913	20	

SunStar Laboratories, Inc.

J. eht John

John Shepler, Laboratory Director

Project: Jackson Towers Project Number: [none] Project Manager: David Foley

Reported: 12/30/05 10:24

Cold Vapor Extraction EPA 7470/7471 - Quality Control

SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5122820 - EPA 7470A Water										
Blank (5122820-BLK1)				Prepared a	& Analyz	ed: 12/28/0	5			
Mercury	ND	0.50	ug/l							
LCS (5122820-BS1)				Prepared a	& Analyz	ed: 12/28/0	5			
Mercury	9.50	0.50	ug/l	10.3		92.2	75-125			
Matrix Spike (5122820-MS1)	Sou	rce: T50156	5-02	Prepared a	& Analyz	ed: 12/28/0	5			
Mercury	10.0	0.50	ug/l	10.3	ND	97.1	75-125			
Matrix Spike Dup (5122820-MSD1)	Sou	rce: T50156	5-02	Prepared a	& Analyz	ed: 12/28/0	5			
Mercury	9.69	0.50	ug/l	10.3	ND	94.1	75-125	3.15	20	
Batch 5122821 - EPA 7471A Soil										
Blank (5122821-BLK1)				Prepared:	12/28/05	Analyzed:	12/30/05			
Mercury	ND	0.10	mg/kg							
LCS (5122821-BS1)				Prepared:	12/28/05	Analyzed:	12/30/05			
Mercury	2.05	0.10	mg/kg	2.00		102	80-120			
Matrix Spike (5122821-MS1)	Sou	rce: T50156	5-01	Prepared:	12/28/05	Analyzed:	12/30/05			
Mercury	1.97	0.10	mg/kg	2.00	0.038	96.6	75-125			
Matrix Spike Dup (5122821-MSD1)	Sou	rce: T50156	5-01	Prepared:	12/28/05	Analyzed:	12/30/05			
Mercury	1.91	0.10	mg/kg	2.00	0.038	93.6	75-125	3.09	20	

SunStar Laboratories, Inc.

J. eht John

John Shepler, Laboratory Director

Volatile Organic Compounds by EPA Method 8260B - Quality Control

SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5122817 - EPA 5030 GCMS										
Blank (5122817-BLK1)				Prepared	& Analyze	ed: 12/28/	05			
Surrogate: Toluene-d8	97.0		ug/kg	100		97.0	85.8-113			
Surrogate: 4-Bromofluorobenzene	95.6		ид/кд "	100		95.6	73.5-115			
Surrogate: Dibromofluoromethane	104		"	100		104	79-126			
Bromobenzene	ND	2.0	"							
Bromochloromethane	ND	2.0	"							
Bromodichloromethane	ND	2.0	"							
Bromoform	ND	2.0	"							
Bromomethane	ND	2.0	"							
n-Butylbenzene	ND	2.0	"							
sec-Butylbenzene	ND	2.0	"							
tert-Butylbenzene	ND	2.0	"							
Carbon tetrachloride	ND	2.0	"							
Chlorobenzene	ND	2.0	"							
Chloroethane	ND	2.0	"							
Chloroform	ND	2.0	"							
Chloromethane	ND	2.0	"							
2-Chlorotoluene	ND	2.0	"							
4-Chlorotoluene	ND	2.0	"							
Dibromochloromethane	ND	2.0	"							
1,2-Dibromo-3-chloropropane	ND	2.0	"							
1,2-Dibromoethane (EDB)	ND	2.0	"							
Dibromomethane	ND	2.0	"							
1,2-Dichlorobenzene	ND	2.0	"							
1,3-Dichlorobenzene	ND	2.0	"							
1,4-Dichlorobenzene	ND	2.0	"							
Dichlorodifluoromethane	ND	2.0	"							
1,1-Dichloroethane	ND	2.0	"							
1,2-Dichloroethane	ND	2.0	"							
1,1-Dichloroethene	ND	2.0	"							
cis-1,2-Dichloroethene	ND	2.0	"							
trans-1,2-Dichloroethene	ND	2.0	"							
1,2-Dichloropropane	ND	2.0	"							
1,3-Dichloropropane	ND	2.0	"							
2,2-Dichloropropane	ND	2.0	"							
1,1-Dichloropropene	ND	2.0	"							
cis-1,3-Dichloropropene	ND	2.0	"							
trans-1,3-Dichloropropene	ND	2.0	"							
Hexachlorobutadiene	ND	2.0	"							
Isopropylbenzene	ND	2.0	"							
p-Isopropyltoluene	ND	2.0	"							
Methylene chloride	ND	2.0	"							

SunStar Laboratories, Inc.

J. est John

Volatile Organic Compounds by EPA Method 8260B - Quality Control

SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5122817 - EPA 5030 GCMS										
Blank (5122817-BLK1)				Prepared	& Analyze	ed: 12/28/	05			
Naphthalene	ND	2.0	ug/kg							
n-Propylbenzene	ND	2.0	"							
Styrene	ND	2.0	"							
1,1,2,2-Tetrachloroethane	ND	2.0	"							
1,1,1,2-Tetrachloroethane	ND	2.0	"							
Tetrachloroethene	ND	2.0	"							
1,2,3-Trichlorobenzene	ND	2.0	"							
1,2,4-Trichlorobenzene	ND	2.0	"							
1,1,2-Trichloroethane	ND	2.0	"							
1,1,1-Trichloroethane	ND	2.0	"							
Trichloroethene	ND	2.0	"							
Trichlorofluoromethane	ND	2.0	"							
1,2,3-Trichloropropane	ND	2.0	"							
1,3,5-Trimethylbenzene	ND	2.0	"							
1,2,4-Trimethylbenzene	ND	2.0	"							
Vinyl chloride	ND	2.0	"							
Benzene	ND	2.0	"							
Toluene	ND	2.0	"							
Ethylbenzene	ND	2.0	"							
m,p-Xylene	ND	4.0	"							
o-Xylene	ND	2.0	"							
Tert-amyl methyl ether	ND	5.0	"							
Tert-butyl alcohol	ND	20	"							
Di-isopropyl ether	ND	5.0	"							
Ethyl tert-butyl ether	ND	5.0	"							
Methyl tert-butyl ether	ND	5.0	"							
LCS (5122817-BS1)				Prepared	& Analyze	ed: 12/28/	05			
Surrogate: Toluene-d8	102		ug/kg	100		102	85.8-113			
Surrogate: 4-Bromofluorobenzene	99.5		"	100		99.5	73.5-115			
Surrogate: Dibromofluoromethane	117		"	100		117	79-126			
Chlorobenzene	241	2.0	"	250		96.4	75-125			
1,1-Dichloroethene	268	2.0	"	250		107	75-125			
Trichloroethene	289	2.0	"	250		116	75-125			
Benzene	296	2.0	"	250		118	75-125			
Toluene	272	2.0	"	250		109	75-125			

SunStar Laboratories, Inc.

J. lit John

John Shepler, Laboratory Director

Volatile Organic Compounds by EPA Method 8260B - Quality Control

SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5122817 - EPA 5030 GCMS										
Matrix Spike (5122817-MS1)	Sou	ırce: T50156	5-01	Prepared	& Analyze	ed: 12/28/	05			
Surrogate: Toluene-d8	103		ug/kg	100		103	85.8-113			
Surrogate: 4-Bromofluorobenzene	95.4		"	100		95.4	73.5-115			
Surrogate: Dibromofluoromethane	118		"	100		118	79-126			
Chlorobenzene	194	2.0	"	250	ND	77.6	75-125			
1,1-Dichloroethene	233	2.0	"	250	ND	93.2	75-125			
Trichloroethene	235	2.0	"	250	ND	94.0	75-125			
Benzene	252	2.0	"	250	ND	101	75-125			
Toluene	221	2.0	"	250	ND	88.4	75-125			
Matrix Spike Dup (5122817-MSD1)	Sou	ırce: T50156	5-01	Prepared	& Analyze	ed: 12/28/	05			
Surrogate: Toluene-d8	100		ug/kg	100		100	85.8-113			
Surrogate: 4-Bromofluorobenzene	96.5		"	100		96.5	73.5-115			
Surrogate: Dibromofluoromethane	115		"	100		115	79-126			
Chlorobenzene	189	2.0	"	250	ND	75.6	75-125	2.61	20	
1,1-Dichloroethene	228	2.0	"	250	ND	91.2	75-125	2.17	20	
Trichloroethene	216	2.0	"	250	ND	86.4	75-125	8.43	20	
Benzene	229	2.0	"	250	ND	91.6	75-125	9.56	20	
Toluene	191	2.0	"	250	ND	76.4	75-125	14.6	20	

Batch 5122824 - EPA 5030 GCMS

Blank (5122824-BLK1)				Prepared & An	nalyzed: 12/28/	/05
Surrogate: Toluene-d8	39.7		ug/l	40.0	99.2	87.6-115
Surrogate: 4-Bromofluorobenzene	41.3		"	40.0	103	80-112
Surrogate: Dibromofluoromethane	43.0		"	40.0	108	78.6-122
Bromobenzene	ND	1.0	"			
Bromochloromethane	ND	1.0	"			
Bromodichloromethane	ND	1.0	"			
Bromoform	ND	1.0	"			
Bromomethane	ND	1.0	"			
n-Butylbenzene	ND	1.0	"			
ec-Butylbenzene	ND	1.0	"			
ert-Butylbenzene	ND	1.0	"			
Carbon tetrachloride	ND	0.50	"			
Chlorobenzene	ND	1.0	"			
Chloroethane	ND	1.0	"			
Chloroform	ND	1.0	"			
Chloromethane	ND	1.0	"			
-Chlorotoluene	ND	1.0	"			
-Chlorotoluene	ND	1.0	"			
Dibromochloromethane	ND	1.0	"			

SunStar Laboratories, Inc.

J. eht John

Volatile Organic Compounds by EPA Method 8260B - Quality Control

SunStar Laboratories, Inc.

		D		a ''	G		ALBEC		DPP	
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5122824 - EPA 5030 GCMS										
Blank (5122824-BLK1)				Prepared	& Analyze	ed: 12/28/	05			
1,2-Dibromo-3-chloropropane	ND	1.0	ug/l	•	•					
1,2-Dibromoethane (EDB)	ND	1.0								
Dibromomethane	ND	1.0								
1,2-Dichlorobenzene	ND	1.0								
1,3-Dichlorobenzene	ND	1.0	"							
1,4-Dichlorobenzene	ND	1.0	"							
Dichlorodifluoromethane	ND	0.50								
1,1-Dichloroethane	ND	1.0	"							
1,2-Dichloroethane	ND	0.50								
1,1-Dichloroethene	ND	1.0								
cis-1,2-Dichloroethene	ND	1.0								
trans-1,2-Dichloroethene	ND	1.0	"							
1,2-Dichloropropane	ND	1.0	"							
1,3-Dichloropropane	ND	1.0	"							
2,2-Dichloropropane	ND	1.0								
1,1-Dichloropropene	ND	1.0								
cis-1,3-Dichloropropene	ND	0.50	"							
trans-1,3-Dichloropropene	ND	0.50								
Hexachlorobutadiene	ND	1.0	"							
Isopropylbenzene	ND	1.0	"							
p-Isopropyltoluene	ND	1.0	"							
Methylene chloride	ND	1.0	"							
Naphthalene	ND	1.0	"							
n-Propylbenzene	ND	1.0	"							
Styrene	ND	1.0	"							
1,1,2,2-Tetrachloroethane	ND	1.0								
1,1,1,2-Tetrachloroethane	ND	1.0	"							
Tetrachloroethene	ND	1.0								
1,2,3-Trichlorobenzene	ND	1.0								
1,2,4-Trichlorobenzene	ND	1.0								
1,1,2-Trichloroethane	ND	1.0								
1,1,1-Trichloroethane	ND	1.0								
Trichloroethene	ND	1.0	"							
Trichlorofluoromethane	ND	1.0								
1,2,3-Trichloropropane	ND	1.0								
1,3,5-Trimethylbenzene	ND	1.0								
1,2,4-Trimethylbenzene	ND	1.0								
Vinyl chloride	ND	0.50								
Benzene	ND	0.50								
Toluene	ND	0.50	"							
Ethylbenzene	ND	0.50								

SunStar Laboratories, Inc.

J. life John

Volatile Organic Compounds by EPA Method 8260B - Quality Control

SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5122824 - EPA 5030 GCMS										
Blank (5122824-BLK1)				Prepared	& Analyz	ed: 12/28/	05			
m,p-Xylene	ND	1.0	ug/l							
o-Xylene	ND	0.50								
Tert-amyl methyl ether	ND	2.0								
Tert-butyl alcohol	ND	10								
Di-isopropyl ether	ND	2.0	"							
Ethyl tert-butyl ether	ND	2.0	"							
Methyl tert-butyl ether	ND	1.0	"							
LCS (5122824-BS1)				Prepared	& Analyz	ed: 12/28/	05			
Surrogate: Toluene-d8	39.4		ug/l	40.0		98.5	87.6-115			
Surrogate: 4-Bromofluorobenzene	39.9		"	40.0		99.8	80-112			
Surrogate: Dibromofluoromethane	45.3		"	40.0		113	78.6-122			
Chlorobenzene	117	1.0	"	100		117	75-125			
1,1-Dichloroethene	95.7	1.0	"	100		95.7	75-125			
Trichloroethene	114	1.0		100		114	75-125			
Benzene	109	0.50		100		109	75-125			
Toluene	97.4	0.50		100		97.4	75-125			
Matrix Spike (5122824-MS1)	So	urce: T50156	5-02	Prepared	& Analyz	ed: 12/28/	05			
Surrogate: Toluene-d8	40.1		ug/l	40.0		100	87.6-115			
Surrogate: 4-Bromofluorobenzene	39.5		"	40.0		98.8	80-112			
Surrogate: Dibromofluoromethane	47.7		"	40.0		119	78.6-122			
Chlorobenzene	116	1.0	"	100	ND	116	75-125			
1,1-Dichloroethene	107	1.0	"	100	ND	107	75-125			
Trichloroethene	102	1.0		100	ND	102	75-125			
Benzene	112	0.50	"	100	ND	112	75-125			
Toluene	93.4	0.50	"	100	ND	93.4	75-125			

SunStar Laboratories, Inc.

J. lik John

John Shepler, Laboratory Director

Tetra Tech Sacramento	Project: Jackson Towers	
10860 Gold Center Drive #200	Project Number: [none]	Reported:
Rancho Cordova CA, 95670	Project Manager: David Foley	12/30/05 10:24

Volatile Organic Compounds by EPA Method 8260B - Quality Control

SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5122824 - EPA 5030 GCMS										
Matrix Spike Dup (5122824-MSD1)	Sour	-ce: T50156	5-02	Prepared	& Analyze	ed: 12/28/	05			
Surrogate: Toluene-d8	39.9		ug/l	40.0		99.8	87.6-115			
Surrogate: 4-Bromofluorobenzene	39.0		"	40.0		97.5	80-112			
Surrogate: Dibromofluoromethane	46.2		"	40.0		116	78.6-122			
Chlorobenzene	118	1.0	"	100	ND	118	75-125	1.71	20	
1,1-Dichloroethene	109	1.0		100	ND	109	75-125	1.85	20	
Trichloroethene	104	1.0		100	ND	104	75-125	1.94	20	
Benzene	114	0.50	"	100	ND	114	75-125	1.77	20	
Toluene	108	0.50	"	100	ND	108	75-125	14.5	20	

SunStar Laboratories, Inc.

J. lit John

John Shepler, Laboratory Director

Tetra Tech Sacramento	Project: Jackson Towers	
10860 Gold Center Drive #200	Project Number: [none]	Reported:
Rancho Cordova CA, 95670	Project Manager: David Foley	12/30/05 10:24

Notes and Definitions

DET Analyte DETECTED

- ND Analyte NOT DETECTED at or above the reporting limit
- NR Not Reported
- dry Sample results reported on a dry weight basis
- RPD Relative Percent Difference

SunStar Laboratories, Inc.

J. eht John

John Shepler, Laboratory Director

Tetra Tech EM Inc.		CHAIN OF CUSTOD 10670 While Rock Road, Suite 108 Rancho Contory, CA 98779 Francho Contory, CA 98779 (910) 862-8308 FAX (910) 863-8397	≻ .	RECORD		- 7 2 - MIM VRO X MI	05 1	CILAIN OF CLAST CAN MINIMAN	Nº 7606	с С
INVIDED TOWE		PHOJECT NANAGER DOU'L TO LEY / BOL	Azan				REQUESTED	1 <	1	
THINIECT MININER P226 L. CG. J. 84.04. 0030										
FROJENT LINATION Oakland	INESTINATION LABORATIONY SUNSTER LABORATION	NTHAN Kentadary			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5340				
SAMPLEN(S) BOLO AZAM	ADDRESS					LE C				
SAMITLEN SUCINATURESSI Apo O COUNT	List'	siate CA	477		1 2 M	1 0 C			0,	
NITE CONTACTATELEPHONE NUMBER BANK DZA NA GIL 7/0 21.85									R	
CONDENTIFICATION	BULL FRANK CU	950-304-55 NO/TVPE OF	N	The	S DO				REMARKS	S
	HVPE TYPE	CUNTAINERS AI	NOUND TIME	\succ		\downarrow			(CRAB. COMMISTEL ETC.)	TE.ETC.)
58-1-12.	1 105 2020 12/	eeve		X X	×			0		
38-1-GWI	1110 weter 6-	6-0045 1-250m(poly		X X	X			20		
5B-2-121	1155 Soil 1-1	-12" Acetate		メズ	X			63		1
58-2- (JW2	1250 Weder 6	6-VOAS -250mi poly		X X	X			रु	011/	
58-3-12'	M35 5011 1-1	1-12" Acetate		X X	X			50.		$\overline{\ }$
58.3-Guuz	1605 water 1-2	6 - Ud As 1-250 MI MIY	1	ر لا	X			90		•
							·			
SHIPPED VIAI	AIRBILL &			PECIAL II PAS and	ISTRUCTIC	SPECIAL INSTRUCTIONS: Filter VOAS are HEL WEEP red. Do	ground white	SPECIAL INSTRUCTIONS: Fifter growndwater sample at lab Vots are the preserved, Daly is thing area corred. Daville	for fines (by 12/291	(FINAL)
RELINQUISHED BY (SIGNATURE)	PRINT NAME/ COMPANY	NY DATE	TIME	RECEIV	RECEIVED BY (SIGNATURE)	NATURE)	PRINT	PRINT NAME COMPANY	DATE	TIME
port am	Bold Azam/Tetra tech	ech 12/27/05	1911	Yan	M.	Nh.	JA M	JRIMZ MIZEr	W 29/00	116
650 1	le Fo	12/28/sc	ତ କରି	A.	アン		AALON	HARRY	12/28/04 1	0 * 0
				10/01/02/01		UPPERIVENATE AN AVAINATAND AND SUMME	CALVALL.			

.29

1.000