

Environmental Consulting & Real Estate Due Diligence 3255 Wilshire Blvd. Suite 1510 Los Angeles, CA 90010

By Alameda County Environmental Health 8:29 am, Sep 13, 2016

RECEIVED

RELIANCE LETTER

March 10, 2016

To: JPMorgan Chase Bank, NA ("Lender")

560 Mission Street, Floor 5 San Francisco, CA 94105

and

U.S. Small Business Administration ("SBA")

Re: Borrower Name: Carla K Martinez

Project Address ("Property"): 2449-2451 Santa Clara Avenue, Alameda, CA 94501

Environmental Investigation Report Number(s): 6360805ESAII

Dear Lender and SBA:

Hyung Kim ("Environmental Professional") meets the definition of an Environmental Professional as defined by 40 C.F.R. § 312.10(b) and has performed the following "Environmental Investigation(s)" (check all that apply):

and (choose an indicapply).
A Transaction Screen of the Property dated, 20, conducted in accordance with ASTM International's most recent standard (currently ASTM E1528-14);
A Phase I (or an Updated Phase I) Environmental Site Assessment of the Property dated, 20, conducted in accordance with ASTM International's most recent standard (currently ASTM E1527-13). In addition, the Environmental Professional has addressed the performance of the "additional inquiries" set forth at 40 C.F.R. § 312.22;
X A Phase II Environmental Site Assessment of the Property dated March 10, 2016, conducted in accordance with generally-accepted industry standards of practice and consisting of a scope of work that would be considered reasonable and sufficient to identify the presence, nature and extent of a Release as it impacts the Property.

Reliance by SBA and Lender. Environmental Professional (and Environmental Professional's firm, where applicable) understand(s) that the Property may serve as collateral for an SBA guaranteed loan, a condition for which is an Environmental Investigation of the Property by an Environmental Professional. Environmental Professional (and Environmental Professional's firm, where applicable) authorize(s) Lender and SBA to use and rely upon the Environmental Investigation. Further, Environmental Professional (and Environmental Professional's firm, where applicable) authorize(s) Lender and SBA to release a copy of the Environmental Investigation to the borrower for information purposes only. This letter is not an update or modification to the Environmental Investigation. Environmental Professional (and Environmental Professional's firm, where applicable) makes no representation or warranty, express or implied, that the condition of the Property on the date of this letter is the same or similar to the condition of the Property described in the Environmental Investigation.

Tel 888-ODICENV 888-634-2368 Fax 213-380-0505 Environmental Consulting & Real Estate Due Diligence 3255 Wilshire Blvd. Suite 1510 Los Angeles, CA 90010

<u>Insurance Coverage</u>. Environmental Professional (and/or Environmental Professional's firm, where applicable) certifies that he or she or the firm is covered by errors and omissions liability insurance with a minimum coverage of \$1,000,000 per claim (or occurrence) and that evidence of this insurance is attached. As to the Lender and SBA, Environmental Professional (and Environmental Professional's firm, where applicable) specifically waive(s) any dollar amount limitations on liability up to \$1,000,000.

<u>Waiver of Right to Indemnification.</u> Environmental Professional and Environmental Professional's firm waive any right to indemnification from the Lender and SBA.

<u>Impartiality</u>. Environmental Professional certifies that (1) to the best of his or her knowledge, Environmental Professional is independent of and not a representative, nor an employee or affiliate of seller, borrower, operating company, or any person in which seller has an ownership interest; and (2) the Environmental Professional has not been unduly influenced by any person with regard to the preparation of the Environmental Investigation or the contents thereof.

Acknowledgment. The undersigned acknowledge(s) and agree(s) that intentionally falsifying or concealing any material fact with regard to the subject matter of this letter or the Environmental Investigations may, in addition to other penalties, result in prosecution under applicable laws including 18 U.S.C. § 1001.

Environmental Professional Printed Name: Hyung Kim

(Note: The Environmental Professional must <u>always</u> sign this letter above. If the Environmental Professional is employed or retained by an Environmental Firm, then an authorized representative of the firm must also sign below).

Signature of representative of firm who is authorized to sign this letter

Printed Name & Title: Eric Miller, President

Name of Environmental Firm: Odic Environmental

Enclosure: Evidence of Insurance

CERTIFICATE OF LIABILITY INSURANCE

ODICE-1 OP ID: BMG

DATE (MM/DD/YYYY) 10/20/2015

THIS CERTIFICATE IS ISSUED AS A MATTER OF INFORMATION ONLY AND CONFERS NO RIGHTS UPON THE CERTIFICATE HOLDER. THIS CERTIFICATE DOES NOT AFFIRMATIVELY OR NEGATIVELY AMEND, EXTEND OR ALTER THE COVERAGE AFFORDED BY THE POLICIES BELOW. THIS CERTIFICATE OF INSURANCE DOES NOT CONSTITUTE A CONTRACT BETWEEN THE ISSUING INSURER(S), AUTHORIZED REPRESENTATIVE OR PRODUCER, AND THE CERTIFICATE HOLDER.

IMPORTANT: If the certificate holder is an ADDITIONAL INSURED, the policy(ies) must be endorsed. If SUBROGATION IS WAIVED, subject to the terms and conditions of the policy, certain policies may require an endorsement. A statement on this certificate does not confer rights to the certificate holder in lieu of such endorsement(s)

•••••			
PRODUCER	0.0 - 0.1 m	CONTACT Bobbi J. McGee-Zavala	
P.O. Box 7	ո & Co. 2, Inc. 93	PHONE (A/C, No, Ext): 800-746-0048 FAX (A/C, No): 86	6-784-4876
Teton Villa Rick van C	ge, WY 83025	E-MAIL ADDRESS: service@vanoppenco2.com	
INION VAII C	рреп	INSURER(S) AFFORDING COVERAGE	NAIC #
		INSURER A: Westchester Surplus Lines	10172
INSURED	ODIC Environmental, Inc.	INSURER B : SCIF	35076
	3255 Wilshire Blvd., #1510 Los Angeles, CA 90010	INSURER C: Hartford Fire Insurance Co.	19682
	200 / Higolog, 0/1 000 10	INSURER D:	
		INSURER E:	
		INSURER F:	

CERTIFICATE NUMBER: COVERAGES REVISION NUMBER:

THIS IS TO CERTIFY THAT THE POLICIES OF INSURANCE LISTED BELOW HAVE BEEN ISSUED TO THE INSURED NAMED ABOVE FOR THE POLICY PERIOD INDICATED. NOTWITHSTANDING ANY REQUIREMENT, TERM OR CONDITION OF ANY CONTRACT OR OTHER DOCUMENT WITH RESPECT TO WHICH THIS CERTIFICATE MAY BE ISSUED OR MAY PERTAIN, THE INSURANCE AFFORDED BY THE POLICIES DESCRIBED HEREIN IS SUBJECT TO ALL THE TERMS, EXCLUSIONS AND CONDITIONS OF SUCH POLICIES. LIMITS SHOWN MAY HAVE BEEN REDUCED BY PAID CLAIMS.

INSR LTR		TYPE OF INSURANCE	ADDL S	POLICY NUMBER	POLICY EFF (MM/DD/YYYY)	POLICY EXP (MM/DD/YYYY)	LIMIT	s	
Α	X	COMMERCIAL GENERAL LIABILITY					EACH OCCURRENCE	\$	1,000,000
1		CLAIMS-MADE X OCCUR		G27165357 002	10/21/2015	10/21/2017	DAMAGE TO RENTED PREMISES (Ea occurrence)	\$	100,000
1							MED EXP (Any one person)	\$	10,000
	X	CPL(Pollution)					PERSONAL & ADV INJURY	\$	1,000,000
	GEI	N'L AGGREGATE LIMIT APPLIES PER:					GENERAL AGGREGATE	\$	2,000,000
	X	POLICY PRO- JECT LOC					PRODUCTS - COMP/OP AGG	\$	2,000,000
		OTHER:						\$	
	AU	TOMOBILE LIABILITY					COMBINED SINGLE LIMIT (Ea accident)	\$	1,000,000
C		ANY AUTO		34UECVT5982	10/24/2015	10/24/2016	BODILY INJURY (Per person)	\$	
		ALL OWNED X SCHEDULED AUTOS					BODILY INJURY (Per accident)	\$	
1	X	HIRED AUTOS X NON-OWNED AUTOS					PROPERTY DAMAGE (Per accident)	\$	
							·	\$	
		UMBRELLA LIAB X OCCUR					EACH OCCURRENCE	\$	4,000,000
Α	X	EXCESS LIAB CLAIMS-MADE		G27165473 002	10/21/2015	10/21/2017	AGGREGATE	\$	4,000,000
		DED X RETENTION \$ \$0)				XS GL/CPL	\$	E&O/AL/EL
		RKERS COMPENSATION DEMPLOYERS' LIABILITY					X PER OTH- STATUTE ER		
В	ANY	PROPRIETOR/PARTNER/EXECUTIVE	N/A	9095492-2015	04/01/2015	04/01/2016	E.L. EACH ACCIDENT	\$	1,000,000
	(Mai	ICER/MEMBER EXCLUDED?	.,,				E.L. DISEASE - EA EMPLOYEE	\$	1,000,000
	If ye	s, describe under CRIPTION OF OPERATIONS below					E.L. DISEASE - POLICY LIMIT	\$	1,000,000
Α	Pro	fessional Liab		G27165357 002	10/21/2015	10/21/2017	Ea Claim		1,000,000
	"Cla	aims Made"		SUBJECT TO GL AGG			Aggregate		2,000,000

DESCRIPTION OF OPERATIONS / LOCATIONS / VEHICLES (ACORD 101, Additional Remarks Schedule, may be attached if more space is required)

Umbrella policy provides additional limits/coverage over primary General Liability, Contractors Pollution Liability, Professional Liability, Auto Liability and Employer's Liability.

CERTIFICATE HOLDER	CANCELLATION
General Info	SHOULD ANY OF THE ABOVE DESCRIBED POLICIES BE CANCELLED BEFORE THE EXPIRATION DATE THEREOF, NOTICE WILL BE DELIVERED IN ACCORDANCE WITH THE POLICY PROVISIONS.
1	AUTHORIZED REPRESENTATIVE
	0 1000 0011 10000 00000 00000 1011 11 11

PHASE II ENVIRONMENTAL SITE ASSESSMENT

Subject Property Address

2449-2451 Santa Clara Avenue Alameda, CA 94501

Odic Project Number

6360805ESAII

Report Date

3/10/2016

Prepared for

Michael Beritzhoff, Co-Trustee & Christine King, Co-Trustee - A.S. Macdonald Trust

Odic Environmental

Environmental Consulting and Real Estate Due Diligence 3255 Wilshire Blvd. Suite 1510, Los Angeles, CA 90010 888.634.2368, 888.ODICENV, Fax 213-380-0505

Odic Environmental

Environmental Consulting and Real Estate Due Diligence

3255 Wilshire Blvd. Suite 1510, Los Angeles, CA 90010 888.634.2368, 888.ODICENV, Fax 213-380-0505

3/10/2016

Michael Beritzhoff, Co-Trustee & Christine King, Co-Trustee - A.S. Macdonald Trust

Attached please find our PHASE II ENVIRONMENTAL SITE ASSESSMENT, ("the Report") for the above-mentioned Subject Property. This report has been prepared by Odic for the Client under the professional supervision of the principal and/or senior staff whose seal(s) and signatures appear hereon. Neither Odic, nor any staff member assigned to this investigation has any interest or contemplated interest, financial or otherwise, in the subject or surrounding properties, or in any entity which owns, leases, or occupies the subject or surrounding properties , and has no personal bias with respect to the parties involved.

The assessment was conducted in a manner consistent with the level of care and skill ordinarily exercised by members of the profession, and in accordance with generally accepted practices of other consultants currently practicing in the same locality under similar conditions. No other representation, expressed or implied, and no warranty or guarantee is included or intended. The Report speaks only as of its date, in the absence of a specific written update of the Report, signed and delivered by Odic.

There are no intended or unintended third party beneficiaries to this Report, unless specifically named. Odic is an independent contractor, not an employee of either the issuer or the borrower, and its compensation was not based on the findings or recommendations made in the Report or on the closing of any business transaction. Thank you for the opportunity to prepare this Report, and assist you with this project. Please call us if you have any questions or if we may be of further assistance.

By signing below, Odic declares that, to the best of our professional knowledge and belief, the undersigned meet the definition of an Environmental Professional as defined in §312.10 of 40 CFR 312 and have the specific qualifications based on education, training, and experience to assess a property of the nature, history, and setting of the Subject Property. Odic has developed and performed the all appropriate inquiries in conformance with the standards and practices set forth in 40 CFR Part 312.

Respectfully Submitted,

Hyung Kim

Environmental Professional §312.10, 40CFR312

TABLE OF CONTENTS

1.0 LIMITATIONS	2
2.0 Introduction	5
2.1 Project Information	5
2.2 Objective	5
2.3 Scope of Work	
3.0 PROPERTY CHARACTERISTICS	
3.1 Site Description	7
3.2 Background History	
3.3 Physical Setting	
4.0 FIELD INVESTIGATION	9
4.1 Field Investigation	9
4.2 Geophysical Survey	9
4.3 Methodology	
4.4 Backfill	
4.5 Laboratory Analysis	
5.0 FINDINGS AND RESULTS	12
5.1 Subsurface Conditions	12
5.2 Evaluation Criteria	
5.3 Analytical Results of Soil Samples	
5.4 Analytical Results of Groundwater Samples	
6.0 Conclusions and Recommendations	16
7.0 References	17

ATTACHMENTS

FIGURE 1 – SITE LOCATION MAP

FIGURE 2 - SOIL BORING MAP

TABLE 1 - SOIL ANALYTICAL RESULTS FOR TPH AND VOCS

TABLE 2 – GROUNDWATER ANALYTICAL RESULTS FOR TPH AND VOCS

Table 2 – Groundwater Analytical Results for Metals

APPENDIX A - SITE PHOTOGRAPHS

APPENDIX B - SOIL BORING LOGS

APPENDIX C -LABORATORY ANALYSIS REPORT

APPENDIX D - GEOPHYSICAL SUBSURFACE INVESTIGATION REPORT

1.0 LIMITATIONS

The opinion expressed herein is based on the information collected during our study, our present understanding of the site conditions and our professional judgment in light of such information at the time of preparation of this report. No warranty is either expressed, implied or made as to the conclusions, advice and recommendations offered in this report.

Our investigation was performed using the degree of care and skill ordinarily exercised, under similar circumstances, by reputable Engineers and Geologists practicing in this or similar localities. The samples taken and used for testing and the observations made are believed representative of the study area; however, soil and/or groundwater samples can vary significantly between borings, test pits, and/or test sample locations.

The interpretations and conclusions contained in this report are based on the results of laboratory tests and analysis intended to detect the presence and concentration of certain chemical constituents in samples taken from the subject property (hereinafter referred to as the Property). Such testing and analysis have been conducted by an independent laboratory which is certified by the State to conduct such test analyses and which used methodologies mandated by the Environmental Protection Agency or the State Department of Health Services in the performance of such test and analyses. The consultant has no involvement in, or control over, such testing and analysis, and has no non-laboratory means of confirming the accuracy of such laboratory results. The consultant, therefore, disclaims any responsibility for any inaccuracy in such laboratory results.

The findings, conclusions and recommendations in this report are considered valid as of the present date. However, changes in the conditions of the Property can occur with the passage of time, due to natural process or the works of man on this or adjacent properties. In addition, changes in applicable or appropriate standards may occur. Accordingly, portions of this report may be invalidated wholly or partially by the changes beyond our control.

INDEPENDENT CONTRACTOR STATUS

In performing Services under the scope of work contained in this Report and agreed Contract/Agreement, ODIC shall operate as, and have the status of, an independent contractor.

PROFESSIONAL RESPONSIBILITY

ODIC shall perform the Services consistent with that level of care and skill ordinarily exercised by other professional consultants under similar circumstances at the time the Services are performed. Client hereby acknowledges that whenever a Project involves hazardous or toxic materials there are certain inherent risk factors involved (such as limitations on laboratory analytical methods, variations in subsurface conditions, economic loss to Client or Property owner, a potential obligation for disclosure to regulatory agencies, a potential for a decrease in market value of real property, and the like) that may adversely affect the results of the Project, even though the Services are performed with such skill and care. No other representation, warranty, or guarantee, express or implied, is included or intended by the scope of work contained in this Report and agreed Contract/Agreement.

LIMITATION OF LIABILITY

Client agrees that the liability of ODIC and all officers, employees, agents, and subcontractors of ODIC (the "ODIC Parties") to Client for all claims, suits, arbitration, or other proceedings arising from the performance of the Services under the scope of work contained in this Report and agreed Contract/Agreement, including, but not limited to, ODIC's professional negligence, errors and omissions, or other professional acts, shall be limited to the professional and general liability coverage amount. ODIC Parties are not liable for any indirect, incidental or consequential damages, lost profits, lost revenue, or loss of property value based on the Services provided as part of the scope of work contained in this Report and agreed Contract/Agreement.

HAZARDOUS OR UNSAFE CONDITIONS

Client has fully informed ODIC of the type, quantity, and location of any hazardous, toxic, or dangerous materials or unsafe or unhealthy conditions that may affect the Project which Client knows to exist. If Client hereafter becomes aware of any such information, Client shall immediately inform ODIC. The discovery of unanticipated hazardous, toxic, or dangerous materials or unsafe or unhealthy conditions constitutes a Changed Condition that may justify a revision to Services and/or Fees. If ODIC takes emergency measures to protect the health and safety of ODIC Parties and/or the public or to prevent undue harm to the environment, the Fee shall be appropriately adjusted to compensate ODIC for the cost of such emergency measures.

RIGHT OF ENTRY

Client agrees to grant or arrange permission for right of entry from time to time by ODIC Parties upon all real property included in the Project Site(s) where the Services are to be performed, whether or not the Project Site(s) is owned by Client. Client recognizes that the use of investigative equipment and practice may unavoidable alter conditions or affect the environment at the existing Project Site(s). ODIC will operate with reasonable care to minimize damage to the Project Site(s). The cost of repairing such damage will be borne by Client, and in not included in the Fee unless otherwise stated.

UNDERGROUND UTILITIES

Client shall correctly designate on plans to be furnished to ODIC, the location of all subsurface structures, such as pipes, tanks, cables, and utilities within the property lines of the Project Site(s) and shall be responsible for any damage inadvertently caused by ODIC to any such structure or utility not so designated.

REPORTING AND DISPOSAL REQUIREMENTS

Nothing contained in this Report shall be construed or interpreted as requiring ODIC to assume the status of an owner, operator, generator, person who arranges for disposal, transportation, storage, treatment, or a disposal facility as those terms appear within any federal or state statute governing the treatment, storage, and disposal of hazardous substances or wastes. Client shall be solely responsible for notifying all appropriate federal, state, municipal, or other governmental agencies of the existence of any hazardous, toxic, or dangerous materials located on or in the Project Site(s), or discovered during the performance of the scope of work contained in this Report and agreed Contract/Agreement. Client agrees that ODIC is not responsible for disclosures, notifications, or reports that may be required to be made to third parties. Client shall be responsible for making and paying for all necessary arrangements to lawfully store, treat, recycle, dispose of, or otherwise handle hazardous or toxic substances or wastes, including but not limited to, samples and cuttings, to be handled in connection with the Project.

SAMPLES AND CUTTINGS

ODIC shall not be obligated to preserve samples such as oil, rock, water, building materials, fluids and other samples obtained from the Project Site(s) for a longer period of time than a laboratory will store the samples for no additional fee. If sample storage is requested by Client beyond standard laboratory time, Client will be responsible for any storage fee for those samples.

HEALTH AND SAFETY

ODIC shall not be responsible for the health and safety of any persons other than ODIC Parties, nor shall it have any responsibility for the operations, procedures, or practices of persons or entities other than ODIC Parties.

2.0 Introduction

2.1 PROJECT INFORMATION

	Project Information								
ITEM									
ODIC Project Number	6360805-ESAII								
Property Address	2449 and 2451 Santa Clara Avenue, Alameda, CA 94501								
Property Name	The Property is occupied by the ReCrafting Co. (A craft supply store) at 2449 Santa Clara Avenue and Super Scholars (a preschool) at 2451 Santa Clara Avenue.								
Pre-Drilling Activity	February 8, 2016								
Drilling & Sampling Date	February 12, 2016								
ODIC's Field Technician	Cora Olson, Environmental Assessor								
Report Author	Cora Olson, Environmental Assessor								
Copy Editor	Tamara Yerkes, Project Geologist								
QAQC Reviewer	Hyung Kim, California Licensed Professional Civil Engineer								
Property Location	The Property is located on the north side of the intersection of Santa Clara Avenue and Everett Street in Alameda, CA 94501.								
General Setting	The general setting is commercial.								
Property Type	The Property is occupied by a craft shop and a pre-school.								

2.2 OBJECTIVE

The Property consists of a 0.1-acre rectangular-shaped parcel of land that is improved with a single-story commercial building and a paved parking lot. The current occupants are ReCrafting Co., an art/crafts supply retail store, and Super Scholars (a preschool).

The Property was vacant land until 1925 when a gas station was constructed at the Property. The gas station remained in operation until 1966 when it was demolished. The current two-unit commercial building was constructed in 1968. The building has been occupied by various businesses since that time including a candy store, insurance offices, realtor and title offices, a gym, a dance studio, and a martial arts studio.

The objective of this limited subsurface investigation is to determine the possible presence of remaining USTs from the former gas station and to determine subsurface conditions with regards to releases of petroleum hydrocarbons, or other potential contaminants of concern from previous gas station operations.

2.3 Scope of Work

To accomplish the aforementioned objective, ODIC performed the following tasks:

Pre-Field Activities:

A Site-specific Health and Safety Plan (Level D Health & Safety according to OSHA CFR 1910.120), Boring Plan, and Work Schedule were prepared and ODIC notified the Property Owner of the proposed work schedule. ODIC obtained a soil boring permit from the Alameda County Public Works Agency prior to completing drilling at the site.

On February 8, 2016 ODIC performed a site visit to verify existing conditions and pre-mark boring locations and notified Underground Service Alert (USA) of the intent to excavate or drill so that subsurface utilities would be marked to avoid potential damage. In addition, ODIC contracted a private

utility locator, Subtronics, to search for potential USTs or subsurface anomalies, and to determine the location of any utilities that may interfere with the proposed boring locations.

Field Investigation:

ODIC executed the following activities during the onsite site investigation conducted on February 12, 2016:

- Advanced eight soil borings (SB-1 through SB-8) within the building interior, surrounding entrance
 walkway and parking lot to a maximum depth of 10 feet below ground surface (bgs), or to first
 groundwater occurrence, which was encountered between 8 to 9 feet bgs (refer to Figure 2 Site
 Boring Location Map).
- Collected soil samples from borings SB-1 through SB-8 for chemical analysis at approximately 5foot intervals in the eight boring locations.
- Collected groundwater grab samples from all eight soil boring locations for chemical analysis.
- Recorded pertinent information such as soil lithology, physical condition of the collected soil samples, moisture contents, visual and olfactory description of the collected soil samples, and the time each sample was collected on appropriate boring log forms.
- Submitted selected soil samples and one groundwater sample from each soil boring for laboratory chemical analysis of total petroleum hydrocarbons (TPH), gasoline-range organics (GRO), oil-range organics (ORO) and diesel-range organics (DRO) by EPA Method 8015B, and volatile organic compounds (VOCs) by EPA Method 8260B (refer to note below). Three of the six groundwater samples were analyzed for Title 22 Metals by EPA Method 6010B/7470A.

Note: Groundwater samples obtained from SB-3 and SB-7 were not analyzed for diesel-range organics (DRO) due to the limited volume of water sample.

All samples were submitted to a State of California Certified Laboratory using Chain of Custody Protocols, for a regular turnaround.

Data Evaluation and Reporting:

ODIC evaluated the current and historical data, prepared summary tables, maps and other pertinent data summary figures, documented the methods used, and combined the findings into this limited subsurface investigation report.

Boring locations are shown on Figure 2 Soil Boring Map.

Soil borings were advanced using both hand auger and Geoprobe-type drilling equipment operated by Cascade Drilling, LP.

3.0 PROPERTY CHARACTERISTICS

3.1 SITE DESCRIPTION

The Property address is 2449 and 2451 Santa Clara Avenue, Alameda, CA 94501. The Property is located on the north side of the intersection of Santa Clara Avenue and Everett Street in Alameda, California. The Property consists of a 0.1-acre rectangular-shaped parcel of land that is improved with a single-story commercial building occupied by a craft shop and a preschool. A paved parking lot occupies the north side of the Property (refer to Figures 1 and 2).

3.2 BACKGROUND HISTORY

ODIC conducted a Phase I Environmental Site Assessment of the Property dated January 6, 2012. The Property consists of a 0.1-acre rectangular-shaped parcel of land that is improved with a single-story commercial building and a paved parking lot. The building measures 2,304 square feet and is divided into two separate units. The northwestern unit is addressed 2449 Santa Clara Avenue and is occupied by The ReCrafting Co., an art/crafts supply retail store. The southeastern unit is addressed 2451 Santa Clara Avenue and is occupied by Super Scholars (a preschool).

The Property was vacant land until 1925 when a gas station was constructed at the Property. The gas station remained in operation until 1966 when it was demolished. The current two-unit commercial building was constructed in 1968. The building has been occupied by various businesses since that time including a candy store, insurance offices, realtor and title offices, a gym, a dance studio, and a martial arts studio. The building is currently occupied by an art/craft supplies store (The ReCrafting Co.) and a preschool (Super Scholars).

In 1996, a limited subsurface investigation was conducted at the Property to evaluate whether or not the subsurface environment had been impacted by potential releases of petroleum hydrocarbons from the former gas station. It appears that relatively low concentrations were detected, although the groundwater data was open to interpretation. Relatively high concentrations of Total Petroleum Hydrocarbons as diesel were detected. However, the analytical laboratory indicated that the data may have been skewed by a high concentration of sediment in the samples.

Due to the limited nature of the scope of investigation conducted in 1996, and absence of documentation pertaining to former USTs at the Property, ODIC recommended that a subsurface investigation be conducted to evaluate the possible presence of USTs at the site, and to further characterize contamination discovered during 1996 sampling activities.

3.3 PHYSICAL SETTING

The Property's physical location was researched employing a United States Geological Survey (USGS) 7.5 Minute Topographic Quadrangle (Quad) Map relevant to the Property. The USGS 7.5 Minute Quad Map has an approximate scale of 1 inch to 2,000 feet, and may show physical features with environmental significance such as wetlands, water bodies, roadways, mines, and buildings. The elevation of the Property is approximately 30 feet above mean sea level. There is a regional downslope to the northeast/east/south.

GEOLOGY AND HYDROGEOLOGY

Geologic and hydrogeologic information were obtained from an Environmental Phase I Site Assessment Report prepared for the Property, by Geovision Inc., dated August 8, 1996:

Information from a nearby site indicates that the subsurface is composed of medium brown sand containing moderate amounts of silts which extends to a depth of at least 25 feet below ground surface (bgs). Groundwater is located at approximately 18 feet bgs and the direction of flow is towards the northeast. The nearest surface water is a tidal canal of the San Francisco Bay located approximately 3,000 feet northeast of the subject property.

Groundwater was encountered at the site between 8 and 9 feet bgs during the course of this Phase II Subsurface investigation.

While groundwater flow direction at the Property cannot be confirmed without survey measurement of static groundwater level at triangulated points, it is expected to flow in the direction of surface topographical contour, or toward the wetland or nearest water body or discharge basin (percolation channel).

It is important to note that groundwater flow direction can be influenced locally and regionally by the presence of local wetland features, surface topography, recharge and discharge areas, horizontal and vertical inconsistencies in the types and location of subsurface soils, and proximity to water pumping wells. Depth and gradient of the water table can change seasonally in response to variation in precipitation and recharge, and over time, in response to urban development such as storm water controls, impervious surfaces, pumping wells, cleanup activities, dewatering, seawater intrusion barrier projects near the coast, and other factors.

4.0 FIELD INVESTIGATION

4.1 FIELD INVESTIGATION

Prior to advancing the borings, the Site representative, property owner and site occupants were notified of the work schedule including locations of where drilling would be performed. ODIC performed a Site Visit on February 8, 2016 to verify the existing conditions and pre-mark boring locations and notified Underground Service Alert (USA) of the intent to excavate or drill so that subsurface utilities would be marked to avoid potential damage. A private utility company was contracted to complete a geophysical subsurface investigation to confirm the location of underground utilities and to identify subsurface anomalies. A Site-specific Health and Safety Plan was prepared and a field safety meeting was held among field personnel and drilling crew prior to the start of drilling on February 12, 2016.

Soil Boring Investigation and Groundwater Sampling

ODIC performed the following field investigation activities:

• Advanced eight soil borings (SB-1 through SB-8) inside the commercial building and in the area of the former oil degreasing, oil storage and gas station in the parking lot on the north side of the Property. The eight borings were advanced to a maximum depth of 10 feet bgs, or to first groundwater occurrence, and soil samples were collected at approximately 5-foot intervals. One selected soil sample from each boring was analyzed for TPH-GRO, TPH-DRO and TPH-ORO by EPA Method 8015B, and full VOCs by EPA Method 8260B.

Refer to Figure 2, Boring Location Map for details of the boring locations.

 Collected eight groundwater samples at eight boring locations (SB-1 through SB-8) to be analyzed for TPH-GRO, TPH-DRO, and TPH-ORO by EPA Method 8015B, and full VOCs by EPA Method 8260B (refer to note below). In addition, three selected groundwater samples were also analyzed for Title 22 Metals via EPA Method 6010B.

Note: Groundwater samples obtained from SB-3 and SB-7 were not analyzed for diesel-range organics (DRO) due to the limited volume of water sample.

- Preserved all collected soil and groundwater samples in an ice chest with ice at 4 degrees Celsius sample preservation temperature until the shipment of samples to Curtis and Tompkins Laboratories (CTL), a California State-certified environmental testing laboratory, for analysis. All samples were submitted to the laboratory for select analyses using chain-of-custody protocols.
- Logged each soil boring using the Unified Soils Classification System under the supervision of ODIC's project geologist. Soil boring logs are included in Appendix B.
- Backfilled each boring SB-1 through SB-8 with Portland cement grout and returned the surface conditions to their original condition (asphalt/concrete) upon completion of soil and groundwater sampling.

4.2 GEOPHYSICAL SURVEY

Under supervision and direction of ODIC, Subtronics used the TW-6 M-SCOpe, Schondstedt GA-72-CD magnetic locator, and the GSSI System 400 ground penetrating radar (GPR) with a 400 MHz antenna to survey the areas of concern on-site, as applicable, to locate the presence any USTs and locate any utility conflicts near proposed soil boring locations on-site.

TW-6 M-Scope

The Fisher TW-6 M-Scope is a split box inductive locater and metal detector mounted on a four-foot rod. The split box locater can detect metal lines "inductively". The M-Scope is also used to detect buried metallic objects such as manhole covers, underground storage tanks, etc. The limits of detection for a TW-6 M-SCOPE are approximately five feet in depth.

Schondstedt GA-72-CD

The Schondstedt is a hand held magnetic gradiometer which detects the magnetic field caused by ferromagnetic objects. The Schondstedt produces an audible signal when it detects a variation in the magnetic field strength between the two sensors 14 in apart. In an area of little magnetic debris it can detect metallic objects up to 10 feet deep.

GSSI SIR-4000

A ground penetrating radar system graphically records subsurface structures. Both geological and manmade structures are recorded by the introduction of a pulse of electromagnetic energy into the ground. Reflected pulses received by the antenna are then processed for measurable contrast in electrical properties. The result is a visual pseudo-cross-sectional profile.

Subtronics's technician performed a subsurface utility investigation using Ground Penetrating Radar and Electro-Magnetic locating equipment to determine the absence or presence of buried features in the areas of concern on-site. Subtronic's technician cleared & marked-out any utility conflicts at the proposed soil boring locations on-site. The final boring locations were determined based on the location of the underground utilities.

Based on the results of the magnetic locator and ground penetrating radar, it was interpreted that there is possibly a waste oil size UST located in the northwest corner of the parking lot (36 feet north of SW building corner and 10 east of the building wall). The object is approximately 6 feet long and about 4 feet wide, buried approximately 4 ½ feet deep. In addition, an area of disturbed soil which may be associated with the possible former greasing operations was also identified, encompassing an area approximately 4 feet wide by 10 long. Refer to Appendix D - Geophysical Subsurface Investigation for further details.

4.3 METHODOLOGY

On February 12, 2016, Cascade Drilling operated a hand auger and Geoprobe-type drill rig, and collected soil and groundwater samples from the borings locations. A site-specific Health and Safety plan was prepared and a field safety meeting was held among field personnel and drilling crew prior to the start of drilling.

Soil Sampling Method

Soil samples were collected from the hand auger bucket or with an acetate liner with the Geoprobe Large Bore Sampler that measures 2 feet by 1.5 inches capable of recovering discrete samples from specified locations. The liner is a thin-walled tube that fits inside the bore sample tube and facilitates retrieval of the sample and may be used for storage when applicable. Each liner was cut using a 1-inch diameter polyvinyl chloride (PVC) pipe-cutter. The lower half of the liner was capped on both ends with Teflon® tape and plastic caps. No headspace is present in the tube once the sample is collected. Soil samples were then packed in an ice chest to minimize potential volatilization prior to delivery to the laboratory.

The collected samples were labeled with the boring number, the sample number (the samples were numbered sequentially with increasing depth from the top for each boring), and the sampling depth. Care was taken throughout to avoid contamination of both the inside and outside of the sample container and its contents.

The soil in the upper half of the cut acetate liner was visually inspected for discoloration, monitored for odors, classified in accordance with the Unified Soil Classification System, placed in a sealable plastic bag, and field-screened with a photoionization detector (PID). ODIC's field technician monitored if soil samples exhibited any odor, discoloration, and/or PID readings suggesting the presence of elevated volatile organics concentrations. All field data were recorded on the field log. Soil boring logs are included in Appendix B.

All collected soil samples were preserved in an ice chest with ice to keep 4 degrees Celsius sample preservation temperature until the shipment of samples the same day of sample collection to a California State-certified environmental testing laboratory for analysis. U.S. Environmental Protection Agency approved chain-of-custody records were kept to track the possession of samples from the time they were taken in the field until the time they were analyzed.

Groundwater Sampling Method

Groundwater samples were collected by installing a temporary 1-inch diameter PVC well screen into the completed soil boring and allowing groundwater to stabilize. Once stabilized, a grab groundwater sample was collected by using disposable polyvinyl tubing equipped with a check valve. Laboratory-supplied containers were completely filled, labeled, and placed in an ice chest.

The collected samples were labeled with the groundwater number associated with the boring and the sampling depth. Care was taken throughout to avoid contamination of both the inside and the outside of the sample containers and their contents.

All collected groundwater samples were preserved in an ice chest with ice to keep 4 degrees Celsius sample preservation temperature until the shipment of samples the same day of sample collection to a California State-certified environmental testing laboratory for analysis. U.S. Environmental Protection Agency approved chain-of-custody records were kept to track the possession of samples from the time they were taken in the field until the time they were analyzed.

4.4 BACKFILL

Upon completion of soil and groundwater sampling in borings SB-1 to SB-8, each boring was backfilled with Portland cement grout under inspection by the Alameda County Public Works Department. Each borehole was restored to pre-drilling condition by applying patching materials.

4.5 LABORATORY ANALYSIS

All soil and groundwater samples were transported to Curtis and Tompkins Laboratories (CTL) for chemical analysis. CTL is a California State-certified environmental testing laboratory. The person collecting the soil and groundwater samples initiated chain-of-custody documentation.

Soil and groundwater samples were analyzed for TPH-GRO, TPH-DRO and TPH-ORO by EPA Method 8015B and full VOCs by EPA Method 8260B (refer to note below). In addition three of the six groundwater samples were further analyzed for Title 22 Metals via EPA Method 6010B.

Note: Groundwater samples obtained from SB-3 and SB-7 were not analyzed for diesel-range organics (DRO) due to the limited volume of water sample.

The laboratory analytical report of the soil and groundwater samples is included in Appendix C. Results are presented in Section 5.4 and Section 5.5.

5.0 FINDINGS AND RESULTS

5.1 SUBSURFACE CONDITIONS

- A subsurface anomaly that is approximately 6 feet by 4 feet, and buried approximately 4.5 feet deep, was discovered at the southwest side of the parking area. Additional shallow subsurface anomalies were identified at the north perimeter of the parking lot in the vicinity of known former greasing operations and driveway area (refer to Appendix D Geophysical Subsurface Investigation for further details).
- Collected soil samples consisted of silty sand, and sand from ground surface to 10 feet bgs (maximum depth explored).
- Field indications of impact from VOCs and petroleum hydrocarbons (staining and odor) were observed in two soil borings, SB-4 and SB-6.
- Groundwater was encountered during drilling at approximately 8 to 9 feet bgs during drilling. Depth to groundwater in the vicinity of the Property was reported at approximately 18 feet bgs (refer to Section 3.2 for hydrogeology information).

5.2 EVALUATION CRITERIA

Soil and groundwater analyses were compared to the potentially applicable criteria listed below.

- SFB RWQCB (2016). San Francisco Bay Regional Water Quality Control Board (SFB RWQCB) 2016 Tier 1 Environmental Screening Levels Summary February 2016.
- USEPA (2015). United States Environmental Protection Agency (USEPA), Regional Screening Level (RSL) Composite Worker Soil Table. November 2015.
- CEPA SWRCB (2015). California Environmental Protection Agency State Water Resources Control Board (CEPA SWRCB) Maximum Contaminant Levels (MCLs). September 23, 2015.

Supplemental comparison criteria are identified as applicable.

5.3 ANALYTICAL RESULTS OF SOIL SAMPLES

TPH as GRO, DRO, and ORO in Soil

Detected concentrations of TPH as GRO, DRO, and as ORO above their respective laboratory Reporting Limit (RL) in the soil samples analyzed were limited to the following (refer to Table 1 – Soil Analytical Results for TPH and VOCs):

- Gasoline (TPH-GRO) was detected in SB-6 at 6 feet bgs at a concentration of 660 milligrams per kilogram (mg/kg). This concentration exceeds the Tier 1 Environmental Screening Level (ESL) value of 100 mg/kg.
- Diesel (TPH-DRO) was detected in six soil samples at concentrations ranging from 1.1 mg/kg to 4,200 mg/kg in sample SB-6 at 6 feet bgs. The highest concentration exceeds the Tier 1 ESL value of 240 mg/kg.
- Motor Oil (TPH-ORO) was detected in two soil samples at concentrations ranging from 16 mg/kg to 10,000 mg/kg in sample SB-6 at 6 feet bgs. The highest concentration exceeds the Tier 1 ESL value of 100 mg/kg.

VOCs in Soil

Detected concentrations of VOCs above their respective laboratory RL in the soil samples analyzed were limited to the following (refer to Table 1 – Soil Analytical Results for TPH and VOCs):

- Acetone was detected in SB-6 at 6 feet bgs at a concentration of 30 μ g/kg. This concentration is below applicable screening levels.
- 1,2,4- Trimethylbenzene was detected in SB-6 at 6 feet bgs at a concentration of 1,200 μg/kg.
 This concentration is below applicable screening levels.
- sec-Butylbenzene was detected in SB-6 at 6 feet bgs at a concentration of 690 μg/kg. This concentration is below applicable screening levels.
- para-Isopropyl Toluene was detected in SB-6 at 6 feet bgs at a concentration of 390 μg/kg. Screening levels have not been established for para-Isopropyl Toluene.
- n-Butylbenzene was detected in SB-6 at 6 feet bgs at a concentration of 820 μg/kg. This concentration is below applicable screening levels.
- Naphthalene was detected in SB-6 at 6 feet bgs at a concentration of 2,100 μ g/kg. This concentration exceeds the Tier 1 ESL value of 23 μ g/kg.

Refer to Section 6.0 for recommendations and opinions.

5.4 ANALYTICAL RESULTS OF GROUNDWATER SAMPLES

TPH as GRO, DRO, and ORO in Groundwater

Detected concentrations of TPH as GRO, DRO, and ORO above their respective laboratory RL in the groundwater samples analyzed were limited to the following (refer to Table 2 – Groundwater Analytical Results for TPH and VOCs):

- Gasoline (TPH-GRO) was detected in SB-4 at a concentration of 140 μg/L, and in SB-6 at a concentration of 880 μg/L. These concentrations exceed the Tier 1 ESL value of 100 μg/L.
- Diesel (TPH-DRO) was detected in SB-4 at a concentration of 54,000 μg/L, and in SB-6 at a concentration of 220,000 μg/L. These concentrations exceed the Tier 1 ESL value of 100 μg/L.
- Motor Oil (TPH-ORO) was detected in SB-4 at a concentration of 95,000 μg/L, and in SB-6 at a concentration of 500,000 μg/L. These concentrations exceed the Tier 1 ESL value of 100 μg/L.

VOCs in Groundwater

Detected concentrations of VOCs above their respective laboratory RL in the groundwater samples analyzed were limited to the following (refer to Table 2 – Groundwater Analytical Results for TPH and VOCs):

- 1,2,4- Trimethylbenzene was detected in SB-6 at a concentration of 6.7 μ g/L. Tier 1 ESLs have not been established for 1,2,4- Trimethylbenzene.
- sec-Butylbenzene was detected in SB-6 at a concentration of 1.6 μg/L. Tier 1 ESLs have not been established for sec-Butylbenzene.
- para-Isopropyl Toluene was detected in SB-6 at a concentration of 0.9 μg/L. Tier 1 ESLs have not been established for para-Isopropyl Toluene.
- n-Butylbenzene was detected in SB-6 at a concentration of 1.7 μg/L. Tier 1 ESLs have not been established for n-Butylbenzene.

• Naphthalene was detected in SB-6 at a concentration of 9.7 μg/L. This concentration exceeds the Tier 1 ESL value of 0.12 μg/L.

Title 22 Metals in Groundwater

Detected concentrations of metals above their respective laboratory RL in the groundwater samples analyzed were limited to the following (refer to Table 3 – Groundwater Analytical Results for Metals):

- Antimony was detected in each groundwater sample tested at a concentration of 210 μg/L in sample SB-1, 140 μg/L in sample SB-2, and 95 μg/L in sample SB-4. These concentrations exceed: the Tier 1 ESL value of 6.0 μg/L, and California Environmental Protection Agency State Water Resources Control Board (CEPA SWRCB) Maximum Contaminant Levels (MCLs) of 6.0 μg/L.
- Arsenic was detected in each groundwater sample tested at a concentration of 96 μ g/L in sample SB-1, 160 μ g/L in sample SB-2, and 88 μ g/L in sample SB-4. These concentrations exceed: Tier 1 ESL value of 10 μ g/L, and the MCL value of 10 μ g/L.
- Barium was detected in each groundwater sample tested at a concentration of 7,500 μg/L in sample SB-1, 5,400 μg/L in sample SB-2, and 3,400 μg/L in sample SB-4. These concentrations exceed: Tier 1 ESL value of 1,000 μg/L, and the MCL value of 1,000 μg/L.
- Beryllium was detected in two groundwater samples at a concentration of 26 μg/L in sample SB-1, and 17 μg/L in sample SB-2. These concentrations exceed: Tier 1 ESL value of 2.7 μg/L, and the MCL value of 4.0 μg/L.
- Cadmium was detected in one groundwater sample at a concentration of 57 μg/L in sample SB-1. These concentrations exceed: Tier 1 ESL value of 0.25 μg/L, and the MCL value of 5.0 μg/L.
- Chromium was detected in each groundwater sample tested at a concentration of 3,800 μg/L in sample SB-1, 2,800 μg/L in sample SB-2, and 1,900 μg/L in sample SB-4. These concentrations exceed: Tier 1 ESL value of 50 μg/L, and the MCL value of 50 μg/L.
- Cobalt was detected in each groundwater sample tested at a concentration of 650 μg/L in sample SB-1, 490 μg/L in sample SB-2, and 310 μg/L in sample SB-4. These concentrations exceed: Tier 1 ESL value of 3.0 μg/L, and the MCL value of 6.0 μg/L.
- Copper was detected in each groundwater sample tested at a concentration of 680 μ g/L in sample SB-1, 550 μ g/L in sample SB-2, and 410 μ g/L in sample SB-4. These concentrations exceed the Tier 1 ESL value of 3.1 μ g/L, but are under the MCL value of 1,000 μ g/L.
- Lead was detected in each groundwater sample tested at a concentration of 280 μ g/L in sample SB-1, 360 μ g/L in sample SB-2, and 130 μ g/L in sample SB-4. These concentrations exceed: Tier 1 ESL value of 2.5 μ g/L, and the MCL value of 15 μ g/L.
- Mercury was detected in each groundwater sample tested at a concentration of 0.73 μ g/L in sample SB-1, 1.1 μ g/L in sample SB-2, and 0.51 μ g/L in sample SB-4. These concentrations exceed: Tier 1 ESL value of 0.051 μ g/L, and the MCL value of 2.0 μ g/L.
- Molybdenum was detected in one groundwater sample tested at a concentration of 70 μ g/L in sample SB-4. This concentration is under the Tier 1 ESL and MCL value of 99 μ g/L.
- Nickel was detected in each groundwater sample tested at a concentration of 4,400 μg/L in sample SB-1, 3,100 μg/L in sample SB-2, and 2,000 μg/L in sample SB-4. These concentrations exceed: Tier 1 ESL value of 8.2 μg/L, and the MCL value of 100 μg/L.
- Vanadium was detected in each groundwater sample tested at a concentration of 2,300 μ g/L in sample SB-1, 1,700 μ g/L in sample SB-2, and 1,200 μ g/L in sample SB-4. These concentrations exceed: Tier 1 ESL value of 19 μ g/L, and the MCL value of 50 μ g/L.

• Zinc was detected in each groundwater sample tested at a concentration of 2,600 μ g/L in sample SB-1, 1,800 μ g/L in sample SB-2, and 1,200 μ g/L in sample SB-4. These concentrations exceed: Tier 1 ESL value of 81 μ g/L, and the MCL value of 5,000 μ g/L.

Refer to Section 6.0 for recommendations and opinions.

6.0 CONCLUSIONS AND RECOMMENDATIONS

Subsurface Anomalies:

Based on the results of the geophysical survey, several areas of subsurface anomalies were identified. Of specific note, a subsurface anomaly that is approximately 6 feet by 4 feet, and buried approximately 4.5 feet deep, was discovered at the southwest side of the parking area which may possibly be a small waste oil tank. Additional shallow subsurface anomalies were identified at the north perimeter of the parking lot in the vicinity of known former greasing operations and driveway area (refer to Appendix D - Geophysical Subsurface Investigation for further details).

Based on the findings, ODIC advanced two borings in the vicinity of the suspected underground storage tank to determine whether a release may have occurred in this area. Results for SB-7 and SB-8 indicated low to non-detected concentrations of TPH and VOCs.

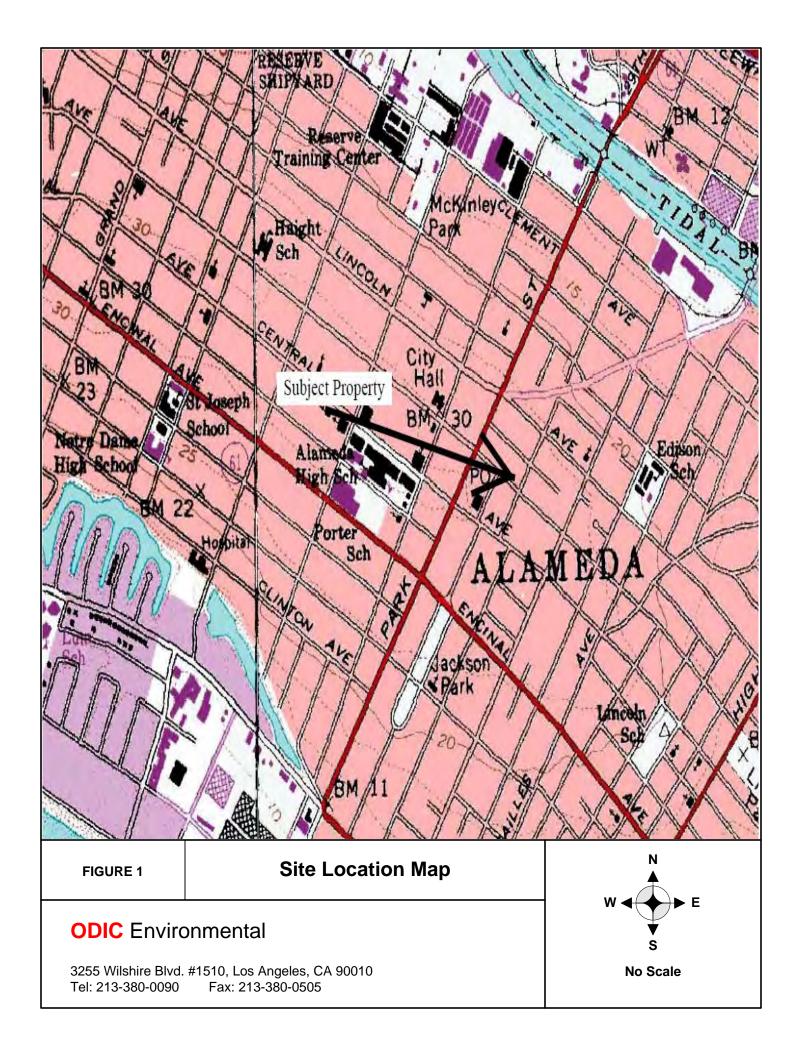
Soil and Groundwater:

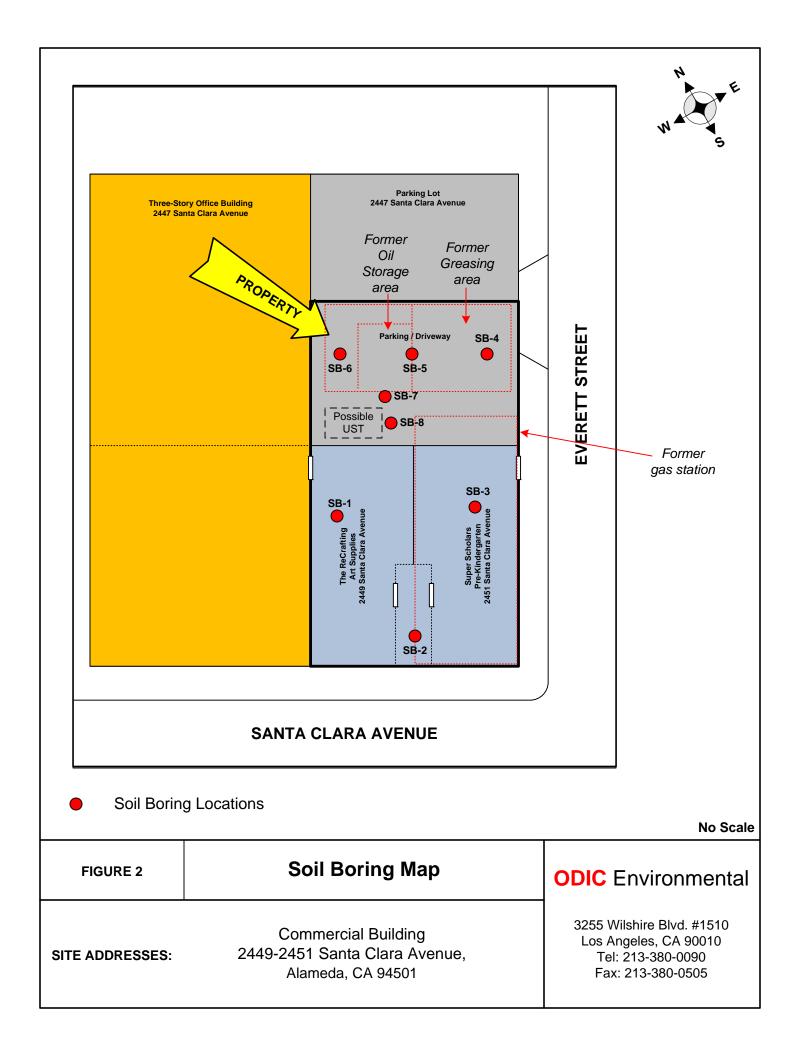
Concentrations of TPH-GROs, TPH-DROs, TPH-OROs, VOCs and metals were identified above the ESL in soil samples and groundwater samples analyzed in the vicinity of the former degreasing and motor oil storage areas at the northeast (Boring SB-4) and northwest (Boring SB-6) side of the parking lot.

Recommendations:

Based on the results and findings presented in this report, ODIC recommends the following additional investigation:

The subsurface anomaly (possible waste oil tank) should be uncovered and exposed in order to identify the source of anomaly and examine the subsurface conditions associated with it. In the event that an underground storage tank is identified, it should be properly decommissioned and removed under the regulatory oversight pursuant to applicable rules and regulations including but not limited to California Health and Safety Code and applicable local municipal code(s). Additional soil confirmation borings may be required within the UST cavity for laboratory analysis and testing.


Evidence of detectable soil and groundwater contamination with petroleum hydrocarbons and VOCs is present in the vicinity of SB-4 and SB-6 (former greasing area and motor oil storage area). Additional investigation should be conducted to delineate the vertical and horizontal extent of petroleum hydrocarbons and VOCs in soil and groundwater beneath the Property.


7.0 REFERENCES

Reference sources for site-specific information, hydro-geologic setting, technical data, historical research data, environmental reports and other records used are identified throughout this Report in corresponding sections. Any additional reference sources not cited in the preceding sections in this report are disclosed in this section.

- USGS 7.5 Minute Topographical Map
- Environmental Phase I Site Assessment Report, 2447 Santa Clara Avenue, Alameda, by GeoVision Inc., August 8, 1996.
- Soil and Groundwater Investigation, 2447 Santa Clara Avenue, Alameda, by All Environmental Inc., October 22, 1996
- Phase I Environmental Site Assessment Report, 2449-2451 Santa Clara Avenue, Alameda, by Odic Environmental, January 6, 2016.
- California Water Resources Control Board Geotracker online database http://geotracker.waterboards.ca.gov/default.asp
- Tier 1 Environmental Screening Levels, San Francisco Regional Water Quality Control Board, February 2016, http://www.waterboards.ca.gov/sanfranciscobay/water_issues/programs/ESL/Tier%201%20and%20 Summary%20ESLs 22Feb16.pdf
- United States Environmental Protection Agency (USEPA), Regional Screening Level (RSL)
 Composite Worker Soil Table. November 2015. http://www.epa.gov/sites/production/files/2015-12/documents/indsoil_sl_table_run_nov2015.pdf
- California Environmental Protection Agency State Water Resources Control Board (CEPA SWRCB) Maximum Contaminant Levels (MCLs). September 23, 2015. http://www.waterboards.ca.gov/drinking_water/certlic/drinkingwater/MCLsandPHGs.shtml

FIGURES

TABLE

Table 1

SOIL ANALYTICAL RESULTS FOR TPH AND VOCS Commercial Building 2449-2451 Santa Clara Avenue Alameda, CA 94501

Sample ID	Depth (ft	Date		TPH				Volatile C	rganic Compo	unds (VOCs)		
	bgs)		GROs (C7 to C12)	DROs (C10 to C28)	OROs (C28+)	Acetone	1,2,4- Trimethylbe nzene	sec- Butylbenzen e	para- Isopropyl Toluene	n- Butylbenzen e	Naphthalene	Other VOCs
Units			mg/kg	mg/kg	mg/kg	μg/kg	μg/kg	μg/kg	μg/kg	μg/kg	μg/kg	μg/kg
EPA Method			8015B	8015B	8015B	8260B	8260B	8260B	8260B	8260B	8260B	8260B
SB-1 @ 9'	9	2/12/2016	< 0.97	<1.0	<5.0	<19	<4.8	<4.8	<4.8	<4.8	<4.8	<rl< td=""></rl<>
SB-2 @ 9'	9	2/12/2016	< 0.97	<1.0	< 5.0	<19	< 4.7	<4.7	< 4.7	< 4.7	< 4.7	<rl< td=""></rl<>
SB-3 @ 9'	9	2/12/2016	<1.0	<1.0	< 5.0	<19	< 4.6	<4.6	<4.6	< 4.6	<4.6	<rl< td=""></rl<>
SB-4 @ 10'	10	2/12/2016	<1.0	2.8 Y	< 5.0	<19	<4.8	<4.8	<4.8	<4.8	<4.8	<rl< td=""></rl<>
SB-5 @ 10'	10	2/12/2016	<1.0	< 0.99	< 5.0	<18	< 4.5	<4.5	< 4.5	<4.5	< 4.5	<rl< td=""></rl<>
SB-6 @ 6'	6	2/12/2016	660 Y	4,200 Y	10,000	30	1,200	690	390	820	2,100	<rl< td=""></rl<>
SB-6 @ 10'	10	2/12/2016	< 0.97	6.7 Y	16	<19	< 4.9	<4.9	<4.9	< 4.9	< 4.9	<rl< td=""></rl<>
SB-7 @ 5'	5	2/12/2016	< 0.97	1.1 Y	< 5.0	<19	<4.8	<4.8	<4.8	<4.8	<4.8	<rl< td=""></rl<>
SB-7 @ 10'	10	2/12/2016	<1.0	<1.0	< 5.0	<19	< 4.7	<4.7	< 4.7	< 4.7	< 4.7	<rl< td=""></rl<>
SB-8 @ 5'	5	2/12/2016	<1.0	1.5 Y	< 5.0	<19	< 4.7	<4.7	< 4.7	< 4.7	< 4.7	<rl< td=""></rl<>
SB-8 @ 10'	10	2/12/2016	< 0.98	1.6 Y	< 5.0	<18	< 4.5	<4.5	< 4.5	<4.5	< 4.5	<rl< td=""></rl<>
Tier 1 ESLs - Soils			100	240	100	500	NE	NE	NE	NE	23	Varies
USEPA RSLs - Ind	ustrial		NE	NE	NE	670,000,000	240,000	120,000,000	NE	58,000,000	17	Varies

ft bgs = Feet below ground surface TPH = Total petroleum hydrocarbons

 $VOCs \,=\, Volatile \ organic \ compounds$

DRO = Diesel range organics
ORO = Oil range organics

GRO = Gasoline range organics

mg/kg = Milligrams per kilogram

µg/kg = Micrograms per kilogram Y = Sample exhibits chromatographic pattern which does not resemble standard < = Analyte not detected at or above the laboratory detection limit

BOLD = Detected above laboratory Reporting Limit

<RL = Analyte not detected above respective laboratory Reporting Limit

Orange highlight = Analytical result above applicable screening level

Tier 1 ESLs - Environmental Screening Levels, San Francisco Bay Regional Water Quality Control Board, February 2016.

Table 2

GROUNDWATER ANALYTICAL RESULTS FOR TPH AND VOCS Commercial Building 2449-2451 Santa Clara Avenue Alameda, CA 94501

				TPH		Volatile Organic Compounds (VOCs)								
Sample ID	Depth (ft bgs)	Date	TPH GROs (C7 to C12)	TPH DROs (C10 to C24)	TPH OROs (C24 to C36)	1,2,4- Trimethylbenz ene	sec- Butylbenzen e	para- Isopropyl Toluene	n- Butylbenzen e	Naphthalene	Other VOCs			
Units			µg/L	µg∕L	μg/L	µg/L	μg/L	μg/L	μg/L	μg/L	μg/L			
EPA Method			8015B	8015B	8015B	8260B	8260B	8260B	8260B	8260B	8260B			
SB-1	8	2/12/2016	<50	<47	<280	<0.5	<0.5	<0.5	< 0.5	<2.0	<rl< td=""></rl<>			
SB-2	8	2/12/2016	<50	<47	<280	< 0.5	< 0.5	< 0.5	< 0.5	<2.0	<rl< td=""></rl<>			
SB-3	8	2/12/2016	<50	NS	<280	< 0.5	< 0.5	< 0.5	< 0.5	<2.0	<rl< td=""></rl<>			
SB-4	9	2/12/2016	140 Y	54,000 Y	95,000	< 0.5	< 0.5	< 0.5	< 0.5	<2.0	<rl< td=""></rl<>			
SB-5	9	2/12/2016	<50	48 Y	<280	< 0.5	< 0.5	< 0.5	< 0.5	<2.0	<rl< td=""></rl<>			
SB-6	9	2/12/2016	880 Y	220,000 Y	500,000	6.7	1.6	0.9	1.7	9.7	<rl< td=""></rl<>			
SB-7	9	2/12/2016	<50	NS	<280	< 0.5	< 0.5	< 0.5	< 0.5	<2.0	<rl< td=""></rl<>			
SB-8	9	2/12/2016	<50	<47	<280	< 0.5	< 0.5	< 0.5	< 0.5	<2.0	<rl< td=""></rl<>			
Tier 1 ESL - Gro	oundwater		100	100	100*	NE	NE	NE	NE	0.12	Varies			

Notes:

ft bgs = Feet below ground surface

TPH = Total petroleum hydrocarbons

DRO = Diesel range organics

ORO = Oil range organics

GRO = Gasoline range organics

VOCs = Volatile organic compounds

μg/L = Micrograms per liter

< = Analyte not detected at or above the laboratory detection limit

 $Y = Sample \ exhibits \ chromatographic \ pattern \ which \ does \ not \ resemble \ standard$

BOLD = Detected above laboratory Reporting Limit

Orange highlight = Analytical result above applicable screening level <RL = Analyte not detected above respective laboratory Reporting Limit

Table 3

GROUNDWATER ANALYTICAL RESULTS FOR METALS

Commercial Building 2449-2451 Santa Clara Avenue Alameda, CA 94501

Sample ID	Date	Depth (feet bgs)	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Copper	Lead	Mercury	Molybdenum	Nickel	Vanadium	Zinc
Units			μg/L	μg/L	μg/L	μg/L	μg/L	µg∕L	µg∕L	μg/L	μg/L	μg/L	μg/L	μg/L	µg∕L	μg/L
EPA Method			6010B	6010B	6010B	6010B	6010B	6010B	6010B	6010B	6010B	7471A	6010B	6010B	6010B	6010B
SB-1	2/12/2016	9	210	96	7,500	26	57	3,800	650	680	280	0.73	<25	4,400	2,300	2,600
SB-2	2/12/2016	9	140	160	5,400	17	<25	2,800	490	550	360	1.1	<25	3,100	1,700	1,800
SB-4	2/12/2016	9	95	88	3,400	<10	<25	1,900	310	410	130	0.51	70	2,000	1,200	1,200
Tier 1 ESL - Groun	ndwater		6.0	10	1,000	2.7	0.25	50	3.0	3.1	2.5	0.051	99	8.2	19	81
California's MCLs			6.0	10	1,000	4.0	5.0	50	6.0	1,000	15	2.0	99	100	50	5,000

Notes:

bgs = Below ground surface μ g/L = Micrograms per liter

< = Not detected at or above laboratory detection limit

BOLD = Detected above listed reporting limit

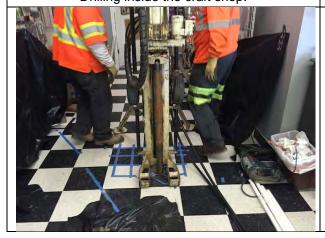
Orange highlight = Analytical result above applicable screening level

Tier 1 ESLs - Environmental Screening Levels, San Francisco Bay Regional Water Quality Control Board, February 2016.

Source: http://www.waterboards.ca.gov/sanfranciscobay/water_issues/programs/ESL/Tier%201%20and%20Summary%20ESLs_22Feb16.pdf

APPENDIX A Site Photographs

Location of Potential metal anomaly that could be a UST.


Additional view of metal anomaly located by GPR.

Drilling inside the craft shop.

Groundwater sampling in the craft shop.

View of surface completion in the craft shop.

Drilling in the parking lot on SB-.7 Also visible is location of SB-8 (bottom).

APPENDIX B SOIL BORING LOGS

Field Boring Log Sheet of Santaclus ocation of Boring Project: Boring No. Total Depth: Comercial Building Job No. 6360805ESAII Logged by: C. Olson Drilling Contractor: Cacasde Drill Rig Type: GeoProbe or Dolly Rig Drillers Name: Acetate-Liner Sampling Methods: Drop Hammer WT. 900 February 12, 2016 Start Time Date 1000 Date Completed Time February 12, 2016 NTS Boring Depth: Casing Depth: Water Depth: Recovered (inches) iner Interval (feet) Hydrocarbon Stain Time: Sample Interval Driven (inches) Date: Sample Time Depth (feet) Backfilled Time: 1000 2/12/16 By: Cascade Soil Type Date: Datum: Surface Elev: Conditions: Hund Avye 10.0

ODIC Environmental

								Field	Borin	g Log Sheet 1 of 2
Location	n of Bo	oring:		55	FT.			NT:	į.	Project: Salta Class Boring No. SB-7 Total Depth: Job No. 6360805ESAH Logged by: c. Olson Drilling Contractor: Cacasde Drill Rig Type: GeoProbe or Bolly Rig- Hand Augus Drillers Name: Ar Hammer WT. N/A Drop N/A Start Time 100 Date February 12, 2016 Boring Depth: 9
Liner Interval (feet)	200	Driven (inches)	Recovered (inches)	Sample Interval	Sample Time		Hydrocarbon Stain	Depth (feet)		Casing Depth: NA Water Depth: B' Time: 1175 Date: 2/12/10 Backfilled Time: 1200 Date: 2/12/16 By: Cascade Surface Elev: Datum: Conditions: 4'' Cancrele W/Gravel
			Av	ge				3.0		Sure grad and concrete pease Silty Sond, very fine, poorly a racked sond, clark yellowish Ibraun (10 YR 4/4), loose, city
				L	nis			6 .0	NA D	Same as above, dans Same as above, dans
				I	1125	,		9.0		End Borny @91

									Field	Bori	ing Log Sheet 1 of 1
Loca	tion (of Bo	oring:	A Company						フソ	Project: Santa Cluss Boring No. SB-3 Comercial Building Alameda Total Depth: Job No. 6360805ESAII Logged by: C. Olson Drilling Contractor: Cacasde
Si .							1				Drill Rig Type: GeoProbe or Dolly Rig
						.0.7	_[Drillers Name: ACNIO
e G						SBA	7				Sampling Methods: Acetate Liner
i i			1			_	1				Hammer WT. N/A Drop N/A
			1	}		-					Start Time 1230 Date February 12, 2016
			}			}	1				Completed Time 13 0 Date February 12, 2016
-	_	_	┵	-	,	_	\dashv		NT	S	Boring Depth: 9
		}		1	1			1			Casing Depth: NA
6		1	1	- I		i				1	Water Depth: A 8'
fee		į	_	es es	-			fair		1	Time:
Liner Interval (feet)			Oriven (inches)	Recovered (inches)	Sample Interval	<u>a</u>		Hydrocarbon Stain	5		Date:
Inter	Soil Type	1	Ē	erec	e In	Sample Time		arb	Depth (feet)		Backfilled Time: 3 Date: 2/12/16 By: Cascade
ner	Į.		iver	Š	d i	mp		ď.	₽.		Surface Elev: Datum:
17	ğ	-	-		ŝ	ŝ		Ĩ	å	╀	Conditions:
		l	Hou	١,						Ц	12"-Concrete Ship
			14	0					1.0	U	
											Silty Sond - poorly graded
			11							П	Gre sond dk Ylls brown (104K9/4)
							-			Ħ	
										H	loose, no odist
-			+		_				3.0	Н	
										4	
										Ц	
1	ł										Some as above
1	1			T	7	12.5	9		5.0	Π	
										7	
- 1	- 1		} {	-	1	1				Ħ	
ᅱ	-	-	+	-	-	\dashv	-	-	- 1	H	
1	- 1	1	11	- 1	1	- 1				4	
			11						7.0		some as above, dump
1	1	ł		1	I	- 1	ı	į		130	
	}	- {	11	}	1	1	- 1	I		4	
	7	7	11	+	7	+			l	7 °	
	-	1	1	1	_1	d	5	ı		1	0 000
+	-	+	4	-	I	15		_	9.0	4	Someas above, wet End Burry @9'
1		ĺ	-	1	1	1	ı	l	1	1	End Burril @9'
	_ }	_			_1				10.0	1	
T	T	T	T		T		T		Ī	1	
				200				30.00		1	

									Field E	3orin	g Log Sheet 1 of 1
Locat	ion of	f Boi			1000	SB!			, A		Project: Sacha Clara Comercial Building Boring No. Total Depth: Job No. 6360805ESAII Logged by: C. Olson Drilling Contractor: Cacasde Drill Rig Type: GeoProbe or Dolly Rig Drillers Name: Sampling Methods: Acetate Liner Hammer WT. N/A Start Time J 3 2 0 Date February 12, 2016 Boring Depth: Dolly Rig Drillers Name: February 12, 2016 February 12, 2016
Liner Interval (feet)	Soil Type		Driven (inches)	Recovered (inches)	Sample Interval	Sample Time		Hydrocarbon Stain	Depth (feet)		Casing Depth: NA Water Depth: 9 Time: 4 0 Date: 2/12/16 Backfilled Time: 4 0 Date: 2/12/16 By: Cascade Surface Elev: Datum: Conditions: Cancel P = Z 11 Hun Avye
				不	7.	rt/	7		3.0 5.0	1	Silty Smil, Olive brand, 255 44/4) damp, fireto med. sand, 1005e No odar Same as above same as above
				K X Y	I	NO.	0	1/4	7.0 9.0 10.0	- 0%P	Some as above Color change, arsh grey (GLEY 5/1), start perolom add Color change, the yllsh brown 10/R4/4), wet

	- 12								Field	Borir	ng Log Sheet of
Location of Boring: \$8-5							5		7	1	Project: Co Municial Building Boring No. SB - 58 LIVAY - 2451 San Burd Total Depth: 10' G36.0805 ESA11 Logged by: c. Olson
								_	ľ	J	Drilling Contractor: Cascacle
	0:11							-			Drill Rig Type: (Roprobe
			Building							Driller Name: ACTUO	
										Sampling Methods: Acefale Liner	
							1			Hammer WT. NA Drop NA	
		İ				1		- 1			Start Time 1400 Date 2-12-10
1		l				I		1			Completed Time 5 10 Date 2 - 12 - 1 Ce
			-		<u> </u>	1	r—	\dashv	NTS	<u>} </u>	Boring Depth: 10
											Casing Depth: NA Water Depth: 9'
		-						_			
			s)	hes				Stai			Time: 1450 Date. 2/12/1Ce
(F			che	(inc	3			poq	et)	1	Date. 2/17/10e
h (fe			in (ir	ived	5			ocar	h (fe		Backfilled Time: 520 Date: 2/12/16 By: Cascude
Depth (feet)	Type		Driven (inches)	Received (inches)	Sumple	Time		Hydrocarbon Stain	Depth (feet)		Surface Elev: Datum: Conditions:
Ť			۳	u.						t	Concrete = 2" Atmostys
										1	Concert - nogeris
-			-	-	-	-	-	-	1.0	1	Sitty Sand, v. the gram,
l						ĺ				-	Silty Sand, v. fine gram, dk yllsh brown (10 YR 4/3)
<u></u>			_			_	_				dry no odor, loose
						i				1	
					8				3.0		
									1		same as about
			1		l					1	
Г		2 = 9				2.5.2		in the second		1	
i			}		l			1	5.0	1	same as above
1	-		1	1	7	20	-		5.5	1	sare as not
500					1	83/	i			1	
8			₩	-		-	-	-		1	
1								1		4	
			Ш	4					7.0	4	Increasing silt, dump
1			1		i i					4	no odos
			1	1	g 1						
N.			IT	个	1					140	
45					V 3				9.0	V	Water @ 9 Increased gard
1,5				1		1				1	in et loose un adan
1				L	1	43			, ,	1	The otto
		-	+	<u>~</u>	1	~			1 0.0	1	End RATION (DIO)

									Field	Bori	ing Log Sheet of
-oc	ition	of Bo	oring] :						1	Project: Comesan Bildry Boring No. SB-CO
										71	Santa Clum Blud Home Fotal Depth: 10'
				35	3-(ደ			١	J	6360805FSAII Logged by: C. Olson
			9	•						**	Drilling Contractor: Coscace
											Drill Rig Type: Geographe
			Γ					7			Driller Name: Artwo
											Sampling Methods: Acetale Line
					-	7		1			Hammer WT. NA Drop NA
			- 1			1					Start Time 1510 Date 2-12-10
											Completed Time 1540 Date 2 - 12 - 10
			1		\perp				NTS	3	Boring Depth: 10'
											Casing Depth: VA
		- 1			X					1	Water Depth:
				es)	6			tain		1	Time: 1530
_		1	hes)	nch	4			Suc		ı	Date: 2-12-10
ee			Driven (inches)	Received (inches)	supethere			Hydrocarbon Stain	Depth (feet)	1	Backfilled Time: 1640 Date: 2-12-16 By: Cuscade
Depth (feet)	e e		ven	çe i	3	ē	1	droc	ta ta		Surface Elev: Datum:
ne D	Туре		Ö	Re	Ŋ	Time		Ĭ,) O		Conditions:
								1			Silty Soud poorly gracled to 5th V. The soul dk yllsh bralloypa
									1.0	1	Silty Sand sandy 18 ded to 50
										1	v. The sand dk yllsh knoloypa
									ŀ	1	1. The Said OK ALTO LAND
	\dashv							-	ŀ	┨	loose, no odar
									1	1	
-									3.0]	
											Same as abae
	1								Ī	1	
			100					-	ŀ	1	
		1							ł	1	8 a) d'il
-		-	į.	Ø.	-			. I	5.0	-	Sand wisilt, u. Sne sach
3		ľ	T					27		1	greensh grey (GLEYSI),
3				1	_			X		1	Detroleum odar, dump, loose
					1	A				1	petroleum stam
1	1	İ				47			7.0	1	
+			+	+					1.0	1	
١									-	-	
4			K	*						1	
		1	1	1					i	16	
6		1							9.0	A	Bilty sand for sand wish
7			11	+		4	7		t	1	mp m 10 48 4/2 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 =
		1	1		-	A			.	1	The state of the s
4	_		4	√	1	7		-	0.0	1	oad julie
1		- 1								1	End Rocky (Q10)

oca	tion o	of Bo	ring:					-			Project: Comercial Building Boring No. 5B-7
			,		*	_			7 N		S-nta Clara Blud Austral Depth: 10/ 6360808 ESAII Logged by: c. Olson Drilling Contractor: Cascade
				• 5	sB- ilda	7			ı		Drill Rig Type: GOOPDER
					11		-4	•8			Driller Name: Activo
			V.	80	ildi	~w	1				Sampling Methods: Scetate Lier Hammer WT. NA Drop NA
			lf J		-	1	ĺ	Ľ.			Start Time 550 Date 2-12-16
					}	}					Completed Time GDO Date 2-12-10
-	_				L	1	_		NT:	S	Boring Depth: 10
					X						Casing Depth: NA
				()	Sumple Infers		-	اء			Water Depth: 91
			(Se	Received (inches)	13		1	Hydrocarbon Stain		1	Time: 1620 Date: 1-12-10
(eet)			Driven (inches)	d (in	او ا		1	g l	eet)	1	Backfilled Time: 1600 Date: 2-12-16 By: Cuscudo
Depth (feet)	စ္) uə,	eive	3	- 0	ł	roca Se	Depth (feet)	ĺ	Surface Elev: Datum:
Oe De	Type		ğ	Rec	X	Time		출	Dep	1	Conditions:
											4" = Concrete HundAugo
								_	1,0	1	Silty Send, v. fregram 51
									Į.		olive brown (2.544/3)
V								1	18		dry, fine sord, loose, no oder
								1		7	The state of the s
					1		· I		3.0	1	
5000									COROLAN		Some as above
								1		Ħ	- 100-1
										1	
			1					- 1	5.0	H	84.40 d = 1/20 0
5,			a	个	I	160		\dashv	0.0	H	Situated Supare
3) B	1		11			10	1			Н	Color loss 1 212
<u></u>	1	-	1	1			+	-		Н	Color, loose, down
							1	1		Н	
			H	+	-		+	\dashv	7.0	Н	
			1.				-	1		Н	
a i			X	X	-	-	-+	-		1/6	9
8 [']			1	11	1					H_{lo}	8
0			-	+	-	-			9.0	ЦΥ	some as above met, no ode
					_	1600				4	
			V	A	I	10	_		0.0	Ц	
			1		1	1		- 1		1	1 L. 1 K ~ 1 60 101

								Field	Bori	ng Log Sheet of
oca	ition (of Bo			B-	3		Cvy	وكمس	Project: Commercial BLD Boring No. SB-8 2449-2451 Simble Total Depth: 10 636080585411 Logged by: c. Olson Drilling Contractor: Casade Drill Rig Type: Geoprose and hand from Driller Name: ATHO Sampling Methods: Acetate Cives
								NTS	S	Hammer WT. NA Drop NA Start Time 1630 Date Z-12-16 Completed Time 1700 Date Z-12-16 Boring Depth: 101
Depth (feet)	Туре		Driven (inches)	Received (inches)	San Me Interd	Time /	Hydrocarbon Stain	Depth (feet)		Casing Depth: NA Water Depth: G' Time: UUD Date: 2-12-16 Backfilled Time: 170 Date: 2-12-16 By: Cascade Surface Elev: Datum:
			٥	<u>«</u>		1	I	1,0		Conditions: 4"- Concrete Hund Avgs + 51
								3.0		Silty Soud, fix grain de yllsa brown (10 y RSH), dry, no occlor
`` \ <u>'</u>			不	1	I	20/	9	5.0		Sare as above, damp
					20			7.0		Sare as a bac
3'			*	* + *	T .	1630		9.0	W V	Soud oil silt, v. fre grain, v.d. ylloh brown (104R5/4), 10 ody wet

APPENDIX C LABORATORY ANALYSIS REPORT

Curtis & Tompkins, Ltd., Analytical Laboratories, Since 1878

2323 Fifth Street, Berkeley, CA 94710, Phone (510) 486-0900

Laboratory Job Number 274186 ANALYTICAL REPORT

ODIC Environmental & Energy Project : STANDARD

3255 Wilshire Blvd. Suite 1510 Location: Commercial BLD - Alameda

Los Angeles, CA 90010 Level : II

<u>Sampl</u>	е	ID	<u>Lab ID</u>
SB-1			274186-001
SB-2			274186-002
SB-3			274186-003
SB-4			274186-004
SB-5			274186-005
SB-6			274186-006
SB-7			274186-007
SB-8			274186-008
SB-5	@	10'	274186-009
SB-6	@	6'	274186-010
SB-6	@	10'	274186-011
SB-7	@	5 '	274186-012
SB-7	@	10'	274186-013
SB-8	@	5 '	274186-014
SB-8	@	10'	274186-015
SB-1	@	4'	274186-016
SB-1	@	7 '	274186-017
SB-1	@	9 '	274186-018
SB-2	@	5 '	274186-019
SB-2	@	9 '	274186-020
SB-3	@	5 '	274186-021
SB-3	@	9 '	274186-022
SB-4	@	5 '	274186-023
SB-4	@	10'	274186-024
SB-5	@	5 '	274186-025

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis. This report may be reproduced only in its entirety.

Signature:

Mikelle Chong Project Manager mikelle.chong@ctberk.com

CA ELAP# 2896, NELAP# 4044-001

1 of 122

Date: 02/25/2016

CASE NARRATIVE

Laboratory number: 274186

Client: ODIC Environmental & Energy Location: Commercial Bid - Alameda

Request Date: 02/12/16 Samples Received: 02/12/16

This data package contains sample and QC results for eleven soil samples and eight water samples, requested for the above referenced project on 02/12/16. The samples were received on ice and intact, directly from the field. Some sample preservation was done upon receipt; see the attached receipt form.

TPH-Purgeables and/or BTXE by GC (EPA 8015B) Water:

No analytical problems were encountered.

TPH-Purgeables and/or BTXE by GC (EPA 8015B) Soil:

High surrogate recovery was observed for bromofluorobenzene (FID) in SB-6 @ 6' (lab # 274186-010). No other analytical problems were encountered.

TPH-Extractables by GC (EPA 8015B) Water:

SB-4 (lab # 274186-004) was diluted due to the dark and viscous nature of the sample extract. No other analytical problems were encountered.

TPH-Extractables by GC (EPA 8015B) Soil:

High surrogate recoveries were observed for o-terphenyl in SB-1 @ 9' (lab # 274186-018) and SB-3 @ 9' (lab # 274186-022); no target analytes were detected in these samples. SB-6 @ 6' (lab # 274186-010) was diluted due to the dark and viscous nature of the sample extract. No other analytical problems were encountered.

Volatile Organics by GC/MS (EPA 8260B) Water:

Low response was observed for tert-butyl alcohol (TBA) in the CCV analyzed 02/19/16 13:54; this analyte met minimum response criteria, and affected data was qualified with "b". Low recovery was observed for toluene in the MS for batch 232260; the parent sample was not a project sample, the LCS was within limits, and the associated RPD was within limits. High RPD was observed for trichloroethene in the MS/MSD for batch 232260; this analyte was not detected at or above the RL in the associated samples. No other analytical problems were encountered.

Volatile Organics by GC/MS (EPA 8260B) Soil:

Matrix spikes were not performed for this analysis in batch 232159 due to insufficient sample amount. High surrogate recovery was observed for bromofluorobenzene in SB-6 @ 6' (lab # 274186-010). SB-6 @ 6' (lab # 274186-010) was diluted due to high hydrocarbons. No other analytical problems were encountered.

Metals (EPA 6010B and EPA 7470A):

Chromium was detected above the RL in the method blank for batch 232137; this

Page 1 of 2

CASE NARRATIVE

Laboratory number: 274186

Client: ODIC Environmental & Energy Location: Commercial Bid - Alameda

Request Date: 02/12/16 Samples Received: 02/12/16

Metals (EPA 6010B and EPA 7470A):

analyte was detected in samples at a level at least 10 times that of the blank. No other analytical problems were encountered.

CHAIN OF CUSTODY 274186

1043

2105 Lundy Ave, San Jose, CA 95131	FED-EX Tracking #	Bottle Order Control #
ACCUTEST® (408) 588-0200 FAX: (408) 588-0201	Accutest Quote #	Accutest NC Job #: C
LABORATORIES		
Client / Reporting Information Project Information	Re	quested Analysis Matrix Codes
Address Street	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	WW- Wastewater GW- Ground Water
3255 Wilshire Bluck # 1510 Street 299-2451 Sinta Clara Are City State	S 33 5	SW- Surface Water
Los Angeles CA Alameda, CA	Ne see	Ol-Oil WP-Wipe
Loca Olson Mel Kim (0300805 ESA)	9 002	LIQ - Non-aqueous Liqui
Phone #217-380-0090 FMAIL: We Wood TE PAU Can	3 8300	AIR
Samplers's Name COCACISOM Client Purchase Order #		DW- Drinking Water (Perchlorate Only)
Accutest Collection Number of preserved Bottles	HAHA PHA	(Feldilotate Only)
Sample # of THE REPORT	LAB USE ONLY	
1 SB-1 2/12/18/940 CO GW 63 1 2	XXXX	
2 SB-2 2/12/16/130 CO GW 69 B 1 2	XXXX	
3 SB-3 44/19/305CO GN966	XX	
4 SB-4 2-12-10/450 CO GW96 86 1 42	XXXX	
5 SB-5 2-12-16 1510 CO GW 96 1 2	XXX	
6 SB-CO 2-12-16/1600 1 96 360 1 2	XXX	
7 53-7 2-1210/1620 666	X X	
8 53-8 2-12-14/640 1 4 9 6 1 2	XXX	
Turnaround Time (Business days) Data Deliverable Information		Comments / Remarks
Approved By:/ Date: Commercial "A" - Results only 10 Day Commercial "B" - Results with QC summaries		+
5 Day Commerical "B+" - Results, QC, and chromatograms		d d. Acel
3 Day FULT1 - Level 4 data package 2 Day EDF for Geotracker EDD Format	(.070	a e no
1 Day Provide EDF Global ID	_	
Same Day Provide EDF Logcode: Emergency T/A data available VIA Lablink	_	,
' Sample Custody must be documented below each time samples change possession, including of		
Reinfordshed by Sampler: Date Time Received By: Received By: Received By:	Date Time:	Received By:
527 1 / 18 DM2 2		2
Received By: Received By: Relinquished By: 3	Date Time:	Received By:
Pate Time: Received By: Custody Seal #	Appropriate Bottle / Pres. Y / N Headspace	e Y / N On Ice Y / N Cooler Temp.
5	Labels match Coc? Y / N Separate Rec	eiving Check List used: Y / NoC

CHAIN OF CUSTODY

274186

Labels match Coc? Y / N

Separate Receiving Check List used: Y / N

	2	C/	_
			_

Bottle Order Control # 2105 Lundy Ave, San Jose, CA 95131 ACCUTEST (408) 588-0200 FAX: (408) 588-0201 Accutest Quote # Accutest NC Job #: C LABORATORIES Client / Reporting Information Project Information Requested Analysis Matrix Codes Company Name Project Name: (CMANETTA) WW- Wastewater 8015M GW- Ground Water Ishie Bluf #510 2999-SW- Surface Water SO- Soil 90010 OI-Oil WP-Wipe LIQ - Non-aqueous Liquid DW- Drinking Water (Perchlorate Only) Hd Collection Number of preserved Bottles Accutest Sample LAB USE ONLY Sample ID / Field Point / Point of Collection Date Sampled by Matrix bottles Co 50 2-12-16 12-12-161555 ≤0 50 1600 1600 1630 1630 Turnaround Time (Business days) Data Deliverable Information Comments / Remarks Approved By:/ Date: Commercial "A" - Results only 10 Day Commercial "B" - Results with QC summaries 5 Day Commerical "B+" - Results, QC, and chromatograms cold & intel 3 Day FULT1 - Level 4 data package 2 Day **EDF** for Geotracker EDD Format 1 Day Provide EDF Global ID Same Day Provide EDF Logcode: Emergency T/A data available VIA Lablink Sample Custody must be documented below each time samples change possession, including courier delivery. Relinquished by Sampler: Relinquished By: Date Time: Received By: Z-1Z-160 Relinquished by: Date Time: Relinquished By: Date Time: Received By: Relinquished by: Date Time: Received By: Custody Seal # Appropriate Bottle / Pres. Y / N Headspace Y/N Cooler Temp.

CCUTEST

CHAIN OF CUSTODY

274186 FED-EX Tracking #

Labels match Coc? Y / N

Separate Receiving Check List used: Y / N

Bottle Order Control 2105 Lundy Ave, San Jose, CA 95131 (408) 588-0200 FAX: (408) 588-0201 Accutest Quote # Accutest NC Job #: C LABORATORIES Client / Reporting Information Project Information Requested Analysis Matrix Codes Company Name WW- Wastewater Project Name: nijonmenta GW- Ground Water ₹ SW- Surface Water SO- Soil 3000 OI-Oil WP-Wipe LIQ - Non-aqueous Liquid AIR Samplers's Name DW- Drinking Water (Perchlorate Only) Collection Accutest Number of preserved Bottles TPH att Sample # of LAB USE ONLY ID Sample ID / Field Point / Point of Collection Sampled by Matrix bottles 16 \mathcal{O} 0 20 0 18 92 0 20 CD 24 Data Deliverable Information Approved By:/ Date: Commercial "A" - Results only Cold a intest 10 Day Commercial "B" - Results with QC summaries 5 Day Commerical "B+" - Results, QC, and chromatograms 3 Day FULT1 - Level 4 data package 2 Day **EDF** for Geotracker EDD Format 1 Day Provide EDF Global ID Same Day Provide EDF Logcode: Emergency T/A data available VIA Lablink Sample Custody must be documented below each time samples change possession, including courier delivery. Date Time: Relinquished By: Date Time: Received By: 2-12-16 52 Date Time: Relinquished By: Date Time: Received By: Relinquished by: Date Time: Received By: Custody Seal # Appropriate Bottle / Pres. Y / N Headspace Y/N Cooler Temp.

	Login# <u>274186</u>	Date R	Leceived 7	112/16	Number o	of cooler.	s_Z
	Client ODIC Env.		Proje	ect Com	nercial E	SID-Alo	imeda
	Date Opened 2/12]	By (print)	CIN SC	(sign)	alles	me	
	Date Logged in 2/15 I	By (print)	SL	(sign)	Muc	The	
	l. Did cooler come with a s Shipping info	hipping slip				YES	1
	2A. Were custody seals pre How many	sent? [YES (circ	cle) on cool			
	2B. Were custody seals inta	ct upon arriv	al?				NO M
	3. Were custody papers dry					Y DS	NO
	Were custody papers filleIs the project identifiableIndicate the packing in co	from custod	ly papers? (If so fill out to	p of form)_		NO NO
	Bubble Wrap Cloth material Temperature documentat	☐ Cardboa	rd	☐ Styrofoam			vels
	Type of ice used:	Wet	Blue/Gel	□None	Temp(°C	C)	
	☐ Temperature blank	(s) included?	☐ Thermo	meter#	□ IR	Gun#_	
	Samples received o ■ Samples rece						
	. Were Method 5035 samp If YES, what time w	oling contain ere they tran	ers present? sferred to fr	eezer?		Y	ES 160
-	. Did all bottles arrive unbr 0. Are there any missing / 6	oken/unoper extra sample:	:2				ES NO
	1. Are samples in the appro			licated tests?			ES NO
1	2. Are sample labels preser	nt, in good co	ondition and	complete?			ES NO
]	3. Do the sample labels agr	ee with custo	ody papers?			γ	S NO
1	Was sufficient amount o	f sample sen	t for tests re	quested?		¥	BS NO
į	5. Are the samples appropr	iately preser	ved?			YES	N/A
l	6. Did you check preservat	ives for all be	ottles for ea	ch sample?		_YES]	NO N/A
	7. Did you document your						NO N/A
	8. Did you change the hold						NO NA
1	9. Did you change the hold			ved terracores	?	_YES]	NO MOA
	0. Are bubbles > 6mm abse						NO N/A
2	Was the client contacted	concerning t		delivery?		Y	es Mo
2				By		Date:	

Curtis & Tompkins Sample Preservation for 274186

Sample pH: < -001a [b [c [d] e [f [2 >9 >12 Other	Sample pH: b c d e f g h	<2 >9 [] [] [] [] [] [] [] [] [] [] [] []	>12 Other [] [] [] [] [] [] [] [] [] []
-002a [i	נוֹ נוֹ	[]
c [d [e [f [-006a b c d e f g h i		
b [c [d [e [f [-008a b c d e f g h		
-005a [] [] []	i	וֹ וֹ וֹ וֹ	[]

Analyst: 5C
Date: 92/15/16

Page 1 of 1

Detections Summary for 274186

Results for any subcontracted analyses are not included in this summary.

Client : ODIC Environmental & Energy

Project : STANDARD

Location : Commercial BLD - Alameda

Client Sample ID : SB-1 Laboratory Sample ID : 274186-001

Analyte	Result	Flags	RL	Units	Basis	IDF	Method	Prep Method
Antimony	210		50	ug/L	TOTAL	1.000	EPA 6010B	METHOD
Arsenic	96		25	ug/L	TOTAL	1.000	EPA 6010B	METHOD
Barium	7,500		25	ug/L	TOTAL	1.000	EPA 6010B	METHOD
Beryllium	26		10	ug/L	TOTAL	1.000	EPA 6010B	METHOD
Cadmium	57		25	ug/L	TOTAL	1.000	EPA 6010B	METHOD
Chromium	3,800		25	ug/L	TOTAL	1.000	EPA 6010B	METHOD
Cobalt	650		25	ug/L	TOTAL	1.000	EPA 6010B	METHOD
Copper	680		25	ug/L	TOTAL	1.000	EPA 6010B	METHOD
Lead	280		25	ug/L	TOTAL	1.000	EPA 6010B	METHOD
Mercury	0.73		0.50	ug/L	TOTAL	1.000	EPA 7470A	METHOD
Nickel	4,400		25	ug/L	TOTAL	1.000	EPA 6010B	METHOD
Vanadium	2,300		25	ug/L	TOTAL	1.000	EPA 6010B	METHOD
Zinc	2,600		100	ug/L	TOTAL	1.000	EPA 6010B	METHOD

Client Sample ID : SB-2 Laboratory Sample ID : 274186-002

7	D 1 +	777	DT	TT L	D	TDD	N/ - + ll	D M-+ll
Analyte	Result	Flags		Units			Method	Prep Method
Antimony	140		50	ug/L	TOTAL	1.000	EPA 6010B	METHOD
Arsenic	160		25	ug/L	TOTAL	1.000	EPA 6010B	METHOD
Barium	5,400		25	ug/L	TOTAL	1.000	EPA 6010B	METHOD
Beryllium	17		10	ug/L	TOTAL	1.000	EPA 6010B	METHOD
Chromium	2,800		25	ug/L	TOTAL	1.000	EPA 6010B	METHOD
Cobalt	490		25	ug/L	TOTAL	1.000	EPA 6010B	METHOD
Copper	550		25	ug/L	TOTAL	1.000	EPA 6010B	METHOD
Lead	360		25	ug/L	TOTAL	1.000	EPA 6010B	METHOD
Mercury	1.1		0.50	ug/L	TOTAL	1.000	EPA 7470A	METHOD
Nickel	3,100		25	ug/L	TOTAL	1.000	EPA 6010B	METHOD
Vanadium	1,700		25	ug/L	TOTAL	1.000	EPA 6010B	METHOD
Zinc	1,800		100	uq/L	TOTAL	1.000	EPA 6010B	METHOD

Client Sample ID : SB-3 Laboratory Sample ID : 274186-003

No Detections

Page 1 of 4 69.1

Client Sample ID : SB-4 Laboratory Sample ID : 274186-004

Analyte	Result	Flags	RL	Units	Basis	IDF	Method	Prep Method
Gasoline C7-C12	140	Y	50	ug/L	As Recd	1.000	EPA 8015B	EPA 5030B
Diesel C10-C24	54,000	Y	470	ug/L	As Recd	10.00	EPA 8015B	EPA 3520C
Motor Oil C24-C36	95,000		2,800	ug/L	As Recd	10.00	EPA 8015B	EPA 3520C
Antimony	95		50	ug/L	TOTAL	1.000	EPA 6010B	METHOD
Arsenic	88		25	ug/L	TOTAL	1.000	EPA 6010B	METHOD
Barium	3,400		25	ug/L	TOTAL	1.000	EPA 6010B	METHOD
Chromium	1,900		25	ug/L	TOTAL	1.000	EPA 6010B	METHOD
Cobalt	310		25	ug/L	TOTAL	1.000	EPA 6010B	METHOD
Copper	410		25	ug/L	TOTAL	1.000	EPA 6010B	METHOD
Lead	130		25	ug/L	TOTAL	1.000	EPA 6010B	METHOD
Mercury	0.51		0.50	ug/L	TOTAL	1.000	EPA 7470A	METHOD
Molybdenum	70		25	ug/L	TOTAL	1.000	EPA 6010B	METHOD
Nickel	2,000		25	ug/L	TOTAL	1.000	EPA 6010B	METHOD
Vanadium	1,200		25	ug/L	TOTAL	1.000	EPA 6010B	METHOD
Zinc	1,200		100	ug/L	TOTAL	1.000	EPA 6010B	METHOD

Client Sample ID : SB-5 Laboratory Sample ID :

Analyte	Result	Flags	RL	Units	Basis	IDF	Method	Prep Method
Diesel C10-C24	48	Y	47	ug/L	As Recd	1.000	EPA 8015B	EPA 3520C

Client Sample ID : SB-6 Laboratory Sample ID : 274186-006

Analyte	Result	Flags	RL	Units	Basis	IDF	Method	Prep	Method
Gasoline C7-C12	880	Y	50	ug/L	As Recd	1.000	EPA 8015B	EPA	5030B
Diesel C10-C24	220,000	Y	4,700	ug/L	As Recd	100.0	EPA 8015B	EPA	3520C
Motor Oil C24-C36	500,000		28,000	ug/L	As Recd	100.0	EPA 8015B	EPA	3520C
1,2,4-Trimethylbenzene	6.7		0.5	ug/L	As Recd	1.000	EPA 8260B	EPA	5030B
sec-Butylbenzene	1.6		0.5	ug/L	As Recd	1.000	EPA 8260B	EPA	5030B
para-Isopropyl Toluene	0.9		0.5	ug/L	As Recd	1.000	EPA 8260B	EPA	5030B
n-Butylbenzene	1.7		0.5	ug/L	As Recd	1.000	EPA 8260B	EPA	5030B
Naphthalene	9.7		2.0	ug/L	As Recd	1.000	EPA 8260B	EPA	5030B

Client Sample ID : SB-7 Laboratory Sample ID : 274186-007

No Detections

Client Sample ID : SB-8 Laboratory Sample ID : 274186-008

No Detections

Page 2 of 4 69.1

274186-005

Client Sample ID : SB-5 @ 10' Laboratory Sample ID : 274186-009

No Detections

Client Sample ID : SB-6 @ 6' Laboratory Sample ID : 274186-010

Analyte	Result	Flags	RL	Units	Basis	IDF	Method	Prep Method
Gasoline C7-C12	660	Y	40	mg/Kg	As Recd	200.0	EPA 8015B	EPA 5030B
Diesel C10-C24	4,200	Y	100	mg/Kg	As Recd	100.0	EPA 8015B	EPA 3550B
Motor Oil C24-C36	10,000		500	mg/Kg	As Recd	100.0	EPA 8015B	EPA 3550B
Acetone	30		19	ug/Kg	As Recd	0.9259	EPA 8260B	EPA 5030B
1,2,4-Trimethylbenzene	1,200		250	ug/Kg	As Recd	50.00	EPA 8260B	EPA 5030B
sec-Butylbenzene	690		250	ug/Kg	As Recd	50.00	EPA 8260B	EPA 5030B
para-Isopropyl Toluene	390		250	ug/Kg	As Recd	50.00	EPA 8260B	EPA 5030B
n-Butylbenzene	820		250	ug/Kg	As Recd	50.00	EPA 8260B	EPA 5030B
Naphthalene	2,100		250	ug/Kg	As Recd	50.00	EPA 8260B	EPA 5030B

Client Sample ID : SB-6 @ 10' Laboratory Sample ID : 274186-011

Analyte	Result	Flags	RL	Units	Basis	IDF	Method	Prep Method
Diesel C10-C24	6.7	Y	1.0	mg/Kg	As Recd	1.000	EPA 8015B	EPA 3550B
Motor Oil C24-C36	16		5.0	mg/Kg	As Recd	1.000	EPA 8015B	EPA 3550B

Client Sample ID : SB-7 @ 5' Laboratory Sample ID : 274186-012

Analyte	Result	Flags	RL	Units	Basis	IDF	Method	Prep Method
Diesel C10-C24	1.1	Y	1.0	mg/Kg	As Recd	1.000	EPA 8015B	EPA 3550B

Client Sample ID: SB-7 @ 10' Laboratory Sample ID: 274186-013

No Detections

Client Sample ID : SB-8 @ 5' Laboratory Sample ID : 274186-014

Analyte	Result	Flags	RL	Units	Basis	IDF	Method	Prep Method
Diesel C10-C24	1.5	Y	1.0	mg/Kg	As Recd	1.000	EPA 8015B	EPA 3550B

Client Sample ID : SB-8 @ 10' Laboratory Sample ID : 274186-015

Analyte	Result	Flags	RL	Units	Basis	IDF	Method	Prep Method
Diesel C10-C24	1.6	Y	1.0	mg/Kg	As Recd	1.000	EPA 8015B	EPA 3550B

Page 3 of 4 69.1

Client Sample ID : SB-1 @ 9' Laboratory Sample ID : 274186-018

No Detections

Client Sample ID : SB-2 @ 9' Laboratory Sample ID : 274186-020

No Detections

Client Sample ID : SB-3 @ 9' Laboratory Sample ID : 274186-022

No Detections

Client Sample ID : SB-4 @ 10' Laboratory Sample ID : 274186-024

Analyte	Result	Flags	RL	Units	Basis	IDF	Method	Prep Method
Diesel C10-C24	2.8	Y	1.0	mg/Kg	As Recd	1.000	EPA 8015B	EPA 3550B

Total Volatile Hydrocarbons Lab #: 274186 Commercial BLD - Alameda Location: EPA 5030B ODIC Environmental & Energy Client: Prep: STANDARD Project#: Analysis: EPA 8015B 02/12/16 Matrix: Water Sampled: 02/12/16 Units: ug/L Received: Diln Fac: 1.000

Field ID: SB-1 Batch#: 232292 Type: SAMPLE Analyzed: 02/21/16

Lab ID: 274186-001

Analyte Result RL
Gasoline C7-C12 ND 50

Surrogate %REC Limits
Bromofluorobenzene (FID) 111 80-132

 Field ID:
 SB-2
 Batch#:
 232120

 Type:
 SAMPLE
 Analyzed:
 02/16/16

Lab ID: 274186-002

Analyte Result RL
Gasoline C7-C12 ND 50

Surrogate %REC Limits
Bromofluorobenzene (FID) 115 80-132

Field ID: SB-3 Batch#: 232120
Type: SAMPLE Analyzed: 02/16/16

Lab ID: 274186-003

Analyte Result RL
Gasoline C7-C12 ND 50

Surrogate %REC Limits
Bromofluorobenzene (FID) 108 80-132

Field ID: SB-4 Batch#: 232120
Type: SAMPLE Analyzed: 02/16/16
Lab ID: 274186-004

 Analyte
 Result
 RL

 Gasoline C7-C12
 140 Y
 50

Surrogate %REC Limits
Bromofluorobenzene (FID) 115 80-132

Y= Sample exhibits chromatographic pattern which does not resemble standard

ND= Not Detected

RL= Reporting Limit

Page 1 of 3

Total Volatile Hydrocarbons Lab #: 274186 Location: Commercial BLD - Alameda Client: ODIC Environmental & Energy EPA 5030B Prep: Analysis: Sampled: Project#: STANDARD EPA 8015B Water 02/12/16 Matrix: Units: ug/L Received: 02/12/16 Diln Fac: 1.000

Field ID: SB-5 Type: SAMPLE Lab ID:

274186-005

Batch#: 232120 02/16/16 Analyzed:

232120

02/16/16

Result Analyte Gasoline C7-C12 ND 50

Limits Surrogate %REC 109 Bromofluorobenzene (FID) 80-132

Field ID: SB-6 Batch#: SAMPLE Type: Analyzed: Lab ID: 274186-006

Result Analyte RLGasoline C7-C12 880 Y 50

%REC Limits Surrogate

118 80-132 Bromofluorobenzene (FID)

Field ID: SB-7 Batch#: 232120 Analyzed: SAMPLE 02/16/16 Type:

274186-007 Lab ID:

Analyte Result RLGasoline C7-C12 ND 50

%REC Limits Surrogate Bromofluorobenzene (FID) 80-132

Field ID: SB-8 Batch#: 232120 SAMPLE Analyzed: 02/16/16 Type:

Lab ID: 274186-008

Analyte Result RLGasoline C7-C12 ND 50

Surrogate %REC Limits Bromofluorobenzene (FID) 80-132

Y= Sample exhibits chromatographic pattern which does not resemble standard

ND= Not Detected

RL= Reporting Limit

Page 2 of 3

Total Volatile Hydrocarbons Commercial BLD - Alameda Lab #: 274186 Location: Client: ODIC Environmental & Energy EPA 5030B Prep: Analysis: Sampled: EPA 8015B 02/12/16 Project#: STANDARD Matrix: Water 02/12/16 Units: ug/L Received: Diln Fac: 1.000

Type: BLANK Batch#: 232120 Lab ID: QC823490 Analyzed: 02/16/16

Analyte Result RL
Gasoline C7-C12 ND 50

Surrogate%RECLimitsBromofluorobenzene (FID)9180-132

Type: BLANK Batch#: 232292 Lab ID: QC824202 Analyzed: 02/21/16

Analyte Result RL
Gasoline C7-C12 ND 50

Surrogate %REC Limits
Bromofluorobenzene (FID) 108 80-132

Y= Sample exhibits chromatographic pattern which does not resemble standard

ND= Not Detected

RL= Reporting Limit

Page 3 of 3

Total Volatile Hydrocarbons								
Lab #:	274186	Location:	Commercial BLD - Alameda					
Client:	ODIC Environmental & Energy	Prep:	EPA 5030B					
Project#:	STANDARD	Analysis:	EPA 8015B					
Type:	LCS	Diln Fac:	1.000					
Lab ID:	QC823489	Batch#:	232120					
Matrix:	Water	Analyzed:	02/16/16					
Units:	ug/L							

Analyte	Spiked	Result	%REC	Limits
Gasoline C7-C12	1,000	1,049	105	80-120

%REC Lin	.mits
(FID) 98 80-	

Page 1 of 1 29.1

	Total Volatile Hydrocarbons									
Lab #:	274186	Location:	Commercial BLD - Alameda							
Client:	ODIC Environmental & Energy	Prep:	EPA 5030B							
Project#:	STANDARD	Analysis:	EPA 8015B							
Field ID:	SB-4	Batch#:	232120							
MSS Lab ID:	274186-004	Sampled:	02/12/16							
Matrix:	Water	Received:	02/12/16							
Units:	ug/L	Analyzed:	02/16/16							
Diln Fac:	1.000									

Type: MS Lab ID: QC823491

Analyte	MSS Result	Spiked	Result	%REC	Limits
Gasoline C7-C12	135.2	2,000	2,313	109	76-120

Type: MSD Lab ID: QC823492

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Gasoline C7-C12	2,000	2,271	107	76-120	2	20

Total Volatile Hydrocarbons					
Lab #:	274186	Location:	Commercial BLD - Alameda		
Client:	ODIC Environmental & Energy	Prep:	EPA 5030B		
Project#:	STANDARD	Analysis:	EPA 8015B		
Type:	LCS	Diln Fac:	1.000		
Lab ID:	QC824203	Batch#:	232292		
Matrix:	Water	Analyzed:	02/21/16		
Units:	ug/L				

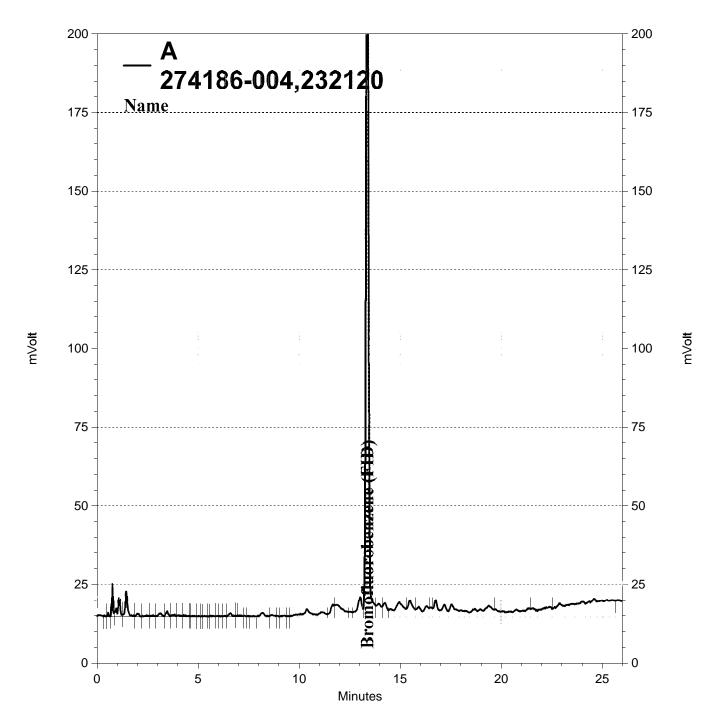
Analyte	Spiked	Result	%REC	Limits
Gasoline C7-C12	1,000	1,076	108	80-120

Surrogate	%REC	Limits
Bromofluorobenzene (FID)	111	80-132

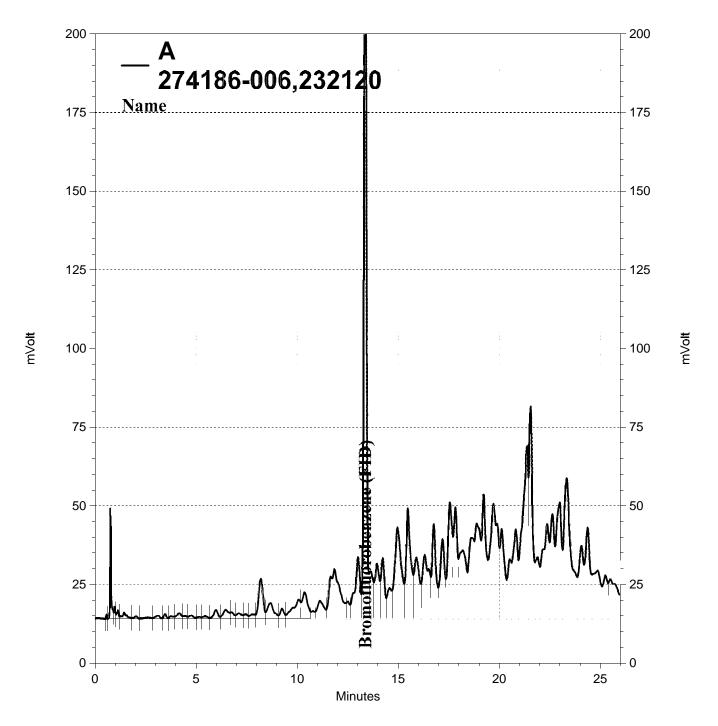
Page 1 of 1 31.1

Total Volatile Hydrocarbons					
Lab #:	274186	Location:	Commercial BLD - Alameda		
Client:	ODIC Environmental & Energy	Prep:	EPA 5030B		
Project#:	STANDARD	Analysis:	EPA 8015B		
Field ID:	SB-1	Batch#:	232292		
MSS Lab ID:	274186-001	Sampled:	02/12/16		
Matrix:	Water	Received:	02/12/16		
Units:	ug/L	Analyzed:	02/21/16		
Diln Fac:	1.000				

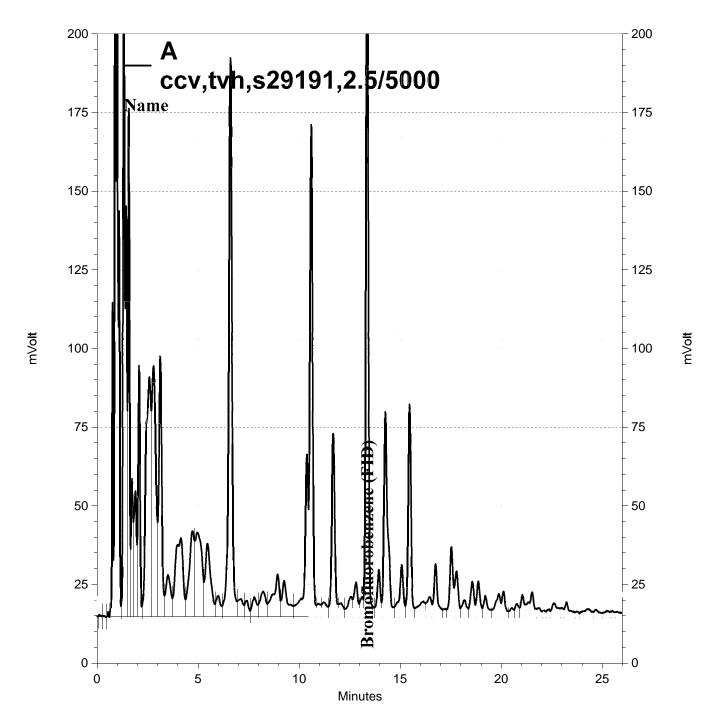
Type: MS Lab ID: QC824204


Analyte	MSS Result	Spiked	Result	%REC	Limits
Gasoline C7-C12	48.19	2,000	2,079	102	76-120

Surrogate %REC Limi
Bromofluorobenzene (FID) 116 80-1


Type: MSD Lab ID: QC824205

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Gasoline C7-C12	2,000	2,038	100	76-120	2	20


Surrogate %REC Limits
romofluorobenzene (FID) 115 80-132

-----\Lims\gdrive\ezchrom\Projects\GC05\Data\047-006, A

\Lims\gdrive\ezchrom\Projects\GC05\Data\047-012, A

-----\Lims\gdrive\ezchrom\Projects\GC05\Data\047-003, A

Total Volatile Hydrocarbons Lab #: 274186 Commercial BLD - Alameda Location: ODIC Environmental & Energy EPA 5030B Client: Prep: STANDARD Project#: Analysis: EPA 8015B 02/12/16 Matrix: Soil Sampled: 02/12/16 Units: mg/Kg Received: Basis: as received

Field ID: SB-5 @ 10' Diln Fac: 1.000
Type: SAMPLE Batch#: 232101
Lab ID: 274186-009 Analyzed: 02/16/16

Analyte Result RL
Gasoline C7-C12 ND 1.0

Surrogate %REC Limits
Bromofluorobenzene (FID) 97 78-138

Field ID: SB-6 @ 6' Diln Fac: 200.0 Type: SAMPLE Batch#: 232126 Lab ID: 274186-010 Analyzed: 02/17/16

 Analyte
 Result
 RL

 Gasoline C7-C12
 660 Y
 40

Surrogate %REC Limits
Bromofluorobenzene (FID) 153 * 78-138

Field ID: SB-6 @ 10' Diln Fac: 1.000
Type: SAMPLE Batch#: 232101
Lab ID: 274186-011 Analyzed: 02/16/16

Analyte Result RL
Gasoline C7-C12 ND 0.97

Surrogate %REC Limits
Bromofluorobenzene (FID) 97 78-138

Field ID: SB-7 @ 5' Diln Fac: 1.000 Type: SAMPLE Batch#: 232101 Lab ID: 274186-012 Analyzed: 02/16/16

Analyte Result RL
Gasoline C7-C12 ND 0.97

Surrogate %REC Limits
Bromofluorobenzene (FID) 98 78-138

*= Value outside of QC limits; see narrative

Y= Sample exhibits chromatographic pattern which does not resemble standard

ND= Not Detected

RL= Reporting Limit

Page 1 of 4

02/12/16

Received:

Units: mg/Kg Basis: as received

Field ID: SB-7 @ 10' Diln Fac: 1.000
Type: SAMPLE Batch#: 232101
Lab ID: 274186-013 Analyzed: 02/16/16

Analyte Result RL
Gasoline C7-C12 ND 1.0

Surrogate %REC Limits
Bromofluorobenzene (FID) 98 78-138

Field ID: SB-8 @ 5' Diln Fac: 1.000
Type: SAMPLE Batch#: 232101
Lab ID: 274186-014 Analyzed: 02/16/16

Analyte Result RL
Gasoline C7-C12 ND 1.0

Surrogate %REC Limits
Bromofluorobenzene (FID) 97 78-138

Field ID: SB-8 @ 10' Diln Fac: 1.000 Type: SAMPLE Batch#: 232101

Lab ID: 274186-015 Analyzed: 02/16/16

AnalyteResultRLGasoline C7-C12ND0.98

Surrogate %REC Limits
Bromofluorobenzene (FID) 97 78-138

Field ID: SB-1 @ 9' Diln Fac: 1.000
Type: SAMPLE Batch#: 232101
Lab ID: 274186-018 Analyzed: 02/16/16

AnalyteResultRLGasoline C7-C12ND0.97

Surrogate %REC Limits
Bromofluorobenzene (FID) 94 78-138

*= Value outside of QC limits; see narrative

Y= Sample exhibits chromatographic pattern which does not resemble standard

ND= Not Detected

RL= Reporting Limit

Page 2 of 4

Total Volatile Hydrocarbons Lab #: 274186 Location: Commercial BLD - Alameda Client: ODIC Environmental & Energy EPA 5030B Prep: Analysis: Sampled: Project#: STANDARD EPA 8015B Soil 02/12/16 Matrix: Units: mg/Kg Received: 02/12/16 Basis: as received

Field ID: SB-2 @ 9' Diln Fac: 1.000
Type: SAMPLE Batch#: 232101
Lab ID: 274186-020 Analyzed: 02/16/16

Analyte Result RL
Gasoline C7-C12 ND 0.97

Surrogate %REC Limits
Bromofluorobenzene (FID) 97 78-138

Field ID: SB-3 @ 9' Diln Fac: 1.000
Type: SAMPLE Batch#: 232101
Lab ID: 274186-022 Analyzed: 02/16/16

Analyte Result RL
Gasoline C7-C12 ND 1.0

Surrogate %REC Limits
Bromofluorobenzene (FID) 98 78-138

Field ID: SB-4 @ 10' Diln Fac: 1.000 Type: SAMPLE Batch#: 232101 Lab ID: 274186-024 Analyzed: 02/16/16

Analyte Result RL
Gasoline C7-C12 ND 1.0

Surrogate %REC Limits
Bromofluorobenzene (FID) 100 78-138

Type: BLANK Batch#: 232101 Lab ID: QC823424 Analyzed: 02/16/16

Diln Fac: 1.000

Analyte Result RL
Gasoline C7-C12 ND 0.20

Surrogate %REC Limits
Bromofluorobenzene (FID) 97 78-138

*= Value outside of QC limits; see narrative

Y= Sample exhibits chromatographic pattern which does not resemble standard

ND= Not Detected

RL= Reporting Limit

Page 3 of 4

Total Volatile Hydrocarbons						
Lab #: Client: Project#:	Client: ODIC Environmental & Energy Prep: EPA 5030B					
Matrix: Soil Sampled: 02/12/16 Units: mg/Kg Received: 02/12/16 Basis: as received						

Type: Lab ID: Diln Fac: 232126 02/16/16 BLANK Batch#: QC823516 1.000 Analyzed:

Ana	lyte Res	ult RL	
Gasoline C7-C12	ND	0.20	

Surrogate %REC Limits Bromofluorobenzene (FID) 100 78-138

Page 4 of 4

^{*=} Value outside of QC limits; see narrative Y= Sample exhibits chromatographic pattern which does not resemble standard

ND= Not Detected

RL= Reporting Limit

	Total Volatil	e Hydrocarbons	
Lab #:	274186	Location:	Commercial BLD - Alameda
Client:	ODIC Environmental & Energy	Prep:	EPA 5030B
Project#:	STANDARD	Analysis:	EPA 8015B
Type:	LCS	Diln Fac:	1.000
Lab ID:	QC823423	Batch#:	232101
Matrix:	Soil	Analyzed:	02/16/16
Units:	mg/Kg		

Analyte	Spiked	Result	%REC	Limits
Gasoline C7-C12	1.000	0.9598	96	80-121

Surrogate	%REC	Limits
Bromofluorobenzene (FID)	100	78-138

Page 1 of 1 4.1

	Total Volatil	e Hydrocarbons	3
Lab #:	274186	Location:	Commercial BLD - Alameda
Client:	ODIC Environmental & Energy	Prep:	EPA 5030B
Project#:	STANDARD	Analysis:	EPA 8015B
Field ID:	SB-6 @ 10'	Diln Fac:	1.000
MSS Lab ID:	274186-011	Batch#:	232101
Matrix:	Soil	Sampled:	02/12/16
Units:	mg/Kg	Received:	02/12/16
Basis:	as received	Analyzed:	02/16/16

Type: MS Lab ID: QC823425

Analyte	MSS Result	Spiked	Result	%REC	Limits
Gasoline C7-C12	0.3230	10.31	8.688	81	50-120

Surrogate %REC	Limits
Bromofluorobenzene (FID) 99	78-138

Type: MSD Lab ID: QC823426

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Gasoline C7-C12	9.901	8.593	84	50-120	3	31

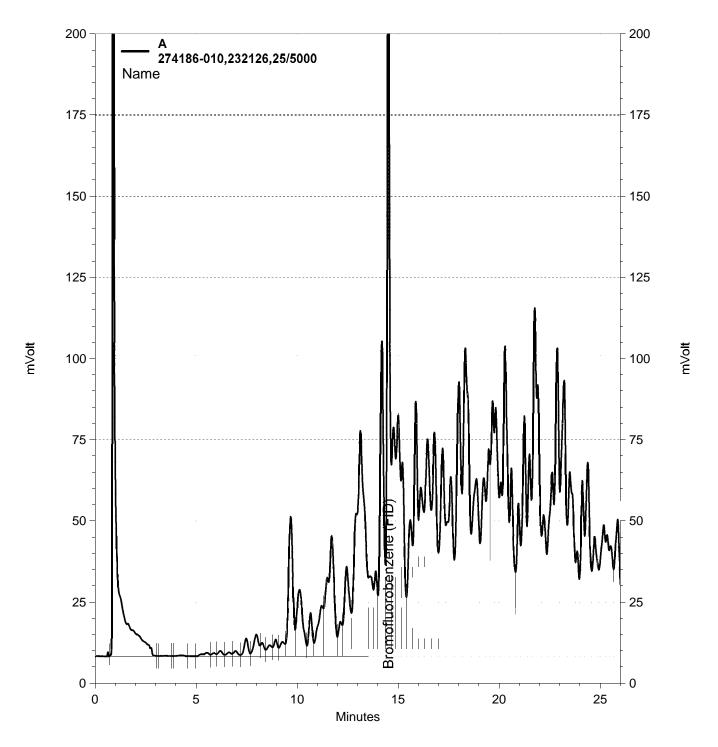
	Total Volatil	e Hydrocarbons	
Lab #:	274186	Location:	Commercial BLD - Alameda
Client:	ODIC Environmental & Energy	Prep:	EPA 5030B
Project#:	STANDARD	Analysis:	EPA 8015B
Type:	LCS	Diln Fac:	1.000
Lab ID:	QC823517	Batch#:	232126
Matrix:	Soil	Analyzed:	02/16/16
Units:	mg/Kg		

Analyte	Spiked	Result	%REC	Limits
Gasoline C7-C12	1.000	0.9101	91	80-121

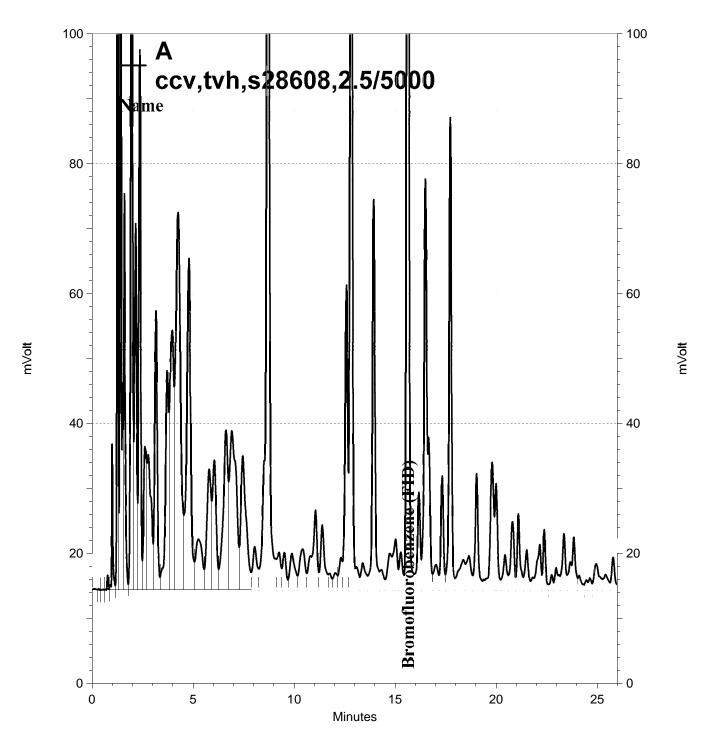
Surrogate %REC	Limits
Bromofluorobenzene (FID) 106	78-138

Page 1 of 1 6.1

Total Volatile Hydrocarbons						
Lab #:	274186	Location:	Commercial BLD - Alameda			
Client:	ODIC Environmental & Energy	Prep:	EPA 5030B			
Project#:	STANDARD	Analysis:	EPA 8015B			
Field ID:	ZZZZZZZZZ	Diln Fac:	1.000			
MSS Lab ID:	274198-001	Batch#:	232126			
Matrix:	Soil	Sampled:	02/15/16			
Units:	mg/Kg	Received:	02/15/16			
Basis:	as received	Analyzed:	02/16/16			


Type: MS Lab ID: QC823533

Analyte	MSS Result	Spiked	Result	%REC	Limits
Gasoline C7-C12	0.1853	9.709	9.755	99	50-120


Surrogate	%REC	Limits
Bromofluorobenzene (FID)	112	78-138

Type: MSD Lab ID: QC823534

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Gasoline C7-C12	10.31	9.758	93	50-120	6	31

\Lims\gdrive\ezchrom\Projects\GC19\Data\047-035, A

\Lims\gdrive\ezchrom\Projects\GC07\Data\047-002, A

Total Extractable Hydrocarbons Lab #: 274186 Commercial BLD - Alameda Location: EPA 3520C ODIC Environmental & Energy Client: Prep: STANDARD Project#: Analysis: EPA 8015B 02/12/16 Matrix: Water Sampled: 02/12/16 Units: ug/L Received: Batch#: 232165 02/17/16 Prepared:

Field ID: SB-1 Diln Fac: 1.000 Type: SAMPLE Analyzed: 02/18/16

Lab ID: 274186-001

Analyte	Result	RL	
Diesel C10-C24	ND	47	
Motor Oil C24-C36	ND	280	

Surrogate	%REC	Limits
o-Terphenyl	104	67-136

Field ID: SB-2 Diln Fac: 1.000 Type: SAMPLE Analyzed: 02/18/16

Lab ID: 274186-002

Analyte	Result	RL	
Diesel C10-C24	ND	47	
Motor Oil C24-C36	ND	280	

Surrogate	%REC	Limits
o-Terphenyl	111	67-136

Field ID: SB-4 Diln Fac: 10.00 Type: SAMPLE Analyzed: 02/19/16

Lab ID: 274186-004

Analyte	Result	RL	
Diesel C10-C24	54,000 Y	470	
Motor Oil C24-C36	95.000	2.800	

Surrogate	%REC	Limits
o-Terphenyl	DO	67-136

Field ID: SB-5 Diln Fac: 1.000 Type: SAMPLE Analyzed: 02/18/16

Lab ID: 274186-005

Analyte	Result	RL	
Diesel C10-C24	48 Y	47	
Motor Oil C24-C36	ND	280	

Surrogate	%REC	Limits
o-Terphenyl	115	67-136

Y= Sample exhibits chromatographic pattern which does not resemble standard

DO= Diluted Out

ND= Not Detected

RL= Reporting Limit

Page 1 of 2

100.0

02/19/16

Total Extractable Hydrocarbons Commercial BLD - Alameda 274186 Lab #: Location: Client: ODIC Environmental & Energy EPA 3520C Prep: Analysis: Sampled: EPA 8015B 02/12/16 Project#: STANDARD Water Matrix: 02/12/16 Units: ug/L Received: Batch#: 232165 Prepared: 02/17/16

Field ID: SB-6 SAMPLE Type:

274186-006 Lab ID:

Analyte	Result	RL
Diesel C10-C24	220,000 Y	4,700
Motor Oil C24-C36	500.000	28.000

Diln Fac:

Analyzed:

Surrogate	%REC	Limits
o-Terphenyl	DO	67-136

Field ID: 1.000 Diln Fac: SB-8 Type: SAMPLE Analyzed: 02/18/16

Lab ID: 274186-008

Analyte	Result	RL	
Diesel C10-C24	ND	47	
Motor Oil C24-C36	ND	280	

BLANK Diln Fac: 1.000 Type: 02/18/16 Lab ID: QC823692 Analyzed:

Analyte	Result	RL	
Diesel C10-C24	ND	50	
Motor Oil C24-C36	ND	300	

Surrogate	%REC	Limits	
o-Terphenyl	110	67-136	

Y= Sample exhibits chromatographic pattern which does not resemble standard

DO= Diluted Out ND= Not Detected

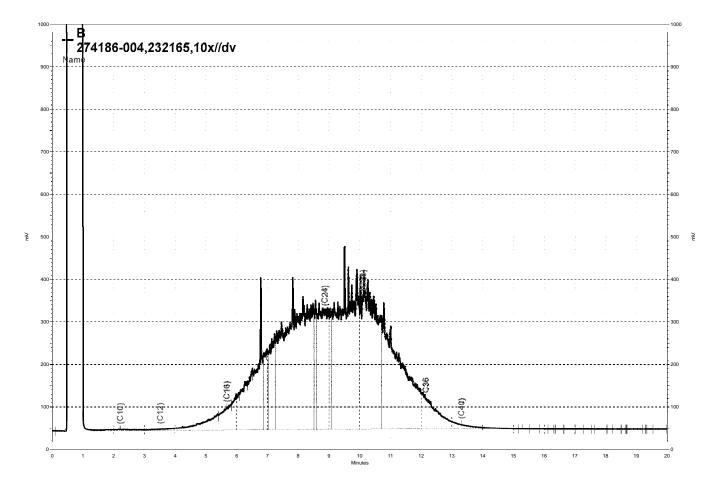
RL= Reporting Limit

Page 2 of 2

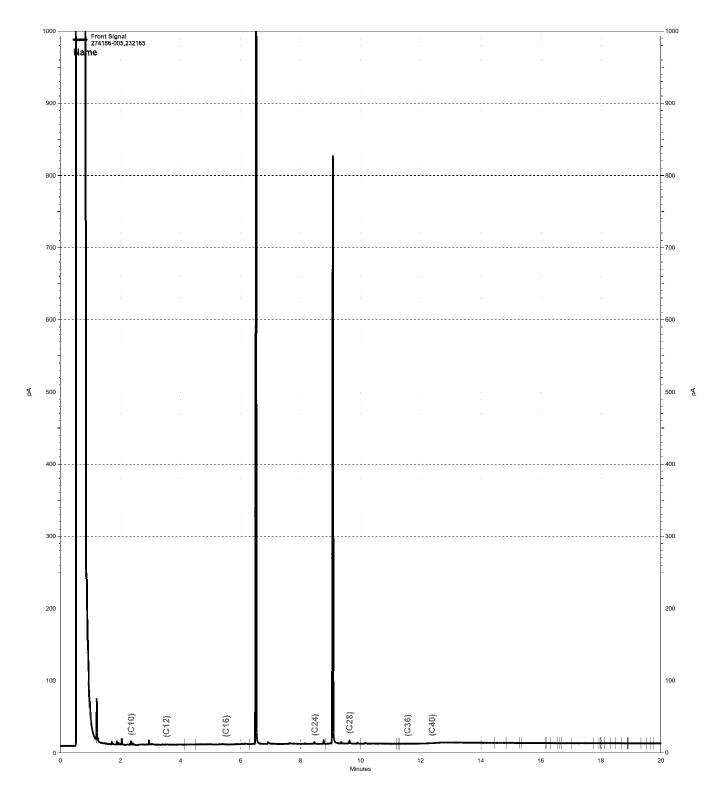
Batch QC Report

Total Extractable Hydrocarbons						
Lab #:	274186	Location:	Commercial BLD - Alameda			
Client:	ODIC Environmental & Energy	Prep:	EPA 3520C			
Project#:	STANDARD	Analysis:	EPA 8015B			
Matrix:	Water	Batch#:	232165			
Units:	ug/L	Prepared:	02/17/16			
Diln Fac:	1.000	Analyzed:	02/18/16			

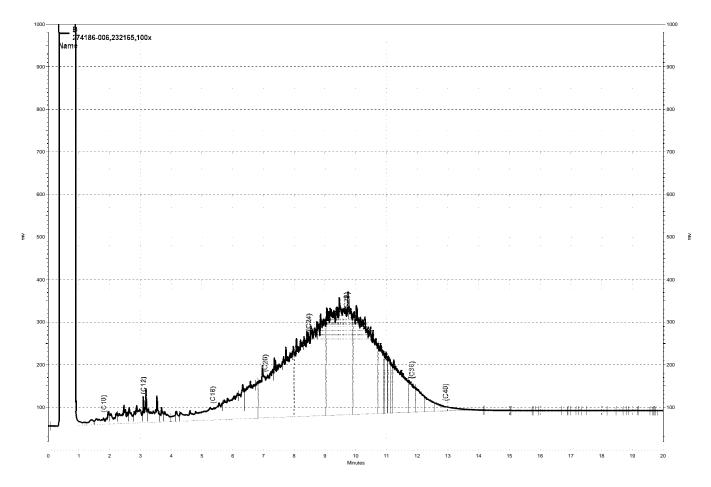
Type: BS Lab ID: QC823693

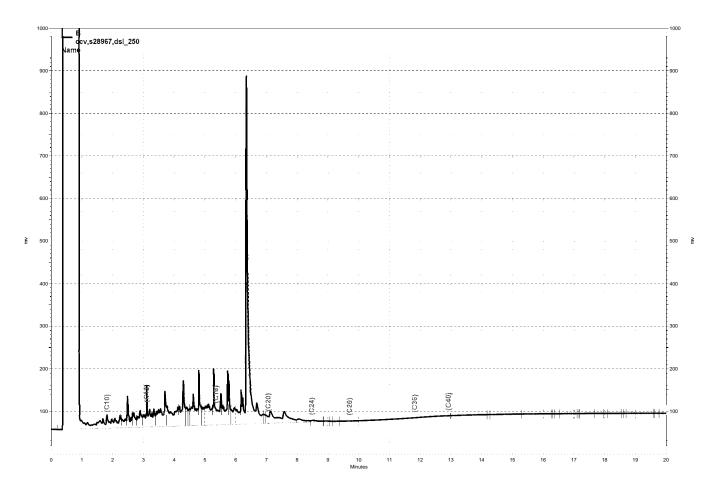

Analyte	Spiked	Result	%REC	Limits
Diesel C10-C24	2,500	2,427	97	60-121

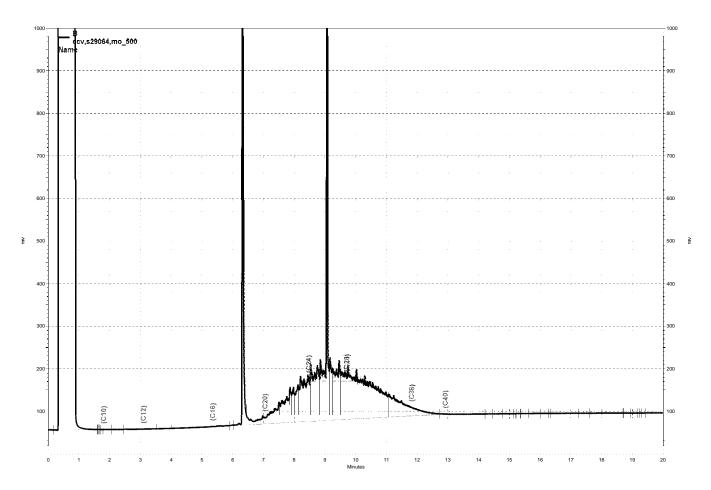
Surrogate	%REC	Limits
o-Terphenyl	119	67-136


Type: BSD Lab ID: QC823694

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Diesel C10-C24	2,500	2,282	91	60-121	6	32


Surrogate	%REC	Limits	
o-Terphenyl	108	67-136	


\Lims\gdrive\ezchrom\Projects\GC14B\Data\050b005, B


\\lims\gdrive\ezchrom\Projects\GC27\Data\049a018.dat, Front Signal

\Lims\gdrive\ezchrom\Projects\GC15B\Data\050b008, B

\Lims\gdrive\ezchrom\Projects\GC15B\Data\050b004, B

\\Lims\gdrive\ezchrom\Projects\GC15B\Data\050b003, B

Total Extractable Hydrocarbons Lab #: 274186 Commercial BLD - Alameda Location: ODIC Environmental & Energy EPA 3550B Client: Prep: STANDARD Project#: Analysis: EPA 8015B 02/12/16 Matrix: Soil Sampled: 02/12/16 Units: mg/Kg Received: Basis: 02/18/16 as received Prepared: Batch#: 232220

Field ID: SB-5 @ 10' Diln Fac: 1.000 SAMPLE 02/23/16 Type: Analyzed: Lab ID: 274186-009

Analyte Result Diesel C10-C24 ND 0.99 Motor Oil C24-C36 5.0 ND

Surrogate %REC Limits o-Terphenyl 59-140

Field ID: SB-6 @ 6' Diln Fac: 100.0 Type: SAMPLE Analyzed: 02/22/16

Lab ID: 274186-010

Result RLAnalyte Diesel C10-C24 4,200 Y 100 Motor Oil C24-C36 10,000 500

Limits Surrogate 59-140 o-Terphenvl

Field ID: SB-6 @ 10' Diln Fac: 1.000 SAMPLE 02/23/16 Type: Analyzed:

Lab ID: 274186-011 Result Analyte RL

6.7 Diesel C10-C24 1.0 Motor Oil C24-C36 16 5.0

Surrogate %REC Limits 59-140 o-Terphenyl 105

Field ID: SB-7 @ 5' Diln Fac: 1.000 SAMPLE 02/19/16 Analyzed: Type:

Lab ID: 274186-012

Result Analyte Diesel C10-C24 1.1 Y 1.0 Motor Oil C24-C36 ND 5.0

Limits Surrogate %REC o-Terphenyl

*= Value outside of QC limits; see narrative

Y= Sample exhibits chromatographic pattern which does not resemble standard

DO= Diluted Out ND= Not Detected

RL= Reporting Limit Page 1 of 3

Total Extractable Hydrocarbons Lab #: Location: Commercial BLD - Alameda Client: ODIC Environmental & Energy EPA 3550B Prep: Analysis: Sampled: Project#: STANDARD EPA 8015B 02/12/16 Soil Matrix: 02/12/16 Units: mg/Kg Received: as received Basis: Prepared: 02/18/16 232220 Batch#:

Field ID: SB-7 @ 10' Diln Fac: 1.000 Type: SAMPLE Analyzed: 02/19/16

Lab ID: 274186-013

Analyte	Result	RL	
Diesel C10-C24	ND	1.0	
Motor Oil C24-C36	ND	5.0	

Surrogate	%REC	Limits
241103400	02120	
o-Terphenyl	95	59-140

Field ID: SB-8 @ 5' Diln Fac: 1.000 Type: SAMPLE Analyzed: 02/23/16

Lab ID: 274186-014

Analyte	Result	RL	
Diesel C10-C24	1.5 Y	1.0	
Motor Oil C24-C36	ND	5.0	

Surrogate	%REC	Limits	
o-Terphenyl	106	59-140	

Field ID: SB-8 @ 10' Diln Fac: 1.000 Type: SAMPLE Analyzed: 02/19/16

Lab ID: 274186-015

Analyte	Result	RL	
Diesel C10-C24	1.6 Y	1.0	
Motor Oil C24-C36	ND	5.0	

Surrogate	%REC	Limits	
o-Terphenyl	129	59-140	

Field ID: SB-1 @ 9' Diln Fac: 1.000 Type: SAMPLE Analyzed: 02/19/16

Lab ID: 274186-018

Analyte	Result	RL	
Diesel C10-C24	ND	1.0	
Motor Oil C24-C36	ND	5.0	

Surrogate	%REC	Limits
o-Terphenyl	144 *	59-140

*= Value outside of QC limits; see narrative

Y= Sample exhibits chromatographic pattern which does not resemble standard

DO= Diluted Out ND= Not Detected

RL= Reporting Limit

Page 2 of 3

1.000

02/19/16

Total Extractable Hydrocarbons Lab #: Location: Commercial BLD - Alameda Client: ODIC Environmental & Energy EPA 3550B Prep: Analysis: Sampled: Project#: STANDARD EPA 8015B 02/12/16 Soil Matrix: 02/12/16 Units: mg/Kg Received: as received Basis: Prepared: 02/18/16 Batch#: 232220

SB-2 @ 9' Field ID: Diln Fac: Type: SAMPLE Analyzed:

Lab ID: 274186-020

Analyte	Result	RL	
Diesel C10-C24	ND	1.0	
Motor Oil C24-C36	ND	5.0	

Surrogate	%REC	Limits	
o-Terphenyl	140	59-140	

Field ID: SB-3 @ 9' Diln Fac: 1.000 Type: SAMPLE Analyzed: 02/19/16

Lab ID: 274186-022

Analyte	Result	RL	
Diesel C10-C24	ND	1.0	
Motor Oil C24-C36	ND	5.0	

-			
Surrogate	%REC	Limits	
Darrogace	-014110	TITLE CO	
o-Terphenyl	145 *	59-140	

Field ID: SB-4 @ 10' Diln Fac: 1.000 Analyzed: Type: SAMPLE 02/24/16

Lab ID: 274186-024

Analyte	Result	RL	
Diesel C10-C24	2.8 Y	1.0	
Motor Oil C24-C36	ND	5.0	

Surrogate	%REC	Limits	
o-Terphenyl	107	59-140	

Type: BLANK Diln Fac: 1.000 QC823908 02/18/16 Lab ID: Analyzed:

Analyte	Result	RL	
Diesel C10-C24	ND	1.0	
Motor Oil C24-C36	ND	5.0	

Surrogate	%REC	Limits
o-Terphenyl	90	59-140

*= Value outside of QC limits; see narrative

Y= Sample exhibits chromatographic pattern which does not resemble standard

DO= Diluted Out

ND= Not Detected

RL= Reporting Limit

Page 3 of 3

Batch QC Report

Total Extractable Hydrocarbons					
Lab #:	274186	Location:	Commercial BLD - Alameda		
Client:	ODIC Environmental & Energy	Prep:	EPA 3550B		
Project#:	STANDARD	Analysis:	EPA 8015B		
Type:	LCS	Diln Fac:	1.000		
Lab ID:	QC823909	Batch#:	232220		
Matrix:	Soil	Prepared:	02/18/16		
Units:	mg/Kg	Analyzed:	02/18/16		

Cleanup Method: EPA 3630C

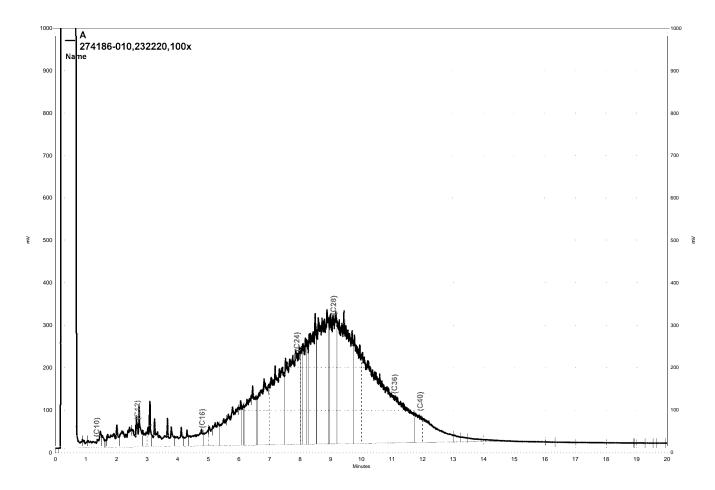
Analyte	Spiked	Result	%REC	Limits
Diesel C10-C24	50.49	45.49	90	58-137

Surrogate	%REC	Limits
o-Terphenyl	97	59-140

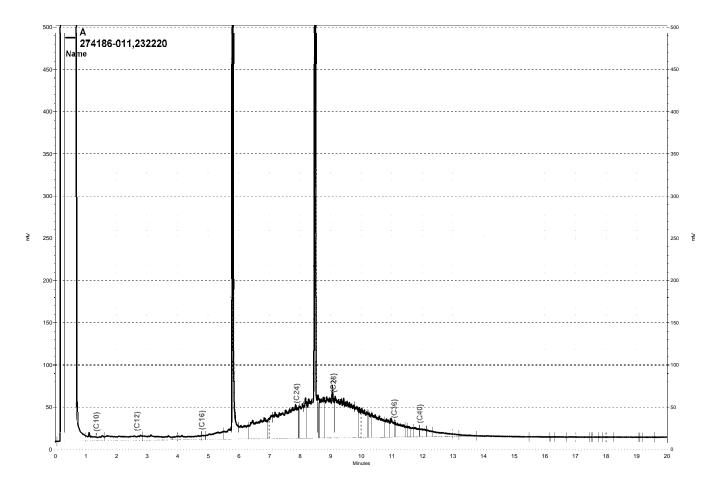
Page 1 of 1 63.1

Batch QC Report

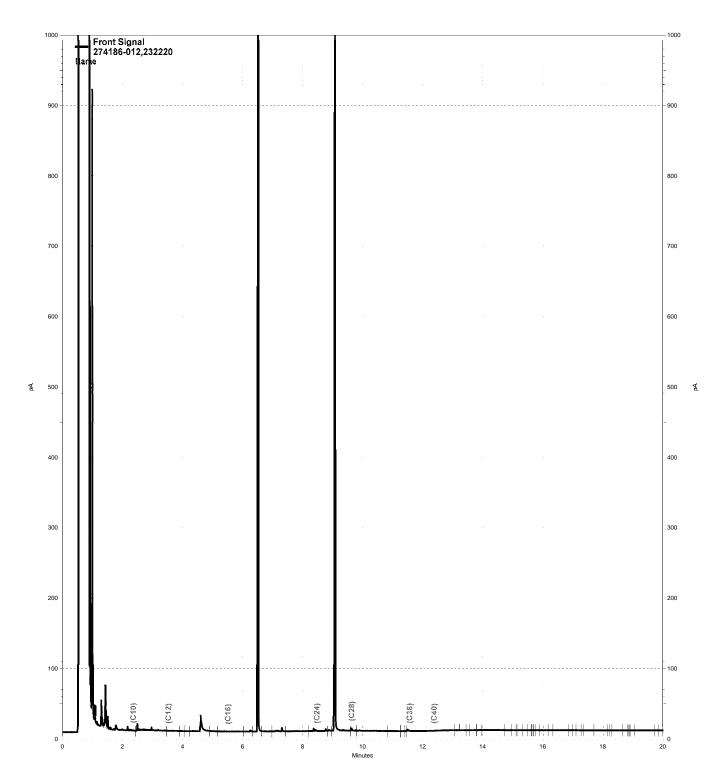
	Total Extracta	ble Hydrocarbo	ons
Lab #:	274186	Location:	Commercial BLD - Alameda
Client:	ODIC Environmental & Energy	Prep:	EPA 3550B
Project#:	STANDARD	Analysis:	EPA 8015B
Field ID:	SB-7 @ 10'	Batch#:	232220
MSS Lab ID:	274186-013	Sampled:	02/12/16
Matrix:	Soil	Received:	02/12/16
Units:	mg/Kg	Prepared:	02/18/16
Basis:	as received	Analyzed:	02/19/16
Diln Fac:	1.000		

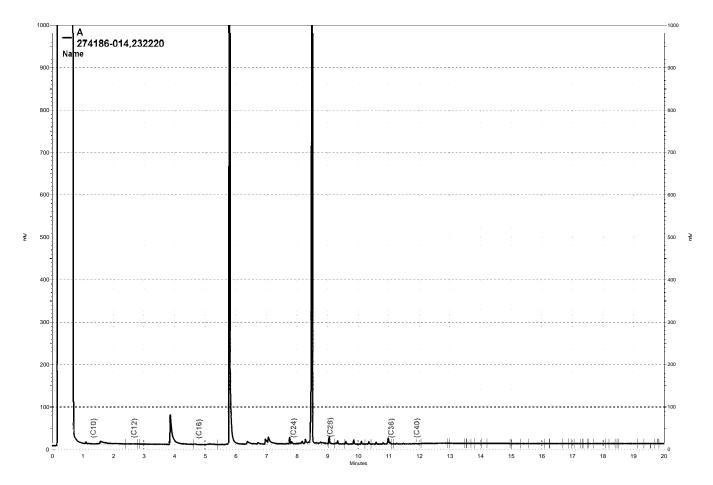

Type: MS Lab ID: QC823910

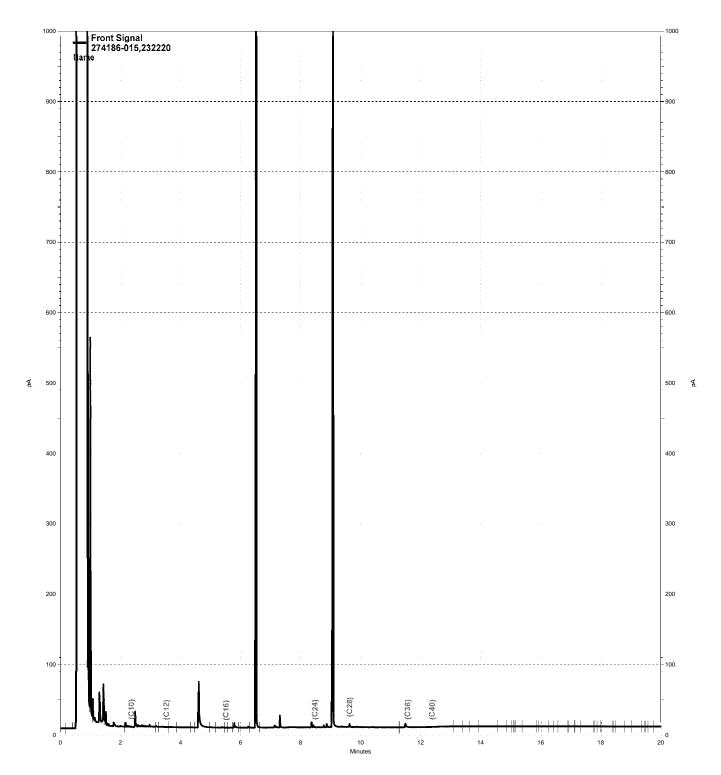
Analyte	MSS Result	Spiked	Result	%REC	Limits
Diesel C10-C24	<0.3060	49.88	47.68	96	46-154

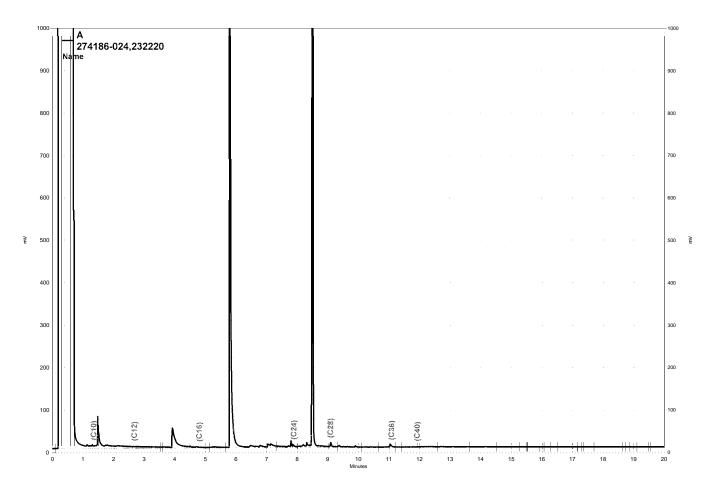

Surrogate	%REC	Limits
o-Terphenyl	89	59-140

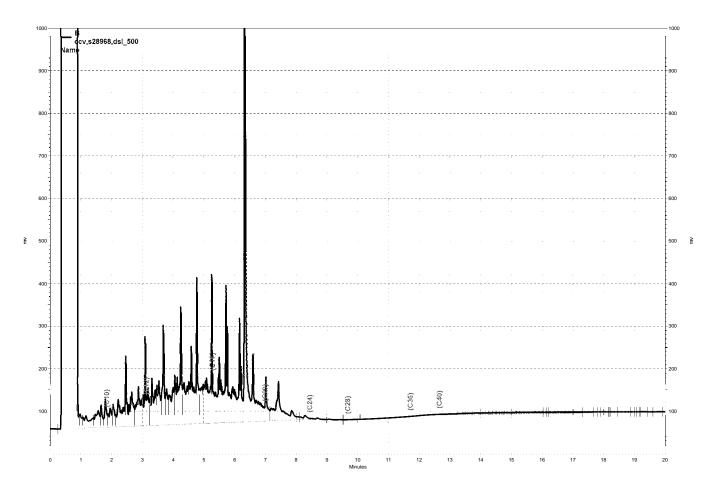
Type: MSD Lab ID: QC823911

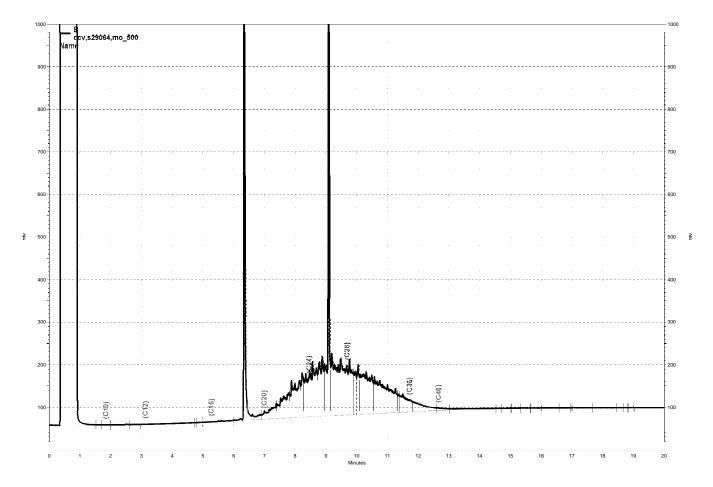

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Diesel C10-C24	49.97	40.12	80	46-154	1.7	50


\Lims\gdrive\ezchrom\Projects\GC17A\Data\053a032, A


\Lims\gdrive\ezchrom\Projects\GC17A\Data\054a006, A


\\lims\gdrive\ezchrom\Projects\GC27\Data\050b014.dat, Front Signal


\Lims\gdrive\ezchrom\Projects\GC17A\Data\054a007, A


\\lims\gdrive\ezchrom\Projects\GC27\Data\050b016.dat, Front Signal

\Lims\gdrive\ezchrom\Projects\GC17A\Data\055a022, A

\Lims\gdrive\ezchrom\Projects\GC15B\Data\049b030, B

\Lims\gdrive\ezchrom\Projects\GC15B\Data\049b029, B

Purgeable Organics by GC/MS					
Lab #:	274186	Location:	Commercial BLD - Alameda		
Client:	ODIC Environmental & Energy	Prep:	EPA 5030B		
Project#:	STANDARD	Analysis:	EPA 8260B		
Field ID:	SB-1	Batch#:	232260		
Lab ID:	274186-001	Sampled:	02/12/16		
Matrix:	Water	Received:	02/12/16		
Units:	uq/L	Analyzed:	02/19/16		
Diln Fac:	1.000	4	•		

Analyte	Result	RL
Freon 12	ND	1.0
tert-Butyl Alcohol (TBA)	ND	10
Chloromethane	ND	1.0
Isopropyl Ether (DIPE)	ND	0.5
Vinyl Chloride	ND	0.5
Bromomethane	ND	1.0
Ethyl tert-Butyl Ether (ETBE)	ND	0.5
Chloroethane	ND	1.0
Methyl tert-Amyl Ether (TAME)	ND	0.5
Trichlorofluoromethane	ND ND	1.0
Acetone	ND	10
Freon 113	ND ND	2.0
1,1-Dichloroethene	ND ND	0.5
Methylene Chloride	ND ND	10
Carbon Disulfide	ND ND	0.5
MTBE	ND ND	0.5
trans-1,2-Dichloroethene	ND ND	0.5
		10
Vinyl Acetate	ND	0.5
1,1-Dichloroethane	ND	
2-Butanone	ND	10
cis-1,2-Dichloroethene	ND	0.5
2,2-Dichloropropane	ND	0.5
Chloroform	ND	0.5
Bromochloromethane	ND	0.5
1,1,1-Trichloroethane	ND	0.5
1,1-Dichloropropene	ND	0.5
Carbon Tetrachloride	ND	0.5
1,2-Dichloroethane	ND	0.5
Benzene	ND	0.5
Trichloroethene	ND	0.5
1,2-Dichloropropane	ND	0.5
Bromodichloromethane	ND	0.5
Dibromomethane	ND	0.5
4-Methyl-2-Pentanone	ND	10
cis-1,3-Dichloropropene	ND	0.5
Toluene	ND	0.5
trans-1,3-Dichloropropene	ND	0.5
1,1,2-Trichloroethane	ND	0.5
2-Hexanone	ND	10
1,3-Dichloropropane	ND	0.5
Tetrachloroethene	ND	0.5
Dibromochloromethane	ND	0.5
1,2-Dibromoethane	ND	0.5
Chlorobenzene	ND	0.5
1,1,1,2-Tetrachloroethane	ND	0.5
Ethylbenzene	ND	0.5
m,p-Xylenes	ND	0.5
o-Xylene	ND	0.5
Styrene	ND	0.5
Bromoform	ND	1.0
Isopropylbenzene	ND	0.5
1,1,2,2-Tetrachloroethane	ND	0.5
1,2,3-Trichloropropane	ND	0.5
Propylbenzene	ND	0.5

Purgeable Organics by GC/MS					
Lab #:	274186	Location:	Commercial BLD - Alameda		
Client:	ODIC Environmental & Energy	Prep:	EPA 5030B		
Project#:	STANDARD	Analysis:	EPA 8260B		
Field ID:	SB-1	Batch#:	232260		
Lab ID:	274186-001	Sampled:	02/12/16		
Matrix:	Water	Received:	02/12/16		
Units:	uq/L	Analyzed:	02/19/16		
Diln Fac:	1.000	-			

Analyte	Result	RL	
Bromobenzene	ND	0.5	
1,3,5-Trimethylbenzene	ND	0.5	
2-Chlorotoluene	ND	0.5	
4-Chlorotoluene	ND	0.5	
tert-Butylbenzene	ND	0.5	
1,2,4-Trimethylbenzene	ND	0.5	
sec-Butylbenzene	ND	0.5	
para-Isopropyl Toluene	ND	0.5	
1,3-Dichlorobenzene	ND	0.5	
1,4-Dichlorobenzene	ND	0.5	
n-Butylbenzene	ND	0.5	
1,2-Dichlorobenzene	ND	0.5	
1,2-Dibromo-3-Chloropropane	ND	2.0	
1,2,4-Trichlorobenzene	ND	0.5	
Hexachlorobutadiene	ND	2.0	
Naphthalene	ND	2.0	
1,2,3-Trichlorobenzene	ND	0.5	

Surrogate	%REC	Limits	
Dibromofluoromethane	100	80-128	
1,2-Dichloroethane-d4	98	75-139	
Toluene-d8	96	80-120	
Bromofluorobenzene	102	80-120	

Purgeable Organics by GC/MS				
Lab #:	274186	Location:	Commercial BLD - Alameda	
Client:	ODIC Environmental & Energy	Prep:	EPA 5030B	
Project#:	STANDARD	Analysis:	EPA 8260B	
Field ID:	SB-2	Batch#:	232260	
Lab ID:	274186-002	Sampled:	02/12/16	
Matrix:	Water	Received:	02/12/16	
Units:	ug/L	Analyzed:	02/19/16	
Diln Fac:	1.000	2	•	

Analyte	Result	RL
Freon 12	ND	1.0
tert-Butyl Alcohol (TBA)	ND	10
Chloromethane	ND	1.0
Isopropyl Ether (DIPE)	ND	0.5
Vinyl Chloride	ND	0.5
Bromomethane	ND	1.0
Ethyl tert-Butyl Ether (ETBE)	ND	0.5
Chloroethane	ND	1.0
Methyl tert-Amyl Ether (TAME)	ND	0.5
Trichlorofluoromethane	ND	1.0
Acetone	ND	10
Freon 113	ND	2.0
1,1-Dichloroethene	ND	0.5
Methylene Chloride	ND	10
Carbon Disulfide	ND	0.5
MTBE	ND	0.5
trans-1,2-Dichloroethene	ND	0.5
Vinyl Acetate	ND	10
1,1-Dichloroethane	ND	0.5
2-Butanone	ND	10
cis-1,2-Dichloroethene	ND	0.5
2,2-Dichloropropane	ND	0.5
Chloroform	ND	0.5
Bromochloromethane	ND	0.5
1,1,1-Trichloroethane	ND	0.5
1,1-Dichloropropene	ND	0.5
Carbon Tetrachloride	ND	0.5
1,2-Dichloroethane	ND	0.5
Benzene	ND	0.5
Trichloroethene	ND	0.5
1,2-Dichloropropane	ND	0.5
Bromodichloromethane	ND	0.5
Dibromomethane	ND	0.5
4-Methyl-2-Pentanone	ND	10
cis-1,3-Dichloropropene	ND	0.5
Toluene	ND	0.5
trans-1,3-Dichloropropene	ND	0.5
1,1,2-Trichloroethane	ND	0.5
2-Hexanone	ND	10
1,3-Dichloropropane Tetrachloroethene	ND	0.5 0.5
	ND	
Dibromochloromethane	ND	0.5 0.5
1,2-Dibromoethane	ND	0.5
Chlorobenzene	ND ND	0.5
1,1,1,2-Tetrachloroethane	ND	0.5
Ethylbenzene m,p-Xylenes	ND ND	0.5
	ND ND	0.5
o-Xylene Styrene	ND ND	0.5
Bromoform	ND ND	1.0
Isopropylbenzene	ND ND	0.5
1,1,2,2-Tetrachloroethane	ND ND	0.5
1,1,2,2-letrachioroethane 1,2,3-Trichloropropane	ND ND	0.5
Propylbenzene	ND ND	0.5
FIODAIDGHE	עוו	0.5

Purgeable Organics by GC/MS				
Lab #:	274186	Location:	Commercial BLD - Alameda	
Client:	ODIC Environmental & Energy	Prep:	EPA 5030B	
Project#:	STANDARD	Analysis:	EPA 8260B	
Field ID:	SB-2	Batch#:	232260	
Lab ID:	274186-002	Sampled:	02/12/16	
Matrix:	Water	Received:	02/12/16	
Units:	ug/L	Analyzed:	02/19/16	
Diln Fac:	1.000	<u>-</u>		

Analyte	Result	RL	
Bromobenzene	ND	0.5	
1,3,5-Trimethylbenzene	ND	0.5	
2-Chlorotoluene	ND	0.5	
4-Chlorotoluene	ND	0.5	
tert-Butylbenzene	ND	0.5	
1,2,4-Trimethylbenzene	ND	0.5	
sec-Butylbenzene	ND	0.5	
para-Isopropyl Toluene	ND	0.5	
1,3-Dichlorobenzene	ND	0.5	
1,4-Dichlorobenzene	ND	0.5	
n-Butylbenzene	ND	0.5	
1,2-Dichlorobenzene	ND	0.5	
1,2-Dibromo-3-Chloropropane	ND	2.0	
1,2,4-Trichlorobenzene	ND	0.5	
Hexachlorobutadiene	ND	2.0	
Naphthalene	ND	2.0	
1,2,3-Trichlorobenzene	ND	0.5	

Surrogate	%REC	Limits
Dibromofluoromethane	97	80-128
1,2-Dichloroethane-d4	94	75-139
Toluene-d8	97	80-120
Bromofluorobenzene	102	80-120

Purgeable Organics by GC/MS				
Lab #:	274186	Location:	Commercial BLD - Alameda	
Client:	ODIC Environmental & Energy	Prep:	EPA 5030B	
Project#:	STANDARD	Analysis:	EPA 8260B	
Field ID:	SB-3	Batch#:	232260	
Lab ID:	274186-003	Sampled:	02/12/16	
Matrix:	Water	Received:	02/12/16	
Units:	ug/L	Analyzed:	02/19/16	
Diln Fac:	1.000	2	•	

Analyte	Result	RL
Freon 12	ND	1.0
tert-Butyl Alcohol (TBA)	ND	10
Chloromethane	ND	1.0
Isopropyl Ether (DIPE)	ND	0.5
Vinyl Chloride	ND	0.5
Bromomethane	ND	1.0
Ethyl tert-Butyl Ether (ETBE)	ND	0.5
Chloroethane	ND	1.0
Methyl tert-Amyl Ether (TAME)	ND	0.5
Trichlorofluoromethane	ND ND	1.0
Acetone	ND	10
Freon 113	ND ND	2.0
1,1-Dichloroethene	ND ND	0.5
Methylene Chloride	ND ND	10
Carbon Disulfide	ND ND	0.5
MTBE	ND ND	0.5
trans-1,2-Dichloroethene	ND ND	0.5
		10
Vinyl Acetate	ND	0.5
1,1-Dichloroethane	ND	
2-Butanone	ND	10
cis-1,2-Dichloroethene	ND	0.5
2,2-Dichloropropane	ND	0.5
Chloroform	ND	0.5
Bromochloromethane	ND	0.5
1,1,1-Trichloroethane	ND	0.5
1,1-Dichloropropene	ND	0.5
Carbon Tetrachloride	ND	0.5
1,2-Dichloroethane	ND	0.5
Benzene	ND	0.5
Trichloroethene	ND	0.5
1,2-Dichloropropane	ND	0.5
Bromodichloromethane	ND	0.5
Dibromomethane	ND	0.5
4-Methyl-2-Pentanone	ND	10
cis-1,3-Dichloropropene	ND	0.5
Toluene	ND	0.5
trans-1,3-Dichloropropene	ND	0.5
1,1,2-Trichloroethane	ND	0.5
2-Hexanone	ND	10
1,3-Dichloropropane	ND	0.5
Tetrachloroethene	ND	0.5
Dibromochloromethane	ND	0.5
1,2-Dibromoethane	ND	0.5
Chlorobenzene	ND	0.5
1,1,1,2-Tetrachloroethane	ND	0.5
Ethylbenzene	ND	0.5
m,p-Xylenes	ND	0.5
o-Xylene	ND	0.5
Styrene	ND	0.5
Bromoform	ND	1.0
Isopropylbenzene	ND	0.5
1,1,2,2-Tetrachloroethane	ND	0.5
1,2,3-Trichloropropane	ND	0.5
Propylbenzene	ND	0.5

Purgeable Organics by GC/MS				
Lab #:	274186	Location:	Commercial BLD - Alameda	
Client:	ODIC Environmental & Energy	Prep:	EPA 5030B	
Project#:	STANDARD	Analysis:	EPA 8260B	
Field ID:	SB-3	Batch#:	232260	
Lab ID:	274186-003	Sampled:	02/12/16	
Matrix:	Water	Received:	02/12/16	
Units:	uq/L	Analyzed:	02/19/16	
Diln Fac:	1.000	-		

Analyte	Result	RL
Bromobenzene	ND	0.5
1,3,5-Trimethylbenzene	ND	0.5
2-Chlorotoluene	ND	0.5
4-Chlorotoluene	ND	0.5
tert-Butylbenzene	ND	0.5
1,2,4-Trimethylbenzene	ND	0.5
sec-Butylbenzene	ND	0.5
para-Isopropyl Toluene	ND	0.5
1,3-Dichlorobenzene	ND	0.5
1,4-Dichlorobenzene	ND	0.5
n-Butylbenzene	ND	0.5
1,2-Dichlorobenzene	ND	0.5
1,2-Dibromo-3-Chloropropane	ND	2.0
1,2,4-Trichlorobenzene	ND	0.5
Hexachlorobutadiene	ND	2.0
Naphthalene	ND	2.0
1,2,3-Trichlorobenzene	ND	0.5

Surrogate	%REC	Limits	
Dibromofluoromethane	97	80-128	
1,2-Dichloroethane-d4	92	75-139	
Toluene-d8	96	80-120	
Bromofluorobenzene	102	80-120	

Purgeable Organics by GC/MS				
Lab #:	274186	Location:	Commercial BLD - Alameda	
Client:	ODIC Environmental & Energy	Prep:	EPA 5030B	
Project#:	STANDARD	Analysis:	EPA 8260B	
Field ID:	SB-4	Batch#:	232260	
Lab ID:	274186-004	Sampled:	02/12/16	
Matrix:	Water	Received:	02/12/16	
Units:	uq/L	Analyzed:	02/19/16	
Diln Fac:	1.000	4	· ·	

Analyte	Result	RL
Freon 12	ND	1.0
tert-Butyl Alcohol (TBA)	ND	10
Chloromethane	ND	1.0
Isopropyl Ether (DIPE)	ND	0.5
Vinyl Chloride	ND	0.5
Bromomethane	ND	1.0
Ethyl tert-Butyl Ether (ETBE)	ND	0.5
Chloroethane	ND	1.0
Methyl tert-Amyl Ether (TAME)	ND	0.5
Trichlorofluoromethane	ND ND	1.0
Acetone	ND	10
Freon 113	ND ND	2.0
1,1-Dichloroethene	ND ND	0.5
Methylene Chloride	ND ND	10
Carbon Disulfide	ND ND	0.5
MTBE	ND ND	0.5
trans-1,2-Dichloroethene	ND ND	0.5
		10
Vinyl Acetate	ND	0.5
1,1-Dichloroethane	ND	
2-Butanone	ND	10
cis-1,2-Dichloroethene	ND	0.5
2,2-Dichloropropane	ND	0.5
Chloroform	ND	0.5
Bromochloromethane	ND	0.5
1,1,1-Trichloroethane	ND	0.5
1,1-Dichloropropene	ND	0.5
Carbon Tetrachloride	ND	0.5
1,2-Dichloroethane	ND	0.5
Benzene	ND	0.5
Trichloroethene	ND	0.5
1,2-Dichloropropane	ND	0.5
Bromodichloromethane	ND	0.5
Dibromomethane	ND	0.5
4-Methyl-2-Pentanone	ND	10
cis-1,3-Dichloropropene	ND	0.5
Toluene	ND	0.5
trans-1,3-Dichloropropene	ND	0.5
1,1,2-Trichloroethane	ND	0.5
2-Hexanone	ND	10
1,3-Dichloropropane	ND	0.5
Tetrachloroethene	ND	0.5
Dibromochloromethane	ND	0.5
1,2-Dibromoethane	ND	0.5
Chlorobenzene	ND	0.5
1,1,1,2-Tetrachloroethane	ND	0.5
Ethylbenzene	ND	0.5
m,p-Xylenes	ND	0.5
o-Xylene	ND	0.5
Styrene	ND	0.5
Bromoform	ND	1.0
Isopropylbenzene	ND	0.5
1,1,2,2-Tetrachloroethane	ND	0.5
1,2,3-Trichloropropane	ND	0.5
Propylbenzene	ND	0.5

Purgeable Organics by GC/MS					
Lab #:	274186	Location:	Commercial BLD - Alameda		
Client:	ODIC Environmental & Energy	Prep:	EPA 5030B		
Project#:	STANDARD	Analysis:	EPA 8260B		
Field ID:	SB-4	Batch#:	232260		
Lab ID:	274186-004	Sampled:	02/12/16		
Matrix:	Water	Received:	02/12/16		
Units:	uq/L	Analyzed:	02/19/16		
Diln Fac:	1.000	-			

Analyte	Result	RL	
Bromobenzene	ND	0.5	
1,3,5-Trimethylbenzene	ND	0.5	
2-Chlorotoluene	ND	0.5	
4-Chlorotoluene	ND	0.5	
tert-Butylbenzene	ND	0.5	
1,2,4-Trimethylbenzene	ND	0.5	
sec-Butylbenzene	ND	0.5	
para-Isopropyl Toluene	ND	0.5	
1,3-Dichlorobenzene	ND	0.5	
1,4-Dichlorobenzene	ND	0.5	
n-Butylbenzene	ND	0.5	
1,2-Dichlorobenzene	ND	0.5	
1,2-Dibromo-3-Chloropropane	ND	2.0	
1,2,4-Trichlorobenzene	ND	0.5	
Hexachlorobutadiene	ND	2.0	
Naphthalene	ND	2.0	
1,2,3-Trichlorobenzene	ND	0.5	

Surrogate	%REC	Limits	
Dibromofluoromethane	98	80-128	
1,2-Dichloroethane-d4	94	75-139	
Toluene-d8	96	80-120	
Bromofluorobenzene	101	80-120	

Purgeable Organics by GC/MS					
Lab #:	274186	Location:	Commercial BLD - Alameda		
Client:	ODIC Environmental & Energy	Prep:	EPA 5030B		
Project#:	STANDARD	Analysis:	EPA 8260B		
Field ID:	SB-5	Batch#:	232272		
Lab ID:	274186-005	Sampled:	02/12/16		
Matrix:	Water	Received:	02/12/16		
Units:	ug/L	Analyzed:	02/19/16		
Diln Fac:	1.000	-			

Analyte	Result	RL
Freon 12	ND	1.0
tert-Butyl Alcohol (TBA)	ND	10
Chloromethane	ND	1.0
Isopropyl Ether (DIPE)	ND	0.5
Vinyl Chloride	ND	0.5
Bromomethane	ND	1.0
Ethyl tert-Butyl Ether (ETBE)	ND	0.5
Chloroethane	ND	1.0
Methyl tert-Amyl Ether (TAME)	ND	0.5
Trichlorofluoromethane	ND ND	1.0
Acetone	ND	10
Freon 113	ND ND	2.0
1,1-Dichloroethene	ND ND	0.5
Methylene Chloride	ND ND	10
Carbon Disulfide	ND ND	0.5
MTBE	ND ND	0.5
trans-1,2-Dichloroethene	ND ND	0.5
		10
Vinyl Acetate	ND	0.5
1,1-Dichloroethane	ND	
2-Butanone	ND	10
cis-1,2-Dichloroethene	ND	0.5
2,2-Dichloropropane	ND	0.5
Chloroform	ND	0.5
Bromochloromethane	ND	0.5
1,1,1-Trichloroethane	ND	0.5
1,1-Dichloropropene	ND	0.5
Carbon Tetrachloride	ND	0.5
1,2-Dichloroethane	ND	0.5
Benzene	ND	0.5
Trichloroethene	ND	0.5
1,2-Dichloropropane	ND	0.5
Bromodichloromethane	ND	0.5
Dibromomethane	ND	0.5
4-Methyl-2-Pentanone	ND	10
cis-1,3-Dichloropropene	ND	0.5
Toluene	ND	0.5
trans-1,3-Dichloropropene	ND	0.5
1,1,2-Trichloroethane	ND	0.5
2-Hexanone	ND	10
1,3-Dichloropropane	ND	0.5
Tetrachloroethene	ND	0.5
Dibromochloromethane	ND	0.5
1,2-Dibromoethane	ND	0.5
Chlorobenzene	ND	0.5
1,1,1,2-Tetrachloroethane	ND	0.5
Ethylbenzene	ND	0.5
m,p-Xylenes	ND	0.5
o-Xylene	ND	0.5
Styrene	ND	0.5
Bromoform	ND	1.0
Isopropylbenzene	ND	0.5
1,1,2,2-Tetrachloroethane	ND	0.5
1,2,3-Trichloropropane	ND	0.5
Propylbenzene	ND	0.5

Purgeable Organics by GC/MS					
Lab #:	274186	Location:	Commercial BLD - Alameda		
Client:	ODIC Environmental & Energy	Prep:	EPA 5030B		
Project#:	STANDARD	Analysis:	EPA 8260B		
Field ID:	SB-5	Batch#:	232272		
Lab ID:	274186-005	Sampled:	02/12/16		
Matrix:	Water	Received:	02/12/16		
Units:	uq/L	Analyzed:	02/19/16		
Diln Fac:	1.000	-			

Analyte	Result	RL	
Bromobenzene	ND	0.5	
1,3,5-Trimethylbenzene	ND	0.5	
2-Chlorotoluene	ND	0.5	
4-Chlorotoluene	ND	0.5	
tert-Butylbenzene	ND	0.5	
1,2,4-Trimethylbenzene	ND	0.5	
sec-Butylbenzene	ND	0.5	
para-Isopropyl Toluene	ND	0.5	
1,3-Dichlorobenzene	ND	0.5	
1,4-Dichlorobenzene	ND	0.5	
n-Butylbenzene	ND	0.5	
1,2-Dichlorobenzene	ND	0.5	
1,2-Dibromo-3-Chloropropane	ND	2.0	
1,2,4-Trichlorobenzene	ND	0.5	
Hexachlorobutadiene	ND	2.0	
Naphthalene	ND	2.0	
1,2,3-Trichlorobenzene	ND	0.5	

Surrogate	%REC	Limits	
Dibromofluoromethane	102	80-128	
1,2-Dichloroethane-d4	95	75-139	
Toluene-d8	98	80-120	
Bromofluorobenzene	98	80-120	

Purgeable Organics by GC/MS					
Lab #:	274186	Location:	Commercial BLD - Alameda		
Client:	ODIC Environmental & Energy	Prep:	EPA 5030B		
Project#:	STANDARD	Analysis:	EPA 8260B		
Field ID:	SB-6	Batch#:	232272		
Lab ID:	274186-006	Sampled:	02/12/16		
Matrix:	Water	Received:	02/12/16		
Units:	ug/L	Analyzed:	02/19/16		
Diln Fac:	1.000	-			

Analyte	Result	RL
Freon 12	ND	1.0
tert-Butyl Alcohol (TBA)	ND	10
Chloromethane	ND	1.0
Isopropyl Ether (DIPE)	ND ND	0.5
	ND ND	0.5
Vinyl Chloride		1.0
Bromomethane	ND	
Ethyl tert-Butyl Ether (ETBE)	ND	0.5
Chloroethane	ND	1.0
Methyl tert-Amyl Ether (TAME)	ND	0.5
Trichlorofluoromethane	ND	1.0
Acetone	ND	10
Freon 113	ND	2.0
1,1-Dichloroethene	ND	0.5
Methylene Chloride	ND	10
Carbon Disulfide	ND	0.5
MTBE	ND	0.5
trans-1,2-Dichloroethene	ND	0.5
Vinyl Acetate	ND	10
1,1-Dichloroethane	ND	0.5
2-Butanone	ND	10
cis-1,2-Dichloroethene	ND	0.5
2,2-Dichloropropane	ND	0.5
Chloroform	ND	0.5
Bromochloromethane	ND	0.5
1,1,1-Trichloroethane	ND	0.5
1,1-Dichloropropene	ND	0.5
Carbon Tetrachloride	ND	0.5
1,2-Dichloroethane	ND	0.5
Benzene	ND	0.5
Trichloroethene	ND	0.5
1,2-Dichloropropane	ND	0.5
Bromodichloromethane	ND	0.5
Dibromomethane	ND	0.5
4-Methyl-2-Pentanone	ND	10
cis-1,3-Dichloropropene	ND	0.5
Toluene	ND	0.5
trans-1,3-Dichloropropene	ND	0.5
1,1,2-Trichloroethane	ND ND	0.5
2-Hexanone	ND ND	10
1,3-Dichloropropane	ND ND	0.5
Tetrachloroethene	ND ND	0.5
Dibromochloromethane	ND ND	0.5
		0.5
1,2-Dibromoethane	ND	0.5
Chlorobenzene	ND	
1,1,1,2-Tetrachloroethane	ND	0.5
Ethylbenzene	ND	0.5
m,p-Xylenes	ND	0.5
o-Xylene	ND	0.5
Styrene	ND	0.5
Bromoform	ND	1.0
Isopropylbenzene	ND	0.5
1,1,2,2-Tetrachloroethane	ND	0.5
1,2,3-Trichloropropane	ND	0.5
Propylbenzene	ND	0.5

Purgeable Organics by GC/MS					
Lab #:	274186	Location:	Commercial BLD - Alameda		
Client:	ODIC Environmental & Energy	Prep:	EPA 5030B		
Project#:	STANDARD	Analysis:	EPA 8260B		
Field ID:	SB-6	Batch#:	232272		
Lab ID:	274186-006	Sampled:	02/12/16		
Matrix:	Water	Received:	02/12/16		
Units:	ug/L	Analyzed:	02/19/16		
Diln Fac:	1.000	-			

Analyte	Res	sult	RL	
Bromobenzene	ND		0.5	
1,3,5-Trimethylbenzene	ND		0.5	
2-Chlorotoluene	ND		0.5	
4-Chlorotoluene	ND		0.5	
tert-Butylbenzene	ND		0.5	
1,2,4-Trimethylbenzene		6.7	0.5	
sec-Butylbenzene		1.6	0.5	
para-Isopropyl Toluene		0.9	0.5	
1,3-Dichlorobenzene	ND		0.5	
1,4-Dichlorobenzene	ND		0.5	
n-Butylbenzene		1.7	0.5	
1,2-Dichlorobenzene	ND		0.5	
1,2-Dibromo-3-Chloropropane	ND		2.0	
1,2,4-Trichlorobenzene	ND		0.5	
Hexachlorobutadiene	ND		2.0	
Naphthalene		9.7	2.0	
1,2,3-Trichlorobenzene	ND		0.5	

Surrogate	%REC	Limits
Dibromofluoromethane	101	80-128
1,2-Dichloroethane-d4	96	75-139
Toluene-d8	97	80-120
Bromofluorobenzene	97	80-120

	Purgeable Org	ganics by GC/MS	3
Lab #:	274186	Location:	Commercial BLD - Alameda
Client:	ODIC Environmental & Energy	Prep:	EPA 5030B
Project#:	STANDARD	Analysis:	EPA 8260B
Field ID:	SB-7	Batch#:	232307
Lab ID:	274186-007	Sampled:	02/12/16
Matrix:	Water	Received:	02/12/16
Units:	uq/L	Analyzed:	02/20/16
Diln Fac:	1.000	-	

Analyte	Result	RL
Freon 12	ND	1.0
tert-Butyl Alcohol (TBA)	ND	10
Chloromethane	ND	1.0
Isopropyl Ether (DIPE)	ND	0.5
Vinyl Chloride	ND	0.5
Bromomethane	ND	1.0
Ethyl tert-Butyl Ether (ETBE)	ND	0.5
Chloroethane	ND	1.0
Methyl tert-Amyl Ether (TAME)	ND ND	0.5
Trichlorofluoromethane	ND ND	1.0
Acetone	ND	10
Freon 113	ND ND	2.0
1,1-Dichloroethene	ND ND	0.5
Methylene Chloride	ND ND	10
Carbon Disulfide	ND ND	0.5
MTBE	ND ND	0.5
trans-1,2-Dichloroethene	ND ND	0.5
		10
Vinyl Acetate	ND	0.5
1,1-Dichloroethane	ND	
2-Butanone	ND	10
cis-1,2-Dichloroethene	ND	0.5
2,2-Dichloropropane	ND	0.5
Chloroform	ND	0.5
Bromochloromethane	ND	0.5
1,1,1-Trichloroethane	ND	0.5
1,1-Dichloropropene	ND	0.5
Carbon Tetrachloride	ND	0.5
1,2-Dichloroethane	ND	0.5
Benzene	ND	0.5
Trichloroethene	ND	0.5
1,2-Dichloropropane	ND	0.5
Bromodichloromethane	ND	0.5
Dibromomethane	ND	0.5
4-Methyl-2-Pentanone	ND	10
cis-1,3-Dichloropropene	ND	0.5
Toluene	ND	0.5
trans-1,3-Dichloropropene	ND	0.5
1,1,2-Trichloroethane	ND	0.5
2-Hexanone	ND	10
1,3-Dichloropropane	ND	0.5
Tetrachloroethene	ND	0.5
Dibromochloromethane	ND	0.5
1,2-Dibromoethane	ND	0.5
Chlorobenzene	ND	0.5
1,1,1,2-Tetrachloroethane	ND	0.5
Ethylbenzene	ND	0.5
m,p-Xylenes	ND	0.5
o-Xylene	ND	0.5
Styrene	ND	0.5
Bromoform	ND	1.0
Isopropylbenzene	ND	0.5
1,1,2,2-Tetrachloroethane	ND	0.5
1,2,3-Trichloropropane	ND	0.5
Propylbenzene	ND	0.5

		ganics by GC/MS	
Lab #:	274186	Location:	Commercial BLD - Alameda
Client:	ODIC Environmental & Energy	Prep:	EPA 5030B
Project#:	STANDARD	Analysis:	EPA 8260B
Field ID:	SB-7	Batch#:	232307
Lab ID:	274186-007	Sampled:	02/12/16
Matrix:	Water	Received:	02/12/16
Units:	ug/L	Analyzed:	02/20/16
Diln Fac:	1.000	-	

Analyte	Result	RL	
Bromobenzene	ND	0.5	
1,3,5-Trimethylbenzene	ND	0.5	
2-Chlorotoluene	ND	0.5	
4-Chlorotoluene	ND	0.5	
tert-Butylbenzene	ND	0.5	
1,2,4-Trimethylbenzene	ND	0.5	
sec-Butylbenzene	ND	0.5	
para-Isopropyl Toluene	ND	0.5	
1,3-Dichlorobenzene	ND	0.5	
1,4-Dichlorobenzene	ND	0.5	
n-Butylbenzene	ND	0.5	
1,2-Dichlorobenzene	ND	0.5	
1,2-Dibromo-3-Chloropropane	ND	2.0	
1,2,4-Trichlorobenzene	ND	0.5	
Hexachlorobutadiene	ND	2.0	
Naphthalene	ND	2.0	
1,2,3-Trichlorobenzene	ND	0.5	

Surrogate	%REC	Limits	
Dibromofluoromethane	100	80-128	
1,2-Dichloroethane-d4	96	75-139	
Toluene-d8	98	80-120	
Bromofluorobenzene	98	80-120	

Purgeable Organics by GC/MS					
Lab #:	274186	Location:	Commercial BLD - Alameda		
Client:	ODIC Environmental & Energy	Prep:	EPA 5030B		
Project#:	STANDARD	Analysis:	EPA 8260B		
Field ID:	SB-8	Batch#:	232307		
Lab ID:	274186-008	Sampled:	02/12/16		
Matrix:	Water	Received:	02/12/16		
Units:	ug/L	Analyzed:	02/20/16		
Diln Fac:	1.000	2	•		

Analyte	Result	RL
Freon 12	ND	1.0
tert-Butyl Alcohol (TBA)	ND	10
Chloromethane	ND	1.0
Isopropyl Ether (DIPE)	ND	0.5
Vinyl Chloride	ND	0.5
Bromomethane	ND	1.0
Ethyl tert-Butyl Ether (ETBE)	ND	0.5
Chloroethane	ND	1.0
Methyl tert-Amyl Ether (TAME)	ND	0.5
Trichlorofluoromethane	ND	1.0
Acetone	ND	10
Freon 113	ND	2.0
1,1-Dichloroethene	ND	0.5
Methylene Chloride	ND	10
Carbon Disulfide	ND	0.5
MTBE	ND	0.5
trans-1,2-Dichloroethene	ND	0.5
Vinyl Acetate	ND	10
1,1-Dichloroethane	ND	0.5
2-Butanone	ND	10
cis-1,2-Dichloroethene	ND	0.5
2,2-Dichloropropane	ND	0.5
Chloroform	ND	0.5
Bromochloromethane	ND	0.5
1,1,1-Trichloroethane	ND	0.5
1,1-Dichloropropene	ND	0.5
Carbon Tetrachloride	ND	0.5
1,2-Dichloroethane	ND	0.5
Benzene	ND	0.5
Trichloroethene	ND	0.5
1,2-Dichloropropane	ND	0.5
Bromodichloromethane	ND	0.5
Dibromomethane	ND	0.5
4-Methyl-2-Pentanone	ND	10
cis-1,3-Dichloropropene	ND	0.5
Toluene	ND	0.5
trans-1,3-Dichloropropene	ND	0.5
1,1,2-Trichloroethane	ND	0.5
2-Hexanone	ND	10
1,3-Dichloropropane Tetrachloroethene	ND	0.5 0.5
	ND	
Dibromochloromethane	ND	0.5 0.5
1,2-Dibromoethane	ND	0.5
Chlorobenzene	ND ND	0.5
1,1,1,2-Tetrachloroethane	ND	0.5
Ethylbenzene m,p-Xylenes	ND ND	0.5
	ND ND	0.5
o-Xylene Styrene	ND ND	0.5
Bromoform	ND ND	1.0
Isopropylbenzene	ND ND	0.5
1,1,2,2-Tetrachloroethane	ND ND	0.5
1,1,2,2-letrachioroethane 1,2,3-Trichloropropane	ND ND	0.5
Propylbenzene	ND ND	0.5
FIODAIDGHE	מא	0.5

Purgeable Organics by GC/MS					
Lab #:	274186	Location:	Commercial BLD - Alameda		
Client:	ODIC Environmental & Energy	Prep:	EPA 5030B		
Project#:	STANDARD	Analysis:	EPA 8260B		
Field ID:	SB-8	Batch#:	232307		
Lab ID:	274186-008	Sampled:	02/12/16		
Matrix:	Water	Received:	02/12/16		
Units:	uq/L	Analyzed:	02/20/16		
Diln Fac:	1.000	-			

Analyte	Result	RL	
Bromobenzene	ND	0.5	
1,3,5-Trimethylbenzene	ND	0.5	
2-Chlorotoluene	ND	0.5	
4-Chlorotoluene	ND	0.5	
tert-Butylbenzene	ND	0.5	
1,2,4-Trimethylbenzene	ND	0.5	
sec-Butylbenzene	ND	0.5	
para-Isopropyl Toluene	ND	0.5	
1,3-Dichlorobenzene	ND	0.5	
1,4-Dichlorobenzene	ND	0.5	
n-Butylbenzene	ND	0.5	
1,2-Dichlorobenzene	ND	0.5	
1,2-Dibromo-3-Chloropropane	ND	2.0	
1,2,4-Trichlorobenzene	ND	0.5	
Hexachlorobutadiene	ND	2.0	
Naphthalene	ND	2.0	
1,2,3-Trichlorobenzene	ND	0.5	

Surrogate	%REC	Limits
Dibromofluoromethane	101	80-128
1,2-Dichloroethane-d4	96	75-139
Toluene-d8	98	80-120
Bromofluorobenzene	100	80-120

Purgeable Organics by GC/MS					
Lab #:	274186	Location:	Commercial BLD - Alameda		
Client:	ODIC Environmental & Energy	Prep:	EPA 5030B		
Project#:	STANDARD	Analysis:	EPA 8260B		
Type:	LCS	Diln Fac:	1.000		
Lab ID:	QC824076	Batch#:	232260		
Matrix:	Water	Analyzed:	02/19/16		
Units:	ug/L				

Analyte	Spiked	Result	%REC	Limits
tert-Butyl Alcohol (TBA)	62.50	39.62 b	63	32-155
Isopropyl Ether (DIPE)	12.50	12.28	98	57-128
Ethyl tert-Butyl Ether (ETBE)	12.50	11.49	92	62-120
Methyl tert-Amyl Ether (TAME)	12.50	10.69	86	69-120
1,1-Dichloroethene	12.50	13.91	111	66-135
Benzene	12.50	12.34	99	80-123
Trichloroethene	12.50	12.39	99	80-123
Toluene	12.50	11.93	95	80-121
Chlorobenzene	12.50	12.11	97	80-123

Surrogate	%REC	Limits
Dibromofluoromethane	97	80-128
1,2-Dichloroethane-d4	94	75-139
Toluene-d8	96	80-120
Bromofluorobenzene	102	80-120

Purgeable Organics by GC/MS					
Lab #: 274186 Location: Commercial BLD - Alameda Client: ODIC Environmental & Energy Prep: EPA 5030B Project#: STANDARD Analysis: EPA 8260B					
Type: Lab ID: Matrix: Units:	BLANK QC824078 Water ug/L	Diln Fac: Batch#: Analyzed:	1.000 232260 02/19/16		

Analyte	Result	RL
Freon 12	ND	1.0
tert-Butyl Alcohol (TBA)	ND	10
Chloromethane	ND	1.0
Isopropyl Ether (DIPE)	ND	0.5
Vinyl Chloride	ND	0.5
Bromomethane	ND	1.0
Ethyl tert-Butyl Ether (ETBE)	ND	0.5
Chloroethane	ND	1.0
Methyl tert-Amyl Ether (TAME)	ND	0.5
Trichlorofluoromethane	ND	1.0
Acetone	ND	10
Freon 113	ND	2.0
1,1-Dichloroethene	ND	0.5
Methylene Chloride	ND	10
Carbon Disulfide	ND	0.5
MTBE	ND	0.5
trans-1,2-Dichloroethene	ND	0.5
Vinyl Acetate	ND	10
1,1-Dichloroethane	ND	0.5
2-Butanone	ND	10
cis-1,2-Dichloroethene	ND	0.5
2,2-Dichloropropane	ND	0.5
Chloroform	ND	0.5
Bromochloromethane	ND	0.5
1,1,1-Trichloroethane	ND	0.5
1,1-Dichloropropene	ND	0.5
Carbon Tetrachloride	ND	0.5
1,2-Dichloroethane	ND	0.5
Benzene	ND	0.5
Trichloroethene	ND	0.5
1,2-Dichloropropane	ND	0.5
Bromodichloromethane	ND	0.5
Dibromomethane	ND	0.5
4-Methyl-2-Pentanone	ND	10
cis-1,3-Dichloropropene	ND	0.5
Toluene	ND	0.5
trans-1,3-Dichloropropene	ND	0.5
1,1,2-Trichloroethane	ND	0.5
2-Hexanone	ND	10
1,3-Dichloropropane Tetrachloroethene	ND	0.5 0.5
	ND	
Dibromochloromethane	ND	0.5 0.5
1,2-Dibromoethane	ND	0.5
Chlorobenzene	ND ND	0.5
1,1,1,2-Tetrachloroethane	ND	0.5
Ethylbenzene m,p-Xylenes	ND ND	0.5
	ND ND	0.5
o-Xylene Styrene	ND ND	0.5
Bromoform	ND ND	1.0
Isopropylbenzene	ND ND	0.5
1,1,2,2-Tetrachloroethane	ND ND	0.5
1,1,2,2-letrachioroethane 1,2,3-Trichloropropane	ND ND	0.5
Propylbenzene	ND ND	0.5
FIODAIDGHE	מא	0.5

Purgeable Organics by GC/MS					
Lab #: Client:	274186	Location:	Commercial BLD - Alameda EPA 5030B		
	ODIC Environmental & Energy	Prep:			
Project#:	STANDARD	Analysis:	EPA 8260B		
Type:	BLANK	Diln Fac:	1.000		
Type: Lab ID:	QC824078	Batch#:	232260		
Matrix:	Water	Analyzed:	02/19/16		
Units:	ug/L				

Analyte	Result	RL	
Bromobenzene	ND	0.5	
1,3,5-Trimethylbenzene	ND	0.5	
2-Chlorotoluene	ND	0.5	
4-Chlorotoluene	ND	0.5	
tert-Butylbenzene	ND	0.5	
1,2,4-Trimethylbenzene	ND	0.5	
sec-Butylbenzene	ND	0.5	
para-Isopropyl Toluene	ND	0.5	
1,3-Dichlorobenzene	ND	0.5	
1,4-Dichlorobenzene	ND	0.5	
n-Butylbenzene	ND	0.5	
1,2-Dichlorobenzene	ND	0.5	
1,2-Dibromo-3-Chloropropane	ND	2.0	
1,2,4-Trichlorobenzene	ND	0.5	
Hexachlorobutadiene	ND	2.0	
Naphthalene	ND	2.0	
1,2,3-Trichlorobenzene	ND	0.5	

Surrogate	%REC	Limits	
Dibromofluoromethane	97	80-128	
1,2-Dichloroethane-d4	95	75-139	
Toluene-d8	97	80-120	
Bromofluorobenzene	102	80-120	

Purgeable Organics by GC/MS						
Lab #: Client: Project#:	274186 ODIC Environmental & Energy STANDARD	Location: Prep: Analysis:	Commercial BLD - Alameda EPA 5030B EPA 8260B			
Matrix: Units: Diln Fac:	Water ug/L 1.000	Batch#: Analyzed:	232272 02/19/16			

Type: BS Lab ID: QC824124

Analyte	Spiked	Result	%REC	Limits
tert-Butyl Alcohol (TBA)	62.50	46.51	74	32-155
Isopropyl Ether (DIPE)	12.50	11.40	91	57-128
Ethyl tert-Butyl Ether (ETBE)	12.50	11.32	91	62-120
Methyl tert-Amyl Ether (TAME)	12.50	11.03	88	69-120
1,1-Dichloroethene	12.50	10.33	83	66-135
Benzene	12.50	11.47	92	80-123
Trichloroethene	12.50	10.92	87	80-123
Toluene	12.50	11.13	89	80-121
Chlorobenzene	12.50	11.94	96	80-123

Surrogate	%REC	Limits	
Dibromofluoromethane	99	80-128	
1,2-Dichloroethane-d4	96	75-139	
Toluene-d8	98	80-120	
Bromofluorobenzene	99	80-120	

Type: BSD Lab ID: QC824125

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
tert-Butyl Alcohol (TBA)	62.50	51.88	83	32-155	11	33
Isopropyl Ether (DIPE)	12.50	11.39	91	57-128	0	20
Ethyl tert-Butyl Ether (ETBE)	12.50	11.47	92	62-120	1	20
Methyl tert-Amyl Ether (TAME)	12.50	11.15	89	69-120	1	20
1,1-Dichloroethene	12.50	10.34	83	66-135	0	24
Benzene	12.50	11.47	92	80-123	0	20
Trichloroethene	12.50	10.75	86	80-123	2	20
Toluene	12.50	10.96	88	80-121	2	20
Chlorobenzene	12.50	11.76	94	80-123	1	20

Surrogate	%REC	Limits
Dibromofluoromethane	101	80-128
1,2-Dichloroethane-d4	97	75-139
Toluene-d8	98	80-120
Bromofluorobenzene	99	80-120

Purgeable Organics by GC/MS						
Lab #: Client: Project#:	274186 ODIC Environmental & Energy STANDARD	Location: Prep: Analysis:	Commercial BLD - Alameda EPA 5030B EPA 8260B			
Type: Lab ID: Matrix: Units:	BLANK QC824126 Water ug/L	Diln Fac: Batch#: Analyzed:	1.000 232272 02/19/16			

Analyte	Result	RL
Freon 12	ND	1.0
tert-Butyl Alcohol (TBA)	ND	10
Chloromethane	ND	1.0
Isopropyl Ether (DIPE)	ND	0.5
Vinyl Chloride	ND	0.5
Bromomethane	ND	1.0
Ethyl tert-Butyl Ether (ETBE)	ND	0.5
Chloroethane	ND	1.0
Methyl tert-Amyl Ether (TAME)	ND	0.5
Trichlorofluoromethane	ND ND	1.0
Acetone	ND	10
Freon 113	ND ND	2.0
1,1-Dichloroethene	ND ND	0.5
Methylene Chloride	ND ND	10
Carbon Disulfide	ND ND	0.5
MTBE	ND ND	0.5
trans-1,2-Dichloroethene	ND ND	0.5
		10
Vinyl Acetate	ND	0.5
1,1-Dichloroethane	ND	
2-Butanone	ND	10
cis-1,2-Dichloroethene	ND	0.5
2,2-Dichloropropane	ND	0.5
Chloroform	ND	0.5
Bromochloromethane	ND	0.5
1,1,1-Trichloroethane	ND	0.5
1,1-Dichloropropene	ND	0.5
Carbon Tetrachloride	ND	0.5
1,2-Dichloroethane	ND	0.5
Benzene	ND	0.5
Trichloroethene	ND	0.5
1,2-Dichloropropane	ND	0.5
Bromodichloromethane	ND	0.5
Dibromomethane	ND	0.5
4-Methyl-2-Pentanone	ND	10
cis-1,3-Dichloropropene	ND	0.5
Toluene	ND	0.5
trans-1,3-Dichloropropene	ND	0.5
1,1,2-Trichloroethane	ND	0.5
2-Hexanone	ND	10
1,3-Dichloropropane	ND	0.5
Tetrachloroethene	ND	0.5
Dibromochloromethane	ND	0.5
1,2-Dibromoethane	ND	0.5
Chlorobenzene	ND	0.5
1,1,1,2-Tetrachloroethane	ND	0.5
Ethylbenzene	ND	0.5
m,p-Xylenes	ND	0.5
o-Xylene	ND	0.5
Styrene	ND	0.5
Bromoform	ND	1.0
Isopropylbenzene	ND	0.5
1,1,2,2-Tetrachloroethane	ND	0.5
1,2,3-Trichloropropane	ND	0.5
Propylbenzene	ND	0.5

Purgeable Organics by GC/MS						
Lab #: Client: Project#:	274186 ODIC Environmental & Energy STANDARD	Location: Prep: Analysis:	Commercial BLD - Alameda EPA 5030B EPA 8260B			
Type: Lab ID: Matrix: Units:	BLANK QC824126 Water ug/L	Diln Fac: Batch#: Analyzed:	1.000 232272 02/19/16			

Analyte	Result	RL	
Bromobenzene	ND	0.5	
1,3,5-Trimethylbenzene	ND	0.5	
2-Chlorotoluene	ND	0.5	
4-Chlorotoluene	ND	0.5	
tert-Butylbenzene	ND	0.5	
1,2,4-Trimethylbenzene	ND	0.5	
sec-Butylbenzene	ND	0.5	
para-Isopropyl Toluene	ND	0.5	
1,3-Dichlorobenzene	ND	0.5	
1,4-Dichlorobenzene	ND	0.5	
n-Butylbenzene	ND	0.5	
1,2-Dichlorobenzene	ND	0.5	
1,2-Dibromo-3-Chloropropane	ND	2.0	
1,2,4-Trichlorobenzene	ND	0.5	
Hexachlorobutadiene	ND	2.0	
Naphthalene	ND	2.0	
1,2,3-Trichlorobenzene	ND	0.5	

Surrogate	%REC	Limits
Dibromofluoromethane	102	80-128
1,2-Dichloroethane-d4	96	75-139
Toluene-d8	98	80-120
Bromofluorobenzene	99	80-120

ND= Not Detected RL= Reporting Limit Page 2 of 2

Purgeable Organics by GC/MS						
Lab #:	274186	Location:	Commercial BLD - Alameda			
Client:	ODIC Environmental & Energy	Prep:	EPA 5030B			
Project#:	STANDARD	Analysis:	EPA 8260B			
Field ID:	ZZZZZZZZZZ	Batch#:	232260			
MSS Lab ID:	274099-001	Sampled:	02/10/16			
Matrix:	Water	Received:	02/11/16			
Units:	uq/L	Analyzed:	02/20/16			
Diln Fac:	1.000	-				

Type: MS Lab ID: QC824132

Analyte	MSS Result	Spiked	Result	%REC	Limits
tert-Butyl Alcohol (TBA)	<1.701	125.0	108.6 b	87	49-155
Isopropyl Ether (DIPE)	<0.1000	25.00	26.16	105	65-122
Ethyl tert-Butyl Ether (ETBE)	<0.1000	25.00	25.32	101	69-120
Methyl tert-Amyl Ether (TAME)	<0.1000	25.00	23.39	94	74-120
1,1-Dichloroethene	<0.1268	25.00	21.29	85	73-129
Benzene	<0.1000	25.00	20.81	83	80-120
Trichloroethene	<0.1000	25.00	20.07	80	73-123
Toluene	<0.1000	25.00	19.55	78 *	80-120
Chlorobenzene	<0.1000	25.00	20.49	82	80-120

Surrogate	%REC	Limits	
Dibromofluoromethane	101	80-128	
1,2-Dichloroethane-d4	100	75-139	
Toluene-d8	96	80-120	
Bromofluorobenzene	100	80-120	

MSD Lab ID: QC824133 Type:

Analyte	Spiked	Result	%REC	Limits RPD	Lim
tert-Butyl Alcohol (TBA)	125.0	88.91	71	49-155 20	33
Isopropyl Ether (DIPE)	25.00	26.71	107	65-122 2	22
Ethyl tert-Butyl Ether (ETBE)	25.00	25.58	102	69-120 1	20
Methyl tert-Amyl Ether (TAME)	25.00	23.44	94	74-120 0	20
1,1-Dichloroethene	25.00	27.50	110	73-129 25	25
Benzene	25.00	24.46	98	80-120 16	20
Trichloroethene	25.00	24.78	99	73-123 21 *	20
Toluene	25.00	23.19	93	80-120 17	21
Chlorobenzene	25.00	23.85	95	80-120 15	24

Surrogate	%REC	Limits
Dibromofluoromethane 9	99	80-128
1,2-Dichloroethane-d4	95	75-139
Toluene-d8	96	80-120
Bromofluorobenzene 1	102	80-120

Page 1 of 1

^{*=} Value outside of QC limits; see narrative b= See narrative

RPD= Relative Percent Difference

Purgeable Organics by GC/MS						
Lab #:	274186	Location:	Commercial BLD - Alameda			
Client:	ODIC Environmental & Energy	Prep:	EPA 5030B			
Project#:	STANDARD	Analysis:	EPA 8260B			
Field ID:	ZZZZZZZZZZ	Batch#:	232272			
MSS Lab ID:	274118-004	Sampled:	02/10/16			
Matrix:	Water	Received:	02/12/16			
Units:	uq/L	Analyzed:	02/20/16			
Diln Fac:	14.29	-				

Type: MS Lab ID: QC824138

Analyte	MSS Result	Spiked	Result	%REC	Limits
tert-Butyl Alcohol (TBA)	<30.01	892.9	770.6	86	49-155
Isopropyl Ether (DIPE)	<1.500	178.6	167.0	93	65-122
Ethyl tert-Butyl Ether (ETBE)	<1.429	178.6	167.7	94	69-120
Methyl tert-Amyl Ether (TAME)	<1.429	178.6	163.9	92	74-120
1,1-Dichloroethene	5.047	178.6	159.3	86	73-129
Benzene	<1.429	178.6	170.4	95	80-120
Trichloroethene	951.8	178.6	1,083	74 NM	73-123
Toluene	<1.429	178.6	167.4	94	80-120
Chlorobenzene	<1.429	178.6	180.9	101	80-120

Surrogate	%REC	Limits
Dibromofluoromethane	100	80-128
1,2-Dichloroethane-d4	96	75-139
Toluene-d8	97	80-120
Bromofluorobenzene	98	80-120

Type: MSD Lab ID: QC824139

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
tert-Butyl Alcohol (TBA)	892.9	759.4	85	49-155	1	33
Isopropyl Ether (DIPE)	178.6	159.1	89	65-122	5	22
Ethyl tert-Butyl Ether (ETBE)	178.6	157.8	88	69-120	6	20
Methyl tert-Amyl Ether (TAME)	178.6	157.3	88	74-120	4	20
1,1-Dichloroethene	178.6	141.1	76	73-129	12	25
Benzene	178.6	157.4	88	80-120	8	20
Trichloroethene	178.6	1,037	48 NM	73-123	4	20
Toluene	178.6	149.9	84	80-120	11	21
Chlorobenzene	178.6	163.2	91	80-120	10	24

Surrogate	%REC	Limits
Dibromofluoromethane	99	80-128
1,2-Dichloroethane-d4	97	75-139
Toluene-d8	97	80-120
Bromofluorobenzene	98	80-120

 $\mbox{NM=}$ Not Meaningful: Sample concentration > 4X spike concentration RPD= Relative Percent Difference

Page 1 of 1

Purgeable Organics by GC/MS							
Lab #: Client: Project#:	274186 ODIC Environmental & Energy STANDARD	Location: Prep: Analysis:	Commercial BLD - Alameda EPA 5030B EPA 8260B				
Matrix: Units: Diln Fac:	Water ug/L 1.000	Batch#: Analyzed:	232307 02/20/16				

Type: BS Lab ID: QC824248

Analyte	Spiked	Result	%REC	Limits
tert-Butyl Alcohol (TBA)	62.50	45.80	73	32-155
Isopropyl Ether (DIPE)	12.50	11.55	92	57-128
Ethyl tert-Butyl Ether (ETBE)	12.50	11.43	91	62-120
Methyl tert-Amyl Ether (TAME)	12.50	11.10	89	69-120
1,1-Dichloroethene	12.50	11.47	92	66-135
Benzene	12.50	11.97	96	80-123
Trichloroethene	12.50	11.66	93	80-123
Toluene	12.50	11.49	92	80-121
Chlorobenzene	12.50	12.33	99	80-123

Surrogate	%REC	Limits	
Dibromofluoromethane	99	80-128	
1,2-Dichloroethane-d4	97	75-139	
Toluene-d8	98	80-120	
Bromofluorobenzene	100	80-120	

Type: BSD Lab ID: QC824249

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
tert-Butyl Alcohol (TBA)	62.50	42.14	67	32-155	8	33
Isopropyl Ether (DIPE)	12.50	10.35	83	57-128	11	20
Ethyl tert-Butyl Ether (ETBE)	12.50	10.24	82	62-120	11	20
Methyl tert-Amyl Ether (TAME)	12.50	10.11	81	69-120	9	20
1,1-Dichloroethene	12.50	10.86	87	66-135	5	24
Benzene	12.50	11.33	91	80-123	6	20
Trichloroethene	12.50	11.31	90	80-123	3	20
Toluene	12.50	11.15	89	80-121	3	20
Chlorobenzene	12.50	11.88	95	80-123	4	20

Surrogate	%REC	Limits
Dibromofluoromethane	100	80-128
1,2-Dichloroethane-d4	95	75-139
Toluene-d8	98	80-120
Bromofluorobenzene	96	80-120

	Purgeable Org	ganics by GC/	'MS
Lab #: Client: Project#:	274186 ODIC Environmental & Energy STANDARD	Location: Prep: Analysis:	Commercial BLD - Alameda EPA 5030B EPA 8260B
Type: Lab ID: Matrix: Units:	BLANK QC824250 Water ug/L	Diln Fac: Batch#: Analyzed:	1.000 232307 02/20/16

Analyte	Result	RL
Freon 12	ND	1.0
tert-Butyl Alcohol (TBA)	ND	10
Chloromethane	ND	1.0
Isopropyl Ether (DIPE)	ND	0.5
Vinyl Chloride	ND	0.5
Bromomethane	ND	1.0
Ethyl tert-Butyl Ether (ETBE)	ND	0.5
Chloroethane	ND	1.0
Methyl tert-Amyl Ether (TAME)	ND	0.5
Trichlorofluoromethane	ND	1.0
Acetone	ND	10
Freon 113	ND	2.0
1,1-Dichloroethene	ND	0.5
Methylene Chloride	ND	10
Carbon Disulfide	ND	0.5
MTBE	ND	0.5
trans-1,2-Dichloroethene	ND	0.5
Vinyl Acetate	ND	10
1,1-Dichloroethane	ND	0.5
2-Butanone	ND	10
cis-1,2-Dichloroethene	ND	0.5
2,2-Dichloropropane	ND	0.5
Chloroform	ND	0.5
Bromochloromethane	ND	0.5
1,1,1-Trichloroethane	ND	0.5
1,1-Dichloropropene	ND	0.5
Carbon Tetrachloride	ND	0.5
1,2-Dichloroethane	ND	0.5
Benzene	ND	0.5
Trichloroethene	ND	0.5
1,2-Dichloropropane	ND	0.5
Bromodichloromethane	ND	0.5
Dibromomethane	ND	0.5
4-Methyl-2-Pentanone	ND	10
cis-1,3-Dichloropropene	ND	0.5
Toluene	ND	0.5
trans-1,3-Dichloropropene	ND	0.5
1,1,2-Trichloroethane	ND	0.5
2-Hexanone	ND	10
1,3-Dichloropropane	ND	0.5
Tetrachloroethene	ND	0.5
Dibromochloromethane	ND	0.5
1,2-Dibromoethane	ND	0.5
Chlorobenzene	ND	0.5
1,1,1,2-Tetrachloroethane	ND	0.5
Ethylbenzene	ND	0.5
m,p-Xylenes	ND	0.5
o-Xylene	ND	0.5
Styrene	ND	0.5
Bromoform	ND	1.0
Isopropylbenzene	ND	0.5
1,1,2,2-Tetrachloroethane	ND	0.5
1,2,3-Trichloropropane	ND	0.5
Propylbenzene	ND	0.5

	Purgeable Org	anics by GC/MS	
Lab #: Client: Project#:	274186 ODIC Environmental & Energy STANDARD	Location: Prep: Analysis:	Commercial BLD - Alameda EPA 5030B EPA 8260B
Type: Lab ID: Matrix: Units:	BLANK QC824250 Water ug/L	Diln Fac: Batch#: Analyzed:	1.000 232307 02/20/16

Analyte	Result	RL	
Bromobenzene	ND	0.5	
1,3,5-Trimethylbenzene	ND	0.5	
2-Chlorotoluene	ND	0.5	
4-Chlorotoluene	ND	0.5	
tert-Butylbenzene	ND	0.5	
1,2,4-Trimethylbenzene	ND	0.5	
sec-Butylbenzene	ND	0.5	
para-Isopropyl Toluene	ND	0.5	
1,3-Dichlorobenzene	ND	0.5	
1,4-Dichlorobenzene	ND	0.5	
n-Butylbenzene	ND	0.5	
1,2-Dichlorobenzene	ND	0.5	
1,2-Dibromo-3-Chloropropane	ND	2.0	
1,2,4-Trichlorobenzene	ND	0.5	
Hexachlorobutadiene	ND	2.0	
Naphthalene	ND	2.0	
1,2,3-Trichlorobenzene	ND	0.5	

Surrogate	%REC	Limits
Dibromofluoromethane	102	80-128
1,2-Dichloroethane-d4	94	75-139
Toluene-d8	98	80-120
Bromofluorobenzene	98	80-120

ND= Not Detected RL= Reporting Limit Page 2 of 2

		ganics by GC/MS	3
Lab #:	274186	Location:	Commercial BLD - Alameda
Client:	ODIC Environmental & Energy	Prep:	EPA 5030B
Project#:	STANDARD	Analysis:	EPA 8260B
Field ID:	SB-5 @ 10'	Diln Fac:	0.9009
Lab ID:	274186-009	Batch#:	232103
Matrix:	Soil	Sampled:	02/12/16
Units:	ug/Kg	Received:	02/12/16
Basis:	as received	Analyzed:	02/16/16

Analyte	Result	RL
Freon 12	ND	9.0
tert-Butyl Alcohol (TBA)	ND	90
Chloromethane	ND	9.0
Isopropyl Ether (DIPE)	ND	4.5
Vinyl Chloride	ND	9.0
Bromomethane	ND	9.0
Ethyl tert-Butyl Ether (ETBE)	ND	4.5
Chloroethane	ND	9.0
Methyl tert-Amyl Ether (TAME)	ND	4.5
Trichlorofluoromethane	ND	4.5
Acetone	ND	18
Freon 113	ND	4.5
1,1-Dichloroethene	ND	4.5
Methylene Chloride	ND	18
Carbon Disulfide	ND	4.5
MTBE	ND	4.5
trans-1,2-Dichloroethene	ND	4.5
Vinyl Acetate	ND	45
1,1-Dichloroethane	ND	4.5
2-Butanone	ND	9.0
cis-1,2-Dichloroethene	ND	4.5
2,2-Dichloropropane	ND	4.5
Chloroform	ND	4.5
Bromochloromethane	ND	4.5
1,1,1-Trichloroethane	ND	4.5
1,1-Dichloropropene	ND	4.5
Carbon Tetrachloride	ND	4.5
1,2-Dichloroethane	ND	4.5
Benzene	ND	4.5
Trichloroethene	ND	4.5 4.5
1,2-Dichloropropane Bromodichloromethane	ND ND	4.5
Dibromomethane	ND ND	4.5
4-Methyl-2-Pentanone	ND ND	9.0
cis-1,3-Dichloropropene	ND ND	4.5
Toluene	ND ND	4.5
trans-1,3-Dichloropropene	ND ND	4.5
1,1,2-Trichloroethane	ND ND	4.5
2-Hexanone	ND	9.0
1,3-Dichloropropane	ND	4.5
Tetrachloroethene	ND	4.5
Dibromochloromethane	ND	4.5
1,2-Dibromoethane	ND	4.5
Chlorobenzene	ND	4.5
1,1,1,2-Tetrachloroethane	ND	4.5
Ethylbenzene	ND	4.5
m,p-Xylenes	ND	4.5
o-Xylene	ND	4.5
Styrene	ND	4.5
Bromoform	ND	4.5
Isopropylbenzene	ND	4.5
1,1,2,2-Tetrachloroethane	ND	4.5
1,2,3-Trichloropropane	ND	4.5
Propylbenzene	ND	4.5

		anics by GC/MS	
Lab #:	274186	Location:	Commercial BLD - Alameda
Client:	ODIC Environmental & Energy	Prep:	EPA 5030B
Project#:	STANDARD	Analysis:	EPA 8260B
Field ID:	SB-5 @ 10'	Diln Fac:	0.9009
Lab ID:	274186-009	Batch#:	232103
Matrix:	Soil	Sampled:	02/12/16
Units:	ug/Kg	Received:	02/12/16
Basis:	as received	Analyzed:	02/16/16

Analyte	Result	RL	
Bromobenzene	ND	4.5	
1,3,5-Trimethylbenzene	ND	4.5	
2-Chlorotoluene	ND	4.5	
4-Chlorotoluene	ND	4.5	
tert-Butylbenzene	ND	4.5	
1,2,4-Trimethylbenzene	ND	4.5	
sec-Butylbenzene	ND	4.5	
para-Isopropyl Toluene	ND	4.5	
1,3-Dichlorobenzene	ND	4.5	
1,4-Dichlorobenzene	ND	4.5	
n-Butylbenzene	ND	4.5	
1,2-Dichlorobenzene	ND	4.5	
1,2-Dibromo-3-Chloropropane	ND	4.5	
1,2,4-Trichlorobenzene	ND	4.5	
Hexachlorobutadiene	ND	4.5	
Naphthalene	ND	4.5	
1,2,3-Trichlorobenzene	ND	4.5	

Surrogate	%REC	Limits
Dibromofluoromethane	110	78-134
1,2-Dichloroethane-d4	95	80-138
Toluene-d8	95	80-120
Bromofluorobenzene	94	78-123

Purgeable Organics by GC/MS						
Lab #: Client:	274186	Location:	Commercial BLD - Alameda EPA 5030B			
Project#:	ODIC Environmental & Energy	Prep:	EPA 8260B			
	STANDARD	Analysis:				
Field ID:	SB-6 @ 6'	Basis:	as received			
Lab ID:	274186-010	Sampled:	02/12/16			
Matrix:	Soil	Received:	02/12/16			
Units:	ug/Kg					

Analyte	Result	RL	Diln Fac	Batch# Analyzed
Freon 12	ND	9.3	0.9259	232113 02/16/16
tert-Butyl Alcohol (TBA)	ND	93	0.9259	232113 02/16/16
Chloromethane	ND	9.3	0.9259	232113 02/16/16
Isopropyl Ether (DIPE)	ND	4.6	0.9259	232113 02/16/16
Vinyl Chloride	ND	9.3	0.9259	232113 02/16/16
Bromomethane	ND	9.3	0.9259	232113 02/16/16
Ethyl tert-Butyl Ether (ETBE)	ND	4.6	0.9259	232113 02/16/16
Chloroethane	ND	9.3	0.9259	232113 02/16/16
Methyl tert-Amyl Ether (TAME)	ND	4.6	0.9259	232113 02/16/16
Trichlorofluoromethane	ND	4.6	0.9259	232113 02/16/16
Acetone	30	19	0.9259	232113 02/16/16
Freon 113	ND	4.6	0.9259	232113 02/16/16
1,1-Dichloroethene	ND	4.6	0.9259	232113 02/16/16
Methylene Chloride	ND	19	0.9259	232113 02/16/16
Carbon Disulfide	ND	4.6	0.9259	232113 02/16/16
MTBE	ND	4.6	0.9259	232113 02/16/16
trans-1,2-Dichloroethene	ND	4.6	0.9259	232113 02/16/16
Vinyl Acetate	ND	46	0.9259	232113 02/16/16
1,1-Dichloroethane	ND	4.6	0.9259	232113 02/16/16
2-Butanone	ND	9.3	0.9259	232113 02/10/10
cis-1,2-Dichloroethene	ND	4.6	0.9259	232113 02/10/10
2,2-Dichloropropane	ND	4.6	0.9259	232113 02/10/10
Chloroform	ND ND	4.6	0.9259	232113 02/10/10
Bromochloromethane	ND ND	4.6	0.9259	232113 02/10/10
1,1,1-Trichloroethane	ND ND	4.6	0.9259	232113 02/16/16
1,1-Dichloropropene	ND ND	4.6	0.9259	232113 02/16/16
Carbon Tetrachloride	ND ND	4.6	0.9259	
1,2-Dichloroethane	ND ND	4.6		232113 02/16/16
Benzene	ND ND	4.6	0.9259 0.9259	232113 02/16/16 232113 02/16/16
	ND ND	4.6		
Trichloroethene	ND ND	4.6	0.9259 0.9259	232113 02/16/16 232113 02/16/16
1,2-Dichloropropane	ND ND	4.6	0.9259	232113 02/16/16
Bromodichloromethane		4.6		
Dibromomethane	ND	9.3	0.9259 0.9259	232113 02/16/16 232113 02/16/16
4-Methyl-2-Pentanone	ND	4.6		232113 02/16/16 232113 02/16/16
cis-1,3-Dichloropropene	ND	4.6	0.9259 0.9259	232113 02/16/16
Toluene	ND			
trans-1,3-Dichloropropene	ND	4.6	0.9259	232113 02/16/16
1,1,2-Trichloroethane	ND	4.6	0.9259	232113 02/16/16
2-Hexanone	ND	9.3	0.9259	232113 02/16/16
1,3-Dichloropropane	ND	4.6	0.9259	232113 02/16/16
Tetrachloroethene	ND	4.6	0.9259	232113 02/16/16
Dibromochloromethane	ND	4.6	0.9259	232113 02/16/16
1,2-Dibromoethane	ND	4.6	0.9259	232113 02/16/16
Chlorobenzene	ND	4.6	0.9259	232113 02/16/16
1,1,1,2-Tetrachloroethane	ND	4.6	0.9259	232113 02/16/16
Ethylbenzene	ND	4.6	0.9259	232113 02/16/16
m,p-Xylenes	ND	4.6	0.9259	232113 02/16/16
o-Xylene	ND	4.6	0.9259	232113 02/16/16
Styrene	ND	4.6	0.9259	232113 02/16/16
Bromoform	ND	4.6	0.9259	232113 02/16/16
Isopropylbenzene	ND	250	50.00	232159 02/17/16
1,1,2,2-Tetrachloroethane	ND	250	50.00	232159 02/17/16
1,2,3-Trichloropropane	ND	250	50.00	232159 02/17/16
Propylbenzene	ND	250	50.00	232159 02/17/16

^{*=} Value outside of QC limits; see narrative ND= Not Detected RL= Reporting Limit Page 1 of 2

Purgeable Organics by GC/MS					
Lab #: Client: Project#:	274186 ODIC Environmental & Energy STANDARD	Location: Prep: Analysis:	Commercial BLD - Alameda EPA 5030B EPA 8260B		
Field ID: Lab ID: Matrix: Units:	SB-6 @ 6' 274186-010 Soil ug/Kg	Basis: Sampled: Received:	as received 02/12/16 02/12/16		

Analyte	Result	RL	Diln Fac	Batch# Analyzed
Bromobenzene	ND	250	50.00	232159 02/17/16
1,3,5-Trimethylbenzene	ND	250	50.00	232159 02/17/16
2-Chlorotoluene	ND	250	50.00	232159 02/17/16
4-Chlorotoluene	ND	250	50.00	232159 02/17/16
tert-Butylbenzene	ND	250	50.00	232159 02/17/16
1,2,4-Trimethylbenzene	1,200	250	50.00	232159 02/17/16
sec-Butylbenzene	690	250	50.00	232159 02/17/16
para-Isopropyl Toluene	390	250	50.00	232159 02/17/16
1,3-Dichlorobenzene	ND	250	50.00	232159 02/17/16
1,4-Dichlorobenzene	ND	250	50.00	232159 02/17/16
n-Butylbenzene	820	250	50.00	232159 02/17/16
1,2-Dichlorobenzene	ND	250	50.00	232159 02/17/16
1,2-Dibromo-3-Chloropropane	ND	250	50.00	232159 02/17/16
1,2,4-Trichlorobenzene	ND	250	50.00	232159 02/17/16
Hexachlorobutadiene	ND	250	50.00	232159 02/17/16
Naphthalene	2,100	250	50.00	232159 02/17/16
1,2,3-Trichlorobenzene	ND	250	50.00	232159 02/17/16

Surrogate	%REC	Limits	Diln Fac	Batch# Analyze
Dibromofluoromethane	103	78-134	0.9259	232113 02/16/1
1,2-Dichloroethane-d4	98	80-138	0.9259	232113 02/16/1
Toluene-d8	86	80-120	0.9259	232113 02/16/1
Bromofluorobenzene	130 *	78-123	50.00	232159 02/17/1
Trifluorotoluene (MeOH)	111	52-147	50.00	232159 02/17/1

^{*=} Value outside of QC limits; see narrative ND= Not Detected RL= Reporting Limit Page 2 of 2

Purgeable Organics by GC/MS						
Lab #:	274186	Location:	Commercial BLD - Alameda			
Client:	ODIC Environmental & Energy	Prep:	EPA 5030B			
Project#:	STANDARD	Analysis:	EPA 8260B			
Field ID:	SB-6 @ 10'	Diln Fac:	0.9728			
Lab ID:	274186-011	Batch#:	232113			
Matrix:	Soil	Sampled:	02/12/16			
Units:	ug/Kg	Received:	02/12/16			
Basis:	as received	Analyzed:	02/16/16			

Analyte	Result	RL
Freon 12	ND	9.7
tert-Butyl Alcohol (TBA)	ND	97
Chloromethane	ND	9.7
Isopropyl Ether (DIPE)	ND	4.9
Vinyl Chloride	ND	9.7
Bromomethane	ND	9.7
Ethyl tert-Butyl Ether (ETBE)	ND	4.9
Chloroethane	ND	9.7
Methyl tert-Amyl Ether (TAME)	ND	4.9
Trichlorofluoromethane	ND	4.9
Acetone	ND	19
Freon 113	ND	4.9
1,1-Dichloroethene	ND	4.9
Methylene Chloride	ND	19
Carbon Disulfide	ND	4.9
MTBE	ND	4.9
trans-1,2-Dichloroethene	ND	4.9
Vinyl Acetate	ND	49
1,1-Dichloroethane	ND	4.9
2-Butanone	ND	9.7
cis-1,2-Dichloroethene	ND	4.9
2,2-Dichloropropane	ND	4.9
Chloroform	ND	4.9
Bromochloromethane	ND	4.9
1,1,1-Trichloroethane	ND	4.9
1,1-Dichloropropene	ND	4.9
Carbon Tetrachloride	ND	4.9
1,2-Dichloroethane	ND	4.9
Benzene	ND	4.9
Trichloroethene	ND	4.9
1,2-Dichloropropane	ND	4.9
Bromodichloromethane	ND	4.9
Dibromomethane	ND	4.9 9.7
4-Methyl-2-Pentanone	ND	4.9
cis-1,3-Dichloropropene Toluene	ND ND	4.9
trans-1,3-Dichloropropene		4.9
1,1,2-Trichloroethane	ND ND	4.9
2-Hexanone	ND ND	9.7
1,3-Dichloropropane	ND ND	4.9
Tetrachloroethene	ND ND	4.9
Dibromochloromethane	ND ND	4.9
1,2-Dibromoethane	ND ND	4.9
Chlorobenzene	ND ND	4.9
1,1,1,2-Tetrachloroethane	ND ND	4.9
Ethylbenzene	ND ND	4.9
m,p-Xylenes	ND ND	4.9
o-Xylene	ND ND	4.9
Styrene	ND ND	4.9
Bromoform	ND ND	4.9
Isopropylbenzene	ND ND	4.9
1,1,2,2-Tetrachloroethane	ND	4.9
1,2,3-Trichloropropane	ND ND	4.9
Propylbenzene	ND	4.9
11 OP / 1DC112C11C	אוע	1.0

Purgeable Organics by GC/MS						
Lab #:	274186	Location:	Commercial BLD - Alameda			
Client:	ODIC Environmental & Energy	Prep:	EPA 5030B			
Project#:	STANDARD	Analysis:	EPA 8260B			
Field ID:	SB-6 @ 10'	Diln Fac:	0.9728			
Lab ID:	274186-011	Batch#:	232113			
Matrix:	Soil	Sampled:	02/12/16			
Units:	ug/Kg	Received:	02/12/16			
Basis:	as received	Analyzed:	02/16/16			

Analyte	Result	RL	
Bromobenzene	ND	4.9	
1,3,5-Trimethylbenzene	ND	4.9	
2-Chlorotoluene	ND	4.9	
4-Chlorotoluene	ND	4.9	
tert-Butylbenzene	ND	4.9	
1,2,4-Trimethylbenzene	ND	4.9	
sec-Butylbenzene	ND	4.9	
para-Isopropyl Toluene	ND	4.9	
1,3-Dichlorobenzene	ND	4.9	
1,4-Dichlorobenzene	ND	4.9	
n-Butylbenzene	ND	4.9	
1,2-Dichlorobenzene	ND	4.9	
1,2-Dibromo-3-Chloropropane	ND	4.9	
1,2,4-Trichlorobenzene	ND	4.9	
Hexachlorobutadiene	ND	4.9	
Naphthalene	ND	4.9	
1,2,3-Trichlorobenzene	ND	4.9	

Surrogate	%REC	Limits	
Dibromofluoromethane	92	78-134	
1,2-Dichloroethane-d4	93	80-138	
Toluene-d8	98	80-120	
Bromofluorobenzene	102	78-123	

Purgeable Organics by GC/MS						
Lab #:	274186	Location:	Commercial BLD - Alameda			
Client:	ODIC Environmental & Energy	Prep:	EPA 5030B			
Project#:	STANDARD	Analysis:	EPA 8260B			
Field ID:	SB-7 @ 5'	Diln Fac:	0.9597			
Lab ID:	274186-012	Batch#:	232113			
Matrix:	Soil	Sampled:	02/12/16			
Units:	ug/Kg	Received:	02/12/16			
Basis:	as received	Analyzed:	02/16/16			

Analyte	Result	RL
Freon 12	ND	9.6
tert-Butyl Alcohol (TBA)	ND	96
Chloromethane	ND	9.6
Isopropyl Ether (DIPE)	ND	4.8
Vinyl Chloride	ND	9.6
Bromomethane	ND	9.6
Ethyl tert-Butyl Ether (ETBE)	ND	4.8
Chloroethane	ND	9.6
Methyl tert-Amyl Ether (TAME)	ND	4.8
Trichlorofluoromethane	ND	4.8
Acetone	ND	19
Freon 113	ND	4.8
1,1-Dichloroethene	ND	4.8
Methylene Chloride	ND	19
Carbon Disulfide	ND	4.8
MTBE	ND	4.8
trans-1,2-Dichloroethene	ND	4.8
Vinyl Acetate	ND	48
1,1-Dichloroethane	ND	4.8
2-Butanone	ND	9.6
cis-1,2-Dichloroethene	ND	4.8
2,2-Dichloropropane	ND	4.8
Chloroform	ND	4.8
Bromochloromethane	ND	4.8
1,1,1-Trichloroethane	ND	4.8
1,1-Dichloropropene	ND	4.8
Carbon Tetrachloride	ND	4.8
1,2-Dichloroethane	ND	4.8
Benzene	ND	4.8
Trichloroethene	ND	4.8
1,2-Dichloropropane	ND	4.8
Bromodichloromethane	ND	4.8
Dibromomethane	ND	4.8
4-Methyl-2-Pentanone	ND	9.6
cis-1,3-Dichloropropene	ND	4.8
Toluene	ND	4.8
trans-1,3-Dichloropropene	ND	4.8
1,1,2-Trichloroethane	ND	4.8
2-Hexanone	ND	9.6
1,3-Dichloropropane	ND	4.8
Tetrachloroethene	ND	4.8
Dibromochloromethane	ND	4.8
1,2-Dibromoethane	ND	4.8
Chlorobenzene	ND	4.8
1,1,1,2-Tetrachloroethane	ND	4.8
Ethylbenzene	ND	4.8
m,p-Xylenes	ND	4.8
o-Xylene	ND	4.8
Styrene	ND	4.8
Bromoform	ND	4.8
Isopropylbenzene	ND	4.8
1,1,2,2-Tetrachloroethane	ND	4.8
1,2,3-Trichloropropane	ND	4.8
Propylbenzene	ND	4.8

Purgeable Organics by GC/MS				
Lab #:	274186	Location:	Commercial BLD - Alameda	
Client:	ODIC Environmental & Energy	Prep:	EPA 5030B	
Project#:	STANDARD	Analysis:	EPA 8260B	
Field ID:	SB-7 @ 5'	Diln Fac:	0.9597	
Lab ID:	274186-012	Batch#:	232113	
Matrix:	Soil	Sampled:	02/12/16	
Units:	ug/Kg	Received:	02/12/16	
Basis:	as received	Analyzed:	02/16/16	

Analyte	Result	RL	
Bromobenzene	ND	4.8	
1,3,5-Trimethylbenzene	ND	4.8	
2-Chlorotoluene	ND	4.8	
4-Chlorotoluene	ND	4.8	
tert-Butylbenzene	ND	4.8	
1,2,4-Trimethylbenzene	ND	4.8	
sec-Butylbenzene	ND	4.8	
para-Isopropyl Toluene	ND	4.8	
1,3-Dichlorobenzene	ND	4.8	
1,4-Dichlorobenzene	ND	4.8	
n-Butylbenzene	ND	4.8	
1,2-Dichlorobenzene	ND	4.8	
1,2-Dibromo-3-Chloropropane	ND	4.8	
1,2,4-Trichlorobenzene	ND	4.8	
Hexachlorobutadiene	ND	4.8	
Naphthalene	ND	4.8	
1,2,3-Trichlorobenzene	ND	4.8	

Surrogate	%REC	Limits
Dibromofluoromethane	98	78-134
1,2-Dichloroethane-d4	95	80-138
Toluene-d8	98	80-120
Bromofluorobenzene	105	78-123

Purgeable Organics by GC/MS				
Lab #:	274186	Location:	Commercial BLD - Alameda	
Client:	ODIC Environmental & Energy	Prep:	EPA 5030B	
Project#:	STANDARD	Analysis:	EPA 8260B	
Field ID:	SB-7 @ 10'	Diln Fac:	0.9328	
Lab ID:	274186-013	Batch#:	232113	
Matrix:	Soil	Sampled:	02/12/16	
Units:	uq/Kq	Received:	02/12/16	
Basis:	as received	Analyzed:	02/16/16	

Analyte	Result	RL
Freon 12	ND	9.3
tert-Butyl Alcohol (TBA)	ND	93
Chloromethane	ND	9.3
Isopropyl Ether (DIPE)	ND	4.7
Vinyl Chloride	ND	9.3
Bromomethane	ND	9.3
Ethyl tert-Butyl Ether (ETBE)	ND	4.7
Chloroethane	ND	9.3
Methyl tert-Amyl Ether (TAME)	ND	4.7
Trichlorofluoromethane	ND	4.7
Acetone	ND	19
Freon 113	ND	4.7
1,1-Dichloroethene	ND	4.7
Methylene Chloride	ND ND	19
Carbon Disulfide	ND ND	4.7
MTBE	ND ND	4.7
trans-1,2-Dichloroethene	ND ND	4.7
	ND ND	47
Vinyl Acetate		4.7
1,1-Dichloroethane 2-Butanone	ND ND	9.3
cis-1,2-Dichloroethene		9.3 4.7
	ND	
2,2-Dichloropropane	ND	4.7
Chloroform	ND	4.7
Bromochloromethane	ND	4.7
1,1,1-Trichloroethane	ND	4.7
1,1-Dichloropropene	ND	4.7
Carbon Tetrachloride	ND	4.7
1,2-Dichloroethane	ND	4.7
Benzene	ND	4.7
Trichloroethene	ND	4.7
1,2-Dichloropropane	ND	4.7
Bromodichloromethane	ND	4.7
Dibromomethane	ND	4.7
4-Methyl-2-Pentanone	ND	9.3
cis-1,3-Dichloropropene	ND	4.7
Toluene	ND	4.7
trans-1,3-Dichloropropene	ND	4.7
1,1,2-Trichloroethane	ND	4.7
2-Hexanone	ND	9.3
1,3-Dichloropropane	ND	4.7
Tetrachloroethene	ND	4.7
Dibromochloromethane	ND	4.7
1,2-Dibromoethane	ND	4.7
Chlorobenzene	ND	4.7
1,1,1,2-Tetrachloroethane	ND	4.7
Ethylbenzene	ND	4.7
m,p-Xylenes	ND	4.7
o-Xylene	ND	4.7
Styrene	ND	4.7
Bromoform	ND	4.7
Isopropylbenzene	ND	4.7
1,1,2,2-Tetrachloroethane	ND	4.7
1,2,3-Trichloropropane	ND	4.7
Propylbenzene	ND	4.7

Purgeable Organics by GC/MS				
Lab #:	274186	Location:	Commercial BLD - Alameda	
Client:	ODIC Environmental & Energy	Prep:	EPA 5030B	
Project#:	STANDARD	Analysis:	EPA 8260B	
Field ID:	SB-7 @ 10'	Diln Fac:	0.9328	
Lab ID:	274186-013	Batch#:	232113	
Matrix:	Soil	Sampled:	02/12/16	
Units:	ug/Kg	Received:	02/12/16	
Basis:	as received	Analyzed:	02/16/16	

Analyte	Result	RL	
Bromobenzene	ND	4.7	
1,3,5-Trimethylbenzene	ND	4.7	
2-Chlorotoluene	ND	4.7	
4-Chlorotoluene	ND	4.7	
tert-Butylbenzene	ND	4.7	
1,2,4-Trimethylbenzene	ND	4.7	
sec-Butylbenzene	ND	4.7	
para-Isopropyl Toluene	ND	4.7	
1,3-Dichlorobenzene	ND	4.7	
1,4-Dichlorobenzene	ND	4.7	
n-Butylbenzene	ND	4.7	
1,2-Dichlorobenzene	ND	4.7	
1,2-Dibromo-3-Chloropropane	ND	4.7	
1,2,4-Trichlorobenzene	ND	4.7	
Hexachlorobutadiene	ND	4.7	
Naphthalene	ND	4.7	
1,2,3-Trichlorobenzene	ND	4.7	

Surrogate	%REC	Limits	
Dibromofluoromethane	98	78-134	
1,2-Dichloroethane-d4	94	80-138	
Toluene-d8	98	80-120	
Bromofluorobenzene	104	78-123	

Purgeable Organics by GC/MS				
Lab #:	274186	Location:	Commercial BLD - Alameda	
Client:	ODIC Environmental & Energy	Prep:	EPA 5030B	
Project#:	STANDARD	Analysis:	EPA 8260B	
Field ID:	SB-8 @ 5'	Diln Fac:	0.9488	
Lab ID:	274186-014	Batch#:	232113	
Matrix:	Soil	Sampled:	02/12/16	
Units:	ug/Kg	Received:	02/12/16	
Basis:	as received	Analyzed:	02/16/16	

Analyte	Result	RL
Freon 12	ND	9.5
tert-Butyl Alcohol (TBA)	ND	95
Chloromethane	ND	9.5
Isopropyl Ether (DIPE)	ND	4.7
Vinyl Chloride	ND	9.5
Bromomethane	ND	9.5
Ethyl tert-Butyl Ether (ETBE)	ND	4.7
Chloroethane	ND	9.5
Methyl tert-Amyl Ether (TAME)	ND	4.7
Trichlorofluoromethane	ND	4.7
Acetone	ND	19
Freon 113	ND	4.7
1,1-Dichloroethene	ND	4.7
Methylene Chloride	ND	19
Carbon Disulfide	ND	4.7
MTBE	ND	4.7
trans-1,2-Dichloroethene	ND	4.7
Vinyl Acetate	ND	47
1,1-Dichloroethane	ND	4.7
2-Butanone	ND	9.5
cis-1,2-Dichloroethene	ND	4.7
2,2-Dichloropropane	ND	4.7
Chloroform	ND	4.7
Bromochloromethane	ND	4.7
1,1,1-Trichloroethane	ND	4.7
1,1-Dichloropropene	ND	4.7
Carbon Tetrachloride	ND	4.7
1,2-Dichloroethane	ND	4.7
Benzene	ND	4.7
Trichloroethene	ND	4.7
1,2-Dichloropropane	ND	4.7
Bromodichloromethane	ND	4.7
Dibromomethane	ND	4.7
4-Methyl-2-Pentanone	ND	9.5
cis-1,3-Dichloropropene	ND	4.7
Toluene	ND	4.7
trans-1,3-Dichloropropene	ND	4.7
1,1,2-Trichloroethane	ND	4.7
2-Hexanone	ND	9.5
1,3-Dichloropropane	ND	4.7
Tetrachloroethene	ND	4.7
Dibromochloromethane	ND	4.7
1,2-Dibromoethane	ND	4.7
Chlorobenzene	ND	4.7
1,1,1,2-Tetrachloroethane	ND	4.7
Ethylbenzene	ND	4.7
m,p-Xylenes	ND	4.7
o-Xylene	ND	4.7
Styrene	ND	4.7
Bromoform	ND	4.7
Isopropylbenzene	ND	4.7
1,1,2,2-Tetrachloroethane	ND ND	4.7
1,2,3-Trichloropropane	ND	4.7
Propylbenzene	ND	4.7

Purgeable Organics by GC/MS				
Lab #:	274186	Location:	Commercial BLD - Alameda	
Client:	ODIC Environmental & Energy	Prep:	EPA 5030B	
Project#:	STANDARD	Analysis:	EPA 8260B	
Field ID:	SB-8 @ 5'	Diln Fac:	0.9488	
Lab ID:	274186-014	Batch#:	232113	
Matrix:	Soil	Sampled:	02/12/16	
Units:	ug/Kg	Received:	02/12/16	
Basis:	as received	Analyzed:	02/16/16	

Analyte	Result	RL	
Bromobenzene	ND	4.7	
1,3,5-Trimethylbenzene	ND	4.7	
2-Chlorotoluene	ND	4.7	
4-Chlorotoluene	ND	4.7	
tert-Butylbenzene	ND	4.7	
1,2,4-Trimethylbenzene	ND	4.7	
sec-Butylbenzene	ND	4.7	
para-Isopropyl Toluene	ND	4.7	
1,3-Dichlorobenzene	ND	4.7	
1,4-Dichlorobenzene	ND	4.7	
n-Butylbenzene	ND	4.7	
1,2-Dichlorobenzene	ND	4.7	
1,2-Dibromo-3-Chloropropane	ND	4.7	
1,2,4-Trichlorobenzene	ND	4.7	
Hexachlorobutadiene	ND	4.7	
Naphthalene	ND	4.7	
1,2,3-Trichlorobenzene	ND	4.7	

Surrogate	%REC	Limits	
Dibromofluoromethane	100	78-134	
1,2-Dichloroethane-d4	94	80-138	
Toluene-d8	99	80-120	
Bromofluorobenzene	108	78-123	

Purgeable Organics by GC/MS				
Lab #:	274186	Location:	Commercial BLD - Alameda	
Client:	ODIC Environmental & Energy	Prep:	EPA 5030B	
Project#:	STANDARD	Analysis:	EPA 8260B	
Field ID:	SB-8 @ 10'	Diln Fac:	0.8977	
Lab ID:	274186-015	Batch#:	232113	
Matrix:	Soil	Sampled:	02/12/16	
Units:	uq/Kq	Received:	02/12/16	
Basis:	as received	Analyzed:	02/16/16	

Analyte	Result	RL
Freon 12	ND	9.0
tert-Butyl Alcohol (TBA)	ND	90
Chloromethane	ND	9.0
Isopropyl Ether (DIPE)	ND	4.5
Vinyl Chloride	ND	9.0
Bromomethane	ND	9.0
Ethyl tert-Butyl Ether (ETBE)	ND	4.5
Chloroethane	ND	9.0
Methyl tert-Amyl Ether (TAME)	ND	4.5
Trichlorofluoromethane	ND	4.5
Acetone	ND	18
Freon 113	ND	4.5
1,1-Dichloroethene	ND	4.5
Methylene Chloride	ND ND	18
Carbon Disulfide	ND ND	4.5
MTBE	ND ND	4.5
trans-1,2-Dichloroethene	ND ND	4.5
	ND ND	45
Vinyl Acetate		4.5
1,1-Dichloroethane 2-Butanone	ND ND	9.0
cis-1,2-Dichloroethene		4.5
	ND	
2,2-Dichloropropane	ND	4.5 4.5
Chloroform	ND	
Bromochloromethane	ND	4.5
1,1,1-Trichloroethane	ND	4.5
1,1-Dichloropropene	ND	4.5
Carbon Tetrachloride	ND	4.5
1,2-Dichloroethane	ND	4.5
Benzene	ND	4.5
Trichloroethene	ND	4.5
1,2-Dichloropropane	ND	4.5
Bromodichloromethane	ND	4.5
Dibromomethane	ND	4.5
4-Methyl-2-Pentanone	ND	9.0
cis-1,3-Dichloropropene	ND	4.5
Toluene	ND	4.5
trans-1,3-Dichloropropene	ND	4.5
1,1,2-Trichloroethane	ND	4.5
2-Hexanone	ND	9.0
1,3-Dichloropropane	ND	4.5
Tetrachloroethene	ND	4.5
Dibromochloromethane	ND	4.5
1,2-Dibromoethane	ND	4.5
Chlorobenzene	ND	4.5
1,1,1,2-Tetrachloroethane	ND	4.5
Ethylbenzene	ND	4.5
m,p-Xylenes	ND	4.5
o-Xylene	ND	4.5
Styrene	ND	4.5
Bromoform	ND	4.5
Isopropylbenzene	ND	4.5
1,1,2,2-Tetrachloroethane	ND	4.5
1,2,3-Trichloropropane	ND	4.5
Propylbenzene	ND	4.5

Purgeable Organics by GC/MS				
Lab #:	274186	Location:	Commercial BLD - Alameda	
Client:	ODIC Environmental & Energy	Prep:	EPA 5030B	
Project#:	STANDARD	Analysis:	EPA 8260B	
Field ID:	SB-8 @ 10'	Diln Fac:	0.8977	
Lab ID:	274186-015	Batch#:	232113	
Matrix:	Soil	Sampled:	02/12/16	
Units:	ug/Kg	Received:	02/12/16	
Basis:	as received	Analyzed:	02/16/16	

Analyte	Result	RL	
Bromobenzene	ND	4.5	
1,3,5-Trimethylbenzene	ND	4.5	
2-Chlorotoluene	ND	4.5	
4-Chlorotoluene	ND	4.5	
tert-Butylbenzene	ND	4.5	
1,2,4-Trimethylbenzene	ND	4.5	
sec-Butylbenzene	ND	4.5	
para-Isopropyl Toluene	ND	4.5	
1,3-Dichlorobenzene	ND	4.5	
1,4-Dichlorobenzene	ND	4.5	
n-Butylbenzene	ND	4.5	
1,2-Dichlorobenzene	ND	4.5	
1,2-Dibromo-3-Chloropropane	ND	4.5	
1,2,4-Trichlorobenzene	ND	4.5	
Hexachlorobutadiene	ND	4.5	
Naphthalene	ND	4.5	
1,2,3-Trichlorobenzene	ND	4.5	

Surrogate	%REC	Limits
Dibromofluoromethane	100	78-134
1,2-Dichloroethane-d4	95	80-138
Toluene-d8	99	80-120
Bromofluorobenzene	103	78-123

Purgeable Organics by GC/MS					
Lab #:	274186	Location:	Commercial BLD - Alameda		
Client:	ODIC Environmental & Energy	Prep:	EPA 5030B		
Project#:	STANDARD	Analysis:	EPA 8260B		
Field ID:	SB-1 @ 9'	Diln Fac:	0.9690		
Lab ID:	274186-018	Batch#:	232113		
Matrix:	Soil	Sampled:	02/12/16		
Units:	ug/Kg	Received:	02/12/16		
Basis:	as received	Analyzed:	02/16/16		

Analyte	Result	RL
Freon 12	ND	9.7
tert-Butyl Alcohol (TBA)	ND	97
Chloromethane	ND	9.7
Isopropyl Ether (DIPE)	ND	4.8
Vinyl Chloride	ND	9.7
Bromomethane	ND	9.7
Ethyl tert-Butyl Ether (ETBE)	ND	4.8
Chloroethane	ND	9.7
Methyl tert-Amyl Ether (TAME)	ND	4.8
Trichlorofluoromethane	ND	4.8
Acetone	ND	19
Freon 113	ND	4.8
1,1-Dichloroethene	ND	4.8
Methylene Chloride	ND	19
Carbon Disulfide	ND	4.8
MTBE	ND	4.8
trans-1,2-Dichloroethene	ND	4.8
Vinyl Acetate	ND	48
1,1-Dichloroethane	ND	4.8
2-Butanone	ND	9.7
cis-1,2-Dichloroethene	ND	4.8
2,2-Dichloropropane	ND	4.8
Chloroform	ND	4.8
Bromochloromethane	ND	4.8
1,1,1-Trichloroethane	ND	4.8
1,1-Dichloropropene	ND	4.8
Carbon Tetrachloride	ND	4.8
1,2-Dichloroethane	ND	4.8
Benzene	ND	4.8
Trichloroethene	ND	4.8
1,2-Dichloropropane	ND	4.8
Bromodichloromethane	ND	4.8
Dibromomethane	ND	4.8
4-Methyl-2-Pentanone	ND	9.7
cis-1,3-Dichloropropene	ND	4.8
Toluene	ND	4.8
trans-1,3-Dichloropropene	ND	4.8 4.8
1,1,2-Trichloroethane	ND ND	9.7
2-Hexanone 1,3-Dichloropropane	ND ND	4.8
Tetrachloroethene	ND ND	4.8
Dibromochloromethane	ND ND	4.8
1,2-Dibromoethane	ND ND	4.8
Chlorobenzene	ND ND	4.8
1,1,1,2-Tetrachloroethane	ND ND	4.8
Ethylbenzene	ND ND	4.8
m,p-Xylenes	ND ND	4.8
o-Xylene	ND ND	4.8
Styrene	ND ND	4.8
Bromoform	ND ND	4.8
Isopropylbenzene	ND ND	4.8
1,1,2,2-Tetrachloroethane	ND ND	4.8
1,2,3-Trichloropropane	ND ND	4.8
Propylbenzene	ND ND	4.8
1 1 0 b \ 1 10 c 11 2 c 11 c	עואד	T.U

Purgeable Organics by GC/MS					
Lab #:	274186	Location:	Commercial BLD - Alameda		
Client:	ODIC Environmental & Energy	Prep:	EPA 5030B		
Project#:	STANDARD	Analysis:	EPA 8260B		
Field ID:	SB-1 @ 9'	Diln Fac:	0.9690		
Lab ID:	274186-018	Batch#:	232113		
Matrix:	Soil	Sampled:	02/12/16		
Units:	uq/Kq	Received:	02/12/16		
Basis:	as received	Analyzed:	02/16/16		

Analyte	Result	RL	
Bromobenzene	ND	4.8	
1,3,5-Trimethylbenzene	ND	4.8	
2-Chlorotoluene	ND	4.8	
4-Chlorotoluene	ND	4.8	
tert-Butylbenzene	ND	4.8	
1,2,4-Trimethylbenzene	ND	4.8	
sec-Butylbenzene	ND	4.8	
para-Isopropyl Toluene	ND	4.8	
1,3-Dichlorobenzene	ND	4.8	
1,4-Dichlorobenzene	ND	4.8	
n-Butylbenzene	ND	4.8	
1,2-Dichlorobenzene	ND	4.8	
1,2-Dibromo-3-Chloropropane	ND	4.8	
1,2,4-Trichlorobenzene	ND	4.8	
Hexachlorobutadiene	ND	4.8	
Naphthalene	ND	4.8	
1,2,3-Trichlorobenzene	ND	4.8	

Surrogate	%REC	Limits	
Dibromofluoromethane	101	78-134	
1,2-Dichloroethane-d4	94	80-138	
Toluene-d8	99	80-120	
Bromofluorobenzene	107	78-123	

Purgeable Organics by GC/MS					
Lab #:	274186	Location:	Commercial BLD - Alameda		
Client:	ODIC Environmental & Energy	Prep:	EPA 5030B		
Project#:	STANDARD	Analysis:	EPA 8260B		
Field ID:	SB-2 @ 9'	Diln Fac:	0.9311		
Lab ID:	274186-020	Batch#:	232113		
Matrix:	Soil	Sampled:	02/12/16		
Units:	ug/Kg	Received:	02/12/16		
Basis:	as received	Analyzed:	02/16/16		

Analyte	Result	RL
Freon 12	ND	9.3
tert-Butyl Alcohol (TBA)	ND	93
Chloromethane	ND	9.3
Isopropyl Ether (DIPE)	ND	4.7
Vinyl Chloride	ND	9.3
Bromomethane	ND	9.3
Ethyl tert-Butyl Ether (ETBE)	ND	4.7
Chloroethane	ND	9.3
Methyl tert-Amyl Ether (TAME)	ND	4.7
Trichlorofluoromethane	ND	4.7
Acetone	ND	19
Freon 113	ND	4.7
1,1-Dichloroethene	ND	4.7
Methylene Chloride	ND	19
Carbon Disulfide	ND	4.7
MTBE	ND	4.7
trans-1,2-Dichloroethene	ND	4.7
Vinyl Acetate	ND	47
1,1-Dichloroethane	ND	4.7
2-Butanone	ND	9.3
cis-1,2-Dichloroethene	ND	4.7
2,2-Dichloropropane	ND	4.7
Chloroform	ND	4.7
Bromochloromethane	ND	4.7
1,1,1-Trichloroethane	ND	4.7
1,1-Dichloropropene	ND	4.7
Carbon Tetrachloride	ND	4.7
1,2-Dichloroethane	ND	4.7
Benzene	ND	4.7
Trichloroethene	ND	4.7
1,2-Dichloropropane	ND	4.7
Bromodichloromethane	ND	4.7
Dibromomethane	ND	4.7
4-Methyl-2-Pentanone	ND	9.3
cis-1,3-Dichloropropene	ND	4.7
Toluene	ND	4.7 4.7
trans-1,3-Dichloropropene	ND	4.7
1,1,2-Trichloroethane	ND ND	9.3
2-Hexanone 1,3-Dichloropropane	ND ND	4.7
Tetrachloroethene	ND ND	4.7
Dibromochloromethane	ND ND	4.7
1,2-Dibromoethane	ND ND	4.7
Chlorobenzene	ND ND	4.7
1,1,1,2-Tetrachloroethane	ND ND	4.7
Ethylbenzene	ND ND	4.7
m,p-Xylenes	ND ND	4.7
o-Xylene	ND ND	4.7
Styrene	ND ND	4.7
Bromoform	ND ND	4.7
Isopropylbenzene	ND ND	4.7
1,1,2,2-Tetrachloroethane	ND ND	4.7
1,2,3-Trichloropropane	ND ND	4.7
Propylbenzene	ND ND	4.7
1 1 0 b 3 1 m c 11 m c 11 c	עווד	ゴ・ /

Purgeable Organics by GC/MS					
Lab #:	274186	Location:	Commercial BLD - Alameda		
Client:	ODIC Environmental & Energy	Prep:	EPA 5030B		
Project#:	STANDARD	Analysis:	EPA 8260B		
Field ID:	SB-2 @ 9'	Diln Fac:	0.9311		
Lab ID:	274186-020	Batch#:	232113		
Matrix:	Soil	Sampled:	02/12/16		
Units:	ug/Kg	Received:	02/12/16		
Basis:	as received	Analyzed:	02/16/16		

Analyte	Result	RL	
Bromobenzene	ND	4.7	
1,3,5-Trimethylbenzene	ND	4.7	
2-Chlorotoluene	ND	4.7	
4-Chlorotoluene	ND	4.7	
tert-Butylbenzene	ND	4.7	
1,2,4-Trimethylbenzene	ND	4.7	
sec-Butylbenzene	ND	4.7	
para-Isopropyl Toluene	ND	4.7	
1,3-Dichlorobenzene	ND	4.7	
1,4-Dichlorobenzene	ND	4.7	
n-Butylbenzene	ND	4.7	
1,2-Dichlorobenzene	ND	4.7	
1,2-Dibromo-3-Chloropropane	ND	4.7	
1,2,4-Trichlorobenzene	ND	4.7	
Hexachlorobutadiene	ND	4.7	
Naphthalene	ND	4.7	
1,2,3-Trichlorobenzene	ND	4.7	

Surrogate	%REC	Limits	
Dibromofluoromethane	100	78-134	
1,2-Dichloroethane-d4	96	80-138	
Toluene-d8	98	80-120	
Bromofluorobenzene	108	78-123	

Purgeable Organics by GC/MS					
Lab #:	274186	Location:	Commercial BLD - Alameda		
Client:	ODIC Environmental & Energy	Prep:	EPA 5030B		
Project#:	STANDARD	Analysis:	EPA 8260B		
Field ID:	SB-3 @ 9'	Diln Fac:	0.9294		
Lab ID:	274186-022	Batch#:	232113		
Matrix:	Soil	Sampled:	02/12/16		
Units:	ug/Kg	Received:	02/12/16		
Basis:	as received	Analyzed:	02/16/16		

Analyte	Result	RL
Freon 12	ND	9.3
tert-Butyl Alcohol (TBA)	ND	93
Chloromethane	ND	9.3
Isopropyl Ether (DIPE)	ND	4.6
Vinyl Chloride	ND	9.3
Bromomethane	ND	9.3
Ethyl tert-Butyl Ether (ETBE)	ND	4.6
Chloroethane	ND	9.3
Methyl tert-Amyl Ether (TAME)	ND	4.6
Trichlorofluoromethane	ND	4.6
Acetone	ND	19
Freon 113	ND	4.6
1,1-Dichloroethene	ND	4.6
Methylene Chloride	ND ND	19
Carbon Disulfide	ND ND	4.6
MTBE	ND ND	4.6
trans-1,2-Dichloroethene	ND ND	4.6
	ND ND	46
Vinyl Acetate		4.6
1,1-Dichloroethane 2-Butanone	ND ND	9.3
		4.6
cis-1,2-Dichloroethene	ND	
2,2-Dichloropropane	ND	4.6
Chloroform	ND	4.6
Bromochloromethane	ND	4.6
1,1,1-Trichloroethane	ND	4.6
1,1-Dichloropropene	ND	4.6
Carbon Tetrachloride	ND	4.6
1,2-Dichloroethane	ND	4.6
Benzene	ND	4.6
Trichloroethene	ND	4.6
1,2-Dichloropropane	ND	4.6
Bromodichloromethane	ND	4.6
Dibromomethane	ND	4.6
4-Methyl-2-Pentanone	ND	9.3
cis-1,3-Dichloropropene	ND	4.6
Toluene	ND	4.6
trans-1,3-Dichloropropene	ND	4.6
1,1,2-Trichloroethane	ND	4.6
2-Hexanone	ND	9.3
1,3-Dichloropropane	ND	4.6
Tetrachloroethene	ND	4.6
Dibromochloromethane	ND	4.6
1,2-Dibromoethane	ND	4.6
Chlorobenzene	ND	4.6
1,1,1,2-Tetrachloroethane	ND	4.6
Ethylbenzene	ND	4.6
m,p-Xylenes	ND	4.6
o-Xylene	ND	4.6
Styrene	ND	4.6
Bromoform	ND	4.6
Isopropylbenzene	ND	4.6
1,1,2,2-Tetrachloroethane	ND	4.6
1,2,3-Trichloropropane	ND	4.6
Propylbenzene	ND	4.6

Purgeable Organics by GC/MS					
Lab #:	274186	Location:	Commercial BLD - Alameda		
Client:	ODIC Environmental & Energy	Prep:	EPA 5030B		
Project#:	STANDARD	Analysis:	EPA 8260B		
Field ID:	SB-3 @ 9'	Diln Fac:	0.9294		
Lab ID:	274186-022	Batch#:	232113		
Matrix:	Soil	Sampled:	02/12/16		
Units:	uq/Kq	Received:	02/12/16		
Basis:	as received	Analyzed:	02/16/16		

Analyte	Result	RL	
Bromobenzene	ND	4.6	
1,3,5-Trimethylbenzene	ND	4.6	
2-Chlorotoluene	ND	4.6	
4-Chlorotoluene	ND	4.6	
tert-Butylbenzene	ND	4.6	
1,2,4-Trimethylbenzene	ND	4.6	
sec-Butylbenzene	ND	4.6	
para-Isopropyl Toluene	ND	4.6	
1,3-Dichlorobenzene	ND	4.6	
1,4-Dichlorobenzene	ND	4.6	
n-Butylbenzene	ND	4.6	
1,2-Dichlorobenzene	ND	4.6	
1,2-Dibromo-3-Chloropropane	ND	4.6	
1,2,4-Trichlorobenzene	ND	4.6	
Hexachlorobutadiene	ND	4.6	
Naphthalene	ND	4.6	
1,2,3-Trichlorobenzene	ND	4.6	

Surrogate	%REC	Limits
Dibromofluoromethane	101	78-134
1,2-Dichloroethane-d4	94	80-138
Toluene-d8	100	80-120
Bromofluorobenzene	108	78-123

Purgeable Organics by GC/MS					
Lab #:	274186	Location:	Commercial BLD - Alameda		
Client:	ODIC Environmental & Energy	Prep:	EPA 5030B		
Project#:	STANDARD	Analysis:	EPA 8260B		
Field ID:	SB-4 @ 10'	Diln Fac:	0.9524		
Lab ID:	274186-024	Batch#:	232113		
Matrix:	Soil	Sampled:	02/12/16		
Units:	uq/Kq	Received:	02/12/16		
Basis:	as received	Analyzed:	02/16/16		

Analyte	Result	RL
Freon 12	ND	9.5
tert-Butyl Alcohol (TBA)	ND	95
Chloromethane	ND	9.5
Isopropyl Ether (DIPE)	ND	4.8
Vinyl Chloride	ND	9.5
Bromomethane	ND	9.5
Ethyl tert-Butyl Ether (ETBE)	ND	4.8
Chloroethane	ND	9.5
Methyl tert-Amyl Ether (TAME)	ND	4.8
Trichlorofluoromethane	ND	4.8
Acetone	ND	19
Freon 113	ND	4.8
1,1-Dichloroethene	ND	4.8
Methylene Chloride	ND	19
Carbon Disulfide	ND	4.8
MTBE	ND	4.8
trans-1,2-Dichloroethene	ND	4.8
Vinyl Acetate	ND	48
1,1-Dichloroethane	ND	4.8
2-Butanone	ND	9.5
cis-1,2-Dichloroethene	ND	4.8
2,2-Dichloropropane	ND	4.8
Chloroform	ND	4.8
Bromochloromethane	ND	4.8
1,1,1-Trichloroethane	ND	4.8
1,1-Dichloropropene	ND	4.8
Carbon Tetrachloride	ND	4.8
1,2-Dichloroethane	ND	4.8
Benzene	ND	4.8
Trichloroethene	ND	4.8
1,2-Dichloropropane	ND	4.8
Bromodichloromethane	ND	4.8
Dibromomethane	ND	4.8
4-Methyl-2-Pentanone	ND	9.5
cis-1,3-Dichloropropene	ND	4.8
Toluene	ND	4.8
trans-1,3-Dichloropropene	ND	4.8
1,1,2-Trichloroethane	ND	4.8
2-Hexanone	ND	9.5
1,3-Dichloropropane	ND	4.8
Tetrachloroethene	ND	4.8
Dibromochloromethane	ND	4.8
1,2-Dibromoethane	ND	4.8
Chlorobenzene	ND	4.8
1,1,1,2-Tetrachloroethane	ND	4.8
Ethylbenzene	ND ND	4.8 4.8
m,p-Xylenes		4.8
o-Xylene	ND	4.8
Styrene	ND	4.8
Bromoform	ND ND	4.8
Isopropylbenzene	ND ND	4.8
1,1,2,2-Tetrachloroethane 1,2,3-Trichloropropane	ND ND	4.8
	ND ND	4.8
Propylbenzene	ИП	4.0

Purgeable Organics by GC/MS					
Lab #:	274186	Location:	Commercial BLD - Alameda		
Client:	ODIC Environmental & Energy	Prep:	EPA 5030B		
Project#:	STANDARD	Analysis:	EPA 8260B		
Field ID:	SB-4 @ 10'	Diln Fac:	0.9524		
Lab ID:	274186-024	Batch#:	232113		
Matrix:	Soil	Sampled:	02/12/16		
Units:	ug/Kg	Received:	02/12/16		
Basis:	as received	Analyzed:	02/16/16		

Analyte	Result	RL	
Bromobenzene	ND	4.8	
1,3,5-Trimethylbenzene	ND	4.8	
2-Chlorotoluene	ND	4.8	
4-Chlorotoluene	ND	4.8	
tert-Butylbenzene	ND	4.8	
1,2,4-Trimethylbenzene	ND	4.8	
sec-Butylbenzene	ND	4.8	
para-Isopropyl Toluene	ND	4.8	
1,3-Dichlorobenzene	ND	4.8	
1,4-Dichlorobenzene	ND	4.8	
n-Butylbenzene	ND	4.8	
1,2-Dichlorobenzene	ND	4.8	
1,2-Dibromo-3-Chloropropane	ND	4.8	
1,2,4-Trichlorobenzene	ND	4.8	
Hexachlorobutadiene	ND	4.8	
Naphthalene	ND	4.8	
1,2,3-Trichlorobenzene	ND	4.8	

Surrogate	%REC	Limits	
Dibromofluoromethane	100	78-134	
1,2-Dichloroethane-d4	94	80-138	
Toluene-d8	99	80-120	
Bromofluorobenzene	108	78-123	

Purgeable Organics by GC/MS					
Lab #:	274186	Location:	Commercial BLD - Alameda		
Client:	ODIC Environmental & Energy	Prep:	EPA 5030B		
Project#:	STANDARD	Analysis:	EPA 8260B		
Type:	LCS	Diln Fac:	1.000		
Lab ID:	QC823428	Batch#:	232103		
Matrix:	Soil	Analyzed:	02/16/16		
Units:	ug/Kg				

Analyte	Spiked	Result	%REC	Limits
tert-Butyl Alcohol (TBA)	125.0	123.8	99	49-131
Isopropyl Ether (DIPE)	25.00	23.23	93	54-129
Ethyl tert-Butyl Ether (ETBE)	25.00	23.12	92	60-120
Methyl tert-Amyl Ether (TAME)	25.00	22.72	91	70-120
1,1-Dichloroethene	25.00	22.97	92	70-134
Benzene	25.00	22.89	92	80-123
Trichloroethene	25.00	22.86	91	80-128
Toluene	25.00	23.06	92	80-120
Chlorobenzene	25.00	24.00	96	80-123

Surrogate	%REC	Limits	
Dibromofluoromethane	102	78-134	
1,2-Dichloroethane-d4	95	80-138	
Toluene-d8	98	80-120	
Bromofluorobenzene	96	78-123	

Page 1 of 1 19.1

Purgeable Organics by GC/MS						
Lab #: Client: Project#:	Client: ODIC Environmental & Energy Prep: EPA 5030B					
Type: Lab ID: Matrix: Units:	BLANK QC823429 Soil ug/Kg	Diln Fac: Batch#: Analyzed:	1.000 232103 02/16/16			

Analyte	Result	RL
Freon 12	ND	10
tert-Butyl Alcohol (TBA)	ND	100
Chloromethane	ND	10
Isopropyl Ether (DIPE)	ND	5.0
Vinyl Chloride	ND	10
Bromomethane	ND	10
Ethyl tert-Butyl Ether (ETBE)	ND	5.0
Chloroethane	ND	10
Methyl tert-Amyl Ether (TAME)	ND	5.0
Trichlorofluoromethane	ND	5.0
Acetone	ND	20
Freon 113	ND	5.0
1,1-Dichloroethene	ND	5.0
Methylene Chloride	ND	20
Carbon Disulfide	ND	5.0
MTBE	ND	5.0
trans-1,2-Dichloroethene	ND	5.0
Vinyl Acetate	ND	50
1,1-Dichloroethane	ND	5.0
2-Butanone	ND	10
cis-1,2-Dichloroethene	ND	5.0
2,2-Dichloropropane	ND	5.0
Chloroform	ND	5.0
Bromochloromethane	ND	5.0
1,1,1-Trichloroethane	ND	5.0
1,1-Dichloropropene	ND	5.0
Carbon Tetrachloride	ND	5.0
1,2-Dichloroethane	ND	5.0
Benzene	ND	5.0
Trichloroethene	ND	5.0
1,2-Dichloropropane	ND	5.0
Bromodichloromethane	ND	5.0
Dibromomethane	ND	5.0
4-Methyl-2-Pentanone	ND	10
cis-1,3-Dichloropropene	ND	5.0
Toluene	ND	5.0
trans-1,3-Dichloropropene	ND	5.0
1,1,2-Trichloroethane	ND	5.0
2-Hexanone	ND	10
1,3-Dichloropropane	ND	5.0
Tetrachloroethene	ND	5.0
Dibromochloromethane	ND	5.0
1,2-Dibromoethane	ND	5.0
Chlorobenzene	ND	5.0
1,1,1,2-Tetrachloroethane	ND	5.0
Ethylbenzene	ND	5.0
m,p-Xylenes	ND	5.0 5.0
o-Xylene	ND	
Styrene	ND	5.0
Bromoform	ND	5.0
Isopropylbenzene	ND	5.0
1,1,2,2-Tetrachloroethane	ND	5.0
1,2,3-Trichloropropane	ND	5.0
Propylbenzene	ND	5.0

ND= Not Detected RL= Reporting Limit Page 1 of 2

Purgeable Organics by GC/MS				
Lab #: Client: Project#:	274186 ODIC Environmental & Energy STANDARD	Location: Prep: Analysis:	Commercial BLD - Alameda EPA 5030B EPA 8260B	
Type: Lab ID: Matrix: Units:	BLANK QC823429 Soil ug/Kg	Diln Fac: Batch#: Analyzed:	1.000 232103 02/16/16	

Analyte	Result	RL	
Bromobenzene	ND	5.0	
1,3,5-Trimethylbenzene	ND	5.0	
2-Chlorotoluene	ND	5.0	
4-Chlorotoluene	ND	5.0	
tert-Butylbenzene	ND	5.0	
1,2,4-Trimethylbenzene	ND	5.0	
sec-Butylbenzene	ND	5.0	
para-Isopropyl Toluene	ND	5.0	
1,3-Dichlorobenzene	ND	5.0	
1,4-Dichlorobenzene	ND	5.0	
n-Butylbenzene	ND	5.0	
1,2-Dichlorobenzene	ND	5.0	
1,2-Dibromo-3-Chloropropane	ND	5.0	
1,2,4-Trichlorobenzene	ND	5.0	
Hexachlorobutadiene	ND	5.0	
Naphthalene	ND	5.0	
1,2,3-Trichlorobenzene	ND	5.0	

Surrogate	%REC	Limits	
Dibromofluoromethane	104	78-134	
1,2-Dichloroethane-d4	95	80-138	
Toluene-d8	97	80-120	
Bromofluorobenzene	97	78-123	

ND= Not Detected RL= Reporting Limit Page 2 of 2

Purgeable Organics by GC/MS				
Lab #:	274186	Location:	Commercial BLD - Alameda	
Client:	ODIC Environmental & Energy	Prep:	EPA 5030B	
Project#:	STANDARD	Analysis:	EPA 8260B	
Type:	LCS	Diln Fac:	1.000	
Lab ID:	QC823463	Batch#:	232113	
Matrix:	Soil	Analyzed:	02/16/16	
Units:	ug/Kg			

Analyte	Spiked	Result	%REC	Limits
tert-Butyl Alcohol (TBA)	125.0	106.9	86	49-131
Isopropyl Ether (DIPE)	25.00	24.70	99	54-129
Ethyl tert-Butyl Ether (ETBE)	25.00	23.74	95	60-120
Methyl tert-Amyl Ether (TAME)	25.00	24.12	96	70-120
1,1-Dichloroethene	25.00	29.97	120	70-134
Benzene	25.00	25.63	103	80-123
Trichloroethene	25.00	27.30	109	80-128
Toluene	25.00	25.86	103	80-120
Chlorobenzene	25.00	27.21	109	80-123

Surrogate	%REC	Limits	
Dibromofluoromethane	96	78-134	
1,2-Dichloroethane-d4	92	80-138	
Toluene-d8	97	80-120	
Bromofluorobenzene	97	78-123	

Page 1 of 1 21.1

Purgeable Organics by GC/MS					
Lab #: Client: Project#:	274186 ODIC Environmental & Energy STANDARD	Location: Prep: Analysis:	Commercial BLD - Alameda EPA 5030B EPA 8260B		
Type: Lab ID: Matrix: Units:	BLANK QC823464 Soil ug/Kg	Diln Fac: Batch#: Analyzed:	1.000 232113 02/16/16		

Analyte	Result	RL
Freon 12	ND	10
tert-Butyl Alcohol (TBA)	ND	100
Chloromethane	ND	10
Isopropyl Ether (DIPE)	ND	5.0
Vinyl Chloride	ND	10
Bromomethane	ND	10
Ethyl tert-Butyl Ether (ETBE)	ND	5.0
Chloroethane	ND	10
Methyl tert-Amyl Ether (TAME)	ND	5.0
Trichlorofluoromethane	ND	5.0
Acetone	ND	20
Freon 113	ND	5.0
1,1-Dichloroethene	ND	5.0
Methylene Chloride	ND	20
Carbon Disulfide	ND	5.0
MTBE	ND	5.0
trans-1,2-Dichloroethene	ND	5.0
Vinyl Acetate	ND	50
1,1-Dichloroethane	ND	5.0
2-Butanone	ND	10
cis-1,2-Dichloroethene	ND	5.0
2,2-Dichloropropane	ND	5.0
Chloroform	ND	5.0
Bromochloromethane	ND	5.0
1,1,1-Trichloroethane	ND	5.0
1,1-Dichloropropene	ND	5.0
Carbon Tetrachloride	ND	5.0
1,2-Dichloroethane	ND	5.0
Benzene	ND	5.0
Trichloroethene	ND	5.0
1,2-Dichloropropane	ND	5.0
Bromodichloromethane	ND	5.0
Dibromomethane	ND	5.0
4-Methyl-2-Pentanone	ND	10
cis-1,3-Dichloropropene	ND	5.0
Toluene	ND	5.0
trans-1,3-Dichloropropene	ND	5.0
1,1,2-Trichloroethane	ND	5.0
2-Hexanone	ND	10
1,3-Dichloropropane	ND	5.0
Tetrachloroethene	ND	5.0
Dibromochloromethane	ND	5.0
1,2-Dibromoethane	ND	5.0
Chlorobenzene	ND	5.0
1,1,1,2-Tetrachloroethane	ND	5.0
Ethylbenzene	ND	5.0
m,p-Xylenes	ND	5.0 5.0
o-Xylene	ND	
Styrene	ND	5.0
Bromoform	ND	5.0
Isopropylbenzene	ND	5.0
1,1,2,2-Tetrachloroethane	ND	5.0
1,2,3-Trichloropropane	ND	5.0
Propylbenzene	ND	5.0

ND= Not Detected RL= Reporting Limit Page 1 of 2

Purgeable Organics by GC/MS				
Lab #: Client: Project#:	274186 ODIC Environmental & Energy STANDARD	Location: Prep: Analysis:	Commercial BLD - Alameda EPA 5030B EPA 8260B	
Type: Lab ID: Matrix: Units:	BLANK QC823464 Soil ug/Kg	Diln Fac: Batch#: Analyzed:	1.000 232113 02/16/16	

Analyte	Result	RL	
Bromobenzene	ND	5.0	
1,3,5-Trimethylbenzene	ND	5.0	
2-Chlorotoluene	ND	5.0	
4-Chlorotoluene	ND	5.0	
tert-Butylbenzene	ND	5.0	
1,2,4-Trimethylbenzene	ND	5.0	
sec-Butylbenzene	ND	5.0	
para-Isopropyl Toluene	ND	5.0	
1,3-Dichlorobenzene	ND	5.0	
1,4-Dichlorobenzene	ND	5.0	
n-Butylbenzene	ND	5.0	
1,2-Dichlorobenzene	ND	5.0	
1,2-Dibromo-3-Chloropropane	ND	5.0	
1,2,4-Trichlorobenzene	ND	5.0	
Hexachlorobutadiene	ND	5.0	
Naphthalene	ND	5.0	
1,2,3-Trichlorobenzene	ND	5.0	

Surrogate	%REC	Limits	
Dibromofluoromethane	100	78-134	
1,2-Dichloroethane-d4	94	80-138	
Toluene-d8	100	80-120	
Bromofluorobenzene	108	78-123	

ND= Not Detected RL= Reporting Limit Page 2 of 2

22.1

Purgeable Organics by GC/MS						
Lab #:	274186	Location:	Commercial BLD - Alameda			
Client:	ODIC Environmental & Energy	Prep:	EPA 5030B			
Project#:	STANDARD	Analysis:	EPA 8260B			
Field ID:	ZZZZZZZZZZ	Batch#:	232103			
MSS Lab ID:	274182-001	Sampled:	02/04/16			
Matrix:	Soil	Received:	02/12/16			
Units:	ug/Kg	Analyzed:	02/16/16			
Basis:	as received					

Type: Lab ID: MS QC823493 Diln Fac: 0.9785

Analyte	MSS Result	Spiked	Result	%REC	Limits
tert-Butyl Alcohol (TBA)	<4.503	244.6	227.0	93	44-120
Isopropyl Ether (DIPE)	<0.2506	48.92	44.06	90	46-120
Ethyl tert-Butyl Ether (ETBE)	<0.2810	48.92	45.74	93	48-120
Methyl tert-Amyl Ether (TAME)	<0.2245	48.92	42.05	86	52-120
1,1-Dichloroethene	<0.4487	48.92	51.86	106	56-133
Benzene	<0.3863	48.92	47.88	98	57-120
Trichloroethene	<0.3201	48.92	46.86	96	49-145
Toluene	<0.4450	48.92	43.65	89	51-120
Chlorobenzene	<0.4736	48.92	46.91	96	47-120

Surrogate	%REC	Limits
Dibromofluoromethane	108	78-134
1,2-Dichloroethane-d4	97	80-138
Toluene-d8	93	80-120
Bromofluorobenzene	98	78-123

MSD QC823494 Diln Fac: 0.9488

Type: Lab ID:

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
tert-Butyl Alcohol (TBA)	237.2	238.6	101	44-120	8	46
Isopropyl Ether (DIPE)	47.44	42.27	89	46-120	1	41
Ethyl tert-Butyl Ether (ETBE)	47.44	43.89	93	48-120	1	40
Methyl tert-Amyl Ether (TAME)	47.44	40.74	86	52-120	0	36
1,1-Dichloroethene	47.44	49.06	103	56-133	2	46
Benzene	47.44	44.23	93	57-120	5	44
Trichloroethene	47.44	43.04	91	49-145	5	46
Toluene	47.44	41.39	87	51-120	2	47
Chlorobenzene	47.44	42.56	90	47-120	7	50

Surrogate	%REC	Limits	
Dibromofluoromethane	109	78-134	
1,2-Dichloroethane-d4	98	80-138	
Toluene-d8	94	80-120	
Bromofluorobenzene	99	78-123	

Purgeable Organics by GC/MS						
Lab #: Client:	274186 ODIC Environmental & Energy	Location: Prep:	Commercial BLD - Alameda EPA 5030B			
Project#:	STANDARD	Analysis:	EPA 8260B			
Field ID: MSS Lab ID: Matrix: Units:	SB-6 @ 10' 274186-011 Soil ug/Kg	Batch#: Sampled: Received: Analyzed:	232113 02/12/16 02/12/16 02/16/16			
Basis:	as received					

Type: Lab ID: MS QC823546 Diln Fac: 0.9690

Analyte	MSS Result	Spiked	Result	%REC	Limits
tert-Butyl Alcohol (TBA)	<8.424	242.2	209.8	87	44-120
Isopropyl Ether (DIPE)	<0.5498	48.45	42.81	88	46-120
Ethyl tert-Butyl Ether (ETBE)	<0.5536	48.45	42.00	87	48-120
Methyl tert-Amyl Ether (TAME)	<0.4722	48.45	43.66	90	52-120
1,1-Dichloroethene	<0.5824	48.45	57.96	120	56-133
Benzene	<0.6785	48.45	45.76	94	57-120
Trichloroethene	<0.7067	48.45	50.13	103	49-145
Toluene	< 0.7432	48.45	45.11	93	51-120
Chlorobenzene	<0.6093	48.45	46.49	96	47-120

Surrogate	%REC	Limits
Dibromofluoromethane	97	78-134
1,2-Dichloroethane-d4	94	80-138
Toluene-d8	95	80-120
Bromofluorobenzene	96	78-123

Type: Lab ID: MSD QC823547 Diln Fac: 0.9960

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
tert-Butyl Alcohol (TBA)	249.0	231.9	93	44-120	7	46
Isopropyl Ether (DIPE)	49.80	48.52	97	46-120	10	41
Ethyl tert-Butyl Ether (ETBE)	49.80	47.13	95	48-120	9	40
Methyl tert-Amyl Ether (TAME)	49.80	49.76	100	52-120	10	36
1,1-Dichloroethene	49.80	63.78	128	56-133	7	46
Benzene	49.80	50.68	102	57-120	7	44
Trichloroethene	49.80	55.36	111	49-145	7	46
Toluene	49.80	49.71	100	51-120	7	47
Chlorobenzene	49.80	52.76	106	47-120	10	50

Surrogate	%REC	Limits	
Dibromofluoromethane	97	78-134	
1,2-Dichloroethane-d4	95	80-138	
Toluene-d8	95	80-120	
Bromofluorobenzene	95	78-123	

Purgeable Organics by GC/MS					
Lab #: Client: Project#:	274186 ODIC Environmental & Energy STANDARD	Location: Prep: Analysis:	Commercial BLD - Alameda EPA 5030B EPA 8260B		
Matrix: Units: Diln Fac:	Soil ug/Kg 1.000	Batch#: Analyzed:	232159 02/17/16		

Type: BS Lab ID: QC823666

Analyte	Spiked	Result	%REC	Limits
tert-Butyl Alcohol (TBA)	125.0	100.3	80	49-131
Isopropyl Ether (DIPE)	25.00	21.45	86	54-129
Ethyl tert-Butyl Ether (ETBE)	25.00	22.17	89	60-120
Methyl tert-Amyl Ether (TAME)	25.00	20.41	82	70-120
1,1-Dichloroethene	25.00	26.69	107	70-134
Benzene	25.00	23.28	93	80-123
Trichloroethene	25.00	23.83	95	80-128
Toluene	25.00	24.00	96	80-120
Chlorobenzene	25.00	24.09	96	80-123

Surrogate	%REC	Limits
Dibromofluoromethane	112	78-134
1,2-Dichloroethane-d4	90	80-138
Toluene-d8	106	80-120
Bromofluorobenzene	99	78-123

Type: BSD Lab ID: QC823667

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
tert-Butyl Alcohol (TBA)	125.0	128.8	103	49-131	25	40
Isopropyl Ether (DIPE)	25.00	24.66	99	54-129	14	24
Ethyl tert-Butyl Ether (ETBE)	25.00	25.43	102	60-120	14	24
Methyl tert-Amyl Ether (TAME)	25.00	23.58	94	70-120	14	22
1,1-Dichloroethene	25.00	28.47	114	70-134	6	22
Benzene	25.00	25.46	102	80-123	9	21
Trichloroethene	25.00	25.29	101	80-128	6	23
Toluene	25.00	27.22	109	80-120	13	20
Chlorobenzene	25.00	25.98	104	80-123	8	20

Surrogate	%REC	Limits
Dibromofluoromethane	109	78-134
1,2-Dichloroethane-d4	88	80-138
Toluene-d8	108	80-120
Bromofluorobenzene	97	78-123

Purgeable Organics by GC/MS						
Lab #: Client: Project#:	274186 ODIC Environmental & Energy STANDARD	Location: Prep: Analysis:	Commercial BLD - Alameda EPA 5030B EPA 8260B			
Type: Lab ID: Matrix: Units:	BLANK QC823668 Soil ug/Kg	Diln Fac: Batch#: Analyzed:	1.000 232159 02/17/16			

Analyte	Result	RL
Freon 12	ND	10
tert-Butyl Alcohol (TBA)	ND	100
Chloromethane	ND	10
Isopropyl Ether (DIPE)	ND	5.0
Vinyl Chloride	ND	10
Bromomethane	ND	10
Ethyl tert-Butyl Ether (ETBE)	ND	5.0
Chloroethane	ND	10
Methyl tert-Amyl Ether (TAME)	ND	5.0
Trichlorofluoromethane	ND	5.0
Acetone	ND	20
Freon 113	ND	5.0
1,1-Dichloroethene	ND	5.0
Methylene Chloride	ND	20
Carbon Disulfide	ND	5.0
MTBE	ND	5.0
trans-1,2-Dichloroethene	ND	5.0
Vinyl Acetate	ND	50
1,1-Dichloroethane	ND	5.0
2-Butanone	ND	10
cis-1,2-Dichloroethene	ND	5.0
2,2-Dichloropropane	ND	5.0
Chloroform	ND	5.0
Bromochloromethane	ND	5.0
1,1,1-Trichloroethane	ND	5.0
1,1-Dichloropropene	ND	5.0
Carbon Tetrachloride	ND	5.0
1,2-Dichloroethane	ND	5.0
Benzene	ND	5.0
Trichloroethene	ND	5.0
1,2-Dichloropropane	ND	5.0
Bromodichloromethane	ND	5.0
Dibromomethane	ND	5.0
4-Methyl-2-Pentanone	ND	10
cis-1,3-Dichloropropene	ND	5.0
Toluene	ND	5.0
trans-1,3-Dichloropropene	ND	5.0
1,1,2-Trichloroethane	ND	5.0
2-Hexanone	ND	10
1,3-Dichloropropane	ND	5.0
Tetrachloroethene	ND	5.0
Dibromochloromethane	ND	5.0
1,2-Dibromoethane	ND	5.0
Chlorobenzene	ND	5.0
1,1,1,2-Tetrachloroethane	ND	5.0
Ethylbenzene	ND	5.0
m,p-Xylenes	ND	5.0
o-Xylene	ND	5.0 5.0
Styrene	ND	
Bromoform	ND	5.0 5.0
Isopropylbenzene	ND	
1,1,2,2-Tetrachloroethane	ND ND	5.0 5.0
1,2,3-Trichloropropane		
Propylbenzene	ND	5.0

ND= Not Detected RL= Reporting Limit Page 1 of 2

Purgeable Organics by GC/MS					
Lab #: Client: Project#:	274186 ODIC Environmental & Energy STANDARD	Location: Prep: Analysis:	Commercial BLD - Alameda EPA 5030B EPA 8260B		
Type: Lab ID: Matrix: Units:	BLANK QC823668 Soil ug/Kg	Diln Fac: Batch#: Analyzed:	1.000 232159 02/17/16		

Analyte	Result	RL	
Bromobenzene	ND	5.0	
1,3,5-Trimethylbenzene	ND	5.0	
2-Chlorotoluene	ND	5.0	
4-Chlorotoluene	ND	5.0	
tert-Butylbenzene	ND	5.0	
1,2,4-Trimethylbenzene	ND	5.0	
sec-Butylbenzene	ND	5.0	
para-Isopropyl Toluene	ND	5.0	
1,3-Dichlorobenzene	ND	5.0	
1,4-Dichlorobenzene	ND	5.0	
n-Butylbenzene	ND	5.0	
1,2-Dichlorobenzene	ND	5.0	
1,2-Dibromo-3-Chloropropane	ND	5.0	
1,2,4-Trichlorobenzene	ND	5.0	
Hexachlorobutadiene	ND	5.0	
Naphthalene	ND	5.0	
1,2,3-Trichlorobenzene	ND	5.0	

Surrogate	%REC	Limits
Dibromofluoromethane	113	78-134
1,2-Dichloroethane-d4	86	80-138
Toluene-d8	106	80-120
Bromofluorobenzene	107	78-123

ND= Not Detected RL= Reporting Limit Page 2 of 2

	California T	itle 22 Meta	als
Lab #:	274186	Location:	Commercial BLD - Alameda
Client:	ODIC Environmental & Energy	Prep:	METHOD
Project#:	STANDARD		
Field ID:	SB-1	Diln Fac:	1.000
Lab ID:	274186-001	Sampled:	02/12/16
Matrix:	Water	Received:	02/12/16
Units:	ug/L		

Analyte	Result	RL	Batch# Prepared	Analyzed	Analysis
Antimony	210	50	232137 02/16/16	02/21/16	EPA 6010B
Arsenic	96	25	232137 02/16/16	02/21/16	EPA 6010B
Barium	7,500	25	232137 02/16/16	02/21/16	EPA 6010B
Beryllium	26	10	232137 02/16/16	02/21/16	EPA 6010B
Cadmium	57	25	232137 02/16/16	02/21/16	EPA 6010B
Chromium	3,800	25	232137 02/16/16	02/21/16	EPA 6010B
Cobalt	650	25	232137 02/16/16	02/22/16	EPA 6010B
Copper	680	25	232137 02/16/16	02/21/16	EPA 6010B
Lead	280	25	232137 02/16/16	02/21/16	EPA 6010B
Mercury	0.73	0.50	232251 02/19/16	02/19/16	EPA 7470A
Molybdenum	ND	25	232137 02/16/16	02/21/16	EPA 6010B
Nickel	4,400	25	232137 02/16/16	02/21/16	EPA 6010B
Selenium	ND	50	232137 02/16/16	02/21/16	EPA 6010B
Silver	ND	25	232137 02/16/16	02/21/16	EPA 6010B
Thallium	ND	50	232137 02/16/16	02/21/16	EPA 6010B
Vanadium	2,300	25	232137 02/16/16	02/21/16	EPA 6010B
Zinc	2,600	100	232137 02/16/16	02/21/16	EPA 6010B

ND= Not Detected RL= Reporting Limit

Page 1 of 1

	California 1	itle 22 Meta	als
Lab #:	274186	Location:	Commercial BLD - Alameda
Client:	ODIC Environmental & Energy	Prep:	METHOD
Project#:	STANDARD		
Field ID:	SB-2	Diln Fac:	1.000
Lab ID:	274186-002	Sampled:	02/12/16
Matrix:	Water	Received:	02/12/16
Units:	ug/L		

Analyte	Result	RL	Batch# Prepared	d Analyzed Analysis
Antimony	140	50	232137 02/16/1	5 02/23/16 EPA 6010B
Arsenic	160	25	232137 02/16/1	5 02/23/16 EPA 6010B
Barium	5,400	25	232137 02/16/1	5 02/23/16 EPA 6010B
Beryllium	17	10	232137 02/16/1	5 02/23/16 EPA 6010B
Cadmium	ND	25	232137 02/16/1	5 02/23/16 EPA 6010B
Chromium	2,800	25	232137 02/16/1	5 02/23/16 EPA 6010B
Cobalt	490	25	232137 02/16/1	5 02/23/16 EPA 6010B
Copper	550	25	232137 02/16/1	5 02/23/16 EPA 6010B
Lead	360	25	232137 02/16/1	5 02/23/16 EPA 6010B
Mercury	1.1	0.50	232251 02/19/1	5 02/19/16 EPA 7470A
Molybdenum	ND	25	232137 02/16/1	5 02/23/16 EPA 6010B
Nickel	3,100	25	232137 02/16/1	5 02/23/16 EPA 6010B
Selenium	ND	50	232137 02/16/1	6 02/22/16 EPA 6010B
Silver	ND	25	232137 02/16/1	5 02/23/16 EPA 6010B
Thallium	ND	50	232137 02/16/1	6 02/23/16 EPA 6010B
Vanadium	1,700	25	232137 02/16/1	6 02/23/16 EPA 6010B
Zinc	1,800	100	232137 02/16/1	5 02/23/16 EPA 6010B

ND= Not Detected RL= Reporting Limit

Page 1 of 1

37.2

California Title 22 Metals				
Lab #:	274186	Location:	Commercial BLD - Alameda	
Client:	ODIC Environmental & Energy	Prep:	METHOD	
Project#:	STANDARD			
Field ID:	SB-4	Diln Fac:	1.000	
Lab ID:	274186-004	Sampled:	02/12/16	
Matrix:	Water	Received:	02/12/16	
Units:	ug/L			

Analyte	Result	RL	Batch# Prepared	Analyzed	Analysis
Antimony	95	50	232137 02/16/16	02/23/16	EPA 6010B
Arsenic	88	25	232137 02/16/16	02/23/16	EPA 6010B
Barium	3,400	25	232137 02/16/16	02/23/16	EPA 6010B
Beryllium	ND	10	232137 02/16/16	02/23/16	EPA 6010B
Cadmium	ND	25	232137 02/16/16	02/23/16	EPA 6010B
Chromium	1,900	25	232137 02/16/16	02/23/16	EPA 6010B
Cobalt	310	25	232137 02/16/16	02/23/16	EPA 6010B
Copper	410	25	232137 02/16/16	02/23/16	EPA 6010B
Lead	130	25	232137 02/16/16	02/23/16	EPA 6010B
Mercury	0.51	0.50	232251 02/19/16	02/19/16	EPA 7470A
Molybdenum	70	25	232137 02/16/16	02/23/16	EPA 6010B
Nickel	2,000	25	232137 02/16/16	02/23/16	EPA 6010B
Selenium	ND	50	232137 02/16/16	02/23/16	EPA 6010B
Silver	ND	25	232137 02/16/16	02/23/16	EPA 6010B
Thallium	ND	50	232137 02/16/16	02/23/16	EPA 6010B
Vanadium	1,200	25	232137 02/16/16	02/23/16	EPA 6010B
Zinc	1,200	100	232137 02/16/16	02/23/16	EPA 6010B

ND= Not Detected RL= Reporting Limit

Page 1 of 1

California Title 22 Metals				
Lab #:	274186	Location:	Commercial BLD - Alameda	
Client:	ODIC Environmental & Energy	Prep:	METHOD	
Project#:	STANDARD	Analysis:	EPA 6010B	
Type:	BLANK	Diln Fac:	1.000	
Lab ID:	QC823567	Batch#:	232137	
Matrix:	Water	Prepared:	02/16/16	
Units:	ug/L			

Analyte	Result	RL	Analyzed	
Antimony	ND	10	02/21/16	
Arsenic	ND	5.0	02/18/16	
Barium	ND	5.0	02/18/16	
Beryllium	ND	2.0	02/18/16	
Cadmium	ND	5.0	02/18/16	
Chromium	6.1 b	5.0	02/18/16	
Cobalt	ND	5.0	02/18/16	
Copper	ND	5.0	02/18/16	
Lead	ND	5.0	02/18/16	
Molybdenum	ND	5.0	02/21/16	
Nickel	ND	5.0	02/18/16	
Selenium	ND	10	02/18/16	
Silver	ND	5.0	02/18/16	
Thallium	ND	10	02/18/16	
Vanadium	ND	5.0	02/18/16	
Zinc	ND	20	02/18/16	

b= See narrative

ND= Not Detected

RL= Reporting Limit

Page 1 of 1

California Title 22 Metals				
Lab #:	274186	Location:	Commercial BLD - Alameda	
Client:	ODIC Environmental & Energy	Prep:	METHOD	
Project#:	STANDARD	Analysis:	EPA 6010B	
Matrix:	Water	Batch#:	232137	
Units:	ug/L	Prepared:	02/16/16	
Diln Fac:	1.000	Analyzed:	02/17/16	

Type: BS Lab ID: QC823568

Analyte	Spiked	Result	%REC	Limits
Antimony	100.0	96.99	97	79-120
Arsenic	100.0	96.82	97	80-120
Barium	100.0	102.9	103	80-120
Beryllium	100.0	104.1	104	80-120
Cadmium	100.0	100.9	101	80-120
Chromium	100.0	111.6	112	80-120
Cobalt	100.0	100.1	100	80-120
Copper	100.0	99.45	99	80-120
Lead	100.0	95.92	96	80-120
Molybdenum	100.0	99.81	100	80-120
Nickel	100.0	102.5	103	80-120
Selenium	100.0	98.22	98	80-120
Silver	100.0	99.25	99	77-120
Thallium	50.00	55.18	110	80-121
Vanadium	100.0	103.9	104	80-120
Zinc	100.0	102.9	103	80-120

Type: BSD Lab ID: QC823569

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Antimony	100.0	97.52	98	79-120	1	20
Arsenic	100.0	96.79	97	80-120	0	20
Barium	100.0	103.1	103	80-120	0	20
Beryllium	100.0	105.2	105	80-120	1	20
Cadmium	100.0	102.2	102	80-120	1	20
Chromium	100.0	112.7	113	80-120	1	20
Cobalt	100.0	101.4	101	80-120	1	20
Copper	100.0	100.3	100	80-120	1	20
Lead	100.0	96.39	96	80-120	0	20
Molybdenum	100.0	100.8	101	80-120	1	20
Nickel	100.0	104.2	104	80-120	2	20
Selenium	100.0	98.16	98	80-120	0	20
Silver	100.0	99.45	99	77-120	0	20
Thallium	50.00	56.78	114	80-121	3	20
Vanadium	100.0	104.3	104	80-120	0	20
Zinc	100.0	104.6	105	80-120	2	20

California Title 22 Metals				
Lab #:	274186	Location:	Commercial BLD - Alameda	
Client:	ODIC Environmental & Energy	Prep:	METHOD	
Project#:	STANDARD	Analysis:	EPA 6010B	
Field ID:	ZZZZZZZZZZ	Batch#:	232137	
MSS Lab ID:	274081-003	Sampled:	02/10/16	
Matrix:	Water	Received:	02/11/16	
Units:	ug/L	Prepared:	02/16/16	
Diln Fac:	1.000	Analyzed:	02/17/16	

Type: MS Lab ID: QC823570

Analyte	MSS Result	Spiked	Result	%REC	Limits
Antimony	<2.000	100.0	98.39	98	74-120
Arsenic	3.362	100.0	103.5	100	80-127
Barium	49.93	100.0	151.6	102	80-120
Beryllium	< 0.4000	100.0	106.9	107	80-120
Cadmium	<1.000	100.0	102.1	102	80-120
Chromium	20.48	100.0	124.7	104	80-120
Cobalt	<1.000	100.0	100.1	100	80-120
Copper	<1.452	100.0	104.1	104	80-120
Lead	<1.190	100.0	82.31	82	67-120
Molybdenum	7.261	100.0	109.5	102	80-120
Nickel	4.120	100.0	101.0	97	80-120
Selenium	6.757	100.0	109.3	103	73-132
Silver	2.632	100.0	105.6	103	67-120
Thallium	5.785	50.00	60.64	110	76-121
Vanadium	9.362	100.0	115.0	106	80-120
Zinc	77.18	100.0	177.5	100	80-122

Type: MSD Lab ID: QC823571

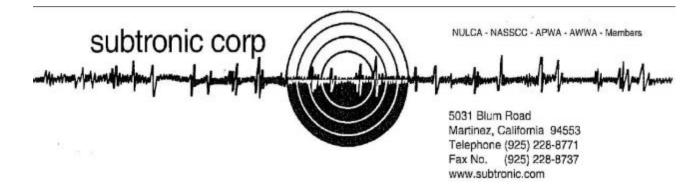
Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Antimony	100.0	95.84	96	74-120	3	24
Arsenic	100.0	102.3	99	80-127	1	25
Barium	100.0	149.4	99	80-120	1	20
Beryllium	100.0	105.4	105	80-120	1	20
Cadmium	100.0	100.3	100	80-120	2	20
Chromium	100.0	122.1	102	80-120	2	20
Cobalt	100.0	98.28	98	80-120	2	20
Copper	100.0	102.3	102	80-120	2	20
Lead	100.0	79.29	79	67-120	4	23
Molybdenum	100.0	107.9	101	80-120	2	20
Nickel	100.0	99.56	95	80-120	1	20
Selenium	100.0	109.8	103	73-132	0	30
Silver	100.0	104.9	102	67-120	1	22
Thallium	50.00	59.52	107	76-121	2	20
Vanadium	100.0	112.7	103	80-120	2	20
Zinc	100.0	179.1	102	80-122	1	20

California Title 22 Metals				
Lab #:	274186	Location:	Commercial BLD - Alameda	
Client:	ODIC Environmental & Energy	Prep:	METHOD	
Project#:	STANDARD	Analysis:	EPA 7470A	
Analyte:	Mercury	Diln Fac:	1.000	
Type:	BLANK	Batch#:	232251	
Lab ID:	QC824045	Prepared:	02/19/16	
Matrix:	Water	Analyzed:	02/19/16	
Units:	ug/L			

Result	RL	
ND	0.20	

ND= Not Detected RL= Reporting Limit Page 1 of 1

California Title 22 Metals							
Lab #:	274186	Location:	Commercial BLD - Alameda				
Client:	ODIC Environmental & Energy	Prep:	METHOD				
Project#:	STANDARD	Analysis:	EPA 7470A				
Analyte:	Mercury	Batch#:	232251				
Matrix:	Water	Prepared:	02/19/16				
Units:	ug/L	Analyzed:	02/19/16				
Diln Fac:	1.000						


Type	Lab ID	Spiked	Result	%REC	Limits	RPD	Lim
BS	QC824046	2.500	2.978	119	80-120		
BSD	QC824047	2.500	2.886	115	80-120	3	24

California Title 22 Metals							
Lab #:	274186	Location:	Commercial BLD - Alameda				
Client:	ODIC Environmental & Energy	Prep:	METHOD				
Project#:	STANDARD	Analysis:	EPA 7470A				
Analyte:	Mercury	Batch#:	232251				
Field ID:	ZZZZZZZZZZ	Sampled:	02/09/16				
MSS Lab ID:	274108-001	Received:	02/11/16				
Matrix:	Water	Prepared:	02/19/16				
Units:	ug/L	Analyzed:	02/19/16				
Diln Fac:	1.000						

Type	Lab ID	MSS Result	Spiked	Result	%REC	Limits	RPD	Lim
MS	QC824048	<0.02080	2.500	2.638	106	60-130		
MSD	QC824049		2.500	2.622	105	60-130	1	34

APPENDIX D GEOPHYSICAL SUBSURFACE INVESTIGATION REPORT

GEOPHYSICAL SUBSURFACE INVESTIGATION To Locate UNDERGROUND STORAGE TANK

Site: 2449 SANTA CLARA AVENUE, ALAMEDA CA

Sites and Objectives:

On February 9, 2016, Subtronic was asked to conduct a geophysical survey to determine if any underground storage tanks (USTs) were buried at 2449 Santa Clara Avenue, Alameda, California.

GEOPHYSICAL SURVEY FINDINGS

Site Description:

The site was formerly a gas station however now it consists of a single story office complex with a back parking lot. The whole lot is 120 feet by 50 feet, the parking lot 70 feet long by 50 feet wide.

Survey Methods:

The inside of the building was scanned using ground penetrating radar along linear traverses. Note theses scans were collected were there wasn't furniture in the way. Metal detectors could not be used due to the reinforced concrete. The back parking lot was scanned with both metal detectors (Schondstedt and the split box locator). Anomalous areas detected by the metal detectors were marked out and surveyed for a site sketch. Radar data in the parking lot was collected along traverses spaced 2 feet apart. The radar data was further analyzed in the office.

GEOPHYSICAL EQUIPMENT USED IN THIS SURVEY

The specialized equipment used at the site includes a TW-6 M-Scope, Schondstedt GA-72-CD, and the GSSI system 4000 ground penetrating radar (GPR) with a 400 MHz antenna.

TW-6 M-Scope

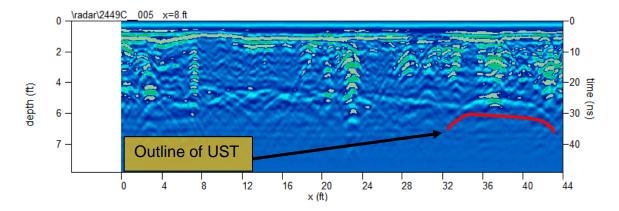
The Fisher TW-6 M-Scope is a split box inductive locater and metal detector mounted on a four-foot rod. The split box locater can detect metal lines "inductively". The M-Scope is also used to detect buried metallic objects such as manhole covers, underground storage tanks, etc... The limits of detection for a TW-6 M-SCOPE are approximately five feet in depth.

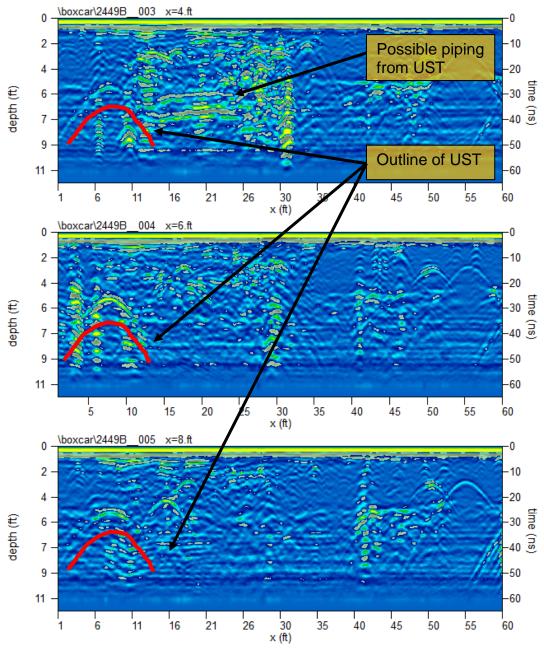
Schondstedt GA-72-CD

The Schondstedt is a hand held magnetic gradiometer which detects the magnetic field caused by ferromagnetic objects. The Schondstedt produces an audible signal when it detects a variation in the magnetic field strength between the two sensors 14 in apart. In an area of little magnetic debris it can detect metallic objects up to 10 feet deep.

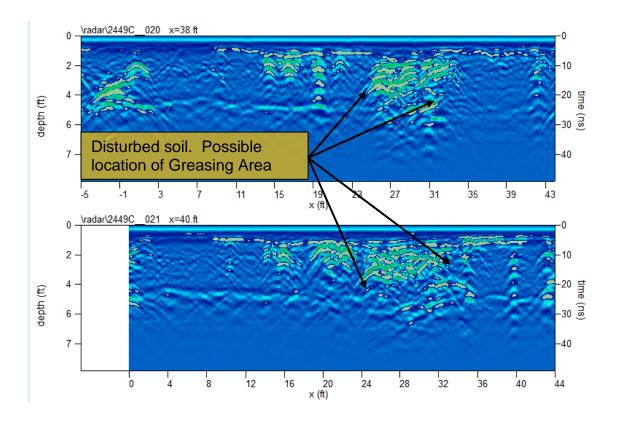
GSSI SIR-4000

A ground penetrating radar system graphically records subsurface structures. Both geological and man made structures are recorded by the introduction of a pulse of electromagnetic energy into the ground. Reflected pulses received by the antenna are then processed for measurable contrast in electrical properties. The result is a visual pseudo-cross-sectional profile.


Primary applications of the GPR are detecting UST's, foundations, buried drums, previously excavated areas and detecting metallic and non-metallic utilities.


The GPR depth penetration is severely limited by clay-rich soil. Radar waves can penetrate deeper in sandy and gravelly soils.

Survey Results


The radargrams collected inside the building did not show indications of an underground tank. Note that the radargrams showed strong echos from the rebar and ceiling make interpreting the scans indoors more difficult.

The results of the metal detection scan outdoors detected a broad deep metallic anomaly in the northwest corner of the parking lot and several shallow anomalies at the driveway entrance of the parking lot. Radar scans over the broad deep anomaly detected by the magnetic locator suggest that this anomaly is possibly a small waste oil tank buried approximately 4 ft 6 in deep.

From the radargrams shown below an anomalous area was identified with dimensions of 8 ft by 4 ft of radargrams. This area may be the location of the former greasing area.

Geophysical Survey Conclusions:

Based on the results of the magnetic locator and ground penetrating radar, it is interpreted that there is possibly a waste oil size UST located in the northwest corner of the parking lot (36 feet north of SW building corner and 10 east of the building wall). The object is approximately 6 feet long and about 4 feet wide, buried approximately 4 ½ feet deep. An area of disturbed soil which may be associated with the possible greasing area was found. This area is approximately 4 feet wide by 10 long. Lastly a small area of buried metal was found in the driveway.

A site sketch is included at the back page of this document. The sketch includes the locations of the possible UST, and degreaser area.

Limitations

The subsurface geology, object size and composition, burial depth, affect the size and shape of geophysical anomalies, which may impede their detection. Geophysical anomalies may not represent unique solutions. Apparently similar anomalies may be created by different subsurface phenomena.

The limits of discernment of this magnetic survey are the detection of objects within five feet to 10 feet of metal fences, buildings, vehicles and other identified metal objects.

Nione fry

Report Prepared By:

Pierre Armand, RGP 1021

