RECEIVED

By Alameda County Environmental Health 3:51 pm, Jul 12, 2016

Mr. Dilan Roe Alameda County Environmental Health 1131 Harbor Bay Parkway Alameda, CA 94502-6577

Re: **Data Gap Assessment Report** 1244 2nd Avenue Oakland, California

Dear Mr. Roe:

1244 2nd Avenue LLC, has retained Pangea Environmental Services, Inc. (Pangea) for environmental consulting matters at the project referenced above. Pangea is submitting the attached report on our behalf.

I declare, under penalty of perjury, that the information and/or recommendations contained in the attached report are true and correct to the best of my knowledge.

Sincerely,

Trent Moore 1244 2nd Avenue LLC

July 11, 2016

Trent Moore Managing Member 1244 2nd Avenue LLC 2655 Van Ness Avenue, Suite 2 San Francisco, California 94109

Re: **Data Gap Assessment Report** 1244 2nd Avenue Oakland, California 94606

Dear Mr. Moore:

On behalf of 1244 2nd Avenue LLC, Pangea Environmental Services, Inc. (Pangea) has prepared this *Data Gap Assessment Report* for the subject property. This report documents implementation of the *Data Gap Workplan* dated January 22, 2016 and *Revised Proposed Boring Locations* dated May 13, 2016. This Workplan was approved by your agency via email in early May 2016 (Appendix A). The investigation work scope involved sampling of soil, groundwater, and soil gas to characterize potential impact associated with recent removal of a 1,000-gallon heating oil underground storage tank (UST) to help facilitate case closure.

Our conclusions and recommendations pertaining to the investigation results are presented herein. If you have any questions or comments, please call me at (510) 435-8664 or email briddell@pangeaenv.com.

Sincerely, **Pangea Environmental Services, Inc.**

efbolul

Bob Clark-Riddell, P.E. Principal Engineer

Attachment: Data Gap Assessment Report

PANGEA Environmental Services, Inc.

DATA GAP ASSESSMENT REPORT

1244 2ND Avenue Oakland, CA

July 11, 2016

Prepared for:

1244 2nd Avenue LLC 2655 Van Ness Avenue, Suite 2 San Francisco, California 94109

Prepared by:

Pangea Environmental Services, Inc. 1710 Franklin Street, Suite 200 Oakland, California 94612

Elizabeth Avery Project Geologist

black

Bob Clark-Riddell, P.E. Principal Engineer

INTRODUCTION

On behalf of 1244 2nd Avenue LLC, Pangea Environmental Services, Inc. (Pangea) has prepared this *Data Gap Assessment Report* for the subject property. This report documents implementation of the *Data Gap Workplan* dated January 22, 2016 and *Revised Proposed Boring Locations* dated May 13, 2016. This Workplan was approved by your agency via email in early May 2016 (Appendix A). The investigation work scope involved sampling of soil, groundwater, and soil gas to characterize potential impact associated with recent removal of a 1,000-gallon heating oil underground storage tank (UST) and to help facilitate case closure.

SITE BACKGROUND

The subject site is occupied by a mixed-use residential/commercial structure located on the southeast side of 2nd Avenue in Oakland, California.

UST Removal

On December 8, 2015, L&W Construction of Petaluma, California removed a 1,000-gallon UST apparently used to store heating oil. The UST was located beneath the sidewalk on International Boulevard on the southeast side of the site structure. The UST dimensions were four feet in diameter by ten feet in length, and the top of the UST was approximately eight feet below surface grade. During UST removal L&W removed approximately 50 tons of impacted soil and 2,800 gallons of groundwater for secondary source removal. The site and former UST location are shown on Figure 1. The UST excavation was backfilled in early January 2016. UST and secondary source removal activities were reported in the *Underground Storage Tank Removal Report* prepared by L&W and dated January 18, 2016.

Site Investigation

On December 23, 2015, Pangea coordinated soil and groundwater sampling to characterize subsurface impact near and downgradient of the UST. Site assessment results are described in the *Site Assessment Report* dated December 31, 2015. Pangea coordinated the drilling of six soil borings (B-1 through B-6) and sampling within the tank pit. Sampling locations are shown on Figures 1 and 2. Soil and groundwater analytic data aresummarized on Tables 1 and 2, respectively. The only detected petroleum hydrocarbons were quantified as TPHd and TPHmo. Since the laboratory fuel fingerprint analysis characterized the sample chromatogram as 'significant aged diesel pattern between C10 and C23', the hydrocarbons quantified as TPHmo may represent the heavier range of TPHd hydrocarbons. No TPHg, BTEX, MTBE or other VOCs were reported in soil site soil or groundwater. The TPHd and TPHmo impact in soil was below the final environmental screening levels (ESLs) for commercial site use. The limited TPHd and TPHmo impact detected in groundwater only slightly

exceeded the applicable ESL (aquatic habitat) at two locations, adjacent and approximately 25 ft from the removed UST. The aquatic habitat ESL is applicable given the proximity to surface water and sewer/storm drain conduits, and the lack of anticipated groundwater use as a drinking water resource in the site vicinity. The observed impact will attenuate with time given the removal of the UST and secondary source material.

Underground Utility Location

The *Site Assessment Report* dated December 31, 2015 presents underground utility information. To identify nearby underground utilities that could act as preferential pathway for hydrocarbon migration, Pangea reviewed USA markings and obtained sanitary sewer and storm drain maps from the City of Oakland. The only utility identified nearby the UST was a shallow AT&T communication line about 2 feet from the site structure running parallel to the building and street. The sanitary sewer and storm drain conduits are located in the middle of 2nd Avenue and eastward, as shown on Figure 2. The sanitary sewer and storm drain conduits slope to the north toward Lake Merritt. Sanitary sewer and storm drain maps from the City of Oakland are included in Appendix B of the *Site Assessment Report*.

SITE INVESTIGATION PROCEDURES

The objective of the investigation was to address identified data gaps. The data gaps included additional delineation near the adjacent building, delineation of the downgradient hydrocarbon plume, and evaluation of potential threats to aquatic habitat given the site proximity to nearby surface water, shallow site groundwater, and nearby storm drain conduits. The site assessment work scope involved sampling of soil, groundwater, and soil gas.

Pre-Drilling Activities

Prior to drilling, Pangea obtained a boring permit from the Alameda County Public Works Agency and an encroachment permit from the City of Oakland. The permits are included in Appendix A. A comprehensive site safety plan was prepared to protect site workers and the plan was kept onsite during all field activities. The proposed drilling locations were marked and Underground Service Alert (USA) was notified at least 48 hours before the proposed field activities.

Soil and Groundwater Sampling Procedures

On May 13 and 16, Pangea coordinated the completion of soil sampling at three locations (SB-1 through SB-3) within open structural excavations inside the site building. On June 9, 2016, Pangea coordinated the completion of four soil borings (B-7 through B-10) offsite and downgradient of the former UST. Boring locations are shown on Figure 1.

In May 2016, soil samples at locations SB-1 through SB-3 were completed using hand auger equipment. Soil samples were collected at approximately 12 ft bgs for boring SB-1 and 9 ft bgs for boring SB-3. Samples were also collected at approximately 6, 9, 12 and 15 ft bgs for boring SB-2. Soil samples were collected in new stainless steel soil tubes, and sealed on each end with Teflon tape and end caps. Grab groundwater samples were taken from each boring. Sampling was conducted in accordance with Pangea's *Standard Operating Procedures* presented in Appendix B.

On June 9, 2016, Pangea coordinated continuous direct-push soil sampling of borings B-7 through B-10 using a Geoprobe 7822DT combo rig. Pangea retained Cascade Drilling, L.P. (Cascade) of Richmond, California. The borings were advanced in general accordance with the Standard Operating Procedures in Appendix C. After hand augering to five feet below grade surface (bgs) at each location, Pangea used a direct push drill rig to advance borings B-7, B-8, B-9, and B-10 to 14, 13, 11.3, and 14 ft bgs, respectively. Temporary PVC piping and well screen was installed within borings B-7 through B-10 to first encountered groundwater. A grab groundwater sample was collected from each of these borings. Groundwater samples were decanted into appropriate containers and each boring was then filled with grout. Note that only limited groundwater was present in boring B-9 for sampling. Per laboratory discussion, the 18.5 ml sample was diluted in the field with 24.5 ml deionized water to 43 ml. Due to insufficient volume, the sample was not analyzed for TPHg or TPHmo. Boring logs are included in Appendix C. All samples were shipped under chain of custody to McCampbell Analytical, Inc., of Pittsburg, California, a California-certified laboratory.

The drilling was observed in the field by Pangea engineer Erik Lervaag and supervised by Bob Clark-Riddell, a California Registered Professional Civil Engineer (P.E.). Soil characteristics such as color, texture, and relative water content were noted in the field using the USCS classification system and entered onto a field boring log. Field screening of soil samples for potential hydrocarbons and volatile organic compounds included visual and olfactory observations.

Select soil and groundwater samples were analyzed for the following:

- Total petroleum hydrocarbons as gasoline (TPHg) by EPA Method 8015Bm.
- Total petroleum hydrocarbons as diesel (TPHd) and motor oil (TPHmo) by EPA Method 8015B.

Soil Gas Probe Installation and Sampling Procedures

On May 16, 2016, Pangea coordinated the installation of one soil gas probe (SVW-1). The soil gas probe borehole was installed within native soil approximately 2.0 ft bgs beneath the exposed concrete floor slab, constructed within the sidewall of the open excavation. A semi-permanent soil gas probe was constructed with a stainless steel GeoprobeTM implant connected to new ¹/₄-inch diameter Teflon tubing and capped with a

Swagelok® type fitting. The implant was placed in a 0.5 ft thick sand pack with 0.5 ft of dry granular bentonite above, followed by hydrated bentonite. The structural contractor subsequently poured concrete into the excavation cavity with rebar for the steel moment-frame support and repaired the floor slab. To evaluate shallow soil gas conditions, Pangea coordinated soil gas sampling from SVW-1 on May 24, 2016 several days after the concrete pour and slab replacement. Field data sheets are included in Appendix D. Prior to sample collection a shut in test was conducted on the sampling assembly to confirm no leak and the maintenance of the initial vacuum in the sampling manifold system. After shut in testing, the probe was connected to the sampling assembly using a Swagelok fitting and Teflon tubing, then a shroud was placed over the probe and isopropyl alcohol was introduced to a concentration of approximately 10 to 20%. The isopropyl alcohol concentration was monitored periodically using a PID detector and a separate purge canister was used to purge the manifold/probe assembly. By using a separate purge canister connected to the manifold/probe assembly with a 3-way swagelock valve fitting, the well and manifold can be purged simultaneously. Upon completion of purging of approximately three times the ambient volume of air in the assembly/probe and void space, the probe was then sampled using a vacuum pump equipped with an iron lung containing a Tedlar bag. Sample collection was performed approximately eight days after soil gas probe installation.

The soil gas sampling was conducted in general accordance with procedures described in California EPA's Advisory Active Soil Gas Investigations April 2012. The soil gas samples were submitted for analysis to McCampbell Analytical, Inc., of Pittsburg, California, a California-certified laboratory.

Soil gas samples were analyzed for total petroleum hydrocarbons as gasoline (TPHg) and volatile organic compounds (VOCs) and isopropyl alcohol (leak check compound) by Total Organics Method 15 (TO-15); and for percent oxygen and methane by Method ASTM D-1946. The oxygen analysis helps evaluate the potential for future degradation and bioattenuation of detected hydrocarbons, and helps assess soil column characteristics (>= 4% oxygen in soil gas is referenced as a bio-attenuation zone in the SWRCB's Underground Storage Tank Low-Threat Site Closure Policy). Methane analysis was conducted to evaluate if residual petroleum hydrocarbons are contributing to biological activity and generation of methane gas and a potential explosion risk.

INVESTIGATION RESULTS

Field observations and analytical results are described herein. Soil and groundwater analytical data are summarized on Figures 2 and 3, respectively. Analytical results for soil, groundwater, and soil gas are summarized and compared to recently revised Environmental Screening Levels (ESLs) established by the Regional Water Quality Control Board on Tables 1, 2, and 3, respectively. Pangea notes that the ESLs were recently revised by the Water Board. The laboratory analytical reports are included in Appendix E.

Field Observations

No hydrocarbon odor or staining was observed during augering activity. Boring logs are included in Appendix C. Based on soil logging during hand augering of borings SB-1 to SB-3, soil consisted primarily of brown sandy clay and gray clay. Groundwater was encountered between approximately 4 and 7 ft bgs within onsite borings SB-1 to SB-3. Based on soil logging during offsite borings B-7 to B-10, soil consisted primarily of brown sandy clay and dark brown to tan clay. Groundwater was not initially encountered during drilling of offsite borings B-7 to B-10, but infiltrated the borings after drilling.

Soil Analytical Results

Current and historical soil analytical results are summarized on Figure 2 and Table 1. For current soil samples, no TPHg, TPHd, or TPHmo concentrations were detected in soil above reporting limits. For historic data, the only hydrocarbon or VOC detections were 38 mg/kg TPHd and 63 mg/kg TPHmo in the tank pit soil sample from 12' ft bgs; these concentrations are well below applicable ESLs.

Grab Groundwater Analytical Results

Groundwater analytical results are summarized on Figure 3 and Table 2. As shown on Table 2, no TPHg, TPHd, or TPHmo were detected above reporting limits for groundwater in borings SB-1, SB-2, SB-3 or B-8. TPHd concentrations were detected at $170 \,\mu$ g/L (B-9) and $1,600 \,\mu$ g/L (B-10), and TPHmo concentrations were detected at $370 \,\mu$ g/L (B-7) and $35,000 \,\mu$ g/L (B-10).

For *current* data, the only TPHd concentration in groundwater that exceeded the ESL protective of aquatic habitat (640 μ g/L) was reported for boring B-10 (1,600 μ g/L) located across the street and adjacent to the storm drain. For *historic* data, the only other TPHd concentration in groundwater that exceeded the ESL protective of aquatic habitat (640 μ g/L) was reported for boring B-6 (1,600 μ g/L) adjacent the former UST. This ESL is applicable as a screening level given the site proximity to nearby surface water, shallow site groundwater, and nearby storm drain conduits, and the lack of anticipated use of shallow groundwater for drinking water or other beneficial use. The final Tier 1 ESL for groundwater for TPHd is 100 μ g/L) in more distant boring B-8.

The final Tier 1 ESL for groundwater TPHmo impact is $50,000 \mu g/L$. While an elevated TPHmo concentration of $35,000 \mu g/L$ was detected in boring B-10 located across the street, this below the final ESL and no ESL is established for aquatic habitat protection for TPHmo. The detection of elevated TPHmo at boring B-10 is anomalous to TPHmo detections in other groundwater samples for this site.

Chromatogram Review

Based on the anomalous TPHd and TPHmo results reported for offsite boring B-10, Pangea requested chromatograms and a laboratory opinion regarding key groundwater sample analyses. The chromatograms for groundwater samples from the UST tank pit, B-6, B-7, B-8, and B-10 are included in Appendix G. Diesel, kerosene, and motor oil standards are also included in Appendix G. The laboratory via email reported that the chromatograms for the source area (B-6 and the Tank Pit) are similar to each other, and that the chromatograms for offsite, downgradient borings (B-7, B-8, and B-10) are similar to each other. For the fuel fingerprint analysis for the tank pit sample, the laboratory references a 'significant aged diesel pattern'. The chromatogram for source area sample B-6 resembles the diesel standard and includes some oil range compounds. The email and the laboratory fuel fingerprint note are also included in Appendix G. For offsite borings B7, B-8 and B-10, the chromatograms look very similar to each other, and represent heavier hydrocarbon impact than shown on source area chromatograms. For the most downgradient boring from the former UST (boring B-9), the laboratory noted kerosene range compounds were also present.

Soil Gas Analytical Results

Soil gas analytical results are summarized on Table 3. No benzene, ethylbenzene, xylenes, or TPHg were detected above reporting limits in soil gas from SVW-1. The only detected hydrocarbon was toluene at a concentration of 8.9 μ g/m³, which is well below the commercial ESLs (1,300,000 μ g/m³) and the residential ESLs (160,000 μ g/m³).

Methane analysis was conducted to evaluate if residual petroleum hydrocarbons are contributing to biological activity and the generation of methane gas, a potential explosion risk. No methane was detected in the soil gas sample.

CONCLUSIONS AND RECOMMENDATIONS

Based on the above data gap assessment information, Pangea offers the following conclusions and recommendations regarding environmental issues at the site:

- No TPHg, BTEX, MTBE or other VOCs were reported in site soil or groundwater for current or historic data. Only a trace toluene concentration (8.9 ug/m3) was detected in soil gas beneath the building. No methane was detected in the soil gas sample, and oxygen concentrations are indicative of a bioattenuation zone.
- The only reported petroleum hydrocarbons for current or historic data were quantified as TPHd and TPHmo. The only *soil* sample with reported TPHd and TPHmo concentrations was within the tank pit

area, and contained concentrations well below final environmental screening levels (ESLs) for residential or commercial site use.

- Current groundwater data provides delineation of petroleum hydrocarbons emanating from the former UST to below ESLs protective of aquatic habitat. Data from boring B-8 suggests the hydrocarbon impacted emanating from the former UST is also below the final GW Tier 1 ESL. Given the recently revised ESLs and laboratory chromatogram information, available data indicates petroleum hydrocarbon impact emanating from the former UST that exceeds applicable ESLs is the limited TPHd impact at location B-6 adjacent the former UST within the street. This TPHd impact is addequately characterized by the surrounding borings.
- The petroleum hydrocarbon impact detected in groundwater across the street in boring B-10 apparently represents hydrocarbons from a different source. The laboratory noted that chromatograms for two impacted tank area samples (B-6 and the Tank Pit) are similar to each other and differ from chromatograms for offsite, downgradient borings B-7, B-8, and B-10 that resemble each other. From these three borings more distant from the site and located adjacent to underground sanitary sewer or storm drain conduits, only the TPHd impact at boring B-10 slightly exceeds the ESL protective of aquatic habitat. The aquatic habitat ESLs is applicable given the proximity to surface water and sewer/storm drain conduits, and the lack of anticipated groundwater use as a drinking water resource in the site vicinity.
- The above information suggests the limited residual petroleum impact does not represent a significant risk to human health or the environment. Source removal was conducted during UST removal, involving the excavation and offsite disposal of approximately 50 tons of potentially-impacted source soil and 2,800 gallons of groundwater.
- The observed impact will attenuate with time given the removal of the UST and secondary source material. Since the groundwater plume from the former UST is <100 ft in length, site groundwater likely satisfies groundwater-specific criteria of the *Low Threat UST Closure Policy* adopted by the State Water Resources Control Board. The site assessment data also apparently satisfies media-specific criteria of the *Low Threat UST Closure Policy* adopted by the State Water Resources Control Board.
- Based on the above information, Pangea recommends no further action for this case.

ATTACHMENTS

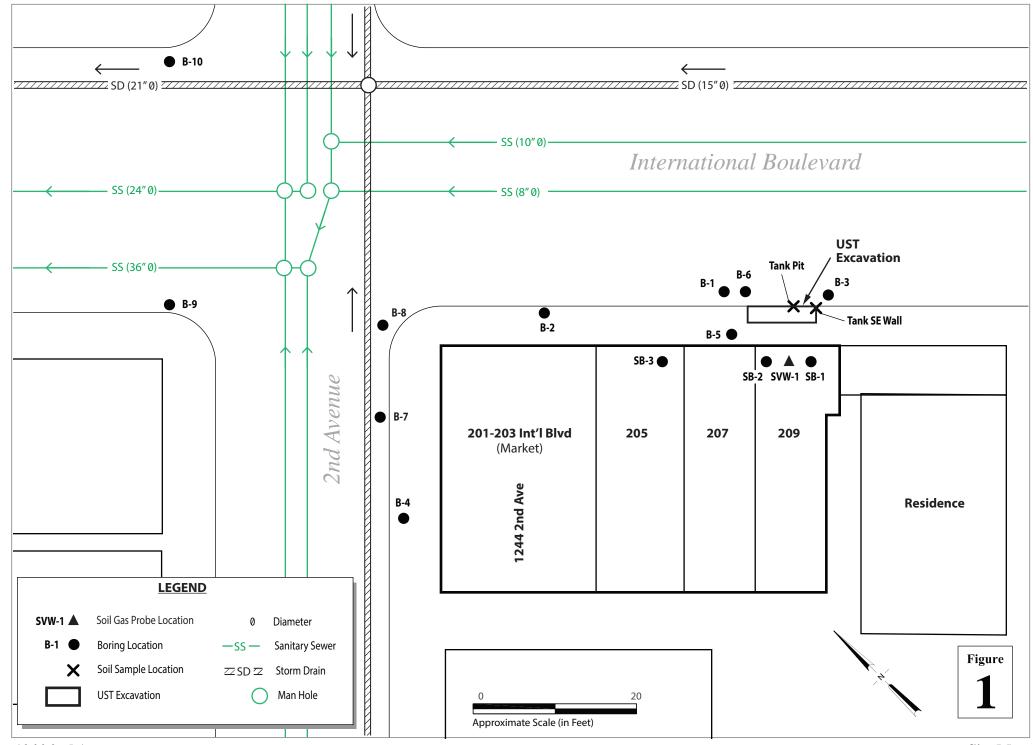
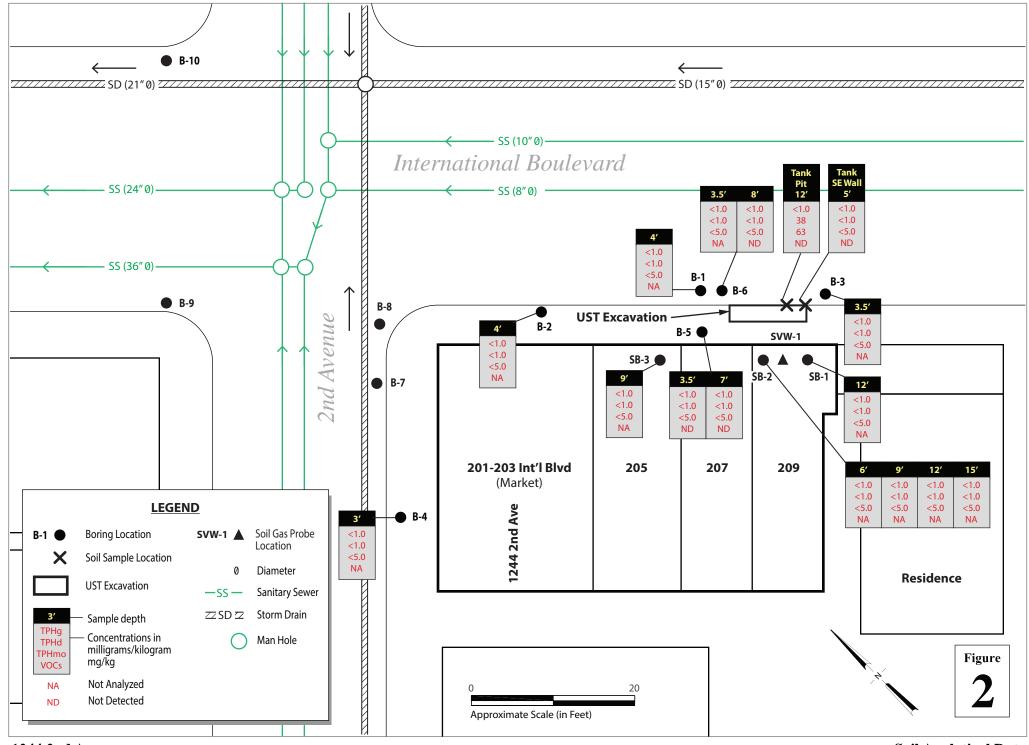

Figure 1 – Site Map Figure 2 – Soil Analytical Data Figure 3 – TPHg, TPHd, and TPHmo Concentrations in Groundwater

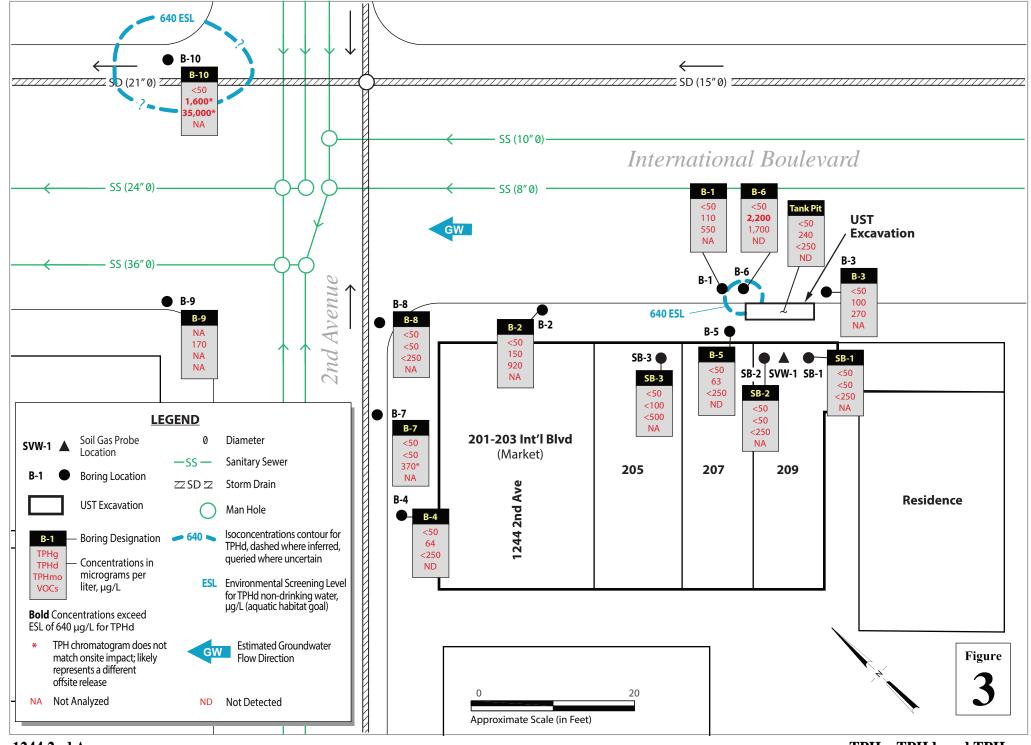
Table 1 – Soil Analytical Data

Table 2 – Groundwater Analytical Data

Table 3 – Soil Gas Analytical Data


Appendix A – Agency Correspondence Appendix B – Drilling Permit Appendix C – Standard Operating Procedures Appendix D – Boring Logs Appendix E – Field Notes Appendix F – Laboratory Analytical Reports Appendix G – Chromatograms

1244 2nd Avenue Oakland, California


Site Map

1244 2nd Avenue Oakland, California

Soil Analytical Data

1244 2nd Avenue Oakland, California

TPHg, TPHd, and TPHmo Concentrations in Groundwater

Boring/Well ID	Date Sampled	Sample Depth (feet bgs)	TPHg	TPHd	TPHmo	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	Naphthalene	Other VOCs	Note
			←					mg/Kg -				\longrightarrow	
Soil Tier 1 ESL			100	230	5,100	0.044	2.9	1.4	2.3	0.023	0.033	varies	
Odor/Nuisance: Any Land	Use, Deep Soil (C	onst Worker)	500	1,000	NE	1,000	1,000	1,000	1,000	500	1,000	varies	
Direct Exposure: Any Lan	d Use, Any Depth	(Const Work)	2,800	880	32,000	24	4100	480	2,400	3,700	350	varies	
ESL Direct Exposure - Res	sidential Shallow S	oil	740	230	NE	0.23	970	5.1	560	42	3.3	varies	
ESL Direct Exposure - Co	mmercial Shallow	Soil	3,900	1,100	NE	1.0	4,600	22	2,400	180	14	varies	
ESL Leaching to Groundw	ater - Drinking Wa	ater	770	570	NE	0.044	2.9	1.4	2.3	0.023	0.033	varies	
ESL Leaching to Groundw	ater - Nondrinking	Water	3,400	3,600	NE	0.049	9.3	1.4	11	0.84	3.9	varies	
LTCP 0-5 ft (Comm/Indl)						8.2		89			45		
LTCP 5-10 ft (Comm/Indl)					12		134			45		
TCP 0-10 ft (Utility Wor	ker)					14		314			219		
December 2015 Asses	sment												
B-1	12/23/2015	4.0	<1.0	<1.0	<5.0	< 0.0050	< 0.0050	< 0.0050	< 0.015	< 0.050			
B-2	12/23/2015	4.0	<1.0	<1.0	<5.0	< 0.0050	< 0.0050	< 0.0050	< 0.015	< 0.050			
B-3	12/23/2015	3.5	<1.0	<1.0	<5.0	< 0.0050	< 0.0050	< 0.0050	< 0.015	< 0.050			
B-4	12/23/2015	3.5	<1.0	<1.0	<5.0	< 0.0050	< 0.0050	< 0.0050	< 0.015	< 0.050			
B-5-3.5	12/23/2015	3.5	<1.0	<1.0	<5.0	< 0.0050	< 0.0050	< 0.0050	< 0.015	< 0.050		ND	
B-5-7	12/23/2015	7.0	<1.0	<1.0	<5.0	< 0.0050	< 0.0050	< 0.0050	< 0.015	< 0.050		ND	
B-6-3.5	12/23/2015	3.5	<1.0	<1.0	<5.0	< 0.0050	< 0.0050	< 0.0050	< 0.015	< 0.050			
B-6-8	12/23/2015	8.0	<1.0	<1.0	<5.0	< 0.0050	< 0.0050	< 0.0050	< 0.015	< 0.050		ND	
Tank Pit 12'	12/23/2015	12	<1.0	38	63	< 0.0050	< 0.0050	< 0.0050	< 0.015	< 0.050			
Tank SE Wall 5'	12/23/2015	5.0	<1.0	<1.0	<5.0	< 0.0050	< 0.0050	< 0.0050	< 0.015	< 0.050		ND	
lay 2016 Assessment	:												
SB-1-12'	5/13/2016	12	<1.0	<1.0	<5.0								
SB-2-6'	5/13/2016	6.0	<1.0	<1.0	<5.0								
SB-2-9'	5/13/2016	9.0	<1.0	<1.0	<5.0								
SB-2-12'	5/13/2016	12	<1.0	<1.0	<5.0								
SB-2-15'	5/13/2016	15	<1.0	<1.0	<5.0								
SB-3-9'	5/16/2016	12	<1.0	<1.0	<5.0								

Table 1. Soil Analytical Data - 1244 2nd Avenue, Oakland, CA

Table 1. Soil Analytical Data - 1244 2nd Avenue, Oakland, CA

Boring/Well	Date	Sample Depth										Other	
ID	Sampled	(feet bgs)	TPHg	TPHd	TPHmo	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	Naphthalene	VOCs	Notes
			←					mg/Kg -				\longrightarrow	
Soil Tier 1 ESL			100	230	5,100	0.044	2.9	1.4	2.3	0.023	0.033	varies	
Odor/Nuisance: Any Land	l Use, Deep Soil (C	onst Worker)	500	1,000	NE	1,000	1,000	1,000	1,000	500	1,000	varies	
Direct Exposure: Any Lar	nd Use, Any Depth	(Const Work)	2,800	880	32,000	24	4100	480	2,400	3,700	350	varies	
ESL Direct Exposure - Re	sidential Shallow S	loil	740	230	NE	0.23	970	5.1	560	42	3.3	varies	
ESL Direct Exposure - Co	ommercial Shallow	Soil	3,900	1,100	NE	1.0	4,600	22	2,400	180	14	varies	
ESL Leaching to Groundy	vater - Drinking Wa	ater	770	570	NE	0.044	2.9	1.4	2.3	0.023	0.033	varies	
ESL Leaching to Groundy	vater - Nondrinking	g Water	3,400	3,600	NE	0.049	9.3	1.4	11	0.84	3.9	varies	
LTCP 0-5 ft (Comm/Indl)	I					8.2		89			45		
LTCP 5-10 ft (Comm/Ind	1)					12		134			45		
LTCP 0-10 ft (Utility Wo	rker)					14		314			219		

ABBREVIATIONS AND NOTES:

mg/kg = milligrams per kilogram.

TPHg = Total petroleum hydrocarbons as gasoline by EPA Method 8015M.

TPHd = Total petroleum hydrocarbons as diesel by EPA Method 8015.

TPHmo = Total petroleum hydrocarbons as motor oil by EPA Method 8015.

VOCs = Volatile organic compounds by EPA Method 8260 (full list).

-- = Not analyzed.

< = Not detected at or above indicated detection limit.

ND = Not detected at various detection limits.

NE = Not established

ESL = Environmental Screening Level, from California Regional Water Quality Control Board - San Francisco Bay Region, Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater, Interim Revised February 2016 (Revision 3).

LTCP adopted by State Water Resources Control Board August 2012 includes general and media specific criteria for closure. Shown criteria are for select soil criteria.

Bold = Concentration above final ESL for commercial/industrial worker exposure scenario.

Table 2. Groundwater Analytical Data - 1244 2nd Avenue, Oakland, CA

Boring/Well ID	Date Sampled	Sample Depth	TPHg	TPHd	TPHmo	BTEX	MTBE	VOCs	Notes
		(ft bgs)	<			ıg/L —		\longrightarrow	
W Tier 1 ESL			100	100	50,000	varies	5	varies	
Residential ESL, vapor	intrusion (shallow water,	, ≤ 10 ft)	NE	NE	NE	varies	1,200	varies	
Commercial ESL, vapo	or intrusion (shallow wate	r, ≤ 10 ft)	NE	NE	NE	varies	11,000	varies	
SL for aquatic habitat	SL for aquatic habitat goal: fresh water		440	640	NE	varies	66,000	varies	
ESL for aquatic habitat	goal: salt water		3,700	640	NE	varies	8,000	varies	
TCP Criteria						3,000 benzene	1,000		
December 2015	Assessment								
B-1	12/23/2015	4.5-8.5	<50	110	550	ND	<5.0		
B-2	12/23/2015	5.0-7.0	<50	150	920	ND	<5.0		
B-3	12/23/2015	4.0-7.5	<50	100	270	ND	<5.0		
B-4	12/23/2015	5.0-8.5	<50	64	<250	ND	<5.0	ND	
B-5	12/23/2015	5.0-7.5	<50	63	<250	ND	<5.0	ND	
B-6	12/23/2015	4.0-8.5	<50	2,200	1,700	ND	<5.0	ND	e3, e7
Tank Pit	12/23/2015	5.0-12	<50	240	<250	ND	<5.0	ND	e3
May 2016 Asses	ssment								
SB-1	5/16/2016	7.5-12	<50	<50	<250				
SB-2	5/16/2016	7.5-15	<50	<50	<250				
SB-3	5/16/2016	7.0-12	<50	<100	<500				
June 2016 Asse	essment								
B-7	6/9/2016	9.1-14	<50	<50	370				e7
B-8	6/9/2016	8.4-13	<50	<50	<250				
B-9	6/9/2016	11.1-11.3		170					a, e2, e8
B-10	6/9/2016	10.3-14	<50	1,600	35,000				e2, e7

ABBREVIATIONS AND NOTES:

 $\mu g/L = micrograms$ per liter.

- TPHg = Total petroleum hydrocarbons as gasoline by EPA Method 8015M.
- TPHd = Total petroleum hydrocarbons as diesel by EPA Method 8015.
- TPHmo = Total petroleum hydrocarbons as motor oil by EPA Method 8015.
- VOCs = Volatile organic compounds by EPA Method 8260.

ESL = Environmental Screening Level, from California Regional Water Quality Control Board - San Francisco Bay Region, *Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater*, Interim Revised February 2016 (Revision 3).

Bold = Concentration above Final ESL for sites where groundwater is Not a current or potential drinking water resource.

LTCP adopted by State Water Resources Control Board August 2012 includes general and media specific criteria for closure. Shown criteria are for select groundwater criteria.

-- = Not analyzed.

< = Not detected at or above indicated detection limit.

a = Only limited groundwater was present in boring B-9 for sampling. Per laboratory discussion, the 18.5 ml sample was diluted in the field with 24.5 ml deionized water to 43 ml. Due to insufficient volume, the sample was not analyzed for TPHg or TPHmo.

e2 = diesel range compounds are significant; no recognizable pattern

- e3 = aged diesel is significant
- e7 = oil range compounds are significant
- e8 = kerosene/kerosene range/jet fuel range
- ND = Not detected at various detection limits.

NE = ESL not established.

Pangea

Table 3. Soil Gas Analytical Data - 1244 2nd Avenue, Oakland, CA

Boring/	Date	Depth	TPH Gooting	Benjene	Tolliene	Edwarden eren	Avenes -c	Naphiliadene	tsomony and	Officen "contol	Melling	Notes
Sample ID	Sampled	(ft-ft bgs)					ug/m ³ —	\rightarrow	%	%	%	
ESL for Commercial L	and Use:		2,500,000	420	1,300,000	4,900	440,000					
ESL for Residential La	and Use:		300,000	48	160,000	560	52,000					
No Bio-Attenuation Zo	one, Residential (LT	CCP)		85		1,100		93				
No Bio-Attenuation Zo	one, Commercial (L	TCP)		280		3,600		310				
With Bio-Attenuation	Zone, Residential (I	LTCP)		85,000		1,100,000		93,000				
With Bio-Attenuation	Zone, Commercial	(LTCP)		280,000		3,600,000		310,000				
SVW-1	5/24/2016	5-6		<6.5	8.9	<8.8	<27	<1,800	<0.005	9.9	<0.0001	

Abbreviations:

SVW-1 = Soil Gas Sample

ug/m3 = Micrograms per cubic meter of air results calculated by laboratory from parts per billion results using normal temperature and pressure (NPT).

ft - ft bgs = Depth interval below ground surface (bgs) in feet.

Other VOCs = Volatile organic compounds by EPA Method TO-15, uses GC/MS scan.

< n = Chemical not present at a concentration in excess of detection limit shown.

--- = Not analyzed

MRL = Method reporting limit.

ESL = Environmental Screening Level, from California Regional Water Quality Control Board - San Francisco Bay Region, Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater, Interim Revised February 2016 (Revision 3).

LTCP adopted by State Water Resources Control Board August 2012 includes general and media specific criteria for closure. Shown criteria are for select soil gas criteria.

Bold = Concentrations above ESLs for Residential and/or Commercial Land Use for shallow soil gas (SG samples).

Varies = Concentration detections for VOCs varies. Please see analytical report.

APPENDIX A

Agency Correspondence

Bob Clark-Riddell

From: Sent: To: Cc: Subject: Attachments: Bob Clark-Riddell Friday, May 13, 2016 3:49 PM 'Roe, Dilan, Env. Health' Jurek, Anne, Env. Health RE: 1244 Second Ave, Oakland Fig 2 Revised Proposed Borings 05-13-16.pdf

Dilan,

Here is the revised sampling plan you verbally approved today. The revised plan involves completing three soil borings inside the building, since we have two structural trenches open right now. We will also install a soil gas probe for measuring methane. We will also perform the downgradient borings. Thank you for our prompt response.

Bob Clark-Riddell, P.E. Pangea Environmental Services, Inc. 510.435.8664 direct

-----Original Message-----From: Roe, Dilan, Env. Health [mailto:Dilan.Roe@acgov.org] Sent: Wednesday, May 11, 2016 6:16 PM To: Bob Clark-Riddell <briddell@pangeaenv.com> Subject: RE: 1244 Second Ave, Oakland

yes

-----Original Message-----From: Bob Clark-Riddell [mailto:briddell@pangeaenv.com] Sent: Wednesday, May 11, 2016 6:12 PM To: Roe, Dilan, Env. Health <Dilan.Roe@acgov.org> Cc: Jurek, Anne, Env. Health <Anne.Jurek@acgov.org> Subject: RE: 1244 Second Ave, Oakland

Dilan,

Thank you for the approval. Please clarify how many borings are required on the 'west and east' side of the former UST. We have already proposed two borings adjacent the former UST (boring SB-1 northwest and boring SB-3 southeast of the former UST). Are you asking for two additional borings, near each end of the former UST?

Bob Clark-Riddell, P.E. Pangea Environmental Services, Inc. 510.435.8664 direct

-----Original Message-----From: Roe, Dilan, Env. Health [mailto:Dilan.Roe@acgov.org] Sent: Tuesday, May 10, 2016 11:42 AM To: Bob Clark-Riddell <briddell@pangeaenv.com> Cc: Jurek, Anne, Env. Health <Anne.Jurek@acgov.org> Subject: 1244 Second Ave, Oakland

Hi Bob:

Alameda County Department of Environmental Health concurs with the proposed scope of work for additional field investigation activities to delineate the release from the underground storage tank at the subject property with the exception of the following: please add two additional soil borings on the west and east side of the tank pit to delineate soil impacts . Please conduct the work and submit the results in a Soil and Groundwater investigation Report to ACDEH by July 13, 2016.

Dilan Roe LOP Program Manager Alameda County

Sent from my iPhone

On May 7, 2016, at 1:07 PM, Bob Clark-Riddell <briddell@pangeaenv.com<mailto:briddell@pangeaenv.com>> wrote:

Anne and Dilan,

Thank you for calling to discuss the subject site.

REVISED WORK SCOPE

Per our discussion, the attached figure show our revised sampling plan to address agency concerns. Pangea will collect samples from multiple depths and select initial samples for analysis based on field observations. At a minimum, Pangea will analyze soil samples from at or near 12 ft depth in borings SB-1 and SB-2 (adjacent the former UST) to assessment conditions identified at 12 ft depth in the tank pit boring sample at 12 ft depth. Pangea will also collect grab groundwater samples from these two borings.

If significant TPH impact is found in soil or groundwater near the USTs, Pangea will collect a soil gas sampling near the former UST and building to assess methane gas concentrations (and oxygen).

For the downgradient borings, Pangea will collect grab groundwater samples and collect soil samples, but no soil analyses are planned.

FUTURE CASE CLOSURE

Per our discussion, ACEH anticipates closing this case soon if no major contamination found. ACEH will soon issue a Notice of Responsibility letter. The client will provide contact info for all fee title entities for the anticipated case closure notifications.

Please provide a rough duration for issuance of e final case closure letter assuming data is acceptable. Please clarify the duration of any public notice requirement (30 days?). If we can provide a report by June 1, Could case closure be provided within approximately 2 months?

Bob Clark-Riddell, P.E. Pangea Environmental Services, Inc. 510.435.8664 direct

<Fig 2 Revised Proposed Borings 05-06-16.pdf>

Bob Clark-Riddell

From:	Angela Rydelius <angela@mccampbell.com></angela@mccampbell.com>
Sent:	Friday, June 24, 2016 8:54 AM
То:	Bob Clark-Riddell
Subject:	RE: Analytical Report for Project: 1244 2nd Ave [MAI WO#: 1606439]
Attachments:	TPH_DMO_W-004A.pdf

Bob,

It appears that Tank Pit-W & B6-W look similar to each other while B-10, B-7 & B-8 resemble each other. B-10's TPH-d,mo chromatogram is attached.

Regards, Angela Rydelius Laboratory Manager McCampbell Analytical, Inc. P: 925-252-9262 ext. 214 F: 925-252-9270

**MAI will be closed on Monday, July 4, 2016 in observance of Independence Day. Please check with us should you have questions about turnaround times &/or testing capabilities during this lab closure.

From: Bob Clark-Riddell [mailto:briddell@pangeaenv.com]
Sent: Thursday, June 23, 2016 5:19 PM
To: Angela Rydelius
Subject: RE: Analytical Report for Project: 1244 2nd Ave [MAI WO#: 1606439]

Tank pit sample was 1512A04. Other chromatograms are attached. Trying to determine if compounds in B-6-W and Tank pit (located near each other) are different from B-7/B-8, or different from B-10.

Bob Clark-Riddell, P.E. Pangea Environmental Services, Inc. 510.435.8664 direct

From: Angela Rydelius [mailto:angela@mccampbell.com]
Sent: Thursday, June 23, 2016 5:10 PM
To: Bob Clark-Riddell
briddell@pangeaenv.com

Cc: melissa@mccampbell.com
Subject: RE: Analytical Report for Project: 1244 2nd Ave [MAI WO#: 1606439]

Hi Bob, I'll have our analyst pull B-10's chromatogram & get that to you tomorrow.

Can you let me know the MAI ID# for your pit water sample?

Regards, Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

APPENDIX B

Drilling Permit

Alameda County Public Works Agency - Water Resources Well Permit

399 Elmhurst Street Hayward, CA 94544-1395 Telephone: (510)670-6633 Fax:(510)782-1939

Application Approved on: 06/03/2016 By jamesy

Permit Numbers: W2016-0393 Permits Valid from 06/06/2016 to 07/06/2016

Application Id: Site Location: Project Start Date: Assigned Inspector:	1464121658152 1244 2nd Avenue 06/06/2016 Contact Lindsay Furuyama at (925) 956-2311 or	City of Project Site:Oakland Completion Date:07/06/2016 Lfuruyama@groundzonees.com	
Applicant:	Pangea Environmental Services - Elizabeth	Phone: 510-836-3700	
Property Owner: Client:	Avery 1710 Franklin Street #200, Oakland, CA 94612 1244 2nd Ave LLC 2655 Van Ness Ave, San Francisco, CA 94109 ** same as Property Owner **	Phone:	
	Receipt Number: WR2016-0273	Total Due: Total Amount Paid:	\$265.00 \$265.00

Payer Name : Robert Clark-Riddell Paid By: VISA PAID IN FULL

Works Requesting Permits:

Borehole(s) for Investigation-Environmental/Monitorinig Study - 4 Boreholes Driller: Cascade Drilling LP - Lic #: 938110 - Method: DP

Work Total: \$265.00

Specifications

Permit	Issued Dt	Expire Dt	#	Hole Diam	Max Depth
Number			Boreholes		
W2016-	06/03/2016	09/04/2016	4	2.25 in.	20.00 ft
0393					

Specific Work Permit Conditions

1. Backfill bore hole by tremie with cement grout or cement grout/sand mixture. Upper two-three feet replaced in kind or with compacted cuttings. All cuttings remaining or unused shall be containerized and hauled off site. The containers shall be clearly labeled to the ownership of the container and labeled hazardous or non-hazardous.

2. Boreholes shall not be left open for a period of more than 24 hours. All boreholes left open more than 24 hours will need approval from Alameda County Public Works Agency, Water Resources Section. All boreholes shall be backfilled according to permit destruction requirements and all concrete material and asphalt material shall be to Caltrans Spec or County/City Codes. No borehole(s) shall be left in a manner to act as a conduit at any time.

3. Permittee shall assume entire responsibility for all activities and uses under this permit and shall indemnify, defend and save the Alameda County Public Works Agency, its officers, agents, and employees free and harmless from any and all expense, cost, liability in connection with or resulting from the exercise of this Permit including, but not limited to, properly damage, personal injury and wrongful death.

4. Applicant shall contact assigned inspector listed on the top of the permit at least five (5) working days prior to starting, once the permit has been approved. Confirm the scheduled date(s) at least 24 hours prior to drilling.

5. Copy of approved drilling permit must be on site at all times. Failure to present or show proof of the approved permit application on site shall result in a fine of \$500.00.

6. Electronic Reporting Regulations (Chapter 30, Division 3 of Title 23 & Division 3 of Title 27, CCR) require electronic

Alameda County Public Works Agency - Water Resources Well Permit

submission of any report or data required by a regulatory agency from a cleanup site. Submission dates are set by a Regional Water Board or by a regulatory agency. Once a report/data is successfully uploaded, as required, you have met the reporting requirement (i.e. the compliance measure for electronic submittals is the actual upload itself). The upload date should be on or prior to the regulatory due date.

7. NOTE:

Under California laws, the owner/operator are responsible for reporting the contamination to the governmental regulatory agencies under Section 25295(a). The owner/operator is liable for civil penalties under Section 25299(a)(4) and criminal penalties under Section 25299(d) for failure to report a leak. The owner/operator is liable for civil penalties under Section 25299(b)(4) for knowing failure to ensure compliance with the law by the operator. These penalty provisions do not apply to a potential buyer.

8. Prior to any drilling activities onto any public right-of-ways, it shall be the applicants responsibilities to contact and coordinate a Underground Service Alert (USA), obtain encroachment permit(s), excavation permit(s) or any other permits required for that City or to the County and follow all City or County Ordinances. It shall also be the applicants responsibilities to provide to the Cities or to Alameda County a Traffic Safety Plan for any lane closures or detours planned. No work shall begin until all the permits and requirements have been approved or obtained.

9. Permit is valid only for the purpose specified herein. No changes in construction procedures, as described on this permit application. Boreholes shall not be converted to monitoring wells, without a permit application process.

Permits for which no major inspection has been approved within 180 days shall expire by limitation. No refund more than 180 days after expiration or final.

FIELD COPY

CITY OF OAKLAND

250 FRANK H. OGAWA PLAZA · 2ND FLOOR · OAKLAND, CA 94612

Planning and Building Department www.oaklandnet.com

PH: 510-238-3891 FAX: 510-238-2263 TDD: 510-238-3254

Permit No:	OB1600623	OB1600623 Obstruction Filed Date: 5/26/								
Job Site:	200 INTERNATIO	NAL BLVD		Schedule Inspection by	y calling: 510-238-3444					
Parcel No:	020 013101300									
District:										
Project Description:	Reserve 8 NON-N	METERED parking s	pace(s) in front of parcels a	long International and 2nd Ave						
	only for soil borin	g environmental s	site assessment vehicle, ma	terial, or equipment. Post						
	No-parking signs	No-parking signs 72 hours prior in residential areas. No impact on traffic lane or sidewalk								
	allowed. No-parking signs picked up by applicant after payment, 4TH FLOOR. To Have Illegally									
	Parked Vehicle Ticketed Call 510-777-3333. Applicant arranges towing. Comply with terms set									
	forth in CVC Section 22651 (m). For Towed Vehicle: Call 510-238-3021.									
	Contact: 510 836-3700									
	RE: Soil borings on 2nd Ave and International Blvd International Blvd. 2 parking spaces for each									
	location. 4 locatio	ons.								
Related Permits:	X1601089 X1601	099								
Nan	ne	Applicant	Address	Phone	License #					

Owner:	NGUYEN CAP		441 SANTA CLARA AVE ALAMEDA, CA					
Contractor:	CASCADE DRILLING L P		P O BOX 1184 WOODINVILLE, WA	(425) 485-9802	938110			
Contractor-	ELIZABETH AVERY	x	P O BOX 1184 WOODINVILLE, WA	510 836-3700				
Employee:								

PERMIT DETAILS: Building/Publ Work Information	ic use/Activity/Obstructions		
Start Date: 06/09/2016	Obstruction Permit Type:	Short Term (Max 14 Days)	
End Date: 06/10/2016	Number of Meters (Metered A Length Of Obstruction (Unmete		
TOTAL FEES TO BE PAID AT FILI Application Fee Technology Enhancement Fee	VG: \$392.45 \$70.00 \$17.96 Records Management Fee	\$32.49 Short Term Permits	\$272.00
Plans Checked By	Date	Permit Issued By	Date 5/26/
		Finalized By	Date

Permits for which no major inspection has been approved within 180 days shall expire by limitation. No refund more than 180 days after expiration or final.

FIELD COPY

CITY OF OAKLAND

250 FRANK H. OGAWA PLAZA · 2ND FLOOR · OAKLAND, CA 94612

Planning and Building Department www.oaklandnet.com

PH: 510-238-3891 FAX: 510-238-2263 TDD: 510-238-3254

Permit No:	X1601089	OPW - Excavation	Filed Date: 5/26/2016							
Job Site:	200 INTERNATIO	DNAL BLVD	Schedule Inspection by calling: 510-238-3444							
Parcel No:	020 013101300									
District:										
Project Description:	2 Soil boring(s) c	on 2nd Ave near International Blvd, site B-7 ar	nd 8. No impact on traffic lane or							
	sidewalk allowed	d. Ensure that environmental controls are in p	place to prevent							
	dust/debris/was	dust/debris/waste water from contaminating environment. Do Not Cut Into Pavement Unless								
	And Until Ready To Complete Project.									
	If working within 25' feet of a monument you must comply with State Law 8771, contact the									
	Inspector prior to starting excavation: minimum \$5,800.00 fine for non-compliance.									
		Comply with all terms of City of Oakland Public Works Standards, Street Excavation Rules,								
		015 and City Council Ordinance No. 13300 C.								
		five days or less in business/commercial distr								
		y prior notice required for work lasting six day								
		TION prior to start: 510-238-3651. 4th FLOO								
	Contact: 510 836									
	Note: One more	Excavation and an Obstruction permit to foll	ow.							
Related Permits:										

	<u>Name</u>	Applicant	Address	Phone	License #
Owner:	NGUYEN CAP		441 SANTA CLARA AVE ALAMEDA, CA		
Contractor:	CASCADE DRILLING L P		P O BOX 1184 WOODINVILLE, WA	(425) 485-9802	938110
Contractor- Employee:	ELIZABETH AVERY	x	P O BOX 1184 WOODINVILLE, WA	510 836-3700	

General Information Excavation Type: Private Party Date Street Last Resurfaced: Worker's Compensation Company N. Worker's Compensation Policy #: Key Dates	ame:	Special Paving Detail Required:	Limited O	Tree Removal Invo Holiday Restriction (Nov 1 - Ja peration Area (7AM-9AM) And (4PM-6	in 1):
Approximate Start Date: Approximate End Date:					
TOTAL FEES TO BE PAID AT FILIN	IG: \$434.91)	in a second second			-
Application Fee Technology Enhancement Fee	\$70.00 \$19.90	Excavation - Private Party Type	\$309.00	Records Management Fee	\$36.01

Permits for which no major inspection has been approved within 180 days shall expire by limitation. No refund more than 180 days after expiration or final.

FIELD COPY

250 FRANK H. OGAWA PLAZA · 2ND FLOOR · OAKLAND, CA 94612

CITY OF OAKLAND

Planning and Building Department www.oaklandnet.com PH: 510-238-3891 FAX: 510-238-2263 TDD: 510-238-3254

200 INTERNATIONAL BI	VD			ed Date: 5/26/2016				
			Schedule inspection by ca	lling: 510-238-3444				
020 013101300								
 2 Soil boring(s) on International Blvd near 2nd Ave, site B-9 and 10. No impact on traffic lane or sidewalk allowed. Ensure that environmental controls are in place to prevent dust/debris/waste water from contaminating environment. Do Not Cut Into Pavement Unless And Until Ready To Complete Project. If working within 25' feet of a monument you must comply with State Law 8771, contact the Inspector prior to starting excavation: minimum \$5,800.00 fine for non-compliance. Comply with all terms of City of Oakland Public Works Standards, Street Excavation Rules, Revised March 2015 and City Council Ordinance No. 13300 C.M.S. Five day prior notice required for work lasting five days or less in business/commercial districts; 72 hour notice in residential districts. Ten day prior notice required for work lasting six days or more in all districts. Call PWA INSPECTION prior to start: 510-238-3651. 4th FLOOR. 								
	pplicant	Address	Phone	License #				
DE DRILLING L P	x	441 SANTA CLARA AVE ALAMEDA, CA P O BOX 1184 WOODINVILLE, WA P O BOX 1184 WOODINVILLE, WA	VA (425) 485-9802 938					
	2 Soil boring(s) on Inter sidewalk allowed. Ensu dust/debris/waste wate And Until Ready To Con If working within 25' fee Inspector prior to starti Comply with all terms of Revised March 2015 an for work lasting five day districts. Ten day prior of Call PWA INSPECTION p Contact: 510 836-3700 X1601089 OB1600623	2 Soil boring(s) on International Blvd sidewalk allowed. Ensure that enviro dust/debris/waste water from conta And Until Ready To Complete Project If working within 25' feet of a monu- Inspector prior to starting excavation Comply with all terms of City of Oak Revised March 2015 and City Counci- for work lasting five days or less in b districts. Ten day prior notice require Call PWA INSPECTION prior to start: Contact: 510 836-3700 X1601089 OB1600623 <u>Applicant</u> EN CAP DE DRILLING L P	2 Soil boring(s) on International Blvd near 2nd Ave, site B-9 and 10. No impact sidewalk allowed. Ensure that environmental controls are in place to prevent dust/debris/waste water from contaminating environment. Do Not Cut Into Pa And Until Ready To Complete Project.If working within 25' feet of a monument you must comply with State Law 877 Inspector prior to starting excavation: minimum \$5,800.00 fine for non-compli Comply with all terms of City of Oakland Public Works Standards, Street Excava Revised March 2015 and City Council Ordinance No. 13300 C.M.S. Five day prior for work lasting five days or less in business/commercial districts; 72 hour notif districts. Ten day prior notice required for work lasting six days or more in all d Call PWA INSPECTION prior to start: 510-238-3651. 4th FLOOR. Contact: 510 836-3700 X1601089 OB1600623EN CAP441 SANTA CLARA AVE ALAMEDA, CA P O BOX 1184 WOODINVILLE, WA	2 Soil boring(s) on International BIvd near 2nd Ave, site B-9 and 10. No impact on traffic lane or sidewalk allowed. Ensure that environmental controls are in place to prevent dust/debris/waste water from contaminating environment. Do Not Cut Into Pavement Unless And Until Ready To Complete Project.If working within 25' feet of a monument you must comply with State Law 8771, contact the Inspector prior to starting excavation: minimum \$5,800.00 fine for non-compliance.Comply with all terms of City of Oakland Public Works Standards, Street Excavation Rules, Revised March 2015 and City Council Ordinance No. 13300 C.M.S. Five day prior notice required for work lasting five days or less in business/commercial districts; 72 hour notice in residential districts. Ten day prior notice required for work lasting six days or more in all districts. Call PWA INSPECTION prior to start: 510-238-3651. 4th FLOOR. Contact: 510 836-3700 X1601089 OB1600623PhoneN CAP441 SANTA CLARA AVE ALAMEDA, CA P O BOX 1184 WOODINVILLE, WA(425) 485-9802				

General Information					
Excavation Type: Private Party Date Street Last Resurfaced: Worker's Compensation Company Na Worker's Compensation Policy #:	ame:	Special Paving Detail Required:	Limited O	Tree Removal Invo Holiday Restriction (Nov 1 - Ja peration Area (7AM-9AM) And (4PM-6	in 1):
Key Dates Approximate Start Date: Approximate End Date:					
TOTAL FEES TO BE PAID AT FILIN Application Fee Technology Enhancement Fee	G: \$434.91 \$70.00 \$19.90	Excavation - Private Party Type	\$309.00	Records Management Fee	\$36.01

APPENDIX C

Standard Operating Procedures

STANDARD FIELD PROCEDURES FOR SOIL BORINGS

This document describes Pangea Environmental Services' standard field methods for drilling and sampling soil borings. These procedures are designed to comply with Federal, State and local regulatory guidelines. Specific field procedures are summarized below.

Objectives

Soil samples are collected to characterize subsurface lithology, assess whether the soils exhibit obvious hydrocarbon or other compound vapor odor or staining, estimate ground water depth and quality, and to submit samples for chemical analysis.

Soil Classification/Logging

All soil samples are classified according to the Unified Soil Classification System by a trained geologist, scientist or engineer working under the supervision of a California Registered Engineer, California Registered Geologist (RG) or a Certified Engineering Geologist (CEG). The following soil properties are noted for each soil sample:

- Principal and secondary grain size category (i.e. sand, silt, clay or gravel)
- Approximate percentage of each grain size category,
- Color,
- Approximate water or product saturation percentage,
- Observed odor and/or discoloration,
- Other significant observations (i.e. cementation, presence of marker horizons, mineralogy), and
- Estimated permeability.

Soil Boring and Sampling

Soil borings are typically drilled using hollow-stem augers or hydraulic-push technologies. At least one and one half ft of the soil column is collected for every five ft of drilled depth. Additional soil samples are collected near the water table and at lithologic changes. With hollow-stem drilling, samples are collected using lined split-barrel or equivalent samplers driven into undisturbed sediments beyond the bottom of the borehole. With hydraulic-push drilling, samples are typically collected using acetate liners. The vertical location of each soil sample is determined by measuring the distance from the middle of the soil sample tube to the end of the drive rod used to advance the split barrel sampler or the acetate tube. All sample depths use the ground surface immediately adjacent to the boring as a datum. The horizontal location of each boring is measured in the field from an onsite permanent reference using a measuring wheel or tape measure.

Drilling and sampling equipment is steam-cleaned prior to drilling and between borings to prevent crosscontamination. Sampling equipment is washed between samples with trisodium phosphate or an equivalent EPAapproved detergent.

Sample Storage, Handling and Transport

Sampling tubes or cut acetate liners chosen for analysis are trimmed of excess soil and capped with Teflon tape and plastic end caps. Soil samples are labeled and stored at or below 4°C on either crushed or dry ice, depending upon local regulations. Samples are transported under chain-of-custody to a State-certified analytic laboratory.

Field Screening

Soil samples collected during drilling will be analyzed in the field for ionizable organic compounds using a photoionization detector (PID) with a 10.2 eV lamp. The screening procedure will involve placing an undisturbed soil sample in a sealed container (either a zip-lock bag, glass jar, or a capped soil tube). The container will be set aside, preferably in the sun or warm location. After approximately fifteen minutes, the head space within the container will be tested for total organic vapor, measured in parts per million on a volume to volume basis (ppmv) by the PID. The PID instrument will be calibrated prior to boring using hexane or isobutylene. PID measurements are used along with the field observations, odors, stratigraphy and ground water depth to select soil samples for analysis.

Water Sampling

Water samples collected from borings are either collected from the open borehole, from within screened PVC inserted into the borehole, or from a driven Hydropunch-type sampler. Groundwater is typically extracted using a bailer, check valve and/or a peristaltic pump. The ground water samples are decanted into the appropriate containers supplied by the analytic laboratory. Samples are labeled, placed in protective foam sleeves, stored on crushed ice at or below 4°C, and transported under chain-of-custody to the laboratory.

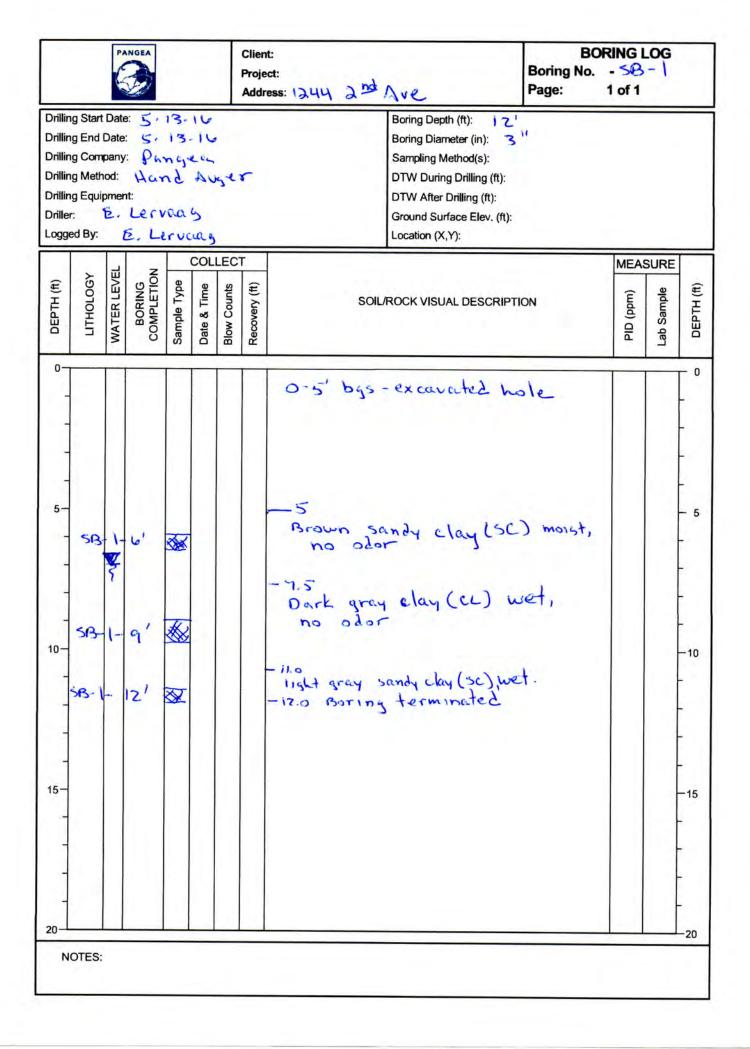
Pangea often performs electrical conductivity (EC) logging and/or continuous coring to identify potential waterbearing zones. Hydropunch-type sampling is then performed to provide discrete-depth grab groundwater sampling within potential water-bearing zones for vertical contaminant delineation. Hydropunch-type sampling typically involves driving a cylindrical sheath of hardened steel with an expendable drive point to the desired depth within undisturbed soil. The sheath is retracted to expose a stainless steel or PVC screen that is sealed inside the sheath with Neoprene O-rings to prevent infiltration of formation fluids until the desired depth is attained. The groundwater is extracted using tubing inserted down the center of the rods into the screened sampler.

Duplicates and Blanks

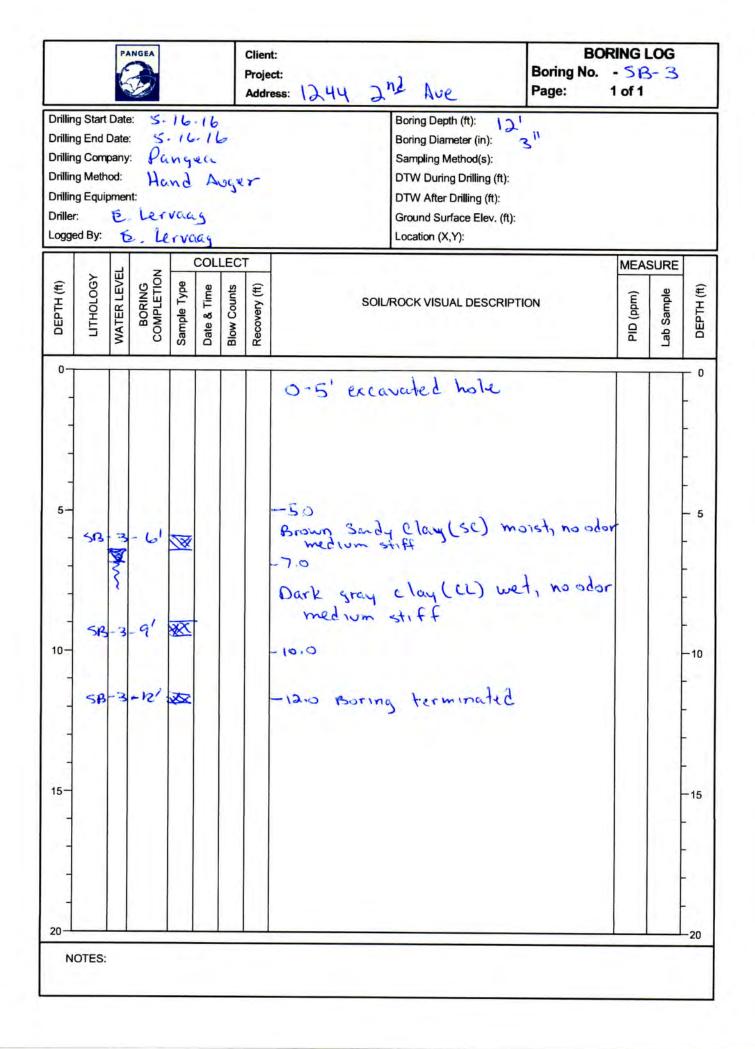
Blind duplicate water samples are collected usually collected only for monitoring well sampling programs, at a rate of one blind sample for every 10 wells sampled. Laboratory-supplied trip blanks accompany samples collected for all sampling programs to check for cross-contamination caused by sample handling and transport. These trip blanks are analyzed if the internal laboratory QA/QC blanks contain the suspected field contaminants. An equipment blank may also be analyzed if non-dedicated sampling equipment is used.

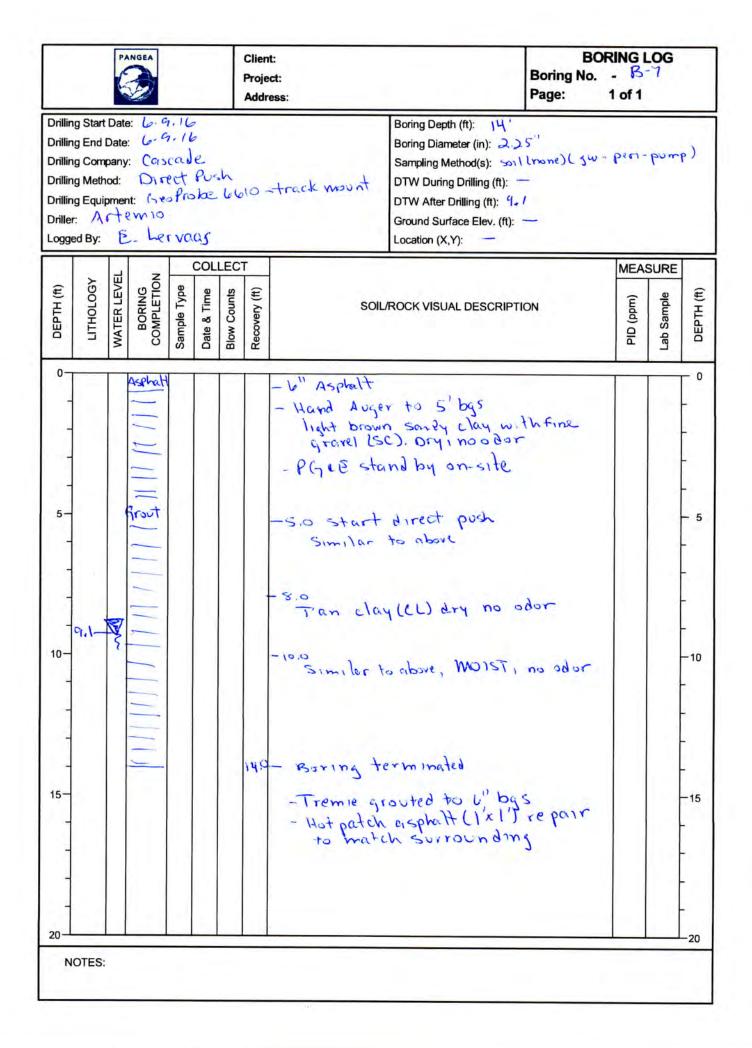
Grouting

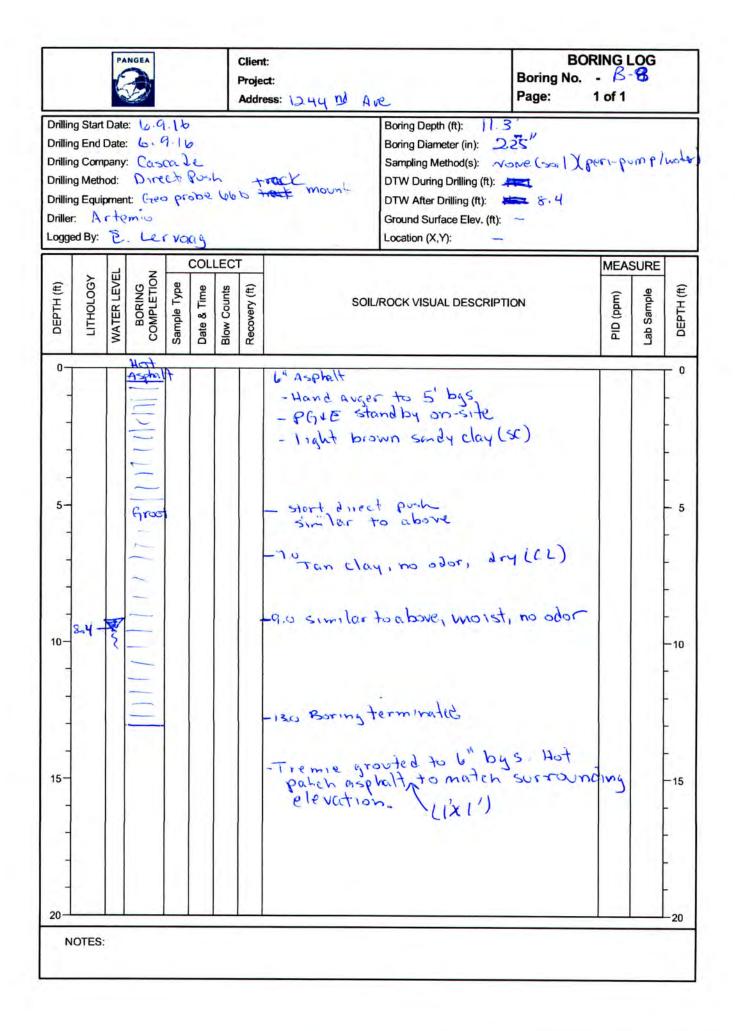
If the borings are not completed as wells, the borings are filled to the ground surface with cement grout poured or pumped through a tremie pipe.

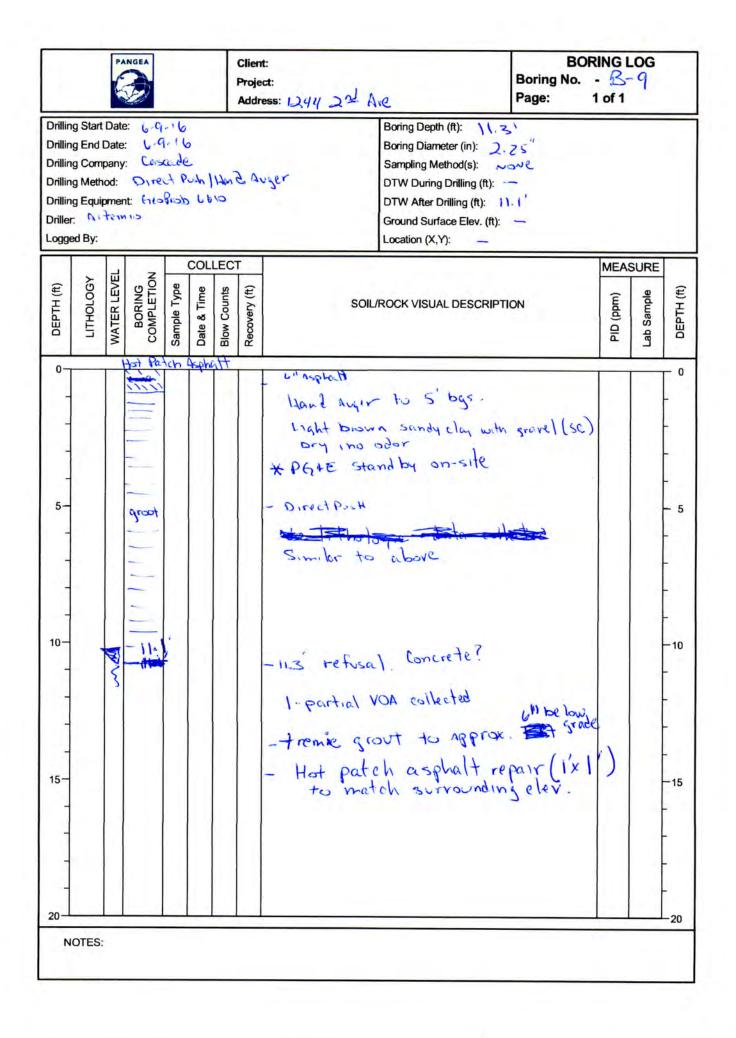

Waste Handling and Disposal

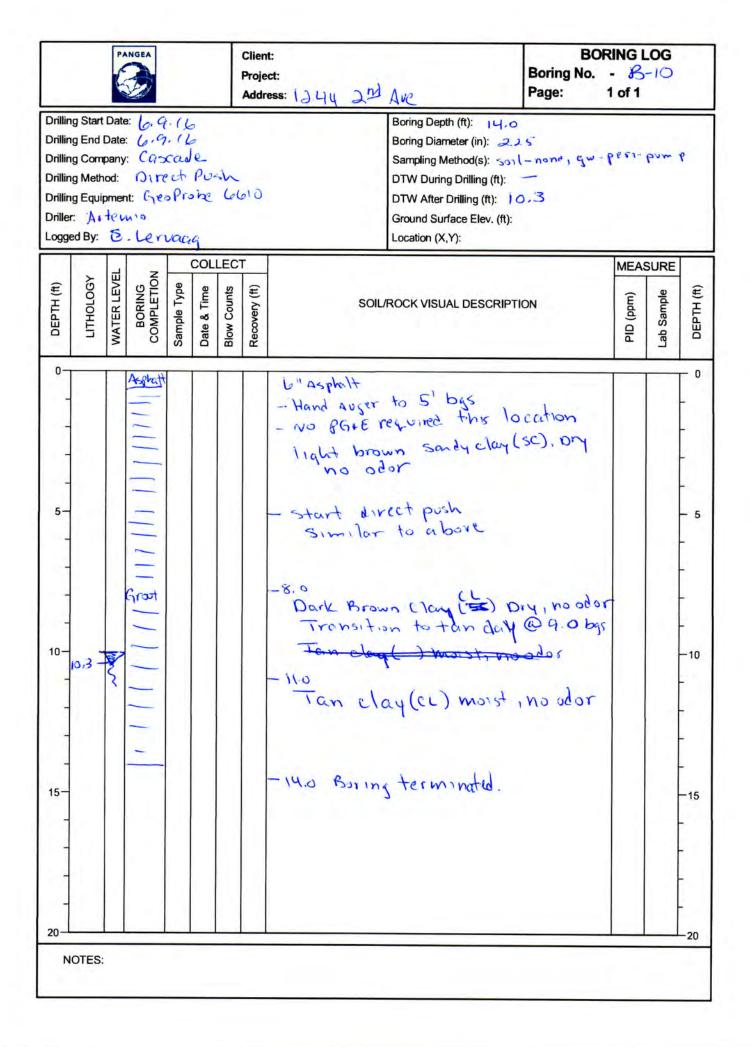
Soil cuttings from drilling activities are usually stockpiled onsite on top of and covered by plastic sheeting. At least four individual soil samples are collected from the stockpiles for later compositing at the analytic laboratory. The composite sample is analyzed for the same constituents analyzed in the borehole samples. Soil cuttings are transported by licensed waste haulers and disposed in secure, licensed facilities based on the composite analytic results.


Ground water removed during sampling and/or rinsate generated during decontamination procedures are stored onsite in sealed 55 gallon drums. Each drum is labeled with the drum number, date of generation, suspected contents, generator identification and consultant contact. Disposal of the water is based on the analytic results for the well samples. The water is either pumped out using a vacuum truck for transport to a licensed waste treatment/disposal facility or the individual drums are picked up and transported to the waste facility where the drum contents are removed and appropriately disposed.


APPENDIX D


Boring Logs




		PA	NGEA			Project: Boring No					NG LOG - SB- ス 1 of 1			
Drillin Drillin Drillin Drillin Driller	g End g Com g Meth g Equij	Date: pany: lod: pmen	Pa	13. ng nd	nea Auc as			Boring Depth (ft): Boring Diameter (in): Sampling Method(s): DTW During Drilling (ft): DTW After Drilling (ft): Ground Surface Elev. (ft) Location (X,Y):	3"					
	~		z	1	COL	LECT				MEA	SURE	T		
DEPTH (ft)	гітногоду	WATER LEVEL	BORING	Sample Type	Date & Time	Blow Counts	Recovery (ft)	SOIL/ROCK VISUAL DESCRIF	SOIL/ROCK VISUAL DESCRIPTION		Lab Sample			
5- - - - - - - - - - - - - - - - - - -	5B- 5B-	2	-9' 12' 15'					-5 Brown sandy clay(SC) n no odor -7.5' Dark gray clay(wet, medium stiff -10.5 Light gray sandy clay medium stiff, no odor - Boring terminated e 15	no odor (sc) wet,					

APPENDIX E

Field Notes

	oject Name: lob Number: Date: Sempler(e): D and Time:	5.21 E.Le	Anch	ve, Oal	cland	la ik ogių	Sub-Slab Suma Car Flow Ci Initia	Probe ID:	
Sig Tu Tubing inr Bori Sanc Fro Sum	Notes: ectifications doing length: ner dismeter: pack height hobe length: to dismeter: me flow rete: ge flow rete:	150	cm See cm cm cm cm cm mL/min mL/min	Total	Single pu purge volume 3.1416	Purge volum Tubing = 1 Sendpack = # Tge volume:	me Calculat e = tubing + 1 Pl * (Inner dia Pi * (boring d c c c c c c c c c c c c c c c c c c c	lon motes/2) ² * m3 Remotes/2) ² m3 m ⁸ Total I	
Time	He Delivery Pressure (psl)	He in Stwoud (% or ppm)	Purge Time (mini./Minic.)	Purge Sample (% or pom)	VOCe (Diantiv)	02	002 (%)	CH4 (%)	Commente
438		20.0	0	Star		ge :		-	
40		16.9	2	SB					
142		15.2	. 4						
144		10.5	6:04	St	op P.	rge			
					10				
146		12.0		Sto		apple			
48		11.2		Sto	p Sug	b			
		_							
								-	
				-		-			
-				+					
					-				
				1					
		2							
	L. Same								

APPENDIX F

Laboratory Analytical Results

McCampbell Analytical, Inc.

"When Quality Counts"

Analytical Report

WorkOrder:	1606439
Report Created for:	Pangea Environmental Svcs., Inc.
	1710 Franklin Street, Ste. 200 Oakland, CA 94612
Project Contact:	Bob Clark-Riddell
Project P.O.: Project Name:	1244 2nd Ave
Project Received:	06/09/2016

Analytical Report reviewed & approved for release on 06/13/2016 by:

Angela Rydelius, Laboratory Manager

The report shall not be reproduced except in full, without the written approval of the laboratory. The analytical results relate only to the items tested. Results reported conform to the most current NELAP standards, where applicable, unless otherwise stated in the case narrative.

1534 Willow Pass Rd. Pittsburg, CA 94565 TEL: (877) 252-9262 FAX: (925) 252-9269 www.mccampbell.com CDPH ELAP 1644 NELAP 4033ORELAP

Glossary of Terms & Qualifier Definitions

Client:Pangea Environmental Svcs., Inc.Project:1244 2nd Ave

WorkOrder: 1606439

Glossary Abbreviation

%D	Serial Dilution Percent Difference
95% Interval	95% Confident Interval
DF	Dilution Factor
DI WET	(DISTLC) Waste Extraction Test using DI water
DISS	Dissolved (direct analysis of 0.45 µm filtered and acidified water sample)
DLT	Dilution Test (Serial Dilution)
DUP	Duplicate
EDL	Estimated Detection Limit
ITEF	International Toxicity Equivalence Factor
LCS	Laboratory Control Sample
Μ	Estimate Maximum Possible Concentration
MB	Method Blank
MB % Rec	% Recovery of Surrogate in Method Blank, if applicable
MDL	Method Detection Limit
ML	Minimum Level of Quantitation
MS	Matrix Spike
MSD	Matrix Spike Duplicate
N/A	Not Applicable
ND	Not detected at or above the indicated MDL or RL
NR	Data Not Reported due to matrix interference or insufficient sample amount.
PDS	Post Digestion Spike
PDSD	Post Digestion Spike Duplicate
PF	Prep Factor
RD	Relative Difference
RL	Reporting Limit (The RL is the lowest calibration standard in a multipoint calibration.)
RPD	Relative Percent Deviation
RRT	Relative Retention Time
SPK Val	Spike Value
SPKRef Val	Spike Reference Value
SPLP	Synthetic Precipitation Leachate Procedure
ST	Sorbent Tube
TCLP	Toxicity Characteristic Leachate Procedure
TEQ	Toxicity Equivalents
WET (STLC)	Waste Extraction Test (Soluble Threshold Limit Concentration)

Glossary of Terms & Qualifier Definitions

Client: Pangea Environmental Svcs., Inc.

Project: 1244 2nd Ave

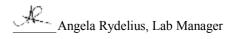
WorkOrder: 1606439

Analytical Qualifiers

S	Surrogate spike recovery outside accepted recovery limits
b1	aqueous sample that contains greater than ~1 vol. % sediment
e2	diesel range compounds are significant; no recognizable pattern
e7	oil range compounds are significant
e8	kerosene/kerosene range/jet fuel range
• 4	

j1 see attached narrative

Case Narrative


Client: Pangea Environmental Svcs., Inc.

Project: 1244 2nd Ave

Work Order: 1606439 June 13, 2016

Sample 1606439-003A TPH-Diesel Results:

The Chain of Custody stated that the amount of sample taken was 18.5mL and was diluted to a final volume of 43mL. The result reported by McCampbell Analytical, Inc. include this dilution in the final result and is shown as a dilution of 2.3.

Client:	Pangea Environmental Svcs., Inc.
Date Received:	6/9/16 17:35
Date Prepared:	6/11/16
Project:	1244 2nd Ave

WorkOrder:	1606439
Extraction Method:	SW5030B
Analytical Method:	SW8021B/8015Bm
Unit:	μg/L

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE

Client ID	Lab ID	Matrix	Date C	ollected Instrument	Batch ID
В-7	1606439-001A	Water	06/09/2016 14:00 GC3		122180
Analytes	Result		<u>RL</u>	DF	Date Analyzed
TPH(g)	ND		50	1	06/11/2016 15:29
MTBE			5.0	1	06/11/2016 15:29
Benzene			0.50	1	06/11/2016 15:29
Toluene			0.50	1	06/11/2016 15:29
Ethylbenzene			0.50	1	06/11/2016 15:29
Xylenes			1.5	1	06/11/2016 15:29
Surrogates	<u>REC (%)</u>		<u>Limits</u>		
aaa-TFT	94		70-130		06/11/2016 15:29
<u>Analyst(s):</u> IA			Analytical Com	<u>ments:</u> b1	
Client ID	Lab ID	Matrix	Date C	ollected Instrument	Batch ID
В-8	1606439-002A	Water	06/09/20	016 15:00 GC3	122180
Analytes	Result		RL	DF	Date Analyzed
TPH(g)	ND		50	1	06/11/2016 16:00
MTBE			5.0	1	06/11/2016 16:00
Benzene			0.50	1	06/11/2016 16:00
Toluene			0.50	1	06/11/2016 16:00
Ethylbenzene			0.50	1	06/11/2016 16:00
Xylenes			1.5	1	06/11/2016 16:00

Limits

70-130

Analytical Comments: b1

<u>REC (%)</u>

98

Surrogates

aaa-TFT

Analyst(s):

IA

06/11/2016 16:00

Client:	Pangea Environmental Svcs., Inc.
Date Received:	6/9/16 17:35
Date Prepared:	6/11/16
Project:	1244 2nd Ave

WorkOrder: 1606439 Extraction Method: SW5030B Analytical Method: SW8021B/8015Bm Unit: µg/L

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE

Client ID	Lab ID	Matrix	Date C	ollected Instrument	Batch ID
B-10	1606439-004A	Water	06/09/20	016 09:45 GC3	122180
Analytes	Result		<u>RL</u>	DF	Date Analyzed
TPH(g)	ND		50	1	06/11/2016 16:31
MTBE			5.0	1	06/11/2016 16:31
Benzene			0.50	1	06/11/2016 16:31
Toluene			0.50	1	06/11/2016 16:31
Ethylbenzene			0.50	1	06/11/2016 16:31
Xylenes			1.5	1	06/11/2016 16:31
Surrogates	<u>REC (%)</u>		<u>Limits</u>		
aaa-TFT	95		70-130		06/11/2016 16:31
<u>Analyst(s):</u> IA			Analytical Com	ments: b1	

Client:	Pangea Environmental Svcs., Inc.
Date Received:	6/9/16 17:35
Date Prepared:	6/10/16
Project:	1244 2nd Ave

WorkOrder:	1606439
Extraction Method:	SW3510C
Analytical Method:	SW8015B
Unit:	μg/L

Total Extractable Petro	oleum Hydrocarbons	s w/out SG Clean-Up

Client ID	Lab ID	Matrix	Date Collected Instrument	Batch ID
B-7	1606439-001A	Water	06/09/2016 14:00 GC11A	122101
Analytes	<u>Result</u>		<u>RL</u> <u>DF</u>	Date Analyzed
TPH-Diesel (C10-C23)	ND		50 1	06/10/2016 19:07
TPH-Motor Oil (C18-C36)	370		250 1	06/10/2016 19:07
Surrogates	<u>REC (%)</u>		Limits	
C9	90		70-130	06/10/2016 19:07
<u>Analyst(s):</u> TK			Analytical Comments: e7,b1	
Client ID	Lab ID	Matrix	Date Collected Instrument	Batch ID
В-8	1606439-002A	Water	06/09/2016 15:00 GC11A	122101
Analytes	Result		<u>RL</u> <u>DF</u>	Date Analyzed
TPH-Diesel (C10-C23)	ND		50 1	06/10/2016 20:25
TPH-Motor Oil (C18-C36)	ND		250 1	06/10/2016 20:25
Surrogates	<u>REC (%)</u>		Limits	
C9	90		70-130	06/10/2016 20:25
<u>Analyst(s):</u> TK			Analytical Comments: b1	
Client ID	Lab ID	Matrix	Date Collected Instrument	Batch ID
B-10	1606439-004A	Water	06/09/2016 09:45 GC39A	122125
Analytes	Result		<u>RL</u> <u>DF</u>	Date Analyzed
TPH-Diesel (C10-C23)	1600		500 10	06/13/2016 11:10
TPH-Motor Oil (C18-C36)	35,000		2500 10	06/13/2016 11:10
Surrogates	<u>REC (%)</u>		Limits	
C9	121		70-130	06/13/2016 11:10
<u>Analyst(s):</u> TK			Analytical Comments: e7,e2,b1	

Client:	Pangea Environmental Svcs., Inc.
Date Received:	6/9/16 17:35
Date Prepared:	6/10/16
Project:	1244 2nd Ave

WorkOrder:	1606439
Extraction Method:	SW3510C
Analytical Method:	SW8015B
Unit:	μg/L

Client ID	Lab ID	Matrix	Date C	ollected Instrument	Batch ID
B-9	1606439-003A	Water	06/09/20	016 11:00 GC11B	122125
<u>Analytes</u>	<u>Result</u>		<u>RL</u>	DF	Date Analyzed
TPH-Diesel (C10-C23)	170		120	2.3	06/12/2016 16:04
Surrogates	<u>REC (%)</u>		<u>Limits</u>		
C9	95		70-130		06/12/2016 16:04
<u>Analyst(s):</u> TK			Analytical Com	<u>ments:</u> e2,e8,j1	

Client:	Pangea Environmental Svcs., Inc.	WorkOrder:	1606
Date Prepared:	6/11/16	BatchID:	1221
Date Analyzed:	6/11/16	Extraction Method:	SW5
Instrument:	GC3	Analytical Method:	SW8
Matrix:	Water	Unit:	μg/L
Project:	1244 2nd Ave	Sample ID:	MB/
			1606

WorkOrder:	1606439
BatchID:	122180
Extraction Method:	SW5030B
Analytical Method:	SW8021B/8015Bm
Unit:	μg/L
Sample ID:	MB/LCS-122180
	1606490-001AMS/MSD

QC Summary Report for SW8021B/8015Bm

MB Result	LCS Result		RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
ND	60.6		40	60	-	101	70-130
ND	12.5		5.0	10	-	125	70-130
ND	10.4		0.50	10	-	104	70-130
ND	10.8		0.50	10	-	108	70-130
ND	11.0		0.50	10	-	110	70-130
ND	33.5		1.5	30	-	112	70-130
10.2	9.27			10	102	93	70-130
							D RF
	Result ND ND ND ND ND ND ND	Result Result ND 60.6 ND 12.5 ND 10.4 ND 10.8 ND 11.0 ND 33.5 10.2 9.27	Result Result ND 60.6 ND 12.5 ND 10.4 ND 10.8 ND 11.0 ND 33.5 10.2 9.27	Result Result ND 60.6 40 ND 12.5 5.0 ND 10.4 0.50 ND 10.8 0.50 ND 11.0 0.50 ND 33.5 1.5 10.2 9.27 9.27	Result Result Val ND 60.6 40 60 ND 12.5 5.0 10 ND 10.4 0.50 10 ND 10.8 0.50 10 ND 11.0 0.50 10 ND 33.5 1.5 30 10.2 9.27 10	Result Result Val %REC ND 60.6 40 60 - ND 12.5 5.0 10 - ND 10.4 0.50 10 - ND 10.8 0.50 10 - ND 11.0 0.50 10 - ND 33.5 1.5 30 - 10.2 9.27 10 102	ResultVal%REC%RECND60.64060-101ND12.55.010-125ND10.40.5010-104ND10.80.5010-108ND11.00.5010-110ND33.51.530-11210.29.271010293

Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
TPH(btex)	63.0	60.0	60	ND	105	100	70-130	4.87	20
MTBE	11.6	12.0	10	ND	116	120	70-130	3.09	20
Benzene	10.3	10.8	10	ND	103	108	70-130	4.59	20
Toluene	10.5	10.9	10	ND	105	109	70-130	3.78	20
Ethylbenzene	10.7	10.9	10	ND	107	109	70-130	1.84	20
Xylenes	32.6	32.6	30	ND	109	109	70-130	0	20
Surrogate Recovery									
aaa-TFT	9.31	9.04	10		93	90	70-130	2.93	20

_____QA/QC Officer Page 9 of 15

Client:	Pangea Environmental Svcs., Inc.	WorkOrder:	1606439
Date Prepared:	6/9/16	BatchID:	122101
Date Analyzed:	6/10/16 - 6/13/16	Extraction Method:	SW3510C
Instrument:	GC39B	Analytical Method:	SW8015B
Matrix:	Water	Unit:	μg/L
Project:	1244 2nd Ave	Sample ID:	MB/LCS/LCSD-122101

QC Report for SW8015B w/out SG Clean-Up

Analyte	MB Result			RL	SPK Val		B SS REC		/IB SS .imits
TPH-Diesel (C10-C23)	ND			50	-	-		-	
TPH-Motor Oil (C18-C36)	ND			250	-	-		-	
Surrogate Recovery									
C9	590				625	94		6	5-122
Analyte	LCS Result	LCSD Result	SPK Val		LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
TPH-Diesel (C10-C23)	1240	1220	1000		124	122	61-157	1.36	30
Surrogate Recovery									
C9	596	583	625		95	93	65-122	2.25	30

Client:	Pangea Environmental Svcs., Inc.	WorkOrder:	1606439
Date Prepared:	6/10/16	BatchID:	122125
Date Analyzed:	6/11/16 - 6/13/16	Extraction Method:	SW3510C
Instrument:	GC39B	Analytical Method:	SW8015B
Matrix:	Water	Unit:	μg/L
Project:	1244 2nd Ave	Sample ID:	MB/LCS/LCSD-122125

QC Report for SW8015B w/out SG Clean-Up

Analyte	MB Result			RL	SPK Val		B SS REC		IB SS imits
TPH-Diesel (C10-C23)	ND			50	-	-		-	
TPH-Motor Oil (C18-C36)	ND			250	-	-		-	
Surrogate Recovery									
C9	586				625	94		6	5-122
Analyte	LCS Result	LCSD Result	SPK Val		LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
TPH-Diesel (C10-C23)	1210	1210	1000		121	121	61-157	0	30
TFTI-Diesel (CT0-C23)									
Surrogate Recovery									

QA/QC Officer Page 11 of 15

McCampbell Analytical, Inc.

1534 Willow Pass Rd

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

Pittsburg, (925) 252-	CA 94565-1701 9262				Work	sOrde	r: 1606	5439		Client	Code:	PEO					
		WaterTrax	WriteOn	EDF	E	Ixcel		EQuIS	✓	Email		HardC	ору	Third	Party	□ J-fla	g
Report to: Bob Clark-Rido	lell	Email: B	Riddell@pang	eaenv.com		Bi	ll to: Bob Cl	ark-Rid	dell				Reque	sted TA	Г:	5 days;	
•	nmental Svcs., Inc. Street, Ste. 200 14612 FAX: (510) 836-3709	cc/3rd Party: PO: ProjectNo: 1	244 2nd Ave		Pangea Environmental Svcs., Inc. 1710 Franklin Street, Ste. 200 Oakland, CA 94612									Receive Logged:		06/09/2 06/10/2	
					[Red	quested	Tests	(See leg	jend be	low)			
Lab ID	Client ID		Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
																	1

1606439-001	B-7	Water	6/9/2016 14:00	А		Α			
1606439-002	B-8	Water	6/9/2016 15:00	А		Α			
1606439-003	В-9	Water	6/9/2016 11:00		А				
1606439-004	B-10	Water	6/9/2016 9:45	А		Α			

Test Legend:

1	G-MBTEX_W
5	
9	

2	TPH(D)_W
6	
10	

3	TPH(DMO)_W
7	
11	

4	
8	
12	

Prepared by: Maria Venegas

The following SampIDs: 001A, 002A, 004A contain testgroup.

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

	McCampbell Analytical, Inc.
_	"When Ouality Counts"

WORK ORDER SUMMARY

Client Name Project: Comments:	PANGEA EN 1244 2nd Av Changed to 2 d	-	/CS., INC.		LEVEL 2 Bob Clark-Riddell BRiddell@pangeaenv.com	n			k Order: Logged:	1606439 6/10/2016
		WaterTrax	WriteOn DEDF	Excel	Fax ✔Email	HardC	opyThirdPar	ty 🗌	J-flag	
Lab ID	Client ID	Matrix	Test Name	Containe /Compos		De- chlorinated	Collection Date & Time	TAT	Sediment Content	Hold SubOut
1606439-001A	B-7	Water	Multi-Range TPH(g,d,mo)	4	2 VOAs w/HCL + 2-aVOAs (multi-range)		6/9/2016 14:00	2 days	50%+	
1606439-002A	B-8	Water	Multi-Range TPH(g,d,mo)	4	2 VOAs w/HCL + 2-aVOAs (multi-range)		6/9/2016 15:00	2 days	2%+	
1606439-003A	B-9	Water	SW8015B (Diesel)	1	aVOA		6/9/2016 11:00	2 days	Present	
1606439-004A	B-10	Water	Multi-Range TPH(g,d,mo)	4	2 VOAs w/HCL + 2-aVOAs (multi-range)		6/9/2016 9:45	2 days	50%+	

NOTES: - STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- MAI assumes that all material present in the provided sampling container is considered part of the sample - MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

	1606439																1	C	lan	igei	11	01	18	AY	6	10	16	2							
	McC	am	pbe	ell	A	nc	aly	/tic	cc	xI,	In	C			Ň															-	1000	2 RD			
	1534 Wil						2									TU	RN	ARC	DUN	DT	IME	: RI	JSH[1 DA	ΥD	2	DAY	X	3 D	AY [5 DAY	X	
v v	www.mcc										m				1	1.1													1		27 LB		10 DA		
	Telephone: (877) 252-9262 / Fax: (925) 252-9269												1																IU DA	· 🖵					
												Eff	luent	San	nple	Requ	iring	; "J"	flag	1	UST	Clea	n Up	o Fur	nd Pr	rojec	t□;	Clair	m #		-				
teport To: Bod	Bob Clark- Riddell Bill To: Pangea											P	22	_	_	_	_		Ana	lysis	Req	uest				_	25								
Company: Par 1710	ngen I	Enr.	SVS	1	2		_		-					_			100	74									-				2	4			
Tele: ()	Frank	lin	, Oak	10	E-	Mail	: b	rid	Jak	10	Dor		. 0.	~ 1	on	BE	3	520												Is	dilutes	3			
Project #:		1		E-Mail: briddelle pangegenv.ion Project Name:								SIN	MTBE	20	34/5	(1.8)		uly		des)			(sv				meta	2	E						
Project Location:	1244	1244 202 AVE Purchase Order#											8015)	5	e (166	ns (4)	cides)	ors o	(s	rbici		(s)	/PN	***	***		lved	Ś	a		0				
Sampler Signatur	re: 6	12		-											57	rease	arboi	Pestic	Arocl	ticide	CI He	/OCs	VOC	AHS	6020)	020)		Disso	Y	ú					
		SAM	PLING		MATRIX METHOD PRESERVE						Gas (8021/	+(5	18.0	vdroc	1 (CI	B's; .	P Pest	cidic (260 (1	270 (S	310 (P	0.8/	0.8/6	***(6	e for	2 K	14								
SAMPLE ID	Location/ Field Point Name	Date	Time	# Containers	Ground Water	Waste Water	Drinking Water	Sea Water	Soil	Air	Sludge	Other	HCL	HNO ₃	Other	BTEX & TPH as G	TPH as Diesel (8015)	Total Petroleum Oil & Grease (1664 / 5520 E/B&F)	Total Petroleum Hydrocarbons (418.1)	EPA 505/ 608 / 8081 (Cl Pesticides)	EPA 608 / 8082 PCB's ; Aroclors only	EPA 507 / 8141 (NP Pesticides)	EPA 515 / 8151 (Acidic Cl Herbicides)	EPA 524.2 / 624 / 8260 (VOCs)	EPA 525.2 / 625 / 8270 (SVOCs)	EPA 8270 SIM / 8310 (PAHs / PNAs)	CAM 17 Metals (200.8 / 6020)**	LUFT 5 Metals (200.8 / 6020)***	Metals (200.8 / 6020)***	Lab to Filter sample for Dissolved metals analysis	J.m. 5.81 (0) HAL	Jun Chr of			
B-7	6.0	. (6	1400	4	X		-				•	-	X			-	X			-	-	-	7		-	-	-		-		F		-	+	-
8-8			15:00	4	x								×				X							-1								*			1
13-9			1100	(X		- 1						N		Х		1														X	0			
3-10	6.	9.16	0945	4	X								×				×																		
											-									$b \rightarrow 1$		ii				1.1.1							- 1		
									-																		in 1	1							
	·						_	1-5					=								1201				1										
		1.1												. 6.	1						1		-			(
	1			-						-				.1.													1	_							
																				-	1		-								1				
																												-							
**MAI clients MUST disc handling by MAI staff. N	lose any dang lon-disclosure	incurs an	emicals kno i Immediate	own fo e \$250	be pr surch	esent arge c	in the and th	ir subi e clie	nitted nt is si	samp ubjec	to ful	lleg	al liat	ations pility fo	or har	may a m suff	cause fered.	Than	k you	for yo	or ser	dersta	nding	and f	endo or allo	wing	us to	work s	sult o	f brief	, glove	ed, op	en air, s	ample	1
*** If metals are reques	ted for water s	amples a	nd the wate	er typ	e is no	spec	ified o	on the	chain	ofcu	stody	, the	n MA	will c	lefaul	t to m	etals	by E20	00.8.									_	_						_
Relinquished By:	2 6.	Date: G, /(Time		Ree	lived	By:	11	11	1.	1	7-	-		GOOI	D CO	NDIT										COM								
Relinquished By:		Date:	Time	-	Reco	eived 1	By:	20	ur .	e	-6				PPR	OPR	UNA' IATE	CON	IN LA	_	s	_	*S	am C	ple of 4	B-9 3m) wa L in	as o the	dilu Ə fie	ted eld.	to a	a fir	nal v	olur	ne
Relinquished By:		Date:	Time		Reco	lived	By:							Р	RES	ERV	ATIC		AS	0&		META H<2_	LS	оті	HER	1	HAZA	ARDO	DUS:						

Sample Receipt Checklist

Client Name: Project Name:	Pangea Environmental Svcs., Inc. 1244 2nd Ave			Date and Time Received: Date Logged:	6/9/2016 17:35 6/10/2016
WorkOrder №:	1606439 Matrix: <u>Water</u>			Received by:	Maria Venegas
Carrier:	Client Drop-In			Logged by:	Maria Venegas
	<u>Chain of C</u>	ustody	<u>/ (COC) </u>	nformation	
Chain of custody	present?	Yes	✓	No 🗌	
Chain of custody	signed when relinquished and received?	Yes	✓	No 🗌	
Chain of custody	agrees with sample labels?	Yes	✓	No 🗌	
Sample IDs note	d by Client on COC?	Yes	✓	No 🗌	
Date and Time of	collection noted by Client on COC?	Yes	✓	No 🗌	
Sampler's name	noted on COC?	Yes	✓	No 🗌	
	Sampl	le Rece	eipt Infor	mation	
Custody seals inf	act on shipping container/cooler?	Yes		No 🗌	NA 🔽
Shipping contain	er/cooler in good condition?	Yes	✓	No 🗌	
Samples in prope	er containers/bottles?	Yes	✓	No 🗌	
Sample containe	rs intact?	Yes	✓	No 🗌	
Sufficient sample	volume for indicated test?	Yes	✓	No 🗌	
	Sample Preservation	on and	Hold Tir	<u>ne (HT) Information</u>	
All samples recei	ved within holding time?	Yes	✓	No 🗌	
Sample/Temp Bl	ank temperature		Temp	10.2°C	
Water - VOA vial	s have zero headspace / no bubbles?	Yes	✓	No 🗌	
Sample labels ch	ecked for correct preservation?	Yes	✓	No 🗌	
pH acceptable up	oon receipt (Metal: <2; 522: <4; 218.7: >8)?	Yes		No 🗌	NA 🖌
Samples Receive		Yes	✓	No 🗌	
	(Ісе Тур	e: WE	T ICE)	
UCMR3 Samples	_				🗖
Total Chlorine	ested and acceptable upon receipt for EPA 522?	Yes		No	
Free Chlorine t 300.1. 537. 539	ested and acceptable upon receipt for EPA 218.7,	Yes		No 🗌	NA 🔽

Comments:

McCampbell Analytical, Inc.

"When Quality Counts"

Analytical Report

WorkOrder:	1605A63
Report Created for:	Pangea Environmental Svcs., Inc.
	1710 Franklin Street, Ste. 200 Oakland, CA 94612
Project Contact:	Bob Clark-Riddell
Project P.O.: Project Name:	1244 2nd
Project Received:	05/24/2016

Analytical Report reviewed & approved for release on 05/31/2016 by:

Angela Rydelius, Laboratory Manager

The report shall not be reproduced except in full, without the written approval of the laboratory. The analytical results relate only to the items tested. Results reported conform to the most current NELAP standards, where applicable, unless otherwise stated in the case narrative.

1534 Willow Pass Rd. Pittsburg, CA 94565 TEL: (877) 252-9262 FAX: (925) 252-9269 www.mccampbell.com CDPH ELAP 1644 NELAP 4033ORELAP

Glossary of Terms & Qualifier Definitions

Client:Pangea Environmental Svcs., Inc.Project:1244 2ndWorkOrder:1605A63

Glossary Abbreviation

%D	Serial Dilution Percent Difference
95% Interval	95% Confident Interval
DF	Dilution Factor
DI WET	(DISTLC) Waste Extraction Test using DI water
DISS	Dissolved (direct analysis of 0.45 μm filtered and acidified water sample)
DLT	Dilution Test (Serial Dilution)
DUP	Duplicate
EDL	Estimated Detection Limit
ITEF	International Toxicity Equivalence Factor
LCS	Laboratory Control Sample
MB	Method Blank
MB % Rec	% Recovery of Surrogate in Method Blank, if applicable
MDL	Method Detection Limit
ML	Minimum Level of Quantitation
MS	Matrix Spike
MSD	Matrix Spike Duplicate
N/A	Not Applicable
ND	Not detected at or above the indicated MDL or RL
NR	Data Not Reported due to matrix interference or insufficient sample amount.
PDS	Post Digestion Spike
PDSD	Post Digestion Spike Duplicate
PF	Prep Factor
RD	Relative Difference
RL	Reporting Limit (The RL is the lowest calibration standard in a multipoint calibration.)
RPD	Relative Percent Deviation
RRT	Relative Retention Time
SPK Val	Spike Value
SPKRef Val	Spike Reference Value
SPLP	Synthetic Precipitation Leachate Procedure
ST	Sorbent Tube
TCLP	Toxicity Characteristic Leachate Procedure
TEQ	Toxicity Equivalents
WET (STLC)	Waste Extraction Test (Soluble Threshold Limit Concentration)

Analytical Qualifiers

samples were analyzed out of holding time

Case Narrative

Client: Pangea Environmental Svcs., Inc.

Project: 1244 2nd

Work Order: 1605A63 May 31, 2016

TO-15 ANALYSIS

All summa canisters are EVACUATED 5 days after the reporting of the results. Please call or email if a longer retention time is required.

In an effort to attain the lowest reporting limits possible for the majority of the TO-15 target list, high level compounds may be analyzed using EPA Method 8260B.

Polymer (Tedlar) bags are not recommended for TO15 samples. The disadvantages are listed in Appendix B of the DTSC Active Soil Gas Advisory of July 2015.

Client:	Pangea Environmental Svcs., Inc.
Date Received:	5/24/16 17:40
Date Prepared:	5/25/16
Project:	1244 2nd

WorkOrder:	1605A63
Extraction Method:	ASTM D 1946-90
Analytical Method:	ASTM D 1946-90
Unit:	μL/L

Atmospheric gas Oxygen and Nitrogen

Client ID	Lab ID	Matrix	Date Collected Instrument	Batch ID
SVW-1	1605A63-001A	SoilGas	05/24/2016 14:46 GC26	121518
Analytes	<u>Result</u>	<u>Qualifiers</u>	<u>RL</u> <u>DF</u>	Date Analyzed
Oxygen	99,000	Н	2000 1	05/25/2016 16:16

Analyst(s): GM

Client:	Pangea Environmental Svcs., Inc.
Date Received:	5/24/16 17:40
Date Prepared:	5/25/16
Project:	1244 2nd

WorkOrder:	1605A63
Extraction Method:	ASTM D 1946-90
Analytical Method:	ASTM D 1946-90
Unit:	uL/L

Light Gases					
Client ID	Lab ID	Matrix	Date Collected	Instrument	Batch ID
SVW-1	1605A63-001A	SoilGas	05/24/2016 14:46	GC26	121516
Analytes	Result	<u>Qualifiers</u>	<u>RL</u> <u>DF</u>		Date Analyzed
Methane	ND	Н	1.0 1		05/25/2016 11:54

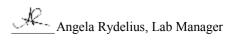
Analyst(s): AK

Client:	Pangea Environmental Svcs., Inc.
Date Received:	5/24/16 17:40
Date Prepared:	5/25/16
Project:	1244 2nd

WorkOrder:	1605A63
Extraction Method:	TO15
Analytical Method:	TO15
Unit:	$\mu g/m^3$

Volatile Organic Compounds

Client ID	Lab ID	Matrix	Date Collected Instrume	ent Batch ID
SVW-1	1605A63-001A	SoilGas	05/24/2016 14:46 GC29	121526
Analytes	Result	<u>Qualifiers</u>	<u>RL</u> <u>DF</u>	Date Analyzed
TPH(g)	ND	Н	1800 1	05/25/2016 22:32
<u>Surrogates</u>	<u>REC (%)</u>	<u>Qualifiers</u>	Limits	
1,2-DCA-d4	81	н	70-130	05/25/2016 22:32
<u>Analyst(s):</u> GM				

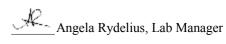

Client:	Pangea Environmental Svcs., Inc.
Date Received:	5/24/16 17:40
Date Prepared:	5/25/16
Project:	1244 2nd

WorkOrder:	1605A63
Extraction Method:	TO15
Analytical Method:	TO15
Unit:	$\mu g/m^3$

Leak Check Compound

Client ID	Lab ID	Matrix	Date Collected Instrument	Batch ID
SVW-1	1605A63-001A	SoilGas	05/24/2016 14:46 GC29	121526
<u>Analytes</u>	Result	<u>Qualifiers</u>	<u>RL</u> <u>DF</u>	Date Analyzed
Isopropyl Alcohol	ND	н	50 1	05/25/2016 22:32

Analyst(s): GM



Client:	Pangea Environmental Svcs., Inc.
Date Received:	5/24/16 17:40
Date Prepared:	5/25/16
Project:	1244 2nd

WorkOrder:	1605A63
Extraction Method:	TO15
Analytical Method:	TO15
Unit:	$\mu g/m^3$

Volatile Organic Compounds

Lab ID	Matrix	Date (Collected Instrument	Batch ID
1605A63-001A	SoilGas	05/24/2	016 14:46 GC29	121526
Result	<u>Qualifiers</u>	<u>RL</u>	DF	Date Analyzed
ND	Н	6.5	1	05/25/2016 22:32
ND	Н	8.8	1	05/25/2016 22:32
8.9	Н	7.6	1	05/25/2016 22:32
ND	Н	27	1	05/25/2016 22:32
<u>REC (%)</u>	<u>Qualifiers</u>	<u>Limits</u>		
74	Н	70-130		05/25/2016 22:32
86	Н	70-130		05/25/2016 22:32
	I605A63-001A Result ND ND 8.9 ND REC (%) 74	Interview Interview 1605A63-001A SoilGas Result Qualifiers ND H ND H 8.9 H ND H REC (%) Qualifiers 74 H	Interface Interface <thinterface< th=""> Interface <thinterface< th=""> Interface <thinterface< th=""> <thinterface< th=""> <thint< td=""><td>Interface Data Construct Description 1605A63-001A SoilGas 05/24/2016 14:46 GC29 Result Qualifiers RL DE ND H 6.5 1 ND H 8.8 1 8.9 H 7.6 1 ND H 27 1 REC (%) Qualifiers Limits Functional construction construc</td></thint<></thinterface<></thinterface<></thinterface<></thinterface<>	Interface Data Construct Description 1605A63-001A SoilGas 05/24/2016 14:46 GC29 Result Qualifiers RL DE ND H 6.5 1 ND H 8.8 1 8.9 H 7.6 1 ND H 27 1 REC (%) Qualifiers Limits Functional construction construc

Client:	Pangea Environmental Svcs., Inc.	WorkOrder:	1605A63
Date Prepared:	5/25/16	BatchID:	121518
Date Analyzed:	5/25/16	Extraction Method:	ASTM D 1946-90
Instrument:	GC26	Analytical Method:	ASTM D 1946-90
Matrix:	SoilGas	Unit:	μL/L
Project:	1244 2nd	Sample ID:	MB/LCS-121518

QC Summary Report for ASTM D1946-90

Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
Oxygen	ND	6050	2000	7000	-	86	70-130

QA/QC Officer

Client:	Pangea Environmental Svcs., Inc.	WorkOrder:	1605A63
Date Prepared:	5/25/16	BatchID:	121516
Date Analyzed:	5/25/16	Extraction Method:	ASTM D 1946-90
Instrument:	GC26	Analytical Method:	ASTM D 1946-90
Matrix:	SoilGas	Unit:	uL/L
Project:	1244 2nd	Sample ID:	MB/LCS-121516

QC Summary Report for ASTM D1946-90							
Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
Methane	ND	93.3	1.0	100	-	93	70-130

QA/QC Officer Page 10 of 17

Client:	Pangea Environmental Svcs., Inc.	WorkOrder:	1605A63
Date Prepared:	5/25/16	BatchID:	121526
Date Analyzed:	5/25/16	Extraction Method:	TO15
Instrument:	GC29	Analytical Method:	TO15
Matrix:	Tedlar	Unit:	$\mu g/m^3$
Project:	1244 2nd	Sample ID:	MB-121526

QC Summary Report for TO15

Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
TPH(g)	ND	-	1800	-	-	-	-
Surrogate Recovery							
1,2-DCA-d4	0.423	-		0.5	85	-	-
Toluene-d8	0.509	-		0.5	102	-	-
4-BFB	0.470	-		0.5	94	-	-

QA/QC Officer Page 11 of 17

Client:	Pangea Environmental Svcs., Inc.	WorkOrder:	1605A63
Date Prepared:	5/25/16	BatchID:	121526
Date Analyzed:	5/25/16	Extraction Method:	TO15
Instrument:	GC29	Analytical Method:	TO15
Matrix:	Tedlar	Unit:	$\mu g/m^3$
Project:	1244 2nd	Sample ID:	MB/LCS-121526

QC Summary Report for TO15

Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
Acetone	ND	57.1	12	60	-	95	60-140
Acrolein	ND	70.5	5.8	58.25	-	121	60-140
Acrylonitrile	ND	67.6	4.4	55	-	123	60-140
tert-Amyl methyl ether (TAME)	ND	101	8.5	105	-	96	60-140
Benzene	ND	66.1	6.5	80	-	83	60-140
Benzyl chloride	ND	149	11	132.5	-	113	60-140
Bromodichloromethane	ND	118	14	175	-	67	60-140
Bromoform	ND	208	21	262.5	-	79	60-140
Bromomethane	ND	108	7.9	97.5	-	111	60-140
1,3-Butadiene	ND	45.0	4.5	55	-	82	60-140
2-Butanone (MEK)	ND	82.8	15	75	-	110	60-140
t-Butyl alcohol (TBA)	ND	84.5	16	77.5	-	109	60-140
Carbon Disulfide	ND	94.0	6.3	80	-	117	60-140
Carbon Tetrachloride	ND	116	13	160	-	72	60-140
Chlorobenzene	ND	120	9.4	117.5	-	102	60-140
Chloroethane	ND	58.2	5.4	67	-	87	60-140
Chloroform	ND	99.8	9.9	122.5	-	81	60-140
Chloromethane	ND	45.8	4.2	52.5	-	87	60-140
Cyclohexane	ND	93.4	18	87.5	-	107	60-140
Dibromochloromethane	ND	168	17	217	-	78	60-140
1,2-Dibromo-3-chloropropane	ND	279	20	245	-	114	60-140
1,2-Dibromoethane (EDB)	ND	153	16	195	-	78	60-140
1,2-Dichlorobenzene	ND	145	12	152.5	-	95	60-140
1,3-Dichlorobenzene	ND	144	12	152.5	-	95	60-140
1,4-Dichlorobenzene	ND	139	12	152.5	-	91	60-140
Dichlorodifluoromethane	ND	110	10	125	-	88	60-140
1,1-Dichloroethane	ND	101	8.2	102.5	-	98	60-140
1,2-Dichloroethane (1,2-DCA)	ND	85.5	8.2	102.5	-	83	60-140
1,1-Dichloroethene	ND	97.3	8.1	100	-	97	60-140
cis-1,2-Dichloroethene	ND	104	8.1	100	-	104	60-140
trans-1,2-Dichloroethene	ND	101	8.1	100	-	101	60-140
1,2-Dichloropropane	ND	102	9.4	117.5	-	87	60-140
cis-1,3-Dichloropropene	ND	100	9.2	115	-	87	60-140
trans-1,3-Dichloropropene	ND	95.7	9.2	115	-	83	60-140
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	169	14	177.5	-	95	60-140
Diisopropyl ether (DIPE)	ND	110	8.5	105	-	105	60-140
1,4-Dioxane	ND	77.9	7.3	92.5	-	84	60-140

Page 12 of 17

Client:	Pangea Environmental Svcs., Inc.	WorkOrder:	1605A63
Date Prepared:	5/25/16	BatchID:	121526
Date Analyzed:	5/25/16	Extraction Method:	TO15
Instrument:	GC29	Analytical Method:	TO15
Matrix:	Tedlar	Unit:	$\mu g/m^3$
Project:	1244 2nd	Sample ID:	MB/LCS-121526

QC Summary Report for TO15

Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
Ethanol	ND	39.7	9.6	47.5	-	84	60-140
Ethyl acetate	ND	87.7	19	92.5	-	95	60-140
Ethyl tert-butyl ether (ETBE)	ND	113	8.5	105	-	108	60-140
Ethylbenzene	ND	108	8.8	110	-	99	60-140
4-Ethyltoluene	ND	123	10	125	-	98	60-140
Freon 113	ND	180	16	195	-	92	60-140
Heptane	ND	90.4	21	105	-	86	60-140
Hexachlorobutadiene	ND	228	22	270	-	85	60-140
Hexane	ND	94.5	18	90	-	105	60-140
2-Hexanone	ND	84.0	21	105	-	80	60-140
4-Methyl-2-pentanone (MIBK)	ND	85.5	8.3	105	-	81	60-140
Methyl-t-butyl ether (MTBE)	ND	86.3	7.3	92.5	-	93	60-140
Methylene chloride	ND	86.8	7.1	87.5	-	99	60-140
Propene	ND	38.4	8.8	42.5	-	90	60-140
Styrene	ND	112	8.6	107.5	-	105	60-140
1,1,1,2-Tetrachloroethane	ND	184	14	175	-	105	60-140
1,1,2,2-Tetrachloroethane	ND	206	14	175	-	118	60-140
Tetrachloroethene	ND	133	14	175.5	-	76	60-140
Tetrahydrofuran	ND	80.7	6.0	75	-	108	60-140
Toluene	ND	82.3	7.6	95	-	87	60-140
1,2,4-Trichlorobenzene	ND	189	15	187.5	-	101	60-140
1,1,1-Trichloroethane	ND	100	11	137.5	-	73	60-140
1,1,2-Trichloroethane	ND	113	11	137.5	-	82	60-140
Trichloroethene	ND	101	11	137.5	-	73	60-140
Trichlorofluoromethane	ND	123	11	142.5	-	86	60-140
1,2,4-Trimethylbenzene	ND	122	10	125	-	97	60-140
1,3,5-Trimethylbenzene	ND	129	10	125	-	103	60-140
Vinyl Acetate	ND	89.4	18	90	-	99	60-140
Vinyl Chloride	ND	53.5	5.2	65	-	82	60-140
Xylenes, Total	ND	328	27	330	-	99	60-140
Surrogate Recovery							
1,2-DCA-d4	384	388		500	77	78	60-140
Toluene-d8	431	411		500	86	82	60-140
4-BFB	454	452		500	91	90	60-140

McCampbell Analytico	II, Inc.			CHAIN-OF-CUSTODY RECO				CORD	Page 1 of 1						
Pittsburg, CA 94565-1701 (925) 252-9262				Work	Order	: 1605	5A63	(Client	Code:]	PEO				
	WaterTrax	WriteOn	EDF	E	kcel		EQuIS	VE	mail]HardCopy	Third	Party	🗌 J-fla	ag
Report to: Bob Clark-Riddell	Email: BRid	ddell@pange	aenv.com			l to: Bob Cl	ark-Ric	ddell			Rec	uested TA	T:	5 days;	
Pangea Environmental Svcs., Inc. 1710 Franklin Street, Ste. 200	cc/3rd Party: PO:					•		onmenta Street, S			Dat	te Receive	d:	05/24/2	2016
Oakland, CA 94612 (510) 836-3700 FAX: (510) 836-370	ProjectNo: 1244 09	4 2nd				Oaklar	nd, CA	94612			Dat	te Logged.	:	05/24/2	2016
				Γ				Req	uested	Tests (See legend	below)			
Lab ID Client I	D	Matrix	Collection Date	Hold	1	2	3	4	5	6	7	B 9	10	11	12
1605A63-001 SVW-1		SoilGas	5/24/2016 14:46		А	А	Α	Α	А	А					

Test Legend:

1 ATMOSPHERICGAS_SG(UL/L)	2 LG_TEDLAR_SOILGAS	3 TO15_Scan-SIM_SOIL(UG/M3)
5 TO15GAS_Scan-SIM_SOIL(UG/M3)	6 TO15-LC_SOIL(UG/M3)	7
9	10	11

4	TO15-8260_SOIL(UG/M3)
8	
12	

Prepared by: Alexandra Iniguez

The following SampID: 001A contains testgroup.

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

	McCampbell Analytical, Inc. "When Quality Counts"					1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com							
				WC	ORK ORDER	SUMN	IARY						
Client Name:	PANGEA EN	NVIRONMENTAL S	VCS., INC.		QC Level:	LEVEL 2				Work Order:	1605A63		
Project:	1244 2nd			Client Contact:	Date Logged:	5/24/2016							
Comments:	: Contact's Email: BRiddell@pangeaenv.com												
		WaterTrax	WriteOn	EDF	Excel	Fax	∢ Email	HardCopy	ThirdParty	_ J-flag			
Lab ID	Client ID	Matrix	Test Name		Contain /Compos		e & Preservative	De- Co chlorinated	ollection Date & Time	TAT Sediment Content	t Hold SubOut		

1605A63-001A SVW-1 SoilGas VOCs and TPHgas by TO15 for Soil Tedlar 5/24/2016 14:46 5 days 1 Vapor ASTM D1946-90 (Light Gases) 5 days \square <Methane_4> ASTM D1946-90 (Light Gases, 5 days Atmospheric) <Oxygen>

NOTES: - STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- MAI assumes that all material present in the provided sampling container is considered part of the sample - MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

				11002	AC	Q	L	0	L-	_			_		-	_		
N 84								CH	Al	N	0	FC	CU	ST	O	DY F	RECORE)
			Analytica		TURN AROUND TIME: RUSH I 1 DAY 2 DAY 3 DAY 5 DAY													
1534 Willow Pass Rd. / Pittsburg, Ca. 94565-1701 www.mccampbell.com / main@mccampbell.com				GeoTracker EDF PDF EDD EQuIS 10 DAY														
www.mccam	(877) 2	52-9262	/ Fax: (925) 252-92	.com 269	0.000					. 01	aim	#						
	Telephone: (877) 252-9262 / Fax: (925) 252-9269				1.00	UST CLEAN UP FUND ; Claim # Analysis Requested Helium Shroud SN#												
Report To: A Bob Clas	K-Rid	dell Bi	ITO: Hingea		6		1	Analysi	s Reg	uesi	eu	-	-		Oth		II OUU SIN#	
Company: Pangea	Env.	SVD	oakland			5	5	Je,									ase Specify uni	ts if different than
1710 Fra	AT ICCL I	E-	Mail: briddell	a nancea env.	com	ŝ	hyd	thar ase	rcle)			c,	latic		defa	ult: VC	Cs is reported i	in ug/m3, fixed
Tele: (510) 836-370	∞		ax: ()	1 3		2	aldel	Ple	e ci			oran	ron		gas is IF		ted in uL/L. Le	ak check default
Project #:			oject Name: 1244	212	m3)	5	orm	thar CO	oleas	uL/J	(%)	orflo	or A		15 11	л.		
Project Location: 1244	Jug	AVE			/Bn)	n/g	H.F	Me.	12 (F	ane	eck	ZI	/pur					
Sampler Signature: 64	R	-			-15	1) (1	PCI	etyle	2	rop:	Ch		ttic a		M	atrix		- 9
Field Sample ID	Colle	ection	Canister SN#	Sampler Kit SN#	VOCs by TO-15 (ug/m3) 8	-01 V	TPH(g) (ug/m3) LEED (inc. 4PCH, Formaldehyde, CO Total VOCco	Fixed Gas: CO2, Methang Ethane, Ethylene, Acetylene, CO (please circle or indicate in notes) uL/L	Fixed Gas: 02 N2 (please circle)	Fixed Gas: Propane uL/L	Helium Leak Check (%)	Leak Check (IPA) Norflorane, 1 1-difluroethane) us/m3	1,1-difluroethane) ug/m3 APH: Aliphatic and/or Aromatic (please circle) ug/m3				Canister Pressure/ Vacuum	
(Location)	Date	Time	Canister Sin#	Sampler Kit Siv#	VOCS	TPH(s	LEED	Fixed Ethyle	Fixed uL/L	Fixed	Heliur	Leak 1.1-dil	APH: (please	Other:	Soilgas	Indoor Air	Initial	Final
54W-1 5	24.16	1446	Tedlar			×		\times	X			X	1		X			
5110 1 5	-110	1.10	r ce fui						1.1									
	-							100								1. 4. 1		
								1										
							1	1	1						1			
	-	-			\vdash	1			1				1					
					H		1		1	1								
	-	-	1			+	-					-	1			1		
	-	-		-	++	-	1		-	1			1	-				
	-	-			+	-	-		-	+	-		1	-				
	-	-		1	+	+	-		-	-		-			-	1		
	1												-					
Relinquished By:	Date:	Time:	Received By:		1.1	- 63		· · · · · · · · · · · · · · · · · · ·				rder i	#:	_	_	-		-
Relinquished By:	Date:	Time:	Received By:		1.1.1		10.117								1		-	
5			~ ~		Cu	istod	ly Sea	ls Intact	?: Ye	s	-	No		No	one			
Relinquished By:	Date:	Time:	Received By:		Sh	ippe	d Via	:						-			-	
Kennquisnea By:	Date:	Time:	Received by.															
	1						-	_			-		_	-		-		

4-2

Sample Receipt Checklist

Client Name: Project Name: WorkOrder №: Carrier:	Pangea Environmental Svcs., Inc.1244 2nd1605A63Matrix:Client Drop-In			Date and Time Received: Date Logged: Received by: Logged by:	5/24/2016 17:40 5/24/2016 Jena Alfaro Alexandra Iniguez
	Chain of C	ustody	<u>/ (COC) </u>	nformation	
Chain of custody present?			✓	No	
Chain of custody	signed when relinquished and received?	Yes	✓	No 🗌	
Chain of custody	agrees with sample labels?	Yes	✓	No 🗌	
Sample IDs note	d by Client on COC?	Yes	✓	No 🗌	
Date and Time or	f collection noted by Client on COC?	Yes	✓	No 🗌	
Sampler's name	noted on COC?	Yes	✓	No 🗌	
	Sampl	le Rece	eipt Infor	mation	
Custody seals intact on shipping container/cooler?				No 🗌	NA 🔽
Shipping container/cooler in good condition?			✓	No 🗌	
Samples in proper containers/bottles?			✓	No 🗌	
Sample containers intact?			✓	No	
Sufficient sample volume for indicated test?			✓	No 🗌	
	Sample Preservation	on and	Hold Tir	ne (HT) Information	
All samples recei	ved within holding time?	Yes		No 🗹	
Sample/Temp Bl	ank temperature		Temp:		NA 🖌
Water - VOA vial	s have zero headspace / no bubbles?	Yes		No 🗌	NA 🖌
Sample labels checked for correct preservation?			✓	No 🗌	
pH acceptable upon receipt (Metal: <2; 522: <4; 218.7: >8)?				No 🗌	NA 🖌
Samples Receive	ed on Ice?	Yes		No 🗹	
UCMR3 Samples	—				
	tested and acceptable upon receipt for EPA 522?	Yes		No 🗌	NA 🗹
Free Chlorine tested and acceptable upon receipt for EPA 218.7, 300.1, 537, 539?				No 🗌	NA 🔽

Comments: Method ASTM D1946-90 (Light Gases, Atmospheric) was received passed its 0.025-day holding time. Method ASTM D1946-90 (Light Gases) was received passed its 0.25-day holding time.

McCampbell Analytical, Inc.

"When Quality Counts"

Analytical Report

WorkOrder:	1605677
Report Created for:	Pangea Environmental Svcs., Inc.
	1710 Franklin Street, Ste. 200 Oakland, CA 94612
Project Contact:	Bob Clark-Riddell
Project P.O.: Project Name:	1244 2nd Ave
Project Received:	05/16/2016

Analytical Report reviewed & approved for release on 05/23/2016 by:

Angela Rydelius, Laboratory Manager

The report shall not be reproduced except in full, without the written approval of the laboratory. The analytical results relate only to the items tested. Results reported conform to the most current NELAP standards, where applicable, unless otherwise stated in the case narrative.

1534 Willow Pass Rd. Pittsburg, CA 94565 TEL: (877) 252-9262 FAX: (925) 252-9269 www.mccampbell.com CDPH ELAP 1644 NELAP 4033ORELAP

Glossary of Terms & Qualifier Definitions

Client:Pangea Environmental Svcs., Inc.Project:1244 2nd AveWorkOrder:1605677

Glossary Abbreviation

%D	Serial Dilution Percent Difference
95% Interval	95% Confident Interval
DF	Dilution Factor
DI WET	(DISTLC) Waste Extraction Test using DI water
DISS	Dissolved (direct analysis of 0.45 μm filtered and acidified water sample)
DLT	Dilution Test (Serial Dilution)
DUP	Duplicate
EDL	Estimated Detection Limit
ITEF	International Toxicity Equivalence Factor
LCS	Laboratory Control Sample
MB	Method Blank
MB % Rec	% Recovery of Surrogate in Method Blank, if applicable
MDL	Method Detection Limit
ML	Minimum Level of Quantitation
MS	Matrix Spike
MSD	Matrix Spike Duplicate
N/A	Not Applicable
ND	Not detected at or above the indicated MDL or RL
NR	Data Not Reported due to matrix interference or insufficient sample amount.
PDS	Post Digestion Spike
PDSD	Post Digestion Spike Duplicate
PF	Prep Factor
RD	Relative Difference
RL	Reporting Limit (The RL is the lowest calibration standard in a multipoint calibration.)
RPD	Relative Percent Deviation
RRT	Relative Retention Time
SPK Val	Spike Value
SPKRef Val	Spike Reference Value
SPLP	Synthetic Precipitation Leachate Procedure
ST	Sorbent Tube
TCLP	Toxicity Characteristic Leachate Procedure
TEQ	Toxicity Equivalents
WET (STLC)	Waste Extraction Test (Soluble Threshold Limit Concentration)

Analytical Qualifiers

sample diluted due to high organic content.

TPH(g)

MTBE

Benzene

Toluene

Xylenes

Surrogates

Analyst(s): LT

aaa-TFT

Ethylbenzene

ND

107

REC (%)

Analytical Report

Client:	Pangea Environmental Svcs., Inc.
Date Received:	5/16/16 17:00
Date Prepared:	5/19/16-5/20/16
Project:	1244 2nd Ave

WorkOrder:	1605677
Extraction Method:	SW5030B
Analytical Method:	SW8021B/8015Bm
Unit:	μg/L

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE

Client ID	Lab ID	Matrix	Date C	Collected Instrument	Batch ID
SB-1	1605677-001A	Water	05/16/20	016 10:00 GC3	121200
Analytes	Result		<u>RL</u>	DF	Date Analyzed
TPH(g)	ND		50	1	05/19/2016 23:10
MTBE			5.0	1	05/19/2016 23:10
Benzene			0.50	1	05/19/2016 23:10
Toluene			0.50	1	05/19/2016 23:10
Ethylbenzene			0.50	1	05/19/2016 23:10
Xylenes			1.5	1	05/19/2016 23:10
<u>Surrogates</u>	<u>REC (%)</u>		<u>Limits</u>		
aaa-TFT	102		70-130		05/19/2016 23:10
<u>Analyst(s):</u> LT					
Client ID	Lab ID	Matrix	Date C	Collected Instrument	Batch ID
SB-2	1605677-002A	Water	05/16/20	016 10:15 GC3	121306
Analytes	Result		<u>RL</u>	DE	Date Analyzed

50

5.0

0.50

0.50

0.50

1.5

Limits

70-130

1

1

1

1

1

1

05/20/2016 18:00

05/20/2016 18:00

05/20/2016 18:00

05/20/2016 18:00

05/20/2016 18:00

05/20/2016 18:00

05/20/2016 18:00

Analytical Report

Client:	Pangea Environmental Svcs., Inc.
Date Received:	5/16/16 17:00
Date Prepared:	5/19/16-5/20/16
Project:	1244 2nd Ave

WorkOrder:	1605677
Extraction Method:	SW5030B
Analytical Method:	SW8021B/8015Bm
Unit:	μg/L

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE

Client ID	Lab ID	Matrix	Date Co	ollected Instrument	Batch ID
SB-3	1605677-003A	Water	05/16/20 ⁻	16 14:45 GC3	121306
Analytes	Result		<u>RL</u>	DF	Date Analyzed
TPH(g)	ND		50	1	05/20/2016 19:01
MTBE			5.0	1	05/20/2016 19:01
Benzene			0.50	1	05/20/2016 19:01
Toluene			0.50	1	05/20/2016 19:01
Ethylbenzene			0.50	1	05/20/2016 19:01
Xylenes			1.5	1	05/20/2016 19:01
<u>Surrogates</u>	<u>REC (%)</u>		<u>Limits</u>		
aaa-TFT	102		70-130		05/20/2016 19:01
<u>Analyst(s):</u> LT					

Analytical Report

Client:	Pangea Environmental Svcs., Inc.
Date Received:	5/16/16 17:00
Date Prepared:	5/16/16
Project:	1244 2nd Ave

WorkOrder:	1605677
Extraction Method:	SW3510C
Analytical Method:	SW8015B
Unit:	μg/L

Client ID	Lab ID	Matrix	Date Co	llected	Instrument	Batch ID
SB-1	1605677-001A	Water	05/16/201	6 10:00	GC9a	121004
Analytes	<u>Result</u>		<u>RL</u>	DF		Date Analyzed
TPH-Diesel (C10-C23)	ND		50	1		05/17/2016 06:32
TPH-Motor Oil (C18-C36)	ND		250	1		05/17/2016 06:32
<u>Surrogates</u>	<u>REC (%)</u>		<u>Limits</u>			
C9	96		70-130			05/17/2016 06:32
<u>Analyst(s):</u> TK						
Client ID	Lab ID	Matrix	Date Co	llected	Instrument	Batch ID
SB-2	1605677-002A	Water	05/16/201	6 10:15	GC9a	121004
Analytes	Result		<u>RL</u>	<u>DF</u>		Date Analyzed
TPH-Diesel (C10-C23)	ND		50	1		05/17/2016 08:28
TPH-Motor Oil (C18-C36)	ND		250	1		05/17/2016 08:28
Surrogates	<u>REC (%)</u>		<u>Limits</u>			
C9	95		70-130			05/17/2016 08:28
<u>Analyst(s):</u> TK						
Client ID	Lab ID	Matrix	Date Co	llected	Instrument	Batch ID
SB-3	1605677-003A	Water	05/16/201	6 14:45	GC11A	121004
Analytes	Result		<u>RL</u>	<u>DF</u>		Date Analyzed
TPH-Diesel (C10-C23)	ND		100	1		05/17/2016 07:13
TPH-Motor Oil (C18-C36)	ND		500	1		05/17/2016 07:13
<u>Surrogates</u>	<u>REC (%)</u>		<u>Limits</u>			
C9	91		70-130			05/17/2016 07:13
<u>Analyst(s):</u> TK			Analytical Comm	<u>nents:</u> a	3	

Client:	Pangea Environmental Svcs., Inc.	WorkOrder:	1605677
Date Prepared:	5/19/16	BatchID:	121200
Date Analyzed:	5/19/16	Extraction Method:	SW5030B
Instrument:	GC3	Analytical Method:	SW8021B/8015Bm
Matrix:	Water	Unit:	μg/L
Project:	1244 2nd Ave	Sample ID:	MB/LCS-121200 1605701-001AMS/MSD

QC Summary Report for SW8021B/8015Bm

Analyte	MB Result	LCS Result		RL	SPK Val		B SS REC	LCS %REC	LCS Limits
TPH(btex)	ND	61.5		40	60	-		102	70-130
МТВЕ	ND	10.8		5.0	10	-		108	70-130
Benzene	ND	10.7		0.50	10	-		107	70-130
Toluene	ND	10.5		0.50	10	-		105	70-130
Ethylbenzene	ND	10.7		0.50	10	-		107	70-130
Xylenes	ND	31.8		1.5	30	-		106	70-130
Surrogate Recovery									
aaa-TFT	10.3	9.79			10	10)3	98	70-130
Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/N Limit	-	PD RPD Limit
TPH(htex)	NR	NR		1300	NR	NR	_	N	IR

TPH(btex)	NR	NR	1300	NR	NR	-	NR
MTBE	NR	NR	ND<50	NR	NR	-	NR
Benzene	NR	NR	180	NR	NR	-	NR
Toluene	NR	NR	380	NR	NR	-	NR
Ethylbenzene	NR	NR	60	NR	NR	-	NR
Xylenes	NR	NR	400	NR	NR	-	NR
Surrogate Recovery							
aaa-TFT	NR	NR		NR	NR	-	NR

_____QA/QC Officer

Client:	Pangea Environmental Svcs., Inc.	WorkOrder:	1605677
Date Prepared:	5/20/16	BatchID:	121306
Date Analyzed:	5/20/16	Extraction Method:	SW5030B
Instrument:	GC3	Analytical Method:	SW8021B/8015Bm
Matrix:	Water	Unit:	μg/L
Project:	1244 2nd Ave	Sample ID:	MB/LCS-121306 1605677-002AMS/MSD

QC Summary Report for SW8021B/8015Bm

Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
TPH(btex)	ND	61.4	40	60	-	102	70-130
МТВЕ	ND	10.9	5.0	10	-	109	70-130
Benzene	ND	10.6	0.50	10	-	106	70-130
Toluene	ND	10.5	0.50	10	-	105	70-130
Ethylbenzene	ND	10.7	0.50	10	-	107	70-130
Xylenes	ND	32.2	1.5	30	-	107	70-130
Surrogate Recovery							
aaa-TFT	9.80	9.48		10	98	95	70-130

Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
TPH(btex)	62.7	63.3	60	ND	104	106	70-130	1.01	20
MTBE	11.7	11.9	10	ND	107	109	70-130	1.45	20
Benzene	10.6	10.4	10	ND	106	104	70-130	2.15	20
Toluene	10.6	10.4	10	ND	106	104	70-130	2.05	20
Ethylbenzene	10.8	10.6	10	ND	108	106	70-130	2.56	20
Xylenes	32.5	31.9	30	ND	108	106	70-130	1.93	20
Surrogate Recovery									
aaa-TFT	9.51	9.41	10		95	94	70-130	1.04	20

_____QA/QC Officer

Client:	Pangea Environmental Svcs., Inc.	WorkOrder:	1605677
Date Prepared:	5/16/16	BatchID:	121004
Date Analyzed:	5/16/16	Extraction Method:	SW3510C
Instrument:	GC9a	Analytical Method:	SW8015B
Matrix:	Water	Unit:	μg/L
Project:	1244 2nd Ave	Sample ID:	MB/LCS/LCSD-121004

QC Report for SW8015B w/out SG Clean-Up

Analyte	MB Result			RL	SPK Val		B SS REC		IB SS imits
TPH-Diesel (C10-C23)	ND			50	-	-		-	
TPH-Motor Oil (C18-C36)	ND			250	-	-		-	
Surrogate Recovery									
C9	588				625	94	L	6	5-122
Analyte	LCS Result	LCSD Result	SPK Val		LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
TPH-Diesel (C10-C23)	1090	1170	1000		109	117	61-157	7.10	30
Surrogate Recovery									
C9	582	598	625		93	96	65-122	2.68	30

_____QA/QC Officer Page 8 of 12

McCampbell Analytical,	Inc.		СН	AIN	I-OF	-CL	JST	ODY	RE	COF	RD		Page	e 1 of	1
Pittsburg, CA 94565-1701 (925) 252-9262			Worl	kOrde	r: 160	5677		Client	Code:	PEO					
	WaterTrax WriteO	n 🗌 EDF	E	Excel]EQuIS	✓	Email		HardCo	ру	Thirc	Party	J-fla	g
Report to: Bob Clark-Riddell	Email: BRiddell@pa	ingeaenv.com		В		lark-Ric					Requ	ested TA	Т:	5 days;	
Pangea Environmental Svcs., Inc. 1710 Franklin Street, Ste. 200 Oakland, CA 94612 (510) 836-3700 FAX: (510) 836-3709	PO: ProjectNo: 1244 2nd Ave	e			1710	ea Envir Franklin nd, CA	street					Receive Logged		05/16/2 05/16/2	
Lab ID Client ID	Matrix	Collection Date	Hold	1	2	3	Re 4	equested	d Tests (6	(See lege 7	end b 8	elow) 9	10) 11	12

1605677-001	SB-1	Water	5/16/2016 10:00	А	А			
1605677-002	SB-2	Water	5/16/2016 10:15	А	А			
1605677-003	SB-3	Water	5/16/2016 14:45	А	А			

Test Legend:

1	G-MBTEX_W
5	
9	

2	TPH(DMO)_W	3
6		7
10		1

3	
7	
11	

Prepared by: Briana Cutino

The following SampIDs: 001A, 002A, 003A contain testgroup.

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

	McCampbell Analytical, Inc.	
÷	"When Quality Counts"	

WORK ORDER SUMMARY

Client Name: Project: Comments:	PANGEA ENV 1244 2nd AVE	VIRONMENTAL S'	VCS., INC.		QC Level: Client Contact: Contact's Email:	Bob Clarl	k-Riddell	1			a Order: Logged:	1605677 5/16/2016
		WaterTrax	WriteOn	EDF	Excel	Fax	✓ Email	HardCo	opyThirdParty	∕ ∏J	-flag	
Lab ID	Client ID	Matrix	Test Name		Containe /Composi		e & Preservative	De- chlorinated	Collection Date & Time	ТАТ	Sediment Content	Hold SubOut
1605677-001A	SB-1	Water	Multi-Range TI	H(g,d,mo)	4		w/HCL + 2-aVOAs (multi-range)		5/16/2016 10:00	5 days	Trace	
1605677-002A	SB-2	Water	Multi-Range TI	H(g,d,mo)	5		w/HCL + 2-aVOAs (multi-range)		5/16/2016 10:15	5 days	Trace	
1605677-003A	SB-3	Water	Multi-Range TI	H(g,d,mo)	4		w/HCL + 2-aVOAs (multi-range)		5/16/2016 14:45	5 days	Trace	

NOTES: - STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- MAI assumes that all material present in the provided sampling container is considered part of the sample - MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

	McC	am	pbe	ell	A	nc	aly	rtic	cc	xI,	In	nC							Cł	ΗA)F	С	US	TC	D	Y	RE	С	O	RD			
1534 Willow Pass Rd. / Pittsburg, Ca. 94565-1701										тι	JRN	ARC	DUN	D T	IME	: RI	JSH[2	24 H		4	8 HR		72	HR		5 DAY	A							
www.mccampbell.com / main@mccampbell.com												GeoTracker EDF PDF EDD Write On (DW) EQuIS 10 DAY																							
	Telepho	one: (87	7) 252-	926	2/F	ax:	(925	5) 25	2-92	269	0	if	1 -	~		Effluent Sample Requiring "J" flag UST Clean Up Fund Project ; Claim #																			
	29)						_			11	U	5	le	TT	F	EI	nuen	t San	ipie	Requ	nrmş	; ,				_			iu ri	ojec	ıц,	Clair	1 #	1	2
Report To:	os fu	Ank-1	ZIDDE	u	Bil	To:		Bo	13			_					-	-		-	-		-	Ana	lysis	Rec	uest	-	-	_	-		-	-	_
	NGEH 110 FR	ANICIA	1	17.00	W.	-						-				BE		&F)														OM			
	anut			13	E-N	Mail	. 6	id	let	0	DAI	nhe	1201	NIC	in	IW/		Grease (1664 / 5520 E/B&F)				ers									lysis	14			
	135-8		-		Fa	x: ()			1	"				(100		5520		51)		ngen									s ana	(d			
Project #:	1.1/1.1.2		C			ject	_			44	10	h	0, 1	NE		Sor 8		664 /	418.1	0/ 80	(s	/ Co		icides			(SAN		2		netals	50			
Project Location		and Au	r, ona	40	Pu	rcha	se O	rde	#		_	-		_		8015		se (1) suo	826	ticide	clors	les)	Ierbi	Cs)	Cs)	s/P	(0	6		ED n	Hall			
Sampler Signatu	re:						M	AT	RIX	-	-	-	M	ЕТН	OD	8021/		Grea	carb	(EPA	1 Pes	Aro	sticie	LI2 a	(VO	(SVC	(PAH	/ 602	602(OLV	F			
		SAMP	LING		_		- 10			-	_	-		SER		BTEX & TPH as Gas (8021/ 8015 or 8260) / MTBE	15)	Total Petroleum Oil &	Total Petroleum Hydrocarbons (418.1)	MTBE / BTEX ONLY (EPA 8260/ 8021)	EPA 505/ 608 / 8081 (CI Pesticides)	EPA 608 / 8082 PCB's ; Arochors / Congeners	EPA 507 / 8141 (NP Pesticides)	EPA 515 / 8151 (Acidic Cl Herbicides)	EPA 524.2 / 624 / 8260 (VOCs)	EPA 525.2 / 625 / 8270 (SVOCs)	EPA 8270 SIM / 8310 (PAHs / PNAs)	CAM 17 Metals (200.8 / 6020)	LUFT 5 Metals (200.8 / 6020)	20)	Filter sample for DISSOLVED metals analysis	2			
SAMPLE ID	Location/			ers	ter	ь	ater		113							H as	TPH as Diesel (8015)	m	I un	O XX	8 / 80	82 P	141 (1	151 (/	524/	525/	IM/8	tals (2	als (2	Metals (200.8 / 6020)	for	5			
SAM DE ID	Field Point Name	Date	Time	tain	Wa	Vate	g W	ater	_		-	-		-	A	L'L'	Dies	trole	trole	BTF	5/ 608	8 / 80	7/8	5/8	42/1	5.2 /	70 S	7 Mei	Met	200.8	du	5	-		+
() () () () () () () () () ()		Date	· ·····	Containers	Ground Water	Waste Water	Drinking Water	Sea / Water	-		Sludge	Other	H	4NO3	Other	EX	H as	tal Pe	tal Po	[BE/	A 50	A 60	A 50	A 51	A 52	A 52	A 82	MI.	IFT 5	etals (ter sa	FVE	- 1		•
				#	Gr	W	Dr	Sei	Soil	Air	Slu	õ	HCL	H	ot	BT	TP	To	To	LW	EP	EP	EP	EP	EP	EP	EP	CA	EL	Me	Fil	1			-
38-1		5/12/16	1000	4	Х								X		1																	X			
58-2 58-3		516-16		5									×	,	4	1									X	ec						X			
58-3	1	5.16.10	1445	4									×		I												_					Х			
		()						23													1													-	
							1							1	. 1														_				_	_	_
														1.1	0.1		1		her.										_				_	_	_
					11	_			_				1				-	-				-					- 1						_	-	
							1						115	1			_																_	_	_
	1												12.		_ 1		_							_							_		_		_
			2								3								1 -		-		12							1			_		_
			1			- 2			-					1.													L								_
**MAI clients MUS gloved, open air, san us to work safely.	f disclose any ple handling	dangerou by MAI s	s chemica taff. Non-o	ls kno lisclo	own to sure i	o be p neurs	an in	nt in t nmea	heir s liate S	submi \$250 s	itted surch	sam narg	ples i e and	n cor the c	client	is su	ns tha bject	t may to ful	caus lega	l liabi	ility f	or ha	rm su	ffere	d. Th	ank	you fo	r you	r und	lersta	ndin	g and f	or allo	t, owing	
Relinquished By: Date: Time: Received By:						DCC	NDI			-	1=	-VI	MR	ESE	NUE	01	COM JOA	MEN	TS:	-1	ри	dlm	Ň												
Relinquished By:	Relifiquished By: Date: Time: Received By: DA				DECH	ILOI	RINA LIATI ED II	TED E CON	IN LA	AB NER	s	- P	NES	een	Ø		tor		-11	ng	5														
Relinquished By:		Date:	Time:		Rece	ived l	By:					-	-					ve	AS	0&	G	MET	ALS	от	HER		HAZ	ARDO	DUS:						
			1	1		-								j.	RES	ERV	ATIC					H<2_				-									1

Sample Receipt Checklist

Client Name:	Pangea Environmental Svcs., Inc.			Date and Time Received:	5/16/2016 17:00
Project Name: WorkOrder №:	1244 2nd Ave 1605677 Matrix: Water			Date Logged: Received by:	5/16/2016 Jena Alfaro
Carrier:	Client Drop-In			Logged by:	Briana Cutino
	Chain of C	ustody	/ (COC) Inf	ormation	
Chain of custody	present?	Yes	✓	No 🗌	
Chain of custody	signed when relinquished and received?	Yes	✓	No 🗌	
Chain of custody	agrees with sample labels?	Yes	✓	No 🗌	
Sample IDs noted	d by Client on COC?	Yes	✓	No 🗌	
Date and Time of	collection noted by Client on COC?	Yes	✓	No 🗌	
Sampler's name	noted on COC?	Yes	✓	No 🗌	
	Sampl	e Rece	eipt Inform	ation	
Custody seals int	act on shipping container/cooler?	Yes		No 🗌	NA 🖌
Shipping containe	er/cooler in good condition?	Yes	✓	No	
Samples in prope	er containers/bottles?	Yes		No 🗌	
Sample container	rs intact?	Yes		No 🗌	
Sufficient sample	volume for indicated test?	Yes	✓	No 🗌	
	Sample Preservation	on and	Hold Time	e (HT) Information	
All samples recei	ved within holding time?	Yes	✓	No	
Sample/Temp Bla	ank temperature		Temp:	2°C	
Water - VOA vial	s have zero headspace / no bubbles?	Yes	✓	No	
Sample labels ch	ecked for correct preservation?	Yes	✓	No	
pH acceptable up	oon receipt (Metal: <2; 522: <4; 218.7: >8)?	Yes		No	NA 🗹
Samples Receive		Yes	✓	No	
	(Ісе Туре	e: WE	TICE)		
UCMR3 Samples	—		_		
Total Chlorine t	tested and acceptable upon receipt for EPA 522?	Yes		No	NA 🗹
Free Chlorine t 300.1, 537, 539	ested and acceptable upon receipt for EPA 218.7, ?	Yes		No 🗌	NA 🗹

Comments:

McCampbell Analytical, Inc.

"When Quality Counts"

Analytical Report

WorkOrder:	1605676
Report Created for:	Pangea Environmental Svcs., Inc.
	1710 Franklin Street, Ste. 200 Oakland, CA 94612
Project Contact:	Bob Clark-Riddell
Project P.O.: Project Name:	1244 2nd Ave
Project Received:	05/16/2016

Analytical Report reviewed & approved for release on 05/20/2016 by:

Angela Rydelius, Laboratory Manager

The report shall not be reproduced except in full, without the written approval of the laboratory. The analytical results relate only to the items tested. Results reported conform to the most current NELAP standards, where applicable, unless otherwise stated in the case narrative.

1534 Willow Pass Rd. Pittsburg, CA 94565 TEL: (877) 252-9262 FAX: (925) 252-9269 www.mccampbell.com CDPH ELAP 1644 NELAP 4033ORELAP

Glossary of Terms & Qualifier Definitions

Client:Pangea Environmental Svcs., Inc.Project:1244 2nd AveWorkOrder:1605676

Glossary Abbreviation

%D	Serial Dilution Percent Difference
95% Interval	95% Confident Interval
DF	Dilution Factor
DI WET	(DISTLC) Waste Extraction Test using DI water
DISS	Dissolved (direct analysis of 0.45 μm filtered and acidified water sample)
DLT	Dilution Test (Serial Dilution)
DUP	Duplicate
EDL	Estimated Detection Limit
ITEF	International Toxicity Equivalence Factor
LCS	Laboratory Control Sample
MB	Method Blank
MB % Rec	% Recovery of Surrogate in Method Blank, if applicable
MDL	Method Detection Limit
ML	Minimum Level of Quantitation
MS	Matrix Spike
MSD	Matrix Spike Duplicate
N/A	Not Applicable
ND	Not detected at or above the indicated MDL or RL
NR	Data Not Reported due to matrix interference or insufficient sample amount.
PDS	Post Digestion Spike
PDSD	Post Digestion Spike Duplicate
PF	Prep Factor
RD	Relative Difference
RL	Reporting Limit (The RL is the lowest calibration standard in a multipoint calibration.)
RPD	Relative Percent Deviation
RRT	Relative Retention Time
SPK Val	Spike Value
SPKRef Val	Spike Reference Value
SPLP	Synthetic Precipitation Leachate Procedure
ST	Sorbent Tube
TCLP	Toxicity Characteristic Leachate Procedure
TEQ	Toxicity Equivalents
WET (STLC)	Waste Extraction Test (Soluble Threshold Limit Concentration)

Analytical Report

Client:	Pangea Environmental Svcs., Inc.
Date Received:	5/16/16 19:00
Date Prepared:	5/16/16
Project:	1244 2nd Ave

WorkOrder:	1605676
Extraction Method:	SW5030B
Analytical Method:	SW8021B/8015Bm
Unit:	mg/Kg

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE

Client ID	Lab ID	Matrix	Date Co	ollected	Instrument	Batch ID
SB-1-12'	1605676-003A	Soil	05/13/20	16 15:50	GC19	121002
Analytes	<u>Result</u>		<u>RL</u>	DF		Date Analyzed
TPH(g)	ND		1.0	1		05/19/2016 22:30
МТВЕ			0.050	1		05/19/2016 22:30
Benzene			0.0050	1		05/19/2016 22:30
Toluene			0.0050	1		05/19/2016 22:30
Ethylbenzene			0.0050	1		05/19/2016 22:30
Xylenes			0.015	1		05/19/2016 22:30
Surrogates	<u>REC (%)</u>		<u>Limits</u>			
2-Fluorotoluene	98		70-130			05/19/2016 22:30
<u>Analyst(s):</u> TD						
Client ID	Lab ID	Matrix	Date Co	ollected	Instrument	Batch ID
SB-2-6'	1605676-004A	Soil	05/13/20	16 18:00	GC19	121002
Analytes	Result		<u>RL</u>	DF		Date Analyzed
TPH(g)	ND		1.0	1		05/19/2016 23:00
MTBE			0.050	1		05/19/2016 23:00
Benzene			0.0050	1		05/19/2016 23:00
Toluene			0.0050	1		05/19/2016 23:00
			0.0050	4		
Ethylbenzene			0.0050	1		05/19/2016 23:00
Ethylbenzene Xylenes			0.0050	1		05/19/2016 23:00 05/19/2016 23:00

Analyst(s): TD

Analytical Report

Client:	Pangea Environmental Svcs., Inc.
Date Received:	5/16/16 19:00
Date Prepared:	5/16/16
Project:	1244 2nd Ave

WorkOrder:	1605676
Extraction Method:	SW5030B
Analytical Method:	SW8021B/8015Bm
Unit:	mg/Kg

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE

Client ID	Lab ID	Matrix	Date Co	ollected Instrument	Batch ID
SB-2-9'	1605676-005A	Soil	05/13/20	16 18:10 GC19	121002
Analytes	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
TPH(g)	ND		1.0	1	05/19/2016 23:30
MTBE			0.050	1	05/19/2016 23:30
Benzene			0.0050	1	05/19/2016 23:30
Toluene			0.0050	1	05/19/2016 23:30
Ethylbenzene			0.0050	1	05/19/2016 23:30
Xylenes			0.015	1	05/19/2016 23:30
Surrogates	<u>REC (%)</u>		<u>Limits</u>		
2-Fluorotoluene	83		70-130		05/19/2016 23:30
<u>Analyst(s):</u> TD					
Client ID	Lab ID	Matrix	Date Co	ollected Instrument	Batch ID
SB-2-12'	1605676-006A	Soil	05/13/20	16 18:20 GC19	121002
Analytes	Result		<u>RL</u>	DF	Date Analyzed
TPH(g)	ND		1.0	1	05/20/2016 00:00
MTBE			0.050	1	05/20/2016 00:00
Benzene			0.0050	1	05/20/2016 00:00
Toluene			0.0050	1	05/20/2016 00:00
Ethylbenzene			0.0050	1	05/20/2016 00:00
Xylenes			0.015	1	05/20/2016 00:00
Surrogates	<u>REC (%)</u>		<u>Limits</u>		
2-Fluorotoluene	80		70-130		05/20/2016 00:00

Analyst(s): TD

93

Analytical Report

Client:	Pangea Environmental Svcs., Inc.
Date Received:	5/16/16 19:00
Date Prepared:	5/16/16
Project:	1244 2nd Ave

WorkOrder:	1605676
Extraction Method:	SW5030B
Analytical Method:	SW8021B/8015Bm
Unit:	mg/Kg

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE

Client ID	Lab ID	Matrix	Date Co	ollected Instrument	Batch ID
SB-2-15'	1605676-007A	Soil	05/13/20	16 18:40 GC19	121002
<u>Analytes</u>	Result		<u>RL</u>	DF	Date Analyzed
TPH(g)	ND		1.0	1	05/20/2016 00:30
MTBE			0.050	1	05/20/2016 00:30
Benzene			0.0050	1	05/20/2016 00:30
Toluene			0.0050	1	05/20/2016 00:30
Ethylbenzene			0.0050	1	05/20/2016 00:30
Xylenes			0.015	1	05/20/2016 00:30
Surrogates	<u>REC (%)</u>		<u>Limits</u>		
2-Fluorotoluene	84		70-130		05/20/2016 00:30
<u>Analyst(s):</u> TD					
Client ID	Lab ID	Matrix	Date Co	ollected Instrument	Batch ID
SB-3-9'	1605676-009A	Soil	05/16/20	16 11:10 GC19	121002
Analytes	Result		RL	DE	Date Analyzed
TPH(g)	ND		1.0	1	05/20/2016 01:00
MTBE			0.050	1	05/20/2016 01:00
Benzene			0.0050	1	05/20/2016 01:00
Toluene			0.0050	1	05/20/2016 01:00
Ethylbenzene			0.0050	1	05/20/2016 01:00
Xylenes			0.015	1	05/20/2016 01:00
Surrogates	<u>REC (%)</u>		<u>Limits</u>		

70-130

2-Fluorotoluene

Analyst(s): TD

Analytical Report

Client:	Pangea Environmental Svcs., Inc.
Date Received:	5/16/16 19:00
Date Prepared:	5/16/16
Project:	1244 2nd Ave

WorkOrder:	1605676
Extraction Method:	SW3550B
Analytical Method:	SW8015B
Unit:	mg/Kg

Client ID	Lab ID	Matrix	Date C	ollected	Instrument	Batch ID
SB-1-12'	1605676-003A	Soil	05/13/20	16 15:50	GC9b	121001
Analytes	Result		<u>RL</u>	<u>DF</u>		Date Analyzed
TPH-Diesel (C10-C23)	ND		1.0	1		05/17/2016 07:11
TPH-Motor Oil (C18-C36)	ND		5.0	1		05/17/2016 07:11
Surrogates	<u>REC (%)</u>		Limits			
C9	92		70-130			05/17/2016 07:11
<u>Analyst(s):</u> TK						
Client ID	Lab ID	Matrix	Date C	ollected	Instrument	Batch ID
SB-2-6'	1605676-004A	Soil	05/13/2016 18:00		GC9a	121001
Analytes	<u>Result</u>		<u>RL</u>	<u>DF</u>		Date Analyzed
TPH-Diesel (C10-C23)	ND		1.0	1		05/17/2016 09:46
TPH-Motor Oil (C18-C36)	ND		5.0	1		05/17/2016 09:46
Surrogates	<u>REC (%)</u>		Limits			
C9	92		70-130			05/17/2016 09:46
<u>Analyst(s):</u> TK						
Client ID	Lab ID	Matrix	Date C	ollected	Instrument	Batch ID
SB-2-9'	1605676-005A	Soil	05/13/20	16 18:10	GC9b	121001
Analytes	<u>Result</u>		<u>RL</u>	<u>DF</u>		Date Analyzed
TPH-Diesel (C10-C23)	ND		1.0	1		05/17/2016 07:50
TPH-Motor Oil (C18-C36)	ND		5.0	1		05/17/2016 07:50
<u>Surrogates</u>	<u>REC (%)</u>		<u>Limits</u>			
C9	91		70-130			05/17/2016 07:50
<u>Analyst(s):</u> TK						

Analytical Report

Client:	Pangea Environmental Svcs., Inc.
Date Received:	5/16/16 19:00
Date Prepared:	5/16/16
Project:	1244 2nd Ave

WorkOrder:	1605676
Extraction Method:	SW3550B
Analytical Method:	SW8015B
Unit:	mg/Kg

Total Extractable Petroleum	Hydrocarbons w/out SG Clean-Up

Client ID	Lab ID	Matrix	Date C	ollected	Instrument	Batch ID
SB-2-12'	1605676-006A	Soil	05/13/20	016 18:20	GC9b	121001
Analytes	<u>Result</u>		<u>RL</u>	<u>DF</u>		Date Analyzed
TPH-Diesel (C10-C23)	ND		1.0	1		05/17/2016 08:28
TPH-Motor Oil (C18-C36)	ND		5.0	1		05/17/2016 08:28
Surrogates	<u>REC (%)</u>		Limits			
C9	91		70-130			05/17/2016 08:28
<u>Analyst(s):</u> TK						
Client ID	Lab ID	Matrix	Date C	ollected	Instrument	Batch ID
SB-2-15'	1605676-007A	Soil	05/13/20	016 18:40	GC9a	121001
Analytes	<u>Result</u>		<u>RL</u>	<u>DF</u>		Date Analyzed
TPH-Diesel (C10-C23)	ND		1.0	1		05/17/2016 05:53
TPH-Motor Oil (C18-C36)	ND		5.0	1		05/17/2016 05:53
Surrogates	<u>REC (%)</u>		Limits			
C9	96		70-130			05/17/2016 05:53
<u>Analyst(s):</u> TK						
Client ID	Lab ID	Matrix	Date C	ollected	Instrument	Batch ID
SB-3-9'	1605676-009A	Soil	05/16/20	016 11:10	GC9b	121001
Analytes	<u>Result</u>		<u>RL</u>	<u>DF</u>		Date Analyzed
TPH-Diesel (C10-C23)	ND		1.0	1		05/17/2016 09:46
TPH-Motor Oil (C18-C36)	ND		5.0	1		05/17/2016 09:46
Surrogates	<u>REC (%)</u>		<u>Limits</u>			
C9	92		70-130			05/17/2016 09:46
<u>Analyst(s):</u> TK						

Client:	Pangea Environmental Svcs., Inc.	WorkOrder:	1605676
Date Prepared:	5/16/16	BatchID:	121002
Date Analyzed:	5/16/16	Extraction Method:	SW5030B
Instrument:	GC19	Analytical Method:	SW8021B/8015Bm
Matrix:	Soil	Unit:	mg/Kg
Project:	1244 2nd Ave	Sample ID:	MB/LCS-121002
			1605630-001AMS/MSD

QC Summary Report for SW8021B/8015Bm

Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
TPH(btex)	ND	0.601	0.40	0.60	-	100	70-130
MTBE	ND	0.101	0.050	0.10	-	101	70-130
Benzene	ND	0.104	0.0050	0.10	-	104	70-130
Toluene	ND	0.106	0.0050	0.10	-	106	70-130
Ethylbenzene	ND	0.106	0.0050	0.10	-	106	70-130
Xylenes	ND	0.320	0.015	0.30	-	107	70-130
Surrogate Recovery							
2-Fluorotoluene	0.105	0.100		0.10	105	101	70-130

Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
TPH(btex)	0.615	0.575	0.60	ND	102	96	70-130	6.67	20
МТВЕ	0.0944	0.104	0.10	ND	91	101	70-130	9.43	20
Benzene	0.0989	0.110	0.10	ND	99	110	70-130	10.4	20
Toluene	0.101	0.111	0.10	ND	101	111	70-130	8.98	20
Ethylbenzene	0.103	0.109	0.10	ND	103	109	70-130	5.26	20
Xylenes	0.313	0.325	0.30	ND	104	108	70-130	3.85	20
Surrogate Recovery									
2-Fluorotoluene	0.0982	0.107	0.10		98	107	70-130	8.58	20

_____QA/QC Officer

Client:	Pangea Environmental Svcs., Inc.	WorkOrder:	1605676
Date Prepared:	5/16/16	BatchID:	121001
Date Analyzed:	5/16/16	Extraction Method:	SW3550B
Instrument:	GC9b	Analytical Method:	SW8015B
Matrix:	Soil	Unit:	mg/Kg
Project:	1244 2nd Ave	Sample ID:	MB/LCS-121001
			1605630-001AMS/MSD

QC Report for SW8015B w/out SG Clean-Up

Analyte	MB Result	LCS Result		RL	SPK Val		BISSILC REC %F	S REC	LCS Limits
TPH-Diesel (C10-C23)	ND	45.2		1.0	40	-	11:	3	70-130
TPH-Motor Oil (C18-C36)	ND	-		5.0	-	-	-		-
Surrogate Recovery									
C9	23.0	22.9			25	92	92		70-130
Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
TPH-Diesel (C10-C23)	45.9	45.8	40	ND	113	113	70-130	0	30
TPH-Diesel (C10-C23) Surrogate Recovery	45.9	45.8	40	ND	113	113	70-130	0	30

_____QA/QC Officer Page 9 of 13

McCampbell Analytical, Inc.

1534 Willow Pass Rd

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

Pittsburg, 0 (925) 252-	CA 94565-1701 9262				Work(Order:	16056	76	C	ClientCod	e: PEO					
		WaterTrax	WriteOn	EDF	Ex	cel	EC	QuIS	₽E	mail	HardC	сору	ThirdPart	:y	J-fla	g
Report to: Bob Clark-Ridd	lell	Email: B	Riddell@pang	jeaenv.com		Bill to: Bo		k-Ridd	lell			Reque	ested TAT:	5	days;	
Pangea Enviror 1710 Franklin S Oakland, CA 9 (510) 836-3700	,	cc/3rd Party: PO: ProjectNo: 1	244 2nd Ave			17	10 Fra		Street, S	l Svcs., In Ste. 200	IC.		Received: Logged:	-)5/16/2()5/16/2(
									Req	uested Tes	sts (See leg	gend be	elow)			
Lab ID	Client ID		Matrix	Collection Date	Hold	1	2	3	4	5 (ô 7	8	9	10	11	12
1605676-003	SB-1-12'		Soil	5/13/2016 15:50		A	A									
1605676-004	SB-2-6'		Soil	5/13/2016 18:00		A	A									
1605676-005	SB-2-9'		Soil	5/13/2016 18:10		A	A									
1605676-006	SB-2-12'		Soil	5/13/2016 18:20		A	A									

А

Α

А

Α

5/13/2016 18:40

5/16/2016 11:10

Test Legend:

1605676-007

1605676-009

1	G-MBTEX_S
5	
9	

2	TPH(DMO)_S
6	
10	

Soil

Soil

3	
7	
11	

4	
8	
12	

Prepared by: Briana Cutino

The following SampIDs: 003A, 004A, 005A, 006A, 007A, 009A contain testgroup.

SB-2-15'

SB-3-9'

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

WORK ORDER SUMMARY

Client Name: PANGEA ENVIRONMENTAL SVCS., INC.

Project: 1244 nd AVE

Comments:

QC Level: LEVEL 2 Client Contact: Bob Clark-Riddell Contact's Email: BRiddell@pangeaenv.com Work Order: 1605676 Date Logged: 5/16/2016

		WaterTrax	WriteOnED	F Excel]Fax √ Email	HardC	opy	у 🗌	J-flag
Lab ID	Client ID	Matrix	Test Name	Containers /Composites	Bottle & Preservative	De- chlorinated	Collection Date & Time	TAT	Sediment Hold SubOut Content
1605676-001A	SB-1-6'	Soil		1	Stainless Steel tube 2"x6"		5/13/2016 15:32		✓
1605676-002A	SB-1-9'	Soil		1	Stainless Steel tube 2"x6"		5/13/2016 15:40		✓
1605676-003A	SB-1-12'	Soil	Multi-Range TPH(g,d,mo	b) 1	Stainless Steel tube 2"x6"		5/13/2016 15:50	5 days	
1605676-004A	SB-2-6'	Soil	Multi-Range TPH(g,d,mo	o) 1	Stainless Steel tube 2"x6"		5/13/2016 18:00	5 days	
1605676-005A	SB-2-9'	Soil	Multi-Range TPH(g,d,mo	o) 1	Stainless Steel tube 2"x6"		5/13/2016 18:10	5 days	
1605676-006A	SB-2-12'	Soil	Multi-Range TPH(g,d,mo	o) 1	Stainless Steel tube 2"x6"		5/13/2016 18:20	5 days	
1605676-007A	SB-2-15'	Soil	Multi-Range TPH(g,d,mo	b) 1	Stainless Steel tube 2"x6"		5/13/2016 18:40	5 days	
1605676-008A	SB-3-6'	Soil		1	Stainless Steel tube 2"x6"		5/16/2016 11:00		✓
1605676-009A	SB-3-9'	Soil	Multi-Range TPH(g,d,mo	p) 1	Stainless Steel tube 2"x6"		5/16/2016 11:10	5 days	
1605676-010A	SB-3-12'	Soil		1	Stainless Steel tube 2"x6"		5/16/2016 11:20		

NOTES: - STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

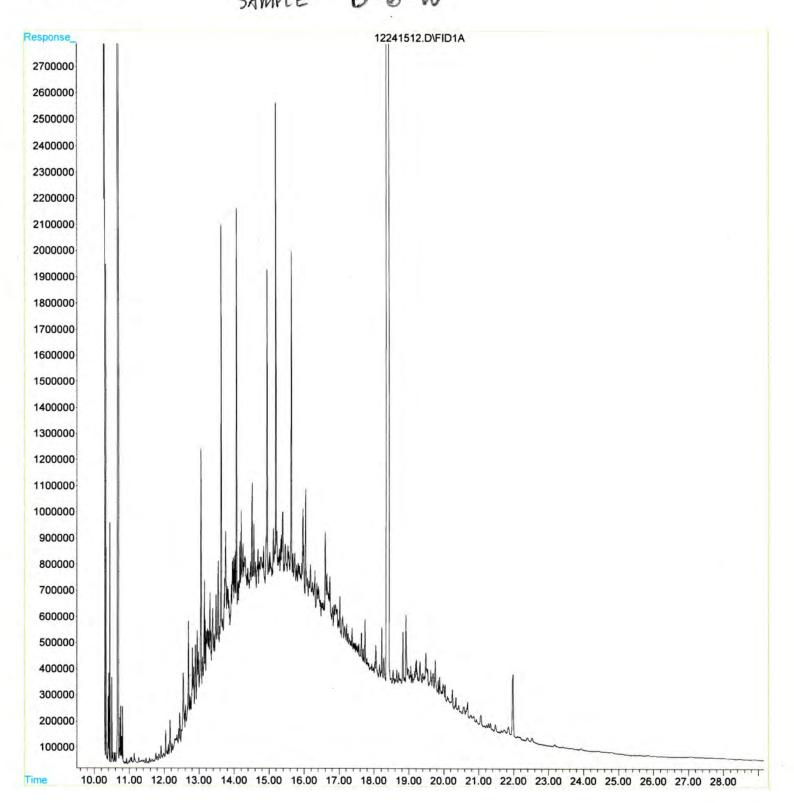
- MAI assumes that all material present in the provided sampling container is considered part of the sample - MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

	McC	am	pbe	ell	A	nc	aly	/tio	cc	ı, Ir	Ir	nC							C	HA		C)F	С	US	TC	D	Y	RE	C	OF	SD		
1534 Willow Pass Rd. / Pittsburg, Ca. 94565-1701 www.mccampbell.com / main@mccampbell.com										T	JRN	AR	OUN	T DV	IME	: RI	USH[ב	24 H	R] 4	8 HR		72	HR [2	5 DAY	X						
v v	vww.mco Telepho										m					Ge	oTra	cker l	EDF		PDF		EDD		Writ	e On	(DW		EQ	uIS [10 DAY	
	reiepin	5110. [0	11 202	/20	271	un.	1/20	1 20	12 1.	11	01	71	10	7(0	Ef	fluer	t Sar	nple	Requ	iring	"J"	flag		UST	Clea	an Uj	Fur	nd Pr	oject	t 🗆 ;	Clain	n #	
D (D C)	6 1 N	0.11	. 11	-	D.1	1.00	0		2.4	1	l	,,,	Ue	1	×		-	6					-12			1	1.1	1.1.1			-	-		
Report To: Bob Company: Va	Clark 5	-KIEd	ell		BI	l To	P	ang	202	_	-					-	1	1	-	1	-	-		Ana	lysis	Rec	uest		-				-	
Company. For	Frankl	in S	to at	x \1	5 m			0	-				-		-	LBE		&F)																
	1				E-1	Mail	: b	11	2 de	110	. PI	and	he of	env	. 60	EW		Grease (1664 / 5520 E/B&F)				ers									lysis		OW	
Tele: (510) 8	36 370	50		-	Fa	x: ()					2			3260)		5520	-	51)		ngen									s ana		-	
Project #:	the state				Pre	oject	Nar	ne:	124	Y I	34	AV	e			S or 8	1	664 /	418.1	0/ 80	(s	/ Co		cides			(SAN)				letals		pis	
Project Location:		202 1	VE	-	Pu	rcha	se O	rdei	r#		-			_	-	8015		se (1) suo	826	ticide	clors	les)	Ierbi	(S)	Cs)	s/P	()	=		ED n			
Sampler Signatu	re: 6	~	-		-	-	N	IAT					М	ETH	OD	3021/		Grea	carb	(EPA	Pest	Aro	sticic	CI	VOC	SVO	PAH	602	6020		DLVI		Hd.	
1 1 1	•	SAM	PLING			Mail X: (Maste Mater () X: Maste Mater	14			_	_	_	PRE	ESER	VED	Gas (15)		Total Petroleum Hydrocarbons (418.1)	MTBE / BTEX ONLY (EPA 8260/ 8021)	EPA 505/ 608 / 8081 (CI Pesticides)	EPA 608 / 8082 PCB's ; Aroclors / Congeners	8141 (NP Pesticides)	EPA 515 / 8151 (Acidic Cl Herbicides)	EPA 524.2 / 624 / 8260 (VOCs)	EPA 525.2 / 625 / 8270 (SVOCs)	8270 SIM / 8310 (PAHs / PNAs)	CAM 17 Metals (200.8 / 6020)	LUFT 5 Metals (200.8 / 6020)	(0)	Filter sample for DISSOLVED metals analysis		F	
SAMPLE ID	Location/			ers	er		ater		2.1				10			I as	TPH as Diesel (8015)	Total Petroleum Oil &	m H	xo	/ 808	82 PC	41 (P	51 (/	24/1	25/1	8/W	als (2	IIS (2	Metals (200.8 / 6020)	for I	9	53	
SAWIPLE ID	Field Point Name	Date	Time	ain	Wat	Vater	Wa	ter	_	-	_				-	Idi	Diese	trole	trole	BTE	/ 608	/ 808	/ 81	/ 81	2/6	2/6	1S 02	Met	Meta	200.8	mple	1	Se	-
	Name	Date	Time	Containers	pune	ste V	nking	1 Ws			dge	er	_	õ	er	SX &	I as I	al Pe	al Pe	BE/	V 505	V 608	EPA 507 /	V 515	V 524	V 525	N 82	M 17	FT 5	als (2	er sai	0	-	
1.	(11 - 11)		1.11	#	Gro	Wa	Dri	Sea	Soil	Air	Slue	Oth	HC	HN	Oth	BTI	IPI	Tot	Tot	MT	EP/	EP/	EP/	EP/	EP	EP/	EPA	CAI	E	Met	Filt	1	13	
58-1-6' 58-1-9'	<u></u> .	5/13]	1532																													\times		
SB-1-9'		513.16	1540																1													X		
SB-1-12'	9	13-16	1550										1.1						1.0														\times	
5B-2-6			1800				_		L.,1,		_				1.1														-				X	
58-2-91			1810																														×	
38-2-121	1-1-1-1-1	•)	1820																														X	
SB-2-15		5.13.16	1840													1									1.3								×	
58-3-6'	[]	5.161	colld			a																		1								\times	(s. 1	
5B-3-091	1	5.16.1	01110				-				-			1																			\times	
5B-3-6' 5B-3-91 5B-3-12"		5.16.16	1120																													X		
			1	12			-						-														-1				-			
**MAI clients MUST gloved, open air, sam us to work safely.	disclose any ple handling	dangerou by MAI s	us chemica staff. Non-o	ls kn disclo	own t osure i	o be p incurs	an in	nt in t mmed	heir s liate S	submi \$250	itted	sam narge	ples i e and	in co I the	ncent	t is su	ns the	to ful	- cau 1 lega	se im al liab	nedia ility fo	te han or han	rm or rm su	serio ffereo	us fu d. Th	ture l ank y	health ou fo	enda r you	nger r und	ment lersta	as a r nding	result o g and f	of brief, or allow	ving
Relinquished By:		Date:	Time:		Rece	ived	By:	-	-		-	-	-			to											сом	MEN	TS:			-		
ht -		5/11	1/ 1900	2		1		72	-	_		-						TION		_														
Relinquished By:		Date:	Time:		Rece	ived	sy:								DECI	HLO	RINA	TED	IN L	2 A	-													i
												٥						E CO N LA		INER	5	-												
Relinquished By:		Date:	Time:		Rece	ived	By:			-	-	7.5	-	-				ve	DAS	0.8	GN	AET	ALS	OT	HER		HAZ	RDO	DUS:					
				Ì					9			•		-þ	PRES	SERV	ATI					H<2_				_								İ

Sample Receipt Checklist

Client Name: Project Name:	Pangea Environmental Svcs., Inc. 1244 2nd Ave			Date and Time Received: Date Logged:	5/16/2016 19:00 5/16/2016
WorkOrder №:	1605676 Matrix: <u>Soil</u>			Received by:	Jena Alfaro
Carrier:	Client Drop-In			Logged by:	Briana Cutino
	Chain of C	ustody	<u>/ (COC) Inf</u>	formation	
Chain of custody	present?	Yes	✓	No 🗌	
Chain of custody	signed when relinquished and received?	Yes	✓	No 🗌	
Chain of custody	agrees with sample labels?	Yes	✓	No 🗌	
Sample IDs note	d by Client on COC?	Yes	✓	No 🗌	
Date and Time of	collection noted by Client on COC?	Yes	✓	No 🗌	
Sampler's name	noted on COC?	Yes	✓	No 🗌	
	Sampl	e Rece	eipt Inform	ation	
Custody seals int	act on shipping container/cooler?	Yes		No	NA 🗹
Shipping containe	er/cooler in good condition?	Yes	✓	No 🗌	
Samples in prope	er containers/bottles?	Yes	✓	No 🗌	
Sample container	rs intact?	Yes	✓	No 🗌	
Sufficient sample	volume for indicated test?	Yes	✓	No 🗌	
	Sample Preservation	on and	Hold Time	e (HT) Information	
All samples recei	ved within holding time?	Yes	✓	No	
Sample/Temp Bla	ank temperature		Temp:	3°C	
Water - VOA vial	s have zero headspace / no bubbles?	Yes		No	NA 🗹
Sample labels ch	ecked for correct preservation?	Yes	✓	No	
pH acceptable up	oon receipt (Metal: <2; 522: <4; 218.7: >8)?	Yes		No	NA 🗹
Samples Receive		Yes		No 🗌	
	(Ісе Туре	e: WE	TICE)		
UCMR3 Samples Total Chlorine f	:: ested and acceptable upon receipt for EPA 522?	Yes		No 🗌	
	ested and acceptable upon receipt for EPA 218.7,			No 🗌	NA 🗹

Comments:


APPENDIX G

Chromatograms

Source Area Chromatograms

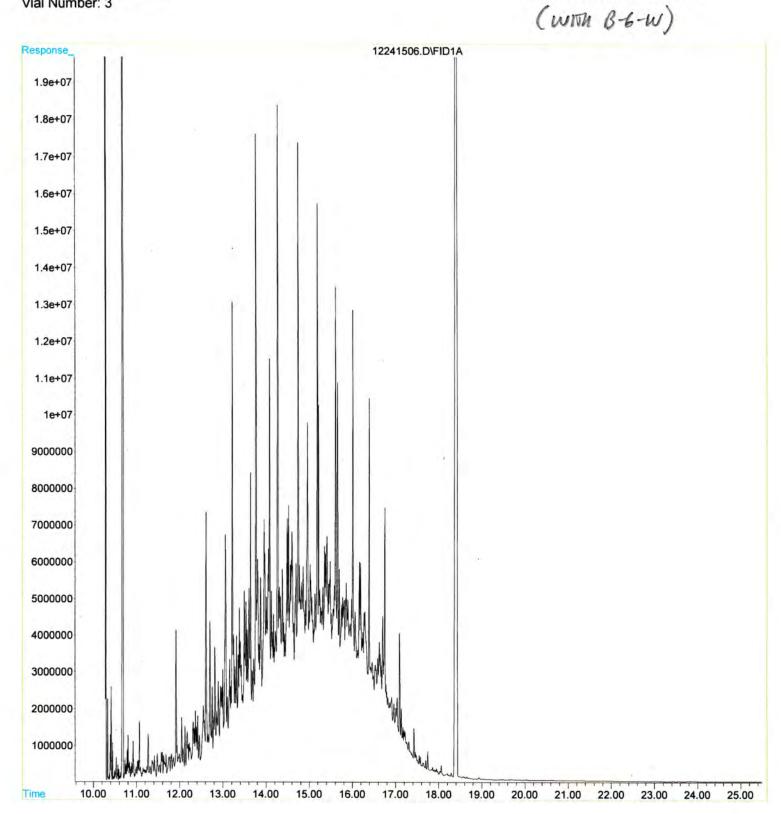
File : D:\HPCHEM\GC39\DATAA\12241512.D Operator : Toshiko Acquired : 24 Dec 2015 9:01 pm using AcqMethod GC39A_I.M Instrument : GC-39 Sample Name: 1512A04-001B W 40:2 +BO 1DAY Misc Info : TPH Vial Number: 6 SAMPLE B-G-W

1512A04-001B

Glossary of Terms & Qualifier Definitions

Client: Pangea Environmental Svcs., Inc.

Project: 1244 2nd Ave, Oakland, CA WorkOrder: 1512A04


B-6-W NOTES

Analytical Qualifiers

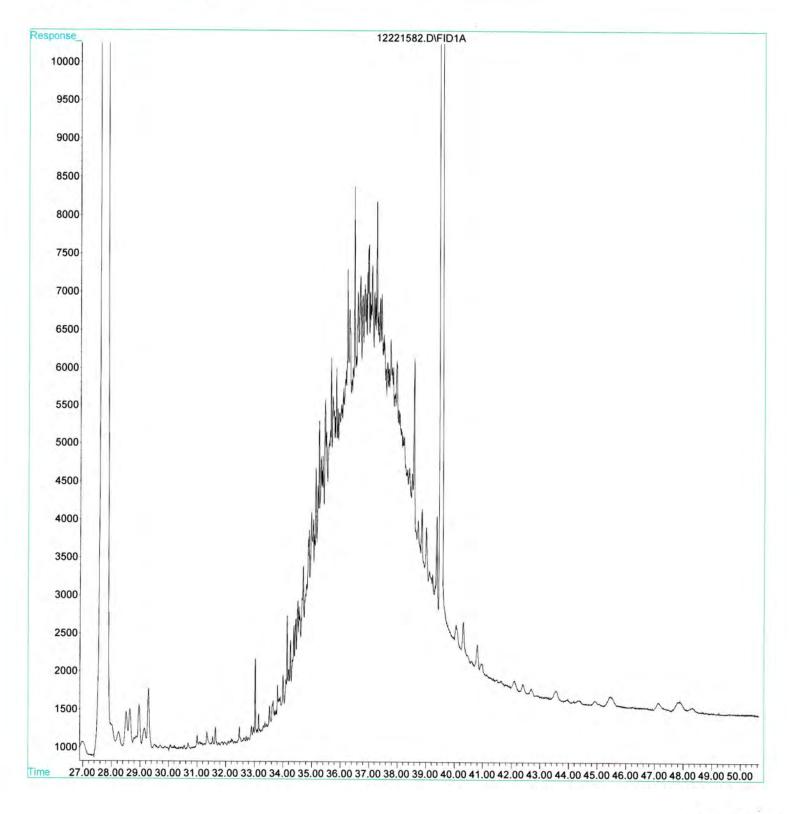
- e2 diesel range compounds are significant; no recognizable pattern
- e3 aged diesel is significant
- e7 oil range compounds are significant

File : D:\HPCHEM\GC39\DATAA\12241506.D Operator : Toshiko Acquired : 24 Dec 2015 7:04 pm using AcqMethod GC39A_I.M Instrument : GC-39 Sample Name: CCV 12-04 Misc Info : TPH(DMO)_S Vial Number: 3

Diesel Reference Standard

 File
 : D:\HPCHEM\GC6\DATAA\12221582.D

 Operator
 : Toshiko


 Acquired
 : 24 Dec 2015
 3:20 pm using AcqMethod GC6AH1.M

 Instrument
 : GC-6

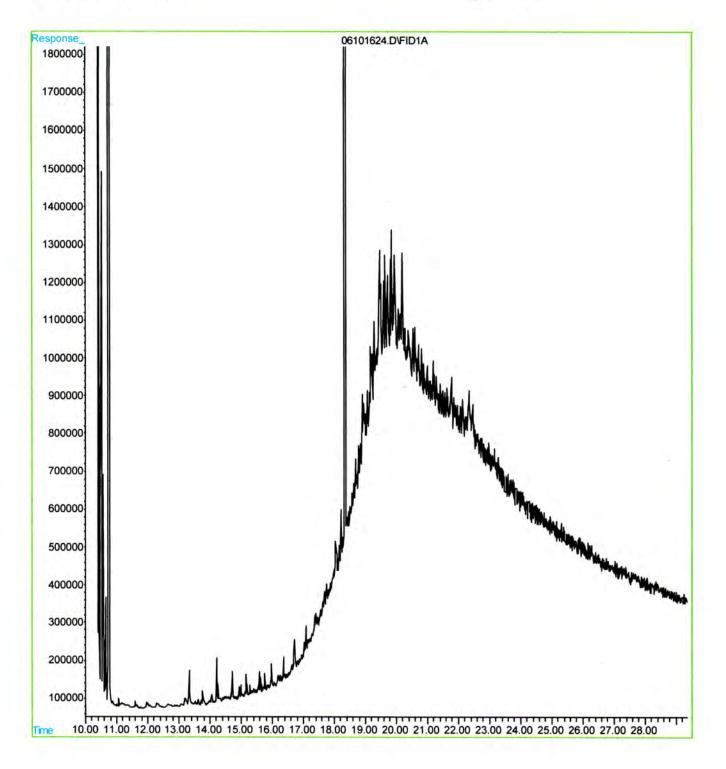
 Sample Name:
 1512A04-004B W +FF,BO 1DAY RE

 Misc Info
 : TPH

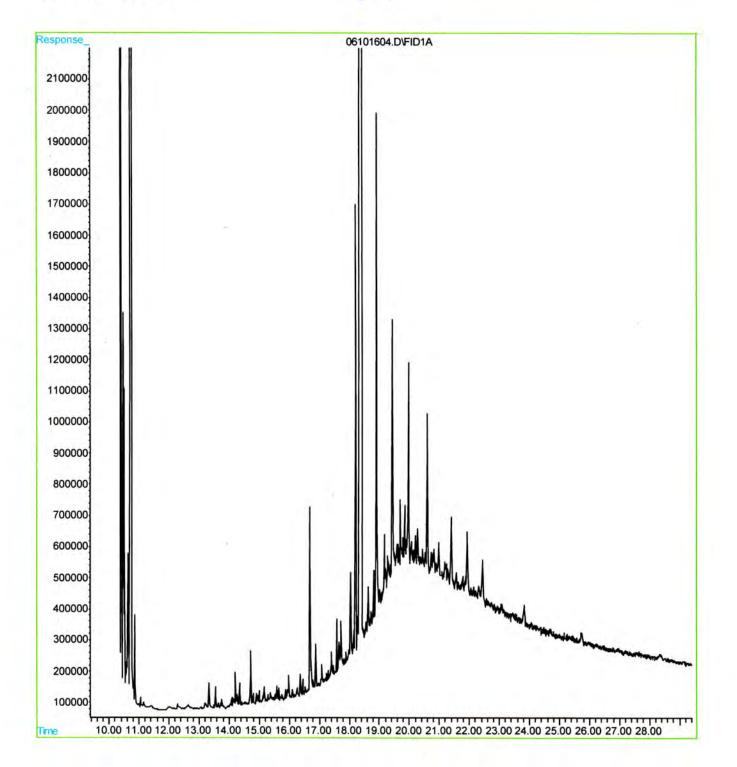
 Vial Number:
 41

	Campbell "When Qi	Analy		1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com								
Pangea Environ	mental Svcs., Inc.		Client Project ID:	1244 2nd Ave,	Date Sampled: 12/23/15							
1710 Franklin S	Street, Ste. 200		Oakland, CA		Date Received: 12/23/15 Date Extracted: 12/23/15							
			Client Contact: Bo	b Clark-Riddell								
Oakland, CA 94	4612		Client P.O.:		Date Analyzed: 12/24/15							
xtraction method: SW	/3510C		Fuel Fing Analytical me	erPrint * ethods: SW8015B	Work Order: 1512A04							
Lab ID	Client ID	Matrix		Fue	l Fingerprint							
1512A04-004B	Tank Pit-W	w	This sample conta		sel pattern between C10 and C23. Chromatogram enclosed.							

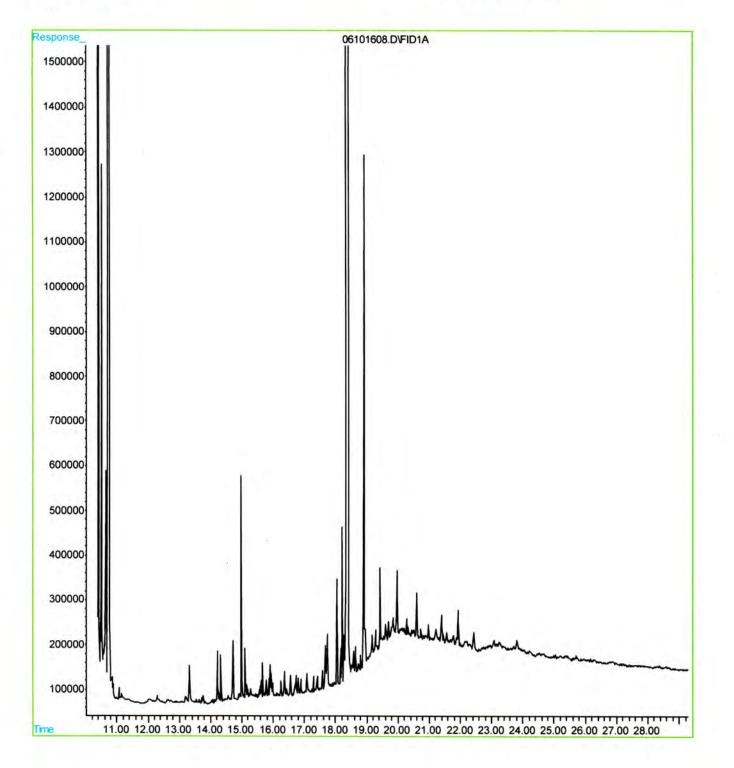
TAOK PIT-W

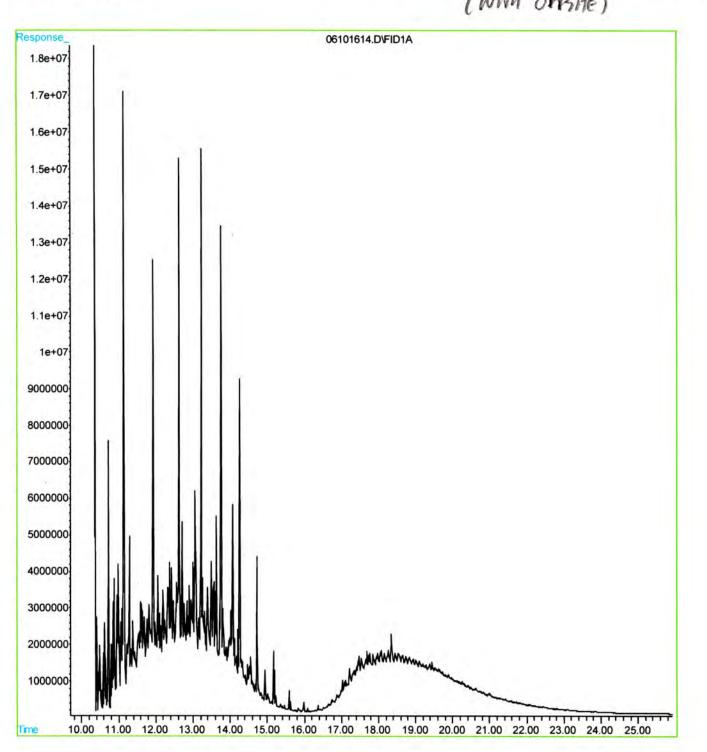

CDPH ELAP 1644 • NELAP 4033ORELAP

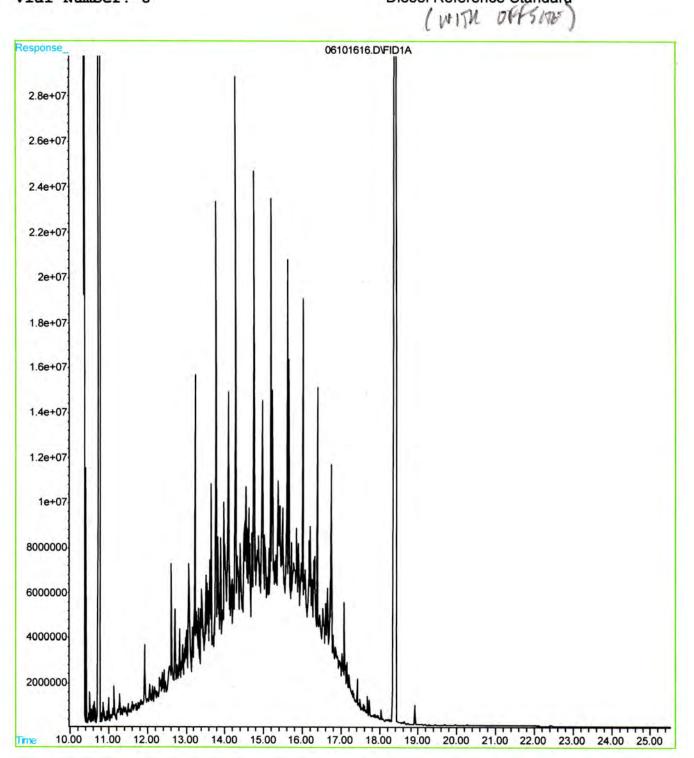
TK Analyst's Initial


Angela Rydelius, Lab Manager

Offsite Chromatograms


```
File : D:\HPCHEM\GC11\DATAA\06101624.D
Operator : Toshiko
Acquired : 11 Jun 2016 10:15 am using AcqMethod GC11A_B.M
Instrument : GC-11
Sample Name: 1606439-004A W 1DAY
Misc Info : TPH
Vial Number: 12 B-10
```



```
File: D:\HPCHEM\GC11\DATAA\06101604.DOperator: ToshikoAcquired: 10 Jun 20167:07 pm using AcqMethod GC11A_B.MInstrument: GC-11Sample Name:1606439-001A W 1DAYMisc Info: TPHVial Number:2
```



```
File : D:\HPCHEM\GC11\DATAA\06101608.D
Operator : Toshiko
Acquired : 10 Jun 2016 8:25 pm using AcqMethod GC11A_B.M
Instrument : GC-11
Sample Name: 1606439-002A W 1DAY
Misc Info : TPH
Vial Number: 4 1606439-002A
```


File : D:\HPCHEM\GC11\DATAA\06101614.D Operator : Toshiko Acquired : 10 Jun 2016 10:22 pm using AcqMethod GC11A_B.M Instrument : GC-11 Sample Name: CCV K MO Misc Info : Vial Number: 7 Kerosene and Motor Oil Reference Standard (WMM Official)

File : D:\HPCHEM\GC11\DATAA\06101616.D Operator : Toshiko Acquired : 10 Jun 2016 11:01 pm using AcqMethod GC11A_B.M Instrument : GC-11 Sample Name: CCV 5-18 Misc Info : Vial Number: 8 Diesel Reference Standard

Glossary of Terms & Qualifier Definitions

Client: Pangea Environmental Svcs., Inc.

 Project:
 1244 2nd Ave

 WorkOrder:
 1606439

Analytical Qualifiers

8-7/8/10

SSurrogate spike recovery outside accepted recovery limitsb1aqueous sample that contains greater than ~1 vol. % sedimente2diesel range compounds are significant; no recognizable patterne7oil range compounds are significante8kerosene/kerosene range/jet fuel rangej1see attached narrative