By Alameda County Environmental Health 10:48 am, Apr 17, 2017

RECEIVED

Environmental Risk Assessors

Limited Phase II Environmental Site Assessment Report

Body Repair Shops 295 139th Avenue San Leandro, California 94578

March 3, 2016

Prepared for: Basics Environmental, Inc. 655 12th Street, Suite 126 Oakland, CA 94607

Prepared by: Environmental Risk Assessors 1420 East Roseville Parkway #140-262 Roseville, CA 95661

ERA Project No. 01-2016-500-002

March 3, 2016

Mr. Donovan Tom Basics Environmental, Inc. 655 12th Street, Suite 126 Oakland, CA 94607

SUBJECT: Limited Phase II Environmental Site Assessment Body Repair Shops 295 139th Avenue San Leandro, California 94578 ERA Project No. 01-2016-500-002

Dear Mr. Tom,

Environmental Risk Assessors (ERA) is pleased to present this Limited Phase II Environmental Site Assessment (ESA) Report for the above referenced property (the Site). Our scope of work and findings are presented in the attached report.

It has been a pleasure working with you on this project. Please do not hesitate to contact me at (916) 677-9897 and via email at <u>litafreeman@gmail.com</u> if you have any questions or comments regarding this assessment.

Sincerely,

Environmental Risk Assessors

Lita D. Freeman

Lita D. Freeman, PG Professional Geologist

1420 East Roseville Parkway Suite 140-262 Roseville, California 95661 Tel 916-677-9897 litafreeman@gmail.com

Table of Contents

1.	EXECU	TIVE S	SUMMARY	1					
	1.1	Backg	round	1					
	1.2	Investi	Investigation						
	1.3	Finding	gs	2					
	1.4	Conclu	usions	2					
	1.5	Recon	nmendations	2					
2.	INTRO	DUCTIO	N	3					
	2.1	Site D	escription	3					
	2.2	Backg	round	3					
	2.3	Object	ives and Scope of Work	3					
	2.4	Limitat	ions and Exceptions	4					
	2.5	Specia	al Terms and Conditions	5					
	2.6	User Reliance							
	2.7	Qualifications							
3.	VAPOR		ROACHMENT	5					
4.	FIELD I	NVES	FIGATION	6					
	4.1	Pre-Fi	eld Activities	6					
		4.1.1	Health and Safety	6					
		4.1.2	Permitting	6					
	4.2	Field A	Activities	6					
		4.2.1	Utility Clearance	6					
		4.2.2	Drilling and Sampling	7					
			4.2.2.1 Soil Gas Sampling	7					
			4.2.2.2 Soil Sampling	8					
			4.2.2.3 Groundwater Sampling	8					
		4.2.3	Borehole Abandonment and Investigation-Derived Waste Handling	8					
		4.2.4	Deviations from the Work Plan	8					
5.	ANALY	'SIS, R	ESULTS, AND EVALUATION	9					
	5.1	Soil Ar	nalysis and Results	9					
	5.2	Groundwater Analysis and Results 9							

Table of Contents

	5.3	EVALUATION			
		5.3.1	Soil Results Evaluation	10	
		5.3.2	Groundwater Results Evaluation	10	
6.	CONCLUSIONS				
7.	RECOMMENDATIONS				
8.	REFERENCES 1				

Tables

- 1 General Site Information (*embedded in text*)
- 2 Soil and Groundwater Samples Organics Analytical Summary

Figures

- 1 Site Location Map
- 2 Site Plan

Appendices

- A Site Photographs
- B Soil Boring Permits
- C Soil Boring Logs
- D Laboratory Analytical Report and Chain-of-Custody Documentation

1. EXECUTIVE SUMMARY

Environmental Risk Assessors (ERA) is pleased to present this Limited Phase II Environmental Site Assessment (ESA) Report (the "Report") for the property located at 295 139th Avenue, San Leandro, Alameda County, California 94578 (the "Site"; Figure 1) to Basics Environmental, Inc. (Basics Environmental). The Site is currently a commercially developed property (Figure 2).

1.1 Background

The 0.6-acre site is improved with a one-story building occupied by various body repair shops. Records reviewed by Basics Environmental during their Phase I ESA indicated that the Site was developed in 1951 with an office and factory building owned by John Maggi Security Parachute & Equipment Company. By the mid-1980s, the on-site building appeared to have been divided into separate business units. Tenants included auto painting, auto body, and auto repair businesses, especially in Units A and C. Various hazardous materials, including paints, solvents, etc. were reportedly used and stored by these businesses. Spray paint booths were installed in Units A and C during the early 1990s and in Unit E during 2014. A paint/thinner storage and mixing room was observed in Unit A by Basics Environmental's staff during the Phase I ESA. Paint mixing was also noted to be conducted in Unit C.

Records reviewed by Basics Environmental during their Phase I ESA indicated that a 500-gallon underground storage tank (UST) and associated gas pump was present along the eastern side of the building. No specific information related to the UST (i.e. UST installation or removal documentation) was available in the local regulatory agency files reviewed by Basics Environmental. However, a geophysical survey that included a ground penetrating radar study that was reportedly conducted in the past did not reveal evidence of a UST on site.

Basics Environmental noted the following areas of concern during their Phase I ESA of the Site: the area of the UST; and the paint/thinner storage and mixing room observed in Unit A.

1.2 Investigation

The objective of the limited Phase II ESA was to evaluate current subsurface conditions in select on-site areas. To meet this objective, soil gas, soil, and groundwater samples were collected from sampling locations for analysis with comparison of the analytical results to established screening levels. The investigation consisted of the following:

- Advancing borings at two sampling locations: one boring (designated on Figure 2 as SB-1) outside the building in the area of the former UST and one boring (designated on Figure 2 as SB-2) inside the building in the area of the paint/thinner storage and mixing room. Boring SB-1 was advanced to a depth of 38 feet below ground surface (bgs) and boring SB-2 was advanced to a depth of 24 feet bgs;
- Collecting soil gas samples from each boring;
- Collecting soil samples from each boring;
- Collecting a groundwater sample from boring SB-1;
- Submitting the samples for analysis of volatile organic compounds (VOCs), total petroleum hydrocarbons (TPH) quantified as gasoline (TPHg), and/or TPH quantified as motor oil (TPHmo); and,
- Preparing this report presenting the results of the Limited Phase II ESA.

Deviations from the work plan were as follows:

- Boring SB-1 was extended from a planned depth of 24 feet bgs to a depth of 38 feet bgs to collect a groundwater sample;
- Boring SB-2 was advanced to a total depth of 24 feet bgs but groundwater was not present in the borehole, therefore, a groundwater sample was not collected from this boring;
- The Summa canisters containing the soil gas samples were purged by the laboratory prior to analysis and, therefore, soil gas analytical results are not available; and
- Four soil samples (SB-2-2.5, SB-2-5, SB-2-10, and SB-2-15) from boring SB-2 were analyzed for VOCs to delineate the vertical extent of the VOC tetrachloroethene (PCE) detected in soil at this location.

1.3 Findings

PCE was the only VOC reported in soil samples analyzed for VOCs at concentrations above the laboratory reporting limit of 0.005 milligrams per kilogram (mg/kg). The results of the soil samples were compared to the Environmental Screening Levels (ESLs) for soil (SFBRWQCB, Environmental Screening Levels Tier 1 ESLs, February 2016). Comparison of the PCE concentrations (up to 0.032 mg/kg) to its' ESL (0.42 mg/kg) indicate that the concentrations of PCE in soil were below the ESL. PCE was not detected in soil samples SB-2-10 and SB-2-15 at concentrations at or above the laboratory reporting limit of 0.005 mg/kg.

The VOCs PCE and trichloroethene (TCE) were detected in the groundwater sample collected from boring SB-1. PCE and TCE were reported at concentrations of 9.5 micrograms per liter (μ g/L) and 1.2 μ g/L, respectively. Comparison of the analytical results to the ESLs for groundwater (SFBRWQCB, Environmental Screening Levels Tier 1 ESLs, February 2016), indicated that the detected concentration of PCE was above its' ESL (3 μ g/L) but the concentration of TCE was below its' ESL (5 μ g/L).

TPHg and TPHmo were not detected in soil or groundwater samples at concentrations at or above their respective laboratory reporting limit. The laboratory reporting limit for TPHmo in groundwater was above the ESL; however, no evidence (staining, odors, etc.) of petroleum hydrocarbon impacts was noted in the soil samples collected from the borings.

1.4 Conclusions

The results of this Limited Phase II ESA indicated that VOCs are present in soil and groundwater samples collected from the Site. The concentrations of PCE were below the applicable ESL in soil but above the applicable ESL for groundwater. TCE was not detected in soil at concentrations at or above its' laboratory reporting limit and was detected in groundwater at a concentration below the applicable ESL for groundwater. The presence of PCE in soil and groundwater indicate a past on-site release.

1.5 Recommendations

The detection of VOCs in soil and groundwater samples indicates that a release has occurred on site with reported concentration of PCE in groundwater above applicable ESL. In accordance with the requirements of the permit issued by the Alameda County Public Works Agency (ACPWA), a copy of this report must be submitted to the ACPWA.

2. INTRODUCTION

ERA is pleased to present this Limited Phase II ESA Report for the property located at 295 139th Avenue, San Leandro, California (Figure 1) to Basics Environmental. The Site is currently occupied by various body repair shops (Figure 2).

The findings and conclusions presented in this Report are based on the results of a limited assessment that included collecting and analyzing soil and groundwater samples from the Site and evaluating the data obtained during the field investigation and provided by the analytical laboratory.

2.1 Site Description

Basics Environmental requested that ERA conduct a limited Phase II ESA of the Site to facilitate their evaluation of the Site and current subsurface conditions. Site-specific information is presented in Table 1.

Table 1. Gene	ral Site Information				
Project Name: Body repair shops	Current Development: One-story commercial building with paved parking lot				
Address: 295 139 th Avenue, San Leandro, Alameda County	Occupant(s): A&C Auto Body, Street Shades Body Shop, JP Body and Paint				
Location: Northwestern side of 139 th Avenue					

2.2 Background

The 0.6-acre site is improved with a one-story building occupied by various body repair shops. Records reviewed by Basics Environmental during their Phase I ESA indicated that the Site was developed in 1951 with an office and factory building owned by John Maggi Security Parachute & Equipment Company. By the mid-1980s, the on-site building appeared to have been divided into separate business units. Tenants included auto painting, auto body, and auto repair businesses, especially in Units A and C. Various hazardous materials, including paints, solvents, etc. were reportedly used and stored by these businesses. Spray paint booths were installed in Units A and C during the early 1990s and in Unit E during 2014. A paint/thinner storage and mixing room was observed in Unit A by Basics Environmental's staff during the Phase I ESA. Paint mixing was also noted to be conducted in Unit C.

Records reviewed by Basics Environmental during their Phase I ESA indicated that a 500-gallon UST and associated gas pump was present along the eastern side of the building. No specific information related to the UST (i.e. UST installation or removal documentation) was available in the local regulatory agency files reviewed by Basics Environmental. However, a geophysical survey that included a ground penetrating radar study that was reportedly conducted in the past did not reveal evidence of a UST on site.

2.3 Objectives and Scope of Work

The objective of the limited Phase II ESA was to evaluate current subsurface conditions in select on-site areas. To meet this objective, soil and groundwater samples were collected from sampling

locations for analysis with comparison of the analytical results to established screening levels. The investigation consisted of the following:

- Advancing borings at two sampling locations: one boring (designated on Figure 2 as SB-1) outside the building in the area of the former UST and one boring (designated on Figure 2 as SB-2) inside the building in the area of the paint/thinner storage and mixing room. Boring SB-1 was advanced to a depth of 38 feet bgs and Boring SB-2 was advanced to a depth of 24 feet bgs;
- Collecting soil gas samples from each sampling location;
- Collecting soil samples from each boring;
- Collecting a groundwater sample from boring SB-1;
- Submitting the samples for analysis of VOCs, TPHg, and/or TPHmo; and,
- Preparing this report presenting the results of the Limited Phase II ESA.

Deviations from the work plan were as follows:

- Boring SB-1 was extended from a planned depth of 24 feet bgs to a depth of 38 feet bgs to collect a groundwater sample;
- Boring SB-2 was advanced to a total depth of 24 feet bgs but groundwater was not present in the borehole, therefore, a groundwater sample was not collected from this boring;
- The Summa canisters containing the soil gas samples were purged by the laboratory in error before analysis could be conducted and, therefore, soil gas analytical results are not available; and
- Four soil samples (SB-2-2.5, SB-2-5, SB-2-10, and SB-2-15) from boring SB-2 were analyzed for VOCs to delineate the vertical extent of the VOC PCE detected in soil at this location.

2.4 Limitations and Exceptions

The opinions and recommendations presented in this Report are based upon the scope of services, information obtained through the performance of the services, and the schedule as agreed upon by ERA and the party for whom this report was originally prepared. This Report is an instrument of professional service and was prepared in accordance with the generally accepted standards and level of skill and care under similar conditions and circumstances established by the environmental consulting industry. No representation, warranty, or guarantee, express or implied, is intended or given. To the extent that ERA relied upon any information prepared by other parties not under contract to ERA, ERA makes no representation as to the accuracy or completeness of such information.

This Report is expressly for the sole and exclusive use of the parties for which this Report was originally prepared for a particular purpose. Only the parties for which this Report was originally prepared and/or other specifically named parties, may make use of and rely upon the information in this Report. Reuse of this Report or any portion thereof for other than its intended purpose, or if modified, or if used by third parties without proper authorization, shall be at the user's sole risk.

The findings presented in this Report apply solely to site conditions existing at the time when ERA's assessment was performed. It must be recognized, however, that a Limited Phase II ESA is

conducted for the purpose of evaluating the potential for contamination through limited investigative activities and in no way represents a conclusive or complete site characterization. Conditions in other parts of the project site may vary from those at the locations where data were collected. ERA's ability to interpret investigation results is related to the availability of the data and the extent of the investigation activities. As such, 100 percent confidence in limited Phase II ESA conclusions cannot reasonably be achieved.

Nothing contained in this document shall relieve any other party of its responsibility to abide by contract documents and applicable laws, codes, regulations, or standards.

2.5 Special Terms and Conditions

The scope of work for this Limited Phase II ESA was presented in ERA's proposal dated January 29, 2016. The scope of work for this assessment did not include tasks not specifically noted in the proposal, with the exception of advancing two additional borings inside the equipment repair shop.

2.6 User Reliance

This Report is for the exclusive use of the parties for which it was prepared, their agents, and assignees, and for such other parties as ERA agrees may rely on the Report. Use of this Report by any other party shall be at such party's sole risk.

2.7 Qualifications

A summary of the ERA personnel who worked on this project follows:

 Ms. Lita Freeman, California Professional Geologist and California Asbestos Consultant, has over 25 years of experience providing site assessment services. This has included evaluating potential property impacts from historical on- and off-site operations, conducting subsurface investigations, and implementing site remediation plans. Ms. Freeman works with property owners, attorneys, and regulators to mitigate and resolve environmental issues.

3. VAPOR ENCROACHMENT

Vapor encroachment occurs when vapors from volatile chemicals in polluted soil or groundwater are present in sufficient concentrations and under certain conditions such that volatile chemical vapors may migrate upwards into the indoor air of overlying buildings. Vapor encroachment chemicals of concern (COCs) include VOCs. Once contaminant vapors enter a structure, they may accumulate and potentially pose health hazards for building occupants.

To ensure that vapor encroachment is appropriately considered when performing an environmental site assessment, the American Society for Testing and Materials International (ASTM) released its Vapor Encroachment Standard (ASTM E2600-10) in 2010. In accordance with the new standard, two conditions are evaluated: Vapor Encroachment Condition (VEC) and potential Vapor Encroachment Condition (pVEC). A VEC results from "the presence or likely presence of any chemicals of concern in the indoor air environment of existing or planned structures on a property caused by the release of vapor from contaminated soil or groundwater on the property or within close proximity to the property, at a concentration that presents or may present an unacceptable health risk to occupants." A pVEC is "a condition that exists when screening indicates the possibility of a VEC, but where there is insufficient data to ascertain the presence or likely presence of COCs in the

indoor air environment." "Chemicals of Concern" are defined by the ASTM to be "chemicals in the subsurface environment that are known or reasonably expected to be present, that can potentially migrate as a vapor into an existing or planned structure on a property, and that are generally recognized as having the potential for an adverse impact on human health."

Based on the past site operations, a potential exists for vapor encroachment, therefore, soil gas sampling was conducted as part of this Limited Phase II ESA. As noted above, the Summa canisters were purged by the laboratory while preparing for analysis and soil gas samples were not available for analysis. Sub-slab soil samples were collected for analysis as discussed below.

4. FIELD INVESTIGATION

This Limited Phase II ESA was conducted to evaluate current conditions by collecting soil gas, soil, and groundwater samples from select on-site locations for analysis with comparison of the analytical results to established screening levels. The scope of work and results of this Limited Phase II ESA are presented below.

Photographs of the Site and the site investigation are included in Appendix A.

4.1 **Pre-Field Activities**

Before conducting field activities associated with the proposed assessment, the pre-field tasks described below were completed.

4.1.1 Health and Safety

ERA prepared a site-specific *Health and Safety Plan* for the scope of work as required by the Occupational Health and Safety Administration (OSHA) Standard "Hazardous Waste Operations and Emergency Response" guidelines (29 CFR 1910.120). The document was reviewed and signed by ERA personnel and subcontractors performing work at the Site.

4.1.2 Permitting

ERA obtained soil boring permits from the Alameda County Public Works Agency (ACPWA) before commencing intrusive field activities. ERA coordinated field activities with the ACPWA and scheduled an ACPWA inspector to document compliance with permit requirements. Copies of the approved permits are presented in Appendix B.

4.2 Field Activities

4.2.1 Utility Clearance

Before conducting subsurface work at the Site, the sampling locations were cleared for underground utilities by notifying Underground Services Alert North (USA North) at least 48 hours prior to intrusive field activities. In addition, Cruz Brothers, a private utility locating contractor, cleared each proposed sampling location prior to intrusive field activities. Proposed sampling locations were adjusted, as necessary, to maintain a distance of at least 3 feet from identified underground utilities/structures.

4.2.2 Drilling and Sampling

On February 11, 2016, ERA personnel provided oversight of a field crew from Cascade Drilling, L.P. (Cascade) of Richmond, California, a California licensed driller, during advancement of the borings using a Geoprobe direct-push drilling rig and installation of soil gas wells. Two sub-slab soil gas temporary wells were constructed at each sampling location to collect soil gas samples and soil borings were advanced at each sampling location to collect soil and groundwater samples (Figure 2). The boring locations were selected based on available historical information and site observations, as follows:

- the area of the UST (boring SB-1); and
- the paint/thinner storage and mixing room observed in Unit A (boring SB-2).

Down-hole drilling and sampling equipment was washed in a tri-sodium phosphate solution following the completion of sample collection activities for each soil boring.

Soil sampling was conducted during drilling using new acetate sleeves. Soil samples were screened in the field with a photoionization detector (PID) and observed for evidence of chemical staining. The soil screening procedures involved measuring approximately 30 grams of soil from a relatively undisturbed soil sample and placing this sample in a sealed zip-lock bag. The container was warmed in the sun for approximately 20 minutes, then the head space within the bag was tested for total organic vapor, measured in parts per million volume (ppmv). Elevated (above background) PID measurements were noted during sampling with the highest PID reading 2.9 ppmv) in boring SB-2 at 2.5 feet. No evidence of impacted soil (i.e. staining, odors, sheen, etc.) was noted during sampling. The PID results were recorded on the field boring logs which are included in Appendix C.

4.2.2.1 Soil Gas Sampling

Soil gas sampling equipment provided by McCampbell Analytical, Inc. (McCampbell Analytical) of Pittsburg, California, and used at each sampling location included a manifold with dual vacuum gauges and regulator, a purge canister containing helium, and an evacuated 1-liter stainless steel Summa canister (to contain the soil gas sample). The 1-liter canister-specific regulators were preset to not exceed a flow rate of 150 milliliters per minute (ml/min). Each canister was checked, tested, and certified by McCampbell Analytical for air tightness and proper vacuum prior to shipping. The serial numbers of the manifold, vacuum gauges, and Summa canister used at each sampling location were recorded, along with the initial and final vacuum readings.

The sub-slab soil gas samples were collected from temporary soil gas probes placed through the asphalt pavement (exterior locations) or concrete floor slab (interior locations) to a depth of 12 to 18 inches bgs. Inert nylon tubing was used to connect the sampling port at the bottom of the well to the manifold, which was then connected to the purge can and the Summa canister. The tubing was purged with helium for approximately 2 minutes at each location prior to sampling; the sampling canister was isolated during the purge by keeping the valve in a "Closed" position when the valves were opened on the purge can and on the manifold (between the sampling port and the purge can). The valve on the purge can was then closed and the valve on the sampling canister was opened, thereby placing a vacuum on the sampling port and drawing soil gas into the sampling canister.

A leak test was performed using a tracer gas to evaluate possible ambient air intrusion into the Summa canisters during the soil gas sampling. The tracer gas that was used during this project was 1,1-difluoroethane (1,1-DFA), which is the propellant found in duster spray. The leak test consisted of placing a cloth soaked in 1,1-DFA into a sealed plastic bag at each soil gas sample location. The plastic bag was placed adjacent the sampling train and opened after the valve on the Summa canister was opened to allow collection of the soil gas sample into the canister.

When an internal vacuum of approximately -5 inches mercury (Hg) was reached (from an initial vacuum of approximately -30 inches Hg), the Summa canister's valve was closed and the canister capped, labeled, and transported by the project laboratory's courier to the project laboratory under chain-of-custody documentation.

4.2.2.2 Soil Sampling

A track-mounted direct-push unit was used to drive a steel probe lined with acetate tubes into the ground to the desired depth. The soil samples were retained in the acetate tubes, capped with Teflon squares and plastic end caps, labeled with the boring identification number and the bottom depth (e.g., 2 feet bgs) of the sampling interval, and sealed in zip-lock bags.

The soil samples were placed on ice and transported under chain-of-custody protocols to the project laboratory by a laboratory-provided courier.

4.2.2.3 Groundwater Sampling

New polyvinyl chloride (PVC) casing (with slotted casing in the lower 10 feet and blank casing from above the slotted casing to the ground surface) was placed in boring SB-1. Boring SB-2 was dry and, therefore, PVC casing was not placed in the borehole. Groundwater was allowed to flow into the casing at boring SB-1 for approximately one hour. A sufficient quantity of groundwater collected in the casing to fill the laboratory-provided containers appropriate for the requested analysis.

The groundwater samples containers were labeled with the boring identification number and placed on ice and transported under chain-of-custody protocols to the project laboratory by a laboratory-provided courier.

4.2.3 Borehole Abandonment and Investigation-Derived Waste Handling

After the sampling activities were complete, each boring was backfilled with cement grout and bentonite in accordance with the ACPWA permit requirements and the ACPWA inspector's directions.

Investigation-derived waste (IDW), which was limited to soil cuttings, produced during sampling activities were containerized in one 55-gallon container and left on the Site pending receipt of analytical results. Appropriate off-site disposal options will be presented to the client after evaluation of the analytical results.

4.2.4 Deviations from the Work Plan

Deviations from the work plan were as follows:

• Boring SB-1 was extended from a planned depth of 24 feet bgs to a depth of 38 feet bgs to collect a groundwater sample;

- Boring SB-2 was advanced to a total depth of 24 feet bgs but groundwater was not present in the borehole, therefore, a groundwater sample was not collected from this boring;
- The Summa canisters containing the soil gas samples were purged by the laboratory in error before analysis could be conducted and, therefore, soil gas analytical results are not available; and
- Four soil samples (SB-2-2.5, SB-2-5, SB-2-10, and SB-2-15) from boring SB-2 were analyzed for VOCs to delineate the vertical extent of PCE detected in soil at this location.

5. ANALYSIS, RESULTS, AND EVALUATION

The soil gas, soil, and groundwater samples were submitted to McCampbell Analytical, a laboratory certified by the State of California to perform the requested analyses. As noted above, the soil gas samples were not analyzed due to a laboratory error.

The analytical methods, results, and evaluation of this Limited Phase II ESA are presented below. Copies of the laboratory analytical report and chain-of-custody documentation are presented in Appendix D.

5.1 Soil Analysis and Results

Soil samples SB-1-8.5 and SB-2-2.5, collected from borings SB-1 and SB-2, respectively, were submitted for analyses as follows:

- VOCs, including TPHg, benzene, toluene, ethylbenzene, and xylenes, using U.S. Environmental Protection Agency (U.S. EPA) Method 8260B; and
- TPHmo using U.S. EPA Method SW8015B.

Upon review of the initial analytical results for soil sample SB-2-2.5, the laboratory was directed to analyze the deeper soil samples from boring SB-2 since the soil gas samples were not analyzed. Soil samples SB-2-5, SB-2-10, and SB-2-15 were analyzed for PCE only using U.S. EPA Method 8260B.

VOCs were not detected in the soil samples at concentrations at or above their respective laboratory reporting limit with the exception of PCE which was detected in soil samples SB-2-2.5 and SB-2-5 at concentrations of 0.032 mg/kg and 0.013 mg/kg (see McCampbell Analytical report in Appendix D).

Petroleum hydrocarbons were not detected in soil samples SB-1-8.5 and SB-2-2.5 at concentrations at or above their respective laboratory reporting limit (see McCampbell Analytical report in Appendix D).

The analytical results for the compounds detected in the soil samples are presented in Table 2 and evaluation of the analytical results is presented below in Section 5.3.

5.2 Groundwater Analysis and Results

The groundwater sample collected from boring SB-1 was submitted for analyses as follows:

• VOCs, including TPHg, benzene, toluene, ethylbenzene, and xylenes, using U.S. EPA Method 8260B; and

• TPHmo using U.S. EPA Method SW8015B.

Analysis of the groundwater sample revealed the following:

- PCE was detected at a concentration of 9.5 μ g/L; and
- TCE was detected at a concentration of 1.2 µg/L.

Petroleum hydrocarbons were not detected in the groundwater sample at concentrations at or above their respective laboratory reporting limit. The laboratory reporting limit for TPH-mo was elevated because of the amount of sediment in the sample.

The analytical results for the compounds detected in the groundwater samples are presented in Table 2 and evaluation of the analytical results is presented below in Section 5.3.

5.3 EVALUATION

The concentrations of compounds of concern detected in soil and groundwater samples were compared to applicable ESLs established by the SFBRWQCB (SFBRWQCB, 2016).

5.3.1 Soil Results Evaluation

Comparison of the analytical results to the ESLs for soil (SFBRWQCB, 2016) indicate that the concentrations of PCE in soil samples SB-2-2.5 (0.032 mg/kg) and SB-2-5 (0.013 mg/kg) were below the ESL of 0.42 mg/kg. PCE was not detected in soil samples SB-2-10 and SB-2-15 at concentrations at or above the laboratory reporting limit of 0.005 mg/kg (Table 2).

5.3.2 Groundwater Results Evaluation

Comparison of the analytical results to the ESLs for groundwater (SFBRWQCB, 2016) indicated that the detected concentration of PCE (9.5 μ g/L) was above its' ESL (3 μ g/L) but the concentration of TCE (1.2 μ g/L) was below its' ESL (5 μ g/L), as shown in Table 2.

The laboratory reporting limit (500 μ g/L) for TPHmo in groundwater was above the ESL for TPH quantified as diesel of 100 μ g/L (Note 2 of Tier 1 ESLs states sum of TPHmo and TPHd concentrations to be compared to ESL for TPHd; SFBRWQCB, 2016). However, no evidence (staining, odors, etc.) of petroleum hydrocarbon impacts was noted in the soil samples collected from the borings.

6. CONCLUSIONS

The results of this Limited Phase II ESA indicated that VOCs are present in soil and groundwater samples collected from the Site. The concentrations of PCE were below the applicable ESL in soil but above the applicable ESL in groundwater (SFBRWQCB, 2016). TCE was not detected in soil at concentrations at or above its' laboratory reporting limit and was detected in groundwater at a concentration below the applicable ESL (SFBRWQCB, 2016). The presence of PCE in soil and groundwater indicate a past on-site release.

7. RECOMMENDATIONS

The detection of VOCs in soil and groundwater samples indicates that a release has occurred on site with reported concentrations in groundwater above applicable ESLs. In accordance with the

requirements of the permit issued by the ACPWA, a copy of this report must be submitted to the ACPWA.

8. REFERENCES

American Society for Testing and Materials (ASTM). 2010. *Standard Guide for Vapor Encroachment Screening on Property Involved in Real Estate Transactions*, June.

California Environmental Protection Agency, San Francisco Bay Regional Water Quality Control Board (SFBRWQCB). 2016. *Environmental Screening Levels, Tier 1 ESLs.* February.

SIGNATURE OF ENVIRONMENTAL PROFESSIONAL

Report Prepared By:

Xita D. Freeman

California Professional Geologist No. 7368

Lita D. Freeman, P.G.

Principal Geologist

Lita Freeman No: 7368 11/30/17

March 3, 2016

Date

* A professional geologist's certification of conditions comprises a declaration of his or her professional judgment. It does not constitute a warranty or guarantee, expressed or implied, nor does it relieve any other party of its responsibility to abide by contract documents, applicable codes, standards, regulations, and ordinances.

TABLES

Table 2 Soil and Groundwater Samples Organics Analytical Summary Body Repair Shops 295 139th Avenue San Leandro, California 94578

On-Site Location/ Comments	Sample ID	Sample Depth (feet bgs) ¹	Matrix	Petroleum Hydrocarbons VOCs ² (Soil: mg/kg, GW:μg/L) (soil: mg/kg, GW: μg/L)					
	Analyte	s		^в нат	TPHmo ³	ЪСЕ	TCE		
	ESL for S	oil		100	100	0.42	0.46		
Former UST	SB-1-8.5	1.0 - 1.5	Soil	<0.25	<5	<0.005	<0.005		
Paint Mixing Area	SB-2-2.5	2.0 - 2.5	Soil	<0.25	<5	0.032	<0.005		
Paint Mixing Area	SB-2-5	4.5 - 5	Soil	NA	NA	0.013	NA		
Paint Mixing Area	SB-2-10	9.5 - 10	Soil	NA	NA	<0.005	NA		
Paint Mixing Area	SB-2-15	14.5 - 15	Soil	NA	NA	<0.005	NA		
ES	L for Groun	dwater		100	100 4	3	5		
Former UST	SB-1-W	NA	Ground- water	<50	<500	9.5	1.2		

Notes:

UST = Underground Storage Tank

1. bgs = below ground surface

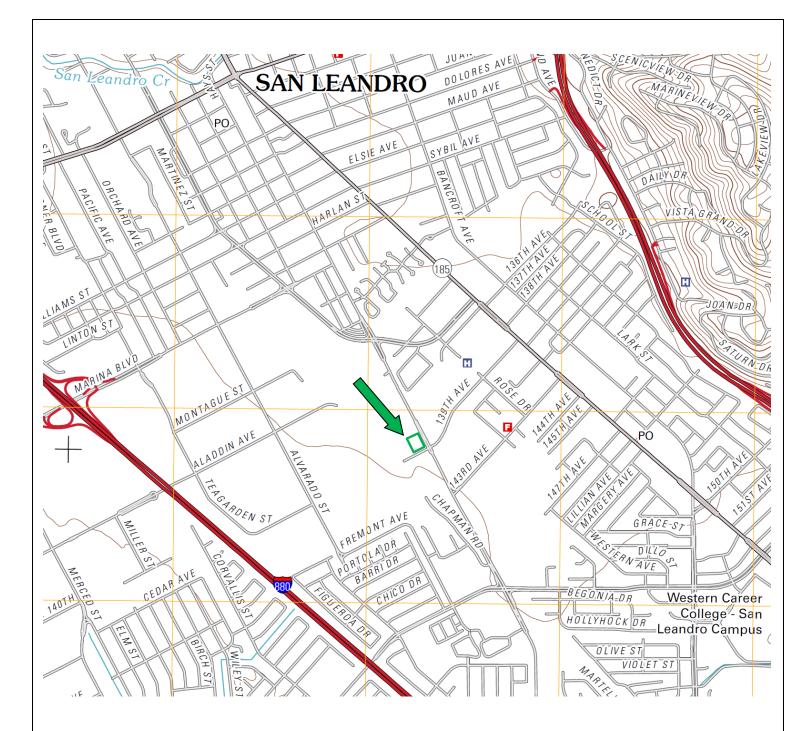
2. Volatile Organic Compound (VOCs) were analyzed using U.S. EPA Method 8260B.

3. TPHg, TPHmo = Total petroleum hydrocarbons (TPH) quantified as gasoline analyzed by U.S. EPA Method 8260; TPH quantified as motor oil were analyzed using U.S. EPA Method 8015B/C.

4. California Environmental Protection Agency, San Francisco Bay Regional Water Quality Control Board Tier 1 Environmental Screening Levels (SFBRWQCB, 2016), Note 2 states: TPH motor oil is not soluble. TPH motor oil detections in water most likely are petroleum degradates or less likely NAPL. If the detections are degradates, add TPH motor oil and TPH diesel results and compare to TPH diesel criterion. The noted ESL was established for TPH-d.

ESL = Environmental Screening Levels for soil and groundwater as established by the SFBRWQCB, Tier 1 ESLs, February 2016.

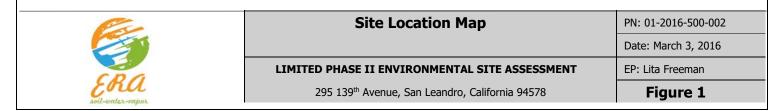
Units: mg/kg = milligrams per kilogram, μ g/L = micrograms per liter

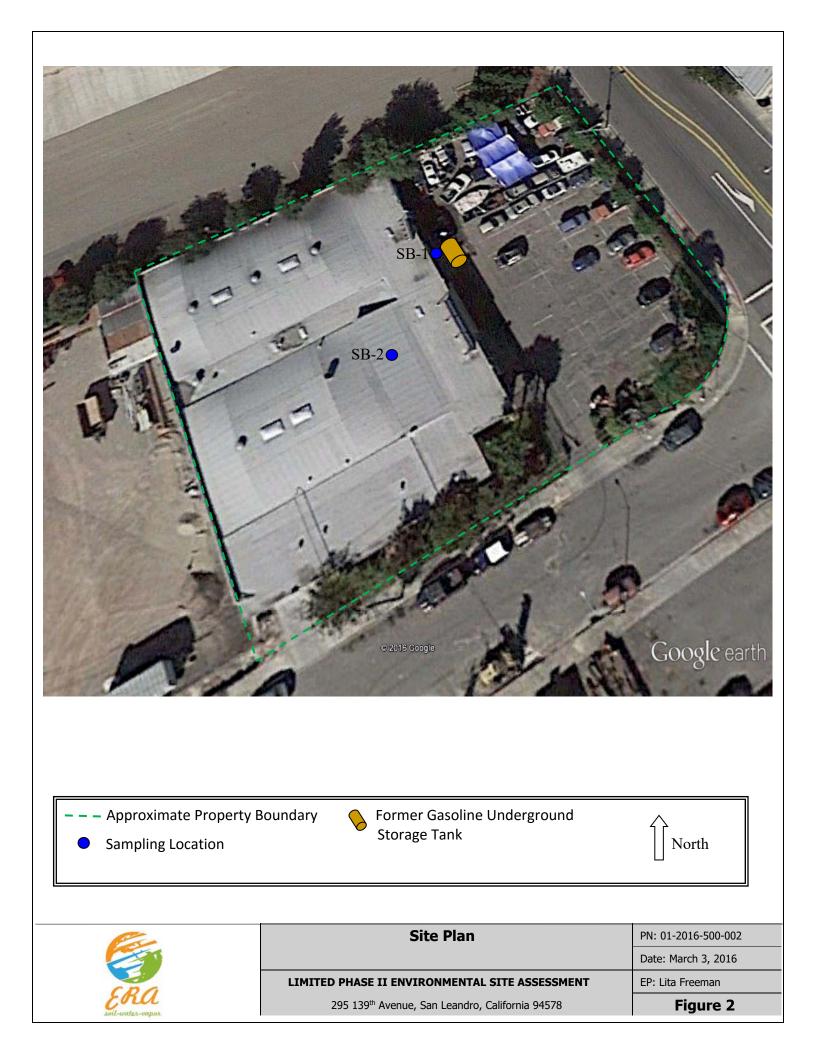

ND = Not detected

<10 = Not detected at stated concentration

Bold = Compound detected

Bold = Compound detected above ESL


FIGURES



Legend

— Site (boundaries approximate)

Source: USGS San Leandro, CA Quadrangle Topographic Map, 2012

Appendix A

Site Photographs

Photographic Log 295 139th Avenue San Leandro, California 94578 ERA Project No. 01-2016-500-002

Photograph: 1

Description:

Photo depicts the on-site building and entrance to the paved parking lot.

Photograph: 2

Description:

Photo depicts the trackmounted direct push drilling rig set up at sampling location (SB-1) near the former UST.

1

Photographic Log 295 139th Avenue San Leandro, California 94578 ERA Project No. 01-2016-500-002

Photograph: 3

Description:

Photo depicts advancing boring SB-1 using the track-mounted direct push drilling rig.

Photograph: 4

Description:

Photo depicts sampling location (SB-2) near the paint/thinner storage and mixing room inside the onsite building.

2

Photographic Log 295 139th Avenue San Leandro, California 94578 ERA Project No. 01-2016-500-002

Photograph: 5

Description:

Photo depicts backfilling of boring SB-1.

Photograph: 6

Description:

Photo depicts backfilled boring SB-1.

3

Appendix B

Soil Boring Permit

Alameda County Public Works Agency - Water Resources Well Permit

399 Elmhurst Street Hayward, CA 94544-1395 Telephone: (510)670-6633 Fax:(510)782-1939

Application Approved on: 01/27/2016 By jamesy

Permit Numbers: W2016-0056 Permits Valid from 02/11/2016 to 02/11/2016

Application Id: Site Location: Project Start Date: Assigned Inspector:	1453916652429 295 139th Avenue - northwest corner of intersec 02/11/2016 Contact Lindsay Furuyama at (925) 956-2311 or	Completion Date:02/11/2016
Applicant:	Basics Environmental - Lita Freeman	Phone: 510-834-9099
Property Owner:	655 12th Street Suite 126, Oakland, CA 94607 Erin Tamer, Trustee The LEMR Trust	Phone: 925-683-9779
Client: Contact:	PO Box 511 / 27 Mott Drive, Alamo, CA 94507 ** same as Property Owner ** Lita Freeman	Phone: 916-677-9897
		Cell:
	Receipt Number: WR2016-0040	Total Due: \$265.00 Total Amount Paid: \$265.00

 Receipt Number: WR2016-0040
 Total Amount Paid:
 \$26

 Payer Name : Environmental RiskPaid By: VISA
 PAID IN F

Assessor/Lita D Freeman

Works Requesting Permits:

Borehole(s) for Investigation-Contamination Study - 2 Boreholes Driller: Cascade Drilling - Lic #: 938110 - Method: DP

Work Total: \$265.00

Specifications

Permit Number	Issued Dt	Expire Dt	# Boreholes	Hole Diam	Max Depth
W2016-	01/27/2016	05/11/2016	2	2.00 in.	25.00 ft
0056					

Specific Work Permit Conditions

1. Backfill bore hole by tremie with cement grout or cement grout/sand mixture. Upper two-three feet replaced in kind or with compacted cuttings. All cuttings remaining or unused shall be containerized and hauled off site. The containers shall be clearly labeled to the ownership of the container and labeled hazardous or non-hazardous.

2. Boreholes shall not be left open for a period of more than 24 hours. All boreholes left open more than 24 hours will need approval from Alameda County Public Works Agency, Water Resources Section. All boreholes shall be backfilled according to permit destruction requirements and all concrete material and asphalt material shall be to Caltrans Spec or County/City Codes. No borehole(s) shall be left in a manner to act as a conduit at any time.

3. Permittee shall assume entire responsibility for all activities and uses under this permit and shall indemnify, defend and save the Alameda County Public Works Agency, its officers, agents, and employees free and harmless from any and all expense, cost, liability in connection with or resulting from the exercise of this Permit including, but not limited to, properly damage, personal injury and wrongful death.

4. Prior to any drilling activities, it shall be the applicant's responsibility to contact and coordinate an Underground Service Alert (USA), obtain encroachment permit(s), excavation permit(s) or any other permits or agreements required for that Federal, State, County or City, and follow all City or County Ordinances. No work shall begin until all the permits and requirements have been approved or obtained. It shall also be the applicants responsibilities to provide to the Cities or to Alameda County an Traffic Safety Plan for any lane closures or detours planned. No work shall begin until all the permits and requirements have been approved or obtained.

Alameda County Public Works Agency - Water Resources Well Permit

5. Applicant shall contact assigned inspector listed on the top of the permit at least five (5) working days prior to starting, once the permit has been approved. Confirm the scheduled date(s) at least 24 hours prior to drilling.

6. Copy of approved drilling permit must be on site at all times. Failure to present or show proof of the approved permit application on site shall result in a fine of \$500.00.

7. Electronic Reporting Regulations (Chapter 30, Division 3 of Title 23 & Division 3 of Title 27, CCR) require electronic submission of any report or data required by a regulatory agency from a cleanup site. Submission dates are set by a Regional Water Board or by a regulatory agency. Once a report/data is successfully uploaded, as required, you have met the reporting requirement (i.e. the compliance measure for electronic submittals is the actual upload itself). The upload date should be on or prior to the regulatory due date.

8. NOTE:

Under California laws, the owner/operator are responsible for reporting the contamination to the governmental regulatory agencies under Section 25295(a). The owner/operator is liable for civil penalties under Section 25299(a)(4) and criminal penalties under Section 25299(d) for failure to report a leak. The owner/operator is liable for civil penalties under Section 25299(b)(4) for knowing failure to ensure compliance with the law by the operator. These penalty provisions do not apply to a potential buyer.

9. Permit is valid only for the purpose specified herein. No changes in construction procedures, as described on this permit application. Boreholes shall not be converted to monitoring wells, without a permit application process.

Appendix C

Soil Boring Logs

PROJECT: 295 139th Avenue, San Leandro, California Log of Boring SB-1 PAGE 1 OF 2													
Borin	ng loca	tion [.]	S	ee Fi	aure	2		Logge	d by:	P#	AGE I	OF 2	
Date started: 2/11/16 Date finished: 2/11/16													
Drilling method: Direct Push													
Ham	mer w	eight/	/drop	: NA		Hammer type: NA			LABOF	RATOR	Y TEST	DATA	
Sam	pler: ,	Arturo	-Cas	cade	/Lita	Freeman-ERA							
		SAMF			GΥ	MATERIAL DESCRIPTION		s of st	ning sure q Ft	trengt q Ft	Se -	iral ure nt, %	ensity u Ft
DEPTH (feet)	PID (ppmv)	Sample	Blows/ 6"	SPT N-Value ¹	гітногосу		2	Type of Strength Test	Confining Pressure Lbs/Sq Ft	Shear Strength Lbs/Sq Ft	Fines %	Natural Moisture Content, %	Dry Density Lbs/Cu Ft
00		S	B	z	5	Ground Surface Elevation: feet				0,			
1 —						Asphalt and Baserock - surface to 9 inches							
2 —	1.7					Silty Clay (CH), Black (N 2.5), high plasticity, dry	_						
3 —							_						
4 —							_						
	2.5					color change to Dark Brown (7.5 VB 2/2) at 5 fee	-t						
5 —	2.5					- color change to Dark Brown (7.5 YR 3/2) at 5 fee	əl —						
6 —													
7 —						Gravelly Sand (SP), Brown (7.5 YR 4/6), fine-gra							
8 —						coarse-grained sand, fine-grained to medium-grai angular to sub-angular gravel, dry	ined gravel,						
9 —	-					Silty Clay (CH), Brown (7.5 YR 4/6), high plasticit	y, dry —						
10 —							_						
11 —							_						
12 —						- slightly moist at 12 feet							
13 —	1												
14 —													
15 —	1.9						_						
16 —						- lense of fine-grained silty sand at 15.5 to 16 feet Silty Clay (CH), Brown (7.5 YR 4/6), high plasticity	v. drv						
17 —													
18 —							_						
19 —													
20 —													
21 —													
22 —	1						_						
23 —	-						_						
24 —	-						_						
25 —	-						_						
26 —													
20 27 —													
							_						
28 —	1						_						
29 —							_						
30 —	Boring t	erminate	ed at a	depth of	<u>38 f</u> ee	et below ground surface.		(Environ	mental	Risk Ass	essors
	Boring I Free an				-			2	Ra	LIVIOI	mental	1131 733	033013
Free groundwater not encountered during drilling but moist soil present below 12 feet. Project No.: 01-2016-500-002 Figure: C-1													

PROJECT: 295 139th Avenue, San Leandro, California Log of Boring SB-1 PAGE 2 OF 2													
Boring location: See Figure 2 Logged by:													
Date started: 2/11/16 Date finished: 2/11/16 Lita Freeman													
Drillin	ng met	hod:	Di	rect F	Push			LI	ta Freei	man			
Ham	mer w	eight/	drop	: NA	١	Hammer type: NA		-	LABOF	RATOR	Y TEST	DATA	
Sam					e/Lita	a Freeman-ERA				tt			
_		SAMP			ЭGY	MATERIAL DESCRIPTION		Type of Strength Test	Confining Pressure Lbs/Sq Ft	Streng Sq Ft	Fines %	Natural Moisture Content, %	Dry Density Lbs/Cu Ft
DEPTH (feet)	PID (ppmv)	Sample	Blows/ 6"	SPT N-Value ¹	гітногосу		- t ²	L S F	Con Pre: Lbs/	Shear Strength Lbs/Sq Ft	Ē	Na: Moi Cont	Dry D Lbs/
		S	BI	Ż	5	Ground Surface Elevation:fee	et			0,			
31—						Gravelly Clay with Sand (CH), Very Pale Brown							
32—	-					8/2), high plasticity, moist	-	-					
33—								-					
34—	-					Silty Clay (CH), Light Brown (7.5 YR 6/4), high p moist	plasticity,	-					
35—	-						_	-					
36—							_						
37—							_						
38—						Bottom of Boring = 38 feet							
39—							_	-					
40 —								-					
41 —							_	-					
42 —								_					
43 —	-						_	-					
44 —	-						_	-					
45 —	-						_	-					
46 —	-						_	-					
47 —							_						
48 —							_						
49 —													
50 —							—						
51 —							_						
52 —							_	-					
53 —							—	-					
54 —							_	-					
55 —							_	-					
56 —							_	-					
57 —							_	-					
58 —							_						
							_						
59 —							_						
60 —						et below ground surface.		(5	Enviror	mental	Risk Ass	essors
	Boring I Free gro					t. I during drilling but moist soil present below 12 feet.		20	RA				
Project No.: 01-2016-500-002													

PRC	PROJECT: 295 139th Avenue, San Leandro, California Log of Boring SB-2 PAGE 1 OF 1												
Boring location: See Figure 2 Logged by:													
Date	starte	d: 2	2/11/*	16		Date finished: 2/11/16			4a 5-				
Drillir	Drilling method: Direct Push Lita Freeman												
Ham	mer w	eight	/drop	: NA	۱.	Hammer type: NA			LABOF	RATOR	Y TEST	DATA	
Sam	oler: ,	Arturc	-Cas	scade	/Lita I	Freeman-ERA							
		SAMF	PLES					t H e	ing ure q Ft	rengtl a Ft	s	al ure t, %	nsity J Ft
et) HH	PID	Sample	Blows/ 6"	SPT N-Value ¹	ГІТНОГОСУ	MATERIAL DESCRIPTION		Type of Strength Test	Confining Pressure Lbs/Sq Ft	Shear Strength Lbs/Sq Ft	Fines %	Natural Moisture Content, %	Dry Density Lbs/Cu Ft
DEPTH (feet)	(ppmv)	San	Blow	IS Z	HLI	Ground Surface Elevation:fee	et ²			She		0	
						Asphalt and Baserock - surface to 9 inches							
1 —						Silty Clay (CH), Black (N 2.5), high plasticity, dr	у —						
2 —	2.9						_						
3 —							_						
4 —							_						
5 —	1.6						_						
	110												
6 —													
7 —							_	-					
8 —								-					
9 —							_						
10 —	1.9						_						
11 —							_						
12 —						- slightly moist at 12 feet							
13 —							_	-					
14 —							_						
15 —	1.8					- lense of fine-grained silty sand at 15.5 to 16 fe	et _	-					
16 —						- color change to Brown (7.5 YR 4/6) at 16 feet	_						
17 —							_						
18 —							_						
19 —							_						
20 —							_	-					
21 —							_						
22 —							_						
23 —													
24 —						Bottom of Boring = 24 feet		1					
25 —													
26 —							_						
27 —							_						
28 —													
29 —							_	1					
30 —	Boring t	erminate	ed at a	l depth o	f 24 f	eet below ground surface.		-				Dial A	
	Boring I	backfille	ed with	n cemer	t grout	i.			Ra	Enviror	imental	Risk Ass	essors
	Free gr	oundwa	ater no	t encou	ntered	during drilling but moist soil present below 12 feet.		Project	No.:		Figure:	C 3	
	Project No [Figure: C-3												

Appendix D

Laboratory Analytical Report and Chain-of-Custody Documentation

McCampbell Analytical, Inc.

"When Quality Counts"

Analytical Report

WorkOrder: 1602473

Report Created for: Basics Environmental

655 12th Street, Suite 126 Oakland, CA 94607

Project Contact:	Donavan Tom
Project P.O.:	
Project Name:	01-2016-500-002; 139th Ave Property

Project Received: 02/12/2016

Analytical Report reviewed & approved for release on 02/19/2016 by:

Angela Rydelius, Laboratory Manager

The report shall not be reproduced except in full, without the written approval of the laboratory. The analytical results relate only to the items tested. Results reported conform to the most current NELAP standards, where applicable, unless otherwise stated in the case narrative.

1534 Willow Pass Rd. Pittsburg, CA 94565 ♦ TEL: (877) 252-9262 ♦ FAX: (925) 252-9269 ♦ www.mccampbell.com NELAP: 4033ORELAP ♦ ELAP: 1644 ♦ ISO/IEC: 17025:2005 ♦ WSDE: C972-11 ♦ ADEC: UST-098 ♦ UCMR3

Glossary of Terms & Qualifier Definitions

Client:Basics EnvironmentalProject:01-2016-500-002; 139th Ave PropertyWorkOrder:1602473

1002110

Glossary Abbreviation

95% Interval	95% Confident Interval
DF	Dilution Factor
DI WET	(DISTLC) Waste Extraction Test using DI water
DISS	Dissolved (direct analysis of 0.45 μm filtered and acidified water sample)
DLT	Dilution Test
DUP	Duplicate
EDL	Estimated Detection Limit
ITEF	International Toxicity Equivalence Factor
LCS	Laboratory Control Sample
MB	Method Blank
MB % Rec	% Recovery of Surrogate in Method Blank, if applicable
MDL	Method Detection Limit
ML	Minimum Level of Quantitation
MS	Matrix Spike
MSD	Matrix Spike Duplicate
N/A	Not Applicable
ND	Not detected at or above the indicated MDL or RL
NR	Data Not Reported due to matrix interference or insufficient sample amount.
PDS	Post Digestion Spike
PDSD	Post Digestion Spike Duplicate
PF	Prep Factor
RD	Relative Difference
RL	Reporting Limit (The RL is the lowest calibration standard in a multipoint calibration.)
RPD	Relative Percent Deviation
RRT	Relative Retention Time
SPK Val	Spike Value
SPKRef Val	Spike Reference Value
SPLP	Synthetic Precipitation Leachate Procedure
ST	Sorbent Tube
TCLP	Toxicity Characteristic Leachate Procedure
TEQ	Toxicity Equivalents
WET (STLC)	Waste Extraction Test (Soluble Threshold Limit Concentration)

Analytical Qualifiers

a3	sample diluted due to high organic content.
b1	aqueous sample that contains greater than ~1 vol. % sediment

Glossary of Terms & Qualifier Definitions

Client:Basics EnvironmentalProject:01-2016-500-002; 139th Ave PropertyWorkOrder:1602473

Quality Control Qualifiers

- F1 MS/MSD recovery and/or RPD is out of acceptance criteria; LCS validated the prep batch.
- F3 the surrogate standard recovery and/or RPD is outside of acceptance limits.

Client:	Basics Environmental
Date Received:	2/12/16 13:18
Date Prepared:	2/19/16-2/24/16
Project:	01-2016-500-002; 139th Ave Property

WorkOrder:	1602473
Extraction Method:	SW5030B
Analytical Method:	SW8260B
Unit:	mg/kg

Halogenated Volatile Organics by P&T and GC-MS (8010 Basic Target List)

Client ID	Lab ID	Matrix	Date Collected	Instrument	Batch ID
SB-2-5	1602473-005A	Soil	02/11/2016 13:35	GC18	116913
Analytes	Result		<u>RL</u> DF		Date Analyzed
Tetrachloroethene	0.013		0.0050 1		02/19/2016 13:11
Surrogates	<u>REC (%)</u>		<u>Limits</u>		
Toluene-d8	115		70-130		02/19/2016 13:11
Ethylbenzene-d10	96		60-140		02/19/2016 13:11
<u>Analyst(s):</u> KF					
Client ID	Lab ID	Matrix	Date Collected	Instrument	Batch ID
SB-2-10	1602473-006A	Soil	02/11/2016 13:40	GC18	117057
Analytes	Result		<u>RL</u> DF		Date Analyzed
Tetrachloroethene	ND		0.0050 1		02/23/2016 19:37
Surrogates	<u>REC (%)</u>		<u>Limits</u>		
Toluene-d8	117		70-130		02/23/2016 19:37
Ethylbenzene-d10	108		60-140		02/23/2016 19:37
<u>Analyst(s):</u> AK					
Client ID	Lab ID	Matrix	Date Collected	Instrument	Batch ID
SB-2-15	1602473-007A	Soil	02/11/2016 13:45	GC18	117127
Analytes	Result		<u>RL</u> <u>DF</u>		Date Analyzed
Tetrachloroethene	ND		0.0050 1		02/24/2016 13:41
Surrogates	<u>REC (%)</u>		<u>Limits</u>		
Toluene-d8	118		70-130		02/24/2016 13:41
Ethylbenzene-d10	94		60-140		02/24/2016 13:41
Analyst(s): AK					

Basics Environmental
2/12/16 13:18
2/12/16
01-2016-500-002; 139th Ave Property

WorkOrder:	1602473
Extraction Method:	SW5030B
Analytical Method:	SW8260B
Unit:	mg/kg

Volatile Organics by P&T and GC/MS (Basic Target List)

Client ID	Lab ID Matrix	Date Collected Instrument	Batch ID
SB-1-8.5	1602473-001A Soil	02/11/2016 10:25 GC16	116619
Analytes	Result	<u>RL DE</u>	Date Analyzed
Acetone	ND	0.10 1	02/16/2016 10:37
tert-Amyl methyl ether (TAME)	ND	0.0050 1	02/16/2016 10:37
Benzene	ND	0.0050 1	02/16/2016 10:37
Bromobenzene	ND	0.0050 1	02/16/2016 10:37
Bromochloromethane	ND	0.0050 1	02/16/2016 10:37
Bromodichloromethane	ND	0.0050 1	02/16/2016 10:37
Bromoform	ND	0.0050 1	02/16/2016 10:37
Bromomethane	ND	0.0050 1	02/16/2016 10:37
2-Butanone (MEK)	ND	0.020 1	02/16/2016 10:37
t-Butyl alcohol (TBA)	ND	0.050 1	02/16/2016 10:37
n-Butyl benzene	ND	0.0050 1	02/16/2016 10:37
sec-Butyl benzene	ND	0.0050 1	02/16/2016 10:37
tert-Butyl benzene	ND	0.0050 1	02/16/2016 10:37
Carbon Disulfide	ND	0.0050 1	02/16/2016 10:37
Carbon Tetrachloride	ND	0.0050 1	02/16/2016 10:37
Chlorobenzene	ND	0.0050 1	02/16/2016 10:37
Chloroethane	ND	0.0050 1	02/16/2016 10:37
Chloroform	ND	0.0050 1	02/16/2016 10:37
Chloromethane	ND	0.0050 1	02/16/2016 10:37
2-Chlorotoluene	ND	0.0050 1	02/16/2016 10:37
4-Chlorotoluene	ND	0.0050 1	02/16/2016 10:37
Dibromochloromethane	ND	0.0050 1	02/16/2016 10:37
1,2-Dibromo-3-chloropropane	ND	0.0040 1	02/16/2016 10:37
1,2-Dibromoethane (EDB)	ND	0.0040 1	02/16/2016 10:37
Dibromomethane	ND	0.0050 1	02/16/2016 10:37
1,2-Dichlorobenzene	ND	0.0050 1	02/16/2016 10:37
1,3-Dichlorobenzene	ND	0.0050 1	02/16/2016 10:37
1,4-Dichlorobenzene	ND	0.0050 1	02/16/2016 10:37
Dichlorodifluoromethane	ND	0.0050 1	02/16/2016 10:37
1,1-Dichloroethane	ND	0.0050 1	02/16/2016 10:37
1,2-Dichloroethane (1,2-DCA)	ND	0.0040 1	02/16/2016 10:37
1,1-Dichloroethene	ND	0.0050 1	02/16/2016 10:37
cis-1,2-Dichloroethene	ND	0.0050 1	02/16/2016 10:37
trans-1,2-Dichloroethene	ND	0.0050 1	02/16/2016 10:37
1,2-Dichloropropane	ND	0.0050 1	02/16/2016 10:37
1,3-Dichloropropane	ND	0.0050 1	02/16/2016 10:37
2,2-Dichloropropane	ND	0.0050 1	02/16/2016 10:37

(Cont.)

Angela Rydelius, Lab Manager

Client:	Basics Environmental
Date Received:	2/12/16 13:18
Date Prepared:	2/12/16
Project:	01-2016-500-002; 139th Ave Property

WorkOrder:	1602473
Extraction Method:	SW5030B
Analytical Method:	SW8260B
Unit:	mg/kg

Client ID	Lab ID Matrix	Date Collected Instrument	Batch ID
SB-1-8.5	1602473-001A Soil	02/11/2016 10:25 GC16	116619
Analytes	Result	<u>RL</u> <u>DF</u>	Date Analyzed
1,1-Dichloropropene	ND	0.0050 1	02/16/2016 10:37
cis-1,3-Dichloropropene	ND	0.0050 1	02/16/2016 10:37
trans-1,3-Dichloropropene	ND	0.0050 1	02/16/2016 10:37
Diisopropyl ether (DIPE)	ND	0.0050 1	02/16/2016 10:37
Ethylbenzene	ND	0.0050 1	02/16/2016 10:37
Ethyl tert-butyl ether (ETBE)	ND	0.0050 1	02/16/2016 10:37
Freon 113	ND	0.0050 1	02/16/2016 10:37
Hexachlorobutadiene	ND	0.0050 1	02/16/2016 10:37
Hexachloroethane	ND	0.0050 1	02/16/2016 10:37
2-Hexanone	ND	0.0050 1	02/16/2016 10:37
Isopropylbenzene	ND	0.0050 1	02/16/2016 10:37
4-Isopropyl toluene	ND	0.0050 1	02/16/2016 10:37
Methyl-t-butyl ether (MTBE)	ND	0.0050 1	02/16/2016 10:37
Methylene chloride	ND	0.0050 1	02/16/2016 10:37
4-Methyl-2-pentanone (MIBK)	ND	0.0050 1	02/16/2016 10:37
Naphthalene	ND	0.0050 1	02/16/2016 10:37
n-Propyl benzene	ND	0.0050 1	02/16/2016 10:37
Styrene	ND	0.0050 1	02/16/2016 10:37
1,1,1,2-Tetrachloroethane	ND	0.0050 1	02/16/2016 10:37
1,1,2,2-Tetrachloroethane	ND	0.0050 1	02/16/2016 10:37
Tetrachloroethene	ND	0.0050 1	02/16/2016 10:37
Toluene	ND	0.0050 1	02/16/2016 10:37
1,2,3-Trichlorobenzene	ND	0.0050 1	02/16/2016 10:37
1,2,4-Trichlorobenzene	ND	0.0050 1	02/16/2016 10:37
1,1,1-Trichloroethane	ND	0.0050 1	02/16/2016 10:37
1,1,2-Trichloroethane	ND	0.0050 1	02/16/2016 10:37
Trichloroethene	ND	0.0050 1	02/16/2016 10:37
Trichlorofluoromethane	ND	0.0050 1	02/16/2016 10:37
1,2,3-Trichloropropane	ND	0.0050 1	02/16/2016 10:37
1,2,4-Trimethylbenzene	ND	0.0050 1	02/16/2016 10:37
1,3,5-Trimethylbenzene	ND	0.0050 1	02/16/2016 10:37
Vinyl Chloride	ND	0.0050 1	02/16/2016 10:37
Xylenes, Total	ND	0.0050 1	02/16/2016 10:37

Client:	Basics Environmental
Date Received:	2/12/16 13:18
Date Prepared:	2/12/16
Project:	01-2016-500-002; 139th Ave Property

WorkOrder:	1602473
Extraction Method:	SW5030B
Analytical Method:	SW8260B
Unit:	mg/kg

Client ID	Lab ID Matrix	Date Collected Instrument	Batch ID
SB-1-8.5	1602473-001A Soil	02/11/2016 10:25 GC16	116619
Analytes	Result	<u>RL DF</u>	Date Analyzed
Surrogates	<u>REC (%)</u>	Limits	
Dibromofluoromethane	100	70-130	02/16/2016 10:37
Toluene-d8	108	70-130	02/16/2016 10:37
4-BFB	106	70-130	02/16/2016 10:37
Benzene-d6	90	60-140	02/16/2016 10:37
Ethylbenzene-d10	94	60-140	02/16/2016 10:37
1,2-DCB-d4	65	60-140	02/16/2016 10:37

Client:	Basics Environmental
Date Received:	2/12/16 13:18
Date Prepared:	2/12/16
Project:	01-2016-500-002; 139th Ave Property

WorkOrder:	1602473
Extraction Method:	SW5030B
Analytical Method:	SW8260B
Unit:	mg/kg

Volatile Organics by P&T and GC/MS (Basic Target List)

Client ID	Lab ID Matrix	Date Collected Instrument	Batch ID
SB-2-2.5	1602473-004A Soil	02/11/2016 13:20 GC16	116619
Analytes	Result	<u>RL DF</u>	Date Analyzed
Acetone	ND	0.10 1	02/16/2016 11:17
tert-Amyl methyl ether (TAME)	ND	0.0050 1	02/16/2016 11:17
Benzene	ND	0.0050 1	02/16/2016 11:17
Bromobenzene	ND	0.0050 1	02/16/2016 11:17
Bromochloromethane	ND	0.0050 1	02/16/2016 11:17
Bromodichloromethane	ND	0.0050 1	02/16/2016 11:17
Bromoform	ND	0.0050 1	02/16/2016 11:17
Bromomethane	ND	0.0050 1	02/16/2016 11:17
2-Butanone (MEK)	ND	0.020 1	02/16/2016 11:17
t-Butyl alcohol (TBA)	ND	0.050 1	02/16/2016 11:17
n-Butyl benzene	ND	0.0050 1	02/16/2016 11:17
sec-Butyl benzene	ND	0.0050 1	02/16/2016 11:17
tert-Butyl benzene	ND	0.0050 1	02/16/2016 11:17
Carbon Disulfide	ND	0.0050 1	02/16/2016 11:17
Carbon Tetrachloride	ND	0.0050 1	02/16/2016 11:17
Chlorobenzene	ND	0.0050 1	02/16/2016 11:17
Chloroethane	ND	0.0050 1	02/16/2016 11:17
Chloroform	ND	0.0050 1	02/16/2016 11:17
Chloromethane	ND	0.0050 1	02/16/2016 11:17
2-Chlorotoluene	ND	0.0050 1	02/16/2016 11:17
4-Chlorotoluene	ND	0.0050 1	02/16/2016 11:17
Dibromochloromethane	ND	0.0050 1	02/16/2016 11:17
1,2-Dibromo-3-chloropropane	ND	0.0040 1	02/16/2016 11:17
1,2-Dibromoethane (EDB)	ND	0.0040 1	02/16/2016 11:17
Dibromomethane	ND	0.0050 1	02/16/2016 11:17
1,2-Dichlorobenzene	ND	0.0050 1	02/16/2016 11:17
1,3-Dichlorobenzene	ND	0.0050 1	02/16/2016 11:17
1,4-Dichlorobenzene	ND	0.0050 1	02/16/2016 11:17
Dichlorodifluoromethane	ND	0.0050 1	02/16/2016 11:17
1,1-Dichloroethane	ND	0.0050 1	02/16/2016 11:17
1,2-Dichloroethane (1,2-DCA)	ND	0.0040 1	02/16/2016 11:17
1,1-Dichloroethene	ND	0.0050 1	02/16/2016 11:17
cis-1,2-Dichloroethene	ND	0.0050 1	02/16/2016 11:17
trans-1,2-Dichloroethene	ND	0.0050 1	02/16/2016 11:17
1,2-Dichloropropane	ND	0.0050 1	02/16/2016 11:17
1,3-Dichloropropane	ND	0.0050 1	02/16/2016 11:17
2,2-Dichloropropane	ND	0.0050 1	02/16/2016 11:17

(Cont.)

Client:	Basics Environmental		
Date Received:	2/12/16 13:18		
Date Prepared:	2/12/16		
Project:	01-2016-500-002; 139th Ave Property		

WorkOrder:	1602473
Extraction Method:	SW5030B
Analytical Method:	SW8260B
Unit:	mg/kg

Client ID	Lab ID N	Aatrix Da	te Collected	Instrument	Batch ID
SB-2-2.5	1602473-004A S	ioil 02/ ⁻	1/2016 13:20	GC16	116619
Analytes	<u>Result</u>	<u>RL</u>	<u>DF</u>		Date Analyzed
1,1-Dichloropropene	ND	0.0)50 1		02/16/2016 11:17
cis-1,3-Dichloropropene	ND	0.0)50 1		02/16/2016 11:17
trans-1,3-Dichloropropene	ND	0.0)50 1		02/16/2016 11:17
Diisopropyl ether (DIPE)	ND	0.0)50 1		02/16/2016 11:17
Ethylbenzene	ND	0.0)50 1		02/16/2016 11:17
Ethyl tert-butyl ether (ETBE)	ND	0.0)50 1		02/16/2016 11:17
Freon 113	ND	0.0)50 1		02/16/2016 11:17
Hexachlorobutadiene	ND	0.0)50 1		02/16/2016 11:17
Hexachloroethane	ND	0.0)50 1		02/16/2016 11:17
2-Hexanone	ND	0.0)50 1		02/16/2016 11:17
Isopropylbenzene	ND	0.0)50 1		02/16/2016 11:17
4-Isopropyl toluene	ND	0.0)50 1		02/16/2016 11:17
Methyl-t-butyl ether (MTBE)	ND	0.0)50 1		02/16/2016 11:17
Methylene chloride	ND	0.0)50 1		02/16/2016 11:17
4-Methyl-2-pentanone (MIBK)	ND	0.0)50 1		02/16/2016 11:17
Naphthalene	ND	0.0)50 1		02/16/2016 11:17
n-Propyl benzene	ND	0.0)50 1		02/16/2016 11:17
Styrene	ND	0.0)50 1		02/16/2016 11:17
1,1,1,2-Tetrachloroethane	ND	0.0)50 1		02/16/2016 11:17
1,1,2,2-Tetrachloroethane	ND	0.0)50 1		02/16/2016 11:17
Tetrachloroethene	0.032	0.0)50 1		02/16/2016 11:17
Toluene	ND	0.0)50 1		02/16/2016 11:17
1,2,3-Trichlorobenzene	ND	0.0)50 1		02/16/2016 11:17
1,2,4-Trichlorobenzene	ND	0.0)50 1		02/16/2016 11:17
1,1,1-Trichloroethane	ND	0.0)50 1		02/16/2016 11:17
1,1,2-Trichloroethane	ND	0.0)50 1		02/16/2016 11:17
Trichloroethene	ND	0.0)50 1		02/16/2016 11:17
Trichlorofluoromethane	ND	0.0)50 1		02/16/2016 11:17
1,2,3-Trichloropropane	ND	0.0)50 1		02/16/2016 11:17
1,2,4-Trimethylbenzene	ND	0.0)50 1		02/16/2016 11:17
1,3,5-Trimethylbenzene	ND	0.0)50 1		02/16/2016 11:17
Vinyl Chloride	ND	0.0)50 1		02/16/2016 11:17
Xylenes, Total	ND	0.00)50 1		02/16/2016 11:17

Client:	Basics Environmental		
Date Received:	2/12/16 13:18		
Date Prepared:	2/12/16		
Project:	01-2016-500-002; 139th Ave Property		

WorkOrder:	1602473
Extraction Method:	SW5030B
Analytical Method:	SW8260B
Unit:	mg/kg

Client ID	Lab ID Matrix	Date Collected Instrument	Batch ID
SB-2-2.5	1602473-004A Soil	02/11/2016 13:20 GC16	116619
Analytes	Result	<u>RL</u> DF	Date Analyzed
Surrogates	<u>REC (%)</u>	Limits	
Dibromofluoromethane	101	70-130	02/16/2016 11:17
Toluene-d8	106	70-130	02/16/2016 11:17
4-BFB	104	70-130	02/16/2016 11:17
Benzene-d6	84	60-140	02/16/2016 11:17
Ethylbenzene-d10	85	60-140	02/16/2016 11:17
1,2-DCB-d4	62	60-140	02/16/2016 11:17

Client:	Basics Environmental		
Date Received:	2/12/16 13:18		
Date Prepared:	2/19/16		
Project:	01-2016-500-002; 139th Ave Property		

WorkOrder:	1602473
Extraction Method:	SW5030B
Analytical Method:	SW8260B
Unit:	µg/L

Volatile Organics by P&T and GC/MS (Basic Target List)

Client ID	Lab ID	Matrix	Date Co	ollected Instrume	nt Batch ID
SB-1-W	1602473-008A	Water	02/11/20	16 13:50 GC28	116946
Analytes	<u>Result</u>		<u>RL</u>	DF	Date Analyzed
Acetone	ND		10	1	02/19/2016 11:37
tert-Amyl methyl ether (TAME)	ND		0.50	1	02/19/2016 11:37
Benzene	ND		0.50	1	02/19/2016 11:37
Bromobenzene	ND		0.50	1	02/19/2016 11:37
Bromochloromethane	ND		0.50	1	02/19/2016 11:37
Bromodichloromethane	ND		0.50	1	02/19/2016 11:37
Bromoform	ND		0.50	1	02/19/2016 11:37
Bromomethane	ND		0.50	1	02/19/2016 11:37
2-Butanone (MEK)	ND		2.0	1	02/19/2016 11:37
t-Butyl alcohol (TBA)	ND		2.0	1	02/19/2016 11:37
n-Butyl benzene	ND		0.50	1	02/19/2016 11:37
sec-Butyl benzene	ND		0.50	1	02/19/2016 11:37
tert-Butyl benzene	ND		0.50	1	02/19/2016 11:37
Carbon Disulfide	ND		0.50	1	02/19/2016 11:37
Carbon Tetrachloride	ND		0.50	1	02/19/2016 11:37
Chlorobenzene	ND		0.50	1	02/19/2016 11:37
Chloroethane	ND		0.50	1	02/19/2016 11:37
Chloroform	ND		0.50	1	02/19/2016 11:37
Chloromethane	ND		0.50	1	02/19/2016 11:37
2-Chlorotoluene	ND		0.50	1	02/19/2016 11:37
4-Chlorotoluene	ND		0.50	1	02/19/2016 11:37
Dibromochloromethane	ND		0.50	1	02/19/2016 11:37
1,2-Dibromo-3-chloropropane	ND		0.20	1	02/19/2016 11:37
1,2-Dibromoethane (EDB)	ND		0.50	1	02/19/2016 11:37
Dibromomethane	ND		0.50	1	02/19/2016 11:37
1,2-Dichlorobenzene	ND		0.50	1	02/19/2016 11:37
1,3-Dichlorobenzene	ND		0.50	1	02/19/2016 11:37
1,4-Dichlorobenzene	ND		0.50	1	02/19/2016 11:37
Dichlorodifluoromethane	ND		0.50	1	02/19/2016 11:37
1,1-Dichloroethane	ND		0.50	1	02/19/2016 11:37
1,2-Dichloroethane (1,2-DCA)	ND		0.50	1	02/19/2016 11:37
1,1-Dichloroethene	ND		0.50	1	02/19/2016 11:37
cis-1,2-Dichloroethene	ND		0.50	1	02/19/2016 11:37
trans-1,2-Dichloroethene	ND		0.50	1	02/19/2016 11:37
1,2-Dichloropropane	ND		0.50	1	02/19/2016 11:37
1,3-Dichloropropane	ND		0.50	1	02/19/2016 11:37
2,2-Dichloropropane	ND		0.50	1	02/19/2016 11:37

(Cont.)

Client:	Basics Environmental			
Date Received:	2/12/16 13:18			
Date Prepared:	2/19/16			
Project:	01-2016-500-002; 139th Ave Property			

WorkOrder:	1602473
Extraction Method:	SW5030B
Analytical Method:	SW8260B
Unit:	µg/L

Client ID	Lab ID	Matrix	Date Co	ollected I	nstrument	Batch ID
SB-1-W	1602473-008A	Water	02/11/20	16 13:50 G	C28	116946
Analytes	Result		<u>RL</u>	DF		Date Analyzed
1,1-Dichloropropene	ND		0.50	1		02/19/2016 11:37
cis-1,3-Dichloropropene	ND		0.50	1		02/19/2016 11:37
trans-1,3-Dichloropropene	ND		0.50	1		02/19/2016 11:37
Diisopropyl ether (DIPE)	ND		0.50	1		02/19/2016 11:37
Ethylbenzene	ND		0.50	1		02/19/2016 11:37
Ethyl tert-butyl ether (ETBE)	ND		0.50	1		02/19/2016 11:37
Freon 113	ND		0.50	1		02/19/2016 11:37
Hexachlorobutadiene	ND		0.50	1		02/19/2016 11:37
Hexachloroethane	ND		0.50	1		02/19/2016 11:37
2-Hexanone	ND		0.50	1		02/19/2016 11:37
Isopropylbenzene	ND		0.50	1		02/19/2016 11:37
4-Isopropyl toluene	ND		0.50	1		02/19/2016 11:37
Methyl-t-butyl ether (MTBE)	ND		0.50	1		02/19/2016 11:37
Methylene chloride	ND		0.50	1		02/19/2016 11:37
4-Methyl-2-pentanone (MIBK)	ND		0.50	1		02/19/2016 11:37
Naphthalene	ND		0.50	1		02/19/2016 11:37
n-Propyl benzene	ND		0.50	1		02/19/2016 11:37
Styrene	ND		0.50	1		02/19/2016 11:37
1,1,1,2-Tetrachloroethane	ND		0.50	1		02/19/2016 11:37
1,1,2,2-Tetrachloroethane	ND		0.50	1		02/19/2016 11:37
Tetrachloroethene	9.5		0.50	1		02/19/2016 11:37
Toluene	ND		0.50	1		02/19/2016 11:37
1,2,3-Trichlorobenzene	ND		0.50	1		02/19/2016 11:37
1,2,4-Trichlorobenzene	ND		0.50	1		02/19/2016 11:37
1,1,1-Trichloroethane	ND		0.50	1		02/19/2016 11:37
1,1,2-Trichloroethane	ND		0.50	1		02/19/2016 11:37
Trichloroethene	1.2		0.50	1		02/19/2016 11:37
Trichlorofluoromethane	ND		0.50	1		02/19/2016 11:37
1,2,3-Trichloropropane	ND		0.50	1		02/19/2016 11:37
1,2,4-Trimethylbenzene	ND		0.50	1		02/19/2016 11:37
1,3,5-Trimethylbenzene	ND		0.50	1		02/19/2016 11:37
Vinyl Chloride	ND		0.50	1		02/19/2016 11:37
Xylenes, Total	ND		0.50	1		02/19/2016 11:37

Client:	Basics Environmental			
Date Received:	2/12/16 13:18			
Date Prepared:	2/19/16			
Project:	01-2016-500-002; 139th Ave Property			

WorkOrder:	1602473
Extraction Method:	SW5030B
Analytical Method:	SW8260B
Unit:	µg/L

Client ID	Lab ID	Matrix	Date Collected Instrument	Batch ID
SB-1-W	1602473-008A	Water	02/11/2016 13:50 GC28	116946
Analytes	Result		<u>RL DF</u>	Date Analyzed
Surrogates	<u>REC (%)</u>		Limits	
Dibromofluoromethane	113		70-130	02/19/2016 11:37
Toluene-d8	118		70-130	02/19/2016 11:37
4-BFB	88		70-130	02/19/2016 11:37
<u>Analyst(s):</u> KF			Analytical Comments: b1	

Client:	Basics Environmental			
Date Received:	2/12/16 13:18			
Date Prepared:	2/19/16			
Project:	01-2016-500-002; 139th Ave Property			

WorkOrder:	1602473
Extraction Method:	SW5030B
Analytical Method:	SW8260B
Unit:	µg/L

Client ID	Lab ID M	latrix Date Coll	ected Instrument	Batch ID
SB-1-W	1602473-008A W	ater 02/11/2016	13:50 GC28	116946
Analytes	Result	<u>RL</u>	DF	Date Analyzed
Acetone	ND	10	1	02/19/2016 11:37
tert-Amyl methyl ether (TAME)	ND	0.50	1	02/19/2016 11:37
Benzene	ND	0.50	1	02/19/2016 11:37
Bromobenzene	ND	0.50	1	02/19/2016 11:37
Bromochloromethane	ND	0.50	1	02/19/2016 11:37
Bromodichloromethane	ND	0.50	1	02/19/2016 11:37
Bromoform	ND	0.50	1	02/19/2016 11:37
Bromomethane	ND	0.50	1	02/19/2016 11:37
2-Butanone (MEK)	ND	2.0	1	02/19/2016 11:37
t-Butyl alcohol (TBA)	ND	2.0	1	02/19/2016 11:37
n-Butyl benzene	ND	0.50	1	02/19/2016 11:37
sec-Butyl benzene	ND	0.50	1	02/19/2016 11:37
tert-Butyl benzene	ND	0.50	1	02/19/2016 11:37
Carbon Disulfide	ND	0.50	1	02/19/2016 11:37
Carbon Tetrachloride	ND	0.50	1	02/19/2016 11:37
Chlorobenzene	ND	0.50	1	02/19/2016 11:37
Chloroethane	ND	0.50	1	02/19/2016 11:37
Chloroform	ND	0.50	1	02/19/2016 11:37
Chloromethane	ND	0.50	1	02/19/2016 11:37
2-Chlorotoluene	ND	0.50	1	02/19/2016 11:37
4-Chlorotoluene	ND	0.50	1	02/19/2016 11:37
Dibromochloromethane	ND	0.50	1	02/19/2016 11:37
1,2-Dibromo-3-chloropropane	ND	0.20	1	02/19/2016 11:37
1,2-Dibromoethane (EDB)	ND	0.50	1	02/19/2016 11:37
Dibromomethane	ND	0.50	1	02/19/2016 11:37
1,2-Dichlorobenzene	ND	0.50	1	02/19/2016 11:37
1,3-Dichlorobenzene	ND	0.50	1	02/19/2016 11:37
1,4-Dichlorobenzene	ND	0.50	1	02/19/2016 11:37
Dichlorodifluoromethane	ND	0.50	1	02/19/2016 11:37
1,1-Dichloroethane	ND	0.50	1	02/19/2016 11:37
1,2-Dichloroethane (1,2-DCA)	ND	0.50	1	02/19/2016 11:37
1,1-Dichloroethene	ND	0.50	1	02/19/2016 11:37
cis-1,2-Dichloroethene	ND	0.50	1	02/19/2016 11:37
trans-1,2-Dichloroethene	ND	0.50	1	02/19/2016 11:37
1,2-Dichloropropane	ND	0.50	1	02/19/2016 11:37
1,3-Dichloropropane	ND	0.50	1	02/19/2016 11:37
2,2-Dichloropropane	ND	0.50	1	02/19/2016 11:37

Client:	Basics Environmental			
Date Received:	2/12/16 13:18			
Date Prepared:	2/19/16			
Project:	01-2016-500-002; 139th Ave Property			

WorkOrder:	1602473
Extraction Method:	SW5030B
Analytical Method:	SW8260B
Unit:	µg/L

Client ID	Lab ID M	latrix Date	Collected Instrument	Batch ID
SB-1-W	1602473-008A W	ater 02/11/2	2016 13:50 GC28	116946
Analytes	<u>Result</u>	RL	DF	Date Analyzed
1,1-Dichloropropene	ND	0.50	1	02/19/2016 11:37
cis-1,3-Dichloropropene	ND	0.50	1	02/19/2016 11:37
trans-1,3-Dichloropropene	ND	0.50	1	02/19/2016 11:37
Diisopropyl ether (DIPE)	ND	0.50	1	02/19/2016 11:37
Ethylbenzene	ND	0.50	1	02/19/2016 11:37
Ethyl tert-butyl ether (ETBE)	ND	0.50	1	02/19/2016 11:37
Freon 113	ND	0.50	1	02/19/2016 11:37
Hexachlorobutadiene	ND	0.50	1	02/19/2016 11:37
Hexachloroethane	ND	0.50	1	02/19/2016 11:37
2-Hexanone	ND	0.50	1	02/19/2016 11:37
Isopropylbenzene	ND	0.50	1	02/19/2016 11:37
4-Isopropyl toluene	ND	0.50	1	02/19/2016 11:37
Methyl-t-butyl ether (MTBE)	ND	0.50	1	02/19/2016 11:37
Methylene chloride	ND	0.50	1	02/19/2016 11:37
4-Methyl-2-pentanone (MIBK)	ND	0.50	1	02/19/2016 11:37
Naphthalene	ND	0.50	1	02/19/2016 11:37
n-Propyl benzene	ND	0.50	1	02/19/2016 11:37
Styrene	ND	0.50	1	02/19/2016 11:37
1,1,1,2-Tetrachloroethane	ND	0.50	1	02/19/2016 11:37
1,1,2,2-Tetrachloroethane	ND	0.50	1	02/19/2016 11:37
Tetrachloroethene	9.5	0.50	1	02/19/2016 11:37
Toluene	ND	0.50	1	02/19/2016 11:37
1,2,3-Trichlorobenzene	ND	0.50	1	02/19/2016 11:37
1,2,4-Trichlorobenzene	ND	0.50	1	02/19/2016 11:37
1,1,1-Trichloroethane	ND	0.50	1	02/19/2016 11:37
1,1,2-Trichloroethane	ND	0.50	1	02/19/2016 11:37
Trichloroethene	1.2	0.50	1	02/19/2016 11:37
Trichlorofluoromethane	ND	0.50	1	02/19/2016 11:37
1,2,3-Trichloropropane	ND	0.50	1	02/19/2016 11:37
1,2,4-Trimethylbenzene	ND	0.50	1	02/19/2016 11:37
1,3,5-Trimethylbenzene	ND	0.50	1	02/19/2016 11:37
Vinyl Chloride	ND	0.50	1	02/19/2016 11:37
Xylenes, Total	ND	0.50	1	02/19/2016 11:37

Client:	Basics Environmental			
Date Received:	2/12/16 13:18			
Date Prepared:	2/19/16			
Project:	01-2016-500-002; 139th Ave Property			

WorkOrder:	1602473
Extraction Method:	SW5030B
Analytical Method:	SW8260B
Unit:	µg/L

Client ID	Lab ID	Matrix	Date Collected Instrument	Batch ID
SB-1-W	1602473-008A	Water	02/11/2016 13:50 GC28	116946
Analytes	Result		<u>RL DF</u>	Date Analyzed
Surrogates	<u>REC (%)</u>		Limits	
Dibromofluoromethane	113		70-130	02/19/2016 11:37
Toluene-d8	118		70-130	02/19/2016 11:37
4-BFB	88		70-130	02/19/2016 11:37
<u>Analyst(s):</u> KF			Analytical Comments: b1	

Client:	Basics Environmental
Date Received:	2/12/16 13:18
Date Prepared:	2/12/16
Project:	01-2016-500-002; 139th Ave Property

WorkOrder:	1602473
Extraction Method:	SW5030B
Analytical Method:	SW8260B
Unit:	mg/kg

TPH(g) by Purge & Trap and GC/MS

Client ID	Lab ID	Matrix	Date Co	ollected	Instrument	Batch ID
SB-1-8.5	1602473-001A	Soil	02/11/201	16 10:25	GC16	116619
Analytes	<u>Result</u>		<u>RL</u>	DF		Date Analyzed
TPH(g)	ND		0.25	1		02/16/2016 10:37
<u>Surrogates</u>	<u>REC (%)</u>		<u>Limits</u>			
Dibromofluoromethane	111		70-130			02/16/2016 10:37
Benzene-d6	101		60-140			02/16/2016 10:37
Analyst(s): AK						
Client ID	Lab ID	Matrix	Date Co	ollected	Instrument	Batch ID
Client ID SB-2-2.5	Lab ID 1602473-004A	Matrix Soil	Date Co 02/11/20 ⁻			Batch ID 116619
SB-2-2.5	1602473-004A		02/11/201	16 13:20		116619
SB-2-2.5 Analytes	1602473-004A <u>Result</u>		02/11/20 <u>RL</u>	16 13:20 DF		116619 Date Analyzed
SB-2-2.5 <u>Analytes</u> TPH(g)	1602473-004A <u>Result</u> ND		02/11/20 <u>RL</u> 0.25	16 13:20 DF		116619 Date Analyzed
SB-2-2.5 Analytes TPH(g) Surrogates	1602473-004A <u>Result</u> ND <u>REC (%)</u>		02/11/20 RL 0.25 Limits	16 13:20 DF		116619 Date Analyzed 02/16/2016 11:17

Client:	Basics Environmental			
Date Received:	2/12/16 13:18			
Date Prepared:	2/19/16			
Project:	01-2016-500-002; 139th Ave Property			

WorkOrder:	1602473
Extraction Method:	SW5030B
Analytical Method:	SW8260B
Unit:	µg/L

TPH(g) by Purge & Trap and GC/MS

Client ID	Lab ID	Matrix	Date C	collected Instrument	Batch ID
SB-1-W	1602473-008A	Water	02/11/20	016 13:50 GC28	116946
Analytes	<u>Result</u>		<u>RL</u>	DF	Date Analyzed
TPH(g)	ND		50	1	02/19/2016 11:37
<u>Surrogates</u>	<u>REC (%)</u>		<u>Limits</u>		
Dibromofluoromethane	112		70-130		02/19/2016 11:37
<u>Analyst(s):</u> KF			Analytical Com	iments: b1	

Client:	Basics Environmental			
Date Received:	2/12/16 13:18			
Date Prepared:	2/19/16			
Project:	01-2016-500-002; 139th Ave Property			

WorkOrder:	1602473
Extraction Method:	SW5030B
Analytical Method:	SW8260B
Unit:	µg/L

TPH(g) by Purge & Trap and GC/MS

Client ID	Lab ID	Matrix	Date C	ollected Instrument	Batch ID
SB-1-W	1602473-008A	Water	02/11/20	016 13:50 GC28	116946
Analytes	<u>Result</u>		<u>RL</u>	DF	Date Analyzed
TPH(g)	ND		50	1	02/19/2016 11:37
Surrogates	<u>REC (%)</u>		<u>Limits</u>		
Dibromofluoromethane	112		70-130		02/19/2016 11:37
<u>Analyst(s):</u> KF			Analytical Com	ments: b1	

Client:	Basics Environmental	WorkOrder:	1602473
Date Received:	2/12/16 13:18	Extraction Method:	SW3550B
Date Prepared:	2/12/16	Analytical Method:	SW8015B
Project:	01-2016-500-002; 139th Ave Property	Unit:	mg/Kg

Total Extractable Petroleum Hydrocarbons w/out SG Clean-Up

Client ID	Lab ID	Matrix	Date Co	ollected	Instrument	Batch ID
SB-1-8.5	1602473-001A	Soil	02/11/20	16 10:25	GC9a	116621
Analytes	<u>Result</u>		<u>RL</u>	DF		Date Analyzed
TPH-Motor Oil (C18-C36)	ND		5.0	1		02/15/2016 16:47
<u>Surrogates</u>	<u>REC (%)</u>		<u>Limits</u>			
C9	83		70-130			02/15/2016 16:47
<u>Analyst(s):</u> TK						
Client ID	Lab ID	Matrix	Date Co	ollected	Instrument	Batch ID
Client ID SB-2-2.5	Lab ID 1602473-004A	Matrix Soil		ollected 16 13:20		Batch ID 116621
SB-2-2.5	1602473-004A		02/11/20	16 13:20		116621
SB-2-2.5 Analytes	1602473-004A <u>Result</u>		02/11/20 <u>RL</u>	16 13:20 <u>DF</u>		116621 Date Analyzed
SB-2-2.5 Analytes TPH-Motor Oil (C18-C36)	1602473-004A <u>Result</u> ND		02/11/20 <u>RL</u> 5.0	16 13:20 <u>DF</u>		116621 Date Analyzed

Angela Rydelius, Lab Manager

Client:	Basics Environmental
Date Received:	2/12/16 13:18
Date Prepared:	2/12/16
Project:	01-2016-500-002; 139th Ave Property

WorkOrder:	1602473
Extraction Method:	SW3510C
Analytical Method:	SW8015B
Unit:	µg/L

Total Extractable Petroleum Hydrocarbons w/out SG Clean-Up

Client ID	Lab ID	Matrix	Date Collected Instrument	Batch ID
SB-1-W	1602473-008B	Water	02/11/2016 13:50 GC9b	116613
Analytes	<u>Result</u>		<u>RL</u> <u>DF</u>	Date Analyzed
TPH-Motor Oil (C18-C36)	ND		500 1	02/16/2016 02:28
Surrogates	<u>REC (%)</u>		Limits	
C9	93		70-130	02/16/2016 02:28
<u>Analyst(s):</u> TK			Analytical Comments: a3,b1	

Client:	Basics Environmental	WorkOrder:	1602473
Date Prepared:	2/18/16	BatchID:	116913
Date Analyzed:	2/19/16	Extraction Method:	SW5030B
Instrument:	GC16	Analytical Method:	SW8260B
Matrix:	Soil	Unit:	mg/kg
Project:	01-2016-500-002; 139th Ave Property	Sample ID:	MB/LCS-116913 1602751-001AMS/MSD

Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
Acetone	ND	-	0.10	-	-	-	-
tert-Amyl methyl ether (TAME)	ND	0.0400	0.0050	0.050	-	80	53-116
Benzene	ND	0.0443	0.0050	0.050	-	89	63-137
Bromobenzene	ND	-	0.0050	-	-	-	-
Bromochloromethane	ND	-	0.0050	-	-	-	-
Bromodichloromethane	ND	-	0.0050	-	-	-	-
Bromoform	ND	-	0.0050	-	-	-	-
Bromomethane	ND	-	0.0050	-	-	-	-
2-Butanone (MEK)	ND	-	0.020	-	-	-	-
t-Butyl alcohol (TBA)	ND	0.206	0.050	0.20	-	103	41-135
n-Butyl benzene	ND	-	0.0050	-	-	-	-
sec-Butyl benzene	ND	-	0.0050	-	-	-	-
tert-Butyl benzene	ND	-	0.0050	-	-	-	-
Carbon Disulfide	ND	-	0.0050	-	-	-	-
Carbon Tetrachloride	ND	-	0.0050	-	-	-	-
Chlorobenzene	ND	0.0443	0.0050	0.050	-	89	77-121
Chloroethane	ND	-	0.0050	-	-	-	-
Chloroform	ND	-	0.0050	-	-	-	-
Chloromethane	ND	-	0.0050	-	-	-	-
2-Chlorotoluene	ND	-	0.0050	-	-	-	-
4-Chlorotoluene	ND	-	0.0050	-	-	-	-
Dibromochloromethane	ND	-	0.0050	-	-	-	-
1,2-Dibromo-3-chloropropane	ND	-	0.0040	-	-	-	-
1,2-Dibromoethane (EDB)	ND	0.0414	0.0040	0.050	-	83	67-119
Dibromomethane	ND	-	0.0050	-	-	-	-
1,2-Dichlorobenzene	ND	-	0.0050	-	-	-	-
1,3-Dichlorobenzene	ND	-	0.0050	-	-	-	-
1,4-Dichlorobenzene	ND	-	0.0050	-	-	-	-
Dichlorodifluoromethane	ND	-	0.0050	-	-	-	-
1,1-Dichloroethane	ND	-	0.0050	-	-	-	-
1,2-Dichloroethane (1,2-DCA)	ND	0.0472	0.0040	0.050	-	94	58-135
1,1-Dichloroethene	ND	0.0382	0.0050	0.050	-	76	42-145
cis-1,2-Dichloroethene	ND	-	0.0050	-	-	-	-
trans-1,2-Dichloroethene	ND	-	0.0050	-	-	-	-
1,2-Dichloropropane	ND	-	0.0050	-	-	-	-
1,3-Dichloropropane	ND	-	0.0050	-	-	-	-
2,2-Dichloropropane	ND	-	0.0050	-			

QA/QC Officer

Client:	Basics Environmental	WorkOrder:	1602473
Date Prepared:	2/18/16	BatchID:	116913
Date Analyzed:	2/19/16	Extraction Method:	SW5030B
Instrument:	GC16	Analytical Method:	SW8260B
Matrix:	Soil	Unit:	mg/kg
Project:	01-2016-500-002; 139th Ave Property	Sample ID:	MB/LCS-116913 1602751-001AMS/MSD

Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
1,1-Dichloropropene	ND	-	0.0050	-	-	-	-
cis-1,3-Dichloropropene	ND	-	0.0050	-	-	-	-
trans-1,3-Dichloropropene	ND	-	0.0050	-	-	-	-
Diisopropyl ether (DIPE)	ND	0.0435	0.0050	0.050	-	87	52-129
Ethylbenzene	ND	-	0.0050	-	-	-	-
Ethyl tert-butyl ether (ETBE)	ND	0.0431	0.0050	0.050	-	86	53-125
Freon 113	ND	-	0.0050	-	-	-	-
Hexachlorobutadiene	ND	-	0.0050	-	-	-	-
Hexachloroethane	ND	-	0.0050	-	-	-	-
2-Hexanone	ND	-	0.0050	-	-	-	-
Isopropylbenzene	ND	-	0.0050	-	-	-	-
4-Isopropyl toluene	ND	-	0.0050	-	-	-	-
Methyl-t-butyl ether (MTBE)	ND	0.0424	0.0050	0.050	-	85	58-122
Methylene chloride	ND	-	0.0050	-	-	-	-
4-Methyl-2-pentanone (MIBK)	ND	-	0.0050	-	-	-	-
Naphthalene	ND	-	0.0050	-	-	-	-
n-Propyl benzene	ND	-	0.0050	-	-	-	-
Styrene	ND	-	0.0050	-	-	-	-
1,1,1,2-Tetrachloroethane	ND	-	0.0050	-	-	-	-
1,1,2,2-Tetrachloroethane	ND	-	0.0050	-	-	-	-
Tetrachloroethene	ND	-	0.0050	-	-	-	-
Toluene	ND	0.0449	0.0050	0.050	-	90	76-130
1,2,3-Trichlorobenzene	ND	-	0.0050	-	-	-	-
1,2,4-Trichlorobenzene	ND	-	0.0050	-	-	-	-
1,1,1-Trichloroethane	ND	-	0.0050	-	-	-	-
1,1,2-Trichloroethane	ND	-	0.0050	-	-	-	-
Trichloroethene	ND	0.0424	0.0050	0.050	-	85	72-132
Trichlorofluoromethane	ND	-	0.0050	-	-	-	-
1,2,3-Trichloropropane	ND	-	0.0050	-	-	-	-
1,2,4-Trimethylbenzene	ND	-	0.0050	-	-	-	-
1,3,5-Trimethylbenzene	ND	-	0.0050	-	-	-	-
Vinyl Chloride	ND	-	0.0050	-	-	-	-
Xylenes, Total	ND	-	0.0050	-	-	-	-

QA/QC Officer Page 23 of 46

Client:	Basics Environmental	WorkOrder:	1602473
Date Prepared:	2/18/16	BatchID:	116913
Date Analyzed:	2/19/16	Extraction Method:	SW5030B
Instrument:	GC16	Analytical Method:	SW8260B
Matrix:	Soil	Unit:	mg/kg
Project:	01-2016-500-002; 139th Ave Property	Sample ID:	MB/LCS-116913 1602751-001AMS/MSD

Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
Surrogate Recovery							
Dibromofluoromethane	0.123	0.125		0.12	98	100	70-130
Toluene-d8	0.162	0.154		0.12	129	123	70-130
4-BFB	0.0135	0.0142		0.012	108	114	70-130
Benzene-d6	0.124	0.117		0.10	124	117	60-140
Ethylbenzene-d10	0.143	0.136		0.10	143,F3	136	60-140
1,2-DCB-d4	0.0746	0.0777		0.10	75	78	60-140

Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
tert-Amyl methyl ether (TAME)	0.0598	0.0597	0.050	ND	120,F1	119,F1	56-94	0.266	20
Benzene	0.0564	0.0559	0.050	ND	113,F1	112,F1	60-106	0.924	20
t-Butyl alcohol (TBA)	0.245	0.249	0.20	ND	123	124	56-140	1.49	20
Chlorobenzene	0.0521	0.0517	0.050	ND	104	103	61-108	0.876	20
1,2-Dibromoethane (EDB)	0.0520	0.0573	0.050	ND	104	115	54-119	9.75	20
1,2-Dichloroethane (1,2-DCA)	0.0545	0.0556	0.050	ND	109	111	48-115	1.95	20
1,1-Dichloroethene	0.0497	0.0502	0.050	ND	99	100	46-111	1.13	20
Diisopropyl ether (DIPE)	0.0600	0.0602	0.050	ND	120,F1	120,F1	53-111	0	20
Ethyl tert-butyl ether (ETBE)	0.0589	0.0592	0.050	ND	118,F1	118,F1	61-104	0	20
Methyl-t-butyl ether (MTBE)	0.0562	0.0570	0.050	ND	112,F1	114,F1	58-107	1.43	20
Toluene	0.0478	0.0472	0.050	ND	96	94	64-114	1.20	20
Trichloroethene	0.0549	0.0556	0.050	ND	110	111	60-116	1.22	20
Surrogate Recovery									
Dibromofluoromethane	0.147	0.150	0.12		118	120	70-130	1.74	20
Toluene-d8	0.126	0.129	0.12		101	103	70-130	1.84	20
4-BFB	0.0127	0.0114	0.012		101	91	88-121	10.9	20
Benzene-d6	0.120	0.122	0.10		120	122	60-140	1.59	20
Ethylbenzene-d10	0.110	0.111	0.10		110	111	60-140	0.777	20
1,2-DCB-d4	0.107	0.110	0.10		107	110	60-140	2.95	20

_____QA/QC Officer

Client:	Basics Environmental	WorkOrder:
Date Prepared:	2/22/16	BatchID:
Date Analyzed:	2/23/16	Extraction Metho
Instrument:	GC16	Analytical Metho
Matrix:	Soil	Unit:
Project:	01-2016-500-002; 139th Ave Property	Sample ID:

WorkOrder:	1602473
BatchID:	117057
Extraction Method:	SW5030B
Analytical Method:	SW8260B
Unit:	mg/kg
Sample ID:	MB/LCS-117057
	1602863-041AMS/MSD

Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
Acetone	ND	-	0.10	-	-	-	-
tert-Amyl methyl ether (TAME)	ND	0.0400	0.0050	0.050	-	80	53-116
Benzene	ND	0.0459	0.0050	0.050	-	92	63-137
Bromobenzene	ND	-	0.0050	-	-	-	-
Bromochloromethane	ND	-	0.0050	-	-	-	-
Bromodichloromethane	ND	-	0.0050	-	-	-	-
Bromoform	ND	-	0.0050	-	-	-	-
Bromomethane	ND	-	0.0050	-	-	-	-
2-Butanone (MEK)	ND	-	0.020	-	-	-	-
-Butyl alcohol (TBA)	ND	0.212	0.050	0.20	-	106	41-135
n-Butyl benzene	ND	-	0.0050	-	-	-	-
sec-Butyl benzene	ND	-	0.0050	-	-	-	-
tert-Butyl benzene	ND	-	0.0050	-	-	-	-
Carbon Disulfide	ND	-	0.0050	-	-	-	-
Carbon Tetrachloride	ND	-	0.0050	-	-	-	-
Chlorobenzene	ND	0.0458	0.0050	0.050	-	92	77-121
Chloroethane	ND	-	0.0050	-	-	-	-
Chloroform	ND	-	0.0050	-	-	-	-
Chloromethane	ND	-	0.0050	-	-	-	-
2-Chlorotoluene	ND	-	0.0050	-	-	-	-
4-Chlorotoluene	ND	-	0.0050	-	-	-	-
Dibromochloromethane	ND	-	0.0050	-	-	-	-
1,2-Dibromo-3-chloropropane	ND	-	0.0040	-	-	-	-
1,2-Dibromoethane (EDB)	ND	0.0469	0.0040	0.050	-	94	67-119
Dibromomethane	ND	-	0.0050	-	-	-	-
1,2-Dichlorobenzene	ND	-	0.0050	-	-	-	-
1,3-Dichlorobenzene	ND	-	0.0050	-	-	-	-
1,4-Dichlorobenzene	ND	-	0.0050	-	-	-	-
Dichlorodifluoromethane	ND	-	0.0050	-	-	-	-
1,1-Dichloroethane	ND	-	0.0050	-	-	-	-
1,2-Dichloroethane (1,2-DCA)	ND	0.0468	0.0040	0.050	-	94	58-135
1,1-Dichloroethene	ND	0.0437	0.0050	0.050	-	87	42-145
cis-1,2-Dichloroethene	ND	-	0.0050	-	-	-	-
rans-1,2-Dichloroethene	ND	-	0.0050	-	-	-	-
1,2-Dichloropropane	ND	-	0.0050	-	-	-	-
1,3-Dichloropropane	ND	-	0.0050	-	-	-	-
2,2-Dichloropropane	ND	-	0.0050		_	_	-

_____QA/QC Officer

Client:	Basics Environmental
Date Prepared:	2/22/16
Date Analyzed:	2/23/16
Instrument:	GC16
Matrix:	Soil
Project:	01-2016-500-002; 139th Ave Property

WorkOrder:	1602473
BatchID:	117057
Extraction Method:	SW5030B
Analytical Method:	SW8260B
Unit:	mg/kg
Sample ID:	MB/LCS-117057 1602863-041AMS/MSD
	1002003-041AMS/1015D

Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
1,1-Dichloropropene	ND	-	0.0050	-	-	-	-
cis-1,3-Dichloropropene	ND	-	0.0050	-	-	-	-
trans-1,3-Dichloropropene	ND	-	0.0050	-	-	-	-
Diisopropyl ether (DIPE)	ND	0.0456	0.0050	0.050	-	91	52-129
Ethylbenzene	ND	-	0.0050	-	-	-	-
Ethyl tert-butyl ether (ETBE)	ND	0.0441	0.0050	0.050	-	88	53-125
Freon 113	ND	-	0.0050	-	-	-	-
Hexachlorobutadiene	ND	-	0.0050	-	-	-	-
Hexachloroethane	ND	-	0.0050	-	-	-	-
2-Hexanone	ND	-	0.0050	-	-	-	-
Isopropylbenzene	ND	-	0.0050	-	-	-	-
4-Isopropyl toluene	ND	-	0.0050	-	-	-	-
Methyl-t-butyl ether (MTBE)	ND	0.0424	0.0050	0.050	-	85	58-122
Methylene chloride	ND	-	0.0050	-	-	-	-
4-Methyl-2-pentanone (MIBK)	ND	-	0.0050	-	-	-	-
Naphthalene	ND	-	0.0050	-	-	-	-
n-Propyl benzene	ND	-	0.0050	-	-	-	-
Styrene	ND	-	0.0050	-	-	-	-
1,1,1,2-Tetrachloroethane	ND	-	0.0050	-	-	-	-
1,1,2,2-Tetrachloroethane	ND	-	0.0050	-	-	-	-
Tetrachloroethene	ND	-	0.0050	-	-	-	-
Toluene	ND	0.0459	0.0050	0.050	-	92	76-130
1,2,3-Trichlorobenzene	ND	-	0.0050	-	-	-	-
1,2,4-Trichlorobenzene	ND	-	0.0050	-	-	-	-
1,1,1-Trichloroethane	ND	-	0.0050	-	-	-	-
1,1,2-Trichloroethane	ND	-	0.0050	-	-	-	-
Trichloroethene	ND	0.0454	0.0050	0.050	-	91	72-132
Trichlorofluoromethane	ND	-	0.0050	-	-	-	-
1,2,3-Trichloropropane	ND	-	0.0050	-	-	-	-
1,2,4-Trimethylbenzene	ND	-	0.0050	-	-	-	-
1,3,5-Trimethylbenzene	ND	-	0.0050	-	-	-	-
Vinyl Chloride	ND	-	0.0050	-	-	-	-
Xylenes, Total	ND	-	0.0050	-	-	-	-

_____QA/QC Officer Page 26 of 46

Client:	Basics Environmental	WorkOrder:	1602473
Date Prepared:	2/22/16	BatchID:	117057
Date Analyzed:	2/23/16	Extraction Method:	SW5030B
Instrument:	GC16	Analytical Method:	SW8260B
Matrix:	Soil	Unit:	mg/kg
Project:	01-2016-500-002; 139th Ave Property	Sample ID:	MB/LCS-117057 1602863-041AMS/MSD

Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
Surrogate Recovery							
Dibromofluoromethane	0.122	0.127		0.12	97	101	70-130
Toluene-d8	0.156	0.148		0.12	124	119	70-130
4-BFB	0.0133	0.0139		0.012	106	111	70-130
Benzene-d6	0.0929	0.113		0.10	93	113	60-140
Ethylbenzene-d10	0.108	0.132		0.10	108	132	60-140
1,2-DCB-d4	0.0705	0.0763		0.10	70	76	60-140

Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
tert-Amyl methyl ether (TAME)	0.0572	0.0561	0.050	ND	115,F1	112,F1	56-94	2.11	20
Benzene	0.0533	0.0526	0.050	ND	107,F1	105	60-106	1.32	20
t-Butyl alcohol (TBA)	0.240	0.238	0.20	ND	120	119	56-140	0.771	20
Chlorobenzene	0.0494	0.0488	0.050	ND	99	98	61-108	1.17	20
1,2-Dibromoethane (EDB)	0.0509	0.0501	0.050	ND	102	100	54-119	1.66	20
1,2-Dichloroethane (1,2-DCA)	0.0520	0.0518	0.050	ND	104	104	48-115	0	20
1,1-Dichloroethene	0.0449	0.0451	0.050	ND	90	90	46-111	0	20
Diisopropyl ether (DIPE)	0.0573	0.0558	0.050	ND	115,F1	112,F1	53-111	2.72	20
Ethyl tert-butyl ether (ETBE)	0.0562	0.0551	0.050	ND	112,F1	110,F1	61-104	1.97	20
Methyl-t-butyl ether (MTBE)	0.0537	0.0526	0.050	ND	107	105	58-107	2.24	20
Toluene	0.0436	0.0428	0.050	ND	87	85	64-114	1.97	20
Trichloroethene	0.0514	0.0511	0.050	ND	103	102	60-116	0.533	20
Surrogate Recovery									
Dibromofluoromethane	0.147	0.148	0.12		117	119	70-130	1.09	20
Toluene-d8	0.123	0.122	0.12		98	98	70-130	0	20
4-BFB	0.0119	0.0118	0.012		95	94	88-121	0.943	20
Benzene-d6	0.112	0.111	0.10		112	111	60-140	0.901	20
Ethylbenzene-d10	0.103	0.101	0.10		103	101	60-140	1.74	20
1,2-DCB-d4	0.102	0.102	0.10		102	102	60-140	0	20

QA/QC Officer Page 27 of 46

Client:	Basics Environmental	WorkOrder:	1602473
Date Prepared:	2/23/16	BatchID:	117127
Date Analyzed:	2/24/16	Extraction Method:	SW5030B
Instrument:	GC16	Analytical Method:	SW8260B
Matrix:	Soil	Unit:	mg/kg
Project:	01-2016-500-002; 139th Ave Property	Sample ID:	MB/LCS-117127 1602941-011AMS/MSD

Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
Acetone	ND	-	0.10	-	-	-	-
tert-Amyl methyl ether (TAME)	ND	0.0388	0.0050	0.050	-	78	53-116
Benzene	ND	0.0432	0.0050	0.050	-	86	63-137
Bromobenzene	ND	-	0.0050	-	-	-	-
Bromochloromethane	ND	-	0.0050	-	-	-	-
Bromodichloromethane	ND	-	0.0050	-	-	-	-
Bromoform	ND	-	0.0050	-	-	-	-
Bromomethane	ND	-	0.0050	-	-	-	-
2-Butanone (MEK)	ND	-	0.020	-	-	-	-
-Butyl alcohol (TBA)	ND	0.207	0.050	0.20	-	104	41-135
n-Butyl benzene	ND	-	0.0050	-	-	-	-
sec-Butyl benzene	ND	-	0.0050	-	-	-	-
tert-Butyl benzene	ND	-	0.0050	-	-	-	-
Carbon Disulfide	ND	-	0.0050	-	-	-	-
Carbon Tetrachloride	ND	-	0.0050	-	-	-	-
Chlorobenzene	ND	0.0438	0.0050	0.050	-	88	77-121
Chloroethane	ND	-	0.0050	-	-	-	-
Chloroform	ND	-	0.0050	-	-	-	-
Chloromethane	ND	-	0.0050	-	-	-	-
2-Chlorotoluene	ND	-	0.0050	-	-	-	-
4-Chlorotoluene	ND	-	0.0050	-	-	-	-
Dibromochloromethane	ND	-	0.0050	-	-	-	-
1,2-Dibromo-3-chloropropane	ND	-	0.0040	-	-	-	-
1,2-Dibromoethane (EDB)	ND	0.0460	0.0040	0.050	-	92	67-119
Dibromomethane	ND	-	0.0050	-	-	-	-
1,2-Dichlorobenzene	ND	-	0.0050	-	-	-	-
1,3-Dichlorobenzene	ND	-	0.0050	-	-	-	-
1,4-Dichlorobenzene	ND	-	0.0050	-	-	-	-
Dichlorodifluoromethane	ND	-	0.0050	-	-	-	-
1,1-Dichloroethane	ND	-	0.0050	-	-	-	-
1,2-Dichloroethane (1,2-DCA)	ND	0.0454	0.0040	0.050	-	91	58-135
1,1-Dichloroethene	ND	0.0413	0.0050	0.050	-	83	42-145
cis-1,2-Dichloroethene	ND	-	0.0050	-	-	-	-
rans-1,2-Dichloroethene	ND	-	0.0050	-	-	-	-
1,2-Dichloropropane	ND	-	0.0050	-	-	-	-
I,3-Dichloropropane	ND	-	0.0050	-	-	-	-
2,2-Dichloropropane	ND	-	0.0050	-	-	-	-

QA/QC Officer

Client:	Basics Environmental	Wo
Date Prepared:	2/23/16	Bat
Date Analyzed:	2/24/16	Ext
Instrument:	GC16	An
Matrix:	Soil	Uni
Project:	01-2016-500-002; 139th Ave Property	Sar

WorkOrder:	1602473
BatchID:	117127
Extraction Method:	SW5030B
Analytical Method:	SW8260B
Unit:	mg/kg
Sample ID:	MB/LCS-117127 1602941-011AMS/MSD

ND ND 0.0050 - - - trans.1,3-Dichloropropene ND - 0.0050 - - - Disopropyl ether (DIPE) ND 0.0428 0.0050 - - - Ethyl tenzene ND - 0.0050 - - - Ethyl tenzburg ether (ETBE) ND 0.0426 0.0050 - - - Hexachlorobutadiene ND - 0.0050 -	Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
Trans-1,3-Dichloropropene ND - 0.0050 - - - - Disopropyl ether (DIPE) ND 0.0428 0.0050 0.050 - 86 52-129 Ethyl benzene ND 0.0426 0.0050 - - - - Ethyl tert-butyl ether (ETBE) ND 0.0426 0.0050 - - - - Hexachlorobutadiene ND - 0.0050 - - - - Hexachlorobutadiene ND - 0.0050 - - - - Hexachlorobutadiene ND - 0.0050 - - - - Lebxachlorobutadiene ND - 0.0050 - - - - Lebxachlorobutadiene ND - 0.0050 - - - - Lebxachlorobutadiene ND - 0.0050 - - - - Hexachlorobutadiene	1,1-Dichloropropene	ND	-	0.0050	-	-	-	-
Disopropyl ether (DIPE) ND 0.0428 0.0050 - 86 52-129 Ethylberzene ND - 0.0050 - - - Ethyl tert-butyl ether (ETBE) ND 0.0426 0.0050 - - - Freen 113 ND - 0.0050 - - - Hexachlorobutadiene ND - 0.0050 - - - Isopropylbenzene ND 0.0050 - - - - Vethyler chifde ND 0.0050 - - - - Vethyler chifde ND - 0.0050 - - - Vethyler chifde ND - 0.0050	cis-1,3-Dichloropropene	ND	-	0.0050	-	-	-	-
Ethylbenzene ND - 0.0050 - - - - Ethylbenzene ND 0.0426 0.0050 0.050 85 53-125 Freen 113 ND - 0.0050 - - - Hexachloroethane ND - 0.0050 - - - Alsopropylbenzene ND - 0.0050 - - - Alsopropylbenzene ND - 0.0050 - - - Alsopropylbenzene ND - 0.0050 - - - - Alsopropylbenzene ND 0.00419 0.0050 0.050 84 58-122 Methyl-buyl ether (MTBE) ND 0.0419 0.0050 - - - Alsopropylbenzene ND - 0.0050 - - - Alsopthalene ND - 0.0050 - - - ND 0.0050 -	trans-1,3-Dichloropropene	ND	-	0.0050	-	-	-	-
Ethyl tert-butyl ether (ETBE) ND 0.0426 0.0050 - 85 53-125 Freen 113 ND - 0.0050 - - - Hexachlorobutadiene ND - 0.0050 - - - Hexachlorobutadiene ND - 0.0050 - - - Lexachlorobutadiene ND - 0.0050 - - - 2-Hexanone ND - 0.0050 - - - - 4-Isopropyl toluene ND - 0.0050 - - - - 4-Hotyl-butyl ether (MTBE) ND 0.0419 0.0050 - - - - 4-Methyl-2-pentanone (MIBK) ND - 0.0050 - - - - Naphthalene ND - 0.0050 - - - - Napthalene ND - 0.0050 - - - -	Diisopropyl ether (DIPE)	ND	0.0428	0.0050	0.050	-	86	52-129
Freen 113 ND - 0.0050 - - - - Hexachlorobutadiene ND - 0.0050 - - - - Hexachlorobutadiene ND - 0.0050 - - - - Hexachlorobutadiene ND - 0.0050 - - - - Isopropylbenzene ND - 0.0050 - - - - 4-lsopropyl toluene ND - 0.0050 - - - - 4-Methyl-butyl ether (MTBE) ND 0.0419 0.0050 - - - - 4-Methyl-2-pentanone (MIBK) ND - 0.0050 - - - - Nprehthalene ND - 0.0050 - - - - 1,1,1,2-Tetrachloroethane ND - 0.0050 - - - - 1,1,2,2-Tetrachloroethane ND - </td <td>Ethylbenzene</td> <td>ND</td> <td>-</td> <td>0.0050</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td>	Ethylbenzene	ND	-	0.0050	-	-	-	-
Hexachlorobutadiene ND - 0.0050 - - - - Hexachloroethane ND - 0.0050 - - - - 2-Hexachloroethane ND - 0.0050 - - - - Isopropylbenzene ND - 0.0050 - - - - 4-lsopropyl toluene ND 0.0419 0.0050 0.050 - 84 58-122 Methyl-t-butyl ether (MTBE) ND 0.0419 0.0050 - - - - 4-Methyl-2-pentarone (MIBK) ND - 0.0050 - - - - Naphthalene ND - 0.0050 - - - - - Npptyl-2-pentarone (MIBK) ND - 0.0050 - - - - - - - - - - - - - - - - -	Ethyl tert-butyl ether (ETBE)	ND	0.0426	0.0050	0.050	-	85	53-125
Hexachloroethane ND - 0.0050 - - - - 2-Hexanone ND - 0.0050 - - - - Isopropylbenzene ND - 0.0050 - - - - 4-Isopropyl toluene ND - 0.0050 - - - - Methyl-butyl ether (MTBE) ND 0.0419 0.0050 0.050 - 84 58-122 Methyle-butyl ether (MTBE) ND - 0.0050 - - - - 4-Methyl-2-pentanone (MIBK) ND - 0.0050 - - - - Naphthalene ND - 0.0050 - - - - - Npropyl benzene ND - 0.0050 - - - - - - - - - - - - - - - - - -	Freon 113	ND	-	0.0050	-	-	-	-
2-Hexanone ND - 0.0050 - - - - Isopropylbenzene ND - 0.0050 - - - - 4-Isopropyl toluene ND - 0.0050 - - - - Methyl-butyl ether (MTBE) ND 0.0419 0.0050 - - 84 58-122 Methyl-butyl ether (MTBE) ND 0.0419 0.0050 - - - - AtMethyl-2-pentanone (MIBK) ND - 0.0050 - - - - - Naphthalene ND - 0.0050 - - - - - NPropyl benzene ND - 0.0050 - - - - - Styrene ND - 0.0050 - - - - Toluene ND - 0.0050 - - - - 1,1,2-Trichlorobenzene	Hexachlorobutadiene	ND	-	0.0050	-	-	-	-
Isopropylbenzene ND - 0.0050 - - - 4-Isopropyl toluene ND - 0.0050 - - - Methyl-t-butyl ether (MTBE) ND 0.0419 0.0050 0.050 - 84 58-122 Methyl-t-butyl ether (MTBE) ND - 0.0050 - - - - 4-Methyl-2-pentanone (MIBK) ND - 0.0050 - - - - Naphthalene ND - 0.0050 - - - - Napthalene ND - 0.0050 - - - - Naphthalene ND - 0.0050 - - - - Naphthalene ND - 0.0050 - - - - - Nptenzene ND - 0.0050 - - - - - - 1,1,2.2-Tetrachloroethane ND	Hexachloroethane	ND	-	0.0050	-	-	-	-
4-Isopropyl toluene ND - 0.0050 - - - - Methyl-t-butyl ether (MTBE) ND 0.0419 0.0050 0.050 84 58-122 Methyl-en chloride ND - 0.0050 - - - 4-Methyl-2-pentanone (MIBK) ND - 0.0050 - - - Naphthalene ND - 0.0050 - - - - - ND - 0.0050 - - - - - - - 1,1,2.2-Tetrachloroethane ND - 0.0050	2-Hexanone	ND	-	0.0050	-	-	-	-
Methyl-t-butyl ether (MTBE) ND 0.0419 0.0050 - 84 58-122 Methylene chloride ND - 0.0050 - - - - 4-Methyl-2-pentanone (MIBK) ND - 0.0050 - - - - Naphthalene ND - 0.0050 - - - - N-Propyl benzene ND - 0.0050 - - - - Styrene ND - 0.0050 - - - - 1,1,2.2-Tetrachloroethane ND - 0.0050 - - - - Totlane ND - 0.0050 - - - - Toluene ND 0.0452 0.0050 0.050 - 90 76-130 1,2,3-Trichlorobenzene ND - 0.0050 - - - - 1,1,1-Trichloroethane ND - 0.0050	Isopropylbenzene	ND	-	0.0050	-	-	-	-
Methylene chloride ND - 0.0050 - - - 4-Methyl-2-pentanone (MIBK) ND - 0.0050 - - - Naphthalene ND - 0.0050 - - - n-Propyl benzene ND - 0.0050 - - - Styrene ND - 0.0050 - - - - 1,1,2-2-Tetrachloroethane ND - 0.0050 - - - - 1,1,2,2-Tetrachloroethane ND - 0.0050 - - - - Tetrachloroethane ND - 0.0050 - - - - Toluene ND 0.0452 0.0050 0.050 - - - - 1,2,3-Trichlorobenzene ND - 0.0050 - - - - - 1,1,2-Trichloroethane ND - 0.0050 -	4-Isopropyl toluene	ND	-	0.0050	-	-	-	-
4-Methyl-2-pentanone (MIBK) ND - 0.0050 - - - - Naphthalene ND - 0.0050 - - - - n-Propyl benzene ND - 0.0050 - - - - Styrene ND - 0.0050 - - - - 1,1,2-Tetrachloroethane ND - 0.0050 - - - - 1,1,2-Tetrachloroethane ND - 0.0050 - - - - - 1,1,2-Tetrachloroethane ND - 0.0050 - - - - - 1,1,2-Tetrachloroethane ND 0.0050 - - - - - - 1,2,3-Trichlorobenzene ND - 0.0050 - - - - - 1,1,1-Trichloroethane ND - 0.0050 - - - -	Methyl-t-butyl ether (MTBE)	ND	0.0419	0.0050	0.050	-	84	58-122
Naphthalene ND - 0.0050 - - - - n-Propyl benzene ND - 0.0050 - - - - Styrene ND - 0.0050 - - - - 1,1,2-Tetrachloroethane ND - 0.0050 - - - - 1,1,2-Tetrachloroethane ND - 0.0050 - - - - Tetrachloroethane ND - 0.0050 - - - - Toluene ND 0.0452 0.0050 0.050 - 90 76-130 1,2,3-Trichlorobenzene ND - 0.0050 - - - - 1,1,1-Trichloroethane ND - 0.0050 - - - - 1,1,2-Trichloroethane ND - 0.0050 - - - - 1,2,3-Trichloropropane ND - 0	Methylene chloride	ND	-	0.0050	-	-	-	-
ND - 0.0050 - - - - Styrene ND - 0.0050 - - - - 1,1,2-Tetrachloroethane ND - 0.0050 - - - - 1,1,2-Tetrachloroethane ND - 0.0050 - - - - 1,1,2-Tetrachloroethane ND - 0.0050 - - - - Tetrachloroethane ND - 0.0050 - - - - Toluene ND 0.0452 0.0050 0.050 - 90 76-130 1,2,3-Trichlorobenzene ND - 0.0050 - - - - 1,1,1-Trichloroethane ND - 0.0050 - - - - 1,1,2-Trichloroethane ND - 0.0050 - 91 72-132 Trichlorofluoromethane ND - 0.0050 -	4-Methyl-2-pentanone (MIBK)	ND	-	0.0050	-	-	-	-
ND - 0.0050 - </td <td>Naphthalene</td> <td>ND</td> <td>-</td> <td>0.0050</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td>	Naphthalene	ND	-	0.0050	-	-	-	-
ND - 0.0050 - </td <td>n-Propyl benzene</td> <td>ND</td> <td>-</td> <td>0.0050</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td>	n-Propyl benzene	ND	-	0.0050	-	-	-	-
ND - 0.0050 - - - - Tetrachloroethene ND - 0.0050 - - - Toluene ND 0.0452 0.0050 0.050 - 90 76-130 1,2,3-Trichlorobenzene ND - 0.0050 - - - - 1,2,4-Trichlorobenzene ND - 0.0050 - - - - 1,1,2-Trichloroethane ND - 0.0050 - 91 72-132 Trichloroptopane ND - 0.0050 - - - - 1,2,3-Trichloroptopane ND - 0.0050	Styrene	ND	-	0.0050	-	-	-	-
ND ND 0.0050 -<	1,1,1,2-Tetrachloroethane	ND	-	0.0050	-	-	-	-
Toluene ND 0.0452 0.0050 0.050 - 90 76-130 1,2,3-Trichlorobenzene ND - 0.0050 - - - - 1,2,4-Trichlorobenzene ND - 0.0050 - - - - 1,1,1-Trichloroethane ND - 0.0050 - - - - 1,1,2-Trichloroethane ND - 0.0050 - - - - 1,1,2-Trichloroethane ND - 0.0050 - - - - 1,1,2-Trichloroethane ND 0.0456 0.0050 - - - - 1,2,3-Trichloropropane ND - 0.0050 - - - - 1,2,4-Trimethylbenzene ND - 0.0050 - - - - 1,3,5-Trimethylbenzene ND - 0.0050 - - - - Vinyl Chloride ND	1,1,2,2-Tetrachloroethane	ND	-	0.0050	-	-	-	-
ND - 0.0050 - </td <td>Tetrachloroethene</td> <td>ND</td> <td>-</td> <td>0.0050</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td>	Tetrachloroethene	ND	-	0.0050	-	-	-	-
ND ND 0.0050 -<	Toluene	ND	0.0452	0.0050	0.050	-	90	76-130
ND - 0.0050 - </td <td>1,2,3-Trichlorobenzene</td> <td>ND</td> <td>-</td> <td>0.0050</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td>	1,2,3-Trichlorobenzene	ND	-	0.0050	-	-	-	-
ND - 0.0050 - </td <td>1,2,4-Trichlorobenzene</td> <td>ND</td> <td>-</td> <td>0.0050</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td>	1,2,4-Trichlorobenzene	ND	-	0.0050	-	-	-	-
ND 0.0456 0.0050 0.050 - 91 72-132 Trichlorofluoromethane ND - 0.0050 - <td< td=""><td>1,1,1-Trichloroethane</td><td>ND</td><td>-</td><td>0.0050</td><td>-</td><td>-</td><td>-</td><td>-</td></td<>	1,1,1-Trichloroethane	ND	-	0.0050	-	-	-	-
Trichlorofluoromethane ND - 0.0050 -	1,1,2-Trichloroethane	ND	-	0.0050	-	-	-	-
ND - 0.0050 - </td <td>Trichloroethene</td> <td>ND</td> <td>0.0456</td> <td>0.0050</td> <td>0.050</td> <td>-</td> <td>91</td> <td>72-132</td>	Trichloroethene	ND	0.0456	0.0050	0.050	-	91	72-132
ND - 0.0050 - </td <td>Trichlorofluoromethane</td> <td>ND</td> <td>-</td> <td>0.0050</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td>	Trichlorofluoromethane	ND	-	0.0050	-	-	-	-
ND - 0.0050 - - - Vinyl Chloride ND - 0.0050 - - -	1,2,3-Trichloropropane	ND	-	0.0050	-	-	-	-
Vinyl Chloride ND - 0.0050 - - - -	1,2,4-Trimethylbenzene	ND	-	0.0050	-	-	-	-
,	1,3,5-Trimethylbenzene	ND	-	0.0050	-	-	-	-
Xylenes, Total ND - 0.0050	Vinyl Chloride	ND	-	0.0050	-	-	-	-
	Xylenes, Total	ND	-	0.0050	-	-	-	-

_____QA/QC Officer Page 29 of 46

Client:	Basics Environmental	WorkOrder:	1602473
Date Prepared:	2/23/16	BatchID:	117127
Date Analyzed:	2/24/16	Extraction Method:	SW5030B
Instrument:	GC16	Analytical Method:	SW8260B
Matrix:	Soil	Unit:	mg/kg
Project:	01-2016-500-002; 139th Ave Property	Sample ID:	MB/LCS-117127 1602941-011AMS/MSD

Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
Surrogate Recovery							
Dibromofluoromethane	0.123	0.129		0.12	98	103	70-130
Toluene-d8	0.156	0.160		0.12	125	128	70-130
4-BFB	0.0140	0.0158		0.012	112	126	70-130
Benzene-d6	0.0949	0.101		0.10	95	101	60-140
Ethylbenzene-d10	0.106	0.117		0.10	106	117	60-140
1.2-DCB-d4	0.0679	0.0752		0.10	68	75	60-140

Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
tert-Amyl methyl ether (TAME)	0.0488	0.0503	0.050	ND	98	101	70-130	3.09	20
Benzene	0.0452	0.0469	0.050	ND	90	94	70-130	3.75	20
t-Butyl alcohol (TBA)	0.196	0.200	0.20	ND	98	100	70-130	2.20	20
Chlorobenzene	0.0434	0.0443	0.050	ND	87	89	70-130	1.86	20
1,2-Dibromoethane (EDB)	0.0439	0.0456	0.050	ND	88	91	70-130	3.85	20
1,2-Dichloroethane (1,2-DCA)	0.0446	0.0459	0.050	ND	89	92	70-130	2.77	20
1,1-Dichloroethene	0.0374	0.0398	0.050	ND	75	80	70-130	6.24	20
Diisopropyl ether (DIPE)	0.0488	0.0507	0.050	ND	98	101	70-130	3.88	20
Ethyl tert-butyl ether (ETBE)	0.0479	0.0496	0.050	ND	96	99	70-130	3.35	20
Methyl-t-butyl ether (MTBE)	0.0460	0.0475	0.050	ND	92	95	70-130	3.01	20
Toluene	0.0393	0.0408	0.050	ND	79	82	70-130	3.71	20
Trichloroethene	0.0430	0.0446	0.050	ND	86	89	70-130	3.66	20
Surrogate Recovery									
Dibromofluoromethane	0.147	0.146	0.12		117	117	70-130	0	20
Toluene-d8	0.129	0.130	0.12		103	104	70-130	0.503	20
4-BFB	0.0122	0.0122	0.012		98	98	70-130	0	20
Benzene-d6	0.0950	0.0996	0.10		95	100	60-140	4.72	20
Ethylbenzene-d10	0.0907	0.0948	0.10		91	95	60-140	4.40	20
1,2-DCB-d4	0.0904	0.0942	0.10		90	94	60-140	4.15	20

Client:	Basics Environmental	WorkOrder:	1602473
Date Prepared:	2/11/16	BatchID:	116613
Date Analyzed:	2/13/16	Extraction Method:	SW3510C
Instrument:	GC39B	Analytical Method:	SW8015B
Matrix:	Water	Unit:	µg/L
Project:	01-2016-500-002; 139th Ave Property	Sample ID:	MB/LCS-116613

QC Report for SW8015B w/out SG Clean-Up

Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
TPH-Diesel (C10-C23)	ND	1110	50	1000	-	111	61-157
TPH-Motor Oil (C18-C36)	ND	-	250	-	-	-	-
Surrogate Recovery							
C9	638	641		625	102	103	65-122

(Cont.) CDPH ELAP 1644 ♦ NELAP 4033ORELAP

A QA/QC Officer Page 31 of 46

Client:	Basics Environmental
Date Prepared:	2/11/16
Date Analyzed:	2/12/16
Instrument:	GC10, GC16
Matrix:	Soil
Project:	01-2016-500-002; 139th Ave Property

WorkOrder:	1602473
BatchID:	116619
Extraction Method:	SW5030B
Analytical Method:	SW8260B
Unit:	mg/kg
Sample ID:	MB/LCS-116619 1602450-004AMS/MSD

Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
Acetone	ND	-	0.10	-	-	-	-
tert-Amyl methyl ether (TAME)	ND	0.0442	0.0050	0.050	-	88	53-116
Benzene	ND	0.0500	0.0050	0.050	-	100	63-137
Bromobenzene	ND	-	0.0050	-	-	-	-
Bromochloromethane	ND	-	0.0050	-	-	-	-
Bromodichloromethane	ND	-	0.0050	-	-	-	-
Bromoform	ND	-	0.0050	-	-	-	-
Bromomethane	ND	-	0.0050	-	-	-	-
2-Butanone (MEK)	ND	-	0.020	-	-	-	-
t-Butyl alcohol (TBA)	ND	0.215	0.050	0.20	-	107	41-135
n-Butyl benzene	ND	-	0.0050	-	-	-	-
sec-Butyl benzene	ND	-	0.0050	-	-	-	-
tert-Butyl benzene	ND	-	0.0050	-	-	-	-
Carbon Disulfide	ND	-	0.0050	-	-	-	-
Carbon Tetrachloride	ND	-	0.0050	-	-	-	-
Chlorobenzene	ND	0.0468	0.0050	0.050	-	94	77-121
Chloroethane	ND	-	0.0050	-	-	-	-
Chloroform	ND	-	0.0050	-	-	-	-
Chloromethane	ND	-	0.0050	-	-	-	-
2-Chlorotoluene	ND	-	0.0050	-	-	-	-
4-Chlorotoluene	ND	-	0.0050	-	-	-	-
Dibromochloromethane	ND	-	0.0050	-	-	-	-
1,2-Dibromo-3-chloropropane	ND	-	0.0040	-	-	-	-
1,2-Dibromoethane (EDB)	ND	0.0447	0.0040	0.050	-	89	67-119
Dibromomethane	ND	-	0.0050	-	-	-	-
1,2-Dichlorobenzene	ND	-	0.0050	-	-	-	-
1,3-Dichlorobenzene	ND	-	0.0050	-	-	-	-
1,4-Dichlorobenzene	ND	-	0.0050	-	-	-	-
Dichlorodifluoromethane	ND	-	0.0050	-	-	-	-
1,1-Dichloroethane	ND	-	0.0050	-	-	-	-
1,2-Dichloroethane (1,2-DCA)	ND	0.0511	0.0040	0.050	-	102	58-135
1,1-Dichloroethene	ND	0.0475	0.0050	0.050	-	95	42-145
cis-1,2-Dichloroethene	ND	-	0.0050	-	-	-	-
trans-1,2-Dichloroethene	ND	-	0.0050	-	-	-	-
1,2-Dichloropropane	ND	-	0.0050	-	-	-	-
1,3-Dichloropropane	ND	-	0.0050	-	-	-	-
2,2-Dichloropropane	ND	-	0.0050	-	-	-	-

A QA/QC Officer

Client:	Basics Environmental
Date Prepared:	2/11/16
Date Analyzed:	2/12/16
Instrument:	GC10, GC16
Matrix:	Soil
Project:	01-2016-500-002; 139th Ave Property

WorkOrder:	1602473
BatchID:	116619
Extraction Method:	SW5030B
Analytical Method:	SW8260B
Unit:	mg/kg
Sample ID:	MB/LCS-116619 1602450-004AMS/MSD

Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
1,1-Dichloropropene	ND	-	0.0050	-	-	-	-
cis-1,3-Dichloropropene	ND	-	0.0050	-	-	-	-
trans-1,3-Dichloropropene	ND	-	0.0050	-	-	-	-
Diisopropyl ether (DIPE)	ND	0.0493	0.0050	0.050	-	99	52-129
Ethylbenzene	ND	-	0.0050	-	-	-	-
Ethyl tert-butyl ether (ETBE)	ND	0.0484	0.0050	0.050	-	97	53-125
Freon 113	ND	-	0.0050	-	-	-	-
Hexachlorobutadiene	ND	-	0.0050	-	-	-	-
Hexachloroethane	ND	-	0.0050	-	-	-	-
2-Hexanone	ND	-	0.0050	-	-	-	-
Isopropylbenzene	ND	-	0.0050	-	-	-	-
4-Isopropyl toluene	ND	-	0.0050	-	-	-	-
Methyl-t-butyl ether (MTBE)	ND	0.0469	0.0050	0.050	-	94	58-122
Methylene chloride	ND	-	0.0050	-	-	-	-
4-Methyl-2-pentanone (MIBK)	ND	-	0.0050	-	-	-	-
Naphthalene	ND	-	0.0050	-	-	-	-
n-Propyl benzene	ND	-	0.0050	-	-	-	-
Styrene	ND	-	0.0050	-	-	-	-
1,1,1,2-Tetrachloroethane	ND	-	0.0050	-	-	-	-
1,1,2,2-Tetrachloroethane	ND	-	0.0050	-	-	-	-
Tetrachloroethene	ND	-	0.0050	-	-	-	-
Toluene	ND	0.0499	0.0050	0.050	-	100	76-130
1,2,3-Trichlorobenzene	ND	-	0.0050	-	-	-	-
1,2,4-Trichlorobenzene	ND	-	0.0050	-	-	-	-
1,1,1-Trichloroethane	ND	-	0.0050	-	-	-	-
1,1,2-Trichloroethane	ND	-	0.0050	-	-	-	-
Trichloroethene	ND	0.0481	0.0050	0.050	-	96	72-132
Trichlorofluoromethane	ND	-	0.0050	-	-	-	-
1,2,3-Trichloropropane	ND	-	0.0050	-	-	-	-
1,2,4-Trimethylbenzene	ND	-	0.0050	-	-	-	-
1,3,5-Trimethylbenzene	ND	-	0.0050	-	-	-	-
Vinyl Chloride	ND	-	0.0050	-	-	-	-
Xylenes, Total	ND	-	0.0050	-	-	-	-

A QA/QC Officer Page 33 of 46

Client:	Basics Environmental	W
Date Prepared:	2/11/16	Ba
Date Analyzed:	2/12/16	Ex
Instrument:	GC10, GC16	Aı
Matrix:	Soil	Uı
Project:	01-2016-500-002; 139th Ave Property	Sa

WorkOrder:	1602473
BatchID:	116619
Extraction Method:	SW5030B
Analytical Method:	SW8260B
Unit:	mg/kg
Sample ID:	MB/LCS-116619 1602450-004AMS/MSD

Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
Surrogate Recovery							
Dibromofluoromethane	0.129	0.129		0.12	104	103	70-130
Toluene-d8	0.158	0.150		0.12	126	120	70-130
4-BFB	0.0115	0.0143		0.012	92	115	70-130
Benzene-d6	0.112	0.123		0.10	112	123	60-140
Ethylbenzene-d10	0.133	0.136		0.10	133	136	60-140
1,2-DCB-d4	0.103	0.0795		0.10	103	79	60-140

Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
tert-Amyl methyl ether (TAME)	0.0372	0.0381	0.050	ND	74	76	56-94	2.53	20
Benzene	0.0422	0.0422	0.050	ND	84	84	60-106	0	20
t-Butyl alcohol (TBA)	0.181	0.183	0.20	ND	91	92	56-140	1.11	20
Chlorobenzene	0.0402	0.0407	0.050	ND	81	81	61-108	0	20
1,2-Dibromoethane (EDB)	0.0388	0.0389	0.050	ND	78	78	54-119	0	20
1,2-Dichloroethane (1,2-DCA)	0.0432	0.0438	0.050	ND	86	88	48-115	1.34	20
1,1-Dichloroethene	0.0389	0.0389	0.050	ND	78	78	46-111	0	20
Diisopropyl ether (DIPE)	0.0418	0.0422	0.050	ND	84	84	53-111	0	20
Ethyl tert-butyl ether (ETBE)	0.0408	0.0416	0.050	ND	82	83	61-104	1.94	20
Methyl-t-butyl ether (MTBE)	0.0398	0.0410	0.050	ND	80	82	58-107	2.95	20
Toluene	0.0430	0.0431	0.050	ND	86	86	64-114	0	20
Trichloroethene	0.0397	0.0399	0.050	ND	79	80	60-116	0.658	20
Surrogate Recovery									
Dibromofluoromethane	0.124	0.126	0.12		99	100	70-130	1.04	20
Toluene-d8	0.147	0.147	0.12		117	118	70-130	0.409	20
4-BFB	0.0138	0.0135	0.012		110	108	88-121	2.41	20
Benzene-d6	0.0936	0.0956	0.10		94	96	60-140	2.14	20
Ethylbenzene-d10	0.104	0.105	0.10		104	105	60-140	0.956	20
1,2-DCB-d4	0.0678	0.0700	0.10		68	70	60-140	3.16	20

QA/QC Officer Page 34 of 46

Client:	Basics Environmental	WorkOrder:	1602473
Date Prepared:	2/11/16	BatchID:	116621
Date Analyzed:	2/11/16	Extraction Method:	SW3550B
Instrument:	GC39B	Analytical Method:	SW8015B
Matrix:	Soil	Unit:	mg/Kg
Project:	01-2016-500-002; 139th Ave Property	Sample ID:	MB/LCS-116621 1602450-011AMS/MSD

Analyte	MB Result	LCS Result		RL	SPK Val		B SS REC	LCS %REC		LCS Limits
TPH-Diesel (C10-C23)	ND	45.2		1.0	40	-		113		70-130
TPH-Motor Oil (C18-C36)	ND	-		5.0	-	-		-	-	-
Surrogate Recovery										
C9	25.4	25.4			25	10)1	102	7	70-130
Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/M Limits	-	RPD	RPC Limi
TPH-Diesel (C10-C23)	48.9	51.5	40	ND	122	129	70-13	0	5.14	30
Surrogate Recovery										
C9	25.3	25.3	25		101	101	70-13		0	30

A QA/QC Officer Page 35 of 46

Client:	Basics Environmental	We
Date Prepared:	2/19/16	Ba
Date Analyzed:	2/19/16	Ex
Instrument:	GC28	An
Matrix:	Water	Un
Project:	01-2016-500-002; 139th Ave Property	Sa

WorkOrder:	1602473
BatchID:	116946
Extraction Method:	SW5030B
Analytical Method:	SW8260B
Unit:	µg/L
Sample ID:	MB/LCS-116946 1602624-006AMS/MSD

Inter-Amyl methyl ether (TAME) ND 9.92 0.50 10 99 54-140 Benzene ND 11.6 0.50 10 116 47-158 Bromochizomethane ND - 0.50 - - - Bromochizomethane ND - 0.50 - - - - Semomethane ND 49.1 2.0 40 123 42.140 Deluyl banzene ND - 0.50 - - - Brotyl benzene ND - 0.50 - - - Carbon Disulfide ND - 0.50 - - - Chiorobenzene ND - 0.50 <td< th=""><th>Analyte</th><th>MB Result</th><th>LCS Result</th><th>RL</th><th>SPK Val</th><th>MB SS %REC</th><th>LCS %REC</th><th>LCS Limits</th></td<>	Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
Benzene ND 11.6 0.50 10 - 116 47.158 Bromoblerzene ND - 0.50 -	Acetone	ND	-	10	-	-	-	-
Bromochoromethane ND - 0.50 - - - - Bromochloromethane ND - 0.50 -	tert-Amyl methyl ether (TAME)	ND	9.92	0.50	10	-	99	54-140
Bromochloromethane ND - 0.50 - - - Bromodichloromethane ND - 0.50 - - - Bromodichloromethane ND - 0.50 - - - Bromorthane ND - 0.50 - - - - 2-Butanone (MEK) ND - 2.0 - - - - 1-Buly lacohol (TBA) ND 49.1 2.0 40 - 123 42-140 nebuly benzene ND - 0.50 - - - - sec-Butyl benzene ND - 0.50 - - - - Carbon Tetrachloride ND - 0.50 - - - - - Chlorobenzene ND - 0.50 - - - - - Chlorobenzene ND - 0.50 - -	Benzene	ND	11.6	0.50	10	-	116	47-158
Bromodichloromethane ND - 0.50 - <td>Bromobenzene</td> <td>ND</td> <td>-</td> <td>0.50</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td>	Bromobenzene	ND	-	0.50	-	-	-	-
Bromoform ND - 0.50 - - - Bromomethane ND - 0.50 - - - Bromomethane ND ND 2.0 - - - 2-Butanone (MEK) ND 49.1 2.0 40 - 123 42-140 n-Butyl benzene ND - 0.50 - - - - sec-Butyl benzene ND - 0.50 - - - - Carbon Disulfide ND - 0.50 - - - - Chiorobenzene ND - 0.50 10 - 10.9 43.157 Chiorobenzene ND - 0.50 - - - - Chiorobenzene ND - 0.50 - - - - Chiorobenzene ND 10.9 0.50 - - - -	Bromochloromethane	ND	-	0.50	-	-	-	-
Bromomethane ND - 0.50 -	Bromodichloromethane	ND	-	0.50	-	-	-	-
2-Butanone (MEK) ND - 2.0 - - - - t-Butyl alcohol (TBA) ND 49.1 2.0 40 - 123 42-140 n-Butyl benzene ND - 0.50 - - - - - sec-Butyl benzene ND - 0.50 - <t< td=""><td>Bromoform</td><td>ND</td><td>-</td><td>0.50</td><td>-</td><td>-</td><td>-</td><td>-</td></t<>	Bromoform	ND	-	0.50	-	-	-	-
LButyl alcohol (TBA) ND 49.1 2.0 40 - 123 42.140 n-Butyl benzene ND - 0.50 - - - sec-Butyl benzene ND - 0.50 - - - sec-Butyl benzene ND - 0.50 - - - Carbon Disulfide ND - 0.50 - - - Carbon Tetrachloride ND - 0.50 - - - - Chlorobenzene ND 10.9 0.50 10 - 109 43.157 Chloroform ND - 0.50 - - - - Chloroform ND - 0.50 - - - - Chlorobuene ND - 0.50 - - - - Chlorobuene ND - 0.50 - - - - - <t< td=""><td>Bromomethane</td><td>ND</td><td>-</td><td>0.50</td><td>-</td><td>-</td><td>-</td><td>-</td></t<>	Bromomethane	ND	-	0.50	-	-	-	-
n-Butyl benzene ND - 0.50 - - - sec-Butyl benzene ND - 0.50 - - - tert-Butyl benzene ND - 0.50 - - - Carbon Disulfide ND - 0.50 - - - Carbon Tetrachloride ND - 0.50 - - - Chlorobenzene ND 10.9 0.50 10 - 109 43-157 Chloroterhane ND - 0.50 - - - - Chloroterm ND - 0.50 - - - - Chlorotoluene ND - 0.50 - - - - 1/2-Dibromoethane ND - 0.50 - - - - 1/2-Dibromoethane (EDB) ND 11.4 0.50 10 114 44155 Dibromoethane (EDB)	2-Butanone (MEK)	ND	-	2.0	-	-	-	-
sec-Butyl benzene ND - 0.50 -	t-Butyl alcohol (TBA)	ND	49.1	2.0	40	-	123	42-140
tert-Butyl benzene ND - 0.50 - - - Carbon Disulfide ND - 0.50 - - - - Carbon Tetrachloride ND 10.9 0.50 - - - - Chlorobenzene ND 10.9 0.50 10 - 109 43.157 Chlorobenzene ND - 0.50 - - - - Chloroform ND - 0.50 - - - - Chlorotoluene ND - 0.50 - - - - 2-Chlorotoluene ND - 0.50 - - - - 2-Chlorotoluene ND - 0.50 - - - - - 2-Chlorotoluene ND - 0.50 - - - - - - - - - - - -	n-Butyl benzene	ND	-	0.50	-	-	-	-
Carbon Disulfide ND - 0.50 - - - - Carbon Tetrachloride ND - 0.50 - - - - - - - - Charbon Tetrachloride ND 10.9 0.50 10 - 109 43.157 Chlorobenzene ND - 0.50 - - - - - - Chlorobenzene ND - 0.50 -	sec-Butyl benzene	ND	-	0.50	-	-	-	-
Carbon Tetrachloride ND - 0.50 - - - Chlorobenzene ND 10.9 0.50 10 - 109 43-157 Chlorobenzene ND - 0.50 - - - - Chlorobethane ND - 0.50 - - - - Chlorobethane ND - 0.50 - - - - Chlorobtane ND - 0.50 - - - - Chlorobtane ND - 0.50 - - - - 2-Chlorobluene ND - 0.50 - - - - 1/2-Dibromochlane (EDB) ND 11.4 0.50 10 - 114 44-155 Dibromothane ND - 0.50 - - - - 1,2-Dichlorobenzene ND - 0.50 - - -	tert-Butyl benzene	ND	-	0.50	-	-	-	-
Chlorobenzene ND 10.9 0.50 10 - 109 43-157 Chloroethane ND - 0.50 - - - - Chloroform ND - 0.50 - - - - Chloroform ND - 0.50 - - - - Chloroform ND - 0.50 - - - - 2-Chlorotoluene ND - 0.50 - - - - 4-Chlorotoluene ND - 0.50 - - - - 12-Dibromothane ND - 0.50 - - - - 1,2-Dibromoethane (EDB) ND 11.4 0.50 10 - 114 44-155 Dibromochtoroentene ND - 0.50 - - - - 1,2-Dichlorobenzene ND - 0.50 - -<	Carbon Disulfide	ND	-	0.50	-	-	-	-
Chloroethane ND - 0.50 - - - - Chloroform ND - 0.50 - - - - Chloroform ND - 0.50 - - - - Chlorotoluene ND - 0.50 - - - - 2-Chlorotoluene ND - 0.50 - - - - - 1,2-Dibromo-shchloropropane ND 11.4 0.50 10 114 44-155 Dibromomethane ND - 0.50 - - - - 1,2-Dichlorobenzene ND - 0.50 - -	Carbon Tetrachloride	ND	-	0.50	-	-	-	-
Chloroform ND - 0.50 - - - - Chloromethane ND - 0.50 - - - - 2-Chlorotoluene ND - 0.50 - - - - 4-Chlorotoluene ND - 0.50 - - - - Dibromochloromethane ND - 0.50 - - - - 1,2-Dibromo-3-chloropropane ND 11.4 0.50 10 - 114 44-155 Dibromoethane (EDB) ND 11.4 0.50 10 - - - 1,2-Dibromoethane ND - 0.50 - - - - - 1,2-Dichlorobenzene ND - 0.50 -<	Chlorobenzene	ND	10.9	0.50	10	-	109	43-157
Chloromethane ND - 0.50 - - - 2-Chlorotoluene ND - 0.50 - - - 4-Chlorotoluene ND - 0.50 - - - 4-Chlorotoluene ND - 0.50 - - - Dibromochloromethane ND - 0.50 - - - 1,2-Dibromo-3-chloropropane ND - 0.20 - - - 1,2-Dibromo-s-chloropropane ND 11.4 0.50 10 - 114 44-155 Dibromomethane (EDB) ND 11.4 0.50 - - - - 1,2-Dichlorobenzene ND - 0.50 - - - - 1,4-Dichlorobenzene ND - 0.50 - - - - 1,4-Dichlorobenzene ND - 0.50 - - - -	Chloroethane	ND	-	0.50	-	-	-	-
2-Chlorotoluene ND - 0.50 - - - - 4-Chlorotoluene ND - 0.50 - - - - Dibromochloromethane ND - 0.50 - - - - 1,2-Dibromo-3-chloropropane ND 11.4 0.50 10 - 114 44-155 Dibromoethane (EDB) ND 11.4 0.50 - - - - 1,2-Dichlorobenzene ND - 0.50 - - - - 1,3-Dichlorobenzene ND - 0.50 - - - - 1,4-Dichlorobenzene ND - 0.50 - - - - 1,4-Dichlorobenzene ND - 0.50 - - - - 1,4-Dichloroethane ND - 0.50 - - - - 1,2-Dichloroethane (1,2-DCA) ND	Chloroform	ND	-	0.50	-	-	-	-
4-Chlorotoluene ND - 0.50 - - - - Dibromochloromethane ND - 0.50 - - - - 1,2-Dibromo-3-chloropropane ND - 0.20 - - - - 1,2-Dibromo-3-chloropropane ND 11.4 0.50 10 - 114 44-155 Dibromoethane (EDB) ND 11.4 0.50 - - - - 1,2-Dichlorobenzene ND - 0.50 - - - - 1,3-Dichlorobenzene ND - 0.50 - - - - 1,4-Dichlorobenzene ND - 0.50 - - - - 1,4-Dichlorobenzene ND - 0.50 - - - - 1,4-Dichlorobenzene ND - 0.50 - - - - 1,4-Dichlorobethane ND - 0.50 - - - - 1,2-Dichloroethene ND	Chloromethane	ND	-	0.50	-	-	-	-
Dibromochloromethane ND - 0.50 - - - - 1,2-Dibromo-3-chloropropane ND - 0.20 - - - - 1,2-Dibromo-3-chloropropane ND 11.4 0.50 10 - 114 44-155 Dibromomethane (EDB) ND 11.4 0.50 - - - - 1,2-Dichlorobenzene ND - 0.50 - - - - 1,3-Dichlorobenzene ND - 0.50 - - - - 1,4-Dichlorobenzene ND - 0.50 - - - - 1,4-Dichlorobenzene ND - 0.50 -	2-Chlorotoluene	ND	-	0.50	-	-	-	-
1,2-Dibromo-3-chloropropane ND - 0.20 - - - 1,2-Dibromoethane (EDB) ND 11.4 0.50 10 - 114 44-155 Dibromomethane ND - 0.50 - - - - 1,2-Dichlorobenzene ND - 0.50 - - - - 1,3-Dichlorobenzene ND - 0.50 - - - - 1,4-Dichlorobenzene ND - 0.50 - - - - 1,4-Dichlorobenzene ND - 0.50 - - - - 1,4-Dichlorobenzene ND - 0.50 - - - - 1,4-Dichloroethane ND - 0.50 - - - - 1,1-Dichloroethane ND 11.0 0.50 10 - 110 66-125 1,1-Dichloroethene ND 11.3 0.50 10 - 113 47-149 cis-1,2-Dichloroethene ND	4-Chlorotoluene	ND	-	0.50	-	-	-	-
1,2-Dibromoethane (EDB)ND11.40.5010-11444-155DibromomethaneND-0.501,2-DichlorobenzeneND-0.501,3-DichlorobenzeneND-0.501,4-DichlorobenzeneND-0.501,4-DichlorobenzeneND-0.501,4-DichlorobenzeneND-0.501,1-DichlorobenzeneND-0.501,1-DichloroethaneND-0.501,2-Dichloroethane (1,2-DCA)ND11.00.5010-11066-1251,1-DichloroetheneND-0.501,2-DichloroetheneND-0.501,2-DichloroetheneND-0.501,2-DichloroetheneND-0.501,2-DichloroetheneND-0.501,2-DichloropropaneND-0.501,3-DichloropropaneND-0	Dibromochloromethane	ND	-	0.50	-	-	-	-
Dibromomethane ND - 0.50 -	1,2-Dibromo-3-chloropropane	ND	-	0.20	-	-	-	-
1,2-Dichlorobenzene ND - 0.50 - - - - 1,3-Dichlorobenzene ND - 0.50 - - - - - 1,4-Dichlorobenzene ND - 0.50 - - - - - 1,4-Dichlorobenzene ND - 0.50 - - - - - 1,4-Dichlorobenzene ND - 0.50 - - - - - Dichlorodifluoromethane ND - 0.50 - <td< td=""><td>1,2-Dibromoethane (EDB)</td><td>ND</td><td>11.4</td><td>0.50</td><td>10</td><td>-</td><td>114</td><td>44-155</td></td<>	1,2-Dibromoethane (EDB)	ND	11.4	0.50	10	-	114	44-155
ND - 0.50 - <td>Dibromomethane</td> <td>ND</td> <td>-</td> <td>0.50</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td>	Dibromomethane	ND	-	0.50	-	-	-	-
1,4-DichlorobenzeneND-0.50DichlorodifluoromethaneND-0.501,1-DichloroethaneND-0.501,2-Dichloroethane (1,2-DCA)ND11.00.5010-11066-1251,1-DichloroetheneND11.30.5010-11347-149cis-1,2-DichloroetheneND-0.50trans-1,2-DichloroetheneND-0.501,2-DichloroptopaneND-0.501,3-DichloroptopaneND-0.50	1,2-Dichlorobenzene	ND	-	0.50	-	-	-	-
Dichlorodifluoromethane ND - 0.50 - - - - 1,1-Dichloroethane ND - 0.50 -	1,3-Dichlorobenzene	ND	-	0.50	-	-	-	-
ND - 0.50 - <td>1,4-Dichlorobenzene</td> <td>ND</td> <td>-</td> <td>0.50</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td>	1,4-Dichlorobenzene	ND	-	0.50	-	-	-	-
1,2-Dichloroethane (1,2-DCA)ND11.00.5010-11066-1251,1-DichloroetheneND11.30.5010-11347-149cis-1,2-DichloroetheneND-0.50trans-1,2-DichloroetheneND-0.501,2-DichloroptopaneND-0.501,3-DichloropropaneND-0.50	Dichlorodifluoromethane	ND	-	0.50	-	-	-	-
1,1-DichloroetheneND11.30.5010-11347-149cis-1,2-DichloroetheneND-0.50trans-1,2-DichloroetheneND-0.501,2-DichloropropaneND-0.501,3-DichloropropaneND-0.50	1,1-Dichloroethane	ND	-	0.50	-	-	-	-
ND 0.50 - <td>1,2-Dichloroethane (1,2-DCA)</td> <td>ND</td> <td>11.0</td> <td>0.50</td> <td>10</td> <td>-</td> <td>110</td> <td>66-125</td>	1,2-Dichloroethane (1,2-DCA)	ND	11.0	0.50	10	-	110	66-125
trans-1,2-Dichloroethene ND - 0.50 -	1,1-Dichloroethene	ND	11.3	0.50	10	-	113	47-149
1,2-Dichloropropane ND - 0.50 - - - - 1,3-Dichloropropane ND - 0.50 - - - -	cis-1,2-Dichloroethene	ND	-	0.50	-	-	-	-
1,3-Dichloropropane ND - 0.50	trans-1,2-Dichloroethene	ND	-	0.50	-	-	-	-
1,3-Dichloropropane ND - 0.50	1,2-Dichloropropane	ND	-	0.50	-	-	-	-
2,2-Dichloropropane ND - 0.50	1,3-Dichloropropane	ND	-	0.50	-	-	-	-
	2,2-Dichloropropane	ND	-	0.50	-	-	-	-

_____QA/QC Officer

Client:	Basics Environmental	WorkOrder:
Date Prepared:	2/19/16	BatchID:
Date Analyzed:	2/19/16	Extraction Method:
Instrument:	GC28	Analytical Method:
Matrix:	Water	Unit:
Project:	01-2016-500-002; 139th Ave Property	Sample ID:

WorkOrder:	1602473
BatchID:	116946
Extraction Method:	SW5030B
Analytical Method:	SW8260B
Unit:	µg/L
Sample ID:	MB/LCS-116946
	1602624-006AMS/MSD

Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
1,1-Dichloropropene	ND	-	0.50	-	-	-	-
cis-1,3-Dichloropropene	ND	-	0.50	-	-	-	-
trans-1,3-Dichloropropene	ND	-	0.50	-	-	-	-
Diisopropyl ether (DIPE)	ND	12.0	0.50	10	-	120	57-136
Ethylbenzene	ND	-	0.50	-	-	-	-
Ethyl tert-butyl ether (ETBE)	ND	10.9	0.50	10	-	109	55-137
Freon 113	ND	-	0.50	-	-	-	-
Hexachlorobutadiene	ND	-	0.50	-	-	-	-
Hexachloroethane	ND	-	0.50	-	-	-	-
2-Hexanone	ND	-	0.50	-	-	-	-
Isopropylbenzene	ND	-	0.50	-	-	-	-
4-Isopropyl toluene	ND	-	0.50	-	-	-	-
Methyl-t-butyl ether (MTBE)	ND	10.8	0.50	10	-	108	53-139
Methylene chloride	ND	-	0.50	-	-	-	-
4-Methyl-2-pentanone (MIBK)	ND	-	0.50	-	-	-	-
Naphthalene	ND	-	0.50	-	-	-	-
n-Propyl benzene	ND	-	0.50	-	-	-	-
Styrene	ND	-	0.50	-	-	-	-
1,1,1,2-Tetrachloroethane	ND	-	0.50	-	-	-	-
1,1,2,2-Tetrachloroethane	ND	-	0.50	-	-	-	-
Tetrachloroethene	ND	-	0.50	-	-	-	-
Toluene	ND	11.1	0.50	10	-	111	52-137
1,2,3-Trichlorobenzene	ND	-	0.50	-	-	-	-
1,2,4-Trichlorobenzene	ND	-	0.50	-	-	-	-
1,1,1-Trichloroethane	ND	-	0.50	-	-	-	-
1,1,2-Trichloroethane	ND	-	0.50	-	-	-	-
Trichloroethene	ND	11.6	0.50	10	-	116	43-157
Trichlorofluoromethane	ND	-	0.50	-	-	-	-
1,2,3-Trichloropropane	ND	-	0.50	-	-	-	-
1,2,4-Trimethylbenzene	ND	-	0.50	-	-	-	-
1,3,5-Trimethylbenzene	ND	-	0.50	-	-	-	-
Vinyl Chloride	ND	-	0.50	-	-	-	-
Xylenes, Total	ND	-	0.50	-	-	-	-

QA/QC Officer Page 37 of 46

Client:	Basics Environmental	WorkOrder:	1602473
Date Prepared:	2/19/16	BatchID:	116946
Date Analyzed:	2/19/16	Extraction Method:	SW5030B
Instrument:	GC28	Analytical Method:	SW8260B
Matrix:	Water	Unit:	μg/L
Project:	01-2016-500-002; 139th Ave Property	Sample ID:	MB/LCS-116946 1602624-006AMS/MSD

Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits	
Surrogate Recovery								
Dibromofluoromethane	28.7	28.3		25	115	113	70-130	
Toluene-d8	29.2	28.9		25	117	116	70-130	
4-BFB	2.08	2.54		2.5	83	102	70-130	

Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
tert-Amyl methyl ether (TAME)	9.92	10.2	10	ND	99	102	69-139	2.46	20
Benzene	10.6	10.4	10	ND	106	104	69-141	1.73	20
t-Butyl alcohol (TBA)	48.4	42.9	40	ND	121	107	41-152	11.9	20
Chlorobenzene	9.56	9.43	10	ND	96	94	77-120	1.34	20
1,2-Dibromoethane (EDB)	10.4	10.4	10	ND	104	104	76-135	0	20
1,2-Dichloroethane (1,2-DCA)	10.5	10.3	10	ND	105	103	73-139	1.68	20
1,1-Dichloroethene	10.6	10.2	10	ND	106	101	59-140	4.42	20
Diisopropyl ether (DIPE)	11.2	10.9	10	ND	112	109	72-140	3.22	20
Ethyl tert-butyl ether (ETBE)	10.5	10.8	10	ND	105	109	71-140	3.71	20
Methyl-t-butyl ether (MTBE)	10.8	10.8	10	ND	108	108	73-139	0	20
Toluene	9.75	9.44	10	ND	98	94	71-128	3.30	20
Trichloroethene	10.5	10.5	10	ND	105	105	64-132	0	20
Surrogate Recovery									
Dibromofluoromethane	29.2	29.3	25		117	117	70-130	0	20
Toluene-d8	28.1	28.1	25		112	112	70-130	0	20
4-BFB	2.41	2.53	2.5		96	101	70-130	4.88	20

_____QA/QC Officer Page 38 of 46

McCampbell Analytical, Inc.

CLIENT:Basics EnvironmentalWork Order:1602473Project:01-2016-500-002; 139th Ave Property

ANALYTICAL QC SUMMARY REPORT

BatchID: 116619

SampleID MB-116619 Batch ID: 116619	TestCode: 8260gas_S TestNo: SW8260B		its: mg/kg D: GC16_1	60219E	Prep Date: 2/11/2016 Analysis Date: 2/12/2016
Analyte	Result	PQL SPKValue SPKRefV	al %REC	Limits	RPDRefVal %RPD RPDLimit Qu
TPH(g)	ND	0.25		-	
Surrogate Recovery					
Dibromofluoromethane	0.137	0.125	110	70 - 130	
Benzene-d6	0.112	0.1	112	60 - 140	

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

CLIENT: Basics Environmental

Work Order: 1602473

Project: 01-2016-500-002; 139th Ave Property

ANALYTICAL QC SUMMARY REPORT

BatchID: 116619

SampleID LCS-116619 Batch ID: 116619	TestCode: 8260GAS_s TestNo: SW8260B				mg/kg GC16_′	160213A	Prep Date: 2/11/2016 Analysis Date: 2/12/2016
Analyte	Result	PQL	SPKValue	SPKRefVal	%REC	Limits	RPDRefVal %RPD RPDLimit Qual
VOC (C6-C12)	2.85	0.25	3.2	0	89	74 - 142	
Surrogate Recovery							
Dibromofluoromethane	0.143		0.125		114	70 - 130	
Benzene-d6	0.124		0.1		124	60 - 140	

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

CLIENT:

Basics Environmental

Work Order: 1602473

Project: 01-2016-500-002; 139th Ave Property

ANALYTICAL QC SUMMARY REPORT


BatchID: 116946

SampleID MB-116946 Batch ID: 116946	TestCode: 8260GAS_W TestNo: SW8260B		6: μ <mark>g/L</mark> 9: GC28_1	60219D	Prep Date: 2/19/2016 Analysis Date: 2/19/2016
Analyte	Result	PQL SPKValue SPKRefVa	I %REC	Limits	RPDRefVal %RPD RPDLimit Qual
TPH(g)	ND	50		-	
Surrogate Recovery Dibromofluoromethane	27.7	25	111	70 - 130	

Qualifiers:

ND - Not Detected at the Reporting Limit

- J Analyte detected below quantitation limits
- B Analyte detected in the associated Method Blank
- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range

CLIENT: Basics Environmental

Work Order: 1602473

Project: 01-2016-500-002; 139th Ave Property

ANALYTICAL QC SUMMARY REPORT

BatchID: 116946

SampleID LCS-116946 Batch ID: 116946	TestCode: 8260GAS_W TestNo: SW8260B				µg/L GC28_	160219D	Prep Date: 2/19/2016 Analysis Date: 2/19/2016
Analyte	Result	PQL	SPKValue	SPKRefVal	%REC	Limits	RPDRefVal %RPD RPDLimit Qual
VOC (C6-C12)	528	50	644	0	82	75 - 105	
Surrogate Recovery Dibromofluoromethane	28.4		25		113	70 - 130	

Qualifiers:


ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

- B Analyte detected in the associated Method Blank
- S Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

McCampbell Analytical, Inc.

1534 Willow Pass Rd

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

Pittsburg, CA 94565-1701 (925) 252-9262				WorkOrd	er: 1602473	ClientC	ode: BEO		
	WaterTrax	WriteOn	EDF	Excel	EQuIS	🖌 Email	HardCopy	ThirdParty	J-flag
Report to:					Bill to:		Req	uested TATs:	1 day;
Donavan Tom	Email: b	asicsenvironm	ental@gmail.con	n	Accounts Paya	ble			5 days;
Basics Environmental	cc/3rd Party: Ii	itafreeman@grr	nail.com;		Basics Environ	mental			
655 12th Street, Suite 126	PO:				655 12th Stree	t, Suite 126	Dat	te Received:	02/11/2016
Oakland, CA 94607	ProjectNo: (01-2016-500-00	2; 139th Ave Pro	perty	Oakland, CA 94	4607	Dat	te Logged:	02/12/2016
(510) 834-9099 FAX: (510) 834-9098									
						Requested 1	Tests (See legend	below)	
Lah ID Client ID		Matrix	Collection Date	Hold 1	2 3	4 5	6 7 8	2 9 10	11 12

	Client ID	Watrix	Collection Date	ποια		2	3	4	5	0	1	0	9	10	11	12
1602473-001	SB-1-8.5	Soil	2/11/2016 10:25			А		А		А						
1602473-004	SB-2-2.5	Soil	2/11/2016 13:20			А		А		А						
1602473-005	SB-2-5	Soil	2/11/2016 13:35		А											
1602473-006	SB-2-10	Soil	2/11/2016 13:40		А											
1602473-007	SB-2-15	Soil	2/11/2016 13:45		А											
1602473-008	SB-1-W	Water	2/11/2016 13:50				А		А		В					

Test Legend:

1	8010BMS_S	2	
5	8260GAS_W	6	
9		10	

2	8260B_S
6	TPH_S
10	

3	8260B_W
7	TPH_W
11	

4	8260GAS_S
8	
12	

Project Manager: Blake Brown

The following SampIDs: 001A, 004A, 008A contain testgroup.

PCE by 8260 added to 005 2/19/16. PCE by 8260 added to 006 & 007 2/23/16. **Comments:**

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

Prepared by: Alexandra Iniguez

ThirdParty

WORK ORDER SUMMARY

Client Name:	BASICS EN	VIRONMENTAL			Q	C Level: Ll	EVEL 2			
Project:	01-2016-500	-002; 139th Ave Prope	erty		Client	Contact: D	onavan To	om		
Comments:	PCE by 8260 a	added to 005 2/19/16.		0	Contact	' s Email: ba	asicsenvir	onmental@gm	ail.com	
		WaterTrax	WriteOn	EDF	E	xcel	Fax	✓ Email	HardC	сору
Lab ID	Client ID	Matrix	Test Name			Containers /Composites		& Preservative	De- chlorinated	Co
1602473-001A	SB-1-8.5	Soil	SW8015B (TE (C18-C36)>	PHs) <tph-mot< td=""><td>tor Oil</td><td>1</td><td>Ac</td><td>etate Liner</td><td></td><td>2/</td></tph-mot<>	tor Oil	1	Ac	etate Liner		2/
			TPH(g) & 826 GCMS	0 (Basic List) by 1	P&T					
1602473-002A	SB-1-15	Soil				1	Ac	etate Liner		2/

Work Order: 1602473 Date Logged: 2/12/2016

□ J-flag

Lab ID	Client ID	Matrix	Test Name	Containers /Composites	Bottle & Preservative	De- chlorinated	Collection Date & Time	TAT	Sediment Content	Hold SubOut
1602473-001A	SB-1-8.5	Soil	SW8015B (TEPHs) <tph-motor oil<br="">(C18-C36)></tph-motor>	1	Acetate Liner		2/11/2016 10:25	5 days		
			TPH(g) & 8260 (Basic List) by P&T GCMS					5 days		
1602473-002A	SB-1-15	Soil		1	Acetate Liner		2/11/2016 10:35			✓
1602473-003A	SB-1-20	Soil		1	Acetate Liner		2/11/2016 10:45			✓
1602473-004A	SB-2-2.5	Soil	SW8015B (TEPHs) <tph-motor oil<br="">(C18-C36)></tph-motor>	1	Acetate Liner		2/11/2016 13:20	5 days		
			TPH(g) & 8260 (Basic List) by P&T GCMS					5 days		
1602473-005A	SB-2-5	Soil	SW8260B (HVOCs List) <tetrachloroethene></tetrachloroethene>	1	Acetate Liner		2/11/2016 13:35	5 days		
1602473-006A	SB-2-10	Soil		1	Acetate Liner		2/11/2016 13:40			✓
1602473-007A	SB-2-15	Soil		1	Acetate Liner		2/11/2016 13:45			✓
1602473-008A	SB-1-W	Water	TPH(g) & 8260 (Basic List) by P&T GCMS	4	VOA w/ HCl		2/11/2016 13:50	5 days	10%+	
1602473-008B	SB-1-W	Water	SW8015B (TEPHs) <tph-motor oil<br="">(C18-C36)></tph-motor>	2	aVOA		2/11/2016 13:50	5 days	10%+	

NOTES: - STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- MAI assumes that all material present in the provided sampling container is considered part of the sample - MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

AND N	ИсС	am	nhe		Δ	n	- Nr	tic		1	In	~						(CH	ΗA	IN	С	F	СІ	JS	TC	D	ΥI	RE	C	OF	RD	1		<u>.</u>
			•																					_					_				202200		/
1534 Willow Pass Rd. / Pittsburg, CA 94565-1701													TURN AROUND TIME: RUSH 🔄 1 DAY 🔂 2 DAY 🛄 3 DAY 🛄 5 DAY 🗹										1												
w	www.mccampbell.com / main@mccampbell.com												GeoTracker EDF PDF EDD Write On (DW) EQuIS 10 DAY										ב												
	releptic	ne. (0/	7 202-	720	271	un.	(720	i) 25	100		\cap	Δ	7	2		Eff	luent	Sam	nle I	2ean	iring	". I "	flag	7	UST	Clea	n Un	Fun	d Pr	oiect		Clai	m #		
								/	W	\sum	L		11	2)				.p.e.i	iequ			And the owner water w	A NAME OF A DESCRIPTION OF	-	The Designation of the local division of the				ojeei	· 🛁 ,			Contraction of the local division of the loc	
Report To: Dona	NanTom	12sta	Freem	on	Bil	l To	Ba	Sic	581	Via	DAR	781	ita	1										Anal	ysis	Req	uest			-			db	Ž	
Company: Bas	ICS EA	Vinn	MENTA	1 by	1	1.	101	10	7 1	1-1	2.										2												Sam		
(5)000	1534 Willow Pass Rd. / Pittsburg, CA 94565-1701 WWW.mccampbell.com / main@mccampbell.com Telephone: (877) 252-9262 / Fax: (925) 252-9269 WOQ2AV2 Report To:DonavanTom/Lita Fizeman Bill To: BasicsEnvironmental Company: Basics Environmental 655 12th St. Stz. 126, Oakland, LA 94607 Itafizeman@gm Company: Basics Environmental 655 12th St. Stz. 126, Oakland, LA 94607 Itafizeman@gm Project #: 01- 2016-500-002 Project Name: /394h Ave Project 4 Sampler Signature: Xampling MATRIX METH SAMPLE ID Location/ Sampler Signature: Sampler Signature: Sampler Signature: Sampler Signature: Sampler Signature: Sampler Signature: Sampler Signature:													Ima	1.20	BEZ		520			genei			1a						ls			9		
Project #: 01- 2	2016-5	00-00	07		Pre	oiect	t Nan	ne:/	391	hA	NEI	20	A Ch	An	41~	MP		4/5	8.1)		Con		des)	E		As)				meta			2/19/16		
Project Location:	295 130	7.41 AVE	E. Sanla	anti	0 Pu	rcha	se O	rder	#	1010	ver		fea	11		015)		(166	s (41	ides)	ors/		rbici	Ŧ	s)	IPN/	***	*		lved			110		
Sampler Signatur	e: Tra	ADD.	Feen	no	\wedge											21/8		ease	rbon	estic	rocl	cide	1 He	0Cs	VOC	VHs	020)	120)*		isso					
	0	SAMI	PLING				M	IATI	RIX				MI PRE	ETHO	OD VED	Jas (80)	5)	Total Petroleum Oil & Grease (1664/5520 E/R&F)	Total Petroleum Hydrocarbons (418.1)	EPA 505/ 608 / 8081 (Cl Pesticides)	EPA 608 / 8082 PCB's ; Aroclors / Congeners	EPA 507 / 8141 (NP Pesticides)	8151 (Acidic Cl Herbicides)	524.2 / 624 / 8260 (VOCs)+	525.2 / 625 / 8270 (SVOCs)	8270 SIM / 8310 (PAHs / PNAs)	Metals (200.8 / 6020)**:	LUFT 5 Metals (200.8 / 6020)***	Metals (200.8 / 6020)***	Lab to Filter sample for Dissolved metals analysis			8260		
	Location/			STS	er		ter									as (TPH as Diesel (8015)	0 mi	H mi	/ 808	2 PC	41 ()	51 (A	24/8	25/8	M/8	als (2	ls (2(/ 602	samp					
SAMPLE ID				Containers	Ground Water	Waste Water	Drinking Water	er								BTEX & TPH	Jiese	rolei	role	/ 608	/ 808	/ 81	/ 81	216	2/6	IS 0.	Meta	Meta	00.8	ilter	W	·	ha		
	Name	Date	Time	ont	pun	te W	lking	Sea Water			ge	1		03	er	X&	as I	I Pet	I Pet	505	608	507	515/	524	525.	827	CAM 17	T 5]	als (2	to Fi veis	H	pla	D		
				#0	Gro	Was	Drii	Sea	Soil	Air	Sludge	Other	HCL	HNO ₃	Other	BTF	TPB	Tota E/B.	Tots	EPA	EPA	EPA	EPA	EPA	EPA	EPA	CAL	LUF	Met	Lab	F	E	PC		
58-1-8.5		2/11/16	1025	1	-		\square		X	_		Η		-							-		-	\mathbf{X}					-		X		-		
56-1-15	<u>A</u>	2/11/16		i	À.				X	_				-										~						-	/ ``	X			
58-1-20			1045	1	-				X																							X			
6B-2-25		2/11/16		1		-			$\overline{\mathbf{x}}$															X					_		X	\sim			
58-7-5		2/1/1	1335	1					X																						A	X	X		
68-7-10		2/1/16		li					X																			_				X	$\mathbf{\hat{x}}$		
58-7-15			1345	h					攵																		-					X	X		
SB-1-IN			1350	1	X							-							_					X							X	1-	1		
DD F VY		quille	1990	Ø	\vdash				-			\vdash												\wedge							1				
												\vdash																							
				\vdash	-							-																							
**MAI clients MUST discl																															glove	ed, op	en air	, sam	ole
handling by MAI staff. N																				for yo								work s			,				
*** If metals are request Relinquished By:	ed for water s	Date:	nd the wate	-	The second s	t spec	the state of the s	n the	chain	ofcu	stody,	the	n MA			It to m		by E20	0.8.		- (na	net		16			MEN		al	1-				-
	man	2/11/14			/	//		_	-1	- /	7	>		G	GOOI	D CO	NDIT	ION_		-															
Relinquished By:	VIII W C	Date:	Time	the second second	Rece	eived	By:			_				D	DECH	ILOR	INA	TED I	IN LA																
11	17	-11-10	6/60	6		6			1		/	/	_					CON	TAI B	NERS															
Relinquished By:	10	Date:	Time	_	Rece	eived	By:			-	A	-	~	4								IFT ·	16	OT	IFD		1477	DDC	TIC.						
,														Р	PRES	ERV	ATIC		AS	0&0		H<2_		011	IER		IAZA	RDO	05:						

Sample Receipt Checklist

Client Name:	Basics Environmental			Date and Time Received:	2/11/2016 16:00						
Project Name:	01-2016-500-002; 139th Ave Property 1602473 Matrix: Soil/Water			Date Logged:	2/12/2016						
WorkOrder №: Carrier:	1602473 Matrix: Soil/Water Bernie Cummins (MAI Courier)			Received by: Logged by:	Alexandra Iniguez Alexandra Iniguez						
Camon											
	Chain of C	/ (COC) lı	Information								
Chain of custody	present?	Yes	✓	No 🗌							
Chain of custody	signed when relinquished and received?	Yes	✓	No 🗌							
Chain of custody	agrees with sample labels?	Yes	✓	No 🗌							
Sample IDs note	d by Client on COC?	Yes	✓	No 🗌							
Date and Time of	collection noted by Client on COC?	Yes	✓	No 🗌							
Sampler's name	noted on COC?	Yes	✓	No 🗌							
	Sample	e Rece	eipt Inform	nation							
Custody seals int	act on shipping container/cooler?	Yes		No 🗌	NA 🔽						
Shipping containe	er/cooler in good condition?	Yes	✓	No 🗌							
Samples in prope	er containers/bottles?	Yes	✓	No 🗌							
Sample containe	rs intact?	Yes	✓	No 🗌							
Sufficient sample	volume for indicated test?	Yes	✓	No 🗌							
	Sample Preservatio	on and	Hold Tin	ne (HT) Information							
All samples recei	ved within holding time?	Yes	 Image: A start of the start of								
Sample/Temp Bla	Ŭ			5.4°C							
	s have zero headspace / no bubbles?	Yes	✓	No 🗌							
	ecked for correct preservation?	Yes	✓	No							
pH acceptable up	oon receipt (Metal: <2; 522: <4; 218.7: >8)?	Yes		No	NA 🗹						
Samples Receive	ed on Ice?	Yes	✓	No 🗌							
	(Ісе Туре	: WE	TICE)	1							
UCMR3 Samples	<u>::</u>		_	_	_						
Total Chlorine t	sested and acceptable upon receipt for EPA 522?	Yes		No	NA 🗹						
Free Chlorine to 300.1, 537, 539	ested and acceptable upon receipt for EPA 218.7, ??	Yes		Νο	NA 🔽						

* NOTE: If the "No" box is checked, see comments below.

Comments:
