PSAI REALTY PARTNERS

COMMERCIAL REAL ESTATE

July 24, 2017

By Alameda County Environmental Health 10:48 am, Aug 01, 201

Mr. Keith Nowell, P.G., C.H.G. Alameda County Health Care Services Agency Department of Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577

Subject: Soil Gas Sampling Report, 1708 Wood Street, Oakland, California (Case No.: RO0003206).

Dear Mr. Nowell:

Please find attached the Soil Gas Sampling Report prepared by West Environmental Services & Technology, Inc. (WEST) for the 1708 Wood Street property in Oakland, California (the "Site"). I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge.

Please call me at (415)362-1700 if you have any questions or wish to discuss this further.

Sincerely, Erik A. Foraker

Managing Director

711 Grand Avenue, Suite 220 San Rafael, California 94901 415.460.6770 • Fax 415.460.6771 main@westenvironmental.com

July 20, 2017

Mr. Martin Ward PSAI Realty Partners 155 Montgomery Street, Suite 1600 San Francisco, CA 94104

Subject: Soil Gas Sampling Report, 1708 Wood Street, Oakland, California, Case No.: RO0003206.

Dear Mr. Ward:

This Soil Gas Sampling Report ("Report") has been prepared by West Environmental Services & Technology, Inc., (WEST), on behalf of PSAI Realty Partners (PSAI), for the 1708 Wood Street property located in Oakland, California ("Site;" Figure 1). This *Report* presents the findings from the soil gas sampling on the eastern portion of the Site. The soil gas sampling was conducted pursuant to the scope of work presented in the February 2017 *Remedial Action Plan* (*RAP*) and approved via email on June 2, 2017 by the Alameda County Department of Environmental Health (ACDEH). The ACDEH subsequently approved the *RAP* on July 18, 2017.

The Site is to be redeveloped for multi-family residential use, with multi-story townhomes, landscape and hardscape. The February 2017 *RAP* proposed vapor mitigation measures to address methane in soil gas detected at one location within the eastern portion of the Site during sampling conducted in December 2016. The June 2017 soil gas sampling was performed to further characterize soil gas throughout the eastern portion of the Site and evaluate the need for vapor mitigation measures to control potential methane migration to indoor air within the remaining eight buildings located there (Figure 2).

This *Report* includes: a summary of the June 2017 soil gas sample collection methodology; laboratory analytical results; and recommendations for vapor mitigation measures. Based on the findings from the soil gas sampling, vapor mitigation measures, as presented in the *RAP*, should be implemented for two additional buildings, identified on Figure 3, to be constructed during Site development.

BACKGROUND

The Site has been used for commercial and industrial purposes. Details of the Site background are presented in WEST's February 2017 *RAP*. Currently, the Site is occupied by Three Rivers Trucking and is utilized as a trucking/shipping terminal and for truck parking.

SITE DESCRIPTION

The approximately 4.3-acre Site is located at 1708 Wood Street in Oakland, Alameda County, California, within a mixed residential, commercial and industrial area (Figure 2). The Site geology is underlain by fill material and unconsolidated sediments comprised of Bay Mud, silts,

Mr. Martin Ward July 20, 2017 Page 2

clays and sands. Bay Mud was encountered in the borings underlying the fill material within the eastern half of the Site. The Bay Mud is an approximately 5- to 10-foot thick peat layer with high organics content. The depth to groundwater measured within former monitoring wells constructed within the shallow zone has ranged between approximately one-foot to five-feet below ground surface. Details of the Site description are presented in WEST's February 2017 *RAP*.

SUMMARY OF INVESTIGATIONS

Site investigations have been conducted since the 1980s in four main areas: Area 1-Northwest UST Area; Area 2-Central and Eastern UST and Oil-Water Separator Area; Loading Dock Area; and eastern side of the Site. Details of the previous Site investigations were presented in WEST's February 2017 *RAP*. A summary of the June 2017 soil gas sampling is presented below.

Soil Gas Sampling

Pursuant to the *RAP* and the ACDEH approval, 10 vapor samples (SG-1 and SG-5 to SG-13) were collected within the eastern side of the Site to further characterize the presence of methane in the subsurface (Figure 2). The soil gas samples were located within the footprints of the buildings proposed to be constructed during Site development. Details of the vapor sample collection methodology and laboratory analytical results are presented below.

Vapor Probe Installation

Prior to sample collection, semi-permanent sampling probes were installed in accordance with the 2011 California Environmental Protection Agency's (CalEPA) Department of Toxic Substances Control (DTSC) *Final Guidance for the Evaluation and Mitigation of Subsurface Vapor Intrusion to Indoor Air (Vapor Intrusion Guidance)*. The sampling probes were installed by advancing a small diameter boring using a hand-held electric roto-hammer outfitted with an approximately one-inch in diameter drill bit through the asphalt or concrete ground surface to approximately three-inches below the base of the ground cover.

Following completion of the boring, a sample point consisting of 0.125-inch to 0.25-inch stainless steel metal tubing fitted with a permeable probe tip was installed in the boring. Filter sand comprised of #3 Monterey sand was then placed around the probe tip. The boring annulus above the sand filter was then filled with an approximately two-inch thick layer of dry bentonite to above the base of the ground cover. An approximately two-inch thick layer of bentonite hydrated with de-ionized water was then placed above the dry granular bentonite. The top of the vapor probe was then outfitted with a two-inch diameter flush-mounted stainless steel threaded cap. The sample probes were then allowed to equilibrate for at least two hours before sample collection.

Mr. Martin Ward July 20, 2017 Page 3

Sample Collection Methodology

Prior to purging or sampling soil gas, a test was conducted to check for leaks in the aboveground fittings, i.e., "shut-in" test. The shut-in test consisted of assembling the above ground apparatus (e.g., valves, lines and fittings downstream from the top of the probe), and evacuating the lines to a measured vacuum of approximately 100-inches of water column, then shutting the vacuum with closed valves on opposite ends of the sampling equipment. The vacuum gauge connected to the line via "T"-fitting was observed for at least one minute for observable loss of vacuum.

Following the shut-in testing, a shroud was placed over the probe and sampling equipment and a helium tracer gas introduced into the shroud. The helium was released into the shroud through a leak compound addition port and a handheld helium detector was connected to the leak compound sample port. Helium was added until a steady concentration within the shroud of at least 20-percent was achieved using the handheld helium detector. The helium concentrations were recorded on field data forms.

Once the steady-state helium concentration within the shroud was achieved, purging of the vapor probe was conducted. Pursuant to the CalEPA's July 2015 *Advisory Active Soil Gas Investigation (Advisory)*, approximately three purge volumes were removed. The purge volume (also referred to as the "dead space volume") was estimated by summation of the internal volume of vapor probe, void space of the sand pack around the probe tip and void space of the dry bentonite. Purge flow rates between 100 to 200 milliliters per minute (ml/min) and vacuums less than 100-inches of water were maintained during purging. The purge effluent was also field screened for total organic compounds using a hand-held photo-ionization detector (PID) equipped with a 10.6 electron Volt (eV) lamp and calibrated to 100 parts per million by volume (ppm_v) as isobutylene gas and for the helium tracer gas. The PID and helium detector readings were recorded on field data sheets.

The vapor samples were collected from the sample probes in accordance with CalEPA's July 2015 Advisory and the whole gas sampling technique as outlined in ASTM D 5466 Standard Test Method for Determination of Volatile Organic Chemicals in Atmospheres – Canister Sampling Methodology (ASTM D 5466). Following purging (three well volumes) through a laboratory-prepared sampling manifold with 200-ml per minute flow control valve, vapor flow was directed to a laboratory-prepared one-liter Summa[®] canister. The Summa[®] canister contained a vacuum of approximately 30-inches of mercury and was connected to the Teflon tubing and manifold using airtight stainless-steel fittings. Following sample collection, the Summa[®] canister atmosphere was measured with a vacuum gauge and recorded on field data forms.

The Summa[®] canisters were labeled and transported a California Department of Public Health (CDPH) Environmental Laboratory Accreditation Program (ELAP) certified laboratory

Mr. Martin Ward July 20, 2017 Page 4

following ASTM D 4840 chain-of-custody procedures for chemical analysis. The soil gas samples were analyzed for: methane using ASTM Method 1946 and United States Environmental Protection Agency (USEPA) Method TO-18; oxygen, nitrogen, carbon dioxide and carbon monoxide by ASTM Method 1946; and helium using ASTM Method 1946.

Laboratory Analytical Results

Laboratory analysis of the soil gas samples (SG-1 and SG-5 to SG-13) revealed methane ranging between 11.7 ppm_v (SG-11) to 381,000 ppm_v (SG-6) (Table 1 and Figure 2). The oxygen concentrations measured in the soil gas samples ranged between 9.13 percent (SG-8) to 20.1 percent (SG-11). Nitrogen was detected in the soil gas samples between 32.1 percent (SG-6) to 84.3 percent (SG-5). Carbon dioxide concentrations in the soil gas samples ranged between less than the laboratory-reporting limit of 0.100 percent (SG-12) to 23.2 percent (SG-8). Carbon monoxide was not detected in the soil gas samples above the laboratory-reporting limit of 0.010 percent (Table 3-1). Helium was reported above the laboratory-reporting limit of 0.100 percent in the soil gas samples SG-10 (0.192 percent), SG-11 (0.403 percent) and SG-13 (0.712 percent). A summary of the soil gas sampling data is presented in Table 1. Methane concentrations are depicted on Figure 2. Field data sheets and laboratory analytical data are attached.

Summary

In June 2017, 10 soil gas samples (SG-1 and SG-5 to SG-13) were collected from vapor probes installed with the eastern side of the Site to characterize the extent of methane above the DTSC screening level of 5,000 ppm_v. In December 2016, methane was detected in the soil gas sample collected at location SG-1 at 134,000 ppm_v. Laboratory analysis of the soil gas samples collected in June 2017 revealed methane at approximately equivalent to or above the DTSC screening level of 5,000 ppm_v in the samples collected from SG-6 (381,000 ppm_v) and SG-13 (4,970 ppm_v). Lower concentrations of methane were detected in the remaining soil gas samples ranging between 11.7 ppm_v (SG-11) and 3,570 ppm_v (SG-8). In addition, the soil gas sample collected from location SG-1 revealed a lower concentration of methane, at 43.6 ppm_v, than what was detected in December 2016 (134,000 ppm_v).

RECOMMENDATIONS

In February 2017, the *RAP* proposed implementation of vapor mitigation measures beneath the proposed approximately 3,000-square-foot building (sample location SG-1) within the central portion of the eastern side of the Site (Figure 3). The June 2017 soil gas sampling detected methane equivalently at and above DTSC's 5,000 ppm_v screening level within the central and northern portion of the eastern side of the Site, near sample locations SG-6 and SG-13 (Figure 3).

Based on the Site soil gas data, vapor mitigation measures to control methane migration to indoor air should be installed beneath the following proposed buildings within the northern and central portions of the eastern side of the Site (Figure 3):

Proposed building near sample location SG-1 (approximately 3,000-square feet);

- Proposed building near sample locations SG-5 and SG-6 (approximately 8,200-square feet); and
- Proposed building near sample location SG-13 (approximately 3,000-square feet).

The vapor mitigation measures should be implemented as detailed in section 5.3 (Task 3: Methane Mitigation System) of the approved February 2017 *RAP*.

Please call me at 415/460-6770, extension 206, if you have any questions or wish to discuss this further.

ONAL GL Sincerely, MO E. 4 ã 7084 Peter E. Morris, P.G. Exp. 4/30/ Senior Geologist C

Attachments

cc: Keith Nowell, P.G., C.H.G., Alameda County Department of Environmental Health

TABLE 1 SUMMARY OF SOIL GAS ANALYTICAL RESULTS 1708 Wood Street Oakland, California

Sample ID	Depth (feet)	Date	Met	hane	Oxygen	Nitrogen	Carbon Dioxide	Carbon Monoxide	Helium
			(ppmv)	(%-volume)	(%-volume)	(%-volume)	(%-volume)	(%-volume)	(%-volume)
SG 1	1	12/14/16	134,000						0.318
50-1	1	6/20/17	43.6	<1.00	17.4	75.8	6.76	< 0.010	< 0.100
SG-2	1	12/14/16	30.1						1.81
SG-3	1	12/14/16	32.6						0.932
SG-4	1	12/14/16	212						0.688
SG-5	1	6/20/17	1,540	<1.00	15.2	84.3	0.506	< 0.010	< 0.100
SG-6	1	6/20/17	381,000	44.5	11.7	32.1	11.7	< 0.010	< 0.100
SG-7	1	6/20/17	158	<1.00	17.6	77.1	5.26	< 0.010	< 0.100
SG-8	1	6/20/17	3,570	<1.00	9.13	67.7	23.2	< 0.010	< 0.100
SG-9	1	6/20/17	14.5	<1.00	10.0	79.8	10.2	< 0.010	< 0.100
SG-10	1	6/21/17	231	<1.00	11.9	82.7	5.43	< 0.010	0.192
SG-11	1	6/21/17	11.7	<1.00	20.1	78.2	1.71	< 0.010	0.403
SG-12	1	6/21/17	13.6	<1.00	19.7	80.3	< 0.100	< 0.010	< 0.100
SG-13	1	6/21/17	4,970	<1.00	18.6	80.7	0.462	< 0.010	0.712
Residential	ESLs		5,000 ^a						

Notes:

a: CalEPA Recommended Action Level for Methane, 2005

 $\mu g/m^3$: micrograms per meter cubed

--: not available/not analyzed

EXPLANATION

-	-	Cross S	Section Profile
Ľ	1	Area of	Interest
		Approxi Separa	mate Location of Former Oil-Water tor
		Former	Maintenance Shed/Chemical Storage
		Approxi	mate Location of Abandoned UST
▼	SB-1	to SB-8	Boring Location (Groundwater Technology, 1987)
▲	B-1 t	o B-8	Boring Location (BCON, 1997)
\diamond	BM-1	I to BM-9	Boring Location (B&M, 2007)
	BM-1	10 to BM-19	Boring Location (B&M, 2008)
0	SB-1	to SB-27	Boring Location (ACC, 2011)
${\circ}$	SG-1	to SG-4	Soil Gas Sample Locations (WEST, 2016)
•	MW-	1 to MW-2	Monitoring Well Location (R.S. Egan, 1987; Destroyed 2008)
•	MW-3	3 to MW-5	Monitoring Well Location (R.S. Egan, 1987; Destroyed 2008)
•	MW-6	6 to MW-8	Shallow Monitoring Well Location (B&M, 2009; Destroyed 2015)
			Methane Isocontour (5,000 ppmv)
	SG	-1 🛆	Soil Gas Sample Location
		004	

SG-1Sample ID12/166/17Date Sampled134,00043.6Methane in Soil Gas (ppmv)

Notes: All locations approximate Taken from ACC Environmental. Consultants sample location figure (2/6/2011). Only samples along the cross-section displayed here.

SITE PLAN

1708 Wood Street, Oakland, California

July 2017

SHEET 1 of 2

SOIL VAPOR SAMPLING LOG, SAMPLE ID: <u>\$6-1</u>

PROJECT NAME:	PSAI Oakland					
PROJECT LOCAT	TION: 1708 Wood St. Oakland					
WEATHER:	clear skills, mid to high 60's,	va breed				
DATE:	June 20,2017					
SAMPLED BY:	RUM		··.			
WELL TYPE, e.g.	PERMANENT: TEMPORARY:	10 1				
	SAMPLE ID:	SG-1				
	VAPOR PROBE SAMPLE DEPTH (FT):	1	<u> </u>			
SAMPLE DATA	SUMMA CANISTER ID:	5-350	0			
	FLOW CONTROLLER SERIAL NO .:					
	daan aha ahaa ahaa ahaa ahaa ahaa ahaa a	1				
· · · · · · · · · · · · · · · · · · ·	BORING/WELL DIAMETER (INCH):	$ \eta ^{1} \geq 1$				
	DRY BENTONITE INTERVAL (FT)	0.25 to 1	7.42			
	SAND PACK INTERVAL (FT):	0,4270	0.83			
	TUBING TYPE:	stainless	steel/tetlo	и		
	TUBING LENGTH (FT):	1+2 (3	36")			
PURGE VOLUME	TUBING ID (INCH):	0189				
CALCOLATION	PURGE VOLUME (CC):	55				
	PURGE RATE (CC/MIN):	100				
	PURGE TIME 1 WELL VOLUME (MIN):	0.55				
	PURGE WELL VOLUMES (CIRCLE)	1	3	7	10	
	PURGE TIME (MIN):	0.55	1.6		anna.	
	VACUUM HOLD TEST START TIME (24 HR):	1015				
SHUT IN/	INITIAL CANISTER VACUUM (IN. Hg)	8				
10-MINUTE	VACUUM HOLD TEST END TIME (24 HR):	1025				
VACUUM TEST	VACUUM HOLD TEST DURATION (MIN):	10				
	FINAL CANISTER VACUUM (IN. Hg):	Ð				
	MEASUREMENTS WITHIN SHROUD	TIME	HELIUM			
		(24 HR)	(%)			
	PRIOR TO PURGE	1025	29,2			
	DURING PURGE	~				
	POST PURGE	1029	22.2			
	MEASUREMENTS FROM SAMPLING TRAIN	TIME	HELIUM	PID		
LEAK TEST		(24 HR)	(%)	(PPMV)		
	PURGE START	1026	0	-		
	1 WELL VOLUME	1027	0	0,1	>"HzD	
	3 WELL VOLUMES	1028	Õ	0.1		
	7 WELL VOLUMES					
	10 WELL VOLUMES					

SHEET 2 OF 2

PROJECT NAME	PSAI. Oakland				
PROJECT LOCA	TION: 1708 Wood St., Oakland				
DATE:	June 20 2017	- 			
	INITIAL CANISTER VACUUM (IN. Hg)	29			
	TIME CANISTER OPENED (24 HR) 5-356	1030			
		TIME	HELIUM	VACUUM	
		(MINS)	(%)	(IN. Hg)	
		2	20.3	25	
		4	21.2	21	
SAMPLE		6	20.5	18	
COLLECTION		8	21.0	14	
AND TRACER	APPLY TRACER GAS WITHIN THE SHROUD	10	20.9	10	
GAS		15	20.0	<u>د</u>	
MONITORING		20			
		30			
·· ·		50			
		60	~		
	TIME CANISTER CLOSED (24 HR)	INUS			
	FINAL CANISTER PRESSURE (IN. Ha):	2			
	TOTAL SAMPLE TIME (MINS):	15			
	elannanan				
INTRINSIC PERMEABILITY TESTING	Gauge Flow N Gauge U Depth (ft) Diameter of Pro	Aeter Pump	Air Flow		
	TEST THRU WELL TUBING/NO MANIFOLD	TEST 1	TEST 2	TEST 3	TEST 4
	VACUUM (IN. WATER)				
	FLOW METER READING	-			
	FLOW RATE (CC/MIN)	-		-	
	LENGTH OF TEST (SEC)				

PROJECT NAME:	PSA.T. Dakland	٨					
PROJECT LOCAT	10N: 1708 Wood St Daklan	ð		·····			
WEATHER:	WEATHER CLEAR Shipe mid 70'G whet wind to St						
DATE:	Tilve 20 2017						
SAMPLED BY:	RUM						
WELL TYPE, e.g.	PERMANENT: TEMPORARY: PRIMARIA	Pist					
		0001					
	SAMPLE ID:	56-	5				
	VAPOR PROBE SAMPLE DEPTH (FT):	1					
SAMPLE DATA	SUMMA CANISTER ID:	5-2	68				
	FLOW CONTROLLER SERIAL NO .:						
	BORING/WELL DIAMETER (INCH):	1.					
	DRY BENTONITE INTERVAL (FT)	0.33 -0	0.5				
	SAND PACK INTERVAL (FT):	0.5 40	0.92				
	TUBING TYPE:	59/fefle	าท				
	TUBING LENGTH (FT):	1+2(36	")				
CALCULATION	TUBING ID (INCH):	0.180					
	PURGE VOLUME (CC):	55					
	PURGE RATE (CC/MIN):	100					
	PURGE TIME 1 WELL VOLUME (MIN):	0,55		· · · · · · · · · · · · · · · · · · ·			
	PURGE WELL VOLUMES (CIRCLE)	1	3	7	10		
	PURGE TIME (MIN):	0.55	1,64	~~~~			
	VACUUM HOLD TEST START TIME (24 HR):	1334					
SHUT IN/	INITIAL CANISTER VACUUM (IN. Hg)	Ġ					
10-MINUTE	VACUUM HOLD TEST END TIME (24 HR):	1344					
VACUUM TEST	VACUUM HOLD TEST DURATION (MIN):	10					
	FINAL CANISTER VACUUM (IN. Hg):	5					
	MEASUREMENTS WITHIN SHROUD	TIME	HELIUM				
		(24 HR)	(%)				
	PRIOR TO PURGE	1346	21.2				
	DURING PURGE						
	POST PURGE	1351	20,8				
SAMPLE TRAIN	MEASUREMENTS FROM SAMPLING TRAIN	TIME	HELIUM	PID	1		
		(24 HR)	(%)	(PPMV)			
	PURGE START	1347	0	0.0			
	1 WELL VOLUME	1348	0	0,4	25"420		
	3 WELL VOLUMES	1349	Ō	0.4			
	7 WELL VOLUMES						
	10 WELL VOLUMES						

SHEET ____OF 2

PROJECT NAME	: PSAI Dafland				· · · · · · · · · · · · · · · · · · ·
PROJECT LOCA	TION: 1708 Wood St, Oakland, CA				
DATE:	June 20,2017				
· · ·					
	INITIAL CANISTER VACUUM (IN. Hg)	30			
	TIME CANISTER OPENED (24 HR) 5 748	1353			
	· · · ·	TIME	HELIUM	VACUUM	
		(MINS)	(%)	(IN. Hg)	
		2	20.8	22	
		4	21.9	15	
		6	20.6	80	
SAMPLE		8	21.3	2.5	
COLLECTION	APPLY TRACER GAS WITHIN THE SHROUD	10			
GAS		15		-	
MONITORING		20			
		30			
-		40	_	~	
		50		-	
		60	-	-	
	TIME CANISTER CLOSED (24 HR)	1401		1	
	FINAL CANISTER PRESSURE (IN. Hg):	2.5			
	TOTAL SAMPLE TIME (MINS):	8			
INTRINSIC PERMEABILITY TESTING	Gauge Gauge Depth (ft) Diameter of Pro	Neter Pump	Air Flow		
	TEST THRU WELL TUBING/NO MANIFOLD	TEST 1	TEST 2	TEST 3	TEST 4
	VACUUM (IN. WATER)	15	30	45	
	FLOW METER READING	20	25	30	
	FLOW RATE (CC/MIN)	235	365	537	
	LENGTH OF TEST (SEC)	40	60	60	

SHEET l of Z

PROJECT NAME	PSAT Oakland					
PROJECT I OCAT	TION 1708 Wood St Oakland	-1		· · · · · · · · · · · · · · · · · · ·	<u></u>	
WEATHER: SLEAK SKIPS, and FIGG MOST DECEMPT						
DATE	Line an 2017 Mid 107 WEST Will	<u> </u>				
SAMPLED BY	ALMA			· · · · · · · · · · · · · · · · · · ·		
WELL TYPE eg	PERMANENT TEMPORARY PRACEAD IN A.	······				
,						
	SAMPLE ID:	56-10				
	VAPOR PROBE SAMPLE DEPTH (FT):	1				
SAMPLE DATA	SUMMA CANISTER ID:	5-35	5			
	FLOW CONTROLLER SERIAL NO.:					
	BORING/WELL DIAMETER (INCH):	1				
	DRY BENTONITE INTERVAL (FT)	0.25 to	0.42			
	SAND PACK INTERVAL (FT):	A 42 to	0.83			
	TUBING TYPE:	55/tot	R1.			
	TUBING LENGTH (FT):	742/31				
PURGE VOLUME	TUBING ID (INCH):	0.198				
CALCULATION	PURGE VOLUME (CC):	99				
	PURGE RATE (CC/MIN):	100				
	PURGE TIME 1 WELL VOLUME (MIN):	0.55				
	PURGE WELL VOLUMES (CIRCLE)	1	3	7	10	
	PURGE TIME (MIN):	0.55	1.6	~		
	1		1 • F			
	VACUUM HOLD TEST START TIME (24 HR):	1238				
SHUT IN/	INITIAL CANISTER VACUUM (IN. Hg)	10				
10-MINUTE	VACUUM HOLD TEST END TIME (24 HR):	12.48				
VACUUM TEST	VACUUM HOLD TEST DURATION (MIN):	10				
	FINAL CANISTER VACUUM (IN. Hg):	10				
		-I				
		TIME	HELIUM			
	MEASUREMIS WITHIN SHROUD	(24 HR)	(%)			
	PRIOR TO PURGE	1253	23.3			
	DURING PURGE					
	POST PURGE	1300	20.9			
	MEASUREMENTS FROM SAMPLING TRAIN	TIME	HELIUM	PID		
I FAK TEST	MEASUREINIS FROM SAMPLING TRAIN	(24 HR)	(%)	(PPMV)		
	PURGE START	1255	0	0.6		
	1 WELL VOLUME	1256	0	-		
	3 WELL VOLUMES	1297	0	1.3		
	7 WELL VOLUMES					
	10 WELL VOLUMES					

SHEET 2 OF 2

PROJECT NAME	PSAT Oakland		
PROJECT LOCA	TION: 1708 Wood St Ock (and	/ A -	
DATE:	June 20,2017		
	INITIAL CANISTER VACUUM (IN. Hg)	29	
	TIME CANISTER OPENED (24 HR) S-355	1301	
		TIME HELIUM VACUUM	
		(MINS) (%) (IN. Hg)	
		2 21.0 21	
		4 20.4 15	
		6 21.1 8	
		8 20.9 2	
AND TRACER	APPLY TRACER GAS WITHIN THE SHROUD	10	
GAS		15	
MONITORING		20	
		30	
· .		40	
		1309	
	FINAL CANISTER PRESSURE (IN. Hg):	2	
	TOTAL SAMPLE TIME (MINS).	0	
INTRINSIC PERMEABILITY TESTING	Gauge Flow M Gauge I Depth (ft) Diameter of Pro	Aeter	
		· ·	
	TEST THRU WELL TUBING/NO MANIFOLD	IEST 1 IEST 2 TEST 3 TEST	4
	VACUUM (IN. WATER)		
	FLOW METER READING		
	FLOW RATE (CC/MIN)		
L	LENGTH OF TEST (SEC)	-	

PROJECT NAME	PSAT Oakland				*****	
PROJECT LOCA	TION: 1708 Wood St. Oakland (Δ				
WEATHER: New 44:15, mid 70'SF west prese to Sud						
DATE:	JUNE 20 2017	DIC	10 July			
SAMPLED BY:	RLM					
WELL TYPE, e.g.	PERMANENT: TEMPORARY: Perman	ent				
<u> </u>						
	SAMPLE ID:	Slor	7			
	VAPOR PROBE SAMPLE DEPTH (FT):)				
SAMPLE DATA	SUMMA CANISTER ID:	5-61)			
	FLOW CONTROLLER SERIAL NO .:		-			
· · · · · · · · · · · · · · · · · · ·						
	BORING/WELL DIAMETER (INCH):	ι.				
	DRY BENTONITE INTERVAL (FT)	0.25 10 1).42			
	SAND PACK INTERVAL (FT):	0,42 +0	0,83			
	TUBING TYPE:	staintes	steel/fer	lon		
	TUBING LENGTH (FT):	1+2 (36)	$\tilde{\mathcal{O}}$			
CALCULATION	TUBING ID (INCH):	0,128				
OALOOLATION	PURGE VOLUME (CC):	65				
	PURGE RATE (CC/MIN):	100				
	PURGE TIME 1 WELL VOLUME (MIN):	0.99				
	PURGE WELL VOLUMES (CIRCLE)	1	3	7	10	
	PURGE TIME (MIN):	0,59	1.6			
				1	·	
	VACUUM HOLD TEST START TIME (24 HR):	1200				
SHUT IN/	INITIAL CANISTER VACUUM (IN. Hg)	13				
10-MINUTE	VACUUM HOLD TEST END TIME (24 HR):	1210				
VACUUM TEST	VACUUM HOLD TEST DURATION (MIN):	10				
	FINAL CANISTER VACUUM (IN. Hg):	13				
	· · · · · · · · · · · · · · · · · · ·					
	MEASUREMENTS WITHIN SHROUD	TIME	HELIUM	З		
		(24 HR)	(%)			
	PRIOR TO PURGE	1211	24.4			
	DURING PURGE					
	POST PURGE	1216				
SAMPLE TRAIN	MEASUREMENTS FROM SAMPLING TRAIN	TIME	HELIUM	PID		
LEAK TEST		(24 HR)	(%)	(PPMV)		
	PURGE START	1212	Q	0.5		
		12/3	U			
	3 WELL VOLUMES	1214	0	0.3		
	7 WELL VOLUMES			-		
	10 WELL VOLUMES					

SHEET ZOF Z

PROJECT NAME	: PSAI. Ootland				
PROJECT LOCA	TION: 1708 Wood St Oakland				
DATE:	June 20, 2017				
	INITIAL CANISTER VACUUM (IN. Hg)	30	·		
	TIME CANISTER OPENED (24 HR) $S-60$	1218		4	
		TIME	HELIUM	VACUUM	
		(MINS)	(%)	(IN. Hg)	
		2	22.0	25	
		4	21.3	22	
		6	20.8	19	
		8	20.0	16	
AND TRACER	APPLY TRACER GAS WITHIN THE SHROUD	10	21.1	12	
GAS		15	20.6	4	
MONITORING		20			
		30		~	
		40		54	
		50			
	· · · · · · · · · · · · · · · · · · ·	60	~~~~		
	TIME CANISTER CLOSED (24 HR)	1233			
	FINAL CANISTER PRESSURE (IN. Hg):	4			
	TOTAL SAMPLE TIME (MINS):	15			
INTRINSIC PERMEABILITY TESTING	Gauge Flow I Gauge U Depth (ft) Diameter of Pro-	Meter	Air Flow		
	TEST THRU WELL TUBING/NO MANIFOLD	TEST 1	TEST 2	TEST 3	TEST 4
	VACUUM (IN. WATER)	30	45_	15	
	FLOW METER READING	20	25	15	
	FLOW RATE (CC/MIN)	235	365	537	
	LENGTH OF TEST (SEC)	45	45	45	

SHEET OF Z

PROJECT NAME:	PSAT. Oakland					
PROJECT LOCAT	FION: 1708 Wood St. Oakland					
WEATHER: Clever ghies hat 100 709, OCC. W. breeze						
DATE:	June 20, 2017	, , , , , , , , , , , , , , , , , , ,				
SAMPLED BY:	RLM		~,			
WELL TYPE, e.g.,	PERMANENT; TEMPORARY: Permane	nt		······································		
<u>U</u>					······	
	SAMPLE ID:	56-8				
	VAPOR PROBE SAMPLE DEPTH (FT):	i				
SAIVIPLE DATA	SUMMA CANISTER ID:	5-11	2			
	FLOW CONTROLLER SERIAL NO .:					
	BORING/WELL DIAMETER (INCH):	1				
	DRY BENTONITE INTERVAL (FT)	0.25 to 0	,42			
	SAND PACK INTERVAL (FT):	0.42 to	0.83			
	TUBING TYPE:	Stainles	ss steel/	<i>letlon</i>		
	TUBING LENGTH (FT):	147(3	(')			
	TUBING ID (INCH):	0.129	•			
CALCULATION	PURGE VOLUME (CC):	55				
	PURGE RATE (CC/MIN):	100				
	PURGE TIME 1 WELL VOLUME (MIN):	0.55				
	PURGE WELL VOLUMES (CIRCLE)	1	3	7	10	
	PURGE TIME (MIN):	0.55	1:6		· •	
· · · · · · · · · · · · · · · · · · ·			;			
·	VACUUM HOLD TEST START TIME (24 HR):	1050	,			
SHUT IN/	INITIAL CANISTER VACUUM (IN. Hg)	2				
10-MINUTE	VACUUM HOLD TEST END TIME (24 HR):	1100				
VACUUM TEST	VACUUM HOLD TEST DURATION (MIN):	10				
	FINAL CANISTER VACUUM (IN. Hg):	8				
-		v				
		TIME	HELIUM			
		(24 HR)	(%)			
	PRIOR TO PURGE	1101	22.0			
	DURING PURGE					
	POST PURGE	1106			,	
SAMPLE TRAIN	MEASUREMENTS FROM SAMPLING TRAIN	TIME	HELIUM	PID		
I FAK TEST		(24 HR)	(%)	(PPMV)		
	PURGE START	1102	0	-		
	1 WELL VOLUME	1103	0	0.1		
	3 WELL VOLUMES	1104	0	0.3		
	7 WELL VOLUMES					
	10 WELL VOLUMES		-	-		

PROJECT NAME	: PSAIL Dakland				
PROJECT LOCA	TION: 1708 Wood St Pakland	UA			
DATE:	June 20, 2017)			
	INITIAL CANISTER VACUUM (IN. Hg)	29		···	
	TIME CANISTER OPENED (24 HR) 5-112	106			
		TIME	HELIUM	VACUUM	
		(MINS)	(%)	(IN. Hg)	
		2	20,8	72	
		4	21.3	14	
		6	22.0	8	
		8	21.7	3	
AND TRACER	APPLY TRACER GAS WITHIN THE SHROUD	10		-	
GAS		15	*****	-	
MONITORING		20			
		30		-	
		40	· -		
		50			
		60	~	-	•
	TIME CANISTER CLOSED (24 HR)	1114			
	FINAL CANISTER PRESSURE (IN. Hg):	3			
· · · · · · · · · · · · · · · · · · ·	TOTAL SAMPLE TIME (MINS):	CROCH B			
INTRINSIC PERMEABILITY TESTING	Gauge Gauge T Depth (ft) Diameter of Pro	Aeter Pump	Air Flow		
		TEOT	TEOTO	TROTA	
		15011	15312	15013	1514
		1	1.5	4	
		20	25	30	
		235	365	537	
	LENGTH OF TEST (SEC)	45	45	45	

SHEET 1 OF 2

PROJECT NAME:	PSAI Oakland					
PROJECT LOCAT	TON: 1708 Wood St. Oakland	CA				
WEATHER: CLEANGKIES, MZOF Slight W. DREEZE						
DATE:	June 20 2017					
SAMPLED BY:	BLM		···			
WELL TYPE, e.g.,	PERMANENT: TEMPORARY: Derman	,t-				
	SAMPLE ID:	56-9				
	VAPOR PROBE SAMPLE DEPTH (FT):	1				
SAMPLE DATA	SUMMA CANISTER ID:	5-850	0			
	FLOW CONTROLLER SERIAL NO .:	~				
	BORING/WELL DIAMETER (INCH):	 , .				
	DRY BENTONITE INTERVAL (FT)	0.25 to 0).42			
	SAND PACK INTERVAL (FT):	0,42 400	0.83			
	TUBING TYPE:	Stainless	steel/teflo)u		
PURGE VOLUME CALCULATION	TUBING LENGTH (FT):	1+2 (36")				
	TUBING ID (INCH):	D.188				
	PURGE VOLUME (CC):	95				
	PURGE RATE (CC/MIN):	100				
	PURGE TIME 1 WELL VOLUME (MIN):	0.55				
	PURGE WELL VOLUMES (CIRCLE)	1	3	7	10	
	PURGE TIME (MIN):	0.55	1,6	-		
			. (
	VACUUM HOLD TEST START TIME (24 HR):	1122				
SHUT IN/	INITIAL CANISTER VACUUM (IN. Hg)	6				
10-MINUTE	VACUUM HOLD TEST END TIME (24 HR):	1132				
VACUUM TEST	VACUUM HOLD TEST DURATION (MIN):	10				
	FINAL CANISTER VACUUM (IN. Hg):	6				
	MEASUREMENTS WITHIN SHROUD	TIME	HELIUM			
		(24 HR)	(%)			
	PRIOR TO PURGE	1133	20.5			
	DURING PURGE	<u> </u>				
	POST PURGE	1139	21.7			
PURGE AND	MEASUREMENTS FROM SAMPLING TRAIN	TIME	HELIÚM	PID		
LEAK TEST		(24 HR)	(%)	(PPMV)		
	PURGE START	1134	0	0.2		
	1 WELL VOLUME	1135	\mathcal{O}	0.1		
	3 WELL VOLUMES	1136	0	0.1	50°'	
	7 WELL VOLUMES		<u> </u>	·		
	10 WELL VOLUMES			·····		

PROJECT NAME	: PSAI Oakland						
PROJECT LOCA	TION: 1708 wood St Makland	CA					
DATE:	6/20/17	<i>y</i> =.					
	INITIAL CANISTER VACUUM (IN. Hg)	30					
	TIME CANISTER OPENED (24 HR) 5-950	1139					
		TIME	HELIUM	VACUUM			
		(MINS)	(%)	(IN. Hg)			
		2	22.1	76			
		4	11.0	22			
		6	20.6	18			
SAMPLE		8	219	15			
COLLECTION	APPLY TRACER GAS WITHIN THE SHROUD	10	20.9	in			
AND TRACER		15					
		20	·				
		30	-				
		40					
		50					
		60	~	-			
	TIME CANISTER CLOSED (24 HR)	1153		L	L		
	FINAL CANISTER PRESSURE (IN. Hg):	4					
	TOTAL SAMPLE TIME (MINS):	14					
	· · ·						
	Flow Meter						
	Gauge Pump Air Flow						
INTRINSIC	Depth (ft)						
PERMEABILITY							
TESTING							
	Diameter of Pro	be (in.)					
				······]		
×.			r				
	TEST THRU WELL TUBING/NO MANIFOLD	TEST 1	TEST 2	TEST 3	TEST 4		
	VACUUM (IN. WATER)	6	-))	16			
	FLOW METER READING	20	25	30			
	FLOW RATE (CC/MIN)	235	365	537			
	LENGTH OF TEST (SEC)	60	60	60			

SHEET OF 2

SOIL VAPOR SAMPLING LOG, SAMPLE ID: $\underline{5G-10}$

PROJECT NAME:	PSAI. Oakland		****			
PROJECT LOCAT	FION: 1708 Wood St Oakland			- 18 4,		
WEATHER:	clear skips low 605 m 5	W breez.	P			
DATE:	June 21, 2017	PICCE	L			
SAMPLED BY:	RLM					
WELL TYPE, e.g.	PERMANENT: TEMPORARY: Permane	int				
<u>_</u>				<u> </u>		
	SAMPLE ID:	56-10				
	VAPOR PROBE SAMPLE DEPTH (FT):					
SAMPLE DATA	SUMMA CANISTER ID:	5-47	32			
	FLOW CONTROLLER SERIAL NO .:					
	BORING/WELL DIAMETER (INCH):					
	DRY BENTONITE INTERVAL (FT)	0.25+0	0,42			
	SAND PACK INTERVAL (FT):	0.42 +0	0.83			
	TUBING TYPE:	59/10/100				
	TUBING LENGTH (FT):	1+2 (36"				
CALCULATION	TUBING ID (INCH):	0.188				
	PURGE VOLUME (CC):	55				
	PURGE RATE (CC/MIN):	100				
	PURGE TIME 1 WELL VOLUME (MIN):	0,55				
	PURGE WELL VOLUMES (CIRCLE)	1	3	7	10	
	PURGE TIME (MIN):	0.55	1.6		~~~	
	VACUUM HOLD TEST START TIME (24 HR):	12850				
SHUT IN/	INITIAL CANISTER VACUUM (IN. Hg)	7				
10-MINUTE	VACUUM HOLD TEST END TIME (24 HR):	0900				
VACUUM TEST	VACUUM HOLD TEST DURATION (MIN):	10		······		
	FINAL CANISTER VACUUM (IN. Hg):	17				
		<i>i</i>				
		TIME	HELIUM			
	INEASUREMENTS WITHIN SHROUD	(24 HR)	(%)			
	PRIOR TO PURGE	0903	24.1			
	DURING PURGE	-				
	POST PURGE	0908	22.3			
PURGE AND		TIME	HELIUM	PID		
SAMPLE TRAIN	MEASUREMENTS FROM SAMPLING TRAIN	(24 HR)	(%)	(PPMV)		
	PURGE START	0904	Ô	0,2		
	1 WELL VOLUME	8905	Õ	0.2		
	3 WELL VOLUMES	0906	Õ	0.2		
	7 WELL VOLUMES		-			
	10 WELL VOLUMES	-	-			

SHEET 2 OF 2

SOIL VAPOR SAMPLING LOG, SAMPLE ID: _________

PROJECT NAME	: PSAI. Oakland				
PROJECT LOCA	TION: 1708 Wood St, Oakland,	CA			
DATE:	June 21, 2017				
	INITIAL CANISTER VACUUM (IN. Hg)	30			
	TIME CANISTER OPENED (24 HR) 5-432	. 0909			
		TIME	HELIUM	VACUUM	
		(MINS)	(%)	(IN. Hg)	· · · ·
		2	21.3	24	
		4	20.0	0	
SAMPLE		0	21.7	1	
COLLECTION	APPLY TRACER GAS WITHIN THE SHROUD	10	20,1	2	
AND TRACER		10			
GAS		20			
MONITORING		30	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
		40			
		50	and the second se		
		60		Contraction of the local division of the loc	•
	TIME CANISTER CLOSED (24 HR)	0917		I	
	FINAL CANISTER PRESSURE (IN. Hg):	3			
	TOTAL SAMPLE TIME (MINS):	L SAMPLE TIME (MINS):			
INTRINSIC PERMEABILITY TESTING	Gauge Gauge I Depth (ft) Diameter of Pro	Aeter Pump	Air Flow		
	TEST THRU WELL TUBING/NO MANIFOLD	TEST 1	TEST 2	TEST 3	TEST 4
	VACUUM (IN. WATER)	8	12	16	
	FLOW METER READING	20	25	30	
	FLOW RATE (CC/MIN)	235	365	\$37	
	LENGTH OF TEST (SEC)	60	60	60	

SHEET _ OF 2

PROJECT NAME	DSAT Galland					
	ION: 1708 Wood GL AAK-land	CIA				
WEATHER.	alles all'and the act Sultand	me the				
	Clear Still, Mid Dog, Dur. The bild					
SAMDIED RV:	DINA					
WELL TYPE or	DEDMANENT: TEMPODADY:					
VVELL TIPE, e.g.,	FERMIANENT, TEMPORART. TEM MOME	M	••••			
	SAMPLE ID	56-11				
	VADOR DROBE SAMPLE DEPTH (ET)	1				
SAMPLE DATA	SUMMA CANISTED ID:	6 - 092	2			
		2-21	/			
	FLOW CONTROLLER SERIAL NO					
		1				
		0-61-	010	·····		
		0.2940	0,92			
	SAND PACK INTERVAL (FT).	0,42 70	, 0,09			
		55/teclon				
PURGE VOLUME	TUBING LENGTH (FT):	1+2(36")				
CALCULATION	TUBING ID (INCH):	0.100				
	PURGE VOLUME (CC):	59			· · · · · · · · · · · · · · · · · · ·	
	PURGE RATE (CC/MIN):	100				
	PURGE TIME 1 WELL VOLUME (MIN):	0,55				
	PURGE WELL VOLUMES (CIRCLE)	1	3	7	10	
	PURGE TIME (MIN):	0,55	1.6	_	<u> </u>	
	VACUUM HOLD TEST START TIME (24 HR):	0925				
SHUT IN/	INITIAL CANISTER VACUUM (IN. Hg)	9				
10-MINUTE	VACUUM HOLD TEST END TIME (24 HR):	0935				
VACUUM TEST	VACUUM HOLD TEST DURATION (MIN):	10		<u></u>		
	FINAL CANISTER VACUUM (IN. Hg):	9		·		
	MEASUREMENTS WITHIN SHROUD	TIME	HELIUM			
		(24 HR)	(%)			
	PRIOR TO PURGE	0936	21.7			
	DURING PURGE					
	POST PURGE	0940	22.2			
SAMPLE TRAIN	MEASUREMENTS FROM SAMPLING TRAIN	TIME	HELIUM	PID		
		(24 HR)	(%)	(PPMV)		
	PURGE START	0937	Ø	0.2		
	1 WELL VOLUME	0938	D	0.1		
	3 WELL VOLUMES	0939	Ø	0.1		
	7 WELL VOLUMES					
	10 WELL VOLUMES)		

SHEET 2 OF 2

PROJECT NAME: PSAI Oakland								
PROJECT LOCATION: 1708 Wood St. Oakland, CA								
DATE:	6/21/17	/						
	INITIAL CANISTER VACUUM (IN. Hg)	30						
	TIME CANISTER OPENED (24 HR) $5 - 29^{2}$	20941						
		TIME	HELIUM	VACUUM				
		(MINS)	(%)	(IN. Hg)				
		2	21,7	22				
		4	20.3	14				
		6	21.2	7				
		8	~	*,gotama				
AND TRACER	APPLY TRACER GAS WITHIN THE SHROUD	10						
GAS		15						
MONITORING		20			÷			
		30						
-		40	<u> </u>		· · · · · · · · · · · · · · · · · · ·			
		50						
		60	-	\$******	· · · · ·			
		P148						
	TOTAL SAMPLE TIME (MINS):	Р Р						
	TOTAL SAMPLE TIME (MINS).							
	Elevel	lotor						
	Gauge							
	Pump Air Flow							
INTRINSIC	Depth							
PERMEABILITY	(ii)							
TESTING								
	Diameter of Pro	obe (in.)						
	TEST THRU WELL TUBING/NO MANIFOLD	TEST 1	TEST 2	TEST 3	TEST 4			
	VACUUM (IN. WATER)	5	9	13				
	FLOW METER READING	20	35	30				
	FLOW RATE (CC/MIN)	235	365	537				
	LENGTH OF TEST (SEC)	120	120	120				

SHEET OF 2

PROJECT NAME	PSAT Oakland		· · · · · · · · · · · · · · · · · · ·			
PROJECT LOCA	FION: 1708 Good St Oakland	-l		······································		
WEATHER:	Clear Skies mid 60'S 169°F.	n 50m) 51	- ditten	1010420	Lo En A.	
DATE:	June 21, 2017		gur sw	RICC	10 projose	
SAMPLED BY:	RIM					
WELL TYPE, e.g.	PERMANENT: TEMPORARY: Revmanen	+				
		- <u>V</u> i				
	SAMPLE ID:	56-17				
	VAPOR PROBE SAMPLE DEPTH (FT):	1				
SAMPLE DATA	SUMMA CANISTER ID:	5-36	l			
· · · · ·	FLOW CONTROLLER SERIAL NO .:	······································				
	BORING/WELL DIAMETER (INCH):	}.				
	DRY BENTONITE INTERVAL (FT)	0.25to	0.42			
	SAND PACK INTERVAL (FT):	0.42 to	0.83			
	TUBING TYPE:	ss/tetlon				
	TUBING LENGTH (FT):	1+2 (36")				
CALCULATION	TUBING ID (INCH):	0.188				
	PURGE VOLUME (CC):	55				
	PURGE RATE (CC/MIN):	100				
	PURGE TIME 1 WELL VOLUME (MIN):	0.55	7			
	PURGE WELL VOLUMES (CIRCLE)	1	3	7	10	
	PURGE TIME (MIN):	0,55	1.6			
	VACUUM HOLD TEST START TIME (24 HR):	0955				
SHUT IN/	INITIAL CANISTER VACUUM (IN. Hg)	12				
10-MINUTE	VACUUM HOLD TEST END TIME (24 HR):	1005				
VACUUM TEST	VACUUM HOLD TEST DURATION (MIN):	10				
	FINAL CANISTER VACUUM (IN. Hg):	12				
	1	· · · · · · · · · · · · · · · · · · ·				
	MEASUREMENTS WITHIN SHROUD	TIME	HELIUM			
		(24 HR)	(%)			
	PRIOR TO PURGE	1007	21.9			
PURGE AND	POST PURGE	1012	21,6			
SAMPLE TRAIN	MEASUREMENTS FROM SAMPLING TRAIN		HELIUM	PID		
		(24 HR)	(%)	(PPMV)	225	
		1000	0	0.2	Val.	
		1004		0.0	<u></u>	
		1010	0	0.0		
				-		
	IU WELL VOLUMES					

SHEET 2 OF 2

PROJECT NAME: PSAT. Oakland									
PROJECT LOCA	TION: 1708 Wood St Aakland C	A							
DATE:	June 21,2017								
		······							
	INITIAL CANISTER VACUUM (IN. Hg)	30							
	TIME CANISTER OPENED (24 HR) 5-362	1013							
		TIME	HELIUM	VACUUM					
		(MINS)	(%)	(IN, Ha)					
		2	71.7	75					
		4	70.4	71	•				
5 - S		6	200	1-17					
SAMPLE		8	21.5	12					
COLLECTION	APPLY TRACER GAS WITHIN THE SHROUD	10	17 1	016					
AND TRACER		15	- + 1	18					
GAS		20							
MUNITORING		20							
		40							
		50							
		60							
		1021							
	EINAL CANISTER DESCUES (IN LIS)	1026							
	TOTAL CAMPLE TIME (MINC):	4							
	TOTAL SAMPLE TIME (MIINS).	12		·····					
	Flow Meter Gauge								
	Ň								
]						
		$\underline{\checkmark}$							
INTRINSIC	Denth								
PERMEABILITY	(ft)								
TESTING									
Diameter of Probe (in.)									
		TEQT 1	TEGT 2	TEST 2	TESTA				
				15313	10014				
		0,2	<u> </u>	0,6					
		70	25	30					
		079	<u> </u>	557					
	LENGTH OF TEST (SEC)	60	60	60					

SHEET 1 of 2

SOIL VAPOR SAMPLING LOG, SAMPLE ID: _______

PROJECT NAME:	PSAI. Oakland			<u></u>		
PROJECT LOCAT	FION: 1708 Wood Gt Oakland		1			
WEATHER: (Par GVills Join la bole are what head the						
DATE:	TURP 71, 7017	671 01000				
SAMPLED BY:	RLM		· ·			
WELL TYPE, e.g.	PERMANENT: TEMPORARY: PLICA (11)	ent				
<u>-</u> , <u>.</u> , <u>.</u> ,		<u> </u>		·····		
	SAMPLE ID:	56-12	, 7			
	VAPOR PROBE SAMPLE DEPTH (FT):	1	·			
SAMPLE DATA	SUMMA CANISTER ID:	5-52	ζς	·		
	FLOW CONTROLLER SERIAL NO .:					
	BORING/WELL DIAMETER (INCH):	1.				
	DRY BENTONITE INTERVAL (FT)	0.25+00	,42			
	SAND PACK INTERVAL (FT):	0,42 10 0),83			
	TUBING TYPE:	staintess	steel/tefle	on		
	TUBING LENGTH (FT):	1+2				
	TUBING ID (INCH):	0.188				
CALCOLATION	PURGE VOLUME (CC):	55				
	PURGE RATE (CC/MIN):	100				
	PURGE TIME 1 WELL VOLUME (MIN):	0.55				
	PURGE WELL VOLUMES (CIRCLE)	1	3	7	10	
	PURGE TIME (MIN):	0.55	1.64		· •	
· · ·	VACUUM HOLD TEST START TIME (24 HR):	1035			·	
SHUT IN/	INITIAL CANISTER VACUUM (IN. Hg)	6				
10-MINUTE	VACUUM HOLD TEST END TIME (24 HR):	1045				
VACUUM TEST	VACUUM HOLD TEST DURATION (MIN):	10				
	FINAL CANISTER VACUUM (IN. Hg):	6				
	MEASUREMENTS WITHIN SHROUD	TIME	HELIUM			
		(24 HR)	(%)			
	PRIOR TO PURGE	1048	24.4			
	DURING PURGE	· · · · ·	-			
	POST PURGE	1053	21.5		· ·	
PURGE AND SAMPLE TRAIN I FAK TEST		TIME	HELIUM	PID		
		(24 HR)	(%)	(PPMV)		
	PURGE START	1049	0	0,0		
	1 WELL VOLUME	1050	D	0.1		
	3 WELL VOLUMES	1051	0	D.1 4		
	7 WELL VOLUMES		-			
	10 WELL VOLUMES			~		

SHEET $\frac{2}{0}$ OF $\frac{2}{2}$

PROJECT NAME	PSAT Omland			·····	
PROJECT LOCAT	FION: 1708 WARDING ST. O. King	CA			
DATE	Time 71 2017	9(
· · · · · · · · · · · · · · · · · · ·	INITIAL CANISTER VACUUM (IN. Hg)	20			
	TIME CANISTER OPENED (24 HR) 5-525	1055			· · ·
		TIME	HELIUM	VACUUM	
		(MINS)	(%)	(IN. Hg)	
		2	21.2	26	
		4	20,1	23	
		6	20.3	19	
SAMPLE		8	27.0	16	
	APPLY TRACER GAS WITHIN THE SHROUD	10	22.0	12	
GAS		15	Z1.8	6	
MONITORING		20			
		30		-	
<i>.</i>		40			
		50			
	· · · ·	60			•
	TIME CANISTER CLOSED (24 HR)	1112			
	FINAL CANISTER PRESSURE (IN. Hg):	3			
	TOTAL SAMPLE TIME (MINS):	17			
INTRINSIC PERMEABILITY TESTING	Gauge Gauge I Depth (ft) Diameter of Pro	Veter	Air Flow		
		· · · · · · · · · · · · · · · · · · ·			
	TEST THRU WELL TUBING/NO MANIFOLD	TEST 1	TEST 2	TEST 3	TEST 4
	VACUUM (IN. WATER)	20	45	70	
	FLOW METER READING	20	25	30	
	FLOW RATE (CC/MIN)	239	365	537	
	LENGTH OF TEST (SEC)	120	120	120	

K PRIME, Inc.

CONSULTING ANALYTICAL CHEMISTS

TRANSMITTAL

- DATE: 6/29/2017
- TO: MR. PETER MORRIS WEST ENVIRONMENTAL S&T 711 GRAND AVENUE, SUITE 220 SAN RAFAEL, CA 94901

Phone:	415-460-6770
Fax:	415-460-6771
Email:	main@westenvironmental.com

- Richard A. Kagel, Ph.D. BAK 6/29/2017 FROM: Laboratory Director
- SUBJECT: LABORATORY RESULTS FOR YOUR PROJECT

PSAI.OAKLAND

Enclosed please find K Prime's laboratory reports for the following samples:

SAMPLE ID	ТҮРЕ	DATE	TIME	KPI LAB #
SG-1	AIR	06/20/17	10:30	155691
SG-5	AIR	06/20/17	13:53	155692
SG-6	AIR	06/20/17	13:01	155693
SG-7	AIR	06/20/17	12:18	155694
SG-8	AIR	06/20/17	11:06	155695
SG-9	AIR	06/20/17	11:39	155696
SG-10	AIR	06/21/17	9:09	155697
SG-11	AIR	06/21/17	9:41	155698
SG-12	AIR	06/21/17	10:13	155699
SG-13	AIR	06/21/17	10:55	155700

The above listed sample group was received on 06/21/17 and tested as requested on the chain of custody document.

Please call me if you have any questions or need further information. Thank you for this opportunity to be of service.

3621 Westwind Blvd. Santa Rosa CA 95403 Phone: 707 527 7574 FAX: 707 527 7879

ACCT: 9946 **PROJ**: PSAI.OAKLAND

K PRIME PROJECT: 9946 CLIENT PROJECT: PSAI.OAKLAND

METHOD: METHANE, OXYGEN, NITROGEN REFERENCE: ASTM D 1946 SAMPLE ID: SG-1 LAB NO: 155691 BATCH NO: 062217A3 DATE SAMPLED: 06/20/2017 TIME SAMPLED: 10:30 DATE ANALYZED: 06/22/2017

SAMPLE TYPE: AIR UNITS: %-V

COMPOUND NAME	REPORTING	SAMPLE	
	LIMIT	CONC	
METHANE	1.00	ND	
OXYGEN	1.00	17.4	
NITROGEN(BALANCE)	1.00	75.8	

APPROVED BY:	PARK
DATE:	6129/17

K PRIME PROJECT: 9946 CLIENT PROJECT: PSAI.OAKLAND

METHOD: METHANE, OXYGEN, NITROGEN REFERENCE: ASTM D 1946 SAMPLE ID: SG-5 LAB NO: 155692 BATCH NO: 062217A3 DATE SAMPLED: 06/20/2017 TIME SAMPLED: 13:53 DATE ANALYZED: 06/23/2017

SAMPLE TYPE: AIR UNITS: %-V

COMPOUND NAME	REPORTING	SAMPLE
	LIMIT	CONC
METHANE	1.00	ND
OXYGEN	1.00	15.2
NITROGEN(BALANCE)	1.00	84.3

NOTES: ND - NOT DETECTED AT OR ABOVE THE STATED METHOD REPORTING LIMIT NA - NOT APPLICABLE OR AVAILABLE

APPROVED BY:	12411
DATE:	6129117

2

K PRIME PROJECT: 9946 CLIENT PROJECT: PSAI.OAKLAND

METHOD: METHANE, OXYGEN, NITROGEN REFERENCE: ASTM D 1946 SAMPLE ID: SG-6 LAB NO: 155693 BATCH NO: 062217A3 DATE SAMPLED: 06/20/2017 TIME SAMPLED: 13:01 DATE ANALYZED: 06/23/2017

SAMPLE TYPE: AIR UNITS: %-V

COMPOUND NAME	REPORTING	SAMPLE
	LIMIT	CONC
METHANE	1.00	44.5
OXYGEN	1.00	11.7
NITROGEN(BALANCE)	1.00	32.1

APPROVED BY:	ration
DATE:	6/29/17

K PRIME PROJECT: 9946 CLIENT PROJECT: PSAI.OAKLAND

METHOD: METHANE, OXYGEN, NITROGEN REFERENCE: ASTM D 1946 SAMPLE ID: SG-7 LAB NO: 155694 BATCH NO: 062217A3 DATE SAMPLED: 06/20/2017 TIME SAMPLED: 12:18 DATE ANALYZED: 06/23/2017

SAMPLE TYPE: AIR UNITS: %-V

COMPOUND NAME	REPORTING	SAMPLE CONC
	LIMIT	
METHANE	1.00	ND
OXYGEN	1.00	17.6
NITROGEN(BALANCE)	1.00	77.1

NOTES: ND - NOT DETECTED AT OR ABOVE THE STATED METHOD REPORTING LIMIT NA - NOT APPLICABLE OR AVAILABLE

> APPROVED BY: 71K DATE: 6/26/17

K PRIME PROJECT: 9946 CLIENT PROJECT: PSAI.OAKLAND

METHOD: METHANE, OXYGEN, NITROGEN REFERENCE: ASTM D 1946
 SAMPLE ID:
 SG-8

 LAB NO:
 155695

 BATCH NO:
 062217A3

 DATE SAMPLED:
 06/20/2017

 TIME SAMPLED:
 11:06

 DATE ANALYZED:
 06/23/2017

SAMPLE TYPE: AIR UNITS: %-V

COMPOUND NAME	REPORTING	SAMPLE
	LIMIT	CONC
METHANE	1.00	ND
OXYGEN	1.00	9.13
NITROGEN(BALANCE)	1.00	67.7

NOTES:

APPROVED BY:	AAT
DATE:	6/29/17

K PRIME PROJECT: 9946 CLIENT PROJECT: PSAI.OAKLAND

METHOD: METHANE, OXYGEN, NITROGEN REFERENCE: ASTM D 1946 SAMPLE ID: SG-9 LAB NO: 155696 BATCH NO: 062217A3 DATE SAMPLED: 06/20/2017 TIME SAMPLED: 11:39 DATE ANALYZED: 06/23/2017

SAMPLE TYPE: AIR UNITS: %-V

COMPOUND NAME	REPORTING	SAMPLE	
	LIMIT	CONC	
METHANE	1.00	ND	
OXYGEN	1.00	10.0	
NITROGEN(BALANCE)	1.00	79.8	

APPROVED BY: ______ DATE: _____

K PRIME PROJECT: 9946 CLIENT PROJECT: PSAI.OAKLAND

METHOD: METHANE, OXYGEN, NITROGEN REFERENCE: ASTM D 1946
 SAMPLE ID:
 SG-10

 LAB NO:
 155697

 BATCH NO:
 062217A3

 DATE SAMPLED:
 06/21/2017

 TIME SAMPLED:
 09:09

 DATE ANALYZED:
 06/23/2017

SAMPLE TYPE: AIR UNITS: %-V

COMPOUND NAME	REPORTING	SAMPLE CONC
	LIMIT	
METHANE	1.00	ND
OXYGEN	1.00	11.9
NITROGEN(BALANCE)	1.00	82.7

ED BY: /4/1(DATE: 6/29/17 APPROVED BY:

K PRIME PROJECT: 9946 CLIENT PROJECT: PSAI.OAKLAND

METHOD: METHANE, OXYGEN, NITROGEN REFERENCE: ASTM D 1946 SAMPLE ID: SG-11 LAB NO: 155698 BATCH NO: 062217A3 DATE SAMPLED: 06/21/2017 TIME SAMPLED: 09:41 DATE ANALYZED: 06/23/2017

SAMPLE TYPE: AIR UNITS: %-V

COMPOUND NAME	REPORTING	SAMPLE
	LIMIT	CONC
METHANE	1.00	ND
OXYGEN	1.00	20.1
NITROGEN(BALANCE)	1.00	78.2

APPROVED BY: 0/29/17

K PRIME PROJECT: 9946 CLIENT PROJECT: PSAI.OAKLAND

METHOD: METHANE, OXYGEN, NITROGEN REFERENCE: ASTM D 1946 SAMPLE ID: SG-12 LAB NO: 155699 BATCH NO: 062217A3 DATE SAMPLED: 06/21/2017 TIME SAMPLED: 10:13 DATE ANALYZED: 06/23/2017

SAMPLE TYPE: AIR UNITS: %-V

COMPOUND NAME	REPORTING		
	LIMIT	CONC	
METHANE	1.00	ND	
OXYGEN	1.00	19.7	
NITROGEN(BALANCE)	1.00	80.3	

APPROVED BY: ///// DATE: 0/29/17

K PRIME PROJECT: 9946 CLIENT PROJECT: PSAI.OAKLAND

METHOD: METHANE, OXYGEN, NITROGEN REFERENCE: ASTM D 1946 SAMPLE ID: SG-13 LAB NO: 155700 BATCH NO: 062217A3 DATE SAMPLED: 06/21/2017 TIME SAMPLED: 10:55 DATE ANALYZED: 06/23/2017

SAMPLE TYPE: AIR UNITS: %-V

COMPOUND NAME	REPORTING		
	LIMIT	CONC	
METHANE	1.00	ND	
OXYGEN	1.00	18.8	
NITROGEN(BALANCE)	1.00	80.7	

APPROVED BY: ///// DATE: 6/29/17

K PRIME PROJECT: 9946 CLIENT PROJECT: PSAI.OAKLAND
 SAMPLE ID: SG-1

 LAB NO: 155691

 DATE SAMPLED: 06/20/2017

 TIME SAMPLED: 10:30

 BATCH NO: 062917A1

 DATE ANALYZED: 06/29/2017

METHOD: C1-C3 HYDROCARBONS REFERENCE: EPA METHOD 18

COMPOUND NAME	CAS NO.	REPORTING	SAMPLE
		LIMIT	CONC
METHANE	74-82-8	10.0	43.6

APPROVED BY: _____ DATE: _____ 129/17

K PRIME PROJECT: 9946 CLIENT PROJECT: PSAI.OAKLAND
 SAMPLE ID:
 SG-5

 LAB NO:
 155692

 DATE SAMPLED:
 06/20/2017

 TIME SAMPLED:
 13:53

 BATCH NO:
 062917A1

 DATE ANALYZED:
 06/29/2017

METHOD: C1-C3 HYDROCARBONS REFERENCE: EPA METHOD 18

COMPOUND NAME	CAS NO.	REPORTING	SAMPLE
		LIMIT	CONC
METHANE	74-82-8	10.0	1540

APPROVED BY: 17 DATE:

K PRIME PROJECT: 9946 CLIENT PROJECT: PSAI.OAKLAND
 SAMPLE ID:
 SG-6

 LAB NO:
 155693

 DATE SAMPLED:
 06/20/2017

 TIME SAMPLED:
 13:01

 BATCH NO:
 062917A1

 DATE ANALYZED:
 06/29/2017

METHOD: C1-C3 HYDROCARBONS REFERENCE: EPA METHOD 18

COMPOUND NAME	CAS NO.	REPORTING	SAMPLE
		LIMIT	CONC
METHANE	74-82-8	10.0	381000

APPROVED BY: 7/1/1 DATE: 6/29/17

K PRIME PROJECT: 9946 CLIENT PROJECT: PSAI.OAKLAND
 SAMPLE ID:
 SG-7

 LAB NO:
 155694

 DATE SAMPLED:
 06/20/2017

 TIME SAMPLED:
 12:18

 BATCH NO:
 062917A1

 DATE ANALYZED:
 06/29/2017

METHOD: C1-C3 HYDROCARBONS REFERENCE: EPA METHOD 18

COMPOUND NAME	CAS NO.	REPORTING	SAMPLE
		LIMIT	CONC
METHANE	74-82-8	10.0	158

APPROVED BY: //// DATE: 6/29/ 17

K PRIME PROJECT: 9946 CLIENT PROJECT: PSAI.OAKLAND
 SAMPLE ID: SG-8

 LAB NO: 155695

 DATE SAMPLED: 06/20/2017

 TIME SAMPLED: 11:06

 BATCH NO: 062917A1

 DATE ANALYZED: 06/29/2017

METHOD: C1-C3 HYDROCARBONS REFERENCE: EPA METHOD 18

COMPOUND NAME	CAS NO.	REPORTING	SAMPLE
		LIMIT	CONC
METHANE	74-82-8	10.0	3570

APPROVED BY: _____ DATE: _____ 117

K PRIME PROJECT: 9946 CLIENT PROJECT: PSAI.OAKLAND
 SAMPLE ID:
 SG-9

 LAB NO:
 155696

 DATE SAMPLED:
 06/20/2017

 TIME SAMPLED:
 11:39

 BATCH NO:
 062917A1

 DATE ANALYZED:
 06/29/2017

METHOD: C1-C3 HYDROCARBONS REFERENCE: EPA METHOD 18

COMPOUND NAME	CAS NO.	REPORTING	SAMPLE
		LIMIT	CONC
METHANE	74-82-8	10.0	14.5

APPROVED BY: 117 DATE:

K PRIME PROJECT: 9946 CLIENT PROJECT: PSAI.OAKLAND
 SAMPLE ID:
 SG-10

 LAB NO:
 155697

 DATE SAMPLED:
 06/21/2017

 TIME SAMPLED:
 09:09

 BATCH NO:
 062917A1

 DATE ANALYZED:
 06/29/2017

METHOD: C1-C3 HYDROCARBONS REFERENCE: EPA METHOD 18

COMPOUND NAME	CAS NO.	REPORTING	SAMPLE
		LIMIT	CONC
METHANE	74-82-8	10.0	231

APPROVED BY: ///// DATE: 6/29/17-

K PRIME PROJECT: 9946 CLIENT PROJECT: PSAI.OAKLAND SAMPLE ID: SG-11 LAB NO: 155698 DATE SAMPLED: 06/21/2017 TIME SAMPLED: 09:41 BATCH NO: 062917A1 DATE ANALYZED: 06/29/2017

METHOD: C1-C3 HYDROCARBONS REFERENCE: EPA METHOD 18

COMPOUND NAME	CAS NO.	REPORTING	SAMPLE
		LIMIT	CONC
METHANE	74-82-8	10.0	11.7

APPROVED BY: _____ 6129 17-DATE:

K PRIME PROJECT: 9946 CLIENT PROJECT: PSAI.OAKLAND SAMPLE ID: SG-12 LAB NO: 155699 DATE SAMPLED: 06/21/2017 TIME SAMPLED: 10:13 BATCH NO: 062917A1 DATE ANALYZED: 06/29/2017

METHOD: C1-C3 HYDROCARBONS REFERENCE: EPA METHOD 18

	CAS NO.	REPORTING LIMIT	SAMPLE CONC	
METHANE	74-82-8	10.0	13.6	

APPROVED BY: DATE:

K PRIME PROJECT: 9946 CLIENT PROJECT: PSAI.OAKLAND

SAMPLE ID: SG-13 LAB NO: 155700 DATE SAMPLED: 06/21/2017 TIME SAMPLED: 10:55 BATCH NO: 062917A1 DATE ANALYZED: 06/29/2017

METHOD: C1-C3 HYDROCARBONS REFERENCE: EPA METHOD 18

COMPOUND NAME	CAS NO.	REPORTING	SAMPLE
		LIMIT	CONC
METHANE	74-82-8	10.0	4970

APPROVED BY: _ DATE:

K PRIME PROJECT: 9946 CLIENT PROJECT: PSAI.OAKLAND

METHOD: CARBON MONOXIDE REFERENCE: ASTM D 1946

SAMPLE TYPE: AIR UNITS: %-V

SAMPLE ID	LAB NO	BATCH NO	DATE SAMPLED	TIME SAMPLED	DATE ANALYZED	MRL	SAMPLE CONC
SG-1	155691	062217A2	06/20/2017	10:30	06/22/2017	0.010	ND
SG-5	155692	062217A2	06/20/2017	13:53	06/22/2017	0.010	ND
SG-6	155693	062217A2	06/20/2017	13:01	06/22/2017	0.010	ND
SG-7	155694	062217A2	06/20/2017	12:18	06/22/2017	0.010	ND
SG-8	155695	062217A2	06/20/2017	11:06	06/22/2017	0.010	ND
SG-9	155696	062217A2	06/20/2017	11:39	06/22/2017	0.010	ND
SG-10	155697	062217A2	06/21/2017	09:09	06/22/2017	0.010	ND
\$G-11	155698	062217A2	06/21/2017	09:41	06/22/2017	0.010	ND
SG-12	155699	062217A2	06/21/2017	10:13	06/22/2017	0.010	ND
SG-13	155700	062217A2	06/21/2017	10:55	06/22/2017	0.010	ND

NOTES: ND - NOT DETECTED AT OR ABOVE THE STATED METHOD REPORTING LIMIT NA - NOT APPLICABLE OR AVAILABLE MRL - METHOD REPORTING LIMIT

APPROVED BY: 18 DATE: 627 2017

K PRIME PROJECT: 9946 CLIENT PROJECT: PSAI.OAKLAND

METHOD: CARBON DIOXIDE REFERENCE: ASTM D 1946

SAMPLE TYPE: AIR UNITS: %-V

SAMPLE ID	LAB NO.	DATE		BATCH		MRL	SAMPLE
		SAMPLED	SAMPLED	NO	ANALIZED		CONC
SG-1	155691	06/20/2017	10:30	062317A3	06/26/2017	0.100	6.76
SG-5	155692	06/20/2017	13:53	062317A3	06/26/2017	0.100	0.506
SG-6	155693	06/20/2017	13:01	062317A3	06/26/2017	0.100	11.7
SG-7	155694	06/20/2017	12:18	062317A3	06/26/2017	0.100	5.26
SG-8	155695	06/20/2017	11:06	062317A3	06/26/2017	0.100	23.2
SG-9	155696	06/20/2017	11:39	062317A3	06/26/2017	0.100	10.2
SG-10	155697	06/21/2017	09:09	062317A3	06/26/2017	0.100	5.43
SG-11	155698	06/21/2017	09:41	062317A3	06/26/2017	0.100	1.71
SG-12	155699	06/21/2017	10:13	062317A3	06/26/2017	0.100	ND
SG-13	155700	06/21/2017	10:55	062317A3	06/26/2017	0.100	0.462

NOTES: ND - NOT DETECTED AT OR ABOVE THE STATED METHOD REPORTING LIMIT NA - NOT APPLICABLE OR AVAILABLE MRL - METHOD REPORTING LIMIT

APPROVED BY: ____ DATE: ___ 2017

K PRIME PROJECT: 9946 CLIENT PROJECT: PSAI.OAKLAND

METHOD: HELIUM REFERENCE: ASTM D 1946

SAMPLE TYPE: AIR UNITS: %-V

SAMPLE ID	LAB NO	BATCH	DATE	TIME	DATE	MRL	SAMPLE
		NO	SAMPLED	SAMPLED	ANALYZED		CONC
SG-1	155691	062317A2	06/20/2017	10:30	06/23/2017	0.100	ND
SG-5	155692	062317A2	06/20/2017	13:53	06/23/2017	0.100	ND
SG-6	155693	062317A2	06/20/2017	13:01	06/23/2017	0.100	ND
SG-7	155694	062317A2	06/20/2017	12:18	06/23/2017	0.100	ND
SG-8	155695	062317A2	06/20/2017	11:06	06/23/2017	0.100	ND
SG-9	155696	062317A2	06/20/2017	11:39	06/23/2017	0.100	ND
SG-10	155697	062317A2	06/21/2017	09:09	06/23/2017	0.100	0.192
SG-11	155698	062317A2	06/21/2017	09:41	06/23/2017	0.100	0.403
SG-12	155699	062317A2	06/21/2017	10:13	06/23/2017	0.100	ND
SG-13	155700	062317A2	06/21/2017	10:55	06/23/2017	0.100	0.712

NOTES: ND - NOT DETECTED AT OR ABOVE THE STATED METHOD REPORTING LIMIT NA - NOT APPLICABLE OR AVAILABLE MRL - METHOD REPORTING LIMIT

SAMPLE ID: B062217A3 SPIKE ID: L062217A3 DUPLICATE ID: D062217A3 BATCH NO: 062217A3 DATE ANALYZED: 06/22/2017

METHOD: METHANE, OXYGEN, NITROGEN (BALANCE) REFERENCE: ASTM D 1946

SAMPLE TYPE: AIR UNITS: %-V

METHOD BLANK

COMPOUND NAME	REPORTING	SAMPLE
	LIMIT	RESULT
METHANE	1.00	ND
OXYGEN	1.00	ND

ACCURACY (MATRIX SPIKE)

COMPOUND NAME	SPIKE	SAMPLE	SPIKE	RECOVERY	LIMITS
	ADDED	RESULT	RESULT	(%)	(%)
METHANE	50.0	ND	50.8	102	90-110
OXYGEN	10.0	ND	10.2	102	90-110
NITROGEN (BALANCE)	40.0	ND	39.0	98	90-110

PRECISION (SPIKE DUPLICATE)

COMPOUND NAME	REPORTING	SPIKE	DUPLICATE	RPD	LIMITS
	LIMIT	RESULT	RESULT	(%)	(%)
METHANE	1.00	50.8	51.0	0.4	±10
OXYGEN	1.00	10.2	10.2	0.0	±10
NITROGEN (BALANCE)	1.00	39.0	38.8	0.5	±10

SAMPLE ID: B062917A1 SPIKE ID: L062917A1 DUPLICATE ID: D062917A1 BATCH NO: 062917A1 DATE ANALYZED: 06/29/2017

METHOD: C1-C3 HYDROCARBONS REFERENCE: EPA METHOD 18

SAMPLE TYPE: AIR UNITS: PPMV

METHOD BLANK

COMPOUND NAME	REPORTING	SAMPLE
	LIMIT	RESULT
METHANE	10.0	ND
ETHANE	1.00	ND
PROPANE	1.00	ND

ACCURACY (MATRIX SPIKE)

COMPOUND NAME	SPIKE	SPIKE	RECOVERY	LIMITS
	ADDED	RESULT	(%)	(%)
METHANE	1000	1100	110	60-140
ETHANE	1000	1090	109	60-140
PROPANE	1000	1050	105	60-140

PRECISION (SPIKE DUPLICATE)

COMPOUND NAME	SPIKE	DUPLICATE	RPD	LIMITS
	RESULT	RESULT	(%)	(%)
METHANE	1100	1120	1.8	±30
ETHANE	1090	1100	0.9	±30
PROPANE	1050	1070	1.9	±30

SAMPLE ID: B062217A2 SPIKE ID: L062217A2 DUPLICATE ID: D062217A2 BATCH NO: 062217A2 DATE ANALYZED: 06/22/2017

SAMPLE TYPE: AIR UNITS: %-V

METHOD: CARBON MONOXIDE REFERENCE: ASTM D 1946

METHOD BLANK

COMPOUND NAME	REPORTING	SAMPLE
	LIMIT	RESULT
CARBON MONOXIDE	0.005	ND

ACCURACY (MATRIX SPIKE)

COMPOUND NAME	SPIKE	SAMPLE	SPIKE	RECOVERY	LIMITS
	ADDED	RESULT	RESULT	(%)	(%)
CARBON MONOXIDE	0.100	ND	0.099	99	70-130

PRECISION (SPIKE DUPLICATE)

COMPOUND NAME	REPORTING	SPIKE	DUPLICATE	RPD	LIMITS
	LIMIT	RESULT	RESULT	(%)	(%)
CARBON MONOXIDE	0.005	0.099	0.100	1.01	±20

NOTES:

ND - NOT DETECTED AT OR ABOVE THE STATED REPORTING LIMIT NA - NOT AVAILABLE OR APPLICABLE

SAMPLE ID: B062317A3 SPIKE ID: L062317A3 DUPLICATE ID: D062317A3 BATCH NO: 062317A3 DATE ANALYZED: 06/23/2017

METHOD: CARBON DIOXIDE REFERENCE: ASTM D 1946

SAMPLE TYPE: AIR UNITS: %-V

METHOD BLANK

COMPOUND NAME	REPORTING	SAMPLE
	LIMIT	RESULT
CARBON DIOXIDE	0.050	ND

ACCURACY (MATRIX SPIKE)

COMPOUND NAME	SPIKE	SAMPLE	SPIKE	RECOVERY	LIMITS
	ADDED	RESULT	RESULT	(%)	(%)
CARBON DIOXIDE	1.00	ND	1.02	102	70-130

PRECISION (SPIKE DUPLICATE)

COMPOUND NAME	REPORTING	SPIKE	DUPLICATE	RPD	LIMITS		
	LIMIT	RESULT	RESULT	(%)	(%)		
CARBON DIOXIDE	0.050	1.02	1.02	0.654	±20		

NOTES: ND - NOT DETECTED AT OR ABOVE THE STATED REPORTING LIMIT NA - NOT AVAILABLE OR APPLICABLE

SAMPLE ID: B062317A2 SPIKE ID: L062317A2 DUPLICATE ID: D062317A2 BATCH NO: 062317A2 DATE ANALYZED: 06/23/2017

SAMPLE TYPE: AIR UNITS: %-V

METHOD: HELIUM REFERENCE: ASTM D 1946

METHOD BLANK

COMPOUND NAME	REPORTING	SAMPLE			
	LIMIT	RESULT			
HELIUM	0.050	ND			

ACCURACY (MATRIX SPIKE)

COMPOUND NAME	SPIKE	SAMPLE	SPIKE	RECOVERY	LIMITS		
	ADDED	RESULT	RESULT	(%)	(%)		
HELIUM	10.0	ND	9.75	98	70-130		

PRECISION (SPIKE DUPLICATE)

COMPOUND NAME	REPORTING	SPIKE	DUPLICATE	RPD	LIMITS		
	LIMIT	RESULT	RESULT	(%)	(%)		
HELIUM	0.050	9.75	9.90	1.5	±20		

NOTES:

ND - NOT DETECTED AT OR ABOVE THE STATED REPORTING LIMIT NA - NOT AVAILABLE OR APPLICABLE

711 Grand Avenue, Suite 220 San Rafael, California 94901 415.460.6770 • Fax 415.460.6771 main@westenvironmental.com

SAMPLE ANALYSIS/COMPOSITE REQUEST FORM

CHAIN-OF-CUSTODY

Invoice to: WEST, Inc.					Dat	e: 🖌	6h	1/1	7			Page	: 1	of	1		
Project: PSAL	Oakland		-				Location: 1708 Wood Street, Oakland, CA										
Project Manage	er: Peter Morri	is, WEST, Ir	ıc.				Pho	ne: 4	15/46	0-67	70			Fax:	415/	/460-	6771
Laboratory: KPrime, Inc, Santa Rosa, CA					Tu	rnarou	und	1	2	3	5	7	10	Std.			
Sampler Signature:					tin	time (days) X											
TOTAL				Analyses Requested													
			1	2			946										
							ā										
							NH NH										
							(A										
							CH4	946)	1								
							2,0	DIG									
							5	ΓM									
					ners	ite	Z.	AS'									
					ntai	sod	Ŭ,	m									Ą
Sample ID	Summa ID	Date	lime	[ype	ů.	Om	Heliu 202				· KPI#		IOF				
SG-1	5-356	10/20/17	1030	A]	~						155691					
SG-5	5-268	6/20/17	1353 1401	A	1	-	X	X				-		155692			
SG-6	9-355	6/20/17	1301 309	A	1	-	X	X						155693			
SG-7	5-610	6/20/17	1218,233	A	1	-	X	X						155694			
SG-8	5-112	6/20/17	1106 1114	A	1	-	X	X						155695			
SG-9	5-850	6/20/17	1139 153	A	1	/	X	X						155696			
SG-10	5-432	6/21/17	0909 0917	A	1	-	X	X						155697			
SG-11	5-293	6/21/17	0941 0948	A))	X	X						155	i P	18	
SG-12	5-362	6/21/17	1013 1024	A)	-	X	X						159	510	19	
SG-13	5-525	6/21/17	1055 1112	A		-	\times	X						155	570	20	
NOTES:									EDF		Log	Code		WI	ESS		
			ng ₁₄₇₀								205						
							Global ID:										
Relinquished by:	(Signature)		Date/Time				Received by: (Signature) Date/Time										
1			6/1m	1	2.4	0	(1				61	91)	11	
+2			111	/		· ·	D	2 M	1	N	<u> </u>				1	2:1	10
Relinquished by:	(Signature)		Date/Time				Rece	eived b	by: (S	igna 7	ture)			Date/	Time	-	_
Quella [1/2/12/209]				pr	na	-0	U	ar	4	Q1ª	-11	17	09				
- HUSA				/		ł	ĽĆ)									