July 20, 2017

Ms. Karel Detterman Alameda County Health Care Services Agency 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577

I, Sandra Barrios, hereby authorize ERAS Environmental, Inc. to submit the Limited Phase II Subsurface Investigation for 0 29th Avenue in Oakland, California, dated July 20, 2017 to the Alameda County Health Care Services Agency.

I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge.

Signature:

Printed Name: Sandra Barrios

Ms. Sandra Barrios Education for Change 510.904.6368 sbarrios@efcps.net

Environmental, Inc.

Phone (510) 247-9885 Facsimile: (510) 886-5399

1533 B Street

Hayward, CA 94541

info@eras.biz

LIMITED PHASE II SUBSURFACE INVESTIGATION

AT

0 29th AVENUE OAKLAND, CALIFORNIA

ERAS PROJECT NUMBER: 16-004-002 GLOBAL ID: T10000001070 LOC Case Number: RO0002960

Prepared for

Education for Change 303 Hegenberger Road, Suite 301 Oakland, CA 94621

July 20, 2017

TABLE OF CONTENTS

TABLE	E OF CONTENTS	i
CERT	IFICATION	
1.0	INTRODUCTION	1
1.1	BACKGROUND	1
2.0	REGIONAL GEOLOGY/HYDROLOGY	4
3.0	WORK PERFORMED	5
3.1	SCOPE OF INVESTIGATION	5
3.2	BORING LOCATIONS AND SAMPLING.	
3.3	ANALYTICAL RESULTS	
	3.2 Results in Soil Gas	
4.0	UPDATED SITE CONCEPTUAL MODEL	
4.1	HYDROGEOLOGIC SETTING	8
4.2	EXTENT OF CONTAMINATION	
	2.1 Results in Soil	
••	 2.2 Results in Groundwater	
5.0	LOW THREAT CASE CLOSURE EVALUATION	10
6.0	CONCLUSIONS AND RECOMMENDATIONS	11
7.0	REFERENCES	12

FIGURES

- 1 Property Location Map
- 2 Boring Location Map

TABLES

- 1 Analytical Results Soil
- 2 Analytical Results Soil Gas

APPENDICES

- A Previous Investigation Maps and Table
- B Permit
- C Standard Operating Procedures
- D Lithologic Logs
- E Field Forms Soil Gas
- F Site Conceptual Model and Data Gap Summary
- G Analytical Results Soil
- H Analytical Results Soil Gas

CERTIFICATION

This **Limited Phase II Subsurface Investigation** at 0 29th Avenue in Oakland, California, has been prepared by ERAS Environmental, Inc. (ERAS) under the professional supervision of the Registered Professional Geologist whose signature appears hereon.

This report was prepared in general accordance with the accepted standard of practice that exists in Northern California at the time the investigation was performed. Judgments leading to conclusions and recommendations are generally made with an incomplete knowledge of the conditions present. More extensive studies, including additional environmental investigations, can tend to reduce the inherent uncertainties associated with such studies.

Our firm has prepared this report for the Client's exclusive use for this particular project and in accordance with generally accepted professional practices within the area at the time of our investigation. No other representations, expressed or implied, and no warranty or guarantee is included or intended.

This report may be used only by the client and only for the purposes stated within a reasonable time from its issuance. Land use, site conditions (both on-site and off-site) or other factors may change over time, and additional work may be required with the passage of time. Any party other than the client who wishes to use this report shall notify ERAS of such intended use. Based on the intended use of report, ERAS may require that additional work be performed and that an updated report be issued. Non-compliance with any of these requirements by the client or anyone else will release ERAS from any liability resulting from the use of this report by any unauthorized party.

Sincerely, ERAS Environmental, Inc.

Andrew Savage Project Geologist

July 20, 2017

Payton

Curtis Payton California Registered Professional Geologist 5608

1.0 INTRODUCTION

The following is a report summarizing the results of the collection and analysis of soil samples and soil gas samples at a site located at 0 29th Avenue in Oakland, California (the "Property"). The Property is listed with the Alameda County Health Care Services Agency (ACHCSA) as Open Site Assessment under the name Pacific Thomas Corp.

The ACHCSA requested this report in a letter approving the scope of work dated April 14, 2017. The scope of work was presented in a work plan prepared by ERAS dated October 19, 2016.

The purpose of the work conducted was to evaluate environmental conditions at the Property for potential redevelopment for commercial uses.

1.1 BACKGROUND

The location of the Property is shown on **Figure 1**. The Property extends from 29th Avenue on the northwest to Derby Avenue on the southeast. The northwestern portion of the Property is a vacant undeveloped lot and the southeastern portion is mostly paved and used as a parking lot for the adjacent Epic Charter School at 1045 Derby Avenue and 1112 29th Avenue. The layout of the Property is shown on **Figure 2**. A review of a 1950 Sanborn Fire Insurance Map indicates that the Property previously contained two sets of railroad lines.

Subsurface Investigation

Phase 2 subsurface investigations were performed for the adjacent site at 3001-3015 East 12th Street by Tec Accutite (TEC) in 2007. The investigations also included investigation on the Property which appear to have been owned by the same party at that time. The results of the subsurface investigation were summarized in a "Workplan for Site Characterization, 3001-3015 East 12th Street, Oakland California" dated June 23, 2008. Note that reports available regarding these investigations include documents entitled "3001-3007 East 12th Street.

A total of five borings were drilled during the investigations, B-1 and B-2 at 3001-3005 East 12th Street and B-3, B-4 and B-5 on the Property. Soil samples were collected from these borings from depths between 8 and 14 feet below the ground surface (bgs). Groundwater was collected only from B-1 and B-2 and was encountered at depths of approximately 24 feet bgs in B-1 and 28 feet bgs in B-2. No groundwater samples were collected from the borings on the Property.

The locations of the borings are shown on Figure 2 from the 2008 TEC workplan that is attached to this report in **Appendix A**. The attachment also includes tables of analytical data for soil and groundwater and boring logs for the deeper borings that encountered groundwater. The analytical results are included on **Table 1** of this report.

Laboratory Results

Soil and groundwater samples were submitted for laboratory analysis for total petroleum hydrocarbons quantified as gasoline range organics (TPH-gro¹), diesel range organics (TPH-dro),

ERAS Environmental, Inc.

¹ TPH-gro, TPH-dro, and TPH-oro are methods that compare analytical results to standards for gasoline, diesel and motor oil, respectively. Therefore, analytical results are estimates of quantities based on what would be expected for the range of hydrocarbon results for the standard. Gasoline range organics (gro) are those hydrocarbon compounds that are in the range of C6 to C10, diesel range organics (dro) are those hydrocarbon compounds that are in the range of C10 to C23, and oil range organics (oro) are those hydrocarbon compounds that are in the range of C18 to

and oil range organics (TPH-oro), volatile organic compounds (VOCs), semi volatile compounds (PNAs and PAHs), polychlorinated biphenyls (PCBs) and a variety of metals.

No concentrations of fuel hydrocarbons or VOCs were detected in the soil samples.

Nickel was reported at concentrations above the Tier 1 environmental screening limit (ESL). Nickel was detected in the soil sample from B-4 at a concentration of 180 mg/Kg. The concentration of nickel detected above the Tier 1 ESL (180 mg/Kg) is within the upper quartile of the range of background concentrations (Kearney, 1996) detected and within 2 standard deviations of the mean. Based on this concentration being in the background range and the other concentrations detected also being in the upper quartile of the range of background concentrations for California, it can reasonably be concluded that the nickel concentrations detected are not anthropogenic.

The remaining concentrations of metal in soil were below the February 2016 Regional Water Quality Control Board Tier 1 ESLs and appeared to be within the typical range of background soil concentrations.

Only one (non-metal) contaminant in soil was detected at a concentration above the Tier 1 ESLs. The soil sample from boring B-4, collected at a depth of 14 feet below the ground surface, was reported to contain 0.272 mg/Kg of PCB (Aroclor 1016), slightly above the ESL for residential land use of 0.22 mg/Kg but below the ESL of 0.74 mg/Kg for commercial/industrial use.

Groundwater from Boring B-1 contained a concentration of nickel at 11 micrograms per liter (μ g/L) above the Aquatic Habitat ESL of 8.2 μ g/L. Groundwater from Borings B-1 and B-2 contained silver at concentrations of 3 and 2 μ g/L, above the ESL of 0.19 μ g/L.

<u>Summary</u>

The Property is a former rail line that appears to have been later used as a storage yard by Caltrans. Five borings were drilled in 2007 on the Property and adjacent site at 3001-3005 East 12th Street. According to TEC Boring B-1 was in the vicinity of a former parking garage and B-2 in the area of a former hay and fuel yard. Borings B-3 and B-5 on the Property appear to be located on one of the former rail lines and Boring B-4 was located near the second rail line (TEC, December 2007).

Soil samples were collected for laboratory analysis from depths of 8-14 feet. It was not specified why these depths for sampling were selected.

The only contaminant found at concentrations above the commercial/industrial ESLs was silver that was found in groundwater from the adjacent site at 3001-3005 East 12th Street. PCBs were detected in a sample from one boring on the Property (B-4) below the commercial/industrial ESL. In general, the ESLs derived for California are based on models that include some very conservative assumptions, including:

- 1. the concentrations detected in soil are in contact with groundwater
- 2. the concentrations detected are ubiquitous and of the same magnitude across the site being

C36. There can be overlap in reporting methods as well as identification of compounds that fall within the standard that may not necessarily be derived from gasoline, diesel, or oil.

modeled

3. the concentrations in groundwater radiate infinitely in all directions until they come into contact with a surface body of water at which point an aquatic receptor pathway becomes complete.

Since the concentrations of PCBs in the other two soil samples (B-3 & B-5) were below the ESL or not detected above the reporting limit, the first assumption is not valid. Since the soil sample from B-4 was collected approximately 14 feet below ground surface (10 feet above the nearest reported groundwater elevation), the second assumption is not valid. Since the nearest surface body of water is the tidal channel of the Oakland Harbor approximately ½ mile from the Property, the third assumption is also very likely to be invalid based on attenuation of contaminants in the groundwater table which is very typical of transport mechanisms in the groundwater table.

The previous subsurface investigations at the Property indicated that no detectable contaminants above the commercial/industrial ESLs are present. No petroleum hydrocarbons or volatile organic compounds were detected. It appears that contamination of the Property is unlikely to have a complete exposure pathway for human or ecological receptors.

However, the sampling was limited to only few potential contaminants and former rail lines are considered to be potential sources of contamination. Boring logs for B-1 and B-2 indicated the Property may contain up to 20 feet of fill which is from an unknown source.

2.0 REGIONAL GEOLOGY/HYDROLOGY

The Property is in the southern part of the City of Oakland in the San Francisco Bay area. The San Francisco Bay area occupies a broad alluvial valley that slopes gently northward toward Oakland Bay and is flanked by alluvial fans deposited at the foot of the Diablo Range to the east and the Santa Cruz Mountains to the west. Surface topography in the immediate vicinity of the Property is gently sloping down to the south west towards tidally influenced Brooklyn Basin Tidal Canal.

The Property is at an elevation of approximately 40 feet above Mean Sea Level according to the United States Geological Survey (USGS) Oakland East Quadrangle California 7.5 Minute Series topographic map.

Materials underlying the site are unconsolidated deposits of near shore and beach sediments, deposited in Oakland Bay at higher sea level stands. At shallow depths beneath these sediments are chert, greywacke, serpentine and shale bedrock that are a part of the Cretaceous to Jurassic-aged Franciscan Formation. Bedrock is exposed to the west and north on the upland surfaces.

The subject site is located on the San Francisco Bay Plain in the northernmost part of the Santa Clara Valley Groundwater Basin, (DWR, 1967), the surface of which slopes gently down toward the north.

The regional groundwater flow follows the topography, moving from areas of higher elevation to areas of lower elevation. The regional groundwater flow direction in the area of the Property is estimated to be toward the southwest toward the Brooklyn Basin Tidal Canal. Groundwater monitoring at an adjacent leak site (1112 29th Avenue), indicated that the flow direction has been determined to be to the southwest.

Based on borings drilled on the adjacent site, the subsurface sediments consist of clayey sand to depths of 18-20 feet underlain by clay to the total depths explored. The sandy clay contained sand, silt and clay and 15% of medium gravel, according to TEC. This material does not appear to be native material and may be artificial fill brought in for the former rail line.

3.0 WORK PERFORMED

3.1 SCOPE OF INVESTIGATION

Scope of work conducted by ERAS for this investigation was as follows.

- Obtained a permit for drilling from the Alameda County Public Works Department (ACPWD).
- Cleared the boring location for the presence of utilities by notifying Underground Service Alert and contracting a private underground locating/clearance service.
- Advanced seven borings (SV-1 through SV-7) using a direct push sample rig to depths of approximately 5.5 feet and installed temporary soil gas sampling points in each.
- Advanced seven borings (SB-1 through SB-7) using a direct push sample rig to a depth of approximately 10 feet directly adjacent to borings SV-1 through SV-7 for the collection of soil samples.
- Collected soil samples from the borings for laboratory analysis. Samples were collected from depth ranges of 0-5 feet and 5-10 feet bgs unless signs of contamination are observed.
- The soil vapor samples were analyzed for volatile organic compounds (VOC) by EPA Method TO-15 and for methane, carbon dioxide and oxygen. Samples were also collected for analysis for naphthalene by EPA Method TO-17. The results of the analyses were compared to the February 2016 Regional Water Quality Control Board Environmental Screening Levels for soil gas sampling.
- The soil samples were analyzed for poly aromatic hydrocarbons (PAHs) and poly nuclear aromatic hydrocarbons (PNAs) by EPA Method 8270C with the Selected Ion Mode (SIM), polychlorinated biphenyls by EPA Method 8082B and for LUFT 5 metals (cadmium, chromium, lead, nickel and zinc).

3.2 BORING LOCATIONS AND SAMPLING

A drilling permit was obtained from the ACPWD. A copy of the permit is included in **Appendix B**. The locations of the borings are shown on **Figure 2**. The Standard Operating Procedures for directpush sampling and soil gas sampling is included in **Appendix C**.

Seven boring locations were spaced on an approximate 100-foot grid across the Property to confirm and further characterize contaminants previously detected on the Property as well as determine if contaminants not previously investigated were present.

In each location, a 5.5-foot-deep boring (SV-1 through SV-7) was advanced to install a temporary soil gas vapor point. In each location, a boring was also advanced to 10 feet (SB-1 through SB-7) for the collection of soil samples from a depth of 0-5 feet and 5-10 bgs.

The borings were advanced using a direct push sample rig by Environmental Control Associates (ECA), of Aptos, California, on June 14, 2017. The borings were continuously logged for lithology

and copies of the lithologic logs are included in **Appendix D**. The subsurface vadose zone lithology encountered consisted of gravel or a sand/gravel/organic fill from the surface to a max of 2 feet bgs. From beneath the fill to the base of the boring silty clay and clayey silt was observed. No evidence of contamination including odor or elevated photoionization (PID) readings were observed. No evidence of groundwater was encountered.

Note the current subsurface exploration indicates the upper portion of the Property is only filled to a depth of approximately 2 feet and refutes the idea that the top 10 feet may be fill material based on the previous investigation.

Soil samples for laboratory analysis were collected from borings SB-1 through SB-7 at the depths of 3.5-4 feet bgs and 9.5-10 feet bgs. The soil gas samples (SV-1 through SV-7) were collected from a depth of 5.0-5.5 feet bgs. The soil gas field forms are included in **Appendix E**.

The soil samples were kept refrigerated pending transport under chain-of-custody procedures to a California certified environmental analytical laboratory.

The soil samples were analyzed for PAHs by EPA Method 8270C with the Selected Ion Mode, PCBs by EPA Method 8082B and for LUFT 5 metals (cadmium, chromium, lead, nickel and zinc).

The soil gas samples were transported under chain of custody procedure to a California certified environmental analytical laboratory and analyzed for volatile organic compounds (VOC) by EPA Method TO-15 and for methane, carbon dioxide and oxygen. Samples were also analyzed for naphthalene by EPA Method TO-17.

An insufficient amount of soil gas flow was available from borings SV-2, SV-3, SV-6 and SV-7 due to tight clay conditions for the analysis for naphthalene by EPA Method TO-17. Naphthalene was however analyzed for by EPA Method TO-15 as part of the VOC suite.

3.3 ANALYTICAL RESULTS

3.3.1 Results in Soil

The laboratory report and chain of custody form are included as **Appendix G**. The results of the analyses are included on **Table 1**.

Only a sample collected from SB-7 contained concentrations of PCBs above the method detection limit (MDL). The sample collected from 9.5-10 feet bgs from SB-7 contained a concentration of 0.040 mg/Kg which is below the ESL for direct exposure on a commercial site and below the ESL for the potential leaching to groundwater.

Concentrations of naphthalene were detected in the samples collected from borings SB-2, SB-3, SB-4, and SB-5 at concentrations ranging from 0.0016 to 0.0021 mg/Kg. None of the concentrations exceeded the ESL for direct exposure on a commercial site and were below the ESL for the potential leaching to groundwater.

No concentrations of PAHs or PNAs were detected above the ESL for direct exposure on a commercial site or the ESL for the potential leaching to groundwater. Only boring SB-5 and SB-7 were found to contain concentrations of other PAHs or PNAs above their respective MDLs. PAHs and

PNAs detected included benzo (a) anthracene, benzo (b) pyrene, benzo (b) fluoranthene, benzo (g,h,i) perylene, benzo (k) fluoranthene, chrysene, fluoranthene, phenanthene, and pyrene.

All concentrations of LUFT 5 metals were below the commercial direct exposure ESL and were within the range of background concentrations (Kearney, 1996) and/or within 2 standard deviations of the mean. Based on this it is concluded that the detected concentrations are not anthropogenic.

3.3.2 Results in Soil Gas

The laboratory report and chain of custody form are included as **Appendix H**. Select results of the analyses are included on **Tables 2**.

Oxygen was detected in the samples collected from borings SV-1 through SV-7 at 5.6% to 18%. Methane was detected from below the MDL up to 0.0052%. Carbon dioxide was detected from below the MDL up to 5.0%.

Numerous VOCs on the TO-15 list were detected however no concentrations were found to exceed the ESLs for vapor intrusion and health risk on a commercial Property. Naphthalene on the TO-15 list was found to be below the MDL in all borings. Of the VOCs detected only chloroform was detected, above the Tier 1 ESLs but below the ESL for vapor intrusion and health risk on a commercial Property, in the samples collected from borings SV-2, SV-3, SV-5, and SV-6 at concentrations up to 100 micro grams per cubic meter ($\mu g/m^3$).

Naphthalene was analyzed for by TO-17 from borings SV-1, SV-4, and SV-5 and no concentrations above the MDL were detected. An insufficient amount of soil gas flow due to tight clay conditions was available from borings SV-2, SV-3, SV-6 and SV-7 for the analysis for naphthalene by EPA Method TO-17.

4.0 UPDATED SITE CONCEPTUAL MODEL

An updated Site Conceptual Model Table and Data Gap Summary are included as **Appendix F**.

4.1 HYDROGEOLOGIC SETTING

Shallow groundwater is at roughly 24 to 28 feet bgs. No groundwater monitoring has been conducted on the Property but based on nearby leak cases with active groundwater monitoring the groundwater has been determined to flow toward the southwest at a gradient of about 0.01 foot/foot.

The shallow water-bearing zone at the Property is found in the clayey sand (containing sand, silt, clay and gravel). Groundwater is generally under water-table conditions, but may be locally confined by the clay underlying the fill.

4.2 EXTENT OF CONTAMINATION

4.2.1 Results in Soil

No concentrations of fuel hydrocarbons or VOCs were detected in the soil samples collected on the Property.

Only a sample collected from SB-7 contained concentrations of PCBs above the method detection limit (MDL). The sample collected from 9.5-10 feet bgs from SB-7 contained a concentration of 0.040 mg/Kg which is below the ESL for direct exposure on a commercial site and below the ESL for the potential leaching to groundwater.

Concentrations of naphthalene were detected in the samples collected from borings SB-2, SB-3, SB-4, and SB-5 at concentrations ranging from below the MDL to 0.0021 mg/Kg. None of the concentrations exceeded the ESL for direct exposure on a commercial site and were below the ESL for the potential leaching to groundwater.

No concentrations of PAHs or PNAs were detected above the ESL for direct exposure on a commercial site or the ESL for the potential leaching to groundwater. Only borings SB-5 and SB-7 were found to contain concentrations of other PAHs or PNAs above their respective MDLs. PAHs and PNAs detected included benzo (a) anthracene, benzo (b) pyrene, benzo (b) fluoranthene, benzo (g,h,i) perylene, benzo (k) fluoranthene, chrysene, fluoranthene, phenanthene, and pyrene.

With the exception of nickel, concentrations of metals in soil were below the Tier 1 ESLs. All metals appeared to be within the typical range of background soil concentrations.

4.2.2 Results in Groundwater

No groundwater samples have been collected from the Property.

4.2.2 Results in Soil Gas

Oxygen was detected in the samples collected from borings SV-1 through SV-7 at 5.6% to 18%. Methane was detected from below the MDL up to 0.0052%. Carbon dioxide was detected from below the MDL up to 5.0%.

Numerous VOCs on the TO-15 list were detected however no concentrations were found to exceed the ESLs for vapor intrusion and health risk on a commercial Property. Naphthalene on the TO-15

list was found to be below the MDL in all borings. Of the VOCs detected only chloroform was detected, above the Tier 1 ESLs but below the ESL for vapor intrusion and health risk on a commercial Property, in the samples collected from borings SV-2, SV-3, SV-5, and SV-6 at concentrations up to 100 micro grams per cubic meter ($\mu g/m^3$).

Naphthalene was analyzed for by TO-17 from borings SV-1, SV-4, and SV-5 and no concentrations above the MDL were detected. An insufficient amount of soil gas flow due to tight clay conditions was available from borings SV-2, SV-3, SV-6 and SV-7 for the analysis for naphthalene by EPA Method TO-17.

5.0 LOW THREAT CASE CLOSURE EVALUATION

The following criteria should be met for a site to qualify for closure per RWQCB's *Interim Guidance on Required Cleanup at Low-Risk Sites*.

- The leak has been stopped and ongoing sources including free product, have been removed or remediated;
- The site has been adequately characterized;
- The dissolved plume is not migrating;
- No groundwater impact currently exists, no contaminants are found at levels above the established MCLs or other water quality objectives;
- No water wells, deeper drinking water aquifers, surface water, or other sensitive receptors are likely to be impacted; and
- The site presents no significant risk to human health or the environment.

Leak Has Been Stopped and Ongoing Sources Have Been Removed

The investigations have not identified a specific source of contamination.

Site is Adequately Characterized

The site has been adequately characterized. The Property is zoned commercial and no concentrations of the contaminants of concern (COCs) have been found to exceed the commercial ESLs. With the exception of nickel in the soil samples collected and chloroform in the soil gas samples collected all other COCs are also below the Tier 1 ESLs. The nickel concentrations are within background ranges and are considered not anthropogenic. No known source of the soil vapor concentrations of chloroform have been identified.

Dissolved Plume is Not Migrating

No dissolved plume has been identified.

No Water Wells or Other Sensitive Receptors Are Threatened

None of the COCs identified were present at concentrations capable of threatening water wells or other sensitive receptors.

Site Presents No Significant Risk

The analytical data for soil and soil gas have not identified any risk to human health safety and the environment for a commercial site.

6.0 CONCLUSIONS AND RECOMMENDATIONS

ERAS concludes that the site has been adequately characterized. The Property is zoned commercial and no concentrations of the contaminants of concern (COCs) have been found to exceed the commercial ESLs.

The investigations conducted on the Property have not identified a specific release or a source of contamination and the analytical data for soil and soil gas have not identified any risk to human health safety and the environment for a commercial site.

Based on the results of this investigation, the fact that the property is zoned commercial, and the lack of any detected COCs exceeding the commercial site ESLs ERAS recommends that this site be considered for case closure.

7.0 **REFERENCES**

Alameda County Department of Environmental Health, Remedial Action Completion Certificate, Fuel Leak Case, RO0000397 and Geotracker Global ID T0600101631, Caltrans South Oakland, Maintenance Station, 1102 29th Avenue, CA 94601, July 25, 2011.

Alameda County Department of Environmental Health, Voluntary Remedial Action Program (VRAP) Case No. RO0003204 and Geotracker ID T10000006491, Pacific Thomas Corporation, 0 29th Avenue, Oakland, CA 94621, April 14, 2017.

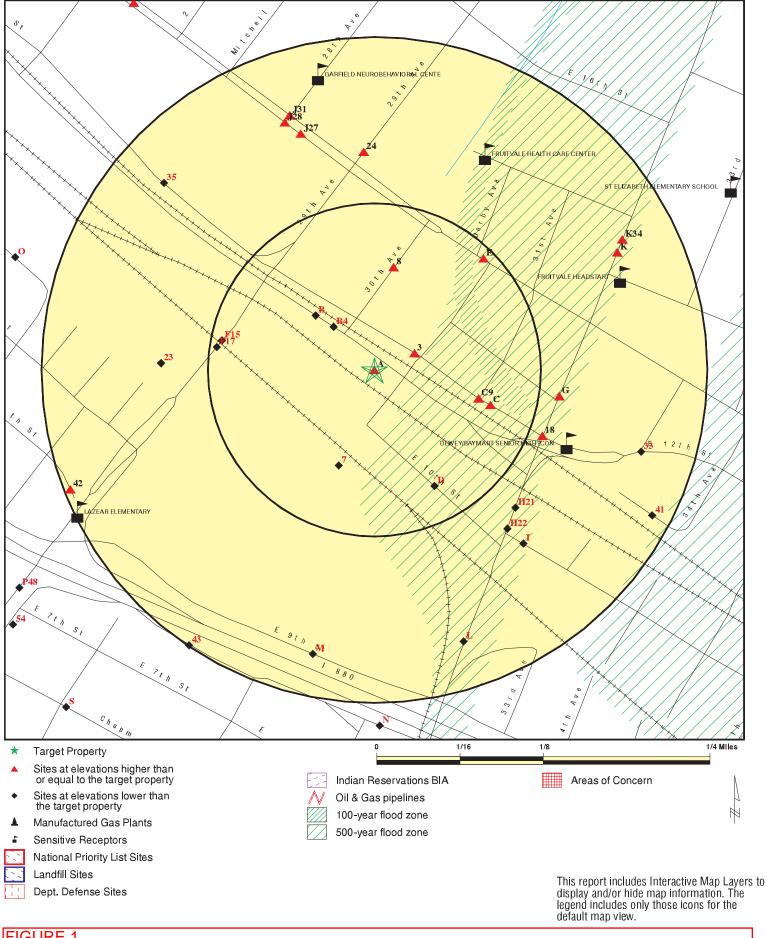
California Department of Water Resources, Evaluation of Ground Water Resources South Bay, Appendix A: Geology, Bulletin 118-1, August 1967.

California Regional Water Quality Control Board, Water Quality Control Plan, San Francisco Bay Basin Region (2), December 1986.

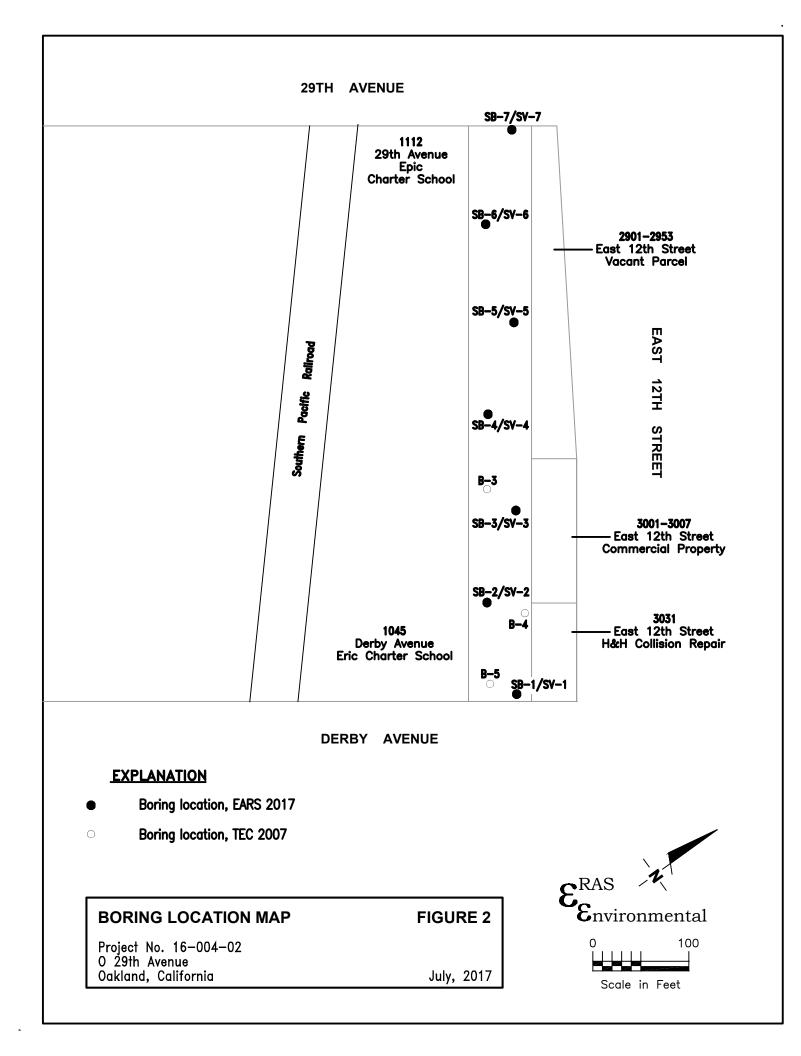
ERAS Environmental Inc., Work Plan for Limited Phase II Subsurface Investigation, 0 29th Avenue, Oakland, California, October 19, 2016.

Goldman, Harold B., Geology of San Francisco Bay prepared for San Francisco Bay Conservation and Development Commission, February 1967.

Helley, E.J., La Joie, K.R., Spangle, W.E., and Blair, M.L., Flatland Deposits of the San Francisco Bay Region, California - their geology and engineering properties and their importance to comprehensive planning, U.S. Geological Survey Professional Paper 943, 1974.


Kearney Foundation. (1996). Background Concentrations of Trace and Major Elements in California Soils, Kearney Foundation Special Report. Kearney Foundation of Soil Science, Division of Agricultural and Natural Resources, University of California at Riverside. March.

Tec Accutite (TEC), Workplan for Site Characterization, 3001-3015 East 12th Street, Oakland, California, 94601, June 23, 2008.


Tec Accutite (TEC), Limited Subsurface Investigation Report, 3001-3015 East 12th Street, Oakland, California, 94601, June 22, 2007.

Tec Accutite (TEC), Addendum to Limited Subsurface Investigation Report, 3001-3015 East 12th Street, Oakland, California, 94601, December 3, 2007.

FIGURES

FIGURE 1 PROPERTY LOCATION MAP 0 29th AVENUE, OAKLAND

TABLES

TABLE 1. ANALYTICAL RESULTS - SOIL 0 29th Avenue, Oakland, CA

Sample ID	Date	Depth	PCBs	Naphthalene	Other PAHs/PNAs	Nickel	Other LUFT 5
		ft-bgs			mg/Kg		
TEC, 2007							
B-3	6-Jun-07	12	ND	<0.33	ND	81	BESL
B-4	6-Jun-07	14	0.272	<0.33	ND	180	BESL
B-5	6-Jun-07	8	ND	<0.33	ND	92	BESL
ERAS, 2017							
SB-1	14-Jun-17	3.5-4	< 0.050	<0.010	ND	72	BESL
SB-1	14-Jun-17	9.5-10	< 0.050	<0.010	ND	83	BESL
SB-2	14-Jun-17	3.5-4	< 0.050	<0.010	ND	72	BESL
SB-2	14-Jun-17	9.5-10	< 0.050	0.0016 J	ND	90	BESL
SB-3	14-Jun-17	3.5-4	< 0.050	0.0021 J	ND	110	BESL
SB-3	14-Jun-17	9.5-10	< 0.050	<0.020	ND	81	BESL
SB-4	14-Jun-17	3.5-4	< 0.050	<0.010	ND	72	BESL
SB-4	14-Jun-17	9.5-10	< 0.050	0.0017 J	ND	130	BESL
SB-5	14-Jun-17	3.5-4	< 0.050	<0.010	ND	74	BESL
SB-5	14-Jun-17	9.5-10	< 0.050	0.0020 J	BESL	75	BESL
SB-6	14-Jun-17	3.5-4	<0.050	<0.010	ND	120	BESL
SB-6	14-Jun-17	9.5-10	<0.050	<0.010	ND	94	BESL
SB-7	14-Jun-17	3.5-4	<0.050	<0.010	ND	120	BESL
SB-7	14-Jun-17	9.5-10	0.040 J	<0.010	BESL	100	BESL
ESL - Com			1.0	14	-	11,000	-
ESL - GW			6.30	0.033	-	-	-

NOTES

ESL - Com = Environmental Screening Level (potential drinking water, SFRWQCB, February 2016 Revision 3), Commercial/Industrial Shallow Soil Direct Exposure

ESL - GW = Environmental Screening Level (potential drinking water, SFRWQCB, February 2016 Revision 3), Leaching to Groundwater

BESL = all detected concentrations of LUFT 5 metals other than nickel were below the ESL set forth by the RWQCB as of February, 2016 (commercial/industrial and leaching to groundwater).

Reported concentrations above the ESLs are in bold type

J = Result is less that the reporting limit but greater than the method detection limit. The reported

ft-bgs = feet below ground surface

mg/kg = milligrams per kilogram

ND = concentration below method detection limit

PCBs = polychlorinated biphenyls

PAHs/PNAs = polynuclear aromatic hydrocarbons

LUFT 5 = cadmium, chromium, lead, nickel, and zinc

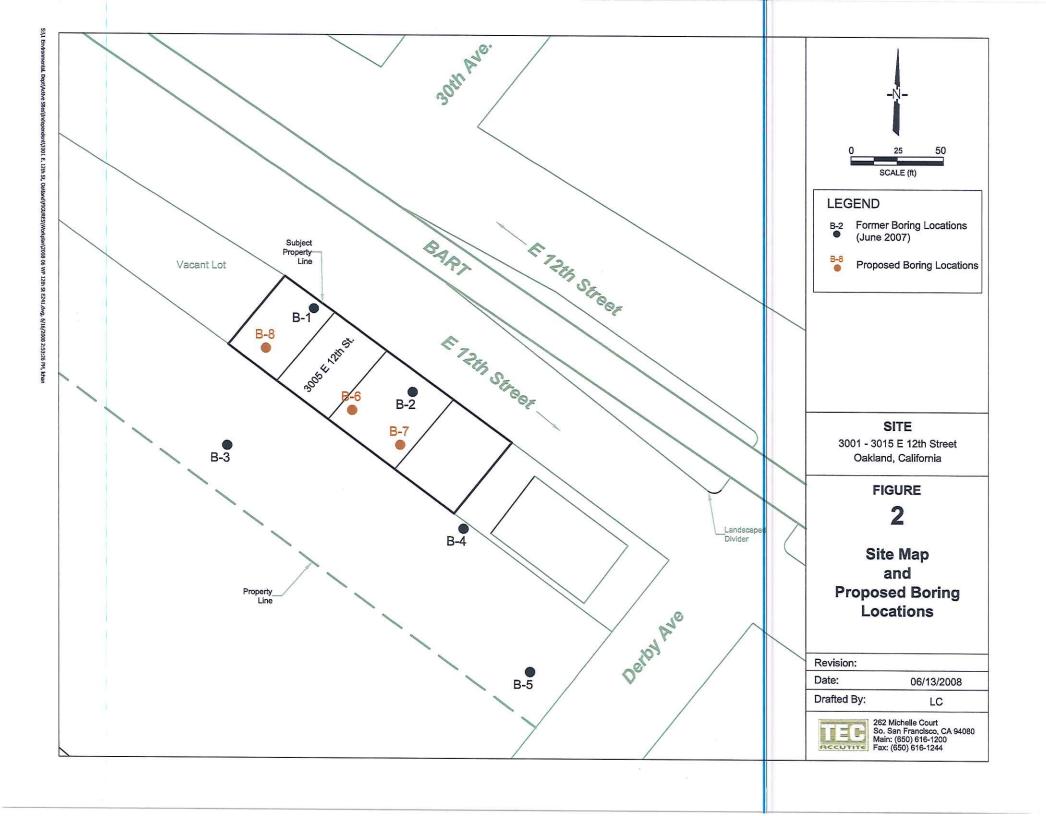
TABLE 2. ANALYTICAL RESULTS - SOIL GAS 0 29th Avenue, Oakland CA

Sample ID	Date	Depth	Oxygen	Methane	Carbon Dioxide	Benzene	Toluene	Ethylbenzene	Xylenes	Choloform	Naphthalene	2-Propanol	Other TO-15	Naph TO-17
		ft-bgs		Percentage (%)			μg/m³							
SV-1	15-Jun-17	5-5.5	5.6	<0.00024	1.9	5.4	8.2	12	52	13	<13	<12	BESL	<5.0
SV-2	15-Jun-17	5-5.5	17	0.0040	<0.096	<15	29	<21	111	100	<51	<48	BESL	Insuficient
SV-3	15-Jun-17	5-5.5	18	<0.00080	1.6	<13	24	<17	32	73	<42	<39	BESL	Insuficient
SV-4	15-Jun-17	5-5.5	16	< 0.00026	4.9	11	19	15	103	28	<13	<12	BESL	<5.0
SV-5	15-Jun-17	5-5.5	18	< 0.00025	2.7	23	55	<11	56	85	<26	<25	BESL	<5.0
SV-6	15-Jun-17	5-5.5	13	< 0.00028	5.0	18	27	6.8	27.4	64	<15	<14	BESL	Insuficient
SV-7	15-Jun-17	5-5.5	15	0.0052	3.3	31	35	<13	23	42	<32	<30	BESL	Insuficient
ESL - Com			-	-	-	420	1,300,000	4,900	440,000	530	360	-	-	360

NOTES

ESL - Com = Environmental Screening Level (potential drinking water, SFRWQCB, February 2016 Revision 3), Commercial/Industrial, Vapor Intrusion, Health Risk

 $\mu g/m^3$ = micro grams per cubic meter


ft-bgs = feet below ground surface

Insuficient = Insuficient flow for analysis

BESL = All remaining VOCs concentrations detected were below the ESL (Commercial/Industrial, Vapor Intrusion, Health Risk) set forth by the RWQCB as of February, 2016 Bold = Above the ESL

APPENDIX A

Previous Investigation Maps and Tables

Table 1Summary of Historical Soil Analytical Data3001 - 3015 East 12th StreetOakland, California

Sample	Depth	Date	TPHg	TPHd	TPHmo	BTEX	VOC's	PCP &	PCB's				Metals		_	_
ID	(feet)							PAH's		Cd	Cr	Cu	Pb	Ni	Ag	Zn
								Co	centratio	ons in mg	/Kg					
	ESL		83	83	370	var	var	var	0.22	1.7		230	200	150	20	600
B-1 @ 8fbg	8	6/6/2007	<0.1	<2.0	<4.0	ND	ND	ND	ND	<1.0	65	28	12	110	<1.0	64
B-2 @14fbg	14	6/6/2007	<0.1	<2.0	<4 .0	ND	ND	ND	ND	<1.0	80	32	8.3	110	<1.0	51
B-3 @12fbg	12	6/6/2007	<0.1	<2.0	10.7	ND	ND	ND	ND	2.7	62	73	45	81	<1.0	140
B-4 @14fbg	14	6/6/2007	<0.1	<2.0	<4.0	ND	ND	ND	0.272*	<1.0	95	33	6.9	180	<1.0	52
B-5 @ 8fbg	8	6/6/2007	<0.1	<2.0	<4.0	ND	ND	ND	ND	<1.0	41	28	12	92	<1.0	55
Notes:	5 X															
	SOLD = Concentration exceeds ESL															
	fbg) = feet below surface grade "PHg = Total petroleum hydrocarbons as gasoline by EPA Method 8015.															
TPHd = Total p																
TPHmo = Tota																
BTEX = Benze																
VOC's = volatil	e organic	compounds	sincluding	1,2-Dibror	noethane, 1	,2-Dichlor	oethane, E	thyl tert Bu	tyl Ether, Is	sopropyl eth	ner, Methy	I tert-butyl e	ther, t-Buty	l alcohol, t	tert-amyl m	ethyl
ether by EPA N					1 00700											
PCPs & PAH's																
PCB's = semi-																
Metals: Cd = C	aumium,		ilum, Cu =	Copper, P	B = Lead, N	II = NICKEI,	Ag = Silve	er, and ∠n =	Zinc by El	PA Method	6010B.					
ND = all individ																
* = Aroclor 101																
ESL = Environ	mental So	creening Lev	vel for subs	surface so	I (< 3M BGS	5), Table A	1, ground	water IS a	current or p	potential dri	nking wat	er resource,	residential	land use	(CRWQCB	Interim
	nal – November 2007 (revised May 2008)).															
								_								

Table 2Summary of Historical Grab Groundwater Analytical Data3001 - 3007 E 12th StreetOakland, California

Sample Date	TPHg	TPHd	TPHmo	BTEX	VOC's	PCP &	PCB's				Metals		_	
ID						PAH's		Cd	Cr	Cu	Pb	Ni	Ag	Zn
						Co	ncentrati	ions in µç	g/L					_
ESL	100	100	100	var	var	var	0.014	0.25	50	3.1	2.5	8.2	0.19	81
B-1 6/6/20	Second Se	<77	<14	ND	ND	ND	<1.0	<0.2	<2.0	<3.0	<2.0	11	3**	8.6
B-2 6/6/20	07 <57	<42.4	<21.2	ND	ND	ND	<1.0	<0.2	2**	<3.0	<2.0	7**	2**	20
Notes: BOLD = Concentra	ion exceeds	ESI						_			-			
Notes: BOLD = Concentration exceeds ESL TPHg = Total petroleum hydrocarbons as gasoline by EPA Method 8015. TPHd = Total petroleum hydrocarbons as motor oil by EPA Method 8015. TPHmo = Total petroleum hydrocarbons as motor oil by EPA Method 8015. BTEX = Benzene, Toluene, Ethylbenzene, Xylenes by EPA Method 8260B. VOC's = volatile organic compounds including 1,2-Dibromoethane, 1,2-Dichloroethane, Ethyl tert Butyl Ether, Isopropyl ether, Methyl tert-butyl ether, t-Butyl alcohol, tert-amyl nethyl ether by EPA Method 8260B. PCPs & PAH's = semi-volatile compounds pentachlorophenol and polycyclic aromatic hydrocarbon by EPA Method 8270C. PCB's = semi-volatile compound polychlorinated biphenyls by EPA Method 8082. Metals: Cd = Cadmium, Cr = Chromium, Cu = Copper, BP = Lead, Ni = Nickel, Ag = Silver, and Zn = Zinc by EPA Method 6010B. ND = all individual analytes not detected at or above laboratory detection limits for this method ** = considered an estimated value (reported between Maximum Detection Limit and Reporting Limit) var = variable ESL's, unique for each constituent. ESL = Environmental Screening Level for Groundwater, groundwater IS a current or potential drinking water resource, Table F-1a (CRWQCB Interim Final – November														

APPENDIX B

Permit

Alameda County Public Works Agency - Water Resources Well Permit

399 Elmhurst Street Hayward, CA 94544-1395 Telephone: (510)670-6633 Fax:(510)782-1939

Application Approved on: 06/05/2017 By jamesy

Permit Numbers: W2017-0473 Permits Valid from 06/14/2017 to 06/15/2017

Application Id: Site Location:	1495749378195 0 29th Avenue, Oakland APN 693-25-8	City of Project Site: Oakland						
	Drill 7 locations (2 borings in each location) One to 5 feet for soil gas and one to 10 feet for soil							
Project Start Date: Assigned Inspector:	sampling 06/14/2017 Completion Date: 06/15/2017 Contact Marcelino Vialpando at (510) 670-5760 or Marcelino@acpwa.org							
Applicant:	ERAS Environmental, Inc, - Andrew Savage	Phone: 510-247-9885 x302						
Property Owner:	1533 B Street, Hayward, CA 94541 Education for Change 303 Hegenberger Road, Suite 301, Oakland, CA 9	Phone:						
Client:	Education for Change 303 Hegenberger Road, Suite 301, Oakland, CA 9	Phone:						
Contact:	Andrew Savage	Phone: 510-247-9885 x302 Cell: 925-330-8926						

	Total Due:	\$265.00
Receipt Number: WR2017-0259	Total Amount Paid:	\$265.00
Payer Name : Andrew Savage	Paid By: MC	PAID IN FULL

Works Requesting Permits:

Borehole(s) for Investigation-Vapor Sampling 24 to 48 hours only - 14 Boreholes Driller: Environmental Control Associates - Lic #: 695970 - Method: DP

Work Total: \$265.00

Specifications											
Permit	Issued Dt	Expire Dt	#	Hole Diam	Max Depth						
Number			Boreholes								
W2017-	06/05/2017	09/12/2017	14	2.75 in.	10.00 ft						
0473											

Specific Work Permit Conditions

1. Boreholes shall not be left open for a period of more than 24 hours. All boreholes left open more than 24 hours will need approval from Alameda County Public Works Agency, Water Resources Section. All boreholes shall be backfilled according to permit destruction requirements and all concrete material and asphalt material shall be to Caltrans Spec or County/City Codes. No borehole(s) shall be left in a manner to act as a conduit at any time.

2. Permittee shall assume entire responsibility for all activities and uses under this permit and shall indemnify, defend and save the Alameda County Public Works Agency, its officers, agents, and employees free and harmless from any and all expense, cost, liability in connection with or resulting from the exercise of this Permit including, but not limited to, properly damage, personal injury and wrongful death.

3. Prior to any drilling activities, it shall be the applicant's responsibility to contact and coordinate an Underground Service Alert (USA), obtain encroachment permit(s), excavation permit(s) or any other permits or agreements required for that Federal, State, County or City, and follow all City or County Ordinances. No work shall begin until all the permits and requirements have been approved or obtained. It shall also be the applicants responsibilities to provide to the Cities or to Alameda County an Traffic Safety Plan for any lane closures or detours planned. No work shall begin until all the permits and requirements have been approved or obtained.

4. Permittee shall assume entire responsibility for all activities and uses under this permit and shall indemnify, defend

Alameda County Public Works Agency - Water Resources Well Permit

and save the Alameda County Public Works Agency, its officers, agents, and employees free and harmless from any and all expense, cost and liability in connection with or resulting from the exercise of this Permit including, but not limited to, property damage, personal injury and wrongful death.

5. Applicant shall contact assigned inspector listed on the top of the permit at least five (5) working days prior to starting, once the permit has been approved. Confirm the scheduled date(s) at least 24 hours prior to drilling.

6. Permittee, permittee's contractors, consultants or agents shall be responsible to assure that all material or waters generated during drilling, boring destruction, and/or other activities associated with this Permit will be safely handled, properly managed, and disposed of according to all applicable federal, state, and local statutes regulating such. In no case shall these materials and/or waters be allowed to enter, or potentially enter, on or off-site storm sewers, dry wells, or waterways or be allowed to move off the property where work is being completed.

7. Copy of approved drilling permit must be on site at all times. Failure to present or show proof of the approved permit application on site shall result in a fine of \$500.00.

8. Electronic Reporting Regulations (Chapter 30, Division 3 of Title 23 & Division 3 of Title 27, CCR) require electronic submission of any report or data required by a regulatory agency from a cleanup site. Submission dates are set by a Regional Water Board or by a regulatory agency. Once a report/data is successfully uploaded, as required, you have met the reporting requirement (i.e. the compliance measure for electronic submittals is the actual upload itself). The upload date should be on or prior to the regulatory due date.

9. NOTE:

Under California laws, the owner/operator are responsible for reporting the contamination to the governmental regulatory agencies under Section 25295(a). The owner/operator is liable for civil penalties under Section 25299(a)(4) and criminal penalties under Section 25299(d) for failure to report a leak. The owner/operator is liable for civil penalties under Section 25299(b)(4) for knowing failure to ensure compliance with the law by the operator. These penalty provisions do not apply to a potential buyer.

10. Permit is valid only for the purpose specified herein. No changes in construction procedures, as described on this permit application. Temp Vapor wells shall not be converted to monitoring Vapor wells, without a seperate permit application process.

11. Vapor monitoring wells constructed with tubing shall be decomissioned by complete removal of tubing, grout seal, and fill material of sand or bentonite. Fill material may be removed by hand auger if material can be removed completely.

Vapor monitoring wells constructed with pvc pipe less than 2" shall be overdrilled to total depth.

Vapor monitoring wells constructed with 2" pvc pipe or larger may be grouted by tremie pipe (any depth) or pressure grouted (less than 30', 25 psi for 5 min).

APPENDIX C

Standard Operating Procedure

STANDARD OPERATING PROCEDURE – DIRECT PUSH BORINGS

SOIL CORING AND SAMPLING PROCEDURES

Prior to drilling, all boreholes will be hand dug to a depth of 4-5 feet below ground surface (bgs) to check for underground utilities.

Soil and groundwater samples are collected for lithologic and chemical analyses using a direct driven soil coring system. A hydraulic hammer drives sampling rods into the ground to collect continuous soil cores. As the rods are advanced, soil is driven into an approximately 2.5-inch-diamter sample barrel that is attached to the end of the rods. Soil samples are collected in sleeves inside the sample barrel as the rods are advanced. After being driven 4 to 5 feet into the ground, the rods are removed from the borehole. The sleeve containing the soil core is removed from the sample barrel, and can then be preserved for chemical analyses, or used for lithologic description. This process is repeated until the desired depth or instrument refusal is reached.

If the soil sample is to be analyzed for volatile organic compounds (VOC's) and En Core[®] sampler will be utilized. If the sample is not being analyzed for VOC's a soil core interval selected for analyses is cut from the sleeve using a pre-cleaned hacksaw. The ends of the tube are covered with aluminum foil or Teflon liner and sealed with plastic caps. The soil-filled liner is labeled with the bore number, sample depth, site location, date, and time. The samples are placed in bags and stored in a cooler containing ice. Soil from the core adjacent to the interval selected for analyses is placed in a plastic zip-top bag. The soil is allowed to volatilize for a period of time, depending on the ambient temperature. The soil is scanned with a flame-ionization detector (FID) or photo-ionization detector (PID).

All sample barrels, rods, and tools (e.g. hacksaw) are cleaned with Alconox or equivalent detergent and de-ionized water. All rinsate from the cleaning is contained in 55-gallon drums at the project site.

GROUNDWATER SAMPLING FROM DIRECT PUSH BORINGS

After the targeted water-bearing zone has been penetrated, the soil-sample barrel is removed from the borehole. Small-diameter well casing with 0.010-inch slotted well screen may be installed in the borehole to facilitate the collection of groundwater samples. Threaded sections of PVC are lowered into the borehole. Groundwater samples may then be collected with a bailer, peristaltic pump, submersible or other appropriate pump until adequate sample volume is obtained. Perstaltic pumps are not used in applications requiring a lift of greater than 1 feet of net head.

Groundwater samples are preserved, stored in an ice-filled cooler, and are delivered, under chain-ofcustody, to a laboratory certified by the California Department of Health Services (DHS) for hazardous materials analysis.

BOREHOLE GROUTING FOR DIRECT PUSH BORINGS

Upon completion of soil and water sampling, boreholes will be abandoned with neat cement grout to the surface. If the borehole was advanced into groundwater, the grout is pumped through a grouting tube positioned at the bottom of the borehole.

STANDARD OPERATING PROCEDURE -SOIL GAS SAMPLING

The collection of soil gas samples will not be conducted in the event of precipitation or heavy irrigation. 5-days of dry weather and the lack or heavy irrigation is required prior to the collection of the vapor samples.

The installation of the sample probes and the sampling procedures follows the Department of Toxic Substances Control, California Environmental Protection Agency, Guidance for the Evaluation and Mitigation of Subsurface Vapor Intrusion to Indoor Air Vapor Intrusion Guidance document dated October 2011. The procedures for leak testing and purge volume testing follow the California Environmental Protection Agency, Department of Toxic Substances Control, Los Angeles Regional Water Quality Control Board, San Francisco Regional Water Quality Control Board, Advisory for Active Soil Gas Investigations dated July 2015.

Sample rods with an expendable soil-gas sampling point are driven to the desired depth. The rods are retracted and clean sand is placed in the boring to approximately 6-inches above the sample point. 6-inches of granulated bentonite is then placed in the boring topped with bentonite slurry to the surface. The bentonite will be allowed to hydrate and expand for at least 2 hours prior to purging the sample line.

The soil gas sample is collected into a Summa canister. A summa canister is a stainless steel vessel which has had the internal surfaces specially passivated using a "Summa" process. The Summa canister arrives pre-cleaned from the laboratory and with an internal vacuum between 25" Hg and 30" Hg. Prior to use, the pressure in the summa canister is checked by the sampler with a pressure gauge to ensure a vacuum of at least 25" Hg for quality control purposes.

A sampling manifold is connected to the sample tubing which originated from the target depth for the sample collection. The sample manifold is connected to a purge Summa canister and a sample Summa canister. The sample manifold contains a gauge to display the vacuum remaining in the canister, valves to isolate the sample train, a particulate filter, and a flow controller to maintain a low purge rate.

A leak test is performed on the sampling manifold prior to sample collection. A vacuum is applied and required to stabilize and remain at the same pressure for a time period of 30 minutes. Once the leak test has been performed a vacuum is applied to the tubing to purge at least three volumes of air from the sample tubing at a purge rate from 100 to 200 ml/min.

The valve on the summa canister is opened, and the soil-gas sample is drawn into the canister. The sample tubing will be checked for water. If observed, the sample will be discarded. The sample collection will be stopped with about 5-inches Hg remaining in the Summa canister. The soil-gas samples will be transferred under chain-of-custody procedures to a state certified laboratory for analyses.

As a leak detector isopropyl alcohol (2-propanol) will be used in a shroud during sample collection. Analysis of the sample for isopropyl alcohol (2-propanol) will indicate if ambient air entered the sample. A sample of the shroud will also be collected and analyzed for isopropyl alcohol (2-propanol).

APPENDIX D

Lithologic Logs

3	RA	.s (nvir	oni	mer	nta	1	Log of Boring SB-1					
			6-004					ADDRESS: 0 29th Avenue, Oakland, CA					
_			<u>: 16–</u>					LOCATION: near Derby Street					
	DATE STARTED: 06–14–17 DATE FINISHED: 06–14–17							First Water (ft. bgs.): NA DATE:					
			THOD:				Push	TOTAL DEPTH: 10 feet GEOLOGIST: Andrew Savage					
			MPANY:					Reviewed By:					
DEPTH ft.	PID (ppm)	BLOWS/ 1/2'	SAMPLE NO.	RECOVERY	GRAPHIC LOG	WATER LEVEL	GEC	DLOGIC DESCRIPTION					
-				¥			1/4 to 1/2 inch gr						
	4' 0			¥			- - - -	brown (10YR—3/3), damp, n plasticity, no contaminant odor - -					
	7' 0							nange to dark greenish gray taminant odor fine to course well graded t odor					
- 10 - -	10' 0.5						- Bottom of boring 10 -	feet bgs 06-14-17					
- - - - - 15-							- - - - -						
							- - - - - -						
- 20-				F			-						

3	RAS	Enviror	nmer	ntal		Log of Boring SB-2					
		16-004-0				ADDRESS: 0 29th Avenue, Oakland, CA					
		R: 16–00				LOCATION: half way back in parking area					
		ED: 06-1 IED: 06-1				First Water (ft. bgs.): NA DATE: TOTAL DEPTH: 10 feet					
		ETHOD: <i>H</i>			ush	GEOLOGIST: Andrew Savage					
		DMPANY: E				Reviewed By:					
DEPTH ft.	PID (ppm) BLOWS/ 1/2'	o.	RECUVERT GRAPHIC LOG	water level	GEC	PLOGIC DESCRIPTION					
	4' 0 7' 0					brown (10YR-3/3), damp, n plasticity, no contaminant odor					
10— - - - - - - - - - - - - - - - - - - -					Bottom of boring 10	feet bgs 06-14-17					

E RAS E nvironmental	Log of Boring SB-3
PROJECT: 16-004-02	ADDRESS: 0 29th Avenue, Oakland, CA
JOB NUMBER: 16-004-02	LOCATION: back of parking area
DATE STARTED: 06–14–17 DATE FINISHED: 06–14–17	First Water (ft. bgs.): NA DATE: TOTAL DEPTH: 10 feet
DRILLING METHOD: Hydraulic Push	GEOLOGIST: Andrew Savage
DRILLING COMPANY: ECA	Reviewed By:
DEPTH ft. PID (ppm) BLOWS/ 1/2' SAMPLE NO. RECOVERY GRAPHIC LOG WATER LEVEL	DLOGIC DESCRIPTION
4' 1/4 to 1/2 inch gro 5 - 7' - 7' - 10 10'	avel to dust + fill brown (10YR-3/3), damp, m plasticity, no contaminant odor
) feet bgs 06-14-17

3	RA	s	Enviro	oni	mer	ntal		Log of Boring SB-	4
			16-004-					ADDRESS: 0 29th Avenue, Oakland,	ĊA
			R: 16-					LOCATION: dirt nearest parking lot	
			ED: 06- ED: 06					First Water (ft. bgs.): NA DATE: -	
			THOD:				Push	TOTAL DEPTH: 10 feet GEOLOGIST: Andrew Savage	
			MPANY:			100 1		Reviewed By:	
DEPTH ft.	PID (ppm)	BLOWS/ 1/2'	SAMPLE NO.	RECOVERY	GRAPHIC LOG	WATER LEVEL	GEO	DLOGIC DESCRIPTION	
· · ·				¥			Sand/Gravel/Organics		-
- - - - - - - - - - -	4' 0						-	brown (10YR-3/3), stiff, contaminant odor ange to dark yellowish brown	- - - - - -
	7' 0			¥ A			at 7 feet Clayey Silt (ML), darl damp, stiff, low plas course well graded s no contaminant odor	< yellowish brown (10YR-4/6), ticity, 70% fines, 20% fine to and, 10% 1/8 to 1/2 inch gravel,	- - - - -
10	10' 0.1						Bottom of boring 10	feet bgs 06-14-17	
15- - - - - - - - - - - - - - - - - - -									- - - - - - - - - - -

3	RA	s	Enviro	oni	mer	nta	1	Log of Boring SB-5	
PR	OJEC	:T:	16-004-	-02				ADDRESS: 0 29th Avenue, Oakland, CA	
			R: 16–					LOCATION: dirt area, middle, nearest E 12th	
			ED: 06-					First Water (ft. bgs.): NA DATE:	
			ED: 06				Devah	TOTAL DEPTH: 10 feet	
			THOD: MPANY:			ac .	Push	GEOLOGIST: <i>Andrew Savage</i> Reviewed By:	
DEPTH ft.	PID (ppm)	/2'	SAMPLE NO.	RECOVERY	8	WATER LEVEL	GEC	DLOGIC DESCRIPTION	
-				¥			Sand/Gravel/Organics	s (Fill)	
- - - - 5-	4* 0.1						-	brown (10YR—3/3), damp, ity, no contaminant odor nange to dark yellowish brown	- - - - -
-	7' 0						at 9 feet		-
10— - - - - - - - - - -	10' 0						damp, stiff, low plas course well graded s no contaminant odor	k yellowish brown (10YR-4/6), ticity, 70% fines, 20% fine to sand, 10% 1/8 to 1/2 inch gravel, feet bgs 06-14-17	-
- 15- - - - - - - - - - - - - - - - - -							- 		- - - - - - - - - - - - - - - - - - -
20-									

3	RA	s	Inviro	onr	ner	nta	1	Log of Boring SB-6	
			6-004-					ADDRESS: 0 29th Avenue, Oakland, CA	
	JOB NUMBER: 16–004–02 DATE STARTED: 06–14–17					LOCATION: dirt area			
			ED: 06- ED: 06					First Water (ft. bgs.): NA DATE: TOTAL DEPTH: 10 feet	
			 THOD:				Push	GEOLOGIST: Andrew Savage	
			MPANY:					Reviewed By:	
DEPTH ft.	PID (ppm)	BLOWS/ 1/2'	SAMPLE NO.	RECOVERY	GRAPHIC LOG	WATER LEVEL	GEC	DLOGIC DESCRIPTION	
-				¥			Sand/Gravel/Organics		-
- - - - - - - - - - -	4' 0						Silty Clay (CL), dark medium stiff, mediur - - -	brown (10YR—3/3), damp, n plasticity, no contaminant odor	- - - - -
	7'			¥			- at 7 feet, dark yello - - -	wish brown (10YR-3/4)	- - - -
10— - - - - - - -	10' 0				(///		Bottom of boring 10 - - -	feet bgs 06-14-17	
- 15— - - - - - - - - - - - - - -							- - - - - - - -		
20-				F			_		_

3	RA	s	Enviro	oni	ner	nta	l	Log of Boring	SB-7
			16-004-					ADDRESS: 0 29th Avenue, Oakla	nd, CA
			R: 16-0					LOCATION: by 2nd Avenue	
			ED: 06- ED: 06-					First Water (ft. bgs.): NA D/ TOTAL DEPTH: 10 feet	ATE:
			THOD:				Push	GEOLOGIST: Andrew Savage	
			MPANY:					Reviewed By:	
DEPTH ft.	PID (ppm)	BLOWS/ 1/2'	SAMPLE NO.	RECOVERY	GRAPHIC LOG	WATER LEVEL	GEO	LOGIC DESCRIPTION	
-							Sand/Gravel/Organics	; (Fill) brown (10YR-3/3), damp, n plasticity, no contaminant odor	-
- - - 5	4' 0			¥ A			mealum sull, mealun - - -	n plasticity, no contaminant odor	- - - - - -
-	7'			¥			at 8 feet, dark yellov -	wish brown (10YR-3/4)	-
10	10' 0.1				(///		Bottom of boring 10 - - -	feet bgs 06-14-17	
							- - - - - - - - -		- - - - - - - - - - - - - - - - - - -
20-				Γ					

APPENDIX E

Field Forms – Soil Gas

Page <u>1</u> of <u>3</u>

Soil Vapor/Sub-Slab Sampling Data Sheet

	Project Number: CRAS-0 Y
	Client; Date: 6-/5-17
	Address: 0 29th Avenue Weather: Sunny Warn
	Location: SV-1 Pore volume calc. Iring = 308. Ballote: All vacuum (Vac) readings in "Hg
	Purge Calculation & Target Volume: Sond = 2 rings x 308-5m/ x 372 porosity = 228.5 I pore volume = 430.9
	Dry, bentonite = 1 ring x 308.8ml x 507. por with = 154.4 30000 volumes = 12927.
	Start Time Initial Vac End Time Final Vac Back Vac Notes: (Passed / completed / purge volume removed)
	Purge 9:03 - 9:23 - 1 Sampling 9:28 7971 9:27 4.95 See below
	Measurements during sampling - Drops IPA in Shroud = 19
	Time 229 930 931 937 933 934 935 936 END
	Vac 27 24.8 23 21 19.1 17.3 15.7 14.0 12.2 107 95 67 7.6 6.6 5.8 4.85
	PID ppmv 0.3 2.8 4.2 5.1 6.2 6.1 5.1 5.1 67 68 7.0 6.0 5.5 4.6 6.0 5.6
- xv-1	
A+ 51-1	Back Vac 3.5 3.5 3.5 3.4 3.2 2.2 1.8 1
Purge Test	Notes; or additional measurements
	1 pore volume x 6.2 ppm 4=2.64 11 1 pore volume uses messime
Performed only Pf	2 pore volume = 2.4 ppm 5=2 Opm Din and and the
only PL	3 pore volumessit ?"
to host	DUC OUR AM AS AN A THIS IN SUICE A
175 A. 4.5	Purge Calculation & Target Volume: Purge I volume of pore space or ~ 430.9 mL
3.4.5	prior to sampling,
1 solution	Start Time Initial Vac End Time Final Vac Back Vac Notes (Passed / completed / purge volume removed)
Pore volume	Vac Test 10:13 19.93 10:23 20.01 Held Hight & increment vac due to Tel
	Sampling 10:31 29.49 10:43 23.84 See below 201
	Measurements during sampling - Drops IPA in Shroud = 16
	Time 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1045 EWD
	Vac 28 26.8 76 25.48 25.05 24.74 24.46 24.28 24.13 24.00 23.91 23.44 due to
	PID ppmv 1.4 2.4 1.7 1.5 1.8 3.0 5.0 2.2 3.1 3.7 5.7 8.2 low
	1046 = 23.01"Hy Flow insufficient to scar TUIT type for a
	1047 = 22.98" Hg 3 nephthelene malysis (valve open to manifold only).
	Location: 5V-3
	Purge Calculation & Target Volume: Purge / volume as above.
	Start Time Initial Vac End Time Final Vac Back Vac Notes (Passed / completed / purge volume removed)
	Vac Test 11:08 20.84 11:19 20.85 Hold Hold
	Purge 11:19 11:27 10 Utitized Syringe to purge 430mL.
	Sampling 11 :29 2 9.74 11:42 22:45 See below
	Measurements during sampling - Drops IPA in Shroud = 18
	Time 1130 1131 1132 1133 1134 1135 1134 1137 1138 1139 1140 1141 1142 EWD der
	Vac 27.8 264 253 745 24 23.5 233 23.05 22.80 22.74 22.62 22.53 22.48 to /00
	Back Vac 16-8 20 21.5 22 22.3 22.5
	Notes: or additional measurements
	1148 = 22.04 "Hg 3 Very low to no flow; tight clay; no TO-17 tube sound
	1149 = 22.04"440 5
	SVC Environmental. Inc.

rossi@svcenv.com

Page Lot 3

Time 316 317 518 319 320 321 322 323 324 325 327 328 329 330 Vac 27.6 24.2 25.5 25.2 24.7 24.3 23.7 23.1 22.6 22.1 21.7 20.5 202 19.93 19.4 PID ppmv 4.1 6.1 8.6 8.2 7.9 8.3 9.0 8.6 8.9 9.5 9.5 18.0 9.3 12.1 14.1 Back Vac 16.5 17.5 18.5 19.5 17.3 19 19.5 17.3 19		Soil Vapor/Sub-Slab Sampling Data Sheet
Clear intermediation in the second state intermediate in		Project Number: CRAS-04
Address. "0" 29" Are orbitan Weather Juony Matter Indexes. "0" 29" Are orbitan Near Margoun (New Tealings In High Purge Calculation & Target Volume Purged / Price Volume and granus II constanting of Link Etc. Near Margoun (New Tealings In High Purge Calculation & Target Volume Purged / Price Volume and granus II constanting of Link Etc. Near Margoun (New Tealings In High Name Teal 12 (Volume Purged / 12 (12) 122 (12) 123 (12) 12		Date:
$ \begin{array}{c} eq: 1.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2$		
Purge Calculation & Target Volume "Purge I porce volume as groundly culculated". Start Time Initia Vice End Time Final Vice Back Vice Notes: Present Competing J graps volume removed) Vice Test [2, 14] 20.30 [2: 55] 20.31	Address: 0 29 Ave Oakland	Weather Sunny Hot.
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Location: SV-Y	Note: All vacuum (Vac) readings in "Hg
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Purge Calculation & Target Volume Purge al pore	volume as providing calculated.
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		·
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Start Time Initial Vac End Time Final Vac	Back Vac Notes: (Passed / completed / gurge volume removed)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Vac Test 12:40 20.30 12:50 20.31	- Held tight.
$ \begin{array}{c} \mbox{Serverses} \end{tabular}{2} \end{tabular}{2$		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		
$ \begin{array}{c} \begin{array}{c} & & & & & & & & & & & & & & & & & & &$		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		
Back Vac 11 14 14 13 1.5 107 24 7 Notes: or additional measurements Trace 123 124 125 127 EUD 7 Notes: or additional measurements Trace 123 124 125 126 127 EUD Notes: or additional measurements 100 9.8 6.1 7.1 7.0 100 7.0 Location: SV-5 5.5 5.6 9.9 9.8 4.2 1.32-11:37 5.5 4.9 Location: SV-5 5.5 9.9 9.0 <td></td> <td></td>		
Notes: or additional measurements Three 123 124 125 126 127 EWD PiD Prim 14 25 124 125 126 200 PiD Prim 14 2.5 124 125 126 200 Back Vac 5:9 49 42 Location: $SV-S$ Set up to Learn the equility zoome 11:32-1:57 in <5" Hy back vac Purge Calculation & Target Volume: Purge in previous of 1 pone vol with Tarling 53 ringe. Start Time Initial Vac End Time Frant Vac Back Vac Notes: Passed 1 completed 1 purge volume removed) Vac Test 2: 39 19.54 2: 13 19.85 Held to the form of the form 1 and 1 a		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
Bick vie Sign of solver Sign of so		6.05
Location: $SV-S$ set up to least the fullied work of $1:32-1:37$ is $< 5'$ by buck vec Purge Calculation & Target Volume: Purge a previous of 1 pone vel of $1:32-1:37$ is $< 5'$ by buck vec Purge Calculation & Target Volume: Purge a previous of 1 pone vel of $1:32-1:37$ is $< 5'$ by buck vec 1:32-1:37 is $< 5'$ by $1:3:13$ best vec Notes: Passed completed purge volume removed Vac Test 2: $\frac{3}{19}$, $\frac{3}{19}$, $\frac{9}{12}$ 2: $\frac{13}{19}$ best vec Notes: Passed completed purge volume removed Vac Test 2: $\frac{1}{14}$ c 2: $\frac{13}{19}$ c 3 Concentration $1:32$ Purge 2: $\frac{1}{14}$ c 2: $\frac{12}{22}$ c 2: $\frac{3}{23}$ c $\frac{1}{25}$ c $\frac{1}{22}$ c $\frac{1}{23}$ c $\frac{1}{232}$ c $\frac{1}{232}$ c $\frac{1}{232}$ c $\frac{1}{233}$ c $\frac{1}{25}$ c $\frac{1}{233}$ c $\frac{1}{232}$ c $\frac{1}{233}$ c $\frac{1}{232}$ c $\frac{1}{233}$ c $\frac{1}{232}$ c $\frac{1}{233}$ c $\frac{1}{232}$ c $\frac{1}{233}$ c $\frac{1}{232}$ c $\frac{1}{233}$ c $$		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		the a welled 200ml, 1:32-1:37 5 -5"Ho back you
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Purge Calculation & Target Volume: Purge as pre	views of I pose vol utilizing syringe.
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
Purge 2: 14 - 2: 19 - 2: 3 Sampling 2: 21 29.60 2: 33 41.65 See below Measurements during sampling - Drops IPA in Shroud = 12 Time 222 223 223 224 223 224 225 226 227 228 229 230 231 232 233 Was 273 258 243 214 215 198 16.7 17.5 (51 13.2 11.1 2.3 7.5 6.5 5.4 4.65 PID porry 4.9 5.4 7.1 7.8 8.0 5.2 7.3 8.0 (44 6.6 6.8 7.3 7.1 8.3 8.1 7.4 PID porry 4.9 5.4 7.1 7.8 8.0 5.2 7.3 8.0 (44 6.6 6.8 7.3 7.1 8.3 8.1 7.4 Back Vac 5.5 6.0 6.0 5.0 3.6 2.6 1.5 Notes: or additional measurements Store of the store		
$\frac{Sampling}{Measurements} \frac{2:2}{2!} \frac{29.60}{2!33} \frac{4.65}{2!5!} See below}{2!5!} See See below}{2!5!} See below}{2!5!} See below}{2!5!} See See See See See See See See See Se$		
Measurements during sampling - Drops IPA in Stroud = $\frac{12}{12}$ Time 222 223 224 225 226 227 228 229 230 231 232 235 Vac 273 258 243 214 215 198 10.7 17.5 15.1 13.2 11.1 2.3 7.5 6.5 5.4 4.65 PID point 4.9 5.4 7.1 7.8 5.0 2.2 7.7 5.0 4.4 6.6 6.8 7.8 7.1 8.3 8.1 7.4 PID point 4.9 5.4 7.1 7.8 5.0 2.2 7.7 5.0 4.4 6.6 6.8 7.8 7.1 8.3 8.1 7.4 PID point 4.9 5.4 7.1 7.8 5.0 2.0 7.5 6.0 6.0 5.0 3.6 2.6 1.5 Notes: or additional measurements 5.5 6.0 6.0 5.0 3.6 2.6 1.5 Notes: or additional measurements 5.5 9.0 1.0 5.0 3.6 2.6 1.5 Notes: or additional measurements during sampling - Drops IPA in Shoul = 172 Time 316 317 5.18 3.12 7.5 0 5.0 5.0 4.20 7.5 0 5.0 5.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		
$\begin{array}{c cccc} Vac (273 LSS 24.3 22.4 21.5 198 10.7 17.5 17.4 13.2 11.1 2.3 7.8 6.5 5.4 4.65 \\ PID ppmv 4.9 5.4 7.1 7.8 8.0 4.2 7.7 8.0 6.4 6.6 8 7.8 7.1 8.3 8.1 7.4 \\ \hline PID ppmv 4.9 5.4 7.1 7.8 8.0 4.2 7.7 8.0 6.4 6.6 8 7.8 7.1 8.3 8.1 7.4 \\ \hline PID ppmv 5.5 6.0 6.0 5.0 3.6 2.6 1.5 \\ \hline Parse cacutational measurements \\ \hline Sof w 7D-17 tobe pulled 200 mL thue take; 2:37-2411:35 \\ \hline Purge Calculation & Target Volume: Purge = Previous \\ \hline Vac Test 2:55 20.05 3:55 20.10 Head Previous \\ \hline Vac Test 2:55 20.05 3:55 20.10 Head Previous \\ \hline Vac Test 2:55 20.05 3:55 20.10 Head Previous \\ \hline Vac Test 2:55 20.05 3:55 20.10 Head Previous \\ \hline Vac Test 2:55 20.05 3:52 20.10 Head Previous \\ \hline Vac Test 2:55 20.05 3:52 20.10 Head Previous \\ \hline Vac Test 2:55 20.05 3:52 20.10 Head Previous \\ \hline Vac Test 2:55 20.05 3:52 20.10 Head Previous \\ \hline Vac Test 2:55 20.05 3:52 20.10 Head Previous \\ \hline Vac Test 2:55 20.05 3:52 20.10 Head Previous \\ \hline Vac Test 2:55 20.05 3:52 20.10 Head Previous \\ \hline Vac Test 2:55 20.05 3:52 20.10 Head Previous \\ \hline Vac Test 2:55 20.05 3:52 20.10 Head Previous \\ \hline Vac Test 2:55 20.05 3:52 20.10 Head Previous \\ \hline Vac Test 2:55 20.05 3:52 20.10 Head Previous \\ \hline Vac Test 2:55 20.05 3:52 20.10 Head Previous \\ \hline Vac Test 2:55 20.05 3:52 20.10 Head Previous $		226 227 728 229 280 221 232 233 END
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		and the second statement in the second statement was and the second statement of the second statement
Back Vac 5.5 6.0 6.0 5.0 3.6 2.6 1.5 Notes: or additional measurements Sol ig D^{-17} type public 200 nL thrue type; 2:37 - 24/1:30 Location: $SV-6$ Purge Catculation & Target Volume: Purge \rightarrow Previous Start Time Initial Vac Purge 3::05 One 3::13 Purge 3::05 Start Time Initial Vac Purge 3::05 Start Time Initial Vac Purge 3::05 Start Time Initial Vac Start Time St		
Notes: or additional measurements Sol up TD-17 tube pulled 200 nL thue tube; $2:37-24/1:3^{12}$ Purge Catcutation & Target Volume: Purge ~ Greenous Start Time Initial Vac End Time Final Vac Back Vac Notes. (Passed / completed / purge volume removed) Vac Test 2:55 20.05 3:55 20.10 Held tright & increased due Purge 3:05 ~ 3:13 ~ 10 Purged 4:20 nL tw s. gring 0 Sampling 3:15 29.47 4:20 7.50 See below Measurements during sampling - Orops IPA in Shroud = 17 Time 316 317 _ 518 _ 312 320 321 322 323 527 325 327 329 330 Vac 27.6 24-2 25.5 25.2 24.7 24:3 23.7 23.1 22.6 22.1 21.17 21.5 20.5 202 49.75 PlD ppmv 4.1 [6:] 8-6 8.2 7.9 8.3 9.0 8-6 8-9 9.5 9.5 9.5 9.5 19.5 19.10 17.9 Notes: or addition measurements Time 331 232 333 334 335 334 Shroud Somple 20 VAC 19.33 19.05 1874 10.45 18.10 17.9 Purge 3: 05 ~ 17.5 18.2 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5		
Location: $SV-6$ Purge Calculation & Target Volume: Purge \rightarrow for encoded Start Time Initial Vac End Time Final Vac Back Vac Notes. (Passed / completed / purge volume removed) Vac Test 2:55 20.05 3:05 20.10 Held f: At 9 increased due Purge $2:95 \rightarrow 3:13 \rightarrow 10$ Purged 4:30 mL to 5. primpt Purge $3:95 \rightarrow 3:13 \rightarrow 10$ Purged 4:30 mL to 5. primpt Sampling $3:15 29.477 4:20 7.50$ See below Measurements during sampling - Drops IPA in Shroud = 172 Time $316 317 518 312 320 321 322 323 324' 325 327 328 329' 325 327 328 329' 325 327' 328 329' 325 320' 124' 128' 127' 128' 129' 124' 128' 127' 128' 129' 124' 128' 129' 128' 129' 124' 128' 129' 124' 128' 129' 124' 128' 129' 124' 128' 129' 124' 129' 128' 129' 124' 128' 129' 124' 128' 129' 124' 128' 129' 124' 128' 129' 128' 129' 128' 129' 124' 128' 129' 128' 129' 128' 129' 128' 129' 129' 128' 129' 129' 128' 129' 128' 129' 129' 128' 129' 128' 129' 129' 128' 129' 129' 128' 129' 128' 129' 128' 129' 129' 128' 129' 128' 129' 128' 129' 128' 129' 128' 129' 128' 129' 128' 129' 129' 128' 129' 128' 129' 128' 129' 128' 129' 128' 129' 128' 129' 128' 129' 128' 129' 128' 129' 129' 129' 128'$	Notes: or additional measurements	
Purge Catculation & Target Volume: Purge \rightarrow previous Start Time Initial Vac End Time Final Vac Back Vac Notes. (Passed / completed / purge volume removed) Vac Test 2:55 20.05 3:55 20.10 Hell f: M & increased due Purge 3:05 \rightarrow 3:13 $-$ 10 Purget 4:50 mL to supering a Sempling 3:15 29.47 4:20 7.50 See below Measurements during sampling - Drops IPA in Shroud = 17 Time 316 317 518 319 320 321 322 323 324 325 327 325 329 Vac 27.6 26.2 24.7 243 23.7 23.1 22.6 22.1 21.7 21.2 20.5 202 49.93 IPD ppmv 4.1 6.1 8.6 8.2 7.9 8.3 9.0 8.6 8.9 9.5 18.0 9.3 12.1 (4.1 Back Vac 16.5 17.5 18.5 19.5 18.5 19.5 18.3 19 Notes: or additional measurements Time 331 332 333 334 335 334 Shroud Songle 20 YAC 19.33 19.03 16.74 18.45 18.10 17.9 next PiD 9.4 10.0 11.7 9.3 17.4 13.0 Purget 18.0	Set up TO-17 tube pulled 200m	L three +alie; 2:37-24/1:30
Purge Catculation & Target Volume: Purge \rightarrow previous Start Time Initial Vac End Time Final Vac Back Vac Notes. (Passed / completed / purge volume removed) Vac Test 2:55 20.05 3:55 20.10 Hell f: M & increased due Purge 3:05 \rightarrow 3:13 $-$ 10 Purget 4:50 mL to supering a Sempling 3:15 29.47 4:20 7.50 See below Measurements during sampling - Drops IPA in Shroud = 17 Time 316 317 518 319 320 321 322 323 324 325 327 325 329 Vac 27.6 26.2 24.7 243 23.7 23.1 22.6 22.1 21.7 21.2 20.5 202 49.93 IPD ppmv 4.1 6.1 8.6 8.2 7.9 8.3 9.0 8.6 8.9 9.5 18.0 9.3 12.1 (4.1 Back Vac 16.5 17.5 18.5 19.5 18.5 19.5 18.3 19 Notes: or additional measurements Time 331 332 333 334 335 334 Shroud Songle 20 YAC 19.33 19.03 16.74 18.45 18.10 17.9 next PiD 9.4 10.0 11.7 9.3 17.4 13.0 Purget 18.0		
Purge Catculation & Target Volume: Purge \rightarrow previous Start Time Initial Vac End Time Final Vac Back Vac Notes. (Passed / completed / purge volume removed) Vac Test 2:55 20.05 3:55 20.10 Hell f: M & Increased due Purge 3:05 \rightarrow 3:13 $-$ 10 Purget 4:0 mL to symple Sempling 3:15 29.47 4:28 7.50 See below Measurements during sampling - Drops IPA in Shroud = 17 Time 316 317 18 319 320 321 322 323 324 325 327 328 329 Vac 27.6 26.2 24.7 243 23.7 23.1 22.6 22.1 21.7 21.3 20.5 202 49.93 IPD ppmv 4.1 6.1 8.6 8.2 7.9 8.3 9.0 8.6 8.9 9.5 18.0 9.3 12.1 14.1 Back Vac 16.5 17.5 18.5 19.5 19.5 18.3 19.0 10.7 19.0 10.9 17.9 Notes: or additional measurements Time 331 332 333 334 335 334 Shroud Songle 20 YAC 19.33 19.03 18.74 18.45 18.10 17.9 Next PID 9.6 10.0 17.9 Next		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		
Vac Test 2:55 20.05 3:05 20.10 Hell fight 4 increased due to T°A. Purge 3:05 -23 13 -10 Purged 430 100	Purge Calculation & Target Volume: Purge - Pre	trous.
Vac Test 2:55 20.05 3:05 20.10 Hell fight 4 increased due to T°A. Purge 3:05 -23 13 -10 Purged 430 100	Start Time Initial Vac End Time Final Vac	Back Vac Notes (Passed / completed / piline volume removed)
Purge $3:13$ $ 10$ Purged $4:0mc$ $50mc$		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		
Measurements during sampling - Drops IPA in Shroud = $1\frac{7}{12}$ Time 316 317 318 319 320 321 322 323 324 325 327 328 329 330 Vac 27.6 26.2 24.7 24.3 23.7 23.1 22.6 22.1 21.7 21.3 20.5 202 19.93 PID ppmv 4.1 6.1 8.6 8.2 7.9 8.3 9.0 8.5 8.9 9.5 9.5 9.5 11.0 9.3 12.1 14.1 Back Vac IT mE 331 332 333 334 335 336 Notes: or additional measurements TIME 331 332 333 334 335 336 Note: or additional measurements FID ppmv 4.1 6.1 8.6 8.2 7.9 8.3 9.0 8.5 8.9 9.5 9.5 9.5 11.0 9.3 12.1 14.1 Back Vac If -5 17.5 18.5 19.5 19.5 18.10 9.3 Notes: or additional measurements TIME 331 332 333 334 335 336 Shroud Sample 2nd VAC 19.33 19.03 18.74 18.10 17.9 PID 8.6 10.0 11.7 9.3 17.4 13.0		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
Vac 27.6 26.2 25.5 25.2 24.7 24.3 23.7 23.1 22.6 22.1 21.7 20.5 202 19.93 19.4 PID ppmv 4.1 6.1 8.6 8.2 7.9 8.3 9.0 8.6 8.9 9.5 9.5 9.5 9.5 18.0 9.3 12.1 14.1 12.7 Back Vac 16.5 17.5 18.5 19.5 18.3 332 333 334 335 336 Notes: or additions measurements Time 333 332 333 334 335 336 Notes: or additions measurements Time 333 332 333 334 335 336 Shroud Sample Pill 9.4 19.33 19.03 18.19 19.9 next Pill 8.6 10.0 11.7 9.3 17.4 13.0 page		· 32 322 323 324 325 327 328 329 330
PID ppmv 4.1 6.1 8.6 8.2 7.9 8.3 9.0 8.6 8.9 9.5 9.5 9.5 10.0 9.3 12.1 14.1 12.7 Back Vac 16.5 17.5 18.5 19.5 19.5 19.3 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 10 17 13 12.1 14 12.7 12.7 12.1 14 12 12 14 12 12 14 12 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 14 14 14 14 14 14 14 14 14 14 <td></td> <td></td>		
Back Vac 16.5 17.5 18.5 19.5 18.3 19.3 19 Notes: or additional measurements Time 33) 332 333 334 335 336 Shroud sample VAC 19.33 19.03 16.74 18.45 18.10 17.9 next P1D 8.6 10.0 11.7 9.3 17.4 13.0 page	PID ppmy 4.116. 8.6 8.2 7.9 8.3 9	
Notes: or additional measurements Shroud sample 2nd VAC 19.33 19.03 1874 18.45 18.18 17.9 next PID 8.6 10.0 11.7 9.3 17.4 13.0 page		
Stroud sample and VAC 1933 19.03 1874 18.45 18.10 17.9 next Pib 8.6 10.0 11.7 9.3 17.4 13.0 page	Notes: or additional measurements	
PID 8.6 10.0 11.1 9.5 17.9 13.0 page		VAC 1933 19.03 1874 18.45 18.18 17.9 next
SVC Environmental, ing.5	0 0-	PID 8.6 10.0 11.7 9.3 17.9 13.0 page
	SVCE	invironmental, Hag S

nosst@svcenv.com

Page 3 of 3

					Soil Vap	or/Sub-Slab Saŋ	npling Data Shee	t
						Project Number:	ERAS-04	
Client:						Date:	6/15/17	_
Facility:				,		Sampler: R		_
Address:	02	2 Ave	, Car	and		Weather:	Sunny Warn	
Location:	57-6		time	fra	pre	Note: All vacua	um (Vac) readings in "Hg	H
Purge Calc	ulation & Targ	et Volume:			1	nge."		
<u> </u>								-
	Start Time	Initial Vac	End Time	Final Vac	Back Vac	Notes. (Passed / completed / pu	irge volume removed)	
Vac Test			· ·					
Purge			· ·		See below			-
Sampling			IDA i= 01	_				
		npling - Drops				41 341 Jul - 11 - 1		362 353 354
Time			340 34		343 34		148 349 350 351	
Vac		3 <u>6 17.0</u> 9					4.8 14.6 14.4 14.1	13.9 13.7 13.46
PID ppmv		·>					0 26 2.1 1.7 1	13.8
Back Vac		16.9	-	.5	16	15.5 13		<u></u>
Notes: or ac	Iditional measure	TOWNE 3			<u>858 35</u>	Abber	and the second	100 4107 40A
		Vac 13 DID 1.	23 15.0	3.8 6	.2 3.3			6.7 4.4 6.9
<u> </u>		8 Jac 13	<u> </u>	-13.1		8/2.5	12 12	
Location:	SV-66	L.4)	Out	ed 50hor	is IPA			,
		MT/					<u> </u>	٦ / F
	ulation & Targ						·	EI
	Start Time	Initial Vac	End Time	Final Vac	Back Vac	Notes: (Passed / completed / pr	urge volume removed)	- contributed.
Vac Test	:		:					_
Purge	:		:					
Sampling	- <u></u> -		:		See below			
		npling - Drops	PA in Shroud					
Time	409 410	<u></u>		<u>414 415</u>		7 418 419 420	421 422 423 4	
Vac			9 <u>4 9.78</u>	2.61 9.44			9.48 4.32 8.18 8	
PID ppmv		7.1_6		<u>5.4 7.0</u>	<u>63</u> 5.		3.1 2.8 2.2 2.	•
Back Vac			10.2		9.7	9.2		8.3
Notes: of a	dditional meas		NOD "	1:28 E	7.50 T	y 1.4 pp m 7 "h	have vac	
		E	·····					1100
L			o much	Dave	Yorun	to pull 10.	17 vs. maptille	- By 1015 ·
Location	58-7	1						
		et Volume: P	maed	mare	views .			T
ruige calc								
	Start Time	Initial Vac	Erid Time	Final Vac	Back Vac	Notes: (Passed / completed / pu	irge volume removed)	
Vac Test	4:45	12.91	4:55	19.98	<u> </u>	Tryft: increas	ed vac due	
Purge	4:55		5.01	~	9	430 mL purge	o to syringe	
Sampling	5:13	28.75	:		See below			
Measureme	ents during sar	npling - Drops	IPA in Shroud	= 17				
Time	5:14 51	5 514			520 52		525 526 6	ND due
Vac	265 24	1.9 23.7	22.8 22			20.85 20.67 20.58	20,48 20.42	Low
PID ppmv	6.5 5.	7 6.2	8.5 5	9 7.1	6.0 5.	4 5.9 7.0 6.3	6.0 5.8	Flow
Back Vac	15	.s	7.9	19.2	2	20.2	20.5	
and the second s	ditional meas							60)
	19-96"+	y N	of sult	icient	- low -	value to probe	open to many	, ac
5:28=	19-94 "h	ig	<u>^</u>) • TO	1	feasible.		
		0			vironmentai, Ir			
				rocetta	DEVCODV COM			

APPENDIX F

Site Conceptual Model and Data Gap Summary

CSM Element	CSM Sub- Element	Description	Data Gap Item #	Resolution
Geology and Hydrogeology	Regional	The Property is in the southern part of the City of Oakland in the San Francisco Bay area. The San Francisco Bay area occupies a broad alluvial valley that slopes gently northward toward Oakland Bay and is flanked by alluvial fans deposited at the foot of the Diablo Range to the east and the Santa Cruz Mountains to the west. Surface topography in the immediate vicinity of the Property is gently sloping down to the south west towards tidally influenced Brooklyn Basin Tidal Canal.	None	NA
		The Property is at an elevation of approximately 40 feet above Mean Sea Level according to the United States Geological Survey (USGS) Oakland East Quadrangle California 7.5 Minute Series topographic map.		
		Materials underlying the Property are unconsolidated deposits of near shore and beach sediments, deposited in Oakland Bay at higher sea level stands. At shallow depths beneath these sediments are chert, greywacke, serpentine and shale bedrock that are a part of the Cretaceous to Jurassic-aged Franciscan Formation. Bedrock is exposed to the west and north on the upland surfaces. Based on borings drilled on the adjacent site, the subsurface sediments consist of clayey sand to depths of 18-20 feet underlain by clay.		
		The subject Property is located on the San Francisco Bay Plain in the northernmost part of the Santa Clara Valley Groundwater Basin, (DWR, 1967), the surface of which slopes gently down toward the north.		
		The regional groundwater flow follows the topography, moving from areas of higher elevation to areas of lower elevation. The regional groundwater flow direction in the area of the Property is estimated to be toward the southwest toward the Brooklyn Basin Tidal Canal. Groundwater monitoring at an adjacent leak site (1112 29 th Avenue), indicated that the flow direction has been determined to be to the southwest.		

Site Conceptual Model

	CSM Sub-			
CSM Element	Element	Description	Data Gap Item #	Resolution
Geology and Hydrogeology	Site	 Shallow groundwater is at roughly 24 to 28 feet bgs. No groundwater monitoring has been conducted on the Property but based on nearby leak cases with active groundwater monitoring the groundwater has been determined to flow toward the southwest at a gradient of about 0.01 foot/foot. The shallow water-bearing zone at the Property is found in the clayey sand (containing sand, silt, clay and gravel). Groundwater is generally under water-table conditions, but may be locally confined by the clay underlying the fill. The base of the shallow water bearing zone has not been determined. 	1. There are no monitoring wells on Property to establish Property specific groundwater depth, flow direction, and gradient.	N/A
Surface Water Bodies		The closest surface water body is Sausal Creek, which is approximately 850 feet northeast of the Property.		N/A
Nearby Wells		A well survey has not been conducted for the Property		N/A
Release Source and Volume		The release source and volume are unknown. It is suspected that the fill imported to level the Property may have been impacted prior to placement on the Property. The fill which is present on the Property is from an unknown source. A review of a 1950 Sanborn Fire Insurance Map indicates that the Property contained two sets of railroad lines. Phase 2 subsurface investigations were performed for the adjacent site at 3001-3015 East 12 th Street by Tec Accutite (TEC) in 2007. A total of five borings were drilled during the investigations, B-1 and B-2 at 3001-3005 East 12 th Street and B-3, B-4 and B-5 on the Property. Soil samples were collected from these borings from depths between 8 and 14 feet below the ground surface (bgs). Groundwater was collected only from B-1 and B-2 and was encountered at depths of approximately 24 feet in B-1 and 28 feet in B-2 below ground surface (bgs). No groundwater samples were collected on the Property. An additional limited phase II subsurface investigation was conducted by ERAS in June of 2017. Soil samples were collected from depth ranges of 0-5 feet bgs and 5-10 feet bgs along with soil gas samples from seven boring locations spaced throughout the Property. No additional evidence of a release was identified on the Property.	2. The source of the contaminants of concern (TPH, VOCs, PCBs, PNAs, PAHs, SVOCs, and metal) are unknown.	N/A

CSM Sub-			
Element		Data Gap Item #	Resolution
	There are currently no groundwater monitoring wells located on the Property. There is no evidence that LNAPL would be present on the Property.		
	No source area has been identified for removal. With the exception of nickel in the soil samples collected and chloroform in the soil gas samples collected all other contaminants of concern (COCs) are below the Tier 1 ESLs. The nickel concentrations are within background ranges and are considered not anthropogenic. No known source of the soil vapor concentrations of chloroform have been identified and the detected concentrations were below the commercial ESL. The Property is zoned commercial.	2. The source of the contaminants of concern (TPH, VOCs, PCBs, PNAs, PAHs, SVOCs, and metal) are unknown.	
	Based on the historical investigations and communications with the Alameda County Health Care Services Agency the contaminants of concern have been determined to include the following: TPH, VOCs, PCBs, PNAs, PAHs, SVOCs, and metal.	2. The source of the contaminants of concern (TPH, VOCs, PCBs, PNAs, PAHs, SVOCs, and metal) are unknown.	
	No concentrations of fuel hydrocarbons or VOCs were detected in the soil samples collected on the Property. No concentrations of PCBs with the exception of a sample collected from B-4 and SB-7 contained concentrations of PCBs above the MDL. The sample from B-4 collected from 14 feet bgs contained a concentration of 0.272 mg/Kg of PCB (Aloclor 1016). The sample collected from 9.5-10 feet bgs from SB-7 contained a concentration of 0.040 mg/Kg of PCB (Aloclor 1254) which is above the Tier 1 ESL but below the ESL for direct exposure on a commercial site and below the ESL for the potential leaching to groundwater. The Property is zoned commercial. Naphthalene was detected at concentrations ranging from below the MDL to 0.0021 mg/Kg. The concentrations of naphthalene were detected in the samples collected from borings SB-2, SB-3, SB-4, and SB-5. None of the concentrations detected exceeded the ESL	2. The source of the contaminants of concern (TPH, VOCs, PCBs, PNAs, PAHs, SVOCs, and metal) are unknown.	
	Element	Element Description There are currently no groundwater monitoring wells located on the Property. There is no evidence that LNAPL would be present on the Property. No source area has been identified for removal. With the exception of nickel in the soil samples collected and chloroform in the soil gas samples collected all other contaminants of concern (COCs) are below the Tier 1 ESLs. The nickel concentrations are within background ranges and are considered not anthropogenic. No known source of the soil vapor concentrations of chloroform have been identified and the detected concentrations were below the commercial ESL. The Property is zoned commercial. Based on the historical investigations and communications with the Alameda County Health Care Services Agency the contaminants of concern have been determined to include the following: TPH, VOCs, PCBs, PNAs, PAHs, SVOCs, and metal. No concentrations of fuel hydrocarbons or VOCs were detected in the soil samples collected on the Property. No concentrations of PCBs with the exception of a sample collected from B-4 and SB-7 contained concentrations of PCBs above the MDL. The sample from B-4 collected from 14 feet bgs contained a concentration of 0.272 mg/Kg of PCB (Aloclor 1016). The sample collected from 9.5-10 feet bgs from SB-7 contained a concentration of 0.040 mg/Kg of PCB (Aloclor 1254) which is above the Tier 1 ESL but below the ESL for the potential leaching to groundwater. The Property is zoned commercial. Naphthalene was detected at concentrations of naphthalene were detected in the samples collected from borings SB-2, SB-3, SB-4,	Element Data Gap Item # There are currently no groundwater monitoring wells located on the Property. There are currently no groundwater monitoring wells located on the Property. No source area has been identified for removal. With the exception of nickel in the soil samples collected and chloroform in the soil gas samples collected all other contaminants of concern (COCs) are within background ranges and are considered not anthropogenic. No known source of the soil vapor concentrations are within been identified and the detected concentrations were below the commercial ESL. The Property is zoned commercial. 2. The source of the contaminants of concern (TPH, VOCs, PCBs, PNAs, PAHs, SVOCs, and metal) are unknown. Based on the historical investigations and communications with the contern have been determined to include the following: TPH, VOCS, PCBs, PNAs, PAHs, SVOCs, and metal. 2. The source of the contaminants of concern (TPH, VOCS, PCBs, PNAs, PAHs, SVOCs, and metal) are unknown. No concentrations of fuel hydrocarbons or VOCs were detected in the soil samples collected on the Property. 2. The source of the contaminants of concern (TPH, VOCS, PCBs, PNAs, PAHs, SVOCs, and metal) are unknown. No concentrations of PCBs with the exception of a sample collected from 9-5-10 feet bgs from SB-7 contained a concentration of 0.240 mg/Kg of PCB (Aloclor 1254) which is above the Fier 1 ESL but below the ESL for direct exposure on a commercial site and below the ESL for direct exposure on a commercial site and below the ESL for direct exposure on a commercial site and below the ESL for the potential leaching to groundwater. The Property is zoned commercial. Naphthalene was detected at concentrations of nap

•	CSM Sub-			
CSM Element	Element	Description	Data Gap Item #	Resolution
		No concentrations of PAHs or PNAs were detected above the ESL for direct exposure on a commercial site or the ESL for the potential leaching to groundwater. Only boring SB-5 and SB-7 were found to contain concentrations of PAHs or PNAs other than naphthalene (previously discussed) above their respective MDLs. PAHs and PNAs detected included benzo (a) anthracene, benzo (b) pyrene, benzo (b) fluoranthene, benzo (g,h,i) perylene, benzo (k) fluoranthene, chrysene, fluoranthene, phenanthene, and pyrene. With the exception of nickel, concentrations of metals in soil were below the Tier 1 ESLs. All metals appeared to be within the typical range of background soil concentrations.		
Contaminants of Concern in Groundwater		No groundwater samples have been collected from the Property.		
Contaminants of Concern in Soil Gas		Oxygen was detected in the samples collected from borings SV-1 through SV-7 at 5.6% to 18%. Methane was detected from below the MDL up to 0.0052%. Carbon dioxide was detected from below the MDL up to 5.0%. Numerous VOCs on the TO-15 list were detected however no concentrations were found to exceed the ESLs for vapor intrusion and health risk on a commercial Property. Naphthalene on the TO-	2. The source of the contaminants of concern (TPH, VOCs, PCBs, PNAs, PAHs, SVOCs, and metal) are unknown.	
		15 list was found to be below the MDL in all borings. Of the VOCs detected only chloroform was detected above the Tier 1 ESLs in the samples collected from borings SV-2, SV-3, SV-5, and SV-6 at concentrations up to 100 μ g/m ³ .		
		Naphthalene was analyzed for by TO-17 from borings SV-1, SV-4, and SV-5. No concentrations above the MDL were detected. An insufficient amount of soil gas flow was available from borings SV-2, SV-3, SV-6 and SV-7 due to tight clay conditions for the analysis for naphthalene by EPA Method TO-17.		
Risk Evaluation		The Property is zoned for commercial land use. The Property has been adequately characterized. No concentrations	2. The source of the contaminants of concern (TPH,	

•	CSM Sub-			
CSM Element	Element	Description	Data Gap Item #	Resolution
		of the COCs have been found to exceed the commercial ESLs in soil	VOCs, PCBs,	
		or soil gas. With the exception of nickel in the soil samples collected	PNAs, PAHs,	
		and chloroform in the soil gas samples collected all other COCs are	SVOCs, and metal)	
		also below the Tier 1 ESLs as well. The nickel concentrations are	are unknown.	
		within background ranges and are considered not anthropogenic. No		
		known source of the soil vapor concentrations of chloroform have		
		been identified.		

	-	Proposed		
Item	Data Gap Item #	Investigation	Rationale	Analyses
1	There are no monitoring wells on Property to establish site specific groundwater depth, flow direction, and gradient.	None at this time	The local groundwater depth, flow direction, and gradient are well known based on nearby leak sites	N/A
2	2. The source of the contaminants of concern (TPH, VOCs, PCBs, PNAs, PAHs, SVOCs, and metal) are unknown.	None at this time	The Property is zoned for commercial land use. The Property has been adequately characterized. No concentrations of the COCs have been found to exceed the commercial ESLs in soil or soil gas. With the exception of nickel in the soil samples collected and chloroform in the soil gas samples collected all other COCs are also below the Tier 1 ESLs as well. The nickel concentrations are within background ranges and are considered not anthropogenic. No known source of the soil vapor concentrations of chloroform have been identified.	N/A

Data Gaps Summary and Proposed Investigation

APPENDIX G

Analytical Results - Soil

McCampbell Analytical, Inc.

"When Quality Counts"

Analytical Report

WorkOrder: 1706802

Report Created for: ERAS Environmental, Inc.

1533 B Street Hayward, CA 94541

- Project Contact: Andrew Savage
- Project P.O.:

Project Name: 16-004-025

Project Received: 06/15/2017

Analytical Report reviewed & approved for release on 06/22/2017 by:

Angela Rydelius, Laboratory Manager

The report shall not be reproduced except in full, without the written approval of the laboratory. The analytical results relate only to the items tested. Results reported conform to the most current NELAP standards, where applicable, unless otherwise stated in the case narrative.

1534 Willow Pass Rd. Pittsburg, CA 94565 TEL: (877) 252-9262 FAX: (925) 252-9269 www.mccampbell.com

CA ELAP 1644 ♦ NELAP 4033ORELAP

Glossary of Terms & Qualifier Definitions

Client: ERAS Environmental, Inc.

Project: 16-004-025

WorkOrder: 1706802

Glossary Abbreviation

%D	Serial Dilution Percent Difference
95% Interval	95% Confident Interval
DF	Dilution Factor
DI WET	(DISTLC) Waste Extraction Test using DI water
DISS	Dissolved (direct analysis of 0.45 μm filtered and acidified water sample)
DLT	Dilution Test (Serial Dilution)
DUP	Duplicate
EDL	Estimated Detection Limit
ERS	External reference sample. Second source calibration verification.
ITEF	International Toxicity Equivalence Factor
LCS	Laboratory Control Sample
MB	Method Blank
MB % Rec	% Recovery of Surrogate in Method Blank, if applicable
MDL	Method Detection Limit
ML	Minimum Level of Quantitation
MS	Matrix Spike
MSD	Matrix Spike Duplicate
N/A	Not Applicable
ND	Not detected at or above the indicated MDL or RL
NR	Data Not Reported due to matrix interference or insufficient sample amount.
PDS	Post Digestion Spike
PDSD	Post Digestion Spike Duplicate
PF	Prep Factor
RD	Relative Difference
RL	Reporting Limit (The RL is the lowest calibration standard in a multipoint calibration.)
RPD	Relative Percent Deviation
RRT	Relative Retention Time
SPK Val	Spike Value
SPKRef Val	Spike Reference Value
SPLP	Synthetic Precipitation Leachate Procedure
ST	Sorbent Tube
TCLP	Toxicity Characteristic Leachate Procedure
TEQ	Toxicity Equivalents
WET (STLC)	Waste Extraction Test (Soluble Threshold Limit Concentration)

Glossary of Terms & Qualifier Definitions

Client: ERAS Environmental, Inc.

Project: 16-004-025

WorkOrder: 1706802

Analytical Qualifiers

J Result is less than the RL/ML but greater than the MDL. The reported concentration is an estimated value.

a3 Sample diluted due to high organic content.

h4 Sulfuric acid permanganate (EPA 3665) cleanup

Quality Control Qualifiers

F1 MS/MSD recovery and/or RPD is out of acceptance criteria; LCS validates the prep batch.

Client:	ERAS Environmental, Inc.
Date Received:	6/15/17 19:00
Date Prepared:	6/16/17
Project:	16-004-025

WorkOrder:	1706802
Extraction Method:	SW3550B
Analytical Method:	SW8082
Unit:	mg/kg

Client ID	Lab ID	Matrix		Date C	ollected Instrument	Batch ID
SB-1,3.5-4	1706802-001A	Soil		06/14/20	017 08:32 GC23	140541
Analytes	<u>Result</u>		MDL	<u>RL</u>	DF	Date Analyzed
Aroclor1016	ND		0.0051	0.050	1	06/20/2017 11:33
Aroclor1221	ND		0.033	0.050	1	06/20/2017 11:33
Aroclor1232	ND		0.0032	0.050	1	06/20/2017 11:33
Aroclor1242	ND		0.0035	0.050	1	06/20/2017 11:33
Aroclor1248	ND		0.0036	0.050	1	06/20/2017 11:33
Aroclor1254	ND		0.0022	0.050	1	06/20/2017 11:33
Aroclor1260	ND		0.0085	0.050	1	06/20/2017 11:33
PCBs, total	ND		0.0040	0.050	1	06/20/2017 11:33
Surrogates	<u>REC (%)</u>			<u>Limits</u>		
Decachlorobiphenyl	112			70-130		06/20/2017 11:33
Analyst(s): LT						

Client ID	Lab ID	Matrix		Date C	ollected Instrument	Batch ID
SB-1,9.5-10	1706802-002A	Soil		06/14/20	017 08:39 GC23	140541
Analytes	<u>Result</u>		MDL	<u>RL</u>	DF	Date Analyzed
Aroclor1016	ND		0.0051	0.050	1	06/20/2017 05:05
Aroclor1221	ND		0.033	0.050	1	06/20/2017 05:05
Aroclor1232	ND		0.0032	0.050	1	06/20/2017 05:05
Aroclor1242	ND		0.0035	0.050	1	06/20/2017 05:05
Aroclor1248	ND		0.0036	0.050	1	06/20/2017 05:05
Aroclor1254	ND		0.0022	0.050	1	06/20/2017 05:05
Aroclor1260	ND		0.0085	0.050	1	06/20/2017 05:05
PCBs, total	ND		0.0040	0.050	1	06/20/2017 05:05
<u>Surrogates</u>	<u>REC (%)</u>			<u>Limits</u>		
Decachlorobiphenyl	99			70-130		06/20/2017 05:05
<u>Analyst(s):</u> SS						

Client:	ERAS Environmental, Inc.
Date Received:	6/15/17 19:00
Date Prepared:	6/16/17
Project:	16-004-025

WorkOrder:	1706802
Extraction Method:	SW3550B
Analytical Method:	SW8082
Unit:	mg/kg

Client ID	Lab ID	Matrix		Date C	ollected Instrument	Batch ID
SB-2,3.4-4	1706802-003A	Soil		06/14/20	017 09:07 GC23	140541
Analytes	<u>Result</u>		MDL	<u>RL</u>	DF	Date Analyzed
Aroclor1016	ND		0.0051	0.050	1	06/20/2017 05:18
Aroclor1221	ND		0.033	0.050	1	06/20/2017 05:18
Aroclor1232	ND		0.0032	0.050	1	06/20/2017 05:18
Aroclor1242	ND		0.0035	0.050	1	06/20/2017 05:18
Aroclor1248	ND		0.0036	0.050	1	06/20/2017 05:18
Aroclor1254	ND		0.0022	0.050	1	06/20/2017 05:18
Aroclor1260	ND		0.0085	0.050	1	06/20/2017 05:18
PCBs, total	ND		0.0040	0.050	1	06/20/2017 05:18
Surrogates	<u>REC (%)</u>			<u>Limits</u>		
Decachlorobiphenyl	108			70-130		06/20/2017 05:18
<u>Analyst(s):</u> SS						

Client ID	Lab ID	Matrix		Date C	ollected Instrument	Batch ID
SB-2,9.5-10	1706802-004A	Soil		06/14/20	017 09:14 GC23	140541
Analytes	Result		<u>MDL</u>	<u>RL</u>	DF	Date Analyzed
Aroclor1016	ND		0.0051	0.050	1	06/21/2017 14:51
Aroclor1221	ND		0.033	0.050	1	06/21/2017 14:51
Aroclor1232	ND		0.0032	0.050	1	06/21/2017 14:51
Aroclor1242	ND		0.0035	0.050	1	06/21/2017 14:51
Aroclor1248	ND		0.0036	0.050	1	06/21/2017 14:51
Aroclor1254	ND		0.0022	0.050	1	06/21/2017 14:51
Aroclor1260	ND		0.0085	0.050	1	06/21/2017 14:51
PCBs, total	ND		0.0040	0.050	1	06/21/2017 14:51
<u>Surrogates</u>	<u>REC (%)</u>			<u>Limits</u>		
Decachlorobiphenyl	101			70-130		06/21/2017 14:51
<u>Analyst(s):</u> SS			<u>Ana</u>	lytical Com	ments: h4	

Client:	ERAS Environmental, Inc.
Date Received:	6/15/17 19:00
Date Prepared:	6/16/17
Project:	16-004-025

WorkOrder:	1706802
Extraction Method:	SW3550B
Analytical Method:	SW8082
Unit:	mg/kg

Client ID	Lab ID	Matrix		Date C	ollected Instrument	Batch ID
SB-3,3.4-4	1706802-005A	Soil		06/14/20	017 09:38 GC23	140609
Analytes	<u>Result</u>		MDL	<u>RL</u>	DF	Date Analyzed
Aroclor1016	ND		0.0051	0.050	1	06/20/2017 12:13
Aroclor1221	ND		0.033	0.050	1	06/20/2017 12:13
Aroclor1232	ND		0.0032	0.050	1	06/20/2017 12:13
Aroclor1242	ND		0.0035	0.050	1	06/20/2017 12:13
Aroclor1248	ND		0.0036	0.050	1	06/20/2017 12:13
Aroclor1254	ND		0.0022	0.050	1	06/20/2017 12:13
Aroclor1260	ND		0.0085	0.050	1	06/20/2017 12:13
PCBs, total	ND		0.0040	0.050	1	06/20/2017 12:13
<u>Surrogates</u>	<u>REC (%)</u>			<u>Limits</u>		
Decachlorobiphenyl	110			70-130		06/20/2017 12:13
Analyst(s): LT						

Client ID	Lab ID	Matrix		Date C	ollected Instrument	Batch ID
SB-3,9.5-10	1706802-006A	Soil		06/14/20	17 09:46 GC23	140609
Analytes	<u>Result</u>	1	MDL	<u>RL</u>	DF	Date Analyzed
Aroclor1016	ND	(0.0051	0.050	1	06/21/2017 15:05
Aroclor1221	ND	(0.033	0.050	1	06/21/2017 15:05
Aroclor1232	ND	(0.0032	0.050	1	06/21/2017 15:05
Aroclor1242	ND	(0.0035	0.050	1	06/21/2017 15:05
Aroclor1248	ND	(0.0036	0.050	1	06/21/2017 15:05
Aroclor1254	ND	(0.0022	0.050	1	06/21/2017 15:05
Aroclor1260	ND	(0.0085	0.050	1	06/21/2017 15:05
PCBs, total	ND	(0.0040	0.050	1	06/21/2017 15:05
<u>Surrogates</u>	<u>REC (%)</u>			<u>Limits</u>		
Decachlorobiphenyl	94			70-130		06/21/2017 15:05
Analyst(s): SS			<u>Ana</u>	lytical Com	ments: h4	

Client:	ERAS Environmental, Inc.
Date Received:	6/15/17 19:00
Date Prepared:	6/16/17
Project:	16-004-025

WorkOrder:	1706802
Extraction Method:	SW3550B
Analytical Method:	SW8082
Unit:	mg/kg

Client ID	Lab ID	Matrix		Date C	ollected Instrument	Batch ID
SB-4,3.4-4	1706802-007A	Soil		06/14/20	017 10:26 GC23	140609
Analytes	Result		MDL	<u>RL</u>	DF	Date Analyzed
Aroclor1016	ND		0.0051	0.050	1	06/22/2017 16:38
Aroclor1221	ND		0.033	0.050	1	06/22/2017 16:38
Aroclor1232	ND		0.0032	0.050	1	06/22/2017 16:38
Aroclor1242	ND		0.0035	0.050	1	06/22/2017 16:38
Aroclor1248	ND		0.0036	0.050	1	06/22/2017 16:38
Aroclor1254	ND		0.0022	0.050	1	06/22/2017 16:38
Aroclor1260	ND		0.0085	0.050	1	06/22/2017 16:38
PCBs, total	ND		0.0040	0.050	1	06/22/2017 16:38
<u>Surrogates</u>	<u>REC (%)</u>			<u>Limits</u>		
Decachlorobiphenyl	113			70-130		06/22/2017 16:38
Analyst(s): LT						

Client ID	Lab ID	Matrix		Date C	ollected Instrument	Batch ID
SB-4,9.5-10	1706802-008A	Soil		06/14/20	017 10:34 GC23	140609
Analytes	Result		MDL	<u>RL</u>	DF	Date Analyzed
Aroclor1016	ND		0.0051	0.050	1	06/20/2017 05:45
Aroclor1221	ND		0.033	0.050	1	06/20/2017 05:45
Aroclor1232	ND		0.0032	0.050	1	06/20/2017 05:45
Aroclor1242	ND		0.0035	0.050	1	06/20/2017 05:45
Aroclor1248	ND		0.0036	0.050	1	06/20/2017 05:45
Aroclor1254	ND		0.0022	0.050	1	06/20/2017 05:45
Aroclor1260	ND		0.0085	0.050	1	06/20/2017 05:45
PCBs, total	ND		0.0040	0.050	1	06/20/2017 05:45
Surrogates	<u>REC (%)</u>			<u>Limits</u>		
Decachlorobiphenyl	110			70-130		06/20/2017 05:45
Analyst(s): SS						

Client:	ERAS Environmental, Inc.
Date Received:	6/15/17 19:00
Date Prepared:	6/16/17
Project:	16-004-025

WorkOrder:	1706802
Extraction Method:	SW3550B
Analytical Method:	SW8082
Unit:	mg/kg

Client ID	Lab ID	Matrix		Date C	ollected Instru	nent Batch ID
SB-5,3.4-4	1706802-009A	Soil		06/14/20	017 11:01 GC23	140609
Analytes	Result		MDL	<u>RL</u>	<u>DF</u>	Date Analyzed
Aroclor1016	ND		0.0051	0.050	1	06/20/2017 05:59
Aroclor1221	ND		0.033	0.050	1	06/20/2017 05:59
Aroclor1232	ND		0.0032	0.050	1	06/20/2017 05:59
Aroclor1242	ND		0.0035	0.050	1	06/20/2017 05:59
Aroclor1248	ND		0.0036	0.050	1	06/20/2017 05:59
Aroclor1254	ND		0.0022	0.050	1	06/20/2017 05:59
Aroclor1260	ND		0.0085	0.050	1	06/20/2017 05:59
PCBs, total	ND		0.0040	0.050	1	06/20/2017 05:59
Surrogates	<u>REC (%)</u>			<u>Limits</u>		
Decachlorobiphenyl	103			70-130		06/20/2017 05:59
<u>Analyst(s):</u> SS						

Client ID	Lab ID	Matrix		Date C	ollected Instrument	Batch ID
SB-5,9.5-10	1706802-010A	Soil		06/14/20	017 11:08 GC23	140609
Analytes	Result		MDL	<u>RL</u>	DF	Date Analyzed
Aroclor1016	ND		0.0051	0.050	1	06/21/2017 15:18
Aroclor1221	ND		0.033	0.050	1	06/21/2017 15:18
Aroclor1232	ND		0.0032	0.050	1	06/21/2017 15:18
Aroclor1242	ND		0.0035	0.050	1	06/21/2017 15:18
Aroclor1248	ND		0.0036	0.050	1	06/21/2017 15:18
Aroclor1254	ND		0.0022	0.050	1	06/21/2017 15:18
Aroclor1260	ND		0.0085	0.050	1	06/21/2017 15:18
PCBs, total	ND		0.0040	0.050	1	06/21/2017 15:18
Surrogates	<u>REC (%)</u>			<u>Limits</u>		
Decachlorobiphenyl	85			70-130		06/21/2017 15:18
Analyst(s): SS			<u>Ana</u>	lytical Com	ments: h4	

Client:	ERAS Environmental, Inc.
Date Received:	6/15/17 19:00
Date Prepared:	6/16/17
Project:	16-004-025

WorkOrder:	1706802
Extraction Method:	SW3550B
Analytical Method:	SW8082
Unit:	mg/kg

Client ID	Lab ID	Matrix		Date C	ollected Instrument	Batch ID
SB-6,3.4-4	1706802-011A	Soil		06/14/20	017 11:34 GC23	140609
Analytes	Result		MDL	<u>RL</u>	DF	Date Analyzed
Aroclor1016	ND		0.0051	0.050	1	06/20/2017 06:12
Aroclor1221	ND		0.033	0.050	1	06/20/2017 06:12
Aroclor1232	ND		0.0032	0.050	1	06/20/2017 06:12
Aroclor1242	ND		0.0035	0.050	1	06/20/2017 06:12
Aroclor1248	ND		0.0036	0.050	1	06/20/2017 06:12
Aroclor1254	ND		0.0022	0.050	1	06/20/2017 06:12
Aroclor1260	ND		0.0085	0.050	1	06/20/2017 06:12
PCBs, total	ND		0.0040	0.050	1	06/20/2017 06:12
<u>Surrogates</u>	<u>REC (%)</u>			<u>Limits</u>		
Decachlorobiphenyl	107			70-130		06/20/2017 06:12
<u>Analyst(s):</u> SS						

Client ID	Lab ID	Matrix		Date C	ollected Instrument	Batch ID
SB-6,9.5-10	1706802-012A	Soil		06/14/20	017 11:42 GC23	140609
Analytes	Result		MDL	<u>RL</u>	DF	Date Analyzed
Aroclor1016	ND		0.0051	0.050	1	06/20/2017 06:25
Aroclor1221	ND		0.033	0.050	1	06/20/2017 06:25
Aroclor1232	ND		0.0032	0.050	1	06/20/2017 06:25
Aroclor1242	ND		0.0035	0.050	1	06/20/2017 06:25
Aroclor1248	ND		0.0036	0.050	1	06/20/2017 06:25
Aroclor1254	ND		0.0022	0.050	1	06/20/2017 06:25
Aroclor1260	ND		0.0085	0.050	1	06/20/2017 06:25
PCBs, total	ND		0.0040	0.050	1	06/20/2017 06:25
<u>Surrogates</u>	<u>REC (%)</u>			<u>Limits</u>		
Decachlorobiphenyl	99			70-130		06/20/2017 06:25
<u>Analyst(s):</u> SS						

 Client:
 ERAS Environmental, Inc.

 Date Received:
 6/15/17 19:00

 Date Prepared:
 6/16/17

 Project:
 16-004-025

WorkOrder:	1706802
Extraction Method:	SW3550B
Analytical Method:	SW8082
Unit:	mg/kg

Client ID	Lab ID	Matrix		Date C	ollected Instrument	Batch ID
SB-7,3.5-4	1706802-013A	Soil		06/14/20	017 12:14 GC23	140609
Analytes	Result		MDL	<u>RL</u>	DF	Date Analyzed
Aroclor1016	ND		0.0051	0.050	1	06/20/2017 06:39
Aroclor1221	ND		0.033	0.050	1	06/20/2017 06:39
Aroclor1232	ND		0.0032	0.050	1	06/20/2017 06:39
Aroclor1242	ND		0.0035	0.050	1	06/20/2017 06:39
Aroclor1248	ND		0.0036	0.050	1	06/20/2017 06:39
Aroclor1254	ND		0.0022	0.050	1	06/20/2017 06:39
Aroclor1260	ND		0.0085	0.050	1	06/20/2017 06:39
PCBs, total	ND		0.0040	0.050	1	06/20/2017 06:39
Surrogates	<u>REC (%)</u>			<u>Limits</u>		
Decachlorobiphenyl	100			70-130		06/20/2017 06:39
<u>Analyst(s):</u> SS						

Client ID	Lab ID	Matrix		Date C	ollected Instrument	Batch ID
SB-7,9.5-10	1706802-014A	Soil		06/14/20	017 12:22 GC23	140609
Analytes	Result	<u>Qualifiers</u>	<u>MDL</u>	<u>RL</u>	DF	Date Analyzed
Aroclor1016	ND		0.0051	0.050	1	06/21/2017 15:31
Aroclor1221	ND		0.033	0.050	1	06/21/2017 15:31
Aroclor1232	ND		0.0032	0.050	1	06/21/2017 15:31
Aroclor1242	ND		0.0035	0.050	1	06/21/2017 15:31
Aroclor1248	ND		0.0036	0.050	1	06/21/2017 15:31
Aroclor1254	0.040	J	0.0022	0.050	1	06/21/2017 15:31
Aroclor1260	ND		0.0085	0.050	1	06/21/2017 15:31
PCBs, total	0.040	J	0.0040	0.050	1	06/21/2017 15:31
Surrogates	<u>REC (%)</u>			<u>Limits</u>		
Decachlorobiphenyl	89			70-130		06/21/2017 15:31
Analyst(s): SS			Ana	llytical Com	ments: h4	

 Client:
 ERAS Environmental, Inc.

 Date Received:
 6/15/17 19:00

 Date Prepared:
 6/16/17

 Project:
 16-004-025

 WorkOrder:
 1706802

 Extraction Method:
 SW3550B

 Analytical Method:
 SW8270C-SIM

 Unit:
 mg/kg

1706802-001A <u>Result</u> ND	Soil	MDL		017 08:32	GC35	140618	
ND		MDI				140618	
			<u>RL</u>	DF		Date Analyzed	
NB		0.0026	0.010	1		06/20/2017 23:38	
ND		0.0034	0.010	1		06/20/2017 23:38	
ND		0.0029	0.010	1		06/20/2017 23:38	
ND		0.0017	0.010	1		06/20/2017 23:38	
ND		0.0027	0.010	1		06/20/2017 23:38	
ND		0.0015	0.010	1		06/20/2017 23:38	
ND		0.0033	0.010	1		06/20/2017 23:38	
ND		0.0016	0.010	1		06/20/2017 23:38	
ND		0.0024	0.010	1		06/20/2017 23:38	
ND		0.0050	0.010	1		06/20/2017 23:38	
ND		0.0040	0.010	1		06/20/2017 23:38	
ND		0.0060	0.010	1		06/20/2017 23:38	
ND		0.0049	0.010	1		06/20/2017 23:38	
ND		0.0029	0.010	1		06/20/2017 23:38	
ND		0.0020	0.010	1		06/20/2017 23:38	
ND		0.0016	0.010	1		06/20/2017 23:38	
ND		0.0035	0.010	1		06/20/2017 23:38	
ND		0.0045	0.010	1		06/20/2017 23:38	
<u>REC (%)</u>			<u>Limits</u>				
104			30-130			06/20/2017 23:38	
108			30-130			06/20/2017 23:38	
	ND ND	ND ND	ND 0.0017 ND 0.0027 ND 0.0015 ND 0.0033 ND 0.0016 ND 0.0024 ND 0.0050 ND 0.0040 ND 0.0040 ND 0.0040 ND 0.0029 ND 0.0029 ND 0.0016 ND 0.0035 ND 0.0035 ND 0.0045 REC (%) 104	ND 0.0017 0.010 ND 0.0027 0.010 ND 0.0015 0.010 ND 0.0033 0.010 ND 0.0016 0.010 ND 0.0024 0.010 ND 0.0050 0.010 ND 0.0050 0.010 ND 0.0040 0.010 ND 0.0040 0.010 ND 0.0049 0.010 ND 0.0029 0.010 ND 0.0020 0.010 ND 0.0020 0.010 ND 0.0035 0.010 ND 0.0035 0.010 ND 0.0035 0.010 ND 0.0035 0.010 ND 0.0045 0.010 ND 0.010 10	ND 0.0017 0.010 1 ND 0.0027 0.010 1 ND 0.0015 0.010 1 ND 0.0015 0.010 1 ND 0.0033 0.010 1 ND 0.0033 0.010 1 ND 0.0016 0.010 1 ND 0.0024 0.010 1 ND 0.0050 0.010 1 ND 0.0040 0.010 1 ND 0.0040 0.010 1 ND 0.0049 0.010 1 ND 0.0029 0.010 1 ND 0.0020 0.010 1 ND 0.0035 0.010 1 ND 0.0045 0.010 1 ND 0.0045 0.010 1 ND 0.0045 0.010 1 ND 0.0045 0.010 1 ND 0.0045 </td <td>ND 0.0017 0.010 1 ND 0.0027 0.010 1 ND 0.0015 0.010 1 ND 0.0033 0.010 1 ND 0.0033 0.010 1 ND 0.0016 0.010 1 ND 0.0024 0.010 1 ND 0.0050 0.010 1 ND 0.0050 0.010 1 ND 0.0040 0.010 1 ND 0.0040 0.010 1 ND 0.0049 0.010 1 ND 0.0029 0.010 1 ND 0.0020 0.010 1 ND 0.0035 0.010 1 ND 0.0035 0.010 1 ND 0.0045 0.010 1 ND 0.0045 0.010 1 ND 0.0045 0.010 1 ND 0.0045<!--</td--></td>	ND 0.0017 0.010 1 ND 0.0027 0.010 1 ND 0.0015 0.010 1 ND 0.0033 0.010 1 ND 0.0033 0.010 1 ND 0.0016 0.010 1 ND 0.0024 0.010 1 ND 0.0050 0.010 1 ND 0.0050 0.010 1 ND 0.0040 0.010 1 ND 0.0040 0.010 1 ND 0.0049 0.010 1 ND 0.0029 0.010 1 ND 0.0020 0.010 1 ND 0.0035 0.010 1 ND 0.0035 0.010 1 ND 0.0045 0.010 1 ND 0.0045 0.010 1 ND 0.0045 0.010 1 ND 0.0045 </td	

 Client:
 ERAS Environmental, Inc.

 Date Received:
 6/15/17 19:00

 Date Prepared:
 6/16/17

 Project:
 16-004-025

 WorkOrder:
 1706802

 Extraction Method:
 SW3550B

 Analytical Method:
 SW8270C-SIM

 Unit:
 mg/kg

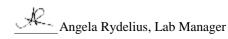
Client ID	Lab ID	Matrix		Date C	ollected Instrumen	t Batch ID
SB-1,9.5-10	1706802-002A	Soil		06/14/20	017 08:39 GC35	140618
Analytes	<u>Result</u>	N	MDL	<u>RL</u>	DF	Date Analyzed
Acenaphthene	ND	0	0.0026	0.010	1	06/21/2017 00:04
Acenaphthylene	ND	0	0.0034	0.010	1	06/21/2017 00:04
Anthracene	ND	0	0.0029	0.010	1	06/21/2017 00:04
Benzo (a) anthracene	ND	0	0.0017	0.010	1	06/21/2017 00:04
Benzo (a) pyrene	ND	0	0.0027	0.010	1	06/21/2017 00:04
Benzo (b) fluoranthene	ND	0	0.0015	0.010	1	06/21/2017 00:04
Benzo (g,h,i) perylene	ND	0	0.0033	0.010	1	06/21/2017 00:04
Benzo (k) fluoranthene	ND	0	0.0016	0.010	1	06/21/2017 00:04
Chrysene	ND	0	0.0024	0.010	1	06/21/2017 00:04
Dibenzo (a,h) anthracene	ND	0	0.0050	0.010	1	06/21/2017 00:04
Fluoranthene	ND	0	0.0040	0.010	1	06/21/2017 00:04
Fluorene	ND	0	0.0060	0.010	1	06/21/2017 00:04
Indeno (1,2,3-cd) pyrene	ND	0	0.0049	0.010	1	06/21/2017 00:04
1-Methylnaphthalene	ND	0	0.0029	0.010	1	06/21/2017 00:04
2-Methylnaphthalene	ND	0	0.0020	0.010	1	06/21/2017 00:04
Naphthalene	ND	0	0.0016	0.010	1	06/21/2017 00:04
Phenanthrene	ND	0	0.0035	0.010	1	06/21/2017 00:04
Pyrene	ND	0	0.0045	0.010	1	06/21/2017 00:04
Surrogates	<u>REC (%)</u>			<u>Limits</u>		
1-Fluoronaphthalene	104			30-130		06/21/2017 00:04
2-Fluorobiphenyl	107			30-130		06/21/2017 00:04

 Client:
 ERAS Environmental, Inc.

 Date Received:
 6/15/17 19:00

 Date Prepared:
 6/16/17

 Project:
 16-004-025


 WorkOrder:
 1706802

 Extraction Method:
 SW3550B

 Analytical Method:
 SW8270C-SIM

 Unit:
 mg/kg

Client ID	Lab ID	Matrix		Date C	ollected	Instrument	Batch ID	
SB-2,3.4-4	1706802-003A	Soil		06/14/2017 09:07 GC35			140618	
Analytes	<u>Result</u>		MDL	<u>RL</u>	DF		Date Analyzed	
Acenaphthene	ND		0.0026	0.010	1		06/21/2017 00:29	
Acenaphthylene	ND		0.0034	0.010	1		06/21/2017 00:29	
Anthracene	ND		0.0029	0.010	1		06/21/2017 00:29	
Benzo (a) anthracene	ND		0.0017	0.010	1		06/21/2017 00:29	
Benzo (a) pyrene	ND		0.0027	0.010	1		06/21/2017 00:29	
Benzo (b) fluoranthene	ND		0.0015	0.010	1		06/21/2017 00:29	
Benzo (g,h,i) perylene	ND		0.0033	0.010	1		06/21/2017 00:29	
Benzo (k) fluoranthene	ND		0.0016	0.010	1		06/21/2017 00:29	
Chrysene	ND		0.0024	0.010	1		06/21/2017 00:29	
Dibenzo (a,h) anthracene	ND		0.0050	0.010	1		06/21/2017 00:29	
Fluoranthene	ND		0.0040	0.010	1		06/21/2017 00:29	
Fluorene	ND		0.0060	0.010	1		06/21/2017 00:29	
Indeno (1,2,3-cd) pyrene	ND		0.0049	0.010	1		06/21/2017 00:29	
1-Methylnaphthalene	ND		0.0029	0.010	1		06/21/2017 00:29	
2-Methylnaphthalene	ND		0.0020	0.010	1		06/21/2017 00:29	
Naphthalene	ND		0.0016	0.010	1		06/21/2017 00:29	
Phenanthrene	ND		0.0035	0.010	1		06/21/2017 00:29	
Pyrene	ND		0.0045	0.010	1		06/21/2017 00:29	
Surrogates	<u>REC (%)</u>			<u>Limits</u>				
1-Fluoronaphthalene	104			30-130			06/21/2017 00:29	
2-Fluorobiphenyl	106			30-130			06/21/2017 00:29	
Analyst(s): REB								

 Client:
 ERAS Environmental, Inc.

 Date Received:
 6/15/17 19:00

 Date Prepared:
 6/16/17

 Project:
 16-004-025

 WorkOrder:
 1706802

 Extraction Method:
 SW3550B

 Analytical Method:
 SW8270C-SIM

 Unit:
 mg/kg

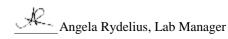
Client ID	Lab ID	Matrix	ζ.	Date C	ollected Inst	rument Batch	ID	
SB-2,9.5-10	1706802-004A	Soil		06/14/20	17 09:14 GC3	5 14061	140618	
Analytes	<u>Result</u>	Qualifiers	<u>s MDL</u>	<u>RL</u>	DF	Date Analyzed	<u>d</u>	
Acenaphthene	ND		0.0026	0.010	1	06/21/2017 00	0:54	
Acenaphthylene	ND		0.0034	0.010	1	06/21/2017 00	0:54	
Anthracene	ND		0.0029	0.010	1	06/21/2017 00	0:54	
Benzo (a) anthracene	ND		0.0017	0.010	1	06/21/2017 00	0:54	
Benzo (a) pyrene	ND		0.0027	0.010	1	06/21/2017 00	0:54	
Benzo (b) fluoranthene	ND		0.0015	0.010	1	06/21/2017 00	0:54	
Benzo (g,h,i) perylene	ND		0.0033	0.010	1	06/21/2017 00	0:54	
Benzo (k) fluoranthene	ND		0.0016	0.010	1	06/21/2017 00	0:54	
Chrysene	ND		0.0024	0.010	1	06/21/2017 00	0:54	
Dibenzo (a,h) anthracene	ND		0.0050	0.010	1	06/21/2017 00	0:54	
Fluoranthene	ND		0.0040	0.010	1	06/21/2017 00	0:54	
Fluorene	ND		0.0060	0.010	1	06/21/2017 00	0:54	
Indeno (1,2,3-cd) pyrene	ND		0.0049	0.010	1	06/21/2017 00	0:54	
1-Methylnaphthalene	ND		0.0029	0.010	1	06/21/2017 00	0:54	
2-Methylnaphthalene	ND		0.0020	0.010	1	06/21/2017 00	0:54	
Naphthalene	0.0016	J	0.0016	0.010	1	06/21/2017 00	0:54	
Phenanthrene	ND		0.0035	0.010	1	06/21/2017 00	0:54	
Pyrene	ND		0.0045	0.010	1	06/21/2017 00	0:54	
Surrogates	<u>REC (%)</u>			<u>Limits</u>				
1-Fluoronaphthalene	104			30-130		06/21/2017 00	0:54	
2-Fluorobiphenyl	104			30-130		06/21/2017 00	0:54	
<u>Analyst(s):</u> REB								

 Client:
 ERAS Environmental, Inc.

 Date Received:
 6/15/17 19:00

 Date Prepared:
 6/16/17

 Project:
 16-004-025


 WorkOrder:
 1706802

 Extraction Method:
 SW3550B

 Analytical Method:
 SW8270C-SIM

 Unit:
 mg/kg

Client ID	Lab ID	Matri	x	Date C	ollected 1	Instrument	Batch ID	
SB-3,3.4-4	1706802-005A	Soil		06/14/2017 09:38 GC35			140618	
Analytes	<u>Result</u>	Qualifier	s MDL	<u>RL</u>	DF		Date Analyzed	
Acenaphthene	ND		0.0026	0.010	1		06/21/2017 01:19	
Acenaphthylene	ND		0.0034	0.010	1		06/21/2017 01:19	
Anthracene	ND		0.0029	0.010	1		06/21/2017 01:19	
Benzo (a) anthracene	ND		0.0017	0.010	1		06/21/2017 01:19	
Benzo (a) pyrene	ND		0.0027	0.010	1		06/21/2017 01:19	
Benzo (b) fluoranthene	ND		0.0015	0.010	1		06/21/2017 01:19	
Benzo (g,h,i) perylene	ND		0.0033	0.010	1		06/21/2017 01:19	
Benzo (k) fluoranthene	ND		0.0016	0.010	1		06/21/2017 01:19	
Chrysene	ND		0.0024	0.010	1		06/21/2017 01:19	
Dibenzo (a,h) anthracene	ND		0.0050	0.010	1		06/21/2017 01:19	
Fluoranthene	ND		0.0040	0.010	1		06/21/2017 01:19	
Fluorene	ND		0.0060	0.010	1		06/21/2017 01:19	
Indeno (1,2,3-cd) pyrene	ND		0.0049	0.010	1		06/21/2017 01:19	
1-Methylnaphthalene	ND		0.0029	0.010	1		06/21/2017 01:19	
2-Methylnaphthalene	ND		0.0020	0.010	1		06/21/2017 01:19	
Naphthalene	0.0021	J	0.0016	0.010	1		06/21/2017 01:19	
Phenanthrene	ND		0.0035	0.010	1		06/21/2017 01:19	
Pyrene	ND		0.0045	0.010	1		06/21/2017 01:19	
Surrogates	<u>REC (%)</u>			<u>Limits</u>				
1-Fluoronaphthalene	99			30-130			06/21/2017 01:19	
2-Fluorobiphenyl	99			30-130			06/21/2017 01:19	
<u>Analyst(s):</u> REB								

 Client:
 ERAS Environmental, Inc.

 Date Received:
 6/15/17 19:00

 Date Prepared:
 6/16/17

 Project:
 16-004-025

 WorkOrder:
 1706802

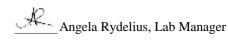
 Extraction Method:
 SW3550B

 Analytical Method:
 SW8270C-SIM

 Unit:
 mg/kg

Client ID	Lab ID	Matrix		Date C	ollected Instrument	Batch ID
SB-3,9.5-10	1706802-006A	Soil		06/14/20	017 09:46 GC35	140618
Analytes	Result		MDL	<u>RL</u>	DF	Date Analyzed
Acenaphthene	ND		0.0052	0.020	2	06/21/2017 01:44
Acenaphthylene	ND		0.0068	0.020	2	06/21/2017 01:44
Anthracene	ND		0.0058	0.020	2	06/21/2017 01:44
Benzo (a) anthracene	ND		0.0034	0.020	2	06/21/2017 01:44
Benzo (a) pyrene	ND		0.0054	0.020	2	06/21/2017 01:44
Benzo (b) fluoranthene	ND		0.0030	0.020	2	06/21/2017 01:44
Benzo (g,h,i) perylene	ND		0.0066	0.020	2	06/21/2017 01:44
Benzo (k) fluoranthene	ND		0.0032	0.020	2	06/21/2017 01:44
Chrysene	ND		0.0048	0.020	2	06/21/2017 01:44
Dibenzo (a,h) anthracene	ND		0.010	0.020	2	06/21/2017 01:44
Fluoranthene	ND		0.0080	0.020	2	06/21/2017 01:44
Fluorene	ND		0.012	0.020	2	06/21/2017 01:44
Indeno (1,2,3-cd) pyrene	ND		0.0098	0.020	2	06/21/2017 01:44
1-Methylnaphthalene	ND		0.0058	0.020	2	06/21/2017 01:44
2-Methylnaphthalene	ND		0.0040	0.020	2	06/21/2017 01:44
Naphthalene	ND		0.0032	0.020	2	06/21/2017 01:44
Phenanthrene	ND		0.0070	0.020	2	06/21/2017 01:44
Pyrene	ND		0.0090	0.020	2	06/21/2017 01:44
Surrogates	<u>REC (%)</u>			<u>Limits</u>		
1-Fluoronaphthalene	90			30-130		06/21/2017 01:44
2-Fluorobiphenyl	90			30-130		06/21/2017 01:44
<u>Analyst(s):</u> REB			Ana	lytical Com	<u>ments:</u> a3	

 Client:
 ERAS Environmental, Inc.


 Date Received:
 6/15/17 19:00

 Date Prepared:
 6/16/17

 Project:
 16-004-025

WorkOrder:	1706802
Extraction Method:	SW3550B
Analytical Method:	SW8270C-SIM
Unit:	mg/kg

Client ID	Lab ID	Matrix	Date	Collected Instrument	Batch ID
SB-4,3.4-4	1706802-007A	Soil	06/14/2	2017 10:26 GC35	140618
Analytes	<u>Result</u>	MD	<u>L RL</u>	DF	Date Analyzed
Acenaphthene	ND	0.00	026 0.010	1	06/21/2017 02:09
Acenaphthylene	ND	0.00	0.010	1	06/21/2017 02:09
Anthracene	ND	0.00	029 0.010	1	06/21/2017 02:09
Benzo (a) anthracene	ND	0.00	0.010 0.010	1	06/21/2017 02:09
Benzo (a) pyrene	ND	0.00	0.010	1	06/21/2017 02:09
Benzo (b) fluoranthene	ND	0.00	015 0.010	1	06/21/2017 02:09
Benzo (g,h,i) perylene	ND	0.00	033 0.010	1	06/21/2017 02:09
Benzo (k) fluoranthene	ND	0.00	016 0.010	1	06/21/2017 02:09
Chrysene	ND	0.00	024 0.010	1	06/21/2017 02:09
Dibenzo (a,h) anthracene	ND	0.00	050 0.010	1	06/21/2017 02:09
Fluoranthene	ND	0.00	040 0.010	1	06/21/2017 02:09
Fluorene	ND	0.00	060 0.010	1	06/21/2017 02:09
Indeno (1,2,3-cd) pyrene	ND	0.00	049 0.010	1	06/21/2017 02:09
1-Methylnaphthalene	ND	0.00	029 0.010	1	06/21/2017 02:09
2-Methylnaphthalene	ND	0.00	020 0.010	1	06/21/2017 02:09
Naphthalene	ND	0.00	016 0.010	1	06/21/2017 02:09
Phenanthrene	ND	0.00	035 0.010	1	06/21/2017 02:09
Pyrene	ND	0.00	045 0.010	1	06/21/2017 02:09
Surrogates	<u>REC (%)</u>		<u>Limits</u>		
1-Fluoronaphthalene	100		30-130		06/21/2017 02:09
2-Fluorobiphenyl	102		30-130		06/21/2017 02:09

 Client:
 ERAS Environmental, Inc.

 Date Received:
 6/15/17 19:00

 Date Prepared:
 6/16/17

 Project:
 16-004-025

 WorkOrder:
 1706802

 Extraction Method:
 SW3550B

 Analytical Method:
 SW8270C-SIM

 Unit:
 mg/kg

Client ID SB-4,9.5-10 Analytes	Lab ID	Matrix Soil		Date Collected Instrument		Instrument	Batch ID
	1706802-008A <u>Result</u>			06/14/2017 10:34 GC35			140618
		Qualifier	<u>MDL</u>	<u>RL</u>	DF		Date Analyzed
Acenaphthene	ND		0.0026	0.010	1		06/21/2017 02:34
Acenaphthylene	ND		0.0034	0.010	1		06/21/2017 02:34
Anthracene	ND		0.0029	0.010	1		06/21/2017 02:34
Benzo (a) anthracene	ND		0.0017	0.010	1		06/21/2017 02:34
Benzo (a) pyrene	ND		0.0027	0.010	1		06/21/2017 02:34
Benzo (b) fluoranthene	ND		0.0015	0.010	1		06/21/2017 02:34
Benzo (g,h,i) perylene	ND		0.0033	0.010	1		06/21/2017 02:34
Benzo (k) fluoranthene	ND		0.0016	0.010	1		06/21/2017 02:34
Chrysene	ND		0.0024	0.010	1		06/21/2017 02:34
Dibenzo (a,h) anthracene	ND		0.0050	0.010	1		06/21/2017 02:34
Fluoranthene	ND		0.0040	0.010	1		06/21/2017 02:34
Fluorene	ND		0.0060	0.010	1		06/21/2017 02:34
Indeno (1,2,3-cd) pyrene	ND		0.0049	0.010	1		06/21/2017 02:34
1-Methylnaphthalene	ND		0.0029	0.010	1		06/21/2017 02:34
2-Methylnaphthalene	ND		0.0020	0.010	1		06/21/2017 02:34
Naphthalene	0.0017	J	0.0016	0.010	1		06/21/2017 02:34
Phenanthrene	ND		0.0035	0.010	1		06/21/2017 02:34
Pyrene	ND		0.0045	0.010	1		06/21/2017 02:34
Surrogates	<u>REC (%)</u>			<u>Limits</u>			
1-Fluoronaphthalene	101			30-130			06/21/2017 02:34
2-Fluorobiphenyl	103			30-130			06/21/2017 02:34

 Client:
 ERAS Environmental, Inc.

 Date Received:
 6/15/17 19:00

 Date Prepared:
 6/16/17

 Project:
 16-004-025

 WorkOrder:
 1706802

 Extraction Method:
 SW3550B

 Analytical Method:
 SW8270C-SIM

 Unit:
 mg/kg

Client ID SB-5,3.4-4 Analytes	Lab ID	Matrix Soil		Date Collected Instrument 06/14/2017 11:01 GC35			Batch ID 140618
	1706802-009A <u>Result</u>						
			MDL	<u>RL DF</u>		Date Analyzed	
Acenaphthene	ND		0.0026	0.010	1		06/21/2017 02:59
Acenaphthylene	ND		0.0034	0.010	1		06/21/2017 02:59
Anthracene	ND		0.0029	0.010	1		06/21/2017 02:59
Benzo (a) anthracene	ND		0.0017	0.010	1		06/21/2017 02:59
Benzo (a) pyrene	ND		0.0027	0.010	1		06/21/2017 02:59
Benzo (b) fluoranthene	ND		0.0015	0.010	1		06/21/2017 02:59
Benzo (g,h,i) perylene	ND		0.0033	0.010	1		06/21/2017 02:59
Benzo (k) fluoranthene	ND		0.0016	0.010	1		06/21/2017 02:59
Chrysene	ND		0.0024	0.010	1		06/21/2017 02:59
Dibenzo (a,h) anthracene	ND		0.0050	0.010	1		06/21/2017 02:59
Fluoranthene	ND		0.0040	0.010	1		06/21/2017 02:59
Fluorene	ND		0.0060	0.010	1		06/21/2017 02:59
Indeno (1,2,3-cd) pyrene	ND		0.0049	0.010	1		06/21/2017 02:59
1-Methylnaphthalene	ND		0.0029	0.010	1		06/21/2017 02:59
2-Methylnaphthalene	ND		0.0020	0.010	1		06/21/2017 02:59
Naphthalene	ND		0.0016	0.010	1		06/21/2017 02:59
Phenanthrene	ND		0.0035	0.010	1		06/21/2017 02:59
Pyrene	ND		0.0045	0.010	1		06/21/2017 02:59
Surrogates	<u>REC (%)</u>			<u>Limits</u>			
1-Fluoronaphthalene	99			30-130			06/21/2017 02:59
2-Fluorobiphenyl	103			30-130			06/21/2017 02:59

 Client:
 ERAS Environmental, Inc.

 Date Received:
 6/15/17 19:00

 Date Prepared:
 6/16/17

 Project:
 16-004-025

 WorkOrder:
 1706802

 Extraction Method:
 SW3550B

 Analytical Method:
 SW8270C-SIM

 Unit:
 mg/kg

Client ID	Lab ID	Matrix		Date Collected Instrument			Batch ID
SB-5,9.5-10	1706802-010A	Soil		06/14/20	017 11:08	GC35	140618
<u>Analytes</u>	<u>Result</u>	Qualifiers	MDL	<u>RL</u>	DF		Date Analyzed
Acenaphthene	ND		0.0026	0.010	1		06/21/2017 03:25
Acenaphthylene	ND		0.0034	0.010	1		06/21/2017 03:25
Anthracene	ND		0.0029	0.010	1		06/21/2017 03:25
Benzo (a) anthracene	0.0080	J	0.0017	0.010	1		06/21/2017 03:25
Benzo (a) pyrene	ND		0.0027	0.010	1		06/21/2017 03:25
Benzo (b) fluoranthene	0.0036	J	0.0015	0.010	1		06/21/2017 03:25
Benzo (g,h,i) perylene	0.0045	J	0.0033	0.010	1		06/21/2017 03:25
Benzo (k) fluoranthene	0.0023	J	0.0016	0.010	1		06/21/2017 03:25
Chrysene	0.0026	J	0.0024	0.010	1		06/21/2017 03:25
Dibenzo (a,h) anthracene	ND		0.0050	0.010	1		06/21/2017 03:25
Fluoranthene	0.0048	J	0.0040	0.010	1		06/21/2017 03:25
Fluorene	ND		0.0060	0.010	1		06/21/2017 03:25
Indeno (1,2,3-cd) pyrene	ND		0.0049	0.010	1		06/21/2017 03:25
1-Methylnaphthalene	ND		0.0029	0.010	1		06/21/2017 03:25
2-Methylnaphthalene	ND		0.0020	0.010	1		06/21/2017 03:25
Naphthalene	0.0020	J	0.0016	0.010	1		06/21/2017 03:25
Phenanthrene	0.0042	J	0.0035	0.010	1		06/21/2017 03:25
Pyrene	0.0059	J	0.0045	0.010	1		06/21/2017 03:25
Surrogates	<u>REC (%)</u>			<u>Limits</u>			
1-Fluoronaphthalene	99			30-130			06/21/2017 03:25
2-Fluorobiphenyl	101			30-130			06/21/2017 03:25

 Client:
 ERAS Environmental, Inc.

 Date Received:
 6/15/17 19:00

 Date Prepared:
 6/16/17

 Project:
 16-004-025

 WorkOrder:
 1706802

 Extraction Method:
 SW3550B

 Analytical Method:
 SW8270C-SIM

 Unit:
 mg/kg

Client ID	Lab ID Matrix			Date C	ollected	Batch ID	
SB-6,3.4-4	1706802-011A	Soil		06/14/2017 11:34 GC35			140618
Analytes	Result	ME	DL	<u>RL</u> DF			Date Analyzed
Acenaphthene	ND	0.0	0026	0.010	1		06/21/2017 03:49
Acenaphthylene	ND	0.0	0034	0.010	1		06/21/2017 03:49
Anthracene	ND	0.0	0029	0.010	1		06/21/2017 03:49
Benzo (a) anthracene	ND	0.0	0017	0.010	1		06/21/2017 03:49
Benzo (a) pyrene	ND	0.0	0027	0.010	1		06/21/2017 03:49
Benzo (b) fluoranthene	ND	0.0	0015	0.010	1		06/21/2017 03:49
Benzo (g,h,i) perylene	ND	0.0	0033	0.010	1		06/21/2017 03:49
Benzo (k) fluoranthene	ND	0.0	0016	0.010	1		06/21/2017 03:49
Chrysene	ND	0.0	0024	0.010	1		06/21/2017 03:49
Dibenzo (a,h) anthracene	ND	0.0	0050	0.010	1		06/21/2017 03:49
Fluoranthene	ND	0.0	0040	0.010	1		06/21/2017 03:49
Fluorene	ND	0.0	060	0.010	1		06/21/2017 03:49
Indeno (1,2,3-cd) pyrene	ND	0.0	0049	0.010	1		06/21/2017 03:49
1-Methylnaphthalene	ND	0.0	0029	0.010	1		06/21/2017 03:49
2-Methylnaphthalene	ND	0.0	0020	0.010	1		06/21/2017 03:49
Naphthalene	ND	0.0	0016	0.010	1		06/21/2017 03:49
Phenanthrene	ND	0.0	0035	0.010	1		06/21/2017 03:49
Pyrene	ND	0.0	0045	0.010	1		06/21/2017 03:49
Surrogates	<u>REC (%)</u>			<u>Limits</u>			
1-Fluoronaphthalene	100			30-130			06/21/2017 03:49
2-Fluorobiphenyl	104			30-130			06/21/2017 03:49

 Client:
 ERAS Environmental, Inc.

 Date Received:
 6/15/17 19:00

 Date Prepared:
 6/16/17

 Project:
 16-004-025

 WorkOrder:
 1706802

 Extraction Method:
 SW3550B

 Analytical Method:
 SW8270C-SIM

 Unit:
 mg/kg

Client ID	Lab ID	Matrix	Date C	Batch ID	
SB-6,9.5-10	1706802-012A	Soil	06/14/2	017 11:42 GC35	140618
Analytes	<u>Result</u>	MDL	<u>RL</u>	<u>DF</u>	Date Analyzed
Acenaphthene	ND	0.002	26 0.010	1	06/21/2017 04:14
Acenaphthylene	ND	0.00	34 0.010	1	06/21/2017 04:14
Anthracene	ND	0.002	0.010	1	06/21/2017 04:14
Benzo (a) anthracene	ND	0.00	0.010	1	06/21/2017 04:14
Benzo (a) pyrene	ND	0.002	0.010	1	06/21/2017 04:14
Benzo (b) fluoranthene	ND	0.00	5 0.010	1	06/21/2017 04:14
Benzo (g,h,i) perylene	ND	0.00	33 0.010	1	06/21/2017 04:14
Benzo (k) fluoranthene	ND	0.00	6 0.010	1	06/21/2017 04:14
Chrysene	ND	0.002	24 0.010	1	06/21/2017 04:14
Dibenzo (a,h) anthracene	ND	0.00	50 0.010	1	06/21/2017 04:14
Fluoranthene	ND	0.004	0.010	1	06/21/2017 04:14
Fluorene	ND	0.00	0.010	1	06/21/2017 04:14
Indeno (1,2,3-cd) pyrene	ND	0.004	19 0.010	1	06/21/2017 04:14
1-Methylnaphthalene	ND	0.002	29 0.010	1	06/21/2017 04:14
2-Methylnaphthalene	ND	0.002	20 0.010	1	06/21/2017 04:14
Naphthalene	ND	0.00	0.010	1	06/21/2017 04:14
Phenanthrene	ND	0.00	35 0.010	1	06/21/2017 04:14
Pyrene	ND	0.004	15 0.010	1	06/21/2017 04:14
Surrogates	<u>REC (%)</u>		<u>Limits</u>		
1-Fluoronaphthalene	100		30-130		06/21/2017 04:14
2-Fluorobiphenyl	104		30-130		06/21/2017 04:14

 Client:
 ERAS Environmental, Inc.

 Date Received:
 6/15/17 19:00

 Date Prepared:
 6/16/17

 Project:
 16-004-025

 WorkOrder:
 1706802

 Extraction Method:
 SW3550B

 Analytical Method:
 SW8270C-SIM

 Unit:
 mg/kg

1706802-013A <u>Result</u> ND ND ND ND ND	Soil	MDL 0.0026 0.0034	06/14/20 <u>RL</u> 0.010 0.010	17 12:14 GC35 DE 1	140618 <u>Date Analyzed</u> 06/21/2017 04:39
ND ND ND ND		0.0026	0.010		
ND ND ND		0.0034		1	06/21/2017 04:39
ND ND			0.010		
ND		0.0000	0.010	1	06/21/2017 04:39
		0.0029	0.010	1	06/21/2017 04:39
		0.0017	0.010	1	06/21/2017 04:39
ND		0.0027	0.010	1	06/21/2017 04:39
ND		0.0015	0.010	1	06/21/2017 04:39
ND		0.0033	0.010	1	06/21/2017 04:39
ND		0.0016	0.010	1	06/21/2017 04:39
ND		0.0024	0.010	1	06/21/2017 04:39
ND		0.0050	0.010	1	06/21/2017 04:39
ND		0.0040	0.010	1	06/21/2017 04:39
ND		0.0060	0.010	1	06/21/2017 04:39
ND		0.0049	0.010	1	06/21/2017 04:39
ND		0.0029	0.010	1	06/21/2017 04:39
ND		0.0020	0.010	1	06/21/2017 04:39
ND		0.0016	0.010	1	06/21/2017 04:39
ND		0.0035	0.010	1	06/21/2017 04:39
ND		0.0045	0.010	1	06/21/2017 04:39
<u>REC (%)</u>			<u>Limits</u>		
97			30-130		06/21/2017 04:39
100			30-130		06/21/2017 04:39
	ND 97	ND ND	ND 0.0033 ND 0.0016 ND 0.0024 ND 0.0050 ND 0.0040 ND 0.0060 ND 0.0049 ND 0.0029 ND 0.0020 ND 0.0016 ND 0.0035 ND 0.0045 REC (%) 97	ND 0.0033 0.010 ND 0.0016 0.010 ND 0.0024 0.010 ND 0.0050 0.010 ND 0.0040 0.010 ND 0.0040 0.010 ND 0.0040 0.010 ND 0.0040 0.010 ND 0.0029 0.010 ND 0.0020 0.010 ND 0.0020 0.010 ND 0.0035 0.010 ND 0.0035 0.010 ND 0.0045 0.010 REC (%) Limits 97 30-130	ND 0.0033 0.010 1 ND 0.0016 0.010 1 ND 0.0024 0.010 1 ND 0.0050 0.010 1 ND 0.0050 0.010 1 ND 0.0040 0.010 1 ND 0.0060 0.010 1 ND 0.0049 0.010 1 ND 0.0029 0.010 1 ND 0.0020 0.010 1 ND 0.0016 0.010 1 ND 0.0016 0.010 1 ND 0.0035 0.010 1 ND 0.0045 0.010 1 ND 0.0045 0.010 1 ND 0.0045 0.010 1 ND 0.0045 0.010 1 ND 0.010 1 1 ND 0.010 1 1 REC (%) Limits

 Client:
 ERAS Environmental, Inc.

 Date Received:
 6/15/17 19:00

 Date Prepared:
 6/16/17

 Project:
 16-004-025

 WorkOrder:
 1706802

 Extraction Method:
 SW3550B

 Analytical Method:
 SW8270C-SIM

 Unit:
 mg/kg

Client ID	Lab ID	Matrix		Date C	ollected 1	instrument	Batch ID	
SB-7,9.5-10	1706802-014A	Soil		06/14/2017 12:22 GC35			140618	
Analytes	<u>Result</u>	Qualifiers	MDL	<u>RL</u>	DF		Date Analyzed	
Acenaphthene	ND		0.0026	0.010	1		06/21/2017 17:12	
Acenaphthylene	ND		0.0034	0.010	1		06/21/2017 17:12	
Anthracene	ND		0.0029	0.010	1		06/21/2017 17:12	
Benzo (a) anthracene	ND		0.0017	0.010	1		06/21/2017 17:12	
Benzo (a) pyrene	0.0053	J	0.0027	0.010	1		06/21/2017 17:12	
Benzo (b) fluoranthene	ND		0.0015	0.010	1		06/21/2017 17:12	
Benzo (g,h,i) perylene	0.012		0.0033	0.010	1		06/21/2017 17:12	
Benzo (k) fluoranthene	ND		0.0016	0.010	1		06/21/2017 17:12	
Chrysene	0.0026	J	0.0024	0.010	1		06/21/2017 17:12	
Dibenzo (a,h) anthracene	ND		0.0050	0.010	1		06/21/2017 17:12	
Fluoranthene	ND		0.0040	0.010	1		06/21/2017 17:12	
Fluorene	ND		0.0060	0.010	1		06/21/2017 17:12	
Indeno (1,2,3-cd) pyrene	ND		0.0049	0.010	1		06/21/2017 17:12	
1-Methylnaphthalene	ND		0.0029	0.010	1		06/21/2017 17:12	
2-Methylnaphthalene	ND		0.0020	0.010	1		06/21/2017 17:12	
Naphthalene	ND		0.0016	0.010	1		06/21/2017 17:12	
Phenanthrene	ND		0.0035	0.010	1		06/21/2017 17:12	
Pyrene	ND		0.0045	0.010	1		06/21/2017 17:12	
Surrogates	<u>REC (%)</u>			<u>Limits</u>				
1-Fluoronaphthalene	98			30-130			06/21/2017 17:12	
2-Fluorobiphenyl	97			30-130			06/21/2017 17:12	
<u>Analyst(s):</u> REB								

Client: ERAS Environmental, Inc. Date Received: 6/15/17 19:00 **Date Prepared:** 6/16/17 **Project:** 16-004-025

WorkOrder:	1706802
Extraction Method:	SW3050B
Analytical Method:	SW6020
Unit:	mg/Kg

LUFT 5 Metals									
Client ID	Lab ID	Matrix		Date C	Collected	Instrument	Batch II		
SB-1,3.5-4	1706802-001A	Soil		06/14/2	017 08:32	ICP-MS3	140589		
Analytes	<u>Result</u>		MDL	<u>RL</u>	DF		Date Analyzed		
Cadmium	ND		0.058	0.25	1		06/20/2017 02:3		
Chromium	79		0.092	0.50	1		06/20/2017 02:3		
Lead	8.3		0.094	0.50	1		06/20/2017 02:3		
Nickel	72		0.072	0.50	1		06/20/2017 02:3		
Zinc	47		1.4	5.0	1		06/20/2017 02:3		
<u>Surrogates</u>	<u>REC (%)</u>			<u>Limits</u>					
Terbium	105			70-130			06/20/2017 02:3		
<u>Analyst(s):</u> DB									
Client ID	Lab ID	Matrix		Date C	Collected	Instrument	Batch II		
SB-1,9.5-10	1706802-002A	Soil		06/14/2	017 08:39	ICP-MS3	140589		
Analytes	<u>Result</u>	Qualifiers	MDL	<u>RL</u>	<u>DF</u>		Date Analyzed		
Cadmium	0.11	J	0.058	0.25	1		06/20/2017 02:3		
Chromium	71	-	0.092	0.50	1		06/20/2017 02:3		
Lead	7.9		0.094	0.50	1		06/20/2017 02:3		
Nickel	83		0.072	0.50	1		06/20/2017 02:3		
Zinc	56		1.4	5.0	1		06/20/2017 02:3		
Surrogates	<u>REC (%)</u>			<u>Limits</u>					
Terbium	104			70-130			06/20/2017 02:3		
<u>Analyst(s):</u> DB									
Client ID	Lab ID	Matrix		Date C	Collected	Instrument	Batch II		
SB-2,3.4-4	1706802-003A	Soil		06/14/2	017 09:07	ICP-MS3	140589		
Analytes	<u>Result</u>		MDL	<u>RL</u>	<u>DF</u>		Date Analyzed		
Cadmium	ND		0.058	0.25	1		06/20/2017 03:0		
Chromium	70		0.092	0.50	1		06/20/2017 03:0		
Lead	7.6		0.094	0.50	1		06/20/2017 03:0		
Nickel	72		0.072	0.50	1		06/20/2017 03:0		
Zinc	43		1.4	5.0	1		06/20/2017 03:0		
Surrogates	<u>REC (%)</u>			<u>Limits</u>					
Terbium	101			70-130			06/20/2017 03:0		
Analyst(s): DB									

Client: ERAS Environmental, Inc. Date Received: 6/15/17 19:00 **Date Prepared:** 6/16/17 **Project:** 16-004-025

WorkOrder:	1706802
Extraction Method:	SW3050B
Analytical Method:	SW6020
Unit:	mg/Kg

LUFT 5 Metals									
Client ID	Lab ID	Matrix		Date C	Collected	Instrument	Batch II		
SB-2,9.5-10	1706802-004A	Soil		06/14/2	017 09:14	ICP-MS3	140589		
Analytes	<u>Result</u>	<u>Qualifiers</u>	MDL	<u>RL</u>	DF		Date Analyzed		
Cadmium	0.13	J	0.058	0.25	1		06/20/2017 03:0		
Chromium	50		0.092	0.50	1		06/20/2017 03:0		
Lead	6.4		0.094	0.50	1		06/20/2017 03:0		
Nickel	90		0.072	0.50	1		06/20/2017 03:0		
Zinc	46		1.4	5.0	1		06/20/2017 03:0		
<u>Surrogates</u>	<u>REC (%)</u>			<u>Limits</u>					
Terbium	103			70-130			06/20/2017 03:0		
<u>Analyst(s):</u> DB									
Client ID	Lab ID	Matrix		Date C	Collected	Instrument	Batch II		
SB-3,3.4-4	1706802-005A	Soil		06/14/2	017 09:38	ICP-MS3	140589		
Analytes	<u>Result</u>	Qualifiers	MDL	<u>RL</u>	<u>DF</u>		Date Analyzed		
Cadmium	0.098	J	0.058	0.25	1		06/20/2017 03:1		
Chromium	52	-	0.092	0.50	1		06/20/2017 03:1		
Lead	6.9		0.094	0.50	1		06/20/2017 03:1		
Nickel	110		0.072	0.50	1		06/20/2017 03:1		
Zinc	49		1.4	5.0	1		06/20/2017 03:1		
Surrogates	<u>REC (%)</u>			<u>Limits</u>					
Terbium	101			70-130			06/20/2017 03:1		
<u>Analyst(s):</u> DB									
Client ID	Lab ID	Matrix		Date C	Collected	Instrument	Batch II		
SB-3,9.5-10	1706802-006A	Soil		06/14/2	017 09:46	ICP-MS3	140589		
Analytes	<u>Result</u>	Qualifiers	MDL	<u>RL</u>	<u>DF</u>		Date Analyzed		
Cadmium	0.12	J	0.058	0.25	1		06/20/2017 03:1		
Chromium	54	-	0.092	0.50	1		06/20/2017 03:1		
Lead	7.1		0.094	0.50	1		06/20/2017 03:1		
Nickel	81		0.072	0.50	1		06/20/2017 03:1		
Zinc	49		1.4	5.0	1		06/20/2017 03:1		
Surrogates	<u>REC (%)</u>			<u>Limits</u>					
Terbium	102			70-130			06/20/2017 03:1		
Analyst(s): DB									

 Client:
 ERAS Environmental, Inc.

 Date Received:
 6/15/17 19:00

 Date Prepared:
 6/16/17

 Project:
 16-004-025

WorkOrder:	1706802
Extraction Method:	SW3050B
Analytical Method:	SW6020
Unit:	mg/Kg

LUFT 5 Metals								
Lab ID	Matrix		Date C	ollected	Instrument	Batch II		
1706802-007A	Soil		06/14/20	017 10:26	ICP-MS3	140589		
<u>Result</u>		MDL	<u>RL</u>	DF		Date Analyzed		
ND		0.058	0.25	1		06/20/2017 03:2		
59		0.092	0.50	1		06/20/2017 03:2		
6.6		0.094	0.50	1		06/20/2017 03:2		
72		0.072	0.50	1		06/20/2017 03:2		
41		1.4	5.0	1		06/20/2017 03:2		
<u>REC (%)</u>			<u>Limits</u>					
100			70-130			06/20/2017 03:2		
Lab ID	Matrix		Date C	ollected	Instrument	Batch II		
1706802-008A	Soil		06/14/20	017 10:34	ICP-MS3	140589		
<u>Result</u>	Qualifiers	MDL	<u>RL</u>	DF		Date Analyzed		
0.14	J	0.058	0.25	1		06/20/2017 03:3		
110		0.092	0.50	1		06/20/2017 03:3		
7.7		0.094	0.50	1		06/20/2017 03:3		
130		0.072	0.50	1		06/20/2017 03:3		
52		1.4	5.0	1		06/20/2017 03:3		
REC (%)			Limits					
			70-130			06/20/2017 03:3		
Lab ID	Matrix		Date C	ollected	Instrument	Batch II		
1706802-009A	Soil		06/14/20	017 11:01	ICP-MS3	140589		
Result	Qualifiers	MDL	<u>RL</u>	DF		Date Analyzed		
0.092	J	0.058	0.25	1		06/20/2017 03:3		
63		0.092	0.50	1		06/20/2017 03:3		
		0.094	0.50	1		06/20/2017 03:3		
7.6								
7.6		0.072	0.50	1		06/20/2017 03:3		
			0.50 5.0	1				
74		0.072				06/20/2017 03:3 06/20/2017 03:3		
	1706802-007A Result ND 59 6.6 72 41 REC (%) 100 Lab ID 1706802-008A Result 0.14 110 7.7 130 52 REC (%) 104	Lab ID Matrix 1706802-007A Soil Result ND ND - 59 - 6.6 - 72 - 41 - REC (%) 100 100 Matrix Result Qualifiers 0.14 J 110 - 7.7 - 130 - 52 - REC (%) 104 104 -	Lab ID Matrix 1706802-007A Soil Result MDL ND 0.058 59 0.092 6.6 0.094 72 0.072 41 1.4 REC (%) 1.0 100 Matrix RESult Qualifiers MDL 0.058 0.14 0.058 0.14 0.058 0.14 0.058 100 Matrix Result Qualifiers MDL 0.058 100 0.052 100 0.058 100 0.058 100 0.058 101 0.058 102 0.072 103 0.072 104 1.4 REC (%) 1.4 104 1.4 REC (%) 1.04 104 1.4 REC (%) 1.04 104 1.4 Result Soil Result Qualifiers <td>Lab ID Matrix Date C 1706802-007A Soil 06/14/24 Result MDL RL ND 0.058 0.25 59 0.092 0.50 6.6 0.094 0.50 72 0.072 0.50 41 1.4 5.0 REC (%) Limits 100 70-130 REC (%) Limits 100 MDL RL 0.058 Soil 06/14/24 100 Matrix Date C 100 Matrix Date C 100 Soil 06/14/24 100 0.092 0.50 110 0.058 0.25 110 0.092 0.50 130 0.072 0.50 104 70-130 14 104 70-130 10 REC (%) Limits 10 104 501 06/14/24 104<!--</td--><td>Lab ID Matrix Date Cullected 1706802-007A Soil 06/14/201710:26 Result MDL RL DE ND 0.058 0.25 1 S9 0.092 0.50 1 6.6 0.094 0.50 1 72 0.072 0.50 1 101 1.4 5.0 1 REC (%) Limits 70-130 1 100 Matrix Date Cullected 1 100 Natrix Date Cullected 1 Result Qualifiers MDL RL DE 110 0.058 0.25 1 1 0.14 J 0.058 0.25 1 130 0.072 0.50 1 1 130 0.072 0.50 1 1 14 5.0 1 1 1 124 I.4 5.0 1 1 1</td><td>Lab ID Matrix Date Collected Instrument 1706802-007A Soil 06/14/2017 10:26 ICP-MS3 Result MDL RL DE ICP-MS3 ND 0.058 0.25 1 ICP-MS3 59 0.092 0.50 1 ICP-MS3 6.6 0.094 0.50 1 ICP-MS3 6.6 0.092 0.50 1 ICP-MS3 6.6 0.094 0.50 1 ICP-MS3 6.6 0.094 0.50 1 ICP 41 1.4 5.0 1 ICP 100 Toris TOR ICP ICP 100 Matrix Date Collected Instrument 1706802-008A Soil O6/14/2017 10:34 ICP-MS3 Result Qualifiers MDL RL DE 0.14 J 0.058 0.25 1 ICP-MS3 1100 0.092 0.50 1</td></td>	Lab ID Matrix Date C 1706802-007A Soil 06/14/24 Result MDL RL ND 0.058 0.25 59 0.092 0.50 6.6 0.094 0.50 72 0.072 0.50 41 1.4 5.0 REC (%) Limits 100 70-130 REC (%) Limits 100 MDL RL 0.058 Soil 06/14/24 100 Matrix Date C 100 Matrix Date C 100 Soil 06/14/24 100 0.092 0.50 110 0.058 0.25 110 0.092 0.50 130 0.072 0.50 104 70-130 14 104 70-130 10 REC (%) Limits 10 104 501 06/14/24 104 </td <td>Lab ID Matrix Date Cullected 1706802-007A Soil 06/14/201710:26 Result MDL RL DE ND 0.058 0.25 1 S9 0.092 0.50 1 6.6 0.094 0.50 1 72 0.072 0.50 1 101 1.4 5.0 1 REC (%) Limits 70-130 1 100 Matrix Date Cullected 1 100 Natrix Date Cullected 1 Result Qualifiers MDL RL DE 110 0.058 0.25 1 1 0.14 J 0.058 0.25 1 130 0.072 0.50 1 1 130 0.072 0.50 1 1 14 5.0 1 1 1 124 I.4 5.0 1 1 1</td> <td>Lab ID Matrix Date Collected Instrument 1706802-007A Soil 06/14/2017 10:26 ICP-MS3 Result MDL RL DE ICP-MS3 ND 0.058 0.25 1 ICP-MS3 59 0.092 0.50 1 ICP-MS3 6.6 0.094 0.50 1 ICP-MS3 6.6 0.092 0.50 1 ICP-MS3 6.6 0.094 0.50 1 ICP-MS3 6.6 0.094 0.50 1 ICP 41 1.4 5.0 1 ICP 100 Toris TOR ICP ICP 100 Matrix Date Collected Instrument 1706802-008A Soil O6/14/2017 10:34 ICP-MS3 Result Qualifiers MDL RL DE 0.14 J 0.058 0.25 1 ICP-MS3 1100 0.092 0.50 1</td>	Lab ID Matrix Date Cullected 1706802-007A Soil 06/14/201710:26 Result MDL RL DE ND 0.058 0.25 1 S9 0.092 0.50 1 6.6 0.094 0.50 1 72 0.072 0.50 1 101 1.4 5.0 1 REC (%) Limits 70-130 1 100 Matrix Date Cullected 1 100 Natrix Date Cullected 1 Result Qualifiers MDL RL DE 110 0.058 0.25 1 1 0.14 J 0.058 0.25 1 130 0.072 0.50 1 1 130 0.072 0.50 1 1 14 5.0 1 1 1 124 I.4 5.0 1 1 1	Lab ID Matrix Date Collected Instrument 1706802-007A Soil 06/14/2017 10:26 ICP-MS3 Result MDL RL DE ICP-MS3 ND 0.058 0.25 1 ICP-MS3 59 0.092 0.50 1 ICP-MS3 6.6 0.094 0.50 1 ICP-MS3 6.6 0.092 0.50 1 ICP-MS3 6.6 0.094 0.50 1 ICP-MS3 6.6 0.094 0.50 1 ICP 41 1.4 5.0 1 ICP 100 Toris TOR ICP ICP 100 Matrix Date Collected Instrument 1706802-008A Soil O6/14/2017 10:34 ICP-MS3 Result Qualifiers MDL RL DE 0.14 J 0.058 0.25 1 ICP-MS3 1100 0.092 0.50 1		

(Cont.) CDPH ELAP 1644 • NELAP 4033ORELAP

Analyst(s): DB

Client: ERAS Environmental, Inc. Date Received: 6/15/17 19:00 **Date Prepared:** 6/16/17 **Project:** 16-004-025

WorkOrder:	1706802
Extraction Method:	SW3050B
Analytical Method:	SW6020
Unit:	mg/Kg

Client ID	Lab ID	Matrix		Date C	Collected	Instrument	Batch II
SB-5,9.5-10	1706802-010A	Soil		06/14/2	017 11:08	ICP-MS3	140589
Analytes	Result	<u>Qualifiers</u>	MDL	<u>RL</u>	DF		Date Analyzed
Cadmium	0.13	J	0.058	0.25	1		06/20/2017 03:43
Chromium	60		0.092	0.50	1		06/20/2017 03:43
Lead	21		0.094	0.50	1		06/20/2017 03:43
Nickel	75		0.072	0.50	1		06/20/2017 03:4
Zinc	55		1.4	5.0	1		06/20/2017 03:4
Surrogates	<u>REC (%)</u>			<u>Limits</u>			
Terbium	103			70-130			06/20/2017 03:43
<u>Analyst(s):</u> DB							
Client ID	Lab ID	Matrix		Date C	Collected	Instrument	Batch II
SB-6,3.4-4	1706802-011A	Soil		06/14/20	017 11:34	ICP-MS3	140589
Analytes	<u>Result</u>	Qualifiers	MDL	<u>RL</u>	<u>DF</u>		Date Analyzed
Cadmium	0.096	J	0.058	0.25	1		06/20/2017 03:5
Chromium	70		0.092	0.50	1		06/20/2017 03:5
Lead	8.5		0.094	0.50	1		06/20/2017 03:5
Nickel	120		0.072	0.50	1		06/20/2017 03:5
Zinc	51		1.4	5.0	1		06/20/2017 03:5
Surrogates	<u>REC (%)</u>			<u>Limits</u>			
Terbium	101			70-130			06/20/2017 03:5
<u>Analyst(s):</u> DB							
Client ID	Lab ID	Matrix		Date C	Collected	Instrument	Batch II
SB-6,9.5-10	1706802-012A	Soil		06/14/2	017 11:42	ICP-MS3	140589
Analytes	<u>Result</u>	Qualifiers	MDL	<u>RL</u>	<u>DF</u>		Date Analyzed
Cadmium	0.13	J	0.058	0.25	1		06/20/2017 03:5
Chromium	75		0.092	0.50	1		06/20/2017 03:5
Lead	14		0.094	0.50	1		06/20/2017 03:5
Nickel	94		0.072	0.50	1		06/20/2017 03:5
Zinc	66		1.4	5.0	1		06/20/2017 03:5
Surrogates	<u>REC (%)</u>			<u>Limits</u>			
Terbium	102			70-130			06/20/2017 03:5
Analyst(s): DB							

 Client:
 ERAS Environmental, Inc.

 Date Received:
 6/15/17 19:00

 Date Prepared:
 6/16/17

 Project:
 16-004-025

WorkOrder:	1706802
Extraction Method:	SW3050B
Analytical Method:	SW6020
Unit:	mg/Kg

Client ID	Lab ID	Matrix		Date C	ollected	Instrument	Batch ID
SB-7,3.5-4	1706802-013A	Soil		06/14/20)17 12:14	ICP-MS3	140589
<u>Analytes</u>	<u>Result</u>	<u>Qualifiers</u>	MDL	<u>RL</u>	DF		Date Analyzed
Cadmium	0.12	J	0.058	0.25	1		06/20/2017 04:20
Chromium	70		0.092	0.50	1		06/20/2017 04:20
Lead	9.3		0.094	0.50	1		06/20/2017 04:20
Nickel	120		0.072	0.50	1		06/20/2017 04:20
Zinc	62		1.4	5.0	1		06/20/2017 04:20
Surrogates	<u>REC (%)</u>			<u>Limits</u>			
							00/00/0047 04 00
Terbium	100			70-130			06/20/2017 04:20
Terbium <u>Analyst(s):</u> DB	100			70-130			06/20/2017 04:20
	100 Lab ID	Matrix			ollected	Instrument	06/20/2017 04:20 Batch ID
<u>Analyst(s):</u> DB		Matrix Soil		Date C		Instrument ICP-MS3	
<u>Analyst(s):</u> DB Client ID	Lab ID		MDL	Date C			Batch ID
Analyst(s): DB Client ID SB-7,9.5-10	Lab ID 1706802-014A	Soil	<u>MDL</u> 0.058	Date C 06/14/20)17 12:22		Batch ID 140589
Analyst(s): DB Client ID SB-7,9.5-10 Analytes	Lab ID 1706802-014A <u>Result</u>	Soil Qualifiers		Date C 06/14/20 <u>RL</u>	017 12:22 DF		Batch ID 140589 Date Analyzed
Analyst(s): DB Client ID SB-7,9.5-10 Analytes Cadmium	Lab ID 1706802-014A <u>Result</u> 0.20	Soil Qualifiers	0.058	Date C 06/14/20 RL 0.25	0 17 12:22 DF 1		Batch ID 140589 Date Analyzed 06/20/2017 04:26
Analyst(s): DB Client ID SB-7,9.5-10 Analytes Cadmium Chromium	Lab ID 1706802-014A <u>Result</u> 0.20 71	Soil Qualifiers	0.058 0.092	Date C 06/14/20 RL 0.25 0.50	0 17 12:22 DF 1 1		Batch ID 140589 Date Analyzed 06/20/2017 04:26 06/20/2017 04:26
Analyst(s): DB Client ID SB-7,9.5-10 Analytes Cadmium Chromium Lead	Lab ID 1706802-014A Result 0.20 71 27	Soil Qualifiers	0.058 0.092 0.094	Date C 06/14/20 RL 0.25 0.50 0.50	D17 12:22 DF 1 1 1		Batch ID 140589 Date Analyzed 06/20/2017 04:26 06/20/2017 04:26
Analyst(s): DB Client ID SB-7,9.5-10 Analytes Cadmium Chromium Lead Nickel	Lab ID 1706802-014A Result 0.20 71 27 100	Soil Qualifiers	0.058 0.092 0.094 0.072	Date C 06/14/20 RL 0.25 0.50 0.50 0.50	D17 12:22 DF 1 1 1 1 1		Batch ID 140589 Date Analyzed 06/20/2017 04:26 06/20/2017 04:26 06/20/2017 04:26 06/20/2017 04:26

Client: ERAS Environmental, Inc. **Date Prepared:** 6/15/17 - 6/16/17 Date Analyzed: 6/16/17 - 6/20/17 **Instrument:** GC23 Matrix: Soil **Project:** 16-004-025

Quality Control Report

WorkOrder:	1706802
BatchID:	140541
Extraction Method:	SW3550B
Analytical Method:	SW8082
Unit:	mg/kg
Sample ID:	MB/LCS-140541
	1706802-001AMS/MSD

QC Summary Report for SW8082 MB LCS MDL RL SPK MB SS

Analyte	MB Result	LCS Result	MDL	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
Aroclor1016	ND	0.137	0.0051	0.050	0.15	-	92	70-130
Aroclor1221	ND	-	0.033	0.050	-	-	-	-
Aroclor1232	ND	-	0.0032	0.050	-	-	-	-
Aroclor1242	ND	-	0.0035	0.050	-	-	-	-
Aroclor1248	ND	-	0.0036	0.050	-	-	-	-
Aroclor1254	ND	-	0.0022	0.050	-	-	-	-
Aroclor1260	ND	0.182	0.0085	0.050	0.15	-	122	70-130
PCBs, total	ND	-	0.0040	0.050	-	-	-	-
Surrogate Recovery								
Decachlorobiphenyl	0.052	0.0562			0.050	104	112	70-130

Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
Aroclor1016	0.137	0.130	0.15	ND	91	86	70-130	5.77	20
Aroclor1260	0.156	0.158	0.15	ND	104	106	70-130	1.34	20
Surrogate Recovery									
Decachlorobiphenyl	0.0567	0.0562	0.050		113	112	70-130	0.777	20

A QA/QC Officer Page 30 of 39

Quality Control Report

 Client:
 ERAS Environmental, Inc.

 Date Prepared:
 6/16/17

 Date Analyzed:
 6/21/17

 Instrument:
 GC23

 Matrix:
 Soil

 Project:
 16-004-025

WorkOrder:	1706802
BatchID:	140609
Extraction Method:	SW3550B
Analytical Method:	SW8082
Unit:	mg/kg
Sample ID:	MB/LCS-140609
_	1706802-005AMS/MSD

QC Summary Report for SW8082

Analyte	MB Result	LCS Result	MDL	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
Aroclor1016	ND	0.131	0.0051	0.050	0.15	-	87	70-130
Aroclor1221	ND	-	0.033	0.050	-	-	-	-
Aroclor1232	ND	-	0.0032	0.050	-	-	-	-
Aroclor1242	ND	-	0.0035	0.050	-	-	-	-
Aroclor1248	ND	-	0.0036	0.050	-	-	-	-
Aroclor1254	ND	-	0.0022	0.050	-	-	-	-
Aroclor1260	ND	0.174	0.0085	0.050	0.15	-	116	70-130
PCBs, total	ND	-	0.0040	0.050	-	-	-	-
Surrogate Recovery								
Decachlorobiphenyl	0.05586	0.0529			0.050	112	106	70-130
Analvte	MS	MSD	SPK	SPKRef	MS MS	SD MS/	MSD RP	D R

Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
Aroclor1016	0.130	0.129	0.15	ND	87	86	70-130	1.42	20
Aroclor1260	0.153	0.151	0.15	ND	102	101	70-130	1.13	20
Surrogate Recovery									
Decachlorobiphenyl	0.0501	0.0524	0.050		100	105	70-130	4.50	20

QA/QC Officer Page 31 of 39

Client:	ERAS Environmental, Inc.
Date Prepared:	6/16/17
Date Analyzed:	6/19/17 - 6/20/17
Instrument:	GC35
Matrix:	Soil
Project:	16-004-025

WorkOrder:	1706802
BatchID:	140618
Extraction Method:	SW3550B
Analytical Method:	SW8270C-SIM
Unit:	mg/kg
Sample ID:	MB/LCS-140618
	1706333-035AMS/MSD

QC Summary Report for SW8270C

Analyte	MB Result	LCS Result	MDL	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
Acenaphthene	ND	-	0.0026	0.010	-	-	-	-
Acenaphthylene	ND	-	0.0034	0.010	-	-	-	-
Anthracene	ND	-	0.0029	0.010	-	-	-	-
Benzo (a) anthracene	ND	-	0.0017	0.010	-	-	-	-
Benzo (a) pyrene	ND	0.193	0.0027	0.010	0.20	-	97	23-129
Benzo (b) fluoranthene	ND	-	0.0015	0.010	-	-	-	-
Benzo (g,h,i) perylene	ND	-	0.0033	0.010	-	-	-	-
Benzo (k) fluoranthene	ND	-	0.0016	0.010	-	-	-	-
Chrysene	ND	0.176	0.0024	0.010	0.20	-	88	38-104
Dibenzo (a,h) anthracene	ND	-	0.0050	0.010	-	-	-	-
Fluoranthene	ND	-	0.0040	0.010	-	-	-	-
Fluorene	ND	-	0.0060	0.010	-	-	-	-
Indeno (1,2,3-cd) pyrene	ND	-	0.0049	0.010	-	-	-	-
1-Methylnaphthalene	ND	0.200	0.0029	0.010	0.20	-	100	59-106
2-Methylnaphthalene	ND	0.193	0.0020	0.010	0.20	-	97	54-108
Naphthalene	ND	-	0.0016	0.010	-	-	-	-
Phenanthrene	ND	0.162	0.0035	0.010	0.20	-	81	48-107
Pyrene	ND	0.188	0.0045	0.010	0.20	-	94	40-104
Surrogate Recovery								
1-Fluoronaphthalene	0.34	0.402			0.50	68	80	63-123
2-Fluorobiphenyl	0.3352	0.393			0.50	67	79	55-127

Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
Benzo (a) pyrene	0.244	0.206	0.20	ND	122	103	9-156	17.1	30
Chrysene	0.241	0.253	0.20	ND	120,F1	127,F1	33-115	5.08	30
1-Methylnaphthalene	0.271	0.283	0.20	ND	135	142	13-167	4.46	30
2-Methylnaphthalene	0.262	0.269	0.20	ND	131	135	25-152	2.63	30
Phenanthrene	0.235	0.251	0.20	ND	118	125	30-138	6.40	30
Pyrene	0.248	0.261	0.20	ND	124	130,F1	29-125	5.15	30
Surrogate Recovery									
1-Fluoronaphthalene	0.374	0.407	0.50		75	81	56-153	8.49	30
2-Fluorobiphenyl	0.378	0.390	0.50		76	78	50-150	3.18	30

A QA/QC Officer Page 32 of 39

Client:	ERAS Environmental, Inc.
Date Prepared:	6/16/17
Date Analyzed:	6/19/17
Instrument:	ICP-MS2
Matrix:	Soil
Project:	16-004-025

WorkOrder:	1706802
BatchID:	140589
Extraction Method:	SW3050B
Analytical Method:	SW6020
Unit:	mg/Kg
Sample ID:	MB/LCS-140589
	1706813-001AMS/MSD

	QC Summary Report for Metals													
Analyte	MB Result	LCS Result	MDL	RL	SPK Val		B SS REC	LCS %REC	LCS Limits					
Cadmium	ND	50.2	0.058	0.25	50	-		100	75-125					
Chromium	ND	51.4	0.092	0.50	50	-		103	75-125					
Lead	ND	51.7	0.094	0.50	50	-		103	75-125					
Nickel	ND	51.1	0.072	0.50	50	-		102	75-125					
Zinc	ND	506	1.4	5.0	500	-		101	75-125					
Surrogate Recovery														
Terbium	500.2	511			500	10	00	102	70-130					
Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/M Limits		RPD Limit					
Cadmium	53.4	52.6	50	ND	107	105	75-12	5 1.47	20					
Chromium	93.8	91.5	50	37.67	112	108	75-12	5 2.47	20					
Lead	58.3	56.1	50	3.719	109	105	75-125	5 3.83	20					
Nickel	97.0	93.5	50	42.77	108	101	75-125	5 3.69	20					
Zinc	572	564	500	46.16	105	103	75-12	5 1.57	20					
Surrogate Recovery														
Terbium	535	538	500		107	108	70-130	0.69	90 20					
Analyte	DLT Result			DLTRef Val				%D	%D Limit					
Cadmium	ND<1.2			ND				-	-					
Chromium	40.5			37.67				7.51	20					
Lead	3.94			3.719				5.94	-					
Nickel	44.1			42.77				3.11	20					
Zinc	47.4			46.16				2.69	-					

%D Control Limit applied to analytes with concentrations greater than 25 times the reporting limits.

QA/QC Officer Page 33 of 39

McCampbell Analytical, Inc.

1534 Willow Pass Rd

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

Pittsburg (925) 252					Worl	WorkOrder: 1706802				Client	Code:	ERAS					
		WaterTrax	WriteOn	∠ EDF	Ē	Excel		EQuIS	✓	Email		HardCop	ру [ThirdPa	rty	J-fla	g
Report to:						В	ill to:					R	eques	5	5 days;		
Andrew Savag ERAS Enviror 1533 B Street Hayward, CA (510) 247-9885	94541	Email: in cc/3rd Party: PO: ProjectNo: 11	·	andrew@eras.biz			ERAS 1533	Cordoz Enviror B Street ard, CA	nmenta	l, Inc.		L L	0	06/15/2017 06/16/2017			
									Re	quested	l Tests	(See legei	nd belo	ow)			
Lab ID	Client ID		Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
1706802-001	SB-1,3.5-4		Soil	6/14/2017 08:32		A	Α	A	A								1
1706802-002	SB-1,9.5-10		Soil	6/14/2017 08:39		A	A	A	~~~							<u> </u>	-
1706802-002	SB-2,3.4-4		Soil	6/14/2017 09:07		A	A	A								<u> </u>	
1706802-004	SB-2,9.5-10		Soil	6/14/2017 09:14		A	A	A								<u> </u>	-
1706802-005	SB-3,3.4-4		Soil	6/14/2017 09:38		A	A	A								<u> </u>	
1706802-006	SB-3,9.5-10		Soil	6/14/2017 09:46		A	A	A									
1706802-007	SB-4,3.4-4		Soil	6/14/2017 10:26		A	A	A									
1706802-008	SB-4,9.5-10		Soil	6/14/2017 10:34		А	Α	Α									
1706802-009	SB-5,3.4-4		Soil	6/14/2017 11:01		А	Α	Α									
1706802-010	SB-5,9.5-10		Soil	6/14/2017 11:08		А	Α	Α									
1706802-011	SB-6,3.4-4		Soil	6/14/2017 11:34		А	Α	Α									
1706802-012	SB-6,9.5-10		Soil	6/14/2017 11:42		А	Α	Α									
1706802-013	SB-7,3.5-4		Soil	6/14/2017 12:14		А	Α	Α									
1706802-014	SB-7,9.5-10		Soil	6/14/2017 12:22		А	Α	Α									

Test Legend:

1	8082_PCB_S
5	
9	

2	8270_PNA_S
6	
10	

3	LUFTMS_6020_TTLC_S
7	
11	

4	PREDF REPORT
8	
12	

Prepared by: Jena Alfaro

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

WORK ORDER SUMMARY

Client Name		VIRONMENTAL, IN	IC.	Project: 16-004-	025				k Order: 1706802
Client Cont Contact's E		avage .biz; andrew@eras.biz	Z	Comments:				C Level: LEVEL 2 Logged: 6/16/2017	
		WaterTrax	WriteOn	Excel	_Fax ↓ Email	HardC	opyThirdPart	y 🖌	J-flag
Lab ID	Client ID	Matrix	Test Name	Containers /Composites	Bottle & Preservative	De- chlorinated	Collection Date & Time	TAT	Sediment Hold SubOut Content
1706802-001A	SB-1,3.5-4	Soil	SW6020 (LUFT)	1	Acetate Liner		6/14/2017 8:32	5 days	
			SW8270C (PAHs/PNAs)					5 days	
			SW8082 (PCBs Only)					5 days	
1706802-002A	SB-1,9.5-10	Soil	SW6020 (LUFT)	1	Acetate Liner		6/14/2017 8:39	5 days	
			SW8270C (PAHs/PNAs)					5 days	
			SW8082 (PCBs Only)					5 days	
1706802-003A	SB-2,3.5-4	Soil	SW6020 (LUFT)	1	Acetate Liner		6/14/2017 9:07	5 days	
			SW8270C (PAHs/PNAs)					5 days	
			SW8082 (PCBs Only)					5 days	
1706802-004A	SB-2,9.5-10	Soil	SW6020 (LUFT)	1	Acetate Liner		6/14/2017 9:14	5 days	
			SW8270C (PAHs/PNAs)					5 days	
			SW8082 (PCBs Only)					5 days	
1706802-005A	SB-3,3.5-4	Soil	SW6020 (LUFT)	1	Acetate Liner		6/14/2017 9:38	5 days	
			SW8270C (PAHs/PNAs)					5 days	
			SW8082 (PCBs Only)					5 days	
1706802-006A	SB-3,9.5-10	Soil	SW6020 (LUFT)	1	Acetate Liner		6/14/2017 9:46	5 days	

NOTES: - STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- MAI assumes that all material present in the provided sampling container is considered part of the sample - MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

WORK ORDER SUMMARY

Client Name Client Conta		VIRONMENTAL, IN avage	NC.	Project: 16-004	-025				k Order: 1706802 C Level: LEVEL 2
		s.biz; andrew@eras.bi	Z	Comments:				-	Logged: 6/16/2017
		WaterTrax	WriteOn	Excel	Fax Fax		opy ThirdPart	y 🖌	I-flag
Lab ID	Client ID	Matrix	Test Name	Containers /Composite		De- chlorinated	Collection Date & Time	TAT	Sediment Hold SubOu Content
1706802-006A	SB-3,9.5-10	Soil	SW8270C (PAHs/PNAs)	1	Acetate Liner		6/14/2017 9:46	5 days	
			SW8082 (PCBs Only)					5 days	
1706802-007A	SB-4,3.5-4	Soil	SW6020 (LUFT)	1	Acetate Liner		6/14/2017 10:26	5 days	
			SW8270C (PAHs/PNAs)					5 days	
			SW8082 (PCBs Only)					5 days	
1706802-008A	SB-4,9.5-10	Soil	SW6020 (LUFT)	1	Acetate Liner		6/14/2017 10:34	5 days	
			SW8270C (PAHs/PNAs)					5 days	
			SW8082 (PCBs Only)					5 days	
1706802-009A	SB-5,3.5-4	Soil	SW6020 (LUFT)	1	Acetate Liner		6/14/2017 11:01	5 days	
			SW8270C (PAHs/PNAs)					5 days	
			SW8082 (PCBs Only)					5 days	
1706802-010A	SB-5,9.5-10	Soil	SW6020 (LUFT)	1	Acetate Liner		6/14/2017 11:08	5 days	
			SW8270C (PAHs/PNAs)					5 days	
			SW8082 (PCBs Only)					5 days	
1706802-011A	SB-6,3.5-4	Soil	SW6020 (LUFT)	1	Acetate Liner		6/14/2017 11:34	5 days	
			SW8270C (PAHs/PNAs)					5 days	

NOTES: - STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- MAI assumes that all material present in the provided sampling container is considered part of the sample - MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

WORK ORDER SUMMARY

Client Name	ERAS EN	NVIRONMENTAL, IN	IC.	Project:	16-004-0	25			Wor	k Order: 1706802
Client Conta	act: Andrew S	Savage							C	C Level: LEVEL 2
Contact's En	mail: info@era	s.biz; andrew@eras.biz	Z	Comment	s:				Date	Logged: 6/16/2017
		WaterTrax	WriteOn	Exc	el]Fax 🖌 Email	HardCo	opyThirdPart	у 🖌	J-flag
Lab ID	Client ID	Matrix	Test Name		Containers Composites	Bottle & Preservative	De- chlorinated	Collection Date & Time	TAT	Sediment Hold SubOut Content
1706802-011A	SB-6,3.5-4	Soil	SW8082 (PCBs Only)		1	Acetate Liner		6/14/2017 11:34	5 days	
1706802-012A	SB-6,9.5-10	Soil	SW6020 (LUFT)		1	Acetate Liner		6/14/2017 11:42	5 days	
			SW8270C (PAHs/PNAs)						5 days	
			SW8082 (PCBs Only)						5 days	
1706802-013A	SB-7,3.5-4	Soil	SW6020 (LUFT)		1	Acetate Liner		6/14/2017 12:14	5 days	
			SW8270C (PAHs/PNAs)						5 days	
			SW8082 (PCBs Only)						5 days	
1706802-014A	SB-7,9.5-10	Soil	SW6020 (LUFT)		1	Acetate Liner		6/14/2017 12:22	5 days	
			SW8270C (PAHs/PNAs)						5 days	
			SW8082 (PCBs Only)						5 days	

NOTES: - STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- MAI assumes that all material present in the provided sampling container is considered part of the sample - MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

170:6802

CHAIN OF CUSTODY FORM

	McCa	ampbe	ll Anal	ytic	al, I	Inc						4	Tir	iroun ne: acke	r	Rusi EDF		24 Exc	IHr xel		18 Hr /rite (72 H	_] r	<u>x</u> 5 D				
		534 Wi				ı										Ana	lysi	s Re	que	ste	ł				0	ther		Comn	ients
		9ittsbur 877. 925.25	252.92	262																									
Report To:	ERAS	Bill To:		E	RAS																						ļ		
Company:	EF	- RAS Envir	onmenta	l, Ind	с.																								
		Email:	i	nfo@	Qeras	biz.						6						1											
Telephone:	510-247-9885	Fax:			386-5							(SIN													1				
	16-004-025											bu															1		
Project location		and		Š	ي ا							nito													1		İ.		
Sampler:				ine	۲							β																	
Sumplem	Andrew			Itai	e.							Io	82																
		Com	-1:	of Containers	Container Type			Dee				elect	A 80	tals															
		Sam	pling		ort		atrix		_	vati	_	V S	E	Ř					ł								1		
Sample ID	Location/Field Point Name	Date	Time	#	U U	Soil	Waste	HCL	HZSQ	ICE NO	None	PAHs t	PCB by EPA 8082																
SB-1, 3.5-4	SB-1	6/14/2017	8:32	1	Tube	х				X				x								\square							
SB-1, 9.5-10	SB-1	6/14/2017	8:39	1	Tube					_ ×				x															
SB-2, 3.4-4	SB-2	6/14/2017	9:07	1	Tube	×	_	 		×			х	_													_		
SB-2, 9.5-10	SB-2	6/14/2017	9:14	1	Tube	×	_	 		×				<u>× </u>		\square													
SB-3, 3.4-4	SB-3	6/14/2017	9:38	1	Tube	x				×			x											_	\square				
SB-3, 9.5-10	SB-3	6/14/2017	9:46	1	Tube				\square	×				<u>× </u>	_				\square			\square			\square				
SB-4, 3.4-4	SB-4	6/14/2017	10:26	1	Tube	X			\vdash	X		_		x		$\left \right $	_	_	\square						\square		_		
SB-4, 9.5-10	SB-4	6/14/2017	10:34	1	Tube	X			\vdash	×	_			x	_	$\left \right $			$\left \right $			\square		_	\square		-		
SB-5, 3.4-4	SB-5	6/14/2017	11:01	1	Tube	X	_		\vdash	- <u>×</u>	_			X	+	++	_		\vdash					_	\square		-		
SB-5, 9.5-10	SB-5	6/14/2017	11:08	1	Tube	X X			\vdash	X	_	_		x x		┥┥	+	+	\vdash	+	_				++	_	_		
SB-6, 3.4-4	SB-6 SB-6	6/14/2017	11:34 11:42	1	Tube Tube				\vdash	- Â			X X			┼╍┼		_	\vdash	+	+		_		\vdash				
SB-6, 9.5-10 SB-7, 3.5-4	SB-0	6/14/2017 6/14/2017	11:42	1	Tube	x	-		\vdash	- Â	_		-	$\frac{2}{x}$		┝╌┼		+	$\left + \right $	+	+	$\left \right $			\vdash		_		
<u></u>	SB-7	6/14/2017	12:22	1	Tube	x	+			- Î		Ŷ	Ĵ	Ĵ	+	┼┼		+	\mathbb{H}	+	+	$\left \right $	+		\vdash		-		
						<u> </u>			LL			<u>ب</u>			!	<u> </u>	<u> </u>					<u> </u>					.1		

	_	0			
ICE/to Condition	310) /	ret	•	Comments: <u>Please PDF</u> PLEASE PROVIDE J-FLAGS
Head space absent					T10000010328
Dechlorinated in lab	_				-1
ppropriate containers					1
Preserved in Lab					
	VOA's	0&G	Metals	Other	
Preservation			pH<2		

Sample Receipt Checklist

Client Name: Project Name:	ERAS Environmental, Inc. 16-004-025			Date and Time Received Date Logged:	6/15/2017 19:00 6/16/2017
r toject Name.	10-004-023			Received by:	Jena Alfaro
WorkOrder №: Carrier:	1706802Matrix:SoilBenjamin Yslas (MAI Courier)			Logged by:	Jena Alfaro
	Chain of C	ustody	<u>/ (COC) Infor</u>	mation	
Chain of custody	present?	Yes		No 🗌	
Chain of custody	signed when relinquished and received?	Yes	✓	No 🗌	
Chain of custody	agrees with sample labels?	Yes	✓	No 🗌	
Sample IDs noted	d by Client on COC?	Yes	✓	No 🗌	
Date and Time of	collection noted by Client on COC?	Yes	✓	No 🗌	
Sampler's name	noted on COC?	Yes		No 🗌	
	Sample	e Rece	eipt Informati	on	
Custody seals int	act on shipping container/cooler?	Yes		No 🗌	NA 🗹
Shipping containe	er/cooler in good condition?	Yes	✓	No 🗌	
Samples in prope	er containers/bottles?	Yes	✓	No 🗌	
Sample containe	rs intact?	Yes	✓	No 🗌	
Sufficient sample	volume for indicated test?	Yes	✓	No 🗌	
	Sample Preservation	on and	Hold Time (I	HT) Information	
All samples recei	ved within holding time?	Yes	✓	No 🗌	
Sample/Temp Bla	ank temperature		Temp: 3.6	S°C	
Water - VOA vial	s have zero headspace / no bubbles?	Yes		No 🗌	NA 🗹
Sample labels ch	ecked for correct preservation?	Yes	✓	No 🗌	
pH acceptable up	oon receipt (Metal: <2; 522: <4; 218.7: >8)?	Yes		No 🗌	NA 🖌
Samples Receive		Yes	✓	No 🗌	
		: WE	TICE)		
UCMR3 Samples Total Chlorine t	: ested and acceptable upon receipt for EPA 522?	Yes		No 🗌	NA 🗹
Free Chlorine to 300.1, 537, 539	ested and acceptable upon receipt for EPA 218.7,	Yes		No 🗌	NA 🗹

Comments:

APPENDIX H

Analytical Results – Soil Gas

6/20/2017 Mr. Ross Tinline SVC Environmental, Inc. 11 Kenton Ave

San Carlos CA 94070

Project Name: 29th Ave, Oakland Project #: ERAS-04 Workorder #: 1706343

Dear Mr. Ross Tinline

The following report includes the data for the above referenced project for sample(s) received on 6/17/2017 at Air Toxics Ltd.

The data and associated QC analyzed by Modified TO-17 VI are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Eurofins Air Toxics Inc. for your air analysis needs. Eurofins Air Toxics Inc. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Rachel Selenis at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Round

Rachel Selenis Project Manager

A Eurofins Lancaster Laboratories Company

180 Blue Ravine Road, Suite B Folsom, CA 95630

WORK ORDER #: 1706343

Work Order Summary

CLIENT:	Mr. Ross Tinline SVC Environmental, Inc. 11 Kenton Ave San Carlos, CA 94070	BILL TO:	Mr. Ross Tinline SVC Environmental, Inc. 11 Kenton Ave San Carlos, CA 94070
PHONE:	650-218-3766	P.O. #	
FAX:		PROJECT #	ERAS-04 29th Ave, Oakland
DATE RECEIVED:	06/17/2017	CONTACT:	Rachel Selenis
DATE COMPLETED:	06/20/2017	001111011	Ruener Bereins

FRACTION #	NAME	<u>TEST</u>
01A	SV-1	Modified TO-17 VI
02A	SV-4	Modified TO-17 VI
03A	SV-5	Modified TO-17 VI
04A	ТВ	Modified TO-17 VI
05A	Lab Blank	Modified TO-17 VI
06A	CCV	Modified TO-17 VI
07A	LCS	Modified TO-17 VI
07AA	LCSD	Modified TO-17 VI

CERTIFIED BY:

layes

DATE: <u>06/20/17</u>

Technical Director

Certification numbers: AZ Licensure AZ0775, NJ NELAP - CA016, NY NELAP - 11291, TX NELAP - T104704434-16-11, UT NELAP CA0093332016-7, VA NELAP - 8113, WA NELAP - C935 Name of Accreditation Body: NELAP/ORELAP (Oregon Environmental Laboratory Accreditation Program) Accreditation number: CA300005, Effective date: 10/18/2016, Expiration date: 10/17/2017. Eurofins Air Toxics Inc.. certifies that the test results contained in this report meet all requirements of the NELAC standards

> This report shall not be reproduced, except in full, without the written approval of Eurofins Air Toxics, Inc. 180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 95630 (916) 985-1000 . (800) 985-5955 . FAX (916) 985-1020

Page 2 of 13

LABORATORY NARRATIVE Modified EPA Method TO-17 (VI Tubes) SVC Environmental, Inc. Workorder# 1706343

Four TO-17 VI Tube samples were received on June 17, 2017. The laboratory performed the analysis via modified EPA Method TO-17 using GC/MS in the full scan mode. TO-17 'VI' sorbent tubes are thermally desorbed onto a secondary trap. The trap is thermally desorbed to elute the components into the GC/MS system for compound separation and detection.

A modification that may be applied to EPA Method TO-17 at the client's discretion is the requirement to transport sorbent tubes at 4 deg C. Laboratory studies demonstrate a high level of stability for VOCs on the TO-17 'VI' tube at room temperature for periods of up to 14 days. Tubes can be shipped to and from the field site at ambient conditions as long as the 14-day sample hold time is upheld. Trip blanks and field surrogate spikes are used as additional control measures to monitor recovery and background contribution during tube transport.

Since the TO-17 VI application significantly extends the scope of target compounds addressed in EPA Method TO-15 and TO-17, the laboratory has implemented several method modifications outlined in the table below. Specific project requirements may over-ride the laboratory modifications.

Requirement	TO-17	ATL Modifications
Distributed Volume Pairs	Collection of distributed volume pairs required for monitoring ambient air to insure high quality.	If site is well-characterized or performance previously verified, single tube sampling may be appropriate. Distributed pairs may be impractical for soil gas collection due to configuration and volume constraints.

Receiving Notes

🛟 eurofins

There were no receiving discrepancies.

Analytical Notes

A sampling volume of 0.2 L was used to convert ng to ug/m3 for the associated Lab Blank and sample TB.

Definition of Data Qualifying Flags

Eight qualifiers may have been used on the data analysis sheets and indicates as follows:

- B Compound present in blank (subtraction not performed).
- J Estimated value.
- E Exceeds instrument calibration range.
- S Saturated peak.
- Q Exceeds quality control limits.

U - Compound analyzed for but not detected above the reporting limit, LOD, or MDL value. See data page for project specific U-flag definition.

UJ- Non-detected compound associated with low bias in the CCV

N - The identification is based on presumptive evidence.

File extensions may have been used on the data analysis sheets and indicates as follows:

Page 3 of 13

a-File was requantified

b-File was quantified by a second column and detector

r1-File was requantified for the purpose of reissue

Summary of Detected Compounds EPA METHOD TO-17

Client Sample ID: SV-1

Lab ID#: 1706343-01A No Detections Were Found.

Client Sample ID: SV-4

Lab ID#: 1706343-02A No Detections Were Found.

Client Sample ID: SV-5

Lab ID#: 1706343-03A No Detections Were Found.

Client Sample ID: TB

Lab ID#: 1706343-04A No Detections Were Found.

Client Sample ID: SV-1 Lab ID#: 1706343-01A EPA METHOD TO-17						
File Name: Dil. Factor:	6061920 Date of 1.00		e of Collection: 6/15 e of Analysis: 6/19/1			
Compound	Rpt. Limit (ng)	Amount (ug/m3)				
Naphthalene	1.0	5.0	Not Detected	Not Detected		
Air Sample Volume(L): 0.200 Container Type: TO-17 VI Tube						
Surrogates		%Recovery		Method Limits		
Naphthalene-d8		66		50-150		

Client Sample ID: SV-4 Lab ID#: 1706343-02A EPA METHOD TO-17						
File Name: Dil. Factor:	6061921 Date of 1.00		e of Collection: 6/15 e of Analysis: 6/19/1			
Compound	Rpt. Limit (ng)	Amount (ug/m3)				
Naphthalene	1.0	5.0	Not Detected	Not Detected		
Air Sample Volume(L): 0.200 Container Type: TO-17 VI Tube						
Surrogates		%Recovery		Method Limits		
Naphthalene-d8		85		50-150		

Client Sample ID: SV-5 Lab ID#: 1706343-03A EPA METHOD TO-17						
File Name: Dil. Factor:	6061922 Date o 1.00		e of Collection: 6/15 e of Analysis: 6/19/1			
Compound	Rpt. Limit (ng)	Amount (ug/m3)				
Naphthalene	1.0	5.0	Not Detected	Not Detected		
Air Sample Volume(L): 0.200 Container Type: TO-17 VI Tube						
Surrogates		%Recovery		Method Limits		
Naphthalene-d8		98		50-150		

Client Sample ID: TB Lab ID#: 1706343-04A EPA METHOD TO-17						
File Name: Dil. Factor:	6061919 Date of 1.00		e of Collection: 6/15 e of Analysis: 6/19/1			
Compound	Rpt. Limit (ng)	Amount (ug/m3)				
Naphthalene	1.0	5.0	Not Detected	Not Detected		
Air Sample Volume(L): 0.200 Container Type: TO-17 VI Tube						
Surrogates	Method %Recovery Limits					
Naphthalene-d8	93 50-150					

Client Sample ID: Lab Blank Lab ID#: 1706343-05A EPA METHOD TO-17						
File Name: Dil. Factor:	6061906 Date of 1.00		e of Collection: NA e of Analysis: 6/19/1	17 11:21 AM		
Compound	Rpt. Limit (ng)	Rpt. Limit (ug/m3)	Amount (ng)	Amount (ug/m3)		
Naphthalene	1.0	5.0	Not Detected	Not Detected		
Air Sample Volume(L): 0.200 Container Type: NA - Not Applicable						
Surrogates		%Recovery		Method Limits		
Naphthalene-d8		119		50-150		

Client Sample ID: CCV Lab ID#: 1706343-06A EPA METHOD TO-17						
File Name:	6061902	Date of Extraction: NADate of Collection: N	A			
Dil. Factor:	1.00	Date of Analysis: 6/1	9/17 08:39 AM			
Compound		%Recovery				
Naphthalene		104				
Air Sample Volume(L): 1.00 Container Type: NA - Not Applicable						
			Method			
Surrogates		%Recovery	Limits			
aphthalene-d8 117 50-15						

	La	ient Sample ID: LCS ab ID#: 1706343-07A PA METHOD TO-17	
File Name: Dil. Factor:	6061903 1.00	Date of Extraction: NADate of Collection: NA Date of Analysis: 6/19/1	7 N9·19 AM
	1.00		Method
Compound		%Recovery	Limits
Naphthalene		110	70-130
Air Sample Volume(L): 1.00			
Container Type: NA - Not Applicable			
			Method
Surrogates		%Recovery	Limits
Naphthalene-d8		107	50-150

Page 12 of 13

Client Sample ID: LCSD Lab ID#: 1706343-07AA EPA METHOD TO-17								
File Name:	6061904	Date of Extraction: NADate of Collection: N						
Dil. Factor: 1.00 Date of Analysis: 6/19/17 10:00 AM								
Compound		%Recovery	Method Limits					
Naphthalene		111	70-130					
Air Sample Volume(L): 1.00 Container Type: NA - Not Applicable								
			Method					
Surrogates		%Recovery	Limits					
Naphthalene-d8		107	50-150					

Page 13 of 13

T) -'	17	7 S	A	MP	LE	COL	_LE	CT	101	N

CHAIN-OF-CUSTODY RECORD Sample Transportation Notice Relinquishing signature on this document indicates that sample is being shipped in compliance with all applicable local, State, Federal, national, and international laws, regulations and ordinances of any kind. Eurofins assumes no liability with respect to the collection, handling or shipping of these samples. Relinquishing signature also indicates agreement to hold harmless, defend, and indemnify Eurofins against any claim, demand, or action, of any kind, related to the collection, handling, or shipping of samples. D.O.T. Hotline (800) 467-4922.

180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA 95630 (916) 985-1000 FAX (916) 985-1020 Page _ / of _/

		Tinline/Andra 655 . Tinline			P	roject	Info:				Around ime:	Reportin Units:	9		-	
		nmontal Inc Ema			- P	.0. #				2XNo	ormal					
		Ave City Son C				roject	# ERAS-	-04			ush	□ ppbv ⊠µg/m3			-	
Phone	650 218 37	66Fax			P	roject	Name <u>()</u> 2	9th Ave	- Oakla	e s	pecify	🖸 mg/m:	<u>ار ا</u>	Air	ъ	
Lab I.D.	Field Sample I.	.D. (Location)	Engraved or Stamped Tube #	Date of Collection (mm/dd/yy)	Start (hr:r		Date of Retrieval (mm/dd/yy)	End Tin (hr : mil			Post-Te Flow Ra	l Volum	e Indoor A	Outdoor Air	Soil Vapor	Other
OIA	57-)		60150038	6/15/17	91	45	6-15-18	9:48	:15 -			zoan	10			ב
୦ୁନ	54-4		60152587	6/15/17	123	32	6-15-17	1:37			- 2010	200+	20		29	ב
03A	SV-5		00152281	6/15/17	2:3	7	6-15-17	2:41:	30			200 M				
OUA	TB		60155274	6/15/17	·	100000F	6-15-17					0				A
]
																ב
																כ
																Ē
																ב
						*****										כ
Relinquist	ed by: (signature) ed by: (signature) ed by: (signature)	Date/Time 315 C/16/17 Date/Time Date/Time	Receive	ed by: (signati <u>EX</u> ed by: (signati <u>M</u> umplied by: (signati	//6// ure) / Da	7	2 093	·	Notes: EDI TIOOC Analyz onl			phthale) 2ne			
Lab	Shipper Name	Air	·Bill #	Ter	np (°C)		Condition		Custody Se		Aderbah daa dadi	Work C				
Use Only	Fed EX			5	,a°°		Good		Yes N	0 N 0	ne	1706	34	3	unter de l	

6/30/2017 Mr. Ross Tinline SVC Environmental, Inc. 11 Kenton Ave

San Carlos CA 94070

Project Name: "O" 29th Ave, Oakland Project #: ERAS-04 Workorder #: 1706371A

Dear Mr. Ross Tinline

The following report includes the data for the above referenced project for sample(s) received on 6/19/2017 at Air Toxics Ltd.

The data and associated QC analyzed by TO-15 are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Eurofins Air Toxics Inc. for your air analysis needs. Eurofins Air Toxics Inc. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Rachel Selenis at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Ramles

Rachel Selenis Project Manager

180 Blue Ravine Road, Suite B Folsom, CA 95630

WORK ORDER #: 1706371A

Work Order Summary

CLIENT:		Mr. Ross Tinline SVC Environmental, Inc. 11 Kenton Ave San Carlos, CA 94070	BILL TO:	Mr. Ross Tinline SVC Environmental, Inc. 11 Kenton Ave San Carlos, CA 94070				
PHONE:		650-218-3766	P.O. #					
FAX:			PROJECT #	ERAS-04 "O" 29th Ave, Oaklan	ıd			
DATE RECEIVED:		06/19/2017	CONTACT:	Rachel Selenis				
DATE COMPLETED:		06/30/2017	001111011					
				RECEIPT	FINAL			
FRACTION #	NA	ME	TEST	VAC./PRES.	PRESSURE			
01A	SV	-1	TO-15	4.7 "Hg	15.2 psi			
02A	SV		TO-15	23.7 "Hg	15.2 psi			
03A	SV		TO-15	22.4 "Hg	15.1 psi			
04A	SV		TO-15	6.5 "Hg	14.8 psi			
05A	SV	-5	TO-15	5.9 "Hg	15.1 psi			

TO-15 8.2 "Hg 06A SV-6 07A SV-7 TO-15 20.2 "Hg 08A Lab Blank **TO-15** NA TO-15 09A CCV NA 10A LCS TO-15 NA 10AA LCSD **TO-15** NA

CERTIFIED BY:

layes Tude

DATE: 06/30/17

15.4 psi

14.8 psi

NA

NA

NA

NA

Technical Director

Certification numbers: AZ Licensure AZ0775, NJ NELAP - CA016, NY NELAP - 11291, TX NELAP - T104704434-16-11, UT NELAP CA0093332016-7, VA NELAP - 8113, WA NELAP - C935 Name of Accreditation Body: NELAP/ORELAP (Oregon Environmental Laboratory Accreditation Program) Accreditation number: CA300005, Effective date: 10/18/2016, Expiration date: 10/17/2017. Eurofins Air Toxics Inc.. certifies that the test results contained in this report meet all requirements of the NELAC standards

> This report shall not be reproduced, except in full, without the written approval of Eurofins Air Toxics, Inc. 180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 95630 (916) 985-1000 . (800) 985-5955 . FAX (916) 985-1020

> > Page 2 of 29

LABORATORY NARRATIVE EPA Method TO-15 SVC Environmental, Inc. Workorder# 1706371A

Seven 1 Liter Summa Canister samples were received on June 19, 2017. The laboratory performed analysis via EPA Method TO-15 using GC/MS in the full scan mode.

This workorder was independently validated prior to submittal using 'USEPA National Functional Guidelines' as generally applied to the analysis of volatile organic compounds in air. A rules-based, logic driven, independent validation engine was employed to assess completeness, evaluate pass/fail of relevant project quality control requirements and verification of all quantified amounts.

Receiving Notes

Samples SV-2, SV-3 and SV-7 were received with significant vacuum remaining in the canister. The residual canister vacuum resulted in elevated reporting limits.

Analytical Notes

Dilution was performed on sample SV-5 due to matrix interference.

Definition of Data Qualifying Flags

Eight qualifiers may have been used on the data analysis sheets and indicates as follows:

B - Compound present in laboratory blank greater than reporting limit (background subtraction not performed).

- J Estimated value.
- E Exceeds instrument calibration range.
- S Saturated peak.
- Q Exceeds quality control limits.

U - Compound analyzed for but not detected above the reporting limit, LOD, or MDL value. See data page for project specific U-flag definition.

UJ- Non-detected compound associated with low bias in the CCV

N - The identification is based on presumptive evidence.

File extensions may have been used on the data analysis sheets and indicates as follows:

a-File was requantified

b-File was quantified by a second column and detector

r1-File was requantified for the purpose of reissue

Summary of Detected Compounds EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: SV-1

Lab ID#: 1706371A-01A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
1,3-Butadiene	1.2	2.2	2.7	4.8
Acetone	12	20	29	48
Carbon Disulfide	4.8	12	15	37
Hexane	1.2	2.0	4.2	7.0
Chloroform	1.2	2.6	5.9	13
Cyclohexane	1.2	2.1	4.1	7.2
Benzene	1.2	1.7	3.8	5.4
Toluene	1.2	2.2	4.5	8.2
Ethyl Benzene	1.2	2.7	5.2	12
m,p-Xylene	1.2	9.0	5.2	39
o-Xylene	1.2	3.1	5.2	13
1,3,5-Trimethylbenzene	1.2	1.2	5.9	6.0

Client Sample ID: SV-2

Lab ID#: 1706371A-02A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
1,3-Butadiene	4.8	4.8	11	11
Carbon Disulfide	19	47	60	140
Hexane	4.8	6.8	17	24
Chloroform	4.8	21	24	100
Toluene	4.8	7.8	18	29
m,p-Xylene	4.8	19	21	82
o-Xylene	4.8	6.7	21	29

Client Sample ID: SV-3

Lab ID#: 1706371A-03A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Carbon Disulfide	16	140	50	440
Hexane	4.0	4.9	14	17
Chloroform	4.0	15	20	73
Cyclohexane	4.0	8.3	14	29

Summary of Detected Compounds EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: SV-3

Lab ID#: 1706371A-03A				
Toluene	4.0	6.4	15	24
m,p-Xylene	4.0	7.3	17	32

Client Sample ID: SV-4

Lab ID#: 1706371A-04A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
1,3-Butadiene	1.3	2.0	2.8	4.5
Freon 11	1.3	29	7.2	160
Acetone	13	33	30	78
Carbon Disulfide	5.1	50	16	160
Hexane	1.3	6.0	4.5	21
Chloroform	1.3	5.8	6.2	28
Cyclohexane	1.3	4.2	4.4	14
2,2,4-Trimethylpentane	1.3	7.6	6.0	35
Benzene	1.3	3.6	4.1	11
Heptane	1.3	48	5.2	200
Toluene	1.3	5.0	4.8	19
Ethyl Benzene	1.3	3.6	5.6	15
m,p-Xylene	1.3	16	5.6	67
o-Xylene	1.3	8.2	5.6	36

Client Sample ID: SV-5

Lab ID#: 1706371A-05A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 11	2.5	4.6	14	26
Acetone	25	84	60	200
Carbon Disulfide	10	72	31	220
Hexane	2.5	3.7	8.9	13
Chloroform	2.5	17	12	85
Cyclohexane	2.5	2.9	8.7	10
2,2,4-Trimethylpentane	2.5	12	12	54
Benzene	2.5	7.2	8.1	23

Summary of Detected Compounds EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: SV-5

Lab ID#: 1706371A-05A				
Heptane	2.5	92	10	380
Toluene	2.5	15	9.5	55
m,p-Xylene	2.5	9.6	11	42
o-Xylene	2.5	3.2	11	14

Client Sample ID: SV-6

Lab ID#: 1706371A-06A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
1,3-Butadiene	1.4	1.5	3.1	3.4
Acetone	14	16	33	38
Carbon Disulfide	5.6	40	18	120
Hexane	1.4	5.0	5.0	18
Chloroform	1.4	13	6.9	64
Cyclohexane	1.4	2.1	4.8	7.2
2,2,4-Trimethylpentane	1.4	11	6.6	53
Benzene	1.4	5.6	4.5	18
Heptane	1.4	69	5.8	280
Toluene	1.4	7.2	5.3	27
Ethyl Benzene	1.4	1.6	6.1	6.8
m,p-Xylene	1.4	4.4	6.1	19
o-Xylene	1.4	1.9	6.1	8.4

Client Sample ID: SV-7

Lab ID#: 1706371A-07A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
1,3-Butadiene	3.1	33	6.8	73
Carbon Disulfide	12	64	38	200
Hexane	3.1	33	11	120
Chloroform	3.1	8.7	15	42
Cyclohexane	3.1	51	10	180
2,2,4-Trimethylpentane	3.1	14	14	68
Benzene	3.1	9.8	9.8	31

Summary of Detected Compounds EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: SV-7				
Lab ID#: 1706371A-07A				
Heptane	3.1	94	12	380
Toluene	3.1	9.3	12	35
m,p-Xylene	3.1	5.3	13	23

Client Sample ID: SV-1 Lab ID#: 1706371A-01A EPA METHOD TO-15 GC/MS FULL SCAN

EPA METHOD TO-15 GC/MS FULL SCAN				
File Name:	17062111		of Collection: 6/1	
Dil. Factor:	2.41		of Analysis: 6/21	
	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Freon 12	1.2	Not Detected	6.0	Not Detected
Freon 114	1.2	Not Detected	8.4	Not Detected
Chloromethane	12	Not Detected	25	Not Detected
Vinyl Chloride	1.2	Not Detected	3.1	Not Detected
1,3-Butadiene	1.2	2.2	2.7	4.8
Bromomethane	12	Not Detected	47	Not Detected
Chloroethane	4.8	Not Detected	13	Not Detected
Freon 11	1.2	Not Detected	6.8	Not Detected
Ethanol	4.8	Not Detected	9.1	Not Detected
Freon 113	1.2	Not Detected	9.2	Not Detected
1,1-Dichloroethene	1.2	Not Detected	4.8	Not Detected
Acetone	12	20	29	48
2-Propanol	4.8	Not Detected	12	Not Detected
Carbon Disulfide	4.8	12	15	37
3-Chloropropene	4.8	Not Detected	15	Not Detected
Methylene Chloride	12	Not Detected	42	Not Detected
Methyl tert-butyl ether	4.8	Not Detected	17	Not Detected
trans-1,2-Dichloroethene	1.2	Not Detected	4.8	Not Detected
Hexane	1.2	2.0	4.2	7.0
1,1-Dichloroethane	1.2	Not Detected	4.9	Not Detected
2-Butanone (Methyl Ethyl Ketone)	4.8	Not Detected	14	Not Detected
cis-1,2-Dichloroethene	1.2	Not Detected	4.8	Not Detected
Tetrahydrofuran	1.2	Not Detected	3.6	Not Detected
Chloroform	1.2	2.6	5.9	13
1,1,1-Trichloroethane	1.2	Not Detected	6.6	Not Detected
Cyclohexane	1.2	2.1	4.1	7.2
Carbon Tetrachloride	1.2	Not Detected	7.6	Not Detected
2,2,4-Trimethylpentane	1.2	Not Detected	5.6	Not Detected
Benzene	1.2	1.7	3.8	5.4
1,2-Dichloroethane	1.2	Not Detected	4.9	Not Detected
Heptane	1.2	Not Detected	4.9	Not Detected
Trichloroethene	1.2	Not Detected	6.5	Not Detected
1,2-Dichloropropane	1.2	Not Detected	5.6	Not Detected
1,4-Dioxane	4.8	Not Detected	17	Not Detected
Bromodichloromethane	1.2	Not Detected	8.1	Not Detected
cis-1,3-Dichloropropene	1.2	Not Detected	5.5	Not Detected
4-Methyl-2-pentanone	1.2	Not Detected	4.9	Not Detected
Toluene	1.2	2.2	4.5	8.2
trans-1,3-Dichloropropene	1.2	Not Detected	5.5	Not Detected
1,1,2-Trichloroethane	1.2	Not Detected	6.6	Not Detected
Tetrachloroethene	1.2	Not Detected	8.2	Not Detected
2-Hexanone	4.8	Not Detected	20	Not Detected

Client Sample ID: SV-1 Lab ID#: 1706371A-01A EPA METHOD TO-15 GC/MS FULL SCAN

٦

File Name: Dil. Factor:	17062111 2.41	Date of Collection: 6/15/17 9:36:00 AM Date of Analysis: 6/21/17 07:45 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	1.2	Not Detected	10	Not Detected
1,2-Dibromoethane (EDB)	1.2	Not Detected	9.2	Not Detected
Chlorobenzene	1.2	Not Detected	5.5	Not Detected
Ethyl Benzene	1.2	2.7	5.2	12
m,p-Xylene	1.2	9.0	5.2	39
o-Xylene	1.2	3.1	5.2	13
Styrene	1.2	Not Detected	5.1	Not Detected
Bromoform	1.2	Not Detected	12	Not Detected
Cumene	1.2	Not Detected	5.9	Not Detected
1,1,2,2-Tetrachloroethane	1.2	Not Detected	8.3	Not Detected
Propylbenzene	1.2	Not Detected	5.9	Not Detected
4-Ethyltoluene	1.2	Not Detected	5.9	Not Detected
1,3,5-Trimethylbenzene	1.2	1.2	5.9	6.0
1,2,4-Trimethylbenzene	1.2	Not Detected	5.9	Not Detected
1,3-Dichlorobenzene	1.2	Not Detected	7.2	Not Detected
1,4-Dichlorobenzene	1.2	Not Detected	7.2	Not Detected
alpha-Chlorotoluene	1.2	Not Detected	6.2	Not Detected
1,2-Dichlorobenzene	1.2	Not Detected	7.2	Not Detected
1,2,4-Trichlorobenzene	4.8	Not Detected	36	Not Detected
Hexachlorobutadiene	4.8	Not Detected	51	Not Detected
Naphthalene	2.4	Not Detected	13	Not Detected

		Method
Surrogates	%Recovery	Limits
Toluene-d8	100	70-130
1,2-Dichloroethane-d4	87	70-130
4-Bromofluorobenzene	104	70-130

Client Sample ID: SV-2 Lab ID#: 1706371A-02A EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	17062112 9.68		e of Collection: 6/1 e of Analysis: 6/21/	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	4.8	Not Detected	24	Not Detected
Freon 114	4.8	Not Detected	34	Not Detected
Chloromethane	48	Not Detected	100	Not Detected
Vinyl Chloride	4.8	Not Detected	12	Not Detected
1,3-Butadiene	4.8	4.8	11	11
Bromomethane	48	Not Detected	190	Not Detected
Chloroethane	19	Not Detected	51	Not Detected
Freon 11	4.8	Not Detected	27	Not Detected
Ethanol	19	Not Detected	36	Not Detected
Freon 113	4.8	Not Detected	37	Not Detected
1,1-Dichloroethene	4.8	Not Detected	19	Not Detected
Acetone	48	Not Detected	110	Not Detected
2-Propanol	19	Not Detected	48	Not Detected
Carbon Disulfide	19	47	60	140
3-Chloropropene	19	Not Detected	60	Not Detected
Methylene Chloride	48	Not Detected	170	Not Detected
Methyl tert-butyl ether	19	Not Detected	70	Not Detected
trans-1,2-Dichloroethene	4.8	Not Detected	19	Not Detected
Hexane	4.8	6.8	17	24
1,1-Dichloroethane	4.8	Not Detected	20	Not Detected
2-Butanone (Methyl Ethyl Ketone)	19	Not Detected	57	Not Detected
cis-1,2-Dichloroethene	4.8	Not Detected	19	Not Detected
Tetrahydrofuran	4.8	Not Detected	14	Not Detected
Chloroform	4.8	21	24	100
1,1,1-Trichloroethane	4.8	Not Detected	26	Not Detected
Cyclohexane	4.8	Not Detected	17	Not Detected
Carbon Tetrachloride	4.8	Not Detected	30	Not Detected
2,2,4-Trimethylpentane	4.8	Not Detected	23	Not Detected
Benzene	4.8	Not Detected	15	Not Detected
1,2-Dichloroethane	4.8	Not Detected	20	Not Detected
Heptane	4.8	Not Detected	20	Not Detected
Trichloroethene	4.8	Not Detected	26	Not Detected
1,2-Dichloropropane	4.8	Not Detected	20	Not Detected
1,4-Dioxane	19	Not Detected	70	Not Detected
Bromodichloromethane	4.8	Not Detected	32	Not Detected
	4.8	Not Detected	22	Not Detected
cis-1,3-Dichloropropene	4.8	Not Detected	22	Not Detected
4-Methyl-2-pentanone	4.8	7.8	20 18	29
Toluene	4.8	7.8 Not Detected	22	
trans-1,3-Dichloropropene	4.8	Not Detected	22	Not Detected Not Detected
1,1,2-Trichloroethane				
Tetrachloroethene	4.8	Not Detected	33	Not Detected
2-Hexanone	19	Not Detected	79	Not Detected

Client Sample ID: SV-2 Lab ID#: 1706371A-02A EPA METHOD TO-15 GC/MS FULL SCAN

٦

File Name: Dil. Factor:	17062112 9.68		of Collection: 6/1 of Analysis: 6/21	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	4.8	Not Detected	41	Not Detected
1,2-Dibromoethane (EDB)	4.8	Not Detected	37	Not Detected
Chlorobenzene	4.8	Not Detected	22	Not Detected
Ethyl Benzene	4.8	Not Detected	21	Not Detected
n,p-Xylene	4.8	19	21	82
o-Xylene	4.8	6.7	21	29
Styrene	4.8	Not Detected	21	Not Detected
Bromoform	4.8	Not Detected	50	Not Detected
Cumene	4.8	Not Detected	24	Not Detected
1,1,2,2-Tetrachloroethane	4.8	Not Detected	33	Not Detected
Propylbenzene	4.8	Not Detected	24	Not Detected
4-Ethyltoluene	4.8	Not Detected	24	Not Detected
1,3,5-Trimethylbenzene	4.8	Not Detected	24	Not Detected
1,2,4-Trimethylbenzene	4.8	Not Detected	24	Not Detected
1,3-Dichlorobenzene	4.8	Not Detected	29	Not Detected
1,4-Dichlorobenzene	4.8	Not Detected	29	Not Detected
alpha-Chlorotoluene	4.8	Not Detected	25	Not Detected
,2-Dichlorobenzene	4.8	Not Detected	29	Not Detected
1,2,4-Trichlorobenzene	19	Not Detected	140	Not Detected
Hexachlorobutadiene	19	Not Detected	210	Not Detected
Naphthalene	9.7	Not Detected	51	Not Detected

		Method
Surrogates	%Recovery	Limits
Toluene-d8	99	70-130
1,2-Dichloroethane-d4	86	70-130
4-Bromofluorobenzene	104	70-130

Client Sample ID: SV-3 Lab ID#: 1706371A-03A EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	17062113 8.00		of Collection: 6/1 of Analysis: 6/21	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	4.0	Not Detected	20	Not Detected
Freon 114	4.0	Not Detected	28	Not Detected
Chloromethane	40	Not Detected	83	Not Detected
√inyl Chloride	4.0	Not Detected	10	Not Detected
1,3-Butadiene	4.0	Not Detected	8.8	Not Detected
Bromomethane	40	Not Detected	160	Not Detected
Chloroethane	16	Not Detected	42	Not Detected
Freon 11	4.0	Not Detected	22	Not Detected
Ethanol	16	Not Detected	30	Not Detected
Freon 113	4.0	Not Detected	31	Not Detected
1,1-Dichloroethene	4.0	Not Detected	16	Not Detected
Acetone	40	Not Detected	95	Not Detected
2-Propanol	16	Not Detected	39	Not Detected
Carbon Disulfide	16	140	50	440
3-Chloropropene	16	Not Detected	50	Not Detected
Methylene Chloride	40	Not Detected	140	Not Detected
Methyl tert-butyl ether	16	Not Detected	58	Not Detected
rans-1,2-Dichloroethene	4.0	Not Detected	16	Not Detected
Hexane	4.0	4.9	14	17
I,1-Dichloroethane	4.0	Not Detected	16	Not Detected
	16	Not Detected	47	Not Detected
2-Butanone (Methyl Ethyl Ketone)	4.0	Not Detected	16	Not Detected
cis-1,2-Dichloroethene	4.0	Not Detected	10	Not Detected
Tetrahydrofuran	4.0	15	20	73
Chloroform	4.0	Not Detected	20	Not Detected
I,1,1-Trichloroethane				
Cyclohexane	4.0	8.3	14	29 Nat Data at a d
Carbon Tetrachloride	4.0	Not Detected	25	Not Detected
2,2,4-Trimethylpentane	4.0	Not Detected	19	Not Detected
Benzene	4.0	Not Detected	13	Not Detected
I,2-Dichloroethane	4.0	Not Detected	16	Not Detected
Heptane	4.0	Not Detected	16	Not Detected
Frichloroethene	4.0	Not Detected	21	Not Detected
1,2-Dichloropropane	4.0	Not Detected	18	Not Detected
I,4-Dioxane	16	Not Detected	58	Not Detected
Bromodichloromethane	4.0	Not Detected	27	Not Detected
cis-1,3-Dichloropropene	4.0	Not Detected	18	Not Detected
1-Methyl-2-pentanone	4.0	Not Detected	16	Not Detected
Foluene	4.0	6.4	15	24
rans-1,3-Dichloropropene	4.0	Not Detected	18	Not Detected
1,1,2-Trichloroethane	4.0	Not Detected	22	Not Detected
Tetrachloroethene	4.0	Not Detected	27	Not Detected
2-Hexanone	16	Not Detected	66	Not Detected

Client Sample ID: SV-3 Lab ID#: 1706371A-03A EPA METHOD TO-15 GC/MS FULL SCAN

٦

File Name: Dil. Factor:	17062113Date of Collection8.00Date of Analysis:			
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	4.0	Not Detected	34	Not Detected
1,2-Dibromoethane (EDB)	4.0	Not Detected	31	Not Detected
Chlorobenzene	4.0	Not Detected	18	Not Detected
Ethyl Benzene	4.0	Not Detected	17	Not Detected
m,p-Xylene	4.0	7.3	17	32
o-Xylene	4.0	Not Detected	17	Not Detected
Styrene	4.0	Not Detected	17	Not Detected
Bromoform	4.0	Not Detected	41	Not Detected
Cumene	4.0	Not Detected	20	Not Detected
1,1,2,2-Tetrachloroethane	4.0	Not Detected	27	Not Detected
Propylbenzene	4.0	Not Detected	20	Not Detected
4-Ethyltoluene	4.0	Not Detected	20	Not Detected
1,3,5-Trimethylbenzene	4.0	Not Detected	20	Not Detected
1,2,4-Trimethylbenzene	4.0	Not Detected	20	Not Detected
1,3-Dichlorobenzene	4.0	Not Detected	24	Not Detected
1,4-Dichlorobenzene	4.0	Not Detected	24	Not Detected
alpha-Chlorotoluene	4.0	Not Detected	21	Not Detected
1,2-Dichlorobenzene	4.0	Not Detected	24	Not Detected
1,2,4-Trichlorobenzene	16	Not Detected	120	Not Detected
Hexachlorobutadiene	16	Not Detected	170	Not Detected
Naphthalene	8.0	Not Detected	42	Not Detected

		Method
Surrogates	%Recovery	Limits
Toluene-d8	98	70-130
1,2-Dichloroethane-d4	87	70-130
4-Bromofluorobenzene	105	70-130

Client Sample ID: SV-4 Lab ID#: 1706371A-04A EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	17062114 2.56		of Collection: 6/1 of Analysis: 6/21/	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	1.3	Not Detected	6.3	Not Detected
Freon 114	1.3	Not Detected	8.9	Not Detected
Chloromethane	13	Not Detected	26	Not Detected
Vinyl Chloride	1.3	Not Detected	3.3	Not Detected
1,3-Butadiene	1.3	2.0	2.8	4.5
Bromomethane	13	Not Detected	50	Not Detected
Chloroethane	5.1	Not Detected	14	Not Detected
Freon 11	1.3	29	7.2	160
Ethanol	5.1	Not Detected	9.6	Not Detected
Freon 113	1.3	Not Detected	9.8	Not Detected
1,1-Dichloroethene	1.3	Not Detected	5.1	Not Detected
Acetone	13	33	30	78
2-Propanol	5.1	Not Detected	12	Not Detected
Carbon Disulfide	5.1	50	16	160
3-Chloropropene	5.1	Not Detected	16	Not Detected
Methylene Chloride	13	Not Detected	44	Not Detected
Methyl tert-butyl ether	5.1	Not Detected	18	Not Detected
rans-1,2-Dichloroethene	1.3	Not Detected	5.1	Not Detected
Hexane	1.3	6.0	4.5	21
1,1-Dichloroethane	1.3	Not Detected	5.2	Not Detected
2-Butanone (Methyl Ethyl Ketone)	5.1	Not Detected	15	Not Detected
cis-1,2-Dichloroethene	1.3	Not Detected	5.1	Not Detected
Tetrahydrofuran	1.3	Not Detected	3.8	Not Detected
Chloroform	1.3	5.8	6.2	28
1,1,1-Trichloroethane	1.3	Not Detected	7.0	Not Detected
Cyclohexane	1.3	4.2	4.4	14
Carbon Tetrachloride	1.3	Not Detected	8.0	Not Detected
2,2,4-Trimethylpentane	1.3	7.6	6.0	35
Benzene	1.3	3.6	4.1	11
1,2-Dichloroethane	1.3	Not Detected	5.2	Not Detected
Heptane	1.3	48	5.2	200
Trichloroethene	1.3	Not Detected	6.9	Not Detected
1,2-Dichloropropane	1.3	Not Detected	5.9	Not Detected
1,4-Dioxane	5.1	Not Detected	18	Not Detected
Bromodichloromethane	1.3	Not Detected	8.6	Not Detected
cis-1,3-Dichloropropene	1.3	Not Detected	5.8	Not Detected
4-Methyl-2-pentanone	1.3	Not Detected	5.2	Not Detected
Foluene	1.3	5.0	4.8	19
rans-1,3-Dichloropropene	1.3	Not Detected	5.8	Not Detected
1,1,2-Trichloroethane	1.3	Not Detected	7.0	Not Detected
Tetrachloroethene	1.3	Not Detected	8.7	Not Detected
2-Hexanone	5.1	Not Detected	21	Not Detected

Client Sample ID: SV-4 Lab ID#: 1706371A-04A EPA METHOD TO-15 GC/MS FULL SCAN

٦

Rpt. Limit (ppbv)Amount (ppbv)Dibromochloromethane1.3Not Detected1,2-Dibromoethane (EDB)1.3Not DetectedChlorobenzene1.3Not DetectedEthyl Benzene1.33.6m,p-Xylene1.316o-Xylene1.38.2Styrene1.3Not DetectedBromoform1.3Not DetectedCumene1.3Not Detected1,1,2,2-Tetrachloroethane1.3Not DetectedPropylbenzene1.3Not Detected1,3,5-Trimethylbenzene1.3Not Detected1,3-Dichlorobenzene1.3Not Detected1,4-Dichlorobenzene1.3Not Detected1,2-Dichlorobenzene1.3Not Detected1,2-Dichlorobenzene <th></th> <th>15/17 1:27:00 AM //17 09:10 PM</th>		15/17 1:27:00 AM //17 09:10 PM
1,2-Dibromoethane (EDB)1.3Not DetectedChlorobenzene1.3Not DetectedEthyl Benzene1.33.6m,p-Xylene1.316o-Xylene1.38.2Styrene1.3Not DetectedBromoform1.3Not DetectedCumene1.3Not Detected1,1,2,2-Tetrachloroethane1.3Not DetectedPropylbenzene1.3Not Detected1,3,5-Trimethylbenzene1.3Not Detected1,3-Dichlorobenzene1.3Not Detected1,4-Dichlorobenzene1.3Not Detected1,2-Dichlorobenzene1.3Not Detected	Rpt. Limit (ug/m3)	Amount (ug/m3)
Chlorobenzene1.3Not DetectedEthyl Benzene1.33.6m,p-Xylene1.316o-Xylene1.38.2Styrene1.3Not DetectedBromoform1.3Not DetectedCumene1.3Not Detected1,1,2,2-Tetrachloroethane1.3Not DetectedPropylbenzene1.3Not Detected4-Ethyltoluene1.3Not Detected1,3,5-Trimethylbenzene1.3Not Detected1,3-Dichlorobenzene1.3Not Detected1,4-Dichlorobenzene1.3Not Detected1,2-Dichlorobenzene1.3Not Detected1,2-Dichlorobenzene1.3Not Detected1,2-Dichlorobenzene1.3Not Detected1,3Not Detected1.3Not Detected1,2-Dichlorobenzene1.3Not Detected1,3Not Detected1.3Not Detected	11	Not Detected
Ethyl Benzene1.33.6m,p-Xylene1.316o-Xylene1.38.2Styrene1.3Not DetectedBromoform1.3Not DetectedCumene1.3Not Detected1,1,2,2-Tetrachloroethane1.3Not DetectedPropylbenzene1.3Not Detected4-Ethyltoluene1.3Not Detected1,3,5-Trimethylbenzene1.3Not Detected1,3-Dichlorobenzene1.3Not Detected1,3-Dichlorobenzene1.3Not Detected1,3-Dichlorobenzene1.3Not Detected1,3-Dichlorobenzene1.3Not Detected1,2-Dichlorobenzene1.3Not Detected1,2-Dichlorobenzene1.3Not Detected1,2-Dichlorobenzene1.3Not Detected1,2-Dichlorobenzene1.3Not Detected1,2-Dichlorobenzene1.3Not Detected1,3-Dichlorobenzene1.3Not Detected1,2-Dichlorobenzene1.3Not Detected1,2-Dichlorobenzene1.3Not Detected1,2-Dichlorobenzene1.3Not Detected1,2-Dichlorobenzene1.3Not Detected	9.8	Not Detected
m,p-Xylene1.316o-Xylene1.38.2Styrene1.3Not DetectedBromoform1.3Not DetectedCumene1.3Not Detected1,1,2,2-Tetrachloroethane1.3Not DetectedPropylbenzene1.3Not Detected4-Ethyltoluene1.3Not Detected1,3,5-Trimethylbenzene1.3Not Detected1,3,5-Trimethylbenzene1.3Not Detected1,3-Dichlorobenzene1.3Not Detected1,4-Dichlorobenzene1.3Not Detected1,2-Dichlorobenzene1.3Not Detected1,2-Dichlorobenzene1.3Not Detected1,2-Dichlorobenzene1.3Not Detected1,2-Dichlorobenzene1.3Not Detected1,2-Dichlorobenzene1.3Not Detected1,2-Dichlorobenzene1.3Not Detected	5.9	Not Detected
o-Xylene1.38.2Styrene1.3Not DetectedBromoform1.3Not DetectedCumene1.3Not Detected1,1,2,2-Tetrachloroethane1.3Not DetectedPropylbenzene1.3Not Detected4-Ethyltoluene1.3Not Detected1,3,5-Trimethylbenzene1.3Not Detected1,3,5-Trimethylbenzene1.3Not Detected1,3,2-Dichlorobenzene1.3Not Detected1,3-Dichlorobenzene1.3Not Detected1,4-Dichlorobenzene1.3Not Detected1,2-Dichlorobenzene1.3Not Detected1,2-Dichlorobenzene1.3Not Detected1,2-Dichlorobenzene1.3Not Detected1,3-Dichlorobenzene1.3Not Detected1,2-Dichlorobenzene1.3Not Detected1,2-Dichlorobenzene1.3Not Detected	5.6	15
Styrene1.3Not DetectedBromoform1.3Not DetectedCumene1.3Not Detected1,1,2,2-Tetrachloroethane1.3Not DetectedPropylbenzene1.3Not Detected4-Ethyltoluene1.3Not Detected1,3,5-Trimethylbenzene1.3Not Detected1,2,4-Trimethylbenzene1.3Not Detected1,3-Dichlorobenzene1.3Not Detected1,4-Dichlorobenzene1.3Not Detected1,2-Dichlorobenzene1.3Not Detected1,2-Dichlorobenzene1.3Not Detected1,3Not Detected1.3Not Detected	5.6	67
Bromoform1.3Not DetectedCumene1.3Not Detected1,1,2,2-Tetrachloroethane1.3Not DetectedPropylbenzene1.3Not Detected4-Ethyltoluene1.3Not Detected1,3,5-Trimethylbenzene1.3Not Detected1,2,4-Trimethylbenzene1.3Not Detected1,3-Dichlorobenzene1.3Not Detected1,4-Dichlorobenzene1.3Not Detected1,2-Dichlorobenzene1.3Not Detected1,2-Dichlorobenzene1.3Not Detected1,3-Not Detected1.3Not Detected1,2-Dichlorobenzene1.3Not Detected	5.6	36
Cumene1.3Not Detected1,1,2,2-Tetrachloroethane1.3Not DetectedPropylbenzene1.3Not Detected4-Ethyltoluene1.3Not Detected1,3,5-Trimethylbenzene1.3Not Detected1,2,4-Trimethylbenzene1.3Not Detected1,3-Dichlorobenzene1.3Not Detected1,4-Dichlorobenzene1.3Not Detected1,2-Dichlorobenzene1.3Not Detected1,2-Dichlorobenzene1.3Not Detected1,2-Dichlorobenzene1.3Not Detected	5.4	Not Detected
1,1,2,2-Tetrachloroethane1.3Not DetectedPropylbenzene1.3Not Detected4-Ethyltoluene1.3Not Detected1,3,5-Trimethylbenzene1.3Not Detected1,2,4-Trimethylbenzene1.3Not Detected1,3-Dichlorobenzene1.3Not Detected1,4-Dichlorobenzene1.3Not Detected1,2-Dichlorobenzene1.3Not Detected1,2-Dichlorobenzene1.3Not Detected1,2-Dichlorobenzene1.3Not Detected1,2-Dichlorobenzene1.3Not Detected	13	Not Detected
Propylbenzene1.3Not Detected4-Ethyltoluene1.3Not Detected1,3,5-Trimethylbenzene1.3Not Detected1,2,4-Trimethylbenzene1.3Not Detected1,3-Dichlorobenzene1.3Not Detected1,4-Dichlorobenzene1.3Not Detected1,2-Dichlorobenzene1.3Not Detected1,2-Dichlorobenzene1.3Not Detected1,2-Dichlorobenzene1.3Not Detected1,2-Dichlorobenzene1.3Not Detected	6.3	Not Detected
4-Ethyltoluene1.3Not Detected1,3,5-Trimethylbenzene1.3Not Detected1,2,4-Trimethylbenzene1.3Not Detected1,3-Dichlorobenzene1.3Not Detected1,4-Dichlorobenzene1.3Not Detectedalpha-Chlorotoluene1.3Not Detected1,2-Dichlorobenzene1.3Not Detected	8.8	Not Detected
1,3,5-Trimethylbenzene1.3Not Detected1,2,4-Trimethylbenzene1.3Not Detected1,3-Dichlorobenzene1.3Not Detected1,4-Dichlorobenzene1.3Not Detectedalpha-Chlorotoluene1.3Not Detected1,2-Dichlorobenzene1.3Not Detected	6.3	Not Detected
1,2,4-Trimethylbenzene1.3Not Detected1,3-Dichlorobenzene1.3Not Detected1,4-Dichlorobenzene1.3Not Detectedalpha-Chlorotoluene1.3Not Detected1,2-Dichlorobenzene1.3Not Detected	6.3	Not Detected
1,3-Dichlorobenzene1.3Not Detected1,4-Dichlorobenzene1.3Not Detectedalpha-Chlorotoluene1.3Not Detected1,2-Dichlorobenzene1.3Not Detected	6.3	Not Detected
1,4-Dichlorobenzene1.3Not Detectedalpha-Chlorotoluene1.3Not Detected1,2-Dichlorobenzene1.3Not Detected	6.3	Not Detected
alpha-Chlorotoluene1.3Not Detected1,2-Dichlorobenzene1.3Not Detected	7.7	Not Detected
1,2-Dichlorobenzene 1.3 Not Detected	7.7	Not Detected
,	6.6	Not Detected
	7.7	Not Detected
1,2,4-Trichlorobenzene 5.1 Not Detected	38	Not Detected
Hexachlorobutadiene5.1Not Detected	55	Not Detected
Naphthalene 2.6 Not Detected	13	Not Detected

		Method
Surrogates	%Recovery	Limits
Toluene-d8	102	70-130
1,2-Dichloroethane-d4	86	70-130
4-Bromofluorobenzene	104	70-130

Client Sample ID: SV-5 Lab ID#: 1706371A-05A EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	17062115 5.05		of Collection: 6/1 of Analysis: 6/21	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	2.5	Not Detected	12	Not Detected
Freon 114	2.5	Not Detected	18	Not Detected
Chloromethane	25	Not Detected	52	Not Detected
√inyl Chloride	2.5	Not Detected	6.4	Not Detected
1,3-Butadiene	2.5	Not Detected	5.6	Not Detected
Bromomethane	25	Not Detected	98	Not Detected
Chloroethane	10	Not Detected	27	Not Detected
Freon 11	2.5	4.6	14	26
Ethanol	10	Not Detected	19	Not Detected
Freon 113	2.5	Not Detected	19	Not Detected
1,1-Dichloroethene	2.5	Not Detected	10	Not Detected
Acetone	25	84	60	200
2-Propanol	10	Not Detected	25	Not Detected
Carbon Disulfide	10	72	31	220
3-Chloropropene	10	Not Detected	32	Not Detected
Methylene Chloride	25	Not Detected	88	Not Detected
Methyl tert-butyl ether	10	Not Detected	36	Not Detected
rans-1,2-Dichloroethene	2.5	Not Detected	10	Not Detected
Hexane	2.5	3.7	8.9	13
1,1-Dichloroethane	2.5	Not Detected	10	Not Detected
2-Butanone (Methyl Ethyl Ketone)	10	Not Detected	30	Not Detected
cis-1,2-Dichloroethene	2.5	Not Detected	10	Not Detected
Tetrahydrofuran	2.5	Not Detected	7.4	Not Detected
Chloroform	2.5	17	12	85
1,1,1-Trichloroethane	2.5	Not Detected	14	Not Detected
Cyclohexane	2.5	2.9	8.7	10
Carbon Tetrachloride	2.5	Not Detected	16	Not Detected
2,2,4-Trimethylpentane	2.5	12	12	54
Benzene	2.5	7.2	8.1	23
1,2-Dichloroethane	2.5	Not Detected	10	Not Detected
Heptane	2.5	92	10	380
Trichloroethene	2.5	Not Detected	14	Not Detected
1,2-Dichloropropane	2.5	Not Detected	12	Not Detected
1,4-Dioxane	10	Not Detected	36	Not Detected
Bromodichloromethane	2.5	Not Detected	17	Not Detected
cis-1,3-Dichloropropene	2.5	Not Detected	11	Not Detected Not Detected
1-Methyl-2-pentanone	2.5	Not Detected	10	
Foluene	2.5	15 Not Detected	9.5	55 Not Detected
trans-1,3-Dichloropropene	2.5	Not Detected	11	Not Detected
1,1,2-Trichloroethane	2.5	Not Detected	14	Not Detected
Tetrachloroethene	2.5	Not Detected	17	Not Detected
2-Hexanone	10	Not Detected	41	Not Detected

Client Sample ID: SV-5 Lab ID#: 1706371A-05A EPA METHOD TO-15 GC/MS FULL SCAN

٦

File Name: Dil. Factor:	17062115 5.05		of Collection: 6/1 of Analysis: 6/21	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	2.5	Not Detected	22	Not Detected
1,2-Dibromoethane (EDB)	2.5	Not Detected	19	Not Detected
Chlorobenzene	2.5	Not Detected	12	Not Detected
Ethyl Benzene	2.5	Not Detected	11	Not Detected
m,p-Xylene	2.5	9.6	11	42
o-Xylene	2.5	3.2	11	14
Styrene	2.5	Not Detected	11	Not Detected
Bromoform	2.5	Not Detected	26	Not Detected
Cumene	2.5	Not Detected	12	Not Detected
1,1,2,2-Tetrachloroethane	2.5	Not Detected	17	Not Detected
Propylbenzene	2.5	Not Detected	12	Not Detected
4-Ethyltoluene	2.5	Not Detected	12	Not Detected
1,3,5-Trimethylbenzene	2.5	Not Detected	12	Not Detected
1,2,4-Trimethylbenzene	2.5	Not Detected	12	Not Detected
1,3-Dichlorobenzene	2.5	Not Detected	15	Not Detected
1,4-Dichlorobenzene	2.5	Not Detected	15	Not Detected
alpha-Chlorotoluene	2.5	Not Detected	13	Not Detected
1,2-Dichlorobenzene	2.5	Not Detected	15	Not Detected
1,2,4-Trichlorobenzene	10	Not Detected	75	Not Detected
Hexachlorobutadiene	10	Not Detected	110	Not Detected
Naphthalene	5.0	Not Detected	26	Not Detected
•				

		Method
Surrogates	%Recovery	Limits
Toluene-d8	103	70-130
1,2-Dichloroethane-d4	87	70-130
4-Bromofluorobenzene	102	70-130

Client Sample ID: SV-6 Lab ID#: 1706371A-06A EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	17062116 2.82		of Collection: 6/1 of Analysis: 6/21	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	1.4	Not Detected	7.0	Not Detected
Freon 114	1.4	Not Detected	9.8	Not Detected
Chloromethane	14	Not Detected	29	Not Detected
Vinyl Chloride	1.4	Not Detected	3.6	Not Detected
1,3-Butadiene	1.4	1.5	3.1	3.4
Bromomethane	14	Not Detected	55	Not Detected
Chloroethane	5.6	Not Detected	15	Not Detected
Freon 11	1.4	Not Detected	7.9	Not Detected
Ethanol	5.6	Not Detected	11	Not Detected
Freon 113	1.4	Not Detected	11	Not Detected
1,1-Dichloroethene	1.4	Not Detected	5.6	Not Detected
Acetone	14	16	33	38
2-Propanol	5.6	Not Detected	14	Not Detected
Carbon Disulfide	5.6	40	18	120
3-Chloropropene	5.6	Not Detected	18	Not Detected
Methylene Chloride	14	Not Detected	49	Not Detected
Methyl tert-butyl ether	5.6	Not Detected	20	Not Detected
trans-1,2-Dichloroethene	1.4	Not Detected	5.6	Not Detected
Hexane	1.4	5.0	5.0	18
1,1-Dichloroethane	1.4	Not Detected	5.7	Not Detected
2-Butanone (Methyl Ethyl Ketone)	5.6	Not Detected	17	Not Detected
cis-1,2-Dichloroethene	1.4	Not Detected	5.6	Not Detected
Tetrahydrofuran	1.4	Not Detected	4.2	Not Detected
Chloroform	1.4	13	6.9	64
1,1,1-Trichloroethane	1.4	Not Detected	7.7	Not Detected
Cyclohexane	1.4	2.1	4.8	7.2
Carbon Tetrachloride	1.4	Not Detected	8.9	Not Detected
2,2,4-Trimethylpentane	1.4	11	6.6	53
Benzene	1.4	5.6	4.5	18
1,2-Dichloroethane	1.4	Not Detected	5.7	Not Detected
	1.4	69	5.8	280
Heptane Trichloroethene	1.4	Not Detected	7.6	Not Detected
	1.4	Not Detected	6.5	Not Detected
1,2-Dichloropropane	5.6	Not Detected	20	Not Detected
1,4-Dioxane	1.4	Not Detected	9.4	Not Detected
Bromodichloromethane				
cis-1,3-Dichloropropene	1.4	Not Detected	6.4	Not Detected
4-Methyl-2-pentanone	1.4	Not Detected	5.8	Not Detected
	1.4	7.2	5.3	27 Not Data stad
trans-1,3-Dichloropropene	1.4	Not Detected	6.4	Not Detected
1,1,2-Trichloroethane	1.4	Not Detected	7.7	Not Detected
Tetrachloroethene	1.4	Not Detected	9.6	Not Detected
2-Hexanone	5.6	Not Detected	23	Not Detected

Client Sample ID: SV-6 Lab ID#: 1706371A-06A EPA METHOD TO-15 GC/MS FULL SCAN

٦

File Name: 17 Dil. Factor:	062116 2.82		of Collection: 6/1 of Analysis: 6/21/	5/17 4:28:00 AM /17 10:05 PM
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	1.4	Not Detected	12	Not Detected
,2-Dibromoethane (EDB)	1.4	Not Detected	11	Not Detected
Chlorobenzene	1.4	Not Detected	6.5	Not Detected
Ethyl Benzene	1.4	1.6	6.1	6.8
n,p-Xylene	1.4	4.4	6.1	19
o-Xylene	1.4	1.9	6.1	8.4
Styrene	1.4	Not Detected	6.0	Not Detected
Bromoform	1.4	Not Detected	14	Not Detected
Cumene	1.4	Not Detected	6.9	Not Detected
,1,2,2-Tetrachloroethane	1.4	Not Detected	9.7	Not Detected
Propylbenzene	1.4	Not Detected	6.9	Not Detected
I-Ethyltoluene	1.4	Not Detected	6.9	Not Detected
,3,5-Trimethylbenzene	1.4	Not Detected	6.9	Not Detected
,2,4-Trimethylbenzene	1.4	Not Detected	6.9	Not Detected
,3-Dichlorobenzene	1.4	Not Detected	8.5	Not Detected
,4-Dichlorobenzene	1.4	Not Detected	8.5	Not Detected
alpha-Chlorotoluene	1.4	Not Detected	7.3	Not Detected
,2-Dichlorobenzene	1.4	Not Detected	8.5	Not Detected
,2,4-Trichlorobenzene	5.6	Not Detected	42	Not Detected
lexachlorobutadiene	5.6	Not Detected	60	Not Detected
Naphthalene	2.8	Not Detected	15	Not Detected

		Method
Surrogates	%Recovery	Limits
Toluene-d8	101	70-130
1,2-Dichloroethane-d4	88	70-130
4-Bromofluorobenzene	106	70-130

Client Sample ID: SV-7 Lab ID#: 1706371A-07A EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	17062117 6.14		of Collection: 6/1 of Analysis: 6/21	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	3.1	Not Detected	15	Not Detected
Freon 114	3.1	Not Detected	21	Not Detected
Chloromethane	31	Not Detected	63	Not Detected
Vinyl Chloride	3.1	Not Detected	7.8	Not Detected
1,3-Butadiene	3.1	33	6.8	73
Bromomethane	31	Not Detected	120	Not Detected
Chloroethane	12	Not Detected	32	Not Detected
Freon 11	3.1	Not Detected	17	Not Detected
Ethanol	12	Not Detected	23	Not Detected
Freon 113	3.1	Not Detected	24	Not Detected
1,1-Dichloroethene	3.1	Not Detected	12	Not Detected
Acetone	31	Not Detected	73	Not Detected
2-Propanol	12	Not Detected	30	Not Detected
Carbon Disulfide	12	64	38	200
3-Chloropropene	12	Not Detected	38	Not Detected
Methylene Chloride	31	Not Detected	110	Not Detected
Methyl tert-butyl ether	12	Not Detected	44	Not Detected
rans-1,2-Dichloroethene	3.1	Not Detected	12	Not Detected
Hexane	3.1	33	11	120
1,1-Dichloroethane	3.1	Not Detected	12	Not Detected
2-Butanone (Methyl Ethyl Ketone)	12	Not Detected	36	Not Detected
cis-1,2-Dichloroethene	3.1	Not Detected	12	Not Detected
Tetrahydrofuran	3.1	Not Detected	9.0	Not Detected
Chloroform	3.1	8.7	15	42
1,1,1-Trichloroethane	3.1	Not Detected	17	Not Detected
Cyclohexane	3.1	51	10	180
Carbon Tetrachloride	3.1	Not Detected	19	Not Detected
2,2,4-Trimethylpentane	3.1	14	13	68
Benzene	3.1	9.8	9.8	31
1,2-Dichloroethane	3.1	Not Detected	12	Not Detected
	3.1	94	12	380
Heptane	3.1	Not Detected	12	Not Detected
Trichloroethene			14	
1,2-Dichloropropane	3.1 12	Not Detected	44	Not Detected Not Detected
1,4-Dioxane		Not Detected		
Bromodichloromethane	3.1	Not Detected	20	Not Detected
cis-1,3-Dichloropropene	3.1	Not Detected	14	Not Detected
4-Methyl-2-pentanone	3.1	Not Detected	12	Not Detected
Toluene	3.1	9.3	12	35 Not Data da d
trans-1,3-Dichloropropene	3.1	Not Detected	14	Not Detected
1,1,2-Trichloroethane	3.1	Not Detected	17	Not Detected
Tetrachloroethene	3.1	Not Detected	21	Not Detected
2-Hexanone	12	Not Detected	50	Not Detected

Client Sample ID: SV-7 Lab ID#: 1706371A-07A EPA METHOD TO-15 GC/MS FULL SCAN

٦

File Name: Dil. Factor:	17062117 6.14		of Collection: 6/1 of Analysis: 6/21	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	3.1	Not Detected	26	Not Detected
1,2-Dibromoethane (EDB)	3.1	Not Detected	24	Not Detected
Chlorobenzene	3.1	Not Detected	14	Not Detected
Ethyl Benzene	3.1	Not Detected	13	Not Detected
m,p-Xylene	3.1	5.3	13	23
o-Xylene	3.1	Not Detected	13	Not Detected
Styrene	3.1	Not Detected	13	Not Detected
Bromoform	3.1	Not Detected	32	Not Detected
Cumene	3.1	Not Detected	15	Not Detected
1,1,2,2-Tetrachloroethane	3.1	Not Detected	21	Not Detected
Propylbenzene	3.1	Not Detected	15	Not Detected
4-Ethyltoluene	3.1	Not Detected	15	Not Detected
1,3,5-Trimethylbenzene	3.1	Not Detected	15	Not Detected
1,2,4-Trimethylbenzene	3.1	Not Detected	15	Not Detected
1,3-Dichlorobenzene	3.1	Not Detected	18	Not Detected
1,4-Dichlorobenzene	3.1	Not Detected	18	Not Detected
alpha-Chlorotoluene	3.1	Not Detected	16	Not Detected
1,2-Dichlorobenzene	3.1	Not Detected	18	Not Detected
1,2,4-Trichlorobenzene	12	Not Detected	91	Not Detected
Hexachlorobutadiene	12	Not Detected	130	Not Detected
Naphthalene	6.1	Not Detected	32	Not Detected

		Method
Surrogates	%Recovery	Limits
Toluene-d8	101	70-130
1,2-Dichloroethane-d4	87	70-130
4-Bromofluorobenzene	106	70-130

Client Sample ID: Lab Blank Lab ID#: 1706371A-08A EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	17062105 1.00		of Collection: NA of Analysis: 6/21/	/17 11.1 <i>1</i> AM
	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Freon 12	0.50	Not Detected	2.5	Not Detected
Freon 114	0.50	Not Detected	3.5	Not Detected
Chloromethane	5.0	Not Detected	10	Not Detected
Vinyl Chloride	0.50	Not Detected	1.3	Not Detected
1,3-Butadiene	0.50	Not Detected	1.1	Not Detected
Bromomethane	5.0	Not Detected	19	Not Detected
Chloroethane	2.0	Not Detected	5.3	Not Detected
Freon 11	0.50	Not Detected	2.8	Not Detected
Ethanol	2.0	Not Detected	3.8	Not Detected
Freon 113	0.50	Not Detected	3.8	Not Detected
1,1-Dichloroethene	0.50	Not Detected	2.0	Not Detected
Acetone	5.0	Not Detected	12	Not Detected
2-Propanol	2.0	Not Detected	4.9	Not Detected
Carbon Disulfide	2.0	Not Detected	6.2	Not Detected
3-Chloropropene	2.0	Not Detected	6.3	Not Detected
Methylene Chloride	5.0	Not Detected	17	Not Detected
Methyl tert-butyl ether	2.0	Not Detected	7.2	Not Detected
trans-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected
Hexane	0.50	Not Detected	1.8	Not Detected
1,1-Dichloroethane	0.50	Not Detected	2.0	Not Detected
2-Butanone (Methyl Ethyl Ketone)	2.0	Not Detected	5.9	Not Detected
cis-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected
Tetrahydrofuran	0.50	Not Detected	1.5	Not Detected
Chloroform	0.50	Not Detected	2.4	Not Detected
1,1,1-Trichloroethane	0.50	Not Detected	2.7	Not Detected
Cyclohexane	0.50	Not Detected	1.7	Not Detected
Carbon Tetrachloride	0.50	Not Detected	3.1	Not Detected
2,2,4-Trimethylpentane	0.50	Not Detected	2.3	Not Detected
Benzene	0.50	Not Detected	1.6	Not Detected
1,2-Dichloroethane	0.50	Not Detected	2.0	Not Detected
Heptane	0.50	Not Detected	2.0	Not Detected
Trichloroethene	0.50	Not Detected	2.7	Not Detected
1,2-Dichloropropane	0.50	Not Detected	2.3	Not Detected
1,4-Dioxane	2.0	Not Detected	7.2	Not Detected
Bromodichloromethane	0.50	Not Detected	3.4	Not Detected
cis-1,3-Dichloropropene	0.50	Not Detected	2.3	Not Detected
4-Methyl-2-pentanone	0.50	Not Detected	2.0	Not Detected
Toluene	0.50	Not Detected	1.9	Not Detected
trans-1,3-Dichloropropene	0.50	Not Detected	2.3	Not Detected
1,1,2-Trichloroethane	0.50	Not Detected	2.3	Not Detected
	0.50		3.4	
Tetrachloroethene 2-Hexanone	2.0	Not Detected Not Detected	3.4 8.2	Not Detected Not Detected

Client Sample ID: Lab Blank Lab ID#: 1706371A-08A EPA METHOD TO-15 GC/MS FULL SCAN

٦

File Name: Dil. Factor:	17062105 1.00		of Collection: NA of Analysis: 6/21	/17 11:14 AM
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	0.50	Not Detected	4.2	Not Detected
1,2-Dibromoethane (EDB)	0.50	Not Detected	3.8	Not Detected
Chlorobenzene	0.50	Not Detected	2.3	Not Detected
Ethyl Benzene	0.50	Not Detected	2.2	Not Detected
m,p-Xylene	0.50	Not Detected	2.2	Not Detected
o-Xylene	0.50	Not Detected	2.2	Not Detected
Styrene	0.50	Not Detected	2.1	Not Detected
Bromoform	0.50	Not Detected	5.2	Not Detected
Cumene	0.50	Not Detected	2.4	Not Detected
1,1,2,2-Tetrachloroethane	0.50	Not Detected	3.4	Not Detected
Propylbenzene	0.50	Not Detected	2.4	Not Detected
4-Ethyltoluene	0.50	Not Detected	2.4	Not Detected
1,3,5-Trimethylbenzene	0.50	Not Detected	2.4	Not Detected
1,2,4-Trimethylbenzene	0.50	Not Detected	2.4	Not Detected
1,3-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
1,4-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
alpha-Chlorotoluene	0.50	Not Detected	2.6	Not Detected
1,2-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
1,2,4-Trichlorobenzene	2.0	Not Detected	15	Not Detected
Hexachlorobutadiene	2.0	Not Detected	21	Not Detected
Naphthalene	1.0	Not Detected	5.2	Not Detected

		Method
Surrogates	%Recovery	Limits
Toluene-d8	99	70-130
1,2-Dichloroethane-d4	88	70-130
4-Bromofluorobenzene	103	70-130

Client Sample ID: CCV Lab ID#: 1706371A-09A EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	17062102 1.00	Date of Collection: NA Date of Analysis: 6/21/17 09:27 AM
Compound	c	%Recovery
Freon 12		96
Freon 114		99
Chloromethane		99
Vinyl Chloride		95
1,3-Butadiene		89
Bromomethane		97
Chloroethane		96
Freon 11		95
Ethanol		88
Freon 113		98
1,1-Dichloroethene		94
Acetone		87
2-Propanol		89
Carbon Disulfide		94
3-Chloropropene		93
Methylene Chloride		88
Methyl tert-butyl ether		92
trans-1,2-Dichloroethene		92
Hexane		89
1,1-Dichloroethane		89
2-Butanone (Methyl Ethyl Ketone)		88
cis-1,2-Dichloroethene		91
Tetrahydrofuran		84
Chloroform		92
1,1,1-Trichloroethane		91
Cyclohexane		85
Carbon Tetrachloride		92
2,2,4-Trimethylpentane		87
Benzene		93
1,2-Dichloroethane		90
Heptane		90
Trichloroethene		95
1,2-Dichloropropane		90
1,4-Dioxane		96
Bromodichloromethane		96
cis-1,3-Dichloropropene		94
4-Methyl-2-pentanone		87
Toluene		94
trans-1,3-Dichloropropene		92
1,1,2-Trichloroethane		95
Tetrachloroethene		99
2-Hexanone		85

Client Sample ID: CCV Lab ID#: 1706371A-09A EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	17062102 1.00	Date of Collectic Date of Analysis	n: NA : 6/21/17 09:27 AM
Compound		%Recovery	
Dibromochloromethane		98	
1,2-Dibromoethane (EDB)		96	
Chlorobenzene		94	
Ethyl Benzene		94	
m,p-Xylene		94	
o-Xylene		93	
Styrene		91	
Bromoform		101	
Cumene		92	
1,1,2,2-Tetrachloroethane		92	
Propylbenzene		92	
4-Ethyltoluene		93	
1,3,5-Trimethylbenzene		92	
1,2,4-Trimethylbenzene		93	
1,3-Dichlorobenzene		95	
1,4-Dichlorobenzene		95	
alpha-Chlorotoluene		93	
1,2-Dichlorobenzene		94	
1,2,4-Trichlorobenzene		102	
Hexachlorobutadiene		106	
Naphthalene		90	
-			

		Method
Surrogates	%Recovery	Limits
Toluene-d8	99	70-130
1,2-Dichloroethane-d4	93	70-130
4-Bromofluorobenzene	104	70-130

Client Sample ID: LCS Lab ID#: 1706371A-10A EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	17062103 Date of Collect	
Dil. Factor:	1.00 Date of Analysi	is: 6/21/17 09:53 AM
	0/ D = = = = = = = =	Method
Compound	%Recovery	Limits
Freon 12	98	70-130
Freon 114	106	70-130
Chloromethane	99	70-130
Vinyl Chloride	102	70-130
1,3-Butadiene	91	70-130
Bromomethane	103	70-130
Chloroethane	105	70-130
Freon 11	101	70-130
Ethanol	80	70-130
Freon 113	102	70-130
1,1-Dichloroethene	98	70-130
Acetone	94	70-130
2-Propanol	92	70-130
Carbon Disulfide	102	70-130
3-Chloropropene	103	70-130
Methylene Chloride	92	70-130
Methyl tert-butyl ether	96	70-130
trans-1,2-Dichloroethene	107	70-130
Hexane	96	70-130
1,1-Dichloroethane	94	70-130
2-Butanone (Methyl Ethyl Ketone)	94	70-130
cis-1,2-Dichloroethene	87	70-130
Tetrahydrofuran	88	70-130
Chloroform	96	70-130
1,1,1-Trichloroethane	95	70-130
Cyclohexane	90	70-130
Carbon Tetrachloride	96	70-130
2,2,4-Trimethylpentane	91	70-130
Benzene	97	70-130
1,2-Dichloroethane	93	70-130
Heptane	95	70-130
Trichloroethene	100	70-130
1,2-Dichloropropane	94	70-130
1,4-Dioxane	96	70-130
Bromodichloromethane	100	70-130
cis-1,3-Dichloropropene	105	70-130
4-Methyl-2-pentanone	88	70-130
Toluene	98	70-130
trans-1,3-Dichloropropene	94	70-130
1,1,2-Trichloroethane	99	70-130
Tetrachloroethene	102	70-130
2-Hexanone	85	70-130

Client Sample ID: LCS Lab ID#: 1706371A-10A EPA METHOD TO-15 GC/MS FULL SCAN

-

File Name:	17062103	Date of Collect		
Dil. Factor:	1.00	Date of Analys	ysis: 6/21/17 09:53 AM	
Compound		%Recovery	Method Limits	
Dibromochloromethane		102	70-130	
1,2-Dibromoethane (EDB)		98	70-130	
Chlorobenzene		97	70-130	
Ethyl Benzene		96	70-130	
m,p-Xylene		94	70-130	
o-Xylene		94	70-130	
Styrene		91	70-130	
Bromoform		106	70-130	
Cumene		93	70-130	
1,1,2,2-Tetrachloroethane		93	70-130	
Propylbenzene		94	70-130	
4-Ethyltoluene		97	70-130	
1,3,5-Trimethylbenzene		92	70-130	
1,2,4-Trimethylbenzene		94	70-130	
1,3-Dichlorobenzene		98	70-130	
1,4-Dichlorobenzene		98	70-130	
alpha-Chlorotoluene		95	70-130	
1,2-Dichlorobenzene		97	70-130	
1,2,4-Trichlorobenzene		105	70-130	
Hexachlorobutadiene		110	70-130	
Naphthalene		91	60-140	

		Method
Surrogates	%Recovery	Limits
Toluene-d8	98	70-130
1,2-Dichloroethane-d4	92	70-130
4-Bromofluorobenzene	105	70-130

Client Sample ID: LCSD Lab ID#: 1706371A-10AA EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	17062104 Date of Collect	
Dil. Factor:	1.00 Date of Analys	is: 6/21/17 10:20 AM
		Method
Compound	%Recovery	Limits
Freon 12	98	70-130
Freon 114	105	70-130
Chloromethane	100	70-130
Vinyl Chloride	101	70-130
1,3-Butadiene	89	70-130
Bromomethane	104	70-130
Chloroethane	104	70-130
Freon 11	100	70-130
Ethanol	78	70-130
Freon 113	101	70-130
1,1-Dichloroethene	96	70-130
Acetone	92	70-130
2-Propanol	92	70-130
Carbon Disulfide	101	70-130
3-Chloropropene	103	70-130
Methylene Chloride	91	70-130
Methyl tert-butyl ether	94	70-130
trans-1,2-Dichloroethene	105	70-130
Hexane	94	70-130
1,1-Dichloroethane	93	70-130
2-Butanone (Methyl Ethyl Ketone)	96	70-130
cis-1,2-Dichloroethene	87	70-130
Tetrahydrofuran	88	70-130
Chloroform	95	70-130
1,1,1-Trichloroethane	95	70-130
Cyclohexane	90	70-130
Carbon Tetrachloride	95	70-130
2,2,4-Trimethylpentane	90	70-130
Benzene	98	70-130
1,2-Dichloroethane	94	70-130
Heptane	95	70-130
Trichloroethene	102	70-130
1,2-Dichloropropane	95	70-130
1,2-Dichloropropane	98	70-130
Bromodichloromethane	101	70-130
cis-1,3-Dichloropropene	103	70-130
4-Methyl-2-pentanone	89	70-130
Toluene	98	70-130
trans-1,3-Dichloropropene	96	70-130
1,1,2-Trichloroethane	100	70-130
Tetrachloroethene	103	70-130
2-Hexanone	86	70-130

Client Sample ID: LCSD Lab ID#: 1706371A-10AA EPA METHOD TO-15 GC/MS FULL SCAN

-

File Name: Dil. Factor:	17062104	Date of Collection: NA Date of Analysis: 6/21/17 10:20 AM		
	1.00		Method Limits	
Compound		%Recovery		
Dibromochloromethane		103	70-130	
1,2-Dibromoethane (EDB)		99	70-130	
Chlorobenzene		97	70-130	
Ethyl Benzene		97	70-130	
m,p-Xylene		95	70-130	
o-Xylene		95	70-130	
Styrene		91	70-130	
Bromoform		108	70-130	
Cumene		93	70-130	
1,1,2,2-Tetrachloroethane		94	70-130	
Propylbenzene		94	70-130	
4-Ethyltoluene		98	70-130	
1,3,5-Trimethylbenzene		94	70-130	
1,2,4-Trimethylbenzene		96	70-130	
1,3-Dichlorobenzene		99	70-130	
1,4-Dichlorobenzene		100	70-130	
alpha-Chlorotoluene		96	70-130	
1,2-Dichlorobenzene		99	70-130	
1,2,4-Trichlorobenzene		110	70-130	
Hexachlorobutadiene		115	70-130	
Naphthalene		95	60-140	

		Method
Surrogates	%Recovery	Limits
Toluene-d8	99	70-130
1,2-Dichloroethane-d4	91	70-130
4-Bromofluorobenzene	105	70-130

seurofins Air Toxics

Sample Transportation Notice

Relinquishing signature on this document indicates that sample is being shipped in compliance with 180 BLUE RAVINE ROAD, SUITE B all applicable local, State, Federal, national, and international laws, regulations and ordinances of any kind. Air Toxics Limited assumes no liability with respect to the collection, handling or shipping of these samples. Relinquishing signature also indicates agreement to hold harmless, defend, and indemnify Air Toxics Limited against any claim, demand, or action, of any kind, related to the collection, handling, or shipping of samples, D.O.T. Hotline (800) 467-4922

FOLSOM, CA 95630-4719 (916) 985-1000 FAX (916) 985-1020

-	<u> </u>	collectio	n, handling, or shipping o	of sample	s. D.O.T	F. Hotline (800) 46	7-4922	e		Pa	ge 🔔 of	f	
Project Ma	nager <u>Ross</u>	Tinline / Andre	W Sowege-Ero	<u>*0 </u>	Proje	ct Info:			Around	1			
	V: (Print and Sign)		-		P.O. #				ime:	Press	urized by:		
Company	SVC En	vironmentamail Co	oss to suceny	.com	7				ormal	Date:			
Address	Konton A	the City San Carl	ZState <u>4</u> Zip <u>94</u>	1070	Projec	t# ERAS.	-04 .	P R	ush	Press	urization G	ias:	
	50 218 3766				Projec	t Name "o`` 2	9th Ave, Oaklan		pecify		N ₂ He		_
				Da	ate	Time			·	<u> </u>	sure/Vacu	uum	fC #
Lab I.D.	Field Sa	mple I.D. (Location)	Can #	of Coll	lection	of Collection	Analyses Reques	ted	Initial	Final		Final (psl)	
Ø1Ą-	51-	-]	IL 2837	6/15	117	9=28-	VOC'S by TOIS		29.71	4.95	-		452
02/4	<u></u>	2	11-2819		-/17	1031-1043	including naphth	1	1	23.84			269
034	<i>S</i> V·	-3	162497	6/15	117	1129-	Oxygen, Mothe		29.74				750
OUA_		. ц	112339				CO2 (report		1	5.05			284
OSA	<u></u>	5	8032		117	2:21-	fixed gases in Y.)	29.60	4.65			426
664-	<u>sv-</u>	6	8036	•	-	3:154.28	1		29.47				809
074	<u> </u>	7	ILISOB		117	5:13 - 24			28.75	L		·····	334
				1415	<i></i>	3:14	V		20.73	<i>ω</i> . ₇₂	<		557
	<u>sv-</u>	6 (IPA)	2825	6/15	17	317-319	2propand onl	1					
				01.0			(TOIS 5+20)	7	-28				*****
		Date/Time 3/5	Received by: (signat	ture) D	ate/Tim	1e 315	Mataa	~		3	·		40690
	mill	- 6/16/17	FEDEX	6/1	6/17	7	EDF	Regi	vired				
neiinquisne	ed by: (signature)	Date/Time	Received by: (signat	·		1 100 .	Τ0000α						
Relinguishe	ed by: (signature)	Date/Time	Received by: (signat				250	•	e e				
•			neceived by, (signat	ure) u	ate/Tim	10							
Lab	Shipper Name	Air Bill #	ι Γ	emp (°C)	Condition	Custody Se	als Int	act?	Work C)rder #		
Use	fed GX	÷		NA		Good		No		****	06371		
Only	· · · · · · · · · · · · · · · · · · ·		<u>_</u>		<u>l</u>					4 [00911	<u>+</u>	

6/30/2017 Mr. Ross Tinline SVC Environmental, Inc. 11 Kenton Ave

San Carlos CA 94070

Project Name: "O" 29th Ave, Oakland Project #: ERAS-04 Workorder #: 1706371B

Dear Mr. Ross Tinline

The following report includes the data for the above referenced project for sample(s) received on 6/19/2017 at Air Toxics Ltd.

The data and associated QC analyzed by Modified ASTM D-1946 are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Eurofins Air Toxics Inc. for your air analysis needs. Eurofins Air Toxics Inc. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Rachel Selenis at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Ramites

Rachel Selenis Project Manager

A Eurofins Lancaster Laboratories Company

180 Blue Ravine Road, Suite B Folsom, CA 95630

WORK ORDER #: 1706371B

Work Order Summary

CLIENT:	Mr. Ross Tinline SVC Environmental, Inc. 11 Kenton Ave San Carlos, CA 94070	BILL TO:	Mr. Ross Tinline SVC Environmental, Inc. 11 Kenton Ave San Carlos, CA 94070
PHONE:	650-218-3766	P.O. #	
FAX:		PROJECT #	ERAS-04 "O" 29th Ave, Oakland
DATE RECEIVED:	06/19/2017	CONTACT:	Rachel Selenis
DATE COMPLETED:	06/30/2017		

			RECEIPT	FINAL
FRACTION #	NAME	<u>TEST</u>	VAC./PRES.	PRESSURE
01A	SV-1	Modified ASTM D-1946	4.7 "Hg	15.2 psi
02A	SV-2	Modified ASTM D-1946	23.7 "Hg	15.2 psi
03A	SV-3	Modified ASTM D-1946	22.4 "Hg	15.1 psi
04A	SV-4	Modified ASTM D-1946	6.5 "Hg	14.8 psi
05A	SV-5	Modified ASTM D-1946	5.9 "Hg	15.1 psi
06A	SV-6	Modified ASTM D-1946	8.2 "Hg	15.4 psi
07A	SV-7	Modified ASTM D-1946	20.2 "Hg	14.8 psi
08A	Lab Blank	Modified ASTM D-1946	NA	NA
09A	LCS	Modified ASTM D-1946	NA	NA
09AA	LCSD	Modified ASTM D-1946	NA	NA

CERTIFIED BY:

end layes

06/30/17 DATE:

DECEIDT

FINAT

Technical Director

Certification numbers: AZ Licensure AZ0775, NJ NELAP - CA016, NY NELAP - 11291, TX NELAP - T104704434-16-11, UT NELAP CA0093332016-7, VA NELAP - 8113, WA NELAP - C935 Name of Accreditation Body: NELAP/ORELAP (Oregon Environmental Laboratory Accreditation Program) Accreditation number: CA300005, Effective date: 10/18/2016, Expiration date: 10/17/2017. Eurofins Air Toxics Inc.. certifies that the test results contained in this report meet all requirements of the NELAC standards

> This report shall not be reproduced, except in full, without the written approval of Eurofins Air Toxics, Inc. 180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 95630 (916) 985-1000 . (800) 985-5955 . FAX (916) 985-1020

> > Page 2 of 16

🛟 eurofins

LABORATORY NARRATIVE Modified ASTM D-1946 SVC Environmental, Inc. Workorder# 1706371B

Seven 1 Liter Summa Canister samples were received on June 19, 2017. The laboratory performed analysis via Modified ASTM Method D-1946 for Methane and fixed gases in air using GC/FID or GC/TCD. The method involves direct injection of 1.0 mL of sample.

On the analytical column employed for this analysis, Oxygen coelutes with Argon. The corresponding peak is quantitated as Oxygen.

Method modifications taken to run these samples are summarized in the table below. Specific project requirements may over-ride the ATL modifications.

Requirement	ASTM D-1946	ATL Modifications
Calibration	A single point calibration is performed using a reference standard closely matching the composition of the unknown.	A minimum of 5-point calibration curve is performed. Quantitation is based on average Response Factor.
Reference Standard	The composition of any reference standard must be known to within 0.01 mol % for any component.	The standards used by ATL are blended to a >/= 95% accuracy.
Sample Injection Volume	Components whose concentrations are in excess of 5 % should not be analyzed by using sample volumes greater than 0.5 mL.	The sample container is connected directly to a fixed volume sample loop of 1.0 mL on the GC. Linear range is defined by the calibration curve. Bags are loaded by vacuum.
Normalization	Normalize the mole percent values by multiplying each value by 100 and dividing by the sum of the original values. The sum of the original values should not differ from 100% by more than 1.0%.	Results are not normalized. The sum of the reported values can differ from 100% by as much as 15%, either due to analytical variability or an unusual sample matrix.
Precision	Precision requirements established at each concentration level.	Duplicates should agree within 25% RPD for detections > 5 X's the RL.

Receiving Notes

Samples SV-2, SV-3 and SV-7 were received with significant vacuum remaining in the canister. The residual canister vacuum resulted in elevated reporting limits.

Analytical Notes

There were no analytical discrepancies.

Definition of Data Qualifying Flags

Seven qualifiers may have been used on the data analysis sheets and indicate as follows:

- B Compound present in laboratory blank greater than reporting limit.
- J Estimated value.
- E Exceeds instrument calibration range.
- S Saturated peak.
- Q Exceeds quality control limits.
- U Compound analyzed for but not detected above the detection limit.

M - Reported value may be biased due to apparent matrix interferences.

File extensions may have been used on the data analysis sheets and indicates as follows:

a-File was requantified

b-File was quantified by a second column and detector

r1-File was requantified for the purpose of reissue

Summary of Detected Compounds MODIFIED NATURAL GAS ANALYSIS BY ASTM D-1946

Client Sample ID: SV-1

Lab ID#: 1706371B-01A

Lad ID#: 1/063/1B-01A		
	Rpt. Limit	Amount
Compound	(%)	(%)
Oxygen	0.24	5.6
Carbon Dioxide	0.024	1.9
Client Sample ID: SV-2		
Lab ID#: 1706371B-02A		
	Rpt. Limit	Amount
Compound	(%)	(%)
Oxygen	0.96	17
Methane	0.00096	0.0040
Client Sample ID: SV-3		
Lab ID#: 1706371B-03A		
	Rpt. Limit	Amount
Compound	(%)	(%)
Oxygen	0.80	18
Carbon Dioxide	0.080	1.6
Client Sample ID: SV-4		
Lab ID#: 1706371B-04A		
	Rpt. Limit	Amount
Compound	(%)	(%)
Oxygen	0.26	16
Carbon Dioxide	0.026	4.9
Client Sample ID: SV-5		
Lab ID#: 1706371B-05A		
	Rpt. Limit	Amount
Compound	(%)	(%)
Oxygen	0.25	18
Carbon Dioxide	0.025	2.7

Summary of Detected Compounds MODIFIED NATURAL GAS ANALYSIS BY ASTM D-1946

Client Sample ID: SV-6

Lab ID#: 1706371B-06A

	Rpt. Limit	Amount
Compound	(%)	(%)
Oxygen	0.28	13
Carbon Dioxide	0.028	5.0

Client Sample ID: SV-7

Lab ID#: 1706371B-07A

	Rpt. Limit	Amount
Compound	(%)	(%)
Oxygen	0.61	15
Methane	0.00061	0.0052
Carbon Dioxide	0.061	3.3

Client Sample ID: SV-1 Lab ID#: 1706371B-01A MODIFIED NATURAL GAS ANALYSIS BY ASTM D-1946

File Name: Dil. Factor: Compound	10062117 2.41		ction: 6/15/17 9:36:00 AM vsis: 6/21/17 02:22 PM
		Rpt. Limit (%)	Amount (%)
Oxygen		0.24	5.6
Methane		0.00024	Not Detected
Carbon Dioxide		0.024	1.9

٦

Client Sample ID: SV-2 Lab ID#: 1706371B-02A MODIFIED NATURAL GAS ANALYSIS BY ASTM D-1946

File Name: Dil. Factor: Compound	10062118 9.64		ction: 6/15/17 10:43:00 AM sis: 6/21/17 02:48 PM
		Rpt. Limit (%)	Amount (%)
Oxygen		0.96	17
Methane		0.00096	0.0040
Carbon Dioxide		0.096	Not Detected

٦

Client Sample ID: SV-3 Lab ID#: 1706371B-03A MODIFIED NATURAL GAS ANALYSIS BY ASTM D-1946

٦

File Name: Dil. Factor: Compound	10062119 8.05		ction: 6/15/17 11:42:00 AM /sis: 6/21/17 03:13 PM
		Rpt. Limit (%)	Amount (%)
Oxygen		0.80	18
Methane		0.00080	Not Detected
Carbon Dioxide		0.080	1.6

Client Sample ID: SV-4 Lab ID#: 1706371B-04A MODIFIED NATURAL GAS ANALYSIS BY ASTM D-1946

File Name: Dil. Factor: Compound	10062120 2.56		ction: 6/15/17 1:27:00 AM sis: 6/21/17 04:06 PM
		Rpt. Limit (%)	Amount (%)
Oxygen		0.26	16
Methane		0.00026	Not Detected
Carbon Dioxide		0.026	4.9

٦

Client Sample ID: SV-5 Lab ID#: 1706371B-05A MODIFIED NATURAL GAS ANALYSIS BY ASTM D-1946

File Name: Dil. Factor: Compound	10062121 2.52		ction: 6/15/17 2:33:00 AM vsis: 6/21/17 04:49 PM
		Rpt. Limit (%)	Amount (%)
Oxygen		0.25	18
Methane		0.00025	Not Detected
Carbon Dioxide		0.025	2.7

٦

Client Sample ID: SV-6 Lab ID#: 1706371B-06A MODIFIED NATURAL GAS ANALYSIS BY ASTM D-1946

File Name: Dil. Factor: Compound	10062122 2.81		ction: 6/15/17 4:28:00 AM vsis: 6/21/17 05:13 PM
		Rpt. Limit (%)	Amount (%)
Oxygen		0.28	13
Methane		0.00028	Not Detected
Carbon Dioxide		0.028	5.0

٦

Client Sample ID: SV-7 Lab ID#: 1706371B-07A MODIFIED NATURAL GAS ANALYSIS BY ASTM D-1946

File Name: Dil. Factor: Compound	10062123 6.14		tion: 6/15/17 5:26:00 AM sis: 6/21/17 05:36 PM
		Rpt. Limit (%)	Amount (%)
Oxygen		0.61	15
Methane		0.00061	0.0052
Carbon Dioxide		0.061	3.3

Client Sample ID: Lab Blank Lab ID#: 1706371B-08A MODIFIED NATURAL GAS ANALYSIS BY ASTM D-1946

٦

File Name: Dil. Factor: Compound	10062103 1.00	Date of Colle Date of Analy	ction: NA /sis: 6/21/17 08:31 AM
	Rpt. Limit (%)		Amount (%)
Oxygen		0.10	Not Detected
Methane		0.00010	Not Detected
Carbon Dioxide		0.010	Not Detected

Client Sample ID: LCS Lab ID#: 1706371B-09A MODIFIED NATURAL GAS ANALYSIS BY ASTM D-1946

File Name: Dil. Factor:	10062102 1.00	Date of Collec Date of Analys	tion: NA is: 6/21/17 07:50 AM
Compound		%Recovery	
Oxygen		98	85-115
Methane		104	85-115
Carbon Dioxide		98	85-115

٦

Client Sample ID: LCSD Lab ID#: 1706371B-09AA MODIFIED NATURAL GAS ANALYSIS BY ASTM D-1946

File Name: Dil. Factor:	10062124 1.00	Date of Collec Date of Analys	tion: NA sis: 6/21/17 06:01 PM
Compound		%Recovery	Method Limits
Oxygen		98	85-115
Methane		100	85-115
Carbon Dioxide		99	85-115

struction europins Air Toxics

Sample Transportation Notice

Relinquishing signature on this document indicates that sample is being shipped in compliance with 180 BLUE RAVINE ROAD, SUITE B all applicable local, State, Federal, national, and international laws, regulations and ordinances of any kind. Air Toxics Limited assumes no liability with respect to the collection, handling or shipping of these samples. Relinquishing signature also indicates agreement to hold harmless, defend, and indemnify Air Toxics Limited against any claim, demand, or action, of any kind, related to the collection, handling, or shipping of samples, D.O.T. Hotline (800) 467-4922

FOLSOM, CA 95630-4719 (916) 985-1000 FAX (916) 985-1020

		collectio	n, handling, or shipping c	of samples	s. D.O.T	T. Hotline (800) 46	7-4922	e		Pa	ge of	i	
Project Manager Ross Tinline Andrew Sowege-Erros						Project Info:				Lab Use			
Collected by: (Print and Sign) for 2					P.O. #				Time:		Pressurized by:		
Company_SVC Environmentamail ross to suceny.com						7			Ma Normal		Date:		
Address 11 Kenton Are City San Corlos State CA Zip 94070									Rush		Pressurization Gas:		
Phone _ 6	50 218 3766	Fax			Projec	t Name "0`` 2	9th Ave, Oaklan		pecify		N ₂ He		•
	5 .110	• • • • • • • •		Dat					ter Pressure/Vacuum		um 🗲	fc #	
Lab I.D.	Field Sample I.D. (Location)		Can #	of Colle		of Collection	Analyses Reques	sted	Initial	Final Receipt Fin		Final (psi)	al
OVA	51-1		IL 2837	6/15/17		9=28-36	VOC'S by TOIS	 	29.71	4.95	-		52
02/+	<u></u>	2	12 2819	6/15	17	1031-1043	including naphth	1	1	23.84		26	
034	<i>S</i> V	-3	162497	6/15	4	1129-	Oxygen, Mothe		29.74				
044	SV-	. ц	162339	6/15			CO2 (report			5.05			84
054	<u> 5</u> y-	/	8032	6/15	117	2:21-2:33	fixed gases in Y.	>	29.60	4.65			26
664	<u> </u>	6	8036			3:15	inter games in s.		-			······	09
074	SV-	7	ILISOB	6/15	1,-	5:13 5:24			29.47	-		33	•
				4154		5:24	V		28.75	20.42	<u> </u>		7
	sv-	6 (IPA)	2825	6/15/	1,-	317-319	2000	1					
			~0 & J	61.51	1		2propond onl (TO15 5+20)		-28				
		Date/Time 3/5	Received by: (signat	ure) Da	ate/Tim	1e 315	- Notoo:		f	-5			169 0
	mill	- 6/16/17	FEDEX	6/16	5/17	7	EDF	Reg	vired				
Relinquishe	ed by: (signature)	Date/Time	Received by: (signat	·			T00000					ł	
Relinguishe	ed by: (signature)	Received by: (signati		<u>206/14/17 1250</u> ate/Time			. 1						
		Date/Time	i leceived by, (signat	ure) Da	ate/ I m	le							
Lab	Shipper Name	Air Bill #		emp (°C)	Condition	Custody Se	als Int	act?	Work C)rder #		
Use Only	fed GX		NA	60001			No No		· · · · · · · · · · · · · · · · · · ·	06371			
	· · · · · ·				1					A /	00911	*	