LIMITED PHASE II ENVIRONMENTAL SITE SAMPLING REPORT

927 Main Street Pleasanton California

FOR

Equity Enterprises 4460 Black Avenue, Suite L Pleasanton, CA 94566

December 2, 2015 15-ENV4372

December 2, 2015 15-ENV4372

Equity Enterprises 4460 Black Avenue, Suite L Pleasanton, CA 94566

Attention: Mr. Brad Hirst

Subject: Limited Phase II Environmental Site Sampling Report

927 Main Street

Pleasanton, California 94566

Dear Mr. Hirst:

Basics Environmental, Inc. (Basics) is pleased to present the results of a Limited Phase II Environmental Site Sampling Report for the site located at 927 Main Street in Pleasanton, California. This Limited Phase II Environmental Site Sampling Report is based on the information compiled by Basics' subconsultant Ms. Lita Freeman, Professional Geologist #7368 with Environmental Risk Assessors.

Based on two shallow soil and two ground water samples collected, nickel and total chromium were detected in the soil exceeding their respective December 2013 San Francisco Bay Regional Water Quality Control Board (RWQCB) Environmental Screening Level (ESL) values for commercial/industrial land use. In addition, total petroleum hydrocarbons as gasoline, diesel and Stoddard solvent were detected in the ground water exceeding their respective ESL values for commercial/industrial land use. Various volatile organic compounds (VOCs) were also detected in the ground water however below their respective ESL values for commercial/industrial land use.

The detection of nickel and total chromium in the soil and petroleum hydrocarbons as gasoline, diesel and Stoddard solvent in groundwater samples indicates that a release has occurred on site with reported concentrations above applicable ESLs. In accordance with the requirements of the permit issued by the Alameda County Public Works Agency (ACPWA), a copy of this report must be submitted to the ACPWA and Alameda County Environmental Health Services Agency (ACEHSA).

Should you have any questions regarding this report, please contact the undersigned.

Sincerely,

Basics Environmental, Inc.

Donavan G. Tom, M.B.A., E.P. Principal Consultant

PROFESSIONAL CERTIFICATION

LIMITED PHASE II ENVIRONMENTAL SITE SAMPLING REPORT

927 Main Street
Pleasanton, California
For
Equity Enterprises
15-ENV4372
December 2, 2015

This report has been prepared by the staff of Basics Environmental, Inc. (Basics) under the professional supervision of an "Environmental Professional" as defined by the U.S. Environmental Protection Agency's Final Rule. The findings, interpretations of data, recommendations, specifications or professional opinions are presented within the limits prescribed by available information at the time the report was prepared, in accordance with generally accepted professional environmental practice and within the requirements by the Client. There is no other warranty, either expressed or implied.

The data and findings of this report are based on the data and information obtained from the agreed upon scope of work between Basics and the Client. Because contamination is not necessarily evenly distributed across the property's soils and ground water, it can easily remain undetected and geology may control the subsurface distribution of contamination. Additional scope of services including geologic interpretation (at greater cost) may or may not disclose information which may significantly modify the findings of this report. We accept no liability on completeness or accuracy of the information presented and or provided to us, or any conclusions and decisions which may be made by the Client or others regarding the subject site.

This report was prepared solely for the benefit of Basic's Client. Basics consents to the release of this report to third parties involved in the evaluation of the property for which the report was prepared, including without limitation, lenders, title companies, public institutions, attorneys, and other consultants. However, any use of or reliance upon this report shall be solely at the risk of such party and without legal recourse against Basics, or its subcontractors, affiliates, or their respective employees, officers, or directors, regardless of whether the action in which recovery of damage is sought is based upon contract, tort (including the sole, concurrent or other negligence and strict liability of Basics), statute or otherwise. This report shall not be used or relied upon by a party that does not agree to be bound by the above statements.

Donavan G. Tom, E.P. Principal Consultant

Lita D. Freeman, P.G. #7368 Associate Consultant (Expires 12/31/15)

Lita D. Freeman

LITA D. FREEMAN

LIMITED PHASE II 1 15-ENV4372

Table of Contents

1.	EXECU	JIIVE S	SUMMARY	1
	1.1	Backgı	round	1
	1.2	Investi	gation	1
	1.3	Finding	gs	2
	1.4	Conclu	usions	2
	1.5	Recom	nmendations	2
2.	INTRO	DUCTIO	ON	2
	2.1	Site De	escription	3
	2.2	Backgı	round	3
	2.3	Object	ives and Scope of Work	3
	2.4	Limitat	ions and Exceptions	4
	2.5	Specia	ll Terms and Conditions	4
	2.6	User R	Reliance	4
	2.7	Qualific	cations	4
3.	FIELD	INVEST	FIGATION	5
	3.1	Pre-Fie	eld Activities	5
		3.1.1	Health and Safety	5
		3.1.2	Permitting	5
	3.2	Field A	activities	5
		3.2.1	Utility Clearance	5
		3.2.2	Drilling and Sampling	5
			3.2.2.1 Soil Sampling	6
			3.2.2.2 Groundwater Sampling	6
		3.2.3	Borehole Abandonment and Investigation-Derived Waste Handling	7
4.	ANALY	/SIS, RI	ESULTS, AND EVALUATION	7
	4.1	Soil Ar	nalysis and Results	7
	4.2	Ground	dwater Analysis and Results	7
	4.3	EVALU	JATION	8
		4.3.1	Soil Results Evaluation	8
		4.3.2	Groundwater Results Evaluation	8

Table of Contents

5.	CONCLUSIONS	9
6.	RECOMMENDATIONS	10
7.	REFERENCES	10

Tables

- 1 General Site Information (*embedded in text*)
- 2 Soil and Groundwater Samples Organics Analytical Summary
- 3 Soil and Groundwater Samples Inorganics Analytical Summary

Figures

- 1 Site Location Map
- 2 Site Plan

Appendices

- A Site Photographs
- B Soil Boring Permit
- C Soil Boring Logs
- D Laboratory Analytical Report and Chain-of-Custody Documentation

1. EXECUTIVE SUMMARY

Environmental Risk Assessors (ERA) is pleased to present this Limited Phase II Environmental Site Assessment (ESA) Report (the "Report") for the property located at 927 Main Street, Pleasanton, Alameda County, California (the "Site"; Figure 1) to Basics Environmental, Inc. (Basics Environmental). The Site is currently developed with one commercial building occupied by two restaurants (Figure 2).

1.1 Background

The Site is developed with one building occupied by a Subway sandwich shop and a Hanadi Sushi restaurant. According to information obtained by Basics Environmental, the Site was occupied by an auto repair shop from at least the late 1930s until the late 1960s. In addition, a gasoline service station was located on site from the late 1930s until at least the early 1940s/early 1950s. No specific information on former operations (i.e., capacity of former underground storage tanks [USTs], type and locations of USTs, pump island locations, auto maintenance areas, and use of hazardous materials, etc.) was obtained by Basics Environmental from the local regulatory agency files reviewed during the Phase I ESA. In addition, no information regarding the removal of the USTs or associated sampling was contained within the local regulatory agency files reviewed by Basics Environmental. The approximate footprints of the former gasoline service station building and the canopy over the fuel dispensers are shown on Figure 2.

According to information obtained by Basics Environmental from subsurface investigation reports for the Unocal Service Station located at 1024 Main Street (approximately 150 feet northeast of the Site), the depths to water in the groundwater monitoring wells installed at this service station vary depending on the screen intervals of the wells. In the clay/silt unit, the depth to water can vary but the depth to water in the sand/gravel unit is approximately 37 to 44 feet below ground surface (bgs). Depth-to-water measurements obtained from wells screened in the sand/gravel unit during the February 2009 groundwater monitoring event indicated that groundwater flow direction was to the east-northeast.

1.2 Investigation

The objective of the limited Phase II ESA was to evaluate current subsurface conditions in select on-site areas. To meet this objective, soil and groundwater samples were collected from sampling locations for analysis with comparison of the analytical results to established screening levels. The investigation consisted of the following:

- Advancing borings at two sampling locations as shown on the Site Plan, Figure 2: boring SB-1 was advanced to a depth of 40 feet bgs immediately north of the building and boring SB-2 was advanced to a depth of 36 feet bgs immediately south of the building;
- Collecting soil samples from each boring;
- Collecting groundwater samples from each boring;
- Submitting soil and groundwater samples for total petroleum hydrocarbons (TPH) quantified as gasoline (TPHg), TPH quantified as diesel (TPHd), and TPH quantified as Stoddard solvent (TPHss); volatile organic compounds (VOCs); and Leaking Underground Fuel Tank (LUFT) Manual 5 metals (cadmium, chromium, lead, nickel, and zinc) analysis; and
- Preparing this report presenting the results of the Limited Phase II ESA.

1.3 Findings

Petroleum hydrocarbons were not detected in the two soil samples analyzed with the exception of TPHd detected in sample SB-2-2. The concentration of TPHd (16 milligrams per kilogram [mg/kg]) in sample SB-2-2 was below the ESL (110 mg/kg) for soil at commercial/industrial land use (SFBRWQCB 2013a).

Petroleum hydrocarbons were detected in the groundwater sample from each boring: TPHd was reported in sample SB-1-W at a concentration of 120 micrograms per liter (μ g/L), and TPHg (1,400 μ g/L), TPHd (1,000 μ g/L), and TPHss (1,400 μ g/L) were reported in the groundwater sample SB-2-W. These concentrations are above the Environmental Screening Level (ESL) of 100 μ g/L for each petroleum hydrocarbon as established by the California Environmental Protection Agency, San Francisco Bay Regional Water Quality Control Board for groundwater that is a current or potential drinking water resource (SFBRWQCB 2013b).

VOCs were not detected in either soil sample at concentrations at or above their respective laboratory reporting limit and were not detected in either groundwater sample at concentrations above the applicable ESLs (SFBRWQCB 2013b). The VOC chloroform was detected in both groundwater samples; however, this compound may be a laboratory contaminant as it is commonly used in analytical laboratories.

Various metals were detected in soil and groundwater samples. Nickel was detected in soil sample SB-1-5.5 at a concentration of 240 mg/kg which is above the ESL of 150 mg/kg. However, this concentration is within natural background levels of up to 272 mg/kg for nickel in the site vicinity (Lawrence Berkeley National Laboratory 2009). The reported concentrations of the remaining metals were below their respective laboratory reporting limit or were below the applicable ESLs (SFBRWQCB 2013a).

1.4 Conclusions

The results of this Limited Phase II ESA indicated that petroleum hydrocarbons are present in soil and groundwater samples collected from the Site. The concentrations detected in soil were below applicable ESLs while the concentrations detected in groundwater were above applicable ESLs.

1.5 Recommendations

The detection of petroleum hydrocarbons in soil and groundwater samples indicates that a release has occurred on site with reported concentrations in groundwater above applicable ESLs. In accordance with the requirements of the permit issued by Zone 7 Water Agency (Zone 7), a copy of this report must be submitted to Zone 7.

2. INTRODUCTION

ERA is pleased to present this Limited Phase II ESA Report for the property located at 927 Main Street, Pleasanton, Alameda County, California (Figure 1) to Basics Environmental. The Site is currently developed with one commercial building occupied by restaurants (Figure 2).

The findings and conclusions presented in this Report are based on the results of a limited assessment that included collecting and analyzing soil and groundwater samples from the Site and evaluating the data obtained during the field investigation and provided by the analytical laboratory.

2.1 Site Description

Basics Environmental requested that ERA conduct a limited Phase II ESA of the Site to facilitate their evaluation of the Site and current subsurface conditions. Site-specific information is presented in Table 1.

Table 1. General Site Information										
Project Name: Main Street Property	Current Development: One commercial building occupied by two restaurants									
Address: 927 Main Street Pleasanton, Alameda County	Occupants: Subway and Hanadi Sushi									
Location: Western side of Main Street										

2.2 Background

The Site consists of one parcel of land identified by the Alameda County Assessor's office as Assessor Parcel Number (APN) 946-3370-22.

The Site is developed with one building occupied by a Subway sandwich shop and a Hanadi Sushi restaurant. According to information obtained by Basics Environmental, the Site was occupied by an auto repair shop from at least the late 1930s until the late 1960s. In addition, a gasoline service station was located on site from the late 1930s until at least the early 1940s/early 1950s. No specific information on former operations (i.e., capacity of former USTs, type and locations of USTs, pump island locations, auto maintenance areas, and use of hazardous materials, etc.) was obtained by Basics Environmental from the local regulatory agency files reviewed during the Phase I ESA. In addition, no information regarding the removal of the USTs or associated sampling was contained within the local regulatory agency files reviewed by Basics Environmental. The approximate footprints of the former gasoline service station building and the canopy over the fuel dispensers are shown on Figure 2.

According to information obtained by Basics Environmental from subsurface investigation reports for the Unocal Service Station located at 1024 Main Street (approximately 150 feet northeast of the Site), the depths to water in the groundwater monitoring wells installed at this service station vary depending on the screen intervals of the wells. In the clay/silt unit, the depth to water can vary but the depth to water in the sand/gravel unit is approximately 37 to 44 feet bgs. Depth-to-water measurements obtained from wells screened in the sand/gravel unit during the February 2009 groundwater monitoring event indicated that groundwater flow direction was to the east-northeast.

2.3 Objectives and Scope of Work

The objective of the limited Phase II ESA was to evaluate current subsurface conditions in select on-site areas. To meet this objective, soil and groundwater samples were collected from sampling locations for analysis with comparison of the analytical results to established screening levels.

The investigation consisted of the following:

- Advancing borings at two sampling locations as shown on the Site Plan, Figure 2: boring SB-1 was advanced to a depth of 40 feet bgs immediately north of the building and boring SB-2 was advanced to a depth of 36 feet bgs immediately south of the building;
- Collecting soil samples from each boring;

- Collecting groundwater samples from each boring;
- Submitting soil and groundwater samples for TPHg, TPHd, and TPHss; VOCs; and LUFT Manual 5 metals (cadmium, chromium, lead, nickel, and zinc) analysis; and
- Preparing this report presenting the results of the Limited Phase II ESA.

2.4 Limitations and Exceptions

The opinions and recommendations presented in this Report are based upon the scope of services, information obtained through the performance of the services, and the schedule as agreed upon by ERA and the party for whom this report was originally prepared. This Report is an instrument of professional service and was prepared in accordance with the generally accepted standards and level of skill and care under similar conditions and circumstances established by the environmental consulting industry. No representation, warranty, or guarantee, express or implied, is intended or given. To the extent that ERA relied upon any information prepared by other parties not under contract to ERA, ERA makes no representation as to the accuracy or completeness of such information.

This Report is expressly for the sole and exclusive use of the parties for which this Report was originally prepared for a particular purpose. Only the parties for which this Report was originally prepared and/or other specifically named parties, may make use of and rely upon the information in this Report. Reuse of this Report or any portion thereof for other than its intended purpose, or if modified, or if used by third parties without proper authorization, shall be at the user's sole risk.

The findings presented in this Report apply solely to site conditions existing at the time when ERA's assessment was performed. It must be recognized, however, that a Limited Phase II ESA is conducted for the purpose of evaluating the potential for contamination through limited investigative activities and in no way represents a conclusive or complete site characterization. Conditions in other parts of the project site may vary from those at the locations where data were collected. ERA's ability to interpret investigation results is related to the availability of the data and the extent of the investigation activities. Therefore, 100 percent confidence in limited Phase II ESA conclusions cannot reasonably be achieved.

Nothing contained in this document shall relieve any other party of its responsibility to abide by contract documents and applicable laws, codes, regulations, or standards.

2.5 Special Terms and Conditions

The scope of work for this Limited Phase II ESA was presented in ERA's proposal dated November 2, 2015. The scope of work for this assessment did not include tasks not specifically noted in the proposal.

2.6 User Reliance

This Report is for the exclusive use of the parties for which it was prepared, their agents, and assignees, and for such other parties as ERA agrees may rely on the Report. Use of this Report by any other party shall be at such party's sole risk.

2.7 Qualifications

A summary of the ERA personnel who worked on this project follows:

 Ms. Lita Freeman, California Professional Geologist and California Asbestos Consultant, has over 25 years of experience providing site assessment services. This has included

evaluating potential property impacts from historical on- and off-site operations, conducting subsurface investigations, and implementing site remediation plans. Ms. Freeman works with property owners, attorneys, and regulators to mitigate and resolve environmental issues.

3. FIELD INVESTIGATION

This Limited Phase II ESA was conducted to evaluate current conditions by collecting soil and groundwater samples from select on-site locations for analysis with comparison of the analytical results to established screening levels. The scope of work and results of this Limited Phase II ESA are presented below.

Photographs of the Site and site investigation are included in Appendix A.

3.1 Pre-Field Activities

Before field activities associated with the proposed assessment were conducted, the pre-field tasks described below were completed.

3.1.1 Health and Safety

ERA prepared a site-specific *Health and Safety Plan* for the scope of work as required by the Occupational Health and Safety Administration (OSHA) Standard "Hazardous Waste Operations and Emergency Response" guidelines (29 CFR 1910.120). The document was reviewed and signed by ERA personnel and subcontractors performing work at the Site.

3.1.2 Permitting

ERA obtained soil boring permits from Zone 7 prior to commencing intrusive field activities. ERA coordinated field activities with the Zone 7 and scheduled a Zone 7 inspector to document compliance with permit requirements. A copy of the approved permit is presented in Appendix B.

3.2 Field Activities

3.2.1 Utility Clearance

Before subsurface work was conducted at the Site, the soil boring locations were cleared for underground utilities by notifying Underground Services Alert North (USA North) at least 48 hours prior to intrusive field activities. In addition, Cruz Brothers, a private utility locating contractor, cleared each proposed sampling location prior to intrusive field activities. Proposed sampling locations were adjusted, as necessary, to maintain a distance of at least 3 feet from identified underground utilities/structures.

3.2.2 Drilling and Sampling

On November 13, 2015, ERA personnel provided oversight of a field crew from Cascade Drilling, L.P. (Cascade) of Richmond, California, a California licensed driller, during advancement of the borings using a Geoprobe direct-push drilling rig. A total of two soil borings (SB-1 and SB-2) were advanced at select on-site locations to collect soil and groundwater samples (Figure 2). The boring locations were selected based on available historical information and site observations, as follows:

 Boring SB-1 was placed immediately north of the on-site building and was drilled to a depth of 40 feet bgs;

 Boring SB-2 was placed immediately south of the on-site building and was drilled to a depth of 36 feet bgs.

The sampling program consisted of collecting soil and groundwater samples from each boring.

Down-hole drilling and sampling equipment was washed in a tri-sodium phosphate solution following the completion of sample collection activities for each soil boring.

Soil sampling was conducted during drilling using new acetate sleeves. Soil samples were screened in the field with a photoionization detector (PID) and observed for evidence of chemical staining. The soil screening procedures involved measuring approximately 30 grams of soil from a relatively undisturbed soil sample and placing this sample in a sealed zip-lock bag. The container was warmed in the sun for approximately 20 minutes, then the head space within the bag was tested for total organic vapor, measured in parts per million volume (ppmv). Elevated (above background) PID measurements were noted during sampling with the highest PID reading 376 ppmv) in soil from boring SB-2 at a depth of 30 feet bgs. Evidence of impacted soil (i.e., staining, odors, sheen, etc.) was noted during sampling: green-colored soil with a petroleum hydrocarbon odor was noted in boring SB-2 from a depth of 30 feet bgs to 34 feet bgs. The PID results were recorded on the field boring logs which are included in Appendix C.

Boring SB-1, located north of the on-site building, appeared to be advanced within native soil, while Boring SB-2, located south of the on-site building, appeared to be advanced within fill material (silty clay with gravel and sandy gravel) that extended from a depth of approximately 1 foot bgs (below the asphalt pavement and baserock) to a depth of approximately 20 feet bgs. Silty clay was present from a depth of approximately 20 feet bgs to the maximum depth explored of 36 feet bgs in boring SB-2, as noted above. Based on Basic Environmental's review of historical maps, the USTs associated with the former on-site gasoline service station may have been located in this area.

3.2.2.1 Soil Sampling

A track-mounted direct-push unit was used to drive a steel probe lined with acetate tubes into the ground to the desired depth. The soil samples were retained in the acetate tubes, capped with Teflon squares and plastic end caps, labeled with the boring identification number and the bottom depth (e.g., 2 feet bgs) of the sampling interval, and sealed in zip-lock bags.

The soil samples were placed on ice and transported under chain-of-custody protocols to McCampbell Analytical, Inc. (McCampbell Analytical) of Pittsburg, California, the project laboratory, by a laboratory-provided courier.

3.2.2.2 Groundwater Sampling

New polyvinyl chloride (PVC) casing (with slotted casing in the lower 10 feet and blank casing from above the slotted casing to the ground surface) was placed in each boring. Groundwater was allowed to flow into the casing at each location for approximately one hour. Groundwater was not purged prior to sampling because of the anticipated limited quantity of water in each boring. Groundwater samples were collected in laboratory-provided containers appropriate for the requested analysis.

The groundwater samples containers were labeled with the boring identification number, placed on ice, and transported under chain-of-custody protocols to the project laboratory by a laboratory-provided courier.

3.2.3 Borehole Abandonment and Investigation-Derived Waste Handling

After the sampling activities were complete, each boring was backfilled with cement grout and bentonite in accordance with the Zone 7 permit requirements and the Zone 7 inspector's directions.

Investigation-derived waste (IDW), which was limited to soil cuttings, produced during sampling activities were containerized in one 55-gallon container and left on the Site pending receipt of analytical results. Appropriate off-site disposal options will be presented to the client after evaluation of the analytical results.

4. ANALYSIS, RESULTS, AND EVALUATION

The soil and groundwater samples were submitted to McCampbell Analytical, a laboratory certified by the State of California to perform the requested analyses. The analytical methods, results, and evaluation of this Limited Phase II ESA are presented below. Copies of the laboratory analytical report and chain-of-custody documentation are presented in Appendix D.

4.1 Soil Analysis and Results

The soil samples collected from borings SB-1 (5.0 to 5.5 feet depth interval) and SB-2 (1.5 to 2 feet depth interval) were submitted for analyses as follows:

- TPHg, TPHd, and TPHss using U.S. Environmental Protection Agency (U.S. EPA) SW8015B without silica gel cleanup;
- VOCs using U.S. EPA Method 8260B; and
- LUFT 5 metals (cadmium, chromium, lead, nickel, and zinc).

Petroleum hydrocarbons were not detected in the soil samples at concentrations at or above their respective laboratory reporting limit with the exception of TPHd. TPHd was reported in sample SB-2-2 at a concentration of 16 mg/kg (see Table 2).

VOCs were not detected in the soil samples at concentrations at or above their respective laboratory reporting limit (see McCampbell Analytical report in Appendix D).

Cadmium, chromium, lead, nickel, and/or zinc were detected in each of the two soil samples (Table 3). Cadmium was detected in sample SB-2-2 at a concentration of 0.36 mg/kg. The remaining metals were detected in both samples at the following maximum concentrations: chromium (up to 260 mg/kg), lead (up to 61 mg/kg), nickel (up to 240 mg/kg), and zinc (up to 110 mg/kg).

The analytical results for the compounds detected in the soil samples are presented in Tables 2 and 3 and discussed below in Section 4.3.

4.2 Groundwater Analysis and Results

The groundwater samples were submitted for analyses as follows:

- TPHg, TPHd, and TPHss using U.S. EPA SW8015B without silica gel cleanup;
- VOCs using U.S. EPA Method 8260B; and
- LUFT 5 metals (cadmium, chromium, lead, nickel, and zinc).

Petroleum hydrocarbons were not detected in the groundwater sample (SB-1-W) from boring SB-1 at concentrations at or above their respective laboratory reporting limit with the exception of

TPHd detected at a concentration of 120 μ g/L. TPHg (at a concentration of 1,400 μ g/L), TPHd (at a concentration of 1,000 μ g/L), and TPHss (at a concentration of 1,400 μ g/L) were reported in the groundwater sample (SB-2-W) from boring SB-2 (Table 2).

The VOCs bromodichloromethane and chloroform were detected in the groundwater sample (SB-1-W) from boring SB-1. Various VOCs, including ethylbenzene and xylenes, were detected in the groundwater sample (SB-2-W) from boring SB-2 at concentrations (Table 2). This compound may be a laboratory contaminant as it is commonly used in analytical laboratories.

Groundwater samples were collected in unpreserved containers and filtered at the laboratory prior to metals analysis. Cadmium, lead, and zinc were not detected in the two groundwater samples (Table 3). Chromium was detected in sample SB-1-W at a concentration of 0.63 μ g/L and nickel was detected in samples SB-1-W and SB-2-W at concentrations of 1.8 μ g/L and 4.8 μ g/L, respectively.

The analytical results for the compounds detected in the groundwater samples are presented in Tables 2 and 3 and discussed below in Section 4.3.

4.3 EVALUATION

The concentrations of compounds of concern detected in soil samples were compared to ESLs for shallow soil in area of commercial/industrial land use where groundwater is a current or potential drinking water resource as established by the SFBRWQCB (SFBRWQCB 2013a).

The concentrations of compounds of concern detected in groundwater samples were compared to the ESLs for groundwater where groundwater is a current or potential drinking water resource (SFBRWQCB 2013b).

4.3.1 Soil Results Evaluation

Comparison of the analytical results to the ESLs for soil at commercial/industrial land use (SFBRWQCB 2013a) indicate that the concentrations of detected compounds (petroleum hydrocarbons, VOCs, and metals) were below their respective ESLs with the exception of nickel in sample SB-1-5.5 (Tables 2 and 3).

Nickel was detected in sample SB-1-5.5 at a concentration of 240 mg/kg which is above the ESL of 150 mg/kg (Table 3). Regional background levels for nickel have been reported at 55 mg/kg (Shacklette and Boerngen 1984) with the 95th and 99th percentile estimates established as 164 mg/kg and 272 mg/kg, respectively, during a Lawrence Berkeley National Laboratory study (Lawrence Berkeley National Laboratory 2009).

As noted above in Section 3.2.2, native soil was observed in boring SB-1 from below the asphalt and baserock to the total depth of this boring, while what appeared to be fill material was observed in boring SB-2 from below the asphalt and baserock to a depth of approximately 20 feet bgs. The differences in chromium, lead, nickel, and zinc concentrations between soil sample SB-1-5.5 and SB-2-2 would likely be related to the composition of native soil versus fill material.

4.3.2 Groundwater Results Evaluation

Comparison of the analytical results to the ESLs for groundwater where groundwater is a current or potential drinking water resource (SFBRWQCB 2013b) indicated that the concentrations of TPHd (120 μ g/L) in the groundwater sample SB-1-W and TPHg (1,400 μ g/L), TPHd (1,000 μ g/L), and

TPHss (1,400 μ g/L) in the groundwater sample SB-2-W were above the ESL of 100 μ g/L for each of these compounds (Table 2).

The VOC concentrations detected in both groundwater samples were below the ESLs for groundwater where groundwater is a current or potential drinking water resource (SFBRWQCB 2013b), as shown in Table 2.

Comparison of the analytical results for metals to the ESLs for groundwater where groundwater is a current or potential drinking water resource (SFBRWQCB 2013b) indicated that the metals concentrations reported for samples SB-1-W and SB-2-W were below their respective ESLs (Table 3).

5. CONCLUSIONS

The results of this Limited Phase II ESA indicate that petroleum hydrocarbons, various metals, and VOCs, are present in soil and groundwater samples collected from the Site.

Review of the analytical results indicated the following compounds were not detected in the noted samples at concentrations at or above their respective laboratory reporting limits:

- petroleum hydrocarbons in soil sample SB-1-5.5;
- TPHg and TPHss in soil sample SB-2-2;
- TPHg and TPHss in groundwater sample SB-1-W;
- VOCs in soil samples from both borings;
- Cadmium in soil sample SB-1-5.5;
- Cadmium, lead, and zinc in groundwater samples SB-1-W and SB-2-W; and
- Chromium in groundwater sample SB-2-W.

Review of the analytical results indicated the following compounds were detected in the noted samples at concentrations below applicable ESLs:

- TPHd detected in soil sample SB-2-2;
- VOCs in groundwater samples from both borings (chloroform reported in the groundwater samples may be a laboratory contaminant as it is commonly used in analytical laboratories);
- cadmium in soil sample SB-2-2;
- chromium, lead, and zinc in soil samples from both borings;
- nickel in soil sample SB-2-2;
- chromium and nickel in groundwater sample SB-1-W; and
- nickel in groundwater sample SB-2-W.

Nickel was detected in soil sample SB-1-5.5 at a concentration of 240 mg/kg, which is above the ESL of 150 mg/kg. However, this concentration is within natural background levels of up to 272 mg/kg for nickel in the site vicinity (Lawrence Berkeley National Laboratory 2009).

The concentrations of TPHd (120 μ g/L) in groundwater sample SB-1-W and TPHg (1,400 μ g/L), TPHd (1,000 μ g/L), and TPHss (1,400 μ g/L) in groundwater sample SB-2-W were above the ESL of 100 μ g/L for each of these compounds.

6. RECOMMENDATIONS

The detection of petroleum hydrocarbons in soil and groundwater samples indicates that a release has occurred on site with reported concentrations above applicable ESLs in groundwater. In accordance with the requirements of the permit issued by Zone 7, a copy of this report must be submitted to Zone 7.

7. REFERENCES

- American Society for Testing and Materials (ASTM). 2010. Standard Guide for Vapor Encroachment Screening on Property Involved in Real Estate Transactions. June.
- California Environmental Protection Agency, San Francisco Bay Regional Water Quality Control Board (SFBRWQCB). 2013a. Environmental Screening Levels, Table A-2: Shallow Soil Screening Levels (<3m bgs) Commercial/Industrial Land Use (Groundwater is a Current or Potential Drinking Water Resource), Interim Final. December.
- ---. 2013b. *Environmental Screening Levels, Table F-1a:* Groundwater Screening Levels (groundwater is a current or potential drinking water resource), Interim Final, December.
- Lawrence Berkeley National Laboratory. 2009. *Analysis of Background Distributions of Metals in the Soil at Lawrence Berkeley National Laboratory*. June 2002, rev. April 2009.
- Shacklette, H.T., and J.G. Boerngen. 1984. Element Concentrations in Soils and Other Surficial Materials, Conterminous United States, U.S. Geological Survey Professional Paper 1270.

SIGNATURE OF ENVIRONMENTAL PROFESSIONAL

Report Prepared By:

November 27, 2015

Lita D. Freeman, P.G.

Lota D. Freeman

Date

Principal Geologist

California Professional Geologist No. 7368

^{*} A professional geologist's certification of conditions comprises a declaration of his or her professional judgment. It does not constitute a warranty or guarantee, expressed or implied, nor does it relieve any other party of its responsibility to abide by contract documents, applicable codes, standards, regulations, and ordinances.

Table 2 Soil and Groundwater Samples Organics Analytical Summary

Main Street Property 927 Main Street Pleasanton, California

On-Site Location/ Comments	Sample ID	Sample Depth (feet bgs) ¹	Matrix	Petrole	eum Hydroc	VOCs ³											
	Analytes			трнв³	ТРНа³	TPHSS³	Bromodichloro- methane	n-Butyl benzene	sec-Butyl benzene	Chloroform	Ethylbenzene	Isopropylbenzene	Naphthalene	n-Propyl benzene	1,2,4- Trimethylbenzene	1,3,5- Trimethylbenzene	Xyelenes
ESL	for Shallow	/ Soil		500	110	500	1.5	NE	NE	2.4	3.3	NE	1.2	NE	NE	NE	2.3
North of Former Gas Station Building	SB-1-5.5	5.0 - 5.5	Soil	<1	<1	<1	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
North End of Former Canopy	I SB-2-2 I 15 - 20 I Soil				16	<1	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
ESL f	or Ground	water		100	100	100	80	NE	NE	80	30	NE	6.1	NE	NE	NE	20
North of Former Gas Station Building	Ground- water	<50	120	<50	1.3	<0.5	<0.5	5.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		
North End of Former Canopy SB-2-W NA Groundwater				1,400	1,000	1,400	1.3	4.9	1.1	5.8	6.1	1.1	5.3	4.5	28	7.2	19

Notes:

Units: Soil: mg/kg = milligrams per kilogram, Groundwater: μg/L = micrograms per liter

- 1. bgs = below ground surface
- 2. TPHg, TPHd, TPHss = Total petroleum hydrocarbons (TPH) quantified as gasoline, quantified as diesel, and TPH quantified as Stoddard solvent were analyzed using U.S. EPA Method 8015B/C.
- 3. Volatile organic compounds (VOCs) were analyzed using U.S. EPA Method 8260B.

ESL for Shallow Soil = Environmental Screening Levels for shallow soil as established by the California Environmental Protection Agency, San Francisco Bay Regional Water Quality Control Board (SFBRWQCB, Shallow Soil Screening Levels (<3 m bgs) Commercial/Industrial Land Use (groundwater is a current or potential drinking water resource), Table A-2, December 2013).

ESL for Groundwater = Environmental Screening Levels for groundwater as established by the California Environmental Protection Agency, San Francisco Bay Regional Water Quality Control Board (SFBRWQCB, Groundwater Screening Levels (groundwater is a current or potential drinking water resource), Table F-1a, December 2013).

NE = Not established

<1 = Not detected at stated concentration

Bold = Compound detected

Bold = Compound detected above ESL

Table 3 Soil and Groundwater Samples Inorganics Analytical Summary Main Street Property 927 Main Street Pleasanton, California

On-Site Location/ Comments	Sample ID	Sample Depth (feet bgs) ¹	Matrix		(soil: r	Metals mg/kg, GV	V: μg/L)	
	Analyte	s		Cadmium	Chromium	Lead	Nickel	Zinc
ES	L for Shallo	w Soil		12	2,500	320	150	600
North of Former Gas Station Building	SB-1-5.5	5.0 - 5.5	Soil	<0.25	260	10	240	60
North End of Former Canopy	SB-2-2	1.5 - 2.0	Soil	0.36	130	61	80	110
ESI	L for Groun	dwater		0.25	50	2.5	8.2	81
North of Former Gas Station Building	SB-1-W	NA	Ground- water	<0.25	0.63	<0.5	1.8	<15
North End of Former Canopy	SB-2-W	NA	Groundw ater	<0.25	<0.5	<0.5	4.8	<15

Notes:

Units: Soil: mg/kg = milligrams per kilogram; Groundwater: $\mu g/L = micrograms per liter$

1. bgs = below ground surface

ESL for Shallow Soil = Environmental Screening Levels for shallow soil as established by the California Environmental Protection Agency, San Francisco Bay Regional Water Quality Control Board (SFBRWQCB, Shallow Soil Screening Levels (<3 m bgs) Commercial/Industrial Land Use (groundwater is a current or potential drinking water resource), Table A-2, December 2013).

ESL for Groundwater = Environmental Screening Levels for groundwater as established by the California Environmental Protection Agency, San Francisco Bay Regional Water Quality Control Board (SFBRWQCB, Groundwater Screening Levels (groundwater is a current or potential drinking water resource), Table F-1a, December 2013).

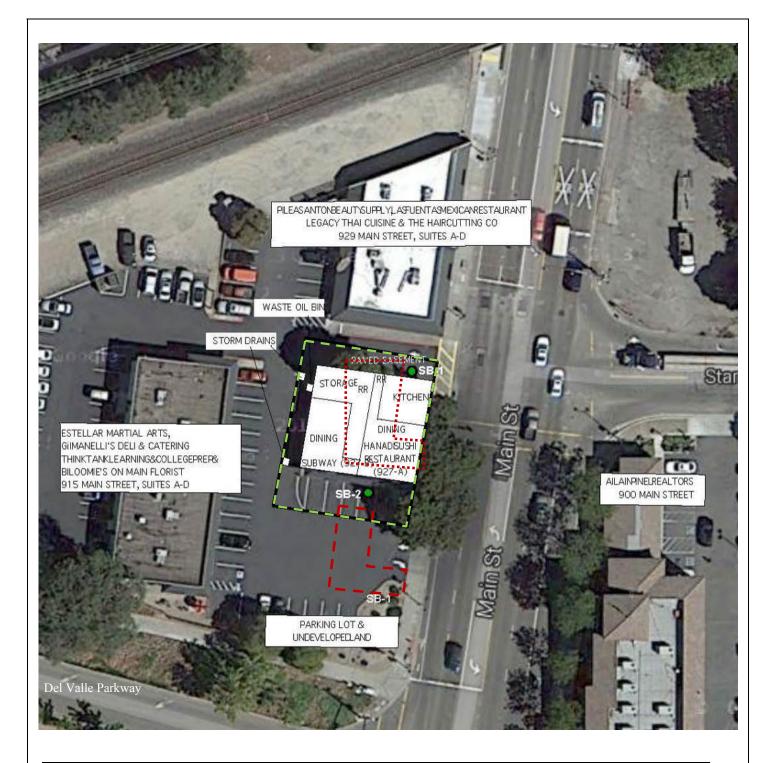
NA = Not Applicable

<0.25 = Not detected at stated concentration

Bold = Compound detected

Bold = Compound detected above ESL

FIGURES


USGS Dublin and Livermore, California Quadrangle Topographic Maps, 2015

Legend

Site (boundaries approximate)

Site Location Map	PN: 01-2015-500-007
	Date: November 27, 2015
LIMITED PHASE II ENVIRONMENTAL SITE ASSESSMENT	EP: Lita Freeman
927 Main Street, Pleasanton, California	Figure 1

····· Former Gas Station Building

Former Canopy Over Dispensers

Sampling Location

0 ______ 75

Scale (feet, approximate)

Site Plan	PN: 01-2015-500-007
	Date: November 27, 2015
LIMITED PHASE II ENVIRONMENTAL SITE ASSESSMENT	EP: Lita Freeman
927 Main Street, Pleasanton, California	Figure 2

Appendix A

Site Photographs

Photographic Log 927 Main Street Pleasanton, California 94566 ERA Project No. 01-2015-500-007

Photograph: 1

Description:

Photo depicts the sampling at boring SB-1 (north of on-site building).

Photograph: 2

Description:

Photo depicts sampling location SB-2 on southern side of on-site building.

Photographic Log 927 Main Street Pleasanton, California 94566 ERA Project No. 01-2015-500-007

Photograph: 3

Description:

Photo depicts groundwater sampling at SB-1.

Photograph: 4

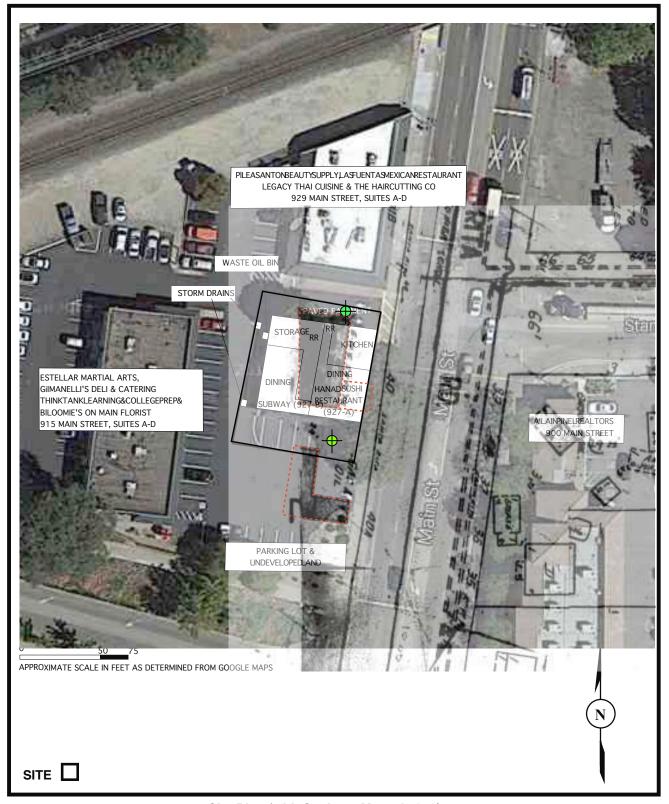
Description:

Photo depicts backfilled boring SB-2.

Appendix B

Soil Boring Permit

12 AMAZOO 51 ST


ZONE 7 WATER AGENCY

100 NORTH CANYONS PARKWAY, LIVERMORE, CALIFORNIA 94551 VOICE (925) 454-5000 FAX (925) 245-9306 E-MAIL whong@zone7water.com

DRILLING PERMIT APPLICATION

FOR APPLICANT TO COMPLETE	FOR OFFICE USE
LOCATION OF PROJECT 927 Main Street, Pleasanton, CA 94566	PERMIT NUMBER
Coordinates Source <u>GoogleEarth</u> ft. Accuracy ft. LAT: <u>37.665986</u> ft. LONG: -121.87388 ft. APN <u>946-3370-22</u>	PERMIT CONDITIONS (Circled Permit Requirements Apply)
CLIENT Name Mr. Brad Hirst Address 4460 Black Ave. Ste L Phone 925-484-3636 City Pleasanton Zip 94566 APPLICANT Name Lita Freeman/Basics Environmental Email litafreeman@gmail.com Fax Address1420 E Roseville Pkwy.140-262 Phone 916-677-9897 City Roseville Zip 95661	A. GENERAL 1. A permit application should be submitted so as to arrive at the Zone 7 office five days prior to your proposed starting date. 2. Submit to Zone 7 within 60 days after completion of permittee work the original Department of Water Resources Water Wener Drillers Report (DWR Form 188), signed by the driller. 3. Permit is void if project not begun within 90 days of approvadate. 4. Notify Zone 7 at least 24 hours before the start of work.
TYPE OF PROJECT: Well Construction	 WATER SUPPLY WELLS Minimum surface seal diameter is four inches greater than the well casing diameter and six inches for public wells. Minimum seal depth is 50 feet for municipal and industrial wells or 20 feet for domestic and irrigation wells unless a lesser depth is specially approved. Grout placed by Iremie. An access port at least 0.5 inches in diameter is required on the wellhead for water level measurements. A sample port is required on the discharge pipe near the wellhead.
DRILLING METHOD: Mud Rotary Air Rotary Hollow Stem Auger Cable Tool Direct Push X Other DRILLING COMPANY Cascade Drilling DRILLER'S LICENSE NO. C57-938110	 C. GROUNDWATER MONITORING WELLS INCLUDING PIEZOMETERS 1. Minimum surface seal diameter is four inches greater that the well or piezometer casing diameter. 2. Minimum seal depth for monitoring wells is the maximum depth practicable or 20 feet. 3. Grout placed by tremie.
WELL SPECIFICATIONS: Drill Hole Diameter in. Maximum Casing Diameter in. Depth ft. Surface Seal Depth ft. Number	D. GEOTECHNICAL. Backfill bore hole with compacted cuttings of heavy bentonite and upper two feet with compacted material. It areas of known or suspected contamination, tremled cement grout shall be used in place of compacted cuttings.
SOIL BORINGS: Number of Borings 2 Maximum Hole Diameter 1.5 in. Depth 50 ft.	E. CATHODIC. Fill hole above anode zone with concrete placed by tremie.
ESTIMATED STARTING DATE 11-13-2015 ESTIMATED COMPLETION DATE 11-13-2015 I hereby agree to comply with all requirements of this permit and Alameda County Ordinance No. 73-68.	F. WELL DESTRUCTION. See attached. G. SPECIAL CONDITIONS. Submit to Zone 7 within 60 days after completion of permitted work the well installation report including all soil and water laboratory analysis results.
APPLICANT'S Ada D Fleamen Date 11-3-15	Approved Wyman Hong Date

Revised: May 17, 2011

Site Plan (with Sanborn Map of 1953)

Limited Phase II Environmental Site Sampling 927 Main Street Pleasanton, California PROJECT NO. **13-ENV3567**

DRAWING NO.

Appendix C

Soil Boring Logs

PRO	DJEC	T:	927	' Ma	in Si	Log of I	Borii	ng	SB-		OF 2		
Borin	ng loca	tion:	S	ee F	gure		Logge	ed by:					
	starte		11/13					ta Free	man				
	ng me			rect F									
	mer w				-	LABOR	RATOR	Y TES	T DATA				
Sam	pler:	erna SAMF					-	D a t	it t		. %	ty :t	
DEPTH (feet)	PID	Sample	Blows/6"	SPT N-Value ¹	LITHOLOGY	MATERIAL DESCRIPTION		Type of Strength Test	Confining Pressure Lbs/Sq Ft	Shear Strength Lbs/Sq Ft	Fines %	Natural Moisture Content, %	Dry Density Lbs/Cu Ft
	(ppmv)	Sa	e B	o ź	5	Ground Surface Elevation: fee	et ²			φ			
1 —						Asphalt (8 inches) / Baserock (4 inches)							
2 —						Silt (ML), Brown (7.5 YR 4/6), low plasticity, stiff	, dry —						
3 —							_						
4 —													
5 —	184						_]					
6 —							_						
7 —	-						_						
8 —							_	1					
9 —							-	1					
10 —	225						_	1					
11 —						Silty Clay (CL/CH), Brown (7.5 YR 4/6), modera stiff, dry	te plasticity, _	-					
12 —							_						
13 —							_	1					
14 —							_						
15 —	269						_						
	20)						_						
16 —													
17 —							_						
18 —							_	1					
19 —							_	1					
20 —	241						_	1					
21 —							_						
22 —							_						
23 —							_	-					
24 —							_	-					
25 —							_						
26 —							_						
27 —							_						
						- color change to Light Brown (7.5 YR 6/4) at 28	feet bgs						
28 —													
29 —							_]					
30 —	Boring t	erminat	ed at a	depth o	f <u>40</u> 1	reet below ground surface.				Enviror	nmental	Risk Ass	essors
	Boring Ground							2	FRA				
Groundwater encountered at a depth of NA feet during drilling. Project No.: 01-2015-50											Figure:	C-1	

PRO	DJEC	T:	927	7 Ma	in S	treet, Pleasanton, California	og of E	Borir	ng	SB-		OF 2	
Borir	ng loca	tion:	S	ee Fi	gure		Logge	d by:					
Date	Date started: 11/13/15 Date finished: 11/13/15 Ditter started: 11/13/15 Lita Freeman												
Drilling method: Direct Push													
						LABOF	RATOR	Y TEST	DATA				
Sam	pler:						gt.		,o	>-			
I _		SAMF _©			LOGY	MATERIAL DESCRIPTION		Type of Strength Test	Confining Pressure Lbs/Sq Ft	Shear Strength Lbs/Sq Ft	Fines %	Natural Moisture Content, %	Dry Density Lbs/Cu Ft
DEPTH (feet)	PID (ppmv)	Sample	Blows/6"	SPT N-Value ¹	LITHOLOGY	Ground Surface Elevation: feet ²		St. T	SFA	Shear		N M O	Dry
31—						- moist at 30 feet bgs	_						
32—						1	_						
33-													
34-						- very moist at 34 feet bgs	_						
35—							_						
36—							_						
37—													
38-													
39—							_						
40 —							_						
41 —						Bottom of Boring = 40 feet	_						
42 —							_						
43 —							_						
44 —							_						
45 —							_						
46 —							_						
47 —							_						
48 —	-						-						
49 —							-						
50 —							-						
51 —							\dashv						
52 —	-						\dashv						
53 —							\dashv						
54 —							-						
55 —							-						
56 —	-						\dashv						
57 —							\dashv						
58 —							\dashv						
59 —	-						\dashv						
60 —						l feet below ground surface.		(Enviror	mental	Risk Ass	essors
	Boring Ground					i. hth of <u>NA</u> ,feet during drilling.		201	Ra				
								Project I 01-20	No.: 15-500-0	007	Figure:	C-1	

PRO	DJEC	T:	927	7 Ma	in S	treet, Pleasanton, California	Log of I	Borir	ng	SB-		OF 2				
Borin	ng loca	tion:	S	ee F	iaure		Logge	d bv:	,	TOL I	01 2					
	starte		1/13		<u> </u>	Date finished: 11/13/15		1	-							
Drillin	ng me			irect F	Lita Freeman											
Ham	mer w	eight	/drop	D: NA	LABORATORY TEST DATA											
Sam	pler:	erna	ndo-	Casc	-											
	;	SAME	PLES	;	34	MATERIAL DECORIDION		Type of Strength Test	ning ure q Ft	rength q Ft	S.	ral ure	nsity u Ft			
DEPTH (feet)	PID (ppmv)								Confining Pressure Lbs/Sq Ft	Shear Strength Lbs/Sq Ft	Fines %	Natural Moisture Content, %	Dry Density Lbs/Cu Ft			
		0,	ш			Ground Surface Elevation: fee Asphalt (6 inches) / Baserock (4 inches)	<u>: </u>									
1 —						FILL MATERIAL, Silt (ML), Brown (7.5 YR 4/6), s	some _									
2 —	1					medium-grained to coarse-grained gravel with in		4								
3 —						gravel with depth, low plasticity, stiff, dry	_									
						graver with depth, low plasticity, still, dry										
4 -	1						_	1								
5 —	264						_	1								
6 —	1						-	+								
7 —	-					- fine-grained sand with medium-grained to coars	se-grained –	-								
8 —						gravel at 7 feet bgs	_									
9 —	209						_									
10 —						FILL MATERIAL, Sandy Gravel (GP), Brown (7.5	5 YR									
11 —	1					4/6), coarse-grained gravel, fine-grained to coars	e-	1								
12 —	-					grained sand, dry	-	+								
13 —							_	-								
14 —							_									
	265															
15 —	267						_									
16 —	1						-	1								
17 —	1						-	1								
18 —	1						_	-								
19 —	-						_	-								
20 —	298															
						Silty Clay (CL/CH), Brown (7.5 YR 4/6), moderat stiff, dry	e plasticity,									
21 —						,,	_									
22 —	1						_	1								
23 —	1						-	1								
24 —	1						-	-								
25 —	-						_									
26 —							_									
27 —	1						_	1								
28 —	1					-moist at 28 feet bgs	-	1								
29 —	376					-	_	-								
30 —	Boring t	erminate	ed at a	depth o	f <u>36</u>	I feet below ground surface.				Enviror	mental	Risk Ass	essors			
								2	Ra	LITVITOI	mental	Mar Maa	C33013			
	Giouila	water 6	a icouli	iicieu a	ı a uep	Boring backfilled with cement grout. Groundwater encountered at a depth of NA feet during drilling. Project No.: 01-2015-500-007 Figure: C-2										

PRO	DJEC	T:	927	7 Ma	in S	treet, Pleasanton, California	Log of E	Borir	ng	SB-		OF 2	
Borin	ng loca	tion:	S	ee F	igure		Logge	d by:					
Date	starte	d: 1	1/13	/15		Date finished: 11/13/15			ta Franc				
Drillin	ng met	hod:	Di	rect F	Lita Freeman								
	mer w				LABORATORY TEST DATA								
Sam	pler: ¡						£						
_	- 5	SAMF			OGY	MATERIAL DESCRIPTION		Type of Strength Test	Confining Pressure Lbs/Sq Ft	Streng 'Sq Ft	Fines %	Natural Moisture Content, %	Dry Density Lbs/Cu Ft
DEPTH (feet)	PID (ppmv)	Sample	Blows/6"	SPT N-Value ¹	LITHOLOGY	Ground Surface Elevation: feet	t ²	Str	Con Pre	Shear Strength Lbs/Sq Ft	Œ	Na Moi Cont	Dry E Lbs/
31—						-color change to green with petroleum hydrocarb odor from 30 feet bgs to 34 feet bgs							
32—						odor from 30 reer bys to 34 reer bys	_						
33—							_						
34— 35—						-very moist at 34 feet bgs	_						
36—													
37—						Bottom of Boring = 36 feet	_						
38—							_						
39—							_						
40 —													
41 —							_						
42 —							_						
43 —							_						
44 —							_						
45 —							_						
46 —							_						
47 —							_						
48 —							_						
49 —							_						
50 —							_						
51 —							_						
52 —							_						
53 —							_						
54 —							_						
55 —							_						
56 —							_						
57 —							_						
58 —							_						
59 —							_						
60 —	Daring '			don	f 20 '	feet below around ourfees							
						feet below ground surface. t.			Ra	Enviror	imental	Risk Ass	essors
	Boring backfilled with cement grout. Groundwater encountered at a depth of NA feet during drilling. Project No.: 01-2015-500-007 Figure: C-2												

Appendix D

Laboratory Analytical Report and Chain-of-Custody Documentation

McCampbell Analytical, Inc.

"When Quality Counts"

Analytical Report

WorkOrder: 1511651

Report Created for: Basics Environmental

655 12th Street, Suite 126

Oakland, CA 94607

Project Contact:

Donavan Tom

Project P.O.:

Project Name: Pleasanton, CA

Project Received: 11/13/2015

Analytical Report reviewed & approved for release on 11/20/2015 by:

Angela Rydelius, Laboratory Manager

The report shall not be reproduced except in full, without the written approval of the laboratory. The analytical results relate only to the items tested. Results reported conform to the most current NELAP standards, where applicable, unless otherwise stated in the case narrative.

Glossary of Terms & Qualifier Definitions

Client: Basics Environmental

Project: Pleasanton, CA

WorkOrder: 1511651

Glossary Abbreviation

95% Interval 95% Confident Interval

DF Dilution Factor

DI WET (DISTLC) Waste Extraction Test using DI water

DISS Dissolved (direct analysis of 0.45 µm filtered and acidified water sample)

DLT Dilution Test
DUP Duplicate

EDL Estimated Detection Limit

ITEF International Toxicity Equivalence Factor

LCS Laboratory Control Sample

MB Method Blank

MB % Rec % Recovery of Surrogate in Method Blank, if applicable

MDL Method Detection Limit

ML Minimum Level of Quantitation

MS Matrix Spike

MSD Matrix Spike Duplicate

N/A Not Applicable

ND Not detected at or above the indicated MDL or RL

NR Data Not Reported due to matrix interference or insufficient sample amount.

PDS Post Digestion Spike

PDSD Post Digestion Spike Duplicate

PF Prep Factor

RD Relative Difference

RL Reporting Limit (The RL is the lowest calibration standard in a multipoint calibration.)

RPD Relative Percent Deviation
RRT Relative Retention Time

SPK Val Spike Value

SPKRef Val Spike Reference Value

SPLP Synthetic Precipitation Leachate Procedure
TCLP Toxicity Characteristic Leachate Procedure

TEQ Toxicity Equivalents

WET (STLC) Waste Extraction Test (Soluble Threshold Limit Concentration)

Glossary of Terms & Qualifier Definitions

Client: Basics Environmental

Project: Pleasanton, CA

WorkOrder: 1511651

Analytical Qualifiers

spike recovery outside accepted recovery limits

sample was filtered upon arrival to the lab

surrogate recovery outside of the control limits due to coelution with another peak(s) / cluttered chromatogram.

heavier gasoline range compounds are significant (aged gasoline?)

no recognizable pattern

diesel range compounds are significant; no recognizable pattern

e4 gasoline range compounds are significant.e7 oil range compounds are significant

Quality Control Qualifiers

F1 MS/MSD recovery and/or RPD is out of acceptance criteria; LCS validated the prep batch.

Analytical Report

Client: Basics Environmental WorkOrder: 1511651

Date Received: 11/13/15 19:17 Extraction Method: SW5030B

Date Prepared: 11/16/15 Analytical Method: SW8260B

Project: Pleasanton, CA Unit: mg/kg

Volatile Organics by P&T and GC/MS (Basic Target List)					
Client ID	Lab ID	Matrix	Date Collected Instrument	Batch ID	
SB-2-2	1511651-001B	Soil	11/13/2015 08:15 GC10	112956	
<u>Analytes</u>	Result		<u>RL</u> <u>DF</u>	Date Analyzed	
Acetone	ND		0.10 1	11/16/2015 11:04	
tert-Amyl methyl ether (TAME)	ND		0.0050 1	11/16/2015 11:04	
Benzene	ND		0.0050 1	11/16/2015 11:04	
Bromobenzene	ND		0.0050 1	11/16/2015 11:04	
Bromochloromethane	ND		0.0050 1	11/16/2015 11:04	
Bromodichloromethane	ND		0.0050 1	11/16/2015 11:04	
Bromoform	ND		0.0050 1	11/16/2015 11:04	
Bromomethane	ND		0.0050 1	11/16/2015 11:04	
2-Butanone (MEK)	ND		0.020 1	11/16/2015 11:04	
t-Butyl alcohol (TBA)	ND		0.050 1	11/16/2015 11:04	
n-Butyl benzene	ND		0.0050 1	11/16/2015 11:04	
sec-Butyl benzene	ND		0.0050 1	11/16/2015 11:04	
tert-Butyl benzene	ND		0.0050 1	11/16/2015 11:04	
Carbon Disulfide	ND		0.0050 1	11/16/2015 11:04	
Carbon Tetrachloride	ND		0.0050 1	11/16/2015 11:04	
Chlorobenzene	ND		0.0050 1	11/16/2015 11:04	
Chloroethane	ND		0.0050 1	11/16/2015 11:04	
Chloroform	ND		0.0050 1	11/16/2015 11:04	
Chloromethane	ND		0.0050 1	11/16/2015 11:04	
2-Chlorotoluene	ND		0.0050 1	11/16/2015 11:04	
4-Chlorotoluene	ND		0.0050 1	11/16/2015 11:04	
Dibromochloromethane	ND		0.0050 1	11/16/2015 11:04	
1,2-Dibromo-3-chloropropane	ND		0.0040 1	11/16/2015 11:04	
1,2-Dibromoethane (EDB)	ND		0.0040 1	11/16/2015 11:04	
Dibromomethane	ND		0.0050 1	11/16/2015 11:04	
1,2-Dichlorobenzene	ND		0.0050 1	11/16/2015 11:04	
1,3-Dichlorobenzene	ND		0.0050 1	11/16/2015 11:04	
1,4-Dichlorobenzene	ND		0.0050 1	11/16/2015 11:04	
Dichlorodifluoromethane	ND		0.0050 1	11/16/2015 11:04	
1,1-Dichloroethane	ND		0.0050 1	11/16/2015 11:04	
1,2-Dichloroethane (1,2-DCA)	ND		0.0040 1	11/16/2015 11:04	
1,1-Dichloroethene	ND		0.0050 1	11/16/2015 11:04	
cis-1,2-Dichloroethene	ND		0.0050 1	11/16/2015 11:04	
trans-1,2-Dichloroethene	ND		0.0050 1	11/16/2015 11:04	
1,2-Dichloropropane	ND		0.0050 1	11/16/2015 11:04	
1,3-Dichloropropane	ND		0.0050 1	11/16/2015 11:04	
2,2-Dichloropropane	ND		0.0050 1	11/16/2015 11:04	

(Cont.)

Analytical Report

Client: Basics Environmental WorkOrder: 1511651

Date Received: 11/13/15 19:17 Extraction Method: SW5030B

Date Prepared: 11/16/15 Analytical Method: SW8260B

Project: Pleasanton, CA Unit: mg/kg

Vo	latile Organics by	e Organics by P&T and GC/MS (Basic Target List)				
Client ID	Lab ID	Matrix	Date Collected Instrument	Batch ID		
SB-2-2	1511651-001B	Soil	11/13/2015 08:15 GC10	112956		
<u>Analytes</u>	<u>Result</u>		<u>RL</u> <u>DF</u>	<u>Date Analyzed</u>		
1,1-Dichloropropene	ND		0.0050 1	11/16/2015 11:04		
cis-1,3-Dichloropropene	ND		0.0050 1	11/16/2015 11:04		
trans-1,3-Dichloropropene	ND		0.0050 1	11/16/2015 11:04		
Diisopropyl ether (DIPE)	ND		0.0050 1	11/16/2015 11:04		
Ethylbenzene	ND		0.0050 1	11/16/2015 11:04		
Ethyl tert-butyl ether (ETBE)	ND		0.0050 1	11/16/2015 11:04		
Freon 113	ND		0.0050 1	11/16/2015 11:04		
Hexachlorobutadiene	ND		0.0050 1	11/16/2015 11:04		
Hexachloroethane	ND		0.0050 1	11/16/2015 11:04		
2-Hexanone	ND		0.0050 1	11/16/2015 11:04		
Isopropylbenzene	ND		0.0050 1	11/16/2015 11:04		
4-Isopropyl toluene	ND		0.0050 1	11/16/2015 11:04		
Methyl-t-butyl ether (MTBE)	ND		0.0050 1	11/16/2015 11:04		
Methylene chloride	ND		0.0050 1	11/16/2015 11:04		
4-Methyl-2-pentanone (MIBK)	ND		0.0050 1	11/16/2015 11:04		
Naphthalene	ND		0.0050 1	11/16/2015 11:04		
n-Propyl benzene	ND		0.0050 1	11/16/2015 11:04		
Styrene	ND		0.0050 1	11/16/2015 11:04		
1,1,1,2-Tetrachloroethane	ND		0.0050 1	11/16/2015 11:04		
1,1,2,2-Tetrachloroethane	ND		0.0050 1	11/16/2015 11:04		
Tetrachloroethene	ND		0.0050 1	11/16/2015 11:04		
Toluene	ND		0.0050 1	11/16/2015 11:04		
1,2,3-Trichlorobenzene	ND		0.0050 1	11/16/2015 11:04		
1,2,4-Trichlorobenzene	ND		0.0050 1	11/16/2015 11:04		
1,1,1-Trichloroethane	ND		0.0050 1	11/16/2015 11:04		
1,1,2-Trichloroethane	ND		0.0050 1	11/16/2015 11:04		
Trichloroethene	ND		0.0050 1	11/16/2015 11:04		
Trichlorofluoromethane	ND		0.0050 1	11/16/2015 11:04		
1,2,3-Trichloropropane	ND		0.0050 1	11/16/2015 11:04		
1,2,4-Trimethylbenzene	ND		0.0050 1	11/16/2015 11:04		
1,3,5-Trimethylbenzene	ND		0.0050 1	11/16/2015 11:04		
Vinyl Chloride	ND		0.0050 1	11/16/2015 11:04		
Xylenes, Total	ND		0.0050 1	11/16/2015 11:04		

Analytical Report

Client:Basics EnvironmentalWorkOrder:1511651Date Received:11/13/15 19:17Extraction Method:SW5030BDate Prepared:11/16/15Analytical Method:SW8260BProject:Pleasanton, CAUnit:mg/kg

Client ID	Lab ID	Matrix	Date C	ollected Instrument	Batch ID
SB-2-2	1511651-001B	Soil	11/13/2015 08:15	015 08:15 GC10	112956
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
Surrogates	<u>REC (%)</u>		<u>Limits</u>		
Dibromofluoromethane	99		70-130		11/16/2015 11:04
Toluene-d8	109		70-130		11/16/2015 11:04
4-BFB	93		70-130		11/16/2015 11:04
Benzene-d6	75		60-140		11/16/2015 11:04
Ethylbenzene-d10	89		60-140		11/16/2015 11:04
1,2-DCB-d4	66		60-140		11/16/2015 11:04

Analytical Report

Client: Basics Environmental WorkOrder: 1511651

Date Received: 11/13/15 19:17 Extraction Method: SW5030B

Date Prepared: 11/16/15 Analytical Method: SW8260B

Project: Pleasanton, CA Unit: mg/kg

Volatile Organics by P&T and GC/MS (Basic Target List)					
Client ID	Lab ID	Matrix	Date Collected Instrument	Batch ID	
SB-1-5.5	1511651-008B	Soil	11/13/2015 10:05 GC10	112987	
<u>Analytes</u>	Result		<u>RL</u> <u>DF</u>	Date Analyzed	
Acetone	ND		0.10 1	11/16/2015 11:44	
tert-Amyl methyl ether (TAME)	ND		0.0050 1	11/16/2015 11:44	
Benzene	ND		0.0050 1	11/16/2015 11:44	
Bromobenzene	ND		0.0050 1	11/16/2015 11:44	
Bromochloromethane	ND		0.0050 1	11/16/2015 11:44	
Bromodichloromethane	ND		0.0050 1	11/16/2015 11:44	
Bromoform	ND		0.0050 1	11/16/2015 11:44	
Bromomethane	ND		0.0050 1	11/16/2015 11:44	
2-Butanone (MEK)	ND		0.020 1	11/16/2015 11:44	
t-Butyl alcohol (TBA)	ND		0.050 1	11/16/2015 11:44	
n-Butyl benzene	ND		0.0050 1	11/16/2015 11:44	
sec-Butyl benzene	ND		0.0050 1	11/16/2015 11:44	
tert-Butyl benzene	ND		0.0050 1	11/16/2015 11:44	
Carbon Disulfide	ND		0.0050 1	11/16/2015 11:44	
Carbon Tetrachloride	ND		0.0050 1	11/16/2015 11:44	
Chlorobenzene	ND		0.0050 1	11/16/2015 11:44	
Chloroethane	ND		0.0050 1	11/16/2015 11:44	
Chloroform	ND		0.0050 1	11/16/2015 11:44	
Chloromethane	ND		0.0050 1	11/16/2015 11:44	
2-Chlorotoluene	ND		0.0050 1	11/16/2015 11:44	
4-Chlorotoluene	ND		0.0050 1	11/16/2015 11:44	
Dibromochloromethane	ND		0.0050 1	11/16/2015 11:44	
1,2-Dibromo-3-chloropropane	ND		0.0040 1	11/16/2015 11:44	
1,2-Dibromoethane (EDB)	ND		0.0040 1	11/16/2015 11:44	
Dibromomethane	ND		0.0050 1	11/16/2015 11:44	
1,2-Dichlorobenzene	ND		0.0050 1	11/16/2015 11:44	
1,3-Dichlorobenzene	ND		0.0050 1	11/16/2015 11:44	
1,4-Dichlorobenzene	ND		0.0050 1	11/16/2015 11:44	
Dichlorodifluoromethane	ND		0.0050 1	11/16/2015 11:44	
1,1-Dichloroethane	ND		0.0050 1	11/16/2015 11:44	
1,2-Dichloroethane (1,2-DCA)	ND		0.0040 1	11/16/2015 11:44	
1,1-Dichloroethene	ND		0.0050 1	11/16/2015 11:44	
cis-1,2-Dichloroethene	ND		0.0050 1	11/16/2015 11:44	
trans-1,2-Dichloroethene	ND		0.0050 1	11/16/2015 11:44	
1,2-Dichloropropane	ND		0.0050 1	11/16/2015 11:44	
1,3-Dichloropropane	ND		0.0050 1	11/16/2015 11:44	
2,2-Dichloropropane	ND		0.0050 1	11/16/2015 11:44	

(Cont.)

Analytical Report

Client: Basics Environmental WorkOrder: 1511651

Date Received: 11/13/15 19:17 Extraction Method: SW5030B

Date Prepared: 11/16/15 Analytical Method: SW8260B

Project: Pleasanton, CA Unit: mg/kg

	Volatile Organics by	P&T and (GC/MS (Basic Tar	get List)	
Client ID	Lab ID	Matrix	Date Collected	Instrument	Batch ID
SB-1-5.5	1511651-008B	Soil	11/13/2015 10:05	GC10	112987
<u>Analytes</u>	<u>Result</u>		<u>RL</u> <u>DF</u>		Date Analyzed
1,1-Dichloropropene	ND		0.0050 1		11/16/2015 11:44
cis-1,3-Dichloropropene	ND		0.0050 1		11/16/2015 11:44
trans-1,3-Dichloropropene	ND		0.0050 1		11/16/2015 11:44
Diisopropyl ether (DIPE)	ND		0.0050 1		11/16/2015 11:44
Ethylbenzene	ND		0.0050 1		11/16/2015 11:44
Ethyl tert-butyl ether (ETBE)	ND		0.0050 1		11/16/2015 11:44
Freon 113	ND		0.0050 1		11/16/2015 11:44
Hexachlorobutadiene	ND		0.0050 1		11/16/2015 11:44
Hexachloroethane	ND		0.0050 1		11/16/2015 11:44
2-Hexanone	ND		0.0050 1		11/16/2015 11:44
Isopropylbenzene	ND		0.0050 1		11/16/2015 11:44
4-Isopropyl toluene	ND		0.0050 1		11/16/2015 11:44
Methyl-t-butyl ether (MTBE)	ND		0.0050 1		11/16/2015 11:44
Methylene chloride	ND		0.0050 1		11/16/2015 11:44
4-Methyl-2-pentanone (MIBK)	ND		0.0050 1		11/16/2015 11:44
Naphthalene	ND		0.0050 1		11/16/2015 11:44
n-Propyl benzene	ND		0.0050 1		11/16/2015 11:44
Styrene	ND		0.0050 1		11/16/2015 11:44
1,1,1,2-Tetrachloroethane	ND		0.0050 1		11/16/2015 11:44
1,1,2,2-Tetrachloroethane	ND		0.0050 1		11/16/2015 11:44
Tetrachloroethene	ND		0.0050 1		11/16/2015 11:44
Toluene	ND		0.0050 1		11/16/2015 11:44
1,2,3-Trichlorobenzene	ND		0.0050 1		11/16/2015 11:44
1,2,4-Trichlorobenzene	ND		0.0050 1		11/16/2015 11:44
1,1,1-Trichloroethane	ND		0.0050 1		11/16/2015 11:44
1,1,2-Trichloroethane	ND		0.0050 1		11/16/2015 11:44
Trichloroethene	ND		0.0050 1		11/16/2015 11:44
Trichlorofluoromethane	ND		0.0050 1		11/16/2015 11:44
1,2,3-Trichloropropane	ND		0.0050 1		11/16/2015 11:44
1,2,4-Trimethylbenzene	ND		0.0050 1		11/16/2015 11:44
1,3,5-Trimethylbenzene	ND		0.0050 1		11/16/2015 11:44
Vinyl Chloride	ND		0.0050 1		11/16/2015 11:44
Xylenes, Total	ND		0.0050 1		11/16/2015 11:44

Analytical Report

Client: Basics Environmental WorkOrder: 1511651

Date Received: 11/13/15 19:17 Extraction Method: SW5030B

Date Prepared: 11/16/15 Analytical Method: SW8260B

Project: Pleasanton, CA Unit: mg/kg

Client ID	Lab ID	Matrix	Date Co	ollected Instrument	Batch ID	
SB-1-5.5	1511651-008B	Soil	oil 11/13/2015 10:05 GC10			
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>	Date Analyzed	
<u>Surrogates</u>	<u>REC (%)</u>		<u>Limits</u>			
Dibromofluoromethane	99		70-130		11/16/2015 11:44	
Toluene-d8	110		70-130		11/16/2015 11:44	
4-BFB	91		70-130		11/16/2015 11:44	
Benzene-d6	80		60-140		11/16/2015 11:44	
Ethylbenzene-d10	100		60-140		11/16/2015 11:44	
1,2-DCB-d4	73		60-140		11/16/2015 11:44	

Analytical Report

Client: Basics Environmental WorkOrder: 1511651 Date Received: $11/13/15 \ 19:17$ Extraction Method: SW5030B Date Prepared: 11/17/15 Analytical Method: SW8260B Project: Pleasanton, CA Unit: $\mu g/L$

Vol	atile Organics by P&T	and GC/MS (Basic Target List)	
Client ID	Lab ID Matr	ix Date Collected Instrument	Batch ID
SB-2-W	1511651-012A Water	11/12/2015 14:20 GC28	113041
<u>Analytes</u>	Result	<u>RL</u> <u>DF</u>	Date Analyzed
Acetone	ND	10 1	11/17/2015 13:35
tert-Amyl methyl ether (TAME)	ND	0.50 1	11/17/2015 13:35
Benzene	ND	0.50 1	11/17/2015 13:35
Bromobenzene	ND	0.50 1	11/17/2015 13:35
Bromochloromethane	ND	0.50 1	11/17/2015 13:35
Bromodichloromethane	1.3	0.50 1	11/17/2015 13:35
Bromoform	ND	0.50 1	11/17/2015 13:35
Bromomethane	ND	0.50 1	11/17/2015 13:35
2-Butanone (MEK)	ND	2.0 1	11/17/2015 13:35
t-Butyl alcohol (TBA)	ND	2.0 1	11/17/2015 13:35
n-Butyl benzene	4.9	0.50 1	11/17/2015 13:35
sec-Butyl benzene	1.1	0.50 1	11/17/2015 13:35
tert-Butyl benzene	ND	0.50 1	11/17/2015 13:35
Carbon Disulfide	ND	0.50 1	11/17/2015 13:35
Carbon Tetrachloride	ND	0.50 1	11/17/2015 13:35
Chlorobenzene	ND	0.50 1	11/17/2015 13:35
Chloroethane	ND	0.50 1	11/17/2015 13:35
Chloroform	5.8	0.50 1	11/17/2015 13:35
Chloromethane	ND	0.50 1	11/17/2015 13:35
2-Chlorotoluene	ND	0.50 1	11/17/2015 13:35
4-Chlorotoluene	ND	0.50 1	11/17/2015 13:35
Dibromochloromethane	ND	0.50 1	11/17/2015 13:35
1,2-Dibromo-3-chloropropane	ND	0.20 1	11/17/2015 13:35
1,2-Dibromoethane (EDB)	ND	0.50 1	11/17/2015 13:35
Dibromomethane	ND	0.50 1	11/17/2015 13:35
1,2-Dichlorobenzene	ND	0.50 1	11/17/2015 13:35
1,3-Dichlorobenzene	ND	0.50 1	11/17/2015 13:35
1,4-Dichlorobenzene	ND	0.50 1	11/17/2015 13:35
Dichlorodifluoromethane	ND	0.50 1	11/17/2015 13:35
1,1-Dichloroethane	ND	0.50 1	11/17/2015 13:35
1,2-Dichloroethane (1,2-DCA)	ND	0.50 1	11/17/2015 13:35
1,1-Dichloroethene	ND	0.50 1	11/17/2015 13:35
cis-1,2-Dichloroethene	ND	0.50 1	11/17/2015 13:35
trans-1,2-Dichloroethene	ND	0.50 1	11/17/2015 13:35
1,2-Dichloropropane	ND	0.50 1	11/17/2015 13:35
1,3-Dichloropropane	ND	0.50 1	11/17/2015 13:35
2,2-Dichloropropane	ND	0.50 1	11/17/2015 13:35

(Cont.)

Angela Rydelius, Lab Manager

Analytical Report

Client: Basics Environmental WorkOrder: 1511651 Date Received: 11/13/15 19:17 Extraction Method: SW5030B Date Prepared: 11/17/15 Analytical Method: SW8260B Project: Pleasanton, CA Unit: $\mu g/L$

Vo	Volatile Organics by P&T and GC/MS (Basic Target List)				
Client ID	Lab ID	Matrix	Date C	ollected Instrument	Batch ID
SB-2-W	1511651-012A	Water	11/12/20	15 14:20 GC28	113041
Analytes	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
1,1-Dichloropropene	ND		0.50	1	11/17/2015 13:35
cis-1,3-Dichloropropene	ND		0.50	1	11/17/2015 13:35
trans-1,3-Dichloropropene	ND		0.50	1	11/17/2015 13:35
Diisopropyl ether (DIPE)	ND		0.50	1	11/17/2015 13:35
Ethylbenzene	6.1		0.50	1	11/17/2015 13:35
Ethyl tert-butyl ether (ETBE)	ND		0.50	1	11/17/2015 13:35
Freon 113	ND		0.50	1	11/17/2015 13:35
Hexachlorobutadiene	ND		0.50	1	11/17/2015 13:35
Hexachloroethane	ND		0.50	1	11/17/2015 13:35
2-Hexanone	ND		0.50	1	11/17/2015 13:35
Isopropylbenzene	1.1		0.50	1	11/17/2015 13:35
4-Isopropyl toluene	ND		0.50	1	11/17/2015 13:35
Methyl-t-butyl ether (MTBE)	ND		0.50	1	11/17/2015 13:35
Methylene chloride	ND		0.50	1	11/17/2015 13:35
4-Methyl-2-pentanone (MIBK)	ND		0.50	1	11/17/2015 13:35
Naphthalene	5.3		0.50	1	11/17/2015 13:35
n-Propyl benzene	4.5		0.50	1	11/17/2015 13:35
Styrene	ND		0.50	1	11/17/2015 13:35
1,1,1,2-Tetrachloroethane	ND		0.50	1	11/17/2015 13:35
1,1,2,2-Tetrachloroethane	ND		0.50	1	11/17/2015 13:35
Tetrachloroethene	ND		0.50	1	11/17/2015 13:35
Toluene	ND		0.50	1	11/17/2015 13:35
1,2,3-Trichlorobenzene	ND		0.50	1	11/17/2015 13:35
1,2,4-Trichlorobenzene	ND		0.50	1	11/17/2015 13:35
1,1,1-Trichloroethane	ND		0.50	1	11/17/2015 13:35
1,1,2-Trichloroethane	ND		0.50	1	11/17/2015 13:35
Trichloroethene	ND		0.50	1	11/17/2015 13:35
Trichlorofluoromethane	ND		0.50	1	11/17/2015 13:35
1,2,3-Trichloropropane	ND		0.50	1	11/17/2015 13:35
1,2,4-Trimethylbenzene	28		0.50	1	11/17/2015 13:35
1,3,5-Trimethylbenzene	7.2		0.50	1	11/17/2015 13:35
Vinyl Chloride	ND		0.50	1	11/17/2015 13:35
Xylenes, Total	19		0.50	1	11/17/2015 13:35

Analytical Report

Client: Basics Environmental WorkOrder: 1511651 Date Received: $11/13/15 \ 19:17$ Extraction Method: SW5030B Date Prepared: 11/17/15 Analytical Method: SW8260B Project: Pleasanton, CA Unit: $\mu g/L$

	Volatile Organics by Po	atile Organics by P&T and GC/MS (Basic Target List)					
Client ID	Lab ID N	Matrix	Date Collected Instrument	Batch ID			
SB-2-W	1511651-012A W	Vater	11/12/2015 14:20 GC28	113041			
Analytes	Result		<u>RL</u> <u>DF</u>	Date Analyzed			
<u>Surrogates</u>	<u>REC (%)</u>		<u>Limits</u>				
Dibromofluoromethane	95		70-130	11/17/2015 13:35			
Toluene-d8	84		70-130	11/17/2015 13:35			
4-BFB	76		70-130	11/17/2015 13:35			
Analyst(s): KF							

Analytical Report

Client: Basics Environmental WorkOrder: 1511651

Date Received: 11/13/15 19:17 Extraction Method: SW5030B

Date Prepared: 11/16/15 Analytical Method: SW8021B/8015Bm

Project: Pleasanton, CA Unit: mg/Kg

Gasoline Range(C6-C12) & Stoddard Solvent Range (C9-C12) Volatile Hydrocarbons W/BTEX & MTBE

Client ID	Lab ID	Matrix	Date Co	llected Instrument	Batch ID
SB-2-2	1511651-001B	Soil	11/13/201	15 08:15 GC19	112983
<u>Analytes</u>	<u>Result</u>		<u>RL</u>	<u>DF</u>	Date Analyzed
TPH(g)	ND		1.0	1	11/16/2015 22:59
MTBE			0.050	1	11/16/2015 22:59
Benzene			0.0050	1	11/16/2015 22:59
Toluene			0.0050	1	11/16/2015 22:59
Ethylbenzene			0.0050	1	11/16/2015 22:59
TPH(ss)	ND		1.0	1	11/16/2015 22:59
Xylenes			0.0050	1	11/16/2015 22:59
Surrogates	<u>REC (%)</u>		<u>Limits</u>		
2-Fluorotoluene	101		70-130		11/16/2015 22:59
Analyst(s): IA					
Client ID	Lab ID	Matrix	Date Co	llected Instrument	Batch ID
SB-1-5.5	1511651-008B	Soil	11/13/201	15 10:05 GC7	112983
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
TPH(g)	ND		1.0	1	11/16/2015 21:16
MTBE			0.050	1	11/16/2015 21:16
Benzene			0.0050	1	11/16/2015 21:16
Toluene			0.0050	1	11/16/2015 21:16
Cth. dhanzana			0.0050	1	11/16/2015 21:16
Ethylbenzene			1.0	1	11/16/2015 21:16
TPH(ss)	ND				
•	ND 		0.0050	1	11/16/2015 21:16
TPH(ss)			0.0050 <u>Limits</u>	1	11/16/2015 21:16
TPH(ss) Xylenes				1	11/16/2015 21:16 11/16/2015 21:16

Analytical Report

Client: Basics Environmental WorkOrder: 1511651

Date Received: 11/13/15 19:17 Extraction Method: SW5030B

Date Prepared: 11/18/15 Analytical Method: SW8021B/8015Bm

Project: Pleasanton, CA Unit: $\mu g/L$

Gasoline Range(C6-C12) & Stoddard Solvent Range(C9-C12) Volatile Hydrocarbons W/BTEX & MTBE

Client ID	Lab ID	Matrix	Date C	ollected Instrument	Batch ID
SB-2-W	1511651-012B	Water	11/12/20	15 14:20 GC3	113157
Analytes	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
TPH(g)	1400		50	1	11/18/2015 15:06
MTBE			5.0	1	11/18/2015 15:06
Benzene			0.50	1	11/18/2015 15:06
Toluene			0.50	1	11/18/2015 15:06
Ethylbenzene			0.50	1	11/18/2015 15:06
TPH(ss)	1400		50	1	11/18/2015 15:06
Xylenes			0.50	1	11/18/2015 15:06
<u>Surrogates</u>	REC (%)	<u>Qualifiers</u>	<u>Limits</u>		
aaa-TFT	134	S	70-130		11/18/2015 15:06
Analyst(s): IA			Analytical Com	ments: d2,d9,c4	

Analytical Report

Client: Basics Environmental WorkOrder: 1511651

Date Received: 11/13/15 19:17 Extraction Method: SW3050B

Date Prepared: 11/16/15 Analytical Method: SW6020

Project: Pleasanton, CA Unit: mg/Kg

		LUFT 5 M	etais			
Client ID	Lab ID	Matrix	Date C	ollected	Instrument	Batch ID
SB-2-2	1511651-001B	Soil	11/13/20)15 08:15	ICP-MS1	112978
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>		Date Analyzed
Cadmium	0.36		0.25	1		11/16/2015 21:23
Chromium	130		0.50	1		11/16/2015 21:23
Lead	61		0.50	1		11/16/2015 21:23
Nickel	80		0.50	1		11/16/2015 21:23
Zinc	110		5.0	1		11/16/2015 21:23
<u>Surrogates</u>	REC (%)		<u>Limits</u>			
Terbium	106		70-130			11/16/2015 21:23
Analyst(s): DVH						
Client ID	Lab ID	Matrix	Date C	ollected	Instrument	Batch ID
SB-1-5.5	1511651-008B	Soil	11/13/20)15 10:05	ICP-MS1	112978
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>		Date Analyzed
Cadmium	ND		0.25	1		11/16/2015 21:29
Chromium	260		0.50	1		11/16/2015 21:29
Lead	10		0.50	1		11/16/2015 21:29
Nickel	240		0.50	1		11/16/2015 21:29
	60		5.0	1		11/16/2015 21:29
Zinc						
Zinc Surrogates	<u>REC (%)</u>		<u>Limits</u>			
	<u>REC (%)</u> 106		<u>Limits</u> 70-130			11/16/2015 21:29

Analytical Report

Client: Basics Environmental Work Order: 1511651
Date Received: 11/13/15 19:17
Extraction Method: E200.8
Date Prepared: 11/16/15
Analytical Method: E200.8
Project: Pleasanton, CA
Unit: $\mu g/L$

	Diss	olved LUF	T 5 Metals		
Client ID	Lab ID	Matrix	Date Co	llected Instrument	Batch ID
SB-2-W	1511651-012C	Water	11/12/201	5 14:20 ICP-MS2	112971
<u>Analytes</u>	Result	<u>Qualifiers</u>	<u>RL</u>	<u>DF</u>	Date Analyzed
Cadmium	ND	F	0.25	1	11/16/2015 21:48
Chromium	ND	F	0.50	1	11/16/2015 21:48
Lead	ND	F	0.50	1	11/16/2015 21:48
Nickel	4.8	F	0.50	1	11/16/2015 21:48
Zinc	ND	F	15	1	11/16/2015 21:48

Analyst(s): BBO

Analytical Report

Client: Basics Environmental WorkOrder: 1511651

Date Received: 11/13/15 19:17 Extraction Method: SW3550B

Date Prepared: 11/16/15 Analytical Method: SW8015B

Project: Pleasanton, CA Unit: mg/Kg

To	tal Extractable Petro	leum Hyd	rocarbons w/out S	GG Clean-Up	
Client ID	Lab ID	Matrix	Date Collecte	d Instrument	Batch ID
SB-2-2	1511651-001B	Soil	11/13/2015 08:	15 GC2A	112979
<u>Analytes</u>	Result		<u>RL</u> <u>DF</u>		Date Analyzed
TPH-Diesel (C10-C23)	16		10 10		11/17/2015 05:47
Surrogates	<u>REC (%)</u>		<u>Limits</u>		
C9	98		70-130		11/17/2015 05:47
Analyst(s): TK			Analytical Comments:	e7,e2	
Client ID	Lab ID	Matrix	Date Collecte	d Instrument	Batch ID
SB-1-5.5	1511651-008B	Soil	11/13/2015 10:	05 GC2A	112979
<u>Analytes</u>	Result		<u>RL</u> <u>DF</u>		Date Analyzed
TPH-Diesel (C10-C23)	ND		1.0 1		11/17/2015 17:05
<u>Surrogates</u>	<u>REC (%)</u>		<u>Limits</u>		
C9	99		70-130		11/17/2015 17:05
Analyst(s): TK					

Analytical Report

Client: Basics Environmental WorkOrder: 1511651 Date Received: $11/13/15 \ 19:17$ Extraction Method: SW3510C Date Prepared: 11/16/15 Analytical Method: SW8015B Project: Pleasanton, CA Unit: $\mu g/L$

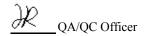
	Total Extractable Petro	leum Hyd	rocarbons w/	out SG Clean-Up	
Client ID	Lab ID	Matrix	Date Co	ollected Instrument	Batch ID
SB-2-W	1511651-012B	Water	11/12/20	15 14:20 GC9b	112980
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
TPH-Diesel (C10-C23)	1000		100	1	11/16/2015 17:03
<u>Surrogates</u>	<u>REC (%)</u>		<u>Limits</u>		
C9	100		70-130		11/16/2015 17:03
Analyst(s): TK			Analytical Comr	ments: e4	

Quality Control Report

Client: Basics Environmental WorkOrder: 1511651

Date Prepared: 11/16/15 BatchID: 112956

Date Analyzed: 11/16/15 Extraction Method: SW5030B Instrument: GC16, GC18 Analytical Method: SW8260B


Matrix: Soil Unit: mg/Kg

Project: Pleasanton, CA Sample ID: MB/LCS-112956 1511658-017AMS/MSD

QC Summary Report for SW8260B

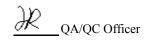
Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
Acetone	ND	-	0.10	-	-	-	-
tert-Amyl methyl ether (TAME)	ND	0.0412	0.0050	0.050	-	82	53-116
Benzene	ND	0.0455	0.0050	0.050	-	91	63-137
Bromobenzene	ND	-	0.0050	-	-	-	-
Bromochloromethane	ND	-	0.0050	-	-	-	-
Bromodichloromethane	ND	-	0.0050	-	-	-	-
Bromoform	ND	-	0.0050	-	-	-	-
Bromomethane	ND	-	0.0050	-	-	-	-
2-Butanone (MEK)	ND	-	0.020	-	-	-	-
t-Butyl alcohol (TBA)	ND	0.171	0.050	0.20	-	86	41-135
n-Butyl benzene	ND	-	0.0050	-	-	-	-
sec-Butyl benzene	ND	-	0.0050	-	-	-	-
tert-Butyl benzene	ND	-	0.0050	-	-	-	-
Carbon Disulfide	ND	-	0.0050	-	-	-	-
Carbon Tetrachloride	ND	-	0.0050	-	-	-	-
Chlorobenzene	ND	0.0471	0.0050	0.050	-	94	77-121
Chloroethane	ND	-	0.0050	-	-	-	-
Chloroform	ND	-	0.0050	-	-	-	-
Chloromethane	ND	-	0.0050	-	-	-	-
2-Chlorotoluene	ND	-	0.0050	-	-	-	-
4-Chlorotoluene	ND	-	0.0050	-	-	-	-
Dibromochloromethane	ND	-	0.0050	-	-	-	-
1,2-Dibromo-3-chloropropane	ND	-	0.0040	-	-	-	-
1,2-Dibromoethane (EDB)	ND	0.0441	0.0040	0.050	-	88	67-119
Dibromomethane	ND	-	0.0050	-	-	-	-
1,2-Dichlorobenzene	ND	-	0.0050	-	-	-	-
1,3-Dichlorobenzene	ND	-	0.0050	-	-	-	-
1,4-Dichlorobenzene	ND	-	0.0050	-	-	-	-
Dichlorodifluoromethane	ND	-	0.0050	-	-	-	-
1,1-Dichloroethane	ND	-	0.0050	-	-	-	-
1,2-Dichloroethane (1,2-DCA)	ND	0.0436	0.0040	0.050	=	87	58-135
1,1-Dichloroethene	ND	0.0453	0.0050	0.050	-	91	42-145
cis-1,2-Dichloroethene	ND	-	0.0050	-	-	-	-
trans-1,2-Dichloroethene	ND	-	0.0050	-	-	-	-
1,2-Dichloropropane	ND	-	0.0050	-	-	-	-
1,3-Dichloropropane	ND	-	0.0050	-	-	-	-
2,2-Dichloropropane	ND	=	0.0050	-	-	-	-

(Cont.)
CDPH ELAP 1644 ♦ NELAP 4033ORELAP

Quality Control Report

Client: WorkOrder: **Basics Environmental** 1511651 Date Prepared: 11/16/15 BatchID: 112956

Date Analyzed: 11/16/15 Extraction Method: SW5030B Instrument: Analytical Method: SW8260B GC16, GC18


Matrix: Unit: Soil mg/Kg

Project: Sample ID: MB/LCS-112956 Pleasanton, CA

1511658-017AMS/MSD

QC Summary Report for SW8260B

Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
1,1-Dichloropropene	ND	-	0.0050	-	-	-	-
cis-1,3-Dichloropropene	ND	-	0.0050	-	-	-	-
trans-1,3-Dichloropropene	ND	-	0.0050	-	-	-	-
Diisopropyl ether (DIPE)	ND	0.0400	0.0050	0.050	-	80	52-129
Ethylbenzene	ND	-	0.0050	-	-	-	-
Ethyl tert-butyl ether (ETBE)	ND	0.0406	0.0050	0.050	-	81	53-125
Freon 113	ND	-	0.0050	-	-	-	-
Hexachlorobutadiene	ND	-	0.0050	-	-	-	-
Hexachloroethane	ND	-	0.0050	-	-	-	-
2-Hexanone	ND	-	0.0050	-	-	-	-
Isopropylbenzene	ND	-	0.0050	-	-	-	-
4-Isopropyl toluene	ND	-	0.0050	-	-	-	-
Methyl-t-butyl ether (MTBE)	ND	0.0436	0.0050	0.050	-	87	58-122
Methylene chloride	ND	-	0.0050	-	-	-	-
4-Methyl-2-pentanone (MIBK)	ND	-	0.0050	-	-	-	-
Naphthalene	ND	-	0.0050	-	-	-	-
n-Propyl benzene	ND	-	0.0050	-	-	-	-
Styrene	ND	-	0.0050	-	-	-	-
1,1,1,2-Tetrachloroethane	ND	-	0.0050	-	-	-	-
1,1,2,2-Tetrachloroethane	ND	-	0.0050	-	-	-	-
Tetrachloroethene	ND	-	0.0050	-	-	-	-
Toluene	ND	0.0442	0.0050	0.050	-	88	76-130
1,2,3-Trichlorobenzene	ND	-	0.0050	-	-	-	-
1,2,4-Trichlorobenzene	ND	-	0.0050	-	-	-	-
1,1,1-Trichloroethane	ND	-	0.0050	-	-	-	-
1,1,2-Trichloroethane	ND	-	0.0050	-	-	-	-
Trichloroethene	ND	0.0490	0.0050	0.050	-	98	72-132
Trichlorofluoromethane	ND	-	0.0050	-	-	-	-
1,2,3-Trichloropropane	ND	-	0.0050	-	-	-	-
1,2,4-Trimethylbenzene	ND	-	0.0050	-	-	-	-
1,3,5-Trimethylbenzene	ND	-	0.0050	-	-	-	-
Vinyl Chloride	ND	-	0.0050	-	-	-	-
Xylenes, Total	ND	-	0.0050	-	-	-	-

1511651

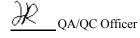
Quality Control Report

WorkOrder:

Client: **Basics Environmental**

Date Prepared: 11/16/15 BatchID: 112956 Date Analyzed: 11/16/15 Extraction Method: SW5030B Instrument: Analytical Method: SW8260B GC16, GC18 Matrix: Unit: mg/Kg

Soil


Project: Pleasanton, CA Sample ID: MB/LCS-112956

1511658-017AMS/MSD

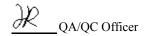
QC Summary Report for SW8260B

Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
Surrogate Recovery							
Dibromofluoromethane	0.115	0.123		0.12	92	99	70-130
Toluene-d8	0.120	0.131		0.12	96	105	70-130
4-BFB	0.0107	0.0125		0.012	85	100	70-130
Benzene-d6	0.0861	0.101		0.10	86	101	60-140
Ethylbenzene-d10	0.0944	0.108		0.10	94	108	60-140
1,2-DCB-d4	0.0687	0.0948		0.10	69	95	60-140

Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
tert-Amyl methyl ether (TAME)	0.0378	0.0383	0.050	ND	76	77	70-130	1.19	20
Benzene	0.0391	0.0392	0.050	ND	78	78	70-130	0	20
t-Butyl alcohol (TBA)	0.170	0.171	0.20	ND	85	85	70-130	0	20
Chlorobenzene	0.0400	0.0406	0.050	ND	80	81	70-130	1.46	20
1,2-Dibromoethane (EDB)	0.0375	0.0376	0.050	ND	75	75	70-130	0	20
1,2-Dichloroethane (1,2-DCA)	0.0396	0.0403	0.050	ND	79	81	70-130	1.59	20
1,1-Dichloroethene	0.0392	0.0395	0.050	ND	78	79	70-130	0.918	20
Diisopropyl ether (DIPE)	0.0400	0.0400	0.050	ND	80	80	70-130	0	20
Ethyl tert-butyl ether (ETBE)	0.0391	0.0392	0.050	ND	78	78	70-130	0	20
Methyl-t-butyl ether (MTBE)	0.0384	0.0388	0.050	ND	77	78	70-130	1.04	20
Toluene	0.0426	0.0428	0.050	ND	85	86	70-130	0.334	20
Trichloroethene	0.0391	0.0401	0.050	ND	78	80	70-130	2.52	20
Surrogate Recovery									
Dibromofluoromethane	0.125	0.126	0.12		100	101	70-130	0.764	20
Toluene-d8	0.132	0.132	0.12		106	105	70-130	0.382	20
4-BFB	0.0106	0.0109	0.012		85	87	70-130	2.55	20
Benzene-d6	0.0770	0.0772	0.10		77	77	60-140	0	20
Ethylbenzene-d10	0.0906	0.0914	0.10		91	91	60-140	0	20
1,2-DCB-d4	0.0685	0.0687	0.10		69	69	60-140	0	20

Quality Control Report

Client:Basics EnvironmentalWorkOrder:1511651Date Prepared:11/16/15BatchID:112987Date Analyzed:11/16/15Extraction Method:SW5030B


Instrument:GC10Analytical Method:SW8260BMatrix:SoilUnit:mg/Kg

Project: Pleasanton, CA Sample ID: MB/LCS-112987 1511651-008BMS/MSD

QC Summary Report for SW8260B

Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
Acetone	ND	-	0.10	-	-	-	-
tert-Amyl methyl ether (TAME)	ND	0.0417	0.0050	0.050	-	83	53-116
Benzene	ND	0.0426	0.0050	0.050	-	85	63-137
Bromobenzene	ND	-	0.0050	-	-	-	-
Bromochloromethane	ND	-	0.0050	-	-	-	-
Bromodichloromethane	ND	-	0.0050	-	-	-	-
Bromoform	ND	-	0.0050	-	-	-	-
Bromomethane	ND	-	0.0050	-	-	-	-
2-Butanone (MEK)	ND	-	0.020	-	-	-	-
t-Butyl alcohol (TBA)	ND	0.193	0.050	0.20	-	96	41-135
n-Butyl benzene	ND	-	0.0050	-	-	-	-
sec-Butyl benzene	ND	-	0.0050	-	-	-	-
tert-Butyl benzene	ND	-	0.0050	-	-	-	-
Carbon Disulfide	ND	-	0.0050	-	-	-	-
Carbon Tetrachloride	ND	-	0.0050	-	-	-	-
Chlorobenzene	ND	0.0451	0.0050	0.050	-	90	77-121
Chloroethane	ND	-	0.0050	-	-	-	-
Chloroform	ND	-	0.0050	-	-	-	-
Chloromethane	ND	-	0.0050	-	-	-	-
2-Chlorotoluene	ND	-	0.0050	-	-	-	-
4-Chlorotoluene	ND	-	0.0050	-	-	-	-
Dibromochloromethane	ND	-	0.0050	-	-	-	-
1,2-Dibromo-3-chloropropane	ND	-	0.0040	-	-	-	-
1,2-Dibromoethane (EDB)	ND	0.0422	0.0040	0.050	-	84	67-119
Dibromomethane	ND	-	0.0050	-	-	-	-
1,2-Dichlorobenzene	ND	-	0.0050	-	-	-	-
1,3-Dichlorobenzene	ND	-	0.0050	-	-	-	-
1,4-Dichlorobenzene	ND	-	0.0050	-	-	-	-
Dichlorodifluoromethane	ND	-	0.0050	-	-	-	-
1,1-Dichloroethane	ND	-	0.0050	-	-	-	-
1,2-Dichloroethane (1,2-DCA)	ND	0.0434	0.0040	0.050	-	87	58-135
1,1-Dichloroethene	ND	0.0430	0.0050	0.050	-	86	42-145
cis-1,2-Dichloroethene	ND	-	0.0050	-	-	-	-
trans-1,2-Dichloroethene	ND	-	0.0050	-	-	-	-
1,2-Dichloropropane	ND	-	0.0050	-	-	-	-
1,3-Dichloropropane	ND	-	0.0050	-	-	-	-
2,2-Dichloropropane	ND	_	0.0050	-	-	-	-

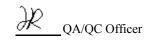
(Cont.)
CDPH ELAP 1644 ♦ NELAP 4033ORELAP

Quality Control Report

Client: Basics Environmental WorkOrder: 1511651

Date Prepared: 11/16/15 BatchID: 112987

Date Analyzed: 11/16/15 Extraction Method: SW5030B


Instrument:GC10Analytical Method:SW8260BMatrix:SoilUnit:mg/Kg

Project: Pleasanton, CA Sample ID: MB/LCS-112987

1511651-008BMS/MSD

QC Summary Report for SW8260B

Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
1,1-Dichloropropene	ND	-	0.0050	-	-	-	-
cis-1,3-Dichloropropene	ND	-	0.0050	-	-	-	-
trans-1,3-Dichloropropene	ND	-	0.0050	-	-	-	-
Diisopropyl ether (DIPE)	ND	0.0440	0.0050	0.050	-	88	52-129
Ethylbenzene	ND	-	0.0050	-	-	-	-
Ethyl tert-butyl ether (ETBE)	ND	0.0432	0.0050	0.050	-	86	53-125
Freon 113	ND	-	0.0050	-	-	-	-
Hexachlorobutadiene	ND	-	0.0050	-	-	-	-
Hexachloroethane	ND	-	0.0050	-	-	-	-
2-Hexanone	ND	-	0.0050	-	-	-	-
Isopropylbenzene	ND	-	0.0050	-	-	-	-
4-Isopropyl toluene	ND	-	0.0050	-	-	-	-
Methyl-t-butyl ether (MTBE)	ND	0.0424	0.0050	0.050	-	85	58-122
Methylene chloride	ND	-	0.0050	-	-	-	-
4-Methyl-2-pentanone (MIBK)	ND	-	0.0050	-	-	-	-
Naphthalene	ND	-	0.0050	-	-	-	-
n-Propyl benzene	ND	-	0.0050	-	-	-	-
Styrene	ND	-	0.0050	-	-	-	-
1,1,1,2-Tetrachloroethane	ND	-	0.0050	-	-	-	-
1,1,2,2-Tetrachloroethane	ND	-	0.0050	-	-	-	-
Tetrachloroethene	ND	-	0.0050	-	-	-	-
Toluene	ND	0.0484	0.0050	0.050	-	97	76-130
1,2,3-Trichlorobenzene	ND	-	0.0050	-	-	-	-
1,2,4-Trichlorobenzene	ND	-	0.0050	-	-	-	-
1,1,1-Trichloroethane	ND	-	0.0050	-	-	-	-
1,1,2-Trichloroethane	ND	-	0.0050	-	-	-	-
Trichloroethene	ND	0.0433	0.0050	0.050	-	87	72-132
Trichlorofluoromethane	ND	-	0.0050	-	-	-	-
1,2,3-Trichloropropane	ND	-	0.0050	-	-	-	-
1,2,4-Trimethylbenzene	ND	-	0.0050	-	-	-	-
1,3,5-Trimethylbenzene	ND	-	0.0050	-	-	-	-
Vinyl Chloride	ND	-	0.0050	-	-	-	-
Xylenes, Total	ND	-	0.0050	_	_	_	_

Quality Control Report

Client: WorkOrder: **Basics Environmental** 1511651 BatchID: Date Prepared: 11/16/15 112987

Date Analyzed: 11/16/15 Extraction Method: SW5030B Instrument: GC10 Analytical Method: SW8260B Matrix: Unit: Soil mg/Kg

Project: Sample ID: MB/LCS-112987 Pleasanton, CA

1511651-008BMS/MSD

QC Summary Report for SW8260B

Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
Surrogate Recovery							
Dibromofluoromethane	0.122	0.123		0.12	97	98	70-130
Toluene-d8	0.136	0.136		0.12	109	109	70-130
4-BFB	0.0100	0.0110		0.012	80	88	70-130
Benzene-d6	0.0793	0.0859		0.10	79	86	60-140
Ethylbenzene-d10	0.0979	0.109		0.10	98	109	60-140
1,2-DCB-d4	0.0757	0.0751		0.10	76	75	60-140

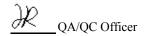
Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPC Limit
tert-Amyl methyl ether (TAME)	0.0339	0.0344	0.050	ND	68,F1	69,F1	70-130	1.57	20
Benzene	0.0338	0.0345	0.050	ND	68,F1	69,F1	70-130	2.10	20
t-Butyl alcohol (TBA)	0.150	0.151	0.20	ND	75	76	70-130	0.673	20
Chlorobenzene	0.0351	0.0361	0.050	ND	70	72	70-130	2.81	20
1,2-Dibromoethane (EDB)	0.0324	0.0334	0.050	ND	65,F1	67,F1	70-130	3.27	20
1,2-Dichloroethane (1,2-DCA)	0.0348	0.0355	0.050	ND	70	71	70-130	2.18	20
1,1-Dichloroethene	0.0339	0.0344	0.050	ND	68,F1	69,F1	70-130	1.68	20
Diisopropyl ether (DIPE)	0.0354	0.0361	0.050	ND	71	72	70-130	2.07	20
Ethyl tert-butyl ether (ETBE)	0.0346	0.0352	0.050	ND	69,F1	70	70-130	1.71	20
Methyl-t-butyl ether (MTBE)	0.0339	0.0342	0.050	ND	68,F1	69,F1	70-130	1.03	20
Toluene	0.0370	0.0379	0.050	ND	74	76	70-130	2.28	20
Trichloroethene	0.0342	0.0348	0.050	ND	68,F1	70	70-130	1.85	20
Surrogate Recovery									
Dibromofluoromethane	0.126	0.125	0.12		100	100	70-130	0	20
Toluene-d8	0.130	0.131	0.12		104	105	70-130	0.674	20
4-BFB	0.0105	0.0108	0.012		84	87	70-130	2.78	20
Benzene-d6	0.0691	0.0701	0.10		69	70	60-140	1.42	20
Ethylbenzene-d10	0.0793	0.0825	0.10		79	82	60-140	3.90	20
1,2-DCB-d4	0.0627	0.0607	0.10		63	61	60-140	3.21	20

Quality Control Report

Client: Basics Environmental WorkOrder: 1511651

Date Prepared: 11/17/15 BatchID: 113041

Date Analyzed: 11/17/15 Extraction Method: SW5030B


Project: Pleasanton, CA Sample ID: MB/LCS-113041

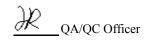
1511658-007BMS/MSD

QC Summary Report for SW8260B

Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
Acetone	ND	-	10	-	-	-	-
tert-Amyl methyl ether (TAME)	ND	8.23	0.50	10	-	82	54-140
Benzene	ND	9.20	0.50	10	-	92	47-158
Bromobenzene	ND	-	0.50	-	-	-	-
Bromochloromethane	ND	-	0.50	-	-	-	-
Bromodichloromethane	ND	-	0.50	-	-	-	-
Bromoform	ND	-	0.50	-	-	-	-
Bromomethane	ND	-	0.50	-	-	-	-
2-Butanone (MEK)	ND	-	2.0	-	-	-	-
t-Butyl alcohol (TBA)	ND	29.0	2.0	40	-	73	42-140
n-Butyl benzene	ND	-	0.50	-	-	-	-
sec-Butyl benzene	ND	-	0.50	-	-	-	-
tert-Butyl benzene	ND	-	0.50	-	-	-	-
Carbon Disulfide	ND	-	0.50	-	-	-	-
Carbon Tetrachloride	ND	-	0.50	-	-	-	-
Chlorobenzene	ND	9.56	0.50	10	-	96	43-157
Chloroethane	ND	-	0.50	-	-	-	-
Chloroform	ND	-	0.50	-	-	-	-
Chloromethane	ND	-	0.50	-	-	-	-
2-Chlorotoluene	ND	-	0.50	-	-	-	-
4-Chlorotoluene	ND	-	0.50	-	-	-	-
Dibromochloromethane	ND	-	0.50	-	-	-	-
1,2-Dibromo-3-chloropropane	ND	-	0.20	-	-	-	-
1,2-Dibromoethane (EDB)	ND	9.31	0.50	10	-	93	44-155
Dibromomethane	ND	-	0.50	-	-	-	-
1,2-Dichlorobenzene	ND	-	0.50	-	-	-	-
1,3-Dichlorobenzene	ND	-	0.50	-	-	-	-
1,4-Dichlorobenzene	ND	-	0.50	-	-	-	-
Dichlorodifluoromethane	ND	-	0.50	-	-	-	-
1,1-Dichloroethane	ND	-	0.50	-	-	-	-
1,2-Dichloroethane (1,2-DCA)	ND	8.14	0.50	10	-	81	66-125
1,1-Dichloroethene	ND	9.77	0.50	10	-	98	47-149
cis-1,2-Dichloroethene	ND	-	0.50	-	-	-	-
trans-1,2-Dichloroethene	ND	-	0.50	-	-	-	-
1,2-Dichloropropane	ND	-	0.50	-	-	-	-
1,3-Dichloropropane	ND	-	0.50	-	-	-	-
2,2-Dichloropropane	ND	-	0.50	-	-	-	-

(Cont.)
CDPH ELAP 1644 ♦ NELAP 4033ORELAP

Quality Control Report


Client:Basics EnvironmentalWorkOrder:1511651Date Prepared:11/17/15BatchID:113041Date Analyzed:11/17/15Extraction Method:SW5030B

Project: Pleasanton, CA Sample ID: MB/LCS-113041

1511658-007BMS/MSD

QC Summary Report for SW8260B

Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
1,1-Dichloropropene	ND	-	0.50	-	-	-	-
cis-1,3-Dichloropropene	ND	-	0.50	-	-	-	-
trans-1,3-Dichloropropene	ND	-	0.50	-	-	-	-
Diisopropyl ether (DIPE)	ND	8.78	0.50	10	-	88	57-136
Ethylbenzene	ND	-	0.50	-	-	-	-
Ethyl tert-butyl ether (ETBE)	ND	8.29	0.50	10	-	83	55-137
Freon 113	ND	-	0.50	-	-	-	-
Hexachlorobutadiene	ND	-	0.50	-	-	-	-
Hexachloroethane	ND	-	0.50	-	-	-	-
2-Hexanone	ND	-	0.50	-	-	-	-
Isopropylbenzene	ND	-	0.50	-	-	-	-
4-Isopropyl toluene	ND	-	0.50	-	-	-	-
Methyl-t-butyl ether (MTBE)	ND	8.16	0.50	10	-	82	53-139
Methylene chloride	ND	-	0.50	-	-	-	-
4-Methyl-2-pentanone (MIBK)	ND	-	0.50	-	-	-	-
Naphthalene	ND	-	0.50	-	-	-	-
n-Propyl benzene	ND	-	0.50	-	-	-	-
Styrene	ND	-	0.50	-	-	-	-
1,1,1,2-Tetrachloroethane	ND	-	0.50	-	-	-	-
1,1,2,2-Tetrachloroethane	ND	-	0.50	-	-	-	-
Tetrachloroethene	ND	-	0.50	-	-	-	-
Toluene	ND	8.56	0.50	10	-	86	52-137
1,2,3-Trichlorobenzene	ND	-	0.50	-	-	-	-
1,2,4-Trichlorobenzene	ND	-	0.50	-	-	-	-
1,1,1-Trichloroethane	ND	-	0.50	-	-	-	-
1,1,2-Trichloroethane	ND	-	0.50	-	-	-	-
Trichloroethene	ND	10.5	0.50	10	-	105	43-157
Trichlorofluoromethane	ND	-	0.50	-	-	-	-
1,2,3-Trichloropropane	ND	-	0.50	-	-	-	-
1,2,4-Trimethylbenzene	ND	-	0.50	-	_	-	-
1,3,5-Trimethylbenzene	ND	-	0.50	-	-	-	-
Vinyl Chloride	ND	-	0.50	-	-	-	-
Xylenes, Total	ND		0.50		_	_	_

Quality Control Report

Client: Basics Environmental WorkOrder: 1511651

Date Prepared: 11/17/15 BatchID: 113041

Date Analyzed: 11/17/15 Extraction Method: SW5030B Instrument: GC28 Analytical Method: SW8260B Matrix: Water Unit: $\mu g/L$

Project: Pleasanton, CA Sample ID: MB/LCS-113041

1511658-007BMS/MSD

QC Summary Report for SW8260B

Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
Surrogate Recovery							
Dibromofluoromethane	23.6	23.6		25	94	95	70-130
Toluene-d8	21.7	21.7		25	87	87	70-130
4-BFB	2.02	2.00		2.5	81	80	70-130

Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
tert-Amyl methyl ether (TAME)	7.81	8.53	10	ND	78	85	69-139	8.83	20
Benzene	8.36	8.97	10	ND	84	90	69-141	7.03	20
t-Butyl alcohol (TBA)	29.8	31.3	40	ND	75	78	41-152	4.93	20
Chlorobenzene	8.99	9.68	10	ND	90	97	77-120	7.42	20
1,2-Dibromoethane (EDB)	9.30	9.85	10	ND	93	99	76-135	5.78	20
1,2-Dichloroethane (1,2-DCA)	7.83	8.37	10	ND	78	84	73-139	6.65	20
1,1-Dichloroethene	9.06	9.46	10	ND	91	95	59-140	4.33	20
Diisopropyl ether (DIPE)	8.25	8.91	10	ND	82	89	72-140	7.71	20
Ethyl tert-butyl ether (ETBE)	7.88	8.54	10	ND	79	85	71-140	8.09	20
Methyl-t-butyl ether (MTBE)	7.86	8.47	10	ND	79	85	73-139	7.48	20
Toluene	7.82	8.37	10	ND	78	84	71-128	6.76	20
Trichloroethene	9.59	10.2	10	ND	96	102	64-132	6.67	20
Surrogate Recovery									
Dibromofluoromethane	23.6	23.7	25		94	95	70-130	0.247	20
Toluene-d8	21.7	21.6	25		87	86	70-130	0.488	20
4-BFB	2.01	1.98	2.5		80	79	70-130	1.64	20

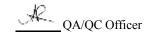
1511651

Quality Control Report

WorkOrder:

Client: **Basics Environmental**

Date Prepared: 11/16/15


BatchID: 112980 Date Analyzed: 11/16/15 - 11/17/15 Extraction Method: SW3510C Instrument: GC2A, GC9b Analytical Method: SW8015B Unit: $\mu g/L$

Matrix: Water

Project: Sample ID: MB/LCS-112980 Pleasanton, CA

QC Report for SW8015B w/out SG Clean-Up

Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
TPH-Diesel (C10-C23)	ND	1020	50	1000	-	102	61-157
TPH-Motor Oil (C18-C36)	ND	-	250	-	-	-	-
Surrogate Recovery							
C9	602	610		625	96	98	65-122

Quality Control Report

Client: Basics Environmental WorkOrder: 1511651

Date Prepared: 11/16/15 BatchID: 112983

Date Analyzed: 11/16/15 BatchID: 112983

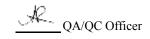
Date Analyzed: 11/16/15 Extraction Method: SW5030B

Instrument: GC19 Analytical Method: SW8021B/8015Bm

Matrix: Soil Unit: mg/Kg

Project: Pleasanton, CA Sample ID: MB/LCS-112983

1511651-001BMS/MSD


QC Summary Report for SW8021B/8015Bm

Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
TPH(btex)	ND	0.599	0.40	0.60	-	100	70-130
MTBE	ND	0.0930	0.050	0.10	-	93	70-130
Benzene	ND	0.104	0.0050	0.10	-	104	70-130
Toluene	ND	0.105	0.0050	0.10	-	105	70-130
Ethylbenzene	ND	0.108	0.0050	0.10	-	108	70-130
Xylenes	ND	0.344	0.0050	0.30	-	115	70-130

Surrogate Recovery

2-Fluorotoluene 0.121 0.124 0.10 121 124 70-130

Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
TPH(btex)	0.432	0.475	0.60	ND	72	79	70-130	9.47	20
MTBE	0.0751	0.0768	0.10	ND	75	77	70-130	2.24	20
Benzene	0.0691	0.0763	0.10	ND	69,F1	76	70-130	9.89	20
Toluene	0.0690	0.0724	0.10	ND	69,F1	72	70-130	4.75	20
Ethylbenzene	0.0759	0.0784	0.10	ND	76	78	70-130	3.19	20
Xylenes	0.239	0.247	0.30	ND	80	82	70-130	3.48	20
Surrogate Recovery									
2-Fluorotoluene	0.0896	0.0908	0.10		90	91	70-130	1.38	20

Quality Control Report

Client: Basics Environmental WorkOrder: 1511651 Date Prepared: 11/18/15 BatchID: 113157

Date Prepared: 11/18/15

Date Analyzed: 11/18/15

Extraction Method: SW5030B

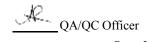
Instrument: GC3

Analytical Method: SW8021B/8015Bm

 $\label{eq:matrix:matr$

Project: Pleasanton, CA Sample ID: MB/LCS-113157

1511782-001IMS/MSD


QC Summary Report for SW8021B/8015Bm

Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
TPH(btex)	ND	57.6	40	60	-	96	70-130
MTBE	ND	9.87	5.0	10	-	99	70-130
Benzene	ND	9.73	0.50	10	-	97	70-130
Toluene	ND	9.96	0.50	10	-	100	70-130
Ethylbenzene	ND	10.2	0.50	10	-	102	70-130
Xylenes	ND	31.0	1.5	30	-	103	70-130

Surrogate Recovery

aaa-TFT 8.15 8.76 10 81 88 70-130

Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
TPH(btex)	59.0	58.8	60	ND	98	98	70-130	0	20
MTBE	9.29	9.47	10	ND	93	95	70-130	1.83	20
Benzene	9.84	10.1	10	ND	98	101	70-130	2.17	20
Toluene	10.0	10.2	10	ND	98	100	70-130	1.79	20
Ethylbenzene	10.2	10.4	10	ND	102	104	70-130	2.24	20
Xylenes	30.8	31.5	30	ND	102	104	70-130	2.36	20
Surrogate Recovery									
aaa-TFT	9.06	8.96	10		91	90	70-130	1.11	20

Quality Control Report

Client: Basics Environmental

Date Prepared: 11/16/15

Date Analyzed: 11/16/15 - 11/17/15 Instrument: ICP-MS1, ICP-MS2

Matrix: Soil

Project: Pleasanton, CA

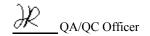
WorkOrder: 1511651 BatchID: 112978

Extraction Method: SW3050B

 $\begin{array}{ll} \mbox{Analytical Method:} & SW6020 \\ \mbox{Unit:} & \mbox{mg/Kg} \end{array}$

Sample ID: MB/LCS-112978

1511660-010AMS/MSD


QC Summary Report for Metals

Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
Cadmium	ND	55.8	0.25	50	-	112	75-125
Chromium	ND	52.1	0.50	50	-	104	75-125
Lead	ND	56.4	0.50	50	-	113	75-125
Nickel	ND	53.1	0.50	50	-	106	75-125
Zinc	ND	554	5.0	500	-	111	75-125

Surrogate Recovery

Terbium 512 609 500 102 122 70-130

Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
Cadmium	49.3	49.1	50	0.27	98	98	75-125	0	20
Chromium	117	116	50	70	95	92	75-125	1.12	20
Lead	59.7	59.2	50	10.56	98	97	75-125	0.925	20
Nickel	136	136	50	92	89	88	75-125	0.515	20
Zinc	547	551	500	66	96	97	75-125	0.711	20
Surrogate Recovery									
Terbium	542	532	500		108	106	70-130	1.99	20

Quality Control Report

Client:Basics EnvironmentalWorkOrder:1511651Date Prepared:11/16/15BatchID:112971Date Analyzed:11/16/15Extraction Method:E200.8Instrument:ICP-MS2Analytical Method:E200.8

 $\label{eq:matrix:matrix:matrix:matrix} \text{Water} \qquad \qquad \text{Unit:} \qquad \mu \text{g/L}$


Project: Pleasanton, CA Sample ID: MB/LCS-112971

1511658-012CMS/MSD

QC Summary Report for Dissolved Metals

Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
Cadmium	ND	48.4	0.25	50	-	97	85-115
Chromium	ND	50.0	0.50	50	-	100	85-115
Lead	ND	49.1	0.50	50	-	98	85-115
Nickel	ND	50.6	0.50	50	-	101	85-115
Zinc	ND	507	15	500	-	101	85-115

Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
Cadmium	51.1	50.1	50	ND	102	100	70-130	2.02	20
Chromium	50.8	48.8	50	1.297	99	95	70-130	4.10	20
Lead	54.0	53.4	50	1.068	106	105	70-130	1.12	20
Nickel	54.2	52.8	50	4.884	99	96	70-130	2.54	20
Zinc	508	492	500	ND	102	98	70-130	3.08	20

Quality Control Report

Client: Basics Environmental

Date Prepared: 11/16/15
Date Analyzed: 11/16/15
Instrument: GC6A, GC9a

Matrix: Soil

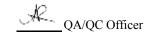
Project: Pleasanton, CA

WorkOrder: 1511651

BatchID: 112979 Extraction Method: SW3550B

Analytical Method: SW8015B

Unit: mg/Kg


Sample ID: MB/LCS-112979

1511662-006AMS/MSD

QC Report for SW8015B w/out SG Clean-Up

Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
TPH-Diesel (C10-C23)	ND	45.4	1.0	40	-	113	70-130
TPH-Motor Oil (C18-C36)	ND	-	5.0	-	-	-	-
Surrogate Recovery							
C9	26.4	26.4		25	106	106	70-130

Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
TPH-Diesel (C10-C23)	NR	NR		83	NR	NR	-	NR	
Surrogate Recovery C9	NR	NR			NR	NR	-	NR	

McCampbell Analytical, Inc.

Report to:

Oakland, CA 94607 655 12th Street, Suite 126 Basics Environmental Donavan Tom

(510) 834-9099

FAX: (510) 834-9098

1534 Willow Pass Rd (925) 252-9262 Pittsburg, CA 94565-1701

WaterTrax

WriteOn

Email:

cc/3rd Party: litafreeman@gmail.com;

ProjectNo: Pleasanton, CA

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

__EDF WorkOrder: 1511651 ClientCode: BEO

Excel ■ EQuIS **✓** Email ☐ HardCopy ☐ ThirdParty

basicsenvironmental@gmail.com Accounts Payable Requested TAT:

5 days;

☐ J-flag

Basics Environmental Oakland, CA 94607 655 12th Street, Suite 126

Date Received: Date Printed: 11/16/2015 11/13/2015

								Re	quested	Tests ((See leg	end below	X			
Lab ID	Client ID	Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
				ı												
1511651-001	SB-2-2	Soil	11/13/2015 8:15		В		В		В			В				
1511651-008	SB-1-5.5	Soil	11/13/2015 10:05		В		В		В			В				
1511651-012	SB-2-W	Water	11/12/2015 14:20			Α		В		О	С		В			

Test Legend:

9	5	_
TPH(D)_W	LUFTMS_6020_S	8260B_S

The following SampIDs: 001B, 008B, 012B contain testgroup.

10	6	2
	LUFTMS_DISS	8260B_W

=	7	သ
	PRDISSOLVED	G-MBTEX_S

Prepared by: Maria Venegas

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days).

Hazardous samples will be returned to client or disposed of at client expense.

McCampbell Analytical, Inc.

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

WORK ORDER SUMMARY

Comments:	Project:	Client Name:
	Pleasanton, CA	Client Name: BASICS ENVIRONMENTAL
Contact's Email: basicsenvironmental@gmail.com	Client Contact: Donavan Tom	QC Level: LEVEL 2
	Date Received: 11/13/2015	Work Order: 1511651
	11/13/2015	1511651

Committee.				טוונמטנ ש בווומוו. ט	Ophrabit a Elliant. Dasieschvingingitental@gmani.com	111.COIII				
	☐ WaterTrax	WriteOn	EDF	□Excel [Fax _ _€Email	□HardCopy	opy □ThirdParty □J-flag		-flag	
Lab ID Client ID	Matrix	Test Name		Containers /Composites	Bottle & Preservative s	De- chlorinated	Collection Date & Time	TAT	Sediment Hold SubOut Content	ld SubOut
1511651-001B SB-2-2	Soil	SW6020 (LUFT)	T) PH(odmo)	1	Acetate Liner		11/13/2015 8:15	5 days	, _[]	
		Multi-Range TPH(g,d,mo) SW8260B (VOCs)	PH(g,d,mo))Cs)					5 days 5 days		
1511651-002A SB-2-5.5	Soil			1	Acetate Liner		11/13/2015 8:25		<	
1511651-003A SB-2-10	Soil			1	Acetate Liner		11/13/2015 8:35		<	
1511651-004A SB-2-15	Soil			1	Acetate Liner		11/13/2015 8:40		<	
1511651-005A SB-2-20	Soil			1	Acetate Liner		11/13/2015 8:45		✓	
1511651-006A SB-2-30	Soil			1	Acetate Liner		11/13/2015 9:05		✓	
1511651-007A SB-1-2	Soil			1	Acetate Liner		11/13/2015 10:00		<	
1511651-008B SB-1-5.5	Soil	SW6020 (LUFT)	T) PH(adma)	1	Acetate Liner		11/13/2015 10:05	5 days	, []	
		SW8260B (VOCs))Cs)					5 days		
1511651-009A SB-1-10	Soil			1	Acetate Liner		11/13/2015 10:10		<	
1511651-010A SB-1-15	Soil			1	Acetate Liner		11/13/2015 10:15		<	
1511651-011A SB-1-20	Soil			1	Acetate Liner		11/13/2015 10:40		<	
1511651-012A SB-2-W	Water	SW8260B (VOCs))Cs)	2	VOA w/ HCI		11/12/2015 14:20	5 days	Present	

NOTES: - STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- MAI assumes that all material present in the provided sampling container is considered part of the sample - MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

McCampbell Analytical, Inc. "When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

WORK ORDER SUMMARY

1511651-012C SB-2-W	1511651-012B SB-2-W	Lab ID		Comments:	Project:	Client Name:
SB-2-W	SB-2-W	Client ID			Pleasanton, CA	: BASICS ENV
Water	Water	Matr	☐ WaterTrax		Α	Client Name: BASICS ENVIRONMENTAL
	r Multi-Range TPH(g,d,mo)	Matrix Test Name	WriteOn			
E200.8 (LUFT) (Dissolved-Lab Filtered)	ГРН(g,d,mo)		□EDF	00	0	
lltered) 1	4	Containers /Composites	Excel	Contact's Email: basicsenviron	Client Contact: Donavan Tom	QC Level: LEVEL 2
250mL HDPE,	4 2 VOAs w/HCL + (multi-rang	Containers Bottle & Preservative /Composites	Fax	basicsenviro	Donavan Toi	LEVEL 2
DPE, unprsv.	s w/HCL + 2-aVOAs (multi-range)	Preservative	✓ Email	nmental@gmail.com	В	
		De- Collection D chlorinated & Time	□HardCop	il.com		
11/12/2015 14:20 5 days Present	11/12/2015 14:20 5 days Present	De- Collection Date TAT Sediment Hold SubOut chlorinated & Time Content	☐HardCopy ☐ThirdParty ☐J-flag			
5 days	5 days	TAT	/ ا		Date R	Worl
Present	Present	Sediment Content	-flag		Date Received: 11/13/2015	Work Order: 1511651
		Hold SubOut			1/13/2015	511651

NOTES: - STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- MAI assumes that all material present in the provided sampling container is considered part of the sample - MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

Date: 13 /15	re/Affiliation)	Received by: (Signature/Affiliation)	Re		nature)	Relinquished by: (Signature)
	re/Affiliation)	Received by: (Signature/Affiliation)	Re		(Signature)	Rélinquished by: (Signature)
	re/Affication)	Solved by: (Simpling	5 1	15/10/5	5 11375	Belighiished by: (Signs
			-	0101	0 11-13-7	56-1-10
	× × × ×		10	315 1005	55 11-13-15	86-1-5
			-	3/5/1000	11-13/5	58-1-2
			- W	N	6 11-13,	56-2-3
			- W	3-150845	11-13-	56-2-20
		2	<u></u>	15 0840	11-13-15	58-2-15
			~ ~	Vi	0 11-13-	58-2-10
			<u>-</u>	15 0825	5 11-13	58-2-5.5
	× × ×		<u> </u>	3-15 0815	11-13-16	58-7-2
SVOCs (82) Pesticides (PCBs (8082) PNAs (8310)	BTEX / MTE VOCs (8260 Oxygenates	Unpreserved Preserved Field Filtere	MATRIX CONT.	SAMPLING	FILTER WORKERS WITHIN 24hours SAMPLEID SAMPLING DATE TIME	Lab Filter W USE SAN
3081)	DRO or (C6C36) or () BE (8260) or ()		ail-com	PasicsEnvironmentel Egnail	~ (2	EMail Report
	olven	L'OG CODE			GLOBAL ID	COELT EDF
	4	XX	ISTANDARD 5da	□72 HR 🍂STA	24 HR	SAME DAY
ESTED ANALYSES	REQU	, com	egnail	Basics Savionnentale gnail . con	9099 E-MAIL: Basics	
158mas	Braven Tom/Litat	94607		STATE	lend	Dak
	PROJECT CONTACT:			4	12th 5hgst St	ADDRESS: 655
	CLIENT PROJECT NAME / NUMBER:			1	Ŋ	LABORATORY CLIENT:
Date_ Page_	WO # / LAB USE ONLY		5063 Commercial Circle, Suite H Concord, CA 94520-8577 (925) 689-9022	5063 Commerc Concord, CA 94 (925) 689-9022	7440 Lincoln Way Garden Grove, CA 92841-1427 (714) 895-5494	744 Ga (71
CHAIN OF CUSTODY RECORD	12011021	Laboratories, Inc.	borator	Environmental La	Calscience Environ	Cal
			ACCUPATION OF THE PROPERTY OF			

DISTRIBUTION: White with final report, Green and Yellow to Client.

Please note that pages 1 and 2 of 2 of our T/Cs are printed on the reverse side of the Green and Yellow copies respectively.

09/01/13 Revision

-								
Relinquished by: (Signature)		+	SPEC SPEC	U SV	TEL:	CITY	TABO	
Relinquished by: Relinquished by: Relinquished by:		58-	PECIAL INS	SAME DAY COELT EDF	050	Oc Less:	RATORY	
Relinquished by: (Signature) Relinquished by: (Signature) Relinquished by: (Signature)		1	- 0)	SAME DAY COELT EDF	30834-9099	655 axla	DASICS	Ca
(Signature) (Signature) (Signature)		2-W	SAM SAM		4-1	5 -	_	Calscience SoCal Laborator 7440 Lincoln Wa Garden Grove, 0 (714) 895-5494
gnature) gnature) gnature)			TIONS:]24 HR GLOBAL ID	900	12th	501	Science I SoCal Laboratory 7440 Lincoln Way Garden Grove, CA (714) 895-5494
7 8			8 78	AL D	99	5	0/	oln W rove, -5494
			45 4 50 CC	☐ 48 HR	E-MAH.	SHESS	3	
		= -	Epoilto & Basics Environmental Egmai Itatreeman Egmail - com ter water somples within 24hours/Li sampling Date Time Me	H H	3#	2	ENVIDAMENTA	Science Envirol SoCal Laboratory 7440 Lincoln Way Garden Grove, CA 92841-1427 (714) 895-5494
		135	DATE		25105	a	ST.	10 1 427
mile l	1101	元元	nms Sami	72 HR		Th		E E
	SEEN OTHER SECTION OF	1040	gma gma in 241	五	N,	Co N		© 0 5 Z
	SERVATION DE CONDITION DE SPACE ARE LIM-ORUNATES	1040	TIME TIME	X	NA	STATE		orCal 063 C oncor
	1 2 1 2		N CON	STAN	38			tal Labo NorCal Service 5063 Commerc Concord, CA 94 (925) 689-9022
	NT NLAB_OAS	E.O.	MATRIX	XSTANDARD &	Environmenta			Environmental Laboratories, NorCal Service Center 5063 Commercial Circle, Suite H Concord, CA 94520-8577 (925) 689-9022
		1	CONT.	S	-		-	atonter Circle, 0-857
Receiv	APPROJ GONTAL METAL	7	Unpreserved	106	am.	94		Suite
ed by	PPROPRIATE ONTAINERS RESERVED I		Preserved	LOG CODE	ail.	14607 OHZ OH	5, 11	± 3
Received by: (Signature/Affiliation) Received by: (Signature/Affiliation) Received by: (Signature/Affiliation)	PPROPRIATE ONTAINERS VESERVED IN LA		Field Filtered	m	pamail.com	70		Inc.
nature lature	AB	*				<u></u>	Ω	
Affilia Affilia		X	<u>TPH (g)</u> or GRO <u>TPH (d)</u> or DRO or (C6C36) or	r (C6-C44)		Jaros	IENT	WO#/LAB USE
tion) tion)		*	(1111=	duent)		T CON	PROJE	AB US
			BTEX / MTBE (8260) or ()		PROJECT CONTACT:	CLIENT PROJECT NAME / NUMBER:	E ONLY
		4	VOCs (8260)				ME / I	
			Oxygenates (8260)		RE		NUMBE	
			En Core / Terra Core Prep (50	035)	in S		H	
			SVOCs (8270)		REQUESTED			
			Pesticides (8081)		E			CH, Date_
			PCBs (8082)		A			HAI te
Date:			PNAs (8310) or (8270)		ANALYSES	S	٩.	NO
200			T22 Metals (6010B/747X)	,	YSE	AMPLE	P.O. NO.:	PG
201			Cr(VI) [7196 or 7199 or 218.6]		S	R(S):	:.	F CUSTO -13-15 2 of_
		/	LVFT5 MEtal	5		SAMPLER(S): (PRINT)		CHAIN OF CUSTODY RECORD Date /1-13-15 age 2 of 2
Time: // OC Time: // 840 Time:				60		J		Y R
8								ECC
		1	Hold				n all)RD
		1						

DISTRIBUTION: White with final report, Green and Yellow to Client.

Please note that pages 1 and 2 of 2 of our T/Cs are printed on the reverse side of the Green and Yellow copies respectively.

09/01/13 Revision

Sample Receipt Checklist

Client Name:	Basics Environmental			Date and T	ime Received:	11/13/2015 7:17:57 PM
Project Name:	Pleasanton, CA			LogIn Revi	ewed by:	Maria Venegas
WorkOrder №:	1511651 Matrix: <u>Soil/Water</u>			Carrier:	Benjamin Yslas	s (MAI Courier)
	Chain of C	ustody	y (COC) In	<u>formation</u>		
Chain of custody	present?	Yes	✓	No 🗌		
Chain of custody	signed when relinquished and received?	Yes	✓	No 🗌		
Chain of custody	agrees with sample labels?	Yes	✓	No 🗆		
Sample IDs noted	d by Client on COC?	Yes	✓	No 🗌		
Date and Time of	collection noted by Client on COC?	Yes	✓	No 🗆		
Sampler's name	noted on COC?	Yes	✓	No 🗌		
	Samp	le Rece	eipt Inform	nation		
Custody seals int	act on shipping container/cooler?	Yes		No 🗌		NA 🗸
Shipping containe	er/cooler in good condition?	Yes	✓	No 🗌		
Samples in prope	er containers/bottles?	Yes	✓	No 🗌		
Sample container	rs intact?	Yes	✓	No 🗌		
Sufficient sample	volume for indicated test?	Yes	✓	No 🗌		
	Sample Preservati	on and	Hold Tim	e (HT) Info	<u>rmation</u>	
All samples recei	ved within holding time?	Yes	✓	No 🗌		
Sample/Temp Bla	ank temperature		Temp:	3.7°C		NA 🗆
Water - VOA vials	s have zero headspace / no bubbles?	Yes	✓	No \square		NA 🗆
Sample labels ch	ecked for correct preservation?	Yes	✓	No 🗌		
pH acceptable up	oon receipt (Metal: <2; 522: <4; 218.7: >8)?	Yes		No 🗌		NA 🗹
Samples Receive		Yes	✓	No 🗌		
	(Ice Typ	e: WE	TICE)			
UCMR3 Samples		V		No 🗌		NA 🗹
	ested and acceptable upon receipt for EPA 522?					
Free Chlorine to 300.1, 537, 539	ested and acceptable upon receipt for EPA 218.7, 9?	Yes		No 🗌		NA 🗹
* NOTE: If the "N	lo" box is checked, see comments below.					
Comments:		==:				

McCampbell Analytical, Inc.

"When Quality Counts"

Analytical Report

WorkOrder: 1511623

Report Created for: Basics Environmental

655 12th Street, Suite 126

Oakland, CA 94607

Project Contact:

Donavan Tom

Project P.O.:

Project Name: 927 Main St.

Project Received: 11/13/2015

Analytical Report reviewed & approved for release on 11/20/2015 by:

Angela Rydelius,

Laboratory Manager

The report shall not be reproduced except in full, without the written approval of the laboratory. The analytical results relate only to the items tested. Results reported conform to the most current NELAP standards, where applicable, unless otherwise stated in the case narrative.

1534 Willow Pass Rd. Pittsburg, CA 94565 ♦ TEL: (877) 252-9262 ♦ FAX: (925) 252-9269 ♦ www.mccampbell.com NELAP: 4033ORELAP ♦ ELAP: 1644 ♦ ISO/IEC: 17025:2005 ♦ WSDE: C972-11 ♦ ADEC: UST-098 ♦ UCMR3

Glossary of Terms & Qualifier Definitions

Client: Basics Environmental

Project: 927 Main St. WorkOrder: 1511623

Glossary Abbreviation

95% Interval 95% Confident Interval

DF Dilution Factor

DI WET (DISTLC) Waste Extraction Test using DI water

DISS Dissolved (direct analysis of 0.45 µm filtered and acidified water sample)

DLT Dilution Test
DUP Duplicate

EDL Estimated Detection Limit

ITEF International Toxicity Equivalence Factor

LCS Laboratory Control Sample

MB Method Blank

MB % Rec % Recovery of Surrogate in Method Blank, if applicable

MDL Method Detection Limit

ML Minimum Level of Quantitation

MS Matrix Spike

MSD Matrix Spike Duplicate

N/A Not Applicable

ND Not detected at or above the indicated MDL or RL

NR Data Not Reported due to matrix interference or insufficient sample amount.

PDS Post Digestion Spike

PDSD Post Digestion Spike Duplicate

PF Prep Factor

RD Relative Difference

RL Reporting Limit (The RL is the lowest calibration standard in a multipoint calibration.)

RPD Relative Percent Deviation
RRT Relative Retention Time

SPK Val Spike Value

SPKRef Val Spike Reference Value

SPLP Synthetic Precipitation Leachate Procedure
TCLP Toxicity Characteristic Leachate Procedure

TEQ Toxicity Equivalents

WET (STLC) Waste Extraction Test (Soluble Threshold Limit Concentration)

Analytical Qualifiers

F sample was filtered upon arrival to the lab

b1 aqueous sample that contains greater than ~1 vol. % sediment e2 diesel range compounds are significant; no recognizable pattern

Analytical Report

Client: Basics Environmental WorkOrder: 1511623

Date Received: 11/13/15 17:20 Extraction Method: SW5030B

Date Prepared: 11/20/15 Analytical Method: SW8260B

Project: 927 Main St. Unit: µg/L

Volatile Organies by D.S.T. and C.C./M.S. (Pagin Target List)

Client ID	Lab ID Matrix	Date Collected Instrument	Batch ID
SB-1-W	1511623-002C Water	11/13/2015 11:30 GC28	113217
<u>Analytes</u>	<u>Result</u>	<u>RL</u> <u>DF</u>	Date Analyzed
Acetone	ND	10 1	11/20/2015 10:46
tert-Amyl methyl ether (TAME)	ND	0.50 1	11/20/2015 10:46
Benzene	ND	0.50 1	11/20/2015 10:46
Bromobenzene	ND	0.50 1	11/20/2015 10:46
Bromochloromethane	ND	0.50 1	11/20/2015 10:46
Bromodichloromethane	1.3	0.50 1	11/20/2015 10:46
Bromoform	ND	0.50 1	11/20/2015 10:46
Bromomethane	ND	0.50 1	11/20/2015 10:46
2-Butanone (MEK)	ND	2.0 1	11/20/2015 10:46
t-Butyl alcohol (TBA)	ND	2.0 1	11/20/2015 10:46
n-Butyl benzene	ND	0.50 1	11/20/2015 10:46
sec-Butyl benzene	ND	0.50 1	11/20/2015 10:46
tert-Butyl benzene	ND	0.50 1	11/20/2015 10:46
Carbon Disulfide	ND	0.50 1	11/20/2015 10:46
Carbon Tetrachloride	ND	0.50 1	11/20/2015 10:46
Chlorobenzene	ND	0.50 1	11/20/2015 10:46
Chloroethane	ND	0.50 1	11/20/2015 10:46
Chloroform	5.5	0.50 1	11/20/2015 10:46
Chloromethane	ND	0.50 1	11/20/2015 10:46
2-Chlorotoluene	ND	0.50 1	11/20/2015 10:46
4-Chlorotoluene	ND	0.50 1	11/20/2015 10:46
Dibromochloromethane	ND	0.50 1	11/20/2015 10:46
1,2-Dibromo-3-chloropropane	ND	0.20 1	11/20/2015 10:46
1,2-Dibromoethane (EDB)	ND	0.50 1	11/20/2015 10:46
Dibromomethane	ND	0.50 1	11/20/2015 10:46
1,2-Dichlorobenzene	ND	0.50 1	11/20/2015 10:46
1,3-Dichlorobenzene	ND	0.50 1	11/20/2015 10:46
1,4-Dichlorobenzene	ND	0.50 1	11/20/2015 10:46
Dichlorodifluoromethane	ND	0.50 1	11/20/2015 10:46
1,1-Dichloroethane	ND	0.50 1	11/20/2015 10:46
1,2-Dichloroethane (1,2-DCA)	ND	0.50 1	11/20/2015 10:46
1,1-Dichloroethene	ND	0.50 1	11/20/2015 10:46
cis-1,2-Dichloroethene	ND	0.50 1	11/20/2015 10:46
trans-1,2-Dichloroethene	ND	0.50 1	11/20/2015 10:46
1,2-Dichloropropane	ND	0.50 1	11/20/2015 10:46
1,3-Dichloropropane	ND	0.50 1	11/20/2015 10:46
2,2-Dichloropropane	ND	0.50 1	11/20/2015 10:46

(Cont.)

Angela Rydelius, Lab Manager

Analytical Report

Client: Basics Environmental WorkOrder: 1511623

Date Received: 11/13/15 17:20 Extraction Method: SW5030B

Date Prepared: 11/20/15 Analytical Method: SW8260B

Project: 927 Main St. Unit: µg/L

	Volatile Organics by P	&T and G	GC/MS (Bas	ic Target List)	
Client ID	Lab ID	Matrix	Date Co	ollected Instrument	Batch ID
SB-1-W	1511623-002C	Water	11/13/20	15 11:30 GC28	113217
<u>Analytes</u>	<u>Result</u>		<u>RL</u>	<u>DF</u>	Date Analyzed
1,1-Dichloropropene	ND		0.50	1	11/20/2015 10:46
cis-1,3-Dichloropropene	ND		0.50	1	11/20/2015 10:46
trans-1,3-Dichloropropene	ND		0.50	1	11/20/2015 10:46
Diisopropyl ether (DIPE)	ND		0.50	1	11/20/2015 10:46
Ethylbenzene	ND		0.50	1	11/20/2015 10:46
Ethyl tert-butyl ether (ETBE)	ND		0.50	1	11/20/2015 10:46
Freon 113	ND		0.50	1	11/20/2015 10:46
Hexachlorobutadiene	ND		0.50	1	11/20/2015 10:46
Hexachloroethane	ND		0.50	1	11/20/2015 10:46
2-Hexanone	ND		0.50	1	11/20/2015 10:46
Isopropylbenzene	ND		0.50	1	11/20/2015 10:46
4-Isopropyl toluene	ND		0.50	1	11/20/2015 10:46
Methyl-t-butyl ether (MTBE)	ND		0.50	1	11/20/2015 10:46
Methylene chloride	ND		0.50	1	11/20/2015 10:46
4-Methyl-2-pentanone (MIBK)	ND		0.50	1	11/20/2015 10:46
Naphthalene	ND		0.50	1	11/20/2015 10:46
n-Propyl benzene	ND		0.50	1	11/20/2015 10:46
Styrene	ND		0.50	1	11/20/2015 10:46
1,1,1,2-Tetrachloroethane	ND		0.50	1	11/20/2015 10:46
1,1,2,2-Tetrachloroethane	ND		0.50	1	11/20/2015 10:46
Tetrachloroethene	ND		0.50	1	11/20/2015 10:46
Toluene	ND		0.50	1	11/20/2015 10:46
1,2,3-Trichlorobenzene	ND		0.50	1	11/20/2015 10:46
1,2,4-Trichlorobenzene	ND		0.50	1	11/20/2015 10:46
1,1,1-Trichloroethane	ND		0.50	1	11/20/2015 10:46
1,1,2-Trichloroethane	ND		0.50	1	11/20/2015 10:46
Trichloroethene	ND		0.50	1	11/20/2015 10:46
Trichlorofluoromethane	ND		0.50	1	11/20/2015 10:46
1,2,3-Trichloropropane	ND		0.50	1	11/20/2015 10:46
1,2,4-Trimethylbenzene	ND		0.50	1	11/20/2015 10:46
1,3,5-Trimethylbenzene	ND		0.50	1	11/20/2015 10:46
Vinyl Chloride	ND		0.50	1	11/20/2015 10:46
Xylenes, Total	ND		0.50	1	11/20/2015 10:46

(Cont.)
CDPH ELAP 1644 ♦ NELAP 4033ORELAP

Analytical Report

Client: Basics Environmental WorkOrder: 1511623

Date Received: 11/13/15 17:20 Extraction Method: SW5030B

Date Prepared: 11/20/15 Analytical Method: SW8260B

Project: 927 Main St. Unit: µg/L

	Volatile Organics by Po	&T and GC/N	S (Basic Target List)	arget List)				
Client ID	Lab ID N	Matrix	Date Collected Instrument	Batch ID				
SB-1-W	1511623-002C V	Vater	11/13/2015 11:30 GC28	113217				
Analytes	Result		RL DF	Date Analyzed				
Surrogates	<u>REC (%)</u>		<u>Limits</u>					
Dibromofluoromethane	95		70-130	11/20/2015 10:46				
Toluene-d8	87		70-130	11/20/2015 10:46				
4-BFB	78		70-130	11/20/2015 10:46				
Analyst(s): KF		<u>Analy</u> i	ical Comments: b1					

Analytical Report

Client: Basics Environmental WorkOrder: 1511623

Date Received: 11/13/15 17:20 Extraction Method: SW5030B

Date Prepared: 11/14/15 Analytical Method: SW8021B/8015Bm

Project: 927 Main St. Unit: $\mu g/L$

Gasoline R	ange (C6-C12) Volatile	nge (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE								
Client ID	Lab ID	Matrix	Date C	Collected Instrument	Batch ID					
SB-1-W	1511623-002B	Water	11/13/20	015 11:30 GC3	112891					
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>	Date Analyzed					
TPH(g)	ND		50	1	11/14/2015 00:31					
MTBE	ND		5.0	1	11/14/2015 00:31					
Benzene	ND		0.50	1	11/14/2015 00:31					
Toluene	ND		0.50	1	11/14/2015 00:31					
Ethylbenzene	ND		0.50	1	11/14/2015 00:31					
TPH(ss)	ND		50	1	11/14/2015 00:31					
Xylenes	ND		0.50	1	11/14/2015 00:31					
Surrogates	<u>REC (%)</u>		<u>Limits</u>							
aaa-TFT	90		70-130		11/14/2015 00:31					
Analyst(s): IA			Analytical Com	nments: b1						

Analytical Report

Client: Basics Environmental WorkOrder: 1511623
Date Received: 11/13/15 17:20
Extraction Method: SW3005
Date Prepared: 11/13/15 Analytical Method: SW6020
Project: 927 Main St. Unit: $\mu g/L$

	Dissolved LUFT 5 Metals								
Client ID	Lab ID	Matrix	Date Co	llected Instrument	Batch ID				
SB-1-W	1511623-002D	Water	11/13/201	5 11:30 ICP-MS2	112893				
Analytes	Result	<u>Qualifiers</u>	<u>RL</u>	<u>DF</u>	Date Analyzed				
Cadmium	ND	F	0.25	1	11/16/2015 21:42				
Chromium	0.63	F	0.50	1	11/16/2015 21:42				
Lead	ND	F	0.50	1	11/16/2015 21:42				
Nickel	1.8	F	0.50	1	11/16/2015 21:42				
Zinc	ND	F	15	1	11/16/2015 21:42				

Analyst(s): BBO Analytical Comments: b1

Analytical Report

Client: Basics Environmental WorkOrder: 1511623

Date Received: 11/13/15 17:20 Extraction Method: SW3510C

Date Prepared: 11/13/15 Analytical Method: SW8015B

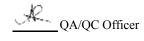
Project: 927 Main St. Unit: µg/L

	Total Extractable Petro	leum Hyd	rocarbons w/	out SG Clean-Up	
Client ID	Lab ID	Matrix	Date Co	ollected Instrument	Batch ID
SB-1-W	1511623-002A	Water	11/13/20	15 11:30 GC39A	112915
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
TPH-Diesel (C10-C23)	120		100	2	11/17/2015 19:19
<u>Surrogates</u>	<u>REC (%)</u>		<u>Limits</u>		
C9	113		70-130		11/17/2015 19:19
Analyst(s): TK			Analytical Comr	ments: e2,b1	

Quality Control Report

Client: Basics Environmental WorkOrder: 1511623

Date Prepared: 11/20/15 BatchID: 113217


Date Analyzed: 11/20/15 Extraction Method: SW5030B

Project: 927 Main St. Sample ID: MB/LCS-113217

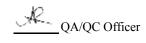
QC Summary Report for SW8260B

Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
Acetone	ND	-	10	-	-	-	-
tert-Amyl methyl ether (TAME)	ND	7.15	0.50	10	-	72	54-140
Benzene	ND	8.03	0.50	10	-	80	47-158
Bromobenzene	ND	-	0.50	-	-	-	-
Bromochloromethane	ND	-	0.50	-	-	-	-
Bromodichloromethane	ND	-	0.50	-	-	-	-
Bromoform	ND	-	0.50	-	-	-	-
Bromomethane	ND	-	0.50	-	-	-	-
2-Butanone (MEK)	ND	-	2.0	-	-	-	-
t-Butyl alcohol (TBA)	ND	24.5	2.0	40	-	61	42-140
n-Butyl benzene	ND	-	0.50	-	-	-	-
sec-Butyl benzene	ND	-	0.50	-	-	-	-
tert-Butyl benzene	ND	-	0.50	-	-	-	-
Carbon Disulfide	ND	-	0.50	-	-	-	-
Carbon Tetrachloride	ND	-	0.50	-	-	-	-
Chlorobenzene	ND	8.68	0.50	10	-	87	43-157
Chloroethane	ND	-	0.50	-	-	-	-
Chloroform	ND	-	0.50	-	-	-	-
Chloromethane	ND	-	0.50	-	-	-	-
2-Chlorotoluene	ND	-	0.50	-	-	-	-
4-Chlorotoluene	ND	-	0.50	-	-	-	-
Dibromochloromethane	ND	-	0.50	-	-	-	-
1,2-Dibromo-3-chloropropane	ND	-	0.20	-	-	-	-
1,2-Dibromoethane (EDB)	ND	8.44	0.50	10	-	84	44-155
Dibromomethane	ND	-	0.50	-	-	-	-
1,2-Dichlorobenzene	ND	-	0.50	-	-	-	-
1,3-Dichlorobenzene	ND	-	0.50	-	-	-	-
1,4-Dichlorobenzene	ND	-	0.50	-	-	-	-
Dichlorodifluoromethane	ND	-	0.50	-	-	-	-
1,1-Dichloroethane	ND	-	0.50	-	-	-	-
1,2-Dichloroethane (1,2-DCA)	ND	7.11	0.50	10	-	71	66-125
1,1-Dichloroethene	ND	8.75	0.50	10	-	88	47-149
cis-1,2-Dichloroethene	ND	-	0.50	-	-	-	-
trans-1,2-Dichloroethene	ND	-	0.50	-	-	-	-
1,2-Dichloropropane	ND	-	0.50	-	-	-	-
1,3-Dichloropropane	ND	-	0.50	-	-	-	-
2,2-Dichloropropane	ND	-	0.50	-	-	-	-

(Cont.)
CDPH ELAP 1644 ♦ NELAP 4033ORELAP

Quality Control Report

Client: Basics Environmental WorkOrder: 1511623


Date Prepared: 11/20/15 BatchID: 113217

Date Analyzed: 11/20/15 Extraction Method: SW5030B

Project: 927 Main St. Sample ID: MB/LCS-113217

QC Summary Report for SW8260B

Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
1,1-Dichloropropene	ND	-	0.50	-	-	-	-
cis-1,3-Dichloropropene	ND	-	0.50	-	-	-	-
trans-1,3-Dichloropropene	ND	-	0.50	-	-	-	-
Diisopropyl ether (DIPE)	ND	7.72	0.50	10	-	77	57-136
Ethylbenzene	ND	-	0.50	-	-	-	-
Ethyl tert-butyl ether (ETBE)	ND	7.30	0.50	10	-	73	55-137
Freon 113	ND	-	0.50	-	-	-	-
Hexachlorobutadiene	ND	-	0.50	-	-	-	-
Hexachloroethane	ND	-	0.50	-	-	-	-
2-Hexanone	ND	-	0.50	-	-	-	-
Isopropylbenzene	ND	-	0.50	-	-	-	-
4-Isopropyl toluene	ND	-	0.50	-	-	-	-
Methyl-t-butyl ether (MTBE)	ND	7.20	0.50	10	-	72	53-139
Methylene chloride	ND	-	0.50	-	-	-	-
4-Methyl-2-pentanone (MIBK)	ND	-	0.50	-	-	-	-
Naphthalene	ND	-	0.50	-	-	-	-
n-Propyl benzene	ND	-	0.50	-	-	-	-
Styrene	ND	-	0.50	-	-	-	-
1,1,1,2-Tetrachloroethane	ND	-	0.50	-	-	-	-
1,1,2,2-Tetrachloroethane	ND	-	0.50	-	-	-	-
Tetrachloroethene	ND	-	0.50	-	-	-	-
Toluene	ND	7.70	0.50	10	-	77	52-137
1,2,3-Trichlorobenzene	ND	-	0.50	-	-	-	-
1,2,4-Trichlorobenzene	ND	-	0.50	-	-	-	-
1,1,1-Trichloroethane	ND	-	0.50	-	-	-	-
1,1,2-Trichloroethane	ND	-	0.50	-	-	-	-
Trichloroethene	ND	9.20	0.50	10	-	92	43-157
Trichlorofluoromethane	ND	-	0.50	-	-	-	-
1,2,3-Trichloropropane	ND	-	0.50	-	-	-	-
1,2,4-Trimethylbenzene	ND	-	0.50	-	-	-	-
1,3,5-Trimethylbenzene	ND	-	0.50	-	-	-	-
Vinyl Chloride	ND	-	0.50	-	-	-	-
Xylenes, Total	ND	-	0.50	-	-	-	-

Quality Control Report

Client: Basics Environmental WorkOrder: 1511623

Date Prepared: 11/20/15 BatchID: 113217

Date Analyzed: 11/20/15 Extraction Method: SW5030B Instrument: GC28 Analytical Method: SW8260B

Project: 927 Main St. Sample ID: MB/LCS-113217

Analyte			RL				
Surrogate Recovery							
Dibromofluoromethane	23.4	23.1		25	93	92	70-130
Toluene-d8	22.3	22.0		25	89	88	70-130
4-BFB	1.94	1.96		2.5	77	79	70-130

Quality Control Report

Client: Basics Environmental WorkOrder: 1511623

Date Prepared: 11/13/15 BatchID: 112891

Date Prepared: 11/13/15

Date Analyzed: 11/13/15

Extraction Method: SW5030B

Instrument: GC3

Analytical Method: SW8021B/8015Bm

Matrix: Water Unit: $\mu g/L$

Project: 927 Main St. Sample ID: MB/LCS-112891

1511623-002BMS/MSD

QC Summary Report for SW8021B/8015Bm

Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
TPH(btex)	ND	59.7	40	60	-	100	70-130
MTBE	ND	9.28	5.0	10	-	93	70-130
Benzene	ND	9.52	0.50	10	-	95	70-130
Toluene	ND	9.63	0.50	10	-	96	70-130
Ethylbenzene	ND	9.77	0.50	10	-	98	70-130
Xylenes	ND	29.5	0.50	30	-	98	70-130

Surrogate Recovery

aaa-TFT 9.35 9.54 10 94 95 70-130

Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
TPH(btex)	61.9	60.4	60	ND	103	101	70-130	2.45	20
MTBE	8.83	9.23	10	ND	88	92	70-130	4.50	20
Benzene	10.1	10.5	10	ND	101	105	70-130	4.10	20
Toluene	10.2	10.6	10	ND	101	104	70-130	3.35	20
Ethylbenzene	10.5	10.6	10	ND	105	106	70-130	1.08	20
Xylenes	31.6	31.9	30	ND	105	106	70-130	0.812	20
Surrogate Recovery									
aaa-TFT	9.12	9.15	10		91	91	70-130	0	20

Quality Control Report

Client: Basics Environmental

Date Prepared: 11/13/15

Date Analyzed: 11/13/15 - 11/16/15 Instrument: ICP-MS1, ICP-MS2

Matrix: Water

Project: 927 Main St.

WorkOrder: 1511623

BatchID: 112893

Extraction Method: SW3005 Analytical Method: SW6020

Unit: $\mu g/L$

Sample ID: MB/LCS-112893

1511601-003AMS/MSD

QC Summary Report for Dissolved Metals

Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
Cadmium	ND	49.4	0.25	50	-	99	85-115
Chromium	ND	48.6	0.50	50	-	97	85-115
Lead	ND	50.5	0.50	50	-	101	85-115
Nickel	ND	49.3	0.50	50	-	99	85-115
Zinc	ND	500	15	500	-	100	85-115

Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
Cadmium	49.3	49.3	50	ND	99	99	70-130	0	20
Chromium	53.3	52.9	50	2.0	103	102	70-130	0.847	20
Lead	49.2	49.1	50	ND	98	97	70-130	0.244	20
Nickel	60.2	60.4	50	12	97	97	70-130	0	20
Zinc	545	548	500	44	100	101	70-130	0.695	20

Quality Control Report

Client: Basics Environmental WorkOrder: 1511623

Date Prepared: 11/13/15 BatchID: 112915

Date Prepared: 11/13/13

Date Analyzed: 11/15/15

Extraction Method: SW3510C

Instrument: GC9a

Matrix: Water

Unit: µg/L

Project: 927 Main St. Sample ID: MB/LCS-112915

QC Report for SW8015B w/out SG Clean-Up

Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
TPH-Diesel (C10-C23)	ND	1020	50	1000	-	102	61-157
TPH-Motor Oil (C18-C36)	ND	-	250	-	-	-	-
Surrogate Recovery							
C9	646	658		625	103	105	65-122

McCampbell Analytical, Inc.

Report to:

Oakland, CA 94607 655 12th Street, Suite 126 Basics Environmental Donavan Tom

(510) 834-9099

FAX: (510) 834-9098

cc/3rd Party: Email:

1534 Willow Pass Rd Pittsburg, CA 94565-1701

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

WaterTrax __WriteOn EDF WorkOrder: 1511623 ClientCode: BEO

Excel ■ EQuIS **✓** Email HardCopy

basicsenvironmental@gmail.com Bill to: Accounts Payable

Requested TAT:

5 days;

11/13/2015 11/13/2015 ☐ThirdParty

__J-flag

ProjectNo: 927 Main St. Oakland, CA 94607 655 12th Street, Suite 126 Basics Environmental Date Received: Date Printed:

Lab ID 1511623-002 Client ID **SB-1-W** Water Matrix 11/13/2015 11:30 Collection Date Hold C ₩ N O ω O 4 Requested Tests (See legend below) σı ⊳ 6 œ 9 5 ⇉ 12

Test Legend:

9	5	_
	TPH(D)_W	8260B_W

2 G-MBTEX
5

=	7	3	
		LUFTMS_6020_DISS	

8	4 PRDISSOLVED	

Prepared by: Lindsay Diesta

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days).

Hazardous samples will be returned to client or disposed of at client expense.

McCampbell Analytical, Inc. "When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

WORK ORDER SUMMARY

Matrix Test Name Containers Bottle & Preservative De- Collection Date /Composites chlorinated & Time	D Matrix Test Name Containers Bottle & Preservative De- Collection Date /Composites chlorinated & Time Soil 1 Acetate Liner	Test Name Containers Bottle & Preservative De- Collection Date /Composites chlorinated & Time 1 Acetate Liner	Containers Bottle & Preservative De-Collection Date Soil Sw8015B (Diesel) Water Sw8021B/8015Bm (G/MBTEX) Sw8021B/8015Bm (G/MBTEX) Chlorinated & Time 1 Acetate Liner 1 Acetate Liner 1 1/13/2015 10:45 2 aVOA WOA w/HCl Toluene 2, Ethylbenzene 2, MTBE 2, Toluene 2, TPH(g)_1, TPH(ss)_1, Xylenes_2>	De Matrix Test Name Containers Bottle & Preservative De Collection Date
rvative De- chlorinated	rvative De- chlorinateo	rvative De- chlorinated	rvative De- chlorinated er	rvative De- chlorinated er
				5 days 5%+ 5 days 5%+ 5 days 5%+

NOTES: - STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- MAI assumes that all material present in the provided sampling container is considered part of the sample - MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

any: Basics Environmental 655 12th 5treet Switz 126 Dakland CA 94607 (50) 834 9099 E-Mail: Basics Environmental Cognidus t#: 927 main 5t- Project Name:	tTo: Dovavanton/Lita FEGMAN BILL TO FRASICS ENVIRONMENTS!	McCampbell Analytical, Inc. 1534 Willow Pass Rd. / Pittsburg, Ca. 94565-1701 www.mccampbell.com / main@mccampbell.com Telephone: (877) 252-9262 / Fax: (925) 252-9269
s) MTBE 664/5520 418.1) Stodde s) / Congeners cides)	الدي Analysis Request	CHAIN OF CUSTODY RECORD TURN AROUND TIME: RUSH 1 DAY 2 DAY 3 DAY 5 DAY 6 GeoTracker EDF PDF EDD Write On (DW) EQuIS 10 DAY 6 Effluent Sample Requiring "J" flag UST Clean Up Fund Project ; Claim #

	1534 Willow Pass Rd. / Pittsburg, Ca. 94565-1701	ow Pa	ss Rd. /	Pi#	sbur	o 'b	à. 9	456	5-17	0					T	UR	AR	OUZ	TURN AROUND TIME: RUSH□	IMI	: RI	JSH[1 DAY	$\hat{\Box}$		AY		DA.	2 DAY 🔲 3 DAY 🔲		S DAY	Þ	
(www.mccampbell.com / main@mccampbell.com Telephone: (877) 252-9262 / Fax: (925) 252-9269	ampb	ell.com 71 252-	% % ~	nain	X. @M	CCC	1 25 I	bell	.cor	3				ଦୁ	юТга	ıcker	GeoTracker EDF 🔲		PDF	OF [EDD		EDD Write On (DW)	On (DW)		EQu	EQuIS 🔲	_	10	10 DAY	Ò	
	0	?	101	Ì		3		1	1	Ċ					Æ	fflue	nt Sa	mple	Effluent Sample Requiring "J" flag [uiring	"L",	flag	Linear Control	UST	Clea	n Up	Func	l Pro	ject[UST Clean Up Fund Project ☐; Claim#	laim	#		
Report To: Do Manay	wanton	VLita	Freman	8	Bil	To	Bill To Pasics	516	2	at Burvains	5'	3	43	FI	Н	1	11	rd		11	1	1	Ana	Analysis Request	Req	uest	П	$ \ $	$\ \ $		$\ \ $			щ
Company: Basics &	V3 55	BUNDANIA	STASO												_		_	do	248								_							-
655	1244	548		Súste	12	60	26 Bakland CA	ano	CA	90	9460	07					.0	rod	110	ners						_	_	_	_		_	—		Ţ
Tele: (50) 8	34 9099	120			P	Mail	B	8	200	500	BSW.	本	ppe	E-Mail: Basics Envisonmental@gndd.co			/ 552	-1)St	O _V	Conge		es)			s)			antale	ictais					- 1 -
rioject #. 12/	1 Cax	-	^		,	jerr	I Toject Ivalue.		-				•		5)	_	664	411		;/(icid			NA	k	į	d r	u 11	_	_	_	_	_
Project Location:	2150	20val	SCA		Pu	rcha	Purchase Order#	rder	#						8015		e (16	ns (0 83-5	lors	es)	erbi	<u>s)</u>	Cs)	: / PI)***	***	alva	Jive					
Sampler Signature	M	to U	Freema	3	1							ł			21/8		reas	rbo		roc	icide	пн	OC:	voo	АНs	020	020)	Vice	71550					
	5	SAMI	SAMPLING				3	MATRIX	NX.			P	MET RESI	METHOD PRESERVED				droca	0.0000000000000000000000000000000000000	B's ; A	Pesti	idic C	60 (V	70 (S	10 (PA	0.8 / 6).8 / 60	17/	e IOI L					
SAMPLE ID	Location/ Field Point			iners	Water	ater	Water	r				/			TPH as G	iesel (801	oleum Oi	oleum Hy	608 / 8081	8082 PC	8141 (NI	8151 (A	2 / 624 / 82	2 / 625 / 82) SIM / 83	Metals (20	1etals (200	00.8 / 6020 ter sampl	ter sampi	<u> </u>				
		Date		# Con	Ground	Waste V	Drinkin	Sea Wa	Soil	Air	Sludge	Other	HCL	HNO	/		Total Pe	E/B&F) Total Pe	200-200-00	EPA 608	EPA 507	EPA 515	EPA 524	EPA 525	EPA 82	CAM 17	LUFT 5		analysis	Ho				
8-1-30		11/13/15	1045	_					X				-	\vdash																X			\vdash	
58-1-W		1/13/15	1130	7	X										×	X	/	X	Ì				X			L	χ.			-	-			1
				/								+	\vdash	+	+	+	+	T								<u> </u>	_	-	-	-	+	+	+	
		-		L								\vdash	╀	\vdash	+	+	+	+	\top	Т		Г				\perp	\perp	\perp	╀-	\vdash	\vdash	\vdash	\vdash	
												-	┝	\vdash	-	\vdash												_	_	-	-	-	\vdash	
												_	-	-																	-		-	
													┝	\vdash	-			\vdash														-		
													-	-																-	-	-	-	
			-										-	-																				1
								1				+	+	+	+	+												_	-	-	+	+	+	
**MAI clients MUST disclose any dangerous chemicals known to be present in their submitted samples in concentrations that may cause immediate harm or serious future health endangerment as a result of brief, gloved, open air, sample handling by MAI staft. Non-disclosure incurs an immediate \$250 surcharge and the client is subject to full legal liability for harm suffered. Thank you for your understanding and for allowing us to work safely.	ose any dang on-disclosure	erous che Incurs an	micals kno immediate	wn to \$250	be pr	esent arge c	in thei	rsubn	nitted nt is su	samp	les in	conce	entrati Ilabili	ons th	at may	fere	e imm	nediat	harm for yo	or se	rious f dersta	uture I	nealth	enda or allo	ngerm wing u	ent as	a res	ult of t	rief, g	loved,	open	air, sc	mple	
*** If metals are requested for water samples and the water type is not specified on the chain of custody, then MAI will default to metals by E200.8.	ed for water s	amples ar	nd the wate	r type	is not	speci	fied o	n the	chain	of cus	stody,	then	MAI w	ill defo	sult to	metal	s by E	200.8.										-						
Relinquished By:	res	Date:	Time: 1420	9	Rece	Received By:	1 ×		#	F	末			HE, GO	ICE/t° S S GOOD CONDITION HEAD SPACE ABSENT	S SIV			1	water-		B	374	Sample for	_	WF750		Jot s:	70	not preserva	35	4		
hed		Date:	Time:		Rece	Received By:	By.	K	M	1	- 1			API PRI	DECHLORINATED IN LAB APPROPRIATE CONTAINERS PRESERVED IN LAB	RIA1	E CC	BIN	AB_INER	S	1	-	3	JUDI 360214	(2)	7	7	2	7	HErwishin 24hours	24	hor	Ñ	
Relinquished By:		Date:	Time:		Rece	Received By:	(**							ppr	SED.	7 A T	Q V	VOAS	0&G		METALS	LS	110	OTHER	H	HAZARDOUS:	RDOI	S:						
				11	1	/		1						FIX	PRESERVATION	VAL	1			Į	7×10													

Sample Receipt Checklist

Client Name:	Basics Environment	tal			Date and 1	Time Received:	11/13/2015 5:20:15 PM
Project Name:	927 Main St.				LogIn Revi	ewed by:	Lindsay Diesta
WorkOrder №:	1511623	Matrix: Soil/Water			Carrier:	Randy Glen	
		Chain of C	ustod	y (COC) I	nformation		
Chain of custody	present?		Yes	✓	No 🗌		
Chain of custody	signed when relinquis	shed and received?	Yes	✓	No 🗌		
Chain of custody	agrees with sample la	abels?	Yes	✓	No 🗆		
Sample IDs noted	d by Client on COC?		Yes	✓	No 🗌		
Date and Time of	f collection noted by C	Client on COC?	Yes	✓	No 🗌		
Sampler's name	noted on COC?		Yes	✓	No 🗌		
		Sampl	e Rece	eipt Infor	mation		
Custody seals int	tact on shipping conta		Yes		 No 🗌		NA 🗹
Shipping containe	er/cooler in good cond	lition?	Yes	✓	No 🗌		
Samples in prope	er containers/bottles?		Yes	✓	No 🗌		
Sample containe	rs intact?		Yes	✓	No 🗌		
Sufficient sample	volume for indicated	test?	Yes	✓	No 🗌		
		Sample Preservation	on and	Hold Tir	ne (HT) Info	rmation	
All samples recei	ived within holding tim	e?	Yes	✓	No 🗌		
Sample/Temp Bla	ank temperature			Temp:	3.8°C		NA 🗌
Water - VOA vial	s have zero headspac	ce / no bubbles?	Yes	✓	No 🗌		NA 🗌
Sample labels ch	necked for correct pres	servation?	Yes	✓	No 🗌		
pH acceptable up	oon receipt (Metal: <2	522: <4; 218.7: >8)?	Yes		No 🗌		NA 🗹
Samples Receive	ed on Ice?		Yes	✓	No 🗌		
		(Ice Type	e: WE	TICE)		
UCMR3 Samples Total Chlorine t		upon receipt for EPA 522?	Yes		No 🗌		NA 🗸
	ested and acceptable	upon receipt for EPA 218.7,			No 🗆		NA 🗹
* NOTE: If the "N	lo" box is checked, se	e comments below.					
Comments:					====		