HOLLIDAY DEVELOPMENT, LLC

1201 PINE STREET, SUITE 151 OAKLAND, CALIFORNIA 94607 W: HOLLIDAYDEVELOPMENT.COM T: 510 547-2122 F: 510 547-2125

RECEIVED By Alameda County Environmental Health 9:32 am, Aug 02, 2017

July 21, 2017

Mr. Mark Detterman, P.G., C.H.G. Alameda County Health Care Services Agency Department of Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577

Subject: Site Investigation Report, 5th and Magnolia Streets, Oakland, California (Case No.: RO0003194).

Dear Mr. Detterman:

Please find attached the *Site Investigation Report* prepared by West Environmental Services & Technology, Inc. (WEST) for the 5th and Magnolia Streets property in Oakland, California (the "Site"). I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge.

Please call me at 510-588-5152 if you have any questions or wish to discuss this further.

Sincerely,

Kevin Brown Partner

SITE INVESTIGATION REPORT 5TH Street and Magnolia Street West Oakland, California

July 2017

Prepared for

Holliday Development 1201 Pine Street, Suite 151 Oakland, CA 94607

Prepared by

TABLE OF CONTENTS

SECTION

PAGE

1.0	INTRODUCTION	.1
1.1	BACKGROUND	. 1
2.0	SITE DESCRIPTION	3
2.1 2.2 2.3 2.4 2.5	REGIONAL GEOLOGIC AND HYDROGEOLOGIC SETTING	.3 .3 .4
3.0	SUMMARY OF INVESTIGATIONS	5
3. 3.2 3.2 3. 3. 3. 4.0 4.1 4.2 4.2 4.2 4. 4.2	PREVIOUS INVESTIGATIONS. 1.1 Soil Sampling. 1.2 Soil Gas Sampling 1.3 Groundwater Sampling RECENT INVESTIGATIONS. 2.1 2.1 Permitting, Health and Safety, Utility Clearance. 2.2 Temporary Vapor Monitoring Well Installation. 2.3 Soil Investigation 2.4 Soil Vapor Investigation 1.1 Exposure Pathways Evaluation 1.2 Identification of Screening Levels 1.1 Exposure Pathways Evaluation 1.2 Identification of Screening Levels 1.1 Soil Conditions 1.2 Soil Conditions 1.3 Soil Conditions 1.4 Soil Conditions	.5 .6 .6 .7 .8 .9 .2 .2 .2 .2 .2 .2 .5 .5 .5 .6 .6 .7 .8 .9 .2 .2 .2 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5
5.0	SUMMARY1	9
5.1	RECOMMENDATIONS	9
6.0	REFERENCES2	1
7.0 TAI	DISTRIBUTION LIST2 BLES	3

FIGURES

APPENDICES

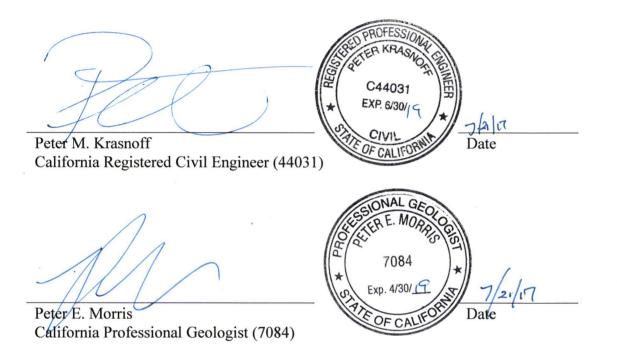
LIST OF TABLES

- Table 3-1
 Summary of Soil Analytical Results TPH & PVOCs
- Table 3-2Summary of Soil Analytical Results PAHs
- Table 3-3
 Summary of Soil Analytical Results Pesticides
- Table 3-4Summary of Soil Analytical Results Metals
- Table 3-5Summary of Soil Gas Analytical Results
- Table 3-6Summary of Groundwater Analytical Results

LIST OF FIGURES

- Figure 1-1 Site Location Map
- Figure 2-1 Site Plan and Geologic Cross-Section Location
- Figure 2-2 Geologic Cross-Section A-A'
- Figure 3-1 Lead and PAHs in Soil
- Figure 3-2 PCE in Soil Gas
- Figure 4-1 Exposure Pathway Chart

LIST OF APPENDICES


- Appendix A Boring Logs and Field Data Forms
- Appendix B Laboratory Data Certificates and Chain-of-Custody Forms

SITE INVESTIGATION REPORT 5TH STREET AND MAGNOLIA STREET WEST OAKLAND, CALIFORNIA

SIGNATURE PAGE

All information, conclusions and recommendations contained in this report have been prepared under the supervision of the undersigned professional(s).

1.0 INTRODUCTION

This *Site Investigation Report* ("*Report*") has been prepared by West Environmental Services & Technology, Inc. (WEST), on behalf of Holliday Development, to present the findings of a soil and soil vapor investigation conducted 5th Street and Magnolia Street property located in West Oakland, California ("the Site;" Figure 1-1). The investigation was conducted in May 2017 pursuant to: WEST's September 2016 *Site Investigation Work Plan* (Work Plan; WEST, 2016); and the Alameda County Department of Environmental Health (ACDEH) March 10, 2017 conditional approval of the *Work Plan* (ACDEH, 2017).

This *Report* presents: a summary of previous and recent investigations; evaluation of Site conditions; and a data gap analysis. Regulatory and technical guidance documents used in preparing this *Report* included: State Water Resources Control Board (SWRCB) *Resolution 92-49, Policies and Procedures for Investigation and Cleanup and Abatement of Discharges Under Water Code 13304* (SWRCB, 1996); the California Environmental Protection Agency (CalEPA) *Advisory Active Soil Gas Investigations, July 2015* (CalEPA, 2015).

1.1 BACKGROUND

The approximately 0.5-acre Site is an undeveloped asphalt paved lot bounded by: 5th Street to the south; Union Street to the west; commercial businesses to the north; and Magnolia Street to the east; and is located within a commercial zone. The Site was formerly part of the California Department of Transportation's (Caltrans) Interstate 880 (Cypress Freeway) right-of-way that was demolished following the 1989 Loma Prieta earthquake. As part of the demolition, the freeway support columns were demolished to approximately three-feet below ground surface. In August 2015, Caltrans auctioned the Site for redevelopment.

The Site will be developed with a single story commercial/retail building and a multi-story mixed multi-family residential building along with a landscaping and hardscape. The multi-family residential units will be constructed above an open-air at-grade parking garage.

Neighboring commercial businesses include automobile repair and service operations. Releases to soil and groundwater occurred on the adjacent commercial properties (1225 7th Street and 1211 7th Street) from underground storage tanks (USTs) containing petroleum products. In June 1997, the releases from the USTs at 1225 7th Street were closed by the Alameda County Health Care Services Agency (ACHCSA, 1997). Investigations of the UST releases at 1211 7th Street are currently ongoing.

In September 2015, an investigation was conducted to characterize the Site environmental conditions and potential impacts from off-Site UST releases. Eight borings (W-1 to W-8) were advanced to 6-feet below ground surface for the collection of soil, soil gas and groundwater samples. Laboratory analysis of the soil samples revealed the presence of polycyclic aromatic hydrocarbons (PAHs) including benzo(a)pyrene up to 119 micrograms per kilogram (μ g/kg) ands metals including lead up to 2,180 milligrams per kilogram (mg/kg).

Volatile organic compounds (VOCs) were detected in the soil gas samples collected from borings W-1, W-2, W-4 and W-7 including: tetrachloroethene (PCE) up to 352 micrograms per cubic meter (μ g/m³) and benzene up to 9.14 μ g/m³. Laboratory analysis of the groundwater samples did not reveal total petroleum hydrocarbons (TPH) as gasoline (TPHg) or VOCs above the laboratory-reporting limits, except for PCE up to 0.850 micrograms per liter (μ g/l).

Based on the findings of the September 2015 investigations, Holliday Development entered into a voluntary cleanup agreement (VCA) with ACDEH. Pursuant to the VCA, ACDEH requested additional sampling to further characterize the Site conditions prior to development. In March 2016, WEST submitted a *Work Plan* to ACDEH further characterize the presence of chemicals in soil that will be excavated as part of the development foundation work. The *Work Plan* was approved by the ACDEH on March 10, 2017 with the following conditions: advancement additional borings for soil sampling; additional laboratory analyses of the soil samples; relocation of proposed borings; and collection of additional soil gas samples near previous soil gas sample locations. This *Report* presents a summary of the investigations conducted at the Site pursuant to the *Work Plan* and in accordance with the ACDEH additional requirements (ACDEH, 2017).

2.0 SITE DESCRIPTION

The approximately 0.5-acre Site is an undeveloped asphalt paved lot located within a commercial zone and bounded by: 5th Street to the south; Union Street to the west; commercial businesses to the north; and Magnolia Street to the east (Figure 2-1). As part of the demolition, the freeway support columns were demolished to approximately three-feet below ground surface. In August 2015, Caltrans auctioned the Site for redevelopment.

2.1 REGIONAL GEOLOGIC AND HYDROGEOLOGIC SETTING

The geology encountered in borings at the Site is comprised of fill and unconsolidated sands, silty sands and clay sands of the Merritt Formation. The fill material is approximately three-feet thick and comprised of sands and gravels with brick and concrete debris. Unconsolidated sands, silty sands and clayey sands of the Merritt Formation were encountered beneath the fill material to approximately 16-feet below ground surface (WEST, 2015).

Groundwater was encountered in the borings advanced at the Site between approximately 10-feet and 12-feet below ground surface. The groundwater flow direction measured at nearby sites is to the west-southwest (AEC, 1995).

2.2 SURFACE WATER

The San Francisco Bay is located approximately 500-feet west of the Site.

2.3 HISTORICAL SITE USE

The Site was formerly part of the Caltrans Interstate 880 (Cypress Freeway) right-of-way that was demolished following the 1989 Loma Prieta earthquake. Following freeway demolition, the Site was paved and fenced for use as a parking and equipment storage lot.

2.4 CURRENT USES OF ADJOINING PROPERTIES

Two adjoining properties to the north (1211 and 1225 7th Street) have been used for automobile repair and service operations. Releases of petroleum products from USTs have occurred at 1211 and 1225 7th Street. The UST release at 1225 7th Street (Zentrum Motors) impacted soil and occurred from a 10,000-gallon gasoline UST that was removed in 1992. In 1997, the ACHCSA closed the UST release at 1225 7th Street (ACHCSA, 1997).

The release at 1211 7th Street (Former Everidge Service Co.) impacted soil and groundwater and occurred from three 4,000-gallon gasoline USTs and one 250-gallon waste oil UST. The four USTs were installed in the 1960s (AEC, 1995). In 1992, the four USTs were removed. Between 1992 and 1995, investigations were conducted at 1211 7th Street to characterize the UST releases. In September 2015, the California Regional Water Quality Control Board – San Francisco Bay Region (Regional Water Board) approved a work plan to address data gaps at 1211 7th Street including: membrane interface probe (MIP); soil and groundwater sampling; preferential pathway study; monitoring well installation; and soil gas sampling (Regional Water Board, 2015).

2.5 PROPOSED DEVELOPMENT

The Site will be developed with a single story commercial/retail building and a multi-story mixed multi-family residential building along with a landscaping and hardscape. The multi-family residential units will be constructed above an open-air at-grade parking garage. Residential studio, one bedroom and two bedroom apartments will be constructed above the parking garage (WEST, 2016). As part of the construction, foundation footings will be excavated between approximately two-feet and four-feet below ground surface. Soil generated during construction will be managed using a Site Management Plan (SMP). The SMP will be submitted to the ACDEH for review and approval. Copies of the plans for the proposed development are included in Appendix A.

3.0 SUMMARY OF INVESTIGATIONS

Investigations conducted at and near the Site since 2015 have revealed the presence of: total petroleum hydrocarbons (TPH), polycyclic aromatic hydrocarbons (PAHs), pesticides, metals in soil; and VOCs in soil gas and groundwater. A summary of the previous and recent investigations is presented below. Soil, soil gas and groundwater analytical data are summarized in Tables 3-1 to 3-6 and depicted on Figures 3-1 to 3-3.

3.1 PREVIOUS INVESTIGATIONS

In September 2015, WEST conducted Site investigations to characterize the environmental conditions at the Site and potential impacts from the UST releases on the adjacent properties. The field activities included drilling of eight borings (W-1 to W-8) to 16-feet below ground surface for collection of soil, soil gas and groundwater samples.

3.1.1 Soil Sampling

Soil samples were collected from the Site between one- and six-feet below ground surface. Laboratory analysis of the soil samples revealed the presence of: PAHs including benzo(a)pyrene up to 119 μ g/kg; pesticides including chlordane up to 18.4 μ g/kg and 4,4-DDE up to 7.54 μ g/kg; and metals including arsenic up to 7.21 mg/kg and lead up to 2,180 mg/kg (Tables 3-2 to 3-4).

3.1.2 Soil Gas Sampling

Soil gas samples have been collected from four temporary vapor wells (W-1, W-2, W-4 and W-7) installed to five-feet below ground surface at the Site on September 17, 2015. Laboratory analysis of the soil gas samples revealed the presence of VOCs including: PCE up to 352 μ g/m³ (W-4); benzene up to 9.14 μ g/m³ (W-1); toluene up to 15.8 μ g/m³ (W-1); ethyl benzene up to 4.60 μ g/m³ (W-1); xylenes up to 19.11 μ g/m³ (W-1); 1,3,5-trimethylbenzene (1,3,5-TMB) up to 10.4 μ g/m³ (W-1); 1,2,4-trimethylbenzene (1,2,4-TMB) up to 17 μ g/m³; and

trichlorofluoromethane (TCFM) up to 16.7 μ g/m³ (W-1)(Table 3-5 and Figure 3-2). The helium leak tracer gas was not detected in the soil gas samples above the laboratory-reporting limit of 0.100-percent.

3.1.3 Groundwater Sampling

Three groundwater samples were collected from borings W-1, W-2 and W-4 on September 17, 2015. Laboratory analysis of the groundwater samples did not reveal the presence of TPHg above its laboratory-reporting limit of 0.050 milligrams per liter (mg/l)(Table 3-6). VOCs were not detected in the groundwater samples above their laboratory-reporting limits, except for PCE at 0.850 μ g/l (W-2)(Table 3-6).

3.2 RECENT INVESTIGATIONS

In May 2017, WEST conducted a soil and soil gas investigation at the Site. Nine soil borings (B-1 to B-5) were advanced for collection of soil samples between one- and 2.5-feet; and five borings (SG-1 to SG-5) were advanced for installation of temporary vapor probes at five-feet below ground surface. In addition, pursuant to a request by the ACDEH, two soil gas samples were collected from temporary vapor probes installed in the vicinity of previous sample locations W-2 and W-4. Summaries of the analytical data are presented in Tables 3-1 to 3-5 and depicted on Figures 3-1 and 3-2. Copies of the laboratory data certificates and chain-of-custody forms are included in Appendix B.

3.2.1 Permitting, Health and Safety, Utility Clearance

A boring permit (permit number W2017-0375) was obtained from the Alameda County Public Works Agency (ACPWA) for the advancement of the borings at the Site. Pursuant to California Assembly Bill AB 73, Underground Services Alert (USA) was contacted to locate and clear work areas for underground utilities at the Site. A private underground utility locating contractor,

Coast Wide Utility Locators of Felton, California, also cleared subsurface utilities/conduits in the boring areas.

A Site-specific *Health and Safety Plan* ("*HASP*") was prepared to address worker health and safety during investigation activities. The *HASP* was prepared in accordance with the California Occupational Health and Safety Administration (CalOSHA) Title 8 §5192 Hazardous Waste Operations and Emergency Response and United States OSHA 29 CFR 1910.120, Hazardous Waste Operations and Emergency Responses. The *HASP* was read and signed by all on-Site workers and Site visitors prior to entering the work area.

3.2.2 Temporary Vapor Monitoring Well Installation

Seven temporary vapor monitoring wells (SG-1 to SG-5, W-2 and W-4) were installed to 5.5-feet below ground surface at the Site on May 8, 2017, using truck-mounted hydraulic direct-push drilling equipment operated by Environmental Control Associates (ECA), of Aptos, California, a C-57 licensed well drilling contractor. Details of the vapor well installations are presented below.

3.2.2.1 SOIL BORINGS

The soil borings were continuously advanced from the surface using a 2.25-inch diameter, fourfoot long stainless steel Macrocore barrel outfitted with acetate liner inserts. The soil cores were described on boring logs using the Unified Soil Classification System (USCS) and Munsell Color Index (Appendix A). The soil cores were also field screened using a hand-held photoionization detector (PID) equipped with a 10.6 electron Volt (eV) lamp and calibrated to 100 parts per million by volume (ppm_v) using isobutylene calibration gas.

3.2.2.2 <u>TEMPORARY VAPOR MONITORING WELL CONSTRUCTION</u>

Temporary vapor monitoring wells were constructed within the soil borings at approximately five-feet below ground surface. Once the boring target depth of approximately 5.5-feet had been reached, the drill rods were withdrawn and approximately six-inches of #3 sand placed at the base of the borehole. An approximately six-inch long, 0.375-inch diameter stainless steel screen outfitted with a length of Teflon® tubing was then lowered into the borehole and covered with six-inches of sand and one-foot of dry granulated bentonite. Hydrated bentonite granules were then placed above the dry bentonite granules within the borehole to the surface. A gas-tight valve was installed on the sample tubing.

3.2.3 Soil Investigation

Soil samples for laboratory analysis were collected from the continuously cored borings by cutting six-inch sections of the acetate liners at target depths. After collection, the soil samples were labeled and placed in a chilled cooler for transported to K Prime, Inc., of Santa Rosa, California, a California Department of Public Health (CDPH) Environmental Laboratory Accreditation Program (ELAP) certified laboratory for chemical analysis. The soil samples were transported following ASTM D 4840 chain-of-custody protocols and analyzed for: total petroleum hydrocarbons (TPH) as gasoline (TPHg) by United States Environmental Protection Agency (USEPA) Method 8015; TPH as diesel (TPHd) and TPH as motor oil (TPHmo) with silica gel clean up by USEPA Method 8015; benzene, toluene, ethyl benzene, xylenes and methyl tert-butyl ether by USEPA Method 5035/8260B; PAHs by USEPA Method 8270-SIM; and Title 22 metals by USEPA Method 6000/7000 series.

3.2.3.1 SOIL ANALYTICAL RESULTS

Soil samples collected from the borings advanced at the Site on May 8, 2017 were reported to contain TPHd up to 423 mg/kg (B-6; collected from one-foot below ground surface) and TPHmo

up to 2,000 mg/kg (B-6; collected from one-foot below ground surface)(Table 3-1). Laboratory analysis of the soil samples did not reveal TPHg, benzene, toluene, ethyl benzene, xylenes and MTBE above their respective laboratory-reporting limits (Table 3-1).

Laboratory analysis of the soil samples collected between 1.5-feet and 2.5-feet below ground surface from borings B-1, B-2, B-4, B-6, B-7, B-8 and B-9 revealed PAHs above the laboratory-reporting-limits, including: benzo(a)anthracene up to 311 μ g/kg (B-9); benzo(b)fluoranthene up to 404 μ g/kg (B-9); benzo(a)pyrene up to 399 μ g/kg (B-9); dibenzo(a,h)anthracene up to 216 μ g/kg (B-9); and indeno(1,2,3-c,d)pyrene up to 453 μ g/kg (B-9)(Table 3-2).

Metals were reported present in the soil samples collected from the nine borings advanced at the Site with: arsenic up to 4.57 mg/kg (B-9); barium up to 214 mg/kg (B-2); chromium up to 43.2 mg/kg (B-9); cobalt up to 11.5 mg/kg (B-9); copper up to 30.8 mg/kg (B-2); lead up to 1,080 mg/kg (B-4); mercury up to 0.306 mg/kg (B-2); nickel up to 38.8 mg/kg (B-9); vanadium up to 36.6 mg/kg (B-9); and zinc up to 265 mg/kg (B-2)(Table 3-4). Other metals were not reported present in the soil samples above the laboratory-reporting limit of 2.50 mg/kg (Table 3-4).

3.2.4 Soil Vapor Investigation

Soil gas samples were collected at five-feet below ground surface from the temporary vapor monitoring wells, SG-1 to SG-5, W-2 and W-4, on May 8 and 9, 2017. Pursuant to the *DTSC Advisory - Active Soil Gas Investigation* (CalEPA, 2015), the soil gas samples were collected at least two-hours following vapor well installation using direct push technology and there had not been a significant rain event, defined as 0.5-inches or greater of rainfall, in the previous five-days.

3.2.4.1 <u>"Shut-In" Test</u>

Prior to purging or sampling soil gas, a test was conducted to check for leaks in the aboveground fittings, i.e., "shut-in" test. The shut-in test consisted of assembling the above ground apparatus (e.g., valves, lines and fittings downstream from the top of the sampling probe), and evacuating the lines to a measured vacuum of approximately 30-inches of mercury, then shutting the vacuum with closed valves on opposite ends of the sampling equipment. The vacuum gauge connected to the line via "T"-fitting was then observed for at least one minute and if there was observable loss of vacuum, the fittings were adjusted, as needed, until the vacuum in the aboveground portion of the sampling equipment did not dissipate.

3.2.4.2 <u>Purging</u>

Prior to soil gas sample collection, stagnant air from: tubing; the internal volume of the probe; void space of sand pack around the probe tip; and void space of the dry bentonite was purged using a peristaltic pump at a rate of 125 milliliters per minute (ml/minute). Pursuant to the *DTSC Advisory - Active Soil Gas Investigation* (CalEPA, 2015), three purge volumes were removed. The field forms are provided in Appendix A.

3.2.4.3 QUANTITATIVE LEAK TESTING

During purging and sampling, helium was applied at the well and connections of the sampling equipment including valves, gauges, tubing, manifold and sample container. Helium was used for leak tracer testing by placing a shroud over the probe and sampling equipment. Helium was released into the shroud and a handheld helium detector used to monitor and maintain a reasonably steady concentration of approximately 20 to 30 percent helium, which was recorded on field data forms.

Helium measurements of the purged gas were used to evaluate real time leakage into the well and sampling train. Real time leak testing did not reveal helium within the well and sampling train in

excess of five-percent of the helium concentration within the shroud, i.e., within acceptable range as indicated in the *DTSC Advisory - Active Soil Gas Investigation* (CalEPA, 2015). In addition, laboratory analysis of the soil gas samples included testing for helium gas using ASTM Method 1946.

3.2.4.4 SAMPLE COLLECTION

Following purging through a laboratory-prepared sampling manifold with 125-ml per minute flow control valve, vapor flow was directed to a laboratory-prepared one-liter Summa[®] canister. The Summa[®] canister contained a vacuum of approximately 30-inches of mercury and was connected to the Teflon[®] tubing and manifold using airtight stainless-steel fittings. Following sample collection, the Summa[®] canister atmosphere was measured with a vacuum gauge and recorded on field data forms.

The Summa[®] canisters were labeled and transported to K Prime, Inc., of Santa Rosa, a CDPH ELAP certified laboratory pursuant to ASTM D 4840 chain-of-custody protocols. The samples were analyzed for VOCs using USEPA Method TO-15 and helium gas using ASTM Method 1946.

3.2.4.5 SOIL GAS ANALYTICAL RESULTS

Laboratory analysis of the soil gas samples revealed VOCs including: PCE up to 182 μ g/m³ (W-4); benzene up to 18.6 μ g/m³ (SG-2); toluene up to 38.4 μ g/m³ (SG-2); methylene chloride up to 24.2 μ g/m³ (SG-3); and trichlorofluoromethane up to 14.2 μ g/m³ (SG-4) (Table 3-5).

4.0 DATA EVALUATION

Consistent with Regional Water Board guidance, a screening level assessment was performed to assist in assessing the adequacy of the existing data (Regional Water Board, 2016). The screening level assessment consisted of three components: (1) identification of potential exposure pathways; (2) identification of appropriate screening levels for each media; and (3) a comparative analysis. The screening level assessment has been used to evaluate conditions of potential concern and identify areas for additional investigations, i.e., data gaps.

4.1 SCREENING LEVEL ASSESSMENT

4.1.1 Exposure Pathways Evaluation

Exposure pathways for PAHs, pesticides and metals in soil, VOCs in soil gas and VOCs in groundwater at the Site have been evaluated to assess the potential impacts to human health and the environment. Direct contact and ingestion of soil is identified as complete exposure pathway for future construction and maintenance workers. Direct contact and ingestion of soil is not identified as complete exposure pathway for future occupants due to the proposed hardscapes and buildings to be constructed on the Site. Inhalation of VOCs is identified as a potentially complete exposure pathway for future Site occupants. Direct exposure to VOCs in groundwater is not identified as a potentially complete exposure pathway as the Site is served by municipal water supply (Figure 4-1).

4.1.1.1 EXPOSURE CONCENTRATIONS

Where sample data were limited, the maximum-detected concentration of the chemicals was compared with the screening levels. Where an adequate number of data points were available, the 95 percent upper confidence level (UCL) of the mean concentration, i.e., the Reasonable Maximum Exposure (RME) was compared with the screening levels, pursuant to CalEPA and USEPA guidance (CalEPA, 1996). The 95-percent UCL was calculated using ProUCL Version

5.0 (USEPA, 2013) and was performed on the soil laboratory analytical results for lead in soil (WEST, 2015).

The USEPA recommends that maximum beneficial uses of a property be the basis for evaluation. Based on the development plans for ground floor commercial offices, above grade residential, parking garage, landscaping and hardscape, the Site soil conditions have been screened using the methods described below based on a commercial/construction worker exposure scenario. The Site soil gas conditions wee screened based on a residential and commercial exposure scenario.

4.1.1.2 COMMERCIAL/INDUSTRIAL WORKER

The commercial/industrial scenario uses the conservative assumption that on-Site workers spend all or most their workday outdoors. The exposure for commercial/industrial workers is presumed to include: (1) a full time employee of a company operating on-site who spends most of the work day conducting maintenance or manual labor activities outdoors or (2) a worker who is assumed to regularly perform grounds-keeping activities as part of his/her daily responsibilities (Regional Water Board, 2013). Exposure to surface and shallow subsurface soils (i.e., at depths of zero- to two-feet below ground surface) is expected to occur during excavation of foundations and subsurface utilities during Site construction and moderate digging associated with routine maintenance and grounds-keeping. The commercial/industrial worker scenario is based on a worker that is exposed to chemicals at the Site for 24-hours per day during 250-days per year for 25-years.

4.1.2 Identification of Screening Levels

Based on the identified exposure pathways, screening levels were identified for chemicals in soil, soil gas and groundwater as non-drinking water source. Chemical-specific screening levels were developed from concentrations based on published environmental screening criteria. The screening levels that were considered include the Regional Water Board Environmental Screening Levels (ESLs). Exceeding a screening level "does not necessarily indicate that adverse

impact to human health or the environment are occurring, [it] simply indicates that potential for adverse impacts may exist and that additional evaluation is warranted" (Regional Water Board, 2016).

4.1.2.1 <u>REGIONAL WATER BOARD ESLS</u>

The Regional Water Board has identified ESLs for PAHs, pesticides and metals in soil, VOCs in soil gas and VOCs in groundwater (Regional Water Board, 2016). The Regional Water Board ESLs "are intended to be conservative" and "the presence of a chemical at [...] concentrations below the corresponding ESL can be assumed to not pose a significant threat to human health and the environment." While a chemical may be measured at concentrations above the Regional Water Board ESL, it "does not necessarily indicate adverse effects on human health or the environment are occurring, rather that additional evaluation is warranted." In developing the ESLs, the Regional Water Board has considered exposure pathways to humans, including inhalation of VOCs in indoor air from migration of contaminated soil gas.

4.1.2.2 CALIFORNIA DEPARTMENT OF PUBLIC HEALTH – MAXIMUM CONTAMINANT LEVELS

The MCL is the maximum concentration of a chemical that is allowed in public drinking water systems. The MCL is established by either the USEPA or the CDPH. Currently, there are fewer than 100 chemicals for which MCLs have been established; however, these represent chemicals that are thought to pose the most serious risk.

The USEPA guidance for establishing an MCL states that "MCLs are enforceable standards and are to be set as close to the maximum contaminant level goals (MCLGs) as is feasible and are based upon treatment technologies, costs (affordability) and other feasibility factors, such as availability of analytical methods, treatment technology and costs for achieving various levels of removal." The process of determining an MCL starts with an evaluation of the adverse effects caused by the chemical in question and the doses needed to cause such effects.

The result of this process is a safe dose (the dose thought to provide protection against adverse effects including a margin of safety), now called a Reference Dose (RfD) by the EPA. This evaluation is based on the results of animal experiments, and the research results are extrapolated to humans using standard EPA methods.

4.2 COMPARATIVE ANALYSIS

An evaluation between the identified screening levels and the soil laboratory analytical results was performed to characterize the Site conditions.

4.2.1 Soil Conditions

4.2.1.1 <u>TPH AND VOCs</u>

TPHg was not detected in soil above its laboratory-reporting limit of 1.00 mg/kg. TPHd was detected up to 423 mg/kg (boring B-6 at 1-foot below ground surface), above its unrestricted Regional Water Board ESL of 230 mg/kg but below its commercial Regional Water Board ESL of 880 mg/kg. TPHd was not detected in the soil sample collected from boring B-6 at 2.5-feet below ground surface above its laboratory-reporting limit of 10 mg/kg.

TPHmo was detected up to 2,000 mg/kg (boring B-6 at 1-foot below ground surface) and copresent with TPHd at 423 mg/kg, below its unrestricted use Regional Water Board ESL of 5,100 mg/kg. TPHmo was detected in the soil sample collected from boring B-6 at 2.5-feet below ground surface at a lower concentration of 10.8 mg/kg, below its unrestricted use Regional Water Board ESL of 5,100 mg/kg (Table 3-1).

VOCs including benzene, toluene, ethyl benzene, xylenes and MTBE were not detected in the soil samples collected at the Site above their respective laboratory-reporting limits (Table 3-1).

4.2.1.2 <u>PAHs</u>

Benzo(a)anthracene was detected in soil up to 311 μ g/kg (boring B-9 at 1-foot below ground surface), above its unrestricted use Regional Water Board ESL of 160 μ g/kg but below its commercial Regional Water Board ESL of 2,900 μ g/kg. Benzo(b)fluoranthene was detected in soil up to 404 μ g/kg (boring B-9 at 1-foot below ground surface), above its unrestricted use Regional Water Board ESL of 160 μ g/kg but below its commercial Regional Water Board ESL of 160 μ g/kg but below its commercial Regional Water Board ESL of 160 μ g/kg but below its commercial Regional Water Board ESL of 160 μ g/kg but below its commercial Regional Water Board ESL of 2,900 μ g/kg. Benzo(a)pyrene was detected in the soil samples collected at the Site up to 399 μ g/kg (boring B-9 at 1-foot below ground surface), above its unrestricted use and commercial Regional Water Board ESLs of 16 μ g/kg and 290 μ g/kg (Table 3-2 and Figure 3-1).

Dibenzo(a,h)anthracene was detected up to 430 μ g/kg (boring W-6 at 1-foot below ground surface), above its unrestricted use and commercial Regional Water Board ESLs of 16 μ g/kg and 290 μ g/kg. Indeno(1,2,3-c,d)pyrene was detected up to 453 μ g/kg (boring B-9 at 1-foot below ground surface), which is above its unrestricted use Regional Water ESL of 160 μ g/kg but below its commercial Regional Water Board ESL of 2,900 μ g/kg. Other PAHs were detected in the soil samples collected at the Site but at concentrations below their respective unrestricted use Regional Water Board ESLs (Table 3-2).

4.2.1.3 ORGANOCHLORINE PESTICIDES

The organochlorine pesticides chlordane and 4,4-DDE were detected in the soil samples above the laboratory-reporting limits. Chlordane was detected up to 18.4 μ g/kg (boring W-8 at 1-foot below ground surface), which is below its unrestricted use Regional Water Board ESL of 480 μ g/kg. 4,4-DDE was detected up to 7.54 μ g/kg (boring W-5 at 1-foot below ground surface), which is below its unrestricted use Regional Water Board ESL of 1,900 μ g/kg (Table 3-3).

4.2.1.4 <u>Metals</u>

Metals were detected in the soil samples including arsenic and lead. Arsenic was detected up to 7.21 mg/kg (boring W-2 at 1-foot below ground surface), which is consistent with the range of background arsenic concentrates up to 11 mg/kg for the San Francisco Bay Area (Duverge, 2011). Lead was detected in soil up to 2,180 mg/kg (boring W-4 at 3-feet below ground surface), which is above its unrestricted use and commercial Regional Water Board ESLs of 80 mg/kg and 320 mg/kg (Table 3-4 and Figure 3-1). Other metals were detected in the soil samples but at concentrations below their respective unrestricted use Regional Water Board ESLs.

4.2.2 Soil Gas Conditions

VOCs were detected in the soil gas samples collected at the Site. PCE was detected up to 352 μ g/m³ (boring W-2; September 2015), which is above its unrestricted use Regional Water Board ESL of 240 μ g/m³ but below its commercial Regional Water board ESL of 2,100 μ g/m³. However, during the May 2017 investigation, PCE was detected in the soil gas sample collected from the boring W-2 location at a lower concentration of 182 μ g/m³, which is below its unrestricted use Regional Water Board ESL of 240 μ g/m³.

Benzene was detected up to 18.6 μ g/m³ (boring SG-2), which is below its unrestricted use Regional Water Board ESL of 48 μ g/m³ (Table 3-5; Figure 3-2). Toluene was detected up to 38.4 μ g/m³ (boring SG-2), which is below its unrestricted use Regional Water Board ESL of 160,000 μ g/m³. Methylene chloride was detected up to 24.2 μ g/m³ (boring SG-3), below its unrestricted use Regional Water Board ESL of 510 μ g/m³. Other VOCs were either not detected in soil gas above their respective laboratory-reporting limits or unrestricted use Regional Water Board ESLs (Table 3-5).

4.2.3 Groundwater Conditions

Groundwater samples were collected from borings W-1, W-2 and W-4. Laboratory analysis of the groundwater samples did not reveal the presence of TPHg above its laboratory-reporting limit of 0.050 mg/l. The VOC PCE was detected up to 0.850 μ g/l, which is below its maximum contaminant level (MCL) of 5 μ g/l. Other VOCs were not detected in the groundwater samples above their respective laboratory-reporting limits (Table 3-6).

5.0 SUMMARY

Based on the findings, lead and PAHs were detected in soil, above their respective unrestricted use Regional Water Board ESLs. However, the proposed Site development is comprised of: at grade commercial; at-grade parking garage; hardscapes; and landscaping. The landscape areas will be over-excavated and backfilled with clean imported soil. During construction, soil will be excavated during grading, foundation excavations, utility trenching and over-excavation of landscape areas. The soil generated during the construction activities will be managed on-Site as engineered fill or for off-Site disposal.

In addition, PCE was previously detected in soil gas in one sample (W-4 at 352 μ g/m³) above its unrestricted use Regional Water Board ESL of 240 μ g/m³ near the proposed elevator and open air parking garage. However, subsequent sampling conducted near boring W-4 in May 2017 revealed PCE at a lower concentration of 182 μ g/m³, below its unrestricted use Regional Water Board ESL of 240 μ g/m³ and commercial use Regional Water Board ESL of 2,100 μ g/m³.

Following construction, there will be no complete soil exposure pathway for future Site occupants and maintenance workers as the Site will be covered with buildings and hardscape and the landscape areas will be over-excavated and backfilled with clean imported soil. In addition, due to the soil gas results and the proposed of the open-air parking garage, there does not appear to be a complete exposure pathway for VOCs in soil gas for future residents.

5.1 **Recommendations**

Based on the proposed development plan and the incomplete exposure pathway for future Site occupants to soil, a Site Management Plan (SMP) should be developed which details the procedures and protocols for managing soil during construction. Following completion of Site construction, a land use covenant (LUC) will be prepared and recorded with the Alameda County Recorders Office. The LUC will identify restrictions that are reasonably necessary to protect

human health and safety or the environment due to the presence of hazardous materials beneath the Site

6.0 **REFERENCES**

- AEC Environmental Consultants, Subsurface Site Investigation, 1211 Seventh Street, Oakland, California, June 16, 1995 (AEC, 1995).
- Alameda County Health Care Services Agency Department of Environmental Health, *Conditional Work Plan Approval; Site Cleanup Program Case No. RO0003194; Global ID #T10000007974, 5th and Magnolia Streets, Oakland, CA 94607*, March 10, 2017 (ACDEH, 2017).
- Alameda County Health Care Services Agency, *Remedial Action Completion Certification, All Mercedes Dismantlers, 1225 7th Street, Oakland, California*, June 6, 1997 (ACHCSA, 1997).
- California Environmental Protection Agency Department of Toxic Substances Control (DTSC) Advisory – Active Soil Gas Investigation, April 2012 (DTSC, 2012).
- CalEPA, DTSC, Supplemental Guidance for Human Health Multimedia Risk Assessments of Hazardous Waste Sites and Permitted Facilities, August 1996 (CalEPA, 1996).
- California Regional Water Quality Control Board, *Environmental Screening Levels, Revision 3, User's Guide: Derivation and Application of Environmental Screening Levels (ESLs),* Interim Final, February 2016, rev. 3 (Regional Water Board, 2016).
- California Regional Water Quality Control Board San Francisco Bay Region, Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater, Interim Final, February 2016 (Regional Water Board, 2016).
- California Regional Water Quality Control Board San Francisco Bay Region, *Work Plan Approval for Site Investigation – Former Everidge Service Co., and Requirement for Technical Report, 1211 7th Street, Oakland, California*, September 8, 2015 (Regional Water Board, 2015).
- Duverge, Dylan J., *Establishing Background Arsenic in Soil of the Urbanized San Francisco Bay Region*, December 2011 (Duverge, 2011).
- State Water Resources Control Board, Resolution No. 92-49 Policies and Procedures for Investigation and Cleanup and Abatement of Discharges Under Water Code Section 13304, June 18, 1992 – As Amended on April 21, 1994 and October 2, 1996 (SWRCB, 1996).
- United States Environmental Protection Agency (USEPA), *ProUCL Version 5.0.00 Statistical* Software for Environmental Applications for Data Sets with and without Nondetect Observations, September 2013 (USEPA, 2013).

West Environmental Services & Technology, Inc., *Report of Findings*, 5th and Magnolia Streets, West Oakland, California, November 2015 (WEST, 2015).

West Environmental Services & Technology, Inc., *Site Investigation Work Plan*, 5th and *Magnolia Streets, West Oakland, California*, September 2016 (WEST, 2016).

7.0 DISTRIBUTION LIST

Mr. Kevin Brown Holliday Development 1201 Pine Street, Suite 151 Oakland, CA 94607

Mr. Mark Detterman, P.G., C.E.G. Alameda County Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502

TABLE 3-1 SUMMARY OF SOIL ANALYTICAL RESULTS - TPHS & PVOCS 5th Street and Magnolia Street West Oakland, California

			Petrole	um Hydroc	arbons		Petrole	um Related	VOCs	
Sample ID	Date	Depth (feet)	TPHg	TPHd	TPHmo	Benzene	Toluene	Ethyl Benzene	Xylenes	MTBE
			(mg/kg)	(mg/kg)	(mg/kg)	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)
B-1	5/8/17	1.5	<1.00	58.3	334	<1.65	<1.65	<1.65	<1.65	<1.65
DЭ	5/9/17	1	<1.00	10.8	43.8	<1.71	<1.71	<1.71	<1.71	<1.71
B-2 5/8/17 B-3 5/8/17		2.5	<1.00	<10.0	<10.0	<1.68	<1.68	<1.68	<1.68	<1.68
D 2	5/9/17	1.5	<1.00	59.6	498	<1.72	<1.72	<1.72	<1.72	<1.72
D-3	J/ 0/ 1 /	3	<1.00	<10.0	<10.0	<1.77	<1.77	<1.77	<1.77	<1.77
B-4	5/8/17	1.5	<1.00	36.3	45.9	<1.57	<1.57	<1.57	<1.57	<1.57
B-5	5/8/17	1.5	<1.00	22.6	77.6	<1.68	<1.68	<1.68	<1.68	<1.68
B-6	5/0/17	1	<1.00	423	2,000	<1.85	<1.85	<1.85	<1.85	<1.85
D- 0	5/8/17	2.5	<1.00	<10.0	10.8	<1.72	<1.72	<1.72	<1.72	<1.72
B-7	5/8/17	1.5	<1.00	<10.0	29.3	<1.80	<1.80	<1.80	<1.80	<1.80
D-/	J/ 0/ 1 /	2.5	<1.00	<10.0	21.0	<1.81	<1.81	<1.81	<1.81	<1.81
B-8	5/8/17	1.5	<1.00	12.1	64.4	<1.70	<1.70	<1.70	<1.70	<1.70
B-9	5/8/17	1	<1.00	63.1	455	<1.79	<1.79	<1.79	<1.79	<1.79
D-9	J/ 0/ 1 /	2	<1.00	<10.0	<10.0	<1.65	<1.65	<1.65	<1.65	<1.65
ESLs-Com	mercial		3,900	1,100	140,000	24,000	4,600,000	22,000	2,400,000	180,000
ESLs-Const	truction W	orker	2,800	880	32,000	1,000	4,100,000	480,000	2,400,000	3,700,000
ESLs-Unres	stricted Use	e	740	230	5,100	230	970,000	5,100	560,000	42,000

Notes:

VOCs: Volatile organic compounds

TPHg: Total petroleum hydrocarbons as gasoline

TPHd: Total petroleum hydrocarbons as diesel

TPHmo: Total petroleum hydrocarbons as motor oil

MTBE: Methyl tert-butyl ether

mg/kg: milligrams per kilogram

µg/kg: micrograms per kilogram

ESLs: California Regional Water Quality Control Board - San Francisco Bay Region Environmental Screening Levels, Rev. 3

TABLE 3-2 SUMMARY OF SOIL ANALYTICAL RESULTS - PAHS 5th Street and Magnolia Street West Oakland, California

Date	Depth (feet)	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a) anthracene	Benzo(b) fluoranthene	Benzo(k) fluoranthene	Benzo(a)pyrene	Benzo(g,h,i) perylene	Chrysene	Dibenz(a,h) anthracene	Fluoranthene	Fluorene	Indeno (1,2,3-c,d) pyrene	Naphthalene	Phenanthrene	Pyrene
		(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)
9/17/15	1	<2.50	9.42	5.46	14.8	80	15.6	47.1	209	53.4	36.5	8.07	<2.50	41.8	14	19.3	29.5
9/17/15	1	<2.50	14.8	10.1	55.1	132	35.8	99.8	255	79.6	59.3	31.5	<2.50	103	26.2	36	97.1
9/17/15	1	<2.50	11.3	6.73	26	176	27	87.4	240	130	98.1	14.4	23	87.3	12.3	49.2	101
9/17/15	1	<2.50	32	25.9	105	178	60.7	119	287	91.9	70.6	87	28.2	107	13.9	129	184
9/17/15	1	<2.50	20.3	18.3	67.5	130	47.2	81.5	159	75.9	26	74	<2.50	99.6	11.4	49.7	127
9/17/15	1	<2.50	17.7	9.44	36.9	74.5	28.3	44.4	226	40.5	430	28.2	19.5	59.2	11.7	38.3	72.6
9/17/15	1	<2.50	18.8	15.7	61.2	187	45.2	111	264	97.2	77.3	50.7	9.02	120	13.5	84.2	144
9/17/15	1	<2.50	13.9	6.45	41.7	134	38.5	78.2	234	80.1	73.1	17.1	13	99.7	23.6	30.9	48.4
5/8/17	1.5	<2.50	14.2	16.5	42.1	70.5	39.8	24.7	114	46.4	28.4	55.5	<2.50	59.4	5.44	36.1	134
5/8/17	2.5	<2.50	43.8	98.9	70.9	185	115	74.2	231	165	48.0	321	<2.50	169	103	125	309
5/8/17	1.5	<2.50	15.4	26.4	41.1	70.1	42.7	33.9	86.3	64.6	28.7	112	<2.50	61.0	7.32	36.2	94.9
5/8/17	2.5	<2.50	19.6	40.4	22.2	65.8	43.6	21.0	66.5	51.1	14.3	98.2	<2.50	45.1	40.2	33.7	71.1
5/8/17	2.5	<2.50	14.6	40.3	27.1	36.0	24.9	15.7	47.9	50.2	<10.0	77.4	<2.50	31.4	184	53.5	70.2
5/8/17	1.5	<2.50	6.46	17.1	21.7	36.2	25.9	17.0	47.5	34.9	22.6	35.0	<2.50	27.7	6.60	19.6	56.6
5/8/17	1	4.77	97.3	122	311	404	151	399	662	241	216	559	9.07	453	13.0	249	1,720
nmercial		5.E+04		2.3E+08	2,900	2,900	29,000	290		3.E+05	290	3.0E+07	3.0E+07	2,900	14,000		2.3E+07
idential		4.E+06		1.8E+07	160	160	1,600	16		2.E+04	16	2.4E+06	2.4E+06	160	3,300		1.8E+06
1	9/17/15 9/17/15 9/17/15 9/17/15 9/17/15 9/17/15 9/17/15 9/17/15 5/8/17 5/8/17 5/8/17 5/8/17 5/8/17 5/8/17 5/8/17	Date I 9/17/15 1 9/17/15 1 9/17/15 1 9/17/15 1 9/17/15 1 9/17/15 1 9/17/15 1 9/17/15 1 9/17/15 1 9/17/15 1 9/17/15 1 9/17/15 1 9/17/15 1 9/17/15 1 9/17/15 1 5/8/17 2.5 5/8/17 2.5 5/8/17 2.5 5/8/17 2.5 5/8/17 1.5 5/8/17 1.5 5/8/17 1.5 5/8/17 1 nmercial 1	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Date Perth (feet) Perth vert Perth vert	Date Perth (fect) Particle V Pariter V Partiter Particle V <td>Date Pepth (feet) Part V Part V Pa</td>	Date Pepth (feet) Part V Part V Pa

Notes:

PAHs: Polycyclic aromatic hydrocarbons

µg/kg: micrograms per kilogram

--: Not promulgated

ESLs: California Regional Water Quality Control Board - San Francisco Bay Region Environmental Screening Levels, Rev. 3

<2.50: Less than the laboratory-reporting limit of 2.50 $\mu g/kg$

TABLE 3-3 SUMMARY OF SOIL ANALYTICAL RESULTS - PESTICIDES 5th Street and Magnolia Street West Oakland, California

		$\begin{array}{c c c c c c c c c c c c c c c c c c c $																			
Sample ID	Date	-	Alpha-BHC	eta-	ma- nda	Heptachlor	elta-	Aldrin	Heptachlor epoxide	Endosulfan I	4	Dieldrin	Endrin	4,		4,4-DDT	drin aldehy	Endosulfan S	2	rdan	Toxaphene
			(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)
W-1	9/17/15	1	<2.50	<2.50	<2.50	<2.50	<2.50	<2.50	<2.50	<2.50	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00	<12.5	<12.5	<62.5
W-2	9/17/15	1	<2.50	<2.50	<2.50	<2.50	<2.50	<2.50	<2.50	<2.50	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00	<12.5	17.6	<62.5
W-3	9/17/15	1	<2.50	<2.50	<2.50	<2.50	<2.50	<2.50	<2.50	<2.50	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00	<12.5	<12.5	<62.5
W-4	9/17/15	1	<2.50	<2.50	<2.50	<2.50	<2.50	<2.50	<2.50	<2.50	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00	<12.5	15.2	<62.5
W-5	9/17/15	1	<2.50	<2.50	<2.50	<2.50	<2.50	<2.50	<2.50	<2.50	7.54	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00	<12.5	<12.5	<62.5
W-6	9/17/15	1	<2.50	<2.50	<2.50	<2.50	<2.50	<2.50	<2.50	<2.50	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00	<12.5	15.8	<62.5
W-7	9/17/15	1	<2.50	<2.50	<2.50	<2.50	<2.50	<2.50	<2.50	<2.50	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00	<12.5	15.3	<62.5
W-8	9/17/15	1	<2.50	<2.50	<2.50	<2.50	<2.50	<2.50	<2.50	<2.50	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00	< 5.00	<12.5	18.4	<62.5
ESLs-Co	mmercial				2,500			160	300	5.8E+06	8,500	170	290,000	12,000	5.8E+06	8,500		5.8E+06	4.8E+06	2,200	2,200
ESLs-Co	nstruction	worker			16,000			1,000	1,900	1.5E+06	57,000	1,100	74,000	81,000	1.5E+06	57,000		1.5E+06	1.2E+06	14,000	14,000
ESLs-Res	sidential				550			36	67	4.2E+05	1,900	38	21,000	2,700	4.2E+05	1,900		4.2E+05	3.5E+05	480	510

Notes:

PAHs: Polycyclic aromatic hydrocarbons

µg/kg: micrograms per kilogram

--: Not analyzed/not available

ESLs: California Regional Water Quality Control Board - San Francisco Bay Region Environmental Screening Levels

<2.50: Less than the laboratory-reporting limit of $2.50 \ \mu g/kg$

TABLE 3-4 SUMMARY OF SOIL ANALYTICAL RESULTS - METALS 5th Street and Magnolia Street West Oakland, California

										N	Metals								
Sample ID	Date	Depth (feet)	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Copper	Lead	Mercury	Molybdenum	Nickel	Selenium	Silver	Thallium	Vanadium	Zinc
			(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
		1		3.58							25.9								
W-1	9/17/15	3		<2.50							119								
		6		<2.50							3.45								
		1		7.21							36.4								
W-2	9/17/15	3	<2.50	6.91	1,790	<2.50	<2.50	25.6	3.92	37.7	661	0.38	<2.50	20	<2.50	<2.50	<2.50	28.5	688
		6		<2.50							<2.50								
		1	<2.50	2.61	99.1	<2.50	<2.50	23.1	8.18	40.1	19.6		<2.50	27.8	<2.50	<2.50	<2.50	43.2	87.1
W-3	9/17/15	3		<2.50							169								
		6		<2.50							1,360								
		1		3.54							24.7								
W-4	9/17/15	3	<2.50	7.17	990	<2.50	<2.50	29.9	6.35	43.4	2,180		<2.50	34.5	<2.50	<2.50	<2.50	26.7	701
		6		<2.50							<2.50								
		1		5.60							510								
W-5	9/17/15	3		<2.50							50.2								
		6		<2.50							<2.50								
		1		4.34							25.5								
W-6	9/17/15	3		4.36							316								
		6	<2.50	<2.50	36.1	<2.50	<2.50	22.3	<2.50	4.04	7.87		<2.50	11.9	<2.50	<2.50	<2.50	15.6	12.8
		1		4.90							18.9								
W-7	9/17/15	3		2.50							199								
		6		2.64							2.87								
		1		3.28							20.1								
W-8	9/17/15	3		2.76							174								
		6		2.93							3.58								
B-1	5/8/17	1.5									102								
B-2	5/8/17	1									107								
	0,0,11	2.5	<2.50	4.5	214	<2.50	<2.50	31.4	4.05	30.8	314		<2.50	18.1	<2.50	<2.50	<2.50	20.8	265
B-3	5/8/17	1.5									36.5								
		3	<2.50	4.02	141	<2.50	<2.50	17.2	7.07	20.2	98.0		<2.50	15.4	<2.50	<2.50	<2.50	36.1	72.8
B-4	5/8/17	1.5									1,080								
B-5	5/8/17	1.5									191								

TABLE 3-4 SUMMARY OF SOIL ANALYTICAL RESULTS - METALS 5th Street and Magnolia Street West Oakland, California

										Ν	Aetals								
Sample ID	Date	Depth (feet)	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Copper	Lead	Mercury	Molybdenum	Nickel	Selenium	Silver	Thallium	Vanadium	Zinc
			(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
B-6 5/8/17		1									43.9								
D- 0	J/ 0/ 1 /	2.5	<2.50	3.40	104	<2.50	<2.50	30.0	4.39	15.4	206	0.200	<2.50	20.5	<2.50	<2.50	<2.50	22.2	110
B-7	5/8/17	1.5									76.9								
D-/	J/ 0/ 1 /	2.5									228								
B-8	5/8/17	1.5	<2.50	3.34	106	<2.50	<2.50	32.8	6.22	18.7	113	0.186	<2.50	20.8	<2.50	<2.50	<2.50	30.2	119
R O	5/8/17	1									96.0								
B-9 5/8/17		2	<2.50	4.57	122	<2.50	<2.50	43.2	11.5	26.1	13.6	< 0.100	<2.50	38.8	<2.50	<2.50	<2.50	36.6	43.9
ESLs-Commercial			470	bg	220,000	2,200	580	1,800,000	350	47,000	320	190	5,800	11,000	5,800	5,800	12	5,800	350,000
ESLs-Commercial ESLs-Residential			31	bg	15,000	150	39	120,000	23	3,100	80	13	390	820	390	390	0.78	390	23,000

Notes:

mg/kg: milligrams per kilogram

--: Not analyzed

<2.50: Less than the laboratory-reporting limit of 2.50 $\mu g/kg$

ESLs: California Regional Water Quality Control Board - San Franicsco Bay Region Environmental Screening Levels, Rev. 3

TABLE 3-5 SUMMARY OF SOIL GAS ANALYTICAL RESULTS 5th Street and Magnolia Street West Oakland, California

пеціаце	
ethane	
rofluoromethane	
lloroethene	
rotrifluoroethane	
ene chloride	
hloroethane	
Dichloroethene	
orm	
richloroethane	
hloroethane	

Sample ID	Depth (feet)	Date	Dichlorodifluoromethmane	Chloromethane	Dichlorotetrafluoroethane	Vinyl Chloride	Bromomethane	Chloroethane	Trichlorofluoromethane	1,1-Dchloroethene	Trichlorotrifluoroethane	Methylene chloride 1,1-Dichloroethane	cis-1,2-Dichloroethene	(Chloroform	1,1,1-Trichloroethane	1,2-Dichloroethane	Benzene	Carbon Tetrachloride	1,2-Dichloropropane	Trichloroethene	cis-1,3-Dichloropropene	trans-1,3-Dichloropropene	Toluene	1,1,2-Trichloroethane	1,2-Dibromomethane	Tetrachloroethene
W-1	5	9/17/15	<4.95	<2.07	<6.99	<2.56	<3.88	<2.64	16.7	<3.97 <	<7.66	<3.47 <4.0	5 <3.97	<4.88	<5.46	<4.05	9.14	<6.29	<4.62	<5.37	<4.54	<4.54	15.8	<5.46	<7.68	29.4
W-2	F	9/17/15	<24.7	<10.3	<35	<12.8	<19.4	<13.2	<28.1	<19.8	<38.3	<17.4 <20.	2 <19.8	<24.4	<27.3	<20.2	<16.0	<31.5	<23.1	<26.9	<22.7	<22.7	<18.8	<27.3	<38.4	224
W-2	5	5/8/17	<4.95	<2.07	<6.99	<2.56	<3.88	<2.64	6.52	<3.97 <	<7.66	5.07 <4.0	5 <3.97	<4.88	<5.46	<4.05	<3.19	<6.29	<4.62	<5.37	<4.54	<4.54	<3.77	<5.46	<7.68	45
W-4	5	9/17/15	<24.7	<10.3	<35	<12.8	<19.4	<13.2	<28.1	<19.8 <	<38.3	<17.4 <20.	2 <19.8	<24.4	<27.3	<20.2	<16.0	<31.5	<23.1	<26.9	<22.7	<22.7	<18.8	<27.3	<38.4	352
vv -4	5	5/9/17	<9.89	<4.13	<14.0	<5.11	<7.77	<5.28	<11.2	<7.93 <	<15.3	<6.95 <8.1	0 <7.93	<9.77	<10.9	<8.09	<6.39	<12.6	<9.24	<10.7	<9.08	<9.08	<7.54	<10.9	<15.4	182
W-7	5	9/17/15	<24.7	<10.3	<35	<12.8	<19.4	<13.2	<28.1	<19.8	<38.3	<17.4 <20.	2 <19.8	<24.4	<27.3	<20.2	<16.0	<31.5	<23.1	<26.9	<22.7	<22.7	<18.8	<27.3	<38.4	64
SG-1	5	5/8/17	<4.95	<2.07	<6.99	<2.56	<3.88	<2.64	6.24	<3.97 <	<7.66	<3.47 <4.0	5 <3.97	<4.88	<5.46	<4.05	<3.19	<6.29	<4.62	<5.37	<9.08	<9.08	4.86	<5.46	<7.68	109
SG-2	5	5/8/17	<9.89	<4.13	<14.0	<5.11	<7.77	<5.28	<11.2	<7.93	<15.3	<6.95 <8.1	0 <7.93	<9.77	<10.9	<8.09	18.6	<12.6	<9.24	<10.7	<9.08	<9.08	38.4	<10.9	<15.4	14
SG-3	5	5/9/17	<9.89	<4.13	<14.0	<5.11	<7.77	<5.28	<11.2	<7.93 <	<15.3	24.2 <8.1	0 <7.93	<9.77	<10.9	<8.09	<6.39	<12.6	<9.24	<10.7	<9.08	<9.08	<7.54	<10.9	<15.4	<13.6
SG-4	5	5/9/17	<4.95	<2.07	<6.99	<2.56	<3.88	<2.64	14.2	<3.97 <	<7.66	<3.47 <4.0	5 <3.97	<4.88	<5.46	<4.05	<3.19	<6.29	<4.62	<5.37	<9.08	<9.08	<3.77	<5.46	<7.68	13.5
SG-5	5	5/9/17	<9.89	<4.13	<14.0	<5.11	<7.77	<5.28	<11.2	<7.93 <	<15.3	<6.95 <8.1	0 <7.93	<9.77	<10.9	<8.09	<6.39	<12.6	<9.24	<10.7	<9.08	<9.08	<7.54	<10.9	<15.4	21.3
ESLs-Con			3	3.9E+05		160		.4E+07	3	3.1E+05		12,000 7,70			4.4E+06			290				3.5E+05	1.3E+06			2,100
ESLs-Resi	idential			47,000		4.7	2,600 5	5.2E+06		37,000		510 88	0 4,200	61	5.2E+05	54	48	33	140	240	88	420	1.6E+05		2.3	240

Notes:

 $\mu g/m^3$: micrograms per meter cubed

<21.8: Less than the laboratory-reporting limit of 21.8 μ g/m³

--: not available

ESLs: California Regional Water Quality Control Board - San Franicsco Bay Region Environmental Screening Levels (Rev. 3)

TABLE 3-5 SUMMARY OF SOIL GAS ANALYTICAL RESULTS 5th Street and Magnolia Street West Oakland, California

Sample ID	Depth (feet)	Date	Chlorobenzene	Ethyl Benzene	Xylenes	Styrene	1,1,2,2-Tetrachloroethane	() () () () () () () () () () () () () (() 1,2,4-Trimethylbenzene	1,3-Dichlorobenzene	1,4-Dichlorobenzene	1,2-Dichlorobenzene	1,2,4-Trichlorobenzene	Hexachlorobutadiene	%) Helium
W-1	5 9/17/ 9/17/		<4.60	4.60	19.11	<4.26	<6.87	<4.92	<4.92	<6.01	<6.01	<6.01	<14.8	<10.7	< 0.100
W 2	9/1		<23	<21.7	<21.7	<21.3	<34.3	<24.6	<24.6	<30.1	<30.1	<30.1	<74.2	<53.3	< 0.100
W-2	-2 5		<4.60	<4.34	<4.34	<4.26	<6.87	<4.92	<4.92	<6.01	<6.01	<6.01	<7.42	<10.7	< 0.100
XX 4	~	9/17/15	<23	<21.7	<21.7	<21.3	<34.3	<24.6	<24.6	<30.1	<30.1	<30.1	<74.2	<53.3	< 0.100
W-4	5	5/9/17	<9.21	<8.68	<8.68	<8.52	<13.7	<9.83	<9.83	<12.0	<12.0	<12.0	<14.8	<21.3	<0.100
W-7	5	9/17/15	<23	<21.7	<21.7	<21.3	<34.3	<24.6	<24.6	<30.1	<30.1	<30.1	<74.2	<53.3	<0.100
SG-1	5	5/8/17	<4.60	<4.34	<4.34	<4.26	<6.87	<4.92	<4.92	<6.01	<6.01	<6.01	<7.42	<10.7	< 0.100
SG-2	5	5/8/17	<9.21	<8.68	<8.68	<8.52	<13.7	<9.83	<9.83	<12.0	<12.0	<12.0	<14.8	<21.3	<0.100
SG-3	5	5/9/17	<9.21	<8.68	<8.68	<8.52	<13.7	<9.83	<9.83	<12.0	<12.0	<12.0	<14.8	<21.3	< 0.100
SG-4	5	5/9/17	<9.21	<8.68	<8.68	<8.52	<13.7	<9.83	<9.83	<12.0	<12.0	<12.0	<14.8	<21.3	< 0.100
SG-5	5	5/9/17	<9.21	<8.68	<8.68	<8.52	<13.7	<9.83	<9.83	<12.0	<12.0	<12.0	<14.8	<21.3	< 0.100
ESLs-Con	nmercial		2.2E+05	4,900	4.4E+05	3.9E+06	210				1,100	8.8E+05	8,800		
ESLs-Resi	dential		26,000	560	5.2E+04	4.7E+05	24				130	1.0E+05	1,000		

Notes:

µg/m³: micrograms per me

<21.8: Less than the labor

--: not available

ESLs: California Regiona

TABLE 3-6 SUMMARY OF GROUNDWATER ANALYTICAL RESULTS 5th Street and Magnolia Street

Sample ID	e Date	öHdL (mg/l)	Dichlorodifluoromethmane	Chloromethane	Chloroethene	Bromomethane	Chloroethane	Trichlorofluoromethane	1,1-Dchloroethene	Trichlorotrifluoroethane	Methylene chloride	trans-1,2-Dichloroethene	1,1-Dichloroethane	cis-1,2-Dichloroethene	2-2Dichloropropane	Bromochloromnethane	Chloroform	1,1,1-Trichloroethane	(l/ Carbon Tetrachloride	1,1-Dichlorpropene	Benzene	1,2-Dichloroethane	Trichloroethene	1,2-Dichloropropane	Dibromomethane	Bromodichloromethane	trans-1,3-Dichloroprpene	Toluene	cis-1,3-Dichloroprpene	1,1,2-Tetrachloroethane	Tetrachloroethene	1,3-Dichloropropene	Dibromochloromethane	1,2-Dibromomethane
W-1	9/17/15	<0.050	<0.500	<0.500	< 0.500	<0.500	<0.500	< 0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	< 0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	< 0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500
W-2	9/17/15	<0.050	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	0.850	<0.500	<0.500	<0.500
W-4	9/17/15	<0.050	<0.500	<0.500	< 0.500	<0.500	<0.500	< 0.500	<0.500	< 0.500	<0.500	<0.500	<0.500	<0.500	<0.500 ·	<0.500	< 0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	< 0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500
MCLs			220	190	0.5	7.5	21,000		6		5	10	5	6			80	200			1	0.5	5	5		80		40		5	5	0.5	80	0.05

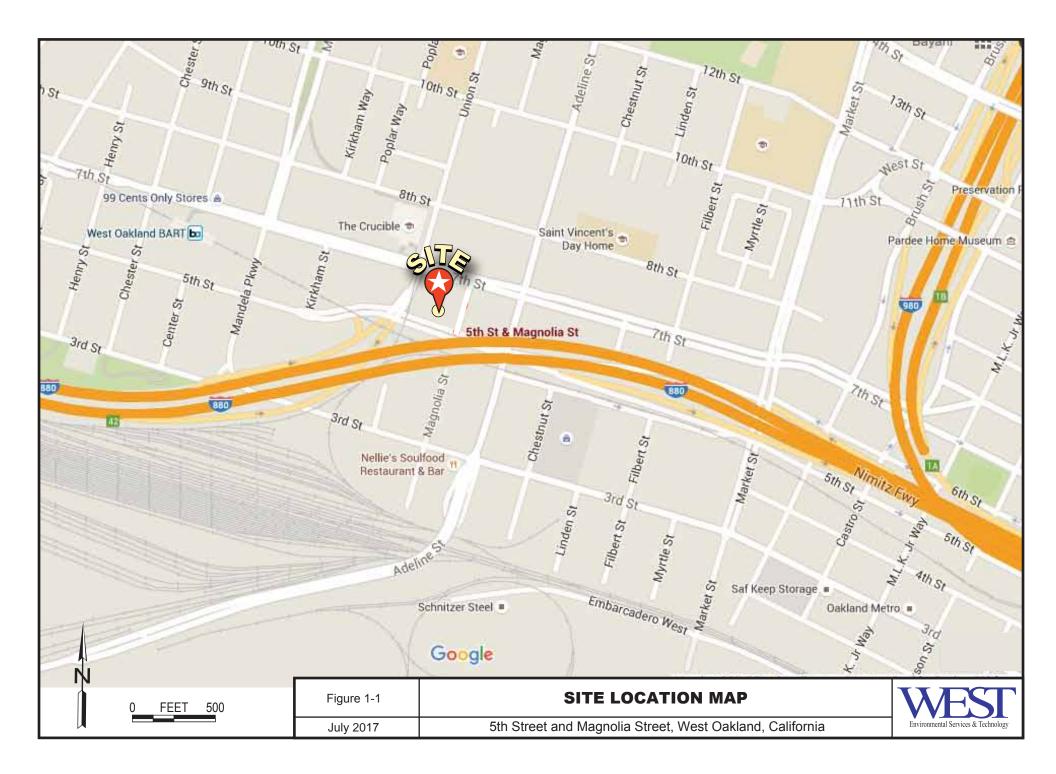
Notes:

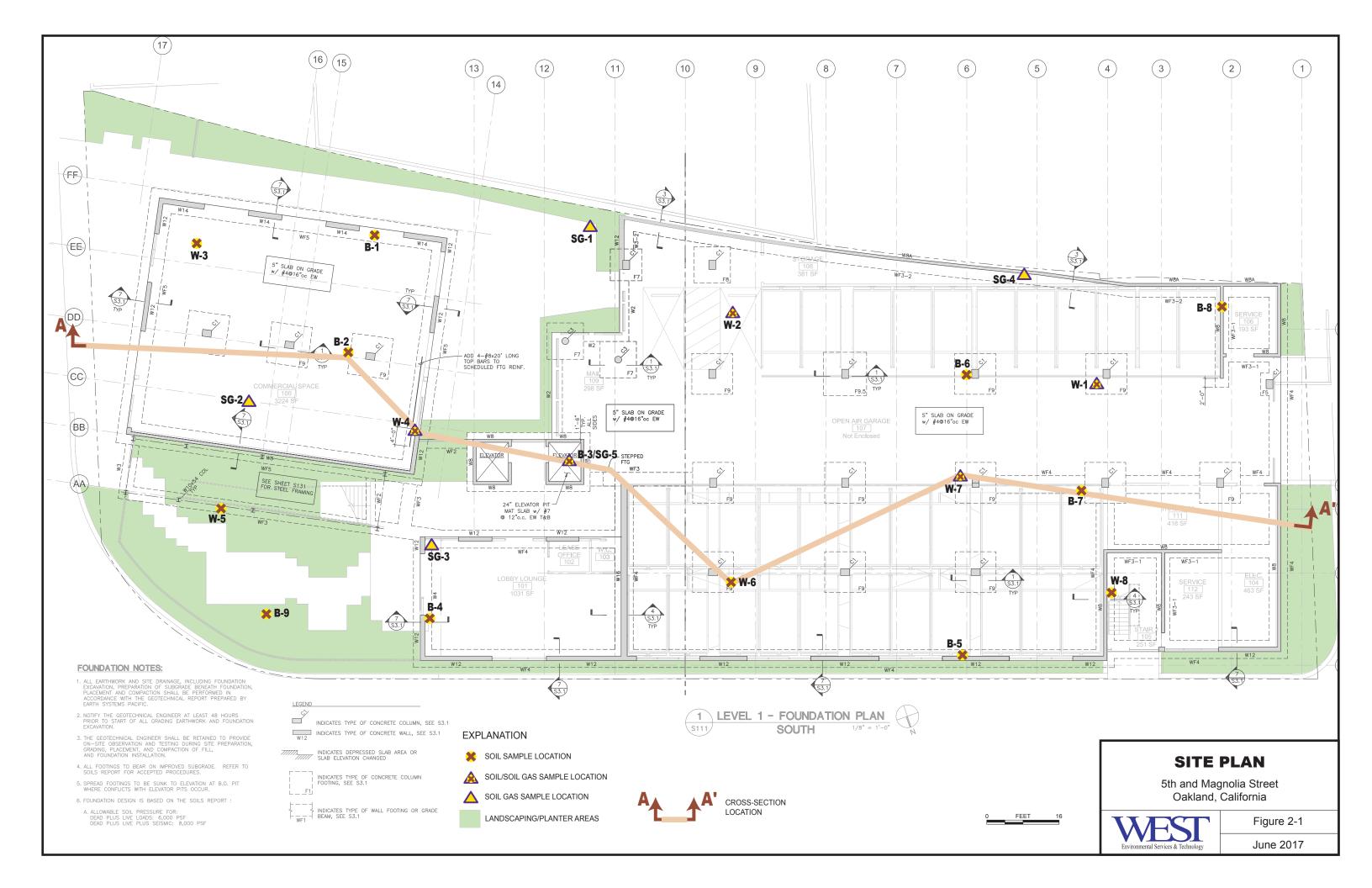
µg/l: micrograms per liter

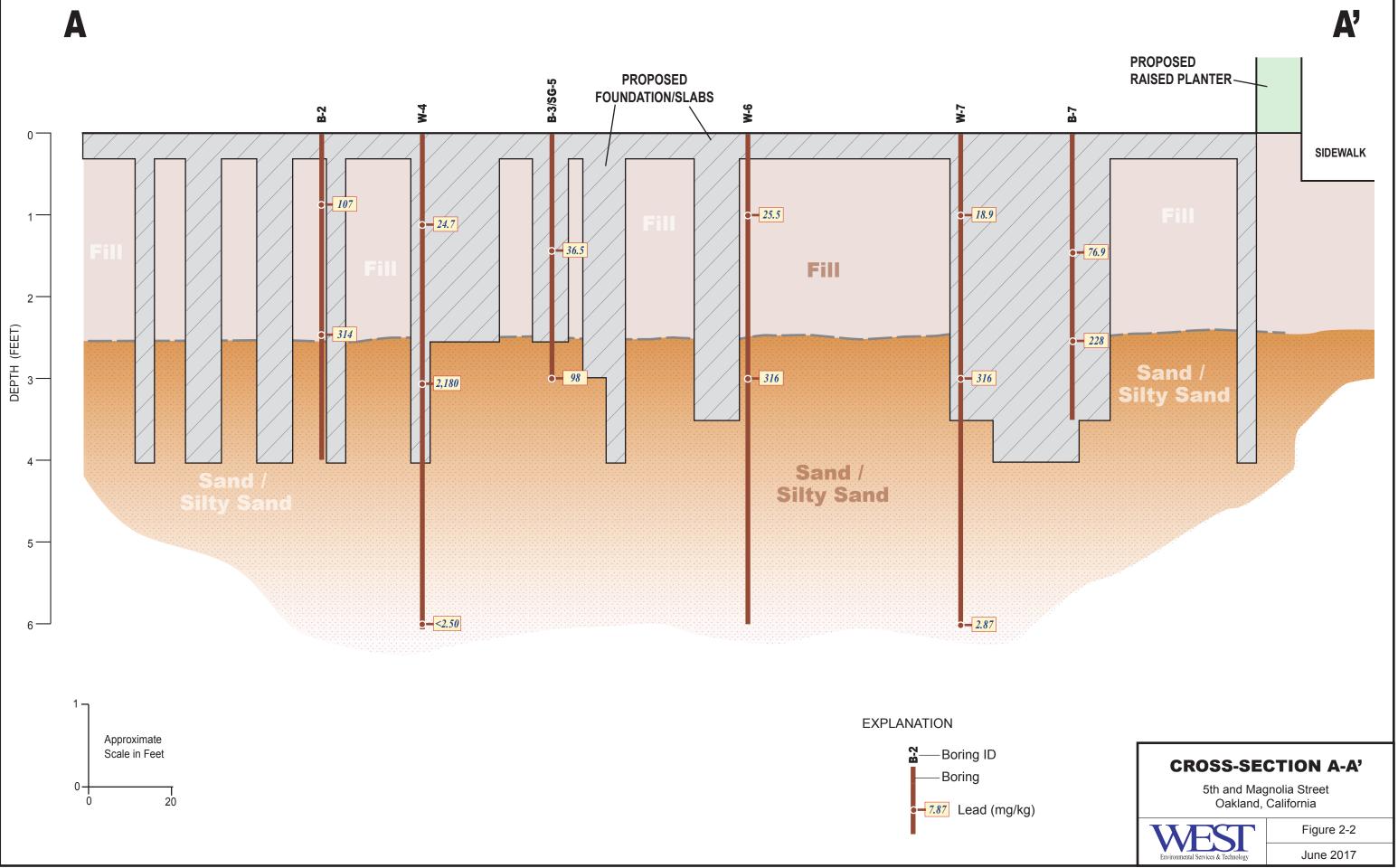
mg/l: milligrams per liter

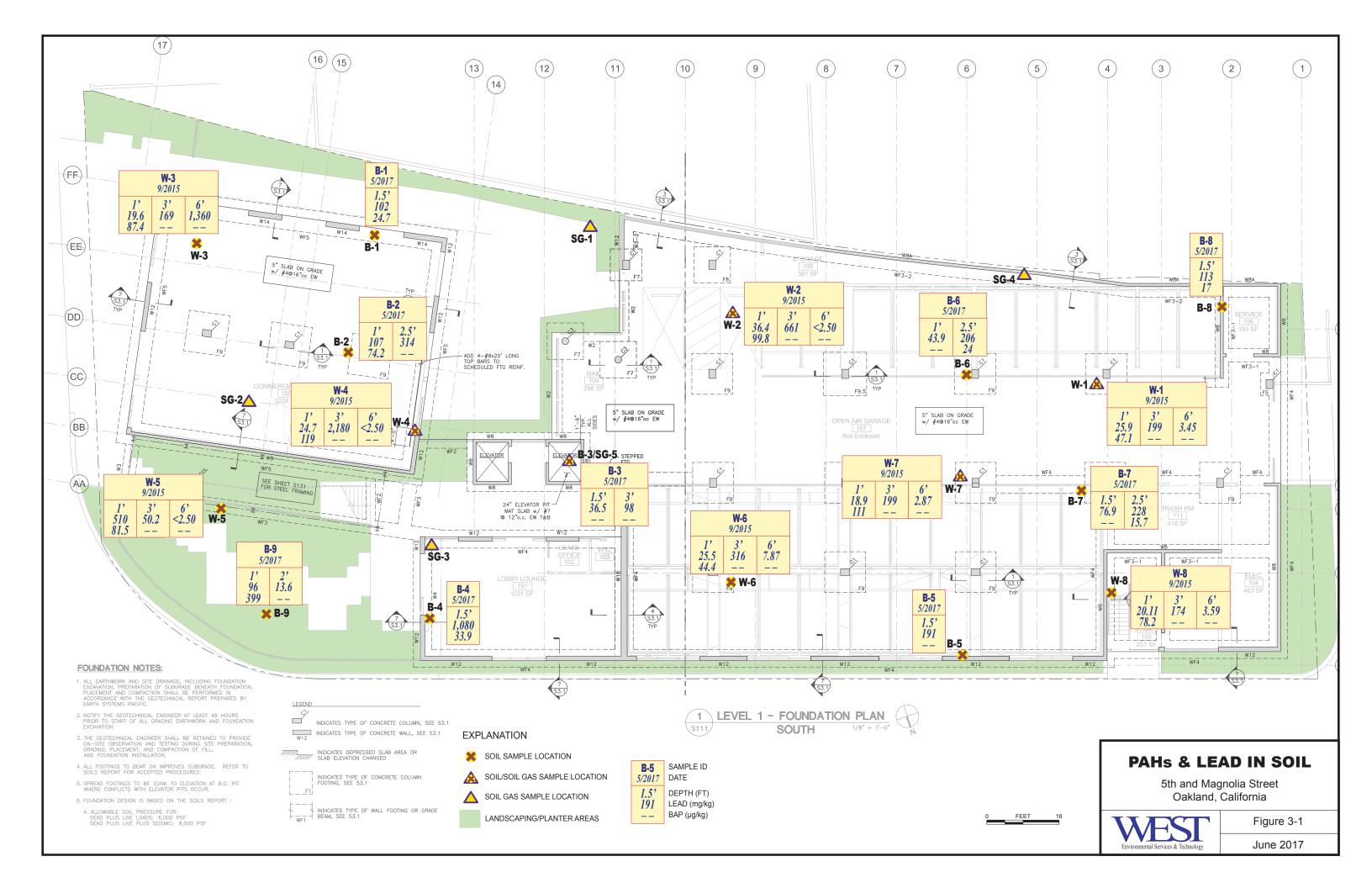
<0.500: Less than the laboratory-reporting limit of 0.500

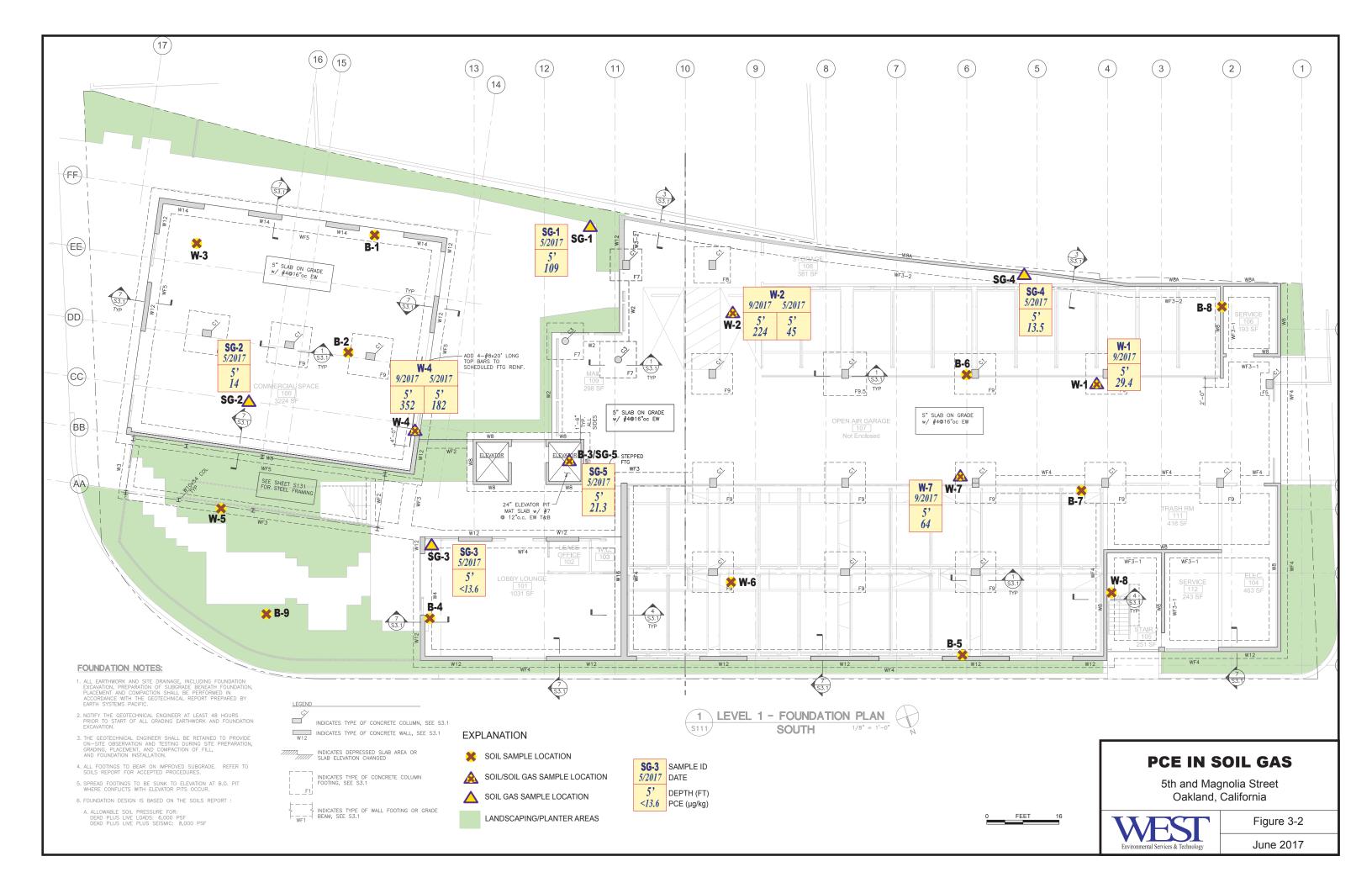
MCLs: Maximum Contaminant Levels

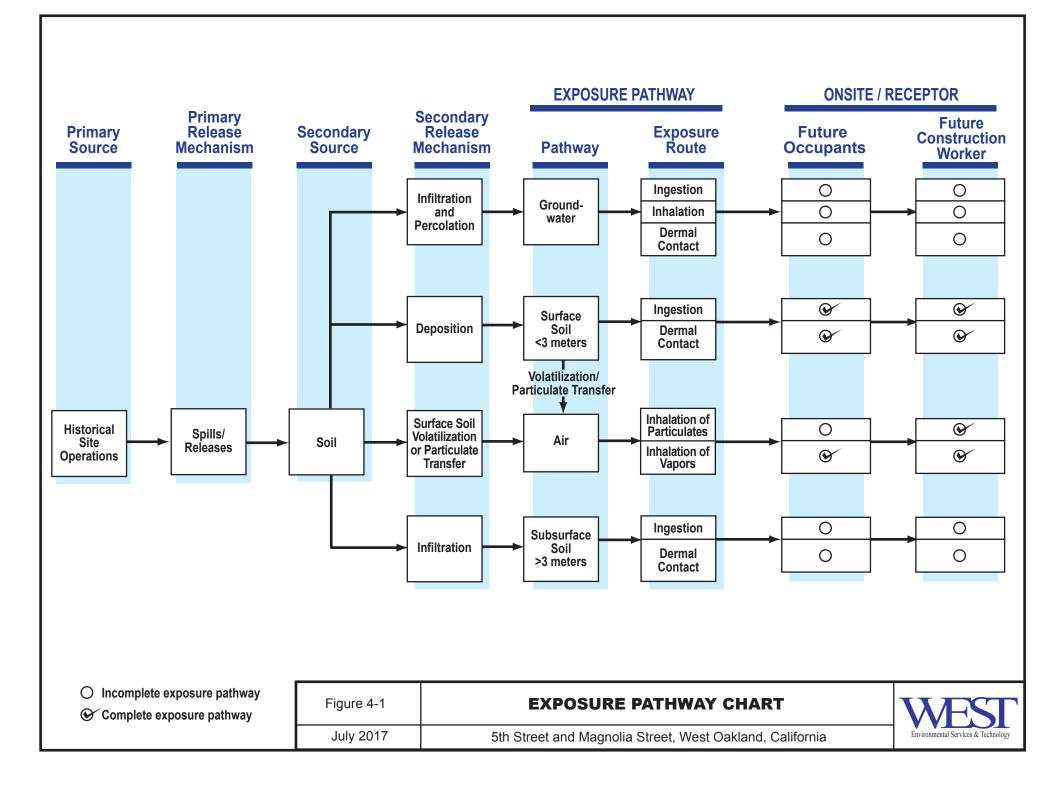

TABLE 3-6 SUMMARY OF GROUNDWATER ANALYTICAL RESULTS 5th Street and Magnolia Street West Oakland, California


Sample ID	Date	Chlorobenzene	1,1,1,2-Tetrachloroethane	Ethyl Benzene	Xylenes	Styrene	Bromoform	Isoprpylbenzene	1,1,2,2-Tetrachloroethane	Bromomethane	1,2,3-Trichloropropane	n-Propylbenzene	2-Chlorotoluene	1,3,5-Trimethylbenzene	(l/gπ) 4-Chlorotoluene	Tert-Butylbenzene	1,2,4-Trimethylbenzene	sec-Butylbenzene	1,3-Dichlorobenzene	4-Isopropyltoluene	1,4-Dichlorobenzene	n-Butylbenzene	1,2-Dichlorbenzene	1,2-Dibromo-3- chloropropane	1,2,4-Trichlorobenzene	Hexachlorobutadiene	Naphthalene	1,2,3-Trichlorobenzene
W-1	9/17/15	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	< 0.500	<0.500	<0.500	<0.500	<0.500	< 0.500		<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500
W-2	9/17/15	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	< 0.500	<0.500	<0.500	<0.500	<0.500	< 0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500
W-4	9/17/15	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	< 0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	< 0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500
MCLs	1		0.57	30	20		80		1										60		5		100		5	0.14	0.17	


Notes:


μg/l: microgra mg/l: milligran <0.500: Less than


MCLs: Maximur



APPENDIX A

BORING LOGS AND

FIELD DATA FORMS

SOIL VAPOR SAMPLING LOG, SAMPLE ID: 56-1-5

PROJECT NAME: Holliday. W0. Gru Maquelia PROJECT LOCATION: GH A Wagnolia, Oakland WEATHER: Olar GLOS, Loghodia, Oakland DATE: May 0.2017 SAMPLED BY: RUM WELL TYPE, e.g., PERMANENT; TEMPORARY: Temperary SAMPLE DATA SAMPLE ID: SAMPLE DATA SAMPLE SERIAL NO:: FLOW CONTROLLER SERIAL NO::		· · · · · · · · · · · · · · · · · · ·						
PROJECT LOCATION: GM 4 Magnolia, Uallandi WEATHER: Ular skill, uallandi DATE: May 9, 2017 SAMPLED BY: KIM WELL TYPE, e.g., PERMANENT; TEMPORARY: Temperary SAMPLE DATA SAMPLE ID: S&-1-5 VAPOR PROBE SAMPLE DEPTH (FT): S S SUMMA CANISTER ID: S-61-5 D FLOW CONTROLLER SERIAL NO:		btolliday, WU, Str Mac	<u>media</u>					
WEATHER: Clear \$K (5, Mak bos 40 100 2, NW bread) DATE: May (2, 2017) SAMPLED BY: KUM Well TYPE, e.g., PERMANENT; TEMPORARY: Temperary SAMPLE DATA SAMPLE ID: 56-1-5 SAMPLE DATA SAMPLE ID: 5 BORINGAVELL DIAMETER ID: 5 - 612 FLOW CONTROLLER SERIAL NO:	PROJECT LOCAT	ION: 5th of Magnolia, Oakland	*					
SAMPLED BY: $\beta \mu n$ WELL TYPE, e.g., PERMANENT; TEMPORARY: $Temperary$ SAMPLE DATA SAMPLE ID: $56-1-5$ SAMPLE DATA VAPOR PROBE SAMPLE DEPTH (FT): 5 SUMMA CANISTER ID: $5-6/2$ FLOW CONTROLLER SERIAL NO.: $$ BORING/WELL DIAMETER (INCH): 2.75 DRY BENTONITE INTERVAL (FT) $7.3 + 6.4.3$ SAND PACK INTERVAL (FT): $4.3 + 6.5.5$ TUBING TYPE: $N_4/a \in 1^{6}\omega$ TUBING TYPE: $N_4/a \in 1^{6}\omega$ TUBING ID (INCH): 0.17 PURGE VOLUME PURGE RATE (CC/MIN): PURGE TIME 1 WELL VOLUME (MIN): 3.0 PURGE TIME 1 WELL VOLUME (MIN): 3.0 PURGE TIME 1 WELL VOLUME (CC): 1.3 PURGE TIME 1 WELL VOLUME (MIN): 3.0 PURGE TIME (MIN): 3.0 9.0 PURGE TIME (MIN): 3.0 9.0 PURGE TIME (MIN): 3.0 9.0 $$ SHUT IN/ INITIAL CANISTER VACUUM (IN. Hg) 7 7	WEATHER:	Clear skill, Man 1009 to 10W 10 9	NW bree	21C				
WELL TYPE, e.g., PERMANENT; TEMPORARY: Temperary SAMPLE DATA SAMPLE ID: 56-1-5 SAMPLE DATA VAPOR PROBE SAMPLE DEPTH (FT): 5 SUMMA CANISTER ID: $5 - 6/2 - $	DATE:							
NSAMPLE ID: $56 - 1 - 5$ VAPOR PROBE SAMPLE DEPTH (FT): $56 - 1 - 5$ SUMMA CANISTER ID: $5 - 6/2$ FLOW CONTROLLER SERIAL NO.:DRY BENTONITE INTERVAL (FT) $7 \cdot 3 + 6 + 3 \cdot 3$ DRY BENTONITE INTERVAL (FT) $7 \cdot 3 + 6 + 3 \cdot 3$ SAND PACK INTERVAL (FT) $7 \cdot 3 + 6 + 3 \cdot 3$ TUBING TYPE:N $4/a + 6 \cdot 3 \cdot 5$ TUBING LENGTH (FT): $4 \cdot 3 + 6 \cdot 5 \cdot 5$ TUBING TYPE:N $4/a + 6 \cdot 3 \cdot 5$ TUBING LENGTH (FT): $6 \cdot 17$ PURGE VOLUMEPURGE VOLUME (CC): 373 PURGE RATE (CC/MIN): $6 \cdot 2 \cdot 5$ PURGE TIME 1 WELL VOLUME (MIN): $3 \cdot 0$ PURGE TIME 1 WELL VOLUME (MIN): $3 \cdot 0$ PURGE TIME 1 WELL VOLUME (MIN): $3 \cdot 0$ PURGE TIME (MIN): $3 \cdot 0$ PU				··•				
SAMPLE DATAVAPOR PROBE SAMPLE DEPTH (FT): 5 SUMMA CANISTER ID: $5 - 6/2$ FLOW CONTROLLER SERIAL NO.: $-$ FLOW CONTROLLER SERIAL NO.: $-$ BORING/WELL DIAMETER (INCH): $2, 7.5$ DRY BENTONITE INTERVAL (FT) $3, 3$ to $4, 3$ SAND PACK INTERVAL (FT) $4, 3$ to $5, 5$ TUBING TYPE: $N_4/a \in 6w$ TUBING LENGTH (FT): $6, 17$ TUBING ID (INCH): $0, 17$ PURGE VOLUME $0, 17$ PURGE TIME 1 WELL VOLUME (MIN): $3, 0$ PURGE TIME (MIN): 7	WELL TYPE, e.g.,	PERMANENT; TEMPORARY: Jemperary	/					
SAMPLE DATAVAPOR PROBE SAMPLE DEPTH (FT): 5 SUMMA CANISTER ID: $5 - 6/2$ FLOW CONTROLLER SERIAL NO.: $-$ FLOW CONTROLLER SERIAL NO.: $-$ BORING/WELL DIAMETER (INCH): $2, 7.5$ DRY BENTONITE INTERVAL (FT) $3, 3$ to $4, 3$ SAND PACK INTERVAL (FT) $4, 3$ to $5, 5$ TUBING TYPE: $N_4/a \in 1^{6}\omega$ TUBING LENGTH (FT): 6 TUBING ID (INCH): $0, 17$ PURGE VOLUME $0, 17$ PURGE RATE (CC/MIN): $0, 17$ PURGE TIME 1 WELL VOLUME (MIN): $3, 0$ PURGE TIME (MIN): 7					· · · · · · · · ·			
SAMPLE DATASUMMA CANISTER ID: FLOW CONTROLLER SERIAL NO.: $S - 6/2$ FLOW CONTROLLER SERIAL NO.:			56-1-1	5				
SUMMA CANISTER ID: 5 - 0/2 FLOW CONTROLLER SERIAL NO.:		VAPOR PROBE SAMPLE DEPTH (FT):	5					
BORING/WELL DIAMETER (INCH): 2.75 DRY BENTONITE INTERVAL (FT) 7.3 to 4.3 SAND PACK INTERVAL (FT): 4.3 40 5.5 TUBING TYPE: N4/actow TUBING LENGTH (FT): 6.17 PURGE VOLUME 0.17 PURGE VOLUME 0.17 PURGE VOLUME (CC): 3.73 PURGE RATE (CC/MIN): 0.125 PURGE TIME 1 WELL VOLUME (MIN): 3.0 PURGE TIME 1 WELL VOLUME (MIN): 3.0 PURGE TIME (MIN): 3.0 YACUUM HOLD TEST START TIME (24 HR): 12.47 INITIAL CANISTER VACUUM (IN. Hg) 7		SUMMA CANISTER ID:	5-612)				
DRY BENTONITE INTERVAL (FT) 9.3 to 9.3 SAND PACK INTERVAL (FT): 4.3 to 5.5 TUBING TYPE: Nt/lactew TUBING LENGTH (FT): 8 TUBING ID (INCH): 0.17 PURGE VOLUME (CC): 373 PURGE RATE (CC/MIN): 9.0 PURGE TIME 1 WELL VOLUME (MIN): 3.0 PURGE WELL VOLUMES (CIRCLE) 1 PURGE TIME (MIN): 3.0 VACUUM HOLD TEST START TIME (24 HR): 12.49 SHUT IN/ INITIAL CANISTER VACUUM (IN. Hg)	A MEMORY	FLOW CONTROLLER SERIAL NO.:			·····			
DRY BENTONITE INTERVAL (FT) 9.3 to 9.3 SAND PACK INTERVAL (FT): 4.3 to 5.5 SAND PACK INTERVAL (FT): 4.3 to 5.5 TUBING TYPE: Nt/lacter TUBING LENGTH (FT): 8 TUBING ID (INCH): 0.17 PURGE VOLUME (CC): 373 PURGE RATE (CC/MIN): 9.0 PURGE TIME 1 WELL VOLUME (MIN): 3.0 PURGE TIME 1 WELL VOLUMES (CIRCLE) 1 PURGE TIME (MIN): 3.0 YACUUM HOLD TEST START TIME (24 HR): 12.44 SHUT IN/ INITIAL CANISTER VACUUM (IN. Hg) 7								
PURGE VOLUME SAND PACK INTERVAL (FT): 4.3 40 5.5 TUBING TYPE: Nylactow TUBING LENGTH (FT): 8 TUBING ID (INCH): 0.17 PURGE VOLUME (CC): 373 PURGE TIME 1 WELL VOLUME (MIN): 3.0 PURGE TIME 1 WELL VOLUME (MIN): 3.0 PURGE TIME (MIN): 3.0 PURGE TIME (MIN): 3.0 PURGE TIME (MIN): 7 VACUUM HOLD TEST START TIME (24 HR): 12.44 SHUT IN/ VACUUM HOLD TEST START TIME (24 HR): 12.44		BORING/WELL DIAMETER (INCH):	2,75					
TUBING TYPE: Nylacter TUBING LENGTH (FT): 8 TUBING ID (INCH): 0.17 PURGE VOLUME (CC): 373 PURGE RATE (CC/MIN): 0.125 PURGE TIME 1 WELL VOLUME (MIN): 3.0 PURGE WELL VOLUMES (CIRCLE) 1 3 PURGE TIME (MIN): 3.0 9.0 PURGE TIME (MIN): 3.0 9.0 PURGE TIME (MIN): 7 10 PURGE TIME (MIN): 7 7 SHUT IN/ VACUUM HOLD TEST START TIME (24 HR): 12.44		DRY BENTONITE INTERVAL (FT)						
PURGE VOLUME CALCULATION TUBING LENGTH (FT): '8 TUBING ID (INCH): ©. [7 PURGE VOLUME (CC): 3723 PURGE RATE (CC/MIN): @@ [2-5 PURGE TIME 1 WELL VOLUME (MIN): '3.0 PURGE WELL VOLUMES (CIRCLE) 1 3 PURGE TIME (MIN): '3.0 '4.0 VACUUM HOLD TEST START TIME (24 HR): '2.4'4' SHUT IN/ INITIAL CANISTER VACUUM (IN. Hg) '7		SAND PACK INTERVAL (FT):	4.3	105,5				
PURGE VOLUME CALCULATION TUBING LENGTH (FT): '8 TUBING ID (INCH): ©. [7 PURGE VOLUME (CC): 3723 PURGE RATE (CC/MIN): @@ [2-5 PURGE TIME 1 WELL VOLUME (MIN): '3.0 PURGE WELL VOLUMES (CIRCLE) 1 3 PURGE TIME (MIN): '3.0 '4.0 VACUUM HOLD TEST START TIME (24 HR): '2.4'4' SHUT IN/ INITIAL CANISTER VACUUM (IN. Hg) '7		TUBING TYPE:	Nylacton					
CALCULATION TUBING ID (INCH): 0.17 PURGE VOLUME (CC): 373 PURGE RATE (CC/MIN): 0.125 PURGE TIME 1 WELL VOLUME (MIN): 3.0 PURGE WELL VOLUMES (CIRCLE) 1 3 7 10 PURGE TIME (MIN): 3.0 9.0 VACUUM HOLD TEST START TIME (24 HR): 12.44 SHUT IN/ INITIAL CANISTER VACUUM (IN. Hg) 7		TUBING LENGTH (FT):	18					
PURGE VOLUME (CC): 3/73 PURGE RATE (CC/MIN): 20/2-5 PURGE TIME 1 WELL VOLUME (MIN): 3.0 PURGE WELL VOLUMES (CIRCLE) 1 3 7 10 PURGE TIME (MIN): 3.0 9.0 VACUUM HOLD TEST START TIME (24 HR): 12.44 SHUT IN/ INITIAL CANISTER VACUUM (IN. Hg) 7 7	1	TUBING ID (INCH):						
PURGE TIME 1 WELL VOLUME (MIN): 3.0 PURGE WELL VOLUMES (CIRCLE) 1 3 7 10 PURGE TIME (MIN): 3.0 9.0 VACUUM HOLD TEST START TIME (24 HR): 12.44 SHUT IN/ INITIAL CANISTER VACUUM (IN. Hg) 7	CALCULATION	PURGE VOLUME (CC):	373					
PURGE WELL VOLUMES (CIRCLE) 1 3 7 10 PURGE TIME (MIN): 3.0 9.0 VACUUM HOLD TEST START TIME (24 HR): 12.44 7 SHUT IN/ INITIAL CANISTER VACUUM (IN. Hg) 7		PURGE RATE (CC/MIN):	620	25				
PURGE TIME (MIN): 3.0 9.0 VACUUM HOLD TEST START TIME (24 HR): 12.44 SHUT IN/ INITIAL CANISTER VACUUM (IN. Hg) 7		PURGE TIME 1 WELL VOLUME (MIN):	30					
VACUUM HOLD TEST START TIME (24 HR): 1244 SHUT IN/ INITIAL CANISTER VACUUM (IN. Hg) 7		PURGE WELL VOLUMES (CIRCLE)	1	3	7	10		
SHUT IN/ INITIAL CANISTER VACUUM (IN. Hg) 7		PURGE TIME (MIN):	3.0	9-0		·		
SHUT IN/ INITIAL CANISTER VACUUM (IN. Hg) 7								
		VACUUM HOLD TEST START TIME (24 HR):	1244					
10 MINUTE VACUUM HOLD TEST END TIME (24 HP)	SHUT IN/	INITIAL CANISTER VACUUM (IN. Hg)	7					
	10-MINUTE	VACUUM HOLD TEST END TIME (24 HR):	1254					
	VACUUM TEST	VACUUM HOLD TEST DURATION (MIN):	1 D					
FINAL CANISTER VACUUM (IN. Hg): 7		FINAL CANISTER VACUUM (IN. Hg):	'7					
MEASUREMENTS WITHIN SHROUD		MEASURENTS WITHIN SHROUD	TIME	HELIUM				
(24 HR) (%)		MEASUREMENTS WITHIN STROOD		· · · · · · · · · · · · · · · · · · ·				
PRIOR TO PURGE CON 1255 24.0		PRIOR TO PURGE	CA 1255					
DURING PURGE 1304 21.4		DURING PURGE	1304					
POST PURGE 1310 22.2		POST PURGE	1310	22.2				
PURGE AND TIME HELIUM PID SAMPLE TRAIN MEASUREMENTS FROM SAMPLING TRAIN TIME HELIUM PID		MEASUREMENTS FROM SAMPLING TRAIN	TIME	HELIUM	PID			
LEAK TEST (24 HR) (%) (PPMV)		WEASUREWENTS FROM SAMPLING TRAIN	(24 HR)	(%)				
PURGE START 1300 0.2		PURGE START	1300	0				
1 WELL VOLUME 1303 0 0.0		1 WELL VOLUME	1303	0	0.0			
3 WELL VOLUMES 1309 0 0,0		3 WELL VOLUMES	1309	0	0,0			
7 WELL VOLUMES		7 WELL VOLUMES						
10 WELL VOLUMES		10 WELL VOLUMES			•			

SHEET ZOF Z

SOIL VAPOR SAMPLING LOG, SAMPLE ID: 56-1-5

PROJECT NAME	Holliday. WO, 5th Magnetic	\ \						
PROJECT LOCA		th i						
DATE:	May @ 2017		• •••					
	INITIAL CANISTER VACUUM (IN. Hg)	Z9						
	TIME CANISTER OPENED (24 HR) ≤ -612	1311						
		TIME	HELIUM	VACUUM				
		(MINS)	(%)	(IN. Hg)				
		2	20,80	25				
		4	21.3	21				
SAMPLE		6	20,3	18				
COLLECTION		8	212	164				
AND TRACER	APPLY TRACER GAS WITHIN THE SHROUD	10	20.6	10				
GAS		15						
MONITORING		20	3 2					
		30						
		40	<u> </u>					
		50						
		60						
	TIME CANISTER CLOSED (24 HR)	13:26						
	FINAL CANISTER PRESSURE (IN. Hg):	15						
	TOTAL SAMPLE TIME (MINS):	19	· · ·- ·					
	Flow M Gauge	vleter 1						
		Pump	, Air Flow					
		<u> () </u>						
		\sim						
	5							
INTRINSIC	Depth							
PERMEABILITY	(ft)							
TESTING								
	Diameter of Pro	be (in.)						
	TEST THRU WELL TUBING/NO MANIFOLD	TEST 1	TEST 2	TEST 3	TEST 4			
	VACUUM (IN. WATER)							
	FLOW METER READING							
	FLOW RATE (CC/MIN)	·						
	LENGTH OF TEST (SEC)	·			, ,			
	· · · · · · · · · · · · · · · · · · ·		· · · ·					

SHEET l of 2

SOIL VAPOR SAMPLING LOG, SAMPLE ID: 56-2-5

PROJECT NAME:		1.0.		·	
PROJECT LOCAT		<u>n (A</u>			
WEATHER:	Clear skies, 65°F. WSW breeze				
DATE:	May 8, 2017				
SAMPLED BY:	RLM			<u>.</u>	
WELL TYPE, e.g.,	PERMANENT; TEMPORARY: Tempore	<u>uy</u>		· · · · · · · · · · · · · · · · · · ·	
		<u> </u>	<u></u>		
	SAMPLE ID:	56-2-	5		
SAMPLE DATA	VAPOR PROBE SAMPLE DEPTH (FT):	5			
·	SUMMA CANISTER ID:	5-360	/	· ·	
	FLOW CONTROLLER SERIAL NO.:				
	BORING/WELL DIAMETER (INCH):	2.25			
	DRY BENTONITE INTERVAL (FT)	3,3704			
	SAND PACK INTERVAL (FT):	4,3 to 9			
	TUBING TYPE:	Nylad	<u>or</u>	· · · · · · · · · · · · · · · · · · ·	
PURGE VOLUME	TUBING LENGTH (FT):	8			
	TUBING ID (INCH):	0,17			
	PURGE VOLUME (CC):	373			
	PURGE RATE (CC/MIN):	125			
	PURGE TIME 1 WELL VOLUME (MIN):	3.0			
	PURGE WELL VOLUMES (CIRCLE)	1	3	7	10
-	PURGE TIME (MIN):	3.0	9.0		
	VACUUM HOLD TEST START TIME (24 HR):	1204			
SHUT IN/	INITIAL CANISTER VACUUM (IN. Hg)	<u> </u>			
10-MINUTE	VACUUM HOLD TEST END TIME (24 HR):	1214			
VACUUM TEST	VACUUM HOLD TEST DURATION (MIN):	10			
	FINAL CANISTER VACUUM (IN. Hg):	6			
	MEASUREMENTS WITHIN SHROUD	TIME	HELIUM		
		(24 HR)	(%)		
	PRIOR TO PURGE	12-14	23.0		
	DURING PURGE	1219	201		
	POST PURGE	1225	21,9		
PURGE AND	MEASUREMENTS FROM SAMPLING TRAIN	TIME	HELIUM	PID	
LEAK TEST		(24 HR)	(%)	(PPMV)	
	PURGE START	1215	Q	0.1	
	1 WELL VOLUME	1218	0	0.[
	3 WELL VOLUMES	1224	0.	0.1	
	7 WELL VOLUMES	·	•		
	10 WELL VOLUMES			·	

SHEET __OF __

SOIL VAPOR SAMPLING LOG, SAMPLE ID: 56-2-5

PROJECT LOCATION: 5th and Magnetize condition DATE: Mary & 2017 DATE: Mary & 2017 INITIAL CANISTER VACUUM (IN, Hg) 3c TIME CANISTER OPENED (24 HR) 5-3 (c) 12 (2 - 5) SAMPLE TIME CANISTER OPENED (24 HR) 5-3 (c) 12 (2 - 5) SAMPLE 6 20 (c) /4 2 (c) 15 COLLECTION AND TRACER GAS WITHIN THE SHROUD 10 7 (0 - 1) 1 30	PROJECT NAME								
INITIAL CANISTER VACUUM (IN. Hg) TIME CANISTER VACUUM (IN. Hg) ZC TIME CANISTER OPENED (24 HR) 5-3 (c) 1 Z Z - 5 SAMPLE TIME CANISTER OPENED (24 HR) S-3 (c) I Z Z - 5 SAMPLE 6 20. (c) 14 4.2 (c) 4.4 2.2 (c) 4.4 2.2 (c) 4.4 2.2 (c) 1.5	PROJECT LOCA	FION: 5th and Magnolia, Oakland							
TIME CANISTER OPENED (24 HR) 5-3 (20 12.2.5. TIME HELUM VACUUM (%) (IN. Hg) 2.2.1.4 2.6. 2.4. COLLECTION ADD TRACER GAS MONITORING APPLY TRACER GAS WITHIN THE SHROUD 10 2.0. 1.1 10 2.0.0 1.1 1.1 1.1 ADD TRACER GAS MONITORING 11 2.0. 1.1 1.1 TIME CANISTER CLOSED (24 HR) 12.2.39 1.1 1.1 1.1 10 2.0. 1.1 1.1 1.1 1.1 40	DATE:	May 8, 2017							
TIME CANISTER OPENED (24 HR) 5-3 (20 12.2.5. TIME HELUM VACUUM (%) (IN. Hg) 2.2.1.4 2.6. 2.4. COLLECTION ADD TRACER GAS MONITORING APPLY TRACER GAS WITHIN THE SHROUD 10 2.0. 1.1 10 2.0.0 1.1 1.1 1.1 ADD TRACER GAS MONITORING 11 2.0. 1.1 1.1 TIME CANISTER CLOSED (24 HR) 12.2.39 1.1 1.1 1.1 10 2.0. 1.1 1.1 1.1 1.1 40		L /							
SAMPLE TIME HELIUM VACUUM (MINS) (%) (IN, Hg) 2 2.1.4 2/2 -									
SAMPLE (MINS) (%) (IN. Hg) COLLECTION AND TRACER GAS MONITORING APPLY TRACER GAS WITHIN THE SHROUD 2 2.1.4 2.6.4 10 2.6.7 2.2.0 1.5		TIME CANISTER OPENED (24 HR) 5-3(60							
SAMPLE COLLECTION AND TRACER GAS MONITORING APPLY TRACER GAS WITHIN THE SHROUD 2 2 2 1 7 2 6 2 2 1 7 7 2 6 2 2 1 7 7 2 6 2 2 1 1 7 7 2 1 6 2 2 1									
SAMPLE COLLECTION AND TRACER GAS WONITORING APPLY TRACER GAS WITHIN THE SHROUD APPLY TRACER GAS WITHIN THE SHROUD APPLY TRACER GAS WITHIN THE SHROUD IS 10 20 10 20 11 10 20 11 10 20 11 10 20 11 10 20 11 10 20 11 10 20 11 10 20 11 10 20 11 10 20 11 10 20 11 10 20 10 10 10 20 10 10 10 10 10 10 10 10 10 1			· · · · · · · · · · · · · · · · · · ·						
SAMPLE COLLECTION AND TRACER GAS MONITORING APPLY TRACER GAS WITHIN THE SHROUD APPLY TRACER GAS WITHIN THE SHROUD APPLY TRACER GAS WITHIN THE SHROUD APPLY TRACER GAS WITHIN THE SHROUD IS 10 20 					26				
APPLY TRACER GAS WITHIN THE SHROUD 10 2.0. 11 15					22				
APPLY TRACER GAS WITHIN THE SHROUD 10 20.0 1(15 - - 20 - - 20 - - 20 - - 20 - - 20 - - 20 - - 20 - - 40 - - 40 - - 40 - - 40 - - 40 - - 40 - - 40 - - 40 - - 50 - - FINAL CANISTER PRESSURE (IN. Hg): - - TOTAL SAMPLE TIME (MINS): 14+ Vacuum (IN: Watter) - - 9 - - - 9 - - - - 9 - - - - 1 - - - - 9 -				20.6	19				
AND TRACER GAS MONITORING APPLY TRACER GAS WITHIN THE SHROUD 10 10 10 10 10 10 10 10 10 10									
GAS 15	AND TRACER	APPLY TRACER GAS WITHIN THE SHROUD		2.0.0	1(
NTRINSIC PERMEABILITY TEST THRU WELL TUBING/NO MANIFOLD TEST THRU WELL TUBING/NO MANIFOLD TEST THRU WELL TUBING/NO MANIFOLD TEST 1 TEST 2 TEST 3 TEST 4 VACUUM (IN. WATER) FLOW METER READING FLOW MATE (CC/MIN) 2235 36 5 927	GAS		·						
40	MONITORING								
S0				*****************					
IME CANISTER CLOSED (24 HR) 12.39 FINAL CANISTER PRESSURE (IN. Hg): TOTAL SAMPLE TIME (MINS): 14 Gauge Pump Air Flow Gauge Pump Air Flow Joint Joint Depth Itest THRU WELL TUBING/NO MANIFOLD TEST THRU WELL TUBING/NO MANIFOLD TEST 1 TEST 2 TEST 4 VACUUM (IN. WATER) FLOW METER READING Colspan="2">20.2-5 SC FLOW RATE (CC/MIN) 22.35	· .		1						
TIME CANISTER CLOSED (24 HR) 12-39 FINAL CANISTER PRESSURE (IN. Hg): 3 TOTAL SAMPLE TIME (MINS): 14 NTRINSIC Depth Pump Million Depth (R) 1 TEST THRU WELL TUBING/NO MANIFOLD TEST 1 TEST 2 TEST 3 FLOW METER READING 20 2-5 30									
FINAL CANISTER PRESSURE (IN. Hg): 3 TOTAL SAMPLE TIME (MINS): 14 Image: Second State St				a					
ILY TOTAL SAMPLE TIME (MINS): ITOTAL SAMPLE TIME (MINS): ILY ILY Gauge Flow Meter Pump Air Flow Joepth ILY Depth ILY Diameter of Probe (in.) TEST THRU WELL TUBING/NO MANIFOLD TEST THRU WELL TUBING/NO MANIFOLD TEST 1 TEST 2 TEST 3 TEST 4 VACUUM (IN. WATER) I Z S FLOW METER READING ZO 2.5 SO FLOW RATE (CC/MIN) Z35 36.5 9.37			12-39						
NTRINSIC PERMEABILITY TESTING TEST THRU WELL TUBING/NO MANIFOLD TEST THRU WELL TUBING/NO MANIFOLD TEST 1 TEST 2 TEST 3 TEST 4 VACUUM (IN. WATER) FLOW METER READING FLOW RATE (CC/MIN) 2/35 3/6 5 9/7									
NTRINSIC PERMEABILITY TESTING TEST THRU WELL TUBING/NO MANIFOLD TEST 1 TEST 2 TEST 3 TEST 4 VACUUM (IN. WATER) 1 Z 3 FLOW METER READING 20 2.5 30 FLOW RATE (CC/MIN) 235 36 5 \$37	· · · · · · · · · · · · · · · · · · ·	TOTAL SAMPLE TIME (MINS).							
NTRINSIC PERMEABILITY TESTING TEST THRU WELL TUBING/NO MANIFOLD TEST 1 TEST 2 TEST 3 TEST 4 VACUUM (IN. WATER) 1 Z 3 FLOW METER READING 20 2.5 30 FLOW RATE (CC/MIN) 235 36 5 937				· · · · · ·					
NTRINSIC PERMEABILITY TESTING TEST THRU WELL TUBING/NO MANIFOLD TEST 1 TEST 2 TEST 3 TEST 4 VACUUM (IN. WATER) 1 Z 3 FLOW METER READING 20 2.5 30 FLOW RATE (CC/MIN) 235 36 5 \$37				M					
NTRINSIC PERMEABILITY TESTING TEST THRU WELL TUBING/NO MANIFOLD TEST 1 TEST 2 TEST 3 TEST 4 VACUUM (IN. WATER) 1 Z 3 FLOW METER READING 20 2.5 30 FLOW RATE (CC/MIN) 235 36 5 \$37			. .						
NTRINSIC PERMEABILITY TESTING TEST THRU WELL TUBING/NO MANIFOLD TEST THRU WELL TUBING/NO MANIFOLD TEST THRU WELL TUBING/NO MANIFOLD TEST 1 TEST 2 TEST 3 TEST 4 VACUUM (IN. WATER) FLOW METER READING FLOW RATE (CC/MIN) 2235 36 5 937		Flow A Gauge	Aeter I						
NTRINSIC PERMEABILITY rESTING TEST THRU WELL TUBING/NO MANIFOLD TEST 1 TEST 2 TEST 3 TEST 4 VACUUM (IN. WATER) 1 Z 3 FLOW METER READING 20 2.5 30 FLOW RATE (CC/MIN) 235 365 937			Pump	_ Air Flow					
NTRINSIC PERMEABILITY TESTING TEST THRU WELL TUBING/NO MANIFOLD TEST 1 TEST 2 TEST 3 TEST 4 VACUUM (IN. WATER) 1 Z 3 FLOW METER READING 20 25 30 FLOW RATE (CC/MIN) 235 365 937			<u> () </u>	_ _					
NTRINSIC PERMEABILITY TESTING TEST THRU WELL TUBING/NO MANIFOLD TEST 1 TEST 2 TEST 3 TEST 4 VACUUM (IN. WATER) 1 Z 3 FLOW METER READING 20 25 30 FLOW RATE (CC/MIN) 235 365 937			\sim						
NTRINSIC PERMEABILITY TESTING TEST THRU WELL TUBING/NO MANIFOLD TEST THRU WELL TUBING/NO MANIFOLD TEST 1 TEST 2 TEST 3 TEST 4 VACUUM (IN. WATER) FLOW METER READING FLOW RATE (CC/MIN) 235 365 937									
PERMEABILITY rESTING (ft) Diameter of Probe (in.) Diameter of Probe (in.) Diameter of Probe (in.) TEST THRU WELL TUBING/NO MANIFOLD TEST 1 TEST 2 TEST 3 TEST 4 VACUUM (IN. WATER) 1 Z 3 TEST 5 1 FLOW METER READING 20 2.5 30 1 <td></td> <td>5</td> <td></td> <td></td> <td></td> <td></td>		5							
PERMEABILITY (ft) Diameter of Probe (in.) Diameter of Probe (in.) Diameter of Probe (in.) TEST THRU WELL TUBING/NO MANIFOLD TEST 1 TEST 2 TEST 3 TEST 4 VACUUM (IN. WATER) 1 Z 3 1 FLOW METER READING 20 2.5 30 1 FLOW RATE (CC/MIN) 235 36.5 537	INTRINSIC								
Diameter of Probe (in.)TEST THRU WELL TUBING/NO MANIFOLDTEST 1TEST 2TEST 3TEST 4VACUUM (IN. WATER)1Z3FLOW METER READING202.5301FLOW RATE (CC/MIN)23536.5537	PERMEABILITY	(ft)							
TEST THRU WELL TUBING/NO MANIFOLDTEST 1TEST 2TEST 3TEST 4VACUUM (IN. WATER)123FLOW METER READING202.530FLOW RATE (CC/MIN)23536.5537	TESTING								
TEST THRU WELL TUBING/NO MANIFOLDTEST 1TEST 2TEST 3TEST 4VACUUM (IN. WATER)123FLOW METER READING202.530FLOW RATE (CC/MIN)23536.5537		Diameter of Pr	abe (in)						
VACUUM (IN. WATER) 1 Z 3 FLOW METER READING 20 25 30 FLOW RATE (CC/MIN) 235 365 537		Diameter of Probe (in.)							
VACUUM (IN. WATER) 1 Z 3 FLOW METER READING 20 2.5 30 FLOW RATE (CC/MIN) 235 36.5 537									
FLOW METER READING 20 25 30 FLOW RATE (CC/MIN) 235 365 \$37		TEST THRU WELL TUBING/NO MANIFOLD	TEST 1	TEST 2	TEST 3	TEST 4			
FLOW METER READING 20 2.5 30 FLOW RATE (CC/MIN) 235 36.5 537	· ·	VACUUM (IN WATER)	7	2	2				
FLOW RATE (CC/MIN) 235 365 537			·		30				
FNGTH OF TEST (SEC) 45 45		LENGTH OF TEST (SEC)	45	45	45				

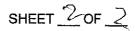
SHEET <u>1</u> OF <u>2</u>

SOIL VAPOR SAMPLING LOG, SAMPLE ID: <u>56-3-5</u>

PROJECT NAME:	Holliday, WO, 5th Magneli	a						
PROJECT LOCAT								
WEATHER:	Clear skie Sy mid 605, nort	1 Workeze	>					
DATE:	May 9 2017							
SAMPLED BY:	RLM							
WELL TYPE, e.g.,	PERMANENT; TEMPORARY: TPIMAE	way	· ·					
	SAMPLE ID:	56-3-5						
	VAPOR PROBE SAMPLE DEPTH (FT):	5						
SAMPLE DATA	SUMMA CANISTER ID:	5-71	6					
	FLOW CONTROLLER SERIAL NO .:	· · · · · · · · · · · · · · · · · · ·	•					
·······	Г	•						
· · · · · · · · · · · · · · · · · · ·	BORING/WELL DIAMETER (INCH):	2.25						
· · ·	DRY BENTONITE INTERVAL (FT)	3.34	74.3					
	SAND PACK INTERVAL (FT):	4.3 to	5.5					
	TUBING TYPE:	Nyleflow						
	TUBING LENGTH (FT):	6						
PURGE VOLUME	TUBING ID (INCH):	10,17						
CALCULATION	PURGE VOLUME (CC):	373						
	PURGE RATE (CC/MIN):	125						
	PURGE TIME 1 WELL VOLUME (MIN):	3.0						
	PURGE WELL VOLUMES (CIRCLE)	1	3	7	10			
	PURGE TIME (MIN):	3.0	9.0					
	· · · · · · · · · · · · · · · · · · ·		<u>.</u>					
	VACUUM HOLD TEST START TIME (24 HR):	1040						
SHUT IN/	INITIAL CANISTER VACUUM (IN. Hg)	7						
10-MINUTE	VACUUM HOLD TEST END TIME (24 HR):	1050						
VACUUM TEST	VACUUM HOLD TEST DURATION (MIN):	10		· · ·				
	FINAL CANISTER VACUUM (IN. Hg):	17						
		<u></u>			· · · · ·			
· · · · · · · · · ·		TIME	HELIUM					
	MEASUREMENTS WITHIN SHROUD	(24 HR)	(%)					
	PRIOR TO PURGE	1050	23.6					
	DURING PURGE	1055	22.2					
	POST PURGE	1101	21.2					
PURGE AND		TIME	HELIUM	PID				
SAMPLE TRAIN	MEASUREMENTS FROM SAMPLING TRAIN	(24 HR)	(%)	(PPMV)				
LEAK TEST	PURGE START	105/	۵. ا	0,0				
	1 WELL VOLUME	1054	0	0.0				
N.	3 WELL VOLUMES	1100	0	0.0				
	7 WELL VOLUMES							
	10 WELL VOLUMES							
		-l	l	1				

SOIL VAPOR SAMPLING LOG, SAMPLE ID: 56-3-5

PROJECT NAME		aghelio	(
PROJECT LOCAT		CA	•••					
DATE:	May 9, 2617							
	1. /							
	INITIAL CANISTER VACUUM (IN. Hg)	28						
	TIME CANISTER OPENED (24 HR) 5-716	1101	······································					
		TIME	HELIUM	VACUUM				
		(MINS)	(%)	(IN. Hg)				
		2	20.6	Z@4				
		4		20				
SAMPLE		6	20.7	17				
COLLECTION	APPLY TRACER GAS WITHIN THE SHROUD	10	20.0	14				
AND TRACER	APPLY TRACER GAS WITHIN THE SHROOD	10	20:0	10				
GAS		20						
MONITORING		30						
		40		· · · · · · · · · · · · · · · · · · ·				
· · ·		50						
		60						
	TIME CANISTER CLOSED (24 HR)	1115		J				
	FINAL CANISTER PRESSURE (IN. Hg):	4						
	TOTAL SAMPLE TIME (MINS):	14		· · · · · · · · · · · · · · · · · · ·				
	daga ga da							
· ·								
INTRINSIC PERMEABILITY TESTING	5 Depth (tt) Diameter of Pr	Pump	Air Flow					
	TEST THRU WELL TUBING/NO MANIFOLD	TEST 1	TEST 2	TEST 3	TEST 4			
	VACUUM (IN. WATER)							
· ·	FLOW METER READING							
	FLOW RATE (CC/MIN)							
	LENGTH OF TEST (SEC)	.		L				



SHEET _ OF 2

SOIL VAPOR SAMPLING LOG, SAMPLE ID: 56-4-5

PROJECT NAME:	Holliday WO. 5th Magholia							
PROJECT NAME.		}						
WEATHER:	Aller allies la 1.50% constants	2 Jacone						
DATE:	Clear skies, trigh 50's, calmto i May 9, 2017	c prea						
SAMPLED BY:	Rill							
		- 1						
VVELL ITPE, e.g.,	PÉRMANENT; TEMPORARY: Temporon	7						
	SAMPLE ID:	56-4-5						
	VAPOR PROBE SAMPLE DEPTH (FT):	5						
SAMPLE DATA	SUMMA CANISTER ID:	5-231	$\overline{)}$					
	FLOW CONTROLLER SERIAL NO .:							
				· ·				
· · · · · · · · · · · · · · · · · · ·	BORING/WELL DIAMETER (INCH):	2.25						
	DRY BENTONITE INTERVAL (FT)	3.3401	1.3					
	SAND PACK INTERVAL (FT):	43,405						
	TUBING TYPE:	Nylaplan						
	TUBING LENGTH (FT):	9						
PURGE VOLUME	TUBING ID (INCH):	0.17		·				
CALCULATION	PURGE VOLUME (CC):	373						
	PURGE RATE (CC/MIN):	125						
	PURGE TIME 1 WELL VOLUME (MIN):	3.0						
	PURGE WELL VOLUMES (CIRCLE)	1	3	7	10			
	PURGE TIME (MIN):	3.0	9.0	~	· · · ·			
· · · · · ·	VACUUM HOLD TEST START TIME (24 HR):	0845						
SHUT IN/	INITIAL CANISTER VACUUM (IN. Hg)	10						
10-MINUTE	VACUUM HOLD TEST END TIME (24 HR):	0855						
VACUUM TEST	VACUUM HOLD TEST DURATION (MIN):	10						
	FINAL CANISTER VACUUM (IN. Hg):	10						
		TIME	HELIUM		-			
	MEASUREMENTS WITHIN SHROUD	(24 HR)	(%)					
	PRIOR TO PURGE	0857	25,1					
	DURING PURGE	0903	22,9					
	POST PURGE	0909			-			
PURGE AND		TIME	HELIUM	PID				
SAMPLE TRAIN LEAK TEST	MEASUREMENTS FROM SAMPLING TRAIN	(24 HR)	(%)	(PPMV)				
LLANIEOI	PURGE START	0859	0	0,0	, rac			
	1 WELL VOLUME	0902	Ø	0.0	NO			
	3 WELL VOLUMES	0908	Õ	O.U				
	7 WELL VOLUMES							
	10 WELL VOLUMES			-				

SOIL VAPOR SAMPLING LOG, SAMPLE ID: 56-4-5

PROJECT NAME	Holliday, WO. Sty Magnelic	j			
PROJECT LOCA		ļ			
DATE:	May'9, 2017				
	/				
	INITIAL CANISTER VACUUM (IN. Hg)	30			
	TIME CANISTER OPENED (24 HR) 5-230	0910			
			HELIUM	VACUUM	
		(MINS) 2	(%) 70 a	(IN. Hg)	
		4	<u>20,2</u> 21,4	14	· · ·
		6	20.7		
SAMPLE		8		6	
COLLECTION	APPLY TRACER GAS WITHIN THE SHROUD	10		.~	
AND TRACER		15			
GAS MONITORING		20	,		
		30			
j.		40			
		50			
		60		<u> </u>	•
	TIME CANISTER CLOSED (24 HR)	0917			
	FINAL CANISTER PRESSURE (IN. Hg):	3			
	TOTAL SAMPLE TIME (MINS):	7			
INTRINSIC PERMEABILITY TESTING	Flow I Gauge 5 Depth (ft) Diameter of Pre-	Pump	Air Flow		
	TEST THRU WELL TUBING/NO MANIFOLD	TEST 1	TEST 2	TEST 3	TEST 4
	VACUUM (IN. WATER)	0.15	0,25	0.35	
	FLOW METER READING	20	25	30	
	FLOW RATE (CC/MIN)	239	765	537	
	LENGTH OF TEST (SEC)	45	45	45	

SHEET 1 OF 2

SOIL VAPOR SAMPLING LOG, SAMPLE ID: <u>56-5-5</u>

PROJECT NAME:	Holliday, WO. 5th Magnolia							
PROJECT LOCAT	ION: 5th & Magnolia, Oaklas	A CA		· · · · · · · · · · · · · · · · · · ·				
WEATHER:	clear sties, low 605, North br	to 4 and 4	ush					
DATE:	May 9, 2017	<u> </u>	U.S.					
SAMPLED BY:	RI M		···					
	PERMANENT; TEMPORARY: TEmpora	к <u>М</u>						
<u></u> ,,		·/						
	SAMPLE ID:	56-5-5						
	VAPOR PROBE SAMPLE DEPTH (FT):	5						
SAMPLE DATA	SUMMA CANISTER ID:	5-72	°C					
	FLOW CONTROLLER SERIAL NO.:		<u>-</u> ()					
		<u> </u>						
	BORING/WELL DIAMETER (INCH):	2.29						
	DRY BENTONITE INTERVAL (FT)	3.3 to 4.3						
	SAND PACK INTERVAL (FT):	<u>7,5 to 9,3</u> <u>9,3 to 5,5</u>						
	TUBING TYPE:	Ny la flow						
	TUBING LENGTH (FT):	8						
PURGE VOLUME	TUBING ID (INCH):	0.17						
CALCULATION	PURGE VOLUME (CC):	373						
	PURGE RATE (CC/MIN):	125						
	PURGE TIME 1 WELL VOLUME (MIN):	3.0						
	PURGE WELL VOLUMES (CIRCLE)	1	3	7	10			
	PURGE TIME (MIN):	3.0	9.0		·			
· · · · · · · · · · · · · · · · · · ·		<u>_</u>	¥ *					
2.	VACUUM HOLD TEST START TIME (24 HR):	0924						
SHUT IN/	INITIAL CANISTER VACUUM (IN. Hg)	12						
10-MINUTE	VACUUM HOLD TEST END TIME (24 HR):	0934						
VACUUM TEST	VACUUM HOLD TEST DURATION (MIN):	10						
	FINAL CANISTER VACUUM (IN. Hg):	12	180 - 100 B - 1 - 100 B - 10					
		- <u>l</u> i		· · · · ·				
· · · ·		TIME	HELIUM					
	MEASUREMENTS WITHIN SHROUD	(24 HR)	(%)		(
	PRIOR TO PURGE	0934	23.6					
	DURING PURGE	0939	22.1					
	POST PURGE	0945	21.1					
		TIME	HELIUM	PID				
SAMPLE TRAIN	MEASUREMENTS FROM SAMPLING TRAIN	(24 HR)	(%)	(PPMV)				
LEAK TEST	PURGE START	0935	0	0.0	Vac			
	1 WELL VOLUME	0938	0	0.0	40			
	3 WELL VOLUMES	0944	Ô	0.0				
	7 WELL VOLUMES		-					
	10 WELL VOLUMES							

SOIL VAPOR SAMPLING LOG, SAMPLE ID: 56-5-5

PROJECT NAME	: Helliday, WO. 5th Magnelia								
PROJECT LOCA	: Helliday. WO. 5th Magnelia TION: 5th & Magnelia, Oakland, G	À							
DATE:	May 9,2017								
	· · · · ·								
	INITIAL CANISTER VACUUM (IN. Hg)	30							
	TIME CANISTER OPENED (24 HR) 5-1725	0946							
		TIME	HELIUM	VACUUM					
		(MINS)	(%)	(IN. Hg)					
		2	20.8	2.16					
		4	21,0	21					
		6		18					
SAMPLE		8		15					
AND TRACER	APPLY TRACER GAS WITHIN THE SHROUD	10)					
GAS		15	10	3					
MONITORING		20							
		30	·	<u> </u>					
		40		<u> </u>					
		50							
· · ·		60	1		•				
	TIME CANISTER CLOSED (24 HR)	1001							
	FINAL CANISTER PRESSURE (IN. Hg):	3							
	TOTAL SAMPLE TIME (MINS):	15							
	1								
	Flow N Gauge	vieter	•						
		Pump	A.i., [7]		-				
			Air Flow						
	5								
INTRINSIC PERMEABILITY	Depth (ft)								
TESTING									
	Diameter of Probe (in.)								
	·······	1							
	TEST THRU WELL TUBING/NO MANIFOLD	TEST 1	TEST 2	TEST 3	TEST 4				
	VACUUM (IN. WATER)	·							
	FLOW METER READING	-							
	FLOW RATE (CC/MIN)								
	LENGTH OF TEST (SEC)								

......

SOIL VAPOR SAMPLING LOG, SAMPLE ID: W-2-5

	11-11-love ma child and -				. ,		
PROJECT NAME				•••••••••••••••••••••••••••••••••••••••			
PROJECT LOCA							
WEATHER:	Clear thils low 70's						
DATE:	May 8, 2017						
SAMPLED BY:	RLM '		·				
WELL TYPE, e.g.	, PERMANENT; TEMPORARY: TRunchor	dry					
	1	· ~ ~					
	SAMPLE ID:	W-2-	- 2				
SAMPLE DATA	VAPOR PROBE SAMPLE DEPTH (FT):	9					
	SUMMA CANISTER ID:	5-7	16				
	FLOW CONTROLLER SERIAL NO.:	-					
	BORING/WELL DIAMETER (INCH):	2.20	2				
	DRY BENTONITE INTERVAL (FT)	3.3	1043	······			
	SAND PACK INTERVAL (FT):		105,5				
	TUBING TYPE:	Nylaflow					
 PURGE VOLUME	TUBING LENGTH (FT):						
CALCULATION	TUBING ID (INCH):	0,17					
	PURGE VOLUME (CC):	373					
	PURGE RATE (CC/MIN):	125					
	PURGE TIME 1 WELL VOLUME (MIN):	3,0					
	PURGE WELL VOLUMES (CIRCLE)	. 1	3	7	10		
	PURGE TIME (MIN):	3.0	9.0		_		
	VACUUM HOLD TEST START TIME (24 HR):	1335					
SHUT IN/	INITIAL CANISTER VACUUM (IN. Hg)	9					
10-MINUTE	VACUUM HOLD TEST END TIME (24 HR):	1345					
VACUUM TEST	VACUUM HOLD TEST DURATION (MIN):	10					
	FINAL CANISTER VACUUM (IN. Hg):	9					
	MEASUREMENTS WITHIN SHROUD	TIME	HELIUM				
		(24 HR)	(%)				
	PRIOR TO PURGE	1346	24.5				
	DURING PURGE	1351	Z3,0				
	POST PURGE	1357	Z18				
PURGE AND SAMPLE TRAIN	MEASUREMENTS FROM SAMPLING TRAIN	TIME	HELIUM	PID			
LEAK TEST		(24 HR)	(%)	(PPMV)			
	PURGE START	1347	Ũ	0.0			
	1 WELL VOLUME	1350	O	O.D			
	3 WELL VOLUMES	1356	\mathcal{O}	0.0			
	7 WELL VOLUMES						
	10 WELL VOLUMES		and the second se				

SOIL VAPOR SAMPLING LOG, SAMPLE ID: W-2-5

PROJECT LOCATION: SM 4: Magnetica, Ubk land DATE: Mary C. 2006 2017 INITIAL CANISTER VACUUM (IN. Hg) 28 TIME CANISTER OPENED (24 HR) 5 - 7) 8 INTE: TIME CANISTER OPENED (24 HR) SAMPLE (MINS) COLLECTION APPLY TRACER GAS WITHIN THE SHROUD AND TRACER 8 GAS 10 MONITORING 15 TIME CANISTER CLOSED (24 HR) 1405 TIME CANISTER PRESSURE (IN. Hg): 2 TIME CANISTER PRESSURE (IN. Hg): 2 TIME CANISTER PRESSURE (IN. Hg): 2 TOTAL SAMPLE TIME (MINS): 9	PROJECT NAME	: Holliday, WO. 5th Mag	holia			
INITIAL CANISTER VACUUM (IN. Hg) 2.8 TIME CANISTER OPENED (24 HR) 5 - 7) 8. INITIAL CANISTER OPENED (24 HR) 5 - 7) 8. INTROUCTION APPLY TRACER GAS WITHIN THE SHROUD 10 AND TRACER B 21, 7. GAS 10 - MONITORING 11 - TIME CANISTER CLOSED (24 HR) 140 - TIME CANISTER R CLOSED (24 HR) 1405 FINAL CANISTER PRESSURE (IN. Hg): 7 TOTAL SAMPLE TIME (MINS): 9	PROJECT LOCA	TION: 5th & Magnelia, Obklan	nd			
SAMPLE COLLECTION AND TRACER GAS MONITORING TIME CANISTER OPENED (24 HR) 5 - 77 (8) 135 7 TIME (MINS) HELIUM (MINS) VACUUM (MINS) APPLY TRACER GAS WITHIN THE SHROUD AND TRACER GAS MONITORING 10 - TIME CANISTER CLOSED (24 HR) 10 - TIME CANISTER CLOSED (24 HR) 10 - TIME CANISTER CLOSED (24 HR) 1405 - TIME CANISTER PRESSURE (IN. Hg): - - TOTAL SAMPLE TIME (MINS): 8 - Gauge (IN TRINSIC PERMEABILITY TESTING - -	DATE:	May 6, 2010 2017				
SAMPLE COLLECTION AND TRACER GAS MONITORING APPLY TRACER GAS WITHIN THE SHROUD IMPLY IMAL CANISTER CLOSED (24 HR) IMPLY IMAL CANISTER CLOSED (24 HR) IMPLY IMAL CANISTER CLOSED (24 HR) IMPLY IMAL CANISTER PRESSURE (IN. Hg): TIME CANISTER PRESSURE (IN. Hg): Implet Implet Implet Implet INTRINSIC PERMEABILITY TESTING Implet Implet Implet Implet		. (7				
SAMPLE TIME HELIUM VACUUM (MINS) (%) (IN. Hg) 2 22.1 22 4 20.0 8 AND TRACER 8 21.2 AND TRACER 8 21.2 AND TRACER 8 21.2 GAS 10						
SAMPLE COLLECTION AND TRACER GAS MONITORING APPLY TRACER GAS WITHIN THE SHROUD	-	TIME CANISTER OPENED (24 HR) 5-718				
SAMPLE COLLECTION AND TRACER GAS MONITORING APPLY TRACER GAS WITHIN THE SHROUD						
SAMPLE COLLECTION AND TRACER GAS MONITORING APPLY TRACER GAS WITHIN THE SHROUD APPLY TRACER GAS WITHIN THE SHROUD APPLY TRACER GAS WITHIN THE SHROUD 10 10 20 30 40 50 60 TIME CANISTER CLOSED (24 HR) TIME CANISTER PRESSURE (IN. Hg): TOTAL SAMPLE TIME (MINS): 2 TOTAL SAMPLE TIME (MINS): 2 TOTAL SAMPLE TIME (MINS): 2 TOTAL SAMPLE TIME (MINS): 2 TOTAL SAMPLE TIME (MINS): 3 COLLECTION AIR Flow Meter Pump Air Flow Meter Collection Collect				· · · · · · · · · · · · · · · · · · ·	(IN. Hg)	
SAMPLE COLLECTION AND TRACER GAS MONITORING APPLY TRACER GAS WITHIN THE SHROUD APPLY TRACER GAS WITHIN THE SHROUD APPLY TRACER GAS WITHIN THE SHROUD 10 10 20 30 40 50 60 TIME CANISTER CLOSED (24 HR) TIME CANISTER PRESSURE (IN. Hg): TOTAL SAMPLE TIME (MINS): 2 TOTAL SAMPLE (MINS): 2 TOTAL SAM					22	
SAMPLE COLLECTION AND TRACER GAS MONITORING APPLY TRACER GAS WITHIN THE SHROUD APPLY TRACER GAS WITHIN THE SHROUD 10					15.	
COLLECTION AND TRACER GAS MONITORING APPLY TRACER GAS WITHIN THE SHROUD GAS MONITORING TIME CANISTER CLOSED (24 HR) TIME CANISTER CLOSED (24 HR) FINAL CANISTER PRESSURE (IN. Hg): TOTAL SAMPLE TIME (MINS): Cauge Fow Meter Gauge Fow Meter Gauge Fow Meter Cauge Fow Meter Cauge Fow Meter Cauge Fow Meter Cauge Fow Meter Cauge Fow Meter Cauge Fow Meter						
AND TRACER GAS MONITORING APPLY TRACER GAS WITHIN THE SHROOD 10 20 20 30 40 50 50 1405 TIME CANISTER CLOSED (24 HR) FINAL CANISTER PRESSURE (IN. Hg): TOTAL SAMPLE TIME (MINS): 9 COMPARED Gauge Flow Meter Gauge Flow Meter Solution Compared Compar				21.2	2	
GAS MONITORING 15 20 30 40 50 60 TIME CANISTER CLOSED (24 HR) FINAL CANISTER PRESSURE (IN. Hg): TOTAL SAMPLE TIME (MINS): 9		APPLY TRACER GAS WITHIN THE SHROUD	-			
INTRINSIC PERMEABILITY TESTING					<u></u>	
40						
INTRINSIC PERMEABILITY TESTING						
INTRINSIC PERMEABILITY TESTING	· ·		· · · · · · · · · · · · · · · · · · ·			
TIME CANISTER CLOSED (24 HR) 1405 FINAL CANISTER PRESSURE (IN. Hg): 2 TOTAL SAMPLE TIME (MINS): 3						
FINAL CANISTER PRESSURE (IN. Hg): 2 TOTAL SAMPLE TIME (MINS): 3						*
INTRINSIC PERMEABILITY TESTING						
INTRINSIC PERMEABILITY TESTING			2			
INTRINSIC PERMEABILITY TESTING		TOTAL SAMPLE TIME (MINS):	8			
Diameter of Probe (in.)	PERMEABILITY	5 Depth (ft)	Pump	Air Flow		
TEST THRU WELL TUBING/NO MANIFOLD TEST 1 TEST 2 TEST 3 TES		TEST THRU WELL TUBING/NO MANIFOLD	TEST 1	TEST 2	TEST 3	TEST 4
VACUUM (IN. WATER)		VACUUM (IN. WATER)	~	<u>.</u>	· · · ·	
FLOW METER READING						
FLOW RATE (CC/MIN)			-			
LENGTH OF TEST (SEC)						

 \sim

 $\mathsf{SHEET}_/\mathsf{OF}_{\geq}$

SOIL VAPOR SAMPLING LOG, SAMPLE ID: W-4-5

	NUL De constru						
PROJECT NAME							
PROJECT LUCA	Magnolia Oakland	XCH-					
WEATHER:		breeze					
DATE:	May 9,2017						
SAMPLED BY:	PLHA /						
WELL TYPE, e.g.,	PERMANENT; TEMPORARY: Temperan	<u>~y</u>					
	SAMPLE ID:	/ 118 tt	r <u>-</u>	·			
	VAPOR PROBE SAMPLE DEPTH (FT):	10-4.	-2				
SAMPLE DATA		5					
		0-					
	FLOW CONTROLLER SERIAL NO.:			<u> </u>			
	BORING/WELL DIAMETER (INCH):	2.25					
1	DRY BENTONITE INTERVAL (FT)	3.3 4		-			
				· · · · · · · · · · · · · · · · · · ·			
	SAND PACK INTERVAL (FT):	4.360					
	TUBING TYPE:	Nylafly	au	· · · · · · · · · · · · · · · · · · ·			
PURGE VOLUME	TUBING LENGTH (FT):	6					
CALCULATION	TUBING ID (INCH):	0,17					
	PURGE VOLUME (CC):	373					
	PURGE RATE (CC/MIN):	125					
	PURGE TIME 1 WELL VOLUME (MIN):	3.0					
	PURGE WELL VOLUMES (CIRCLE)	1	3	7	10		
	PURGE TIME (MIN):	3.0	9.0	<u></u>	·		
	VACUUM HOLD TEST START TIME (24 HR):	1006					
SHUT IN/	INITIAL CANISTER VACUUM (IN. Hg)	1Z					
10-MINUTE	VACUUM HOLD TEST END TIME (24 HR):	1016	· · ·				
VACUUM TEST	VACUUM HOLD TEST DURATION (MIN):	10					
	FINAL CANISTER VACUUM (IN. Hg):	12					
		· ·					
	MEASUREMENTS WITHIN SHROUD	TIME	HELIUM				
		(24 HR)	(%)				
	PRIOR TO PURGE	1016	23.3				
	DURING PURGE	1021	2Z.0	~			
PURGE AND	POST PURGE	1027	20.5				
SAMPLE TRAIN	MEASUREMENTS FROM SAMPLING TRAIN	TIME	HELIUM	PID	:		
LEAK TEST		(24 HR)	(%)	(PPMV)	2. C		
	PURGE START	1017	O	0.0			
	1 WELL VOLUME	1020	0	0.0			
	3 WELL VOLUMES	1026	Ò	Ø,O			
	7 WELL VOLUMES	-)			
	10 WELL VOLUMES		—	~			

SHEET ZOF Z

SOIL VAPOR SAMPLING LOG, SAMPLE ID: W-4-5

PROJECT NAME	: Holliday. WO. 5th Maa	india			
PROJECT LOCA		CA			
DATE:	May 9,2017				
	() '				
	INITIAL CANISTER VACUUM (IN. Hg)	30			
	TIME CANISTER OPENED (24 HR) 5-849	1027			
		TIME	HELIUM	VACUUM	
		(MINS)	(%)	(IN. Hg)	
		2	20.6	22	
		4	21.3	15	
		6	20,1	7	
SAMPLE		8	21.4	3	
COLLECTION AND TRACER	APPLY TRACER GAS WITHIN THE SHROUD	10	·		
GAS		15			
MONITORING		20			
	•	30			
		40	1		
· ·		50	-		
		60	ļ		•
	TIME CANISTER CLOSED (24 HR)	1035			
	FINAL CANISTER PRESSURE (IN. Hg):	3	·	• · · ·	
	TOTAL SAMPLE TIME (MINS):	8			
- · · · · · · · · · · · · · · · · · · ·				<u>.</u>	
INTRINSIC PERMEABILITY TESTING	Gauge Flow A Gauge The A S Depth (ft) Diameter of Pro	Pump	Air Flow		
	TEST THRU WELL TUBING/NO MANIFOLD	TEST 1	TEST 2	TEST 3	TEST 4
	VACUUM (IN. WATER)	8.2	0.3	0.4	
	FLOW METER READING	20	25	30	
	FLOW RATE (CC/MIN)	235	365	537	
	LENGTH OF TEST (SEC)	45	45	YS	

	Environmental Service	S s & Tech	~~~~~	4			<u> </u>			5-2 \$ 56-1 SHEETOF
	PROJECT NAME: Holliday, WO. Stuffaquolia DRILLING METHOD: Directfush									
									SAMPLING METHOD: Marnocovil	
	DRILLING DAT			Mo	vy.	<u>B</u>	2017	7		TOTAL WELL DEPTH (FT): 5,5
	DRILLING COMPANY: ECA WATER LEVEL AT TIME OF DRILLING (FT):									
	LOGGED BY: RLM STATIC WATER LEVEL (FT):							STATIC WATER LEVEL (FT):		
		DEPTH (FT)	BLOW COUNTS	CORE INTERVAL (FT)	CORE RECOVERY (FT)	SAMPLE INTERVAL	SAMPLE ID	(VMPG) DIA	USCS	SOIL DESCRIPTION
									1/1	Acphalt
2	er ber	1		3	3			(0.1) (0.0)	0000 SP	Asphalt Baskrock siller, blacktogray Gravelly Sund, SW, 1022 3/2, fine to gravel, slightly damp, loose scend, SP, 104R 5/3, brown, Fine-grained, slightly damp, 100 SC
5	ß	3		6.	0			(0.0)	51/50	color change to 10/F-3/2, V. dK gray ishlavowin
:	Stor.			3	3 ^r			(0.0)) 58/5n	- color change 104R 3/3, dr brown
		4	C. and the second second					(0.1)	Alber	color change to 10/R 3/2, V. dK gray ishlorowin color change 10/R 3/3, dK brown moist, color change to 10/R4/3, brown -V. Moist
	La	5								-v.moist
	TH	U							11	Asphalt
	bent	i			2			(0.0)) Suj 68	Boserock SW/OP, 1042 3/1, ndkgray, staditlydamp, fine to med-gravel, Evbanguer clasts, 18050
	Kan	2		9 ³³	0~~/			6.0))SP	sund SP, 104R 3/2 & dk grown fine-grained, slightly damp, loose to mid. deck color change 104R 7/2 y. dk growy En lovown, shards of glass.
9		3			<u> </u>		~	(0.0)	sp/s	+ color change 1018-72 y. ak gray ton brown, shards of glass.
-	WT year's	4	-	5	5	2		(0.0)	6P/	- color drange 10 7R 43, brown, damp
	GOUND ET	5	-	rh I	3			(0.0)	2 1/31	
	E								The second se	
	BOREHOLE DIAMETER (IN	ICHE	ES):		-	2,2	-5	S	SLOT	TED SCREEN SIZE (INCHES): BENTONITE SEAL – WET (FT): FROM TO
	BOREHOLE D			Г):		5,	5		SLOT FROM	and the second
	CASING MATE			ICHE	S)-			ę	SAND	SIZE: GROUT SEAL (FT): FROM TO
	BLANK WELL FROM	$(1,1,1) \in \{0,1\}$	· · ·		1	L (FT):		SAND FROM	PACK INTERVAL (FT): SURFACE WELL

ŧ BORING NO. SG-5/B 56-SHEET OF alliday, WO. Stylaconalia **PROJECT NAME** DRILLING METHOD: Direct Push PROJECT LOCATION: 5th of Mugholia, Oakland SAMPLING METHOD: Macrocorl 2017 RU O, 5 DRILLING DATE: TOTAL WELL DEPTH (FT): Þ DRILLING COMPANY: WATER LEVEL AT TIME OF DRILLING (FT): C LOGGED BY: Ň STATIC WATER LEVEL (FT): **WELL CONSTRUCTION** Ē Ē INTERVAL RECOVERY CORE INTERVAL BLOW COUNTS SOIL DESCRIPTION DEPTH (FT) PID (PPMV) SAMPLE ID SAMPLE COREI uscs Asphalt provietly sand SW/6P 1012 3/2 v. dk green sh brown white follow somry, fine to gove, dry to diduty damp, 1098, angular slasts (O, C)3-3-1-5 760 10,0) 2 Wet \$ 1020) Sittle grand, SW/SP, 10YR 31, to 3/2 v. dk grayier, dk grayiele brown Fint grained dump, 10050 to med dense 0.0 (0.0 churceal 1 X MOIT 5 (0,0) € Asphalt Suffer around y sound, SW/GD, 104R W, dk group, fine to growel, toose dry to CO.O) (0.1) 0-3/0-3 lange dast 1"+ Sand SW/SP 104/2 \$4, yellow. Sh brain, fine w/ occ, coarse organtel 6.0 Ð glass shards 00 3 - 10YR VS brow noto 10YR 3/2 V. d Karayison brown white staining & chanced pieces 10,0 4 300 ZENick 15.51 C moist, 107234, yellanish branin, more fines (0,0 BOREHOLE BENTONITE SEAL - WET (FT): 2.25 SLOTTED SCREEN SIZE (INCHES): DIAMETER (INCHES): FROM тο SLOTTED SCREEN INTERVAL (FT): BENTONITE SEAL - DRY (FT): BOREHOLE DEPTH (FT): 5.5 FROM FROM TO ΤO CASING MATERIAL: GROUT SEAL (FT): SAND SIZE: CASING DIAMETER (INCHES): FROM то BLANK WELL CASING INTERVAL (FT): SAND PACK INTERVAL (FT): SURFACE WELL FROM TO FROM то COMPLETION:

[→]of_[56-4 BORING NO._1N-2 \$ SHEET PROJECT NAME: Holliday. WO. 5th Magnolia Scert DRILLING METHOD: Push PROJECT LOCATION: 5th & Magnolia, Oalland SAMPLING METHOD: Macrocoll 2017 Maye TOTAL WELL DEPTH (FT): DRILLING DATE: DRILLING COMPANY: WATER LEVEL AT TIME OF DRILLING (FT): STATIC WATER LEVEL (FT): LOGGED BY: KL WELL CONSTRUCTION Ē Ē INTERVAL CORE RECOVERY CORE INTERVAL BLOW COUNTS SOIL DESCRIPTION DEPTH (FT) SAMPLE ID PID (PPMV) SAMPLE USCS Asphalt 6.0 Gravelly gand SW/EP, 109P3/14. dk gray 672 dkgrow, sh brown, fine to gravel, any to slightly damplost denseto (cost dk brown 109P3/3 500 (0:0) N. SW 6.0 Sound SP, VOYF 3/3, dK lovocon, Fine grained wy occ. grand, slightly damp meddense to 100000 0.0) 2 6.0 SP or growelly lens more sitt, 10473/2 to 4/2 warayish brown (0.0) 5% Ó G ing -damp G 5R/Sm (0,0) Asphalt W/ Gravelly sand (Boserock), SW/GP, 10YR 71 dark gray, firetogravel Not kry to dightly damp 10030 SEN Sand 54 107P 72 v. dkyray: & brown, fire-grained, slightly daup SEN 10050 to mid. dense (0.0) t 030 9 (0.0)2 (0,0 sillof color change 10 YR 4/2, dk. groupith brown 2 0.0 Ŋ 34 19:51 - most, were 4/3 brown to 5/3 brain IF (0.1) w.mo,st BENTONITE SEAL - WET (FT): BOREHOLE 2.25 SLOTTED SCREEN SIZE (INCHES): FROM DIAMETER (INCHES): TO BENTONITE SEAL - DRY (FT): SLOTTED SCREEN INTERVAL (FT): 55 BOREHOLE DEPTH (FT): FROM FROM TO TO GROUT SEAL (FT): CASING MATERIAL: SAND SIZE: CASING DIAMETER (INCHES): FROM то SURFACE WELL BLANK WELL CASING INTERVAL (FT): SAND PACK INTERVAL (FT): COMPLETION: FROM FROM то TO

8-9 8-1 ŧ **BORING NO.** 1-L 7 SHEET OF Upliday WO 55th Magnolia Direct Push PROJECT NAME: DRILLING METHOD: PROJECT LOCATION: 9th & Magnolia, Oakland SAMPLING METHOD: MaeroCort May 8,201! 5.5.2.5.2 DRILLING DATE: TOTAL WELL DEPTH (FT): DRILLING COMPANY: FCA WATER LEVEL AT TIME OF DRILLING (FT): RIM LOGGED BY: STATIC WATER LEVEL (FT): **VELL CONSTRUCTION** Ē Ē INTERVAL CORE RECOVERY CORE INTERVAL BLOW COUNTS SOIL DESCRIPTION DEPTH (FT) ≙ PID (PPMV) SAMPLE SAMPLE USCS Hephald ara Jelly sand Super 10423/1 v despay time to gravel dry to shipped devel 10052, suproducted to subangular dasts super super up 102/25/4 yellow the vous fine-grained, dougs to g 60.0 /ieW 0-36-3 (0.0)2 mottled 107774 to 10/1272 v. d. K gray : the brown (0.0 1042 3/2 (0.0 35 55 INTRY'S GOWN UO.O 9 Aspha d, SW/GW, 10474/, V. dKgroy fine to gravel, dry to hup 100564, more fine Sand, less gravel 5 (0.0) sal/ali ĩ el Ø wwelly sand, sylow, 107 PS14, fine do growel, damp, meddage (0.0) GW/ 2 Ð Asphab growelly send, sw/ow, wyR 3/, v.dk groy, fine to sm. quarel, dry to 0.2 02 T T B-1-1 BOREHOLE BENTONITE SEAL - WET (FT): 2.25 SLOTTED SCREEN SIZE (INCHES): DIAMETER (INCHES): FROM TO BENTONITE SEAL - DRY (FT): SLOTTED SCREEN INTERVAL (FT): 5.5,2.5,2 BOREHOLE DEPTH (FT): FROM то FROM TO CASING MATERIAL: GROUT SEAL (FT): SAND SIZE: то CASING DIAMETER (INCHES): FROM BLANK WELL CASING INTERVAL (FT): SAND PACK INTERVAL (FT): SURFACE WELL) Riva FROM FROM COMPLETION: то то

	WE	S	I	7	E	30	RING	NO	Í	3-5 \$ B-8	SHEET OF
	PROJECT NAI PROJECT LOC	ME:	S**	Holl. 511).5thMagn Notia, Oo			DRILLING METHOD: Direct F	VZU P
ľ	DRILLING DAT	TE:		•	ĒC	A		5		TOTAL WELL DEPTH (FT): Z	
Ī	DRILLING CO	MPA	NY:	N	Var	18	,2017	Ľ		VATER LEVEL AT TIME OF DRILLING (FT):
	LOGGED BY:			R	\cup	η	/			STATIC WATER LEVEL (FT):	
	WELL CONSTRUCTION	DEPTH (FT)	BLOW COUNTS	CORE INTERVAL (FT)	CORE RECOVERY (FT)	SAMPLE INTERVAL	SAMPLE ID	PID (PPMV)	nscs	SOIL D	ESCRIPTION
5		-		6-2	82		a-5-1	(0.0)	Su	Asphalt growelly sand, SW, JISY # To gravel (pto 30mm) oslich	Widk may ich brown, fine-gan ulysamp, 100 se
		2				X	6/32				
1 6		ſ		oî	82		8-8-15	(0.0) (0.0)	SW/	Asphalt gravelly gard 500/600, 10% fine-grained to gravel (2000	R3%, dkgray to 3/2 v. dkgray, dels) slightly damp, 10050
+		7				X	OPPL				
1977 - 1977 - 1978 - 1978 - 1978 - 1978 - 1978 - 1978 - 1978 - 1978 - 1978 - 1978 - 1978 - 1978 - 1978 - 1978 -					1						
	BOREHOLE DIAMETER (IN					2!	5	s s	LOTT	ED SCREEN INTERVAL (FT):	BENTONITE SEAL – WET (FT): FROM TO BENTONITE SEAL – DRY (FT):
	BOREHOLE DI CASING MATE CASING DIAMI	RIAL	.: R (IN	CHES	S):	2		F		TO SIZE:	FROM TO GROUT SEAL (FT): FROM TO
	BLANK WELL	CASI	NG I	NTEF TO		_ (FT):		ROM		SURFACE WELL COMPLETION:

APPENDIX B

LABORATORY DATA CERTIFICATES

AND CHAIN-OF-CUSTODY FORMS

K PRIME, Inc.

CONSULTING ANALYTICAL CHEMISTS

TRANSMITTAL

DAT	E:	5/	16/	2017	

TO: MR. PETER MORRIS WEST ENVIRONMENTAL S&T 711 GRAND AVENUE, SUITE 220 SAN RAFAEL, CA 94901

 Phone:
 415-460-6770

 Fax:
 415-460-6771

 Email:
 main@westenvironmental.com

- FROM: Richard A. Kagel. Ph.D. Laboratory Director RPKM Children
- SUBJECT: LABORATORY RESULTS FOR YOUR PROJECT

HOLLIDAY.WO.5THMAGNOLIA

Enclosed please find K Prime's laboratory reports for the following samples:

SAMPLE ID	ТҮРЕ	DATE	TIME	KPI LAB #
B-1-1.5	SOIL	05/08/17	12:05	154474
B-2-1	SOIL	05/08/17	11:50	154475
B-2-2.5	SOIL	05/08/17	11:55	154476
B-3-1.5	SOIL	05/08/17	10:15	154477
B-3-3	SOIL	05/08/17	10:20	154478
8-4-1.5	SOIL	05/08/17	13:15	154479
B-5-1.5	SOIL	05/08/17	13:25	154480
B-6-1	SOIL	05/08/17	14:30	154481
B-6-2.5	SOIL	05/08/17	14:35	154482
B-7-1.5	SOIL	05/08/17	14:15	154483
B-7-2.5	SOIL	05/08/17	14:20	154484
B-8-1.5	SOIL	05/08/17	14:25	154485
B-9-1	SOIL	05/08/17	11:20	154486
B-9-2	SOIL	05/08/17	11:25	154487

The above listed sample group was received on on the chain of custody document.

05/09/17 and tested as requested

Please call me if you have any questions or need further information. Thank you for this opportunity to be of service. 3621 Westwind Blvd. Santa Rosa CA 95403 Phone: 707 527 7574 FAX: 707 527 7879

ACCT: 9946 PROJ: HOLLIDAY.WO. 5THMAGNOLIA

K PRIME PROJECT: 9946 CLIENT PROJECT: HOLLIDAY.WO.5THMAGNOLIA

METHOD: GRO-GASOLINE RANGE ORGANICS REFERENCE: EPA 8015B

SAMPLE TYPE: SOIL UNITS: mg/Kg

SAMPLE ID	LAB NO.	DATE SAMPLED	TIME SAMPLED	BATCH NO	DATE ANALYZED	MRL	SAMPLE CONC	GRO PATTERN
B-1-1.5	154474	05/08/2017	12:05	050917S1	05/10/2017	1.00	ND	
B-2-1	154475	05/08/2017	11:50	050917S1	05/10/2017	1.00	ND	
B-2-2.5	154476	05/08/2017	11:55	050917S1	05/10/2017	1.00	ND	
B-3-1.5	154477	05/08/2017	10:15	050917S1	05/10/2017	1.00	ND	
B-3-3	154478	05/08/2017	10:20	050917S1	05/10/2017	1.00	ND	
B-4-1.5	154479	05/08/2017	13:15	050917S1	05/10/2017	1.00	ND	
B-5-1.5	154480	05/08/2017	13:25	050917S1	05/10/2017	1.00	ND	
B-6-1	154481	05/08/2017	14:30	050917S1	05/10/2017	1.00	ND	
B-6-2.5	154482	05/08/2017	14:35	050917S1	05/11/2017	1.00	ND	
B-7-1.5	154483	05/08/2017	14:15	050917S1	05/11/2017	1.00	ND	
B-7-2.5	154484	05/08/2017	14:20	050917S1	05/11/2017	1.00	ND	
B-8-1.5	154485	05/08/2017	14:25	050917S1	05/11/2017	1.00	ND	
B-9-1	154486	05/08/2017	11:20	050917S1	05/11/2017	1.00	ND	
B-9-2	154487	05/08/2017	11:25	050917S1	05/11/2017	1.00	ND	

NOTES:

ND - NOT DETECTED AT OR ABOVE THE STATED METHOD REPORTING LIMIT

NA - NOT APPLICABLE OR AVAILABLE

MRL - METHOD REPORTING LIMIT

AE - UNKNOWN HYDROCARBON WITH A SINGLE PEAK

AN - UNKNOWN HYDROCARBON WITH SEVERAL PEAKS

AS - HEAVIER HYDROCARBON THAN GASOLINE CONTRIBUTING TO GRO VALUE

CO - HYDROCARBON RESPONSE IN GASOLINE RANGE BUT DOES NOT RESEMBLE GASOLINE

APPROVED BY: DATE:

ь.

 CLIENT PROJECT: 9946
 DATE SAMPLE

 CLIENT PROJECT: HOLLIDAY.WO.5THMAGNOLIA
 BATCH

SAMPLE ID: B-1-1.5 LAB NO: 154474 DATE SAMPLED: 05/08/2017 TIME SAMPLED: 12:05 BATCH NO: 051117S1 DATE ANALYZED: 05/12/2017

METHOD: VOLATILE ORGANIC COMPOUNDS REFERENCE: EPA 5035/8260 SAMPLE TYPE: SOIL UNITS: µg/Kg

COMPOUND NAME	CAS NO.	REPORTING LIMIT	SAMPLE CONC
BENZENE	71-43-2	1.65	ND
TOLUENE	108-88-3	1.65	ND
ETHYLBENZENE	100-41-4	1.65	ND
XYLENE (M+P)	1330-20-7	1.65	ND
XYLENE (O)	1330-20-7	1.65	ND
METHYL TERT-BUTYL ETHER (MTBE)	1634-04-4	1.65	ND

SURROGATE RECOVERY%DIBROMOFLUOROMETHANE90TOLUENE-D81094-BROMOFLUOROBENZENE82

NOTES:

APPROVED BY: ____ DATE:

K PRIME PROJECT: 9946 CLIENT PROJECT: HOLLIDAY.WO.5THMAGNOLIA

SAMPLE ID: B-2-1 LAB NO: 154475 DATE SAMPLED: 05/08/2017 TIME SAMPLED: 11:50 BATCH NO: 051117S1 DATE ANALYZED: 05/12/2017

METHOD: VOLATILE ORGANIC COMPOUNDS REFERENCE: EPA 5035/8260 SAMPLE TYPE: SOIL UNITS: µg/Kg

COMPOUND NAME	CAS NO.	REPORTING LIMIT	SAMPLE CONC
BENZENE	71-43-2	1.71	ND
TOLUENE	108-88-3	1.71	ND
ETHYLBENZENE	100-41-4	1.71	ND
XYLENE (M+P)	1330-20-7	1.71	ND
XYLENE (O)	1330-20-7	1.71	ND
METHYL TERT-BUTYL ETHER (MTBE)	1634-04-4	1.71	ND

SURROGATE RECOVERY%DIBROMOFLUOROMETHANE103TOLUENE-D81014-BROMOFLUOROBENZENE74

NOTES:

APPROVED BY: 2017 DATE: ____ 5

 CLIENT PROJECT:
 9946
 TIME SAMPLE

 CLIENT PROJECT:
 HOLLIDAY.WO.5THMAGNOLIA
 BATCH N

SAMPLE ID: B-2-2.5 LAB NO: 154476 DATE SAMPLED: 05/08/2017 TIME SAMPLED: 11:55 BATCH NO: 051117S1 DATE ANALYZED: 05/12/2017

METHOD: VOLATILE ORGANIC COMPOUNDS REFERENCE: EPA 5035/8260 SAMPLE TYPE: SOIL UNITS: μg/Kg

COMPOUND NAME	CAS NO.	REPORTING LIMIT	SAMPLE
BENZENE	71-43-2	1.68	ND
TOLUENE	108-88-3	1.68	ND
ETHYLBENZENE	100-41-4	1.68	ND
XYLENE (M+P)	1330-20-7	1.68	ND
XYLENE (O)	1330-20-7	1.68	ND
METHYL TERT-BUTYL ETHER (MTBE)	1634-04-4	1.68	ND

SURROGATE RECOVERY%DIBROMOFLUOROMETHANE97TOLUENE-D81034-BROMOFLUOROBENZENE78

NOTES:

APPROVED BY: 2015 DATE: __

 K PRIME PROJECT: 9946
 TIME SAI

 CLIENT PROJECT: HOLLIDAY.WO.5THMAGNOLIA
 BAT

SAMPLE ID: B-3-1.5 LAB NO: 154477 DATE SAMPLED: 05/08/2017 TIME SAMPLED: 10:15 BATCH NO: 051117S1 DATE ANALYZED: 05/12/2017

METHOD: VOLATILE ORGANIC COMPOUNDS REFERENCE: EPA 5035/8260 SAMPLE TYPE: SOIL UNITS: μg/Kg

COMPOUND NAME	CAS NO.	REPORTING	SAMPLE CONC
BENZENE	71-43-2	1.72	ND
TOLUENE	108-88-3	1.72	ND
ETHYLBENZENE	100-41-4	1.72	ND
XYLENE (M+P)	1330-20-7	1.72	ND
XYLENE (O)	1330-20-7	1.72	ND
METHYL TERT-BUTYL ETHER (MTBE)	1634-04-4	1.72	ND

SURROGATE RECOVERY	%
DIBROMOFLUOROMETHANE	103
TOLUENE-D8	99
4-BROMOFLUOROBENZENE	72

NOTES:

APPROVED BY: 7.4 DATE: 5.15 2016

K PRIME PROJECT: 9946 T CLIENT PROJECT: HOLLIDAY.WO.5THMAGNOLIA

SAMPLE ID: B-3-3 LAB NO: 154478 DATE SAMPLED: 05/08/2017 TIME SAMPLED: 10:20 BATCH NO: 051117S1 DATE ANALYZED: 05/12/2017

METHOD: VOLATILE ORGANIC COMPOUNDS REFERENCE: EPA 5035/8260 SAMPLE TYPE: SOIL UNITS: µg/Kg

COMPOUND NAME	CAS NO.		SAMPLE CONC
BENZENE	71-43-2	1.77	ND
TOLUENE	108-88-3	1.77	ND
ETHYLBENZENE	100-41-4	1.77	ND
XYLENE (M+P)	1330-20-7	1.77	ND
XYLENE (O)	1330-20-7	1.77	ND
METHYL TERT-BUTYL ETHER (MTBE)	1634-04-4	1.77	ND

SURROGATE RECOVERY%DIBROMOFLUOROMETHANE98TOLUENE-D81064-BROMOFLUOROBENZENE85

NOTES:

APPROVED BY: 2017 5 DATE:

DATE SAMK PRIME PROJECT: 9946TIME SAMCLIENT PROJECT: HOLLIDAY.WO.5THMAGNOLIABAT

SAMPLE ID: B-4-1.5 LAB NO: 154479 DATE SAMPLED: 05/08/2017 TIME SAMPLED: 13:15 BATCH NO: 051117S1 DATE ANALYZED: 05/12/2017

METHOD: VOLATILE ORGANIC COMPOUNDS REFERENCE: EPA 5035/8260 SAMPLE TYPE: SOIL UNITS: μg/Kg

COMPOUND NAME	CAS NO.	REPORTING LIMIT	SAMPLE CONC
BENZENE	71-43-2	1.57	ND
TOLUENE	108-88-3	1.57	ND
ETHYLBENZENE	100-41-4	1.57	ND
XYLENE (M+P)	1330-20-7	1.57	ND
XYLENE (O)	1330-20-7	1.57	ND
METHYL TERT-BUTYL ETHER (MTBE)	1634-04-4	1.57	ND

SURROGATE RECOVERY%DIBROMOFLUOROMETHANE102TOLUENE-D81064-BROMOFLUOROBENZENE82

NOTES:

APPROVED BY: 2017 5 DATE:

K PRIME PROJECT:9946DATE SACLIENT PROJECT:HOLLIDAY.WO.5THMAGNOLIABA

SAMPLE ID: B-5-1.5 LAB NO: 154480 DATE SAMPLED: 05/08/2017 TIME SAMPLED: 13:25 BATCH NO: 051117S1 DATE ANALYZED: 05/12/2017

METHOD: VOLATILE ORGANIC COMPOUNDS REFERENCE: EPA 5035/8260 SAMPLE TYPE: SOIL UNITS: µg/Kg

COMPOUND NAME	CAS NO.	REPORTING LIMIT	SAMPLE CONC
BENZENE	71-43-2	1.68	ND
TOLUENE	108-88-3	1.68	ND
ETHYLBENZENE	100-41-4	1.68	ND
XYLENE (M+P)	1330-20-7	1.68	ND
XYLENE (O)	1330-20-7	1.68	ND
METHYL TERT-BUTYL ETHER (MTBE)	1634-04-4	1.68	ND

SURROGATE RECOVERY%DIBROMOFLUOROMETHANE98TOLUENE-D81064-BROMOFLUOROBENZENE81

NOTES:

APPROVED BY: 2017 DATE: 5

K PRIME PROJECT: 9946 CLIENT PROJECT: HOLLIDAY.WO.5THMAGNOLIA

SAMPLE ID: B-6-1 LAB NO: 154481 DATE SAMPLED: 05/08/2017 TIME SAMPLED: 14:30 BATCH NO: 051117S1 DATE ANALYZED: 05/12/2017

METHOD: VOLATILE ORGANIC COMPOUNDS REFERENCE: EPA 5035/8260 SAMPLE TYPE: SOIL UNITS: μg/Kg

COMPOUND NAME	CAS NO.	REPORTING LIMIT	SAMPLE CONC
BENZENE	71-43-2	1.85	ND
TOLUENE	108-88-3	1.85	ND
ETHYLBENZENE	100-41-4	1.85	ND
XYLENE (M+P)	1330-20-7	1.85	ND
XYLENE (O)	1330-20-7	1.85	ND
METHYL TERT-BUTYL ETHER (MTBE)	1634-04-4	1.85	ND

SURROGATE RECOVERY	%
DIBROMOFLUOROMETHANE	99
TOLUENE-D8	103
4-BROMOFLUOROBENZENE	83

NOTES:

APPROVED BY: 2017 DATE: _____5

K PRIME PROJECT: 9946 TIME S CLIENT PROJECT: HOLLIDAY.WO.5THMAGNOLIA B

SAMPLE ID: B-6-2.5 LAB NO: 154482 DATE SAMPLED: 05/08/2017 TIME SAMPLED: 14:35 BATCH NO: 051117S1 DATE ANALYZED: 05/12/2017

METHOD: VOLATILE ORGANIC COMPOUNDS REFERENCE: EPA 5035/8260 SAMPLE TYPE: SOIL UNITS: μg/Kg

COMPOUND NAME	CAS NO.	REPORTING LIMIT	SAMPLE CONC
BENZENE	71-43-2	1.72	ND
TOLUENE	108-88-3	1.72	ND
ETHYLBENZENE	100-41-4	1.72	ND
XYLENE (M+P)	1330-20-7	1.72	ND
XYLENE (O)	1330-20-7	1.72	ND
METHYL TERT-BUTYL ETHER (MTBE)	1634-04-4	1.72	ND

SURROGATE RECOVERY %

DIBROMOFLUOROME I HANE	101
TOLUENE-D8	110
4-BROMOFLUOROBENZENE	83

NOTES:

APPROVED BY: _____ 2017 DATE:

 K PRIME PROJECT: 9946
 TIME S

 CLIENT PROJECT: HOLLIDAY.WO.5THMAGNOLIA
 B/

SAMPLE ID: B-7-1.5 LAB NO: 154483 DATE SAMPLED: 05/08/2017 TIME SAMPLED: 14:15 BATCH NO: 051117S1 DATE ANALYZED: 05/12/2017

METHOD: VOLATILE ORGANIC COMPOUNDS REFERENCE: EPA 5035/8260 SAMPLE TYPE: SOIL UNITS: µg/Kg

COMPOUND NAME	CAS NO.	REPORTING LIMIT	SAMPLE CONC
BENZENE	71-43-2	1.80	ND
TOLUENE	108-88-3	1.80	ND
ETHYLBENZENE	100-41-4	1.80	ND
XYLENE (M+P)	1330-20-7	1.80	ND
XYLENE (O)	1330-20-7	1.80	ND
METHYL TERT-BUTYL ETHER (MTBE)	1634-04-4	1.80	ND

SURROGATE RECOVERY%DIBROMOFLUOROMETHANE99TOLUENE-D81094-BROMOFLUOROBENZENE78

NOTES:

APPROVED BY: 2017 DATE: 5715

K PRIME PROJECT: 9946DATE SAICLIENT PROJECT: HOLLIDAY.WO.5THMAGNOLIABAT

SAMPLE ID: B-7-2.5 LAB NO: 154484 DATE SAMPLED: 05/08/2017 TIME SAMPLED: 14:20 BATCH NO: 051117S1 DATE ANALYZED: 05/12/2017

METHOD: VOLATILE ORGANIC COMPOUNDS REFERENCE: EPA 5035/8260 SAMPLE TYPE: SOIL UNITS: μg/Kg

COMPOUND NAME	CAS NO.	REPORTING LIMIT	SAMPLE CONC
BENZENE	71-43-2	1.81	ND
TOLUENE	108-88-3	1.81	ND
ETHYLBENZENE	100-41-4	1.81	ND
XYLENE (M+P)	1330-20-7	1.81	ND
XYLENE (O)	1330-20-7	1.81	ND
METHYL TERT-BUTYL ETHER (MTBE)	1634-04-4	1.81	ND

SURROGATE RECOVERY%DIBROMOFLUOROMETHANE98TOLUENE-D81114-BROMOFLUOROBENZENE88

NOTES:

APPROVED BY: _____ DATE: _____ 5/2017

 CLIENT PROJECT:
 9946
 TIME SAMPLE

 CLIENT PROJECT:
 HOLLIDAY.WO.5THMAGNOLIA
 BATCH N

SAMPLE ID: B-8-1.5 LAB NO: 154485 DATE SAMPLED: 05/08/2017 TIME SAMPLED: 14:25 BATCH NO: 051117S1 DATE ANALYZED: 05/12/2017

METHOD: VOLATILE ORGANIC COMPOUNDS REFERENCE: EPA 5035/8260 SAMPLE TYPE: SOIL UNITS: μg/Kg

COMPOUND NAME	CAS NO.	REPORTING LIMIT	SAMPLE CONC
BENZENE	71-43-2	1.70	ND
TOLUENE	108-88-3	1.70	ND
ETHYLBENZENE	100-41-4	1.70	ND
XYLENE (M+P)	1330-20-7	1.70	ND
XYLENE (O)	1330-20-7	1.70	ND
METHYL TERT-BUTYL ETHER (MTBE)	1634-04-4	1.70	ND

SURROGATE RECOVERY%DIBROMOFLUOROMETHANE101TOLUENE-D81084-BROMOFLUOROBENZENE85

NOTES:

APPROVED BY: DATE: _____5 2017

K PRIME PROJECT: 9946 CLIENT PROJECT: HOLLIDAY.WO.5THMAGNOLIA

SAMPLE ID: B-9-1 LAB NO: 154486 DATE SAMPLED: 05/08/2017 TIME SAMPLED: 11:20 BATCH NO: 051117S1 DATE ANALYZED: 05/12/2017

METHOD: VOLATILE ORGANIC COMPOUNDS REFERENCE: EPA 5035/8260 SAMPLE TYPE: SOIL UNITS: μg/Kg

COMPOUND NAME	CAS NO.	REPORTING LIMIT	SAMPLE CONC
BENZENE	71-43-2	1.79	ND
TOLUENE	108-88-3	1.79	ND
ETHYLBENZENE	100-41-4	1.79	ND
XYLENE (M+P)	1330-20-7	1.79	ND
XYLENE (O)	1330-20-7	1.79	ND
METHYL TERT-BUTYL ETHER (MTBE)	1634-04-4	1.79	ND

69

SURROGATE RECOVERY%DIBROMOFLUOROMETHANE102TOLUENE-D896

NOTES:

4-BROMOFLUOROBENZENE

APPROVED BY: 2017 DATE:

K PRIME PROJECT: 9946 CLIENT PROJECT: HOLLIDAY.WO.5THMAGNOLIA

SAMPLE ID: B-9-2 LAB NO: 154487 DATE SAMPLED: 05/08/2017 TIME SAMPLED: 11:25 BATCH NO: 051117S1 DATE ANALYZED: 05/12/2017

METHOD: VOLATILE ORGANIC COMPOUNDS REFERENCE: EPA 5035/8260 SAMPLE TYPE: SOIL UNITS: µg/Kg

COMPOUND NAME	CAS NO.	REPORTING	SAMPLE CONC
BENZENE	71-43-2	1.65	ND
TOLUENE	108-88-3	1.65	ND
ETHYLBENZENE	100-41-4	1.65	ND
XYLENE (M+P)	1330-20-7	1.65	ND
XYLENE (O)	1330-20-7	1.65	ND
METHYL TERT-BUTYL ETHER (MTBE)	1634-04-4	1.65	ND

SURROGATE RECOVERY%DIBROMOFLUOROMETHANE99TOLUENE-D81084-BROMOFLUOROBENZENE85

NOTES:

APPROVED BY: 12017 DATE: _____ 5

K PRIME PROJECT: 9946 CLIENT PROJECT: HOLLIDAY.WO.5THMAGNOLIA

METHOD: DRO REFERENCE: EPA 8015B					SAMPLE U	TYPE: INITS:	SOIL mg/Kg	
SAMPLE ID	LAB NO.	DATE	BATCH	EXTRACT	DATE	MRL	SAMPLE	DRO
		SAMPLED	ID	DATE	ANALYZED		CONC	PATTERN
B-1-1.5	154474	05/08/2017	051017S1	05/10/2017	05/12/2017	50.0	58.3	AC
B-2-1	154475	05/08/2017	051017S1	05/10/2017	05/12/2017	10.0	10.8	AC,AE
B-2-2.5	154476	05/08/2017	051017S1	05/10/2017	05/12/2017	10.0	ND	
B-3-1.5	154477	05/08/2017	051017S1	05/10/2017	05/12/2017	50.0	59.6	AC
B-3-3	154478	05/08/2017	051017S1	05/10/2017	05/12/2017	10.0	ND	
B-4-1.5	154479	05/08/2017	051017S1	05/10/2017	05/12/2017	10.0	36.3	AC
B-5-1.5	154480	05/08/2017	051017S1	05/10/2017	05/13/2017	10.0	22.6	AC
B-6-1	154481	05/08/2017	051017S1	05/10/2017	05/13/2017	50.0	423	AC
B-6-2.5	154482	05/08/2017	051017S1	05/10/2017	05/13/2017	10.0	ND	
B-7-1.5	154483	05/08/2017	051017S1	05/10/2017	05/13/2017	10.0	ND	
B-7-2.5	154484	05/08/2017	051017S1	05/10/2017	05/13/2017	10.0	ND	
B-8-1.5	154485	05/08/2017	051017S1	05/10/2017	05/13/2017	10.0	12.1	AC
B-9-1	154486	05/08/2017	051017S1	05/10/2017	05/13/2017	50.0	63.1	AC
B-9-2	154487	05/08/2017	051017S1	05/10/2017	05/13/2017	10.0	ND	

цр
ation
ıd

APPROVED BY: 2017

K PRIME PROJECT: 9946 CLIENT PROJECT: HOLLIDAY.WO.5THMAGNOLIA

METHOD: HRO REFERENCE: EPA 8015B					SAMPLE U	TYPE: INITS:	SOIL mg/Kg	
SAMPLE ID	LAB NO.	DATE	BATCH	EXTRACT	DATE	MRL	SAMPLE	HRO
		SAMPLED	ID	DATE	ANALYZED		CONC	PATTERN
B-1-1.5	154474	05/08/2017	051017S1	05/10/2017	05/12/2017	50.0	334	
B-2-1	154475	05/08/2017	051017S1	05/10/2017	05/12/2017	10.0	43.8	
B-2-2.5	154476	05/08/2017	051017S1	05/10/2017	05/12/2017	10.0	ND	
B-3-1.5	154477	05/08/2017	051017S1	05/10/2017	05/12/2017	50.0	498	
B-3-3	154478	05/08/2017	051017S1	05/10/2017	05/12/2017	10.0	ND	
B-4-1.5	154479	05/08/2017	051017S1	05/10/2017	05/12/2017	10.0	45.9	
B-5-1.5	154480	05/08/2017	051017S1	05/10/2017	05/13/2017	10.0	77.6	
B-6-1	154481	05/08/2017	051017S1	05/10/2017	05/13/2017	50.0	2000	
B-6-2.5	154482	05/08/2017	051017S1	05/10/2017	05/13/2017	10.0	10.8	
B-7-1.5	154483	05/08/2017	051017S1	05/10/2017	05/13/2017	10.0	29.3	
B-7-2.5	154484	05/08/2017	051017S1	05/10/2017	05/13/2017	10.0	21.0	
B-8-1.5	154485	05/08/2017	051017S1	05/10/2017	05/13/2017	10.0	64.4	
B-9-1	154486	05/08/2017	051017S1	05/10/2017	05/13/2017	50.0	455	
B-9-2	154487	05/08/2017	051017S1	05/10/2017	05/13/2017	10.0	ND	

NOTES:

HRO	Heavy Range Organics (C24-C34) with Silica Gel Cleanup
ND	Not Detected at or above the stated MRL
NA	Not Applicable or Available
MRL	Method Reporting Limit
AE	Unknown hydrocarbon with a single peak
AN	Unknown hydrocarbon with several peaks

APPROVED BY: 7 DATE: 5/15/2017

K PRIME PROJECT: 9946 CLIENT PROJECT: HOLLIDAY.WO.5THMAGNOLIA SAMPLE ID: B-1-1.5 LAB NO: 154474 DATE SAMPLED: 05/08/2017 TIME SAMPLED: 12:05 BATCH #: 042817S1 DATE EXTRACTED: 05/11/2017 DATE ANALYZED: 05/13/2017

METHOD: SEMIVOLATILE ORGANIC COMPOUNDS REFERENCE: EPA 3550/8270-SIM SAMPLE TYPE: SOIL UNITS: ug/Kg

COMPOUND NAME	CAS NUMBER	REPORTING LIMIT	SAMPLE CONC
ACENAPHTHENE	83-32-9	2.50	ND
ACENAPHTHYLENE	208-96-8	2.50	14.2
ANTHRACENE	120-12-7	2.50	16.5
BENZO (A) ANTHRACENE	56-55-3	2.50	42.1
BENZO (B) FLUORANTHENE	205-99-2	2.50	70.5
BENZO (K) FLUORANTHENE	207-08-9	2.50	39.8
BENZO (A) PYRENE	50-32-8	2.50	24.7
BENZO (G,H,I) PERYLENE	191-24-2	10.0	114
CHRYSENE	218-01-9	2.50	46.4
DIBENZO (A,H) ANTHRACENE	53-70-3	10.0	28.4
FLUORANTHENE	206-44-0	2.50	55.5
FLUORENE	86-73-7	2.50	ND
INDENO (1,2,3-CD) PYRENE	193-39-5	10.0	59.4
NAPHTHALENE	91-20-3	2.50	5.44
PHENANTHRENE	85-01-8	2.50	36.1
PYRENE	129-00-0	2.50	134

SURROGATE RECOVERY	%
2-FLUOROBIPHENYL	98
P-TERPHENYL-D14	108

NOTES:

APPROVED BY: 2017 5 DATE:

K PRIME PROJECT: 9946 CLIENT PROJECT: HOLLIDAY.WO.5THMAGNOLIA SAMPLE ID: B-2-2.5 LAB NO: 154476 DATE SAMPLED: 05/08/2017 TIME SAMPLED: 11:55 BATCH #: 042817S1 DATE EXTRACTED: 05/11/2017 DATE ANALYZED: 05/12/2017

METHOD: SEMIVOLATILE ORGANIC COMPOUNDS REFERENCE: EPA 3550/8270-SIM SAMPLE TYPE: SOIL UNITS: ug/Kg

COMPOUND NAME	CAS NUMBER	REPORTING LIMIT	SAMPLE CONC
ACENAPHTHENE	83-32-9	2.50	ND
ACENAPHTHYLENE	208-96-8	2.50	43.8
ANTHRACENE	120-12-7	2.50	98.9
BENZO (A) ANTHRACENE	56-55-3	2.50	70.9
BENZO (B) FLUORANTHENE	205-99-2	2.50	185
BENZO (K) FLUORANTHENE	207-08-9	2.50	115
BENZO (A) PYRENE	50-32-8	2.50	74.2
BENZO (G,H,I) PERYLENE	191-24-2	10.0	231
CHRYSENE	218-01-9	2.50	165
DIBENZO (A,H) ANTHRACENE	53-70-3	10.0	48.0
FLUORANTHENE	206-44-0	2.50	321
FLUORENE	86-73-7	2.50	ND
INDENO (1,2,3-CD) PYRENE	193-39-5	10.0	169
NAPHTHALENE	91-20-3	2.50	103
PHENANTHRENE	85-01-8	2.50	125
PYRENE	129-00-0	2.50	309

SURROGATE RECOVERY	%
2-FLUOROBIPHENYL	97
P-TERPHENYL-D14	105

NOTES:

APPROVED BY: DATE: 017

K PRIME PROJECT: 9946 CLIENT PROJECT: HOLLIDAY.WO.5THMAGNOLIA SAMPLE ID: B-4-1.5 LAB NO: 154479 DATE SAMPLED: 05/08/2017 TIME SAMPLED: 13:15 BATCH #: 042817S1 DATE EXTRACTED: 05/11/2017 DATE ANALYZED: 05/12/2017

METHOD: SEMIVOLATILE ORGANIC COMPOUNDS REFERENCE: EPA 3550/8270-SIM SAMPLE TYPE: SOIL UNITS: ug/Kg

COMPOUND NAME	CAS NUMBER	REPORTING LIMIT	SAMPLE CONC
ACENAPHTHENE	83-32-9	2.50	ND
ACENAPHTHYLENE	208-96-8	2.50	15.4
ANTHRACENE	120-12-7	2.50	26.4
BENZO (A) ANTHRACENE	56-55-3	2.50	41.1
BENZO (B) FLUORANTHENE	205-99-2	2.50	70.1
BENZO (K) FLUORANTHENE	207-08-9	2.50	42.7
BENZO (A) PYRENE	50-32-8	2.50	33.9
BENZO (G,H,I) PERYLENE	191-24-2	10.0	86.3
CHRYSENE	218-01-9	2.50	64.6
DIBENZO (A,H) ANTHRACENE	53-70-3	10.0	28.7
FLUORANTHENE	206-44-0	2.50	112
FLUORENE	86-73-7	2.50	ND
INDENO (1,2,3-CD) PYRENE	193-39-5	10.0	61.0
NAPHTHALENE	91-20-3	2.50	7.32
PHENANTHRENE	85-01-8	2.50	36.2
PYRENE	129-00-0	2.50	94.9

SURROGATE RECOVERY	%
2-FLUOROBIPHENYL	96
P-TERPHENYL-D14	104

NOTES:

APPROVED BY:	JJ.
DATE:	5/16/2017

K PRIME PROJECT: 9946 CLIENT PROJECT: HOLLIDAY.WO.5THMAGNOLIA SAMPLE ID: B-6-2.5 LAB NO: 154482 DATE SAMPLED: 05/08/2017 TIME SAMPLED: 14:35 BATCH #: 042817S1 DATE EXTRACTED: 05/11/2017 DATE ANALYZED: 05/12/2017

METHOD: SEMIVOLATILE ORGANIC COMPOUNDS REFERENCE: EPA 3550/8270-SIM SAMPLE TYPE: SOIL UNITS: ug/Kg

COMPOUND NAME	CAS NUMBER	REPORTING LIMIT	SAMPLE CONC
ACENAPHTHENE	83-32-9	2.50	ND
ACENAPHTHYLENE	208-96-8	2.50	19.6
ANTHRACENE	120-12-7	2.50	40.4
BENZO (A) ANTHRACENE	56-55-3	2.50	22.2
BENZO (B) FLUORANTHENE	205-99-2	2.50	65.8
BENZO (K) FLUORANTHENE	207-08-9	2.50	43.6
BENZO (A) PYRENE	50-32-8	2.50	21.0
BENZO (G,H,I) PERYLENE	191-24-2	10.0	66.5
CHRYSENE	218-01-9	2.50	51.1
DIBENZO (A,H) ANTHRACENE	53-70-3	10.0	14.3
FLUORANTHENE	206-44-0	2.50	98.2
FLUORENE	86-73-7	2.50	ND
INDENO (1,2,3-CD) PYRENE	193-39-5	10.0	45.1
NAPHTHALENE	91-20-3	2.50	40.2
PHENANTHRENE	85-01-8	2.50	33.7
PYRENE	129-00-0	2.50	71.1

SURROGATE RECOVERY	%
2-FLUOROBIPHENYL	97
P-TERPHENYL-D14	105

NOTES:

APPROVED BY: 2017 DATE: _

K PRIME PROJECT: 9946 CLIENT PROJECT: HOLLIDAY.WO.5THMAGNOLIA SAMPLE ID: B-7-2.5 LAB NO: 154484 DATE SAMPLED: 05/08/2017 TIME SAMPLED: 14:20 BATCH #: 042817S1 DATE EXTRACTED: 05/11/2017 DATE ANALYZED: 05/12/2017

METHOD: SEMIVOLATILE ORGANIC COMPOUNDS REFERENCE: EPA 3550/8270-SIM SAMPLE TYPE: SOIL UNITS: ug/Kg

COMPOUND NAME	CAS NUMBER	REPORTING LIMIT	SAMPLE
ACENAPHTHENE	83-32-9	2.50	ND
ACENAPHTHYLENE	208-96-8	2.50	14.6
ANTHRACENE	120-12-7	2.50	40.3
BENZO (A) ANTHRACENE	56-55-3	2.50	27.1
BENZO (B) FLUORANTHENE	205-99-2	2.50	36.0
BENZO (K) FLUORANTHENE	207-08-9	2.50	24.9
BENZO (A) PYRENE	50-32-8	2.50	15.7
BENZO (G,H,I) PERYLENE	191-24-2	10.0	47.9
CHRYSENE	218-01-9	2.50	50.2
DIBENZO (A,H) ANTHRACENE	53-70-3	10.0	ND
FLUORANTHENE	206-44-0	2.50	77.4
FLUORENE	86-73-7	2.50	ND
INDENO (1,2,3-CD) PYRENE	193-39-5	10.0	31.4
NAPHTHALENE	91-20-3	2.50	184
PHENANTHRENE	85-01-8	2.50	53.5
PYRENE	129-00-0	2.50	70.2

SURROGATE RECOVERY	%
2-FLUOROBIPHENYL	99
P-TERPHENYL-D14	97

NOTES:

APPROVED BY: 2017 DATE:

K PRIME PROJECT: 9946 CLIENT PROJECT: HOLLIDAY.WO.5THMAGNOLIA SAMPLE ID: B-8-1.5 LAB NO: 154485 DATE SAMPLED: 05/08/2017 TIME SAMPLED: 14:25 BATCH #: 042817S1 DATE EXTRACTED: 05/11/2017 DATE ANALYZED: 05/12/2017

METHOD: SEMIVOLATILE ORGANIC COMPOUNDS REFERENCE: EPA 3550/8270-SIM SAMPLE TYPE: SOIL UNITS: ug/Kg

COMPOUND NAME	CAS NUMBER	REPORTING LIMIT	SAMPLE CONC
ACENAPHTHENE	83-32-9	2.50	ND
ACENAPHTHYLENE	208-96-8	2.50	9.46
ANTHRACENE	120-12-7	2.50	17.1
BENZO (A) ANTHRACENE	56-55-3	2.50	21.7
BENZO (B) FLUORANTHENE	205-99-2	2.50	36.2
BENZO (K) FLUORANTHENE	207-08-9	2.50	25.9
BENZO (A) PYRENE	50-32-8	2.50	17.0
BENZO (G,H,I) PERYLENE	191-24-2	10.0	47.5
CHRYSENE	218-01-9	2.50	34.9
DIBENZO (A,H) ANTHRACENE	53-70-3	10.0	22.6
FLUORANTHENE	206-44-0	2.50	35.0
FLUORENE	86-73-7	2.50	ND
INDENO (1,2,3-CD) PYRENE	193-39-5	10.0	27.7
NAPHTHALENE	91-20-3	2.50	6.60
PHENANTHRENE	85-01-8	2.50	19.6
PYRENE	129-00-0	2.50	56.6

SURROGATE RECOVERY	%
2-FLUOROBIPHENYL	97
P-TERPHENYL-D14	112

NOTES:

APPROVED BY: 70,06 DATE:

K PRIME PROJECT: 9946 CLIENT PROJECT: HOLLIDAY.WO.5THMAGNOLIA SAMPLE ID: B-9-1 LAB NO: 154486 DATE SAMPLED: 05/08/2017 TIME SAMPLED: 11:20 BATCH #: 042817S1 DATE EXTRACTED: 05/11/2017 DATE ANALYZED: 05/13/2017

METHOD: SEMIVOLATILE ORGANIC COMPOUNDS REFERENCE: EPA 3550/8270-SIM SAMPLE TYPE: SOIL UNITS: ug/Kg

COMPOUND NAME	CAS NUMBER	REPORTING LIMIT	SAMPLE
ACENAPHTHENE	83-32-9	2.50	4.77
ACENAPHTHYLENE	208-96-8	2.50	97.3
ANTHRACENE	120-12-7	2.50	122
BENZO (A) ANTHRACENE	56-55-3	2.50	311
BENZO (B) FLUORANTHENE	205-99-2	2.50	404
BENZO (K) FLUORANTHENE	207-08-9	2.50	151
BENZO (A) PYRENE	50-32-8	2.50	399
BENZO (G,H,I) PERYLENE	191-24-2	10.0	662
CHRYSENE	218-01-9	2.50	241
DIBENZO (A,H) ANTHRACENE	53-70-3	10.0	216
FLUORANTHENE	206-44-0	2.50	559
FLUORENE	86-73-7	2.50	9.07
INDENO (1,2,3-CD) PYRENE	193-39-5	10.0	453
NAPHTHALENE	91-20-3	2.50	13.0
PHENANTHRENE	85-01-8	2.50	249
PYRENE	129-00-0	2.50	1720

SURROGATE RECOVERY	%
2-FLUOROBIPHENYL	97
P-TERPHENYL-D14	111

NOTES:

APPROVED BY: 5. DATE: 2017

K PRIME PROJECT: 9946 CLIENT PROJECT: HOLLIDAY.WO.5THMAGNOLIA SAMPLE ID: B-2-2.5 LAB NO: 154476 DATE SAMPLED: 05/08/2017 TIME SAMPLED: 11:55 BATCH ID: 050917S2

METHOD: TOTAL METALS BY ICP/MS REFERENCE: EPA 3050B/6020A SAMPLE TYPE: SOIL UNITS: mg/kg

ELEMENT NAME		DATE ANALYZED	REPORTING LIMIT	SAMPLE CONC
ANTIMONY	Sb	05/11/2017	2.50	ND
ARSENIC	As	05/11/2017	2.50	4.50
BARIUM	Ba	05/11/2017	2.50	214
BERYLLIUM	Be	05/11/2017	2.50	ND
CADMIUM	Cd	05/11/2017	2.50	ND
CHROMIUM	Cr	05/11/2017	2.50	31.4
COBALT	Со	05/11/2017	2.50	4.05
COPPER	Cu	05/11/2017	2.50	30.8
LEAD	Pb	05/11/2017	2.50	314
MERCURY	Hg	05/11/2017	0.100	0.306
MOLYBDENUM	Мо	05/11/2017	2.50	ND
NICKEL	Ni	05/11/2017	2.50	18.1
SELENIUM	Se	05/11/2017	2.50	ND
SILVER	Ag	05/11/2017	2.50	ND
THALLIUM	TI	05/11/2017	2.50	ND
VANADIUM	V	05/11/2017	2.50	20.8
ZINC	Zn	05/11/2017	2.50	265

NOTES:

APPROVED BY: DATE: 2017

K PRIME PROJECT: 9946 CLIENT PROJECT: HOLLIDAY.WO.5THMAGNOLIA SAMPLE ID: B-3-3 LAB NO: 154478 DATE SAMPLED: 05/08/2017 TIME SAMPLED: 10:20 BATCH ID: 050917S2

METHOD: TOTAL METALS BY ICP/MS REFERENCE: EPA 3050B/6020A SAMPLE TYPE: SOIL UNITS: mg/kg

ELEMENT NAME		DATE ANALYZED	REPORTING LIMIT	SAMPLE CONC
ANTIMONY	Sb	05/11/2017	2.50	ND
ARSENIC	As	05/11/2017	2.50	4.02
BARIUM	Ba	05/11/2017	2.50	141
BERYLLIUM	Be	05/11/2017	2.50	ND
CADMIUM	Cd	05/11/2017	2.50	ND
CHROMIUM	Cr	05/11/2017	2.50	17.2
COBALT	Со	05/11/2017	2.50	7.07
COPPER	Cu	05/11/2017	2.50	20.2
LEAD	Pb	05/11/2017	2.50	98.0
MERCURY	Hg	05/11/2017	0.100	0.110
MOLYBDENUM	Мо	05/11/2017	2.50	ND
NICKEL	Ni	05/11/2017	2.50	15.4
SELENIUM	Se	05/11/2017	2.50	ND
SILVER	Ag	05/11/2017	2.50	ND
THALLIUM	TI	05/11/2017	2.50	ND
VANADIUM	V	05/11/2017	2.50	36.1
ZINC	Zn	05/11/2017	2.50	72.8

NOTES:

APPROVED BY: 710 DATE:

K PRIME PROJECT: 9946 CLIENT PROJECT: HOLLIDAY.WO.5THMAGNOLIA SAMPLE ID: B-6-2.5 LAB NO: 154482 DATE SAMPLED: 05/08/2017 TIME SAMPLED: 14:35 BATCH ID: 050917S2

METHOD: TOTAL METALS BY ICP/MS REFERENCE: EPA 3050B/6020A SAMPLE TYPE: SOIL UNITS: mg/kg

ELEMENT NAME		DATE ANALYZED	REPORTING LIMIT	SAMPLE CONC
ANTIMONY	Sb	05/11/2017	2.50	ND
ARSENIC	As	05/11/2017	2.50	3.40
BARIUM	Ba	05/11/2017	2.50	104
BERYLLIUM	Be	05/11/2017	2.50	ND
CADMIUM	Cd	05/11/2017	2.50	ND
CHROMIUM	Cr	05/11/2017	2.50	30.0
COBALT	Со	05/11/2017	2.50	4.39
COPPER	Cu	05/11/2017	2.50	15.4
LEAD	Pb	05/11/2017	2.50	206
MERCURY	Hg	05/11/2017	0.100	0.200
MOLYBDENUM	Мо	05/11/2017	2.50	ND
NICKEL	Ni	05/11/2017	2.50	20.5
SELENIUM	Se	05/11/2017	2.50	ND
SILVER	Ag	05/11/2017	2.50	ND
THALLIUM	TÎ	05/11/2017	2.50	ND
VANADIUM	V	05/11/2017	2.50	22.2
ZINC	Zn	05/11/2017	2.50	110

NOTES:

APPROVED BY: 7104 DATE:

K PRIME PROJECT: 9946 CLIENT PROJECT: HOLLIDAY.WO.5THMAGNOLIA SAMPLE ID: B-8-1.5 LAB NO: 154485 DATE SAMPLED: 05/08/2017 TIME SAMPLED: 14:25 BATCH ID: 050917S2

METHOD: TOTAL METALS BY ICP/MS REFERENCE: EPA 3050B/6020A SAMPLE TYPE: SOIL UNITS: mg/kg

ELEMENT		DATE	REPORTING	SAMPLE
NAME		ANALYZED	LIMIT	CONC
ANTIMONY	Sb	05/11/2017	2.50	ND
ARSENIC	As	05/11/2017	2.50	3.34
BARIUM	Ba	05/11/2017	2.50	106
BERYLLIUM	Be	05/11/2017	2.50	ND
CADMIUM	Cd	05/11/2017	2.50	ND
CHROMIUM	Cr	05/11/2017	2.50	32.8
COBALT	Со	05/11/2017	2.50	6.22
COPPER	Cu	05/11/2017	2.50	18.7
LEAD	Pb	05/11/2017	2.50	113
MERCURY	Hg	05/11/2017	0.100	0.186
MOLYBDENUM	Мо	05/11/2017	2.50	ND
NICKEL	Ni	05/11/2017	2.50	20.8
SELENIUM	Se	05/11/2017	2.50	ND
SILVER	Ag	05/11/2017	2.50	ND
THALLIUM	TI	05/11/2017	2.50	ND
VANADIUM	V	05/11/2017	2.50	30.2
ZINC	Zn	05/11/2017	2.50	119

NOTES:

APPROVED BY: 16/2017 DATE:

K PRIME PROJECT: 9946 CLIENT PROJECT: HOLLIDAY.WO.5THMAGNOLIA SAMPLE ID: B-9-2 LAB NO: 154487 DATE SAMPLED: 05/08/2017 TIME SAMPLED: 11:25 BATCH ID: 050917S2

METHOD: TOTAL METALS BY ICP/MS REFERENCE: EPA 3050B/6020A SAMPLE TYPE: SOIL UNITS: mg/kg

ELEMENT NAME		DATE ANALYZED	REPORTING LIMIT	SAMPLE CONC
ANTIMONY	Sb	05/11/2017	2.50	ND
ARSENIC	As	05/11/2017	2.50	4.57
BARIUM	Ba	05/11/2017	2.50	122
BERYLLIUM	Be	05/11/2017	2.50	ND
CADMIUM	Cd	05/11/2017	2.50	ND
CHROMIUM	Cr	05/11/2017	2.50	43.2
COBALT	Со	05/11/2017	2.50	11.5
COPPER	Cu	05/11/2017	2.50	26.1
LEAD	Pb	05/11/2017	2.50	13.6
MERCURY	Hg	05/11/2017	0.100	ND
MOLYBDENUM	Мо	05/11/2017	2.50	ND
NICKEL	Ni	05/11/2017	2.50	38.8
SELENIUM	Se	05/11/2017	2.50	ND
SILVER	Ag	05/11/2017	2.50	ND
THALLIUM	TĪ	05/11/2017	2.50	ND
VANADIUM	V	05/11/2017	2.50	36.6
ZINC	Zn	05/11/2017	2.50	43.9

NOTES:

APPROVED BY: 16 2017 DATE:

METHOD: TOTAL LEAD REFERENCE: EPA 3050B/6020A

K PRIME PROJECT: 9946 CLIENT PROJECT: HOLLIDAY.WO.5THMAGNOLIA

SAMPLE TYPE: SOIL

UNITS: mg/kg

SAMPLE	LAB	BATCH	DATE	DATE	REPORTING	SAMPLE
ID	ID	#	SAMPLED	ANALYZED	LIMIT	CONC
B-1-1.5	154474	051017S1	05/08/2017	05/11/2017	2.50	102
B-2-1	154475	051017S1	05/08/2017	05/11/2017	2.50	107
B-3-1.5	154477	051017S1	05/08/2017	05/11/2017	2.50	36.5
B-4-1.5	154479	051017S1	05/08/2017	05/11/2017	2.50	1080
B-5-1.5	154480	051017S1	05/08/2017	05/11/2017	2.50	191
B-6-1	154481	051017S1	05/08/2017	05/11/2017	2.50	49.3
B-7-1.5	154483	051017S1	05/08/2017	05/11/2017	2.50	76.9
B-7-2.5	154484	051017S1	05/08/2017	05/11/2017	2.50	228
B-9-1	154486	051017S1	05/08/2017	05/11/2017	2.50	96.0

NOTES:

APPROVED BY: 5/16 2017 DATE:

METHOD: GRO-GASOLINE RANGE ORGANICS REFERENCE: EPA 8015B

METHOD BLANK ID: B050917S1 BATCH NO: 050917S1 SAMPLE TYPE: SOIL UNITS: mg/Kg

DATE EXTRACTED: 05/09/2017 DATE ANALYZED: 05/09/2017

COMPOUND NAME	REPORTING LIMIT	
TPH-G	1.00	ND

NOTES:

ND - NOT DETECTED AT OR ABOVE THE STATED REPORTING LIMIT NA - NOT AVAILABLE OR APPLICABLE

SAMPLE ID: L050917S1 DUPLICATE ID: D050917S1 BATCH NO: 050917S1 SAMPLE TYPE: SOIL UNITS: mg/Kg

DATE EXTRACTED: 05/09/2017 DATE ANALYZED: 05/09/2017

2 E

ACCURACY (MATRIX SPIKE)

COMPOUND NAME	SPIKE	SAMPLE	SPIKE	RECOVERY	LIMITS
	ADDED	RESULT	RESULT	(%)	(%)
TPH-G	5.00	ND	4.55	91	60-140

PRECISION (SPIKE DUPLICATE)

COMPOUND NAME	REPORTING	SPIKE	DUPLICATE	RPD	LIMITS
	LIMIT	RESULT	RESULT	(%)	(%)
TPH-G	1.00	4.55	4.70	3.3	±20

NOTES:

METHOD BLANK ID: B051117S1 BATCH NO: 051117S1 DATE ANALYZED: 5/11/2017

METHOD: VOLATILE ORGANIC COMPOUNDS REFERENCE: EPA 5035/8260

SAMPLE TYPE: SOIL UNITS: µg/Kg

COMPOUND NAME	CAS NO.	REPORTING LIMIT	SAMPLE CONC
BENZENE	71-43-2	1.50	ND
TOLUENE	108-88-3	1.50	ND
ETHYLBENZENE	100-41-4	1.50	ND
XYLENE (M+P)	1330-20-7	1.50	ND
XYLENE (O)	1330-20-7	1.50	ND
METHYL TERT-BUTYL ETHER (MTBE)	1634-04-4	1.50	ND

SURROGATE RECOVERY	%
DIBROMOFLUOROMETHANE	116
TOLUENE-D8	110
4-BROMOFLUOROBENZENE	86

NOTES:

SAMPLE ID: B051117S1 SPIKE ID: L051117S1 DUPLICATE ID: D051117S1 BATCH NO: 051117S1 DATE ANALYZED: 05/11/2017 SAMPLE TYPE: SOIL UNITS: µg/Kg

METHOD: VOLATILE ORGANIC COMPOUNDS REFERENCE: EPA 5035/8260

ACCURACY (MATRIX SPIKE)

COMPOUND NAME	SPIKE	SAMPLE	SPIKE	RECOVERY	LIMITS
	ADDED	RESULT	RESULT	(%)	(%)
1,1 DICHLOROETHENE	30.0	ND	26.0	87	60-140
BENZENE	30.0	ND	29.6	99	60-140
TRICHLOROETHENE	30.0	ND	29.0	97	60-140
TOLUENE	30.0	NĎ	28.0	93	60-140
CHLOROBENZENE	30.0	ND	24.6	82	60-140

PRECISION (SPIKE DUPLICATE)

COMPOUND NAME	REPORTING	SPIKE	DUPLICATE	RPD	LIMITS
	LIMIT	RESULT	RESULT	(%)	(%)
1,1 DICHLOROETHENE	1.50	26.0	26.5	2.1	±20
BENZENE	1.50	29.6	30.6	3.3	±20
TRICHLOROETHENE	1.50	29.0	30.3	4.5	±20
TOLUENE	1.50	28.0	28.2	0.7	±20
CHLOROBENZENE	1.50	24.6	24.8	0.9	±20

NOTES:

ND - NOT DETECTED AT OR ABOVE THE STATED REPORTING LIMIT

K PRIME, INC. LABORATORY QUALITY CONTROL REPORT	BATCH ID: DATE EXTRACTED: DATE ANALYZED:	05/10/2017
METHOD: DRO	SAMPLE TYPE:	SOIL
REFERENCE: EPA 8015B	UNITS:	mg/Kg

METHOD BLANK ID: B051017S1

	REPORTING LIMIT	SAMPLE CONC
DRO	10.0	ND

SAMPLE ID:	L051017S1
DUPLICATE ID:	D051017S1

ACCURACY (MATRIX SPIKE)

PARAMETER	SPIKE	SAMPLE	SPIKE	RECOVERY	LIMITS
	ADDED	RESULT	RESULT	(%)	(%)
DRO	500	ND	436	87	60-140

PRECISION (SPIKE DUPLICATE)

COMPOUND NAME	REPORTING	SPIKE	DUPLICATE	RPD	LIMITS
	LIMIT	RESULT	RESULT	(%)	(%)
DRO	10.0	436	445	2.1	±20

NOTES: DRO - DIESEL RANGE ORGANICS (C12-C34) ND - NOT DETECTED AT OR ABOVE THE STATED REPORTING LIMIT NA - NOT APPLICABLE OR AVAILABLE

K PRIME, INC. LABORATORY QUALITY CONTROL REPORT	BATCH ID: DATE EXTRACTED: DATE ANALYZED:	05/10/2017
METHOD: DRO	SAMPLE TYPE:	SOIL
REFERENCE: EPA 8015B	UNITS:	mg/Kg

METHOD BLANK ID: B051017S1

	REPORTING LIMIT	SAMPLE CONC
DRO	10.0	ND

SAMPLE ID:	MS-154476
DUPLICATE ID:	MSD-154476

ACCURACY (MATRIX SPIKE)

PARAMETER	SPIKE	SAMPLE	SPIKE	RECOVERY	LIMITS
	ADDED	RESULT	RESULT	(%)	(%)
DRO	500	ND	423	85	60-140

PRECISION (SPIKE DUPLICATE)

COMPOUND NAME	REPORTING	SPIKE	DUPLICATE	RPD	LIMITS
	LIMIT	RESULT	RESULT	(%)	(%)
DRO	10.0	423	460	8.3	±20

NOTES: DRO - DIESEL RANGE ORGANICS (C12-C34) ND - NOT DETECTED AT OR ABOVE THE STATED REPORTING LIMIT NA - NOT APPLICABLE OR AVAILABLE

METHOD BLANK ID: B042817S1 BATCH #: 042817S1 DATE EXTRACTED: 04/28/2017 DATE ANALYZED: 04/28/2017

METHOD: SEMIVOLATILE ORGANIC COMPOUNDS REFERENCE: EPA 3550/8270-SIM

SAMPLE TYPE: SOIL UNITS: ug/Kg

COMPOUND NAME	CAS NO.	REPORTING LIMIT	SAMPLE CONC
ACENAPHTHENE	83-32-9	2.50	ND
ACENAPHTHYLENE	208-96-8	2.50	ND
ANTHRACENE	120-12-7	2.50	ND
BENZO (A) ANTHRACENE	56-55-3	2.50	ND
BENZO (B) FLUORANTHENE	205-99-2	2.50	ND
BENZO (K) FLUORANTHENE	207-08-9	2.50	ND
BENZO (A) PYRENE	50-32-8	2.50	ND
BENZO (G,H,i) PERYLENE	191-24-2	10.0	ND
CHRYSENE	218-01-9	2.50	ND
DIBENZO (A,H) ANTHRACENE	53-70-3	10.0	ND
FLUORANTHENE	206-44-0	2.50	ND
FLUORENE	86-73-7	2.50	ND
INDENO (1,2,3-CD) PYRENE	193-39-5	10.0	ND
NAPHTHALENE	91-20-3	2.50	ND
PHENANTHRENE	85-01-8	2.50	ND
PYRENE	129-00-0	2.50	ND

SURROGATE RECOVERY	%
2-FLUOROBIPHENYL	107
P-TERPHENYL-D14	125

NOTES:

SAMPLE ID: L042817S1 DUPLICATE ID: D042817S1 BATCH #: 042817S1 DATE EXTRACTED: 04/28/2017 DATE ANALYZED: 04/28/2017

METHOD: SEMIVOLATILE ORGANIC COMPOUNDS REFERENCE: EPA 3550/8270-SIM

SAMPLE TYPE: SOIL UNITS: ug/Kg

ACCURACY (MATRIX SPIKE)

PARAMETER	SPIKE	SAMPLE	SPIKE	RECOVERY	LIMITS
	ADDED	RESULT	RESULT	(%)	(%)
ACENAPHTHENE	100	ND	92.1	92	40-140
PYRENE	100	ND	104	104	40-140

PRECISION (SPIKE DUPLICATE)

COMPOUND NAME	REPORTING	SPIKE	DUPLICATE	RPD	LIMITS
	LIMIT	RESULT	RESULT	(%)	(%)
ACENAPHTHENE	2.50	92.1	98.0	6.2	±30
PYRENE	2.50	104	96.1	7.4	±30

SAMPLE ID: L050917S2 DUPLICATE ID: D050917S2 METHOD BLANK ID: B050917S2 BATCH #: 050917S2 DATE ANALYZED: 05/11/2017

METHOD: TOTAL METALS BY ICP/MS REFERENCE: EPA 3050B/6020A

SAMPLE TYPE: SOIL UNITS: mg/kg

ELEMENT		MB	SA	SR	SP	SPD	SP	RPD
		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	%R	%
ANTIMONY	Sb	<2.50	5.00	0.0	5.21	5.00	104	4.0
ARSENIC	As	<2.50	5.00	0.0	4.71	4.51	94	4.3
BARIUM	Ba	<2.50	5.00	0.0	4.93	5.04	99	2.1
BERYLLIUM	Be	<2.50	5.00	0.0	3.49	3.30	70	5.6
CADMIUM	Cd	<2.50	5.00	0.0	4.79	4.85	96	1.3
CHROMIUM	Cr	<2.50	5.00	0.0	4.38	4.28	88	2.3
COBALT	Co	<2.50	5.00	0.0	4.39	4.36	88	0.7
COPPER	Cu	<2.50	5.00	0.0	4.46	4.40	89	1.5
LEAD	Pb	<2.50	5.00	0.0	5.08	5.27	102	3.6
MERCURY	Hg	<0.100	1.00	0.0	1.01	1.01	101	0.1
MOLYBDENUM	Мо	<2.50	5.00	0.0	5.01	4.90	100	2.1
NICKEL	Ni	<2.50	5.00	0.0	4.46	4.37	89	2.1
SELENIUM	Se	<2.50	5.00	0.0	4.63	4.57	93	1.3
SILVER	Ag	<2.50	2.50	0.0	2.40	2.42	96	1.0
THALLIUM	TI	<2.50	5.00	0.0	5.14	5.16	103	0.3
VANADIUM	V	<2.50	5.00	0.0	4.34	4.24	87	2.5
ZINC	Zn	<2.50	5.00	0.0	4.50	4.34	90	3.7

NOTES: ND: NOT DETECTED MB: METHOD BLANK SA: SPIKE ADDED SR: SAMPLE RESULT SP: SPIKE RESULT SPD: SPIKE DUPLICATE RESULT SP(%R): SPIKE % RECOVERY RPD: RELATIVE PERCENT DIFFERENCE

SAMPLE ID: L051017S1 DUPLICATE ID: D051017S1 METHOD BLANK ID: B051017S1 BATCH #: 051017S1 DATE ANALYZED: 05/11/2017

METHOD: TOTAL METALS BY ICP/MS REFERENCE: EPA 3050B/6020A

SAMPLE TYPE: SOIL UNITS: mg/kg

ELEMENT		MB	SA	SR	SR SP		SP SPD SP		SP	RPD
		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg %R		%		
LEAD	Pb	<2.50	25.0	0.0	26.7	26.4	107	1.2		

NOTES: ND: NOT DETECTED MB: METHOD BLANK SA: SPIKE ADDED SR: SAMPLE RESULT SP: SPIKE RESULT SPD: SPIKE DUPLICATE RESULT SP(%R): SPIKE % RECOVERY RPD: RELATIVE PERCENT DIFFERENCE

SAMPLE ID: SD154474 DUPLICATE ID: MS154474 METHOD BLANK ID: B051017S1 BATCH #: 051017S1 DATE ANALYZED: 05/11/2017

METHOD: TOTAL METALS BY ICP/MS REFERENCE: EPA 3050B/6020A

SAMPLE TYPE: SOIL UNITS: mg/kg

ELEMENT		MB	SA	SR	SP	SPD	SP	RPD
		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	%R	%
LEAD	Pb	<2.50	25.0	102	125	111	92	12.0

NOTES:

ND: NOT DETECTED MB: METHOD BLANK SA: SPIKE ADDED SR: SAMPLE RESULT SPI: SPIKE RESULT SPD: SPIKE DUPLICATE RESULT SP(%R): SPIKE % RECOVERY RPD: RELATIVE PERCENT DIFFERENCE

 711 Grand Avenue, Suite 220 San Rafael, California 94901 415.460.6770 • Fax 415.460.6771 main@westenvironmental.com

SAMPLE ANALYSIS/COMPOSITE REQUEST FORM

CHAIN-OF-CU									-										
Invoice to: WEST, Inc.			-,				Date	e: Ü	5/9	117	7	Pag		of Z		9.4			
Project: Hollida Project Manager: Pete	zy, WO, 5th	Magne)ia					ation	-	7M		lag	no	ia,					
									15/4						1	: 415	/460-	Ĩ	-
Laboratory: KPrime, In Sampler Signature:	nc, Santa Rosa,	CA					Tur		und i iys)	time	1	2	3	5	7	10		Std.	
Sampler Signature:		t f						(uz	iyaj					X					<u> </u>
										AI		es Re	ques	ted					
Sample ID	KPI #	Date	Time	Type	# Containers	Composite	TPHS/BTEX (BOISM/EZEOE)	MTBE	TPHU/TPHMO (8015M)*	PAHS 182 70C-SIM	Lead (6020)	Title 22 Metuls (6000/2000)							НОГД
B-1-1.5	154474	5/8/17	1205	5	1	-	X	X	Х	X	X								
B=2-)	154475	1	1150	9	1	appendicipate	X	X	X		X								
B-2-2.5	154476	·	1195	S	1		X	X	X	X		X							
B-3-1.9	154477		1015	5	1		X	X	X		X								
13-3-3	154478		1020	5	1	-	\times	Х	X			Х							
B-4-1.5.	154479		1315	5	1	-	×	\times	X	X	X								
B-5-1,5	154480		1325	3	1	with the second	X	X	X		X								
B-6-1	154481		1430	9	1	_	X	Х	X		Х								
13-6-2.5	154482		1435	5)	-	X	X	X	\mathbf{X}		X							
B-7-1.5	154483		1415	5))	X	X	X		X								
B-7-2.5	154484	$\overline{\mathbf{V}}$	1420	5	1	1	X	X	X	X	X								
	154485	Balin	14:25	5	1	-	X	X	X	X		X							_
NOTES:			-						EDF			Log	Code	:		ESS			
* with 57	ia gel clea	mup						Glob	al ID					•					
Relinquished by: (Signatu	re)		I	Date/T	ime			Re	ceive	d by:	(Sig	natur	e)			Dat	e/Tir	ne	
The HA			5/9/	7	12:1	01	9	De	Ŋ		n	\sim			5	191	17	2.0	'1
Relinquished by: (Signature)				Date/T		1:30		Received by: (Signature) Date/T			7	ne 1,2	30						

711 Grand Avenue, Suite 220 San Rafael, California 94901 415.460.6770 • Fax 415.460.6771 main@westenvironmental.com

SAMPLE ANALYSIS/COMPOSITE REQUEST FORM

			(CHAI	N-OF	-CUS		Y C	la	17		D	0						
Invoice to: WEST, Inc.						Date: 5/9/17 Page 2 of Z Location: 5th & Magnolia, Oak and CA													
Project: Hollid ay. WO. 5th Magholia Project Manager: Peter Krasnoff, WEST, Inc.					Phone: 415/460-6770 Fax: 415/460-6771														
Laboratory: KPrime, Inc, Santa Rosa, CA								und		1	2	3	5	Гах	10	400-	Std.		
					1		iys)	ume		4	5	X	<i>'</i>	10		Stu.			
Sampler Signature:						Analyses Requested													
Sample ID	KPI #	Date	Time	Type	# Containers	Composite	7PH9 / BIEX (SOISH S260E)	MIBE	TPHU/TPHINO (SOISN)*	PA115(8290C-SIM)	lead (6020)	Title 22 Metablecog/2000)							НОГД
B-9-1	154486	7/8/17	1/z0	5	- 4 E		X	X	X	X	X								
B-9-2	154487	5/8/17	1125	5	1	terester.	X	X	X	*	X	$\boldsymbol{\chi}$							
								-									_		
								_		_	_								
										_							_		
																		\dashv	
						_				-								-+	
											_							+	
																	_	-+	
																_		$ \rightarrow $	
NOTES: EDF Log Code: <u>WESS</u>																			
* with st ** Per Per	lica ger clea ar Morris on	anyo Iy repor	title	22-	for 15	541-181	. lead	Glob	al ID	:									
Relinquished by: (Signature) Date/Time				Received by: (Signature) Date/Time									\neg						
The A			5/9/17 12:01			Ren Un							5/9/17						
Relinquished by: (Signature) Date/Time					Received by: (Signature)						Date/Time								
Dum Un			5/9/17/4:30			it						5 9/17 14:20							
· ····								7	\mathcal{F}										

K PRIME, Inc.

CONSULTING ANALYTICAL CHEMISTS

TRANSMITTAL

- **DATE:** 5/17/2017
- TO: MR. PETER MORRIS WEST ENVIRONMENTAL S&T 711 GRAND AVENUE, SUITE 220 SAN RAFAEL, CA 94901

 Phone:
 415-460-6770

 Fax:
 415-460-6771

 Email:
 main@westenvironmental.com

- FROM: Richard A. Kagel, Ph.D. RMC 5/17/2017-Laboratory Director
- SUBJECT: LABORATORY RESULTS FOR YOUR PROJECT

HOLLIDAY.WO.5THMAGNOLIA

Enclosed please find K Prime's laboratory reports for the following samples:

SAMPLE ID	ТҮРЕ	DATE	TIME	KPI LAB #
SG-1-5	AIR	05/08/17	13:11	154488
SG-2-5	AIR	05/08/17	12:25	154489
SG-3-5	AIR	05/09/17	11:01	154490
SG-4-5	AIR	05/09/17	9:10	154491
SG-5-5	AIR	05/09/17	9:46	154492
W-2-5	AIR	05/08/17	13:57	154493
W-4-5	AIR	05/09/17	10:27	154494

The above listed sample group was received on 05/09/17 and tested as requested on the chain of custody document.

Please call me if you have any questions or need further information. Thank you for this opportunity to be of service.
 3621
 Westwind
 Blvd.

 Santa Rosa
 CA
 95403

 Phone:
 707
 527
 7574

 FAX:
 707
 527
 7879

ACCT: 9946 PROJ: HOLLIDAY.WO. 5THMAGNOLIA

K PRIME PROJECT: 9946 CLIENT PROJECT: HOLLIDAY.WO.5THMAGNOLIA

SAMPLE ID:
LAB NO:
SAMPLE TYPE:
DATE SAMPLED:
TIME SAMPLED:
BATCH ID:
DATE ANALYZED:

SG-1-5 154488 AIR 05/08/2017 13:11 042717A1 05/11/2017

METHOD: VOC'S IN AIR REFERENCE: EPA METHOD TO 15 (GC-MS-SCAN)

		PPB (V/V)		µg/cu. m	
	CAS NO.	RL	SAMPLE	RL	SAMPLE CONC
DICHLORODIFLUOROMETHANE	75-71-8	1.00	ND	4.95	ND
CHLOROMETHANE	74-87-3	1.00	ND	2.07	ND
DICHLOROTETRAFLUOROETHANE	76-14-2	1.00	ND	6.99	ND
VINYL CHLORIDE	75-01-4	1.00	ND	2.56	ND
BROMOMETHANE	74-83-9	1.00	ND	3.88	ND
CHLOROETHANE	75-00-3	1.00	ND	2.64	ND
TRICHLOROFLUOROMETHANE	75-69-4	1.00	1.11	5.62	6.24
1.1-DICHLOROETHENE	75-35-4	1.00	ND	3.97	ND
TRICHLOROTRIFLUOROETHANE	76-13-1	1.00	ND	7.66	ND
METHYLENE CHLORIDE	75-09-2	1.00	ND	3.47	ND
1.1-DICHLOROETHANE	75-34-3	1.00	ND	4.05	ND
CIS-1,2-DICHLOROETHENE	159-59-2	1.00	ND	3.97	ND
CHLOROFORM	67-66-3	1.00	ND	4.88	ND
1,1,1-TRICHLOROETHANE	71-55-6	1.00	ND	5.46	ND
1.2-DICHLOROETHANE	107-06-2	1.00	ND	4.05	ND
BENZENE	71-43-2	1.00	ND	3.19	ND
CARBON TETRACHLORIDE	56-23-5	1.00	ND	6.29	ND
1.2-DICHLOROPROPANE	78-87-5	1.00	ND	4.62	ND
TRICHLOROETHENE	79-01-6	1.00	ND	5.37	ND
CIS-1.3-DICHLOROPROPENE	10061-01-5	1.00	ND	4.54	ND
TRANS-1.3-DICHLOROPROPENE	10061-02-6	1.00	ND	4.54	ND
TOLUENE	108-88-3	1.00	1.29	3.77	4.86
1,1,2-TRICHLOROETHANE	79-00-5	1.00	ND	5.46	ND
1,2-DIBROMOETHANE	106-93-4	1.00	ND	7.68	ND
TETRACHLOROETHENE	127-18-4	1.00	16.1	6.78	109
CHLOROBENZENE	108-90-7	1.00	ND	4.60	ND
ETHYLBENZENE	100-41-4	1.00	ND	4.34	ND
XYLENE (M+P)	179601-23-1	2.00	NĎ	8.68	ND
STYRENE	100-42-5	1.00	ND	4.26	ND
XYLENE (O)	95-47-6	1.00	ND	4.34	ND
1.1.2.2-TETRACHLOROETHANE	79-34-5	1.00	ND	6.87	ND
1.3.5-TRIMETHYLBENZENE	108-67-8	1.00	ND	4.92	ND
1,2,4-TRIMETHYLBENZENE	95-63-6	1.00	ND	4.92	ND
1.3-DICHLOROBENZENE	541-73-1	1.00	ND	6.01	ND
1.4-DICHLOROBENZENE	106-46-7	1.00	ND	6.01	ND
1.2-DICHLOROBENZENE	95-50-1	1.00	ND	6.01	ND
1.2.4-TRICHLOROBENZENE	120-82-1	1.00	ND	7.42	ND
HEXACHLOROBUTADIENE	87-68-3	1.00	ND	10.7	ND

APPROVED BY: _____ DATE: _____ <u>| (197</u>

K PRIME PROJECT: 9946 CLIENT PROJECT: HOLLIDAY.WO.5THMAGNOLIA

SAMPLE ID:	
LAB NO:	
SAMPLE TYPE:	
DATE SAMPLED:	
TIME SAMPLED:	
BATCH ID:	
DATE ANALYZED:	

SG-2-5 154489 AIR 05/08/2017 12:25 042717A1 05/10/2017

METHOD: VOC'S IN AIR REFERENCE: EPA METHOD TO 15 (GC-MS-SCAN)

		PPB (V/V)			n
COMPOUND NAME	CAS NO.	RL	SAMPLE CONC	RL	SAMPLE CONC
DICHLORODIFLUOROMETHANE	75-71-8	2.00	ND	9.89	ND
CHLOROMETHANE	74-87-3	2.00	ND	4.13	ND
DICHLOROTETRAFLUOROETHANE	76-14-2	2.00	ŇD	14.0	ND
VINYL CHLORIDE	75-01-4	2.00	ND	5.11	ND
BROMOMETHANE	74-83-9	2.00	ND	7.77	ND
CHLOROETHANE	75-00-3	2.00	ND	5.28	ND
TRICHLOROFLUOROMETHANE	75-69-4	2.00	ND	11.2	ND
1,1-DICHLOROETHENE	75-35-4	2.00	ND	7.93	ND
TRICHLOROTRIFLUOROETHANE	76-13-1	2.00	ND	15.3	ND
METHYLENE CHLORIDE	75-09-2	2.00	ND	6.95	ND
1,1-DICHLOROETHANE	75-34-3	2.00	ND	8.10	ND
CIS-1,2-DICHLOROETHENE	159-59-2	2.00	ND	7.93	ND
CHLOROFORM	67-66-3	2.00	ND	9.77	ND
1,1,1-TRICHLOROETHANE	71-55-6	2.00	ND	10.9	ND
1.2-DICHLOROETHANE	107-06-2	2.00	ND	8.09	ND
BENZENE	71-43-2	2.00	5.82	6.39	18.6
CARBON TETRACHLORIDE	56-23-5	2.00	ND	12.6	ND
1.2-DICHLOROPROPANE	78-87-5	2.00	ND	9.24	ND
TRICHLOROETHENE	79-01-6	2.00	ND	10.7	ND
CIS-1,3-DICHLOROPROPENE	10061-01-5	2.00	ND	9.08	ND
TRANS-1,3-DICHLOROPROPENE	10061-02-6	2.00	ND	9.08	ND
TOLUENE	108-88-3	2.00	10.2	7.54	38.4
1,1,2-TRICHLOROETHANE	79-00-5	2.00	ND	10.9	ND
1,2-DIBROMOETHANE	106-93-4	2.00	ND	15.4	ND
TETRACHLOROETHENE	127-18-4	2.00	2.06	13.6	14.0
CHLOROBENZENE	108-90-7	2.00	ND	9.21	ND
ETHYLBENZENE	100-41-4	2.00	ND	8.68	ND
XYLENE (M+P)	179601-23-1	4.00	ND	17.4	ND
STYRENE	100-42-5	2.00	ND	8.52	ND
XYLENE (O)	95-47-6	2.00	ND	8.68	ND
1,1,2,2-TETRACHLOROETHANE	79-34-5	2.00	ND	13.7	ND
1,3,5-TRIMETHYLBENZENE	108-67-8	2.00	ND	9.83	ND
1,2,4-TRIMETHYLBENZENE	95-63-6	2.00	ND	9.83	ND
1,3-DICHLOROBENZENE	541-73-1	2.00	ND	12.0	ND
1,4-DICHLOROBENZENE	106-46-7	2.00	ND	12.0	ND
1,2-DICHLOROBENZENE	95-50-1	2.00	ND	12.0	ND
1,2,4-TRICHLOROBENZENE	120-82-1	2.00	ND	14.8	ND
HEXACHLOROBUTADIENE	87-68-3	2.00	ND	21.3	ND

APPROVED BY: 13. M(DATE: 5.17-11 5/17/17

K PRIME PROJECT: 9946 CLIENT PROJECT: HOLLIDAY.WO.5THMAGNOLIA

SAMPLE ID: LAB NO: SAMPLE TYPE: DATE SAMPLED: TIME SAMPLED: BATCH ID: DATE ANALYZED: SG-3-5 154490 AIR 05/09/2017 11:01 042717A1 05/10/2017

METHOD: VOC'S IN AIR

REFERENCE: EPA METHOD TO 15 (GC-MS-SCAN)

	PPB (V/V)			µg/cu. m	
COMPOUND NAME	CAS NO.	RL	SAMPLE CONC	RL	SAMPLE CONC
DICHLORODIFLUOROMETHANE	75-71-8	2.00	ND	9.89	ND
CHLOROMETHANE	74-87-3	2.00	ND	4,13	ND
DICHLOROTETRAFLUOROETHANE	76-14-2	2.00	ND	14.0	ND
VINYL CHLORIDE	75-01-4	2.00	ND	5.11	ND
BROMOMETHANE	74-83-9	2.00	ND	7.77	ND
CHLOROETHANE	75-00-3	2.00	ND	5.28	ND
TRICHLOROFLUOROMETHANE	75-69-4	2.00	ND	11.2	ND
1.1-DICHLOROETHENE	75-35-4	2.00	ND	7.93	ND
TRICHLOROTRIFLUOROETHANE	76-13-1	2.00	ND	15.3	ND
METHYLENE CHLORIDE	75-09-2	2.00	6.98	6.95	24.2
1.1-DICHLOROETHANE	75-34-3	2.00	ND	8.10	ND
CIS-1.2-DICHLOROETHENE	159-59-2	2.00	ND	7.93	ND
CHLOROFORM	67-66-3	2.00	ND	9.77	ND
1,1,1-TRICHLOROETHANE	71-55-6	2.00	ND	10.9	ND
1.2-DICHLOROETHANE	107-06-2	2.00	ND	8.09	ND
BENZENE	71-43-2	2.00	ND	6.39	ND
CARBON TETRACHLORIDE	56-23-5	2.00	ND	12.6	ND
1,2-DICHLOROPROPANE	78-87-5	2.00	ND	9.24	ND
TRICHLOROETHENE	79-01-6	2.00	ND	10.7	ND
CIS-1,3-DICHLOROPROPENE	10061-01-5	2.00	ND	9.08	ND
TRANS-1,3-DICHLOROPROPENE	10061-02-6	2.00	ND	9.08	ND
TOLUENE	108-88-3	2.00	ND	7.54	ND
1.1.2-TRICHLOROETHANE	79-00-5	2.00	ND	10.9	ND
1.2-DIBROMOETHANE	106-93-4	2.00	ND	15.4	ND
TETRACHLOROETHENE	127-18-4	2.00	ND	13.6	ND
CHLOROBENZENE	108-90-7	2.00	ND	9.21	ND
ETHYLBENZENE	100-41-4	2.00	ND	8.68	ND
XYLENE (M+P)	179601-23-1	4.00	ND	17.4	ND
STYRENE	100-42-5	2.00	ND	8.52	ND
XYLENE (O)	95-47-6	2.00	ND	8.68	ND
1.1.2.2-TETRACHLOROETHANE	79-34-5	2.00	ND	13.7	ND
1.3.5-TRIMETHYLBENZENE	108-67-8	2.00	ND	9.83	ND
1.2.4-TRIMETHYLBENZENE	95-63-6	2.00	ND	9.83	ND
1,3-DICHLOROBENZENE	541-73-1	2.00	ND	12.0	ND
1.4-DICHLOROBENZENE	106-46-7	2.00	ND	12.0	ND
1.2-DICHLOROBENZENE	95-50-1	2.00	ND	12.0	ND
1.2.4-TRICHLOROBENZENE	120-82-1	2.00	ND	14.8	ND
HEXACHLOROBUTADIENE	87-68-3	2.00	ND	21.3	ND

APPROVED BY: 1/1/1/17 DATE: 5/17/17

K PRIME PROJECT: 9946 CLIENT PROJECT: HOLLIDAY.WO.5THMAGNOLIA

SAMPLE ID:	
LAB NO:	
SAMPLE TYPE:	
DATE SAMPLED:	
TIME SAMPLED:	
BATCH ID:	
DATE ANALYZED:	

SG-4-5 154491 AIR 05/09/2017 09:10 042717A1 05/10/2017

METHOD: VOC'S IN AIR REFERENCE: EPA METHOD TO 15 (GC-MS-SCAN)

		PPB (V/V)		µg/cu. n	1
COMPOUND NAME	CAS NO.	RL	SAMPLE CONC	RL	SAMPLE CONC
DICHLORODIFLUOROMETHANE	75-71-8	1.00	ND	4.95	ND
CHLOROMETHANE	74-87-3	1.00	ND	2.07	ND
DICHLOROTETRAFLUOROETHANE	76-14-2	1.00	ND	6.99	ND
VINYL CHLORIDE	75-01-4	1.00	ND	2.56	ND
BROMOMETHANE	74-83-9	1.00	ND	3.88	ND
CHLOROETHANE	75-00-3	1.00	ND	2.64	ND
TRICHLOROFLUOROMETHANE	75-69-4	1.00	2.52	5.62	14.2
1.1-DICHLOROETHENE	75-35-4	1.00	ND	3.97	ND
TRICHLOROTRIFLUOROETHANE	76-13-1	1.00	ND	7.66	ND
METHYLENE CHLORIDE	75-09-2	1.00	ND	3.47	ND
1.1-DICHLOROETHANE	75-34-3	1.00	ND	4.05	ND
CIS-1.2-DICHLOROETHENE	159-59-2	1.00	ND	3.97	ND
CHLOROFORM	67-66-3	1.00	ND	4.88	ND
1,1,1-TRICHLOROETHANE	71-55-6	1.00	ND	5.46	ND
1,2-DICHLOROETHANE	107-06-2	1.00	ND	4.05	ND
BENZENE	71-43-2	1.00	ND	3.19	ND
CARBON TETRACHLORIDE	56-23-5	1.00	ND	6.29	ND
1.2-DICHLOROPROPANE	78-87-5	1.00	ND	4.62	ND
TRICHLOROETHENE	79-01-6	1.00	ND	5.37	ND
CIS-1.3-DICHLOROPROPENE	10061-01-5	1.00	ND	4.54	ND
TRANS-1,3-DICHLOROPROPENE	10061-02-6	1.00	ND	4.54	ND
TOLUENE	108-88-3	1.00	ND	3.77	ND
1.1.2-TRICHLOROETHANE	79-00-5	1.00	ND	5.46	ND
1.2-DIBROMOETHANE	106-93-4	1.00	ND	7.68	ND
TETRACHLOROETHENE	127-18-4	1.00	1.99	6.78	13.5
CHLOROBENZENE	108-90-7	1.00	ND	4.60	ND
ETHYLBENZENE	100-41-4	1.00	ND	4.34	ND
XYLENE (M+P)	179601-23-1	2.00	ND	8.68	ND
STYRENE	100-42-5	1.00	ND	4.26	ND
XYLENE (O)	95-47-6	1.00	ND	4.34	ND
1.1.2.2-TETRACHLOROETHANE	79-34-5	1.00	ND	6.87	ND
1.3.5-TRIMETHYLBENZENE	108-67-8	1.00	ND	4.92	ND
1.2.4-TRIMETHYLBENZENE	95-63-6	1.00	ND	4.92	ND
1,3-DICHLOROBENZENE	541-73-1	1.00	ND	6.01	ND
1.4-DICHLOROBENZENE	106-46-7	1.00	ND	6.01	ND
1,2-DICHLOROBENZENE	95-50-1	1.00	ND	6.01	ND
1.2.4-TRICHLOROBENZENE	120-82-1	1.00	ND	7.42	ND
HEXACHLOROBUTADIENE	87-68-3	1.00	ND	10.7	ND

APPROVED BY: <u>MM(</u> DATE: <u>5/17/17</u>

K PRIME PROJECT: 9946 CLIENT PROJECT: HOLLIDAY.WO.5THMAGNOLIA

SAMPLE ID:	
LAB NO:	
SAMPLE TYPE:	
DATE SAMPLED:	
TIME SAMPLED:	
BATCH ID:	
DATE ANALYZED:	

SG-5-5 154492 AIR 05/09/2017 09:46 042717A1 05/11/2017

METHOD: VOC'S IN AIR REFERENCE: EPA METHOD TO 15 (GC-MS-SCAN)

		PPB (V/V)		µg/cu.	m
COMPOUND NAME	CAS NO.	RL	SAMPLE	RL	SAMPLE CONC
DICHLORODIFLUOROMETHANE	75-71-8	2.00	ND	9.89	ND
CHLOROMETHANE	74-87-3	2.00	ND	4.13	ND
DICHLOROTETRAFLUOROETHANE	76-14-2	2.00	ND	14.0	ND
VINYL CHLORIDE	75-01-4	2.00	ND	5.11	ND
BROMOMETHANE	74-83-9	2.00	ND	7.77	ND
CHLOROETHANE	75-00-3	2.00	ND	5.28	ND
TRICHLOROFLUOROMETHANE	75-69-4	2.00	ND	11.2	ND
1.1-DICHLOROETHENE	75-35-4	2.00	ND	7.93	ND
TRICHLOROTRIFLUOROETHANE	76-13-1	2.00	ND	15.3	ND
METHYLENE CHLORIDE	75-09-2	2.00	ND	6.95	ND
1.1-DICHLOROETHANE	75-34-3	2.00	ND	8.10	ND
CIS-1,2-DICHLOROETHENE	159-59-2	2.00	ND	7.93	ND
CHLOROFORM	67-66-3	2.00	ND	9.77	ND
1,1,1-TRICHLOROETHANE	71-55-6	2.00	ND	10.9	ND
1.2-DICHLOROETHANE	107-06-2	2.00	ND	8.09	ND
BENZENE	71-43-2	2.00	ND	6.39	ND
CARBON TETRACHLORIDE	56-23-5	2.00	ND	12.6	ND
1.2-DICHLOROPROPANE	78-87-5	2.00	ND	9.24	ND
TRICHLOROETHENE	79-01-6	2.00	ND	10.7	ND
CIS-1,3-DICHLOROPROPENE	10061-01-5	2.00	ND	9.08	ND
TRANS-1.3-DICHLOROPROPENE	10061-02-6	2.00	ND	9.08	ND
TOLUENE	108-88-3	2.00	ND	7.54	ND
1,1,2-TRICHLOROETHANE	79-00-5	2.00	ND	10.9	ND
1.2-DIBROMOETHANE	106-93-4	2.00	ND	15.4	ND_
TETRACHLOROETHENE	127-18-4	2.00	3.14	13.6	21.3
CHLOROBENZENE	108-90-7	2.00	ND	9.21	ND
ETHYLBENZENE	100-41-4	2.00	ND	8.68	ND
XYLENE (M+P)	179601-23-1	4.00	ND	17.4	ND
STYRENE	100-42-5	2.00	ND	8.52	ND
XYLENE (O)	95-47-6	2.00	ND	8.68	ND
1,1,2,2-TETRACHLOROETHANE	79-34-5	2.00	ND	13.7	ND
1.3.5-TRIMETHYLBENZENE	108-67-8	2.00	ND	9.83	ND
1.2.4-TRIMETHYLBENZENE	95-63-6	2.00	ND	9.83	ND
1.3-DICHLOROBENZENE	541-73-1	2.00	ND	12.0	ND
1.4-DICHLOROBENZENE	106-46-7	2.00	ND	12.0	ND
1.2-DICHLOROBENZENE	95-50-1	2.00	ND	12.0	ND
1.2.4-TRICHLOROBENZENE	120-82-1	2.00	ND	14.8	ND
HEXACHLOROBUTADIENE	87-68-3	2.00	ND	21.3	ND

APPROVED BY: <u>/////</u> DATE: <u>5/17/17</u>

K PRIME PROJECT: 9946 CLIENT PROJECT: HOLLIDAY.WO.5THMAGNOLIA

SAMPLE ID: LAB NO: SAMPLE TYPE: DATE SAMPLED: TIME SAMPLED: BATCH ID: DATE ANALYZED:

.

METHOD: VOC'S IN AIR REFERENCE: EPA METHOD TO 15 (GC-MS-SCAN)

		PPB (V/V)		µg/cu. m	
COMPOUND NAME	CAS NO.	RL	SAMPLE	RL	SAMPLE CONC
DICHLORODIFLUOROMETHANE	75-71-8	1.00	ND	4.95	ND
CHLOROMETHANE	74-87-3	1.00	ND	2.07	ND
DICHLOROTETRAFLUOROETHANE	76-14-2	1.00	ND	6.99	ND
VINYL CHLORIDE	75-01-4	1.00	ND	2.56	ND
BROMOMETHANE	74-83-9	1.00	ND	3.88	ND
CHLOROETHANE	75-00-3	1.00	ND	2.64	ND
TRICHLOROFLUOROMETHANE	75-69-4	1.00	1,16	5.62	6.52
1.1-DICHLOROETHENE	75-35-4	1.00	ND	3.97	ND
TRICHLOROTRIFLUOROETHANE	76-13-1	1.00	ND	7.66	ND
METHYLENE CHLORIDE	75-09-2	1.00	1.46	3.47	5.07
1.1-DICHLOROETHANE	75-34-3	1.00	ND	4.05	ND
CIS-1,2-DICHLOROETHENE	159-59-2	1.00	ND	3.97	ND
CHLOROFORM	67-66-3	1.00	ND	4.88	ND
1.1.1-TRICHLOROETHANE	71-55-6	1.00	ND	5.46	ND
1.2-DICHLOROETHANE	107-06-2	1.00	ND	4.05	ND
BENZENE	71-43-2	1.00	ND	3.19	ND
CARBON TETRACHLORIDE	56-23-5	1.00	ND	6.29	ND
1,2-DICHLOROPROPANE	78-87-5	1.00	ND	4.62	ND
TRICHLOROETHENE	79-01-6	1.00	ND	5.37	ND
CIS-1.3-DICHLOROPROPENE	10061-01-5	1.00	ND	4.54	ND
TRANS-1.3-DICHLOROPROPENE	10061-02-6	1.00	ND	4.54	ND
TOLUENE	108-88-3	1.00	ND	3.77	ND
1.1.2-TRICHLOROETHANE	79-00-5	1.00	ND	5.46	ND
1,2-DIBROMOETHANE	106-93-4	1.00	ND	7.68	ND
TETRACHLOROETHENE	127-18-4	1.00	6.64	6.78	45.0
CHLOROBENZENE	108-90-7	1.00	ND	4.60	ND
ETHYLBENZENE	100-41-4	1.00	ND	4.34	ND
XYLENE (M+P)	179601-23-1	2.00	ND	8.68	ND
STYRENE	100-42-5	1.00	ND	4.26	ND
XYLENE (O)	95-47-6	1.00	ND	4.34	ND
1,1,2,2-TETRACHLOROETHANE	79-34-5	1.00	ND	6.87	ND
1,3,5-TRIMETHYLBENZENE	108-67-8	1.00	ND	4.92	ND
1,2,4-TRIMETHYLBENZENE	95-63-6	1.00	ND	4.92	ND
1,3-DICHLOROBENZENE	541-73-1	1.00	ND	6.01	ND
1.4-DICHLOROBENZENE	106-46-7	1.00	ND	6.01	ND
1,2-DICHLOROBENZENE	95-50-1	1.00	ND	6.01	ND
1,2,4-TRICHLOROBENZENE	120-82-1	1.00	ND	7.42	ND
HEXACHLOROBUTADIENE	87-68-3	1.00	ND	10.7	ND

APPROVED BY: 1/17/17 DATE: 5/17/17

K PRIME PROJECT: 9946 CLIENT PROJECT: HOLLIDAY.WO.5THMAGNOLIA

SAMPLE ID:
LAB NO:
SAMPLE TYPE:
DATE SAMPLED:
TIME SAMPLED:
BATCH ID:
DATE ANALYZED:

W-4-5 154494 AIR 05/09/2017 10:27 042717A1 05/11/2017

METHOD: VOC'S IN AIR REFERENCE: EPA METHOD TO 15 (GC-MS-SCAN)

		PPB (V/V)		µg/cu. n	n
COMPOUND NAME	CAS NO.	RL	SAMPLE CONC	RL	SAMPLE CONC
DICHLORODIFLUOROMETHANE	75-71-8	2.00	ND	9.89	ND
CHLOROMETHANE	74-87-3	2.00	ND	4.13	ND
DICHLOROTETRAFLUOROETHANE	76-14-2	2.00	ND	14.0	ND
VINYL CHLORIDE	75-01-4	2.00	ND	5.11	ND
BROMOMETHANE	74-83-9	2.00	ND	7.77	ND
CHLOROETHANE	75-00-3	2.00	ND	5.28	ND
TRICHLOROFLUOROMETHANE	75-69-4	2.00	ND	11.2	ND
1.1-DICHLOROETHENE	75-35-4	2.00	ND	7.93	ND
TRICHLOROTRIFLUOROETHANE	76-13-1	2.00	ND	15.3	ND
METHYLENE CHLORIDE	75-09-2	2.00	ND	6.95	ND
1.1-DICHLOROETHANE	75-34-3	2.00	ND	8.10	ND
CIS-1.2-DICHLOROETHENE	159-59-2	2.00	ND	7.93	ND
CHLOROFORM	67-66-3	2.00	ND	9.77	ND
1.1.1-TRICHLOROETHANE	71-55-6	2.00	ND	10.9	ND
1.2-DICHLOROETHANE	107-06-2	2.00	ND	8.09	ND
BENZENE	71-43-2	2.00	ND	6.39	ND
CARBON TETRACHLORIDE	56-23-5	2.00	ND	12.6	ND
1.2-DICHLOROPROPANE	78-87-5	2.00	ND	9.24	ND
TRICHLOROETHENE	79-01-6	2.00	ND	10.7	ND
CIS-1,3-DICHLOROPROPENE	10061-01-5	2.00	ND	9.08	ND
TRANS-1,3-DICHLOROPROPENE	10061-02-6	2.00	ND	9.08	NÐ
TOLUENE	108-88-3	2.00	ND	7.54	ND
1,1,2-TRICHLOROETHANE	79-00-5	2.00	ND	10.9	ND
1.2-DIBROMOETHANE	106-93-4	2.00	ND	15.4	ND
TETRACHLOROETHENE	127-18-4	2.00	26.9	13.6	182
CHLOROBENZENE	108-90-7	2.00	ND	9.21	ND
ETHYLBENZENE	100-41-4	2.00	ND	8.68	ND
XYLENE (M+P)	179601-23-1	4.00	ND	17.4	ND
STYRENE	100-42-5	2.00	ND	8.52	ND
XYLENE (O)	95-47-6	2.00	ND	8.68	ND
1,1,2,2-TETRACHLOROETHANE	79-34-5	2.00	ND	13.7	ND
1.3.5-TRIMETHYLBENZENE	108-67-8	2.00	ND	9.83	ND
1,2,4-TRIMETHYLBENZENE	95-63-6	2.00	ND	9.83	ND
1.3-DICHLOROBENZENE	541-73-1	2.00	ND	12.0	ND
1.4-DICHLOROBENZENE	106-46-7	2.00	ND	12.0	ND
1,2-DICHLOROBENZENE	95-50-1	2.00	ND	12.0	ND
1,2,4-TRICHLOROBENZENE	120-82-1	2.00	ND	14.8	ND
HEXACHLOROBUTADIENE	87-68-3	2.00	ND	21.3	ND

APPROVED BY: 1/14(DATE: 5/17-117-

K PRIME PROJECT: 9946 CLIENT PROJECT: HOLLIDAY.WO.5THMAGNOLIA

METHOD: HELIUM REFERENCE: ASTM D 1946

SAMPLE TYPE: AIR UNITS: %-V

SAMPLE ID	LAB NO	BATCH	DATE	TIME	DATE	MRL	SAMPLE
		NO	SAMPLED	SAMPLED	ANALYZED		CONC
SG-1-5	154488	051017A2	05/08/2017	13:11	05/10/2017	0.100	ND
SG-2-5	154489	051017A2	05/08/2017	12:25	05/10/2017	0.100	ND
SG-3-5	154490	051017A2	05/09/2017	11:01	05/10/2017	0.100	ND
SG-4-5	154491	051017A2	05/09/2017	09:10	05/10/2017	0.100	ND
SG-5-5	154492	051017A2	05/09/2017	09:46	05/10/2017	0.100	ND
W-2-5	154493	051017A2	05/08/2017	13:57	05/10/2017	0.100	ND
W-4-5	154494	051017A2	05/09/2017	10:27	05/10/2017	0.100	ND

NOTES:

ND - NOT DETECTED AT OR ABOVE THE STATED METHOD REPORTING LIMIT NA - NOT APPLICABLE OR AVAILABLE MRL - METHOD REPORTING LIMIT

K PRIME, INC.

LABORATORY METHOD BLANK REPORT

METHOD BLANK ID: SAMPLE TYPE:

B042717A1 AIR

DATE ANALYZED: 04/28/2017

BATCH ID: 042717A1

METHOD: VOC'S IN AIR REFERENCE: EPA METHOD TO 15 (GC-MS-SCAN)

		PPB (V/V)	µg/cu. m					
COMPOUND NAME	CAS NO.	RL	SAMPLE	RL	SAMPLE CONC				
DICHLORODIFLUOROMETHANE	75-71-8	0.500	ND	2.47	ND				
CHLOROMETHANE	74-87-3	0.500	ND	1.03	ND				
DICHLOROTETRAFLUOROETHANE	76-14-2	0.500	ND	3.50	ND				
VINYL CHLORIDE	75-01-4	0.500	ND	1.28	ND				
BROMOMETHANE	74-83-9	0.500	ND	1.94	ND				
CHLOROETHANE	75-00-3	0.500	ND	1.32	ND				
TRICHLOROFLUOROMETHANE	75-69-4	0.500	ND	2.81	ND				
1,1-DICHLOROETHENE	75-35-4	0.500	ND	1.98	ND				
TRICHLOROTRIFLUOROETHANE	76-13-1	0.500	ND	3.83	ND				
METHYLENE CHLORIDE	75-09-2	0.500	ND	1.74	ND				
1.1-DICHLOROETHANE	75-34-3	0.500	ND	2.02	ND				
CIS-1,2-DICHLOROETHENE	159-59-2	0.500	ND	1.98	ND				
CHLOROFORM	67-66-3	0.500	ND	2.44	ND				
1.1.1-TRICHLOROETHANE	71-55-6	0.500	ND	2.73	ND				
1,2-DICHLOROETHANE	107-06-2	0.500	ND	2.02	ND				
BENZENE	71-43-2	0.500	ND	1.60	ND				
CARBON TETRACHLORIDE	56-23-5	0.500	ND	3.15	ND				
1.2-DICHLOROPROPANE	78-87-5	0.500	ND	2.31	ND				
TRICHLOROETHENE	79-01-6	0.500	ND	2.69	ND				
CIS-1.3-DICHLOROPROPENE	10061-01-5	0.500	ND	2.27	ND				
TRANS-1,3-DICHLOROPROPENE	10061-02-6	0.500	ND	2.27	ND				
TOLUENE	108-88-3	0.500	ND	1.88	ND				
1.1.2-TRICHLOROETHANE	79-00-5	0.500	ND	2.73	ND				
1.2-DIBROMOETHANE	106-93-4	0.500	ND	3.84	ND				
TETRACHLOROETHENE	127-18-4	0.500	ND	3.39	ND				
CHLOROBENZENE	108-90-7	0.500	ND	2.30	ND				
ETHYLBENZENE	100-41-4	0.500	ND	2.17	ND				
XYLENE (M+P)	179601-23-1	1.00	ND	4.34	ND				
STYRENE	100-42-5	0.500	ND	2.13	ND				
XYLENE (O)	95-47-6	0.500	ND	2.17	ND				
1.1.2.2-TETRACHLOROETHANE	79-34-5	0.500	ND	3.43	ND				
1.3.5-TRIMETHYLBENZENE	108-67-8	0.500	ND	2.46	ND				
1.2.4-TRIMETHYLBENZENE	95-63-6	0.500	ND	2.46	ND				
1.3-DICHLOROBENZENE	541-73-1	0.500	ND	3.01	ND				
1.4-DICHLOROBENZENE	106-46-7	0.500	ND	3.01	ND				
1.2-DICHLOROBENZENE	95-50-1	0.500	ND	3.01	ND				
1.2.4-TRICHLOROBENZENE	120-82-1	0.500	ND	3.71	ND				
HEXACHLOROBUTADIENE	87-68-3	0.500	ND	5.33	ND				

LAB CONTROL ID: L042717A1 LAB CONTROL DUPLICATE ID: D042717A1

 SAMPLE TYPE:
 AIR

 BATCH ID:
 042717A1

 DATE ANALYZED:
 04/28/2017

METHOD: VOC'S IN AIR REFERENCE: EPA METHOD TO 15 (GC-MS-SCAN)

COMPOUND NAME	SPIKE ADDED (PPB)	REPORTING LIMIT (PPB)	SAMPLE CONC (PPB)	SPIKE CONC (PPB)	SPIKE REC (%)	REC LIMITS (%)
1,1-DICHLOROETHENE	10.0	0.500	ND	11.4	114	60 - 140
BENZENE	10.0	0.500	ND	12.0	120	60 - 140
TRICHLOROETHENE	10.0	0.500	ND	9.41	94	60 - 140
TOLUENE	10.0	0.500	NÐ	11.6	116	60 - 140
TETRACHLOROETHENE	10.0	0.500	ND	8.40	84	60 - 140

	SPIKE	SPIKE DUP	SPIKE DUP		QC	; LIMITS
COMPOUND NAME	ADDED CONC		REC	RPD	RPD	REC
	(PPB)	(PPB)	(%)	(%)	(%)	(%)
1,1-DICHLOROETHENE	10.0	11.7	117	2.3	25	60 - 140
BENZENE	10.0	12.3	123	2.1	25	60 - 140
TRICHLOROETHENE	10.0	9.55	96	1.5	25	60 - 140
TOLUENE	10.0	11.8	118	1.4	25	60 - 140
TETRACHLOROETHENE	10.0	8.63	86	2.7	25	60 - 140

NOTES:

NA - NOT APPLICABLE OR AVAILABLE

ND - NOT DETECTED AT OR ABOVE THE STATED REPORTING LIMIT

K PRIME, INC. LABORATORY BATCH QC REPORT

SAMPLE ID: B051017A2 SPIKE ID: L051017A2 DUPLICATE ID: D051017A2 BATCH NO: 051017A2 DATE ANALYZED: 05/10/2017

SAMPLE TYPE: AIR UNITS: %-V

METHOD: HELIUM REFERENCE: ASTM D 1946

METHOD BLANK

COMPOUND NAME	REPORTING	SAMPLE
	LIMIT	RESULT
HELIUM	0.050	ND

ACCURACY (MATRIX SPIKE)

COMPOUND NAME	SPIKE	SAMPLE	SPIKE	RECOVERY	LIMITS
	ADDED	RESULT	RESULT	(%)	(%)
HELIUM	10.0	ND	9.53	95.3	70-130

PRECISION (SPIKE DUPLICATE)

COMPOUND NAME	REPORTING	SPIKE	DUPLICATE	RPD	LIMITS
	LIMIT	RESULT	RESULT	(%)	(%)
HELIUM	0.050	9.53	9.86	3.40	±20

NOTES:

ND - NOT DETECTED AT OR ABOVE THE STATED REPORTING LIMIT NA - NOT AVAILABLE OR APPLICABLE

711 Grand Avenue, Suite 220 San Rafael, California 94901 415.460.6770 • Fax 415.460.6771 main@westenvironmental.com

SAMPLE ANALYSIS/COMPOSITE REQUEST FORM

CHAIN-OF-CUSTODY

Invoice to: WEST, Inc.						Date	e: .	5/4	1/1	7			Page	; 1	of	1	
Project:	talliday. h	10.544M	agnolia				Loca	ation	:54	n X	Ma	gho	lia	Oal	Klou	nd,C	A
Project Manage	er: Peter Krasn	off, WEST,	Inc.				Pho	ne: 4	15/4	60 -6 2	770	<u> </u>		Fax:	415	/460-	6771
Laboratory: Kl	Prime, Inc, Sant							naro		1	2	3	5	7	10	Std.	
Sampler Signat	ure:	- ///					time (days)										
	fare	THE					Analyses Requested										
	e e																
						1											
							9										
					rs		(20-15)										
					aine	site	E	r.			i						
		Date	Time	Type	# Containers	Composite	VOCs	Heluim									HOLD
Sample ID	Summa ID				.#	Ŭ									<u>(PI #</u>		<u> </u>
56-1-5	5-612	5/8/17		A			X	X						154			
56-2-5	5-360	9/8/17	1225 1231	A	1	<u> </u>	X	X						154489			
56-3-5	5-716	5/9/17	110/115	A)		$\boldsymbol{\chi}$	X						154	149	0	
56-4-5	5-230	5/9/17	09100917	A	1	-	XX					154	49	1			
56-5-5		5/9/17	09461001	A	1	-	X	X						15	444	72	
	5-718	5/2/17	1357 105	A)	-	X	X						154	140	3	
W-4-5	5-849	5/9/17	102 1035				K	X						150		•	
								· ` .			_		_				
								-		\neg			_				
														-			
								_					_				
													_				
NOTES:							[EDF		Log	Code	:	W	ESS		
							'	<u> </u>			-						
							Global ID:										
Relinquished by:	(Signature)		Date/Time			-	Rece	ived	by: (S	Signa	ture)			Date/	Time	25 11	4
				D.		. [~	/		1	10	1,					
Relinquished by:	(Signature)	_	Date/Time				Received by: (Signature) Date/Time,										
			1 ,				5/9/17										
Alun	. Ilm		5/9/1-) [42	50		(1	\sim	2				111	+:7	301
															<u></u>		