411 W. McArthur LLC.

650B Fremont Ave #375

Los Altos, Ca 94024

415-705 9922

joehernon@gmail.com

June 6, 2016

Keith Nowell and Dilan Roe:

Alameda County Department of Environmental Health 1131 Harbor Bay Parkway, Suite 250

Alameda, CA 94502-6577

Subject: Supplemental Environmental Investigation 411 West MacArthur Boulevard, Oakland, California

Dear Mr. Nowell and Ms. Roe:

Attached please find a report entitled "Supplemental Environmental Investigation" prepared by Aquifer Sciences for the property at 411 West MacArthur Boulevard, Oakland, California. Soil sampling and analysis were conducted in accordance with our

RECEIVED By Alameda County Environmental Health 9:43 am, Jun 20, 2016

th

work plan dated May 2, 2016, and follow-up email of May 4 to Keith Nowell of the Alameda County Department of Environmental Health (ACDEH). The objective of the supplemental investigation was to satisfy the request from ACDEH for additional assessment of soil quality in the eastern portion of the property along Webster Street.

I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report are true and correct to the best of my knowledge.

Sincerely,

Joe Hernon W. MacArthur LLC Manager, 411

AQUIFER SCIENCES, INC.

SUPPLEMENTAL ENVIRONMENTAL INVESTIGATION 411 West MacArthur Boulevard Oakland, California

Prepared for

411 W. MacArthur LLC

c/o The Hernon Group Inc. 1714 Franklin Street, #100-244 Oakland, California 94612

by

Aquifer Sciences, Inc. 3520 Golden Gate Way Lafayette, California 94549

June 6, 2016

AQUIFER SCIENCES, INC.

June 6, 2016 216621

 \sim

Joe Hernon 411 W. MacArthur LLC c/o The Hernon Group Inc. 1714 Franklin Street, #100-244 Oakland, CA 94612

Subject: Supplemental Environmental Investigation 411 West MacArthur Boulevard, Oakland, California

Dear Mr. Hernon:

Aquifer Sciences is pleased to present the results of the supplemental environmental investigation performed at 411 West MacArthur Boulevard, Oakland, California. Soil sampling and analysis were conducted in accordance with our work plan dated May 2, 2016, and follow-up email of May 4th to Keith Nowell of the Alameda County Department of Environmental Health (ACDEH). The objective of the supplemental investigation was to satisfy the request from ACDEH for additional assessment of soil quality in the eastern portion of the property along Webster Street.

We appreciate the opportunity to be of service. Please feel free to call us if you have any questions about the report.

Respectfully yours,

Rebecca Sterbentz, PG, CHG, QSP/QSD President

Duncan Knudsen Staff Geologist

AQUIFER SCIENCES, INC.

TABLE OF CONTENTS

		Page No.
1.0	INTRODUCTION	1
2.0	SITE DESCRIPTION	1
3.0	DRILLING AND SAMPLING PROCEDURES	1
4.0	GEOLOGY AND HYDROGEOLOGY	2
5.0	LABORATORY ANALYSIS	3
6.0	ANALYTICAL DATA EVALUATION	3
7.0	SUMMARY AND CONCLUSION	4
8.0	RECOMMENDATIONS	5
9.0	REFERENCES	5
Figu	URES ure 1. Vicinity Map ure 2. Sample Locations	

- Figure 3. Soil & Groundwater Hydrocarbon Results
- Figure 4. Cross Section Location Map
- Figure 5. Cross Section $A A^1$
- Figure 6. Cross Section $B B^1$
- Figure 7. Cross Section $C C^1$

TABLES

Table 1. Analytical Data for Soil - Gasoline and BTEX

APPENDICES

- Appendix A. Ground Penetrating Radar Report
- Appendix B. Drilling Logs
- Appendix C. Laboratory Reports and Chain-of-Custody Documentation
- Appendix D. Map and Data Table Soil Gas Investigation, April 2016

SUPPLEMENTAL ENVIRONMENTAL INVESTIGATION 411 West MacArthur Boulevard Oakland, California May 2016

1.0 INTRODUCTION

This report presents the results of the supplemental environmental investigation performed by Aquifer Sciences, on behalf of 411 W. MacArthur LLC, at the site located at 411 West MacArthur Boulevard, Oakland, California (Figure 1). The objective of the supplemental investigation was to satisfy the request from Alameda County Department of Environmental Health (ACEH) for additional assessment of soil quality in the eastern portion of the site along Webster Street. ACEH's concern was that the soil in this area might be a potential residual contaminant source that could pose a risk to the residential development. Soil sampling and analysis were conducted in accordance with our work plan dated May 2, 2016, and follow-up email of May 4th to Keith Nowell of the ACEH.

2.0 SITE DESCRIPTION

The site is situated in a residential/commercial area of Oakland at the southeastern corner of West MacArthur Boulevard and Webster Street (Figures 1 and 2). The site is approximately 0.15 acre in size, and contains a former gas station canopy near the center of the site and small retail building in the southwest corner. The land surface at the site is essentially flat and paved with asphalt.

3.0 DRILLING AND SAMPLING PROCEDURES

On May 6, 2016, three soil borings (AS-1, AS-2, and AS-3) were drilled on the 411 West MacArthur Boulevard site. The borings were drilled near the eastern boundary along Webster Street (Figure 2). The locations were selected within the 300-square-foot oval-shaped area of concern, as shown on Figure 2.

Prior to drilling, each proposed boring location was marked, and Underground Service Alert was notified to check for the presence of underground utilities (USA Ticket W000170037). A drilling permit (W2016-0324) was obtained from the Alameda County Public Works Agency. A C-57 certified environmental drilling company (Gregg Drilling) performed the subsurface drilling and sampling under Aquifer Sciences' supervision.

On May 6, 2016, a ground-penetrating radar contractor was hired to scan the sidewalk area adjacent to the site for possible underground storage tanks left in place. No tanks were detected. A copy of the ground-penetrating radar report is included in Appendix A.

Drilling was accomplished using a Geoprobe 5400 truck-mounted drill rig, equipped with 2inch diameter samplers and rods. Soil cuttings were examined for lithologic identification, visible signs of contamination, and observations were recorded on the drilling logs. Soil was described in accordance with the Standard Recommended Practice for Description of Soils (Visual-Manual Procedure), ASTM Designation D-2488, issued in 2000. An Aquifer Sciences geologist supervised the drilling and sampling and prepared field logs, including descriptions and classifications of materials encountered and recovered, and OVM (Organic Vapor Monitor) readings. A California Professional Geologist directed the field activities. Copies of drilling logs are included in Appendix B.

Soil samples were collected in clean liners. The liners were sealed, labeled, stored on ice in a cooler at 4° Celsius, and transported under chain-of-custody protocol to McCampbell Analytical, a state-certified analytical laboratory, located in Pittsburg, California. All drilling and sampling equipment were cleaned before the field program began. Reusable sampling equipment was washed in an Alconox solution, rinsed with tap water, and rinsed with distilled water prior to use.

Four soil samples were collected from each of the three borings (AS-1, AS-2, and AS-3) at select intervals below ground surface to a maximum depth of 18 feet. Sample depths were selected in the field using the evaluation criteria specified by ACEH, including the OVM readings, visible signs of contamination, changes in lithology, and the soil/groundwater interface.

All investigation-derived waste was placed in a 55-gallon DOT drum for disposal. The soil in the drum was profiled and approved for disposal at a permitted Class II landfill. The drum will be picked up by NRC Environmental Services of Hayward, California, and transported to Recology-Hayroad Landfill in Vacaville, California, on June 10, 2016. ARS, Inc. will forward the non-hazardous waste transport manifest to ACEH when it is received from the landfill.

4.0 GEOLOGY AND HYDROGEOLOGY

The near-surface soils in the vicinity of 411 West McArthur Boulevard consist of Holoceneage, fine-grained, alluvial sediments that were deposited by rivers draining upland surfaces to the east of the site. These sediments were deposited in a low-energy environment on the alluvial margins of San Francisco Bay.

The soils at the site generally consist of very fine silty clay and clay deposits. Deposition in this environment has resulted in a sequence characterized by irregular interfingering of medium sized material materials (sands and coarse sands in stream channels) into finer soils (silts and

clays in overbank, estuarine, and bay deposits). Individual deposits are highly variable and discontinuous. The depth to groundwater is currently 17 feet below grade.

5.0 LABORATORY ANALYSIS

In total, 12 soil samples were collected from three borings (AS-1, AS-2, and AS-3). The samples were analyzed for total petroleum hydrocarbons quantified as gasoline (TPH-gasoline, benzene, toluene, ethylbenzene, and xylenes (BTEX) by EPA Method 8021B and 8015B.

6.0 ANALYTICAL DATA EVALUATION

Table 1 summarizes the analytical data for TPH-gasoline and BTEX in the soil samples collected in May 2016. Figure 3 lists concentrations from the most recent investigation in May 2016, as well as from historical sampling events. Figure 4 is a map showing the locations of cross sections (A-A', B-B', and C-C'). Figures 5, 6, and 7 illustrate the three cross sections A-A', B-B', and C-C', respectively. Copies of the laboratory analytical report and chain-of-custody documentation are included in Appendix C.

The analytical results were compared to regulatory standards to evaluate the environmental quality of the soil. One set of currently applicable regulatory guidelines is given by the Regional Water Quality Control Board (RWQCB), which consists of environmental screening levels (ESLs). The presence of a chemical at concentrations in excess of the ESL does not indicate that adverse impacts to human health are occurring, but suggests that further evaluation of potential human health concerns may be warranted. The RWQCB presents multiple ESLs that dictate maximum concentration values, which differ depending on exposure scenarios. The analytical data in this report were compared to the ESL for direct exposure human health risk levels for any land use and depth of soil exposure for construction workers (Table S-1). The California State Water Resources Control Board also presents maximum concentration values for the Low Threat Closure Policy (LTCP) that dictates acceptable limits for a site to be closed with minimal risk. LTCP values include the following exposure scenarios: 1) residential and commercial limits for ingestions of soil, dermal contact with soil, inhalation of volatile soil emissions and inhalation of particulate emissions for soils that are 0 to 5 feet below ground surface; 2) residential and commercial limits for inhalation of volatile soil emissions for soils that are 5 to 10 feet below ground surface; and 3) limits for exposure to construction workers or utility trench workers.

Due to the depth where contaminants were detected in soil at the site, most of the ESLs don't apply. The likelihood of contact with soil at deeper depths would be only for construction workers. Therefore, the regulatory limit that would apply is the Construction Worker ESL, direct exposure (Table S-1).

At boring AS-1, soil samples were collected at depths of 5, 10, 16, and 18 feet below ground surface. Low concentrations of TPH-gasoline, toluene, ethylbenzene, and xylenes were detected in the sample collected at a depth of 16 feet. None of the concentrations exceeded the construction worker ESLs or the LTCP limits.

At boring AS-2, soil samples were collected at depths of 5, 8, 13, and 15 feet below ground surface. Low concentrations of TPH-gasoline were detected in all of the samples. One or more of the BTEX constituents were detected in the samples collected at depths of 8, 13, and 15 feet. None of the concentrations exceeded the construction worker ESLs or the LTCP limits.

At boring AS-3, soil samples were collected at depths of 7, 10, 14, and 16 feet below ground surface. Due to poor recovery in the upper 5 feet, it was not possible to obtain a sample shallower than 7 feet below ground surface. Low concentrations of TPH-gasoline were detected in all of the samples. BTEX constituents were detected in some of the samples. Sample AS-3-16, collected at the 16-foot depth, contained benzene at 2.4 mg/kg. The benzene concentration exceeded the LTCP residential limit of 1.9 mg/kg for ingestion of soil, dermal contact with soil, inhalation of volatile soil emissions and inhalation of particulate emissions for soils that are 0 to 5 feet below ground surface. However, the sample was collected at a depth of 16 feet, so the LTCP limit does not apply. None of the TPH-gasoline or BTEX concentrations exceeded the construction worker ESLs.

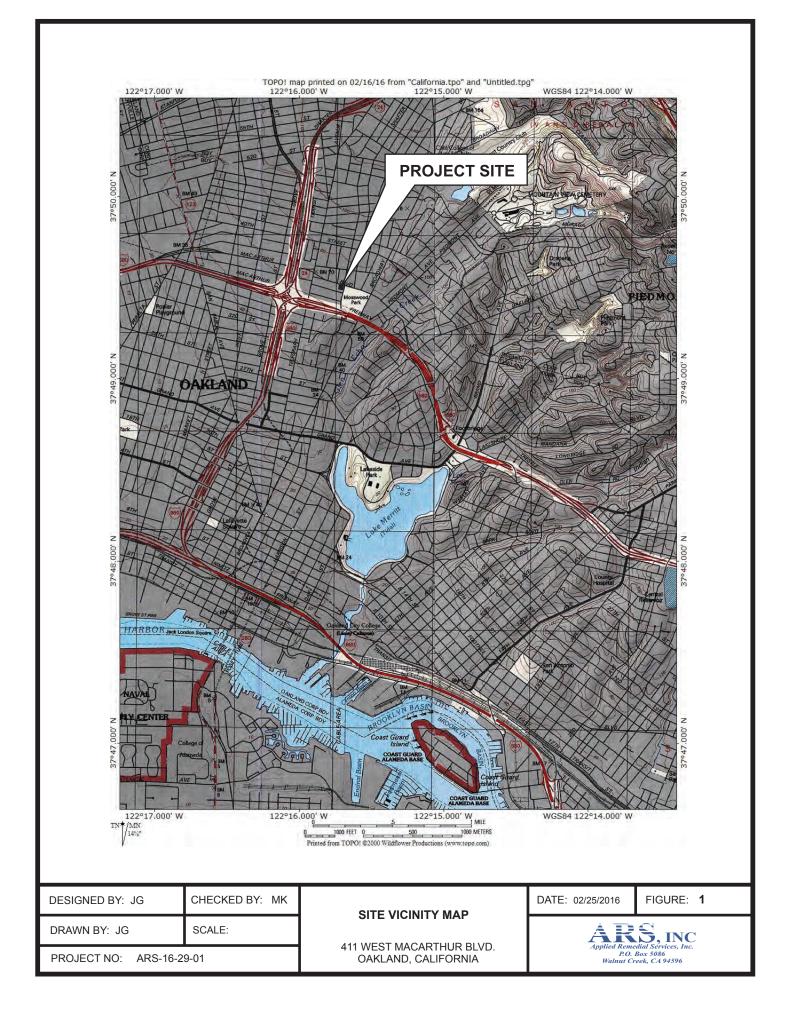
7.0 SUMMARY AND CONCLUSIONS

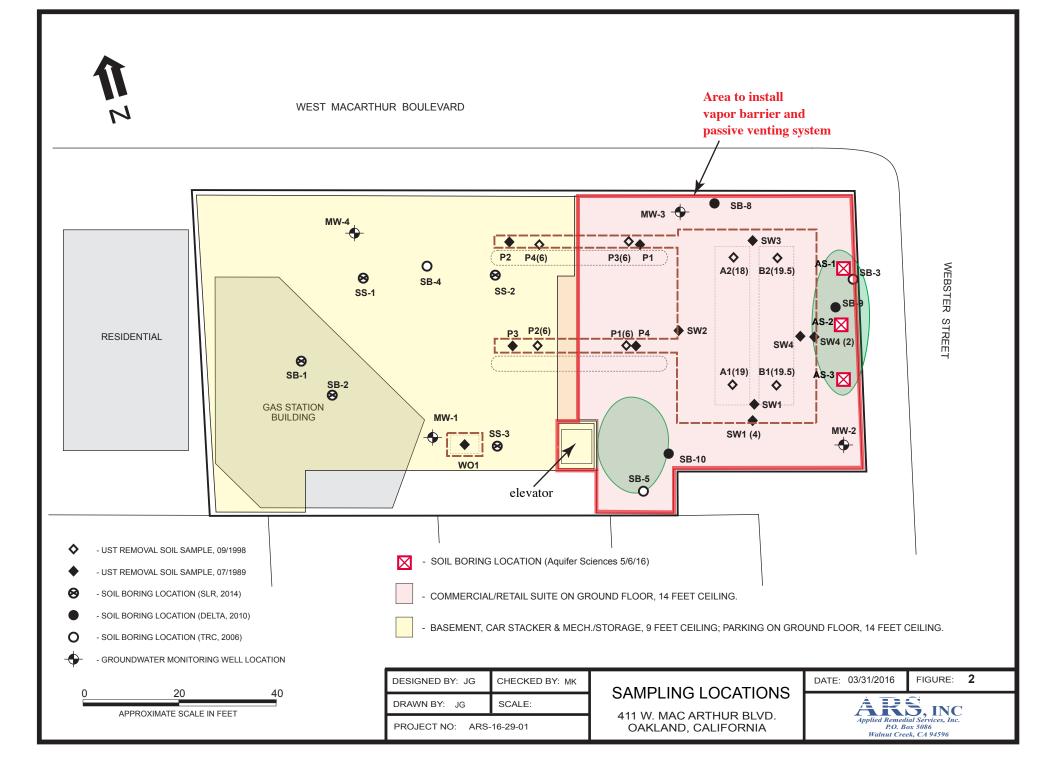
In May 2016, Aquifer Sciences collected soil samples at 411 West MacArthur Boulevard, Oakland, California. The objective of the supplemental investigation was to satisfy the request from ACEH for additional assessment of soil quality in the eastern portion of the site along Webster Street. ACEH's concern was that the soil in this area might be a potential residual contaminant source that could pose a risk to the residential development. Soil sampling and analysis were conducted in accordance with our work plan dated May 2, 2016, and follow-up email of May 4, 2016 to Keith Nowell of the ACEH.

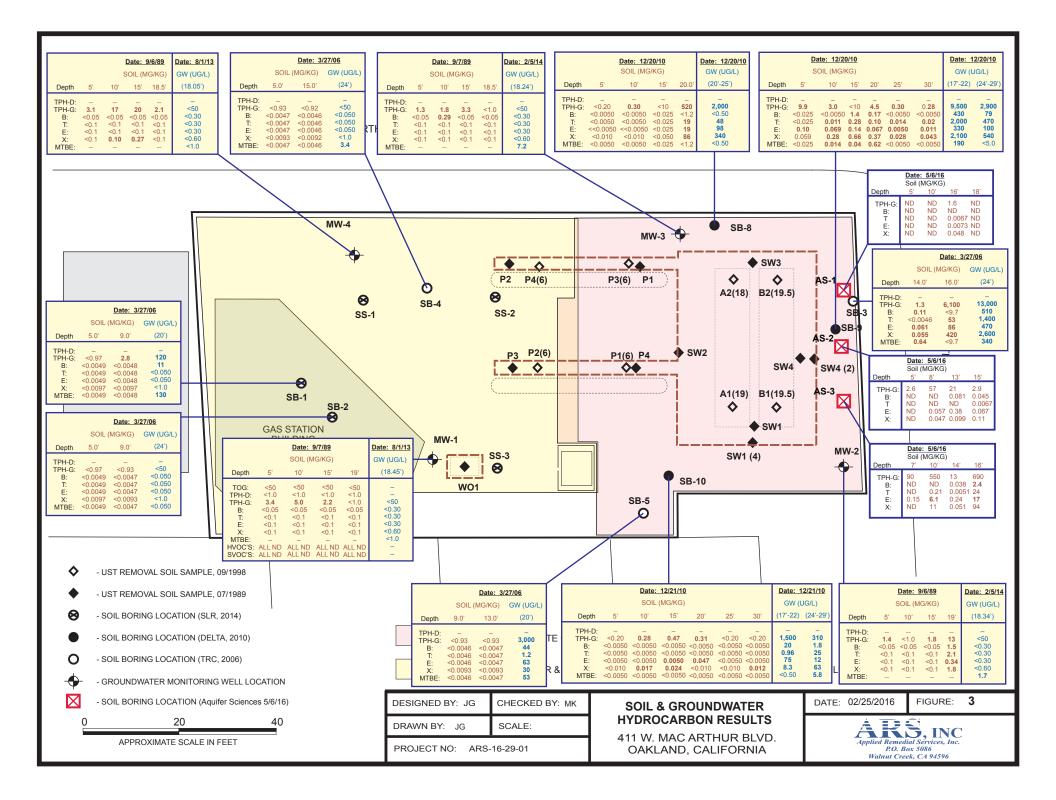
In May 2016, three soil borings were drilled in the 300-square-foot area of concern. Four soil samples were collected from each boring. The 12 samples were analyzed in the laboratory for TPH-gasoline and BTEX. Low concentrations of TPH-gasoline and BTEX were detected in some of the samples. None of the concentrations exceeded the construction worker ESLs. Based on the data from this investigation, there is <u>no risk of exposure via direct contact or ingestion</u> in the shallow soil for the residential development.

8.0 RECOMMENDATIONS

Soil vapor is the only possible exposure pathway risk identified in the oval-shaped area during the previous investigation performed in April 2016. Soil gas samples SG-2 and SG-3 contained elevated concentrations of benzene and methane. The analytical data and map from the soil gas investigation are included in Appendix D. These soil gas concentrations can be mitigated using a soil vapor barrier. At a minimum, we propose that a soil vapor barrier be installed in a rectangular-shaped area (approximately 400 to 500 square feet) at the eastern edge of the site along Webster Street to inhibit migration of benzene and methane. Additionally, we recommend the installation of a passive sub-slab depressurization and venting system, including collection pipes, and subsequent vapor sampling to determine if the system should be made active. Alternatively, it may be beneficial to install the vapor barrier and passive venting system throughout the area of the planned commercial space (approximately 3,000 square feet), including the elevator shaft. The recommended area for the vapor barrier and passive venting system is shown on Figure 2.

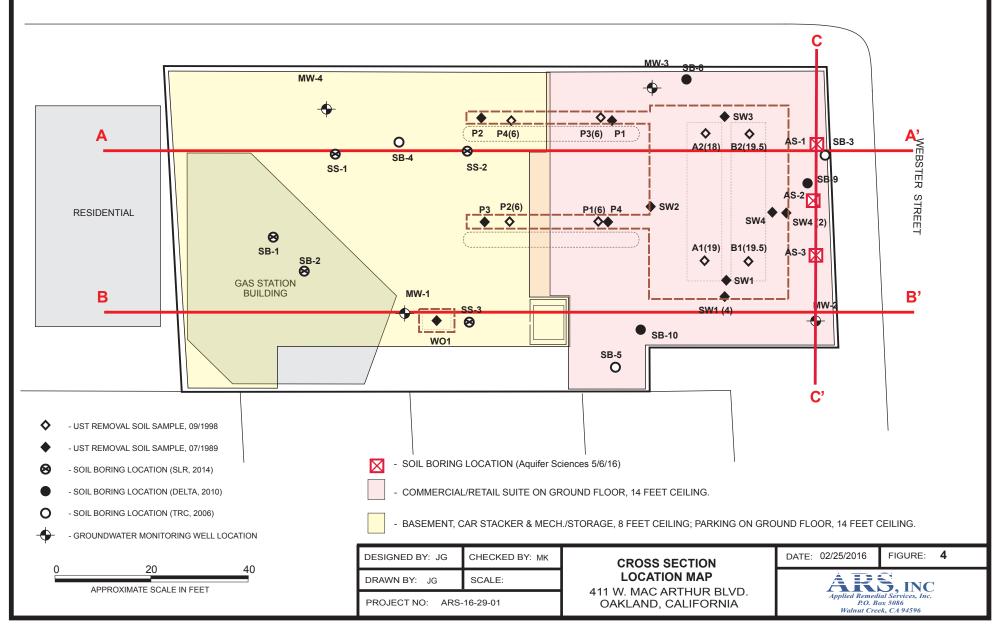

We recommend that a qualified engineer supervise the installation of the vapor barrier and subslab ventilation system. The engineer should indicate with the proper wet-ink signature and stamp that these engineering controls were properly installed under his/her supervision.

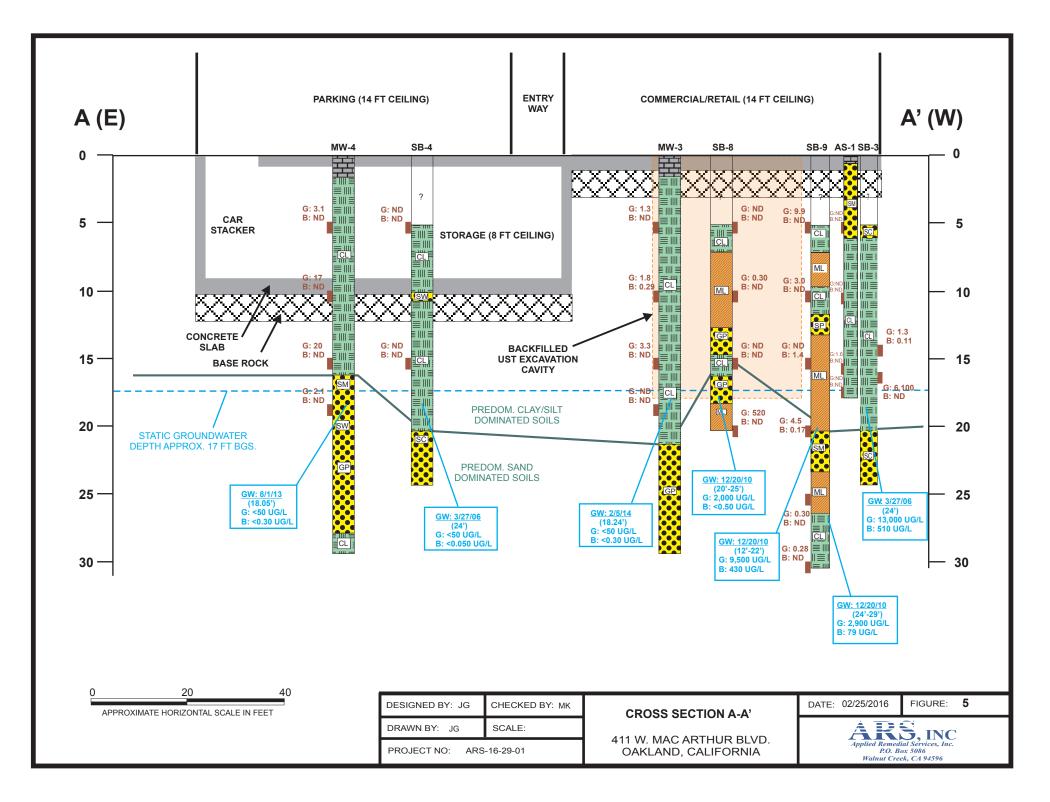

Prior to constructing concrete floor slabs over the vapor barrier or membrane, the installer will need to certify to the local building department and ACEH that the membrane was installed and tested in accordance with the manufacturer's specifications and is free of leaks.

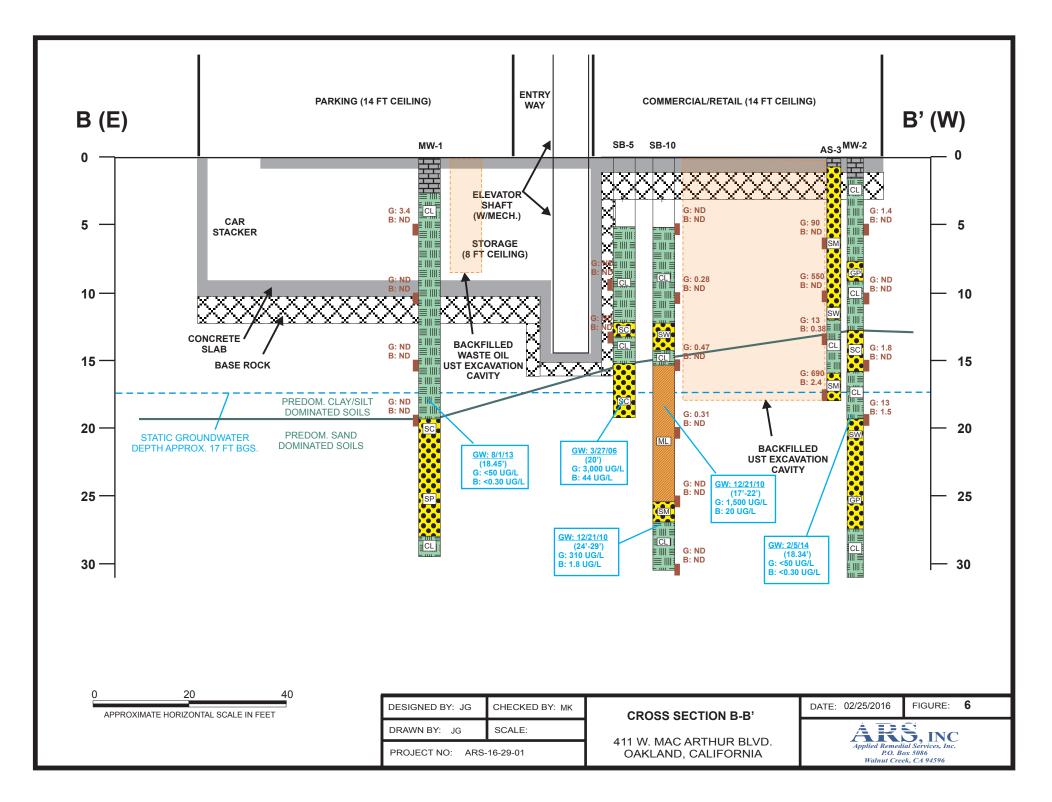

The owner will submit a technical report before the end of the project and prior to building occupancy, describing the installation and inspection activities conducted for the vapor barrier and the sub-slab ventilation system, including documentation from the installer and the consulting engineer. The owner will also submit a technical report, comprising a Site Management Plan that discusses the steps and procedures to be taken by owners and occupants of the buildings to ensure the integrity of the vapor barrier and any other risk mitigation engineering controls installed at the Site.

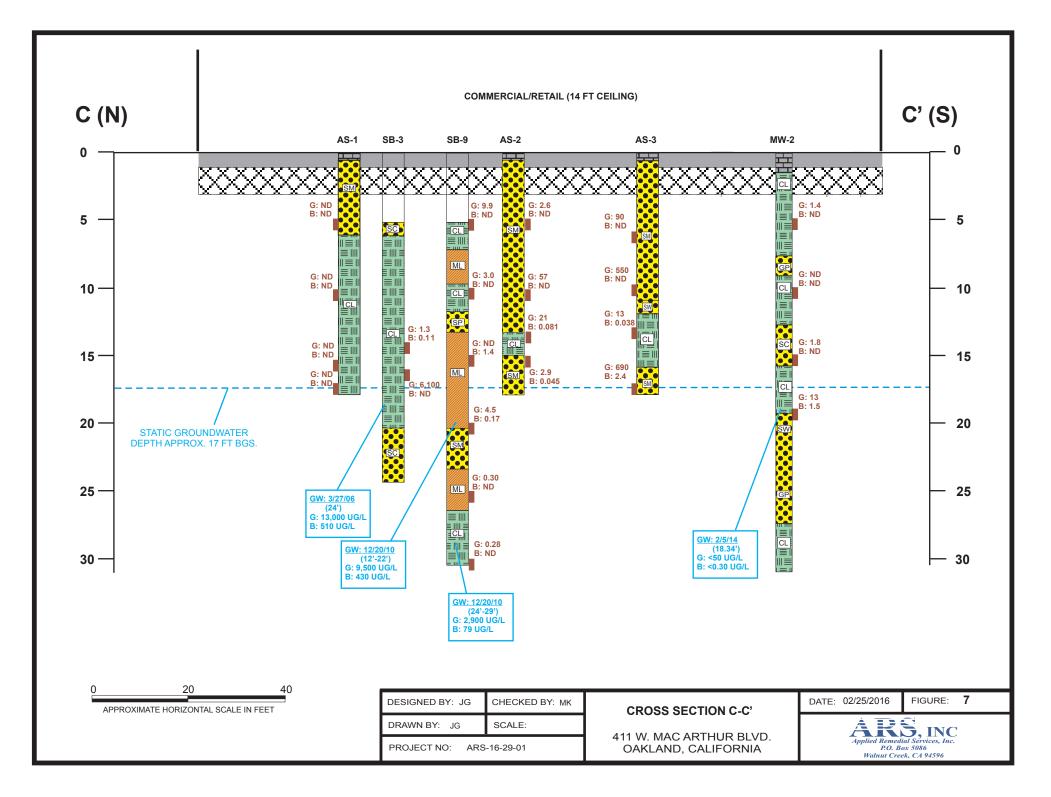
9.0 REFERENCES

- Regional Water Quality Control Board, 2013. Attachment C Direct Contact and Outdoor Air Exposure Pathways, December 5-6, 2013.
- Regional Water Quality Control Board, 2016. Environmental Screening Levels, Interim Final, February 2016.
- California State Water Resources Control Board, Resolution 2012-006, 2012. Low-Threat Closure Policy, August 17, 2012.








1

WEST MACARTHUR BOULEVARD

Sample Name	Sample Date	Depth (feet)	TPH- gasoline (mg/kg)	Benzene (mg/kg)	Toluene (mg/kg)	Ethyl- benzene (mg/kg)	Total Xylenes (mg/kg)
AS-1-5	5/6/16	5	ND	ND	ND	ND	ND
AS-1-10	5/6/16	10	ND	ND	ND	ND	ND
AS-1-16	5/6/16	16	1.6	ND	0.0067	0.0073	0.048
AS-1-18	5/6/16	18	ND	ND	ND	ND	ND
AS-2-5	5/6/16	5	2.6	ND	ND	ND	ND
AS-2-8	5/6/16	8	57	ND	ND	0.057	0.047
AS-2-13	5/6/16	13	21	0.081	ND	0.38	0.099
AS-2-15	5/6/16	15	2.9	0.045	0.0067	0.067	0.11
AS-3-7	5/6/16	7	90	ND	ND	0.15	ND
AS-3-10	5/6/16	10	550	ND	0.21	6.1	11
AS-3-14	5/6/16	14	13	0.038	0.0051	0.24	0.051
AS-3-16	5/6/16	16	690	2.4	24	17	94
Reporting Limit			1 - 200	0.0050 - 1.0	0.0050 - 1.0	0.0050 - 1.0	0.0015 - 3.0
1 0	ECL (Direct France	>		24		480	
Construction Worker			7,400		28,000 NE	21	65,000
Residential (LTCP D	*	0,	NE	1.9			NE
Residential (LTCP D			NE	2.8	NE	32	NE
Commercial (LTCP)			NE	8.2	NE	89	NE
Commercial (LTCP)		10 feet bgs)	NE	12	NE	134	NE
Utility Worker (LTC	P 0 - 10 feet bgs)		NE	14	NE	314	NE

Table 1. ANALYTICAL DATA FOR SOIL – Gasoline and BTEX 411 West MacArthur Boulevard, Oakland, California

mg/kg = milligrams per kilogram (parts per million or ppm)

ND = none detected

NE = none established

BTEX = benzene, toluene, ethylbenzene, xylenes

TPH-gasoline = total petroleum hydrocarbons quantified as gasoline

ESL = Environmental Screening Level, San Francisco Regional Water Quality Control Board, February 2016

LTCP = Low Threat Closure Policy, California State Water Resources Control Board, August 2012

Construction Worker ESL (Direct Exposure) = Environmental Screening Levels for Direct Exposure Human Health Risk Levels (Table S-1).

Residential (LTCP Direct Exposure 0 - 5 bgs) = Residential concentration limit for direct contact, ingestion, and inhalation of volatile soil. Residential (LTCP Direct Exposure 5 - 10 feet bgs) = Residential concentration limit for potential for volatilization and inhalation to outdoor air. Commercial (LTCP Direct Exposure 0 - 5 bgs) = Commercial concentration limit for direct contact, ingestion, and inhalation of volatile soil. Commercial (LTCP Direct Exposure 5 - 10 feet bgs) = Commercial concentration limit for potential for volatilization and inhalation to outdoor air. Utility Worker (LTCP 0 - 10 feet bgs) = Concentration limit for utility workers. C

APPENDIX A

GROUND PENETARTING RADAR REPORT

		11. The sea
CHARCE GROUND	Operator Greg 1	MIGUR
RADAR	"THE/NEW Main Office: 419-84	V WAY TO X-RAY"
Nationwide Service Available	Main Offic	ce Fax: 419-843-5829
and the second	-	p-radar.com
Mew Customer	JOB TICKET	Job Date: 5 6 16
Currentomer Michael Kara	ARS Fre	Phone (925) 943 7740
Address: PO Box 5086	city Waln + G	Crack State CA Zip 94590 Veek State CA Zip 94590
The Market Radie of the State o	Webster, Cakland	
	ob#	Report Requested Yes
an an All an ann an All an All ann an All an An an All an All an All ann an All All ann an All ann an A		
LOCATE Utilities Condu	it Rebar/Post-tension	UST Uoids UOth
		1 070 01 +
Scanned sidewolk area c		ster- 5 Ath Street
Scanned area with 400		
Fieling directly on surface	e with pick spray par	int. astoney was
Fieling directly on surface	e with pick spray par and upon scanning are	es, no UST's were
Fieling directly on surface concerned with UST's a found within the scan	e with pick spray par and upon scanning are zone. GPR does hav	es, no UST's were re limitations, UST's
Finding directly on surface concerned with UST's a found within the scan are not guaranteed to no	e with pick spray par and upon scanning and zone GPR does hav of be there Advised -	int. Cistoner was eq. no UST's were re limitations, UST's to stay as far from
Finding directly on surface concerned with UST's a found within the scan are not guaranteed to no	e with pick spray par and upon scanning are zone. GPR does hav	int. Cistoner was eq. no UST's were re limitations, UST's to stay as far from
Finding directly on surface concerned with UST's a found within the scan are not guaranteed to no	e with pick spray par and upon scanning and zone GPR does hav of be there Advised -	int. Cistoner was eq. no UST's were re limitations, UST's to stay as far from
Finding directly on surface concerned with UST's a found within the scan are not guaranteed to no workings as possible. No	e with pink spray par and upon scanning are zone. GPR does hav of be Here. Advised other anouolies were see	int. Cistomer was es, no UST's were re limitations, UST's to stay as far from on by GAR during scan \$ 700 Check
Finding directly on surface concerned with UST's a found within the scan are not guaranteed to me Martings as possible. No credit card information	e with pink spray par and upon scanning are zone. GPR does hav of be Here. Advised other anouolies were see	int. Cistomer was es, no UST's were re limitations, UST's to stay as far from on by GPR during scan \$ 700
Finding directly on surface concerned with UST's a found within the scan are not guaranteed to no Martings as possible. No credit card information isa [] MASTERCARD [] DISCOVER	e with pick spray par and upon scanning are zone. GPR does hav of be there. Advised other anouolies were see	int. Cistomer was es, no UST's were re limitations, UST's to stay as far from on by GAR during scan \$ 700 Check Number:
Finding directly on surface concerned with UST's a found within the scan are not guaranteed to me Martings as possible. No credit card information isa [] MASTERCARD [] DISCOVER	e with pick spray par and upon scanning are zone. GPR does hav of be there Advised other anouolies were see	int. Cistoner was ea. no UST's were re limitations UST's to stay as far from on by CPR during scan \$ 700 Check Number: L L CID#:
Finding directly on surface concerned with UST's a found within the scan are not guaranteed to no Martings as possible. No credit CARD INFORMATION ISA [] MASTERCARD [] DISCOVER	e with pink spray par and upon scanning are zone GPR does hav of be Here Advised other angualies were see N Exp. Data:	int. Cistoner was ea. no UST's were re limitations UST's to stay as far from on by CPR during scan \$ 700 Check Number: L L CID#:

APPENDIX B

DRILLING LOGS

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	AQUIFER SCIENCES, I	NC.	ROJECT NAM	Е_2	166	21	NO. AS-1
BRLING GRIPHON THE CONSULT OF THE STATES SHALLS LODGED BY STRUCT OF STATES SHALL OF THE STATES SHALL OF	DRILLING LOCATION 411 West MacArthur						
BRILLING BUTTION DETRICE (C) BRILLING BUTTION DETRICE (C) SIZE AND TYPE OF CASE. TO C = 1 SIZE				DATE	STARTED	5/6/16	DATE FINISHED 5/6/16
SIZE AND TYPE OF SAMP _ TO _ TO _ TT SIZE AND TYPE OF SAMP _ TO _ TO _ TT TYPE OF SHARE TO _ TT TYPE OF SHARE TO _ TT DESCRIPTION TO _ TT TYPE OF SHARE TT TYPE OF SHARE TT TYPE OF SH	DRILLING METHOD Direct Posh DF	RILL BIT 2"				^(FT) 18′	
TYPE OF PRAY OWNING $ -$	DRILLING EQUIPMENT Geo Probe DP-13	AMPLER 2" Acr	ylic Liner	SAN	APLES	<u> </u>	
SML AND YOR TYPE OF SEAL - PROM - TO - PT TYPE OF SEAL -	-			DEP WATI	TH TO F ER (FT)	TRST	COMPLETION OTHER
$\frac{1}{12} = \frac{1}{12} $	-		-	1000			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	OF FILTER PACK			LOGG	ED BY:	1	CHECKED BY:
$\frac{1}{12}$	_		-	- (N	A	- 83
$\frac{1}{12}$	-	FROM -					
$\frac{Asphalt}{2}$ $\frac{Asphalt}{2$	DESCRIPTION			_			
$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{3}$ $\frac{1}{4}$ $\frac{1}{5}$ $\frac{1}{10}$ $\frac{1}{5}$ $\frac{1}{10}$ $\frac{1}$	+ Asphalt						Start time: 1105
Inorgani's CLAY	1 2 3 4 4 5 Moist Medium Dense C Clayey SILT W/ Sand Occasional angular grave 8 10 11 12 13 Olive gray to olive Moist Moist 13 Olive gray to olive Moist Moist Moist 14 15 16 10 10 10 10 10 10 10 10 10 10	٥١				- 20.) - 20.) - 2.2. - 2.2. - 1.8	A3-1-5@1115
	L Inorganic CLAY		PODINC NI				SHEET OF _2

·

	QUIFER SCIENCES, INC.	PROJECT NA							NO. <u>AS-1</u>
DEPTH (FEET)	DESCRIPTION	GRAPHI	Well Construction DO Diagram	Water Level	Sampling Interval		Blow Counts 전 (per 6 in.) 전	OVM (ppmv)	REMARKS (Drilling Rate, Fluid Loss, Odor, etc.)
الا الا الا 	Olive Gray to Olive Moist Medium Stiff Inorganic Clay	CL				Dot l'éve		(.4	AS-1-15 @ 1125
(8 +					X			10.2	A5-1-18 @ 1130
	Bottom of borry 181								Finish time: 1130
		BORING N	UMBER	۲ <u> </u>	-	1 5	-1		SHEET $\underline{\mathcal{V}}$ of $\underline{\mathcal{V}}$

AQ	UIFER SCIENCES,	INC.	ROJECT NA	AME _	2	16	62	_ 1		NO	AS-2
DRILLING I		her Blud. C	akland	7				UM (FT			
DRILLING /	DIRGA PALING		intos		DATE ST			olib			5/6/10
DRILLING	Direct Push	DRILL BIT 2 SAMPLER		H	BORING					DEPTH (F	· -
	TYPE OF CASING	2" Acry	lie Lin	ur	SAMP DEPT	LES	SOIL FIRST	5	GW	PLETION	OTHER _
	ERFORATION	FROM	TO F	. ۳.	WATER			-		-	-
SIZE AND T		FROM	TO F	т . I	JOGGEI	DBY:		1	CHEC	KED BY:	
OF FILTER TYPE OF SE		FROM	TO _ F	T.	1	4	n /	/	_ _	08	
TYPE OF SE	EAL _	FROM -	TO _ F	T.	(>	(V			E	
(ET)			GRAPHI			ļ	SAMPL				
DEPTH (FEET)	DESCRIPTION		Lithology	Well struction	Diagram Water Level	pling rval	rry (% Count	6 in.) /M mv)	(Drillin	REMAR Rate, Fluid I	KS .oss, Odor, etc.)
DEPT			Lithc	Well Construction	Wate	Sampling Interval	ecove 3low ((per 6 in.) OVM (ppmv)	(21111)	,	
	Asphalt						<u> </u>	-		time	
,土						I					
' ±						IŦ					
2						Ŧ	.1.				
						IŦ	÷00,	1.4			
						1					
3+	Dark brown					+					
‡	moist Medium Pense					‡					
4 ‡						+		7.3			
‡	Clayey SILT w) sa Occasional Angular C					‡					
5 +	Occasional Angular a	gave (NC 0	-5 C	1030
±			5M			\mathbf{P}			42-2	50	10 00
6+							0/0	4.9			
<u>+</u>						+	S				
7∓						 					
8 —						L,		24.3	_		
	Light brown w/ Oliv	e grey nothing				眷			A5-2	-8@	1035
9 +	Moist Medium Dense					1					
‡	agey SILT w/ sand					‡					
10+						±	•]•	8.7			
‡							1001				
_ +											
	Light brown					±					
12+	Moist Medium Dense							2.5			
	clayer SILT of sand.					 		167			
13 -						‡	•14				
	Olive Gray to olive Malat					X	`\$		A5-2-	130	1040
	Mulist Medium Shift Inorganic CLAY		CL				, 	73-1			
			BORING	NUM	BER_		AS-	2		SHEET_	OF

A	QUIFER SCIENCES, INC.	PROJECT NA	AME						NO. AS-2
DEPTH (FEET)	DESCRIPTION	GRAPHI	Well Construction DO Diagram	Water Level	Sampling Interval		Blow Counts Td (per 6 in.)	S (Amdd)	REMARKS (Drilling Rate, Fluid Loss, Odor, etc.)
15	Olive Grey to Olive Medium Dense Inorganic <u>CLAY</u> Olive Gray to Olive	CL	-		X	., 8		76.1	NOTE: Petrolew ODOK AS-2-15@ 1050
10+	Moist Medium Stiff Clayey <u>SILT</u> w/ sand	5M				500		1245	
18	Bottom of boring 18'				X	2		432	A5-2-18 @ 1055 (How) Finish time: 1055
LI_		BORING N	UMBEF	۱ ۲	Ц [.	45	- 2		

		CIENCE	ES, IN	C.	P	ROJECT N							
DRILLING LOCAT	^{ION} 411 6	vest Macf	it hur	Blud	, 0	hkland	·	ELEVAT			ATU	M (FI	
DRILLING AGENC	Greas	Drilling	DRILL	ERLED	San	tos		DATE S				6/16	b DATE FINISHED 5/6/14
	Diree	+ Push	DRILL	<u> </u>	4			BORING			<u> </u>	12	WELL DEPTH (FT)
DRILLING EQUIP	600	Probe DP	-B	LER 2 .	Accy	lie Line	er	NO. SAMI	PLES	SOI		4	GWOTHER
SIZE AND TYPE O		······						DEPI WATE		FIR		~	COMPLETION OTHER
SIZE AND TYPE	ATION -			FROM		~	FT.	0005			15	5.5	
OF FILTER PACK	~			FROM	~	-		.OGGE		14	1	_	CHECKED BY:
TYPE OF SEAL				FROM		-	FT.		\wedge	∕∖∖	F		$\sqrt{3}$
				FROM	-	TO GRAPHI	FT.		\checkmark	N	IPLES	C.	
DEPTH (FEET)													
D HI		DESCRIPTION	1			Lithology	Well	Diagram Water Level	Sampling Interval	ery ('	Cour 6 in.	VM vm	REMARKS (Drilling Rate, Fluid Loss, Odor, etc
DEP						Lit	Well Construction	an Na	San	Secov	Blow (pei	OVM (ppmv)	
+		Asphalt							17				Start time:
+									ļŦ				
1 +													
Ŧ									Ī				NOTE :
2 +									1		•	1.8	Petrolew ODOR
· ‡									‡				starting @ 2'
3 +													opor consistent
7 +									Ŧ				+ 18'.
Ŧ													
۹ +	Dark B	rown							1			2.4	
÷	Moist	• • • • •							+				Not able to sample due to low recov
5 	Medium	VENSC							1				due to low recov
‡	clayey ?	SILL OF	sann			SM	м [.]		‡				
ω‡	Occasion	Dense SILT 0/ S	amue 1							~/o		10.4	
Ť									+	R			
Ŧ									1				
7+										1			AS-3-7 @ 0945
±									쒸	4			A3 5 4 6 010
8 <u>+</u>									+	$\left - \right $		7.3	
Ŧ									Ŧ				
9 ‡									‡				
‡									11				
, <u>,</u>										•/•		502	
T 1	Light Brow No 1st								X	8		202	A5-3-10 @ 095
. † <	Hedium Den Clayery SIL	sc m/sand.							ľ†	1			
" + 9	Olive Brow	<u>n</u>							‡				
± '	very loose	ided SAND				SW			1±				
12	Well gra	The start							+	$\left - \right $		218	
ļ (blive Gra	y to olive							‡				
13±	wet	•				CL			1	10			
+		hiff to sof	+			レレ			±	9			NOTE: Ground water encompo
", T	Inorganic	LLAI							ļŦ	$\left \right $		10.H	IGN 15-2 Imm
<u>_</u>						BORING	NUM	BER		45 45	- 3	129 -	<u>SHEET</u> OF

AQ	UIFER SCIENCES, INC.	PROJECT N	AME	2					NO. AS-3
Z DEPTH (FEET)	DESCRIPTION	GRAPH	Well Construction DO Diagram	Water Level	Sampling Interval	Recovery (%) S	Blow Counts 전 (per 6 in.)	OVM (ppmv)	REMARKS (Drilling Rate, Fluid Loss, Odor, etc.)
15 +	Olive Gray to Olive Wet Medium Stiff to soft Inorganic CLAI	CL		Y	Ж	500 ·		8 2 4	AS-3-14 @1000
	Dark Brown Saturated Sandy Clayey <u>SILT</u>	SM			X · · · ·	. 20			AS-3-16 @ 1010
	Bottom of woring 18'	BORING N	UMBF		4 • • • + • \bullet + \bullet +		- 3		Finish time: 1010 SHEET _ 2 of _ 2

APPENDIX C

LABORATORY REPORTS

AND

CHAIN-OF-CUSTODY DOCUMENTATION

McCampbell Analytical, Inc.

"When Quality Counts"

Analytical Report

WorkOrder: 1605290

Report Created for: Aquifer Sciences, Inc.

3520 Golden Gate Way Lafayette, CA 94549

- Project Contact: Duncan Knudsen
- Project P.O.:

Project Name: 216621

Project Received: 05/06/2016

Analytical Report reviewed & approved for release on 05/13/2016 by:

Angela Rydelius, Laboratory Manager

The report shall not be reproduced except in full, without the written approval of the laboratory. The analytical results relate only to the items tested. Results reported conform to the most current NELAP standards, where applicable, unless otherwise stated in the case narrative.

1534 Willow Pass Rd. Pittsburg, CA 94565 TEL: (877) 252-9262 FAX: (925) 252-9269 www.mccampbell.com

CDPH ELAP 1644 ♦ NELAP 4033ORELAP

Glossary of Terms & Qualifier Definitions

Client:Aquifer Sciences, Inc.Project:216621

WorkOrder: 1605290

Glossary Abbreviation

%D	Serial Dilution Percent Difference
95% Interval	95% Confident Interval
DF	Dilution Factor
DI WET	(DISTLC) Waste Extraction Test using DI water
DISS	Dissolved (direct analysis of 0.45 μm filtered and acidified water sample)
DLT	Dilution Test (Serial Dilution)
DUP	Duplicate
EDL	Estimated Detection Limit
ITEF	International Toxicity Equivalence Factor
LCS	Laboratory Control Sample
MB	Method Blank
MB % Rec	% Recovery of Surrogate in Method Blank, if applicable
MDL	Method Detection Limit
ML	Minimum Level of Quantitation
MS	Matrix Spike
MSD	Matrix Spike Duplicate
N/A	Not Applicable
ND	Not detected at or above the indicated MDL or RL
NR	Data Not Reported due to matrix interference or insufficient sample amount.
PDS	Post Digestion Spike
PDSD	Post Digestion Spike Duplicate
PF	Prep Factor
RD	Relative Difference
RL	Reporting Limit (The RL is the lowest calibration standard in a multipoint calibration.)
RPD	Relative Percent Deviation
RRT	Relative Retention Time
SPK Val	Spike Value
SPKRef Val	Spike Reference Value
SPLP	Synthetic Precipitation Leachate Procedure
ST	Sorbent Tube
TCLP	Toxicity Characteristic Leachate Procedure
TEQ	Toxicity Equivalents
WET (STLC)	Waste Extraction Test (Soluble Threshold Limit Concentration)

Glossary of Terms & Qualifier Definitions

Client: Aquifer Sciences, Inc.

 Project:
 216621

 WorkOrder:
 1605290

Analytical Qualifiers

S	Surrogate spike recovery outside accepted recovery limits
c4	surrogate recovery outside of the control limits due to coelution with another peak(s) / cluttered chromatogram.
d1	weakly modified or unmodified gasoline is significant
d2	heavier gasoline range compounds are significant (aged gasoline?)
d7	strongly aged gasoline or diesel range compounds are significant in the TPH(g) chromatogram
d9	no recognizable pattern

Quality Control Qualifiers

F1

MS/MSD recovery and/or RPD is out of acceptance criteria; LCS validated the prep batch.

 Client:
 Aquifer Sciences, Inc.

 Date Received:
 5/6/16 15:50

 Date Prepared:
 5/6/16-5/10/16

 Project:
 216621

WorkOrder: 1605290 Extraction Method: SW5030B Analytical Method: SW8021B/8015Bm Unit: mg/Kg

Client ID	Lab ID	Matrix	Date Co	ollected Instrument	Batch ID
AS-1-5	1605290-001A	Soil	05/06/20	16 11:15 GC7	120731
Analytes	<u>Result</u>		<u>RL</u>	DF	Date Analyzed
TPH(g)	ND		1.0	1	05/11/2016 11:55
MTBE			0.050	1	05/11/2016 11:55
Benzene	ND		0.0050	1	05/11/2016 11:55
Toluene	ND		0.0050	1	05/11/2016 11:55
Ethylbenzene	ND		0.0050	1	05/11/2016 11:55
Xylenes	ND		0.015	1	05/11/2016 11:55
Surrogates	<u>REC (%)</u>		<u>Limits</u>		
2-Fluorotoluene	106		70-130		05/11/2016 11:55
<u>Analyst(s):</u> LT					
Client ID	Lab ID	Matrix	Date Co	ollected Instrument	Batch ID
AS-1-10	1605290-002A	Soil	05/06/20 ⁻	16 11:20 GC19	120636
	1605290-002A Result	Soil	05/06/20 [,] <u>RL</u>	16 11:20 GC19	120636 Date Analyzed
Analytes		Soil			
	Result	Soil	<u>RL</u>	DF	Date Analyzed
Analytes TPH(g)	<u>Result</u> ND	Soil	<u>RL</u> 1.0	<u>DF</u> 1	Date Analyzed 05/10/2016 01:36
<u>Analytes</u> TPH(g) MTBE	<u>Result</u> ND 	Soil	<u>RL</u> 1.0 0.050	<u>DF</u> 1 1	Date Analyzed 05/10/2016 01:36 05/10/2016 01:36
Analytes TPH(g) MTBE Benzene	<u>Result</u> ND ND	Soil	<u>RL</u> 1.0 0.050 0.0050	DF 1 1 1	Date Analyzed 05/10/2016 01:36 05/10/2016 01:36 05/10/2016 01:36
Analytes TPH(g) MTBE Benzene Toluene	Result ND ND ND	Soil	RL 1.0 0.050 0.0050 0.0050	DE 1 1 1 1 1	Date Analyzed 05/10/2016 01:36 05/10/2016 01:36 05/10/2016 01:36 05/10/2016 01:36
Analytes TPH(g) MTBE Benzene Toluene Ethylbenzene	Result ND ND ND ND ND	Soil	RL 1.0 0.050 0.0050 0.0050 0.0050	DE 1 1 1 1 1 1	Date Analyzed 05/10/2016 01:36 05/10/2016 01:36 05/10/2016 01:36 05/10/2016 01:36 05/10/2016 01:36 05/10/2016 01:36
Analytes TPH(g) MTBE Benzene Toluene Ethylbenzene Xylenes	Result ND ND ND ND ND ND ND	Soil	RL 1.0 0.050 0.0050 0.0050 0.0050 0.015	DE 1 1 1 1 1 1	Date Analyzed 05/10/2016 01:36 05/10/2016 01:36 05/10/2016 01:36 05/10/2016 01:36 05/10/2016 01:36 05/10/2016 01:36

 Client:
 Aquifer Sciences, Inc.

 Date Received:
 5/6/16 15:50

 Date Prepared:
 5/6/16-5/10/16

 Project:
 216621

WorkOrder: 1605290 Extraction Method: SW5030B Analytical Method: SW8021B/8015Bm Unit: mg/Kg

Client ID	Lab ID	Matrix	Date Col	lected Instrument	Batch ID
AS-1-16	1605290-003A	Soil	05/06/2010	6 11:30 GC19	120636
Analytes	Result		RL	DF	Date Analyzed
TPH(g)	1.6		1.0	1	05/10/2016 05:06
MTBE			0.050	1	05/10/2016 05:06
Benzene	ND		0.0050	1	05/10/2016 05:06
Toluene	0.0067		0.0050	1	05/10/2016 05:06
Ethylbenzene	0.0073		0.0050	1	05/10/2016 05:06
Xylenes	0.048		0.015	1	05/10/2016 05:06
Surrogates	<u>REC (%)</u>		<u>Limits</u>		
2-Fluorotoluene	102		70-130		05/10/2016 05:06
<u>Analyst(s):</u> TD			Analytical Comm	ents: d2,d9	
Client ID	Lab ID	Matrix	Date Col	lected Instrument	Batch ID
AS-1-18	1605290-004A	Soil	05/06/2010	6 11:40 GC19	120636
Analytes	Result		RL	DF	Date Analyzed
TPH(g)	ND		1.0	1	05/10/2016 05:36
MTBE			0.050	1	05/10/2016 05:36
Benzene	ND		0.0050	1	05/10/2016 05:36
Toluene	ND		0.0050	1	05/10/2016 05:36
Ethylbenzene	ND		0.0050	1	05/10/2016 05:36
	ND		0.015	1	05/10/2016 05:36
Xylenes					
Xylenes Surrogates	<u>REC (%)</u>		<u>Limits</u>		
-	<u>REC (%)</u> 88		<u>Limits</u> 70-130		05/10/2016 05:36

 Client:
 Aquifer Sciences, Inc.

 Date Received:
 5/6/16 15:50

 Date Prepared:
 5/6/16-5/10/16

 Project:
 216621

WorkOrder: 1605290 Extraction Method: SW5030B Analytical Method: SW8021B/8015Bm Unit: mg/Kg

Client ID	Lab ID	Matrix	Date Co	ollected Instrument	Batch ID
AS-2-5	1605290-005A	Soil	05/06/201	16 10:30 GC19	120636
Analytes	Result		<u>RL</u>	DF	Date Analyzed
TPH(g)	2.6		1.0	1	05/10/2016 06:07
MTBE			0.050	1	05/10/2016 06:07
Benzene	ND		0.0050	1	05/10/2016 06:07
Toluene	ND		0.0050	1	05/10/2016 06:07
Ethylbenzene	ND		0.0050	1	05/10/2016 06:07
Xylenes	ND		0.015	1	05/10/2016 06:07
Surrogates	<u>REC (%)</u>		<u>Limits</u>		
2-Fluorotoluene	98		70-130		05/10/2016 06:07
<u>Analyst(s):</u> TD			Analytical Comm	nents: d2	
Client ID	Lab ID	Matrix	Date Co	ollected Instrument	Batch ID
AS-2-8	1605290-006A	Soil	05/06/20	16 10:35 GC19	120636
Analytes	<u>Result</u>		<u>RL</u>	DE	Date Analyzed
TPH(g)	57		2.0	2	05/10/2016 20:39
MTBE			0.10	2	05/10/2016 20:39
Benzene	ND		0.010	2	05/10/2016 20:39
Toluene	ND		0.010	2	05/10/2016 20:39
Ethylbenzene	0.057		0.010	2	05/10/2016 20:39
Xylenes	0.047		0.030	2	05/10/2016 20:39
<u>Surrogates</u>	<u>REC (%)</u>		<u>Limits</u>		
	93		70-130		05/10/2016 20:39
2-Fluorotoluene	93		10 100		00/10/2010 20:00

 Client:
 Aquifer Sciences, Inc.

 Date Received:
 5/6/16 15:50

 Date Prepared:
 5/6/16-5/10/16

 Project:
 216621

WorkOrder: 1605290 Extraction Method: SW5030B Analytical Method: SW8021B/8015Bm Unit: mg/Kg

Client ID	Lab ID	Matrix	Date Co	llected Instrument	Batch ID
AS-2-13	1605290-007A	Soil	05/06/201	6 10:40 GC19	120636
Analytes	Result		<u>RL</u>	DF	Date Analyzed
TPH(g)	21		1.0	1	05/11/2016 00:13
MTBE			0.050	1	05/11/2016 00:13
Benzene	0.081		0.0050	1	05/11/2016 00:13
Toluene	ND		0.0050	1	05/11/2016 00:13
Ethylbenzene	0.38		0.0050	1	05/11/2016 00:13
Xylenes	0.099		0.015	1	05/11/2016 00:13
Surrogates	<u>REC (%)</u>		<u>Limits</u>		
2-Fluorotoluene	83		70-130		05/11/2016 00:13
<u>Analyst(s):</u> HD			Analytical Comm	nents: d1	
Client ID	Lab ID	Matrix	Date Co	llected Instrument	Batch ID
AS-2-15	1605290-008A	Soil	05/06/201	6 10:50 GC19	120636
Analytes	Result		<u>RL</u>	DF	Date Analyzed
TPH(g)	2.9		1.0	1	05/11/2016 01:14
MTBE			0.050	1	05/11/2016 01:14
Benzene	0.045		0.0050	1	05/11/2016 01:14
Toluene	0.0067		0.0050	1	05/11/2016 01:14
Ethylbenzene	0.067		0.0050	1	05/11/2016 01:14
Xylenes	0.11		0.015	1	05/11/2016 01:14
<u>Surrogates</u>	<u>REC (%)</u>		<u>Limits</u>		
2-Fluorotoluene	91		70-130		05/11/2016 01:14
	• ·				

 Client:
 Aquifer Sciences, Inc.

 Date Received:
 5/6/16 15:50

 Date Prepared:
 5/6/16-5/10/16

 Project:
 216621

WorkOrder: 1605290 Extraction Method: SW5030B Analytical Method: SW8021B/8015Bm Unit: mg/Kg

Client ID	Lab ID	Matrix	Date Co	ollected Instrument	Batch ID
AS-3-7	1605290-010A	Soil	05/06/20	16 09:45 GC7	120636
<u>Analytes</u>	Result		<u>RL</u>	DF	Date Analyzed
TPH(g)	90		20	20	05/11/2016 22:34
MTBE			1.0	20	05/11/2016 22:34
Benzene	ND		0.10	20	05/11/2016 22:34
Toluene	ND		0.10	20	05/11/2016 22:34
Ethylbenzene	0.15		0.10	20	05/11/2016 22:34
Xylenes	ND		0.30	20	05/11/2016 22:34
Surrogates	<u>REC (%)</u>		<u>Limits</u>		
2-Fluorotoluene	102		70-130		05/11/2016 22:34
<u>Analyst(s):</u> LT			Analytical Comm	nents: d7,d9	
Client ID	Lab ID	Matrix	Date Co	ollected Instrument	Batch ID
AS-3-10	1605290-011A	Soil	05/06/20	16 09:55 GC19	120636
Analytes	Result		<u>RL</u>	DF	Date Analyzed
TPH(g)	550		20	20	05/13/2016 02:31
MTBE			1.0	20	05/13/2016 02:31
Benzene	ND		0.10	20	05/13/2016 02:31
Toluene	0.21		0.10	20	05/13/2016 02:31
Ethylhonzono	6.1		0.10	20	05/13/2016 02:31
Ethylbenzene			0.30	20	05/13/2016 02:31
Xylenes	11		0.50	20	
	11 <u>REC (%)</u>	Qualifiers	Limits	20	
Xylenes		<u>Qualifiers</u> S		20	05/13/2016 02:31

 Client:
 Aquifer Sciences, Inc.

 Date Received:
 5/6/16 15:50

 Date Prepared:
 5/6/16-5/10/16

 Project:
 216621

WorkOrder: 1605290 Extraction Method: SW5030B Analytical Method: SW8021B/8015Bm Unit: mg/Kg

Client ID	Lab ID	Matrix	Date Co	ollected Instrument	Batch ID		
AS-3-14	1605290-012A	Soil	05/06/20	16 10:00 GC19	120642		
Analytes	Result		<u>RL</u>	DF	Date Analyzed		
TPH(g)	13		1.0	1	05/10/2016 23:12		
MTBE			0.050	1	05/10/2016 23:12		
Benzene	0.038		0.0050	1	05/10/2016 23:12		
Toluene	0.0051		0.0050	1	05/10/2016 23:12		
Ethylbenzene	0.24		0.0050	1	05/10/2016 23:12		
Xylenes	0.051		0.015	1	05/10/2016 23:12		
Surrogates	<u>REC (%)</u>		<u>Limits</u>				
2-Fluorotoluene	90		70-130		05/10/2016 23:12		
<u>Analyst(s):</u> HD			Analytical Comr	<u>ments:</u> d1			
Client ID	Lab ID	Matrix	Date Co	ollected Instrument	Batch ID		
AS-3-16	1605290-013A	Soil	05/06/20	16 10:10 GC19	120642		
Analytes	<u>Result</u>		<u>RL</u>	DF	Date Analyzed		
TPH(g)	690		200	200	05/13/2016 14:58		
MERE			10	200	05/13/2016 14:58		
MTBE							
Benzene	2.4		1.0	200	05/13/2016 14:58		
	2.4 24		1.0 1.0	200 200	05/13/2016 14:58 05/13/2016 14:58		
Benzene							
Benzene Toluene	24		1.0	200	05/13/2016 14:58		
Benzene Toluene Ethylbenzene	24 17	Qualifiers	1.0 1.0	200 200	05/13/2016 14:58 05/13/2016 14:58		
Benzene Toluene Ethylbenzene Xylenes	24 17 94	Qualifiers S	1.0 1.0 3.0	200 200	05/13/2016 14:58 05/13/2016 14:58		

Client:	Aquifer Sciences, Inc.
Date Prepared:	5/6/16
Date Analyzed:	5/7/16
Instrument:	GC19
Matrix:	Soil
Project:	216621

WorkOrder:	1605290
BatchID:	120636
Extraction Method:	SW5030B
Analytical Method:	SW8021B/8015Bm
Unit:	mg/Kg
Sample ID:	MB/LCS-120636
	1605272-001AMS/MSD

QC Summary Report for SW8021B/8015Bm

Analyte	MB Result	LCS Result		RL	SPK Val		SS LCS REC %R		LCS Limits
TPH(btex)	ND	0.616		0.40	0.60	-	103		70-130
МТВЕ	ND	0.0885		0.050	0.10	-	88		70-130
Benzene	ND	0.103		0.0050	0.10	-	103		70-130
Toluene	ND	0.105		0.0050	0.10	-	105		70-130
Ethylbenzene	ND	0.105		0.0050	0.10	-	105		70-130
Xylenes	ND	0.315		0.015	0.30	-	105		70-130
Surrogate Recovery									
2-Fluorotoluene	0.0986	0.0990			0.10	99	99		70-130
Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD	RPD	RPI Limi

	Result	Result	Val	Val	%REC	%REC	Limits		Limit
TPH(btex)	0.531	0.528	0.60	ND	88	88	70-130	0	20
MTBE	0.0893	0.0811	0.10	ND	89	81	70-130	9.67	20
Benzene	0.105	0.0870	0.10	ND	105	87	70-130	18.7	20
Toluene	0.106	0.0900	0.10	ND	106	90	70-130	16.4	20
Ethylbenzene	0.104	0.0906	0.10	ND	104	91	70-130	13.8	20
Xylenes	0.310	0.272	0.30	ND	103	91	70-130	13.1	20
Surrogate Recovery									
2-Fluorotoluene	0.101	0.0861	0.10		101	86	70-130	16.4	20

_____QA/QC Officer Page 10 of 16

Quality Control Report

Client:Aquifer Sciences, Inc.Date Prepared:5/6/16Date Analyzed:5/7/16Instrument:GC3Matrix:SoilProject:216621

WorkOrder:	1605290
BatchID:	120642
Extraction Method:	SW5030B
Analytical Method:	SW8021B/8015Bm
Unit:	mg/Kg
Sample ID:	MB/LCS-120642
-	1605290-012AMS/MSD

QC Summary Report for SW8021B/8015Bm

Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
TPH(btex)	ND	0.610	0.40	0.60	-	102	70-130
МТВЕ	ND	0.0991	0.050	0.10	-	99	70-130
Benzene	ND	0.113	0.0050	0.10	-	113	70-130
Toluene	ND	0.114	0.0050	0.10	-	114	70-130
Ethylbenzene	ND	0.112	0.0050	0.10	-	112	70-130
Xylenes	ND	0.335	0.015	0.30	-	112	70-130
Surrogate Recovery							
2-Fluorotoluene	0.100	0.111		0.10	100	111	70-130

Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
TPH(btex)	3.60	3.72	0.60	2.097	250,F1	270,F1	70-130	3.39	20
MTBE	0.100	0.118	0.10	ND	88	106	70-130	15.9	20
Benzene	0.140	0.159	0.10	0.03782	102	121	70-130	12.6	20
Toluene	0.116	0.128	0.10	0.005119	110	122	70-130	9.79	20
Ethylbenzene	0.439	0.458	0.10	0.2387	201,F1	219,F1	70-130	4.08	20
Xylenes	0.362	0.394	0.30	0.05087	104	114	70-130	8.37	20
Surrogate Recovery									
2-Fluorotoluene	0.0899	0.0989	0.10		90	99	70-130	9.52	20

Quality Control Report

 Client:
 Aquifer Sciences, Inc.

 Date Prepared:
 5/10/16

 Date Analyzed:
 5/11/16

 Instrument:
 GC19, GC7

 Matrix:
 Soil

 Project:
 216621

WorkOrder:	1605290
BatchID:	120731
Extraction Method:	SW5030B
Analytical Method:	SW8021B/8015Bm
Unit:	mg/Kg
Sample ID:	MB/LCS-120731

QC Summary Report for SW8021B/8015Bm

MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
ND	0.540	0.40	0.60	-	90	70-130
ND	0.0918	0.050	0.10	-	92	70-130
ND	0.0929	0.0050	0.10	-	93	70-130
ND	0.0797	0.0050	0.10	-	80	70-130
ND	0.0946	0.0050	0.10	-	95	70-130
ND	0.288	0.015	0.30	-	96	70-130
0.104	0.111		0.10	104	111	70-130
	Result ND	Result Result ND 0.540 ND 0.0918 ND 0.0929 ND 0.0797 ND 0.0946 ND 0.288	Result Result ND 0.540 0.40 ND 0.0918 0.050 ND 0.0929 0.0050 ND 0.0797 0.0050 ND 0.0946 0.0050 ND 0.288 0.015	Result Val ND 0.540 0.40 0.60 ND 0.0918 0.050 0.10 ND 0.0929 0.0050 0.10 ND 0.0797 0.0050 0.10 ND 0.0946 0.0050 0.10 ND 0.288 0.015 0.30	Result Val %REC ND 0.540 0.40 0.60 - ND 0.0918 0.050 0.10 - ND 0.0929 0.0050 0.10 - ND 0.0797 0.0050 0.10 - ND 0.0946 0.0050 0.10 - ND 0.288 0.015 0.30 -	Result Val %REC %REC ND 0.540 0.40 0.60 - 90 ND 0.0918 0.050 0.10 - 92 ND 0.0929 0.0050 0.10 - 93 ND 0.0797 0.0050 0.10 - 95 ND 0.288 0.015 0.30 - 96

A QA/QC Officer Page 12 of 16

McCampbell Analytical, Inc.

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

Pittsburg (925) 25	g, CA 94565-1701 52-9262				Wor	kOrd	er: 160	5290		Client	Code:	ASI					
		WaterTrax	WriteOn	EDF	E	Excel		EQuIS	✓	Email		HardC	ору	ThirdF	Party	□ J-fl	ag
Report to:						E	Bill to:						Reque	sted TAT	Г:	5 days	;
Duncan Knud Aquifer Scien 3520 Golden Lafayette, CA (925) 283-9098	Gate Way 94549	Email: dł cc/3rd Party: PO: ProjectNo: 21		ifer.com; ras@aq	uifer.c	om	Aquife 3520 (ints Pay er Scien Golden ette, CA	ces, In Gate V	Vay				Received Logged:		05/06/: 05/06/:	
									Re	queste	d Tests	(See leg	jend be	low)			
Lab ID	Client ID		Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
1605290-001	AS-1-5		Soil	5/6/2016 11:15		Α									1	<u> </u>	
1605290-002	AS-1-10		Soil	5/6/2016 11:20		Α											
1605290-003	AS-1-16		Soil	5/6/2016 11:30		Α											
1605290-004	AS-1-18		Soil	5/6/2016 11:40		Α											
1605290-005	AS-2-5		Soil	5/6/2016 10:30		Α											
1605290-006	AS-2-8		Soil	5/6/2016 10:35		Α											
1605290-007	AS-2-13		Soil	5/6/2016 10:40		Α											
1605290-008	AS-2-15		Soil	5/6/2016 10:50		Α											
1605290-010	AS-3-7		Soil	5/6/2016 9:45		Α											
1605290-011	AS-3-10		Soil	5/6/2016 9:55		Α								1			
1605290-012	AS-3-14		Soil	5/6/2016 10:00		Α											
1605290-013	AS-3-16		Soil	5/6/2016 10:10		Α							1	-		1	

Test Legend:

1	G-MBTEX_S
5	
9	

2	
6	
10	

3	
7	
11	

4	
8	
12	

Prepared by: Jena Alfaro

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

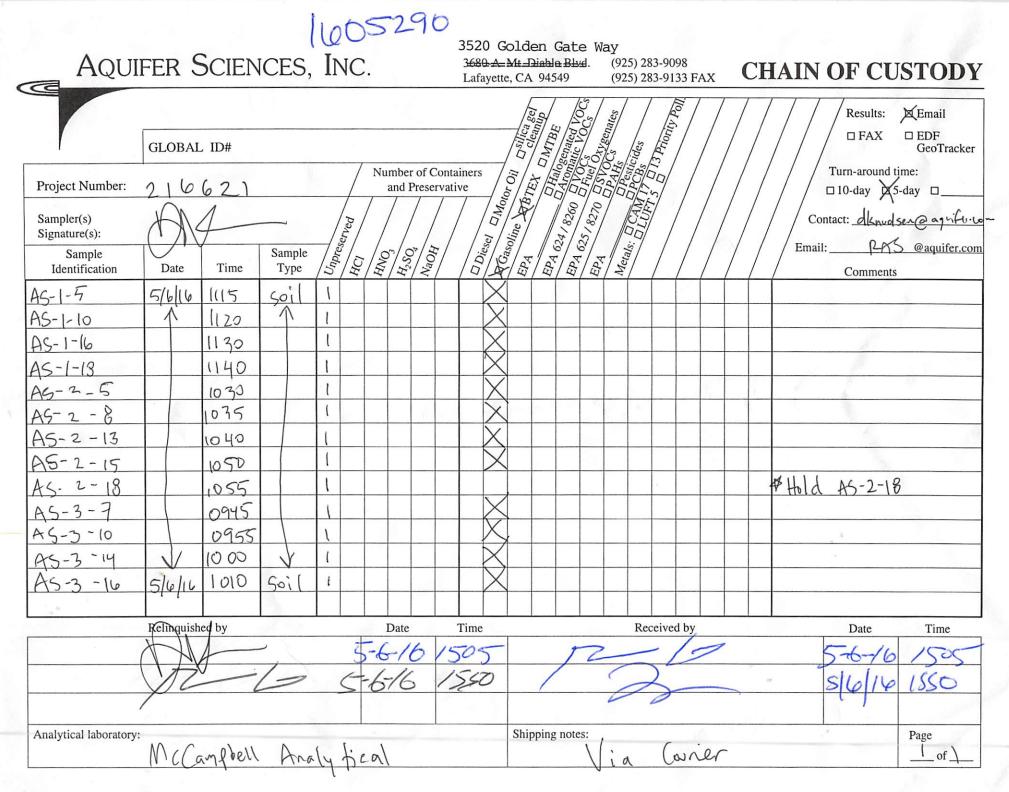
WORK ORDER SUMMARY

Client Name: AQUIFER SCIENCES, INC.

Project: 216621

Comments:

QC Level: LEVEL 2 Client Contact: Duncan Knudsen


Contact's Email: dknudsen@aquifer.com; ras@aquifer.com

Work Order: 1605290 Date Logged: 5/6/2016

		WaterTrax	WriteOn	Excel	Fax √ Email	HardCopy ThirdPa	rty 🔲 J	I-flag
Lab ID	Client ID	Matrix	Test Name	Containers /Composites	Bottle & Preservative	De- Collection Date chlorinated & Time	ТАТ	Sediment Hold SubOut Content
1605290-001A	AS-1-5	Soil	SW8021B/8015Bm (G/MBTE2	X) 1	Acetate Liner	5/6/2016 11:15	5 days	
1605290-002A	AS-1-10	Soil	SW8021B/8015Bm (G/MBTE2	X) 1	Acetate Liner	5/6/2016 11:20	5 days	
1605290-003A	AS-1-16	Soil	SW8021B/8015Bm (G/MBTE2	X) 1	Acetate Liner	5/6/2016 11:30	5 days	
1605290-004A	AS-1-18	Soil	SW8021B/8015Bm (G/MBTE2	X) 1	Acetate Liner	5/6/2016 11:40	5 days	
1605290-005A	AS-2-5	Soil	SW8021B/8015Bm (G/MBTE2	X) 1	Acetate Liner	5/6/2016 10:30	5 days	
1605290-006A	AS-2-8	Soil	SW8021B/8015Bm (G/MBTE2	X) 1	Acetate Liner	5/6/2016 10:35	5 days	
1605290-007A	AS-2-13	Soil	SW8021B/8015Bm (G/MBTE2	X) 1	Acetate Liner	5/6/2016 10:40	5 days	
1605290-008A	AS-2-15	Soil	SW8021B/8015Bm (G/MBTE2	X) 1	Acetate Liner	5/6/2016 10:50	5 days	
1605290-009A	AS-2-18	Soil		1	Acetate Liner	5/6/2016 10:55		\checkmark
1605290-010A	AS-3-7	Soil	SW8021B/8015Bm (G/MBTE2	X) 1	Acetate Liner	5/6/2016 9:45	5 days	
1605290-011A	AS-3-10	Soil	SW8021B/8015Bm (G/MBTE2	X) 1	Acetate Liner	5/6/2016 9:55	5 days	
1605290-012A	AS-3-14	Soil	SW8021B/8015Bm (G/MBTE2	X) 1	Acetate Liner	5/6/2016 10:00	5 days	
1605290-013A	AS-3-16	Soil	SW8021B/8015Bm (G/MBTE2	X) 1	Acetate Liner	5/6/2016 10:10	5 days	

NOTES: - STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- MAI assumes that all material present in the provided sampling container is considered part of the sample - MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

Sample Receipt Checklist

Client Name:	Aquifer Sciences, Inc.			Date and Time Received:	5/6/2016 15:50
Project Name: WorkOrder №:	216621 1605290 Matrix: Soil			Date Logged:	5/6/2016
Carrier:	1605290 Matrix: <u>Soil</u> Bernie Cummins (MAI Courier)			Received by: Logged by:	Jena Alfaro Jena Alfaro
Camon				209900 091	
	Chain of C	ustody	/ (COC) I	nformation	
Chain of custody	present?	Yes	✓	No	
Chain of custody	signed when relinquished and received?	Yes	✓	No 🗌	
Chain of custody	agrees with sample labels?	Yes	✓	No	
Sample IDs noted	d by Client on COC?	Yes	✓	No	
Date and Time of	collection noted by Client on COC?	Yes	✓	No	
Sampler's name	noted on COC?	Yes	✓	No 🗌	
	Sampl	e Rece	eipt Infor	mation	
Custody seals int	act on shipping container/cooler?	Yes		No	NA 🗹
Shipping containe	er/cooler in good condition?	Yes	✓	No	
Samples in prope	er containers/bottles?	Yes	✓	No	
Sample container	rs intact?	Yes	✓	No 🗌	
Sufficient sample	volume for indicated test?	Yes	✓	No 🗌	
	Sample Preservation	on and	Hold Tin	ne (HT) Information	
All samples recei	ved within holding time?	Yes	✓	No 🗌	
Sample/Temp Bla	ank temperature		Temp:	4.1°C	
Water - VOA vial	s have zero headspace / no bubbles?	Yes		No 🗌	NA 🗹
Sample labels ch	ecked for correct preservation?	Yes	✓	No 🗌	
pH acceptable up	oon receipt (Metal: <2; 522: <4; 218.7: >8)?	Yes		No 🗌	NA 🗹
Samples Receive		Yes	✓	No 🗌	
	(Ісе Туре	e: WE	TICE))	
UCMR3 Samples Total Chlorine t	:: ested and acceptable upon receipt for EPA 522?	Yes		No 🗌	NA 🖌
	ested and acceptable upon receipt for EPA 218.7,			No 🗌	

Comments:

APPENDIX D

MAP AND DATA TABLE

SOIL GAS INVESTIGATION, APRIL 2016

	Table 1													
GRAB GROUNDWATER LABORATORY ANALYTICAL RESULTS														
411 W. MacArthur Blvd., Oakland, CA														
Sample Sample Concentration (micrograms per liter, ug/L)														
ID	Depth (ft)	TPH-G	В	Т	E	Х	Naphth.							
Soil E	Soil Boring Investigation, ARS, April 8, 2016													
GW-1	(20 ft)	42,000	110	67	2,600	4,800	2,300							
GW-2	(20 ft)	21,000	39	540	850	3,900	490							
GW-3	(20 ft)	7,800	<5.0	81	230	1,000	190							
ESL-Vapor Intru	usion (res.)	NL	30	100,000	370	38,000	180							
ESL-Vapor Intru	usion (comm.)	NL	260	NL	3,300	NL	1,600							

Table Notes

TPH-G = Total Petroleum Hydrocarbons as Gasoline

B = Benzene,

T = Toluene

E = Ethylbenzene

X = Xylenes

Naphth. = Naphthalene

<0.5 = Not detected above the expressed detection level.

ESL = Environmental Screening Levels, as contained in Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater, San Francisco Bay Regional Water Quality Control Board, February 2016.

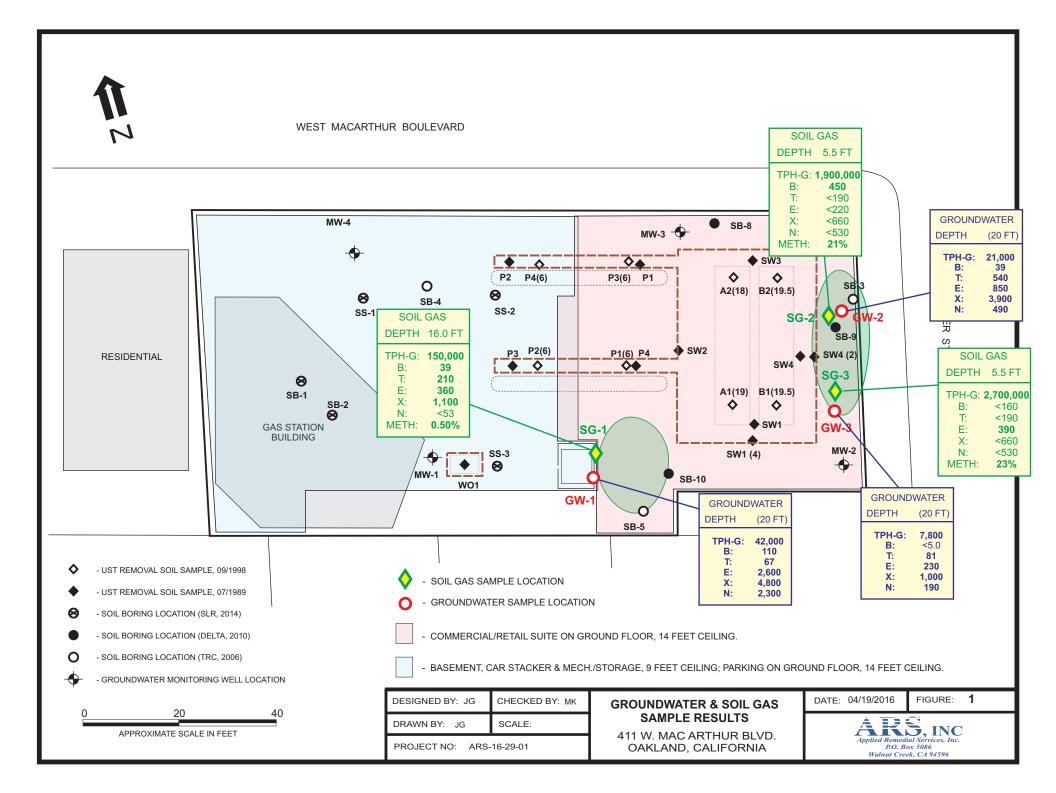
	Table 2 SOIL GAS LABORATORY ANALYTICAL RESULTS 411 W. MacArthur Blvd., Oakland, CA														
Sample ID	Date	Sample Depth	TPH-G (ug/m3)	B (ug/m3)	T (ug/m3)	E (ug/m3)	X (ug/m3)	Naphth. (ug/m3)	Methane (%)	CO2 (%)	N (%)	O2 (%)	Helium (%)		
SG-1	4/15/2016	16.0 ft	150,000	39	210	360	1,100	<53	0.50	0.12	NA	11.0	<0.050		
SG-2	4/8/2016	5.5 ft	1,900,000	450	<190	<220	<660	<530	21	5.2	NA	2.5	4.3		
SG-3	4/8/2016	5.5 ft	2,700,000	<160	<190	390	<660	<530	23	4.2	NA	0.76	<0.050		
Soil Gas ESL-Res	Soil Gas ESL-Residential		300,000	48	1.6E+05	560	5.2E+04	41	LEL = 4.4 UEL = 17						
Soil Gas ESL-Commercial		2,500,000	420	1.3E+06	4,900	4.4E+05	360	LEL = 4.4 UEL = 17							

Table Notes

TPH-G = Total Petroleum Hydrocarbons as Gasoline

B = Benzene

T = Toluene


- E = Ethylbenzene
- X = Xylenes

Naphth. = Naphthalene

ug/m3 = micrograms per cubic meter % = Percent

<0190 = Not detected above the expressed detection level.

- LEL = Lower explosion limit
- UEL = Upper explosion limit

