411 W. MacArthur LLC

650B Fremont Ave #375 Los Altos, CA 94024 415-705 9922

Email: joehernon@gmail.com

August 19th, 2016.

RECEIVED

By Alameda County Environmental Health 9:11 am, Aug 22, 2016

Keith Nowell and Dilan Roe:

Alameda County Department of Environmental Health. 1131 Harbor Bay Parkway. Suite 250. Alameda, CA 94502-6577

Subject: 411 W. MacArthur Blvd, Oakland California.

Attached please find a report entitled "Human Health Risk Assessment Report" (HHRA) prepared by Applied Remedial Services, Inc., for the property at 411 West MacArthur Boulevard in Oakland, California. The objective of this report was to satisfy requests from Alameda County Department of Environmental Health.

I declare under penalty of perjury that the information and/or recommendations contained in the attached document or report are true and correct to the best of my knowledge.

Sincerely, Joe Hernon

Regards,

Joseph A. Hernon. (Manager) 411 W. MacArthur LLC.

ANN

Applied Remedial Services, Inc.

August 18, 2016

Mr. Keith Nowell Ms. Dilan Roe Alameda County Department of Environmental Health 1131 Harbor Bay Parkway, 2nd Floor Alameda, CA 94502

Subject: Human Health Risk Assessment Report

411 W. MacArthur Boulevard, Oakland, California

ACEH RO#0003192; Global ID: T10000007937

Dear Mr. Nowell and Ms. Roe:

ARS is pleased to submit this Human Health Risk Assessment Report (HHRA) on behalf of 411 West MacArthur LLC for the planned residential development at 411 West MacArthur Boulevard in Oakland, California (the "Site"). Soil and groundwater vapor data from the eastern portion and the future proposed elevator shaft area located in the middle southern portion of the site were evaluated to determine if a potentially complete vapor intrusion pathway exists within the subsurface, and to evaluate the potential risk to future building occupants associated with the vapor intrusion pathways.

We have offered a background section of previous investigations and results. We have also presented the methods and results of the vapor intrusion risk evaluations.

The potential vapor intrusion pathway was evaluated using a tiered or step-wise approach, in accordance with Cal EPA guidance (2011) and San Francisco Regional Water Quality Control Board (SFRWQCB) (2016) vapor intrusion guidance Environmental Screening Levels (ESLs). The approach consisted of first comparing site soil and groundwater vapor concentrations to conservative vapor screening levels for residential and commercial/industrial exposure scenarios in order to select constituents of potential concern (COPCs), followed by vapor intrusion modeling (HERO VI model), which was used in conjunction with

the USEPA Advanced Version (3.1) of the Johnson and Ettinger Model. February 2004. The Model was adjusted to use Cal EPA DTSC's recommended input parameters (from Cal EPA 2011) and most updated toxicity information presented in the (2011) Department of Toxic Substances Control (DTSC) document: "Guidance for the Evaluation and Mitigation of Subsurface Vapor Intrusion into Indoor Air", also called the Vapor Intrusion Guidance (VIG).

Please Do not hesitate to call us if you need any further assistance. In addition to the office I can be reached at (707) 567-2202 and Jim at (707) 631-1505.

Respectfully Submitted,

Michael Kara

Principal Toxicologist

James E. Gribi Professional Geologist California No. 5843

CERTIFICATION

I Michael F. Kara a Biochemist have completed all graduate university courses in Toxicology, conducted three years of post-graduate research in Toxicology and concluded 1st year of medicine, has Thirty (30) years of direct investigation and remediation of contaminated properties and over Ten (10) years of conducting Health Risk Evaluations, certify under penalty of law that this document titled "Human Health Risk Assessment Report" for the property located at 411 West MacArthur Blvd. in Oakland, California (Site), dated August 15, 2016, was personally researched and prepared by me. The completed Report was conducted under my supervision and direction in accordance with a system designed to assure that the information submitted was properly gathered and evaluated by qualified personnel. This information is, to the best of my knowledge and belief, true, accurate, complete and satisfies the scope of work prescribed by the client. I am aware that there are significant penalties for submitting false information. The report was peer reviewed by my colleague Jim Gribi, a California licensed Professional Geologist with over Twenty-Five (25) years of direct investigation and remediation experience of contaminated properties.

Furthermore, I certify and declare that, to the best of our professional knowledge and belief, that we meet the definition for Environmental Professionals as specified in 40 CFR Part 312.10. We have the specific qualifications, based on education, training, and experience, to assess and remediate a property of the nature, history, and setting of this Site.

Michael F. Kara

Principal Toxicologist

USEPA Environmental Professional

Registered Environmental Property Assessor # 386340

Registered Lead Sampling Technician #21985

8-18-2016

Date

James E. Gribi

Registered Geologist California No. 5843 8-18-2016

Date

TABLE OF CONTENTS

1.0	INTRODUCTION	 1
2.0	SITE GEOLOGY AND HYDROGEOLOGY	1
3.0	DISTRIBUTION OF PETROLEUM HYDROCARBONS IN SOIL	
4.0	DISTRIBUTION OF PETROLEUM HYDROCARBONS IN GROUNDWATER	3
5.0	PREVIOUS REMEDIAL ACTIVITIES	3
6.0	RECENT INVESTIGATIVE ACTIVITIES AT THE SITE	
6.1	Gribi's Investigation	
6.2	ASI'S INVESTIGATION	
7.0	PLANNED DEVELOPMENT VAPOR MITIGATION MEASURES	8
8.0	HUMAN HEALTH RISK ASSESSMENT	9
8.1	POTENTIAL EXPOSURE PATHWAYS	
8.3	COMPARISON OF COPC CONCENTRATIONS WITH ESLS	
8.3	QUANTITATIVE RISK ANALYSIS	
	3.3.1 Risk Analysis Using Soil Gas Data	
	3.3.3 Model Uncertainties	
9.0	CONCLUSIONS	
11.0	REFERENCES	17
TAB :	<u>NUMBER</u>	
1)) TABLES	
2)	FIGURES	
3)	BORING LOGS	
4)	GROUNDWATER ATTENUATION CHARTS for MW-2 and MW-3	

HUMAN HEALTH RISK ASSESSMENT REPORT 411 W. MACARTHUR BOULEVARD, OAKLAND, CALIFORNIA

ACEH RO#0003192; GLOBAL ID: T10000007937

1.0 INTRODUCTION

On behalf of 411 West MacArthur LLC (the Client), Applied Remedial Services, Inc. (ARS) is pleased to submit this Human Health Risk Assessment Report (HHRA) and a summary of site specific data and activities regarding recent investigative events that were conducted by two (2) consulting firms Gribi Associates (Gribi) in April 2016 and Aquifer Sciences, Inc. (ASI) in May 2016 at the mid-southern and eastern portions of the property located at 411 West MacArthur Blvd. in Oakland, California (the "Site").

Chevron Site Number 351642 is a former Unocal service station located on the southwestern corner of the intersection of West MacArthur Blvd. and Webster Street, in Oakland, California (Figures 1 and 2). Two generations of fuel station facilities have been removed from the Site: the 1st in 1989 and the 2nd in 1998. The station building and canopy were left in place following station decommissioning (Figure 3). There are currently no businesses onsite and the site is being prepared for a sixteen (16) unit multi-story residential apartment complex with a 3,000 square feet (sf) commercial grocery market place on the corner of Webster Street and West MacArthur Blvd. (Figure 3).

The Site comprises an approximately 8,000-square foot parcel on the southwest corner of West MacArthur Boulevard and Webster Street. The planned Site development will consist of a five-story apartment building with approximately 16 living units. The building will include a concrete-encased parking and storage basement on the west side of the building. The ground floor will include parking over the basement area on the west side and concrete-floored commercial use on the east side of the building. The second through fifth floors will include residential apartments. An elevator shaft located towards the middle southern portion of the site in the will extend from the basement up to the fifth floor.

2.0 SITE GEOLOGY AND HYDROGEOLOGY

Silt and clay mixtures were encountered at the site by AECOM (consultant to Chevron) from the surface to the total depth explored of 30 feet below ground surface (bgs). In some locations, these sediments are underlain by clayey sand and clayey gravel to 30 feet bgs. Intermittent, poorly graded sand layers are encountered from approximately 20 to 27 bgs. Boring logs for the new ASI borings advanced in May 2016 and three (3) monitoring wells MW-1, MW-2 and MW-3 which were advanced at the site in 1989, are included in Tab Number 3. (see Figures 4, 5, 6, and 7).

The most recent groundwater monitoring event was conducted on February 14, 2013. Depth to groundwater ranged from 13.66 to 17.98 feet below the top of the well casings, and groundwater elevation ranged from 53.46 to 57.71 feet above mean sea level. The groundwater flow direction was calculated to flow in a South-Southwesterly direction, with an average hydraulic gradient of approximately 0.04 feet per foot (ft/ft).

The historical groundwater flow directions have been predominately the South since April 1993 when wells MW-5 and MW-6 were included (Figure 3). Prior to 1993, with fewer wells being monitored, the groundwater flow direction was noted to be the East. Hydrocarbons were not detected in groundwater samples from SB-2, which is located directly East of the Site, indicating that the groundwater plume has not migrated in that direction.

Historical groundwater flow direction was also discussed in the 2006 Soil and Groundwater Investigation Report, where TRC included a rose diagram that depicted the predominant groundwater flow directions through first quarter 2006 to be East and Southwest; however, the existing data through third quarter 2010 were re-evaluated. The predominant flow directions were found to be South and South-Southwest. Since the second quarter of 1994, all reported flow directions were reported to be generally Southerly, ranging between East-Southeast and Southwest, with the exception of the second quarter of 2001 (Northeast), and the third quarter of 2006 (West). Since the third quarter of 2007, reported flow directions have been to the South.

3.0 DISTRIBUTION OF PETROLEUM HYDROCARBONS IN SOIL

Table 1 and Figures 8 and 9 provide a summary of historic and recent soil hydrocarbon results. The highest concentrations of TPHg (6,100 mg/kg), toluene (5,300 mg/kg), ethylbenzene (86 mg/kg), and total xylenes (420 mg/kg) were detected in the fuel UST source area in SB-3 at a depth of 16 feet bgs. The highest concentration of benzene (12 mg/kg) was detected in a sidewall sample (SW-1) from the UST excavation; however, benzene was not detected in the confirmation sample (SW-1(4)) from this location following over-excavation activities. The highest concentration of benzene in soil left in place after excavation activities were detected near the UST excavation area in MW-2 (1.5 mg/kg) at 19 feet bgs.

The highest concentration of MTBE (0.64 mg/kg) was detected for SB-3 at 14 feet bgs. The horizontal extent of hydrocarbons in soil is defined by MW-3 to the North; SB-9 to the East; SB-10, SB-5, and SW-1(4), and SB-1 to the South; and SB-4 and MW-4 to the West.

Hydrocarbon-impacted soil is generally encountered at depths below 15 feet bgs on the Eastern side of the Property near the former gasoline USTs.

4.0 DISTRIBUTION OF PETROLEUM HYDROCARBONS IN GROUNDWATER

Tables 2 and 3, and Figure 9 provide a summary of historic and recent groundwater results. Groundwater has been sampled at the site since 1989. Sample analyses have included TPHg, BTEX, and MTBE. The historical maximum concentrations of TPHg (21,000 micrograms per liter [μ g/l]), benzene (1,300 μ g/l), and MTBE (4,800 μ g/l) were detected in MW-3 in 1991 and 1992 and have significantly decreased since that time. Point attenuation graphs are provided for MW-2 and MW-3 as Charts B1 and B2, respectively in Tab Number 4. TPHg and benzene were not detected in groundwater above laboratory reporting limits during the most recent groundwater monitoring event conducted in February 2013. MTBE was detected in groundwater for one well, MW-3, at 5.1 μ g/l, which is slightly above the Environmental Screen Level (ESL) of 5.0 μ g/l.

Petroleum hydrocarbons in groundwater were defined by well MW-5 to the East, MW-2 to the South, MW-1 to the West, and MW-4 and MW-6 to the Northwest and Northeast, respectively.

Grab groundwater samples collected from soil borings during March 2006 and December 2010 show significantly higher hydrocarbon concentrations than groundwater samples collected at the same time from the monitoring well network (see Tables 2 and 3). This difference is most likely due to: (1) the fine-grained nature of Site soil and presence of entrained sediments in the samples, and (2) cross contamination of groundwater from coring tools that were pushed through slightly hydrocarbon-impacted soils. The grab groundwater samples confirm the groundwater impacts around the former gasoline UST pit and show decreasing concentrations over time due to natural attenuation. Thus, the 2010 grab groundwater samples showed lower hydrocarbon concentrations than grab groundwater samples from 2006 borings collected from the same areas of the site (SB-3W vs. SB-9 and SB-5W vs SB-10). Also, very low to non-detectable concentrations of petroleum hydrocarbons were encountered in grab groundwater samples from downgradient offsite 2006 borings SB-1W and SW-2W.

5.0 PREVIOUS REMEDIAL ACTIVITIES

Remedial activities conducted at the Site included the excavation of approximately 830 cubic yards of soil from the site (450 cubic yards in 1989 and 380 cubic yards in 1998) and the removal of 1,500 gallons of groundwater.

In July 1989, during UST replacement activities, approximately 450 cubic yards of soil and 1,500 gallons of groundwater were removed from the UST pit and disposed of off-site. Analytical results for the six soil confirmation sidewall samples collected at 10 feet bgs from the fuel tank pull indicated low concentrations of total petroleum hydrocarbons (TPH) as gasoline (TPHg) ranging from non-detectable to 11 milligrams per kilogram (mg/kg), except for one sample, which had 3,100 mg/kg of TPHg (see Figure 8. A soil sample collected from the used-oil pit at 8.5 feet bgs had no detectable TPHg, TPH as

diesel (TPHd), benzene, toluene, ethylbenzene, and total xylenes (BTEX). Following the sidewall sampling, 1,500 gallons of groundwater was removed from the gasoline UST pit.

Subsequent over-excavation of the fuel UST pit was performed by removing 4 linear feet (calculated removal of 50 cubic yards) from the Southern and Eastern sidewalls, near the soil sample location with 3,100 mg/kg of TPHg. The post excavation confirmation sample results were non-detect and 1 mg/kg for TPHg in two samples collected from SW-1(4) and SW-4(2), respectively (Figure 8).

In September 1998, the second-generation USTs were removed. Soil samples were collected from beneath the former fuel USTs and the former product piping. Soil samples contained a maximum TPHg concentration of 360 mg/kg and benzene of 1.5 mg/kg at 9.5 feet, and methyl tert-butyl ether (MTBE) was not detected in any of the soil samples. Approximately 380 cubic yards of trenching and UST backfill materials from the second station configuration was stockpiled and later transported off-site for disposal during the 1998 station demolition (Figure 8).

6.0 RECENT INVESTIGATIVE ACTIVITIES AT THE SITE

Two recent investigations were conducted at the Site by Gribi Associates (Gribi) in April 2016 and Aquifer Science, Inc. (ASI) in May 2016 (see Figure 9 and Figure 10). The Gribi investigation involved 1) Collection of grab groundwater samples from three soil borings on the west and east side of the Site; and (2) Collection of soil gas samples from these three locations. The goal of these activities was to assess potential indoor risks from vapor intrusion relative to the planned residential and commercial development at the Site. The groundwater samples (GW-1, GW-2, and GW-3) were advanced to minus twenty (20) feet bgs, while the soil gas sample SG-1 located in the mid-southern portion of the site near the future elevator pit was collected from minus 15 feet bgs (457 cm) and the two other soil gas samples SG-2 and SG-3 which were collected from the future proposed commercial space area were collected from 5.5 feet bgs (168 cm).

6.1 Gribi's Investigation

Task 1 Collect three grab groundwater samples. Three soil borings, GW-1, GW-2, and GW-3, were drilled to collect one grab groundwater sample from each boring. Prior to conducting field activities, boring permits were obtained from Alameda County Public Works and USA was notified.

The three borings included one boring, GW-1, in the planned location of the elevator pit, on the south side of the Site, and two borings, GA-2 and GA-3, just east of the former UST excavation cavity, on the east side of the Site (see Figure 3). Each boring was drilled to approximately three to four feet below first-encountered groundwater (groundwater expected at approximately 17 feet in depth).

After reaching boring total depth, ³/₄-inch diameter PVC well casing was placed in the boring, and approximately 1 to 3 gallons of water were hypothetically to be purged from the PVC casing prior to sampling, which never occurred. Therefore, due to lack of water recharge, no purging occurred whatsoever, and the samples were collected from the first groundwater catch, which might not have been representative of site groundwater conditions. This protocol compounded by the fine-grained nature of Site soil at this depth described in ASI's boring logs as "Clayey Silt with Sand" and the more than likely presence of entrained sediments in the samples, may have overestimated the presence of petroleum hydrocarbon related compounds in the grab groundwater samples.

The Groundwater was sampled and preserved in accordance with standard sampling protocols, and samples were transported to the analytical laboratory under formal chain-of-custody. Borings were grouted in accordance with ACPW permit requirements, and drilling and sampling equipment were thoroughly decontaminated between each boring. Three groundwater samples (one per boring) were analyzed for TPH-G, BTEX, and Naphthalene using USEPA Method 8260. The results are presented in Table 2.

■ Task 2 Collect three soil gas samples. Three soil gas samples, SG-1, SG-2, and SG-3, were collected. The three samples included one sample, SG-1, in the planned elevator pit area, and two samples, SG-2 and SG-3, just east of the former UST excavation cavity, on the east side of the Site (see Figure 3). The three soil gas samples were collected at approximately five and a half feet beneath the planned building foundation depth; thus, respective soil gas sampling depths for SG-1, SG-2, and SG-3 were 16.0 feet, 5.5 feet and 5.5 feet bgs. Note that for SG-1, since groundwater was shallower than 20 feet in depth, then the soil gas sample depth was raised to approximately four feet above the groundwater depth.

Temporary vapor wells were constructed as follows: (1) After coring to the desired depth using direct-push coring equipment, a vapor tip with ¼-inch diameter Teflon (or similar) tubing was set at the desired depth; (2) Filter sand was placed around the vapor tip, with sand approximately six inches below and six inches above the vapor tip; (2) A one foot bentonite seal, consisting of six inches of dry granular bentonite followed by six inches of pre-hydrated granular or pellet bentonite, was placed above the filter sand; and (3) The remaining annulus was filled with hydrated pellet bentonite.

The three temporary soil gas wells were purged and sampled in accordance with current DTSC protocols as follows:

• A "T" valve was placed in line at the ground surface to allow for system purging and for pressure testing of the above ground portion of the sampling train. The sampling tubing was attached to a

200-milliliter per minute maximum flow controller, then a one-liter laboratory-supplied Summa CanisterTM (evacuated to 29 inches' mercury vacuum) with vacuum pressure valve.

- After allowing the vapor wells to equilibrate for at least one hour, the wells were purged and sampled. A laboratory supplied purge/pressure test Summa Canister™ (evacuated to 29 inches' mercury) was then used to test vacuum pressure in the above ground portion of the sampling train. Sampling train vacuum pressure was maintained for at least 10 minutes; if pressure drops occur, the system connections were tightened and the pressure testing continued.
- The vapor well was then purged of approximately three purge volumes using a dedicated Summa Canister
- The entire probe and sampling train was placed under a shroud and a leak test was conducted. Helium from a compressed gas cylinder was pumped into the shroud, and the helium concentration inside the shroud were maintained at approximately 10,000 ppmV (the detection level for the ASTM Method D-1946 is 100 ppmV). Helium monitoring was conducted using a Mark Radio detection MGD-2002 helium detector with internal pump (or equivalent). For the sampling train leak test, the helium monitor was attached to the purge tube and the T-valve opened. A positive reading of helium by the detector indicated the presence of helium inside the sample train and, therefore, a leak in the sample train. If helium is detected, all connections in the sample train were tightened and the leak test repeated until no helium was detected. It is noteworthy, that SG-2 contained 4.2% helium according to the analytical laboratory. Therefore, a leak did occur in this Summa canister; however according to CAL EPA DTSC acceptable Helium leakage is up to 10%, therefore results of this sample are valid.
- The vapor sample was then collected by opening the Summa canister and allowing the vapor to fill the canister until the vacuum pressure in the canister reached approximately 20 percent of initial (approximately 5 to 6 inched mercury). The flow controller was used so that the Summa Canister filled slowly (200 ml per minute or less) to insure a representative soil vapor sample. Prior to, at start time, and during sampling, periodic vacuum measurements were recorded on a field data sheet, and initial and final vacuum pressures were noted on a chain-of-custody records.
- The vapor samples (filled Summa canisters) were secured and transported to McCampbell Analytical Laboratories, Inc. a certified analytical laboratory, under formal chain-of-custody.
- The three soil gas samples were analyzed for TPH-G, BTEX, and Naphthalene using USEPA Method TO-15, and for fixed gases (including oxygen, carbon dioxide, nitrogen, and helium) using ASTM Method D1946-90. These data are presented in Table 4.

Grab groundwater samples from GW-1, GW-2, and GW-3 showed respective TPHg concentrations of 42,000 ug/L, 21,000 ug/L, and 7,800 ug/L, and respective benzene concentrations of 110 ug/L, 39 ug/L, and <5 ug/L. Respective naphthalene concentrations in GW-1, GW-2, and GW-3 grab groundwater samples were 2,300 ug/L, 490 ug/L, and 190 ug/L. Since groundwater is present below 15 feet bgs and is not used on the site, the direct exposure and ingestion receptor scenarios are not applicable. However, since the benzene concentrations in GW-1 and GW-2 and the naphthalene concentrations in all three grab groundwater samples exceed the Groundwater to Vapor Intrusion ESLs (deep groundwater, fine-coarse grained soils), the groundwater to vapor intrusion exposure pathway is potentially complete for onsite receptors.

Soil gas samples from SG-1, SG-2, and SG-3 showed respective TPHg concentrations of 150,000 ug/m³, 1,900,000 ug/m³, and 2,700,000 ug/m³, and respective benzene concentrations of 39 ug/m³, 450 ug/m³, and <160 ug/m³. The benzene concentration for SG-2 (450 ug/m³), located on the east end of the site, is above the Sub-slab/Soil Gas residential land use ESL for benzene of 48 ug/m³. This indicates a potential indoor vapor intrusion exposure risk relative to benzene if mitigation measures are not implemented during construction of the planned residential development. It is noteworthy, that the planned site development will include the installation of a sub-slab depressurization system (SSDS) designed to fully mitigate any and all potential vapor intrusion concerns. A brief description of the planned SSDS is included in Section 7.0 of this report. All activities surrounding SSDS installation will be conducted under the supervision of a certified vapor engineer who has been qualified by the manufacturer of the product to install their product.

Soil gas samples from SG-1, SG-2, and SG-3 showed respective methane concentrations of 0.50 percent (%), 21%, and 23%. These methane impacts could have resulted from either: (1) breakdown of residual hydrocarbons in soil; and/or (2) biogenic activity in shallow organic-rich Bay Mud silts and clays. The fact that the SG-1 soil gas sample, collected at 16 feet in depth in non-Bay Mud soils, showed low methane, whereas samples SG-2 and SG-3, collected in Bay Mud soils, showed elevated methane, would suggest a natural, biogenic origin related to Bay Mud soils. Potential explosive hazards associated with these shallow soil gas methane impacts will be mitigated by the planned vapor barrier/venting system.

Due to the presence of elevated methane in shallow soil gas samples SG-2 and SG-3, Alameda County Environmental Health requested in a meeting on April 6, 2016 that three additional borings be drilled in the immediate vicinity of SG-2 and SG-3. The purpose of these borings was to determine whether or not a shallow hydrocarbon source exists, which could have resulted in the elevated methane vapor impacts at SG-2 and SG-3. Thus, these borings were to be drilled down to approximately 16 feet in depth, and soil samples were to be collected at approximately five-foot intervals would be analyzed for hydrocarbon constituents.

6.2 ASI's Investigation

In May 2016, Aquifer Sciences, Inc. (ASI) drilled and sampled three soil borings, AS-1, AS-2, and

AS-3, adjacent to the previous soil gas sample locations SG-2 and SG-3. A total of twelve (12) soil samples were collected from the borings for total petroleum hydrocarbons quantified as gasoline (TPH-gasoline), benzene, toluene, ethylbenzene, and xylenes (BTEX) analysis by EPA Method 8021B and 8015B.

Soil samples from borings AS-1 and AS-2 showed no significant detections of hydrocarbons in soil samples from 5.0 feet to 18 feet in depth. Soil samples collected at 7 feet, 10 feet 14 feet, and 16 feet bgs from boring AS-3, located adjacent to previous Gribi boring/sample locations GW-3 and SG-3, showed respective TPHg concentrations of 90 mg/kg, 550 mg/kg, 13 mg/kg, and 690 mg/kg. Samples from 7 feet to 14 feet bgs showed no significant detections of BTEX constituents, and the soil sample from 16 feet bgs showed 2.4 mg/kg of benzene, 24 mg/kg of toluene, 17 mg/kg of ethylbenzene, and 94 mg/kg of xylenes. These concentrations are relatively low and certainly do not indicate widespread hydrocarbon release at shallow depth beneath the investigated area.

7.0 PLANNED DEVELOPMENT VAPOR MITIGATION MEASURES

The Site comprises an approximately 8,000-square foot parcel on the southwest corner of West MacArthur Boulevard and Webster Street. The planned Site development will consist of a five-story apartment building with approximately 16 living units. The building will include a concrete-encased subterranean parking and storage basement on the west side of the building. The ground floor will include parking over the basement area on the west side and concrete-floored commercial use on the east side of the building. The second through fifth floors will include residential apartments. An elevator shaft will extend from the basement up to the fifth floor. Copies of portions of planned development drawings are included in Tab Number 2.

In order to mitigate possible vapor intrusion into the Site building, a passive sub-slab depressurization system (SSDS) and vapor barrier will be installed under the planned commercial space (approximately 3,000 square feet) on the east side of the building, to include the elevator pit area. The recommended area for the vapor barrier and passive venting system is shown on Figure 3.

Prior to installation, vapor mitigation system design plans and specifications will be prepared by a qualified California-licensed civil and geotechnical professional engineer and will be submitted to ACEH for approval. In addition, a Site Mitigation Risk Plan will be submitted, which describes operation and maintenance activities to be conducted for the SSDS and vapor barrier to insure system integrity throughout the life of the Site apartment building.

8.0 HUMAN HEALTH RISK ASSESSMENT

This section provides an evaluation of potential exposure pathways, comparison of contaminants of potential concern (COPC) with regulatory screening levels, and calculation of site-specific risk levels based on COPC data. These are presented in the following sections:

- 8.1 Potential Exposure Pathways
- 8.2 Comparison of COPC Concentrations with ESLs
- 8.3 Quantitative Risk Analysis

Please note that this HHRA has been conducted without taking into account the planned SSDS mitigative measures for the site development. Based on the results of this HHRA and our understanding of the planned SSDS mitigation measures, we believe that, once implemented, actual risk levels for future human receptors will be significantly below allowable risk levels (one in one million for Carcinogenic Risk and 1.0 Hazard Index for non-carcinogenic risk).

8.1 Potential Exposure Pathways

ARS conducted a qualitative evaluation of potential exposure pathways relative to the planned residential development. Results of this preliminary evaluation of all potential exposure pathways. Note that, in conducting this evaluation, we have generally tried to use current, and not historic (greater than 10 years old), data.

Exposure Pathway	Complete?	Risk Level	Discussion
Air Exposure Pathway			
Surface soil volatilization to ambient air	Possible	Low	No shallow soil BTEX detections.
Subsurface soil volatilization to ambient air	Possible	Low	No significant deep soil BTEX detections.
Subsurface soil volatilization to enclosed space	Possible	Low	No shallow soil BTEX detections above 10 ft bgs.
Groundwater volatilization to ambient air	Possible	Low	Possible BTEX volatilization to Commercial space of Site building.
Groundwater volatilization to enclosed space	Possible	Low to Moderate	Possible BTEX volatilization to Commercial space of Site building.
Soil Exposure Pathway			
Dermal contact/ingestion of surface soils	Possible	Low	Construction worker only; no significant shallow soil hydrocarbon impacts.
Dermal contact/ingestion of subsurface soils	Possible	Low	Construction worker only; soil TPHg/BTEX impacts generally below direct exposure ESLs. Building foundation

Exposure Pathway	Complete?	Risk Level	Discussion
			would not be deeper than 3.5 ft. bgs.
Groundwater Exposure Pathway			
Soil leaching to groundwater, ingestion	No	None	No onsite groundwater use.
Dissolved/free phase groundwater ingestion	No	None	No onsite groundwater use.
Surface Water Exposure Pathway			
Soil leaching to surface water	No	None	No nearby surface water bodies.
Groundwater plume discharge to surface water	No	None	No nearby surface water bodies.

As the table above illustrates, possible complete exposure pathways exist relative to the air exposure (volatilization to ambient and enclosed air from soil and groundwater) and soil exposure (direct exposure to soil) pathways. The potential risks associated with ambient air exposure, either from soil or groundwater exposure, is expected to be low. The potential risks associated with enclosed air exposure, primarily from groundwater volatilization, are expected to be low to moderate, given the somewhat elevated benzene, ethylbenzene, and naphthalene soil gas concentrations at SG-2. Potential direct exposure to hydrocarbon-impacted soils is possible during construction; however, the areas with identified soil hydrocarbon impacts are relatively small and are present at depths greater than 10 feet bgs and building foundation structural members would not infringe upon soil beneath 3.5 ft. bgs.

In summary, the primary potential environmental receptors relative to the planned residential development are: (1) Potential direct exposure to hydrocarbon-impacted soils during construction related activities; and (2) Potential exposure of residential apartment building occupants to indoor air with volatile hydrocarbons.

Note that the above receptor pathway evaluation does not specifically take into account possible methane explosion hazards. This is because, while elevated methane concentrations are present in shallow soil gas beneath the Site, the evaluation of associated flash risk is difficult because of other conditions (rich oxygen environment and an ignition source) which are necessary for a flash. Note that the planned SSDS mitigative measures are expected to fully mitigate this risk.

8.3 Comparison of COPC Concentrations with ESLs

Contaminants of Potential Concern (COPCs) identified in soil, groundwater, and soil gas include gasoline-range petroleum hydrocarbons. Specific COPCs, maximum concentrations, and Environmental Screening Levels for residential land use are summarized as follows:

COPC	Soil (n	ng/kg)	GW (1	ug/L)	Soil Ga	is (ug/m³)
COPC	Max Conc.	ESL	Max Conc.	ESL	Max Conc.	ESL
TPHg	690	740	42,000	NL	2,700,000	NL
В	2.4	0.23	110	30	450	48
T	24	970	540	100,000	210	160,000
E	17	5.1	2,600	370	360	560
X	94	560	4,800	38,000	1,100	52,000
N	NA	33	2,300	180	<530	41
Methane					23%	5-15% (LEL)
						>17% (UEL)

TPHg = Total Petroleum Hydrocarbons as Gasoline

B = Benzene

T = Toluene

E = Ethylbenzene

X = Xylenes

N = Naphthalene

mg/kg = Milligrams per kilogram

ug/L = Micrograms per liter

ug/m³ = Micrograms per cubic meter

Max. Conc. = Maximum concentration

NA = Not analyzed for this analyte

ESL = Environmental Screening Level (San Francisco Bay Regional Water Quality Control Board, February 2016) Soil = Table S-1, Soil Direct Exposure (residential)/Leaching to Groundwater;

Groundwater = Table GW-4, Groundwater Vapor Intrusion (deep, fine-course, residential);

Soil Gas = Table SG-1, Subslab/Soil Gas Vapor Intrusion (residential)

(A) = Direct Exposure ESL/Leaching to Groundwater ESL

NL = Not listed.

<530 = Not detected above the expressed value.

Shaded = Exceeds ESL.

As summarized above, maximum soil concentrations for benzene and ethylbenzene exceed direct exposure ESLs; however, as summarized in Section 8.1, soil direct exposure is limited to the construction worker scenario and the exposure risk is expected to be low due to the lack of shallow soil impacts.

Groundwater concentrations for benzene, ethylbenzene, and naphthalene exceed the residential vapor intrusion ESL for deep groundwater and fine-course soils. However, the groundwater sample with ESL exceedances (GW-1) was collected at the same location as a soil gas sample (SG-1) with hydrocarbon concentrations that did not exceed vapor intrusion ESLs. Since the groundwater ESLs for vapor intrusion rely on a greater number of risk model assumptions (default depth to water, soil permeability, etc.), it is more than likely that soil gas sample results provide a more accurate measure of vapor intrusion risk than the groundwater-to-vapor-intrusion ESLs.

The maximum soil gas concentration for benzene exceeds the residential vapor intrusion ESL, and the maximum methane concentration exceeds both the lower explosive limit (LEL) and the upper explosive limit (UEL). However, as noted in Section 8.1, the planned SSDS mitigative measures will reduce risk relative to these potential issues of concern. Note that the respective soil gas TPHg concentrations for SG-1, SG-2, and SG-3 of 150,000 ug/m³, 1,900,000 ug/m³, and 2,700,000 ug/m³ are above the soil gas odor nuisance ESL of 50,000 ug/m³. However, these odor nuisance concerns will be adequately addressed by the planned SSDS mitigative measures.

8.3 Quantitative Risk Analysis

Quantitative, site-specific risk analyses were conducted using two methods: (1) Risk modelling using soil gas data; and (2) Risk modelling using groundwater data. These calculations were accomplished using California Department of Toxic Substances Control (DTSC), Office of Human and Ecological Risk Office (HERO) "Screening-Level Model for Soil Gas Contamination" (updated December 2014), and "Screening-Level Model for Groundwater Contamination" (updated December 2014). These spreadsheet models were used in conjunction with DTSC's "Guidance for Evaluation & Mitigation of Subsurface Vapor Intrusion to Indoor Air" (October 2011) and USEPA's "User's Guide for Evaluating Subsurface Vapor Intrusion into Buildings" (February 2004). Standard and site-specific models parameters used for both models are included in Table 5. Model risk analyses are presented in the following sections:

- 8.3.1 Risk Analysis Using Soil Gas Data
- 8.3.2 Risk Analysis Using Groundwater Data

As previously noted in this report, it is likely that risk analysis using Site soil gas data model, rather than groundwater data, will provide a more accurate measure of vapor intrusion risk due to the smaller number of assumptions used in the soil gas data risk model.

Note also that the risk analyses reported herein were conducted assuming no SSDS mitigative measures. The planned SSDS mitigative measures will be designed by qualified professionals to sufficiently mitigate any and all potential vapor intrusion to indoor air risks reported herein.

8.3.1 Risk Analysis Using Soil Gas Data

The HERO soil gas and groundwater vapor intrusion models represent DTSC's versions of a USEPA vapor intrusion spreadsheet model that incorporated the Johnson and Ettinger (J&E) model (1991) and added a human health risk component which allowed for the calculation of risk associated with inhalation of specific contaminants. For the HERO soil gas spreadsheet model, the following most elevated concentrations for each COPC input values were entered. the Model input parameters and backup calculations for every COPC are enclosed in Tab Number 1:

- Chemicals modeled: BTEX (naphthalene soil gas = ND)
- Soil Gas Concentrations:

```
Benzene = 450 \text{ ug/m}^3 \text{ (SG-2)}

Toluene = 210 \text{ ug/m}^3 \text{ (SG-1)}

Ethylbenzene = 360 \text{ ug/m}^3 \text{ (SG-1)}

Xylenes = 1,100 \text{ ug/m}^3 \text{ (SG-1)}
```

• Depth below grade to bottom of enclosed space floor: 15 cm

• Vadose zone SCS soil type: CL (clay, based on soil boring logs)

Results of the **Soil Gas** to vapor intrusion model risk calculations are summarized in Table 6. Using the above input values, the total (additive) Excess Lifetime Cancer Risk (ELCR) and Hazard Index (HI) were:

- Residential Exposure Scenario: ELCR = 6.5x10⁻⁶; HI = 0.46
- Commercial Exposure Scenario: ELCR = 7.0×10^{-7} ; HI = 0.53.

These risk calculations would apply to both the at-grade portion of the planned Site residential building and the elevator pit area (at 15 feet bgs), since soil gas samples were collected beneath the elevator pit depth (SG-1 at about 16 feet bgs) and at about 5.5 (168 cm) feet below surface grade (SG-2 and SG-3).

8.3.2 Risk Analysis Using Groundwater Data

The HERO groundwater vapor intrusion model allows for the inputting of site-specific groundwater depths. Thus, since groundwater depths relative to the elevator pit depth and surface grade are different, separate model risk calculations were conducted for elevator pit receptors and for at-grade vapor intrusion receptors. For the HERO groundwater gas spreadsheet model, the following input values were entered:

- Chemicals modeled: Benzene, Ethylbenzene, Naphthalene which were in excess of their respective Residential ESL levels;
- Most elevated Groundwater Concentrations levels were selected:

```
Benzene = 110 ug/L (GW-1)
Ethylbenzene = 2,600 ug/L (GW-1)
Naphthalene = 2,300 ug/L (GW-1)
```

- Depth below grade to bottom of enclosed space floor: 15 cm
- Depth below grade to water table: Elevator Pit = 91 cm (3 feet); At Grade = 518 cm (17 feet)
- Vadose zone SCS soil type: CL (clay, based on soil boring logs)

Results of the groundwater to vapor intrusion model risk calculations are summarized in Table 7. Using the above input values, the total (additive) Excess Lifetime Cancer Risk (ELCR) and Hazard Index (HI) for elevator pit receptors and at-grade receptors were:

- Residential Exposure Scenario-Elevator Pit Receptors: ELCR = 3.89x10⁻⁵; HI = 0.68
- Residential Exposure Scenario-At Grade Receptors: ELCR = 3.6x10⁻⁵; HI = 0.61,

8.3.3 Model Uncertainties

There is some uncertainty associated with estimating potential vapor intrusion to indoor air exposure risks using soil gas and/or groundwater data. Multiple factors contribute to uncertainty in the evaluations, as described below.

- The HERO vapor intrusion models do not account for biodegradation or any decrease in concentration over time and, therefore, the models are likely to overestimate potential risks for biodegradable petroleum hydrocarbons. During the sampling event, oxygen was detected in soil vapor samples from the Site at concentrations ranging from 0.76% to 11%. This, together with relatively low BTEX concentrations at the Site, would indicate the potential for significant bioattenuation over time.
- In addition to biodegradation, several other factors such as an intact foundation and/or low-permeability soils may cause the vapor intrusion pathway to be incomplete.
- The HERO models makes several assumptions in estimating indoor air concentrations and exposure risks. For instance, the models assume homogeneous soils and homogeneous distribution of contaminants (in this case, maximum contaminant concentrations) over the entire area of concern. This is clearly not the case on the Site.
- The use of the maximum detected soil vapor concentrations as the EPCs for estimation of ELCR/HI is a conservative assumption, intended to represent the worst-case exposure scenario in which the maximum detected soil vapor concentration represents the homogeneous concentration in soil vapor.

9.0 CONCLUSIONS

In accordance with ACEH directives, ARS has completed this HHRA for the Site. The HHRA included:

- (1) A qualitative evaluation of potential exposure pathways;
- (2) A comparison of contaminants of potential concern (COPC) with appropriate regulatory screening levels; and
- (3) Calculation of site-specific risk levels based on Site COPC data.

The preliminary exposure pathway evaluation identified two potential exposure pathways relative to the planned residential development:

- Potential direct exposure to hydrocarbon-impacted soils during construction related activities;
 and
- Potential residential indoor air volatile hydrocarbon exposure for apartment building occupants.

Using these potential exposure pathways, maximum recent soil, groundwater, and soil gas concentrations were compared to appropriate Environmental Screening Levels (ESLs). For soil, maximum soil

concentrations for benzene and ethylbenzene exceed direct exposure ESLs; however, soil direct exposure is limited to the construction worker scenario and the exposure risk is expected to be low due to the lack of shallow soil impacts. For groundwater, maximum Site groundwater concentrations for benzene, ethylbenzene, and naphthalene exceed the residential vapor intrusion ESL for deep groundwater and fine-coarse soils; however, co-located soil gas samples, which are more accurate for vapor intrusion assessment, did not show concomitant hydrocarbon concentrations above vapor intrusion ESLs. For soil gas, the maximum soil gas concentration for benzene exceeds the residential vapor intrusion ESL, and the maximum methane concentration exceeds both the lower explosive limit (LEL) and the upper explosive limit (UEL). However, the planned SSDS mitigative measures will reduce risk relative to these potential adverse risks.

Quantitative, site-specific risk analyses were conducted using two methods: (1) Risk modelling using soil gas data; and (2) Risk modelling using groundwater data. These calculations were accomplished using California Department of Toxic Substances Control (DTSC), Human and Ecological Risk Office (HERO) "Screening-Level Model for Soil Gas Contamination" (updated December 2014), and "Screening-Level Model for Groundwater Contamination" (updated December 2014). Using site-specific parameters for maximum soil gas concentrations and site-specific soil type, the soil gas to vapor intrusion model yielded the following the total (additive) excess lifetime cancer risk (ELCR) and hazard index (HI) values:

- Residential Exposure Scenario: ELCR = 6.5x10⁻⁶; HI = 0.46
- Commercial Exposure Scenario: $ELCR = 7.0 \times 10^{-7}$; HI = 0.53,

These risk calculations would apply to both the at-grade portion of the planned Site residential building and the elevator pit area (at 15 feet bgs), since soil gas samples were collected beneath the elevator pit depth (SG-1 at about 16 feet bgs) and at about 5 feet below surface grade (SG-2 and SG-3).

The HERO groundwater vapor intrusion model allows for the inputting of site-specific groundwater depths. Thus, since groundwater depths relative to the elevator pit depth and surface grade are different, separate model risk calculations were conducted for the elevator pit and for at-grade vapor intrusion receptors. Using site-specific parameters for maximum groundwater concentrations, depths to groundwater, and soil type, the groundwater to vapor intrusion model yielded the following the total (additive) excess lifetime cancer risk (ELCR) and hazard index (HI) values for elevator pit receptors and at-grade receptors:

- Residential Exposure Scenario-Elevator Pit Receptors: ELCR = 3.89x10⁻⁵; HI = 0.68;
- Residential Exposure Scenario-At Grade Receptors: ELCR = 3.6x10⁻⁵; HI = 0.61;

The results of this quantitative vapor intrusion risk evaluation are based on the assumption that the soil gas and groundwater hydrocarbon concentrations will remain constant for the assumed exposure duration of 25 years, thus, likely overestimating the risk to planned building occupants.

Note that the risk analyses reported herein were conducted simply to show what the current residential land use might be in the absence of the planned SSDS mitigative measures. However, the planned SSDS mitigative measures will be designed by qualified licensed professional engineers to sufficiently mitigate any and all potential Volatile Organic Compounds (VOCs) vapor intrusion to indoor air risks relative to the planned residential development at the site.

10.0 RECOMMENDATIONS

Based on the findings and conclusions presented herein, as well as the uncertainties associated with the modeling, ARS, Inc. recommends that in order to mitigate the threat from future VOC vapor intrusion:

- Installation of a vapor barrier against VOCs beneath structural foundation members of the commercial area at the Site and the elevator pit area at the Site;
- Installation of a passive sub-slab depressurization and passive soil venting system, including collection pipes, and subsequent vapor sampling; and;
- Installation of an engineered exhaust fan system within the new garage to remove any fugitive emissions.

11.0 REFERENCES

San Francisco Regional Water Quality Control Board. Feb 2016 Update to Environmental Screening Levels. California Regional Water Quality Control Board, San Francisco Bay Region.

California Environmental Protection Agency. 2004. USEPA Advanced Version (3.1) of the Johnson and Ettinger Model. February 2004. Model adjusted to use Cal EPA DTSC's recommended input parameters (from Cal EPA 2011) and most updated toxicity information.

Final Guidance for the Evaluation and Mitigation of Subsurface Vapor Intrusion to Indoor Air (Vapor Intrusion Guidance). Department of Toxic Substances Control. October 2011.

Advisory – Active Soil Gas Investigations. Jointly issued by the Regional Water Quality Control Board, Los Angeles Region, San Francisco Region, and the Department of Toxic Substances Control. April 2012.

United States Environmental Protection Agency. 1991. *Role of the Baseline Risk Assessment in Superfund Remedy Selection Decisions*. USEPA OSWER Directive #9355.0-30. April.

Use of Monitored Natural Attenuation at Superfund, RCRA Corrective Action and Underground Storage Tank Sites. USEPA OSWER Directive 9200.4-17. Interim Final. December 1, 1997.

User's Guide for the Evaluating Subsurface Vapor Intrusion into Buildings. USEPA Office of Emergency and Remedial Response. Revised February 22, 2004.

Delta. 2009. Site Investigation Report, 76 Service Station No. 1156, 4276 MacArthur Boulevard, Oakland, California, dated September 8, 2009. Prepared for ConocoPhillips Company, 76 Broadway, Sacramento, California. Prepared by Delta Consultants, 11050 White Rock Road, Suite 110, Rancho Cordova, California, 95670.

AECOM 2013. Report on Limited Site Assessment, dated April 20, 2013. Submitted to ACEH.

Evaluation of Biogenic Methane, prepared by Department of Toxic Substances Control March 28, 2012a

TABLES

USEPA SG-SCREEN Version 2.0, 04/2003 DTSC Modification December 2014

Department of Toxic Substances Control Vapor Intrusion Screening Model - Soil Gas

DATA ENTRY SHEET

Scenario: Commercial Methylcyclohexane Chemical:

Cancer

Risk

NA.

Noncancer

Hazard

5.2E-01

			Gas Concentratio	n Data				Resul	ts Summary
Reset to Defaults	Chemical CAS No. (numbers only, no dashes)	Soil gas conc., C _q (µg/m³)	OR	ENTER Soil gas conc., Cn (ppmv)	Chemical		Soil Gas Conc. A (µg/m³) 2.70E+06	ttenuation Factor (unitless) 5.9E-04	Indoor Air Cond (µg/m³) 1.6E+03
	108872	2.70E+06			Methylcyclohe	xane			
	ENTER	ENTER	ENTER		ESSAGE: See VLC	OKUP table comments on icity criteria for this chemica ENTER			
MORE V	Depth below grade to bottom of enclosed space floor, L _F (15 or 200 cm)	Soil gas sampling depth below grade, L _s (cm)	Average soil temperature, T _S (°C)	Vadose zone SCS soil type (used to estimate soil vapor permeability)	OR	User-defined vadose zone soil vapor permeability, k _v (cm²)			
	15	168	24			2.00E-02			
MORE V	ENTER Vandose zone SCS soil type	ENTER Vadose zone soil dry	ENTER Vadose zone soil total porosity,	ENTER Vadose zone soil water-filled porosity,		ENTER Average vapor flow rate into bldg.			
	Lookup Soil Parameters	bulk density, ρ _b ^A (g/cm ³)	n ^V (unitless)	θ _w ^V (cm ³ /cm ³)		Q _{sol} (L/m)	aie)		
		ρ_b^A	n ^v	θ _w [∨]		Q _{sod}]		
MORE ¥	Parameters	ρ _b ^A (g/cm ³)	n ^V (unitless)	θ _w ^V (cm ³ /cm ³)	ENTER Exposure	Q _{sol} (L/m)]		

(days/yr)

250

Commercial

END

(yrs)

70

(yrs)

25

(yrs)

25

(hrs/day)

8

(NEW)

(hour)⁻¹

1

(NEW)

CHEMICAL PROPERTIES SHEET

Methylcyclohexane

Diffusivity in air, D _a (cm ² /s)	Diffusivity in water, D _w (cm ² /s)	Henry's law constant at reference temperature, H (atm-m³/mol)	Henry's law constant reference temperature, T _R (°C)	Enthalpy of vaporization at the normal boiling point, $\Delta H_{v,b}$ (cal/mol)	Normal boiling point, T _B (°K)	Critical temperature, T _C (°K)	Unit risk factor, URF (µg/m³) ⁻¹	Reference conc., RfC (mg/m³)	Molecular weight, MW (g/mol)
7.35E-02	8.52E-06	1.03E-01	25	7,474	373.90	572.20	0.0E+00	7.0E-01	98.21

END

INTERMEDIATE CALCULATIONS SHEET

Scenario: Commercial

Chemical: Methylcyclohexane

Source- building separation, L _T (cm)	Vadose zone soil air-filled porosity, θ_a^V (cm³/cm³)	Vadose zone effective total fluid saturation, S _{te} (cm ³ /cm ³)	Vadose zone soil intrinsic permeability, k _i (cm ²)	Vadose zone soil relative air permeability, k _{rg} (cm ²)	Vadose zone soil effective vapor permeability, k_v (cm^2)	Floor- wall seam perimeter, X _{crack} (cm)	Soil gas conc. (μg/m³)	Bldg, ventilation rate, Q _{building} (cm ³ /s)
153	0.321	#N/A	#N/A	#N/A	2.00E-02	4,000	2.70E+06	6.78E+04
Area of enclosed space below grade, A _B (cm ²)	Crack- to-total area ratio, η (unitless)	Crack depth below grade, Z _{crack} (cm)	Enthalpy of vaporization at ave. soil temperature, $\Delta H_{v,TS}$. (cal/mol)	Henry's law constant at ave. soil temperature, H _{TS} (atm-m³/mol)	Henry's law constant at ave. soil temperature, H'TS (unitless)	Vapor viscosity at ave. soil temperature, μ _{TS} (g/cm-s)	Vadose zone effective diffusion coefficient, $D^{eff}_{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	Diffusion path length, L _d (cm)
1.00E+06	5.00E-03	15	8,428	9.80E-02	4.02E+00	1.80E-04	1.19E-02	153
Convection path length, L _p (cm)	Source vapor conc., C _{source} (µg/m³)	Crack radius, r _{crack} (cm)	Average vapor flow rate into bldg., Q_{soil} (cm ³ /s)	Crack effective diffusion coefficient, D ^{creck} (cm ² /s)	Area of crack, A _{crack} (cm ²)	Exponent of equivalent foundation Peclet number, exp(Pe ^t) (unitless)	Infinite source indoor attenuation coefficient, α (unitless)	Infinite source bldg. conc., C _{building} (µg/m ³)
15	2.70E+06	1.25	8.33E+01	1.19E-02	5.00E+03	1.24E+06	5.93E-04	1.60E+03

Unit
risk Reference
factor, conc.,
URF RfC
(μg/m³)-1 (mg/m³)

NA 7.0E-01

END

Last Update: December 2014 DTSC Human and Ecological Risk Office

RESULTS SHEET

Scenario: Commercial

Chemical: Methylcyclohexane

INCREMENTAL RISK CALCULATIONS:

Incremental	Hazard
risk from	quotient
vapor	from vapor
intrusion to	intrusion to
indoor air,	indoor air,
carcinogen	noncarcinogen
(unitless)	(unitless)

5.2E-01

MESSAGE SUMMARY BELOW:

NA

END

USEPA SG-SCREEN Version 2.0, 04/2003 DTSC Modification December 2014

Department of Toxic Substances Control Vapor Intrusion Screening Model - Soil Gas

DATA ENTRY SHEET

Scenario: Commercial Chemical: Benzene

Cancer

Risk

7.0E-07

Noncancer

Hazard

2.2E-02

Reset to Defaults Soil Gas Concentration Data Soil Gas Conc. Attenuation Factor Indoor Air Core (ug/m²)										
Reset to Defaults			Soil	Gas Concentratio	n Data				Result	s Summary
Defaults	Poset to	ENTER						Soil Gas Conc		
Chemical GAS No Conc.			Soil		Soil					
CAS No. Conc. C	Delaults	Chemical	gas	OR	gas					
MORE Hold Solid Soli		CAS No.	conc.,		conc			4.502.102	0.52-04	2.31-01
NORE Soil pas Parameters		(numbers only,	Co							
## Averaging Parameters ## Averaging ## Av		no dashes)				Chamical				
MORE MORE Depth			(1-9)		(ppniv)	Chemical			= 1	
MORE MORE Depth		71/32	4.50E±02							
MORE		7.1402	4.50L102				OVI ID Jahla	Mantalana Ser		
MORE MORE Depth Delow grade Depth Soil gas Soil type SCS Soil type Scil vapor Scil vapor Scil vapor Scil vapor Depth Soil vapor Depth					ar	nd/or toxicity criteria	for this chemical.	chemical properties		
MORE			ENTER	ENTER	ENTER			1		
to bottom of enclosed space floor, L _F L _S T _S T _S Soil vadose zone soil vapor permeability) 15 16B 16.67 ENTER Vandose zone SCS vadose zone soil vapor permeability) 15 16B 16.67 ENTER Vadose zone SCS vadose zone soil vapor permeability) (cm²) 15 16B 16.67 ENTER Vadose zone SCS vadose zone vadose zone vadose zone SCS soil dry soil total soil vapor permeability) (cm²) ENTER Vadose zone SCS soil dry soil total soil vapor soil vapor permeability) (cm²) ENTER Vadose zone SCS vadose zone vadose zone vadose zone SCS vadose zone vadose zone vadose zone SCS vadose zone va	MODE				4.5					
of enclosed space floor, below grade, temperature, L _F L _S T _S soil vapor permeability. 15 168 16.67 2.00E-02 MORE ENTER ENTER Vadose zone Va							User-defined			
Space floor, Le Ls Ts Soil vapor (used to estimate soil vapor permeability, k, (cm²) 15 168 16.67 2.00E-02 ENTER Vandose zone SCS Soil type bulk density, porosity,	-									
L ₁ L ₂ T _S soil vapor k _V (cm²) 15				4, 4 44						
15 168 16.67						OR				
MORE Wandose zone SCS Soil type Soil type Soil density, porosity, porosity, porosity, (g/cm²) (unitless) (cm²/cm²) CL MORE Wandose zone SCS Soil type So			-		soil vapor					
MORE Vandose zone SCS soil dry bulk density, porosity, lountless) Lookup Soil Parameters (g/cm²) (unitless) MORE ENTER Vadose zone soil total porosity, bulk density, porosity, (g/cm²) (unitless) CL 1.66 0.375 0.054 ENTER Vadose zone soil water-filled porosity, (Leave blank to calculate) (g/cm²) (unitless) CL 1.66 0.375 0.054 ENTER ENTER ENTER ENTER ENTER ENTER ENTER Averaging time for carcinogens, duration, frequency, Time Rate Lookup Receptor Parameters AT C AT NC ED EF ET ACH (yrs) (yrs) (yrs) (days/yr) (hrs/day) (hour)-1 Commercial 70 25 25 25 250 8 1		(15 or 200 cm)	(cm)	(°C)	permeability)		(cm ²)			
MORE Vandose zone SCS soil dry bulk density, porosity, lountless) Lookup Soil Parameters MORE Lookup Soil Parameters MORE Lookup Soil Parameters (g/cm³) Lookup Receptor Parameters Loo			100	72.1]		
MORE Vandose zone SCS Soil dry Soil total Soil dry Soil dr		375		16.67			2.00F-02			
MORE Lookup Receptor Parameters CL 1.66 0.375 0.054 5 ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER ENTER Exposure Exposure Exposure Exposure Rate Air Exchange Rate AT _C AT _{NC} ED EF ET ACH (yrs) (yrs) (yrs) (yrs) (days/yr) (hrs/day) (hour)¹¹ Commercial 70 25 25 25 250 8 1					FAVER					
MORE ENTER ENTER ENTER ENTER ENTER Averaging Averaging time for time for Exposure Exposure Exposure Exposure Rate Lookup Receptor Parameters Lookup Receptor Parameters To AT _{NC} ED EF ET ACH (yrs) (yrs) (yrs) (yrs) (days/yr) (hrs/day) (hour) ⁻¹ Commercial To 25 25 250 8 1		ENTER Vandose zone SCS soil type Lookup Soil	ENTER Vadose zone soil dry bulk density, pb	ENTER Vadose zone soil total porosity, n ^V	Vadose zone soil water-filled porosity, θ_w^V		ENTER Average vapor flow rate into bidg (Leave blank to calcul	: late)		
ENTER Averaging Averaging time for time for Exposure Exposure Exposure Exposure Carcinogens, noncarcinogens, noncarcinogens, ED EF ET ACH (yrs) (yrs) (yrs) (days/yr) (hrs/day) (hour)*1 Commercial 70 25 25 250 8 1		ENTER Vandose zone SCS Soil type Lookup Soil Parameters	ENTER Vadose zone soil dry bulk density, pb (g/cm³)	ENTER Vadose zone soil total porosity, n ^V	Vadose zone soil water-filled porosity, θ_w^V		ENTER Average vapor flow rate into bidg (Leave blank to calcul	late)		
Averaging time for time for Exposure Exposure Exposure Air Exchange carcinogens, noncarcinogens, duration, frequency, Time Rate ATC ATNC ED EF ET ACH (yrs) (yrs) (yrs) (yrs) (days/yr) (hrs/day) (hour)-1 Commercial 70 25 25 250 8 1		ENTER Vandose zone SCS Soil type Lookup Soil Parameters	ENTER Vadose zone soil dry bulk density, pb (g/cm³)	ENTER Vadose zone soil total porosity, n ^V (unitless)	Vadose zone soil water-filled porosity, θ _w ^V (cm³/cm³)		ENTER Average vapor flow rate into bidg (Leave blank to calcul Q _{sol} (L/m)	(ate)		
Carcinogens, noncarcinogens, duration, frequency, Time Rate AT _C AT _{NC} ED EF ET ACH (yrs) (yrs) (yrs) (days/yr) (hrs/day) (hour) ⁻¹ Commercial 70 25 25 250 8 1	₩ MORE	ENTER Vandose zone SCS soil type Lookup Soil Parameters	ENTER Vadose zone soil dry bulk density, ph (g/cm³)	ENTER Vadose zone soil total porosity, n ^V (unitless)	Vadose zone soil water-filled porosity, θ_{w}^{V} (cm³/cm³)		ENTER Average vapor flow rate into bidg (Leave blank to calcul Q _{sol} (L/m)	late) =		
AT _C AT _{NC} ED EF ET ACH	₩ MORE	ENTER Vandose zone SCS soil type Lookup Soil Parameters CL ENTER Averaging	ENTER Vadose zone soil dry bulk density, ρ_b^A (g/cm³) 1.66 ENTER Averaging	ENTER Vadose zone soil total porosity, n (unitless) 0.375	Vadose zone soil water-filled porosity, θ_w^V (cm³/cm³)		ENTER Average vapor flow rate into bidg (Leave blank to calcul Qsol (L/m)	: late)		
Parameters (yrs) (yrs) (yrs) (days/yr) (hrs/day) (hour) ⁻¹ Commercial 70 25 25 250 8 1 (NEW) (NEW)	₩ MORE	ENTER Vandose zone SCS Soil type Lookup Soil Parameters CL ENTER Averaging time for	ENTER Vadose zone soil dry bulk density, ph (g/cm³) 1.66 ENTER Averaging time for	ENTER Vadose zone soil total porosity, n (unitless) 0.375 ENTER Exposure	Vadose zone soil water-filled porosity, θ_w^V (cm^3/cm^3) 0.054 ENTER Exposure	Exposure	ENTER Average vapor flow rate into bidg (Leave blank to calcul Qsoll (L/m) 5 ENTER Air Exchange	alate)		
(yrs) (yrs) (yrs) (days/yr) (hrs/day) (hour) ⁻¹ Commercial 70 25 25 250 8 1 (NEW) (NEW) (NEW) (NEW)	MORE V	ENTER Vandose zone SCS soil type Lookup Soil Parameters CL ENTER Averaging time for carcinogens,	ENTER Vadose zone soil dry bulk density, ph (g/cm³) 1.66 ENTER Averaging time for noncarcinogens,	ENTER Vadose zone soil total porosity, n ^V (unitless) 0.375 ENTER Exposure duration,	Vadose zone soil water-filled porosity, θ_w^V (cm^3/cm^3) 0.054 ENTER Exposure frequency,	Exposure Time	ENTER Average vapor flow rate into bidg (Leave blank to calcul Qsol (L/m) 5 ENTER Air Exchange Rate	late)		
(NEW) (NEW)	MORE Lookup Receptor	ENTER Vandose zone SCS soil type Lookup Soil Parameters CL ENTER Averaging time for carcinogens, ATc	ENTER Vadose zone soil dry bulk density, ph (g/cm³) 1.66 ENTER Averaging time for noncarcinogens, AT _{NC}	ENTER Vadose zone soil total porosity, n (unitless) 0.375 ENTER Exposure duration, ED	Vadose zone soil water-filled porosity, θ_w^V (cm^3/cm^3) 0.054 ENTER Exposure frequency,	Exposure Time	ENTER Average vapor flow rate into bidg (Leave blank to calcul Qsol (L/m) 5 ENTER Air Exchange Rate	late) =		
(NEW) (NEW)	MORE Lookup Receptor	ENTER Vandose zone SCS soil type Lookup Soil Parameters CL ENTER Averaging time for carcinogens, ATc	ENTER Vadose zone soil dry bulk density, ph (g/cm³) 1.66 ENTER Averaging time for noncarcinogens, AT _{NC}	ENTER Vadose zone soil total porosity, n (unitless) 0.375 ENTER Exposure duration, ED	Vadose zone soil water-filled porosity, e _w (cm³/cm³) 0.054 ENTER Exposure frequency, EF	Exposure Time ET	ENTER Average vapor flow rate into bidg (Leave blank to calcul Qsol (L/m) 5 ENTER Air Exchange Rate ACH	alate)		
	MORE Under the Lookup Receptor Parameters	ENTER Vandose zone SCS soil type Lookup Soil Parameters CL ENTER Averaging time for carcinogens, AT _C (yrs)	ENTER Vadose zone soil dry bulk density, ph (g/cm³) 1.66 ENTER Averaging time for noncarcinogens, AT _{NC} (yrs)	ENTER Vadose zone soil total porosity, n ^V (unitless) 0.375 ENTER Exposure duration, ED (yrs)	Vadose zone soil water-filled porosity, \$\theta_w^V\$ (cm³/cm³) 0.054 ENTER Exposure frequency, EF (days/yr)	Exposure Time ET (hrs/day)	ENTER Average vapor flow rate into bidg (Leave blank to calcul Qsol (L/m) 5 ENTER Air Exchange Rate ACH (hour)-1	: late)		

CHEMICAL PROPERTIES SHEET

Benzene

Diffusivity in air, D _a (cm ² /s)	Diffusivity in water, D _w (cm ² /s)	Henry's law constant at reference temperature, H (atm-m³/mol)	Henry's law constant reference temperature, T _R (°C)	Enthalpy of vaporization at the normal boiling point, ΔH _{v,b} (cal/mol)	Normal boiling point, T _B (°K)	Critical temperature, T _C (°K)	Unit risk factor, URF (μg/m³) ⁻¹	Reference conc., RfC (mg/m³)	Molecular weight, MW (g/mol)
8.95E-02	1.03E-05	5.55E-03	25	7,342	353.24	562.16	2.9E-05	3.0E-03	78.11

END

INTERMEDIATE CALCULATIONS SHEET

Scenario: Commercial

Chemical: Benzene

Source- building separation, L _T (cm)	Vadose zone soil air-filled porosity, θ_a^V (cm³/cm³)	Vadose zone effective total fluid saturation, S _{te} (cm³/cm³)	Vadose zone soil intrinsic permeability, k _i (cm ²)	Vadose zone soil relative air permeability, k _{rg} (cm ²)	Vadose zone soil effective vapor permeability, k _v (cm ²)	Floor- wall seam perimeter, X _{crack} (cm)	Soil gas conc. (µg/m³)	Bidg. ventilation rate, Q _{building} (cm ³ /s)
153	0.321	#N/A	#N/A	#N/A	2.00E-02	4,000	4.50E+02	6.78E+04
Area of enclosed space below grade, A _B (cm ²)	Crack- to-total area ratio, η (unitless)	Crack depth below grade, Z _{crack} (cm)	Enthalpy of vaporization at ave. soil temperature, $\Delta H_{v,TS}$ (cal/mol)	Henry's law constant at ave. soil temperature, H _{TS} (atm-m³/mol)	Henry's law constant at ave. soil temperature, H'TS (unitless)	Vapor viscosity at ave. soil temperature, µts (g/cm-s)	Vadose zone effective diffusion coefficient, Deff v (cm²/s)	Diffusion path length, L _d (cm)
1.00E+06	5.00E-03	15	8,054	3.76E-03	1.58E-01	1.77E-04	1.45E-02	153
Convection path length, L _p (cm)	Source vapor conc., C _{source} (µg/m ³)	Crack radius, r _{crack} (cm)	Average vapor flow rate into bldg., Q _{soil} (cm ³ /s)	Crack effective diffusion coefficient, D ^{crack} (cm ² /s)	Area of crack, A _{crack} (cm ²)	Exponent of equivalent foundation Peclet number, exp(Pe ^f) (unitless)	Infinite source indoor attenuation coefficient, α (unitless)	Infinite source bldg. conc., Chuilding (µg/m³)
15	4.50E+02	1.25	8.33E+01	1.45E-02	5.00E+03	1.00E+05	6.54E-04	2.94E-01

Unit risk Reference factor, conc., URF RfC (µg/m³)-1 (mg/m³)

END

Last Update: December 2014 DTSC Human and Ecological Risk Office

RESULTS SHEET

Scenario: Commercial Chemical: Benzene

INCREMENTAL RISK CALCULATIONS:

Incremental	Hazard
risk from	quotient
vapor	from vapor
intrusion to	intrusion to
indoor air,	indoor air,
carcinogen	noncarcinogen
(unitless)	(unitless)

2.2E-02

MESSAGE SUMMARY BELOW:

7.0E-07

END

DTSC Modification December 2014

Vapor Intrusion Screening Model - Soil Gas

DATA ENTRY SHEET

Scenario: Residential Chemical: Benzene

Results Summary

Indoor Air Conc.

(µg/m³)

5.9E-01

Cancer

Risk

6.1E-06

Noncancer

Hazard

1.9E-01

Reset to	ENTER	ENTER	Gas Concentratio	ENTER				Res Attenuation Fact
Defaults	Chemical	Soil	OR	Soil			(µg/m³)	(unitless)
	CAS No.	gas	OR	gas			4.50E+02	1.3E-03
	(numbers only	Conc.,		conc.,				
				Cg				
	no dashes)	(µg/m³)		(ppmv)	Chemical			
	71432	4.50E+02			Benzene			
					MESSAGE: See VLO	OKUP table comments on		-
	ENTER Depth	ENTER	ENTER	ENTER	roperties and/or toxi	icity criteria for this chemica ENTER	eal.	
MORE	below grade	Soil gas		Vadose zone		User-defined	h .	
4	to bottom	sampling	Average	SCS		vadose zone		
	of enclosed	depth	soil	soil type		soil vapor		
	space floor,	below grade,	temperature,	(used to estimate	OR	permeability,		
	LF	L _s	Ts	soil vapor		k,		
	(15 or 200 cm)	(cm)	(°C)	permeability)		(cm ²)		
	15	168	16.67			2.00E-02	1	
MORE 🔱	ENTER Vandose zone SCS Soil type Lookup Soil Parameters	ENTER Vadose zone soil dry bulk density, Pb (g/cm³)	ENTER Vadose zone soil total porosity, n v (unitless)	ENTER Vadose zone soil water-filled porosity, θ_{w}^{V} (cm³/cm³)		ENTER Average vapor flow rate into bldg (Leave blank to calcu Q _{soil} (L/m)		
	Vandose zone SCS soil type Lookup Soil	Vadose zone soil dry bulk density, ρ_b^A	Vadose zone soil total porosity, n ^V	Vadose zone soil water-filled porosity, θ _w ^V		Average vapor flow rate into bldg (Leave blank to calcu Q _{sol}		
	Vandose zone SCS soil type Lookup Soil Parameters	Vadose zone soil dry bulk density, ρ_b^A (g/cm³)	Vadose zone soil total porosity, n ^V (unitless)	Vadose zone soil water-filled porosity, θ _w ^V (cm³/cm³)	ENTER	Average vapor flow rate into bidg (Leave blank to calcu Q _{soil} (L/m)		
MORE	Vandose zone SCS soil type Lookup Soil Parameters SCL	Vadose zone soil dry bulk density, ρ_b^A (g/cm³) 1.66 ENTER Averaging time for	Vadose zone soil total porosity, n ^V (unitless)	Vadose zone soil water-filled porosity, θ_{w}^{V} (cm³/cm³)	ENTER Exposure	Average vapor flow rate into bldg (Leave blank to calcu Q _{soil} (L/m)		
MORE ¥	Vandose zone SCS soil type Lookup Soil Parameters SCL ENTER Averaging time for carcinogens,	Vadose zone soil dry bulk density, pb A (g/cm³) 1.66 ENTER Averaging time for noncarcinogens,	Vadose zone soil total porosity, n (unitless) 0.375 ENTER Exposure duration,	Vadose zone soil water-filled porosity, θ_w^V (cm^3/cm^3) 0.054		Average vapor flow rate into bldg (Leave blank to calcu Q _{soil} (L/m)		
MORE V	Vandose zone SCS soil type Lookup Soil Parameters SCL ENTER Averaging time for	Vadose zone soil dry bulk density, ρ_b^A (g/cm³) 1.66 ENTER Averaging time for	Vadose zone soil total porosity, n (unitless) 0.375 ENTER Exposure	Vadose zone soil water-filled porosity, θ_w^V (cm³/cm³) 0.054 ENTER Exposure	Exposure	Average vapor flow rate into bldg (Leave blank to calcu Q _{sol} (L/m) 5 ENTER Air Exchange		
MORE ¥	Vandose zone SCS soil type Lookup Soil Parameters SCL ENTER Averaging time for carcinogens,	Vadose zone soil dry bulk density, pb A (g/cm³) 1.66 ENTER Averaging time for noncarcinogens,	Vadose zone soil total porosity, n (unitless) 0.375 ENTER Exposure duration,	Vadose zone soil water-filled porosity, θ_w^V (cm^3/cm^3) 0.054 ENTER Exposure frequency,	Exposure Time	Average vapor flow rate into bidg (Leave blank to calcu Q _{sol} (L/m) 5 ENTER Air Exchange Rate		
MORE V	Vandose zone SCS soil type Lookup Soil Parameters SCL ENTER Averaging time for carcinogens, ATc	Vadose zone soil dry bulk density, pb A (g/cm³) 1.66 ENTER Averaging time for noncarcinogens, AT _{NC}	Vadose zone soil total porosity, n (unitless) 0.375 ENTER Exposure duration, ED	Vadose zone soil water-filled porosity, θ_w^V (cm³/cm³) 0.054 ENTER Exposure frequency, EF	Exposure Time ET	Average vapor flow rate into bldg (Leave blank to calcu Q _{soil} (L/m) 5 ENTER Air Exchange Rate ACH		

CHEMICAL PROPERTIES SHEET

Benzene

Diffusivity in air, D _a (cm²/s)	Diffusivity in water, D _w (cm ² /s)	Henry's law constant at reference temperature, H (atm-m³/mol)	Henry's law constant reference temperature, T _R (°C)	Enthalpy of vaporization at the normal boiling point, $\Delta H_{v,b}$ (cal/mol)	Normal boiling point, T _B (°K)	Critical temperature, T _C (°K)	Unit risk factor, URF (µg/m³) ⁻¹	Reference conc., RfC (mg/m³)	Molecular weight, MW (g/mol)
8.95E-02	1.03E-05	5.55E-03	25	7,342	353.24	562.16	2.9E-05	3.0E-03	78,11

END

INTERMEDIATE CALCULATIONS SHEET

Scenario: Residential

Chemical: Benzene

Source- building separation, L _T (cm)	Vadose zone soil air-filled porosity, θ_a^V (cm³/cm³)	Vadose zone effective total fluid saturation, S _{te} (cm³/cm³)	Vadose zone soil intrinsic permeability, k _i (cm ²)	Vadose zone soil relative air permeability, k _{rg} (cm ²)	Vadose zone soil effective vapor permeability, k _v (cm²)	Floor- wall seam perimeter, X _{crack} (cm)	Soil gas conc. (μg/m³)	Bldg. ventilation rate, Q _{building} (cm ³ /s)
153	0.321	#N/A	#N/A	#N/A	2.00E-02	4,000	4.50E+02	3.39E+04
Area of enclosed space below grade, A _B (cm ²)	Crack- to-total area ratio, η (unitless)	Crack depth below grade, Z _{crack} (cm)	Enthalpy of vaporization at ave. soil temperature, $\Delta H_{v,TS}$ (cal/mol)	Henry's law constant at ave. soil temperature, H _{TS} (atm-m³/mol)	Henry's law constant at ave. soil temperature, H'TS (unitless)	Vapor viscosity at ave. soil temperature, μ _{TS} (g/cm-s)	Vadose zone effective diffusion coefficient, D ^{eff} _V (cm ² /s)	Diffusion path length, L _d (cm)
1.00E+06	5.00E-03	15	8,054	3.76E-03	1.58E-01	1.77E-04	1.45E-02	153
Convection path length, L _p (cm)	Source vapor conc., C _{source} (µg/m³)	Crack radius, r _{crack} (cm)	Average vapor flow rate into bldg., Q _{soil} (cm ³ /s)	Crack effective diffusion coefficient, D ^{crack} (cm ² /s)	Area of crack, A _{crack} (cm ²)	Exponent of equivalent foundation Peclet number, exp(Pef) (unitless)	Infinite source indoor attenuation coefficient, α (unitless)	Infinite source bldg. conc., C _{building} (µg/m³)
15	4.50E+02	1.25	8.33E+01	1.45E-02	5.00E+03	1.00E+05	1.31E-03	5.88E-01

Unit risk Reference factor, conc., URF RfC (µg/m³)-1 (mg/m³)

2.9E-05 3.0E-03

END

Last Update: December 2014 DTSC Human and Ecological Risk Office

RESULTS SHEET

Scenario: Residential Chemical: Benzene

INCREMENTAL RISK CALCULATIONS:

Hazard
quotient
from vapor
intrusion to
indoor air,
noncarcinogen
(unitless)
1.9E-01

MESSAGE SUMMARY BELOW:

END

USEPA SG-SCREEN Version 2.0, 04/2003 DTSC Modification December 2014

Department of Toxic Substances Control Vapor Intrusion Screening Model - Soil Gas

DATA ENTRY SHEET

Scenario: Residential Chemical: Ethylbenzene

Cancer

Risk

4.0E-07

Noncancer

Hazard

4.3E-04

		Soil	Gas Concentration	n Data				Resul	ts Summary
Reset to Defaults	CAS No. (numbers only, no dashes)	ENTER Soil gas conc., C _q (µg/m³)	OR	Soil gas conc., C _g (ppmv)	Chemical		Soil Gas Conc. (μg/m³) 3.90E+02	Attenuation Factor (unitless) 1.1E-03	Indoor Air Conc (µg/m³) 4.5E-01
			1					_	
	100414	3.90E+02			Ethylbenzene			-	
	ENTER Depth	ENTER	ENTER	ENTER		ENTER]		
MORE ↓	below grade to bottom of enclosed	Soil gas sampling depth	Average soil	Vadose zone SCS soil type	27	User-defined vadose zone soil vapor			
	space floor, L _F	below grade, L _s	temperature,	(used to estimate soil vapor	OR	permeability, k _v			
	(15 or 200 cm)	(cm)	(°C)	permeability)		(cm ²)			
	15	168	16.67			2.00E-02	1		
MORE ¥	ENTER Vandose zone SCS Soil type Lookup Soil Parameters	Vadose zone soil dry bulk density, Pb ^A (g/cm ³)	Vadose zone soil total porosity, n (unitless)	Vadose zone soil water-filled porosity, θ_w^V (cm³/cm³)		Average vapor flow rate into bldg (Leave blank to calcu Q _{soil} (L/m)			
	CL	1.66	0.375	0.054		5]		
MORE ¥	ENTER Averaging	ENTER Averaging	ENTER	ENTER	ENTER	ENTER			
Lookup Receptor	Averaging time for carcinogens,	ENTER Averaging time for noncarcinogens, AT _{NC}	EXPOSURE duration, ED	ENTER Exposure frequency, EF	ENTER Exposure Time ET	Air Exchange Rate ACH			
Ψ	Averaging time for carcinogens,	Averaging time for noncarcinogens,	Exposure duration,	Exposure frequency,	Exposure Time	Air Exchange Rate			

END

Ethylbenzene

Diffusivity in air, D _a (cm ² /s)	Diffusivity in water, D _w (cm ² /s)	Henry's law constant at reference temperature, H (atm-m³/mol)	Henry's law constant reference temperature, T _R (°C)	Enthalpy of vaporization at the normal boiling point, $\Delta H_{v,b}$ (cal/mol)	Normal boiling point, T _B (°K)	Critical temperature, T _C (°K)	Unit risk factor, URF (μg/m³) ⁻¹	Reference conc., RfC (mg/m³)	Molecular weight, MW (g/mol)
6.85E-02	8.46E-06	7.88E-03	25	8,501	409.34	617.20	2.5E-06	1.0E+00	106.17

INTERMEDIATE CALCULATIONS SHEET

Scenario: Residential

Chemical: Ethylbenzene

Source- building separation, L _T (cm)	Vadose zone soil air-filled porosity, $\theta_a^{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	Vadose zone effective total fluid saturation, S _{te} (cm³/cm³)	Vadose zone soil intrinsic permeability, k _i (cm ²)	Vadose zone soil relative air permeability, k _{rg} (cm ²)	Vadose zone soil effective vapor permeability, $k_v = (cm^2)$	Floor- wall seam perimeter, X _{crack} (cm)	Soil gas conc. (μg/m³)	Bldg. ventilation rate, Q _{building} (cm ³ /s)
153	0.321	#N/A	#N/A	#N/A	2.00E-02	4,000	3.90E+02	3.39E+04
Area of enclosed space below grade, A _B (cm ²)	Crack- to-total area ratio, n (unitless)	Crack depth below grade, Z _{crack} (cm)	Enthalpy of vaporization at ave. soil temperature, $\Delta H_{v,TS}$ (cal/mol)	Henry's law constant at ave. soil temperature, H _{TS} (atm-m³/mol)	Henry's law constant at ave. soil temperature, H'TS (unitless)	Vapor viscosity at ave. soil temperature, μ _{TS} (g/cm-s)	Vadose zone effective diffusion coefficient, D ^{eff} _V (cm ² /s)	Diffusion path length, L _d (cm)
1.00E+06	5.00E-03	15	10,079	4.83E-03	2.03E-01	1.77E-04	1.11E-02	153
Convection path length, L _p (cm)	Source vapor conc., C _{source} (µg/m³)	Crack radius, r _{crack} (cm)	Average vapor flow rate into bldg., Q _{soil} (cm ³ /s)	Crack effective diffusion coefficient, D ^{crack} (cm ² /s)	Area of crack, A _{crack} (cm ²)	Exponent of equivalent foundation Peclet number, exp(Pe ^f) (unitless)	Infinite source indoor attenuation coefficient, α (unitless)	Infinite source bldg. conc., C _{building} (µg/m³)
15	3.90E+02	1.25	8.33E+01	1.11E-02	5.00E+03	3.47E+06	1.14E-03	4.46E-01

Unit risk Reference factor, conc., URF RfC (µg/m³)-1 (mg/m³)

2.5E-06 1,0E+00

END

Last Update: December 2014 DTSC Human and Ecological Risk Office

Scenario: Residential Chemical: Ethylbenzene

INCREMENTAL RISK CALCULATIONS:

Incremental	Hazard
risk from	quotient
vapor	from vapor
intrusion to	intrusion to
indoor air,	indoor air,
carcinogen	noncarcinoger
(unitless)	(unitless)
(amaza)	(emacoc)
4.0E-07	4.3E-04

MESSAGE SUMMARY BELOW:

USEPA SG-SCREEN Version 2.0, 04/2003 DTSC Modification December 2014

Department of Toxic Substances Control Vapor Intrusion Screening Model - Soil Gas

Scenario: Residential Chemical Toluene

Results Summary

Indoor Air Conc.

(µg/m³)

2.6E-01

Cancer

Risk

NA

Noncancer

Hazard

8.2E-04

			DATA ENTRY	SHEET			Chemical:	Toluene
		Soil	Gas Concentratio	n Data				Result
Reset to	ENTER	ENTER		ENTER Soil		1	Soil Gas Conc. (µg/m³)	Attenuation Factor (unitless)
Defaults	Chemical	gas	OR	gas			2.10E+02	1.2E-03
	CAS No.	conc.,		conc.,		<u>L</u>	Z/IVL (UL	1,21,03
	(numbers only,	C _q		C _o				
	no dashes)	(μg/m ³)		(ppmv)	Chemical			
				- When y				
	108883	2,10E+02			Toluene			
		-	-					
	ENTER Depth	ENTER	ENTER	ENTER		ENTER		
MORE	below grade	Soil gas		Vadose zone		User-defined		
4	to bottom	sampling	Average	SCS		vadose zone		
	of enclosed	depth	soil	soil type		soil vapor		
	space floor,	below grade,	temperature,	(used to estimate	OR	permeability,		
	LF	L	Ts	soil vapor		k,		
	(15 or 200 cm)	(cm)	(°C)	permeability)		(cm ²)		
	15	168	16.67			2.00E-02		
MORE ¥	Vandose zone SCS soil type Lockup Soil Parameters	ENTER Vadose zone soil dry bulk density, Pb ^A (g/cm³)	ENTER Vadose zone soil total porosity, n ^V (unitless)	ENTER Vadose zone soil water-filled porosity, θ_w^V (cm^3/cm^3)		ENTER Average vapor flow rate into bldg, (Leave blank to calculate Q _{sol} (L/m)	e)	
	CL	1.66	0.375	0.054		5		
MORE	FATTER							
	ENTER Averaging	ENTER Averaging	ENTER	ENTER	ENTER	ENTER		
	time for	time for	Exposure	Exposure	Formation :	200		
	carcinogens,	noncarcinogens,	duration,	frequency,	Exposure Time	Air Exchange Rate		
Lookup Receptor	ATc	AT _{NC}	ED	EF	ET	ACH		
Parameters	(yrs)	(yrs)						
	(yis)	(yrs)	(yrs)	(days/yr)	(hrs/day)	(hour) ⁻¹		

Toluene

Diffusivity in air, D _a (cm ² /s)	Diffusivity in water, D _w (cm ² /s)	Henry's law constant at reference temperature, H (atm-m³/mol)	Henry's law constant reference temperature, T _R (°C)	Enthalpy of vaporization at the normal boiling point, $\Delta H_{v,b}$ (cal/mol)	Normal boiling point, T _B (°K)	Critical temperature, T _C (°K)	Unit risk factor, URF (μg/m³) ⁻¹	Reference conc., RfC (mg/m³)	Molecular weight, MW (g/mol)
7.78E-02	9.20E-06	6.64E-03	25	7,930	383.78	591.79	0.0E+00	3.0E-01 T	92.14

INTERMEDIATE CALCULATIONS SHEET

Scenario: Residential

Chemical: Toluene

Source- building separation, L _T (cm)	Vadose zone soil air-filled porosity, $\theta_a^{\ V}$ (cm³/cm³)	Vadose zone effective total fluid saturation, S _{te} (cm³/cm³)	Vadose zone soil intrinsic permeability, k _i (cm ²)	Vadose zone soil relative air permeability, k _{rg} (cm ²)	Vadose zone soil effective vapor permeability, k _v (cm²)	Floor- wall seam perimeter, X _{crack} (cm)	Soil gas conc. (µg/m³)	Bldg. ventilatio rate, Q _{building} (cm ³ /s)
153	0.321	#N/A	#N/A	#N/A	2.00E-02	4,000	2.10E+02	3.39E+04
Area of enclosed space below grade, A _B (cm ²)	Crack- to-total area ratio, η (unitless)	Crack depth below grade, Z _{crack} (cm)	Enthalpy of vaporization at ave. soil temperature, $\Delta H_{v,TS}$ (cal/mol)	Henry's law constant at ave, soil temperature, H _{TS} (atm-m³/mol)	Henry's law constant at ave. soil temperature, H'TS (unitless)	Vapor viscosity at ave. soil temperature, µ _{TS} (g/cm-s)	Vadose zone effective diffusion coefficient, D ^{eff} _V (cm ² /s)	Diffusion path length, L _d (cm)
1.00E+06	5.00E-03	15	9,082	4.27E-03	1.80E-01	1.77E-04	1.26E-02	153
Convection path length, L _p (cm)	Source vapor conc., C _{source} (µg/m³)	Crack radius, r _{crack} (cm)	Average vapor flow rate into bldg., Q _{soil} (cm ³ /s)	Crack effective diffusion coefficient, D ^{crack} (cm ² /s)	Area of crack, A _{crack} (cm ²)	Exponent of equivalent foundation Peclet number, exp(Pe ^f) (unitless)	Infinite source indoor attenuation coefficient, α : (unitless)	Infinite source bldg. conc., Cbuilding (µg/m³)
15	2.10E+02	1.25	8.33E+01	1.26E-02	5.00E+03	5.69E+05	1.22E-03	2.56E-01

Unit
risk Reference
factor, conc.,
URF RfC
(µg/m³)⁻¹ (mg/m³)

NA 3.0E-01

END

Last Update: December 2014 DTSC Human and Ecological Risk Office

Scenario: Residential
Chemical: Toluene

INCREMENTAL RISK CALCULATIONS:

Incremental risk from	Hazard quotient
vapor	from vapor
intrusion to	intrusion to
indoor air,	indoor air,
carcinogen	noncarcinogen
(unitless)	(unitless)
NA.	8.2E-04

MESSAGE SUMMARY BELOW:

USEPA SG-SCREEN Version 2.0, 04/2003 DTSC Modification December 2014

Department of Toxic Substances Control Vapor Intrusion Screening Model - Soil Gas

DATA ENTRY SHEET

Scenario: Residential Chemical: o-Xylene

Attenuation Factor

(unitless)

1.1E-03

Results Summary

Indoor Air Conc.

(µg/m³) 1.3E+00 Cancer

Risk

NA

Noncancer

Hazard

1.2E-02

			DATA ENTRY	SHEET		Cité
Reset to Defaults	ENTER	ENTER Soil	Gas Concentratio	ENTER Soil		Soil Ga
	CAS No. (numbers only, no dashes)	gas conc., C _g (µg/m³)	OR	gas conc., C _g (ppmv)	Chemical	1.10
	95476	1.10E+03		(рршу)	o-Xylene	
	ENTER	ENTER	ENTER	ENTER		ENTER
MORE ¥	Depth below grade to bottom of enclosed space floor, L _F (15 or 200 cm)	Soil gas sampling depth below grade, L _s (cm)	Average soil temperature, Ts (°C)	Vadose zone SCS soil type (used to estimate soil vapor permeability)	OR	User-defined vadose zone soil vapor permeability, k _v (cm ²)
	15	168	16.67		-	2.00E-02
MORE ↓	ENTER Vandose zone SCS soil type Lookup Scil Parameters	ENTER Vadose zone soil dry bulk density, Pb A (g/cm³)	ENTER Vadose zone soil total porosity, n ^V (unitless)	ENTER Vadose zone soil water-filled porosity, $\theta_w^{\ \vee}$ (cm³/cm³)		ENTER Average vapor flow rate into bldg. (Leave blank to calculate) Q _{soil} (L/m)
	CL	1.66	0.375	0.054		5
MORE .	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER
Lookup Receptor	Averaging time for carcinogens, AT _C	Averaging time for noncarcinogens, AT _{NC}	Exposure duration, ED	Exposure frequency, EF	Exposure Time ET	Air Exchange Rate
Parameters	(yrs)	(yrs)	(yrs)	(days/yr)	(hrs/day)	ACH (hour) ⁻¹

70

NEW=> Residential

24

(NEW)

0.5

(NEW)

350

o-Xylene

Diffusivity in air, D _a (cm²/s)	Diffusivity in water, D _w (cm ² /s)	Henry's law constant at reference temperature, H (atm-m³/mol)	Henry's law constant reference temperature, T _R (°C)	Enthalpy of vaporization at the normal boiling point, $\Delta H_{v,b}$ (cal/mol)	Normal boiling point, T _B (°K)	Critical temperature, T _C (°K)	Unit risk factor, URF (µg/m³) ⁻¹	Reference conc., RfC (mg/m³)	Molecular weight, MW (g/mol)
6.89E-02	8.53E-06	5.18E-03	25	8,661	417.60	630.30	0.0E+00	1.0E-01	106.17

INTERMEDIATE CALCULATIONS SHEET

Scenario: Residential

Chemical: o-Xylene

Source- building separation, L _T (cm)	Vadose zone soil air-filled porosity, θ _a ^V (cm³/cm³)	Vadose zone effective total fluid saturation, S _{te} (cm³/cm³)	Vadose zone soil intrinsic permeability, k _i (cm ²)	Vadose zone soil relative air permeability, k _{rg} (cm²)	Vadose zone soil effective vapor permeability, k_v (cm^2)	Floor- wall seam perimeter, X _{crack} (cm)	Soil gas conc. (μg/m³)	Bldg. ventilation rate, Q _{building} (cm ³ /s)
153	0.321	#N/A	#N/A	#N/A	2.00E-02	4,000	1.10E+03	3.39E+04
Area of enclosed space below grade, A _B (cm ²)	Crack- to-total area ratio, n (unitless)	Crack depth below grade, Z _{crack} (cm)	Enthalpy of vaporization at ave. soil temperature, $\Delta H_{v,TS}$ (cal/mol)	Henry's law constant at ave. soil temperature, H _{TS} (atm-m³/mol)	Henry's law constant at ave. soil temperature, H' _{TS} (unitless)	Vapor viscosity at ave. soil temperature, μ _{TS} . (g/cm-s)	Vadose zone effective diffusion coefficient, Deff V (cm²/s)	Diffusion path length,
1.00E+06	5.00E-03	15	10,329	3.14E-03	1.32E-01	1.77E-04	1.11E-02	153
Convection path length, L _p (cm)	Source vapor conc., C _{source} (µg/m ³)	Crack radius, r _{crack} (cm)	Average vapor flow rate into bldg., Q _{soil} (cm ³ /s)	Crack effective diffusion coefficient, D ^{crack} (cm ² /s)	Area of crack, A _{crack} (cm ²)	Exponent of equivalent foundation Peclet number, exp(Pef) (unitless)	Infinite source indoor attenuation coefficient, α (unitless)	Infinite source bldg. conc., C _{building} (µg/m³)
15	1.10E+03	1.25	8.33E+01	1.11E-02	5.00E+03	3.14E+06	1.15E-03	1.26E+00

Unit
risk Reference
factor, conc.,
URF RfC
(µg/m³)-1 (mg/m³)

NA 1.0E-01

END

Last Update: December 2014 DTSC Human and Ecological Risk Office

Scenario: Residential Chemical: o-Xylene

INCREMENTAL RISK CALCULATIONS:

Incremental	Hazard
risk from	quotient
vapor	from vapor
intrusion to	intrusion to
indoor air,	indoor air,
carcinogen	noncarcinogen
(unitless)	(unitless)

MESSAGE SUMMARY BELOW:

Scenario: Residential

Chemical: Naphthalene

RISK-BASED GROUNDWATER CONCENTRATION CALCULATIONS:

INCREMENTAL RISK CALCULATIONS:

Indoor exposure groundwater conc., carcinogen (µg/L)	Indoor exposure groundwater conc., noncarcinogen (µg/L)	Risk-based indoor exposure groundwater conc., (µg/L)	Pure component water solubility, S (µg/L)	Final indoor exposure groundwater conc., (µg/L)
NA	NA	NA	3.10E+04	NA

Incremental	Hazard
risk from	quotient
vapor	from vapor
intrusion to	intrusion to
indoor air,	indoor air,
carcinogen	noncarcinogen
(unitless)	(unitless)
9.9E-06	2.6E-01

MESSAGE SUMMARY BELOW:

MESSAGE: Attenuation factor < 6E-05 is unreasonably low.

USEPA GW-SCREEN Version 3.0, 04/2003

DTSC Modification December 2014

Reset to

Defaults

Department of Toxic Substances Control Vapor Intrusion Screening Model - Groundwater

DATA ENTRY SHEET

CALCULATE RISK-BASED GROUNDWATER CONCENTRATION (enter "X" in "YES" box)

ES

OR

CALCULATE INCREMENTAL RISKS FROM ACTUAL GROUNDWATER CONCENTRATION (enter "X" in "YES" box and initial groundwater conc. below).

YES ENTER ENTER Initial Chemical groundwater CAS No. conc., (numbers only, Cw no dashes) $(\mu g/L)$ Chemical 91203 2.30E+03 Naphthalene

	Results	Summary			Risk-Based Conce	Groundwater
Soil Gas Conc. (C _{source}) (µg/m³)	Attenuation Factor (alpha) (unitless)	Indoor Air Conc. (C _{bullding}) (up/m ³)	Cancer Risk	Noncancer Hazard	Cancer Risk = 10 ⁻⁶	Noncancer HQ = 1
2.28E+04	3.6E-05	8.2E-01	9.9E-06	2.5E-01	(µg/L) NA	(µg/L) NA

(NEW)

Scenario:

Chemical:

Residential

Naphthalene

MESSAGE: Attenuation factor < 6E-05 is unreasonably low.

MORE

ENTER Depth	ENTER	ENTER	ENTER
below grade to bottom of enclosed space floor, L _F (15 or 200 cm)	Depth below grade to water table, L _{WT} (cm)	SCS soil type directly above water table	Average soil/ groundwater temperature, T _s . (°C)
15	518	CL	16.67

Average vapor flow rate into bidg.
(Leave blank to calculate)

Q_{soll}

(L/m)

0.05

MORE .

(used to estimate soil vapor permeability)	OR	permeability, k, (cm²)	soil type Lookup Soil Parameters	soil dry bulk density, p _b ^V (g/cm ³)	soil total porosity, n ^V (unitless)	soil water-filled porosity, θ_w^V (cm³/cm³)
ENTER Vadose zone SCS soil type		User-defined vandose zone soil vapor	ENTER Vadose zone SCS	ENTER Vadose zone	ENTER Vadose zone	ENTER Vadose zone

MORE .

Lookup Receptor Parameters

ENTER Target risk for carcinogens, TR	ENTER Target hazard quotient for noncarcinogens, THQ	ENTER Averaging time for carcinogens,	ENTER Averaging time for noncarcinogens,	ENTER Exposure duration,	EXPOSURE frequency,	ENTER Exposure Time	ENTER Air Exchange Rate
(unitless)	(unitless)	AT _C (yrs)	AT _{NC} (vrs)	ED (vrs)	EF	ET	ACH
			11-51	(yis)	(days/yr)	(hrs/day)	(hour)"
1.0E-06	1	70	he	T 42			
Used to calcu	late risk-based	10	26	26	350	24	0.5

END

groundwater concentration.

NEW=> Residential

Naphthalene

Diffusivity in air, D _a (cm²/s)	Diffusivity in water, D _w (cm ² /s)	Henry's law constant at reference temperature, H (atm-m³/mol)	Henry's law constant reference temperature, T _R (°C)	Enthalpy of vaporization at the normal boiling point, $\Delta H_{v,b}$ (cal/mol)	Normal boiling point, T _B (°K)	Critical temperature, T _C (°K)	Organic carbon partition coefficient, K_{oc} (cm ³ /g)	Pure component water solubility, S (mg/L)	Unit risk factor, URF (µg/m³)-1	Reference conc., RfC (mg/m³)
6.05E-02	8.38E-06	4.40E-04	25	10,373	491.14	748.40	1.54E+03	3.10E+01	3.4E-05	3.0E-03

Scenario: Residential

Chemical: Naphthalene

Source- building separation, L _T (cm)	Vadose zone soil air-filled porosity, $\theta_a^{\ V}$ (cm³/cm³)	Vadose zone effective total fluid saturation, S _{te} (cm³/cm³)	Vadose zone soil intrinsic permeability, k _i (cm ²)	Vadose zone soil relative air permeability, k _{fg} (cm ²)	Vadose zone soil effective vapor permeability, k _v (cm²)	Thickness of capillary zone, L _{cz} (cm)	Total porosity in capillary zone, n _{cz} (cm³/cm³)	Air-filled porosity in capillary zone, $\theta_{a,cz}$ (cm³/cm³)	Water-filled porosity in capillary zone, $\theta_{w,cz}$ (cm ³ /cm ³)	Floor- wall seam perimeter, X _{crack}	
503	0.238	#N/A	#N/A	#N/A	2.00E-02	46.88	0.442	0.067		(cm)	3C
Bldg. ventilation rate, Q _{building} (cm ³ /s)	Area of enclosed space below grade, A _B (cm ²)	Crack- to-total area ratio, η (unitless)	Crack depth below grade, Z _{crack} (cm)	Enthalpy of vaporization at ave. groundwater temperature, $\Delta H_{v,TS}$ (cal/mol)	Henry's law constant at ave. groundwater temperature, H _{TS} (atm-m ³ /mol)	Henry's law constant at ave. groundwater temperature, H'TS (unitless)	Vapor viscosity at ave. soil temperature, μτs (g/cm-s)	Vadose zone effective diffusion coefficient, Deff v (cm²/s)	Capillary zone effective diffusion coefficient, Deff (cm²/s)	Total overall effective diffusion coefficient, Deff (cm²/s)	Ļ
3.39E+04	1.00E+06	5.00E-03	15	12,844	2.36E-04	9.92E-03	1.77E-04	3.45E-03	2.03E-04	1.39E-03	
path length, L _d (cm)	Convection path length, L _p (cm)	Source vapor conc., C _{source} (µg/m³)	Crack radius,	Average vapor flow rate into bldg., Q _{soil} (cm ³ /s)	Crack effective diffusion coefficient, D ^{crack} (cm ² /s)	Area of crack, A _{crack} (cm ²)	Exponent of equivalent foundation Peclet number, exp(Pe ¹) (unitless)	Infinite source indoor attenuation coefficient, α (unitless)	Infinite source bldg, conc., C _{building} (µg/m³)	Unit risk factor, URF (µg/m³) ⁻¹	Reference conc., RfC (mg/m³)
503	15	2.28E+04	1.25	8.33E-01	3.45E-03	5.00E+03	1.62E+00 T				1 2 1

Warning: alpha < 6E-05 is unreasonably low.

Scenario: Residential

Chemical: Naphthalene

RISK-BASED GROUNDWATER CONCENTRATION CALCULATIONS:

Indoor	Indoor	Risk-based	Pure	Final indoor exposure groundwater conc., (µg/L)
exposure	exposure	indoor	component	
groundwater	groundwater	exposure	water	
conc.,	conc.,	groundwater	solubility,	
carcinogen	noncarcinogen	conc.,	S	
(µg/L)	(µg/L)	(µg/L)	(µg/L)	

NA	NA	NA	3.10F+04	NA
----	----	----	----------	----

INCREMENTAL RISK CALCULATIONS:

3.1E-01

Incremental	Hazard
risk from	quotient
vapor	from vapor
intrusion to	intrusion to
indoor air,	indoor air,
carcinogen	noncarcinogen
(unitless)	(unitless)

1.2E-05

MESSAGE SUMMARY BELOW:

MESSAGE: Attenuation factor < 6E-05 is unreasonably low.

USEPA GW-SCREEN Version 3.0, 04/2003

DTSC Modification December 2014

Reset to

Defaults

Department of Toxic Substances Control Vapor Intrusion Screening Model - Groundwater

DATA ENTRY SHEET

CALCULATE RISK-BASED GROUNDWATER CONCENTRATION (enter "X" in "YES" box)

YES

OR

CALCULATE INCREMENTAL RISKS FROM ACTUAL GROUNDWATER CONCENTRATION (enter "X" in "YES" box and initial groundwater conc. below)

YES X

ENTER Initial Groundwater CAS No. conc., (numbers only, no dashes) (µg/L)

) (μg/L) Chemical

91203 2,30E+03 Naphthalene

	Results	Summary				Groundwater ntration
Soil Gas Conc. (C _{source}) (µg/m³)	Attenuation Factor (alpha) (unitless)	Indoor Air Conc. (C _{bullding}) (µg/m³)	Cancer Risk	Noncancer Hazard	Cancer Risk = 10 ⁻⁵ (µg/L)	Noncancer HQ = 1 (µg/L)
2.28E+04	4.2E-05	9.6E-01	1.2E-05	3.1E-01	NA.	NA.

Scenario:

Chemical:

Residential

Naphthalene

MESSAGE: Attenuation factor < 6E-05 is unreasonably low.

MORE

ENTER Depth	ENTER	ENTER	ENTER
below grade to bottom of enclosed space floor, L _F (15 or 200 cm)	Depth below grade to water table, LwT (cm)	SCS soil type directly above water table	Average soil/ groundwater temperature, Ts (°C)
15	91	Ci I	16.67

Average vapor flow rate into bidg. (Leave blank to calculate)

Q_{sol.}

(Lm)

0.05

MORE

ENTER Vadose zone SCS soil type (used to estimate soil vapor permeability)	OR	ENTER User-defined vandose zone soil vapor permeability, k, (cm²)	ENTER Vadose zone SCS Soil type Lookup Soil Parameters	ENTER Vadose zone soil dry bulk density, pbV (g/cm³)	ENTER Vadose zone soil total porosity, n ^V (unitless)	ENTER Vadose zone soil water-filled porosity, θ_w^V (cm³/cm³)
		2.00E-02	CL	1.63	0.384	0.146

MORE

Lookup Receptor Parameters

Target risk for carcinogens, TR (unitless)	Target hazard quotient for noncarcinogens, THQ (unitless)	Averaging time for carcinogens, AT _C (yrs)	ENTER Averaging time for noncarcinogens, AT _{NC} (vrs)	EXPOSURE duration, ED (vrs)	Exposure frequency, EF (days/yr)	EXPOSURE Time ET (hrs/day)	Air Exchange Rate ACH (hour)*
--	---	---	---	--------------------------------------	---	-------------------------------------	--

NEW⇒ Residential

						Trines carly	VY
1.0E-06		76	20	T 40			
	1	70	26	26	350	24	0.5
Used to calculat						(NEW)	(NEW)
groundwater co	ncentration.	b-					

Naphthalene

Diffusivity in air, D _a (cm ² /s)	Diffusivity in water, D _w (cm ² /s)	Henry's law constant at reference temperature, H (atm-m³/mol)	Henry's law constant reference temperature, T _R (°C)	Enthalpy of vaporization at the normal boiling point, $\Delta H_{v,b}$ (cal/mol)	Normal boiling point, T _B (°K)	Critical temperature, T _C (°K)	Organic carbon partition coefficient, K _{oc} (cm³/g)	Pure component water solubility, S (mg/L)	Unit risk factor, URF (µg/m³) ⁻¹	Reference conc., RfC (mg/m³)
6.05E-02	8.38E-06	4.40E-04	25	10,373	491.14	748.40	1.54E+03	3.10E+01	3.4E-05	3.0E-03

INTERMEDIATE CALCULATIONS SHEET

Scenario: Residential

Chemical: Naphthalene

Source- building separation, L _T (cm)	Vadose zone soil air-filled porosity, θ _a ^V (cm³/cm³)	Vadose zone effective total fluid saturation, S_{te} (cm³/cm³)	Vadose zone soil intrinsic permeability, k _i (cm ²)	Vadose zone soil relative air permeability, k_{rg} (cm^2)	Vadose zone soil effective vapor permeability, k_{ν} (cm^2)	Thickness of capillary zone, L _{cz} (cm)	Total porosity in capillary zone, n _{cz} (cm³/cm³)	Air-filled porosity in capillary zone, $\theta_{s,cz}$ (cm ³ /cm ³)	Water-filled porosity in capillary zone, $\theta_{w,cz}$ (cm³/cm³)	Floor- wall seam perimeter, X _{crack} (cm)	
76	0.238	#N/A	#N/A	#N/A	2.00E-02	46.88	0.442	0.067	0.375	4,000]
Bldg. ventilation rate, Q _{building} (cm ³ /s)	Area of enclosed space below grade, A _B (cm ²)	Crack- to-total area ratio, n (unitless)	Crack depth below grade, Z _{crack} (cm)	Enthalpy of vaporization at ave. groundwater temperature, $\Delta H_{v,TS}$ (cal/mol)	Henry's law constant at ave. groundwater temperature, H _{TS} (atm-m³/mol)	Henry's law constant at ave. groundwater temperature, H' _{TS} (unitless)	Vapor viscosity at ave. soil temperature, HTS (g/cm-s)	Vadose zone effective diffusion coefficient, D ^{eff} _V (cm²/s)	Capillary zone effective diffusion coefficient, Deff cz (cm²/s)	Total overall effective diffusion coefficient, Deff_T (cm²/s)	
3.39E+04	1.00E+06	5.00E-03	15	12,844	2.36E-04	9.92E-03	1.77E-04	3.45E-03	2.03E-04	3.18E-04	1
Diffusion path length, L _d (cm)	Convection path length, Lp (cm)	Source vapor conc., C _{source} (µg/m³)	Crack radius, r _{crack} (cm)	Average vapor flow rate into bldg., Q _{soil} (cm ³ /s)	Crack effective diffusion coefficient, D ^{crack} (cm ² /s)	Area of crack, A _{crack} (cm ²)	Exponent of equivalent foundation Peclet number, exp(Pe ^f) (unitless)	Infinite source indoor attenuation coefficient, α (unitless)	Infinite source bldg. conc., C _{bullding} (µg/m³)	Unit risk factor, URF (µg/m³)-1	Reference conc., RfC (mg/m³)
76	15	2.28E+04	1.25	8.33E-01	3.45E-03	5.00E+03	1.62E+00	4.22E-05	9.64E-01	3.4E-05	3.0E-03

END

Warning: alpha < 6E-05 is unreasonably low.

Scenario: Residential

Chemical: Ethylbenzene

RISK-BASED GROUNDWATER CONCENTRATION CALCULATIONS:

INCREMENTAL RISK CALCULATIONS:

	Indoor exposure groundwater conc., carcinogen (µg/L)	Indoor exposure groundwater conc., noncarcinogen (µg/L)	Risk-based indoor exposure groundwater conc., (µg/L)	Pure component water solubility, S (µg/L)	Final indoor exposure groundwater conc., (μg/L)
ſ	NA	NA NA	NA	1.69E+05	NA

Incremental	Hazard
risk from	quotient
vapor	from vapor
intrusion to	intrusion to
indoor air,	indoor air,
carcinogen	noncarcinogen
(unitless)	(unitless)
9.6E-06	1.0E-02

MESSAGE SUMMARY BELOW:

MESSAGE: Attenuation factor < 6E-05 is unreasonably low.

END

USEPA GW-SCREEN Version 3.0, 04/2003

DTSC Modification December 2014

Reset to

Defaults

Department of Toxic Substances Control Vapor Intrusion Screening Model - Groundwater

DATA ENTRY SHEET

CALCULATE RISK-BASED GROUNDWATER CONCENTRATION (enter "X" in "YES" box)

YES

OR

CALCULATE INCREMENTAL RISKS FROM ACTUAL GROUNDWATER CONCENTRATION (enter "X" in "YES" box and initial groundwater conc. below)

YES X ENTER ENTER Initial Chemical groundwater CAS No. conc., (numbers only, Cw no dashes) (µg/L) Chemical 100414 2.60E+03 Ethylbenzene

	Results	Risk-Based Groundwate Concentration				
Soil Gas Conc. (C _{source}) (µg/m³)	Attenuation Factor (alpha) (unitless)	Indoor Air Conc. (Ceciting) (µg/m³)	Cancer Risk	Noncancer Hazard	Cancer Risk = 10 ⁻⁶ (µg/L)	Noncancer HQ = 1 (µg/L)
5.28E+05	2.0E-05	1.1E+01	9,6E-06	1.0E-02	NA	NA

(NEW)

Scenario:

Chemical:

Residential

Ethylbenzene

MESSAGE: Attenuation factor < 6E-05 is unreasonably low.

MORE

ENTER	ENTER	ENTER	ENTER
Depth			LINER
below grade			Average
to bottom	Depth		soil/
of enclosed	below grade	SCS	groundwater
space floor,	to water table,	soil type	temperature,
Lp	L _{WT}	directly above	Ts
(15 or 200 cm)	(cm)	water table	(°C)
15	518	CL T	16.67

ENTER Average vapor flow rate into bldg. (Leave blank to calculate) Qual (L/m) 0.05

MORE 4

ENTER Vadose zone SCS soil type (used to estimate soil vapor permeability)	OR	User-defined vandose zone soil vapor permeability, k, (cm²)	Vadose zone SCS Soil type Lookup Soil Parameters	Vadose zone soil dry bulk density, P _b V (g/cm ³)	ENTER Vadose zone soil total porosity, n (unitless)	ENTER Vadose zone soil water-filled porosity, θ_{w}^{V} (cm³/cm³)
1		2.00E-02	CL	1.63	0.384	0.146

MORE Lookup Receptor Parameters

ENTER Target risk for carcinogens, TR (unitless)	ENTER Target hazard quotient for noncarcinogens, THQ (unitless)	ENTER Averaging time for carcinogens, ATc (yrs)	ENTER Averaging time for noncarcinogens, AT _{NC} (yrs)	EXPOSURE duration, ED (yrs)	EXPOSURE frequency, EF (days/yr)	Exposure Time ET (hrs/day)	ENTER Air Exchange Rate ACH (hour)-1
1.0E-06	1	70	26	26	350	24	0.5

Residential

Used to calculate risk-based groundwater concentration.

Ethylbenzene

Diffusivity in air, D _a (cm²/s)	Diffusivity in water, D _w (cm ² /s)	Henry's law constant at reference temperature, H (atm-m³/mol)	Henry's law constant reference temperature, T _R (°C)	Enthalpy of vaporization at the normal boiling point, $\Delta H_{v,b}$ (cal/mol)	Normal boiling point, T _B	Critical temperature, T _C (°K)	Organic carbon partition coefficient, K _{oc} (cm³/g)	Pure component water solubility, S (mg/L)	Unit risk factor, URF (µg/m³) ⁻¹	Reference conc., RfC (mg/m³)
6.85E-02	8.46E-06	7.88E-03	25	8,501	409.34	617.20	4.46E+02	1.69E+02	2.5E-06	1.0E+00

INTERMEDIATE CALCULATIONS SHEET

Scenario: Residential

Chemical: Ethylbenzene

Source- building separation, L _T (cm)	Vadose zone soil air-filled porosity, θ _a ^V (cm ³ /cm ³)	Vadose zone effective total fluid saturation, S _{te} (cm ³ /cm ³)	Vadose zone soil intrinsic permeability, k _i (cm ²)	Vadose zone soil relative air permeability, k _{rg} (cm ²)	Vadose zone soil effective vapor permeability, k _v (cm ²)	Thickness of capillary zone, L _{cz} (cm)	Total porosity in capillary zone, n _{cz} (cm³/cm³)	Air-filled porosity in capillary zone, - 0 _{a,cz} (cm ³ /cm ³)	Water-filled porosity in capillary zone, $\theta_{w,cz}$ (cm ³ /cm ³)	Floor- wall seam perimeter, X _{crack} (cm)	
503	0.238	#N/A	#N/A	#N/A	2.00E-02	46.88	0.442	0.067	0.375	4,000	=]
Bldg. ventilation rate, Q _{building} (cm ³ /s)	Area of enclosed space below grade, A _B (cm ²)	Crack- to-total area ratio, n (unitless)	Crack depth below grade, Z _{crack} (cm)	Enthalpy of vaporization at ave. groundwater temperature, $\Delta H_{v,TS}$ (cal/mol)	Henry's law constant at ave. groundwater temperature, H _{TS} (atm-m³/mol)	Henry's law constant at ave. groundwater temperature, H'TS (unitless)	Vapor viscosity at ave. soil temperature, µтs (g/cm-s)	Vadose zone effective diffusion coefficient, D ^{eff} _V (cm²/s)	Capillary zone effective diffusion coefficient, Deffect (cm²/s)	Total overall effective diffusion coefficient, Deff (cm²/s)	
3.39E+04	1.00E+06	5.00E-03	15	10,079	4.83E-03	2.03E-01	1.77E-04	3.90E-03	5.11E-05	4.86E-04]
Diffusion path length, L _d (cm)	Convection path length, L _p (cm)	Source vapor conc., C _{source} (µg/m³)	Crack radius, rosek (cm)	Average vapor flow rate into bldg., Q _{soil} (cm ³ /s)	Crack effective diffusion coefficient, D ^{crack} (cm ² /s)	Area of crack, A _{crack} (cm ²)	Exponent of equivalent foundation Peclet number, exp(Pe ^f) (unitless)	Infinite source indoor attenuation coefficient, α: (unitless)	Infinite source bldg. conc., Coulding (µg/m³)	Unit risk factor, URF (µg/m³) ⁻¹	Reference conc., RfC (mg/m³)
503	15	5.28E+05	1.25	8.33E-01	3.90E-03	5.00E+03	1.53E+00	2.03E-05	1.07E+01	2.5E-06	1.0E+00

END

Warning: alpha < 6E-05 is unreasonably low.

Scenario:

Residential

Chemical:

Ethylbenzene

RISK-BASED GROUNDWATER CONCENTRATION CALCULATIONS:

INCREMENTAL RISK CALCULATIONS:

Indoor exposure groundwater conc., carcinogen (µg/L)	Indoor exposure groundwater conc., noncarcinogen (µg/L)	Risk-based indoor exposure groundwater conc., (µg/L)	Pure component water solubility, S (µg/L)	Final indoor exposure groundwater conc., (µg/L)
NA	NA	NA	1.69E+05	NA

Incremental	Hazard
risk from	quotient
vapor	from vapor
intrusion to	intrusion to
indoor air,	indoor air,
carcinogen	noncarcinogen
(unitless)	(unitless)
1 0E 0E	1 445.00
1.0E-05	1.1E-02

MESSAGE SUMMARY BELOW:

MESSAGE: Attenuation factor < 6E-05 is unreasonably low.

USEPA GW-SCREEN Version 3.0, 04/2003 DTSC Modification

December 2014

Department of Toxic Substances Control Vapor Intrusion Screening Model - Groundwater

DATA ENTRY SHEET

CALCULATE RISK-BASED GROUNDWATER CONCENTRATION (enter "X" in "YES" box)
YES

Scenario: Chemical:

Residential Ethylbenzene

Reset to Defaults

OR
CALCULATE INCREMENTAL RISKS FROM ACTUAL GROUNDWATER CONCENTRATION

	YES	X
ENTER	ENTER	
Chemical	Initial groundwater	
CAS No.	conc.,	
(numbers only,	Cw	
no dashes)	(µg/L)	Chemical
100414	2.60E+03	Ethylpenzene

(enter "X" in "YES" box and initial groundwater conc. below)

	Results	Risk-Based Groundwate Concentration				
Soil Gas Conc. (C _{source}) (µg/m³)	Attenuation Factor (alpha) (unitiess)	Indoor Air Conc. (C _{building}) (µg/m³)	Cancer	Noncancer Hazard	Cancer Risk = 10 ⁻⁶	Noncancer HQ = 1
5.28E+05	2.2E-05	1.2E+01	1.0E-05	1.1E-02	(μg/L) NA	(µg/L) NA

MESSAGE: Attenuation factor < 6E-05 is unreasonably low.

MORE ¥

ENTER Depth	ENTER	ENTER	ENTER
below grade to bottom of enclosed space floor, L _F (15 or 200 cm)	Depth below grade to water table, L _{W1} (cm)	SCS soil type directly above water table	Average soil/ groundwater temperature, T _S (°C)
15	91	CL I	16.67

Average vapor flow rate into bldg. (Leave blank to calculate)

Qool (L/m)

MORE

1		2 00E-02	CL	1.63	0.384	0.146
ENTER Vadose zone SCS soil type (used to estimate soil vapor permeability)	OR	ENTER User-defined vandose zone soil vapor permeability, k _v (cm²)	ENTER Vadose zone SCS Soil type Lookup Soil Parameters	ENTER Vadose zone soil dry bulk density, ρ_b^V (g/cm³)	Vadose zone soil total porosity, n ^v (unitless)	ENTER Vadose zone soil water-filled porosity, θ_w^V (cm^3/cm^3)

MOR	E
Lookup R	eceptor
Parame	eters
Lookup R	eceptor
Parame	eters

ENTER Target risk for	ENTER Target hezard	ENTER Averaging	ENTER Averaging	ENTER	ENTER	ENTER	ENTER
carcinogens, TR	quotient for noncarcinogens, THQ	time for carcinogens, AT _C	time for noncarcinogens, AT _{NC}	Exposure duration, ED	Exposure frequency, EF	Exposure Time ET	Air Exchange Rate ACH
(unitless)	(unitless)	(yrs)	(yrs)	(yrs)	(days/yr)	(hrs/day)	(hour)-1
1.DE-06	1 1	70	20				

NEW=> Residential

				17:01	(daysiyi)	(nrs/day)	(nour)
1.DE-06	1	70	26				
Used to calculate risk-based			.20	26	350	24	0.5
groundwater co						(NEW)	(NEW)

Ethylbenzene

Diffusivity in air, D _a (cm ² /s)	Diffusivity in water, D _w (cm ² /s)	Henry's law constant at reference temperature, H (atm-m³/mol)	Henry's law constant reference temperature, T _R (°C)	Enthalpy of vaporization at the normal boiling point, ΔH _{v,b} (cal/mol)	Normal boiling point, T _B (°K)	Critical temperature, T _C (°K)	Organic carbon partition coefficient, K_{oc} (cm^3/g)	Pure component water solubility, S (mg/L)	Unit risk factor, URF (µg/m³)-1	Reference conc., RfC (mg/m³)
6,85E-02	8.46E-06	7.88E-03	25	8,501	409.34	617.20	4.46E+02	1.69E+02	2.5E-06	1.0E+00

Scenario: Residential

Chemical: Ethylbenzene

Source- building separation, L _T (cm)	Vadose zone soil air-filled porosity, $\theta_a^{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	Vadose zone effective total fluid saturation, S _{le} (cm³/cm³)	Vadose zone soil intrinsic permeability, k _i (cm ²)	Vadose zone soil relative air permeability, $k_{\rm eg}$ $({\rm cm}^2)$	Vadose zone soil effective vapor permeability, k _v (cm²)	Thickness of capillary zone, L _{c2} (cm)	Total porosity in capillary zone, n _{cz} (cm³/cm³)	Air-filled porosity in capillary zone, $\theta_{a,cz}$ (cm ³ /cm ³)	Water-filled porosity in capillary zone, $\theta_{w,cz}$ (cm³/cm³)	Floor- wall seam perimeter, X _{crack}	
76	0.238	#N/A	#N/A	#N/A	2.00E-02	46.88	T 0.446			(cm)	-
					2.001-02	40.00	0.442	0.067	0.375	4,000]
Bldg. ventilation rate, Q _{building} (cm ³ /s)	Area of enclosed space below grade, A _B (cm ²)	Crack- to-total area ratio, η (unitless)	Crack depth below grade, Z _{crack} (cm)	Enthalpy of vaporization at ave. groundwater temperature, ΔH _{V,TS} (cal/mol)	Henry's law constant at ave. groundwater temperature, H _{TS} (atm-m ³ /mol)	Henry's law constant at ave. groundwater temperature, H'TS (unitless)	Vapor viscosity at ave. soil temperature, µ _{TS} (g/cm-s)	Vadose zone effective diffusion coefficient, D ^{eff} _V (cm²/s)	Capillary zone effective diffusion coefficient, Deff cz (cm²/s)	Total overall effective diffusion coefficient, Deff (cm²/s)	
3.39E+04	1.00E+06	5.00E-03	15	10,079	4.83E-03	2.03E-01	1.77E-04	3.90E-03	5.11E-05	8.21E-05	7
Diffusion path length, L _d (cm)	Convection path length, Lp (cm)	Source vapor conc., C _{source} (µg/m³)	Crack radius, f _{crack} (cm)	Average vapor flow rate into bldg., Q _{soit} (cm ³ /s)	Crack effective diffusion coefficient, D ^{crack} (cm ² /s)	Area of crack, A _{crack} (cm ²)	Exponent of equivalent foundation Peclet number, exp(Pe ^f) (unitless)	Infinite source indoor attenuation coefficient,	Infinite source bldg. conc., C _{building} (µg/m³)	Unit risk factor, URF (µg/m³)-1	Reference conc., RfC (mg/m³)
76	15	5.28E+05	1.25	8.33E-01	3.90E-03	5.00E+03	1.53E+00	2.20E-05	1.16E+01	2.5E-06	
END							- 70	Warning: alpha < 6E		2.0E-00	1.0E+00

Warning: alpha < 6E-05 is unreasonably low.

Scenario:

Residential

Chemical:

Benzene

RISK-BASED GROUNDWATER CONCENTRATION CALCULATIONS:

INCREMENTAL	RISK	CALCUL	ATIONS:
-------------	------	--------	---------

Indoor exposure groundwater conc., carcinogen (µg/L)	Indoor exposure groundwater conc., noncarcinogen (µg/L)	Risk-based indoor exposure groundwater conc., (µg/L)	Pure component water solubility, S (µg/L)	Final indoor exposure groundwater conc., (µg/L)
NA	NA	NA	1.79F+06	NA

Incremental	Hazard
risk from	quotient
vapor	from vapor
intrusion to	intrusion to
indoor air,	indoor air,
carcinogen	noncarcinogen
(unitless)	(unitless)
5.0E-06	1.5E-01

MESSAGE SUMMARY BELOW:

MESSAGE: Attenuation factor < 6E-05 is unreasonably low.

USEPA GW-SCREEN Version 3.0, 04/2003

DTSC Modification December 2014

Department of Toxic Substances Control Vapor Intrusion Screening Model - Groundwater

DATA ENTRY SHEET

CALCULATE RISK-BASED GROUNDWATER CONCENTRATION (enter "X" in "YES" box) YES

Scenario: Residential Chemical: Benzene

Reset to Defaults

OR CALCULATE INCREMENTAL RISKS FROM ACTUAL GROUNDWATER CONCENTRATION (enter "X" in "YES" box and initial groundwater conc. below)

(µg/L)	Chemical	
Initial groundwater		
ENTER		
YES	X	
	ENTER Initial groundwater conc., C _W	ENTER Initial groundwater conc., C _W

Risk-Based Groundwater Results Summary Concentration Soil Gas Conc. Attenuation Factor Indoor Air Conc. Cancer Noncancer Cancer Risk Noncancer (alpha) Risk (Ctulding) Hazard = 10-5 HQ = 1 (µg/m³) (unitiess) (µg/m³) (µg/L) (µg/L) 2.8E-05 1.5E-01 4.8E-01 5.0E-06 NA. NA.

MESSAGE: Attenuation factor < 6E-05 is unreasonably low.

(NEW)

(NEW)

MORE

		and/or toxicity criteria	for this chemical.
ENTER Depth	ENTER	ENTER	ENTER
below grade to bottom of enclosed space floor, L _F (15 or 200 cm)	Depth below grade to water table, L _{WT} (cm)	SCS soil type directly above water table	Average soil/ groundwater temperature, Ts (°C)
15	518	SCL	16.67

ENTER Average vapor flow rate into bldg. (Leave blank to calculate) Qsoil (L/m) 0.05

MORE

ENTER Vadose zone SCS soil type (used to estimate soil vapor permeability)	OR	ENTER User-defined vandose zone soil vapor permeability, k _v (cm ²)	ENTER Vadose zone SCS SOil type Lookup Soil Parameters	ENTER Vadose zone soil dry bulk density, po ^V (g/cm³)	ENTER Vadose zone soil total porosity, n ^V (unitless)	ENTER Vadose zone soil water-filled porosity,
		2.00E-02	SCL	1.63	0.384	0.146

MESSAGE: See VLOOKUP table comments on chemical properties

Lookup Receptor Parameters

Used to calculate risk-based

groundwater concentration.

MORE

ENTER Target	ENTER Target hazard	ENTER Averaging	ENTER Averaging	ENTER	ENTER	ENTER	ENTER
risk for carcinogens, TR (unitless)	quotient for noncarcinogens, THQ (unitless)	time for carcinogens, AT _C (yrs)	time for noncarcinogens, AT _{NC} (yrs)	Exposure duration, ED (vrs)	Exposure frequency, EF (days/yr)	Exposure Time ET (hrs/day)	Air Exchange Rate ACH (hour)-1
			- II	M.SI	(dayaryr)	(III S/day)	(nour)
1.0E-06	1 1	70	26	26	350	- ×-	1
Used to calc	ulate risk-hosed			20	330	24	0.5

END

NEW=> Residential

Benzene

Diffusivity in air, D _a (cm²/s)	Diffusivity in water, D _w (cm ² /s)	Henry's law constant at reference temperature, H (atm-m³/mol)	Henry's law constant reference temperature, T _R (°C)	Enthalpy of vaporization at the normal boiling point, $\Delta H_{v,b}$ (cal/mol)	Normal boiling point, T _B (°K)	Critical temperature, T _C (°K)	Organic carbon partition coefficient, K_{oc} (cm^3/g)	Pure component water solubility, S (mg/L)	Unit risk factor, URF (µg/m³) ⁻¹	Reference conc., RfC (mg/m³)
8.95E-02	1.03E-05	5.55E-03	25	7,342	353.24	562.16	1.46E+02	1.79E+03	2.9E-05	3.0E-03

Scenario: Residential

Chemical: Benzene

Source- building separation, L _T (cm)	Vadose zone soil air-filled porosity; θ _a ^V (cm ³ /cm ³)	Vadose zone effective total fluid saturation, S _{te} (cm³/cm³)	Vadose zone soil intrinsic permeability, k ₁ (cm ²)	Vadose zone soil relative air permeability, k _{rg} (cm ²)	Vadose zone soil effective vapor permeability, k_v (cm²)	Thickness of capillary zone, L _{cz} (cm)	Total porosity in capillary zone, n _{c2} (cm³/cm³)	Air-filled porosity in capillary zone, $\theta_{a,cz}$ (cm ³ /cm ³)	Water-filled porosity in capillary zone, $\theta_{w,cz}$ (cm³/cm³)	Floor- wall seam perimeter, X _{crack} (cm)	
503	0.238	#N/A	#N/A	#N/A	2.00E-02	25.86	0.384	0.051	0.333	4,000	= 1
Bidg. ventilation rate, Q _{building} (cm ³ /s)	Area of enclosed space below grade, A _B (cm ²)	Crack- to-total area ratio, η (unitless)	Crack depth below grade, Z _{orack} (cm)	Enthalpy of vaporization at ave. groundwater temperature, ΔH _{v,TS} (cal/mol)	Henry's law constant at ave. groundwater temperature. H _{TS} (atm-m ³ /mol)	Henry's law constant at ave. groundwater temperature, H'Ts (unitless)	Vapor viscosity at ave. soil temperature, μ _{TS} (g/cm-s)	Vadose zone effective diffusion coefficient, D ^{eff} _V (cm²/s)	Capillary zone effective diffusion coefficient, D ^{eff} _{cz} (cm ² /s)	Total overall effective diffusion coefficient, D^{eff}_{T} (cm²/s)	
3.39E+04	1.00E+06	5.00E-03	15	8,054	3.76E-03	1.58E-01	1.77E-04	5.10E-03	4.10E-05	6.95E-04	= 1
Diffusion path length, L _d (cm)	Convection path length, L _p (cm)	Source vapor conc., C _{spurco} (µg/m³)	Crack radius,	Average vapor flow rate into bldg., Q _{soil} (cm ³ /s)	Crack effective diffusion coefficient, D ^{crack} (cm ² /s)	Area of crack, A _{crack} (cm ²)	Exponent of equivalent foundation Peclet number, exp(Pe ^t) (unitless)	Infinite source indoor attenuation coefficient, α (unitless)	Infinite source bldg. conc., Cbuilding (µg/m³)	Unit risk factor, URF (µg/m³)-1	Reference conc., RfC (mg/m³)
503	15	1.74E+04	1.25	8.33E-01	5.10E-03	5.00E+03	1.39E+00	2.79E-05	4.84E-01	2.9E-05	
END								Warning: alpha < 6E		Z.3E-03	3.0E-03

Warning: alpha < 6E-05 is unreasonably low.

Scenario: Residential

Chemical: Benzene

RISK-BASED GROUNDWATER CONCENTRATION CALCULATIONS:

INCREMENTAL RISK CALCULATIONS:

	Indoor exposure groundwater conc., carcinogen (µg/L)	Indoor exposure groundwater conc., noncarcinogen (µg/L)	Risk-based indoor exposure groundwater conc., (µg/L)	Pure component water solubility, S (µg/L)	Final indoor exposure groundwater conc., (µg/L)
Γ	NA	l NA	NA	1.79E+06	NA

Incremental	Hazard
risk from	quotient
vapor	from vapor
intrusion to	intrusion to
indoor air,	indoor air,
carcinogen	noncarcinogen
(unitless)	(unitless)
5.2E-06	1.6E-01

MESSAGE SUMMARY BELOW:

MESSAGE: Attenuation factor < 6E-05 is unreasonably low.

USEPA GW-SCREEN Version 3.0, 04/2003 DTSC Modification

December 2014

Department of Toxic Substances Control Vapor Intrusion Screening Model - Groundwater

DATA	ENTRY	SHEET

Scenario: Chemical:

Residential Benzene

Reset to Defaults

CALCULATE RISK-BASED GROUNDWATER CONCENTRATION (enter "X" in "YES" box) YES

OR

CALCULATE INCREMENTAL RISKS FROM ACTUAL GROUNDWATER CONCENTRATION (enter "X" in "YES" box and initial groundwater conc. below)

Benzene

1.10E+02

	Results	Risk-Based Ground Concentration				
Soil Gas Conc. (C _{tours}) (µg/m³)	Attenuation Factor (alpha) (unitless)	Indoor Air Conc. (C _{balding}) (µg/m³)	Cancer	Noncancer Hazard	Cancer Risk = 10 ⁻⁶ (µg/L)	Noncancer HQ = 1 (µg/L)
1.74E+04	2.9E-05	5.0E-01	5.2E-06	1.6E-01	NA	NA.

MESSAGE: Attenuation factor < 6E-05 is unreasonably low.

MORE

71432

		and/or toxicity criteria for this chemica									
ENTER Depth	ENTER	ENTER	ENTER								
below grade to bottom of enclosed space floor, L _F (15 or 200 cm)	Depth below grade to water table, L _{WT} (cm)	SCS soil type directly above water table	Average soil/ groundwater temperature, Ts (°C)								
15	91	CL	16.67								

ENTER Average vapor flow rate into bldg. (Leave blank to calculate) Qsoil (L/m) 0.05

MORE

ENTER. Vadose zone SCS soil type (used to estimate soil vapor permeability)	OR	ENTER User-defined vandose zone soil vapor permeability, k _y (cm ²)	ENTER Vadose zone SCS soil type Lookup Soil Parameters	ENTER Vadose zone soil dry bulk density, pbV (g/cm³)	Vadose zone soil total porosity, n ^V (unitless)	ENTER Vadose zone soil water-filled porosity,
		2.00E-02	CL	1.63	0.384	0.146

MESSAGE: See VLOOKUP table comments on chemical properties

	MORE Lookup Receptor Perameters	ENTER Target risk for carcinogens, TR (unitless)	ENTER Target hazard quotient for noncarcinogens, THQ (unitless)	ENTER Averaging time for carcinogens, AT _c (yrs)	ENTER Averaging time for noncarcinogens, AT _{NC} (yrs)	ENTER Exposure duration, ED (yrs)	EXPOSURE frequency, EF (days/yr)	ENTER Exposure Time ET (hrs/day)	ENTER Air Exchange. Rate ACH (hour)-1
V=>	Residential	1.0E-06	1 1	70	26	26			
			late risk-based concentration.	,,,	20	20	350	(NEW)	0.5 (NEW)

Benzene

Diffusivity in air, D _a (cm ² /s)	Diffusivity in water, D _w (cm ² /s)	Henry's law constant at reference temperature, H (atm-m³/mol)	Henry's law constant reference temperature, T _R (°C)	Enthalpy of vaporization at the normal boiling point, $\Delta H_{v,b}$ (cal/mol)	Normal boiling point, T _B	Critical temperature, T _C (°K)	Organic carbon partition coefficient, K _{oo} (cm ³ /g)	Pure component water solubility, S (mg/L)	Unit risk factor, URF (µg/m³)-1	Reference conc., RfC (mg/m³)
8.95E-02	1.03E-05	5.55E-03	25	7,342	353.24	562.16	1,46E+02	1.79E+03	2.9E-05	3.0E-03

Last Update: December 2014 DTSC Human and Ecological Risk Office

Scenario: Residential

Chemical: Benzene

Source- building separation, L _T (cm)	Vadose zone soil air-filled porosity, θ _a ^V (cm ³ /cm ³)	Vadose zone effective total fluid saturation, Ste (cm³/cm³)	Vadose zone soil intrinsic permeability, k _i (cm ²)	Vadose zone soil relative air permeability, k _{rg} (cm²)	Vadose zone soil effective vapor permeability, k_{ν} (cm ²)	Thickness of capillary zone, L _{cz} (cm)	Total porosity in capillary zone, n _{cz} (cm³/cm³)	Air-filled porosity in capillary zone, $\theta_{a,cz}$ (cm ³ /cm ³)	Water-filled porosity in capillary zone, $\theta_{w,cz}$ (cm³/cm³)	Floor- wall seam perimeter, X _{crack} (cm)	
76	0.238	#N/A	#N/A	#N/A	2.00E-02	46.88	0.442	0.067	0.375	4,000	1
Bldg. ventilation rate, Q _{building} (cm³/s)	Area of enclosed space below grade, A _B (cm ²)	Crack- to-total area ratio, η (unitless)	Crack depth below grade, Z _{crack} (cm)	Enthalpy of vaporization at ave. groundwater temperature, $\Delta H_{\nu,TS}$ (cal/mol)	Henry's law constant at ave. groundwater temperature, H _{TS} (atm-m³/mol)	Henry's law constant at ave. groundwater temperature, H'TS (unitless)	Vapor viscosity at ave. soil temperature, µ _{TS} (g/cm-s)	Vadose zone effective diffusion coefficient, D ^{eff} _V (cm²/s)	Capillary zone effective diffusion coefficient, D ^{eff} cz (cm²/s)	Total overall effective diffusion coefficient, Deff (cm²/s)	
3.39E+04	1.00E+06	5.00E-03	15	8,054	3.76E-03	1.58E-01	1.77E-04	5.10E-03	6.89E-05	1.11E-04	1
Diffusion path length, L _d (cm)	Convection path length, L _e (cm)	Source vapor conc., C _{source} (µg/m³)	Crack radius, r _{crack} (cm)	Average vapor flow rate into bldg., Q _{soil} (cm ³ /s)	Crack effective diffusion coefficient, D ^{crack} (cm ² /s)	Area of crack, A _{crack} (cm ²)	Exponent of equivalent foundation Peclet number, exp(Pe ^f) (unitless)	Infinite source indoor attenuation coefficient,	Infinite source bldg. conc., Cbuilding (µg/m³)	Unit risk factor, URF (µg/m³)-1	Reference conc., RfC (mg/m³)
76	15	1.74E+04	1.25	8.33E-01	5.10E-03	5.00E+03	1.39E+00	2.89E-05	5.02E-01	2.9E-05	
END								Warning: alpha < 6E		2.02-00	3.0E-03

unreasonably low.

Table 1 Cumulative Soil Laboratory Analytical Results 411 West MacArthur Boulevard Oakland, CA

Sample ID	Date	Depth					Co	ncentration, r	nilligrams p	er kilogra	m (mg/kg,	or ppm)						
Sample 1D	Date	(ft)	TPH-G	TPH-D	В	T	E	X	МТВЕ	TBA	TAME	DIPE	ETBE	EDB	1-2,DCA	Ethanol	TOG	Pb
ST Removal A	ctivities, July 19	989																_
SW-1	7/12/1989	10	3,100	-	12	300	730	110	1.25	-			La.	-				1
SW-1(4)	7/12/1989	10	<1.0	-02	< 0.050	< 0.10	<0.10	<0.10	100	-	-		7.5	-	-	-	_	1
SW2	7/12/1989	10	1.1	0400	0.1	< 0.10	0.18	<0.10	200	-	-		out.	-	_	-		+
SW3	7/12/1989	10	5.7		0.26	<0.10	0.45	0.23		že.			-	-	-		-	-
SW4	7/12/1989	10	2.5	112	< 0.050	<0.10	0.24	<0.10	-	-			-			-		-
SW4 (2)	7/12/1989	10	11		0.61	0.51	1.3	0.44	1-0						-		-	-
Pí	7/12/1989	6.5	<1.0	_	< 0.050	<0.10	<0.10	<0.10			-		~		-	(3-8°		5-4
P2	7/12/1989	6.5	<1.0	-	<0.050	<0.10			-	-		-			-	250	200	-
P3	7/12/1989	5.5	<1.0				<0.10	<0.10	10-00	4.2			-	- T-			-	-
P4					<0.050	<0.10	<0.10	<0.10					(**	15 to 10	-	-
	7/12/1989	10	170	-	0.71	12	47	6.8	***		(100)		1.50			-		-
WOI(A)	7/12/1989	8.5	<1.0	-	< 0.050	<0.10	<0.10	<0.10		-		1 000	P-2	-	-		36	-
ell Installation	Activities, Sept	ember 1989	-															
MW-1 (5)	9/6/1989	5	3.4	<1.0	< 0.050	<0.010	<0.010	<0.010	-				-	-	<5.0	-	<50	T
MW1 (10)	9/6/1989	10	5.0	<1.0	< 0.050	< 0.010	< 0.010	< 0.010		r. D	74.				<5.0	-	<50	-
MWI (15)	9/6/1989	15	2.2	<1.0	< 0.050	< 0.010	<0.010	<0.010		52		100	-6-7		<5.0	-	<50	+
MW1 (19)	9/6/1989	19	<1.0	<1.0	< 0.050	< 0.010	<0.010	<0.010	-	04		-	-57	-	<5.0		<50	-
MW2 (5)	9/6/1989	5	1.4		< 0.050	<0.010	<0.010	< 0.010		-			121	-				+
MW2 (10)	9/6/1989	10	<1.0	Tari J	<0.050	< 0.010	<0.010	<0.010	-			_					-	-
MW2 (15)	9/6/1989	15	1.8	l rozer ii	<0.050	<0.010	<0.010	<0.010				-				-	-	-
MW2 (19)	9/6/1989	19	13	-	1.5	2.1	0.34	1.8		-	-	-	-	-			**	-
MW3 (5)	9/6/1989	5	1.3	-	<0.050	<0.010	< 0.010	<0.010			-			-		-	-	-
MW3 (10)	9/6/1989	10	1.8	-	0.29	< 0.010	<0.010	<0.010	33	-	_	_	-			-		-
MW3 (15)	9/6/1989	15	3,3		<0.050	< 0.010	<0.010	<0.010		100		-	-	-			-	-
MW3 (18.5)	9/6/1989	18.5	<1.0		<0.050	< 0.010	<0.010	<0.010	-57	-		-		-	-			-
MW4 (5)	9/6/1989	5.0	3.1		<0.050	< 0.010	< 0.010	<0.010			-		-	-				-
MW4 (10)	9/6/1989	10	17		<0.050	< 0.010	<0.010	0.1		-	-	-	-		**		-	-
MW4 (15)	9/6/1989	15	20	-	<0.050	< 0.010	<0.010	0.27			_	-	-	-	-	-		-
MW4 (18.5)	9/6/1989	18.5	2.1	-	<0.050	< 0.010	<0.010	<0.010	-	-	-	-	-	-	-	-		-

MW5 (5)	11/18/1992	5	<1.0	T-6	< 0.0050	<0.0050	< 0.0050	<0.0050	-	-	-	-5	- 2			-		1
MWS (10)	11/18/1992	10	<1.0	6-27	<0.0050	<0.0050	<0.0050	<0.0050	-	-	-	-	-	-	-			-
MW5 (15)	11/18/1992	15	<1.0		<0.0050	<0.0050	<0.0050	<0.0050	-2	-	-	-					-	
MW5 (21)	11/18/1992	21	<1.0		< 0.0050	<0,0050	<0.0050	<0.0050		-	-	-	-	-		-	9	
MW6 (5)	11/18/1992	5	<1.0	, hear	<0.0050	<0.0050	< 0.0050	< 0.0050		19-80	7	343				-		-
MW6 (10)	11/18/1992	10	<1.0		<0.0050	< 0.0050	<0.0050	<0.0050		13.00	(-	-		-			1
MW6 (15)	11/18/1992	15	<1.0	-	<0.0050	<0.0050	<0.0050	<0.0050	-	1,4	1		0		-		-	-
MW6 (19.5)	11/18/1992	19.5	<1.0	-	<0.0050	< 0.0050	<0.0050	< 0.0050	1040	-	12.7			-		1.00		-
ST Removal A	ctivities, Septem	ber 1998																
Al (19)	9/14/1998	19	3,5	Oil.	0.53	0.36	0.069	0.40	<0.050	-	1	-	-	-	-	-		26
A2 (18)	9/14/1998	18	12		0.050	0.075	<0.0050	0.026	<0.050	-51	-	-	-	-	-	-	-	<1.0
81 (19.5)	9/14/1998	19.5	360	17-40	1.5	15	7.0	44	<0.050	-	-	_	-	4	- T-	-		1.7
B2 (19.5)	9/14/1998	19.5	6.7		0.017	1.8	0.24	1.4	< 0.050	12		-	-	-		-		2.7
PI (6)	9/14/1998	6	<1.0	-	<0.0050	<0.0050	<0.0050	< 0.0050	<0.050	15-0	-	-	-		D-85	-		-11
P2 (6)	9/14/1998	6	<1.0	1	< 0.0050	<0.0050	< 0.0050	< 0.0050	< 0.050	-	1 2	-	-01				-	1.3
P3 (6)	9/14/1998	6	<1.0	-	<0.0050	<0.0050	<0.0050	< 0.0050	<0.050		-	-		-	-	G- 1	-	<1.0
P4 (6)	9/14/1998	6	<1.0	14-1	<0.0050	<0.0050	< 0.0050	< 0.0050	<0.050	-	-	-	4.0	-	-	(-a)	-	<1.0
oil Boring Inve	stigation, March	2006																
SB-1@5	3/27/2006	5	<0,97	7	<0.0049	<0.0049	<0.0049	<0.0097	< 0.0049	< 0.0097	<0.0049	<0.0049	<0.0049	<0.0049	< 0.0049	<0.49	***	-
SB-1@9	3/27/2006	9	2.8		<0.0048	<0.0048	<0.0048	<0.0097	<0.0048	< 0.0097	<0.0048	<0.0048	<0.0048	<0.0048	<0.0048	<0.48	100	-
SB-2@5	3/27/2006	5	<0.97	2.	<0.0049	<0.0049	<0.0049	<0.0097	< 0.0049	< 0.0097	<0.0049	<0.0049	<0.0049	<0.0049	< 0.0049	<0.49	2	-
SB-2@9	3/27/2006	9	<0.93		<0.0047	<0,0047	< 0.0047	<0.0093	<0.0047	<0.0093	<0.0047	<0.0047	<0.0047	<0.0047	<0.0047	<0.47	-	Į.Ę.
	3/27/2006	14	1.3	- 4,-	0.11	<0.0046	0.061	0.055	0.64	0.19	<0,0046	<0.0046	<0.0046	<0.0046	<0.0046	<0.46	=	-
56-3@14	202712000				<9.7	53	86	420	<9.7	<19	<9.7	<9.7	<9.7	<9.7	<9.7	<190	-	-
56-3@14 SB-3@16	3/27/2006	16	6,100					_	11									1
		16	<0.93		<0.0047	< 0.0047	<0.0047	<0.0093	< 0.0047	<0.0093	< 0.0047	< 0.0047	< 0.0047	< 0.0047	< 0.0047	< 0.47		E=0
SB-3@16	3/27/2006				<0.0047 <0.0046	<0.0047 <0.0046	<0.0047 <0.0046	<0.0093	<0.0047	<0.0093	<0.0047		<0.0047 <0.0046	<0.0047 <0.0046	<0.0047	<0.47	1-21	i a
SB-3@16 SB-4@5	3/27/2006 3/27/2006	5	<0.93	10-10								<0.0046						-

SB-8@5	12/20/10	5	<0.20	Dec /	< 0.0050	< 0.0050	<0.0050	< 0.010	<0.0050	< 0.050	< 0.0050	< 0.0050	<0.0050	< 0.0050	< 0.0050	<1.0	-	
SB-8@10	12/20/10	10	0.30	-	<0.0050	<0.0050	<0.0050	< 0.010	<0.0050	<0.050	<0.0050	<0.0050	<0.0050	< 0.0050	< 0.0050	<1.0	1	-
SB-8@15	12/20/10	15	<10	11-2	< 0.025	< 0.025	<0.025	<0.050	< 0.025	<0.25	<0.025	<0.025	<0.025	<0.025	<0.025	<5.0		-
SB-8@20	12/20/10	20	520	P = 1	<1.2	19	19	86	<1.2	<12	<1.2	<1.2	<1.2	<1.2	<1.2	<250	-	La
SB-9@5	12/20/10	5	9.9	Acres 1	<0.025	< 0.025	0.10	0.059	< 0.025	<0.25	<0.025	<0.025	< 0.025	<0.025	< 0.025	<5,0	70-2	-
SB-9@10	12/20/10	10	3.0	12-	<0.0050	0.011	0.069	0.28	0.014	0.40	<0.0050	<0.0050	<0.0050	< 0.0050	<0.0050	<1.0	1140	-
SB-9@15	12/20/10	15	<10	1	1.4	0.28	0.14	0,66	0.04	<0.25	<0.025	<0.025	< 0.025	<0.025	< 0.025	<5.0	140,20	-
SB-9@20	12/20/10	20	4.5	6-3	0.17	0.10	0.067	0.37	0,62	0.58	<0.025	<0.025	<0.025	< 0.025	<0.025	<5.0	Ser V	-
SB-9@25	12/20/10	25	0.30	[F44]	< 0.0050	0.014	0.0050	0.028	<0.0050	<0.050	<0.0050	<0.0050	< 0.0050	< 0.0050	< 0.0050	<1.0		
SB-9@30	12/20/10	30	0,28	[BG	< 0.0050	0.02	0.011	0.043	<0.0050	<0.050	<0.0050	< 0.0050	<0.0050	< 0.0050	< 0.0050	<1.0	(5.43)	-
SB-10@5	12/21/10	5	<0.20	-	<0.0050	< 0.0050	<0.0050	< 0.010	<0.0050	<0.050	<0.0050	<0.0050	<0.0050	<0.0050	< 0.0050	<1.0		-
SB-10@10	12/21/10	10	0,28		< 0.0050	<0.0050	<0.0050	0,017	<0.0050	<0.050	<0.0050	<0.0050	<0.0050	< 0.0050	< 0.0050	<1.0	1.54	-
SB-10@15	12/21/10	15	0.47	nen.	<0.0050	<0.0050	0.0055	0.024	< 0.0050	<0.050	<0.0050	<0.0050	<0,0050	<0.0050	< 0.0050	<1.0	Law of	
SB-10@20	12/21/10	20	0,31		< 0.0050	< 0.0050	0.047	< 0.010	<0.0050	<0.050	<0.0050	<0.0050	<0.0050	< 0.0050	< 0.0050	<1.0		-
SB-10@25	12/21/10	25	<0.20		< 0.0050	<0.0050	<0.0050	<0.010	< 0.0050	< 0.050	<0.0050	<0.0050	<0.0050	<0.0050	< 0.0050	<1.0		-
SB-10@30	12/21/10	30	<0.20		< 0.0050	< 0.0050	<0,0050	0.012	< 0.0050	< 0.050	<0.0050	<0,0050	< 0.0050	<0.0050	< 0.0050	<1.0	11 2.11	-
il Boring Inve	stigation, July 2	2014																
SS-1	7/24/14	0-1,5	<1.0	22	<0.0051	< 0.0051	<0.0051	<0,0051	-	-	-		-	-	-	i e	170(B)	<0.26
SS-2	7/24/14	0-1.5	<1.0	4.1	< 0.0054	<0,0054	< 0.0054	< 0.0054		- ·	-	12	-20		100	(22)	23(B)	<0.23
SS-3	7/24/14	0-1.5	<1.0	3.2	< 0.0051	<0.0051	<0.0051	<0.0051	-		-	-	1965		-	12	19(B)	EI
SB-1@5	7/24/14	5	164.11	1.1	< 0.0047	< 0.0047	< 0.0047	< 0.0047			124		-	-		100	<5.0(B,C)	
SB-1@10	7/24/14	10	10-41	68	< 0.0046	<0.0046	< 0.0046	< 0.0046		1.90		-	- 1	-	-	F	130(C)	-
SB-2@5	7/24/14	5		17	<0,0048	< 0.0048	<0.0048	<0.0048	-2 1	1740	s #d.		Y-2	-		- el	49(C)	-
SB-2@10	7/24/14	10		650	< 0.0049	< 0.0049	<0.0049	< 0.0049				-	-			-	1,300(C)	-
_	estination Iune	6, 2016							•									
	Sugarion, ounc		_		-			<.015	-	-		-		-	-	li eci		-
	5/6/16	5	<1		<.005	<.005	<.005	~,015						-	_			
il Boring Inve		5	<1 <1	-	<.005 <.005	<.005	<.005	<.015	-	-			-	1-44-11	1-2			
AS-1-5	5/6/16				1000	1000				10-E		-			1-1	-		
AS-1-5 AS-1-10	5/6/16 5/6/16	10	<1		<.005	<.005	<.005	<.015										
AS-1-5 AS-1-10 AS-1-16	5/6/16 5/6/16 5/6/16	10 16	<1 1.6	1020	<.005 <.005	<.005 0.0067	<.005 0.0073	<.015 0.048	D.EV	95	-	-			-		-	-
AS-1-5 AS-1-10 AS-1-16 AS-1-18	5/6/16 5/6/16 5/6/16 5/6/16	10 16 18	<1 1.6 <1	peanl	<.005 <.005 <.005	<.005 0.0067 <.005	<.005 0.0073 <.005	<.015 0.048 <.015		[2] [2]		-			-			4
AS-1-5 AS-1-10 AS-1-16 AS-1-18 AS-2-5	5/6/16 5/6/16 5/6/16 5/6/16 5/6/16	10 16 18 5	<1 1.6 <1 2.6		<.005 <.005 <.005 <.005	<.005 0.0067 <.005 <.005	<.005 0.0073 <.005 <.005	<.015 0.048 <.015 <.015	-		-	-			-			

ESL-Direct Ex worker)	posure (cons	struction	2,800	880	24	4,100	480	2,400	3,700	-	-	-		-	37		31,000	160
ESL-Direct Ex	posure (res.)		740	230	0.23	970	5.1	560	42	Fet.			-	12.	0.37	12.0	11,000	80
AS-3-16	5/6/16	16	690		2.4	24	17	94		-		-	-	2		1,24	7-4	
AS-3-14	5/6/16	14	13)i === 1	0.04	0.01	0.24	0.051		læ.	-	-3	-	(20)		-		-
AS-3-10	5/6/16	10	550	13 2 01	<.005	0,21	6.10	11	-	-4-C	0.22		1	5	-			
AS-3-7	5/6/16	. 7	90	1,00	<.005	<.005	0.15	<.015		194	-4	-	-	-	U=0 =	-	game (

SG-1 = Soil Gas Levels in µg/m3

GW Depth = Groundwater depth below top of casing

GW Elevation = Groundwater mean sea level elevation

TPH-G = Total Petroleum Hydrocarbons as Gasoline

B = Benzene

T = Toluene

E = Ethylbenzene

X = Xylenes

MTBE = Methyl-t-Butyl Ether

TBA = tert-Butanol

TAME = Tert-amyl Methyl Ether

DIPE = Diisopropyle ether

ETBE = Ethyl-tert-butyl ether

EDB = Ethylene Dibromide

1,2-DCA = 1,2-Dichloroethane

TOG = Total Oil & Grease (TPH-Motor Oil Final Risk Based Screening Level Table SI-Soil Direct Exposure Human Health Screening Levels)

- = Not analyzed for this parameter

<0.050 = Not detected above the expressed value

(A) = Sample also analyzed for HVOCs and SVOCs; all nondetect

(B) = Results for Total Petroleum Hydrocarbons as Motor Oil analysis

(C) = Results for Total Petroleum Hydrocarbons as Hydraulic Fluid analysis

Table 2 **Grab Groudwater Laboratory Analytical Results**

411 West MacArthur Boulevard Oakland, CA

Sample	Comple Donah (6)	Concentration (micrograms per liter, µg/L)									
ID	Sample Depth (ft)	TPH-G	В	T	E	X	Napth.				
Soil Boring I	nvestigation, ARS, April 8,	2016									
GW-1	20	42,000	110	67	2,600	4,800	2,300				
GW-2	20	21,000	39	540	850	3,900	490				
GW-3	20	7,800	< 5.0	81	230	1,000	190				
ESL-Vapor Ir	ntrusion (residential)	NL	30	100,000	370	38,000	180				
ESL-Vapor Ir	ntrusion (commercial)	NL	260	NL	3,300	NL	1,600				

Notes:

Areas Shaded in Blue are in excess of RWQCB ESL Feb 2016 Residential limits Areas Shaded in Brown are in excess of RWQCB ESL Feb 2016 Commercial limits

Table 3
Cumulative Groundwater Monitoring Data and Analytical Results

411 West MacArthur Boulevard Oakland, CA

Vell ID	Date	TOC (ft)	DTW (ft)	GWE	Con	centration,	micrograms	s per liter (µg	g/L)
ven in	Date	10C (II)	DIW (II)	GWE	TPH-G	В	T	E	X
MW-1	9/15/1989		-161-		ND	ND	0.61	ND	ND
	1/23/1990		244	194	ND	1.5	2.3	ND	4.3
	4/19/1990	0	H		ND	ND	ND	ND	ND
	7/17/1990	4.0	2.79	-	ND	ND	ND	ND	ND
	10/16/1990		3-3-	100	ND	ND	ND	ND	ND
	1/15/1991				ND	ND	ND	ND	ND
	4/12/1991				ND	ND	ND	ND	ND
	7/15/1991	748		**	ND	ND	ND	ND	ND
[7/14/1992				ND	ND	ND	ND	ND
	4/13/1993	72.43	17.70	54.73	Samp	oled Annually i	n the Third Qu	arter	
	7/14/1993	72.43	18.49	53.94	ND	2.2	2.1	1.1	6.2
- 1	10/14/1993	72.10	18.32	53.78	Samp	oled Annually i	n the Third Qu	arter	
	1/12/1994	72.10	18.18	53.92	Samp	oled Annually i	n the Third Qu	arter	
	4/11/1994	72.10	17.80	54.30	Samp	oled Annually i	n the Third Qu	arter	
	7/7/1994	72.10	18.28	53.82	ND	ND	ND	ND	ND
	10/5/1994	72.10	18.55	53.55	Samp	oled Annually i	n the Third Qu	arter	
	1/9/1995	72.10	17.90	54.20	Samp	oled Annually i	n the Third Qu	arter	
	4/17/1995	72.10	17.22	54.88	Samp	oled Annually i	n the Third Qu	arter	
	7/19/1995	72.10	18.03	54.07	ND	ND	ND	ND	ND
	10/26/1995	72.10	18.67	53.43	Samp	oled Annually is	n the Third Qu	arter	
	1/16/1996	72.10	17.20	54.90	Samp	oled Annually is	n the Third Qu	arter	
	4/15/1996	72.10	17.40	54.70	Samp	oled Annually is	n the Third Qu	arter	
- 1	7/11/1996	72.10	18.03	54.07	ND	ND	ND	ND	ND
1	1/17/1997	72.10	16.54	55.56	Samp	oled Annually is	n the Third Qu	arter	
- [7/21/1997	72.10	18.16	53.94	ND	ND	ND	ND	ND
- [1/14/1998	72.10	16.05	56.05	Samp	led Annually is	n the Third Qu	arter	
ſ	7/6/1998	72.10	16.46	55.64	ND	ND	ND	ND	ND
	1/13/1999	72.10	17.37	54.73	1	Sampled An	nually in the T	hird Quarter	
	8/31/1999	72.12	17.00	55.12	ND	ND	ND	ND	ND
	1/21/2000	72.12	17.04	55.08	Samp	led Annually in	n the Third Qu	arter	
	7/10/2000	72.12	18.10	54.02	ND	ND	ND	ND	ND
	1/4/2001	72.12	17.95	54.17	Samp	led Annually in	the Third Qu	arter	
	7/16/2001	72.12	18.03	54.09	ND	ND	ND	ND	ND
	1/28/2002	72.12	17.31	54.81	Samp	led Annually in	the Third Qu	arter	
	7/12/2002	72.12	18.15	53.97	<50	< 0.50	< 0.50	<0.50	< 0.50
1	1/14/2003	72.12	17.66	54.46	Samp	led Annually in			
	7/10/2003	72.12	17.86	54.26	<50	<0.30	<0.30	<0.30	<0.60
1	2/4/2004	72.12	17.43	54.69		led Annually in	5.000		5000
ı	7/29/2004	72.12	18.12	54.00	<50	<0.30	<0.38	<0.30	<0.6
ŀ	3/2/2005	72.12	16.15	55.97		led Annually in			

	9/30/2005	72,12	18.04	54.08	<50	< 0.30	<0.38	<0.30	<0.6
	3/23/2006	72.12	74		San	pled Annually	in the Third Q	uarter	
	9/26/2006	72.12	17.90	54.22	<50	<0.30	<0.30	< 0.30	<0.6
	3/15/2007	72.12	17.22	54.90	Sam	npled Annually	in the Third Q	uarter	
	9/27/2007	72.12	18.49	53.63	<50	< 0.30	< 0.30	< 0.30	<0.6
	3/27/2008	72.12	17.57	54.55	Sam	pled Annually	in the Third Q	uarter	
	9/17/2008	72.12	18.20	53.92	<50	<0.30	< 0.30	< 0.30	< 0.6
	3/27/2009	72.12	16.75	55.37	Sam	pled Annually	in the Third Q	uarter	
	9/17/2009	72.12	18.18	53.94	<50	< 0.30	< 0.30	<0.30	<0.6
	3/23/2010	72.12	17.34	54.78	Sam	pled Annually	in the Third Q	uarter	
	9/21/2010	72.12	18.74	53.38	<50	< 0.30	< 0.30	<0.30	<0.6
	3/30/2011	72.12	16.68	55.44	Sam	pled Annually	in the Third Qu	uarter	
	9/6/2011	72.12	18.36	53.76	<50	< 0.30	< 0.30	<0.30	<0.60
	2/3/2012	72.12	18.02	54.10	Sam	pled Annually	in the Third Qu	uarter	
	8/17/2012	72.12	18.50	53.62	<50	<0.30	<0.30	<0.30	<0.60
	2/14/2013	72.12	17.98	54.14	Sam	pled Annually	5.1134.4.40		11 11
	8/1/2013	72.12	18.45	53.67	<50	<0.30	< 0.30	<0.30	<0.60
	2/5/2014	72.12	18.75	53.37	Sam	pled Annually i			
MW-2	9/15/1989	- (m)			290	ND	12	ND	ND
	1/23/1990	- 1	2.0		400	73	36	10	40
	4/19/1990		P 42	-	3900	550	5.1	91	390
	7/17/1990				490	76	0.6	11	46
	10/16/1990	346		(F)	1400	430	2.0	48	240
	1/15/1991		4	4.0	680	170	0.7	19	81
	4/12/1991	3.0			2200	160	4.3	23	62
	7/15/1991	7.4	<u> </u>		2200	770	12	72	370
	10/15/1991	ledu_in/	10.00 K	(-	140	44	0.56	1.5	12
	1/15/1992			Log # Paris	220	37	0.52	1.1	7
	4/14/1992				150	6.2	ND	ND	1.4
	7/14/1992	3#J 1,			130	3.7	ND	ND	ND
- 13	10/12/1992	- 45		9-1	370	3.4	0.56	ND	11
	1/8/1993		-	- H. 1	510	ND	ND	ND	ND
	4/13/1993	71.63	17.86	53.77	410	42	7.7	6.4	28
	7/14/1993	71.63	18.38	53.25	110	6.5	ND	ND	1.1
	10/14/1993	71.38	18.20	53.18	230	5.3	ND	ND	2.1
	1/12/1994	71.38	18.08	53.30	300	7.8	3.8	1.8	10
	4/9/1994	71.38	17.97	53,41	120	10	0.88	1.1	4.9
	4/11/1994	71.38	17.88	53.50	-		- 24		44
- 1	7/7/1994	71.38	17.81	53.57	110	4.4	ND	ND	ND
1	10/5/1994	71.38	18.33	53.05	720	20	ND	ND	3.1
	1/9/1995	71.38	17.40	53.98	ND	ND	ND	ND	ND
	4/17/1995	71.38	17.50	53.88	93	5.6	0.62	1.7	5.5
1	7/19/1995	71.38	18.01	53.37	77	32	0.58	1.7	4.1
1	10/26/1995	71.38	18.21	53.17	54	13	ND	ND	0.72
1	1/16/1996	71.38	16.58	54.80	120	23	ND	ND	0.99
1	4/15/1996	71.38	17.61	53.77	340	21	ND	2.2	3.7

	7/11/1996	71.38	17.98	53.40	540	34	ND	4.3	12
	1/17/1997	71.38	17.08	54.30	320	63	2.4	9.4	26
	7/21/1997	71.38	18.06	53.32	160	13	ND	1.3	1.6
	1/14/1998	71.38	16.52	54.86	66	6.3	ND	ND	0.98
	7/6/1998	71.38	16.87	54.51	ND	2.3	ND	ND	ND
	1/13/1999	71.38	17.88	53.50	53	24	ND	0.52	0.98
	8/31/1999	71.34	18.45	52.89	86	14.00	ND	0.63	ND
	1/21/2000	71.34	17.73	53.61	ND	1.94	ND	ND	ND
	7/10/2000	71.34	18.14	53.20	ND	ND	ND	ND	ND
	1/4/2001	71,34	18.02	53.32	ND	0.925	ND	ND	ND
	7/16/2001	71.34	18.02	53.32	ND	ND	ND	ND	ND
	1/28/2002	71.34	17.57	53.77	<50	<0.50	<0.50	<0.50	<0.50
	7/12/2002	71.34	18.05	53.29	<50	<0.50	<0.50	<0.50	<0.50
	1/14/2003	71.34	17.44	53.90	<50	<0.50	<0.50	<0.50	<0.50
	7/10/2003	71.34		**			10.50		
	2/4/2004	71.34	17.22	54.12	<50	<0.50	<0.50	< 0.50	<0.50
	7/29/2004	71.34					-0.50		~0.50
	3/2/2005	71.34	16.63	54.71	99	26	<0.50	3.5	2.8
	9/30/2005	71.34	17.94	53.40	<50	1.2	<0.30	<0.30	< 0.60
	3/23/2006	71.34	16.74	54.60	<50	3.6	<0.30	0.35	<0.60
	9/26/2006	71.34	17.91	53.43	<50	1.2	<0.30	<0.30	<0.60
	3/15/2007	71.34	17.45	53.89	110	6.5	<0.30	0.70	< 0.60
	9/27/2007	71.34	18.23	53.11	<50	<0.30	<0.30	<0.30	< 0.60
	3/27/2008	71.34	17.77	53.57	<50	1.8	<0.30	<0.30	
	9/17/2008	71.34	18.06	53.28	<50	1.6	<0.30	<0.30	<0.60
	3/27/2009	71.34	17.43	53.26	<50	3.5	<0.30	<0.30	-
	9/17/2009	71.34	18.01	53.33	<50	2.7	<0.30	<0.30	<0.60
	3/23/2010								<0.60
	9/21/2010	71.34	17.47	53.87	<50	0.68	<0.30	<0.30	<0.60
		71.34	18.41	52.93	69	1.6	<0.30	<0.30	<0.60
	3/30/2011	71.34	16.58	54.76	<50	<0.30	<0.30	<0.30	<0.60
	9/6/2011	71.34	18.14	53.20	<50	<0.30	<0.30	<0.30	<0.60
	2/3/2012	71.34	17.97	53.37	<50	<0.30	<0.30	<0.30	<0.60
	8/17/2012	71.34	18.20	53.14	57	1.2	<0.30	<0.30	< 0.60
	2/14/2013	71.34	17.88	53.46	<50	<0.30	<0.30	<0.30	<0.60
	8/1/2013	71.34	16.30	55.04	<50	<0.30	< 0.30	<0.30	<0.60
	2/5/2014	71.34	18.34	53.00	<50	<0.30	<0.30	< 0.30	< 0.60
V-3	9/15/1989		1 14	**	32	ND	ND	ND	ND
	1/23/1990	- 24		44	450	110	1.2	4.4	11
	4/19/1990	-		- W	3,100	600	27	54	220
	7/17/1990	- 4	4	77	4,000	270	48	130	250
	10/16/1990	***	2		740	210	1,4	2.5	82
	1/15/1991	**			3,200	460	1.5	120	270
	4/12/1991	58			880	170	1.1	34	110
	7/15/1991		L.TAJE	- 47	9,200	1300	230	490	1900
	10/15/1991			1.	3,100	390	34	150	390
	1/15/1992	4001			3,000	590	14	310	750

4/14/1992	4	44	A DECI	14,000	660	48	560	2000
7/14/1992	-	- 33	1207	21,000	890	200	1200	4300
10/12/1992	-			3,200	160	10	230	540
1/8/1993	-			1,100	48	0.99	0.9	93
4/13/1993	72.06	17.96	54.10	12,000	290	38	760	2300
7/14/1993	72.06	18.54	53.52	6,300	190	ND	430	1000
10/14/1993	71.86	18.45	53.41	2,500	52	ND	110	250
1/12/1994	71.86	18.34	53.52	3,800	78	ND	180	390
4/9/1994	71.86	18.19	53.67	1,800	22	ND	140	280
4/11/1994	71.86	18.12	53.74	- 44			24	- 24
7/7/1994	71.86	18.21	53.65	110	4.5	ND	ND	ND
10/5/1994	71.86	18.58	53.28	ND	ND	ND	ND	ND
1/9/1995	71.86	17.69	54.17	ND	0.68	ND	ND	ND
4/17/1995	71.86	17.68	54.18	3,700	80	10	270	510
7/19/1995	71.86	18.20	53.66	15,000	330	27	990	2400
10/26/1995	71.86	18,32	53.54	14,000	420	180	750	1600
1/16/1996	71.86	17.95	53.91	920	38	ND	30	57
4/15/1996	71.86	17.78	54.08	9,700	240	ND	570	860
7/11/1996	71.86	18.19	53.67	13,000	69	5.5	430	900
1/17/1997	71.86	17.23	54.63	4,400	25	ND	270	580
7/21/1997	71.86	18.29	53,57	9,000	36	ND	450	800
1/14/1998	71.86	16.71	55.15	7,100	40	ND	380	360
7/6/1998	71.86	17.03	54.83	6,800	39	ND	320	360
1/13/1999	71.86	18.00	53.86	1,800	9.4	ND	58	36
8/31/1999	71,40		344	hand • Jan	4 P. 1	1		
1/21/2000	71.40	17.58	53.82	ND	ND	ND	ND	ND
7/10/2000	71.40	18.05	53.35	ND	ND	ND	ND	ND
8/25/2000	71.40	17.82	53.58			LUMBER		**
1/4/2001	71.40	18.16	53.24	ND	ND	ND	ND	ND
7/16/2001	71.40	17.98	53.42	ND	ND	ND	ND	ND
1/28/2002	71.40	17.84	53.56	<50	ND<0.50	ND<0.50	ND<0.50	ND<0.5
7/12/2002	71.40	17.87	53.53	<50	ND<0.50	ND<0.50	ND<0.50	ND<0.5
1/14/2003	71.40	17.28	54.12	<50	ND<0.50	ND<0.50	ND<0.50	ND<0.5
7/10/2003	71.40	17.64	53.76	<50	ND<0.50	ND<0.50	ND<0.50	ND<0.5
2/4/2004	71.40	17.05	54.35	<50	ND<0.50	ND<0.50	ND<0.50	ND<0.5
7/29/2004	71.40	17.82	53.58	<50	<0.30	<0.30	<0.30	<0.60
3/2/2005	71.40	16.47	54.93	93	<0.50	<0.50	<0.50	<0.50
9/30/2005	71.40	17.79	53.61	65	<0.30	<0.30	<0.30	<0.60
3/23/2006	71.40	16.61	54.79	54	<0.30	0.41	ND<0.30	0.98
9/26/2006	71.40	17.77	53.63	51	<0.30	<0.30	<0.30	<0.60
3/15/2007	71.40	17.27	54.13	140	<0.30	<0.30	<0.30	<0.60
9/27/2007	71.40	18.48	52.92	<50	<0.30	<0.30	<0.30	<0.60
3/27/2008	71.40	17.67	53.73	<50	<0.30	<0.30	<0.30	<0.60
9/17/2008	71.40	17.91	53.49	56	<0.30	<0.30	<0.30	<0.60
3/27/2009	71.40	17.34	54.06	<50	<0.30	<0.30	<0.30	<0.60
9/17/2009	71.40	17.88	53.52	<50	<0.30	<0.30	<0.30	<0.60
3/23/2010	71.40	17.33	54.07	<50	< 0.30	< 0.30	<0.30	< 0.60

	9/21/2010	71.40	18.28	53,12	69	< 0.30	< 0.30	< 0.30	<0.60
	3/30/2011	71.40	16.50	54.90	110	<0.30	<0.30	< 0.30	<0.60
	9/6/2011	71.40	18.03	53,37	<50	<0.30	<0.30	<0.30	< 0.60
	2/3/2012	71.40	17.83	53.57	<50	<0.30	< 0.30	<0.30	< 0.60
	8/17/2012	71.40	18.07	53.33	<50	<0.30	< 0.30	<0.30	< 0.60
	2/14/2013	71.40	17.72	53.68	<50	<0.30	< 0.30	< 0.30	< 0.60
	8/1/2013	71,40	18.02	53.38	<50	< 0.30	< 0.30	< 0.30	< 0.60
	2/5/2014	71.40	18.24	53.16	<50	< 0.30	< 0.30	< 0.30	<0.60
N-4	9/15/1989	2.			ND	ND	ND	ND	ND
	1/23/1990	At _	I THE		ND	ND	ND	ND	
	4/19/1990	348	144		ND	ND	ND	ND	
	7/17/1990		34		ND	ND	ND	ND	ND
	10/16/1990		harani e		ND	ND	ND	ND	ND
	1/15/1991	- 1		5000	ND	ND		ND	
	4/12/1991		4		ND	ND	ND	ND	ND
	7/15/1991		1 - 27 - 1		ND	ND	ND	ND	ND
	7/14/1992			4	ND	2.5	ND	1.0	7.00
	4/13/1993	71.98	17.67	54.31	- 40.1	pled Annually i			
	7/14/1993	71.98	18.31	53.67	ND	ND	ND	ND	ND
	10/14/1993	71.64	18.08	53.56	Sam	,-(1 4)			
	1/12/1994	71.64	17.97	53.67		pled Annually i			
	4/11/1994	71.64	17.70	53.94		pled Annually i	200 200		
- 1	7/7/1994	71.64	17.80	53.84	ND	ND	ND	ND	ND
	10/5/1994	71.64	18.28	53.36	Sam	pled Annually in	n the Third Qua		
	1/9/1995	71.64	17.38	54.26		pled Annually in		W-1	
	4/17/1995	71.64	17.21	54.43	Sam	pled Annually in	the Third Qua	arter	
	7/19/1995	71.64	17.82	53.82	ND	ND	ND	ND	ND
1	10/26/1995	71.64	18.17	53.47	Sam	pled Annually in	n the Third Qua	arter	
	1/16/1996	71.64	16.45	55.19	Sam	pled Annually in	the Third Qua	arter	
	4/15/1996	71.64	17.35	54.29	Sam	pled Annually in	the Third Qua	arter	
	7/11/1996	71.64	17.81	53.83	ND	ND	ND	ND	ND
- 1	1/17/1997	71.64	16.73	54.91	Sam	pled Annually is			
	7/21/1997	71.64	17.91	53.73	ND	ND	ND	ND	ND
-	1/14/1998	71.64	16.18	55.46	Sam	pled Annually in	the Third Qua		
	7/6/1998	71.64	16.49	55.15	ND	ND	ND	ND	ND
	1/13/1999	71.64	17.29	54.35	Sam	pled Annually in	the Third Qua	irter	
	8/31/1999	71.54	-4	44	Sam	pled Annually ir	the Third Qua	ırter	
	1/21/2000	71.54	17.51	54.03	Sam	pled Annually ir	the Third Qua	rter	
	7/10/2000	71.54	17.93	53.61	ND	ND	ND	ND	ND
Ī	1/4/2001	71.54	18.10	53.44	Sam	pled Annually in	the Third Qua		
Ī	7/16/2001	71.54	17.76	53.78	ND	ND	ND	ND	ND
	1/28/2002	71.54	17.20	54.34		pled Annually in	the Third Qua		
	7/12/2002	71.54	17.81	53.73	<50	<0.50	<0.50	<0.50	< 0.50
1	1/14/2003	71.54	17.30	54.24			ually in the Th		
1	7/10/2003	71.54	17.58	53.96	<50	<0.50	<0.50	<0.50	< 0.50
t	2/4/2004	71.54	17.07	54.47		pled Annually in			

	7/29/2004	71.54	17.81	53.73	<50	< 0.30	< 0.30	<0.30	< 0.60
	3/2/2005	71.54	16.25	55.29		Sampled Ar	nually in the T	Third Quarter	
	9/30/2005	71.54	17.74	53.80	<50	<0.30	< 0.30	<0.30	< 0.60
	3/23/2006	71.54	**	1 40		Sampled Ar	nually in the T	Third Quarter	
	9/26/2006	71.54	17.71	53,83	<50	< 0.30	< 0.30	< 0.30	< 0.60
	3/15/2007	71.54	17.56	53.98	1	Sampled Ar	nually in the T	Third Quarter	
	9/27/2007	71.54	18.16	53.38	<50	< 0.30	< 0.30	<0.30	< 0.60
	3/27/2008	71.54	17.58	53.96	Sam	pled Annually	in the Third Qu	uarter	
	9/17/2008	71.54	17.87	53.67	<50	<0.30	<0.30	<0.30	< 0.60
	3/27/2009	71.54	17.17	54.37	Sam	pled Annually	in the Third Qu		
	9/17/2009	71.54	17.86	53.68	<50	<0.30	< 0.30	< 0.30	< 0.60
	3/23/2010	71.54	17.25	54.29	Sam	pled Annually i	in the Third Qu		
	9/21/2010	71.54	18.31	53.23	<50	<0.30	< 0.30	< 0.30	< 0.60
	3/30/2011	71.54	16.35	55.19	Sam	pled Annually i	in the Third Qu	_	
	9/6/2011	71.54	18.00	53.54	<50	< 0.30	< 0.30	< 0.30	< 0.60
	2/3/2012	71.54	17.81	53.73	Sam	pled Annually i	in the Third Qu		
	8/17/2012.	71.54	18.09	53.45	<50	<0.30	<0.30	<0.30	<0.60
	2/14/2013	71.54	17.68	53.86	Sam	pled Annually i		_	0.00
	8/1/2013	71.54	18.05	53.49	<50	<0.30	<0.30	<0.30	< 0.60
	2/5/2014				Samp	oled Annually i			
MW-5	11/30/1992			-	ND	ND	ND	ND	ND
	1/8/1993	-			ND	ND	ND	ND	ND
	4/13/1993	71.51	17.49	54.02	ND	ND	ND	ND	ND
	7/14/1993	71.51	18.02	53.49	ND	ND	0.57	ND	ND
	10/14/1993	71.23	17.82	53.41	ND	ND	ND	ND	ND
	1/12/1994	71.23	17.74	53.49	ND	ND	0.84	ND	1.6
	4/11/1994	71.23	17.56	53.67		pled Annually i			1.0
	7/7/1994	71.23	17.50	53.73	ND	ND	ND	ND	ND
	10/5/1994	71.23	17.98	53.25		pled Annually i			110
	1/9/1995	71.23	17.13	53.25		pled Annually i	CONTRACTOR OF A		
	4/17/1995	71.23	17.05	53.25		pled Annually is			
	7/19/1995	71.23	17.59	53.25	ND	ND	ND	ND	ND
	10/26/1995	71.23	18.10	53.25		pled Annually in			.,,,
	1/16/1996	71.23	17.11	53.25	Samp	pled Annually in	n the Third Ou	arter	
	4/15/1996	71.23	17.22	53.25		pled Annually in			
	7/11/1996	71.23	17.59	53.25	ND	ND	ND	ND	ND
13	1/17/1997	71.23	16.75	53.25		pled Annually in			0.5
	7/21/1997	71.23	17.59	53.25	ND	ND	ND	ND	ND
- 1	1/14/1998	71.23	16.16	53.25		oled Annually in			3.16
	7/6/1998	71.23	16.52	53.25	ND	ND	ND	ND	ND
			17.62	53.25		oled Annually in			
		71.23	17,02						
	1/13/1999	71.23 71.16			ND T	ND	ND	ND	ND
	1/13/1999 8/31/1999	71.16	17.76	53.25	ND Samr	ND oled Annually in	ND the Third Ou	ND arter	ND
	1/13/1999 8/31/1999 1/21/2000	71.16 71.16	17.76 16.83	53.25 53.25	Samp	oled Annually in	n the Third Qua	arter	
	1/13/1999 8/31/1999	71.16	17.76	53.25	Samp ND	II II II II II II II	n the Third Qua	arter ND	ND ND

	1/28/2002	71.16	17.12	53,25	San	npled Annually	in the Third Ou	arter	
	7/12/2002	71.16	17.12	53.25	<50	<0.50	<0.50	<0.50	<0.50
	1/14/2003	71.16	16.67	53.25		npled Annually			0,00
	7/10/2003	71.16	17.39	53.25	<50	<0.50	<0.50	<0.50	< 0.50
	2/4/2004	71.16	16.23	53.25		npled Annually			3000
	7/29/2004	71.16	16.02	53.25	<50	<0.30	0.64	<0.30	0.79
	3/2/2005	71.16	16.43	53.25		npled Annually			0.75
	9/30/2005	71.16	17.41	53.25	<50	<0.30	<0.30	<0.30	< 0.60
	3/23/2006	71.16	16.37	53.25		npled Annually			
	9/26/2006	71.16	15.54	53.25	<50	<0.30	<0.30	<0.30	< 0.60
	3/15/2007	71.16	17.20	53.25		npled Annually	1 32.50	1,4,16,4	3163
	9/27/2007	71.16	18.01	53,25	<50	<0.30	<0.30	<0.30	< 0.60
	3/27/2008	71.16	17.57	53,25		npled Annually	034.30		20100
	9/17/2008	71.16	17.68	53.25	<50	<0.30	<0.30	<0.30	< 0.60
	3/27/2009	71.16	17.14	53.25	1.5	npled Annually			30.00
			17.60	53.25	<50	<0.30	<0.30	<0.30	< 0.60
	9/17/2009	71.16		53.25		npled Annually			-0.00
	3/23/2010 9/21/2010	71.16 71.16	17.84	53,25	<50	<0.30	< 0.30	<0.30	<0.60
						npled Annually	71707	2,350	<0.00
	3/30/2011	7116	15.87	53.25	<50	<0.30	<0.30	<0.30	< 0.60
	9/6/2011	71.16	17.74	53.25					<0.00
	2/3/2012	71.16	17.69	53,25		npled Annually	<0.30		< 0.60
	8/17/2012	71.16	17.75	53.25	<50	<0.30	135.5	<0.30	<0.00
	2/14/2013	71.16	17.51	53,25		npled Annually			×0.40
	8/1/2013	71.16	17.71	53.25	<50	<0.30	<0.30	<0.30	<0.60
	2/5/2014	71.16	17.96	53,25		npled Annually			7.00
MW-6	11/30/1992			-22	ND	ND	ND	ND	ND
	1/8/1993				ND	ND	ND	ND	ND
	4/13/1993	71.79	11.94	59.85	ND	ND	ND	ND	ND
	7/14/1993	71.79	17.20	54.59	ND	0.99	2.4	ND	1.9
	10/14/1993	71.44	17.21	54.23	ND	ND	0.64	ND	ND
	1/12/1994	71.44	17.44	54.00	ND	ND	1.2	ND	2.9
	4/11/1994	71.44	13.66	57.78	San	npled Annually	in the Third Qu	ıarter	
	7/7/1994	71.44	14.05	57.39	ND	ND	ND	ND	ND
	10/5/1994	71.44	14.16	57.28		npled Annually			
	1/9/1995	71,44	13.73	57.71	San	npled Annually	in the Third Qu	ıarter	
	4/17/1995	71.44	11.30	60.14	San	npled Annually	in the Third Qu	ıarter	
	7/19/1995	71.44	12.32	59.12	ND	ND	ND	ND	ND
	10/26/1995	71,44	17.88	53.56		npled Annually			
	1/16/1996	71.44	16.38	55.06	San	npled Annually	in the Third Qu	iarter	
	4/15/1996	71.44	14.00	57.44	San	npled Annually			
	7/11/1996	71,44	13.58	57.86	ND	ND	ND	ND	ND
	1/17/1997	71.44	15.42	56.02	San	npled Annually	in the Third Qu	ıarter	
	7/21/1997	71.44	13.78	57.66	ND	ND	ND	ND	ND
	1/14/1998	71.44	13.65	57.79	San	npled Annually	in the Third Qu	ıarter	
	7/6/1998	71.44	13.90	57.54	ND	ND	ND	ND	ND
	1/13/1999	71.44	14.93	56.51	San	npled Annually	in the Third Qu	arter	

2/14/2013 CSL-Vapor I	71.37 ntrusion (resid	15.69 lential)	23.00	NL	30	100,000	370	38,000
2/14/2013	71.37	15.09	55.00		ALO LED I TOUR			
		16.60	55.68	Sam	pled Annually	in the Third Qua	arter	
8/1/2013	71.37	13,58	57.79	<50	<0.30	<0.30	< 0.30	< 0.60
2/14/2013	71.37	13.66	57.71	Sam	pled Annually	in the Third Qua	arter	
8/17/2012	71.37	16.08	55.29	<50	< 0.30	< 0.30	< 0.30	<0.60
2/3/2012	71.37	14.88	56.49	Sam	pled Annually	in the Third Qua	arter	
9/6/2011	71.37	15.07	56.30	<50	< 0.30	<0.30	< 0.30	<0.60
3/30/2011	71.37	14.12	57.25	Sam	pled Annually	in the Third Qua	arter	
9/21/2010	71.37	15.62	55.75	<50	< 0.30	<0.30	< 0.30	< 0.60
3/23/2010	71.37	15.42	55.95	Sam	pled Annually	in the Third Qu	arter	
9/17/2009	71.37	15.31	56.06	<50	< 0.30	< 0.30	< 0.30	< 0.60
3/27/2009	71,37	15.66	55.71	San	npled Annually	in the Third Qu	arter	
9/17/2008	71.37	14.70	56.67	<50	< 0.30	< 0.30	< 0.30	< 0.60
3/27/2008	71.37	14.83	56.54	San	npled Annually	in the Third Qu	arter	
9/27/2007	71.37	14.18	57.19	<50	<0.30	<0.30	< 0.30	< 0.60
3/15/2007	71.37	13.72	57.65	Sam	pled Annually	in the Third Qu	arter	
9/26/2006	71.37	17.58	53.79	<50	<0.30	<0.30	<0.30	< 0.60
3/23/2006	71.37	16.55	54.82	San	npled Annually	in the Third Qu	arter	
9/30/2005	71.37	14.45	56.92	<50	< 0.30	<0.30	< 0.30	<0.6
3/2/2005	71.37	14.51	56.86	San	npled Annually	in the Third Qu	arter	
7/29/2004	71.37	14.98	56.39	<50	< 0.50	< 0.50	< 0.50	<0.50
2/4/2004	71.37	16.20	55.17	San	npled Annually	in the Third Qu	arter	
7/10/2003	71.37	12.97	58.40	<50	< 0.50	< 0.50	< 0.50	<0.50
1/14/2003	71.37	16.25	55.12	San	npled Annually	in the Third Qu	arter	
7/12/2002	71.37	16.76	54.61	<50	<0,50	< 0.50	< 0.50	<0.50
1/28/2002	71.37	14.58	56.79	San	npled Annually	in the Third Qu	arter	
7/16/2001	71.37	16.83	54.54	ND	ND	ND	ND	ND
1/4/2001	71.37	17.09	54.28	San	npled Annually	in the Third Qu	arter	
7/10/2000	71,37	16.95	54.42	ND	ND	ND	ND	ND
1/21/2000	71.37	16.13	55.24	San	npled Annually	in the Third Qu	arter	11.5

TOC = Top of casing mean sea level elevation, in feet

DTW = Depth to water, in feet below top of casing

GWE = Groundwater mean sea level elevation, in feet

TPH-G = Total Petroleum Hydrocarbons as Gasoline

B = Benzene

T = Toluene

E = Ethylbenzene

X = Xylenes

<50 = Not detected above the expressed value

Table 4 SOIL GAS LABORATORY ANALYTICAL RESULTS

411 W. MacArthur Blvd., Oakland, CA

Sample ID	Date	Sample Depth	TPH-G (ug/m³)	B (ug/m³)	T (ug/m³)	E (ug/m³)	X (ug/m³)	Naphth. (ug/m³)	Methane (%)	CO2 (%)	N (%)	O2 (%)	Helium (%)
SG-1	4/15/2016	16.0 ft	150,000	39	210	360	1,100	<53	0.50	0.12	NA	11.0	< 0.050
SG-2	4/8/2016	5.5 ft	1,900,000	450	<190	<220	<660	<530	21	5.2	NA	2.5	4.3
SG-3	4/8/2016	5.5 ft	2,700,000	<160	<190	390	<660	<530	23	4.2	NA	0.76	< 0.050
Soil Gas ES	L-Residential		300,000	48	1.6E+05	560	5.2E+04	41	LEL = 4.4 UEL = 17	-	-	-	
Soil Gas ES	L-Commercial		2,500,000	420	1.3E+06	4,900	4.4E+05	360	LEL = 4.4 UEL = 17	-	-	-	

Table Notes

TPH-G = Total Petroleum Hydrocarbons as Gasoline

ug/m³ = micrograms per cubic meter

B = Benzene

% = Percent

T = Toluene

<0190 = Not detected above the expressed detection level.

E = Ethylbenzene

LEL = Lower explosion limit

X = Xylenes

UEL = Upper explosion limit

Naphth. = Naphthalene

Elevated Levels Shaded

Table 5 Summary of Indoor Air Modeling Parameters⁸ 411 West MacArthur Boulevard

Oakland, CA

Parameter		Proposed On-Site Resid	lential Building
r ar ameter	Value	Units	Reference
Building			
Building Length, Width and Height	4,267 x 2,136 x 1,676	cm.	Site-specific building parameters (approximately 30 feet x 60 feet) assuming an 8-foot ceiling
Indoor Air Exchange Rate	5	1/hour	Default for a commercial/Residential building ³
Average Vapor Flow Rate Into Building	0.05	L/min	Model calculated
Slab or Basement Scenario	Slab-on-Grade		Most likely scenario for California
Depth below grade to bottom of enclosed floor space	15	cm	Default for slab-on-grade construction ¹
Soil	•		
SCL Soil Type	Clay		Site specific ⁷
Vadose zone soil dry bulk density	1.66	g/cm ³	Site specific ²
Vadose zone soil total porosity	0.375	cm ³ /cm ³	Site specific ²
Vadose zone soil water-filled porosity	0.054	cm ³ /cm ³	Site specific ²
Soil Vapor Sample Depth	168	cm	Site specific (5.5 feet/15 feet)
Soil Temperature	16.67	°C	Model calculated ⁶
Exposure			•
Exposure Duration	25	year	Default assumption for Commercial/Industrial Worker ⁴
Exposure Frequency	250	day/year	Default assumption for Commercial/Industrial Worker ⁴
Averaging Time - Noncarcinogens	25	year	Default assumption for Commercial/Industrial Worker ⁴

Parameter		Proposed On-Site Resid	ential Building			
T at affect.	Value	Units	Reference			
Averaging Time - Carcinogens	70	year	Default assumption for Commercial/Industrial Worker ⁴			
Exposure			The state of the s			
Exposure Duration	26	year	Default assumption for Residential			
Exposure Frequency	350	day/year	Default assumption for Residential			
Averaging Time - Noncarcinogens	26	year	Default assumption for Residential			
Averaging Time - Carcinogens	70	year	Default assumption for Residential			
Toxicity Values						
Benzene			-1			
Unit Risk Factor	2.90E-05	$(\mu g/m^3)^{-1}$	CalEPA (2013)			
Reference Concentration	3.00E-02	(mg/m ³)	CalEPA (2013)			
Ethylbenzene						
Unit Risk Factor	2.50E-06	$(\mu g/m^3)^{-1}$	CalEPA (2013)			
Reference Concentration	1.00E+00	(mg/m^3)	CalEPA (2013)			
Toluene						
Reference Concentration EPA	5.00E+00	(mg/m ³)	USEPA ⁵			
Reference Concentration	3.00E-01	(mg/m^3)	CalEPA (2013)			
Methyl CycloHexane (Gasoline)						
Reference Concentration EPA	3.00E+00	(mg/m^3)	USEPA ⁵			
Napthalene						
Unit Risk Factor	3.40E-05	$(\mu g/m^3)^{-1}$	CalEPA (2013)			
Reference Concentration	3.00E-03	(mg/m ³)	CalEPA (2013)			

bgs = Below ground surface

cm = Centimeter

cm³ = Cubic centimeter

μg/m³ = Micrograms per cubic meter

g/cm³ = Grams per cubic meter

cm³/cm³ = Cubic meter per cubic meter

°C = Degrees Celsius

F = Degrees Celsius

CalEPA (2013) = California Environmental Protection Agency, OEHHA Toxicity Criteria Database, 2013

DTSC/HERO (2011) = Department of Toxic Substances Control/Office of Human and Ecological Risk

DTSC/HERD = Department of Toxic Substances Control/Human and Ecological Risk Division

NA = Not Available

OEHHA = Office of Environmental Health Hazard Assessment

OSWER = Office of Solid Waste and Emergency Response

USCS = Unified Soil Classification System

USEPA = United States Environmental Protection Agency

Johnson & Ettinger (J&E) Model, Version 3.1, February 2004, adjusted with DTSC/HERD recommended default values

²Based on the site-specific geotechnical testing

³CalEPA 2011a Final Guidance for the Evaluation and Mitigation of Subsurface Vapor Intrusion to Indoor Air, DTSC, CalEPA, October 2011

⁴USEPA 1991 Human Health Evaluation Manual: Supplemental Guidance: Standard Default Exposure Factors. OSWER Directive March 25, 1991

⁵USEPA Recommended Toxicity November 2013 RSL Table

⁶User's Guide for JE Model (2004), 62 ^oF for Oakland, CA

⁷Top 5 feet of soil consists primarily of clay w/minor amount of silt. Clay was used as the USCS soil category that best describes Site soil,

based on Guidance in Table 11 of the JE Model User's Guide

⁸Inputs not referred to on this table are set at default values.

Table 6
Summary of Soil Vapor Modeling Results
411 West MacArthur Boulevard
Oakland, CA

COPC ¹ (Exposure Scenario)	Max Soil Vapor Concentration (μg/m³)	Location of Max Soil Vapor Concentration	ELRC ²	HI ²	DTSC Rec Tox Criteria Values (μg/m³) ⁻¹ to Calculate Risk and Hazard (3/2014)	Inhalation Unit Risk Factor (IUR) (ug/m ³)-1
Benzene-Residential	450	SG-2	6.1E-06	0.19	2.95E-05	7.80E-06
Benzene-Commercial	450	SG-2	7.00E-07	0.022	2.95E-06	7.80E-06
TPH-g-Commercial ³	2,700,000	SG-3	N/A	0.51	N/A	N/A
Ethylbenzene-Residential	390	SG-3	4.00E-07	4.30E-04	2.50E-06	2.50E-06
O-Xylene-Residential	1,100	SG-1	N/A	0.012	N/A	N/A
Toluene-Residential	210	SG-1	N/A	0.26	N/A	N/A
	Total Reside	ntial ELCR/HI	6.50E-06	0.46		
	Total Comm	ercial ELCR/HI	7.00E-07	0.53		

ELCR: Potential Excess Lifetime Cancer Risk

HI: Hazard Index

Attenuation Factors: Benzene Attenuation Factor (Residential) = 1.3E-03

Benzene Attenuation Factor (Commercial) = 6.5E-04 TPHg(Methyl Cyclohexanone Surrogate) = 5.9E-04 Ethylbenzene Attenuation Factor (Residential) = 1.1E-03 O-Xylene Attenuation Factor (Residential) = 1.1E-03

Toluene Attenuation Factor (Residential) = 1.1E-03

¹Chemicals of Potential Concern

²Estimated using the CalEPA DTSC (Vapor Intrusion Guidance 2011)/HERO version of the Johnson and Ettinger Model Spreadsheets-Soil Gas Screening (March 2014) and model inputs presented in Table 5

³ Estimated by utilizing C7-C9 Cyclohexanone as a surrogate

Table 7
Summary of Groundwater Vapor Modeling Results

411 West MacArthur Boulevard Oakland, CA

COPC ¹ (Exposure Scenario)	Max. Groundwater Concentration (µg/l)	Depth to Groundwater (cm)	Cancer Risk ²	Non-Cancer Risk ²
Benzene-Residential	110	91	6.9E-06	0.21
Benzene-Residential	110	518	6.6E-06	0.2
Ethylbenzene-Residential	2,300	91	1.50E-05	0.016
Ethylbenzene-Residential	2,300	518	1.40E-05	0.015
Napthalene-Residential	2,600	91	1.70E-05	0.45
Napthalene-Residential	2,600	518	1.50E-05	0.39
	isk/Non-Cancer Risk - Ele	the same of the sa	3.89E-05	0.68
otal Residential Cancer R	isk/Non-Cancer Risk - At-	Grade Receptors	3.6E-05	0.61

Notes:

Spreadsheets-Groundwater Screening and model inputs, (USEPA Vapor Intrusion Model; 2004)

Attenuation Factors

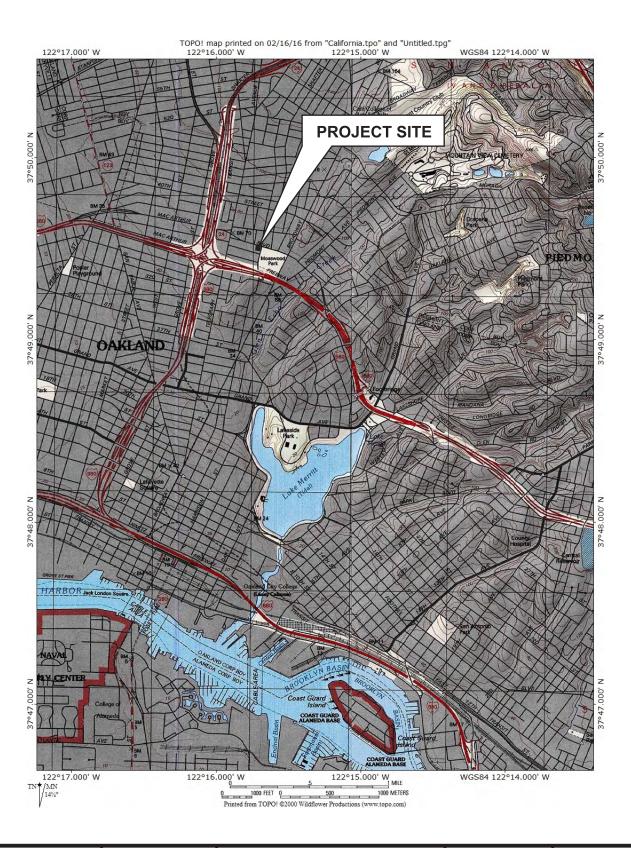
Benzene Attenuation Factor (Residential-3') = 2.8.0E-05

Benzene Attenuation Factor (Residential-17') = 2.7E-05

Ethylbenzene Attenuation Factor (Residential-3') = 2.1E-05

Ethylbenzene Attenuation Factor (Residential-17') = 2.0E-05

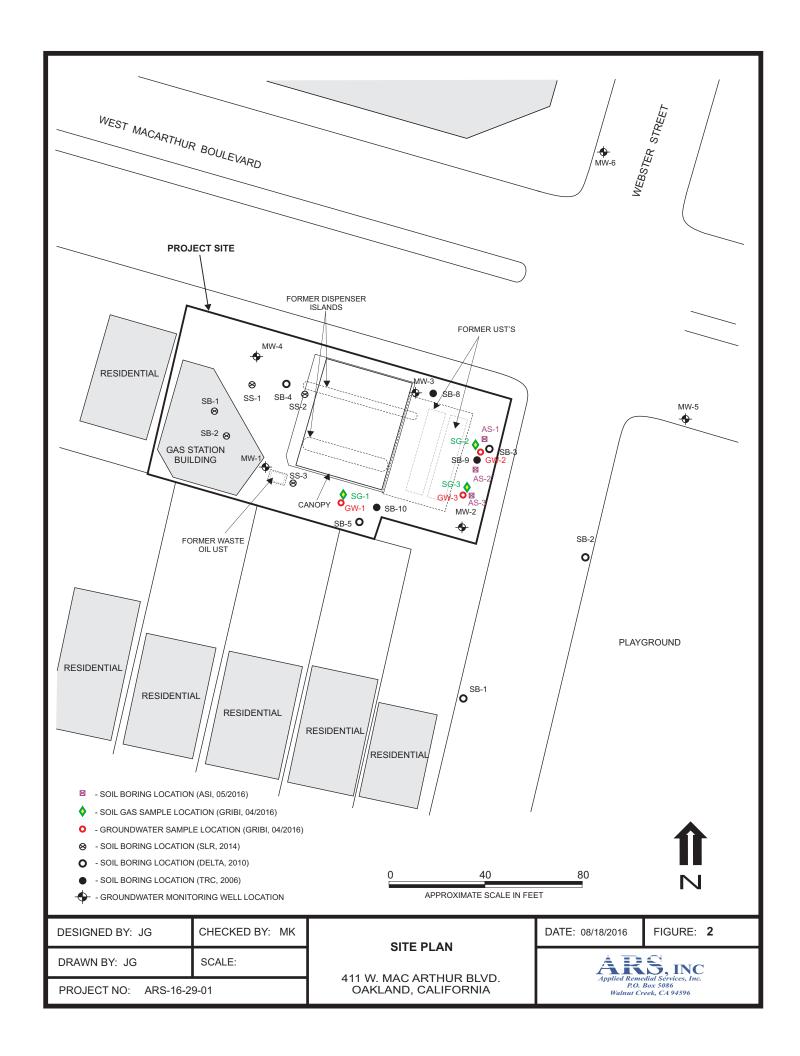
Napthalene Attenuation Factor (Residential-3') = 3.6E-05


Napthalene Attenuation Factor (Residential-17') = 3.1E-05

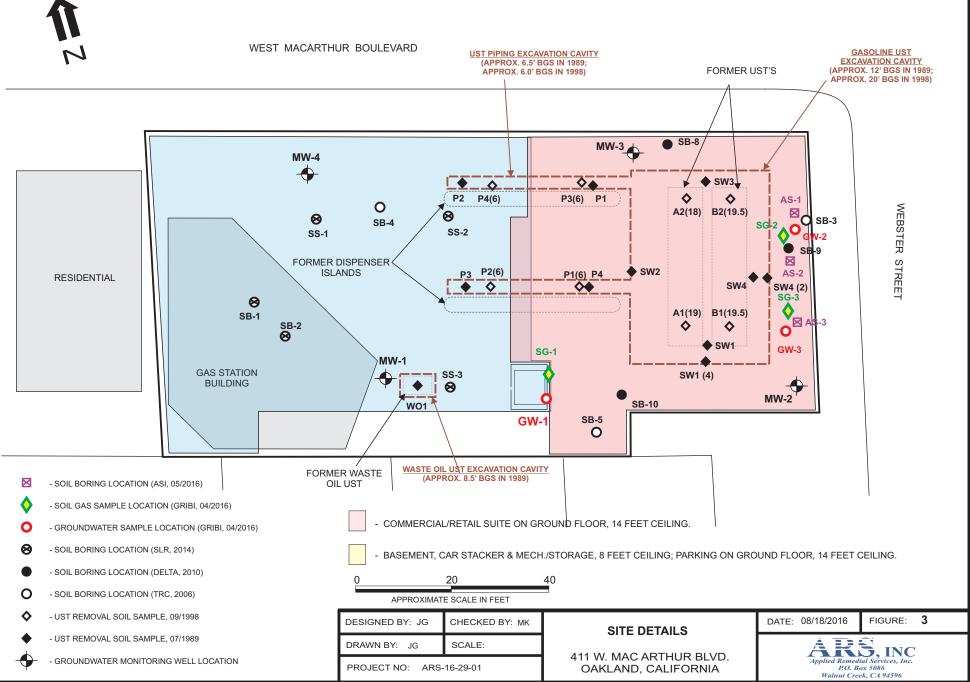
¹COPC: Chemicals of Potential Concern

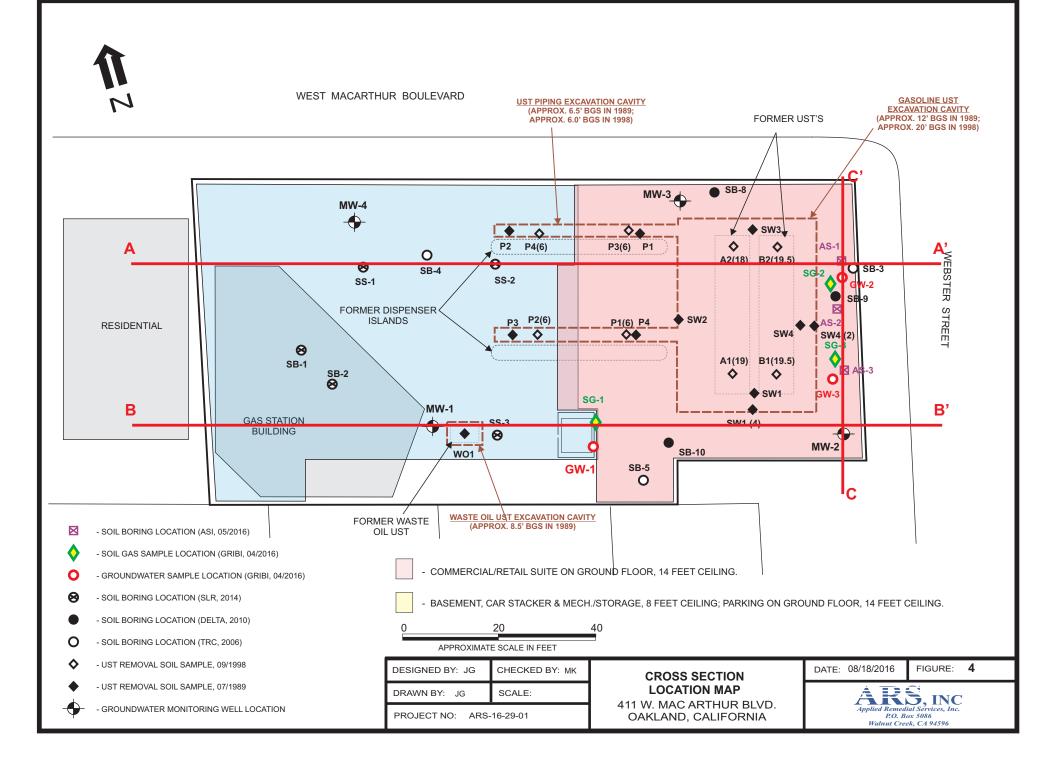
²Estimated using the CalEPA DTSC (Vapor Intrusion Guidance 2011)/HERO version of the Johnson and Ettinger Model

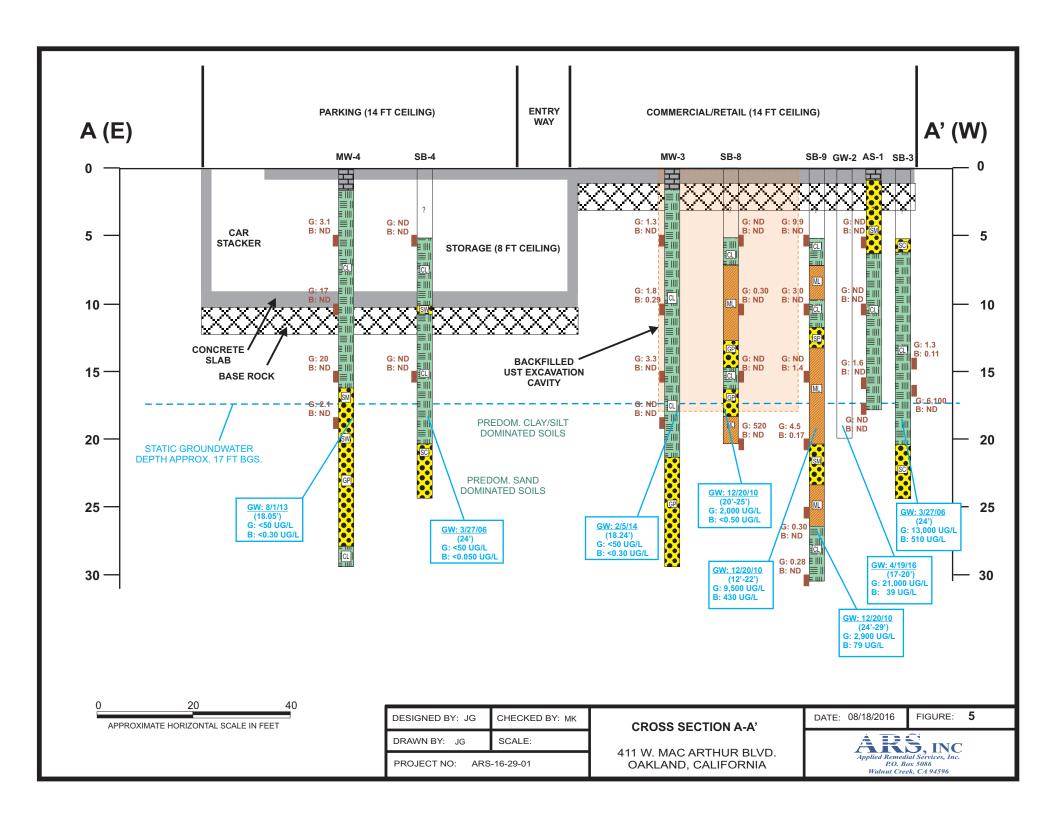
FIGURES

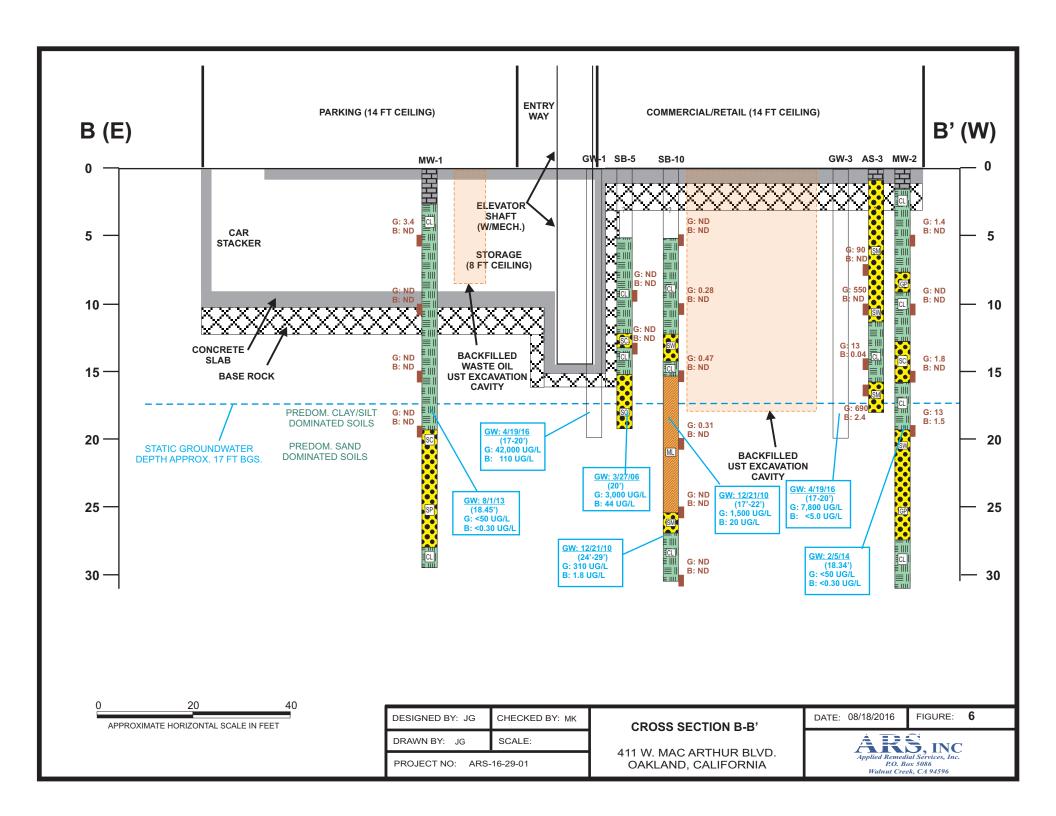


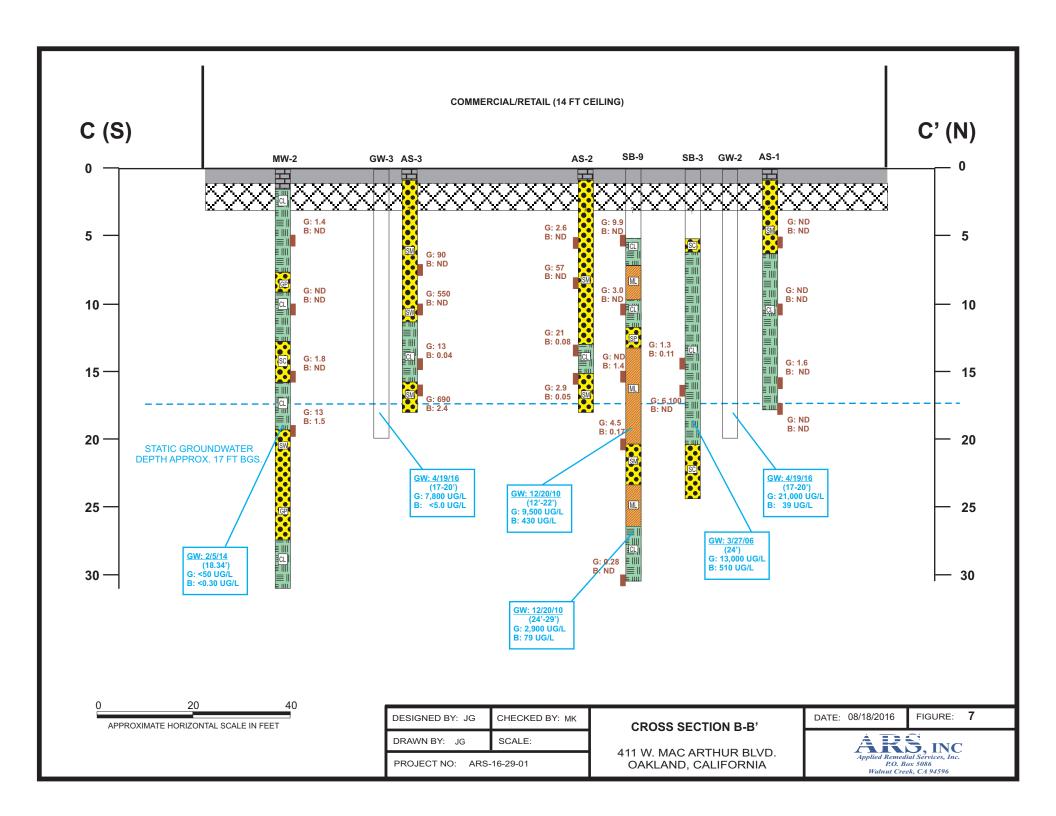
DESIGNED BY: JG	CHECKED BY: MK						
DRAWN BY: JG	SCALE:						
PROJECT NO: ARS-16-2	9-01						

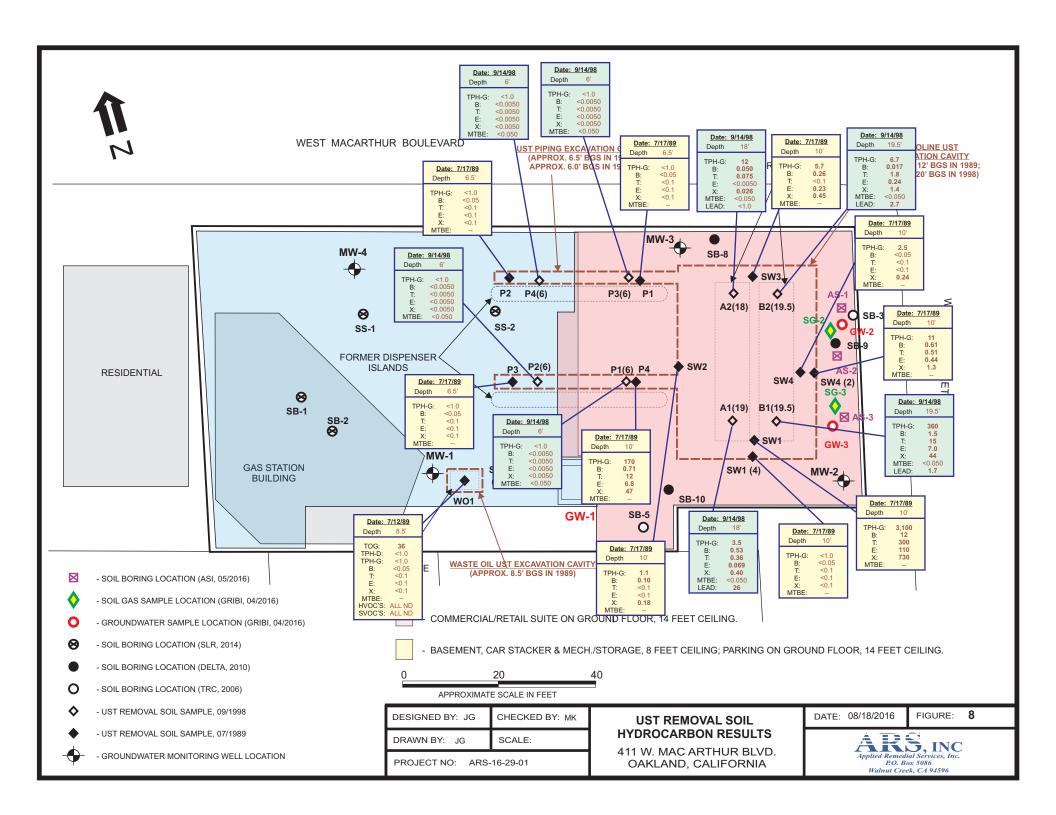

SITE VICINITY MAP

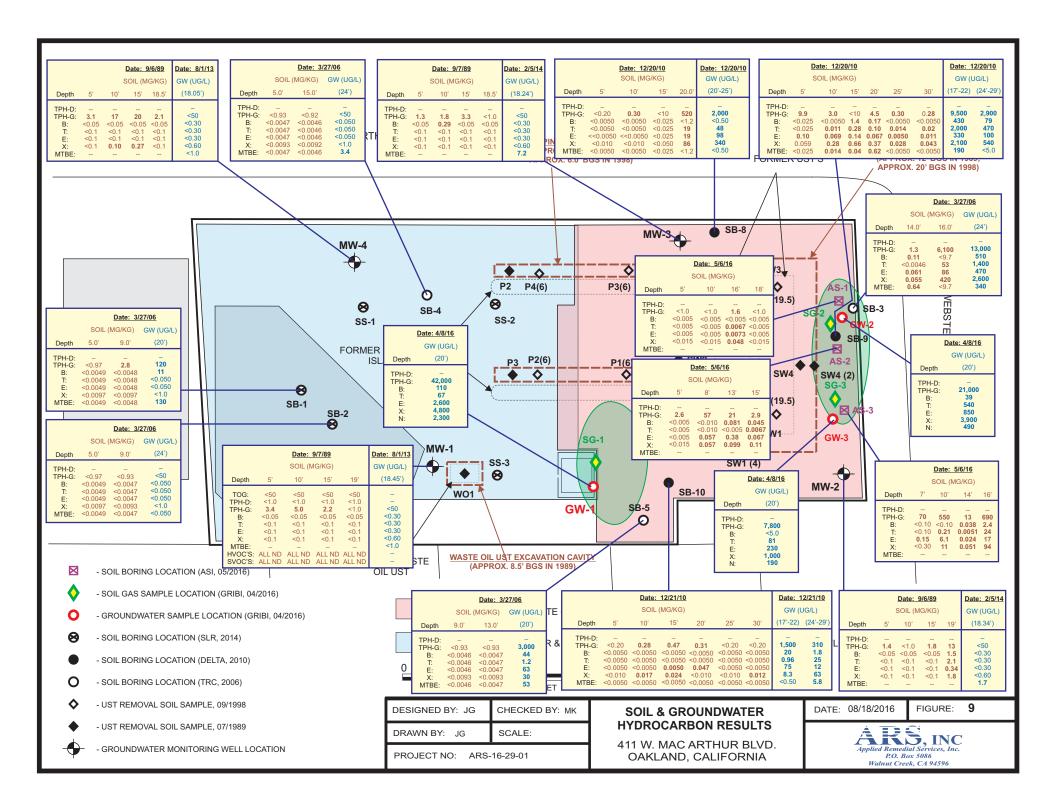

411 WEST MACARTHUR BLVD. OAKLAND, CALIFORNIA DATE: 08/18/2016 FIGURE: **1**

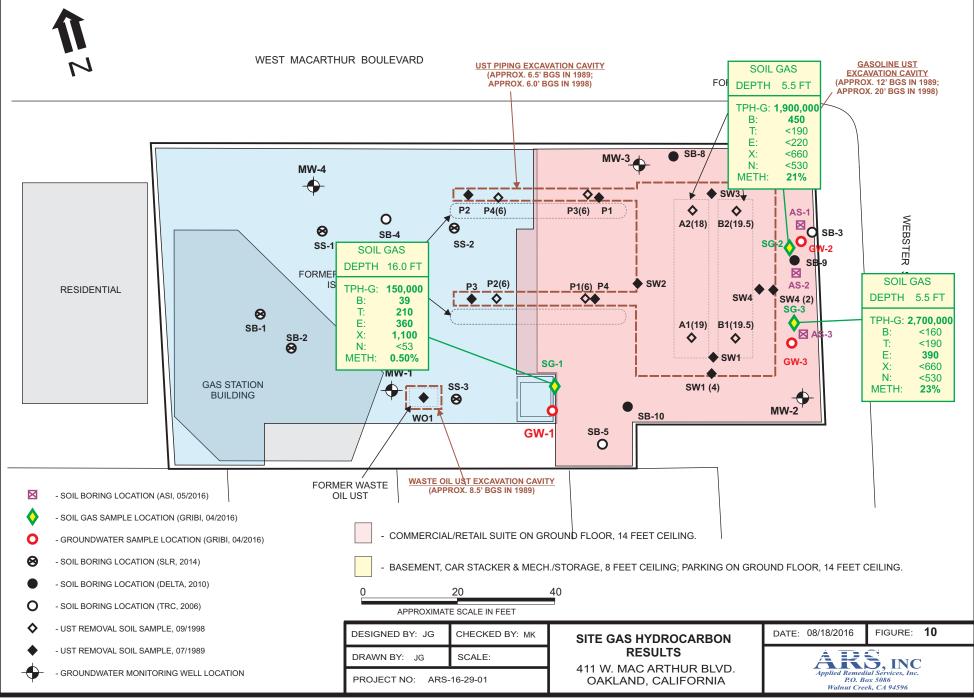












BORING LOGS

AQUIFER SCIENCES, INC.

PROJECT NAME 216621

NO. AS-1

ILLING LOCATION 411 West MacArthur E	Blvd. C	aklano	1				UM (FT	
ILLING AGENCY Grego Drilling DRILL	Leo	Santas		ATE STA		-1	6/16	
Virect Push	2"		В	NO. C	_		18'	WELL DEPTH (FT)
EAND TYPE OF CASING	2" A	erylic Lin	مد	SAMPI DEPTH	ES	SOIL	4	GW _ OTHER _
E OF PERFORATION	FROM	TO _	FT	WATER		TIKST	_	
ANDTYPE	FROM		100	OGGED	BV:			CHECKED BY:
FILTER PACK	FROM _	770	FT.	1		1		- 0.0
E OF SEAL	FROM	TO _		(1	K	0		43
1	-	GRAPH				SAMPL	ES	150
DESCRIPTION		AS S	tion	Water Level	ng al	(%) unts	(per 6 in.) OVM (ppmv)	REMARKS
DESCRIPTION		Lithology	Well Construction	Vater	Sampling Interval	Recovery (%) Blow Counts	OVM Ppmv	(Drilling Rate, Fluid Loss, Odor, etc.)
		2	8	, >	S I	Rec	9	
+ Asphalt					±			Start dine: 1105
±			l.		+			
t					F			
Ŧ					Ŧ			
Ŧ					#	0/0	2,7	W
‡		1			+	000		7
+					+			
1			M		+			
Ŧ			M.		Ŧ	Н	20.1	
Į					‡			
- Dark brown		1000			+			
I medium Dense		5M			\mathbb{X}			AS-1-5@1115
+ Cl. SILT Il sand		01.1	1			10		
I Augus Pini w/ Jim			1		+	9)0	0 1	
+ clayer single gravel					‡	န္	3.6	
Medium Dense Clayey SILT w/ sand Occasional angular gravel					++++		3.6	
+					++++		3.6	
+					++++++		3.6	
‡					++++++++		2.2	
‡					++++++++++			
‡					+++++++++++++++++++++++++++++++++++++++			
‡					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
					+++++++++++++		2.2.	
					X			AS-1-10@1120
					X		2.2.	AS-1-10@ 1120
					*************************************		2.2.	AS-1-10@1120
					************* X *****		2.2.	AS-1-10@ 1120
					**************************************		2.2.	AS-1-10@1120
					**************************************		2.2.	AS-1-10@ 1120
					*********** X ********	2/0	2.2.	AS-1-10@1120
		CL			*********** X ********		2.2.	AS-1-10@1120

		GRAPI	HIC LOG	-		SAN	MPLE	S	
	DESCRIPTION	Lithology	Well Construction Diagram	Water Level	Sampling	Recovery (%)	Blow Counts (per 6 in.)	OVM (ppmv)	REMARKS (Drilling Rate, Fluid Loss, Odor, etc.)
	Olive Gray to Olive Moist Medium Stiff Inorganic Clay	CL			X	010			A5-1-15 @ 1125
<u> </u>	Bottomof bering 18'				‡ X	200		10:1	A5-1-18 @ 1130 Finish time: 1130
					** ** * * * * * * *				

AQUIFER SCIENCES, INC.

PROJECT NAME 216621

NO. AS-2

DRILLING LOCATION 411 West Mac Ac	ther Blud. O	akland	A EI	EVATION	AND	ATUM (FT)	
DRILLING AGENCY GRESS DOLLING	Les Jo	ntos		ATE STAR	TED &	5/6/16	DATE FINISHED 5/6/16
DRILLING METHOD Direct Posh	DRILL BIT 2		BO	ORING DE	PTH (F	1) 18'	WELL DEPTH (FT)
DRILLING EQUIPMENT GES Probe DF-13	SAMPLER 2" ACCY	lie Lim	4	NO. OF SAMPLES	SOI	^L 5	GW _ OTHER _
SIZE AND TYPE OF CASING				DEPTH TO WATER (F	O FIR	ST	COMPLETION OTHER
TYPE OF PERFORATION	FROM _	-	T.				
SIZE AND TYPE OF FILTER PACK	FROM _	TO F	T. LO	OGGED BY	Y:	1	CHECKED BY:
TYPE OF SEAL	FROM _	TO _ F	T.	4	KN.	_	- 08
TYPE OF SEAL	FROM -	TO _ F	T.	C	> V		100
DESCRIPTION		GRAPHI	Well Construction O Diagram	Water Level		Blow Counts Td (per 6 in.) SS OVM (ppmv)	REMARKS (Drilling Rate, Fluid Loss, Odor, etc.)
+ Asphalt			0	Η.	- 2	m T	Start time:
Dark brown Moist Medium Pense Clayey SILT w) s Occasional Angular	oand Gravel	5M		2	200° 80°		A5-2-5 @ 1030
9 Light brown w/ 01 Moist Medium Dense Clayer SILT w/ sand	live grey mottling			Σ	2000	8.7	A4-2-8 @ 1035
Light brown Noist Mediam Dense Clayer SILT of sand					- t-	25	AS-2-13@ 1040
Medium stife Energenic CLAY		CL BORING	12.13.55			73-1	SHEET OF

		GRAPH		-		SAN	MPLE	S	
	DESCRIPTION	Lithology	Well Construction Diagram	Water Level	Sampling Interval	Recovery (%)	Blow Counts (per 6 in.)	OVM (ppmv)	REMARKS (Drilling Rate, Fluid Loss, Odor, etc.)
-	Olive Grey to Olive Medium Dense Inorganic CLAY	CL			-	9.10		40+1	
+ + + + + + + + + + + + + + + + + + + +	Olive Gray to Olive Moist Medium Stiff Clayey SILT w/ Sand	SM			X	9000		1245	
#+++++++++++++++++++++++++++++++++++++	Bottom of boring 181				****				Finish time: 1055

AQUIFER SCIENCES, INC.

PROJECT NAME 216621

NO. A5-3

DRILLING LOCATION 411 West Mac Althur BI	lud. 0	helano	4	ELEVATI	ONAN	ND DA	TUM (F	T) _
DRILLER DRILLER	eo S.	+05	_	DATE ST	ARTEL	2	5/6/1	6 DATE FINISHED 5/6/16
Direct Push	24			BORING		H (FT)	18	WELL DEPTH (FT)
DRILLING EQUIPMENT GEO POR DP-13 SAMPLER	2" Acry	lie Lin	er	NO. C	ES	SOIL	4	GW _ OTHER_
				DEPTH		FIRS		COMPLETION OTHER
TOTE AND THERE	OM _	TO _	FT.			1	5.5	
OF FILTER PACK	ROM _	TO _	FT.	LOGGED	BY:	. 5	1	CHECKED BY:
VDE OF SEAL	OM _	TO _	FT.	1	1	M		NO
in the second se	OM _	TO _	FT.	()	1 0		46
DESCRIPTION DESCRIPTION			IIC LOC			SAMP		
# DESCRIPTION		Lithology	Well	Diagram Water Level	pling	Try (%	(M)	REMARKS (Drilling Rate, Fluid Loss, Odor, etc.)
DE		Lith	Well Construction	Wat	Sampling Interval	ecove flow ((per 6 in.) OVM (ppmv)	(Similar Paras, Filia Estas, Odol, Cit.)
- As qualt			<u> </u>		H	2 4		Start time:
					+1			Statt Mrc.
' ‡			1		ŦI			
1								
2 T					#1		1.8	Note: Petrolew ODOR
‡					+		1.	starting @ 21
3 ‡			1		Ŧ		7	opor consistent
* Ŧ			1					÷ 18'.
‡					#			
4 + Dark Brown	- 1				Ŧŀ	-	24	0.5
Moist	- 1				#1	1		NOTE: Not able to sample
medium Dense				1.1	İΙ	1		due to low recover
I clayey SILT of Sana		5M	×	1 1	+1			
clayey SILT of sand					=	10	1.0	
To the second of					#1	8	10.4	N .
‡					±Γ			
1 ±	1			1 4	H			
+	- 1				Ă	1		AS-3-7 @ 0945
3 I	- 1				±L		7.3	
‡	- 1				+1		1.0	
1.‡					Ŧl		1 1	
` †					#1		1.1	
Į.				11	=	10		
Light Brown	-			1	13	9,	502	A5-3-10 @ 0955
T Madie Dass.				1	"	2		A5-5-10 @ 0455
Clayery SILT w/sand.					#1			
Olive Brown Moist loose Very loose Well graded SAND		5W		11	#			
2 Well graded SAND		5W			+1		0.0	
+					#	1	218	
t Olive Gray to olive					1			
Medium shift to soft	10	CL			1,8	19		INTE:
Inorganic CLAY					16			Ground water encountred of 15.5 , may be decated
4		OPING			<u>t</u> L	- 2	20.4	duz to slooghing

AQUIFER SCIENCES, INC.	PROJECT N	IC LOG		T	SAMPL	ES	NO. AS-3
DESCRIPTION	Lithology	Well Construction Diagram	Water Level	Sampling	Recovery (%) Blow Counts	OVM (ppmv)	REMARKS (Drilling Rate, Fluid Loss, Odor, etc.
wet Medium stiff to soft Inorganic CLAI	CL		Y	X	100	<i>D</i> -1	AS-3-14 @ 1000
Park Brown Saturated Laose Sandy Clayey SILT	sm			X ::::	200	302	AS- 3-10 6 1-1
Bottom of woring 18'				***************************************		1071	Finish time: 1010

						G I		Language and the second
Project No KEI-P89-07	Borin 9"		Casi	ng Di 2"	ameter	Logged By		
Project Na Oakland/Ma	Well		d Ele N/A	evatio	n	Date Drilled 9/7/89		
Boring No.	Drill Metho		Hollo Auge		w-stem	Drilling Company EGI		
			oth (ft)		strati- graphy uscs		Description	
11/17/22 32/17/20 13/17/19			10		СН		Clay, h moist, Gravell moist, Sand cl stiff, gravel Clay, h stiff, greeni holes. Sandy c	igh plasticity, stiff, very dark grayish brown. y clay with sand, stiff, dark yellowish brown. ay, high plasticity, moist, olive, trace igh plasticity, very moist, pale olive, with sh gray stained root
10/1//20	<u>*</u>	E	20	L	sc		Clayey to wet	sand, dense, very moist , yellowish brown.

			ВО	RIN	G I	OG	
Project No.	Boring 9"	& Cas	ing Di	ameter	Date Drilled 9/7/89		
roject Name	Well He	ad El	evatio	on			
Boring No.			Drillin Method	g	Hollo Auger	ow-stem	Drilling Company EGI
Penetra- tion plows/6"	G. W. level				Strati- graphy USCS		Description
			35	SP		Poorly brown.	graded sand, yellowish igh plasticity, very moist, yellowish brown.

Project No					Casi	ng Di	ameter	Logged By
KEI-P89-0703			9" 2"					D.L.
Project Na Oakland/Ma	Well Head Elevation N/A				in	Date Drilled 9/6/89		
Boring No.			Drilli Method		Hollo Auger		w-stem	Drilling Company EGI
			oth (ft)		Strati- graphy USCS		Description	
9/14/21 13/15/28					CH GC		Concrete Pavement Sand and Gravel: Fill Clay, high plasticity, with silt, firm to stiff, moist, dark olive gray, black from 1 to 4 feet. Clayey gravel with sand, dense moist, yellowish brown, grave to 3/4". Sandy clay, high plasticity, 1 45% sand, stiff, moist, light yellowish brown and greenish	
9/15/19		E		H	CH		gray, t	mottled, lensed with
10/15/23		E			sc		Clayey dense, ish gr	sand, dense to very moist, olive and green- ay.
8/10/15		E	15 -					
9/12/16		E		E	СН		silty c plasti	lay, moderate to high city, firm, moist, olive
13/37/46	*		20 -		sw		Well gr dense, 19.5 f	aded sand with gravel, wet, brown, silty from eet.

			во	RIN	G 1	0 G	•
			Boring 9"	& Cas	ing Di 2'	Logged By D.L.	
			Well He	ad Ele	evatio	Date Drilled 9/6/89	
			Drillin Method	ıg	Holla Augen	ow-stem	Drilling Company EGI
			oth (ft)	Stra graj USC		Description	
25/37/45			25	GP- GM		and san dark ye	graded gravel with silt ad, very dense, wet, ellowish brown. graded gravel with sand, ense, wet, dark, yellow-
25/29/35			30	СН		sand, v	gh plasticity, trace very stiff, moist, sh brown.
			35		A Control Control Control		
			40		- After		TOTAL DEPTH 30.51

1

				_	N G I	A1 11	Target Pre
Project No KEI-P89-07			Boring 9"	& Ca	sing Di	ameter	Logged By D.L.
Project Na Oakland/Ma	ame Unoc	cal,	Well He	ad E		n	Date Drilled 9/7/89
Boring No.	Drillin Method	ng	Hollo Auger	ow-stem	Drilling Company EGI		
Penetra- G. W. De			oth (ft)	gr	rati- aphy CS		Description
9/15/21			10	CI		clay, hat stiff, dark gray, holes.	gh plasticity, with stiff, moist, dark olive very dark grayish brown '.'. igh plasticity, very moist, pale olive, with reenish gray stained room
15/23/33	₹.		15 —		Н	plasti moist, mottle sand.	city, 25-40% sand, stiff olive and greenish gray d, lensed with clayey lay, moderate to high city, stiff, moist,

			во	RIN	G L	0 6	
Project No KEI-P89-07	Boring 9"	& Cas	ing Di	ameter	Logged By D.L. Date Drilled 9/7/89		
Project Name Unocal, Oakland/MacArthur Boring No.			Well He	ad El N/A		evatio	n
			Drillin Method	g	Hollo Auger	w-stem	Drilling Company EGI
Penetra- G. W. Der			pth (ft) Strati- mples graphy uscs				Description
37/50- 5+1/2"			30	GP-GC		Poorly of and sar yellowi	graded gravel with clay od, very dense, wet, dar ish brown. gravel, very dense, yellowish brown.

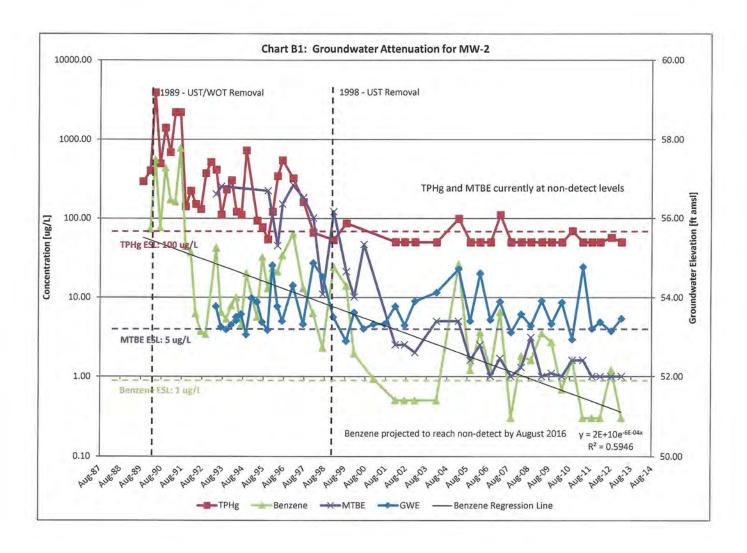
TABLE 4. MEAN VALUES OF SATURATED HYDRAULIC CONDUCTIVITY FOR THE 12 SCS SOIL TEXTURAL CLASSIFICATIONS

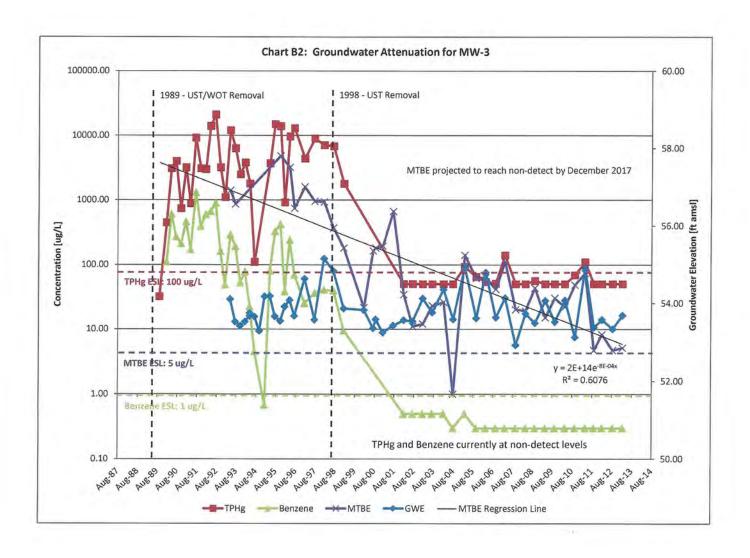
Soil texture , USDA	Saturated hydraulic conductivity, cm/h				
Sand	29.70				
Loamy sand	14.59				
Sandy loam	4.42				
Sandy clay loam	1.31				
Sandy clay	0.12				
Loam	1.04				
Clay loam	0.26				
Silt loam	0.45				
Clay	0.20				
Silty clay loam	0.07				
Silt	0.25				
Silty clay	0.02				

Given a two-phase system (i.e., air and water), the effective total fluid saturation (S_{te}) is calculated as:

$$S_{re} = \frac{(\theta_w - \theta_r)}{(n - \theta_\kappa)} \tag{28}$$

where S_{ta} = Effective total fluid saturation, unitless


 $\theta_{\rm w}$ = Soil water-filled porosity, cm³/cm³


θ_r = Residual soil water content, cm³/cm³

n = Soil total porosity, cm³/cm³.

CHARTS OF B1 & B2

