585 22nd Street, LLC

2030 Manzanita Dr. Oakland, CA 94611 Matt Ticknor 415-990-6944 matt@sqftventures.com Charles A. Long 775-742-9166 charlesalong@gmail.com

RECEIVED

By Alameda County Environmental Health 10:41 am, Feb 18, 2016

February 16, 2016

Subject: Site Investigation Report 585 22nd Street Oakland, California Alameda County Department of Environmental Health Case RO0003187

We declare, under penalty of perjury, that the information and/or recommendations contained in the attached Site Investigation Report is true and correct to the best of our knowledge.

Chall belong

Charles A. Long Principal

Malifa

Matt Ticknor Principal

Site Investigation Report

585 22nd Street Oakland, California Alameda County Department of Environmental Health Case RO0003187

> AEC Project No. 16-046SD February 17, 2016

> > Presented To:

Alameda County Department of Environmental Health 1131 Harbor Bay Parkway Alameda, CA 94502-6540

On Behalf Of:

585 22nd Street, LLC 2030 Manzanita Drive Oakland, CA 94611

Prepared By:

Advantage Environmental Consultants, LLC 145 Vallecitos De Oro, Suite 201 San Marcos, California 92069 Phone (760) 744-3363 • Fax (760) 744-3383

Site Investigation Report

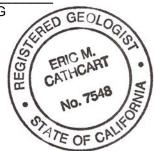
585 22nd Street Oakland, California Alameda County Department of Environmental Health Case RO0003187

On behalf of 585 22nd Street, LLC, Advantage Environmental Consultants, LLC (AEC) has prepared this *Site Investigation Report* for the above referenced property which is being submitted to the Alameda County Department of Environmental Health for review and comment. This report was completed in accordance with the standards of care exercised by environmental professionals in the industry.

PROJECT MANAGER CERTIFICATION

I certify that the information contained in or included with this submittal is accurate and complete. This submittal and all attachments were prepared at my direction and in accordance with protocols designed to assure that qualified personnel gathered and evaluated the information submitted in accordance with the standards of care exercised by environmental professionals in the industry.

Q Weis


Daniel Weis, R.E.H.S. Branch Manager

WORK PROGRAM CERTIFICATION

This report presents the technical approach of AEC to further investigate soil and soil gas conditions at 585 22nd Street in Oakland, California. This report has been completed in accordance with the standards of care exercised by environmental professionals in the industry.

Eri M. Catheast

Eric Cathcart, MS, PG Senior Geologist California PG# 7548

TABLE OF CONTENTS

1.0	INTRO	DUCTION	. 1
	1.1	Site Location and Description	1
	1.2	Regulatory Status and Previous Site Assessment Work	1
	1.3	Proposed Redevelopment	
	1.4	Organization of Report	
2.0		ICAL SETTING	
	2.1	Topography	
	2.2	Geology	
	2.3	Hydrology / Hydrogeology	. 4
3.0	FIELD	INVESTIGATION	5
	3.1	Technical Approach	
		3.1.1 Soil and Soil Gas Sampling Depths	
		3.1.2 Geotechnical Sampling	
	3.2	Preliminary Field Activities	
	3.3	Soil Gas Sampling Methodology	
	3.4	Soil Sampling Methodology	
	3.5	Analytical Laboratories and Methods	7
	3.6	Additional Sample Collection Procedures	
	5.0	3.6.1 Equipment Calibration and Maintenance	
		3.6.2 Sample Containers, Labels and Preservation	
		3.6.4.1 Soil Samples	
		3.6.4.2 Soil Gas Samples	
		3.6.5 Sampling Documentation	
		3.6.5.1 Field Reports	
		3.6.5.2 Boring Logs	
		3.6.6 Equipment Decontamination	
		3.6.7 Investigative Waste Management	
		3.6.8 HSP Implementation	10
4.0	INVES	TIGATION RESULTS AND DISCUSSION	11
4.0	4.1	Subsurface Conditions	
	4.2	Soil Analytical Results	
	4.2		
	4.3	VOC Analytical Results in Soil Gas	
5.0	HUMA	N HEALTH RISK ASSESSMENT	13
	5.1	Data Collection and Evaluation	13
	5.2	Exposure Assessment	14
	5.3	Toxicity Assessment	14
	5.4	Risk Characterization	15
	5.5	Risk Evaluation Results	15
	5.6	Uncertainties and Possible Risk Mitigating Factors	
6.0		ACCECOMENT	40
6.0		ASSESSMENT	
	6.1 6.2	Holding Time and Sample Preservation Compliance	
	-	Blank Sample Analyses	
	6.3	Surrogate Compound Recoveries	١Ŋ
	6.4	Laboratory Control Samples/Laboratory Control Sample Duplicate (LCS/LCSD)	4.0
	0 F	and Matrix Spikes/Matrix Spike Duplicate (MS/MSD) Recoveries	
	6.5	Field Duplicate Evaluation	
	6.6	Data Assessment Summary	18

7.0	CONCLUSIONS AND RECOMMENDATIONS	20
8.0	REQUEST FOR ACDEH CONCURRENCE	21
9.0	REFERENCES	22

FIGURES

FIGURE 1 – VICINITY MAP FIGURE 2 – SITE PLAN FIGURE 3 – SOIL ANALYTICAL RESULTS FOR HEXAVALENT CHROMIUM FIGURE 4 – SOIL ANALYTICAL RESULTS IN SOIL GAS

TABLES

TABLE 1	SOIL ANALYTICAL RESULTS FOR HEXAVALENT CHROMIUM
TABLE 2	SOIL GAS ANALYTICAL RESULTS FOR VOLATILE ORGANIC COMPOUNDS

APPENDICES

APPENDIX A	WORK PLAN APPROVAL LETTER
APPENDIX B	SOIL BORING LOGS
APPENDIX C	SOIL ANALYTICAL LABORATORY REPORT
APPENDIX D	GEOTECHNICAL LABORATORY REPORT
APPENDIX E	SOIL GAS ANALYTICAL LABORATORY REPORT
APPENDIX F	J&E RISK MODELING SPREADSHEETS
APPENDIX G	LABORATORY QC SUMMARIES

1.0 INTRODUCTION

On behalf of 585 22nd Street, LLC, AEC has prepared this *Site Investigation Report* for the property located at 585 22nd Street in Oakland, California (i.e. the Site). The Site is currently an asphalt paved lot used for the parking of United States Postal Service vehicles that is slated for development for future residential development. This assessment has been conducted in accordance with our Alameda County Department of Environmental Health (ACDEH) approved *Work Plan for Supplemental Investigation* dated October 13, 2015. The Work Plan approval letter is included as Appendix A of this report.

1.1 Site Location and Description

The Site is comprised of an approximately 16,000 square foot lot located at the physical address of 585 22nd Street, Oakland, California. The Site is further identified as Alameda County Assessor's Parcel Number 005-8-0647-028-04. The Site is an asphalt paved lot used for the parking of United States Postal Service vehicles. The majority of the Site is comprised of an asphalt paved parking lot. There is some minor landscaping at the Site. A Vicinity Map depicting the general location of the Site is included as Figure 1. A Site Plan is included as Figure 2.

1.2 Regulatory Status and Previous Site Assessment Work

AEC completed Phase I and II Environmental Site Assessments (ESAs) of the Site in August 2015. Such documents were provided to the Alameda County Department of Environmental Health (ACDEH) as part of the execution of a Voluntary Remedial Action Agreement between ACDEH and 585 22nd Street, LLC. During the course of the completion of the Phase I ESA of the Site, it was revealed that portions of the Site were occupied by an engraving/plating facility/business. In addition, AEC corresponded with ACDEH regarding a former leaking underground storage tank (LUST) case that was associated with the Site and previously closed under commercial land use. AEC was informed by ACDEH that if a change in land use of the property from commercial to residential is proposed, that ACDEH would expect the Site owner, development proponent or other party to voluntarily work with the Department to have them review and approve the proposed change in land use relative to subsurface environmental conditions, and in particular related to potential vapor intrusion/human health risk based concerns that were not commonly evaluated during the closure of older LUST cases.

AEC subsequently conducted a Phase II ESA at the Site to evaluate for the presence of contaminants of potential concern in soil, soil gas and groundwater and to evaluate such data relative to a proposed change in land use from commercial to residential. On July 17, 2015, a total of six soil borings (identified as B1 through B6) were drilled at the Site using direct-push drilling technology. One soil boring, B5, was drilled to a total depth of 10 feet below ground surface (bgs). This boring was situated in the northeastern corner of the Site. The remaining soil borings, B1 through B4 and B6, were drilled to a total depth of 15 feet bgs. Soil samples were collected at depths of one foot, three feet, five-feet, 10 feet and 15 feet bgs in soil borings B1 through B4 and B6. Soil samples were collected at depths of one foot, three feet, five feet and 10 feet bgs in soil boring B5. A total of 28 soil samples were collected during drilling activities. Soil gas samples were collected at depths of five feet and 10 feet bgs in soil borings B1, B3 and B4. Groundwater samples were collected from three of the soil borings (B1 through B3) at a depth of 15 feet bgs.

Six of the 28 soil samples were analyzed for volatile organic compounds (VOCs). VOCs were not detected in any of the samples analyzed for this constituent. In addition, 12 soil samples were analyzed for asbestos. Asbestos was not detected in any of the samples analyzed for this constituent. Six of the 28 soil samples collected during the drilling of the soil borings were analyzed for Title 22 Metals. Detected metals in the soil samples included total barium, chromium, copper, lead, nickel, vanadium and zinc. None of the metals concentrations exceeded the San Francisco Bay Area Regional Water Quality Control Board (RWQCB) Environmental Screening Levels (ESLs) for residential soil and California Total Threshold Limit Concentrations. The three groundwater samples collected during the drilling of the soil borings were analyzed for VOCs. VOCs were not detected at or above the laboratory reporting limits in any of the groundwater samples. Other potential organic

and inorganic contaminants in soil and groundwater were not evaluated as AEC had no reason to believe that other potential contaminants are present at the Site based on the current and historical land uses.

Six soil gas samples were analyzed during the assessment for VOCs in soil gas. A summary of the maximum VOC concentrations is presented in the table below.

VOC Compound	Maximum Concentration (µg/m ³)
Chloromethane	4.3
Acetone	470
Carbon disulfide	98
2-Butanone (MEK)	150
Chloroform	400
Benzene	40
4-Methyl-2-pentanone (MIBK)	17
Toluene	46
Ethylbenzene	7.8
m,p-Xylene	14
Styrene	6.5
o-Xylene	6.4
1,2,4-Trimethylbenzene	7.8
Tetrachloroethene	36

VOC Detection Summary

 μ g/m3 = micrograms per cubic meter

With the exception of the maximum detected concentration of chloroform (400 μ g/m³), none of the detected VOC concentrations exceeded their respective ESLs. The ESL for chloroform is 230 μ g/m³.

Conclusions of the Phase II ESA were follows:

- VOCs, asbestos and metals were not considered to be contaminants of concern at the Site.
- With the exception of the maximum detected concentration of chloroform (400 µg/m3), none of the detected VOC concentrations exceeded their respective ESLs.
- AEC recommended that as part of obligations under the prior no further action letter from ACDEH pertaining to the former LUST case associated with the Site, the Phase I and II ESA reports should be submitted to ACDEH for review as part of the entitlement and project approval process for the proposed residential development at the Site. After engaging ACDEH under a Voluntary Remedial Action Agreement, ACDEH would review the reports and provide written directives regarding any additional assessment and/or mitigation they feel may be warranted at the Site relative to the proposed change in land use from commercial to residential.
- All data obtained during the subsurface investigation was considered to be valid and useful for decision making purposes. In addition, no upset conditions occurred during the sampling events or completion of the laboratory analysis that may have adversely influenced the results of the investigation.
- Based on the current land use of the Site (parking lot), the findings of this assessment did not represent conditions that are considered to be an imminent threat to human health or the environment, or ones that require immediate notification to an environmental regulatory agency.

A Voluntary Remedial Action Agreement was fully executed between 585 22nd Street, LLC and the ACDEH on September 25, 2015 and a Work Plan for Supplemental Investigation dated October 13, 2015 was submitted to the ACDEH for review. The primary objective of the Work Plan was to develop a program to further investigate the presence and spatial distribution of VOCs in vadose zone soil gas at the Site, and utilizing the data obtained, conduct an evaluation of the human health risks associated with potential soil gas exposures and vapor intrusion for the planned development. Soil sampling and analysis was also proposed to rule out hexavalent chromium as a contaminant of potential concern at the Site. The Work Plan was approved with one minor condition (modification of one of the soil boring locations). This condition was complied with during implementation of the Work Plan. Our current report describes the implementation of the ACDEH approved Work Plan and the findings of the investigation.

1.3 Proposed Redevelopment

The Site is currently a paved parking lot that is slated for development for residential purposes. Site development will require conventional grading (removal and recompaction of soil) to depths that are yet to be determined, but are expected to be less than five feet from existing grades. No significant export of soil from the Site is proposed at this time. However, it is likely that some minor export of soil will be required as part of construction of lifts associated with an automated automobile parking system. Site development plans will include a residential development constructed on a concrete slab-on-grade foundation system. There will be 78 residential units constructed at the Site. None of the residential units will be located on the ground floor of the future structure. The ground floor of the future structure will include parking areas, utility/mechanical rooms and enclosures, storage rooms, trash enclosures, bicycle lockers a lobby and a leasing area/lounge.

1.4 Organization of Report

This Site Investigation Report is organized as follows:

- Section 1 Introduction
- Section 2 Physical Setting
- Section 3 Field Investigation
- Section 4 Investigation Results and Discussion
- Section 5 Human Health Risk Assessment
- Section 6 Data Assessment
- Section 7 Conclusions and Recommendations
- Section 8 Request for ACDEH Concurrence
- Section 10 References

Supporting tables, figures and appendices in this report are listed in the Table of Contents of this document.

2.0 PHYSICAL SETTING

2.1 Topography

According to the United States Geologic Survey topographic map for the Oakland West, California 7.5 minute quadrangle (1997), the Site is shown as being relatively level and located at an elevation of approximately 25 feet above mean sea level. Regional topography is shown as sloping to the south and southeast. No structures are depicted on-Site on the map. However, the Site and its adjacent properties are situated in an area that is shaded grey, indicating dense development. Streets/roadways bordering the Site are shown in their current configuration. Figure 1 (Vicinity Map) is a reproduction of the USGS topographic map.

2.2 Geology

The Site is situated in the Coast Ranges Geomorphic Province; one of 11 physiographic provinces in California recognized by defining features based on geology, faults, topography, and climate. The Coast Ranges are comprised of a series of long, northwest-trending mountain ranges separated by valleys, generally subparallel to faults of the San Andreas Fault system, which were created by extensive folding and faulting during a mountain-building episode beginning in the late Pliocene and culminating in the mid-Pleistocene. Summit elevations average between 2,000 to 4,000 feet above mean sea level (msl), with the highest elevation located in the northern part of the province (Solomon Peak) at approximately 8,000 feet above msl. The Coast Ranges province is also composed of thick Mesozoic and Cenozoic sedimentary strata. The Coast Ranges province is bound on the north by the Oregon state line, on the east by the South Fork Mountain and Coast Range thrusts bordering the Klamath Mountains and Great Valley provinces, on the south by the Santa Ynez fault and Transverse Ranges province, and on the west by the continental borderland. The area is seismically active, including the San Andreas fault which extends 600 miles from the north at Point Arena beyond the Coast Ranges to the south to the Gulf of California. More specifically, the Site is located in the central portion of the Coast Ranges province east of the San Francisco Bay. According to geologic map sources, the Site appears to be underlain by Quaternary older alluvium deposits. These deposits are characterized by partially consolidated sand, gravel, and clay. Artificial fill material is also present beneath the Site in the area of the former underground storage tank (UST).

2.3 Hydrology / Hydrogeology

According to the California Water Quality Control Plan for the San Francisco Bay Region (SF-RWQCB, 1995), the Site is situated within the East Bay Plain groundwater sub-basin of the Santa Clara Valley groundwater basin. Groundwater within the East Bay Plain sub-basin is listed with existing beneficial use designations for municipal, industrial, process supply, and agricultural purposes. Static groundwater beneath the Site is anticipated to be present at approximately 15 feet bgs with an anticipated flow direct in a south to southeasterly direction.

3.0 FIELD INVESTIGATION

3.1 Technical Approach

3.1.1 Soil and Soil Gas Sampling Depths

A total of 10 soil borings (identified as B1 through B10) were drilled at the Site utilizing a truck mounted direct-push drill rig. The locations of the soil borings are depicted on Figure 2. The soil borings were drilled by TEG Northern California of Rancho Cordova, California under the oversight of AEC. The soil borings were drilled to target depths of five feet below existing grades. Soil samples were generally collected from the soil borings at depths of one-half (0.5) foot, one (1) foot, three (3) feet and five (5) feet below the ground surface. Soil gas probes were installed at the five foot depths at each boring location. The five foot soil gas sampling depths represent locations situated approximately five vertical feet below the future concrete slab of the proposed ground-level of the structure to be constructed at the Site. Soil and soil gas sampling activities are discussed in greater detail in the following sections.

3.1.2 Geotechnical Sampling

As part of the vapor intrusion evaluation for the Site, three soil samples were obtained for geotechnical analysis. Such samples were obtained from the five foot depths from borings B3, B6 and B7 at the Site. Geotechnical testing was performed in accordance with the following American Society of Testing and Materials (ASTM) and other geotechnical testing methods:

- Grain-size distribution (ASTM D422)
- Moisture content (ASTM D2216)
- Bulk density (ASTM D2937)
- Total, air filled and water filled porosity (API RP40)
- Total/Fractional organic carbon (Walkley-Black)
- USDA Soil Texture Scheme

3.2 Preliminary Field Activities

The following tasks were performed prior to the commencement of field sampling activities:

- AEC representatives completed Site visits to mark-out the locations of the proposed sampling locations to confirm the feasibility of drill rig access.
- A permit for the drilling of the proposed soil borings was procured with the Alameda County Public Works Agency.
- All equipment used during the sampling events was inspected, pre-cleaned, and decontaminated.
- Field meters used during sampling were checked to ensure proper calibration.
- All forms to be used in the field (i.e., logbook, chain-of-custody forms, etc.) were assembled.
- Sampling personnel reviewed the sampling protocols to be employed during the fieldwork activities. In addition, the Site Specific Health and Safety Plan (HSP) for the proposed work

which outlined the chemical and physical hazards at the property was reviewed by AEC personnel and AEC's subcontractors prior to the commencement of field activities.

- The locations of underground utilities in the vicinity of the sampling locations were evaluated for potential conflicts. At least 48 hours prior to the commencement of field sampling, AEC notified Underground Service Alert utility marking service. The utility marking service identifies known utility locations in the public right-of-way.
- Notifications to the ACDEH and Alameda County Public Works Agency of the commencement of fieldwork activities were made in advance of the work.

3.3 Soil Gas Sampling Methodology

Soil gas probe installation, sampling and analysis were conducted by TEG Northern California of Rancho Cordova, California, under the oversight of AEC on December 21, 2015. As stated previously, soil gas probes were installed at depths of five feet bgs. Boreholes were drilled using a truck-mounted direct-push drill rig. Soil gas sampling and analysis were not conducted during or immediately following a significant rain event (greater than ½-inch during a 24-hour period). A summary of the sample collection procedures is provided in this section. The approximate locations of the borings and soil gas probes are presented on Figure 2.

Sampling procedures were in general compliance with the California Environmental Protection Agency, Department of Toxic Substances Control (DTSC) Soil Gas Advisory (2015). Analytical protocols were in general compliance with method United States Environmental Protection Agency (EPA) test Method 8260B which has been improved to include surrogate and second source analysis. Sample injection for 8260B analysis used glass syringes as per the DTSC Soil Gas Advisory (2015).

Probe Installation

The manually driven probe rods were used to set soil gas implants. With a hardened one-inch steel tip on the end of the rod, the probe is driven to the desired depth. The rod is then removed and 1/8-inch (or 1/4-inch if requested) nylon tubing with a small plastic airstone filter attached to the end is inserted into the open borehole. The probe is gently lifted up approximately six inches and sand is poured down the borehole to encase the filter with one foot of sandpack. Approximately one foot of granular bentonite is then poured down the borehole and hydrated to seal the probe. The soil gas well can then be completed to the surface with hydrated bentonite. The probe is allowed to set for two hours prior to sampling to allow the bentonite time to properly seal.

Sampling

After a minimum of a two hour equilibration time and the purging of three volumes from the sampling system, soil gas was withdrawn from the end of the inert Teflon tubing that runs from the sampling tip to the surface using a 50 cubic centimeter (cc) gas tight, glass syringe connected via an on-off valve. The probe tip and sampling tubing is purged based upon the pre-determined purge volume (three purge volumes) established by the purge volume test described above. A sample of in-situ soil gas is then withdrawn and immediately transferred to the mobile lab for analysis within minutes of collection. The use of small calibrated syringes allows for careful monitoring of purge and sample volumes. This procedure ensures adequate sample flow is obtained without excessive pumping of air or introduction of surface air into the sample.

Leak Control and Testing

Tests for leakage were conducted at each sampling location utilizing a shroud of sufficient size required to cover the newly installed soil gas probes. The leak tests were conducted to evaluate if ambient air has penetrated and diluted the soil gas samples. The tracer compound (1,1-

Difluoroethane) was introduced under the shroud and then quantified and reported as a target analyte by the analytical laboratory. 1,1-difluoroethane was not detected in the soil gas samples and as such, no upset conditions relative to leak control and testing were noted.

Probe Removal

Upon completion of soil and soil gas sampling, the probes were removed from the ground and the probe holes were backfilled with hydrated bentonite to match existing grades. The used tubing along with other non-hazardous wastes generated during the field activities were bagged and handled as miscellaneous solid waste.

3.4 Soil Sampling Methodology

Direct-Push Sampling Technology

As stated previously, soil borings were drilled using a truck-mounted direct-push sampling rig. The direct-push sampling system uses a hydraulic hammer to advance a two-inch diameter rod equipped with a soil sampling tool. Soil samples at targeted sampling depths are collected into acetate sleeves by unlocking the drive tip and pushing through the soil. The acetate sleeves containing soil are then retrieved, cut (in approximate six-inch sections), sealed with ParafilmTM, capped, and labeled. The respective soil samples retained for laboratory analysis were then recorded onto chain-of-custody documentation and immediately placed into a chilled cooler and stored until transport to a California Department of Public Health-certified laboratory. Soil from the soil borings was described and logged by a qualified field representative working under the direct supervision of a registered California Professional Geologist. Descriptions of the soils encountered during drilling are provided on the boring logs included in Appendix B.

During drilling activities, an organic vapor monitor was used to monitor the presence and level of undifferentiated organic vapors in the borings and to screen soil samples collected. The instrument was also used to screen for organic vapor in ambient air and the breathing zone of field personnel. A MiniRAE 2000 photoionization detector (PID) was used at the Site during the investigation activities. Precautions were taken to limit the contamination of samples from outside sources. Hands were washed with distilled water and soap, and rubber surgical gloves were used when handling soil samples and sampling equipment. Soil sampling equipment was decontaminated between uses by washing with a non-phosphate detergent solution followed by a triple distilled water rinse.

3.5 Analytical Laboratories and Methods

Analytical Laboratory	United States Environmental Protection Agency (EPA) or Other Analytical Methods
TEG Northern California Rancho Cordova, CA Soil Gas Mobile Analytical Laboratory (soil gas)	VOCs – EPA Method 8260B
American Environmental Testing Laboratory Burbank, California Stationary Analytical Laboratory (Soil)	Hexavalent Chromium – EPA Method 7196A

Analytical laboratories utilized during the completion of this subsurface investigation are listed below:

Analytical Laboratory	United States Environmental Protection Agency (EPA) or Other Analytical Methods		
Core Laboratories Bakersfield, California Stationary Analytical Laboratory (Soil)	Grain-size distribution (ASTM D422) Moisture content (ASTM D2216) Bulk density (ASTM D2937) Total, air filled and water filled porosity (API RP40) Total/Fractional organic carbon (Walkley-Black) USDA Soil Texture Scheme		

3.6 Additional Sample Collection Procedures

3.6.1 Equipment Calibration and Maintenance

As stated previously, an organic vapor monitor (MiniRAE 2000 PID) was used for health and safety monitoring and field screening of soil samples during the fieldwork activities. The instrument was calibrated in accordance with manufacturer's guidelines which includes the use of an Isobutylene standard.

3.6.2 Sample Containers, Labels and Preservation

As stated previously, soil samples obtained during the field sampling were collected in acetate sleeves and soil gas samples were collected in glass syringes. All sample containers were provided by the analytical laboratories. Sample labels were firmly attached to the containers for soil samples, and the following information was printed on the labels:

- Project name and number
- Sample/boring location and analytical parameters
- Sample identification number
- Sample collector's initials
- Date and time of collection

Glass syringes required no special labeling protocols. All soil samples were properly prepared for transportation to the analytical laboratory by placing the samples in coolers containing ice to maintain a shipping temperature of $4^{\circ}C + 2^{\circ}C$.

3.6.3 Chain-of-Custody Protocol

After the samples were collected, chain-of-custody procedures were followed to establish a written record of sample handling and movement between the Site and the analytical laboratories. For soil, each shipping container had a chain-of-custody form completed in triplicate by the sampling personnel. One copy of this form was kept by the sampling team and the other two copies were sent to the applicable analytical laboratory. One of the laboratory copies became a part of the permanent record for the sample and was returned with the sample analytical results. For the soil gas samples (analyzed on-Site), a chain-of-custody was maintained in the mobile analytical laboratory, completed by the chemist and then approved/signed by AEC staff. The chain-of-custody documentation is attached to each analytical laboratory report which are included as appendices to this report.

The chain-of-custodies contained the following information:

- Sample identification numbers
- Sample collectors' printed names and signatures
- Dates and times of collection
- Place and address of collection
- Sample matrix

- Analyses requested
- Signatures of individuals involved in the chain of possession
- Inclusive dates of possession (if applicable)

3.6.4 Sample Packaging and Shipment

3.6.4.1 Soil Samples

Once sample containers for soil were filled, they were placed immediately in a cooler, on ice, to maintain the samples at 4°C +/- 2°C. The field sampler indicated the sample designation/location number and date and time of collection in the space provided on the chain-of-custody for each sample. After the samples were sealed and labeled, they were packaged for transport to the analytical laboratory with chain-of-custody forms placed on the inside of the lids of the coolers. The samples were packaged so that they would not leak or spill from the containers. Samples were then shipped to American Environmental Testing Laboratory (AETL) of Burbank, California via a courier service.

3.6.4.2 Soil Gas Samples

As stated previously, soil gas samples were analyzed on-Site using a mobile analytical laboratory. Therefore, there was no specific soil gas sample packaging or shipping protocol required for such samples. However, soil gas samples, once retrieved, were immediately transferred to the mobile on-Site laboratory for analysis within minutes of collection.

3.6.5 Sampling Documentation

3.6.5.1 Field Reports

In order to provide complete documentation of the sampling activities, detailed records were maintained by AEC field personnel. The records included the following information:

- Site name and address
- Name of field log recorders
- Team members present on-Site and associated duties
- Other persons on-Site
- Summaries of meetings held at the Site
- Levels of safety protection utilized
- Weather conditions
- Calibration readings for field monitoring equipment
- Time of soil gas probe/boring/well placement and sample collection time
- Any other relevant information.

3.6.5.2 Boring Logs

As stated previously, the 10 soil borings were described and logged by a qualified field representative working under the supervision of a licensed California Professional Geologist. A log of each boring was prepared in accordance with the Unified Soil Classification System and include descriptions of soils and formational material encountered, geologic contacts and total borehole depths, boring/soil vapor probe identifications, sample identification numbers, drilling/probe installation/ sampling dates, soil sample and vapor probe depths, and additional observations noted during drilling and soil vapor probe installation activities. The boring logs are included in Appendix B.

3.6.6 Equipment Decontamination

All non-dedicated drilling and field equipment that came into contact with soil at the Site was decontaminated between uses. Disposable field equipment was not decontaminated but was placed into plastic trash bags for proper disposal. Non-dedicated equipment was decontaminated by washing with a non-phosphate detergent/tap water solution followed by a triple rinse of distilled/deionized water. The decontamination areas were designated by AEC field representatives and modified accordingly during field activities.

In addition to the procedures for decontamination outlined above, all persons collecting samples wore clean nitrile gloves and limited contact with the samples. Gloves were also changed between samples. Sample bottles and containers utilized during the sampling work were prepared by the analytical laboratories or drilling companies (acetate sleeves) and sealed to ensure cleanliness.

3.6.7 Investigative Waste Management

A significant quantity of investigative derived waste was not be generated during the course of the project. Excess soils and decontamination water (non-hazardous waste) generated during the field investigation activities were placed into an appropriate labeled container and appropriately disposed of by TEG on behalf of AEC.

3.6.8 HSP Implementation

The Site Specific HSP was implemented during the fieldwork activities, and no adverse incidents or emergency situations occurred during the fieldwork. The HSP included information pertaining to the identification and description of possible hazardous substances that could be encountered during the fieldwork activities, procedures to minimize or eliminate potential exposures to such substances, personal protective equipment (PPE) requirements and measures to be implemented in case of an emergency. AEC and its subcontractors reviewed and signed the HSP prior to each day that fieldwork commenced. A Site safety meeting was also conducted with all parties prior to the commencement of fieldwork. Only Level D PPE was utilized during the fieldwork activities, and an upgrade to Level C or more stringent PPE was not required based on health and safety related monitoring activities.

4.0 INVESTIGATION RESULTS AND DISCUSSION

The results of the subsurface investigation completed at the Site are presented in the following sections.

4.1 Subsurface Conditions

Soils encountered in the first foot of the soil column were generally clean gravels with fine, medium and coarse grained sand as well as clayey sands and clay mixtures. Soil encountered at greater depths in the borings consisted primarily of clay and fine grained silty clays with medium to low plasticity with some areas of clayey sands with fine to medium sand and clay mixtures. Groundwater was not encountered in any of the borings advanced at the Site during this investigation. In addition, neither chemical staining, odors nor other suspect conditions were noted by AEC during the sampling activities. Further, PID screening of soil samples did not reveal any detectable concentrations of undifferentiated VOCs on the field instrument.

4.2 Soil Analytical Results

A total of 39 soil samples were collected during the drilling of the soil borings. The following includes a summary of the analytical laboratory results obtained during this investigation:

Hexavalent Chromium

In accordance with the approved Work Plan for the project, the ten soil samples obtained from the 0.5 foot depths of each soil boring were analyzed for hexavalent chromium by EPA test Method 7196. In addition, ten additional soil samples from greater depths (four from 1 foot, three from 3 feet and three from 5 feet) were also analyzed for this constituent. Hexavalent chromium was not detected at or above the analytical laboratory reporting limit in any of the samples analyzed for this constituent. Table 1 is a summary of hexavalent chromium analytical results. Figure 3 depicts the soil boring locations and associated hexavalent chromium analytical results. The analytical laboratory report is included in Appendix C.

Geotechnical Analysis

As stated in Section 3.1.2 of this report, three soil samples were obtained for geotechnical analysis (5 foot depths of borings B3, B6 and B7). A summary of the results relevant to vapor intrusion modeling input parameters is presented in the table below.

Sample Location- Depth (feet)	Grain Size Description	USDA Soil Texture Scheme	Moisture Content (% weight)	Dry Bulk Density (g/cm³)	Total Porosity (cm ³ /cm ³)	Air Filled Porosity (cm ³ /cm ³)	Water Filled Porosity (cm ³ /cm ³)	Total Organic Carbon (mg/kg)
B3-5	Silt	Sandy Clay	16.1	1.87	0.303	0.003	0.300	14300
B6-5	Silt	Clay	23.2	1.63	0.383	0.004	0.379	6400
B7-5	Silt	Clay	18.2	1.78	0.330	0.005	0.325	5200

A copy of the geotechnical laboratory report is included in Appendix D.

4.3 VOC Analytical Results in Soil Gas

Twelve soil gas samples (including a probe blank and a field duplicate) were collected during this subsurface investigation. VOCs were not detected at or above the laboratory reporting limits in soil borings B3, B4 and B9. Benzene was detected above the laboratory reporting limit in seven of the 10 soil gas sampling locations at the Site (B1, B2, B5, B6, B7, B8 and B10).

VOC Compound	Minimum	Location of	Maximum	Location of
	Detected	Minimum	Detected	Detected
	Concentration	Detected	Concentration	Maximum
	(μg/m³)	Concentration	(μg/m ³)	Concentration
Benzene	44	B1	160	B7

The maximum concentration of benzene in soil gas was detected in soil boring B7, situated in the western portion of the Site and in the general location of the former engraving and plating facility/business. Table 2 presents the analytical results for all soil gas samples analyzed during this subsurface investigation. Figure 4 depicts the soil boring locations and associated soil gas analytical results. The analytical laboratory report is included in Appendix E.

5.0 HUMAN HEALTH RISK ASSESSMENT

A human health risk assessment focusing on the vapor intrusion pathway was conducted by AEC as part of this investigation to evaluate the potential for chemical volatilization and vapor intrusion of VOCs and the potential risk of exposure to indoor vapors for future users of the proposed Site building. Site conditions do not provide reason to assume there are human health related concerns relative to dermal contact, ingestion or inhalation of soil and/or groundwater at the Site due to the documented lack of significant contaminants in such media at the Site (refer to Sections 1.2 and 4.2 above) that would result in an increased chemical exposure risk to future workers or residents. As such, these potential exposure pathways are considered incomplete and are not discussed further herein.

The vapor intrusion focused human health risk assessment was conducted utilizing the California EPA Office of Environmental Health Hazard Assessment (OEHHA) modified J&E screening-level model for soil gas contamination (last modified March 2014). The vapor risk evaluation has been completed in general accordance with DTSC's *Guidance for the Evaluation and Mitigation of Subsurface Vapor Intrusion to Indoor Air (Vapor Intrusion Guidance)* (2011), and also utilizes other conservative input parameters and assumptions. The risk assessment consisted of four primary steps as follows:

- Data collection and evaluation
- Exposure assessment
- Toxicity assessment
- Risk characterization

The Incremental Lifetime Cancer Risk (ILCR) and Hazard Quotient (HQ) for the inhalation pathway of benzene was evaluated for potential exposure to future users of the Site structure. The cancer risk and HQ calculations were conducted using Site-specific and model default parameters via the J&E model.

5.1 Data Collection and Evaluation

Soil gas data collection methods and summaries of results are discussed previously in this report. Benzene detected in the soil gas samples were evaluated using the J&E model to derive the ILCR and HQ calculations. Benzene was the only detected VOC during the subsurface investigation, and therefore was the only VOC utilized for the J&E modeling effort. As stated previously in this report (Section 1.2), there were 13 VOC compounds detected during AEC's July 2015 assessment completed at the Site. Such compounds included benzene (single VOC compound detected during the current assessment) and 12 others as listed in Section 1.2 above. Seven of the VOC compounds detected previously at the Site were not evaluated during the current assessment as they are noncarcinogens and/or were found at insignificant concentrations during the prior assessment work. Such compounds included chloromethane, acetone, carbon disulfide, 2-butanone (MEK), 4-Methyl-2pentanone (MIBK), styrene and 1,2,4-trimethylbenzene. In addition, five of the VOC compounds previously detected during the July 2015 assessment were not detected during the current assessment for reasons likely due to higher laboratory reporting limits of United States EPA test Method 8260B used during the current assessment compared to lower reporting limits of United States EPA test Method TO-15 used during the prior July 2015 assessment. Such compounds included toluene, ethylbenzene, m-xylene, p-xylene, o-xylene and PCE. Reporting limits for such compounds using United States EPA test Method 8260B are higher than the highest detected concentrations of such compounds using United States EPA test Method TO-15. However, both the previous maximum detected concentrations of such compounds and the reporting limits of such compounds using United States EPA test Method 8260B are below residential ESLs and are considered to be insignificant relative to potential vapor intrusion risk. Relative to the previous detection of chloroform at 400 µg/m³ in soil gas sample SV2-5 (boring B3) during the July 2015 assessment, data obtained during our current assessment indicates that this single prior detection is anomalous and was not able to be duplicated during our current assessment. Chloroform was not detected at or above the laboratory reporting limit of 100 µg/m³ in any of the soil gas samples obtained and analyzed during this assessment. This includes current sample location B3 which was drilled immediately adjoining (within one to two feet) of the former boring location with the elevated

chloroform detection, in addition to current boring locations located immediately adjacent to the north (B5), south (B1), east (B2) and west (B4) of the prior elevated detection.

5.2 Exposure Assessment

This step of the risk assessment incorporates information regarding the chemical concentrations with assumptions on how an individual could come in to contact with such chemicals. The resultant estimate is an individual's dose of a chemical or chemicals. This assessment evaluates potential exposure to benzene in soil gas based on the proposed use of the Site for residential purposes. However, it should be noted and as stated previously, none of the residential units will be located on the ground floor of the future structure at the Site. The ground floor of the future structure will include parking areas, utility/mechanical rooms and enclosures, storage rooms, trash enclosures, bicycle lockers, a lobby and a leasing area/lounge. Regardless, parameters applicable to long-term residential exposure to benzene have been utilized during this risk assessment as a conservative measure and approach.

Exposure parameters used during the J&E modeling included the following:

- Depth below grade to bottom of enclosed floor space: 15 centimeters (cm)
- Soil gas sampling depth below grade: 152.4 cm
- Average soil temperature: 24 degrees Celsius (model default)
- Vadose zone soil type: Per geotechnical data
- Vadose zone dry bulk density: Per geotechnical data in grams per cubic centimeter (g/cm³)
- Vadose zone soil total porosity Per geotechnical data in cubic centimeter per cubic centimeter (cm³/cm³)
- Vadose zone soil water-filled porosity Per geotechnical data in cubic centimeter per cubic centimeter (cm³/cm³)
- Air exchange rate: 0.5 exchange per hour for residential structure
- Average vapor flow rate into building (Qsoil) 5 liters per minute (model default)
- Averaging time for carcinogens: 70 years
- Averaging time of noncarcinogens: 26 years (residential scenario)
- Exposure duration: 26 years (residential scenario)
- Exposure frequency: 350 days per year (residential scenario)
- Exposure time: 24 per day
- Various unadjustable default parameters within the J&E model

5.3 Toxicity Assessment

The toxicity assessment refers to the identification of a chemical as one that may cause an adverse health effect under certain exposure conditions and the dose of that chemical necessary to cause that effect. Both the California EPA OEHHA and United States EPA publish toxicity criteria for numerous chemical substances. The Reference Concentration in air (RfC) for a chemical is a daily exposure level for a human that is not expected to result in an adverse noncancer health effect. A Unit Risk Factor (URF) for a chemical is an expression of the potency of that chemical to cause cancer, and represents the probability (or risk) of the chemical to cause cancer after a lifetime of exposure. The default RfC and URF toxicity criteria for benzene used in the J&E modeling is presented in the following table:

Toxicity Criteria				
VOC Compound	Unit Risk Factor (μg/m3) ⁻¹	Reference Concentration (mg/m3)		
Benzene	2.9E-05	3.0E-03		

µg/m3 = micrograms per cubic meter

mg/m3 = milligrams per cubic meter

5.4 Risk Characterization

The risk characterization includes assessment of the overall potential for cancer and noncancer effects posed by exposure to contaminants at a given property. Therefore, a human health risk assessment for a Site must include the risks and hazards posed by all contaminants of concern and all complete exposure pathways.

In evaluating theoretical carcinogenic risk, such risk is estimated as the incremental probability of an individual developing cancer over a lifetime as a result of chemical exposure. The cancer risk is estimated by multiplying the estimated average exposure rate (i.e. lifetime average daily doses) by the chemical unit risk factors. The unit risk factors convert estimated daily intakes averaged over a lifetime to incremental risk of an individual developing cancer. Since the modeled cancer risks are averaged over an individual's lifetime, long term exposure to a carcinogen will result in higher estimated risks than shorter-term exposure to the same carcinogen, if all other risk modeling assumptions are constant.

When evaluating estimated cancer risks for decision making purposes, a typical acceptable excess cancer risk regardless of land use is equal to or less than one in one million (\leq 1E-06). This threshold is recognized as acceptable by the United States EPA, State of California regulatory agencies and numerous local jurisdictions as one that is suitable for an unrestricted land use (including at-grade residential use and other sensitive land uses) and represents a probability of one in one million that an individual could develop cancer from exposure to a carcinogen (or group of carcinogens) under various exposure assumptions. A one in one hundred thousand (\leq 1E-05) excess cancer risk is typically recognized by Federal and State agencies as acceptable in commercial/industrial scenarios. A calculated excess cancer risk falling between 1E-06 and one in ten thousand (1E-04) is considered by both Federal and State agencies to be in a risk management range and where risk management decisions are made on a site-specific basis. If risk exceeds one in ten thousand (>1E-04), the VOCs are assumed to pose a potential long-term risk to human health, and both source remediation and vapor intrusion mitigation may be deemed warranted.

The hazard potential posed by a chemical for noncarcinogenic effects is evaluated by comparing the exposure level over time with a reference dose or concentration for a similar exposure period to produce a HQ. If the HQ is less than 1.0, the chemical is considered unlikely to pose significant non-carcinogenic adverse health effects to individuals under the exposure conditions. When the HQ exceeds 1.0, further evaluation of the source and/or response action to mitigate the source and vapor intrusion may be needed.

5.5 Risk Evaluation Results

As previously discussed, AEC evaluated the potential human health risks from exposure to potential upward vapor intrusion in to the future residential structure to be constructed at the Site. Site-specific and default J&E model parameters were used as part of the risk assessment calculations. The ILCR and HQ for benzene have been calculated using the maximum concentration of benzene detected in soil gas at the Site during our most recent investigation to designate the exposure point concentration of benzene also exceeds benzene concentrations detected previously at the Site during our July 2015 assessment.

The exposure point concentration is the value that represents a conservative estimate of a specific chemical concentration available from a particular medium or route of exposure and in the case of the proposed project, vapor intrusion in to the future structure at the Site. This approach is considered to be conservative as four of the ten soil gas sampling locations did not exhibit benzene at or above the laboratory reporting limit. In addition, the other detected concentrations of benzene were an order of magnitude lower that the maximum benzene concentration of 160 μ g/m³ which has been used as the exposure point concentration. This would indicate that chemical vapor flux is not occurring throughout the entire Site and that the maximum benzene concentration is not indicative of subsurface conditions throughout the overall subject Site. Further, all geotechnical data obtained

during this assessment (borings B3, B6 and B7) has been utilized during the risk modeling effort in order to evaluate risk using the most conservative Site-specific data available.

The potential risk and hazard of vapor intrusion and exposure to future occupants of the proposed development at the Site is presented in the following tables.

Risk Evaluation Using Maximum VOC Exposure Point Benzene Concentration and Geotechnical Data From Soil Boring B3

VOC Compound	(µg/m³)		Hazard Quotient
Benzene	160	3E-09	1E-04

Risk Evaluation Using Maximum VOC Exposure Point Benzene Concentration and Geotechnical Data From Soil Boring B6

VOC Compound Concentration (µg/m ³)		Estimated Cancer Risk	Hazard Quotient
Benzene	160	5E-09	1E-04

Risk Evaluation Using Maximum VOC Exposure Point Benzene Concentration and Geotechnical Data From Soil Boring B7

VOC Compound	/OC Compound Maximum (µg/m ³)		Hazard Quotient
Benzene	160	4E-09	1E-04

As shown in the tables above, the estimated carcinogenic risk resulting from potential benzene exposure at the Site ranges from 3E-09 to 4E-09 (three to four in one billion) which is below the one in one million (1E-06) target unrestricted risk threshold. The HQ for potential benzene exposure was calculated at 0.0001 which is well below the target HQ of 1.0. J&E modeling spreadsheets are included in Appendix F of this report.

5.6 Uncertainties and Possible Risk Mitigating Factors

The methodology used in this risk assessment is consistent with Federal and State risk assessment guidance. However, it should be noted that the procedures used in any quantitative risk assessment are conditional estimates given the many assumptions that must be made about exposure and toxicity. The primary factors that contribute to uncertainty in this assessment are limited information about patterns of exposure and uncertainty in toxicity estimates.

Numerous conservative assumptions were made during the completion of this assessment. For example, it is assumed that the maximum VOC chemical concentrations remain constant over the duration of exposure. No abiotic or biotic degradation mechanisms which would reduce the concentrations of VOCs over time are assumed to occur. This general assumption of steady-state conditions also applies to sources and chemical release mechanisms and may result in a conservative estimation of long-term exposure concentrations.

There are also possible risk mitigating factors pertaining to structural components that are not considered during the risk modeling effort. Such factors include the strength and thickness of future

new concrete slabs, strength of heating, ventilation and/or air conditioning systems and associated air exchange rates within the future buildings, intake rates and actual frequency of time spent within the future structures. Such factors could reduce potential chemical exposures due to possible upward vapor migration. Further, the overall design of the proposed development is a risk mitigating factor in that there will be no habitable residential units on the ground floor of the future Site building. Regardless, the vapor risk assessment results are acceptable for long-term residential exposure scenarios.

In summary, because a risk evaluation contains multiple sources of uncertainty, simplifying assumptions are often made so that health risks can be estimated quantitatively. Since the exact amount of uncertainty cannot be quantified, the risk assessment is intended to overestimate rather than underestimate probable health risk and hazards. Therefore, the results of this assessment are meant to be protective of health despite the inherent uncertainties in the process.

6.0 DATA ASSESSMENT

Data management and quality assurance/quality control procedures were implemented during the investigation without significant upset conditions. Such procedures were implemented as part of the field sampling and analytical procedures to ensure that data of known quality was produced and that the quality of the results was improved to the maximum extent during investigation. QC Summary Forms for the analytical laboratory reports obtained from TEG and AETL were completed by AEC and include provisions for the review of various items including but not limited to chain-of-custody procedures, sample holding times, field duplicates (soil gas), laboratory method blanks, surrogate recoveries and other laboratory QC samples, reporting limits and the need for corrective action relative to the analytical data. The quality of the data was assessed and any necessary qualifiers were applied in accordance with United States EPA National Functional Guidelines for Organic Data Review (EPA 540/R-04/004) and United States EPA Office of Environmental Information Guidance for Data Quality Assessment: Practical Methods for Data Analysis (QA/G-9), EPA/600/R-96/084. The completed QC Summary Forms are included in Appendix G and contain specific information regarding any data that had been qualified by the analytical laboratories. A summary of the data assessment effort is presented below.

6.1 Holding Time and Sample Preservation Compliance

Maximum allowable holding times for each analytical method were measured from the time samples were collected to the time that sample preparation or analysis was completed for each sample by the analytical laboratories. All samples submitted to the analytical laboratories were properly preserved within method prescribed temperature preservation requirements. All soil gas samples analyzed by TEG and soil samples analyzed by AETL were analyzed within analytical method recommended maximum holding times.

6.2 Blank Sample Analyses

All laboratory method blanks for soil gas and soil matrix samples did not contain applicable analytes above laboratory reporting limits.

6.3 Surrogate Compound Recoveries

Where applicbale, system monitoring/surrogate compounds were added to each sample prior to analysis of organic parameters by various United States EPA Methods. The calculated recovery for each surrogate compound was evaluated to confirm the accuracy of the reported results. The surrogate recoveries were all within acceptable limits.

6.4 Laboratory Control Samples/Laboratory Control Sample Duplicate (LCS/LCSD) and Matrix Spikes/Matrix Spike Duplicate (MS/MSD) Recoveries

Analytical precision and accuracy of soil gas samples were evaluated based on LCS/LCSD sample analyses performed concurrently with the project samples. Soil matrix samples were evaluated in a similar manner based on both LCS/LCSD and MS/MSD analyses. LCS/LCSD and MS/MSD recoveries were within acceptable limits.

6.5 Field Duplicate Evaluation

One soil gas sample was analyzed as a duplicate (SV4). VOCs were not detected at or above the laboratory reporting limits in the duplicate soil gas sample analyzed during this investigation.

6.6 Data Assessment Summary

No data obtained during the work described herein required rejection. The data that has been relied upon is considered to be useable for decision making purposes and a technically defensible deliverable. Such data has also met precision, accuracy, representativeness, comparability and

completeness requirements for laboratory analysis and in meeting data quality objectives for the investigation. Neither corrective action relative to the analytical testing nor a laboratory technical systems audit was deemed warranted. As stated previously, completed QC Summary Forms are included in Appendix G.

7.0 CONCLUSIONS AND RECOMMENDATIONS

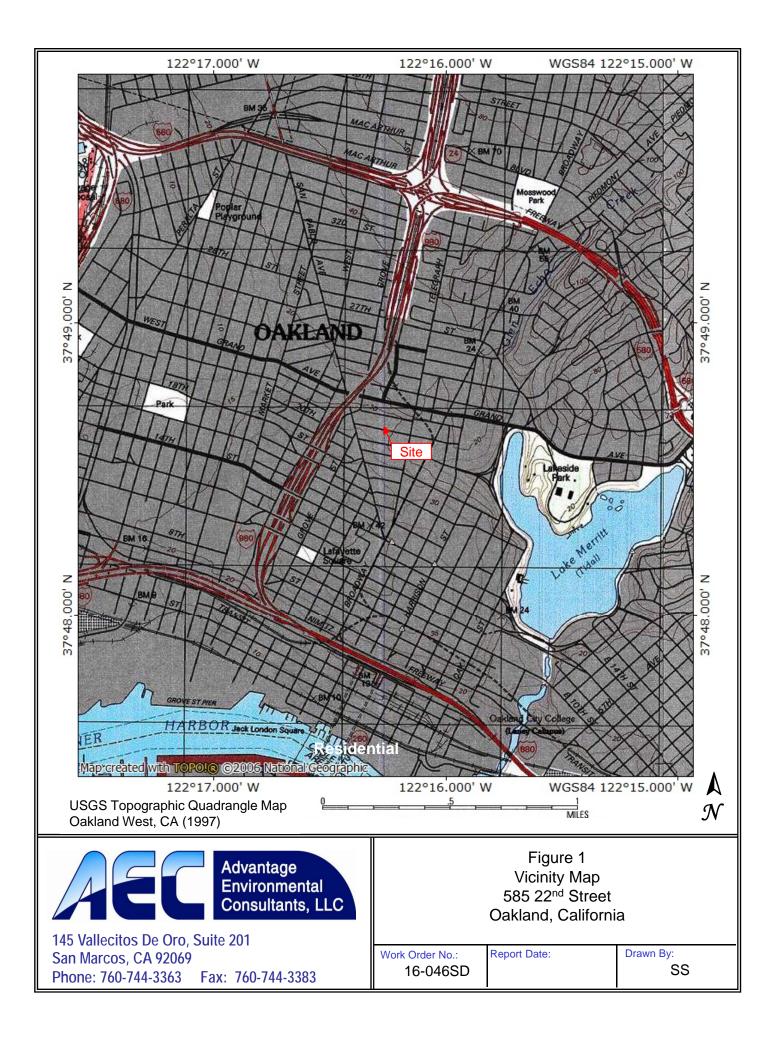
Conclusions of this subsurface investigation are as follows:

- Hexavalent chromium has been ruled out as a contaminant of concern in soil at the Site. Further, based on the results of prior soil matrix analyses completed at the Site during our July 2015 assessment, there are no known contaminants of concern present in soil at the Site.
- The human health risk assessment has indicated calculated carcinogenic and non-carcinogenic risks for the planned residential development that are considered acceptable for its intended use and do not warrant active or passive corrective measures.
- There are several risk mitigating factors that should be considered in evaluating data and conclusions of the human health risk assessment. Such factors include uncertainty in toxicity estimates, limited information about patterns of exposure, an assumption that maximum chemical concentrations remain constant over the duration of exposure at the Site, no abiotic or biotic degradation mechanisms being assumed to occur, the overall design of the future project (no ground level residential spaces) and the lack of consideration of new structural components that will be constructed at the Site. Since the exact amount of uncertainty cannot be quantified, the risk assessment is intended to overestimate rather than underestimate probable health risk and hazards.
- The data obtained during the subsurface investigation is considered to be valid and useful for decision making purposes. In addition, no upset conditions occurred during the sampling events that may have adversely influenced the results of the investigation.
- No further action at the Site is considered to be warranted.

8.0 REQUEST FOR ACDEH CONCURRENCE

AEC requests ACDEH concurrence of our opinion that no further action at the Site is considered to be warranted.

9.0 REFERENCES


- California Environmental Protection Agency, Department of Toxic Substances Control (DTSC), 2011, Guidance for the Evaluation and Mitigation of Subsurface Vapor Intrusion to Indoor Air (Vapor Intrusion Guidance), dated October 2011.
- California Environmental Protection Agency, Department of Toxic Substances Control (DTSC)/ California Regional Water Quality Control Board, Los Angeles and San Francisco Regions (LA-RWQCB and SF-RWQCB), July 2015, Advisory—*Active Soil Gas Investigations,* jointly issued by the DTSC, LA-RWQCB and SF-RWQCB.
- California Environmental Protection Agency Office of Environmental Health Hazard Assessment, 2012, Toxicity Criteria Database.
- San Francisco Bay Regional Water Quality Control Board Environmental Screening Levels (2013).
- United States Environmental Protection Agency (USEPA), 1989, Risk Assessment Guidance for Superfund Volume I, Human Health Evaluation Manual (Part A), USEPA 540/1-89-002, Office of Emergency and Remedial Response. Washington, DC.
 - _____, 1991, Risk Assessment Guidance for Superfund, Volume 1, Human Health Evaluation Manual, Supplemental Guidance Standard Exposure Factors, Draft Final, OSWER Directive 9285.6-03, Office of Solid Waste and Emergency Response. USEPA, 1997. Exposure Factors Handbook. Office of Research and Development. EPA/600/P-95/002Ba.

_____, 2000, Guidance for Data Quality Assessment: Practical Methods for Data Analysis (QA/G-9), EPA/600/R-96/084, Office of Environmental Information.

_____, 2009, Risk Assessment Guidance for Superfund, Volume 1, Human Health Evaluation Manual, Part F Supplemental Guidance for Inhalation Risk Assessment, Office of Solid Waste and Emergency Response, EPA-540-R-070-002, OSWER 9285.7-82

United States Geologic Survey (USGS), 1997, Oakland West, CA, Quadrangle 7.5 Minute Topographic Map.

FIGURES

TABLES

Table 1Soil Analytical Results for Hexavalent Chromium585 22nd Street, Oakland, California

Sample ID	Depth (feet)	Date Sampled	Hexavalent Chromium (mg/kg)	
B1-0.5'	0.5	12/21/2015	ND(<0.250)	
B1-1'	1	12/21/2015	ND(<0.250)	
B10-0.5'	0.5	12/21/2015	ND(<0.250)	
B10-5'	5	12/21/2015	ND(<0.250)	
B2-0.5'	0.5	12/21/2015	ND(<0.250)	
B2-5'	5	12/21/2015	ND(<0.250)	
B3-0.5'	0.5	12/21/2015	ND(<0.250)	
B3-1'	1	12/21/2015	ND(<0.250)	
B4-0.5'	0.5	12/21/2015	ND(<0.250)	
B4-5'	5	12/21/2015	ND(<0.250)	
B5-0.5'	0.5	12/21/2015	ND(<0.250)	
B5-3'	3	12/21/2015	ND(<0.250)	
B6-0.5'	0.5	12/21/2015	ND(<0.250)	
B6-3'	3	12/21/2015	ND(<0.250)	
B7-0.5'	0.5	12/21/2015	ND(<0.250)	
B7-1'	1	12/21/2015	ND(<0.250)	
B8-0.5'	0.5	12/21/2015	ND(<0.250)	
B8-3'	3	12/21/2015	ND(<0.250)	
B9-0.5'	0.5	12/21/2015	ND(<0.250)	
B9-1'	1	12/21/2015	ND(<0.250)	

NOTES:

mg/kg = milligrams per kilogram

ND = Not detected at or above the laboratory reporting limit Hexavalent Chromium (EPA 7196A)

 TABLE 2

 Soil Gas Analytical Results for Volatile Organic Compounds

 585 22nd Street, Oakland, California

Soil Vapor Probe Location	Sample ID	Sample Depth (feet)	Sample Date	Sampling Container	Volatile Organic Compounds by EPA 8260B	
					Benzene	Other VOCs
B1	SV1	5	12/21/2015	Glass Syringe	44	ND
B2	SV2	5	12/21/2015	Glass Syringe	51	ND
B3	SV3	5	12/21/2015	Glass Syringe	ND(<35)	ND
B4	SV4	5	12/21/2015	Glass Syringe	ND(<35)	ND
B4	SV4 (dup)	5	12/21/2015	Glass Syringe	ND(<35)	ND
B5	SV5	5	12/21/2015	Glass Syringe	45	ND
B6	SV6	5	12/21/2015	Glass Syringe	90	ND
B7	SV7	5	12/21/2015	Glass Syringe	160	ND
B8	SV8	5	12/21/2015	Glass Syringe	59	ND
B9	SV9	5	12/21/2015	Glass Syringe	ND(<35)	ND
B10	SV10	5	12/21/2015	Glass Syringe	70	ND

NOTES:

ND = Not detected at or above the referenced laboratory reporting limit

dup = Duplicate

 $\mu g/m^3 = micrograms per cubic meter$

APPENDIX A

WORK PLAN APPROVAL LETTER

ALEX BRISCOE, Director

ENVIRONMENTAL HEALTH SERVICES ENVIRONMENTAL PROTECTION 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577 (510) 567-6700 FAX (510) 337-9335

November 3, 2015

Charles A. Long 585 22nd Street LLC 2030 Manzanita Drive Oakland, CA 94611 *(Sent via E-mail to: <u>charlesalong@gmail.com</u>)*

Subject: Conditional Work Plan Approval for Voluntary Remedial Action Case No. RO0003187 and GeoTracker Global ID T10000007665, Postal Parking Lot Redevelopment, 585 22nd Street, Oakland, CA 94612

Dear Responsible Parties:

Alameda County Environmental Health (ACEH) staff has reviewed the fuel leak case file for the abovereferenced site including the recently submitted document entitled, "*Work Plan for Supplemental Investigation*" dated October 13, 2015 (Work Plan). The Work Plan, which was prepared on your behalf by Advantage Environmental Consultants, LLC, presents plans to advance and sample ten soil borings.

The Work Plan is conditionally approved and may be implemented provided that the technical comment below is incorporated during the site investigation. Submittal of a revised Work Plan or Plan Addendum is not required unless an alternate scope of work outside that described in the Work Plan and technical comments below is proposed. We request that you address the following technical comment, perform the proposed work, and send us the reports described below.

TECHNICAL COMMENTS

1. Locations of Proposed Soil Borings. The locations of 9 of the 10 proposed boring locations are generally acceptable. We request that the soil boring which is currently proposed in the central portion of the site at a location approximately midway between prior sampling locations B2 and B6, be moved approximately 20 feet to the west. The reason for this request is to move the proposed soil vapor sampling location closer to the location of the former UST and dispenser. Please present results from the site investigation in the Site Investigation Report requested below.

TECHNICAL REPORT REQUEST

Please upload technical reports to the ACEH ftp site (Attention: Jerry Wickham), and to the State Water Resources Control Board's GeoTracker website according to the following schedule and file-naming convention:

• February 10, 2016 – Site Investigation Report File to be named: SWI_R_yyyy-mm-dd RO3187 Charles A. Long RO0003187 November 3, 2015 Page 2

If you have any questions, please call me at (510) 567-6791 or send me an electronic mail message at <u>jerry.wickham@acgov.org</u>. Online case files are available for review at the following website: <u>http://www.acgov.org/aceh/index.htm</u>.

Sincerely,

Jerry Wickham, California PG 3766, CEG 1177, and CHG 297 Senior Hazardous Materials Specialist

- Attachments: Responsible Party(ies) Legal Requirements/Obligations
- Enclosure: ACEH Electronic Report Upload (ftp) Instructions
- cc: Matt Ticknor, 585 22nd Street LLC (Sent via E-mail to: matt@sqftventures.com

Daniel Weis, Advantage Environmental Consultants, LLC, 145 Vallecitos De Oro, Suite 201, San Marcos, CA 92069 (*Sent via E-mail to: <u>dweis@aec-env.com</u>*)

Jerry Wickham, ACEH (*Sent via E-mail to: jerry.wickham@acgov.org*) GeoTracker, eFile

Responsible Party(ies) Legal Requirements / Obligations

REPORT REQUESTS

These reports are being requested pursuant to California Health and Safety Code Section 25296.10. 23 CCR Sections 2652 through 2654, and 2721 through 2728 outline the responsibilities of a responsible party in response to an unauthorized release from a petroleum UST system, and require your compliance with this request.

ELECTRONIC SUBMITTAL OF REPORTS

ACEH's Environmental Cleanup Oversight Programs (LOP and SLIC) require submission of reports in electronic form. The electronic copy replaces paper copies and is expected to be used for all public information requests, regulatory review, and compliance/enforcement activities. Instructions for submission of electronic documents to the Alameda County Environmental Cleanup Oversight Program FTP site are provided on the attached "Electronic Report Upload Instructions." Submission of reports to the Alameda County FTP site is an addition to existing requirements for electronic submittal of information to the State Water Resources Control Board (SWRCB) GeoTracker website. In September 2004, the SWRCB adopted regulations that require electronic submittal of information for all groundwater cleanup programs. For several years, responsible parties for cleanup of leaks from underground storage tanks (USTs) have been required to submit groundwater analytical data, surveyed locations of monitoring wells, and other data to the GeoTracker database over the Internet. Beginning July 1, 2005, these same reporting requirements were added to Spills, Leaks, Investigations, and Cleanup (SLIC) sites. Beginning July 1, 2005, electronic submittal of a complete copy of all reports for all sites is required in GeoTracker (in PDF format). Please SWRCB visit the website for more information on these requirements (http://www.waterboards.ca.gov/water issues/programs/ust/electronic submittal/).

PERJURY STATEMENT

All work plans, technical reports, or technical documents submitted to ACEH must be accompanied by a cover letter from the responsible party that states, at a minimum, the following: "I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge." This letter must be signed by an officer or legally authorized representative of your company. Please include a cover letter satisfying these requirements with all future reports and technical documents submitted for this fuel leak case.

PROFESSIONAL CERTIFICATION & CONCLUSIONS/RECOMMENDATIONS

The California Business and Professions Code (Sections 6735, 6835, and 7835.1) requires that work plans and technical or implementation reports containing geologic or engineering evaluations and/or judgments be performed under the direction of an appropriately registered or certified professional. For your submittal to be considered a valid technical report, you are to present site specific data, data interpretations, and recommendations prepared by an appropriately licensed professional and include the professional registration stamp, signature, and statement of professional certification. Please ensure all that all technical reports submitted for this fuel leak case meet this requirement.

UNDERGROUND STORAGE TANK CLEANUP FUND

Please note that delays in investigation, later reports, or enforcement actions may result in your becoming ineligible to receive grant money from the state's Underground Storage Tank Cleanup Fund (Senate Bill 2004) to reimburse you for the cost of cleanup.

AGENCY OVERSIGHT

If it appears as though significant delays are occurring or reports are not submitted as requested, we will consider referring your case to the Regional Board or other appropriate agency, including the County District Attorney, for possible enforcement actions. California Health and Safety Code, Section 25299.76 authorizes enforcement including administrative action or monetary penalties of up to \$10,000 per day for each day of violation.

	REVISION DATE: May 15, 2014
Alameda County Environmental Cleanup Oversight Programs (LOP and SLIC)	ISSUE DATE: July 5, 2005
	PREVIOUS REVISIONS: October 31, 2005; December 16, 2005; March 27, 2009; July 8, 2010, July 25, 2010
SECTION: Miscellaneous Administrative Topics & Procedures	SUBJECT: Electronic Report Upload (ftp) Instructions

The Alameda County Environmental Cleanup Oversight Programs (LOP and SLIC) require submission of all reports in electronic form to the county's ftp site. Paper copies of reports will no longer be accepted. The electronic copy replaces the paper copy and will be used for all public information requests, regulatory review, and compliance/enforcement activities.

REQUIREMENTS

- Please <u>do not</u> submit reports as attachments to electronic mail.
- Entire report including cover letter must be submitted to the ftp site as a single portable document format (PDF) with no password protection.
- It is preferable that reports be converted to PDF format from their original format, (e.g., Microsoft Word) rather than scanned.
- Signature pages and perjury statements must be included and have either original or electronic signature.
- <u>Do not</u> password protect the document. Once indexed and inserted into the correct electronic case file, the document will be secured in compliance with the County's current security standards and a password. Documents with password protection <u>will not</u> be accepted.
- Each page in the PDF document should be rotated in the direction that will make it easiest to read on a computer monitor.
- Reports must be named and saved using the following naming convention:

RO#_Report Name_Year-Month-Date (e.g., RO#5555_WorkPlan_2005-06-14)

Submission Instructions

- 1) Obtain User Name and Password
 - a) Contact the Alameda County Environmental Health Department to obtain a User Name and Password to upload files to the ftp site.
 - i) Send an e-mail to <u>deh.loptoxic@acgov.org</u>
 - b) In the subject line of your request, be sure to include "ftp PASSWORD REQUEST" and in the body of your request, include the Contact Information, Site Addresses, and the Case Numbers (RO# available in Geotracker) you will be posting for.
- 2) Upload Files to the ftp Site
 - a) Using Internet Explorer (IE4+), go to http://alcoftp1.acgov.org
 - (i) Note: Netscape, Safari, and Firefox browsers will not open the FTP site as they are NOT being supported at this time.
 - b) Click on Page located on the Command bar on upper right side of window, and then scroll down to Open FTP Site in Windows Explorer.
 - c) Enter your User Name and Password. (Note: Both are Case Sensitive.)
 - d) Open "My Computer" on your computer and navigate to the file(s) you wish to upload to the ftp site.
 - e) With both "My Computer" and the ftp site open in separate windows, drag and drop the file(s) from "My Computer" to the ftp window.
- 3) Send E-mail Notifications to the Environmental Cleanup Oversight Programs
 - a) Send email to <u>deh.loptoxic@acgov.org</u> notify us that you have placed a report on our ftp site.
 - b) Copy your Caseworker on the e-mail. Your Caseworker's e-mail address is the entire first name then a period and entire last name @acgov.org. (e.g., firstname.lastname@acgov.org)
 - c) The subject line of the e-mail must start with the RO# followed by **Report Upload**. (e.g., Subject: RO1234 Report Upload) If site is a new case without an RO#, use the street address instead.
 - d) If your document meets the above requirements and you follow the submission instructions, you will receive a notification by email indicating that your document was successfully uploaded to the ftp site.

APPENDIX B

SOIL BORING LOGS

PROJ	IECT:	585 22nd S	treet, Oakla	and, CA		PROJECT NO.: 15-120SD		LOG OF BORING NO.:	B1
BORI	NG LOC	ATION:	See	Site Explorati	ion Plan	ELEVATION AND DATUM: S	ite elevatio	on = ~25 feet above MSL	
DRILL	LING CC	NTRACTO	R: TEG	i		DATE STARTED: 12/21/2015	DATE	FINISHED: 12/21/2015	
DRILL	LING ME	THOD: Di	rect Push T	echnologies		TOTAL DEPTH: 5 feet			
DRILL	LING EQ	UIPMENT:	Truc	k Mounted G	eoprobe Rig	DEPTH TO WATER: Not encou	intered		
SAMPLING METHOD: DPT sampler lined with acetate sleeves						LOGGED BY: Scott Schiffer			
HAMMER WT.: NA DROP: NA						RESPONSIBLE PROFESSIONA	AL: EC		
Depth (ft)	Sample Interval	Sample ID			SOIL DESCRI	PTION	(mqq) Olq	REMARKS	
- 1 - 1 -	\bigotimes	B1-0.5' B1-1'			Asphalt - ~6 inches		0.0 0.0		
2 - 3 - -	\times	B1-3'		nd (SC), fine ist, medium p	to medium grained s plasticity		NOTES		
4 - 5 -	\times	B1-5'	Clay (CL),	fine grained s	silty clay, light brown	0.0	NOTES: *Temporary vapor probe inst *Soil boring backfilled with hy granules and capped to matc surface grade.	drated bentonite	
								Page 1 of	1

PRO	JECT:	585 22nd S	Street, Oakl	and, CA		PROJECT NO.: 15-120SD LOG OF BORING NO.: B				2
BORI	ING LOO	CATION:	See	Site Explorati	on Plan	ELEVATION AND DATUM: Site elevation = ~25 feet above MSL				
DRIL	LING C	ONTRACTO	OR: TEG	6		DATE STARTED: 12/21/2015	5	DATE	FINISHED: 12/21/2015	
DRIL	LING M	ethod: D	irect Push	Technologies		TOTAL DEPTH: 5 feet	1			
DRIL	LING E		: Truc	k Mounted Ge	eoprobe Rig	DEPTH TO WATER: Not enco	ounter	red		
SAMI	PLING N	IETHOD:	DPT sam	pler lined with	acetate sleeves	LOGGED BY: Scott Schiffer				
HAMMER WT.: NA DROP: NA						RESPONSIBLE PROFESSIO	NAL:	EC		
Depth (ft)	Sample Interval	Sample ID	-		SOIL DESCRI	PTION		PID (ppm)	REMARKS	
- - 1 - -	XX	B2-0.5' B2-1'			Asphalt - ~6 inches d and coarse graine d and coarse graine	ed sand and gravel		0.0 0.0		
2 - - 3 - -	X	B2-3'		und (SC), fine poist, medium p		sand and clay mixtures, dark	-	0.0	NOTEO	
4 - - 5 -	\times	B2-5'	Clay (CL),	, fine grained s	ilty clay, light brown	0.0	NOTES: *Temporary vapor probe installed at 5 *Soil boring backfilled with hydrated bentonite granules and capped to mat existing surface grade.	-		
									Page 1 of 1	

PROJECT:	585 22nd S	Street, Oakl	and, CA		PROJECT NO.: 15-120SD LOG OF BORING NO.: B3					B 3
Boring Lo	CATION:	See	Site Exploration	on Plan	ELEVATION AND DATUM: Site elevation = ~25 feet above MSL					
DRILLING C	ONTRACTO	OR: TEG			DATE STARTED: 12/21/2015	DA	TE FIN	ISHED: 12/21/20	015	
DRILLING N	IETHOD : D	irect Push	Technologies		TOTAL DEPTH: 5 feet					
DRILLING E		: Truc	k Mounted Ge	oprobe Rig	DEPTH TO WATER: Not enco	untered				
SAMPLING	METHOD:	DPT samp	ler lined with	acetate sleeves	LOGGED BY: Scott Schiffer					
HAMMER W	т.:	NA	DROP:	NA	RESPONSIBLE PROFESSION	NAL: EC	;			
Depth (ft) Sample Interval	Sample ID			SOIL DESCRI	PTION			RE	EMARKS	
	B3-0.5' B3-1' B3-3'	Clean Gra	vels (GP), me vels (GP), me	Asphalt - ~6 inches d and coarse graine d and coarse graine	ed sand and gravel		.0 .0			
3 4 5	вз-з В3-5'	Clayey Sand (SC), fine to medium grained sand and clay mixtures, dark brown, moist, medium plasticity						TES: emporary vapor p bil boring backfille nules and cappe face grade.	ed with hyd	Irated bentonite
								Page	1 of	1

PROJE	CT:	585 22nd S	Street, Oakl	and, CA		PROJECT NO.: 15-120SD			LOG OF BORING NO.:	B4
BORING	G LOC	ATION:	See	Site Exploration	on Plan	ELEVATION AND DATUM:	Site	elevatio	on = ~25 feet above MSL	
DRILLII	NG CC	ONTRACTO	OR: TEG	3		DATE STARTED: 12/21/2015	5	DATE	FINISHED: 12/21/2015	
DRILLI	NG ME	E THOD : D	irect Push	Technologies		TOTAL DEPTH: 5 feet				
DRILLII	NG EC	UIPMENT	: Truc	ck Mounted Ge	eoprobe Rig	DEPTH TO WATER: Not enc	ounte	ered		
SAMPL	ING N	IETHOD:	DPT sam	pler lined with	acetate sleeves	LOGGED BY: Scott Schiffer				
НАММЕ	ER WT	`.:	NA	DROP:	NA	RESPONSIBLE PROFESSIO	NAL:	EC		
Depth (ft)	Sample Interval	Sample ID	-		SOIL DESCRI	PTION		PID (ppm)	REMARKS	
		B4-0.5' B4-1' B4-3' B4-5'	Clean Gra Clayey Sa brown, mo	ivels (GP), me and (SC), fine t pist, medium p	olasticity	ed sand and gravel		0.0 0.0 0.0	NOTES: *Temporary vapor probe ins *Soil boring backfilled with I bentonite granules and capp existing surface grade.	hydrated
							·			f 1

PROJ	JECT:	585 22nd S	Street, Oakl	and, CA		PROJECT NO.: 15-120SD LOG OF BORING NO.: B5				
Bori	NG LOO	CATION:	See	Site Exploration	on Plan	ELEVATION AND DATUM: Site elevation = ~25 feet above MSL				
DRILI	LING CO	ONTRACTO	DR: TEG)		DATE STARTED: 12/21/2015	DATE	FINISHED: 12/21/2015		
DRILI	LING M	ETHOD: D	irect Push	Technologies		TOTAL DEPTH: 5 feet	l			
DRILI	LING E		: Truc	k Mounted Ge	eoprobe Rig	DEPTH TO WATER: Not encou	intered			
SAMF	PLING N	IETHOD:	DPT samp	oler lined with	acetate sleeves	LOGGED BY: Scott Schiffer				
HAMMER WT.: NA DROP: NA						RESPONSIBLE PROFESSION	AL: EC			
Depth (ft)	Sample Interval	Sample ID			SOIL DESCRI	PTION	PID (ppm)	REMARKS		
- - 1 - -	\bigotimes	B5-0.5' B5-1'		vels (GP), me		s thick sand and gravel, concrete sand and gravel, concrete	0.0 0.0 			
2 - - 3 -	\times	B5-3'	Clay (C), f	ine grained sil	ty clay, dark gray/bi					
4 - - 5 -	\times	B5-5'	Clay (CL),	fine grained	silty clay, dark gray,	 0.0	NOTES: *Temporary vapor probe inst *Soil boring backfilled with h bentonite granules and capp existing surface grade.	lydrated		
								Page 1 of	1	

PRO	JECT:	585 22nd S	Street, Oakl	and, CA		PROJECT NO.: 15-120SD LOG OF BORING NO.: B6				
BORI	ING LOO	CATION:	See	Site Explorati	on Plan	ELEVATION AND DATUM: Site elevation = ~25 feet above MSL				
DRIL	LING CO	ONTRACTO	DR: TEG	i		DATE STARTED: 12/21/2015	DATE	FINISHED: 12/21/2015		
DRIL	LING M	ethod: D	irect Push	Technologies		TOTAL DEPTH: 5 feet	1			
DRIL	LING E		: Truc	k Mounted Ge	eoprobe Rig	DEPTH TO WATER: Not encou	intered			
SAM	PLING N	ETHOD:	DPT samp	pler lined with	acetate sleeves	LOGGED BY: Scott Schiffer				
НАМІ	MER W	г.:	NA	DROP:	NA	RESPONSIBLE PROFESSION/	AL: EC			
Depth (ft)	Sample Interval	Sample ID			SOIL DESCRI	PTION	PID (ppm)	REMARKS		
- - 1 - -	\mathbf{X}	B6-0.5' B6-1'			Asphalt - ~6 inches d and coarse graine d and coarse graine	ed sand and gravel	0.0 0.0 			
2 - - 3 - -	\times	B6-3'	Clayey Sand (SC), fine to medium grained sand and clay mixtures, dark brown, moist, medium plasticity							
4 - - 5 -	\times	B6-5'	Clay (CL),	fine grained	silty clay, light brow	 0.0	NOTES: *Temporary vapor probe inst *Soil boring backfilled with h bentonite granules and capp existing surface grade.	ydrated		
								Page 1 of	1	

PROJ	JECT:	585 22nd S	itreet, Oakla	and, CA		PROJECT NO.: 15-120SD LOG OF BORING NO.: B7				
BORII	NG LOC	ATION:	See	Site Explorat	ion Plan	ELEVATION AND DATUM: Site elevation = ~25 feet above MSL				
DRILL	LING CO	ONTRACTO	DR: TEG				5 I	DATE	FINISHED: 12/21/2015	
DRILL	LING ME	ETHOD: Di	irect Push ⁻	Fechnologies	3	TOTAL DEPTH: 5 feet				
DRILL	LING EQ	QUIPMENT:	: Truc	k Mounted G	eoprobe Rig	DEPTH TO WATER: Not enc	ounter	ed		
SAMPLING METHOD: DPT sampler lined with acetate sleeves						LOGGED BY: Scott Schiffer				
HAMMER WT.: NA DROP: NA						RESPONSIBLE PROFESSIO	NAL:	EC		
Depth (ft)	Sample Interval	Sample ID			SOIL DESCRI	PTION		PID (ppm)	REMARKS	
- 1 - 2 - 3 - 3 - 4 -		B7-1'	Clean Gra	vels (GP), m	Asphalt - ~6 inches ed and coarse graine ed and coarse graine ark gray/brown, moist	ed sand and gravel		0.0 0.0	NOTES:	
5 -	\times	B7-5'	Clay (CL), silty clay, dark gray, low plasticity						*Temporary vapor probe installed at 5' bgs *Soil boring backfilled with hydrated bentonite granules and capped to match existing surface grade.	
									Page 1 of 1	

									-	
PRO	JECT:	585 22nd S	Street, Oakl	and, CA		PROJECT NO.: 15-120SD LOG OF BORING NO.: B8				
BORI	NG LOO	CATION:	See	Site Explorati	on Plan	ELEVATION AND DATUM:	Site e	levatio	on = ~25 feet above MSL	
DRIL	LING CO	ONTRACTO	DR: TEG	i		DATE STARTED: 12/21/2015	6	DATE	FINISHED: 12/21/2015	
DRIL	LING MI	ethod: D	irect Push	Technologies		TOTAL DEPTH: 5 feet				
DRIL	LING EC		: Truc	k Mounted G	eoprobe Rig	DEPTH TO WATER: Not enco	ountere	ed		
SAMI	PLING N	IETHOD:	DPT samp	pler lined with	acetate sleeves	LOGGED BY: Scott Schiffer				
HAMI	MER WI	г.:	NA	DROP:	NA	RESPONSIBLE PROFESSION	NAL:	EC		
Depth (ft)	Sample Interval	Sample ID			SOIL DESCRI	PTION		PID (ppm)	REMARKS	
- 1 - -	\mathbf{X}	B8-0.5' B8-1'	Clean Gra		Asphalt - ~6 inches d and coarse graine d and coarse graine			0.0 0.0		
2 - - 3 - -	\times	B8-3'	Clean Sand (SW) - medium and coarse grained sand, well graded sand, gravelly sand, light brown/reddish orange						NOTES:	
4 - - 5 -	\times	B8-5'	Clay (OL)	- silts and silt	y clay, light gray/bro	0.0	*Temporary vapor probe installer *Soil boring backfilled with hydra bentonite granules and capped t existing surface grade.	ated		
									Page 1 of 1	

						PROJECT NO.: 15-120SD LOG OF BORING NO.: B9				
PROJ	JECT:	585 22nd S	street, Oakl	and, CA						
BORI	NG LOO	CATION:	See	Site Explorati	on Plan	ELEVATION AND DATUM: Site elevation = ~25 feet above MSL				
DRILI	LING CO	ONTRACTO	OR: TEG	i		DATE STARTED: 12/21/2015		DATE	FINISHED: 12/21/2015	
DRILI	LING MI	ethod: D	irect Push	Technologies		TOTAL DEPTH: 5 feet				
DRILI	LING EC	QUIPMENT	: Truc	k Mounted Ge	eoprobe Rig	DEPTH TO WATER: Not enco	ountei	red		
SAMF	PLING N	IETHOD:	DPT samp	oler lined with	acetate sleeves	LOGGED BY: Scott Schiffer				
HAM		Г.:	NA	DROP:	NA	RESPONSIBLE PROFESSION	NAL:	EC		
Depth (ft)	Sample Interval	Sample ID			SOIL DESCRI	PTION		PID (ppm)	REMARKS	
- 1 - 1	\bigotimes	B9-0.5' B9-1'			Asphalt - ~6 inches d and coarse graine d and coarse graine	ed sand and gravel		0.0 0.0		
2 - 3 - -		B9-3'	Clay (CL), fine to medium grained silty and sandy clay, yellowish orange/light brown					0.0		
4 - - 5 -	\times	B9-5'	No recove	ry - fill materia	al - former UST loca		0.0	NOTES: *Temporary vapor probe inst *Soil boring backfilled with h bentonite granules and capp existing surface grade.	ydrated	
									Page 1 of	1

PROJ	ECT:	585 22nd S	treet, Oakla	and, CA		PROJECT NO.: 15-120SD LOG OF BORING NO.: B10				
BORI		CATION:	See	Site Exploration	n Plan	ELEVATION AND DATUM:	Site	elevatio	on = ~25 feet above MSL	
DRILL	LING CO	ONTRACTO	R: TEG	i		DATE STARTED: 12/21/201	5	DATE	FINISHED: 12/21/2015	
DRILL	LING ME	ETHOD: Di	rect Push T	echnologies		TOTAL DEPTH: 5				
DRILL	LING EC	QUIPMENT:	Truc	k Mounted Ge	oprobe Rig	DEPTH TO WATER: Not end	counte	ered		
SAMF	PLING N	IETHOD:	DPT samp	oler lined with a	acetate sleeves	LOGGED BY: Scott Schiffer				
HAMMER WT.: NA DROP: NA						RESPONSIBLE PROFESSIO	NAL:	EC		
Depth (ft)	Sample Interval	Sample ID			SOIL DESCRI	PTION		PID (ppm)	REMARKS	
- 1 - 2 - 3 - 4 - 5 -	X X X	B10-0.5' B10-1' B10-3' B10-5'	Clean Gra Clayey Sa yellowish o	vels (GP), fine nd (SC) - fine t orange/light bro	Asphalt - ~6 inches d and coarse grained to coarse grained s to medium grained s own, medium plastic ned silty clay, black,	d sand and gravel and, dark gray sand and clay mixtures, city		0.0 0.0 0.0	NOTES: *Temporary vapor probe insta *Soil boring backfilled with hy granules and capped to match grade.	drated bentonite
								I	Page 1 of	1

APPENDIX C

SOIL ANALYTICAL LABORATORY REPORT

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

Ordered By

Advantage Environmental Consultants 145 Vallecitos De Oro Suite 201 San Marcos, CA 92069-

Telephone: (760)744-3363 Attention: Dan Weis

Number of Pages	9
Date Received	12/28/2015
Date Reported	01/06/2016

Job Number	Order Date	Client
79567	12/28/2015	AEC

Project ID: 15-120A-SD Project Name: 585 22nd Street Site: 585 22nd Street Oakland, CA 94612

> Enclosed please find results of analyses of 20 soil samples which were analyzed as specified on the attached chain of custody. If there are any questions, please do not hesitate to call.

Checked By:

Approved By: C. Raymana

Cyrus Razmara, Ph.D. Laboratory Director

2834 & 2		omi Stre	et, Burbank, (CA 91504 •	DOHS NO	Laborato D: 1541, LACS w.aetlab.com	-			ų k I		IN O	F CU	STODY Nº		ORD 255
COMPANY Advent	age E	nv.	Coms	PRO		GER Pan L	vel	S	AET	LJOB No.	195	61			Page	of <u>3</u>
COMPANY ADDRESS	lecitos	No	000	(ALE	PHON FAX	E (760)7	44-	3363			SIS REQU	ESTED		TEST INSTRU	CTIONS & CO	OMMENTS
PROJECT NAME	ACCHO3	VC	0,0		PROJ	ECT # 15-1	120	A-SD	و	010						
SITE NAME 50	F 77	1	Stran	L	PO #		100	// 30	196	5						
AND ADDRESS	55 66	-na	Street	1					F	that						
	>KIQN	10,1	CA			00017410			1	7						
SAMPLE ID	LAB ID	AL	DATE	TIME	MATRIX	CONTAIN		PRES.	EPA	A LA						
B1-0.5'	79567.4	612	/21/15	13:12	SOIL			ICE	X					79567.	0/	
² B1 - 1'	798/7.1	7	Î	13:14	ĵ			i	\times					79567.	02	
B1-3'	79867.1	1		13:15										79567-	03	
B1-5'	795670	4		13:18										79567.	04	
B2-0.5'	79567-0	6		13:30					\mathbf{X}					79567	05	
BZ-1'	79567.1	4		13:33										79567-	06	
B2-3'	795(7~	21		13:35										79567.	27	
B2-5'	79567-2	3		13:40					X					79567.	08	
B3-0.5'	79567.7	24		14:00					X					79567.0	29	
10 B3-1'	79567	24		14:02					X					79567	10	
" B3-3'	795(7.7	4		14:04					Í					79567.	11	
¹² B3-5'	795677	7		14:07										79567 .:	12	,
13 B4-0.5'	79567.7	Z		14:12					X					79567~	13	
14 B4-1'	7947.9	a		14:14										79567-1	14	
15 BH-3'	79(7-	20 1		14:17				-						79867	15	
	RECEIPT	- TO E			BORATC	DRY	RELIN	IQUISHED BY PLER:		1.	RELINQUISH	HED BY:	2.			3.
TOTAL NUMBER OF COM	ITAINERS	15	PROPERLY C	OOLED Y	N / NA		Signatu	ure:	-10		Signature:			Signature:	VRED	
CUSTODY SEALS Y/N			SAMPLES IN	TACT Y/ N/	NA		Printed	Name:Scot	FS	dniffer	Printed Name:			Printed Name:	14.5 lots	aca.
RECEIVED IN GOOD COM			SAMPLES AC	CEPTED	^N		Date:	128/15	Tim		Date:		Time:	12-25	-15	IS45
TURN ARO	UND TIME		DATA	DELIVER	ABLE RE	QUIRED	RECE	IVED BY:		1.	RECEIVED E	BY:	2.	LABOHATOH		<u>C</u> 3.
		ME DAY		COPY			Signatu	Laite	12	and the second	Signature:			Signature:		>
		XT DAY		ACKER (GLC	BAL ID)		Hydred	Mame:	ľ	abus	Printed Name:			Printed Name:	Antin	
				(PLEASE SP	ECIFY)		Date:	2-24-11	Tim	1225	Date:		Time:	12/28	Time	
DISTRIBUTION: WH	ITE - Laborato	ry, CAN	ARY - Labora	atory, PINK	- Project/A	ccount Manag	jer, YE	ELLOW - Sa	mpler/	Originator	1				Interimental Action of the Interimental Action o	

DISTRIBUTION: WHITE - Laboratory, CANARY - Laboratory, PINK - Project/Account Manager, YELLOW - Sampler/Originator

COMPANY

American Environmental Testing Laboratory Inc.

2834 & 2908 North Naomi Street, Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

PROJECT MANAGER

COMPANY ADDRESS PHONE ANALYSIS REQUESTED **TEST INSTRUCTIONS & COMMENTS** FAX PROJECT NAME **PROJECT** # (0) σ SITE NAME PO # AND ADDRESS CONTAINER LAB ID TIME MATRIX SAMPLE ID DATE PRES. 11 NUMBER/SIZE 12/21/15 14:20 SOIL ICE \succ 14:35 -0.5 X 14:37 R5-B5-3 14:39 14:47 -0.5 14.50 BG 14:57 -0 3 :55 B6-V BC - 5 5 B7-0.5 X 5:10 × B7 B7-5 B7 15:18 B8-0.5 15:30 BB 15: 3 RELINQUISHED B **RELINQUISHED BY: BE FILLED BY LABORATORY** 1. 2. 3. SAMPLE RECEIPT SAMPLER PROPERLY COOLED Y / N / NA Signatur Signature TOTAL NUMBER OF CONTAINERS Printed Na rinted Name CUSTODY SEALS Y N / NA SAMPLES INTACT Y N / NA Time: Date RECEIVED IN GOOD COND. Y N SAMPLES ACCEPTED Y// N RECEIVED BY RECEIVED BY: 2. 1. 3. **TURN AROUND TIME** DATA DELIVERABLE REQUIRED LABORATORY Signature Signature HARD COPY D PDF inted Name rinted Nam asour GEOTRACKER (GLOBAL ID) 2 DAYS OTHER (PLEASE SPECIFY) **3** DAYS Time: 54

AETL JOB No.

CHAIN OF CUSTODY RECORD

Nº

92256

Page 2 of 3

DISTRIBUTION: WHITE - Laboratory, CANARY - Laboratory, PINK - Project/Account Manager, YELLOW - Sampler/Originator

2834 & 2908 North Naomi Street, Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

CHAIN OF CUSTODY RECORD

Nº 92257

GLABORNTON ICI. (OC	00) 200-AEIL • (0	16) 645-6200 • F	ax. (010) 045	-00 4 0 • V	v w w.actia	10.00111					-7	0	0	7						0,
COMPANY	0		PRO	JECT MA	NAGER			AE	ETL JO	DB No	s. /	7-	ط((P	age <u>3</u>	of 3
COMPANY ADDRESS	See			PH FA)	ONE				A	NAL	YSIS	REC	UE	STE	D			TEST INSTRUCTI	ONS & CO	MMENTS
PROJECT NAME	page	- #1			OJECT #			ى –												
SITE NAME	10		P	PO	#			- 5-												
AND ADDRESS							-													
SAMPLE ID	LAB ID	DATE	TIME	MATR	NUI	NTAINER MBER/SIZE	PRES.	EPA												
138-3'	79567.31	12/21/15					ICE	·X												
88-5'	79567.32		15:38																	
B9-0.5'	79567.33		15:45					X												
B9-1'	79567.34		15:47																	
BQ-3'	79567.35	120 M AQ	15:50		1 43 1	I had A d				101	6.4	A (1)		1	10		And	MAAAA	A 1 19 1	A
Marchingen				M	M	any	2000		XXX	and	M	N/X	XY	2	24	14	<i>ux</i>	arach	<u> 1990</u>	XAU
B10-0.5'	79567.36		16:15																	
BIO-1"	79567.31		16:18																	
Bio-3'	19567.38		16:28												_					
BIO-5'	79567.39		16:23					X												
12																				
13																				
14																	-			
15									-											
						REL	INQUISHED	BY		1.	RE	LINQU	ISHED	BY:			2.	RELINQUISHED	BY:	3.
	RECEIPT - T				ORY		MPLER:		A	4.		nature:					, ~ .			э.
TOTAL NUMBER OF CO	7		COOLED				ature:	\sim	×	-	Ŭ							Mon	en,	
CUSTODY SEALS V/N	I NA	SAMPLES I		NA		Print	ed Name:	<u>r Sc</u>		fer		ted Nam	ie:					Printed Name:	15/109	Tab C.
RECEIVED IN GOOD CO		SAMPLES		N		Date	2/28/1	5	me:		Date				Time	e:	~	Date: 28-7	5 Time:	1545
TURN ARC		DAT	A DELIVER	ABLE R	EQUIRE	ED REC	CEIVED BY:			1.		CEIVEI	D BY:				2.	RECEIVED BY LABORATORY:	AC	1/3.
			O COPY			Sign	ature 100-	Entra	6		Sigr	nature:						Signature:		
		GEO1	RACKER (GLO	BAL ID)		Figure 1	ed Name:	/		250	Prin	ted Nam	ie:					Printed Name:	Nin	
	3 DAYS		R (PLEASE SP	ECIFY)		Date	2-48-	15	mer j	2(Date	e:			Time	e:		12/281	Time:	1(4)
DISTRIBUTION: WH	IITE - Laboratory.	CANARY - Labo	ratory, PINK	- Project	/Accoun	t Manager, `	YELLOW - S	Sample	r/Orio	inato	r							1001	,	

DISTRIBUTION: WHITE - Laboratory, CANARY - Laboratory, PINK - Project/Account Manager, YELLOW - Sampler/Originator

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

E	Page: 1 A	
	Ordered By	
	Advantage Environmental Consultants	Pro
	145 Vallecitos De Oro Suite 201	Dat
	San Marcos, CA 92069-	Dat

Telephone: (760)744-3363 Attention: Dan Weis

Project ID: 15-120A-SD
Date Received 12/28/2015
Date Reported 01/06/2016

Job Number	Order Date	Client
79567	12/28/2015	AEC

CERTIFICATE OF ANALYSIS CASE NARRATIVE

AETL received 39 samples with the following specification on 12/28/2015.

Lab ID	Sample ID	Sample Date	Matri	x	Q	uantity Of	Containers
79567.01	B1-0.5'	12/21/2015	Soil			1	
79567.02	B1-1'	12/21/2015	Soil			1	
79567.05	B2-0.5'	12/21/2015	Soil			1	
79567.08	B2-5'	12/21/2015	Soil			1	
79567.09	B3-0.5'	12/21/2015	Soil			1	
79567.10	B3-1'	12/21/2015	Soil			1	
79567.13	B4-0.5'	12/21/2015	Soil			1	
79567.16	B4-5'	12/21/2015	Soil			1	
79567.17	B5-0.5'	12/21/2015	Soil			1	
79567.19	B5-3 '	12/21/2015	Soil			1	
79567.21	B6-0.5'	12/21/2015	Soil			1	
79567.23	B6-3 '	12/21/2015	Soil			1	
79567.25	B7-0.5'	12/21/2015	Soil			1	
79567.26	B7-1'	12/21/2015	Soil			1	
79567.29	B8-0.5'	12/21/2015	Soil			1	
79567.31	B8-3'	12/21/2015	Soil			1	
79567.33	B9-0.5'	12/21/2015	Soil			1	
79567.34	B9-1'	12/21/2015	Soil			1	
79567.36	B10-0.5'	12/21/2015	Soil			1	
79567.39	B10-5'	12/21/2015	Soil			1	
Metho	od ^ Submethod	Req D	ate	Priority	TAT	Units	
(7196	/	01/04/2		2	Normal	mg/Kg	
79567.03	B1-3'	12/21/2015	Soil			1	
79567.04	B1-5'	12/21/2015	Soil			1	
79567.06	B2-1'	12/21/2015	Soil			1	

Continued

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

Page	:	1	в

Ordered By

Advantage Environmental Consultants 145 Vallecitos De Oro Suite 201 San Marcos, CA 92069-

Telephone: (760)744-3363 Attention: Dan Weis

Project ID: 15-120A-SD
Date Received 12/28/2015
Date Reported 01/06/2016

Job Number	Order Date	Client
79567	12/28/2015	AEC

CERTIFICATE OF ANALYSIS

	CASE	NARRA	TIVE			
B2-3 '	12/21/2015	Soil			1	
B3-3'	12/21/2015	Soil			1	
B3-5'	12/21/2015	Soil			1	
B4-1'	12/21/2015	Soil			1	
Submethod	Req .	Date	Priority	TAT	Units	
/E	01/04/	/2016	2	Normal		
B4-3'	12/21/2015	Soil			1	
B5-1'	12/21/2015	Soil			1	
B5-5'	12/21/2015	Soil			1	
B6-1'	12/21/2015	Soil			1	
B6-5'	12/21/2015	Soil			1	
B7-3'	12/21/2015	Soil			1	
B7-5'	12/21/2015	Soil			1	
B8-1'	12/21/2015	Soil			1	
B8-5'	12/21/2015	Soil			1	
B9-3'	12/21/2015	Soil			1	
B10-1'	12/21/2015	Soil			1	
B10-3'	12/21/2015	Soil			1	
	B3-3' B3-5' B4-1' Submethod VE B4-3' B5-1' B5-5' B6-1' B6-5' B7-3' B7-5' B8-1' B8-1' B8-5' B9-3' B10-1'	B2-3' 12/21/2015 B3-3' 12/21/2015 B3-5' 12/21/2015 B4-1' 12/21/2015 B4-1' 12/21/2015 I * Submethod Req VE 01/04/ B4-3' 12/21/2015 B5-1' 12/21/2015 B5-5' 12/21/2015 B6-1' 12/21/2015 B7-3' 12/21/2015 B7-5' 12/21/2015 B8-1' 12/21/2015 B8-5' 12/21/2015 B8-1' 12/21/2015 B8-1' 12/21/2015 B8-1' 12/21/2015 B10-1' 12/21/2015	B2-3' 12/21/2015 Soil B3-3' 12/21/2015 Soil B3-5' 12/21/2015 Soil B4-1' 12/21/2015 Soil A Submethod Req Date VE 01/04/2016 B4-3' 12/21/2015 Soil B5-1' 12/21/2015 Soil B5-5' 12/21/2015 Soil B6-1' 12/21/2015 Soil B6-5' 12/21/2015 Soil B7-3' 12/21/2015 Soil B7-5' 12/21/2015 Soil B8-1' 12/21/2015 Soil B8-5' 12/21/2015 Soil B8-5' 12/21/2015 Soil B9-3' 12/21/2015 Soil B10-1' 12/21/2015 Soil	B3-3' 12/21/2015 Soil B3-5' 12/21/2015 Soil B4-1' 12/21/2015 Soil B4-1' 12/21/2015 Soil A Submethod Req Date Priority VE 01/04/2016 2 B4-3' 12/21/2015 Soil B5-1' 12/21/2015 Soil B5-5' 12/21/2015 Soil B6-1' 12/21/2015 Soil B6-5' 12/21/2015 Soil B7-3' 12/21/2015 Soil B8-1' 12/21/2015 Soil B8-5' 12/21/2015 Soil B8-5' 12/21/2015 Soil B9-3' 12/21/2015 Soil B10-1' 12/21/2015 Soil	B2-3' 12/21/2015 Soil B3-3' 12/21/2015 Soil B3-5' 12/21/2015 Soil B4-1' 12/21/2015 Soil Mark Req Date Priority TAT VE 01/04/2016 2 Normal B4-3' 12/21/2015 Soil Soil B4-3' 12/21/2015 Soil Soil B5-1' 12/21/2015 Soil Soil B5-5' 12/21/2015 Soil Soil B6-1' 12/21/2015 Soil Soil B7-3' 12/21/2015 Soil Soil B7-5' 12/21/2015 Soil Soil B8-1' 12/21/2015 Soil Soil B8-1' 12/21/2015 Soil Soil B8-5' 12/21/2015 Soil Soil B9-3' 12/21/2015 Soil Soil B10-1' 12/21/2015 Soil Soil	B2-3' 12/21/2015 Soil 1 B3-3' 12/21/2015 Soil 1 B3-5' 12/21/2015 Soil 1 B4-1' 12/21/2015 Soil 1 Image: Constrained State

The samples were analyzed as specified on the enclosed chain of custody. No analytical non-conformances were encountered.

Unless otherwise noted, all results of soil and solid samples are based on wet weight.

Checked By:

Approved By:

C. Rezmana

Cyrus Razmara, Ph.D. Laboratory Director

Advantage Environmental Consultants

American Environmental Testing Laboratory Inc.

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

-		-	-
S	i	t	e

585 22nd Street Oakland CA 9/612

145 Vallecitos De O	ro	Oakland, CA 94612			
Suite 201					
San Marcos, CA 920)69-				
Telephone: (760)74	44-3363				
Attn: Dan We	eis				
Page:	2				
Project ID:	15-120A-SD	AETL Job Number	Submitted	Client	
Project Name:	585 22nd Street	79567	12/28/2015	AEC	

Method: (7196A), Chromium, Hexavalent (Colorimetric)

Our Lab I.D.			Method Blank	79567.01	79567.02	79567.05	79567.08
Client Sample I.D.				B1-0.5'	B1-1'	B2-0.5'	B2-5'
Date Sampled				12/21/2015	12/21/2015	12/21/2015	12/21/2015
Date Prepared			12/30/2015	12/30/2015	12/30/2015	12/30/2015	12/30/2015
Preparation Method			3060A	3060A	3060A	3060A	3060A
Date Analyzed			12/30/2015	12/30/2015	12/30/2015	12/30/2015	12/30/2015
Matrix			Soil	Soil	Soil	Soil	Soil
Units			mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
Dilution Factor			1	1	1	1	1
Analytes	MDL	PQL	Results	Results	Results	Results	Results
Chromium (VI)	0.25	0.50	ND	ND	ND	ND	ND

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

			_
S	i	t	е

Advantage Environ	mental Consultants	585 22nd Street		
145 Vallecitos De C	Dro	Oakland, CA 94612		
Suite 201				
San Marcos, CA 92	069-			
Telephone: (760)7	44-3363			
Attn: Dan W	eis			
Page:	3			
Project ID:	15-120A-SD	AETL Job Number	Submitted	Client
Project Name:	585 22nd Street	79567	12/28/2015	AEC

Method: (7196A), Chromium, Hexavalent (Colorimetric)

Our Lab I.D.			79567.09	79567.10	79567.13	79567.16	79567.17
Client Sample I.D.			B3-0.5'	B3-1'	B4-0.5'	B4-5'	B5-0.5'
Date Sampled			12/21/2015	12/21/2015	12/21/2015	12/21/2015	12/21/2015
Date Prepared			12/30/2015	12/30/2015	12/30/2015	12/30/2015	12/30/2015
Preparation Method			3060A	3060A	3060A	3060A	3060A
Date Analyzed			12/30/2015	12/30/2015	12/30/2015	12/30/2015	12/30/2015
Matrix			Soil	Soil	Soil	Soil	Soil
Units			mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
Dilution Factor			1	1	1	1	1
Analytes	MDL	PQL	Results	Results	Results	Results	Results
Chromium (VI)	0.25	0.50	ND	ND	ND	ND	ND

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

S	i	tε	Э

Advantage Environ	mental Consultants	585 22nd Street		
145 Vallecitos De O	Dro	Oakland, CA 94612		
Suite 201				
San Marcos, CA 92	.069-			
Telephone: (760)7	/44-3363			
Attn: Dan W				
Page:	4			
Project ID:	15-120A-SD	AETL Job Number	Submitted	Client
Project Name:	585 22nd Street	79567	12/28/2015	AEC

Method: (7196A), Chromium, Hexavalent (Colorimetric)

Our Lab I.D.			79567.19		
Client Sample I.D.			B5-3'		
Date Sampled			12/21/2015		
Date Prepared			12/30/2015		
Preparation Method			3060A		
Date Analyzed			12/30/2015		
Matrix			Soil		
Units			mg/Kg		
Dilution Factor			1		
Analytes	MDL	PQL	Results		
Chromium (VI)	0.25	0.50	ND		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

S	i	t	е

Advantage Environ	mental Consultants	585 22nd Street				
145 Vallecitos De O	Oro		Oakland, CA 94612			
Suite 201						
San Marcos, CA 92	2069-					
Telephone: (760)7	44-3363					
Attn: Dan W	<i>v</i> eis					
Page:	5					
Project ID:	15-120A-SD		AETL Job Number	Submitted	Client	
Project Name:	585 22nd Street		79567	12/28/2015	AEC	

Method: (7196A), Chromium, Hexavalent (Colorimetric)

Our Lab I.D.			Method Blank	79567.21	79567.23	79567.25	79567.26
Client Sample I.D.				B6-0.5'	B6-3'	B7-0.5'	B7-1'
Date Sampled				12/21/2015	12/21/2015	12/21/2015	12/21/2015
Date Prepared			12/30/2015	12/30/2015	12/30/2015	12/30/2015	12/30/2015
Preparation Method			3060A	3060A	3060A	3060A	3060A
Date Analyzed			12/30/2015	12/30/2015	12/30/2015	12/30/2015	12/30/2015
Matrix			Soil	Soil	Soil	Soil	Soil
Units			mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
Dilution Factor			1	1	1	1	1
Analytes	MDL	PQL	Results	Results	Results	Results	Results
Chromium (VI)	0.25	0.50	ND	ND	ND	ND	ND

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

			_
S	i	t	е

Advantage Environ	mental Consultants	585 22nd Street						
145 Vallecitos De O	Dro	Oakland, CA 94612						
Suite 201								
San Marcos, CA 92	.069-							
Telephone: (760)7	/44-3363							
Attn: Dan W	leis							
Page:	6							
Project ID:	15-120A-SD		AETL Job Number	Submitted	Client			
Project Name:	585 22nd Street		79567	12/28/2015	AEC			

Method: (7196A), Chromium, Hexavalent (Colorimetric)

Our Lab I.D.			79567.29	79567.31	79567.33	79567.34	79567.36
Client Sample I.D.			B8-0.5'	B8-3'	B9-0.5'	B9-1'	B10-0.5'
Date Sampled			12/21/2015	12/21/2015	12/21/2015	12/21/2015	12/21/2015
Date Prepared			12/30/2015	12/30/2015	12/30/2015	12/30/2015	12/30/2015
Preparation Method			3060A	3060A	3060A	3060A	3060A
Date Analyzed			12/30/2015	12/30/2015	12/30/2015	12/30/2015	12/30/2015
Matrix			Soil	Soil	Soil	Soil	Soil
Units			mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
Dilution Factor			1	1	1	1	1
Analytes	MDL	PQL	Results	Results	Results	Results	Results
Chromium (VI)	0.25	0.50	ND	ND	ND	ND	ND

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

ANALYTICAL RESULTS

Ordered By

Site

Advantage Environ	mental Consultants	585 22nd Street						
145 Vallecitos De O	Dro		Oakland, CA 94612					
Suite 201								
San Marcos, CA 92	.069-							
Telephone: (760)7	44-3363							
Attn: Dan W	Veis							
Page:	7							
Project ID:	15-120A-SD		AETL Job Number	Submitted	Client			
Project Name:	585 22nd Street		79567	12/28/2015	AEC			

Method: (7196A), Chromium, Hexavalent (Colorimetric)

Our Lab I.D.			79567.39		
Client Sample I.D.			B10-5'		
Date Sampled			12/21/2015		
Date Prepared			12/30/2015		
Preparation Method	Preparation Method		3060A		
Date Analyzed	Date Analyzed		12/30/2015		
Matrix			Soil		
Units			mg/Kg		
Dilution Factor			1		
Analytes	MDL	PQL	Results		
Chromium (VI)	0.25	0.50	ND		

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

QUALITY CONTROL RESULTS Site

Ordered By

	-	-		
58	5 2	22nd	Stre	eet
0	akl	and	CA	946

612 AETL Job Number Submitted Client Project Name: 585 22nd Street 12/28/2015 AEC 79567

Method: (7196A), Chromium, Hexavalent (Colorimetric)

QC Batch No: 123015-1; Dup or Spiked Sample: 79567.01; LCS: Clean Sand; QC Prepared: 12/30/2015; QC Analyzed: 12/30/2015; Units: mg/Kg

	Sample	MS	MS	MS	MS DUP	MS DUP	MS DUP	RPD	MS/MSD	MS RPD
Analytes	Result	Concen	Recov	% REC	Concen	Recov	% REC	%	% Limit	% Limit
Chromium (VI)	0.00	10.0	9.85	98.5	10.0	9.60	96.0	2.6	80-120	<20

QC Batch No: 123015-1; Dup or Spiked Sample: 79567.01; LCS: Clean Sand; QC Prepared: 12/30/2015; QC Analyzed: 12/30/2015; Units: mg/Kg

	LCS	LCS	LCS	LCS DUP	LCS DUP	LCS DUP	LCS RPD	LCS/LCSD	LCS RPD	
Analytes	Concen	Recov	% REC	Concen	Recov	% REC	% REC	% Limit	% Limit	
Chromium (VI)	10.0	9.95	99.5	10.0	9.90	99.0	<1	80-120	<20	

2834 & 2908 North Naomi Street Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

QUALITY CONTROL RESULTS

Ordered By

oracica by							
Advantage Environmental Consultants							
145 Vallecitos De	145 Vallecitos De Oro						
Suite 201							
San Marcos, CA 92	2069-						
Telephone: (760)	744-3363						
Attn: Dan W	Veis						
Page:	9						
Project ID:	15-120A-SD						

Site

585 22nd Street Oakland, CA 94612

			~ 1 1	~~ · · · ·	
Project ID:	15-120A-SD	AETL Job Number	Submitted	Client	
Project Name:	585 22nd Street	79567	12/28/2015	AEC	

Method: (7196A), Chromium, Hexavalent (Colorimetric)

QC Batch No: 123015-2; Dup or Spiked Sample: 79567.21; LCS: Clean Sand; QC Prepared: 12/30/2015; QC Analyzed: 12/30/2015; Units: mg/Kg

	Sample	MS	MS	MS	MS DUP	MS DUP	MS DUP	RPD	MS/MSD	MS RPD
Analytes	Result	Concen	Recov	% REC	Concen	Recov	% REC	%	% Limit	% Limit
Chromium (VI)	0.00	10.0	9.80	98.0	10.0	9.96	99.6	1.6	80-120	<20

QC Batch No: 123015-2; Dup or Spiked Sample: 79567.21; LCS: Clean Sand; QC Prepared: 12/30/2015; QC Analyzed: 12/30/2015; Units: mg/Kg

	LCS	LCS	LCS	LCS DUP	LCS DUP	LCS DUP	LCS RPD	LCS/LCSD	LCS RPD	
Analytes	Concen	Recov	% REC	Concen	Recov	% REC	% REC	% Limit	% Limit	
Chromium (VI)	10.0	9.60	96.0	10.0	9.95	99.5	3.6	80-120	<20	

2834 & 2908 North Naomi Street, Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

Data Qualifiers and Descriptors

Data Qualifier:

#:	Recovery is not within acceptable control limits.
*:	In the QC section, sample results have been taken directly from the ICP reading. No preparation factor has been applied.
B:	Analyte was present in the Method Blank.
D:	Result is from a diluted analysis.
E:	Result is beyond calibration limits and is estimated.
H:	Analysis was performed over the allowed holding time due to circumstances which were beyond laboratory control.
J:	Analyte was detected . However, the analyte concentration is an estimated value, which is between the Method Detection Limit (MDL) and the Practical Quantitation Limit (PQL).
M:	Matrix spike recovery is outside control limits due to matrix interference. Laboratory Control Sample recovery was acceptable.
MCL:	Maximum Contaminant Level
NS:	No Standard Available
S6:	Surrogate recovery is outside control limits due to matrix interference.
S8:	The analysis of the sample required a dilution such that the surrogate concentration was diluted below the method acceptance criteria.
X:	Results represent LCS and LCSD data.

Definition:

%Limi:	Percent acceptable limits.
%REC:	Percent recovery.
Con.L:	Acceptable Control Limits
Conce:	Added concentration to the sample.
LCS:	Laboratory Control Sample
MDL:	Method Detection Limit is a statistically derived number which is specific for each instrument, each method, and each compound. It indicates a distinctively detectable quantity with 99% probability.

2834 & 2908 North Naomi Street, Burbank, CA 91504 • DOHS NO: 1541, LACSD NO: 10181 Tel: (888) 288-AETL • (818) 845-8200 • Fax: (818) 845-8840 • www.aetlab.com

Data Qualifiers and Descriptors

MS:	Matrix Spike
MS DU:	Matrix Spike Duplicate
ND:	Analyte was not detected in the sample at or above MDL.
PQL:	Practical Quantitation Limit or ML (Minimum Level as per RWQCB) is the minimum concentration that can be quantified with more than 99% confidence. Taking into account all aspects of the entire analytical instrumentation and practice.
Recov:	Recovered concentration in the sample.

RPD: Relative Percent Difference

APPENDIX D

GEOTECHNICAL LABORATORY REPORT

Petroleum Services Divis 3437 Landco Dr. Bakersfield, California 93308 Tel: 661-325-5657 Fax: 661-325-5808 www.corelab.com

January 8, 2016

Dan Weis Advantage Environmental Consultants, LLC 145 Vallecitos De Oro, Ste 201 San Marcos, CA 92069

Subject: CAL- EPA DTSC Vapor Intrusion Project No.:15-120A-SD CL File No.: 415056EN

Dear Mr. Weis:

Enclosed are the CAL- EPA DTSC Vapor Intrusion results for 3 samples submitted to our laboratory from project number 15-120A-SD .

Appropriate ASTM, EPA, or API methodologies were used for this project and SOP's are available upon request. Samples for this project are currently in storage and will be retained for thirty days past completion of testing at no charge. At the end of thirty days the samples will be disposed. You may contact me regarding continued storage, disposal, or return of the tested samples.

We appreciate the opportunity to be of service to Advantage Environmental Consultants, LLC. Please do not hesitate to contact us at (661-325-5657) if you have any questions regarding these results or if we can be of any additional service.

Sincerely, Core Laboratories

Stephen Carter Senior Core Analyst

The analyses, opinions or interpretations contained in this report are based upon observations and material supplied by the client for whose exclusive and confidential use this report has been made. The interpretations or opinions expressed represent the best judgment of Core Laboratories. Core Laboratories assumes no responsibility and makes no warranty or representations, expressed or implied, as to the productivity, proper operations or profitableness, however, of any oil, gas, coal or other mineral, property, well or sand in connection with which such report is used or relied upon for any reason whatsoever.

Core Lab File No: 415056EN

Advantage Environmental Consultants

Project Name: 585 22nd St. Project No: 15-120A-SD

		Sample Depth Orientation ID. ft. (1)		OGY: API RP40 ASTM D2216		API RP40		API RP40			WALKLEY-BLACK		USDA
_									Porosity (2)		Total	Fraction	USDA
			Sample	Mosi	ture	Dens	ity		Air	Water	Organic	Organic	Soil Texture
	Sample	Depth	Orientation	Con	tent	Dry Bulk	Grain	Total	Filled	Filled	Carbon	Carbon	Scheme
	ID.	ft.	(1)	% weight	cm ³ /cm ³	g/cm ³	g/cm ³	cm ³ /cm ³	cm ³ /cm ³	cm ³ /cm ³	mg/kg	g/g	
	B3-5'	5	V	16.1	0.300	1.87	2.68	0.303	0.003	0.300	14300	1.43E-02	Sandy Clay
	B6-5'	5	V	23.2	0.379	1.63	2.65	0.383	0.004	0.379	6400	6.40E-03	Clay
	B7-5'	5	V	18.2	0.325	1.78	2.66	0.330	0.005	0.325	5200	5.20E-03	Clay

(1) Sample Orientation: H = horizontal; V = vertical

(2) Total Porosity = no pore fluids in place; all interconnected pore channels; Air Filled = pore channels not occupied by pore fluids; Water Filled = native, as received pore fluids

SIEVE and LASER PARTICLE SIZE SUMMARY

(METHODOLOGY: ASTM D422/D4464M)

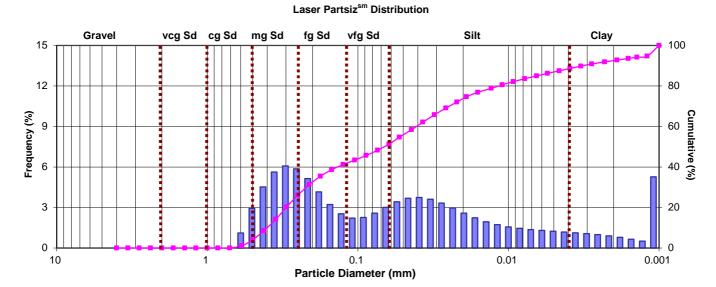
Petroleum Services

Company : Advantage Environmental Consultants Project Name : 585 22nd St.

Core Lab File No : 57111-415056EN Date : 1/6/2016

Project Number : 15-120A-SD

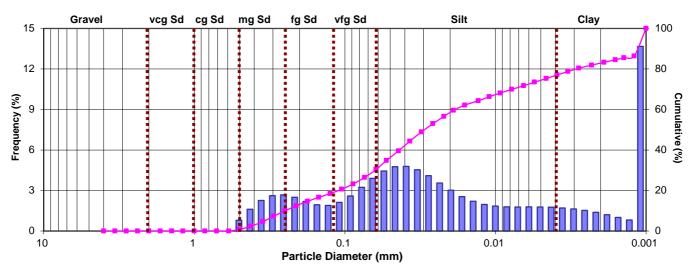
	Grain Size	Median	Component Percentages								Silt
	Description	Grain Size,				Sand Size					&
Sample ID	(Mean from Folk)	mm	Gravel	VCoarse	Coarse	Medium	Fine	VFine	Silt	Clay	Clay
B3-5'	Silt	0.067	0.0	0.0	4.1	22.1	15.1	10.1	37.4	11.3	48.7
B6-5'	Silt	0.030	0.0	0.0	0.8	9.2	8.5	11.8	46.7	23.0	69.6
B7-5'	Silt	0.048	0.0	0.0	1.1	12.9	12.9	15.5	41.7	16.0	57.7


Company: Advantage Environmental Consultants Project Name: 585 22nd St.
 File No. :
 415056EN

 Date :
 1/6/2016

 Depth :
 B3-5'

Project No.: 15-120A-SD EXTENDED RANGE PARTSIZ[™] ANALYSIS

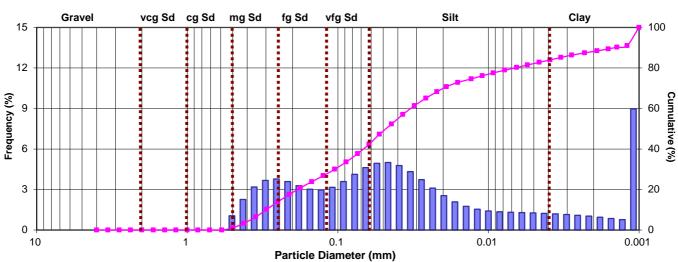

		GRA	IN SIZE D	ISTRIBUTI	ON		CODTING				
	MESH	PHI	INCH	MM	SEP	SEP	CUM		SORTING	PARAMETERS	
	5	-2.00	0.1575	4.0000	0.0		0.0				
	6	-1.75	0.1323	3.3600	0.0		0.0				
	7	-1.50	0.1114	2.8300	0.0		0.0				
	8	-1.25	0.0937	2.3800	0.0		0.0	PERCENTILES	S:		
GRAVEL	10	-1.00	0.0787	2.0000	0.0	0.0	0.0				
	12	-0.75	0.0661	1.6800	0.0		0.0		mm	inches	phi
	14	-0.50	0.0555	1.4100	0.0		0.0				
	16	-0.25	0.0469	1.1900	0.0		0.0	5	0.4833	0.0190	1.0492
VCRS SD	18	0.00	0.0394	1.0000	0.0	0.0	0.0	10	0.4024	0.0158	1.3133
	20	0.25	0.0335	0.8500	0.0		0.0	16	0.3344	0.0132	1.5803
	25	0.50	0.0280	0.7100	0.0		0.0	25	0.2593	0.0102	1.9476
	30	0.75	0.0236	0.6000	1.1		1.1	50	0.0671	0.0026	3.8974
CRS SD	35	1.00	0.0197	0.5000	2.9	4.1	4.1	75	0.0185	0.0007	5.7559
	40	1.25	0.0165	0.4200	4.5		8.6	84	0.0074	0.0003	7.0808
	45	1.50	0.0138	0.3500	5.6		14.2	90	0.0032	0.0001	8.2859
MED	50	1.75	0.0117	0.2970	6.1		20.3	95	0.0012	0.0000	9.7153
SAND	60	2.00	0.0098	0.2500	5.9	22.1	26.2				
	70	2.25	0.0083	0.2100	5.1		31.3				
	80	2.50	0.0070	0.1770	4.2		35.5				0.7040
FINE	100	2.75	0.0058	0.1490	3.2	45.4	38.7	SURFACE ARI	EA (m^2/cc):		0.7013
SAND	120	3.00	0.0049	0.1250	2.5	15.1	41.2				
	140	3.25	0.0041	0.1050	2.2		43.4				
VFINE	170 200	3.50 3.75	0.0035 0.0029	0.0880	2.3 2.6		45.7		N (mm) .		0.4625
				0.0740		10.1	48.3	STD DEVIATIO	n (mm) :		0.1635
SAND	230 270	4.00	0.0024	0.0620	<u>3.0</u> 3.4	10.1	51.3 54.7				
	325	4.25 4.50	0.0021	0.0530	3.4 3.7		54.7 58.4				
CRS	400	4.30	0.0017	0.0440	3.7		62.1	STD DEVIATIO	N (inches) ;		0.0064
SILT	400 450	4.75 5.00	0.0013	0.0370	3.6	14.5	65.7	STD DEVIATIO	in (inches).		0.0004
	500	5.25	0.0014	0.0260	3.3	14.5	69.1				
	500	5.50	0.0009	0.0200	3.0		72.0	GRAVEL PAC	<i>.</i> .		40/60
MED		5.75	0.0007	0.0220	2.6		74.6	ONAVEETAO	、 .		40/00
SILT		6.00	0.0006	0.0160	2.2	11.1	76.9				
0121		6.25	0.0005	0.0130	1.9		78.8				
		6.50	0.0004	0.0100	1.7		80.5		TRASK*	FOLK**	MOMENT**
FINE		6.75	0.0003	0.0093	1.6		82.1				
SILT		7.00	0.0003	0.0078	1.5	6.7	83.6	MEAN	0.1389	4.1862	4.3416
		7.25	0.0002	0.0065	1.4		84.9	MEDIAN	0.0671	3.8974	3.8974
		7.50	0.0002	0.0055	1.3		86.2	SORTING	3.7429	2.6882	2.5815
VFINE		7.75	0.0002	0.0046	1.2		87.5	SKEWNESS	1.0653	0.2501	0.6472
SILT		8.00	0.0001	0.0039	1.2	5.1	88.7	KURTOSIS	0.3015	0.9326	2.4371
		8.25	0.0001	0.0033	1.1	-	89.8				
		8.50	0.0001	0.0028	1.1		90.9				
		8.75	0.0001	0.0023	1.0		91.9				
		9.00	0.0000	0.0019	0.9		92.8				
		9.25	0.0000	0.0016	0.8		93.6		* COMPUTED	USING MILLIM	ETER VALUES
		9.50	0.0000	0.0014	0.7		94.2		** COMPUTED		
		9.75	0.0000	0.0012	0.5		94.7				
CLAY		10.00	0.0000	0.0010	5.3	11.3	100.0				

Project No.: 15-120A-SD

EXTENDED RANGE PARTSIZSM ANALYSIS

Laser Partsizsm Distribution

		GRA	IN SIZE D	DISTRIBUTI	ON		SORTING		•		
	MESH	PHI	INCH	MM	SEP	SEP	CUM		SURTING	PARAMETERS	b
	5	-2.00	0.1575	4.0000	0.0		0.0				
	6	-1.75	0.1323	3.3600	0.0		0.0				
	7	-1.50	0.1114	2.8300	0.0		0.0				
	8	-1.25	0.0937	2.3800	0.0		0.0	PERCENTILES:			
GRAVEL	10	-1.00	0.0787	2.0000	0.0	0.0	0.0				
	12	-0.75	0.0661	1.6800	0.0		0.0		mm	inches	phi
	14	-0.50	0.0555	1.4100	0.0		0.0	-	0.0400	0.0405	4 5 400
	16	-0.25	0.0469	1.1900	0.0	0.0	0.0	5	0.3432	0.0135	1.5429
VCRS SD	18 20	0.00	0.0394	1.0000	0.0	0.0	0.0	10	0.2495	0.0098	2.0028
	20 25	0.25 0.50	0.0335 0.0280	0.8500	0.0 0.0		0.0 0.0	16 25	0.1578 0.0803	0.0062 0.0032	2.6640 3.6387
	25 30	0.50	0.0280	0.6000	0.0		0.0	25 50	0.0803	0.0032	5.0761
CRS SD	30 35	1.00	0.0230	0.5000	0.0	0.8	0.0	75	0.0290	0.0012	7.7219
CK3 3D	40	1.00	0.0197	0.3000	1.6	0.0	2.4	84	0.0047	0.0002	9.1800
	45	1.50	0.0138	0.3500	2.3		4.7	90	0.0011	0.0000	9.7689
MED	50	1.75	0.0117	0.2970	2.6		7.3	95	0.0011	0.0000	9.8640
SAND	60	2.00	0.0098	0.2500	2.7	9.2	10.0		0.0011	0.0000	3.00+0
0/110	70	2.25	0.0083	0.2100	2.5	0.2	12.5				
	80	2.50	0.0070	0.1770	2.2		14.7				
FINE	100	2.75	0.0058	0.1490	1.9		16.6	SURFACE ARE	A (m^2/cc) :		1.3551
SAND	120	3.00	0.0049	0.1250	1.9	8.5	18.5				
-	140	3.25	0.0041	0.1050	2.1		20.6				
	170	3.50	0.0035	0.0880	2.6		23.2				
VFINE	200	3.75	0.0029	0.0740	3.2		26.5	STD DEVIATION	N (mm) :		0.0780
SAND	230	4.00	0.0024	0.0620	3.9	11.8	30.4		()		
	270	4.25	0.0021	0.0530	4.4		34.8				
	325	4.50	0.0017	0.0440	4.8		39.6				
CRS	400	4.75	0.0015	0.0370	4.8		44.3	STD DEVIATION	N (inches) :		0.0031
SILT	450	5.00	0.0014	0.0310	4.5	18.5	48.9				
	500	5.25	0.0010	0.0260	4.1		53.0				
		5.50	0.0009	0.0220	3.6		56.5	GRAVEL PACK	:		N/A
MED		5.75	0.0007	0.0190	3.0		59.6				
SILT		6.00	0.0006	0.0160	2.5	13.2	62.1				
		6.25	0.0005	0.0130	2.2		64.3				
		6.50	0.0004	0.0110	2.0		66.3		TRASK*	FOLK**	MOMENT**
FINE		6.75	0.0003	0.0093	1.8		68.1				
SILT		7.00	0.0003	0.0078	1.8	7.8	69.9	MEAN	0.0425	5.6400	5.6635
		7.25	0.0002	0.0065	1.8		71.7	MEDIAN	0.0296	5.0761	5.0761
		7.50	0.0002	0.0055	1.8		73.5	SORTING	4.1170	2.8898	2.6483
VFINE		7.75	0.0002	0.0046	1.8		75.3	SKEWNESS	0.4327	0.2052	0.2391
SILT		8.00	0.0001	0.0039	1.8	7.1	77.0	KURTOSIS	0.1521	0.8352	1.9785
		8.25	0.0001	0.0033	1.7		78.7				
		8.50	0.0001	0.0028	1.6		80.4				
		8.75	0.0001	0.0023	1.5		81.9				
		9.00	0.0000	0.0019	1.4		83.3				
		9.25	0.0000	0.0016	1.2		84.5				ETER VALUES
		9.50	0.0000	0.0014	1.0		85.5	Î	COMPUTED	USING PHI V	ALUES
		9.75	0.0000	0.0012	0.8	22.0	86.3				
CLAY		10.00	0.0000	0.0010	13.7	23.0	100.0				


 File No. :
 415056EN

 Date :
 1/6/2016

 Depth :
 B7-5'

Project No.: 15-120A-SD

		GRA	IN SIZE D	ISTRIBUTI	SORTING PARAMETERS						
	MESH	PHI	INCH	MM	SEP	SEP	CUM		SORTING	PARAMETERS	•
	5	-2.00	0.1575	4.0000	0.0		0.0				
	6	-1.75	0.1323	3.3600	0.0		0.0				
	7	-1.50	0.1114	2.8300	0.0		0.0				
	8	-1.25	0.0937	2.3800	0.0		0.0	PERCENTILES:			
GRAVEL	10	-1.00	0.0787	2.0000	0.0	0.0	0.0				
	12	-0.75	0.0661	1.6800	0.0		0.0		mm	inches	phi
	14	-0.50	0.0555	1.4100	0.0		0.0				
	16	-0.25	0.0469	1.1900	0.0		0.0	5	0.3830	0.0151	1.3845
VCRS SD	18	0.00	0.0394	1.0000	0.0	0.0	0.0	10	0.2995	0.0118	1.7393
	20	0.25	0.0335	0.8500	0.0		0.0	16	0.2272	0.0089	2.1381
	25	0.50	0.0280	0.7100	0.0		0.0	25	0.1397	0.0055	2.8400
	30	0.75	0.0236	0.6000	0.0		0.0	50	0.0481	0.0019	4.3788
CRS SD	35	1.00	0.0197	0.5000	1.1	1.1	1.1	75	0.0125	0.0005	6.3256
	40	1.25	0.0165	0.4200	2.3		3.3	84	0.0039	0.0002	8.0041
	45	1.50	0.0138	0.3500	3.2		6.5	90	0.0015	0.0001	9.4205
MED	50	1.75	0.0117	0.2970	3.7	40.0	10.2	95	0.0011	0.0000	9.8133
SAND	60 70	2.00 2.25	0.0098	0.2500	3.8 3.6	12.9	14.0 17.5				
	80	2.25	0.0083 0.0070	0.2100	3.0		20.8				
FINE	100	2.50	0.0070	0.1770	3.3 3.0		20.8	SURFACE ARE	(mA2/00);		0.9688
SAND	120	3.00	0.0038	0.1490	3.0	12.9	23.8	SURFACE AREA	4 (III ⁻¹ 2/CC).		0.9000
SAND	140	3.25	0.0049	0.1250	3.2	12.3	30.0				
	170	3.50	0.0035	0.0880	3.6		33.6				
VFINE	200	3.75	0.0029	0.0000	4.1		37.7	STD DEVIATION	l (mm) ·		0.1116
SAND	230	4.00	0.0024	0.0620	4.6	15.5	42.3	010 021#1101	. () .		0.1110
0, 110	270	4.25	0.0021	0.0530	4.9	10.0	47.3				
	325	4.50	0.0017	0.0440	5.0		52.3				
CRS	400	4.75	0.0015	0.0370	4.8		57.0	STD DEVIATION	(inches) :		0.0044
SILT	450	5.00	0.0014	0.0310	4.3	19.1	61.4		(,		
	500	5.25	0.0010	0.0260	3.7		65.1				
		5.50	0.0009	0.0220	3.1		68.2	GRAVEL PACK	:		40/60
MED		5.75	0.0007	0.0190	2.5		70.7				
SILT		6.00	0.0006	0.0160	2.1	11.5	72.8				
		6.25	0.0005	0.0130	1.8		74.6				
		6.50	0.0004	0.0110	1.5		76.1		TRASK*	FOLK**	MOMENT**
FINE		6.75	0.0003	0.0093	1.4		77.5				
SILT		7.00	0.0003	0.0078	1.3	6.1	78.9	MEAN	0.0761	4.8403	4.9590
		7.25	0.0002	0.0065	1.3		80.2	MEDIAN	0.0481	4.3788	4.3788
		7.50	0.0002	0.0055	1.3		81.5	SORTING	3.3468	2.7436	2.5600
VFINE		7.75	0.0002	0.0046	1.3	_	82.8	SKEWNESS	0.7536	0.2628	0.5810
SILT		8.00	0.0001	0.0039	1.2	5.1	84.0	KURTOSIS	0.2134	0.9911	2.3702
		8.25	0.0001	0.0033	1.2		85.2				
		8.50	0.0001	0.0028	1.1		86.3				
		8.75	0.0001	0.0023	1.1		87.4				
		9.00	0.0000	0.0019	1.0		88.4				
		9.25	0.0000	0.0016	0.9		89.4			USING MILLIMI	
		9.50	0.0000	0.0014	0.9		90.3	*	COMPUTED	USING PHI V	ALUES
		9.75	0.0000	0.0012	0.8	10.0	91.0				
CLAY		10.00	0.0000	0.0010	9.0	16.0	100.0				

EXTENDED RANGE PARTSIZ[™] ANALYSIS

Laser Partsizsm Distribution

			СН		0	FC	US	то	DY	R	EC	OR	D		lleo	- j	-				4	413	5056 EN	
Company									AN				QUE	ST	C	Nos				_			PO#	
Company Advantage Env. Cons Address 145 Vallecitos De Oro San Marcos, CA 9206 Project Manager Phone		-		T-	1	T		SC					B		-	B		- F	LUI				Turnaround Tir	me
Address 146 Vallectos De 010										4M			milture				Children of the local division of the local						24 HR]
San Marcos, CA 9206								37		D446			Sig		f	>			(6				48 HR 72 HR	-
Project Manager Pan Wels (760) 744	-3363				9	1	5M	M D29:	o40	D422/I			ond m						printing	171			5 Day Normal	
Project Manager Pan Wels (760) 744 Project Name 585 22 nd St- (760) 744 Project No Project No Project No Project No Project No Project Manager Fax Fax Fax Fax Fax Fax Fax Fax	3383			uite	A D221	40	M D42	/ AST	API RF	ASTM	D4318		مند ه	ass				D1481	(Finger	ASTM D971			CL Bid No.	J
Project No. 15-120A-SP Dueisa	oec-env.col	ples	ite	ation St	t: ASTA	PI RP	e, AST	I RP40	ctivity:	bution:	ASTM	aek/				Suite	D445	ASTM	raphy (
Project No. 15-120A-SP Email Site Location 585 22nd 84. Oakland Sampler Signature Sample ID Date Time	, CA	of Sam	Vadose Zone Suite Saturated Zone Suite	Pore Fluid Saturation Suite	Moisture Content: ASTM D2216	Porosity: Total, API RP40	Porosity: Effective, ASTM D425M	Bulk Density: API RP40 / ASTM D2937	Hydraulic Conductivity: API RP40	Grain Size Distribution: ASTM D422/D4464M	Atterberg Limits: ASTM D4318	TOC: Walkley-Black	Volumetric	SDA		Fluid Properties Suite	Viscosity: ASTM D445	Density/Gravity: ASTM D1481	Pryo-Chromatography (Fingerprinting)	Interfacial Tension			CL File No.	
Sampler Signature		nber	lose Z	e Flui	sture	osity:	osity:	k Den	Iraulic	in Siz	erberg	C: Wa	100	isc		d Pro	cosity	nsity/C	o-Chr	erfacie			Comments	
Sample ID Date Time	Depth, ft.	Nun	Vad	Pore	Moi	Por	Por	Bull	Hyd	Gra	Atte	Ď				Flui	Viso	Der	Pry	Inte	ļ		Comments	
B3-5' 12/21/15 H:07	5				X	X		×		×		×	X											
BG-5' 14:57	5'				X	×		+		×		×	X											
15:18	5'				+	X		+		×		×	×											
1. Relinquished By: Scott Schiffer	2. Received	I By:	Bes	ihe	P				2. F	Relin	iquis	shed	By:						2. 1	Rece	eiveo	d By		
Company Advantage Env. Cons.	Company			- (/				Cor	npa	ny								Co	mpa	iny			
Date Time					Date Time Date				Tir			Da			Time									

CORE LABORATORIES - 3437 Landco Dr. - Bakersfield, CA 93308 • Phone 661-325-5657 • Fax 661-325-5808

APPENDIX E

SOIL GAS ANALYTICAL LABORATORY REPORT

7 January 2016

Mr. Daniel Weis Advantage Environmental Consultants, LLC 145 Vallecitos De Oro, Suite 201 San Marcos, CA 92069

SUBJECT: DATA REPORT - Advantage Environmental Consultants, LLC Project # 15-120A 585 22nd Street, Oakland, California

TEG Project # 51221F

Mr. Weis:

Please find enclosed a data report for the samples analyzed from the above referenced project for Advantage Environmental Consultants, LLC. The samples were analyzed on site in TEG's mobile laboratory. TEG conducted a total of 11 analyses on 11 soil vapor samples.

-- 11 analyses on soil vapors for volatile organic hydrocarbons by EPA method 8260B.

The results of the analyses are summarized in the enclosed tables. Applicable detection limits and calibration data are included in the tables.

TEG appreciates the opportunity to have provided analytical services to Advantage Environmental Consultants, LLC on this project. If you have any further questions relating to these data or report, please do not hesitate to contact us.

Sincerely,

Mark Jerpbak Director, TEG-Northern California

Advantage Environmental Consultants, LLC Project # 15-120A 585 22nd Street Oakland, California

TEG Project #51221F

EPA Method 8260B VOC Analyses of SOIL VAPOR in micrograms per cubic meter of Vapor

SAMPLE NUMBER	<u>?:</u>	Probe Blank	SV-1	SV-2	SV-3	SV-4	SV-4
SAMPLE DEPTH (feet,):	Dialik	5.0	5.0	5.0	5.0	dup 5.0
PURGE VOLUME			3	3	3	3	3.U
COLLECTION DATE		12/21/15	12/21/15	12/21/15	12/21/15	12/21/15	12/21/15
COLLECTION TIME		11:17	11:51	12:12	12:34	12:55	12:55
DILUTION FACTOR	R: RL	1	1	1	1	1	1
Dichlorodifluoromethane	100	nd	nd	nd	nd	nd	nd
Vinyl Chloride	13	nd	nd	nd	nd	nd	nd
Chloroethane	100	nd	nd	nd	nd	nd	nd
Trichlorofluoromethane	100	nd	nd	nd	nd	nd	nd
1,1-Dichloroethene	100	nd	nd	nd	nd	nd	nd
1,1,2-Trichloro-trifluoroethane	100	nd	nd	nd	nd	nd	nd
Nethylene Chloride	100	nd	nd	nd	nd	nd	nd
trans-1,2-Dichloroethene	100	nd	nd	nd	nd	nd	nd
1,1-Dichloroethane	100	nd	nd	nd	nd	nd	nd
cis-1,2-Dichloroethene	100	nd	nd	nd	nd	nd	nd
Chloroform	100	nd	nd	nd	nd	nd	nd
1,1,1-Trichloroethane	100	nd	nd	nd	nd	nd	nd
Carbon Tetrachloride	25	nd	nd	nd	nd	nd	nd
1,2-Dichloroethane	45	nd	nd	nd	nd	nd	nd
Benzene	35	nd	44	51	nd	nd	nd
Trichloroethene	100	nd	nd	nd	nd	nd	nd
Toluene	200	nd	nd	nd	nd	nd	nd
1,1,2-Trichloroethane	100	nd	nd	nd	nd	nd	nd
Tetrachloroethene	100	nd	nd	nd	nd	nd	nd
Ethylbenzene	100	nd	nd	nd	nd	nd	nd
1,1,1,2-Tetrachloroethane	100	nd	nd	nd	nd	nd	nd
m,p-Xylene	200	nd	nd	nd	nd	nd	nd
o-Xylene	100	nd	nd	nd	nd	nd	nd
1,1,2,2-Tetrachloroethane	100	nd	nd	nd	nd	nd	nd
1,1 Difluoroethane (leak check)	10000	nd	nd	nd	nd	nd	nd
Surrogate Recovery (DBFM) Surrogate Recovery (Toluene-d8) Surrogate Recovery (1,4-BFB)		83% 99% 81%	85% 92% 77%	78% 91% 75%	80% 90% 78%	83% 89% 82%	82% 89% 79%

'RL' Indicates reporting limit at a dilution factor of 1 'nd' Indicates not detected at listed reporting limits

Analyses performed in TEG-Northern California's lab Analyses performed by: Mr. Leif Jonsson

page 1

Advantage Environmental Consultants, LLC Project # 15-120A 585 22nd Street Oakland, California

TEG Project #51221F

EPA Method 8260B VOC Analyses of SOIL VAPOR in micrograms per cubic meter of Vapor

SAMPLE NUMBER). 	SV-5	SV-6	SV-7	SV-8	SV-9	SV-10
SAMPLE DEPTH (feet)	l:	5.0	5.0	5.0	5.0	5.0	5.0
PURGE VOLUME	E:	3	3	3	3	3	3
COLLECTION DATE	÷	12/21/15	12/21/15	12/21/15	12/21/15	12/21/15	12/21/15
COLLECTION TIME	÷	13:36	13:57	14:55	14:34	15:15	16:31
DILUTION FACTOR	RL	1	1	1	1	1	1
Dichlorodifluoromethane	100	nd	nd	nd	nd	nd	nd
Vinyl Chloride	13	nd	nd	nd	nd	nd	nd
Chloroethane	100	nd	nd	nd	nd	nd	nd
Trichlorofluoromethane	100	nd	nd	nd	nd	nd	nd
1,1-Dichloroethene	100	nd	nd	nd	nd	nd	nd
1,1,2-Trichloro-trifluoroethane	100	nd	nd	nd	nd	nd	nd
Methylene Chloride	100	nd	nd	nd	nd	nd	nd
trans-1,2-Dichloroethene	100	nd	nd	nd	nd	nd	nd
1,1-Dichloroethane	100	nd	nd	nd	nd	nd	nd
cis-1,2-Dichloroethene	100	nd	nd	nd	nd	nd	nd
Chloroform	100	nd	nd	nd	nd	nd	nd
1,1,1-Trichloroethane	100	nd	nd	nd	nd	nd	nd
Carbon Tetrachloride	25	nd	nd	nd	nd	nd	nd
1,2-Dichloroethane	45	nd	nd	nd	nd	nd	nd
Benzene	35	45	90	160	59	nd	70
Trichloroethene	100	nd	nd	nd	nd	nd	nd
Toluene	200	nd	nd	nd	nd	nd	nd
1,1,2-Trichloroethane	100	nd	nd	nd	nd	nd	nd
Tetrachloroethene	100	nd	nd	nd	nd	nd	nd
Ethylbenzene	100	nd	nd	nd	nd	nd	nd
1,1,1,2-Tetrachloroethane	100	nd	nd	nd	nd	nd	nd
m,p-Xylene	200	nd	nd	nd	nd	nd	nd
o-Xylene	100	nd	nd	nd	nd	nd	nd
1,1,2,2-Tetrachloroethane	100	nd	nd	nd	nd	nd	nd
1,1 Difluoroethane (leak check)	10000	nd	nd	nd	nd	nd	nd
Surrogate Recovery (DBFM) Surrogate Recovery (Toluene-d8) Surrogate Recovery (1,4-BFB)		76% 88% 78%	77% 89% 75%	83% 91% 78%	74% 87% 80%	78% 89% 81%	96% 95% 87%

'RL' Indicates reporting limit at a dilution factor of 1 'nd' Indicates not detected at listed reporting limits

Analyses performed in TEG-Northern California's lab Analyses performed by: Mr. Leif Jonsson

page 2

Advantage Environmental Consultants, LLC Project # 15-120A 585 22nd Street Oakland, California

TEG Project #51221F

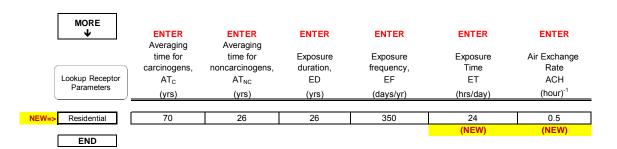
CALIBRATIO	N DATA - Calibratio	n Check Cc	ompounds			
	Vinyl Chloride	1,1 DCE	Chloroform	1,2 DCP	Toluene	Ethylbenzene
Midpoint	10.0	10.0	10.0	10.0	10.0	10.0
Continuing Cali	ibration - Midpoint					
12/21/15	8.2	8.5	9.7	10.6	10.7	8.8
	82%	85%	97%	106%	107%	88%

APPENDIX F

J&E RISK MODELING SPREADSHEETS

USEPA SG-SCREEN Version 2.0, 04/2003 DTSC Modification

December 2014


Department of Toxic Substances Control Vapor Intrusion Screening Model - Soil Gas

DATA ENTRY SHEET

Scenario: Residential Chemical: Benzene

		Soil	Gas Concentratio	n Data			
Reset to	ENTER	ENTER		ENTER			Soil Gas Conc. Attenu
Defaults	Chemical	Soil gas	OR	Soil gas			(µg/m ³) 1.60E+02
)	CAS No.	conc.,	on	conc.,			1.002.02
	(numbers only,	Cq		Cq			MESSAGE: Attenuation fa
	no dashes)	(µg/m ³)	=	(ppmv)	Chemical		
	71432	1.60E+02	1		Benzene		
					MESSAGE: See VLOOP and/or toxicity criteria fo		chemical properties
	ENTER Depth	ENTER	ENTER	ENTER		ENTER]
MORE ↓	below grade to bottom	Soil gas sampling	Average	Vadose zone SCS		User-defined vadose zone	
•	of enclosed	depth	soil	soil type		soil vapor	
	space floor,	below grade,	temperature,	(used to estimate	OR	permeability,	
	L _F	Ls	Ts	soil vapor		k _v	
	(15 or 200 cm)	(cm)	(°C)	permeability)		(cm ²)	_
	15	152	24	SC			_
·	ENTER	ENTER	ENTER	ENTER		ENTER	
MORE	Vandose zone	Vadose zone	Vadose zone	Vadose zone		Average vapor	
¥	SCS soil type	soil dry bulk density,	soil total porosity,	soil water-filled porosity,	(flow rate into bldg Leave blank to calcu	
		ρ_b^A	n ^V	θ_w^V	(inato)
	Lookup Soil Parameters			(cm ³ /cm ³)		Q _{soil}	
		(g/cm ³)	(unitless)			(L/m)	=
							-

0.3

0.303

Results Summary ill Gas Conc. Attenuation Factor Indoor Air Conc. Cancer Noncancer (µg/m³) (unitless) (µg/m³) Risk Hazard 1.60E+02 2.0E-06 3.2E-04 3.3E-09 1.0E-04

MESSAGE: Attenuation factor < 6E-05 is unreasonably low.

SC

1.87

5

CHEMICAL PROPERTIES SHEET

Benzene

$\begin{array}{llllllllllllllllllllllllllllllllllll$	Henry's law constant at reference temperature, H (atm-m ³ /mol)	Henry's law constant reference temperature, T _R (°C)	Enthalpy of vaporization at the normal boiling point, ΔH _{v,b} (cal/mol)	Normal boiling point, T _B (°K)	Critical temperature, T _C (°K)	Unit risk factor, URF (μg/m ³) ⁻¹	Reference conc., RfC (mg/m ³)	Molecular weight, MW (g/mol)
8.95E-02 1.03E-05	5.55E-03	25	7,342	353.24	562.16	2.9E-05	3.0E-03	78.11

END

Scenario: Residential

Chemical: Benzene

Source- building separation,	soil air-filled porosity,	Vadose zone effective total fluid saturation,	Vadose zone soil intrinsic permeability,	Vadose zone soil relative air permeability,	Vadose zone soil effective vapor permeability,	Floor- wall seam perimeter,	Soil gas	Bldg. ventilation rate,
LT	θ_a^{V}	S _{te}	k _i	k _{rg}	k _v	X _{crack}	conc.	Q _{building}
(cm)	(cm ³ /cm ³)	(cm ³ /cm ³)	(cm ²)	(cm ²)	(cm ²)	(cm)	(μg/m ³)	(cm ³ /s)
137	0.003	0.984	1.78E-09	0.055	9.89E-11	4,000	1.60E+02	3.39E+04
Area of enclosed space below grade,	Crack- to-total area ratio,	Crack depth below grade,	Enthalpy of vaporization at ave. soil temperature,	Henry's law constant at ave. soil temperature,	Henry's law constant at ave. soil temperature,	Vapor viscosity at ave. soil temperature,	Vadose zone effective diffusion coefficient,	Diffusion path length,
A _B	η	Z _{crack}	$\Delta H_{v,TS}$	H_{TS}	H' _{TS}	μ_{TS}	D ^{eff} _V	L _d
(cm ²)	(unitless)	(cm)	(cal/mol)	(atm-m³/mol)	(unitless)	(g/cm-s)	(cm ² /s)	(cm)
1.00E+06	5.00E-03	15	7,977	5.30E-03	2.18E-01	1.80E-04	9.36E-06	137
Convection path length, L _p (cm)	Source vapor conc., C _{source} (μg/m ³)	Crack radius, r _{crack} (cm)	Average vapor flow rate into bldg., Q _{soil} (cm ³ /s)	Crack effective diffusion coefficient, D ^{crack} (cm ² /s)	Area of crack, A _{crack} (cm ²)	Exponent of equivalent foundation Peclet number, exp(Pe ^f) (unitless)	Infinite source indoor attenuation coefficient, α (unitless)	Infinite source bldg. conc., C _{building} (μg/m ³)
15	1.60E+02	1.25	8.33E+01	9.36E-06	5.00E+03	#NUM!	2.02E-06	3.22E-04
							Warning: alpha < 6E	-05 is

unreasonably low.

factor,	conc.,
URF	RfC
(μg/m ³) ⁻¹	(mg/m ³)
2.9E-05	3.0E-03
END	

Unit risk

Reference

RESULTS SHEET

Scenario: Residential Chemical: Benzene

INCREMENTAL RISK CALCULATIONS:

Incremental	Hazard
risk from	quotient
vapor	from vapor
intrusion to	intrusion to
indoor air,	indoor air,
carcinogen	noncarcinogen
(unitless)	(unitless)
3.3E-09	1.0E-04

MESSAGE SUMMARY BELOW:

END MESSAGE: Attenuation factor < 6E-05 is unreasonably low.

USEPA SG-SCREEN Version 2.0, 04/2003 DTSC Modification

December 2014

Department of Toxic Substances Control Vapor Intrusion Screening Model - Soil Gas

DATA ENTRY SHEET

Cancer

Risk

4.5E-09

Noncancer

Hazard

1.4E-04

		Soil	Gas Concentratior	n Data				Result	s Summary
Reset to	ENTER	ENTER		ENTER			Soil Gas Conc. A		Indoor Air Conc.
Defaults	Chemical	Soil	OR	Soil			(µg/m ³)	(unitless)	(µg/m ³)
	CAS No.	gas	UR	gas			1.60E+02	2.7E-06	4.4E-04
	(numbers only,	conc.,		conc.,				ion factor < 6E-05 is u	
		C _g		Cg	.		MESSAGE. Allenual		ni easonably low.
	no dashes)	(μg/m³)	=	(ppmv)	Chemical				
	71432	1.60E+02	1		Benzene				
	71102	1.002.02				KUP table comments on c	hemical properties		
					and/or toxicity criteria fo				
	ENTER	ENTER	ENTER	ENTER		ENTER			
MORE	Depth			Vadose zone		l le en define d			
MORE V	below grade to bottom	Soil gas sampling	Average	SCS		User-defined vadose zone			
•	of enclosed	depth	soil	soil type		soil vapor			
	space floor,	below grade,	temperature,	(used to estimate	OR	permeability,			
	L _F	L _s	Ts	soil vapor		k _v			
	(15 or 200 cm)	(cm)	(°C)	permeability)		(cm ²)			
	15	152	24	С]		
	ENTER	ENTER	ENTER	ENTER		ENTER			
MORE	Vandose zone	Vadose zone	Vadose zone	Vadose zone		Average vapor			
↓	SCS	soil dry	soil total	soil water-filled		flow rate into bldg			
	soil type	bulk density,	porosity,	porosity,	(Leave blank to calcu	ate)		

n^v θ_w^{V} ρ_b^A Q_{soil} Lookup Soil Parameters (g/cm³) (cm³/cm³) (unitless) (L/m) С 1.63 0.383 0.379 5 MORE ¥ ENTER ENTER ENTER ENTER ENTER ENTER Averaging Averaging time for time for Exposure Exposure Exposure Air Exchange carcinogens, noncarcinogens, duration, frequency, Time Rate Lookup Receptor EF ACH AT_{C} AT_{NC} ED ΕT Parameters (hour)-1 (yrs) (yrs) (yrs) (days/yr) (hrs/day) 70 26 26 350 24 NEW= Residential 0.5 (NEW) (NEW)

END

CHEMICAL PROPERTIES SHEET

Benzene

$\begin{array}{llllllllllllllllllllllllllllllllllll$	Henry's law constant at reference temperature, H (atm-m ³ /mol)	Henry's law constant reference temperature, T _R (°C)	Enthalpy of vaporization at the normal boiling point, ΔH _{v,b} (cal/mol)	Normal boiling point, T _B (°K)	Critical temperature, T _C (°K)	Unit risk factor, URF (μg/m ³) ⁻¹	Reference conc., RfC (mg/m ³)	Molecular weight, MW (g/mol)
8.95E-02 1.03E-05	5.55E-03	25	7,342	353.24	562.16	2.9E-05	3.0E-03	78.11

END

Scenario: Residential

Chemical: Benzene

Source- building separation,	soil air-filled porosity,	Vadose zone effective total fluid saturation,	Vadose zone soil intrinsic permeability,	Vadose zone soil relative air permeability,	Vadose zone soil effective vapor permeability,	Floor- wall seam perimeter,	Soil gas	Bldg. ventilation rate,
LT	θ_a^{V}	S _{te}	k _i	k _{rg}	k _v 2	X _{crack}	conc.	Q _{building}
(cm)	(cm ³ /cm ³)	(cm ³ /cm ³)	(cm ²)	(cm ²)	(cm²)	(cm)	(μg/m ³)	(cm ³ /s)
137	0.004	0.986	2.32E-09	0.040	9.24E-11	4,000	1.60E+02	3.39E+04
Area of enclosed space below grade,	Crack- to-total area ratio,	Crack depth below grade,	Enthalpy of vaporization at ave. soil temperature,	Henry's law constant at ave. soil temperature,	Henry's law constant at ave. soil temperature,	Vapor viscosity at ave. soil temperature,	Vadose zone effective diffusion coefficient,	Diffusion path length,
A _B	η	Z _{crack}	$\Delta H_{v,TS}$	H _{TS}	H' _{TS}	μ_{TS}	D ^{eff} V	L _d
(cm ²)	(unitless)	(cm)	(cal/mol)	(atm-m³/mol)	(unitless)	(g/cm-s)	(cm²/s)	(cm)
1.00E+06	5.00E-03	15	7,977	5.30E-03	2.18E-01	1.80E-04	1.28E-05	137
Convection path length, L _p (cm)	Source vapor conc., C _{source} (µg/m ³)	Crack radius, r _{crack} (cm)	Average vapor flow rate into bldg., Q _{soil} (cm ³ /s)	Crack effective diffusion coefficient, D ^{crack} (cm ² /s)	Area of crack, A _{crack} (cm ²)	Exponent of equivalent foundation Peclet number, exp(Pe ^f) (unitless)	Infinite source indoor attenuation coefficient, α (unitless)	Infinite source bldg. conc., C _{building} (μg/m ³)
15	1.60E+02	1.25	8.33E+01	1.28E-05	5.00E+03	#NUM!	2.75E-06	4.39E-04
							Warning: alpha < 6E	-05 is

unreasonably low.

Unit	
risk	Reference
factor,	conc.,
URF	RfC
(µg/m ³)⁻¹	(mg/m ³)
2.9E-05	3.0E-03
END	

Last Update: December 2014 DTSC Human and Ecological Risk Office

RESULTS SHEET

Scenario: Residential Chemical: Benzene

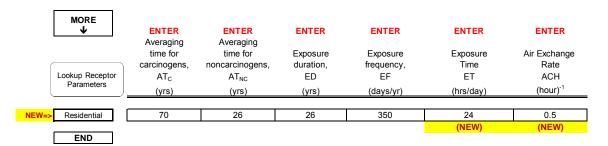
INCREMENTAL RISK CALCULATIONS:

Incremental	Hazard
risk from	quotient
vapor	from vapor
intrusion to	intrusion to
indoor air,	indoor air,
carcinogen	noncarcinogen
(unitless)	(unitless)
4.5E-09	1.4E-04

MESSAGE SUMMARY BELOW:

END MESSAGE: Attenuation factor < 6E-05 is unreasonably low.

USEPA SG-SCREEN Version 2.0, 04/2003 DTSC Modification


December 2014

Department of Toxic Substances Control Vapor Intrusion Screening Model - Soil Gas

DATA ENTRY SHEET

Scenario: Residential Chemical: Benzene

		Soil	Gas Concentration	n Data			
Reset to Defaults	ENTER	ENTER Soil		ENTER Soil			Soil Gas Conc. Attenu (µg/m ³)
	Chemical CAS No. (numbers only,	gas conc., C₀	OR	gas conc., C _q			1.60E+02 MESSAGE: Attenuation fai
	no dashes)	(μg/m ³)	=	(ppmv)	Chemical		
	71432	1.60E+02]		Benzene		
					MESSAGE: See VLOOP and/or toxicity criteria fo	KUP table comments on cl r this chemical.	hemical properties
	ENTER Depth	ENTER	ENTER	ENTER		ENTER	
MORE ↓	below grade to bottom of enclosed	Soil gas sampling depth	Average soil	Vadose zone SCS soil type		User-defined vadose zone soil vapor	
	space floor, L _F	below grade, L _s	temperature, T _s	(used to estimate soil vapor	OR	permeability, k _v	
	(15 or 200 cm)	(cm)	(°C)	permeability)		(cm ²)	
		1	ſ				
	15	152	24	С			
MORE ↓	ENTER Vandose zone SCS	ENTER Vadose zone soil dry	ENTER Vadose zone soil total	ENTER Vadose zone soil water-filled		ENTER Average vapor flow rate into bldg.	
	soil type	bulk density,	porosity,	porosity,	(Leave blank to calcul	
	Lookup Soil Parameters	ρ _b ^A (g/cm ³)	n [∨] (unitless)	θ_w^V (cm ³ /cm ³)		Q _{soil} (L/m)	-
	С	1.78	0.33	0.325	I	5	1
	U U	1.70	0.33	0.325		5	J

Results Summary I Gas Conc. Attenuation Factor Indoor Air Conc. Cancer Noncancer (µg/m³) (unitless) (µg/m³) Risk Hazard 1.60E+02 2.2E-06 3.6E-04 3.7E-09 1.1E-04

IESSAGE: Attenuation factor < 6E-05 is unreasonably low.

CHEMICAL PROPERTIES SHEET

Benzene

$\begin{array}{llllllllllllllllllllllllllllllllllll$	Henry's law constant at reference temperature, H (atm-m ³ /mol)	Henry's law constant reference temperature, T _R (°C)	Enthalpy of vaporization at the normal boiling point, ΔH _{v,b} (cal/mol)	Normal boiling point, T _B (°K)	Critical temperature, T _C (°K)	Unit risk factor, URF (μg/m ³) ⁻¹	Reference conc., RfC (mg/m ³)	Molecular weight, MW (g/mol)
8.95E-02 1.03E-05	5.55E-03	25	7,342	353.24	562.16	2.9E-05	3.0E-03	78.11

END

Scenario: Residential

Chemical: Benzene

Source- building separation,	Vadose zone soil air-filled porosity,	Vadose zone effective total fluid saturation,	Vadose zone soil intrinsic permeability,	Vadose zone soil relative air permeability,	Vadose zone soil effective vapor permeability,	Floor- wall seam perimeter,	Soil gas	Bldg. ventilation rate,
L _T	θ_a^{V}	S _{te}	k	k _{rg}	k _v	X _{crack}	conc.	Q _{building}
(cm)	(cm ³ /cm ³)	(cm ³ /cm ³)	(cm ²)	(cm ²)	(cm ²)	(cm)	(µg/m³)	(cm ³ /s)
407	0.005	0.070	0.005.00	0.050		4.000	4 005 100	0.005.04
137	0.005	0.978	2.32E-09	0.058	1.35E-10	4,000	1.60E+02	3.39E+04
Area of							Vadose	
enclosed	Crack-	Crack	Enthalpy of	Henry's law	Henry's law	Vapor	zone	
space	to-total	depth	vaporization at	constant at	constant at	viscosity at	effective	Diffusion
below	area	below	ave. soil	ave. soil	ave. soil	ave. soil	diffusion	path
grade,	ratio,	grade,	temperature,	temperature,	temperature,	temperature,	coefficient,	length,
A _B	η	Z _{crack}	$\Delta H_{v,TS}$	H_{TS}	H' _{TS}	μ_{TS}	D ^{eff} _V	L _d
(cm ²)	(unitless)	(cm)	(cal/mol)	(atm-m³/mol)	(unitless)	(g/cm-s)	(cm²/s)	(cm)
1.00E+06	5.00E-03	15	7,977	5.30E-03	2.18E-01	1.80E-04	1.03E-05	137
						Exponent of	Infinite	
			Average	Crack		equivalent	source	Infinite
Convection	Source		vapor	effective		foundation	indoor	source
path	vapor	Crack	flow rate	diffusion	Area of	Peclet	attenuation	bldg.
length,	conc.,	radius,	into bldg.,	coefficient,	crack,	number,	coefficient,	conc.,
Lp	C _{source}	r _{crack}	Q _{soil}	D ^{crack}	Acrack	exp(Pe ^f)	α	C _{building}
(cm)	(μg/m ³)	(cm)	(cm ³ /s)	(cm ² /s)	(cm ²)	(unitless)	(unitless)	(μg/m ³)
15	1.60E+02	1.25	8.33E+01	1.03E-05	5.00E+03	#NUM!	2.22E-06	3.55E-04
							Warning: alpha < 6E	-05 is

unreasonably low.

factor, URF	conc., RfC
(µg/m ³)⁻¹	(mg/m ³)
2.9E-05	3.0E-03
END	

Unit risk

Reference

RESULTS SHEET

Scenario: Residential Chemical: Benzene

INCREMENTAL RISK CALCULATIONS:

Incremental	Hazard
risk from	quotient
vapor	from vapor
intrusion to	intrusion to
indoor air,	indoor air,
carcinogen	noncarcinogen
(unitless)	(unitless)
3.7E-09	1.1E-04

MESSAGE SUMMARY BELOW:

END MESSAGE: Attenuation factor < 6E-05 is unreasonably low.

APPENDIX G

LABORATORY QC SUMMARIES

QA/QC CHECKLIST FOR LABORATORY DATA REVIEW

Proj	ect:	585 22	585 22 nd Street			Method(s):	EPA 7196A	
Labo	oratory:	AETL					-	
Sam	pling Dates:	12/21/2	2/21/2015			Samples:	See Investigation Rep	ort
	lysis Dates:	12/30/2	2015				Tables, Chain-of-Cust and Lab Report	ody
	Report Date:	1/6/20	16					
Lab	Report Number:	79567					-	
	Item		Y/N	Initials		Cor	mment	
1.	Chain-of-Custody Complete and Correct?		Y	DW	None			
2.	Samples ID's on Lab R Match those on COC?	eport	Y	DW	None			
3.	Required Analyses Reported?		Y	DW	None			
4.	Holding Times Met?		Y	DW	None			
5.	Lab Report Complete, signed Dated, on Time?		Y	DW	None			
6.	Travel and Equip Blanks Okay?		NA	DW	None			
7.	Field Duplicates Okay		NA	DW	None			
8.	Lab Method Blanks Ok	ay?	Y	DW	None			
9.	Surrogate Recovery Ok	ay?	NA	DW	None			
10.	Matrix Spike Recovery	Okay?	Y	DW	None			
11.	BS Recovery Okay?		Y	DW	None			
12.	BSD & or MSD Dupes	Okay?	Y	DW	None			
13.	Reporting Limits Met?		Y	DW	None			
14.	Units match Matrix?		Y	DW	None			
15.	Data Make Sense?		Y	DW	None			
16.	Any Unusual Data?		N	DW	None			
17.	Corrective Action Need	led?	N	DW	None			
18.	Correction Action Repo	orted?	N	DW	None			
						Follo	ow-up with Lab Required	1? N
Sign	ature of Reviewer	C) <i>o</i> u	lois			Date: 1/6	5/2016

Val Wes

QA/QC CHECKLIST FOR LABORATORY DATA REVIEW

Project: 585 22		585 22	585 22 nd Street			Method(s):	EPA 8260B		
Labo	oratory:	TEG N	Jorthern	California			-		
Sam	pling Dates:	12/21/2	12/21/2015			Samples:	See Investigation	Report	
Anal	lysis Dates:	12/21/2	2015				Tables, Chain-of and Lab Report	-Custod	y
Lab	Report Date:	1/7/20	16						
Lab	Report Number:	51221	F				_		
	Item		Y/N	Initials		C	omment		
1.	Chain-of-Custody Complete and Correct?		Y	DW	None				
2.	Samples ID's on Lab Report Match those on COC?		Y	DW	None				
3.	Required Analyses Rep	orted?	Y	DW	None				
4.	Holding Times Met?		Y	DW	None				
5.	Lab Report Complete, signed Dated, on Time?		Y	DW	None				
6.	Travel and Equip Blanks Okay?		Y	DW	None				
7.	Field Duplicates Okay		Y	DW	None				
8.	Lab Method Blanks Ok	ay?	Y	DW	None				
9.	Surrogate Recovery Ok	ay?	Y	DW	None				
10.	Matrix Spike Recovery	Okay?	NA	DW	None				
11.	BS Recovery Okay?		Y	DW	None				
12.	BSD & or MSD Dupes	Okay?	NA	DW	None				
13.	Reporting Limits Met?		Y	DW	None				
14.	Units match Matrix?		Y	DW	None				
15.	Data Make Sense?		Y	DW	None				
16.	Any Unusual Data?		N	DW	None				
17.	Corrective Action Need	led?	N	DW	None				
18.	Correction Action Repo	orted?	N	DW	None				
						Fol	low-up with Lab Rec	quired?	
Signa	ature of Reviewer	Ģ.	lea	leis			Date:	1/7/201	16