

RECEIVED

By Alameda County Environmental Health 1:55 pm, Nov 13, 2015

October 30, 2015

Ms. Gail Payne City of Alameda Public Works Department 950 West Mall Square, Room 110 Alameda, CA 94501

Subject: Draft Investigation and Risk Assessment Report for the Cross Alameda Trail, Alameda,

CA

Dear Ms. Payne:

Enclosed with this letter is the draft *Investigation and Risk Assessment Report for the Cross Alameda Trail* prepared by Tetra Tech on behalf of the City of Alameda, Public Works Department. The Cross Alameda Trail site is adjacent to and south of Ralph Appezzato Memorial Parkway between Webster Street and Main Street, Alameda, CA, and is being investigated under Alameda County Environmental Health (ACEH) Case RO0003168.

Please contact Victor Early at 510-302-6332 with any questions or comments regarding the enclosed report.

Sincerely,

Tetra Tech, Inc.

Victor A Early, PG, CEG

Tetra Tech, Inc

1999 Harrison Street, Suite 500

No. 2204 CERTIFIED

Oakland, CA 94612

Draft

Investigation and Risk Assessment Report for the Cross Alameda Trail

City of Alameda Department of Public Works Alameda, California

October 2015

Prepared for:

City of Alameda Department of Public Works Alameda, California

Prepared by:

Tetra Tech, Inc. 1999 Harrison Street, Suite 500 Oakland, California 94612 510-302-6300

DRAFT

Investigation and Risk Assessment Report for the Cross Alameda Trail Alameda, California

PREPARED FOR:

City of Alameda
Department of Public Works
Alameda, California

REVIEW AND APPROVAL

Perjury Statement:

I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge.

Project Manager:		Date:	October 2015	
	Victor Early, CEG, Tetra Tech			

TABLE OF CONTENTS

REV	IEW A	ND APP	ROVAL	i
ACR	ONYN	MS AND	ABBREVIATIONS	V
1.0	INT	'RODUC'	FION	1
1.0	1.1		OSE, BACKGROUND, AND SCOPE	
	1.1	1.2.1	Site History and Previous Investigations	
		1.1.2	Scope	
	1.2		RT ORGANIZATION	
2.0	DA'	TA GENE	ERATION AND ACQUISITION	4
	2.1		TIGATION METHODS	
	2.1	2.1.2	Utility Clearance	
		2.1.3	Step-out Boreholes and Soil Sampling	
		2.1.4	Temporary Wells and Groundwater Sampling	
		2.1.4	Decommissioning Soil Boreholes and Temporary Groundwater Wells	
		2.1.5	Investigation-Derived Waste (Waste Management Plan)	
	2.2		LING DESIGNLING DESIGN	
	2.3		YTICAL METHODS	
	2.3		VALIDATION	
3.0			Results	
	3.1	Ŭ		
	3.1		Lead	
		3.1.2	Arsenic	
		3.1.2	Petroleum Hydrocarbons	
	3.2		DWATER	
	3.2		Petroleum Hydrocarbons	
4.0	RIS		SMENT	
	4 1	SCREE	NING LEVEL HUMAN HEALTH RISK ASSESSMENT METHODOLOGY	11
		4.1.1	Conceptual Site Model	
		4.1.2	Data Evaluation and Selection of Chemicals of Potential Concern	
		4.1.3	Exposure Assessment	
		4.1.4	Toxicity Assessment	
		4.1.5	Risk Characterization	
	4.2		NING LEVEL HUMAN HEALTH RISK ASSESSMENT RESULTS	
	-r.∠	4.2.1	Future Resident (Unrestricted Use)	
		4.2.2	Future Recreational User	

		4.2.3 Future Construction Worker	18
	4.3	LEAD RISK EVALUATION	19
	4.4	ADDITIONAL EVALUATION OF CONTAMINANTS OF CONCERN	20
5.0	UNC	CERTAINTY ANALYSIS	21
6.0	CON	ICLUSIONS AND RECOMMENDATIONS	21
7.0	REF	ERENCES	22

LIST OF FIGURES

- 1 Site Location
- 2 Site Plan Showing Location of Step-out Investigations
- 3 Step-out Boring Locations and Soil and Groundwater Screening Results (CAT-B-1)
- 4 Step-out Boring Locations and Soil and Groundwater Screening Results (CAT-B-2)
- 5 Step-out Boring Locations and Soil and Groundwater Screening Results (CAT-B-6)
- 6 Step-out Boring Locations and Soil and Groundwater Screening Results (CAT-B-7)
- 7 Step-out Boring Locations and Soil and Groundwater Screening Results (CAT-B-10)
- 8 Human Health Exposure Pathway Evaluation (Conceptual Site Model)

LIST OF TABLES

- 1 Summary of Chemical Analyses of Soil Samples for Metals and TEPH
- 2 Summary of Chemical Analyses of Groundwater Samples for VOCs, TPPH, and TEPH
- 3 Exposure Pathways and Scenarios
- 4.1 Summary Statistics for Surface Soil (0 to 0.5 feet bgs)
- 4.2 Summary Statistics for Subsurface Soil (0 to 8 feet bgs)
- 4.3 Summary Statistics for Groundwater
- 5 Exposure Assumptions
- 6 Human Health Risk Based Screening Levels
- 7.1 Cancer Risks and Noncancer Hazard Indices for Future Residents
- 7.2 Cancer Risks and Noncancer Hazard Indices for Future Recreational Users
- 7.3 Cancer Risks and Noncancer Hazard Indices for Future Construction Workers
- 8 Lead Evaluation
- 9 Human Health Risk Summary
- 10 Human Health Risk Drivers
- Summary of General Uncertainties Associated with the Screening-Level Human Health Risk Assessment

LIST OF ATTACHMENTS

- 1 ACEH Drilling Permit and USA Ticket
- 2 Soil Boring Logs
- 3 Groundwater Sampling Records
- 4 Investigation Derived Waste Disposal Documentation
- 5 Lab Report and COC Records
- 6 OSWER Vapor Intrusion Assessment
- 7 Construction Trench Air Quality Modeling
- 8 Construction Worker Risk-based Screening Level for Lead
- 9 Outlier Tests for Selected Uncensored Variables
- 10 Arsenic UCL Statistics

ACRONYMS AND ABBREVIATIONS

 $\mu g/dL$ Micrograms per deciliter $\mu g/L$ Micrograms per liter

95% UCL 95 percent upper confidence limit

Accutest Accutest Laboratories

ACEH Alameda County Department of Environmental Health

ALM Adult Lead Methodology APN Assessor's Parcel Number

bgs Below ground surface

Cal/EPA California Environmental Protection Agency

CFR Code of Federal Regulations
COC Contaminant of concern
COPC Chemical of potential concern

CSM Conceptual site model

DTSC Department of Toxic Substances Control

EDD Electronic data deliverable

ELAP Environmental Laboratory Accreditation Program

EPA U.S. Environmental Protection Agency

EPC Exposure point concentration
ESA Environmental Site Assessment

HERO Office of Human and Ecological Risk Assessment

HI Hazard index HQ Hazard quotient

IDW Investigation-derived waste

mg/kg Milligrams per kilogram

OSWER Office of Solid Waste and Emergency Response

ACRONYMS AND ABBREVIATIONS (CONTINUED)

PAH Polycyclic aromatic hydrocarbon

PbB Blood lead concentration
PEF Particulate emission factor
PID Photoionization detector
PVC Polyvinyl chloride

QA Quality assurance QC Quality control

RBSC Risk Based Screening Concentration

RBSL Risk Based Screening Level

RCRA Resource Conservation and Recovery Act
REC Recognized environmental condition

RPD Relative percent difference RSL Regional screening level

RWQCB San Francisco Regional Water Quality Control Board

SLHHRA Screening Level Human Health Risk Assessment

Tetra Tech, Inc.

TPH Total petroleum hydrocarbons

TEPH Total extractable petroleum hydrocarbons
TPPH Total purgeable petroleum hydrocarbons

USA Underground Service Alert USGS U.S. Geological Survey

VDEQ Virginia Department of Environmental Quality

VF Volatilization factor

VISL Vapor Intrusion Screening Level VOC Volatile organic compound

1.0 INTRODUCTION

Under contract to the City of Alameda, Department of Public Works (Alameda), Tetra Tech has prepared this surface/subsurface investigation and risk assessment report to evaluate whether unacceptable risk is posed to human health from chemical contamination within the former railroad corridor property between Webster Street and Main Street, along the south side of Ralph Appezzato Memorial Parkway (hereinafter referred to as the site), in Alameda, California (Figure 1). The property is owned by the City of Alameda and includes Assessor's Parcel Numbers [APN] 74-905-20-3 and 74-905-20-2. The site occupies approximately 13 acres of former railroad right-of-way, and is approximately 4,200 feet in length (Figure 2) (Blackie 2010).

The environmental investigation and risk assessment described in this report relate to a planned project at the site called "Cross Alameda Trail." Construction of the Cross Alameda Trail, a typical rail-to-trail project, would add to the San Francisco Bay Trail. The proposed path would be approximately 0.8 mile long and would include separate walking and bike paths, bike lockers, trees, and a bioswale for stormwater runoff control. Upon completion, the Cross Alameda Trail would be open for recreational land use.

1.1 PURPOSE, BACKGROUND, AND SCOPE

The purpose of this investigation was to continue assessment of subsurface contamination for chemicals of potential concern (COPC) established by Tetra Tech, Inc., (Tetra Tech) in the *Phase II Environmental Site Assessment Report for the Cross Alameda Trail* (Phase II ESA) dated February 3, 2015 (Tetra Tech 2015a). As a part of the investigation described in this report, Tetra Tech generated soil and groundwater data to further evaluate the extent of contamination previously identified at the site, and performed a screening level human health risk assessment (SLHHRA) based on levels of contamination identified. The work described in this report accorded with Tetra Tech's *Final Investigation and Risk Assessment Work Plan for the Cross Alameda Trail*, dated July 2015 (Tetra Tech 2015b).

1.2.1 Site History and Previous Investigations

Evidence of railroad tracks are visible on a 1939 aerial photograph, but the railroad was likely present as early as the mid-to-late 1910s (Blackie 2010). The railroad tracks were removed from the parcels in the mid-to-late 1950s (Blackie 2010). Based on observations on December 29 and 30, 2014, during Tetra Tech's Phase II ESA field work, the site is primarily undeveloped and covered with low vegetation, mulch, and some pavement. The westernmost portion of the site is partially covered by a parking lot for an adjacent business (Tetra Tech 2015a).

An intent of the Phase II ESA was to address recognized environmental conditions (REC) that had been identified during a Phase I ESA of the Alameda Belt Line Parcels (nine non-contiguous parcels comprising 38.81 acres of land including the site); at the time of the Phase I ESA (March 8, 2010), these parcels were mostly undeveloped (Blackie 2010).

The Phase I ESA had identified the following RECs to the site:

- Historical railroad tracks
- Fill, imported soil

• Marsh crust (Blackie, 2010).

Tetra Tech based initial selection of COPCs for the Phase II ESA on the RECs to the site identified during the Phase I ESA (Blackie 2010). Chlorinated herbicides were selected because products containing these chemicals are known to have been used for weed control along railroad tracks. Arsenic and lead were selected because fill material and imported fill likely are present at the site (similar fill materials in Alameda are known to contain these chemicals), and arsenical pesticides were commonly used for weed control along railroad tracks (Blackie 2010). Petroleum hydrocarbons and polycyclic aromatic hydrocarbons (PAH) were selected because the material referred to as the "marsh crust" is known to contain these chemicals. The site is possibly within the limit of filling where marsh crust material was disposed of, and the original shoreline was approximately within the site or near the southern border of the site, with the upland occurring to the south. Disposal of dredge material on tidal marshland occurred between 1900 and 1940 to extend dry land from the existing shoreline. The marsh crust is the underground layer of fill material that was used to create dry land (City of Alameda 2015).

During the Phase II ESA, 20 soil samples (including duplicate CAT-B collected on December 30, 2014) were collected from boreholes CAT-B-1 through CAT-B-10. The soil samples were collected at depths ranging from 1 to 8 feet below ground surface (bgs). Borehole locations were selected to approximately align with the former railroad tracks, as identified on an U.S. Geological Survey (USGS) topographic map from 1959 (Blackie 2010). Based on results of the Phase II ESA, chlorinated herbicides and PAHs were excluded as COPCs, and it was determined that further investigation of the extent of lead, arsenic, and petroleum hydrocarbons was warranted (Tetra Tech 2015a). Table 1 includes the results of chemical analyses of soil samples collected during the Phase II ESA.

1.1.2 Scope

To meet the project objectives, the following activities were completed for this investigation:

- Perform utility clearance and obtain Alameda County Department of Environmental Health (ACEH) permit (Attachment 1).
- Prepare site-specific Health and Safety Plan.
- Install soil boreholes and temporary groundwater wells at select locations based on soil data generated during the Phase II ESA (Figure 2).
- Measure water levels, collect soil samples from boreholes, and collect groundwater samples from temporary wells.
- Evaluate extent and magnitude of COPCs by reference to soil and groundwater sample data.
- Log and describe soil cores generated during the investigation.
- Decommission soil boreholes and temporary wells with oversight by ACEH, and dispose of investigation-derived waste (IDW).

Evaluate soil and groundwater data according to a SLHHRA of the site.

1.2 REPORT ORGANIZATION

This report is organized as follows:

- Section 1.0 provides an introduction, specifies the purpose and objectives of the project, presents the report organization, describes the site, and recounts previous investigations.
- Section 2.0 summarizes the field program.
- Section 3.0 presents the soil and groundwater data generated as part of the investigation.
- Section 4.0 presents the SLHHRA for the site.
- Section 5.0 provides an uncertainty analysis.
- Section 6.0 presents conclusions and offers recommendations.
- Section 7.0 lists sources referenced to develop this document.

Figures and tables follow the text of this report.

Tables 1 and 2 summarize results from chemical analyses of soil and groundwater samples collected as part of this investigation, along with Phase II ESA soil data that prompted further investigation. Tables 3 through 11 support the SLHHRA. Figure 1 shows the site location, and Figure 2 shows the step-out investigations conducted at certain Phase II ESA boreholes as a part of this investigation. Figures 3 through 7 show the step-out investigation boreholes, and soil and groundwater data.

2.0 DATA GENERATION AND ACQUISITION

The following sections summarize methods of investigation at the site, sampling design, analytical methods, and data validation.

2.1 INVESTIGATION METHODS

This section describes the methods implemented during field activities.

2.1.2 Utility Clearance

Tetra Tech marked proposed drilling locations at the site in white paint, and notified Underground Service Alert (USA) more than 2 working days (48 hours) before intrusive activities to obtain USA Ticket # 0418286 (Attachment 1). USA alerted utility operators with utilities in the vicinity of the site, and each utility company with possibly present, on-site buried lines at the site cleared the proposed drill locations. Tetra Tech also hired Subtronic Corporation, a private utility clearance subcontractor, to perform an independent survey to clear each drilling location of discernible subsurface utilities using non-intrusive techniques. The location of each identifiable underground utility was marked either by the utility owner or by Subtronic Corporation.

2.1.3 Step-out Boreholes and Soil Sampling

Tetra Tech's subcontracted driller (Vironex) installed step-out boreholes using direct-push drilling technology in the vicinity of Phase II ESA boreholes where COPCs had been detected at levels warranting further investigation. The step-out soil investigation locations are shown on Figure 2. Four step-out boreholes were drilled in the vicinity of each of the following Phase II ESA boreholes: CAT-B-1, CAT-B-2, CAT-B-6, CAT-B-7, and CAT-B-10, as shown on Figures 3 through 7. One step-out borehole was placed within 3 feet of the initial Phase II ESA borehole to confirm presence of COCPs at the borehole, and the remaining three step-out boreholes were installed approximately 10 feet away from the initial Phase II ESA borehole, spaced approximately 120 degrees apart, to surround the borehole.

Purposes of the step-out boreholes were to (1) confirm presence of COPCs identified during the Phase II ESA, and (2) further delineate extents of any laterally continuous COPCs in soil at the site.

Soil cores were collected in acetate liners at approximately 4-foot depth intervals for lithologic description, photoionization detector (PID) screening, and retention for possible laboratory analysis. Each soil borehole was continuously sampled to generate analytical results representing the vertical extent of the borehole. Soil cores were logged for lithology, including preparation of borehole logs under supervision of a professional geologist licensed in the State of California. Copies of the soil boring logs are in Attachment 2.

Discrete soil samples were collected by use of laboratory-provided glass jars; labeled with date, sample identification, and time; documented on a chain-of-custody form; and placed on ice in a cooler for delivery to the laboratory. Samples were delivered via courier to Accutest Laboratories (Accutest) in San Jose, California, under chain of custody. Accutest is a certified State of California, Environmental Laboratory Accreditation Program (ELAP) laboratory.

2.1.4 Temporary Wells and Groundwater Sampling

Two temporary groundwater wells were installed in the vicinity of Phase II ESA boreholes CAT-B-1 and CAT-B-10 to determine whether petroleum hydrocarbons are dissolved in groundwater. Tetra Tech used direct-push drilling technology to collect groundwater samples from each temporary well. Tetra Tech encountered groundwater at approximately 5 feet bgs at the site. The well casing and screen were made of 1.5-inch-diameter, rigid, polyvinyl chloride (PVC) casing. A 5-foot screened interval (0.02-inch slot) was installed from 10 to 15 feet bgs in each temporary well to facilitate groundwater sample collection. Groundwater samples were analyzed for volatile organic compounds (VOC), total purgeable petroleum hydrocarbons (TPPH) as gasoline, and total extractable petroleum hydrocarbons (TEPH) as motor oil and diesel. Copies of the Groundwater Sampling Records are in Attachment 3.

Before groundwater sample collection, static groundwater levels (measurable free-phase petroleum product was not encountered) had been measured to the nearest 0.01 foot by use of an oil-water interface probe and electronic water level sounder. The wells were purged and sampled according to California Department of Toxic Substances Control (DTSC) guidelines in *Representative Sampling of Groundwater for Hazardous Substances, Guidance Manual for Groundwater Investigations* (DTSC 1995, revised 2008). A peristaltic pump was used to purge each well by application of low-flow purging techniques. During purging of the wells, water quality parameters (temperature, pH, electrical conductivity, oxidation-reduction potential, dissolved oxygen, and turbidity) were measured by use of a Horiba U-52 water quality meter until stabilization (see listing below of Stabilization Criteria). If the water quality parameters did not stabilize after purge of 20 liters, or the well was purged dry, groundwater samples were collected nevertheless. Groundwater samples were placed into appropriate sample containers; labeled with a unique identification number, date, and time; and placed into an ice-chilled cooler for transportation to Accutest under chain-of-custody documentation.

Parameter	Stabilization Criteria	
Temperature	\pm 3% of reading (minimum of \pm 0.2° C)	
рН	± 0.1	
Specific electrical conductivity	± 3%	
Oxidation-reduction potential	± 10 millivolts	
Dissolved oxygen	± 0.3 milligrams per liter	
Turbidity	Relatively clear and free of sediment or <100 nephelometric turbidity units	

2.1.5 Decommissioning Soil Boreholes and Temporary Groundwater Wells

Tetra Tech decommissioned the soil boreholes and temporary wells via tremie with Type I/II cement-bentonite grout (maximum of 6 gallons of water per 94 pounds of cement, up to 5 percent bentonite) from the bottom of the borehole to the ground surface. Borehole decommissioning accorded with requirements of ACEH. ACEH inspector Steve Miller inspected the grout on October 1 and 2, 2015.

2.1.6 Investigation-Derived Waste (Waste Management Plan)

All solid and liquid IDW (soil and groundwater waste, and decontamination water) generated during this project was drummed on site. The IDW was characterized as Resource Conservation and Recovery Act (RCRA) hazardous waste and will be transported for disposal at an off-site disposal, treatment, or recycling facility accorded with EPA guidance and applicable federal, state, and local regulations. Copies of Hazardous Waste Management documents will be provided in Attachment 4 once the disposal of IDW is complete.

2.2 SAMPLING DESIGN

This section discusses the sampling approach and rationale. Tetra Tech collected soil samples at five step-out investigation locations at the site (20 shallow soil boreholes to maximum depth of 8 feet bgs), as described in Section 2.1.3. Additionally, Tetra Tech collected groundwater samples from two temporary wells, as described in Section 2.1.4. The number of samples per COPC, sample types, and locations in relation to Phase II ESA borehole locations are tabulated as follows:

СОРС	Rationale for Further Investigation	Phase II ESA Borehole (Step-out Investigation/Temporary Well)	Number of Boreholes/Samples
TEPH as diesel and motor oil	TEPH results indicate possible petroleum release and extent of contamination is undefined.	CAT-B-1, CAT-B-2, and CAT-B-10 (three step-out soil investigation locations, and two temporary groundwater well locations)	12 step-out boreholes and 24 soil samples
TPPH as gasoline	Possible petroleum release to groundwater based on TEPH data.	CAT-B-1 and CAT-B-10 (two temporary groundwater well locations)	2 groundwater samples
VOCs	Possible petroleum release to groundwater based on TEPH data.	CAT-B-1 and CAT-B-10 (two temporary groundwater well locations)	2 groundwater samples
Lead	Exceeds regulatory screening levels.	CAT-B-6, CAT-B-7, and CAT-B-10 (three step-out soil investigation locations)	12 step-out boreholes and 24 soil samples
Arsenic	Exceeds background level ¹ .	CAT-B-1 and CAT-B-2 (two step-out soil investigation locations)	8 step-out boreholes and 16 soil samples

¹ The regional background level for arsenic is 11 milligrams per kilogram (mg/kg) (Duverge 2011). Step-out soil investigation was proposed at Phase II ESA borehole locations where arsenic concentrations exceeded 11 mg/kg, even though concentrations less than background exceeded applicable regulatory screening levels.

Rationales for soil and groundwater sampling were as follows based on Phase II ESA soil sample data:

- 1. Analyses for petroleum hydrocarbons in soil and groundwater would lead to better understanding of the nature and extent of petroleum contamination in certain areas of the site (see Table 1).
- 2. Analyses for petroleum hydrocarbons and VOCs in groundwater would help determine whether groundwater is contaminated with petroleum constituents (Table 2).
- 3. Analysis for lead in soil would better delineate the extent of lead in soil at concentrations exceeding regulatory screening levels (see Table 1.
- 4. Analysis for arsenic was deemed necessary in areas of the site where concentrations of arsenic had been found to exceed its regional background level (see Table 1).

Two soil samples were collected from each step-out borehole, and were submitted to Accutest for analyses for COPCs according to the rationales listed above. At each borehole, one soil

sample was collected within 0 to 0.5 feet bgs, and one soil sample was collected within 0.5 to 8.0 feet bgs. The deeper interval soil sample was collected at the approximate depth where contamination had been identified during the Phase II investigation of that area of the site.

2.3 ANALYTICAL METHODS

Analytical methods were selected to obtain the chemical information needed for decision making regarding the site. Soil and groundwater samples were analyzed for COPCs via the following U.S. Environmental Protection Agency (EPA) methods:

- TEPH in soil via EPA Method 8015M
- Lead and arsenic in soil via EPA Method 6020
- VOCs in groundwater via EPA Method 8260B
- TPPH as gasoline in groundwater via EPA Method 8260B.

The subcontracted laboratory provided electronic data deliverables (EDD) of all analytical results.

2.4 DATA VALIDATION

The data have been fully assessed to confirm overall data quality. Accutest's quality assurance (QA) / quality control (QC) procedure included analyses of blanks, spikes of surrogate compounds, laboratory control samples, and matrix spike/matrix spike duplicates. Tetra Tech reviewed the laboratory reports for conformance to the requested analyses, and validated the data. Based on the laboratory QA/QC data, Tetra Tech determined that the sample data were valid for use in the SLHHRA.

Relative percent differences (RPD) between results from respective pairs of duplicate and original groundwater samples (CAT-B-23-GW and CAT-B) were not calculated to evaluate precision of analyses of groundwater samples because results from all analyses were less than the laboratory method detection limits for the duplicate groundwater sample sets.

3.0 INVESTIGATION RESULTS

Four step-out boreholes were drilled in the vicinity of each of the following Phase II ESA boreholes: CAT-B-1, CAT-B-2, CAT-B-6, CAT-B-7, and CAT-B-10, as shown on Figures 3 through 7. The nomenclature for the 20 step-out boreholes is CAT-B-11 through CAT-B-30, and the last numeral of the soil identification nomenclature (e.g., CAT-B-11-0.5) indicates the approximate depth (e.g., 0.5 feet bgs) at which the soil sample was collected. Similarly, the last part of the groundwater sample identification nomenclature (e.g., CAT-B-11-GW) indicates the sample medium. Tables 1 and 2 list soil and groundwater data. Attachment 5 is a copy of the laboratory analytical report.

3.1 **S**OIL

Forty soil samples were collected on October 1 and 2, 2015, from 20 step-out investigation boreholes in the vicinity of certain Phase II ESA boreholes (two soil samples were collected from each borehole as described in Section 2.1.3). The following is a listing of step-out soil borehole identifications and associated Phase II ESA borehole identifications:

Phase II ESA Borehole/Step-out Investigation Identification	Step-out Borehole Identification
CAT-B-1 Step-out Investigation	Step-out soil boreholes CAT-B-11 through CAT-B-14
CAT-B-2 Step-out Investigation	Step-out soil boreholes CAT-B-15 through CAT-B-18
CAT-B-6 Step-out Investigation	Step-out soil boreholes CAT-B-19 through CAT-B-22
CAT-B-7 Step-out Investigation	Step-out soil boreholes CAT-B-27 through CAT-B-30
CAT-B-10 Step-out Investigation	Step-out soil boreholes CAT-B-23 through CAT-B-26

3.1.1 Lead

Lead was detected in all 32 soil samples analyzed as part of step-out investigations at Phase II ESA boreholes CAT-B-1, CAT-B-6, CAT-B-7, and CAT-B-10. Lead concentrations ranged from 2.6 to 7,670 milligrams per kilogram (mg/kg) (Table 2). Lead data are listed in Table 1, and are shown on Figures 3, 5, 6, and 7. Table 4.2 summarizes subsurface soil statistics, including lead data, for the SLHHRA. Lead was detected in all 53 soil samples collected during both the step-out investigation and the Phase II ESA. Lead results exceeding screening criteria are shaded in the results tables.

3.1.2 Arsenic

Arsenic was detected in all 24 soil samples analyzed as part of step-out investigations at Phase II ESA boreholes CAT-B-1, CAT-B-6, CAT-B-7, and CAT-B-10. Arsenic concentrations ranged from 0.71 to 35.8 mg/kg (Table 1). Arsenic concentrations in soil are shown on Figures 3, 4, and 7. Table 4.2 summarizes subsurface soil statistics, including arsenic data, for the SLHHRA. Arsenic was detected in all 45 soil samples collected during both the step-out investigation and the Phase II ESA.

Regional estimates of background arsenic concentrations in urbanized parts of the San Francisco Bay Area have recently been published with San Francisco Regional Water Quality Control Board (RWQCB) endorsement (Duverge 2011). The study proposes an upper estimate of 11.00 mg/kg for background arsenic (99th percentile) within the undifferentiated flatland soils of the study area. The findings of the study are significant because the estimate for background arsenic is considerably lower than other estimates commonly cited as sources in the literature (Duverge 2011). The upper estimate of 11 mg/kg was proposed in the Sampling and analysis plan and was approved by Alameda County Department of Environmental health. Arsenic results exceeding screening criteria are shaded in the results tables.

3.1.3 Petroleum Hydrocarbons

TEPH as diesel was not detected at concentration above the laboratory method detection limit in any of the 24 soil samples analyzed as part of step-out investigations at Phase II ESA boreholes CAT-B-1, CAT-B-6, CAT-B-7, and CAT-B-10. TEPH as motor oil was detected in all 24 soil samples analyzed at concentrations ranging from 59.9 to 2,210 mg/kg. Petroleum hydrocarbons soil results are listed in Table 1, and shown on Figures 3, 4, and 7. Table 4.2 summarizes subsurface soil statistics, including petroleum hydrocarbon data, for the SLHHRA. TEPH as diesel was detected in 15 of 45 soil samples, and TEPH as motor oil was detected in 42 of 45 soil samples collected during both the step-out investigation and the Phase II ESA. TEPH results exceeding screening criteria are shaded in the results tables.

3.2 GROUNDWATER

Two groundwater samples were collected on October 2, 2015, from temporary groundwater wells installed in step-out boreholes CAT-B-11 and CAT-B-23.

3.1.1 Petroleum Hydrocarbons

In groundwater sample CAT-B-1-GW, TEPH as diesel and TPPH as gasoline were detected at 212 and 301 micrograms per liter (μ g/L), respectively. The VOC di-isopropyl ether was the only VOC detected at concentration above the laboratory reporting limit in groundwater sample CAT-B-1-GW (acetone was detected at an estimated value [J flag] of 19.5 μ g/L).

VOCs, TEPH as diesel and motor oil, and TPPH as gasoline were not detected at levels above the laboratory method detection limit in the groundwater sample CAT-B-1-GW/CAT-B duplicate pair. Tables 2 and 4.3 list groundwater data and a statistical summary, respectively.

4.0 RISK ASSESSMENT

The following section presents the SLHHRA of the site.

4.1 SCREENING LEVEL HUMAN HEALTH RISK ASSESSMENT METHODOLOGY

This section describes the methodology applied to complete the SLHHRA. The SLHHRA process involves use of conservative screening levels to estimate cumulative cancer risks and noncancer hazards. If the cumulative risk and hazard index (HI) estimates are acceptable using conservative screening assumptions, site-specific conditions can be expected to result in acceptable risks and hazards.

The methods applied to conduct the SLHHRA are based on the risk assessment framework developed by EPA. The framework is set forth in *Risk Assessment Guidance for Superfund (RAGS), Volume I, Human Health Evaluation Manual (Part A)* (EPA 1989) and "Supplemental Guidance for Human Health Multimedia Risk Assessments of Hazardous Waste Sites and Permitted Facilities" (DTSC 1992). The SLHHRA consisted of the following seven components, described in the sections below.

- Conceptual Site Model (CSM) (Section 4.1.1)
- Data Evaluation for COPCs (Section 4.1.2)
- Exposure Assessment (Section 4.1.3)
- Toxicity Assessment (Section 4.1.4)
- Risk Characterization and Results (Section 4.1.5)
- Uncertainty Analysis (Section 4.1.6)
- Exit Criteria for the SLHHRA (Section 4.1.7).

4.1.1 Conceptual Site Model

The CSM summarizes information about sources of chemicals at the site, affected environmental media, chemical release and transport mechanisms that may occur at the site, potential exposed receptors, and potential exposure pathways for each receptor. The CSM for the risk evaluation is shown on Figure 8. The CSM for the site was refined as data from the investigation were evaluated. Components of the CSM included in the SLHHRA are briefly discussed in the following sections.

4.1.1.1 Sources of Site Chemicals

The Phase I and Phase II ESAs of the site served to establish petroleum hydrocarbons, VOCs, and lead and arsenic as COPCs for the site. Chemicals identified at the site during the Phase II

ESA are hypothesized to have originated from historical uses of the site identified in the Phase I ESA report. Those historical uses, summarized in Section 1.2.1, include import fill and marsh crust materials disposal, and operation of railroad tracks.

4.1.1.2 Affected Environmental Media

Historical use of the site likely resulted in chemical releases to soil, which may have been followed by leaching of COPCs to groundwater. VOCs in soil gas could migrate into overlying buildings constructed at the site in the future, as well as into ambient (outdoor) air.

4.1.1.3 Potentially Exposed Human Receptors

The site is currently vacant, unused land owned by the City of Alameda. Future recreational use of the site as the Cross Alameda Trail is proposed, and is the reason for this SLHHRA.

Site cancer risks and noncancer hazards were quantified for the following receptors: (1) residential users representing an unrestricted use scenario, (2) site-specific recreational users, and (3) construction workers.

Future residential use of the site is not anticipated. This land use scenario, however, represents the most protective and unrestricted future use of the site, and is evaluated to provide risk managers a baseline level of risk and to support implementation of land use restrictions if necessary.

4.1.1.4 Potentially Complete Exposure Pathways

According to guidance from EPA (1989), a complete exposure pathway consists of four elements:

- A source and mechanism of chemical release
- A retention or transport medium (or media, in cases involving transfer of chemicals)
- A point of potential human contact with the contaminated medium (referred to as the exposure point)
- An exposure route (such as ingestion) at the exposure point.

The CSM indicates whether exposure pathways are potentially complete or are considered incomplete. Only potentially complete exposure pathways were considered in the SLHHRA. As discussed below in Section 4.1.5, receptor-specific risks and hazards were calculated by comparing medium-specific chemical concentrations to medium-specific risk based screening levels (RBSL). For the purpose of the SLHHRA, residential, recreational user, and construction worker RBSLs were considered.

4.1.1.4.1 Soil

Three potentially complete exposure pathways from surface and subsurface soil were identified for the receptors that were evaluated in the SLHHRA:

- Incidental ingestion of soil
- Dermal contact with soil
- Inhalation of chemicals released from soil to outdoor air from wind erosion and volatilization.

These three soil pathways were evaluated for surface and subsurface soil and incorporated into development of soil RBSLs used in the SLHHRA for residential and recreational users. Volatile compounds were not detected in surface soil; thus, inhalation of volatile chemicals from surface soil pathway was not included in the evaluation. Soil RBSLs for the residential and recreational receptors were based on EPA's soil regional screening levels (RSL) (EPA 2015a); however, if a more conservative (that is, lower) "DTSC-Recommended Screening Levels for Soil" (DTSC 2015) was available, this was used instead of the EPA RSL. For the recreational user, generic RBSLs were not available; thus, site-specific RBSLs were developed using EPA-derived exposure algorithms (EPA 2015a). The DTSC, Office of Human and Ecological Risk (HERO), Note Number 3 was used to incorporate EPA RSLs into the HERO human health risk assessment process. Total petroleum hydrocarbons (TPH) diesel, gasoline, and motor oil data were evaluated by reference to toxicity values for the TPH fractions in the RSL (EPA 2015a) as follows:

- Toxicity criteria for TPH (aliphatic medium) were used for diesel for ingestion and dermal pathways, and toxicity criteria for TPH (aromatic medium) were used for inhalation pathways.
- Toxicity criteria for TPH (aromatic low) were used for gasoline.
- Toxicity criteria for TPH (aromatic high) were used for motor oil.

4.1.1.4.2 Groundwater

Three potentially complete exposure pathways for groundwater used for household domestic uses were evaluated in the SLHHRA:

- Ingestion of groundwater as a source of drinking water
- Dermal contact with groundwater during domestic use
- Inhalation of vapors released from groundwater to indoor air during domestic use.

The three pathways evaluated for groundwater were incorporated into the residential tap water RBSLs used in the SLHHRA, which were based on EPA tap water RSLs (EPA 2015a). The DTSC, HERO, Note Number 3 was used to help incorporate the EPA RSLs into the HERO human health risk assessment process.

In addition, volatile contaminants in groundwater were evaluated by use of EPA's Vapor Intrusion Screening Level calculator (EPA 2015b). Determination of construction worker exposure to vapors in a trench was based on the Virginia Department of Environmental Quality (VDEQ) trench model (VDEQ 2015) and EPA air equations (2015a).

4.1.2 Data Evaluation and Selection of Chemicals of Potential Concern

Only analytical data derived from soil and groundwater samples were included in the SLHHRA. Field screening data (for example, waste characterization data) were not included in the SLHHRA because these data did not meet data quality criteria for risk assessment.

4.1.2.1 Data Evaluation

All analytical data obtained during the investigation underwent cursory validation by use of EPA Contract Laboratory Program National Functional Guidelines for Inorganic and Organic Data Review (EPA 2008b, 2010) and the associated analytical methods. Approximately 20 percent of the data underwent full validation to verify that the data met EPA data quality criteria for use in risk assessment (EPA 1992).

All data without qualifiers and all data qualified as estimated (J) and not detected (U or UJ) were used in the SLHHRA. Any analytes not detected in any medium-specific samples were excluded from consideration for that medium.

Duplicate samples of groundwater were collected to assess laboratory precision. The highest detected concentration of each detected chemical in the normal and duplicate samples was used as the concentration at the location of those two samples.

4.1.2.2 Data Reduction

No data reduction processes additional to those described above in the data evaluation section were implemented during the SLHHRA.

4.1.2.3 Data Grouping

Surface and subsurface soil data were evaluated to determine soil exposure to a future resident or recreational user at the site as described below:

- Surface soil was represented by samples collected within 0 to 0.5 feet bgs, where
 0.5 feet bgs represented the deepest end-depth interval. This data set was used to
 evaluate potential current/future exposures associated with the current site
 configuration, assuming little or no redevelopment and minimal disturbance of
 deeper (subsurface) soils.
- **Subsurface soil** that could become surface soil in the future was represented by soil samples collected within 0 to 8 feet bgs, where 8 feet bgs represented the deepest end-depth. This data set was used to evaluate potential future exposures associated with possible intrusive development, whereby future regrading or excavation may redistribute subsurface soils to the surface.
- **Groundwater** was evaluated for evaluation of future residential exposure to groundwater through domestic use and vapor intrusion to indoor air, and to future construction workers by vapor intrusion into a trench.

4.1.2.4 Selection of COPCs

COPCs are chemicals carried through the quantitative exposure assessment and risk characterization. COPCs previously identified through Phase I and II ESAs were used in the SLHHRA. COPCs for soil and groundwater were identified separately for each data grouping. All chemicals detected in at least one sample, except essential human nutrients (calcium, magnesium, potassium, and sodium), were initially identified as COPCs. Data for specific TPH fractions or indicator chemicals were used to assess potential human health risk from TPH contamination in groundwater. The following matrix indicates chemicals identified as COPCs for each medium.

Chemical	Surface Soil 0-0.5 foot bgs	Subsurface Soil 0-8 feet bgs	Groundwater
Arsenic	X	X	
Lead	X	X	
TPH Diesel	X	X	X
TPH Gasoline			X
TPH Motor oil	X	X	
Di-Isopropyl ether			X

Notes:

bgs Below ground surface

TPH Total petroleum hydrocarbons

4.1.3 Exposure Assessment

An exposure assessment identifies potential human receptors who could be exposed to site-related chemicals, as well as the exposure routes, magnitudes, frequencies, and durations of the potential exposures. Potential exposure scenarios and pathways are documented in the CSM (Figure 8 and Table 3).

The exposure point concentration (EPC) is the concentration of a COPC in an exposure medium (for example, surface soil) to which a receptor may be exposed. For each COPC, maximum detected concentrations in soil and groundwater were used as the EPCs in those two media. Maximum detected concentrations of each detected chemical in each medium are listed in Tables 4.1 through 4.3.

COPCs in soil and groundwater may be transferred to outdoor air from wind erosion or volatilization, and to indoor air from volatilization. Samples of outdoor and indoor air were not collected at the site. Transport models were incorporated into the RBSLs to account for transfer mechanisms from these media in the absence of direct measurements of chemical concentrations in air.

4.1.3.1 Outdoor Air – Particulate Chemicals Released from Soil

To derive EPCs for airborne particulates, EPA uses a model that calculates a particulate emission factor (PEF) relative to contaminant concentration in soil and concentration of respirable particulates in the air due to fugitive dust (erosion from wind) emissions from contaminated soils. The soil EPC is multiplied by the reciprocal of the PEF, which is a non-chemical-specific value that relates chemical concentrations in soil to airborne concentrations that may be inhaled. The EPA (2015a) default PEF of 1.36E+09 cubic meters per kilogram was used to develop the RBSLs.

4.1.3.2 Indoor Air – Vapor Intrusion Pathway

Groundwater screening levels for volatile compounds released from groundwater to indoor air were calculated applying the EPA methodology on derivation of Vapor Intrusion Screening Levels (VISL) (EPA 2015b) using default input parameters. VISL results are in Attachment 6.

4.1.3.3 Trench Air Quality Modelling

Groundwater screening levels for volatile compounds released from groundwater to trench air during construction were calculated by application of the VDEQ methodology (VDEQ 2015) using default input parameters and site-specific information. The trench model methodology, inputs and calculated volatilization factors (VF), and resulting groundwater RBSLs are in Attachment 7.

4.1.4 Toxicity Assessment

The medium-specific RBSLs already incorporate the most current, accepted chemical- and medium-specific toxicity factors (EPA 2015a). Available State of California toxicity values (DTSC 2015) that are more protective were used.

As necessary, the SLHHRA incorporated chemical surrogates for COPCs for which toxicity criteria and corresponding generic RBSLs had not been established. The following surrogate toxicity values were used:

- Toxicity criteria for TPH (aliphatic medium) were used for TPH diesel for soil pathways, and toxicity criteria for TPH (aromatic medium) were used for groundwater pathways.
- Toxicity criteria for TPH (aromatic low) were used for TPH gasoline.
- Toxicity criteria for TPH (aromatic high) were used for TPH motor oil.

Risks to child residents and recreational users from lead in soil were characterized by comparing the EPC with the State of California residential screening level of 80 mg/kg (DTSC 2015).

4.1.5 Risk Characterization

Risk characterization involves combining EPCs, daily intakes, and toxicity criteria to calculate potential for health risks associated with exposure to COPCs. Daily intakes are based on exposure assumptions for each receptor. The exposure assumptions used in this SLHHRA are listed in Table 5.

Health risks at the site were estimated by following a "risk-ratiometric" approach. Cancer risks and noncancer health hazards were characterized separately. In this approach, the ratio of EPCs (maximum detected site concentration) to RBSLs is multiplied by the target cancer risk (1×10⁻⁶) or target HI (1) to estimate health risks. The resulting risk estimates are numerically equivalent to the estimates obtained using the EPA (1989) "forward calculation methodology." Both cancer-based and noncancer-based RSLs were considered for COPCs associated with both cancer and noncancer effects. The RBSL equations are presented in EPA (2015a). RBSLs used in this SLHHRA are listed in Table 6.

4.2 SCREENING LEVEL HUMAN HEALTH RISK ASSESSMENT RESULTS

The following sections present results of the SLHHRA by receptor.

4.2.1 Future Resident (Unrestricted Use)

Future residential use of the site is not anticipated. This land use scenario, however, represents the most protective and unrestricted future use of the site, and was evaluated to provide risk managers a baseline level of risk and to support implementation of land use restrictions if necessary. The future resident was evaluated using the most protective of possible scenarios—that is, an age-aggregated adult and child receptor (0-26 years old) was used for estimating cancer risk, and a child receptor (0-6 years old) was used to estimate the non-cancer hazard.

The future resident was evaluated for exposure to surface soil assuming minimal development, exposure to subsurface soil assuming development that includes excavation and potential transfer of subsurface soil to the surface, and exposure to groundwater via both domestic use (ingestion, dermal contact, and inhalation of vapors) and through vapor intrusion into a future residence. The summary of risks and hazards for the future resident is in Table 7.1.

4.2.1.1 Surface Soil

The only COPCs detected in surface soil were arsenic and motor oil. Using the maximum detected concentrations of these two constituents resulted in a cancer risk of 3.3E-04 and a non-cancer HI of 90. Both the cancer risk and the non-cancer hazard are attributable to arsenic.

4.2.1.2 Subsurface Soil

Arsenic, diesel, and motor oil were COPCs detected in subsurface soil samples. Using the maximum detected concentrations of these two constituents resulted in a cancer risk of 3.3E-04 and a non-cancer HI of 92. Both the cancer risk and the non-cancer hazard are primarily attributable to arsenic. The maximum concentration of diesel in subsurface soil resulted in a hazard quotient (HQ) of 2.

4.2.1.3 Groundwater

Di-isopropyl ether, gasoline, and diesel were detected in groundwater. For none of these constituents had a cancer toxicity value been established; thus a cancer risk was not calculated. Using the maximum detected concentrations of these constituents resulted in a non-cancer HI of 51. Most of the non-cancer hazard (48) was from diesel from domestic use of the groundwater, which is an unlikely scenario. The hazard from vapor intrusion to a future resident was estimated at 3.

4.2.2 Future Recreational User

Future recreational use of the site represents the proposed future use of the site. The future recreational user was evaluated for exposure to surface soil assuming minimal development, and exposure to subsurface soil assuming development that includes excavation and potential transfer of subsurface soil to the surface. The summary of risks and hazards for the future recreational user is in Table 7.2.

4.2.2.1 Surface Soil

The only COPCs detected in surface soil were arsenic and motor oil. Using the maximum detected concentrations of these two constituents resulted in a cancer risk of 2.7E-04 and a non-cancer HI of 71. Both the cancer risk and the non-cancer hazard are attributable to arsenic.

4.2.2.2 Subsurface Soil

Arsenic, diesel and motor oil were COPCs detected in subsurface soil samples. Using the maximum detected concentrations of these two constituents resulted in a cancer risk of 2.7E-04 and a non-cancer HI of 72. Both the cancer risk and the non-cancer hazard are primarily attributable to arsenic.

4.2.3 Future Construction Worker

The future construction worker was evaluated for exposure to subsurface soil assuming development that includes excavation, potential transfer of subsurface soil to the surface, and

exposure to groundwater via vapor intrusion into a trench during construction activities. The summary of risks and hazards for the future construction worker is in Table 7.3.

4.2.3.1 Subsurface Soil

Arsenic, diesel, and motor oil were COPCs detected in subsurface soil samples. Using the maximum detected concentrations of these constituents resulted in a cancer risk of 2.0E-05 and a non-cancer HI of 42. Both the cancer risk and the non-cancer hazard are primarily attributable to arsenic.

4.2.3.2 Groundwater

Di-isopropyl ether, gasoline, and diesel were detected in groundwater. For none of these constituents had a cancer toxicity value been established; thus a cancer risk was not calculated. Using the maximum detected concentrations of these constituents resulted in a non-cancer HI of 12, primarily from inhalation of vapors from diesel.

4.3 LEAD RISK EVALUATION

Toxicity values for lead have not been established that would enable evaluation of lead by application of the same methodology applied to the other chemicals. The DTSC screening value for lead represents a concentration in soil that would lead to an incremental increase in blood lead concentration (PbB) of up to 1 microgram per deciliter (μ g/dL) in people exposed to that soil. Based on a 1 μ g/dL increase in PbB, DTSC calculated a risk-based screening value of 80 mg/kg lead in soil for residential land use. The DTSC value of 80 mg/kg was selected as the Risk Based Screening Concentration (RBSC) for both the future resident and future recreational user of the site.

The equation and inputs used in the calculation of the RBSC for the construction worker are in Attachment 8. For the construction worker, State of California (Cal/EPA 2009, DTSC 2014) and EPA (EPA 2009, 2015a) default exposure parameters were used in running the Adult Lead Methodology (ALM) for this receptor including the target PbB of 1 μ g/dL. A screening level of 39 mg/kg was calculated for a construction worker using the ALM model. This value is considered protective of a pregnant construction worker.

Results of the lead evaluation are in Table 8. Maximum detected concentrations of lead in surface soil (3,170 mg/kg) and in subsurface soil (7,670 mg/kg) both exceeded the screening levels for resident, recreational user, and construction worker receptors. As a further step, the lead sampling results were reviewed to identify outliers (see Attachment 9). Five sample results were identified as statistical outliers: from CAT-B-30-4, CAT-B-19-4, CAT-B-27-0.5, CAT-B-28-4, and CAT-B-28-0.5. Based on this outcome, these locations were identified as "hotspots."

Assuming remediation of the hotspots would occur, these results were removed from the data set, and a 95 percent upper confidence limit (95%UCL) of the mean was calculated for the remaining lead results for both surface and subsurface soils. Results of this comparison were that average lead concentration in subsurface soil in the remaining samples (77 mg/kg) did not exceed the RBSL for the resident/recreational user (see Table 8). Removal of results from the soil at outlier

locations (CAT-B-30, CAT-B-19, CAT-B-27, and CAT-B-28), as well as from surface soil at CAT-B-20, reduced lead concentration to 80 mg/kg. The pregnant construction worker would still be at potential risk from subsurface soil even after hotspot removal.

4.4 ADDITIONAL EVALUATION OF CONTAMINANTS OF CONCERN

Table 9 summarizes the SLHHRA, and Table 11 identifies the contaminants of concern (COC) for the site. Arsenic and lead were identified as COCs in soil for all receptors, while diesel and gasoline were identified as COCs in groundwater.

As noted in Section 4.3, five sample results for lead were statistical outliers, and locations of their collection were identified as hotspots. If results from these soil sample locations (CAT-B-30, CAT-B-19, CAT-B-27, and CAT-B-28) would be removed, as well as results from surface soil at CAT-B-20, the estimated average concentration of lead would be below a level of concern for a resident (unrestricted land use) or recreational user.

Regional estimates of background arsenic concentrations in urbanized parts of the San Francisco Bay Area have recently been published with RWQCB endorsement (Duverge 2011). The study proposes an upper estimate of 11 mg/kg for background arsenic (99th percentile) within the undifferentiated flatland soils of the study area. Findings of the study are significant because the estimate for background arsenic is considerably lower than other estimates commonly cited as sources in the literature (Duverge 2011). Applying 11 mg/kg as the background value for arsenic narrows the areas of concern for arsenic to the area around sample locations CAT-B-1 (including CAT-B-11, CAT-B-13, and CAT-B-14) and CAT-B-2 (including samples CAT-B-16 and CAT-B-17). If the identified two areas would be remediated (and thus the sample results removed from the data set), remaining arsenic results for the site would yield an estimated arsenic concentration of 10.54 mg/kg for all soil (see Attachment 10). This would result in reduced site cancer risk and noncancer hazard to a level expected for background concentrations of arsenic.

The petroleum hydrocarbons (both diesel and gasoline) identified as COCs were detected in one of two wells, indicating that contamination in groundwater is not widespread. Furthermore, the location of the well in which these COCs were detected (CAT-B-11-GW) is under a parking lot and adjacent to a road; thus the contamination may be due to proximity to the road and automobiles. Finally, the location of the well with petroleum hydrocarbons is within the area with the elevated arsenic proposed for hotspot remediation. Remediation of the soil in this area for arsenic might well also remove the likely source of the petroleum hydrocarbons in the groundwater. However, it is also possible that dissolved petroleum hydrocarbons detected in groundwater sample CAT-B-11-GW migrated across Main Street from nearby petroleum releases at former underground storage tanks at Former Alameda Naval Air Station (RWQCB 2014).

Table 9 is the summary table for the SLHHRA, and Table 10 identifies the COCs for the site. Arsenic and lead are identified as COCs in soil for all receptors, while diesel and gasoline are identified as COCs in groundwater.

5.0 UNCERTAINTY ANALYSIS

Varying degrees of uncertainty are introduced at each stage of the SLHHRA process. These uncertainties arise from assumptions made in the risk assessment and from limitations of the data used to calculate risks and hazards. Table 11 identifies the general and most significant sources of uncertainties, and discusses direction and magnitude of the likely impact of each uncertainty on risks and hazards presented in the SLHHRA. The largest source of uncertainty in this risk evaluation is use of maximum detected concentrations to estimate risk for the entire site. Given the size of the site, exposure time (4 hours per day) for the recreational receptor and exposure duration (1 year) for the construction worker are likely to overestimate risks and hazards to these receptors.

6.0 CONCLUSIONS AND RECOMMENDATIONS

As described in the work plan (TetraTech 2015b), three decision criteria control the outcome of the SLHHRA:

- Chemicals are detected at concentrations exceeding background
- A complete exposure pathway exists from the chemical to the receptor
- Chemical concentrations exceed RBSLs.

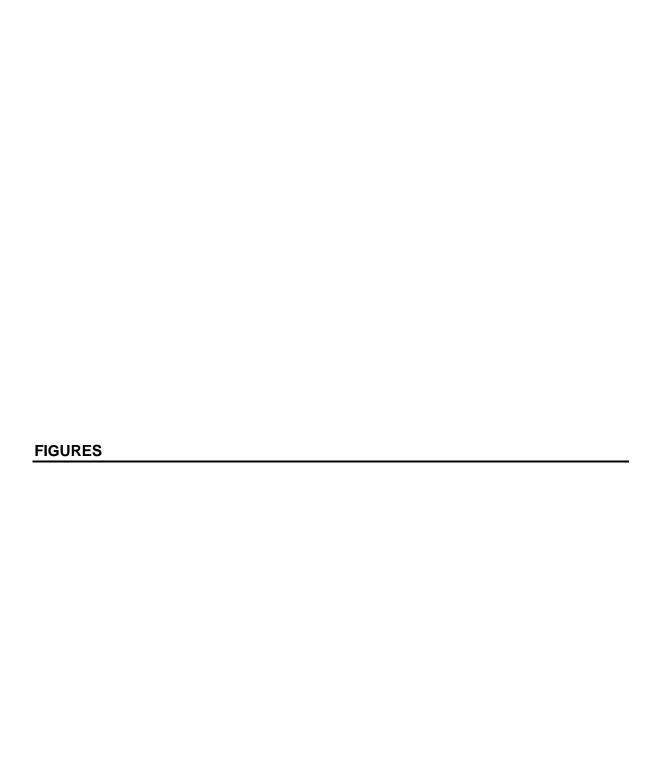
If these three criteria are not met, no further action would be recommended regarding the COPCs evaluated in this investigation. If these three criteria are met, further investigation, additional risk characterization, or site remediation may be required. These three criteria are met for lead and arsenic at the Cross Alameda Trail and recommendations are provided for each below.

As noted in Section 4.3, lead results from five soil samples were statistical outliers, and the locations of these samples were identified as hotspots. If the soil from these sample locations (CAT-B-30, CAT-B-19, CAT-B-27, and CAT-B-28), and surface soil at CAT-B-20 would be removed, risk from lead would fall below a level of concern for a resident (unrestricted land use) or recreational user. Tetra Tech therefore recommends the following:

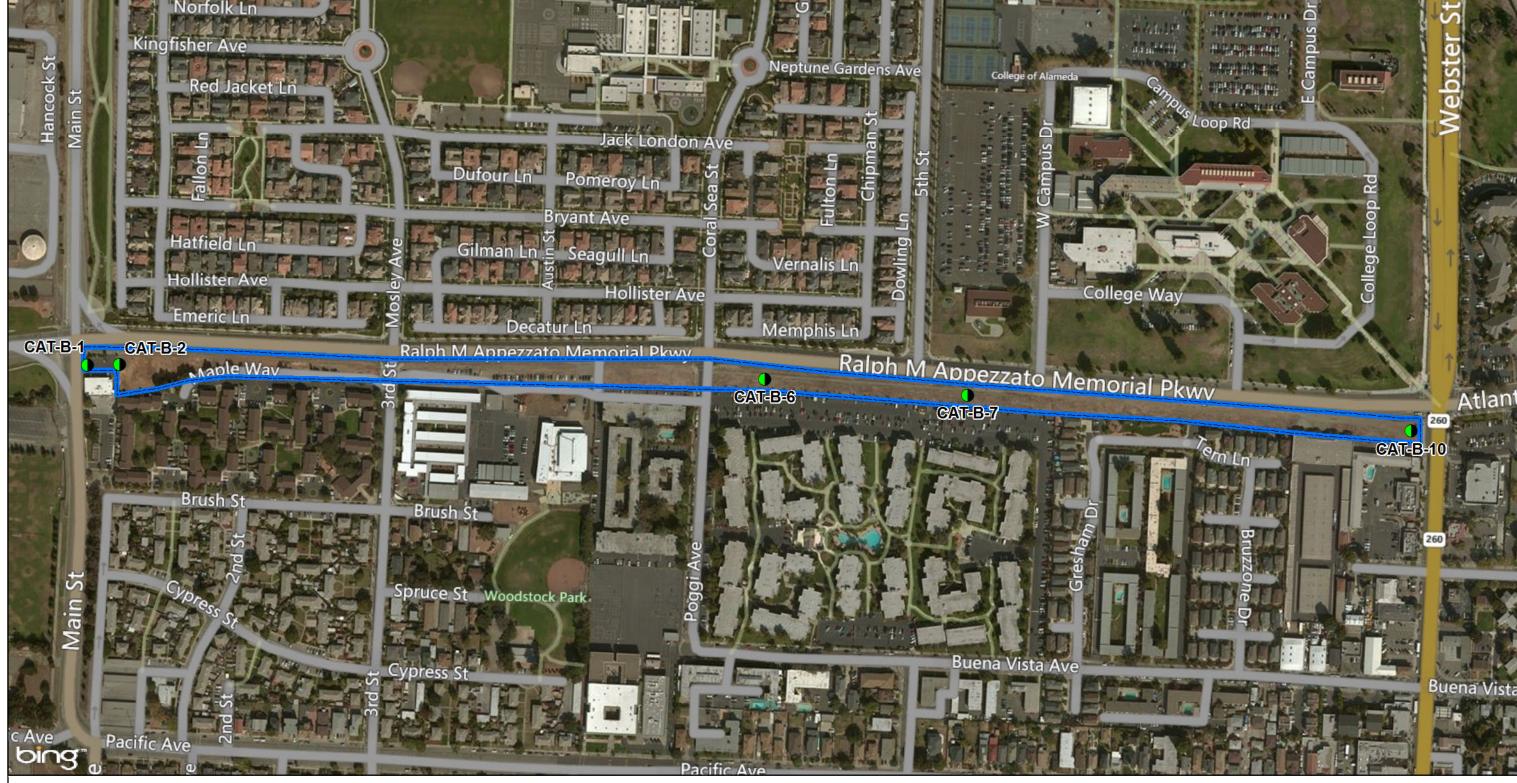
• Soil in the vicinity of sample locations CAT-B-30, CAT-B-19, CAT-B-27, CAT-B-28, and CAT-B-20 (surface only) should be removed by excavation and offsite disposal until confirmation samples representative of post-excavation site conditions contain lead concentrations of 80 mg/kg or less.

If the seven soil samples (CAT-B-1, CAT-B-11, CAT-B-13, CAT-B-14, CAT-B-2, CAT-B-16, and CAT-B-17) with elevated arsenic discussed in Section 4.4 would be remediated, the 95%UCL concentration of arsenic from site samples would be an estimated 10.8 mg/kg, which is comparable to background levels. Based on this result, Tetra Tech recommends that soil in the vicinity of sample locations CAT-B-1, CAT-B-11, CAT-B-13, CAT-B-14, CAT-B-2, CAT-B-19.

16, and CAT-B-17 be removed until confirmation samples of the excavation contain arsenic concentrations of 11 mg/kg or less.

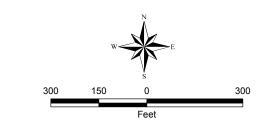

Because the groundwater contamination is collocated with the arsenic, excavations to remediate the arsenic should also be evaluated for petroleum hydrocarbon contamination, and although not encountered to date, soil with contaminant concentrations exceeding groundwater protection values (570 mg/kg for diesel and 770 mg/kg for gasoline [RWQCB 2013]) should also be remediated.

It should be noted that the lateral and vertical extent of soil that is recommended for remediation has not been fully defined. Prior to remediation, further sampling and analysis should be conducted to define the extent of the planned soil remediation.


7.0 REFERENCES

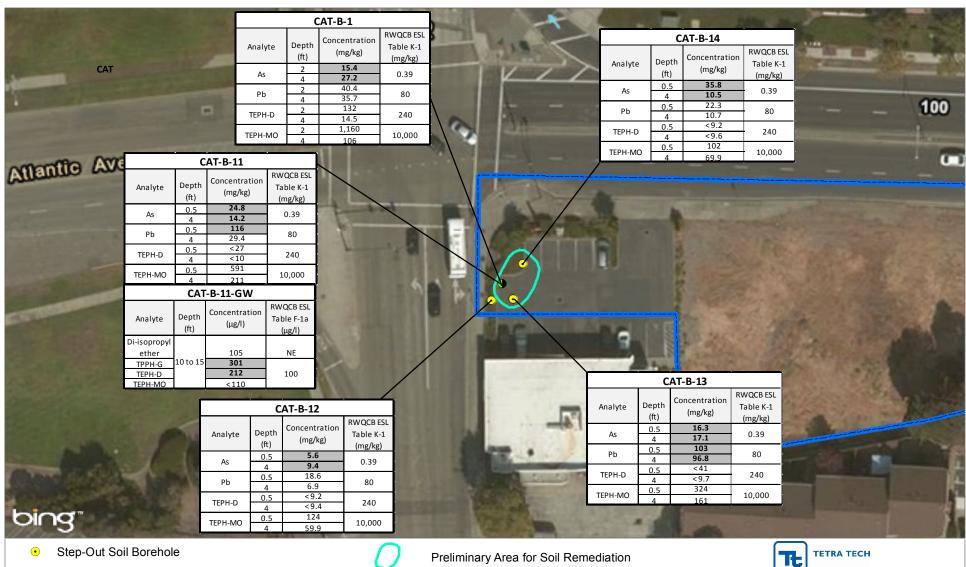
- Blackie. Belinda P. 2010. Phase I Environmental Site Assessment, ABL Parcels, Alameda, California. March 8, 2010.
- California Department of Toxic Substances Control (DTSC). 1992. "Supplemental Guidance for Human Health Multimedia Risk Assessments of Hazardous Waste Sites and Permitted Facilities." Office of the Science Advisor. July.
- DTSC. 1995. Representative Sampling of Groundwater for Hazardous Substances, Guidance Manual for Groundwater Investigations. July. Revised February 2008.
- DTSC. 2014. Office of Human and Ecological Health (HERO) Note Number 1: Recommended DTSC Default Exposure Factors for Use in Risk Assessment at California Hazardous Waste Sites and Permitted Facilities. September 30.
- DTSC. 2015. "DTSC Recommended Methodology for Use of U.S. EPA Regional Screening Levels (RSLs) in Human Health Risk Assessment (HHRA) Risk Assessment Process at Hazardous Waste Sites and Permitted Facilities." HERO. HERO HHRA Note Number 3. May.
- California Environmental Protection Agency (Cal/EPA). 2009. Revised California Human Health Screening Levels for Lead. Office of Environmental Health Hazard Assessment. September.
- City of Alameda. 2015. March Crust. http://alamedaca.gov/community-development/building/marsh-crust. Accessed on January 27, 2015.
- Code of Federal Regulations (CFR). "Title 40- Protection of Environment, Chapter 1 Environmental Protection Agency, Subchapter 1 Solid Wastes, Part 261– Identification and Listing of Hazardous Waste."

- CFR. "Title 40 Protection of Environment, Chapter 1 Environmental Protection Agency, Subchapter 1 Solid Wastes, Part 268- Land Disposal Restrictions."
- Duverge, Dylan Jacques. 2011. Establishing Background Arsenic in Soil of the Urbanized San Francisco Bay Region. San Francisco State University. December.
- San Francisco Bay Regional Water Quality Control Board (RWQCB). 2013. Environmental Screening Levels for Specific Concerns. December.
- San Francisco Bay Regional Water Quality Control Board (RWQCB). 2014. No further Action for Former Underground Storage Tank Nos. 173-1, 173-2, 173-3, 420-1, 473-1, and 506-1, Former Alameda Naval Air Station, Alameda County. April 30, 2014.
- Tetra Tech, Inc. (Tetra Tech). 2015a. Phase II Environmental Site Assessment Report for the Cross Alameda Trail, Alameda, California. February 3.
- Tetra Tech. 2015b. Final Investigation and Risk Assessment Work Plan for the Cross Alameda Trail. July.
- U.S. Environmental Protection Agency (EPA). 1989. *Risk Assessment Guidance for Superfund (RAGS), Volume I, Human Health Evaluation Manual (Part A)*. Interim Final. Office of Emergency and Remedial Response (OERR). EPA/540/1-89/002. December. http://www.epa.gov/oswer/riskassessment/ragsa/
- EPA. 1992. "Guidance for Data Usability in Risk Assessment (Part A)." Publication 9285.7-09A. OERR. Washington, D.C. PB-92-963356. April.
- EPA. 2008b. "USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review." June. http://www.epa.gov/superfund/programs/clp/download/somnfg.pdf
- EPA. 2009. Adult Lead Model. Technical Review Workgroup for Lead, Adult Lead Committee. June 21. http://www.epa.gov/superfund/lead/products.htm
- EPA. 2010. "USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review." January. http://www.epa.gov/superfund/programs/clp/download/ism/ism1nfg.pdf
- EPA. 2015a. Regional Screening Levels for Chemical Contaminants at Superfund Sites. June. http://www.epa.gov/region9/superfund/prg/index.html
- EPA. 2015b. Vapor Intrusion Screening Levels Calculator. Version 3.4, June 2015 RSLs. June.
- Virginia Department of Environmental Quality (VDEQ). 2015. "Voluntary Remediation Program Risk Assessment Guidance." Accessed on October 19. http://www.deq.state.va.us/Programs/LandProtectionRevitalization/RemediationProgram/VoluntaryRemediationProgram/VRPRiskAssessmentGuidance/Guidance.aspx


10/14/2015 V:\Alameda\Projects\CrossTrail\GIS\I avoits\SITE I OCATION myd yashekia ei

Property Boundary

CAT-B-1

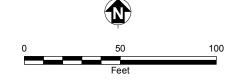

Location and Designation of Step-out Investigation

Cross Alameda Trail Alameda, California

FIGURE 2 SITE PLAN SHOWING LOCATION OF STEPOUT INVESTIGATIONS

Represents Two Co-located Soil Borehole Locations

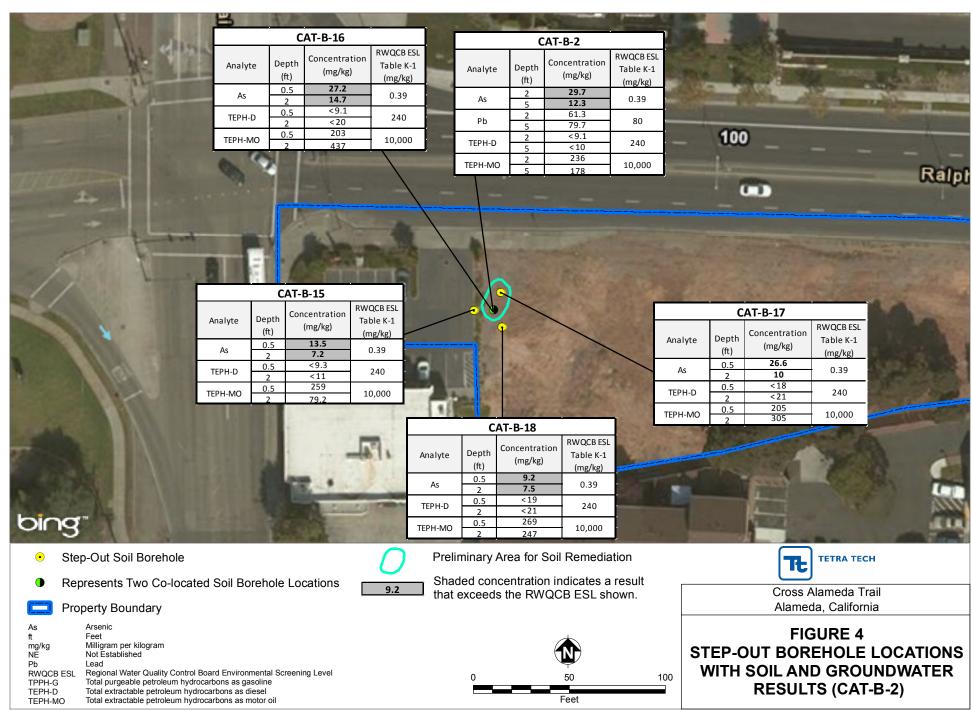
Property Boundary

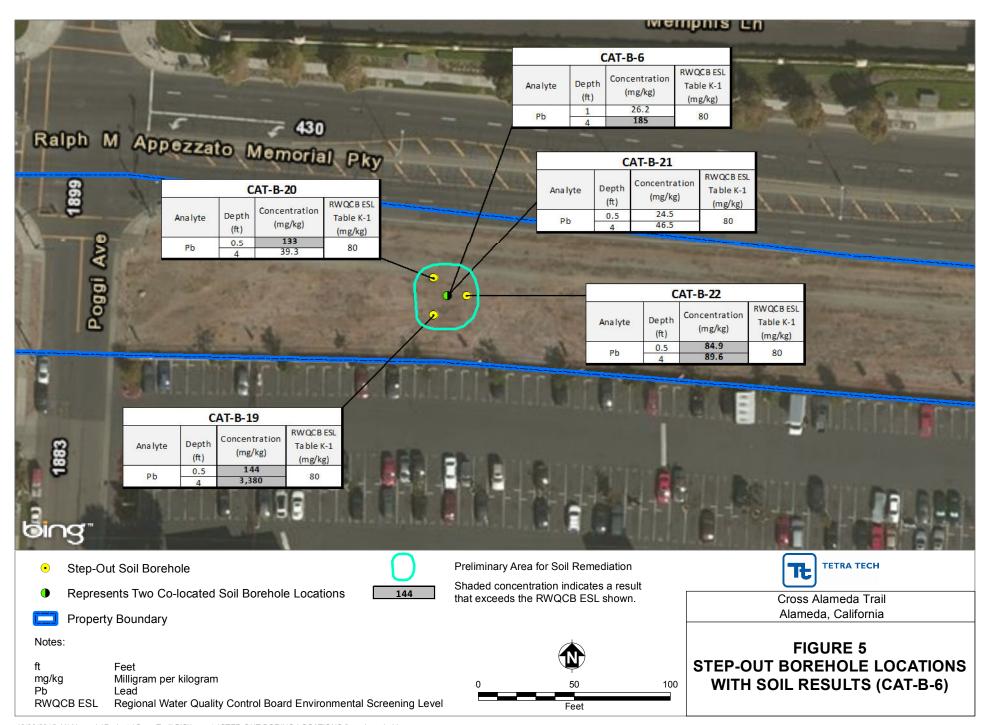

Arsenic As Feet

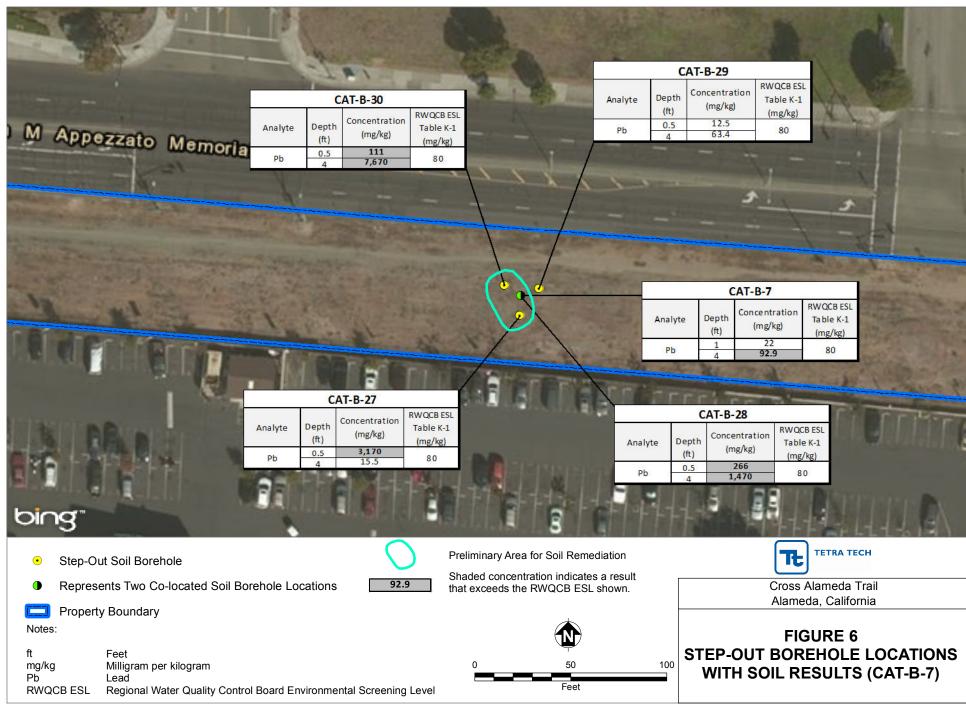
Milligram per kilogram mg/kg Not Established NĚ

Regional Water Quality Control Board Environmental Screening Level RWQCB ESL

Total purgeable petroleum hydrocarbons as gasoline TPPH-G Total extractable petroleum hydrocarbons as diesel TEPH-D TEPH-MO Total extractable petroleum hydrocarbons as motor oil Shaded concentration indicates a result that exceeds the RWQCB ESL shown.


5.6





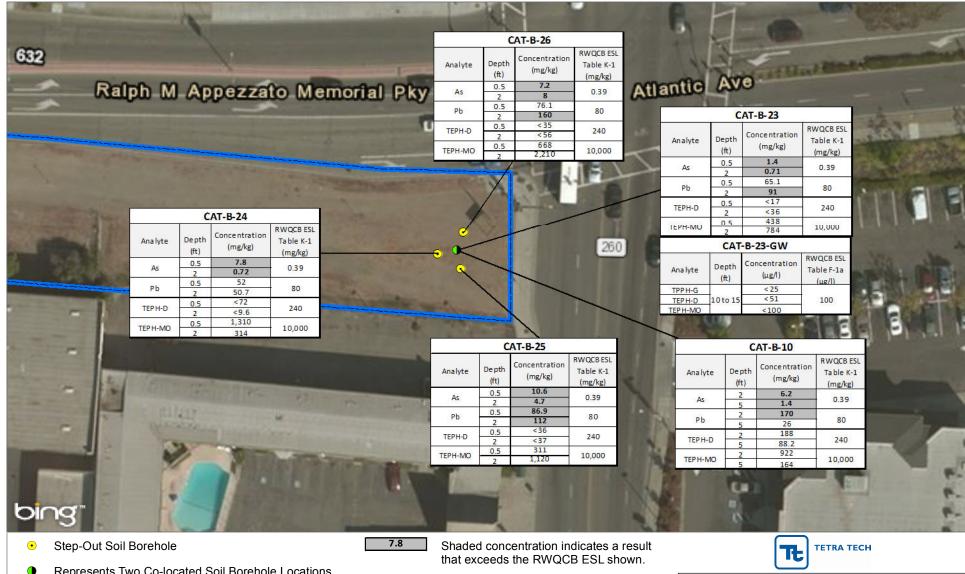

Cross Alameda Trail Alameda, California

FIGURE 3 STEP-OUT BOREHOLE LOCATIONS WITH SOIL AND GROUNDWATER **RESULTS (CAT-B-1)**

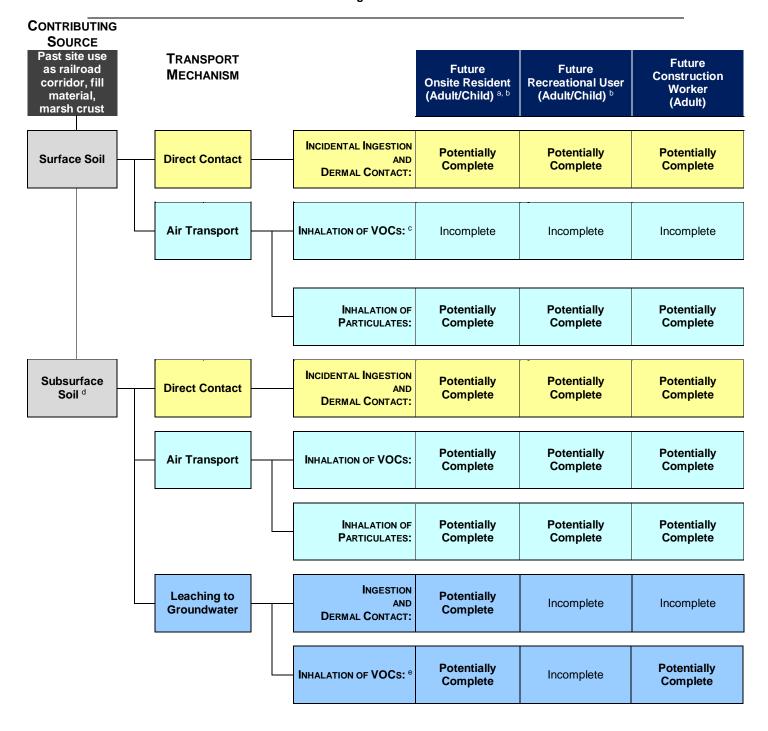
Represents Two Co-located Soil Borehole Locations

Property Boundary

Arsenic As

Milligram per kilogram mg/kg Not Established

Regional Water Quality Control Board Environmental Screening Level RWQCB ESL


Total purgeable petroleum hydrocarbons as gasoline TPPH-G Total extractable petroleum hydrocarbons as diesel TEPH-D Total extractable petroleum hydrocarbons as motor oil TEPH-MO

100

Cross Alameda Trail Alameda, California

FIGURE 7 STEP-OUT BOREHOLE LOCATIONS WITH SOIL AND GROUNDWATER **RESULTS (CAT-B-10)**

Figure 8
Human Health Exposure Pathway Evaluation
Remedial Investigation Cross Alameda Trail

- ^a The residential scenario is evaluated to determine whether unrestricted use of the property without land use controls is acceptable.
- ^b The future resident and future recreational receptors were evaluated using the most protective of the possible scenario; that is, an age-aggregated adult and child receptor (0-26 years old) was used for the estimating the cancer risk and a child (0-6 years old) was used to estimate the non-cancer hazard.
- ^c Volatile chemicals were not detected in surface soil; thus the pathway is incomplete.
- d Future site uses assume that soil is excavated, mixed and replaced onsite such that any soil to 8 feet below ground surface could become surface soil in the future.
- e Inhalation of volatiles includes both inhalation from domestic uses and from the vapor intrusion pathway.

TABLE 1 SUMMARY OF CHEMICAL ANALYSES OF SOIL SAMPLES FOR METALS AND TEPH

City of Alameda, Cross Alameda Trail Alameda, California

Well/Sample ID	Sample Date		tals ı/kg)		EPH g/kg)
		Arsenic	Lead	Diesel	Motor Oil
CAT-B-1-2	12/29/2014	15.4	40.4	132	1,160
CAT-B-1-4	12/29/2014	27.2	35.7	14.5	106
CAT-B-2-2	12/29/2014	29.7	61.3	< 9.1	236
CAT-B-2-5	12/29/2014	12.3	79.7	< 10	178
CAT-B-3-1	12/29/2014	8.0	24.0	42.7	78.2
CAT-B-3-4	12/29/2014	7.2	2.6	< 4.1	15.3
CAT-B-4-2	12/29/2014	6.8	37	8.76	28.2
CAT-B-4-5	12/29/2014	6.3	36.6	11.7	26.6
CAT-B-5-1	12/29/2014	6.2	68.4	6.17	22.7
CAT-B-5-5	12/29/2014	1.7	3	< 1.8	< 3.6
CAT-B-6-1	12/29/2014	5.3	26.2	8.22	36.5
CAT-B-6-4	12/29/2014	3.9	185	5.74	9.43
CAT-B-7-1	12/30/2014	4.3	22	6.52	16.0
CAT-B-7-4	12/30/2014	5.1	92.9	8.49	19.9
CAT-B-8-2	12/30/2014	6.5	40.5	7.35	31.8
CAT-B-8-8	12/30/2014	2.7	16.9	< 2.2	< 4.3
CAT-B-9-1	12/30/2014	7.8	54.6	6.39	30.3
CAT-B-9-6	12/30/2014	4.9	6.9	< 2.1	< 4.1
CAT-B-10-2	12/30/2014	6.2	126	129	609
CAT-B (Duplicate)	12/30/2014	4.9	170	188	922
CAT-B-10-5	12/30/2014	1.4	26	88.2	164
CAT-B-11-0.5	9/1/2015	24.8	116	< 27	591
CAT-B-11-4	9/1/2015	14.2	29.4	< 10	211
CAT-B-12-0.5	9/1/2015	5.6	18.6	< 9.2	124
CAT-B-12-4	9/1/2015	9.4	6.9	< 9.4	59.9
CAT-B-13-0.5	9/1/2015	16.3	103	< 41	324
CAT-B-13-4	9/1/2015	17.1	96.8	< 9.7	161
CAT-B-14-0.5	9/1/2015	35.8	22.3	< 9.2	102
CAT-B-14-4	9/1/2015	10.5	10.7	< 9.6	69.9
CAT-B-15-0.5	9/1/2015	13.5	NA	< 9.3	259
CAT-B-15-2	9/1/2015	7.2	NA	< 11	79.2
CAT-B-16-0.5	9/1/2015	27.2	NA	< 9.1	203
CAT-B-16-2	9/1/2015	14.7	NA	< 20	437
CAT-B-17-0.5	9/1/2015	26.6	NA	< 18	205
CAT-B-17-2	9/1/2015	10	NA	< 21	305
CAT-B-18-0.5	9/1/2015	9.2	NA	< 19	269
CAT-B-18-2	9/1/2015	7.5	NA	< 21	247
CAT-B-19-0.5	9/1/2015	NA	144	NA	NA
CAT-B-19-4	9/1/2015	NA	3,380	NA	NA
CAT-B-20-0.5	9/1/2015	NA	133	NA	NA
CAT-B-20-4	9/1/2015	NA	39.3	NA	NA

TABLE 1 SUMMARY OF CHEMICAL ANALYSES OF SOIL SAMPLES FOR METALS AND TEPH

City of Alameda, Cross Alameda Trail Alameda, California

Well/Sample ID	Sample Date		etals ig/kg)	TEI (mg/	
	Ī	Arsenic	Lead	Diesel	Motor Oil
CAT-B-21-0.5	9/1/2015	NA	24.5	NA	NA
CAT-B-21-4	9/1/2015	NA	46.5	NA	NA
CAT-B-22-0.5	9/1/2015	NA	84.9	NA	NA
CAT-B-22-4	9/1/2015	NA	89.6	NA	NA
CAT-B-23-0.5	9/2/2015	1.4	65.1	< 17	438
CAT-B-23-2	9/2/2015	0.71	91	< 36	784
CAT-B-24-0.5	9/2/2015	7.8	52	< 72	1,310
CAT-B-24-2	9/2/2015	0.72	50.7	< 9.6	314
CAT-B-25-0.5	9/2/2015	10.6	86.9	< 36	311
CAT-B-25-2	9/2/2015	4.7	112	< 37	1,120
CAT-B-26-0.5	9/2/2015	7.2	76.1	< 35	668
CAT-B-26-2	9/2/2015	8	160	< 56	2,210
CAT-B-27-0.5	9/2/2015	NA	3,170	NA	NA
CAT-B-27-4	9/2/2015	NA	15.5	NA	NA
CAT-B-28-0.5	9/2/2015	NA	266	NA	NA
CAT-B-28-4	9/2/2015	NA	1,470	NA	NA
CAT-B-29-0.5	9/2/2015	NA	12.5	NA	NA
CAT-B-29-4	9/2/2015	NA	63.4	NA	NA
CAT-B-30-0.5	9/2/2015	NA	111	NA	NA
CAT-B-30-4	9/2/2015	NA	7,670	NA	NA
RWQCB	ESL (Table K-1)1	0.39	80	240	10,000
RWQCB	ESL (Table K-3) ²	10	320	900	28,000
Cal/EPA (CHHSL (Table 1)³	0.070	80	NE	NE

Notes:

Light grey shading indicates a detection at or above one or more of the RWQCB ESL values present

NA Not Analyzed

NE Not established

TEPH Total extractable petroleum hydrocarbons

detection is less than the laboratory method detection limit

mg/kg Milligrams per kilogram

- 1 California Regional Water Quality Control Board, Environmental Screening Levels for Soil (RWQCB ESL), residenital direct exposure to soil scenario (Table K-1; RWQCB 2013).
- 2 California Regional Water Quality Control Board, Environmental Screening Levels for Soil (RWQCB ESL), construction/trench worker direct exposure to soil scenario (Table K-3; RWQCB 2013).
- California Environmental Protection Agency (Cal/EPA), California Human Health Screening Levels (CHHSL), Soil Screening Numbers for Nonvolatile Chemicals, Residential Scenario (Table 1; Updated 2010)

TABLE 2 SUMMARY OF CHEMICAL ANALYSES OF GROUNDWATER SAMPLES FOR VOCs, TPPH AND TEPH

City of Alameda, Cross Alameda Trail Alameda, California

Well/Sample ID	Sample Date	VOCs (μg/l)	TPPH (μg/l)	TEF (µg	
		Di-Isopropyl ether	Gasoline	Diesel	Motor Oil
CAT-B-11-GW	9/1/2015	105	301	212	< 110
CAT-B-23-GW	9/1/2015	< 0.22	< 25	< 51	< 100
CAT-B	9/1/2015	< 0.22	< 25	< 53	< 110
RWQCB ESL (Table F-1a)¹		NE	100	100	100
RWQCB E	SL (Table F-1b) ²	NE	500	640	640

Notes:

Light grey shading indicates a detection at or above one or more of the RWQCB ESL values presented

NA Not Analyzed

NE Not established

TPPH Total purgeable petroleum hydrocarbons

TEPH Total extractable petroleum hydrocarbons

VOC Volatile organic compound

< Detection is less than the laboratory method detection limit (table includes only analytes detected above the laboratory reporting limit)

mg/kg Milligrams per kilogram

- 1 California Regional Water Quality Control Board, Environmental Screening Levels for Groundwater (RWQCB ESL), grounwater is a current or potential drinking water resource (Table F-1a; RWQCB 2013).
- 2 California Regional Water Quality Control Board, Environmental Screening Levels for Groundwater (RWQCB ESL), grounwater is not a current or potential drinking water resource (Table F-1b; RWQCB 2013).

TABLE 3: EXPOSURE PATHWAYS AND SCENARIOS

Remedial Investigation for Cross Alameda Trail City of Alameda, California

				Soil		Groundwater					
		Surface (0 to 0.5 foot bgs) and Subsurface (0 to 8 feet bgs)					Domestic U	Vapor Intrusion			
Site	Exposure Scenario	Incidental Ingestion	Dermal Contact	Inhalation (Outdoor Air - Particulates)	Inhalation (Outdoor Air - Volatile Chemicals) ^a	Ingestion	Dermal Contact	Inhalation (Indoor Air - Domestic Use)	Inhalation (Trench Air - Vapor Intrusion)		
	Future Resident	•	•	•	•	•	•	•	•		
Cross Alameda Trail	Future Recreational User	•	•	•	•	0	0	0	0		
	Future Construction Worker	•	•	•	•	0	0	0	•		

Notes:

O Incomplete or negligible exposure pathway (volatile chemicals not detected)

Potentially complete exposure pathway

a Volatile compounds were not detected in surface soil.

bgs Below ground surface

TABLE 4.1: SUMMARY STATISTICS FOR SURFACE SOIL (0 TO 0.5 FOOT BGS)

Remedial Investigation for Cross Alameda Trail City of Alameda, California

Chemical	Units	Detection Frequency	Minimum Detected Concentration	Maximum Detected Concentration	Location of Maximum Detected Concentration
Arsenic	mg/kg	12 / 12	1.4	35.8	CAT-B-14-0.5
Lead	mg/kg	16 / 16	12.5	3,170	CAT-B-27-0.5
TPH Diesel	mg/kg	0 / 12			
TPH Motor oil	mg/kg	12 / 12	102	1,310	CAT-B-24-0.5

Notes:

Not applicablebgs Below ground surface

J Estimated detected concentration

mg/kg Milligrams per kilogram

TABLE 4.2: SUMMARY STATISTICS FOR SUBSURFACE SOIL (0 TO 8 FEET BGS)

Remedial Investigation for Cross Alameda Trail City of Alameda, California

Chemical	Units	Detection Frequency	Minimum Detected Concentration	Maximum Detected Concentration	Location of Maximum Detected Concentration
Arsenic	mg/kg	45 / 45	0.71	35.8	CAT-B-14-0.5
Lead	mg/kg	53 / 53	2.6	7,670	CAT-B-30-4
TPH Diesel	mg/kg	15 / 45	5.74	188	CAT-B-10-2
TPH Motor oil	mg/kg	42 / 45	9.43	2,210	CAT-B-26-2

Notes:

bgs Below ground surface

J Estimated detected concentration

mg/kg Milligrams per kilogram

TABLE 4.3: SUMMARY STATISTICS FOR GROUNDWATER

Remedial Investigation for Cross Alameda Trail City of Alameda, California

Chemical	Units	Detection Frequency	Minimum Detected Concentration	Maximum Detected Concentration	Location of Maximum Detected Concentration
Di-isopropyl ether	μg/L	1 / 3	105	105	CAT-B-11-GW
TPH Gasoline	μg/L	1 / 3	301	301	CAT-B-11-GW
TPH Diesel	μg/L	1 / 3	212	212	CAT-B-11-GW
TPH Motor Oil	μg/L	0/3			

Notes:

-- Not applicable

bgs Below ground surface

J Estimated detected concentration

μg/L Micrograms per liter

TABLE 5: EXPOSURE ASSUMPTIONS

Remedial Investigation for Cross Alameda Trail City of Alameda, California

			Fut	ture			Fut	ure		Future	
		Resident (Unr	estricted Use)		Recre	atio	onal User		Construction Wor	rker
Parameter	Units	Adult		Child		Adult		Child		Adult	
General Parameters											
Exposure frequency	days/year	350	a,b	350	a,b	175	С	175	С	250	a,b
Exposure duration	years	20	a,b	6	a,b	20	С	6	С	1	a,b
Mass conversion factor	kg/mg	1E-06	-	1E-06		1E-06		1E-06		1E-06	
Body weight	kg	80	a,b	15	a,b	80	С	15	a,b	80	a,b
Averaging time (carcinogens)	days	25,550	a,b	25,550	a,b	25,550	O	25,550	a,b	25,550	a,b
Averaging time (noncarcinogens)	days	7,300	a,b	2,190	a,b	7,300	С	2,190	a,b	365	a,b
Soil Ingestion											
Soil ingestion rate	mg/day	100	a,b	200	a,b	100	С	200	С	330	a,b
Dermal Contact with Soil											
Body surface area	cm ² /day	6,032	a,b	2,900	b	6,032	С	2,900	С	6,032	b
Soil adherence factor	mg/cm ²	0.07	a,b	0.2	a,b	0.07	С	0.2	С	0.8	b
Dermal absorption fraction from soil	unitless	Chemical-specific	а	Chemical-specific	а	Chemical-specific	а	Chemical-specific	а	Chemical-specific	а
Inhalation of Chemicals in Soil											
Exposure time	hours/day	24	a,b	24	a,b	4	С	4	С	8	a,b
Groundwater Ingestion											
Groundwater ingestion rate	L/day	2.5	a,b	0.78	a,b						
Dermal Contact with Groundwater											
Body surface area	cm ² /day	20,900	a,b	6,378	a,b			-			
Exposure Time - dermal	hr/day	0.71	a,b	0.54	a,b						
Permeability constant	unitless	Chemical-specific	а	Chemical-specific	а						
Inhalation of Chemicals in Groundwa	ter from Dome	estic Use									
Exposure time	hours/day	24	a,b	24	a,b					4	c,d
Groundwater Volatilization Factor	L/m ³	0.5	a,b	0.5	a,b					Chemical-specific	d

Notes:

а	EPA (2015)		Not applicable	L/day	Liters per day
b	DTSC (2014)	cm ² /day	Square centimeter per day	L/m ³	Liter per cubic meter
С	Professional judgment	hr/day	Hour per day	mg/cm ²	milligrams per square centimeter
d	based on VDEQ trench model	kg/mg	Kilogram per milligram	mg/day	milligrams per day

References:

DTSC. 2014. "HERO Note Number 1: Recommended DTSC Default Exposure Factors for Use in Risk Assessment at California Hazardous Waste Sites and Permitted Facilities." Office of Human and Ecological Risk. September 30. On-line address: http://www.dtsc.ca.gov/AssessingRisk/upload/HHRA_Note1.pdf

EPA. 2015. "Regional Screening Levels (RSL) for Chemical Contaminants at Superfund Sites. RSL Table Update." June.

On-line address: http://www2.epa.gov/risk/risk-based-screening-table-generic-tables

Virginia Department of Environmental Quality (VDEQ). 2014. Voluntary Remediation Program - Risk Assessment Guidance. Table 3.8 Groundwater: Construction Worker in a Trench. October 5. On-line Address: http://www.deg.state.va.us/Programs/LandProtectionRevitalization/RemediationProgram/VoluntaryRemediationProgram/VRPRiskAssessmentGuidance/Guidance.aspx

TABLE 6: HUMAN HEALTH RISK-BASED SCREENING LEVELS

Remedial Investigation for Cross Alameda Trail City of Alameda. California

					Resi	dential			Recreation	onal User		Construction	on Worker	
	Detec Med		_	oil g/kg)	(Dome	ndwater stic Use) ıg/L)	(Vapor Intro	ndwater usion - Indoor Air) g/L) ^a		oil /kg)	Soil (mg/kg)		Groundwater (Vapor Intrusion - Trench Air) (µg/L) ^b	
Chemical	SOIL	GW	Cancer	Noncancer	Cancer	Noncancer	Cancer	Noncancer	Cancer	Noncancer	Cancer	Noncancer	Cancer	Noncancer
Arsenic	Х		1.1E-01 c,d	4.0E-01 c,d					1.3E-01 ^e	5.0E-01 ^e	1.8E+00 ^c	8.6E-01 ^c		
Lead	Х			8.0E+01 °						8.0E+01 °		3.9E+01 ¹		
Total Petroleum Hy	ydrocarbo	ns												
TPH Diesel	Х	Х		9.6E+01 ^g		5.5E+00 ^g		1.9E+02 ^g		7.1E+02 ^g		1.4E+03 ^g		1.3E+02 ^g
TPH Gasoline		Х	ND	ND		3.3E+01 h		1.5E+02 h	ND	ND	ND	ND		2.8E+01 h
TPH Motor oil	Х			2.5E+03 i	ND	ND	ND	ND		4.9E+03 i		5.7E+03 i	ND	ND
Volatile Organic Co	ompounds	5												
Di-isopropyl ether		X				1.5E+03		7.0E+03						7.6E+02

Notes: The future resident and future recreational receptors were evaluated using the most protective of the possible scenario; that is, an age-aggregated adult and child (0-26 years old) was used for the estimating the cancer risk and a child (0-6 years old) was used to estimate the non-cancer hazard.

- a Screening values for vapor intrusion to indoor air pathway were calculated using the EPA Vapor Intrusion Screening Level (VISL) calculator (EPA 2015). Only chemicals identified as volatile on the RSL table (EPA 2015) are included. Consistent with selection of toxicity values for TPH is the RSL tables, naphthalene (noncancer only) was used as a surrogate chemical for TPH diesel and benzene (noncancer) only was used as a surrogate chemical for TPH gasoline. See Attachment 1.
- b Screening values for vapor intrusion from groundwater to trench air pathway were calculated using the Virginia Department of Environmental Quality (VDEQ) calculator (VDEQ 2015) for groundwater less than 15 feet bgs using default input values to obtain the volatility factor. Only chemicals identified as volatile on the RSL table (EPA 2015) are included. Consistent with selection of toxicity values for TPH is the RSL tables, naphthalene (noncancer only) was used as representative of diesel and benzene (noncancer only) was selected as representative of gasoline.
- The toxicity criteria for arsenic, inorganic was used for arsenic.
- d Residential soil criteria from DTSC (2015).
- e RBSL based on DTSC (2015) toxicity values using exposure parameters as shown on Table 3.
- f RBSL based on Adult Lead Model (EPA 2009) using DTSC input parameters (DTSC 2009) and exposure parameters as shown on Table 3.
- g The toxicity criteria for total petroleum hydrocarbons (aliphatic medium) was used for TPH diesel for soil pathways and total petroleum hydrocarbons (aromatic medium) was used for groundwater pathways.
- h The toxicity criteria for total petroleum hydrocarbons (aromatic low) was used for TPH gasoline.
- i The toxicity criteria for total petroleum hydrocarbons (aromatic high) was used for TPH motor oil.
- -- Not available
- μg/L Micrograms per liter
- DTSC Department of Toxic Substances Control.
- EPA U.S. Environmental Protection Agency
- mg/kg Milligram per kilogram
- ND Not detected
- TPH Total petroleum hydrocarbons

References:

DTSC. 2015. "DTSC-modified Screening Levels (DTSC-SLs)." Human and Ecological Risk Office (HERO). HERO HHRA Note Number 3. October.

On-line address: http://www.dtsc.ca.gov/AssessingRisk/upload/HHRA-Note-3-2015-10.pdf

EPA. 2015a. "Regional Screening Levels (RSL) for Chemical Contaminants at Superfund Sites. RSL Table Update." June. Available on-line: http://www.epa.gov/region9/superfund/prg/index.html

EPA. 2015b. Vapor Intrusion Screening Level (VISL) Calculator Version 3.4, June 2015 RSLs. Available on-line: http://www.epa.gov/oswer/vaporintrusion/guidance.html

SFBRWQCB. 2013. Environmental Screening Levels Workbook. December. Available on-line: http://www.waterboards.ca.gov/sanfranciscobay/water_issues/programs/esl.shtml

Virginia Department of Environmental Quality (VDEQ). 2015. Voluntary Remediation Program - Risk Assessment Guidance. Table 3.8 Groundwater: Construction Worker in a Trench. Accessed October 19.

On-line Address: http://www.deg.state.va.us/Programs/LandProtectionRevitalization/RemediationProgram/VoluntaryRemediationProgram/VRPRiskAssessmentGuidance/Guidance.aspx

TABLE 7.1: CANCER RISKS AND NONCANCER HAZARD INDICES FOR FUTURE RESIDENTS

Remedial Investigation for Cross Alameda Trail City of Alameda, California

				Future F	Resident	
			Cancer	Noncancer	Cancer	Hazard
Medium	Chemical	Concentration ^a	RBSL ^b	RBSL ^b	Risk $^{\circ}$	Index ^d
Surface Soil	Arsenic	3.6E+01	1.1E-01	4.0E-01	3.3E-04	90
(0-0.5 foot bgs)	TPH Motor oil	1.3E+03		2.5E+03		0.52
mg/kg			Total	(Surface Soil)	3.3E-04	90
Surface and	Arsenic	3.6E+01	1.1E-01	4.0E-01	3.3E-04	90
Subsurface Soil	TPH Diesel	1.9E+02		9.6E+01		2.0
(0-8 feet bgs)	TPH Motor oil	2.2E+03		2.5E+03		0.88
mg/kg		Total (S	Surface and Su	ıbsurface Soil)	3.3E-04	92
Groundwater Ingestion, Dermal,	Di-isopropyl ether	1.1E+02		1.5E+03		0.070
and Vapors from	TPH Gasoline	3.0E+02		3.3E+01		9.1
Domestic Use) µg/L	TPH Diesel	2.1E+02		5.5E+00		39
		Total	Groundwater I	Domestic Use)		48
Groundwater to	Di-isopropyl ether	1.1E+02		7.0E+03		0.015
Indoor Air (Vapor Intrusion)	TPH Gasoline	3.0E+02		1.5E+02		2.0
μg/L	TPH Diesel	2.1E+02		1.9E+02		1.1
		Total (G	roundwater Va	apor Intrusion)		3
			Total	(Groundwater)		51
		Total	Surface Soil +	Groundwater)	3E-04	141
		Total (Sub	surface Soil +	Groundwater)	3E-04	143

Notes:

- a The concentrations of chemicals in each medium are based on the maximum detected concentrations in the medium.
- b Cancer and noncancer RBSL values shown are from Table 4.
- The cancer risk is calculated using the following equation: [(Concentration in media / Cancer RBSL) x 1E-06]. Cancer risk is based on an age-aggregated adult and child receptor (0-16 years old).
- d The noncancer hazard is calculated using the following equation: [(Concentration in media / Noncancer RBSL) x 1]. Noncancer hazard is based on the more conservative child receptor (0-6 years old).
- -- Not applicable

µg/L Micrograms per liter
mg/kg Milligrams per kilogram
RBSL Risk-based screening level

TABLE 7.2: CANCER RISKS AND NONCANCER HAZARD INDICES FOR FUTURE RECREATIONAL USERS

Remedial Investigation for Cross Alameda Trail City of Alameda, California

			Future Recreational User						
Medium	Chemical	Concentration ^a	Cancer RBSL ^b	Noncancer RBSL ^b	Cancer Risk [°]	Hazard Index ^d			
Surface Soil	Arsenic	3.6E+01	1.3E-01	5.0E-01	2.7E-04	71			
(0-0.5 foot bgs)	TPH Motor oil	1.3E+03		4.9E+03		0.27			
mg/kg			Tota	I (Surface Soil)	2.7E-04	71			
Surface and	Arsenic	3.6E+01	1.3E-01	5.0E-01	2.7E-04	71			
Subsurface Soil	TPH Diesel	1.9E+02		7.1E+02		0.26			
(0-8 feet bgs)	TPH Motor oil	2.2E+03		4.9E+03		0.45			
mg/kg		Total (Surface and Su	ubsurface Soil)	2.7E-04	72			

Notes:

- a The concentrations of chemicals in each medium are based on the maximum detected concentrations in the medium.
- b Cancer and noncancer RBSL values shown are from Table 4.
- c The cancer risk is calculated using the following equation: [(Concentration in media / Cancer RBSL) x 1E-06]
- d The noncancer hazard is calculated using the following equation: [(Concentration in media / Noncancer RBSL) x 1]
- -- Not applicable

bgs below ground surface
mg/kg Milligrams per kilogram
RBSL Risk-based screening level

TABLE 7.3: CANCER RISKS AND NONCANCER HAZARD INDICES FOR FUTURE CONSTRUCTION WORKERS

Remedial Investigation for Cross Alameda Trail City of Alameda, California

				Future Constr	uction Worker	n Worker			
			Cancer	Noncancer	Cancer	Hazard			
Medium	Chemical	Concentration ^a	RBSL ^b	RBSL ^b	Risk ^c	Index ^d			
Surface and	Arsenic	3.6E+01	1.8E+00	8.6E-01	2.0E-05	42			
Subsurface Soil	TPH Diesel	1.9E+02		1.4E+03		0.13			
(0-8 feet bgs)	TPH Motor oil	2.2E+03		5.7E+03		0.38			
mg/kg		Total (Surface and Su	ıbsurface Soil)	2.0E-05	42			
	Di-isopropyl ether	1.1E+02		7.6E+02		0.14			
Groundwater to Trench Air	TPH Gasoline	3.0E+02		2.8E+01		10.7			
µg/L	TPH Diesel	2.1E+02		1.3E+02		2			
			Total	(Groundwater)		12			
	Total (Subsurface Soil + Groundwater) 2E-05 54								

Notes:

- a The concentrations of chemicals in each medium are based on the maximum detected concentrations in the medium.
- b Cancer and noncancer RBSL values shown are from Table 4.
- c The cancer risk is calculated using the following equation: [(Concentration in media / Cancer RBSL) x 1E-06]
- d The noncancer hazard is calculated using the following equation: [(Concentration in media / Noncancer RBSL) x 1]
- -- Not applicable
- μg/L Micrograms per liter
- mg/kg Milligrams per kilogram
- RBSL Risk-based screening level

TABLE 8: LEAD EVALUATION

Remedial Investigation for Cross Alameda Trail City of Alameda, California

				Future Child Resident and Child Recreational User			Future Construction Worker		
Medium	Maximum Detected Lead Concentration ^a		Noncancer RBSL ^c	Site Maximum Detected Concentration Exceeds RBSL?	Site 95%UCL Concentration Exceeds RBSL?	Noncancer RBSL ^d	Detected Concentration Exceeds RBSL?	Site 95%UCL Concentration Exceeds RBSL?	
Surface Soil (0-0.5 foot bgs) mg/kg	3.17E+03	8.0E+01	8.0E+01	Yes	No	3.9E+01	Yes	Yes	
Subsurface Soil (0-8 feet bgs) mg/kg	7.67E+03	7.7E+01	8.0E+01	Yes	No	3.9E+01	Yes	Yes	

Notes:

- a The concentrations of lead are based on the maximum detected concentrations in the medium (see Tables 2.1 and 2.2).
- b The 95%UCL concentrations of lead are based on the 95 percent upper confidence limit of the mean with the "hotspots" removed. (See Section 4.4 and Attachment 4).
- c Noncancer RBSL value from Table 4, and are based on Office of Environmental Health Hazard Assessment (OEHHA) residential screening levels (DTSC 2009, 2015).
- d RBSL for construction worker based on the Adult Lead Model (EPA 2009) with exposure inputs from DTSC (DTSC 2014).
- Not applicable

mg/kg Milligrams per kilogram bgs below ground surface RBSL Risk-based screening level

References:

DTSC. 2009. "Revised California Human Health Screening Levels for Lead." Integrated Risk Assessment Branch, Office of Environmental Health Hazard Assessment, California Environmental Protection Agency. September.

DTSC. 2014. "HERO Note Number 1: Recommended DTSC Default Exposure Factors for Use in Risk Assessment at California Hazardous Waste Sites and Permitted Facilities." Office of Human and Ecological Risk. September 30. On-line address: http://www.dtsc.ca.gov/AssessingRisk/upload/HHRA_Note1.pdf

DTSC. 2015. "DTSC-modified Screening Levels (DTSC-SLs)." Human and Ecological Risk Office (HERO). HERO HHRA Note Number 3. October.

On-line address: http://www.dtsc.ca.gov/AssessingRisk/upload/HHRA-Note-3-2015-10.pdf

EPA. 2009. Adult Lead Model. June. On-line address: http://www2.epa.gov/superfund/lead-superfund-sites-software-and-users-manuals

TABLE 9: HUMAN HEALTH RISK SUMMARY

Remedial Investigation for Cross Alameda Trail City of Alameda, California

		SK

Site	Medium	Exposure Pathway	Future Resident	Future Recreational User	Future Construction Worker
	Surface Soil (0 to 0.5 foot bgs)	Direct Contact a	3.3E-04	2.7E-04	
Cross Alameda Trail	Surface and Subsurface Soil (0 to 10 feet bgs)	Direct Contact b	3.3E-04	2.7E-04	2.0E-05
Cross Alameda Trail	Groundwater	Direct Contact ^c		NE	NE
	Groundwater	Vapor Intrusion ^d	-	NE	

NON-CANCER HAZARD

Site	Medium	Exposure Pathway	Future Resident	Future Recreational User	Future Construction Worker
	Surface Soil (0 to 0.5 foot bgs)	Direct Contact a	90	71	NE
Cross Alameda Trail	Surface and Subsurface Soil (0 to 10 feet bgs)	Direct Contact b	92	72	42
Cioss Alameda Trail	Groundwater	Direct Contact ^c	48	NE	NE
	Groundwater	Vapor Intrusion	3	NE	12

Notes:

- a Surface soil exposure pathways evaluated for direct contact are incidental ingestion, dermal contact, and inhalation of particulates from soil to outdoor air.
- b Subsurface soil exposure pathways assumes subsurface soil is excavated and brought to the surface. Subsurface soil exposure pathways evaluated for direct contact are incidental ingestion, dermal contact, and inhalation of particulate and volatile chemicals from soil to outdoor air.
- c Groundwater exposure pathways evaluated for direct contact are ingestion, dermal contact, and inhalation of volatile chemicals.
- d Vapor intrusion was evaluated for indoor air for the future resident and trench air for the future construction worker.
- -- No risk

bgs Below ground surface

NE Not evaluated

TABLE 10: HUMAN HEALTH RISK DRIVERS

Remedial Investigation for Cross Alameda Trail City of Alameda, California

Site	Medium	Exposure Pathway	Future Resident	Future Recreational User	Future Construction Worker
	Surface Soil (0 to 0.5 foot bgs) Direct Contact ^a		Arsenic Lead	Arsenic Lead	NE
Cross Alameda Trail	Surface and Subsurface Soil (0 to 10 feet bgs)	Direct Contact ^a	Arsenic Lead	Arsenic Lead	Arsenic Lead
	Groundwater	Domestic Use (Ingestion, dermal, inhalation)	Diesel Gasoline	NE	NE
	Groundwater	Vapor intrusion (inhalation)	Diesel Gasoline	NE	Diesel Gasoline

Notes: Risk drivers are those chemicals for which the chemical-specific cancer risk for a given exposure medium (for example, subsurface soil) exceeds 1E-06 or the chemical-specific noncancer hazard index exceeds 1.

-- No risk drivers were identified for this exposure pathway for this receptor.

bgs Below ground surface

NE Not evaluated

a Soil exposure pathways evaluated for direct contact are incidental ingestion, dermal contact, and inhalation of particulate and volatile chemicals released from soil to outdoor air. For future scenarios it is assumed that subsurface soil would be brought to the surface.

Table 11: Summary of General Uncertainties Associated with the Screening-Level Human Health Risk Assessment Remedial Investigation for Cross Alameda Trail City of Alameda, California

Uncertainty	Effect on Screening-Level Human Health Risk Assessment	Potential Magnitude and Effect on Risk
Data Evaluation		-
Systematic or random errors in the chemical analysis may yield erroneous data.	May underestimate risk because data for specific samples or analyses may be viewed as having fewer detected results, or fewer reliable results, as a result of laboratory errors or assumptions in the chemical analysis.	Low Underestimate
Sufficient samples may not have been collected to characterize the media evaluated.	May underestimate or overestimate risk because calculated risks for an exposure area may be based on very few samples, which may or may not be representative of the area at large.	Moderate Underestimate or Overestimate
Selection of Chemicals of Potential Cond	cern	
risks, regardless of whether they were found to exceed ambient concentrations.	May overestimate site-related risks, especially for arsenic, because a portion of the measured concentrations of metals are associated with ambient levels that are not site-related.	Moderate to High Overestimate
Polycyclic aromatic hydrocarbons (PAHs) were not included in the estimate of risks, because they were found to not exceed ambient concentrations during previous site investigations.	May underestimate site-related risks because a portion of the measured concentrations of may be associated with site-related risk.	Moderate to High Underestimate
Exposure Assessment		
and are assumed present uniformly across	May overestimate risks because use of maximum concentrations and the assumption of uniformity do not account for reductions to COPC concentrations that may result from biodegradation, chemical oxidation, hydrolysis, or other chemical removal processes.	
Sizes of exposure areas are fixed instead of variable.	May underestimate or overestimate risk because exposure may not be confined to the sizes of the areas selected for evaluation. EPCs for COPCs in adjacent exposure areas may be higher or lower.	Moderate Underestimate or Overestimate
The standard assumptions regarding body weight, period exposed, life expectancy, population characteristics, and lifestyle may not be representative of any actual exposure situation.	May overestimate risk associated with exposure to contaminants at the site because other environmental conditions may affect potential receptors, and health-related concerns may not necessarily be attributed to residual contaminants at the site.	Moderate Overestimate

Table 11: Summary of General Uncertainties Associated with the Screening-Level Human Health Risk Assessment Remedial Investigation for Cross Alameda Trail City of Alameda, California

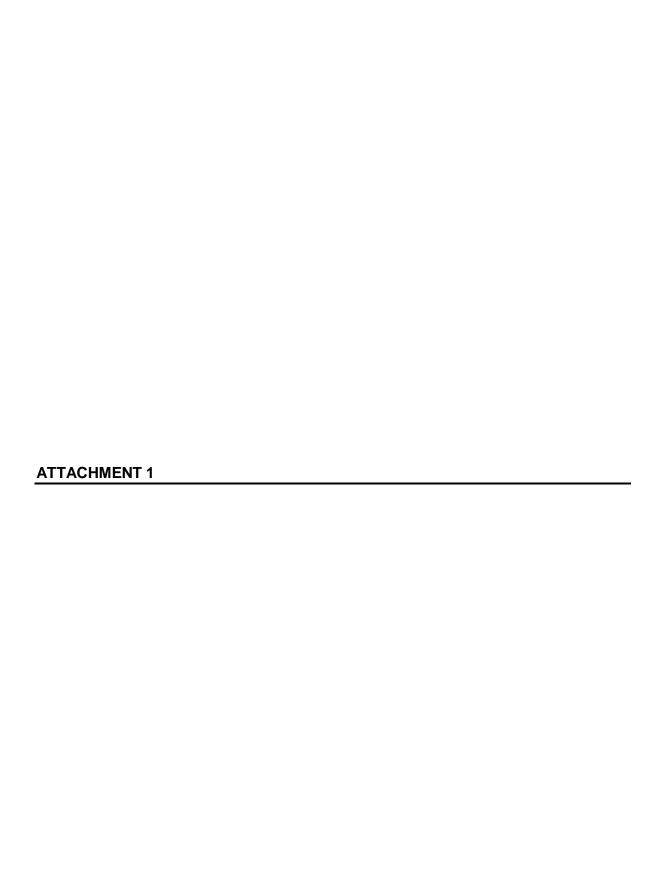
Uncertainty	Effect on Screening-Level Human Health Risk Assessment	Potential Magnitude and Effect on Risk
Exposure Assessment (continued)		
The amount of media intake is assumed constant and representative of the exposed population.	May underestimate or overestimate risk to potential receptors because individual intake could be less or more than the amount assumed in the risk evaluation. Furthermore, it is assumed that a receptor may take in the same amount of media over the entire exposure duration, which is unlikely to happen in actuality.	Moderate Underestimate or Overestimate
Exposure assumptions are based on high estimates of daily, long-term exposure for receptors.	Twenty-six years of exposure is assumed for residential receptors, including the most sensitive time of birth to six years old. These durations may overestimate exposure to these receptors because average intake or exposure could be less than is assumed in the risk evaluation. Likewise, the assumption that residents will reside in the same dwelling for most of their lifetime is very conservative.	Moderate to High Overestimate
Toxicity Assessment		
Statistical methods used to extrapolate from high to low doses rely on experimental animal data.	In animal studies, high doses of a test chemical are administered to laboratory animals, and the reported response is extrapolated to the much lower doses likely for human exposure. Very little experimental data are available on the dose-response relationship at low doses. Because of this uncertainty, EPA has selected a conservative model to estimate the low-dose relationship, and EPA uses an upper-bound estimate (typically a 95 percent upper confidence limit of the SF predicted by the extrapolation model) as the SF. An upper-bound estimate of potential cancer risks is obtained with this SF.	Moderate to High Overestimate
A toxicity value for a surrogate chemical was used to calculate risks when a toxicity value for a given COPC was unavailable.	Surrogate chemicals can introduce uncertainty because of the underlying assumption that the target chemical affects the same target organ or exerts the same method of carcinogenesis at the same effective dose as the surrogate chemical. Surrogate chemicals were used for the petroleum hydrocarbons and likely overestimate the actual risk from the petroleum mixtures.	Moderate Underestimate or Overestimate

Table 11: Summary of General Uncertainties Associated with the Screening-Level Human Health Risk Assessment Remedial Investigation for Cross Alameda Trail

City of Alameda, California

Uncertainty	Effect on Screening-Level Human Health Risk Assessment	Potential Magnitude and Effect on Risk
Risk Characterization		
Risks from carcinogens with different target organs are assumed additive.	This assumption contributes to uncertainty in the risk assessment and may result in underestimated or overestimated risks, depending on whether interactions among the COPCs are synergistic or antagonistic.	Moderate Underestimate or Overestimate
Uncertainty in the risk estimates may be magnified through multiplicative combination of many upper-bound, conservative assumptions for EPCs, chemical intake, and toxicity criteria.	May overestimate risks because upper-bound, conservative assumptions are compounded in the SLHHRA.	High Overestimate

Notes:


COPC Chemical of potential concern

EPA U.S. Environmental Protection Agency

EPC Exposure point concentration

SF Slope factor

SLHHRA Screening-level human health risk assessment

Alameda County Public Works Agency - Water Resources Well Permit

399 Elmhurst Street Hayward, CA 94544-1395 Telephone: (510)670-6633 Fax:(510)782-1939

Application Approved on: 08/12/2015 By jamesy

Permit Numbers: W2015-0752

Permits Valid from 09/01/2015 to 09/03/2015

City of Project Site: Alameda Application Id: 1438971832644

Site Location: APN: 74-905-20-3-South of Ralph Appezzato Memorial Pkwy, between Main & Webster St,

Alameda, CA

Project Start Date: 09/01/2015 Completion Date: 09/03/2015

Assigned Inspector: Contact Steve Miller at (510) 670-5517 or stevem@acpwa.org

Applicant: Tetra Tech - Mark Duffy Phone: 510-390-6278

1999 Harrison St, #500, Oakland, CA 94612

Property Owner: City of Alameda PWA - Gail Payne Phone: 510-747-7948 950 Webster Mall Sq, Alameda, CA 94501

Client: ** same as Property Owner **

> Total Due: \$265.00

Receipt Number: WR2015-0394 **Total Amount Paid:** 265 00

Payer Name : Mark T. Duffy Paid By: VISA PAID IN FULL

Works Requesting Permits:

Borehole(s) for Investigation-Contamination Study - 22 Boreholes

Driller: vironex - Lic #: 705927 - Method: DP Work Total: \$265.00

Specifications

Permit	Issued Dt	Expire Dt	#	Hole Diam	Max Depth
Number			Boreholes		
W2015-	08/12/2015	11/30/2015	22	2.25 in.	15.00 ft
0752					

Specific Work Permit Conditions

- 1. Backfill bore hole by tremie with cement grout or cement grout/sand mixture. Upper two-three feet replaced in kind or with compacted cuttings. All cuttings remaining or unused shall be containerized and hauled off site. The containers shall be clearly labeled to the ownership of the container and labeled hazardous or non-hazardous.
- 2. Boreholes shall not be left open for a period of more than 24 hours. All boreholes left open more than 24 hours will need approval from Alameda County Public Works Agency, Water Resources Section. All boreholes shall be backfilled according to permit destruction requirements and all concrete material and asphalt material shall be to Caltrans Spec or County/City Codes. No borehole(s) shall be left in a manner to act as a conduit at any time.
- 3. Permittee shall assume entire responsibility for all activities and uses under this permit and shall indemnify, defend and save the Alameda County Public Works Agency, its officers, agents, and employees free and harmless from any and all expense, cost, liability in connection with or resulting from the exercise of this Permit including, but not limited to, properly damage, personal injury and wrongful death.
- 4. Prior to any drilling activities, it shall be the applicant's responsibility to contact and coordinate an Underground Service Alert (USA), obtain encroachment permit(s), excavation permit(s) or any other permits or agreements required for that Federal, State, County or City, and follow all City or County Ordinances. No work shall begin until all the permits and requirements have been approved or obtained. It shall also be the applicants responsibilities to provide to the Cities or to Alameda County an Traffic Safety Plan for any lane closures or detours planned. No work shall begin until all the permits and requirements have been approved or obtained.

Alameda County Public Works Agency - Water Resources Well Permit

- 5. Applicant shall contact assigned inspector listed on the top of the permit at least five (5) working days prior to starting, once the permit has been approved. Confirm the scheduled date(s) at least 24 hours prior to drilling.
- 6. Copy of approved drilling permit must be on site at all times. Failure to present or show proof of the approved permit application on site shall result in a fine of \$500.00.
- 7. Electronic Reporting Regulations (Chapter 30, Division 3 of Title 23 & Division 3 of Title 27, CCR) require electronic submission of any report or data required by a regulatory agency from a cleanup site. Submission dates are set by a Regional Water Board or by a regulatory agency. Once a report/data is successfully uploaded, as required, you have met the reporting requirement (i.e. the compliance measure for electronic submittals is the actual upload itself). The upload date should be on or prior to the regulatory due date.

8. NOTE:

Under California laws, the owner/operator are responsible for reporting the contamination to the governmental regulatory agencies under Section 25295(a). The owner/operator is liable for civil penalties under Section 25299(a)(4) and criminal penalties under Section 25299(d) for failure to report a leak. The owner/operator is liable for civil penalties under Section 25299(b)(4) for knowing failure to ensure compliance with the law by the operator. These penalty provisions do not apply to a potential buyer.

9. Permit is valid only for the purpose specified herein. No changes in construction procedures, as described on this permit application. Boreholes shall not be converted to monitoring wells, without a permit application process.

Duffy, Mark

From: support@usan.org

Sent: Wednesday, August 26, 2015 12:24 PM

To: Duffy, Mark

Subject: USAN 2015/08/26 #00000 0418286-000 NORM RNEW

00000 USAN 08/26/15 12:21:25 0418286 NORMAL NOTICE RENEWAL

Message Number: 0418286 Received by USAN at 12:19 on 08/26/15 by VVL

Work Begins: 08/28/15 at 12:30 Notice: 020 hrs Priority: 2

Night Work: N Weekend Work: N

Expires: 09/23/15 at 23:59 Update By: 09/21/15 at 16:59

Caller: MARK DUFFY
Company: TETRA TECH

Address: 1999 HARRISON ST STE 500

City: OAKLAND State: CA Zip: 94612
Business Tel: 518-480-5947 Fax: 510-433-0830

Email Address: MARK.DUFFY@TETRATECH.COM

Nature of Work: VERTICAL BORING FOR PHASE 2 SITE ASSESSM

Done for: CITY OF ALAMEDA Explosives: N

Foreman: CALLER

Field Tel: Cell Tel: 518-480-5947

Area Premarked: Y Premark Method: CHALK, WHITE PAINT Permit Type: COUNTY Number: W2014-1180

Vac / Pwr Equip Use In The Approx Location Of Member Facilities Requested: N Excavation Enters Into Street Or

Sidewalk Area: N

Location:

S/SI/O RALPH APPEZZATO MEMORIAL PKWY FR WEBSTER ST TO MAIN ST (EXT APP 100'S FOR ENT DIST-PER CALLER)

Place: ALAMEDA County: ALAMEDA State: CA

Long/Lat Long: -122.291306 Lat: 37.77882 Long: -122.276556 Lat: 37.779995

Excavator Requests Operator(s) To Re-mark Their Facilities: Y

Operator(s) To Re-mark Their Facilities:

CTYALA = CITY ALAMEDA CTYOAK = CITY OAKLAND CONST DEPT

COMHAY = COMCAST-HAYWARD COMOAK = COMCAST-OAKLAND

COMOAK = COMCAST-OAKLAND

COMOAK = COMCAST-OAKLAND

EBWCMS = EAST BAY WATER MPOWER = MPOWER COMMUNICATIONS

PACBEL = PACIFIC BELL PGEOAK = PGE DISTR OAKLAND

Comments:

RENEWAL OF TICKET RN#533298 ORIG DATE 12/23/2014 RE-MARK YES-VVL

08/26/2015 - ALL MEMBERS

Sent to:

CTYALA = CITY ALAMEDA CTYOAK = CITY OAKLAND CONST DEPT
COMHAY = COMCAST-HAYWARD COMOAK = COMCAST-OAKLAND

EBWCMS = EAST BAY WATER MPOWER = MPOWER COMMUNICATIONS

PACBEL = PACIFIC BELL PGEOAK = PGE DISTR OAKLAND

Member Contact Information

Member Utility Main Contact # Vacuum Contact # Emergency # After hours #

CITY ALAMEDA (510)748-3943 (510)715-6111 (510)748-3966

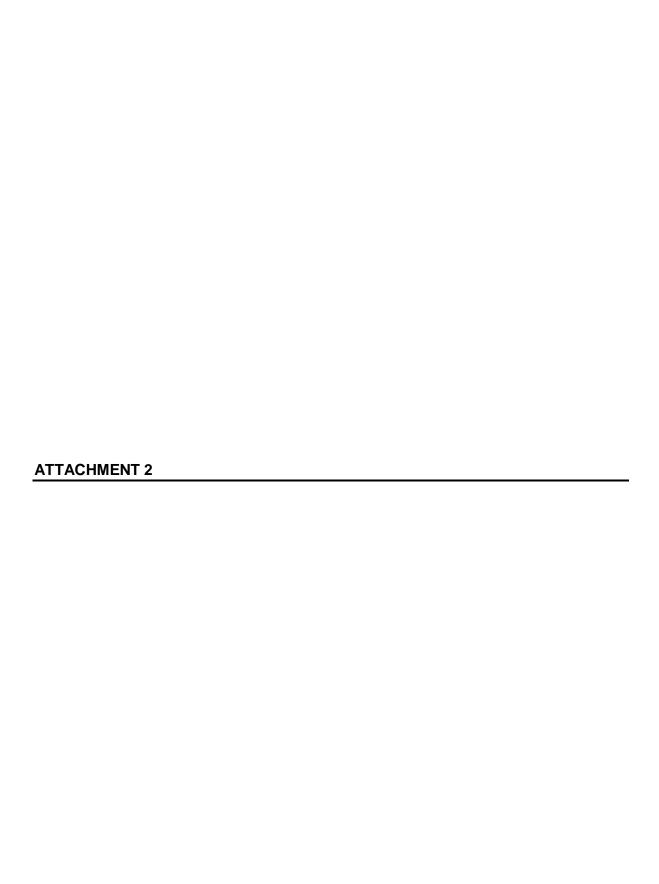
(510)715-6111

CITY OAKLAND C (510)238-6348 (510)772-8134

(510)238-7288

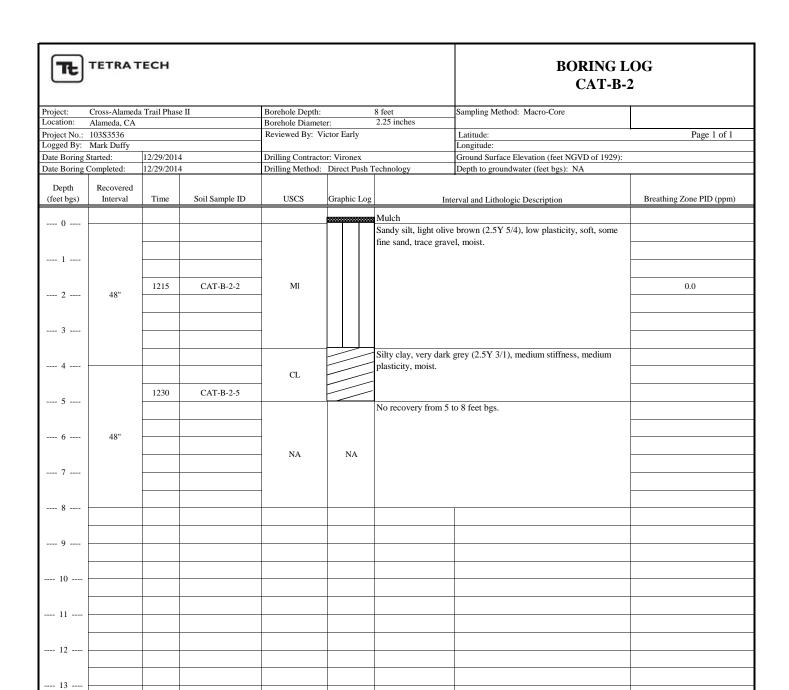
COMCAST-HAYWAR (510)887-1300 (888)824-8399

COMCAST-OAKLAN (510)887-1300 (888)824-8219 (888)824-8399


EAST BAY WATER (510)287-0600 (510)287-0600

MPOWER COMMUNI (916)903-6028

(877)370-4482


PACIFIC BELL (510)645-2929 (510)645-2929 (510)645-2929 (800)332-1321x8 PGE DISTR OAKL (800)743-5000x00 (800)743-5000 (800)743-5000 (800)743-5000

The information contained herein ("Data") is provided to the recipient exclusively for informational purposes in response to a request by the recipient. Underground Service Alert of Northern California and Nevada, a California nonprofit mutual benefit corporation ("USA North"), makes absolutely no representations or warranties whatsoever, whether expressed or implied, as to the accuracy, thoroughness, value, quality, validity, suitability, condition or fitness for a particular purpose or use of the Data, nor as to whether the Data is error-free, up-to-date, complete or based upon accurate or meaningful facts. Further, the Data should not be relied-upon by the recipient for any purposes. USA North does not assume, and expressly disclaims, any and all liability for any damages incurred directly or indirectly, whether foreseeable or not, as a result of errors, omissions or discrepancies contained within or concerning the Data.

	Cross-Alameda	Trail Phase	e II	Borehole Depth:			Sampling Method: Macro-Core	
	Alameda, CA			Borehole Diameter		2.25 inches		
	103S3536			Reviewed By: Vio	ctor Early		Latitude:	Page 1 of 1
	Mark Duffy						Longitude:	
Date Boring S		12/29/2014		Drilling Contractor			Ground Surface Elevation (feet NGVD of 1929):	
Date Boring (Completed:	12/29/2014	ļ .	Drilling Method:	Direct Push T	Гесhnology	Depth to groundwater (feet bgs): NA	
Depth (feet bgs)	Recovered Interval	Time	Soil Sample ID	USCS	Graphic Log	Inte	rval and Lithologic Description	Breathing Zone PID (ppm)
0						Asphalt/fill		
1						Silty sand, light olive	brown (2.5Y 5/4), approximately 3 inch black nostly fine sand, trace gravel, slighlty moist.	
2	48"	1115	CAT-B-1-2					0.0
3				SM				
4		1130	CAT-B-1-4			Cites and block (2.5	W25(I) and have a superhander in	
5						mostly fine sand, very	Y 2.5/1), soft, loose to very low plasticity, moist to wet.	
3								
6	48"			SM				
7								
8	<u> </u>							
9								
10								
10	<u> </u>							
11								
12								
13	<u> </u>							
14								
15								
16								
17								
18								
19								
20								

--- 14 ----

---- 15 ----

--- 16 ----

---- 17 ----

---- 18 ----

--- 19 ----

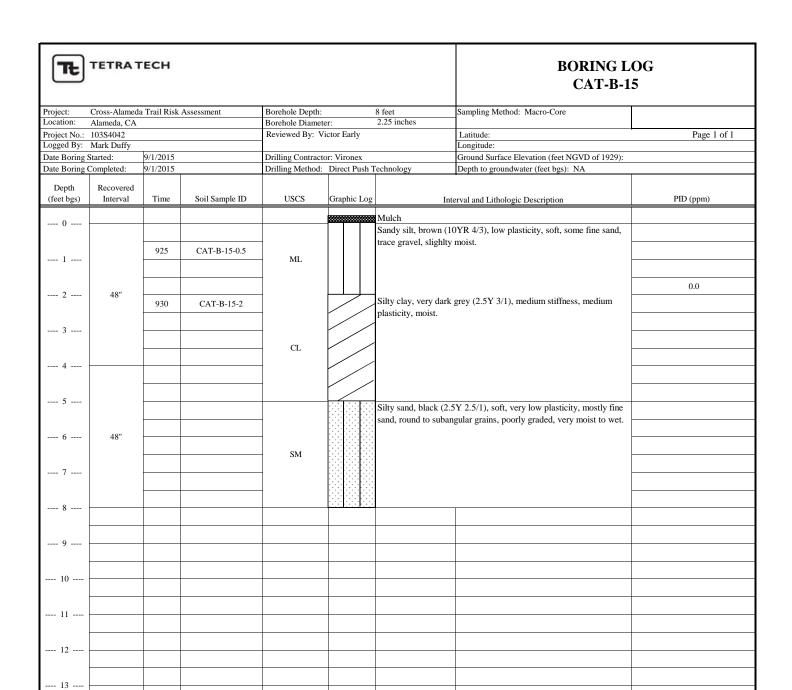
---- 20 ----

	Cross-Alameda	ı Trail Phase	e II	Borehole Depth:			Sampling Method: Macro-Core	
Location:	Alameda, CA		·	Borehole Diameter	r:	2.25 inches		
	103S3536			Reviewed By: Vio			Latitude:	Page 1 of 1
Logged By:	Mark Duffy			1			Longitude:	1 4 5 1 01 1
		10/20/201	4	D 1111 C	x /·			
Date Boring S		12/29/2014		Drilling Contractor			Ground Surface Elevation (feet NGVD of 1929):	
Date Boring (ompleted:	12/29/2014	<u>+</u>	Drilling Method:	Direct Push T	ecnnology	Depth to groundwater (feet bgs): NA	T
Depth (feet bgs)	Recovered Interval	Time	Soil Sample ID	USCS	Graphic Log	Inte	rval and Lithologic Description	Breathing Zone PID (ppm)
0							2.5Y 4/1), medium stiffness, medium	
1		1535	CAT-B-6-1			plasticity, moist.		
				CL				0.0
2	48"							
3							n material, white (2.5Y 8/1) with yellowish red	
4		1530	CAT-B-6-4	NA	NA	(5YR 5/6)staining, ch	alky, very moist	
5								
						Silty sand, very dark plasticity, very moist.	grey (2.5Y 3/1), soft, loose to very low	
6	48"			SM				
7								
8								
9								
10								
11	<u> </u>							
12								
13								
14								
15								
16								
17								
18								
19								
20								

Project: Location:	Cross-Alameda Trail Phase II			Borehole Depth: 8 feet		8 feet 2.25 inches	Sampling Method: Macro-Core	
	Alameda, CA 103S3536		Borehole Diameter: Reviewed By: Victor Early			Latitude:	Page 1 of 1	
	Mark Duffy			Reviewed By. Vi	ctor Larry		Longitude:	Tage 1 of 1
Date Boring		12/30/2014	1	Drilling Contracto	r: Vironex		Ground Surface Elevation (feet NGVD of 1929):	
Date Boring		12/30/2014		Drilling Method:			Depth to groundwater (feet bgs): NA	
Depth (feet bgs)	Recovered Interval	Time	Soil Sample ID	USCS	Graphic Log	Inte	erval and Lithologic Description	Breathing Zone PID (ppm)
0				-		Silty clay, olive brow plasticity, moist.	n (2.5Y 4/4). Medoium stiffness, medium	
1						1		
		835	CAT-B-7-1	CL				0.0
2	48"							
3							n material, black (2.5Y 2.5/1), olive brown 5Y 8/1), loose to slightly stiff, moist.	
4		840	CAT-B-7-4	NA	NA	(2.5 1 % 7), white (2.5	1 0 1), 10000 to original, month	
				-				
5						Silty sand, very dark plasticity, very moist.	grey (2.5Y 3/1), soft, loose to very low	
6	48"			SM				
7				_				
8								
9								
10								
11								
12								
12								
13								
14								
15								
16								
17								
18								
19								
20				1			l	1

	Cross-Alameda Trail Risk Assessment			Borehole Depth: 9 feet			Sampling Method: Macro-Core	
Location: Alameda, CA			Borehole Diameter: 2.25 inches			· •	P. 1.61	
Project No.: 103S3536 Logged By: Mark Duffy			Reviewed By: Victor Early			Latitude: Longitude:	Page 1 of 1	
Date Boring Started: 12/30/2014			Drilling Contracto	r: Vironex		Ground Surface Elevation (feet NGVD of 1929)	:	
Date Boring (12/30/2014		Drilling Method:		Гесhnology	Depth to groundwater (feet bgs): NA	
Depth							•	
(feet bgs)	Interval	Time	Soil Sample ID	USCS	Graphic Log	Inte	erval and Lithologic Description	Breathing Zone PID (ppm)
0						Gravel fill		
				NA			(2.5V 4/4) 1: 4:ff 1:	
1					//	plasticity, moist.	rn (2.5Y 4/4), medium stiffness, medium	
1					plasticity, moist.		0.0	
		1310	1310 CAT-B-10-2					
2				CL				
	60"	1320	CAT-B (duplicate)	CL				
3								
5					//			
4					 	Sandy silt black (2.5	Y 2.5/1), sticky, soft, low plasticity, very	
				ML		moist.	1 2.5, 1), sticky, sort, fow plasticity, very	
5		1305	CAT-B-10-5					
J						Silty sand, grey (2.5Y	Y 5/1), soft, loose, very moist.	
6								
7	48"			SM				
,				51.12				
8								
9								
10								
11								
12								
13								
1.4								
14								
15								
16								
-0 -								
17								
18								
19								
20								
-								

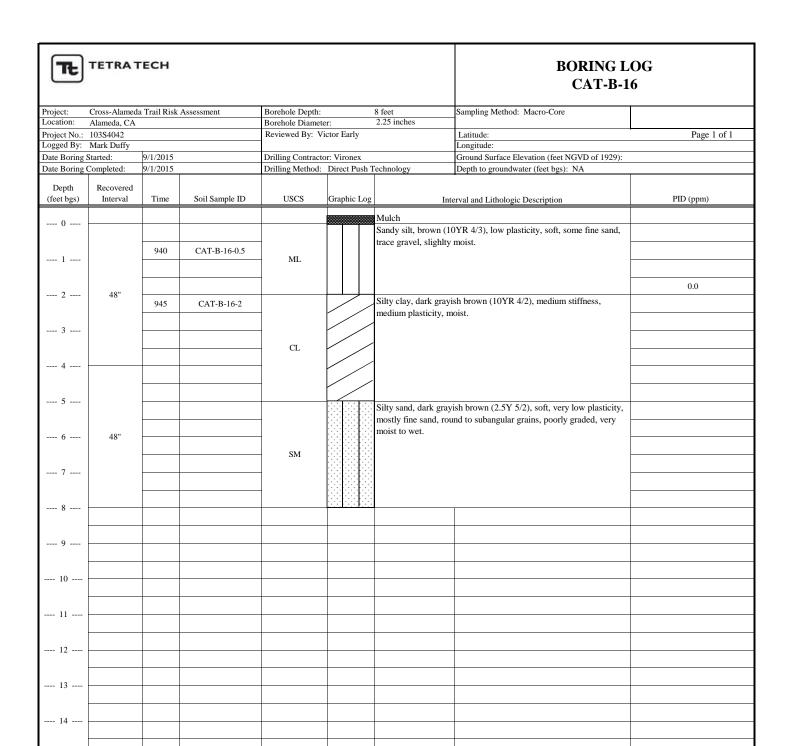
Project:	Cross-Alameda	a Trail Risk	Assessment	Borehole Depth:		15 feet	Sampling Method: Macro-Core		
Location:	Alameda, CA			Borehole Diamete	r:	2.25 inches			
Project No.:	o.: 103S4024			Reviewed By: Victor Early			Latitude: Page 1 of 1		
							Longitude:		
	oring Started: 9/1/2015			Drilling Contractor: Vironex			Ground Surface Elevation (feet NGVD of 1929):		
Date Boring	Completed:	9/1/2015	T	Drilling Method:	Direct Push	Гесhnology	Depth to groundwater (feet bgs): 5.15		
Depth (feet bgs)	Recovered Interval	Time	Sample ID	USCS	Graphic Log	Inte	erval and Lithologic Description	PID (ppm)	
0					*******	Asphalt/fill			
			CAT-B-11-0.5 (soil)				(2.5Y 4/1), soft, loose to very low plasticity,		
1		737		-			ce gravel, poorly graded, moist to wet at 4 feet		
				-		bgs.			
2	48"			-				0.0	
				-					
3				-					
		7.11	CATE II I ()	-					
4		741	CAT-B-11-4 (soil)	_					
5				<u>v</u>					
6	48"								
7				-					
7									
8				SM					
				-				0.0	
9									
				-					
10	48"			_					
				_					
11	-								
				_					
12			CAT-B-11-GW (water)						
			(aoi)						
13	20"								
14	32"								
14									
15									
16						* Installed temporary screen from 10 to 15	15 foot PVC well casing with 0.01-inch feet bgs.		
17									
18									
19									
20	—	+		1	+				


	Cross-Alameda	a Trail Risk	Assessment	Borehole Depth:					Sampling Method: Macro-Core	
	Alameda, CA			Borehole Diameter			- 4	2.25 inches		
	103S4024			Reviewed By: Vio	ctor 1	Early			Latitude:	Page 1 of 1
	Mark Duffy	la 12 17 1			_				Longitude:	
Date Boring S		9/1/2015		Drilling Contractor					Ground Surface Elevation (feet NGVD of 1929):	
Date Boring (Completed:	9/1/2015		Drilling Method:	Dire	ect Push	Te	echnology	Depth to groundwater (feet bgs): NA	
Depth (feet bgs)	Recovered Interval	Time	Soil Sample ID	USCS	Graj	phic Lo	g	Inte	rval and Lithologic Description	PID (ppm)
0					XX	XXXX	\boxtimes	Asphalt/fill		
			CAT-B-12-0.5		ŮŒ.				VP 4/2) 6 1 4 2 6 4 1 1 1	
1		802							YR 4/3) from 1 to 2 feet bgs, very dark grey	
1							- 19	(2.5 Y 3/1) from 2 to 4	4 feet bgs, low plasticity, moist.	
2	48"									0.0
	40			ML						
3										
-										
		805	CAT-B-12-4							
4		803	CA1-B-12-4							
									(2.5Y 4/1), soft, very low plasticity, mostly	
									bangular grains, poorly graded, very moist to	
5							: [wet.		
										0.0
						335				
6	48"			SM						
					88	133E				
7										
,										
8						0.000	-			
0										
9										
							+			
10							4			
11							Ħ			
12										
12							T			
							1			
13							4			
							T			
14							+			
							4			
15										
15							T			
							+			
16							_			
17							+			
							1			
10										
18							1			
							+			
19										
-/										
							1			
20							+			
		1		i .			- 1	J	II.	

	Cross-Alameda	a Trail Risk	Assessment	Borehole Depth:						Sampling Method: Macro-Core	
	Alameda, CA			Borehole Diamete		_	1	2	2.25 inches	¥ •	D 1 C1
	103S4024 Mark Duffy			Reviewed By: Vi	ctor	Ear	ly			Latitude: Longitude:	Page 1 of 1
Date Boring S		9/1/2015		Drilling Contracto	r: Vi	iron	iex			Ground Surface Elevation (feet NGVD of 1929):	
Date Boring (9/1/2015		Drilling Method:				Те		Depth to groundwater (feet bgs): NA	
Depth (feet bgs)	Recovered Interval	Time	Soil Sample ID	USCS	Gra	ıphi	c Log	g	Inte	rval and Lithologic Description	PID (ppm)
0											
0									Asphalt/fill		
		015	CAT-B-13-0.5		V-					YR 4/3) from 1 to 2 feet bgs, very dark grey	
1		815		_						4 feet bgs, low plasticity, moist, glass at 2 feet	
								ŀ	bgs.		
2	48"										0.0
				ML							
3											
		818	CAT-B-13-4	1							
4		010	CA1-B-13-4			ļ.,		٠. د	Cilty cand dark arayi	sh brown (2.5Y 4/2), soft, very low plasticity,	
				_						nd to subangular grains, poorly graded, very	
5									moist to wet.		
5											0.0
6	48"			SM							
				-							
7				_							
				_							
8							383				
Ü											
9											
10											
11											
12											
13								+			
								+			
14								4			
15											
15											
								T			
16								+			
								+			
17								\downarrow			
10											
18											
								\top			
19								+			
								+			
20								4			
				1	1						

Project:	Cross-Alameda	Trail Rick	Accessment	Borehole Depth:				8 feet	Sampling Method: Macro-Core	
Location:	Alameda, CA	i IIaii Kisk	Assessment	Borehole Diameter				2.25 inches	Bamping Wethod: Waero-core	
						D. 1		2.23 menes	Y	B 1 01
	103S4024			Reviewed By: Vio	tor	Earl	y		Latitude:	Page 1 of 1
	Mark Duffy	1							Longitude:	
Date Boring S	Started:	9/1/2015		Drilling Contractor	:: Vi	irone	ex		Ground Surface Elevation (feet NGVD of 1929):	
Date Boring	Completed:	9/1/2015		Drilling Method:	Dire	ect P	ush T	Technology	Depth to groundwater (feet bgs): NA	
ъ.										
Depth	Recovered	Tr:	C-:1 C1- ID	Hece	C	1.:.	T			DID ()
(feet bgs)	Interval	Time	Soil Sample ID	USCS	Gra	pnic	Log	Inte	erval and Lithologic Description	PID (ppm)
0								A amb a 14/6:11		
			G1T D 1105		縋		223	Asphalt/fill		
			CAT-B-14-0.5						wn (2.5Y 5/2) from 1 to 2 feet bgs, dark grey	
1		845							4 feet bgs, low plasticity, moist.	
1								(2.51 4/1) 110111 2 10	4 feet bgs, fow plasticity, moist.	
										0.0
2	48"			CT.						
				CL						
3										
						1	1	1		
4		850	CAT-B-14-4			<u></u>		<u></u>		
4			-					Silty sand, black (2.5	Y 2.5/1), soft, very low plasticity, mostly fine	
							100		gular grains, poorly graded, very moist to wet.	
							::::	l,		
5										
							: :::	1		0.0
6	48"			SM			100			
							100			
							100			
7										
,										
							100			
8							- :::			
0										
9										
10										
11										
12										
12										
1.2										
13										
14										
15										
16										
17										
18										
10										
19										
20										
20										
		1						1		

--- 14 ----

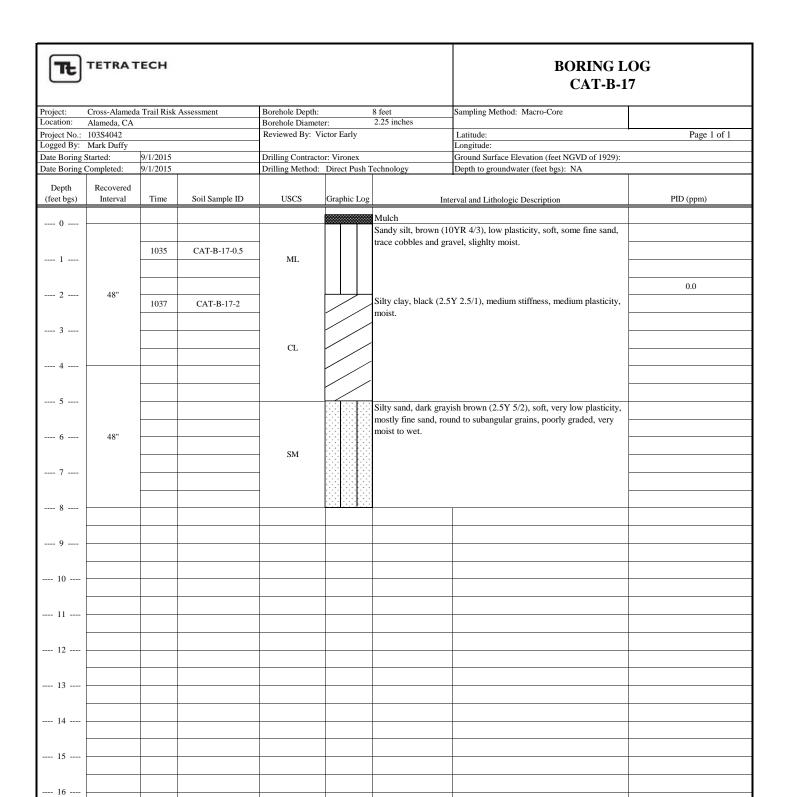

---- 15 ----

--- 16 ----

--- 17 ----

---- 18 ----

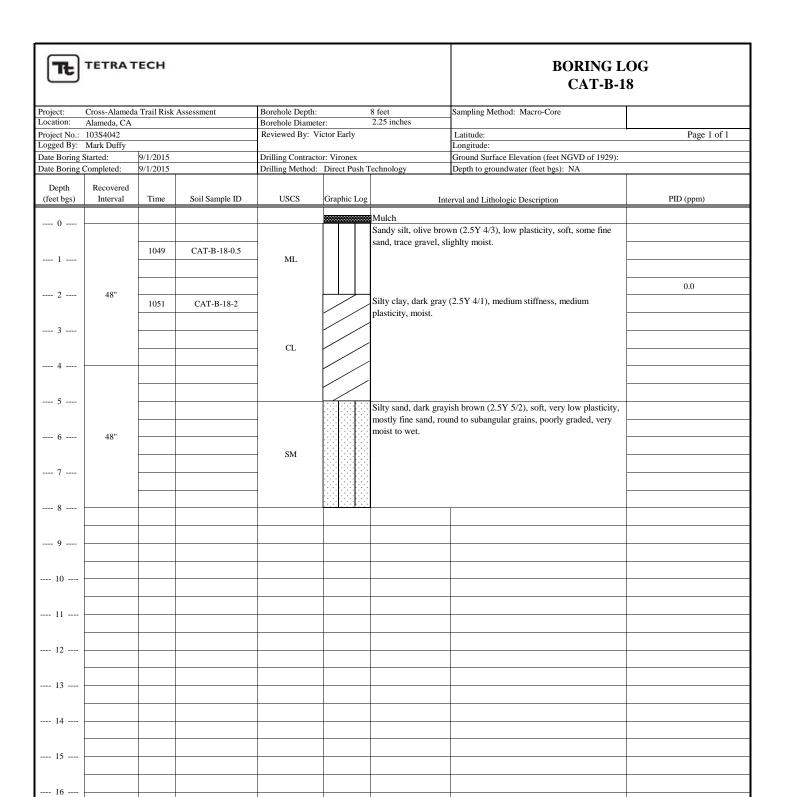
--- 19 ----


---- 15 ----

--- 16 ----

--- 17 ----

---- 18 ----


--- 19 ----

--- 17 ----

---- 18 ----

--- 19 ----

--- 17 ----

---- 18 ----

--- 19 ----

Project:	Cross-Alameda	Trail Risk	Assessment	Borehole Depth:		7 feet	Sampling Method: Macro-Core	
	Alameda, CA			Borehole Diamete		2.25 inches		
	103S4024			Reviewed By: Vi			Latitude:	Page 1 of 1
	Mark Duffy						Longitude:	1 4 9 1 0 1 1
Date Boring S		9/1/2015		Drilling Contracto	r. Vironey		Ground Surface Elevation (feet NGVD of 1929):	
Date Boring (9/1/2015		Drilling Method:			Depth to groundwater (feet bgs): NA	
Dute Boring (ompieteu.	77172015		Brining inteniou.	Direct rush r	ceimology	Dopin to ground water (reet ogo). 141	
Depth (feet bgs)	Recovered Interval	Time	Soil Sample ID	USCS	Graphic Log	Inte	erval and Lithologic Description	PID (ppm)
						Mulch		
0							gray brown (2.5Y 3/2), medium stiffness, low	
						plasticity, moist.	gray brown (2.51 5/2), medium surmess, row	
		1307	CAT-B-19-0.5		// /	plasticity, moist.		
1		1307						0.0
				CL				0.0
				-	// ,			
2	48"							
3						Marsh crust/unknowr	n material, white (2.5Y 8/1) with yellowish red	
						(5YR 5/6)staining, ch		
		1304	CAT-B-19-4			(3, · · · 3	
4				NA	NA			
				-				
-								
5						Silty sand, very dark	grey (10YR 3/3), soft, loose to very low	
	32"			-			to wet, drilling refusal at 7 feet bgs.	
6				SM				
0				Sivi				
				-				
7								
/								
8								
0								
9								
10								
11								
12								
13				 				
				1				
14				1				
				1				
1.5								
15								
16								
10				<u> </u>				
17								
-, -								
				1				
18								
19								
20								

	Cross-Alameda	Trail Risk	Assessment	Borehole Depth:		8 feet	Sampling Method: Macro-Core	
	Alameda, CA			Borehole Diameter		2.25 inches	¥ .5: 4	D 1 C1
	103S4024 Mark Duffy			Reviewed By: Vio	ctor Early		Latitude: Longitude:	Page 1 of 1
Date Boring S		9/1/2015		Drilling Contracto	r. Vironev		Ground Surface Elevation (feet NGVD of 1929):	
Date Boring O		9/1/2015		Drilling Method:			Depth to groundwater (feet bgs): NA	
				Ü			, , ,	
Depth (feet bgs)	Recovered Interval	Time	Soil Sample ID	USCS	Graphic Log	Inte	rval and Lithologic Description	PID (ppm)
0						Mulch		
0							gray brown (2.5Y 3/2), low stiffness, low	
			CAT D 20 0 5			plasticity, moist.		
1		1307	CAT-B-20-0.5					
				CL				0.0
				CL				
2	48"							
					//			
3								
							material, white (2.5Y 8/1) with yellowish red	
		1304	CAT-B-20-4			(5YR 5/6)staining, ch	alky, very moist	
4		1304		NA	NA			
5								
5							Y 2.5Y/1), soft, loose to very low plasticity,	
						very moist to wet.		
6	48"							
				SM				
7								
7								
8								
9								
10								
11								
12								
12								
13								
14								
14								
15								
16								
10								
17								
1.0								
18								
19								
20								

Project:	Cross-Alameda	Trail Rick	Accessment	Borehole Depth:		8 feet	Sampling Method: Macro-Core	
Location:	Alameda, CA	t Trair Kisk	Assessment	Borehole Diameter		2.25 inches	Bamping Method. Macro-core	
	103S4024			Reviewed By: Vic			Latitude:	Page 1 of 1
	Mark Duffy			reviewed by. VI	on Daily		Longitude:	Fage 1 01 1
		9/1/2015		D.::11: C	17:			
Date Boring	Started:			Drilling Contracto			Ground Surface Elevation (feet NGVD of 1929):	
Date Boring	completed:	9/1/2015		Drilling Method:	Direct Push I	есипоюду	Depth to groundwater (feet bgs): NA	
Depth	Recovered							
(feet bgs)	Interval	Time	Soil Sample ID	USCS	Graphic Log	Inte	erval and Lithologic Description	PID (ppm)
							•	
0						Mulch		
							gray brown (2.5Y 3/2), low stiffness, low	
						plasticity, moist.		
1		1348	CAT-B-21-0.5			1		
1								0.0
				CL		1		
2	40"							
2	48"							
					/ /			
3						Marsh crust/unknowr	n material, white (2.5Y 8/1) with yellowish red	
						(5YR 5/6)staining, ch		
		1351	CAT-B-21-4			C 11. 5/0/5mining, Cl		
4		1331		NA	NA			
5						Cilty and 1-11- /2 5	V 2.5V/1) and large to11	
							Y 2.5Y/1), soft, loose to very low plasticity,	
						very moist to wet.		
6	48"							
				SM				
7								
,								
0								
8								
9								
10								
11								
12								
13								
-								
14								
15		<u> </u>		<u> </u>				
13								
1.0								
16								
17								
18								
19								
20		<u> </u>		<u> </u>				
20								

								1
	Cross-Alameda	a Trail Risk	Assessment	Borehole Depth:		8 feet	Sampling Method: Macro-Core	
Location:	Alameda, CA			Borehole Diamete	er:	2.25 inches		
Project No.:	103S4024			Reviewed By: Vi	ctor Early		Latitude:	Page 1 of 1
	Mark Duffy			1			Longitude:	
Date Boring		9/1/2015		Drilling Contracto	r. Vironav		Ground Surface Elevation (feet NGVD of 1929):	
Date Boring	Completed:	9/1/2015		Drilling Method:	Direct Push 1	Technology	Depth to groundwater (feet bgs): NA	T
Donth	Recovered							
Depth		Tr.	0.10 1.10	TICCC	G 1: 1			DID (
(feet bgs)	Interval	Time	Soil Sample ID	USCS	Graphic Log	Inte	erval and Lithologic Description	PID (ppm)
						M1-1-		
0						Mulch		
					///		k gray brown (2.5Y 3/2), low stiffness, low	
						plasticity, moist.		
		1400	CAT-B-22-0.5			1		
1								0.0
				CL		·		0.0
				C.D.				
2	48"					1		
2								
3						Marsh crust/unknow	n material, white (2.5Y 8/1) with yellowish red	
						(5YR 5/6)staining, cl		
		1358	CAT-B-22-4			(5 11t 5/ 5) stanning, c	many, very mouse	
4		1336		NA	NA			
				1				
5								
3						Silty sand, black (2.5	SY 2.5Y/1), soft, loose to very low plasticity,	
						very moist to wet.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
					Referen	very moist to wet.		
6	48"							
				SM				
7								
7					1000000000			
8					13300000000			
9								
10								
11								
11								
12								
13								
13	1							
	<u> </u>	1			1			
14								
		1						
15								
		1						
16		1						
17								
		1						
	<u> </u>	1						
18								
		1						
19								
-/-								
	<u> </u>	-						+
		1						
20							<u> </u>	
				1	1			

	Cross-Alameda Trail Risk Assessment					15 feet	Sampling Method: Macro-Core			
	Alameda, CA			Borehole Diamete		r 1		2.25 inches	¥	D 1 C1
	103S4024 Mark Duffy			Reviewed By: Vi	ctor	Early	/		Latitude: Longitude:	Page 1 of 1
Date Boring S		9/2/2015		Drilling Contracto	r: Vi	rone	x		Ground Surface Elevation (feet NGVD of 1929):	
Date Boring O		9/2/2015		Drilling Method:					Depth to groundwater (feet bgs): 5.21	
Depth	Recovered									
(feet bgs)	Interval	Time	Soil Sample ID	USCS	Gra	phic	Log	Inte	erval and Lithologic Description	PID (ppm)
						_				417
0						XXX	000	Gravel fill		
					\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	332	XXX			
		1205	CAT-B-23-0.5		=	\equiv	=		YR 5/3), medium stiffness, low plasticity,	
1				CL		_	=	moist.		0.0
					F		\subseteq	Sandy eilt brown (10	YR 5/3), reddish brown mottling (5YR 4/4) at	
2	48"								it, low plasticity, very moist.	
		1210	CAT-B-23-2						,,	
3										
				ML						
4										
4										
				_						
5										
									(5Y 4/1), color change to brown (10YR 4/3) at	
								10 feet bgs, soft, loos	e, wet.	
6	48"			_						
				-						
7										
7										
				_						
8				-						
9				SM						0.0
				-						0.0
10	40"									
10	48"									
11				-						
		1400	CAT-B-23-GW							
12				-						
13										
	A							Sandy silt, brown (10	YR 4/3), sticky, soft, very moist.	
	36"			1						
14				ML						
				_						
15					L	L	L			
15										
								* Installed temporary	15 foot PVC well casing with 0.01-inch	
16					_			screen from 10 to 15		
									5	
17					1					
10										
18										
					1					
19										
20					-					
					1					

	Cross-Alamed	a Trail Risk	Assessment	Borehole Depth:			Sampling Method: Macro-Core	
Location:	Alameda, CA			Borehole Diamete		2.25 inches	Y at 1	D1-f1
	103S4024 Mark Duffy			Reviewed By: Vie	ctor Early		Latitude: Longitude:	Page 1 of 1
Date Boring S		9/2/2015		Drilling Contracto	r: Vironey		Ground Surface Elevation (feet NGVD of 1929):	
Date Boring (9/2/2015		Drilling Method:			Depth to groundwater (feet bgs): NA	
				Ü			, , ,	
Depth (feet bgs)	Recovered Interval	Time	Soil Sample ID	USCS	Graphic Log	Into	rval and Lithologic Description	PID (ppm)
(rect ogs)	Interval	Time	Son Sample 12	CBCB	Grapine Log	Title	I vai and Entifologic Description	T ID (ppiii)
0					~~~~			
				NA		Gravel fill		
		1230	CAT-B-24-0.5	SM		Silty sand, brown (2.5	5Y 4/4), loose, slightly moist.	
1						Silty clay, olive brow	n (2.5Y 4/4), medium stiffness, medium	
				CL		plasticity, moist.		
2	48"	1240	CAT-B-24-2					
-							sh brown (10YR 4/2), soft, loose, very moist	0.0
						to wet at 5 feet bgs.		
3								
4								
4								
5				SM				
	4011							
6	48"							0.0
7								
8					,			
9								
10								
11								
11								
12								
1.2								
13								
14								
15								
15								
16								
1.7								
17								
18								
19								
20								
_0 -								

Project: Location:	Cross-Alamed	a Trail Risk	Assessment	Borehole Depth:		8 feet 2.25 inches	Sampling Method: Macro-Core	
	Alameda, CA 103S4024			Borehole Diamete Reviewed By: Vi		2.23 menes	Latitude:	Page 1 of 1
	Mark Duffy			Reviewed By. VI	Ctor Earry		Longitude:	rage 1 01 1
Date Boring		9/2/2015		Drilling Contracto	r: Vironex		Ground Surface Elevation (feet NGVD of 1929):	
Date Boring		9/2/2015		Drilling Method:			Depth to groundwater (feet bgs): NA	
Depth	Recovered							
(feet bgs)	Interval	Time	Soil Sample ID	USCS	Graphic Log	Inte	erval and Lithologic Description	PID (ppm)
0								
0				NA		Gravel fill		
		1300	CAT-B-25-0.5	SM	· · · · · · · · · · · · · · · · · · ·		5Y 4/4), loose, slightly moist.	
1		1300	CAT-B-23-0.3	3101		1		
				CL		plasticity, moist.	n (2.5Y 4/4), medium stiffness, medium	
		1255	CAT-B-25-2	CE		- plasticity, moist.		
2	48"					Silty sand, dark grayi	sh brown (10YR 4/2), soft, loose, very moist	0.0
						to wet at 5 feet bgs.	•	
3								
4				-				
				-				
5				SM				
J				5141		:		
				-		:		
6	48"			-				0.0
				-				0.0
7								
/						:		
				-				
8								
9								
10								
11								
12								
13								
					<u></u>			
14								
15								
16								
17								
•								
18								
19								
1,								
20					-			
			İ	1		I		1

	Cross-Alamed	a Trail Risk	Assessment	Borehole Depth:			Sampling Method: Macro-Core	
	Alameda, CA			Borehole Diamete		2.25 inches	Y 25 4	D1-f1
	103S4024 Mark Duffy			Reviewed By: Vie	ctor Early		Latitude: Longitude:	Page 1 of 1
Date Boring S		9/2/2015		Drilling Contracto	r: Vironex		Ground Surface Elevation (feet NGVD of 1929):	
Date Boring (9/2/2015		Drilling Method:			Depth to groundwater (feet bgs): NA	
	Recovered							
Depth (feet bgs)	Interval	Time	Soil Sample ID	USCS	Graphic Log	Inte	erval and Lithologic Description	PID (ppm)
					1 0			41 /
0						C1 611		
				NA		Gravel fill		
		1350	CAT-B-26-0.5	SM		Silty sand, brown (2.5	5Y 4/4), loose, slightly moist.	
1						Silty clay, olive brow	rn (2.5Y 4/4), medium stiffness, medium	
				CL		plasticity, moist.		
2	48"	1345	CAT-B-26-2					
							sh brown (10YR 4/2), soft, loose, very moist	0.0
						to wet at 5 feet bgs.		
3								
4								
-								
5				SM				
	48"							
6	48							0.0
7								
8								
9								
10								
11								
12								
13								
13								
14								
15								
13								
16								
17								
17								
18								
19								
20								

Project:	Cross-Alameda	a Trail Risk	Assessment	Borehole Depth:		8 feet	Sampling Method: Macro-Core	
Location:	Alameda, CA			Borehole Diamete	r:	2.25 inches		
	103S4024			Reviewed By: Vie			Latitude:	Page 1 of 1
	Mark Duffy			Reviewed By. Vi	ctor Eurry		Longitude:	rage rorr
Date Boring S		9/2/2015		Drilling Contracto	r. Vironey		Ground Surface Elevation (feet NGVD of 1929):	
Date Boring		9/2/2015		Drilling Method:			Depth to groundwater (feet bgs): NA	<u> </u>
Date Borning v	Completed.	9/2/2013		Diffilling Method.	Direct I usii	reciniology	Depth to groundwater (feet ogs). IVA	
Depth (feet bgs)	Recovered Interval	Time	Soil Sample ID	USCS	Graphic Log	Inte	rval and Lithologic Description	PID (ppm)
						M-1-1-		
0						Mulch		
				NIA	NA	No recovery, nand au	ger to collect soil sample	
		1.550	CAT-B-27-0.5	NA	NA			
1		1550	CHI B 27 0.5				1 (2.517.2/2) 1 .: (55	
							gray brown (2.5Y 3/2), low stiffness, low	0.0
						plasticity, moist.		
2	36/48"			CL		1		
								Į į
				1				
3								
-							material, white (2.5Y 8/1) with yellowish red	
			G1 T D 27 1			(5YR 5/6)staining, ch	alky, very moist	
4		1510	CAT-B-27-4	NA	NA			
-				1171	1471			
5								
)							Y 2.5Y/1), soft, loose to very low plasticity,	
				1		very moist to wet.		
6	48"							
0	40							
				SM				
7								
/								
8								
9								
10								
11								
12								
13								
14				1				
15				1				
16				1	-			
				<u> </u>				
17					-			
						<u> </u>		
				1				
18								
19								
20								

Project:	Cross-Alameda	Trail Rick	Accacement	Borehole Depth:		8 feet	Sampling Method: Macro-Core	
Location:	Alameda, CA	Trair Kisk	Assessment	Borehole Diameter		2.25 inches	Sampling Method: Macro-core	
	103S4024			Reviewed By: Vic		b menes	Latituda	Page 1 of 1
	Mark Duffy			Reviewed By: Vid	лог даггу		Latitude: Longitude:	Page 1 of 1
Date Boring S		9/2/2015		Drilling Contractor			Ground Surface Elevation (feet NGVD of 1929):	
Date Boring (Completed:	9/2/2015		Drilling Method:	Direct Push T	Technology	Depth to groundwater (feet bgs): NA	
D 4	D 1							
Depth (feet bgs)	Recovered Interval	Time	Soil Sample ID	USCS	Graphic Log	Into	rval and Lithologic Description	PID (ppm)
(rect ogs)	Interval	Time	Boll Bulliple 1D	СБСБ	Grapine Log	Inte	I vai alid Eithologic Description	ты (ррш)
0				ı		Mulch		
0							ger to collect soil sample	
				NA	NA	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	5	
		1555	CAT-B-28-0.5					
1		1333				C 4 1		
							gray brown (2.5Y 3/2), low stiffness, low	0.0
					//	plasticity, moist.		
2	36/48"			CL				
-	20,10			C.D				
2								
3						Marsh crust/unknown	material, white (2.5Y 8/1) with yellowish red	
						(5YR 5/6)staining, ch		
		1535	CAT-B-28-4			(5 11t 5/ 5)5tanning, en	milly, very morse	
4		1000		NA	NA			
5		<u> </u>				02. 111.125	V 2 5 V (1)	
		1					Y 2.5Y/1), soft, loose to very low plasticity,	
						very moist to wet.		
6	48"							
-								
				SM				
7								
/								
0								
8								
9								
10								
11								
12								
13								
		1						
14								
1.4								
15		<u>L_</u>			<u></u>			
15								
1.0								
16								
17								
18								
19								
		1						
20								

Project:	Cross-Alameda	Trail Rick	Accecement	Borehole Depth:		8 feet	Sampling Method: Macro-Core	
Location:	Alameda, CA	Trair Kisk	Assessment	Borehole Diameter		2.25 inches	Sampling Method. Macro-core	
	103S4024			Reviewed By: Vic			Latitudo	Page 1 of 1
	Mark Duffy			Reviewed By: Vid	лог даггу		Latitude: Longitude:	Page 1 of 1
Date Boring S	Started:	9/2/2015		Drilling Contractor			Ground Surface Elevation (feet NGVD of 1929):	
Date Boring	Completed:	9/2/2015		Drilling Method:	Direct Push T	echnology	Depth to groundwater (feet bgs): NA	
Donath	D							
Depth (feet bgs)	Recovered Interval	Time	Soil Sample ID	USCS	Graphic Log	Into	erval and Lithologic Description	PID (ppm)
(rect ogs)	Interval	Time	Boll Bulliple 1D	СБСБ	Grupine Log	inte	I var and Enthologic Description	ты (ррш)
0					•••••	Mulch		
0							gray brown (2.5Y 3/2), low stiffness, low	
					//	plasticity, moist.	8.7 (,, ,	
		1545	CAT-B-29-0.5			pastery, moist		
1		1343						
				CI				0.0
				CL				
2	48"							
2								
3						Marsh crust/unknown	n material, white (2.5Y 8/1) with yellowish red	
						(5YR 5/6)staining, ch		
		1550	CAT-B-29-4			- 11. 5, 5,5mming, 011		
4		1330		NA	NA			
5								
							Y 2.5Y/1), soft, loose to very low plasticity,	
						very moist to wet.		
6	48"							
0	40							
				SM				
-								
7								
8								
9								
10								
11								
12								
13								
		1						
14								
15		-						
16		-						
17								
-,								
10		1						
18								
		1						
		1						
19								
20								

	Cross-Alameda	a Trail Risk	Assessment	Borehole Depth:		8 feet	Sampling Method: Macro-Core	
Location:	Alameda, CA			Borehole Diamete		2.25 inches	Y 25 4	D1-f1
	103S4024 Mark Duffy			Reviewed By: Vie	ctor Early		Latitude: Longitude:	Page 1 of 1
Date Boring S		9/2/2015		Drilling Contracto	r: Vironex		Ground Surface Elevation (feet NGVD of 1929):	
Date Boring	Completed:	9/2/2015		Drilling Method:			Depth to groundwater (feet bgs): NA	
Depth	Recovered							
(feet bgs)	Interval	Time	Soil Sample ID	USCS	Graphic Log	Inte	erval and Lithologic Description	PID (ppm)
0						Mulch		
0							iger to collect soil sample	
		1600	CAT-B-30-0.5	NA	NA			
1		1000	C/11 B 30 0.5			Sandy clay very dark	gray brown (2.5Y 3/2), low stiffness, low	0.0
						plasticity, moist.	gray 610wii (2.51-5/2), iow stifficss, iow	0.0
2	36/48"			CL				
-	30/40			CL				
3						Marsh crust/unknowr	n material, white (2.5Y 8/1) with yellowish red	
						(5YR 5/6)staining, ch		
4		1605	CAT-B-30-4	NA	NA			
~								
5							Y 2.5Y/1), soft, loose to very low plasticity,	
						very moist to wet.		
6	48"							
				SM				
7								
8								
9								
10								
11								
12								
13								
1.4								
14								
15								
16								
17								
17								
18								
19								
20								
20								

Geologic Borehole Log Legend

bgs below ground surface ppm parts per million

PID photoionization detector

USCS Unified Soil Classification System NGVD National Geodetic Vertical Datum

NA not applicable

Asphalt

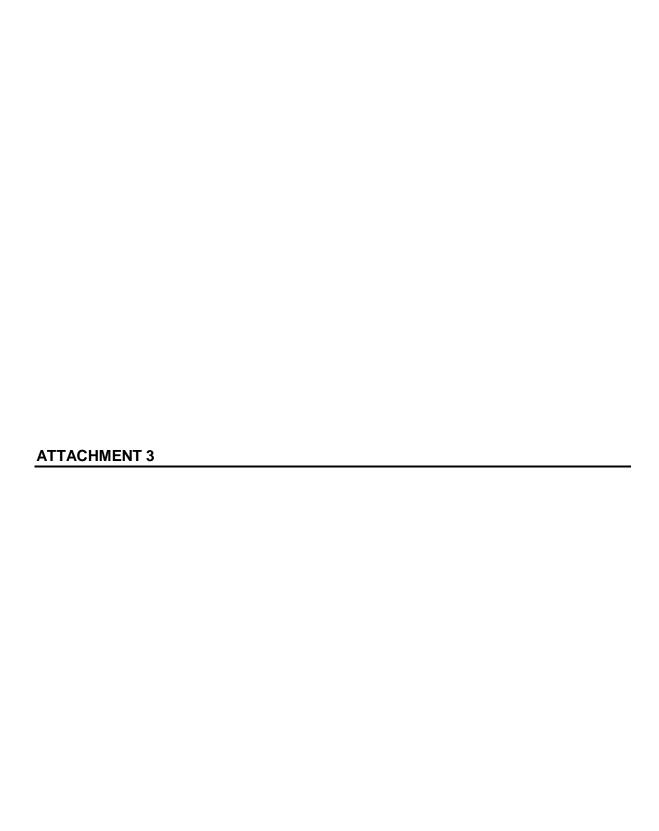
Gravel Fill

Sandy Silt (ML)

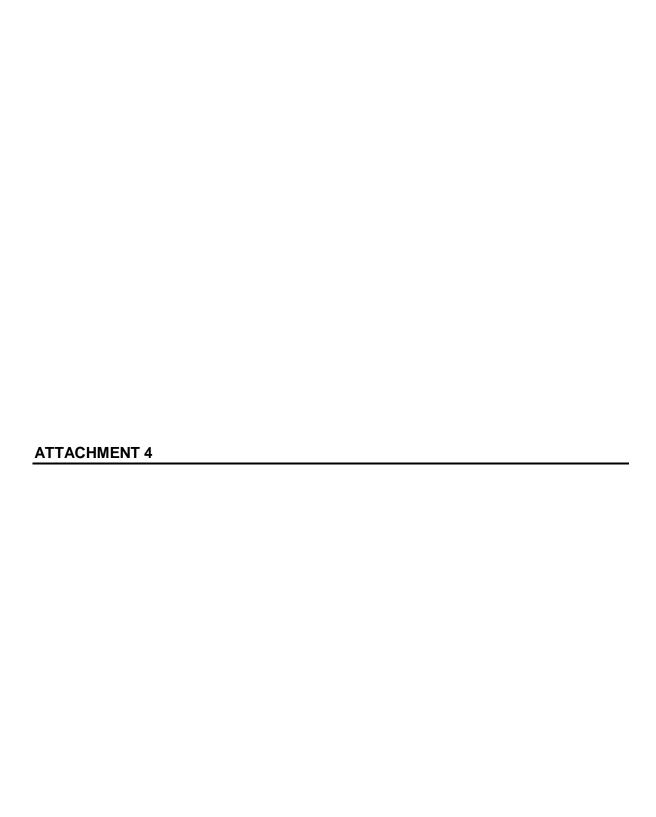
Clayey Silt (ML)

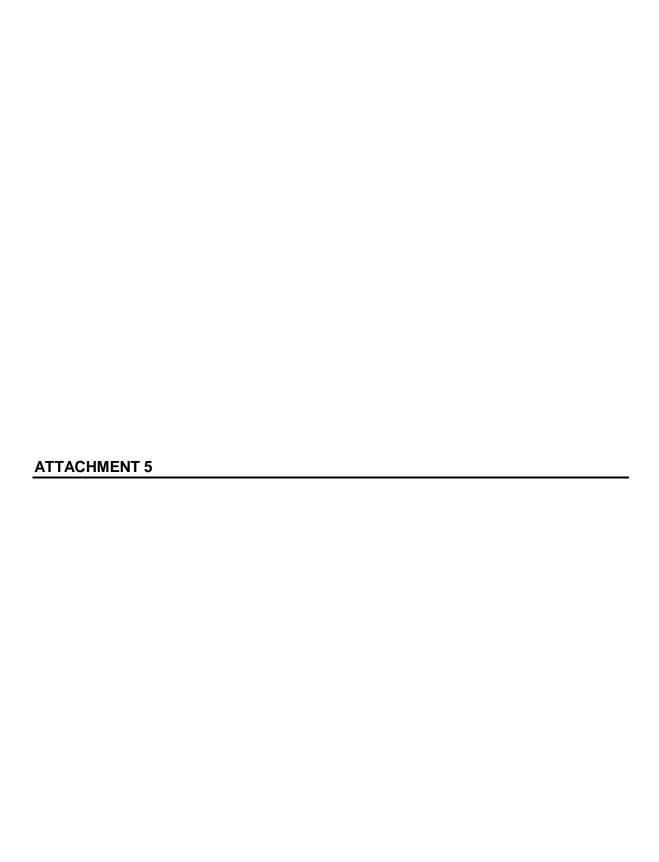
Silty Clay (CL)

Silty Sand (SM)


Sand (SP)

Mulch




approximate depth to groundwater

GRO	DUND	NATER	SAN	IPLIN	IG REC	ORD	Woll / So	male ID:	/IT TO		
		0354024			CAT		Jven / Sa	mple ID: C	41-15-11		Page of
		(well ID, etc.)			11-6W		1	Vater Leve	I (# PMD):		-2-14
Sample		ther H	1,,,,	10	1.1 a	AL.	2.7	th (ft. BGL		121	umn Ht. (ft):
Measuri	ng Point (M	P) of Well:	ग	04	Groundsi	Lana		iameter (in	200	Mult. Factor	
	d Interval (5	40-1	AND THE RESERVE OF THE PERSON NAMED IN COLUMN TWO IN COLUMN TO SHAPE OF THE PERSON NAMED IN COLUMN TWO IN COLUMN TO SHAPE OF THE PERSON NAMED IN COLUMN TWO IN COLUMN TO SHAPE OF THE PERSON NAMED IN COLUMN TWO IN	VYUSE		olume (gal.		2x	
	ck Interval		No			11 T		vel (ft. BMF			3x 4x
	Stick-up/do			song	7 1 3 - 7		4	th (ft. BGL			~
		SURANCE				1	Trotal Dep	ili (il. BGL	at End of	Purge:	8
	DS (describ		-						•		10.50
	ing Equipm	-	con	4./		~ 1	1			bool	
Purgir		errist	Cox	10cm	- L	4	Ligun	Samplin		JVIPU	inse]
Dispos		arged Water:			Faul	OV.		Gaipin	ig. per	ristus	· fund
-		dicate make,		0)	-)-	-	1227				
200	Level:	Solin	+	101	Thermome	ter: H					-
рН Ме	ter:	Horo	6 4	Jan.	Field Calib		-		# 1		
Condu	ctivity Mete	The state of the s		hig Y	Field Calib		×	922	Vy 1, 1	* * * * * * * * * * * * * * * * * * *	1
Filter /	Filter Size:	none 0	سمر		Other:		I do		# IL		3 15 12 17 10
SAMP	LING MI	EASURE	MENTS								
	Cum. Vol.	Purge Rate	Temp.	u ii ii	Specific Cor	nductance			Dissolved	Dissolved	
Time	(gal. or L)	(gpm or L/m)		рН	(µmhos		ORP	Turbidity / Color	Oxygen	Oxygen	Remarks
900	0.D	0.3	23.61	(0 2	@ Field Temp	@ 25 °C	3 200		%	mg/L	
905	0.5	0.3		6.87	11,40	Medical Control	- 139	1000		2.97	
910	3 5		23.30	-	11 300		-138	384	N. C.	3.44	
110	Pur	1 1	71.68	7.09	(4) 3	3 0	-134	100		4.33	
917	14 2	0.3	23.60	7.11	11.2	Ore				7.00-	
020	5.0	J.	73.58	7.08		88	-131	61		3.80	
928	6.0	d'	23.62	7.09	公保证以	(E) 1	-127	46		3-96	- 1
930		leet				78	127		NGT.	3.91	
1,32		reca	_ > V	mpl			(A) 2000年 (1970年)		Melio .		
HE.				7/				All per	建 位		
- Valid				1							
Vater Lev	el (ft. BMP) a	at End of Purge	e:		Recovery %:			Sample Inta	ko Donth (fi	PMD).	
		NTORY (B		lected)				Oample Inta	ike Depti (ii	. DIVIP).	1
Date/ Time	Sample ID	Container		Quantity / Vol.	Filtration F	Preservation (type)	Anal	ysis	(a)	Remar	
7-2-18	CAT-Q-	11-66	G	5	914 C	(31-7)		(名)	Wild Control		/
1									7		
		100	- 1	# 15 A			- 2				
		7 7 7	ALC: N		4 4	8 0 1		Market Co.	-/		
Chain-of-	Custody Re	ecord No.	6	898		100	-	- Mile	Vian III		
Comment	020								Tŧ	TETE	RATECH

GRO	UNDV	VATER	SAM	PLIN	G REC	ORD	Well / Sar	nple ID:	at-B	-23-GW	bage / of]
Project N	Number: 10	354024	Project I	Name:	CAT	. Alas	,	CA	Parent I	Date: 4-	
Sampling	g Location (well ID, etc.):	C	AT-B	-23-			Vater Leve	(ft. BMP):	The second secon	1
Sampled	d by:	1. Duf	for				Total Dep	th (ft. BGL): /	Water Col	umn Ht. (ft):
Measurir	ng Point (MI	P) of Well:	Y	TOC	Nort	ζ				Mult. Factor	r:
Screene	d Interval (f	t. BGL):	10	- 15	1		Casing Vo	olume (gal.): 1x	2x	3x 4x
Filter Pa	ck Interval (ft. BGL):	No	he			Water Lev	vel (ft. BMF) at End of	f Purge:	
Casing S	Stick-up/dov	vn(ft):) at End of	Purge:	Ula
QUAL	ITY ASS	URANCE		555330		(1	raum	·×			, des
METHO	DS (describ	e): <i>i</i> >e	con	L	1 ha	had	SULP	(trip	le Va	Sel	
Cleani	ng Equipme				0					7	
Purgin	g:	ferri	s fulls	ic,	lamo/	tubus	:	Samplir	ig: Terry	stelle Pe	no / tabon
Dispos	sal of Discha	arged Water:	12000	55.	- Sul 1	Drun'	NACHE OF THE PROPERTY OF THE P				17 3
IŅSTRUI	MENTS (Inc	dicate make,	model, ID	0)		10 111					The state of the s
Water		Solin	·st	101	Thermom	eter: Ho	ripa				
pH Me		ovibu	From	Thor			<u> </u>				
7	ctivity Mete		d		Field Cali	bration:	T		Ni e		I V
	Filter Size:		Non		Other:						
SAMP	LING ME	EASUREN	<u>IENTS</u>	T							
	Cum. Vol.	Purge Rate	Temp.			onductance os/cm)	000	Turbidity /	Dissolved		190
Time	(gal. of L)	(gpm or L/m)	(°C)	pН	@ Field Temp	 	ORP	Color	Oxygen %	Oxygen mg/L	Remarks
1335	0.0	0,3	25.93	7.82	1,49		-168	318	2.4	2.43	-
1340	1.5	1	26.27		1.45		455	200	K.H	1:65	
1345	3.0		25.56	7.15	,,,	(0	447	355		1.55	
1350	4.5		75,06			96	-428	348		1,53	
1355	60		24.90	7.15	,	290	~4/4	210		1.50	<u> </u>
1758	7.5	11/	24.83	1		290	-469	209		1,49	8
1400	Cal	lu A	SA		1 ''					1.77	
1				Υ				-			
											1
Water Lev	vel (ft. BMP)	at End of Purg	e:		Recovery %:		_	Sample Int	ake Depth (f	ft. BMP):	
SAMP	LE INVE	NTORY (E	Bottles co	llected)		=					
Date/	Sample ID	Container	(G, P)	Quantity /	Filtration	Preservation	Ana	lysis		Rema	-
Time	ļ	13-6W	(=\(\cup - \cup -	Vol.	(Y / N)	HC 1/NG			- ``	uality control s	sample, other)
9.00	CAT-B-	-)-GW	<u> </u>	- (0.0	HC1/NG	e 80	15/82	60		·
	<u> </u>					,					
<u> </u>				<u> </u>					-		
	1		C C	0 1/	L	<u> </u>	<u>L</u>				
Chain-of-	-Custody R	ecord No.	58	98		 .					
Commen	nts: (o	llecta	-d	Oup	hease	Says	4 Co	H-B	T	TET	RATECH

10/09/15

Technical Report for

Tetra Tech EMI

CAT Alameda

CAT ALAMEDA

Accutest Job Number: C41598

Sampling Dates: 09/01/15 - 09/02/15

Report to:

Tetra Tech 1999 Harrison St. Suite 500 Oakland, CA 94612 mark.duffy@tetratech.com

ATTN: Mark Duffy

Total number of pages in report: 176

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Program and/or state specific certification programs as applicable.

James J. Rhudy Lab Director

Jumy. Mush

Client Service contact: Nutan Kabir 408-588-0200

Certifications: CA (ELAP 2910) AK (UST-092) AZ (AZ0762) NV (CA00150) OR (CA300006) WA (C925) DoD ELAP (L-A-B L2242)

This report shall not be reproduced, except in its entirety, without the written approval of Accutest Laboratories. Test results relate only to samples analyzed.

Sections:

Table of Contents

-1-

Section 1: Sample Summary	4
Section 2: Summary of Hits	8
Section 3: Sample Results	14
3.1: C41598-1: CAT-B-11-0.5	15
3.2: C41598-2: CAT-B-11-4	18
3.3: C41598-3: CAT-B-12-0.5	21
3.4: C41598-4: CAT-B-12-4	24
3.5: C41598-5: CAT-B-13-0.5	27
3.6: C41598-6: CAT-B-13-4	30
3.7: C41598-7: CAT-B-14-0.5	33
3.8: C41598-8: CAT-B-14-4	36
3.9: C41598-9: CAT-B-15-0.5	39
3.10: C41598-10: CAT-B-15-2	42
3.11: C41598-11: CAT-B-16-0.5	45
3.12: C41598-12: CAT-B-16-2	48
3.13: C41598-13: CAT-B-17-0.5	51
3.14: C41598-14: CAT-B-17-2	54
3.15: C41598-15: CAT-B-18-0.5	57
3.16: C41598-16: CAT-B-18-2	60
3.17: C41598-17: CAT-B-19-0.5	63
3.18: C41598-18: CAT-B-19-4	65
3.19: C41598-19: CAT-B-20-0.5	67
3.20: C41598-20: CAT-B-20-4	69
3.21: C41598-21: CAT-B-21-0.5	71
3.22: C41598-22: CAT-B-21-4	73
3.23: C41598-23: CAT-B-22-0.5	75
3.24: C41598-24: CAT-B-22-4	77
3.25: C41598-25: CAT-B-23-0.5	79
3.26: C41598-26: CAT-B-23-2	82
3.27: C41598-27: CAT-B-24-0.5	85
3.28: C41598-28: CAT-B-24-2	88
3.29: C41598-29: CAT-B-25-0.5	91
3.30: C41598-30: CAT-B-25-2	94
3.31: C41598-31: CAT-B-26-0.5	97
3.32: C41598-32: CAT-B-26-2	100
3.33: C41598-33: CAT-B-27-0.5	103
3.34: C41598-34: CAT-B-27-4	105
3.35: C41598-35: CAT-B-28-0.5	107
3.36: C41598-36: CAT-B-28-4	109
3.37: C41598-37: CAT-B-29-0.5	111
3.38: C41598-38: CAT-B-29-4	113
3.39: C41598-39: CAT-B-30-0 5	115

ယ

(n

0

Sections:

Table of Contents

-2-

3.40: C41598-40: CAT-B-30-4	117
3.41: C41598-41: CAT-B-11-GW	119
3.42: C41598-42: CAT-B	123
3.43: C41598-43: CAT-B-23-GW	127
3.44: C41598-44: CAT-A	131
Section 4: Misc. Forms	134
4.1: Chain of Custody	135
Section 5: GC/MS Volatiles - QC Data Summaries	142
5.1: Method Blank Summary	143
5.2: Blank Spike/Blank Spike Duplicate Summary	147
5.3: Laboratory Control Sample Summary	151
5.4: Matrix Spike/Matrix Spike Duplicate Summary	
Section 6: GC Semi-volatiles - QC Data Summaries	157
6.1: Method Blank Summary	158
6.2: Blank Spike/Blank Spike Duplicate Summary	
6.3: Matrix Spike/Matrix Spike Duplicate Summary	164
Section 7: Metals Analysis - QC Data Summaries	
7.1: Prep QC MP10109: As,Pb	
7.2: Prep QC MP10110: As,Pb	

ယ

+

_

Sample Summary

Tetra Tech EMI

Job No: C41598

CAT Alameda

Project No: CAT ALAMEDA

Sample Number	Collected Date	Time By	Received	Matri Code		Client Sample ID
C41598-1	09/01/15	07:37	09/03/15	SO	Soil	CAT-B-11-0.5
C41598-2	09/01/15	07:41	09/03/15	SO	Soil	CAT-B-11-4
C41598-3	09/01/15	08:02	09/03/15	SO	Soil	CAT-B-12-0.5
C41598-4	09/01/15	08:05	09/03/15	SO	Soil	CAT-B-12-4
C41598-5	09/01/15	08:15	09/03/15	SO	Soil	CAT-B-13-0.5
C41598-6	09/01/15	08:18	09/03/15	SO	Soil	CAT-B-13-4
C41598-7	09/01/15	08:45	09/03/15	SO	Soil	CAT-B-14-0.5
C41598-8	09/01/15	08:50	09/03/15	SO	Soil	CAT-B-14-4
C41598-9	09/01/15	09:25	09/03/15	SO	Soil	CAT-B-15-0.5
C41598-10	09/01/15	09:30	09/03/15	SO	Soil	CAT-B-15-2
C41598-11	09/01/15	09:40	09/03/15	SO	Soil	CAT-B-16-0.5
C41598-12	09/01/15	09:45	09/03/15	SO	Soil	CAT-B-16-2
C41598-13	09/01/15	10:35	09/03/15	SO	Soil	CAT-B-17-0.5

Sample Summary (continued)

Tetra Tech EMI

Job No: C41598

CAT Alameda

Project No: CAT ALAMEDA

Sample Number	Collected Date	Time By	Received	Matri Code		Client Sample ID
C41598-14	09/01/15	10:37	09/03/15	SO	Soil	CAT-B-17-2
C41598-15	09/01/15	10:49	09/03/15	SO	Soil	CAT-B-18-0.5
C41598-16	09/01/15	10:51	09/03/15	SO	Soil	CAT-B-18-2
C41598-17	09/01/15	13:07	09/03/15	SO	Soil	CAT-B-19-0.5
C41598-18	09/01/15	13:04	09/03/15	SO	Soil	CAT-B-19-4
C41598-19	09/01/15	13:27	09/03/15	SO	Soil	CAT-B-20-0.5
C41598-20	09/01/15	13:25	09/03/15	SO	Soil	CAT-B-20-4
C41598-21	09/01/15	13:48	09/03/15	SO	Soil	CAT-B-21-0.5
C41598-22	09/01/15	13:51	09/03/15	SO	Soil	CAT-B-21-4
C41598-23	09/01/15	14:00	09/03/15	SO	Soil	CAT-B-22-0.5
C41598-24	09/01/15	13:58	09/03/15	SO	Soil	CAT-B-22-4
C41598-25	09/02/15	12:05	09/03/15	SO	Soil	CAT-B-23-0.5
C41598-26	09/02/15	12:10	09/03/15	SO	Soil	CAT-B-23-2

Sample Summary (continued)

Tetra Tech EMI

Job No: C41598

CAT Alameda

Project No: CAT ALAMEDA

Sample Number	Collected Date	Time By	Received	Matri Code		Client Sample ID
C41598-27	09/02/15	12:30	09/03/15	SO	Soil	CAT-B-24-0.5
C41598-28	09/02/15	12:40	09/03/15	SO	Soil	CAT-B-24-2
C41598-29	09/02/15	13:00	09/03/15	SO	Soil	CAT-B-25-0.5
C41598-30	09/02/15	12:55	09/03/15	SO	Soil	CAT-B-25-2
C41598-31	09/02/15	13:50	09/03/15	SO	Soil	CAT-B-26-0.5
C41598-32	09/02/15	13:45	09/03/15	SO	Soil	CAT-B-26-2
C41598-33	09/02/15	15:50	09/03/15	SO	Soil	CAT-B-27-0.5
C41598-34	09/02/15	15:10	09/03/15	SO	Soil	CAT-B-27-4
C41598-35	09/02/15	15:55	09/03/15	SO	Soil	CAT-B-28-0.5
C41598-36	09/02/15	15:35	09/03/15	SO	Soil	CAT-B-28-4
C41598-36D	09/02/15	15:35	09/03/15	SO	Soil Dup/MSD	CAT-B-28-4 SDS
C41598-36S	09/02/15	15:35	09/03/15	SO	Soil Matrix Spike	CAT-B-28-4 SMS
C41598-37	09/02/15	15:45	09/03/15	SO	Soil	CAT-B-29-0.5

Sample Summary (continued)

Tetra Tech EMI

Job No: C41598

CAT Alameda

Project No: CAT ALAMEDA

Sample Number	Collected Date	Time By	Received	Matri Code		Client Sample ID
C41598-38	09/02/15	15:50	09/03/15	SO	Soil	CAT-B-29-4
C41598-39	09/02/15	16:00	09/03/15	SO	Soil	CAT-B-30-0.5
C41598-40	09/02/15	16:05	09/03/15	SO	Soil	CAT-B-30-4
C41598-41	09/02/15	09:30	09/03/15	AQ	Ground Water	CAT-B-11-GW
C41598-42	09/02/15	14.05	00/02/15	40	Ground Water	CAT-B
C41390-42	09/02/13	14.03	09/03/15	AQ	Ground Water	CAT-D
C41598-43	09/02/15	14:00	09/03/15	AO	Ground Water	CAT-B-23-GW
C41598-44	09/02/15	09:00	09/03/15	AQ	Ground Water	CAT-A

Account: Tetra Tech EMI **Project:** CAT Alameda

Collected: 09/01/15 thru 09/02/15

Lab Sample ID Analyte	Client Sample ID	Result/ Qual	RL	MDL	Units	Method
C41598-1	CAT-B-11-0.5					
TPH (Motor Oil) Arsenic Lead		591 24.8 116	110 0.27 0.27	54	mg/kg mg/kg mg/kg	SW846 8015B M SW846 6020 SW846 6020
C41598-2	CAT-B-11-4					
TPH (Motor Oil) Arsenic Lead		211 14.2 29.4	40 0.25 0.25	20	mg/kg mg/kg mg/kg	SW846 8015B M SW846 6020 SW846 6020
C41598-3	CAT-B-12-0.5					
TPH (Motor Oil) Arsenic Lead		124 5.6 18.6	37 0.24 0.24	18	mg/kg mg/kg mg/kg	SW846 8015B M SW846 6020 SW846 6020
C41598-4	CAT-B-12-4					
TPH (Motor Oil) Arsenic Lead		59.9 9.4 6.9	38 0.24 0.24	19	mg/kg mg/kg mg/kg	SW846 8015B M SW846 6020 SW846 6020
C41598-5	CAT-B-13-0.5					
TPH (Motor Oil) Arsenic Lead		324 16.3 103	160 0.28 0.28	82	mg/kg mg/kg mg/kg	SW846 8015B M SW846 6020 SW846 6020
C41598-6	CAT-B-13-4					
TPH (Motor Oil) Arsenic Lead		161 17.1 96.8	39 0.24 0.24	19	mg/kg mg/kg mg/kg	SW846 8015B M SW846 6020 SW846 6020
C41598-7	CAT-B-14-0.5					
TPH (Motor Oil) Arsenic Lead		102 35.8 22.3	37 0.23 0.23	18	mg/kg mg/kg mg/kg	SW846 8015B M SW846 6020 SW846 6020
C41598-8	CAT-B-14-4					
TPH (Motor Oil)		69.9	39	19	mg/kg	SW846 8015B M

Account: Tetra Tech EMI **Project:** CAT Alameda Collected: 09/01/15 thru 09/02/15

Lab Sample ID Analyte	Client Sample ID	Result/ Qual	RL	MDL	Units	Method
Arsenic Lead		10.5 10.7	0.26 0.26		mg/kg mg/kg	SW846 6020 SW846 6020
C41598-9	CAT-B-15-0.5					
TPH (Motor Oil) Arsenic		259 13.5	37 0.23	19	mg/kg mg/kg	SW846 8015B M SW846 6020
C41598-10	CAT-B-15-2					
TPH (Motor Oil) Arsenic		79.2 7.2	43 0.30	21	mg/kg mg/kg	SW846 8015B M SW846 6020
C41598-11	CAT-B-16-0.5					
TPH (Motor Oil) Arsenic		203 27.2	36 0.24	18	mg/kg mg/kg	SW846 8015B M SW846 6020
C41598-12	CAT-B-16-2					
TPH (Motor Oil) Arsenic)	437 14.7	80 0.28	40	mg/kg mg/kg	SW846 8015B M SW846 6020
C41598-13	CAT-B-17-0.5					
TPH (Motor Oil) Arsenic		205 26.6	73 0.23	37	mg/kg mg/kg	SW846 8015B M SW846 6020
C41598-14	CAT-B-17-2					
TPH (Motor Oil) Arsenic	1	305 10	85 0.27	43	mg/kg mg/kg	SW846 8015B M SW846 6020
C41598-15	CAT-B-18-0.5					
TPH (Motor Oil) Arsenic	1	269 9.2	75 0.24	38	mg/kg mg/kg	SW846 8015B M SW846 6020
C41598-16	CAT-B-18-2					
TPH (Motor Oil) Arsenic)	247 7.5	84 0.27	42	mg/kg mg/kg	SW846 8015B M SW846 6020

Account: Tetra Tech EMI **Project:** CAT Alameda

Collected: 09/01/15 thru 09/02/15

Lab Sample ID Analyte	Client Sample ID	Result/ Qual	RL	MDL	Units	Method
C41598-17	CAT-B-19-0.5					
Lead		144	0.27		mg/kg	SW846 6020
C41598-18	CAT-B-19-4					
Lead a		3380	5.6		mg/kg	SW846 6020
C41598-19	CAT-B-20-0.5					
Lead		133	0.28		mg/kg	SW846 6020
C41598-20	CAT-B-20-4					
Lead		39.3	0.69		mg/kg	SW846 6020
C41598-21	CAT-B-21-0.5					
Lead		24.5	0.29		mg/kg	SW846 6020
C41598-22	CAT-B-21-4					
Lead		46.5	0.62		mg/kg	SW846 6020
C41598-23	CAT-B-22-0.5					
Lead		84.9	0.29		mg/kg	SW846 6020
C41598-24	CAT-B-22-4					
Lead		89.6	0.33		mg/kg	SW846 6020
C41598-25	CAT-B-23-0.5					
TPH (Motor Oil) Arsenic Lead		438 1.4 65.1	69 0.25 0.25	34	mg/kg mg/kg mg/kg	SW846 8015B M SW846 6020 SW846 6020
C41598-26	CAT-B-23-2					
TPH (Motor Oil) Arsenic Lead	1	784 0.71 91.0	140 0.22 0.22	72	mg/kg mg/kg mg/kg	SW846 8015B M SW846 6020 SW846 6020

Account: Tetra Tech EMI **Project:** CAT Alameda Collected: 09/01/15 thru 09/02/15

Lab Sample ID Analyte	Client Sample ID	Result/ Qual	RL	MDL	Units	Method
rinaryte		Quai	KL .	WIDE	Cints	Method
C41598-27	CAT-B-24-0.5					
TPH (Motor Oil) Arsenic Lead		1310 7.8 52.0	290 0.25 0.25	140	mg/kg mg/kg mg/kg	SW846 8015B M SW846 6020 SW846 6020
C41598-28	CAT-B-24-2					
TPH (Motor Oil) Arsenic Lead		314 0.72 50.7	38 0.24 0.24	19	mg/kg mg/kg mg/kg	SW846 8015B M SW846 6020 SW846 6020
C41598-29	CAT-B-25-0.5					
TPH (Motor Oil) Arsenic Lead		311 10.6 86.9	150 0.24 0.24	73	mg/kg mg/kg mg/kg	SW846 8015B M SW846 6020 SW846 6020
C41598-30	CAT-B-25-2					
TPH (Motor Oil) Arsenic Lead		1120 4.7 112	150 0.25 0.25	74	mg/kg mg/kg mg/kg	SW846 8015B M SW846 6020 SW846 6020
C41598-31	CAT-B-26-0.5					
TPH (Motor Oil) Arsenic Lead		668 7.2 76.1	140 0.22 0.44	70	mg/kg mg/kg mg/kg	SW846 8015B M SW846 6020 SW846 6020
C41598-32	CAT-B-26-2					
TPH (Motor Oil) Arsenic Lead		2110 8.0 160	220 0.24 0.47	110	mg/kg mg/kg mg/kg	SW846 8015B M SW846 6020 SW846 6020
C41598-33	CAT-B-27-0.5					
Lead		3170	5.7		mg/kg	SW846 6020
C41598-34	CAT-B-27-4					
Lead		15.5	0.36		mg/kg	SW846 6020

Summary of Hits

Job Number: C41598

Account: Tetra Tech EMI
Project: CAT Alameda

Collected: 09/01/15 thru 09/02/15

Lab Sample ID Analyte	Client Sample ID	Result/ Qual	RL	MDL	Units	Method
C41598-35	CAT-B-28-0.5					
Lead		266	0.32		mg/kg	SW846 6020
C41598-36	CAT-B-28-4					
Lead		1470	2.9		mg/kg	SW846 6020
C41598-37	CAT-B-29-0.5					
Lead		12.5	0.23		mg/kg	SW846 6020
C41598-38	CAT-B-29-4					
Lead		63.4	0.29		mg/kg	SW846 6020
C41598-39	CAT-B-30-0.5					
Lead		111	0.23		mg/kg	SW846 6020
C41598-40	CAT-B-30-4					
Lead		7670	11		mg/kg	SW846 6020
C41598-41	CAT-B-11-GW					
Acetone ^b Di-Isopropyl ethor TPH-GRO (C6-C TPH (Diesel) ^c		19.5 J 105 301 0.212	40 4.0 50 0.11	8.0 0.44 25 0.054	ug/l ug/l ug/l mg/l	SW846 8260B SW846 8260B SW846 8260B SW846 8015B M

C41598-42 CAT-B

No hits reported in this sample.

C41598-43 CAT-B-23-GW

No hits reported in this sample.

C41598-44 CAT-A

No hits reported in this sample.

- (a) Elevated reporting limit(s) due to matrix interference and/or dilution required for high interfering element.
- (b) CCV outside of control limits; associated results may be biased high.

Summary of Hits Job Number: C41598

Account: Tetra Tech EMI CAT Alameda Project:

Collected: 09/01/15 thru 09/02/15

Lab Sample ID Client Sample ID Result/

RL MDL Method Analyte Qual Units

(c) Atypical pattern; value due to multiple discrete peaks in Diesel range.

mple Results
port of Analysis
<u> </u>

Report of Analysis

Client Sample ID: CAT-B-11-0.5 Lab Sample ID: C41598-1

Date Sampled: 09/01/15 Matrix: SO - Soil Date Received: 09/03/15 **Percent Solids:** 92.1

Method: SW846 8015B M SW846 3550B

Project: CAT Alameda

File ID **Prep Date Prep Batch Analytical Batch** DF Analyzed By 09/04/15 GHH1621 Run #1 HH326252.D 10 09/06/15 NNOP13013 Run #2

Final Volume Initial Weight Run #1 1.5 ml 30.0 g Run #2

TPH Extractable w/ Silica Gel Cleanup

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Diesel) TPH (Motor Oil) TPH (Mineral Spirits) TPH (Kerosene)	ND 591 ND ND	54 110 54 54	27 54 27 27	mg/kg mg/kg mg/kg mg/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
630-01-3	Hexacosane	79%		43-1	44%	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 1 of 1

Client Sample ID: CAT-B-11-0.5 Lab Sample ID: C41598-1 Matrix: SO - Soil

Date Sampled: 09/01/15 **Date Received:** 09/03/15 **Percent Solids:** 92.1

Project: CAT Alameda

Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Arsenic	24.8	0.27	mg/kg	5	09/08/15	09/10/15 JR	SW846 6020 ¹	SW846 3050B ²
Lead	116	0.27	mg/kg	5	09/08/15	09/10/15 JR	SW846 6020 ¹	SW846 3050B ²

Page 1 of 1

Client Sample ID: CAT-B-11-0.5 Lab Sample ID: C41598-1 Matrix: SO - Soil

Date Sampled: 09/01/15 **Date Received:** 09/03/15 **Percent Solids:** 92.1

09/10/15 10:54 EA SM2540MOD G-97

Project: CAT Alameda

General Chemistry

Moisture, Percent

Analyte	Result	RL	Units	DF	Analyzed	By	Method

1

7.9

Page 1 of 1

Client Sample ID: CAT-B-11-4 Lab Sample ID: C41598-2

 Lab Sample ID:
 C41598-2
 Date Sampled:
 09/01/15

 Matrix:
 SO - Soil
 Date Received:
 09/03/15

 Method:
 SW846 8015B M
 SW846 3550B
 Percent Solids:
 82.8

Project: CAT Alameda

File ID DF **Prep Date Prep Batch Analytical Batch** Analyzed By Run #1 HH326253.D 5 09/06/15 NN09/04/15 OP13013 GHH1621 Run #2

Run #1 30.2 g 1.0 ml
Run #2

TPH Extractable w/ Silica Gel Cleanup

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Diesel) TPH (Motor Oil) TPH (Mineral Spirits) TPH (Kerosene)	ND 211 ND ND	20 40 20 20	10 20 10 10	mg/kg mg/kg mg/kg mg/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	10 mg/kg 20 mg/kg 10 mg/kg		
630-01-3	Hexacosane	79%		43-1	44%	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

ω

Page 1 of 1

Client Sample ID: CAT-B-11-4 Lab Sample ID: C41598-2 Matrix: SO - Soil

Date Sampled: 09/01/15 **Date Received:** 09/03/15 **Percent Solids:** 82.8

Project: CAT Alameda

Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Arsenic	14.2	0.25	mg/kg	5	09/08/15	09/10/15 JR	SW846 6020 ¹	SW846 3050B ²
Lead	29.4	0.25	mg/kg	5	09/08/15	09/10/15 JR	SW846 6020 ¹	SW846 3050B ²

Page 1 of 1

Client Sample ID: CAT-B-11-4 Lab Sample ID: C41598-2 Matrix: SO - Soil

 Date Sampled:
 09/01/15

 Date Received:
 09/03/15

 Percent Solids:
 82.8

Project: CAT Alameda

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Moisture Percent	17.2		%	1	09/10/15 10:54	E A	SM2540MOD G-97

Report of Analysis Page 1 of 1

Client Sample ID: CAT-B-12-0.5

 Lab Sample ID:
 C41598-3
 Date Sampled:
 09/01/15

 Matrix:
 SO - Soil
 Date Received:
 09/03/15

 Method:
 SW846 8015B M
 SW846 3550B
 Percent Solids:
 90.2

Project: CAT Alameda

File ID DF **Prep Date Prep Batch Analytical Batch** Analyzed By GHH1621 Run #1 HH326255.D 5 09/06/15 NN09/04/15 OP13013 Run #2

Run #1 30.0 g 1.0 ml
Run #2

TPH Extractable w/ Silica Gel Cleanup

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Diesel) TPH (Motor Oil) TPH (Mineral Spirits) TPH (Kerosene)	ND 124 ND ND	18 37 18 18	9.2 18 9.2 9.2	mg/kg mg/kg mg/kg mg/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	18 mg/kg 9.2 mg/kg 9.2 mg/kg		
630-01-3	Hexacosane	78%		43-1	44%	

ND = Not detected MDL =

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Ć.

Page 1 of 1

Client Sample ID: CAT-B-12-0.5
Lab Sample ID: C41598-3
Matrix: SO - Soil

Date Sampled: 09/01/15 **Date Received:** 09/03/15 **Percent Solids:** 90.2

Project: CAT Alameda

Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Arsenic	5.6	0.24	mg/kg	5	09/08/15	09/10/15 JR	SW846 6020 ¹	SW846 3050B ²
Lead	18.6	0.24	mg/kg	5	09/08/15	09/10/15 JR	SW846 6020 ¹	SW846 3050B ²

Page 1 of 1

Client Sample ID: CAT-B-12-0.5 Lab Sample ID: C41598-3 Matrix: SO - Soil

Date Sampled: 09/01/15 **Date Received:** 09/03/15 **Percent Solids:** 90.2

Project: CAT Alameda

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Moisture, Percent	9.8		%	1	09/10/15 10:54	EA	SM2540MOD G-97

4

Report of Analysis

Page 1 of 1

Client Sample ID: CAT-B-12-4 Lab Sample ID: C41598-4

 Lab Sample ID:
 C41598-4
 Date Sampled:
 09/01/15

 Matrix:
 SO - Soil
 Date Received:
 09/03/15

 Method:
 SW846 8015B M
 SW846 3550B
 Percent Solids:
 87.9

Project: CAT Alameda

File ID DF **Prep Date Prep Batch Analytical Batch** Analyzed By Run #1 HH326256.D 5 09/06/15 NN09/04/15 OP13013 GHH1621 Run #2

Initial Weight Final Volume
Run #1 30.1 g 1.0 ml
Run #2

TPH Extractable w/ Silica Gel Cleanup

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Diesel) TPH (Motor Oil) TPH (Mineral Spirits) TPH (Kerosene)	ND 59.9 ND ND	19 38 19 19	9.4 19 9.4 9.4	mg/kg mg/kg mg/kg mg/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2 Limits		its	
630-01-3	Hexacosane	79%		43-1	44%	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

C

Page 1 of 1

Client Sample ID: CAT-B-12-4 Lab Sample ID: C41598-4 Matrix: SO - Soil

 Date Sampled:
 09/01/15

 Date Received:
 09/03/15

 Percent Solids:
 87.9

Project: CAT Alameda

Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Arsenic	9.4	0.24	mg/kg	5	09/08/15	09/10/15 JR	SW846 6020 ¹	SW846 3050B ²
Lead	6.9	0.24	mg/kg	5	09/08/15	09/10/15 JR	SW846 6020 ¹	SW846 3050B ²

Page 1 of 1

Client Sample ID: CAT-B-12-4 Lab Sample ID: C41598-4 Matrix: SO - Soil

Date Sampled: 09/01/15 **Date Received:** 09/03/15 **Percent Solids:** 87.9

Project: CAT Alameda

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Moisture, Percent	12.1		%	1	09/10/15 10:54	EA	SM2540MOD G-97

Report of Analysis

Client Sample ID: CAT-B-13-0.5

Lab Sample ID: C41598-5 Date Sampled: 09/01/15 Matrix: SO - Soil **Date Received:** 09/03/15 Method: SW846 8015B M SW846 3550B **Percent Solids:** 80.9

Project: CAT Alameda

File ID **Prep Date Prep Batch Analytical Batch** DF Analyzed By Run #1 HH326257.D 10 09/06/15 NN09/04/15 OP13013 GHH1621 Run #2

Initial Weight Final Volume Run #1 1.0 ml

Run #2

TPH Extractable w/ Silica Gel Cleanup

15.1 g

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Diesel) TPH (Motor Oil) TPH (Mineral Spirits) TPH (Kerosene)	ND 324 ND ND	82 160 82 82	41 82 41 41	mg/kg mg/kg mg/kg mg/kg	
CAS No. Surrogate Recoveries		Run# 1	Run# 2	2 Lim	0 0	
630-01-3	Hexacosane	76%		43-1	44%	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

 Client Sample ID:
 CAT-B-13-0.5

 Lab Sample ID:
 C41598-5

 Matrix:
 SO - Soil

 Date Sampled:
 09/01/15

 Date Received:
 09/03/15

 Percent Solids:
 80.9

Project: CAT Alameda

Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Arsenic	16.3	0.28	mg/kg	5	09/08/15	09/10/15 JR	SW846 6020 ¹	SW846 3050B ²
Lead	103	0.28	mg/kg	5	09/08/15	09/10/15 JR	SW846 6020 ¹	SW846 3050B ²

Page 1 of 1

SM2540MOD G-97

Client Sample ID: CAT-B-13-0.5 Lab Sample ID: C41598-5 Matrix: SO - Soil

Date Sampled: 09/01/15 **Date Received:** 09/03/15 **Percent Solids:** 80.9

 $09/10/15 \ 10:54 \ EA$

Project: CAT Alameda

19.1

General Chemistry

Moisture, Percent

Analyte Result RL Units DF Analyzed By Method

%

1

C41598

Report of Analysis Page 1 of 1

Date Sampled: 09/01/15

Client Sample ID: CAT-B-13-4 Lab Sample ID: C41598-6

 Matrix:
 SO - Soil
 Date Received:
 09/03/15

 Method:
 SW846 8015B M
 SW846 3550B
 Percent Solids:
 85.2

Project: CAT Alameda

File ID DF **Prep Date Analytical Batch** Analyzed By **Prep Batch** Run #1 HH326258.D 5 09/06/15 NN09/04/15 OP13013 GHH1621 Run #2

Run #1 30.2 g 1.0 ml
Run #2

TPH Extractable w/ Silica Gel Cleanup

CAS No.	Compound	Result	RL	MDL	Units	Q
TPH (Diesel) TPH (Motor Oil) TPH (Mineral Spirits) TPH (Kerosene)		ND 161 ND ND	19 39 19 19	9.7 mg/kg 19 mg/kg 9.7 mg/kg 9.7 mg/kg		
CAS No.	CAS No. Surrogate Recoveries		Run# 2	Lim	iits	
630-01-3	Hexacosane	79%		43-1	44%	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

6

Report of Analysis

 Client Sample ID:
 CAT-B-13-4

 Lab Sample ID:
 C41598-6

 Matrix:
 SO - Soil

 Date Received:
 09/03/15

 Percent Solids:
 85.2

Project: CAT Alameda

Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Arsenic	17.1	0.24	mg/kg	5	09/08/15	09/10/15 JR	SW846 6020 ¹	SW846 3050B ²
Lead	96.8	0.24	mg/kg	5	09/08/15	09/10/15 JR	SW846 6020 ¹	SW846 3050B ²

Page 1 of 1

Client Sample ID: CAT-B-13-4 Lab Sample ID: C41598-6 Matrix: SO - Soil

Date Sampled: 09/01/15 **Date Received:** 09/03/15 **Percent Solids:** 85.2

Project: CAT Alameda

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Moisture, Percent	14.8		%	1	09/10/15 10:54	EA	SM2540MOD G-97

Report of Analysis

Client Sample ID: CAT-B-14-0.5

Lab Sample ID: C41598-7 Date Sampled: 09/01/15 Matrix: SO - Soil **Date Received:** 09/03/15 Method: SW846 8015B M SW846 3550B **Percent Solids:** 90.0

Project: CAT Alameda

File ID DF **Prep Date Prep Batch Analytical Batch** Analyzed By Run #1 HH326259.D 5 09/06/15 NN09/04/15 OP13013 GHH1621 Run #2

Final Volume Initial Weight Run #1 1.0 ml 30.2 g Run #2

TPH Extractable w/ Silica Gel Cleanup

CAS No.	Compound	Result	RL	MDL	Units	Q
TPH (Diesel) TPH (Motor Oil) TPH (Mineral Spirits) TPH (Kerosene)		ND 102 ND ND	18 37 18 18	9.2 18 9.2 9.2	mg/kg mg/kg mg/kg mg/kg	
CAS No.	CAS No. Surrogate Recoveries		Run# 2	2 Limits		
630-01-3	Hexacosane	74%		43-1	44%	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Report of Analysis

Client Sample ID: CAT-B-14-0.5 C41598-7 **Date Sampled:** 09/01/15 SO - Soil **Date Received:** 09/03/15 **Percent Solids:** 90.0

Project: CAT Alameda

Metals Analysis

Lab Sample ID:

Matrix:

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Arsenic	35.8	0.23	mg/kg	5	09/08/15	09/10/15 JR	SW846 6020 ¹	SW846 3050B ²
Lead	22.3	0.23	mg/kg	5	09/08/15	09/10/15 JR	SW846 6020 ¹	SW846 3050B ²

Page 1 of 1

SM2540MOD G-97

Client Sample ID: CAT-B-14-0.5 Lab Sample ID: C41598-7 Matrix: SO - Soil

Date Sampled: 09/01/15 **Date Received:** 09/03/15 **Percent Solids:** 90.0

 $09/10/15 \ 10:54 \ EA$

Project: CAT Alameda

10

General Chemistry

Moisture, Percent

Analyte Result RL Units DF Analyzed By Method

%

1

Page 1 of 1

09/01/15

09/03/15

86.5

Client Sample ID: CAT-B-14-4 Lab Sample ID: C41598-8

Lab Sample ID:C41598-8Date Sampled:Matrix:SO - SoilDate Received:Method:SW846 8015B MSW846 3550BPercent Solids:

Project: CAT Alameda

File IDDFAnalyzedByPrep DatePrep BatchAnalytical BatchRun #1HH326260.D509/06/15NN09/04/15OP13013GHH1621

Run #2

Initial Weight Final Volume

Run #1 30.0 g 1.0 ml

Run #2

TPH Extractable w/ Silica Gel Cleanup

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Diesel) TPH (Motor Oil) TPH (Mineral Spirits) TPH (Kerosene)	ND 69.9 ND ND	19 39 19 19	9.6 19 9.6 9.6	mg/kg mg/kg mg/kg mg/kg	
CAS No.	CAS No. Surrogate Recoveries		Run# 2	Lim	its	
630-01-3	Hexacosane	78%		43-1	44%	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

W

Page 1 of 1

Client Sample ID: CAT-B-14-4 Lab Sample ID: C41598-8 Matrix: SO - Soil

Date Sampled: 09/01/15 **Date Received:** 09/03/15 **Percent Solids:** 86.5

Project: CAT Alameda

Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Arsenic	10.5	0.26	mg/kg	5	09/08/15	09/10/15 JR	SW846 6020 ¹	SW846 3050B ²
Lead	10.7	0.26	mg/kg	5	09/08/15	09/10/15 JR	SW846 6020 ¹	SW846 3050B ²

Page 1 of 1

Client Sample ID: CAT-B-14-4 Lab Sample ID: C41598-8 **Date Sampled:** 09/01/15 Matrix: SO - Soil **Date Received:** 09/03/15 **Percent Solids:** 86.5

Project: CAT Alameda

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Moisture Percent	13.5		0/0	1	09/10/15 10:5	54 EA	SM2540MOD G-97

Report of Analysis

Client Sample ID: CAT-B-15-0.5

Lab Sample ID: C41598-9 Matrix: SO - Soil

Method: SW846 8015B M SW846 3550B

Project: CAT Alameda

 Date Sampled:
 09/01/15

 Date Received:
 09/03/15

 Percent Solids:
 89.0

File ID DF **Prep Date Prep Batch Analytical Batch** Analyzed By Run #1 HH326261.D 5 09/06/15 NN09/04/15 OP13013 GHH1621 Run #2

Run #1 30.1 g Final Volume
Run #2

TPH Extractable w/ Silica Gel Cleanup

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Diesel) TPH (Motor Oil) TPH (Mineral Spirits) TPH (Kerosene)	ND 259 ND ND	19 37 19 19	9.3 19 9.3 9.3	mg/kg mg/kg mg/kg mg/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2 L		imits	
630-01-3	Hexacosane	80%		43-1	44%	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

N = Indicates presumptive evidence of a compound

Page 1 of 1

Client Sample ID: CAT-B-15-0.5 Lab Sample ID: C41598-9 Matrix: SO - Soil

Date Sampled: 09/01/15 **Date Received:** 09/03/15 **Percent Solids:** 89.0

Project: CAT Alameda

Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Arsenic	13.5	0.23	mg/kg	5	09/08/15	09/10/15 JR	SW846 6020 ¹	SW846 3050B ²

Page 1 of 1

Client Sample ID: CAT-B-15-0.5 Lab Sample ID: C41598-9 Matrix: SO - Soil

Date Sampled: 09/01/15 **Date Received:** 09/03/15 **Percent Solids:** 89.0

Project: CAT Alameda

General Chemistry

Analyte Result RL Units DF Analyzed By Method

Moisture, Percent 11 % 1 09/10/15 10:54 EA SM2540MOD G-97

Page 1 of 1

Client Sample ID: CAT-B-15-2

 Lab Sample ID:
 C41598-10
 Date Sampled:
 09/01/15

 Matrix:
 SO - Soil
 Date Received:
 09/03/15

 Method:
 SW846 8015B M
 SW846 3550B
 Percent Solids:
 77.9

Project: CAT Alameda

File ID DF **Prep Date Prep Batch Analytical Batch** Analyzed By Run #1 HH326262.D 5 09/06/15 NN09/04/15 OP13013 GHH1621 Run #2

Initial Weight Final Volume

1.0 ml

Run #1 Run #2

TPH Extractable w/ Silica Gel Cleanup

30.1 g

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Diesel) TPH (Motor Oil) TPH (Mineral Spirits) TPH (Kerosene)	ND 79.2 ND ND	21 43 21 21	11 21 11 11	mg/kg mg/kg mg/kg mg/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
630-01-3	Hexacosane	78%		43-1	44%	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 1 of 1

Client Sample ID: CAT-B-15-2 Lab Sample ID: C41598-10 Matrix: SO - Soil

Date Sampled: 09/01/15 **Date Received:** 09/03/15 **Percent Solids:** 77.9

Project: CAT Alameda

Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Arsenic	7.2	0.30	mg/kg	5	09/08/15	09/10/15 JR	SW846 6020 ¹	SW846 3050B ²

Page 1 of 1

Client Sample ID: CAT-B-15-2 Lab Sample ID: C41598-10 Matrix: SO - Soil

Date Sampled: 09/01/15 **Date Received:** 09/03/15 **Percent Solids:** 77.9

Project: CAT Alameda

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Moisture Percent	22.1		%	1	09/10/15 10:54	. F Δ	SM2540MOD G-97

Page 1 of 1

Client Sample ID: CAT-B-16-0.5

 Lab Sample ID:
 C41598-11
 Date Sampled:
 09/01/15

 Matrix:
 SO - Soil
 Date Received:
 09/03/15

 Method:
 SW846 8015B M
 SW846 3550B
 Percent Solids:
 91.4

Project: CAT Alameda

File ID DF **Prep Date Prep Batch Analytical Batch** Analyzed By Run #1 HH326263.D 5 09/06/15 NN09/04/15 OP13013 GHH1621 Run #2

Run #1 30.0 g 1.0 ml
Run #2

TPH Extractable w/ Silica Gel Cleanup

CAS No.	Compound	Result	RL	MDL	Units	Q	
	TPH (Diesel) TPH (Motor Oil) TPH (Mineral Spirits) TPH (Kerosene)	ND 203 ND ND	18 36 18 18	9.1 18 9.1 9.1	mg/kg mg/kg mg/kg mg/kg		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its		
630-01-3	Hexacosane	81%	43		44%		

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

C

Report of Analysis

Client Sample ID: CAT-B-16-0.5 Lab Sample ID: C41598-11 Matrix: SO - Soil

Date Sampled: 09/01/15 **Date Received:** 09/03/15 **Percent Solids:** 91.4

Project: CAT Alameda

Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Arsenic	27.2	0.24	mg/kg	5	09/08/15	09/10/15 JR	SW846 6020 ¹	SW846 3050B ²

Page 1 of 1

Client Sample ID: CAT-B-16-0.5 Lab Sample ID: C41598-11 Matrix: SO - Soil

Date Sampled: 09/01/15 **Date Received:** 09/03/15 **Percent Solids:** 91.4

Project: CAT Alameda

General Chemistry

Analyte	Result	\mathbf{RL}	Units	DF	Analyzed	By	Method

Moisture, Percent 8.6 % 1 09/10/15 10:54 EA SM2540MOD G-97

Page 1 of 1

Client Sample ID: CAT-B-16-2 Lab Sample ID: C41598-12

Date Sampled: 09/01/15 Matrix: SO - Soil **Date Received:** 09/03/15 Method: SW846 8015B M SW846 3550B **Percent Solids:** 82.8

Project: CAT Alameda

File ID **Prep Date Analytical Batch** DF Analyzed By **Prep Batch** Run #1 HH326264.D 10 09/06/15 NN09/04/15 OP13013 GHH1621

Run #2

Final Volume Initial Weight Run #1 30.4 g 1.0 ml

Run #2

TPH Extractable w/ Silica Gel Cleanup

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Diesel) TPH (Motor Oil) TPH (Mineral Spirits) TPH (Kerosene)	ND 437 ND ND	40 80 40 40	20 40 20 20	mg/kg mg/kg mg/kg mg/kg	
CAS No.	CAS No. Surrogate Recoveries		Run# 2	Limits		
630-01-3	Hexacosane	80%		43-1	44%	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 1 of 1

Client Sample ID: CAT-B-16-2 Lab Sample ID: C41598-12 Matrix: SO - Soil

Date Sampled: 09/01/15 **Date Received:** 09/03/15 **Percent Solids:** 82.8

Project: CAT Alameda

Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Arsenic	14.7	0.28	mg/kg	5	09/08/15	09/10/15 JR	SW846 6020 ¹	SW846 3050B ²

(1) Instrument QC Batch: MA5193(2) Prep QC Batch: MP10109

Page 1 of 1

Client Sample ID: CAT-B-16-2 Lab Sample ID: C41598-12 Matrix: SO - Soil

Date Sampled: 09/01/15 **Date Received:** 09/03/15 **Percent Solids:** 82.8

Project: CAT Alameda

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	By	Method

Moisture, Percent 17.2 % 1 09/10/15 10:54 EA SM2540MOD G-97

Page 1 of 1

Client Sample ID: CAT-B-17-0.5 Lab Sample ID: C41598-13

Date Sampled: 09/01/15 Matrix: SO - Soil **Date Received:** 09/03/15 Method: SW846 8015B M SW846 3550B **Percent Solids:** 89.8

Project: CAT Alameda

File ID **Prep Date Prep Batch Analytical Batch** DF Analyzed By Run #1 HH326266.D 10 09/06/15 NN09/04/15 OP13013 GHH1621 Run #2

Final Volume Initial Weight Run #1 30.4 g 1.0 ml Run #2

TPH Extractable w/ Silica Gel Cleanup

CAS No.	Compound	Result	RL	MDL	Units	Q	
	TPH (Diesel) TPH (Motor Oil) TPH (Mineral Spirits) TPH (Kerosene)	ND 205 ND ND	37 73 37 37	18 37 18 18	mg/kg mg/kg mg/kg mg/kg		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim			
630-01-3	Hexacosane	78%	43-144%				

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 1 of 1

Client Sample ID: CAT-B-17-0.5 Lab Sample ID: C41598-13 Matrix: SO - Soil

Date Sampled: 09/01/15 **Date Received:** 09/03/15 **Percent Solids:** 89.8

Project: CAT Alameda

Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Arsenic	26.6	0.23	mg/kg	5	09/08/15	09/10/15 JR	SW846 6020 ¹	SW846 3050B ²

(1) Instrument QC Batch: MA5193(2) Prep QC Batch: MP10109

Page 1 of 1

Client Sample ID: CAT-B-17-0.5 Lab Sample ID: C41598-13 Matrix: SO - Soil

Date Sampled: 09/01/15 **Date Received:** 09/03/15 **Percent Solids:** 89.8

Project: CAT Alameda

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	By	Method

Moisture, Percent 10.2 % 1 09/10/15 10:54 EA SM2540MOD G-97

Page 1 of 1

Client Sample ID: CAT-B-17-2 Lab Sample ID: C41598-14

Date Sampled: 09/01/15 Matrix: SO - Soil **Date Received:** 09/03/15 **Percent Solids:** 78.0

Method: SW846 8015B M SW846 3550B

Project: CAT Alameda

File ID **Prep Date Prep Batch Analytical Batch** DF Analyzed By Run #1 HH326267.D 10 09/06/15 NN09/04/15 OP13013 GHH1621 Run #2

Final Volume Initial Weight Run #1 1.0 ml 30.1 g

Run #2

TPH Extractable w/ Silica Gel Cleanup

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Diesel) TPH (Motor Oil) TPH (Mineral Spirits) TPH (Kerosene)	ND 305 ND ND	43 85 43 43	21 43 21 21	mg/kg mg/kg mg/kg mg/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	2 Limits		
630-01-3	0-01-3 Hexacosane			43-1	44%	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 1 of 1

Client Sample ID: CAT-B-17-2 Lab Sample ID: C41598-14 Matrix: SO - Soil

Date Sampled: 09/01/15 **Date Received:** 09/03/15 **Percent Solids:** 78.0

Project: CAT Alameda

Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Arsenic	10	0.27	mg/kg	5	09/08/15	09/10/15 JR	SW846 6020 ¹	SW846 3050B ²

(1) Instrument QC Batch: MA5193(2) Prep QC Batch: MP10109

Page 1 of 1

Client Sample ID: CAT-B-17-2 Lab Sample ID: C41598-14 Matrix: SO - Soil

Date Sampled: 09/01/15 **Date Received:** 09/03/15 **Percent Solids:** 78.0

Project: CAT Alameda

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Moisture, Percent	22		%	1	09/10/15 10:54	EA	SM2540MOD G-97

Page 1 of 1

Client Sample ID: CAT-B-18-0.5

Lab Sample ID: C41598-15 **Date Sampled:** 09/01/15 Matrix: **Date Received:** SO - Soil 09/03/15 **Percent Solids:** 88.0

Method: SW846 8015B M SW846 3550B

Project: CAT Alameda

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	HH326268.D	10	09/06/15	NN	09/04/15	OP13013	GHH1621
Run #2							

	Initial Weight	Final Volume
Run #1	30.1 g	1.0 ml
Run #2		

TPH Extractable w/ Silica Gel Cleanup

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Diesel) TPH (Motor Oil) TPH (Mineral Spirits) TPH (Kerosene)	ND 269 ND ND	38 75 38 38	19 38 19 19	mg/kg mg/kg mg/kg mg/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2 Limi		its	
630-01-3	Hexacosane	78%		44%		

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 1 of 1

Client Sample ID: CAT-B-18-0.5 Lab Sample ID: C41598-15 Matrix: SO - Soil

Date Sampled: 09/01/15 **Date Received:** 09/03/15 **Percent Solids:** 88.0

Project: CAT Alameda

Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Arsenic	9.2	0.24	mg/kg	5	09/08/15	09/10/15 JR	SW846 6020 ¹	SW846 3050B ²

(1) Instrument QC Batch: MA5193(2) Prep QC Batch: MP10109

Page 1 of 1

Client Sample ID: CAT-B-18-0.5 Lab Sample ID: C41598-15 Matrix: SO - Soil

Date Sampled: 09/01/15 **Date Received:** 09/03/15 **Percent Solids:** 88.0

Project: CAT Alameda

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Moisture, Percent	12		%	1	09/10/15 10:54	EA	SM2540MOD G-97

Page 1 of 1

09/03/15

78.4

Client Sample ID: CAT-B-18-2

Lab Sample ID: C41598-16 **Date Sampled:** 09/01/15 Matrix: SO - Soil **Date Received:** Method: SW846 8015B M SW846 3550B **Percent Solids:**

Project: CAT Alameda

File ID **Prep Date Analytical Batch** DF Analyzed By **Prep Batch** Run #1 HH326269.D 10 09/06/15 NN09/04/15 OP13013 GHH1621

Run #2

Final Volume Initial Weight 1.0 ml

Run #1 30.3 g

Run #2

TPH Extractable w/ Silica Gel Cleanup

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Diesel)	ND	42	21	mg/kg	
	TPH (Motor Oil)	247	84	42	mg/kg	
	TPH (Mineral Spirits)	ND	42	21	mg/kg	
	TPH (Kerosene)	ND	42	21	mg/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
630-01-3	Hexacosane	79%		43-1	.44%	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 1 of 1

Client Sample ID: CAT-B-18-2 Lab Sample ID: C41598-16

Date Sampled: 09/01/15 **Date Received:** 09/03/15 **Percent Solids:** 78.4

Project: CAT Alameda

SO - Soil

Metals Analysis

Matrix:

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Arsenic	7.5	0.27	mg/kg	5	09/08/15	09/10/15 JR	SW846 6020 ¹	SW846 3050B ²

(1) Instrument QC Batch: MA5193(2) Prep QC Batch: MP10109

Page 1 of 1

Client Sample ID: CAT-B-18-2 Lab Sample ID: C41598-16 Matrix: SO - Soil

Date Sampled: 09/01/15 **Date Received:** 09/03/15 **Percent Solids:** 78.4

Project: CAT Alameda

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Moisture, Percent	21.6		%	1	09/10/15 10:54	EA	SM2540MOD G-97

Page 1 of 1

Client Sample ID: CAT-B-19-0.5 Lab Sample ID: C41598-17 Matrix: SO - Soil

Date Sampled: 09/01/15 **Date Received:** 09/03/15 **Percent Solids:** 83.0

Project: CAT Alameda

Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Lead	144	0.27	mg/kg	5	09/08/15	09/10/15 JR	SW846 6020 ¹	SW846 3050B ²

(1) Instrument QC Batch: MA5193(2) Prep QC Batch: MP10109

Page 1 of 1

Client Sample ID: CAT-B-19-0.5 Lab Sample ID: C41598-17 Matrix: SO - Soil

Date Sampled: 09/01/15 **Date Received:** 09/03/15 **Percent Solids:** 83.0

Project: CAT Alameda

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	By	Method

Moisture, Percent 17 % 1 09/10/15 10:54 EA SM2540MOD G-97

Page 1 of 1

Client Sample ID: CAT-B-19-4 Lab Sample ID: C41598-18 Matrix: SO - Soil

Date Sampled: 09/01/15 **Date Received:** 09/03/15 **Percent Solids:** 78.8

Project: CAT Alameda

Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Lead ^a	3380	5.6	mg/kg	100	09/08/15	09/14/15 RS	SW846 6020 ¹	SW846 3050B ²

(1) Instrument QC Batch: MA5205(2) Prep QC Batch: MP10109

(a) Elevated reporting limit(s) due to matrix interference and/or dilution required for high interfering element.

Page 1 of 1

Client Sample ID: CAT-B-19-4 Lab Sample ID: C41598-18 Matrix: SO - Soil

 Date Sampled:
 09/01/15

 Date Received:
 09/03/15

 Percent Solids:
 78.8

Project: CAT Alameda

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Moisture, Percent	21.2		%	1	09/10/15 10:54	EA	SM2540MOD G-97

Page 1 of 1

Client Sample ID: CAT-B-20-0.5 Lab Sample ID: C41598-19 Matrix: SO - Soil

Date Sampled: 09/01/15 **Date Received:** 09/03/15 **Percent Solids:** 78.7

Project: CAT Alameda

Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Lead	133	0.28	mg/kg	5	09/08/15	09/10/15 JR	SW846 6020 ¹	SW846 3050B ²

(1) Instrument QC Batch: MA5193(2) Prep QC Batch: MP10109

Page 1 of 1

Client Sample ID: CAT-B-20-0.5 Lab Sample ID: C41598-19 Matrix: SO - Soil

Date Sampled: 09/01/15 **Date Received:** 09/03/15 **Percent Solids:** 78.7

Project: CAT Alameda

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Moisture, Percent	21.3		%	1	09/10/15 10:54	EA	SM2540MOD G-97

Page 1 of 1

Client Sample ID: CAT-B-20-4 Lab Sample ID: C41598-20 Matrix: SO - Soil

Date Sampled: 09/01/15 **Date Received:** 09/03/15 **Percent Solids:** 65.0

Project: CAT Alameda

Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Lead	39.3	0.69	mg/kg	10	09/08/15	09/13/15 RS	SW846 6020 ¹	SW846 3050B ²

(1) Instrument QC Batch: MA5203(2) Prep QC Batch: MP10109

Page 1 of 1

Client Sample ID: CAT-B-20-4 Lab Sample ID: C41598-20 Matrix: SO - Soil

Date Sampled: 09/01/15 **Date Received:** 09/03/15 **Percent Solids:** 65.0

09/10/15 10:54 EA SM2540MOD G-97

Project: CAT Alameda

35

General Chemistry

Moisture, Percent

Analyte	Result	RL	Units	DF	Analyzed	$\mathbf{B}\mathbf{y}$	Method

1

Page 1 of 1

Client Sample ID: CAT-B-21-0.5 Lab Sample ID: C41598-21 Matrix: SO - Soil

Date Sampled: 09/01/15 **Date Received:** 09/03/15 **Percent Solids:** 75.2

Project: CAT Alameda

Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Lead	24.5	0.29	mg/kg	5	09/09/15	09/14/15 RS	SW846 6020 ¹	SW846 3050B ²

(1) Instrument QC Batch: MA5205(2) Prep QC Batch: MP10110

Page 1 of 1

Client Sample ID: CAT-B-21-0.5 Lab Sample ID: C41598-21 Matrix: SO - Soil

Date Sampled: 09/01/15 **Date Received:** 09/03/15 **Percent Solids:** 75.2

Project: CAT Alameda

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Moisture, Percent	24.8		%	1	09/10/15 10:54	EA	SM2540MOD G-97

Page 1 of 1

Client Sample ID: CAT-B-21-4 Lab Sample ID: C41598-22 Matrix: SO - Soil

Date Sampled: 09/01/15 **Date Received:** 09/03/15 **Percent Solids:** 72.5

Project: CAT Alameda

Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Lead	46.5	0.62	mg/kg	10	09/09/15	09/13/15 RS	SW846 6020 ¹	SW846 3050B ²

(1) Instrument QC Batch: MA5203(2) Prep QC Batch: MP10110

Page 1 of 1

Client Sample ID: CAT-B-21-4 Lab Sample ID: C41598-22 Matrix: SO - Soil

Date Sampled: 09/01/15 **Date Received:** 09/03/15 **Percent Solids:** 72.5

Project: CAT Alameda

General Chemistry

Analyte Result RL Units DF Analyzed By Method

Moisture, Percent 27.5 % 1 09/10/15 10:54 EA SM2540MOD G-97

Page 1 of 1

Client Sample ID: CAT-B-22-0.5 Lab Sample ID: C41598-23 Matrix: SO - Soil

Date Sampled: 09/01/15 **Date Received:** 09/03/15 **Percent Solids:** 76.4

Project: CAT Alameda

Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Lead	84.9	0.29	mg/kg	5	09/09/15	09/13/15 RS	SW846 6020 ¹	SW846 3050B ²

(1) Instrument QC Batch: MA5203(2) Prep QC Batch: MP10110

Page 1 of 1

Client Sample ID: CAT-B-22-0.5 Lab Sample ID: C41598-23 Matrix: SO - Soil

Date Sampled: 09/01/15 **Date Received:** 09/03/15 **Percent Solids:** 76.4

Project: CAT Alameda

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Moisture, Percent	23.6		%	1	09/10/15 10:54	EA	SM2540MOD G-97

Page 1 of 1

Client Sample ID: CAT-B-22-4 Lab Sample ID: C41598-24 Matrix: SO - Soil

Date Sampled: 09/01/15 **Date Received:** 09/03/15 **Percent Solids:** 68.5

Project: CAT Alameda

Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Lead	89.6	0.33	mg/kg	5	09/09/15	09/13/15 RS	SW846 6020 ¹	SW846 3050B ²

(1) Instrument QC Batch: MA5203(2) Prep QC Batch: MP10110

Page 1 of 1

Client Sample ID: CAT-B-22-4 Lab Sample ID: C41598-24 Matrix: SO - Soil

Date Sampled: 09/01/15 **Date Received:** 09/03/15 **Percent Solids:** 68.5

Project: CAT Alameda

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Moisture Percent	31.5		0%	1	09/10/15 10:5	1 EA	SM2540MOD G 07

Page 1 of 1

Client Sample ID: CAT-B-23-0.5

 Lab Sample ID:
 C41598-25
 Date Sampled:
 09/02/15

 Matrix:
 SO - Soil
 Date Received:
 09/03/15

 Method:
 SW846 8015B M
 SW846 3550B
 Percent Solids:
 95.4

Project: CAT Alameda

File ID **Prep Date Analytical Batch** DF Analyzed By **Prep Batch** Run #1 HH326270.D 10 09/06/15 NN09/04/15 OP13013 GHH1621 Run #2

Run #1 30.5 g 1.0 ml
Run #2

TPH Extractable w/ Silica Gel Cleanup

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Diesel) TPH (Motor Oil) TPH (Mineral Spirits) TPH (Kerosene)	ND 438 ND ND	34 69 34 34	17 34 17 17	mg/kg mg/kg mg/kg mg/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
630-01-3	Hexacosane	81%		43-1	44%	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

L

Page 1 of 1

Client Sample ID: CAT-B-23-0.5 Lab Sample ID: C41598-25 Matrix: SO - Soil

Date Sampled: 09/02/15 **Date Received:** 09/03/15 **Percent Solids:** 95.4

Project: CAT Alameda

Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Arsenic Lead	1.4 65.1	0.25 0.25	mg/kg mg/kg			09/10/15 JR 09/13/15 RS	SW846 6020 ¹ SW846 6020 ²	SW846 3050B ³ SW846 3050B ³

(1) Instrument QC Batch: MA5193 (2) Instrument QC Batch: MA5203 (3) Prep QC Batch: MP10110

Page 1 of 1

Client Sample ID: CAT-B-23-0.5 Lab Sample ID: C41598-25 Matrix: SO - Soil

Date Sampled: 09/02/15 **Date Received:** 09/03/15 **Percent Solids:** 95.4

Project: CAT Alameda

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Moisture, Percent	4.6		%	1	09/10/15 10:54	EA	SM2540MOD G-97

Page 1 of 1

Client Sample ID: CAT-B-23-2 Lab Sample ID: C41598-26

Date Sampled: 09/02/15 Matrix: SO - Soil **Date Received:** 09/03/15 **Percent Solids:** 92.7

Method: SW846 8015B M SW846 3550B

Project: CAT Alameda

File ID **Prep Date Analytical Batch** DF Analyzed By **Prep Batch** Run #1 HH326289.D 20 09/08/15 NN09/04/15 OP13013 GHH1622 Run #2

Final Volume Initial Weight Run #1 1.0 ml 30.2 g

Run #2

TPH Extractable w/ Silica Gel Cleanup

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Diesel) TPH (Motor Oil) TPH (Mineral Spirits) TPH (Kerosene)	ND 784 ND ND	72 140 72 72	36 72 36 36	mg/kg mg/kg mg/kg mg/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
630-01-3	Hexacosane	80%		43-1	44%	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 1 of 1

Client Sample ID: CAT-B-23-2 Lab Sample ID: C41598-26 Matrix: SO - Soil

Date Sampled: 09/02/15 **Date Received:** 09/03/15 **Percent Solids:** 92.7

Project: CAT Alameda

Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Arsenic	0.71	0.22	mg/kg	5	09/09/15	09/10/15 JR	SW846 6020 ¹	SW846 3050B ³
Lead	91.0	0.22	mg/kg	5	09/09/15	09/13/15 RS	SW846 6020 ²	SW846 3050B ³

(1) Instrument QC Batch: MA5193(2) Instrument QC Batch: MA5203(3) Prep QC Batch: MP10110

Page 1 of 1

Client Sample ID: CAT-B-23-2 Lab Sample ID: C41598-26 Matrix: SO - Soil

Date Sampled: 09/02/15 **Date Received:** 09/03/15 **Percent Solids:** 92.7

Project: CAT Alameda

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Moisture Percent	7 3		%	1	09/10/15 10:54	EA	SM2540MOD G-97

Page 1 of 1

Client Sample ID: CAT-B-24-0.5

 Lab Sample ID:
 C41598-27
 Date Sampled:
 09/02/15

 Matrix:
 SO - Soil
 Date Received:
 09/03/15

 Method:
 SW846 8015B M
 SW846 3550B
 Percent Solids:
 90.7

Project: CAT Alameda

30.5 g

Prep Date Analytical Batch File ID DF Analyzed By **Prep Batch** Run #1 HH326290.D 40 09/08/15 NN09/04/15 OP13013 GHH1622 Run #2

Initial Weight Final Volume

1.0 ml

Run #1 Run #2

TPH Extractable w/ Silica Gel Cleanup

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Diesel) TPH (Motor Oil) TPH (Mineral Spirits) TPH (Kerosene)	ND 1310 ND ND	140 290 140 140	72 140 72 72	mg/kg mg/kg mg/kg mg/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	2 Limits		
630-01-3	Hexacosane	80%		43-1	44%	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

L

Page 1 of 1

Report of Analysis

 Client Sample ID:
 CAT-B-24-0.5

 Lab Sample ID:
 C41598-27

 Matrix:
 SO - Soil

 Date Sampled:
 09/02/15

 Date Received:
 09/03/15

 Percent Solids:
 90.7

Project: CAT Alameda

Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Arsenic	7.8	0.25	mg/kg	5	09/09/15	09/10/15 RS	SW846 6020 ¹	SW846 3050B ³
Lead	52.0	0.25	mg/kg	5	09/09/15	09/13/15 RS	SW846 6020 ²	SW846 3050B ³

Instrument QC Batch: MA5197
 Instrument QC Batch: MA5203
 Prep QC Batch: MP10110

Page 1 of 1

Client Sample ID: CAT-B-24-0.5 Lab Sample ID: C41598-27 Matrix: SO - Soil

Date Sampled: 09/02/15 **Date Received:** 09/03/15 **Percent Solids:** 90.7

Project: CAT Alameda

General Chemistry

Analyte Result RL Units DF Analyzed By Method

Moisture, Percent 9.3 % 1 09/10/15 10:54 EA SM2540MOD G-97

Page 1 of 1

Client Sample ID: CAT-B-24-2 Lab Sample ID: C41598-28

Date Sampled: 09/02/15 Matrix: SO - Soil Date Received: 09/03/15 Percent Solids: 87.1

Method: SW846 8015B M SW846 3550B

Project: CAT Alameda

DF **Prep Date Analytical Batch** File ID Analyzed By **Prep Batch** Run #1 HH326273.D 5 09/06/15 NN09/04/15 OP13013 GHH1621 Run #2

Final Volume Initial Weight Run #1 1.0 ml 30.0 g Run #2

TPH Extractable w/ Silica Gel Cleanup

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Diesel) TPH (Motor Oil) TPH (Mineral Spirits) TPH (Kerosene)	ND 314 ND ND	19 38 19 19	9.6 19 9.6 9.6	mg/kg mg/kg mg/kg mg/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
630-01-3	Hexacosane	81%		43-1	44%	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 1 of 1

Client Sample ID: CAT-B-24-2 Lab Sample ID: C41598-28 Matrix: SO - Soil

 Date Sampled:
 09/02/15

 Date Received:
 09/03/15

 Percent Solids:
 87.1

Project: CAT Alameda

Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Arsenic	0.72	0.24	mg/kg	5	09/09/15	09/10/15 JR	SW846 6020 ¹	SW846 3050B ³
Lead	50.7	0.24	mg/kg	5	09/09/15	09/13/15 RS	SW846 6020 ²	SW846 3050B ³

(1) Instrument QC Batch: MA5193(2) Instrument QC Batch: MA5203(3) Prep QC Batch: MP10110

Page 1 of 1

Client Sample ID: CAT-B-24-2 Lab Sample ID: C41598-28 Matrix: SO - Soil

Date Sampled: 09/02/15 **Date Received:** 09/03/15 **Percent Solids:** 87.1

Project: CAT Alameda

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	By	Method

Moisture, Percent 12.9 % 1 09/10/15 10:54 EA SM2540MOD G-97

Page 1 of 1

Client Sample ID: CAT-B-25-0.5 Lab Sample ID: C41598-29

 Lab Sample ID:
 C41598-29
 Date Sampled:
 09/02/15

 Matrix:
 SO - Soil
 Date Received:
 09/03/15

 Method:
 SW846 8015B M
 SW846 3550B
 Percent Solids:
 90.0

Project: CAT Alameda

File ID **Prep Date Analytical Batch** DF Analyzed By **Prep Batch** 09/08/15 Run #1 HH326340.D 20 09/10/15 NNOP13029 GHH1623 Run #2

Run #1 30.5 g Final Volume
Run #2

TPH Extractable w/ Silica Gel Cleanup

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Diesel) TPH (Motor Oil) TPH (Mineral Spirits) TPH (Kerosene)	ND 311 ND ND	73 150 73 73	36 73 36 36	mg/kg mg/kg mg/kg mg/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	iits	
630-01-3	Hexacosane	86%		43-1	44%	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

L

Page 1 of 1

Report of Analysis

Client Sample ID: CAT-B-25-0.5 Lab Sample ID: C41598-29 Matrix: SO - Soil

Date Sampled: 09/02/15 **Date Received:** 09/03/15 **Percent Solids:** 90.0

Project: CAT Alameda

Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Arsenic	10.6	0.24	mg/kg	5	09/09/15	09/10/15 RS	SW846 6020 ¹	SW846 3050B ³
Lead	86.9	0.24	mg/kg	5	09/09/15	09/13/15 RS	SW846 6020 ²	SW846 3050B ³

(1) Instrument QC Batch: MA5197(2) Instrument QC Batch: MA5203(3) Prep QC Batch: MP10110

Page 1 of 1

Client Sample ID: CAT-B-25-0.5 Lab Sample ID: C41598-29 Matrix: SO - Soil

Date Sampled: 09/02/15 **Date Received:** 09/03/15 **Percent Solids:** 90.0

Project: CAT Alameda

General Chemistry

Analyte Result RL Units DF Analyzed By Method

Moisture, Percent 10 % 1 09/10/15 10:54 EA SM2540MOD G-97

Page 1 of 1

Client Sample ID: CAT-B-25-2 Lab Sample ID: C41598-30

Date Sampled: 09/02/15 Matrix: SO - Soil Date Received: 09/03/15 **Percent Solids:** 89.5

Method: SW846 8015B M SW846 3550B

Project: CAT Alameda

File ID **Prep Date Analytical Batch** DF Analyzed By **Prep Batch** 09/08/15 Run #1 HH326341.D 20 09/10/15 NNOP13029 GHH1623

Run #2

Final Volume Initial Weight 1.0 ml 30.2 g

Run #1 Run #2

TPH Extractable w/ Silica Gel Cleanup

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Diesel) TPH (Motor Oil) TPH (Mineral Spirits) TPH (Kerosene)	ND 1120 ND ND	74 150 74 74	37 74 37 37	mg/kg mg/kg mg/kg mg/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	iits	
630-01-3	Hexacosane	87%		43-1	44%	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 1 of 1

Client Sample ID: CAT-B-25-2 Lab Sample ID: C41598-30 Matrix: SO - Soil

Date Sampled: 09/02/15 **Date Received:** 09/03/15 **Percent Solids:** 89.5

Project: CAT Alameda

Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Arsenic	4.7	0.25	mg/kg	5	09/09/15	09/10/15 RS	SW846 6020 ¹	SW846 3050B ³
Lead	112	0.25	mg/kg	5	09/09/15	09/13/15 RS	SW846 6020 ²	SW846 3050B ³

Instrument QC Batch: MA5197
 Instrument QC Batch: MA5203
 Prep QC Batch: MP10110

Page 1 of 1

Client Sample ID: CAT-B-25-2 Lab Sample ID: C41598-30 Matrix: SO - Soil

Date Sampled: 09/02/15 **Date Received:** 09/03/15 **Percent Solids:** 89.5

Project: CAT Alameda

General Chemistry

Analyte Result RL Units DF Analyzed By Method

Moisture, Percent 10.5 % 1 09/10/15 10:54 EA SM2540MOD G-97

Page 1 of 1

Client Sample ID: CAT-B-26-0.5

 Lab Sample ID:
 C41598-31
 Date Sampled:
 09/02/15

 Matrix:
 SO - Soil
 Date Received:
 09/03/15

 Method:
 SW846 8015B M
 SW846 3550B
 Percent Solids:
 95.0

Project: CAT Alameda

File ID **Prep Date Analytical Batch** DF Analyzed By **Prep Batch** 09/08/15 Run #1 HH326342.D 20 09/10/15 NNOP13029 GHH1623 Run #2

Run #1 30.1 g 1.0 ml
Run #2

TPH Extractable w/ Silica Gel Cleanup

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Diesel) TPH (Motor Oil) TPH (Mineral Spirits) TPH (Kerosene)	ND 668 ND ND	70 140 70 70	35 70 35 35	mg/kg mg/kg mg/kg mg/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
630-01-3	Hexacosane	89%		43-1	44%	

ND = Not detected M

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

C

Page 1 of 1

Client Sample ID: CAT-B-26-0.5 Lab Sample ID: C41598-31 Matrix: SO - Soil

Date Sampled: 09/02/15 **Date Received:** 09/03/15 **Percent Solids:** 95.0

Project: CAT Alameda

Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Arsenic	7.2	0.22	mg/kg	5	09/09/15	09/10/15 RS	SW846 6020 ¹	SW846 3050B ³
Lead	76.1	0.44	mg/kg	10	09/09/15	09/13/15 RS	SW846 6020 ²	SW846 3050B ³

Instrument QC Batch: MA5197
 Instrument QC Batch: MA5203
 Prep QC Batch: MP10110

Page 1 of 1

Client Sample ID: CAT-B-26-0.5
Lab Sample ID: C41598-31
Matrix: SO - Soil

Date Sampled: 09/02/15 **Date Received:** 09/03/15 **Percent Solids:** 95.0

Project: CAT Alameda

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Moisture Percent	5		%	1	09/10/15 10:54	1 FA	SM2540MOD G-97

Page 1 of 1

09/02/15

09/03/15

89.4

Client Sample ID: CAT-B-26-2 Lab Sample ID: C41598-32

Date Sampled: Matrix: SO - Soil Date Received: **Percent Solids:**

Method: SW846 8015B M SW846 3550B

Project: CAT Alameda

Prep Date Analytical Batch File ID DF Analyzed By **Prep Batch** 09/08/15 Run #1 HH326343.D 20 09/10/15 NNOP13029 GHH1623

Run #2

Final Volume Initial Weight

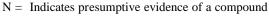
Run #1 1.5 ml 30.1 g

Run #2

TPH Extractable w/ Silica Gel Cleanup

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Diesel) TPH (Motor Oil) TPH (Mineral Spirits) TPH (Kerosene)	ND 2110 ND ND	110 220 110 110	56 110 56 56	mg/kg mg/kg mg/kg mg/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
630-01-3	Hexacosane	79%		43-1	44%	

ND = Not detected


MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Client Sample ID: CAT-B-26-2 Lab Sample ID: C41598-32 Matrix: SO - Soil

Date Sampled: 09/02/15 **Date Received:** 09/03/15 **Percent Solids:** 89.4

Project: CAT Alameda

Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Arsenic	8.0	0.24	mg/kg	5	09/09/15	09/10/15 RS	SW846 6020 ¹	SW846 3050B ³
Lead	160	0.47	mg/kg	10	09/09/15	09/13/15 RS	SW846 6020 ²	SW846 3050B ³

Instrument QC Batch: MA5197
 Instrument QC Batch: MA5203
 Prep QC Batch: MP10110

Page 1 of 1

Client Sample ID: CAT-B-26-2 Lab Sample ID: C41598-32 Matrix: SO - Soil

Date Sampled: 09/02/15 **Date Received:** 09/03/15 **Percent Solids:** 89.4

Project: CAT Alameda

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	$\mathbf{B}\mathbf{y}$	Method

Moisture, Percent 10.6 % 1 09/10/15 10:54 EA SM2540MOD G-97

Page 1 of 1

Client Sample ID: CAT-B-27-0.5 Lab Sample ID: C41598-33 Matrix: SO - Soil

Date Sampled: 09/02/15 **Date Received:** 09/03/15 **Percent Solids:** 76.7

Project: CAT Alameda

Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Lead	3170	5.7	mg/kg	100	09/09/15	09/11/15 RS	SW846 6020 ¹	SW846 3050B ²

(1) Instrument QC Batch: MA5200(2) Prep QC Batch: MP10110

Page 1 of 1

Client Sample ID: CAT-B-27-0.5 Lab Sample ID: C41598-33 Matrix: SO - Soil

Date Sampled: 09/02/15 **Date Received:** 09/03/15 **Percent Solids:** 76.7

Project: CAT Alameda

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Moisture, Percent	23.3		%	1	09/10/15 10:54	EA	SM2540MOD G-97

Page 1 of 1

Client Sample ID: CAT-B-27-4 Lab Sample ID: C41598-34 Matrix: SO - Soil

Date Sampled: 09/02/15 **Date Received:** 09/03/15 **Percent Solids:** 64.6

Project: CAT Alameda

Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Lead	15.5	0.36	mg/kg	5	09/09/15	09/10/15 RS	SW846 6020 ¹	SW846 3050B ²

(1) Instrument QC Batch: MA5197(2) Prep QC Batch: MP10110

Page 1 of 1

Client Sample ID: CAT-B-27-4 Lab Sample ID: C41598-34 Matrix: SO - Soil

Date Sampled: 09/02/15 **Date Received:** 09/03/15 **Percent Solids:** 64.6

Project: CAT Alameda

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Moisture Percent	35 4		0/0	1	09/10/15 10:54	EΔ	SM2540MOD G-97

Page 1 of 1

Client Sample ID: CAT-B-28-0.5 Lab Sample ID: C41598-35 Matrix: SO - Soil

Date Sampled: 09/02/15 **Date Received:** 09/03/15 **Percent Solids:** 71.1

Project: CAT Alameda

Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Lead	266	0.32	mg/kg	5	09/09/15	09/10/15 RS	SW846 6020 ¹	SW846 3050B ²

(1) Instrument QC Batch: MA5197(2) Prep QC Batch: MP10110

Page 1 of 1

Client Sample ID: CAT-B-28-0.5 Lab Sample ID: C41598-35 Matrix: SO - Soil

Date Sampled: 09/02/15 **Date Received:** 09/03/15 **Percent Solids:** 71.1

Project: CAT Alameda

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Moisture, Percent	28.9		%	1	09/10/15 10:54	EA	SM2540MOD G-97

Page 1 of 1

Client Sample ID: CAT-B-28-4 Lab Sample ID: C41598-36 Matrix: SO - Soil

Date Sampled: 09/02/15 **Date Received:** 09/03/15 **Percent Solids:** 78.6

Project: CAT Alameda

Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Lead	1470	2.9	mg/kg	50	09/09/15	09/11/15 RS	SW846 6020 ¹	SW846 3050B ²

(1) Instrument QC Batch: MA5200(2) Prep QC Batch: MP10110

Page 1 of 1

Client Sample ID: CAT-B-28-4 Lab Sample ID: C41598-36 Matrix: SO - Soil

 Date Sampled:
 09/02/15

 Date Received:
 09/03/15

 Percent Solids:
 78.6

Project: CAT Alameda

General Chemistry

Analyte Result RL Units DF Analyzed By Method

Moisture, Percent 21.4 % 1 09/10/15 10:54 EA SM2540MOD G-97

Page 1 of 1

Client Sample ID: CAT-B-29-0.5 Lab Sample ID: C41598-37 Matrix: SO - Soil

Date Sampled: 09/02/15 **Date Received:** 09/03/15 **Percent Solids:** 89.0

Project: CAT Alameda

Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Lead	12.5	0.23	mg/kg	5	09/09/15	09/10/15 RS	SW846 6020 ¹	SW846 3050B ²

(1) Instrument QC Batch: MA5197(2) Prep QC Batch: MP10110

Page 1 of 1

SM2540MOD G-97

Client Sample ID: CAT-B-29-0.5 Lab Sample ID: C41598-37 Matrix: SO - Soil

 Date Sampled:
 09/02/15

 Date Received:
 09/03/15

 Percent Solids:
 89.0

 $09/10/15 \ 10:54 \ EA$

Project: CAT Alameda

11

General Chemistry

Moisture, Percent

Analyte Result RL Units DF Analyzed By Method

%

1

C41598

ACCUTEST

Page 1 of 1

Client Sample ID: CAT-B-29-4 Lab Sample ID: C41598-38 Matrix: SO - Soil

Date Sampled: 09/02/15 **Date Received:** 09/03/15 **Percent Solids:** 75.0

Project: CAT Alameda

Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Lead	63.4	0.29	mg/kg	5	09/09/15	09/10/15 RS	SW846 6020 ¹	SW846 3050B ²

(1) Instrument QC Batch: MA5197(2) Prep QC Batch: MP10110

Page 1 of 1

Client Sample ID: CAT-B-29-4 Lab Sample ID: C41598-38 Matrix: SO - Soil

Date Sampled: 09/02/15 **Date Received:** 09/03/15 **Percent Solids:** 75.0

Project: CAT Alameda

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Moisture, Percent	25		%	1	09/10/15 10:54	EA	SM2540MOD G-97

Page 1 of 1

Client Sample ID: CAT-B-30-0.5 Lab Sample ID: C41598-39 Matrix: SO - Soil

Date Sampled: 09/02/15 **Date Received:** 09/03/15 **Percent Solids:** 89.2

Project: CAT Alameda

Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Lead	111	0.23	mg/kg	5	09/09/15	09/11/15 RS	SW846 6020 ¹	SW846 3050B ²

(1) Instrument QC Batch: MA5197(2) Prep QC Batch: MP10110

Page 1 of 1

Client Sample ID: CAT-B-30-0.5 Lab Sample ID: C41598-39 Matrix: SO - Soil

 Date Sampled:
 09/02/15

 Date Received:
 09/03/15

 Percent Solids:
 89.2

Project: CAT Alameda

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	By	Method

Moisture, Percent 10.8 % 1 09/10/15 10:54 EA SM2540MOD G-97

Page 1 of 1

Client Sample ID: CAT-B-30-4 Lab Sample ID: C41598-40 Matrix: SO - Soil

Date Sampled: 09/02/15 **Date Received:** 09/03/15 Percent Solids: 81.6

Project: CAT Alameda

Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Lead	7670	11	mg/kg	200	09/09/15	09/11/15 RS	SW846 6020 ¹	SW846 3050B ²

(1) Instrument QC Batch: MA5200 (2) Prep QC Batch: MP10110

Page 1 of 1

Client Sample ID: CAT-B-30-4
Lab Sample ID: C41598-40
Matrix: SO - Soil

Date Sampled: 09/02/15 **Date Received:** 09/03/15 **Percent Solids:** 81.6

Project: CAT Alameda

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Moisture Percent	18 4		%	1	09/10/15 10:54	LFΔ	SM2540MOD G-97

Page 1 of 3

Client Sample ID: CAT-B-11-GW

Lab Sample ID: C41598-41 **Date Sampled:** 09/02/15 Matrix: **Date Received:** 09/03/15 AQ - Ground Water Method: SW846 8260B Percent Solids: n/a

Project: CAT Alameda

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	W56477.D	1	09/11/15	CV	n/a	n/a	VW2096
Run #2	W56612.D	2	09/15/15	CV	n/a	n/a	VW2103

Purge Volume
10.0 ml
10.0 ml

VOA 8260 List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone ^a	19.5 b	40	8.0	ug/l	J
71-43-2	Benzene	ND	1.0	0.20	ug/l	
108-86-1	Bromobenzene	ND	1.0	0.20	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.20	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.20	ug/l	
75-25-2	Bromoform	ND	1.0	0.22	ug/l	
104-51-8	n-Butylbenzene	ND	2.0	0.20	ug/l	
135-98-8	sec-Butylbenzene	ND	2.0	0.20	ug/l	
98-06-6	tert-Butylbenzene	ND	2.0	0.28	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.20	ug/l	
75-00-3	Chloroethane	ND	1.0	0.20	ug/l	
67-66-3	Chloroform	ND	1.0	0.20	ug/l	
95-49-8	o-Chlorotoluene	ND	2.0	0.20	ug/l	
106-43-4	p-Chlorotoluene	ND	2.0	0.26	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.20	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.20	ug/l	
75-35-4	1,1-Dichloroethylene	ND	1.0	0.20	ug/l	
563-58-6	1,1-Dichloropropene	ND	1.0	0.20	ug/l	
96-12-8	1,2-Dibromo-3-chloropropan ^c	ND	2.0	0.40	ug/l	
106-93-4	1,2-Dibromoethane	ND	1.0	0.20	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.20	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.20	ug/l	
142-28-9	1,3-Dichloropropane	ND	1.0	0.20	ug/l	
108-20-3	Di-Isopropyl ether	105 ^b	4.0	0.44	ug/l	
594-20-7	2,2-Dichloropropane	ND	1.0	0.20	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.20	ug/l	
75-71-8	Dichlorodifluoromethane	ND	1.0	0.20	ug/l	
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	0.20	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.20	ug/l	
541-73-1	m-Dichlorobenzene	ND	1.0	0.20	ug/l	
95-50-1	o-Dichlorobenzene	ND	1.0	0.20	ug/l	
106-46-7	p-Dichlorobenzene	ND	1.0	0.20	ug/l	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 2 of 3

Client Sample ID: CAT-B-11-GW

 Lab Sample ID:
 C41598-41
 Date Sampled:
 09/02/15

 Matrix:
 AQ - Ground Water
 Date Received:
 09/03/15

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: CAT Alameda

VOA 8260 List

CAS No.	Compound	Result	RL	MDL	Units	Q
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.20	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.30	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.20	ug/l	
637-92-3	Ethyl Tert Butyl Ether	ND	2.0	0.22	ug/l	
591-78-6	2-Hexanone	ND	10	2.0	ug/l	
87-68-3	Hexachlorobutadiene	ND	2.0	0.20	ug/l	
98-82-8	Isopropylbenzene	ND	1.0	0.20	ug/l	
99-87-6	p-Isopropyltoluene	ND	2.0	0.20	ug/l	
108-10-1	4-Methyl-2-pentanone	ND	10	1.0	ug/l	
74-83-9	Methyl bromide	ND	2.0	0.20	ug/l	
74-87-3	Methyl chloride	ND	1.0	0.30	ug/l	
74-95-3	Methylene bromide	ND	1.0	0.20	ug/l	
75-09-2	Methylene chloride	ND	10	2.0	ug/l	
78-93-3	Methyl ethyl ketone	ND	10	2.0	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.20	ug/l	
91-20-3	Naphthalene ^c	ND	5.0	0.50	ug/l	
103-65-1	n-Propylbenzene	ND	2.0	0.20	ug/l	
100-42-5	Styrene	ND	1.0	0.20	ug/l	
994-05-8	Tert-Amyl Methyl Ether	ND	2.0	0.40	ug/l	
75-65-0	Tert-Butyl Alcohol c	ND	10	2.4	ug/l	
630-20-6	1,1,1,2-Tetrachloroethane	ND	1.0	0.30	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.20	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.20	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.22	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	2.0	0.20	ug/l	
96-18-4	1,2,3-Trichloropropane	ND	2.0	0.20	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	2.0	0.20	ug/l	
95-63-6	1,2,4-Trimethylbenzene	ND	2.0	0.20	ug/l	
108-67-8	1,3,5-Trimethylbenzene	ND	2.0	0.20	ug/l	
127-18-4	Tetrachloroethylene	ND	1.0	0.30	ug/l	
108-88-3	Toluene	ND	1.0	0.20	ug/l	
79-01-6	Trichloroethylene	ND	1.0	0.20	ug/l	
75-69-4	Trichlorofluoromethane	ND	1.0	0.20	ug/l	
75-01-4	Vinyl chloride	ND	1.0	0.20	ug/l	
1330-20-7	Xylene (total)	ND	2.0	0.46	ug/l	
	TPH-GRO (C6-C10)	301	50	25	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7	Dibromofluoromethane	104%	102%	78-1	25%	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

ω

Page 3 of 3

Client Sample ID: CAT-B-11-GW

 Lab Sample ID:
 C41598-41
 Date Sampled:
 09/02/15

 Matrix:
 AQ - Ground Water
 Date Received:
 09/03/15

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: CAT Alameda

VOA 8260 List

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
2037-26-5	Toluene-D8	102%	102%	86-114%
460-00-4	4-Bromofluorobenzene	102%	98%	80-113%

(a) CCV outside of control limits; associated results may be biased high.

(b) Result is from Run# 2

(c) CCV outside of control limits (biased high); not detected in sample.

ND = Not detected MDL = Method Detection Limit J = Interpolation Detection Limit <math>J = Interpolation Detection
RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

ن

Page 1 of 1

Client Sample ID: CAT-B-11-GW

Lab Sample ID: C41598-41 **Date Sampled:** 09/02/15 Matrix: AQ - Ground Water **Date Received:** 09/03/15 Method: SW846 8015B M SW846 3510C Percent Solids: n/a

Project: CAT Alameda

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	HH326228.D	1	09/05/15	NN	09/04/15	OP13015	GHH1621
Run #2							

	Initial Volume	Final Volume
Run #1	920 ml	1.0 ml
Run #2		

TPH Extractable w/ Silica Gel Cleanup

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Diesel) ^a TPH (Motor Oil) TPH (Mineral Spirits) TPH (Kerosene)	0.212 ND ND ND	0.11 0.22 0.11 0.11	0.054 0.11 0.054 0.054	mg/l mg/l mg/l mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
630-01-3	Hexacosane	79%		38-1	39%	

(a) Atypical pattern; value due to multiple discrete peaks in Diesel range.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Client Sample ID: CAT-B

 Lab Sample ID:
 C41598-42
 Date Sampled:
 09/02/15

 Matrix:
 AQ - Ground Water
 Date Received:
 09/03/15

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: CAT Alameda

File IDDFAnalyzedByPrep DatePrep BatchAnalytical BatchRun #1W56478.D109/11/15CVn/an/aVW2096

Run #2

Purge Volume

Run #1 10.0 ml

Run #2

VOA 8260 List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone ^a	ND	20	4.0	ug/l	
71-43-2	Benzene	ND	1.0	0.20	ug/l	
108-86-1	Bromobenzene	ND	1.0	0.20	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.20	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.20	ug/l	
75-25-2	Bromoform	ND	1.0	0.22	ug/l	
104-51-8	n-Butylbenzene	ND	2.0	0.20	ug/l	
135-98-8	sec-Butylbenzene	ND	2.0	0.20	ug/l	
98-06-6	tert-Butylbenzene	ND	2.0	0.28	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.20	ug/l	
75-00-3	Chloroethane	ND	1.0	0.20	ug/l	
67-66-3	Chloroform	ND	1.0	0.20	ug/l	
95-49-8	o-Chlorotoluene	ND	2.0	0.20	ug/l	
106-43-4	p-Chlorotoluene	ND	2.0	0.26	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.20	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.20	ug/l	
75-35-4	1,1-Dichloroethylene	ND	1.0	0.20	ug/l	
563-58-6	1,1-Dichloropropene	ND	1.0	0.20	ug/l	
96-12-8	1,2-Dibromo-3-chloropropan ^b	ND	2.0	0.40	ug/l	
106-93-4	1,2-Dibromoethane	ND	1.0	0.20	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.20	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.20	ug/l	
142-28-9	1,3-Dichloropropane	ND	1.0	0.20	ug/l	
108-20-3	Di-Isopropyl ether	ND	2.0	0.22	ug/l	
594-20-7	2,2-Dichloropropane	ND	1.0	0.20	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.20	ug/l	
75-71-8	Dichlorodifluoromethane	ND	1.0	0.20	ug/l	
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	0.20	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.20	ug/l	
541-73-1	m-Dichlorobenzene	ND	1.0	0.20	ug/l	
95-50-1	o-Dichlorobenzene	ND	1.0	0.20	ug/l	
106-46-7	p-Dichlorobenzene	ND	1.0	0.20	ug/l	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 2 of 3

Client Sample ID: CAT-B

Lab Sample ID: C41598-42 **Date Sampled:** 09/02/15 Matrix: AQ - Ground Water **Date Received:** 09/03/15 Method: SW846 8260B **Percent Solids:**

Project: CAT Alameda

VOA 8260 List

CAS No.	Compound	Result	RL	MDL	Units	Q
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.20	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.30	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.20	ug/l	
637-92-3	Ethyl Tert Butyl Ether	ND	2.0	0.22	ug/l	
591-78-6	2-Hexanone	ND	10	2.0	ug/l	
87-68-3	Hexachlorobutadiene	ND	2.0	0.20	ug/l	
98-82-8	Isopropylbenzene	ND	1.0	0.20	ug/l	
99-87-6	p-Isopropyltoluene	ND	2.0	0.20	ug/l	
108-10-1	4-Methyl-2-pentanone	ND	10	1.0	ug/l	
74-83-9	Methyl bromide	ND	2.0	0.20	ug/l	
74-87-3	Methyl chloride	ND	1.0	0.30	ug/l	
74-95-3	Methylene bromide	ND	1.0	0.20	ug/l	
75-09-2	Methylene chloride	ND	10	2.0	ug/l	
78-93-3	Methyl ethyl ketone	ND	10	2.0	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.20	ug/l	
91-20-3	Naphthalene ^b	ND	5.0	0.50	ug/l	
103-65-1	n-Propylbenzene	ND	2.0	0.20	ug/l	
100-42-5	Styrene	ND	1.0	0.20	ug/l	
994-05-8	Tert-Amyl Methyl Ether	ND	2.0	0.40	ug/l	
75-65-0	Tert-Butyl Alcohol b	ND	10	2.4	ug/l	
630-20-6	1,1,1,2-Tetrachloroethane	ND	1.0	0.30	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.20	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.20	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.22	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	2.0	0.20	ug/l	
96-18-4	1,2,3-Trichloropropane	ND	2.0	0.20	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	2.0	0.20	ug/l	
95-63-6	1,2,4-Trimethylbenzene	ND	2.0	0.20	ug/l	
108-67-8	1,3,5-Trimethylbenzene	ND	2.0	0.20	ug/l	
127-18-4	Tetrachloroethylene	ND	1.0	0.30	ug/l	
108-88-3	Toluene	ND	1.0	0.20	ug/l	
79-01-6	Trichloroethylene	ND	1.0	0.20	ug/l	
75-69-4	Trichlorofluoromethane	ND	1.0	0.20	ug/l	
75-01-4	Vinyl chloride	ND	1.0	0.20	ug/l	
1330-20-7	Xylene (total)	ND	2.0	0.46	ug/l	
	TPH-GRO (C6-C10)	ND	50	25	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1060 52 7	D'1 Cl 4	1040/		70.1	250/	

1868-53-7 Dibromofluoromethane 104% 78-125%

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 3 of 3

Client Sample ID: CAT-B

 Lab Sample ID:
 C41598-42
 Date Sampled:
 09/02/15

 Matrix:
 AQ - Ground Water
 Date Received:
 09/03/15

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: CAT Alameda

VOA 8260 List

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
2037-26-5	Toluene-D8	103%		86-114%
460-00-4	4-Bromofluorobenzene	100%		80-113%

(a) CCV/BS outside of control limits (biased high); not detected in sample.

(b) CCV outside of control limits (biased high); not detected in sample.

ND = Not detected MDL = Method Detection Limit J = Ir

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 1

Client Sample ID: CAT-B

Lab Sample ID: C41598-42 **Date Sampled:** 09/02/15 Matrix: AQ - Ground Water **Date Received:** 09/03/15 Method: SW846 8015B M SW846 3510C **Percent Solids:** n/a

Project: CAT Alameda

DF **Prep Date Analytical Batch** File ID Analyzed By **Prep Batch** Run #1 HH326229.D 09/05/15 NN09/04/15 OP13015 GHH1621 Run #2

Final Volume Initial Volume Run #1 950 ml 1.0 ml Run #2

TPH Extractable w/ Silica Gel Cleanup

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Diesel) TPH (Motor Oil) TPH (Mineral Spirits) TPH (Kerosene)	ND ND ND ND	0.11 0.21 0.11 0.11	0.053 0.11 0.053 0.053	mg/l mg/l mg/l mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
630-01-3	Hexacosane	76%		38-1	39%	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Client Sample ID: CAT-B-23-GW

 Lab Sample ID:
 C41598-43
 Date Sampled:
 09/02/15

 Matrix:
 AQ - Ground Water
 Date Received:
 09/03/15

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: CAT Alameda

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 W56479.D 1 09/11/15 CV n/a n/a VW2096

Run #2

Purge Volume

Run #1 10.0 ml

Run #2

VOA 8260 List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone ^a	ND	20	4.0	ug/l	
71-43-2	Benzene	ND	1.0	0.20	ug/l	
108-86-1	Bromobenzene	ND	1.0	0.20	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.20	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.20	ug/l	
75-25-2	Bromoform	ND	1.0	0.22	ug/l	
104-51-8	n-Butylbenzene	ND	2.0	0.20	ug/l	
135-98-8	sec-Butylbenzene	ND	2.0	0.20	ug/l	
98-06-6	tert-Butylbenzene	ND	2.0	0.28	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.20	ug/l	
75-00-3	Chloroethane	ND	1.0	0.20	ug/l	
67-66-3	Chloroform	ND	1.0	0.20	ug/l	
95-49-8	o-Chlorotoluene	ND	2.0	0.20	ug/l	
106-43-4	p-Chlorotoluene	ND	2.0	0.26	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.20	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.20	ug/l	
75-35-4	1,1-Dichloroethylene	ND	1.0	0.20	ug/l	
563-58-6	1,1-Dichloropropene	ND	1.0	0.20	ug/l	
96-12-8	1,2-Dibromo-3-chloropropan ^b	ND	2.0	0.40	ug/l	
106-93-4	1,2-Dibromoethane	ND	1.0	0.20	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.20	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.20	ug/l	
142-28-9	1,3-Dichloropropane	ND	1.0	0.20	ug/l	
108-20-3	Di-Isopropyl ether	ND	2.0	0.22	ug/l	
594-20-7	2,2-Dichloropropane	ND	1.0	0.20	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.20	ug/l	
75-71-8	Dichlorodifluoromethane	ND	1.0	0.20	ug/l	
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	0.20	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.20	ug/l	
541-73-1	m-Dichlorobenzene	ND	1.0	0.20	ug/l	
95-50-1	o-Dichlorobenzene	ND	1.0	0.20	ug/l	
106-46-7	p-Dichlorobenzene	ND	1.0	0.20	ug/l	

ND = Not detected M

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 2 of 3

Client Sample ID: CAT-B-23-GW

 Lab Sample ID:
 C41598-43
 Date Sampled:
 09/02/15

 Matrix:
 AQ - Ground Water
 Date Received:
 09/03/15

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: CAT Alameda

VOA 8260 List

CAS No.	Compound	Result	RL	MDL	Units	Q
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.20	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.30	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.20	ug/l	
637-92-3	Ethyl Tert Butyl Ether	ND	2.0	0.22	ug/l	
591-78-6	2-Hexanone	ND	10	2.0	ug/l	
87-68-3	Hexachlorobutadiene	ND	2.0	0.20	ug/l	
98-82-8	Isopropylbenzene	ND	1.0	0.20	ug/l	
99-87-6	p-Isopropyltoluene	ND	2.0	0.20	ug/l	
108-10-1	4-Methyl-2-pentanone	ND	10	1.0	ug/l	
74-83-9	Methyl bromide	ND	2.0	0.20	ug/l	
74-87-3	Methyl chloride	ND	1.0	0.30	ug/l	
74-95-3	Methylene bromide	ND	1.0	0.20	ug/l	
75-09-2	Methylene chloride	ND	10	2.0	ug/l	
78-93-3	Methyl ethyl ketone	ND	10	2.0	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.20	ug/l	
91-20-3	Naphthalene ^b	ND	5.0	0.50	ug/l	
103-65-1	n-Propylbenzene	ND	2.0	0.20	ug/l	
100-42-5	Styrene	ND	1.0	0.20	ug/l	
994-05-8	Tert-Amyl Methyl Ether	ND	2.0	0.40	ug/l	
75-65-0	Tert-Butyl Alcohol b	ND	10	2.4	ug/l	
630-20-6	1,1,1,2-Tetrachloroethane	ND	1.0	0.30	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.20	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.20	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.22	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	2.0	0.20	ug/l	
96-18-4	1,2,3-Trichloropropane	ND	2.0	0.20	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	2.0	0.20	ug/l	
95-63-6	1,2,4-Trimethylbenzene	ND	2.0	0.20	ug/l	
108-67-8	1,3,5-Trimethylbenzene	ND	2.0	0.20	ug/l	
127-18-4	Tetrachloroethylene	ND	1.0	0.30	ug/l	
108-88-3	Toluene	ND	1.0	0.20	ug/l	
79-01-6	Trichloroethylene	ND	1.0	0.20	ug/l	
75-69-4	Trichlorofluoromethane	ND	1.0	0.20	ug/l	
75-01-4	Vinyl chloride	ND	1.0	0.20	ug/l	
1330-20-7	Xylene (total)	ND	2.0	0.46	ug/l	
	TPH-GRO (C6-C10)	ND	50	25	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7	Dibromofluoromethane	103%		78-1	25%	

1868-53-7 Dibromofluoromethane 103% 78-125%

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

ယ

Page 3 of 3

Client Sample ID: CAT-B-23-GW

 Lab Sample ID:
 C41598-43
 Date Sampled:
 09/02/15

 Matrix:
 AQ - Ground Water
 Date Received:
 09/03/15

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: CAT Alameda

VOA 8260 List

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
2037-26-5	Toluene-D8	102%		86-114%
460-00-4	4-Bromofluorobenzene	100%		80-113%

(a) CCV/BS outside of control limits (biased high); not detected in sample.

(b) CCV outside of control limits (biased high); not detected in sample.

ND = Not detected MDL = Method Detection Limit J = Indicates

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

C

Page 1 of 1

Client Sample ID: CAT-B-23-GW

 Lab Sample ID:
 C41598-43
 Date Sampled:
 09/02/15

 Matrix:
 AQ - Ground Water
 Date Received:
 09/03/15

 Method:
 SW846 8015B M
 SW846 3510C
 Percent Solids:
 n/a

Project: CAT Alameda

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 HH326230.D 1 09/06/15 NN 09/04/15 OP13015 GHH1621
Run #2

Run #1 980 ml 1.0 ml
Run #2

TPH Extractable w/ Silica Gel Cleanup

CAS No.	Compound	Result	RL	MDL	Units	Q
	TPH (Diesel) TPH (Motor Oil) TPH (Mineral Spirits) TPH (Kerosene)	ND ND ND ND	0.10 0.20 0.10 0.10	0.051 0.10 0.051 0.051	mg/l mg/l mg/l mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
630-01-3	Hexacosane	76%		38-1	39%	

ND = Not detected MDL = Method Detection Limit J =

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 3

Client Sample ID: CAT-A

 Lab Sample ID:
 C41598-44
 Date Sampled:
 09/02/15

 Matrix:
 AQ - Ground Water
 Date Received:
 09/03/15

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: CAT Alameda

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 W56476.D 1 09/11/15 CV n/a n/a VW2096

Run #2

Purge Volume

Run #1 10.0 ml

Run #2

VOA 8260 List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone ^a	ND	20	4.0	ug/l	
71-43-2	Benzene	ND	1.0	0.20	ug/l	
108-86-1	Bromobenzene	ND	1.0	0.20	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.20	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.20	ug/l	
75-25-2	Bromoform	ND	1.0	0.22	ug/l	
104-51-8	n-Butylbenzene	ND	2.0	0.20	ug/l	
135-98-8	sec-Butylbenzene	ND	2.0	0.20	ug/l	
98-06-6	tert-Butylbenzene	ND	2.0	0.28	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.20	ug/l	
75-00-3	Chloroethane	ND	1.0	0.20	ug/l	
67-66-3	Chloroform	ND	1.0	0.20	ug/l	
95-49-8	o-Chlorotoluene	ND	2.0	0.20	ug/l	
106-43-4	p-Chlorotoluene	ND	2.0	0.26	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.20	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.20	ug/l	
75-35-4	1,1-Dichloroethylene	ND	1.0	0.20	ug/l	
563-58-6	1,1-Dichloropropene	ND	1.0	0.20	ug/l	
96-12-8	1,2-Dibromo-3-chloropropan ^b	ND	2.0	0.40	ug/l	
106-93-4	1,2-Dibromoethane	ND	1.0	0.20	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.20	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.20	ug/l	
142-28-9	1,3-Dichloropropane	ND	1.0	0.20	ug/l	
108-20-3	Di-Isopropyl ether	ND	2.0	0.22	ug/l	
594-20-7	2,2-Dichloropropane	ND	1.0	0.20	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.20	ug/l	
75-71-8	Dichlorodifluoromethane	ND	1.0	0.20	ug/l	
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	0.20	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.20	ug/l	
541-73-1	m-Dichlorobenzene	ND	1.0	0.20	ug/l	
95-50-1	o-Dichlorobenzene	ND	1.0	0.20	ug/l	
106-46-7	p-Dichlorobenzene	ND	1.0	0.20	ug/l	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 2 of 3

Client Sample ID: CAT-A

 Lab Sample ID:
 C41598-44
 Date Sampled:
 09/02/15

 Matrix:
 AQ - Ground Water
 Date Received:
 09/03/15

 Method:
 SW846 8260B
 Percent Solids:
 n/a

Project: CAT Alameda

VOA 8260 List

CAS No.	Compound	Result	RL	MDL	Units	Q
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.20	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.30	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.20	ug/l	
637-92-3	Ethyl Tert Butyl Ether	ND	2.0	0.22	ug/l	
591-78-6	2-Hexanone	ND	10	2.0	ug/l	
87-68-3	Hexachlorobutadiene	ND	2.0	0.20	ug/l	
98-82-8	Isopropylbenzene	ND	1.0	0.20	ug/l	
99-87-6	p-Isopropyltoluene	ND	2.0	0.20	ug/l	
108-10-1	4-Methyl-2-pentanone	ND	10	1.0	ug/l	
74-83-9	Methyl bromide	ND	2.0	0.20	ug/l	
74-87-3	Methyl chloride	ND	1.0	0.30	ug/l	
74-95-3	Methylene bromide	ND	1.0	0.20	ug/l	
75-09-2	Methylene chloride	ND	10	2.0	ug/l	
78-93-3	Methyl ethyl ketone	ND	10	2.0	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.20	ug/l	
91-20-3	Naphthalene ^b	ND	5.0	0.50	ug/l	
103-65-1	n-Propylbenzene	ND	2.0	0.20	ug/l	
100-42-5	Styrene	ND	1.0	0.20	ug/l	
994-05-8	Tert-Amyl Methyl Ether	ND	2.0	0.40	ug/l	
75-65-0	Tert-Butyl Alcohol b	ND	10	2.4	ug/l	
630-20-6	1,1,1,2-Tetrachloroethane	ND	1.0	0.30	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.20	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.20	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.22	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	2.0	0.20	ug/l	
96-18-4	1,2,3-Trichloropropane	ND	2.0	0.20	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	2.0	0.20	ug/l	
95-63-6	1,2,4-Trimethylbenzene	ND	2.0	0.20	ug/l	
108-67-8	1,3,5-Trimethylbenzene	ND	2.0	0.20	ug/l	
127-18-4	Tetrachloroethylene	ND	1.0	0.30	ug/l	
108-88-3	Toluene	ND	1.0	0.20	ug/l	
79-01-6	Trichloroethylene	ND	1.0	0.20	ug/l	
75-69-4	Trichlorofluoromethane	ND	1.0	0.20	ug/l	
75-01-4	Vinyl chloride	ND	1.0	0.20	ug/l	
1330-20-7	Xylene (total)	ND	2.0	0.46	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
1868-53-7	Dibromofluoromethane	103%		78-1	25%	
2037-26-5	Toluene-D8	103%		86-1	14%	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 3 of 3

Client Sample ID: CAT-A

Lab Sample ID: C41598-44 Date Sampled: 09/02/15 Matrix: AQ - Ground Water **Date Received:** 09/03/15 Method: SW846 8260B **Percent Solids:** n/a

Project: CAT Alameda

VOA 8260 List

CAS No. **Surrogate Recoveries** Run#1 Run# 2 Limits 99% 4-Bromofluorobenzene 460-00-4 80-113%

(a) CCV/BS outside of control limits (biased high); not detected in sample.

(b) CCV outside of control limits (biased high); not detected in sample.

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

ND = Not detected

M	isc.	Forms	

Custody Documents and Other Forms

Includes the following where applicable:

· Chain of Custody

Tetra Tech EM Inc. San Francisco Office	Cha	ain of	Custo	dy Rec	coi	rd	N	_{o.} <u>68</u>	ار <u>39</u> 3	14	5	9				Page -		4	_
135 Main St. Suite 1800 San Francisco. CA 94105 415-543-4880 Fax 415-543-5480	Lab PO#: Na -BAA	Lab:	cutest	_					r Types				4 104 10	200	7	e Add			
Project name: CAT Alameda	TIEMI technical contact:	Field sample	HANSE KDUFF) v				100			-		\$ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	3 3					
Project (CTO) number: 1035 4024	Victo Eurly	Field sampler		no DA	MS / MSD	40 ml VOA	500 ml Poly	0		VOA	PCBs	als	I Purgeables	Searce	200 60				有の井
Sample ID	Sample Location (Pt. ID)	Date	Time	Matrix	2	40 n	200	Sleeve Glass		δ S	Pest	Met	TP.	4	14	1	Ш		
CAT-B-11-0.5		9-1-15	07:37	50:1				1				П	У	(X	X				1
CAT- B-11-4		9-1-15		50/							1	$\perp \downarrow$		Ш	Ш.	$\bot \bot$	111	\bot	2
CAT- B-12-0,5			08:02	50.			_		\perp	\vdash	+	\dashv	- -	44		₩	+++	+	4
CAT-B-12-4			08:05	50:/		1	+	/	-		+	\dashv	#	++1	H	$\vdash\vdash$	Н	+	5
CAT-13-13.0.5			03:15	5011		<u> </u>		1	+	\vdash	+	+	+	+H	H	\vdash	\vdash	+	6
CAT-13-4			08:18	50:1		-		1		₩	╄	+	+	+H	H	\vdash	H	+	7
CAT - B-14 - 0.5		9-1-15		Soil					+	\vdash	+	+	-#	11.		\vdash	Н	-	8
CAT-B-14 - 4		9-1-15	0925	Soil Soil		-	+	111		\vdash	╁	+	Y	ŹΥ	+	\vdash		+	9
CAT-B-15-0.5 CAT-B-15-2		9-1-15	0930	50.1		\vdash	+	111	+	H	+	H	-()	1		\vdash	HH	+	a
CAT-B-16-0.5		9-1-15	-	5011		-	-	Hil	++		+	Ħ	K		\perp	\vdash	\Box	\top	n
CAT-B-16-2		9-1-15		Soil			+-	1	1		$^{+}$	Ħ	Ŷ	Ŷ		Ħ	ĦĦ	\top	1
CM1-D-16-2	!	1 , , ,	1 142	7411				1 1 1	11	11		ш		· -		ш			
	<u> </u>	N	lame (pri	nt) /	/			Comp	any Na	me				T	Dat	e	Ti	ime	
Relinquished by:		in	lack	Outh	-			Ties	fru	Te		Ī		0	1-3-	-15	12.	ی	_
Received by: Where Worke Rold		Miles	Postehield	/ /	7		Acc	cutes		,					/3//		12:0	0	
Relinquished by:		 	7,	V										É	Ţ		13:4	10	
Received by:		167	120017	TISTA	,			N/CA	MES	7	_			ai	131	. 6		40	<u> </u>
			9501	(31 51	-			45000	-14-0		_	_	_	+	91	10	10		_
Relinquished by: Received by:		-			-		-							-					_
Received by.											_	_		-				_	=
Turnaround time/remarks:	tAt or al	U 7	TEPH	4						1	- 1 E	FM I	95	, (4.7	1(4	17		

C41598: Chain of Custody

Page 1 of 7

Silver get on TEPH, soil by Dry weight, Std TAT
Please Keep at one SDG for 4 of 4 Coc's

Received by:

Turnaround time/remarks:

Fed Ex #: Non - Course

C41598: Chain of Custody

Page 2 of 7

											(14	15	0	16	3				
Tetra Tech EM Inc. San Francisco Office	Cha	in of	Custo	dy Rec	co	rd	۱ ا	اo.	<u> </u>	97										of _	f
135 Main St. Suite 1800 San Francisco. CA 94105 415-543-4880	Lab PO#: Bo A	Lab:		,						· Type					300	-}	Þ	Add			
Fax 415-543-5480	·	0		90		180	./C	onta	inei	Type	es			A	naj	YSE	K	equi	ired	1 3	
Project name: CIAT Alameda	TIENII technical contact: Mark Daffy	Field samples	ccufe 2 Out	W	,				20						5.1.6	020	3				
Project (CTO) number: 1035 4024	TIEMI project manager:	Field samplers	s'signatures:	2	MS / MSD	VOA	1 liter Amber	Loty	Jar				CBs	urgeables	Extractables	sad 6	Semic				4
Sample ID	Sample Location (Pt. ID)	Date	Time	Matrix	MS	40 ml	1 liter	Sleeve	Glass Jar		3	NOA SVOA	Pest/PCBs	Metal TPH I	TPH Extra	7	4				3
CAT-B-23-0.5		9-2-15		50,1					1						Х	χþ					19
CAT-B-23-2 CAT-B-24-0.5 CAT-B-24-2			1210		_		+	-	Н	+	+	+	\mathbb{H}		1	H	-		+	+	19 29 30 32 33 34 35 36
CAT-B-24-2			1240												J	11					18
CAT-B-25-0.5			1300				_	+	$\sqcup \sqcup$	- -	-	\perp	\blacksquare		Ì	Ш	4		\coprod		29
(AT-B-25-2 (AT-B-26-0,5			1255				+	-	+)	+	+	ł	Н			W	V		+		30
CAT-B-26-2			1345						Ш			t			X	X 3					32
CAT-0-27 -0.5			1550		_		1		Ш	$\perp \downarrow$	4	-				X_	_		$\bot\bot$	$\perp \downarrow$	37
CAT-B-27-4 CAT-B-28-0.5		.	1510		-	Н	+	+	Ш	+	+	+	H	+		X	+	+	+	+	34
CAT-B-28-4		4	1535	4					W			t		\top		X	T	+	H		36
		NI.		-4)				C		N	1						204		,	т:	
Relinquished by:	h		ame (prir				7		mp:	any N	Man	ire	/		-		Date -3-		-	Time	-
Relinquished by: 12 2 23 Received by: White Harafald		Mile M	Corebuto			1	lice	ite	3/0	Ť	-	\mathcal{A}	٦			9/3	-3- 7/15		12	ro	
Relinquished by:		1	l					V								١	<i> </i>		13.	40	
Received by:																					
Relinquished by:															4						4
Received by:												_									=
Turnaround time/remarks:																					
																					İ
Fed Ex #:					•																
					_																

C41598: Chain of Custody

Page 3 of 7

)(H	5	15)	. /	_	
Tetra Tech EM Inc. San Francisco Office	Cha	in of	Custo	dy Re	co	rd	١١	_{Jo} (86	98				٠,٠		ı	age –	4.	r 4	ز —
		01	Custo	try made	-		• •	•0.						Pre	eser	vative	Add	ed		
135 Main St. Suite 1800						7					1	4		13	П		П			П
San Francisco. CA 94105	Lab PO#:	Lab:	1	1							I			HC		i '				
415-543-4880 Fax 415-543-5480	BOA	IA	cufe:	3/		No	./C	onta	iner	Type	s			Ana	ilvs	is Re	eaui	red		
Project name:	TtEMI technical contact; //					-					$^{+}$	П	-,		%		ÔΤ		Т	Н
CAT Hanede	Muck Onthy	M	L C	why	,				2		0			8260	020					
Project (CTO) number:	TtEMI/project nfanager:	Field sampler		77	۵				00		1			geables	i v		ı İ		١,	202
10354024	TIEMI/project nanager:	V	Nal a	W	MS / MSD	40 ml VOA	1 liter Amber	ni Poty e	Lil		Q.		2 s	Purgeat	pos					子の井
Sample ID	Sample Location (Pt. ID)	Date	Time	Matrix	Z	40 m	1 lite	Sleeve	Glass		VOA	SVOA	Meta	TPH Pur	17		L	Ш	_	
CAT-B-28-0.5	9-6	15.55	1555	5011					X						γ		\Box			25/20/20/20/20/20
CAT-B-28-4 (AT-B-29-0.5 (AT-B-29-4	9.2	1535	1535		X										X					30
(AT-B-29 -0.5		4-2-15		1											ΙX					37
CAT-13-29-4		,	1550						Ш		L	Ш	1	Ш	X	\perp		Ш		30
(AT-B-30-0.5			1600					\perp	Ш		1	\sqcup	_		X	$\perp \!\!\! \perp$		Ш	\perp	34
CAT-B-30-4			1605	W	_				1		1	\perp	4	v	X	\dashv		\square	_	
CAT-8-11-6-W			930	water	_	3	2			\perp	X	 	\perp	Ŋ	\vdash	\perp		Ш		4
CAT-B			1405			3	2	+		++		\vdash	╁.	7	1	+	+	H	+	42
(AT-B-23-GW			1400		X,	6	3	-	\vdash	$\vdash \vdash$	₩	+	┰	\wedge	ᡯ	\dashv	+	H	-	No
CAT-A	ALCOHOL CONTRACTOR CON		900			2	+	+		╁╌┟╌	M	+	+	\vdash	+	-	manus and manus	genta in superior	-	Carles over
The state of the s		***************************************						+	\vdash	++	╫				-	zeza zez-	+	H		\dashv
			Manager of the Control of the Contro						منيد		1				Ш		Ш	Ш		
		N	ame (pri	nt)				Co	mpa	ny Na	am	e			Π	Date	9	T	ime	
Relinquished by:	46/	Me	rkD.	Han,				Te	110	To.	2/				9.	3-1	5	12	00	4
Received by: MAC / Horefuld	7	Mike	rk D. Narekel	1		/	4cci	ite	54	,		`			91	3/15	-	15:	00	
Relinquished by:			$\sqrt{}$				9	1.							1	U		13:	40	
Received by:																				
Relinquished by:									474								[
Received by:		*													<u></u>					_
Turnaround time/remarks:	TAT *	TEPH	1 by	8016	-															
FU EA #.																				

C41598: Chain of Custody

Page 4 of 7

Tetra Tech EM Inc. San Francisco Office	Cha	in of	Custo	dy Rec	or	d	No.	68	98				Pres	ervati	Page	y dded	of _	1
135 Main St. Suite 1800 San Francisco. CA 94105 415-543-4880	Lab PO#:	Lab:	1-	L		T - 14	C		m	177			1					
Fax 415-543-5480 Project name: At Alaneda	TtEMI technical contact:	Field samples	si /LI	0,66		10./0	Con	ainer	Types				ा ने	ysis I	Requ	uired		T
Project (CTO) number:	Ttemi project manager:	Field samplers	s' signatures:	T	MS / MSD	Amber	500 ml Poly	Jar/-8 3		216	CBs	ls Purrochles	TPH Extractables	1 60				
Sample ID	Sample Location (Pt. ID)	Date	Time	Matrix	MS	1 liter Ambe	500 ml	Sleeve Glass Jar		VOA	Pest/PCBs	Metals	TPH E	100				
CAT-B-28-0.5 CAT-B-28-4 (AT-B-29-0.5 CAT-B-29-4 (AT-B-30-0.5 CAT-B-30-4 CAT-B-30-4 CAT-B-23-GW CAT-A	9-1	4-2-15	1557 1535 1545 1550 1600 1605 930 1405 1400 900	(water	X	3 2 3 3 6 3 2		X		XXX			XXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX				
		N	ame (pri	nt)	T		(compa	ny Na	ıme			T	D	ate		Tim	e
Received by: Machanal Construction of the Cons	144	Mike	Martele	H		A	1	etro tost	to	a L				9-3	15	- /	120	_
Relinquished by: Received by:			-		+		-	-	-		2000				74 1	+		
Relinquished by:																		
Received by:																		
Turnaround time/remarks:	L TAT *	TEPH	-1 by	8015														
	WHITE I sho	ratory Cony V	ELLOW-Sample	Tracker PINK	-File C	`onv												

C41598: Chain of Custody Page 5 of 7

Accutest Laboratories Sample Receipt Summary

ACCUTEST

Accutest Laboratories V:408.588.0200

LABORATOR	IES										
Accutest Job Number: C415	598		Client:	TETRA TI	ECH			Project: CAT ALAMEDA			
Date / Time Received: 9/3/2	015 1:4	10:00 PN	Л	Delivery	Method:	Ac	cutest Courier	Airbill #'s:			
Cooler Temps (Initial/Adjuste	d): #1	: (4.7/4.	7);_								
Cooler Security Y	or N				Y or	N	Sample Integrit	ty - Documentation	Υ	or N	
1. Custody Seals Present:	✓	_	. COC Pr	esent:	✓			present on bottles:	<u> </u>		
2. Custody Seals Intact:		4. Sn	npl Dates	s/Time OK	\checkmark		Container label	•	✓		
Cooler Temperature	Υ.	or N						ner label / COC agree:	✓		
Temp criteria achieved:	<u> </u>						Sample Integri	ity Condition	Υ	or N	
2. Therm ID:	_	IR1;					Sample Integri	- -	<u> </u>		
3. Cooler media:	lo	e (Bag)					1. Sample recvd			П	
4. No. Coolers:		1					All containers Condition of sa		✓	Intact	
Quality Control Brosomystian	v	or N	N/A				3. Condition of Sa	anipie.	-	IIIIaCi	
Quality Control Preservation							Sample Integri	ty - Instructions	<u>Y</u>	or N	N/A
Trip Blank present / cooler:		✓					1. Analysis requ	ested is clear:	✓		
2. Trip Blank listed on COC:		\checkmark					2. Bottles receiv	ed for unspecified tests		✓	
3. Samples preserved properly:	✓						3. Sufficient volu	ime recvd for analysis:	✓		
4. VOCs headspace free:	~						4. Compositing i	nstructions clear:			\checkmark
							5. Filtering instru	uctions clear:			\checkmark
Comments							•				

2105 Lundy Avenue F: 408.588.0201

C41598: Chain of Custody

Page 6 of 7

San Jose, CA 95131 www/accutest.com

Accutest Laboratories Sample Receipt Summary

Accutest Job Number: C4	1598 Client: TETRATECH	Project: CAT ALAMEDA
Date / Time Received: 9/3	/2015 1:40:00 PM Delivery Method: Accutest Courier	Airbill #'s:
Cooler Temps (Initial/Adjus	ted): #1: (4.7/4.7);	
Cooler Security	Y or N Sample Integrity	- Documentation Y or N
Custody Seals Present:	1. Sample labels pre	
2. Custody Seals Intact:	□ 4. Smpl Dates/Time OK ☑ □ 2. Container labeling	g complete:
Cooler Temperature	Y or N 3. Sample container	r label / COC agree: ☑
1. Temp criteria achieved:	✓ □ Sample Integrity	- Condition Y or N
2. Therm ID:	IR1; 1. Sample recvd wit	
3. Cooler media:	Ice (Bag) 2. All containers acc	counted for:
4. No. Coolers:	3. Condition of sam	ple: Intact
Quality Control Preservation	<u>Sample integrity</u>	- Instructions Y or N N/A
Trip Blank present / cooler:	1. Analysis request	
2. Trip Blank listed on COC:	☐ ☑ ☐ 2. Bottles received	for unspecified tests
3. Samples preserved properly	3. Sufficient volume	e recvd for analysis:
4. VOCs headspace free:	✓ ☐ ☐ 4. Compositing inst	
	5. Filtering instructi	ons clear:
Comments		
Accutest Laboratories V:408.588.0200	2105 Lundy Avenue F: 408.588.0201	San Jose, CA 95131 www/accutest.com

C41598: Chain of Custody

Page 7 of 7

GC/MS Volatiles

QC Data Summaries

Includes the following where applicable:

- Method Blank Summaries
- Blank Spike Summaries
- Matrix Spike and Duplicate Summaries

Method: SW846 8260B

Method Blank Summary Job Number: C41598

TETRCAO Tetra Tech EMI Account:

Project: CAT Alameda

Sample VW2096-MB	File ID W56473.D	DF 1	Analyzed 09/11/15	By CV	Prep Date n/a	Prep Batch n/a	Analytical Batch VW2096

The QC reported here applies to the following samples:

CAS No.	Compound	Result	RL	MDL	Units Q
67-64-1	Acetone	ND	20	4.0	ug/l
71-43-2	Benzene	ND	1.0	0.20	ug/l
108-86-1	Bromobenzene	ND	1.0	0.20	ug/l
74-97-5	Bromochloromethane	ND	1.0	0.20	ug/l
75-27-4	Bromodichloromethane	ND	1.0	0.20	ug/l
75-25-2	Bromoform	ND	1.0	0.22	ug/l
104-51-8	n-Butylbenzene	ND	2.0	0.20	ug/l
135-98-8	sec-Butylbenzene	ND	2.0	0.20	ug/l
98-06-6	tert-Butylbenzene	ND	2.0	0.28	ug/l
108-90-7	Chlorobenzene	ND	1.0	0.20	ug/l
75-00-3	Chloroethane	ND	1.0	0.20	ug/l
67-66-3	Chloroform	ND	1.0	0.20	ug/l
95-49-8	o-Chlorotoluene	ND	2.0	0.20	ug/l
106-43-4	p-Chlorotoluene	ND	2.0	0.26	ug/l
56-23-5	Carbon tetrachloride	ND	1.0	0.20	ug/l
75-34-3	1,1-Dichloroethane	ND	1.0	0.20	ug/l
75-35-4	1,1-Dichloroethylene	ND	1.0	0.20	ug/l
563-58-6	1,1-Dichloropropene	ND	1.0	0.20	ug/l
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.0	0.40	ug/l
106-93-4	1,2-Dibromoethane	ND	1.0	0.20	ug/l
107-06-2	1,2-Dichloroethane	ND	1.0	0.20	ug/l
78-87-5	1,2-Dichloropropane	ND	1.0	0.20	ug/l
142-28-9	1,3-Dichloropropane	ND	1.0	0.20	ug/l
108-20-3	Di-Isopropyl ether	ND	2.0	0.22	ug/l
594-20-7	2,2-Dichloropropane	ND	1.0	0.20	ug/l
124-48-1	Dibromochloromethane	ND	1.0	0.20	ug/l
75-71-8	Dichlorodifluoromethane	ND	1.0	0.20	ug/l
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	0.20	ug/l
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.20	ug/l
541-73-1	m-Dichlorobenzene	ND	1.0	0.20	ug/l
95-50-1	o-Dichlorobenzene	ND	1.0	0.20	ug/l
106-46-7	p-Dichlorobenzene	ND	1.0	0.20	ug/l
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.20	ug/l
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.30	ug/l
100-41-4	Ethylbenzene	ND	1.0	0.20	ug/l
637-92-3	Ethyl Tert Butyl Ether	ND	2.0	0.22	ug/l

Method: SW846 8260B

Method Blank Summary Job Number: C41598

TETRCAO Tetra Tech EMI Account:

CAT Alameda **Project:**

Sample VW2096-MB	File ID W56473.D	DF 1	Analyzed 09/11/15	By CV	Prep Date n/a	Prep Batch n/a	Analytical Batch VW2096

The QC reported here applies to the following samples:

CAS No.	Compound	Result	RL	MDL	Units Q
591-78-6	2-Hexanone	ND	10	2.0	ug/l
87-68-3	Hexachlorobutadiene	ND	2.0	0.20	ug/l
98-82-8	Isopropylbenzene	ND	1.0	0.20	ug/l
99-87-6	p-Isopropyltoluene	ND	2.0	0.20	ug/l
108-10-1	4-Methyl-2-pentanone	ND	10	1.0	ug/l
74-83-9	Methyl bromide	ND	2.0	0.20	ug/l
74-87-3	Methyl chloride	ND	1.0	0.30	ug/l
74-95-3	Methylene bromide	ND	1.0	0.20	ug/l
75-09-2	Methylene chloride	ND	10	2.0	ug/l
78-93-3	Methyl ethyl ketone	ND	10	2.0	ug/l
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.20	ug/l
91-20-3	Naphthalene	ND	5.0	0.50	ug/l
103-65-1	n-Propylbenzene	ND	2.0	0.20	ug/l
100-42-5	Styrene	ND	1.0	0.20	ug/l
994-05-8	Tert-Amyl Methyl Ether	ND	2.0	0.40	ug/l
75-65-0	Tert-Butyl Alcohol	ND	10	2.4	ug/l
630-20-6	1,1,1,2-Tetrachloroethane	ND	1.0	0.30	ug/l
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.20	ug/l
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.20	ug/l
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.22	ug/l
87-61-6	1,2,3-Trichlorobenzene	ND	2.0	0.20	ug/l
96-18-4	1,2,3-Trichloropropane	ND	2.0	0.20	ug/l
120-82-1	1,2,4-Trichlorobenzene	ND	2.0	0.20	ug/l
95-63-6	1,2,4-Trimethylbenzene	ND	2.0	0.20	ug/l
108-67-8	1,3,5-Trimethylbenzene	ND	2.0	0.20	ug/l
127-18-4	Tetrachloroethylene	ND	1.0	0.30	ug/l
108-88-3	Toluene ^a	0.32	1.0	0.20	ug/l J
79-01-6	Trichloroethylene	ND	1.0	0.20	ug/l
75-69-4	Trichlorofluoromethane	ND	1.0	0.20	ug/l
75-01-4	Vinyl chloride	ND	1.0	0.20	ug/l
1330-20-7	Xylene (total)	ND	2.0	0.46	ug/l
	TPH-GRO (C6-C10)	ND	50	25	ug/l

Page 3 of 3

Method: SW846 8260B

_=

Method Blank Summary

Job Number: C41598

Account: TETRCAO Tetra Tech EMI

Project: CAT Alameda

Sample VW2096-MB	File ID W56473.D	DF 1	Analyzed 09/11/15	By CV	Prep Date n/a	Prep Batch n/a	Analytical Batch VW2096

The QC reported here applies to the following samples:

C41598-41, C41598-42, C41598-43, C41598-44

CAS No.	Surrogate Recoveries		Limits
1868-53-7	Dibromofluoromethane	99%	78-125%
2037-26-5	Toluene-D8	101%	86-114%
460-00-4	4-Bromofluorobenzene	97%	80-113%

(a) Associated sample(s) with "B" qualifiers indicate analyte is found at concentrations less than 10 times of method blank. Concentration present in blank is less than 1/2 RL; meeting method criteria.

Method: SW846 8260B

Method Blank Summary Job Number: C41598

TETRCAO Tetra Tech EMI **Account:**

Project: CAT Alameda

Sample VW2103-MB	File ID W56611.D	DF 1	Analyzed 09/15/15	By CV	Prep Date n/a	Prep Batch n/a	Analytical Batch VW2103	

The QC reported here applies to the following samples:

C41598-41

CAS No.	Compound	Result	RL	MDL	Units (Q
67-64-1 108-20-3	Acetone Di-Isopropyl ether	ND ND	20 2.0	4.0 0.22	ug/l ug/l	
CAS No.	Surrogate Recoveries		Limits			
1868-53-7 2037-26-5 460-00-4	Dibromofluoromethane Toluene-D8 4-Bromofluorobenzene	100% 101% 97%	78-1259 86-1149 80-1139	%		

Method: SW846 8260B

Blank Spike/Blank Spike Duplicate Summary Job Number: C41598

Account: TETRCAO Tetra Tech EMI

Project: CAT Alameda

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
VW2096-BS	W56467.D	1	09/11/15	CV	n/a	n/a	VW2096
VW2096-BSD	W56471.D	1	09/11/15	CV	n/a	n/a	VW2096

The QC reported here applies to the following samples:

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	BSD ug/l	BSD %	RPD	Limits Rec/RPD
67-64-1	Acetone	80	119	149* a	130	163* a	9	58-137/12
71-43-2	Benzene	20	17.6	88	21.4	107	19* ^b	77-118/10
108-86-1	Bromobenzene	20	18.1	91	22.5	113	22* b	78-122/10
74-97-5	Bromochloromethane	20	18.3	92	22.7	114	21* b	76-124/10
75-27-4	Bromodichloromethane	20	17.7	89	21.9	110	21* b	74-121/10
75-25-2	Bromoform	20	16.5	83	20.3	102	21* b	58-133/10
104-51-8	n-Butylbenzene	20	17.2	86	23.3	117	30* b	75-125/10
135-98-8	sec-Butylbenzene	20	17.3	87	23.3	117	30* b	76-127/10
98-06-6	tert-Butylbenzene	20	17.3	87	23.0	115	28* b	76-124/10
108-90-7	Chlorobenzene	20	17.3	87	21.5	108	22* b	77-120/10
75-00-3	Chloroethane	20	16.7	84	16.8	84	1	63-117/10
67-66-3	Chloroform	20	17.2	86	21.5	108	22* b	74-123/10
95-49-8	o-Chlorotoluene	20	18.3	92	23.2	116	24* b	76-125/10
106-43-4	p-Chlorotoluene	20	17.9	90	22.7	114	24* b	76-123/10
56-23-5	Carbon tetrachloride	20	17.1	86	22.1	111	26* b	72-128/11
75-34-3	1,1-Dichloroethane	20	17.0	85	21.1	106	22* b	70-120/10
75-35-4	1,1-Dichloroethylene	20	16.2	81	20.7	104	24* b	65-120/11
563-58-6	1,1-Dichloropropene	20	15.3	77	19.6	98	25* b	69-125/10
96-12-8	1,2-Dibromo-3-chloropropane	20	19.6	98	24.1	121	21* b	63-128/10
106-93-4	1,2-Dibromoethane	20	18.7	94	22.8	114	20* b	78-123/10
107-06-2	1,2-Dichloroethane	20	18.4	92	21.9	110	17* ^b	72-123/10
78-87-5	1,2-Dichloropropane	20	18.3	92	22.3	112	20* b	76-119/10
142-28-9	1,3-Dichloropropane	20	18.9	95	23.2	116	20* b	78-122/10
108-20-3	Di-Isopropyl ether	20	18.3	92	21.6	108	17* b	69-124/10
594-20-7	2,2-Dichloropropane	20	17.1	86	21.8	109	24* b	68-129/10
124-48-1	Dibromochloromethane	20	18.0	90	22.8	114	24* b	75-124/10
75-71-8	Dichlorodifluoromethane	20	21.3	107	19.5	98	9	37-149/21
156-59-2	cis-1,2-Dichloroethylene	20	18.5	93	22.7	114	20* b	74-121/10
	cis-1,3-Dichloropropene	20	19.1	96	23.6	118	21* b	76-125/10
541-73-1	m-Dichlorobenzene	20	17.3	87	21.9	110	23* b	77-121/10
95-50-1	o-Dichlorobenzene	20	17.6	88	22.0	110	22* b	77-120/10
106-46-7	p-Dichlorobenzene	20	16.9	85	21.7	109	25* b	78-118/10
156-60-5	trans-1,2-Dichloroethylene	20	15.7	79	19.8	99	23* b	71-118/10
	trans-1,3-Dichloropropene	20	18.1	91	22.5	113	22* b	73-122/10
100-41-4	Ethylbenzene	20	17.2	86	22.0	110	24* b	78-121/10
637-92-3	Ethyl Tert Butyl Ether	20	18.2	91	21.2	106	15* b	76-130/10

^{* =} Outside of Control Limits.

Page 2 of 3

Method: SW846 8260B

Blank Spike/Blank Spike Duplicate Summary Job Number: C41598

TETRCAO Tetra Tech EMI Account:

Project: CAT Alameda

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
VW2096-BS	W56467.D	1	09/11/15	CV	n/a	n/a	VW2096
VW2096-BSD	W56471.D	1	09/11/15	CV	n/a	n/a	VW2096

The QC reported here applies to the following samples:

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	BSD ug/l	BSD %	RPD	Limits Rec/RPD
591-78-6	2-Hexanone	80	90.8	114	106	133	15* b	71-139/10
87-68-3	Hexachlorobutadiene	20	17.6	88	22.5	113	24* b	69-127/11
98-82-8	Isopropylbenzene	20	17.0	85	22.2	111	27* b	77-125/10
99-87-6	p-Isopropyltoluene	20	17.2	86	22.9	115	28* b	76-125/10
108-10-1	4-Methyl-2-pentanone	80	88.8	111	103	129	15* b	71-132/10
74-83-9	Methyl bromide	20	18.1	91	17.7	89	2	66-123/10
74-87-3	Methyl chloride	20	18.3	92	17.9	90	2	50-138/19
74-95-3	Methylene bromide	20	19.2	96	23.0	115	18* b	77-125/10
75-09-2	Methylene chloride	20	18.2	91	22.0	110	19* b	65-124/14
78-93-3	Methyl ethyl ketone	80	97.0	121	107	134	10	67-139/11
1634-04-4	Methyl Tert Butyl Ether	20	17.9	90	20.4	102	13* b	73-124/10
91-20-3	Naphthalene	20	18.3	92	22.0	110	18* b	68-122/12
103-65-1	n-Propylbenzene	20	17.0	85	22.4	112	27* b	76-123/10
100-42-5	Styrene	20	18.1	91	22.7	114	23* b	74-126/10
994-05-8	Tert-Amyl Methyl Ether	20	18.9	95	22.0	110	15* b	76-127/10
75-65-0	Tert-Butyl Alcohol	100	119	119	133	133	11	47-161/18
630-20-6	1,1,1,2-Tetrachloroethane	20	17.9	90	22.6	113	23* b	79-123/10
71-55-6	1,1,1-Trichloroethane	20	17.1	86	22.1	111	26* b	73-124/10
79-34-5	1,1,2,2-Tetrachloroethane	20	18.9	95	23.9	120	23* b	77-123/10
79-00-5	1,1,2-Trichloroethane	20	17.9	90	22.2	111	21* b	77-120/10
87-61-6	1,2,3-Trichlorobenzene	20	19.0	95	23.7	119	22* b	70-126/11
96-18-4	1,2,3-Trichloropropane	20	19.0	95	23.4	117	21* b	65-125/10
120-82-1	1,2,4-Trichlorobenzene	20	17.9	90	22.7	114	24* b	72-123/10
95-63-6	1,2,4-Trimethylbenzene	20	17.4	87	22.4	112	25* b	77-122/10
108-67-8	1,3,5-Trimethylbenzene	20	18.2	91	23.7	119	26* b	79-127/10
127-18-4	Tetrachloroethylene	20	16.4	82	21.2	106	26* b	71-124/10
108-88-3	Toluene	20	17.5	88	21.6	108	21* b	78-120/10
79-01-6	Trichloroethylene	20	16.9	85	21.3	107	23* b	75-119/10
75-69-4	Trichlorofluoromethane	20	21.5	108	20.4	102	5	67-129/14
75-01-4	Vinyl chloride	20	18.9	95	17.5	88	8	60-133/15
1330-20-7	Xylene (total)	60	51.4	86	65.2	109	24* b	78-122/10

CAS No.	Surrogate Recoveries	BSP	BSD	Limits
1868-53-7	Dibromofluoromethane	104%	103%	78-125%

^{* =} Outside of Control Limits.

Page 3 of 3

Method: SW846 8260B

Blank Spike/Blank Spike Duplicate Summary

Job Number: C41598

Account: TETRCAO Tetra Tech EMI

Project: CAT Alameda

Sample	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
VW2096-BS	W56467.D	1	09/11/15	CV	n/a	n/a	VW2096
VW2096-BSD	W56471.D	1	09/11/15	CV	n/a	n/a	VW2096

The QC reported here applies to the following samples:

CAS No.	Surrogate Recoveries	BSP	BSD	Limits
2037-26-5	Toluene-D8	101%	100%	86-114%
460-00-4	4-Bromofluorobenzene	101%	100%	80-113%

⁽a) Outside laboratory control limits.

⁽b) RPD exceeded laboratory acceptance limit; BS/BSD recoveries met acceptance criteria.

^{* =} Outside of Control Limits.

Method: SW846 8260B

Blank Spike/Blank Spike Duplicate Summary Job Number: C41598

Account: TETRCAO Tetra Tech EMI

Project: CAT Alameda

Sample VW2103-BS VW2103-BSD	File ID W56608.D W56609.D	DF 1 1	Analyzed 09/15/15 09/15/15	By CV CV	Prep Date n/a n/a	Prep Batch n/a n/a	Analytical Batch VW2103 VW2103

The QC reported here applies to the following samples:

C41598-41

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	BSD ug/l	BSD %	RPD	Limits Rec/RPD
67-64-1	Acetone	80	115	144* a	110	141* a	2	58-137/12
108-20-3	Di-Isopropyl ether	20	20.6	103	20.7	104	0	69-124/10

CAS No.	Surrogate Recoveries	BSP	BSD	Limits
	Dibromofluoromethane	104%	105%	78-125%
	Toluene-D8	102%	101%	86-114%
	4-Bromofluorobenzene	101%	100%	80-113%

(a) Outside laboratory control limits.

^{* =} Outside of Control Limits.

Method: SW846 8260B

Laboratory Control Sample Summary Job Number: C41598

Account: TETRCAO Tetra Tech EMI

Project: CAT Alameda

Sample VW2096-LCS	File ID W56470.D	DF 1	Analyzed 09/11/15	By CV	Prep Date n/a	Prep Batch n/a	Analytical Batch VW2096

The QC reported here applies to the following samples:

CAS No.	Compound	Spike ug/l	LCS ug/l	LCS %	Limits
	TPH-GRO (C6-C10)	125	93.5	75	70-130

CAS No.	Surrogate Recoveries	BSP	Limits
	Dibromofluoromethane Toluene-D8 4-Bromofluorobenzene	99% 102% 98%	78-125% 86-114% 80-113%

^{* =} Outside of Control Limits.

Laboratory Control Sample Summary

Job Number: C41598

Account: TETRCAO Tetra Tech EMI

Project: CAT Alameda

Sample	File ID	DF	Analyzed	By CV	Prep Date	Prep Batch	Analytical Batch
VW2103-LCS	W56610.D	1	09/15/15	CV	n/a	n/a	VW2103

The QC reported here applies to the following samples: Method: SW846 8260B

C41598-41

CAS No. **Surrogate Recoveries** BSP Limits 1868-53-7 Dibromofluoromethane 98% 78-125% 2037-26-5 Toluene-D8 102% 86-114% 460-00-4 4-Bromofluorobenzene 98% 80-113%

^{* =} Outside of Control Limits.

Method: SW846 8260B

Matrix Spike/Matrix Spike Duplicate Summary Job Number: C41598

Account: TETRCAO Tetra Tech EMI

Project: CAT Alameda

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
C41519-2MS	W56486.D	5	09/11/15	CV	n/a	n/a	VW2096
C41519-2MSD	W56487.D	5	09/11/15	CV	n/a	n/a	VW2096
C41519-2	W56483.D	5	09/11/15	CV	n/a	n/a	VW2096

The QC reported here applies to the following samples:

CAS No.	Compound	C41519 ug/l	-2 Q	Spike ug/l	MS ug/l	MS %	Spike ug/l	MSD ug/l	MSD %	RPD	Limits Rec/RPD
67-64-1	Acetone	ND		400	607	152* a	400	606	152* a	0	58-137/12
71-43-2	Benzene	1.3	J	100	110	109	100	109	108	1	77-118/10
108-86-1	Bromobenzene	ND		100	113	113	100	113	113	0	78-122/10
74-97-5	Bromochloromethane	ND		100	111	111	100	113	113	2	76-124/10
75-27-4	Bromodichloromethane	ND		100	112	112	100	111	111	1	74-121/10
75-25-2	Bromoform	ND		100	102	102	100	103	103	1	58-133/10
104-51-8	n-Butylbenzene	21.1		100	137	116	100	139	118	1	75-125/10
135-98-8	sec-Butylbenzene	12.2		100	130	118	100	132	120	2	76-127/10
98-06-6	tert-Butylbenzene	9.9	J	100	125	115	100	126	116	1	76-124/10
108-90-7	Chlorobenzene	ND		100	109	109	100	110	110	1	77-120/10
75-00-3	Chloroethane	ND		100	85.3	85	100	81.6	82	4	63-117/10
67-66-3	Chloroform	ND		100	109	109	100	107	107	2	74-123/10
95-49-8	o-Chlorotoluene	ND		100	110	110	100	117	117	6	76-125/10
106-43-4	p-Chlorotoluene	ND		100	115	115	100	115	115	0	76-123/10
56-23-5	Carbon tetrachloride	ND		100	115	115	100	114	114	1	72-128/11
75-34-3	1,1-Dichloroethane	ND		100	107	107	100	105	105	2	70-120/10
75-35-4	1,1-Dichloroethylene	ND		100	108	108	100	107	107	1	65-120/11
563-58-6	1,1-Dichloropropene	ND		100	101	101	100	100	100	1	69-125/10
96-12-8	1,2-Dibromo-3-chloropropane	ND		100	127	127	100	126	126	1	63-128/10
106-93-4	1,2-Dibromoethane	ND		100	114	114	100	116	116	2	78-123/10
107-06-2	1,2-Dichloroethane	ND		100	112	112	100	109	109	3	72-123/10
78-87-5	1,2-Dichloropropane	ND		100	114	114	100	114	114	0	76-119/10
142-28-9	1,3-Dichloropropane	ND		100	115	115	100	116	116	1	78-122/10
108-20-3	Di-Isopropyl ether	ND		100	107	107	100	107	107	0	69-124/10
594-20-7	2,2-Dichloropropane	ND		100	96.9	97	100	96.0	96	1	68-129/10
124-48-1	Dibromochloromethane	ND		100	114	114	100	115	115	1	75-124/10
75-71-8	Dichlorodifluoromethane	ND		100	107	107	100	99.0	99	8	37-149/21
156-59-2	cis-1,2-Dichloroethylene	ND		100	113	113	100	113	113	0	74-121/10
10061-01-5	cis-1,3-Dichloropropene	ND		100	116	116	100	115	115	1	76-125/10
541-73-1	m-Dichlorobenzene	ND		100	111	111	100	110	110	1	77-121/10
95-50-1	o-Dichlorobenzene	ND		100	112	112	100	113	113	1	77-120/10
106-46-7	p-Dichlorobenzene	ND		100	111	111	100	110	110	1	78-118/10
156-60-5	trans-1,2-Dichloroethylene	ND		100	99.3	99	100	99.2	99	0	71-118/10
10061-02-6	trans-1,3-Dichloropropene	ND		100	110	110	100	109	109	1	73-122/10
100-41-4	Ethylbenzene	1.0	J	100	113	112	100	114	113	1	78-121/10
637-92-3	Ethyl Tert Butyl Ether	ND		100	105	105	100	105	105	0	76-130/10

^{* =} Outside of Control Limits.

Page 2 of 3

Method: SW846 8260B

Matrix Spike/Matrix Spike Duplicate Summary Job Number: C41598

TETRCAO Tetra Tech EMI Account:

CAT Alameda **Project:**

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
C41519-2MS	W56486.D	5	09/11/15	CV	n/a	n/a	VW2096
C41519-2MSD	W56487.D	5	09/11/15	CV	n/a	n/a	VW2096
C41519-2	W56483.D	5	09/11/15	CV	n/a	n/a	VW2096

The QC reported here applies to the following samples:

		C41519-2	Spike	MS	MS	Spike	MSD	MSD		Limits
CAS No.	Compound	ug/l Q	ug/l	ug/l	%	ug/l	ug/l	%	RPD	Rec/RPD
591-78-6	2-Hexanone	ND	400	532	133	400	541	135	2	71-139/10
87-68-3	Hexachlorobutadiene	ND	100	113	113	100	118	118	4	69-127/11
98-82-8	Isopropylbenzene	12.7	100	126	113	100	128	115	2	77-125/10
99-87-6	p-Isopropyltoluene	ND	100	117	117	100	119	119	2	76-125/10
108-10-1	4-Methyl-2-pentanone	ND	400	514	129	400	523	131	2	71-132/10
74-83-9	Methyl bromide	ND	100	87.4	87	100	84.6	85	3	66-123/10
74-87-3	Methyl chloride	ND	100	90.9	91	100	84.7	85	7	50-138/19
74-95-3	Methylene bromide	ND	100	115	115	100	115	115	0	77-125/10
75-09-2	Methylene chloride	ND	100	109	109	100	109	109	0	65-124/14
78-93-3	Methyl ethyl ketone	ND	400	520	130	400	524	131	1	67-139/11
1634-04-4	Methyl Tert Butyl Ether	ND	100	101	101	100	101	101	0	73-124/10
91-20-3	Naphthalene	ND	100	114	114	100	115	115	1	68-122/12
103-65-1	n-Propylbenzene	30.6	100	142	111	100	142	111	0	76-123/10
100-42-5	Styrene	ND	100	117	117	100	116	116	1	74-126/10
994-05-8	Tert-Amyl Methyl Ether	ND	100	108	108	100	109	109	1	76-127/10
75-65-0	Tert-Butyl Alcohol	ND	500	712	142	500	726	145	2	47-161/18
630-20-6	1,1,1,2-Tetrachloroethane	ND	100	116	116	100	115	115	1	79-123/10
71-55-6	1,1,1-Trichloroethane	ND	100	113	113	100	112	112	1	73-124/10
79-34-5	1,1,2,2-Tetrachloroethane	ND	100	120	120	100	121	121	1	77-123/10
79-00-5	1,1,2-Trichloroethane	ND	100	115	115	100	116	116	1	77-120/10
87-61-6	1,2,3-Trichlorobenzene	ND	100	120	120	100	123	123	2	70-126/11
96-18-4	1,2,3-Trichloropropane	ND	100	117	117	100	118	118	1	65-125/10
120-82-1	1,2,4-Trichlorobenzene	ND	100	115	115	100	117	117	2	72-123/10
95-63-6	1,2,4-Trimethylbenzene	ND	100	115	115	100	114	114	1	77-122/10
108-67-8	1,3,5-Trimethylbenzene	ND	100	123	123	100	122	122	1	79-127/10
127-18-4	Tetrachloroethylene	ND	100	107	107	100	108	108	1	71-124/10
108-88-3	Toluene	ND	100	111	111	100	112	112	1	78-120/10
79-01-6	Trichloroethylene	ND	100	109	109	100	108	108	1	75-119/10
75-69-4	Trichlorofluoromethane	ND	100	105	105	100	99.0	99	6	67-129/14
75-01-4	Vinyl chloride	ND	100	90.6	91	100	86.2	86	5	60-133/15
1330-20-7	Xylene (total)	ND	300	336	112	300	340	113	1	78-122/10

CAS No.	Surrogate Recoveries	MS	MSD	C41519-2	Limits
1868-53-7	Dibromofluoromethane	104%	101%	104%	78-125%

^{* =} Outside of Control Limits.

5.4.1

Page 3 of 3

Method: SW846 8260B

Matrix Spike/Matrix Spike Duplicate Summary

Job Number: C41598

Account: TETRCAO Tetra Tech EMI

Project: CAT Alameda

Sample	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
C41519-2MS	W56486.D	5	09/11/15	CV	n/a	n/a	VW2096
C41519-2MSD	W56487.D	5	09/11/15	CV	n/a	n/a	VW2096
C41519-2	W56483.D	5	09/11/15	CV	n/a	n/a	VW2096

The QC reported here applies to the following samples:

C41598-41, C41598-42, C41598-43, C41598-44

CAS No.	Surrogate Recoveries	MS	MSD	C41519-2	Limits
2037-26-5	Toluene-D8	101%	102%	104%	86-114%
460-00-4	4-Bromofluorobenzene	102%	101%	105%	80-113%

(a) Outside laboratory control limits.

ပ

^{* =} Outside of Control Limits.

Method: SW846 8260B

Matrix Spike/Matrix Spike Duplicate Summary

Job Number: C41598

Account: TETRCAO Tetra Tech EMI

Project: CAT Alameda

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
C41584-9MS	W56628.D	25	09/15/15	CV	n/a	n/a	VW2103
C41584-9MSD	W56629.D	25	09/15/15	CV	n/a	n/a	VW2103
C41584-9 a	W56624.D	25	09/15/15	CV	n/a	n/a	VW2103

The QC reported here applies to the following samples:

C41598-41

CAS No.	Compound	C41584-9 ug/l Q	Spike ug/l	MS ug/l	MS %	Spike ug/l	MSD ug/l	MSD %	RPD	Limits Rec/RPD
67-64-1	Acetone	ND	2000	2740	137	2000	2790	140* b	2	58-137/12
108-20-3	Di-Isopropyl ether	ND	500	512	102	500	505	101	1	69-124/10
CAS No.	Surrogate Recoveries	MS	MSD	C41	1584-9	Limits				
1868-53-7	Dibromofluoromethane	108%	105%			78-1259	6			
2037-26-5	Toluene-D8	102%	102%			86-1149	6			
460-00-4	4-Bromofluorobenzene	103%	103%			80-1139	6			

⁽a) Sample vial contained more than 0.5cm of sediment. Sample used for QC purposes only. Sample reanalyzed at lower dilution.

⁽b) Outside laboratory control limits.

^{* =} Outside of Control Limits.

GC Semi-volatiles

QC Data Summaries

Includes the following where applicable:

- Method Blank Summaries
- Blank Spike Summaries
- Matrix Spike and Duplicate Summaries

Method: SW846 8015B M

Method Blank Summary Job Number: C41598

Account: TETRCAO Tetra Tech EMI

Project: CAT Alameda

Sample OP13015-MB	File ID HH326224.D	DF 1	Analyzed 09/05/15	By NN	Prep Date 09/04/15	Prep Batch OP13015	Analytical Batch GHH1621

The QC reported here applies to the following samples:

C41598-41, C41598-42, C41598-43

CAS No.	Compound	Result	RL	MDL	Units Q
	TPH (Diesel)	ND	0.10	0.050	mg/l
	TPH (Motor Oil)	ND	0.20	0.10	mg/l
	TPH (Mineral Spirits)	ND	0.10	0.050	mg/l
	TPH (Kerosene)	ND	0.10	0.050	mg/l

CAS No. **Surrogate Recoveries** Limits

630-01-3 77% 38-139% Hexacosane

Method: SW846 8015B M

Method Blank Summary

Job Number: C41598

Account: TETRCAO Tetra Tech EMI

Project: CAT Alameda

Sample OP13013-MB	File ID HH326245.D	DF 1	Analyzed 09/06/15	By NN	Prep Date 09/04/15	Prep Batch OP13013	Analytical Batch GHH1621

The QC reported here applies to the following samples:

C41598-1, C41598-2, C41598-3, C41598-4, C41598-5, C41598-6, C41598-7, C41598-8, C41598-9, C41598-10, C41598-11, C41598-12, C41598-13, C41598-14, C41598-15, C41598-16, C41598-25, C41598-26, C41598-27, C41598-28

CAS No.	Compound	Result	RL	MDL	Units Q
	TPH (Diesel)	ND	3.3	1.7	mg/kg
	TPH (Motor Oil)	ND	6.7	3.3	mg/kg
	TPH (Mineral Spirits)	ND	3.3	1.7	mg/kg
	TPH (Kerosene)	ND	3.3	1.7	mg/kg

CAS No. Surrogate Recoveries Limits

630-01-3 Hexacosane 75% 43-144%

Method: SW846 8015B M

Method Blank Summary Job Number: C41598

Account: TETRCAO Tetra Tech EMI

Project: CAT Alameda

Sample OP13029-MB	File ID HH326302.D	DF 1	Analyzed 09/09/15	By NN	Prep Date 09/08/15	Prep Batch OP13029	Analytical Batch GHH1623

The QC reported here applies to the following samples:

C41598-29, C41598-30, C41598-31, C41598-32

CAS No.	Compound	Result	RL	MDL	Units Q
	TPH (Diesel)	ND	3.3	1.7	mg/kg
	TPH (Motor Oil)	ND	6.7	3.3	mg/kg
	TPH (Mineral Spirits)	ND	3.3	1.7	mg/kg
	TPH (Kerosene)	ND	3.3	1.7	mg/kg

CAS No. **Surrogate Recoveries** Limits

630-01-3 78% 43-144% Hexacosane

Method: SW846 8015B M

Blank Spike/Blank Spike Duplicate Summary Job Number: C41598

Account: TETRCAO Tetra Tech EMI

Project: CAT Alameda

Sample OP13015-BS	File ID HH326222.D	DF	Analyzed 09/05/15	By NN	Prep Date 09/04/15	Prep Batch OP13015	Analytical Batch GHH1621
OP13015-BSD	HH326223.D	1	09/05/15	NN	09/04/15	OP13015 OP13015	GHH1621

The QC reported here applies to the following samples:

C41598-41, C41598-42, C41598-43

CAS No.	Compound	Spike mg/l	BSP mg/l	BSP %	BSD mg/l	BSD %	RPD	Limits Rec/RPD
	TPH (Diesel)	1	0.650	65	0.691	69	6	45-110/18
	TPH (Motor Oil)	1	0.768	77	0.801	80	4	53-119/16

CAS No.	Surrogate Recoveries	BSP	BSD	Limits
630-01-3	Hexacosane	77%	79%	38-139%

^{* =} Outside of Control Limits.

Method: SW846 8015B M

Blank Spike/Blank Spike Duplicate Summary

Job Number: C41598

630-01-3

Hexacosane

Account: TETRCAO Tetra Tech EMI

Project: CAT Alameda

Sample OP13013-BS OP13013-BSD	File ID HH326246.D HH326247.D	DF 1 1	Analyzed 09/06/15 09/06/15	By NN NN	Prep Date 09/04/15 09/04/15	Prep Batch OP13013 OP13013	Analytical Batch GHH1621 GHH1621

The QC reported here applies to the following samples:

C41598-1, C41598-2, C41598-3, C41598-4, C41598-5, C41598-6, C41598-7, C41598-8, C41598-9, C41598-10, C41598-11, C41598-12, C41598-13, C41598-14, C41598-15, C41598-16, C41598-25, C41598-26, C41598-27, C41598-28

79%

43-144%

CAS No.	Compound	Spike mg/kg	BSP mg/kg	BSP %	BSD mg/kg	BSD %	RPD	Limits Rec/RPD
	TPH (Diesel) TPH (Motor Oil)	33.3 33.3	22.3 24.4	67 73	22.8 25.4	68 76	2 4	50-112/13 59-122/16
CAS No.	Surrogate Recoveries	BSP	BSI)	Limits			

78%

* = Outside of Control Limits.

Method: SW846 8015B M

Blank Spike/Blank Spike Duplicate Summary

Job Number: C41598

Account: TETRCAO Tetra Tech EMI

Project: CAT Alameda

Sample OP13029-BS OP13029-BSD	File ID HH326300.D HH326301.D	DF 1 1	Analyzed 09/09/15 09/09/15	By NN NN	Prep Date 09/08/15 09/08/15	Prep Batch OP13029 OP13029	Analytical Batch GHH1623 GHH1623

The QC reported here applies to the following samples:

C41598-29, C41598-30, C41598-31, C41598-32

CAS No.	Compound	Spike mg/kg	BSP mg/kg	BSP %	BSD mg/kg	BSD %	RPD	Limits Rec/RPD
	TPH (Diesel) TPH (Motor Oil)	33.3 33.3	22.9 27.4	69 82	23.1 27.7	69 83	1	50-112/13 59-122/16
CAS No	Surrogate Recoveries	RSP	RSI)	Limits			

CAS No.	Surrogate Recoveries	DSP	DSD	Limits
630-01-3	Hexacosane	77%	81%	43-144%

^{* =} Outside of Control Limits.

Method: SW846 8015B M

Matrix Spike/Matrix Spike Duplicate Summary

Job Number: C41598

Account: TETRCAO Tetra Tech EMI

Project: CAT Alameda

Sample	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
OP13013-MS	HH326291.D	2	09/08/15	NN	09/04/15	OP13013	GHH1622
OP13013-MSD	HH326292.D	2	09/08/15	NN	09/04/15	OP13013	GHH1622
C41598-4	HH326256.D	5	09/06/15	NN	09/04/15	OP13013	GHH1621

The QC reported here applies to the following samples:

C41598-1, C41598-2, C41598-3, C41598-4, C41598-5, C41598-6, C41598-7, C41598-8, C41598-9, C41598-10, C41598-11, C41598-12, C41598-13, C41598-14, C41598-15, C41598-16, C41598-25, C41598-26, C41598-27, C41598-28

CAS No.	Compound	C41598-4 mg/kg Q	Spike mg/kg	MS mg/kg	MS %	Spike mg/kg	MSD mg/kg	MSD %	RPD	Limits Rec/RPD
	TPH (Diesel) TPH (Motor Oil)	ND 59.9	37.6 37.6	36.7 58.6	98 -3* ^a	37.6 37.6	39.5 70.8	105 29* ^a	7 19* ^b	50-112/13 59-122/16
CAS No.	Surrogate Recoveries	MS	MSD	C41	598-4	Limits				
630-01-3	Hexacosane	87%	90%	79%		43-144%)			

⁽a) Outside control limits due to high level in sample relative to spike amount.

⁽b) Outside laboratory control limits.

^{* =} Outside of Control Limits.

.3 2

Page 1 of 1

Method: SW846 8015B M

σ

Matrix Spike/Matrix Spike Duplicate Summary

Job Number: C41598

Account: TETRCAO Tetra Tech EMI

Project: CAT Alameda

Sample	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
OP13029-MS	HH326344.D	20	09/10/15	NN	09/08/15	OP13029	GHH1623
OP13029-MSD	HH326345.D	20	09/10/15	NN	09/08/15	OP13029	GHH1623
C41598-29	HH326340.D	20	09/10/15	NN	09/08/15	OP13029	GHH1623

The QC reported here applies to the following samples:

C41598-29, C41598-30, C41598-31, C41598-32

CAS No.	Compound	C41598-29 mg/kg Q	Spike mg/kg	MS mg/kg	MS %	Spike mg/kg	MSD mg/kg	MSD %	RPD	Limits Rec/RPD
	TPH (Diesel) TPH (Motor Oil)	ND 311	36.8 36.8	49.4 309	134* ^a -5* ^a	36.7 36.7	50.8 240	138* ^a -193* ^a	-	50-112/13 59-122/16
CAS No.	Surrogate Recoveries	MS	MSD	C41	598-29	Limits				
630-01-3	Hexacosane	82%	81%	86%	1	43-144%	•			

⁽a) Outside control limits due to high level in sample relative to spike amount.

⁽b) Outside laboratory control limits.

^{* =} Outside of Control Limits.

Metals Analysis

QC Data Summaries

Includes the following where applicable:

- Method Blank Summaries
- Matrix Spike and Duplicate Summaries
- Blank Spike and Lab Control Sample Summaries
- Serial Dilution Summaries

BLANK RESULTS SUMMARY Part 2 - Method Blanks

Login Number: C41598 Account: TETRCAO - Tetra Tech EMI Project: CAT Alameda

QC Batch ID: MP10109 Matrix Type: SOLID Methods: SW846 6020 Units: mg/kg

Prep Date:

09/08/15

Metal	RL	IDL	MDL	MB raw	final
Aluminum	25	2.3	2.5		
Antimony	0.25	.14	.008		
Arsenic	0.25	. 3	.017	0.55	* (a)
Barium	0.50	.011	.036		
Beryllium	0.25		.027		
Boron	2.5	.09	.066		
Cadmium	0.25	.0028	.011		
Calcium	250	40	38		
Chromium	1.0	.025	.053		
Cobalt	0.25	.018	.0085		
Copper	1.0	.018	.11		
Iron	25	3.1	1.6		
Lead	0.25	.0056	.038	0.015	<0.25
Magnesium	250	.54	2.1		
Manganese	0.50	.012	.18		
Molybdenum	0.50	.11	.026		
Nickel	1.0	.18	.043		
Potassium	250	2.3	1.5		
Selenium	0.25	.17	.012		
Silver	0.25	.0048	.006		
Sodium	250	2.2	2.6		
Strontium	2.5	.021	.018		
Thallium	0.25	.04	.015		
Tin	2.5	.055	.036		
Titanium	0.50	.083	.038		
Uranium	0.25	.06	.006		
Vanadium	1.0	.36	.051		
Zinc	2.0	. 22	.11		

Associated samples MP10109: C41598-1, C41598-2, C41598-3, C41598-4, C41598-5, C41598-6, C41598-7, C41598-8, C41598-9, C41598-10, C41598-11, C41598-12, C41598-13, C41598-14, C41598-15, C41598-16, C41598-17, C41598-18, C41598-19, C41598-20

Results < IDL are shown as zero for calculation purposes

(*) Outside of QC limits

(anr) Analyte not requested

(a) All sample results < RL or > 10x method blank concentration.

MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

Login Number: C41598 Account: TETRCAO - Tetra Tech EMI Project: CAT Alameda

QC Batch ID: MP10109 Methods: SW846 6020 Matrix Type: SOLID Units: mg/kg

Prep Date:

09/08/15

Metal	C41598-4 Original		Spikelot MPIR5	% Rec	QC Limits
Aluminum					
Antimony					
Arsenic	9.4	50.6	47.8	86.2	75-125
Barium					
Beryllium					
Boron					
Cadmium					
Calcium					
Chromium					
Cobalt					
Copper					
Iron					
Lead	6.9	48.6	47.8	87.2	75–125
Magnesium					
Manganese					
Molybdenum					
Nickel					
Potassium					
Selenium					
Silver					
Sodium					
Strontium					
Thallium					
Tin					
Titanium					
Uranium					
Vanadium					
Zinc					

Associated samples MP10109: C41598-1, C41598-2, C41598-3, C41598-4, C41598-5, C41598-6, C41598-7, C41598-8, C41598-9, C41598-10, C41598-11, C41598-12, C41598-13, C41598-14, C41598-15, C41598-16, C41598-17, C41598-18, C41598-19, C41598-20

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits (N) Matrix Spike Rec. outside of QC limits

(anr) Analyte not requested

168 of 176 ACCUTEST

C41598

MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

Login Number: C41598
Account: TETRCAO - Tetra Tech EMI
Project: CAT Alameda

QC Batch ID: MP10109 Methods: SW846 6020 Matrix Type: SOLID Units: mg/kg

Prep Date:

09/08/15

Metal	C41598-4 Original		Spikelot MPIR5	% Rec	MSD RPD	QC Limit
Aluminum						
Antimony						
Arsenic	9.4	55.8	49	94.6	9.8	20
Barium						
Beryllium						
Boron						
Cadmium						
Calcium						
Chromium						
Cobalt						
Copper						
Iron						
Lead	6.9	53.3	49	94.6	9.2	20
Magnesium						
Manganese						
Molybdenum						
Nickel						
Potassium						
Selenium						
Silver						
Sodium						
Strontium						
Thallium						
Tin						
Titanium						
Uranium						
Vanadium						
Zinc						

Associated samples MP10109: C41598-1, C41598-2, C41598-3, C41598-4, C41598-5, C41598-6, C41598-7, C41598-8, C41598-9, C41598-10, C41598-11, C41598-12, C41598-13, C41598-14, C41598-15, C41598-16, C41598-17, C41598-18, C41598-19, C41598-20

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits (N) Matrix Spike Rec. outside of QC limits (anr) Analyte not requested

SPIKE BLANK AND LAB CONTROL SAMPLE SUMMARY

Login Number: C41598
Account: TETRCAO - Tetra Tech EMI
Project: CAT Alameda

QC Batch ID: MP10109 Methods: SW846 6020 Matrix Type: SOLID Units: mg/kg

09/08/15

Prep Date:

Metal	BSP Result	Spikelot MPIR5	% Rec	QC Limits
Aluminum				
Antimony				
Arsenic	47.8	50	95.6	80-120
Barium				
Beryllium				
Boron				
Cadmium				
Calcium				
Chromium				
Cobalt				
Copper				
Iron				
Lead	47.9	50	95.8	80-120
Magnesium				
Manganese				
Molybdenum				
Nickel				
Potassium				
Selenium				
Silver				
Sodium				
Strontium				
Thallium				
Tin				
Titanium				
Uranium				
Vanadium				
Zinc				

Associated samples MP10109: C41598-1, C41598-2, C41598-3, C41598-4, C41598-5, C41598-6, C41598-7, C41598-8, C41598-9, C41598-10, C41598-11, C41598-12, C41598-13, C41598-14, C41598-15, C41598-16, C41598-17, C41598-18, C41598-19, C41598-20

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits (anr) Analyte not requested

SERIAL DILUTION RESULTS SUMMARY

Login Number: C41598
Account: TETRCAO - Tetra Tech EMI
Project: CAT Alameda

QC Batch ID: MP10109 Methods: SW846 6020 Matrix Type: SOLID Units: ug/l

CITA Type. Solid

Prep Date: 09/08/15

Metal	C41598-4 Original	SDL 5:25	%DIF	QC Limits
Aluminum				
Antimony				
	96.2	85.5	11.1 (a)	0-10
Barium				
Beryllium				
Boron				
Cadmium				
Calcium				
Chromium				
Cobalt				
Copper				
Iron				
Lead	70.9	70.7	0.3	0-10
Magnesium				
Manganese				
Molybdenum				
Nickel				
Potassium				
Selenium				
Silver				
Sodium				
Strontium				
Thallium				
Tin				
Titanium				
Uranium				
Vanadium				
Zinc				

Associated samples MP10109: C41598-1, C41598-2, C41598-3, C41598-4, C41598-5, C41598-6, C41598-7, C41598-8, C41598-9, C41598-10, C41598-11, C41598-12, C41598-13, C41598-14, C41598-15, C41598-16, C41598-17, C41598-18, C41598-19, C41598-20

Results < IDL are shown as zero for calculation purposes $% \left(1\right) =\left(1\right) \left(

(*) Outside of QC limits

(anr) Analyte not requested

(a) Percent difference acceptable due to low initial sample concentration (< 50 times IDL).

BLANK RESULTS SUMMARY Part 2 - Method Blanks

Login Number: C41598 Account: TETRCAO - Tetra Tech EMI Project: CAT Alameda

QC Batch ID: MP10110 Methods: SW846 6020 Matrix Type: SOLID Units: mg/kg

Prep Date:

09/09/15

W. 1. 2			107	MB	6' 3
Metal	RL	IDL	MDL	raw	final
Aluminum	25	2.3	2.5		
Antimony	0.25	.14	.008		
Arsenic	0.25	. 3	.017	0.044	<0.25
Barium	0.50	.011	.036		
Beryllium	0.25		.027		
Boron	2.5	.09	.066		
Cadmium	0.25	.0028	.011		
Calcium	250	40	38		
Chromium	1.0	.025	.053		
Cobalt	0.25	.018	.0085		
Copper	1.0	.018	.11		
Iron	25	3.1	1.6		
Lead	0.25	.0056	.038	0.026	<0.25
Magnesium	250	.54	2.1		
Manganese	0.50	.012	.18		
Molybdenum	0.50	.11	.026		
Nickel	1.0	.18	.043		
Potassium	250	2.3	1.5		
Selenium	0.25	.17	.012		
Silver	0.25	.0048	.006		
Sodium	250	2.2	2.6		
Strontium	2.5	.021	.018		
Thallium	0.25	.04	.015		
Tin	2.5	.055	.036		
Titanium	0.50	.083	.038		
Uranium	0.25	.06	.006		
Vanadium	1.0	.36			
			.051		
Zinc	2.0	.22	.11		

Associated samples MP10110: C41598-21, C41598-22, C41598-23, C41598-24, C41598-25, C41598-26, C41598-27, C41598-28, C41598-29, C41598-30, C41598-31, C41598-32, C41598-33, C41598-34, C41598-35, C41598-36, C41598-37, C41598-38, C41598-39, C41598-40

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits (anr) Analyte not requested

MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

Login Number: C41598
Account: TETRCAO - Tetra Tech EMI
Project: CAT Alameda

QC Batch ID: MP10110 Methods: SW846 6020 Matrix Type: SOLID Units: mg/kg

Prep Date:

09/09/15

Metal	C41598-3 Original		Spikelot MPIR5	% Rec	QC Limits
Aluminum					
Antimony					
Arsenic	0.85	51.7	54.4	87.0	75-125
Barium					
Beryllium					
Boron					
Cadmium					
Calcium					
Chromium					
Cobalt					
Copper					
Iron					
Lead	1470	1490	54.4	36.8 (a)	75-125
Magnesium					
Manganese					
Molybdenum					
Nickel					
Potassium					
Selenium					
Silver					
Sodium					
Strontium					
Thallium					
Tin					
Titanium					
Uranium					
Vanadium					
g:					

Associated samples MP10110: C41598-21, C41598-22, C41598-23, C41598-24, C41598-25, C41598-26, C41598-27, C41598-28, C41598-29, C41598-30, C41598-31, C41598-32, C41598-33, C41598-34, C41598-35, C41598-36, C41598-37, C41598-38, C41598-39, C41598-40

Results < IDL are shown as zero for calculation purposes

(*) Outside of QC limits

Zinc

- (N) Matrix Spike Rec. outside of QC limits
- (anr) Analyte not requested
- (a) Spike amount low relative to the sample amount. Refer to lab control or spike blank for recovery information.

INIONIACION.

MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

Login Number: C41598
Account: TETRCAO - Tetra Tech EMI
Project: CAT Alameda

QC Batch ID: MP10110 Methods: SW846 6020 Matrix Type: SOLID Units: mg/kg

Prep Date:

09/09/15

Metal	C41598- Origina		Spikelot MPIR5	% Rec	MSD RPD	QC Limit
Aluminum						
Antimony						
Arsenic						
Barium						
Beryllium						
Boron						
Cadmium						
Calcium						
Chromium						
Cobalt						
Copper						
Iron						
Lead	1470	1580	54.8	200.6(a)	5.9	20
Magnesium						
Manganese						
Molybdenum						
Nickel						
Potassium						
Selenium						
Silver						
Sodium						
Strontium						
Thallium						
Tin						
Titanium						
Uranium						
Vanadium						
Zinc						

Associated samples MP10110: C41598-21, C41598-22, C41598-23, C41598-24, C41598-25, C41598-26, C41598-27, C41598-28, C41598-29, C41598-30, C41598-31, C41598-32, C41598-33, C41598-34, C41598-35, C41598-36, C41598-37, C41598-38, C41598-39, C41598-40

Results < IDL are shown as zero for calculation purposes

- (*) Outside of QC limits
- (N) Matrix Spike Rec. outside of QC limits
- (anr) Analyte not requested
- (a) Spike amount low relative to the sample amount. Refer to lab control or spike blank for recovery information.

Information.

SPIKE BLANK AND LAB CONTROL SAMPLE SUMMARY

Login Number: C41598
Account: TETRCAO - Tetra Tech EMI
Project: CAT Alameda

QC Batch ID: MP10110 Methods: SW846 6020 Matrix Type: SOLID Units: mg/kg

Prep Date: 09/09/15

Metal	BSP Result	Spikelot MPIR5	% Rec	QC Limits
Aluminum				
Antimony				
Arsenic	46.2	50	92.4	80-120
Barium				
Beryllium				
Boron				
Cadmium				
Calcium				
Chromium				
Cobalt				
Copper				
Iron				
Lead	49.3	50	98.6	80-120
Magnesium				
Manganese				
Molybdenum				
Nickel				
Potassium				
Selenium				
Silver				
Sodium				
Strontium				
Thallium				
Tin				
Titanium				
Uranium				
Vanadium				
Zinc				

Associated samples MP10110: C41598-21, C41598-22, C41598-23, C41598-24, C41598-25, C41598-26, C41598-27, C41598-28, C41598-29, C41598-30, C41598-31, C41598-32, C41598-33, C41598-34, C41598-35, C41598-36, C41598-37, C41598-38, C41598-39, C41598-40

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits (anr) Analyte not requested

SERIAL DILUTION RESULTS SUMMARY

Login Number: C41598 Account: TETRCAO - Tetra Tech EMI Project: CAT Alameda

Methods: SW846 6020 QC Batch ID: MP10110 Matrix Type: SOLID Units: ug/l

09/09/15 Prep Date:

Metal	C41598-30 Original	6 SDL 5:25	%DIF	QC Limits
Aluminum				
Antimony				
Arsenic	7.39	1.14	100.0(a)	0-10
Barium				
Beryllium				
Boron				
Cadmium				
Calcium				
Chromium				
Cobalt				
Copper				
Iron				
Lead	2460	12900	1.0	0-10
Magnesium				
Manganese				
Molybdenum				
Nickel				
Potassium				
Selenium				
Silver				
Sodium				
Strontium				
Thallium				
Tin				
Titanium				
Uranium				
Vanadium				
Zinc				

Associated samples MP10110: C41598-21, C41598-22, C41598-23, C41598-24, C41598-25, C41598-26, C41598-27, C41598-28, C41598-29, C41598-30, C41598-31, C41598-32, C41598-33, C41598-34, C41598-35, C41598-36, C41598-37, C41598-38, C41598-39, C41598-40

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits

(anr) Analyte not requested

(a) Percent difference acceptable due to low initial sample concentration (< 50 times IDL).

The primary objective of risk-based screening is to identify sites or buildings unlikely to pose a health concern through the vapor intrusion pathway. Generally, at properties where subsurface concentrations of vapor-forming chemicals (e.g., groundwater or "near source" soil gas concentrations) fall below screening levels (i.e., VISLs), no further action or study is warranted, so long as the exposure assumptions match those taken into account by the calculations and the site fulfills the conditions and assumptions of the generic conceptual model underlying the screening levels. In a similar fashion, the results of risk-based

Parameter	Symbol	Value	Instructions			
Exposure Scenario	Scenario	Residential	Select residential or commercial scenario from pull down list			
Target Risk for Carcinogens	TCR	1.00E-06	Enter target risk for carcinogens			
Target Hazard Quotient for Non-Carcinogens	THQ	1	Enter target hazard quotient for non-carcinogens			
Average Groundwater Temperature (°C)	Tgw	23.62	Enter average of the stabilized groundwater temperature to correct Henry's Law Constant for groundwater target concentrations			

		meet the definition for volatility?		and Toxic to Pose Inhalation Risk Via Vapor Intrusion from	Is Chemical Sufficiently Volatile and Toxic to Pose Inhalation Risk Via Vapor Intrusion from Groundwater Source?		Toxicity Basis	Gas Conc. @	Target Ground Water Conc. @ TCR = 1E-06 or THQ = 1	Is Target	_		Temperature for Groundwater Vapor Conc.	Lower	LEL Source
		(HLC>1E-5 or VP>1)	(IUR and/or RfC)	Cvp > Cia,target?	Chc > Cia,target?	MIN(Cia,c;Cia,nc)		Csq	Cgw	Cgw <mcl?< td=""><td>Cvp</td><td>Chc</td><td>Tgw or 25</td><td>LEL</td><td></td></mcl?<>	Cvp	Chc	Tgw or 25	LEL	
	Chemical	,	,	, ,	, 9	, , , , ,		G	J	Yes/No	•		J		
CAS	Name	Yes/No	Yes/No	Yes/No	Yes/No	(ug/m³)	C/NC	(ug/m³)	(ug/L)	(MCL ug/L)	(ug/m³)	(ug/m ³)	С	(% by vol)	
71-43-2	TPH Gasoline (Benzene)	Yes	Yes	Yes	Yes	3.1E+01	NC	1.0E+03	1.5E+02	No (5)	3.98E+08	3.81E+08	23.62	1.2	N
	1 -1 7	Yes	Yes	Yes	Yes	7.3E+02	NC	2.4E+04	7.0E+03		8.19E+08	9.21E+08	25		
91-20-3	TPH Diesel (Naphthalene)	Yes	Yes	Yes	Yes	3.1E+00	NC	1.0E+02	1.9E+02		5.86E+05	5.04E+05	23.62	N	N

Notes:

(1)	Inhalation Pathway Exposure Parameters (RME):	Units	Resi	dential	Comm	ercial		
	Exposure Scenario		Symbol	Value	Symbol	Value	Symbol	Value
	Averaging time for carcinogens	(yrs)	ATc_R	70	ATc_C	70	ATc	70
	Averaging time for non-carcinogens	(yrs)	ATnc_R	26	ATnc_C	25	ATnc	26
	Exposure duration	(yrs)	ED_R	26	ED_C	25	ED	26
	Exposure frequency	(days/yr)	EF_R	350	EF_C	250	EF	350
	Exposure time	(hr/day)	ET_R	24	ET_C	8	ET	24

(2) Generic Attenuation Factors: Source Medium of Vapors Groundwater

Groundwater (-Sub-Slab and Exterior Soil Gas (-

Residential		Commercial			
Symbol	Value	Symbol	Value	Symbol	Value
AFgw_R	0.001	AFgw_C	0.001	AFgw	0.001
AFss_R	0.03	AFss_C	0.03	AFss	0.03

(3) <u>Formulas</u>

Cia, target = MIN(Cia,c; Cia,nc)
Cia,c (ug/m3) = TCR x ATc x (365 days/yr) x (24 hrs/day) / (ED x EF x ET x IUR)
Cia,nc (ug/m3) = THQ x ATnc x (365 days/yr) x (24 hrs/day) x RfC x (1000 ug/mg) / (ED x EF x ET)

(4) <u>Special Case Chemicals</u>

Trichloroethylene

Residential		Comme	ercial		
Symbol	Value	Symbol	Value	Symbol	Value
mIURTCE_R	1.00E-06	mIURTCE_C	0.00E+00	mIURTCE	1.00E-06
IURTCE_R	3.10E-06	IURTCE_C	4.10E-06	IURTCE	3.10E-06

Mutagenic Chemicals

The exposure durations and age-dependent adjustment factors for mutagenic-mode-of-action are listed in the table below:

Note: This section applies to trichloroethylene and other mutagenic chemicals, but not to vinyl	Age Cohort	Exposure Duration (years)	Age-dependent adjustment factor
,	0 - 2 years	2	10
chloride.	2 - 6 years	4	3
	6 - 16 years	10	3
	16 - 26 years	10	1

Mutagenic-mode-of-action (MMOA) adjustment factor

This factor is used in the equations for mutagenic chemicals.

Vinyl Chloride

See the Navigation Guide equation for Cia,c for vinyl chloride.

Inhalation Unit Risk	IUR Source*	Reference Concentrati on	RFC Source*	Mutagenic Indicator	Target Indoor Air Conc. for Carcinogens @ TCR = 1E-06	Target Indoor Air Conc. for Non- Carcinogens @ THQ = 1
IUR		RfC		i	Cia,c	Cia,nc
(ug/m ³) ⁻¹		(mg/m ³)			(ug/m³)	(ug/m³)
7.80E-06		3.00E-02			3.6E-01	3.1E+01
		7.00E-01	Р			7.3E+02
3.40E-05	CA	3.00E-03			8.3E-02	3.1E+00

Notation:

NVT = Not sufficiently volatile and/or toxic to pose inhalation risk in selected exposure scenario for the indicated medium

C = Carcinogenic

NC = Non-carcinogenic

I = IRIS: EPA Integrated Risk Information System (IRIS). Available online at:

P = PPRTV. EPA Provisional Peer Reviewed Toxicity Values (PPRTVs). Available online at:

A = Agency for Toxic Substances and Disease Registry (ATSDR) Minimum Risk Levels (MRLs). Available online at:

CA = California Environmental Protection Agency/Office of Environmental Health Hazard Assessment assessments. Available online at:

H = HEAST. EPA Superfund Health Effects Assessment Summary Tables (HEAST) database. Available online at:

S = See RSL User Guide, Section 5

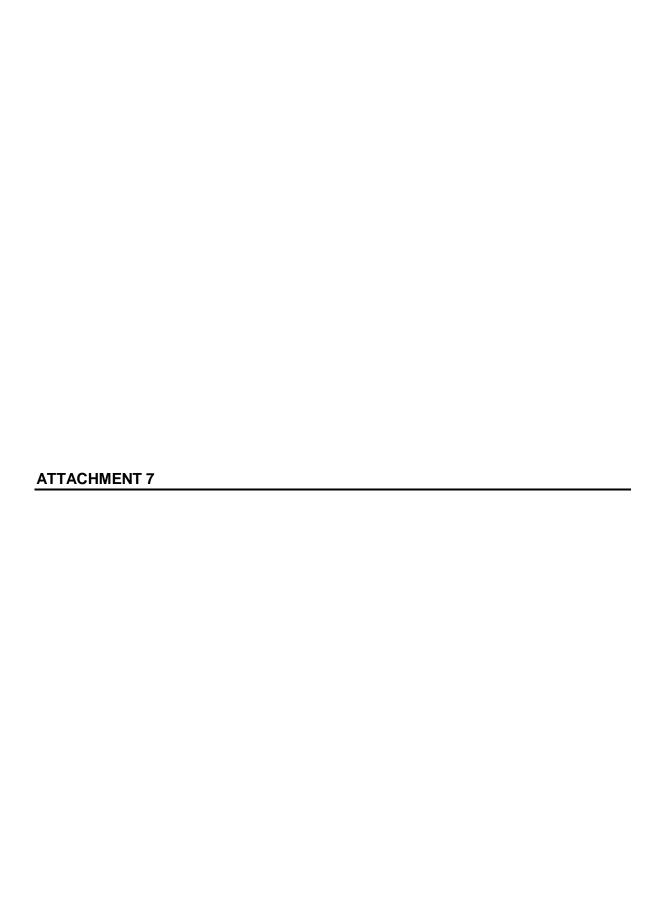
X = PPRTV Appendix

E = The Engineering ToolBox. Available online at http://www.engineeringtoolbox.com/explosive-concentration-limits-d_423.html

N = Centers for Disease Control and Prevention (CDC) National Institute for Occupational Safety and Health (NIOSH). Pocket Guide to Chemical Hazards. Available online at:

M = Chemical-specific MSDS

Mut = Chemical acts according to the mutagenic-mode-of-action, special exposure parameters apply (see footnote (4) above).


VC = Special exposure equation for vinyl chloride applies (see Navigation Guide for equation).

TCE = Special mutagenic and non-mutagenic IURs for trichloroethylene apply (see footnote (4) above).

Yellow highlighting indicates site-specific parameters that may be edited by the user.

Blue highlighting indicates exposure factors that are based on Risk Assessment Guidance for Superfund (RAGS) or EPA vapor intrusion guidance, which generally should not be changed.

^{**}Lower explosive limit is the minimum concentration of the compound in air (% by volume) that is needed for the gas to ignite and explode.

ATTACHMENT 7
CONSTRUCTION TRENCH MODELING

TABLE OF CONTENTS

ACR	ONYMS AND ABBREVIATIONS	7-II
7-1	TRENCH MODEL METHODOLOGY	7-1
	Equation 1	7-1
	Equation 2	7-1
	Equation 3	7-2
	Equation 4	7-3
	Equation 5	7-3
7-2	REFERENCES	7-4

<u>Tables</u>

- 7-1 Trench Model Input Parameters
- 7-2 Trench Model Chemical-Specific Values

ACRONYMS AND ABBREVIATIONS

μg/m³ Microgram per cubic meter

μg/L Microgram per liter

atm-m³/mol Atmosphere – cubic meter per mole

atm-m³/mole-°K Atmosphere – cubic meter per mole – degrees Kelvin

cm Centimeter

cm²/s Square centimeter per second

 cm^2/m^2 Square centimeter per square meter cm^3/m^3 Cubic centimeter per cubic centimeter

COPC Chemical of potential concern

g/mol Gram per mole

hr⁻¹ Event per hour

°K Degrees Kelvin

L/cm³ Liter per cubic centimeter L/m³ Liter per cubic meter

m² Square meter m³ Cubic meter

s/hr Second per hour

VDEQ Virginia Department of Environmental Quality

VF Volatilization factor

1 TRENCH MODEL METHODOLOGY

Chemical-specific volatilization factors (VF) were used to calculate risk-based screening levels for volatile chemicals of potential concern (COPC) in groundwater for the human health risk assessment. Chemical-specific VFs were used to relate concentrations of volatile chemicals in groundwater that accumulate in a construction trench to airborne concentrations that may be inhaled by construction workers. The VF for this scenario was calculated based on Virginia Department of Environmental Quality (VDEQ) guidance (VDEQ 2015) for sites with groundwater shallower than 15 feet below ground surface, which provides a combination of a vadose zone model to estimate volatilization of gaseous COPCs from groundwater into a trench, and a box model to estimate dispersion of the COPCs from the air inside the trench into aboveground air. These models, which can be described by three equations, are detailed below.

Equation 1

$$C_{trench} = C_{GW} \times VF$$

where:

 C_{trench} = Concentration of contaminant in the trench (microgram per cubic meter $[\mu g/m^3]$)

 C_{GW} = Concentration of contaminant in groundwater (microgram per liter [μ g/L])

VF = Volatilization factor (see Equation 2) (liter per cubic meter [L/m³])

Equation 2

$$VF = (K_i \times A \times F \times 10^{-3} \times 10^4 \times 3,600) / (ACH \times V)$$

where:

K_i = Mass transfer coefficient of contaminant *i* (see Equation I3-3) (centimeter per second [cm/s])

A = Area of the trench (square meter $[m^2]$)

F = Fraction of floor through which contaminant can enter (unitless)

ACH = Air changes per hour (hr⁻¹)

V = Volume of trench (m³)

10⁻³ = Conversion factor (liter per cubic centimeter [L/cm³])

 10^4 = Conversion factor (square centimeter per square meter [cm²/m²])

3,600 = Conversion factor (second per hour)

If the ratio of trench width to depth is less than or equal to 1, VDEQ (2015) recommends a value of 2 air changes per hour (ACH). If the ratio of trench width to depth is greater than one, VDEQ (2015) recommends using a value of 360 ACH. The width, length, and depth of the trench were assumed to be 3, 8 and 8 feet, based on a typical construction trench (and the default values for the VDEQ model). The volume of the trench and the ratio of the trench's width to depth can be found in Table 7-1.

Equation 3

$$K_i = 1/\{(1/k_{iL}) + [(R T)/(H_i k_{iG})]\}$$

where:

 k_{iL} = Liquid-phase mass transfer coefficient of contaminant i (see Equation I3-4)

(cm/s)

R = Ideal gas constant (atmosphere – cubic meter per mole degrees Kelvin

 $[atm-m^3/mole-^{\circ}K]$

T = Average system temperature (${}^{\circ}K$)

 H_i = Henry's Law constant of contaminant i (atm-m³/mol)

 K_{iG} = Gas-phase mass transfer coefficient of contaminant *i* (see Equation I3-5)

(cm/s)

The value for R is 8.2×10^{-5} atm-m³/mole-°K. A site-specific groundwater temperature of 297°K (23.62 °Celsius) was used for T in Equation 3.

Equation 4

$$k_{iL} = (MW_{O2}/MW_i)^{0.5} \times (T/298) \times k_L, O_2$$

where:

 k_{iL} = Liquid-phase mass transfer coefficient of contaminant i (cm/s)

 MW_{O2} = Molecular weight of oxygen (gram per mole [g/mol])

 MW_i = Molecular weight of contaminant i (g/mol)

T = Average system absolute temperature (${}^{\circ}K$)

 k_L,O_2 = Liquid-phase mass transfer coefficient of oxygen at 25 °C (cm/s)

The value of k_L , O_2 in Equation 4 is 0.002 cm/s.

Equation 5

$$k_{iG} = (MW_{H_2O}/MW_i)^{0.335} \times (T/298)^{1.005} \times k_G, H_2O$$

where:

 k_{iG} = Gas-phase mass transfer coefficient of contaminant i (cm/s)

 MW_{H_2O} = Molecular weight of water (g/mol)

T = Average system absolute temperature (°K)

 k_G,H_2O = Gas-phase mass transfer coefficient of water vapor at 25°C (cm/s)

The value of k_G, H₂O in Equation 5 is 0.833 cm/s.

Chemical-specific modeling parameters are summarized and the resulting VFs and trench air concentrations generated from the trench modeling are presented in Table 7-2.

2 REFERENCES

Virginia Department of Environmental Quality (VDEQ). 2015. "Voluntary Remediation Program Risk Assessment Guidance." Accessed on-line October 19. On-line address: http://www.deq.state.va.us/Programs/LandProtectionRevitalization/RemediationProgram/VoluntaryRemediationProgram/VRPRiskAssessmentGuidance/Guidance.aspx

TABLE 7-1: TRENCH MODEL INPUT PARAMETERS

For Mass-Transfer Coefficients					
Variable	Value	Units	Source		
Gas-phase mass transfer coefficient of water vapor at 25°C (K _G ,H ₂ O)	0.833	cm/s	Not applicable		
Molecular weight of water (MW _{H2O})	18	unitless	Not applicable		
Liquid-phase mass transfer coefficient of oxygen at 25°C (k _L ,O ₂)	0.002	cm/s	Not applicable		
Molecular weight of oxygen (MW _{O2})	32	unitless	Not applicable		
Average system temperature (T)	297	K	Site-specific (a)		
Ideal gas constant (R)	0.000082	atm-m³/mol-°K	Not applicable		

For Emission Flux and Concentration in Trench					
Variable	Value	Units	Source		
Volume conversion factor (CF1)	0.001	L/cm ³	Not applicable		
Area conversion factor (CF2)	10,000	cm ² /m ²	Not applicable		
Time conversion factor (CF3)	3,600	s/hr	Not applicable		
Fraction of floor through which contaminant can enter (F)	1	unitless	Default		
Air changes per hour (ACH)	2	hr ⁻¹	Default (b)		

Trench dimensions					
Variable	Value	Units	Source		
Length of trench	8	feet	Default (b)		
Width of trench	3	feet	Default (b)		
Depth of trench	8	feet	Default (b)		
Ratio of width/depth	0.38	unitless	Default (b)		

Notes:

a Site-specifc temperature (T) of 23.62 °Celsius was used.

b See Section 1.0.

atm-m³/mol-°K Atmosphere - cubic meter per mole - degrees Kelvin

cm Centimeter

cm/s Centimeter per second

cm²/m² Square centimeter per square meter cm³/cm³ Cubic centimeter per cubic centimeter

hr⁻¹ Event per hour K Kelvin

L/cm³ Liter per cubic centimeter

s/hr Second per hour

References:

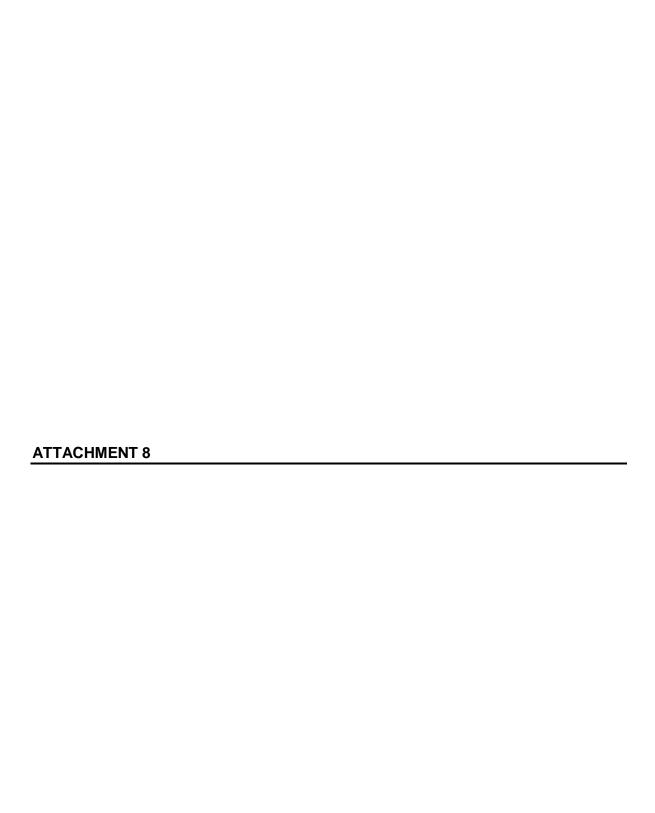
Virginia Department of Environmental Quality (VDEQ). 2015. Voluntary Remediation Program - Risk Assessment Guidance. Table 3.8 Groundwater: Construction Worker in a Trench. Accessed October 19. On-line Address:

http://www.deq.state.va.us/Programs/LandProtectionRevitalization/RemediationProgram/VoluntaryRemediationProgram/VRPRiskAssessmentGuidance/Guidance.

TABLE 7-2: TRENCH MODEL CHEMICAL-SPECIFIC VALUES AND MODELED

Chemical	CAS No.	Molecular Weight (MW _i) g/mol	Henry's Law Constant (H _i) atm-m ³ /mol	Volatilization Factor (VF) L/m³	Target Air Concentration µg/m³	Target Groundwater Concentration µg/L
TPH Gasoline (Benzene)	71-43-2	78.11	5.55E-03	9.35E+00	2.63E+02	2.82E+01
Di-Isopropyl ether	108-20-3	102.18	2.56E-03	8.08E+00	6.13E+03	7.62E+02
TPH Diesel (Naphthalene)	91-20-3	128.17	4.83E-04	6.60E+00	2.63E+01	1.33E+02

μg/L micrograms per liter
μg/m3 micrograms per cubic meter
atm-m³/mol Atmosphere - cubic meter per mole
CAS Chemical Abstract Service


 $\begin{array}{ll} \text{g/mol} & \text{Gram per mole} \\ \text{L/m}^3 & \text{Liter per cubic meter} \end{array}$

Chemical-specific constants from VDEQ (2015).

References:

Virginia Department of Environmental Quality (VDEQ). 2015. Voluntary Remediation Program - Risk Assessment Guidance. Table 3.8 Groundwater: Construction Worker in a Trench. Accessed October 19. On-line Address:

http://www.deq.state.va.us/Programs/LandProtectionRevitalization/RemediationProgram/VoluntaryRemediationProgram/VRPRiskAssessmentGuidance/Guidance.aspx and the contraction of the con

ATTACHMENT 4: DERIVATION OF CONSTRUCTION WORKER RISK-BASED SCREENING LEVEL FOR LEAD

Potential exposure of receptors to lead in surface soil and subsurface soil through incidental ingestion, dermal contact, and inhalation of particulates in ambient air is difficult to assess. However, lead does not have toxicity values that would enable the chemical to be evaluated by the same methodology as the other chemicals. As a result, lead was evaluated using the Adult Lead Methodology (ALM) Model (EPA 2009) for construction workers. The ALM is used to assess lead risks from soil at non-residential Superfund sites. The baseline blood lead concentration (PbB) input parameter of the ALM represents the geometric mean blood lead concentration in women of child-bearing age and the geometric standard deviation (GSD) input parameter is a measure of the inter-individual variability in these concentrations. The revised GSD of 1.8 was used in EPA's calculator (EPA 2009) to derive a PbB in soil for women 17 to 45 (child-bearing) years of age in a working environment and has been accepted by the State of California (Cal/EPA 2009).

The basis for the calculation of the blood lead concentration of women of child-bearing age is the following equation:

$$RBSL = \frac{\left(\left[\frac{PbB_{fetal,95}}{R_{fetal/maternal} \times GSD_{i}}\right] - PbB_{0}\right) \times AT_{S,D}}{BKSF \times IR_{S} \times AF_{S,D} \times EF_{S,D}}$$

The description of the input parameters are presented in the table below.

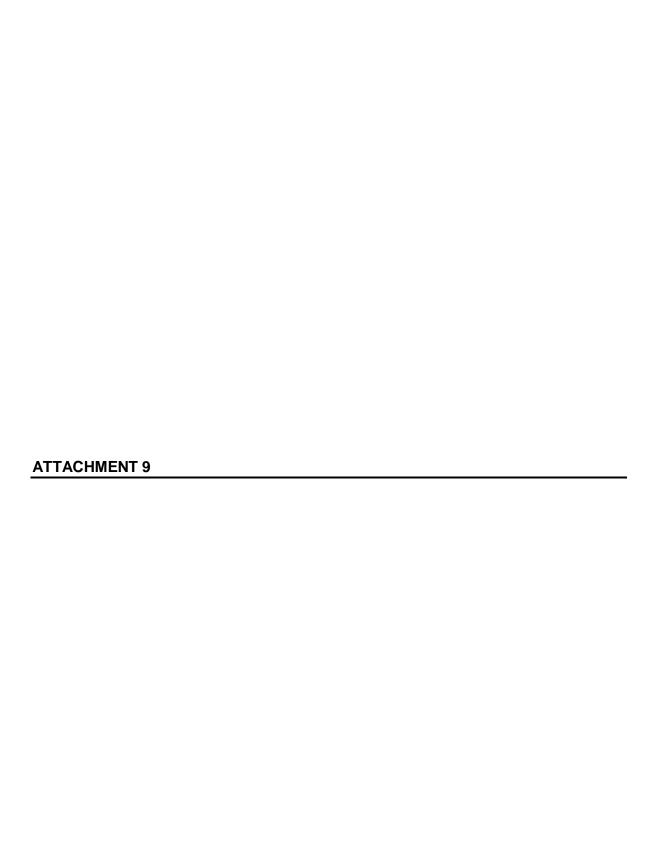
Variable	Description of Variable	Units	Model Inputs	Source of input values
PbB _{fetal, 0.95}	95 th percentile PbB in fetus	μg/dL	1	Cal/EPA 2009
R _{fetal/maternal}	Fetal/maternal PbB ratio		0.9	Cal/EPA 2009 EPA 2009
BKSF	KSF Biokinetic Slope Factor μg/dL μg/dL μg/dL μg/da		0.4	Cal/EPA 2009 EPA 2009
GSDi	Geometric standard deviation PbB		1.8	Cal/EPA 2009
PbB ₀	Baseline PbB	μg/dL	0	Cal/EPA 2009
IRs	Soil ingestion rate	g/day	0.330	DTSC 2014 EPA 2015
AF _{S,D}	Absorption fraction (same for soil and dust)		0.12	Cal/EPA 2009 EPA 2009
EF _{S,D}	Exposure frequency (same for soil and dust)	days/year	250	DTSC 2014 EPA 2015
AT _{S,D}	Averaging time (same for soil and dust)	days/year	365	DTSC 2014 EPA 2015

Notes:

μg/day microgram per day

µg/dL microgram per deciliter
g/day grams per day
mg/kg milligrams per kilogram
RBSL Risk-based screening level

For the construction worker, State of California (Cal/EPA 2009, DTSC 2014) and EPA (EPA 2009, 2015) default exposure parameters were used in running the ALM for this receptor including the target blood lead level (PbB) of 1 microgram per deciliter (μ g/dL). A screening level of 39 mg/kg was calculated for a construction worker using the ALM model.


REFERENCES

California Environmental Protection Agency (Cal/EPA). 2009. Revised California Human Health Screening Levels for Lead. Office of Environmental Health Hazard Assessment. September.

California Department of Toxic Substances Control (DTSC). 2014. Human Health Risk Assessment Note Number 1: Recommended DTSC Default Exposure Factors for Use in Risk Assessment at California Hazardous Waste Sites and Permitted Facilities. September 30. Accessed on-line: http://www.dtsc.ca.gov/AssessingRisk/upload/HHRA_Note1-2.pdf

EPA. 2009. Adult Lead Model. Technical Review Workgroup for Lead, Adult Lead Committee. June 21. Accessed on-line: http://www.epa.gov/superfund/lead/products.htm

EPA. 2015. Regional Screening Levels (RSL) for Chemical Contaminants. June. Accessed on-line: http://www.epa.gov/region9/superfund/prg/

User Selected Options

Date/Time of Computation 10/16/2015 9:59:02 AM

From File WorkSheet.xls

Full Precision OFF

Rosner's Outlier Test for Lead

Mean 358
Standard Deviation 1209
Number of data 53

Number of suspected outliers 1

 #
 Mean
 sd
 outlier
 Number
 value /alue (5%) /alue (1%)

 1
 358
 1198
 7670
 1
 6.105
 3.151
 3.504

For 5% Significance Level, there is 1 Potential Outlier

Potential outliers is: 7670

For 1% Significance Level, there is 1 Potential Outlier

User Selected Options

Date/Time of Computation 10/16/2015 9:59:53 AM From File WorkSheet.xls Full Precision OFF

Rosner's Outlier Test for Lead

Mean 217.4
Standard Deviation 649.9
Number of data 52
Number of suspected outliers 1

Potential Obs. Test Critical Critical # outlier Number value ralue (5%) ralue (1%) Mean sd 217.4 643.6 3380 4.914 1 3.144 3.496

For 5% Significance Level, there is 1 Potential Outlier Potential outliers is: 3380

For 1% Significance Level, there is 1 Potential Outlier

User Selected Options

Date/Time of Computation 10/16/2015 10:00:38 AM From File WorkSheet.xls Full Precision OFF

Rosner's Outlier Test for Lead

Mean 155.4
Standard Deviation 476.3
Number of data 51
Number of suspected outliers 1

Potential Obs. Test Critical Critical # outlier Number value ralue (5%) ralue (1%) Mean sd 1 155.4 471.6 3170 6.392 3.137 3.488

For 5% Significance Level, there is 1 Potential Outlier Potential outliers is: 3170

For 1% Significance Level, there is 1 Potential Outlier

User Selected Options

Date/Time of Computation 10/16/2015 10:01:12 AM From File WorkSheet.xls Full Precision OFF

Rosner's Outlier Test for Lead

Mean 95.07
Standard Deviation 205.8
Number of data 50
Number of suspected outliers 1

Potential Obs. Test Critical Critical # outlier Number value ralue (5%) ralue (1%) Mean sd 1 95.07 203.7 1470 6.75 3.13

For 5% Significance Level, there is 1 Potential Outlier

Potential outliers is: 1470

For 1% Significance Level, there is 1 Potential Outlier

User Selected Options

Date/Time of Computation 10/16/2015 10:01:48 AM From File WorkSheet.xls Full Precision OFF

Rosner's Outlier Test for Lead

Mean 67.01
Standard Deviation 55.05
Number of data 49
Number of suspected outliers 1

			Potential	Obs.	Test	Critical	Critical
#	Mean	sd	outlier	Number	value /a	lue (5%) <i>r</i> a	alue (1%)
1	67.01	54.48	266	1	3.652	3.12	3.47

For 5% Significance Level, there is 1 Potential Outlier Potential outliers is: 266

For 1% Significance Level, there is 1 Potential Outlier

User Selected Options

Date/Time of Computation 10/16/2015 10:02:31 AM From File WorkSheet.xls Full Precision OFF

Rosner's Outlier Test for Lead

Mean 62.86
Standard Deviation 47.27
Number of data 48
Number of suspected outliers 1

			Potential	Obs.	Test	Critical	Critical
#	Mean	sd	outlier	Number	value /a	lue (5%) /a	alue (1%)
1	62.86	46.78	185	1	2.611	3.11	3.46

For 5% Significance Level, there is no Potential Outlier

For 1% Significance Level, there is no Potential Outlier

All Lead Results

Remedial Investigation for Cross Alameda Trail City of Alameda, California

<u></u>	
	Lead
Well/Sample ID	Concentration
	mg/kg
CAT-B-10-2	170
CAT-B-10-5	26
CAT-B-11-0.5	116
CAT-B-11-4	29.4
CAT-B-1-2	40.4
CAT-B-12-0.5	18.6
CAT-B-12-4	6.9
CAT-B-13-0.5	103
CAT-B-13-4	96.8
CAT-B-1-4	35.7
CAT-B-14-0.5	22.3
CAT-B-14-4	10.7
CAT-B-19-0.5	144
CAT-B-19-4	3,380
CAT-B-20-0.5	133
CAT-B-20-4	39.3
CAT-B-21-0.5	24.5
CAT-B-21-4	46.5
CAT-B-2-2	61.3
CAT-B-22-0.5	84.9
CAT-B-22-4	89.6
CAT-B-23-0.5	65.1
CAT-B-23-2	91
CAT-B-24-0.5	52
CAT-B-24-2	50.7
CAT-B-2-5	79.7
CAT-B-25-0.5	86.9
CAT-B-25-2 CAT-B-26-0.5	112 76.1
CAT-B-26-0.5 CAT-B-26-2	160
CAT-B-20-2 CAT-B-27-0.5	3,170
CAT-B-27-0.5 CAT-B-27-4	15.5
CAT-B-21-4 CAT-B-28-0.5	266
CAT-B-28-4	1,470
CAT-B-20-4 CAT-B-29-0.5	12.5
CAT-B-29-0.5 CAT-B-29-4	63.4
CAT-B-30-0.5	111
CAT-B-30-4	7,670
CAT-B-3-1	24.0
CAT-B-3-4	2.6
CAT-B-4-2	37
CAT-B-4-5	36.6
CAT-B-5-1	68.4
CAT-B-5-5	3
CAT-B-6-1	26.2
CAT-B-6-4	185
CAT-B-7-1	22
CAT-B-7-4	92.9
CAT-B-8-2	40.5
CAT-B-8-8	16.9
CAT-B-9-1	54.6
CAT-B-9-6	6.9
67 tr 2 0 0	0.0

Highlighted samples removed as hotspots

Page 1 of 6 All Pb

All Lead Results with Outliers Removed

Remedial Investigation for Cross Alameda Trail City of Alameda, California

Well/Sample ID Concentration mg/kg CAT-B-6-4 185 CAT-B-10-2 170 CAT-B-26-2 160 CAT-B-20-0.5 133 CAT-B-11-0.5 116 CAT-B-13-0.5 103 CAT-B-13-4 96.8 CAT-B-7-4 92.9 CAT-B-23-2 91 CAT-B-23-2 91 CAT-B-22-4 89.6 CAT-B-23-2 91 CAT-B-23-2 91 CAT-B-23-2 91 CAT-B-23-0 86.9 CAT-B-23-0 86.9 CAT-B-25-0.5 86.9 CAT-B-25-0.5 76.1 CAT-B-25-0.5 65.1 CAT-B-24-0.5 65.1 CAT-B-24-0.5 65.1 CAT-B-9-1 54.6 CAT-B-9-1 54.6 CAT-B-9-1 54.6 CAT-B-9-1 54.6 CAT-B-1-2 40.4 CAT-B-1-2 40.5 CAT-B-1-2 40.4 CAT-B-4-2 <th></th> <th>Lead</th>		Lead
CAT-B-6-4 185 CAT-B-10-2 170 CAT-B-26-2 160 CAT-B-20-0.5 133 CAT-B-11-0.5 116 CAT-B-13-0.5 103 CAT-B-13-4 96.8 CAT-B-13-4 96.8 CAT-B-23-2 91 CAT-B-23-2 91 CAT-B-23-2 86.9 CAT-B-25-0.5 86.9 CAT-B-22-0.5 86.9 CAT-B-22-0.5 84.9 CAT-B-25-0.5 76.1 CAT-B-2-5 79.7 CAT-B-2-6-0.5 76.1 CAT-B-2-9-4 63.4 CAT-B-29-4 63.4 CAT-B-29-4 63.4 CAT-B-29-4 63.4 CAT-B-9-1 54.6 CAT-B-9-1 54.6 CAT-B-21-4 46.5 CAT-B-24-0.5 52 CAT-B-21-4 46.5 CAT-B-1-2 40.4 CAT-B-3-1 24.0 CAT-B-4-2 37 CAT-B-4-3	Well/Sample ID	
CAT-B-6-4 CAT-B-10-2 CAT-B-26-2 160 CAT-B-26-2 160 CAT-B-20-0.5 133 CAT-B-11-0.5 116 CAT-B-25-2 112 CAT-B-13-0.5 103 CAT-B-13-4 96.8 CAT-B-7-4 92.9 CAT-B-23-2 91 CAT-B-23-2 91 CAT-B-22-4 89.6 CAT-B-25-0.5 86.9 CAT-B-25-0.5 86.9 CAT-B-25-0.5 CAT-B-26-0.5 CAT-B-26-0.5 CAT-B-29-4 CAT-B-29-4 CAT-B-29-4 CAT-B-21-4 CAT-B-21-4 46.5 CAT-B-21-4 CAT-B-21-4 CAT-B-1-2 CAT-B-1-2 CAT-B-1-2 CAT-B-1-2 CAT-B-1-2 CAT-B-1-2 CAT-B-1-2 CAT-B-1-2 CAT-B-1-2 CAT-B-1-2 CAT-B-1-1 CAT-B-1		
CAT-B-10-2 170 CAT-B-26-2 160 CAT-B-20-0.5 133 CAT-B-11-0.5 116 CAT-B-13-0.5 103 CAT-B-13-4 96.8 CAT-B-7-4 92.9 CAT-B-23-2 91 CAT-B-22-4 89.6 CAT-B-22-4 89.6 CAT-B-25-0.5 86.9 CAT-B-25-0.5 76.1 CAT-B-25-0.5 76.1 CAT-B-2-1 68.4 CAT-B-2-3-0.5 65.1 CAT-B-2-3-0.5 65.1 CAT-B-29-4 63.4 CAT-B-29-4 63.4 CAT-B-2-2 61.3 CAT-B-9-1 54.6 CAT-B-2-2 50.7 CAT-B-2-2 50.7 CAT-B-2-4 46.5 CAT-B-2-4 46.5 CAT-B-2-1-4 46.5 CAT-B-1-2 40.4 CAT-B-1-2 40.4 CAT-B-1-4 35.7 CAT-B-1-4 35.7 CAT-B-1-1-4 29.4 CAT-B-10-5 26 C	0.4 0.4	
CAT-B-26-2 160 CAT-B-20-0.5 133 CAT-B-11-0.5 116 CAT-B-25-2 112 CAT-B-13-0.5 103 CAT-B-13-4 96.8 CAT-B-7-4 92.9 CAT-B-23-2 91 CAT-B-22-4 89.6 CAT-B-22-4 89.6 CAT-B-22-0.5 86.9 CAT-B-22-0.5 84.9 CAT-B-22-0.5 76.1 CAT-B-2-5 79.7 CAT-B-2-5 79.7 CAT-B-2-1 68.4 CAT-B-2-2 61.3 CAT-B-29-4 63.4 CAT-B-29-4 63.4 CAT-B-2-2 61.3 CAT-B-9-1 54.6 CAT-B-2-2 50.7 CAT-B-2-4 46.5 CAT-B-2-4 46.5 CAT-B-2-1-4 46.5 CAT-B-2-1-4 46.5 CAT-B-1-2 40.4 CAT-B-4-2 37 CAT-B-4-2 37 CAT-B-4-4 35.7 CAT-B-11-4 29.4 CAT-B-10-5<		
CAT-B-20-0.5 133 CAT-B-11-0.5 116 CAT-B-25-2 112 CAT-B-13-0.5 103 CAT-B-13-4 96.8 CAT-B-7-4 92.9 CAT-B-23-2 91 CAT-B-22-4 89.6 CAT-B-22-0.5 86.9 CAT-B-25-0.5 86.9 CAT-B-22-0.5 84.9 CAT-B-2-5 79.7 CAT-B-2-5 79.7 CAT-B-2-5 76.1 CAT-B-2-5 65.1 CAT-B-2-5 65.1 CAT-B-2-6 65.1 CAT-B-2-9-4 63.4 CAT-B-29-4 63.4 CAT-B-29-4 63.4 CAT-B-2-2 61.3 CAT-B-9-1 54.6 CAT-B-9-1 54.6 CAT-B-2-2 50.7 CAT-B-2-2 40.3 CAT-B-2-2 40.5 CAT-B-2-1 46.5 CAT-B-2-2 40.5 CAT-B-2-2 37 CAT-B-3-1-2 40.4 CAT-B-4-2 37 CAT-B-4-4 <th></th> <th></th>		
CAT-B-11-0.5 116 CAT-B-25-2 112 CAT-B-13-0.5 103 CAT-B-13-4 96.8 CAT-B-13-4 96.8 CAT-B-7-4 92.9 CAT-B-23-2 91 CAT-B-23-2 91 CAT-B-22-4 89.6 CAT-B-22-0.5 86.9 CAT-B-25-0.5 86.9 CAT-B-22-0.5 79.7 CAT-B-2-5 79.7 CAT-B-2-5 79.7 CAT-B-2-5 79.7 CAT-B-2-5 65.1 CAT-B-2-6.0.5 65.1 CAT-B-2-1 68.4 CAT-B-2-2 61.3 CAT-B-29-4 63.4 CAT-B-2-2 61.3 CAT-B-9-1 54.6 CAT-B-9-1 54.6 CAT-B-2-2 50.7 CAT-B-2-2 50.7 CAT-B-2-2 40.5 CAT-B-2-1 46.5 CAT-B-2-2 40.5 CAT-B-2-2 37 CAT-B-8-2 40.5 CAT-B-1-2 40.4 CAT-B-1-4		
CAT-B-25-2 112 CAT-B-13-0.5 103 CAT-B-13-4 96.8 CAT-B-7-4 92.9 CAT-B-23-2 91 CAT-B-25-0.5 86.9 CAT-B-25-0.5 86.9 CAT-B-25-0.5 84.9 CAT-B-2-0.5 76.1 CAT-B-2-1 68.4 CAT-B-2-1 68.4 CAT-B-23-0.5 65.1 CAT-B-29-4 63.4 CAT-B-29-4 63.4 CAT-B-2-2 61.3 CAT-B-2-2 61.3 CAT-B-2-2 50.7 CAT-B-24-0.5 52 CAT-B-24-1 46.5 CAT-B-24-2 50.7 CAT-B-21-4 46.5 CAT-B-3-1 40.4 CAT-B-4-2 37 CAT-B-4-2 37 CAT-B-4-3 36.6 CAT-B-11-4 29.4 CAT-B-11-4 29.4 CAT-B-10-5 26 CAT-B-3-1 24.0 CAT-B-3-1 24.0 CAT-B-3-1 24.5 CAT-B-8-8 <th></th> <th></th>		
CAT-B-13-0.5 103 CAT-B-13-4 96.8 CAT-B-7-4 92.9 CAT-B-23-2 91 CAT-B-25-0.5 86.9 CAT-B-25-0.5 86.9 CAT-B-25-0.5 84.9 CAT-B-2-5 79.7 CAT-B-2-5 79.7 CAT-B-2-1 68.4 CAT-B-2-1 68.4 CAT-B-2-2 61.3 CAT-B-29-4 63.4 CAT-B-29-4 63.4 CAT-B-2-2 61.3 CAT-B-2-2 61.3 CAT-B-2-1 54.6 CAT-B-9-1 54.6 CAT-B-2-2 50.7 CAT-B-2-4 46.5 CAT-B-2-4 40.5 CAT-B-2-2 40.5 CAT-B-2-2 40.5 CAT-B-3-2 40.5 CAT-B-4-2 37 CAT-B-4-2 37 CAT-B-4-3 36.6 CAT-B-11-4 29.4 CAT-B-11-4 29.4 CAT-B-10-5 26 CAT-B-3-1 24.0 CAT-B-3-1		
CAT-B-13-4 96.8 CAT-B-7-4 92.9 CAT-B-23-2 91 CAT-B-22-4 89.6 CAT-B-25-0.5 86.9 CAT-B-25-0.5 84.9 CAT-B-2-5 79.7 CAT-B-2-5 79.7 CAT-B-2-1 68.4 CAT-B-5-1 68.4 CAT-B-2-0.5 65.1 CAT-B-29-4 63.4 CAT-B-29-4 63.4 CAT-B-29-4 63.4 CAT-B-2-2 61.3 CAT-B-2-2 61.3 CAT-B-9-1 54.6 CAT-B-9-1 54.6 CAT-B-2-2 50.7 CAT-B-2-4 46.5 CAT-B-2-4 46.5 CAT-B-2-4 39.3 CAT-B-8-2 40.4 CAT-B-4-2 37 CAT-B-4-2 37 CAT-B-4-3 36.6 CAT-B-1-4 29.4 CAT-B-1-4 29.4 CAT-B-1-4 29.4 CAT-B-3-1 24.0 CAT-B-3-1 24.0 CAT-B-3-1 <t< th=""><th></th><th></th></t<>		
CAT-B-7-4 92.9 CAT-B-23-2 91 CAT-B-22-4 89.6 CAT-B-25-0.5 86.9 CAT-B-25-0.5 84.9 CAT-B-2-5 79.7 CAT-B-2-5 76.1 CAT-B-2-1 68.4 CAT-B-5-1 68.4 CAT-B-29-4 63.4 CAT-B-29-4 63.4 CAT-B-29-4 63.4 CAT-B-29-1 54.6 CAT-B-2-2 61.3 CAT-B-9-1 54.6 CAT-B-2-2 50.7 CAT-B-2-4 46.5 CAT-B-2-4 46.5 CAT-B-2-4 39.3 CAT-B-8-2 40.4 CAT-B-1-2 40.4 CAT-B-4-2 37 CAT-B-4-3 36.6 CAT-B-1-4 35.7 CAT-B-1-4 29.4 CAT-B-1-4 29.4 CAT-B-10-5 26 CAT-B-3-1 24.0 CAT-B-3-1 24.0 CAT-B-12-0.5 18.6 CAT-B-29-0.5 12.5 CAT-B-12-4		
CAT-B-23-2 91 CAT-B-22-4 89.6 CAT-B-25-0.5 86.9 CAT-B-25-5 79.7 CAT-B-2-5 79.7 CAT-B-26-0.5 76.1 CAT-B-23-0.5 65.1 CAT-B-29-4 63.4 CAT-B-29-4 63.4 CAT-B-29-4 63.4 CAT-B-29-4 63.4 CAT-B-29-4 63.4 CAT-B-29-4 63.4 CAT-B-29-4 54.6 CAT-B-29-1 54.6 CAT-B-2-2 50.7 CAT-B-24-0.5 52 CAT-B-24-1 46.5 CAT-B-24-2 50.7 CAT-B-21-4 46.5 CAT-B-22-4 39.3 CAT-B-1-2 40.4 CAT-B-20-4 39.3 CAT-B-4-2 37 CAT-B-4-3 36.6 CAT-B-1-4 29.4 CAT-B-1-4 29.4 CAT-B-10-5 26 CAT-B-3-1 24.0 CAT-B-3-1 24.0 CAT-B-12-0.5 18.6 CAT-B-8		
CAT-B-22-4 89.6 CAT-B-25-0.5 86.9 CAT-B-22-0.5 84.9 CAT-B-2-5 79.7 CAT-B-26-0.5 76.1 CAT-B-25-1 68.4 CAT-B-23-0.5 65.1 CAT-B-29-4 63.4 CAT-B-29-4 63.4 CAT-B-29-4 63.4 CAT-B-29-4 63.4 CAT-B-29-4 63.4 CAT-B-29-4 50.7 CAT-B-9-1 54.6 CAT-B-24-2 50.7 CAT-B-24-2 50.7 CAT-B-21-4 46.5 CAT-B-2-1 40.4 CAT-B-1-2 40.4 CAT-B-1-2 40.4 CAT-B-1-2 37 CAT-B-4-3 36.6 CAT-B-4-3 36.6 CAT-B-1-4 29.4 CAT-B-1-4 29.4 CAT-B-10-5 26 CAT-B-3-1 24.0 CAT-B-3-1 24.0 CAT-B-12-0.5 18.6 CAT-B-8-8 16.9 CAT-B-12-4 15.5 CAT-B-1		
CAT-B-25-0.5 CAT-B-22-0.5 CAT-B-2-5 CAT-B-2-5 CAT-B-2-5 CAT-B-26-0.5 CAT-B-5-1 CAT-B-23-0.5 CAT-B-29-4 CAT-B-2-2 CAT-B-2-2 CAT-B-2-1 CAT-B-2-2 CAT-B-2-1 CAT-B-2-2 CAT-B-2-1 CAT-B-2-1 CAT-B-2-2 CAT-B-2-1 CAT-B-2-1 CAT-B-2-1 CAT-B-2-1 CAT-B-2-1 CAT-B-2-1 CAT-B-2-1 CAT-B-2-1 CAT-B-1-2 CAT-B-1-2 CAT-B-1-2 CAT-B-1-4 CAT-B-1-4 CAT-B-1-4 CAT-B-1-4 CAT-B-1-5 CAT-B-1-1		
CAT-B-22-0.5 84.9 CAT-B-2-5 79.7 CAT-B-26-0.5 76.1 CAT-B-5-1 68.4 CAT-B-23-0.5 65.1 CAT-B-29-4 63.4 CAT-B-29-1 54.6 CAT-B-2-1 54.6 CAT-B-9-1 54.6 CAT-B-24-0.5 52 CAT-B-24-2 50.7 CAT-B-21-4 46.5 CAT-B-21-4 46.5 CAT-B-21-4 40.5 CAT-B-4-2 39.3 CAT-B-1-2 40.4 CAT-B-1-2 39.3 CAT-B-4-3 36.6 CAT-B-4-5 36.6 CAT-B-4-4 35.7 CAT-B-1-4 29.4 CAT-B-1-4 29.4 CAT-B-10-5 26 CAT-B-10-5 24.5 CAT-B-10-5 24.5 CAT-B-10-5 22.3 CAT-B-10-5 18.6 CAT-B-12-0.5 18.6 CAT-B-29-0.5 12.5 CAT-B-12-4 6.9 CAT-B-12-4 6.9 CAT-B-		
CAT-B-2-5 79.7 CAT-B-26-0.5 76.1 CAT-B-5-1 68.4 CAT-B-23-0.5 65.1 CAT-B-29-4 63.4 CAT-B-2-2 61.3 CAT-B-9-1 54.6 CAT-B-24-0.5 52 CAT-B-24-2 50.7 CAT-B-21-4 46.5 CAT-B-8-2 40.5 CAT-B-1-2 40.4 CAT-B-20-4 39.3 CAT-B-4-5 36.6 CAT-B-1-4 29.4 CAT-B-1-4 29.4 CAT-B-10-5 26 CAT-B-10-5 26 CAT-B-3-1 24.0 CAT-B-3-1 24.0 CAT-B-3-1 22 CAT-B-1-4 22 CAT-B-1-4 25 CAT-B-1-4 26.2 CAT-B-1-5 26 CAT-B-1-4 26.2 CAT-B-1-4 26.2 CAT-B-1-4 26.2 CAT-B-1-4 26.2 CAT-B-1-4 26.2 CAT-B-1-4 26.2 CAT-B-1-4 26.2 CAT-B-1-4 26.2 CAT-B-1-4 26.2 CAT-B-1-4 26.2 CAT-B-1-4 26.2 CAT-B-1-4 26.2 CAT-B-1-4 26.2 CAT-B-1-4 26.9 CAT-B-1-4 4 10.7 CAT-B-1-4 10.7 CAT-B-1-4 6.9 CAT-B-1-4 6.9 CAT-B-9-6 6.9 CAT-B-5-5 3		
CAT-B-26-0.5 CAT-B-5-1 CAT-B-5-1 CAT-B-23-0.5 CAT-B-29-4 CAT-B-29-4 CAT-B-2-2 CAT-B-9-1 CAT-B-24-0.5 CAT-B-24-2 CAT-B-24-2 CAT-B-21-4 CAT-B-20-4 CAT-B-20-4 CAT-B-4-2 CAT-B-4-5 CAT-B-4-5 CAT-B-1-4 CAT-B-1-4 CAT-B-6-1 CAT-B-10-5 CAT-B-3-1 CAT-B-1-4 CAT-B-3-1 CAT-B-1-4 CAT-B-1-4 CAT-B-1-4 CAT-B-1-5 CAT-B-1-1 CAT-B-1		
CAT-B-5-1 68.4 CAT-B-23-0.5 65.1 CAT-B-29-4 63.4 CAT-B-2-2 61.3 CAT-B-9-1 54.6 CAT-B-24-0.5 52 CAT-B-24-2 50.7 CAT-B-21-4 46.5 CAT-B-8-2 40.5 CAT-B-1-2 40.4 CAT-B-20-4 39.3 CAT-B-4-2 37 CAT-B-4-5 36.6 CAT-B-1-4 29.4 CAT-B-11-4 29.4 CAT-B-6-1 26.2 CAT-B-10-5 26 CAT-B-3-1 24.0 CAT-B-3-1 22 CAT-B-14-0.5 22.3 CAT-B-12-0.5 18.6 CAT-B-8-8 16.9 CAT-B-29-0.5 12.5 CAT-B-12-4 6.9 CAT-B-12-4 6.9 CAT-B-9-6 6.9 CAT-B-9-6 6.9 CAT-B-9-6 6.9		
CAT-B-23-0.5 CAT-B-29-4 CAT-B-29-4 CAT-B-2-2 CAT-B-9-1 CAT-B-9-1 CAT-B-24-0.5 CAT-B-24-0.5 CAT-B-21-4 CAT-B-8-2 CAT-B-1-2 CAT-B-1-2 CAT-B-4-2 CAT-B-4-5 CAT-B-1-4 CAT-B-11-4 CAT-B-11-4 CAT-B-10-5 CAT-B-10-5 CAT-B-3-1 CAT-B-14-0.5 CAT-B-14-0.5 CAT-B-12-0.5 CAT-B-12-0.5 CAT-B-12-0.5 CAT-B-12-0.5 CAT-B-12-0.5 CAT-B-12-0.5 CAT-B-12-0.5 CAT-B-14-0.5 CAT-B-18-8 CAT-B-19-0.5 CAT-B-14-4 CAT-B-19-0.5 CAT-B-14-4 CAT-B-19-0.5 CAT-B-14-4 CAT-B-14-4 CAT-B-15-5 CAT-B-14-4 CAT-B-15-5 CAT-B-16-9		
CAT-B-29-4 CAT-B-2-2 CAT-B-9-1 CAT-B-9-1 S4.6 CAT-B-24-0.5 CAT-B-24-2 CAT-B-21-4 CAT-B-8-2 CAT-B-8-2 CAT-B-1-2 CAT-B-20-4 CAT-B-4-5 CAT-B-1-4 CAT-B-1-4 CAT-B-11-4 CAT-B-6-1 CAT-B-10-5 CAT-B-3-1 CAT-B-3-1 CAT-B-14-0.5 CAT-B-12-0.5 CAT-B-12-0.5 CAT-B-8-8 CAT-B-12-0.5 CAT-B-12-0.5 CAT-B-12-0.5 CAT-B-14-0.5 CAT-B-12-0.5 CAT-B-14-0.5 CAT-B-14-0.5 CAT-B-15-0.5 CAT-B-16-0 CAT-B-16-0.5 CAT-B-17-0.5 CAT-B-18-8-8 CAT-B-19-0.5 CAT-B-14-4 CAT-B-19-0.5 CAT-B-14-4 CAT-B-19-0.5 CAT-B-14-4 CAT-B-12-4 CAT-B-12-4 CAT-B-12-4 CAT-B-12-6 CAT-B-12-6 CAT-B-12-6 CAT-B-12-6 CAT-B-12-6 CAT-B-12-6 CAT-B-12-6 CAT-B-12-6 CAT-B-12-6 CAT-B-13-5-5 3		
CAT-B-2-2 61.3 CAT-B-9-1 54.6 CAT-B-24-0.5 52 CAT-B-24-2 50.7 CAT-B-21-4 46.5 CAT-B-8-2 40.5 CAT-B-1-2 40.4 CAT-B-20-4 39.3 CAT-B-4-5 36.6 CAT-B-1-4 29.4 CAT-B-11-4 29.4 CAT-B-6-1 26.2 CAT-B-10-5 26 CAT-B-3-1 24.0 CAT-B-3-1 24.0 CAT-B-7-1 22 CAT-B-7-1 22 CAT-B-7-1 55 CAT-B-8-8 16.9 CAT-B-29-0.5 12.5 CAT-B-14-4 6.9 CAT-B-12-4 6.9 CAT-B-9-6 6.9 CAT-B-9-6 6.9 CAT-B-9-6 6.9		
CAT-B-9-1 54.6 CAT-B-24-0.5 52 CAT-B-24-2 50.7 CAT-B-21-4 46.5 CAT-B-8-2 40.5 CAT-B-1-2 40.4 CAT-B-20-4 39.3 CAT-B-4-2 37 CAT-B-4-5 36.6 CAT-B-1-4 35.7 CAT-B-11-4 29.4 CAT-B-11-4 29.4 CAT-B-10-5 26 CAT-B-10-5 26 CAT-B-21-0.5 24.5 CAT-B-3-1 24.0 CAT-B-14-0.5 22.3 CAT-B-12-0.5 18.6 CAT-B-12-0.5 18.6 CAT-B-29-0.5 12.5 CAT-B-14-4 10.7 CAT-B-12-4 6.9 CAT-B-9-6 6.9 CAT-B-5-5 3		
CAT-B-24-0.5 CAT-B-24-2 CAT-B-21-4 CAT-B-21-4 CAT-B-8-2 CAT-B-1-2 CAT-B-1-2 CAT-B-4-2 CAT-B-4-5 CAT-B-1-4 CAT-B-1-4 CAT-B-1-4 CAT-B-1-5 CAT-B-10-5 CAT-B-1-1 CAT-B-14-0.5 CAT-B-12-0.5 CAT-B-12-0.5 CAT-B-12-0.5 CAT-B-12-0.5 CAT-B-12-0.5 CAT-B-12-0.5 CAT-B-13-1 CAT-B-14-0.5 CAT-B-15-5 CAT-B-14-4 CAT-B-16-9 CAT		
CAT-B-24-2 50.7 CAT-B-21-4 46.5 CAT-B-8-2 40.5 CAT-B-1-2 40.4 CAT-B-20-4 39.3 CAT-B-4-5 36.6 CAT-B-1-4 29.4 CAT-B-11-4 29.4 CAT-B-6-1 26.2 CAT-B-10-5 26 CAT-B-3-1 24.0 CAT-B-3-1 24.0 CAT-B-14-0.5 22.3 CAT-B-12-0.5 18.6 CAT-B-12-0.5 18.6 CAT-B-12-0.5 12.5 CAT-B-18-8 16.9 CAT-B-19-0.5 12.5 CAT-B-19-0.5 12.5 CAT-B-19-0.5 12.5 CAT-B-19-0.5 12.5 CAT-B-19-0.5 12.5 CAT-B-19-0.5 12.5 CAT-B-19-0.5 13.5 CAT-B-19-0.5 12.5 CAT-B-19-0.5 12.5 CAT-B-19-0.5 13.5 CAT-B-19-0.5 CAT-B-19-0.5 13.5 CAT-B-19-0.5 CAT-B-19-0.5 13.5 CAT-B-19-0.5 CAT		
CAT-B-21-4 CAT-B-8-2 CAT-B-8-2 40.5 CAT-B-1-2 40.4 CAT-B-20-4 39.3 CAT-B-4-2 37 CAT-B-4-5 36.6 CAT-B-1-4 35.7 CAT-B-11-4 29.4 CAT-B-6-1 26.2 CAT-B-10-5 26 CAT-B-21-0.5 CAT-B-3-1 24.0 CAT-B-14-0.5 CAT-B-14-0.5 CAT-B-12-0.5 CAT-B-12-0.5 CAT-B-8-8 16.9 CAT-B-27-4 15.5 CAT-B-12-4 6.9 CAT-B-12-4 6.9 CAT-B-9-6 6.9 CAT-B-9-6 6.9 CAT-B-5-5		
CAT-B-8-2 40.5 CAT-B-1-2 40.4 CAT-B-20-4 39.3 CAT-B-4-2 37 CAT-B-4-5 36.6 CAT-B-1-4 29.4 CAT-B-11-4 29.4 CAT-B-6-1 26.2 CAT-B-10-5 26 CAT-B-21-0.5 24.5 CAT-B-3-1 24.0 CAT-B-14-0.5 22.3 CAT-B-7-1 22 CAT-B-12-0.5 18.6 CAT-B-8-8 16.9 CAT-B-27-4 15.5 CAT-B-12-4 6.9 CAT-B-12-4 6.9 CAT-B-9-6 6.9 CAT-B-5-5		
CAT-B-1-2 40.4 CAT-B-20-4 39.3 CAT-B-4-2 37 CAT-B-4-5 36.6 CAT-B-1-4 35.7 CAT-B-11-4 29.4 CAT-B-6-1 26.2 CAT-B-10-5 26 CAT-B-21-0.5 24.5 CAT-B-3-1 24.0 CAT-B-14-0.5 22.3 CAT-B-7-1 22 CAT-B-12-0.5 18.6 CAT-B-8-8 16.9 CAT-B-29-0.5 12.5 CAT-B-14-4 10.7 CAT-B-12-4 6.9 CAT-B-9-6 6.9 CAT-B-5-5 3		
CAT-B-20-4 39.3 CAT-B-4-2 37 CAT-B-4-5 36.6 CAT-B-1-4 35.7 CAT-B-11-4 29.4 CAT-B-6-1 26.2 CAT-B-10-5 26 CAT-B-21-0.5 24.5 CAT-B-3-1 24.0 CAT-B-14-0.5 22.3 CAT-B-7-1 22 CAT-B-12-0.5 18.6 CAT-B-8-8 16.9 CAT-B-27-4 15.5 CAT-B-29-0.5 12.5 CAT-B-14-4 10.7 CAT-B-12-4 6.9 CAT-B-9-6 6.9 CAT-B-5-5 3		
CAT-B-4-2 37 CAT-B-4-5 36.6 CAT-B-1-4 35.7 CAT-B-11-4 29.4 CAT-B-6-1 26.2 CAT-B-10-5 26 CAT-B-21-0.5 24.5 CAT-B-3-1 24.0 CAT-B-14-0.5 22.3 CAT-B-7-1 22 CAT-B-12-0.5 18.6 CAT-B-8-8 16.9 CAT-B-27-4 15.5 CAT-B-29-0.5 12.5 CAT-B-14-4 10.7 CAT-B-12-4 6.9 CAT-B-9-6 6.9 CAT-B-5-5 3		
CAT-B-4-5 36.6 CAT-B-1-4 35.7 CAT-B-11-4 29.4 CAT-B-6-1 26.2 CAT-B-10-5 26 CAT-B-21-0.5 24.5 CAT-B-3-1 24.0 CAT-B-14-0.5 22.3 CAT-B-7-1 22 CAT-B-12-0.5 18.6 CAT-B-8-8 16.9 CAT-B-27-4 15.5 CAT-B-29-0.5 12.5 CAT-B-14-4 10.7 CAT-B-12-4 6.9 CAT-B-9-6 6.9 CAT-B-5-5 3		
CAT-B-1-4 35.7 CAT-B-11-4 29.4 CAT-B-6-1 26.2 CAT-B-10-5 26 CAT-B-21-0.5 24.5 CAT-B-3-1 24.0 CAT-B-14-0.5 22.3 CAT-B-7-1 22 CAT-B-12-0.5 18.6 CAT-B-8-8 16.9 CAT-B-27-4 15.5 CAT-B-29-0.5 12.5 CAT-B-14-4 10.7 CAT-B-12-4 6.9 CAT-B-9-6 6.9 CAT-B-5-5 3		
CAT-B-11-4 29.4 CAT-B-6-1 26.2 CAT-B-10-5 26 CAT-B-21-0.5 24.5 CAT-B-3-1 24.0 CAT-B-14-0.5 22.3 CAT-B-7-1 22 CAT-B-12-0.5 18.6 CAT-B-8-8 16.9 CAT-B-27-4 15.5 CAT-B-29-0.5 12.5 CAT-B-14-4 10.7 CAT-B-12-4 6.9 CAT-B-9-6 6.9 CAT-B-5-5 3		
CAT-B-6-1 26.2 CAT-B-10-5 26 CAT-B-21-0.5 24.5 CAT-B-3-1 24.0 CAT-B-14-0.5 22.3 CAT-B-7-1 22 CAT-B-12-0.5 18.6 CAT-B-8-8 16.9 CAT-B-27-4 15.5 CAT-B-29-0.5 12.5 CAT-B-14-4 10.7 CAT-B-12-4 6.9 CAT-B-9-6 6.9 CAT-B-5-5 3		
CAT-B-10-5 26 CAT-B-21-0.5 24.5 CAT-B-3-1 24.0 CAT-B-14-0.5 22.3 CAT-B-7-1 22 CAT-B-12-0.5 18.6 CAT-B-8-8 16.9 CAT-B-27-4 15.5 CAT-B-29-0.5 12.5 CAT-B-14-4 10.7 CAT-B-12-4 6.9 CAT-B-9-6 6.9 CAT-B-5-5 3		
CAT-B-21-0.5 24.5 CAT-B-3-1 24.0 CAT-B-14-0.5 22.3 CAT-B-7-1 22 CAT-B-12-0.5 18.6 CAT-B-8-8 16.9 CAT-B-27-4 15.5 CAT-B-29-0.5 12.5 CAT-B-14-4 10.7 CAT-B-12-4 6.9 CAT-B-9-6 6.9 CAT-B-5-5 3		
CAT-B-3-1 24.0 CAT-B-14-0.5 22.3 CAT-B-7-1 22 CAT-B-12-0.5 18.6 CAT-B-8-8 16.9 CAT-B-27-4 15.5 CAT-B-29-0.5 12.5 CAT-B-14-4 10.7 CAT-B-12-4 6.9 CAT-B-9-6 6.9 CAT-B-5-5 3		
CAT-B-14-0.5 22.3 CAT-B-7-1 22 CAT-B-12-0.5 18.6 CAT-B-8-8 16.9 CAT-B-27-4 15.5 CAT-B-29-0.5 12.5 CAT-B-14-4 10.7 CAT-B-12-4 6.9 CAT-B-9-6 6.9 CAT-B-5-5 3		
CAT-B-7-1 22 CAT-B-12-0.5 18.6 CAT-B-8-8 16.9 CAT-B-27-4 15.5 CAT-B-29-0.5 12.5 CAT-B-14-4 10.7 CAT-B-12-4 6.9 CAT-B-9-6 6.9 CAT-B-5-5 3		
CAT-B-12-0.5 18.6 CAT-B-8-8 16.9 CAT-B-27-4 15.5 CAT-B-29-0.5 12.5 CAT-B-14-4 10.7 CAT-B-12-4 6.9 CAT-B-9-6 6.9 CAT-B-5-5 3		
CAT-B-8-8 16.9 CAT-B-27-4 15.5 CAT-B-29-0.5 12.5 CAT-B-14-4 10.7 CAT-B-12-4 6.9 CAT-B-9-6 6.9 CAT-B-5-5 3		
CAT-B-27-4 15.5 CAT-B-29-0.5 12.5 CAT-B-14-4 10.7 CAT-B-12-4 6.9 CAT-B-9-6 6.9 CAT-B-5-5 3		
CAT-B-29-0.5 12.5 CAT-B-14-4 10.7 CAT-B-12-4 6.9 CAT-B-9-6 6.9 CAT-B-5-5 3		
CAT-B-14-4 10.7 CAT-B-12-4 6.9 CAT-B-9-6 6.9 CAT-B-5-5 3		
CAT-B-12-4 6.9 CAT-B-9-6 6.9 CAT-B-5-5 3		
CAT-B-9-6 6.9 CAT-B-5-5 3		
CAT-B-5-5 3		
		2.6

UCL Statistics for Uncensored Full Data Sets

User Selected Options

Date/Time of Computation 10/19/2015 1:49:04 PM

From File WorkSheet_b.xls

Full Precision OFF Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Lead

Canaral	Statistics
General	Statistics

Total Number of Observations	47	Number of Distinct Observations	46
		Number of Missing Observations	0
Minimum	2.6	Mean	61.52
Maximum	185	Median	50.7
SD	46.85	Std. Error of Mean	6.834
Coefficient of Variation	0.762	Skewness	0.885

Normal GOF Test

Shapiro Wilk Test Statistic	0.912	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.946	Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.141	Lilliefors GOF Test
5% Lilliefors Critical Value	0.129	Data Not Normal at 5% Significance Level

Data Not Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL	95% UCLs (Adjusted for Skewness)
----------------	----------------------------------

95% Student's-t UCL 72.99 95% Adjusted-CLT UCL (Chen-1995) 73.7 95% Modified-t UCL (Johnson-1978) 73.14

Gamma GOF Test

A-D Test Statistic	0.198	Anderson-Darling Gamma GOF Test
5% A-D Critical Value	0.768	Detected data appear Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.072	Kolmogrov-Smirnoff Gamma GOF Test
5% K-S Critical Value	0.132	Detected data appear Gamma Distributed at 5% Significance Level
Detected data appear Gamma Distributed at 5% Significance Level		

...

•	Gamma Statistics		
k hat (MLE)	1.468	k star (bias corrected MLE)	1.389
Theta hat (MLE)	41.9	Theta star (bias corrected MLE)	44.3
nu hat (MLE)	138	nu star (bias corrected)	130.5
MLE Mean (bias corrected)	61.52	MLE Sd (bias corrected)	52.21
		Approximate Chi Square Value (0.05)	105.1
Adjusted Level of Significance	0.0449	Adjusted Chi Square Value	104.4

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50) 76.38 95% Adjusted Gamma UCL (use when n<50) 76.9

Lognormal GOF Test

Snapiro Wilk Lognormal GOF Test	0.933	Shapiro Wilk Test Statistic
Data Not Lognormal at 5% Significance Level	0.946	5% Shapiro Wilk Critical Value
Lilliefors Lognormal GOF Test	0.0941	Lilliefors Test Statistic
Data appear Lognormal at 5% Significance Level	0.129	5% Lilliefors Critical Value

Data appear Approximate Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	0.956	Mean of logged Data	3.742
Maximum of Logged Data	5.22	SD of logged Data	1.009

Assuming Lognormal Distribution

95% H-UCL	99.4	90% Chebyshev (MVUE) UCL	104.9
95% Chebyshev (MVUE) UCL	121.2	97.5% Chebyshev (MVUE) UCL	143.7
99% Chebyshev (MVUE) UCL	188		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

JCL 72.99	95% Jackknife UCL	72.76	95% CLT UCL
JCL 73.61	95% Bootstrap-t UCL	72.54	95% Standard Bootstrap UCL
JCL 73.26	95% Percentile Bootstrap UCL	73.04	95% Hall's Bootstrap UCL
		73.08	95% BCA Bootstrap UCL
JCL 91.31	95% Chebyshev(Mean, Sd) UCL	82.02	90% Chebyshev(Mean, Sd) UCL
JCL 129.5	99% Chebyshev(Mean, Sd) UCL	104.2	97.5% Chebyshev(Mean, Sd) UCL

Suggested UCL to Use

95% Adjusted Gamma UCL 76.9

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and Iaci (2002) and Singh and Singh (2003). However, simulations results will not cover all Real World data sets.

For additional insight the user may want to consult a statistician.

Surface soil Lead Results

Remedial Investigation for Cross Alameda Trail City of Alameda, California

Well/Sample ID	Lead Concentration mg/kg
CAT-B-11-0.5	116
CAT-B-12-0.5	18.6
CAT-B-13-0.5	103
CAT-B-14-0.5	22.3
CAT-B-19-0.5	144
CAT-B-20-0.5	133
CAT-B-21-0.5	24.5
CAT-B-22-0.5	84.9
CAT-B-23-0.5	65.1
CAT-B-24-0.5	52
CAT-B-25-0.5	86.9
CAT-B-26-0.5	76.1
CAT-B-27-0.5	3,170
CAT-B-28-0.5	266
CAT-B-29-0.5	12.5
CAT-B-30-0.5	111

Highlighted samples removed as hotspots

Page 4 of 6 All Surface soil

All Lead Results with Outliers Removed

Remedial Investigation for Cross Alameda Trail City of Alameda, California

Well/Sample ID	Lead Concentration mg/kg
CAT-B-11-0.5	116
CAT-B-12-0.5	18.6
CAT-B-13-0.5	103
CAT-B-14-0.5	22.3
CAT-B-21-0.5	24.5
CAT-B-22-0.5	84.9
CAT-B-23-0.5	65.1
CAT-B-24-0.5	52
CAT-B-25-0.5	86.9
CAT-B-26-0.5	76.1
CAT-B-29-0.5	12.5

UCL Statistics for Uncensored Full Data Sets

User Selected Options

ate/Time of Computation 10/21/2015 11:54:10 AM

From File WorkSheet.xls
Full Precision OFF
Confidence Coefficient 95%
of Bootstrap Operations 2000

Lead

General Statistics

Total Number of Observations 11 **Number of Distinct Observations** 11 Number of Missing Observations 0 Minimum 12.5 Mean 60.17 Maximum 116 Median 65.1 SD 36.51 Std. Error of Mean 11.01 Coefficient of Variation 0.60 0.0263 Skewness

Normal GOF Test

Shapiro Wilk Test Statistic 0.92′ Shapiro Wilk GOF Test

5% Shapiro Wilk Critical Value 0.85 Data appear Normal at 5% Significance Level

Lilliefors Test Statistic 0.19′ Lilliefors GOF Test

5% Lilliefors Critical Value 0.26′ Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

 95% Normal UCL
 95% UCLs (Adjusted for Skewness)

 95% Student's-t UCL
 80.12

 95% Adjusted-CLT UCL (Chen-1995)
 78.37

 95% Modified-t UCL (Johnson-1978)
 80.14

Gamma GOF Test

A-D Test Statistic 0.53 Anderson-Darling Gamma GOF Test

5% A-D Critical Value 0.73: Detected data appear Gamma Distributed at 5% Significance Level

K-S Test Statistic 0.19: Kolmogrov-Smirnoff Gamma GOF Test

5% K-S Critical Value 0.25: Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE) 2.298 k star (bias corrected MLE) 1.732 Theta hat (MLE) 26.18 Theta star (bias corrected MLE) 34.74 nu hat (MLE) 50.56 nu star (bias corrected) 38.11 MLE Mean (bias corrected) 60.17 MLE Sd (bias corrected) 45.72 Approximate Chi Square Value (0.05) 24.97 Adjusted Level of Significance 0.027 Adjusted Chi Square Value 23.25

Assuming Gamma Distribution

proximate Gamma UCL (use when n>=50)) 91.835% Adjusted Gamma UCL (use when n<50) 98.63

Lognormal GOF Test

Shapiro Wilk Test Statistic 0.88 Shapiro Wilk Lognormal GOF Test

5% Shapiro Wilk Critical Value 0.85 Data appear Lognormal at 5% Significance Level

Lilliefors Test Statistic 0.20 Lilliefors Lognormal GOF Test

5% Lilliefors Critical Value 0.26 Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data 2.524 Mean of logged Data 3.864

Maximum of Logged Data 4.754 SD of logged Data 0.781

Assuming Lognormal Distribution

 95% H-UCL
 122.9
 90% Chebyshev (MVUE) UCL
 108.6

 95% Chebyshev (MVUE) UCL
 129.5
 97.5% Chebyshev (MVUE) UCL
 158.4

 99% Chebyshev (MVUE) UCL
 215.3

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

 95% CLT UCL
 78.28
 95% Jackknife UCL
 80.12

 95% Standard Bootstrap UCL
 77.65
 95% Bootstrap-t UCL
 80.19

 95% Hall's Bootstrap UCL
 76.82
 95% Percentile Bootstrap UCL
 77.41

 95% BCA Bootstrap UCL
 77.21

 90% Chebyshev(Mean, Sd) UCL
 93.2
 95% Chebyshev(Mean, Sd) UCL
 108.2

 97.5% Chebyshev(Mean, Sd) UCL
 128.9
 99% Chebyshev(Mean, Sd) UCL
 169.7

Suggested UCL to Use

95% Student's-t UCL 80.12

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and laci (2002) and Singh and Singh (2003). However, simulations results will not cover all Real World data sets.

For additional insight the user may want to consult a statistician.

Page 6 of 6 SS Pb-hotspots&-20

All Arsenic Results

Remedial Investigation for Cross Alameda Trail City of Alameda, California

	Arsenic
Well/Sample ID	(mg/kg)
CAT-B-10-2	6.2
CAT-B-10-5	1.4
CAT-B-11-0.5	24.8
CAT-B-11-4	14.2
CAT-B-1-2	15.4
CAT-B-12-0.5	5.6
CAT-B-12-4	9.4
CAT-B-13-0.5	16.3
CAT-B-13-4	17.1
CAT-B-1-4	27.2
CAT-B-14-0.5	35.8
CAT-B-14-4	10.5
CAT-B-15-0.5	13.5
CAT-B-15-2	7.2
CAT-B-16-0.5	27.2
CAT-B-16-2	14.7
CAT-B-17-0.5	26.6
CAT-B-17-2	10
CAT-B-18-0.5	9.2
CAT-B-18-2	7.5
CAT-B-2-2	29.7
CAT-B-23-0.5	1.4
CAT-B-23-2	0.71
CAT-B-24-0.5	7.8
CAT-B-24-2	0.72
CAT-B-2-5	12.3
CAT-B-25-0.5	10.6
CAT-B-25-2	4.7
CAT-B-26-0.5	7.2
CAT-B-26-2	8
CAT-B-3-1	8.0
CAT-B-3-4	7.2
CAT-B-4-2	6.8
CAT-B-4-5	6.3
CAT-B-5-1	6.2
CAT-B-5-5	1.7
CAT-B-6-1	5.3
CAT-B-6-4	3.9
CAT-B-7-1	4.3
CAT-B-7-4	5.1
CAT-B-8-2	6.5
CAT-B-8-8	2.7
CAT-B-9-1	7.8
CAT-B-9-6	4.9
3 200	1.0

Highlighted samples removed as hotspots

Page 1 of 7 All As

All Arsenic Results Minus Hotspots Remedial Investigation for Cross Alameda Trail City of Alameda, California

Well/Sample ID	Arsenic (mg/kg)
CAT-B-10-2	6.2
CAT-B-10-5	1.4
CAT-B-12-0.5	5.6
CAT-B-12-4	9.4
CAT-B-15-0.5	13.5
CAT-B-15-2	7.2
CAT-B-18-0.5	9.2
CAT-B-18-2	7.5
CAT-B-23-0.5	1.4
CAT-B-23-2	0.71
CAT-B-24-0.5	7.8
CAT-B-24-2	0.72
CAT-B-25-0.5	10.6
CAT-B-25-2	4.7
CAT-B-26-0.5	7.2
CAT-B-26-2	8
CAT-B-3-1	8.0
CAT-B-3-4	7.2
CAT-B-4-2	6.8
CAT-B-4-5	6.3
CAT-B-5-1	6.2
CAT-B-5-5	1.7
CAT-B-6-1	5.3
CAT-B-6-4	3.9
CAT-B-7-1	4.3
CAT-B-7-4	5.1
CAT-B-8-2	6.5
CAT-B-8-8	2.7
CAT-B-9-1	7.8
CAT-B-9-6	4.9

UCL Statistics for Uncensored Full Data Sets

User Selected Options

Date/Time of Computation 10/22/2015 4:34:56 PM

From File WorkSheet.xls

Full Precision OFF

Confidence Coefficient 95% mber of Bootstrap Operations 2000

Arsenic

General Statistics

Total Number of Observations	30	Number of Distinct Observations	24
		Number of Missing Observations	0
Minimum	0.71	Mean	5.928
Maximum	13.5	Median	6.25
SD	2.996	Std. Error of Mean	0.547
Coefficient of Variation	0.506	Skewness	0.0831

Normal GOF Test

Shapiro Wilk Test Statistic	0.962	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.927	Data appear Normal at 5% Significance Level
Lilliefors Test Statistic	0.111	Lilliefors GOF Test
5% Lilliefors Critical Value	0.162	Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL		95% UCLs (Adjusted for Skewnes	s)
95% Student's-t UCL	6.857	95% Adjusted-CLT UCL (Chen-1995)	6.836
		95% Modified-t UCL (Johnson-1978)	6.859

Gamma GOF Test

Anderson-Darling Gamma GOF Test	1.372	A-D Test Statistic
Data Not Gamma Distributed at 5% Significance Level	0.754	5% A-D Critical Value
Kolmogrov-Smirnoff Gamma GOF Test	0.177	K-S Test Statistic
Data Not Gamma Distributed at 5% Significance Level	0.161	5% K-S Critical Value

Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE)	2.663	k star (bias corrected MLE)	2.419
Theta hat (MLE)	2.226	Theta star (bias corrected MLE)	2.451
nu hat (MLE)	159.8	nu star (bias corrected)	145.1
MLE Mean (bias corrected)	5.928	MLE Sd (bias corrected)	3.811
		Approximate Chi Square Value (0.05)	118.3
Adjusted Level of Significance	0.041	Adjusted Chi Square Value	116.9

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 7.273 95% Adjusted Gamma UCL (use when n<50) 7.36

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.827	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.927	Data Not Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.216	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.162	Data Not Lognormal at 5% Significance Level

Data Not Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	-0.342	Mean of logged Data	1.58
Maximum of Logged Data	2.603	SD of logged Data	0.753

Assuming Lognormal Distribution

95% H-UCL	8.763	90% Chebyshev (MVUE) UCL	9.249
95% Chebyshev (MVUE) UCL	10.55	97.5% Chebyshev (MVUE) UCL	12.36
99% Chebyshev (MVUE) UCL	15.91		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

e UCL 6.857	95% Jackknife UCL	6.828	95% CLT UCL
-t UCL 6.88	95% Bootstrap-t UCL	6.809	95% Standard Bootstrap UCL
p UCL 6.777	95% Percentile Bootstrap UCL	6.919	95% Hall's Bootstrap UCL
		6.794	95% BCA Bootstrap UCL
I) UCL 8.312	95% Chebyshev(Mean, Sd) UCL	7.569	90% Chebyshev(Mean, Sd) UCL
I) UCL 11.37	99% Chebyshev(Mean, Sd) UCL	9.344	97.5% Chebyshev(Mean, Sd) UCL

Suggested UCL to Use

95% Student's-t UCL 6.857

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and laci (2002) and Singh and Singh (2003). However, simulations results will not cover all Real World data sets.

For additional insight the user may want to consult a statistician.

Surface Soil Arsenic Results

Remedial Investigation for Cross Alameda Trail City of Alameda, California

Well/Sample ID	Arsenic (mg/kg)
CAT-B-11-0.5	24.8
CAT-B-12-0.5	5.6
CAT-B-13-0.5	16.3
CAT-B-14-0.5	35.8
CAT-B-15-0.5	13.5
CAT-B-16-0.5	27.2
CAT-B-17-0.5	26.6
CAT-B-18-0.5	9.2
CAT-B-23-0.5	1.4
CAT-B-24-0.5	7.8
CAT-B-25-0.5	10.6
CAT-B-26-0.5	7.2

Highlighted samples removed as hotspots

Page 5 of 7 SS As

Surface Soil Arsenic Results Minus Hotspots

Remedial Investigation for Cross Alameda Trail City of Alameda, California

Well/Sample ID	Arsenic (mg/kg)
CAT-B-12-0.5	5.6
CAT-B-15-0.5	13.5
CAT-B-18-0.5	9.2
CAT-B-23-0.5	1.4
CAT-B-24-0.5	7.8
CAT-B-25-0.5	10.6
CAT-B-26-0.5	7.2

UCL Statistics for Uncensored Full Data Sets

User Selected Options

Date/Time of Computation 10/21/2015 12:35:32 PM rom File WorkSheet_a.xls

Full Precision OFF
Confidence Coefficient 95%
Imber of Bootstrap Operations 2000

Arsenic

Conorol	Ctatiation

Total Number of Observations	7	Number of Distinct Observations	7
		Number of Missing Observations	0
Minimum	1.4	Mean	7.9
Maximum	13.5	Median	7.8
SD	3.838	Std. Error of Mean	1.451
Coefficient of Variation	0.486	Skewness	-0.37

Note: Sample size is small (e.g., <10), if data are collected using ISM approach, you should use guidance provided in ITRC Tech Reg Guide on ISM (ITRC, 2012) to compute statistics of interest. For example, you may want to use Chebyshev UCL to estimate EPC (ITRC, 2012). Chebyshev UCL can be computed using the Nonparametric and All UCL Options of ProUCL 5.0

Normal GOF Test

Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Lilliefors Test Statistic 5% Lilliefors Critical Value 5% Lilliefors Critical Value 0.335 Shapiro Wilk GOF Test Shapiro Wilk GOF Test Data appear Normal at 5% Significance Level Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

Assuming Normal Distribution 95% Normal UCL 95% UCL

 Normal UCL
 95% UCLs (Adjusted for Skewness)

 95% Student's-t UCL
 10.72
 95% Adjusted-CLT UCL (Chen-1995)
 10.07

 95% Modified-t UCL (Johnson-1978)
 10.68

Gamma GOF Test

A-D Test Statistic 0.445 Anderson-Darling Gamma GOF Test
5% A-D Critical Value 0.712 Detected data appear Gamma Distributed at 5% Significance Level
K-S Test Statistic 0.227 Kolmogrov-Smirnoff Gamma GOF Test
5% K-S Critical Value 0.314 Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE)	3.079	k star (bias corrected MLE)	1.854
Theta hat (MLE)	2.566	Theta star (bias corrected MLE)	4.26
nu hat (MLE)	43.1	nu star (bias corrected)	25.96
MLE Mean (bias corrected)	7.9	MLE Sd (bias corrected)	5.801
		Approximate Chi Square Value (0.05)	15.35
Adjusted Level of Significance	0.0158	Adjusted Chi Square Value	12.95

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 13.36 95% Adjusted Gamma UCL (use when n<50) 15.83

Lognormal GOF Test

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data 0.336 Mean of logged Data 1.896
Maximum of Logged Data 2.603 SD of logged Data 0.743

Assuming Lognormal Distribution

95% H-UCL 21.87 90% Chebyshev (MVUE) UCL 15.49 95% Chebyshev (MVUE) UCL 18.71 97.5% Chebyshev (MVUE) UCL 23.18 99% Chebyshev (MVUE) UCL 31.96

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Leve

Nonparametric Distribution Free UCLs

95% CLT UCL	10.29	95% Jackknife UCL	10.72
95% Standard Bootstrap UCL	10.06	95% Bootstrap-t UCL	10.61
95% Hall's Bootstrap UCL	10.41	95% Percentile Bootstrap UCL	10.13
95% BCA Bootstrap UCL	9.943		
90% Chebyshev(Mean, Sd) UCL	12.25	95% Chebyshev(Mean, Sd) UCL	14.22
97.5% Chebyshev(Mean, Sd) UCL	16.96	99% Chebyshev(Mean, Sd) UCL	22.33

Suggested UCL to Use

95% Student's-t UCL 10.72

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and laci (2002) and Singh and Singh (2003). However, simulations results will not cover all Real World data sets.

For additional insight the user may want to consult a statistician.

Note: For highly negatively-skewed data, confidence limits (e.g., Chen, Johnson, Lognormal, and Gamma) may not be reliable. Chen's and Johnson's methods provide adjustments for positively skewed data sets.