RECEIVED

By Alameda County Environmental Health 4:37 pm, Oct 09, 20

Reza Sheikhai 1208 Lincoln Avenue Alameda, California 94501

Ms. Karel Detterman Alameda County Environmental Health 1131 Harbor Bay Parkway Alameda, CA 94502

Re: Elegant Cleaners

1208 Lincoln Avenue Alameda, California 94501 ACEH LOP No. RO0003163

Dear Ms. Detterman:

I, Mr. Reza Sheikhai, have retained Pangea Environmental Services, Inc. (Pangea) as the environmental consultant for the project referenced above. Pangea is submitting the attached report on my behalf.

I have read and acknowledge the content, recommendations and/or conclusions contained in the attached document or report submitted on my behalf to ACDEH's FTP server and the State Water Resources Control Board's Geo Tracker website.

Sincerely,

Reza Sheikhai

October 9, 2017

Ms. Karel Detterman Alameda County Environmental Health 1131 Harbor Bay Parkway Alameda, CA 94502

Re: Data Gap Investigation Report

Elegant Cleaners 1208 Lincoln Avenue Alameda, California ACDEH Case No. RO0003163

Dear Ms. Detterman:

On behalf of Mr. Reza Sheikhai, Pangea Environmental Services, Inc. (Pangea), has prepared this *Data Gap Investigation Report* (Report) for the subject site. This Report describes implementation of the approved *Data Gap Investigation Work Plan and Site Conceptual Model* (Workplan) dated April 5, 2016. The Workplan was approved by Alameda County Department of Environmental Health (ACDEH) in a letter dated April 13, 2016. The Report describes an underground utility survey, site assessment of subslab gas, soil gas and grab groundwater, and a soil vapor extraction (SVE) pilot study. As requested in the ACDEH letter, the Report also describes assessment of the current hydrocarbon-based cleaning fluid (DF2000) and a Conceptual Site Model (CSM).

If you have any questions or comments, please call me at (510) 435-8664 or email briddell@pangeaenv.com.

Sincerely,

Pangea Environmental Services, Inc.

Bob Clark-Riddell, P.E. Principal Engineer

Attachment: Data Gap Investigation Report

cc: Reza Sheikhai (electronic)

SWCRB Geotracker (electronic copy)

DATA GAP INVESTIGATION REPORT

Elegant Cleaners 1208 Lincoln Avenue Alameda, California

October 9, 2017

Prepared for:

Mr. Reza Sheikhai 1208 Lincoln Avenue Alameda, California

Prepared by:

Pangea Environmental Services, Inc. 1710 Franklin Street, Suite 200 Oakland, California 94612

Written by:

Morgan Gillies

Morgan Gillies
Project Manager

Bob Clark-Riddell, P.E. Principal Engineer

PANGEA Environmental Services, Inc.

DATA GAP INVESTIGATION REPORT

Elegant Cleaners 1208 Lincoln Avenue Alameda, California ACDEH Site No. 990026

TABLE OF CONTENTS

1.0	INTRODUCTION	1
2.0	SITE BACKGROUND	1
2	1 SITE LOCATION AND DESCRIPTION	1
2.3		
2.3		
3.0	SITE INVESTIGATION ACTIVITIES	3
3.	1 Pre-Drilling Activities	3
3.2		
3.3	3 Drilling Procedures	5
3.4	4 SUBSLAB GAS PROBE, SOIL GAS WELL AND SOIL VAPOR EXTRACTION WELL INSTALLATION	5
3.5	5 SUBSLAB/SOIL GAS WELL SAMPLING	6
3.0	SOIL AND GROUNDWATER BORINGS	7
4.0	SITE INVESTIGATION RESULTS	7
4.	1 Geology and Hydrogeology	7
4.2		
4.3	GROUNDWATER ANALYTICAL RESULTS	8
4.4	4 SUBSLAB/SOIL GAS ANALYTICAL RESULTS	9
5.0	CONCEPTUAL SITE MODEL	12
5.	1 CONTAMINANT SOURCE/RELEASE INFORMATION	13
5.2	2 CHEMICALS OF CONCERN (COC)	13
5.3		
5.4		
5.:		
5.0	6 POTENTIAL EXPOSURE PATHWAYS	15
6.0	CONCLUSIONS	16
7.0	RECOMMENDATIONS	17
8.0	REFERENCES	18

ATTACHMENTS

FIGURE 1 – SITE VICINITY

FIGURE 2 – SUBSURFACE UTILITY MAP

FIGURE 3 – PCE IN SOIL

FIGURE 4 – PCE IN GROUNDWATER, MARCH 2017

FIGURE 5 – PCE IN SUBSLAB/SOIL GAS, MARCH 2017

FIGURE 6 – SVE PILOT STUDY SYSTEM LAYOUT

FIGURE 7 – VACUUM INFLUENCE FOR SVE PILOT STUDY

FIGURE 8 – CONCEPTUAL SITE MODEL CHART AND EXPOSURE PATHWAY ANALYSIS

TABLE 1 – SOIL ANALYTICAL DATA

TABLE 2 – GROUNDWATER ANALYTICAL DATA

TABLE 3 – SUBSLAB/SOIL GAS ANALYTICAL DATA

APPENDIX A – REGULATORY CORRESPONDENCE

APPENDIX B – PERMITS

APPENDIX C – UTILITY MAPS

APPENDIX D – STANDARD OPERATING PROCEDURES

APPENDIX E – BORING LOGS

APPENDIX F – SUBSLAB/SOIL GAS SAMPLING FIELD DATA SHEETS

APPENDIX G – LABORATORY ANALYTICAL REPORTS

1.0 INTRODUCTION

On behalf of Mr. Reza Sheikhai, Pangea Environmental Services, Inc. (Pangea), has prepared this *Data Gap Investigation Report* (Report) for the subject site. This Report describes implementation of the approved *Data Gap Investigation Work Plan and Site Conceptual Model* (Workplan) dated April 5, 2016. The Workplan was approved by Alameda County Department of Environmental Health (ACDEH) in a letter dated April 13, 2016. The Report describes an underground utility survey, site assessment of subslab gas, soil gas and grab groundwater, and a soil vapor extraction (SVE) pilot study. As requested in the ACDEH letter, the Report also describes assessment of the current hydrocarbon-based cleaning fluid (DF2000) and a Conceptual Site Model (CSM). Regulatory correspondence is included in Appendix A.

2.0 SITE BACKGROUND

2.1 Site Location and Description

The subject property is located at 1208 Lincoln Avenue, Alameda, in the partly commercial and residential area of the city of Alameda, California (Figure 1). The property is a 5,500 square foot (ft²) irregularly shaped parcel that is developed with two-story 2,500 ft² commercial building currently occupied by a dry cleaning business (Figure 2). The northern portion of the building's first floor features a main entrance door leading into a reception area. The southern portion features a large dry cleaning machine, storage, and various pressers and dryers. The northern 40% of the building has raised wooden flooring. A boiler room extends from the southeastern corner onto the adjacent property. The second floor is used as storage. There is an unpaved parking area at the southern end of the property. The property is accessible from the north along Lincoln Avenue and southwest along an unpaved alley from Bay Street.

The property was developed with the current site building in the late 1800s or early 1900s. The building was originally developed as a meat market and was occupied by a store until the mid-1900s. In the 1970s it was occupied by a general store, and in 1980 it was occupied by a pet store. The current occupant, Elegant Cleaners, began occupying the building in 1986. The dry cleaners upgraded to a hydrocarbon-based (DF 2000) dry cleaning machine in 2005, which replaced the previous machine that used tetrachloroethene (PCE).

2.2 Summary of Previous Environmental Investigation and Remediation

Volatile organic compound (VOC) data for soil, groundwater, and subslab/soil gas are summarized on Tables 1, 2 and 3, respectively. In 2006, a Phase II Subsurface Investigation report was prepared by ERAS Environmental Inc (ERAS). ERAS advanced three hand auger borings (B-1 through B-3) to about 5 feet depth in the southern portion of the building around the location of the dry cleaning machine. Soil samples collected

from the borings were analyzed for TPH-diesel, TPH-kerosene, and HVOC (including PCE). The test results indicated non-detectable concentrations for all contaminants tested, including PCE.

In August 2014, Encon Solutions, Inc. (Encon) advanced six borings to assess soil gas conditions. Soil gas samples were collected at depths of 5 to 12 feet below grade surface (ft bgs). The results indicated the presence of PCE at a maximum concentration of 22,480 micrograms per cubic meter (μ g/m³) in the unpaved gravel parking lot south of the building (SV-5-5.0 feet), and 13,540 μ g/m³ PCE inside the building (SV-4-5.0 feet). Soil sampling was not performed. The PCE concentrations in soil gas exceeded the California Human Health Screening Level (CHHSL) for PCE for commercial land use as well as Environmental Screening Level (ESL) established by the San Francisco Bay Regional Water Quality Control Board. Groundwater was not encountered at a maximum refusal depth of 12 ft bgs.

In October 2014, Encon conducted indoor air sampling at two indoor and two outdoor ambient locations (approximately 9-hour sample collection). Indoor air samples IA-1 and IA-2 were located on the southwest stairs near the existing hydrocarbon/former solvent based dry cleaning machines and in the northern portion of the tenant space near the public counter, respectively. Ambient air samples BG-1 and BG-2 were located at the extreme southeast portion of the gravel parking lot and at the southern entrance to the tenant space near the HVAC system intake, respectively. All VOC concentrations in indoor air were below commercial ESLs, except for benzene and carbon tetrachloride (which were similar to the ambient air concentrations). The only VOC present in indoor air significantly higher than ambient air concentrations was PCE $(1.0 \,\mu\text{g/m}^3)$ detected on the southwest stairs near the dry cleaning machine. This PCE concentration of $1.0 \,\mu\text{g/m}^3$ is below the commercial ESL of $2.1 \,\mu\text{g/m}^3$.

In November 2014, five soil vapor probes (VW-1 through VW-5), one subslab gas probe (SS-1), and three monitoring wells (MW-1 through MW-3) were installed by Environmental Control Associates, Inc. (ECA) of Santa Cruz, California. This work was described in the *Phase III Environmental Site Assessment Report* dated January 14, 2015 by Encon. The maximum PCE concentration detected in soil gas was 13,000 μ g/m³ in soil gas probe VW-2. A PCE concentration of 7,000 μ g/m³ was found in subslab probe SS-1. The maximum PCE concentration detected in groundwater was 29 μ g/L (MW-1).

On March 4, 2016, Pangea met with ACDEH regarding current site conditions and future site assessment. As required during the meeting, Pangea prepared a *Data Gap Investigation Workplan and Site Conceptual Model* (Workplan) dated April 5, 2016. The Workplan was conditionally approved by ACDEH in a letter dated April 13, 2016.

In April 2016, Pangea performed groundwater monitoring of the three existing groundwater monitoring wells. Groundwater monitoring procedures and results are described in the *Groundwater Monitoring Report – First Half 2016* dated July 12, 2016.

2.3 Site Geology and Hydrogeology

Based on prior site investigation, site soil predominantly consists of fill material overlying alluvial deposits. Soil beneath the fill material has been classified primarily as silts and silty sands. The maximum explored depth is 20 ft bgs.

Groundwater has been first encountered at depths of approximately 10 to 15 ft bgs. Based on limited site groundwater monitoring data (November 25, 2014 and April 20, 2016), the depth to static groundwater ranged from approximately 8 to 10 ft bgs in outdoor wells MW-2 and MW-3. For source area well MW-1 located inside the building with a lower top-of-casing elevation, the depth to groundwater has ranged from approximately 6.2 to 7.8 ft bgs. The static groundwater elevation has ranged from approximately 16.4 to 18.2 ft above mean sea level (NAVD 88 datum). The inferred groundwater flow direction has been towards the north-northwest and northern directions with a gradient of 0.003 to 0.008 ft/ft. Shallow groundwater near the site has been reported as being relatively flat. Buildings and paving inhibit infiltration of rainfall across most of the northern portion of the site, while unpaved areas south of the site allow rain infiltration.

3.0 SITE INVESTIGATION ACTIVITIES

Pangea's site investigation included a subsurface utility survey, installation and sampling of subslab/soil gas probes, installation of soil vapor extraction wells, and offsite borings to evaluate the lateral extent of site contaminants in soil and groundwater. The assessment evaluated media for potential impact by former cleaning solvent PCE and current hydrocarbon-based cleaning solution DF2000.

3.1 Pre-Drilling Activities

A comprehensive site Safety Plan was prepared to protect site workers and the plan was kept onsite during all field activities. Boring and soil vapor well installation permits were obtained from Alameda County Public Works Agency (ACPWA). An encroachment permit was obtained from the City of Alameda. Additionally, access agreements were obtained from the two neighboring property owners at 1206 and 1210 Lincoln Avenue. Copies of the permits are presented in Appendix B. The proposed drilling locations were marked and Underground Service Alert was notified at least 72 hours before the proposed field activities.

3.2 Utility Survey

Pangea coordinated underground line locating to determine the locations of underground utilities and possible penetrations through the floor slabs. Pangea met with the property owners of 1206, 1208 and 1210 Lincoln Avenue to gain access to the site and adjacent buildings, and to obtain owner information about subsurface

utilities on those properties. Pangea also requested sanitary sewer and storm drain maps of the area from the City of Alameda (Appendix C).

On October 5 and 11, 2016, underground utility locating was performed by Geotech Utility Locating of Moraga, California. The location of underground utilities identified by the survey are shown on Figure 2. The only identified slab penetrations at 1206, 1208 and 1210 Lincoln Avenue are the sanitary sewer connections to the sewer sump at 1210 Lincoln, and the sinks and toilets in each building. At 1208 Lincoln Avenue, drainage from laundry equipment is through pipes above the slab to the sewer sump in the southeast corner of the building. No additional floor drains were observed in any of the surveyed buildings.

At the subject site (1208 Lincoln Avenue), the survey identified the sanitary sewer lateral and natural gas supply piping exiting the rear of the building in the southeastern corner. The sanitary sewer commences at the restroom in the southeastern corner of the building and exits the building at a depth of approximately 5'3" depth. The sewer lateral then turns westward beneath the alley continuing to the main sanitary sewer line beneath Bay Street. The natural gas pipeline follows a similar route to the sanitary sewer lateral at a shallower depth of approximately 2'9". The water supply line at 1208 Lincoln Avenue enters the front of the building at a depth of approximately 18" and proceeds approximately 55 feet into the building before turning to the east.

At 1206 Lincoln Avenue, the survey identified the sanitary sewer lateral commencing at the sinks located in the northwest portion of the building, connecting to the toilets along the eastern wall and continuing eastward beneath 1208 Lincoln Avenue (subject site). The sewer lateral then turns northward beneath 1208 Lincoln Avenue and connects to the sanitary sewer main beneath Lincoln Avenue. The only other subsurface utilities identified at 1206 Lincoln were the approximately 18" deep water supply and natural gas lines extending from the front of the building to their respective mains beneath Lincoln Avenue.

At the 1210 Lincoln Avenue, the survey identified the sanitary sewer lateral commencing at the restroom in the southeastern corner of the building and exits the building beneath the eastern wall. The sewer lateral then turns northward beneath the walkway east of the building and proceeds to the main sanitary sewer line beneath Lincoln Avenue. The sanitary sewer line is approximately 5 ft bgs beneath the sidewalk along Lincoln Avenue. The water supply pipeline follows a similar route to the sanitary sewer lateral at a shallower depth of approximately 18". The natural gas supply line at 1210 Lincoln Avenue enters the front of the building at a depth of approximately 18".

The sanitary sewer lateral and gas pipeline behind the subject site building do represent potential preferential pathways for vapor phase VOC migration. However, the relatively high permeability of native soil (silty sand) diminishes the potential for VOC migration along utility backfill material of relatively similar permeability.

The only identified conduit with the potential to intersect impacted groundwater is the sanitary sewer main beneath Lincoln Avenue. However, site data suggests that even during periods of extremely high groundwater conditions, groundwater does not intersect the sanitary sewer beneath Lincoln Avenue near the site. This suggests the sanitary sewer beneath Lincoln Avenue adjacent the subject site does not act as a preferential pathway for VOC migration in groundwater. Additional information is presented in the preferential pathway evaluation in the conceptual site model (CSM).

3.3 Drilling Procedures

All soil borings were installed in general accordance with the procedures described in Pangea's *Data Gap Investigation Work Plan and Site Conceptual Model* (Workplan) dated April 5, 2016. All borings were handaugered to 5 ft depth to help avoid subsurface utilities. Pangea retained Cascade Drilling (Cascade) of Richmond, California, to drill the borings. The drilling was observed in the field by Pangea staff engineer Erik Lervaag, and supervised by Bob Clark-Riddell, a California Registered Civil Professional Engineer (P.E.). Soil characteristics such as color, texture, and relative water contents were described in the field using the USCS classification system and entered onto a field boring log. Field screening of soil samples for potential hydrocarbons and volatile organic compounds included visual and olfactory observations and photo-ionization detector (PID) readings. Undisturbed soil samples were collected in preserved vials using TerracoreTM samplers and stored on ice for laboratory analysis.

3.4 Subslab Gas Probe, Soil Gas Well and Soil Vapor Extraction Well Installation

On March 6, 2017, Pangea coordinated installation of soil gas wells and soil vapor extraction wells at the site. Pangea coordinated subslab gas probe installation on March 9, 2017. Probe and well locations are shown on Figure 2.

Soil Gas Well Installation: Soil gas well SG-1 was installed near the middle of the subject site building just south of the raised floor portion of the building. Soil gas well SG-2 was installed in the alley southwest of the site between the source area and the nearest residential building. Each soil gas well location was hand augered to approximately 5 ft depth before constructing the soil gas well. Each soil gas well was constructed with a stainless steel GeoprobeTM implant connected to new ¼-inch diameter Teflon tubing and capped with a Swagelok[®] type fitting. The soil gas implant was placed in a 1.0 ft thick sand pack with 0.5 ft of dry granular bentonite above, followed by hydrated bentonite and a concrete seal within the well box. The well sampling intervals are approximately 4 to 5 ft bgs. Soil samples were collected form each boring at approximately 4 ft bgs. The soil gas well construction logs are included in Appendix E.

Subslab Gas Probe Installation: On March 9, 2017, Pangea installed subslab probes SS-2 through SS-4 using Cox-Colvin vapor pins. Subslab probes SS-2 and SS-3 were installed at 1210 Lincoln Avenue and probe SS-4

was installed at 1206 Lincoln Avenue to assess the lateral extent of soil gas contamination. Proposed subslab probe SS-5 was not installed at 1206 Lincoln Avenue because an unknown portion of the building has raised flooring and the owner didn't want to drill through his wooden flooring. Subslab gas probe installation procedures involved using a rotohammer to drill a 1½-inch diameter hole part way through the concrete slab of the building, drilling a 5/8-inch diameter hole through the remaining concrete, installing a Cox-Colvin vapor pin (capped with a plastic cap), and threading a stainless steel cover over the vapor pin for probe protection. Subslab/soil vapor sampling procedures and analytical results are presented below.

SVE Well Installation: Soil vapor extraction wells SVE-1 and SVE-2 were also installed on March 6, 2017. Well SVE-1 was installed near the former dry cleaning machine to target residual contamination in the source area. Well SVE-2 was installed near the highest PCE impacted soil gas sample location (SV-5) to target contamination in this area. Wells SVE-1 and SVE-2 were constructed using 2-inch diameter PVC casing with 0.020" slots and were screened slightly shallower than planned due to shallow groundwater. Well SVE-1 was screened from approximately 3 to 6 ft bgs; well SVE-2 was screened from approximately 4 to 7 ft bgs. The wells are protected from damage by flush-mounted traffic rated well boxes. The wells were installed in general accordance with Pangea's standard operating procedures in Appendix D. The SVE well construction logs are included in Appendix E.

3.5 Subslab/Soil Gas Well Sampling

The subslab sampling was conducted in general accordance with the guidelines outlined in October 2011 *Advisory: Active Soil Gas Investigations* by the CalEPA/Department of Toxic Substances Control (CalEPA, 2011). The subslab gas and soil gas sampling was conducted in general accordance with the July 2015 *Advisory: Active Soil Gas Investigation* (CalEPA, 2015). A figure showing Pangea's subslab/soil gas sampling apparatus is included in Appendix D and sampling procedures are described below. Pangea collected subslab and soil gas samples using 1-liter Tedlar bags. Pangea conducted purging using a vacuum pump to purge the probe/well assembly. Upon completion of purging of approximately three times the ambient volume of air in the assembly/probe/well, the Tedlar bag was opened for sample collection. A rotameter with an adjustable valve was used to regulate vapor flow to less than 150 milliliters of air per minute. A vacuum gauge was used to monitor the amount of vacuum applied to the probe side of the sampling apparatus during purging and sampling. After approximately 4 to 5 minutes, the Tedlar bag was full and the valve was closed.

To further evaluate potential leakage within the sampling system, a leak-check enclosure was placed over the subslab probe/soil vapor well, and isopropyl alcohol was introduced into the leak-check enclosure. A photo-ionization detector (PID) was used to monitor the concentration of isopropyl alcohol within the enclosure during sample collection. Subslab/soil gas sampling field data sheets are included in Appendix F. After sample collection, subslab probes and soil gas wells were capped and left for future sampling, as merited.

3.6 Soil and Groundwater Borings

On March 27, 2017, Pangea observed drilling of offsite soil borings B-4 through B-7 to help evaluate subsurface conditions downgradient of the site. The borings were located along the southern side of Lincoln Avenue northwest and north of the source area.

All borings were hand-augered to approximately 5 ft bgs to ensure that drilling activities did not damage unmarked or marked utilities. After hand augering, Cascade drilled the soil borings using dual-wall direct-push drilling methods to collect continuously cored soil samples. Each soil boring was advanced to approximately 12 ft depth. No soil samples were collected from these downgradient offsite borings. Grab groundwater samples were collected from each boring using a peristaltic pump equipped with new Teflon tubing. Grab groundwater samples were collected from each boring in accordance with Pangea's Standard Field Procedures for Soil Borings (Appendix D).

Soil from the borings consisted primarily of brown silty sand to the total explored depth of 12 ft bgs. First encountered groundwater was observed at approximately 6 to 7 ft in the borings for wells SVE-1 and SVE-2. Groundwater was measured in borings B-4 through B-7 at approximately 5 to 6 ft bgs after approximately 2 to 3 hours of equilibration.

4.0 SITE INVESTIGATION RESULTS

The following discussion of site geology/ hydrogeology and assessment results is based on prior and current site investigation. Soil, groundwater, and subslab/soil gas analytical data are summarized on Tables 1, 2 and 3, respectively. PCE concentrations in soil, groundwater and subslab/soil gas are shown on Figures 3, 4 and 5, respectively. Laboratory analytical reports from the current investigation are included in Appendix G.

To investigate potential hydrocarbon impact from cleaning solution DF2000 in site soil and groundwater, Pangea coordinated analysis of the four shallow soil samples from soil vapor extraction wells and the grab groundwater sample from boring B-5 for total petroleum hydrocarbons as gasoline and/or diesel by EPA Method 8015.

4.1 Geology and Hydrogeology

During the current assessment, shallow subsurface soils consisted of approximately six inches of sandy gravel fill overlying brown silty sand to the explored depth of 12 feet. This is consistent with prior site investigation, where site soil predominantly consists of fill material overlying alluvial deposits of silty sand and sand to the maximum explored depth of 20 ft bgs.

Groundwater was encountered as shallow as 6 ft bgs and equilibrated at approximately 5 ft bgs in select site borings. During previous assessment groundwater was encountered at approximately 10 to 15 ft bgs. The shallower groundwater encountered during this March 2017 investigation is likely due to significant rain this rainy season.

4.2 Soil Analytical Results

Four soil samples collected from 4 ft bgs were analyzed by the analytical laboratory for VOCs by EPA 8260 and total petroleum hydrocarbons as gasoline (TPHg) by EPA Method 8015. The soil samples were collected during installation of soil gas wells SG-1 and SG-2, and installation of soil vapor extraction wells SVE-1 and SVE-2. Soil sample results are shown on Figure 3 and Table 1. Laboratory analytical reports are presented in Appendix G.

PCE was only detected in one sample, at a concentration of 0.0088 milligrams per kilogram (mg/kg) at well SVE-2 located outside in the parking lot. This concentration is well below the conservative Tier 1 ESL of 0.42 mg/kg, the residential soil ESL of 0.6 mg/kg, and the commercial ESL of 2.7 mg/kg. The PCE concentration in soil coincides with the elevated soil gas PCE impact detected in offsite soil vapor well SV-5. No other VOCs were detected in the four analyzed samples or in prior soil sample analysis at the site. No TPHg concentrations were detected in the four analyzed soil samples.

4.3 Groundwater Analytical Results

Grab groundwater samples from downgradient borings B-4 through B-7 were analyzed for VOCs by EPA Method 8260. Additionally, the grab groundwater sample from boring B-5 was analyzed for TPHg and TPHd by EPA Method 8015. Groundwater sample results are summarized on Figure 4 and Table 2. Laboratory analytical reports are presented in Appendix G.

PCE: PCE was detected in all four grab groundwater samples, at a maximum concentration of 360 micrograms per liter (μ g/L) in boring B-5. Lower PCE concentrations (ranging from 3 to 59 μ g/L) were detected in the borings west and east of boring B-5, suggesting the primary PCE groundwater impact at the property boundary is located near boring B-5. This PCE grab data also suggests a groundwater flow direction in the northnorthwest direction toward boring B-5 from the PCE source area. Since grab groundwater data tends to be higher than well data, much lower PCE concentrations would likely be detected in groundwater if a well were installed offsite near boring B-5.

Figure 4 illustrates the distribution of PCE in groundwater with respect to the residential ESL (3 μ g/L) and the commercial ESL of (26 μ g/L) protective of vapor intrusion from groundwater. As shown on Figure 4, PCE concentrations in groundwater from site wells exceeded the commercial ESL for vapor intrusion in the rear

(southern) portion of the subject site, and exceeded the residential ESL for vapor intrusion beneath the commercial buildings/parking lot and the garage for 1544 Bay Street residential property.

As described in the preferential pathway evaluation of the CSM, site data suggests that even during periods of extremely high groundwater conditions, groundwater does not intersect the sanitary sewer beneath Lincoln Avenue near the site. This suggests the sanitary sewer conduit beneath Lincoln Avenue adjacent the subject site does not act as a preferential pathway for VOC migration in groundwater.

TCE: TCE was also detected in two grab groundwater samples (B-5 and B-6) at a maximum concentration of 2.8 μ g/L, below the Tier 1 ESL of 5 μ g/L. The presence of TCE in these borings and in well MW-1 is indicative of PCE degradation in the source area and downgradient.

Other VOCs: The only other VOCs detected were low concentrations of xylenes (1.3 μ g/L) in boring B-4 and para-isopropyl toluene (1.0 μ g/L) in boring B-6, both well below Tier 1 ESLs of 20 μ g/L and 40 μ g/L, respectively.

TPH: While TPHg was quantified and reported in boring B-5 at a concentration of 170 μ g/L, the analytical laboratory noted that the "sample exhibits unknown single peak or peaks." Comparing the chromatogram for the TPHg laboratory standard to the analyzed sample chromatogram suggests that this detection is not representative of petroleum hydrocarbons. Chromatograms are included in the analytical report in Appendix G. No TPHd was detected in boring B-5 above the laboratory reporting limit. The above information suggests no DF2000 hydrocarbon impact in groundwater in boring B-5, and that the single peak quantified as TPHg could be PCE.

4.4 Subslab/Soil Gas Analytical Results

Seven subslab/soil gas samples were analyzed from all existing soil gas wells (SG-1, SG-2, VW-3 and VW-4) and subslab gas probes (SS-2, SS-3 and SS-4). Soil gas results are summarized on Figure 5 and Table 3. Consistent with historic data, only PCE was detected in soil gas. Laboratory analytical reports are presented in Appendix G.

During the March 2017 sampling event, the maximum detected PCE concentration was 2,600 micrograms per cubic meter ($\mu g/m^3$) in soil gas well VW-3, located in the driveway behind the building. This PCE concentration is lower than the 10,000 $\mu g/m^3$ detected in well VW-3 in November 2014. The concentration variation may be due to seasonal variation, as the March 2017 sampling follows significant seasonal rain that likely raised the groundwater elevation.

9

As shown by current and historic analytical data on Figure 5, the primary PCE soil gas impact is near the dry cleaning equipment in the rear of the subject site. The subslab/soil gas PCE impact only exceeds the commercial ESL $(2,100 \,\mu\text{g/m}^3)$ in the rear portion of the site, and does not extend into the adjacent commercial properties above the commercial ESL. The soil gas PCE impact also exceeds the residential ESL $(240 \,\mu\text{g/m}^3)$ within a portion of the three surrounding residential properties: the backyard of 1545 Sherman Street, the garage of 1542 Bay Street, and the garage/residence of 1544 Bay Street. To facilitate remediation of this soil gas impact, Pangea proposed soil vapor extraction (SVE) testing within the Workplan dated April 5, 2016. As described below, the SVE pilot study is targeting VOC impact above residential and commercial ESLs.

5.0 SOIL VAPOR EXTRACTION PILOT STUDY

To evaluate the effectiveness of SVE to target residual PCE vapors in subslab gas and soil gas, Pangea initiated an SVE pilot study. Initial SVE testing was conducted in accordance with the *Data Gap Investigation Workplan*. The SVE test duration was extended to further evaluate SVE effectiveness to reduce source are VOC impact. The layout of the SVE pilot study system is shown on Figure 6.

5.1 SVE Pilot Study Preparation

To prepare for the SVE pilot study, Pangea performed the following:

- Installed a 5-horse power regenerative SVE blower with variable frequency drive, a knock-out tank (to remove entrained moisture/water from the extracted vapor), and two 200-pound carbon vapor treatment vessels;
- 2) Connected electrical service to the SVE blower motor; and
- 3) Plumbed aboveground PVC piping from the blower to well de(SVE-1 (located inside the building) and well SVE-2 (located outside the building).

The SVE blower and SVE piping installation was performed in August 2017. On August 14, Pangea notified the Bay Area Air Quality Management District (BAAQMD) that we were moving our various locations permitted blower to this site and beginning operations on August 25, 2017. On August 17, Pangea notified BAAQMD that we planned to conduct a 5-day SVE test at the site beginning on August 21, 2017. Photographs of the SVE pilot study system are included in Appendix B.

Following installation of the SVE blower and ancillary equipment/plumbing, an initial five-day SVE commenced on August 21, 2017. On August 25, 2017, continuous operation of the SVE pilot study equipment commenced under BAAQMD various locations plant number 23659.

5.2 SVE Pilot Study Performance Monitoring

Pangea regularly inspected and monitored the SVE pilot study system to evaluate and optimize overall SVE system performance. Pangea recorded the applied vacuum, vapor extraction flow rate, and extracted vapor concentrations. Vapor flow rate was measured using a hot-wire anemometer and extracted vapor concentrations were measured using a RAE Systems MiniRAE Lite PID calibrated to 100 ppmv isobutylene. A PID was used to monitor the influent, midpoint and effluent of the carbon treatment system. System influent vapor samples were collected in 1-liter TedlarTM bags and submitted for VOC analysis by EPA Method 8260 (8010 Basic Target List) to McCampbell Analytical Laboratories of Pittsburg, California.

Influent VOC concentrations in extraction wells SVE-1 and SVE-2 are shown on Table 3. Well SVE performance data is summarized below on Table A. For well SVE-1 during startup, an applied vacuum of 37 inches of water induced a vapor extraction flow rate of 37 cubic feet per minute (cfm). For well SVE-2, an applied vacuum of 34 inches of water induced a vapor extraction flow rate of 45 cfm. The applied vacuum was controlled at each well to minimize the potential for water upwelling.

On test start day August 21, 2017, the following elevated PCE concentrations were reported: 1,700 μ g/m³ in well SVE-1 and 6,000 μ g/m³ in well SVE-2. On day four of SVE testing (August 25, 2017), influent PCE concentrations reduced to <250 μ g/m³ in SVE-1 and 1,100 μ g/m³ in well SVE-2. On September 22, 2017 (after 32 days of testing), the influent PCE concentrations were <250 μ g/m³ from well SVE-1 and 270 μ g/m³ from well SVE-2. SVE pilot test data is summarized below on Table A.

Table A - SVE Test Performance Data

Extraction Location	Test Date	Duration 1 11		7 7 7 2	PCE Vapor Removal Rate (lbs/day)	Estimated Test PCE Removal (lbs)			
SVE-1	8/21/17	0.05	28	25	1,700	0.004			
	8/25/17	4.0	28	25	<250	< 0.0006	<0.023 lbs		
	9/22/17	32	27	26	<250	< 0.0006			
SVE-2	8/21/17	0.05	28	28	6,000	0.014			
	8/25/17	4.0	27	30	1,100	0.0025	0.079 lbs		
	9/22/17	32	26	32	270	0.00077			

Mass removal rates were calculated using vapor extraction flow rates measured using a hot wire anemometer and VOC concentrations from laboratory analysis of vapor samples collected during testing. During system startup on August 21, 2017, the estimated PCE removal rates were 0.004 lbs/day for well SVE-1 and 0.014 lbs/day for SVE-2. On August 25, 2017, the estimated PCE removal rates were <0.0006 lbs/day for well SVE-

1 and 0.0025 lbs/day for well SVE-2. On September 22, 2017, the estimated PCE removal rates were <0.0006 lbs/day for well SVE-1 and 0.00077 lbs/day for well SVE-2. As of September 22, 2017, Pangea estimates that the SVE system has removed a total of <0.135 lbs of PCE from the subsurface.

During SVE pilot testing, Pangea collected vacuum measurements from nearby monitoring points to evaluate the extent of vacuum influence in the subsurface. On August 21, 2017, during an applied vacuum of approximately 28" of water at the blower, a subsurface vacuum influence of 0.01" of water was measured up to 40 ft from the nearest extraction well. On October 6, 2017, during an applied vacuum of approximately 31" of water at the blower, a subsurface vacuum influence of 0.01" of water was measured up to 40 ft from the nearest extraction well. The measured vacuum influence on October 6, 2017, is shown on Figure 7.

As shown on Figure 7, the SVE pilot study system provides vacuum influence within the primary residential area of concern and the commercial area of concern. The above data also indicates that subsurface conditions are amenable to vapor extraction and that SVE effectively removed VOC impact.

6.0 CONCEPTUAL SITE MODEL

Site investigation has revealed the presence of VOCs, including tetrachloroethylene (PCE), in soil, soil gas and groundwater at the site. To evaluate potential risks to human health and the environment associated with the presence of VOCs at the site, Pangea developed a CSM and compared data with applicable environmental screening levels (ESLs). Through a comparison of site data to applicable criteria, the CSM was used to assess the adequacy of the site characterization and identify potential data gaps for making decisions regarding future corrective action. Based on the investigation described above and historic data, Pangea offers the following CSM and summary of subsurface conditions. Potential data gaps for site assessment are described below, which expands on the above data gap discussion requested by ACDEH.

The CSM developed for the site represents the assemblage of the existing site data and the general physical conditions that influence contaminant transport. The CSM presents the primary and secondary sources of VOCs and their release mechanisms. The CSM has been developed based on: known historical operations at the site; investigation results; properties of the chemicals present, e.g., suspected chemical release mechanisms; transport mechanisms; and potential exposure scenarios. As depicted in the CSM, the data indicate that the distribution of VOCs in soil, soil gas and groundwater is attributed to releases from historical operations at Elegant Cleaners.

6.1 Contaminant Source/Release Information

Dry cleaning operations at the site reportedly started in 1986. The dry cleaners upgraded to an hydrocarbon-based dry cleaning machine in 2005, which replaced the previous machine that used tetrachloroethene (PCE). Available soil gas and groundwater data suggest a primary PCE source area is near the current and/or former dry cleaning machines (based on data from MW-1, SV-2, SV-3, and SV-4), and a secondary PCE source area is outside the building and across the paved alley and driveway where the gravel parking lot is located (based on data from MW-2 and SV-5). Pangea understands storage of PCE-laden materials may have occurred at this outdoors location.

6.2 Chemicals of Concern (COC)

The primary chemical of concern (COC) at the site is tetrachloroethylene (PCE) and the secondary COC is trichloroethylene (TCE), a breakdown product of PCE. Other breakdown products of PCE such as cis-1,2-dichloroethene (cis-1,2-DCE), trans-1,2-dichloroethene (trans-1,2-DCE), and vinyl chloride may become future COCs, but have not been detected in sampled media to date. To date, only PCE has been detected in site soil and soil vapor, and only PCE and TCE were detected in groundwater. PCE concentrations in soil vapor and groundwater have exceeded RWQCB Environmental Screening Levels (ESLs). The only VOC detection in site was was 0.0088 mg/kg PCE from four (4) ft depth during installation of well MW-2 near the elevated soil gas impact detected in SVP-5.

The other potential chemical of concern is DF2000 dry cleaning solution (aliphatic hydrocarbons). Relatively low concentrations of total petroleum hydrocarbons have been detected in one site grab groundwater sample. No TPHg was detected in soil samples collected at four ft depth during installation of soil gas/soil vapor extraction wells SG-1, SG-2, SVE-1 and SVE-2.

6.3 VOC Distribution

Site investigation work has shown the presence of COCs in site soil, soil gas and groundwater. For each media Pangea compares analytical data to ESLs for *residential and commercial* land use established by the RWQCB. Boring and well locations are shown on Figure 2. Existing groundwater monitoring well MW-1 is screened from approximately 7 to 15 feet bgs, and wells MW-2 and MW-3 are screened from 10 to 20 feet bgs.

Soil: Soil samples were collected from borings B-1 through B-3 at approximately 3.25 ft bgs on October 3, 2006. Soil samples were also collected at 5 ft bgs, 10 ft bgs, and 15 ft bgs during installation of monitoring well MW-1 and 5 ft bgs and 10 ft bgs during installation of monitoring wells MW-2 and MW-3 on November 11, 2014. Soil samples were collected from 4 ft bgs from SG-1, SG-2, SVE-1 and SVE-2 on March 6, 2017.

All VOC concentrations in soil samples were below detection limits, except for 0.0088 mg/kg PCE in SVE-2 at four ft bgs.

Subslab Gas: Subslab gas probe SS-1 located immediately east of the current dry cleaning machine had a PCE concentration of $7,000 \,\mu\text{g/m}^3$ in November 2014. This concentration exceeds the commercial ESL for vapor intrusion: human health risk levels of $2,100 \,\mu\text{g/m}^3$. Offsite subslab probes SS-2 through SS-4 were sampled on March 9, 2017. No VOCs were detected in probes SS-2 or SS-3 and a concentration of $1,300 \,\mu\text{g/m}^3$ PCE was detected in SS-4, located near the rear of the building at $1206 \,\text{Lincoln}$ Avenue.

Soil Gas: Soil gas has been sampled at several locations via former sampling locations and existing soil vapor monitoring wells. The highest reported PCE impact in soil gas was 22,480 µg/m³ at SV-5, located in the unpaved parking lot behind the subject site building. The inferred extent of PCE with respect to the residential ESL (240 µg/m³) and the commercial ESLs (2,100 µg/m³) is shown on Figure 5. As shown on Figure 5, the PCE soil gas impact exceeding the commercial ESLs appears to be present beneath the rear portion of the subject site only. As also shown on Figures 5, the PCE soil gas impact exceeding the *residential* ESLs appears to be present beneath the adjacent garage/residence at 1544 Bay Street, the garage at 1542 Bay Street and the yard of 1545 Sherman Street.

Groundwater: Groundwater quality has been assessed by monitoring of wells MW-1 through MW-3 on November 25, 2014 and April 20, 2016, and by offsite grab groundwater sampling from borings B-4 thorugh B-7. The highest reported PCE impact in monitoring well groundwater was 43 ug/L at well MW-1 in April 2016. The only other PCE impact in monitoring wells exceeding the commercial ESL (26 ug/L) was 29 ug/L at well MW-1 in November 2014. Grab groundwater samples from borings B-4 (41 ug/L), B-5 (360 ug/L) and B-6 (59 ug/L) also exceed the commercial ESL. Since grab groundwater data tends to be higher than monitoring well data, much lower PCE concentrations would likely be detected in groundwater if a well were installed offsite near boring B-5. As shown on Figure 4, the PCE groundwater impact exceeding the Tier 1 groundwater ESL (3 ug/L) is present in the southern section of the site and the northwest portion of the unpaved parking lot.

Groundwater Plume Delineation and Stability: With only two groundwater monitoring events completed to date (November 25, 2014 and April 20, 2016), additional groundwater monitoring and grab groundwater sampling is merited to further evaluate plume delineation and stability. Given the cessation of PCE use in 2005 and the relatively limited PCE impact in groundwater, the groundwater plume may be fairly stable and limited in extent. The presence of TCE in well MW-1 and borings B-5 and B-6 suggests some biological degradation of the PCE plume is occurring. PCE concentrations in offsite grab groundwater samples also suggest a north-northwest groundwater flow direction, as illustrated on Figure 4. This flow direction is consistent with the two site monitoring events.

Indoor Air: From the October 2014 sampling, all VOC concentrations in indoor air were below commercial ESLs, except for benzene and carbon tetrachloride (which were similar to the ambient air concentrations). The only VOC present in indoor air significantly higher than ambient air concentrations was PCE $(1.0 \mu g/m^3)$ detected on the southwest stairs near the dry cleaning machine.

6.4 Preferential Pathway Evaluation / Conduit Study

Pangea evaluated site utilities for potential preferential pathway contaminant migration. The sanitary sewer line beneath Lincoln Avenue was identified as a potential preferential pathway for VOC migration in groundwater. The depth of the sanitary sewer flow line beneath Lincoln Ave near boring B-5 is estimated at 4 ft 11 inches bgs, based on maps provided by the City of Alameda (Appendix C). The static depth to water in boring B-5 was measured at 5.23 ft bgs on March 27, 2017, after an extremely wet rainy season. This data suggests that even during periods of extremely high groundwater conditions, groundwater does not intersect the sanitary sewer beneath Lincoln Avenue near the site.

Also, the potential for VOC migration to impact to the nearest surface water body (Encinal Basin located approximately 1,640 ft northeast) is very unlikely. Even if impacted groundwater could migrate along the sanitary sewer line, the PCE concentration (360 μ g/L) in grab groundwater from adjacent boring B-5 is only slightly higher than the saltwater ecotoxicity ESL of 230 μ g/L. The permeability of the silty sand also diminishes the potential for preferential migration along utility pathways.

The sanitary sewer lateral and gas pipeline behind the subject site building do represent potential preferential pathways for soil gas VOC migration. However, the relatively high permeability of native soil (silty sand) diminishes the potential for VOC migration along utility backfill material of relatively similar permeability.

6.5 Water Well Survey and Basement Survey

A water well and basement survey will be completed in a future report.

6.6 Potential Exposure Pathways

Exposure pathways for VOCs in soil, soil gas and groundwater at the site have been evaluated to assess the potential impacts to human health and the environment. A CSM chart with potential exposure pathways in shows on Figure 8. This evaluation revealed that the *only* potentially complete exposure pathway for VOCs within site and adjacent buildings is inhalation of VOCs by existing commercial occupants (primarily the subject site) and one nearby residence (1544 Bay Street). Direct exposure and ingestion of soil is *not* identified as a currently complete exposure pathway for future construction workers, since no VOCs have been detected in soil. Direct exposure to VOCs in groundwater via ingestion is *not* identified as a potentially complete exposure pathway as the site and vicinity is served by municipal water supply, and no water wells are

anticipated downgradient near the site. Although the downgradient extent of the groundwater plume has not been fully delineated, Pangea concludes that potential impact to surface waters is unlikely based on the distance to the nearest surface water (1,640 ft) and the maximum concentration of offsite PCE in grab groundwater (360 µg/L) compared to the saltwater ecotoxicity ESL of 230 µg/L.

7.0 CONCLUSIONS

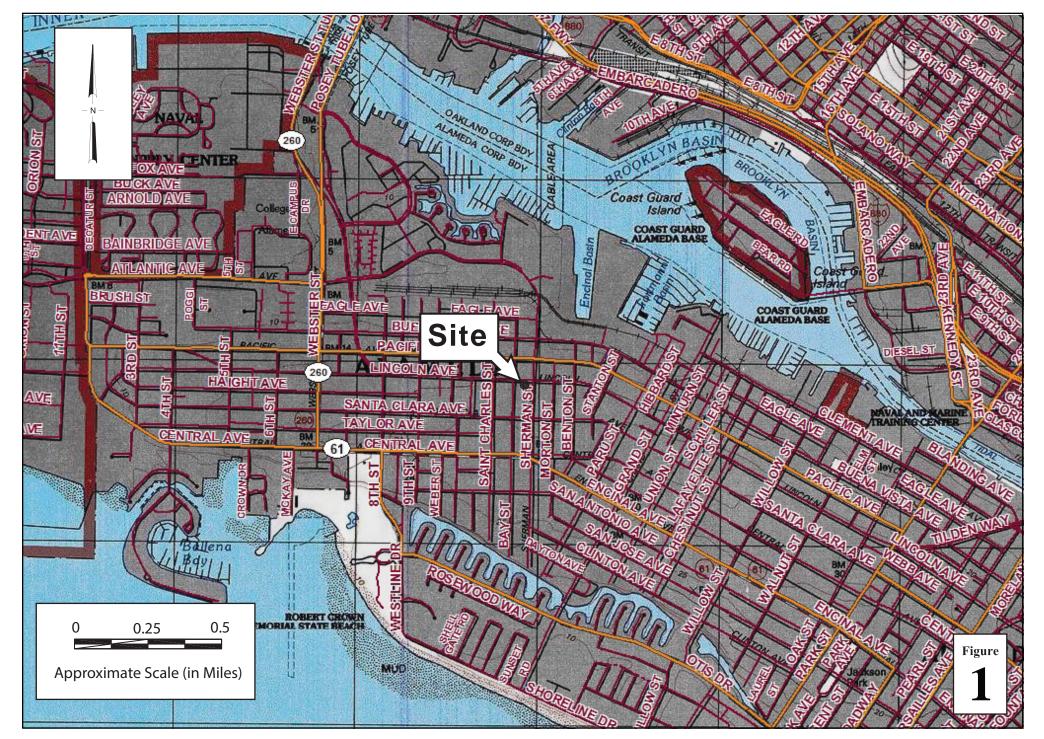
Based on the above information, Pangea offers the following conclusions:

- Groundwater well data and subslab/soil gas data indicates the primary PCE source area is near the
 dry cleaning equipment/use area within the rear of the subject site (Figures 4 and 5). Soil analytical
 data at SVE-2 (Figure 3) and prior soil gas data at SV-5 indicates a secondary PCE source outside the
 dry cleaner in the gravel-covered parking lot (Table 3).
- The PCE groundwater impact is well characterized by the existing monitoring wells and recent downgradient, offsite borings. Given the cessation of PCE use in 2005 and the relatively limited PCE impact in groundwater, the groundwater plume is likely stable and limited in extent. Analytical and water elevation data suggest a north-northwestern groundwater flow direction, with a narrow PCE plume extending in this direction from the site source areas. The maximum PCE concentration detected in groundwater monitoring well water has been only 43 μg/L. While 360 μg/L PCE was just detected in groundwater in one boring (B-5) immediately downgradient of the site, adjacent grab groundwater data indicates the PCE impact is localized to a narrow area. And since grab groundwater data tends to be higher than well data, much lower PCE concentrations would likely be detected in groundwater if a well were installed offsite near boring B-5.
- The underground utility survey did not identify any significant preferential pathways for VOC migration in groundwater. Grab groundwater data suggests a VOC distribution relevant to VOC migration and attenuation in groundwater rather than migration within preferential pathways. The presence of TCE in source area and downgradient groundwater indicates the PCE impact is undergoing natural attenuation. Pangea concludes that VOC groundwater impact can be further evaluated following the SVE pilot study.
- The subslab/soil gas PCE impact exceeds the commercial ESL (2,100 µg/m³) in the rear portion of the site and possibly within the adjacent commercial properties. While the soil gas PCE impact exceeds the residential ESL (240 µg/m³) within a portion of the three surrounding residential properties (the backyard of 1545 Sherman Street, the garage of 1542 Bay Street, and the garage/residence of 1544 Bay Street), this soil gas impact is only near one occupied structure that contains a crawl space (residence at 1544 Bay Street). The crawl space beneath the 1544 Bay Street

residence should provide natural ventilation to help mitigate the potential for vapor intrusion at this residence. While the sanitary sewer lateral and gas pipeline in the alley behind the subject site represent potential preferential pathways for soil gas VOC migration, the relatively high permeability of native soil (silty sand) diminishes the potential for VOC migration along utility backfill material of relatively similar permeability. The estimated vacuum influence from SVE (Figure 7) should remediate and mitigate soil gas impact above residential and commercial ESLs (Figure 5). Pangea concludes that PCE impact in subslab/soil gas can be further evaluated by testing during or following the SVE pilot study.

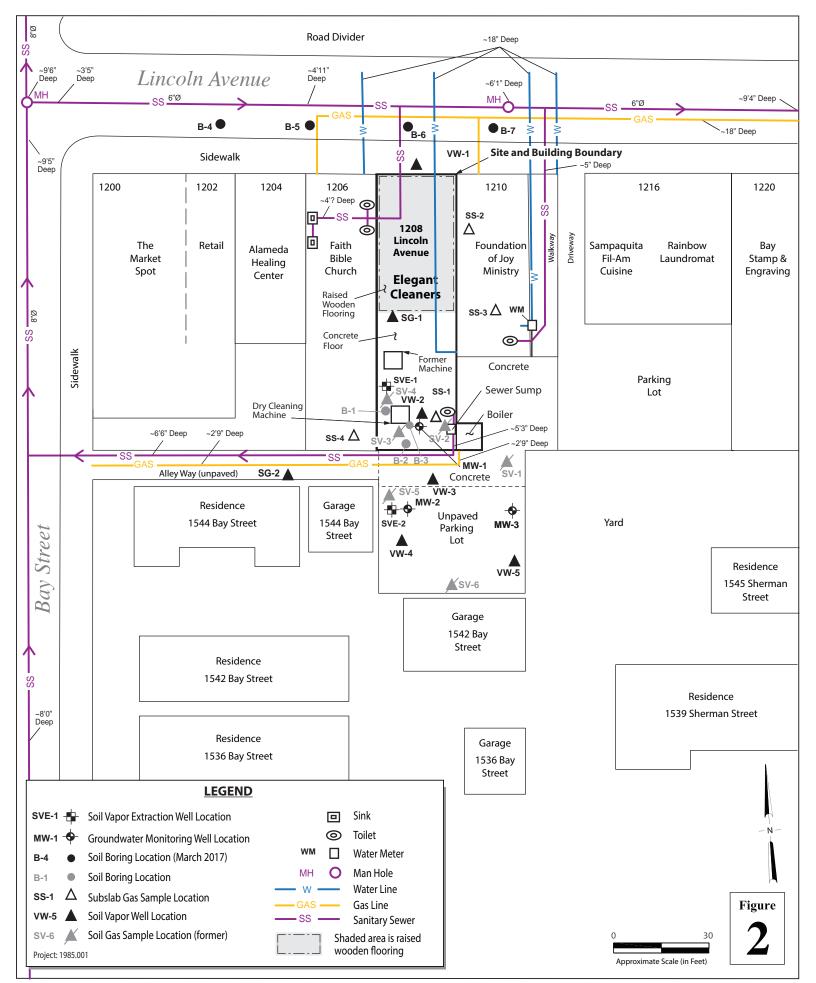
- The SVE pilot study system is reducing PCE concentrations in influent soil gas. Influent PCE concentrations in well SVE-1 decreased from 1,700 μg/m³ (August 21) to <250 μg/m³ (four days later on August 25, and again on September 22). Influent PCE concentrations in well SVE-2 decreased from 6,000 μg/m³ (August 21) to 270 μg/m³ after 32 day of pilot testing (September 22).
- Vapor extraction from the vapor extraction wells effectively captures VOC vapors from the site subsurface. The relatively low vacuum required to induce vapor flow indicates the shallow soil (fine silt and sand) is amenable to vapor extraction.

8.0 RECOMMENDATIONS

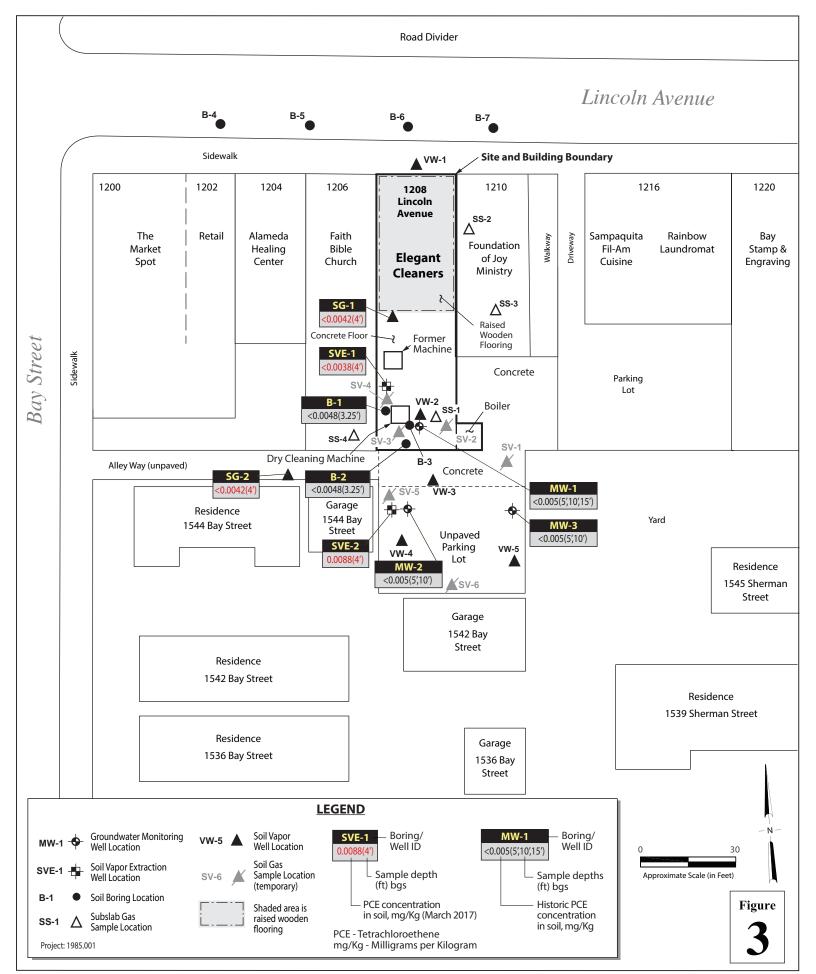

Based on the above conclusions, Pangea offers the following recommendations:

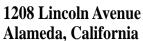
- Pangea recommends continued SVE pilot testing during the dry season and seasonal low groundwater conditions. Given the permeable soil and limited PCE extent, SVE pilot testing should significantly remediate PCE and mitigate vapor intrusion concerns.
- Pangea recommends further evaluation of groundwater and subslab/soil gas conditions when influent SVE concentrations have reduced to asymptotic levels or when the wet season begins.
- If PCE soil gas concentrations persist after rebound testing of the SVE pilot study system, Pangea
 recommends installation of soil gas utility cut-off plugs along the sanitary sewer and natural gas
 utilities located between the dry cleaners and the adjacent 1544 Bay Street residence. If PCE soil
 gas concentrations persist in the rear yard, Pangea recommends consideration of excavation of
 residual PCE impact.
- Pangea recommends analyzing groundwater from source area well MW-1 for TPHd during the next groundwater monitoring event to further assess potential impact from DF2000 cleaning solution.

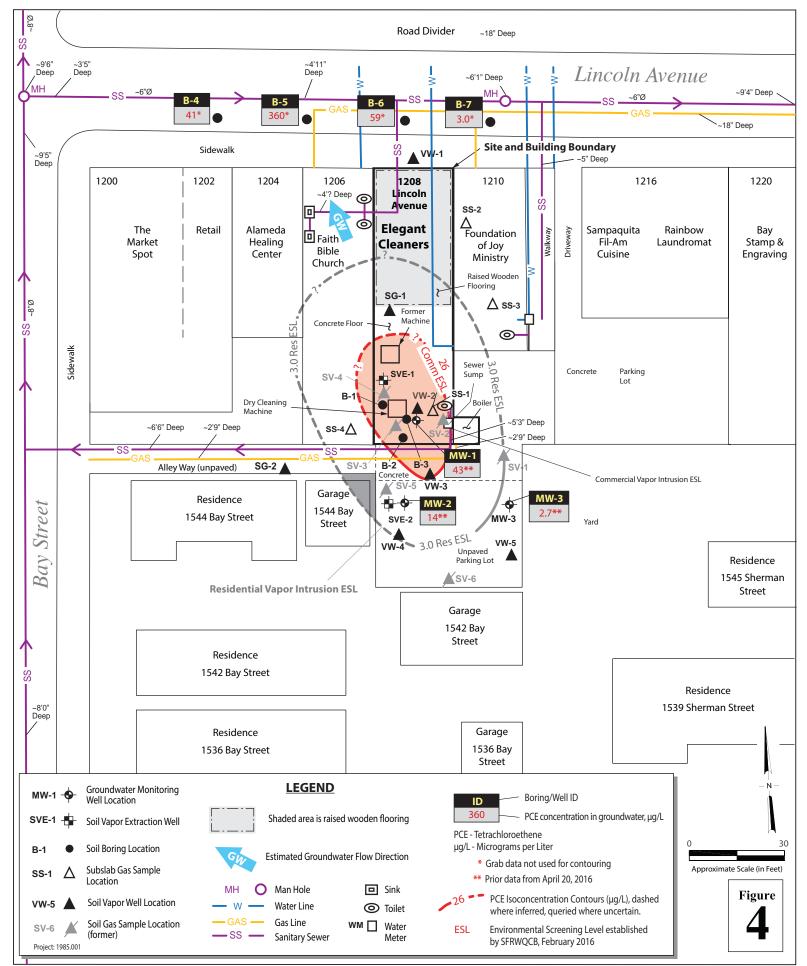
9.0 REFERENCES

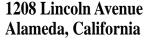

Cal/EPA, 2011, Advisory-Active Soil Gas Investigation, California Environmental Protection Agency, Department of Toxic Substances Control, October.

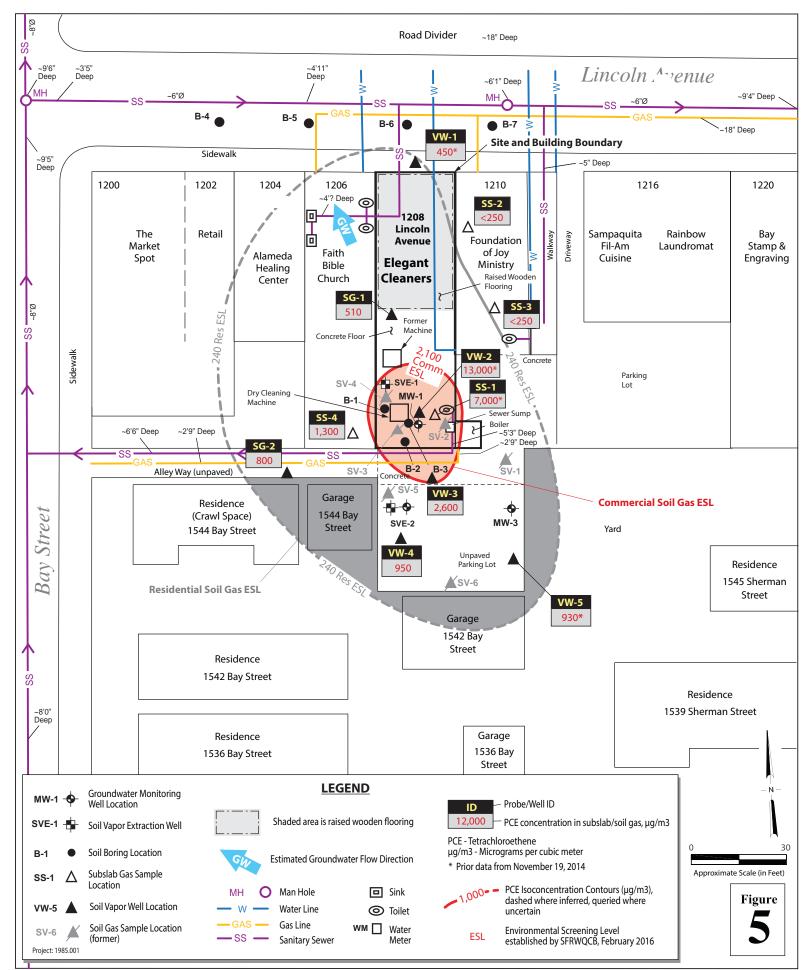
Cal/EPA, 2015, Advisory-Active Soil Gas Investigation, California Environmental Protection Agency, Department of Toxic Substances Control, Los Angeles Regional Water Quality Control Board, San Francisco Regional Water Quality Control Board, July.

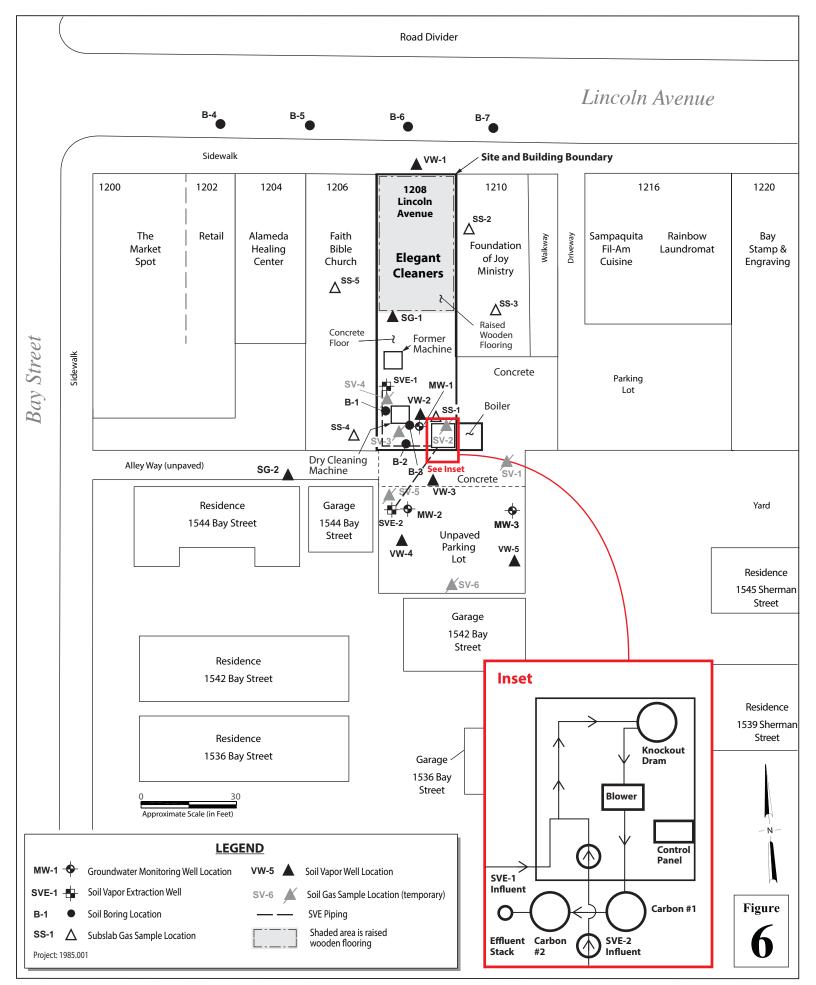


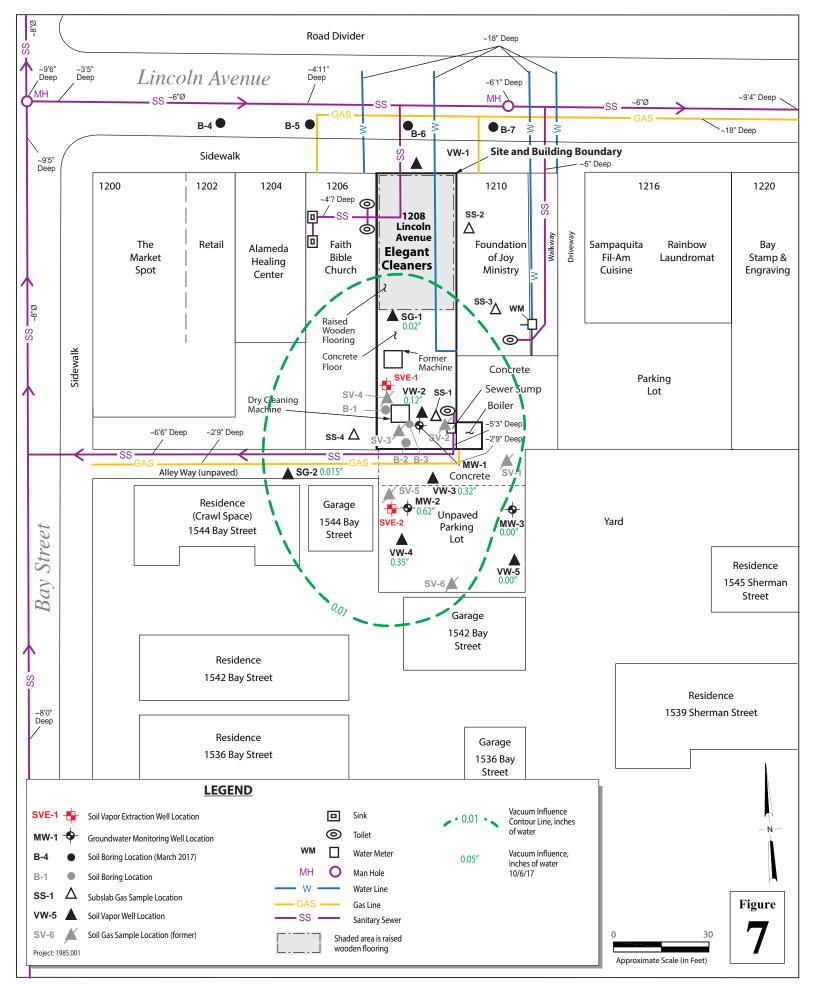

Elegant Cleaners 1208 Lincoln Avenue Alameda, California

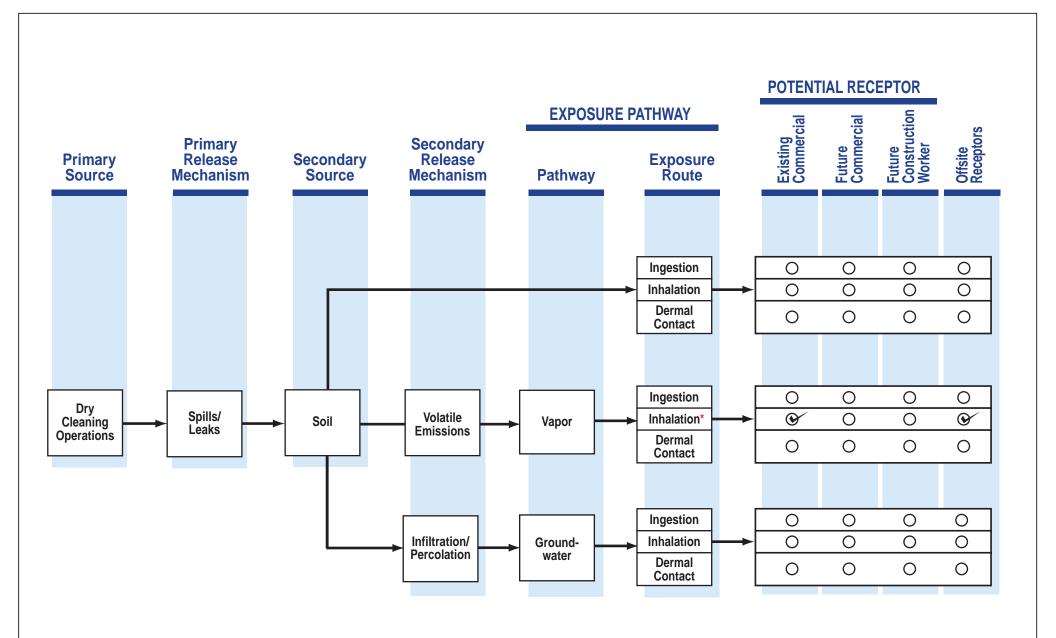


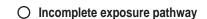












⊘ Complete exposure pathway

Pending future assessment

Figure 8

Table 1. Soil Analytical Data - 1208 Lincoln Avenue, Alameda, CA

Boring / Sampl ID	le S Date Sampled	Sample Depth (ft bgs)		J. J	Benjene	Tolliene	Ellyhoure	Salahi Sa	WINE.	Naphhali.	* 2		\$\$\\ \frac{\partial \text{5}}{\partial \text{5}}\\ \partial \t	trans-1-2.p		in the state of th	i din	Notes
-			←							– mg/kg							\longrightarrow	
		Soil Tier 1 ESL	100	230	0.044	2.9	1.4	2.3	0.023	0.033	0.42	0.46	0.19	0.67	0.0082	0.068	varies	
	ect Exposure: Residen		740	230	0.23	970	5.1	560	42	3.3	0.6	1.2	19	160	0.0082	0.30	varies	
ESL Direc	et Exposure: Commerc	cial Shallow Soil	3,900	1,100	1.0	4,600	22	2,400	180	14	2.7	8.0	90	730	0.15	1.3	varies	-
	/Well Installation	,	0.15		0.0042	0.0042	0.0042	0.000:	0.0042	0.0042	0.0042	0.0042	0.0042	0.0042	0.000=	0.0042	N.D.	
SG-1-4'	3/6/2017	4	< 0.17		< 0.0042	<0.0042	< 0.0042	< 0.0084	< 0.0042	<0.0042	< 0.0042	< 0.0042	< 0.0042	< 0.0042	< 0.0085	< 0.0042	ND	
SG-2-4'	3/6/2017	4	< 0.17		< 0.0042	< 0.0042	< 0.0042	< 0.0084	< 0.0042	< 0.0042	< 0.0042	< 0.0042	< 0.0042	< 0.0042	< 0.0083	< 0.0042	ND	
SVE-1-4'	3/6/2017	4	< 0.16		<0.0038	< 0.0038	< 0.0038	< 0.0076	< 0.0038	< 0.0038	<0.0038	< 0.0038	< 0.0038	<0.0038	< 0.0077	< 0.0038	ND	
SVE-1-4 SVE-2-4'	3/6/2017	4	<0.16		<0.0038	<0.0038	<0.0038	<0.0076	<0.0038	<0.0038	0.0038	<0.0038	<0.0038	<0.0038	<0.0077	<0.0038	ND ND	Only VOC detection
SVE-2-4	3/0/2017	4	<4.2		<0.0042	<0.0042	<0.0042	<0.0042	<0.0042	<0.0042	0.0088	<0.0042	<0.0042	<0.0042	<0.0084	<0.0042	ND	Only VOC detection
Monitoring W	ell Installation																	
MW-1-5	11/11/2014	5			< 0.005	< 0.005	< 0.005	< 0.015	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	ND	
MW-1-10	11/11/2014	10			< 0.005	< 0.005	< 0.005	< 0.015	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	ND	
MW-1-15	11/11/2014	15			< 0.005	< 0.005	< 0.005	< 0.015	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	ND	
MW-2-5	11/11/2014	5			< 0.005	< 0.005	< 0.005	< 0.015	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	ND	
MW-2-10	11/11/2014	10			< 0.005	< 0.005	< 0.005	< 0.015	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	ND	
MW-3-5	11/11/2014	5			< 0.005	< 0.005	< 0.005	< 0.015	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	ND	
MW-3-10	11/11/2014	10			< 0.005	< 0.005	< 0.005	< 0.015	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	ND	
Initial Site Bor	rings																	
B-1	10/3/2006	3.25									< 0.0048	< 0.0048	< 0.0048	< 0.0048	< 0.0096		ND	
B-2	10/3/2006	3.25									< 0.0048	< 0.0048	< 0.0048	< 0.0048	< 0.0096		ND	
B-3	10/3/2006	3.25		<1.0														TPHkerosene =<1

Explanation:

TPHg = Total petroleum hydrocarbons as gasoline

 $MTBE = \ Methyl\ tert-butyl\ ether$

PCE = Tetrachloroethene

TCE = Trichloroethene

DCE = Dichloroethene

Other VOCs = Volatile organic compounds not otherwise listed.

= Concentration detected above laboratory reporting limits.

mg/kg = Milligrams per kilogram

ft bgs = Depth below ground surface (bgs) in feet.

ND = Not detected above laboratory reporting limits.

< n = Chemical not present above laboratory detection limts.

-- = Not analyzed

ESL = Environmental Screening Level from California Regional Water Quality Control Board - San Francisco Bay Region, Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater, Interim Revised February 2016 (version 3).

Table 2. Groundwater Analytical Data - 1208 Lincoln Avenue, Alameda, CA

Well ID	Date Sampled	Depth to Water (ft btoc)	GWE (ft amsl)	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	٤	dis. L. d.	S. Vinil	Spira, Ondo		THII.		Notes
_				←			—— ,	ıg/L			\longrightarrow	
			GW Tier 1 ESL:	3.0	5.0	6.0	0.061	2.3	100	100	Varies	
Sha	llow GW VI Hum	an Health Ris	k Levels - Residential:	3.0	5.6	110	0.061	2.3	NE	NE	Varies	
Shall	low GW VI Huma	ın Health Risk	Levels - Commercial:	26	49	950	0.53	20	NE	NE	Varies	
	Aquatic Hab	oitat Goal Leve	els - Saltwater Ecotox:	230	200	22,000	NE	3,200	3,700	640	Varies	
Monitoring	•											
MW-1	11/25/2014	7.82	16.39	29	0.65	<1.0	<1.0	<1.0			<0.5 - <2.0	
24.21	4/20/2016	6.25	17.96	43	<1.0	<1.0	<1.0	<1.0			<1.0	
MW-2	11/25/2014	9.82	16.46	8.8	< 0.50	<1.0	<1.0	<1.0			<0.5 - <2.0	
26.28	4/20/2016	8.10	18.18	14	<1.0	<1.0	<1.0	<1.0			<1.0	
MW-3	11/25/2014	10.00	16.51	1.0	< 0.50	<1.0	<1.0	<1.0			<0.5 - <2.0	
26.51	4/20/2016	8.32	18.19	2.7	<1.0	<1.0	<1.0	<1.0			<1.0	
Grab Grou	ndwater Samp	ling Data										
B-4-W	3/27/2017	5.82		41	< 0.5	< 0.5	< 0.5	< 0.5			a	$a = 1.3 \mu g/L \text{ xylenes}$
B-5-W	3/27/2017	5.23		360	2.8	<2.5	< 2.5	< 2.5	170*	< 50	<2.0 - <10	
B-6-W	3/27/2017	5.85		59	1.2	< 0.5	< 0.5	< 0.5				b=1.0 μg/L para-isopropyl toluene
B-7-W	3/27/2017	5.45		3.0	< 0.5	< 0.5	< 0.5	< 0.5			<0.5 - <10	

Explanation:

PCE = Tetrachloroethene

TCE = Trichloroethane

DCE = Dichloroethene

 $NE = Not\ Established$

 $Other\ VOCs = Volatile\ organic\ compounds\ by\ EPA\ Method\ 8260\ not\ otherwise\ listed.$

 $\mu g/L = Micrograms \ per \ Liter$

 $ft \ amsl = Elevation \ above \ mean \ sea \ level \ in \ feet.$

 $ft\ bTOC = Depth\ below\ top\ of\ casing\ in\ feet.$

 $GWE = Groundwater\ elevation$

ND = Not Detected above laboratory reporting limits.

- * = Laboratory notes that the "sample exhibits unknown single peak or peaks"; not representative of petroleum hydrocarbons.
- < n > = Chemical > not > present > above > laboratory > detection > limits.
- -- = Not analyzed or not available.

 $ESL = Environmental\ screening\ level\ established\ by\ the\ SFBRWQCB,\ Interim\ Final\ -\ November\ 2007\ and\ amended\ in\ February\ 2016,\ Version\ 3$

Bold concentrations exceed Tier 1 ESL

Table 3. Soil Gas Analytical Data - 1208 Lincoln Avenue, Alameda CA

				,		,	,						,
Boring / Sai	mple ID Date Sampled	Sample Depth (ft bgs)	\$,			T. troping	Chlonon, Charles	i , z-dinom,	Ollies V.	Notes
			←					g/m ³				\longrightarrow	· -
	Residential ESL for Vapor Intrus			240	54	4,200	42,000	520,000	33	61	2.3		
	Commercial ESL for Vapor Intrus	sion Human Health Risk:	2,100	3,000	470	35,000	350,000	4,000,000	290	530	20		-
Soil Gas Da	ata 11/19/2014	5.0	450	<100	<100	<100	<100	<100	<100	<100			
VW-2	11/19/2014	5.0	12,000	<100	<100	<100	<100	<100	<100	<100			1 purge volume
VW-2	11/19/2014	5.0	13,000	<100	<100	<100	<100	<100	<100	<100			3 purge volume
VW-2	11/19/2014	5.0	12,000	<100	<100	<100	<100	<100	<100	<100			10 purge volume
VW-3 VW-3 VW-3	11/19/2014 11/19/2014 3/9/2017	5.0 5.0 5.0	9,300 10,000 2,600	<100 <100 <250	 <250	 	Duplicate						
VW-4	11/19/2014	5.0	4,600	<100	<100	<100	<100	<100	<100	<100			
VW-4	3/9/2017	5.0	950	<250	<250	<250	<250	<250	<250	<250	<250		
VW-5	11/19/2014	5.0	930	<100	<100	<100	<100	<100	<100	<100			
SV-1	8/20/2014	5.0	2,420	<100	<40	<1,000	<1,000	<1,000	<20	<1,000			3 purge volume
SV-2	8/20/2014	5.0	8,250	<100	<40	<1,000	<1,000	<1,000	<20	<1,000			1 purge volume
SV-3	8/20/2014	5.0	11,110	<100	<40	<1,000	<1,000	<1,000	<20	<1,000			3 purge volume
SV-4	8/20/2014	5.0	13,540	<100	<40	<1,000	<1,000	<1,000	<20	<1,000			10 purge volume

Table 3. Soil Gas Analytical Data - 1208 Lincoln Avenue, Alameda CA

Boring /	Sample ID Date Sampled	Sample Depth (ft bgs)	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		50.5.1		3 (2.5) Solid		Garbon 7.	Chonfo _m	, , dh.	Out-one	Notes
			~					g/m ³ ———					•
	Residential ESL for Vapor Intrus	ion Human Health Risk:	240	240	54	4,200	42,000	520,000	33	61	2.3		
	Commercial ESL for Vapor Intrus	ion Human Health Risk:	2,100	3,000	470	35,000	350,000	4,000,000	290	530	20		
SV-5 SV-6 SV-6 SG-1 SG-2	8/20/2014 8/20/2014 8/20/2014 3/9/2017	5.0 5.0 5.0 5.0	22,480 590 630 510 800	<100 <100 <100 <100 <250 <250	<40 <40 <40 <40 <250	<1,000 <1,000 <1,000 <250 <250	<1,000 <1,000 <1,000 <250 <250	<1,000 <1,000 <1,000 <250 <250	<20 <20 <20 <20 <250 <250	<1,000 <1,000 <1,000 <250 <250	 <250 <250	 	3 purge volume 3 purge volume Duplicate, 3 purge volume
	Gas Data	0.5	7,000	400	.100	.100	.100	-100	-100	.100			
SS-1	11/19/2014	0.5	7,000	<100	<100	<100	<100	<100	<100	<100			
SS-2	3/9/2017	0.5	<250	<250	<250	<250	<250	<250	<250	<250	<250		
SS-3	3/9/2017	0.5	<250	<250	<250	<250	<250	<250	<250	<250	<250		
SS-4	3/9/2017	0.5	1,300	<250	<250	<250	<250	<250	<250	<250	<250		

Table 3. Soil Gas Analytical Data - 1208 Lincoln Avenue, Alameda CA

Boring / S	Sample ID Date Sampled	Sample Depth (ft bgs)	\$	\ \&		,			Not the state of t	Thomas and the second s	ti Jahon	on the contract of the contrac	Notes
	Decidential EQL for Versus Inter-	i H Hleb Di-le-	240	240	<i>5.</i> 4	4.200		g/m ³	33	61	2.3		
	Residential ESL for Vapor Intro			240	54 470	4,200	42,000 350,000	520,000	33 290	61 530	2.3		
	Commercial ESL for Vapor Intro	usion Human Health Risk:	2,100	3,000	470	35,000	350,000	4,000,000	290	530	20		1
SVE Syste	em Data												
SVE-1	8/21/2017	3.0 - 6.0	1,700	<250	<250	<250	<250	<250	<250	<250	<250		5-day test start
	8/25/2017	3.0 - 6.0	<250	<250	<250	<250	<250	<250	<250	<250	<250		5-day test end. Start VLP
	9/22/2017	3.0 - 6.0	<250	<250	<250	<250	<250	<250	<250	<250	<250		Day 32 of pilot study
SVE-2	8/21/2017	4.0 - 7.0	6,000	<250	<250	<250	<250	<250	<250	<250	<250		5-day test start
	8/25/2017	4.0 - 7.0	1,100	<250	<250	<250	<250	<250	<250	<250	<250		5-day test end. Start VLP
	9/22/2017	4.0 - 7.0	270	<250	<250	<250	<250	<250	<250	<250	<250		Day 32 of pilot study

Explanation:

PCE = Tetrachloroethene

TCE = Trichloroethene

DCA = Dichloroethane

DCE = Dichloroethene

TCA = Trichloroethane

Other VOCs = Volatile organic compounds by EPA Method TO-15 or EPA Method 8260 (8010 basic target list).

VLP = Various Location Permitted equipment with Bay Area Air Quality Management District

µg/m3 = Micrograms per cubic meter of air results calculated by laboratory from parts per billion results using normal pressure and temperature (NPT).

ft bgs = feet below ground surface.

< n = Chemical not present above laboratory detection limit.

--- = Not analyzed

ESL = Environmental Screening Level, from California Regional Water Quality Control Board - San Francisco Bay Region, Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater, Interim Revised February 2016 (Revision 3).

Pangea

Table 3. Soil Gas Analytical Data - 1208 Lincoln Avenue, Alameda CA

Boring / Sample ID Date Sampled Sample Depth (ft bgs)	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		2007.7	,	A STATE OF THE PROPERTY OF THE	\$ \\ \bar{z}_{1/1} \\ \bar{z}_{1/2} \\ \bar{z}_{1/2} \\ \bar{z}_{1/2} \\ \bar{z}_{1/2} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	Garbon 7	Charlenia (Charlenia)	1. Selling.	Johnson Johnson	Notes	
	←				μ	g/m ³				\longrightarrow		
Residential ESL for Vapor Intrusion Human Health Risk:	240	240	54	4,200	42,000	520,000	33	61	2.3			
Commercial ESL for Vapor Intrusion Human Health Risk:	2,100	3,000	470	35,000	350,000	4,000,000	290	530	20			
]	

Bold = Concentrations above ESLs for Residential and/or Commercial Land Use for shallow soil gas (SG samples).

APPENDIX A

Regulatory Correspondence

HEALTH CARE SERVICE AGENCY

REBECCA GEBHART, Acting Agency Director

ENVIRONMENTAL HEALTH SERVICES ENVIRONMENTAL PROTECTION 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577 FAX (510) 337-9335 (510) 567-6700

April 13, 2016

Mr. Reza Sheikhai Elegant Cleaners 1208 Lincoln Avenue Alameda, CA 94501-2326 (Sent via e-mail to: cpareza@aol.com)

Subject: Work Plan Approval for Site Cleanup Program Case Number RO0003163 and GeoTracker

Global ID T10000006546, Elegant Cleaners, 1208 Lincoln Avenue, Alameda, CA

Dear Mr. Sheikhai:

Alameda County Environmental Health (ACEH) staff has reviewed the case file including the *Data Gap Investigation Work Plan and Site Conceptual Model* (Work Plan) dated April 5, 2016, prepared and submitted on your behalf by PANGEA Environmental Services, Inc. (PANGEA). The Work Plan was submitted in response to a meeting with you and PANGEA on March 4, 2016. Thank you for submitting the Work Plan.

Based on ACEH staff review of the work plan, the proposed scope of work is conditionally approved for implementation provided that the technical comments below are incorporated during the proposed work. Submittal of a revised work plan or a work plan addendum is not required unless an alternate scope of work outside that described in the work plan or these technical comments is proposed. We request that you address the following technical comments, perform the proposed work, and send us the report described below. Please provide 72-hour advance written notification to this office (e-mail preferred to:karel.detterman@acgov.org) prior to the start of field activities.

TECHNICAL COMMENTS

Work Plan Modifications – The referenced work plan proposes a series of actions with which ACEH is in general agreement of undertaking; however, ACEH requests the following modifications/clarifications to the approach. Please submit a report by the date specified below.

- 1. Subsurface Gas and Soil Gas Sampling:
 - a. Tracer Concentrations To remain consistent with Department of Toxic Substances Control (DTSC) guidelines, please additionally analyze the shroud for the tracer gas used. In the event of detection of the tracer in a vapor sample, DTSC provides guidelines for the acceptability of the resulting data, provided the shroud concentration is known. Please include tracer and oxygen concentrations on the assembled tables for quick referencing in the investigation report.
 - **b. Selection Criteria:** Please provide the selection criteria for assessment of DF2000 (aliphatic hydrocarbons) in the soil and groundwater investigation report requested below. Additionally, please provide the soil gas sampling standard operation procedures (SOPs).

Mr. Reza Sheikhai RO0003163 April 13, 2016, Page 2

- c. Soil Gas EPA Method 8010 (replaced with EPA Method 8021): EPA Method 8021 appears reasonable for the initial screening and cost control. However, to ensure that detection levels are lower than the chosen remediation goals, the use of Summa Canisters for confirmation sampling as per Department of Toxic Substances Control (DTSC's) Advisory Active Soil Gas Investigations (April 2012) is appropriate.
- 2. Site Investigation Report: Please present the SCM in a tabular format highlighting the major SCM elements and associated data gaps, which need to be addressed to progress the site to case closure. Please perform a Well Survey utilizing Alameda County Public Works Agency (ACPWA) in addition to DWR resources as these two databases are sufficiently different to warrant a review of both databases. Please refer to Attachment A, Site Conceptual Model Requisite Elements, Preferential Pathway and Sensitive Receptor Study and Site Conceptual Model in Table Format and Attachment B, Sample Well Survey and Table to address this data gap in the report requested below.

TECHNICAL REPORT REQUEST

Please upload technical reports to the ACEH ftp site (Attention: Karel Detterman), and to the State Water Resources Control Board's Geotracker website, in accordance with the following specified file naming convention and schedule:

 June 17, 2016 – Soil and Groundwater Investigation Report File to be named: RO3163_SWI_R_yyyy-mm-dd

Thank you for your cooperation. Should you have any questions or concerns regarding this correspondence or your case, please call me at (510) 567-6708 or send me an e-mail message at karel.detterman@acgov.org

Sincerely,

Digitally signed by Karel Detterman DN: cn=Karel Detterman, o, ou, email=karel.detterman@acgov.org, c=US

Date: 2016.04.13 17:56:14 -07'00'

Karel Detterman, PG

Hazardous Materials Specialist

Enclosures: Attachment 1 Responsible Party(ies) Legal Requirements/Obligations

ACEH Electronic Report Upload (ftp) Instructions

Attachment A Site Conceptual Model Requisite Elements, Preferential Pathway and

Sensitive Receptor Study and Site Conceptual Model in Table Format

Attachment B Sample Well Survey and Table

cc: Bob Clark-Riddell, Pangea, (Sent via E-mail to: briddell@pangeaenv.com)

Rick Pak, Open Bank, (Sent via E-mail to: rick.pak@myopenbank.com)

Stephen Kang, Open Bank, (Sent via E-mail to: stephen.kang@myopenbank.com)

Dilan Roe, ACEH (Sent via E-mail to: dilan.roe@acgov.org)

Karel Detterman, ACEH (Sent via E-mail to: karel.detterman@acgov.org)

GeoTracker, Electronic Case File

APPENDIX B

Permits

Alameda County Public Works Agency - Water Resources Well Permit

399 Elmhurst Street Hayward, CA 94544-1395 Telephone: (510)670-6633 Fax:(510)782-1939

Application Approved on: 03/03/2017 By jamesy Permit Numbers: W2017-0200 to W2017-0201

Permits Valid from 03/06/2017 to 03/07/2017

Application Id: 1487964782117 City of Project Site:Alameda

Site Location: 1208 Lincoln Avenue, Alameda, CA 94501
Project Start Date: 03/06/2017 Completion Date:03/07/2017

Assigned Inspector: Contact Marcelino Vialpando at (510) 670-5760 or Marcelino@acpwa.org

Applicant: Pangea Environmental Services, Inc. - Patrick Phone: 925-818-0010

Groff

1710 Franklin Street, #200, Oakland, CA 94612

Property Owner: Reza Sheikhai Phone: 510-377-0233

1208 Lincoln Avenue, Alameda, CA 94501

Client: ** same as Property Owner **

Total Due: \$530.00
Receipt Number: WR2017-0097 Total Amount Paid: \$530.00

Payer Name : Robert Clark-Riddell Paid By: VISA PAID IN FULL

Works Requesting Permits:

Borehole(s) for Investigation-Environmental/Monitorinig Study - 4 Boreholes

Driller: Cascade Drilling - Lic #: 938110 - Method: DP Work Total: \$265.00

Specifications

Permit	Issued Dt	Expire Dt	#	Hole Diam	Max Depth
Number			Boreholes		
W2017-	03/03/2017	06/04/2017	4	3.00 in.	15.00 ft
0200					

Specific Work Permit Conditions

- 1. Backfill bore hole by tremie with cement grout or cement grout/sand mixture. Upper two-three feet replaced in kind or with compacted cuttings. All cuttings remaining or unused shall be containerized and hauled off site. The containers shall be clearly labeled to the ownership of the container and labeled hazardous or non-hazardous.
- 2. Boreholes shall not be left open for a period of more than 24 hours. All boreholes left open more than 24 hours will need approval from Alameda County Public Works Agency, Water Resources Section. All boreholes shall be backfilled according to permit destruction requirements and all concrete material and asphalt material shall be to Caltrans Spec or County/City Codes. No borehole(s) shall be left in a manner to act as a conduit at any time.
- 3. Permittee shall assume entire responsibility for all activities and uses under this permit and shall indemnify, defend and save the Alameda County Public Works Agency, its officers, agents, and employees free and harmless from any and all expense, cost, liability in connection with or resulting from the exercise of this Permit including, but not limited to, properly damage, personal injury and wrongful death.
- 4. Applicant shall contact assigned inspector listed on the top of the permit at least five (5) working days prior to starting, once the permit has been approved. Confirm the scheduled date(s) at least 24 hours prior to drilling.
- 5. Copy of approved drilling permit must be on site at all times. Failure to present or show proof of the approved permit application on site shall result in a fine of \$500.00.
- 6. Electronic Reporting Regulations (Chapter 30, Division 3 of Title 23 & Division 3 of Title 27, CCR) require electronic

Alameda County Public Works Agency - Water Resources Well Permit

submission of any report or data required by a regulatory agency from a cleanup site. Submission dates are set by a Regional Water Board or by a regulatory agency. Once a report/data is successfully uploaded, as required, you have met the reporting requirement (i.e. the compliance measure for electronic submittals is the actual upload itself). The upload date should be on or prior to the regulatory due date.

7. NOTE:

Under California laws, the owner/operator are responsible for reporting the contamination to the governmental regulatory agencies under Section 25295(a). The owner/operator is liable for civil penalties under Section 25299(a)(4) and criminal penalties under Section 25299(d) for failure to report a leak. The owner/operator is liable for civil penalties under Section 25299(b)(4) for knowing failure to ensure compliance with the law by the operator. These penalty provisions do not apply to a potential buyer.

- 8. Prior to any drilling activities onto any public right-of-ways, it shall be the applicants responsibilities to contact and coordinate a Underground Service Alert (USA), obtain encroachment permit(s), excavation permit(s) or any other permits required for that City or to the County and follow all City or County Ordinances. It shall also be the applicants responsibilities to provide to the Cities or to Alameda County a Traffic Safety Plan for any lane closures or detours planned. No work shall begin until all the permits and requirements have been approved or obtained.
- 9. Permit is valid only for the purpose specified herein. No changes in construction procedures, as described on this permit application. Boreholes shall not be converted to monitoring wells, without a permit application process.

Work Total: \$265.00

Well Construction-Vapor monitoring well-Vapor monitoring well - 4 Wells

Driller: Cascade Drilling - Lic #: 938110 - Method: DP

Specifications

Permit #	Issued Date	Expire Date	Owner Well Id	Hole Diam.	Casing Diam.	Seal Depth	Max. Depth
W2017- 0201	03/03/2017	06/04/2017	SG-1	3.00 in.	0.25 in.	4.00 ft	5.00 ft
W2017- 0201	03/03/2017	06/04/2017	SG-2	3.00 in.	0.25 in.	4.00 ft	5.00 ft
W2017- 0201	03/03/2017	06/04/2017	SVE-1	8.00 in.	2.00 in.	3.00 ft	8.00 ft
W2017- 0201	03/03/2017	06/04/2017	SVE-2	8.00 in.	2.00 in.	3.00 ft	8.00 ft

Specific Work Permit Conditions

- 1. Drilling Permit(s) can be voided/ cancelled only in writing. It is the applicant's responsibility to notify Alameda County Public Works Agency, Water Resources Section in writing for an extension or to cancel the drilling permit application. No drilling permit application(s) shall be extended beyond ninety (90) days from the original start date. Applicants may not cancel a drilling permit application after the completion date of the permit issued has passed.
- 2. Compliance with the above well-sealing specifications shall not exempt the well-sealing contractor from complying with appropriate state reporting-requirements related to well destruction (Sections 13750 through 13755 (Division 7, Chapter 10, Article 3) of the California Water Code). Contractor must complete State DWR Form 188 and mail original to the Alameda County Public Works Agency, Water Resources Section, within 30 days, including permit number and site map.
- 3. Permittee shall assume entire responsibility for all activities and uses under this permit and shall indemnify, defend and save the Alameda County Public Works Agency, its officers, agents, and employees free and harmless from any and all expense, cost, liability in connection with or resulting from the exercise of this Permit including, but not limited to,

Alameda County Public Works Agency - Water Resources Well Permit

properly damage, personal injury and wrongful death.

- 4. Permittee, permittee's contractors, consultants or agents shall be responsible to assure that all material or waters generated during drilling, boring destruction, and/or other activities associated with this Permit will be safely handled, properly managed, and disposed of according to all applicable federal, state, and local statutes regulating such. In no case shall these materials and/or waters be allowed to enter, or potentially enter, on or off-site storm sewers, dry wells, or waterways or be allowed to move off the property where work is being completed.
- 5. Prior to any drilling activities, it shall be the applicant's responsibility to contact and coordinate an Underground Service Alert (USA), obtain encroachment permit(s), excavation permit(s) or any other permits or agreements required for that Federal, State, County or City, and follow all City or County Ordinances. No work shall begin until all the permits and requirements have been approved or obtained. It shall also be the applicants responsibilities to provide to the Cities or to Alameda County an Traffic Safety Plan for any lane closures or detours planned. No work shall begin until all the permits and requirements have been approved or obtained.
- 6. No changes in construction procedures or well type shall change, as described on this permit application. This permit may be voided if it contains incorrect information.
- 7. Applicant shall submit the copies of the approved encroachment permit to this office within 10 days.
- 8. Applicant shall contact assigned inspector listed on the top of the permit at least five (5) working days prior to starting, once the permit has been approved. Confirm the scheduled date(s) at least 24 hours prior to drilling.
- 9. Wells shall have a Christy box or similar structure with a locking cap or cover. Well(s) shall be kept locked at all times. Well(s) that become damaged by traffic or construction shall be repaired in a timely manner or destroyed immediately (through permit process). No well(s) shall be left in a manner to act as a conduit at any time.
- 10. Copy of approved drilling permit must be on site at all times. Failure to present or show proof of the approved permit application on site shall result in a fine of \$500.00.
- 11. Electronic Reporting Regulations (Chapter 30, Division 3 of Title 23 & Division 3 of Title 27, CCR) require electronic submission of any report or data required by a regulatory agency from a cleanup site. Submission dates are set by a Regional Water Board or by a regulatory agency. Once a report/data is successfully uploaded, as required, you have met the reporting requirement (i.e. the compliance measure for electronic submittals is the actual upload itself). The upload date should be on or prior to the regulatory due date.
- 12. Vapor monitoring wells above water level constructed with tubing maybe be backfilled with pancake-batter consistency bentonite. Minimum surface seal thickness is two inches of cement grout around well box.

Vapor monitoring wells above water level constructed with pvc pipe shall have a minimum seal depth (Neat Cement Seal) of 2 feet below ground surface (BGS). Minimum surface seal thickness is two inches of cement grout around well box. All other conditions for monitoring well construction shall apply.

City of Alameda

Interdepartmental Memorandum

Date: March 14, 2017

To: Permit Office

From: Oskar Garcia

Public Works Department

Re: Permit No. EX17-0018, Drill 4 Borings for Ground Water Samples.

Job Address: 1208 Lincoln Avenue

Applicant: Jake Wilson

Pangea Environmental Services Inc.

64 Sonia Street Oakland, CA 94618

APPROVAL NOTICE

Public Works staff has reviewed and approved the application for Permit No. EX17-0018. The following comments are the City's requirements for approval and shall be enforced, as necessary. The permittee and/or his contractor(s) shall abide by the following provisions:

Specific Comments

Civil

- 1. Notify all businesses within the same block side of the work and sidewalk closure, a minimum of one week in advance of work commencement.
- 2. The Public Works Inspector shall enforce all general comments addressing restoration within the public right-of-way.

Traffic

1. Work hours shall be 9 am to 4 pm.

The posting of "No-Parking" signs, as applicable, is required 48 hours in advance of the work. "No-Parking" signs are available at the Planning and Building Department, Room 190, City Hall. A fee will be charged for the signs. Only City of Alameda issued "No-Parking" signs are permitted for use within the public right-of-way.

General Comments:

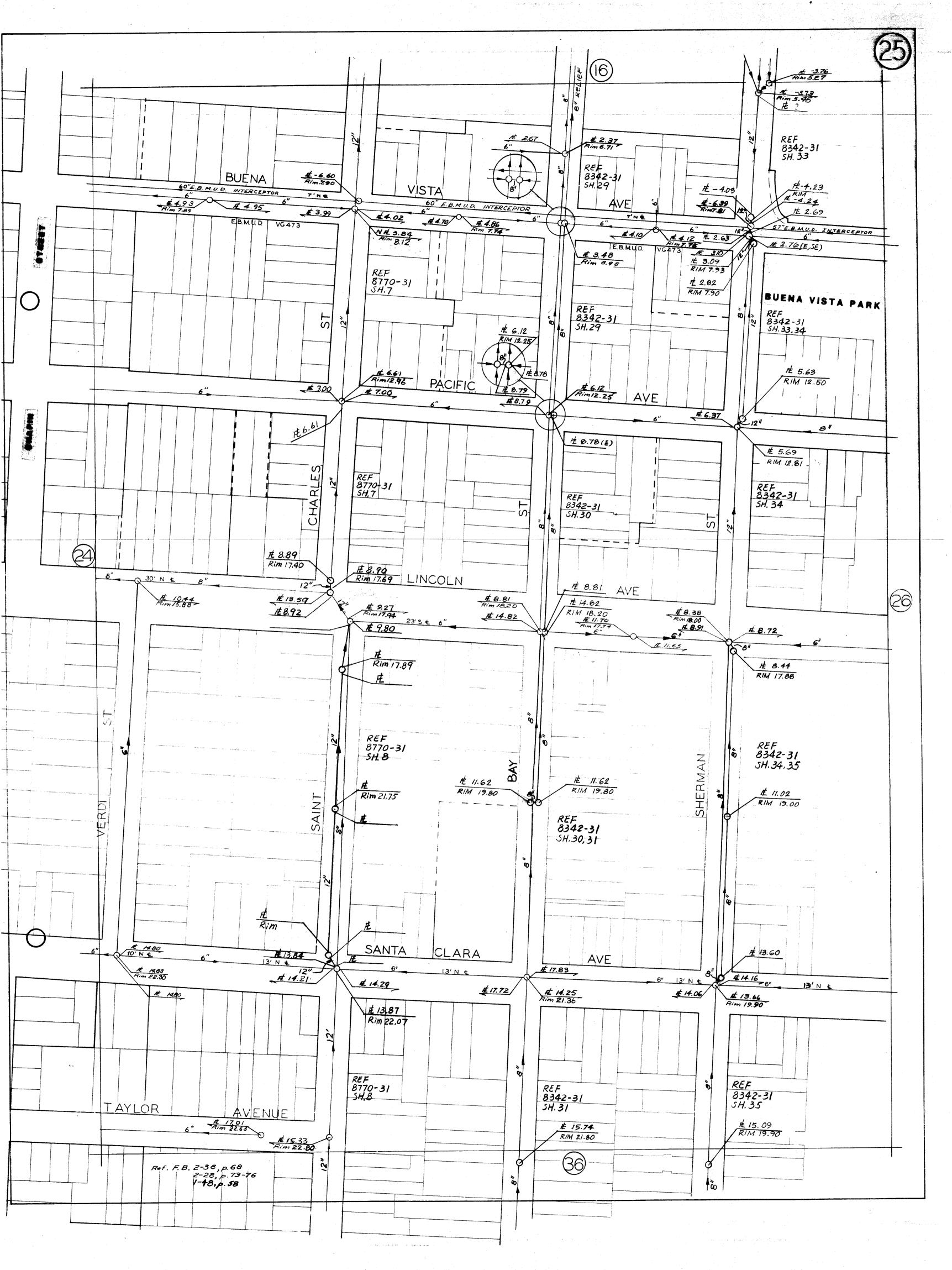
- 1. <u>Public Notifications</u>: All property owners within the immediate vicinity of the work area must be notified in writing at least 5 days prior to the start of construction. The notification letter must include a brief description of the work, the anticipated project completion date and a contact name and phone number for citizens to report their concerns while work is in progress.
- 2. <u>Coordination Notification:</u> The permittee shall notify Maria DiMeglio of the Public Works Environmental Services Division at (510) 747-7958, 48-hours prior to beginning of any work within the public right-of-way.
- 3. <u>Additional Permits</u>: The Contractor shall be responsible for obtaining all additional permits prior to beginning construction for any work not contained within the scope of this permit.
- 4. <u>Designated Truck Routes</u>: All truck deliveries to the proposed work site must remain on established truck routes.
- 5. <u>USA</u>: All utilities within the work area shall be located and marked by USA prior to commencing excavation, trenching, micro-tunneling, or boring operations.
- 6. Work Hours: Unless stated otherwise in the specific comments, work hours are limited to the hours of 8:30 a.m. to 4:30 p.m., Monday through Friday. Be advised that uninterrupted traffic circulation within the public right-of-way is mandatory during the commute hour of 7:30 a.m. to 9:00 a.m. and 3:00 p.m. to 4:30 p.m. Work done on Saturdays, requiring inspection, is prohibited unless approved by the City Engineer and an inspector is available. Requests to work Saturday require two-week minimum prior notice. Inspection fees for Saturday work will be at time and a half (1-1/2) with a four-hour minimum. Said fee will be in accordance with the latest public works fee overtime schedule. No construction activity shall be permitted on Sundays or State and Federal holidays.
- 7. <u>Construction Staging</u>: Storage of construction materials and equipment within the public right-of-way is not permitted.
- 8. URCWP (General/As Applicable): Construction materials (i.e. cement bags, paints,

flammables, oils, fertilizers, pesticides, or any other materials that have potential for being discharged into the storm drain system by wind or as the result of a material spill) shall be kept in a contained and covered area on-site, as is practical, while construction is in progress. When feasible, tarps shall be used on the ground to collect fallen debris or splatters that could contribute to stormwater pollution. All temporary construction piles may remain on-site no more than 48 hours (continuous) and shall be securely covered overnight with a tarp or other device to contain debris. All construction debris shall be gathered and properly disposed of off-site on a regular basis.

- 9. Noise Generating Construction Activity: Maintain construction noise, dust control and cleanup to City acceptable levels. Construction equipment shall be properly muffled. Unnecessary idling of excavation and/or grading equipment is prohibited. Stationary noise-generating construction equipment such as compressors shall be located as far as practical from occupied residential housing units. Contractor shall be responsible for responding to any local complaints about construction noise.
- 10. <u>Daily Work Site Cleanup</u>: Trash and debris shall be cleaned up daily. Work area and haul routes shall be swept daily (with water sweepers) to remove construction-related materials. All construction debris shall be gathered on a regular basis and placed in a dumpster which is emptied or removed weekly. Any temporary on-site construction piles shall be securely covered with a tarp or other device to contain debris. Construction and demolition debris, and recycling, disposal shall be in accordance to the Alameda Municipal Code, Chapter XXI.
- 11. Storm Water BMP: Construction equipment, tools, etc. shall not be cleaned or rinsed into a street, gutter or storm drain. Concrete trucks and concrete finishing operations shall not discharge wash water into the street gutters or drains. There shall be no debris in the gutters. A contained and covered area on-site shall be used for storage of cement bags, paints, flammables, oils, fertilizers, pesticides, or any other materials that have potential for being discharged to the storm drain system by wind or in the event of a material spill. When feasible, tarps shall be used on the ground to collect fallen debris or splatters that could contribute to storm water pollution. Construction best management practices (BMP) for control of storm water runoff (e.g. straw waddles at catch basin inlets) shall be used where applicable. Contact the Public Works Environmental Services Division, at (510) 749-7930 for information on best management practices.
- 12. Pavement, Traffic Striping & Detectors: If the street pavement in the vicinity of the job site is damaged as a result of construction activity, then either pavement repair/reconstruction or an asphalt concrete overlay shall be required, as determined by the City Engineer or assigned representative. Additionally, traffic striping & marking, signal detectors, curb, gutter and other concrete improvements, damaged as a result of construction shall be replaced to the satisfaction of the City Engineer or assigned representative. Installation and maintenance of temporary striping and pavement markers is required while work is ongoing.

- 13. <u>Traffic Control</u>: If construction work encroaches within the right-of-way, the applicant must submit a traffic control plan that conforms to the following requirements:
 - The traffic control plan shall follow the standards and guidelines provided by the most recent version of the CA MUTCD and Caltrans Standard Plans.
 - If a lane is to remain open, the lane width shall be at least:
 - o 12 feet on truck routes, bus routes, and paratransit routes
 - o 10 feet otherwise.
 - Base the taper lengths, delineator spacing, and sign spacing on a traffic speed equal to the posted speed limit plus 5 MPH.
 - Notify Joseph Robinson at AC Transit (510-891-4908) if the work zone is in a bus stop, near a bus stop, or on a bus route. The work shall not interfere with AC Transit bus service in the area. Joseph Robinson shall be notified at least 2 weeks in advance of the work.
 - Notify Rochelle Wheeler at the City of Alameda Public Works Department (510-747-7944) if the work zone is in or near a City of Alameda Paratransit Shuttle stop.
 - Pedestrians shall be properly detoured at appropriate crossing locations whenever a sidewalk/crosswalk is closed. See the California MUTCD for guidance. Please keep in mind those pedestrians that may be disabled. Only one crossing at an intersection shall be closed at any time.
 - Applicant shall conform to all ADA standards.
 - If flaggers are used in the detour plan, they shall be shown in the drawings.
 - The applicant must obtain approval from the property owner of any driveways being blocked.
 - If the work is encroaching onto private properties, the applicant shall get approval from the appropriate property owners before proceeding with the work.
 - If the work is on State Route 61, the applicant shall get the proper approved permits from Caltrans
 - Applicant shall not park their vehicle, and not on/over curb or on the sidewalk or paths.
- 14. <u>CCTV Inspection (As Applicable)</u>: Where boring or micro-tunneling work is proposed, all adjacent utility lines shall be closed circuit television (CCTV) inspected prior to the commencement of work and after the completion of work. Pipe cleaning shall be performed prior to CCTV inspection and all debris shall be removed from the pipeline. If the pipeline is damaged, it shall be replaced at the permittee's expense to the satisfaction of the City Engineer or his designated agent.
- 15. Open Trench Excavation: At no time shall there be more than 200 lineal feet of the trench opened along any single conduit alignment, including the section opened ahead of the pipe laying and the section behind the pipe laying which has not been completely backfilled and has a temporary cap. This also dictates the maximum length of right-of-way that may be posted with no parking signs at any one time.

- 16. Excavation Restoration: Excavation restoration in the roadway shall conform to City of Alameda Standard Plan 2930-22 and the following condition: At the direction of the City Engineer or assigned agent, pavement restoration may extend to a maximum 18" beyond the standard plan limits where existing adjacent pavement is raveled or alligatored. Pavement restoration shall include sawcut, removal of asphalt concrete, and replacement in kind in conjunction with the trench restoration/paving course. The limits of the area within the roadway to be repaved must be pre-approved by the City Inspector. All work shall be done to the satisfaction of the City Engineer or his assigned agent.
- 17. <u>Hardscape Restoration</u>: A concrete permit is required for the demolition and restoration of concrete curb, gutter and sidewalk within the public right-of-way. Concrete restoration of concrete curb, gutter, sidewalk and/or driveway within City right-of-way shall conform to City of Alameda Standard Plan 6297-24. Also, existing decorative concrete (e.g. tinted concrete, etc.) shall be replaced in kind and to the nearest expansion joint.
- 18. <u>Site Restoration</u>: Upon completion of the work all existing improvements within the project area (e.g. landscaping, irrigation, utilities, paths, area drainage, etc.) shall be completely restored to prior condition, or better, within five (5) working days of installation. Any damage within the public-right-of-way shall be replaced at the permittee's expense to the satisfaction of the City Engineer or his designated agent.
- 19. <u>Construction Inspection</u>: The permittee shall notify the Public Works Inspector (510) 747-7930, 48-hours prior to beginning of any work within the City right-of-way. Work performed or covered without adequate notice will be subject to rejection.


Should you require further clarification regarding these comments, contact Oskar Garcia at (510) 747-7964.


OG:pl

G:\pubworks\Permits\2017\Excavation\EX17-0018.1208 Lincoln.Drill 4 Borings for Groundwater Samples\EX17-0018.(A).1208 Lincoln.drill 4 borings for groundwater samples.doc

APPENDIX C

Utility Maps

APPENDIX D	
Standard Operating Procedures for Soil Borings and Monitoring Wells	

STANDARD FIELD PROCEDURES FOR SOIL BORINGS

This document describes Pangea Environmental Services' standard field methods for drilling and sampling soil borings. These procedures are designed to comply with Federal, State and local regulatory guidelines. Specific field procedures are summarized below.

Objectives

Soil samples are collected to characterize subsurface lithology, assess whether the soils exhibit obvious hydrocarbon or other compound vapor odor or staining, estimate ground water depth and quality, and to submit samples for chemical analysis.

Soil Classification/Logging

All soil samples are classified according to the Unified Soil Classification System by a trained geologist, scientist or engineer working under the supervision of a California Registered Engineer, California Registered Geologist (RG) or a Certified Engineering Geologist (CEG). The following soil properties are noted for each soil sample:

- Principal and secondary grain size category (i.e. sand, silt, clay or gravel)
- Approximate percentage of each grain size category,
- Color
- Approximate water or product saturation percentage,
- Observed odor and/or discoloration,
- Other significant observations (i.e. cementation, presence of marker horizons, mineralogy), and
- Estimated permeability.

Soil Boring and Sampling

Soil borings are typically drilled using hollow-stem augers or hydraulic-push technologies. At least one and one half ft of the soil column is collected for every five ft of drilled depth. Additional soil samples are collected near the water table and at lithologic changes. With hollow-stem drilling, samples are collected using lined split-barrel or equivalent samplers driven into undisturbed sediments beyond the bottom of the borehole. With hydraulic-push drilling, samples are typically collected using acetate liners. The vertical location of each soil sample is determined by measuring the distance from the middle of the soil sample tube to the end of the drive rod used to advance the split barrel sampler or the acetate tube. All sample depths use the ground surface immediately adjacent to the boring as a datum. The horizontal location of each boring is measured in the field from an onsite permanent reference using a measuring wheel or tape measure.

Drilling and sampling equipment is steam-cleaned prior to drilling and between borings to prevent cross-contamination. Sampling equipment is washed between samples with trisodium phosphate or an equivalent EPA-approved detergent.

Sample Storage, Handling and Transport

Sampling tubes or cut acetate liners chosen for analysis are trimmed of excess soil and capped with Teflon tape and plastic end caps. Soil samples are labeled and stored at or below 4°C on either crushed or dry ice, depending upon local regulations. Samples are transported under chain-of-custody to a State-certified analytic laboratory.

Field Screening

Soil samples collected during drilling will be analyzed in the field for ionizable organic compounds using a photo-ionization detector (PID) with a 10.2 eV lamp. The screening procedure will involve placing an undisturbed soil sample in a sealed container (either a zip-lock bag, glass jar, or a capped soil tube). The container will be set aside, preferably in the sun or warm location. After approximately fifteen minutes, the head space within the container will be tested for total organic vapor, measured in parts per million on a volume to volume basis (ppmv) by the PID. The PID instrument will be calibrated prior to boring using hexane or isobutylene. PID measurements are used along with the field observations, odors, stratigraphy and ground water depth to select soil samples for analysis.

Water Sampling

Water samples collected from borings are either collected from the open borehole, from within screened PVC inserted into the borehole, or from a driven Hydropunch-type sampler. Groundwater is typically extracted using a bailer, check valve and/or a peristaltic pump. The ground water samples are decanted into the appropriate containers supplied by the analytic laboratory. Samples are labeled, placed in protective foam sleeves, stored on crushed ice at or below 4°C, and transported under chain-of-custody to the laboratory.

Pangea often performs electrical conductivity (EC) logging and/or continuous coring to identify potential water-bearing zones. Hydropunch-type sampling is then performed to provide discrete-depth grab groundwater sampling within potential water-bearing zones for vertical contaminant delineation. Hydropunch-type sampling typically involves driving a cylindrical sheath of hardened steel with an expendable drive point to the desired depth within undisturbed soil. The sheath is retracted to expose a stainless steel or PVC screen that is sealed inside the sheath with Neoprene O-rings to prevent infiltration of formation fluids until the desired depth is attained. The groundwater is extracted using tubing inserted down the center of the rods into the screened sampler.

Duplicates and Blanks

Blind duplicate water samples are collected usually collected only for monitoring well sampling programs, at a rate of one blind sample for every 10 wells sampled. Laboratory-supplied trip blanks accompany samples collected for all sampling programs to check for cross-contamination caused by sample handling and transport. These trip blanks are analyzed if the internal laboratory QA/QC blanks contain the suspected field contaminants. An equipment blank may also be analyzed if non-dedicated sampling equipment is used.

Grouting

If the borings are not completed as wells, the borings are filled to the ground surface with cement grout poured or pumped through a tremie pipe.

Waste Handling and Disposal

Soil cuttings from drilling activities are usually stockpiled onsite on top of and covered by plastic sheeting. At least four individual soil samples are collected from the stockpiles for later compositing at the analytic laboratory. The composite sample is analyzed for the same constituents analyzed in the borehole samples. Soil cuttings are transported by licensed waste haulers and disposed in secure, licensed facilities based on the composite analytic results.

Ground water removed during sampling and/or rinsate generated during decontamination procedures are stored onsite in sealed 55 gallon drums. Each drum is labeled with the drum number, date of generation, suspected contents, generator identification and consultant contact. Disposal of the water is based on the analytic results for the well samples. The water is either pumped out using a vacuum truck for transport to a licensed waste treatment/disposal facility or the individual drums are picked up and transported to the waste facility where the drum contents are removed and appropriately disposed.

STANDARD FIELD PROCEDURES FOR MONITORING WELLS

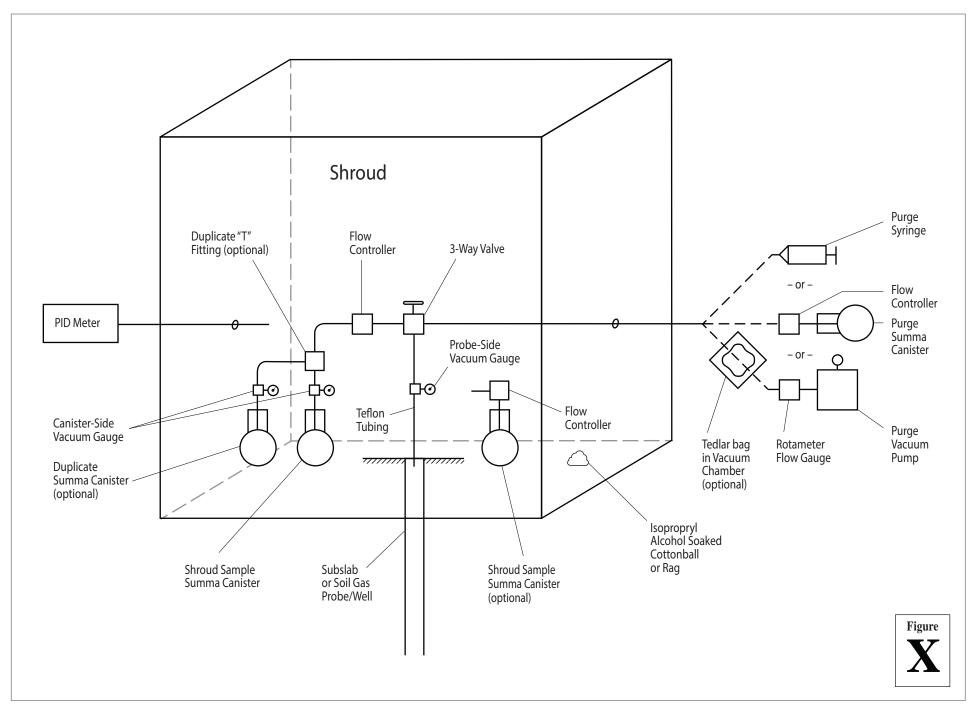
This document describes Pangea Environmental Services' standard field methods for drilling, installing, developing and sampling groundwater monitoring wells. These procedures are designed to comply with Federal, State and local regulatory guidelines. Specific field procedures are summarized below.

Well Construction and Surveying

Groundwater monitoring wells are installed in soil borings to monitor groundwater quality and determine the groundwater elevation, flow direction and gradient. Well depths and screen lengths are based on groundwater depth, occurrence of hydrocarbons or other compounds in the borehole, stratigraphy and State and local regulatory guidelines. Well screens typically extend 10 to 15 feet below and 5 feet above the static water level at the time of drilling. However, the well screen will generally not extend into or through a clay layer that is at least three feet thick.

Well casing and screen are flush-threaded, Schedule 40 PVC. Screen slot size varies according to the sediments screened, but slots are generally 0.010 or 0.020 inches wide. A rinsed and graded sand occupies the annular space between the boring and the well screen to about one to two ft above the well screen. A two feet thick hydrated bentonite seal separates the sand from the overlying sanitary surface seal composed of Portland type I, II cement.

Well-heads are secured by locking well-caps inside traffic-rated vaults finished flush with the ground surface. A stovepipe may be installed between the well-head and the vault cap for additional security. The well top-of-casing elevation is surveyed with respect to mean sea level and the well is surveyed for horizontal location with respect to an onsite or nearby offsite landmark.


Well Development

Wells are generally developed using a combination of groundwater surging and extraction. Surging agitates the groundwater and dislodges fine sediments from the sand pack. Wells may be surged prior to installation of the well seal to ensure that there are no voids in the sand pack. Development occurs 48 to 72 hours after seal installation to ensure that the Portland cement has set up correctly. After about ten minutes of surging, groundwater is extracted from the well using bailing, pumping and/or reverse air-lifting through an eductor pipe to remove the sediments from the well. Surging and extraction continue until at least ten well-casing volumes of groundwater are extracted and the sediment volume in the groundwater is negligible.

All equipment is steam-cleaned prior to use and air used for air-lifting is filtered to prevent oil entrained in the compressed air from entering the well. Wells that are developed using air-lift evacuation are not sampled until at least 72 hours after they are developed.

Groundwater Sampling

Depending on local regulatory guidelines, three to four well-casing volumes of groundwater are purged prior to sampling. Purging continues until groundwater pH, conductivity, and temperature have stabilized. Groundwater samples are collected using bailers or pumps and are decanted into the appropriate containers supplied by the analytic laboratory. Samples are labeled, placed in protective foam sleeves, stored on crushed ice at or below 4°C, and transported under chain-of-custody to the laboratory. Laboratory-supplied trip blanks accompany the samples and are analyzed to check for cross-contamination. An equipment blank may be analyzed if non-dedicated sampling equipment is used.

APPENDIX E

Boring Logs

Client Name					
Job / Site Name	Ele.	ian	t Ch	ane	rs
Location \	308	Lin	coln	Ave	_
Project Number	2			4	1985
Driller 3	_	4	casc	ade	
Drilling Method	Han	7	AUGS	Y	
Boring Diameter	3.7	15"			
Logged by	6.	Lerv	aag		
PF/PG					

Boring/Well Name S6 - 1	Page	1	of	1
Hand Augered to 5'				
Total Depth S				-
Date Started 3-6-17				
Date Completed 3, 6, 17				
Well Developent Date (yield)				2000
Ground Surface Elevation				
Top of Casing Elevation				
Screend Interval				
Depth to Water (first encountered)				
Depth to Water (static)				
Located See map				

							Oakland, CA 94612	Located		sec	W	2p				
Ì												Perce	ntages			
0_	Depth/Sample Interval	Тте	Sample ID	PID/Odor	Well Construction	So K	Soll Type and Comments	Color	Moisture	Density / Consistency	Clay	Silt	Sand	Gravel	Plasticity	Estimated Permeability
					4	We II	Z' conc. slab									
					1/1/1	03×	zil conc. slab xil sand gravel fill Brown stand to									
					2 1/1	bud	5' bys									
		<	h-1-4'		1///	- hyd bynt						-				
13	-	<u>x</u>	7-1-4	0	11 11	-Dry t	trac		0/10							
5_					16.4	-san 1		-	Band		_	30	70	1	-	high
- 1								-								
					We	J	Construction									
10_																
				_	- pr=	bbe tefl	set at 4.5' bgs									
				_	14	tet	on tubing to sur	toit								
				_	#35a	~9	on tubing to sur									
				-	Did	bent	3.5'-4' bys									
15_					Hyd	. Parv	+ 1.0 - 3.5" 695									
					Con	rete	wi well rout +	bm	atch	501	ta	ce	54	ad	ع	
20_																
									-			-				
25_																
											-	-				
30_											<u></u>					

Client Name	
Job/Site Name Elegant Cheaners	
Location 1208 Lincoln	
Project Number 2030-301. 318 1985,	00
Driller Cascale	
Drilling Method Hand Auger	
Boring Diameter 3, 25	
Logged by &. Lervage	
PE/PG	

Boring/Well Name	SG-2	Page	of (
Hand Augered to	5		
Total Depth	5'		
Date Started	3.6.17		
Date Completed	3,6,17		
Well Developent [Date (yield)		
Ground Surface E	levation		
Top of Casing Ele	vation —		
Screend Interval	_		
Depth to Water (fi	rst encountered)	4	
Depth to Water (s	tatic) pry		
Located	See map		

Soli Type and Comments Soli T	
Solitype and comments	
Well Construction - Probe set at 4.5' bas - Hyd. Bent to 1' - Concrete and L' well box to match surrounding	Estimated Permeability
Well Construction Probe set at 4.5' bas - Hyd. Bent to 1' - Concrete and L' well box to match surrounding	
Well Construction Probe set at 4.5' bas - Hyd. Bent to 1' - Concrete and L' well box to match surrounding	
Well Construction - Probe set at 4.5' bas - Hyd. Bent to 1' - Concrete and L' well box to match surrounding	
Well Construction - Probe set at 4.5' bas - Hyd. Bent to 1' - Concrete and L' well box to match surrounding	
Well Construction - Probe set at 4.5' bys - #3 sand from 4'-5' bys - Dry brent to 3.5' - Hyd. Bent to 1' - Concrete and L' well bop to match surrounding	
Well Construction - Probe set at 4.5' bas - #3 sand from 4'-5' bas - Dry brent to 3.5' - Hyd. Bent to 1' - Concrete and L' well box to match surrounding	- high
15	
15	
15	
15	
15	
15	
15	
15	
15	
15	
	ade.
	nd C.
20	
25	
	-
30	

Client Name	
Job/Site Name Elegant Cleaners	
Location 1208 Lincoln Ave, Alame	90
Project Number 337301 318 198 C)0
Driller Cascade	
Drilling Method H and Duger	
Boring Diameter	
Logged by E Lervage	
PE/PG	

Boring/Well Name SYE-1	Page	١	of	1
Hand Augered to 6				
Total Depth &				7
Date Started 3. 6.17				
Date Completed 3 · U · I 7				
Well Developent Date (yield)				
Ground Surface Elevation				
Top of Casing Elevation				
Screend Interval				
Depth to Water (first encountered)				
Depth to Water (static)				
Located See Wap			8.4	20000

							Canalia, OA 34012	Localed								
ſ	72											Percei	ntages			
•	Depth/Sample Interval	Тте	Sample ID	PID/Odor	Well Construction	nscs	Soil Type and Comments Z' Conc. 5 (a b- 2" sandy crave (fil)	Color	Moisture	Density / Consistency	Clay	Silt	Sand	Gravel	Plasticity	Estimated Permeability
	1				3		In conc. 5 (ab.									
					Mill		Brown sandwalt					30	70	1	_	high
					盘		to b' bys.									
					\otimes		3		Dame							
5_		5	15-1-4	Ö,	XX											
					XX		Boringterminald		met							
	rus II.	5	AE-1-P	0			7									
			•••													
10_																
	- 5	"	E 5300		Wel	l Ca	mstruction									
					Scr	een.	1 3'- 6									
15						ank	3' - surface									
					San		2.5' -5'									
		-			Be		2.5 - 15'	-								
				*	14/15	wt 11.16	2,5 to surface of flush with	4		1	f	-				
					100	11.32	34 TIOSH WITH	201	000	RIM	-	50	7			
20_																
															38.9	
										-						
25_											_	-				
												-				
					0.											
30					-											
~_						-	**************************************		-	-	The same of		-			

Client Name
Job/Site Name Elegant Cheaners
Location 1208 Lincoln
Project Number 225,00
Driller Cascale
Drilling Method Hand Auger
Boring Diameter
Logged by 6, Lervan
PE/PG

Boring/Well Name SYE- 2	Page) of (
Hand Augered to		
Total Depth 7		
Date Started 3. U. (7		
Date Completed 3: 6:17		
Well Developent Date (yield) VA		
Ground Surface Elevation -		
Top of Casing Elevation		
Screend Interval 3- L		
Depth to Water (first encountered)	- 1	
Depth to Water (static)		
Located Sia Was		

						Oakland, CA 94612	Located	300	- W/O	4					
								т т		_	Doroo	ntages	-		
Depth/Sample Interval	Time	Sample ID	PID/Odor	Well Construction	nscs	Soil Type and Comments	Color	Moisture	Density / Consistency	Clay	alls		Gravel	Plasticity	Estimated Permeability
				8											
				DINTHE BEET		Brow silty sad	Brh								
				爱		3									
5		Y-6-346	′ 0	X				damp		-	40	60		_	high
		sre-2-6'	٥		7'-	- Boring terminaly		wet							
10	-			Mo	11 6	onstruction									
				Sc	reen	0.079 slot #	-7'	bgs							
15				- So	tns tue	to 3.5 bgs to Surface to Surface.							111		
20			*	8	he	Il box w/ Conc	re te	pad							
25															
30															

Client Nam	e 814	gant	Ch	eaner	-5
Job / Site N	Name				
Location	1208	Linc	alas	Ave. A	laneda
Project Nur	mber 191	50,00	1. "	310	
Driller	Coisca	de			
Drilling Met	hod D	rect	Pus	h	
Boring Diar	meter	225"			
Logged by	3-1	Lerva	44		
DEIDO	B (1	ach - C	Stolal	/	

Boring/Well Name 8-4	Page	1	of	1
Hand Augered to 51				
Total Depth 121				
Date Started 5 27:17				
Date Completed 3 27 17				
Well Developent Date (yield)				
Ground Surface Elevation				
Top of Casing Elevation				
Screend Interval				
Depth to Water (first encountered)				
Depth to Water (static) 5 (8.3)				
Located See man				

						Oakland, CA 94612	Located	266	11.00						
7	T			5					_		Perce	ntages			2
Depth/Sample Interval	Тте	Sample ID	PID/Odor	Por In 5 Well Construction Oestruction	nscs	Soll Type and Comments	Color	Moisture	Density / Consistency	Clay	Silt	Sand	Gravel	Plasticity	Estimated Permeability
				Concre	-	4" Asphalt 8' Boserock									- 0
				1		Soil Type and Comments 4" Asphatt 8" Baserock Hund Auger tob									
				//		p26.									
				//		Silty Sand	Brown	_		-	40	60	-	low	high
5				//											
			0	//		Silty Sand, Brown	Brh								
				/_/		Color Poorly Graded		moist		-	40	60	-	low	high
_				50 g		Similar to 12'bys									
			0	12											
0				0											
_				//				wet							
			0	/	12'	- soring terminate									
_															
5															
_															
_															
_															
0															
5															
0															

Client Nam	· Elegant Cleaners
Job / Site N	lame
Location	1208 Lincoln
Project Nur	mber 1985,001. 310
Driller	Cascale
Drilling Met	hod Direct Push
Boring Diar	meter 2, 25"
Logged by	E. Lerwag
PE/PG	B. ChristRoldell

Boring/Well Name		Page	ĺ	of	1
Hand Augered to 5"					
Total Depth 12					
Date Started 3- 77:1	7				
Date Completed 3 : 27	17				
Well Developent Date (yield)					
Ground Surface Elevation					
Top of Casing Elevation					
Screend Interval					
Depth to Water (first encountered)	-				
Depth to Water (static) 5 -	23				
Lacated SAA					

							Oakland, CA 94612	Located	See	mat						
Г			F		T		1				_	Perce	ntages			T =
n_	Depth/Sample Interval	Time	Sample ID	PID/Odor	Well Construction	nscs	Soil Type and Comments	Color	Moisture	Density / Consistency	Clay	Silt	Sand	Gravel	Plasticity	Estimated Permeability
					Conc.		4 Asphalt									
İ					//		Soil Type and Comments "Asphalt ish base rock Hund Auger to 5' Silty Sand									
					//		Silty Sand	Brh			_	40	60	1		high
					/,											
İ					/											
5			٥		1		Silty St. 1 R.	Brh								—
Ì					//		0	W IV	moist		-	ua	(s	_		Sarel
ł	-				5		Solly Sand, Brown Poorly graded. Similar to 12'		110151			do	Ç			high
ł	-		0		500		Similar to 12						_	_		-
-	\dashv				151											-
10_	-				//	-										
-	-								wet							
	_		6		//	12	Baring term.									
	_						,									
15																
T																
Ī																
ı																
ŀ												_				
ł																
20 +	\dashv				 							-		_		-
ŀ	-				-							_		_		-
ŀ	-	_			-						_					-
-	-															
	_															
25_																
-																
	\exists															
107					1											1

Client Nam	· Elec	jant	Che	aners	
Job / Site N	lame				
Location	1208	Line	aln	Ane	
Project Nur	nber 191	5,00	1. 3	0	
Driller	Casco	de			
Drilling Met	hod Dir	ect fly	sh		
Boring Diar	neter 2	25"			
Logged by	E le	neag			
PE/PG	B. Clos	K-Rid	kle//		

Boring/Well Name B - 6	Page	(of \
Hand Augered to 5			
Total Depth (2			
Date Started 3' 27: 17			
Date Completed 3 . 27 . (7			
Well Developent Date (yield)			
Ground Surface Elevation			
Top of Casing Elevation			
Screend Interval			
Depth to Water (first encountered)			
Depth to Water (static) 5 . 9 5			
Located See man			

							Canalia, CA 54012	Located		2007 114						
	\neg											Parca	ntages			
n	Depth/Sample Interval	Time	Sample ID	PID/Odor	Residention Well Constitution	nscs	Soil Type and Comments 4" Assiralt g" bas 4	Golor	Moisture	Density / Consistency	Clay	SIIE	Sand	Gravel	Plasticity	Estimated Permeability
					Concrete		4" Asshalt									
	-				1	-	Hand Auger to 5' 5ilty Sand	Brown				40	60		low	high
5	+			0	/		Party Sorted					10			1000	ay.
					X			Moist								
10				0	10											
								wet								
	+			0			Boning Territorted									
15																
20																
25																
30																
	_															

Client Nam	· Eley	and	Che	aners
Job / Site N	lame			
Location	1208 1	-Inco	nla	Ave
Project Nu	mber 1985	.00	1.31	5
Driller	Casca	se_	-	
Drilling Met	hod Pirec	t. Po	sh	
Boring Dias	neter 2,2	5"		
Logged by	E. Les	mac		
PE/PG	B. Cla	K-Ri	ddel	

Boring/Well Name		Page	of	1
Hand Augered to 51				
Total Depth (2'				
Date Started 3 77	.17			
Date Completed 3 . Z 7	17			
Well Developent Date (yield)				
Ground Surface Elevation				
Top of Casing Elevation				
Screend Interval				
Depth to Water (first encountered)	-			
Depth to Water (static)	45			
Located				

			Τ	T							Perce	ntages			
Deoth/Sample Interval	Ттт	Sample ID	PID/Odor	Berne Well Construction Destruction	uscs	Soll,Type and Comments	Color	Moisture	Density / Consistency	Clay		Sand	Gravel	Plasticity	Estimated Permeability
				Cowde		8 Base									
				1		Hand Auger to 5									
				1		Silt Sand	Bour	_		_	40	60	-	low	high
				1		Soll, Type and Comments 4 Asphalt 8 Base Howal Auger to 5 Silty Saud Poosly Sorted	1,01000				10	60			my vi
				1		10014 301100									
+		_		1											
							roist								
	+			1			Puisi								
	+	1		13/								-			
	+	+		13											
+	+	+		10			+								
-	+	+				2 - 1 41	wet								
\vdash	+	-		_	-	Boring Terminated									
-	-						-				-		_		
-	+														
+	+														
-	+						-								
-	-		-												
-	-						-								
-	+		-												
+	-	-					-								
-	-	-	-				-								
_															
_															
1	-														

APPENDIX F

Subslab/Soil Gas Sampling Field Data Sheets

		SOIL	GAS PURGING	/ SAMPLING	LOG
Pro	ject Name: Elega	nt Cheaners	PANO	CEA	Probe / Well ID: SG-1
	k Numbers 7		PANG	GEA	Canister Serial #: Tedlar
	Date: 3.9	. 17			Flow Controller #:
	Sampler(s): E. Le	rueag			Initial Vacuum:
Sample	ID/Time: 56-1	1 1429	Wy !		Final Vacuum:
		•	1		Nage Transaction (1997)
	SPECIFICATIO	NS		PU	IRGE VOLUME CALCULATION
	ing Length: 5	inches- F+			g + sandpack+bentonite
	meter (ID):			Tubing = π x (tubing di	16 April 1973
	Diameter: 3.25	inches		Tubing = Bentonite = π x (borin	g diameter/2)² bentonite height x .5[porosity] x 16.4
	ack height: \Z'	inches			g diameter/2) ² sandpack height x .4[porosity] x 16.4
	be Length:	inches		bentonite=	ML TOP
	Diameter: 0.5	inches		Sandpack =	650 mL
	Flow Rate: 150	mL/min mL/min		Single Purge Volume = Total Purge Volumes =	10 8 2 mL 32 U/c mL
ruige	now hate.		711164	Total Purge Time =	Zimin 38 seconds
	Distriction 2				
π = :	3.1416	1 inch ³ = 16.4 mL	5 mL purge / 1 ft	tubing	Estimated Porosity, Sandpack = 0.4; bentonite = 0.5
HIIT-IN TE	ST start time/pressure	("He):	and time/n	ressure ("Hg):	
TIME	PURGE TIME	He TPAIN SHROUD	CANISTER PRESSURE	Probe-side Vacuum	COMMENTS
TIIVIE	(min./sec.)	(%/EPPM)	("Hg)	("H20// "Hg)	COMMENTS
1406	0	1.6		0	
1409	3	12. 4		Z	· Markey con profession
1412	L	11. 3		Z	
415	9	10.9		Z	
14 18	12	11.6		Z	
1421	15	9.4		Z	
1424	18	8.7	-	Z	add IPA
1428	21:38	16 4		7	
1424		15.8		2	Start Saple
1433		13.1		2	Stop Saph
					Post-sampling PID screening (ppm):
					0.0
NOTES:					

		SOIL	GAS PUR	GING / SAMP	LING L	og
Project/Tas Sample Tubing Dia Boring Dry Benton Sandpo	Date: 3 9 Sampler(s): B Le Sampler(s): B Le Specification Specifi	art Cheaners 1985.0 117 2 1334 DNS inches inches inches inches inches inches inches	P	Purge Volum Tubing = π x Bentonite = Sandpack = 1 be	PUR e = tubing diat (tubing diat Tubing = π x (boring of t x (boring of the control of the cont	Probe / Well ID: Canister Serial #: Flow Controller #: Initial Vacuum: Final Vacuum: Final Vacuum: GE VOLUME CALCULATION + sandpack+bentonite meter/2)² x length mL diameter/2)² bentonite height x .5[porosity] x 16.4 mL mL mL
	Flow Rate:	mL/min mL/min	Carlo	Single Purge V Three Total Purge V		mL mL
	3.1416	1 inch ³ = 16.4 mL	5 mL purg	Total Purg	e Time =	seconds stimated Porosity, Sandpack = 0.4; bentonite = 0.5
HUT-IN TE	ST start time/pressure	e ("Hg):		time/pressure ("Hg)		
TIME	PURGE TIME (min./sec.)	He / IPA IN SHROUD (% / PPM)	CANISTER PRES ("Hg)	SSURE Probe side		COMMENTS
312	0	3.8	1.18/	7	116/	
1315	3	17.6		<		
1318	6	18.1		4		
1321	9	17.3		4		
1324	12	17.5				
1327	15	16.8				
1330	18	16.3		4		
1334	21:38	16.9			1	
	21.38	16.1			_	
1334		16.2		2		Start Saple
1338		13.7		4		Stop Saple
320						
					_	
					_	
					-	
						Post-sampling PID screening (ppm):
		+		_		
						0.0
NOTES:						

		SOIL	GAS PURGING	/ SAMPLING	LOG
Project/Task S Sample	Date: 3 - 9. Sampler(s): 5. Le ID / Time: VW ~ 2 SPECIFICATION ing Length: 5	t Cheaners 17 17 17 17 17 185 185 185 186 186	PANO OI E, I CO	Purge Volume = tubir	Probe / Well ID: VW - 2 Canister Serial #: Te dlav Flow Controller #: Initial Vacuum: Final Vacuum: PURGE VOLUME CALCULATION Ing + sandpack+bentonite diameter/2] ² x length
Boring Dry Bentoni	Diameter: 2"	inches		Tubing = Bentonite = π x (boring)	mL sing diameter/2) ² bentonite height x .5[porosity] x 16.4
Probe Probe Summa Purge	ack height: /2. bbe Length: Diameter: 0.5 Flow Rate: /50 Flow Rate: /50	inches inches inches mL/min mL/min	Three 1	Sandpack = π x (borin bentonite= Sandpack = Single Purge Volume = Total Purge Volumes = Total Purge Time =	mg diameter/2)² sandpack height x .4[porosity] x 16.4 =
π= 3	3.1416	1 inch = 16.4 mL	5 mL purge / 1 ft t	lubing	Estimated Porosity, Sandpack = 0.4; bentonite = 0.5
HUT-IN TE	ST start time/pressure (("Hg): He / IPA IN SHROUD	end time/pi	ressure ("Hg): Probe-side Vacuum	
TIME	(min./sec.)	(% (PPM))	("Hg)	"H20/ "Hg)	COMMENTS
1231	0	6.8		3	Start Purge
1234	3	14.1		3	
1237	5:32	13.3		3	Stop Purge
12.38		12.6		3	Start Sagle
12 M Z		٩. ٤		3	Post-sampling PID screening (ppm):
NOTES:					

		SOIL	GAS PURGING	/ SAMPLING	LOG	
Pro	ject Name: Elege	ant Cheaners	PAN	GEA	Probe / Well ID:	W-3
	sk Number: 1985		PAN	GEA		cellar
	Date: 3.0	1.17	A.		Flow Controller #:	
	Sampler(s): 6.				Initial Vacuum:	_
Sample	ID / Time: V W "	3 1203			Final Vacuum:	_
			5			, 21 11 11 11 11
	SPECIFICATI	ONS	E-mail	PI	URGE VOLUME CALCULATION	
	ing Length:	inches			ng + sandpack+bentonite	
	meter (ID):	inches	ee	Tubing = π x (tubing of Tubing =	liameter/2) ² x length mL	1,00
	nite Height:	inches	W-Z		ng diameter/2) ² bentonite height	Sinorosity) v 16.4
Sandpa	ack height:	inches			g diameter/2) ² sandpack height x	
	be Length:	inches		bentonite=	mL	
	Diameter:	inches		0.000.000	mL mL	
	Flow Rate:	mL/min mL/min		Single Purge Volume = Total Purge Volumes =		113
		,	· · · · · · · · · · · · · · · · · · ·	Total Purge Time =		
			an a sena			
$\pi = 3$	3.1416	1 inch ³ = 16.4 mL	5 mL purge / 1 ft	tubing	Estimated Porosity, Sandpack = 0	.4; bentonite = 0.5
HUT-IN TE	ST start time/pressure	e ("Hg):	end time/p	ressure ("Hg):		
TIME	PURGE TIME	He AIPA IN SHROUD	CANISTER PRESSURE	Probe-side Vacuum	COMME	MTC
	(min./sec.)	(% PPM)	("Hg)	("H20/ "Hg)		413
1158	0	5.6		4	Start Purge	
1201	3	11. 3		4		
1203	5:32	9.7		4	Stop Purga	
203		16.4		4	Start Sarph	
1208		12.3		4	Stop Sapk	
		1				
-						
				b.		
		_				-
					Doot complies DID	
					Post-sampling PID scree	ening (ppm):
NOTES:						
-						

		SOIL	GAS PURGING	/ SAMPLING	LOG
Pro	ject Name: Elego	int Cheaners			Probe / Well ID: VW - V
	sk Number: 1985		PANO	3EA	Canister Serial #: Tedlar
		9.17			Flow Controller #:
3	Sampler(s): E, L	The same of the sa			Initial Vacuum:
	e ID / Time: Y W -		may !		Final Vacuum:
			1	13 ×	The Focusin.
	SPECIFICATION	ONS			LIBCE VOLUME CALCIU ATION
Tub	ing Length:	inches			URGE VOLUME CALCULATION ng + sandpack+bentonite
	meter (ID):	inches			diameter/2) ² x length
	Diameter:	inches	1 7	Tubing =	mL
	nite Height:	inches		Bentonite = π x (boris	ng diameter/2) ² bentonite height x .5[porosity] x 16.4
	bbe Length:	inches	-	bentonite=	ng diameter/2) ² sandpack height x .4[porosity] x 16.4
	Diameter:	inches		Sandpack =	
	Flow Rate:	mL/min	S	ingle Purge Volume =	
Purge	Flow Rate:	mL/min	Three T	otal Purge Volumes =	
				Total Purge Time =	seconds
π = 3	3.1416	1 inch ³ = 16.4 mL	5 mL purge / 1 ft to	ubing	Estimated Porosity, Sandpack = 0.4; bentonite = 0.5
HUT-IN TE	ST start time/pressure		end time/pr	essure ("Hg):	
TIME	PURGE TIME	He LIPA IN SHROUD	CANISTER PRESSURE	Probe-side Vacuum	COMMENTS
1124	(min./sec.)	(% (PPMD)	("Hg)	("H20/ "Hg)	
127	3	15.4		11	Start Purge
1130	5:32	13.3		21	() 0
					Stop Purge
200/2000		10.7			
1131		12.7		21	Start Sample
1135		9.1		<1	Stop Sample
	11-				
					Post-sampling PID screening (ppm):
NOTES:	Ų				

		SOIL	GAS PURGING	/ SAMPLING	LOG			
Project/Tas	Date: 3 9	Lervaag	PANG		Probe / Well ID: 35-2 Canister Serial #: Tedlar Flow Controller #: Initial Vacuum: Final Vacuum: URGE VOLUME CALCULATION			
Tubing Dia Boring Dry Bentor Sandp Pro Probe Summa Purge	Tubing Length: 3 inches inches Purge Volume = tubing + sandpack+bentonite Tubing Diameter (ID):							
SHUT-IN TE	ST start time/pressure	("He):	and time/or	essure ("Hg):				
TIME	PURGE TIME	He / IPA IN SHROUD	CANISTER PRESSURE	Probe-side Vacuum	COMMENTS			
1347	(min./sec.)	(%/PPM)	("Hg)	("H20/"Hg) 5 ml in 7	20 SEC			
1351		9.7 12. Z		< < < < < < < < < <	Start Saple Stop Saple Post-sampling PID screening (ppm):			
NOTES:								

		SOIL	GAS PURGING	/ SAMPLING	LOG
Proje	ect Name: [Ele	gant Cleaners	PANG	EA	Probe/Well ID: SS-3
Project/Task		1001.310	FAIVE	LA	Canister Serial #: Ted lar
		1.17	1		Flow Controller #:
	And the second s	Lervang		\rightarrow	Initial Vacuum:
Sample	ID / Time: 55 -	3 (1443		21	Final Vacuum:
	72272727474343				
Tubin	SPECIFICAT ng Length:	IONS inches			JRGE VOLUME CALCULATION g + sandpack+bentonite
Tubing Dian		inches		Tubing = $\pi \times \text{(tubing d)}$	JT 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1
	Diameter:	inches	ee	Tubing =	mL
Dry Bentoni	-				ng diameter/2) ² bentonite height x .5[porosity] x 16.4
	ck height:	inches	alcs		g diameter/2) ² sandpack height x .4[porosity] x 16.4
	be Length:	inches		bentonite= Sandpack =	
	low Rate:	mL/min	s	ingle Purge Volume =	
	low Rate:	mL/min		otal Purge Volumes =	mL
				Total Purge Time =	\ \ \ \ \ \ \ \ seconds
π = 3.	1416	1 inch ³ = 16.4 mL	5 mL purge / 1 ft to	ubing	Estimated Porosity, Sandpack = 0.4; bentonite = 0.5
HUT-IN TES	T start time/pressu		end time/pro	essure ("Hg):	
TIME	PURGE TIME (min./sec.)	He / IPA IN SHROUD (% / PPM)	CANISTER PRESSURE ("Hg)	Probe-side Vacuum ("H20// "Hg)	COMMENTS
1441		Purge W/ Su	ringe 4	siml in 2	o seconds
1443		10.2		21	Start Sapk
1448		8.1		<1	Stop Suple
)	
		-			
					Post-sampling PID screening (ppm):
					, , , , , , , , , , , , , , , , , , ,
NOTES:					
-					
_				_	
-					
_					

		SOIL	GAS PURGING	/ SAMPLING	LOG	
		nt Cheaners	PANO	SEA	Probe / Well ID: SS-4	
Project/Tas	sk Number: 1985.				Canister Serial #: Tedlar	
	Date: 3-9		-6-		Flow Controller #:	
	Sampler(s): E. L. e ID / Time: SS-4		W.		Initial Vacuum:	
Sample	e 10 / 11me:	11304	al ala		Final Vacuum:	_
	SPECIFICATIO	as ic				
Tub	SPECIFICATIO oing Length:	inches			URGE VOLUME CALCULATION ng + sandpack+bentonite	
	meter (ID):	inches		Tubing = $\pi \times \text{(tubing d)}$		
	g Diarneter: nite Height:	inches S	5-2	Tubing =		
	ack height:	inches			ng diameter/2) ² bentonite height x .5[porosity] x 16.4 ng diameter/2) ² sandpack height x .4[porosity] x 16.4	
CONTRACTOR OF THE PARTY OF THE	obe Length:	inches	4105	bentonite=		
	e Diameter:	inches		Sandpack =		
	Flow Rate:	mL/min mL/min		ingle Purge Volume = otal Purge Volumes =		
ruige	How Nate.	mc/mm	iniee	Total Purge Time =		
π =	3.1416	1 inch ³ = 16.4 mL	5 mL purge / 1 ft t	ubing	Estimated Porosity, Sandpack = 0.4; bentonite = 0.5	
SHUT-IN TE	EST start time/pressure			essure ("Hg):		
TIME	PURGE TIME (min./sec.)	He (TPA)IN SHROUD (% (PPM))	CANISTER PRESSURE ("Hg)	Probe-side Vacuum ("H20/ "Hg)	COMMENTS	
1503	Pur				o sec	
1505	401.	1c w/ 39	inge 49	mil in c	0 266	
		7.0		11	() 1 () 1	
1504		7.9			Start Sapk	
1509		12.2		<u> </u>	Stop Sample	
						_
						-
		-				
						_
		-			Post-sampling PID sessoning (nam)	_
					Post-sampling PID screening (ppm):	
NOTES	-					
NOTES:						
9						
1)						

APPENDIX G

Laboratory Analytical Reports

Curtis & Tompkins, Ltd., Analytical Laboratories, Since 1878

2323 Fifth Street, Berkeley, CA 9471O, Phone (510) 486-0900

Laboratory Job Number 286726 ANALYTICAL REPORT

Pangea Environmental Project : STANDARD

1710 Franklin Street Location : Elegant Cleaners Oakland, CA 94612

Level : II

Sample ID	<u>Lab ID</u>
SVE-1-4'	286726-001
SVE-1-6'	286726-002
SG-1-4'	286726-003
SVE-2-4'	286726-004
SVE-2-6'	286726-005
SG-2-4'	286726-006

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis. This report may be reproduced only in its entirety.

Signature:

Will Rice Project Manager will.rice@ctberk.com (510) 204-2221 Ext 13102

Will Rice

CA ELAP# 2896, NELAP# 4044-001

1 of 24

Date: <u>03/15/2017</u>

CASE NARRATIVE

Laboratory number: 286726

Client: Pangea Environmental Location: Elegant Cleaners

Request Date: 03/07/17 Samples Received: 03/07/17

This data package contains sample and QC results for four soil samples, requested for the above referenced project on 03/07/17. The samples were received cold and intact.

TPH-Purgeables and/or BTXE by GC (EPA 8015B):

No analytical problems were encountered.

Volatile Organics by GC/MS (EPA 8260B):

High recovery was observed for 1,1-dichloroethene in the MSD for batch 245260; the parent sample was not a project sample, the BS/BSD were within limits, the associated RPD was within limits, and this analyte was not detected at or above the RL in the associated samples. High recovery was observed for 1,1-dichloroethene in the MSD for batch 245303; the parent sample was not a project sample, the BS/BSD were within limits, the associated RPD was within limits, and this analyte was not detected at or above the RL in the associated sample. No other analytical problems were encountered.

CHAIN OF CUSTODY

Phone (S10) 486-0902 Phone (S10) 486-0902 Phone (S10) 486-0902 Phone (S10) 486-0902 Phone (S10) 486-0502	Curtis & Tompkins Laboratories environmental analytical testing Laboratory	Kins Laboratory	ے ۔
Sampler E. Larvord Sampler Sampl	Fifth Street ey, CA 94710		ANALYTICAL REQUEST
Company Canger Employer Canger Employer Canger Cange	No:		
Collected Coll		Report to: Jacke Wil	
Sampling Maring Sampling Maring Sampling Maring Sampling Maring Sampling Maring Sampling Maring Sampling Maring Sampling Maring Sampling Maring Sampling Maring Sampling Maring Sampling Maring Sampling Maring Sampling Maring Sampling Maring Sampling Maring Marin		Company: Panger Env	
Sampling Matrix Chemical Collected		Telephone:	
Sample ID. SAMPLING MATRIX GEORGE CHEMICAL TO COINCIDE CO	Turnaround Time: 🗌 RUSH	Email: Jw 1500 &	
Dote Collected Collected Gold Gold Gold Gold Gold Gold Gold Gol	Lab Sample ID.	MATRIX	
5 VE-1-4' 3 V-1-960 X 3 X X X X X X X X X X X X X X X X X		Collected Water Solid Solid	
\$\sum_{\text{sve-1b'}} ing to the text of the		5 X 0360 LV 3	+
\$\sqrt{26.2.4}\$ \$\sqrt{4}\$ \tau \tau \tau \tau \tau \tau \tau \tau	- 1	Odss X 3	X X X
5 y € · 2 · 4 / y 4 20	, h-1-95	x ×	×
SAMPLE SAMPLE RECEIPT Cold Ambient Ambient DATE: TIME:	5ve. 2.4'	X 3	
\$45 2 - 44	SYE- 7- 1	x 42 b	XX
SAMPLE RECEIPT Intoct Cold Ambient Ambient Date: Time:		6.17 1736 X 3	× ×
SAMPLE RECEIPT Cold Cold Cold Cold Cold Cold Cold Cold			
SAMPLE RECEIPT Cold Cold Cold Cold Cold Cold Cold Cold			
SAMPLE RECEIPT Date: Time:			
SAMPLE RECEIPT RECEIPT Cold Cold Cold Cold Cold Cold Cold Cold			
SAMPLE RECEIPT RECEIPT CATOM DATE: TIME: CATOM DATE: TIME: DATE: TIME: DATE: TIME: DATE: TIME: DATE: TIME: DATE: TIME:			
DATE: TIME: DATE: TIME: DATE: TIME: DATE: TIME: DATE: TIME:	Notes:		, RECEIVED BY:
DATE: TIME: DATE: TIME: DATE: DATE:		3.7,17 DATE:	7//7 E: TIME: 08.3
DATE: TIME: DATE:		DATE:	
		DATE:	

COOLER RECEIPT CHECKLIST

Login # 286726 Date Received 3/7/17 Client Panger Enviro Service Project Elegan	Number of coolers
Date Opened 3-7-17 By (print) DC (sign)	225
Date Logged in By (print) (sign) (sign) (sign)	anguje
Did cooler come with a shipping slip (airbill, etc) Shipping info	YES MO
2A. Were custody seals present? YES (circle) on cooler Name	Date
2B. Were custody seals intact upon arrival? 3. Were custody papers dry and intact when received? 4. Were custody papers filled out properly (ink, signed, etc)? 5. Is the project identifiable from custody papers? (If so fill out top	YES NO MAY YES NO YES NO
6. Indicate the packing in cooler: (if other, describe)	1
☐ Bubble Wrap ☐ Foam blocks ☐ Bags ☐ Cloth material ☐ Cardboard ☐ Styrofoam 7. Temperature documentation: * Notify PM if temperature expressions of the state o	☐ None ☐ Paper towels sceeds 6°C
Type of ice used: Wet ☐ Blue/Gel ☐ None	Temp(°C)
☐ Temperature blank(s) included? ☐ Thermometer#	1 IR Gun#4
☐ Samples received on ice directly from the field. Cooling pr	ocess had begun
8. Were Method 5035 sampling containers present? If YES, what time were they transferred to freezer? 9. Did all bottles arrive unbroken/unopened?	12.25
10. Are there any missing / extra samples?	YES NO
11. Are samples in the appropriate containers for indicated tests?	YES NO
13. Do the sample labels agree with custody papers?	VES NO
Was sufficient amount of sample sent for tests requested?	YES NO MA
16. Did you check preservatives for all bottles for each sample?	YES NO AFA
17. Did you document your preservative check? (pH strip lot#	YES NO MA
18. Did you change the hold time in LIMS for unpreserved VOAs? 19. Did you change the hold time in LIMS for preserved terracores?	YES NO YO
20. Are bubbles > 6mm absent in VOA samples?	VES NO XVA
21. Was the client contacted concerning this sample delivery?	YES NO
If YES, Who was called?By	Date:
COMMENTS 14. Only received 3 terracores, which not en	laugh for 2260 and

Detections Summary for 286726

Results for any subcontracted analyses are not included in this summary.

Client : Pangea Environmental

Project : STANDARD

Location : Elegant Cleaners

Client Sample ID : SVE-1-4' Laboratory Sample ID : 286726-001

No Detections

Client Sample ID : SG-1-4' Laboratory Sample ID : 286726-003

No Detections

Client Sample ID : SVE-2-4' Laboratory Sample ID : 286726-004

Analyte	Result	Flags	RL	Units	Basis	IDF	Method	Prep Method
Tetrachloroethene	8.8		4.2	ug/Kg	As Recd	0.8361	EPA 8260B	EPA 5035

Client Sample ID : SG-2-4' Laboratory Sample ID : 286726-006

No Detections

Gasoline by GC/FID (5035 Prep) Lab #: 286726 Elegant Cleaners Location: EPA 5035 Client: Pangea Environmental Prep: Project#: STANDARD Analysis: EPA 8015B 03/06/17 03/07/17 Matrix: Soil Sampled: Units: mg/Kg Received: Basis: as received 03/09/17 Analyzed: Batch#: 245300

Field ID: SVE-1-4' 286726-001 Lab ID:

SAMPLE 1.000 Type: Diln Fac:

Analyte Result RLGasoline C7-C12 ND 0.16

Surrogate %REC Limits Bromofluorobenzene (FID) 95 70-138

Field ID: SG-1-4' Lab ID: 286726-003 SAMPLE Diln Fac: 1.000 Type:

Analyte Result Gasoline C7-C12 0.17

%REC Limits Surrogate Bromofluorobenzene (FID)

Field ID: SVE-2-4' Lab ID: 286726-004 SAMPLE Diln Fac: 1.000 Type:

Analyte Result RLGasoline C7-C12 ND 0.17

%REC Limits Surrogate

Bromofluorobenzene (FID)

Field ID: SG-2-4' 286726-006 Lab ID: Type: SAMPLE Diln Fac: 25.00

Analyte Result Gasoline C7-C12 ND

Surrogate %REC Limits Bromofluorobenzene (FID) 70-138

Type: BLANK Diln Fac: 1.000 Lāb ID:

QC875994

Result Analyte RLGasoline C7-C12 ND 0.20

Surrogate %REC Limits 70-138 Bromofluorobenzene (FID) 92

ND= Not Detected RL= Reporting Limit

Page 1 of 1

13.1

Gasoline by GC/FID (5035 Prep)					
Lab #:	286726	Location:	Elegant Cleaners		
Client:	Pangea Environmental	Prep:	EPA 5035		
Project#:	STANDARD	Analysis:	EPA 8015B		
Type:	LCS	Diln Fac:	1.000		
Lab ID:	QC875991	Batch#:	245300		
Matrix:	Soil	Analyzed:	03/09/17		
Units:	mg/Kg				

Analyte	Spiked	Result	%REC	Limits
Gasoline C7-C12	1.000	1.128	113	80-120

Surrogate %REC	Limits
Bromofluorobenzene (FID) 91	70-138

Page 1 of 1

	Gasoline by GC/FID (5035 Prep)						
Lab #:	286726	Location:	Elegant Cleaners				
Client:	Pangea Environmental	Prep:	EPA 5030B				
Project#:	STANDARD	Analysis:	EPA 8015B				
Field ID:	ZZZZZZZZZZ	Diln Fac:	1.000				
MSS Lab ID:	286797-003	Batch#:	245300				
Matrix:	Soil	Sampled:	03/08/17				
Units:	mg/Kg	Received:	03/08/17				
Basis:	as received	Analyzed:	03/10/17				

Type: MS Lab ID: QC875992

Analyte	MSS Result	Spiked	Result	%REC	Limits
Gasoline C7-C12	0.2913	10.00	8.131	78	49-120

Surrogate	%REC	Limits
Bromofluorobenzene (FID)	94	70-138

Type: MSD Lab ID: QC875993

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Gasoline C7-C12	9.524	7.351	74	49-120	5	32

Purgeable Organics by GC/MS				
Lab #:	286726	Location:	Elegant Cleaners	
Client:	Pangea Environmental	Prep:	EPA 5035	
Project#:	STANDARD	Analysis:	EPA 8260B	
Field ID:	SVE-1-4'	Diln Fac:	0.7657	
Lab ID:	286726-001	Batch#:	245260	
Matrix:	Soil	Sampled:	03/06/17	
Units:	ug/Kg	Received:	03/07/17	
Basis:	as received	Analyzed:	03/08/17	

Analyte	Result	RL	
Freon 12	ND ND	7.7	
Chloromethane	ND	7.7	
Vinyl Chloride	ND	7.7	
Bromomethane	ND	7.7	
Chloroethane	ND	7.7	
Trichlorofluoromethane	ND	3.8	
Acetone	ND	15	
Freon 113	ND	3.8	
1,1-Dichloroethene	ND	3.8	
Methylene Chloride	ND	15	
Carbon Disulfide	ND	3.8	
MTBE	ND	3.8	
trans-1,2-Dichloroethene	ND	3.8	
Vinyl Acetate	ND	38	
1,1-Dichloroethane	ND	3.8	
2-Butanone	ND	7.7	
cis-1,2-Dichloroethene	ND	3.8	
2,2-Dichloropropane	ND	3.8	
Chloroform	ND	3.8	
Bromochloromethane	ND	3.8	
1,1,1-Trichloroethane	ND	3.8	
1,1-Dichloropropene	ND	3.8	
Carbon Tetrachloride	ND	3.8	
1,2-Dichloroethane	ND	3.8	
Benzene	ND	3.8	
Trichloroethene	ND	3.8	
1,2-Dichloropropane	ND	3.8	
Bromodichloromethane	ND	3.8	
Dibromomethane	ND	3.8	
4-Methyl-2-Pentanone	ND	7.7	
cis-1,3-Dichloropropene	ND	3.8	
Toluene	ND	3.8	
trans-1,3-Dichloropropene	ND	3.8	
1,1,2-Trichloroethane	ND	3.8	
2-Hexanone	ND	7.7	
1,3-Dichloropropane	ND	3.8	
Tetrachloroethene	ND	3.8	

RL= Reporting Limit

Page 1 of 2

3.0

	Purgeable (Organics by GC/	'MS
Lab #:	286726	Location:	Elegant Cleaners
Client:	Pangea Environmental	Prep:	EPA 5035
Project#:	STANDARD	Analysis:	EPA 8260B
Field ID:	SVE-1-4'	Diln Fac:	0.7657
Lab ID:	286726-001	Batch#:	245260
Matrix:	Soil	Sampled:	03/06/17
Units:	ug/Kg	Received:	03/07/17
Basis:	as received	Analyzed:	03/08/17

Analyte	Result	RL	
Dibromochloromethane	ND	3.8	
1,2-Dibromoethane	ND	3.8	
Chlorobenzene	ND	3.8	
1,1,1,2-Tetrachloroethane	ND	3.8	
Ethylbenzene	ND	3.8	
m,p-Xylenes	ND	3.8	
o-Xylene	ND	3.8	
Styrene	ND	3.8	
Bromoform	ND	3.8	
Isopropylbenzene	ND	3.8	
1,1,2,2-Tetrachloroethane	ND	3.8	
1,2,3-Trichloropropane	ND	3.8	
Propylbenzene	ND	3.8	
Bromobenzene	ND	3.8	
1,3,5-Trimethylbenzene	ND	3.8	
2-Chlorotoluene	ND	3.8	
4-Chlorotoluene	ND	3.8	
tert-Butylbenzene	ND	3.8	
1,2,4-Trimethylbenzene	ND	3.8	
sec-Butylbenzene	ND	3.8	
para-Isopropyl Toluene	ND	3.8	
1,3-Dichlorobenzene	ND	3.8	
1,4-Dichlorobenzene	ND	3.8	
n-Butylbenzene	ND	3.8	
1,2-Dichlorobenzene	ND	3.8	
1,2-Dibromo-3-Chloropropane	ND	3.8	
1,2,4-Trichlorobenzene	ND	3.8	
Hexachlorobutadiene	ND	3.8	
Naphthalene	ND	3.8	
1,2,3-Trichlorobenzene	ND	3.8	

Surrogate	%REC	Limits	
Dibromofluoromethane	108	80-128	
1,2-Dichloroethane-d4	102	80-136	
Toluene-d8	105	80-120	
Bromofluorobenzene	104	80-132	

RL= Reporting Limit

Page 2 of 2

3.0

	Purgeable (Organics by GC/	'MS
Lab #:	286726	Location:	Elegant Cleaners
Client:	Pangea Environmental	Prep:	EPA 5035
Project#:	STANDARD	Analysis:	EPA 8260B
Field ID:	SG-1-4'	Diln Fac:	0.8489
Lab ID:	286726-003	Batch#:	245260
Matrix:	Soil	Sampled:	03/06/17
Units:	ug/Kg	Received:	03/07/17
Basis:	as received	Analyzed:	03/08/17

Analyte	Result	RL	
Freon 12	ND	8.5	
Chloromethane	ND	8.5	
Vinyl Chloride	ND	8.5	
Bromomethane	ND	8.5	
Chloroethane	ND	8.5	
Trichlorofluoromethane	ND	4.2	
Acetone	ND	17	
Freon 113	ND	4.2	
1,1-Dichloroethene	ND	4.2	
Methylene Chloride	ND	17	
Carbon Disulfide	ND	4.2	
MTBE	ND	4.2	
trans-1,2-Dichloroethene	ND	4.2	
Vinyl Acetate	ND	42	
1,1-Dichloroethane	ND	4.2	
2-Butanone	ND	8.5	
cis-1,2-Dichloroethene	ND	4.2	
2,2-Dichloropropane	ND	4.2	
Chloroform	ND	4.2	
Bromochloromethane	ND	4.2	
1,1,1-Trichloroethane	ND	4.2	
1,1-Dichloropropene	ND	4.2	
Carbon Tetrachloride	ND	4.2	
1,2-Dichloroethane	ND	4.2	
Benzene	ND	4.2	
Trichloroethene	ND	4.2	
1,2-Dichloropropane	ND	4.2	
Bromodichloromethane	ND	4.2	
Dibromomethane	ND	4.2	
4-Methyl-2-Pentanone	ND	8.5	
cis-1,3-Dichloropropene	ND	4.2	
Toluene	ND	4.2	
trans-1,3-Dichloropropene	ND	4.2	
1,1,2-Trichloroethane	ND	4.2	
2-Hexanone	ND	8.5	
1,3-Dichloropropane	ND	4.2	
Tetrachloroethene	ND	4.2	

RL= Reporting Limit

Page 1 of 2

	Purgeable (Organics by GC/	'MS
Lab #:	286726	Location:	Elegant Cleaners
Client:	Pangea Environmental	Prep:	EPA 5035
Project#:	STANDARD	Analysis:	EPA 8260B
Field ID:	SG-1-4'	Diln Fac:	0.8489
Lab ID:	286726-003	Batch#:	245260
Matrix:	Soil	Sampled:	03/06/17
Units:	ug/Kg	Received:	03/07/17
Basis:	as received	Analyzed:	03/08/17

Analyte	Result	RL	
Dibromochloromethane	ND	4.2	
1,2-Dibromoethane	ND	4.2	
Chlorobenzene	ND	4.2	
1,1,1,2-Tetrachloroethane	ND	4.2	
Ethylbenzene	ND	4.2	
m,p-Xylenes	ND	4.2	
o-Xylene	ND	4.2	
Styrene	ND	4.2	
Bromoform	ND	4.2	
Isopropylbenzene	ND	4.2	
1,1,2,2-Tetrachloroethane	ND	4.2	
1,2,3-Trichloropropane	ND	4.2	
Propylbenzene	ND	4.2	
Bromobenzene	ND	4.2	
1,3,5-Trimethylbenzene	ND	4.2	
2-Chlorotoluene	ND	4.2	
4-Chlorotoluene	ND	4.2	
tert-Butylbenzene	ND	4.2	
1,2,4-Trimethylbenzene	ND	4.2	
sec-Butylbenzene	ND	4.2	
para-Isopropyl Toluene	ND	4.2	
1,3-Dichlorobenzene	ND	4.2	
1,4-Dichlorobenzene	ND	4.2	
n-Butylbenzene	ND	4.2	
1,2-Dichlorobenzene	ND	4.2	
1,2-Dibromo-3-Chloropropane	ND	4.2	
1,2,4-Trichlorobenzene	ND	4.2	
Hexachlorobutadiene	ND	4.2	
Naphthalene	ND	4.2	
1,2,3-Trichlorobenzene	ND	4.2	

Surrogate	%REC	Limits	
Dibromofluoromethane	113	80-128	
1,2-Dichloroethane-d4	113	80-136	
Toluene-d8	104	80-120	
Bromofluorobenzene	106	80-132	

RL= Reporting Limit

Page 2 of 2

Purgeable Organics by GC/MS					
Lab #:	286726	Location:	Elegant Cleaners		
Client:	Pangea Environmental	Prep:	EPA 5035		
Project#:	STANDARD	Analysis:	EPA 8260B		
Field ID:	SVE-2-4'	Diln Fac:	0.8361		
Lab ID:	286726-004	Batch#:	245260		
Matrix:	Soil	Sampled:	03/06/17		
Units:	ug/Kg	Received:	03/07/17		
Basis:	as received	Analyzed:	03/08/17		

Analyte	Result	RL	
Freon 12	ND	8.4	
Chloromethane	ND	8.4	
Vinyl Chloride	ND	8.4	
Bromomethane	ND	8.4	
Chloroethane	ND	8.4	
Trichlorofluoromethane	ND	4.2	
Acetone	ND	17	
Freon 113	ND	4.2	
1,1-Dichloroethene	ND	4.2	
Methylene Chloride	ND	17	
Carbon Disulfide	ND	4.2	
MTBE	ND	4.2	
trans-1,2-Dichloroethene	ND	4.2	
Vinyl Acetate	ND	42	
1,1-Dichloroethane	ND	4.2	
2-Butanone	ND	8.4	
cis-1,2-Dichloroethene	ND	4.2	
2,2-Dichloropropane	ND	4.2	
Chloroform	ND	4.2	
Bromochloromethane	ND	4.2	
1,1,1-Trichloroethane	ND	4.2	
1,1-Dichloropropene	ND	4.2	
Carbon Tetrachloride	ND	4.2	
1,2-Dichloroethane	ND	4.2	
Benzene	ND	4.2	
Trichloroethene	ND	4.2	
1,2-Dichloropropane	ND	4.2	
Bromodichloromethane	ND	4.2	
Dibromomethane	ND	4.2	
4-Methyl-2-Pentanone	ND	8.4	
cis-1,3-Dichloropropene	ND	4.2	
Toluene	ND	4.2	
trans-1,3-Dichloropropene	ND	4.2	
1,1,2-Trichloroethane	ND	4.2	
2-Hexanone	ND	8.4	
1,3-Dichloropropane	ND	4.2	
Tetrachloroethene	8.8	4.2	

RL= Reporting Limit

Page 1 of 2

	Purgeable (Organics by GC/	'MS
Lab #:	286726	Location:	Elegant Cleaners
Client:	Pangea Environmental	Prep:	EPA 5035
Project#:	STANDARD	Analysis:	EPA 8260B
Field ID:	SVE-2-4'	Diln Fac:	0.8361
Lab ID:	286726-004	Batch#:	245260
Matrix:	Soil	Sampled:	03/06/17
Units:	ug/Kg	Received:	03/07/17
Basis:	as received	Analyzed:	03/08/17

Analyte	Result	RL	
Dibromochloromethane	ND	4.2	
1,2-Dibromoethane	ND	4.2	
Chlorobenzene	ND	4.2	
1,1,1,2-Tetrachloroethane	ND	4.2	
Ethylbenzene	ND	4.2	
m,p-Xylenes	ND	4.2	
o-Xylene	ND	4.2	
Styrene	ND	4.2	
Bromoform	ND	4.2	
Isopropylbenzene	ND	4.2	
1,1,2,2-Tetrachloroethane	ND	4.2	
1,2,3-Trichloropropane	ND	4.2	
Propylbenzene	ND	4.2	
Bromobenzene	ND	4.2	
1,3,5-Trimethylbenzene	ND	4.2	
2-Chlorotoluene	ND	4.2	
4-Chlorotoluene	ND	4.2	
tert-Butylbenzene	ND	4.2	
1,2,4-Trimethylbenzene	ND	4.2	
sec-Butylbenzene	ND	4.2	
para-Isopropyl Toluene	ND	4.2	
1,3-Dichlorobenzene	ND	4.2	
1,4-Dichlorobenzene	ND	4.2	
n-Butylbenzene	ND	4.2	
1,2-Dichlorobenzene	ND	4.2	
1,2-Dibromo-3-Chloropropane	ND	4.2	
1,2,4-Trichlorobenzene	ND	4.2	
Hexachlorobutadiene	ND	4.2	
Naphthalene	ND	4.2	
1,2,3-Trichlorobenzene	ND	4.2	

Surrogate	%REC	Limits	
Dibromofluoromethane	108	80-128	
1,2-Dichloroethane-d4	102	80-136	
Toluene-d8	105	80-120	
Bromofluorobenzene	105	80-132	

RL= Reporting Limit

Page 2 of 2

	Purgeable	Organics by GC/	'MS	
Lab #:	286726	Location:	Elegant Cleaners	
Client:	Pangea Environmental	Prep:	EPA 5035	
Project#:	STANDARD	Analysis:	EPA 8260B	
Field ID:	SG-2-4'	Diln Fac:	0.8306	
Lab ID:	286726-006	Batch#:	245303	
Matrix:	Soil	Sampled:	03/06/17	
Units:	ug/Kg	Received:	03/07/17	
Basis:	as received	Analyzed:	03/09/17	

Analyte Freon 12	Result	RL	
	ND	8.3	
Chloromethane	ND	8.3	
Vinyl Chloride	ND	8.3	
Bromomethane	ND	8.3	
Chloroethane	ND	8.3	
Trichlorofluoromethane	ND	4.2	
Acetone	ND	17	
Freon 113	ND	4.2	
1,1-Dichloroethene	ND	4.2	
Methylene Chloride	ND	17	
Carbon Disulfide	ND	4.2	
MTBE	ND	4.2	
trans-1,2-Dichloroethene	ND	4.2	
Vinyl Acetate	ND	42	
1,1-Dichloroethane	ND	4.2	
2-Butanone	ND	8.3	
cis-1,2-Dichloroethene	ND	4.2	
2,2-Dichloropropane	ND	4.2	
Chloroform	ND	4.2	
Bromochloromethane	ND	4.2	
1,1,1-Trichloroethane	ND	4.2	
1,1-Dichloropropene	ND	4.2	
Carbon Tetrachloride	ND	4.2	
1,2-Dichloroethane	ND	4.2	
Benzene	ND	4.2	
Trichloroethene	ND	4.2	
1,2-Dichloropropane	ND	4.2	
Bromodichloromethane	ND	4.2	
Dibromomethane	ND	4.2	
4-Methyl-2-Pentanone	ND	8.3	
cis-1,3-Dichloropropene	ND	4.2	
Toluene	ND	4.2	
trans-1,3-Dichloropropene	ND	4.2	
1,1,2-Trichloroethane	ND	4.2	
2-Hexanone	ND	8.3	
1,3-Dichloropropane	ND	4.2	
Tetrachloroethene	ND	4.2	

RL= Reporting Limit

Page 1 of 2

	Purgeable	Organics by GC/	'MS	
Lab #:	286726	Location:	Elegant Cleaners	
Client:	Pangea Environmental	Prep:	EPA 5035	
Project#:	STANDARD	Analysis:	EPA 8260B	
Field ID:	SG-2-4'	Diln Fac:	0.8306	
Lab ID:	286726-006	Batch#:	245303	
Matrix:	Soil	Sampled:	03/06/17	
Units:	ug/Kg	Received:	03/07/17	
Basis:	as received	Analyzed:	03/09/17	

Analyte	Result	RL	
Dibromochloromethane	ND	4.2	
1,2-Dibromoethane	ND	4.2	
Chlorobenzene	ND	4.2	
1,1,1,2-Tetrachloroethane	ND	4.2	
Ethylbenzene	ND	4.2	
m,p-Xylenes	ND	4.2	
o-Xylene	ND	4.2	
Styrene	ND	4.2	
Bromoform	ND	4.2	
Isopropylbenzene	ND	4.2	
1,1,2,2-Tetrachloroethane	ND	4.2	
1,2,3-Trichloropropane	ND	4.2	
Propylbenzene	ND	4.2	
Bromobenzene	ND	4.2	
1,3,5-Trimethylbenzene	ND	4.2	
2-Chlorotoluene	ND	4.2	
4-Chlorotoluene	ND	4.2	
tert-Butylbenzene	ND	4.2	
1,2,4-Trimethylbenzene	ND	4.2	
sec-Butylbenzene	ND	4.2	
para-Isopropyl Toluene	ND	4.2	
1,3-Dichlorobenzene	ND	4.2	
1,4-Dichlorobenzene	ND	4.2	
n-Butylbenzene	ND	4.2	
1,2-Dichlorobenzene	ND	4.2	
1,2-Dibromo-3-Chloropropane	ND	4.2	
1,2,4-Trichlorobenzene	ND	4.2	
Hexachlorobutadiene	ND	4.2	
Naphthalene	ND	4.2	
1,2,3-Trichlorobenzene	ND	4.2	

Surrogate	%REC	Limits	
Dibromofluoromethane	110	80-128	
1,2-Dichloroethane-d4	105	80-136	
Toluene-d8	107	80-120	
Bromofluorobenzene	106	80-132	

RL= Reporting Limit

Page 2 of 2

Purgeable Organics by GC/MS					
Lab #:	286726	Location:	Elegant Cleaners		
Client:	Pangea Environmental	Prep:	EPA 5035		
Project#:	STANDARD	Analysis:	EPA 8260B		
Matrix:	Soil	Batch#:	245260		
Units:	ug/Kg	Analyzed:	03/08/17		
Diln Fac:	1.000				

Type: BS Lab ID: QC875821

Analyte	Spiked	Result	%REC	Limits
1,1-Dichloroethene	25.00	29.21	117	65-127
Benzene	25.00	24.99	100	75-124
Trichloroethene	25.00	24.70	99	76-122
Toluene	25.00	26.18	105	77-120
Chlorobenzene	25.00	25.11	100	80-120

Surrogate	%REC	Limits	
Dibromofluoromethane	109	80-128	
1,2-Dichloroethane-d4	100	80-136	
Toluene-d8	105	80-120	
Bromofluorobenzene	100	80-132	

Type: BSD Lab ID: QC875822

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
1,1-Dichloroethene	25.00	29.94	120	65-127	2	28
Benzene	25.00	24.83	99	75-124	1	25
Trichloroethene	25.00	24.81	99	76-122	0	26
Toluene	25.00	26.21	105	77-120	0	25
Chlorobenzene	25.00	24.75	99	80-120	1	24

Surrogate	%REC	Limits
Dibromofluoromethane	108	80-128
1,2-Dichloroethane-d4	103	80-136
Toluene-d8	105	80-120
Bromofluorobenzene	102	80-132

	Purgeable	Organics by GC/	/MS	
Lab #:	286726	Location:	Elegant Cleaners	
Client:	Pangea Environmental	Prep:	EPA 5035	
Project#:	STANDARD	Analysis:	EPA 8260B	
Type:	BLANK	Diln Fac:	1.000	
Lab ID:	QC875823	Batch#:	245260	
Matrix:	Soil	Analyzed:	03/08/17	
Units:	ug/Kg			

Analyte	Result	RL	
Freon 12	ND	10	
Chloromethane	ND ND	10	
Vinyl Chloride	ND ND	10	
Bromomethane	ND ND	10	
Chloroethane	ND	10	
Trichlorofluoromethane	ND ND	5.0	
Acetone	ND ND	20	
Freon 113	ND ND	5.0	
1,1-Dichloroethene	ND ND	5.0	
Methylene Chloride	ND	20	
Carbon Disulfide		5.0	
MTBE	ND	5.0	
	ND		
trans-1,2-Dichloroethene	ND	5.0	
Vinyl Acetate	ND	50	
1,1-Dichloroethane	ND	5.0	
2-Butanone	ND 	10	
cis-1,2-Dichloroethene	ND	5.0	
2,2-Dichloropropane	ND	5.0	
Chloroform	ND	5.0	
Bromochloromethane	ND	5.0	
1,1,1-Trichloroethane	ND	5.0	
1,1-Dichloropropene	ND	5.0	
Carbon Tetrachloride	ND	5.0	
1,2-Dichloroethane	ND	5.0	
Benzene	ND	5.0	
Trichloroethene	ND	5.0	
1,2-Dichloropropane	ND	5.0	
Bromodichloromethane	ND	5.0	
Dibromomethane	ND	5.0	
4-Methyl-2-Pentanone	ND	10	
cis-1,3-Dichloropropene	ND	5.0	
Toluene	ND	5.0	
trans-1,3-Dichloropropene	ND	5.0	
1,1,2-Trichloroethane	ND	5.0	
2-Hexanone	ND	10	
1,3-Dichloropropane	ND	5.0	
Tetrachloroethene	ND	5.0	

ND= Not Detected

RL= Reporting Limit

Page 1 of 2

	Purgeable	Organics by GC/	/MS	
Lab #:	286726	Location:	Elegant Cleaners	
Client:	Pangea Environmental	Prep:	EPA 5035	
Project#:	STANDARD	Analysis:	EPA 8260B	
Type:	BLANK	Diln Fac:	1.000	
Lab ID:	QC875823	Batch#:	245260	
Matrix:	Soil	Analyzed:	03/08/17	
Units:	ug/Kg			

Analyte	Result	RL	
Dibromochloromethane	ND	5.0	
1,2-Dibromoethane	ND	5.0	
Chlorobenzene	ND	5.0	
1,1,1,2-Tetrachloroethane	ND	5.0	
Ethylbenzene	ND	5.0	
m,p-Xylenes	ND	5.0	
o-Xylene	ND	5.0	
Styrene	ND	5.0	
Bromoform	ND	5.0	
Isopropylbenzene	ND	5.0	
1,1,2,2-Tetrachloroethane	ND	5.0	
1,2,3-Trichloropropane	ND	5.0	
Propylbenzene	ND	5.0	
Bromobenzene	ND	5.0	
1,3,5-Trimethylbenzene	ND	5.0	
2-Chlorotoluene	ND	5.0	
4-Chlorotoluene	ND	5.0	
tert-Butylbenzene	ND	5.0	
1,2,4-Trimethylbenzene	ND	5.0	
sec-Butylbenzene	ND	5.0	
para-Isopropyl Toluene	ND	5.0	
1,3-Dichlorobenzene	ND	5.0	
1,4-Dichlorobenzene	ND	5.0	
n-Butylbenzene	ND	5.0	
1,2-Dichlorobenzene	ND	5.0	
1,2-Dibromo-3-Chloropropane	ND	5.0	
1,2,4-Trichlorobenzene	ND	5.0	
Hexachlorobutadiene	ND	5.0	
Naphthalene	ND	5.0	
1,2,3-Trichlorobenzene	ND	5.0	

Surrogate	%REC	Limits	
Dibromofluoromethane	107	80-128	
1,2-Dichloroethane-d4	98	80-136	
Toluene-d8	105	80-120	
Bromofluorobenzene	104	80-132	

ND= Not Detected

RL= Reporting Limit

Page 2 of 2

	Purgeable Or	ganics by GC/M	5
Lab #:	286726	Location:	Elegant Cleaners
Client:	Pangea Environmental	Prep:	EPA 5030B
Project#:	STANDARD	Analysis:	EPA 8260B
Field ID:	ZZZZZZZZZ	Batch#:	245260
MSS Lab ID:	286776-002	Sampled:	03/08/17
Matrix:	Soil	Received:	03/08/17
Units:	ug/Kg	Analyzed:	03/08/17
Basis:	as received		

Type: MS Diln Fac: 0.8636

Lab ID: QC875935

Analyte	MSS Result	Spiked	Result	%REC	Limits
1,1-Dichloroethene	<0.5413	43.18	50.94	118	65-131
Benzene	<0.6306	43.18	42.59	99	68-123
Trichloroethene	<0.6568	43.18	43.01	100	60-136
Toluene	<0.6908	43.18	42.12	98	64-120
Chlorobenzene	<0.5663	43.18	38.64	89	59-120

Surrogate	%REC	Limits
Dibromofluoromethane	109	80-128
1,2-Dichloroethane-d4	106	80-136
Toluene-d8	105	80-120
Bromofluorobenzene	103	80-132

Type: MSD Diln Fac: 0.8929

Lab ID: QC875936

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
1,1-Dichloroethene	44.64	59.83	134 *	65-131	13	33
Benzene	44.64	49.19	110	68-123	11	30
Trichloroethene	44.64	50.65	113	60-136	13	34
Toluene	44.64	49.33	111	64-120	12	31
Chlorobenzene	44.64	45.70	102	59-120	13	33

Surrogate %F	REC	Limits
Dibromofluoromethane 108	8	80-128
1,2-Dichloroethane-d4 105	5	80-136
Toluene-d8 106	6	80-120
Bromofluorobenzene 101	1	80-132

^{*=} Value outside of QC limits; see narrative

RPD= Relative Percent Difference

Page 1 of 1 9.0

	Purgeable Org	anics by GC/MS	
Lab #:	286726	Location:	Elegant Cleaners
Client:	Pangea Environmental	Prep:	EPA 5035
Project#:	STANDARD	Analysis:	EPA 8260B
Matrix:	Soil	Batch#:	245303
Units:	ug/Kg	Analyzed:	03/09/17
Diln Fac:	1.000		

Type: BS Lab ID: QC876002

Analyte	Spiked	Result	%REC	Limits
1,1-Dichloroethene	25.00	31.24	125	65-127
Benzene	25.00	27.15	109	75-124
Trichloroethene	25.00	25.88	104	76-122
Toluene	25.00	27.38	110	77-120
Chlorobenzene	25.00	26.12	104	80-120

Surrogate	%REC	Limits	
Dibromofluoromethane	111	80-128	
1,2-Dichloroethane-d4	105	80-136	
Toluene-d8	107	80-120	
Bromofluorobenzene	101	80-132	

Type: BSD Lab ID: QC876003

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
1,1-Dichloroethene	25.00	31.53	126	65-127	1	28
Benzene	25.00	27.08	108	75-124	0	25
Trichloroethene	25.00	25.92	104	76-122	0	26
Toluene	25.00	27.70	111	77-120	1	25
Chlorobenzene	25.00	26.45	106	80-120	1	24

Surrogate	%REC	Limits
Dibromofluoromethane	110	80-128
1,2-Dichloroethane-d4	103	80-136
Toluene-d8	107	80-120
Bromofluorobenzene	101	80-132

	Purgeable	Organics by GC/	/MS	
Lab #:	286726	Location:	Elegant Cleaners	
Client:	Pangea Environmental	Prep:	EPA 5035	
Project#:	STANDARD	Analysis:	EPA 8260B	
Type:	BLANK	Diln Fac:	1.000	
Lab ID:	QC876004	Batch#:	245303	
Matrix:	Soil	Analyzed:	03/09/17	
Units:	ug/Kg			

Analyte	Result	RL	
Freon 12	ND	10	
Chloromethane	ND	10	
Vinyl Chloride	ND	10	
Bromomethane	ND	10	
Chloroethane	ND	10	
Trichlorofluoromethane	ND	5.0	
Acetone	ND	20	
Freon 113	ND	5.0	
1,1-Dichloroethene	ND	5.0	
Methylene Chloride	ND	20	
Carbon Disulfide	ND	5.0	
MTBE	ND	5.0	
trans-1,2-Dichloroethene	ND	5.0	
Vinyl Acetate	ND	50	
1,1-Dichloroethane	ND	5.0	
2-Butanone	ND	10	
cis-1,2-Dichloroethene	ND	5.0	
2,2-Dichloropropane	ND	5.0	
Chloroform	ND	5.0	
Bromochloromethane	ND	5.0	
1,1,1-Trichloroethane	ND	5.0	
1,1-Dichloropropene	ND	5.0	
Carbon Tetrachloride	ND	5.0	
1,2-Dichloroethane	ND	5.0	
Benzene	ND	5.0	
Trichloroethene	ND	5.0	
1,2-Dichloropropane	ND	5.0	
Bromodichloromethane	ND	5.0	
Dibromomethane	ND	5.0	
4-Methyl-2-Pentanone	ND	10	
cis-1,3-Dichloropropene	ND	5.0	
Toluene	ND	5.0	
trans-1,3-Dichloropropene	ND	5.0	
1,1,2-Trichloroethane	ND	5.0	
2-Hexanone	ND	10	
1,3-Dichloropropane	ND	5.0	
Tetrachloroethene	ND	5.0	

ND= Not Detected

RL= Reporting Limit

Page 1 of 2

	Purgeable	Organics by GC/	'MS	
Lab #:	286726	Location:	Elegant Cleaners	
Client:	Pangea Environmental	Prep:	EPA 5035	
Project#:	STANDARD	Analysis:	EPA 8260B	
Type:	BLANK	Diln Fac:	1.000	
Lab ID:	QC876004	Batch#:	245303	
Matrix:	Soil	Analyzed:	03/09/17	
Units:	ug/Kg			

Analyte	Result	RL	
Dibromochloromethane	ND	5.0	
1,2-Dibromoethane	ND	5.0	
Chlorobenzene	ND	5.0	
1,1,1,2-Tetrachloroethane	ND	5.0	
Ethylbenzene	ND	5.0	
m,p-Xylenes	ND	5.0	
o-Xylene	ND	5.0	
Styrene	ND	5.0	
Bromoform	ND	5.0	
Isopropylbenzene	ND	5.0	
1,1,2,2-Tetrachloroethane	ND	5.0	
1,2,3-Trichloropropane	ND	5.0	
Propylbenzene	ND	5.0	
Bromobenzene	ND	5.0	
1,3,5-Trimethylbenzene	ND	5.0	
2-Chlorotoluene	ND	5.0	
4-Chlorotoluene	ND	5.0	
tert-Butylbenzene	ND	5.0	
1,2,4-Trimethylbenzene	ND	5.0	
sec-Butylbenzene	ND	5.0	
para-Isopropyl Toluene	ND	5.0	
1,3-Dichlorobenzene	ND	5.0	
1,4-Dichlorobenzene	ND	5.0	
n-Butylbenzene	ND	5.0	
1,2-Dichlorobenzene	ND	5.0	
1,2-Dibromo-3-Chloropropane	ND	5.0	
1,2,4-Trichlorobenzene	ND	5.0	
Hexachlorobutadiene	ND	5.0	
Naphthalene	ND	5.0	
1,2,3-Trichlorobenzene	ND	5.0	

Surrogate	%REC	Limits	
Dibromofluoromethane	110	80-128	
1,2-Dichloroethane-d4	102	80-136	
Toluene-d8	105	80-120	
Bromofluorobenzene	107	80-132	

ND= Not Detected

RL= Reporting Limit

Page 2 of 2

11.0

Purgeable Organics by GC/MS							
Lab #:	286726	Location:	Elegant Cleaners				
Client:	Pangea Environmental	Prep:	EPA 5030B				
Project#:	STANDARD	Analysis:	EPA 8260B				
Field ID:	ZZZZZZZZZ	Batch#:	245303				
MSS Lab ID:	286793-001	Sampled:	03/08/17				
Matrix:	Soil	Received:	03/08/17				
Units:	ug/Kg	Analyzed:	03/09/17				
Basis:	as received						

Type: MS Diln Fac: 0.9728

Lab ID: QC876045

Analyte	MSS Result	Spiked	Result	%REC	Limits
1,1-Dichloroethene	<0.5779	48.64	59.83	123	65-131
Benzene	<0.6732	48.64	49.53	102	68-123
Trichloroethene	<0.7012	48.64	53.83	111	60-136
Toluene	<0.7374	48.64	48.61	100	64-120
Chlorobenzene	<0.6046	48.64	44.63	92	59-120

Surrogate	%REC	Limits
Dibromofluoromethane	111	80-128
1,2-Dichloroethane-d4	109	80-136
Toluene-d8	106	80-120
Bromofluorobenzene	100	80-132

Type: MSD Diln Fac: 0.9862

Lab ID: QC876046

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
1,1-Dichloroethene	49.31	65.89	134 *	65-131	8	33
Benzene	49.31	53.44	108	68-123	6	30
Trichloroethene	49.31	60.42	123	60-136	10	34
Toluene	49.31	53.61	109	64-120	8	31
Chlorobenzene	49.31	49.03	99	59-120	8	33

Surrogate	%REC	Limits	
Dibromofluoromethane	112	80-128	
1,2-Dichloroethane-d4	108	80-136	
Toluene-d8	105	80-120	
Bromofluorobenzene	101	80-132	

^{*=} Value outside of QC limits; see narrative

RPD= Relative Percent Difference

Page 1 of 1 12.0

McCampbell Analytical, Inc.

"When Quality Counts"

Analytical Report

WorkOrder: 1703491

Report Created for: Pangea Environmental Svcs., Inc.

1710 Franklin Street, Ste. 200

Oakland, CA 94612

Project Contact: Jake Wilson

Project P.O.:

Project Name: Elegant Cleaners

Project Received: 03/09/2017

Analytical Report reviewed & approved for release on 03/15/2017 by:

Angela Rydelius,

Laboratory Manager

The report shall not be reproduced except in full, without the written approval of the laboratory. The analytical results relate only to the items tested. Results reported conform to the most current NELAP standards, where applicable, unless otherwise stated in the case narrative.

1534 Willow Pass Rd. Pittsburg, CA 94565 ♦ TEL: (877) 252-9262 ♦ FAX: (925) 252-9269 ♦ www.mccampbell.com

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Glossary of Terms & Qualifier Definitions

Client: Pangea Environmental Svcs., Inc.

Project: Elegant Cleaners

WorkOrder: 1703491

Glossary Abbreviation

%D Serial Dilution Percent Difference

95% Interval 95% Confident Interval

DF Dilution Factor

DI WET (DISTLC) Waste Extraction Test using DI water

DISS Dissolved (direct analysis of 0.45 µm filtered and acidified water sample)

DLT Dilution Test (Serial Dilution)

DUP Duplicate

EDL Estimated Detection Limit

ITEF International Toxicity Equivalence Factor

LCS Laboratory Control Sample

MB Method Blank

MB % Rec % Recovery of Surrogate in Method Blank, if applicable

MDL Method Detection Limit

ML Minimum Level of Quantitation

MS Matrix Spike

MSD Matrix Spike Duplicate

N/A Not Applicable

ND Not detected at or above the indicated MDL or RL

NR Data Not Reported due to matrix interference or insufficient sample amount.

PDS Post Digestion Spike

PDSD Post Digestion Spike Duplicate

PF Prep Factor

RD Relative Difference

RL Reporting Limit (The RL is the lowest calibration standard in a multipoint calibration.)

RPD Relative Percent Deviation
RRT Relative Retention Time

SPK Val Spike Value

SPKRef Val Spike Reference Value

SPLP Synthetic Precipitation Leachate Procedure

ST Sorbent Tube

TCLP Toxicity Characteristic Leachate Procedure

TEQ Toxicity Equivalents

WET (STLC) Waste Extraction Test (Soluble Threshold Limit Concentration)

Analytical Qualifiers

H samples were analyzed out of holding time

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Glossary of Terms & Qualifier Definitions

Client: Pangea Environmental Svcs., Inc.

Project: Elegant Cleaners

WorkOrder: 1703491

Quality Control Qualifiers

F2 LCS/LCSD recovery and/or RPD is out of acceptance criteria.

Analytical Report

1703491

Client: Pangea Environmental Svcs., Inc. WorkOrder:

Date Received: 3/9/17 18:14 **Extraction Method: SW5030B Date Prepared:** 3/10/17 Analytical Method: SW8260B

Project: Elegant Cleaners Unit: $\mu g/m^3$

Volatile Organics by P&T and GC/MS (Basic Target List)

86-1 1703491-001A Air 03/09/2017 16:10 GCB Date_Analyzed Bromobenzene ND H 250 1 03/10/2017 12:04 Bromochloromethane ND H 250 1 03/10/2017 12:04 Bromochlane ND H 250 1 03/10/2017 12:04 Carbon Tetrachlorde ND H 250 1 03/10/2017 12:04 Chlorothane ND H 250 1 03/10/2017 12:04 Chlorothane ND H 250 1 03/10/2017 12:04 Chlorotoluene ND H 250 1 03/10/2017 12:04 4-Chlorotoluene ND H 250 1 03/10/2017 12:04 4-Chlorotoluene <t< th=""><th>Client ID</th><th>Lab ID</th><th>Matrix</th><th>Date C</th><th>ollected Instrument</th><th colspan="2">Batch ID</th></t<>	Client ID	Lab ID	Matrix	Date C	ollected Instrument	Batch ID	
Bromobenzene ND	SG-1	1703491-001A	Air	03/09/20	135474		
Bromochloromethane ND H 250 1 03/10/2017 12:04 Bromodichloromethane ND H 250 1 03/10/2017 12:04 Bromoform ND H 250 1 03/10/2017 12:04 Bromomethane ND H 250 1 03/10/2017 12:04 Carbon Tetrachloride ND H 250 1 03/10/2017 12:04 Chloroethane ND H 250 1 03/10/2017 12:04 Chloroethane ND H 250 1 03/10/2017 12:04 Chloroform ND H 250 1 03/10/2017 12:04 Chloroform ND H 250 1 03/10/2017 12:04 Chlorotoluene ND H 250 1 03/10/2017 12:04 4-Chlorotoluene ND H 250 1 03/10/2017 12:04 4-Chlorotoluene ND H 250 1 03/10/2017 12:04 4-Chlorotoluene ND H <th>Analytes</th> <th>Result</th> <th><u>Qualifiers</u></th> <th><u>RL</u></th> <th><u>DF</u></th> <th>Date Analyzed</th>	Analytes	Result	<u>Qualifiers</u>	<u>RL</u>	<u>DF</u>	Date Analyzed	
Bromodichloromethane ND H 250 1 03/10/2017 12:04 Bromoform ND H 250 1 03/10/2017 12:04 Bromomethane ND H 250 1 03/10/2017 12:04 Carbon Tetrachloride ND H 250 1 03/10/2017 12:04 Chlorobenzene ND H 250 1 03/10/2017 12:04 Chlorodethane ND H	Bromobenzene	ND	Н	250	1	03/10/2017 12:04	
Bromoform ND H 250 1 03/10/2017 12:04 Bromomethane ND H 250 1 03/10/2017 12:04 Carbon Tetrachloride ND H 250 1 03/10/2017 12:04 Chlorobenzene ND H 250 1 03/10/2017 12:04 Chloroethane ND H 250 1 03/10/2017 12:04 Chloroethane ND H 250 1 03/10/2017 12:04 Chlororethane ND H 250 1 03/10/2017 12:04 Chlorotoluene ND H 250 1 03/10/2017 12:04 4-Chlorotoluene ND H 250 1 03/10/2017 12:04 1,2-Dibromedhane (EDB) ND <td< td=""><td>Bromochloromethane</td><td>ND</td><td>Н</td><td>250</td><td>1</td><td>03/10/2017 12:04</td></td<>	Bromochloromethane	ND	Н	250	1	03/10/2017 12:04	
Bromomethane	Bromodichloromethane	ND	Н	250	1	03/10/2017 12:04	
Carbon Tetrachloride ND H 250 1 03/10/2017 12:04 Chlorobenzene ND H 250 1 03/10/2017 12:04 Chlorofethane ND H 250 1 03/10/2017 12:04 Chloroform ND H 250 1 03/10/2017 12:04 Chloromethane ND H 250 1 03/10/2017 12:04 Chlorotoluene ND H 250 1 03/10/2017 12:04 L-2-Dichlorotoluene ND H 250 1 03/10/2017 12:04 L-2-Dichlorotoluene ND	Bromoform	ND	Н	250	1	03/10/2017 12:04	
Chlorobenzene ND H 250 1 03/10/2017 12:04 Chloroethane ND H 250 1 03/10/2017 12:04 Chloroform ND H 250 1 03/10/2017 12:04 Chloromethane ND H 250 1 03/10/2017 12:04 2-Chlorotoluene ND H 250 1 03/10/2017 12:04 4-Chloromothoromethane ND H 250 1 03/10/2017 12:04 4-Chlorotoluene ND H 250 1 03/10/2017 12:04 4-Chlorotoluene ND H 250 1 03/10/2017 12:04 4-Chlorobol come ND H 250 1 03/10/2017 12:04 1,2-Dibromo-3-chloropropane ND H 250 1 03/10/2017 12:04 1,2-Dichloroberace ND H 250 1 03/10/2017 12:04 1,2-Dichloroberace ND H 250 1 03/10/2017 12:04 1,3-Dichloroberace	Bromomethane	ND	Н	250	1	03/10/2017 12:04	
Chloroethane ND H 250 1 03/10/2017 12:04 Chloroform ND H 250 1 03/10/2017 12:04 Chloromethane ND H 250 1 03/10/2017 12:04 2-Chlorotoluene ND H 250 1 03/10/2017 12:04 4-Chlorotoluene ND H 250 1 03/10/2017 12:04 1,2-Dibromo-3-nchloropropane ND H 250 1 03/10/2017 12:04 1,2-Dibromo-3-nchloropropane ND H 250 1 03/10/2017 12:04 1,3-Dichlorobenzene ND H 250 1 03/10/2017 12:04 1,3-Dichlorobenzene ND H 250 1 03/10/2017 12:04 1,1-Dichlorobenzene	Carbon Tetrachloride	ND	Н	250	1	03/10/2017 12:04	
Chloroform ND H 250 1 03/10/2017 12:04 Chloromethane ND H 250 1 03/10/2017 12:04 2-Chlorotoluene ND H 250 1 03/10/2017 12:04 4-Chlorotoluene ND H 250 1 03/10/2017 12:04 Dibromochloromethane ND H 250 1 03/10/2017 12:04 1,2-Dibromo-3-chloropropane ND H 250 1 03/10/2017 12:04 1,2-Dibromoethane (EDB) ND H 250 1 03/10/2017 12:04 1,2-Dichlorobenzene ND H 250 1 03/10/2017 12:04 1,2-Dichlorobenzene ND H 250 1 03/10/2017 12:04 1,3-Dichlorobenzene ND H 250 1 03/10/2017 12:04 1,4-Dichlorobenzene ND H 250 1 03/10/2017 12:04 1,1-Dichlorothane ND H 250 1 03/10/2017 12:04 1,1-Dic	Chlorobenzene	ND	Н	250	1	03/10/2017 12:04	
Chloromethane ND H 250 1 03/10/2017 12:04 2-Chlorotoluene ND H 250 1 03/10/2017 12:04 4-Chlorotoluene ND H 250 1 03/10/2017 12:04 4-Chlorotoluromethane ND H 250 1 03/10/2017 12:04 1,2-Dibromo-3-chloropropane ND H 250 1 03/10/2017 12:04 1,2-Dibromoethane (EDB) ND H 250 1 03/10/2017 12:04 1,2-Dibromoethane (EDB) ND H 250 1 03/10/2017 12:04 1,2-Dichlorobenzene ND H 250 1 03/10/2017 12:04 1,3-Dichlorobenzene ND H 250 1 03/10/2017 12:04 1,4-Dichlorobenzene ND H 250 1 03/10/2017 12:04 1,4-Dichloroethane ND H 250 1 03/10/2017 12:04 1,1-Dichloroethane (1,2-DCA) ND H 250 1 03/10/2017 12:04	Chloroethane	ND	Н	250	1	03/10/2017 12:04	
2-Chlorotoluene ND H 250 1 03/10/2017 12:04 4-Chlorotoluene ND H 250 1 03/10/2017 12:04 4-Chlorotoluene ND H 250 1 03/10/2017 12:04 1,2-Dibromo-3-chloropropane ND H 250 1 03/10/2017 12:04 1,2-Dibromo-schloropropane ND H 250 1 03/10/2017 12:04 1,2-Dibromo-schloropropane ND H 250 1 03/10/2017 12:04 1,2-Dibromo-schloropropane ND H 250 1 03/10/2017 12:04 1,2-Dibrlorobenzene ND H 250 1 03/10/2017 12:04 1,3-Dichlorobenzene ND H 250 1 03/10/2017 12:04 1,4-Dichlorobenzene ND H 250 1 03/10/2017 12:04 1,1-Dichloroethane ND H 250 1 03/10/2017 12:04 1,2-Dichloroethane ND H 250 1 03/10/2017 12:04	Chloroform	ND	Н	250	1	03/10/2017 12:04	
4-Chlorotoluene ND H 250 1 03/10/2017 12:04 Dibromochloromethane ND H 250 1 03/10/2017 12:04 1,2-Dibromo-3-chloropropane ND H 250 1 03/10/2017 12:04 1,2-Dibromoethane (EDB) ND H 250 1 03/10/2017 12:04 Dibromomethane ND H 250 1 03/10/2017 12:04 1,2-Dichlorobenzene ND H 250 1 03/10/2017 12:04 1,3-Dichlorobenzene ND H 250 1 03/10/2017 12:04 1,4-Dichlorobenzene ND H 250 1 03/10/2017 12:04 1,4-Dichloroethane ND H 250 1 03/10/2017 12:04 1,1-Dichloroethane ND H 250 1 03/10/2017 12:04 1,2-Dichloroethane ND H 250 1 03/10/2017 12:04 1,2-Dichloroethane ND H 250 1 03/10/2017 12:04	Chloromethane	ND	Н	250	1	03/10/2017 12:04	
Dibromochloromethane ND H 250 1 03/10/2017 12:04 1,2-Dibromo-3-chloropropane ND H 250 1 03/10/2017 12:04 1,2-Dibromoethane (EDB) ND H 250 1 03/10/2017 12:04 Dibromomethane ND H 250 1 03/10/2017 12:04 1,2-Dichlorobenzene ND H 250 1 03/10/2017 12:04 1,3-Dichlorobenzene ND H 250 1 03/10/2017 12:04 1,4-Dichlorobenzene ND H 250 1 03/10/2017 12:04 1,4-Dichloroethane ND H 250 1 03/10/2017 12:04 1,4-Dichloroethane ND H 250 1 03/10/2017 12:04 1,1-Dichloroethane ND H 250 1 03/10/2017 12:04 1,2-Dichloroethane ND H 250 1 03/10/2017 12:04 1,3-Dichloroethane ND H 250 1 03/10/2017 12:04	2-Chlorotoluene	ND	Н	250	1	03/10/2017 12:04	
1,2-Dibromo-3-chloropropane ND H 250 1 03/10/2017 12:04 1,2-Dibromoethane (EDB) ND H 250 1 03/10/2017 12:04 1,2-Dichlorobenzene ND H 250 1 03/10/2017 12:04 1,2-Dichlorobenzene ND H 250 1 03/10/2017 12:04 1,3-Dichlorobenzene ND H 250 1 03/10/2017 12:04 1,4-Dichlorobenzene ND H 250 1 03/10/2017 12:04 1,4-Dichlorobenzene ND H 250 1 03/10/2017 12:04 1,4-Dichlorobenzene ND H 250 1 03/10/2017 12:04 1,1-Dichlorobenzene ND H 250 1 03/10/2017 12:04 1,1-Dichlorobenzene ND H 250 1 03/10/2017 12:04 1,2-Dichlorobenzene ND H 250 1 03/10/2017 12:04 1,2-Dichlorobenzene ND H 250 1 03/10/2017 12:04	4-Chlorotoluene	ND	Н	250	1	03/10/2017 12:04	
1,2-Dibromoethane (EDB) ND H 250 1 03/10/2017 12:04 Dibromomethane ND H 250 1 03/10/2017 12:04 1,2-Dichlorobenzene ND H 250 1 03/10/2017 12:04 1,3-Dichlorobenzene ND H 250 1 03/10/2017 12:04 1,4-Dichlorobenzene ND H 250 1 03/10/2017 12:04 1,1-Dichlorobenzene ND H 250 1 03/10/2017 12:04 1,1-Dichlorobenzene ND H 250 1 03/10/2017 12:04 1,1-Dichloroethane ND H 250 1 03/10/2017 12:04 1,2-Dichloroethane (1,2-DCA) ND H 250 1 03/10/2017 12:04 1,1-Dichloroethane ND H 250 1 03/10/2017 12:04 1,2-Dichloroethane ND H 250 1 03/10/2017 12:04 1,2-Dichloroethane ND H 250 1 03/10/2017 12:04	Dibromochloromethane	ND	Н	250	1	03/10/2017 12:04	
Dibromomethane ND H 250 1 03/10/2017 12:04 1,2-Dichlorobenzene ND H 250 1 03/10/2017 12:04 1,3-Dichlorobenzene ND H 250 1 03/10/2017 12:04 1,4-Dichlorobenzene ND H 250 1 03/10/2017 12:04 1,4-Dichloroethane ND H 250 1 03/10/2017 12:04 1,1-Dichloroethane ND H 250 1 03/10/2017 12:04 1,2-Dichloroethane (1,2-DCA) ND H 250 1 03/10/2017 12:04 1,2-Dichloroethene ND H 250 1 03/10/2017 12:04 cis-1,2-Dichloroethene ND H 250 1 03/10/2017 12:04 trans-1,2-Dichloroethene ND H 250 1 03/10/2017 12:04 1,2-Dichloropropane ND H 250 1 03/10/2017 12:04 1,3-Dichloropropane ND H 250 1 03/10/2017 12:04 <tr< td=""><td>1,2-Dibromo-3-chloropropane</td><td>ND</td><td>Н</td><td>250</td><td>1</td><td>03/10/2017 12:04</td></tr<>	1,2-Dibromo-3-chloropropane	ND	Н	250	1	03/10/2017 12:04	
1,2-Dichlorobenzene ND H 250 1 03/10/2017 12:04 1,3-Dichlorobenzene ND H 250 1 03/10/2017 12:04 1,4-Dichlorobenzene ND H 250 1 03/10/2017 12:04 Dichlorodifluoromethane ND H 250 1 03/10/2017 12:04 1,1-Dichloroethane ND H 250 1 03/10/2017 12:04 1,2-Dichloroethane (1,2-DCA) ND H 250 1 03/10/2017 12:04 1,1-Dichloroethane (1,2-DCA) ND H 250 1 03/10/2017 12:04 1,2-Dichloroethane (1,2-DCA) ND H 250 1	1,2-Dibromoethane (EDB)	ND	Н	250	1	03/10/2017 12:04	
1,3-Dichlorobenzene ND H 250 1 03/10/2017 12:04 1,4-Dichlorobenzene ND H 250 1 03/10/2017 12:04 Dichlorodifluoromethane ND H 250 1 03/10/2017 12:04 1,1-Dichloroethane ND H 250 1 03/10/2017 12:04 1,2-Dichloroethane (1,2-DCA) ND H 250 1 03/10/2017 12:04 1,1-Dichloroethane (1,2-DCA) ND H 250 1 03/10/2017 12:04 1,1-Dichloroethene (ND ND H 250 1 03/10/2017 12:04 trans-1,2-Dichloroethene (ND ND H 250 1 03/10/2017 12:04 1,2-Dichloropropane (ND H 250 1 03/10/2017 12:04 1,2-Dichloropropane (ND H 250 1 03/10/2017 12:04 2,2-Dichloropropane (ND H 250 1 03/10/2017 12:04 1,1-Dichloropropene (ND H 250 1 03/10/2017 12:04 1,1-Dichloropropene (ND <td>Dibromomethane</td> <td>ND</td> <td>Н</td> <td>250</td> <td>1</td> <td>03/10/2017 12:04</td>	Dibromomethane	ND	Н	250	1	03/10/2017 12:04	
1,4-Dichlorobenzene ND H 250 1 03/10/2017 12:04 Dichlorodifluoromethane ND H 250 1 03/10/2017 12:04 1,1-Dichloroethane ND H 250 1 03/10/2017 12:04 1,2-Dichloroethane (1,2-DCA) ND H 250 1 03/10/2017 12:04 1,1-Dichloroethene ND H 250 1 03/10/2017 12:04 cis-1,2-Dichloroethene ND H 250 1 03/10/2017 12:04 trans-1,2-Dichloroethene ND H 250 1 03/10/2017 12:04 1,2-Dichloropropane ND H 250 1 03/10/2017 12:04 1,3-Dichloropropane ND H 250 1 03/10/2017 12:04 2,2-Dichloropropane ND H 250 1 03/10/2017 12:04 1,1-Dichloropropene ND H 250 1 03/10/2017 12:04 cis-1,3-Dichloropropene ND H 250 1 03/10/2017 12:04	1,2-Dichlorobenzene	ND	Н	250	1	03/10/2017 12:04	
Dichlorodifluoromethane ND H 250 1 03/10/2017 12:04 1,1-Dichloroethane ND H 250 1 03/10/2017 12:04 1,2-Dichloroethane (1,2-DCA) ND H 250 1 03/10/2017 12:04 1,1-Dichloroethane (1,2-DCA) ND H 250 1 03/10/2017 12:04 cis-1,2-Dichloroethane ND H 250 1 03/10/2017 12:04 trans-1,2-Dichloroethane ND H 250 1 03/10/2017 12:04 1,2-Dichloropropane ND H 250 1 03/10/2017 12:04 1,3-Dichloropropane ND H 250 1 03/10/2017 12:04 2,2-Dichloropropane ND H 250 1 03/10/2017 12:04 1,1-Dichloropropane ND H 250 1 03/10/2017 12:04 cis-1,3-Dichloropropene ND H 250 1 03/10/2017 12:04 trans-1,3-Dichloropropene ND H 250 1 03/10/201	1,3-Dichlorobenzene	ND	Н	250	1	03/10/2017 12:04	
1,1-Dichloroethane ND H 250 1 03/10/2017 12:04 1,2-Dichloroethane (1,2-DCA) ND H 250 1 03/10/2017 12:04 1,1-Dichloroethane ND H 250 1 03/10/2017 12:04 cis-1,2-Dichloroethane ND H 250 1 03/10/2017 12:04 trans-1,2-Dichloroethane ND H 250 1 03/10/2017 12:04 1,2-Dichloropropane ND H 250 1 03/10/2017 12:04 1,3-Dichloropropane ND H 250 1 03/10/2017 12:04 2,2-Dichloropropane ND H 250 1 03/10/2017 12:04 2,2-Dichloropropane ND H 250 1 03/10/2017 12:04 1,1-Dichloropropane ND H 250 1 03/10/2017 12:04 cis-1,3-Dichloropropene ND H 250 1 03/10/2017 12:04 Freon 113 ND H 250 1 03/10/2017 12:04 <tr< td=""><td>1,4-Dichlorobenzene</td><td>ND</td><td>Н</td><td>250</td><td>1</td><td>03/10/2017 12:04</td></tr<>	1,4-Dichlorobenzene	ND	Н	250	1	03/10/2017 12:04	
1,2-Dichloroethane (1,2-DCA) ND H 250 1 03/10/2017 12:04 1,1-Dichloroethene ND H 250 1 03/10/2017 12:04 cis-1,2-Dichloroethene ND H 250 1 03/10/2017 12:04 trans-1,2-Dichloroethene ND H 250 1 03/10/2017 12:04 1,2-Dichloropropane ND H 250 1 03/10/2017 12:04 1,3-Dichloropropane ND H 250 1 03/10/2017 12:04 2,2-Dichloropropane ND H 250 1 03/10/2017 12:04 1,1-Dichloropropene ND H 250 1 03/10/2017 12:04 cis-1,3-Dichloropropene ND H 250 1 03/10/2017 12:04 trans-1,3-Dichloropropene ND H 250 1 03/10/2017 12:04 Freon 113 ND H 500 1 03/10/2017 12:04 Hexachlorobutadiene ND H 250 1 03/10/2017 12:04	Dichlorodifluoromethane	ND	Н	250	1	03/10/2017 12:04	
1,1-Dichloroethene ND H 250 1 03/10/2017 12:04 cis-1,2-Dichloroethene ND H 250 1 03/10/2017 12:04 trans-1,2-Dichloroethene ND H 250 1 03/10/2017 12:04 1,2-Dichloropropane ND H 250 1 03/10/2017 12:04 1,3-Dichloropropane ND H 250 1 03/10/2017 12:04 2,2-Dichloropropane ND H 250 1 03/10/2017 12:04 1,1-Dichloropropene ND H 250 1 03/10/2017 12:04 cis-1,3-Dichloropropene ND H 250 1 03/10/2017 12:04 trans-1,3-Dichloropropene ND H 250 1 03/10/2017 12:04 Freon 113 ND H 5000 1 03/10/2017 12:04 Hexachlorobutadiene ND H 250 1 03/10/2017 12:04 Methylene chloride ND H 250 1 03/10/2017 12:04	1,1-Dichloroethane	ND	Н	250	1	03/10/2017 12:04	
cis-1,2-Dichloroethene ND H 250 1 03/10/2017 12:04 trans-1,2-Dichloroethene ND H 250 1 03/10/2017 12:04 1,2-Dichloropropane ND H 250 1 03/10/2017 12:04 1,3-Dichloropropane ND H 250 1 03/10/2017 12:04 2,2-Dichloropropane ND H 250 1 03/10/2017 12:04 1,1-Dichloropropene ND H 250 1 03/10/2017 12:04 cis-1,3-Dichloropropene ND H 250 1 03/10/2017 12:04 trans-1,3-Dichloropropene ND H 250 1 03/10/2017 12:04 Freon 113 ND H 5000 1 03/10/2017 12:04 Hexachlorobutadiene ND H 250 1 03/10/2017 12:04 Hexachloroethane ND H 250 1 03/10/2017 12:04 Methylene chloride ND H 250 1 03/10/2017 12:04	1,2-Dichloroethane (1,2-DCA)	ND	Н	250	1	03/10/2017 12:04	
trans-1,2-Dichloroethene ND H 250 1 03/10/2017 12:04 1,2-Dichloropropane ND H 250 1 03/10/2017 12:04 1,3-Dichloropropane ND H 250 1 03/10/2017 12:04 2,2-Dichloropropane ND H 250 1 03/10/2017 12:04 1,1-Dichloropropene ND H 250 1 03/10/2017 12:04 cis-1,3-Dichloropropene ND H 250 1 03/10/2017 12:04 trans-1,3-Dichloropropene ND H 250 1 03/10/2017 12:04 Freon 113 ND H 5000 1 03/10/2017 12:04 Hexachlorobutadiene ND H 250 1 03/10/2017 12:04 Hexachloroethane ND H 250 1 03/10/2017 12:04 Methylene chloride ND H 250 1 03/10/2017 12:04 1,1,1,2-Tetrachloroethane ND H 250 1 03/10/2017 12:04	1,1-Dichloroethene	ND	Н	250	1	03/10/2017 12:04	
1,2-Dichloropropane ND H 250 1 03/10/2017 12:04 1,3-Dichloropropane ND H 250 1 03/10/2017 12:04 2,2-Dichloropropane ND H 250 1 03/10/2017 12:04 1,1-Dichloropropene ND H 250 1 03/10/2017 12:04 cis-1,3-Dichloropropene ND H 250 1 03/10/2017 12:04 trans-1,3-Dichloropropene ND H 250 1 03/10/2017 12:04 Freon 113 ND H 5000 1 03/10/2017 12:04 Hexachlorobutadiene ND H 250 1 03/10/2017 12:04 Hexachloroethane ND H 250 1 03/10/2017 12:04 Methylene chloride ND H 250 1 03/10/2017 12:04 1,1,1,2-Tetrachloroethane ND H 250 1 03/10/2017 12:04	cis-1,2-Dichloroethene	ND	Н	250	1	03/10/2017 12:04	
1,3-Dichloropropane ND H 250 1 03/10/2017 12:04 2,2-Dichloropropane ND H 250 1 03/10/2017 12:04 1,1-Dichloropropene ND H 250 1 03/10/2017 12:04 cis-1,3-Dichloropropene ND H 250 1 03/10/2017 12:04 trans-1,3-Dichloropropene ND H 250 1 03/10/2017 12:04 Freon 113 ND H 5000 1 03/10/2017 12:04 Hexachlorobutadiene ND H 250 1 03/10/2017 12:04 Hexachloroethane ND H 250 1 03/10/2017 12:04 Methylene chloride ND H 250 1 03/10/2017 12:04 1,1,1,2-Tetrachloroethane ND H 250 1 03/10/2017 12:04	trans-1,2-Dichloroethene	ND	Н	250	1	03/10/2017 12:04	
2,2-Dichloropropane ND H 250 1 03/10/2017 12:04 1,1-Dichloropropene ND H 250 1 03/10/2017 12:04 cis-1,3-Dichloropropene ND H 250 1 03/10/2017 12:04 trans-1,3-Dichloropropene ND H 250 1 03/10/2017 12:04 Freon 113 ND H 5000 1 03/10/2017 12:04 Hexachlorobutadiene ND H 250 1 03/10/2017 12:04 Hexachloroethane ND H 250 1 03/10/2017 12:04 Methylene chloride ND H 250 1 03/10/2017 12:04 1,1,1,2-Tetrachloroethane ND H 250 1 03/10/2017 12:04	1,2-Dichloropropane	ND	Н	250	1	03/10/2017 12:04	
1,1-Dichloropropene ND H 250 1 03/10/2017 12:04 cis-1,3-Dichloropropene ND H 250 1 03/10/2017 12:04 trans-1,3-Dichloropropene ND H 250 1 03/10/2017 12:04 Freon 113 ND H 5000 1 03/10/2017 12:04 Hexachlorobutadiene ND H 250 1 03/10/2017 12:04 Hexachloroethane ND H 250 1 03/10/2017 12:04 Methylene chloride ND H 250 1 03/10/2017 12:04 1,1,1,2-Tetrachloroethane ND H 250 1 03/10/2017 12:04	1,3-Dichloropropane	ND	Н	250	1	03/10/2017 12:04	
cis-1,3-Dichloropropene ND H 250 1 03/10/2017 12:04 trans-1,3-Dichloropropene ND H 250 1 03/10/2017 12:04 Freon 113 ND H 5000 1 03/10/2017 12:04 Hexachlorobutadiene ND H 250 1 03/10/2017 12:04 Hexachloroethane ND H 250 1 03/10/2017 12:04 Methylene chloride ND H 250 1 03/10/2017 12:04 1,1,1,2-Tetrachloroethane ND H 250 1 03/10/2017 12:04	2,2-Dichloropropane	ND	Н	250	1	03/10/2017 12:04	
trans-1,3-Dichloropropene ND H 250 1 03/10/2017 12:04 Freon 113 ND H 5000 1 03/10/2017 12:04 Hexachlorobutadiene ND H 250 1 03/10/2017 12:04 Hexachloroethane ND H 250 1 03/10/2017 12:04 Methylene chloride ND H 250 1 03/10/2017 12:04 1,1,1,2-Tetrachloroethane ND H 250 1 03/10/2017 12:04	1,1-Dichloropropene	ND	Н	250	1	03/10/2017 12:04	
Freon 113 ND H 5000 1 03/10/2017 12:04 Hexachlorobutadiene ND H 250 1 03/10/2017 12:04 Hexachloroethane ND H 250 1 03/10/2017 12:04 Methylene chloride ND H 250 1 03/10/2017 12:04 1,1,1,2-Tetrachloroethane ND H 250 1 03/10/2017 12:04	cis-1,3-Dichloropropene	ND	Н	250	1	03/10/2017 12:04	
Hexachlorobutadiene ND H 250 1 03/10/2017 12:04 Hexachloroethane ND H 250 1 03/10/2017 12:04 Methylene chloride ND H 250 1 03/10/2017 12:04 1,1,1,2-Tetrachloroethane ND H 250 1 03/10/2017 12:04	trans-1,3-Dichloropropene	ND	Н	250	1	03/10/2017 12:04	
Hexachloroethane ND H 250 1 03/10/2017 12:04 Methylene chloride ND H 250 1 03/10/2017 12:04 1,1,1,2-Tetrachloroethane ND H 250 1 03/10/2017 12:04	Freon 113	ND	Н	5000	1	03/10/2017 12:04	
Methylene chloride ND H 250 1 03/10/2017 12:04 1,1,1,2-Tetrachloroethane ND H 250 1 03/10/2017 12:04	Hexachlorobutadiene	ND	Н	250	1	03/10/2017 12:04	
1,1,1,2-Tetrachloroethane ND H 250 1 03/10/2017 12:04	Hexachloroethane	ND	Н	250	1	03/10/2017 12:04	
	Methylene chloride	ND	Н	250	1	03/10/2017 12:04	
1,1,2,2-Tetrachloroethane ND H 250 1 03/10/2017 12:04	1,1,1,2-Tetrachloroethane	ND	Н	250	1	03/10/2017 12:04	
	1,1,2,2-Tetrachloroethane	ND	Н	250	1	03/10/2017 12:04	

(Cont.)

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Analytical Report

Client: Pangea Environmental Svcs., Inc.

Date Received: 3/9/17 18:14

Date Prepared: 3/10/17

Project: Elegant Cleaners

WorkOrder: 1703491

Extraction Method: SW5030B

Analytical Method: SW8260B

Unit: $\mu g/m^3$

Volatile Organics by P&T and GC/MS (Basic Target List)

Client ID	Lab ID	Matrix	Date Co	llected Instrument	Batch ID
SG-1	1703491-001A	Air	03/09/201	7 16:10 GC18	135474
Analytes	Result	<u>Qualifiers</u>	<u>RL</u>	<u>DF</u>	Date Analyzed
Tetrachloroethene	510	Н	250	1	03/10/2017 12:04
1,2,3-Trichlorobenzene	ND	Н	250	1	03/10/2017 12:04
1,2,4-Trichlorobenzene	ND	Н	250	1	03/10/2017 12:04
1,1,1-Trichloroethane	ND	Н	250	1	03/10/2017 12:04
1,1,2-Trichloroethane	ND	Н	250	1	03/10/2017 12:04
Trichloroethene	ND	Н	250	1	03/10/2017 12:04
Trichlorofluoromethane	ND	Н	250	1	03/10/2017 12:04
1,2,3-Trichloropropane	ND	Н	250	1	03/10/2017 12:04
Vinyl Chloride	ND	Н	250	1	03/10/2017 12:04
<u>Surrogates</u>	<u>REC (%)</u>	<u>Qualifiers</u>	<u>Limits</u>		
Dibromofluoromethane	105	Н	70-130		03/10/2017 12:04
Toluene-d8	98	Н	70-130		03/10/2017 12:04
4-BFB	90	Н	70-130		03/10/2017 12:04
Analyst(s): HK					

Analytical Report

Client: Pangea Environmental Svcs., Inc. WorkOrder:

Date Received: 3/9/17 18:14 **Date Prepared:** 3/10/17

Project: Elegant Cleaners

WorkOrder: 1703491 Extraction Method: SW5030B

Analytical Method: SW8260B **Unit:** μg/m³

Volatile Organics by P&T and GC/MS (Basic Target List)

Client ID	Lab ID	Matrix	Date C	Collected	Instrument	Batch ID	
SG- 2	1703491-002A	Air	03/09/2017 14:45		GC18	135474	
<u>Analytes</u>	Result	<u>Qualifiers</u>	<u>RL</u>	<u>DF</u>		Date Analyzed	
Bromobenzene	ND	Н	250	1		03/10/2017 12:44	
Bromochloromethane	ND	Н	250	1		03/10/2017 12:44	
Bromodichloromethane	ND	Н	250	1		03/10/2017 12:44	
Bromoform	ND	Н	250	1		03/10/2017 12:44	
Bromomethane	ND	Н	250	1		03/10/2017 12:44	
Carbon Tetrachloride	ND	Н	250	1		03/10/2017 12:44	
Chlorobenzene	ND	Н	250	1		03/10/2017 12:44	
Chloroethane	ND	Н	250	1		03/10/2017 12:44	
Chloroform	ND	Н	250	1		03/10/2017 12:44	
Chloromethane	ND	Н	250	1		03/10/2017 12:44	
2-Chlorotoluene	ND	Н	250	1		03/10/2017 12:44	
4-Chlorotoluene	ND	Н	250	1		03/10/2017 12:44	
Dibromochloromethane	ND	Н	250	1		03/10/2017 12:44	
1,2-Dibromo-3-chloropropane	ND	Н	250	1		03/10/2017 12:44	
1,2-Dibromoethane (EDB)	ND	Н	250	1		03/10/2017 12:44	
Dibromomethane	ND	Н	250	1		03/10/2017 12:44	
1,2-Dichlorobenzene	ND	Н	250	1		03/10/2017 12:44	
1,3-Dichlorobenzene	ND	Н	250	1		03/10/2017 12:44	
1,4-Dichlorobenzene	ND	Н	250	1		03/10/2017 12:44	
Dichlorodifluoromethane	ND	Н	250	1		03/10/2017 12:44	
1,1-Dichloroethane	ND	Н	250	1		03/10/2017 12:44	
1,2-Dichloroethane (1,2-DCA)	ND	Н	250	1		03/10/2017 12:44	
1,1-Dichloroethene	ND	Н	250	1		03/10/2017 12:44	
cis-1,2-Dichloroethene	ND	Н	250	1		03/10/2017 12:44	
trans-1,2-Dichloroethene	ND	Н	250	1		03/10/2017 12:44	
1,2-Dichloropropane	ND	Н	250	1		03/10/2017 12:44	
1,3-Dichloropropane	ND	Н	250	1		03/10/2017 12:44	
2,2-Dichloropropane	ND	Н	250	1		03/10/2017 12:44	
1,1-Dichloropropene	ND	Н	250	1		03/10/2017 12:44	
cis-1,3-Dichloropropene	ND	Н	250	1		03/10/2017 12:44	
trans-1,3-Dichloropropene	ND	Н	250	1		03/10/2017 12:44	
Freon 113	ND	Н	5000	1		03/10/2017 12:44	
Hexachlorobutadiene	ND	Н	250	1		03/10/2017 12:44	
Hexachloroethane	ND	Н	250	1		03/10/2017 12:44	
Methylene chloride	ND	Н	250	1		03/10/2017 12:44	
1,1,1,2-Tetrachloroethane	ND	Н	250	1		03/10/2017 12:44	
1,1,2,2-Tetrachloroethane	ND	Н	250	1		03/10/2017 12:44	

(Cont.)

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Analytical Report

Client: Pangea Environmental Svcs., Inc.

Date Received: 3/9/17 18:14

Date Prepared: 3/10/17

Project: Elegant Cleaners

WorkOrder: 1703491

Extraction Method: SW5030B

Analytical Method: SW8260B

Unit: $\mu g/m^3$

Volatile Organics by P&T and GC/MS (Basic Target List)

Client ID	Lab ID	Matrix	Date C	ollected Instrument	Batch ID
SG- 2	1703491-002	A Air	03/09/20	017 14:45 GC18	135474
<u>Analytes</u>	Result	<u>Qualifiers</u>	<u>RL</u>	<u>DF</u>	Date Analyzed
Tetrachloroethene	800	Н	250	1	03/10/2017 12:44
1,2,3-Trichlorobenzene	ND	Н	250	1	03/10/2017 12:44
1,2,4-Trichlorobenzene	ND	Н	250	1	03/10/2017 12:44
1,1,1-Trichloroethane	ND	Н	250	1	03/10/2017 12:44
1,1,2-Trichloroethane	ND	Н	250	1	03/10/2017 12:44
Trichloroethene	ND	Н	250	1	03/10/2017 12:44
Trichlorofluoromethane	ND	Н	250	1	03/10/2017 12:44
1,2,3-Trichloropropane	ND	Н	250	1	03/10/2017 12:44
Vinyl Chloride	ND	Н	250	1	03/10/2017 12:44
Surrogates	REC (%)	<u>Qualifiers</u>	<u>Limits</u>		
Dibromofluoromethane	105	Н	70-130		03/10/2017 12:44
Toluene-d8	97	Н	70-130		03/10/2017 12:44
4-BFB	90	Н	70-130		03/10/2017 12:44
Analyst(s): HK					

Analytical Report

Client: Pangea Environmental Svcs., Inc.

Date Received: 3/9/17 18:14 **Date Prepared:** 3/10/17

Project: Elegant Cleaners

WorkOrder: 1703491 Extraction Method: SW5030B

Analytical Method: SW8260B

Unit: $\mu g/m^3$

Volatile Organics by P&T and GC/MS (Basic Target List)

Client ID	Lab ID	Matrix	Date C	Collected	Instrument	Batch ID
SS- 2	1703491-003A	Air	03/09/20	017 15:00	GC18	135474
<u>Analytes</u>	Result	<u>Qualifiers</u>	<u>RL</u>	<u>DF</u>		Date Analyzed
Bromobenzene	ND	Н	250	1		03/10/2017 13:23
Bromochloromethane	ND	Н	250	1		03/10/2017 13:23
Bromodichloromethane	ND	Н	250	1		03/10/2017 13:23
Bromoform	ND	Н	250	1		03/10/2017 13:23
Bromomethane	ND	Н	250	1		03/10/2017 13:23
Carbon Tetrachloride	ND	Н	250	1		03/10/2017 13:23
Chlorobenzene	ND	Н	250	1		03/10/2017 13:23
Chloroethane	ND	Н	250	1		03/10/2017 13:23
Chloroform	ND	Н	250	1		03/10/2017 13:23
Chloromethane	ND	Н	250	1		03/10/2017 13:23
2-Chlorotoluene	ND	Н	250	1		03/10/2017 13:23
4-Chlorotoluene	ND	Н	250	1		03/10/2017 13:23
Dibromochloromethane	ND	Н	250	1		03/10/2017 13:23
1,2-Dibromo-3-chloropropane	ND	Н	250	1		03/10/2017 13:23
1,2-Dibromoethane (EDB)	ND	Н	250	1		03/10/2017 13:23
Dibromomethane	ND	Н	250	1		03/10/2017 13:23
1,2-Dichlorobenzene	ND	Н	250	1		03/10/2017 13:23
1,3-Dichlorobenzene	ND	Н	250	1		03/10/2017 13:23
1,4-Dichlorobenzene	ND	Н	250	1		03/10/2017 13:23
Dichlorodifluoromethane	ND	Н	250	1		03/10/2017 13:23
1,1-Dichloroethane	ND	Н	250	1		03/10/2017 13:23
1,2-Dichloroethane (1,2-DCA)	ND	Н	250	1		03/10/2017 13:23
1,1-Dichloroethene	ND	Н	250	1		03/10/2017 13:23
cis-1,2-Dichloroethene	ND	Н	250	1		03/10/2017 13:23
trans-1,2-Dichloroethene	ND	Н	250	1		03/10/2017 13:23
1,2-Dichloropropane	ND	Н	250	1		03/10/2017 13:23
1,3-Dichloropropane	ND	Н	250	1		03/10/2017 13:23
2,2-Dichloropropane	ND	Н	250	1		03/10/2017 13:23
1,1-Dichloropropene	ND	Н	250	1		03/10/2017 13:23
cis-1,3-Dichloropropene	ND	Н	250	1		03/10/2017 13:23
trans-1,3-Dichloropropene	ND	Н	250	1		03/10/2017 13:23
Freon 113	ND	Н	5000	1		03/10/2017 13:23
Hexachlorobutadiene	ND	Н	250	1		03/10/2017 13:23
Hexachloroethane	ND	Н	250	1		03/10/2017 13:23
Methylene chloride	ND	Н	250	1		03/10/2017 13:23
1,1,1,2-Tetrachloroethane	ND	Н	250	1		03/10/2017 13:23
1,1,2,2-Tetrachloroethane	ND	Н	250	1		03/10/2017 13:23

(Cont.)

Angela Rydelius, Lab Manager

Analytical Report

Client: Pangea Environmental Svcs., Inc.

Date Received: 3/9/17 18:14

Date Prepared: 3/10/17

Project: Elegant Cleaners

WorkOrder: 1703491

Extraction Method: SW5030B

Analytical Method: SW8260B

Unit: $\mu g/m^3$

Volatile Organics by P&T and GC/MS (Basic Target List)

Client ID	Lab ID	Matrix	Date C	Collected Instrument	Batch ID	
SS- 2	1703491-003	A Air	03/09/2	017 15:00 GC18	135474	
Analytes	Result	<u>Qualifiers</u>	<u>RL</u>	<u>DF</u>	Date Analyzed	
Tetrachloroethene	ND	Н	250	1	03/10/2017 13:23	
1,2,3-Trichlorobenzene	ND	Н	250	1	03/10/2017 13:23	
1,2,4-Trichlorobenzene	ND	Н	250	1	03/10/2017 13:23	
1,1,1-Trichloroethane	ND	Н	250	1	03/10/2017 13:23	
1,1,2-Trichloroethane	ND	Н	250	1	03/10/2017 13:23	
Trichloroethene	ND	Н	250	1	03/10/2017 13:23	
Trichlorofluoromethane	ND	Н	250	1	03/10/2017 13:23	
1,2,3-Trichloropropane	ND	Н	250	1	03/10/2017 13:23	
Vinyl Chloride	ND	Н	250	1	03/10/2017 13:23	
<u>Surrogates</u>	<u>REC (%)</u>	<u>Qualifiers</u>	<u>Limits</u>			
Dibromofluoromethane	103	Н	70-130		03/10/2017 13:23	
Toluene-d8	98	Н	70-130		03/10/2017 13:23	
4-BFB	91	Н	70-130		03/10/2017 13:23	
Analyst(s): HK						

Analytical Report

Client: Pangea Environmental Svcs., Inc.

Date Received: 3/9/17 18:14 **Date Prepared:** 3/10/17

Project: Elegant Cleaners

WorkOrder: 1703491 **Extraction Method: SW5030B**

Analytical Method: SW8260B

Unit: $\mu g/m^3$

Volatile Organics by P&T and GC/MS (Basic Target List)

Se-3	Client ID	Lab ID	Matrix	Date C	Collected	Instrument	Batch ID
Bromoblenzene	SS- 3	1703491-004A	Air	03/09/20	017 15:15	GC18	135474
Bromochloromethane ND H 250 1 03/10/2017 14:04 Bromodichloromethane ND H 250 1 03/10/2017 14:04 Bromoform ND H 250 1 03/10/2017 14:04 Bromomethane ND H 250 1 03/10/2017 14:04 Carbon Tetrachloride ND H 250 1 03/10/2017 14:04 Chlorotelane ND H 250 1 03/10/2017 14:04 Chlorotelane ND H 250 1 03/10/2017 14:04 Chlorotoluene ND H 250 1 03/10/2017 14:04 Chlorotoluene ND H 250 1 03/10/2017 14:04 4-Chlorotoluene ND	Analytes	Result	<u>Qualifiers</u>	<u>RL</u>	<u>DF</u>		Date Analyzed
Bromodichloromethane ND H 250 1 03/10/2017 14:04 Bromoform ND H 250 1 03/10/2017 14:04 Bromomethane ND H 250 1 03/10/2017 14:04 Carbon Tetrachloride ND H 250 1 03/10/2017 14:04 Chlorobenzene ND H 250 1 03/10/2017 14:04 Chlorothane ND H 250 1 03/10/2017 14:04 Chlorotorem ND H 250 1 03/10/2017 14:04 Chlorotorem ND H 250 1 03/10/2017 14:04 Chlorotoreme ND H 250 1 03/10/2017 14:04 Ly-Distoreme ND H <td< td=""><td>Bromobenzene</td><td>ND</td><td>Н</td><td>250</td><td>1</td><td></td><td>03/10/2017 14:04</td></td<>	Bromobenzene	ND	Н	250	1		03/10/2017 14:04
Bromoform ND H 250 1 03/10/2017 14:04 Bromomethane ND H 250 1 03/10/2017 14:04 Carbon Tetrachloride ND H 250 1 03/10/2017 14:04 Chlorobenzene ND H 250 1 03/10/2017 14:04 Chloroethane ND H 250 1 03/10/2017 14:04 Chloroform ND H 250 1 03/10/2017 14:04 Chlororothuene ND H 250 1 03/10/2017 14:04 4-Chlorotoluene ND H 250 1 03/10/2017 14:04 1,2-Dibromoethane ND H </td <td>Bromochloromethane</td> <td>ND</td> <td>Н</td> <td>250</td> <td>1</td> <td></td> <td>03/10/2017 14:04</td>	Bromochloromethane	ND	Н	250	1		03/10/2017 14:04
Bromomethane	Bromodichloromethane	ND	Н	250	1		03/10/2017 14:04
Carbon Tetrachloride ND H 250 1 03/10/2017 14:04 Chlorobenzene ND H 250 1 03/10/2017 14:04 Chloroform ND H 250 1 03/10/2017 14:04 Chloroform ND H 250 1 03/10/2017 14:04 Chloromethane ND H 250 1 03/10/2017 14:04 Chlorotoluene ND H 250 1 03/10/2017 14:04 4-Chlorotoluene ND H 250 1 03/10/2017 14:04 4-Chlorotoluene ND H 250 1 03/10/2017 14:04 1/2-Dibromoesthane ND H 250 1 03/10/2017 14:04 1/2-Dibromoesthane (EDB) ND H 250 1 03/10/2017 14:04 1/2-Dichlorobenzene ND H 250 1 03/10/2017 14:04 1/2-Dichlorobenzene ND H 250 1 03/10/2017 14:04 1/3-Dichlorobenzene <	Bromoform	ND	Н	250	1		03/10/2017 14:04
Chlorobenzene ND H 250 1 03/10/2017 14:04 Chloroethane ND H 250 1 03/10/2017 14:04 Chloroform ND H 250 1 03/10/2017 14:04 Chloroteluene ND H 250 1 03/10/2017 14:04 2-Chlorotoluene ND H 250 1 03/10/2017 14:04 4-Chlorotoluene ND H 250 1 03/10/2017 14:04 4-Chlorotoluene ND H 250 1 03/10/2017 14:04 4-Chlorotoluene ND H 250 1 03/10/2017 14:04 1,2-Diblorocomen ND H 250 1 03/10/2017 14:04 1,2-Dibloromenene ND H 250 1 03/10/2017 14:04 1,2-Diblorobenzene ND H 250 1 03/10/2017 14:04 1,3-Dichlorobenzene ND H 250 1 03/10/2017 14:04 1,1-Dichloroethane ND	Bromomethane	ND	Н	250	1		03/10/2017 14:04
Chloroethane ND H 250 1 03/10/2017 14:04 Chloroform ND H 250 1 03/10/2017 14:04 Chloromethane ND H 250 1 03/10/2017 14:04 2-Chlorotoluene ND H 250 1 03/10/2017 14:04 4-Chlorotoluene ND H 250 1 03/10/2017 14:04 1,2-Dibromo-s-chloropropane ND H 250 1 03/10/2017 14:04 1,2-Dichlorobenzene ND H 250 1 03/10/2017 14:04 1,2-Dichlorobenzene ND H 250 1 03/10/2017 14:04 1,3-Dichlorobenzene ND H 250 1 03/10/2017 14:04 1,4-Dichlorobenzene	Carbon Tetrachloride	ND	Н	250	1		03/10/2017 14:04
Chloroform ND H 250 1 03/10/2017 14:04 Chloromethane ND H 250 1 03/10/2017 14:04 2-Chlorotoluene ND H 250 1 03/10/2017 14:04 4-Chlorotoluene ND H 250 1 03/10/2017 14:04 4-Chlorotoluene ND H 250 1 03/10/2017 14:04 12-Dibromo-3-chloropropane ND H 250 1 03/10/2017 14:04 1,2-Dibromo-sthane (EDB) ND H 250 1 03/10/2017 14:04 1,2-Dichlorobenzene ND H 250 1 03/10/2017 14:04 1,2-Dichlorobenzene ND H 250 1 03/10/2017 14:04 1,3-Dichlorobenzene ND H 250 1 03/10/2017 14:04 1,1-Dichloroethane ND H 250 1 03/10/2017 14:04 1,1-Dichloroethane ND H 250 1 03/10/2017 14:04 1,1-Dichloro	Chlorobenzene	ND	Н	250	1		03/10/2017 14:04
Chloromethane ND H 250 1 03/10/2017 14:04 2-Chlorotoluene ND H 250 1 03/10/2017 14:04 4-Chlorotoluene ND H 250 1 03/10/2017 14:04 4-Chlorome-3-chloropropane ND H 250 1 03/10/2017 14:04 1,2-Dibromo-3-chloropropane ND H 250 1 03/10/2017 14:04 1,2-Dibromoethane (EDB) ND H 250 1 03/10/2017 14:04 1,2-Dichorobenzene ND H 250 1 03/10/2017 14:04 1,2-Dichlorobenzene ND H 250 1 03/10/2017 14:04 1,3-Dichlorobenzene ND H 250 1 03/10/2017 14:04 1,4-Dichlorobenzene ND H 250 1 03/10/2017 14:04 1,1-Dichlorodifluoromethane ND H 250 1 03/10/2017 14:04 1,1-Dichloroethane (1,2-DCA) ND H 250 1 03/10/2017 14:04 <	Chloroethane	ND	Н	250	1		03/10/2017 14:04
2-Chlorotoluene ND H 250 1 03/10/2017 14:04 4-Chlorotoluene ND H 250 1 03/10/2017 14:04 Dibromoral component ND H 250 1 03/10/2017 14:04 1,2-Dibromo-3-chloropropane ND H 250 1 03/10/2017 14:04 1,2-Dibromo-schane (EDB) ND H 250 1 03/10/2017 14:04 1,2-Dibromo-schane (EDB) ND H 250 1 03/10/2017 14:04 1,2-Dichlorobenzene ND H 250 1 03/10/2017 14:04 1,3-Dichlorobenzene ND H 250 1 03/10/2017 14:04 1,4-Dichlorobenzene ND H 250 1 03/10/2017 14:04 1,1-Dichloroethane ND H 250 1 03/10/2017 14:04 1,1-Dichloroethane ND H 250 1 03/10/2017 14:04 1,2-Dichloroethane ND H 250 1 03/10/2017 14:04	Chloroform	ND	Н	250	1		03/10/2017 14:04
4-Chlorotoluene ND H 250 1 03/10/2017 14:04 Dibromochloromethane ND H 250 1 03/10/2017 14:04 1,2-Dibromo-3-chloropropane ND H 250 1 03/10/2017 14:04 1,2-Dibromoethane (EDB) ND H 250 1 03/10/2017 14:04 1,2-Dichlorobenzene ND H 250 1 03/10/2017 14:04 1,2-Dichlorobenzene ND H 250 1 03/10/2017 14:04 1,3-Dichlorobenzene ND H 250 1 03/10/2017 14:04 1,4-Dichlorobenzene ND H 250 1 03/10/2017 14:04 1,4-Dichloroethane ND H 250 1 03/10/2017 14:04 1,1-Dichloroethane ND H 250 1 03/10/2017 14:04 1,2-Dichloroethane ND H 250 1 03/10/2017 14:04 1,2-Dichloroethane ND H 250 1 03/10/2017 14:04	Chloromethane	ND	Н	250	1		03/10/2017 14:04
Dibromochloromethane ND	2-Chlorotoluene	ND	Н	250	1		03/10/2017 14:04
1,2-Dibromo-3-chloropropane ND H 250 1 03/10/2017 14:04 1,2-Dibromoethane (EDB) ND H 250 1 03/10/2017 14:04 1,2-Dibromomethane ND H 250 1 03/10/2017 14:04 1,2-Dichlorobenzene ND H 250 1 03/10/2017 14:04 1,3-Dichlorobenzene ND H 250 1 03/10/2017 14:04 1,4-Dichlorobenzene ND H 250 1 03/10/2017 14:04 Dichlorodifluoromethane ND H 250 1 03/10/2017 14:04 1,1-Dichloroethane ND H 250 1 03/10/2017 14:04 1,2-Dichloroethane (1,2-DCA) ND H 250 1 <t< td=""><td>4-Chlorotoluene</td><td>ND</td><td>Н</td><td>250</td><td>1</td><td></td><td>03/10/2017 14:04</td></t<>	4-Chlorotoluene	ND	Н	250	1		03/10/2017 14:04
1,2-Dibromoethane (EDB) ND H 250 1 03/10/2017 14:04 Dibromomethane ND H 250 1 03/10/2017 14:04 1,2-Dichlorobenzene ND H 250 1 03/10/2017 14:04 1,3-Dichlorobenzene ND H 250 1 03/10/2017 14:04 1,4-Dichlorobenzene ND H 250 1 03/10/2017 14:04 1,4-Dichlorosthane ND H 250 1 03/10/2017 14:04 1,1-Dichloroethane ND H 250 1 03/10/2017 14:04 1,2-Dichloroethane (1,2-DCA) ND H 250 1 03/10/2017 14:04 1,1-Dichloroethane (1,2-DCA) ND H 250 1 03/10/2017 14:04 1,1-Dichloroethane (1,2-DCA) ND H 250 1 03/10/2017 14:04 1,2-Dichloroethane (1,2-DCA) ND H 250 1 03/10/2017 14:04 1,1-Dichloroethane (1,2-DCA) ND H 250 1 03/10/	Dibromochloromethane	ND	Н	250	1		03/10/2017 14:04
Dibromomethane ND H 250 1 03/10/2017 14:04 1,2-Dichlorobenzene ND H 250 1 03/10/2017 14:04 1,3-Dichlorobenzene ND H 250 1 03/10/2017 14:04 1,4-Dichlorobenzene ND H 250 1 03/10/2017 14:04 1,1-Dichloroethane ND H 250 1 03/10/2017 14:04 1,1-Dichloroethane ND H 250 1 03/10/2017 14:04 1,2-Dichloroethane (1,2-DCA) ND H 250 1 03/10/2017 14:04 1,1-Dichloroethene ND H 250 1 03/10/2017 14:04 cis-1,2-Dichloroethene ND H 250 1 03/10/2017 14:04 trans-1,2-Dichloroptopene ND H 250 1 03/10/2017 14:04 1,2-Dichloropropane ND H 250 1 03/10/2017 14:04 1,3-Dichloropropane ND H 250 1 03/10/2017 14:04 <t< td=""><td>1,2-Dibromo-3-chloropropane</td><td>ND</td><td>Н</td><td>250</td><td>1</td><td></td><td>03/10/2017 14:04</td></t<>	1,2-Dibromo-3-chloropropane	ND	Н	250	1		03/10/2017 14:04
1,2-Dichlorobenzene ND H 250 1 03/10/2017 14:04 1,3-Dichlorobenzene ND H 250 1 03/10/2017 14:04 1,4-Dichlorobenzene ND H 250 1 03/10/2017 14:04 Dichlorodifluoromethane ND H 250 1 03/10/2017 14:04 1,1-Dichloroethane ND H 250 1 03/10/2017 14:04 1,2-Dichloroethane (1,2-DCA) ND H 250 1 03/10/2017 14:04 1,1-Dichloroethene ND H 250 1 03/10/2017 14:04 1,1-Dichloroethene ND H 250 1 03/10/2017 14:04 1,1-Dichloroethene ND H 250 1 03/10/2017 14:04 trans-1,2-Dichloroethene ND H 250 1 03/10/2017 14:04 1,2-Dichloropropane ND H 250 1 03/10/2017 14:04 1,3-Dichloropropane ND H 250 1 03/10/2017 14:04	1,2-Dibromoethane (EDB)	ND	Н	250	1		03/10/2017 14:04
1,3-Dichlorobenzene ND H 250 1 03/10/2017 14:04 1,4-Dichlorobenzene ND H 250 1 03/10/2017 14:04 Dichlorodiffluoromethane ND H 250 1 03/10/2017 14:04 1,1-Dichloroethane ND H 250 1 03/10/2017 14:04 1,2-Dichloroethane (1,2-DCA) ND H 250 1 03/10/2017 14:04 1,1-Dichloroethene ND H 250 1 03/10/2017 14:04 cis-1,2-Dichloroethene ND H 250 1 03/10/2017 14:04 trans-1,2-Dichloroethene ND H 250 1 03/10/2017 14:04 1,2-Dichloroptopane ND H 250 1 03/10/2017 14:04 1,3-Dichloropropane ND H 250 1 03/10/2017 14:04 2,2-Dichloropropane ND H 250 1 03/10/2017 14:04 1,1-Dichloropropane ND H 250 1 03/10/2017 14:04 </td <td>Dibromomethane</td> <td>ND</td> <td>Н</td> <td>250</td> <td>1</td> <td></td> <td>03/10/2017 14:04</td>	Dibromomethane	ND	Н	250	1		03/10/2017 14:04
1,4-Dichlorobenzene ND H 250 1 03/10/2017 14:04 Dichlorodiffluoromethane ND H 250 1 03/10/2017 14:04 1,1-Dichloroethane ND H 250 1 03/10/2017 14:04 1,2-Dichloroethane (1,2-DCA) ND H 250 1 03/10/2017 14:04 1,1-Dichloroethane ND H 250 1 03/10/2017 14:04 cis-1,2-Dichloroethane ND H 250 1 03/10/2017 14:04 trans-1,2-Dichloroethane ND H 250 1 03/10/2017 14:04 1,2-Dichloroptopane ND H 250 1 03/10/2017 14:04 1,3-Dichloropropane ND H 250 1 03/10/2017 14:04 2,2-Dichloropropane ND H 250 1 03/10/2017 14:04 1,1-Dichloropropane ND H 250 1 03/10/2017 14:04 1,1-Dichloropropene ND H 250 1 03/10/2017 14:04 </td <td>1,2-Dichlorobenzene</td> <td>ND</td> <td>Н</td> <td>250</td> <td>1</td> <td></td> <td>03/10/2017 14:04</td>	1,2-Dichlorobenzene	ND	Н	250	1		03/10/2017 14:04
Dichlorodifluoromethane ND H 250 1 03/10/2017 14:04 1,1-Dichloroethane ND H 250 1 03/10/2017 14:04 1,2-Dichloroethane (1,2-DCA) ND H 250 1 03/10/2017 14:04 1,1-Dichloroethene ND H 250 1 03/10/2017 14:04 cis-1,2-Dichloroethene ND H 250 1 03/10/2017 14:04 trans-1,2-Dichloroethene ND H 250 1 03/10/2017 14:04 1,2-Dichloroptopane ND H 250 1 03/10/2017 14:04 1,3-Dichloropropane ND H 250 1 03/10/2017 14:04 2,2-Dichloropropane ND H 250 1 03/10/2017 14:04 1,1-Dichloropropene ND H 250 1 03/10/2017 14:04 cis-1,3-Dichloropropene ND H 250 1 03/10/2017 14:04 trans-1,3-Dichloropropene ND H 250 1 03/10/2017 14:04 <td>1,3-Dichlorobenzene</td> <td>ND</td> <td>Н</td> <td>250</td> <td>1</td> <td></td> <td>03/10/2017 14:04</td>	1,3-Dichlorobenzene	ND	Н	250	1		03/10/2017 14:04
1,1-Dichloroethane ND H 250 1 03/10/2017 14:04 1,2-Dichloroethane (1,2-DCA) ND H 250 1 03/10/2017 14:04 1,1-Dichloroethane ND H 250 1 03/10/2017 14:04 cis-1,2-Dichloroethene ND H 250 1 03/10/2017 14:04 trans-1,2-Dichloroethene ND H 250 1 03/10/2017 14:04 1,2-Dichloropropane ND H 250 1 03/10/2017 14:04 1,3-Dichloropropane ND H 250 1 03/10/2017 14:04 2,2-Dichloropropane ND H 250 1 03/10/2017 14:04 1,1-Dichloropropene ND H 250 1 03/10/2017 14:04 cis-1,3-Dichloropropene ND H 250 1 03/10/2017 14:04 trans-1,3-Dichloropropene ND H 250 1 03/10/2017 14:04 Freon 113 ND H 250 1 03/10/2017 14:04	1,4-Dichlorobenzene	ND	Н	250	1		03/10/2017 14:04
1,2-Dichloroethane (1,2-DCA) ND H 250 1 03/10/2017 14:04 1,1-Dichloroethene ND H 250 1 03/10/2017 14:04 cis-1,2-Dichloroethene ND H 250 1 03/10/2017 14:04 trans-1,2-Dichloroethene ND H 250 1 03/10/2017 14:04 1,2-Dichloropropane ND H 250 1 03/10/2017 14:04 1,3-Dichloropropane ND H 250 1 03/10/2017 14:04 2,2-Dichloropropane ND H 250 1 03/10/2017 14:04 1,1-Dichloropropene ND H 250 1 03/10/2017 14:04 cis-1,3-Dichloropropene ND H 250 1 03/10/2017 14:04 trans-1,3-Dichloropropene ND H 250 1 03/10/2017 14:04 Freon 113 ND H 500 1 03/10/2017 14:04 Hexachlorobutadiene ND H 250 1 03/10/2017 14:04	Dichlorodifluoromethane	ND	Н	250	1		03/10/2017 14:04
1,1-Dichloroethene ND H 250 1 03/10/2017 14:04 cis-1,2-Dichloroethene ND H 250 1 03/10/2017 14:04 trans-1,2-Dichloroethene ND H 250 1 03/10/2017 14:04 1,2-Dichloropropane ND H 250 1 03/10/2017 14:04 1,3-Dichloropropane ND H 250 1 03/10/2017 14:04 2,2-Dichloropropane ND H 250 1 03/10/2017 14:04 1,1-Dichloropropene ND H 250 1 03/10/2017 14:04 cis-1,3-Dichloropropene ND H 250 1 03/10/2017 14:04 trans-1,3-Dichloropropene ND H 250 1 03/10/2017 14:04 Freon 113 ND H 5000 1 03/10/2017 14:04 Hexachlorobutadiene ND H 250 1 03/10/2017 14:04 Hexachloroethane ND H 250 1 03/10/2017 14:04	1,1-Dichloroethane	ND	Н	250	1		03/10/2017 14:04
cis-1,2-Dichloroethene ND H 250 1 03/10/2017 14:04 trans-1,2-Dichloroethene ND H 250 1 03/10/2017 14:04 1,2-Dichloropropane ND H 250 1 03/10/2017 14:04 1,3-Dichloropropane ND H 250 1 03/10/2017 14:04 2,2-Dichloropropane ND H 250 1 03/10/2017 14:04 1,1-Dichloropropene ND H 250 1 03/10/2017 14:04 cis-1,3-Dichloropropene ND H 250 1 03/10/2017 14:04 trans-1,3-Dichloropropene ND H 250 1 03/10/2017 14:04 Freon 113 ND H 5000 1 03/10/2017 14:04 Hexachloroethane ND H 250 1 03/10/2017 14:04 Methylene chloride ND H 250 1 03/10/2017 14:04 1,1,1,2-Tetrachloroethane ND H 250 1 03/10/2017 14:04 <	1,2-Dichloroethane (1,2-DCA)	ND	Н	250	1		03/10/2017 14:04
trans-1,2-Dichloroethene ND H 250 1 03/10/2017 14:04 1,2-Dichloropropane ND H 250 1 03/10/2017 14:04 1,3-Dichloropropane ND H 250 1 03/10/2017 14:04 2,2-Dichloropropane ND H 250 1 03/10/2017 14:04 1,1-Dichloropropene ND H 250 1 03/10/2017 14:04 cis-1,3-Dichloropropene ND H 250 1 03/10/2017 14:04 trans-1,3-Dichloropropene ND H 250 1 03/10/2017 14:04 Freon 113 ND H 5000 1 03/10/2017 14:04 Hexachlorobutadiene ND H 250 1 03/10/2017 14:04 Methylene chloride ND H 250 1 03/10/2017 14:04 1,1,1,2-Tetrachloroethane ND H 250 1 03/10/2017 14:04 1,1,1,2-Tetrachloroethane ND H 250 1 03/10/2017 14:04	1,1-Dichloroethene	ND	Н	250	1		03/10/2017 14:04
1,2-Dichloropropane ND H 250 1 03/10/2017 14:04 1,3-Dichloropropane ND H 250 1 03/10/2017 14:04 2,2-Dichloropropane ND H 250 1 03/10/2017 14:04 1,1-Dichloropropene ND H 250 1 03/10/2017 14:04 cis-1,3-Dichloropropene ND H 250 1 03/10/2017 14:04 trans-1,3-Dichloropropene ND H 250 1 03/10/2017 14:04 Freon 113 ND H 5000 1 03/10/2017 14:04 Hexachlorobutadiene ND H 250 1 03/10/2017 14:04 Hexachloroethane ND H 250 1 03/10/2017 14:04 Methylene chloride ND H 250 1 03/10/2017 14:04 1,1,1,2-Tetrachloroethane ND H 250 1 03/10/2017 14:04	cis-1,2-Dichloroethene	ND	Н	250	1		03/10/2017 14:04
1,3-Dichloropropane ND H 250 1 03/10/2017 14:04 2,2-Dichloropropane ND H 250 1 03/10/2017 14:04 1,1-Dichloropropene ND H 250 1 03/10/2017 14:04 cis-1,3-Dichloropropene ND H 250 1 03/10/2017 14:04 trans-1,3-Dichloropropene ND H 250 1 03/10/2017 14:04 Freon 113 ND H 5000 1 03/10/2017 14:04 Hexachlorobutadiene ND H 250 1 03/10/2017 14:04 Hexachloroethane ND H 250 1 03/10/2017 14:04 Methylene chloride ND H 250 1 03/10/2017 14:04 1,1,1,2-Tetrachloroethane ND H 250 1 03/10/2017 14:04	trans-1,2-Dichloroethene	ND	Н	250	1		03/10/2017 14:04
2,2-Dichloropropane ND H 250 1 03/10/2017 14:04 1,1-Dichloropropene ND H 250 1 03/10/2017 14:04 cis-1,3-Dichloropropene ND H 250 1 03/10/2017 14:04 trans-1,3-Dichloropropene ND H 250 1 03/10/2017 14:04 Freon 113 ND H 5000 1 03/10/2017 14:04 Hexachlorobutadiene ND H 250 1 03/10/2017 14:04 Hexachloroethane ND H 250 1 03/10/2017 14:04 Methylene chloride ND H 250 1 03/10/2017 14:04 1,1,1,2-Tetrachloroethane ND H 250 1 03/10/2017 14:04	1,2-Dichloropropane	ND	Н	250	1		03/10/2017 14:04
1,1-Dichloropropene ND H 250 1 03/10/2017 14:04 cis-1,3-Dichloropropene ND H 250 1 03/10/2017 14:04 trans-1,3-Dichloropropene ND H 250 1 03/10/2017 14:04 Freon 113 ND H 5000 1 03/10/2017 14:04 Hexachlorobutadiene ND H 250 1 03/10/2017 14:04 Hexachloroethane ND H 250 1 03/10/2017 14:04 Methylene chloride ND H 250 1 03/10/2017 14:04 1,1,1,2-Tetrachloroethane ND H 250 1 03/10/2017 14:04	1,3-Dichloropropane	ND	Н	250	1		03/10/2017 14:04
cis-1,3-Dichloropropene ND H 250 1 03/10/2017 14:04 trans-1,3-Dichloropropene ND H 250 1 03/10/2017 14:04 Freon 113 ND H 5000 1 03/10/2017 14:04 Hexachlorobutadiene ND H 250 1 03/10/2017 14:04 Hexachloroethane ND H 250 1 03/10/2017 14:04 Methylene chloride ND H 250 1 03/10/2017 14:04 1,1,1,2-Tetrachloroethane ND H 250 1 03/10/2017 14:04	2,2-Dichloropropane	ND	Н	250	1		03/10/2017 14:04
trans-1,3-Dichloropropene ND H 250 1 03/10/2017 14:04 Freon 113 ND H 5000 1 03/10/2017 14:04 Hexachlorobutadiene ND H 250 1 03/10/2017 14:04 Hexachloroethane ND H 250 1 03/10/2017 14:04 Methylene chloride ND H 250 1 03/10/2017 14:04 1,1,1,2-Tetrachloroethane ND H 250 1 03/10/2017 14:04	1,1-Dichloropropene	ND	Н	250	1		03/10/2017 14:04
Freon 113 ND H 5000 1 03/10/2017 14:04 Hexachlorobutadiene ND H 250 1 03/10/2017 14:04 Hexachloroethane ND H 250 1 03/10/2017 14:04 Methylene chloride ND H 250 1 03/10/2017 14:04 1,1,1,2-Tetrachloroethane ND H 250 1 03/10/2017 14:04	cis-1,3-Dichloropropene	ND	Н	250	1		03/10/2017 14:04
Hexachlorobutadiene ND H 250 1 03/10/2017 14:04 Hexachloroethane ND H 250 1 03/10/2017 14:04 Methylene chloride ND H 250 1 03/10/2017 14:04 1,1,1,2-Tetrachloroethane ND H 250 1 03/10/2017 14:04	trans-1,3-Dichloropropene	ND	Н	250	1		03/10/2017 14:04
Hexachloroethane ND H 250 1 03/10/2017 14:04 Methylene chloride ND H 250 1 03/10/2017 14:04 1,1,1,2-Tetrachloroethane ND H 250 1 03/10/2017 14:04	Freon 113	ND	Н	5000	1		03/10/2017 14:04
Methylene chloride ND H 250 1 03/10/2017 14:04 1,1,1,2-Tetrachloroethane ND H 250 1 03/10/2017 14:04	Hexachlorobutadiene	ND	Н	250	1		03/10/2017 14:04
1,1,1,2-Tetrachloroethane ND H 250 1 03/10/2017 14:04	Hexachloroethane	ND	Н	250	1		03/10/2017 14:04
	Methylene chloride	ND	Н	250	1		03/10/2017 14:04
1,1,2,2-Tetrachloroethane ND H 250 1 03/10/2017 14:04	1,1,1,2-Tetrachloroethane	ND	Н	250	1		03/10/2017 14:04
	1,1,2,2-Tetrachloroethane	ND	Н	250	1		03/10/2017 14:04

(Cont.)

Analytical Report

Client: Pangea Environmental Svcs., Inc.

Date Received: 3/9/17 18:14

Date Prepared: 3/10/17

Project: Elegant Cleaners

WorkOrder: 1703491

Extraction Method: SW5030B

Analytical Method: SW8260B

Unit: $\mu g/m^3$

Volatile Organics by P&T and GC/MS (Basic Target List)

Lab ID	Matrix	Date C	collected Instrument	Batch ID	
1703491-004	A Air	03/09/20	017 15:15 GC18	135474	
Result	<u>Qualifiers</u>	<u>RL</u>	<u>DF</u>	Date Analyzed	
ND	Н	250	1	03/10/2017 14:04	
ND	Н	250	1	03/10/2017 14:04	
ND	Н	250	1	03/10/2017 14:04	
ND	Н	250	1	03/10/2017 14:04	
ND	Н	250	1	03/10/2017 14:04	
ND	Н	250	1	03/10/2017 14:04	
ND	Н	250	1	03/10/2017 14:04	
ND	Н	250	1	03/10/2017 14:04	
ND	Н	250	1	03/10/2017 14:04	
<u>REC (%)</u>	<u>Qualifiers</u>	<u>Limits</u>			
103	Н	70-130		03/10/2017 14:04	
99	Н	70-130		03/10/2017 14:04	
91	Н	70-130		03/10/2017 14:04	
	1703491-004 Result ND ND ND ND ND ND ND ND ND N	Result Qualifiers ND H REC (%) Qualifiers 103 H 99 H	Result Qualifiers RL ND H 250 REC (%) Qualifiers Limits 103 H 70-130 99 H 70-130	Result Qualifiers RL DF ND H 250 1 REC (%) Qualifiers Limits 103 H 70-130 99 H 70-130	

Analytical Report

1703491


Client: Pangea Environmental Svcs., Inc. WorkOrder:

Date Received: 3/9/17 18:14 **Extraction Method: SW5030B Date Prepared:** 3/10/17 Analytical Method: SW8260B **Project: Elegant Cleaners** Unit: $\mu g/m^3$

Volatile Organics by P&T and GC/MS (Basic Target List)

Client ID	Lab ID	Matrix	Date Co	ollected Instrument	Batch ID
SS- 4	1703491-005A	Air	03/09/20	17 15:33 GC18	135474
Analytes	Result	<u>Qualifiers</u>	<u>RL</u>	<u>DF</u>	Date Analyzed
Bromobenzene	ND	Н	250	1	03/10/2017 16:59
Bromochloromethane	ND	Н	250	1	03/10/2017 16:59
Bromodichloromethane	ND	Н	250	1	03/10/2017 16:59
Bromoform	ND	Н	250	1	03/10/2017 16:59
Bromomethane	ND	Н	250	1	03/10/2017 16:59
Carbon Tetrachloride	ND	Н	250	1	03/10/2017 16:59
Chlorobenzene	ND	Н	250	1	03/10/2017 16:59
Chloroethane	ND	Н	250	1	03/10/2017 16:59
Chloroform	ND	Н	250	1	03/10/2017 16:59
Chloromethane	ND	Н	250	1	03/10/2017 16:59
2-Chlorotoluene	ND	Н	250	1	03/10/2017 16:59
4-Chlorotoluene	ND	Н	250	1	03/10/2017 16:59
Dibromochloromethane	ND	Н	250	1	03/10/2017 16:59
1,2-Dibromo-3-chloropropane	ND	Н	250	1	03/10/2017 16:59
1,2-Dibromoethane (EDB)	ND	Н	250	1	03/10/2017 16:59
Dibromomethane	ND	Н	250	1	03/10/2017 16:59
1,2-Dichlorobenzene	ND	Н	250	1	03/10/2017 16:59
1,3-Dichlorobenzene	ND	Н	250	1	03/10/2017 16:59
1,4-Dichlorobenzene	ND	Н	250	1	03/10/2017 16:59
Dichlorodifluoromethane	ND	Н	250	1	03/10/2017 16:59
1,1-Dichloroethane	ND	Н	250	1	03/10/2017 16:59
1,2-Dichloroethane (1,2-DCA)	ND	Н	250	1	03/10/2017 16:59
1,1-Dichloroethene	ND	Н	250	1	03/10/2017 16:59
cis-1,2-Dichloroethene	ND	Н	250	1	03/10/2017 16:59
trans-1,2-Dichloroethene	ND	Н	250	1	03/10/2017 16:59
1,2-Dichloropropane	ND	Н	250	1	03/10/2017 16:59
1,3-Dichloropropane	ND	Н	250	1	03/10/2017 16:59
2,2-Dichloropropane	ND	Н	250	1	03/10/2017 16:59
1,1-Dichloropropene	ND	Н	250	1	03/10/2017 16:59
cis-1,3-Dichloropropene	ND	Н	250	1	03/10/2017 16:59
trans-1,3-Dichloropropene	ND	Н	250	1	03/10/2017 16:59
Freon 113	ND	Н	5000	1	03/10/2017 16:59
Hexachlorobutadiene	ND	Н	250	1	03/10/2017 16:59
Hexachloroethane	ND	Н	250	1	03/10/2017 16:59
Methylene chloride	ND	Н	250	1	03/10/2017 16:59
1,1,1,2-Tetrachloroethane	ND	Н	250	1	03/10/2017 16:59
1,1,2,2-Tetrachloroethane	ND	Н	250	1	03/10/2017 16:59

(Cont.)

Analytical Report

Client: Pangea Environmental Svcs., Inc.

Date Received: 3/9/17 18:14 **Date Prepared:** 3/10/17

Project: Elegant Cleaners

WorkOrder: 1703491

Extraction Method: SW5030B

Analytical Method: SW8260B

Unit: $\mu g/m^3$

Client ID	Lab ID	Matrix	Date C	Collected Instrument	Batch ID
SS- 4	1703491-005	A Air	03/09/2	017 15:33 GC18	135474
Analytes	Result	<u>Qualifiers</u>	<u>RL</u>	<u>DF</u>	Date Analyzed
Tetrachloroethene	1300	Н	250	1	03/10/2017 16:59
1,2,3-Trichlorobenzene	ND	Н	250	1	03/10/2017 16:59
1,2,4-Trichlorobenzene	ND	Н	250	1	03/10/2017 16:59
1,1,1-Trichloroethane	ND	Н	250	1	03/10/2017 16:59
1,1,2-Trichloroethane	ND	Н	250	1	03/10/2017 16:59
Trichloroethene	ND	Н	250	1	03/10/2017 16:59
Trichlorofluoromethane	ND	Н	250	1	03/10/2017 16:59
1,2,3-Trichloropropane	ND	Н	250	1	03/10/2017 16:59
Vinyl Chloride	ND	Н	250	1	03/10/2017 16:59
<u>Surrogates</u>	<u>REC (%)</u>	<u>Qualifiers</u>	<u>Limits</u>		
Dibromofluoromethane	106	Н	70-130		03/10/2017 16:59
Toluene-d8	97	Н	70-130		03/10/2017 16:59
4-BFB	90	Н	70-130		03/10/2017 16:59
Analyst(s): HK					

Analytical Report

Client: Pangea Environmental Svcs., Inc.

Date Received: 3/9/17 18:14

Date Prepared: 3/10/17

Project: Elegant Cleaners

WorkOrder: 1703491

Extraction Method: SW5030B **Analytical Method:** SW8260B

Unit: $\mu g/m^3$

Volatile Organics by P&T and GC/MS (Basic Target List)

Client ID	Lab ID	Matrix	Date C	Collected	Instrument	Batch ID
VW- 3	1703491-006A	Air	03/09/20	017 13:00	GC18	135474
<u>Analytes</u>	Result	<u>Qualifiers</u>	<u>RL</u>	<u>DF</u>		Date Analyzed
Bromobenzene	ND	Н	250	1		03/10/2017 15:28
Bromochloromethane	ND	Н	250	1		03/10/2017 15:28
Bromodichloromethane	ND	Н	250	1		03/10/2017 15:28
Bromoform	ND	Н	250	1		03/10/2017 15:28
Bromomethane	ND	Н	250	1		03/10/2017 15:28
Carbon Tetrachloride	ND	Н	250	1		03/10/2017 15:28
Chlorobenzene	ND	Н	250	1		03/10/2017 15:28
Chloroethane	ND	Н	250	1		03/10/2017 15:28
Chloroform	ND	Н	250	1		03/10/2017 15:28
Chloromethane	ND	Н	250	1		03/10/2017 15:28
2-Chlorotoluene	ND	Н	250	1		03/10/2017 15:28
4-Chlorotoluene	ND	Н	250	1		03/10/2017 15:28
Dibromochloromethane	ND	Н	250	1		03/10/2017 15:28
1,2-Dibromo-3-chloropropane	ND	Н	250	1		03/10/2017 15:28
1,2-Dibromoethane (EDB)	ND	Н	250	1		03/10/2017 15:28
Dibromomethane	ND	Н	250	1		03/10/2017 15:28
1,2-Dichlorobenzene	ND	Н	250	1		03/10/2017 15:28
1,3-Dichlorobenzene	ND	Н	250	1		03/10/2017 15:28
1,4-Dichlorobenzene	ND	Н	250	1		03/10/2017 15:28
Dichlorodifluoromethane	ND	Н	250	1		03/10/2017 15:28
1,1-Dichloroethane	ND	Н	250	1		03/10/2017 15:28
1,2-Dichloroethane (1,2-DCA)	ND	Н	250	1		03/10/2017 15:28
1,1-Dichloroethene	ND	Н	250	1		03/10/2017 15:28
cis-1,2-Dichloroethene	ND	Н	250	1		03/10/2017 15:28
trans-1,2-Dichloroethene	ND	Н	250	1		03/10/2017 15:28
1,2-Dichloropropane	ND	Н	250	1		03/10/2017 15:28
1,3-Dichloropropane	ND	Н	250	1		03/10/2017 15:28
2,2-Dichloropropane	ND	Н	250	1		03/10/2017 15:28
1,1-Dichloropropene	ND	Н	250	1		03/10/2017 15:28
cis-1,3-Dichloropropene	ND	Н	250	1		03/10/2017 15:28
trans-1,3-Dichloropropene	ND	Н	250	1		03/10/2017 15:28
Freon 113	ND	Н	5000	1		03/10/2017 15:28
Hexachlorobutadiene	ND	Н	250	1		03/10/2017 15:28
Hexachloroethane	ND	Н	250	1		03/10/2017 15:28
Methylene chloride	ND	Н	250	1		03/10/2017 15:28
1,1,1,2-Tetrachloroethane	ND	Н	250	1		03/10/2017 15:28
1,1,2,2-Tetrachloroethane	ND	Н	250	1		03/10/2017 15:28

(Cont.)

Angela Rydelius, Lab Manager

Analytical Report

Client: Pangea Environmental Svcs., Inc.

Date Received: 3/9/17 18:14

Date Prepared: 3/10/17

Project: Elegant Cleaners

WorkOrder: 1703491

Extraction Method: SW5030B **Analytical Method:** SW8260B

Unit: $\mu g/m^3$

Volatile Organics by P&T and GC/MS (Basic Target List)

Client ID	Lab ID	Matrix	Date (Collected Instrument	Batch ID	
VW- 3	1703491-006	A Air	03/09/2	017 13:00 GC18	135474	
<u>Analytes</u>	Result	<u>Qualifiers</u>	<u>RL</u>	<u>DF</u>	Date Analyzed	
Tetrachloroethene	2600	Н	250	1	03/10/2017 15:28	
1,2,3-Trichlorobenzene	ND	Н	250	1	03/10/2017 15:28	
1,2,4-Trichlorobenzene	ND	Н	250	1	03/10/2017 15:28	
1,1,1-Trichloroethane	ND	Н	250	1	03/10/2017 15:28	
1,1,2-Trichloroethane	ND	Н	250	1	03/10/2017 15:28	
Trichloroethene	ND	Н	250	1	03/10/2017 15:28	
Trichlorofluoromethane	ND	Н	250	1	03/10/2017 15:28	
1,2,3-Trichloropropane	ND	Н	250	1	03/10/2017 15:28	
Vinyl Chloride	ND	Н	250	1	03/10/2017 15:28	
<u>Surrogates</u>	<u>REC (%)</u>	<u>Qualifiers</u>	<u>Limits</u>			
Dibromofluoromethane	105	Н	70-130		03/10/2017 15:28	
Toluene-d8	98	Н	70-130		03/10/2017 15:28	
4-BFB	89	Н	70-130		03/10/2017 15:28	

Analytical Report

Client: Pangea Environmental Svcs., Inc.

Date Received: 3/9/17 18:14 **Date Prepared:** 3/10/17

Project: Elegant Cleaners WorkOrder: 1703491

Extraction Method: SW5030B Analytical Method: SW8260B

Unit: $\mu g/m^3$

Volatile Organics by P&T and GC/MS (Basic Target List)

Client ID	Lab ID	Matrix	Date C	Collected	Instrument	Batch ID
VW- 4	1703491-007A	Air	03/09/20	017 14:20	GC18	135474
Analytes	Result	<u>Qualifiers</u>	<u>RL</u>	<u>DF</u>		Date Analyzed
Bromobenzene	ND	Н	250	1		03/10/2017 16:15
Bromochloromethane	ND	Н	250	1		03/10/2017 16:15
Bromodichloromethane	ND	Н	250	1		03/10/2017 16:15
Bromoform	ND	Н	250	1		03/10/2017 16:15
Bromomethane	ND	Н	250	1		03/10/2017 16:15
Carbon Tetrachloride	ND	Н	250	1		03/10/2017 16:15
Chlorobenzene	ND	Н	250	1		03/10/2017 16:15
Chloroethane	ND	Н	250	1		03/10/2017 16:15
Chloroform	ND	Н	250	1		03/10/2017 16:15
Chloromethane	ND	Н	250	1		03/10/2017 16:15
2-Chlorotoluene	ND	Н	250	1		03/10/2017 16:15
4-Chlorotoluene	ND	Н	250	1		03/10/2017 16:15
Dibromochloromethane	ND	Н	250	1		03/10/2017 16:15
1,2-Dibromo-3-chloropropane	ND	Н	250	1		03/10/2017 16:15
1,2-Dibromoethane (EDB)	ND	Н	250	1		03/10/2017 16:15
Dibromomethane	ND	Н	250	1		03/10/2017 16:15
1,2-Dichlorobenzene	ND	Н	250	1		03/10/2017 16:15
1,3-Dichlorobenzene	ND	Н	250	1		03/10/2017 16:15
1,4-Dichlorobenzene	ND	Н	250	1		03/10/2017 16:15
Dichlorodifluoromethane	ND	Н	250	1		03/10/2017 16:15
1,1-Dichloroethane	ND	Н	250	1		03/10/2017 16:15
1,2-Dichloroethane (1,2-DCA)	ND	Н	250	1		03/10/2017 16:15
1,1-Dichloroethene	ND	Н	250	1		03/10/2017 16:15
cis-1,2-Dichloroethene	ND	Н	250	1		03/10/2017 16:15
trans-1,2-Dichloroethene	ND	Н	250	1		03/10/2017 16:15
1,2-Dichloropropane	ND	Н	250	1		03/10/2017 16:15
1,3-Dichloropropane	ND	Н	250	1		03/10/2017 16:15
2,2-Dichloropropane	ND	Н	250	1		03/10/2017 16:15
1,1-Dichloropropene	ND	Н	250	1		03/10/2017 16:15
cis-1,3-Dichloropropene	ND	Н	250	1		03/10/2017 16:15
trans-1,3-Dichloropropene	ND	Н	250	1		03/10/2017 16:15
Freon 113	ND	Н	5000	1		03/10/2017 16:15
Hexachlorobutadiene	ND	Н	250	1		03/10/2017 16:15
Hexachloroethane	ND	Н	250	1		03/10/2017 16:15
Methylene chloride	ND	Н	250	1		03/10/2017 16:15
1,1,1,2-Tetrachloroethane	ND	Н	250	1		03/10/2017 16:15
1,1,2,2-Tetrachloroethane	ND	Н	250	1		03/10/2017 16:15
·						

(Cont.)

Angela Rydelius, Lab Manager

Analytical Report

Client: Pangea Environmental Svcs., Inc.

Date Received: 3/9/17 18:14

Date Prepared: 3/10/17

Project: Elegant Cleaners

WorkOrder: 1703491

Extraction Method: SW5030B

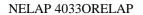
Analytical Method: SW8260B

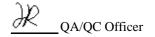
Unit: $\mu g/m^3$

Volatile Organics by P&T and GC/MS (Basic Target List)

Client ID	Lab ID	Matrix	Date C	Collected Instrument	Batch ID	
VW- 4	1703491-007A Air		03/09/2	017 14:20 GC18	135474	
<u>Analytes</u>	Result	<u>Qualifiers</u>	<u>RL</u>	<u>DF</u>	Date Analyzed	
Tetrachloroethene	950	Н	250	1	03/10/2017 16:15	
1,2,3-Trichlorobenzene	ND	Н	250	1	03/10/2017 16:15	
1,2,4-Trichlorobenzene	ND	Н	250	1	03/10/2017 16:15	
1,1,1-Trichloroethane	ND	Н	250	1	03/10/2017 16:15	
1,1,2-Trichloroethane	ND	Н	250	1	03/10/2017 16:15	
Trichloroethene	ND	Н	250	1	03/10/2017 16:15	
Trichlorofluoromethane	ND	Н	250	1	03/10/2017 16:15	
1,2,3-Trichloropropane	ND	Н	250	1	03/10/2017 16:15	
Vinyl Chloride	ND	Н	250	1	03/10/2017 16:15	
Surrogates	<u>REC (%)</u>	<u>Qualifiers</u>	<u>Limits</u>			
Dibromofluoromethane	105	Н	70-130		03/10/2017 16:15	
Toluene-d8	97	Н	70-130		03/10/2017 16:15	
4-BFB	89	Н	70-130		03/10/2017 16:15	

Quality Control Report


Client: Pangea Environmental Svcs., Inc. WorkOrder: 1703491 **Date Prepared:** 3/10/17 **BatchID:** 135474 Date Analyzed: 3/10/17 **Extraction Method: SW5030B** GC18 **Instrument: Analytical Method: SW8260B Matrix:** Air **Unit:** $\mu g/m^3$


Project: Elegant Cleaners Sample ID: MB/LCS/LCSD-135474

QC Summary Report for SW8260B

Analyte	MB Result	RL	SPK Val	MB SS %REC	MB SS Limits
Bromobenzene	ND	250	-	_	-
Bromochloromethane	ND	250	-	-	-
Bromodichloromethane	ND	250	-	-	-
Bromoform	ND	250	-	-	-
Bromomethane	ND	250	-	-	-
Carbon Tetrachloride	ND	250	-	-	-
Chlorobenzene	ND	250	=	-	-
Chloroethane	ND	250	-	-	-
Chloroform	ND	250	=	-	-
Chloromethane	ND	250	=	-	-
2-Chlorotoluene	ND	250	-	-	-
4-Chlorotoluene	ND	250	-	-	-
Dibromochloromethane	ND	250	-	-	-
1,2-Dibromo-3-chloropropane	ND	250	-	-	-
1,2-Dibromoethane (EDB)	ND	250	-	-	-
Dibromomethane	ND	250	-	-	-
1,2-Dichlorobenzene	ND	250	-	-	-
1,3-Dichlorobenzene	ND	250	-	-	-
1,4-Dichlorobenzene	ND	250	-	-	-
Dichlorodifluoromethane	ND	250	-	-	-
1,1-Dichloroethane	ND	250	-	-	-
1,2-Dichloroethane (1,2-DCA)	ND	250	-	-	-
1,1-Dichloroethene	ND	250	-	-	-
cis-1,2-Dichloroethene	ND	250	-	-	-
trans-1,2-Dichloroethene	ND	250	-	-	-
1,2-Dichloropropane	ND	250	-	-	-
1,3-Dichloropropane	ND	250	-	-	-
2,2-Dichloropropane	ND	250	-	-	-
1,1-Dichloropropene	ND	250	-	-	-
cis-1,3-Dichloropropene	ND	250	-	-	-
trans-1,3-Dichloropropene	ND	250	-	-	-
Freon 113	ND	5000	-	-	-
Hexachlorobutadiene	ND	250	-	-	-
Hexachloroethane	ND	250	=	-	-
Methylene chloride	ND	250	=	-	-
1,1,1,2-Tetrachloroethane	ND	250	=	-	-
1,1,2,2-Tetrachloroethane	ND	250	-	-	-
Tetrachloroethene	ND	250	=	-	-
1,2,3-Trichlorobenzene	ND	250	-	_	_

(Cont.)

Quality Control Report

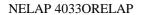
Client: Pangea Environmental Svcs., Inc. WorkOrder: 1703491 **Date Prepared:** 3/10/17 **BatchID:** 135474 Date Analyzed: 3/10/17 **Extraction Method: SW5030B** GC18 **Instrument: Analytical Method: SW8260B Matrix:** Air **Unit:** $\mu g/m^3$

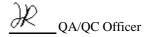
Project: Elegant Cleaners **Sample ID:** MB/LCS/LCSD-135474

QC Summary Report for SW8260B

Analyte	MB Result	RL	SPK Val	MB SS %REC	MB SS Limits
1,2,4-Trichlorobenzene	ND	250	-	-	-
1,1,1-Trichloroethane	ND	250	-	-	-
1,1,2-Trichloroethane	ND	250	-	-	-
Trichloroethene	ND	250	-	-	-
Trichlorofluoromethane	ND	250	-	-	-
1,2,3-Trichloropropane	ND	250	-	-	-
Vinyl Chloride	ND	250	=	-	-
Surrogate Recovery					
Dibromofluoromethane	13150		12500	105	70-130
Toluene-d8	11970		12500	96	70-130
4-BFB	1231		1250	98	70-130

Quality Control Report


Client:Pangea Environmental Svcs., Inc.WorkOrder:1703491Date Prepared:3/10/17BatchID:135474Date Analyzed:3/10/17Extraction Method:SW5030BInstrument:GC18Analytical Method:SW8260B


Project: Elegant Cleaners Sample ID: MB/LCS/LCSD-135474

QC Summary Report for SW8260B

Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
Bromobenzene	4350	4450	5000	87	89	55-119	2.43	30
Bromochloromethane	5500	5350	5000	110	107	60-126	2.73	30
Bromodichloromethane	4750	4620	5000	95	92	53-138	2.84	30
Bromoform	2880	2920	5000	58	59	47-114	1.60	30
Bromomethane	6250	6180	5000	125	123	54-169	1.15	30
Carbon Tetrachloride	5040	4900	5000	101	98	64-132	3.02	30
Chlorobenzene	4750	4680	5000	95	94	69-112	1.55	30
Chloroethane	5090	4910	5000	102	98	58-133	3.71	30
Chloroform	5090	4920	5000	102	98	73-122	3.40	30
Chloromethane	5000	4910	5000	100	98	51-149	1.89	30
2-Chlorotoluene	4540	4600	5000	91	92	65-114	1.17	30
4-Chlorotoluene	4260	4370	5000	85	87	63-114	2.47	30
Dibromochloromethane	4110	4080	5000	82	81	42-122	0.845	30
1,2-Dibromo-3-chloropropane	820	917	2000	41	46	34-99	11.3	30
1,2-Dibromoethane (EDB)	4600	4550	5000	92	91	62-117	1.08	30
Dibromomethane	5140	5020	5000	103	100	66-127	2.37	30
1,2-Dichlorobenzene	3720	3830	5000	74	77	56-105	3.03	30
1,3-Dichlorobenzene	4150	4250	5000	83	85	63-108	2.19	30
1,4-Dichlorobenzene	4020	4110	5000	80	82	63-103	2.09	30
Dichlorodifluoromethane	5000	4810	5000	100	96	43-165	3.94	30
1,1-Dichloroethane	5120	4890	5000	102	98	70-124	4.46	30
1,2-Dichloroethane (1,2-DCA)	5000	4860	5000	100	97	61-126	2.87	30
1,1-Dichloroethene	4580	4420	5000	92	88	67-122	3.57	30
cis-1,2-Dichloroethene	4840	4740	5000	97	95	69-124	2.04	30
1,2-Dichloropropane	5090	4930	5000	102	99	70-121	3.12	30
1,3-Dichloropropane	4740	4590	5000	95	92	63-116	3.16	30
2,2-Dichloropropane	5190	4990	5000	104	100	67-140	3.83	30
1,1-Dichloropropene	5660	5450	5000	113	109	66-124	3.81	30
cis-1,3-Dichloropropene	4780	4600	5000	96	92	69-116	3.80	30
Freon 113		-	0	F2	-	-	-	
Hexachlorobutadiene	2510	2830	5000	50	57	38-111	11.9	30
Hexachloroethane	7350	7540	5000	147, F2	151, F2	35-104	2.46	30
Methylene chloride	4540	4380	5000	91	88	63-117	3.70	30
1,1,1,2-Tetrachloroethane	4610	4570	5000	92	91	59-124	0.724	30
1,1,2,2-Tetrachloroethane	3810	3850	5000	76	77	55-108	1.13	30
Tetrachloroethene	5120	4940	5000	102	99	56-131	3.65	30
1,2,3-Trichlorobenzene	1590	1870	5000	32, F2	37	36-92	16.1	30
1,2,4-Trichlorobenzene	2160	2490	5000	43	50	40-97	13.9	30
1,1,1-Trichloroethane	5120	4950	5000	102	99	67-132	3.43	30

(Cont.)

Quality Control Report

Client:Pangea Environmental Svcs., Inc.WorkOrder:1703491Date Prepared:3/10/17BatchID:135474Date Analyzed:3/10/17Extraction Method:SW5030BInstrument:GC18Analytical Method:SW8260B

Project: Elegant Cleaners **Sample ID:** MB/LCS/LCSD-135474

QC Summary Report for SW8260B													
Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit					
1,1,2-Trichloroethane	4570	4490	5000	91	90	62-116	1.87	30					
Trichloroethene	5180	5020	5000	104	100	66-127	3.19	30					
Trichlorofluoromethane	4720	4520	5000	94	90	63-123	4.20	30					
1,2,3-Trichloropropane	4120	4190	5000	82	84	54-112	1.61	30					
Vinyl Chloride	5530	5320	5000	111	106	58-162	3.86	30					
Surrogate Recovery													
Dibromofluoromethane	13,100	13,200	12500	105	105	83-124	0	30					
Toluene-d8	12,400	12,200	12500	99	98	80-120	1.13	30					
4-BFB	1170	1220	1250	94	97	70-129	3.96	30					

McCampbell Analytical, Inc.

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

CHAIN-OF-CUSTODY RECORD

ClientCode: PEO

Page 1 of 1

03/09/2017

Date Received:

□EDF ☐ WriteOn **EQuIS** □HardCopy ☐ ThirdParty ☐ WaterTrax □Excel ✓ Email ☐J-flag

WorkOrder: 1703491

Report to: Bill to: Requested TAT: 5 days;

jwilson@pangeaenv.com Bob Clark-Riddell Jake Wilson

cc/3rd Party: Pangea Environmental Svcs., Inc. Pangea Environmental Svcs., Inc. PO: 1710 Franklin Street, Ste. 200 1710 Franklin Street, Ste. 200

ProjectNo: Elegant Cleaners Oakland, CA 94612 Oakland, CA 94612

Date Logged: 03/09/2017 (510) 836-3700 FAX: (510) 836-3709

					Requested Tests (See legend below)													
Lab ID	Client ID	Matrix	Collection Date	Hold	1	2	3		4		5	6	7	8	9	10	11	12
1703491-001	SG-1	Air	3/9/2017 16:10		Δ													
1703491-002	SG- 2	Air	3/9/2017 14:45		A													
1703491-003	SS- 2	Air	3/9/2017 15:00		Α													
1703491-004	SS- 3	Air	3/9/2017 15:15		Α													
1703491-005	SS- 4	Air	3/9/2017 15:33		Α													
1703491-006	VW- 3	Air	3/9/2017 13:00		Α													
1703491-007	VW- 4	Air	3/9/2017 14:20		Α													

Test Legend:

1 8010_A(UG/M3)	2	3	4
5	6	7	8
9	10	11	12

Prepared by: Tina Perez

The following SampIDs: 001A, 002A, 003A, 004A, 005A, 006A, 007A contain testgroup 8010BMS_A.

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

McCampbell Analytical, Inc.

"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

WORK ORDER SUMMARY

Client Name: PANGEA ENVIRONMENTAL SVCS., INC. Project: Elegant Cleaners Work Order: 1703491

Client Contact: Jake Wilson

QC Level: LEVEL 2

Contact's Email: jwilson@pangeaenv.com

Comments:

Date Logged: 3/9/2017

		☐WaterTrax	WriteOnEDF	☐Excel ☐Fax	√ Email	HardCo	opyThirdPart	yJ-	flag
Lab ID	Client ID	Matrix	Test Name	Containers Bo /Composites	ottle & Preservative	De- chlorinated	Collection Date & Time	TAT	Sediment Hold SubOut Content
1703491-001A	SG-1	Air	HVOCs by GCMS	1	Tedlar		3/9/2017 16:10	5 days	
1703491-002A	SG- 2	Air	HVOCs by GCMS	1	Tedlar		3/9/2017 14:45	5 days	
1703491-003A	SS- 2	Air	HVOCs by GCMS	1	Tedlar		3/9/2017 15:00	5 days	
1703491-004A	SS- 3	Air	HVOCs by GCMS	1	Tedlar		3/9/2017 15:15	5 days	
1703491-005A	SS- 4	Air	HVOCs by GCMS	1	Tedlar		3/9/2017 15:33	5 days	
1703491-006A	VW- 3	Air	HVOCs by GCMS	1	Tedlar		3/9/2017 13:00	5 days	
1703491-007A	VW- 4	Air	HVOCs by GCMS	1	Tedlar		3/9/2017 14:20	5 days	

NOTES: - STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- MAI assumes that all material present in the provided sampling container is considered part of the sample - MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

McCAMP	RETT	ANAT	Vī	TCAT	INC						С	HAI	N O	F CU	STO	DDY	REC	COR	D					
		ALVAL Rd. Pittsburg			, 1110.	Tv.=-	A =====	d Time	:1 Day	Duck			Rush		3 Day			STD	^ ~	Ou	ote#			
\ <u>***</u> /		62-9262 / Fa						/ MDL		ESL			Cleanu		i	Kusii		עונ	<u>, </u>	le Oro	_			
www.mccampbe			•	ccampbell.	com		<u>-</u> _		GcoTr		DF	X	PDF		EDD		Wr	ite On	(DW)			OuIS		
Report To: Jake Wilson	JII.COIII	Bill To:				-	-					/~		alysi		quest			(=/			<u> </u>		
Company: Panger, Enr. Sv	<u> </u>		- 40	3000		BE			텙					Ĭ		Ī				2			Ī	
Email: Jwilson@ pangeae		^				TM (With	N. N.): 	18.1)		only			(As)				metals				
Alt Email:	,, <u> </u>	Tele:	510	-836-3	60	8015	ĺ	r Oil	(17)	ons - (ons (4	icide	clors	ह	S	s / PP	*(0			lved				
Project Name/#: Elegant Ch	euners				-	3021/	Moto	Moto	2	carb ith Si	carb	l Pest	Aro	Š	(SVO	РАН	/ 602		,	disse				
Project Location: 1208 Lincoln		PO#				Sas (8	÷(S)	+61	9[]	ydro (V	lydro	3) (C	, 83.	8260	8270	310 (8.00	(02	ment	le for				
Sampler Signature:						H as (1 (80) a	(S)	reas	1 mm /	um H	808 / 1	82 PC	524 / 1	525	3 / W	als (2	209 / 1	quire	Samp	9	ŀ		
SAMPLE ID	Sam	pling	#Containers	Matrix	Preservative	BTEX & TPH as Gas (8021/ 8015) MTBE	FPH as Diesel (8015) + Motor Oil Without Silica Gel	TPH as Diesel (8015) + Motor Oil With Silca Gel	Total Oil & Grease (1664 / 9071) Without Silica Gel	Total Petroleum Hydrocarbons - Oil & Greasc (1664 / 9071) With Silica Gel	Total Petroleum Hydrocarbons (418.1) With Silica Gel	EPA 505/ 608 / 8081 (CI Pesticides)	EPA 608 / 8082 PCB's ; Aroclors only	EPA 524.2 / 624 / 8260 (VOCs)	EPA 525.2 / 625 / 8270 (SVOCs)	EPA 8270 SIM / 8310 (PAHs / PNAs)	CAM 17 Metals (200.8 / 6020)*	Metals (200.8 / 6020)	Baylands Requirements	Lab to filter sample for dissolved analysis	801			
Location / Field Point	Date	Time	#Con	WIGHTA		BTEX	TPH a	TPH as I Silca Gel	Total Oil A	Total Greas	Total With	EPA (EPA (EPA :	EPA :	EPA	САМ	Metal	Bayla	Lab t analy	\sim			
SG-1 3.	9.17	1610	1	A																	X			
59-2		1445	1	A																	χ			
SS-2	\	1500	(A																	λ			
55-3		1515	1	٥	~																X			
55-4		1533	1	A																	X			
VW-3		1300	1	Δ	_																Х			
7 W- Y	٠٩,١٦	1470	ı	٩	_				<u> </u>												χ			
	•																							
	_			· · · · · · · · · · · · · · · · · · ·																				ļ
MAI clients MUST disclose any dangerous chemicals Non-disclosure incurs an immediate \$250 surcharge a	known to be pand the client is	present in their s s subject to full	submitte legal lia	ed samples in co	ncentrations the suffered. Thank	t may you fo	cause i	mmedia understa	ite harm anding a	or seri	ous futu allowing	ire heal g us to	th enda work sa	ngerme fely.	nt as a	result o	f brief,	gloved	, open a	air, sam	ple han	dling by	/ MAI s	taff.
* If metals are requested for water samples and																			C	ommen	ts / Ins	tructio	ns	-
Please provide an adequate volume of sample. I	f the volume	is not sufficie	nt for a	MS/MSD a L	CS/LCSD wil	be pr	epared	l in its	place a	nd note	ed in th	ne repo	rt.											
Relinguished By / Company	Name .				ime]_	RECO	ivcd B	y / Cor	npany	Name			D:			me							
		3-9	,17	191	0	m	4	$\overline{}$						3/9	1/17	18:1	<u> </u>							
					-													ļ						
Matrix Code: DW=Drinking Water, G	W-Group	d Water W	11/-11	Insta Water	SW-Seen	oter	S-S	~i1 C1	-C1v	dga	Λ — Λ i	- 13/1)\\/;		-Oth			ł						
Preservative Code: 1=4°C 2=HCl					-				31u	age, A	A1	ı, w	- vv 1	ju, U	- Oul		[emp	Ш-		°C	Init	ials	(0	
	2004					- •											- P			• _		Ζ.	D	
																					P	age _	<u> </u>	:1

Sample Receipt Checklist

Client Name:	Pangea Environmental Svcs., Inc.			Date and Time Received:	3/9/2017 18:14
Project Name:	Elegant Cleaners			Date Logged:	3/9/2017
				Received by:	Tina Perez
WorkOrder №: Carrier:	1703491 Matrix: Air Client Drop-In			Logged by:	Tina Perez
	Chain of C	ustody	(COC) Infor	mation	
Chain of custody	present?	Yes	✓	No 🗆	
Chain of custody	signed when relinquished and received?	Yes	✓	No 🗌	
Chain of custody	agrees with sample labels?	Yes	✓	No 🗆	
Sample IDs note	d by Client on COC?	Yes	✓	No 🗆	
Date and Time of	f collection noted by Client on COC?	Yes	✓	No 🗌	
Sampler's name	noted on COC?	Yes	•	No 🗆	
	<u>Sampl</u>	e Rece	eipt Informati	<u>ion</u>	
Custody seals int	act on shipping container/cooler?	Yes		No 🗌	NA 🗹
Shipping containe	er/cooler in good condition?	Yes	✓	No 🗌	
Samples in prope	er containers/bottles?	Yes	✓	No 🗌	
Sample containe	rs intact?	Yes	✓	No 🗌	
Sufficient sample	volume for indicated test?	Yes	•	No 🗆	
	Sample Preservation	on and	Hold Time (HT) Information	
All samples recei	ived within holding time?	Yes	✓	No 🗌	NA 🗌
Sample/Temp Bla	ank temperature		Temp:		NA 🗹
Water - VOA vial	s have zero headspace / no bubbles?	Yes		No 🗌	NA 🗹
Sample labels ch	necked for correct preservation?	Yes	✓	No 🗌	
pH acceptable up	oon receipt (Metal: <2; 522: <4; 218.7: >8)?	Yes		No 🗌	NA 🗹
Samples Receive	ed on Ice?	Yes		No 🗸	
UCMR3 Samples	<u>Σ</u>				
Total Chlorine	tested and acceptable upon receipt for EPA 522?	Yes		No 🗆	NA 🗹
Free Chlorine t 300.1, 537, 539	ested and acceptable upon receipt for EPA 218.7, 9?	Yes		No 🗆	NA 🗹
		:	====	=======	========

Curtis & Tompkins, Ltd., Analytical Laboratories, Since 1878

2323 Fifth Street, Berkeley, CA 9471O, Phone (510) 486-0900

Laboratory Job Number 287400 ANALYTICAL REPORT

Pangea Environmental 1710 Franklin Street Oakland, CA 94612

Project : STANDARD Location : 1208 Lincoln

Level : II

Sample ID	<u>Lab ID</u>
B-4-W	287400-001
B-5-W	287400-002
B-6-W	287400-003
B-7-W	287400-004

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis. This report may be reproduced only in its entirety.

Signature:

Will Rice Project Manager will.rice@ctberk.com

Will Rice

(510) 204-2221 Ext 13102

CA ELAP# 2896, NELAP# 4044-001

Date: <u>04/04/2017</u>

CASE NARRATIVE

Laboratory number: 287400

Client: Pangea Environmental

Location: 1208 Lincoln

Request Date: 03/27/17 Samples Received: 03/27/17

This data package contains sample and QC results for four water samples, requested for the above referenced project on 03/27/17. The samples were received cold and intact.

TPH-Purgeables and/or BTXE by GC (EPA 8015B):

Low surrogate recovery was observed for bromofluorobenzene (FID) in the method blank for batch 246021. No other analytical problems were encountered.

TPH-Extractables by GC (EPA 8015B):

No analytical problems were encountered.

Volatile Organics by GC/MS (EPA 8260B):

No analytical problems were encountered.

CHAIN OF CUSTODY

ot											\Box		\perp							1891		
-												1				1				TIME:	TIME:	TIME
Page_ Chain of Custody #	REQUESI].	3627117	DATE:	. 375
n of Cu	ν 											\dashv							RECEIVED BY:	3%	۵	Ž
Chai	ALVIIGAL			***************************************										+					RECEI			
	AN AL																-		1			
	⋖																			1	,	
			१०८	h			<u>3 1 €</u>	, 49.T		×											•	
Q)			1	'	092 		707	Ι×	<u> × </u>	_4	×							1	1		
Ó Ó h ← ※C * Ni∋011*2	2					Jusilson@pangenenv.com	AL IVE	None	+	X	٤.	×		F					1	15 8	TIME:	1
į×	ζ		5	25.5	00	emv	CHEMICAL PRESERVATIVE	EONH			_								- - - ∷ - ∴	77) DATE:	DATE:	
¥ NIUC		ر ئ	1/3	(5)	836-3700	ראיני	, JO #	H5204 HCI	1	X	<u>×</u>	×		<u> </u>					SHED	7 27.17 DAD	۵	Č
2 180	3	シレタ	3	3	836	ଓ ଚ	rtainers	l noD to #	8	∞	٥٥	00		-					RELINQUISHED BY:	"		
S) Per	. O 0	B. Lerrogia	Jake Wilson	Panger Env. Sus	S 100-	1502	MATRIX	bilos	_										RE			
tories PRATORY	in Business Since 1878 e (510) 486-0900 ix (510) 486-0532		1 1			1075		Time Slected ater Water	=	,		<u>×</u> ≿							-	A	1	
orat Naga	siness S 310) 48 310) 48	Sampler:	Report Ic	Company:	Telephone:	Email:	LING	Tir	171	7)	17	1235								4	7	
	In Business S Phone (510) 48 Fax (510) 48	Ϋ́	& 	ပ 	1 1	1	SAMPLING	Date Collected	3.27.17			3.27.17							ш	; L ;		eo
NS L	ā				VI 🗆 III 🗆	Standard		ိပိ	3.5	1		3.5							SAMPIF	RECEIPT		On Ice
D D Ki			ulc			X																
Curtis & Tompkins Laboratories environmental analytical testing laboratory			Lincoln		Report Level□ II		D.															
is &	0				Repor	RUSH	Sample ID.		3	3	3	3										
TUT MEN	treet A 947		× 13	ë		me: □	S		13-4-W	13.5.W	-	5										
Ğ	2323 Fifth Street Berkeley, CA 94710	Project No:	Project Name: 12の8	Project P. O. No:	EDD Format:	Turnaround Time: TRUSH			٠.٠	-	<u>`</u>	+	_		\downarrow			-	يز			
U	2323 Berk€	Projec	Projec	Projec	EDD F	Turna	Lab	N O											Notes:			

COOLER RECEIPT CHECKLIST

Date Opened	Login # 28 +400 Date Received 3 27 17 Number of coole Client Panger Environments Sexvice Project 1208 Lincoln	rs
1. Did cooler come with a shipping slip (airbill, etc) Shipping info 2A. Were custody seals present? YES	Date Opened 3-27-17 By (print) (sign) Date Logged in By (print) (sign)	
How many Name Date 2B. Were custody seals intact upon arrival? YES NO (1) 3. Were custody papers dry and intact when received? YES NO (2) 4. Were custody papers filled out properly (ink, signed, etc)? NO (2) 5. Is the project identifiable from custody papers? (If so fill out top of form) NO (2) 6. Indicate the packing in cooler: (if other, describe) Bubble Wrap	1. Did cooler come with a shipping slip (airbill, etc)YES	s NO
2B. Were custody seals intact upon arrival? 3. Were custody papers dry and intact when received? 4. Were custody papers filled out properly (ink, signed, etc)? 5. Is the project identifiable from custody papers? (If so fill out top of form) 6. Indicate the packing in cooler: (if other, describe) Bubble Wrap	How many Name Date	XNC
Cloth material	2B. Were custody seals intact upon arrival? 3. Were custody papers dry and intact when received? 4. Were custody papers filled out properly (ink, signed, etc)? 5. Is the project identifiable from custody papers? (If so fill out top of form)	NO NO
Cloth material	☐ Bubble Wrap ☐ Foam blocks ☐ Bags ☐ None	
□ Temperature blank(s) included? □ Thermometer# □ IR Gun# □ Samples received on ice directly from the field. Cooling process had begun 8. Were Method 5035 sampling containers present? YES NO If YES, what time were they transferred to freezer? 9. Did all bottles arrive unbroken/unopened? YES NO 10. Are there any missing / extra samples? YES NO 11. Are samples in the appropriate containers for indicated tests? YES NO 12. Are sample labels present, in good condition and complete? YES NO 13. Do the sample labels agree with custody papers? YES NO 14. Was sufficient amount of sample sent for tests requested? YES NO 15. Are the samples appropriately preserved? YES NO 16. Did you check preservatives for all bottles for each sample? YES NO 17. Did you document your preservative check? (pH strip lot# YES NO 18. Did you change the hold time in LIMS for unpreserved VOAs? YES NO 19. Did you change the hold time in LIMS for preserved terracores? YES NO 20. Are bubbles > 6mm absent in VOA samples? YES NO 21. Was the client contacted concerning this sample delivery? YES NO 22. If YES, Who was called? By Date:	☐ Cloth material ☐ Cardboard ☐ Styrofoam ☐ Paper to	wels
Samples received on ice directly from the field. Cooling process had begun 8. Were Method 5035 sampling containers present? If YES, what time were they transferred to freezer? 9. Did all bottles arrive unbroken/unopened? 10. Are there any missing / extra samples? 11. Are samples in the appropriate containers for indicated tests? 12. Are sample labels present, in good condition and complete? 13. Do the sample labels agree with custody papers? 14. Was sufficient amount of sample sent for tests requested? 15. Are the samples appropriately preserved? 16. Did you check preservatives for all bottles for each sample? 17. Did you document your preservative check? (pH strip lot# 18. Did you change the hold time in LIMS for unpreserved VOAs? 19. Did you change the hold time in LIMS for preserved terracores? 20. Are bubbles > 6mm absent in VOA samples? YES NO VA 21. Was the client contacted concerning this sample delivery? YES NO VA 16. YES NO VA 21. Was the client contacted concerning this sample delivery? YES NO VA 21. Was the client contacted concerning this sample delivery? YES NO VA Date:	Type of ice used: 为 Wet ☐ Blue/Gel ☐ None Temp(°C)	1-5
Samples received on ice directly from the field. Cooling process had begun 8. Were Method 5035 sampling containers present? If YES, what time were they transferred to freezer? 9. Did all bottles arrive unbroken/unopened? 10. Are there any missing / extra samples? 11. Are samples in the appropriate containers for indicated tests? 12. Are sample labels present, in good condition and complete? 13. Do the sample labels agree with custody papers? 14. Was sufficient amount of sample sent for tests requested? 15. Are the samples appropriately preserved? 16. Did you check preservatives for all bottles for each sample? 17. Did you document your preservative check? (pH strip lot# 18. Did you change the hold time in LIMS for unpreserved VOAs? 19. Did you change the hold time in LIMS for preserved terracores? 20. Are bubbles > 6mm absent in VOA samples? YES NO VA 21. Was the client contacted concerning this sample delivery? YES NO VA 16. YES NO VA 21. Was the client contacted concerning this sample delivery? YES NO VA 21. Was the client contacted concerning this sample delivery? YES NO VA Date:		A
8. Were Method 5035 sampling containers present? If YES, what time were they transferred to freezer? 9. Did all bottles arrive unbroken/unopened? 10. Are there any missing / extra samples? 11. Are samples in the appropriate containers for indicated tests? 12. Are sample labels present, in good condition and complete? 13. Do the sample labels agree with custody papers? 14. Was sufficient amount of sample sent for tests requested? 15. Are the samples appropriately preserved? 16. Did you check preservatives for all bottles for each sample? 17. Did you document your preservative check? (pH strip lot# 18. Did you change the hold time in LIMS for unpreserved VOAs? 19. Did you change the hold time in LIMS for preserved terracores? 20. Are bubbles > 6mm absent in VOA samples? 21. Was the client contacted concerning this sample delivery? YES NO WA 21. Was the client contacted concerning this sample delivery? YES NO WA 21. Was the client contacted concerning this sample delivery? YES NO WA 21. Was the client contacted? By Date:		
COMMENTS	If YES, what time were they transferred to freezer? 9. Did all bottles arrive unbroken/unopened? 10. Are there any missing / extra samples? 11. Are samples in the appropriate containers for indicated tests? 12. Are sample labels present, in good condition and complete? 13. Do the sample labels agree with custody papers? 14. Was sufficient amount of sample sent for tests requested? 15. Are the samples appropriately preserved? 16. Did you check preservatives for all bottles for each sample? 17. Did you document your preservative check? (pH strip lot# 18. Did you change the hold time in LIMS for unpreserved VOAs? 19. Did you change the hold time in LIMS for preserved terracores? 20. Are bubbles > 6mm absent in VOA samples? 21. Was the client contacted concerning this sample delivery? 22. If YES, Who was called? 23. Date: 24. Date: 25. Date: 26. Did you change the hold time in LIMS for preserved VOAs? 26. Did you change the hold time in LIMS for preserved terracores? 27. YES 28. Did you change the hold time in LIMS for preserved terracores? 28. Did you change the hold time in LIMS for preserved terracores? 29. Did you change the hold time in LIMS for preserved terracores? 20. Are bubbles > 6mm absent in VOA samples? 21. Was the client contacted concerning this sample delivery? 22. If YES, Who was called? 23. Date:	YES NO YES NO YES NO NO NO NO NO NO NO NO NO NO NO NO NO N
	COMMENTS	

Detections Summary for 287400

Results for any subcontracted analyses are not included in this summary.

Client : Pangea Environmental

Project : STANDARD Location: 1208 Lincoln

Client Sample ID : B-4-W

Laboratory Sample ID : 287400-001

Analyte	Result	Flags	RL	Units	Basis	IDF	Method	Prep Method
Tetrachloroethene	41		0.5	ug/L	As Recd	1.000	EPA 8260B	EPA 5030B
m,p-Xylenes	1.3		0.5	ug/L	As Recd	1.000	EPA 8260B	EPA 5030B

Client Sample ID : B-5-W

Laboratory Sample ID :

287400-002

Analyte	Result	Flags	RL	Units	Basis	IDF	Method	Prep Method
Gasoline C7-C12	170	Z	50	ug/L	As Recd	1.000	EPA 8015B	EPA 5030B
Trichloroethene	2.8		2.5	ug/L	As Recd	5.000	EPA 8260B	EPA 5030B
Tetrachloroethene	360		2.5	ug/L	As Recd	5.000	EPA 8260B	EPA 5030B

Client Sample ID : B-6-W Laboratory Sample ID :

287400-003

Analyte	Result	Flags	RL	Units	Basis	IDF	Method	Prep Method
Trichloroethene	1.2		0.5	ug/L	As Recd	1.000	EPA 8260B	EPA 5030B
Tetrachloroethene	59		0.5	ug/L	As Recd	1.000	EPA 8260B	EPA 5030B
para-Isopropyl Toluene	1.0		0.5	ug/L	As Recd	1.000	EPA 8260B	EPA 5030B

Client Sample ID : B-7-W

Laboratory Sample ID :

287400-004

Analyte	Result	Flags	RL	Units	Basis	IDF	Method	Prep Method
Tetrachloroethene	3.0		0.5	ug/L	As Recd	1.000	EPA 8260B	EPA 5030B

Total Volatile Hydrocarbons Lab #: 287400 Location: 1208 Lincoln Client: Pangea Environmental Prep: EPA 5030B Project#: STANDARD EPA 8015B Analysis: Field ID: B-5-W Batch#: 246021 03/27/17 Matrix: Water Sampled: Units: Received: ug/L 03/27/17 Diln Fac: 1.000

Type: SAMPLE Analyzed: 03/29/17

Lab ID: 287400-002

Analyte	Result	RL	
Gasoline C7-C12	170 Z	50	

Surrogate %REC Limits
luorobenzene (FID) 99 80-

Type: BLANK Analyzed: 03/28/17

Lab ID: QC878903

Analyte	Result	RL	
Gasoline C7-C12	ND	50	

Surrogate	%REC	Limits
Darrogace	OKIIC	птштсв
Bromofluorobenzene (1	TD) 78 *	80-122

ND= Not Detected

RL= Reporting Limit

Page 1 of 1

^{*=} Value outside of QC limits; see narrative

Z= Sample exhibits unknown single peak or peaks

Batch QC Report

	Total Vola	tile Hydrocarbo	ons	
Lab #:	287400	Location:	1208 Lincoln	
Client:	Pangea Environmental	Prep:	EPA 5030B	
Project#:	STANDARD	Analysis:	EPA 8015B	
Type:	LCS	Diln Fac:	1.000	
Lab ID:	QC878900	Batch#:	246021	
Matrix:	Water	Analyzed:	03/28/17	
Units:	ug/L			

Analyte	Spiked	Result	%REC	Limits
Gasoline C7-C12	1,000	972.8	97	80-120

Surrogate	%REC	Limits
Bromofluorobenzene (FID)	85	80-122

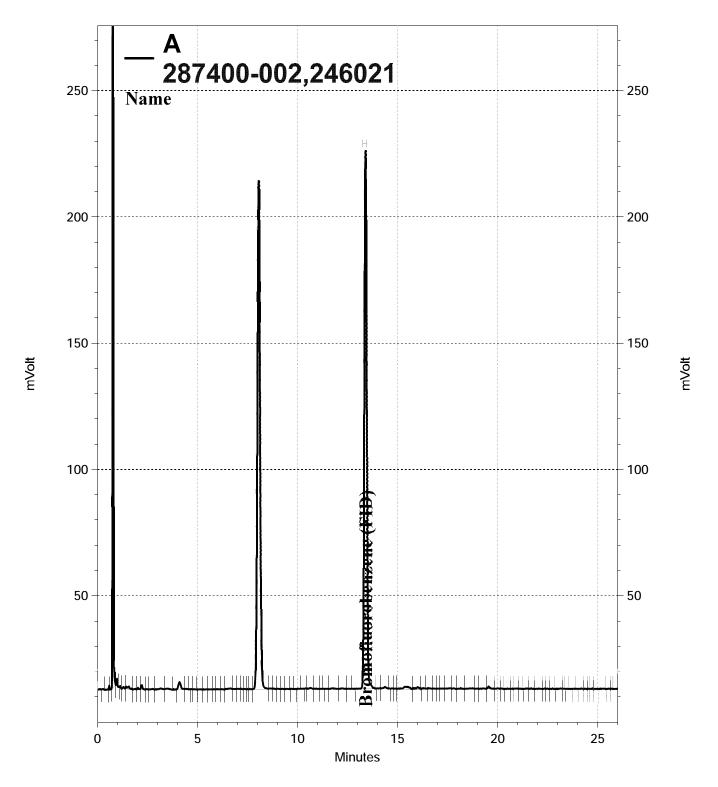
Page 1 of 1 4.0

Batch QC Report

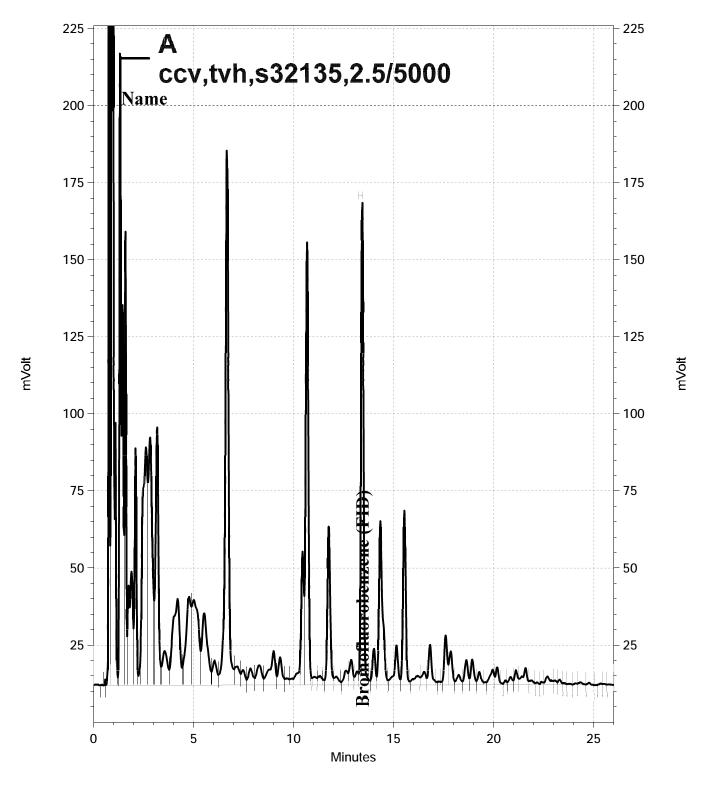
	Total Vola	tile Hydrocarbo	ons	
Lab #:	287400	Location:	1208 Lincoln	
Client:	Pangea Environmental	Prep:	EPA 5030B	
Project#:	STANDARD	Analysis:	EPA 8015B	
Field ID:	B-5-W	Batch#:	246021	
MSS Lab ID:	287400-002	Sampled:	03/27/17	
Matrix:	Water	Received:	03/27/17	
Units:	ug/L	Analyzed:	03/29/17	
Diln Fac:	1.000			

Type: MS

Lab ID: QC878901


Analyte	MSS Result	Spiked	Result	%REC	Limits
Gasoline C7-C12	169 3	2 000	2 118	97	79-120

Surrogate %REC	Limits
romofluorobenzene (FID) 99	80-1


Type: MSD

Lab ID: QC878902

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Gasoline C7-C12	2,000	2,260	105	79-120	6	20

\Lims\gdrive\ezchrom\Projects\GC05\Data\087-021, A

\Lims\gdrive\ezchrom\Projects\GC05\Data\087-003, A

Total Extractable Hydrocarbons Lab #: 287400 Location: 1208 Lincoln Client: Pangea Environmental Prep: EPA 3520C Project#: STANDARD EPA 8015B Analysis: Field ID: B-5-W Batch#: 246126 Matrix: Water Sampled: 03/27/17 Units: Received: ug/L 03/27/17 Diln Fac: 1.000 Prepared: 03/30/17

Type: SAMPLE Analyzed: 03/31/17

Lab ID: 287400-002

Analyte	Result	RL	
Diesel C10-C24	ND	50	

Surrogate	%REC	Limits
o-Terphenyl	76	52-138

Type: BLANK Analyzed: 04/03/17

Lab ID: QC879338

Analyte	Result	RL	
Diesel C10-C24	ND	50	

Surrogate	%REC	Limits	
o-Terphenyl	115	52-138	

ND= Not Detected RL= Reporting Limit

Page 1 of 1

13.0

Batch QC Report

Total Extractable Hydrocarbons						
Lab #:	287400	Location:	1208 Lincoln			
Client:	Pangea Environmental	Prep:	EPA 3520C			
Project#:	STANDARD	Analysis:	EPA 8015B			
Matrix:	Water	Batch#:	246126			
Units:	ug/L	Prepared:	03/30/17			
Diln Fac:	1.000	Analyzed:	03/31/17			

Type: BS

 Analyte
 Spiked
 Result
 %REC
 Limits

 Diesel C10-C24
 2,500
 2,420
 97
 52-124

Lab ID:

QC879339

Type: BSD Lab ID: QC879340

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Diesel C10-C24	2,500	2,310	92	52-124	5	34

Surrogate	%REC	Limits
o-Terphenyl	100	52-138

Purgeable Organics by GC/MS					
Lab #:	287400	Location:	1208 Lincoln		
Client:	Pangea Environmental	Prep:	EPA 5030B		
Project#:	STANDARD	Analysis:	EPA 8260B		
Field ID:	B-4-W	Batch#:	246070		
Lab ID:	287400-001	Sampled:	03/27/17		
Matrix:	Water	Received:	03/27/17		
Units:	ug/L	Analyzed:	03/29/17		
Diln Fac:	1.000				

Analyte	Result	RL	
Freon 12	ND ND	1.0	
Chloromethane	ND	1.0	
Vinyl Chloride	ND	0.5	
Bromomethane	ND	1.0	
Chloroethane	ND	1.0	
Trichlorofluoromethane	ND	1.0	
Acetone	ND	10	
Freon 113	ND	2.0	
1,1-Dichloroethene	ND	0.5	
Methylene Chloride	ND	10	
Carbon Disulfide	ND	0.5	
MTBE	ND	0.5	
trans-1,2-Dichloroethene	ND	0.5	
Vinyl Acetate	ND	10	
1,1-Dichloroethane	ND	0.5	
2-Butanone	ND	10	
cis-1,2-Dichloroethene	ND	0.5	
2,2-Dichloropropane	ND	0.5	
Chloroform	ND	0.5	
Bromochloromethane	ND	0.5	
1,1,1-Trichloroethane	ND	0.5	
1,1-Dichloropropene	ND	0.5	
Carbon Tetrachloride	ND	0.5	
1,2-Dichloroethane	ND	0.5	
Benzene	ND	0.5	
Trichloroethene	ND	0.5	
1,2-Dichloropropane	ND	0.5	
Bromodichloromethane	ND	0.5	
Dibromomethane	ND	0.5	
4-Methyl-2-Pentanone	ND	10	
cis-1,3-Dichloropropene	ND	0.5	
Toluene	ND	0.5	
trans-1,3-Dichloropropene	ND ND	0.5	
1,1,2-Trichloroethane	ND	0.5	
2-Hexanone	ND	10	
1,3-Dichloropropane	ND	0.5	
Tetrachloroethene	ND 41	0.5	
retrachioroethene	4⊥	0.5	

RL= Reporting Limit

Page 1 of 2

Purgeable Organics by GC/MS				
Lab #:	287400	Location:	1208 Lincoln	
Client:	Pangea Environmental	Prep:	EPA 5030B	
Project#:	STANDARD	Analysis:	EPA 8260B	
Field ID:	B-4-W	Batch#:	246070	
Lab ID:	287400-001	Sampled:	03/27/17	
Matrix:	Water	Received:	03/27/17	
Units:	ug/L	Analyzed:	03/29/17	
Diln Fac:	1.000			

Analyte	Result	RL	
Dibromochloromethane	ND	0.5	
1,2-Dibromoethane	ND	0.5	
Chlorobenzene	ND	0.5	
1,1,1,2-Tetrachloroethane	ND	0.5	
Ethylbenzene	ND	0.5	
m,p-Xylenes	1.3	0.5	
o-Xylene	ND	0.5	
Styrene	ND	0.5	
Bromoform	ND	1.0	
Isopropylbenzene	ND	0.5	
1,1,2,2-Tetrachloroethane	ND	0.5	
1,2,3-Trichloropropane	ND	0.5	
Propylbenzene	ND	0.5	
Bromobenzene	ND	0.5	
1,3,5-Trimethylbenzene	ND	0.5	
2-Chlorotoluene	ND	0.5	
4-Chlorotoluene	ND	0.5	
tert-Butylbenzene	ND	0.5	
1,2,4-Trimethylbenzene	ND	0.5	
sec-Butylbenzene	ND	0.5	
para-Isopropyl Toluene	ND	0.5	
1,3-Dichlorobenzene	ND	0.5	
1,4-Dichlorobenzene	ND	0.5	
n-Butylbenzene	ND	0.5	
1,2-Dichlorobenzene	ND	0.5	
1,2-Dibromo-3-Chloropropane	ND	2.0	
1,2,4-Trichlorobenzene	ND	0.5	
Hexachlorobutadiene	ND	2.0	
Naphthalene	ND	2.0	
1,2,3-Trichlorobenzene	ND	0.5	

Surrogate	%REC	Limits	
Dibromofluoromethane	101	80-120	
1,2-Dichloroethane-d4	101	73-136	
Toluene-d8	102	80-120	
Bromofluorobenzene	102	80-120	

RL= Reporting Limit

Page 2 of 2

Purgeable Organics by GC/MS				
Lab #:	287400	Location:	1208 Lincoln	
Client:	Pangea Environmental	Prep:	EPA 5030B	
Project#:	STANDARD	Analysis:	EPA 8260B	
Field ID:	B-5-W	Batch#:	246070	
Lab ID:	287400-002	Sampled:	03/27/17	
Matrix:	Water	Received:	03/27/17	
Units:	ug/L	Analyzed:	03/29/17	
Diln Fac:	5.000			

Analyte	Result	RL	
Freon 12	ND ND	5.0	
Chloromethane	ND	5.0	
Vinyl Chloride	ND	2.5	
Bromomethane	ND	5.0	
Chloroethane	ND	5.0	
Trichlorofluoromethane	ND	5.0	
Acetone	ND	50	
Freon 113	ND	10	
1,1-Dichloroethene	ND	2.5	
Methylene Chloride	ND	50	
Carbon Disulfide	ND	2.5	
MTBE	ND ND	2.5	
trans-1,2-Dichloroethene		2.5	
	ND	50	
Vinyl Acetate 1,1-Dichloroethane	ND	2.5	
2-Butanone	ND	2.5 50	
	ND		
cis-1,2-Dichloroethene	ND	2.5	
2,2-Dichloropropane	ND	2.5	
Chloroform	ND	2.5	
Bromochloromethane	ND	2.5	
1,1,1-Trichloroethane	ND	2.5	
1,1-Dichloropropene	ND	2.5	
Carbon Tetrachloride	ND 	2.5	
1,2-Dichloroethane	ND 	2.5	
Benzene	ND	2.5	
Trichloroethene	2.8	2.5	
1,2-Dichloropropane	ND	2.5	
Bromodichloromethane	ND	2.5	
Dibromomethane	ND	2.5	
4-Methyl-2-Pentanone	ND	50	
cis-1,3-Dichloropropene	ND	2.5	
Toluene	ND	2.5	
trans-1,3-Dichloropropene	ND	2.5	
1,1,2-Trichloroethane	ND	2.5	
2-Hexanone	ND	50	
1,3-Dichloropropane	ND	2.5	
Tetrachloroethene	360	2.5	

RL= Reporting Limit

Page 1 of 2

Purgeable Organics by GC/MS				
Lab #:	287400	Location:	1208 Lincoln	
Client:	Pangea Environmental	Prep:	EPA 5030B	
Project#:	STANDARD	Analysis:	EPA 8260B	
Field ID:	B-5-W	Batch#:	246070	
Lab ID:	287400-002	Sampled:	03/27/17	
Matrix:	Water	Received:	03/27/17	
Units:	ug/L	Analyzed:	03/29/17	
Diln Fac:	5.000			

Analyte	Result	RL	
Dibromochloromethane	ND	2.5	
1,2-Dibromoethane	ND	2.5	
Chlorobenzene	ND	2.5	
1,1,1,2-Tetrachloroethane	ND	2.5	
Ethylbenzene	ND	2.5	
m,p-Xylenes	ND	2.5	
o-Xylene	ND	2.5	
Styrene	ND	2.5	
Bromoform	ND	5.0	
Isopropylbenzene	ND	2.5	
1,1,2,2-Tetrachloroethane	ND	2.5	
1,2,3-Trichloropropane	ND	2.5	
Propylbenzene	ND	2.5	
Bromobenzene	ND	2.5	
1,3,5-Trimethylbenzene	ND	2.5	
2-Chlorotoluene	ND	2.5	
4-Chlorotoluene	ND	2.5	
tert-Butylbenzene	ND	2.5	
1,2,4-Trimethylbenzene	ND	2.5	
sec-Butylbenzene	ND	2.5	
para-Isopropyl Toluene	ND	2.5	
1,3-Dichlorobenzene	ND	2.5	
1,4-Dichlorobenzene	ND	2.5	
n-Butylbenzene	ND	2.5	
1,2-Dichlorobenzene	ND	2.5	
1,2-Dibromo-3-Chloropropane	ND	10	
1,2,4-Trichlorobenzene	ND	2.5	
Hexachlorobutadiene	ND	10	
Naphthalene	ND	10	
1,2,3-Trichlorobenzene	ND	2.5	

Surrogate	%REC	Limits	
Dibromofluoromethane	96	80-120	
1,2-Dichloroethane-d4	95	73-136	
Toluene-d8	99	80-120	
Bromofluorobenzene	99	80-120	

RL= Reporting Limit

Page 2 of 2

Purgeable Organics by GC/MS				
Lab #:	287400	Location:	1208 Lincoln	
Client:	Pangea Environmental	Prep:	EPA 5030B	
Project#:	STANDARD	Analysis:	EPA 8260B	
Field ID:	B-6-W	Batch#:	246070	
Lab ID:	287400-003	Sampled:	03/27/17	
Matrix:	Water	Received:	03/27/17	
Units:	ug/L	Analyzed:	03/29/17	
Diln Fac:	1.000			

Analyte	Result	RL	
Freon 12	ND	1.0	
Chloromethane	ND ND	1.0	
Vinyl Chloride	ND ND	0.5	
Bromomethane	ND ND	1.0	
Chloroethane	ND ND	1.0	
Trichlorofluoromethane	ND ND	1.0	
		10	
Acetone	ND		
Freon 113	ND	2.0	
1,1-Dichloroethene	ND	0.5	
Methylene Chloride	ND	10	
Carbon Disulfide	ND	0.5	
MTBE	ND	0.5	
trans-1,2-Dichloroethene	ND	0.5	
Vinyl Acetate	ND	10	
1,1-Dichloroethane	ND	0.5	
2-Butanone	ND	10	
cis-1,2-Dichloroethene	ND	0.5	
2,2-Dichloropropane	ND	0.5	
Chloroform	ND	0.5	
Bromochloromethane	ND	0.5	
1,1,1-Trichloroethane	ND	0.5	
1,1-Dichloropropene	ND	0.5	
Carbon Tetrachloride	ND	0.5	
1,2-Dichloroethane	ND	0.5	
Benzene	ND	0.5	
Trichloroethene	1.2	0.5	
1,2-Dichloropropane	ND	0.5	
Bromodichloromethane	ND	0.5	
Dibromomethane	ND	0.5	
4-Methyl-2-Pentanone	ND	10	
cis-1,3-Dichloropropene	ND	0.5	
Toluene	ND	0.5	
trans-1,3-Dichloropropene	ND	0.5	
1,1,2-Trichloroethane	ND	0.5	
2-Hexanone	ND	10	
1,3-Dichloropropane	ND	0.5	
Tetrachloroethene	59	0.5	

ND= Not Detected RL= Reporting Limit

Page 1 of 2

8.0

	Purgeable	Organics by GC/	MS	
Lab #:	287400	Location:	1208 Lincoln	
Client:	Pangea Environmental	Prep:	EPA 5030B	
Project#:	STANDARD	Analysis:	EPA 8260B	
Field ID:	B-6-W	Batch#:	246070	
Lab ID:	287400-003	Sampled:	03/27/17	
Matrix:	Water	Received:	03/27/17	
Units:	ug/L	Analyzed:	03/29/17	
Diln Fac:	1.000			

Analyte	Result	RL	
Dibromochloromethane	ND	0.5	
1,2-Dibromoethane	ND	0.5	
Chlorobenzene	ND	0.5	
1,1,1,2-Tetrachloroethane	ND	0.5	
Ethylbenzene	ND	0.5	
m,p-Xylenes	ND	0.5	
o-Xylene	ND	0.5	
Styrene	ND	0.5	
Bromoform	ND	1.0	
Isopropylbenzene	ND	0.5	
1,1,2,2-Tetrachloroethane	ND	0.5	
1,2,3-Trichloropropane	ND	0.5	
Propylbenzene	ND	0.5	
Bromobenzene	ND	0.5	
1,3,5-Trimethylbenzene	ND	0.5	
2-Chlorotoluene	ND	0.5	
4-Chlorotoluene	ND	0.5	
tert-Butylbenzene	ND	0.5	
1,2,4-Trimethylbenzene	ND	0.5	
sec-Butylbenzene	ND	0.5	
para-Isopropyl Toluene	1.0	0.5	
1,3-Dichlorobenzene	ND	0.5	
1,4-Dichlorobenzene	ND	0.5	
n-Butylbenzene	ND	0.5	
1,2-Dichlorobenzene	ND	0.5	
1,2-Dibromo-3-Chloropropane	ND	2.0	
1,2,4-Trichlorobenzene	ND	0.5	
Hexachlorobutadiene	ND	2.0	
Naphthalene	ND	2.0	
1,2,3-Trichlorobenzene	ND	0.5	

Surrogate	%REC	Limits	
Dibromofluoromethane	100	80-120	
1,2-Dichloroethane-d4	101	73-136	
Toluene-d8	102	80-120	
Bromofluorobenzene	103	80-120	

ND= Not Detected

RL= Reporting Limit

Page 2 of 2

8.0

	Purgeable (Organics by GC/	MS	
Lab #:	287400	Location:	1208 Lincoln	
Client:	Pangea Environmental	Prep:	EPA 5030B	
Project#:	STANDARD	Analysis:	EPA 8260B	
Field ID:	B-7-W	Batch#:	246070	
Lab ID:	287400-004	Sampled:	03/27/17	
Matrix:	Water	Received:	03/27/17	
Units:	ug/L	Analyzed:	03/29/17	
Diln Fac:	1.000			

Preon 12	Analyte	Result	RL	
Chloromethane				
Vinyl Chloride ND 0.5 Bromomethane ND 1.0 Chloroethane ND 1.0 Trichlorofluoromethane ND 1.0 Acetone ND 1.0 Freon 113 ND 2.0 1,1-Dichloroethene ND 0.5 Methylene Chloride ND 0.5 McTBE ND 0.5 Carbon Disulfide ND 0.5 MTBE ND 0.5 trans-1,2-Dichloroethene ND 0.5 Vinyl Acetate ND 0.5 2-Butanone ND 0.5 2-Butanone ND 0.5 2-Butanone ND 0.5 2,2-Dichloroptopane ND 0.5 2,2-Dichloropropane ND 0.5 Chloroform ND 0.5 1,1,1-Trichloroethane ND 0.5 1,1,2-Dichloropropene ND 0.5 1,1,2-Dichloroethane ND 0.5				
Bromomethane ND				
Chloroethane ND 1.0 Trichlorofluoromethane ND 1.0 Acetone ND 10 Freon 113 ND 2.0 1,1-Dichloroethene ND 0.5 Methylene Chloride ND 0.5 MTBE ND 0.5 Trans-1,2-Dichloroethene ND 0.5 Vinyl Acetate ND 0.5 Call Acetate	_			
Trichlorofluoromethane ND 1.0 Acetone ND 10 Freon 113 ND 2.0 1,1-Dichloroethene ND 0.5 Methylene Chloride ND 10 Carbon Disulfide ND 0.5 MTBE ND 0.5 trans-1,2-Dichloroethene ND 0.5 Viryl Acetate ND 0.5 Viryl Acetate ND 0.5 2-Butanone ND 0.5 2-Butanone ND 0.5 2-Butanone ND 0.5 2-Loughloroethane ND 0.5 Chloroform ND 0.5 Chloroform ND 0.5 Bromochloromethane ND 0.5 1,1-Trichloroethane ND 0.5 1,1-Dichloropropene ND 0.5 2-Dichloroethane ND 0.5 1,2-Dichloroethane ND 0.5 1,2-Dichloropropane ND 0.5				
Acetone ND 10 Freon 113 ND 2.0 1,1-Dichloroethene ND 0.5 Methylene Chloride ND 0.5 MTBE ND 0.5 MTBE ND 0.5 Vinyl Acetate ND 0.5 Vinyl Acetate ND 10 1,1-Dichloroethane ND 0.5 2-Butanone ND 0.5 cis-1,2-Dichloroethene ND 0.5 2,2-Dichloropropane ND 0.5 Chloroform ND 0.5 Bromochloromethane ND 0.5 1,1,1-Trichloroethane ND 0.5 1,1,1-Trichloropropene ND 0.5 Carbon Tetrachloride ND 0.5 1,1,2-Dichloropropene ND 0.5 Carbon Tetrachloride ND 0.5 1,2-Dichloropropane ND 0.5 Benzene ND 0.5 Trichloropropane ND 0.5				
Freon 113				
1,1-Dichloroethene ND 0.5 Methylene Chloride ND 10 Carbon Disulfide ND 0.5 MTBE ND 0.5 trans-1,2-Dichloroethene ND 0.5 Vinyl Acetate ND 0.5 1,1-Dichloroethane ND 0.5 2-Butanone ND 0.5 2-Butanone ND 0.5 2,2-Dichloropropane ND 0.5 2,2-Dichloropropane ND 0.5 Chloroform ND 0.5 Bromochloromethane ND 0.5 1,1-Trichloroptopene ND 0.5 1,1-Dichloropropene ND 0.5 1,2-Dichloroptopene ND 0.5 1,2-Dichloroethane ND 0.5 Benzene ND 0.5 Trichloroptopane ND 0.5 Bromodichloromethane ND 0.5 Problemomethane ND 0.5 Bromodichloropropene ND 0.5 Dibromomethane ND 0.5				
Methylene Chloride ND 10 Carbon Disulfide ND 0.5 MTBE ND 0.5 trans-1,2-Dichloroethene ND 0.5 Vinyl Acetate ND 10 1,1-Dichloroethane ND 0.5 2-Butanone ND 0.5 2-Butanone ND 0.5 2,2-Dichloroethene ND 0.5 2,2-Dichloropropane ND 0.5 Chloroform ND 0.5 Bromochloromethane ND 0.5 1,1-Trichloroethane ND 0.5 1,1-Dichloropropene ND 0.5 1,2-Dichloroethane ND 0.5 1,2-Dichloroethane ND 0.5 Prichloroethene ND 0.5 1,2-Dichloropropane ND 0.5 Promodichloromethane ND 0.5 1,2-Dichloropropane ND 0.5 Promodichloromethane ND 0.5 0bibromomethane ND				
Carbon Disulfide ND 0.5 MTBE ND 0.5 trans-1,2-Dichloroethene ND 0.5 Vinyl Acetate ND 10 1,1-Dichloroethane ND 0.5 2-Butanone ND 0.5 2-Butanone ND 0.5 2,2-Dichloroethene ND 0.5 Chloroform ND 0.5 Chloroform ND 0.5 Promochloromethane ND 0.5 1,1-Trichloroethane ND 0.5 1,1-Dichloropropene ND 0.5 Carbon Tetrachloride ND 0.5 1,2-Dichloroethane ND 0.5 Promodichloropropane ND 0.5 1,2-Dichloropropane ND 0.5 Bromodichloromethane ND 0.5 1,2-Dichloropropene ND 0.5 4-Methyl-2-Pentanone ND 0.5 Toluene ND 0.5 4-Methyl-2-Pentanone ND				
MTBE ND 0.5 trans-1,2-Dichloroethene ND 0.5 Vinyl Acetate ND 10 1,1-Dichloroethane ND 0.5 2-Butanone ND 10 cis-1,2-Dichloroethene ND 0.5 2,2-Dichloropropane ND 0.5 Chloroform ND 0.5 Bromochloromethane ND 0.5 1,1,1-Trichloroethane ND 0.5 1,1-Dichloropropene ND 0.5 1,2-Dichloroethane ND 0.5 Benzene ND 0.5 Trichloroethene ND 0.5 1,2-Dichloropropane ND 0.5 Promodichloromethane ND 0.5 Dibromomethane ND 0.5 Pomodichloromethane ND 0.5 4-Methyl-2-Pentanone ND 0.5 Toluene ND 0.5 Toluene ND 0.5 Trichloroethane ND 0.5	_			
trans-1,2-Dichloroethene ND 0.5 Vinyl Acetate ND 10 1,1-Dichloroethane ND 0.5 2-Butanone ND 10 cis-1,2-Dichloroethene ND 0.5 2,2-Dichloropropane ND 0.5 Chloroform ND 0.5 Bromochloromethane ND 0.5 1,1-Trichloroethane ND 0.5 1,1-Dichloropropene ND 0.5 Carbon Tetrachloride ND 0.5 1,2-Dichloroethane ND 0.5 Benzene ND 0.5 Trichloroethene ND 0.5 1,2-Dichloropropane ND 0.5 Bromodichloromethane ND 0.5 Dibromomethane ND 0.5 4-Methyl-2-Pentanone ND 0.5 Toluene ND 0.5 Toluene ND 0.5 Trichloropropene ND 0.5 Toluene ND 0.5 <td></td> <td></td> <td></td> <td></td>				
Vinyl Acetate ND 10 1,1-Dichloroethane ND 0.5 2-Butanone ND 10 cis-1,2-Dichloroethene ND 0.5 2,2-Dichloropropane ND 0.5 Chloroform ND 0.5 Bromochloromethane ND 0.5 1,1,1-Trichloroethane ND 0.5 1,1-Dichloropropene ND 0.5 1,2-Dichloropropene ND 0.5 1,2-Dichloroethane ND 0.5 Benzene ND 0.5 Trichloroethene ND 0.5 1,2-Dichloropropane ND 0.5 1,2-Dichloropropane ND 0.5 1,2-Dichloromethane ND 0.5 Dibromomethane ND 0.5 4-Methyl-2-Pentanone ND 0.5 Toluene ND 0.5 Toluene ND 0.5 Trickloroethane ND 0.5 1,1,2-Trichloroethane ND <td< td=""><td></td><td></td><td></td><td></td></td<>				
1,1-Dichloroethane ND 0.5 2-Butanone ND 10 cis-1,2-Dichloroethene ND 0.5 2,2-Dichloropropane ND 0.5 Chloroform ND 0.5 Bromochloromethane ND 0.5 1,1,1-Trichloroethane ND 0.5 1,1-Dichloropropene ND 0.5 1,2-Dichloropropene ND 0.5 1,2-Dichloroethane ND 0.5 Benzene ND 0.5 Trichloroethene ND 0.5 1,2-Dichloropropane ND 0.5 Bromodichloromethane ND 0.5 Dibromomethane ND 0.5 Dibromomethane ND 0.5 4-Methyl-2-Pentanone ND 0.5 Toluene ND 0.5 trans-1,3-Dichloropropene ND 0.5 1,1,2-Trichloroethane ND 0.5 2-Hexanone ND 0.5				
2-Butanone ND 10 cis-1,2-Dichloroethene ND 0.5 2,2-Dichloropropane ND 0.5 Chloroform ND 0.5 Enomochloromethane ND 0.5 1,1,1-Trichloroethane ND 0.5 1,1-Dichloropropene ND 0.5 Carbon Tetrachloride ND 0.5 1,2-Dichloroethane ND 0.5 Benzene ND 0.5 Trichloroethene ND 0.5 1,2-Dichloropropane ND 0.5 Bromodichloromethane ND 0.5 Bromodichloromethane ND 0.5 4-Methyl-2-Pentanone ND 0.5 Toluene ND 0.5 Toluene ND 0.5 trans-1,3-Dichloropropene ND 0.5 1,1,2-Trichloroethane ND 0.5 2-Hexanone ND 0.5	_			
cis-1,2-Dichloroethene ND 0.5 2,2-Dichloropropane ND 0.5 Chloroform ND 0.5 Bromochloromethane ND 0.5 1,1,1-Trichloroethane ND 0.5 1,1-Dichloropropene ND 0.5 Carbon Tetrachloride ND 0.5 1,2-Dichloroethane ND 0.5 Benzene ND 0.5 Trichloroethene ND 0.5 1,2-Dichloropropane ND 0.5 Bromodichloromethane ND 0.5 4-Methyl-2-Pentanone ND 0.5 4-Methyl-2-Pentanone ND 0.5 Toluene ND 0.5 trans-1,3-Dichloropropene ND 0.5 1,1,2-Trichloroethane ND 0.5 2-Hexanone ND 0.5				
2,2-Dichloropropane ND 0.5 Chloroform ND 0.5 Bromochloromethane ND 0.5 1,1,1-Trichloroethane ND 0.5 1,1-Dichloropropene ND 0.5 Carbon Tetrachloride ND 0.5 1,2-Dichloroethane ND 0.5 Benzene ND 0.5 Trichloroethene ND 0.5 1,2-Dichloropropane ND 0.5 Bromodichloromethane ND 0.5 Dibromomethane ND 0.5 4-Methyl-2-Pentanone ND 0.5 Cis-1,3-Dichloropropene ND 0.5 Toluene ND 0.5 trans-1,3-Dichloropropene ND 0.5 1,1,2-Trichloroethane ND 0.5 2-Hexanone ND 0.5				
Chloroform ND 0.5 Bromochloromethane ND 0.5 1,1,1-Trichloroethane ND 0.5 1,1-Dichloropropene ND 0.5 Carbon Tetrachloride ND 0.5 1,2-Dichloroethane ND 0.5 Benzene ND 0.5 Trichloroethene ND 0.5 Trichloropropane ND 0.5 Bromodichloromethane ND 0.5 Bromodichloromethane ND 0.5 Dibromomethane ND 0.5 Dibromomethane ND 0.5 Tiduene ND 0.5 Toluene ND 0.5 Toluene ND 0.5 Trichloropropane ND 0.5 Toluene ND 0.5 Toluene ND 0.5 Trichloropropene ND 0.5 Trichloropropene ND 0.5				
Bromochloromethane ND 0.5 1,1,1-Trichloroethane ND 0.5 1,1-Dichloropropene ND 0.5 Carbon Tetrachloride ND 0.5 1,2-Dichloroethane ND 0.5 Benzene ND 0.5 Trichloroethene ND 0.5 Trichloropropane ND 0.5 Bromodichloromethane ND 0.5 Bromodichloromethane ND 0.5 Dibromomethane ND 0.5 4-Methyl-2-Pentanone ND 0.5 Toluene ND 0.5 trans-1,3-Dichloropropene ND 0.5 1,1,2-Trichloroethane ND 0.5 1,1,2-Trichloroethane ND 0.5 2-Hexanone ND 0.5				
1,1,1-TrichloroethaneND0.51,1-DichloropropeneND0.5Carbon TetrachlorideND0.51,2-DichloroethaneND0.5BenzeneND0.5TrichloroetheneND0.51,2-DichloropropaneND0.5BromodichloromethaneND0.5DibromomethaneND0.54-Methyl-2-PentanoneND10cis-1,3-DichloropropeneND0.5TolueneND0.5trans-1,3-DichloropropeneND0.51,1,2-TrichloroethaneND0.52-HexanoneND0.5				
1,1-DichloropropeneND0.5Carbon TetrachlorideND0.51,2-DichloroethaneND0.5BenzeneND0.5TrichloroetheneND0.51,2-DichloropropaneND0.5BromodichloromethaneND0.5DibromomethaneND0.54-Methyl-2-PentanoneND10cis-1,3-DichloropropeneND0.5TolueneND0.5trans-1,3-DichloropropeneND0.51,1,2-TrichloroethaneND0.52-HexanoneND0.5				
Carbon Tetrachloride ND 0.5 1,2-Dichloroethane ND 0.5 Benzene ND 0.5 Trichloroethene ND 0.5 1,2-Dichloropropane ND 0.5 Bromodichloromethane ND 0.5 Dibromomethane ND 0.5 4-Methyl-2-Pentanone ND 10 cis-1,3-Dichloropropene ND 0.5 Toluene ND 0.5 trans-1,3-Dichloropropene ND 0.5 1,1,2-Trichloroethane ND 0.5 2-Hexanone ND 0.5				
1,2-DichloroethaneND0.5BenzeneND0.5TrichloroetheneND0.51,2-DichloropropaneND0.5BromodichloromethaneND0.5DibromomethaneND0.54-Methyl-2-PentanoneND10cis-1,3-DichloropropeneND0.5TolueneND0.5trans-1,3-DichloropropeneND0.51,1,2-TrichloroethaneND0.52-HexanoneND10				
BenzeneND0.5TrichloroetheneND0.51,2-DichloropropaneND0.5BromodichloromethaneND0.5DibromomethaneND0.54-Methyl-2-PentanoneND10cis-1,3-DichloropropeneND0.5TolueneND0.5trans-1,3-DichloropropeneND0.51,1,2-TrichloroethaneND0.52-HexanoneND10				
Trichloroethene ND 0.5 1,2-Dichloropropane ND 0.5 Bromodichloromethane ND 0.5 Dibromomethane ND 0.5 4-Methyl-2-Pentanone ND 10 cis-1,3-Dichloropropene ND 0.5 Toluene ND 0.5 trans-1,3-Dichloropropene ND 0.5 1,1,2-Trichloroethane ND 0.5 2-Hexanone ND 10				
1,2-DichloropropaneND0.5BromodichloromethaneND0.5DibromomethaneND0.54-Methyl-2-PentanoneND10cis-1,3-DichloropropeneND0.5TolueneND0.5trans-1,3-DichloropropeneND0.51,1,2-TrichloroethaneND0.52-HexanoneND10				
Bromodichloromethane ND 0.5 Dibromomethane ND 0.5 4-Methyl-2-Pentanone ND 10 cis-1,3-Dichloropropene ND 0.5 Toluene ND 0.5 trans-1,3-Dichloropropene ND 0.5 1,1,2-Trichloroethane ND 0.5 2-Hexanone ND 10				
Dibromomethane ND 0.5 4-Methyl-2-Pentanone ND 10 cis-1,3-Dichloropropene ND 0.5 Toluene ND 0.5 trans-1,3-Dichloropropene ND 0.5 1,1,2-Trichloroethane ND 0.5 2-Hexanone ND 10				
4-Methyl-2-Pentanone ND 10 cis-1,3-Dichloropropene ND 0.5 Toluene ND 0.5 trans-1,3-Dichloropropene ND 0.5 1,1,2-Trichloroethane ND 0.5 2-Hexanone ND 10				
cis-1,3-DichloropropeneND0.5TolueneND0.5trans-1,3-DichloropropeneND0.51,1,2-TrichloroethaneND0.52-HexanoneND10				
Toluene ND 0.5 trans-1,3-Dichloropropene ND 0.5 1,1,2-Trichloroethane ND 0.5 2-Hexanone ND 10	_			
trans-1,3-Dichloropropene ND 0.5 1,1,2-Trichloroethane ND 0.5 2-Hexanone ND 10				
1,1,2-Trichloroethane ND 0.5 2-Hexanone ND 10				
2-Hexanone ND 10				
1,3-Dichloropropane ND 0.5	1,3-Dichloropropane		0.5	
Tetrachloroethene 3.0 0.5				

ND= Not Detected

RL= Reporting Limit

Page 1 of 2

	Purgeable	Organics by GC/	MS	
Lab #:	287400	Location:	1208 Lincoln	
Client:	Pangea Environmental	Prep:	EPA 5030B	
Project#:	STANDARD	Analysis:	EPA 8260B	
Field ID:	B-7-W	Batch#:	246070	
Lab ID:	287400-004	Sampled:	03/27/17	
Matrix:	Water	Received:	03/27/17	
Units:	ug/L	Analyzed:	03/29/17	
Diln Fac:	1.000			

Analyte	Result	RL	
Dibromochloromethane	ND	0.5	
1,2-Dibromoethane	ND	0.5	
Chlorobenzene	ND	0.5	
1,1,1,2-Tetrachloroethane	ND	0.5	
Ethylbenzene	ND	0.5	
m,p-Xylenes	ND	0.5	
o-Xylene	ND	0.5	
Styrene	ND	0.5	
Bromoform	ND	1.0	
Isopropylbenzene	ND	0.5	
1,1,2,2-Tetrachloroethane	ND	0.5	
1,2,3-Trichloropropane	ND	0.5	
Propylbenzene	ND	0.5	
Bromobenzene	ND	0.5	
1,3,5-Trimethylbenzene	ND	0.5	
2-Chlorotoluene	ND	0.5	
4-Chlorotoluene	ND	0.5	
tert-Butylbenzene	ND	0.5	
1,2,4-Trimethylbenzene	ND	0.5	
sec-Butylbenzene	ND	0.5	
para-Isopropyl Toluene	ND	0.5	
1,3-Dichlorobenzene	ND	0.5	
1,4-Dichlorobenzene	ND	0.5	
n-Butylbenzene	ND	0.5	
1,2-Dichlorobenzene	ND	0.5	
1,2-Dibromo-3-Chloropropane	ND	2.0	
1,2,4-Trichlorobenzene	ND	0.5	
Hexachlorobutadiene	ND	2.0	
Naphthalene	ND	2.0	
1,2,3-Trichlorobenzene	ND	0.5	

Surrogate	%REC	Limits	
Dibromofluoromethane	101	80-120	
1,2-Dichloroethane-d4	100	73-136	
Toluene-d8	102	80-120	
Bromofluorobenzene	102	80-120	

ND= Not Detected

RL= Reporting Limit

Page 2 of 2

9.0

Batch QC Report

	Purgeable Org	ganics by GC/MS	
Lab #:	287400	Location:	1208 Lincoln
Client:	Pangea Environmental	Prep:	EPA 5030B
Project#:	STANDARD	Analysis:	EPA 8260B
Matrix:	Water	Batch#:	246070
Units:	ug/L	Analyzed:	03/29/17
Diln Fac:	1.000		

Type: BS Lab ID: QC879096

Analyte	Spiked	Result	%REC	Limits
1,1-Dichloroethene	12.50	14.25	114	66-127
Benzene	12.50	13.94	111	78-123
Trichloroethene	12.50	13.08	105	75-120
Toluene	12.50	14.43	115	80-120
Chlorobenzene	12.50	13.75	110	80-120

Surrogate	%REC	Limits		
Dibromofluoromethane	100	30-120		
1,2-Dichloroethane-d4	99	73-136		
Toluene-d8	103	30-120		
Bromofluorobenzene	100	30-120		

Type: BSD Lab ID: QC879097

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
1,1-Dichloroethene	12.50	12.28	98	66-127	15	20
Benzene	12.50	11.96	96	78-123	15	20
Trichloroethene	12.50	11.51	92	75-120	13	20
Toluene	12.50	12.33	99	80-120	16	20
Chlorobenzene	12.50	12.01	96	80-120	14	20

Surrogate	%REC	Limits
Dibromofluoromethane	100	80-120
1,2-Dichloroethane-d4	99	73-136
Toluene-d8	101	80-120
Bromofluorobenzene	101	80-120

Batch QC Report

	Purgeable	Organics by GC/	MS	
Lab #:	287400	Location:	1208 Lincoln	
Client:	Pangea Environmental	Prep:	EPA 5030B	
Project#:	STANDARD	Analysis:	EPA 8260B	
Type:	BLANK	Diln Fac:	1.000	
Lab ID:	QC879098	Batch#:	246070	
Matrix:	Water	Analyzed:	03/29/17	
Units:	ug/L			

Analyte	Result	RL	
Freon 12	ND	1.0	
Chloromethane	ND	1.0	
Vinyl Chloride	ND	0.5	
Bromomethane	ND	1.0	
Chloroethane	ND	1.0	
Trichlorofluoromethane	ND	1.0	
Acetone	ND	10	
Freon 113	ND	2.0	
1,1-Dichloroethene	ND	0.5	
Methylene Chloride	ND	10	
Carbon Disulfide	ND	0.5	
MTBE	ND	0.5	
trans-1,2-Dichloroethene	ND	0.5	
Vinyl Acetate	ND	10	
1,1-Dichloroethane	ND	0.5	
2-Butanone	ND	10	
cis-1,2-Dichloroethene	ND	0.5	
2,2-Dichloropropane	ND	0.5	
Chloroform	ND	0.5	
Bromochloromethane	ND	0.5	
1,1,1-Trichloroethane	ND	0.5	
1,1-Dichloropropene	ND	0.5	
Carbon Tetrachloride	ND	0.5	
1,2-Dichloroethane	ND	0.5	
Benzene	ND	0.5	
Trichloroethene	ND	0.5	
1,2-Dichloropropane	ND	0.5	
Bromodichloromethane	ND	0.5	
Dibromomethane	ND	0.5	
4-Methyl-2-Pentanone	ND	10	
cis-1,3-Dichloropropene	ND	0.5	
Toluene	ND	0.5	
trans-1,3-Dichloropropene	ND ND	0.5	
1,1,2-Trichloroethane	ND	0.5	
2-Hexanone	ND	10	
1,3-Dichloropropane	ND	0.5	
Tetrachloroethene	ND	0.5	
retrachioroethene	ДИ	0.5	

ND= Not Detected

RL= Reporting Limit

Page 1 of 2

Batch QC Report

	Purgeable	Organics by GC/	'MS	
Lab #:	287400	Location:	1208 Lincoln	
Client:	Pangea Environmental	Prep:	EPA 5030B	
Project#:	STANDARD	Analysis:	EPA 8260B	
Type:	BLANK	Diln Fac:	1.000	
Lab ID:	QC879098	Batch#:	246070	
Matrix:	Water	Analyzed:	03/29/17	
Units:	ug/L			

Analyte	Result	RL	
Dibromochloromethane	ND	0.5	
1,2-Dibromoethane	ND	0.5	
Chlorobenzene	ND	0.5	
1,1,1,2-Tetrachloroethane	ND	0.5	
Ethylbenzene	ND	0.5	
m,p-Xylenes	ND	0.5	
o-Xylene	ND	0.5	
Styrene	ND	0.5	
Bromoform	ND	1.0	
Isopropylbenzene	ND	0.5	
1,1,2,2-Tetrachloroethane	ND	0.5	
1,2,3-Trichloropropane	ND	0.5	
Propylbenzene	ND	0.5	
Bromobenzene	ND	0.5	
1,3,5-Trimethylbenzene	ND	0.5	
2-Chlorotoluene	ND	0.5	
4-Chlorotoluene	ND	0.5	
tert-Butylbenzene	ND	0.5	
1,2,4-Trimethylbenzene	ND	0.5	
sec-Butylbenzene	ND	0.5	
para-Isopropyl Toluene	ND	0.5	
1,3-Dichlorobenzene	ND	0.5	
1,4-Dichlorobenzene	ND	0.5	
n-Butylbenzene	ND	0.5	
1,2-Dichlorobenzene	ND	0.5	
1,2-Dibromo-3-Chloropropane	ND	2.0	
1,2,4-Trichlorobenzene	ND	0.5	
Hexachlorobutadiene	ND	2.0	
Naphthalene	ND	2.0	
1,2,3-Trichlorobenzene	ND	0.5	

Surrogate	%REC	Limits	
Dibromofluoromethane	100	80-120	
1,2-Dichloroethane-d4	101	73-136	
Toluene-d8	101	80-120	
Bromofluorobenzene	104	80-120	

ND= Not Detected

RL= Reporting Limit

Page 2 of 2

11.0

"When Quality Counts"

Analytical Report

WorkOrder: 1708945

Report Created for: Pangea Environmental Svcs., Inc.

1710 Franklin Street, Ste. 200

Oakland, CA 94612

Project Contact: Morgan Gillies

Project P.O.:

Project Name: 1208 Lincoln; Elegant Cleaners

Project Received: 08/21/2017

Analytical Report reviewed & approved for release on 08/25/2017 by:

Angela Rydelius,

Laboratory Manager

The report shall not be reproduced except in full, without the written approval of the laboratory. The analytical results relate only to the items tested. Results reported conform to the most current NELAP standards, where applicable, unless otherwise stated in the case narrative.

1534 Willow Pass Rd. Pittsburg, CA 94565 ♦ TEL: (877) 252-9262 ♦ FAX: (925) 252-9269 ♦ www.mccampbell.com

CA ELAP 1644 ♦ NELAP 4033ORELAP

Glossary of Terms & Qualifier Definitions

Client: Pangea Environmental Svcs., Inc.

Project: 1208 Lincoln; Elegant Cleaners

WorkOrder: 1708945

Glossary Abbreviation

%D Serial Dilution Percent Difference

95% Interval 95% Confident Interval

DF Dilution Factor

DI WET (DISTLC) Waste Extraction Test using DI water

DISS Dissolved (direct analysis of 0.45 µm filtered and acidified water sample)

DLT Dilution Test (Serial Dilution)

DUP Duplicate

EDL Estimated Detection Limit

ERS External reference sample. Second source calibration verification.

ITEF International Toxicity Equivalence Factor

LCS Laboratory Control Sample

MB Method Blank

MB % Rec % Recovery of Surrogate in Method Blank, if applicable

MDL Method Detection Limit

ML Minimum Level of Quantitation

MS Matrix Spike

MSD Matrix Spike Duplicate

N/A Not Applicable

ND Not detected at or above the indicated MDL or RL

NR Data Not Reported due to matrix interference or insufficient sample amount.

PDS Post Digestion Spike

PDSD Post Digestion Spike Duplicate

PF Prep Factor

RD Relative Difference

RL Reporting Limit (The RL is the lowest calibration standard in a multipoint calibration.)

RPD Relative Percent Deviation
RRT Relative Retention Time

SPK Val Spike Value

SPKRef Val Spike Reference Value

SPLP Synthetic Precipitation Leachate Procedure

ST Sorbent Tube

TCLP Toxicity Characteristic Leachate Procedure

TEQ Toxicity Equivalents

WET (STLC) Waste Extraction Test (Soluble Threshold Limit Concentration)

Analytical Qualifiers

H Samples were analyzed out of holding time

Analytical Report

Client: Pangea Environmental Svcs., Inc.

Date Received: 8/21/17 19:25

Date Prepared: 8/23/17

Project: 1208 Lincoln; Elegant Cleaners

WorkOrder: 1708945

Extraction Method: SW5030B **Analytical Method:** SW8260B

Unit: $\mu g/m^3$

Volatile Organics by P&T and GC/MS (Basic Target List)

Bromobenzene ND H 250 1 08/23/2017 11:26 Bromochloromethane ND H 250 1 08/23/2017 11:26 Bromochloromethane ND H 250 1 08/23/2017 11:26 Bromodorm ND H 250 1 08/23/2017 11:26 Bromomethane ND H 250 1 08/23/2017 11:26 Carbon Tetrachloride ND H 250 1 08/23/2017 11:26 Chlorobersene ND H 250 1 08/23/2017 11:26 Chlorochrane ND H 250 1 08/23/2017 11:26 Chlorochrane ND H 250 1 08/23/2017 11:26 Chlorochrane ND H 250 1 08/23/2017 11:26 Chlorotoluene ND H 250 1 08/23/2017 11:26 2-Chlorotoluene ND H 250 1 08/23/2017 11:26 1,2-Dibriomethane ND H<	Client ID	Lab ID	Matrix	Date C	ollected Instru	ment Batch ID
Bromobenzene ND H 250 1 08/23/2017 11:26 Bromochloromethane ND H 250 1 08/23/2017 11:26 Bromodichloromethane ND H 250 1 08/23/2017 11:26 Bromodorm ND H 250 1 08/23/2017 11:26 Bromodorm ND H 250 1 08/23/2017 11:26 Carbon Tetrachloride ND H 250 1 08/23/2017 11:26 Carbon Tetrachloride ND H 250 1 08/23/2017 11:26 Chlorocethane ND H 250 1 08/23/2017 11:26 Chlorocethane ND H 250 1 08/23/2017 11:26 Chlorocothane ND H 250 1 08/23/2017 11:26 Chlorotothane ND H 250 1 08/23/2017 11:26 Chlorotothane ND H 250 1 08/23/2017 11:26 2-Chlorotothane ND <	SVE-1	1708945-001A	Air	08/21/20	17 14:50 GC38	144314
Bromochloromethane ND H 250 1 08/23/2017 11:26 Bromodichloromethane ND H 250 1 08/23/2017 11:26 Bromodorm ND H 250 1 08/23/2017 11:26 Bromomethane ND H 250 1 08/23/2017 11:26 Carbon Tetrachloride ND H 250 1 08/23/2017 11:26 Chloroethane ND H 250 1 08/23/2017 11:26 Chloroethane ND H 250 1 08/23/2017 11:26 Chloroethane ND H 250 1 08/23/2017 11:26 Chlorotoluene ND H <td>Analytes</td> <td>Result</td> <td>Qualifiers</td> <td><u>RL</u></td> <td><u>DF</u></td> <td>Date Analyzed</td>	Analytes	Result	Qualifiers	<u>RL</u>	<u>DF</u>	Date Analyzed
Bromodichloromethane ND H 250 1 08/23/2017 11:26 Bromoform ND H 250 1 08/23/2017 11:26 Bromomethane ND H 250 1 08/23/2017 11:26 Carbon Tetrachloride ND H 250 1 08/23/2017 11:26 Chlorobenzene ND H 250 1 08/23/2017 11:26 Chlorodethane ND H	Bromobenzene	ND	Н	250	1	08/23/2017 11:26
Bromoform ND H 250 1 08/23/2017 11:26 Bromomethane ND H 250 1 08/23/2017 11:26 Carbon Tetrachloride ND H 250 1 08/23/2017 11:26 Chlorobenzene ND H 250 1 08/23/2017 11:26 Chloroethane ND H 250 1 08/23/2017 11:26 Chloroform ND H 250 1 08/23/2017 11:26 Chloroform ND H 250 1 08/23/2017 11:26 Chlororethane ND H 250 1 08/23/2017 11:26 2-Chlorotoluene ND H 250 1 08/23/2017 11:26 1;2-Dibromoethane ND H	Bromochloromethane	ND	Н	250	1	08/23/2017 11:26
Bromomethane	Bromodichloromethane	ND	Н	250	1	08/23/2017 11:26
Carbon Tetrachloride ND H 250 1 08/23/2017 11:26 Chlorobenzene ND H 250 1 08/23/2017 11:26 Chlorodethane ND H 250 1 08/23/2017 11:26 Chloroform ND H 250 1 08/23/2017 11:26 Chloromethane ND H 250 1 08/23/2017 11:26 Chlorotoluene ND H 250 1 08/23/2017 11:26 4-Chlorotoluene ND H 250 1 08/23/2017 11:26 Dibromochloromethane ND H 250 1 08/23/2017 11:26 1,2-Dibromo-3-chloropropane ND H 250 1 08/23/2017 11:26 1,2-Dibromoethane (EDB) ND H 250 1 08/23/2017 11:26 1,2-Dichlorobenzene ND H 250 1 08/23/2017 11:26 1,2-Dichlorobenzene ND H 250 1 08/23/2017 11:26 1,3-Dichlorobenzen	Bromoform	ND	Н	250	1	08/23/2017 11:26
Chlorobenzene ND H 250 1 08/23/2017 11:26 Chloroethane ND H 250 1 08/23/2017 11:26 Chloroform ND H 250 1 08/23/2017 11:26 Chlorotoluene ND H 250 1 08/23/2017 11:26 2-Chlorotoluene ND H 250 1 08/23/2017 11:26 4-Chlorotoluene ND H 250 1 08/23/2017 11:26 4-Chlorotoluene ND H 250 1 08/23/2017 11:26 4-Chlorotoluene ND H 250 1 08/23/2017 11:26 1-2-Dibromo-3-chloropropane ND H 250 1 08/23/2017 11:26 1-3-Dib	Bromomethane	ND	Н	250	1	08/23/2017 11:26
Chloroethane ND H 250 1 08/23/2017 11:26 Chloroform ND H 250 1 08/23/2017 11:26 Chloromethane ND H 250 1 08/23/2017 11:26 2-Chlorotoluene ND H 250 1 08/23/2017 11:26 4-Chlorotoluene ND H 250 1 08/23/2017 11:26 1,2-Dibromo-3-chloropropane ND H 250 1 08/23/2017 11:26 1,2-Dibromo-3-chloropropane ND H 250 1 08/23/2017 11:26 Dibromoethane (EDB) ND H 250 1 08/23/2017 11:26 1,2-Dichlorobenzene ND H 250 1 08/23/2017 11:26 1,4-Dichlorobenzene </td <td>Carbon Tetrachloride</td> <td>ND</td> <td>Н</td> <td>250</td> <td>1</td> <td>08/23/2017 11:26</td>	Carbon Tetrachloride	ND	Н	250	1	08/23/2017 11:26
Chloroform ND H 250 1 08/23/2017 11:26 Chloromethane ND H 250 1 08/23/2017 11:26 2-Chlorotoluene ND H 250 1 08/23/2017 11:26 4-Chlorotoluene ND H 250 1 08/23/2017 11:26 Dibromochloromethane ND H 250 1 08/23/2017 11:26 1,2-Dibromoesthane (EDB) ND H 250 1 08/23/2017 11:26 1,2-Dibromoethane (EDB) ND H 250 1 08/23/2017 11:26 Dibromoethane (EDB) ND H 250 1 08/23/2017 11:26 1,2-Dichlorobenzene ND H 250 1 08/23/2017 11:26 1,3-Dichlorobenzene ND H 250 1 08/23/2017 11:26 1,1-Dichloroethane ND H 250 1 08/23/2017 11:26 1,1-Dichloroethane ND H 250 1 08/23/2017 11:26 1,1-Dichlo	Chlorobenzene	ND	Н	250	1	08/23/2017 11:26
Chloromethane ND H 250 1 08/23/2017 11:26 2-Chlorotoluene ND H 250 1 08/23/2017 11:26 4-Chlorotoluene ND H 250 1 08/23/2017 11:26 4-Chlorotoluene ND H 250 1 08/23/2017 11:26 1;2-Dibromoethane ND H 250 1 08/23/2017 11:26 1;2-Dibromoethane (EDB) ND H 250 1 08/23/2017 11:26 1;2-Dibromoethane (ND H 250 1 08/23/2017 11:26 11:26 1,1-Dichlorothane (ND H 250 1 08/23/2017 11:26 11:26 <t< td=""><td>Chloroethane</td><td>ND</td><td>Н</td><td>250</td><td>1</td><td>08/23/2017 11:26</td></t<>	Chloroethane	ND	Н	250	1	08/23/2017 11:26
2-Chlorotoluene ND H 250 1 08/23/2017 11:26 4-Chlorotoluene ND H 250 1 08/23/2017 11:26 4-Chlorotoluene ND H 250 1 08/23/2017 11:26 1,2-Dibromo-3-chloropropane ND H 250 1 08/23/2017 11:26 1,2-Dibromo-schlare (EDB) ND H 250 1 08/23/2017 11:26 Dibromomethane ND H 250 1 08/23/2017 11:26 1,2-Dibromosthane ND H 250 1 08/23/2017 11:26 1,2-Dichlorobenzene ND H 250 1 08/23/2017 11:26 1,3-Dichlorobenzene ND H 250 1 08/23/2017 11:26 1,4-Dichlorobenzene ND H 250 1 08/23/2017 11:26 1,1-Dichloroethane ND H 250 1 08/23/2017 11:26 1,1-Dichloroethane ND H 250 1 08/23/2017 11:26 1,	Chloroform	ND	Н	250	1	08/23/2017 11:26
4-Chlorotoluene ND H 250 1 08/23/2017 11:26 Dibromochloromethane ND H 250 1 08/23/2017 11:26 1,2-Dibromo-3-chloropropane ND H 250 1 08/23/2017 11:26 1,2-Dibromoethane (EDB) ND H 250 1 08/23/2017 11:26 Dibromomethane ND H 250 1 08/23/2017 11:26 1,2-Dichlorobenzene ND H 250 1 08/23/2017 11:26 1,3-Dichlorobenzene ND H 250 1 08/23/2017 11:26 1,4-Dichlorobenzene ND H 250 1 08/23/2017 11:26 1,4-Dichlorobenzene ND H 250 1 08/23/2017 11:26 1,4-Dichlorobenzene ND H 250 1 08/23/2017 11:26 1,1-Dichlorodifluoromethane ND H 250 1 08/23/2017 11:26 1,1-Dichlorothane ND H 250 1 08/23/2017 11:26 <t< td=""><td>Chloromethane</td><td>ND</td><td>Н</td><td>250</td><td>1</td><td>08/23/2017 11:26</td></t<>	Chloromethane	ND	Н	250	1	08/23/2017 11:26
Dibromochloromethane ND H 250 1 08/23/2017 11:26 1,2-Dibromo-3-chloropropane ND H 250 1 08/23/2017 11:26 1,2-Dibromoethane (EDB) ND H 250 1 08/23/2017 11:26 Dibromomethane ND H 250 1 08/23/2017 11:26 1,2-Dichlorobenzene ND H 250 1 08/23/2017 11:26 1,3-Dichlorobenzene ND H 250 1 08/23/2017 11:26 1,4-Dichlorobenzene ND H 250 1 08/23/2017 11:26 1,4-Dichlorobenzene ND H 250 1 08/23/2017 11:26 1,4-Dichlorobenzene ND H 250 1 08/23/2017 11:26 1,1-Dichlorobenzene ND H 250 1 08/23/2017 11:26 1,1-Dichlorobenzene ND H 250 1 08/23/2017 11:26 1,1-Dichlorobenzene ND H 250 1 08/23/2017 11:26	2-Chlorotoluene	ND	Н	250	1	08/23/2017 11:26
1,2-Dibromo-3-chloropropane ND H 250 1 08/23/2017 11:26 1,2-Dibromoethane (EDB) ND H 250 1 08/23/2017 11:26 Dibromomethane ND H 250 1 08/23/2017 11:26 1,2-Dichlorobenzene ND H 250 1 08/23/2017 11:26 1,3-Dichlorobenzene ND H 250 1 08/23/2017 11:26 1,4-Dichlorobenzene ND H 250 1 08/23/2017 11:26 Dichlorodifluoromethane ND H 250 1 08/23/2017 11:26 1,1-Dichloroethane ND H 250 1 08/23/2017 11:26 1,2-Dichloroethane (1,2-DCA) ND H 250 1 08/23/2017 11:26 1,1-Dichloroethane ND H 250 1 08/23/2017 11:26 cis-1,2-Dichloroethane ND H 250 1 08/23/2017 11:26 cis-1,3-Dichloropropane ND H 250 1 08/23/2017 11:26	4-Chlorotoluene	ND	Н	250	1	08/23/2017 11:26
1,2-Dibromoethane (EDB) ND H 250 1 08/23/2017 11:26 Dibromomethane ND H 250 1 08/23/2017 11:26 1,2-Dichlorobenzene ND H 250 1 08/23/2017 11:26 1,3-Dichlorobenzene ND H 250 1 08/23/2017 11:26 1,4-Dichlorobenzene ND H 250 1 08/23/2017 11:26 1,4-Dichlorobenzene ND H 250 1 08/23/2017 11:26 1,1-Dichloroethane ND H 250 1 08/23/2017 11:26 1,2-Dichloroethane (1,2-DCA) ND H 250 1 08/23/2017 11:26 1,1-Dichloroethane (1,2-DCA) ND H 250 1 08/23/2017 11:26 1,1-Dichloroethane (1,2-Dichloroethane ND H 250 1 08/23/2017 11:26 1,2-Dichloroethane (1,2-Dichloroethane ND H 250 1 08/23/2017 11:26 1,2-Dichloroethane (ND ND H 250 1	Dibromochloromethane	ND	Н	250	1	08/23/2017 11:26
Dibromomethane ND H 250 1 08/23/2017 11:26 1,2-Dichlorobenzene ND H 250 1 08/23/2017 11:26 1,3-Dichlorobenzene ND H 250 1 08/23/2017 11:26 1,4-Dichlorobenzene ND H 250 1 08/23/2017 11:26 1,4-Dichloroethane ND H 250 1 08/23/2017 11:26 1,1-Dichloroethane ND H 250 1 08/23/2017 11:26 1,2-Dichloroethane (1,2-DCA) ND H 250 1 08/23/2017 11:26 1,2-Dichloroethene ND H 250 1 08/23/2017 11:26 cis-1,2-Dichloroethene ND H 250 1 08/23/2017 11:26 trans-1,2-Dichloroethene ND H 250 1 08/23/2017 11:26 1,2-Dichloropropane ND H 250 1 08/23/2017 11:26 1,3-Dichloropropane ND H 250 1 08/23/2017 11:26 <tr< td=""><td>1,2-Dibromo-3-chloropropane</td><td>ND</td><td>Н</td><td>250</td><td>1</td><td>08/23/2017 11:26</td></tr<>	1,2-Dibromo-3-chloropropane	ND	Н	250	1	08/23/2017 11:26
1,2-Dichlorobenzene ND H 250 1 08/23/2017 11:26 1,3-Dichlorobenzene ND H 250 1 08/23/2017 11:26 1,4-Dichlorobenzene ND H 250 1 08/23/2017 11:26 Dichlorodifluoromethane ND H 250 1 08/23/2017 11:26 1,1-Dichloroethane ND H 250 1 08/23/2017 11:26 1,2-Dichloroethane (1,2-DCA) ND H 250 1 08/23/2017 11:26 1,1-Dichloroethane (1,2-DCA) ND H 250 1 08/23/2017 11:26 1,2-Dichloroethane (1,2-DCA) ND H 250 1	1,2-Dibromoethane (EDB)	ND	Н	250	1	08/23/2017 11:26
1,3-Dichlorobenzene ND H 250 1 08/23/2017 11:26 1,4-Dichlorobenzene ND H 250 1 08/23/2017 11:26 Dichlorodifluoromethane ND H 250 1 08/23/2017 11:26 1,1-Dichloroethane ND H 250 1 08/23/2017 11:26 1,2-Dichloroethane (1,2-DCA) ND H 250 1 08/23/2017 11:26 1,1-Dichloroethane (1,2-DCA) ND H 250 1 08/23/2017 11:26 1,1-Dichloroethane (1,2-DCA) ND H 250 1 08/23/2017 11:26 1,1-Dichloroethane (1,2-DCA) ND H 250 1 08/23/2017 11:26 cis-1,2-Dichloroethane (1,2-DCA) ND H 250 1 08/23/2017 11:26 cis-1,2-Dichloropthane (1,2-DCA) ND H 250 1 08/23/2017 11:26 trans-1,2-Dichloropropane (1,2-Dichloropthane (1,2-DCA) ND H 250 1 08/23/2017 11:26 2,2-Dichloropropane (1,2-DCA) ND	Dibromomethane	ND	Н	250	1	08/23/2017 11:26
1,4-Dichlorobenzene ND H 250 1 08/23/2017 11:26 Dichlorodifluoromethane ND H 250 1 08/23/2017 11:26 1,1-Dichloroethane ND H 250 1 08/23/2017 11:26 1,2-Dichloroethane (1,2-DCA) ND H 250 1 08/23/2017 11:26 1,1-Dichloroethene ND H 250 1 08/23/2017 11:26 cis-1,2-Dichloroethene ND H 250 1 08/23/2017 11:26 trans-1,2-Dichloroethene ND H 250 1 08/23/2017 11:26 1,2-Dichloropropane ND H 250 1 08/23/2017 11:26 1,3-Dichloropropane ND H 250 1 08/23/2017 11:26 2,2-Dichloropropane ND H 250 1 08/23/2017 11:26 2,2-Dichloropropene ND H 250 1 08/23/2017 11:26 cis-1,3-Dichloropropene ND H 250 1 08/23/2017 11:26	1,2-Dichlorobenzene	ND	Н	250	1	08/23/2017 11:26
Dichlorodiffluoromethane ND H 250 1 08/23/2017 11:26 1,1-Dichloroethane ND H 250 1 08/23/2017 11:26 1,2-Dichloroethane (1,2-DCA) ND H 250 1 08/23/2017 11:26 1,1-Dichloroethane (1,2-DCA) ND H 250 1 08/23/2017 11:26 cis-1,2-Dichloroethane ND H 250 1 08/23/2017 11:26 trans-1,2-Dichloroethane ND H 250 1 08/23/2017 11:26 1,2-Dichloropropane ND H 250 1 08/23/2017 11:26 1,3-Dichloropropane ND H 250 1 08/23/2017 11:26 2,2-Dichloropropane ND H 250 1 08/23/2017 11:26 1,1-Dichloropropane ND H 250 1 08/23/2017 11:26 cis-1,3-Dichloropropene ND H 250 1 08/23/2017 11:26 trans-1,3-Dichloropropene ND H 250 1 08/23/20	1,3-Dichlorobenzene	ND	Н	250	1	08/23/2017 11:26
1,1-Dichloroethane ND H 250 1 08/23/2017 11:26 1,2-Dichloroethane (1,2-DCA) ND H 250 1 08/23/2017 11:26 1,1-Dichloroethane (1,2-DCA) ND H 250 1 08/23/2017 11:26 1,1-Dichloroethane ND H 250 1 08/23/2017 11:26 1,2-Dichloroethane ND H 250 1 08/23/2017 11:26 1,2-Dichloroptopane ND H 250 1 08/23/2017 11:26 1,3-Dichloropropane ND H 250 1 08/23/2017 11:26 2,2-Dichloropropane ND H 250 1 08/23/2017 11:26 2,2-Dichloropropane ND H 250 1 08/23/2017 11:26 1,1-Dichloropropane ND H 250 1 08/23/2017 11:26 cis-1,3-Dichloropropene ND H 250 1 08/23/2017 11:26 trans-1,3-Dichloropropene ND H 250 1 08/23/2017 11:26	1,4-Dichlorobenzene	ND	Н	250	1	08/23/2017 11:26
1,2-Dichloroethane (1,2-DCA) ND H 250 1 08/23/2017 11:26 1,1-Dichloroethene ND H 250 1 08/23/2017 11:26 cis-1,2-Dichloroethene ND H 250 1 08/23/2017 11:26 trans-1,2-Dichloroethene ND H 250 1 08/23/2017 11:26 1,2-Dichloropropane ND H 250 1 08/23/2017 11:26 1,3-Dichloropropane ND H 250 1 08/23/2017 11:26 2,2-Dichloropropane ND H 250 1 08/23/2017 11:26 2,2-Dichloropropene ND H 250 1 08/23/2017 11:26 1,1-Dichloropropene ND H 250 1 08/23/2017 11:26 cis-1,3-Dichloropropene ND H 250 1 08/23/2017 11:26 trans-1,3-Dichloropropene ND H 250 1 08/23/2017 11:26 Freon 113 ND H 500 1 08/23/2017 11:26	Dichlorodifluoromethane	ND	Н	250	1	08/23/2017 11:26
1,1-Dichloroethene ND H 250 1 08/23/2017 11:26 cis-1,2-Dichloroethene ND H 250 1 08/23/2017 11:26 trans-1,2-Dichloroethene ND H 250 1 08/23/2017 11:26 1,2-Dichloropropane ND H 250 1 08/23/2017 11:26 1,3-Dichloropropane ND H 250 1 08/23/2017 11:26 2,2-Dichloropropane ND H 250 1 08/23/2017 11:26 1,1-Dichloropropene ND H 250 1 08/23/2017 11:26 cis-1,3-Dichloropropene ND H 250 1 08/23/2017 11:26 trans-1,3-Dichloropropene ND H 250 1 08/23/2017 11:26 Freon 113 ND H 5000 1 08/23/2017 11:26 Hexachlorobutadiene ND H 250 1 08/23/2017 11:26 Methylene chloride ND H 250 1 08/23/2017 11:26	1,1-Dichloroethane	ND	Н	250	1	08/23/2017 11:26
cis-1,2-Dichloroethene ND H 250 1 08/23/2017 11:26 trans-1,2-Dichloroethene ND H 250 1 08/23/2017 11:26 1,2-Dichloropropane ND H 250 1 08/23/2017 11:26 1,3-Dichloropropane ND H 250 1 08/23/2017 11:26 2,2-Dichloropropane ND H 250 1 08/23/2017 11:26 1,1-Dichloropropane ND H 250 1 08/23/2017 11:26 cis-1,3-Dichloropropene ND H 250 1 08/23/2017 11:26 cis-1,3-Dichloropropene ND H 250 1 08/23/2017 11:26 freon 113 ND H 5000 1 08/23/2017 11:26 Hexachlorobutadiene ND H 250 1 08/23/2017 11:26 Methylene chloride ND H 250 1 08/23/2017 11:26 1,1,1,2-Tetrachloroethane ND H 250 1 08/23/2017 11:26 <td>1,2-Dichloroethane (1,2-DCA)</td> <td>ND</td> <td>Н</td> <td>250</td> <td>1</td> <td>08/23/2017 11:26</td>	1,2-Dichloroethane (1,2-DCA)	ND	Н	250	1	08/23/2017 11:26
trans-1,2-Dichloroethene ND H 250 1 08/23/2017 11:26 1,2-Dichloropropane ND H 250 1 08/23/2017 11:26 1,3-Dichloropropane ND H 250 1 08/23/2017 11:26 2,2-Dichloropropane ND H 250 1 08/23/2017 11:26 1,1-Dichloropropene ND H 250 1 08/23/2017 11:26 cis-1,3-Dichloropropene ND H 250 1 08/23/2017 11:26 trans-1,3-Dichloropropene ND H 250 1 08/23/2017 11:26 Freon 113 ND H 5000 1 08/23/2017 11:26 Hexachlorobutadiene ND H 250 1 08/23/2017 11:26 Hexachloroethane ND H 250 1 08/23/2017 11:26 Methylene chloride ND H 250 1 08/23/2017 11:26 1,1,1,2-Tetrachloroethane ND H 250 1 08/23/2017 11:26	1,1-Dichloroethene	ND	Н	250	1	08/23/2017 11:26
1,2-Dichloropropane ND H 250 1 08/23/2017 11:26 1,3-Dichloropropane ND H 250 1 08/23/2017 11:26 2,2-Dichloropropane ND H 250 1 08/23/2017 11:26 1,1-Dichloropropene ND H 250 1 08/23/2017 11:26 cis-1,3-Dichloropropene ND H 250 1 08/23/2017 11:26 trans-1,3-Dichloropropene ND H 250 1 08/23/2017 11:26 Freon 113 ND H 5000 1 08/23/2017 11:26 Hexachlorobutadiene ND H 250 1 08/23/2017 11:26 Methylene chloride ND H 250 1 08/23/2017 11:26 1,1,1,2-Tetrachloroethane ND H 250 1 08/23/2017 11:26	cis-1,2-Dichloroethene	ND	Н	250	1	08/23/2017 11:26
1,3-Dichloropropane ND H 250 1 08/23/2017 11:26 2,2-Dichloropropane ND H 250 1 08/23/2017 11:26 1,1-Dichloropropene ND H 250 1 08/23/2017 11:26 cis-1,3-Dichloropropene ND H 250 1 08/23/2017 11:26 trans-1,3-Dichloropropene ND H 250 1 08/23/2017 11:26 Freon 113 ND H 5000 1 08/23/2017 11:26 Hexachlorobutadiene ND H 250 1 08/23/2017 11:26 Hexachloroethane ND H 250 1 08/23/2017 11:26 Methylene chloride ND H 250 1 08/23/2017 11:26 1,1,1,2-Tetrachloroethane ND H 250 1 08/23/2017 11:26	trans-1,2-Dichloroethene	ND	Н	250	1	08/23/2017 11:26
2,2-Dichloropropane ND H 250 1 08/23/2017 11:26 1,1-Dichloropropene ND H 250 1 08/23/2017 11:26 cis-1,3-Dichloropropene ND H 250 1 08/23/2017 11:26 trans-1,3-Dichloropropene ND H 250 1 08/23/2017 11:26 Freon 113 ND H 5000 1 08/23/2017 11:26 Hexachlorobutadiene ND H 250 1 08/23/2017 11:26 Hexachloroethane ND H 250 1 08/23/2017 11:26 Methylene chloride ND H 250 1 08/23/2017 11:26 1,1,1,2-Tetrachloroethane ND H 250 1 08/23/2017 11:26	1,2-Dichloropropane	ND	Н	250	1	08/23/2017 11:26
1,1-Dichloropropene ND H 250 1 08/23/2017 11:26 cis-1,3-Dichloropropene ND H 250 1 08/23/2017 11:26 trans-1,3-Dichloropropene ND H 250 1 08/23/2017 11:26 Freon 113 ND H 5000 1 08/23/2017 11:26 Hexachlorobutadiene ND H 250 1 08/23/2017 11:26 Hexachloroethane ND H 250 1 08/23/2017 11:26 Methylene chloride ND H 250 1 08/23/2017 11:26 1,1,1,2-Tetrachloroethane ND H 250 1 08/23/2017 11:26	1,3-Dichloropropane	ND	Н	250	1	08/23/2017 11:26
cis-1,3-Dichloropropene ND H 250 1 08/23/2017 11:26 trans-1,3-Dichloropropene ND H 250 1 08/23/2017 11:26 Freon 113 ND H 5000 1 08/23/2017 11:26 Hexachlorobutadiene ND H 250 1 08/23/2017 11:26 Hexachloroethane ND H 250 1 08/23/2017 11:26 Methylene chloride ND H 250 1 08/23/2017 11:26 1,1,1,2-Tetrachloroethane ND H 250 1 08/23/2017 11:26	2,2-Dichloropropane	ND	Н	250	1	08/23/2017 11:26
trans-1,3-Dichloropropene ND H 250 1 08/23/2017 11:26 Freon 113 ND H 5000 1 08/23/2017 11:26 Hexachlorobutadiene ND H 250 1 08/23/2017 11:26 Hexachloroethane ND H 250 1 08/23/2017 11:26 Methylene chloride ND H 250 1 08/23/2017 11:26 1,1,1,2-Tetrachloroethane ND H 250 1 08/23/2017 11:26	1,1-Dichloropropene	ND	Н	250	1	08/23/2017 11:26
Freon 113 ND H 5000 1 08/23/2017 11:26 Hexachlorobutadiene ND H 250 1 08/23/2017 11:26 Hexachloroethane ND H 250 1 08/23/2017 11:26 Methylene chloride ND H 250 1 08/23/2017 11:26 1,1,1,2-Tetrachloroethane ND H 250 1 08/23/2017 11:26	cis-1,3-Dichloropropene	ND	Н	250	1	08/23/2017 11:26
Hexachlorobutadiene ND H 250 1 08/23/2017 11:26 Hexachloroethane ND H 250 1 08/23/2017 11:26 Methylene chloride ND H 250 1 08/23/2017 11:26 1,1,1,2-Tetrachloroethane ND H 250 1 08/23/2017 11:26	trans-1,3-Dichloropropene	ND	Н	250	1	08/23/2017 11:26
Hexachloroethane ND H 250 1 08/23/2017 11:26 Methylene chloride ND H 250 1 08/23/2017 11:26 1,1,1,2-Tetrachloroethane ND H 250 1 08/23/2017 11:26	Freon 113	ND	Н	5000	1	08/23/2017 11:26
Methylene chloride ND H 250 1 08/23/2017 11:26 1,1,1,2-Tetrachloroethane ND H 250 1 08/23/2017 11:26	Hexachlorobutadiene	ND	Н	250	1	08/23/2017 11:26
1,1,1,2-Tetrachloroethane ND H 250 1 08/23/2017 11:26	Hexachloroethane	ND	Н	250	1	08/23/2017 11:26
	Methylene chloride	ND	Н	250	1	08/23/2017 11:26
1,1,2,2-Tetrachloroethane ND H 250 1 08/23/2017 11:26	1,1,1,2-Tetrachloroethane	ND	Н	250	1	08/23/2017 11:26
	1,1,2,2-Tetrachloroethane	ND	Н	250	1	08/23/2017 11:26

(Cont.)

Analytical Report

Client: Pangea Environmental Svcs., Inc.

Date Received: 8/21/17 19:25

Date Prepared: 8/23/17

Project: 1208 Lincoln; Elegant Cleaners

WorkOrder: 1708945

Extraction Method: SW5030B

Analytical Method: SW8260B

Unit: $\mu g/m^3$

Volatile Organics by P&T and GC/MS (Basic Target List)

Client ID	Lab ID	Matrix	Date Co	ollected Instrument	Batch ID
SVE-1	1708945-001	A Air	08/21/20	17 14:50 GC38	144314
<u>Analytes</u>	Result	<u>Qualifiers</u>	<u>RL</u>	<u>DF</u>	Date Analyzed
Tetrachloroethene	1700	Н	250	1	08/23/2017 11:26
1,2,3-Trichlorobenzene	ND	Н	250	1	08/23/2017 11:26
1,2,4-Trichlorobenzene	ND	Н	250	1	08/23/2017 11:26
1,1,1-Trichloroethane	ND	Н	250	1	08/23/2017 11:26
1,1,2-Trichloroethane	ND	Н	250	1	08/23/2017 11:26
Trichloroethene	ND	Н	250	1	08/23/2017 11:26
Trichlorofluoromethane	ND	Н	250	1	08/23/2017 11:26
1,2,3-Trichloropropane	ND	Н	250	1	08/23/2017 11:26
Vinyl Chloride	ND	Н	250	1	08/23/2017 11:26
<u>Surrogates</u>	<u>REC (%)</u>	<u>Qualifiers</u>	<u>Limits</u>		
Dibromofluoromethane	119	Н	70-130		08/23/2017 11:26
Toluene-d8	111	Н	70-130		08/23/2017 11:26
4-BFB	96	Н	70-130		08/23/2017 11:26
Analyst(s): HK					

Analytical Report

Client: Pangea Environmental Svcs., Inc.

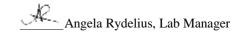
Date Received: 8/21/17 19:25

Date Prepared: 8/23/17

Project: 1208 Lincoln; Elegant Cleaners

WorkOrder: 1708945

Extraction Method: SW5030B


Analytical Method: SW8260B

Unit: $\mu g/m^3$

Volatile Organics by P&T and GC/MS (Basic Target List)

Client ID	Lab ID	Matrix	Date Collect	ed Instrument	Batch ID
SVE-2	1708945-002A	Air	08/21/2017 15	30 GC38	144314
<u>Analytes</u>	Result	<u>Qualifiers</u>	<u>RL</u> <u>DF</u>		Date Analyzed
Bromobenzene	ND	Н	250 1		08/23/2017 12:08
Bromochloromethane	ND	Н	250 1		08/23/2017 12:08
Bromodichloromethane	ND	Н	250 1		08/23/2017 12:08
Bromoform	ND	Н	250 1		08/23/2017 12:08
Bromomethane	ND	Н	250 1		08/23/2017 12:08
Carbon Tetrachloride	ND	Н	250 1		08/23/2017 12:08
Chlorobenzene	ND	Н	250 1		08/23/2017 12:08
Chloroethane	ND	Н	250 1		08/23/2017 12:08
Chloroform	ND	Н	250 1		08/23/2017 12:08
Chloromethane	ND	Н	250 1		08/23/2017 12:08
2-Chlorotoluene	ND	Н	250 1		08/23/2017 12:08
4-Chlorotoluene	ND	Н	250 1		08/23/2017 12:08
Dibromochloromethane	ND	Н	250 1		08/23/2017 12:08
1,2-Dibromo-3-chloropropane	ND	Н	250 1		08/23/2017 12:08
1,2-Dibromoethane (EDB)	ND	Н	250 1		08/23/2017 12:08
Dibromomethane	ND	Н	250 1		08/23/2017 12:08
1,2-Dichlorobenzene	ND	Н	250 1		08/23/2017 12:08
1,3-Dichlorobenzene	ND	Н	250 1		08/23/2017 12:08
1,4-Dichlorobenzene	ND	Н	250 1		08/23/2017 12:08
Dichlorodifluoromethane	ND	Н	250 1		08/23/2017 12:08
1,1-Dichloroethane	ND	Н	250 1		08/23/2017 12:08
1,2-Dichloroethane (1,2-DCA)	ND	Н	250 1		08/23/2017 12:08
1,1-Dichloroethene	ND	Н	250 1		08/23/2017 12:08
cis-1,2-Dichloroethene	ND	Н	250 1		08/23/2017 12:08
trans-1,2-Dichloroethene	ND	Н	250 1		08/23/2017 12:08
1,2-Dichloropropane	ND	Н	250 1		08/23/2017 12:08
1,3-Dichloropropane	ND	Н	250 1		08/23/2017 12:08
2,2-Dichloropropane	ND	Н	250 1		08/23/2017 12:08
1,1-Dichloropropene	ND	Н	250 1		08/23/2017 12:08
cis-1,3-Dichloropropene	ND	Н	250 1		08/23/2017 12:08
trans-1,3-Dichloropropene	ND	Н	250 1		08/23/2017 12:08
Freon 113	ND	Н	5000 1		08/23/2017 12:08
Hexachlorobutadiene	ND	Н	250 1		08/23/2017 12:08
Hexachloroethane	ND	Н	250 1		08/23/2017 12:08
Methylene chloride	ND	Н	250 1		08/23/2017 12:08
1,1,1,2-Tetrachloroethane	ND	Н	250 1		08/23/2017 12:08
1,1,2,2-Tetrachloroethane	ND	Н	250 1		08/23/2017 12:08

(Cont.)

Analytical Report

Client: Pangea Environmental Svcs., Inc.

Date Received: 8/21/17 19:25

Date Prepared: 8/23/17

Project: 1208 Lincoln; Elegant Cleaners

WorkOrder: 1708945

Extraction Method: SW5030B

Analytical Method: SW8260B

Unit: $\mu g/m^3$

Volatile	Organics l	by P&T and G	C/MS (Basic Targ	get List)
	Lab ID	Matrix	Date Collected	Instrumer

Client ID	Lab ID	Matrix	Date (Collected Instrument	Batch ID
SVE-2	1708945-002	A Air	08/21/2017 15:30 GC38		144314
<u>Analytes</u>	Result	Qualifiers	<u>RL</u>	<u>DF</u>	Date Analyzed
Tetrachloroethene	6000	Н	250	1	08/23/2017 12:08
1,2,3-Trichlorobenzene	ND	Н	250	1	08/23/2017 12:08
1,2,4-Trichlorobenzene	ND	Н	250	1	08/23/2017 12:08
1,1,1-Trichloroethane	ND	Н	250	1	08/23/2017 12:08
1,1,2-Trichloroethane	ND	Н	250	1	08/23/2017 12:08
Trichloroethene	ND	Н	250	1	08/23/2017 12:08
Trichlorofluoromethane	ND	Н	250	1	08/23/2017 12:08
1,2,3-Trichloropropane	ND	Н	250	1	08/23/2017 12:08
Vinyl Chloride	ND	Н	250	1	08/23/2017 12:08
<u>Surrogates</u>	<u>REC (%)</u>	<u>Qualifiers</u>	<u>Limits</u>		
Dibromofluoromethane	118	Н	70-130		08/23/2017 12:08
Toluene-d8	111	Н	70-130		08/23/2017 12:08
4-BFB	96	Н	70-130		08/23/2017 12:08
Analyst(s): HK					

1208 Lincoln; Elegant Cleaners

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

MB/LCS/LCSD-144314

Quality Control Report

Client:Pangea Environmental Svcs., Inc.WorkOrder:1708945Date Prepared:8/23/17BatchID:144314Date Analyzed:8/23/17Extraction Method:SW5030BInstrument:GC38Analytical Method:SW8260B

 $\textbf{Matrix:} \qquad \text{Air} \qquad \qquad \textbf{Unit:} \qquad \qquad \mu g/m^3$

QC Summary Report for SW8260B

Sample ID:

Analyte	MB Result	RL	SPK Val	MB SS %REC	MB SS Limits
Bromobenzene	ND	250	-	_	-
Bromochloromethane	ND	250	-	-	-
Bromodichloromethane	ND	250	-	-	=
Bromoform	ND	250	-	-	=
Bromomethane	ND	250	-	-	=
Carbon Tetrachloride	ND	250	-	-	=
Chlorobenzene	ND	250	-	-	-
Chloroethane	ND	250	-	-	=
Chloroform	ND	250	-	-	-
Chloromethane	ND	250	-	-	-
2-Chlorotoluene	ND	250	=	-	-
4-Chlorotoluene	ND	250	-	-	-
Dibromochloromethane	ND	250	-	-	-
1,2-Dibromo-3-chloropropane	ND	250	-	-	-
1,2-Dibromoethane (EDB)	ND	250	-	-	-
Dibromomethane	ND	250	=	-	-
1,2-Dichlorobenzene	ND	250	=	-	-
1,3-Dichlorobenzene	ND	250	-	-	-
1,4-Dichlorobenzene	ND	250	-	-	-
Dichlorodifluoromethane	ND	250	-	-	-
1,1-Dichloroethane	ND	250	-	-	-
1,2-Dichloroethane (1,2-DCA)	ND	250	-	-	-
1,1-Dichloroethene	ND	250	-	-	-
cis-1,2-Dichloroethene	ND	250	-	-	-
trans-1,2-Dichloroethene	ND	250	-	-	-
1,2-Dichloropropane	ND	250	-	-	-
1,3-Dichloropropane	ND	250	-	-	-
2,2-Dichloropropane	ND	250	-	-	-
1,1-Dichloropropene	ND	250	-	-	-
cis-1,3-Dichloropropene	ND	250	-	-	-
trans-1,3-Dichloropropene	ND	250	-	-	-
Freon 113	ND	5000	-	-	-
Hexachlorobutadiene	ND	250	-	-	-
Hexachloroethane	ND	250	-	-	-
Methylene chloride	ND	250	-	-	-
1,1,1,2-Tetrachloroethane	ND	250	-	-	-
1,1,2,2-Tetrachloroethane	ND	250	-	-	-
Tetrachloroethene	ND	250	-	-	-
1,2,3-Trichlorobenzene	ND	250	-	-	-

(Cont.)

Project:

Quality Control Report

Client:Pangea Environmental Svcs., Inc.WorkOrder:1708945Date Prepared:8/23/17BatchID:144314Date Analyzed:8/23/17Extraction Method:SW5030BInstrument:GC38Analytical Method:SW8260B

QC Summary Report for SW8260B

Analyte	MB Result	RL	SPK Val	MB SS %REC	MB SS Limits
			7 4.	701120	
1,2,4-Trichlorobenzene	ND	250	-	-	-
1,1,1-Trichloroethane	ND	250	-	-	-
1,1,2-Trichloroethane	ND	250	-	-	-
Trichloroethene	ND	250	-	-	-
Trichlorofluoromethane	ND	250	-	=	-
1,2,3-Trichloropropane	ND	250	-	=	-
Vinyl Chloride	ND	250	-	-	-
Surrogate Recovery					
Dibromofluoromethane	14650		12500	117	70-130
Toluene-d8	13780		12500	110	70-130
4-BFB	1244		1250	99	70-130

Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit	
Chlorobenzene	4280	4280	5000	86	86	69-112	0	30	
1,2-Dibromoethane (EDB)	4320	4380	5000	86	88	62-117	1.41	30	
1,2-Dichloroethane (1,2-DCA)	4280	4300	5000	86	86	61-126	0	30	
1,1-Dichloroethene	5330	5320	5000	107	106	67-122	0.215	30	
Trichloroethene	4660	4650	5000	93	93	66-127	0	30	
Surrogate Recovery									
Dibromofluoromethane	14,900	15,000	12500	119	120	83-124	0.770	30	
Toluene-d8	13,700	13,700	12500	109	110	80-120	0.529	30	
4-BFB	1380	1410	1250	111	113	70-129	1.75	30	

1534 Willow Pass Rd (925) 252-9262

CHAIN-OF-CUSTODY RECORD WorkOrder: 1708945 ClientCode: PEO

uge	1	OI	

Pittsburg, CA 94565-1701

□WaterTrax ☐ WriteOn ✓ EDF

mgillies@pangeaenv.com

Excel **EQuIS** Detection Summary

✓ Email ☐ HardCopy

Dry-Weight

☐ ThirdParty

□ J-flag

5 days:

Report to:

Morgan Gillies Pangea Environmental Svcs., Inc.

1710 Franklin Street, Ste. 200 Oakland, CA 94612

(510) 836-3700

FAX: (510) 836-3709

Email:

PO:

cc/3rd Party:

ProjectNo: Elegant Cleaners

Bill to:

Bob Clark-Riddell

Pangea Environmental Svcs., Inc. 1710 Franklin Street, Ste. 200

Oakland, CA 94612

Date Received:

Requested TAT:

08/21/2017

Date Logged: 08/21/2017

					Requested Tests (See legend below)											
Lab ID	Client ID	Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
1708945-001	SVE-1	Air	8/21/2017 14:50		Α	Α										
1708945-002	SVE-2	Air	8/21/2017 15:30		Α											

Test Legend:

1	8010_A(UG/M3)
5	
9	

2	PREDF REPORT
6	
10	

3	
7	
11	

4	
8	
12	

Prepared by: Tina Perez

The following SampIDs: 001A, 002A contain testgroup 8010BMS_A.

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

WORK ORDER SUMMARY

Client Name:	PANGEA ENVIRONMENTAL SVCS., INC.	Project:	1208 Lincoln; Elegant Cleaners	Work Order: 1708945
--------------	----------------------------------	----------	--------------------------------	----------------------------

Client Contact: Morgan Gillies

QC Level: LEVEL 2

Contact's Email: mgillies@pangeaenv.com

Comments:

Date Logged: 8/21/2017

		WaterTrax	WriteOn	✓ EDF	Excel]Fax ☑ Email	HardC	opyThirdPart	у 🗀	J-flag
Lab ID	Client ID	Matrix	Test Name		Containers /Composites	Bottle & Preservative	De- chlorinated	Collection Date & Time	TAT	Sediment Hold SubOut Content
1708945-001A	SVE-1	Air	HVOCs by GC	CMS	1	Tedlar		8/21/2017 14:50	5 days	
1708945-002A	SVE-2	Air	HVOCs by GC	CMS	1	Tedlar		8/21/2017 15:30	5 days	

NOTES: - STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- MAI assumes that all material present in the provided sampling container is considered part of the sample - MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

мcCA	MPB	ELL	ANA	LYTICAL	L, INC.						CH	AIN	OF (CUS	rod	ΥR	ECO	RD			
	534 Willo	w Pass R	d. Pittsbu	erg, Ca. 94565-170	1	Turn A	Around	Time	:1 Day	Rush		2 Day	Rush		3 Day	Rush	h STD Quote #				
	Celephone:	(877) 25	2-9262 /]	Fax: (925) 252-926	9	J-Flag / MDL ESL			ESL	Cleanup Appro			roved		Bottle Order #						
www.mcc	www.mccampbell.com main@mccampbell.com							mat:	PDF		GeoTracker EDF			X	EDD		Write On (DW)		I	QuIS	
Report To: Morgan Gi	Ilies		Bill To:	Pangea					Ar	ıalysi	s Re	quest	ed				Helium	Shroud	SN#		
Company: Pangea E		545.							ĵ,	ję,		<u>.</u>								k Default is	
Email: mai lier@ pangea env.com									e, CC	thyler		(circ		_			Notes: Please specify units if different th			_	
Alt Email:	4	3 ****	Tele:	510-836	3700	otes			ehyd	ne, E		attc		le, 1,1			defaul			ported in µg/	m', fixed
Project Name: Elegant	Chear	ve vs	Project#:			See N			mald	, Eths		Aron		loran			is repe	orieu i	11 /0.		
Project Location: 1208 L			PO#			n³) - (u	(m)		, For	thane (O) %	%	d/or	% %	Nort							
Sampler Signature:						VOCs TO-15 (μg/m³) - See Notes	8010 by TO-15 (µg/m³)	ر	LEED: (inc. 4PCH, Formaldehyde, CO, Total VOCs)	Fixed Gas (CO _{2,} Methane, Ethane, Ethylene, Acetylene, Propane, CO) %	Fixed Gas: (O ₂ , N ₂) %	APH: Aliphatic and/or Aromatic (circle one) µg/m³	Helium Leak Check %	Leak Check (IPA, Norflorane, 1,1- difluroethane) µg/m³	0			Matrix		Can	ister
a a	Sampli	ng Start	End		Sample Kit /	0-15		ГРН(g) (µg/m³)) S (5)	Is (C) :s	ighar Tappar	Ceak	eck (10		as	Air		Pressure	Vacuum
SAMPLE ID Location / Field Point				Canister SN#	Manifold #	ري آ	À	H(g) (ED: (ed G	Ğ	H: Al	ium)	ık Ch uroel	Š		Soilgas	Indoor Air	l	Initial	Final
Location / Total one	Date	Time	Time			?	801	TPI	LE	Fix	Fix	A P	He	din				11		IIIIIIai	1 IIIai
SVE-) 8	.21.17	1450		Tedlar	_										X		X				
SVE- Z 8	121.17	1230		Tedlar											X	_	X				
								 													
	}						-	_	-	ļ											
	-							-	_	<u> </u>							┝				
		_					<u></u>														
												t									
	-					┢	-		-	-							╁┈╴		H		
				I			<u> </u>	<u> </u>						<u> </u>	<u> </u>	<u> </u>	1	<u> </u>		1- 1- 1	ima hu 2441
**MAI clients MUST disclose any dangerou	s chemicals k sclosure incu	nown to be rs an immed	present in ti liate \$250 s	heir submitted samples urcharge and the client	in concentrations that is subject to full legal !	may ca≀ liabilit∕	for ha	nediate m suffe	harm or red. Th	r scriou ıank you	s futur 1 for yo	e health our unde	endang rstandi	germent ing and	t as a re for allo	sult of wing u	brief, g	iovea, c rk safel	open air, y.	sample nand	ing by MAI
						- ()	-	+	/				_							
Relinquished By / Co	mpany Nam	ie		Date	Time	T^{\dagger}	/R	edeive	d By/	Cophpa	ny Na	me		D	ate	Т	ime		Comr	nents / Instri	actions
1000 LD 1975							K	7		<i>/</i>	<u> </u>			5 PC	117	10	129	}			
-	- !				,	I	14,	77	7	1	\mathcal{T}										
		-				17		$\overline{}$	T												
	• • • • • • • • • • • • • • • • • • • •					Γ,	\bigcirc		J												

Page _ of _

Sample Receipt Checklist

Client Name: Project Name:	Pangea Environmental Svcs., Inc. Elegant Cleaners			Date and Time Received Date Logged: Received by:	8/21/2017 19:25 8/21/2017 Tina Perez
WorkOrder №: Carrier:	1708945 Matrix: <u>Air</u> <u>Client Drop-In</u>			Logged by:	Tina Perez
	Chain of C	ustody	(COC) Infor	mation	
Chain of custody	present?	Yes	•	No 🗆	
Chain of custody	signed when relinquished and received?	Yes	•	No 🗆	
Chain of custody	agrees with sample labels?	Yes	•	No 🗌	
Sample IDs noted	d by Client on COC?	Yes	•	No 🗆	
Date and Time of	collection noted by Client on COC?	Yes	•	No 🗆	
Sampler's name i	noted on COC?	Yes	✓	No 🗆	
	Sample	e Rece	ipt Informati	<u>ion</u>	
Custody seals into	act on shipping container/cooler?	Yes		No 🗆	NA 🗹
Shipping contained	er/cooler in good condition?	Yes	✓	No 🗆	
Samples in prope	er containers/bottles?	Yes	✓	No 🗆	
Sample container	rs intact?	Yes	✓	No 🗆	
Sufficient sample	volume for indicated test?	Yes	✓	No 🗌	
	Sample Preservation	on and	Hold Time (HT) Information	
All samples recei	ved within holding time?	Yes		No 🗹	NA \square
Sample/Temp Bla	ank temperature		Temp:		NA 🗹
Water - VOA vials	s have zero headspace / no bubbles?	Yes		No 🗌	NA 🗹
Sample labels ch	ecked for correct preservation?	Yes	✓	No 🗌	
pH acceptable up	oon receipt (Metal: <2; 522: <4; 218.7: >8)?	Yes		No 🗌	NA 🗹
Samples Receive	ed on Ice?	Yes		No 🗹	
UCMR Samples:			_	_	_
Total Chlorine t	ested and acceptable upon receipt for EPA 522?	Yes		No 🗌	NA 🗹
Free Chlorine to 300.1, 537, 539	ested and acceptable upon receipt for EPA 218.7, 3?	Yes		No 🗌	NA 🗹

Comments: Method SW8260B (HVOCs List) was received past its 0.25-day holding time.

"When Quality Counts"

Analytical Report

WorkOrder: 1708C91

Report Created for: Pangea Environmental Svcs., Inc.

1710 Franklin Street, Ste. 200

Oakland, CA 94612

Project Contact:

Morgan Gillies

Project P.O.:

Project Name: Elegant Cleaners

Project Received: 08/25/2017

Analytical Report reviewed & approved for release on 08/31/2017 by:

Angela Rydelius,

Laboratory Manager

The report shall not be reproduced except in full, without the written approval of the laboratory. The analytical results relate only to the items tested. Results reported conform to the most current NELAP standards, where applicable, unless otherwise stated in the case narrative.

1534 Willow Pass Rd. Pittsburg, CA 94565 ♦ TEL: (877) 252-9262 ♦ FAX: (925) 252-9269 ♦ www.mccampbell.com

CA ELAP 1644 ♦ NELAP 4033ORELAP

Glossary of Terms & Qualifier Definitions

Client: Pangea Environmental Svcs., Inc.

Project: Elegant Cleaners

WorkOrder: 1708C91

Glossary Abbreviation

%D Serial Dilution Percent Difference

95% Interval 95% Confident Interval

DF Dilution Factor

DI WET (DISTLC) Waste Extraction Test using DI water

DISS Dissolved (direct analysis of 0.45 µm filtered and acidified water sample)

DLT Dilution Test (Serial Dilution)

DUP Duplicate

EDL Estimated Detection Limit

ERS External reference sample. Second source calibration verification.

ITEF International Toxicity Equivalence Factor

LCS Laboratory Control Sample

MB Method Blank

MB % Rec % Recovery of Surrogate in Method Blank, if applicable

MDL Method Detection Limit

ML Minimum Level of Quantitation

MS Matrix Spike

MSD Matrix Spike Duplicate

N/A Not Applicable

ND Not detected at or above the indicated MDL or RL

NR Data Not Reported due to matrix interference or insufficient sample amount.

PDS Post Digestion Spike

PDSD Post Digestion Spike Duplicate

PF Prep Factor

RD Relative Difference

RL Reporting Limit (The RL is the lowest calibration standard in a multipoint calibration.)

RPD Relative Percent Deviation
RRT Relative Retention Time

SPK Val Spike Value

SPKRef Val Spike Reference Value

SPLP Synthetic Precipitation Leachate Procedure

ST Sorbent Tube

TCLP Toxicity Characteristic Leachate Procedure

TEQ Toxicity Equivalents

WET (STLC) Waste Extraction Test (Soluble Threshold Limit Concentration)

Analytical Qualifiers

H Samples were analyzed out of holding time

Analytical Report

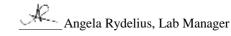
Client: Pangea Environmental Svcs., Inc.

Date Received: 8/25/17 18:30

Date Prepared: 8/28/17

Project: Elegant Cleaners

WorkOrder: 1708C91 Extraction Method SW5030B


Analytical Method: SW8260B

Unit: $\mu g/m^3$

Volatile Organics by P&T and GC/MS (Basic Target List)

Client ID	Lab ID	Matrix	Date C	collected	Instrument	Batch ID
SVE-1	1708C91-001A	Air	08/25/20	017 15:30	GC38	144558
Analytes	Result	<u>Qualifiers</u>	<u>RL</u>	<u>DF</u>		Date Analyzed
Bromobenzene	ND	Н	250	1		08/28/2017 12:51
Bromochloromethane	ND	Н	250	1		08/28/2017 12:51
Bromodichloromethane	ND	Н	250	1		08/28/2017 12:51
Bromoform	ND	Н	250	1		08/28/2017 12:51
Bromomethane	ND	Н	250	1		08/28/2017 12:51
Carbon Tetrachloride	ND	Н	250	1		08/28/2017 12:51
Chlorobenzene	ND	Н	250	1		08/28/2017 12:51
Chloroethane	ND	Н	250	1		08/28/2017 12:51
Chloroform	ND	Н	250	1		08/28/2017 12:51
Chloromethane	ND	Н	250	1		08/28/2017 12:51
2-Chlorotoluene	ND	Н	250	1		08/28/2017 12:51
4-Chlorotoluene	ND	Н	250	1		08/28/2017 12:51
Dibromochloromethane	ND	Н	250	1		08/28/2017 12:51
1,2-Dibromo-3-chloropropane	ND	Н	250	1		08/28/2017 12:51
1,2-Dibromoethane (EDB)	ND	Н	250	1		08/28/2017 12:51
Dibromomethane	ND	Н	250	1		08/28/2017 12:51
1,2-Dichlorobenzene	ND	Н	250	1		08/28/2017 12:51
1,3-Dichlorobenzene	ND	Н	250	1		08/28/2017 12:51
1,4-Dichlorobenzene	ND	Н	250	1		08/28/2017 12:51
Dichlorodifluoromethane	ND	Н	250	1		08/28/2017 12:51
1,1-Dichloroethane	ND	Н	250	1		08/28/2017 12:51
1,2-Dichloroethane (1,2-DCA)	ND	Н	250	1		08/28/2017 12:51
1,1-Dichloroethene	ND	Н	250	1		08/28/2017 12:51
cis-1,2-Dichloroethene	ND	Н	250	1		08/28/2017 12:51
trans-1,2-Dichloroethene	ND	Н	250	1		08/28/2017 12:51
1,2-Dichloropropane	ND	Н	250	1		08/28/2017 12:51
1,3-Dichloropropane	ND	Н	250	1		08/28/2017 12:51
2,2-Dichloropropane	ND	Н	250	1		08/28/2017 12:51
1,1-Dichloropropene	ND	Н	250	1		08/28/2017 12:51
cis-1,3-Dichloropropene	ND	Н	250	1		08/28/2017 12:51
trans-1,3-Dichloropropene	ND	Н	250	1		08/28/2017 12:51
Freon 113	ND	Н	5000	1		08/28/2017 12:51
Hexachlorobutadiene	ND	Н	250	1		08/28/2017 12:51
Hexachloroethane	ND	Н	250	1		08/28/2017 12:51
Methylene chloride	ND	Н	250	1		08/28/2017 12:51
1,1,1,2-Tetrachloroethane	ND	Н	250	1		08/28/2017 12:51
1,1,2,2-Tetrachloroethane	ND	Н	250	1		08/28/2017 12:51

(Cont.)

Analytical Report

Client: Pangea Environmental Svcs., Inc.

Date Received: 8/25/17 18:30

Date Prepared: 8/28/17

Project: Elegant Cleaners

WorkOrder: 1708C91

Extraction Method SW5030B **Analytical Method:** SW8260B

Unit: $\mu g/m^3$

Volatile Organics by P&T and GC/MS (Basic Target List)

Client ID	Lab ID	Matrix	Date (Collected Instrument	Batch ID
SVE-1	1708C91-001	A Air	08/25/2	017 15:30 GC38	144558
Analytes	Result	<u>Qualifiers</u>	<u>RL</u>	<u>DF</u>	Date Analyzed
Tetrachloroethene	ND	Н	250	1	08/28/2017 12:51
1,2,3-Trichlorobenzene	ND	Н	250	1	08/28/2017 12:51
1,2,4-Trichlorobenzene	ND	Н	250	1	08/28/2017 12:51
1,1,1-Trichloroethane	ND	Н	250	1	08/28/2017 12:51
1,1,2-Trichloroethane	ND	Н	250	1	08/28/2017 12:51
Trichloroethene	ND	Н	250	1	08/28/2017 12:51
Trichlorofluoromethane	ND	Н	250	1	08/28/2017 12:51
1,2,3-Trichloropropane	ND	Н	250	1	08/28/2017 12:51
Vinyl Chloride	ND	Н	250	1	08/28/2017 12:51
Surrogates	REC (%)	<u>Qualifiers</u>	<u>Limits</u>		
Dibromofluoromethane	117	Н	70-130		08/28/2017 12:51
Toluene-d8	112	Н	70-130		08/28/2017 12:51
4-BFB	106	Н	70-130		08/28/2017 12:51
Analyst(s): HK					

Analytical Report

Client: Pangea Environmental Svcs., Inc.

Date Received: 8/25/17 18:30

Date Prepared: 8/28/17

Project: Elegant Cleaners

WorkOrder: 1708C91

Extraction Method SW5030B **Analytical Method:** SW8260B

Unit: $\mu g/m^3$

Volatile Organics by P&T and GC/MS (Basic Target List)

Client ID	Lab ID	Matrix	Date C	ollected Instrument	Batch ID
SVE-2	1708C91-002A	Air	08/25/20	17 15:45 GC38	144558
Analytes	Result	<u>Qualifiers</u>	<u>RL</u>	<u>DF</u>	Date Analyzed
Bromobenzene	ND	Н	250	1	08/28/2017 13:32
Bromochloromethane	ND	Н	250	1	08/28/2017 13:32
Bromodichloromethane	ND	Н	250	1	08/28/2017 13:32
Bromoform	ND	Н	250	1	08/28/2017 13:32
Bromomethane	ND	Н	250	1	08/28/2017 13:32
Carbon Tetrachloride	ND	Н	250	1	08/28/2017 13:32
Chlorobenzene	ND	Н	250	1	08/28/2017 13:32
Chloroethane	ND	Н	250	1	08/28/2017 13:32
Chloroform	ND	Н	250	1	08/28/2017 13:32
Chloromethane	ND	Н	250	1	08/28/2017 13:32
2-Chlorotoluene	ND	Н	250	1	08/28/2017 13:32
4-Chlorotoluene	ND	Н	250	1	08/28/2017 13:32
Dibromochloromethane	ND	Н	250	1	08/28/2017 13:32
1,2-Dibromo-3-chloropropane	ND	Н	250	1	08/28/2017 13:32
1,2-Dibromoethane (EDB)	ND	Н	250	1	08/28/2017 13:32
Dibromomethane	ND	Н	250	1	08/28/2017 13:32
1,2-Dichlorobenzene	ND	Н	250	1	08/28/2017 13:32
1,3-Dichlorobenzene	ND	Н	250	1	08/28/2017 13:32
1,4-Dichlorobenzene	ND	Н	250	1	08/28/2017 13:32
Dichlorodifluoromethane	ND	Н	250	1	08/28/2017 13:32
1,1-Dichloroethane	ND	Н	250	1	08/28/2017 13:32
1,2-Dichloroethane (1,2-DCA)	ND	Н	250	1	08/28/2017 13:32
1,1-Dichloroethene	ND	Н	250	1	08/28/2017 13:32
cis-1,2-Dichloroethene	ND	Н	250	1	08/28/2017 13:32
trans-1,2-Dichloroethene	ND	Н	250	1	08/28/2017 13:32
1,2-Dichloropropane	ND	Н	250	1	08/28/2017 13:32
1,3-Dichloropropane	ND	Н	250	1	08/28/2017 13:32
2,2-Dichloropropane	ND	Н	250	1	08/28/2017 13:32
1,1-Dichloropropene	ND	Н	250	1	08/28/2017 13:32
cis-1,3-Dichloropropene	ND	Н	250	1	08/28/2017 13:32
trans-1,3-Dichloropropene	ND	Н	250	1	08/28/2017 13:32
Freon 113	ND	Н	5000	1	08/28/2017 13:32
Hexachlorobutadiene	ND	Н	250	1	08/28/2017 13:32
Hexachloroethane	ND	Н	250	1	08/28/2017 13:32
Methylene chloride	ND	Н	250	1	08/28/2017 13:32
1,1,1,2-Tetrachloroethane	ND	Н	250	1	08/28/2017 13:32
1,1,2,2-Tetrachloroethane	ND	Н	250	1	08/28/2017 13:32

(Cont.)

Analytical Report

Client: Pangea Environmental Svcs., Inc.

Date Received: 8/25/17 18:30

Date Prepared: 8/28/17

Project: Elegant Cleaners

WorkOrder: 1708C91

Extraction Method SW5030B

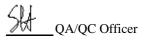
Analytical Method: SW8260B

Unit: $\mu g/m^3$

voiatile Org	ganics by Po	XI and GC/MS	(Basic Targ	get List)
Lak	ID V	Jotriy D	eta Collected	Inctrumor

Client ID	Lab ID	Matrix	Date Co	ollected Instrument	Batch ID
SVE-2	1708C91-002A	Air	08/25/20	17 15:45 GC38	144558
<u>Analytes</u>	Result	<u>Qualifiers</u>	<u>RL</u>	<u>DF</u>	Date Analyzed
Tetrachloroethene	1100	Н	250	1	08/28/2017 13:32
1,2,3-Trichlorobenzene	ND	Н	250	1	08/28/2017 13:32
1,2,4-Trichlorobenzene	ND	Н	250	1	08/28/2017 13:32
1,1,1-Trichloroethane	ND	Н	250	1	08/28/2017 13:32
1,1,2-Trichloroethane	ND	Н	250	1	08/28/2017 13:32
Trichloroethene	ND	Н	250	1	08/28/2017 13:32
Trichlorofluoromethane	ND	Н	250	1	08/28/2017 13:32
1,2,3-Trichloropropane	ND	Н	250	1	08/28/2017 13:32
Vinyl Chloride	ND	Н	250	1	08/28/2017 13:32
Surrogates	<u>REC (%)</u>	<u>Qualifiers</u>	<u>Limits</u>		
Dibromofluoromethane	116	Н	70-130		08/28/2017 13:32
Toluene-d8	111	Н	70-130		08/28/2017 13:32
4-BFB	105	Н	70-130		08/28/2017 13:32
Analyst(s): HK					

Quality Control Report


Client: Pangea Environmental Svcs., Inc. WorkOrder: 1708C91 **Date Prepared:** 8/28/17 **BatchID:** 144558 Date Analyzed: 8/28/17 **Extraction Method: SW5030B** GC38 **Instrument: Analytical Method:** SW8260B

Matrix: Unit: Air

Project: Elegant Cleaners Sample ID: MB/LCS/LCSD-144558

QC Summary Report for SW8260B

Analyte	MB Result	RL	SPK Val	MB SS %REC	MB SS Limits
Bromobenzene	ND	250	-	-	-
Bromochloromethane	ND	250	-	=	-
Bromodichloromethane	ND	250	-	=	=
Bromoform	ND	250	-	=	-
Bromomethane	ND	250	-	=	=
Carbon Tetrachloride	ND	250	-	-	-
Chlorobenzene	ND	250	-	-	-
Chloroethane	ND	250	-	-	-
Chloroform	ND	250	-	-	-
Chloromethane	ND	250	-	-	-
2-Chlorotoluene	ND	250	-	-	-
4-Chlorotoluene	ND	250	-	-	-
Dibromochloromethane	ND	250	-	-	-
1,2-Dibromo-3-chloropropane	ND	250	-	-	-
1,2-Dibromoethane (EDB)	ND	250	-	-	-
Dibromomethane	ND	250	-	_	=
1,2-Dichlorobenzene	ND	250	-	-	-
1,3-Dichlorobenzene	ND	250	-	-	
1,4-Dichlorobenzene	ND	250	-	-	-
Dichlorodifluoromethane	ND	250	-	-	-
1,1-Dichloroethane	ND	250	-	-	-
1,2-Dichloroethane (1,2-DCA)	ND	250	-	-	-
1,1-Dichloroethene	ND	250	-	-	-
cis-1,2-Dichloroethene	ND	250	-	-	-
trans-1,2-Dichloroethene	ND	250	-	-	-
1,2-Dichloropropane	ND	250	-	-	-
1,3-Dichloropropane	ND	250	-	-	-
2,2-Dichloropropane	ND	250	-	-	-
1,1-Dichloropropene	ND	250	-	-	-
cis-1,3-Dichloropropene	ND	250	-	-	-
trans-1,3-Dichloropropene	ND	250	-	-	-
Freon 113	ND	5000	-	-	-
Hexachlorobutadiene	ND	250	-	-	-
Hexachloroethane	ND	250	-	-	-
Methylene chloride	ND	250	-	-	-
1,1,1,2-Tetrachloroethane	ND	250	-	-	-
1,1,2,2-Tetrachloroethane	ND	250	-	-	
Tetrachloroethene	ND	250	-	-	
1,2,3-Trichlorobenzene	ND	250	-	-	-

Quality Control Report

Client:Pangea Environmental Svcs., Inc.WorkOrder:1708C91Date Prepared:8/28/17BatchID:144558Date Analyzed:8/28/17Extraction Method:SW5030BInstrument:GC38Analytical Method:SW8260B

 $\textbf{Matrix:} \qquad \text{Air} \qquad \qquad \textbf{Unit:} \qquad \qquad \mu g/m$

Project: Elegant Cleaners **Sample ID:** MB/LCS/LCSD-144558

MB Result RL Val SPK WB SS WREC ND 250 - - ND 250 - -	Q Summary Report for 5 11 02 002					
		RL	_			
ND 250	ND	250	-	-		
	ND	250	=	-		

1,2,4-Trichlorobenzene	ND	250	-	-	-
1,1,1-Trichloroethane	ND	250	-	-	-
1,1,2-Trichloroethane	ND	250	-	-	-
Trichloroethene	ND	250	-	-	-
Trichlorofluoromethane	ND	250	-	-	-
1,2,3-Trichloropropane	ND	250	-	-	-
Vinyl Chloride	ND	250	-	-	-

OC Summary Report for SW8260B

Surrogate Recovery

Analyte

Dibromofluoromethane	14380	12500	115	70-130
Toluene-d8	14010	12500	112	70-130
4-BFB	1319	1250	106	70-130

Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
Chlorobenzene	4190	4270	5000	84	85	69-112	1.78	30
1,2-Dibromoethane (EDB)	4500	4570	5000	90	91	62-117	1.44	30
1,2-Dichloroethane (1,2-DCA)	4200	4240	5000	84	85	61-126	0.897	30
1,1-Dichloroethene	5010	5090	5000	100	102	67-122	1.59	30
Trichloroethene	4390	4480	5000	88	90	66-127	1.96	30
Surrogate Recovery								
Dibromofluoromethane	14,800	14,900	12500	118	119	83-124	0.545	30
Toluene-d8	13,900	13,900	12500	111	111	80-120	0	30
4-BFB	1470	1470	1250	118	118	70-129	0	30

MB SS Limits

FAX: (510) 836-3709

□WaterTrax

Email:

PO:

cc/3rd Party:

WriteOn

ProjectNo: Elegant Cleaners

mgillies@pangeaenv.com

✓ EDF

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

Pangea Environmental Svcs., Inc.

1710 Franklin Street, Ste. 200

Report to:

Morgan Gillies

(510) 836-3700

Oakland, CA 94612

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

WorkOrder:	1708C91	ClientCode:	PEO

□ Excel □ EQuIS ☑ Email □ HardCopy □ ThirdParty □]J-flag
---	---------

Detection Summary Dry-Weight

Bill to: Requested TAT: 5 days;

Bob Clark-Riddell

Pangea Environmental Svcs., Inc.

Requested Tests (See legend below) Collection Date Hold Lab ID Client ID Matrix 2 3 5 7 10 11 12 1 1708C91-001 SVE-1 Air 8/25/2017 15:30 Α Α 1708C91-002 SVE-2 Air 8/25/2017 15:45 Α

Test Legend:

1	8010_A(UG/M3)	2 PREDF REPORT	3	4
5		6	7	8
9		10	11	12

Prepared by: Kena Ponce

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days).

Hazardous samples will be returned to client or disposed of at client expense.

"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

WORK ORDER SUMMARY

Client Name:	PANGEA ENVIRONMENTAL SVCS., INC.	Project:	Elegant Cleaners	Work Order: 1708
Client Name:	PANGEA ENVIRONMENTAL SVCS., INC.	Project:	Elegant Cleaners	Work Order: 17

Client Contact: Morgan Gillies

QC Level: LEVEL 2

Contact's Email: mgillies@pangeaenv.com

Comments:

Date Logged: 8/25/2017

		☐ WaterTrax	☐WriteOn ✓	EDF Excel	☐ Fax	HardC	opyThirdPart	у 🔲	J-flag
Lab ID	Client ID	Matrix	Test Name	Container /Composite		De- chlorinated	Collection Date & Time	TAT	Sediment Hold SubOut Content
1708C91-001A	SVE-1	Air	SW8260B (HVOCs I	st) 1	Tedlar		8/25/2017 15:30	5 days	
1708C91-002A	SVE-2	Air	SW8260B (HVOCs I	st) 1	Tedlar		8/25/2017 15:45	5 days	

NOTES: - STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- MAI assumes that all material present in the provided sampling container is considered part of the sample - MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

McCAMP	BELL	ANAI	Y	TICAL	, INC.						C	HAI	N O	F CU	STC	DY	REC	COR	D					
	illow Pass F				5	Turn	Aroun	d Time	:1 Day	Rush		2 Day	Rush		3 Day	Rush		STD	X	Que	ote#			
	one: (877) 25						J-Flag	/ MDL		ESL			Cleanı	р Арр	roved				Bott	le Oro	der#			
www.mccampb	ell.com	ma	in@n	ccampbell.	com	Deliv	ery Fo	rmat:	PDF		Geo	Гracke	r EDF	X	EDD		Wri	ite On	(DW)		Е	QuIS		
Report To: Morgan Gilli	23	Bill To:	Par	napa									Ai	alysi	s Rec	quest	ed							
Company: Pangea Env.	100			3		BE		اء	ont	,x)									als				
Email: maillies & par		V. com	\			M (S	_	\vec{x}	Nic.	Oil &	418.1	(sa	only			NAs)				l met				
Alt Email:	,			0-836-	3700	8015	or Oi	or Oi	011)	ons -	ons (ticide	clors	(S))Cs)	Is / P	*(0)			olved		- 1		
Project Name: Elegant Chea	ners	Project #:				8021	Mot	Mot	64/8	carb/ith S	carb	I Pes	; Arc	(VO	(SVC	(PAI	/ 602		2	r diss		- 1		
Project Location: 1208, Linco	LN	PO #				Gas (15) +	15) +	e (16	Hydro 71) M	lydro	81 (C	CB's	8260	8270	8310	200.8	20)	men	ole fo	9	- 1		
Sampler Signature:						H as	1 (80 a Ge	1 (80	Greas	1 mn / 90.	um I	8 / 80	82 P	524 /	525 /	IM /	tals (9 / 60	quire	sami	2			
SAMPLE ID	Sam	pling	ners			BTEX & TPH as Gas (8021/ 8015) MTBE	TPH as Diesel (8015) + Motor Oil Without Silica Gel	TPH as Diesel (8015) + Motor Oil With Silca Gel	Total Oil & Grease (1664 / 9071) Without Silica Gel	Total Petroleum Hydrocarbons - Oil & Grease (1664 / 9071) With Silica Gel	Total Petroleum Hydrocarbons (418.1) <u>With</u> Silica Gel	EPA 505/ 608 / 8081 (CI Pesticides)	EPA 608 / 8082 PCB's ; Aroclors only	EPA 524.2 / 624 / 8260 (VOCs)	EPA 525.2 / 625 / 8270 (SVOCs)	EPA 8270 SIM / 8310 (PAHs / PNAs)	CAM 17 Metals (200.8 / 6020)*	Metals (200.8 / 6020)	Baylands Requirements	Lab to filter sample for dissolved metals analysis	0			
Location / Field Point	Dete	Т:	#Containers	Matrix	Preservative	EX 8	H as	H as	tal O	tal Pe	tal Po	A 50	A 60	A 52	A 52	A 82	M I	etals	ylanc	b to l	8			
	Date	Time	#			BT	F ≥	F 18	T _o	ç ö	¹ S	EP	EP	EP	EP	EP	/\cap -	N	Ba	an an	1	\rightarrow	\dashv	_
SVE-1	8.25.17	1530	1	A	7	$oxed{oxed}$	_	_													X	\rightarrow	_	
5VE-2	8:25.4	1345	(A	7																X			
						\vdash	+	+															\neg	
						┝	+	-	-	-	_	_										\dashv	\dashv	
						┡	_	_	-													\rightarrow	\dashv	_
																						_	\dashv	
						\vdash	+	1																
MAI clients MUST disclose any dangerous chemica			1	1 1					ta harm	or cari	oue fut	ura han	lth ands	ngarma	nt ac a	recult o	fhrief	gloved	open	air sam	nle han	dling by	MALS	staff
MAI clients MUST disclose any dangerous chemica Non-disclosure incurs an immediate \$250 surcharge	and the client i	present in their s subject to full	legal li	ability for harm	suffered. Thank	at may you fe	or your	underst	anding	and for	allowin	g us to	work sa	ifely.	in as a	resurt e	n onei,	gioved	, open	an, san	трте пап	iiiig oj		
* If metals are requested for water samples and																			С	ommer	nts / Ins	truction	ıs	
Please provide an adequate volume of sample.													ort.											
Relinquished By / Compan	y Name				ime		Rece	ived B	y / Co	npany	Name			-0//	ate		me	1						
lift			8,5	5,17 18	36		1	^						0/2	8/17	1/8	30	-						
						/								(
					GIV. C		0.0	'1 ~	- C1	1		****			04			-						
Matrix Code: DW=Drinking Water, C									L=Slu	idge,	A=Ai	r, Wl	2=W1	pe, O	=Oth		Ган		-	°C	Init	iale		
Preservative Code: 1=4°C 2=HCl	$3=H_2SO_4$	$4=HNO_3$	5=N	aOH 6=Z:	nOAc/NaO.	H /	=1/01	ne									Гетр	1			11111	idis -		

Sample Receipt Checklist

Client Name: Project Name: WorkOrder №: Carrier:	Pangea Environmental Svcs., Inc. Elegant Cleaners 1708C91 Matrix: Air Client Drop-In			Date and Time Received Date Logged: Received by: Logged by:	8/25/2017 18:30 8/25/2017 Kena Ponce Kena Ponce
	Chain of C	ustody	/ (COC) Infor	<u>mation</u>	
Chain of custody	present?	Yes	✓	No 🗌	
Chain of custody	signed when relinquished and received?	Yes	✓	No 🗌	
Chain of custody	agrees with sample labels?	Yes	✓	No 🗌	
Sample IDs noted	d by Client on COC?	Yes	✓	No 🗌	
Date and Time of	f collection noted by Client on COC?	Yes	•	No 🗌	
Sampler's name	noted on COC?	Yes	•	No 🗌	
COC agrees with	Quote?	Yes		No 🗆	NA 🗸
	<u>Sampl</u>	e Rece	eipt Informati	<u>ion</u>	
Custody seals int	act on shipping container/cooler?	Yes		No 🗌	NA 🗸
Shipping containe	er/cooler in good condition?	Yes	✓	No 🗌	
Samples in prope	er containers/bottles?	Yes	✓	No 🗌	
Sample containe	rs intact?	Yes	•	No 🗆	
Sufficient sample	volume for indicated test?	Yes	✓	No 🗆	
	Sample Preservation	on and	Hold Time (HT) Information	
All samples recei	ved within holding time?	Yes	✓	No 🗌	na 🗆
Sample/Temp Bla	ank temperature		Temp:		NA 🗹
Water - VOA vial	s have zero headspace / no bubbles?	Yes		No 🗆	NA 🗹
Sample labels ch	ecked for correct preservation?	Yes	✓	No 🗌	
pH acceptable up	oon receipt (Metal: <2; 522: <4; 218.7: >8)?	Yes		No 🗌	NA 🗸
Samples Receive	ed on Ice?	Yes		No 🗹	
	tested and acceptable upon receipt for EPA 522? ested and acceptable upon receipt for EPA 218.7, a?				na 🗹
Comments:		==:	====		=======

"When Quality Counts"

Analytical Report

WorkOrder: 1709957

Report Created for: Pangea Environmental Svcs., Inc.

1710 Franklin Street, Ste. 200

Oakland, CA 94612

Project Contact:

Morgan Gillies

Project P.O.:

Project Name: Elegant Cleaners

Project Received: 09/22/2017

Analytical Report reviewed & approved for release on 09/26/2017 by:

Angela Rydelius,

Laboratory Manager

The report shall not be reproduced except in full, without the written approval of the laboratory. The analytical results relate only to the items tested. Results reported conform to the most current NELAP standards, where applicable, unless otherwise stated in the case narrative.

1534 Willow Pass Rd. Pittsburg, CA 94565 ♦ TEL: (877) 252-9262 ♦ FAX: (925) 252-9269 ♦ www.mccampbell.com

CA ELAP 1644 ♦ NELAP 4033 ORELAP

Glossary of Terms & Qualifier Definitions

Client: Pangea Environmental Svcs., Inc.

Project: Elegant Cleaners

WorkOrder: 1709957

Glossary Abbreviation

%D Serial Dilution Percent Difference

95% Interval 95% Confident Interval

DF Dilution Factor

DI WET (DISTLC) Waste Extraction Test using DI water

DISS Dissolved (direct analysis of 0.45 µm filtered and acidified water sample)

DLT Dilution Test (Serial Dilution)

DUP Duplicate

EDL Estimated Detection Limit

ERS External reference sample. Second source calibration verification.

ITEF International Toxicity Equivalence Factor

LCS Laboratory Control Sample

MB Method Blank

MB % Rec % Recovery of Surrogate in Method Blank, if applicable

MDL Method Detection Limit

ML Minimum Level of Quantitation

MS Matrix Spike

MSD Matrix Spike Duplicate

N/A Not Applicable

ND Not detected at or above the indicated MDL or RL

NR Data Not Reported due to matrix interference or insufficient sample amount.

PDS Post Digestion Spike

PDSD Post Digestion Spike Duplicate

PF Prep Factor

RD Relative Difference

RL Reporting Limit (The RL is the lowest calibration standard in a multipoint calibration.)

RPD Relative Percent Deviation
RRT Relative Retention Time

SPK Val Spike Value

SPKRef Val Spike Reference Value

SPLP Synthetic Precipitation Leachate Procedure

ST Sorbent Tube

TCLP Toxicity Characteristic Leachate Procedure

TEQ Toxicity Equivalents

WET (STLC) Waste Extraction Test (Soluble Threshold Limit Concentration)

Glossary of Terms & Qualifier Definitions

Client: Pangea Environmental Svcs., Inc.

Project: Elegant Cleaners

WorkOrder: 1709957

Analytical Qualifiers

H Samples were analyzed out of holding time

S Surrogate spike recovery outside accepted recovery limits

c12 Surrogate recovery outside of the control limits

Analytical Report

Client: Pangea Environmental Svcs., Inc.

Date Received: 9/22/17 17:40

Date Prepared: 9/23/17

Project: Elegant Cleaners

WorkOrder: 1709957

Extraction Method: SW5030B **Analytical Method:** SW8260B

Unit: $\mu g/m^3$

Volatile Organics by P&T and GC/MS (Basic Target List)

Client ID	Lab ID	Matrix	Date C	ollected	Instrument	Batch ID
SVE-1	1709957-001A	Air	09/22/20	17 14:00	GC38 09231709.D	146029
<u>Analytes</u>	Result	<u>Qualifiers</u>	<u>RL</u>	<u>DF</u>		Date Analyzed
Bromobenzene	ND	Н	250	1		09/23/2017 12:59
Bromochloromethane	ND	Н	250	1		09/23/2017 12:59
Bromodichloromethane	ND	Н	250	1		09/23/2017 12:59
Bromoform	ND	Н	250	1		09/23/2017 12:59
Bromomethane	ND	Н	250	1		09/23/2017 12:59
Carbon Tetrachloride	ND	Н	250	1		09/23/2017 12:59
Chlorobenzene	ND	Н	250	1		09/23/2017 12:59
Chloroethane	ND	Н	250	1		09/23/2017 12:59
Chloroform	ND	Н	250	1		09/23/2017 12:59
Chloromethane	ND	Н	250	1		09/23/2017 12:59
2-Chlorotoluene	ND	Н	250	1		09/23/2017 12:59
4-Chlorotoluene	ND	Н	250	1		09/23/2017 12:59
Dibromochloromethane	ND	Н	250	1		09/23/2017 12:59
1,2-Dibromo-3-chloropropane	ND	Н	250	1		09/23/2017 12:59
1,2-Dibromoethane (EDB)	ND	Н	250	1		09/23/2017 12:59
Dibromomethane	ND	Н	250	1		09/23/2017 12:59
1,2-Dichlorobenzene	ND	Н	250	1		09/23/2017 12:59
1,3-Dichlorobenzene	ND	Н	250	1		09/23/2017 12:59
1,4-Dichlorobenzene	ND	Н	250	1		09/23/2017 12:59
Dichlorodifluoromethane	ND	Н	250	1		09/23/2017 12:59
1,1-Dichloroethane	ND	Н	250	1		09/23/2017 12:59
1,2-Dichloroethane (1,2-DCA)	ND	Н	250	1		09/23/2017 12:59
1,1-Dichloroethene	ND	Н	250	1		09/23/2017 12:59
cis-1,2-Dichloroethene	ND	Н	250	1		09/23/2017 12:59
trans-1,2-Dichloroethene	ND	Н	250	1		09/23/2017 12:59
1,2-Dichloropropane	ND	Н	250	1		09/23/2017 12:59
1,3-Dichloropropane	ND	Н	250	1		09/23/2017 12:59
2,2-Dichloropropane	ND	Н	250	1		09/23/2017 12:59
1,1-Dichloropropene	ND	Н	250	1		09/23/2017 12:59
cis-1,3-Dichloropropene	ND	Н	250	1		09/23/2017 12:59
trans-1,3-Dichloropropene	ND	Н	250	1		09/23/2017 12:59
Freon 113	ND	Н	5000	1		09/23/2017 12:59
Hexachlorobutadiene	ND	Н	250	1		09/23/2017 12:59
Hexachloroethane	ND	Н	250	1		09/23/2017 12:59
Methylene chloride	ND	Н	250	1		09/23/2017 12:59
1,1,1,2-Tetrachloroethane	ND	Н	250	1		09/23/2017 12:59
1,1,2,2-Tetrachloroethane	ND	Н	250	1		09/23/2017 12:59
	-	·				· · ·

(Cont.)

Analytical Report

Client: Pangea Environmental Svcs., Inc.

Date Received: 9/22/17 17:40

Date Prepared: 9/23/17

Project: Elegant Cleaners

WorkOrder: 1709957

Extraction Method: SW5030B **Analytical Method:** SW8260B

Unit: $\mu g/m^3$

Volatile Organics by P&T and GC/MS (Basic Target List)

Client ID	Lab ID	Matrix	Date Co	llected Instrument	Batch ID
SVE-1	1709957-001A	Air	09/22/201	17 14:00 GC38 09231709.E	146029
<u>Analytes</u>	Result	<u>Qualifiers</u>	<u>RL</u>	<u>DF</u>	Date Analyzed
Tetrachloroethene	ND	Н	250	1	09/23/2017 12:59
1,2,3-Trichlorobenzene	ND	Н	250	1	09/23/2017 12:59
1,2,4-Trichlorobenzene	ND	Н	250	1	09/23/2017 12:59
1,1,1-Trichloroethane	ND	Н	250	1	09/23/2017 12:59
1,1,2-Trichloroethane	ND	Н	250	1	09/23/2017 12:59
Trichloroethene	ND	Н	250	1	09/23/2017 12:59
Trichlorofluoromethane	ND	Н	250	1	09/23/2017 12:59
1,2,3-Trichloropropane	ND	Н	250	1	09/23/2017 12:59
Vinyl Chloride	ND	Н	250	1	09/23/2017 12:59
<u>Surrogates</u>	<u>REC (%)</u>	<u>Qualifiers</u>	<u>Limits</u>		
Dibromofluoromethane	122	SH	84-115		09/23/2017 12:59
Toluene-d8	109	Н	86-112		09/23/2017 12:59
4-BFB	104	Н	66-121		09/23/2017 12:59
Analyst(s): HK			Analytical Comm	nents: c12	

Analytical Report

Client: Pangea Environmental Svcs., Inc.

Date Received: 9/22/17 17:40

Date Prepared: 9/23/17

Project: Elegant Cleaners

WorkOrder: 1709957

Extraction Method: SW5030B **Analytical Method:** SW8260B

Unit: $\mu g/m^3$

Volatile Organics by P&T and GC/MS (Basic Target List)

Client ID	Lab ID	Matrix	Date C	ollected	Instrument	Batch ID
SVE-2	1709957-002A	Air	09/22/20	017 13:30	GC38 09231710.D	146029
<u>Analytes</u>	Result	<u>Qualifiers</u>	<u>RL</u>	<u>DF</u>		Date Analyzed
Bromobenzene	ND	Н	250	1		09/23/2017 13:40
Bromochloromethane	ND	Н	250	1		09/23/2017 13:40
Bromodichloromethane	ND	Н	250	1		09/23/2017 13:40
Bromoform	ND	Н	250	1		09/23/2017 13:40
Bromomethane	ND	Н	250	1		09/23/2017 13:40
Carbon Tetrachloride	ND	Н	250	1		09/23/2017 13:40
Chlorobenzene	ND	Н	250	1		09/23/2017 13:40
Chloroethane	ND	Н	250	1		09/23/2017 13:40
Chloroform	ND	Н	250	1		09/23/2017 13:40
Chloromethane	ND	Н	250	1		09/23/2017 13:40
2-Chlorotoluene	ND	Н	250	1		09/23/2017 13:40
4-Chlorotoluene	ND	Н	250	1		09/23/2017 13:40
Dibromochloromethane	ND	Н	250	1		09/23/2017 13:40
1,2-Dibromo-3-chloropropane	ND	Н	250	1		09/23/2017 13:40
1,2-Dibromoethane (EDB)	ND	Н	250	1		09/23/2017 13:40
Dibromomethane	ND	Н	250	1		09/23/2017 13:40
1,2-Dichlorobenzene	ND	Н	250	1		09/23/2017 13:40
1,3-Dichlorobenzene	ND	Н	250	1		09/23/2017 13:40
1,4-Dichlorobenzene	ND	Н	250	1		09/23/2017 13:40
Dichlorodifluoromethane	ND	Н	250	1		09/23/2017 13:40
1,1-Dichloroethane	ND	Н	250	1		09/23/2017 13:40
1,2-Dichloroethane (1,2-DCA)	ND	Н	250	1		09/23/2017 13:40
1,1-Dichloroethene	ND	Н	250	1		09/23/2017 13:40
cis-1,2-Dichloroethene	ND	Н	250	1		09/23/2017 13:40
trans-1,2-Dichloroethene	ND	Н	250	1		09/23/2017 13:40
1,2-Dichloropropane	ND	Н	250	1		09/23/2017 13:40
1,3-Dichloropropane	ND	Н	250	1		09/23/2017 13:40
2,2-Dichloropropane	ND	Н	250	1		09/23/2017 13:40
1,1-Dichloropropene	ND	Н	250	1		09/23/2017 13:40
cis-1,3-Dichloropropene	ND	Н	250	1		09/23/2017 13:40
trans-1,3-Dichloropropene	ND	Н	250	1		09/23/2017 13:40
Freon 113	ND	Н	5000	1		09/23/2017 13:40
Hexachlorobutadiene	ND	Н	250	1		09/23/2017 13:40
Hexachloroethane	ND	Н	250	1		09/23/2017 13:40
Methylene chloride	ND	Н	250	1		09/23/2017 13:40
1,1,1,2-Tetrachloroethane	ND	Н	250	1		09/23/2017 13:40
1,1,2,2-Tetrachloroethane	ND	Н	250	1		09/23/2017 13:40

(Cont.)

Analytical Report

Client: Pangea Environmental Svcs., Inc.

Date Received: 9/22/17 17:40

Date Prepared: 9/23/17

Project: Elegant Cleaners

WorkOrder: 1709957

Extraction Method: SW5030B **Analytical Method:** SW8260B

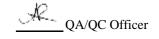
Unit: $\mu g/m^3$

Volatile Organics by P&T and GC/MS (Basic Target List)

Client ID	Lab ID	Matrix	Date Co	ollected Instrument	Batch ID
SVE-2	1709957-002	A Air	09/22/20	17 13:30 GC38 09231710.D	146029
<u>Analytes</u>	Result	<u>Qualifiers</u>	<u>RL</u>	<u>DF</u>	Date Analyzed
Tetrachloroethene	270	Н	250	1	09/23/2017 13:40
1,2,3-Trichlorobenzene	ND	Н	250	1	09/23/2017 13:40
1,2,4-Trichlorobenzene	ND	Н	250	1	09/23/2017 13:40
1,1,1-Trichloroethane	ND	Н	250	1	09/23/2017 13:40
1,1,2-Trichloroethane	ND	Н	250	1	09/23/2017 13:40
Trichloroethene	ND	Н	250	1	09/23/2017 13:40
Trichlorofluoromethane	ND	Н	250	1	09/23/2017 13:40
1,2,3-Trichloropropane	ND	Н	250	1	09/23/2017 13:40
Vinyl Chloride	ND	Н	250	1	09/23/2017 13:40
Surrogates	<u>REC (%)</u>	<u>Qualifiers</u>	<u>Limits</u>		
Dibromofluoromethane	123	SH	84-115		09/23/2017 13:40
Toluene-d8	109	Н	86-112		09/23/2017 13:40
4-BFB	101	Н	66-121		09/23/2017 13:40
Analyst(s): HK			Analytical Comr	ments: c12	

Quality Control Report

Client:Pangea Environmental Svcs., Inc.WorkOrder:1709957Date Prepared:9/23/17BatchID:146029Date Analyzed:9/23/17Extraction Method:SW5030BInstrument:GC38Analytical Method:SW8260B


Matrix: Air Unit: $\mu g/m^3$

Project: Elegant Cleaners **Sample ID:** MB/LCS/LCSD-146029

QC Summary Report for SW8260B

Analyte	MB Result	RL	SPK Val	MB SS %REC	MB SS Limits
Bromobenzene	ND	250	-	-	-
Bromochloromethane	ND	250	-	-	-
Bromodichloromethane	ND	250	-	-	-
Bromoform	ND	250	-	-	-
Bromomethane	ND	250	-	-	-
Carbon Tetrachloride	ND	250	-	-	-
Chlorobenzene	ND	250	-	-	-
Chloroethane	ND	250	-	-	-
Chloroform	ND	250	-	-	-
Chloromethane	ND	250	-	-	-
2-Chlorotoluene	ND	250	-	-	-
4-Chlorotoluene	ND	250	-	-	-
Dibromochloromethane	ND	250	-	-	-
1,2-Dibromo-3-chloropropane	ND	250	-	-	-
1,2-Dibromoethane (EDB)	ND	250	-	-	-
Dibromomethane	ND	250	-	-	-
1,2-Dichlorobenzene	ND	250	-	-	-
1,3-Dichlorobenzene	ND	250	-	-	-
1,4-Dichlorobenzene	ND	250	-	-	-
Dichlorodifluoromethane	ND	250	-	-	-
1,1-Dichloroethane	ND	250	-	-	-
1,2-Dichloroethane (1,2-DCA)	ND	250	-	-	-
1,1-Dichloroethene	ND	250	-	-	-
cis-1,2-Dichloroethene	ND	250	-	-	-
trans-1,2-Dichloroethene	ND	250	-	-	-
1,2-Dichloropropane	ND	250	-	-	-
1,3-Dichloropropane	ND	250	-	-	-
2,2-Dichloropropane	ND	250	-	-	-
1,1-Dichloropropene	ND	250	-	-	-
cis-1,3-Dichloropropene	ND	250	-	-	-
trans-1,3-Dichloropropene	ND	250	-	-	-
Freon 113	ND	5000	-	-	-
Hexachlorobutadiene	ND	250	-	-	-
Hexachloroethane	ND	250	-	-	-
Methylene chloride	ND	250	-	-	-
1,1,1,2-Tetrachloroethane	ND	250	-	-	-
1,1,2,2-Tetrachloroethane	ND	250	-	-	-
Tetrachloroethene	ND	250	-	-	-
1,2,3-Trichlorobenzene	ND	250	-	-	-

Quality Control Report

Client:Pangea Environmental Svcs., Inc.WorkOrder:1709957Date Prepared:9/23/17BatchID:146029Date Analyzed:9/23/17Extraction Method:SW5030BInstrument:GC38Analytical Method:SW8260B

Project: Elegant Cleaners **Sample ID:** MB/LCS/LCSD-146029

QC Summary Report for SW8260B

Analyte	MB Result	RL	SPK Val	MB SS %REC	MB SS Limits
1,2,4-Trichlorobenzene	ND	250	-	-	-
1,1,1-Trichloroethane	ND	250	-	-	-
1,1,2-Trichloroethane	ND	250	-	-	=
Trichloroethene	ND	250	-	-	=
Trichlorofluoromethane	ND	250	-	-	=
1,2,3-Trichloropropane	ND	250	-	-	=
Vinyl Chloride	ND	250	-	-	-
Surrogate Recovery					
Dibromofluoromethane	15100		12500	121	79-131
Toluene-d8	13740		12500	110	81-124
4-BFB	1290		1250	103	74-128

Analyte	LCS Result	LCSD Result	SPK Val	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
Chlorobenzene	4440	4460	5000	89	89	72-107	0	30
1,2-Dibromoethane (EDB)	4910	4970	5000	98	99	68-110	1.20	30
1,2-Dichloroethane (1,2-DCA)	4880	4950	5000	98	99	68-115	1.45	30
1,1-Dichloroethene	5550	5530	5000	111	111	58-127	0	30
Trichloroethene	4850	4850	5000	97	97	73-117	0	30
Surrogate Recovery								
Dibromofluoromethane	15,300	15,300	12500	122	122	79-131	0	30
Toluene-d8	13,500	13,600	12500	108	108	81-124	0	30
4-BFB	1420	1400	1250	113	112	74-128	1.24	30

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

CHAIN-OF-CUSTODY RECORD

1 of 1

☐ J-flag

WorkOrder:	1709957	ClientCode:	PEO

Excel	EQuIS	✓ Email	HardCopy	ThirdParty

■ Detection Summary Dry-Weight

> Bill to: Requested TAT: 2 days;

Bob Clark-Riddell

Pangea Environmental Svcs., Inc.

Date Received: 09/22/2017 1710 Franklin Street, Ste. 200 09/22/2017

Oakland, CA 94612 Date Logged:

Report to:

Morgan Gillies Pangea Environmental Svcs., Inc. 1710 Franklin Street, Ste. 200

Oakland, CA 94612

(510) 836-3700

FAX: (510) 836-3709

□WaterTrax

Email:

PO:

cc/3rd Party:

WriteOn

ProjectNo: Elegant Cleaners

mgillies@pangeaenv.com

✓ EDF

					Requested Tests (See legend below)											
Lab ID	Client ID	Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
			1					1				T				
1709957-001	SVE-1	Air	9/22/2017 14:00] Ш	Α	Α										
1709957-002	SVE-2	Air	9/22/2017 13:30		Α											

Test Legend:

1 8010_A(UG/M3)	2 PREDF REPORT	3	4
5	6	7	8
9	10	11	12

Prepared by: Kena Ponce

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

WORK ORDER SUMMARY

Client Name:	PANGEA ENVIRONMENTAL SVCS., INC.	Project:	Elegant Cleaners	Work Order: 1709957
--------------	----------------------------------	----------	------------------	----------------------------

Client Contact: Morgan Gillies

QC Level: LEVEL 2

Contact's Email: mgillies@pangeaenv.com

Comments:

Date Logged: 9/22/2017

▼ EDF WaterTrax WriteOn Excel ∏Fax ✓ Email HardCopy □ ThirdParty ☐ J-flag Lab ID Client ID Containers **Bottle & Preservative** De-**Collection Date** TAT Sediment Hold SubOut Matrix **Test Name** /Composites chlorinated & Time Content 1709957-001A SVE-1 Air SW8260B (HVOCs List) Tedlar 9/22/2017 14:00 2 days 1709957-002A SVE-2 SW8260B (HVOCs List) Tedlar 9/22/2017 13:30 Air 1 2 days

NOTES: - STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- MAI assumes that all material present in the provided sampling container is considered part of the sample - MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

McCAMPBELL ANALYTICAL, INC.					. CHAIN OF CUSTODY RECORD																			
	Willow Pass l					Turn	Aroun	d Time	:1 Day	y Rush	4	2 Day	Rush	X	3 Day	Rush		STD		Que	ote#			
Teleph	none: (877) 2:	52-9262 / Fa	x: (92	5) 252-9269			J-Flag	MDL		ESL		-	Clean	ір Арр	roved				Bott	le Oro	der#			
www.mccamp	bell.com	<u>ma</u>	in@n	nccampbell.	com	Deliv	ery Fo	rmat:	PDF		Geo	Tracke	r EDF	X	EDD		Wr	ite On	(DW)		F	QuIS		
Report To: Morgan Gillie	25	Bill To:	Po	ingea									Aı	nalysi	is Red	quest	ed							
Company: Pangea Env.	545.					rbe		되	nont	×	•									als				
Email: mgilliesepan	geaen	V, com)			S) M	_		With	Gel Gel	418.1	(Sc	only			NAs)				metals	. 1			
Alt Email:		Tele:	510	0.8363	700	Gas (8021/ 8015) MTBE	or O	or Oi	071)	ons -	ons (ficid	clors	(3))Cs)	Is / P	*(0)			olved				
Project Name: Elegant Ch	eaners	Project #:				8021	Mot	Mot	64 / 5	carb	carb	1 Pes	; Arc	(VO	(SVC	(PAI	/ 602		s.	r diss	- 1		- 1	
Project Location: 1208 Lincoln	1 Ave	PO #				Gas (15]	15) +	e (16	Hydro 71) M	lydro	81 (C	CB's	8260	8270	8310	8.002	20)	ment	le for			- 1	
Sampler Signature:					,	H as	a Ge	el (80	Greas	1 mn	um P	8 / 80	82 P	524 /	625 /	W	tals (3 / 60	quire	samp	0		- 1	
SAMPLE ID	Sam	pling	iners	2 5 50		& TP	Dies	Dies	ii & C	etrole (1664	etrole lica C	209/5	8 / 80	4.2 / (5.2 / (S 02	7 Mei	(200.8	ls Re	ilter	0			
Location / Field Point	Date	Time	#Containers	Matrix	Preservative	BTEX & TPH as	TPH as Diesel (8015) + Motor Oil Without Silica Gel	PH as	otal O	Total Petroleum Hydrocarbons - Oil & Grease (1664/9071) With Silica Gel	Total Petroleum Hydrocarbons (418.1) With Silica Gel	EPA 505/ 608 / 8081 (CI Pesticides)	EPA 608 / 8082 PCB's; Aroclors only	EPA 524.2 / 624 / 8260 (VOCs)	EPA 525.2 / 625 / 8270 (SVOCs)	EPA 8270 SIM / 8310 (PAHs / PNAs)	CAM 17 Metals (200.8 / 6020)*	Metals (200.8 / 6020)	Baylands Requirements	Lab to filter sample for dissolved analysis	00			
V12		1400	#	٨	7	m	F≱	E is	S. T	Η̈́Ö	ĭ ≥	ତ୍ର	<u> </u>	[3]	(E)	<u> </u>	Ü	N	B	a L		\dashv	\dashv	
SVE-1	9.22.17		,	A	7	⊢	┢					-	 			_					X	\dashv	\dashv	_
SVE-2	9.22.17	1330	1	A	7	⊢	-	_	_	_		_	_			-					_	\dashv		
						_															\square	\dashv		
						\vdash					\vdash												\dashv	_
					-	\vdash		-		-	\vdash	-	_				_	_			-	\dashv	-+	
						⊢	-	-			-	├					_	-			 	\rightarrow	-	
						L					_													
MAI clients MUST disclose any dangerous chemic															nt as a	result o	f brief,	gloved	, open a	air, sam	ple han	iling by	MAI sta	aff.
Non-disclosure incurs an immediate \$250 surcharg													work sa	ifely.					C		to / Inc	tmintin		_
* If metals are requested for water samples an Please provide an adequate volume of sample.			•		•								ert.						C	ommen	its / Ins	ruction	ns	
Relinquished By / Compa		is not sufficie	_		ime ime	i be pi	Recei					пе геро	11.	D	ate	Ti	me	ł						
Reiniquisited By 7 compa	ny rume				40	il	regoo	· · · · · ·	, , ,	npunj				-/	1/7		40	i						
and the second			7.6	211)	90	1								1/-	17	11		i						
Matrix Code: DW=Drinking Water,	GW=Groun	d Water, W	W=W	aste Water	, SW=Seaw	ater,	S=So	il, SI	=Slu	dge,	A=Ai	r, WF	P=Wi	pe, O	=Oth	er								
Preservative Code: 1=4°C 2=HCl	$3=H_2SO_4$	4=HNO ₃	5=Na	aOH 6=Zi	nOAc/NaOI	H 7	=Non	e								7	Temp			°C	Init	ials		

Page 1 of 1

Sample Receipt Checklist

Client Name: Project Name: WorkOrder №:	Pangea Environmental Svcs., Inc. Elegant Cleaners 1709957 Matrix: Air			Date and Time Received Date Logged: Received by: Logged by:	9/22/2017 17:40 9/22/2017 Kena Ponce Kena Ponce
Carrier:	Client Drop-In				
	Chain of C	ustody	(COC) Infor	mation	
Chain of custody	present?	Yes	✓	No 🗆	
Chain of custody	signed when relinquished and received?	Yes	✓	No 🗆	
Chain of custody	agrees with sample labels?	Yes	✓	No 🗆	
Sample IDs note	d by Client on COC?	Yes	✓	No 🗆	
Date and Time or	f collection noted by Client on COC?	Yes	✓	No 🗆	
Sampler's name	noted on COC?	Yes	✓	No 🗆	
COC agrees with	a Quote?	Yes		No 🗌	NA 🗹
	<u>Sampl</u>	le Rece	eipt Informati	<u>ion</u>	
Custody seals in	tact on shipping container/cooler?	Yes		No 🗌	NA 🗸
Shipping contain	er/cooler in good condition?	Yes	✓	No 🗌	
Samples in prope	er containers/bottles?	Yes	✓	No 🗌	
Sample containe	rs intact?	Yes	•	No 🗆	
Sufficient sample	e volume for indicated test?	Yes	✓	No 🗆	
	Sample Preservation	on and	Hold Time (HT) Information	
All samples recei	ived within holding time?	Yes	✓	No 🗌	na 🗆
Sample/Temp Bl	ank temperature		Temp:		NA 🗹
Water - VOA vial	s have zero headspace / no bubbles?	Yes		No 🗆	NA 🗹
Sample labels ch	necked for correct preservation?	Yes	✓	No 🗌	
pH acceptable up	oon receipt (Metal: <2; 522: <4; 218.7: >8)?	Yes		No 🗆	NA 🗹
Samples Receive	ed on Ice?	Yes		No 🗹	
UCMR Samples:					
•	tested and acceptable upon receipt for EPA 522?	Yes		No 🗆	NA 🗹
Free Chlorine t 300.1, 537, 539	rested and acceptable upon receipt for EPA 218.7, 9?	Yes		No 🗆	NA 🗹
		==:	====	========	
Comments:					