June 27, 2016

Mr. Mark Detterman Alameda County LOP 1131 Harbor Bay Parkway Alameda, California 94502

RECEIVED

By Alameda County Environmental Health 2:56 pm, Jun 29, 2016

Re:

Indoor Air Sampling Report (Report #5065)

Four Seasons Cleaners; Cleanup Program # RO0003155 13778 Doolittle Ave., San Leandro, California

Dear Mr. Detterman:

Attached for your review is a technical report (Indoor Air Sampling Report – WTI #5065) for the above referenced case. The report was prepared by WellTest, Inc. at my request.

I declare under the penalty of perjury that information and/or recommendations contained in the attached work plan are true and correct, to the best of your knowledge.

If you should have any questions or comments, please do not hesitate to contact me, or the WellTest project manager, Bill Dugan at (408) 287-2175.

Sincerely,

Mr. Ernest Lee

Marina Faire Shopping Center 3271 S. Highland Dr., Ste. #704

Las Vegas, NV 89109

June 9, 2016

Mr. Mark Detterman Alameda County LOP 1131 Harbor Bay Pkwy. Alameda, California 94502

Re: Indoor Air Sampling Report (Report #5065)

Four Seasons Cleaners; Cleanup Program # RO0003155 13778 Doolittle Ave., San Leandro, California

Dear Mr. Detterman:

At the request of Mr. Ernest Lee of the Marina Faire Shopping Center, WellTest, Inc. (WTI) has prepared this *Indoor Air Sampling Report* for the above-referenced solvent release case (Figures 1 and 2). On April 1, 2016, WTI prepared an *Indoor Air Sampling Work Plan* (WTI Report # 5063) for the subject site. That Work Plan outlined a series of tasks to further delineate and confirm the extent of previously identified HVOC contamination in indoor air at the subject site. The Work Plan was approved, with comments, by the local oversight agency in their April 20, 2016 Directive Letter (Attachment A). As such, WTI implemented the Work Plan in May 2016. The purpose of this investigation was to 1.) confirm historical sampling results and 2.) resample using a different laboratory test method (TO-15 SIMM) in an attempt to lower the detection limits in the samples. In general, the investigation consisted of collecting a total of four indoor air samples from the former dry cleaner suite and the immediately adjoining tenant spaces.

Recent regulatory directive letters are presented as Attachment A, background information is presented as Attachment B, and laboratory analytical reports are presented as Attachment C. Additional supporting documentation is presented within Tables 1 through 4 and Figures 1 through 3.

Site Description

The site is located in a mixed commercial and residential area of San Leandro, California. The site parcel is approximately 5.05 acres and is improved with a multi-tenant strip mall and separate restaurant building. The dry cleaning unit is located within the strip mall and is associated with 13778 Doolittle Drive. The site lies at an elevation of approximately 15 feet above sea level and is relatively flat. The property is bounded by Doolittle Drive to the west, Fairway Drive to the north, Catalina Drive to the east and a commercial property to the south. A Site Vicinity Map is included in Figure 1.

Field Investigation

Indoor Air Sampling. Prior to conducting indoor air sampling activities, as requested by the ACPWA, an Indoor Air Building Survey was conducted. The sampling event was conducted in general accordance with the DTSC's April 2012 *Guidance for the Evaluation and Mitigation of Subsurface Vapor Intrusion to Indoor Air* and the RWQCB's October 2014 *Interim Framework for Assessment of Vapor Intrusion at TCE-Contaminated Site in the San Francisco Bay Region*. A total of four indoor air samples (IA-3-2, IA-9-2, IA-8-2, and IA-6-2) were collected during the investigation. The sample locations are shown on Figure 2. Each sample was collected using an evacuated SUMA® canister (6-L) equipped with a 24-hour flow regulator. Each canister was placed within the breathing zone (approximately 3 to 5 feet above ground surface) and care was taken to deploy

the canisters away from the direct influence of any forced air emanating from air conditioners, furnaces, or heaters. The canister vacuum was measured using an integrated vacuum gauge immediately prior to and following the 24-hour sampling period. At the end of the sample period the canister valve was fully closed and the time recorded. Additional data, including: outside and interior temperatures, equipment serial numbers, sampler name, and other comments were also recorded. The air samples were analyzed at a California Statecertified laboratory for VOCs (including PCE) by Test Method TO-15 SIM.

Analytical Results

In total, four indoor air samples were collected and submitted for laboratory analysis. A summary of the current analytical results, along with historical sampling data, is presented in Table 1. The complete laboratory data sheets are presented in Appendix C. A brief summary of the analytical data is presented as follows:

- **PCE** was detected above laboratory detection limits in one (IA-9-2) of the four samples submitted for analysis at a concentration of 260 μg/m³;
- TCE was not detected above laboratory detection limits in any of the samples submitted for analysis;
- cis-1,2DCE was not detected above laboratory detection limits in any of the samples submitted for analysis;
- **Vinyl chloride** was not detected above laboratory detection limits in any of the samples submitted for analysis;
- Benzene was not detected above laboratory detection limits in any of the samples submitted for analysis;
- **Toluene** was detected above laboratory detection limits in one (IA-9-2) of the four samples submitted for analysis at a concentration of $17 \,\mu\text{g/m}^3$;
- Ethylbenzene was not detected above laboratory detection limits in any of the samples submitted for analysis;
- **o-Xylenes** were detected above laboratory detection limits in one (IA-9-2) of the four samples submitted for analysis at a concentration of 3.0 µg/m³;
- **p&m-Xylenes** were detected above laboratory detection limits in one (IA-9-2) of the four samples submitted for analysis at a concentration of 8.4 µg/m³; and
- No other constituents of concern were detected at concentrations exceeding laboratory detection limits.

Discussion of Analytical Results

The only contaminants of concern (COCs), detected at concentrations exceeding laboratory detection limits during this current investigation, was PCE, toluene, and xylenes in the one sample (IA-9-2) collected from within the dentist office. The dentist office is located immediately adjacent to the former dry cleaner unit to the northwest. The detected concentration of PCE ($260 \mu g/m^3$) significantly exceeds the commercial/industrial environmental screening level (ESL) for PCE of $2.1 \mu g/m^3$. This is consistent with historical indoor air sampling events, which showed similar elevated concentrations of PCE in indoor air within this area (See Table 1).

No other COCs, including PCE, were detected above laboratory detection limits in any of the other samples submitted for analysis during this investigation. This also confirms historical sampling results, which indicates no indoor air HVOC contamination is present in any of the other tenant spaces immediately adjoining the former dry cleaner unit. Additionally, since dry cleaning operations ceased at the site in late 2015, no HVOCs have been detected in indoor air samples collected from within the former dry cleaning unit.

Project No. 5065 2 June 9, 2016

Conclusions

The purpose of this investigation was to 1.) confirm historical sampling results and 2.) resample using a different laboratory test method (TO-15 SIMM) in an attempt to lower the detection limits in the samples. Based upon the results of the investigation, and a review of historical data, WTI makes the following conclusions:

- PCE was detected at a concentration of 260 μg/m³ in the indoor air sample (I-9-2) collected from within the dentist office, which is located directly adjacent to the former dry cleaner unit to the north. The detected concentration of PCE significantly exceeds the commercial/industrial ESL for PCE of 2.1μg/m³. This is consistent with historical indoor air sampling events, which showed similar elevated concentrations of PCE in indoor air within this portion of the site.
- No contaminants of concern were detected during this current investigation, or during historical
 investigations, at concentrations exceeding laboratory detection limits in any of the indoor air samples
 collected from the other tenant spaces immediately adjoining the former dry cleaner.
- Since dry cleaning operations ceased at the site in late 2015, no HVOCs have been detected in indoor air samples collected from within the former dry cleaning unit either during this current investigation or during historical investigations.

Recommendations

Based on the data collected during this investigation, review of historical information, and the above conclusions, WTI makes the following recommendations:

Based upon the elevated concentrations of PCE detected in indoor air samples collected from within the
adjoining dentist office, and at the request of the local oversight agency, an Interim Remedial Action Plan
(IRAP) should be prepared for the site. WTI is in the process of preparing this IRAP and will present it
under separate cover. The IRAP will present specific engineering measures to reduce the concentrations of
HVOCs (specifically PCE) from within the dentist office.

Certification

To the best of our knowledge, all statements made in this Report are true and correct. This Report is based on data provided by the client and others, site conditions observed, samples collected and analytical data. No warranty whatsoever is made that this report addresses all contamination found on the site. If you have any questions or comments, please contact WellTest at (408) 287-2175. A copy of the client-authorization transmittal letter is provided in Attachment H.

ONAL GE

FORREST N COOK

Respectfully submitted,

Forrest N. Cook

California Professional Geologist #8201 (exp 9/16)

Table 1

List of Tables, Figures, and Attachments

Table 2	Summary of Historical Soil Vapor Analytical Data
Table 2	Summary of Historical Soil Analytical Data
Table 3	Summary of Historical Groundwater Analytical Data
Figure 1	Site Vicinity Map
Figure 2	Extended Site Map Showing Boring DP-1 Through DP-8 (02/18/15)
Figure 3	Detailed Site Map Showing Historical Sampling Locations
Figure 4	Detailed Site Map Showing Current and Historical Sampling Locations
Attachment A	Directive Letters
Attachment B	Background Information

Laboratory Data Sheets

Client Transmittal Letter

Summary of Current Indoor & Outdoor Air Analytical Data

Distribution List

Attachment C

Attachment D

Mr. Ernest Lee Marina Faire Shopping Center 3271 S. Highland Dr., Ste. #704 Las Vegas, NV 89109

Mr. Mark Detterman Alameda County LOP 1131 Harbor Bay Pkwy. Alameda, California 94502

Limitations

This report is based upon a limited specific scope of work per the request of Marina Faire Shopping Center. This report is intended only for the use of WTI's client and those listed in the distribution section of the report. WTI does not accept liability for unauthorized reliance or use by any other third party. WTI makes no express or implied warranty in regards to the contents of this report.

This report is the property of WELLTEST. Copyright © 2016 WellTest, Inc. All rights reserved.

Project No. 5065 4 June 9, 2016

List of Acronyms

Bgs below ground surface

BTEX Benzene, Toluene, Ethylbenzene, Xylenes

btoc Below top of casing 1,2-DCA 1,2-Dichloroethane

DHS State of California Department of Health Services

DO Dissolved oxygen DTW Depth to water

DWR Department of Water Resources

DIPE Di-isopropyl ether

ELAP Environmental Laboratory Accreditation Program

EC Electrical conductivity
EDB 1,2-dibromoethane
ETBE Ethyl tert butyl ether

Eth Ethanol
ft foot or feet
ft/ft feet per feet
FTIL Field Turbid

FTU Field Turbidity Unit GW Groundwater

MCL Maximum Contaminant Level

Meth Methanol
MSL Mean Sea Level
MTBE Methyl-t-butyl-ether
mg/L milligram per liter

mV millivolts MW Monitoring Well

NGVD National Geodetic Vertical Datum of 1929

NA Not Analyzed NM Not Measured

ORP Oxidation reduction potential
P.G. Professional Geologist
ppmv parts per million by volume
QA/QC Quality Assurance/Quality Control

SCCDEH Santa Clara County Department of Environmental Health

SCVWD Santa Clara Valley Water District

TAME Tert amyl methyl ether TBA Tert butyl alcohol TDS Total dissolved solids

TOC Top of casing

TPHg Gasoline range (C6-C12) Volatile hydrocarbons as gasoline

ug/L micrograms per liter uS micro Siemens

UST Underground storage tank
VOC Volatile Organic Compound

WELLTEST WellTest, Inc.

°F - °C degrees Fahrenheit - degrees Celsius

TABLES

TABLE 1
SUMMARY OF CURRENT & HISTORICAL INDOOR & OUTDOOR AIR ANALYTICAL DATA
13778 DOOLITTLE DRIVE, SAN LEANDRO, CA

Sample	ID Sample Date	Β (μg/m³)	T (μg/m³)	E (μg/m³)	o-Xyl (μg/m³)	p&m-Xyl (μg/m³)	PCE (μg/m³)	TCE (μg/m³)	cis-1,2DCE (μg/m³)	VC (μg/m³)	IPA (μg/m³)
OUT-1	10/30/15	ND<11	ND<8.6	ND<7.6	ND<6.7	ND<17	1,500	32	ND<10	ND<13	ND<13
IND-1	10/30/15	ND<13	ND<10	ND<6.9	ND<7.9	ND<19	220	ND<22	ND<12	ND<15	ND<15
IND-2	10/30/15	ND<12	ND<9.2	ND<8.1	ND<7.2	ND<18	18,000	240	49	ND<14	ND<14
IA-3-of	ff 02/14/16	ND<9.8	ND<7.5	ND<6.6	ND<5.8	ND<14	ND<22	ND<16	ND<9.1	ND<11	ND<11
IA-4	02/13/16	ND<9.8	ND<7.5	ND<6.6	ND<5.8	ND<14	ND<22	ND<16	ND<9.1	ND<11	ND<11
IA-4-of	ff 02/14/16	ND<11	ND<8.5	ND<7.4	ND<6.6	ND<16	ND<25	ND<19	ND<10	ND<13	ND<12
IA-5	02/13/16	ND<8.9	ND<6.8	ND<6.0	ND<5.3	ND<13	ND<20	ND<15	ND<8.3	ND<10	ND<10
IA-7	02/18/16	ND<9.1	ND<6.9	ND<6.0	ND<5.4	ND<13	ND<21	ND<15	ND<8.4	ND<11	ND<10
IA-8	02/13/16	ND<22	ND<17	ND<15	ND<13	ND<32	ND<50	ND<37	ND<20	ND<26	ND<25
IA-9 ¹	02/23/16	ND<18	ND<14	ND<12	ND<11	ND<37	560	ND<30	ND<17	ND<21	ND<20
IA-9-of	ff 02/24/16	ND<11	ND<8.0	ND<7.0	ND<6.3	ND<15	190	ND<18	ND<9.8	ND<12	1,700
IA-3-2	² 05/17/16	ND<0.014	ND<0.023	ND<0.014	ND<0.096	ND<0.021	ND<0.042	ND<0.016	ND<0.012	ND<0.005	
IA-9-2		ND<0.0099	17	ND<0.010	3	8.4	260	ND<0.012	ND<0.0086	ND<0.0037	
IA-8-2	4 05/17/16	ND<0.013	ND<0.022	ND<0.014	ND<0.0096	ND<0.020	ND<0.041	ND<0.015	ND<0.011	ND<0.048	
IA-6-2		ND<0.013	ND<0.022	ND<0.014	ND<0.0097	ND<0.021	ND<0.041	ND<0.016	ND<0.011	ND<0.049	
	ESLs Comm/Ind.	0.42	1,300	4.9	44	10	2.1	3.0	35	0.16	NA

PCE = Tetrachloroethene

cis-1,2DCE = cis-1,2-Dichloroethene

TCE = Trichloroethene VC = Vinyl Chloride

IPA = Isopropyl Alcohol

Samples collected on 5/17/16 analyzed by TO-15 SIM. All others by TO-15.

ug/m³ = micrograms per cubic meter = ppmv

ESLs = Environmental Screening Levels, Directi Exposure - Feb 2016

off = sample collected with HVAC system turned off

B = Benzene

T = Toluene 1 = dichlorodifluoromethane @ 2,100 ug/m3, 1,2-Dicholo-1,1,2,2-tetrafluoroethane @ 490 ug/m3, and Trichlorofluoromethane @ 240 ug/m3

E = Ethylbenzene 2 = Dichlorodifluoromethane @ 2.8 ug/m3

Xyl = Xylenes 3 = Dichlorodifluoromethane @ 9.4 ug/m3, and Trichlorofluoromethane @ 19 ug/m3

MtBE = Methyl-t-butyl ether 4 = Dichlorodifluoromethane @ 3.5 ug/m3

5 = Dichlorodifluoromethane @ 3.2 ug/m3

^{--- =} Parameter not analyzed

<0.5 / ND = Not present at or above reporting detection limit

TABLE 2
SUMMARY OF HISTORICAL SOIL VAPOR ANALYTICAL DATA
13778 DOOLITTLE DRIVE, SAN LEANDRO, CA

Sample ID	Sample Depth (ft)	Sample Date	Β (μg/m³)	T (μg/m³)	E (μg/m³)	o-Xyl (μg/m³)	p&m-Xyl (μg/m³)	PCE (μg/m³)	TCE (μg/m³)	cis-1,2DCE (μg/m³)	VC (μg/m³)	IPA (μg/m³)
S1 Air	0.5	08/10/14	ND	ND	ND	ND	ND	63,000	890	ND<320	ND<210	NA
S2 Air	0.5	08/10/14	ND	ND	ND	ND	ND	240,000	16,000	ND<960	ND<620	NA
S3 Air	0.5	08/10/14	ND	ND	ND	ND	ND	4,500,000	92,000	ND<20,000	ND<13,000	NA
SG-1A	5.0	10/30/15	590	1,800	ND<43	ND<38	ND<94	20,000,000	810,000	170,000	ND<75	3,900
SG-2A	5.0	10/30/15	ND<67	ND<51	ND<45	ND<40	ND<98	1,300,000	180,000	50,000	ND<78	ND<75
VP-1	subslab	10/30/15	ND<69	ND<52	ND<46	ND<41	ND<100	2,900,000	140,000	18,000	ND<80	ND<77
VP-2	subslab	10/30/15	ND<63	ND<48	ND<42	ND<38	ND<92	180,000	12,000	220	ND<74	370,000
IA-7	subslab	10/30/15	ND<63	ND<48	ND<42	ND<38	ND<92	470,000	5,400	ND<58	ND<74	ND<71
VP-4	subslab	10/30/15	ND<56	ND<43	ND<38	ND<34	ND<83	160,000	7,300	200	ND<66	27,000
IA-3-2 ²	42507.0	ND<0.014	ND<0.023	ND<0.014	ND<0.096	ND<0.021	ND<0.042	ND<0.016	ND<0.012	ND<0.005		3,900
	42507.0	ND<0.014 ND<0.0099	17	ND<0.014 ND<0.010	3	8.4	260	ND<0.016 ND<0.012	ND<0.012	ND<0.003		3,900 ND<75
IA-9-2 ³	42507.0	ND<0.0099	ND<0.022	ND<0.010 ND<0.014	ND<0.0096	ND<0.020	ND<0.041	ND<0.012 ND<0.015	ND<0.0086	ND<0.0037		ND<73
IA-8-2 ⁴	42507.0 42507.0	ND<0.013 ND<0.013	ND<0.022 ND<0.022	ND<0.014 ND<0.014	ND<0.0096 ND<0.0097	ND<0.020 ND<0.021	ND<0.041 ND<0.041			ND<0.048 ND<0.049		
IA-6-2 ⁵	42307.0	ND<0.013	ND<0.022	ND<0.014	ND<0.0097	ND<0.021	ND<0.041	ND<0.016	ND<0.011	ND<0.049		370,000

^{--- =} Parameter not analyzed

Samples collected on 5/17/16 analyzed by TO-15 SIM. All others by TO-15.

ESLs = Environmental Screening Levels, May 2013

CHHSL Comm/Ind. = California Human Health Screening Level, January 2005

B = Benzene

T = Toluene

E = Ethylbenzene

Xyl = Xylenes

MtBE = Methyl-t-butyl ether

PCE = Tetrachloroethene

TCE = Trichloroethene

cis-1,2DCE = cis-1,2-Dichloroethene

IPA = Isopropyl Alcohol

TABLE 3
SUMMARY OF HISTORICAL SOIL ANALYTICAL DATA
13778 DOOLITTLE DRIVE, SAN LEANDRO, CA

							, -	-, -					Other
	Sample	Sample	TPHd	В	т	E	o-Xyl	p&m-Xyl	PCE	TCE	cis-1,2DCE	VC	VOCs
Sample ID	Depth (ft)	Date	(mg/Kg)	(mg/Kg)	(mg/Kg)								
	Deptii (it)	Date	(IIIg/Kg)	(IIIg/Ng)	(IIIg/Kg)	(IIIg/Ng)	(IIIg/Ng)	(IIIg/Ng)	(IIIg/Kg)	(IIIg/Ng)	(IIIg/Ng)	(IIIg/Ng)	(IIIg/Ng)
S1 d 0.5'	0.5	08/10/14	3.2	ND	ND	ND	ND	ND	0.056	ND	ND	ND	All ND
S2 d 0.5'	0.5	08/10/14	2.6	ND	ND	ND	ND	ND	0.045	ND	ND	ND	All ND
S3 d 0.5'	0.5	08/10/14	2.1	ND	ND	ND	ND	ND	0.1	ND	ND	ND	All ND
S3 d 2'	2.0	08/10/14	ND<1.0	ND	ND	ND	ND	ND	20	ND	ND	ND	All ND
S3 d 5'	5.0	08/10/14	ND<1.0	ND	ND	ND	ND	ND	2.4	ND	ND	ND	All ND
DP-1d15.0	15.0	02/18/15		ND<0.005	ND<0.005	All ND							
DP-2d14.5	14.5	02/18/15		ND<0.005	ND<0.005	All ND							
DP-3d14.0	14.0	02/18/15		ND<0.005	ND<0.005	All ND							
DP-4d14.5	14.5	02/18/15		ND<0.005	ND<0.005	All ND							
DP-5d8.0	8.0	02/18/15		ND<0.005	ND<0.005	All ND							
DP-6d15.0	15.0	02/18/15		ND<0.005	ND<0.005	All ND							
DP-7d15.0	15.0	02/18/15		ND<0.005	ND<0.005	All ND							
DP-8d15.0	15.0	02/18/15		ND<0.005	ND<0.005	All ND							
SG-1Ad2.0	2.0	10/13/15		ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	65	0.32	0.13	ND<0.005	All ND
SG-1Ad5.0	5.0	10/13/15		ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	18	0.24	0.13	ND<0.005	All ND
SG-2Ad2.0	2.0	10/13/15		ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	1.9	0.07	0.0021	ND<0.005	All ND
SG-2Ad5.0	5.0	10/13/15		ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	0.37	0.046	0.02	ND<0.005	All ND
SG-1Bd2.0	2.0	10/13/15		ND<0.005	0.0015	ND<0.005	ND<0.005	ND<0.005	160	1.2	0.14	ND<0.005	All ND
SG-1Bd5.0	5.0	10/13/15		ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	40	0.26	0.11	ND<0.005	All ND
SG-1Bd7.0	7.0	10/13/15		ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	2.2	0.2	0.15	ND<0.005	All ND
SG-2Bd2.0	2.0	10/13/15		ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	0.77	0.029	ND<0.005	ND<0.005	All ND
SG-2Bd5.0	5.0	10/13/15		ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	0.25	0.014	0.0045	ND<0.005	All ND
SG-2Bd8.5	8.5	10/13/15		ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	0.16	0.024	0.018	ND<0.005	All ND
	FSI	s Comm/Ind.	500	0.044	2.9	3.3	2	3	0.7	0.46		0.032	varies
				•.•.			_			•			

^{--- =} Parameter not analyzed

ESLs = Environmental Screening Levels, May 2013

PCE = Tetrachloroethene
TCE = Trichloroethene
VC = Vinyl Chloride
cis-1,2DCE = cis-1,2-Dichloroethene

0.19

<0.5 / ND = Not present at or above reporting detection limit mg/Kg = milligrams per kilogram = ppm

B = Benzene MtBE = Methyl-t-butyl ether

T = Toluene

E = Ethylbenzene

Xyl = Xylenes

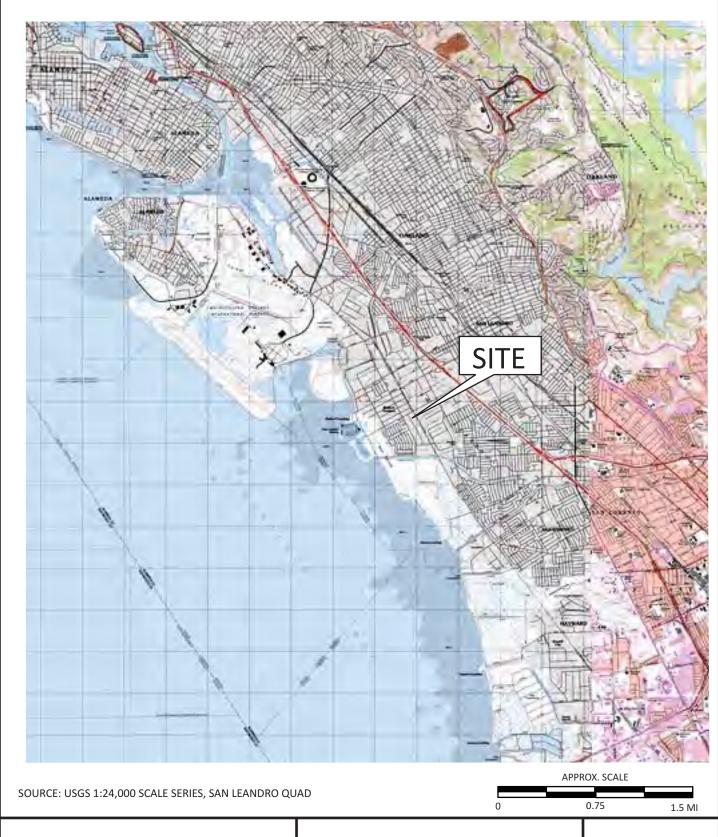
TABLE 4
SUMMARY OF HISTORICAL GROUNDWATER ANALYTICAL DATA
13778 DOOLITTLE DRIVE, SAN LEANDRO, CA

Sample ID	Sample Date	Β (μg/L)	τ (μg/L)	E (μg/L)	χ (μg/L)	MtBE (μg/L)	PCE (μg/L)	TCE (μg/L)	cis- 1,2DCE (μg/L)	trans- 1,2DCE (μg/L)	VC (μg/L)	Other VOCs (μg/L)
S-3*	08/10/14						750	51	7.6	ND<7.1	ND<7.1	All ND
DP-1	02/18/15	ND<0.50	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	All ND
DP-2	02/18/15	ND<0.50	ND<0.50	ND<0.50	ND<1.0	0.55	ND<0.50	0.69	ND<0.50	ND<0.50	ND<0.50	All ND
DP-3	02/18/15	ND<0.50	ND<0.50	ND<0.50	ND<1.0	ND<0.50	160	35	6.6	ND<0.50	ND<0.50	All ND
DP-4	02/18/15	ND<0.50	ND<0.50	ND<0.50	ND<1.0	ND<0.50	12,000	2,100	610	11	ND<0.50	All ND
DP-5	02/18/15	ND<0.50	ND<0.50	ND<0.50	ND<1.0	0.61	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	All ND
DP-6	02/18/15	ND<0.50	ND<0.50	ND<0.50	ND<1.0	1.6	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	All ND
IA-7	02/18/15	ND<0.50	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50	0.77	ND<0.50	ND<0.50	ND<0.50	All ND
DP-8	02/18/15	ND<0.50	ND<0.50	ND<0.50	ND<1.0	0.84	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	All ND
SG-1B	10/13/15	0.18	0.38	ND<0.50	ND<1.0	ND<0.50	2,200	130	88	4.3	ND<0.50	All ND ¹
IA-3-2 ²	05/17/16	ND<0.014	ND<0.023	ND<0.014	ND<0.096	ND<0.021	ND<0.042	ND<0.016	ND<0.012	ND<0.005		All ND
IA-9-2 ³	05/17/16	ND<0.0099	17	ND<0.010	3	8.4	260	ND<0.012	ND<0.0086	ND<0.0037		All ND
IA-8-2 ⁴	05/17/16	ND<0.013	ND<0.022	ND<0.014	ND<0.0096	ND<0.020	ND<0.041	ND<0.015	ND<0.011	ND<0.048		All ND
IA-6-2 ⁵	05/17/16	ND<0.013	ND<0.022	ND<0.014	ND<0.0097	ND<0.021	ND<0.041	ND<0.016	ND<0.011	ND<0.049		All ND
SG-2B	10/13/15	0.43	0.15	ND<0.50	ND<1.0	ND<0.50	1,500	480	280	22	0.34	All ND ²
Samples collected	s Comm/Ind.	1.0	40.0	30.0	20.0	5.0	5.0	5.0	6.0	10.0	0.5	varies

^{--- =} Parameter not analyzed

1 = chlorobenzene @ 0.25 ug/L and chloroform @ 1.2 ug/L 2 = chlorobenzene @ 0.51 ug/L and chloroform @ 0.19 ug/L

<0.5 / ND = Not present at or above reporting detection limit

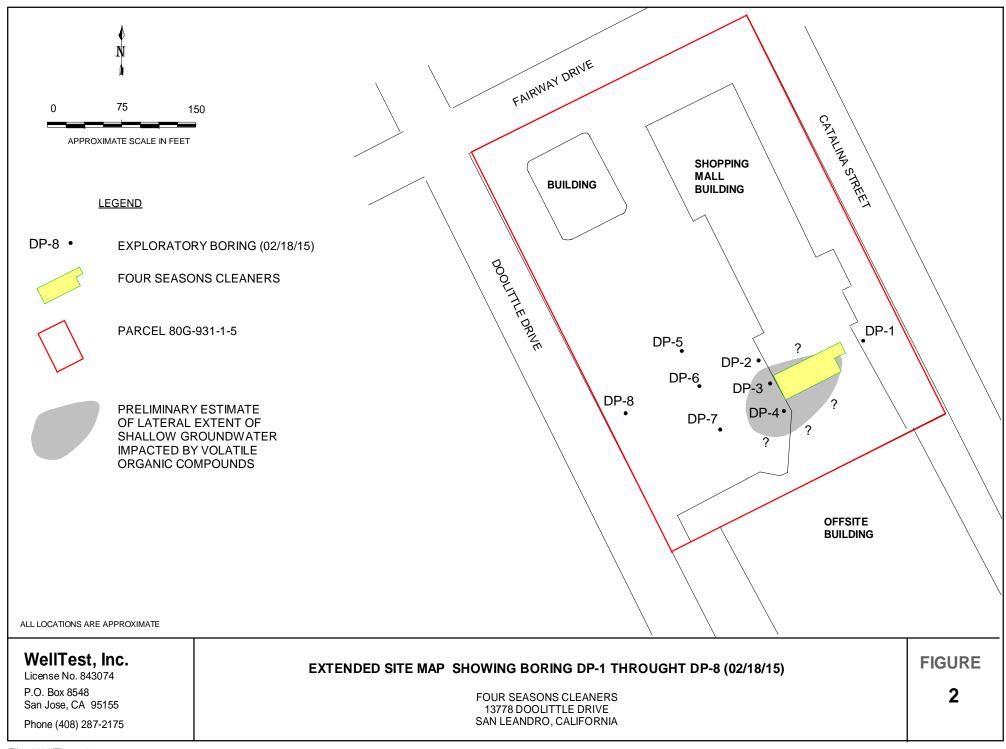

mg/Kg = milligrams per kilogram = ppm

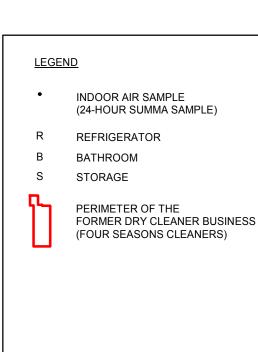
ESLs = Environmental Screening Levels, May 2013

B = Benzene MtBE = Methyl-t-butyl ether PCE = Tetrachloroethene
T = Toluene TCE = Trichloroethene
E = Ethylbenzene VC = Vinyl Chloride

Xyl = Xylenes (total) 2 = Dichlorodifl cis-1,2DCE = cis-1,2-Dichloroethene

FIGURES




13778 DOOLITTLE AVE. SAN LEANDRO, CALIFORNIA

SITE VICINITY MAP

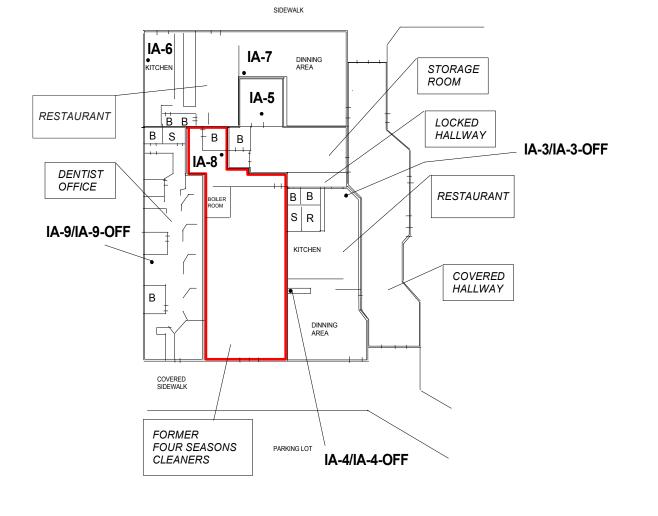
FIGURE

1

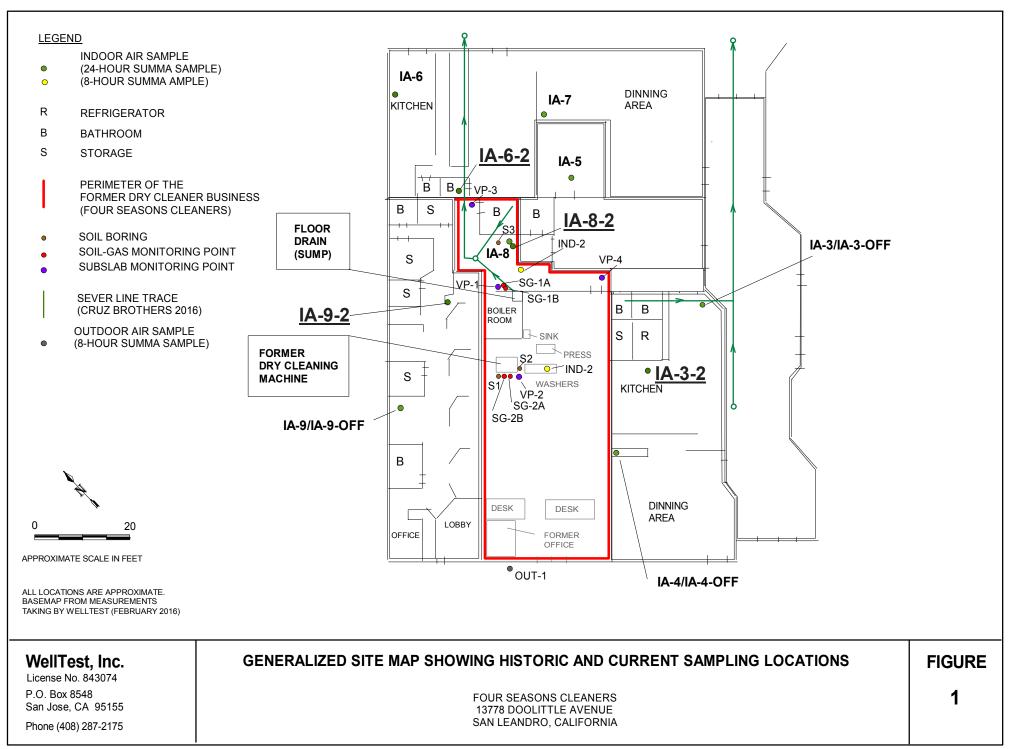
APPROXIMATE SCALE IN FEET

ALL LOCATIONS ARE APPROXIMATE. BASEMAP FROM MEASUREMENTS TAKING BY WELLTEST (FEBRUARY 2016)

WellTest, Inc.


License No. 843074 P.O. Box 8548 San Jose, CA 95155

Phone (408) 287-2175


GENERALIZED SITE MAP SHOWING THE FORMER DRY CLEANER BUSINESS UNIT, ADJACENT BUSINESSES, AND CURRENT SAMPLING LOCATIONS

FOUR SEASONS CLEANERS 13778 DOOLITTLE AVENUE SAN LEANDRO, CALIFORNIA

FIGURE 3

PARKING LOT

File: 5031/Drafting/Figure1

ATTACHMENT A

Directive Letters

ALAMEDA COUNTY HEALTH CARE SERVICES AGENCY

REBBECA GEBHART, Acting Director

April 20, 2016

Mr. Ernie Lee Marina Faire, Shopping Center 3271 South Highland Drive, Suite 704 Las Vegas, NV 89109

(Sent via email to ernestlee@gmail.com)

ENVIRONMENTAL HEALTH SERVICES ENVIRONMENTAL PROTECTION 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577 (510) 567-6700 FAX (510) 337-9335

Subject: Conditional Work Plan Approval; Site Cleanup Program Case No. RO0003155 and

Geotracker Global ID T10000006425, Four Seasons Cleaners, 13778 Doolittle Drive,

San Leandro, CA 94577

Dear Mr. Lee:

Alameda County Department of Environmental Health (ACDEH) staff has reviewed the case file including the *Supplemental Indoor Air Sampling Work Plan*, dated April 1, 2016 (received April 13, 2016). The work plan was prepared and submitted on your behalf by Well Test, Inc (WTI). Thank you for submitting the work plan. Due to elevated detection limits in the previous round of indoor vapor sampling, the work plan proposed the collection of at one indoor air vapor sample in each of the four adjacent commercial suites surrounding the dry cleaner suite as a followup step in assessing vapor intrusion risks to adjacent suites at the shopping center.

Based on ACDEH staff review of the work plan, the proposed scope of work is conditionally approved for implementation provided that the technical comments below are incorporated during the proposed work. Submittal of a revised work plan or a work plan addendum is not required unless an alternate scope of work outside that described in the work plan or these technical comments is proposed. We request that you address the following technical comments, perform the proposed work, and send us the report described below. Please provide at least a 24-hour advance written notification to this office (e-mail preferred to: mark.detterman@acqov.org) prior to the start of field activities.

TECHNICAL COMMENTS

- 1. Work Plan Modifications The referenced work plan proposes a series of actions with which ACDEH is in general agreement of undertaking; however, ACDEH requests several modifications to the approach. Please submit a report by the date specified below.
 - **a. HVAC System** The referenced work plan did not indicate if the Heating, Ventilation, Air Conditioning (HVAC) system would be off or on during vapor sampling. Due to more elevated results during the previous sampling event when the HVAC system was on, ACDEH requests that all samples be collected with the HVAC system operating.
 - **b. Vapor Sampling Length** In accordance with Department of Toxic Substances Control (DTSC) guidelines, please collect the indoor air samples over a 24-hour period.
- 2. Interim Remedial Actions Depending on the results, it is likely that interim remedial actions will be necessary to reduce the indoor air concentrations of PCE and related daughter products by either increasing air intake from outdoors, or by filtering indoor air, while solutions to address the source are identified. ACDEH requests the identification of appropriate measures, and the submittal of an interim remedial action plan by the date identified below.

Mr. Ernie Lee RO0003155 April 20, 2016, Page 2

TECHNICAL REPORT REQUEST

Please upload technical reports to the ACDEH ftp site (Attention: Mark Detterman), and to the State Water Resources Control Board's Geotracker website, in accordance with the specified file naming convention below, according to the following schedule:

- April 25, 2016 Indoor Air Sampling, at the latest
- May 3, 2016 Preliminary Data Submittal Email to Case Worker upon Receipt
- May 16, 2016 Vapor Intrusion Report and Interim Remedial Action Plan File to be named: RO3155 SWI IRAP R yyyy-mm-dd

These reports are being requested pursuant to California Health and Safety Code Section 25296.10. 23 CCR Sections 2652 through 2654, and 2721 through 2728 outline the responsibilities of a responsible party in response to an unauthorized release from a petroleum UST system, and require your compliance with this request.

Online case files are available for review at the following website: http://www.acgov.org/aceh/index.htm.

If you have any questions, please do not hesitate to call me at (510) 567-6876 or send me an electronic mail message at mark.detterman@acgov.org.

Sincerely,

Digitally signed by Mark Detterman
DN: cn=Mark Detterman, o=ACEH,

email=mark.detterman@acgov.org, c=US Date: 2016.04.20 14:07:58 -07'00'

Mark E. Detterman, PG, CEG Senior Hazardous Materials Specialist

Enclosures: Attachment 1 – Responsible Party (ies) Legal Requirements / Obligations

Electronic Report Upload (ftp) Instructions

cc: Ms. Julie D'Hondt, Marina Faire, LP, 3271 S. Highland Drive, Suite 704, Las Vegas, NV 89109 (Sent via email to highlandofficelv3@gmail.com)

Bill Dugan, Well Test, Inc; P.O. Box 8548, San Jose, CA 95115 (Sent via E-mail to: dugan@welltest.biz)

Forrest Cook, Well Test, Inc; P.O. Box 8548, San Jose, CA 95115 (Sent via E-mail to: Cook@welltest.biz)

Dilan Roe, ACDEH, (Sent via electronic mail to dilan.roe@acgov.org)

Mark Detterman, ACDEH, (sent via electronic mail to mark.detterman@acgov.org)

Electronic File, GeoTracker

Attachment 1

Responsible Party(ies) Legal Requirements / Obligations

REPORT REQUESTS

These reports are being requested pursuant to California Health and Safety Code Section 25296.10. 23 CCR Sections 2652 through 2654, and 2721 through 2728 outline the responsibilities of a responsible party in response to an unauthorized release from a petroleum UST system, and require your compliance with this request.

ELECTRONIC SUBMITTAL OF REPORTS

ACEH's Environmental Cleanup Oversight Programs (LOP and SLIC) require submission of reports in electronic form. The electronic copy replaces paper copies and is expected to be used for all public information requests, regulatory review, and compliance/enforcement activities. Instructions for submission of electronic documents to the Alameda County Environmental Cleanup Oversight Program FTP site are provided on the attached "Electronic Report Upload Instructions." Submission of reports to the Alameda County FTP site is an addition to existing requirements for electronic submittal of information to the State Water Resources Control Board (SWRCB) GeoTracker website. In September 2004, the SWRCB adopted regulations that require electronic submittal of information for all groundwater cleanup programs. For several years, responsible parties for cleanup of leaks from underground storage tanks (USTs) have been required to submit groundwater analytical data, surveyed locations of monitoring wells, and other data to the GeoTracker database over the Internet. Beginning July 1, 2005, these same reporting requirements were added to Spills, Leaks, Investigations, and Cleanup (SLIC) sites. Beginning July 1, 2005, electronic submittal of a complete copy of all reports for all sites is required in GeoTracker (in PDF format). **Please** visit the **SWRCB** website information on these requirements for more (http://www.waterboards.ca.gov/water issues/programs/ust/electronic submittal/).

PERJURY STATEMENT

All work plans, technical reports, or technical documents submitted to ACEH must be accompanied by a cover letter from the responsible party that states, at a minimum, the following: "I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge." This letter must be signed by an officer or legally authorized representative of your company. Please include a cover letter satisfying these requirements with all future reports and technical documents submitted for this fuel leak case.

PROFESSIONAL CERTIFICATION & CONCLUSIONS/RECOMMENDATIONS

The California Business and Professions Code (Sections 6735, 6835, and 7835.1) requires that work plans and technical or implementation reports containing geologic or engineering evaluations and/or judgments be performed under the direction of an appropriately registered or certified professional. For your submittal to be considered a valid technical report, you are to present site specific data, data interpretations, and recommendations prepared by an appropriately licensed professional and include the professional registration stamp, signature, and statement of professional certification. Please ensure all that all technical reports submitted for this fuel leak case meet this requirement.

<u>UNDERGROUND STORAGE TANK CLEANUP FUND</u>

Please note that delays in investigation, later reports, or enforcement actions may result in your becoming ineligible to receive grant money from the state's Underground Storage Tank Cleanup Fund (Senate Bill 2004) to reimburse you for the cost of cleanup.

AGENCY OVERSIGHT

If it appears as though significant delays are occurring or reports are not submitted as requested, we will consider referring your case to the Regional Board or other appropriate agency, including the County District Attorney, for possible enforcement actions. California Health and Safety Code, Section 25299.76 authorizes enforcement including administrative action or monetary penalties of up to \$10,000 per day for each day of violation.

Alameda County Environmental Cleanup Oversight Programs (LOP and SLIC)

REVISION DATE: May 15, 2014

ISSUE DATE: July 5, 2005

PREVIOUS REVISIONS: October 31, 2005:

December 16, 2005; March 27, 2009; July 8, 2010,

July 25, 2010

SECTION: Miscellaneous Administrative Topics & Procedures

SUBJECT: Electronic Report Upload (ftp) Instructions

The Alameda County Environmental Cleanup Oversight Programs (LOP and SLIC) require submission of all reports in electronic form to the county's ftp site. Paper copies of reports will no longer be accepted. The electronic copy replaces the paper copy and will be used for all public information requests, regulatory review, and compliance/enforcement activities.

REQUIREMENTS

- Please do not submit reports as attachments to electronic mail.
- Entire report including cover letter must be submitted to the ftp site as a single portable document format (PDF) with no password protection.
- It is **preferable** that reports be converted to PDF format from their original format, (e.g., Microsoft Word) rather than
- Signature pages and perjury statements must be included and have either original or electronic signature.
- Do not password protect the document. Once indexed and inserted into the correct electronic case file, the document will be secured in compliance with the County's current security standards and a password. Documents with password protection will not be accepted.
- Each page in the PDF document should be rotated in the direction that will make it easiest to read on a computer monitor.
- Reports must be named and saved using the following naming convention:

RO# Report Name Year-Month-Date (e.g., RO#5555 WorkPlan 2005-06-14)

Submission Instructions

- 1) Obtain User Name and Password
 - a) Contact the Alameda County Environmental Health Department to obtain a User Name and Password to upload files to the ftp site.
 - Send an e-mail to deh.loptoxic@acgov.org
 - b) In the subject line of your request, be sure to include "ftp PASSWORD REQUEST" and in the body of your request, include the Contact Information, Site Addresses, and the Case Numbers (RO# available in Geotracker) you will be posting for.
- 2) Upload Files to the ftp Site
 - a) Using Internet Explorer (IE4+), go to ftp://alcoftp1.acgov.org
 - (i) Note: Netscape, Safari, and Firefox browsers will not open the FTP site as they are NOT being supported at this time.
 - b) Click on Page located on the Command bar on upper right side of window, and then scroll down to Open FTP Site in Windows Explorer.
 - c) Enter your User Name and Password. (Note: Both are Case Sensitive.)
 - d) Open "My Computer" on your computer and navigate to the file(s) you wish to upload to the ftp site.
 - e) With both "My Computer" and the ftp site open in separate windows, drag and drop the file(s) from "My Computer" to the ftp window.
- 3) Send E-mail Notifications to the Environmental Cleanup Oversight Programs
 - a) Send email to deh.loptoxic@acgov.org notify us that you have placed a report on our ftp site.
 - b) Copy your Caseworker on the e-mail. Your Caseworker's e-mail address is the entire first name then a period and entire last name @acgov.org. (e.g., firstname.lastname@acgov.org)
 - c) The subject line of the e-mail must start with the RO# followed by **Report Upload**. (e.g., Subject: RO1234 Report Upload) If site is a new case without an RO#, use the street address instead.
 - If your document meets the above requirements and you follow the submission instructions, you will receive a notification by email indicating that your document was successfully uploaded to the ftp site.

ATTACHMENT B

Background Information

ATTACHMENT B

Site Description, Background, and Geology/Hydrogeology Details

13778 Doolittile Drive, San Leandro, CA Case # RO0003155

A description of the site, the history of the site and project, and the hydrogeologic characteristics of the site are summarized in the following subsections.

<u>Site Description</u>: The site is located in a mixed commercial and residential area of San Leandro, California. The site parcel is approximately 5.05 acres and is improved with a multi-tenant strip mall and separate restaurant building. The dry cleaning unit is located within the strip mall and is associated with 13778 Doolittle Drive. The site lies at an elevation of approximately 15 feet above sea level and is relatively flat. The property is bounded by Doolittle Drive to the west, Fairway Drive to the north, Catalina Drive to the east and a commercial property to the south..

Previous Site Investigations: A Limited Phase II Soil, Water, and Soil Vapor Investigation prepared by PIERS Environmental Services, Inc. (PIERS) for the subject site in August 2014. The results of the PIERS report indicated that the subsurface at the subject site has been significantly impacted by the common dry cleaning solvent tetrachloroethylene (PCE) and it's breakdown products trichloroethene (TCE) and cis-1,2-dichloroethen (cis-1,2DCE). The likely source of the identified impacts is the on-site dry cleaner which, reportedly, historically used and stored these solvents. Based upon the results of the PIERS investigation, WTI prepared a Soil and Water Investigation Work Plan for the subject site, which outlined a specific set of tasks to further define the scope and extent of subsurface soil and water contamination. The Work Plan was submitted to the Alameda County Health Care Services Agency (ACHCSA), the local oversight program, and was approved (with comments) in their January 15, 2015 Directive Letter. WTI implemented the scope of the Work Plan in February 2015, which included the collection of soil and grab groundwater samples from eight temporary borings. The results of the investigation are presented in WTI's Soil and Water Investigation Report and Vapor Assessment Work Plan, dated March 6, 2015.

ATTACHMENT C

Laboratory Data Sheets

Date of Report: 05/31/2016

Bill Dugan

Well Test, Inc. 1180 Delmas Ave. San Jose, CA 95125

Client Project: Four Seasons Cleaners

Air Samples **BCL Project: BCL Work Order:** 1613863 B236573 Invoice ID:

Enclosed are the results of analyses for samples received by the laboratory on 5/17/2016. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Contact Person: Misty Orton

Client Service Rep

Authorized Signature

Certifications: CA ELAP #1186; NV #CA00014; OR ELAP #4032-001; AK UST101

Table of Contents

Sample Information	
Chain of Custody and Cooler Receipt form	3
Laboratory / Client Sample Cross Reference	
Sample Results	
1613863-01 - IA-3-2	
Volatile Organic Compounds by GC/MS (EPA Method TO-15 Modified SIM)	6
1613863-02 - IA-9-2	
Volatile Organic Compounds by GC/MS (EPA Method TO-15 Modified SIM)	8
1613863-03 - IA-8-2	
Volatile Organic Compounds by GC/MS (EPA Method TO-15 Modified SIM)	10
1613863-04 - IA-6-2	
Volatile Organic Compounds by GC/MS (EPA Method TO-15 Modified SIM)	12
Quality Control Reports	
Volatile Organic Compounds by GC/MS (EPA Method TO-15 Modified SIM)	
Method Blank Analysis	14
Laboratory Control Sample	
Notes	
Notes and Definitions	18

Page 2 of 18 Report ID: 1000486025

Chain of Custody and Cooler Receipt Form for 1613863

]					Ι			Τ	Π	Π			T	T									^	7
		day				9886	oii & Gre																	0	14	φ °	
		Same day other					h (In the f	+-	1	ļ	-	<u> </u>	L		\perp	\perp	1	$\perp \perp$	\perp	$\downarrow \downarrow$	_	44	-	1000	1 40	1 o 4 =	
2							Silica Gel C	╄	-	L	L	_	_	\sqcup	4	4	\parallel	14	1		-	44	4	11/6/	1/6	Pageic acid. C	
N C					woi) sisteMi		nority Pol		L	L							1	糾				Ш		14	1/1	F Pa	
<u>H</u>		2 day	•	ted	ium, Chromiun			_	L	<u></u>	L	L	_		\downarrow	\perp	1	翻	15				1	V	775		l
>				dnes			20OC,2 (8)	╁	<u> </u>	-	 	<u> </u>	<u> </u>	H	\dashv	+	+		ÍÓ		_	++	$\frac{1}{2}$		Time	c acid	
] } .	10 day 7 day 5 day	SIM	Analyses Requested	(2) 21) 721		400cs (80	├	Ļ			L	-	-	-	_	-					++	-	7046	Date/Time: Date/Time:	ochlori	
Ę	. ;		73	alyse	Hmo (8015M) TCE (TO-15)			3-	<u> </u>	7	F	7	7	H	+	+	-	12	4		-	++	-		 	, Hyd	
S))	1 1 1		Ang	ov GC/MS			\vdash	-		\vdash		_		\dashv	\dagger	-	 			\top		1			F 15	
C)	, (s)			6 (100 100	1000	(85608)			-				H	\dagger	\top		*			\top	$\dagger \dagger$	1		1 1	ative:	10
一 円		ounc g day				ζ λq ι	ıZ bns ,gA		H					H	+	+	-	₹\/	\mathbb{Z}		-	++	m3	1 8	看,	Method: Page 0f Preservative: HCL = Hydrochloric acid, N = Nitric acid, C = 40 C	23k
CHAIN OF CUSTODY FORM		I urnaround Time: (working days)			г, Си, Иі, Рь,			-	<u> </u>		H			H	+	+	#	+	+	+	+	++	RESULTS IN ppbv AND ug/m3		he	Transportation Method:	ENTHE USE
A	ř	Z≓≷			······································			_						\vdash	+	-	+	++	-	H	-	┼┼	A AN	1 H	4	nsport	12
王 天	- -				tnioads	el3 a	Closed Cu	_						$\vdash \downarrow$	+	+	╁	+	+	${\mathbb H}$	+	++	- da	1	11		ã
						nts	Field Point Name Same as Sample ID (Y/N)																TSI	Received By:	Received By:	ត	1
('وی		J.			Comments	Point as Sar (Y/N)	Yeş	γes						ı								SUL	, do	ceive	plasti	E.
	128		DRIVE			ပိ	Field										ĺ						l 33	, a	2 2 2	<u>a</u>	SE.
	16-13863							١×	×					\dashv	\dagger	+	+	$\dagger \dagger$	+	$\dagger \dagger$	_	$\dagger \dagger$.biz			mp -	
:	حسد	5	DOOLE TALE			tion	Preservative	Dark Box	Dark Box														elltest	767	135	Cooler Temp	
		CLEAMERS	H		z	ıma	Pres	Dai	g/g	A													@we	10	3	Coc ass, S	
		L. A	000		est.b	rInfe		/=	ä					\top	T	T	T	T		\prod	\top		lugar	9/:	13/2	(B - br	١,
	2175	2 0	28	S	wellt	Container Information	Туре	Tedłar	T edlar														100	21.5	13/	tube	1/2
P.O. Box 8548 San Jose, CA 95155	Main Line: (408) 287-2175 Facsimile: (408) 287-2176	SERSONS	13778	ct: Peter Bins	Email: dugan@welltest.biz	Con		1	\dashv	\forall	_	\dashv	\dashv	+	+	+	+	++	+	H	╁	+	Send report and EDF to dugan@welltest.biz	e: 5	, ,	, No He, T =	2315
548 CA 99	(408) (408)	00 P	- 1	B S	96		, N	7		\		_		_	_	\perp	ot			Ш			ıt an	Date/Time:	Date/Time: Date/Time:	es ter bot	1/2
ox 8 ose, (ine:	j ∠	0	-	Email		Vapor	1	3														repo	Date	Dat	Refrigerated ? Yes_ 00 ml = 500 milliliter	1
9.0.E	lain L	FOUR		ပို့			Matrix Water							T			T			П			Send			igerate	5/14
டல	2 11	- 制	San		5		ATR V	1	\dashv	7	7	7	7	\dashv	+	+	\dagger	++	+	\vdash	+	\vdash	- 1		չ	Refri	1,0
		Cannery Park	198	<u> </u>	Wills	ے		1	1	1	\dashv	\dashv	\dashv	\dashv	+	+	+	ff	+	\vdash	-	\vdash	st, Ir	till	188 288	pottle,	1.
		au		Siles	88 3	natio	Time			1039	104	9401	5401		l								/ellTe	In	r\	mber -	M
			SECUTION STATE STATE STATE CALLOS CAL	BC Laboratories, Inc. Conte	Bill Dugan (408) 460-1884 Bill Bugan h	Sample Information	o.			16							Ī	П					to 🛚	D	We K	No liter a	1 6
ن	4	ENGEO 5059			Bill Dugan (408) 460- Bill Dugan	음	Date			5.17.16	+	+	>										Voice	aline and a	(1)	, L=1	197
∆ =	84307	函制图	क्वाना			Sam		\dashv	\dashv	\dashv	_\	_	+	+	+	+	\vdash	++	+-	\vdash	+	\vdash	<u>i</u>	×	M.	1? Yes ml vial	"
VellTest, Inc.	Contractor License No. 843074	۳.	.;	Laboratory: Lab Address/Phone:	Project Manager: PM Phone Number: Sampler:		۵			-	1	4	7										Additional Comments: Invoice to WellTest, Inc.	≈	Relinquished By: Relinquished By:	Sample Condition: Good? Yes No Refrigerated ? Yes No Cooler Temp Container Type: V = 40 ml vial, L = 1 liter amber bottle, 500 ml = 500 milliliter bottle, T = tube (B - brass, S - stailess steel, P - plastic)	
≝ٍ۷	or Lice	ame: umbe	J.: ddres	عود /تا	lanag e Nu		Sample ID			اہ	7	4	اد										Com	er El	quish quishe	dition:	
V @	ontract	Project Name: Project Number:	Global I.D.: Project Address:	Laboratory: I ah Address	Project M PM Phone Sampler:		Sarr			2-7	7-6-	-8-2	2-9-										onal	Geotracker EDF Relinquished E	Relinc Reling	le Con iner T	3/
>	1 C	Proje Proje	P 20 5	Lab Lab	Proje PM I Sam					1A.3	4	₫	科										Additi	Geo	ur ur	Samp Conta	FORM

Chain of Custody and Cooler Receipt Form for 1613863

BC LABORATORIES INC.			COOL	ER RECE	IPT FOR	Л		Pag	jeOf _
Submission #: 16 -138	663								
BC Lab Field Service O		land Deli	very 🗆		SHIPPII Chest 🗆 Other 🗀 (AINER Box		FREE LIQUID YES NO
Refrigerant: Ice ☐ Blue I	ce □ N	one 💢	Other	□ C	omments:				
Custody Seals Ice Chest ☐ Intact? Yes ☐ No ☐		ainers □ ⁄es □ No		one C	omments	The state of the s	Act : Northwest Towns . The control of the	TO STORY OF THE STORY OF THE STORY	
All samples received? Yes □ No □	All samı	les contai	ners intact	? Yest	No 🗆	Descr	iption(s) ma	tch COC?	Yes 🗹 No 🗆
COC Received	Emissivity:	_	Contain	red JUM	MA Then	nometer_ID:		-Date/Tin	5-17-16
TS □ NO	Temnera	ure: (A)	Λ .		110/1		°C	1	11 614
	Tempera	uie. (A)	<u> </u>	<u> </u>				Analyst	Init //
SAMPLE CONTAINERS	<u> </u>			-	SAN	PLE NUMBER	S -		<u> </u>
QT PE UNPRES			3	4	5	6	7	8	9 10
40z / 80z / 160z PE UNPRES			_					<u> </u>	
20z Cr ⁴⁶								 	
								 	
QT INORGANIC CHEMICAL METALS INORGANIC CHEMICAL METALS 40z / 80z /	(16-	_	-			_		 	
NORGANIC CHEMICAL METALS 40z / 80z / PT CYANIDE	/ 160Z							-	
PT CYANIDE PT NITROGEN FORMS								ļ	
PT TOTAL SULFIDE									
OZ. NITRATE / NITRITE									
T TOTAL ORGANIC CARBON									
T CHEMICAL OXYGEN DEMAND							ļ		
1A PHENOLICS							<u> </u>		
Oml VOA VIAL TRAVEL BLANK							<u> </u>		
Oml VOA VIAL									
T EPA 1664							ļ		
r odor							ļ		
ADIOLOGICAL									
ACTERIOLOGICAL							/		
ml VOA VIAL- 504		_							
Γ EPA 508/608/8080									
Γ EPA 515.1/8150									
Γ EPA 525									
FEPA 525 TRAVEL BLANK									
ml EPA 547									
nl EPA 531.1									
EPA 548									
EPA 549			<u> </u>			<u> </u>			
EPA 8015M									
EPA 8270									
/16oz/32oz AMBER				ļ					
/ 160z / 32oz JAR			ļ						
L SLEEVE		<u> </u>	<u> </u>						
3 VIAL			<u> </u>						
ASTIC BAG				ļ					
DLAR BAG		_	 	 					
ROUS IRON									
CORE									
ART KIT					I		——————————————————————————————————————		
IMA CANISTER	A	Λ	A	A					
ments:		1 17	<u> </u>	11.1					
	/) - A			1	1			

05/31/2016 17:00 Reported: Project: Air Samples

Project Number: Four Seasons Cleaners

Project Manager: Bill Dugan

Laboratory / Client Sample Cross Reference

Laboratory	Client Sample Informati	on		
1613863-01	COC Number:		Receive Date:	05/17/2016 23:15
	Project Number:		Sampling Date:	05/17/2016 10:39
	Sampling Location:		Sample Depth:	
	Sampling Point:	IA-3-2	Lab Matrix:	Air
	Sampled By:	Wills	Sample Type:	Vapor or Air
1613863-02	COC Number:		Receive Date:	05/17/2016 23:15
	Project Number:		Sampling Date:	05/17/2016 10:41
	Sampling Location:		Sample Depth:	
	Sampling Point:	IA-9-2	Lab Matrix:	Air
	Sampled By:	Wills	Sample Type:	Vapor or Air
1613863-03	COC Number:		Receive Date:	05/17/2016 23:15
	Project Number:		Sampling Date:	05/17/2016 10:46
	Sampling Location:		Sample Depth:	
	Sampling Point:	IA-8-2	Lab Matrix:	Air
	Sampled By:	Wills	Sample Type:	Vapor or Air
1613863-04	COC Number:		Receive Date:	05/17/2016 23:15
	Project Number:		Sampling Date:	05/17/2016 10:49
	Sampling Location:		Sample Depth:	
	Sampling Point:	IA-6-2	Lab Matrix:	Air
	Sampled By:	Wills	Sample Type:	Vapor or Air

Page 5 of 18 Report ID: 1000486025

Reported: 05/31/2016 17:00
Project: Air Samples

Project Number: Four Seasons Cleaners

Project Manager: Bill Dugan

Volatile Organic Compounds by GC/MS (EPA Method TO-15 Modified SIM)

BCL Sample ID: 1	613863-01	Client Sample	e Name:	IA-3-2, 5/	17/2016 10):39:00AM, Wills			
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	Run #
Acetone		ND	ug/m3	1.9	0.12	EPA-TO-15-SIM	ND ND	A01	1
Benzene		ND	ug/m3	0.096	0.014	EPA-TO-15-SIM	ND	A01	1
Benzyl chloride		ND	ug/m3	0.96	0.031	EPA-TO-15-SIM	ND	A01	1
Carbon tetrachloride		ND	ug/m3	0.39	0.014	EPA-TO-15-SIM	ND	A01	1
Chlorobenzene		ND	ug/m3	0.19	0.015	EPA-TO-15-SIM	ND	A01	1
Chloroform		ND	ug/m3	0.096	0.011	EPA-TO-15-SIM	ND	A01	1
1,2-Dibromoethane		ND	ug/m3	0.39	0.018	EPA-TO-15-SIM	ND	A01	1
1,2-Dichlorobenzene		ND	ug/m3	0.39	0.029	EPA-TO-15-SIM	ND	A01	1
1,3-Dichlorobenzene		ND	ug/m3	0.39	0.031	EPA-TO-15-SIM	ND	A01	1
1,4-Dichlorobenzene		ND	ug/m3	0.39	0.021	EPA-TO-15-SIM	ND	A01	1
Dichlorodifluoromethane		2.8	ug/m3	0.096	0.027	EPA-TO-15-SIM	ND	A01	1
1,1-Dichloroethane		ND	ug/m3	0.096	0.012	EPA-TO-15-SIM	ND	A01	1
1,2-Dichloroethane		ND	ug/m3	0.19	0.0079	EPA-TO-15-SIM	ND	A01	1
1,1-Dichloroethene		ND	ug/m3	0.096	0.0077	EPA-TO-15-SIM	ND	A01	1
cis-1,2-Dichloroethene		ND	ug/m3	0.096	0.012	EPA-TO-15-SIM	ND	A01	1
trans-1,2-Dichloroethene		ND	ug/m3	0.096	0.025	EPA-TO-15-SIM	ND	A01	1
trans-1,3-Dichloropropene		ND	ug/m3	0.096	0.019	EPA-TO-15-SIM	ND	A01	1
1,1-Difluoroethane		ND	ug/m3	9.6	3.9	EPA-TO-15-SIM	ND	A01	1
Ethylbenzene		ND	ug/m3	0.096	0.014	EPA-TO-15-SIM	ND	A01	1
Methylene chloride		ND	ug/m3	0.39	0.12	EPA-TO-15-SIM	ND	A01	1
Methyl t-butyl ether		ND	ug/m3	0.19	0.021	EPA-TO-15-SIM	ND	A01	1
1,1,2,2-Tetrachloroethane		ND	ug/m3	0.19	0.041	EPA-TO-15-SIM	ND	A01	1
Tetrachloroethene		ND	ug/m3	0.96	0.042	EPA-TO-15-SIM	ND	A01	1
Toluene		ND	ug/m3	0.19	0.023	EPA-TO-15-SIM	ND	A01	1
1,1,1-Trichloroethane		ND	ug/m3	0.19	0.011	EPA-TO-15-SIM	ND	A01	1
1,1,2-Trichloroethane		ND	ug/m3	0.096	0.033	EPA-TO-15-SIM	ND	A01	1
Trichloroethene		ND	ug/m3	0.19	0.016	EPA-TO-15-SIM	ND	A01	1
Trichlorofluoromethane		ND	ug/m3	0.096	0.035	EPA-TO-15-SIM	ND	A01	1
1,2,3-Trichloropropane		ND	ug/m3	0.096	0.039	EPA-TO-15-SIM	ND	A01	1
1,1,2-Trichloro-1,2,2-trifluoro	ethane	ND	ug/m3	0.19	0.044	EPA-TO-15-SIM	ND	A01	1
Vinyl chloride		ND	ug/m3	0.039	0.0050	EPA-TO-15-SIM	ND	A01	1
p- & m-Xylenes		ND	ug/m3	0.096	0.021	EPA-TO-15-SIM	ND	A01	1
o-Xylene		ND	ug/m3	0.096	0.010	EPA-TO-15-SIM	ND	A01	1

Report ID: 1000486025 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Page 6 of 18

Reported: 05/31/2016 17:00

Project: Air Samples

Project Number: Four Seasons Cleaners

Project Manager: Bill Dugan

Volatile Organic Compounds by GC/MS (EPA Method TO-15 Modified SIM)

BCL Sample ID:	1613863-01	Client Sampl	e Name:	IA-3-2, 5/	17/2016 10	0:39:00AM, Wills			
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	Run #
Total Xylenes		ND	ug/m3	0.19	0.033	EPA-TO-15-SIM	ND	A01	1
4-Bromofluorobenzene	e (Surrogate)	82.4	%	50 - 150 (LC	L - UCL)	EPA-TO-15-SIM			1

			Run				QC	
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-TO-15-SIM	05/29/16	05/29/16 18:03	MJB	MS-A1	1.930	BZE2708	

Report ID: 1000486025 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Page 7 of 18

Well Test, Inc.

1180 Delmas Ave. San Jose, CA 95125 **Reported:** 05/31/2016 17:00
Project: Air Samples

Project Number: Four Seasons Cleaners

Project Manager: Bill Dugan

Volatile Organic Compounds by GC/MS (EPA Method TO-15 Modified SIM)

BCL Sample ID: 16	13863-02	Client Sampl	e Name:	IA-9-2, 5/	17/2016 10	0:41:00AM, Wills			
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	Run #
Acetone		20	ug/m3	1.4	0.086	EPA-TO-15-SIM	ND ND	A01	1
Benzene		ND	ug/m3	0.070	0.0099	EPA-TO-15-SIM	ND	A01	1
Benzyl chloride		ND	ug/m3	0.70	0.023	EPA-TO-15-SIM	ND	A01	1
Carbon tetrachloride		ND	ug/m3	0.28	0.011	EPA-TO-15-SIM	ND	A01	1
Chlorobenzene		ND	ug/m3	0.14	0.011	EPA-TO-15-SIM	ND	A01	1
Chloroform		ND	ug/m3	0.070	0.0083	EPA-TO-15-SIM	ND	A01	1
1,2-Dibromoethane		ND	ug/m3	0.28	0.013	EPA-TO-15-SIM	ND	A01	1
1,2-Dichlorobenzene		ND	ug/m3	0.28	0.021	EPA-TO-15-SIM	ND	A01	1
1,3-Dichlorobenzene		ND	ug/m3	0.28	0.023	EPA-TO-15-SIM	ND	A01	1
1,4-Dichlorobenzene		ND	ug/m3	0.28	0.016	EPA-TO-15-SIM	ND	A01	1
Dichlorodifluoromethane		9.4	ug/m3	0.070	0.020	EPA-TO-15-SIM	ND	A01	1
1,1-Dichloroethane		ND	ug/m3	0.070	0.0089	EPA-TO-15-SIM	ND	A01	1
1,2-Dichloroethane		ND	ug/m3	0.14	0.0058	EPA-TO-15-SIM	ND	A01	1
1,1-Dichloroethene		ND	ug/m3	0.070	0.0056	EPA-TO-15-SIM	ND	A01	1
cis-1,2-Dichloroethene		ND	ug/m3	0.070	0.0086	EPA-TO-15-SIM	ND	A01	1
trans-1,2-Dichloroethene		ND	ug/m3	0.070	0.018	EPA-TO-15-SIM	ND	A01	1
trans-1,3-Dichloropropene		ND	ug/m3	0.070	0.014	EPA-TO-15-SIM	ND	A01	1
1,1-Difluoroethane		ND	ug/m3	7.0	2.8	EPA-TO-15-SIM	ND	A01	1
Ethylbenzene		ND	ug/m3	0.070	0.010	EPA-TO-15-SIM	ND	A01	1
Methylene chloride		ND	ug/m3	0.28	0.086	EPA-TO-15-SIM	ND	A01	1
Methyl t-butyl ether		ND	ug/m3	0.14	0.016	EPA-TO-15-SIM	ND	A01	1
1,1,2,2-Tetrachloroethane		ND	ug/m3	0.14	0.030	EPA-TO-15-SIM	ND	A01	1
Tetrachloroethene		260	ug/m3	0.70	0.031	EPA-TO-15-SIM	ND	A01	1
Toluene		17	ug/m3	0.14	0.017	EPA-TO-15-SIM	ND	A01	1
1,1,1-Trichloroethane		ND	ug/m3	0.14	0.0078	EPA-TO-15-SIM	ND	A01	1
1,1,2-Trichloroethane		ND	ug/m3	0.070	0.024	EPA-TO-15-SIM	ND	A01	1
Trichloroethene		ND	ug/m3	0.14	0.012	EPA-TO-15-SIM	ND	A01	1
Trichlorofluoromethane		19	ug/m3	0.070	0.025	EPA-TO-15-SIM	ND	A01	1
1,2,3-Trichloropropane		ND	ug/m3	0.070	0.028	EPA-TO-15-SIM	ND	A01	1
1,1,2-Trichloro-1,2,2-trifluoro	ethane	ND	ug/m3	0.14	0.032	EPA-TO-15-SIM	ND	A01	1
Vinyl chloride		ND	ug/m3	0.028	0.0037	EPA-TO-15-SIM	ND	A01	1
p- & m-Xylenes		8.4	ug/m3	0.070	0.016	EPA-TO-15-SIM	ND	A01	1
o-Xylene		3.0	ug/m3	0.070	0.0073	EPA-TO-15-SIM	ND	A01	1

Report ID: 1000486025 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Page 8 of 18

Well Test, Inc. 1180 Delmas Ave.

San Jose, CA 95125

Reported: 05/31/2016 17:00

Project: Air Samples

Project Number: Four Seasons Cleaners

Project Manager: Bill Dugan

Volatile Organic Compounds by GC/MS (EPA Method TO-15 Modified SIM)

BCL Sample ID: 1613863-02 Client Sample Name:				IA-9-2, 5/	17/2016 10	0:41:00AM, Wills			
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	Run#
Total Xylenes		11	ug/m3	0.14	0.024	EPA-TO-15-SIM	ND	A01	1
4-Bromofluorobenzene	e (Surrogate)	118	%	50 - 150 (LC	L - UCL)	EPA-TO-15-SIM			1

	Run							
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-TO-15-SIM	05/29/16	05/29/16 18:40	MJB	MS-A1	1.410	BZE2708	

Report ID: 1000486025 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Page 9 of 18

MU

Well Test, Inc. 1180 Delmas Ave. San Jose, CA 95125 Reported: 05/31/2016 17:00
Project: Air Samples

Project Number: Four Seasons Cleaners

Project Manager: Bill Dugan

Volatile Organic Compounds by GC/MS (EPA Method TO-15 Modified SIM)

BCL Sample ID: 1	613863-03	Client Sampl	e Name:	IA-8-2, 5/	17/2016 10):46:00AM, Wills			
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	Run #
Acetone		ND	ug/m3	1.8	0.11	EPA-TO-15-SIM	ND	A01	1
Benzene		ND	ug/m3	0.092	0.013	EPA-TO-15-SIM	ND	A01	1
Benzyl chloride		ND	ug/m3	0.92	0.030	EPA-TO-15-SIM	ND	A01	1
Carbon tetrachloride		ND	ug/m3	0.37	0.014	EPA-TO-15-SIM	ND	A01	1
Chlorobenzene		ND	ug/m3	0.18	0.014	EPA-TO-15-SIM	ND	A01	1
Chloroform		ND	ug/m3	0.092	0.011	EPA-TO-15-SIM	ND	A01	1
1,2-Dibromoethane		ND	ug/m3	0.37	0.017	EPA-TO-15-SIM	ND	A01	1
1,2-Dichlorobenzene		ND	ug/m3	0.37	0.028	EPA-TO-15-SIM	ND	A01	1
1,3-Dichlorobenzene		ND	ug/m3	0.37	0.030	EPA-TO-15-SIM	ND	A01	1
1,4-Dichlorobenzene		ND	ug/m3	0.37	0.020	EPA-TO-15-SIM	ND	A01	1
Dichlorodifluoromethane		3.5	ug/m3	0.092	0.026	EPA-TO-15-SIM	ND	A01	1
1,1-Dichloroethane		ND	ug/m3	0.092	0.012	EPA-TO-15-SIM	ND	A01	1
1,2-Dichloroethane		ND	ug/m3	0.18	0.0076	EPA-TO-15-SIM	ND	A01	1
1,1-Dichloroethene		ND	ug/m3	0.092	0.0074	EPA-TO-15-SIM	ND	A01	1
cis-1,2-Dichloroethene		ND	ug/m3	0.092	0.011	EPA-TO-15-SIM	ND	A01	1
trans-1,2-Dichloroethene		ND	ug/m3	0.092	0.024	EPA-TO-15-SIM	ND	A01	1
trans-1,3-Dichloropropene		ND	ug/m3	0.092	0.018	EPA-TO-15-SIM	ND	A01	1
1,1-Difluoroethane		ND	ug/m3	9.2	3.7	EPA-TO-15-SIM	ND	A01	1
Ethylbenzene		ND	ug/m3	0.092	0.014	EPA-TO-15-SIM	ND	A01	1
Methylene chloride		ND	ug/m3	0.37	0.11	EPA-TO-15-SIM	ND	A01	1
Methyl t-butyl ether		ND	ug/m3	0.18	0.020	EPA-TO-15-SIM	ND	A01	1
1,1,2,2-Tetrachloroethane		ND	ug/m3	0.18	0.039	EPA-TO-15-SIM	ND	A01	1
Tetrachloroethene		ND	ug/m3	0.92	0.041	EPA-TO-15-SIM	ND	A01	1
Toluene		ND	ug/m3	0.18	0.022	EPA-TO-15-SIM	ND	A01	1
1,1,1-Trichloroethane		ND	ug/m3	0.18	0.010	EPA-TO-15-SIM	ND	A01	1
1,1,2-Trichloroethane		ND	ug/m3	0.092	0.031	EPA-TO-15-SIM	ND	A01	1
Trichloroethene		ND	ug/m3	0.18	0.015	EPA-TO-15-SIM	ND	A01	1
Trichlorofluoromethane		ND	ug/m3	0.092	0.033	EPA-TO-15-SIM	ND	A01	1
1,2,3-Trichloropropane		ND	ug/m3	0.092	0.037	EPA-TO-15-SIM	ND	A01	1
1,1,2-Trichloro-1,2,2-trifluoro	ethane	ND	ug/m3	0.18	0.043	EPA-TO-15-SIM	ND	A01	1
Vinyl chloride		ND	ug/m3	0.037	0.0048	EPA-TO-15-SIM	ND	A01	1
p- & m-Xylenes		ND	ug/m3	0.092	0.020	EPA-TO-15-SIM	ND	A01	1
o-Xylene		ND	ug/m3	0.092	0.0096	EPA-TO-15-SIM	ND	A01	1

Report ID: 1000486025 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Page 10 of 18

Reported: 05/31/2016 17:00 Project: Air Samples

Project Number: Four Seasons Cleaners

Project Manager: Bill Dugan

Volatile Organic Compounds by GC/MS (EPA Method TO-15 Modified SIM)

BCL Sample ID:	1613863-03	Client Sampl	e Name:	IA-8-2, 5/	17/2016 1	0:46:00AM, Wills			
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	Run#
Total Xylenes		ND	ug/m3	0.18	0.031	EPA-TO-15-SIM	ND	A01	1
4-Bromofluorobenzene	e (Surrogate)	67.3	%	50 - 150 (LC	L - UCL)	EPA-TO-15-SIM			1

			Run					
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-TO-15-SIM	05/29/16	05/29/16 19:17	MJB	MS-A1	1.850	BZE2708	

4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Report ID: 1000486025

Reported: 05/31/2016 17:00 Project: Air Samples

Project Number: Four Seasons Cleaners

Project Manager: Bill Dugan

Volatile Organic Compounds by GC/MS (EPA Method TO-15 Modified SIM)

BCL Sample ID: 16	313863-04	Client Sampl	e Name:	IA-6-2, 5/	17/2016 10	0:49:00AM, Wills			
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	Run#
Acetone		ND	ug/m3	1.9	0.11	EPA-TO-15-SIM	ND	A01	1
Benzene		ND	ug/m3	0.094	0.013	EPA-TO-15-SIM	ND	A01	1
Benzyl chloride		ND	ug/m3	0.94	0.030	EPA-TO-15-SIM	ND	A01	1
Carbon tetrachloride		ND	ug/m3	0.37	0.014	EPA-TO-15-SIM	ND	A01	1
Chlorobenzene		ND	ug/m3	0.19	0.015	EPA-TO-15-SIM	ND	A01	1
Chloroform		ND	ug/m3	0.094	0.011	EPA-TO-15-SIM	ND	A01	1
1,2-Dibromoethane		ND	ug/m3	0.37	0.017	EPA-TO-15-SIM	ND	A01	1
1,2-Dichlorobenzene		ND	ug/m3	0.37	0.028	EPA-TO-15-SIM	ND	A01	1
1,3-Dichlorobenzene		ND	ug/m3	0.37	0.030	EPA-TO-15-SIM	ND	A01	1
1,4-Dichlorobenzene		ND	ug/m3	0.37	0.021	EPA-TO-15-SIM	ND	A01	1
Dichlorodifluoromethane		3.2	ug/m3	0.094	0.026	EPA-TO-15-SIM	ND	A01	1
1,1-Dichloroethane		ND	ug/m3	0.094	0.012	EPA-TO-15-SIM	ND	A01	1
1,2-Dichloroethane		ND	ug/m3	0.19	0.0077	EPA-TO-15-SIM	ND	A01	1
1,1-Dichloroethene		ND	ug/m3	0.094	0.0075	EPA-TO-15-SIM	ND	A01	1
cis-1,2-Dichloroethene		ND	ug/m3	0.094	0.011	EPA-TO-15-SIM	ND	A01	1
trans-1,2-Dichloroethene		ND	ug/m3	0.094	0.024	EPA-TO-15-SIM	ND	A01	1
trans-1,3-Dichloropropene		ND	ug/m3	0.094	0.019	EPA-TO-15-SIM	ND	A01	1
1,1-Difluoroethane		ND	ug/m3	9.4	3.7	EPA-TO-15-SIM	ND	A01	1
Ethylbenzene		ND	ug/m3	0.094	0.014	EPA-TO-15-SIM	ND	A01	1
Methylene chloride		ND	ug/m3	0.37	0.11	EPA-TO-15-SIM	ND	A01	1
Methyl t-butyl ether		ND	ug/m3	0.19	0.021	EPA-TO-15-SIM	ND	A01	1
1,1,2,2-Tetrachloroethane		ND	ug/m3	0.19	0.039	EPA-TO-15-SIM	ND	A01	1
Tetrachloroethene		ND	ug/m3	0.94	0.041	EPA-TO-15-SIM	ND	A01	1
Toluene		ND	ug/m3	0.19	0.022	EPA-TO-15-SIM	ND	A01	1
1,1,1-Trichloroethane		ND	ug/m3	0.19	0.010	EPA-TO-15-SIM	ND	A01	1
1,1,2-Trichloroethane		ND	ug/m3	0.094	0.032	EPA-TO-15-SIM	ND	A01	1
Trichloroethene		ND	ug/m3	0.19	0.016	EPA-TO-15-SIM	ND	A01	1
Trichlorofluoromethane		ND	ug/m3	0.094	0.034	EPA-TO-15-SIM	ND	A01	1
1,2,3-Trichloropropane		ND	ug/m3	0.094	0.037	EPA-TO-15-SIM	ND	A01	1
1,1,2-Trichloro-1,2,2-trifluoro	ethane	ND	ug/m3	0.19	0.043	EPA-TO-15-SIM	ND	A01	1
Vinyl chloride		ND	ug/m3	0.037	0.0049	EPA-TO-15-SIM	ND	A01	1
p- & m-Xylenes		ND	ug/m3	0.094	0.021	EPA-TO-15-SIM	ND	A01	1
o-Xylene		ND	ug/m3	0.094	0.0097	EPA-TO-15-SIM	ND	A01	1

Report ID: 1000486025 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Page 12 of 18

Reported: 05/31/2016 17:00

Project: Air Samples

Project Number: Four Seasons Cleaners

Project Manager: Bill Dugan

Volatile Organic Compounds by GC/MS (EPA Method TO-15 Modified SIM)

BCL Sample ID:	1613863-04	Client Sampl	e Name:	IA-6-2, 5/	17/2016 10	0:49:00AM, Wills			
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	Run#
Total Xylenes		ND	ug/m3	0.19	0.032	EPA-TO-15-SIM	ND	A01	1
4-Bromofluorobenzene	e (Surrogate)	69.3	%	50 - 150 (LC	L - UCL)	EPA-TO-15-SIM			1

			Run				QC
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID
1	EPA-TO-15-SIM	05/29/16	05/29/16 19:54	MJB	MS-A1	1.870	BZE2708

Report ID: 1000486025 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Page 13 of 18

MUL

Well Test, Inc. 1180 Delmas Ave. San Jose, CA 95125 Reported: 05/31/2016 17:00 Project: Air Samples

Project Number: Four Seasons Cleaners

Project Manager: Bill Dugan

Volatile Organic Compounds by GC/MS (EPA Method TO-15 Modified SIM)

Quality Control Report - Method Blank Analysis

Constituent	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
QC Batch ID: BZE2708						
Acetone	BZE2708-BLK1	ND	ug/m3	1.0	0.061	
Benzene	BZE2708-BLK1	ND	ug/m3	0.050	0.0070	
Benzyl chloride	BZE2708-BLK1	ND	ug/m3	0.50	0.016	
Carbon tetrachloride	BZE2708-BLK1	ND	ug/m3	0.20	0.0075	
Chlorobenzene	BZE2708-BLK1	ND	ug/m3	0.10	0.0078	
Chloroform	BZE2708-BLK1	ND	ug/m3	0.050	0.0059	
1,2-Dibromoethane	BZE2708-BLK1	ND	ug/m3	0.20	0.0092	
1,2-Dichlorobenzene	BZE2708-BLK1	ND	ug/m3	0.20	0.015	
1,3-Dichlorobenzene	BZE2708-BLK1	ND	ug/m3	0.20	0.016	
1,4-Dichlorobenzene	BZE2708-BLK1	ND	ug/m3	0.20	0.011	
Dichlorodifluoromethane	BZE2708-BLK1	ND	ug/m3	0.050	0.014	
1,1-Dichloroethane	BZE2708-BLK1	ND	ug/m3	0.050	0.0063	
1,2-Dichloroethane	BZE2708-BLK1	ND	ug/m3	0.10	0.0041	
1,1-Dichloroethene	BZE2708-BLK1	ND	ug/m3	0.050	0.0040	
cis-1,2-Dichloroethene	BZE2708-BLK1	ND	ug/m3	0.050	0.0061	
trans-1,2-Dichloroethene	BZE2708-BLK1	ND	ug/m3	0.050	0.013	
trans-1,3-Dichloropropene	BZE2708-BLK1	ND	ug/m3	0.050	0.0099	
1,1-Difluoroethane	BZE2708-BLK1	ND	ug/m3	5.0	2.0	
Ethylbenzene	BZE2708-BLK1	ND	ug/m3	0.050	0.0073	
Methylene chloride	BZE2708-BLK1	ND	ug/m3	0.20	0.061	
Methyl t-butyl ether	BZE2708-BLK1	ND	ug/m3	0.10	0.011	
1,1,2,2-Tetrachloroethane	BZE2708-BLK1	ND	ug/m3	0.10	0.021	
Tetrachloroethene	BZE2708-BLK1	ND	ug/m3	0.50	0.022	
Toluene	BZE2708-BLK1	ND	ug/m3	0.10	0.012	
1,1,1-Trichloroethane	BZE2708-BLK1	ND	ug/m3	0.10	0.0055	
1,1,2-Trichloroethane	BZE2708-BLK1	ND	ug/m3	0.050	0.017	
Trichloroethene	BZE2708-BLK1	ND	ug/m3	0.10	0.0083	
Trichlorofluoromethane	BZE2708-BLK1	ND	ug/m3	0.050	0.018	
1,2,3-Trichloropropane	BZE2708-BLK1	ND	ug/m3	0.050	0.020	
1,1,2-Trichloro-1,2,2-trifluoroethane	BZE2708-BLK1	ND	ug/m3	0.10	0.023	
Vinyl chloride	BZE2708-BLK1	ND	ug/m3	0.020	0.0026	
p- & m-Xylenes	BZE2708-BLK1	ND	ug/m3	0.050	0.011	
o-Xylene	BZE2708-BLK1	ND	ug/m3	0.050	0.0052	
Total Xylenes	BZE2708-BLK1	ND	ug/m3	0.10	0.017	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation.

Report ID: 1000486025 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Page 14 of 18

Well Test, Inc.

Reported: 05/31/2016 17:00

1180 Delmas Ave.

Project: Air Samples

San Jose, CA 95125 Project Number: Four Seasons Cleaners

Project Manager: Bill Dugan

Volatile Organic Compounds by GC/MS (EPA Method TO-15 Modified SIM)

Quality Control Report - Method Blank Analysis

Constituent	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
QC Batch ID: BZE2708						
4-Bromofluorobenzene (Surrogate)	BZE2708-BLK1	14.7	%	50 - 15	0 (LCL - UCL)	

Report ID: 1000486025 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Page 15 of 18

Reported: 05/31/2016 17:00 Project: Air Samples

Project Number: Four Seasons Cleaners

Project Manager: Bill Dugan

Volatile Organic Compounds by GC/MS (EPA Method TO-15 Modified SIM)

Quality Control Report - Laboratory Control Sample

			•				•			
								Control Limits		
				Spike		Percent		Percent		Lab
Constituent	QC Sample ID	Туре	Result	Level	Units	Recovery	RPD	Recovery	RPD	Quals
QC Batch ID: BZE2708										
Benzene	BZE2708-BS1	LCS	0.29392	0.31948	ug/m3	92.0		70 - 130		
	BZE2708-BSD1	LCSD	0.29072	0.31948	ug/m3	91.0	1.1	70 - 130	30	
Benzyl chloride	BZE2708-BS1	LCS	0.21227	0.51772	ug/m3	41.0		70 - 130		J
	BZE2708-BSD1	LCSD	0.18120	0.51772	ug/m3	35.0	15.8	70 - 130	30	J
Carbon tetrachloride	BZE2708-BS1	LCS	0.64801	0.62913	ug/m3	103		70 - 130		
	BZE2708-BSD1	LCSD	0.64801	0.62913	ug/m3	103	0	70 - 130	30	
Chlorobenzene	BZE2708-BS1	LCS	0.55243	0.46036	ug/m3	120		70 - 130		
	BZE2708-BSD1	LCSD	0.54782	0.46036	ug/m3	119	8.0	70 - 130	30	
Chloroform	BZE2708-BS1	LCS	0.48825	0.48825	ug/m3	100		70 - 130		
	BZE2708-BSD1	LCSD	0.48337	0.48825	ug/m3	99.0	1.0	70 - 130	30	
1,2-Dibromoethane	BZE2708-BS1	LCS	0.85287	0.76835	ug/m3	111		70 - 130		
	BZE2708-BSD1	LCSD	0.83750	0.76835	ug/m3	109	1.8	70 - 130	30	
1,2-Dichlorobenzene	BZE2708-BS1	LCS	0.21644	0.60124	ug/m3	36.0		70 - 130		
	BZE2708-BSD1	LCSD	0.16233	0.60124	ug/m3	27.0	28.6	70 - 130	30	J
1,3-Dichlorobenzene	BZE2708-BS1	LCS	0.20442	0.60124	ug/m3	34.0		70 - 130		
	BZE2708-BSD1	LCSD	0.22246	0.60124	ug/m3	37.0	8.5	70 - 130	30	
1,4-Dichlorobenzene	BZE2708-BS1	LCS	ND	0.60124	ug/m3	0		70 - 130		
	BZE2708-BSD1	LCSD	ND	0.60124	ug/m3	0		70 - 130	30	
1,1-Dichloroethane	BZE2708-BS1	LCS	0.39260	0.40474	ug/m3	97.0		70 - 130		
	BZE2708-BSD1	LCSD	0.38855	0.40474	ug/m3	96.0	1.0	70 - 130	30	
1,2-Dichloroethane	BZE2708-BS1	LCS	0.40474	0.40474	ug/m3	100		70 - 130		
	BZE2708-BSD1	LCSD	0.39665	0.40474	ug/m3	98.0	2.0	70 - 130	30	
1,1-Dichloroethene	BZE2708-BS1	LCS	0.34495	0.39649	ug/m3	87.0		70 - 130		
	BZE2708-BSD1	LCSD	0.34099	0.39649	ug/m3	86.0	1.2	70 - 130	30	
cis-1,2-Dichloroethene	BZE2708-BS1	LCS	0.36478	0.39649	ug/m3	92.0		70 - 130		
	BZE2708-BSD1	LCSD	0.36081	0.39649	ug/m3	91.0	1.1	70 - 130	30	
Methylene chloride	BZE2708-BS1	LCS	0.27443	0.34737	ug/m3	79.0		70 - 130		
	BZE2708-BSD1	LCSD	0.27095	0.34737	ug/m3	78.0	1.3	70 - 130	30	
Tetrachloroethene	BZE2708-BS1	LCS	0.61721	0.67825	ug/m3	91.0		70 - 130		
	BZE2708-BSD1	LCSD	0.60365	0.67825	ug/m3	89.0	2.2	70 - 130	30	
Toluene	BZE2708-BS1	LCS	0.37684	0.37684	ug/m3	100		70 - 130		
	BZE2708-BSD1	LCSD	0.37308	0.37684	ug/m3	99.0	1.0	70 - 130	30	
1,1,1-Trichloroethane	BZE2708-BS1	LCS	0.56199	0.54562	ug/m3	103		70 - 130		
	BZE2708-BSD1	LCSD	0.55653	0.54562	ug/m3	102	1.0	70 - 130	30	
Trichloroethene	BZE2708-BS1	LCS	0.52663	0.53737	ug/m3	98.0		70 - 130		
rrichioroethene	DZLZ100 DO1	LOO	0.02000	0.00.0.	~g,					

Report ID: 1000486025 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Page 16 of 18

Reported: 05/31/2016 17:00

Project: Air Samples

Project Number: Four Seasons Cleaners

Project Manager: Bill Dugan

Volatile Organic Compounds by GC/MS (EPA Method TO-15 Modified SIM)

Quality Control Report - Laboratory Control Sample

								Control Limits		
0	00.0	-	D 14	Spike	11	Percent	DDD	Percent	DDD	Lab
Constituent	QC Sample ID	Туре	Result	Level	Units	Recovery	RPD	Recovery	RPD	Quals
QC Batch ID: BZE2708										
Vinyl chloride	BZE2708-BS1	LCS	0.25306	0.25562	ug/m3	99.0		70 - 130		
	BZE2708-BSD1	LCSD	0.25306	0.25562	ug/m3	99.0	0	70 - 130	30	
p- & m-Xylenes	BZE2708-BS1	LCS	0.79027	0.86843	ug/m3	91.0		70 - 130		
	BZE2708-BSD1	LCSD	0.76856	0.86843	ug/m3	88.5	2.8	70 - 130	30	
o-Xylene	BZE2708-BS1	LCS	0.37342	0.43421	ug/m3	86.0		70 - 130		
	BZE2708-BSD1	LCSD	0.36908	0.43421	ug/m3	85.0	1.2	70 - 130	30	
Total Xylenes	BZE2708-BS1	LCS	1.1637	1.3026	ug/m3	89.3		70 - 130		
	BZE2708-BSD1	LCSD	1.1376	1.3026	ug/m3	87.3	2.3	70 - 130	30	
4-Bromofluorobenzene (Surrogate)	BZE2708-BS1	LCS	1.94	2.39	ug/m3	81.3		50 - 150		
	BZE2708-BSD1	LCSD	1.75	2.39	ug/m3	73.2	10.5	50 - 150		

Page 17 of 18 Report ID: 1000486025

Reported: 05/31/2016 17:00 Project: Air Samples

Project Number: Four Seasons Cleaners

Project Manager: Bill Dugan

Notes And Definitions

Well Test, Inc.

1180 Delmas Ave. San Jose, CA 95125

J Estimated Value (CLP Flag)
MDL Method Detection Limit
ND Analyte Not Detected
PQL Practical Quantitation Limit

A01 Detection and quantitation limits are raised due to sample dilution.

Report ID: 1000486025 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Page 18 of 18

ATTACHMENT D

Client Transmittal Letter

June 27, 2016

Mr. Mark Detterman Alameda County LOP 1131 Harbor Bay Parkway Alameda, California 94502

Re: Indoor Air Sampling Report (Report #5065)

Four Seasons Cleaners; Cleanup Program # RO0003155 13778 Doolittle Ave., San Leandro, California

Dear Mr. Detterman:

Attached for your review is a technical report (Indoor Air Sampling Report – WTI #5065) for the above referenced case. The report was prepared by WellTest, Inc. at my request.

I declare under the penalty of perjury that information and/or recommendations contained in the attached work plan are true and correct, to the best of your knowledge.

If you should have any questions or comments, please do not hesitate to contact me, or the WellTest project manager, Bill Dugan at (408) 287-2175.

Sincerely,

Mr. Ernest Lee

Marina Faire Shopping Center 3271 S. Highland Dr., Ste. #704

Las Vegas, NV 89109