

RECEIVED

By Alameda County Environmental Health 2:12 pm, Aug 24, 2017

August 23, 2017

Ms. Karel Detterman, P.G. Hazardous Materials Specialist Alameda County Environmental Health 1131 Harbor Bay Parkway Alameda, California 94502 karel.detterman@acgov.org

Preliminary Report -Subsurface Investigation, Properties at 760 22nd Street and 2201 Brush RE:

Street, Oakland, California 94612

Dear Ms. Detterman:

Please find attached for your review the following document:

Preliminary Report, Properties at 760 22nd Street and 2201 Brush Street, Oakland, California 94612 (ACEH Document No. RO3153_SWI_SCM_R_2017-08-22

I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge.

Please call me at (510) 287-5353 ext. 339 if you have any questions.

Sincerely;

Everett Cleveland Jr.

Senior Project Manager

EN CH h.

East Bay Asian Local Development Corporation

1825 San Pablo Avenue, Suite 200

Oakland, CA 94612

Attachment

Essel Environmental Consulting 351 California Street, Suite 615 San Francisco, CA 94104 1-800-595-7616 Phone 510-380-6610 Fax

August 22, 2017

Mr. Everett Cleveland Senior Project Manager East Bay Asian Local Development Corporation 1825 San Pablo Avenue, Suite 200 Oakland, California 94612

RE: Report, Ground Water and Soil-Vapor Investigation, Properties at 760 22nd Street and 2201 Brush Street, Oakland, California 94612.
Fuel Leak Case No. RO0003153
GeoTracker Global ID T10000006348

1.0 INTRODUCTION

East Bay Asian Local Development Corporation (EBALDC) has requested that Essel Environmental Consulting (Essel) perform further subsurface environmental investigation at the properties located at 760 22nd Street and 2201 Brush Street in Oakland, California (Plate 1). In a June 6, 2017 electronic mail to EBALDC, Alameda County Department of Environmental Health (ACDEH) requested a work plan proposing additional sampling of the ground water to evaluate whether the recent 2016-2017 rainy season had affected ground-water level and ground-water quality in three areas of petroleum-hydrocarbon impact at the site. In addition, the ACDEH requested that EBALDC assess methane in soil gas at locations where secondary source material has been identified. To meet this request, Essel submitted a work plan, dated June 27, 2017 proposing sampling and analysis of ground water from three borings advanced in the areas of petroleum hydrocarbon impact and installation of one soil vapor probe to assess potential methane concentration near the west-central edge of the site (geophysical anomaly area). After review of the work plan, ACDEH requested an increased scope of work to include installing three additional soil vapor probes in the geophysical anomaly area and sampling all four vapor probes for analysis for methane and naphthalene. These items and a request for a well survey are included in the ACDEH letter dated July 17, 2017. This report presents the results of the investigation.

1.1 Site Description and Background

At present, the northern and larger parcel at 760 22nd Street is occupied by a metal frame/metal siding shop building, contains two mobile trailers and several parked buses, and is paved with concrete. A below grade pit, historically used for servicing large vehicles (trucks and buses) and referred to as the oil-changing pit, is located in the northern portion of the shop building. The smaller south-adjacent and abutting parcel at 2201 Brush Street is unpaved and also used to park buses. A 7,000-gallon diesel underground storage tank (UST) and a 2,000-gallon gasoline UST formerly were located at and next to (off-site, beneath the city sidewalk) the northeastern corner of the site, respectively. A small, raised concrete pedestal located at the east-central edge of the property is the location of a former fuel dispenser. During geophysical utility-locating work in September 2015, an area of unusually low-density soil and a nearby standpipe indicative of a UST vent pipe were identified at the west-central edge of the site. This area is referred to as the geophysical anomaly area. Plate 2 is a Site Plan that presents the locations of the above-described features.

OSSO ENVIRONMENTAL ENGINEERING & CONSULTING

Essel Environmental Consulting 351 California Street, Suite 615 San Francisco, CA 94104

1-800-595-7616 Phone 510-380-6610 Fax

In 2015 and 2016, Essel conducted three subsurface investigations at the site and off-site to the west to evaluate impacts to soil, soil vapor, and ground water related to the former USTs, former fueling facilities, former vehicle maintenance operations, and the geophysical anomaly. The subsurface investigations identified notable petroleum-hydrocarbon impact to soil and ground water in the areas of the former USTs and geophysical anomaly and moderate petroleum-hydrocarbon impact to soil and ground water at the location of the former fuel dispenser. Minor concentrations of other contaminants of potential concern (COPC) were detected in the soil and ground water at the three locations. Sampling and analysis of soil vapor were performed in the former UST and dispenser island areas. Several COPC were detected in soil vapor; however, a focused human health risk assessment performed to evaluate vapor intrusion risk in the area of the former USTs found insignificant carcinogenic and non-carcinogenic health risk from intrusion of contaminant vapors into a future residential building. Concentrations of methane detected in soil vapor samples were well below the action level of 5,000 parts per million.

During the September 2015 subsurface investigation, average depth to ground water in temporary wells installed at the site was approximately 14¼ feet below the ground surface. In February and June 2016, ground water was measured at approximately 13 feet below the ground surface. The notable 2015/2016 rainy season resulted in a rise in the ground water level of approximately 1¼ feet.

2.0 FIELD AND LABORATORY WORK

2.1 Permit, Utility Clearance, and Health and Safety

Essel submitted a permit application to advance the borings to the Alameda County Public Works Agency (ACPWA). A copy of the Water Resources Well Permit is included in Appendix A. Essel notified Underground Services Alert of Northern California and Nevada a minimum of 72 hours before the date of planned drilling. Because boring locations were adjacent to earlier borings Essel advanced at the site, the new locations had been previously cleared of underground utilities by a utility subcontractor. The existing site-specific Health and Safety Plan was updated before conducting fieldwork and was available at the site during field activities. Essel and subcontractor personnel were apprised of potential on-site hazards during a field orientation meeting that was conducted before field work began.

2.2 Ground-Water Investigation

Three soil borings were advanced at the following locations, shown on Plate 2, to assess water level and water quality.

- Boring ECB-23 was advanced in the center of the geophysical anomaly area and next to boring ECB-15. The highest concentrations of total petroleum hydrocarbons in ground water in the geophysical anomaly area were detected at the location of boring ECB-15.
- Boring ECB-24 was advanced next to the location of boring ECB-3 where the highest concentrations of total petroleum hydrocarbons were detected in ground water in the former UST area.
- Boring ECB-25 was advanced next to boring ECB-5 at the location of the former fuel dispenser.

Essel subcontracted with PeneCore Drilling (PeneCore) of Woodland, California (C-57 license number 906899) to advance borings on July 28, 2017. PeneCore used a Geoprobe 6610DT, track-mounted, direct-push drill rig to advance borings ECB-23 through ECB-25 to a depth of 20 feet below the ground surface.

esse environmental environmental econsulting

Essel Environmental Consulting 351 California Street, Suite 615 San Francisco, CA 94104 1-800-595-7616 Phone

510-380-6610 Fax

Temporary wells, consisting of ¾-inch-diameter polyvinyl chloride pipe, were placed in the three boreholes to sample the ground water. Before sampling, the depth to ground water was measured through the casings using an electronic water-level indicator. Water samples were collected using ¼-inch-diameter polyethylene tubing, which was fitted with a bottom check valve, was inserted into the PVC casings, and rapidly moved up and down to move water up the tubing. The water samples were placed into 40-milliliter clear glass vials containing hydrochloric acid as a preservative and 1-liter amber bottles that did not contain a preserving solution. Water sample containers were filled completely to eliminate air bubbles. The sample containers were sealed with Teflon-lined caps, labeled, and placed on ice in a closed cooler. Essel completed a Chain-of-Custody form for the water samples and this form accompanied the samples to the laboratory. A copy of this form is included in Appendix B.

After drilling and sampling, the three boreholes were backfilled with neat cement slurry from the total depth of the borings to the ground surface. A representative of the ACPWA was present to witness backfilling of the boreholes. No soil cuttings or waste water were generated during the field work.

2.3 Soil Vapor Investigation

In the work plan, Essel proposed to install a soil vapor probe next to the location of ECB-15 to evaluate the concentration of methane and the fixed gases (nitrogen, oxygen, and carbon dioxide) in the geophysical anomaly area. In the July 17, 2017 directive letter and a subsequent electronic mail, the ACDEH requested that three additional soil vapor probes be installed in the geophysical anomaly area and that all four soil vapor probes be sampled and tested for naphthalene, methane, and the fixed gases.

The borings for soil vapor probes SV-8, SV-9, SV-10, and SV-11 were advanced to respective depths of 7½, 7½, 7½, and 9½ feet below the ground surface, corresponding to depths approximately 5 feet below the foundation of the future building and in the unsaturated zone as close as possible to the maximum petroleum hydrocarbon and naphthalene detections. Vapor probes SV-8 and SV-9 were installed adjacent to the location of previous boring ECB-16 and mid-way between ECB-16 and the location of previous boring ECB-11, respectively. These locations are along the western property line. Vapor probes ECB-10 and ECB-11 were installed at locations near previous boring ECB-15. Plate 3 shows the locations of the four soil vapor probes.

The vapor probes consist of a stainless-steel filter screen inserted into ¼-inch-diameter Teflon tubing. The filter screens for vapor probes SV-8, SV-9, SV-10, and SV-11 were placed at respective depths of approximately 6½, 7, 7, and 9 feet below the ground surface with the tubing extending above the ground surface. A minimum of 6 inches of clean sand (#3 Monterey) was placed below and above the filter screens, followed by approximately 1 foot of dry granular bentonite, and 1-foot-thick lifts of granular bentonite, each of which was hydrated with clean water to provide a seal above the sand and filter screen and around the tubing. The top end of the tubing was capped with a valve to prevent atmospheric air from entering the probe hole. The vapor probes were completed with 6-inch-diameter well boxes, which were set in concrete.

Essel collected vapor samples from SV-8 through SV-11 on August 2, 2017. Vapor probes were each purged of approximately 1 volume of air (300 to 900 milliliters [ml]) using a syringe. Vapor samples for analysis for naphthalene were then collected using TO-17 VI tubes. Approximately 60 ml of vapor were evacuated through each tube after which the tubes were sealed, labeled, wrapped in aluminum foil, and placed on ice in a closed cooler.

Essel Environmental Consulting 351 California Street, Suite 615 San Francisco, CA 94104 1-800-595-7616 Phone 510-380-6610 Fax

Vapor samples for analysis for methane and the fixed gases were collected in 1-liter Summa canisters, each connected to a manifold assembly containing vacuum gauges, a flow controller, and moisture filter. Each Summa canister was evacuated to a negative pressure (i.e. vacuum) of approximately 30 inches of mercury. Essel performed shut-in tests (approximately 1 minute in length) of the sampling canister and connecting manifold assemblies to check for potential leaks in the system. A shroud (box) was placed over the sampling assemblies and a tracer gas (isopropyl alcohol) was introduced into the shroud as a leak check during sampling. Soil-vapor samples were collected at a controlled flow rate of approximately 167 milliliters per minute. At the completion of sampling, the valves on the sampling canisters were closed, the manifold assemblies disconnected, and the canisters were packaged in boxes. Essel prepared Chain-of-Custody forms for the TO-17 VI tubes and the 1-liter Summa canisters and these forms accompanied the samples to the laboratory. Copies of these forms are included in Appendix C.

Essel returned to the site on August 14 to re-sample vapor probes SV-9, SV-10, and SV-11. Shut-in tests were performed on each sampling assembly for a minimum period of 2 minutes and no drop in vacuum was observed at each assembly. Sampling was performed using the shroud and tracer gas as described above.

2.4 Laboratory Testing

Ground-water samples from borings ECB-23 through ECB-25 were delivered to McCampbell Analytical, Inc. (McCampbell [Laboratory Certificate No. 1644]) in Pittsburg, California for analysis. McCampbell analyzed the samples for total petroleum hydrocarbons as gasoline (TPHg) using United States Environmental Protection Agency (USEPA) Method 8015Bm; total petroleum hydrocarbons as diesel (TPHd) and as motor oil (TPHmo) using USEPA Method 8015B; volatile organic compounds (VOCs) using USEPA Method 8260B; and polynuclear aromatic hydrocarbons (PAHs) using USEPA Method 8270C-Selective Ion Monitoring (SIM).

Soil-vapor samples collected on August 2, 2017 from vapor probes SV-8 through SV-11 were delivered to Eurofins-Air Toxics, Inc. laboratory in Folsom, California for analysis. The laboratory analyzed the vapor samples for naphthalene using USEPA Method TO-17; and for methane, oxygen, nitrogen, and carbon dioxide using American Society for Testing & Materials Method D-1946. Soil-vapor samples collected on August 15, 2017 from vapor probes SV-9, SV-10, and SV-11 were delivered to Eurofins-Air Toxics for analysis for methane and the fixed gases using ASTM D-1946 and for isopropyl alcohol (2-propanol) using USEPA Method TO-15.

3.0 RESULTS OF INVESTIGATION

3.1 Ground Water

Depth to ground water was measured through the temporary casings placed in borings ECB-23 through ECB-25. Ground water was measured at respective depths of 13.45, 13.75, and 13.6 feet below the ground surface in the three boreholes.

3.2 Laboratory Analytical Results for Ground Water

Laboratory analytical results for ground-water samples show the same compounds detected in the former UST and dispenser island areas and the geophysical anomaly area as detected during previous investigations,

Essel Environmental Consulting 351 California Street, Suite 615 San Francisco, CA 94104

1-800-595-7616 Phone 510-380-6610 Fax

with some fluctuations in detected concentrations. As expected, relatively elevated concentrations of TPHg (350 to 1,200 micrograms per liter [μ g/L]), TPHd (710 to 6,600 μ g/L), and TPHmo (1,700 to 15,000 μ g/L) were detected in water samples from borings ECB-23, ECB-24, and ECB-25. The concentrations detected are comparable to levels previously detected in adjacent borings ECB-15, ECB-3, and ECB-5. Increases in the concentrations of TPHg were noted in samples ECB-23 and ECB-25 relative to TPHg in adjacent borings ECB-15 and ECB-5, which were sampled in February 2016 and September 2015, respectively. Notable declines in the concentrations of TPHg, TPHd, and TPHmo were noted in the water sample from boring ECB-24 relative to the water sample from adjacent boring ECB-3, collected in September 2015.

Notably lower concentrations (relative to the total petroleum hydrocarbon levels) of individual organic compounds were detected in the recent ground-water samples, consistent with the concentrations found during previous investigations. Trace (less than 1.0 μ g/L) to low (less than 5.0 μ g/L) concentrations of benzene, toluene, ethylbenzene, and total xylenes (BTEX) were detected in the geophysical anomaly area (boring ECB-23). No BTEX was found in the water samples from the former UST (boring ECB-24) and fuel dispenser (boring ECB-25) areas, also consistent with previous results. Naphthalene was previously detected in ground water in the geophysical anomaly area at a maximum concentration of 89 μ g/L (boring ECB-16). Concentrations of 16 (VOC analysis) and 7.5 (PAH analysis) μ g/L naphthalene were detected in boring ECB-23. Naphthalene was detected at concentrations of 2.6 and 0.78- μ g/L in water samples from borings ECB-24 and ECB-25. Other VOCs and PAHs were detected at concentrations ranging from 0.51- to 33 μ g/L. None of the compounds detected in the ground water samples were at concentrations greater than applicable environmental screening levels for vapor intrusion risk. Table 1 presents the results of analyses of water samples from borings ECB-23, ECB-24, and ECB-25 and, for comparison, the previous results from borings ECB-15, ECB-3, and ECB-5, respectively. Appendix B contains a copy of the laboratory analytical report.

3.3 Laboratory Analytical Results for Soil Vapor

Samples from vapor probes SV-8 through SV-11 were analyzed for naphthalene using USEPA Method TO-17. Naphthalene was not detected in any of the four samples at a laboratory-reporting limit of 17 micrograms per cubic meter ($\mu g/m^3$). The applicable residential vapor intrusion environmental screening level for naphthalene is 41 $\mu g/m^3$.

The results of laboratory analyses for methane show concentrations ranging from 2.2 parts per million vapor (ppmv) in vapor probe SV-9 to 1,600 ppmv in vapor probe SV-8. No methane was detected in the second vapor sample collected from SV-9 on August 15, 2017. The detected concentrations are less than the 5,000-ppm action level for methane. In SV-8 (August 2, 2017 sampling), oxygen and nitrogen were detected at concentrations of 11 and 88 percent, respectively and carbon dioxide was detected at 0.77 percent. In SV-9 (August 15, 2017 sampling), oxygen, nitrogen, and carbon dioxide were detected at 6.8, 89, and 4.4 percent, respectively. Respective concentrations of oxygen and nitrogen were 20 and 80 percent and concentrations of carbon dioxide varied from 0.049- to 0.13-percent in the sample collected from vapor probe SV-9 on August 2, 2017, and in samples collected from vapor probes SV-10 and SV-11 on both August 2, and 15, 2017. Relatively high concentrations of the tracer gas 2-propanol were detected in samples collected from SV-10 and SV-11. Table 2 presents the laboratory analytical results for naphthalene, methane and the fixed gases, and 2-propanol in the soil vapor samples. Copies of the laboratory analytical reports for the soil vapor samples are included in Appendix C.

Essel Environmental Consulting 351 California Street, Suite 615 San Francisco, CA 94104 1-800-595-7616 Phone 510-380-6610 Fax

3.4 Well Information

As indicated in the remedial action plan (Essel, 2016) prepared for this site, Essel submitted requests in 2015 to both the California Department of Water Resources (DWR) and the Alameda County Public Works Agency to identify nearby sensitive receptor water-supply wells. Alameda County Public Works Agency responded in a timely manner and that agency's records showed that the closest water-supply wells are located more than 2,000 feet to the north of the site. A figure with a Google Earth photograph depicting the site, a 2,000-foot radius circle, and the off-site water-supply wells was presented to ACDEH in December 2015. Essel subsequently (January 2016) received a compact disk from DWR with records of water supply and other wells in Sections 26, 27, and 35, Township 1 South, Range 4 West (Mount Diablo Base and Meridian). The DWR records also indicated that no water-supply wells were located within 1,500 feet of the 760 22nd Street/2201 Brush Street property.

3.5 Conceptual Site Model

The recent ground water and soil-vapor data do not change the elements of the conceptual site model related to geology, ground water, and the magnitude and extent of COPC impact to soil and ground water. The table in Appendix D has been slightly revised to incorporate the results of the new soil-vapor data.

3.6 Risk Assessment

Essel subcontracted with The Source Group, Inc. to evaluate the laboratory analytical data for ground-water samples recently collected from borings ECB-23, ECB-24, and ECB-25 as well as historical analytical data for water samples collected from respective adjacent borings ECB-15, ECB-3, and ECB-5. The evaluation was performed to assess vapor intrusion health risk to a future residential receptor in a ground surface residence. The Source Group, Inc. performed the risk assessment using methodology contained in applicable California Department of Toxic Substances Control guidance.

The results of the risk evaluation, based on the highest concentrations of COPC detected in ground-water samples, show a total hazard index (i.e., sum of all hazard quotients) of 0.1 and a cumulative excess cancer risk of 1.0 X 10⁻⁷. Both results of the assessment are below accepted regulatory thresholds and The Source Group, Inc. concludes that COPC in ground water beneath the Site do not pose a vapor intrusion human health risk to future on-site residents. Details of the methods used, input parameters, and the results of the risk assessment are presented in The Source Group, Inc.'s August 22, 2017 report, which is included in Appendix E.

4.0 FINDINGS AND CONCLUSIONS

4.1 Findings

Essel advanced three borings to sample and analyze ground water for site contaminants of concern and installed four soil vapor probes to sample and analyze soil vapor for naphthalene, methane, and the fixed gases oxygen, nitrogen, and carbon dioxide. Following is a summary of the findings of this latest phase of subsurface environmental investigation.

• Borings ECB-23 through ECB-25 were advanced to a depth of 20 feet below the ground surface at locations where the highest concentrations of petroleum hydrocarbons were previously detected in

Essel Environmental Consulting

351 California Street, Suite 615 San Francisco, CA 94104 1-800-595-7616 Phone 510-380-6610 Fax

the geophysical anomaly area, the former UST area, and the former fuel dispenser area. Depth to ground water was measured in the borings at 13.45 to 13.75 feet below the ground surface.

- Relatively elevated concentrations of total petroleum hydrocarbons as gasoline, as diesel, and as motor oil were found in the ground water at the three borings. Compared to previous analyses, somewhat higher concentrations of TPHg were detected at the geophysical anomaly and fuel dispenser locations and lower concentrations of TPHg, TPHd, and TPHmo were found in the former UST area. Concentrations of VOCs and PAHs were relatively low (consistent with previous results), ranging from 0.51-μg/L to 33 μg/L. The compounds detected were the same as those detected during previous investigations and none were at concentrations equal to or greater than corresponding environmental screening levels for vapor intrusion health risk.
- The borings for soil vapor probes SV-8, SV-9, SV-10, and SV-11 were advanced to depths of 7½, 7½, 7½, and 9½ feet below the ground surface in the geophysical anomaly area and the vapor filter tips were set in sand at 6½, 7, 7, and 9 feet below the ground surface. Vapor probes SV-8 and SV-9 were installed near the western property line (near and between borings ECB-16 and ECB-11) and vapor probes SV-10 and SV-11 were installed near boring ECB-15 at the geophysical anomaly. The four vapor probes were sampled on August 2, 2017 and vapor probes SV-9, SV-10, and SV-11 were sampled again on August 15, 2017.
- Vapor samples were collected (August 2, 2017) and analyzed for naphthalene using USEPA Method TO-17 and no naphthalene was detected in the four samples.
- Vapor samples were also analyzed for methane, oxygen, nitrogen, and carbon dioxide. The vapor sample from SV-8 (collected August 2, 2017) contained 1,600 ppmv methane, 11 percent oxygen, 88 percent nitrogen, and 0.77 percent carbon dioxide and the vapor sample from SV-9 (collected August 15, 2017) contained 6.8, 89, and 4.4 percent oxygen, nitrogen, and carbon dioxide, respectively. Methane was detected at 2.2 ppmv in SV-9 on August 2 and was not detected in SV-9 on August 15. The samples from vapor probes SV-10 and SV-11 contained low concentrations of methane, uniform concentrations of oxygen (20 percent) and nitrogen (80 percent), and low levels of carbon dioxide in samples collected on August 2 and 15, 2017.
- The results of a human health risk assessment of the maximum concentrations of COPC in ground water beneath the site show a hazard index of 0.1 and a cumulative excess cancer risk of 1.0 X 10⁻⁷ for the ground water to indoor air vapor intrusion pathway.

4.2 Conclusion

Based on the findings of this subsurface investigation, Essel concludes the following.

- The types and concentrations of organic compounds detected in the three ground-water samples are consistent with the results of previous investigations and present no increase in risk to human health or the environment than was concluded during earlier investigations.
- Laboratory analytical results indicate that naphthalene does not appear to be of concern for vapor intrusion risk in the geophysical anomaly area.

Essel Environmental Consulting

351 California Street, Suite 615 San Francisco, CA 94104 1-800-595-7616 Phone 510-380-6610 Fax

- The methane and fixed gases data from vapor well SV-8 (August 2, 2017) and SV-9 (August 15) likely represent subsurface vapor conditions at and nearby these vapor probe locations. The proximity of vapor probe SV-8 to the locations of SV-10 and SV-11 also suggest data from SV-8 are representative of the geophysical anomaly area. Furthermore, the data from vapor probes SV-8 and SV-9 indicate that naphthalene is not a vapor intrusion risk and methane is not an explosive hazard at the site or at the west-adjacent residential property.
- Contaminants of potential concern in ground water beneath the Site do not pose a vapor intrusion human health risk to future on-site residents.

Limitations to this investigation are included in Appendix F.

ESSEL ENVIRONMENTAL CONSULTING

Rodger C. Witham, P.G., C.E.G.

Nik Lahiri

Senior Geologist

Nº EGISGE

CERTIFIED

ENGINEERING

GEOLOGIST

OF CALLEORNIE

Nik Lahiri Principal

Reference:

Essel Environmental Consulting, 2016, Remedial Action Plan, properties at 760 22nd Street and 2201 Brush Street, Oakland, California 94612, Project No. 15166, October 10, 2016.

Table 1 Comparison of Organic Compound Concentrations in Ground-Water Samples

Table 2 Methane, Fixed Gases, and Naphthalene Concentrations in Soil-Vapor Samples, Geophysical Anomaly Area

Plate 1 – Site Vicinity Map

Plate 2 - Site Plan and Boring Locations

Plate 3 – Soil Vapor Probe Locations, Geophysical Anomaly Area

Appendix A – Drilling Permit

Appendix B – Chain-of-Custody Form and Laboratory Analytical Report for Ground-Water Samples

Appendix C – Chain-of-Custody Forms and Laboratory Analytical Reports for Soil Vapor Samples

Appendix D – Site Conceptual Model

Appendix E – Focused Human Health Risk Assessment

Appendix F – Limitations

TABLE 1
Comparison of Organic Compound Concentrations in Ground-Water Samples
Properties at 760 22nd Street and 2201 Brush Street, Oakland, California

Boring	ECB-23	ECB-15	ECB-24	ECB-3	ECB-25	ECB-5	Tier I
Sample Number	W-ECB23	W-ECB15	W-ECB24	W-ECB3	W-ECB25	W-ECB5	Vapor Intrusion
Date Sampled	7/28/17	2/16/16	7/28/17	9/24/15	7/28/17	9/25/15	ESL*
Analyte							
Petroleum Hydrocarbons		1		1		•	
TPH-gas	480	120	350	710	1,200	430	No Value
TPH-diesel	3,100	3,400	6,600	24,000	710	100	No Value
TPH-motor oil	15,000	24,000	1,700	7,300	< 500	<250	No Value
VOCs							
Benzene	< 0.50	0.54	< 0.50	< 0.50	<1.0	< 0.50	30
Toluene	3.0	1.3	< 0.50	< 0.50	<1.0	< 0.50	10,000
Ethylbenzene	0.58	< 0.50	< 0.50	< 0.50	<1.0	< 0.50	370
Xylenes	5.1	4.6	< 0.50	< 0.50	<1.0	0.56	38,000
Methyl tertiary butyl ether	< 0.50	< 0.50	< 0.50	< 0.50	<1.0	< 0.50	15,000
tert-Butyl alcohol	<2.0	<2.0	<2.0	<2.0	<4.0	<2.0	No Value
Naphthalene	16	6.1	< 0.50	< 0.50	<1.0	< 0.50	180
Acetone	15	<10	<10	18	<20	12	140,000,000
Bromomethane	0.99	< 0.50	< 0.50	< 0.50	<1.0	< 0.50	6,500
2-Butanone (MEK)	3.3	<2.0	<2.0	<2.0	<4.0	3.6	22,000,000
n-Butyl benzene	4.3	1.1	0.67	0.91	11	0.92	NA
sec-Butyl benzene	3.6	0.63	1.1	1.4	6.2	1.4	NA
tert-Butyl benzene	< 0.50	< 0.50	< 0.50	< 0.50	<1.0	< 0.50	NA
2-Hexanone	< 0.50	< 0.50	< 0.50	< 0.50	<1.0	< 0.50	NA
Isopropylbenzene	5.8	0.95	< 0.50	< 0.50	8.7	1.1	NA
4-Isopropyl toluene	4.1	1.9	< 0.50	< 0.50	<1.0	< 0.50	NA
4-Methyl-2-pentanone (MIBK)	< 0.50	< 0.50	< 0.50	< 0.50	<1.0	< 0.50	11,000,000
n-Propyl benzene	6.6	1.3	< 0.50	0.67	27	1.3	NA
1,2,4-Trimethylbenzene	33	19	< 0.50	< 0.50	<1.0	0.62	NA
1,3,5-Trimethylbenzene	4.0	2.2	< 0.50	< 0.50	<1.0	< 0.50	NA
cis -1,2-Dichloroethene	< 0.50	< 0.50	< 0.50	< 0.50	<1.0	< 0.50	15,000
Vinyl chloride	< 0.50	< 0.50	< 0.50	< 0.50	<1.0	< 0.50	2.0
PAHs		Ī		Ī		-	
Acenaphthene	< 0.50	<5.0	4.9	1.9	< 0.50	< 0.50	No Value
Anthracene	< 0.50	<5.0	1.1	< 0.50	< 0.50	< 0.50	No Value
1-Methylnaphthalene	5.1	15	< 0.50	< 0.50	9.3	< 0.50	NA
2-Methylnaphthalene	2.7	19	< 0.50	< 0.50	< 0.50	< 0.50	No Value
Naphthalene	7.5	36	2.6	< 0.50	0.78	< 0.50	180
Phenanthrene Results and screening levels are in	0.71	< 5.0	10	3.3	0.51	< 0.50	No Value

Results and screening levels are in micrograms per liter = parts per billion.

Detectable concentrations are in boldface type.

TPH = total petroleum hydrocarbons

VOCs = volatile organic compounds PAHs - polynuclear aromatic hydrocarbons

ESL = Environmental Screening Level

No Value = compound listed in ESL table, but no value indicated

NA = not available, compound not listed in ESL table

Environmental screening levels for vapor intrusion risk are taken from San Francisco Bay Regional Water Quality Control Board Environmental Screening Levels, February 2016, Revision 3.

^{*} Groundwater Vapor Intrusion Human Health Risk Levels (Table GW-3), Deep Groundwater, Residential, Fine to Coarse Scenario.

< = less than the laboratory reporting limit shown.

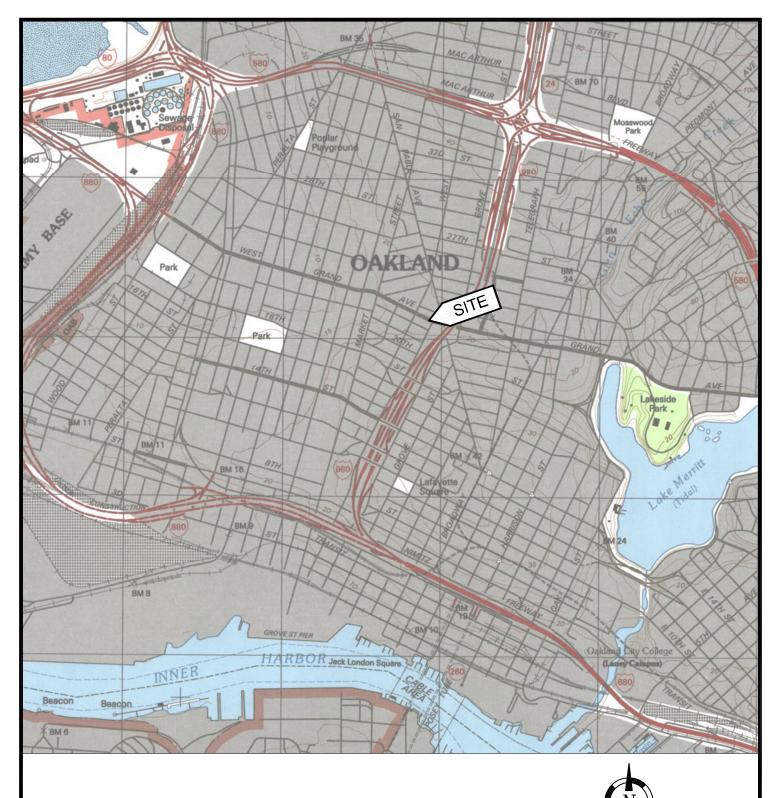
TABLE 2 Methane, Fixed Gases, and Naphthalene Concentrations in Soil-Vapor Samples Geophysical Anomaly Area

Properties at 760 22nd Street and 2201 Brush Street, Oakland, California

Soil Probe	SV-8	SV	7-9	SV	-10	SV	-11	array ar	P. ma. c
Date	08/02/17	08/02/17	08/15/17	08/02/17	08/15/17	08/02/17	08/15/17	SFBRWQCB Screening Level	DTSC Action Level
Sample Number	SV-8	SV-9	SV-9	SV-10	SV-10	SV-11	SV-11	8	
Depth of Sample (feet)	7.50	7.	50	7.	50	9.	50	Residential	Residential
Analyte		1	1	1	ı	I			
Naphthalene	<17	<17		<17		<17		41	
Methane (percent)	0.16	0.00022	< 0.00021	0.00090	0.0099	0.010	0.0092		
Methane (ppmv)	1,600	2.2	<2.1	9.0	99	100	92		5,000
Oxygen (percent)	11	20	6.8	20	20	20	20		
Nitrogen (percent)	88	80	89	80	80	80	80		
Carbon Dioxide (percent)	0.77	0.049	4.4	0.050	0.15	0.13	0.22		
2-propanol (isopropyl alcohol)	710		26		33,000		50,000		

Results for volatile organic compounds and screening levels are in micrograms per cubic meter.

Action level for methane is in parts per million vapor.


Detectable concentrations are in boldface type.

< = less than the laboratory reporting limit shown.

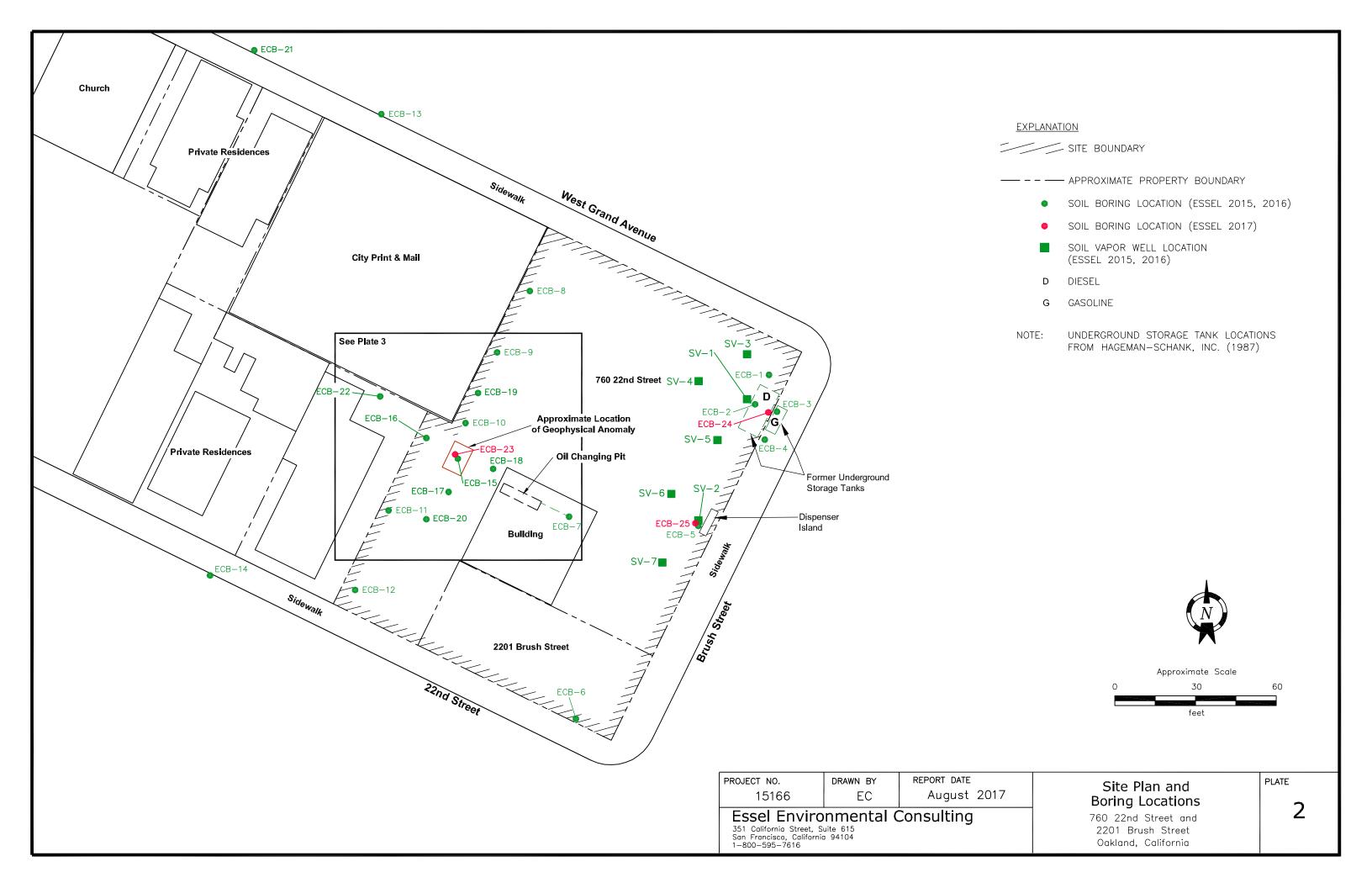
-- = not analyzed.

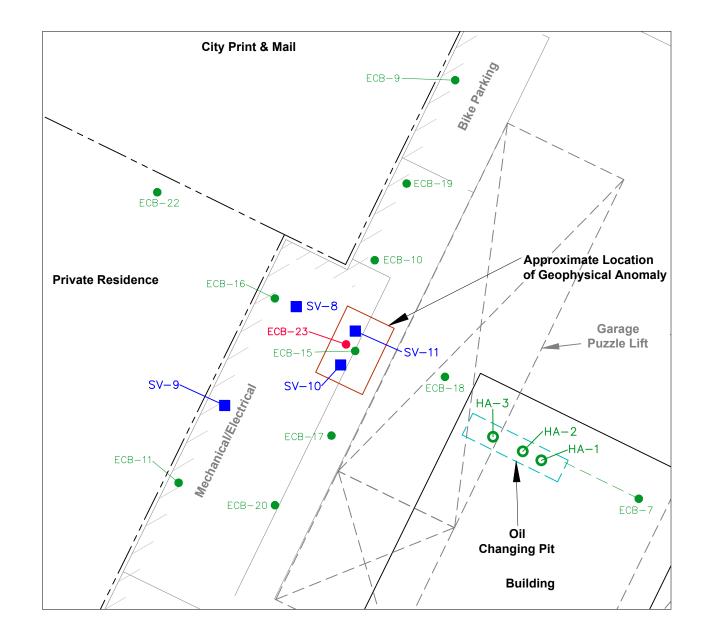
SFBRWQCB = San Francisco Bay Regional Water Quality Control Board

DTSC = California Department of Toxic Substances Control

Scale: 0 2000 feet 4000 feet

Source: USGS 7 1/2-Minute Quadrangle, Oakland West, California 1993

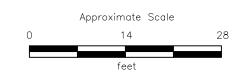

PROJECT NO. DRAWN BY REPORT DATE
15166 EC August 2017


Essel Environmental Consulting

351 California Street, Suite 615 San Francisco, California 94104 1-800-595-7616 Site Vicinity Map

760 22nd Street and 2201 Brush Street Oakland, California PLATE

1


EXPLANATION

-- APPROXIMATE PROPERTY BOUNDARY

- SOIL BORING LOCATION (ESSEL 2015, 2016)
- SOIL BORING LOCATION (ESSEL 2017)
- SOIL VAPOR PROBE LOCATION (ESSEL, 2017)
- HAND AUGER LOCATION (ESSEL, 2016)

NOTE: FUTURE BUILDING FEATURES ARE IN HALF TONE

REPORT DATE PROJECT NO. DRAWN BY August 2017 15166

Essel Environmental Consulting
351 California Street, Suite 615
San Francisco, California 94104
1-800-595-7616

Soil Vapor Probe Locations Geophysical Anomaly Area

760 22nd Street and 2201 Brush Street Oakland, California

PLATE

3

APPENDIX A

DRILLING PERMIT

Alameda County Public Works Agency - Water Resources Well Permit

399 Elmhurst Street Hayward, CA 94544-1395 Telephone: (510)670-6633 Fax:(510)782-1939

Application Approved on: 07/21/2017 By jamesy

Permit Numbers: W2017-0603 Permits Valid from 07/28/2017 to 07/28/2017

Phone: 510-287-5383

Application Id: 1500332965630 City of Project Site:Oakland

Site Location: 760 22nd Street
Project Start Date: 07/28/2017 Completion Date:07/28/2017

Assigned Inspector: Contact Eneyew Amberber at (510) 670-5759 or eneyew@acpwa.org

Applicant: Essel Environmental Consulting - Rodger Phone: 510-366-8054

Witham

44448 Martingale Court, Fremont, CA 94539

Property Owner: E. B.A.L.D.C. Phone: 510-287-5383

1825 San Pablo Avenue, Suite 200, Oakland, CA 94612

Client: E. B.A.L.D.C.

1825 San Pablo Avenue, Suite 200, Oakland, CA 94612

Contact: Rodger Witham **Phone:** 510-366-8054 **Cell:** 510-366-8054

Total Due: \$265.00

Receipt Number: WR2017-0346 Total Amount Paid: \$265.00

Payer Name : Rodger C. Witham Paid By: VISA PAID IN FULL

Works Requesting Permits:

Borehole(s) for Investigation-Environmental/Monitorinig Study - 4 Boreholes

Driller: Penecore Drilling - Lic #: 9006899 - Method: DP Work Total: \$265.00

Specifications

Permit Issued Dt Expire Dt # Hole Diam Max Depth
Number Boreholes

W2047 07/24/2047 40/26/2047 4 2 50 in 20 00 ft

W2017- 07/21/2017 10/26/2017 4 2.50 in. 20.00 ft

0603

Specific Work Permit Conditions

- 1. Backfill bore hole by tremie with cement grout or cement grout/sand mixture. Upper two-three feet replaced in kind or with compacted cuttings. All cuttings remaining or unused shall be containerized and hauled off site. The containers shall be clearly labeled to the ownership of the container and labeled hazardous or non-hazardous.
- 2. Boreholes shall not be left open for a period of more than 24 hours. All boreholes left open more than 24 hours will need approval from Alameda County Public Works Agency, Water Resources Section. All boreholes shall be backfilled according to permit destruction requirements and all concrete material and asphalt material shall be to Caltrans Spec or County/City Codes. No borehole(s) shall be left in a manner to act as a conduit at any time.
- 3. Permittee shall assume entire responsibility for all activities and uses under this permit and shall indemnify, defend and save the Alameda County Public Works Agency, its officers, agents, and employees free and harmless from any and all expense, cost, liability in connection with or resulting from the exercise of this Permit including, but not limited to, properly damage, personal injury and wrongful death.
- 4. Applicant shall contact assigned inspector listed on the top of the permit at least five (5) working days prior to starting, once the permit has been approved. Confirm the scheduled date(s) at least 24 hours prior to drilling.
- 5. Copy of approved drilling permit must be on site at all times. Failure to present or show proof of the approved permit application on site shall result in a fine of \$500.00.

Alameda County Public Works Agency - Water Resources Well Permit

6. Electronic Reporting Regulations (Chapter 30, Division 3 of Title 23 & Division 3 of Title 27, CCR) require electronic submission of any report or data required by a regulatory agency from a cleanup site. Submission dates are set by a Regional Water Board or by a regulatory agency. Once a report/data is successfully uploaded, as required, you have met the reporting requirement (i.e. the compliance measure for electronic submittals is the actual upload itself). The upload date should be on or prior to the regulatory due date.

7. NOTE:

Under California laws, the owner/operator are responsible for reporting the contamination to the governmental regulatory agencies under Section 25295(a). The owner/operator is liable for civil penalties under Section 25299(a)(4) and criminal penalties under Section 25299(d) for failure to report a leak. The owner/operator is liable for civil penalties under Section 25299(b)(4) for knowing failure to ensure compliance with the law by the operator. These penalty provisions do not apply to a potential buyer.

- 8. Prior to any drilling activities onto any public right-of-ways, it shall be the applicants responsibilities to contact and coordinate a Underground Service Alert (USA), obtain encroachment permit(s), excavation permit(s) or any other permits required for that City or to the County and follow all City or County Ordinances. It shall also be the applicants responsibilities to provide to the Cities or to Alameda County a Traffic Safety Plan for any lane closures or detours planned. No work shall begin until all the permits and requirements have been approved or obtained.
- 9. Permit is valid only for the purpose specified herein. No changes in construction procedures, as described on this permit application. Boreholes shall not be converted to monitoring wells, without a permit application process.

APPENDIX B

CHAIN-OF-CUSTODY FORM AND LABORATORY ANALYTICAL REPORT FOR GROUND-WATER SAMPLES

McCampbell Analytical, Inc.

"When Quality Counts"

Analytical Report

WorkOrder: 1707B67

Report Created for: Essel Environmental Consulting

351 California Street, Ste. 615

San Francisco, CA 94104

Project Contact: Nik Lahiri

Project P.O.:

Project Name: 15166; EBALDC

Project Received: 07/28/2017

Analytical Report reviewed & approved for release on 08/04/2017 by:

Angela Rydelius,

Laboratory Manager

The report shall not be reproduced except in full, without the written approval of the laboratory. The analytical results relate only to the items tested. Results reported conform to the most current NELAP standards, where applicable, unless otherwise stated in the case narrative.

1534 Willow Pass Rd. Pittsburg, CA 94565 ♦ TEL: (877) 252-9262 ♦ FAX: (925) 252-9269 ♦ www.mccampbell.com

CA ELAP 1644 ♦ NELAP 4033ORELAP

Glossary of Terms & Qualifier Definitions

Client: Essel Environmental Consulting

Project: 15166; EBALDC

WorkOrder: 1707B67

Glossary Abbreviation

%D Serial Dilution Percent Difference

95% Interval 95% Confident Interval

DF Dilution Factor

DI WET (DISTLC) Waste Extraction Test using DI water

DISS Dissolved (direct analysis of 0.45 µm filtered and acidified water sample)

DLT Dilution Test (Serial Dilution)

DUP Duplicate

EDL Estimated Detection Limit

ERS External reference sample. Second source calibration verification.

ITEF International Toxicity Equivalence Factor

LCS Laboratory Control Sample

MB Method Blank

MB % Rec % Recovery of Surrogate in Method Blank, if applicable

MDL Method Detection Limit

ML Minimum Level of Quantitation

MS Matrix Spike

MSD Matrix Spike Duplicate

N/A Not Applicable

ND Not detected at or above the indicated MDL or RL

NR Data Not Reported due to matrix interference or insufficient sample amount.

PDS Post Digestion Spike

PDSD Post Digestion Spike Duplicate

PF Prep Factor

RD Relative Difference

RL Reporting Limit (The RL is the lowest calibration standard in a multipoint calibration.)

RPD Relative Percent Deviation
RRT Relative Retention Time

SPK Val Spike Value

SPKRef Val Spike Reference Value

SPLP Synthetic Precipitation Leachate Procedure

ST Sorbent Tube

TCLP Toxicity Characteristic Leachate Procedure

TEQ Toxicity Equivalents

WET (STLC) Waste Extraction Test (Soluble Threshold Limit Concentration)

Glossary of Terms & Qualifier Definitions

Client: Essel Environmental Consulting

Project: 15166; EBALDC

WorkOrder: 1707B67

Analytical Qualifiers

S	Surrogate spike recovery outside accepted recovery limits
a3	Sample diluted due to high organic content.
b1	Aqueous sample that contains greater than ~1 vol. % sediment
b6	Lighter than water immiscible sheen/product is present
c2	Surrogate recovery outside of the control limits due to matrix interference.
c4	Surrogate recovery outside of the control limits due to coelution with another peak(s) / cluttered chromatogram.
d1	Weakly modified or unmodified gasoline is significant
d7	Strongly aged gasoline or diesel range compounds are significant in the TPH(g) chromatogram
d9	No recognizable pattern
d17	Reporting limit for MTBE raised due to co-elution with non-target peaks.
e2	Diesel range compounds are significant; no recognizable pattern
e3	Aged diesel is significant
e7	Oil range compounds are significant
e8/e11	Pattern resembles kerosene/kerosene range/jet fuel range; and/or Pattern resembles stoddard solvent/mineral spirit
e11/e4	Pattern resembles stoddard solvent/mineral spirit; and/or Gasoline range compounds are significant.

Quality Control Qualifiers

F1 MS/MSD recovery and/or RPD is out of acceptance criteria; LCS validates the prep batch.

F2 LCS/LCSD recovery and/or RPD is out of acceptance criteria.

Analytical Report

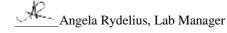
Client: Essel Environmental Consulting

Date Received: 7/28/17 13:08

Date Prepared: 8/4/17

Project: 15166; EBALDC

WorkOrder: 1707B67


Extraction Method: SW5030B **Analytical Method:** SW8260B

Unit: $\mu g/L$

Volatile Organics

Acetone 15 10 10 1 08:04/2017 05:36 tert-Amyl methyl ether (TAME) ND 0.50 1 08:04/2017 05:36 Berzene ND 0.50 1 08:04/2017 05:36 Berzenethane 0.99 0.50 1 08:04/2017 05:36 Berzenethane 0.90 0.90 1 08:04/	Client ID	Lab ID Matrix	Date Collected Instrument	Batch ID
Acetone 15 10 1 08/04/2017 05/36 tert-Amyl methyl ether (TAME) ND 0.50 1 08/04/2017 05/36 Bernace ND 0.50 1 08/04/2017 05/36 Bromocherzene ND 0.50 1 08/04/2017 05/36 Bromochoromethane 0.99 0.50 1 08/04/2017 05/36 Bromochoromethane 0.90 0.50 1 08/04/2017 05/36 Browal Spanne 4.3 0.50 1	W-ECB23	1707B67-001B Water	07/28/2017 11:53 GC38	143164
tert-Amyl methyl ether (TAME) ND 0.50 1 08/04/2017 05:36 Benzene ND 0.50 1 08/04/2017 05:36 Bromobensone ND 0.50 1 08/04/2017 05:36 Bromochloromethane ND 0.50 1 08/04/2017 05:36 Bromodichloromethane ND 0.50 1 08/04/2017 05:36 Bromoderichloromethane 0.99 0.50 1 08/04/2017 05:36 Bromoderichloromethane 0.999 0.50 1 08/04/2017 05:36 Bromomethane 0.999 0.50 1 08/04/2017 05:36 2-Butanone (MEK) 3.3 2.0 1 08/04/2017 05:36 2-Butanone (MEK) 3.3 2.0 1 08/04/2017 05:36 2-Butyl John (TBA) ND 2.0 1 08/04/2017 05:36 1-Butyl John (TBA) ND 0.50 1 08/04/2017 05:36 1-Butyl John (TBA) ND 0.50 1 08/04/2017 05:36 1-Butyl John (TBA) ND 0.50	Analytes	Result	<u>RL</u> <u>DF</u>	Date Analyzed
Benzene ND 0.50 1 08/04/2017 05:36 Bromobenzene ND 0.50 1 08/04/2017 05:36 Bromochioromethane ND 0.50 1 08/04/2017 05:36 Bromochioromethane ND 0.50 1 08/04/2017 05:36 Bromodichioromethane ND 0.50 1 08/04/2017 05:36 Bromoderhane 0.99 0.50 1 08/04/2017 05:36 2-Butanone (MEK) 3.3 2.0 1 08/04/2017 05:36 2-Butanone (MEK) 3.3 2.0 1 08/04/2017 05:36 1-Butyl alcohol (TBA) ND 2.0 1 08/04/2017 05:36 1-Butyl benzene 4.3 0.50 1 08/04/2017 05:36 1ert-Butyl benzene 4.3 0.50 1 08/04/2017 05:36 1ert-Butyl benzene ND 0.50 1 08/04/2017 05:36 1ert-Butyl benzene ND 0.50 1 08/04/2017 05:36 1ert-Butyl benzene ND 0.50 1 <t< td=""><td>Acetone</td><td>15</td><td>10 1</td><td>08/04/2017 05:36</td></t<>	Acetone	15	10 1	08/04/2017 05:36
Bromobenzene ND 0.50 1 08/04/2017 05/36 Bromochloromethane ND 0.50 1 08/04/2017 05/36 Bromochloromethane ND 0.50 1 08/04/2017 05/36 Bromochloromethane ND 0.50 1 08/04/2017 05/36 Bromomethane 0.99 0.50 1 08/04/2017 05/36 2-Butanone (MEK) 3.3 2.0 1 08/04/2017 05/36 1-Butyl benzene 4.3 0.50 1 08/04/2017 05/36 1-Butyl benzene 3.6 0.50 1 08/04/2017 05/36 1-Butyl benzene 3.6 0.50 1 08/04/2017 05/36 1-Butyl benzene ND 0.50 1 08/04/2017 05/36 1-Butyl benzene ND 0.50 1 08/04/2017 05/36 1-Butyl benzene ND 0.50 1 08/04/2017 05/36 1-Butyl benzene 3.6 0.50 1 08/04/2017 05/36 1-Butyl benzene 3.6 0.50 1 08/04/2	tert-Amyl methyl ether (TAME)	ND	0.50 1	08/04/2017 05:36
Bromochloromethane ND 0.50 1 08/04/2017 05:36 Bromodichloromethane ND 0.50 1 08/04/2017 05:36 Bromoform ND 0.50 1 08/04/2017 05:36 Bromoferhane 0.99 0.50 1 08/04/2017 05:36 2-Butanone (MEK) 3.3 2.0 1 08/04/2017 05:36 1-Butyl alcohol (TBA) ND 2.0 1 08/04/2017 05:36 1-Butyl benzene 4.3 0.50 1 08/04/2017 05:36 sec-Butyl benzene 3.6 0.50 1 08/04/2017 05:36 sec-Butyl benzene ND 0.50 1 08/04/2017 05:36 sec-Butyl benzene ND 0.50 1 08/04/2017 05:36 carbon Tetrachloride ND 0.50 1 08/04/2017 05:36 Carbon Tetrachloride ND 0.50 1 08/04/2017 05:36 Chlorobenzene ND 0.50 1 08/04/2017 05:36 Chloromethane ND 0.50 1 <	Benzene	ND	0.50 1	08/04/2017 05:36
Bromodichloromethane ND 0.50 1 08/04/2017 05/36 Bromoform ND 0.50 1 08/04/2017 05/36 2-Butanone (MEK) 3.3 2.0 1 08/04/2017 05/36 2-Butanone (MEK) 3.3 2.0 1 08/04/2017 05/36 1-Butyl alcohol (TBA) ND 2.0 1 08/04/2017 05/36 1-Butyl benzene 4.3 0.50 1 08/04/2017 05/36 8ce-Butyl benzene ND 0.50 1 08/04/2017 05/36 6cerbarre ND 0.50 1 08/04/2017 05/36 6carbon Disulfide ND 0.50 1 08/04/2017 05/36 Carbon Tetrachloride ND 0.50 1 08/04/2017 05/36 Chloroethane ND 0.50 1 08/04/2017 05/36 <td>Bromobenzene</td> <td>ND</td> <td>0.50 1</td> <td>08/04/2017 05:36</td>	Bromobenzene	ND	0.50 1	08/04/2017 05:36
Bromoform ND 0.50 1 08/04/2017 05:36 Brommethane 0.99 0.50 1 08/04/2017 05:36 2-Butanone (MEK) 3.3 2.0 1 08/04/2017 05:36 In-Butyl benzene 4.3 0.50 1 08/04/2017 05:36 n-Butyl benzene 3.6 0.50 1 08/04/2017 05:36 sec-Butyl benzene ND 0.50 1 08/04/2017 05:36 tert-Butyl benzene ND 0.50 1 08/04/2017 05:36 Carbon Distlide ND 0.50 1 08/04/2017 05:36 Carbon Distlide ND 0.50 1 08/04/2017 05:36 Carbon Distlide ND 0.50 1 08/04/2017 05:36 Chlorobenzene ND 0.50 1 08/04/2017 05:36 Chlorobenzene ND 0.50 1 08/04/2017 05:36 Chlorobethane ND 0.50 1 08/04/2017 05:36 Chlorotoluene ND 0.50 1 08/04/2017 05:36	Bromochloromethane	ND	0.50 1	08/04/2017 05:36
Bromomethane 0.99 0.50 1 08/04/2017 05:36 2-Butanone (MEK) 3.3 2.0 1 08/04/2017 05:36 E-Butyl alcohol (TBA) ND 2.0 1 08/04/2017 05:36 Butyl benzene 4.3 0.50 1 08/04/2017 05:36 sec-Butyl benzene ND 0.50 1 08/04/2017 05:36 tert-Butyl benzene ND 0.50 1 08/04/2017 05:36 Carbon Disulfide ND 0.50 1 08/04/2017 05:36 Carbon Tetrachloride ND 0.50 1 08/04/2017 05:36 Chlorobenzene ND 0.50 1 08/04/2017 05:36 Chlorobenzene ND 0.50 1 08/04/2017 05:36 Chlorobenzene ND 0.50 1 08/04/2017 05:36 Chlorobentane ND 0.50 1 08/04/2017 05:36 Chlorobentane ND 0.50 1 08/04/2017 05:36 2-Chlorotoluene ND 0.50 1 08/04/2017 05	Bromodichloromethane	ND	0.50 1	08/04/2017 05:36
2-Butanone (MEK) 3.3 2.0 1 08/04/2017 05:36 L-Butyl alcohol (TBA) ND 2.0 1 08/04/2017 05:36 n-Butyl benzene 4.3 0.50 1 08/04/2017 05:36 ser-Butyl benzene 3.6 0.50 1 08/04/2017 05:36 tert-Butyl benzene ND 0.50 1 08/04/2017 05:36 Carbon Disulfide ND 0.50 1 08/04/2017 05:36 Carbon Tetrachloride ND 0.50 1 08/04/2017 05:36 Chloroform Tetrachloride ND 0.50 1 08/04/2017 05:36 Chlorofenzene ND 0.50 1 08/04/2017 05:36 Chloroform ND 0.50 1 08/04/2017 05:36 Chloroform ND 0.50 1 08/04/2017 05:36 Chloroform ND 0.50 1 08/04/2017 05:36 Chloroformethane ND 0.50 1 08/04/2017 05:36 Chloroforbune ND 0.50 1 08/04/20	Bromoform	ND	0.50 1	08/04/2017 05:36
t-Butyl alcohol (TBA) ND 2.0 1 08/04/2017 05:36 n-Butyl benzene 4.3 0.50 1 08/04/2017 05:36 sec-Butyl benzene 3.6 0.50 1 08/04/2017 05:36 sec-Butyl benzene ND 0.50 1 08/04/2017 05:36 Carbon Disulfide ND 0.50 1 08/04/2017 05:36 Carbon Disulfide ND 0.50 1 08/04/2017 05:36 Carbon Disulfide ND 0.50 1 08/04/2017 05:36 Carbon Tetrachloride ND 0.50 1 08/04/2017 05:36 Chlorobenzene ND 0.50 1 08/04/2017 05:36 Chlorotehane ND 0.50 1 08/04/2017 05:36 Ch	Bromomethane	0.99	0.50 1	08/04/2017 05:36
n-Butyl benzene 4.3 0.50 1 08/04/2017 05:36 sec-Butyl benzene 3.6 0.50 1 08/04/2017 05:36 tert-Butyl benzene ND 0.50 1 08/04/2017 05:36 Carbon Disulfide ND 0.50 1 08/04/2017 05:36 Carbon Tetrachloride ND 0.50 1 08/04/2017 05:36 Chlorobenzene ND 0.50 1 08/04/2017 05:36 Chlorobethane ND 0.50 1 08/04/2017 05:36 4-Chlorobluene ND 0.50 1 08/04/2017 05:36 4-Chlorobluene ND 0.50 1 08/04/2017 05:36 1,2-Dibromo-shane (EDB) ND 0.50 1 08/04/2017	2-Butanone (MEK)	3.3	2.0 1	08/04/2017 05:36
sec-Butyl benzene 3.6 0.50 1 08/04/2017 05:36 tert-Butyl benzene ND 0.50 1 08/04/2017 05:36 Carbon Disulfide ND 0.50 1 08/04/2017 05:36 Carbon Tetrachloride ND 0.50 1 08/04/2017 05:36 Chlorobenzene ND 0.50 1 08/04/2017 05:36 Chlorotelrane ND 0.50 1 08/04/2017 05:36 Chlorotelrane ND 0.50 1 08/04/2017 05:36 Chlorotelrane ND 0.50 1 08/04/2017 05:36 Chlorotelluene ND 0.50 1 08/04/2017 05:36 C-Chlorotoluene ND 0.50 1 08/04/2017 05:36 4-Chlorotoluene ND 0.50 1 08/04/2017 05:36 4-Chlorotoluene ND 0.50 1 08/04/2017 05:36 4-Chlorotoluene ND 0.50 1 08/04/2017 05:36 1,2-Dibromoethane ND 0.50 1 08/04/2017 05	t-Butyl alcohol (TBA)	ND	2.0 1	08/04/2017 05:36
tert-Butyl benzene ND 0.50 1 08/04/2017 05:36 Carbon Disulfide ND 0.50 1 08/04/2017 05:36 Carbon Tetrachloride ND 0.50 1 08/04/2017 05:36 Chlorobenzene ND 0.50 1 08/04/2017 05:36 Chlorotehane ND 0.50 1 08/04/2017 05:36 Chloroterm ND 0.50 1 08/04/2017 05:36 Chloroteluane ND 0.50 1 08/04/2017 05:36 Chlorotoluene ND 0.50 1 08/04/2017 05:36 4-Chlorotoluene ND 0.50 1 08/04/2017 05:36 1,2-Dibromoethane ND 0.50 1 08/04/2017 05:36 1,2-Dibromoethane ND 0.50 1 08/04/2017 05:36 <td>n-Butyl benzene</td> <td>4.3</td> <td>0.50 1</td> <td>08/04/2017 05:36</td>	n-Butyl benzene	4.3	0.50 1	08/04/2017 05:36
Carbon Disulfide ND 0.50 1 08/04/2017 05:36 Carbon Tetrachloride ND 0.50 1 08/04/2017 05:36 Chlorobenzene ND 0.50 1 08/04/2017 05:36 Chloroethane ND 0.50 1 08/04/2017 05:36 Chloroform ND 0.50 1 08/04/2017 05:36 Chloroethane ND 0.50 1 08/04/2017 05:36 Chlorotoluene ND 0.50 1 08/04/2017 05:36 4-Chlorotoluene ND 0.50 1 08/04/2017 05:36 4-Chlorotoluene ND 0.50 1 08/04/2017 05:36 4-Chlorotoluene ND 0.50 1 08/04/2017 05:36 1,2-Dibromochloromethane ND 0.50 1 08/04/2017 05:36 1,2-Dibromochloropropane ND 0.50 1 08/04/2017 05:36 1,2-Dibromochlane (EDB) ND 0.50 1 08/04/2017 05:36 1,2-Dibromochlane ND 0.50 1 <td< td=""><td>sec-Butyl benzene</td><td>3.6</td><td>0.50 1</td><td>08/04/2017 05:36</td></td<>	sec-Butyl benzene	3.6	0.50 1	08/04/2017 05:36
Carbon Tetrachloride ND 0.50 1 08/04/2017 05:36 Chlorobenzene ND 0.50 1 08/04/2017 05:36 Chlorotethane ND 0.50 1 08/04/2017 05:36 Chloroform ND 0.50 1 08/04/2017 05:36 Chloromethane ND 0.50 1 08/04/2017 05:36 Chlorotoluene ND 0.50 1 08/04/2017 05:36 4-Chlorotoluene ND 0.50 1 08/04/2017 05:36 1,2-Dibromo-3-chloropropane ND 0.50 1 08/04/2017 05:36 1,2-Dibromoethane (EDB) ND 0.50 1 08/04/2017 05:36 1,2-Dichlorobenzene ND 0.50 1 08/04/2017 05:36 1,3-Dichlorobenzene ND 0.50 1 <t< td=""><td>tert-Butyl benzene</td><td>ND</td><td>0.50 1</td><td>08/04/2017 05:36</td></t<>	tert-Butyl benzene	ND	0.50 1	08/04/2017 05:36
Chlorobenzene ND 0.50 1 08/04/2017 05:36 Chloroethane ND 0.50 1 08/04/2017 05:36 Chloroform ND 0.50 1 08/04/2017 05:36 Chloromethane ND 0.50 1 08/04/2017 05:36 2-Chlorotoluene ND 0.50 1 08/04/2017 05:36 4-Chlorotoluene ND 0.50 1 08/04/2017 05:36 1,2-Dibromo-3-chloropropane ND 0.50 1 08/04/2017 05:36 1,2-Dibromo-share (EDB) ND 0.50 1 08/04/2017 05:36 1,2-Dichlorobenzene ND 0.50 1 08/04/2017 05:36 1,3-Dichlorobenzene ND 0.50 1 08	Carbon Disulfide	ND	0.50 1	08/04/2017 05:36
Chloroethane ND 0.50 1 08/04/2017 05:36 Chloroform ND 0.50 1 08/04/2017 05:36 Chloromethane ND 0.50 1 08/04/2017 05:36 2-Chlorotoluene ND 0.50 1 08/04/2017 05:36 4-Chlorotoluene ND 0.50 1 08/04/2017 05:36 4-Chlorotoluene ND 0.50 1 08/04/2017 05:36 Dibromochloromethane ND 0.50 1 08/04/2017 05:36 1,2-Dibromo-3-chloropropane ND 0.50 1 08/04/2017 05:36 1,2-Dibromoethane (EDB) ND 0.50 1 08/04/2017 05:36 1,2-Dibromoethane (EDB) ND 0.50 1 08/04/2017 05:36 1,2-Dichlorobenzene ND 0.50 1 08/04/2017 05:36 1,3-Dichlorobenzene ND 0.50 1 08/04/2017 05:36 1,4-Dichloroethane ND 0.50 1 08/04/2017 05:36 1,1-Dichloroethane ND 0.50	Carbon Tetrachloride	ND	0.50 1	08/04/2017 05:36
Chloroform ND 0.50 1 08/04/2017 05:36 Chloromethane ND 0.50 1 08/04/2017 05:36 2-Chlorotoluene ND 0.50 1 08/04/2017 05:36 4-Chlorotoluene ND 0.50 1 08/04/2017 05:36 4-Chlorotoluene ND 0.50 1 08/04/2017 05:36 1,2-Dibromochloromethane ND 0.50 1 08/04/2017 05:36 1,2-Dibromo-3-chloropropane ND 0.50 1 08/04/2017 05:36 1,2-Dibromoethane (EDB) ND 0.50 1 08/04/2017 05:36 1,2-Dibromoethane ND 0.50 1 08/04/2017 05:36 1,2-Dichlorobenzene ND 0.50 1 08/04/2017 05:36 1,3-Dichlorobenzene ND 0.50 1 08/04/2017 05:36 1,4-Dichlorobenzene ND 0.50 1 08/04/2017 05:36 1,1-Dichlorodifluoromethane ND 0.50 1 08/04/2017 05:36 1,2-Dichloroethane ND 0.50 <td>Chlorobenzene</td> <td>ND</td> <td>0.50 1</td> <td>08/04/2017 05:36</td>	Chlorobenzene	ND	0.50 1	08/04/2017 05:36
Chloromethane ND 0.50 1 08/04/2017 05:36 2-Chlorotoluene ND 0.50 1 08/04/2017 05:36 4-Chlorotoluene ND 0.50 1 08/04/2017 05:36 4-Chlorotoluene ND 0.50 1 08/04/2017 05:36 Dibromochloromethane ND 0.50 1 08/04/2017 05:36 1,2-Dibromoethane (EDB) ND 0.50 1 08/04/2017 05:36 1,2-Dibromoethane (EDB) ND 0.50 1 08/04/2017 05:36 1,2-Dichlorobenzene ND 0.50 1 08/04/2017 05:36 1,3-Dichlorobenzene ND 0.50 1 08/04/2017 05:36 1,4-Dichlorobenzene ND 0.50 1 08/04/2017 05:36 1,4-Dichlorotehane ND 0.50 1 08/04/2017 05:36 1,1-Dichlorotehane ND 0.50 1 08/04/2017 05:36 1,2-Dichlorotehane ND 0.50 1 08/04/2017 05:36 1,2-Dichlorotehene ND 0.50	Chloroethane	ND	0.50 1	08/04/2017 05:36
2-Chlorotoluene ND 0.50 1 08/04/2017 05:36 4-Chlorotoluene ND 0.50 1 08/04/2017 05:36 Dibromochloromethane ND 0.50 1 08/04/2017 05:36 1,2-Dibromo-3-chloropropane ND 0.20 1 08/04/2017 05:36 1,2-Dibromoethane (EDB) ND 0.50 1 08/04/2017 05:36 1,2-Dichlorobenzene ND 0.50 1 08/04/2017 05:36 1,2-Dichlorobenzene ND 0.50 1 08/04/2017 05:36 1,3-Dichlorobenzene ND 0.50 1 08/04/2017 05:36 1,4-Dichlorobenzene ND 0.50 1 08/04/2017 05:36 1,4-Dichlorobenzene ND 0.50 1 08/04/2017 05:36 1,1-Dichloroethane ND 0.50 1 08/04/2017 05:36 1,1-Dichloroethane ND 0.50 1 08/04/2017 05:36 1,2-Dichloroethane ND 0.50 1 08/04/2017 05:36 1,2-Dichloroethene ND 0.	Chloroform	ND	0.50 1	08/04/2017 05:36
4-Chlorotoluene ND 0.50 1 08/04/2017 05:36 Dibromochloromethane ND 0.50 1 08/04/2017 05:36 1,2-Dibromo-3-chloropropane ND 0.20 1 08/04/2017 05:36 1,2-Dibromoethane (EDB) ND 0.50 1 08/04/2017 05:36 1,2-Dichlorobenzene ND 0.50 1 08/04/2017 05:36 1,2-Dichlorobenzene ND 0.50 1 08/04/2017 05:36 1,3-Dichlorobenzene ND 0.50 1 08/04/2017 05:36 1,4-Dichlorobenzene ND 0.50 1 08/04/2017 05:36 1,1-Dichloroethane ND 0.50 1 08/04/2017 05:36 1,1-Dichloroethane ND 0.50 1 08/04/2017 05:36 1,2-Dichloroethane (1,2-DCA) ND 0.50 1 08/04/2017 05:36 1,1-Dichloroethene ND 0.50 1 08/04/2017 05:36 1,2-Dichloroethene ND 0.50 1 08/04/2017 05:36 1,2-Dichloroethene ND	Chloromethane	ND	0.50 1	08/04/2017 05:36
Dibromochloromethane ND 0.50 1 08/04/2017 05:36 1,2-Dibromo-3-chloropropane ND 0.20 1 08/04/2017 05:36 1,2-Dibromoethane (EDB) ND 0.50 1 08/04/2017 05:36 1,2-Dichloromethane ND 0.50 1 08/04/2017 05:36 1,2-Dichlorobenzene ND 0.50 1 08/04/2017 05:36 1,3-Dichlorobenzene ND 0.50 1 08/04/2017 05:36 1,4-Dichlorobenzene ND 0.50 1 08/04/2017 05:36 1,4-Dichlorotehane ND 0.50 1 08/04/2017 05:36 1,1-Dichloroethane ND 0.50 1 08/04/2017 05:36 1,2-Dichloroethane (1,2-DCA) ND 0.50 1 08/04/2017 05:36 1,1-Dichloroethene ND 0.50 1 08/04/2017 05:36 1,2-Dichloroethene ND 0.50 1 08/04/2017 05:36 1,2-Dichloroethene ND 0.50 1 08/04/2017 05:36 1,2-Dichloroethene ND	2-Chlorotoluene	ND	0.50 1	08/04/2017 05:36
1,2-Dibromo-3-chloropropane ND 0.20 1 08/04/2017 05:36 1,2-Dibromoethane (EDB) ND 0.50 1 08/04/2017 05:36 Dibromomethane ND 0.50 1 08/04/2017 05:36 1,2-Dichlorobenzene ND 0.50 1 08/04/2017 05:36 1,3-Dichlorobenzene ND 0.50 1 08/04/2017 05:36 1,4-Dichlorobenzene ND 0.50 1 08/04/2017 05:36 1,1-Dichloroethane ND 0.50 1 08/04/2017 05:36 1,1-Dichloroethane ND 0.50 1 08/04/2017 05:36 1,2-Dichloroethane (1,2-DCA) ND 0.50 1 08/04/2017 05:36 1,1-Dichloroethene ND 0.50 1 08/04/2017 05:36 cis-1,2-Dichloroethene ND 0.50 1 08/04/2017 05:36 trans-1,2-Dichloroethene ND 0.50 1 08/04/2017 05:36 1,2-Dichloropropane ND 0.50 1 08/04/2017 05:36 1,3-Dichloropropane ND	4-Chlorotoluene	ND	0.50 1	08/04/2017 05:36
1,2-Dibromoethane (EDB) ND 0.50 1 08/04/2017 05:36 Dibromomethane ND 0.50 1 08/04/2017 05:36 1,2-Dichlorobenzene ND 0.50 1 08/04/2017 05:36 1,3-Dichlorobenzene ND 0.50 1 08/04/2017 05:36 1,4-Dichlorobenzene ND 0.50 1 08/04/2017 05:36 1,4-Dichloroethane ND 0.50 1 08/04/2017 05:36 1,1-Dichloroethane ND 0.50 1 08/04/2017 05:36 1,2-Dichloroethane (1,2-DCA) ND 0.50 1 08/04/2017 05:36 1,1-Dichloroethene ND 0.50 1 08/04/2017 05:36 cis-1,2-Dichloroethene ND 0.50 1 08/04/2017 05:36 trans-1,2-Dichloroethene ND 0.50 1 08/04/2017 05:36 1,2-Dichloropropane ND 0.50 1 08/04/2017 05:36 1,3-Dichloropropane ND 0.50 1 08/04/2017 05:36	Dibromochloromethane	ND	0.50 1	08/04/2017 05:36
Dibromomethane ND 0.50 1 08/04/2017 05:36 1,2-Dichlorobenzene ND 0.50 1 08/04/2017 05:36 1,3-Dichlorobenzene ND 0.50 1 08/04/2017 05:36 1,4-Dichlorobenzene ND 0.50 1 08/04/2017 05:36 Dichlorodifluoromethane ND 0.50 1 08/04/2017 05:36 1,1-Dichloroethane ND 0.50 1 08/04/2017 05:36 1,2-Dichloroethane (1,2-DCA) ND 0.50 1 08/04/2017 05:36 1,1-Dichloroethene ND 0.50 1 08/04/2017 05:36 cis-1,2-Dichloroethene ND 0.50 1 08/04/2017 05:36 trans-1,2-Dichloroethene ND 0.50 1 08/04/2017 05:36 1,2-Dichloropropane ND 0.50 1 08/04/2017 05:36 1,3-Dichloropropane ND 0.50 1 08/04/2017 05:36	1,2-Dibromo-3-chloropropane	ND	0.20 1	08/04/2017 05:36
1,2-Dichlorobenzene ND 0.50 1 08/04/2017 05:36 1,3-Dichlorobenzene ND 0.50 1 08/04/2017 05:36 1,4-Dichlorobenzene ND 0.50 1 08/04/2017 05:36 Dichlorodifluoromethane ND 0.50 1 08/04/2017 05:36 1,1-Dichloroethane ND 0.50 1 08/04/2017 05:36 1,2-Dichloroethane (1,2-DCA) ND 0.50 1 08/04/2017 05:36 1,1-Dichloroethene ND 0.50 1 08/04/2017 05:36 cis-1,2-Dichloroethene ND 0.50 1 08/04/2017 05:36 trans-1,2-Dichloroethene ND 0.50 1 08/04/2017 05:36 1,2-Dichloropropane ND 0.50 1 08/04/2017 05:36 1,3-Dichloropropane ND 0.50 1 08/04/2017 05:36	1,2-Dibromoethane (EDB)	ND	0.50 1	08/04/2017 05:36
1,3-Dichlorobenzene ND 0.50 1 08/04/2017 05:36 1,4-Dichlorobenzene ND 0.50 1 08/04/2017 05:36 Dichlorodifluoromethane ND 0.50 1 08/04/2017 05:36 1,1-Dichloroethane ND 0.50 1 08/04/2017 05:36 1,2-Dichloroethane (1,2-DCA) ND 0.50 1 08/04/2017 05:36 1,1-Dichloroethene ND 0.50 1 08/04/2017 05:36 cis-1,2-Dichloroethene ND 0.50 1 08/04/2017 05:36 trans-1,2-Dichloroethene ND 0.50 1 08/04/2017 05:36 1,2-Dichloropropane ND 0.50 1 08/04/2017 05:36 1,3-Dichloropropane ND 0.50 1 08/04/2017 05:36	Dibromomethane	ND	0.50 1	08/04/2017 05:36
1,4-Dichlorobenzene ND 0.50 1 08/04/2017 05:36 Dichlorodifluoromethane ND 0.50 1 08/04/2017 05:36 1,1-Dichloroethane ND 0.50 1 08/04/2017 05:36 1,2-Dichloroethane (1,2-DCA) ND 0.50 1 08/04/2017 05:36 1,1-Dichloroethene ND 0.50 1 08/04/2017 05:36 cis-1,2-Dichloroethene ND 0.50 1 08/04/2017 05:36 trans-1,2-Dichloroethene ND 0.50 1 08/04/2017 05:36 1,2-Dichloropropane ND 0.50 1 08/04/2017 05:36 1,3-Dichloropropane ND 0.50 1 08/04/2017 05:36	1,2-Dichlorobenzene	ND	0.50 1	08/04/2017 05:36
Dichlorodifluoromethane ND 0.50 1 08/04/2017 05:36 1,1-Dichloroethane ND 0.50 1 08/04/2017 05:36 1,2-Dichloroethane (1,2-DCA) ND 0.50 1 08/04/2017 05:36 1,1-Dichloroethene ND 0.50 1 08/04/2017 05:36 cis-1,2-Dichloroethene ND 0.50 1 08/04/2017 05:36 trans-1,2-Dichloroethene ND 0.50 1 08/04/2017 05:36 1,2-Dichloropropane ND 0.50 1 08/04/2017 05:36 1,3-Dichloropropane ND 0.50 1 08/04/2017 05:36	1,3-Dichlorobenzene	ND	0.50 1	08/04/2017 05:36
1,1-Dichloroethane ND 0.50 1 08/04/2017 05:36 1,2-Dichloroethane (1,2-DCA) ND 0.50 1 08/04/2017 05:36 1,1-Dichloroethene ND 0.50 1 08/04/2017 05:36 cis-1,2-Dichloroethene ND 0.50 1 08/04/2017 05:36 trans-1,2-Dichloroethene ND 0.50 1 08/04/2017 05:36 1,2-Dichloropropane ND 0.50 1 08/04/2017 05:36 1,3-Dichloropropane ND 0.50 1 08/04/2017 05:36	1,4-Dichlorobenzene	ND	0.50 1	08/04/2017 05:36
1,2-Dichloroethane (1,2-DCA) ND 0.50 1 08/04/2017 05:36 1,1-Dichloroethene ND 0.50 1 08/04/2017 05:36 cis-1,2-Dichloroethene ND 0.50 1 08/04/2017 05:36 trans-1,2-Dichloroethene ND 0.50 1 08/04/2017 05:36 1,2-Dichloropropane ND 0.50 1 08/04/2017 05:36 1,3-Dichloropropane ND 0.50 1 08/04/2017 05:36	Dichlorodifluoromethane	ND	0.50 1	08/04/2017 05:36
1,1-Dichloroethene ND 0.50 1 08/04/2017 05:36 cis-1,2-Dichloroethene ND 0.50 1 08/04/2017 05:36 trans-1,2-Dichloroethene ND 0.50 1 08/04/2017 05:36 1,2-Dichloropropane ND 0.50 1 08/04/2017 05:36 1,3-Dichloropropane ND 0.50 1 08/04/2017 05:36	1,1-Dichloroethane	ND	0.50 1	08/04/2017 05:36
cis-1,2-Dichloroethene ND 0.50 1 08/04/2017 05:36 trans-1,2-Dichloroethene ND 0.50 1 08/04/2017 05:36 1,2-Dichloropropane ND 0.50 1 08/04/2017 05:36 1,3-Dichloropropane ND 0.50 1 08/04/2017 05:36 1,3-Dichloropropane ND 0.50 1 08/04/2017 05:36	1,2-Dichloroethane (1,2-DCA)	ND	0.50 1	08/04/2017 05:36
trans-1,2-Dichloroethene ND 0.50 1 08/04/2017 05:36 1,2-Dichloropropane ND 0.50 1 08/04/2017 05:36 1,3-Dichloropropane ND 0.50 1 08/04/2017 05:36	1,1-Dichloroethene	ND	0.50 1	08/04/2017 05:36
1,2-Dichloropropane ND 0.50 1 08/04/2017 05:36 1,3-Dichloropropane ND 0.50 1 08/04/2017 05:36	cis-1,2-Dichloroethene	ND	0.50 1	08/04/2017 05:36
1,3-Dichloropropane ND 0.50 1 08/04/2017 05:36	trans-1,2-Dichloroethene	ND	0.50 1	08/04/2017 05:36
· ·	1,2-Dichloropropane	ND	0.50 1	08/04/2017 05:36
2,2-Dichloropropane ND 0.50 1 08/04/2017 05:36	1,3-Dichloropropane	ND	0.50 1	08/04/2017 05:36
	2,2-Dichloropropane	ND	0.50 1	08/04/2017 05:36

(Cont.)

Analytical Report

Client: Essel Environmental Consulting

Date Received: 7/28/17 13:08

Date Prepared: 8/4/17

Project: 15166; EBALDC

WorkOrder: 1707B67

Extraction Method: SW5030B **Analytical Method:** SW8260B

Unit: $\mu g/L$

Volatile Organics

Client ID	Lab ID	Matrix	Date C	ollected Instrument	Batch ID
W-ECB23	1707B67-001B	Water	07/28/20	017 11:53 GC38	143164
<u>Analytes</u>	<u>Result</u>		<u>RL</u>	<u>DF</u>	Date Analyzed
1,1-Dichloropropene	ND		0.50	1	08/04/2017 05:36
cis-1,3-Dichloropropene	ND		0.50	1	08/04/2017 05:36
trans-1,3-Dichloropropene	ND		0.50	1	08/04/2017 05:36
Diisopropyl ether (DIPE)	ND		0.50	1	08/04/2017 05:36
Ethylbenzene	0.58		0.50	1	08/04/2017 05:36
Ethyl tert-butyl ether (ETBE)	ND		0.50	1	08/04/2017 05:36
Freon 113	ND		0.50	1	08/04/2017 05:36
Hexachlorobutadiene	ND		0.50	1	08/04/2017 05:36
Hexachloroethane	ND		0.50	1	08/04/2017 05:36
2-Hexanone	ND		0.50	1	08/04/2017 05:36
Isopropylbenzene	5.8		0.50	1	08/04/2017 05:36
4-Isopropyl toluene	4.1		0.50	1	08/04/2017 05:36
Methyl-t-butyl ether (MTBE)	ND		0.50	1	08/04/2017 05:36
Methylene chloride	ND		0.50	1	08/04/2017 05:36
4-Methyl-2-pentanone (MIBK)	ND		0.50	1	08/04/2017 05:36
Naphthalene	16		0.50	1	08/04/2017 05:36
n-Propyl benzene	6.6		0.50	1	08/04/2017 05:36
Styrene	ND		0.50	1	08/04/2017 05:36
1,1,1,2-Tetrachloroethane	ND		0.50	1	08/04/2017 05:36
1,1,2,2-Tetrachloroethane	ND		0.50	1	08/04/2017 05:36
Tetrachloroethene	ND		0.50	1	08/04/2017 05:36
Toluene	3.0		0.50	1	08/04/2017 05:36
1,2,3-Trichlorobenzene	ND		0.50	1	08/04/2017 05:36
1,2,4-Trichlorobenzene	ND		0.50	1	08/04/2017 05:36
1,1,1-Trichloroethane	ND		0.50	1	08/04/2017 05:36
1,1,2-Trichloroethane	ND		0.50	1	08/04/2017 05:36
Trichloroethene	ND		0.50	1	08/04/2017 05:36
Trichlorofluoromethane	ND		0.50	1	08/04/2017 05:36
1,2,3-Trichloropropane	ND		0.50	1	08/04/2017 05:36
1,2,4-Trimethylbenzene	33		0.50	1	08/04/2017 05:36
1,3,5-Trimethylbenzene	4.0		0.50	1	08/04/2017 05:36
Vinyl Chloride	ND		0.50	1	08/04/2017 05:36
Xylenes, Total	5.1		0.50	1	08/04/2017 05:36

Analytical Report

Client: Essel Environmental Consulting

Date Received: 7/28/17 13:08

Date Prepared: 8/4/17

Project: 15166; EBALDC

WorkOrder: 1707B67

Extraction Method: SW5030B **Analytical Method:** SW8260B

Unit: $\mu g/L$

Volatile Organics					
Client ID	Lab ID Matrix	Date Collected Instrument	Batch ID		
W-ECB23	1707B67-001B Water	07/28/2017 11:53 GC38	143164		
Analytes	Result	<u>RL</u> <u>DF</u>	Date Analyzed		
Surrogates	REC (%)	<u>Limits</u>			
Dibromofluoromethane	118	70-130	08/04/2017 05:36		
Toluene-d8	101	70-130	08/04/2017 05:36		
4-BFB	81	70-130	08/04/2017 05:36		
Analyst(s): HK		Analytical Comments: b1			

Analytical Report

Client: Essel Environmental Consulting

Date Received: 7/28/17 13:08

Date Prepared: 8/4/17

Project: 15166; EBALDC

WorkOrder: 1707B67

Extraction Method: SW5030B **Analytical Method:** SW8260B

Unit: $\mu g/L$

Volatile Organics

Acatone ND 10 10 1 080042017 10 1 1 080042017 10 10 1 1 080042017 10 10 1 1 080042017 10 10 1 1 080042017 10 10 1 1 080042017 10 10 10 1 1 080042017 10 10 10 10 10 10 10 10 10 10 10 10 10	Client ID	Lab ID Matrix	Date Collected Instrument	Batch ID
Acetone ND 10 1 08/04/2017 ft tert-Amyl methyl ether (TAME) ND 0.50 1 08/04/2017 ft 08	W-ECB24	1707B67-002B Water	07/28/2017 11:34 GC38	143181
tert-Amyl methyl ether (TAME) ND 0.50 1 08/04/2017 til Benzene ND 0.50 1 08/04/2017 til Bromobenzene ND 0.50 1 08/04/2017 til Bromobchoromethane ND 0.50 1 08/04/2017 til Bromodichloromethane ND 0.50 1 08/04/2017 til Bromodermane ND 0.50 1 08/04/2017 til Bromodermane ND 0.50 1 08/04/2017 til Bromodermane ND 0.50 1 08/04/2017 til 2-Butanone (MEK) ND 2.0 1 08/04/2017 til 2-Butanone (MEK) ND 2.0 1 08/04/2017 til 1-Butyl alcohol (TBA) ND 2.0 1 08/04/2017 til 1-Butyl alcohol (TBA) ND 2.0 1 08/04/2017 til 1-Butyl alcohol (TBA) ND 0.50 1 08/04/2017 til 1-Butyl alcohol (TBA) ND 0.50 1 08/04/2017 til	Analytes	Result	<u>RL</u> <u>DF</u>	Date Analyzed
Benzene	Acetone	ND	10 1	08/04/2017 10:26
Bromobenzene ND	tert-Amyl methyl ether (TAME)	ND	0.50 1	08/04/2017 10:26
Bromochloromethane ND	Benzene	ND	0.50 1	08/04/2017 10:26
Bromodichloromethane ND 0.50 1 08/04/2017 ft Bromoform ND 0.50 1 08/04/2017 ft Bromomethane ND 0.50 1 08/04/2017 ft 2-Butanone (MEK) ND 2.0 1 08/04/2017 ft t-Butyl alcohol (TBA) ND 2.0 1 08/04/2017 ft t-Butyl benzene 0.67 0.50 1 08/04/2017 ft sec-Butyl benzene 0.67 0.50 1 08/04/2017 ft tert-Butyl benzene ND 0.50 1 08/04/2017 ft tert-Butyl benzene ND 0.50 1 08/04/2017 ft Carbon Disulfide ND 0.50 1 08/04/2017 ft Carbon Tetrachloride ND 0.50 1 08/04/2017 ft Chlorothane ND 0.50 1 08/04/2017 ft Chlorothane ND 0.50 1 08/04/2017 ft Chlorotoluene ND 0.50 1 08/04/2017 ft <t< td=""><td>Bromobenzene</td><td>ND</td><td>0.50 1</td><td>08/04/2017 10:26</td></t<>	Bromobenzene	ND	0.50 1	08/04/2017 10:26
Bromoform ND 0.50 1 08/04/2017 ft Bromomethane ND 0.50 1 08/04/2017 ft 2-Butanone (MEK) ND 2.0 1 08/04/2017 ft E-Butyl cohol (TBA) ND 2.0 1 08/04/2017 ft I-Butyl benzene 0.67 0.50 1 08/04/2017 ft sec-Butyl benzene 1.1 0.50 1 08/04/2017 ft tert-Butyl benzene ND 0.50 1 08/04/2017 ft Carbon Disulfide ND 0.50 1 08/04/2017 ft Chlorosethane ND 0.50 1 08/04/2017 ft Chlorosethane ND 0.50 1 08/04/2017 ft Chlorostoluene ND 0.50 1 08/04/2017 ft 4-Chlo	Bromochloromethane	ND	0.50 1	08/04/2017 10:26
Bromomethane ND	Bromodichloromethane	ND	0.50 1	08/04/2017 10:26
2-Butanone (MEK) ND 2.0 1 08/04/2017 10 t-Butyl alcohol (TBA) ND 2.0 1 08/04/2017 10 n-Butyl benzene 0.67 0.50 1 08/04/2017 10 sec-Butyl benzene 1.1 0.50 1 08/04/2017 10 tert-Butyl benzene ND 0.50 1 08/04/2017 10 Carbon Disulfide ND 0.50 1 08/04/2017 10 Carbon Tetrachloride ND 0.50 1 08/04/2017 10 Chloroterane ND 0.50 1 08/04/2017 10 Chloroteluene ND 0.50 1 08/04/2017 10 Chlorote	Bromoform	ND	0.50 1	08/04/2017 10:26
t-Butyl alcohol (TBA) ND 2.0 1 08/04/2017 ft n-Butyl benzene 0.67 0.50 1 08/04/2017 ft sec-Butyl benzene 1.1 0.50 1 08/04/2017 ft tert-Butyl benzene ND 0.50 1 08/04/2017 ft tert-Butyl benzene ND 0.50 1 08/04/2017 ft Carbon Disulfide ND 0.50 1 08/04/2017 ft Carbon Tetrachloride ND 0.50 1 08/04/2017 ft Carbon Tetrachloride ND 0.50 1 08/04/2017 ft Chlorobenzene ND 0.50 1 08/04/2017 ft Chlorobenzene ND 0.50 1 08/04/2017 ft Chlorotethane ND 0.50 1 08/04/2017 ft Chlorotethane ND 0.50 1 08/04/2017 ft Chlorotethane ND 0.50 1 08/04/2017 ft C-Chlorotethane ND 0.50 1 08/04/2017 ft C-Chlorotethane ND 0.50 1 08/04/2017 ft C-Chlorotoluene ND 0.50 1 08/04/2017 ft C-Chlorotethane (EDB) ND 0.50 1 08/04/2017 ft C-Chlorotethane (EDB) ND 0.50 1 08/04/2017 ft C-Chlorotethane N	Bromomethane	ND	0.50 1	08/04/2017 10:26
n-Butyl benzene 0.67 0.50 1 08/04/2017 10 sec-Butyl benzene 1.1 0.50 1 08/04/2017 10 tert-Butyl benzene ND 0.50 1 08/04/2017 10 Carbon Disulfide ND 0.50 1 08/04/2017 10 Carbon Disulfide ND 0.50 1 08/04/2017 10 Carbon Tetrachloride ND 0.50 1 08/04/2017 10 Chlorobenzene ND 0.50 1 08/04/2017 10 Chlorobethane ND 0.50 1 08/04/2017 10 Chloroform ND 0.50 1 08/04/2017 10 Chloroformethane ND 0.50 1 08/04/2017 10 2-Chlorotoluene ND 0.50 1 08/04/2017 10 4-Chlorotoluene ND 0.50 1 08/04/2017 10 4-Chlorotoluene ND 0.50 1 08/04/2017 10 1,2-Dibromochloromethane ND 0.50 1 08/04/2017 10	2-Butanone (MEK)	ND	2.0 1	08/04/2017 10:26
sec-Butyl benzene 1.1 0.50 1 08/04/2017 10 tert-Butyl benzene ND 0.50 1 08/04/2017 10 Carbon Disulfide ND 0.50 1 08/04/2017 10 Carbon Tetrachloride ND 0.50 1 08/04/2017 10 Chlorobenzene ND 0.50 1 08/04/2017 10 Chlorobenzene ND 0.50 1 08/04/2017 10 Chlorofethane ND 0.50 1 08/04/2017 10 Chloroform ND 0.50 1 08/04/2017 10 Chlorofoluene ND 0.50 1 08/04/2017 10 4-Chlorotoluene ND 0.50 1 08/04/2017 10 4-Chlorotoluene ND 0.50 1 08/04/2017 10 1,2-Dibromochloromethane ND 0.50 1 08/04/2017 10 1,2-Dibromo-3-chloropropane ND 0.50 1 08/04/2017 10 1,2-Dibromoethane (EDB) ND 0.50 1 08/04/2017 10	t-Butyl alcohol (TBA)	ND	2.0 1	08/04/2017 10:26
tert-Butyl benzene ND 0.50 1 08/04/2017 ft Carbon Disulfide ND 0.50 1 08/04/2017 ft Carbon Tetrachloride ND 0.50 1 08/04/2017 ft Chlorobenzene ND 0.50 1 08/04/2017 ft Chlorotethane ND 0.50 1 08/04/2017 ft Chloroform ND 0.50 1 08/04/2017 ft Chlorotethane ND 0.50 1 08/04/2017 ft Chlorotoluene ND 0.50 1 08/04/2017 ft 2-Chlorotoluene ND 0.50 1 08/04/2017 ft 4-Chlorotoluene ND 0.50 1 08/04/2017 ft 1,2-Dibromoethane ND 0.50 1 08/04/2017 ft 1,2-Dibro	n-Butyl benzene	0.67	0.50 1	08/04/2017 10:26
Carbon Disulfide ND 0.50 1 08/04/2017 ft Carbon Tetrachloride ND 0.50 1 08/04/2017 ft Chlorobenzene ND 0.50 1 08/04/2017 ft Chloroethane ND 0.50 1 08/04/2017 ft Chloroform ND 0.50 1 08/04/2017 ft Chlorotoluene ND 0.50 1 08/04/2017 ft 2-Chlorotoluene ND 0.50 1 08/04/2017 ft 4-Chlorotoluene ND 0.50 1 08/04/2017 ft 4-Chlorotoluene ND 0.50 1 08/04/2017 ft 1-2-Dibromochloromethane ND 0.50 1 08/04/2017 ft 1-2-Dibromoethane (EDB) ND 0.50 1 08/04/2017 ft 1,2-Dibromoethane ND 0.50 1 08/04/2017 ft 1,2-Dichlorobenzene ND 0.50 1 08/04/2017 ft 1,3-Dichlorobenzene ND 0.50 1 08/04/2017 ft <tr< td=""><td>sec-Butyl benzene</td><td>1.1</td><td>0.50 1</td><td>08/04/2017 10:26</td></tr<>	sec-Butyl benzene	1.1	0.50 1	08/04/2017 10:26
Carbon Tetrachloride ND 0.50 1 08/04/2017 10 Chlorobenzene ND 0.50 1 08/04/2017 10 Chloroethane ND 0.50 1 08/04/2017 10 Chloroform ND 0.50 1 08/04/2017 10 Chlorotoluene ND 0.50 1 08/04/2017 10 2-Chlorotoluene ND 0.50 1 08/04/2017 10 4-Chlorotoluene ND 0.50 1 08/04/2017 10 1,2-Dibrorodentanee ND 0.50 1 08/04/2017 10 1,2-Dichlorobenzene ND 0.50 1 08/04/2017 10 1,3-Dichlorobenzene ND 0.50 1 08/04/2017 10 1,	tert-Butyl benzene	ND	0.50 1	08/04/2017 10:26
Chlorobenzene ND 0.50 1 08/04/2017 ft Chloroethane ND 0.50 1 08/04/2017 ft Chloroform ND 0.50 1 08/04/2017 ft Chlorotoluene ND 0.50 1 08/04/2017 ft 2-Chlorotoluene ND 0.50 1 08/04/2017 ft 4-Chlorotoluene ND 0.50 1 08/04/2017 ft 4-Chlorotoluene ND 0.50 1 08/04/2017 ft 1-2-Dibromo-S-chloropropane ND 0.50 1 08/04/2017 ft 1,2-Dibromo-3-chloropropane ND 0.50 1 08/04/2017 ft 1,2-Dibromo-thane (EDB) ND 0.50 1 08/04/2017 ft 1,2-Dibromoethane (EDB) ND 0.50 1 08/04/2017 ft 1,2-Dichlorobenzene ND 0.50 1 08/04/2017 ft 1,3-Dichlorobenzene ND 0.50 1 08/04/2017 ft 1,1-Dichloroethane ND 0.50 1 08/04/2017 ft	Carbon Disulfide	ND	0.50 1	08/04/2017 10:26
Chloroethane ND 0.50 1 08/04/2017 10 Chloroform ND 0.50 1 08/04/2017 10 Chloromethane ND 0.50 1 08/04/2017 10 2-Chlorotoluene ND 0.50 1 08/04/2017 10 4-Chlorotoluene ND 0.50 1 08/04/2017 10 4-Chlorotoluene ND 0.50 1 08/04/2017 10 1,2-Dibromochloromethane ND 0.50 1 08/04/2017 10 1,2-Dibromos-3-chloropropane ND 0.50 1 08/04/2017 10 1,2-Dibromoethane (EDB) ND 0.50 1 08/04/2017 10 1,2-Dichlorobenzene ND 0.50 1 08/04/2017 10 1,2-Dichlorobenzene ND 0.50 1 08/04/2017 10 1,3-Dichlorobenzene ND 0.50 1 08/04/2017 10 1,4-Dichlorobenzene ND 0.50 1 08/04/2017 10 1,1-Dichlorotehane ND 0.50 1 08/04/2017 10	Carbon Tetrachloride	ND	0.50 1	08/04/2017 10:26
Chloroform ND 0.50 1 08/04/2017 ft Chloromethane ND 0.50 1 08/04/2017 ft 2-Chlorotoluene ND 0.50 1 08/04/2017 ft 4-Chlorotoluene ND 0.50 1 08/04/2017 ft 4-Chlorotoluene ND 0.50 1 08/04/2017 ft 1,2-Dibromoethane ND 0.50 1 08/04/2017 ft 1,2-Dibromoethane (EDB) ND 0.50 1 08/04/2017 ft 1,2-Dibromoethane (EDB) ND 0.50 1 08/04/2017 ft 1,2-Dichlorobenzene ND 0.50 1 08/04/2017 ft 1,3-Dichlorobenzene ND 0.50 1 08/04/2017 ft 1,4-Dichlorobenzene ND 0.50 1 08/04/2017 ft 1,1-Dichloroderbane ND 0.50 1 08/04/2017 ft 1,1-Dichloroderbane ND 0.50 1 08/04/2017 ft 1,2-Dichloroderbane ND 0.50 1 08/04/2017 ft	Chlorobenzene	ND	0.50 1	08/04/2017 10:26
Chloromethane ND 0.50 1 08/04/2017 ft 2-Chlorotoluene ND 0.50 1 08/04/2017 ft 4-Chlorotoluene ND 0.50 1 08/04/2017 ft 1-Chlorotoluene ND 0.50 1 08/04/2017 ft 1,2-Dibromoe-3-chloropropane ND 0.20 1 08/04/2017 ft 1,2-Dibromoethane (EDB) ND 0.50 1 08/04/2017 ft 1,2-Dibromoethane (EDB) ND 0.50 1 08/04/2017 ft 1,2-Dichlorobenzene ND 0.50 1 08/04/2017 ft 1,3-Dichlorobenzene ND 0.50 1 08/04/2017 ft 1,4-Dichlorobenzene ND 0.50 1 08/04/2017 ft 1,1-Dichlorobenzene ND 0.50 1 08/04/2017 ft 1,1-Dichloroethane ND 0.50 1 08/04/2017 ft 1,2-Dichloroethane (1,2-DCA) ND 0.50 1 08/04/2017 ft 1,1-Dichloroethene ND 0.50 1	Chloroethane	ND	0.50 1	08/04/2017 10:26
2-Chlorotoluene ND 0.50 1 08/04/2017 ft 4-Chlorotoluene ND 0.50 1 08/04/2017 ft Dibromochloromethane ND 0.50 1 08/04/2017 ft 1,2-Dibromo-3-chloropropane ND 0.20 1 08/04/2017 ft 1,2-Dibromoethane (EDB) ND 0.50 1 08/04/2017 ft 1,2-Dibrlorobenzene ND 0.50 1 08/04/2017 ft 1,2-Dichlorobenzene ND 0.50 1 08/04/2017 ft 1,3-Dichlorobenzene ND 0.50 1 08/04/2017 ft 1,4-Dichlorobenzene ND 0.50 1 08/04/2017 ft 1,4-Dichlorobenzene ND 0.50 1 08/04/2017 ft 1,1-Dichloroethane ND 0.50 1 08/04/2017 ft 1,1-Dichloroethane ND 0.50 1 08/04/2017 ft 1,1-Dichloroethane ND 0.50 1 08/04/2017 ft 1,1-Dichloroethene ND 0.50 1	Chloroform	ND	0.50 1	08/04/2017 10:26
4-Chlorotoluene ND 0.50 1 08/04/2017 10 Dibromochloromethane ND 0.50 1 08/04/2017 10 1,2-Dibromo-3-chloropropane ND 0.20 1 08/04/2017 10 1,2-Dibromoethane (EDB) ND 0.50 1 08/04/2017 10 1,2-Dibromomethane ND 0.50 1 08/04/2017 10 1,2-Dichlorobenzene ND 0.50 1 08/04/2017 10 1,3-Dichlorobenzene ND 0.50 1 08/04/2017 10 1,4-Dichlorobenzene ND 0.50 1 08/04/2017 10 1,4-Dichlorobenzene ND 0.50 1 08/04/2017 10 1,1-Dichloroethane ND 0.50 1 08/04/2017 10 1,1-Dichloroethane ND 0.50 1 08/04/2017 10 1,1-Dichloroethane ND 0.50 1 08/04/2017 10 1,1-Dichloroethene ND 0.50 1 08/04/2017 10 1,2-Dichloroethene ND 0.50 1 <t< td=""><td>Chloromethane</td><td>ND</td><td>0.50 1</td><td>08/04/2017 10:26</td></t<>	Chloromethane	ND	0.50 1	08/04/2017 10:26
Dibromochloromethane ND 0.50 1 08/04/2017 10 1,2-Dibromo-3-chloropropane ND 0.20 1 08/04/2017 10 1,2-Dibromoethane (EDB) ND 0.50 1 08/04/2017 10 1,2-Dibromomethane ND 0.50 1 08/04/2017 10 1,2-Dichlorobenzene ND 0.50 1 08/04/2017 10 1,3-Dichlorobenzene ND 0.50 1 08/04/2017 10 1,4-Dichlorobenzene ND 0.50 1 08/04/2017 10 1,1-Dichloroethane ND 0.50 1 08/04/2017 10 1,2-Dichloroethane ND 0.50 1 08/04/2017 10 1,2-Dichloroethane (1,2-DCA) ND 0.50 1 08/04/2017 10 1,1-Dichloroethene ND 0.50 1 08/04/2017 10 1,2-Dichloroethene ND 0.50 1 08/04/2017 10 1,2-Dichloroethene ND 0.50 1 08/04/2017 10 1,2-Dichloroethene ND 0.50 1 <td>2-Chlorotoluene</td> <td>ND</td> <td>0.50 1</td> <td>08/04/2017 10:26</td>	2-Chlorotoluene	ND	0.50 1	08/04/2017 10:26
1,2-Dibromo-3-chloropropane ND 0.20 1 08/04/2017 10 1,2-Dibromoethane (EDB) ND 0.50 1 08/04/2017 10 Dibromomethane ND 0.50 1 08/04/2017 10 1,2-Dichlorobenzene ND 0.50 1 08/04/2017 10 1,3-Dichlorobenzene ND 0.50 1 08/04/2017 10 1,4-Dichlorobenzene ND 0.50 1 08/04/2017 10 Dichlorodifluoromethane ND 0.50 1 08/04/2017 10 1,1-Dichloroethane ND 0.50 1 08/04/2017 10 1,2-Dichloroethane (1,2-DCA) ND 0.50 1 08/04/2017 10 1,1-Dichloroethene ND 0.50 1 08/04/2017 10 1,2-Dichloroethene ND 0.50 1 08/04/2017 10 1,2-Dichloroethene ND 0.50 1 08/04/2017 10 1,2-Dichloropropane ND 0.50 1 08/04/2017 10 1,3-Dichloropropane ND 0.50 1 <td>4-Chlorotoluene</td> <td>ND</td> <td>0.50 1</td> <td>08/04/2017 10:26</td>	4-Chlorotoluene	ND	0.50 1	08/04/2017 10:26
1,2-Dibromoethane (EDB) ND 0.50 1 08/04/2017 10 Dibromomethane ND 0.50 1 08/04/2017 10 1,2-Dichlorobenzene ND 0.50 1 08/04/2017 10 1,3-Dichlorobenzene ND 0.50 1 08/04/2017 10 1,4-Dichlorobenzene ND 0.50 1 08/04/2017 10 Dichlorodifluoromethane ND 0.50 1 08/04/2017 10 1,1-Dichloroethane ND 0.50 1 08/04/2017 10 1,2-Dichloroethane (1,2-DCA) ND 0.50 1 08/04/2017 10 1,1-Dichloroethene ND 0.50 1 08/04/2017 10 cis-1,2-Dichloroethene ND 0.50 1 08/04/2017 10 trans-1,2-Dichloroethene ND 0.50 1 08/04/2017 10 1,2-Dichloropropane ND 0.50 1 08/04/2017 10 1,3-Dichloropropane ND 0.50 1 08/04/2017 10	Dibromochloromethane	ND	0.50 1	08/04/2017 10:26
Dibromomethane ND 0.50 1 08/04/2017 10 1,2-Dichlorobenzene ND 0.50 1 08/04/2017 10 1,3-Dichlorobenzene ND 0.50 1 08/04/2017 10 1,4-Dichlorobenzene ND 0.50 1 08/04/2017 10 Dichlorodifluoromethane ND 0.50 1 08/04/2017 10 1,1-Dichloroethane ND 0.50 1 08/04/2017 10 1,2-Dichloroethane (1,2-DCA) ND 0.50 1 08/04/2017 10 1,1-Dichloroethene ND 0.50 1 08/04/2017 10 1,1-Dichloroethene ND 0.50 1 08/04/2017 10 1,1-Dichloroethene ND 0.50 1 08/04/2017 10 1,2-Dichloroethene ND 0.50 1 08/04/2017 10 1,2-Dichloropropane ND 0.50 1 08/04/2017 10 1,3-Dichloropropane ND 0.50 1 08/04/2017 10	1,2-Dibromo-3-chloropropane	ND	0.20 1	08/04/2017 10:26
1,2-Dichlorobenzene ND 0.50 1 08/04/2017 10 1,3-Dichlorobenzene ND 0.50 1 08/04/2017 10 1,4-Dichlorobenzene ND 0.50 1 08/04/2017 10 Dichlorodifluoromethane ND 0.50 1 08/04/2017 10 1,1-Dichloroethane ND 0.50 1 08/04/2017 10 1,2-Dichloroethane (1,2-DCA) ND 0.50 1 08/04/2017 10 1,1-Dichloroethene ND 0.50 1 08/04/2017 10 cis-1,2-Dichloroethene ND 0.50 1 08/04/2017 10 trans-1,2-Dichloroethene ND 0.50 1 08/04/2017 10 1,2-Dichloropropane ND 0.50 1 08/04/2017 10 1,3-Dichloropropane ND 0.50 1 08/04/2017 10	1,2-Dibromoethane (EDB)	ND	0.50 1	08/04/2017 10:26
1,3-Dichlorobenzene ND 0.50 1 08/04/2017 10 1,4-Dichlorobenzene ND 0.50 1 08/04/2017 10 Dichlorodifluoromethane ND 0.50 1 08/04/2017 10 1,1-Dichloroethane ND 0.50 1 08/04/2017 10 1,2-Dichloroethane (1,2-DCA) ND 0.50 1 08/04/2017 10 1,1-Dichloroethene ND 0.50 1 08/04/2017 10 cis-1,2-Dichloroethene ND 0.50 1 08/04/2017 10 trans-1,2-Dichloroethene ND 0.50 1 08/04/2017 10 1,2-Dichloropropane ND 0.50 1 08/04/2017 10 1,3-Dichloropropane ND 0.50 1 08/04/2017 10	Dibromomethane	ND	0.50 1	08/04/2017 10:26
1,4-Dichlorobenzene ND 0.50 1 08/04/2017 10 Dichlorodifluoromethane ND 0.50 1 08/04/2017 10 1,1-Dichloroethane ND 0.50 1 08/04/2017 10 1,2-Dichloroethane (1,2-DCA) ND 0.50 1 08/04/2017 10 1,1-Dichloroethene ND 0.50 1 08/04/2017 10 cis-1,2-Dichloroethene ND 0.50 1 08/04/2017 10 trans-1,2-Dichloroethene ND 0.50 1 08/04/2017 10 1,2-Dichloropropane ND 0.50 1 08/04/2017 10 1,3-Dichloropropane ND 0.50 1 08/04/2017 10	1,2-Dichlorobenzene	ND	0.50 1	08/04/2017 10:26
Dichlorodifluoromethane ND 0.50 1 08/04/2017 10 1,1-Dichloroethane ND 0.50 1 08/04/2017 10 1,2-Dichloroethane (1,2-DCA) ND 0.50 1 08/04/2017 10 1,1-Dichloroethene ND 0.50 1 08/04/2017 10 cis-1,2-Dichloroethene ND 0.50 1 08/04/2017 10 trans-1,2-Dichloroethene ND 0.50 1 08/04/2017 10 1,2-Dichloropropane ND 0.50 1 08/04/2017 10 1,3-Dichloropropane ND 0.50 1 08/04/2017 10	1,3-Dichlorobenzene	ND	0.50 1	08/04/2017 10:26
1,1-Dichloroethane ND 0.50 1 08/04/2017 10 1,2-Dichloroethane (1,2-DCA) ND 0.50 1 08/04/2017 10 1,1-Dichloroethene ND 0.50 1 08/04/2017 10 cis-1,2-Dichloroethene ND 0.50 1 08/04/2017 10 trans-1,2-Dichloroethene ND 0.50 1 08/04/2017 10 1,2-Dichloropropane ND 0.50 1 08/04/2017 10 1,3-Dichloropropane ND 0.50 1 08/04/2017 10	1,4-Dichlorobenzene	ND	0.50 1	08/04/2017 10:26
1,2-Dichloroethane (1,2-DCA) ND 0.50 1 08/04/2017 10 1,1-Dichloroethene ND 0.50 1 08/04/2017 10 cis-1,2-Dichloroethene ND 0.50 1 08/04/2017 10 trans-1,2-Dichloroethene ND 0.50 1 08/04/2017 10 1,2-Dichloropropane ND 0.50 1 08/04/2017 10 1,3-Dichloropropane ND 0.50 1 08/04/2017 10	Dichlorodifluoromethane	ND	0.50 1	08/04/2017 10:26
1,1-Dichloroethene ND 0.50 1 08/04/2017 10 cis-1,2-Dichloroethene ND 0.50 1 08/04/2017 10 trans-1,2-Dichloroethene ND 0.50 1 08/04/2017 10 1,2-Dichloropropane ND 0.50 1 08/04/2017 10 1,3-Dichloropropane ND 0.50 1 08/04/2017 10	1,1-Dichloroethane	ND	0.50 1	08/04/2017 10:26
cis-1,2-Dichloroethene ND 0.50 1 08/04/2017 10 trans-1,2-Dichloroethene ND 0.50 1 08/04/2017 10 1,2-Dichloropropane ND 0.50 1 08/04/2017 10 1,3-Dichloropropane ND 0.50 1 08/04/2017 10 0,50 1 08/04/2017 10 08/04/2017 10	1,2-Dichloroethane (1,2-DCA)	ND	0.50 1	08/04/2017 10:26
trans-1,2-Dichloroethene ND 0.50 1 08/04/2017 10 1,2-Dichloropropane ND 0.50 1 08/04/2017 10 1,3-Dichloropropane ND 0.50 1 08/04/2017 10 0,50 1 08/04/2017 10 0.50 1 08/04/2017 10	1,1-Dichloroethene	ND	0.50 1	08/04/2017 10:26
1,2-Dichloropropane ND 0.50 1 08/04/2017 10 1,3-Dichloropropane ND 0.50 1 08/04/2017 10	cis-1,2-Dichloroethene	ND	0.50 1	08/04/2017 10:26
1,3-Dichloropropane ND 0.50 1 08/04/2017 10	trans-1,2-Dichloroethene	ND	0.50 1	08/04/2017 10:26
	1,2-Dichloropropane	ND	0.50 1	08/04/2017 10:26
2,2-Dichloropropane ND 0.50 1 08/04/2017 10	1,3-Dichloropropane	ND	0.50 1	08/04/2017 10:26
	2,2-Dichloropropane	ND	0.50 1	08/04/2017 10:26

(Cont.)

Analytical Report

Client: Essel Environmental Consulting

Date Received: 7/28/17 13:08

Date Prepared: 8/4/17

Project: 15166; EBALDC

WorkOrder: 1707B67

Extraction Method: SW5030B **Analytical Method:** SW8260B

Unit: $\mu g/L$

Volatile Organics

Client ID	Lab ID	Matrix	Date C	ollected Instrument	Batch ID
W-ECB24	1707B67-002B	Water	07/28/20	017 11:34 GC38	143181
Analytes	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
1,1-Dichloropropene	ND		0.50	1	08/04/2017 10:26
cis-1,3-Dichloropropene	ND		0.50	1	08/04/2017 10:26
trans-1,3-Dichloropropene	ND		0.50	1	08/04/2017 10:26
Diisopropyl ether (DIPE)	ND		0.50	1	08/04/2017 10:26
Ethylbenzene	ND		0.50	1	08/04/2017 10:26
Ethyl tert-butyl ether (ETBE)	ND		0.50	1	08/04/2017 10:26
Freon 113	ND		0.50	1	08/04/2017 10:26
Hexachlorobutadiene	ND		0.50	1	08/04/2017 10:26
Hexachloroethane	ND		0.50	1	08/04/2017 10:26
2-Hexanone	ND		0.50	1	08/04/2017 10:26
Isopropylbenzene	ND		0.50	1	08/04/2017 10:26
4-Isopropyl toluene	ND		0.50	1	08/04/2017 10:26
Methyl-t-butyl ether (MTBE)	ND		0.50	1	08/04/2017 10:26
Methylene chloride	ND		0.50	1	08/04/2017 10:26
4-Methyl-2-pentanone (MIBK)	ND		0.50	1	08/04/2017 10:26
Naphthalene	ND		0.50	1	08/04/2017 10:26
n-Propyl benzene	ND		0.50	1	08/04/2017 10:26
Styrene	ND		0.50	1	08/04/2017 10:26
1,1,1,2-Tetrachloroethane	ND		0.50	1	08/04/2017 10:26
1,1,2,2-Tetrachloroethane	ND		0.50	1	08/04/2017 10:26
Tetrachloroethene	ND		0.50	1	08/04/2017 10:26
Toluene	ND		0.50	1	08/04/2017 10:26
1,2,3-Trichlorobenzene	ND		0.50	1	08/04/2017 10:26
1,2,4-Trichlorobenzene	ND		0.50	1	08/04/2017 10:26
1,1,1-Trichloroethane	ND		0.50	1	08/04/2017 10:26
1,1,2-Trichloroethane	ND		0.50	1	08/04/2017 10:26
Trichloroethene	ND		0.50	1	08/04/2017 10:26
Trichlorofluoromethane	ND		0.50	1	08/04/2017 10:26
1,2,3-Trichloropropane	ND		0.50	1	08/04/2017 10:26
1,2,4-Trimethylbenzene	ND		0.50	1	08/04/2017 10:26
1,3,5-Trimethylbenzene	ND		0.50	1	08/04/2017 10:26
Vinyl Chloride	ND		0.50	1	08/04/2017 10:26
Xylenes, Total	ND		0.50	1	08/04/2017 10:26

Analytical Report

Client: Essel Environmental Consulting

Date Received: 7/28/17 13:08

Date Prepared: 8/4/17

Project: 15166; EBALDC

WorkOrder: 1707B67

Extraction Method: SW5030B **Analytical Method:** SW8260B

Unit: $\mu g/L$

Volatile Organics					
Client ID	Lab ID Matrix	Date Collected Instrument	Batch ID		
W-ECB24	1707B67-002B Water	07/28/2017 11:34 GC38	143181		
Analytes	Result	<u>RL</u> <u>DF</u>	Date Analyzed		
Surrogates	REC (%)	<u>Limits</u>			
Dibromofluoromethane	116	70-130	08/04/2017 10:26		
Toluene-d8	101	70-130	08/04/2017 10:26		
4-BFB	97	70-130	08/04/2017 10:26		
Analyst(s): HK					

Analytical Report

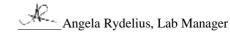
Client: Essel Environmental Consulting

Date Received: 7/28/17 13:08

Date Prepared: 8/4/17

Project: 15166; EBALDC

WorkOrder: 1707B67


Extraction Method: SW5030B **Analytical Method:** SW8260B

Unit: $\mu g/L$

Volatile Organics

Acatone ND 20 2 080042017 tert-Amyl methyl ether (TAME) ND 1.0 2 080042017 Benzene ND 1.0 2 080042017 Bromobenzene ND 1.0 2 080042017 Carbon Disulfide ND 1.0 2 080042017 Chlorobenzene ND	Client ID	Lab ID M	Iatrix Date C	Collected Instrument	Batch ID
Acetone	W-ECB25	1707B67-003B W	ater 07/28/2	017 11:27 GC38	143181
tert-Amyl methyl ether (TAME) ND 1.0 2 08/04/2017 Benzene ND 1.0 2 08/04/2017 Bromobenzene ND 1.0 2 08/04/2017 Bromodchloromethane ND 1.0 2 08/04/2017 Bromodchloromethane ND 1.0 2 08/04/2017 Bromoform ND 1.0 2 08/04/2017 Bromomethane ND 1.0 2 08/04/2017 2-Butanone (MEK) ND 4.0 2 08/04/2017 1-Butyl alcohol (TBA) ND 4.0 2 08/04/2017 1-Butyl alcohol (TBA) <td><u>Analytes</u></td> <td>Result</td> <td><u>RL</u></td> <td><u>DF</u></td> <td>Date Analyzed</td>	<u>Analytes</u>	Result	<u>RL</u>	<u>DF</u>	Date Analyzed
Benzene ND	Acetone	ND	20	2	08/04/2017 16:14
Bromobenzene ND	tert-Amyl methyl ether (TAME)	ND	1.0	2	08/04/2017 16:14
Bromochloromethane ND 1.0 2 08/04/2017 Bromodichloromethane ND 1.0 2 08/04/2017 Bromoform ND 1.0 2 08/04/2017 Bromomethane ND 1.0 2 08/04/2017 2-Butanone (MEK) ND 4.0 2 08/04/2017 1-Butyl alcohol (TBA) ND 4.0 2 08/04/2017 1-Butyl benzene 11 1.0 2 08/04/2017 r-Butyl benzene 6.2 1.0 2 08/04/2017 tert-Butyl benzene 6.2 1.0 2 08/04/2017 tert-Butyl benzene ND 1.0 2 08/04/2017 Carbon Tetrachloride ND 1.0 2 08/04/2017 Carbon Tetrachloride ND 1.0 2 08/04/2017 Chlorobenzene ND 1.0 2 08/04/2017 Chlorothane ND 1.0 2 08/04/2017 Chlorotoluene ND	Benzene	ND	1.0	2	08/04/2017 16:14
Bromodichloromethane ND	Bromobenzene	ND	1.0	2	08/04/2017 16:14
Bromoform ND	Bromochloromethane	ND	1.0	2	08/04/2017 16:14
Bromomethane ND	Bromodichloromethane	ND	1.0	2	08/04/2017 16:14
2-Butanone (MEK) ND 4.0 2 08/04/2017 t-Butyl alcohol (TBA) ND 4.0 2 08/04/2017 n-Butyl benzene 11 1.0 2 08/04/2017 sec-Butyl benzene 6.2 1.0 2 08/04/2017 tert-Butyl benzene ND 1.0 2 08/04/2017 Carbon Disulfide ND 1.0 2 08/04/2017 Carbon Disulfide ND 1.0 2 08/04/2017 Carbon Tetrachloride ND 1.0 2 08/04/2017 Chlorothane ND 1.0 2 08/04/2017 Chlorotethane ND 1.0 <td>Bromoform</td> <td>ND</td> <td>1.0</td> <td>2</td> <td>08/04/2017 16:14</td>	Bromoform	ND	1.0	2	08/04/2017 16:14
t-Butyl alcohol (TBA) ND 4.0 2 08/04/2017 n-Butyl benzene 11 1.0 2 08/04/2017 sec-Butyl benzene 6.2 1.0 2 08/04/2017 sec-Butyl benzene 6.2 1.0 2 08/04/2017 tert-Butyl benzene ND 1.0 2 08/04/2017 carbon Disulfide ND 1.0 2 08/04/2017 Carbon Disulfide ND 1.0 2 08/04/2017 Carbon Tetrachloride ND 1.0 2 08/04/2017 Carbon Tetrachloride ND 1.0 2 08/04/2017 Chlorobenzene ND 1.0 2 08/04/2017 Chlorobenzene ND 1.0 2 08/04/2017 Chlorotethane (EDB) ND 1.0 2 08/04/2017 Chlorotethane (EDB) ND 1.0 2 08/04/2017 Chlorotethane (EDB) ND 1.0 2 08/04/2017 Chlorotethane ND 1.0 2 08/04/2017 Chlorotetha	Bromomethane	ND	1.0	2	08/04/2017 16:14
n-Butyl benzene 11 1.0 2 08/04/2017 sec-Butyl benzene 6.2 1.0 2 08/04/2017 tert-Butyl benzene ND 1.0 2 08/04/2017 Carbon Disulfide ND 1.0 2 08/04/2017 Carbon Disulfide ND 1.0 2 08/04/2017 Carbon Disulfide ND 1.0 2 08/04/2017 Chlorotelane ND 1.0 2 08/04/2017 Chlorotelane ND 1.0 2 08/04/2017 Chlorotoluene ND 1.0 2 08/04/2017 2-Chlorotoluene ND 1.0 2 08/04/2017 4-Chlorotoluene ND 1.0 2 08/04/2017 1,2-Dibromochloromethane ND	2-Butanone (MEK)	ND	4.0	2	08/04/2017 16:14
sec-Butyl benzene 6.2 1.0 2 08/04/2017 tert-Butyl benzene ND 1.0 2 08/04/2017 Carbon Disulfide ND 1.0 2 08/04/2017 Carbon Tetrachloride ND 1.0 2 08/04/2017 Chlorobenzene ND 1.0 2 08/04/2017 Chlorotethane ND 1.0 2 08/04/2017 Chlorotethane ND 1.0 2 08/04/2017 Chlorotethane ND 1.0 2 08/04/2017 Chlorotoluene ND 1.0 2 08/04/2017 4-Chlorotoluene ND 1.0 2 08/04/2017 1,2-Dibiromoethane ND 1.0 </td <td>t-Butyl alcohol (TBA)</td> <td>ND</td> <td>4.0</td> <td>2</td> <td>08/04/2017 16:14</td>	t-Butyl alcohol (TBA)	ND	4.0	2	08/04/2017 16:14
tert-Butyl benzene ND 1.0 2 08/04/2017 Carbon Disulfide ND 1.0 2 08/04/2017 Carbon Tetrachloride ND 1.0 2 08/04/2017 Chlorobenzene ND 1.0 2 08/04/2017 Chlorobenzene ND 1.0 2 08/04/2017 Chloroform ND 1.0 2 08/04/2017 Chloroform ND 1.0 2 08/04/2017 Chlorofoluene ND 1.0 2 08/04/2017 2-Chlorotoluene ND 1.0 2 08/04/2017 4-Chlorotoluene ND 1.0 2 08/04/2017 4-Chlorotoluene ND 1.0 2 08/04/2017 1,2-Dibromo-3-chloropropane ND 1.0 2 08/04/2017 1,2-Dibromo-3-chloropropane ND 0.40 2 08/04/2017 1,2-Dibromoethane (EDB) ND 1.0 2 08/04/2017 1,2-Dibchlorobenzene <td< td=""><td>n-Butyl benzene</td><td>11</td><td>1.0</td><td>2</td><td>08/04/2017 16:14</td></td<>	n-Butyl benzene	11	1.0	2	08/04/2017 16:14
Carbon Disulfide ND 1.0 2 08/04/2017 Carbon Tetrachloride ND 1.0 2 08/04/2017 Chlorobenzene ND 1.0 2 08/04/2017 Chlorotethane ND 1.0 2 08/04/2017 Chlorotofrm ND 1.0 2 08/04/2017 Chlorotoluene ND 1.0 2 08/04/2017 2-Chlorotoluene ND 1.0 2 08/04/2017 4-Chlorotoluene ND 1.0 2 08/04/2017 4-Chlorotoluene ND 1.0 2 08/04/2017 4-Chlorotoluene ND 1.0 2 08/04/2017 1,2-Dibromochloromethane ND 1.0 2 08/04/2017 1,2-Dibromochlane (EDB) ND 1.0 2 08/04/2017 1,2-Dichlorobenzene ND 1.0 2 08/04/2017 1,2-Dichlorobenzene ND 1.0 2 08/04/2017 1,4-Dichlorobenzene ND <td>sec-Butyl benzene</td> <td>6.2</td> <td>1.0</td> <td>2</td> <td>08/04/2017 16:14</td>	sec-Butyl benzene	6.2	1.0	2	08/04/2017 16:14
Carbon Tetrachloride ND 1.0 2 08/04/2017 Chlorobenzene ND 1.0 2 08/04/2017 Chloroethane ND 1.0 2 08/04/2017 Chloroform ND 1.0 2 08/04/2017 Chlorotoluene ND 1.0 2 08/04/2017 2-Chlorotoluene ND 1.0 2 08/04/2017 4-Chlorotoluene ND 1.0 2 08/04/2017 1,2-Dibromochloromethane ND 1.0 2 08/04/2017 1,2-Dibiromochloromethane (EDB) ND 1.0 2 08/04/2017 1,2-Dichlorobenzene ND 1.0 2 08/04/2017 1,3-Dichlorobenzene ND 1.0 2 08/04/2017 1,4-Dichloroethane N	tert-Butyl benzene	ND	1.0	2	08/04/2017 16:14
Chlorobenzene ND 1.0 2 08/04/2017 decided Chloroethane ND 1.0 2 08/04/2017 decided Chloroform ND 1.0 2 08/04/2017 decided Chlorotoluene ND 1.0 2 08/04/2017 decided 2-Chlorotoluene ND 1.0 2 08/04/2017 decided 4-Chlorotoluene ND 1.0 2 08/04/2017 decided 4-Chlorotoluene ND 1.0 2 08/04/2017 decided 4-Chlorotoluene ND 1.0 2 08/04/2017 decided 1,2-Dibromo-3-chloropropane ND 1.0 2 08/04/2017 decided 1,3-Dichloroethane ND	Carbon Disulfide	ND	1.0	2	08/04/2017 16:14
Chloroethane ND 1.0 2 08/04/2017 Chloroform ND 1.0 2 08/04/2017 Chloromethane ND 1.0 2 08/04/2017 2-Chlorotoluene ND 1.0 2 08/04/2017 4-Chlorotoluene ND 1.0 2 08/04/2017 4-Chlorotoluene ND 1.0 2 08/04/2017 1-2-Dibromochloromethane ND 1.0 2 08/04/2017 1,2-Dibromochlane ND 1.0 2 08/04/2017 1,2-Dibromochlane (EDB) ND 1.0 2 08/04/2017 1,2-Dichlorobenzene ND 1.0 2 08/04/2017 1,2-Dichlorobenzene ND 1.0 2 08/04/2017 1,3-Dichlorobenzene ND 1.0 2 08/04/2017 1,4-Dichlorodifluoromethane ND 1.0 2 08/04/2017 1,1-Dichlorodifluoromethane ND 1.0 2 08/04/2017 1,2-Dichloroethane	Carbon Tetrachloride	ND	1.0	2	08/04/2017 16:14
Chloroform ND 1.0 2 08/04/2017 Chloromethane ND 1.0 2 08/04/2017 2-Chlorotoluene ND 1.0 2 08/04/2017 4-Chlorotoluene ND 1.0 2 08/04/2017 4-Chlorotoluene ND 1.0 2 08/04/2017 1-2-Dibromoethane ND 1.0 2 08/04/2017 1,2-Dibromoethane (EDB) ND 1.0 2 08/04/2017 1,2-Dibromoethane (EDB) ND 1.0 2 08/04/2017 1,2-Dichlorobenzene ND 1.0 2 08/04/2017 1,3-Dichlorobenzene ND 1.0 2 08/04/2017 1,4-Dichlorobenzene ND 1.0 2 08/04/2017 1,1-Dichlorodifluoromethane ND 1.0 2 08/04/2017 1,1-Dichlorodethane ND 1.0 2 08/04/2017 1,2-Dichlorotethane ND 1.0 2 08/04/2017 1,1-Dichlorotethene<	Chlorobenzene	ND	1.0	2	08/04/2017 16:14
Chloromethane ND 1.0 2 08/04/2017 2-Chlorotoluene ND 1.0 2 08/04/2017 4-Chlorotoluene ND 1.0 2 08/04/2017 4-Chlorotoluene ND 1.0 2 08/04/2017 1,2-Dibromo-3-chloropropane ND 1.0 2 08/04/2017 1,2-Dibromoethane (EDB) ND 1.0 2 08/04/2017 1,2-Dibrlorobenzene ND 1.0 2 08/04/2017 1,2-Dichlorobenzene ND 1.0 2 08/04/2017 1,4-Dichlorobenzene ND 1.0 2 08/04/2017 1,4-Dichlorobenzene ND 1.0 2 08/04/2017 1,1-Dichloroethane ND 1.0 2 08/04/2017 1,2-Dichloroethane ND 1.0 2 08/04/2017 1,1-Dichloroethane ND 1.0 2 08/04/2017 1,1-Dichloroethane ND 1.0 2 08/04/2017 1,2-Dichloroethan	Chloroethane	ND	1.0	2	08/04/2017 16:14
2-Chlorotoluene ND 1.0 2 08/04/2017 4-Chlorotoluene ND 1.0 2 08/04/2017 Dibromochloromethane ND 1.0 2 08/04/2017 1,2-Dibromo-3-chloropropane ND 0.40 2 08/04/2017 1,2-Dibromoethane (EDB) ND 1.0 2 08/04/2017 1,2-Dibromoethane (EDB) ND 1.0 2 08/04/2017 1,2-Dichlorobenzene ND 1.0 2 08/04/2017 1,3-Dichlorobenzene ND 1.0 2 08/04/2017 1,4-Dichlorobenzene ND 1.0 2 08/04/2017 1,1-Dichloroethane ND 1.0 2 08/04/2017 1,2-Dichloroethene ND 1.0 2 08/04/2017 1,	Chloroform	ND	1.0	2	08/04/2017 16:14
4-Chlorotoluene ND 1.0 2 08/04/2017 Dibromochloromethane ND 1.0 2 08/04/2017 1,2-Dibromo-3-chloropropane ND 0.40 2 08/04/2017 1,2-Dibromoethane (EDB) ND 1.0 2 08/04/2017 1,2-Dibromomethane ND 1.0 2 08/04/2017 1,2-Dichlorobenzene ND 1.0 2 08/04/2017 1,3-Dichlorobenzene ND 1.0 2 08/04/2017 1,4-Dichlorobenzene ND 1.0 2 08/04/2017 1,1-Dichlorothane ND 1.0 2 08/04/2017 1,1-Dichloroethane (1,2-DCA) ND 1.0 2 08/04/2017 1,1-Dichloroethene ND 1.0 2 08/04/2017 1,1-Dichloroethene ND 1.0 2 08/04/2017 1,2-Dichloroethene ND 1.0 2 08/04/2017 1,2-Dichloroethene ND 1.0 2 08/04/2017	Chloromethane	ND	1.0	2	08/04/2017 16:14
Dibromochloromethane ND 1.0 2 08/04/2017 1,2-Dibromo-3-chloropropane ND 0.40 2 08/04/2017 1,2-Dibromoethane (EDB) ND 1.0 2 08/04/2017 1,2-Dibromoethane (EDB) ND 1.0 2 08/04/2017 1,2-Dichlorobenzene ND 1.0 2 08/04/2017 1,3-Dichlorobenzene ND 1.0 2 08/04/2017 1,4-Dichlorobenzene ND 1.0 2 08/04/2017 1,1-Dichlorothane ND 1.0 2 08/04/2017 1,1-Dichlorothane ND 1.0 2 08/04/2017 1,2-Dichlorothane (1,2-DCA) ND 1.0 2 08/04/2017 1,1-Dichlorothene ND 1.0 2 08/04/2017 1,2-Dichlorothene ND 1.0 2 08/04/2017 1,2-Dichlorothene ND 1.0 2 08/04/2017 1,2-Dichloropropane ND 1.0 2 08/04/2017	2-Chlorotoluene	ND	1.0	2	08/04/2017 16:14
1,2-Dibromo-3-chloropropane ND 0.40 2 08/04/2017 1,2-Dibromoethane (EDB) ND 1.0 2 08/04/2017 Dibromomethane ND 1.0 2 08/04/2017 1,2-Dichlorobenzene ND 1.0 2 08/04/2017 1,3-Dichlorobenzene ND 1.0 2 08/04/2017 1,4-Dichlorobenzene ND 1.0 2 08/04/2017 1,1-Dichlorobenzene ND 1.0 2 08/04/2017 1,1-Dichloroethane ND 1.0 2 08/04/2017 1,2-Dichloroethane ND 1.0 2 08/04/2017 1,1-Dichloroethene ND 1.0 2 08/04/2017 cis-1,2-Dichloroethene ND 1.0 2 08/04/2017 trans-1,2-Dichloroethene ND 1.0 2 08/04/2017 1,2-Dichloropropane ND 1.0 2 08/04/2017 1,3-Dichloropropane ND 1.0 2 08/04/2017	4-Chlorotoluene	ND	1.0	2	08/04/2017 16:14
1,2-Dibromoethane (EDB) ND 1.0 2 08/04/2017 Dibromomethane ND 1.0 2 08/04/2017 1,2-Dichlorobenzene ND 1.0 2 08/04/2017 1,3-Dichlorobenzene ND 1.0 2 08/04/2017 1,4-Dichlorobenzene ND 1.0 2 08/04/2017 1,1-Dichlorobenzene ND 1.0 2 08/04/2017 1,1-Dichloroethane ND 1.0 2 08/04/2017 1,2-Dichloroethane (1,2-DCA) ND 1.0 2 08/04/2017 1,1-Dichloroethene ND 1.0 2 08/04/2017 cis-1,2-Dichloroethene ND 1.0 2 08/04/2017 trans-1,2-Dichloroethene ND 1.0 2 08/04/2017 1,2-Dichloropropane ND 1.0 2 08/04/2017 1,3-Dichloropropane ND 1.0 2 08/04/2017	Dibromochloromethane	ND	1.0	2	08/04/2017 16:14
Dibromomethane ND 1.0 2 08/04/2017 1,2-Dichlorobenzene ND 1.0 2 08/04/2017 1,3-Dichlorobenzene ND 1.0 2 08/04/2017 1,4-Dichlorobenzene ND 1.0 2 08/04/2017 Dichlorodifluoromethane ND 1.0 2 08/04/2017 1,1-Dichloroethane ND 1.0 2 08/04/2017 1,2-Dichloroethane (1,2-DCA) ND 1.0 2 08/04/2017 1,1-Dichloroethene ND 1.0 2 08/04/2017 cis-1,2-Dichloroethene ND 1.0 2 08/04/2017 trans-1,2-Dichloroethene ND 1.0 2 08/04/2017 1,2-Dichloropropane ND 1.0 2 08/04/2017 1,3-Dichloropropane ND 1.0 2 08/04/2017	1,2-Dibromo-3-chloropropane	ND	0.40	2	08/04/2017 16:14
1,2-Dichlorobenzene ND 1.0 2 08/04/2017 1,3-Dichlorobenzene ND 1.0 2 08/04/2017 1,4-Dichlorobenzene ND 1.0 2 08/04/2017 Dichlorodifluoromethane ND 1.0 2 08/04/2017 1,1-Dichloroethane ND 1.0 2 08/04/2017 1,2-Dichloroethane (1,2-DCA) ND 1.0 2 08/04/2017 1,1-Dichloroethane ND 1.0 2 08/04/2017 cis-1,2-Dichloroethane ND 1.0 2 08/04/2017 trans-1,2-Dichloroethane ND 1.0 2 08/04/2017 1,2-Dichloropropane ND 1.0 2 08/04/2017 1,3-Dichloropropane ND 1.0 2 08/04/2017	1,2-Dibromoethane (EDB)	ND	1.0	2	08/04/2017 16:14
1,3-Dichlorobenzene ND 1.0 2 08/04/2017 1,4-Dichlorobenzene ND 1.0 2 08/04/2017 Dichlorodifluoromethane ND 1.0 2 08/04/2017 1,1-Dichloroethane ND 1.0 2 08/04/2017 1,2-Dichloroethane (1,2-DCA) ND 1.0 2 08/04/2017 1,1-Dichloroethane ND 1.0 2 08/04/2017 cis-1,2-Dichloroethane ND 1.0 2 08/04/2017 trans-1,2-Dichloroethane ND 1.0 2 08/04/2017 1,2-Dichloropropane ND 1.0 2 08/04/2017 1,3-Dichloropropane ND 1.0 2 08/04/2017	Dibromomethane	ND	1.0	2	08/04/2017 16:14
1,4-Dichlorobenzene ND 1.0 2 08/04/2017 Dichlorodifluoromethane ND 1.0 2 08/04/2017 1,1-Dichloroethane ND 1.0 2 08/04/2017 1,2-Dichloroethane (1,2-DCA) ND 1.0 2 08/04/2017 1,1-Dichloroethene ND 1.0 2 08/04/2017 cis-1,2-Dichloroethene ND 1.0 2 08/04/2017 trans-1,2-Dichloroethene ND 1.0 2 08/04/2017 1,2-Dichloropropane ND 1.0 2 08/04/2017 1,3-Dichloropropane ND 1.0 2 08/04/2017	1,2-Dichlorobenzene	ND	1.0	2	08/04/2017 16:14
Dichlorodifluoromethane ND 1.0 2 08/04/2017 or 1,1-Dichloroethane ND 1.0 2 08/04/2017 or 1,2-Dichloroethane (1,2-DCA) ND 1.0 2 08/04/2017 or 1,1-Dichloroethane ND 1.0 2 08/04/2017 or cis-1,2-Dichloroethane ND 1.0 2 08/04/2017 or trans-1,2-Dichloroethane ND 1.0 2 08/04/2017 or 1,2-Dichloropropane ND 1.0 2 08/04/2017 or 1,3-Dichloropropane ND 1.0 2 08/04/2017 or	1,3-Dichlorobenzene	ND	1.0	2	08/04/2017 16:14
1,1-Dichloroethane ND 1.0 2 08/04/2017 or 08/04/201	1,4-Dichlorobenzene	ND	1.0	2	08/04/2017 16:14
1,2-Dichloroethane (1,2-DCA) ND 1.0 2 08/04/2017 1 1,1-Dichloroethene ND 1.0 2 08/04/2017 1 cis-1,2-Dichloroethene ND 1.0 2 08/04/2017 1 trans-1,2-Dichloroethene ND 1.0 2 08/04/2017 1 1,2-Dichloropropane ND 1.0 2 08/04/2017 1 1,3-Dichloropropane ND 1.0 2 08/04/2017 1	Dichlorodifluoromethane	ND	1.0	2	08/04/2017 16:14
1,1-Dichloroethene ND 1.0 2 08/04/2017 or cis-1,2-Dichloroethene ND 1.0 2 08/04/2017 or trans-1,2-Dichloroethene ND 1.0 2 08/04/2017 or 1,2-Dichloropropane ND 1.0 2 08/04/2017 or 1,3-Dichloropropane ND 1.0 2 08/04/2017 or	1,1-Dichloroethane	ND	1.0	2	08/04/2017 16:14
cis-1,2-Dichloroethene ND 1.0 2 08/04/2017 1 trans-1,2-Dichloroethene ND 1.0 2 08/04/2017 1 1,2-Dichloropropane ND 1.0 2 08/04/2017 1 1,3-Dichloropropane ND 1.0 2 08/04/2017 1	1,2-Dichloroethane (1,2-DCA)	ND	1.0	2	08/04/2017 16:14
trans-1,2-Dichloroethene ND 1.0 2 08/04/2017 or 1,2-Dichloropropane ND 1.0 2 08/04/2017 or 1,3-Dichloropropane ND 1.0 2 08/04/2017 or	1,1-Dichloroethene	ND	1.0	2	08/04/2017 16:14
1,2-Dichloropropane ND 1.0 2 08/04/2017 1 1,3-Dichloropropane ND 1.0 2 08/04/2017 1	cis-1,2-Dichloroethene	ND	1.0	2	08/04/2017 16:14
1,3-Dichloropropane ND 1.0 2 08/04/2017 1	trans-1,2-Dichloroethene	ND	1.0	2	08/04/2017 16:14
	1,2-Dichloropropane	ND	1.0	2	08/04/2017 16:14
2,2-Dichloropropane ND 1.0 2 08/04/2017 1	1,3-Dichloropropane	ND	1.0	2	08/04/2017 16:14
	2,2-Dichloropropane	ND	1.0	2	08/04/2017 16:14

(Cont.)

Analytical Report

Client: Essel Environmental Consulting

Date Received: 7/28/17 13:08

Date Prepared: 8/4/17

Project: 15166; EBALDC

WorkOrder: 1707B67

Extraction Method: SW5030B **Analytical Method:** SW8260B

Unit: $\mu g/L$

Volatile Organics

Client ID	Lab ID	Matrix	Date C	Collected Instrument	Batch ID
W-ECB25	1707B67-003B	Water	07/28/2	017 11:27 GC38	143181
Analytes	Result		<u>RL</u>	DF	Date Analyzed
1,1-Dichloropropene	ND		1.0	2	08/04/2017 16:14
cis-1,3-Dichloropropene	ND		1.0	2	08/04/2017 16:14
trans-1,3-Dichloropropene	ND		1.0	2	08/04/2017 16:14
Diisopropyl ether (DIPE)	ND		1.0	2	08/04/2017 16:14
Ethylbenzene	ND		1.0	2	08/04/2017 16:14
Ethyl tert-butyl ether (ETBE)	ND		1.0	2	08/04/2017 16:14
Freon 113	ND		1.0	2	08/04/2017 16:14
Hexachlorobutadiene	ND		1.0	2	08/04/2017 16:14
Hexachloroethane	ND		1.0	2	08/04/2017 16:14
2-Hexanone	ND		1.0	2	08/04/2017 16:14
Isopropylbenzene	8.7		1.0	2	08/04/2017 16:14
4-Isopropyl toluene	ND		1.0	2	08/04/2017 16:14
Methyl-t-butyl ether (MTBE)	ND		1.0	2	08/04/2017 16:14
Methylene chloride	ND		1.0	2	08/04/2017 16:14
4-Methyl-2-pentanone (MIBK)	ND		1.0	2	08/04/2017 16:14
Naphthalene	ND		1.0	2	08/04/2017 16:14
n-Propyl benzene	27		1.0	2	08/04/2017 16:14
Styrene	ND		1.0	2	08/04/2017 16:14
1,1,1,2-Tetrachloroethane	ND		1.0	2	08/04/2017 16:14
1,1,2,2-Tetrachloroethane	ND		1.0	2	08/04/2017 16:14
Tetrachloroethene	ND		1.0	2	08/04/2017 16:14
Toluene	ND		1.0	2	08/04/2017 16:14
1,2,3-Trichlorobenzene	ND		1.0	2	08/04/2017 16:14
1,2,4-Trichlorobenzene	ND		1.0	2	08/04/2017 16:14
1,1,1-Trichloroethane	ND		1.0	2	08/04/2017 16:14
1,1,2-Trichloroethane	ND		1.0	2	08/04/2017 16:14
Trichloroethene	ND		1.0	2	08/04/2017 16:14
Trichlorofluoromethane	ND		1.0	2	08/04/2017 16:14
1,2,3-Trichloropropane	ND		1.0	2	08/04/2017 16:14
1,2,4-Trimethylbenzene	ND		1.0	2	08/04/2017 16:14
1,3,5-Trimethylbenzene	ND		1.0	2	08/04/2017 16:14
Vinyl Chloride	ND		1.0	2	08/04/2017 16:14
Xylenes, Total	ND		1.0	2	08/04/2017 16:14

Analytical Report

Client: Essel Environmental Consulting

Date Received: 7/28/17 13:08

Date Prepared: 8/4/17

Project: 15166; EBALDC

WorkOrder: 1707B67

Extraction Method: SW5030B **Analytical Method:** SW8260B

Unit: $\mu g/L$

Volatile Organics					
Client ID	Lab ID	Matrix	Date Collected Instrument	Batch ID	
W-ECB25	1707B67-003B	Water	07/28/2017 11:27 GC38	143181	
Analytes	Result		<u>RL</u> <u>DF</u>	Date Analyzed	
<u>Surrogates</u>	REC (%)	<u>Qualifiers</u>	<u>Limits</u>		
Dibromofluoromethane	117		70-130	08/04/2017 16:14	
Toluene-d8	100		70-130	08/04/2017 16:14	
4-BFB	209	S	70-130	08/04/2017 16:14	
Analyst(s): JEM			Analytical Comments: c2		

Analytical Report

Client: Essel Environmental Consulting WorkOrder: 1707B67

Date Received: 7/28/17 13:08 Extraction Method: SW3510C

Date Prepared: 8/1/17 **Analytical Method:** SW8270C-SIM

Project: 15166; EBALDC Unit: μg/L

Polynuclear Aromatic Hydrocarbons (PAHs / PNAs) using SIM Mode

Client ID	Lab ID	Matrix	Date Co	llected Instrument	Batch ID	
W-ECB23	1707B67-001C	Water	07/28/201	07/28/2017 11:53 GC35		
Analytes	Result		<u>RL</u>	<u>DF</u>	Date Analyzed	
Acenaphthene	ND		0.50	1	08/03/2017 17:34	
Acenaphthylene	ND		0.50	1	08/03/2017 17:34	
Anthracene	ND		0.50	1	08/03/2017 17:34	
Benzo (a) anthracene	ND		0.50	1	08/03/2017 17:34	
Benzo (a) pyrene	ND		0.50	1	08/03/2017 17:34	
Benzo (b) fluoranthene	ND		0.50	1	08/03/2017 17:34	
Benzo (g,h,i) perylene	ND		0.50	1	08/03/2017 17:34	
Benzo (k) fluoranthene	ND		0.50	1	08/03/2017 17:34	
Chrysene	ND		0.50	1	08/03/2017 17:34	
Dibenzo (a,h) anthracene	ND		0.50	1	08/03/2017 17:34	
Fluoranthene	ND		0.50	1	08/03/2017 17:34	
Fluorene	ND		0.50	1	08/03/2017 17:34	
Indeno (1,2,3-cd) pyrene	ND		0.50	1	08/03/2017 17:34	
1-Methylnaphthalene	5.1		0.50	1	08/03/2017 17:34	
2-Methylnaphthalene	2.7		0.50	1	08/03/2017 17:34	
Naphthalene	7.5		0.50	1	08/03/2017 17:34	
Phenanthrene	0.71		0.50	1	08/03/2017 17:34	
Pyrene	ND		0.50	1	08/03/2017 17:34	
<u>Surrogates</u>	<u>REC (%)</u>		<u>Limits</u>			
1-Fluoronaphthalene	112		30-130		08/03/2017 17:34	
2-Fluorobiphenyl	84		30-130		08/03/2017 17:34	
Analyst(s): REB	Analytical Comments: b1					

Analytical Report

Client: Essel Environmental Consulting

Date Received: 7/28/17 13:08

Date Prepared: 8/1/17

Project: 15166; EBALDC

WorkOrder: 1707B67
Extraction Method: SW3510C

Analytical Method: SW8270C-SIM

Unit: μg/L

Polynuclear Aromatic Hydrocarbons (PAHs / PNAs) using SIM Mode

Client ID	Lab ID	Matrix	Date Co	ollected Instrument	Batch ID
W-ECB24	1707B67-002C	Water	07/28/201	17 11:34 GC35	142971
<u>Analytes</u>	<u>Result</u>		<u>RL</u>	<u>DF</u>	Date Analyzed
Acenaphthene	4.9		0.50	1	08/03/2017 17:59
Acenaphthylene	ND		0.50	1	08/03/2017 17:59
Anthracene	1.1		0.50	1	08/03/2017 17:59
Benzo (a) anthracene	ND		0.50	1	08/03/2017 17:59
Benzo (a) pyrene	ND		0.50	1	08/03/2017 17:59
Benzo (b) fluoranthene	ND		0.50	1	08/03/2017 17:59
Benzo (g,h,i) perylene	ND		0.50	1	08/03/2017 17:59
Benzo (k) fluoranthene	ND		0.50	1	08/03/2017 17:59
Chrysene	ND		0.50	1	08/03/2017 17:59
Dibenzo (a,h) anthracene	ND		0.50	1	08/03/2017 17:59
Fluoranthene	ND		0.50	1	08/03/2017 17:59
Fluorene	ND		0.50	1	08/03/2017 17:59
Indeno (1,2,3-cd) pyrene	ND		0.50	1	08/03/2017 17:59
1-Methylnaphthalene	ND		0.50	1	08/03/2017 17:59
2-Methylnaphthalene	ND		0.50	1	08/03/2017 17:59
Naphthalene	2.6		0.50	1	08/03/2017 17:59
Phenanthrene	10		0.50	1	08/03/2017 17:59
Pyrene	ND		0.50	1	08/03/2017 17:59
<u>Surrogates</u>	<u>REC (%)</u>		<u>Limits</u>		
1-Fluoronaphthalene	101		30-130		08/03/2017 17:59
2-Fluorobiphenyl	61		30-130		08/03/2017 17:59
Analyst(s): REB					

Analytical Report

Client: Essel Environmental Consulting

Date Received: 7/28/17 13:08

Date Prepared: 8/1/17

Project: 15166; EBALDC

WorkOrder: 1707B67 Extraction Method: SW3510C

Analytical Method: SW8270C-SIM

Unit: μg/L

Polynuclear Aromatic Hydrocarbons (PAHs / PNAs) using SIM Mode

Client ID	Lab ID	Matrix	Date Co	ollected Instrument	Batch ID
W-ECB25	1707B67-003C	Water	07/28/201	17 11:27 GC35	142971
Analytes	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
Acenaphthene	ND		0.50	1	08/03/2017 18:25
Acenaphthylene	ND		0.50	1	08/03/2017 18:25
Anthracene	ND		0.50	1	08/03/2017 18:25
Benzo (a) anthracene	ND		0.50	1	08/03/2017 18:25
Benzo (a) pyrene	ND		0.50	1	08/03/2017 18:25
Benzo (b) fluoranthene	ND		0.50	1	08/03/2017 18:25
Benzo (g,h,i) perylene	ND		0.50	1	08/03/2017 18:25
Benzo (k) fluoranthene	ND		0.50	1	08/03/2017 18:25
Chrysene	ND		0.50	1	08/03/2017 18:25
Dibenzo (a,h) anthracene	ND		0.50	1	08/03/2017 18:25
Fluoranthene	ND		0.50	1	08/03/2017 18:25
Fluorene	ND		0.50	1	08/03/2017 18:25
Indeno (1,2,3-cd) pyrene	ND		0.50	1	08/03/2017 18:25
1-Methylnaphthalene	9.3		0.50	1	08/03/2017 18:25
2-Methylnaphthalene	ND		0.50	1	08/03/2017 18:25
Naphthalene	0.78		0.50	1	08/03/2017 18:25
Phenanthrene	0.51		0.50	1	08/03/2017 18:25
Pyrene	ND		0.50	1	08/03/2017 18:25
<u>Surrogates</u>	<u>REC (%)</u>		<u>Limits</u>		
1-Fluoronaphthalene	111		30-130		08/03/2017 18:25
2-Fluorobiphenyl	85		30-130		08/03/2017 18:25
Analyst(s): REB					

Analytical Report

Client: Essel Environmental Consulting WorkOrder: 1707B67

Date Received: 7/28/17 13:08 Extraction Method: SW5030B

Date Prepared: 8/3/17-8/4/17 **Analytical Method:** SW8021B/8015Bm

Project: 15166; EBALDC Unit: $\mu g/L$

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE

Client ID	Lab ID	Matrix	Date Collected Instrument		Batch ID
W-ECB23	1707B67-001A Water <u>Result</u>		07/28/2017 11:53 GC3		143100
<u>Analytes</u>			<u>RL</u>	DF	Date Analyzed
TPH(g) (C6-C12)	480		50	1	08/03/2017 05:41
MTBE			5.0	1	08/03/2017 05:41
Benzene			0.50	1	08/03/2017 05:41
Toluene			0.50	1	08/03/2017 05:41
Ethylbenzene			0.50	1	08/03/2017 05:41
Xylenes			1.5	1	08/03/2017 05:41
<u>Surrogates</u>	<u>REC (%)</u>		<u>Limits</u>		
aaa-TFT	106		89-115		08/03/2017 05:41
Analyst(s): IA			Analytical Con	nments: d1.b1	

Client ID Lab ID Matrix Date Collected Instrument Batch ID

Lab ID	Matrix	Date Co	ollected Instrument	Batch ID
1707B67-002	7-002A Water 07/28/2017 11:34 GC3		143100	
Result		<u>RL</u>	<u>DF</u>	Date Analyzed
350		50	1	08/04/2017 06:44
		5.0	1	08/04/2017 06:44
		0.50	1	08/04/2017 06:44
		0.50	1	08/04/2017 06:44
		0.50	1	08/04/2017 06:44
		1.5	1	08/04/2017 06:44
<u>REC (%)</u>	Qualifiers	<u>Limits</u>		
121	S	89-115		08/04/2017 06:44
		Analytical Comr	ments: d7,d9,c4	
	1707B67-002 Result 350 REC (%)	1707B67-002A Water Result 350 REC (%) Qualifiers	Result RL 350 50 5.0 0.50 0.50 0.50 1.5 REC (%) Qualifiers Limits 121 S 89-115	Result RL DF 350 50 1 5.0 1 0.50 1 0.50 1 0.50 1 1.5 1 REC (%) Qualifiers Limits

Analytical Report

Client: Essel Environmental Consulting WorkOrder: 1707B67

Date Received: 7/28/17 13:08 Extraction Method: SW5030B

Date Prepared: 8/3/17-8/4/17 **Analytical Method:** SW8021B/8015Bm

Project: 15166; EBALDC Unit: μg/L

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE

Client ID	Lab ID	Matrix	Date C	Collected Instrument	Batch ID
W-ECB25	1707B67-003	A Water	07/28/2017 11:27 GC3		143100
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
TPH(g) (C6-C12)	1200		50	1	08/03/2017 06:12
MTBE			15	1	08/03/2017 06:12
Benzene			0.50	1	08/03/2017 06:12
Toluene			0.50	1	08/03/2017 06:12
Ethylbenzene			0.50	1	08/03/2017 06:12
Xylenes			1.5	1	08/03/2017 06:12
<u>Surrogates</u>	<u>REC (%)</u>	<u>Qualifiers</u>	<u>Limits</u>		
aaa-TFT	194	S	89-115		08/03/2017 06:12
Analyst(s): IA	Analytical Comments: d1,d17,c4				

Analytical Report

Client: Essel Environmental Consulting WorkOrder: 1707B67

REC (%)

102

Date Received: 7/28/17 13:08 **Extraction Method:** SW3510C/3630C

Date Prepared:7/28/17Analytical Method:SW8015BProject:15166; EBALDCUnit:μg/L

Total Extractable Petroleum Hydrocarbons w/ Silica Gel Clean-Up Client ID Lab ID Matrix **Date Collected Instrument Batch ID** W-ECB23 1707B67-001A 07/28/2017 11:53 GC11A 142816 Water <u>RL</u> DF **Analytes** Result **Date Analyzed** TPH-Diesel (C10-C23) 3100 100 1 08/03/2017 22:01 15,000 TPH-Motor Oil (C18-C36) 500 08/03/2017 22:01 Surrogates **REC (%)** Limits C9 100 66-138 08/03/2017 22:01 Analyst(s): Analytical Comments: e7,e2,e11/e4,b1 **Client ID** Lab ID Matrix **Date Collected Instrument Batch ID** W-ECB24 1707B67-002A Water 07/28/2017 11:34 GC39A 142816 **Analytes** Result <u>RL</u> DF **Date Analyzed** TPH-Diesel (C10-C23) 6600 100 08/03/2017 23:10 TPH-Motor Oil (C18-C36) 1700 500 1 08/03/2017 23:10 Surrogates **REC (%) Limits** C9 104 66-138 08/03/2017 23:10 Analyst(s): Analytical Comments: e3,e8/e11,b6 ΤK **Client ID** Lab ID Matrix **Date Collected Instrument Batch ID** W-ECB25 1707B67-003A Water 07/28/2017 11:27 GC11A 142816 DF Date Analyzed **Analytes** Result RL TPH-Diesel (C10-C23) 710 100 1 08/03/2017 20:43 08/03/2017 20:43 TPH-Motor Oil (C18-C36) ND 500 1

Limits

66-138

Analytical Comments: e11/e4,a3

Surrogates

Analyst(s): TK

C9

08/03/2017 20:43

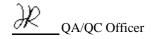
Quality Control Report

Client: Essel Environmental Consulting

Date Prepared: 8/3/17
Date Analyzed: 8/3/17
Instrument: GC38
Matrix: Water

Project: 15166; EBALDC

WorkOrder: 1707B67 **BatchID:** 143164


Extraction Method: SW5030B **Analytical Method:** SW8260B

Unit: μg/L

Sample ID: MB/LCS-143164

1708144-001AMS/MSD

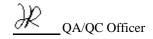
Acetone ND 189 10 200 - 95 tert-Amyl methyl ether (TAME) ND 7.99 0.50 10 - 80 Benzene ND 9.25 0.50 10 - 93 Bromochoromethane ND 8.46 0.50 10 - 85 Bromochloromethane ND 8.91 0.50 10 - 89 Bromodichloromethane ND 8.57 0.50 10 - 86 Bromodichloromethane ND 8.57 0.50 10 - 86 Bromodichloromethane ND 8.41 0.50 10 - 81 Bromodichloromethane ND 8.81 4 0.50 10 - 81 Bromodichloromethane ND 8.65 2.0 40 - 91 124 2-Butanone (MEK) ND 36.5 2.0 40 - 91 124 2-Butyl acch	LCS Limits
Benzene ND 9.25 0.50 10 - 93 Bromobenzene ND 8.46 0.50 10 - 85 Bromochloromethane ND 8.91 0.50 10 - 89 Bromochloromethane ND 8.57 0.50 10 - 86 Bromochrom ND 8.14 0.50 10 - 81 Bromomethane ND 12.4 0.50 10 - 81 Bromomethane ND 12.4 0.50 10 - 81 Bromomethane ND 36.5 2.0 40 - 91 1-Butyl alcohol (TBA) ND 30.0 2.0 40 - 91 1-Butyl alcohol (TBA) ND 30.0 2.0 40 - 91 1-Butyl alcohol (TBA) ND 30.0 2.0 40 - 97 2-Butyl benzene ND 9.66 0.50 10 <td>46-155</td>	46-155
Bromobenzene ND 8.46 0.50 10 - 85 Bromochloromethane ND 8.91 0.50 10 - 89 Bromochloromethane ND 8.57 0.50 10 - 86 Bromoform ND 8.14 0.50 10 - 81 Bromomethane ND 12.4 0.50 10 - 124 2-Butanone (MEK) ND 36.5 2.0 40 - 91 1-Butyl alcohol (TBA) ND 30.0 2.0 40 - 75 n-Butyl benzene ND 9.66 0.50 10 - 97 sec-Butyl benzene ND 9.66 0.50 10 - 97 sec-Butyl benzene ND 9.34 0.50 10 - 93 Carbon Tetrachloride ND 8.88 0.50 10 - 89 Chlorobenzene ND 8.85 0.50	54-140
Bromochloromethane ND 8.91 0.50 10 - 89 Bromodichloromethane ND 8.57 0.50 10 - 86 Bromoform ND 8.14 0.50 10 - 81 Bromomethane ND 12.4 0.50 10 - 91 2-Butanone (MEK) ND 36.5 2.0 40 - 91 1-Butyl alcohol (TBA) ND 30.0 2.0 40 - 97 sec-Butyl benzene ND 9.66 0.50 10 - 97 sec-Butyl benzene ND 9.34 0.50 10 - 93 Carbon Tetrachloride ND 8.93 0.50 10 - 93 Carbon Tetrachloride ND 8.85 0.50 10 - 89 Chlorobenzene ND 8.85 0.50 10 - 88 Chlorobenzene ND 8.81 0.50	47-158
Bromodichloromethane ND 8.57 0.50 10 - 86 Bromoform ND 8.14 0.50 10 - 81 Bromomethane ND 12.4 0.50 10 - 124 2-Butanone (MEK) ND 36.5 2.0 40 - 91 1-Butyl alcohol (TBA) ND 30.0 2.0 40 - 75 n-Butyl benzene ND 9.66 0.50 10 - 97 sec-Butyl benzene ND 9.66 0.50 10 - 97 sec-Butyl benzene ND 9.34 0.50 10 - 93 Carbon Disulfide ND 9.34 0.50 10 - 93 Carbon Disulfide ND 8.98 0.50 10 - 89 Carbon Disulfide ND 8.85 0.50 10 - 89 Chlorobenzene ND 8.85 0.50	50-155
Bromoform ND 8.14 0.50 10 - 81	48-160
Bromomethane ND 12.4 0.50 10 - 124 2-Butanone (MEK) ND 36.5 2.0 40 - 91 1-Butyl alcohol (TBA) ND 30.0 2.0 40 - 75 1-Butyl benzene ND 9.66 0.50 10 - 97 1-Butyl benzene ND 9.66 0.50 10 - 97 1-Butyl benzene ND 10.3 0.50 10 - 103 1-Butyl benzene ND 10.3 0.50 10 - 93 1-Butyl benzene ND 9.34 0.50 10 - 93 1-Butyl benzene ND 9.34 0.50 10 - 93 1-Butyl benzene ND 8.98 0.50 10 - 93 1-Butyl benzene ND 8.85 0.50 10 - 90 1-Butyl benzene ND 8.85 0.50 10 - 89 1-Butyl benzene ND 8.85 0.50 10 - 89 1-Butyl benzene ND 8.85 0.50 10 - 89 1-Butyl benzene ND 10.4 0.50 10 - 88 1-Butyl benzene ND 11.7 0.50 10 - 104 1-Butyl benzene ND 11.7 0.50 10 - 104 1-Butyl benzene ND 8.93 0.50 10 - 88 1-Butyl benzene ND 8.93 0.50 10 - 86 1-Butyl benzene ND 8.84 0.50 10 - 86 1-Butyl benzene ND 8.84 0.50 10 - 86 1-Butyl benzene ND 8.43 0.50 10 - 86 1-Butyl benzene ND 8.43 0.50 10 - 86 1-Butyl benzene ND 8.43 0.50 10 - 86 1-Butyl benzene ND 8.95 0.50 10 - 86 1-Butyl benzene ND 9.15 0.50 10 - 91 1-Butyl benzene ND 9.15 0.50 10 - 91 1-Butyl benzene ND 9.75 0.50 10 - 91 1-Butyl benzene ND 9.75 0.50 10 - 97 1-Butyl benzene ND 9.75 0.50 10 - 97 1-Butyl benzene ND 9.38 0.50 10 - 94 1-Butyl benzene ND 9.08	60-156
2-Butanone (MEK) ND 36.5 2.0 40 - 91 t-Butyl alcohol (TBA) ND 30.0 2.0 40 - 75 n-Butyl benzene ND 9.66 0.50 10 - 97 sec-Butyl benzene ND 10.3 0.50 10 - 93 Carbon Disulfide ND 9.34 0.50 10 - 93 Carbon Disulfide ND 8.98 0.50 10 - 90 Carbon Disulfide ND 8.85 0.50 10 - 99 Carbon Disulfide ND 8.85 0.50 10 - 89 Chloroderace ND 8.85 0.50 10 - 88 Chloroderace ND 8.85 0.50 10 - 88 Chloroderbane ND 8.81 0.50 10 - 117 2-Chlorotoluene ND 8.93 0.50 <	43-149
t-Butyl alcohol (TBA) ND 30.0 2.0 40 - 75 n-Butyl benzene ND 9.66 0.50 10 - 97 sec-Butyl benzene ND 10.3 0.50 10 - 103 tert-Butyl benzene ND 10.3 0.50 10 - 103 tert-Butyl benzene ND 9.34 0.50 10 - 93 Carbon Disulfide ND 8.98 0.50 10 - 90 Carbon Tetrachloride ND 8.85 0.50 10 - 88 Chlorobenzene ND 8.85 0.50 10 - 88 Chlorobenzene ND 8.85 0.50 10 - 88 Chlorotehane ND 10.4 0.50 10 - 88 Chlorotehane ND 10.4 0.50 10 - 104 Chlorotorm ND 8.81 0.50 10 - 88 Chlorotehane ND 11.7 0.50 10 - 117 2-Chlorotoluene ND 8.93 0.50 10 - 89 4-Chlorotoluene ND 8.64 0.50 10 - 86 Dibromochloromethane ND 7.70 0.50 10 - 86 Dibromochloropropane ND 2.98 0.20 4 - 75 1,2-Dibromo-3-chloropropane ND 8.43 0.50 10 - 84 Dibromomethane (EDB) ND 8.43 0.50 10 - 84 Dibromomethane ND 8.64 0.50 10 - 84 Dibromomethane ND 8.65 0.50 10 - 86 1,2-Dichlorobenzene ND 8.95 0.50 10 - 91 Dichlorobenzene ND 9.15 0.50 10 - 91 Dichlorotehane (EDB) ND 8.95 0.50 10 - 91 Dichlorotehane ND 6.56 0.50 10 - 91 Dichlorotehane ND 9.75 0.50 10 - 97 1,2-Dichlorotehane ND 9.75 0.50 10 - 97 1,2-Dichlorotehane (1,2-DCA) ND 8.95 0.50 10 - 97 1,2-Dichlorotehane ND 9.38 0.50 10 - 94 1,1-Dichlorotehane ND 9.38 0.50 10 - 92 1,1-Dichlorotehane ND 9.38 0.50 10 - 92 1,1-Dichlorotehane ND 9.38 0.50 10 - 94 1,1-Dichlorotehane ND 9.38 0.50 10 - 92 1,1-Dichlorotehane ND 9.38 0.50 10 - 94	61-159
n-Butyl benzene ND 9.66 0.50 10 - 97 sec-Butyl benzene ND 10.3 0.50 10 - 103 tert-Butyl benzene ND 9.34 0.50 10 - 93 Carbon Disulfide ND 8.98 0.50 10 - 90 Carbon Tetrachloride ND 8.85 0.50 10 - 89 Chlorobarene ND 8.85 0.50 10 - 89 Chlorothane ND 10.4 0.50 10 - 88 Chlorothane ND 8.81 0.50 10 - 88 Chlorothane ND 8.81 0.50 10 - 88 Chlorothane ND 8.81 0.50 10 - 88 Chlorothane ND 8.93 0.50 10 - 88 Chlorotoluene ND 8.93 0.50 10	61-124
sec-Butyl benzene ND 10.3 0.50 10 - 103 tert-Butyl benzene ND 9.34 0.50 10 - 93 Carbon Disulfide ND 8.98 0.50 10 - 90 Carbon Tetrachloride ND 8.85 0.50 10 - 89 Chlorobenzene ND 8.85 0.50 10 - 89 Chlorobenzene ND 8.85 0.50 10 - 89 Chloroferm ND 8.81 0.50 10 - 88 Chloroferm ND 8.81 0.50 10 - 88 Chlorodoluene ND 8.93 0.50 10 - 89 4-Chlorotoluene ND 8.64 0.50 10 - 86 Dibromochloromethane ND 7.70 0.50 10 - 75 1,2-Dibromo-3-chloropopane ND 2.98 0.20	42-140
tert-Butyl benzene ND 9.34 0.50 10 - 93 Carbon Disulfide ND 8.98 0.50 10 - 90 Carbon Tetrachloride ND 8.85 0.50 10 - 89 Chlorobenzene ND 8.85 0.50 10 - 88 Chlorotethane ND 10.4 0.50 10 - 104 Chloroform ND 8.81 0.50 10 - 88 Chloromethane ND 11.7 0.50 10 - 117 2-Chlorotoluene ND 8.93 0.50 10 - 89 4-Chlorotoluene ND 8.64 0.50 10 - 86 Dibromochloromethane ND 7.70 0.50 10 - 77 1,2-Dibromochlane (EDB) ND 8.43 0.50 10 - 84 Dibromomethane ND 8.64 0.50	74-138
Carbon Disulfide ND 8.98 0.50 10 - 90 Carbon Tetrachloride ND 8.85 0.50 10 - 89 Chlorobenzene ND 8.85 0.50 10 - 88 Chloroethane ND 10.4 0.50 10 - 104 Chloroform ND 8.81 0.50 10 - 88 Chloromethane ND 11.7 0.50 10 - 117 2-Chlorotoluene ND 8.93 0.50 10 - 89 4-Chlorotoluene ND 8.64 0.50 10 - 89 4-Chlorotoluene ND 8.64 0.50 10 - 86 Dibromochloromethane ND 7.70 0.50 10 - 77 1,2-Dibromochlane (EDB) ND 8.43 0.50 10 - 84 Dibromomethane (EDB) ND 8.64 0.50	72-142
Carbon Tetrachloride ND 8.85 0.50 10 - 89 Chlorobenzene ND 8.85 0.50 10 - 88 Chlorothane ND 10.4 0.50 10 - 104 Chloroform ND 8.81 0.50 10 - 88 Chlorotelune ND 8.81 0.50 10 - 88 Chlorotoluene ND 8.93 0.50 10 - 89 4-Chlorotoluene ND 8.93 0.50 10 - 89 4-Chlorotoluene ND 8.64 0.50 10 - 86 Dibromochloromethane ND 8.64 0.50 10 - 86 Dibromochloropropane ND 2.98 0.20 4 - 75 1,2-Dibromoethane (EDB) ND 8.43 0.50 10 - 86 Dibromomethane ND 8.95 0.50	74-140
Chlorobenzene ND 8.85 0.50 10 - 88 Chloroethane ND 10.4 0.50 10 - 104 Chloroform ND 8.81 0.50 10 - 88 Chloromethane ND 11.7 0.50 10 - 117 2-Chlorotoluene ND 8.93 0.50 10 - 89 4-Chlorotoluene ND 8.64 0.50 10 - 89 4-Chlorotoluene ND 8.64 0.50 10 - 86 Dibromochloromethane ND 7.70 0.50 10 - 77 1,2-Dibromochlane (EDB) ND 8.43 0.50 10 - 84 Dibromomethane ND 8.64 0.50 10 - 84 Dibromomethane ND 8.64 0.50 10 - 86 1,2-Dichlorobenzene ND 8.95 0.50	64-127
Chloroethane ND 10.4 0.50 10 - 104 Chloroform ND 8.81 0.50 10 - 88 Chloromethane ND 11.7 0.50 10 - 117 2-Chlorotoluene ND 8.93 0.50 10 - 89 4-Chlorotoluene ND 8.64 0.50 10 - 86 Dibromochloromethane ND 7.70 0.50 10 - 77 1,2-Dibromo-3-chloropropane ND 2.98 0.20 4 - 75 1,2-Dibromoethane (EDB) ND 8.43 0.50 10 - 84 Dibromomethane (EDB) ND 8.43 0.50 10 - 84 Dibromomethane (EDB) ND 8.64 0.50 10 - 86 1,2-Dichlorobenzene ND 8.95 0.50 10 - 89 1,3-Dichlorobenzene ND 9.15	61-158
Chloroform ND 8.81 0.50 10 - 88 Chloromethane ND 11.7 0.50 10 - 117 2-Chlorotoluene ND 8.93 0.50 10 - 89 4-Chlorotoluene ND 8.64 0.50 10 - 86 Dibromochloromethane ND 7.70 0.50 10 - 77 1,2-Dibromo-3-chloropropane ND 2.98 0.20 4 - 75 1,2-Dibromoethane (EDB) ND 8.43 0.50 10 - 84 Dibromomethane (EDB) ND 8.64 0.50 10 - 84 Dibromomethane (EDB) ND 8.64 0.50 10 - 86 1,2-Dichlorobenzene ND 8.95 0.50 10 - 89 1,3-Dichlorobenzene ND 9.15 0.50 10 - 91 1,4-Dichloroethane ND 9.75 </td <td>43-157</td>	43-157
Chloromethane ND 11.7 0.50 10 - 117 2-Chlorotoluene ND 8.93 0.50 10 - 89 4-Chlorotoluene ND 8.64 0.50 10 - 86 Dibromochloromethane ND 7.70 0.50 10 - 77 1,2-Dibromo-3-chloropropane ND 2.98 0.20 4 - 75 1,2-Dibromoethane (EDB) ND 8.43 0.50 10 - 84 Dibromomethane ND 8.64 0.50 10 - 86 1,2-Dichlorobenzene ND 8.95 0.50 10 - 89 1,3-Dichlorobenzene ND 9.15 0.50 10 - 91 1,4-Dichlorobenzene ND 9.10 0.50 10 - 91 1,4-Dichloroethane ND 9.75 0.50 10 - 97 1,2-Dichloroethane ND 9.38<	50-127
2-Chlorotoluene ND 8.93 0.50 10 - 89 4-Chlorotoluene ND 8.64 0.50 10 - 86 Dibromochloromethane ND 7.70 0.50 10 - 77 1,2-Dibromochloropropane ND 2.98 0.20 4 - 75 1,2-Dibromoethane (EDB) ND 8.43 0.50 10 - 84 Dibromomethane (EDB) ND 8.43 0.50 10 - 84 Dibromomethane (EDB) ND 8.43 0.50 10 - 84 Dibromomethane (EDB) ND 8.64 0.50 10 - 86 1,2-Dichlorobenzene ND 8.95 0.50 10 - 89 1,3-Dichlorobenzene ND 9.15 0.50 10 - 91 1,4-Dichloroethane ND 9.75 0.50 10 - 97 1,2-Dichloroethane ND	56-154
4-Chlorotoluene ND 8.64 0.50 10 - 86 Dibromochloromethane ND 7.70 0.50 10 - 77 1,2-Dibromo-3-chloropropane ND 2.98 0.20 4 - 75 1,2-Dibromoethane (EDB) ND 8.43 0.50 10 - 84 Dibromomethane (EDB) ND 8.43 0.50 10 - 84 Dibromomethane (EDB) ND 8.64 0.50 10 - 84 Dibromomethane (EDB) ND 8.64 0.50 10 - 86 1,2-Dichlorobenzene ND 8.95 0.50 10 - 89 1,3-Dichlorobenzene ND 9.15 0.50 10 - 91 1,4-Dichlorodifluoromethane ND 9.10 0.50 10 - 97 1,2-Dichloroethane (1,2-DCA) ND 8.95 0.50 10 - 97 1,2-Dichloroethene	41-132
Dibromochloromethane ND 7.70 0.50 10 - 77 1,2-Dibromo-3-chloropropane ND 2.98 0.20 4 - 75 1,2-Dibromoethane (EDB) ND 8.43 0.50 10 - 84 Dibromoethane (EDB) ND 8.43 0.50 10 - 84 Dibromoethane (EDB) ND 8.64 0.50 10 - 86 1,2-Dichlorobenzene ND 8.95 0.50 10 - 89 1,3-Dichlorobenzene ND 9.15 0.50 10 - 91 1,4-Dichlorobenzene ND 9.10 0.50 10 - 91 Dichlorodifluoromethane ND 9.75 0.50 10 - 97 1,2-Dichloroethane (1,2-DCA) ND 8.95 0.50 10 - 90 1,1-Dichloroethene ND 9.38 0.50 10 - 94 cis-1,2-Dichloroethene	50-155
1,2-Dibromo-3-chloropropane ND 2.98 0.20 4 - 75 1,2-Dibromoethane (EDB) ND 8.43 0.50 10 - 84 Dibromomethane ND 8.64 0.50 10 - 86 1,2-Dichlorobenzene ND 8.95 0.50 10 - 89 1,3-Dichlorobenzene ND 9.15 0.50 10 - 91 1,4-Dichlorobenzene ND 9.10 0.50 10 - 91 Dichlorodifluoromethane ND 9.56 0.50 10 - 91 Dichloroethane ND 9.75 0.50 10 - 97 1,2-Dichloroethane (1,2-DCA) ND 8.95 0.50 10 - 90 1,1-Dichloroethene ND 9.38 0.50 10 - 94 cis-1,2-Dichloroethene ND 8.23 0.50 10 - 82 trans-1,2-Dichloroptoethene	53-153
1,2-Dibromoethane (EDB) ND 8.43 0.50 10 - 84 Dibromomethane ND 8.64 0.50 10 - 86 1,2-Dichlorobenzene ND 8.95 0.50 10 - 89 1,3-Dichlorobenzene ND 9.15 0.50 10 - 91 1,4-Dichlorobenzene ND 9.10 0.50 10 - 91 Dichlorodifluoromethane ND 9.10 0.50 10 - 91 Dichloroethane ND 9.75 0.50 10 - 97 1,2-Dichloroethane (1,2-DCA) ND 8.95 0.50 10 - 90 1,1-Dichloroethene ND 9.38 0.50 10 - 94 cis-1,2-Dichloroethene ND 8.23 0.50 10 - 82 trans-1,2-Dichloroethene ND 9.08 0.50 10 - 91 1,2-Dichloropropane ND 9.08 0.50 10 - 91	49-156
Dibromomethane ND 8.64 0.50 10 - 86 1,2-Dichlorobenzene ND 8.95 0.50 10 - 89 1,3-Dichlorobenzene ND 9.15 0.50 10 - 91 1,4-Dichlorobenzene ND 9.10 0.50 10 - 91 Dichlorodifluoromethane ND 9.10 0.50 10 - 91 Dichlorodifluoromethane ND 9.75 0.50 10 - 97 1,2-Dichloroethane (1,2-DCA) ND 8.95 0.50 10 - 90 1,1-Dichloroethene ND 9.38 0.50 10 - 94 cis-1,2-Dichloroethene ND 8.23 0.50 10 - 82 trans-1,2-Dichloroethene ND 9.08 0.50 10 - 91 1,2-Dichloropropane ND 9.08 0.50 10 - 91	46-149
1,2-Dichlorobenzene ND 8.95 0.50 10 - 89 1,3-Dichlorobenzene ND 9.15 0.50 10 - 91 1,4-Dichlorobenzene ND 9.10 0.50 10 - 91 Dichlorodifluoromethane ND 6.56 0.50 10 - 66 1,1-Dichloroethane ND 9.75 0.50 10 - 97 1,2-Dichloroethane (1,2-DCA) ND 8.95 0.50 10 - 90 1,1-Dichloroethene ND 9.38 0.50 10 - 94 cis-1,2-Dichloroethene ND 8.23 0.50 10 - 82 trans-1,2-Dichloroethene ND 10.7 0.50 10 - 107 1,2-Dichloropropane ND 9.08 0.50 10 - 91	44-155
1,3-Dichlorobenzene ND 9.15 0.50 10 - 91 1,4-Dichlorobenzene ND 9.10 0.50 10 - 91 Dichlorodifluoromethane ND 6.56 0.50 10 - 66 1,1-Dichloroethane ND 9.75 0.50 10 - 97 1,2-Dichloroethane (1,2-DCA) ND 8.95 0.50 10 - 90 1,1-Dichloroethene ND 9.38 0.50 10 - 94 cis-1,2-Dichloroethene ND 8.23 0.50 10 - 82 trans-1,2-Dichloroethene ND 10.7 0.50 10 - 107 1,2-Dichloropropane ND 9.08 0.50 10 - 91	50-157
1,4-Dichlorobenzene ND 9.10 0.50 10 - 91 Dichlorodifluoromethane ND 6.56 0.50 10 - 66 1,1-Dichloroethane ND 9.75 0.50 10 - 97 1,2-Dichloroethane (1,2-DCA) ND 8.95 0.50 10 - 90 1,1-Dichloroethene ND 9.38 0.50 10 - 94 cis-1,2-Dichloroethene ND 8.23 0.50 10 - 82 trans-1,2-Dichloroethene ND 10.7 0.50 10 - 107 1,2-Dichloropropane ND 9.08 0.50 10 - 91	48-156
Dichlorodifluoromethane ND 6.56 0.50 10 - 66 1,1-Dichloroethane ND 9.75 0.50 10 - 97 1,2-Dichloroethane (1,2-DCA) ND 8.95 0.50 10 - 90 1,1-Dichloroethene ND 9.38 0.50 10 - 94 cis-1,2-Dichloroethene ND 8.23 0.50 10 - 82 trans-1,2-Dichloroethene ND 10.7 0.50 10 - 107 1,2-Dichloropropane ND 9.08 0.50 10 - 91	49-159
1,1-Dichloroethane ND 9.75 0.50 10 - 97 1,2-Dichloroethane (1,2-DCA) ND 8.95 0.50 10 - 90 1,1-Dichloroethene ND 9.38 0.50 10 - 94 cis-1,2-Dichloroethene ND 8.23 0.50 10 - 82 trans-1,2-Dichloroethene ND 10.7 0.50 10 - 107 1,2-Dichloropropane ND 9.08 0.50 10 - 91	51-151
1,2-Dichloroethane (1,2-DCA) ND 8.95 0.50 10 - 90 1,1-Dichloroethene ND 9.38 0.50 10 - 94 cis-1,2-Dichloroethene ND 8.23 0.50 10 - 82 trans-1,2-Dichloroethene ND 10.7 0.50 10 - 107 1,2-Dichloropropane ND 9.08 0.50 10 - 91	61-117
1,1-Dichloroethene ND 9.38 0.50 10 - 94 cis-1,2-Dichloroethene ND 8.23 0.50 10 - 82 trans-1,2-Dichloroethene ND 10.7 0.50 10 - 107 1,2-Dichloropropane ND 9.08 0.50 10 - 91	53-153
cis-1,2-Dichloroethene ND 8.23 0.50 10 - 82 trans-1,2-Dichloroethene ND 10.7 0.50 10 - 107 1,2-Dichloropropane ND 9.08 0.50 10 - 91	66-125
trans-1,2-Dichloroethene ND 10.7 0.50 10 - 107 1,2-Dichloropropane ND 9.08 0.50 10 - 91	47-149
1,2-Dichloropropane ND 9.08 0.50 10 - 91	54-155
	46-151
	54-153
1,3-Dichloropropane ND 8.26 0.50 10 - 83	49-150
2,2-Dichloropropane ND 8.87 0.50 10 - 89	74-147

Quality Control Report

Client: Essel Environmental Consulting

Date Prepared: 8/3/17 **Date Analyzed:** 8/3/17 **Instrument:** GC38 **Matrix:** Water

Project: 15166; EBALDC WorkOrder: 1707B67 **BatchID:** 143164 **Extraction Method: SW5030B**


Analytical Method: SW8260B Unit:

Sample ID: MB/LCS-143164

μg/L

1708144-001AMS/MSD

Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
1,1-Dichloropropene	ND	9.71	0.50	10	-	97	54-150
cis-1,3-Dichloropropene	ND	8.13	0.50	10	-	81	55-159
trans-1,3-Dichloropropene	ND	8.34	0.50	10	-	83	74-131
Diisopropyl ether (DIPE)	ND	9.07	0.50	10	-	91	57-136
Ethylbenzene	ND	8.98	0.50	10	-	90	60-152
Ethyl tert-butyl ether (ETBE)	ND	8.92	0.50	10	-	89	55-137
Freon 113	ND	9.45	0.50	10	-	95	47-138
Hexachlorobutadiene	ND	8.37	0.50	10	-	84	66-160
Hexachloroethane	ND	8.50	0.50	10	-	85	75-130
2-Hexanone	ND	8.46	0.50	10	-	85	70-115
Isopropylbenzene	ND	8.70	0.50	10	-	87	59-156
4-Isopropyl toluene	ND	9.85	0.50	10	-	98	75-138
Methyl-t-butyl ether (MTBE)	ND	8.42	0.50	10	-	84	53-139
Methylene chloride	ND	8.55	0.50	10	-	86	66-127
4-Methyl-2-pentanone (MIBK)	ND	7.68	0.50	10	-	77	42-153
Naphthalene	ND	8.39	0.50	10	-	84	66-127
n-Propyl benzene	ND	9.72	0.50	10	-	97	54-155
Styrene	ND	9.15	0.50	10	-	91	51-152
1,1,1,2-Tetrachloroethane	ND	8.47	0.50	10	-	85	58-159
1,1,2,2-Tetrachloroethane	ND	8.19	0.50	10	-	82	51-150
Tetrachloroethene	ND	8.64	0.50	10	-	86	55-145
Toluene	ND	8.66	0.50	10	-	87	52-137
1,2,3-Trichlorobenzene	ND	8.64	0.50	10	-	86	70-136
1,2,4-Trichlorobenzene	ND	8.73	0.50	10	-	87	74-137
1,1,1-Trichloroethane	ND	9.08	0.50	10	-	91	57-156
1,1,2-Trichloroethane	ND	8.53	0.50	10	-	85	51-150
Trichloroethene	ND	9.07	0.50	10	-	91	43-157
Trichlorofluoromethane	ND	9.80	0.50	10	-	98	50-147
1,2,3-Trichloropropane	ND	8.81	0.50	10	-	88	41-152
1,2,4-Trimethylbenzene	ND	9.76	0.50	10	-	98	57-157
1,3,5-Trimethylbenzene	ND	9.34	0.50	10	-	93	56-159
Vinyl Chloride	ND	11.8	0.50	10	-	118	42-137
Xylenes, Total	ND	28.0	0.50	30	-	93	70-130

Quality Control Report

Client:Essel Environmental ConsultingWorkOrder:1707B67Date Prepared:8/3/17BatchID:143164Date Analyzed:8/3/17Extraction Method:SW5030BInstrument:GC38Analytical Method:SW8260B

Instrument:GC38Analytical Method:SW8260BMatrix:WaterUnit:µg/L

Project: 15166; EBALDC Sample ID: MB/LCS-143164

1708144-001AMS/MSD

QC Summary Report for SW8260B MB LCS RL **SPK** MB SS Analyte **LCS LCS** Val %REC %REC Result Result Limits **Surrogate Recovery** Dibromofluoromethane 28.23 28.9 25 113 116 70-130 Toluene-d8 26.05 25 104 70-130 26.0 104 4-BFB 2.068 2.16 2.5 83 86 70-130

Quality Control Report

Client: Essel Environmental Consulting

Date Prepared:8/3/17Date Analyzed:8/3/17Instrument:GC38Matrix:Water

Project: 15166; EBALDC

WorkOrder: 1707B67

BatchID: 143164 **Extraction Method:** SW5030B

Analytical Method: SW8260B

Unit: $\mu g/L$

Sample ID: MB/LCS-143164

1708144-001AMS/MSD

Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
Acetone	232	238	200	ND	113	116	66-158	2.50	20
tert-Amyl methyl ether (TAME)	9.36	10.4	10	ND	94	104	69-139	10.7	20
Benzene	9.57	10.1	10	ND	96	101	69-141	5.59	20
Bromobenzene	9.17	9.74	10	ND	92	97	70-127	6.01	20
Bromochloromethane	10.0	10.7	10	ND	100	107	72-142	6.40	20
Bromodichloromethane	9.34	9.90	10	ND	93	99	75-141	5.81	20
Bromoform	9.76	10.3	10	ND	98	103	72-126	5.78	20
Bromomethane	11.1	11.6	10	ND	111	116	50-160	4.39	20
2-Butanone (MEK)	46.4	48.4	40	ND	116	121	69-154	4.22	20
t-Butyl alcohol (TBA)	38.2	40.4	40	ND	95	101	41-152	5.71	20
n-Butyl benzene	9.88	10.5	10	ND	99	105	70-134	6.22	20
sec-Butyl benzene	9.83	10.4	10	ND	98	104	73-131	5.30	20
tert-Butyl benzene	9.32	9.87	10	ND	93	99	71-125	5.83	20
Carbon Disulfide	8.46	9.00	10	ND	85	90	63-158	6.15	20
Carbon Tetrachloride	8.98	9.58	10	ND	90	96	72-143	6.39	20
Chlorobenzene	9.29	9.87	10	ND	93	99	77-120	5.97	20
Chloroethane	9.35	9.71	10	ND	94	97	54-131	3.75	20
Chloroform	9.32	9.82	10	ND	93	98	75-139	5.26	20
Chloromethane	8.36	8.59	10	ND	84	86	40-130	2.71	20
2-Chlorotoluene	9.19	9.78	10	ND	92	98	70-122	6.23	20
4-Chlorotoluene	8.94	9.62	10	ND	89	96	71-123	7.32	20
Dibromochloromethane	8.94	9.48	10	ND	89	95	78-132	5.90	20
1,2-Dibromo-3-chloropropane	3.74	3.88	4	ND	93	97	59-143	3.79	20
1,2-Dibromoethane (EDB)	9.79	10.2	10	ND	98	102	76-135	4.48	20
Dibromomethane	9.94	10.4	10	ND	99	104	78-135	4.35	20
1,2-Dichlorobenzene	9.70	10.3	10	ND	97	103	68-133	5.79	20
1,3-Dichlorobenzene	9.72	10.3	10	ND	97	103	78-122	5.53	20
1,4-Dichlorobenzene	9.61	10.2	10	ND	96	102	80-117	5.97	20
Dichlorodifluoromethane	7.17	7.28	10	ND	72	73	38-125	1.53	20
1,1-Dichloroethane	10.0	10.6	10	ND	100	106	65-152	5.25	20
1,2-Dichloroethane (1,2-DCA)	10.0	10.6	10	ND	100	106	73-139	5.53	20
1,1-Dichloroethene	9.14	9.62	10	ND	91	96	59-140	5.15	20
cis-1,2-Dichloroethene	9.80	10.4	10	ND	96	102	50-154	5.83	20
trans-1,2-Dichloroethene	9.38	9.90	10	ND	94	99	69-136	5.30	20
1,2-Dichloropropane	9.87	10.4	10	ND	99	104	78-132	5.58	20
1,3-Dichloropropane	9.68	10.2	10	ND	97	102	77-131	4.78	20
2,2-Dichloropropane	9.03	9.52	10	ND	90	95	61-160	5.28	20

Quality Control Report

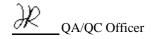
Client: Essel Environmental Consulting

Date Prepared:8/3/17Date Analyzed:8/3/17Instrument:GC38Matrix:Water

Project: 15166; EBALDC

WorkOrder: 1707B67

BatchID: 143164


Extraction Method: SW5030B **Analytical Method:** SW8260B

Unit: μg/L

Sample ID: MB/LCS-143164

1708144-001AMS/MSD

Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
1,1-Dichloropropene	9.28	9.78	10	ND	93	98	70-137	5.16	20
cis-1,3-Dichloropropene	8.84	9.32	10	ND	88	93	78-135	5.26	20
trans-1,3-Dichloropropene	9.33	9.85	10	ND	93	99	78-131	5.49	20
Diisopropyl ether (DIPE)	9.98	10.6	10	ND	100	106	72-140	5.81	20
Ethylbenzene	9.23	9.68	10	ND	92	97	73-128	4.81	20
Ethyl tert-butyl ether (ETBE)	10.1	10.7	10	ND	101	107	71-140	5.74	20
Freon 113	9.14	9.63	10	ND	91	96	60-136	5.24	20
Hexachlorobutadiene	8.34	8.85	10	ND	83	89	56-132	5.93	20
Hexachloroethane	8.41	9.09	10	ND	84	91	61-129	7.77	20
2-Hexanone	10.6	11.1	10	ND	107	111	57-149	3.82	20
Isopropylbenzene	9.08	9.65	10	ND	91	97	69-130	6.10	20
4-Isopropyl toluene	9.54	10.2	10	ND	95	102	75-124	6.96	20
Methyl-t-butyl ether (MTBE)	9.84	10.4	10	ND	98	104	73-139	5.92	20
Methylene chloride	9.00	9.52	10	ND	90	95	74-128	5.62	20
4-Methyl-2-pentanone (MIBK)	9.68	10.0	10	ND	97	100	61-145	3.49	20
Naphthalene	9.58	10.1	10	ND	96	101	54-148	5.26	20
n-Propyl benzene	9.46	10.1	10	ND	95	101	71-121	6.84	20
Styrene	9.58	10.0	10	ND	96	100	56-140	4.45	20
1,1,1,2-Tetrachloroethane	9.16	9.70	10	ND	92	97	74-127	5.81	20
1,1,2,2-Tetrachloroethane	9.80	10.2	10	ND	98	102	63-142	4.36	20
Tetrachloroethene	8.83	9.32	10	ND	88	93	71-125	5.38	20
Toluene	8.88	9.35	10	ND	88	93	71-128	5.07	20
1,2,3-Trichlorobenzene	9.28	9.93	10	ND	93	99	59-135	6.75	20
1,2,4-Trichlorobenzene	9.32	10.0	10	ND	93	100	60-132	7.10	20
1,1,1-Trichloroethane	9.19	9.76	10	ND	92	98	75-138	5.99	20
1,1,2-Trichloroethane	9.82	10.3	10	ND	98	103	78-129	4.66	20
Trichloroethene	9.10	9.63	10	ND	91	96	64-132	5.70	20
Trichlorofluoromethane	9.11	9.55	10	ND	91	96	53-159	4.74	20
1,2,3-Trichloropropane	10.5	11.0	10	ND	105	110	68-130	4.69	20
1,2,4-Trimethylbenzene	9.67	10.4	10	ND	97	104	76-124	6.88	20
1,3,5-Trimethylbenzene	9.40	10.0	10	ND	94	100	77-124	6.30	20
Vinyl Chloride	9.02	9.24	10	ND	90	92	43-142	2.39	20
Xylenes, Total	28.7	30.3	30	ND	96	101	70-130	5.38	20

Quality Control Report

Client:Essel Environmental ConsultingWorkOrder:1707B67Date Prepared:8/3/17BatchID:143164Date Analyzed:8/3/17Extraction Method:SW5030B

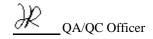
Instrument:GC38Analytical Method:SW8260BMatrix:WaterUnit:µg/L

Project: 15166; EBALDC Sample ID: MB/LCS-143164

1708144-001AMS/MSD

QC Summary Report for SW8260B MS MSD **SPK SPKRef** Analyte MS **MSD** MS/MSD **RPD RPD** Val Val %REC Result Result %REC Limits Limit **Surrogate Recovery** Dibromofluoromethane 29.6 29.8 25 118 119 73-131 0.896 20 Toluene-d8 25 101 72-117 0.761 25.6 25.4 102 20 4-BFB 2.18 2.23 2.5 87 89 74-116 2.24 20

Quality Control Report


Client: Essel Environmental Consulting

WorkOrder: 1707B67 **Date Prepared:** 8/4/17 **BatchID:** 143181 **Date Analyzed:** 8/4/17 **Extraction Method: SW5030B Instrument:** GC38 **Analytical Method: SW8260B Matrix:** Water **Unit:** μg/L

Project: 15166; EBALDC Sample ID: MB/LCS-143181

1708074-005AMS/MSD

Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
Acetone	ND	181	10	200	-	91	46-155
tert-Amyl methyl ether (TAME)	ND	7.96	0.50	10	-	80	54-140
Benzene	ND	8.92	0.50	10	-	89	47-158
Bromobenzene	ND	8.58	0.50	10	-	86	50-155
Bromochloromethane	ND	9.04	0.50	10	-	90	48-160
Bromodichloromethane	ND	8.39	0.50	10	-	84	60-156
Bromoform	ND	8.18	0.50	10	-	82	43-149
Bromomethane	ND	10.8	0.50	10	-	108	61-159
2-Butanone (MEK)	ND	36.9	2.0	40	-	92	61-124
t-Butyl alcohol (TBA)	ND	30.2	2.0	40	-	75	42-140
n-Butyl benzene	ND	9.77	0.50	10	-	98	74-138
sec-Butyl benzene	ND	9.76	0.50	10	-	98	72-142
tert-Butyl benzene	ND	9.27	0.50	10	-	93	74-140
Carbon Disulfide	ND	8.17	0.50	10	-	82	64-127
Carbon Tetrachloride	ND	8.08	0.50	10	-	81	61-158
Chlorobenzene	ND	8.86	0.50	10	-	89	43-157
Chloroethane	ND	8.89	0.50	10	-	89	50-127
Chloroform	ND	8.60	0.50	10	-	86	56-154
Chloromethane	ND	8.27	0.50	10	-	83	41-132
2-Chlorotoluene	ND	8.90	0.50	10	-	89	50-155
4-Chlorotoluene	ND	8.74	0.50	10	-	87	53-153
Dibromochloromethane	ND	7.75	0.50	10	-	77	49-156
1,2-Dibromo-3-chloropropane	ND	3.04	0.20	4	-	76	46-149
1,2-Dibromoethane (EDB)	ND	8.38	0.50	10	-	84	44-155
Dibromomethane	ND	8.45	0.50	10	-	84	50-157
1,2-Dichlorobenzene	ND	9.08	0.50	10	-	91	48-156
1,3-Dichlorobenzene	ND	9.29	0.50	10	-	93	49-159
1,4-Dichlorobenzene	ND	9.10	0.50	10	-	91	51-151
Dichlorodifluoromethane	ND	6.38	0.50	10	-	64	61-117
1,1-Dichloroethane	ND	9.27	0.50	10	-	93	53-153
1,2-Dichloroethane (1,2-DCA)	ND	8.85	0.50	10	-	88	66-125
1,1-Dichloroethene	ND	8.56	0.50	10	-	86	47-149
cis-1,2-Dichloroethene	ND	8.90	0.50	10	-	89	54-155
trans-1,2-Dichloroethene	ND	8.76	0.50	10	-	88	46-151
1,2-Dichloropropane	ND	8.90	0.50	10	-	89	54-153
1,3-Dichloropropane	ND	8.43	0.50	10	-	84	49-150
2,2-Dichloropropane	ND	8.63	0.50	10	-	86	74-147
• •							

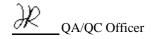
Quality Control Report

Client: Essel Environmental Consulting

Date Prepared:8/4/17Date Analyzed:8/4/17Instrument:GC38Matrix:Water

Project: 15166; EBALDC

WorkOrder: 1707B67
BatchID: 143181
Extraction Method: SW5030B


Analytical Method: SW8260B

Unit: $\mu g/L$

Sample ID: MB/LCS-143181

1708074-005AMS/MSD

cis-1,3-Dichloropropene ND 8.15 0.50 10 - 81 55-159 trans-1,3-Dichloropropene ND 8.35 0.50 10 - 83 74-131 Dissopropyl ether (DIPE) ND 8.76 0.50 10 - 88 67-136 Eithyl terr (ETBE) ND 8.76 0.50 10 - 88 65-137 Freon 113 ND 8.76 0.50 10 - 88 65-137 Freon 113 ND 8.58 0.50 10 - 86 47-138 Hexachlorobutadiene ND 8.28 0.50 10 - 86 47-138 Hexachlorobutadiene ND 8.28 0.50 10 - 81 75-130 Hexachlorobutadiene ND 8.28 0.50 10 - 81 75-130 Hexachlorobutadiene ND 8.11 0.50 10 - 82 70-115 <th< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<>								
cis-1,3-Dichloropropene ND 8.15 0.50 10 - 81 55-159 trans-1,3-Dichloropropene ND 8.35 0.50 10 - 83 74-131 Dissopropyl ether (DIPE) ND 8.76 0.50 10 - 88 57-136 Ethyl terren ND 8.94 0.50 10 - 88 56-137 Freon 113 ND 8.58 0.50 10 - 86 47-138 Hexachlorobutadiene ND 8.28 0.50 10 - 86 47-138 Hexachloroethane ND 8.28 0.50 10 - 81 75-130 2-Hexanone ND 8.11 0.50 10 - 81 75-130 2-Hexanone ND 8.20 0.50 10 - 82 70-115 Sopropylbenzene ND 8.20 0.50 10 - 82 70-115 Sopropolybenzene <th>Analyte</th> <th></th> <th></th> <th>RL</th> <th>_</th> <th></th> <th></th> <th></th>	Analyte			RL	_			
Irans-1,3-Dichloropropene ND	1,1-Dichloropropene	ND	8.80	0.50	10	=	88	54-150
Disopropyl ether (DIPE) ND 8.76 0.50 10 - 88 57-136	cis-1,3-Dichloropropene	ND	8.15	0.50	10	=	81	55-159
Ethylbenzene ND 8.94 0.50 10 - 89 60-152 Ethyl tert-butyl ether (ETBE) ND 8.76 0.50 10 - 88 55-137 Freon 113 ND 8.58 0.50 10 - 86 47-138 Hexachlorobutadiene ND 8.28 0.50 10 - 83 66-160 Hexachlorobutadiene ND 8.28 0.50 10 - 83 66-160 Hexachlorobutadiene ND 8.11 0.50 10 - 81 75-130 Hexachlorobutadiene ND 8.11 0.50 10 - 82 70-115 80 Freon 113 66-160 Hexachloroethane ND 8.20 0.50 10 - 82 70-115 80 Freon 114 75-130 10 - 82 70-115 80 Freon 114 75-130 10 - 82 70-115 80 Freon 115 80 Freon	trans-1,3-Dichloropropene	ND	8.35	0.50	10	-	83	74-131
Ethyl tert-butyl ether (ETBE) ND 8.76 0.50 10 - 88 55-137 Frenn 113 ND 8.58 0.50 10 - 86 47-138 Hexachlorobutadiene ND 8.28 0.50 10 - 83 66-160 Hexachlorobutane ND 8.11 0.50 10 - 81 75-130 2-Hexanone ND 8.20 0.50 10 - 82 70-115 Isopropylbenzene ND 8.90 0.50 10 - 89 59-156 4-Hsogropyl toluene ND 8.90 0.50 10 - 89 59-156 4-Hsogropyl toluene ND 8.20 0.50 10 - 82 53-139 Methyl-butyl ether (MTBE) ND 8.20 0.50 10 - 82 66-127 4-Methyl-2-pentanone (MIBK) ND 7.55 0.50 10 - 86 62-123	Diisopropyl ether (DIPE)	ND	8.76	0.50	10	-	88	57-136
Person 113	Ethylbenzene	ND	8.94	0.50	10	-	89	60-152
Hexachlorobutadiene ND 8.28 0.50 10 - 83 66-160 Hexachloroethane ND 8.11 0.50 10 - 81 75-130 Per Acachloroethane ND 8.11 0.50 10 - 81 75-130 Per Acachloroethane ND 8.20 0.50 10 - 82 70-115 Stopropylbenzene ND 8.90 0.50 10 - 82 70-115 Stopropylbenzene ND 9.59 0.50 10 - 82 53-139 Methyl-t-butyl ether (MTBE) ND 8.20 0.50 10 - 82 53-139 Methyl-e-butyl ether (MTBE) ND 8.20 0.50 10 - 82 66-127 Per A-Methyl-2-pentanone (MIBK) ND 7.55 0.50 10 - 82 66-127 Per A-Methyl-2-pentanone (MIBK) ND 7.55 0.50 10 - 85 66-127 Per A-Methyl-2-pentanone (MIBK) ND 8.54 0.50 10 - 85 66-127 Per A-Methyl-2-pentanone (MIBK) ND 8.54 0.50 10 - 85 66-127 Per A-Methyl-2-pentanone (MIBK) ND 8.54 0.50 10 - 85 66-127 Per A-Methyl-2-pentanone (MIBK) ND 8.54 0.50 10 - 85 56-127 Per A-Methyl-2-pentanone (MIBK) ND 8.54 0.50 10 - 85 56-127 Per A-Methyl-2-pentanone (MIBK) ND 8.54 0.50 10 - 85 56-127 Per A-Methyl-2-pentanone (MIBK) ND 8.54 0.50 10 - 85 56-127 Per A-Methyl-2-pentanone (MIBK) ND 8.48 0.50 10 - 85 56-127 Per A-Methyl-2-pentanone (MIBK) ND 8.48 0.50 10 - 85 58-159 11,1,1,2-Tetrachloroethane ND 8.48 0.50 10 - 85 58-159 11,1,1,2-Tetrachloroethane ND 8.52 0.50 10 - 85 58-159 11,1,1,2-Tetrachloroethane ND 8.52 0.50 10 - 85 58-145 11,1,1,1-Trichloroethane ND 8.52 0.50 10 - 85 55-145 11,1,1,1-Trichloroethane ND 8.54 0.50 10 - 86 70-136 11,2,2-Trichloroethane ND 8.53 0.50 10 - 86 70-136 11,1,1,1-Trichloroethane ND 8.37 0.50 10 - 88 71-150 11,1,1-Trichloroethane ND 8.37 0.50 10 - 88 71-150 11,1,1-Trichloroethane ND 8.37 0.50 10 - 88 71-150 11,1,1-Trichloroethane ND 8.37 0.50 10 - 86 50-147 11,1,2-Trichloroethane ND 8.54 0.50 10 - 86 50-147 11,1,2-Trichloroethane ND 8.56 0.50 10 - 86 50-147 11,1,2-Trichloroethane ND 8.56 0.50 10 - 85 50-150 50 50 50	Ethyl tert-butyl ether (ETBE)	ND	8.76	0.50	10	-	88	55-137
Hexachloroethane	Freon 113	ND	8.58	0.50	10	-	86	47-138
ND 8.20 0.50 10 - 82 70-115	Hexachlorobutadiene	ND	8.28	0.50	10	-	83	66-160
Sopropylbenzene ND 8.90 0.50 10 - 89 59-156	Hexachloroethane	ND	8.11	0.50	10	-	81	75-130
## A-Isopropyl toluene ND 9.59 0.50 10 - 96 75-138 Methyl-t-butyl ether (MTBE) ND 8.20 0.50 10 - 82 53-139 Methylene chloride ND 8.16 0.50 10 - 82 66-127 4-Methyl-2-pentanone (MIBK) ND 7.55 0.50 10 - 82 66-127 4-Methyl-2-pentanone (MIBK) ND 7.55 0.50 10 - 85 66-127 4-Methyl-2-pentanone (MIBK) ND 7.55 0.50 10 - 85 66-127 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1-	2-Hexanone	ND	8.20	0.50	10	-	82	70-115
Methyl-t-butyl ether (MTBE) ND 8.20 0.50 10 - 82 53-139 Methylene chloride ND 8.16 0.50 10 - 82 66-127 4-Methyl-2-pentanone (MIBK) ND 7.55 0.50 10 - 76 42-153 Naphthalene ND 8.54 0.50 10 - 85 66-127 n-Propyl benzene ND 9.38 0.50 10 - 94 54-155 Styrene ND 9.05 0.50 10 - 90 51-152 1,1,1,2-Tetrachloroethane ND 8.48 0.50 10 - 85 58-159 1,1,1,2-Tetrachloroethane ND 8.20 0.50 10 - 85 58-159 1,1,1,2-Tetrachloroethane ND 8.52 0.50 10 - 85 55-145 Toluene ND 8.45 0.50 10 - 84 52-137	Isopropylbenzene	ND	8.90	0.50	10	-	89	59-156
Methylene chloride ND 8.16 0.50 10 - 82 66-127 4-Methyl-2-pentanone (MIBK) ND 7.55 0.50 10 - 76 42-153 Naphthalene ND 8.54 0.50 10 - 85 66-127 n-Propyl benzene ND 9.38 0.50 10 - 94 54-155 Styrene ND 9.05 0.50 10 - 90 51-152 1,1,2-Tetrachloroethane ND 8.48 0.50 10 - 85 58-159 1,1,2,2-Tetrachloroethane ND 8.20 0.50 10 - 85 58-159 1,1,2,2-Tetrachloroethane ND 8.52 0.50 10 - 82 51-150 Tetrachloroethane ND 8.45 0.50 10 - 85 55-145 Toluene ND 8.45 0.50 10 - 84 52-137 1,2,3-T	4-Isopropyl toluene	ND	9.59	0.50	10	-	96	75-138
4-Methyl-2-pentanone (MIBK) ND 7.55 0.50 10 - 76 42-153 Naphthalene ND 8.54 0.50 10 - 85 66-127 n-Propyl benzene ND 9.38 0.50 10 - 94 54-155 Styrene ND 9.05 0.50 10 - 90 51-152 1,1,1,2-Tetrachloroethane ND 8.48 0.50 10 - 85 58-159 1,1,2,2-Tetrachloroethane ND 8.20 0.50 10 - 82 51-150 Tetrachloroethane ND 8.52 0.50 10 - 85 55-145 Toluene ND 8.45 0.50 10 - 84 52-137 1,2,3-Trichlorobenzene ND 8.64 0.50 10 - 86 70-136 1,1,1-Trichloroethane ND 8.83 0.50 10 - 88 57-156 1,1,2	Methyl-t-butyl ether (MTBE)	ND	8.20	0.50	10	-	82	53-139
Naphthalene ND 8.54 0.50 10 - 85 66-127 n-Propyl benzene ND 9.38 0.50 10 - 94 54-155 Styrene ND 9.05 0.50 10 - 90 51-152 1,1,2-Tetrachloroethane ND 8.48 0.50 10 - 85 58-159 1,1,2,2-Tetrachloroethane ND 8.20 0.50 10 - 82 51-150 Tetrachloroethane ND 8.52 0.50 10 - 85 55-145 Toluene ND 8.45 0.50 10 - 85 55-145 Toluene ND 8.45 0.50 10 - 84 52-137 1,2,3-Trichlorobenzene ND 8.64 0.50 10 - 86 70-136 1,2,4-Trichloroethane ND 8.79 0.50 10 - 88 57-156 1,1,2-Trichloroethane	Methylene chloride	ND	8.16	0.50	10	-	82	66-127
Naphthalene ND 8.54 0.50 10 - 85 66-127 n-Propyl benzene ND 9.38 0.50 10 - 94 54-155 Styrene ND 9.05 0.50 10 - 90 51-152 1,1,2-Tetrachloroethane ND 8.48 0.50 10 - 85 58-159 1,1,2,2-Tetrachloroethane ND 8.20 0.50 10 - 82 51-150 Tetrachloroethane ND 8.52 0.50 10 - 85 55-145 Toluene ND 8.45 0.50 10 - 85 55-145 Toluene ND 8.45 0.50 10 - 84 52-137 1,2,3-Trichlorobenzene ND 8.64 0.50 10 - 86 70-136 1,2,4-Trichloroethane ND 8.79 0.50 10 - 88 57-156 1,1,2-Trichloroethane	4-Methyl-2-pentanone (MIBK)	ND	7.55	0.50	10	-	76	42-153
Styrene ND 9.05 0.50 10 - 90 51-152 1,1,1,2-Tetrachloroethane ND 8.48 0.50 10 - 85 58-159 1,1,2,2-Tetrachloroethane ND 8.20 0.50 10 - 82 51-150 Tetrachloroethene ND 8.52 0.50 10 - 85 55-145 Toluene ND 8.45 0.50 10 - 84 52-137 1,2,3-Trichlorobenzene ND 8.64 0.50 10 - 86 70-136 1,2,4-Trichloroebnzene ND 8.83 0.50 10 - 88 74-137 1,1,1-Trichloroethane ND 8.79 0.50 10 - 88 57-156 1,1,2-Trichloroethane ND 8.37 0.50 10 - 84 51-150 Trichlorofluoromethane ND 8.54 0.50 10 - 86 50-147	Naphthalene	ND	8.54	0.50	10	-	85	66-127
1,1,1,2-Tetrachloroethane	n-Propyl benzene	ND	9.38	0.50	10	-	94	54-155
ND 8.20 0.50 10 - 82 51-150	Styrene	ND	9.05	0.50	10	-	90	51-152
Tetrachloroethene ND 8.52 0.50 10 - 85 55-145 Toluene ND 8.45 0.50 10 - 84 52-137 1,2,3-Trichlorobenzene ND 8.64 0.50 10 - 86 70-136 1,2,4-Trichlorobenzene ND 8.83 0.50 10 - 88 74-137 1,1,1-Trichloroethane ND 8.79 0.50 10 - 88 57-156 1,1,2-Trichloroethane ND 8.37 0.50 10 - 88 57-156 1,1,2-Trichloroethane ND 8.54 0.50 10 - 84 51-150 Trichloroethene ND 8.56 0.50 10 - 85 43-157 Trichlorofluoromethane ND 8.56 0.50 10 - 85 43-157 Trichlorofluoromethane ND 8.56 0.50 10 - 85 43-157 1,2,3-Trichloropropane ND 8.74 0.50 10 - 87 41-152 1,2,4-Trimethylbenzene ND 9.55 0.50 10 - 95 57-157 1,3,5-Trimethylbenzene ND 9.29 0.50 10 - 93 56-159 Vinyl Chloride ND 8.89 0.50 10 - 89 42-137	1,1,1,2-Tetrachloroethane	ND	8.48	0.50	10	-	85	58-159
Toluene ND 8.45 0.50 10 - 84 52-137 1,2,3-Trichlorobenzene ND 8.64 0.50 10 - 86 70-136 1,2,4-Trichlorobenzene ND 8.83 0.50 10 - 88 74-137 1,1,1-Trichloroethane ND 8.79 0.50 10 - 88 57-156 1,1,2-Trichloroethane ND 8.37 0.50 10 - 84 51-150 Trichloroethene ND 8.54 0.50 10 - 85 43-157 Trichlorofluoromethane ND 8.56 0.50 10 - 86 50-147 1,2,3-Trichloropropane ND 8.74 0.50 10 - 87 41-152 1,2,4-Trimethylbenzene ND 9.55 0.50 10 - 95 57-157 1,3,5-Trimethylbenzene ND 8.89 0.50 10 - 89 42-137	1,1,2,2-Tetrachloroethane	ND	8.20	0.50	10	-	82	51-150
1,2,3-Trichlorobenzene ND 8.64 0.50 10 - 86 70-136 1,2,4-Trichlorobenzene ND 8.83 0.50 10 - 88 74-137 1,1,1-Trichloroethane ND 8.79 0.50 10 - 88 57-156 1,1,2-Trichloroethane ND 8.37 0.50 10 - 84 51-150 Trichloroethane ND 8.54 0.50 10 - 85 43-157 Trichlorofluoromethane ND 8.56 0.50 10 - 86 50-147 1,2,3-Trichloropropane ND 8.74 0.50 10 - 87 41-152 1,2,4-Trimethylbenzene ND 9.55 0.50 10 - 95 57-157 1,3,5-Trimethylbenzene ND 9.29 0.50 10 - 89 42-137 Vinyl Chloride ND 8.89 0.50 10 - 89 42-137	Tetrachloroethene	ND	8.52	0.50	10	-	85	55-145
ND ND ND ND ND ND ND ND	Toluene	ND	8.45	0.50	10	-	84	52-137
1,1,1-Trichloroethane ND 8.79 0.50 10 - 88 57-156 1,1,2-Trichloroethane ND 8.37 0.50 10 - 84 51-150 Trichloroethane ND 8.54 0.50 10 - 85 43-157 Trichlorofluoromethane ND 8.56 0.50 10 - 86 50-147 1,2,3-Trichloropropane ND 8.74 0.50 10 - 87 41-152 1,2,4-Trimethylbenzene ND 9.55 0.50 10 - 95 57-157 1,3,5-Trimethylbenzene ND 9.29 0.50 10 - 93 56-159 Vinyl Chloride ND 8.89 0.50 10 - 89 42-137	1,2,3-Trichlorobenzene	ND	8.64	0.50	10	-	86	70-136
1,1,2-Trichloroethane ND 8.37 0.50 10 - 84 51-150 Trichloroethene ND 8.54 0.50 10 - 85 43-157 Trichlorofluoromethane ND 8.56 0.50 10 - 86 50-147 1,2,3-Trichloropropane ND 8.74 0.50 10 - 87 41-152 1,2,4-Trimethylbenzene ND 9.55 0.50 10 - 95 57-157 1,3,5-Trimethylbenzene ND 9.29 0.50 10 - 93 56-159 Vinyl Chloride ND 8.89 0.50 10 - 89 42-137	1,2,4-Trichlorobenzene	ND	8.83	0.50	10	-	88	74-137
Trichloroethene ND 8.54 0.50 10 - 85 43-157 Trichlorofluoromethane ND 8.56 0.50 10 - 86 50-147 1,2,3-Trichloropropane ND 8.74 0.50 10 - 87 41-152 1,2,4-Trimethylbenzene ND 9.55 0.50 10 - 95 57-157 1,3,5-Trimethylbenzene ND 9.29 0.50 10 - 93 56-159 Vinyl Chloride ND 8.89 0.50 10 - 89 42-137	1,1,1-Trichloroethane	ND	8.79	0.50	10	-	88	57-156
Trichlorofluoromethane ND 8.56 0.50 10 - 86 50-147 1,2,3-Trichloropropane ND 8.74 0.50 10 - 87 41-152 1,2,4-Trimethylbenzene ND 9.55 0.50 10 - 95 57-157 1,3,5-Trimethylbenzene ND 9.29 0.50 10 - 93 56-159 Vinyl Chloride ND 8.89 0.50 10 - 89 42-137	1,1,2-Trichloroethane	ND	8.37	0.50	10	-	84	51-150
1,2,3-Trichloropropane ND 8.74 0.50 10 - 87 41-152 1,2,4-Trimethylbenzene ND 9.55 0.50 10 - 95 57-157 1,3,5-Trimethylbenzene ND 9.29 0.50 10 - 93 56-159 Vinyl Chloride ND 8.89 0.50 10 - 89 42-137	Trichloroethene	ND	8.54	0.50	10	-	85	43-157
1,2,4-Trimethylbenzene ND 9.55 0.50 10 - 95 57-157 1,3,5-Trimethylbenzene ND 9.29 0.50 10 - 93 56-159 Vinyl Chloride ND 8.89 0.50 10 - 89 42-137	Trichlorofluoromethane	ND	8.56	0.50	10	-	86	50-147
1,3,5-Trimethylbenzene ND 9.29 0.50 10 - 93 56-159 Vinyl Chloride ND 8.89 0.50 10 - 89 42-137	1,2,3-Trichloropropane	ND	8.74	0.50	10	-	87	41-152
1,3,5-Trimethylbenzene ND 9.29 0.50 10 - 93 56-159 Vinyl Chloride ND 8.89 0.50 10 - 89 42-137	1,2,4-Trimethylbenzene	ND	9.55	0.50	10	-	95	57-157
Vinyl Chloride ND 8.89 0.50 10 - 89 42-137	1,3,5-Trimethylbenzene	ND	9.29	0.50	10	-	93	56-159
•	Vinyl Chloride	ND	8.89	0.50	10	-	89	42-137
	Xylenes, Total	ND	27.6	0.50	15	-	184, F2	70-130

Quality Control Report

Client:Essel Environmental ConsultingWorkOrder:1707B67Date Prepared:8/4/17BatchID:143181Date Analyzed:8/4/17Extraction Method:SW5030BInstrument:GC38Analytical Method:SW8260B

 $\begin{tabular}{lll} \begin{tabular}{lll} \begin{$

Project: 15166; EBALDC Sample ID: MB/LCS-143181

1708074-005AMS/MSD

QC Summary Report for SW8260B									
Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits		
Surrogate Recovery									
Dibromofluoromethane	28.33	29.1		25	113	116	70-130		
Toluene-d8	25.79	25.9		25	103	104	70-130		
4-BFB	2.061	2.20		2.5	82	88	70-130		

Quality Control Report

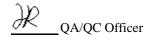
Client: Essel Environmental Consulting

Date Prepared:8/4/17Date Analyzed:8/4/17Instrument:GC38Matrix:Water

Project: 15166; EBALDC

WorkOrder: 1707B67

BatchID: 143181


Extraction Method: SW5030B **Analytical Method:** SW8260B

Unit: $\mu g/L$

Sample ID: MB/LCS-143181

1708074-005AMS/MSD

Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
Acetone	227	228	200	ND	112	112	66-158	0	20
tert-Amyl methyl ether (TAME)	8.98	9.36	10	ND	90	94	69-139	4.09	20
Benzene	9.61	9.90	10	ND	96	99	69-141	2.92	20
Bromobenzene	9.17	9.47	10	ND	92	95	70-127	3.24	20
Bromochloromethane	10.1	10.4	10	ND	101	104	72-142	3.03	20
Bromodichloromethane	9.14	9.52	10	ND	91	95	75-141	4.12	20
Bromoform	9.43	9.85	10	ND	94	98	72-126	4.35	20
Bromomethane	11.0	11.1	10	ND	110	111	50-160	0.419	20
2-Butanone (MEK)	45.8	46.1	40	ND	111	112	69-154	0.689	20
t-Butyl alcohol (TBA)	38.5	38.9	40	ND	96	97	41-152	1.12	20
n-Butyl benzene	10.6	10.7	10	ND	105	107	70-134	1.85	20
sec-Butyl benzene	10.4	10.6	10	ND	104	106	73-131	1.81	20
tert-Butyl benzene	9.80	10.0	10	ND	98	100	71-125	2.30	20
Carbon Disulfide	8.88	9.02	10	ND	89	90	63-158	1.64	20
Carbon Tetrachloride	8.78	8.92	10	ND	88	89	72-143	1.58	20
Chlorobenzene	9.44	9.74	10	ND	94	97	77-120	3.04	20
Chloroethane	9.42	9.50	10	ND	94	95	54-131	0.833	20
Chloroform	9.30	9.60	10	ND	93	96	75-139	3.19	20
Chloromethane	8.62	8.37	10	ND	86	84	40-130	2.89	20
2-Chlorotoluene	9.48	9.65	10	ND	95	97	70-122	1.77	20
4-Chlorotoluene	9.27	9.44	10	ND	93	94	71-123	1.75	20
Dibromochloromethane	8.70	9.06	10	ND	87	91	78-132	4.00	20
1,2-Dibromo-3-chloropropane	3.66	3.75	4	ND	92	94	59-143	2.21	20
1,2-Dibromoethane (EDB)	9.61	9.87	10	ND	96	99	76-135	2.69	20
Dibromomethane	9.69	9.99	10	ND	97	100	78-135	3.01	20
1,2-Dichlorobenzene	9.79	10.0	10	ND	98	100	68-133	2.17	20
1,3-Dichlorobenzene	9.96	10.1	10	ND	100	101	78-122	1.44	20
1,4-Dichlorobenzene	9.82	10.0	10	ND	98	100	80-117	2.29	20
Dichlorodifluoromethane	7.03	6.74	10	ND	70	67	38-125	4.16	20
1,1-Dichloroethane	10.1	10.4	10	ND	100	103	65-152	3.05	20
1,2-Dichloroethane (1,2-DCA)	9.93	10.2	10	ND	99	102	73-139	2.57	20
1,1-Dichloroethene	9.30	9.52	10	ND	93	95	59-140	2.31	20
cis-1,2-Dichloroethene	9.63	9.96	10	ND	96	100	50-154	3.44	20
trans-1,2-Dichloroethene	9.43	9.74	10	ND	94	97	69-136	3.26	20
1,2-Dichloropropane	9.70	10.0	10	ND	97	100	78-132	3.43	20
1,3-Dichloropropane	9.53	9.85	10	ND	95	99	77-131	3.30	20
2,2-Dichloropropane	9.33	9.39	10	ND	93	94	61-160	0.615	20

Quality Control Report

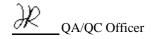
Client: Essel Environmental Consulting

Date Prepared:8/4/17Date Analyzed:8/4/17Instrument:GC38Matrix:Water

Project: 15166; EBALDC

WorkOrder: 1707B67

BatchID: 143181


Extraction Method: SW5030B **Analytical Method:** SW8260B

Unit: $\mu g/L$

Sample ID: MB/LCS-143181

1708074-005AMS/MSD

Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
1,1-Dichloropropene	9.41	9.64	10	ND	94	96	70-137	2.46	20
cis-1,3-Dichloropropene	8.90	9.21	10	ND	89	92	78-135	3.39	20
trans-1,3-Dichloropropene	9.23	9.62	10	ND	92	96	78-131	4.18	20
Diisopropyl ether (DIPE)	9.70	10.0	10	ND	97	100	72-140	3.41	20
Ethylbenzene	9.48	9.69	10	ND	95	97	73-128	2.26	20
Ethyl tert-butyl ether (ETBE)	9.76	10.2	10	ND	98	102	71-140	4.15	20
Freon 113	9.22	9.48	10	ND	92	95	60-136	2.84	20
Hexachlorobutadiene	8.72	8.73	10	ND	87	87	56-132	0	20
Hexachloroethane	8.46	8.75	10	ND	85	88	61-129	3.42	20
2-Hexanone	10.2	10.5	10	ND	102	105	57-149	2.85	20
Isopropylbenzene	9.38	9.65	10	ND	94	96	69-130	2.75	20
4-Isopropyl toluene	10.2	10.4	10	ND	102	104	75-124	1.64	20
Methyl-t-butyl ether (MTBE)	9.43	9.79	10	ND	94	98	73-139	3.72	20
Methylene chloride	9.10	9.28	10	ND	91	93	74-128	1.96	20
4-Methyl-2-pentanone (MIBK)	9.16	9.46	10	ND	92	95	61-145	3.30	20
Naphthalene	9.92	9.95	10	ND	99	100	54-148	0.301	20
n-Propyl benzene	9.92	10.1	10	ND	99	101	71-121	2.14	20
Styrene	9.79	9.93	10	ND	98	99	56-140	1.36	20
1,1,1,2-Tetrachloroethane	9.11	9.44	10	ND	91	94	74-127	3.60	20
1,1,2,2-Tetrachloroethane	9.54	9.87	10	ND	95	99	63-142	3.37	20
Tetrachloroethene	9.01	9.36	10	ND	90	94	71-125	3.81	20
Toluene	9.02	9.30	10	ND	90	92	71-128	2.99	20
1,2,3-Trichlorobenzene	9.67	9.76	10	ND	97	98	59-135	0.994	20
1,2,4-Trichlorobenzene	9.65	9.70	10	ND	97	97	60-132	0	20
1,1,1-Trichloroethane	9.39	9.61	10	ND	94	96	75-138	2.32	20
1,1,2-Trichloroethane	9.52	9.91	10	ND	95	99	78-129	3.98	20
Trichloroethene	9.19	9.48	10	ND	92	95	64-132	3.18	20
Trichlorofluoromethane	9.19	9.39	10	ND	92	94	53-159	2.16	20
1,2,3-Trichloropropane	10.3	10.6	10	ND	103	106	68-130	2.99	20
1,2,4-Trimethylbenzene	10.3	10.4	10	ND	103	105	76-124	1.60	20
1,3,5-Trimethylbenzene	9.89	10.0	10	ND	99	100	77-124	1.36	20
Vinyl Chloride	9.30	9.13	10	ND	93	91	43-142	1.80	20
Xylenes, Total	29.7	30.2	15	ND	198,F1	201,F1	70-130	1.85	20

Quality Control Report

Client:Essel Environmental ConsultingWorkOrder:1707B67Date Prepared:8/4/17BatchID:143181Date Analyzed:8/4/17Extraction Method:SW5030B

Instrument:GC38Analytical Method:SW8260BMatrix:WaterUnit:µg/L

Project: 15166; EBALDC Sample ID: MB/LCS-143181

1708074-005AMS/MSD

QC Summary Report for SW8260B MS MSD **SPK SPKRef** Analyte MS **MSD** MS/MSD **RPD RPD** Val Val %REC Result Result %REC Limits Limit **Surrogate Recovery** Dibromofluoromethane 29.3 29.5 25 117 118 73-131 0.431 20 Toluene-d8 25 103 72-117 20 25.8 25.8 103 0 4-BFB 2.19 2.19 2.5 87 74-116 0 20

Quality Control Report

Client: Essel Environmental Consulting

Date Prepared:8/1/17Date Analyzed:8/3/17Instrument:GC35

Matrix: Water

Project: 15166; EBALDC

WorkOrder: 1707B67

BatchID: 142971

Extraction Method: SW3510C **Analytical Method:** SW8270C-SIM

Unit: $\mu g/L$

Sample ID: MB/LCS/LCSD-142971

QC Summary	Report for	SW8270C
------------	------------	---------

Analyte	MB Result	RL	SPK Val	MB SS %REC	MB SS Limits
Acenaphthene	ND	0.50	-	-	-
Acenaphthylene	ND	0.50	-	-	-
Anthracene	ND	0.50	-	-	=
Benzo (a) anthracene	ND	0.50	-	-	=
Benzo (a) pyrene	ND	0.50	-	-	=
Benzo (b) fluoranthene	ND	0.50	-	-	=
Benzo (g,h,i) perylene	ND	0.50	-	-	=
Benzo (k) fluoranthene	ND	0.50	-	-	-
Chrysene	ND	0.50	-	-	=
Dibenzo (a,h) anthracene	ND	0.50	=	-	=
Fluoranthene	ND	0.50	=	-	=
Fluorene	ND	0.50	=	-	=
Indeno (1,2,3-cd) pyrene	ND	0.50	=	-	=
1-Methylnaphthalene	ND	0.50	=	-	=
2-Methylnaphthalene	ND	0.50	=	-	=
Naphthalene	ND	0.50	-	-	-
Phenanthrene	ND	0.50	-	-	-
Pyrene	ND	0.50	-	-	-
Surrogate Recovery					
1-Fluoronaphthalene	23.15		25	93	30-130
2-Fluorobiphenyl	24.14		25	97	30-130

Analyte	LCS	LCSD	SPK	LCS	LCSD	LCS/LCSD	RPD	RPD
2-Fluorobiphenyl	24.14			25	97	7	3	0-130
1-Fluoronaphthalene	23.15			25	93	3	3	0-130

, mary to	Result	Result	Val	%REC	%REC	Limits	2	Limit
Benzo (a) pyrene	11.8	12.8	10	119	128	12-152	8.05	25
Chrysene	7.47	7.94	10	75	79	28-116	6.08	25
1-Methylnaphthalene	8.55	8.94	10	85	89	48-125	4.45	25
2-Methylnaphthalene	9.36	9.36	10	94	94	41-124	0	25
Phenanthrene	8.45	8.80	10	85	88	36-123	4.04	25
Pyrene	9.19	9.77	10	92	98	29-118	6.06	25
Surrogate Recovery								
1-Fluoronaphthalene	22.9	23.4	25	91	94	45-129	2.39	25

25

91

93

47-125

23.4

22.7

2.67

2-Fluorobiphenyl

25

Quality Control Report

Client: Essel Environmental Consulting

Date Prepared: 8/2/17 **Date Analyzed:** 8/2/17

GC3 **Instrument: Matrix:** Water

Project: 15166; EBALDC WorkOrder: 1707B67

BatchID: 143100

Extraction Method: SW5030B

Analytical Method: SW8021B/8015Bm

Unit: μg/L

Sample ID: MB/LCS-143100

1707B93-001AMS/MSD

QC Summary	Report for	SW8021B/8015Bm

Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
TPH(btex)	ND	58.7	40	60	-	98	78-116
MTBE	ND	8.54	5.0	10	-	85	72-122
Benzene	ND	8.59	0.50	10	-	86	81-123
Toluene	ND	9.01	0.50	10	-	90	83-129
Ethylbenzene	ND	9.47	0.50	10	-	95	88-126
Xylenes	ND	29.5	1.5	30	_	98	87-131

aaa-TFT 9.639 9.21 10 96 92 89-116

Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
TPH(btex)	58.0	59.0	60	ND	97	98	63-133	1.64	20
MTBE	9.07	9.42	10	ND	91	94	69-122	3.70	20
Benzene	8.73	8.93	10	ND	87	89	84-125	2.24	20
Toluene	9.18	9.35	10	ND	92	94	87-131	1.90	20
Ethylbenzene	9.68	9.76	10	ND	97	98	92-126	0.718	20
Xylenes	30.1	30.3	30	ND	100	101	88-132	0.496	20
Surrogate Recovery									
aaa-TFT	9.41	9.43	10		94	94	90-117	0	20

Quality Control Report

Client: Essel Environmental Consulting

Date Prepared: 7/28/17

Date Analyzed: 7/29/17

Instrument: GC9a

Matrix: Water

Project: 15166; EBALDC

WorkOrder: 1707B67

BatchID: 142816

Extraction Method: SW3510C/3630C

Analytical Method: SW8015B

Unit: μg/L

Sample ID: MB/LCS/LCSD-142816

QC Report for SW8015B w/ Silica Gel Clean-Up									
Analyte	MB Result			RL	SPK Val		B SS REC		MB SS imits
TPH-Diesel (C10-C23)	ND			50	-	-		-	
TPH-Motor Oil (C18-C36)	ND			250	-	-		-	
Surrogate Recovery									
C9	661.1				625	10	06	7	9-111
Analyte	LCS Result	LCSD Result	SPK Val		LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Limit
TPH-Diesel (C10-C23)	1110	1140	1000		111	113	88-134	2.60	30
Surrogate Recovery									
C9	668	667	625		107	107	79-111	0	30

McCampbell Analytical, Inc.

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

WorkOrder: 1707B67 ClientCode: ESL

	WaterTrax	WriteOn	EDF	Excel	EQuIS	Email	HardCop	y ThirdParty	☐J-flag
eport to:				Bill	to:		R	equested TAT:	5 days;
Nik Lahiri	Email: nl	lahiri@esseltek.	com	I	Nik Lahiri				
Essel Environmental Consulting	cc/3rd Party: rc	odger@esseltek	.com;	1	Essel Environn	nental Consulting			
351 California Street, Ste. 615	PO:			;	351 California	Street, Ste. 615	\boldsymbol{L}	Date Received:	07/28/2017
San Francisco, CA 94104 (707) 494-4883 FAX: 510-380-6610	ProjectNo: 1	5166; EBALDC			San Francisco, nnkbmax@sbo	, CA 94104 cglobal.net; nlahiri@		Oate Logged:	07/28/2017

					Requested Tests (See legend below)											
Lab ID	Client ID	Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
				_												
1707B67-001	W-ECB23	Water	7/28/2017 11:53		В	С	Α	Α								
1707B67-002	W-ECB24	Water	7/28/2017 11:34		В	С	Α	Α								
1707B67-003	W-ECB25	Water	7/28/2017 11:27		В	С	Α	Α								

Test Legend:

1	8260B_W	2 8270_	PNA_W 3	G-MBTEX_W	4	TPH(DMO)WSG_W
5		6	7		8	
9		10	11		12	

Prepared by: Agustina Venegas

The following SampIDs: 001A, 002A, 003A contain testgroup Multi RangeWSG_W.

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days).

Hazardous samples will be returned to client or disposed of at client expense.

McCampbell Analytical, Inc.

"When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

WORK ORDER SUMMARY

Client Name:	ESSEL ENVIRONMENTAL CONSULTING	Project:	15166; EBALDC	Work Order: 1707B6

Client Contact: Nik Lahiri

Contact's Email: nlahiri@esseltek.com

Comments:

Date Logged: 7/28/2017

ThirdParty □ WaterTrax WriteOn HardCopy EDF Excel Fax □ Email ☐ J-flag Lab ID **Client ID** Matrix **Test Name** Containers **Bottle & Preservative** De-**Collection Date** TAT Sediment Hold SubOut /Composites chlorinated & Time Content 1707B67-001A W-ECB23 Multi-Range TPH(g,d,mo) w/ S.G. 4 VOA w/ HCl 7/28/2017 11:53 Water 5 days 25% +Clean-Up SW8260B (VOCs) 1707B67-001B W-ECB23 2 VOA w/ HCl Water 7/28/2017 11:53 5 days 25% +1707B67-001C W-ECB23 SW8270C (PAHs/PNAs) 2 1LA Narrow Mouth Water 7/28/2017 11:53 5 days 25% +1707B67-002A W-ECB24 Multi-Range TPH(g,d,mo) w/ S.G. 4 VOA w/ HCl Water 7/28/2017 11:34 5 days Clean-Up 1707B67-002B W-ECB24 Water SW8260B (VOCs) 2 VOA w/ HCl 7/28/2017 11:34 5 days 1707B67-002C W-ECB24 SW8270C (PAHs/PNAs) 2 1LA Narrow Mouth Water 7/28/2017 11:34 5 days 1707B67-003A W-ECB25 Multi-Range TPH(g,d,mo) w/ S.G. 4 VOA w/ HCl Water 7/28/2017 11:27 5 days Clean-Up 1707B67-003B W-ECB25 Water SW8260B (VOCs) 2 VOA w/ HCl 7/28/2017 11:27 5 days 1707B67-003C W-ECB25 Water SW8270C (PAHs/PNAs) 2 1LA Narrow Mouth 7/28/2017 11:27 5 days

NOTES: - STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- MAI assumes that all material present in the provided sampling container is considered part of the sample - MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

McCAMPBELL ANALYTICAL, INC. 1534 WILLOW PASS ROAD PITTSBURG, CA 94565-1701							,	7	ГUF	N	۸D						? C	CUS	ST	OI	ΟY	R	E	CO	R	D	X						
, w		PITTSBU	RG, CA 94	1565-1	701	1 1			V	ľ	V-	7		١ '	CI	U 1	AI	OC	IVL	, 1.	LIVI	Ŀ		RUS	Н	24	HR		48 I	HR	7	72 H	
	bsite: <u>www.m</u> ephone: (877			iaii: n	nain@ Fax:)	·	•		1	Geo'	Γra	icke	er F	EDF	7		PD			Ex					ite (
101	ephone. (o77	, 202)2	02		Lux	. () ~	-		-0)	9												Ch	eck	if sa									is required
Report To: Nik L	ahiri/Rodger	Withan	n B	Bill To	o: Sar	nhit	a L	ahir	i										A	nal	ysis	Rec	lues	t						O	the	r	Comments
Company: Essel	ompany: Essel Technology Services, Inc.																													**Indicate			
351 California Str	reet, Suite 61	5				r	odg	er@	esse	ltel	k.co	om		ы	_	(F)					iers												here if these
San Francisco, Ca	alifornia 941	04]	E-Ma	il:nl	ahi	ri@	essel	ltek	.co	m		8015) / MTBE	N.	Z/B&					nger									sis			samples are
Tele: (925) 413-5	511		F	ax: (()								3	T.E.	520 F			-5.084		°C/						(07)	20)		naly			potentially
Project #: 15166			P	rojec	et Nar	ne:	EB	ALD	C					801	SL C	1/55	£.	Cs)	021)		lors		les)			(S))9/(09/		als a			dangerous to
Project Location:					treet,	Oak	dan	d, C	alifo	orn	ia 9	946	12	+	\ GE	1664	(418	IVO	2 / 8	les)	Aroc		bicid	_		PNA	6010	0109	=	meta			handle:
Sampler Signatur	e: Voolg	en Cog	Wather	2										/ 802	CIC	ase (pons	21 (F	A 60	sticie	7.	ides)	Her	OC.	OCs	Hs/	0.8	8.	602(/ED			
	U	SAMI	PLING				MA	TRI	X			THO		BTEX & TPH as Gas (602 / 8021 +	- w/SILICA GEL CLEANUP	Total Petroleum Oil & Grease (1664 / 5520 E/B&F)	Total Petroleum Hydrocarbons (418.1)	EPA 502.2 / 601 / 8010 / 8021 (HVOCs)	MTBE / BTEX ONLY (EPA 602 / 8021)	EPA 505/ 608 / 8081 (CI Pesticides)	EPA 608 / 8082 PCB's ONLY; Aroclors / Congeners	EPA 507 / 8141 (NP Pesticides)	EPA 515 / 8151 (Acidic Cl Herbicides)	EPA 524.2 / 624 / 8260B (VOCs)	EPA 525.2 / 625 / 8270 (SVOCs)	EPA 8270 SIM / 8310 (PAHs / PNAs)	CAM 17 Metals (200.7 / 200.8 / 6010 / 6020)	LUFT 5 Metals (200.7 / 200.8 / 6010 / 6020)	Lead (200.7 / 200.8 / 6010 / 6020)	Filter sample for DISSOLVED metals analysis			
			Γ	l s	ers					Ť	IL	JEK	LD	Gas	5	S II &	Hydı	8010	NE	81 (CB.	NPI	Acid	826	827	831(200.	2007	8/6	DIS			
SAMPLE ID	LOCATION/ Field Point			Containers	Type Containers					ı				H as	TPHg, d, mo (8015)	E n	H n	091	0 X3	8 / 8(82 P	141	151 (624 /	625 /	IM/	tals (als (, 200	for			
	Name	Date	Time	tai	Con				. اد	1				TP.	, mo	trole	trole	.2 /	BTI	09 /9	8 / 80	8 / 1	8 / 8	1.27	5.2 /	S 02	Me	Met	0.7	mple	9		
		Dute	******	l o	be (ate	=		Other	<u>.</u>	17.1	HNO	Other	8 X 8	Ig, d	al Pe	al Pe	1 502	BE/	1 505	809 1	1 507	1515	1 524	1 525	82	M 17	FT 5	d (2(er sa	anid		
				#	Ty	Water	Soil	Air	5 5	1	3 3		Ö	BTI	TPI	Tota	Tota	EP/	MT	EP/	EP/	EP/	EP/	EP/	EP/	EP/	CAI	LUI	Lea	Filt	Cyanide	μd	
W-ECB23	ECB-23	7/23/17	11:539.11	8	G	X				7	X :	X			X									X		X							
W-ECB24	ECB-24		11:34 ain		G	X				2	X	X			X									X		X							
W-ECB25	ECB-25	7/2017	11:27 un		G	X				7	X :	X	\top		X									X		X							
		1,001	1 1200	1						t	1		\top																				
					\vdash					╁	+		+																			T	
								+	+	$^{+}$	+	+	+		-						-										-		
								-	+	+	+	+	+	\vdash	-		-	-											-			+	
				-					-	╀	+	-	-	-			-	-											-		-	-	
											-	_	-	_		_	-	_											-	_	-	-	
										\perp				┖																			
										L																							
-																																	
**MAI clients MUST	disalasa any da	n acucus ab	amiaala ke	t	0 ho ny	ocon	: 4	hoin.		:++.	d eo					4: a m	e the					intol			ouiou	6		h oo le	th an	done		ant a	as a vesult of build
gloved, open air, sam	ole handling by	MAI staff.	Non-discle	osure i	incurs	an in	imed	liate	\$250	sur	cha	rge a	nd th	he cl	ient i	s sub	s that oject	to fu	ll leg	al lia	bilit	y for	harr	n suf	ferec	i. Ti	iank	you	for	your	und	ersta	inding and for
allowing us to work sa	afely.																	tů.															
Relinguished By:	/	Date:	Time:	Rece	eived E	V:								10	CE/t°	4,	-	ve	+									CO	MM	IENT	S:		
Lodger C.	William	7/28/12	12:30pm		-	A	>		-						OOD					_													
Relinquished By:		Date:	Time:		eived E	7	$\overline{}$			7-740		_			EAD ECH					AR	_												
1	}	7/28/17	11:080				2	_	_				DECHLORINATED IN LAB APPROPRIATE CONTAINERS PRESERVED IN LAB																				
Relinguished By:	Relinquished By: Date: Time: Received By:					PI	RESE	RVI	ED IN	N LA	В																						
	elinquished By: Date: Time: Received By:											OAS	O	&G			LS	OTI	HER														
J#							Pl	RESE	RV	ATIC	N_		N.		_pH	<2																	

Sample Receipt Checklist

Client Name: Project Name: WorkOrder №: Carrier:	15166; EBALDC 1707B67 Matrix: Water Client Drop-In			Date and Time Received Date Logged: Received by: Logged by:	7/28/2017 13:08 7/28/2017 Jena Alfaro Agustina Venegas
	Chain of C	ustody	/ (COC) Infor	mation	
Chain of custody	present?	Yes	✓	No 🗆	
Chain of custody	signed when relinquished and received?	Yes	✓	No 🗆	
Chain of custody	agrees with sample labels?	Yes	✓	No 🗌	
Sample IDs note	d by Client on COC?	Yes	✓	No 🗆	
Date and Time or	f collection noted by Client on COC?	Yes	✓	No 🗆	
Sampler's name	noted on COC?	Yes	•	No 🗌	
	<u>Sampl</u>	e Rece	eipt Informati	i <u>on</u>	
Custody seals in	tact on shipping container/cooler?	Yes		No 🗌	NA 🗹
Shipping contain	er/cooler in good condition?	Yes	✓	No 🗌	
Samples in prope	er containers/bottles?	Yes	✓	No 🗆	
Sample containe	rs intact?	Yes	✓	No 🗆	
Sufficient sample	e volume for indicated test?	Yes	✓	No 🗌	
	Sample Preservation	on and	Hold Time (I	HT) Information	
All samples recei	ived within holding time?	Yes	✓	No 🗌	NA \square
Sample/Temp Bl	ank temperature		Temp: 4.7	7°C	NA 🗌
Water - VOA vial	s have zero headspace / no bubbles?	Yes		No 🗸	NA 🗌
Sample labels ch	necked for correct preservation?	Yes	✓	No 🗌	
pH acceptable up	oon receipt (Metal: <2; 522: <4; 218.7: >8)?	Yes		No 🗌	NA 🗹
Samples Receive	ed on Ice?	Yes	✓	No 🗌	
	(Ice Type	e: WE	TICE)		
UCMR Samples: Total Chlorine	tested and acceptable upon receipt for EPA 522?	Yes		No 🗆	na 🗹
Free Chlorine t 300.1, 537, 539	tested and acceptable upon receipt for EPA 218.7, 9?	Yes		No 🗌	NA 🗹
Comments:	=========	:		=======	=======

APPENDIX C

CHAIN-OF-CUSTODY FORMS AND LABORATORY ANALYTICAL REPORTS FOR SOIL-VAPOR SAMPLES

8/5/2017

Mr. Rodger Witham
Essel Environmental Consultants
44448 Martingale Ct.

Fremont CA 94539

Project Name: West Grand & Brush

Project #: 15166

Workorder #: 1708039

Dear Mr. Rodger Witham

The following report includes the data for the above referenced project for sample(s) received on 8/2/2017 at Air Toxics Ltd.

The data and associated QC analyzed by Modified TO-17 VI are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Eurofins Air Toxics Inc. for your air analysis needs. Eurofins Air Toxics Inc. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Rachel Selenis at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Rachel Selenis

Project Manager

Naml S

WORK ORDER #: 1708039

Work Order Summary

CLIENT: Mr. Rodger Witham BILL TO: Mr. Rodger Witham

Essel Environmental Consultants Essel Environmental Consultants

44448 Martingale Ct.
Fremont, CA 94539

44448 Martingale Ct.
Fremont, CA 94539

PHONE: 415-767-6375 P.O. # 15166

FAX: PROJECT # 15166 West Grand & Brush

DATE RECEIVED: 08/02/2017 **CONTACT:** Rachel Selenis **DATE COMPLETED:** 08/05/2017

FRACTION #	<u>NAME</u>	TEST
01A	SV-8	Modified TO-17 VI
02A	SV-9	Modified TO-17 VI
03A	SV-10	Modified TO-17 VI
04A	SV-11	Modified TO-17 VI
05A	Lab Blank	Modified TO-17 VI
06A	CCV	Modified TO-17 VI
07A	LCS	Modified TO-17 VI
07AA	LCSD	Modified TO-17 VI

	The	eide Player		
CERTIFIED BY:		0 0	DATE: 08/05/17	

Technical Director

Certification numbers: AZ Licensure AZ0775, NJ NELAP - CA016, NY NELAP - 11291, TX NELAP - T104704434-16-11, UT NELAP CA0093332016-7, VA NELAP - 8113, WA NELAP - C935 Name of Accreditation Body: NELAP/ORELAP (Oregon Environmental Laboratory Accreditation Program) Accreditation number: CA300005, Effective date: 10/18/2016, Expiration date: 10/17/2017. Eurofins Air Toxics Inc.. certifies that the test results contained in this report meet all requirements of the NELAC standards

This report shall not be reproduced, except in full, without the written approval of Eurofins Air Toxics, Inc.

LABORATORY NARRATIVE Modified EPA Method TO-17 (VI Tubes) Essel Environmental Consultants Workorder# 1708039

Four TO-17 VI Tube samples were received on August 02, 2017. The laboratory performed the analysis via modified EPA Method TO-17 using GC/MS in the full scan mode. TO-17 'VI' sorbent tubes are thermally desorbed onto a secondary trap. The trap is thermally desorbed to elute the components into the GC/MS system for compound separation and detection.

A modification that may be applied to EPA Method TO-17 at the client's discretion is the requirement to transport sorbent tubes at 4 deg C. Laboratory studies demonstrate a high level of stability for VOCs on the TO-17 'VI' tube at room temperature for periods of up to 14 days. Tubes can be shipped to and from the field site at ambient conditions as long as the 14-day sample hold time is upheld. Trip blanks and field surrogate spikes are used as additional control measures to monitor recovery and background contribution during tube transport.

Since the TO-17 VI application significantly extends the scope of target compounds addressed in EPA Method TO-15 and TO-17, the laboratory has implemented several method modifications outlined in the table below. Specific project requirements may over-ride the laboratory modifications.

Requirement	TO-17	ATL Modifications
Distributed Volume Pairs	Collection of distributed volume pairs required for monitoring ambient air to insure high quality.	If site is well-characterized or performance previously verified, single tube sampling may be appropriate. Distributed pairs may be impractical for soil gas collection due to configuration and volume constraints.

Receiving Notes

There were no receiving discrepancies.

Analytical Notes

A sampling volume of 0.06 L was used to convert ng to ug/m3 for the associated Lab Blank.

Definition of Data Qualifying Flags

Eight qualifiers may have been used on the data analysis sheets and indicates as follows:

- B Compound present in blank (subtraction not performed).
- J Estimated value.
- E Exceeds instrument calibration range.
- S Saturated peak.
- Q Exceeds quality control limits.
- U Compound analyzed for but not detected above the reporting limit, LOD, or MDL value. See data page for project specific U-flag definition.
 - UJ- Non-detected compound associated with low bias in the CCV
 - N The identification is based on presumptive evidence.

File extensions may have been used on the data analysis sheets and indicates

as follows:

a-File was requantified

b-File was quantified by a second column and detector

r1-File was requantified for the purpose of reissue

Summary of Detected Compounds EPA METHOD TO-17

Client Sample ID: SV-8

Lab ID#: 1708039-01A

No Detections Were Found.

Client Sample ID: SV-9

Lab ID#: 1708039-02A

No Detections Were Found.

Client Sample ID: SV-10

Lab ID#: 1708039-03A

No Detections Were Found.

Client Sample ID: SV-11

Lab ID#: 1708039-04A

No Detections Were Found.

Client Sample ID: SV-8 Lab ID#: 1708039-01A EPA METHOD TO-17

File Name:	6080422	Date of Extraction: NADate of Collection: 8/2/17 9:54:00 AM
Dil. Factor:	1.00	Date of Analysis: 8/4/17 11:21 PM

Compound	Rpt. Limit	Rpt. Limit	Amount	Amount
	(ng)	(ug/m3)	(ng)	(ug/m3)
Naphthalene	1.0	17	Not Detected	Not Detected

		Method
Surrogates	%Recovery	Limits
Naphthalene-d8	94	50-150

Client Sample ID: SV-9 Lab ID#: 1708039-02A EPA METHOD TO-17

File Name:	6080423	Date of Extraction: NADate of Collection: 8/2/17 9:36:00 AM
Dil. Factor:	1.00	Date of Analysis: 8/5/17 12:01 AM

	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ng)	(ug/m3)	(ng)	(ug/m3)
Naphthalene	1.0	17	Not Detected	Not Detected

		Method
Surrogates	%Recovery	Limits
Naphthalene-d8	103	50-150

Client Sample ID: SV-10 Lab ID#: 1708039-03A EPA METHOD TO-17

File Name:	6080424	Date of Extraction: NADate of Collection: 8/2/17 10:05:00 AM
Dil. Factor:	1.00	Date of Analysis: 8/5/17 12:41 AM

	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ng)	(ug/m3)	(ng)	(ug/m3)
Naphthalene	1.0	17	Not Detected	Not Detected

Surremeter	9/ Pagayany	Method
Surrogates	%Recovery	Limits
Naphthalene-d8	103	50-150

Client Sample ID: SV-11 Lab ID#: 1708039-04A EPA METHOD TO-17

File Name:	6080425	Date of Extraction: NADate of Collection: 8/2/17 10:22:00 AM
Dil. Factor:	1.00	Date of Analysis: 8/5/17 01:22 AM

	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ng)	(ug/m3)	(ng)	(ug/m3)
Naphthalene	1.0	17	Not Detected	Not Detected

		Method
Surrogates	%Recovery	Limits
Naphthalene-d8	106	50-150

Client Sample ID: Lab Blank Lab ID#: 1708039-05A EPA METHOD TO-17

File Name:	6080419	Date of Extraction: NADate of Collection: NA
Dil. Factor:	1 00	Date of Δnalysis: 8/4/17 09:21 PM

Compound	Rpt. Limit	Rpt. Limit	Amount	Amount
	(ng)	(ug/m3)	(ng)	(ug/m3)
Naphthalene	1.0	17	Not Detected	Not Detected

Air Sample Volume(L): 0.0600 Container Type: NA - Not Applicable

Cumanata	9/ B = = = = = = = = = = = = = = = = = =	Method
Surrogates	%Recovery	Limits
Naphthalene-d8	113	50-150

Client Sample ID: CCV Lab ID#: 1708039-06A EPA METHOD TO-17

File Name: 6080407a Date of Extraction: NADate of Collection: NA

Dil. Factor: 1.00 Date of Analysis: 8/4/17 11:51 AM

Compound %Recovery

Naphthalene 106

Air Sample Volume(L): 1.00

Container Type: NA - Not Applicable

Surrogates%RecoveryLimitsNaphthalene-d810150-150

Client Sample ID: LCS Lab ID#: 1708039-07A EPA METHOD TO-17

File Name:	6080416	Date of Extraction:	NADate of Collection: NA

Dil. Factor: 1.00 Date of Analysis: 8/4/17 06:04 PM

		wethod
Compound	%Recovery	Limits
Naphthalene	103	70-130

Air Sample Volume(L): 1.00

Container Type: NA - Not Applicable

		Method		
Surrogates	%Recovery	Limits		
Naphthalene-d8	98	50-150		

Client Sample ID: LCSD Lab ID#: 1708039-07AA EPA METHOD TO-17

File Name:	6080417	Date of Extraction:	NADate of Collection: NA

Dil. Factor: 1.00 Date of Analysis: 8/4/17 06:44 PM

		Method		
Compound	%Recovery	Limits		
Naphthalene	103	70-130		

Air Sample Volume(L): 1.00

Container Type: NA - Not Applicable

		Method
Surrogates	%Recovery	Limits
Naphthalene-d8	99	50-150

TO-17 SAMPLE COLLECTION

Air Toxics

Sample Transportation Notice
Relinquishing signature on this document indicates that sample is being shipped in compliance with all applicable local, State, Federal, national, and international laws, regulations and ordinances of any kind. Eurofins assumes no liability with respect to the collection, handling or shipping of these samples. Relinquishing signature also indicates agreement to hold harmless, defend, and indemnify Eurofins against any claim, demand, or action, of any kind, related to the

180 BLUE RAVINE ROAD, SUITE B **FOLSOM, CA 95630** (916) 985-1000 FAX (916) 985-1020

CHAIN-	OF-COSTODY RECORD :	_	g, or shipping of s	samples. D.O.T. H	lotline (800) 467-4	1922.			Page _	<u></u>	_ of_	
Company	y: (Print and Sign) Rodger Withon	/lodyw.c.an	essettek.co	Project	Info: 15166 #_15166 Name_West		Brush	Turn Around Time: Normal Rush How or ASA Pecify	Reporting Units: ppmv ppbv ppbv ppym3 mg/m3		Air	0,
Lab I.D.	Field Sample I.D. (Location)	Engraved or Stamped Tube #	Date of Collection (mm/dd/yy)	Start Time (hr:min)	Date of Retrieval (mm/dd/yy)	End Time (hr : min)	Pre-To	est Post-Te	IVANIMA	Indoor Ai	Outdoor	Soll Vapor Other (
OUA	SV-8	G 0145578	08/02/2017	91540000								N D
02/4	SV-9		08)02 2017						60m		ע נים	
03A	SV-10	G0143671	08/02/2017	10:05 a.m.							u þ	S
AYO	SV-11	G0147267	08/02/2017	10:ZZ a.m.							u)	40
							-					
												םם
												םם
												םכו
												ם
												םכ
Relinquish	ped by: (signature) Date/Time organ C. William 8/z/17 2:3 ped by: (signature) Date/Time 8/z/17 2:44 ped by: (signature) Date/Time	Receive	ed by: (signatur ed by: (signatur FAT) ed by: (signatur	re) Date/Time	17 1 3 8	30m	otes: Analy	jee for n using To-	arhthales i 7	re	encente de mare	
Lab	Shipper Name Air	r Bill #	Tem	p (°C)	Condition	10	Custody Sea	als Intact?	Work Ord	der f	ł	
Use Only	WP		2,2	1º0 0	Good		Yes No	None	1708	0:	19	

8/3/2017

Mr. Rodger Witham
Essel Environmental Consultants
44448 Martingale Ct.

Fremont CA 94539

Project Name: West Grand & Brush

Project #: 15166 Workorder #: 1708038

Dear Mr. Rodger Witham

The following report includes the data for the above referenced project for sample(s) received on 8/2/2017 at Air Toxics Ltd.

The data and associated QC analyzed by Modified ASTM D-1946 are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Eurofins Air Toxics Inc. for your air analysis needs. Eurofins Air Toxics Inc. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Rachel Selenis at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Rachel Selenis

Ramles

Project Manager

WORK ORDER #: 1708038

Work Order Summary

CLIENT: Mr. Rodger Witham BILL TO: Mr. Rodger Witham

Essel Environmental Consultants Essel Environmental Consultants

44448 Martingale Ct.44448 Martingale Ct.Fremont, CA 94539Fremont, CA 94539

PHONE: 415-767-6375 **P.O.** # 15166

FAX: PROJECT # 15166 West Grand & Brush

DATE RECEIVED: 08/02/2017 **CONTACT:** Rachel Selenis 08/03/2017

			RECEIPT	FINAL
FRACTION #	<u>NAME</u>	<u>TEST</u>	VAC./PRES.	PRESSURE
01A	SV-8	Modified ASTM D-1946	15.3 "Hg	14.7 psi
02A	SV-9	Modified ASTM D-1946	1 "Hg	14.5 psi
03A	SV-10	Modified ASTM D-1946	3.9 "Hg	14 psi
04A	SV-11	Modified ASTM D-1946	2.8 "Hg	15 psi
05A	Lab Blank	Modified ASTM D-1946	NA	NA
06A	LCS	Modified ASTM D-1946	NA	NA
06AA	LCSD	Modified ASTM D-1946	NA	NA

	10	ede flages		
CERTIFIED BY:	0	00	DATE: 08/03/17	

Technical Director

Certification numbers: AZ Licensure AZ0775, NJ NELAP - CA016, NY NELAP - 11291, TX NELAP - T104704434-16-11, UT NELAP CA0093332016-7, VA NELAP - 8113, WA NELAP - C935 Name of Accreditation Body: NELAP/ORELAP (Oregon Environmental Laboratory Accreditation Program) Accreditation number: CA300005, Effective date: 10/18/2016, Expiration date: 10/17/2017. Eurofins Air Toxics Inc.. certifies that the test results contained in this report meet all requirements of the NELAC standards

LABORATORY NARRATIVE Modified ASTM D-1946 Essel Environmental Consultants Workorder# 1708038

Four 1 Liter Summa Canister samples were received on August 02, 2017. The laboratory performed analysis via Modified ASTM Method D-1946 for Methane and fixed gases in air using GC/FID or GC/TCD. The method involves direct injection of 1.0 mL of sample.

On the analytical column employed for this analysis, Oxygen coelutes with Argon. The corresponding peak is quantitated as Oxygen.

Since Nitrogen is used to pressurize samples, the reported Nitrogen values are calculated by adding all the sample components and subtracting from 100%.

Method modifications taken to run these samples are summarized in the table below. Specific project requirements may over-ride the ATL modifications.

Requirement	ASTM D-1946	ATL Modifications
Calibration	A single point calibration is performed using a reference standard closely matching the composition of the unknown.	A minimum of 5-point calibration curve is performed. Quantitation is based on average Response Factor.
Reference Standard	The composition of any reference standard must be known to within 0.01 mol % for any component.	The standards used by ATL are blended to a >/= 95% accuracy.
Sample Injection Volume	Components whose concentrations are in excess of 5 % should not be analyzed by using sample volumes greater than 0.5 mL.	The sample container is connected directly to a fixed volume sample loop of 1.0 mL on the GC. Linear range is defined by the calibration curve. Bags are loaded by vacuum.
Normalization	Normalize the mole percent values by multiplying each value by 100 and dividing by the sum of the original values. The sum of the original values should not differ from 100% by more than 1.0%.	Results are not normalized. The sum of the reported values can differ from 100% by as much as 15%, either due to analytical variability or an unusual sample matrix.
Precision	Precision requirements established at each concentration level.	Duplicates should agree within 25% RPD for detections > 5 X's the RL.

Receiving Notes

Sample SV-8 was received with significant vacuum remaining in the canister. The residual canister vacuum resulted in elevated reporting limits.

Analytical Notes

There were no analytical discrepancies.

Definition of Data Qualifying Flags

Seven qualifiers may have been used on the data analysis sheets and indicate as follows:

- B Compound present in laboratory blank greater than reporting limit.
- J Estimated value.
- E Exceeds instrument calibration range.
- S Saturated peak.
- Q Exceeds quality control limits.
- U Compound analyzed for but not detected above the detection limit.
- M Reported value may be biased due to apparent matrix interferences.

File extensions may have been used on the data analysis sheets and indicates as follows:

- a-File was requantified
- b-File was quantified by a second column and detector
- r1-File was requantified for the purpose of reissue

Summary of Detected Compounds NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

Client Sample ID: SV-8 Lab ID#: 1708038-01A

	Rpt. Limit	Amount
Compound	(%)	(%)
Oxygen	0.41	11
Nitrogen	0.41	88
Methane	0.00041	0.16
Carbon Dioxide	0.041	0.77

Client Sample ID: SV-9

Lab ID#: 1708038-02A

	Rpt. Limit	Amount
Compound	(%)	(%)
Oxygen	0.21	20
Nitrogen	0.21	80
Methane	0.00021	0.00022
Carbon Dioxide	0.021	0.049

Client Sample ID: SV-10

Lab ID#: 1708038-03A

Rpt. Limit	Amount
(%)	(%)
0.22	20
0.22	80
0.00022	0.00090
0.022	0.050
	(%) 0.22 0.22 0.00022

Client Sample ID: SV-11

Lab ID#: 1708038-04A

	Rpt. Limit	Amount
Compound	(%)	(%)
Oxygen	0.22	20
Nitrogen	0.22	80
Methane	0.00022	0.010
Carbon Dioxide	0.022	0.13

Client Sample ID: SV-8 Lab ID#: 1708038-01A

NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name: Dil. Factor: Compound	10080209 4.08	Date of Collection: 8/2/17 12:02:00 F Date of Analysis: 8/2/17 07:57 PM	
		Rpt. Limit (%)	Amount (%)
Oxygen		0.41	11
Nitrogen		0.41	88

0.00041

0.041

0.16

0.77

Container Type: 1 Liter Summa Canister

Methane

Carbon Dioxide

Client Sample ID: SV-9 Lab ID#: 1708038-02A

NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name: Dil. Factor:	10080210 2.06		on: 8/2/17 11:14:00 AM s: 8/2/17 08:36 PM
		Rpt. Limit	Amount
Compound		(%)	(%)

 Compound
 (%)
 (%)

 Oxygen
 0.21
 20

 Nitrogen
 0.21
 80

 Methane
 0.00021
 0.00022

 Carbon Dioxide
 0.021
 0.049

Client Sample ID: SV-10 Lab ID#: 1708038-03A

NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name:	10080211	Date of Collection: 8/2/17 12:23:00 PM
Dil. Factor:	2.24	Date of Analysis: 8/2/17 09:04 PM

	Rpt. Limit	Amount
Compound	(%)	(%)
Oxygen	0.22	20
Nitrogen	0.22	80
Methane	0.00022	0.00090
Carbon Dioxide	0.022	0.050

Client Sample ID: SV-11 Lab ID#: 1708038-04A

NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name:	10080212	Date of Collection: 8/2/17 12:47:00 PM
Dil. Factor:	2.23	Date of Analysis: 8/2/17 09:29 PM

	Rpt. Limit	Amount
Compound	(%)	(%)
Oxygen	0.22	20
Nitrogen	0.22	80
Methane	0.00022	0.010
Carbon Dioxide	0.022	0.13

Client Sample ID: Lab Blank Lab ID#: 1708038-05A

NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

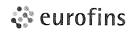
File Name:	10080204	Date of Colle	ction: NA
Dil. Factor:	1.00	Date of Analysis: 8/2/17 05:26 PM	
		Rpt. Limit	Amount
Compound		(%)	(%)
Oxygen		0.10	Not Detected
Nitrogen		0.10	Not Detected
Methane		0.00010	Not Detected
Carbon Dioxide		0.010	Not Detected

Client Sample ID: LCS Lab ID#: 1708038-06A

NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

ı			
	File Name:	10080202	Date of Collection: NA
	Dil. Factor:	1.00	Date of Analysis: 8/2/17 04:35 PM

		Wethod
Compound	%Recovery	Limits
Oxygen	98	85-115
Nitrogen	88	85-115
Methane	101	85-115
Carbon Dioxide	99	85-115



Client Sample ID: LCSD Lab ID#: 1708038-06AA

NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name: 10080227 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 8/3/17 01:25 PM

		Method
Compound	%Recovery	Limits
Oxygen	101	85-115
Nitrogen	88	85-115
Methane	100	85-115
Carbon Dioxide	100	85-115

Sample Transportation Notice
Relinquishing signature on this document indicates that sample is being shipped in compliance with all applicable local, State, Federal, national, and international laws, regulations and ordinances of any kind. Air Toxics Limited assumes no liability with respect to the collection, handling or shipping of these samples. Relinquishing signature also indicates agreement to hold harmless, defend, and indemnify Air Toxics Limited against any claim, demand, or action, of any kind, related to the collection, handling, or shipping of samples. D.O.T. Hotline (800) 467-4922

Project Manager Collar Witham	a'itt	- Madeina de Companyo de Compa	Projec	ct Info:	The state of the s			Around ne:	Lab Use Press	Only urized by:	
Collected by: (Print and Sign) Rodger Withom 1 Codger C. Company Essel Environmental Cosculing Email rodger C Address 351 California Street City San Francisco State	dessettek.c	<u> </u>	1	15166 #	6		☐ No	sh	Date:	urization (
Phone 510-366-8054 Fax			Project	Name West	Grand & Br		27-11 189 Psp	R or		N ₂ He	9
		E	ate	Time				Canist	ter Pres	sure/Vac	uum
Lab I.D. Field Sample I.D. (Location)	Can #	of Co		of Collection		s Request		Initial	Final	Receipt	Final (psi)
014 SV-8	N2647	8/2	lii	12:020.m.	Methane, N	ASTM D	75 -1946				
02A SV-9	A 7029	8/2	17	11:14 0.10.	Methane N	2,02,60	E946				
03A SV-10	01025	8/2	۲۱	12:230.m	Muthane, N	2,02,00	2				
04A SV-11	N2060	8/2	177	12:47 a.m.	Methane N Methane N Methane N ASTM Methane N ASTM D	2,02,00	2				
	,,,,,	- -		1-1/2-11	7/2////12	7-1974					
		\vdash	7								
			_								

Relinquished by: (signature), Date/Time Rece	ived by: (signa	ture)	Date/Tim	ne	No	ites:		onsevouvevu e			
Jodge C. William 8/2/17 2:30pm)	J5	8/	2/17	1 :3	Om						
Relinquished by: (signature) Date/Time Rece	ived by: (signa		Date/Tim	ne 🥞	•						
Relinquished by: (signature) Date/Time Rece			0217	144	14						
Hece	ived by: (signa	urej	Date/Tin	ie							
Lab Shipper Name Air Bill #	Т	emp (°C)	Condition	n Cı	ustody Sea	als Inta	act?	Work	Order #	
Use M/O		2,2		6000	× Y	res No	(No	ne	4 194	A (1 / 0 /	5
Only										08036	5—
	Market and the Control of the Contro						THE PARTY OF THE P			-	-

8/17/2017

Mr. Rodger Witham Essel Environmental Consultants 44448 Martingale Ct.

Fremont CA 94539

Project Name: West Grand & Brush

Project #: 15166

Workorder #: 1708282B

Dear Mr. Rodger Witham

The following report includes the data for the above referenced project for sample(s) received on 8/16/2017 at Air Toxics Ltd.

The data and associated QC analyzed by Modified ASTM D-1946 are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Eurofins Air Toxics Inc. for your air analysis needs. Eurofins Air Toxics Inc. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Rachel Selenis at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Rachel Selenis

Ramles

Project Manager

WORK ORDER #: 1708282B

Work Order Summary

CLIENT: Mr. Rodger Witham BILL TO: Mr. Rodger Witham

Essel Environmental Consultants Essel Environmental Consultants

44448 Martingale Ct.
Fremont, CA 94539
Fremont, CA 94539
Fremont, CA 94539

PHONE: 415-767-6375 **P.O.** # 15166

FAX: PROJECT # 15166 West Grand & Brush

DATE RECEIVED: 08/16/2017 **CONTACT:** Rachel Selenis 08/17/2017

			RECEIPT	FINAL
FRACTION #	<u>NAME</u>	<u>TEST</u>	VAC./PRES.	PRESSURE
01A	SV-9	Modified ASTM D-1946	1.0 "Hg	14.8 psi
02A	SV-10	Modified ASTM D-1946	3.7 "Hg	15.3 psi
03A	SV-11	Modified ASTM D-1946	2.8 "Hg	15.1 psi
04A	Lab Blank	Modified ASTM D-1946	NA	NA
05A	LCS	Modified ASTM D-1946	NA	NA
05AA	LCSD	Modified ASTM D-1946	NA	NA

	10	ede flages		
CERTIFIED BY:		00	DATE: $\frac{08/17/17}{}$	

Technical Director

Certification numbers: AZ Licensure AZ0775, NJ NELAP - CA016, NY NELAP - 11291, TX NELAP - T104704434-16-11, UT NELAP CA0093332016-7, VA NELAP - 8113, WA NELAP - C935 Name of Accreditation Body: NELAP/ORELAP (Oregon Environmental Laboratory Accreditation Program) Accreditation number: CA300005, Effective date: 10/18/2016, Expiration date: 10/17/2017. Eurofins Air Toxics Inc.. certifies that the test results contained in this report meet all requirements of the NELAC standards

LABORATORY NARRATIVE Modified ASTM D-1946 Essel Environmental Consultants Workorder# 1708282B

Three 1 Liter Summa Canister samples were received on August 16, 2017. The laboratory performed analysis via Modified ASTM Method D-1946 for Methane and fixed gases in air using GC/FID or GC/TCD. The method involves direct injection of 1.0 mL of sample.

On the analytical column employed for this analysis, Oxygen coelutes with Argon. The corresponding peak is quantitated as Oxygen.

Since Nitrogen is used to pressurize samples, the reported Nitrogen values are calculated by adding all the sample components and subtracting from 100%.

Method modifications taken to run these samples are summarized in the table below. Specific project requirements may over-ride the ATL modifications.

Requirement	ASTM D-1946	ATL Modifications
Calibration	A single point calibration is performed using a reference standard closely matching the composition of the unknown.	A minimum of 5-point calibration curve is performed. Quantitation is based on average Response Factor.
Reference Standard	The composition of any reference standard must be known to within 0.01 mol % for any component.	The standards used by ATL are blended to a >/= 95% accuracy.
Sample Injection Volume	Components whose concentrations are in excess of 5 % should not be analyzed by using sample volumes greater than 0.5 mL.	The sample container is connected directly to a fixed volume sample loop of 1.0 mL on the GC. Linear range is defined by the calibration curve. Bags are loaded by vacuum.
Normalization	Normalize the mole percent values by multiplying each value by 100 and dividing by the sum of the original values. The sum of the original values should not differ from 100% by more than 1.0%.	Results are not normalized. The sum of the reported values can differ from 100% by as much as 15%, either due to analytical variability or an unusual sample matrix.
Precision	Precision requirements established at each concentration level.	Duplicates should agree within 25% RPD for detections > 5 X's the RL.

Receiving Notes

There were no receiving discrepancies.

Analytical Notes

There were no analytical discrepancies.

Definition of Data Qualifying Flags

Seven qualifiers may have been used on the data analysis sheets and indicate as follows:

- B Compound present in laboratory blank greater than reporting limit.
- J Estimated value.
- E Exceeds instrument calibration range.
- S Saturated peak.
- Q Exceeds quality control limits.
- U Compound analyzed for but not detected above the detection limit.
- M Reported value may be biased due to apparent matrix interferences.

File extensions may have been used on the data analysis sheets and indicates as follows:

- a-File was requantified
- b-File was quantified by a second column and detector
- r1-File was requantified for the purpose of reissue

Summary of Detected Compounds NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

Client Sample ID: SV-9 Lab ID#: 1708282B-01A

	Rpt. Limit	Amount
Compound	(%)	(%)
Oxygen	0.21	6.8
Nitrogen	0.21	89
Carbon Dioxide	0.021	4.4

Client Sample ID: SV-10 Lab ID#: 1708282B-02A

	Rpt. Limit	Amount
Compound	(%)	(%)
Oxygen	0.23	20
Nitrogen	0.23	80
Methane	0.00023	0.0099
Carbon Dioxide	0.023	0.15

Client Sample ID: SV-11 Lab ID#: 1708282B-03A

	Rpt. Limit	Amount
Compound	(%)	(%)
Oxygen	0.22	20
Nitrogen	0.22	80
Methane	0.00022	0.0092
Carbon Dioxide	0.022	0.22

Client Sample ID: SV-9 Lab ID#: 1708282B-01A

NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name: Dil. Factor:	10081610 2.08		ction: 8/15/17 9:48:00 AM rsis: 8/16/17 12:50 PM
Compound		Rpt. Limit (%)	Amount (%)
Oxygen		0.21	6.8
Nitrogen		0.21	89
Methane		0.00021	Not Detected
Carbon Dioxide		0.021	4.4

Client Sample ID: SV-10 Lab ID#: 1708282B-02A

NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name: Dil. Factor:	10081611 2.32	Date of Collection: 8/1 Date of Analysis: 8/16/	
File Name:	10001011	Date of Callections 9/4	E/47 0.00.00 AM

	Rpt. Limit	Amount
Compound	(%)	(%)
Oxygen	0.23	20
Nitrogen	0.23	80
Methane	0.00023	0.0099
Carbon Dioxide	0.023	0.15

Client Sample ID: SV-11 Lab ID#: 1708282B-03A

NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name:	10081612	Date of Collection: 8/15/17 8:27:00 AM
Dil. Factor:	2.24	Date of Analysis: 8/16/17 01:42 PM

	Rpt. Limit	Amount
Compound	(%)	(%)
Oxygen	0.22	20
Nitrogen	0.22	80
Methane	0.00022	0.0092
Carbon Dioxide	0.022	0.22

Client Sample ID: Lab Blank Lab ID#: 1708282B-04A

NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name:	10081604	Date of Colle	ction: NA	
Dil. Factor:	1.00	Date of Analy	alysis: 8/16/17 10:17 AM	
Compound		Rpt. Limit (%)	Amount (%)	
Oxygen		0.10	Not Detected	
Nitrogen		0.10	Not Detected	
Methane		0.00010	Not Detected	
Carbon Dioxide		0.010	Not Detected	

Client Sample ID: LCS Lab ID#: 1708282B-05A

NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name: 10081602 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 8/16/17 09:29 AM

Compound	%Recovery	Method Limits
<u>'</u>	•	
Oxygen	109	85-115
Nitrogen	88	85-115
Methane	100	85-115
Carbon Dioxide	98	85-115

Client Sample ID: LCSD Lab ID#: 1708282B-05AA

NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name: 10081613 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 8/16/17 02:10 PM

		Method
Compound	%Recovery	Limits
Oxygen	102	85-115
Nitrogen	88	85-115
Methane	100	85-115
Carbon Dioxide	99	85-115

Air Toxics

Sample Transportation Notice

Relinquishing signature on this document indicates that sample is being shipped in compliance with all applicable local, State, Federal, national, and international laws, regulations and ordinances of any kind. Air Toxics Limited assumes no liability with respect to the collection, handling or shipping of these samples. Relinquishing signature also indicates agreement to hold harmless, defend, and indemnify Air Toxics Limited against any claim, demand, or action, of any kind, related to the collection, handling, or shipping of samples. D.O.T. Hotline (800) 467-4922

180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA 95630-4719 (916) 985-1000 FAX (916) 985-1020

Page ____ of ___

Project Ma	inager /Lodger Witham	71 00 5		Proje	ct Info:			Around	Lab Use		
Collected b	by: (Print and Sign) Rodger Witham 10	Adje C. Willa	22	P.O. #_	15166		☐ No	me: ormal	Press	urized by:	
Company Address 35	by: (Print and Sign) Rodger Witham Va Essel Environmental Email rodger California St. City San Francisco	State CA Zip 94	104	Project	# <u>1516</u>	6	⊠ Ru			urization (Gas:
Phone	Fax			Project	t Name Wext	Grand Brush	3-0 sp	ecity		N ₂ H	Ð
	Field Commist D. // costion)	0 "	1	ate	Time	A .				sure/Vac	uum
Lab I.D.	Field Sample I.D. (Location)	Can #	ļ,		of Collection			Initial	Final	Receipt	Final (psi)
OA	SV-9	N0233	8/15	5/17	9:480 m.	Methane, 023N2, C	50				
						2-proposol TO-1 Methane, Oz, Nz D-1946 2-proposol Te-1	15				
02 A	SV-10	0 1031	8/15	17	9:080ins	Methane, Oz, No	,00 ₂				
						2-proposal Te-1	5				
03 A	SY-11	N3093	8/15	lir	8'.27am.	2-propanol To-1 Methane, 0z, Nz, D-1946 2-propanol To-1	COz				
				#		2-040 and TO-1	5				
				······································							
				······································				······································			
				-							
			 								
Relinquist	ad by: (signature) Date/Time, JOHN C-William 8/15/17 11/50g-n ed by: (signature) Date/Time	Received by: (signa	ture) (X/10		10(O	Notes:			000000000000000000000000000000000000000		
Relinquish	ed by: (signature) Date/Time F	Received by: (signa				The state of the s					
Relinquish	ed by: (signature) Date/Time	Received by: (signa	ture)	Date/Tin	ne						
Lab	Shipper Name Air Bill #	Ĭ	emp (°C)	Condition	n Custody Se	als Int	act? ->	Work	Order#	
Use Only	red EV		NA	- [Geox	Yes N	o (No	ppe		1708	282
				indictation in an extension							

8/17/2017

Mr. Rodger Witham
Essel Environmental Consultants
44448 Martingale Ct.

Fremont CA 94539

Project Name: West Grand & Brush

Project #: 15166

Workorder #: 1708282A

Dear Mr. Rodger Witham

The following report includes the data for the above referenced project for sample(s) received on 8/16/2017 at Air Toxics Ltd.

The data and associated QC analyzed by TO-15 are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Eurofins Air Toxics Inc. for your air analysis needs. Eurofins Air Toxics Inc. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Rachel Selenis at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Rachel Selenis

Ramles

Project Manager

WORK ORDER #: 1708282A

Work Order Summary

CLIENT: Mr. Rodger Witham BILL TO: Mr. Rodger Witham

Essel Environmental Consultants Essel Environmental Consultants

44448 Martingale Ct.44448 Martingale Ct.Fremont, CA 94539Fremont, CA 94539

PHONE: 415-767-6375 P.O. # 15166

FAX: PROJECT # 15166 West Grand & Brush

DATE RECEIVED: 08/16/2017 **CONTACT:** Rachel Selenis 08/17/2017

			RECEIPT	FINAL
FRACTION #	<u>NAME</u>	<u>TEST</u>	VAC./PRES.	PRESSURE
01A	SV-9	TO-15	1.0 "Hg	14.8 psi
02A	SV-10	TO-15	3.7 "Hg	15.3 psi
03A	SV-11	TO-15	2.8 "Hg	15.1 psi
04A	Lab Blank	TO-15	NA	NA
04B	Lab Blank	TO-15	NA	NA
05A	CCV	TO-15	NA	NA
05B	CCV	TO-15	NA	NA
06A	LCS	TO-15	NA	NA
06AA	LCSD	TO-15	NA	NA
06B	LCS	TO-15	NA	NA
06BB	LCSD	TO-15	NA	NA

	Keidi Player	
CERTIFIED BY:	0 00	DATE: <u>08/17/17</u>

Technical Director

Certification numbers: AZ Licensure AZ0775, NJ NELAP - CA016, NY NELAP - 11291, TX NELAP - T104704434-16-11, UT NELAP CA0093332016-7, VA NELAP - 8113, WA NELAP - C935 Name of Accreditation Body: NELAP/ORELAP (Oregon Environmental Laboratory Accreditation Program) Accreditation number: CA300005, Effective date: 10/18/2016, Expiration date: 10/17/2017. Eurofins Air Toxics Inc.. certifies that the test results contained in this report meet all requirements of the NELAC standards

LABORATORY NARRATIVE EPA Method TO-15 Essel Environmental Consultants Workorder# 1708282A

Three 1 Liter Summa Canister samples were received on August 16, 2017. The laboratory performed analysis via EPA Method TO-15 using GC/MS in the full scan mode.

This workorder was independently validated prior to submittal using 'USEPA National Functional Guidelines' as generally applied to the analysis of volatile organic compounds in air. A rules-based, logic driven, independent validation engine was employed to assess completeness, evaluate pass/fail of relevant project quality control requirements and verification of all quantified amounts.

Receiving Notes

There were no receiving discrepancies.

Analytical Notes

There were no analytical discrepancies.

Definition of Data Qualifying Flags

Eight qualifiers may have been used on the data analysis sheets and indicates as follows:

- B Compound present in laboratory blank greater than reporting limit (background subtraction not performed).
 - J Estimated value.
 - E Exceeds instrument calibration range.
 - S Saturated peak.
 - Q Exceeds quality control limits.
- U Compound analyzed for but not detected above the reporting limit, LOD, or MDL value. See data page for project specific U-flag definition.
 - UJ- Non-detected compound associated with low bias in the CCV
 - N The identification is based on presumptive evidence.

File extensions may have been used on the data analysis sheets and indicates as follows:

a-File was requantified

b-File was quantified by a second column and detector

r1-File was requantified for the purpose of reissue

Summary of Detected Compounds EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: SV-9 Lab ID#: 1708282A-01A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)	
2-Propanol	4.2	10	10	26	

Client Sample ID: SV-10 Lab ID#: 1708282A-02A

	Rpt. Limit	Amount	Rpt. Limit	Amount	
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)	
2-Propanol	93	13000	230	33000	

Client Sample ID: SV-11 Lab ID#: 1708282A-03A

Compound	Rpt. Limit	Amount	Rpt. Limit	Amount
	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
2-Propanol	90	20000	220	50000

Client Sample ID: SV-9 Lab ID#: 1708282A-01A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	17081615	Date of Collection: 8/15/17 9:48:0		
Dil. Factor:	2.08	Date of Analysis: 8/16/17 09:41 P		
Compound	Rpt. Limit	Amount	Rpt. Limit	Amount
	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
2-Propanol	4.2	10	10	26

,,,		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	98	70-130
Toluene-d8	102	70-130
4-Bromofluorobenzene	86	70-130

Client Sample ID: SV-10 Lab ID#: 1708282A-02A

EPA METHOD TO-15 GC/MS

File Name:	14081706	Date of Collection: 8/15/17 9:08:00 AN		
Dil. Factor:	4.64	Date of Analysis: 8/17/17 10:10 AM		
Compound	Rpt. Limit	Amount	Rpt. Limit	Amount
	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)

13000

230

33000

93

Container Type: 1 Liter Summa Canister

2-Propanol

,,,		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	105	70-130
Toluene-d8	94	70-130
4-Bromofluorobenzene	105	70-130

Client Sample ID: SV-11 Lab ID#: 1708282A-03A

EPA METHOD TO-15 GC/MS

File Name: Dil. Factor:	14081707 4.48	Date of Collection: 8/15/17 8:27:00 A Date of Analysis: 8/17/17 10:35 AM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
2-Propanol	90	20000	220	50000

7,		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	109	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	104	70-130	

Client Sample ID: Lab Blank Lab ID#: 1708282A-04A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	17081605 1.00	Date of Collection: NA Date of Analysis: 8/16/17 01:09 PM		/17 01:09 PM
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
2-Propanol	2.0	Not Detected	4.9	Not Detected

,		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	97	70-130
Toluene-d8	102	70-130
4-Bromofluorobenzene	84	70-130

Client Sample ID: Lab Blank Lab ID#: 1708282A-04B

EPA METHOD TO-15 GC/MS

File Name: Dil. Factor:	14081705 1.00	Date of Collection: NA Date of Analysis: 8/17/17 09:35 AM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
2-Propanol	20	Not Detected	49	Not Detected

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	113	70-130
Toluene-d8	96	70-130
4-Bromofluorobenzene	101	70-130

Client Sample ID: CCV Lab ID#: 1708282A-05A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: 17081602 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 8/16/17 10:40 AM

 Compound
 %Recovery

 2-Propanol
 87

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	104	70-130	
Toluene-d8	103	70-130	
4-Bromofluorobenzene	93	70-130	

Client Sample ID: CCV Lab ID#: 1708282A-05B

EPA METHOD TO-15 GC/MS

File Name: 14081702 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 8/17/17 07:51 AM

Compound %Recovery

106

Container Type: NA - Not Applicable

2-Propanol

Surrogates	%Recovery	Method Limits
1,2-Dichloroethane-d4	106	70-130
Toluene-d8	96	70-130
4-Bromofluorobenzene	108	70-130

Client Sample ID: LCS Lab ID#: 1708282A-06A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	17081603	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 8/16/17 11:07 AM

0	2/ D	Method
Compound	%Recovery	Limits
2-Propanol	98	70-130

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	102	70-130
Toluene-d8	102	70-130
4-Bromofluorobenzene	92	70-130

Client Sample ID: LCSD Lab ID#: 1708282A-06AA

EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	17081604	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 8/16/17 11:34 AM

		Method	
Compound	%Recovery	Limits	
2-Propanol	99	70-130	

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	101	70-130
Toluene-d8	103	70-130
4-Bromofluorobenzene	92	70-130

Client Sample ID: LCS Lab ID#: 1708282A-06B

EPA METHOD TO-15 GC/MS

File Name:	14081703	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 8/17/17 08:38 AM

		Method
Compound	%Recovery	Limits
2-Propanol	121	70-130

Container Type: NA - Not Applicable

<i>,</i>		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	109	70-130
Toluene-d8	90	70-130
4-Bromofluorobenzene	107	70-130

Client Sample ID: LCSD Lab ID#: 1708282A-06BB EPA METHOD TO-15 GC/MS

File Name: 14081704 Date of Collection: NA

Dil. Factor: 1.00 Date of Analysis: 8/17/17 09:06 AM

		Method
Compound	%Recovery	Limits
2-Propanol	106	70-130

Container Type: NA - Not Applicable

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	113	70-130
Toluene-d8	98	70-130
4-Bromofluorobenzene	106	70-130

Air Toxics

Sample Transportation Notice

Relinquishing signature on this document indicates that sample is being shipped in compliance with all applicable local, State, Federal, national, and international laws, regulations and ordinances of any kind. Air Toxics Limited assumes no liability with respect to the collection, handling or shipping of these samples. Relinquishing signature also indicates agreement to hold harmless, defend, and indemnify Air Toxics Limited against any claim, demand, or action, of any kind, related to the collection, handling, or shipping of samples. D.O.T. Hotline (800) 467-4922

180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA 95630-4719 (916) 985-1000 FAX (916) 985-1020

Page ____ of ___

Project Ma	anager Kodyn Witham	<u> </u>		Proje	ct Info:			Around	Lab Use		
Collected	by: (Print and Sign) Rodger Witham 1. Essel Environmental Email rod 51 California St. City San Francisco	abyer C. Wills	22	P.O. #	15166			me:		urized by:	
Company_	Essel Environmental Email rod	gu-@essettek	. com			/_	☐ No		Date:		
Address 34	51 California St. city San Francisco	State CA Zip 94	104		# 15161		⊠ Ru	ish	Press	urization (Gas:
Phone	Fax			Project	Name West	Grand #Brush	3-0 sp	ecity		N ₂ H	e
			1	ate	Time		The state of the s	Canis	ter Pres	sure/Vac	uum
Lab I.D.	Field Sample I.D. (Location)	Can #	of Co	llection	of Collection			Initial	Final	Receipt	Final (psi)
OLA	SV-9	N0233	8/15	5/17	9:480 m.	Methant, 027N2, C	O _Z				V-31
		***************************************	•	,		2-proponol TO-1	5				
02 A	SV-10	0 1031	8/15	[17	9:08am.	D-1946 2-proponol TO-1 Methane, 0z, Nz D-1946 2-propanol To-1 Methane, 0z, Nz, D-1946 2-propanol TO-1	,00 ₂				
						2-propanol To-L	5				
03A	SY-11	N3093	8/15	/IT	8'.27am.	Methane, Oz, Nz,	COz				
				•		2-0100 and TO-1	5				
								······································			
Relinquis	Agen C-Within 8/15/17 11:5001	Received by: (signa	05/16	/17	10(0	Notes:	STATEMENT POR CONTRACTOR	caloka waxaa kaa			
Relinquis	hed by: (signature) Date/Time	Received by: (signa	ture)	Date/Tin	10						
Relinquis	hed by: (signature) Date/Time	Received by: (signa	ture)	Date/Tin	ne						
Lab	Shipper Name Air Bill #	٦	Temp (°C)	Condition	Custody Se	als Int	act? >	Work	Order#	
Use Only	redly		NA	- [Good	Yes N	o /No	ppe		1708	282
Jy											

APPENDIX D

CONCEPTUAL SITE MODEL

Table
Conceptual Site Model

	1	•		
CSM Element	CSM Sub- Element	Description	Data Gap Item #	Resolution
Geology and Hydrogeology	Regional	The Site is located on the East Bay Plain, which consists of a series of alluvial fans and dune sands that were deposited on a westward sloping bedrock surface. This bedrock is presumed to consist of rocks of the Jurassic- to Cretaceous-age Franciscan complex. The alluvial fan and dune sand deposits that overlie the Franciscan complex rocks are Pleistocene to Holocene in age and, from oldest to youngest, include the Santa Clara, Alameda, and Temescal Formations. The early Pleistocene-age Santa Clara Formation contains semi-consolidated units of conglomerate, sandstone, siltstone, and claystone. The Alameda Formation, of Pleistocene to Holocene age, comprises lower unnamed units and several upper members that include the Yerba Buena mud (black, organic-rich clay); a sequence of alluvial fan and eolian deposits (sand, gravel, silt) referred to as the San Antonio/Merritt/Posey member, and the Young Bay mud (black, organic-rich clay). The Temescal Formation is late Pleistocene to early Holocene in age and is an alluvial fan deposit consisting of silt and clay. The total thickness of these Pleistocene to Holocene sediments in the general area is reported to range from 450 to 500 feet (see Radbruch, 1957; California Regional Water Quality Control Board, San Francisco Bay Region [RWQCB], 1999; Graymer, 2000). The RWQCB considers regional shallow ground-water-bearing units to be those that are above the Yerba Buena mud (i.e., San Antonio, Merritt, and Posey members of the Alameda Formation; Temescal Formation) and deeper regional ground water to be below the Yerba Buena mud (i.e., lower unnamed units of the Alameda Formation;	None.	NA

Table
Conceptual Site Model (Continued)

CSM Element	CSM Sub- Element	Description	Data Gap Item #	Resolution
Geology and Hydrogeology	Site	Graymer (2000) and Radbruch (1957), respectively, show the site is located at or near the surface contact between the Merritt sand member of the Alameda Formation and the Temescal Formation. The Merritt sand is a fine-grained, very well sorted, Aeolian sand that is silty and clayey in areas and contains lenses of sandy clay and clay. The Temescal Formation is an alluvial fan deposit and consists of interfingering lenses of sandy gravel, clayey gravel, gravelly sand, and clayey sand that grade upward at shallower depths to sandy clay and silty clay. The Merritt sand and Temescal formation are late Pleistocene to Holocene in age. Unconsolidated sediments encountered during Essel's three subsurface investigations (2015; 2016a; 2016b) include near-surface silt or fill underlain by alternating and interbedded units of clay, silt, sand, and occasionally gravel to the maximum depth explored of 20.8 feet below the ground surface. Coarse-grained sand and gravel clasts contained within the silty clay are consistent	None.	NA
		with the Temescal Formation as described by Radbruch (1957) and the very fine- to fine-grained sand (well sorted, poorly graded), silty sand, and clayey sand appears consistent with Radbruch's description of the Merritt sand. Units encountered in borings at the site are described as follows:		
		 Fill - brownish-black to dusky yellowish-brown clay, silt, silty fine-grained sand, and fine- to coarse-grained sand observed in some borings from the base of the concrete to depths ranging from a few inches to approximately 4 feet below the ground surface. Fill - at the locations of the former underground storage tanks (USTs), bluish-gray-discolored silty clay and silt underlain by layers of fine-grained sand and fine- to coarse-grained sand 		
		with gravel that showed no discoloration, were encountered to 13 feet below the ground surface in borings ECB-2 and		

Table
Conceptual Site Model (Continued)

	1			
CSM Element	CSM Sub- Element	Description	Data Gap Item #	Resolution
	Liement	B-SV1 (diesel UST location), and 10½ feet below the ground surface in boring ECB-3 (gasoline UST location). Bluish-gray-discolored silty clay directly underlies the sand backfill in the three borings indicating the bottoms of the former diesel and gasoline USTs were at approximate depths of 12 and 10½ feet below grade, respectively. • Silt and silty clay - outside the former UST excavation, a near-surface silt unit, up to 4 feet thick, and underlying relatively thick silty clay were encountered in borings to depths generally of 8 to 10 feet below grade. This silt/clay unit appears to be laterally extensive beneath much of the site in the 1- to 10-foot-depth interval; however, was observed to extend as deep as 17 feet below grade in east-central boring ECB-5, advanced next to the former fuel dispenser. The silt/clay unit is inferred to be of similar thickness to the south of the fuel dispenser area (southeastern portion of the site); however, interbeds of silt and sand are present between 10 and 17 feet below grade at the southeastern corner of the property in boring ECB-6. • Silt/sand/gravel - units of silt, more predominant units of clayey sand, silty sand, sand (some units containing gravel), and occasional units of clayey gravel, with subordinate interbeds of clay, are present beneath the silty clay (base at 8 to 10 feet below grade) to depths ranging from 17½ to at least 20 feet below the ground surface. The silt/sand/gravel zone also appears to be laterally continuous beneath the site, but is thinner (2 to 3 feet thick) beneath the eastern portion of the property and becomes notably thicker (more than 10 feet) along the western side of the site and off-site beneath the adjacent residential property (boring ECB-22). • Silty clay - encountered beneath the silt/sand/gravel zone in many but not all borings advanced to 20 feet below the ground surface. This unit appears to be laterally continuous beneath much of the site, except along the western edge.	Data Gap item #	Resolution

Table
Conceptual Site Model (Continued)

	CSM Sub-			
CSM Element	Element	Description	Data Gap Item #	Resolution
		The sediments were observed to be various shades of yellowish-		
		brown (pale to dark) with varying degrees of reddish-brown and		
		yellowish-orange oxidation staining. A zone of medium bluish-gray		
		discolored sediments (with associated petroleum odor) was observed between 5 and 17 feet below grade in borings (ECB-1		
		through ECB-5) advanced near the former USTs and fuel		
		dispenser. Bluish-gray discolored soil was observed in borings		
		ECB-9, ECB-10, and ECB-15 through ECB-19 in the west-central		
		geophysical anomaly area from as shallow as 3 feet to as deep as		
		17 feet below the ground surface. At both these locations, the		
		discoloration occurs above and below the ground-water surface.		
		Gray, discolored appearing soil was observed in off-site western		
		boring ECB-14 (22 nd Street) at depths of 17½ to 18½ feet below		
		grade (below the ground-water surface).		
		PES (2005) reported depth to first ground water in borings drilled at		
		the site in 2005 to be 12 to 13 feet below the ground surface. Depth		
		to ground water was measured in the temporary wells installed in		
		borings ECB-1 through ECB-22 during Essel's 2015 and 2016		
		subsurface investigations. In September 2015, the ground-water		
		surface ranged from 12.41 feet below grade in off-site western		
		boring ECB-14 to 20.19 feet below the ground surface in slant boring ECB-7, located in the central portion of the site. Depth to		
		water in most temporary wells averaged approximately 14½ feet		
		below grade in September 2015. The greater depths to first ground		
		water measured in some borings likely do not represent static water		
		levels. In February 2016, depth to ground water varied from 12.8 to		
		13.25 feet below the ground surface in temporary wells placed in		
		borings ECB-15 through ECB-20 (west-central portion of the site).		
		In June 2016, ground water was measured at approximately 13 feet		
		below grade in off-site borings ECB-21 and ECB-22, located along		
		West Grand Avenue and on the west-adjacent residential property, respectively. Depth to water in borings ECB-23 through ECB-25		
		was measured at approximately 13½ feet below grade in July 2017.		

Table
Conceptual Site Model (Continued)

CSM Element	CSM Sub- Element	Description	Data Gap Item #	Resolution
		Based on the orientation of TPHg, TPHd, TPHmo, and naphthalene plumes in the geophysical anomaly area, the direction of groundwater flow beneath the site is inferred to be between northnorthwest and northwest.		
Surface Water Bodies		Lake Merritt is located approximately 3,900 feet east-southeast and Oakland Inner Harbor is located approximately 6,700 feet south of the site.	None.	NA
Nearby Wells		The State Water Resources Control Board's GeoTracker GAMA website provides the locations of ground-water-monitoring and ground-water-supply wells. The GAMA website shows that no ground-water-supply wells are located within ¼-mile (1,320 feet) of the site. Three groups of environmental monitoring wells, related to leaking underground storage tank properties, are located at distances of 600 feet south-southwest, 900 feet west-northwest, and 1,350 feet south of the site. Well records provided by the Alameda County Public Works Agency show the nearest water-supply wells are more than 2,000 feet north of the site. Records provided by the California Department of Water Resources do not indicate any water-supply wells are located within 2,000 feet of the Site.	None.	NA
Release Sources		 One 7,000-gallon diesel (UST) formerly located in the northeastern corner of the site; A fuel dispenser island located in the east-central portion of the site; One 2,000-gallon gasoline UST formerly located off-site beneath the sidewalk adjacent to the diesel UST; and A presumed UST, possibly used for waste oil, formerly located near the west-central edge of the site. The gasoline and diesel USTs were removed in October 1986. No description of the conditions of the tanks or observations of the tank 	None.	NA

Table
Conceptual Site Model (Continued)

CSM Element	CSM Sub- Element	Description	Data Gap Item #	Resolution
		excavation is available. The volume of the release is not known. No record exists with regard to the possible UST at the west-central edge of the site, but borings advanced in the area did not encounter a UST.		
Light Non- aqueous Phase Liquid (LNAPL)		An electronic oil-water interface probe was used to check the presence of LNAPL in on-site and off-site borings ECB-1 through ECB-22. No LNAPL was detected in any boring using the interface probe and no LNAPL was observed during grab ground-water sampling (through temporary wells) of the 22 borings. No LNAPL was observed in temporary wells installed in borings ECB-23 through ECB-25 in July 2017.	None.	NA
Source Removal Activities		Primary sources: The two USTs were removed in October 1986. Secondary sources: No free-phase petroleum product was found on the ground water in borings ECB-1 through ECB-25. Secondary source soil with elevated concentrations of TPHg, TPHd, and TPHmo is present in the 12- to 16-foot-depth interval (at and below the ground-water surface) in the areas of the former USTs and the geophysical anomaly. The vertical and lateral extent of this impacted soil has been delineated and is restricted to the vicinity of the former UST excavation and within an approximately 35 by 55 foot area around boring ECB-15 at the geophysical anomaly. Moderate concentrations of petroleum hydrocarbons are present in the depth interval of 8 to 15 feet below the ground surface in an estimated 15- by 15-foot square area near the former fuel dispenser. Based on depth to this impacted soil (greater than 10 feet below grade), the local impact to ground water, and the lack of health-risk indicator constituents (benzene, naphthalene, polynuclear aromatic hydrocarbons [PAHs]), secondary source soil at the former USTs, fuel dispenser, and geophysical anomaly areas is not considered to be of risk to human health or the environment.	None	NA
Contaminants		Historical records indicate diesel and gasoline USTs were present	None.	NA

Table
Conceptual Site Model (Continued)

	T	Conceptadi eite model (Continued)		
CSM Element	CSM Sub- Element	Description	Data Gap Item #	Resolution
of Potential Concern		at and adjacent to the site and that the present-day shop building was used for vehicle oil changes. Previous analyses (PES, 2005, 2011) of soil and ground-water samples were restricted to total petroleum hydrocarbons (TPH); benzene, toluene, ethylbenzene, total xylenes (BTEX); and methyl tertiary butyl ether (MTBE). Soil and ground-water samples from borings ECB-1 through ECB-22, soil samples from borings advanced for soil vapor wells SV-1 through SV-7, and soil samples from hand auger borings HA-1 through HA-3 were analyzed for the full range of petroleum hydrocarbons and VOCs. Selected soil and ground-water samples were also analyzed for PAHs (see Essel, 2015, 2016a, 2016b).		
		In soil, relatively elevated concentrations of TPHg, TPHd, and TPHmo were found in nine of 95 soil samples. Trace to low concentrations of xylenes, naphthalene, five other petroleum-related volatile organic compounds (VOCs), and five PAHs were sporadically detected in soil samples from borings in the geophysical anomaly. Low concentrations of the carcinogenic PAHs were detected in one soil sample from off-site boring B-22. Of the compounds detected, concentrations of TPHg, TPHd, TPHmo, xylenes, naphthalene, 2-methylnaphthalene, and benzo (a) pyrene are greater than Tier 1 environmental screening levels (ESLs) of the San Francisco Bay Regional Water Quality Control Board. However, no concentration of the indicator petroleum constituents (benzene, ethylbenzene, naphthalene, carcinogenic PAHs) is greater than the direct contact or outdoor air criteria of the State Water Resources Control Board's Low-Threat UST Closure Policy.		
		In ground water, concentrations of TPHg, TPHd, and TPHmo greater than current applicable Tier 1 ESLs were found in 13 of 26 ground-water samples collected from borings advanced in 2005, 2015, 2016, and 2017. The higher concentrations were detected		

Table
Conceptual Site Model (Continued)

	T	Conceptual Oile Model (Continued)		
CSM Element	CSM Sub- Element	Description	D ata Gap Item #	Resolution
		primarily in borings where elevated levels of TPH were found in soil. The aromatic hydrocarbons BTEX were detected in five ground-water samples, the fuel oxygenate MTBE was detected in one sample, naphthalene was detected in three samples, the chlorinated hydrocarbons <i>cis</i> -1,2-dichloroethene and vinyl chloride were found in one sample; and the butyl benzenes, isopropylbenzene, n-propyl benzene, and the trimethylbenzenes were variously detected in seven water samples. Non-chlorinated hydrocarbon solvents acetone, methyl ethyl ketone (MEK), 2-hexanone, methyl isobutyl ketone (MIBK), and 4-isopropyl toluene; and the insecticide bromomethane were also detected in several ground-water samples. In addition to the total petroleum hydrocarbons, benzene, xylenes, naphthalene, 2-methylnaphthalene, phenanthrene, and vinyl chloride, were at a concentration greater than applicable screening levels or maximum contaminant levels for drinking water; however, these exceedances were in only four water samples that were associated with elevated TPH levels.		
		In soil vapor, TPH-gasoline range, BTEX, MTBE, other fuel constituents and vinyl chloride were detected in soil-vapor samples from wells SV-1 and SV-4, located within and to the west of the former UST excavation. Benzene and vinyl chloride were found at levels greater than applicable vapor intrusion ESLs. In soil vapor wells SV-2, SV-3, SV-5, SV-6, and SV-7, petroleum hydrocarbon constituents were either not detected or were detected at low levels below applicable vapor intrusion ESLs. Chloroform was detected in wells SV-2 and SV-7 at concentrations greater than the applicable ESL. The chlorinated solvent tetrachloroethene was found during two sampling events in well SV-2 (below the vapor intrusion ESL), but was not detected in nearby vapor wells SV-6 or SV-7. Sampling of soil vapor wells SV-1 through SV-7 in February and March 2016 did not suggest a significant on-site source area or areas for the chlorinated solvents vinyl chloride or tetrachloroethene.		

Table
Conceptual Site Model (Continued)

CSM Element	CSM Sub- Element	Description	Data Gap Item #	Resolution
		Naphthalene was not detected in soil vapor samples collected from the former UST and dispenser areas in 2015 and 2015 and was not detected in soil vapor samples collected in the geophysical anomaly area in 2017. Methane has not been detected in vapor samples collected from SV-1 through SV-11 at concentrations greater than the 5,000 part-per-million action level cited in Department of Toxic Substances Control guidance. The results of analyses of soil, ground water, and soil vapor samples and the relevant criteria of the Low-Threat UST Closure Policy indicate that the contaminants of potential concern are TPHg, TPHd, and TPHmo.		
Petroleum Hydrocarbons in Soil		The results of subsurface investigations performed by PES in 2005 and 2011 found relatively localized concentrations of TPHg and TPHd in soil above the ground-water surface at levels greater than applicable environmental screening levels (ESLs). Essel's 2015 and 2016 investigations were performed to further delineate the extent of petroleum contaminants, particularly at and below the ground-water surface.	None. Extent of contaminants in soil has been delineated.	NA
		TPHg: Detectable levels of TPHg were found in the two soil samples collected from the gasoline UST pit in 1986 and in three of 25 soil samples collected from borings advanced in 2005 and 2011. Soil collected at a depth of 8 feet below the ground surface in boring B-4, advanced next to the former fuel dispenser, was the only sample containing TPHg at a concentration (190 mg/kg) greater than the current applicable Tier 1 ESL. During the 2015 and 2016 subsurface investigations, elevated levels of TPHg were detected at and just below the ground-water surface (depth interval of 13 to 16 feet below grade) in borings advanced at and very near the location of the former gasoline UST and at the west-central		

Table
Conceptual Site Model (Continued)

CSM Element	CSM Sub- Element	Description	Data Gap Item #	Resolution
		edge of the site (geophysical anomaly area). Concentrations of 130 and 95 milligrams per kilogram (mg/kg) TPHg were detected at 8 and 14½ feet below grade in boring ECB-5, located next to the former fuel dispenser and earlier boring B-4. Low concentrations (2.1 to 44 mg/kg) of TPHg were detected in soil from five borings advanced in the former UST, former fuel dispenser, and geophysical anomaly areas. No TPHg was detected in 56 soil samples collected from borings advanced within and outside the three areas of impact or in the four borings advanced off-site.		
		TPHd: Concentrations of 250 and 220 mg/kg TPHd were found in 1986 at the northern end of the on-site 7,000-gallon diesel UST at respective depths of 12 and 13 feet below the ground surface and 80 mg/kg TPHd was detected at 12 feet below grade beneath the southern end of the former UST. A concentration of 230 mg/kg TPHd, associated with the elevated TPHg, was also detected in the soil sample collected at the 8-foot depth in boring B-4, advanced next to the former fuel dispenser. This concentration dropped to 23 mg/kg at the 12-foot depth in boring B-4. In 2015 and 2016, elevated concentrations of TPHd (190 to 1,200 mg/kg) were found in borings ECB-3, ECB-4, ECB-10, ECB-15, ECB-16, and ECB-17 within the depth interval of 13 to 16 feet below the ground surface. These borings were advanced in the former UST area and the geophysical anomaly area. Either no TPHd was detected or low concentrations were found in other soil samples tested.		
		TPHmo: TPHmo was not detected in soil samples during previous investigations, including two samples collected from boring B-5, advanced in the former oil changing building. In 2015 and 2016 elevated concentrations of 310 to 16,000 mg/kg TPHmo were detected within the 13- to 16-foot-depth interval in borings advanced in the former UST and geophysical anomaly areas. No TPHmo was detected in the two samples collected at 4½ and 9½		

Table
Conceptual Site Model (Continued)

	CSM Sub-			
CSM Element	Element	Description	Data Gap Item #	Resolution
		feet below grade from slant boring ECB-7, advanced beneath the vehicle maintenance trench and none was detected in other soil samples tested.		
		The vertical and lateral extents of the three TPH ranges in soil have been defined in the former UST, former fuel dispenser, and geophysical anomaly areas as follows.		
		 Former USTs - an area approximately 35 feet by 30 feet is impacted around the former locations of the USTs, with elevated concentrations occurring between 12 and 16 feet below grade and the maximum depth of impact at approximately 17½ feet below the ground surface. 		
		 Former Fuel Dispenser – an estimated 15- by 15-square-foot area is impacted at the location of the existing concrete dispenser pedestal. Concentrations of TPH were detected at depths of 4 to 14½ feet below grade and no TPH was detected at 18 feet below grade. Relatively elevated concentrations are at 8 and 14½ feet below the ground surface. 		
		 Geophysical Anomaly Area – an estimated area approximately 55 feet by 35 feet encompassing borings ECB-10, ECB-15 through ECB-17, and ECB-19 is impacted with TPH. The TPH impact may extend approximately 10 feet west of the site beneath adjacent properties. Elevated concentrations of TPH and the maximum depth of impact are restricted to within the depth interval of approximately 12 to 16 feet below the ground surface. 		
		Individual Constituents: No BTEX, MTBE, naphthalene, other VOCs, or PAHs were detected in soil samples collected during the 2005, 2011, and 2015 investigations. In 2016, xylenes, naphthalene, and a few other petroleum-related VOCs and PAHs		

Table
Conceptual Site Model (Continued)

	CSM Sub-			
CSM Element	Element	Description	Data Gap Item #	Resolution
		were detected in soil in the geophysical anomaly area, with detected concentrations primarily found in samples containing elevated TPH concentrations. Except for anomalous detections of the carcinogenic PAHs at the 12½-foot depth in off-site boring ECB-22, the lateral and vertical extent of individual constituents is essentially contained within the area of TPH impact in the geophysical anomaly area.		
Petroleum Hydrocarbons in Ground Water		PES sampled ground water from borings B-1, B-2, B-5, and B-6 in 2005 and concentrations of TPHd and TPHmo were greater than current applicable Tier 1 ESLs. No TPHg or BTEX was detected in water samples and trace MTBE (0.61 ug/L) was found in one grab ground-water sample. Both TPHd and TPHmo were present across the site and, possibly may have migrated off-site to the northwest.	None. Extent of contaminants in ground water has been delineated.	NA
		In 2015 and 2016, elevated levels of TPHg, TPHd, and TPHmo were detected in water samples collected from borings ECB-2 through ECB-5 (former USTs and fuel dispenser) and borings ECB-10, ECB-15 through ECB-17, and ECB-19 (geophysical anomaly area). No TPHg, TPHd, or TPHmo was found in water samples from central boring ECB-7, perimeter borings ECB-1, ECB-6, ECB-8, ECB-9, ECB-11, and ECB-12, or off-site boring ECB-13. Low concentrations of TPHd were detected in off-site borings ECB-14 and ECB-21, but these detections do not appear to be related to site releases, based on crossgradient location and distance from the site. The results suggest the elevated levels detected in the areas of the former USTs and fuel dispenser have not migrated to the western edge of the site. Elevated TPHg, TPHd, and TPHmo in ground water in the geophysical anomaly area are present a short distance (likely less than 50 feet) off-site to the northwest. Sporadic trace to low concentrations of petroleum fuel constituents and PAHs and minor concentrations of		

Table
Conceptual Site Model (Continued)

CSM Element	CSM Sub- Element	Description	Data Gap Item #	Resolution
		water samples collected from on-site borings. None of these individual compounds were detected in water samples collected from the four off-site borings.		
Vapor Intrusion to Indoor Air		Detectable concentrations of TPH gasoline range, benzene, ethylbenzene, xylenes, MTBE and other petroleum fuel constituents were found in several soil vapor wells located near the former USTs and fuel dispenser. Naphthalene was not detected in any soil vapor sample in these two areas or in the geophysical anomaly area. Except for TPH gasoline range, benzene, vinyl chloride, and chloroform, none of the detected concentrations was greater than applicable Tier 1 ESLs for potential vapor intrusion risk. A focused human health risk assessment shows vapor intrusion health risk in the former UST and fuel dispenser areas is not present.	None. No vapor intrusion health risk appears to be present.	NA
Direct Contact and Outdoor Air		Soil samples collected within the 0- to 5-foot and 5- to 10-foot depth intervals have been analyzed for benzene. Benzene was not detected in soil samples collected within the two depth intervals. During the 2015 and 2016 investigations, soil samples collected within the above-described depth intervals in the former UST, fuel dispenser, geophysical anomaly area, and oil-changing pit were analyzed for benzene, naphthalene, and PAHs. Laboratory analytical results show no detectable concentrations of benzene, naphthalene, or any PAH analyte.	None.	NA
Risk Evaluation		The Source Group, Inc. performed a focused human health risk assessment for the former UST and fuel dispenser area to assess vapor intrusion risk from vinyl chloride and other VOCs found in soil vapor. The assessment did not find significant health risk from the contaminants present in soil vapor in this area.	None.	NA

APPENDIX E

FOCUSED HUMAN HEALTH RISK ASSESSMENT

August 22, 2017

Mr. Nik Lahiri Essel Environmental Engineering & Consulting 564 Market Street, Suite 160 San Francisco, CA 94104

Subject: Focused Human Health Risk Assessment for Groundwater Impacts to Indoor Air

760 22nd Street and 2201 Brush Street

Oakland, California

Dear Mr. Lahiri:

At your request, The Source Group, Inc. a division of Apex Companies, LLC. (Apex-SGI) has performed an evaluation of the groundwater data collected at the properties located at 760 22nd Street and 2201 Brush Street in Oakland, California (the Site; Attachment A). The two adjacent properties are bordered by West Grand Avenue to the north, Brush Street to the east, and 22nd Street to the south. The Site is surrounded by both residential and commercial/industrial land use. The proposed redevelopment of the Site includes a multi-story building with mixed use (i.e., offices, child-care facility, and residences). Preliminary architectural plans indicate that the proposed building and associated parking will cover the entire Site. Therefore, exposure via direct contact with soil or groundwater is not anticipated. This focused human health risk assessment (HHRA) was conducted to estimate potential adverse noncancer health effects and excess cancer risks associated with the chemicals of potential concern (COPCs) in groundwater volatilizing into indoor air. Although the proposed building will include office and child-care worker receptors, the estimated risks for these occupational receptors would be less than the estimated risks for a resident receptor. Consequently, this HHRA was conducted to estimate potential indoor air concentrations and associated human health risks from vapor intrusion of COPCs into future onsite residences. Although the preliminary architectural plans indicate that the residences will be located above the second floor, currently available vapor intrusion models do not allow for the evaluation of a multi-story building or elevator exposure scenarios. Therefore, this HHRA conservatively assumes that the future onsite resident receptor is located at ground surface.

GROUNDWATER SCREENING ASSESSMENT

Grab groundwater samples were collected during three separate Site investigations conducted in September 2015, February 2016, and July 2017. The focus of this HHRA, specifically evaluates groundwater data

of Apex Companies, LLC

collected northeast of the oil changing pit, near the former underground storage tanks (USTs), and near the former dispenser island. The groundwater data are summarized in the following bullets:

- Northeast of the Oil Changing Pit boring ECB-15 (sampled February 16, 2016) and boring ECB-23 (sampled July 28, 2017);
- Former USTs boring ECB-3 (sampled September 24, 2015) and boring ECB-24 (sampled July 28, 2017); and
- Former Dispenser Island boring ECB-5 (sampled September 25, 2015) and boring ECB-25 (sampled July 28, 2017).

The grab groundwater samples were collected by Essel Environmental Engineering & Consulting (Essel) and analyzed for total petroleum hydrocarbons (TPH), volatile organic compounds (VOCs), and polynuclear aromatic hydrocarbons (PAHs). Table 1 summarizes the analytical data for the groundwater samples collected from the borings listed above. Attachment A includes a figure showing the boring locations.

The results from the groundwater investigations were compared with the San Francisco Bay Regional Water Quality Control Board Environmental (SFRWQCB) Screening Levels (ESLs; SFRWQCB, 2016) for groundwater vapor intrusion based on residential land use. U.S. Environmental Protection Agency (USEPA) and Department of Toxic Substances Control (DTSC) do not provide groundwater screening levels for the vapor intrusion exposure pathway. As presented in Table 1, ESLs were only available for 8 of the 23 analytes detected in groundwater. For those 8 analytes, all detected concentrations were below their respective ESL.

Since 15 analytes detected in groundwater did not have a ESL available, further evaluation of groundwater was conducted using the site-specific DTSC vapor intrusion screening model for groundwater (DTSC VI Model; DTSC, 2014). Using this model, all of the analytes detected in groundwater were included in the evaluation. The vapor intrusion modeling assessment is discussed in the following section.

VAPOR INTRUSION MODELING ASSESSMENT

The methods used to conduct this HHRA are consistent with CalEPA DTSC *Guidance for the Evaluation and Mitigation of Subsurface Vapor Intrusion to Indoor Air* (Vapor Intrusion Guidance; DTSC, 2011). The DTSC modified version of the USEPA Johnson and Ettinger (1991; J/E) model (DTSC, 2014) was used to estimate potential indoor air concentrations and associated health risks from chemicals in groundwater volatilizing into indoor air. The DTSC VI Model simulates volatilization of chemicals from groundwater into soil vapor, migration of vapors to the ground surface, and mixing with indoor air for the future onsite resident receptor. A detailed description of the equations used in this model is provided in the *User's Guide for Evaluating Subsurface Vapor Intrusion into Buildings* (USEPA, 2004). The following sections discuss the input parameters used in the DTSC VI Model.

Source Concentrations

Vapor emissions were modeled for the Site using source concentrations from groundwater (EP C_{gw}). As described in the previous section, the groundwater data collected in September 2015, February 2016, and

July 2017 from borings ECB-3, ECB-5, ECB-15, ECB-23, ECB-24, and ECB-25 were used in this HHRA (Table 1). Based on the assumption that portions of the building may be located over maximum concentrations in groundwater, it was assumed that hypothetical resident receptors reside over maximum detected concentrations. Therefore, the maximum detected concentration in groundwater for each COPC was selected as the groundwater EPC to be used in the DTSC VI Model to estimate indoor air EPCs. Groundwater EPCs (EPC_{gw}) and the resulting modeled soil gas EPCs (EPC_{sg}) and indoor air EPCs (EPC_{indoor air} or C_{building}) are presented in Table 2.

To provide a conservative and complete characterization of potential risks associated with exposure at the Site, all detected analytes were retained at COPCs with the exception of TPH. Generally, the evaluation of TPH in a risk assessment includes the evaluation of its components most likely to reflect risk (i.e., benzene, toluene, ethylbenzene, xylenes [BTEX], methyl tertiary butyl ether [MTBE], and naphthalene). It is unlikely that other less toxic components of TPH will drive the overall risk at a site. TPH as a mixture is not evaluated further in this risk evaluation. BTEX and naphthalene were detected in one or more groundwater samples and were included in this HHRA. MTBE was not detected in groundwater.

Naphthalene was detected by both VOC and PAH laboratory analyses of groundwater samples from borings ECB-23 and ECB-15. Naphthalene via VOC analysis was detected at a maximum concentration of 16 micrograms per liter (μ g/L) in boring ECB-23. Naphthalene via PAH analysis was detected at a maximum concentration of 36 μ g/L in boring ECB-15. For this HHRA, the maximum detected concentration for naphthalene of 36 μ g/L via the PAH analysis was used.

Site-Specific and Chemical-Specific Properties

In addition to the chemical concentrations measured in groundwater, site-specific soil physical properties were used as input parameters for the DTSC VI Model. In February 2016, four soil samples were collected and analyzed for physical soil property characterization. Two soil samples were collected near the former USTs at 6.3 feet below ground surface (bgs) and 9.7 feet bgs. Two soil samples were collected near the former dispenser island at 5.7 feet bgs and 9.9 feet bgs. Each soil sample was analyzed for particle size distribution, dry bulk density, and porosity by a California-certified laboratory. The soil characterization analytical report is provided in Attachment B.

The results from the February 2016 soil physical properties analyses were used to determine the appropriate U.S. Department of Agriculture (USDA) soil textural classification within the Site. For three out of four soil samples, the particle size distribution analysis indicated that Site soils most closely fit with the "silty clay loam" USDA soil textural classification. This classification is consistent with the soils observed during previous investigations, which were predominately silty clay. The soil classification for the remaining soil sample was "sand" at probe SV-5 at 9.7 feet bgs. Based on the other soil samples, this sand zone is not indicative of the predominant soil type within the vadose zone. As a result, silty clay loam was selected as the Vadose Zone Soil Type input parameter for the DTSC VI Model. The reported values for dry bulk density (1.63 gram per cubic centimeter [g/cm³]), total porosity (0.383 cubic centimeter per cubic centimeter [cm³/cm³]), and water-filled porosity (0.300 cm³/cm³) were used as model input parameters, which represent

the more conservative values for the three "silty clay loam" samples. In accordance with DTSC (2014), default values of 24 degrees Celsius for average soil temperature and 15 centimeters (cm) for depth to the bottom of an enclosed space floor for slab-on-grade construction were used as model input parameters.

During 2015, 2016, and 2017 Site investigations, depth to groundwater ranged from approximately 13 to 14 feet bgs. For this HHRA, a depth of 13 feet bgs was used as the depth below grade to the water table, based on the shallowest depth to groundwater.

Default chemical properties supplied by the DTSC VI Model were used for the dimensionless Henry's Law constant, organic carbon-water partition coefficient (K_{oc}), and molecular diffusion coefficients in air and water, D_i and D_w , for each COPC. If a chemical was not included in the DTSC VI Model, the chemical was reviewed to assess whether an appropriate surrogate chemical could be identified. There were three COPCs not included in the DTSC VI Model. The following table summarizes these COPCs and their identified surrogates, based primarily on structural similarities.

COPC	Surrogate
4-Isopropyl toluene	Isopropylbenzene
Anthracene	Pyrene
Phenanthrene	Pyrene

The identified surrogates listed above were used to evaluate the compounds not included in the DTSC VI Model.

Table 3 summarizes the site-specific soil physical properties input into the DTSC VI Model for vapor migration from groundwater to indoor air.

Building Properties

The DTSC VI Model assumes default values for a single-family residence (DTSC, 2014) for all exposure scenarios. The building air exchange rate was 0.5 hour for residential exposure scenario.

Toxicity Assessment

Toxicity values are combined with exposure factors to estimate adverse noncancer health effects and excess cancer risks. Toxicity values include inhalation reference concentrations (RfCs) for noncarcinogenic effects and inhalation unit risk factors (URFs) for carcinogenic effects. Toxicity values supplied by the DTSC VI Model were used.

As discussed previously, there were three COPCs (4-isopropyl toluene, anthracene, and phenanthrene) not included in the DTSC VI Model. For these chemicals, surrogate chemicals were identified, based primarily on structural similarities. The toxicity values supplied by DTSC VI Model for each identified surrogate were used to evaluate the compounds.

Risk Characterization

The risk characterization process incorporates data from the exposure and toxicity assessments to estimate noncancer adverse health effects and excess cancer risks. To estimate noncancer effects, the chronic daily intake is divided by the RfC. The resulting value is referred to as a hazard quotient (HQ). Exposures to multiple chemicals were evaluated by summing the HQs for each COPC, resulting in a hazard index (HI). A HI less than or equal to 1 indicates that no adverse noncancer health effects are expected to occur (USEPA, 1989). Consistent with USEPA (1989) risk assessment guidelines, carcinogenic effects are typically evaluated by multiplying the URF by the chronic daily intake averaged over 70 years to estimate lifetime excess cancer risk. The resulting values are referred to as excess cancer risks. These potential excess cancer risks are compared to the California Environmental Protection Agency (CalEPA) risk management range of one-in-one-million (1 x 10-6) to one-in-ten thousand (1 x 10-4).

Consistent with USEPA (1989; 1991) guidelines, the following general equations were used to estimate excess cancer risks and noncancer adverse health effects (expressed as a HQ):

For carcinogens:
$$Risk = \frac{C_{building}xEFxEDxETxURF}{AT_C}$$

For noncarcinogens:
$$HQ = \frac{C_{building}xEFxEDxET}{RfC x AT_n}$$

Where:

 $C_{building}$ = Chemical concentration in indoor air (EPC_{indoor air}; micrograms per cubic meter [µg/m³]).

EF = Exposure frequency (days per year).

ED = Exposure duration (years).ET = Exposure time (hours per day).

AT = Averaging time (hours).

For noncarcinogenic effects, $AT = ED \times 365 \text{ days/year} \times 24 \text{ hours/day}$.

For carcinogenic effects, AT = 70 years x 365 days/year x 24 hours/day.

URF = Inhalation unit risk factor for carcinogenic chemicals ($\mu g/m^3$)-1.

RfC = Inhalation reference concentration for noncarcinogenic chemicals (µg/m³).

The residential exposure parameters (EF, ED, ET, and AT) are summarized in Table 3. The toxicity values (URF and RfC) used in the above equations were obtained from DTSC VI Model. Table 2 summarizes the individual noncancer HIs and excess cancer risk estimates for each COPC detected in groundwater. The DTSC VI Model spreadsheets are presented in Attachment C.

SUMMARY AND CONCLUSIONS

This focused HHRA was conducted to estimate potential adverse noncancer health effects and excess cancer risks for hypothetical future onsite resident receptors potentially exposed to COPCs volatilizing from

groundwater into indoor air. The proposed redevelopment of the Site includes a multi-story building with mixed use (i.e., offices, child care facility, and residences). Although the proposed building will include office and child-care worker receptors, the estimated risk for these occupational receptors would be less than the estimated risks for a resident receptor. Currently available vapor intrusion models do not allow for evaluation of multi-story building or preferential pathway (i.e., elevator) exposure scenarios. Therefore, this HHRA conservatively assumes that the hypothetical future onsite resident receptors are located at ground surface.

Based on the groundwater data collected in September 2015, February 2016, and July 2017 from borings ECB-3, ECB-5, ECB-15, ECB-23, ECB-24, and ECB-25, the HI estimate of 0.01 does not exceed the USEPA and CalEPA target level of one and the excess cancer risk estimate of 1 x 10⁻⁷ is below 1 x 10⁻⁶, which is the most stringent end of CalEPA's risk management range of 1 x 10⁻⁶ to 1 x 10⁻⁴. Generally, an excess cancer risk below 1 x 10⁻⁶ is acceptable for unrestricted or residential land use.

As mentioned previously, this HHRA assumes the future resident receptor resides over maximum detected COPC concentrations in groundwater beneath a single-story residence. Under proposed development plans, the future onsite resident receptor would be located on the third floor or higher floor of a multi-story building. Therefore, the results of this HHRA likely overestimate actual risk.

Based on this HHRA, the estimated cancer risk and noncancer hazard are below regulatory thresholds and COPCs in groundwater do not pose a human health risk to potential future onsite resident receptors at the Site.

Sincerely,

The Source Group, Inc.

Ivy Inouye Senior Toxicologist

Table 1 Comparison of Organic Compound Concentrations in Groundwater Samples

Table 2 Exposure Point Concentrations for Chemicals of Potential Concern in Groundwater and

Indoor Air, Risk Characterization for Hypothetical Future Onsite Resident Receptor

Table 3 Vapor Intrusion Model Parameters

Attachment A Site Plan and Boring Locations

Attachment B Soil Characterization Analytical Report

Attachment C DTSC Vapor Intrusion Model Spreadsheets

References

- Department of Toxic Substances Control (DTSC). 2011. Guidance for the Evaluation and Mitigation of Subsurface Vapor Intrusion to Indoor Air. California Environmental Protection Agency (CalEPA). October.
- DTSC. 2014. DTSC Vapor Intrusion Screening Model Groundwater. California Environmental Protection Agency (CalEPA). Last Modified December.
- Johnson, P.C. and R.A. Ettinger. 1991. Heuristic Model for Predicting the Intrusion Rate of Contaminant Vapors into Buildings. Environmental Science and Technology. Vol. 25, No. 8, pp. 1445-52.
- Regional Water Quality Control Board San Francisco Bay (SFRWQCB). 2016. Environmental Screening Levels (ESLs). Interim Final 2016. Revision 3. February.
- U.S. Environmental Protection Agency (USEPA). 1989. Risk Assessment Guidance for Superfund, Human Health Evaluation Manual, Part A. Interim Final. Solid Waste and Emergency Response. December.
- USEPA. 1991. Risk Assessment Guidance for Superfund: Volume I Human Health Evaluation Manual (Part B, Development of Risk-based Preliminary Remediation Goals). Interim. Office of Emergency and Remedial Response, Washington D.C., Publication 9285.7-01B. December.
- USEPA. 2004. User's Guide for Evaluating Subsurface Vapor Intrusion into Buildings. Office of Emergency and Remedial Response. February.

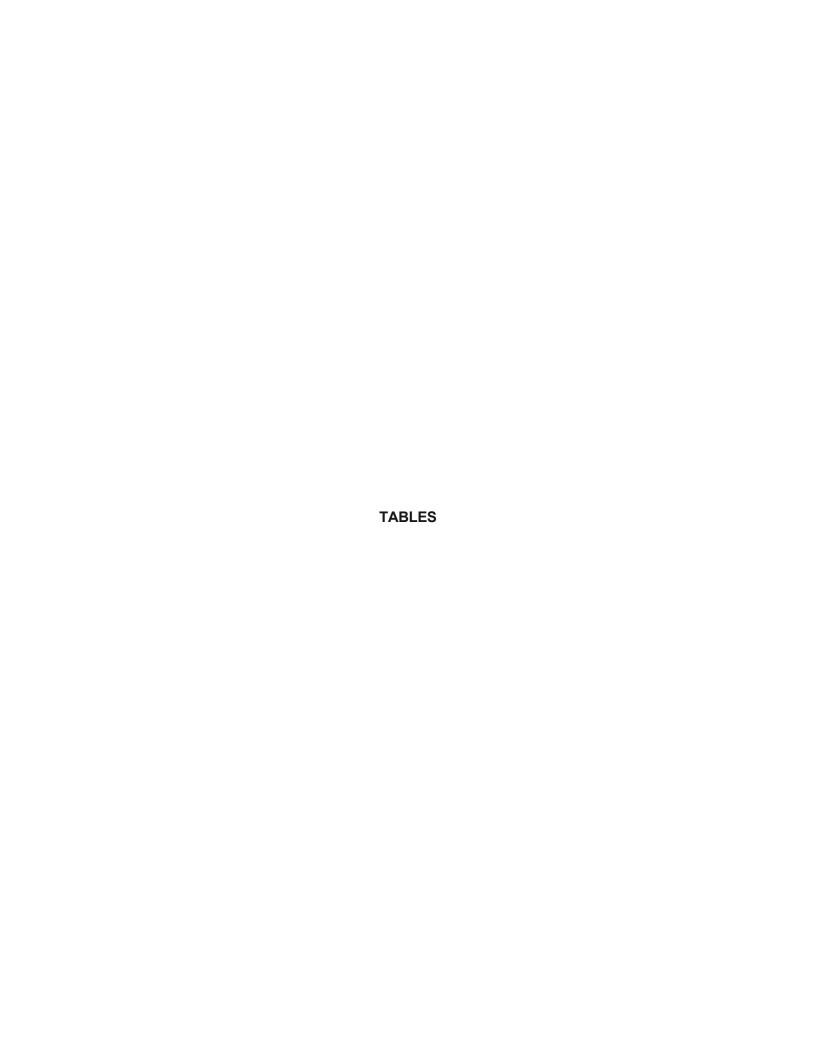


Table 1
Comparison of Organic Compound Concentrations in Groundwater Samples
760 22nd Street and 2201 Brush Street, Oakland, California

Boring	ECB-23	ECB-15	ECB-24	ECB-3	ECB-25	ECB-5	Groundwater
Sample Number	W-ECB23	W-ECB15	W-ECB24	W-ECB3	W-ECB25	W-ECB5	Vapor Intrusion
Date Sampled	7/28/17	2/16/16	7/28/17	9/24/15	7/28/17	9/25/15	ESL ¹
-	(µg/L)						
Analyte							
Petroleum Hydrocarbons							
TPH-gas	480	120	350	710	1,200	430	No Value
TPH-diesel	3,100	3,400	6,600	24,000	710	100	No Value
TPH-motor oil	15,000	24,000	1,700	7,300	<500	<250	No Value
VOCs							
Benzene	<0.50	0.54	<0.50	<0.50	<1.0	< 0.50	30
Toluene	3.0	1.3	<0.50	<0.50	<1.0	<0.50	100,000
Ethylbenzene	0.58	<0.50	<0.50	<0.50	<1.0	<0.50	370
Xylenes	5.1	4.6	<0.50	<0.50	<1.0	0.56	38,000
Methyl tertiary butyl ether	<0.50	<0.50	<0.50	<0.50	<1.0	< 0.50	15,000
tert-Butyl alcohol	<2.0	<2.0	<2.0	<2.0	<4.0	<2.0	No Value
Naphthalene	16	6.1	<0.50	<0.50	<1.0	< 0.50	180
Acetone	15	<10	<10	18	<20	12	140,000,000
Bromomethane	0.99	<0.50	<0.50	<0.50	<1.0	< 0.50	6,500
2-Butanone (MEK)	3.3	<2.0	<2.0	<2.0	<4.0	3.6	22,000,000
n-Butyl benzene	4.3	1.1	0.67	0.91	11	0.92	NA
sec-Butyl benzene	3.6	0.63	1.1	1.4	6.2	1.4	NA
tert-Butyl benzene	<0.50	<0.50	<0.50	<0.50	<1.0	< 0.50	NA
2-Hexanone	< 0.50	<0.50	<0.50	<0.50	<1.0	< 0.50	NA
Isopropylbenzene	5.8	0.95	<0.50	<0.50	8.7	1.1	NA
4-Isopropyl toluene	4.1	1.9	<0.50	<0.50	<1.0	< 0.50	NA
4-Methyl-2-pentanone (MIBK)	< 0.50	<0.50	<0.50	<0.50	<1.0	< 0.50	11,000,000
n-Propyl benzene	6.6	1.3	<0.50	0.67	27	1.3	NA
1,2,4-Trimethylbenzene	33	19	<0.50	<0.50	<1.0	0.62	NA
1,3,5-Trimethylbenzene	4.0	2.2	<0.50	<0.50	<1.0	<0.50	NA
cis-1,2-Dichloroethene	<0.50	<0.50	<0.50	<0.50	<1.0	<0.50	15,000
Vinyl chloride	<0.50	<0.50	<0.50	<0.50	<1.0	<0.50	2.0
PAHs							
Acenaphthene	<0.50	<5.0	4.9	1.9	<0.50	<0.50	No Value
Anthracene	<0.50	<5.0	1.1	<0.50	<0.50	<0.50	No Value
1-Methylnaphthalene	5.1	15	<0.50	<0.50	9.3	<0.50	NA
2-Methylnaphthalene	2.7	19	<0.50	<0.50	<0.50	<0.50	No Value
Naphthalene	7.5	36	2.6	<0.50	0.78	<0.50	180
Phenanthrene	0.71	<5.0	10	3.3	0.51	< 0.50	No Value

Notes:

Data provided by Essel Environmental Engineering & Consulting

Detectable concentrations are in bold font.

μg/L = microgram per liter

TPH = total petroleum hydrocarbons

VOCs = volatile organic compounds

PAHs - polynuclear aromatic hydrocarbons

ESL = Environmental Screening Level

< = less than the laboratory reporting limit shown.

No Value = compound listed in ESL table, but no value indicated

NA = not available, compound not listed in ESL table

Regional Water Quality Control Board - San Francisco Bay (SFRWQCB). 2016. Environmental Screening Levels (ESLs). Interim Final 2016. Revision 3. February.

¹ Represents SFRWQCB (2016) groundwater vapor intrusion human health risk screening levels, Deep Groundwater, Residential, Fine to Coarse Scenario.

Table 2

Exposure Point Concentrations for Chemicals of Potential Concern in Groundwater and Indoor Air Risk Charaterization for Hypothetical Future Onsite Resident Receptor

760 22nd Street and 2201 Brush Street Oakland, California

Chemical of Potential Concern	Groundwater Concentration ¹ EPC _{gw} (µg/L)	Soil Gas Concentration ² EPC _{sg} (µg/m³)	Soil Vapor to Indoor Air Attenuation Factor ² (unitless)	Indoor Air Concentration ² EPC _{indoor air} C _{building} (µg/m ³)	Cancer Risk ^{3,5} (unitless)	Noncancer Hazard ⁴ (unitless)
Volatile Organic Compounds (VOCs)						
Benzene	0.54	117	1.0E-05	1.23E-03	1.3E-08	3.9E-04
Toluene	3.0	776	9.0E-06	6.99E-03	NA	2.2E-05
Ethylbenzene	0.58	177	7.9E-06	1.39E-03	1.2E-09	1.3E-06
Xylenes	5.1	1,418	7.9E-06	1.12E-02	NA	1.1E-04
Acetone	18	25	1.0E-04	2.52E-03	NA NA	7.8E-08
Bromomethane	0.99	289	1.2E-05	3.36E-03	NA	6.4E-04
2-Butanone (MEK)	3.6	8.0	6.1E-05	4.88E-04	NA NA	9.4E-08
n-Butyl benzene	11	6.713	5.9E-06	3.99E-02	NA	2.2E-04
sec-Butyl benzene	6.2	2.442	6.0E-06	1.47E-02	NA	3.5E-05
Isopropylbenzene	8.7	3.823	6.9E-06	2.62E-02	NA	6.3E-05
(6) 4-Isopropyl toluene	4.1	1.802	6.9E-06	1.23E-02	NA	3.0E-05
n-Propyl benzene	27	10.911	6.9E-06	7.48E-02	NA	7.2E-05
1,2,4-Trimethylbenzene	33	7,809	7.1E-06	5.54E-02	NA	7.6E-03
1,3,5-Trimethylbenzene	4.0	1,348	6.9E-06	9.32E-03	NA	2.6E-04
Polycyclic Aromatic Hydrocarbons (PAHs)		,				
Acenaphthene	4.9	34	2.0E-05	6.62E-04	NA	3.0E-06
(7) Anthracene	1.1	0.48	1.8E-04	8.38E-05	NA	7.6E-07
1-Methylnaphthalene	15	291	1.1E-05	3.11E-03	NA	2.1E-04
2-Methylnaphthalene	19	368	1.1E-05	3.94E-03	NA	2.7E-04
Naphthalene	36	604	1.3E-05	7.71E-03	9.3E-08	2.5E-03
(7) Phenanthrene	10	4.3	1.8E-04	7.61E-04	NA	7.0E-06
	1	1		Total	1 E-07	1 E-02

Notes:

bgs = below ground surface. μ g/L = microgram per liter

MDC = maximum detected concentration. $\mu g/m^3 = micrograms$ per cubic meter. EPC = exposure point concentration. NA = not available or not applicable.

$$\textit{Excess Cancer Risk} = \frac{\textit{C}_{\textit{building}} \times \textit{EF} \times \textit{ED} \times \textit{ET} \times \textit{URF}}{\textit{AT}_{\textit{c}}} \\ \textit{Hazard Quotient} = \frac{\textit{C}_{\textit{building}} \times \textit{EF} \times \textit{ED} \times \textit{ET}}{\textit{RfC} \times \textit{AT}_{\textit{n}}}$$

References

DTSC. 2014. DTSC Vapor Intrusion Screening Model - Groundwater. California Environmental Protection Agency (CalEPA). Last Modified December.

¹ Value represents the maximum detected concentration in groundwater from data collected in September 2015, February 2016, and July 2017 (see Table 1).

² EPCs in groundwater (EPC_{ow}) were coupled with vapor intrusion model to estimate attenuation factors and EPCs in soil gas (EPC_{sq}) and EPCs in indoor air (EPC_{indoor air} or C_{building}).

³ As estimated by DTSC (2014), using the following equation.

⁵ "NA" indicates inhalation unit risk factor was not available; therefore, a cancer risk was not estimated.

⁶ DTSC vapor intrusion model did not include 4-isopropyl toluene; therefore, the DTSC model for isopropylbenzene (cumene) was used as a surrogate.

⁷ DTSC vapor intrusion model did not include anthracene and phenanthrene; therefore, the DTSC model for pyrene was used as a surrogate.

Table 3 Vapor Intrusion Model Parameters

760 22nd Street and 2201 Brush Street Oakland, California

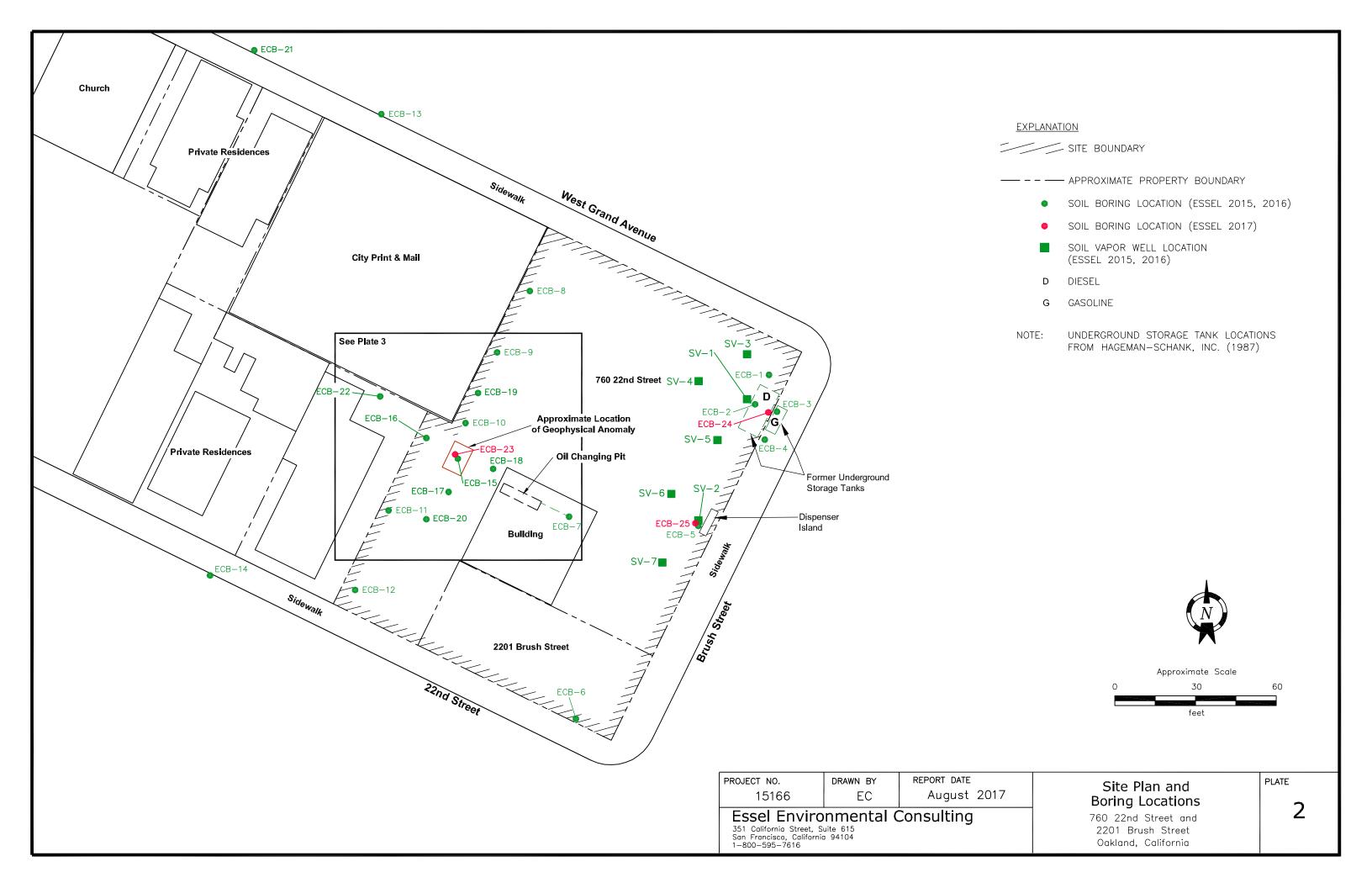
Vapor Intrusion Model Parameters	Symbol	Assumed Value	Source
Soil Physical Properties			
Depth Below Grade to Bottom of Enclosed Space Floor	L _F	15 cm	DTSC, 2014
Depth Below Grade to Water Table	L_{WT}	396 cm	Site-specific
SCS Soil Type Directly Above Water Table		Silty Clay Loam (SiCL)	Site-specific
Average Soil/Groundwater Temperature	T _s	24°C	DTSC, 2014
Average Vapor Flow Rate into Building	Q_{soil}	5 L/min	DTSC, 2014
Vadose Zone SCS Soil Type		Silty Clay Loam (SiCL)	Site-specific
Vadose Zone Soil Dry Bulk Density	ρ_{b}	1.63 g/cm ³	Site-specific
Vadose Zone Soil Total Porosity	n	0.383 cm ³ /cm ³	Site-specific
Vadose Zone Soil Water-filled Porosity	θ_{w}	0.300 cm ³ /cm ³	Site-specific
Resident Receptor Exposure Parameters			
Averaging Time for Carcinogens	AT _c	70 years	DTSC, 2014
Averaging Time for Noncarcinogens	AT _n	26 years	DTSC, 2014
Exposure Duration	ED	26 years	DTSC, 2014
Exposure Frequency	EF	350 days/year	DTSC, 2014
Exposure Time	ET	24 hours/day	DTSC, 2014
Air Exchange Rate	ACH	0.5 hour ⁻¹	DTSC, 2014

Notes:

cm = centimeter.

g/cm³ = gram per cubic centimeter.

°C = degrees Celsius.


L/min = liter per minute.

cm³/cm³ = cubic centimeter per cubic centimeter.

References:

DTSC. 2014. DTSC Vapor Intrusion Screening Model - Groundwater. California Environmental Protection Agency. Last Modified December.

ATTACHMENT A SITE PLAN AND BORING LOCATIONS

ATTACHMENT B SOIL CHARACTERIZATION ANALYTICAL REPORT

February 26, 2016

Rodger Witham Essel Environmental Consulting 351 California St, Suite 615 San Francisco, CA 94104

Re: PTS File No: 46112

Physical Properties Data

EBALDC West Grand & Brush; 15166

Dear Mr. Witham:

Please find enclosed report for Physical Properties analyses conducted upon samples received from your EBALDC West Grand & Brush; 15166 project. All analyses were performed by applicable ASTM, EPA, or API methodologies. The samples are currently in storage and will be retained for thirty days past completion of testing at no charge. Please note that the samples will be disposed of at that time. You may contact me regarding storage, disposal, or return of the samples.

PTS Laboratories appreciates the opportunity to be of service. If you have any questions or require additional information, please give me a call at (562) 347-2502.

Sincerely,

PTS Laboratories, Inc.

Michael Mark Brady, P.G. Laboratory Director

Encl.

PTS Laboratories

Project Name: EBALDC West Grand & Brush

Project Number: 15166 Client: Essel Environmental Consulting

PTS File No: 46112

TEST PROGRAM - 20160219

				 OUNAM - Z	J 1 0 0 1 1 0		
CORE ID	Depth ft.	Core Recovery ft.	CAL-EPA DTSC Vapor Intrusion				Comments
		Plugs:	Various				
Date Received: 20160218							
S-5 1/2 - BSV1	5.5-6.5	1.00	X				
S-9-BSV5	9-10	0.90	Х				
S-5-BSV2	5-6	0.90	Х				
S-9-BSV2	9-10	1.10	Х				
TOTALS:	4 cores	3.90	4				4

Laboratory Test Program Notes

Contaminant identification:

Standard TAT for basic analysis is 10 business days.

CAL-EPA DTSC Vapor Intrusion: Bulk & grain density, total porosity, moisture content, volumetric air & moisture, TOC/foc, and grain size distribution.

5 Day Rush TAT results by COB 2/25/16 requested per H. Mendoza / Essel Environmental Consulting 20160219

PTS File No: 46112

Client: Essel Environmental Consulting

Report Date: 02/26/16

PHYSICAL PROPERTIES DATA - CAL-EPA DTSC Vapor Intrusion Package

Project Name: EBALDC West Grand & Brush

Project No: 15166

			METHODS:	API RP40/A	STM D2216	API RP 40					
		SAMPLE		MOISTURE CONTENT,		DENSITY		POROSITY, (2)			
SAMPLE	DEPTH,	ORIENTATION	ANALYSIS			DRY BULK,	GRAIN,	TOTAL,	AIR-FILLED,	WATER-FILLED,	
ID.	ft.	(1)	DATE	% weight	cm ³ /cm ³	g/cm ³	g/cm ³	cm ³ /cm ³	cm ³ /cm ³	cm ³ /cm ³	
S-5 1/2 - BSV1	6.3	V	20160220	18.5	0.302	1.63	2.64	0.382	0.080	0.302	
S-9-BSV5	9.7	V	20160220	9.3	0.143	1.54	2.66	0.423	0.281	0.143	
S-5-BSV2	5.7	V	20160220	18.4	0.300	1.63	2.64	0.383	0.083	0.300	
S-9-BSV2	9.9	V	20160220	18.9	0.318	1.68	2.65	0.365	0.047	0.318	

⁽¹⁾ Sample Orientation: H = horizontal; V = vertical; R = remold

⁽²⁾ Total Porosity = all interconnected pore channels; Air Filled = pore channels not occupied by pore fluids.

Vb = Bulk Volume, cc; Pv = Pore Volume, cc; ND = Not Detected

Essel Environmental Consulting

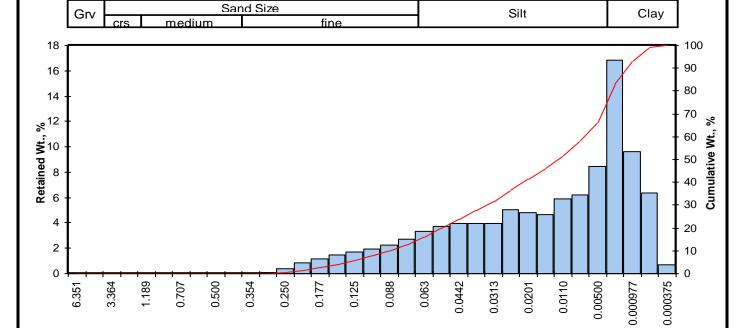
PTS File No: 46112

PARTICLE SIZE SUMMARY

(METHODOLOGY: ASTM D422/D4464M)

PROJECT NAME:

EBALDC West Grand & Brush


PROJECT NO:

15166

		Median Particle Size Distribution, wt. percent							Silt	
		Mean Grain Size	Grain Size	Sand Size					&	
Sample ID	Depth, ft.	Description (1)	mm	Gravel	Coarse	Medium	Fine	Silt	Clay	Clay
S-5 1/2 - BSV1	6.15	Silt	0.012	0.00	0.00	0.00	12.61	53.85	33.54	87.39
S-5-BSV2	5.55	Silt	0.017	0.00	0.00	0.00	12.68	57.76	29.56	87.32
S-9-BSV2	9.75	Silt	0.018	0.00	0.00	0.00	12.91	59.42	27.67	87.09

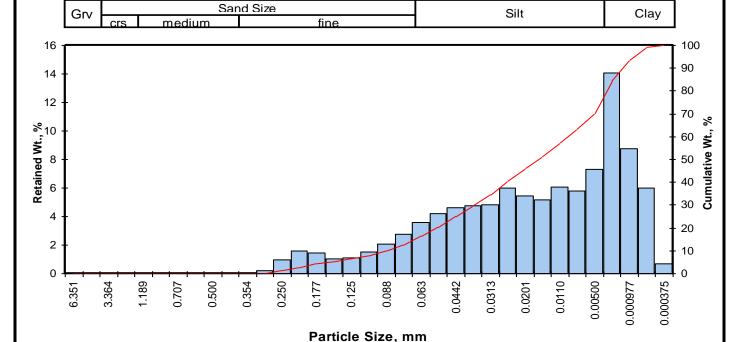
Particle Size Analysis - ASTM D4464M

Client:Essel Environmental ConsultingPTS File No:46112Project:EBALDC West Grand & BrushSample ID:S-5 1/2 - BSV1Project No:15166Depth, ft:6.15

Particle Size, mm

				Sample	Increment	Cumulative
Oper		Phi of	U.S.	Weight,	Weight,	Weight,
Inches	Millimeters	Screen	No.	grams	percent	percent
0.2500	6.351	-2.67	1/4	0.00	0.00	0.00
0.1873	4.757	-2.25	4	0.00	0.00	0.00
0.1324	3.364	-1.75	6	0.00	0.00	0.00
0.0787	2.000	-1.00	10	0.00	0.00	0.00
0.0468	1.189	-0.25	16	0.00	0.00	0.00
0.0331	0.841	0.25	20	0.00	0.00	0.00
0.0278	0.707	0.50	25	0.00	0.00	0.00
0.0234	0.595	0.75	30	0.00	0.00	0.00
0.0197	0.500	1.00	35	0.00	0.00	0.00
0.0166	0.420	1.25	40	0.00	0.00	0.00
0.0139	0.354	1.50	45	0.00	0.00	0.00
0.0117	0.297	1.75	50	0.06	0.06	0.06
0.0098	0.250	2.00	60	0.38	0.38	0.44
0.0083	0.210	2.25	70	0.88	0.88	1.32
0.0070	0.177	2.50	80	1.20	1.20	2.52
0.0059	0.149	2.75	100	1.44	1.44	3.96
0.0049	0.125	3.00	120	1.71	1.71	5.67
0.0041	0.105	3.25	140	1.96	1.96	7.63
0.0035	0.088	3.50	170	2.25	2.25	9.88
0.0029	0.074	3.75	200	2.73	2.73	12.61
0.0025	0.063	4.00	230	3.32	3.32	15.93
0.0021	0.053	4.25	270	3.75	3.75	19.68
0.00174	0.0442	4.50	325	3.92	3.92	23.60
0.00146	0.0372	4.75	400	3.92	3.92	27.52
0.00123	0.0313	5.00	450	3.95	3.95	31.47
0.000986	0.0250	5.32	500	5.06	5.06	36.53
0.000790	0.0201	5.64	635	4.78	4.78	41.31
0.000615	0.0156	6.00		4.63	4.63	45.94
0.000435	0.0110	6.50		5.89	5.89	51.83
0.000308	0.00781	7.00		6.20	6.20	58.03
0.000197	0.00500	7.65		8.43	8.43	66.46
0.000077	0.00195	9.00		16.80	16.80	83.26
0.000038	0.000977	10.00		9.63	9.63	92.89
0.000019	0.000488	11.00		6.39	6.39	99.28
0.000015	0.000375	11.38		0.72	0.72	100.00
TOTALS				100.00	100.00	100.00

Cumulative Weight Percent greater than					
Weight	Phi	Particle Size			
percent	Value	Inches	Millimeters		
5	2.90	0.0053	0.134		
10	3.51	0.0035	0.088		
16	4.00	0.0025	0.062		
25	4.59	0.0016	0.042		
40	5.55	0.0008	0.021		
50	6.34	0.0005	0.012		
60	7.15	0.0003	0.007		
75	8.33	0.0001	0.003		
84	9.08	0.0001	0.002		
90	9.70	0.0000	0.001		
95	10.33	0.0000	0.001		


Measure	Trask	Inman	Folk-Ward
Median, phi	6.34	6.34	6.34
Median, in.	0.0005	0.0005	0.0005
Median, mm	0.012	0.012	0.012
Mean, phi	5.49	6.54	6.48
Mean, in.	0.0009	0.0004	0.0004
Mean, mm	0.022	0.011	0.011
Sorting	3.661	2.536	2.393
Skewness	0.922	0.077	0.075
Kurtosis	0.222	0.464	0.813
Grain Size D	escription		Silt

Grain Size Description	Silt		
(ASTM-USCS Scale)	(based on Mean from Trask)		

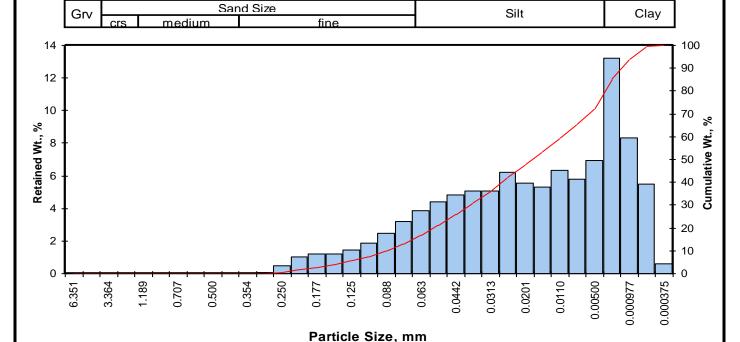
Description	Retained	Weight
	on Sieve #	Percent
Gravel	4	0.00
Coarse Sand	10	0.00
Medium Sand	40	0.00
Fine Sand	200	12.61
Silt	>0.005 mm	53.85
Clay	<0.005 mm	33.54
	Total	100

Particle Size Analysis - ASTM D4464M

Client:Essel Environmental ConsultingPTS File No:46112Project:EBALDC West Grand & BrushSample ID:S-5-BSV2Project No:15166Depth, ft:5.55

				Sample	Increment	Cumulative
Ope	ning	Phi of	U.S.	Weight,	Weight,	Weight,
Inches	Millimeters	Screen	No.	grams	percent	percent
0.2500	6.351	-2.67	1/4	0.00	0.00	0.00
0.1873	4.757	-2.25	4	0.00	0.00	0.00
0.1324	3.364	-1.75	6	0.00	0.00	0.00
0.0787	2.000	-1.00	10	0.00	0.00	0.00
0.0468	1.189	-0.25	16	0.00	0.00	0.00
0.0331	0.841	0.25	20	0.00	0.00	0.00
0.0278	0.707	0.50	25	0.00	0.00	0.00
0.0234	0.595	0.75	30	0.00	0.00	0.00
0.0197	0.500	1.00	35	0.00	0.00	0.00
0.0166	0.420	1.25	40	0.00	0.00	0.00
0.0139	0.354	1.50	45	0.00	0.00	0.00
0.0117	0.297	1.75	50	0.20	0.20	0.20
0.0098	0.250	2.00	60	0.94	0.94	1.14
0.0083	0.210	2.25	70	1.60	1.60	2.74
0.0070	0.177	2.50	80	1.42	1.42	4.16
0.0059	0.149	2.75	100	1.02	1.02	5.18
0.0049	0.125	3.00	120	1.12	1.12	6.30
0.0041	0.105	3.25	140	1.54	1.54	7.84
0.0035	0.088	3.50	170	2.07	2.07	9.91
0.0029	0.074	3.75	200	2.77	2.77	12.68
0.0025	0.063	4.00	230	3.57	3.57	16.25
0.0021	0.053	4.25	270	4.21	4.21	20.46
0.00174	0.0442	4.50	325	4.62	4.62	25.08
0.00146	0.0372	4.75	400	4.77	4.77	29.85
0.00123	0.0313	5.00	450	4.82	4.82	34.67
0.000986	0.0250	5.32	500	6.02	6.02	40.69
0.000790	0.0201	5.64	635	5.47	5.47	46.16
0.000615	0.0156	6.00		5.14	5.14	51.30
0.000435	0.0110	6.50		6.09	6.09	57.39
0.000308	0.00781	7.00		5.78	5.78	63.16
0.000197	0.00500	7.65		7.28	7.28	70.44
0.000077	0.00195	9.00		14.10	14.10	84.54
0.000038	0.000977	10.00		8.78	8.78	93.32
0.000019	0.000488	11.00		6.01	6.01	99.33
0.000015	0.000375	11.38		0.67	0.67	100.00
TOTALS				100.00	100.00	100.00

Cumulative Weight Percent greater than					
Weight	Phi	Part	icle Size		
percent	Value	Inches	Millimeters		
5	2.71	0.0060	0.153		
10	3.51	0.0035	0.088		
16	3.98	0.0025	0.063		
25	4.50	0.0017	0.044		
40	5.28	0.0010	0.026		
50	5.91	0.0007	0.017		
60	6.73	0.0004	0.009		
75	8.08	0.0001	0.004		
84	8.95	0.0001	0.002		
90	9.62	0.0000	0.001		
95	10.28	0.0000	0.001		


Measure	Trask	Inman	Folk-Ward
Median, phi	5.91	5.91	5.91
Median, in.	0.0007	0.0007	0.0007
Median, mm	0.017	0.017	0.017
Mean, phi	5.38	6.47	6.28
Mean, in.	0.0009	0.0004	0.0005
Mean, mm	0.024	0.011	0.013
Sorting	3.467	2.483	2.389
Skewness	0.768	0.224	0.189
Kurtosis	0.235	0.525	0.865
Grain Size De	escription		Silt

Grain Size Description	Silt
(ASTM-USCS Scale)	(based on Mean from Trask)

Description	Retained on Sieve #	Weight Percent
Gravel	4	0.00
Coarse Sand	10	0.00
Medium Sand	40	0.00
Fine Sand	200	12.68
Silt	>0.005 mm	57.76
Clay	<0.005 mm	29.56
·	Total	100

Particle Size Analysis - ASTM D4464M

Client:Essel Environmental ConsultingPTS File No:46112Project:EBALDC West Grand & BrushSample ID:S-9-BSV2Project No:15166Depth, ft:9.75

				Sample	Increment	Cumulative
Ope	ning	Phi of	U.S.	Weight,	Weight,	Weight,
Inches	Millimeters	Screen	No.	grams	percent	percent
0.2500	6.351	-2.67	1/4	0.00	0.00	0.00
0.1873	4.757	-2.25	4	0.00	0.00	0.00
0.1324	3.364	-1.75	6	0.00	0.00	0.00
0.0787	2.000	-1.00	10	0.00	0.00	0.00
0.0468	1.189	-0.25	16	0.00	0.00	0.00
0.0331	0.841	0.25	20	0.00	0.00	0.00
0.0278	0.707	0.50	25	0.00	0.00	0.00
0.0234	0.595	0.75	30	0.00	0.00	0.00
0.0197	0.500	1.00	35	0.00	0.00	0.00
0.0166	0.420	1.25	40	0.00	0.00	0.00
0.0139	0.354	1.50	45	0.00	0.00	0.00
0.0117	0.297	1.75	50	0.08	0.08	0.08
0.0098	0.250	2.00	60	0.50	0.50	0.58
0.0083	0.210	2.25	70	1.03	1.03	1.61
0.0070	0.177	2.50	80	1.18	1.18	2.79
0.0059	0.149	2.75	100	1.18	1.18	3.97
0.0049	0.125	3.00	120	1.42	1.42	5.39
0.0041	0.105	3.25	140	1.87	1.87	7.26
0.0035	0.088	3.50	170	2.47	2.47	9.73
0.0029	0.074	3.75	200	3.18	3.18	12.91
0.0025	0.063	4.00	230	3.88	3.88	16.79
0.0021	0.053	4.25	270	4.42	4.42	21.21
0.00174	0.0442	4.50	325	4.83	4.83	26.04
0.00146	0.0372	4.75	400	5.04	5.04	31.08
0.00123	0.0313	5.00	450	5.09	5.09	36.17
0.000986	0.0250	5.32	500	6.24	6.24	42.40
0.000790	0.0201	5.64	635	5.58	5.58	47.98
0.000615	0.0156	6.00		5.30	5.30	53.28
0.000435	0.0110	6.50		6.32	6.32	59.60
0.000308	0.00781	7.00		5.78	5.78	65.38
0.000197	0.00500	7.65		6.95	6.95	72.33
0.000077	0.00195	9.00		13.20	13.20	85.53
0.000038	0.000977	10.00		8.34	8.34	93.87
0.000019	0.000488	11.00		5.52	5.52	99.39
0.000015	0.000375	11.38		0.61	0.61	100.00
TOTALS				100.00	100.00	100.00

Cumulative Weight Percent greater than					
Weight	Phi	Parti	cle Size		
percent	Value	Inches	Millimeters		
5	2.93	0.0052	0.131		
10	3.52	0.0034	0.087		
16	3.95	0.0025	0.065		
25	4.45	0.0018	0.046		
40	5.20	0.0011	0.027		
50	5.78	0.0007	0.018		
60	6.53	0.0004	0.011		
75	7.92	0.0002	0.004		
84	8.84	0.0001	0.002		
90	9.54	0.0001	0.001		
95	10.20	0.0000	0.001		

Measure	Trask	Inman	Folk-Ward
Median, phi	5.78	5.78	5.78
Median, in.	0.0007	0.0007	0.0007
Median, mm	0.018	0.018	0.018
Mean, phi	5.32	6.40	6.19
Mean, in.	0.0010	0.0005	0.0005
Mean, mm	0.025	0.012	0.014
Sorting	3.332	2.447	2.325
Skewness	0.755	0.253	0.235
Kurtosis	0.243	0.486	0.858
Grain Size D	escription		Silt

Grain Size Description	Silt
(ASTM-USCS Scale)	(based on Mean from Trask)

Description	Retained on Sieve #	Weight Percent
Gravel	4	0.00
Coarse Sand	10	0.00
Medium Sand	40	0.00
Fine Sand	200	12.91
Silt	>0.005 mm	59.42
Clay	<0.005 mm	27.67
	Total	100

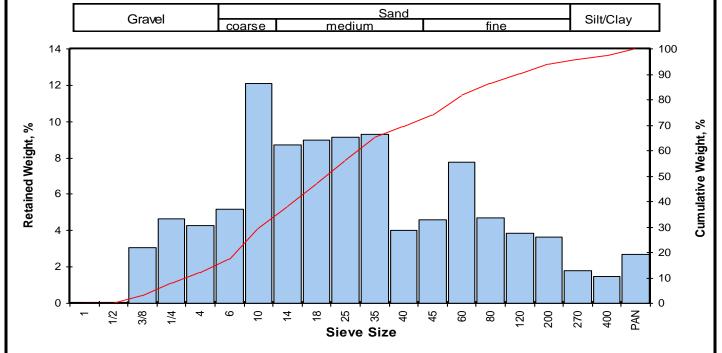
Essel Environmental Consulting

PTS File No: 46112

PARTICLE SIZE SUMMARY

(METHODOLOGY: ASTM D422M)

PROJECT NAME: EBALDC West Grand & Brush


PROJECT NO: 15166

		Mean Grain Size Description	Median	P	article Size	Distribution	, wt. perce	ent
		USCS/ASTM	Grain Size,	Gravel		Sand Size		Silt/Clay
Sample ID	Depth, ft.	(1)	mm		Coarse	Medium	Fine	
S-9-BSV5	9.5	Medium sand	0.892	12.03	17.26	40.13	24.59	5.99

(1) Based on Mean from Trask Page 8 of 11

Particle Size Analysis - ASTM D422M

Client:Essel Environmental ConsultingPTS File No:46112Project:EBALDC West Grand & BrushSample ID:S-9-BSV5Project No:15166Depth, ft:9.5

			U.S.	Sample	Incremental	Cumulative
Ope	ening	Phi of	Sieve	Weight	Weight,	Weight,
Inches	Millimeters	Screen	No.	grams	percent	percent
0.9844	25.002	-4.64	1	0.00	0.00	0.00
0.4922	12.501	-3.64	1/2	0.00	0.00	0.00
0.3740	9.500	-3.25	3/8	2.54	3.08	3.08
0.2500	6.351	-2.67	1/4	3.84	4.66	7.74
0.1873	4.757	-2.25	4	3.54	4.29	12.03
0.1324	3.364	-1.75	6	4.25	5.16	17.19
0.0787	2.000	-1.00	10	9.98	12.11	29.29
0.0557	1.414	-0.50	14	7.19	8.72	38.02
0.0394	1.000	0.00	18	7.40	8.98	46.99
0.0278	0.707	0.50	25	7.55	9.16	56.15
0.0197	0.500	1.00	35	7.65	9.28	65.43
0.0166	0.420	1.25	40	3.29	3.99	69.42
0.0139	0.354	1.50	45	3.77	4.57	73.99
0.0098	0.250	2.00	60	6.42	7.79	81.78
0.0070	0.177	2.50	80	3.89	4.72	86.50
0.0049	0.125	3.00	120	3.18	3.86	90.36
0.0029	0.074	3.75	200	3.01	3.65	94.01
0.0021	0.053	4.25	270	1.48	1.80	95.80
0.0015	0.037	4.75	400	1.22	1.48	97.28
			PAN	2.24	2.72	100.00

Cumulative Weight Percent greater than					
Weight	Phi	Parti	cle Size		
percent	Value	Inches	Millimeters		
5	-3.01	0.3169	8.048		
10	-2.45	0.2147	5.454		
16	-1.87	0.1434	3.643		
25	-1.27	0.0947	2.405		
40	-0.39	0.0516	1.310		
50	0.16	0.0351	0.892		
60	0.71	0.0241	0.612		
75	1.56	0.0133	0.338		
84	2.24	0.0084	0.212		
90	2.95	0.0051	0.129		
95	4.03	0.0024	0.061		

Measure	Trask	Inman	Folk-Ward
Median, phi	0.16	0.16	0.16
Median, in.	0.0351	0.0351	0.0351
Median, mm	0.892	0.892	0.892
Mean, phi	-0.46	0.18	0.18
Mean, in.	0.0540	0.0346	0.0348
Mean, mm	1.372	0.880	0.884
Sorting	2.667	2.050	2.091
Skewness	1.010	0.010	0.054
Kurtosis	0.194	0.716	1.019

Grain Size Description	Medium sand
(ASTM-USCS Scale)	(based on Mean from Trask)

Description	Retained	Weight
	on Sieve #	Percent
Gravel	4	12.03
Coarse Sand	10	17.26
Medium Sand	40	40.13
Fine Sand	200	24.59
Silt/Clay	<200	5.99
	Total	100

TOTALS

100.00

82.44

Fax: (562) 907-3610

PTS File No: 46112

Client: Essel Environmental Consulting

Report Date: 02/26/16

ORGANIC CARBON DATA - TOC (foc)

(Methodology: Walkley-Black)

Project Name: EBALDC West Grand & Brush

Project No: 15166

SAMPLE ID.	DEPTH, ft.	ANALYSIS DATE	ANALYSIS TIME	SAMPLE MATRIX	TOTAL ORGANIC CARBON, mg/kg	FRACTION ORGANIC CARBON, g/g
S-5 1/2 - BSV1	6.05	20160223	1255	SOIL	370	3.70E-04
S-9-BSV5	9.35	20160223	1255	SOIL	530	5.30E-04
S-5-BSV2	5.5	20160223	1255	SOIL	750	7.50E-04
S-9-BSV2	9.7	20160223	1255	SOIL	370	3.70E-04

Blank	N/A	20160223	1255	BLANK	ND	ND
SRM D089-542	N/A	20160223	1255	SRM	5540	5.54E-03

Reporting Limit: 100 1.00E-04

QC DATA

40 571171					
			Certified	QC Pe	erformance
SRM ID/Lot No.	REC (%)	Control Limits	Concentration	Acceptance	e Limits, mg/kg
			mg/kg	Lower	Upper
SRM D089-542	99	75-125	5610	4208	7013

PTS Laboratories, In

PTS Laboratories, Inc. CHAIN	O	F	Cl	JS	T(OD	Υ	R	E	CC	R	D								F	PAC	GE \	(OF _	(
COMPANY		ANALYSIS REQUEST					PO# 15166																		
Essel Environmental Consulting		İ			П			T	П				\exists	T	284				Т			TURNARC			
ADDRESS CITY ZIP CODE								-					37		or D5(64M						24 HOURS			YS □ MAL 🛭
351 California Street, Suite 615 San Francisco 94104													D29(P40 (Jr 44	ı					72 HOURS	; 🗆	NOR	MAL 🛭
PROJECT MANAGER email			Ш	ш	اسا				ĺ	Ⅱ	_		ΣŢ	İ	PI B	422 0				ш		OTHER:			
Rodger Witham/Nik Lahiri nlahiri@esseltek.com PROJECT NAME PHONE NUMBER	1		KAG	KAG	KAG			숲			425A		or A§		00/	Ď W		8		\ AG 					15010
EBALDC West Grand & Brush 510-366-8054			PAC	PACI	AC		щ	RAP	38		Δ	354	P40		PA9	AST		0431	ш	AC		SAMPLE I	NIEGH	311 Y (CI	(F) 67
	1	AGE	ΙΤΥ	SNO	ES I		XAG	100	CKA(AST	Ω Σ	PIR	RP4	T, E	S.		₩.	KAG	<u> </u>					(F) /
PROJECT NUMBER FAX NUMBER 15169 SITE LOCATION	ES	ACK	CI	ATIO	ERT	GE	PAC	운	PA(띮	NE,	AST	(), A	API	NIT:	5	š	, AS	PAC	JBIL.		PTS QUO	TE NO.	•	
SITE LOCATION	SAMPLES	ES P	NDN	TUR.	POF	CK/	ES	HE F	R	۱L, A	ECT	ĬŢ.	(DR)	Σ΄		III	BLA	MITS	NO.	ĕ					
22nd Street and Brush Street, Oakland, California	- SA	HTI	OO .	SA	Ö F	7 P/	EH	8	NSF	101	받	RAV	<u>}</u>	ABIL	ģ	임	LEY	[]	BUS	20		PTS FILE:	117	110)
SAMPLER SIGNATURE	R OF	ROPE	ULIC	I'LUIC	NRC	ARIT	PROF	LOG	TRA	TY:	SITY:	1C G	ENS	RME		SIZE	MALK	BER(N N	PROI			76	11 á	<u></u>
SAMPLER SIGNATURE SAMPLE ID DATE TIME DEPTH, FT	NUMBER	SOIL PROPERTIES PACKAGE	HYDRAULIC CONDUCTIVITY PACKAGE	PORE FLUID SATURATIONS PACKAGE	TCEQ/TNRCC PROPERTIES PACKAGE	CAPILLARITY PACKAGE	FLUID PROPERTIES PACKAGE	РНОТОСОВ: СОВЕ РНОТОВВАРНУ	VAPOR TRANSPORT PACKAGE	POROSITY: TOTAL, AIR FILLED, WATER FILLED	POROSITY: EFFECTIVE, ASTM D425M	SPECIFIC GRAVITY, ASTM D854	BULK DENSITY (DRY), API RP40 or ASTM D2937	AIR PE	HYDRAULIC CONDUCTIVITY, EPA9100/API RP40 or D5084	GRAIN SIZE DISTRIBUTION, ASTM D422 or 4464M	TOC: WALKLEY-BLACK	ATTERBERG LIMITS, ASTM D4318	VAPOR INTRUSION PACKAGE	FREE PRODUCT MOBILITY PACKAGE		С	ОММ	IENTS	3
5-5//2-BSVI 2/15/16 7:550m. 51/2-61/2	1																		\mathbb{X}						
S-9-BSV5 2/15/16 8:01910. 9-10																			X						
	1																								
5-5-35VZ ZIBIO 1:12p.m. 5-6 5-9-BSVZ ZIBIO 1:16p.m. 9-10	1																		$\sqrt{ }$						
																		ľ							
		_																							
																							,		
														1				1							
	-									_							-		1	\top					
			<u> </u>		<u> </u>				IICI		DV							_		ECEL	VED I	l RV			
1. RELINIQUISHED BY 2. RECEIVED-BY						اخ. H	RELII	NUL	חכות	יבט	D Y							ľ	7. 17		V U	<i>.</i>			
COMPANY						COI	MPA	NY										-10	CON	IPAN	Ý				
Essel Environmental Consulting PTS LABS																	,,,,								
DATE / / TIME DATE TIME	ηE 3:1	5	_			DAT	TE						TIM	IE .					DAT	E			TIME		

ATTACHMENT C DTSC VAPOR INTRUSION MODEL SPREADSHEETS

December 2014

Department of Toxic Substances Control Vapor Intrusion Screening Model - Groundwater

DATA ENTRY SHEET

CALCULATE RISK-BASED GROUNDWATER CONCENTRATION (enter "X" in "YES" box)

YES

OR

Reset to Defaults

CALCULATE INCREMENTAL RISKS FROM ACTUAL GROUNDWATER CONCENTRATION (enter "X" in "YES" box and initial groundwater conc. below)

YES X

ENTER	ENTER Initial			
Chemical	groundwater			
CAS No.	conc.,			
(numbers only,	C_W			
no dashes)	(μg/L)		Chemical	
71432	5.40F-01	Renzene		

MESSAGE: See VLOOKUP table comments on chemical properties and/or toxicity criteria for this chemical.

MORE

ENTER Depth	ENTER	ENTER	ENTER
below grade to bottom	Depth		Average soil/
of enclosed space floor,	below grade to water table,	SCS soil type	groundwater temperature,
L _F	L _{WT}	directly above	Ts
(15 or 200 cm)	(cm)	water table	(°C)
15	306	SICI	2/

Risk-Based Groundwater Results Summary Concentration Soil Gas Conc. Attenuation Factor Indoor Air Conc. Noncancer (alpha) (C_{building}) Hazard (C_{source}) = 10⁻⁶ HQ = 1 (unitless) $(\mu g/m^3)$ (µg/L) (µg/L) 3.9E-04

Scenario: Residential

Chemical: Benzene

MESSAGE: Attenuation factor < 6E-05 is unreasonably low.

ENTER

Average vapor flow rate into bldg. (Leave blank to calculate)

Q_{soil} (L/m)

5

MORE **↓**

ENTER Vadose zone SCS soil type (used to estimate soil vapor permeability)	OR	ENTER User-defined vandose zone soil vapor permeability, k _v (cm ²)	ENTER Vadose zone SCS Soil Type Lookup Soil Parameters	ENTER Vadose zone soil dry bulk density, ρ_b^V (g/cm³)	ENTER Vadose zone soil total porosity, n ^V (unitless)	ENTER Vadose zone soil water-filled porosity, θ_w^V (cm^3/cm^3)
SICL			SICL	1.63	0.383	0.3

Capillary zone soil water-filled porosity > vadose zone soil total porosity.

MORE **↓**

Lookup Receptor Parameters

ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER	ENTER
Target risk for carcinogens, TR	Target hazard quotient for noncarcinogens, THQ	Averaging time for carcinogens, AT _C	Averaging time for noncarcinogens, AT _{NC}	Exposure duration, ED	Exposure frequency, EF	Exposure Time ET	Air Exchange Rate ACH
(unitless)	(unitless)	(yrs)	(yrs)	(yrs)	(days/yr)	(hrs/day)	(hour) ⁻¹
1.0E-06	1	70	26	26	350	24	0.5
Used to calcul	ate risk-based					(NEW)	(NEW)

NEW=> Residential

END

December 2014

Department of Toxic Substances Control Vapor Intrusion Screening Model - Groundwater

DATA ENTRY SHEET

CALCULATE RISK-BASED GROUNDWATER CONCENTRATION (enter "X" in "YES" box)

Reset to Defaults YES

OR

CALCULATE INCREMENTAL RISKS FROM ACTUAL GROUNDWATER CONCENTRATION (enter "X" in "YES" box and initial groundwater conc. below)

YES

ENTER	ENTER Initial	
Chemical	groundwater	
CAS No.	conc.,	
(numbers only,	C_W	
no dashes)	(μg/L)	Chemical
108883	3.00E+00	Toluene

	Results		Groundwater ntration			
Soil Gas Conc.	Attenuation Factor	Indoor Air Conc.	Cancer	Noncancer	Cancer Risk	Noncancer
(C _{source})	(alpha)	$(C_{building})$	Risk	Hazard	= 10 ⁻⁶	HQ = 1
(µg/m ³)	(unitless)	(µg/m ³)			(µg/L)	(µg/L)
7.76E+02	9.0E-06	7.0E-03	NA	2.2E-05	NA	NA

Scenario: Residential

Chemical: Toluene

MESSAGE: Attenuation factor < 6E-05 is unreasonably low.

MORE

ENTER Depth	ENTER	ENTER	ENTER
below grade to bottom	Depth		Average soil/
of enclosed space floor,	below grade to water table,	SCS soil type	groundwater temperature,
L _F	L _{WT}	directly above	T _S
(15 or 200 cm)	(cm)	water table	(°C)
15	396	SICL	24

ENTER

Average vapor flow rate into bldg. (Leave blank to calculate) Q_{soil} (L/m)

5

MORE

ENTER Vadose zone SCS soil type (used to estimate soil vapor permeability)	OR	ENTER User-defined vandose zone soil vapor permeability, k _v (cm ²)	ENTER Vadose zone SCS soil type Lookup Soil Parameters	ENTER Vadose zone soil dry bulk density,	ENTER Vadose zone soil total porosity, n ^V (unitless)	ENTER Vadose zone soil water-filled porosity, θ_w^V (cm^3/cm^3)
SICL			SICL	1.63	0.383	0.3

Capillary zone soil water-filled porosity > vadose zone soil total porosity.

MORE

Lookup Receptor Parameters

groundwater concentration.

ENTER Target	ENTER Target hazard	ENTER Averaging	ENTER Averaging	ENTER	ENTER	ENTER	ENTER
risk for carcinogens, TR	quotient for noncarcinogens, THQ	time for carcinogens,	time for noncarcinogens, AT _{NC}	Exposure duration, ED	Exposure frequency, EF	Exposure Time ET	Air Exchange Rate ACH
(unitless)	(unitless)	(yrs)	(yrs)	(yrs)	(days/yr)	(hrs/day)	(hour) ⁻¹
1.0E-06	1	70	26	26	350	24	0.5
Used to calcula	ate risk-based					(NEW)	(NEW)

END

Reset to

Defaults

Department of Toxic Substances Control Vapor Intrusion Screening Model - Groundwater

DTSC Modification DATA ENTRY SHEET December 2014

CALCULATE RISK-BASED GROUNDWATER CONCENTRATION (enter "X" in "YES" box)

YES

OR CALCULATE INCREMENTAL RISKS FROM ACTUAL GROUNDWATER CONCENTRATION

(enter "X" in "YES" box and initial groundwater conc. below)

YES

ENTER	ENTER		
	Initial		
Chemical	groundwater		
CAS No.	conc.,		
(numbers only,	C_W		
no dashes)	(μg/L)		Chemical
100414	5.80E-01	Ethylbenzene	

	Results		Groundwater ntration			
Soil Gas Conc.	Attenuation Factor	Indoor Air Conc.	Cancer	Noncancer	Cancer Risk	Noncancer
(C _{source})	(alpha)	$(C_{building})$	Risk	Hazard	= 10 ⁻⁶	HQ = 1
(µg/m ³)	(unitless)	(µg/m³)			(µg/L)	(µg/L)
1.77E+02	7.9E-06	1.4E-03	1.2E-09	1.3E-06	NA	NA

Scenario: Residential

Chemical: Ethylbenzene

MESSAGE: Attenuation factor < 6E-05 is unreasonably low.

MORE

ENTER Depth	ENTER	ENTER	ENTER
below grade			Average
to bottom	Depth		soil/
of enclosed	below grade	SCS	groundwater
space floor,	to water table,	soil type	temperature,
L _F	L _{WT}	directly above	T _S
(15 or 200 cm)	(cm)	water table	(°C)
15	396	SICL	24

ENTER

Average vapor flow rate into bldg. (Leave blank to calculate) Q_{soil} (L/m)

5

MORE

ENTER Vadose zone SCS soil type (used to estimate soil vapor permeability)	OR	ENTER User-defined vandose zone soil vapor permeability, k _v (cm ²)	ENTER Vadose zone SCS Soil type Lookup Soil Parameters	ENTER Vadose zone soil dry bulk density, Pb (g/cm³)	ENTER Vadose zone soil total porosity, n ^V (unitless)	ENTER Vadose zone soil water-filled porosity, θ_w^V (cm^3/cm^3)
SICL			SICL	1.63	0.383	0.3

Capillary zone soil water-filled porosity > vadose zone soil total porosity.

MORE
•
·

Lookup Receptor Parameters

Residential

ENTER Target	ENTER Target hazard	ENTER Averaging	ENTER Averaging	ENTER	ENTER	ENTER	ENTER
risk for carcinogens, TR	quotient for noncarcinogens, THQ	time for carcinogens,	time for noncarcinogens, AT _{NC}	Exposure duration, ED	Exposure frequency, EF	Exposure Time ET	Air Exchange Rate ACH
(unitless)	(unitless)	(yrs)	(yrs)	(yrs)	(days/yr)	(hrs/day)	(hour) ⁻¹
1.0E-06	1	70	26	26	350	24	0.5
Used to calcula	ate risk-based					(NEW)	(NEW)

END

December 2014

Department of Toxic Substances Control Vapor Intrusion Screening Model - Groundwater

DATA ENTRY SHEET

CALCULATE RISK-BASED GROUNDWATER CONCENTRATION (enter "X" in "YES" box)

YES

(enter "X" in "YES" box and initial groundwater conc. below)

OR

Reset to Defaults

CALCULATE INCREMENTAL RISKS FROM ACTUAL GROUNDWATER CONCENTRATION

YES X

ENTER	ENTER Initial	
Chemical	groundwater	
CAS No.	conc.,	
(numbers only,	C_W	
no dashes)	(μg/L)	Chemical
108383	5.10E+00	m-Xylene

		Groundwater ntration				
Soil Gas Conc.	Attenuation Factor	Indoor Air Conc.	Cancer	Noncancer	Cancer Risk	Noncancer
(C _{source})	(alpha)	$(C_{building})$	Risk	Hazard	= 10 ⁻⁶	HQ = 1
(µg/m ³)	(unitless)	(µg/m³)			(µg/L)	(µg/L)
1.42E+03	7.9E-06	1.1E-02	NA	1.1E-04	NA	NA

Scenario: Residential

Chemical: m-Xylene

MESSAGE: Attenuation factor < 6E-05 is unreasonably low.

MORE **↓**

ENTER Depth	ENTER	ENTER	ENTER
below grade to bottom of enclosed space floor,	Depth below grade to water table,	SCS soil type	Average soil/ groundwater temperature,
L_F	L _{WT}	directly above	T _S
(15 or 200 cm)	(cm)	water table	(°C)
15	396	SICL	24

ENTER

Average vapor flow rate into bldg. (Leave blank to calculate)

Q_{soil}
(L/m)

5

MORE **↓**

ENTER Vadose zone SCS soil type (used to estimate soil vapor permeability)	OR	ENTER User-defined vandose zone soil vapor permeability, k _v (cm ²)	ENTER Vadose zone SCS Soil type Lookup Soil Parameters	ENTER Vadose zone soil dry bulk density, pb (g/cm³)	ENTER Vadose zone soil total porosity, n ^V (unitless)	ENTER Vadose zone soil water-filled porosity, θ_w^V (cm^3/cm^3)
SICL			SICL	1.63	0.383	0.3

Capillary zone soil water-filled porosity > vadose zone soil total porosity.

MORE ↓

-		,
	Lookup Receptor	
L	Parameters	_

Residential

groundwater concentration.

ENTER Target	ENTER Target hazard	ENTER Averaging	ENTER Averaging	ENTER	ENTER	ENTER	ENTER
risk for carcinogens, TR	quotient for noncarcinogens, THQ	time for carcinogens,	time for noncarcinogens, AT _{NC}	Exposure duration, ED	Exposure frequency, EF	Exposure Time ET	Air Exchange Rate ACH
(unitless)	(unitless)	(yrs)	(yrs)	(yrs)	(days/yr)	(hrs/day)	(hour) ⁻¹
1.0E-06	1	70	26	26	350	24	0.5
Used to calcula	ate risk-based		•	-	_	(NEW)	(NEW)

END

December 2014

Reset to Defaults

Department of Toxic Substances Control Vapor Intrusion Screening Model - Groundwater

DATA ENTRY SHEET

CALCULATE RISK-BASED GROUNDWATER CONCENTRATION (enter "X" in "YES" box)

YES

(enter "X" in "YES" box and initial groundwater conc. below)

OR

CALCULATE INCREMENTAL RISKS FROM ACTUAL GROUNDWATER CONCENTRATION

YES X

ENTER	ENTER Initial	
Chemical	groundwater	
CAS No.	conc.,	
(numbers only,	C_W	
no dashes)	(μg/L)	Chemical
67641	1.80E+01	Acetone

MORE	
•	

ENTER Depth	ENTER	ENTER	ENTER
below grade to bottom	Depth		Average soil/
of enclosed space floor,	below grade to water table,	SCS soil type	groundwater temperature,
L _F	L _{WT}	directly above	T _S
(15 or 200 cm)	(cm)	water table	(°C)
15	396	SICL	24

ENTER

Soil Gas Conc.

(C_{source})

Scenario: Residential

Noncancer

Hazard

Risk-Based Groundwater

Concentration

HQ = 1

(µg/L)

= 10⁻⁶

(µg/L)

Chemical: Acetone

Results Summary

(C_{building})

 $(\mu g/m^3)$

ENTER
Air Exchange
Rate

ACH

(hour)-1

0.5

Attenuation Factor Indoor Air Conc.

(alpha)

(unitless)

Average vapor flow rate into bldg. (Leave blank to calculate) Q_{soil}

(L/m) 5

MORE

ENTER Vadose zone SCS soil type (used to estimate soil vapor permeability)	OR	ENTER User-defined vandose zone soil vapor permeability, k _v (cm ²)	ENTER Vadose zone SCS Soil type Lookup Soil Parameters	ENTER Vadose zone soil dry bulk density, pb (g/cm³)	ENTER Vadose zone soil total porosity, n ^V (unitless)	ENTER Vadose zone soil water-filled porosity, $\theta_w^{\ V}$ (cm^3/cm^3)
SICL			SICL	1.63	0.383	0.3

Capillary zone soil water-filled porosity > vadose zone soil total porosity.

MORE	
Ψ	

Lookup Receptor Parameters

ENTER Target	ENTER Target hazard	ENTER Averaging	ENTER Averaging	ENTER	ENTER	ENTER	
risk for arcinogens, TR	quotient for noncarcinogens, THQ	time for carcinogens,	time for noncarcinogens,	Exposure duration, ED	Exposure frequency, EF	Exposure Time ET	
(unitless)	(unitless)	(yrs)	(yrs)	(yrs)	(days/yr)	(hrs/day)	
1.0E-06	1	70	26	26	350	24	I
Used to calcul	ate risk-based					(NEW)	i

NEW=> Residential

END

December 2014

Reset to

Defaults

Department of Toxic Substances Control Vapor Intrusion Screening Model - Groundwater

DATA ENTRY SHEET

CALCULATE RISK-BASED GROUNDWATER CONCENTRATION (enter "X" in "YES" box)

YES OR

CALCULATE INCREMENTAL RISKS FROM ACTUAL GROUNDWATER CONCENTRATION (enter "X" in "YES" box and initial groundwater conc. below)

YES X

ENTER		ENTER Initial		
Chemica	al	groundwater		
CAS No		conc.,		
(numbers o	nly,	C_W		
no dashe	s)	(μg/L)	Chemical	
74839		9.90E-01	Methyl bromide (bromomethane)	

MESSAGE: Attenuation factor < 6E-05 is unreasonably low.

Scenario: Residential

Methyl bromide (bromomethane)

Noncancer

Hazard

6.4E-04

Risk-Based Groundwater

Concentration

HQ = 1

(µg/L)

= 10⁻⁶

(µg/L)

Chemical:

(C_{building})

 $(\mu g/m^3)$

3.4E-03

Results Summary

Attenuation Factor Indoor Air Conc.

(alpha)

(unitless)

ENTER	ENTER	ENTER	ENTER
Depth			
below grade			Average
to bottom	Depth		soil/
of enclosed	below grade	SCS	groundwater
space floor,	to water table,	soil type	temperature,
L _F	L_{WT}	directly above	Ts
(15 or 200 cm)	(cm)	water table	(°C)
15	396	SICL	24

ENTER

Soil Gas Conc.

(C_{source})

Average vapor flow rate into bldg. (Leave blank to calculate) $Q_{\text{soil}} \end{tabular}$

5

MORE **↓**

ENTER Vadose zone SCS soil type (used to estimate soil vapor permeability)	OR	ENTER User-defined vandose zone soil vapor permeability, k _v (cm ²)	ENTER Vadose zone SCS Soil type Lookup Soil Parameters	ENTER Vadose zone soil dry bulk density, Pb (g/cm³)	ENTER Vadose zone soil total porosity, n ^V (unitless)	ENTER Vadose zone soil water-filled porosity, θ_w^V (cm^3/cm^3)
SICL			SICL	1.63	0.383	0.3

Capillary zone soil water-filled porosity > vadose zone soil total porosity.

MORE	
•	

Lookup Receptor Parameters

ENTER Target	ENTER Target hazard	ENTER Averaging	ENTER Averaging	ENTER	ENTER	ENTER	ENTER
risk for carcinogens, TR	quotient for noncarcinogens, THQ	time for carcinogens,	time for noncarcinogens, AT _{NC}	Exposure duration, ED	Exposure frequency, EF	Exposure Time ET	Air Exchange Rate ACH
(unitless)	(unitless)	(yrs)	(yrs)	(yrs)	(days/yr)	(hrs/day)	(hour) ⁻¹
1.0E-06	1	70	26	26	350	24	0.5
Used to calcul	ate risk-based					(NEW)	(NEW)

groundwater concentration.

December 2014

Department of Toxic Substances Control Vapor Intrusion Screening Model - Groundwater

DATA ENTRY SHEET

CALCULATE RISK-BASED GROUNDWATER CONCENTRATION (enter "X" in "YES" box)

YES

OR

Reset to Defaults

CALCULATE INCREMENTAL RISKS FROM ACTUAL GROUNDWATER CONCENTRATION (enter "X" in "YES" box and initial groundwater conc. below)

YES X

	ENTER	ENTER Initial		
	Chemical	groundwater		
	CAS No.	conc.,		
	(numbers only,	C_W		
_	no dashes)	(μg/L)	Chemical	
Γ	78933	3.60E+00	Methylethylketone (2-butanone)	

MORE	
Ψ	

ENTER Depth	ENTER	ENTER	ENTER
below grade to bottom	Depth		Average soil/
of enclosed space floor,	below grade to water table.	SCS soil type	groundwater temperature,
L _F	L _{WT}	directly above	T _S
(15 or 200 cm)	(cm)	water table	(°C)
15	396	SICL	24

Soil Gas Conc.

(C_{source})

Scenario: Residential

Results Summary

(C_{building})

 $(\mu g/m^3)$

4.9E-04

Attenuation Factor Indoor Air Conc.

(alpha)

(unitless)

Chemical: Methylethylketone (2-butanone)

Noncancer

Hazard

9.4F-08

Risk-Based Groundwater

Concentration

HQ = 1

(µg/L)

= 10⁻⁶

(µg/L)

Average vapor flow rate into bldg. (Leave blank to calculate)

Q_{soil}
(L/m)

5

MORE **↓**

ENTER Vadose zone SCS soil type (used to estimate soil vapor permeability)	OR	ENTER User-defined vandose zone soil vapor permeability, k _v (cm ²)	ENTER Vadose zone SCS Soil type Lookup Soil Parameters	ENTER Vadose zone soil dry bulk density, pb (g/cm³)	ENTER Vadose zone soil total porosity, n ^V (unitless)	ENTER Vadose zone soil water-filled porosity, θ_w^V (cm^3/cm^3)
SICL			SICL	1.63	0.383	0.3

Capillary zone soil water-filled porosity > vadose zone soil total porosity.

MORE	
Ψ	

Lookup Receptor Parameters

ENTER Target	ENTER Target hazard	ENTER Averaging	ENTER Averaging	ENTER	ENTER	ENTER	ENTER
risk for carcinogens, TR	quotient for noncarcinogens, THQ	time for carcinogens,	time for noncarcinogens, AT _{NC}	Exposure duration, ED	Exposure frequency, EF	Exposure Time ET	Air Exchange Rate ACH
(unitless)	(unitless)	(yrs)	(yrs)	(yrs)	(days/yr)	(hrs/day)	(hour) ⁻¹
1.0E-06	1	70	26	26	350	24	0.5
Used to calcul	ate risk-based					(NEW)	(NEW)

NEW=> Residential

END

December 2014

Reset to

Defaults

Department of Toxic Substances Control Vapor Intrusion Screening Model - Groundwater

DATA ENTRY SHEET

CALCULATE RISK-BASED GROUNDWATER CONCENTRATION (enter "X" in "YES" box)

YES

OR

CALCULATE INCREMENTAL RISKS FROM ACTUAL GROUNDWATER CONCENTRATION (enter "X" in "YES" box and initial groundwater conc. below)

YES **ENTER ENTER** Initial Chemical groundwater CAS No. conc., (numbers only, C_{W} no dashes) Chemical $(\mu g/L)$

104518 1.10E+01 n-Butylbenzene

groundwater concentration.

	Results		Groundwater ntration			
Soil Gas Conc.	Attenuation Factor	Indoor Air Conc.	Cancer	Noncancer	Cancer Risk	Noncancer
(C _{source})	(alpha)	$(C_{building})$	Risk	Hazard	= 10 ⁻⁶	HQ = 1
(µg/m ³)	(unitless)	(µg/m ³)			(µg/L)	(µg/L)
6.71E+03	5.9E-06	4.0E-02	NA	2.2E-04	NA	NA

Scenario: Residential

Chemical: n-Butylbenzene

MESSAGE: Risk and/or HQ (or risk-based groundwater concentration) is based on route-to-route extrapolation. MESSAGE: Attenuation factor < 6E-05 is unreasonably low.

ENTER Depth	ENTER	ENTER	ENTER
below grade to bottom	Depth		Average soil/
of enclosed space floor,	below grade to water table,	SCS soil type	groundwater temperature,
L _F	L_{WT}	directly above	Ts
(15 or 200 cm)	(cm)	water table	(°C)
15	396	SICL	24

ENTER

Average vapor flow rate into bldg. (Leave blank to calculate) Q_{soil}

(L/m)

5

MORE

ENTER Vadose zone SCS soil type (used to estimate soil vapor permeability)	OR	ENTER User-defined vandose zone soil vapor permeability, k _v (cm ²)	ENTER Vadose zone SCS Soil type Lookup Soil Parameters	ENTER Vadose zone soil dry bulk density, pb (g/cm³)	ENTER Vadose zone soil total porosity, n ^V (unitless)	ENTER Vadose zone soil water-filled porosity, θ_w^V (cm^3/cm^3)
SICL			SICL	1.63	0.383	0.3

Capillary zone soil water-filled porosity > vadose zone soil total porosity.

MORE ↓

Lookup Receptor Parameters

ENTER Target	ENTER Target hazard	ENTER Averaging	ENTER Averaging	ENTER	ENTER	ENTER	ENTER
risk for carcinogens, TR	quotient for noncarcinogens, THQ	time for carcinogens,	time for noncarcinogens, AT _{NC}	Exposure duration, ED	Exposure frequency, EF	Exposure Time ET	Air Exchange Rate ACH
(unitless)	(unitless)	(yrs)	(yrs)	(yrs)	(days/yr)	(hrs/day)	(hour) ⁻¹
1.0E-06	1	70	26	26	350	24	0.5
Used to calcul	ate risk-based					(NEW)	(NEW)

END

Department of Toxic Substances Control Vapor Intrusion Screening Model - Groundwater

OTSC Modification	
December 2014	

DATA ENTRY SHEET

Scenario: Residential CALCULATE RISK-BASED GROUNDWATER CONCENTRATION (enter "X" in "YES" box) Chemical: sec-Butylbenzene

YES

OR

Reset to Defaults

CALCULATE INCREMENTAL RISKS FROM ACTUAL GROUNDWATER CONCENTRATION (enter "X" in "YES" box and initial groundwater conc. below)

> YES **ENTER**

ENTER Initial Chemical groundwater CAS No. conc., (numbers only, C_{W} no dashes) Chemical $(\mu g/L)$

135988 6.20E+00 sec-Butylbenzene MESSAGE: Attenuation factor < 6E-05 is unreasonably low.

Results Summary

(C_{building})

 $(\mu g/m^3)$

Attenuation Factor Indoor Air Conc.

(alpha)

(unitless)

MORE

ENTER	ENTER	ENTER	ENTER
Depth			
below grade			Average
to bottom	Depth		soil/
of enclosed	below grade	SCS	groundwater
space floor,	to water table,	soil type	temperature,
L _F	L_{WT}	directly above	Ts
(15 or 200 cm)	(cm)	water table	(°C)
15	396	SICL	24

ENTER

Soil Gas Conc.

(C_{source})

Average vapor flow rate into bldg. (Leave blank to calculate) Q_{soil}

> (L/m) 5

MORE

ENTER Vadose zone SCS soil type (used to estimate soil vapor permeability)	OR	ENTER User-defined vandose zone soil vapor permeability, k _v (cm ²)	ENTER Vadose zone SCS soil type Lookup Soil Parameters	ENTER Vadose zone soil dry bulk density,	ENTER Vadose zone soil total porosity, n ^V (unitless)	ENTER Vadose zone soil water-filled porosity, θ_w^V (cm^3/cm^3)
SICL			SICL	1.63	0.383	0.3

Capillary zone soil water-filled porosity > vadose zone soil total porosity.

MORE

Lookup Receptor Parameters

groundwater concentration.

Residential

ENTER Target	ENTER Target hazard	ENTER Averaging	ENTER Averaging	ENTER	ENTER	ENTER	ENTER
risk for carcinogens, TR	quotient for noncarcinogens, THQ	time for carcinogens,	time for noncarcinogens, AT _{NC}	Exposure duration, ED	Exposure frequency, EF	Exposure Time ET	Air Exchange Rate ACH
(unitless)	(unitless)	(yrs)	(yrs)	(yrs)	(days/yr)	(hrs/day)	(hour) ⁻¹
1.0E-06	1	70	26	26	350	24	0.5
Used to calcul	ate risk-based					(NEW)	(NEW)

END

Risk-Based Groundwater

Concentration

HQ = 1

(µg/L)

Cancer Risk

= 10⁻⁶

(µg/L)

Noncancer

Hazard

3.5E-05

December 2014

Department of Toxic Substances Control Vapor Intrusion Screening Model - Groundwater

DATA ENTRY SHEET

YES

Reset to Defaults CALCULATE RISK-BASED GROUNDWATER CONCENTRATION (enter "X" in "YES" box)

OR

CALCULATE INCREMENTAL RISKS FROM ACTUAL GROUNDWATER CONCENTRATION (enter "X" in "YES" box and initial groundwater conc. below)

YES

ENTER	ENTER Initial			
Chemical	groundwater			
CAS No.	conc.,			
(numbers only,	C_{W}			
no dashes)	(μg/L)		Chemical	
98828	8.70E+00	Cumene	-	

MESSAGE: See VLOOKUP table comments on chemical properties

and/or toxicity criteria for this chemical.

MORE

ENTER Depth	ENTER	ENTER	ENTER
below grade to bottom	Depth		Average soil/
of enclosed space floor,	below grade to water table,	SCS soil type	groundwater temperature,
L _F	L _{WT}	directly above	Ts
(15 or 200 cm)	(cm)	water table	(°C)
15	306	SICI	2/

ENTER

Soil Gas Conc.

(C_{source})

Scenario: Residential

Noncancer

Hazard

6.3E-05

Risk-Based Groundwater

Concentration

HQ = 1

(µg/L)

= 10⁻⁶

(µg/L)

Chemical: Cumene

Results Summary

(C_{building})

 $(\mu g/m^3)$

2.6F-02

Attenuation Factor Indoor Air Conc.

(alpha)

(unitless)

MESSAGE: Attenuation factor < 6E-05 is unreasonably low.

Average vapor flow rate into bldg. (Leave blank to calculate)

 Q_{soil} (L/m)

5

MORE

ENTER Vadose zone SCS soil type (used to estimate soil vapor permeability)	OR	ENTER User-defined vandose zone soil vapor permeability, k _v (cm ²)	ENTER Vadose zone SCS soil type Lookup Soil Parameters	ENTER Vadose zone soil dry bulk density,	ENTER Vadose zone soil total porosity, n ^V (unitless)	ENTER Vadose zone soil water-filled porosity, θ_w^V (cm³/cm³)
SICL			SICL	1.63	0.383	0.3

Capillary zone soil water-filled porosity > vadose zone soil total porosity.

MORE

Lookup Receptor Parameters

ENTER Target	ENTER Target hazard	ENTER Averaging	ENTER Averaging	ENTER	ENTER	ENTER	ENTER
risk for carcinogens, TR	quotient for noncarcinogens, THQ	time for carcinogens,	time for noncarcinogens, AT _{NC}	Exposure duration, ED	Exposure frequency, EF	Exposure Time ET	Air Exchange Rate ACH
(unitless)	(unitless)	(yrs)	(yrs)	(yrs)	(days/yr)	(hrs/day)	(hour) ⁻¹
1.0E-06	1	70	26	26	350	24	0.5
Used to calcula	ate risk-based					(NEW)	(NEW)

Residential

END

December 2014

Department of Toxic Substances Control Vapor Intrusion Screening Model - Groundwater

DATA ENTRY SHEET

CALCULATE RISK-BASED GROUNDWATER CONCENTRATION (enter "X" in "YES" box)

YES

OR

Scenario: Residential Chemical: Cumene

Results Summary

(C_{building})

 $(\mu g/m^3)$

Attenuation Factor Indoor Air Conc.

(alpha)

(unitless)

Surrogate for 4-Isopropyl toluene

Noncancer

Hazard

3.0E-05

Risk-Based Groundwater

Concentration

HQ = 1

(µg/L)

= 10⁻⁶

(µg/L)

Reset to Defaults

CALCULATE INCREMENTAL RISKS FROM ACTUAL GROUNDWATER CONCENTRATION (enter "X" in "YES" box and initial groundwater conc. below)

YES X

ENTER	ENTER Initial			
Chemical	groundwater			
CAS No.	conc.,			
(numbers only,	C_W			
no dashes)	(μg/L)		Chemical	
98828	4.10E+00	Cumene		

MESSAGE: See VLOOKUP table comments on chemical properties and/or toxicity criteria for this chemical.

. .

MESSAGE: Attenuation factor < 6E-05 is unreasonably low.

MORE

ENTER Depth	ENTER	ENTER	ENTER
below grade to bottom	Depth		Average soil/
of enclosed space floor,	below grade to water table,	SCS soil type	groundwater temperature,
L _F	L _{WT}	directly above	T _S
(15 or 200 cm)	(cm)	water table	(°C)
15	396	SICL	24

ENTER

Soil Gas Conc.

(C_{source})

Average vapor flow rate into bldg. (Leave blank to calculate)

Q_{soil} (L/m)

5

MORE

ENTER Vadose zone SCS soil type (used to estimate soil vapor permeability)	OR	ENTER User-defined vandose zone soil vapor permeability, k _v (cm ²)	ENTER Vadose zone SCS soil type Lookup Soil Parameters	ENTER Vadose zone soil dry bulk density, Pb (g/cm³)	ENTER Vadose zone soil total porosity, n ^V (unitless)	ENTER Vadose zone soil water-filled porosity, θ_w^V (cm^3/cm^3)
SICL			SICL	1.63	0.383	0.3

Capillary zone soil water-filled porosity > vadose zone soil total porosity.

MORE **↓**

Lookup Receptor Parameters

groundwater concentration.

ENTER Target	ENTER Target hazard	ENTER Averaging	ENTER Averaging	ENTER	ENTER	ENTER	ENTER
risk for carcinogens, TR	quotient for noncarcinogens, THQ	time for carcinogens,	time for noncarcinogens, AT _{NC}	Exposure duration, ED	Exposure frequency, EF	Exposure Time ET	Air Exchange Rate ACH
(unitless)	(unitless)	(yrs)	(yrs)	(yrs)	(days/yr)	(hrs/day)	(hour) ⁻¹
1.0E-06	1	70	26	26	350	24	0.5
Used to calcul	ate risk-based					(NEW)	(NEW)

Department of Toxic Substances Control Vapor Intrusion Screening Model - Groundwater

OTSC Modification	
December 2014	

DATA ENTRY SHEET

CALCULATE RISK-BASED GROUNDWATER CONCENTRATION (enter "X" in "YES" box)

YES

(enter "X" in "YES" box and initial groundwater conc. below)

Reset to Defaults OR
CALCULATE INCREMENTAL RISKS FROM ACTUAL GROUNDWATER CONCENTRATION

YES X

ENTER	ENTER Initial	
Chemical	groundwater	
CAS No.	conc.,	
(numbers only,	C _w	
no dashes)	(μg/L)	Chemical
103651	2.70E+01	n-Propylbenzene

	Results		Groundwater ntration			
Soil Gas Conc.	Attenuation Factor	Indoor Air Conc.	Cancer	Noncancer	Cancer Risk	Noncancer
(C _{source})	(alpha)	$(C_{building})$	Risk	Hazard	= 10 ⁻⁶	HQ = 1
(µg/m ³)	(unitless)	(µg/m³)			(µg/L)	(µg/L)
1.09E+04	6.9E-06	7.5E-02	NA	7.2E-05	NA	NA

Scenario: Residential

Chemical: n-Propylbenzene

MESSAGE: Attenuation factor < 6E-05 is unreasonably low.

MORE **↓**

ENTER Depth	ENTER	ENTER	ENTER
below grade to bottom	Depth		Average soil/
of enclosed space floor,	below grade to water table,	SCS soil type	groundwater temperature,
L _F	L_{WT}	directly above	Ts
(15 or 200 cm)	(cm)	water table	(°C)
15	306	SICI	2/

ENTER

Average vapor flow rate into bldg. (Leave blank to calculate)

Q_{soil}
(L/m)

5

MORE **↓**

ENTER Vadose zone SCS soil type (used to estimate soil vapor permeability)	OR	ENTER User-defined vandose zone soil vapor permeability, k _v (cm ²)	ENTER Vadose zone SCS Soil type Lookup Soil Parameters	ENTER Vadose zone soil dry bulk density, ρ_b^V (g/cm³)	ENTER Vadose zone soil total porosity, n ^V (unitless)	ENTER Vadose zone soil water-filled porosity, $\theta_w^{\ V}$ (cm^3/cm^3)
SICL			SICL	1.63	0.383	0.3

Capillary zone soil water-filled porosity > vadose zone soil total porosity.

MORE **↓**

Lookup Receptor Parameters

ENTER Target	ENTER Target hazard	ENTER Averaging	ENTER Averaging	ENTER	ENTER	ENTER	ENTER
risk for carcinogens, TR	quotient for noncarcinogens, THQ	time for carcinogens,	time for noncarcinogens,	Exposure duration, ED	Exposure frequency, EF	Exposure Time ET	Air Exchange Rate ACH
(unitless)	(unitless)	(yrs)	(yrs)	(yrs)	(days/yr)	(hrs/day)	(hour) ⁻¹
1.0E-06	1	70	26	26	350	24	0.5
Used to calcula	ate risk-based		•	-		(NEW)	(NEW)

NEW=> Residential

END

vapor intrusion So

Department of Toxic Substances Control Vapor Intrusion Screening Model - Groundwater

DTSC Modification December 2014

Reset to

Defaults

DATA ENTRY SHEET

CALCULATE RISK-BASED GROUNDWATER CONCENTRATION (enter "X" in "YES" box)

YES

OR

CALCULATE INCREMENTAL RISKS FROM ACTUAL GROUNDWATER CONCENTRATION (enter "X" in "YES" box and initial groundwater conc. below)

YES X

ENTER	ENTER Initial	
Chemical	groundwater	
CAS No.	conc.,	
(numbers only,	C_W	
no dashes)	(μg/L)	Chemical
95636	3.30E+01	1,2,4-Trimethylbenzene

Results Summary				Risk-Based Groundwater Concentration		
Soil Gas Conc.	Attenuation Factor	Indoor Air Conc.	Cancer	Noncancer	Cancer Risk	Noncancer
(C _{source})	(alpha)	$(C_{building})$	Risk	Hazard	= 10 ⁻⁶	HQ = 1
(µg/m ³)	(unitless)	(µg/m³)			(µg/L)	(µg/L)
7.81E+03	7.1E-06	5.5E-02	NA	7.6E-03	NA	NA

Scenario: Residential

Chemical: 1,2,4-Trimethylbenzene

MESSAGE: Attenuation factor < 6E-05 is unreasonably low.

MORE **↓**

ENTER Depth	ENTER	ENTER	ENTER
below grade to bottom	Depth		Average soil/
of enclosed space floor,	below grade to water table,	SCS soil type	groundwater temperature,
L _F	L _{WT}	directly above	Ts
(15 or 200 cm)	(cm)	water table	(°C)
15	396	SICL	24

ENTER

Average vapor flow rate into bldg. (Leave blank to calculate) $Q_{\text{soil}} \end{tabular}$ (L/m)

5

MORE **↓**

ENTER Vadose zone SCS soil type (used to estimate soil vapor permeability)	OR	ENTER User-defined vandose zone soil vapor permeability, k _v (cm ²)	ENTER Vadose zone SCS Soil type Lookup Soil Parameters	ENTER Vadose zone soil dry bulk density, ρ_b^{\vee} (g/cm³)	ENTER Vadose zone soil total porosity, n ^V (unitless)	ENTER Vadose zone soil water-filled porosity, θ_w^V (cm^3/cm^3)
SICL			SICL	1.63	0.383	0.3

Capillary zone soil water-filled porosity > vadose zone soil total porosity.

MORE ↓

Lookup Receptor Parameters

groundwater concentration.

ENTER Target	ENTER Target hazard	ENTER Averaging	ENTER Averaging	ENTER	ENTER	ENTER	ENTER
risk for carcinogens, TR	quotient for noncarcinogens, THQ	time for carcinogens,	time for noncarcinogens, AT _{NC}	Exposure duration, ED	Exposure frequency, EF	Exposure Time ET	Air Exchange Rate ACH
(unitless)	(unitless)	(yrs)	(yrs)	(yrs)	(days/yr)	(hrs/day)	(hour) ⁻¹
1.0E-06	1	70	26	26	350	24	0.5
Used to calcula	ate risk-based					(NEW)	(NEW)

END

December 2014

Department of Toxic Substances Control Vapor Intrusion Screening Model - Groundwater

DATA ENTRY SHEET

CALCULATE RISK-BASED GROUNDWATER CONCENTRATION (enter "X" in "YES" box)

YES

OR

Reset to Defaults

CALCULATE INCREMENTAL RISKS FROM ACTUAL GROUNDWATER CONCENTRATION (enter "X" in "YES" box and initial groundwater conc. below)

YES X

ENTER	ENTER Initial	
Chemical	groundwater	
CAS No.	conc.,	
(numbers only,	C_W	
no dashes)	(μg/L)	Chemical
108678	4.00E+00	1,3,5-Trimethylbenzene

 $\label{eq:message:message:message} MESSAGE: Risk and/or HQ (or risk-based groundwater concentration) is based on route-to-route extrapolation. \\ MESSAGE: Attenuation factor < 6E-05 is unreasonably low.$

(alpha)

(unitless)

Results Summary

(C_{building})

 $(\mu g/m^3)$

9.3E-03

Attenuation Factor Indoor Air Conc.

Scenario: Residential

Chemical: 1,3,5-Trimethylbenzene

Noncancer

Hazard

2.6F-04

Risk-Based Groundwater

Concentration

HQ = 1

(µg/L)

Cancer Risk

 $= 10^{-6}$

(µg/L)

	ENTER Depth	ENTER	ENTER	ENTER
	below grade to bottom	Depth		Average soil/
	of enclosed space floor,	below grade to water table,	SCS soil type	groundwater temperature,
	L _F	L _{WT}	directly above	T _S
	(15 or 200 cm)	(cm)	water table	(°C)
Ī				
ſ	15	396	SICL	24

ENTER

Soil Gas Conc.

(C_{source})

Average vapor flow rate into bldg. (Leave blank to calculate)

Q_{soil}
(L/m)

5

MORE **↓**

ENTER Vadose zone SCS soil type (used to estimate soil vapor permeability)	OR	ENTER User-defined vandose zone soil vapor permeability, k _v (cm ²)	ENTER Vadose zone SCS Soil type Lookup Soil Parameters	ENTER Vadose zone soil dry bulk density, ρ_b^V (g/cm³)	ENTER Vadose zone soil total porosity, n ^V (unitless)	ENTER Vadose zone soil water-filled porosity, θ_w^V (cm^3/cm^3)
SICL			SICL	1.63	0.383	0.3

Capillary zone soil water-filled porosity > vadose zone soil total porosity.

MORE
•

Lookup Receptor Parameters

ENTER Target	ENTER Target hazard	ENTER Averaging	ENTER Averaging	ENTER	ENTER	ENTER	ENTER
risk for carcinogens, TR	quotient for noncarcinogens, THQ	time for carcinogens,	time for noncarcinogens, AT _{NC}	Exposure duration, ED	Exposure frequency, EF	Exposure Time ET	Air Exchange Rate ACH
(unitless)	(unitless)	(yrs)	(yrs)	(yrs)	(days/yr)	(hrs/day)	(hour) ⁻¹
1.0E-06	1	70	26	26	350	24	0.5
Used to calcula	ate risk-based		•	-	_	(NEW)	(NEW)

NEW=> Residential

END

December 2014

Department of Toxic Substances Control Vapor Intrusion Screening Model - Groundwater

DATA ENTRY SHEET

CALCULATE RISK-BASED GROUNDWATER CONCENTRATION (enter "X" in "YES" box)

YES

OR

Reset to Defaults

CALCULATE INCREMENTAL RISKS FROM ACTUAL GROUNDWATER CONCENTRATION (enter "X" in "YES" box and initial groundwater conc. below)

YES X

ENTER	ENTER Initial	
Chemical	groundwater	
CAS No.	conc.,	
(numbers only,	C _w	
no dashes)	(μg/L)	Chemical
83329	4.90E+00	Acenaphthene

	Results		Groundwater ntration			
Soil Gas Conc.	Attenuation Factor	Indoor Air Conc.	Cancer	Noncancer	Cancer Risk	Noncancer
(C _{source})	(alpha)	$(C_{building})$	Risk	Hazard	= 10 ⁻⁶	HQ = 1
(µg/m ³)	(unitless)	(µg/m ³)			(µg/L)	(µg/L)
3.38E+01	2.0E-05	6.6E-04	NA	3.0E-06	NA	NA

Scenario: Residential

Chemical: Acenaphthene

MESSAGE: Risk and/or HQ (or risk-based groundwater concentration) is based on route-to-route extrapolation. MESSAGE: Attenuation factor < 6E-05 is unreasonably low.

ENTER Depth	ENTER	ENTER	ENTER
below grade to bottom	Depth		Average soil/
of enclosed space floor,	below grade to water table,	SCS soil type	groundwater temperature,
L _F	L _{WT}	directly above	T _S
(15 or 200 cm)	(cm)	water table	(°C)
15	396	SICL	24

ENTER

Average vapor flow rate into bldg. (Leave blank to calculate)

Q_{soil}
(L/m)

5

ENTER Vadose zone SCS soil type (used to estimate soil vapor permeability)	OR	ENTER User-defined vandose zone soil vapor permeability, k _v (cm ²)	ENTER Vadose zone SCS soil type Lookup Soil Parameters	ENTER Vadose zone soil dry bulk density, Pb (g/cm³)	ENTER Vadose zone soil total porosity, n ^V (unitless)	ENTER Vadose zone soil water-filled porosity, θ_{w}^{V} (cm^{3}/cm^{3})
SICL			SICL	1.63	0.383	0.3

Capillary zone soil water-filled porosity > vadose zone soil total porosity.

MORE	
Ψ	

Lookup Receptor Parameters

Residential

ENTER Target	ENTER Target hazard	ENTER Averaging	ENTER Averaging	ENTER	ENTER	ENTER	ENTER
risk for carcinogens, TR	quotient for noncarcinogens, THQ	time for carcinogens,	time for noncarcinogens, AT _{NC}	Exposure duration, ED	Exposure frequency, EF	Exposure Time ET	Air Exchange Rate ACH
(unitless)	(unitless)	(yrs)	(yrs)	(yrs)	(days/yr)	(hrs/day)	(hour) ⁻¹
1.0E-06	1	70	26	26	350	24	0.5
Used to calcula	ate risk-based		•	-	_	(NEW)	(NEW)

END

December 2014

Department of Toxic Substances Control Vapor Intrusion Screening Model - Groundwater

DATA ENTRY SHEET

CALCULATE RISK-BASED GROUNDWATER CONCENTRATION (enter "X" in "YES" box)

YES

OR

Scenario: Residential Chemical: Pyrene

Surrogate for Anthracene

Reset to Defaults

CALCULATE INCREMENTAL RISKS FROM ACTUAL GROUNDWATER CONCENTRATION (enter "X" in "YES" box and initial groundwater conc. below)

YES X

ENTER	ENTER Initial	
Chemical	groundwater	
CAS No.	conc.,	
(numbers only,	C _w	
no dashes)	(μg/L)	Chemical
129000	1.10E+00	Pyrene

	Results	Risk-Based Groundwater Concentration				
Soil Gas Conc.	Attenuation Factor	Indoor Air Conc.	Cancer	Noncancer	Cancer Risk	Noncancer
(C _{source})	(alpha)	$(C_{building})$	Risk	Hazard	= 10 ⁻⁶	HQ = 1
(µg/m ³)	(unitless)	(µg/m ³)			(µg/L)	(µg/L)
4.78E-01	1.8E-04	8.4E-05	NA	7.6E-07	NA	NA

MESSAGE: Risk and/or HQ (or risk-based groundwater concentration) is based on route-to-route extrapolation.

MORE **↓**

ENTER Depth	ENTER	ENTER	ENTER
below grade to bottom	Depth		Average soil/
of enclosed space floor,	below grade to water table,	SCS soil type	groundwater temperature,
L _F	L _{WT}	directly above	Ts
(15 or 200 cm)	(cm)	water table	(°C)
15	396	SICL	24

ENTER

Average vapor flow rate into bldg. (Leave blank to calculate)

Q_{soil}
(L/m)

5

MORE **↓**

ENTER Vadose zone SCS soil type (used to estimate soil vapor permeability)	OR	ENTER User-defined vandose zone soil vapor permeability, k _v (cm ²)	ENTER Vadose zone SCS Soil type Lookup Soil Parameters	ENTER Vadose zone soil dry bulk density, ρ_b^V (g/cm³)	ENTER Vadose zone soil total porosity, n ^V (unitless)	ENTER Vadose zone soil water-filled porosity, $\theta_w^{\ V}$ (cm^3/cm^3)
SICL			SICL	1.63	0.383	0.3

Capillary zone soil water-filled porosity > vadose zone soil total porosity.

MORE ↓

7		,
	Lookup Receptor Parameters	
L	Parameters	_

Residential

groundwater concentration.

ENTER Target	ENTER Target hazard	ENTER Averaging	ENTER Averaging	ENTER	ENTER	ENTER	ENTER
risk for carcinogens, TR	quotient for noncarcinogens, THQ	time for carcinogens,	time for noncarcinogens, AT _{NC}	Exposure duration, ED	Exposure frequency, EF	Exposure Time ET	Air Exchange Rate ACH
(unitless)	(unitless)	(yrs)	(yrs)	(yrs)	(days/yr)	(hrs/day)	(hour) ⁻¹
1.0E-06	1	70	26	26	350	24	0.5
Used to calcula	ate risk-based					(NEW)	(NEW)

END

Department of Toxic Substances Control Vapor Intrusion Screening Model - Groundwater

DTSC Modification DATA ENTRY SHEET December 2014

CALCULATE RISK-BASED GROUNDWATER CONCENTRATION (enter "X" in "YES" box)

YES

Reset to Defaults

OR

CALCULATE INCREMENTAL RISKS FROM ACTUAL GROUNDWATER CONCENTRATION (enter "X" in "YES" box and initial groundwater conc. below)

YES

ENTER	ENTER Initial	
Chemical	groundwater	
CAS No.	conc.,	
(numbers only,	C_W	
no dashes)	(μg/L)	Chemical
91576	1.50E+01	2-Methylnaphthalene

MORE

ENTER Depth	ENTER	ENTER	ENTER
below grade to bottom	Depth		Average soil/
of enclosed space floor,	below grade to water table,	SCS soil type	groundwater temperature,
L _F	L_{WT}	directly above	Ts
(15 or 200 cm)	(cm)	water table	(°C)
15	396	SICL	24

Scenario: Residential

Chemical: **2-Methylnaphthalene**

Surrogate for 1-Methylnaphthalene

	Results		Groundwater ntration			
Soil Gas Conc.	Attenuation Factor	Indoor Air Conc.	Cancer	Noncancer	Cancer Risk	Noncancer
(C _{source})	(alpha)	$(C_{building})$	Risk	Hazard	= 10 ⁻⁶	HQ = 1
(µg/m ³)	(unitless)	(µg/m ³)			(µg/L)	(µg/L)
2.91E+02	1.1E-05	3.1E-03	NA	2.1E-04	NA	NA

MESSAGE: Risk and/or HQ (or risk-based groundwater concentration) is based on route-to-route extrapolation. MESSAGE: Attenuation factor < 6E-05 is unreasonably low.

ENTER

Average vapor flow rate into bldg. (Leave blank to calculate)

 Q_{soil} (L/m)

5

MORE

ENTER Vadose zone SCS soil type (used to estimate soil vapor permeability)	OR	ENTER User-defined vandose zone soil vapor permeability, k _v (cm ²)	ENTER Vadose zone SCS soil type Lookup Soil Parameters	ENTER Vadose zone soil dry bulk density, Pb (g/cm³)	ENTER Vadose zone soil total porosity, n ^V (unitless)	ENTER Vadose zone soil water-filled porosity, θ_{w}^{V} (cm^{3}/cm^{3})
SICL			SICL	1.63	0.383	0.3

ENTER

Capillary zone soil water-filled porosity > vadose zone soil total porosity.

ENTER

ENTER

ENTER

MORE

7		,
	Lookup Receptor	
L	Parameters	_
_		_

_	

ENTER

ENTER

ENTER

or)		
	J	_	
_		_	

NEW=>	Residential

Target risk for carcinogens, TR (unitless)	Target hazard quotient for noncarcinogens, THQ (unitless)	Averaging time for carcinogens, AT _C (yrs)	Averaging time for noncarcinogens, AT _{NC} (yrs)	Exposure duration, ED (yrs)	Exposure frequency, EF (days/yr)	Exposure Time ET (hrs/day)	Air Exchange Rate ACH (hour) ⁻¹
, ,	, ,	U /	9 /	0 /	() ., ,		, ,
1.0E-06	1	70	26	26	350	24	0.5
Used to calcu	late risk-based					(NEW)	(NEW)
groundwater	concentration.						

END

ENTER

December 2014

Reset to

Defaults

Department of Toxic Substances Control Vapor Intrusion Screening Model - Groundwater

DATA ENTRY SHEET

CALCULATE RISK-BASED GROUNDWATER CONCENTRATION (enter "X" in "YES" box)

YES

OR

CALCULATE INCREMENTAL RISKS FROM ACTUAL GROUNDWATER CONCENTRATION (enter "X" in "YES" box and initial groundwater conc. below)

YES X

ENTER	ENTER Initial	
Chemical	groundwater	
CAS No.	conc.,	
(numbers only,	C _w	
no dashes)	(μg/L)	Chemical
91576	1.90E+01	2-Methylnaphthalene

	Results		Groundwater ntration			
Soil Gas Conc.	Attenuation Factor	Indoor Air Conc.	Cancer	Noncancer	Cancer Risk	Noncancer
(C _{source})	(alpha)	$(C_{building})$	Risk	Hazard	= 10 ⁻⁶	HQ = 1
(µg/m ³)	(unitless)	(µg/m ³)			(µg/L)	(µg/L)
3.68E+02	1.1E-05	3.9E-03	NA	2.7E-04	NA	NA

Scenario: Residential

Chemical: **2-Methylnaphthalene**

MESSAGE: Risk and/or HQ (or risk-based groundwater concentration) is based on route-to-route extrapolation. MESSAGE: Attenuation factor < 6E-05 is unreasonably low.

ENTER Depth	ENTER	ENTER	ENTER
below grade to bottom	Depth		Average soil/
of enclosed space floor,	below grade to water table,	SCS soil type	groundwater temperature,
L_F	L_{WT}	directly above	Ts
(15 or 200 cm)	(cm)	water table	(°C)
15	396	SICL	24

ENTER

Average vapor flow rate into bldg. (Leave blank to calculate)

Q_{soil}
(L/m)

5

MORE **↓**

ENTER Vadose zone SCS soil type (used to estimate soil vapor permeability)	OR	ENTER User-defined vandose zone soil vapor permeability, k _v (cm ²)	ENTER Vadose zone SCS Soil type Lookup Soil Parameters	ENTER Vadose zone soil dry bulk density, Pb (g/cm³)	ENTER Vadose zone soil total porosity, n ^V (unitless)	ENTER Vadose zone soil water-filled porosity, θ_w^V (cm^3/cm^3)
SICL			SICL	1.63	0.383	0.3

Capillary zone soil water-filled porosity > vadose zone soil total porosity.

MORE
•
·

Lookup Receptor Parameters

ENTER Target	ENTER Target hazard	ENTER Averaging	ENTER Averaging	ENTER	ENTER	ENTER	ENTER
risk for carcinogens, TR	quotient for noncarcinogens, THQ	time for carcinogens,	time for noncarcinogens, AT _{NC}	Exposure duration, ED	Exposure frequency, EF	Exposure Time ET	Air Exchange Rate ACH
(unitless)	(unitless)	(yrs)	(yrs)	(yrs)	(days/yr)	(hrs/day)	(hour) ⁻¹
1.0E-06	1	70	26	26	350	24	0.5
Used to calcula	ate risk-based					(NEW)	(NEW)

NEW=> Residential

END

Department of Toxic Substances Control Vapor Intrusion Screening Model - Groundwater

DTSC Modification
December 2014

DATA ENTRY SHEET

CALCULATE RISK-BASED GROUNDWATER CONCENTRATION (enter "X" in "YES" box)

YES

Reset to Defaults

OR CALCULATE INCREMENTAL RISKS FROM ACTUAL GROUNDWATER CONCENTRATION

YES

ENTER	ENTER Initial			
Chemical	groundwater			
CAS No.	conc.,			
(numbers only,	C_W			
no dashes)	(μg/L)		Chemical	
91203	3 60F+01	Nanhthalono		

groundwater concentration.

(enter "X" in "YES" box and initial groundwater conc. below)

	Results	Concentration				
Soil Gas Conc. (C _{source})	Attenuation Factor (alpha)	Indoor Air Conc. (C _{building})	Cancer Risk	Noncancer Hazard	Cancer Risk = 10 ⁻⁶	Noncancer HQ = 1
(µg/m³)	(unitless)	(µg/m³)			(μg/L)	(µg/L)
6.04E+02	1.3E-05	7.7E-03	9.3E-08	2.5E-03	NA	NA

Scenario: Residential

Chemical: Naphthalene

Risk-Based Groundwater

MESSAGE: Attenuation factor < 6E-05 is unreasonably low.

MORE

ENTER Depth	ENTER	ENTER	ENTER
below grade to bottom	Depth		Average soil/
of enclosed space floor,	below grade to water table,	SCS soil type	groundwater temperature,
L _F	L _{WT}	directly above	Ts
(15 or 200 cm)	(cm)	water table	(°C)
15	306	SICI	24

ENTER

Average vapor flow rate into bldg. (Leave blank to calculate) Q_{soil} (L/m)

5

MORE

ENTER Vadose zone SCS soil type (used to estimate soil vapor permeability)	OR	ENTER User-defined vandose zone soil vapor permeability, k _v (cm ²)	ENTER Vadose zone SCS soil type Lookup Soil Parameters	ENTER Vadose zone soil dry bulk density, Pb (g/cm³)	ENTER Vadose zone soil total porosity, n ^V (unitless)	ENTER Vadose zone soil water-filled porosity, θ_w^V (cm^3/cm^3)
SICL			SICL	1.63	0.383	0.3

Capillary zone soil water-filled porosity > vadose zone soil total porosity.

MORE

Lookup Receptor Parameters

ENTER Target	ENTER Target hazard	ENTER Averaging	ENTER Averaging	ENTER	ENTER	ENTER	ENTER
risk for carcinogens, TR	quotient for noncarcinogens, THQ	time for carcinogens,	time for noncarcinogens, AT _{NC}	Exposure duration, ED	Exposure frequency, EF	Exposure Time ET	Air Exchange Rate ACH
(unitless)	(unitless)	(yrs)	(yrs)	(yrs)	(days/yr)	(hrs/day)	(hour) ⁻¹
1.0E-06	1	70	26	26	350	24	0.5
Used to calcula	ate risk-based		•	-	_	(NEW)	(NEW)

END

December 2014

Department of Toxic Substances Control Vapor Intrusion Screening Model - Groundwater

DATA ENTRY SHEET

CALCULATE RISK-BASED GROUNDWATER CONCENTRATION (enter "X" in "YES" box)

YES

OR

Scenario: Residential Chemical: Pyrene

Surrogate for Phenanthrene

Reset to Defaults

CALCULATE INCREMENTAL RISKS FROM ACTUAL GROUNDWATER CONCENTRATION (enter "X" in "YES" box and initial groundwater conc. below)

YES X

ENTER	ENTER Initial	
Chemical	groundwater	
CAS No.	conc.,	
(numbers only,	C _w	
no dashes)	(μg/L)	Chemical
129000	1.00E+01	Pyrene

	Results	Risk-Based Groundwater Concentration				
Soil Gas Conc.	Attenuation Factor	Indoor Air Conc.	Cancer	Noncancer	Cancer Risk	Noncancer
(C _{source})	(alpha)	$(C_{building})$	Risk	Hazard	= 10 ⁻⁶	HQ = 1
(µg/m ³)	(unitless)	(µg/m ³)			(µg/L)	(µg/L)
4.34E+00	1.8E-04	7.6E-04	NA	7.0E-06	NA	NA

MESSAGE: Risk and/or HQ (or risk-based groundwater concentration) is based on route-to-route extrapolation.

ENTER Depth	ENTER	ENTER	ENTER
below grade to bottom	Depth		Average soil/
of enclosed space floor,	below grade to water table,	SCS soil type	groundwater temperature,
L _F	L _{WT}	directly above	T _S
(15 or 200 cm)	(cm)	water table	(°C)
15	396	SICL	24

ENTER

Average vapor flow rate into bldg. (Leave blank to calculate)

Q_{soil}
(L/m)

5

ENTER Vadose zone SCS soil type (used to estimate soil vapor permeability)	OR	ENTER User-defined vandose zone soil vapor permeability, k _v (cm ²)	ENTER Vadose zone SCS Soil Type Lookup Soil Parameters	ENTER Vadose zone soil dry bulk density, ρ_b^V (g/cm³)	ENTER Vadose zone soil total porosity, n ^V (unitless)	ENTER Vadose zone soil water-filled porosity, θ_w^V (cm^3/cm^3)
SICL			SICL	1.63	0.383	0.3

Capillary zone soil water-filled porosity > vadose zone soil total porosity.

MORE	
ullet	

Lookup Receptor Parameters

ENTER Target	ENTER Target hazard	ENTER Averaging	ENTER Averaging	ENTER	ENTER	ENTER	ENTER
risk for carcinogens, TR	quotient for noncarcinogens, THQ	time for carcinogens,	time for noncarcinogens, AT _{NC}	Exposure duration, ED	Exposure frequency, EF	Exposure Time ET	Air Exchange Rate ACH
(unitless)	(unitless)	(yrs)	(yrs)	(yrs)	(days/yr)	(hrs/day)	(hour) ⁻¹
1.0E-06	1	70	26	26	350	24	0.5
Used to calcula	ate risk-based					(NEW)	(NEW)

NEW=> Residential

END

APPENDIX F

LIMITATIONS

LIMITATIONS

The environmental investigation described in this report has been conducted in accordance with current regulatory guidance and the standards of environmental and geological practice performed in the general project area. No warranty, expressed or implied, is made regarding the professional opinions presented in the report.

Essel Environmental Consulting's descriptions, conclusions, and recommendations in the report, with respect to environmental conditions, are based on a limited number of sampling points and chemical analyses. Field observations made during the investigation and the samples collected and submitted for testing are considered to be representative of the area evaluated. Subsurface soil and ground-water conditions; however, may vary between and beyond sampling or observation points. Additional work, including further subsurface investigation, can reduce the inherent uncertainties associated with this type of investigation.

The interpretations and opinions contained in this report are based on the results of laboratory tests and analyses intended to detect the presence and concentration of specific chemical or physical constituents in samples collected from the subject site. Chemical testing was conducted by an analytical laboratory that is certified by the state of California to perform the analyses requested for this investigation. Essel Environmental Consulting is not associated with the laboratory that performed the analyses and claims no responsibility for any inaccuracy in laboratory results.

This document is intended to be used in its entirety. No portion of the document, by itself, is designed to completely represent every aspect of the project. Essel Environmental Consulting should be contacted if the reader requires any additional information, or has questions regarding content, interpretations presented, or completeness of this document.

This report, furthermore, is intended for the exclusive use by the client. Any use of the contents of this report by parties other than the client is undertaken at those parties' sole risk.