

By Alameda County Environmental Health at 9:46 am, Feb 04, 2015

January 30, 2015

Mr. Keith Nowell Alameda County Health Care Services Agency 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577

I, Larry David hereby authorize ERAS Environmental, Inc. to submit the Basics P-2 report dated for 106-110 Hegenberger Rd., Oakland in Oakland, California, dated August 27, 2014 to the Alameda County Health Care Services Agency.

I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge.

Signature:

Printed Name: _____Larry David

Mr. Larry David 626.836.2908 jld@jldawoffice.com

LIMITED PHASE II ENVIRONMENTAL SITE SAMPLING REPORT

106-110 Hegenberger Road Oakland California

FOR

Balaji Enterprises, LLC 66 Airport Access Road Oakland, CA 94603

August 27, 2014 14-ENV3860

65512TH STREET, #126•OAKLAND, CA•94607•TEL / FAX 510-834-9099 / 9098

August 27, 2014 14-ENV3860

Balaji Enterprises, LLC 66 Airport Access Road Oakland, CA 94603

Attention: Mr. Dhruv Patel

Subject: Limited Phase II Environmental Site Sampling Report 106-110 Hegenberger Road Oakland, California 94621

Dear Mr. Patel:

Basics Environmental, Inc. (Basics) is pleased to present the results of a Limited Phase II Environmental Site Sampling Report for the site located at 106-110 Hegenberger Road in Oakland, California. This Limited Phase II Environmental Site Sampling Report is based on the information compiled by Basics' subconsultant Ms. Lita Freeman, Professional Geologist #7368 with Environmental Risk Assessors.

Based on four shallow soil and five soil gas samples collected, residual impacts remain present in the area of the former clarifier at concentrations in the soil that would present a potential risk to construction workers in direct contact with the impacted soil and at concentrations in soil gas that would present a potential excess cancer risk due to the migration of vapors into buildings.

Should you have any questions regarding this report, please contact the undersigned.

Sincerely,

Basics Environmental, Inc.

Donavan G. Tom, M.B.A., E.P. Principal Consultant

PROFESSIONAL CERTIFICATION

LIMITED PHASE II ENVIRONMENTAL SITE SAMPLING REPORT 106-110 Hegenberger Road Oakland, California For Balaji Enterprises, LLC 14-ENV3860 August 27, 2014

This report has been prepared by the staff of Basics Environmental, Inc. (Basics) under the professional supervision of an "Environmental Professional" as defined by the U.S. Environmental Protection Agency's Final Rule. The findings, interpretations of data, recommendations, specifications or professional opinions are presented within the limits prescribed by available information at the time the report was prepared, in accordance with generally accepted professional environmental practice and within the requirements by the Client. There is no other warranty, either expressed or implied.

The data and findings of this report are based on the data and information obtained from the agreed upon scope of work between Basics and the Client. Because contamination is not necessarily evenly distributed across the property's soils and ground water, it can easily remain undetected and geology may control the subsurface distribution of contamination. Additional scope of services including geologic interpretation (at greater cost) may or may not disclose information which may significantly modify the findings of this report. We accept no liability on completeness or accuracy of the information presented and or provided to us, or any conclusions and decisions which may be made by the Client or others regarding the subject site.

This report was prepared solely for the benefit of Basic's Client. Basics consents to the release of this report to third parties involved in the evaluation of the property for which the report was prepared, including without limitation, lenders, title companies, public institutions, attorneys, and other consultants. However, any use of or reliance upon this report shall be solely at the risk of such party and without legal recourse against Basics, or its subcontractors, affiliates, or their respective employees, officers, or directors, regardless of whether the action in which recovery of damage is sought is based upon contract, tort (including the sole, concurrent or other negligence and strict liability of Basics), statute or otherwise. This report shall not be used or relied upon by a party that does not agree to be bound by the above statements.

Donavan G. Tom, E.P. Principal Consultant

LIMITED PHASE II

Lita D. Freeman

Lita D. Freeman, P.G. #7368 Associate Consultant (Expires 12/31/14)

14-ENV3860

Table of Contents

1.	EXECU	ITIVE S	UMMARY	1								
	1.1	Backgr	ound	1								
	1.2	Investi	gation	1								
	1.3	Finding	js	2								
	1.4	Conclu	sions	2								
	1.5	Recom	mendations	2								
2.	INTRO	DUCTIC	DN	3								
	2.1	Site De	escription	3								
	2.2	Backgr	ound	3								
	2.3	Objecti	ves and Scope of Work	4								
	2.4	Limitat	ions and Exceptions	4								
	2.5	Specia	I Terms and Conditions	4								
	2.6	User R	eliance	4								
	2.7	Qualific	cations	5								
3.	VAPOF		ENCROACHMENT									
4.	FIELD	INVEST	IGATION	5								
	4.1	Pre-Fie	eld Activities	5								
		4.1.1	Health and Safety	5								
		4.1.2	Permitting	6								
	4.2	Field A	ctivities	6								
		4.2.1	Utility Clearance	6								
		4.2.2	Drilling and Sampling	6								
			4.2.2.1 Soil Gas Sampling	7								
			4.2.2.2 Soil Sampling	7								
		4.2.3	Borehole Abandonment and Investigation-Derived Waste Handling	7								
5.	ANALY	'SIS, RE	ESULTS, AND EVALUATION	7								
	5.1	Soil Ga	as Analysis and Results	8								
	5.2	Soil An	alysis and Results	8								
	5.3	EVALU	JATION	8								
		5.3.1	Soil Gas Results Evaluation	9								

Table of Contents

	5.3.2	Soil Results Evaluation	9
6.	CONCLUSION	S	10
7.	RECOMMEND	ATIONS	10
8.	REFERENCES	6	10

Tables

- 1 General Site Information (*embedded in text*)
- 2 Sampling and Analysis Summary
- 3 Soil Gas Samples Analytical Summary
- 4 Soil Samples Analytical Summary

Figures

- 1 Site Location Map
- 2 Site Plan
- 3 Former Clarifier Area and Sample Locations

Appendices

- A Site Photographs
- B Approved Alameda County Public Works Agency Soil Boring Permit
- C Soil Boring Logs
- D Laboratory Analytical Report and Chain-of-Custody Documentation

1. EXECUTIVE SUMMARY

Environmental Risk Assessors (ERA) is pleased to present this Limited Phase II Environmental Site Assessment (ESA) Report (the "Report") for the 1.17-acre property located at 106-110 Hegenberger Road, Oakland, Alameda County, California (the "Site"; Figure 1). The Site is comprised of one parcel which is designated by the Alameda County Assessor as Assessor's Parcel Number (APN) 44-5020-5-42 (Figure 2).

1.1 Background

A gasoline service station with a carwash was formerly located on the Site. Three 10,000-gallon gasoline underground storage tanks (USTs) and one 2-stage clarifier were removed from the Site in the past. Soil samples were collected from the excavation sidewalls of the USTs and clarifier for chemical analysis during the removal operations. Groundwater was reportedly not encountered during removal of the USTs and clarifier. During subsequent investigations, groundwater was reported at depths of about 5 feet below ground surface (bgs) in the area of the former USTs and about 0.5 feet bgs at the former clarifier. Groundwater samples were collected for chemical analysis from monitoring wells installed on the Site. In January 1996, the Alameda County Environmental Health Department (ACEHD) indicated that the Site qualified as a "low risk groundwater case" except for the former clarifier sump area. Residual concentrations of total petroleum hydrocarbons (TPH) quantified as gasoline (TPH-g), TPH quantified as diesel (TPH-d), total oil and grease (O&G), and select heavy metals were noted by ACEHD as remaining on the Site.

BSK and Associates (BSK) conducted a subsurface investigation and performed a human health risk assessment in 1998. BSK concluded that residual impacts within a radius of less than 10 feet of sampling point V-1 (located adjacent to the east of the former clarifier) would present a potential excess cancer risk due to the migration of vapors into buildings constructed over this area. BSK recommended that the ACEHD grant case closure with a deed restriction that would prohibit construction of buildings within a 10 foot radius of sampling point V-1.

BSK prepared a Risk Management Plan (RMP) in 1999 that presented procedures to protect future on-site construction workers. According to the RMP, buildings should not be placed in the area south of the former clarifier without remediation of the petroleum hydrocarbons-impacted soil or use of construction techniques to prevent the migration of vapors through the floor slab into on-site buildings.

The ACEHD issued a case closure letter on February 8, 2001, to J.L. David for the Diablo Cellular property (the Site). The letter confirms the completion of the investigation and cleanup of the reported release at the Site but notes the presence of residual petroleum hydrocarbons remaining in soil as follows:

- TPH-g at concentrations of 2,100 milligrams per kilograms (mg/kg);
- TPH-d at concentrations of 110 mg/kg; and
- O&G at concentrations of 13,000 mg/kg.

1.2 Investigation

The objective of this Limited Phase II ESA was to evaluate current subsurface conditions in the former clarifier area. To meet this objective, soil gas and soil samples were collected for analysis with comparison of the analytical results to established screening levels. The investigation consisted of the following:

- Collecting five soil gas samples from sampling locations, designated SB-1 through SB-5, in the area of former sampling points V-1 through V-5, respectively;
- Submitting the soil gas samples for volatile organic compounds (VOCs) analysis;

- Collecting four soil samples from soil borings, designated SB-6 through SB-9, in the area of former sampling points B-101, HA-4-5, HA-7-5, and at the southern end of sampling area, respectively;
- Submitting the soil samples for petroleum hydrocarbons (gasoline, diesel, and oil and grease), metals (cadmium, chromium, lead, nickel, and zinc), and VOCs analysis.

1.3 Findings

Various VOCs were detected in soil gas at concentrations at or above their respective laboratory reporting limit. Detected VOCs included benzene, toluene, ethylbenzene, xylenes, and tetrachloroethene (PCE). Comparison of the VOC concentrations to the Environmental Screening Levels (ESLs) for soil gas for evaluation of potential vapor intrusion as established by the California Environmental Protection Agency, San Francisco Bay Regional Water Quality Control Board (SFBRWQCB, Table E-2, December 2013) indicate that detected benzene concentrations in soil gas samples SB-1 and SB-2 were above its ESL. The laboratory reporting limits for benzene in one sample (SB-5), PCE in two samples (SB-1 and SB-5), and ethylbenzene in one sample (SB-5) were above their respective ESL, therefore, the actual concentrations of these compounds in these sample may be below or above their ESL.

Petroleum hydrocarbons, various VOCs, and some metals were detected in soil samples. The results were compared to applicable ESLs as established by the SFBRWQCB for shallow soil at commercial/industrial land use where groundwater is a current or potential drinking water resource (Table A-2, December 2013), groundwater is not a current or potential drinking water resource (Table B-2, December 2013), and for workers in direct contact with impacted soil (Table K-2, December 2013). The soil data revealed the following:

- Petroleum hydrocarbons were detected in each of the soil samples. The concentrations of TPH-g, TPH-d, and O&G in soil samples SB-6-5 and SB-7-5 were above their respective ESL for commercial/industrial land use (Tables A-2 and B-2) but below the direct contact ESL (Table K-2).
- The VOC benzene in soil samples SB-6-5 and SB-7-5, naphthalene in soil samples SB-6-5 and SB-7-5, and ethylbenzene in soil sample SB-6-5, were reported at concentrations above their respective ESL for commercial/industrial land use (Tables A-2 and B-2). Benzene and naphthalene in soil sample SB-6-5 were also reported at concentrations above their respective ESL for direct contact (Table K-2).
- Chromium, lead, nickel, and zinc were detected in each of the soil samples; the concentrations were below their respective ESL for commercial/industrial land use (Tables A-2 and B-2) and direct contact (Table K-2).

1.4 Conclusions

The results of this Limited Phase II ESA indicate that residual impacts are still present in the former clarifier area at concentrations in soil gas that would present a potential excess cancer risk due to the migration of vapors into buildings and at concentrations in soil that would present a potential risk to construction workers in direct contact with the impacted soil. The highest VOC concentrations detected during this Limited Phase II ESA were reported at sampling location SB-1; this corresponds to data collected during past investigations.

1.5 Recommendations

Based on the findings of this Limited Phase II ESA, ERA concurs with BSK's conclusion that future buildings should not be placed above the former clarifier area unless remedial actions are taken to reduce the residual concentrations of VOCs (specifically benzene) and petroleum hydrocarbons.

ERA recommends review and, if appropriate, update of BSK's RMP using data collected during this Limited Phase II ESA. The RMP should be implemented during future construction activities at the Site.

2. INTRODUCTION

ERA is pleased to present this Limited Phase II ESA Report for the approximately 1.17-acre property located at 106 – 110 Hegenberger Road, Oakland, Alameda County, California. The Site consists of Alameda County Assessor's Parcel Number (APN) 44-5020-5-42.

The findings and conclusions presented in this Report are based on the results of a limited assessment that included collecting and analyzing soil gas and soil samples from the Site and evaluating the data obtained during the field investigation and provided by the analytical laboratory.

2.1 Site Description

Basics Environmental, Inc. requested that ERA conduct a limited Phase II ESA of the Site to facilitate their evaluation of the Site and current subsurface conditions. Site-specific information is presented in Table 1.

Table 1. General Site Information											
Project Name: Hegenberger Road Property	Current Development: Commercial building										
Address: 106 – 110 Hegenberger Road, Oakland	APN: 44-5020-5-42										
Property Size: 1.17 acres	Occupant(s): Vacant property										
Location: Northeast of the Hegenberger Road and Pardee Drive intersection											

2.2 Background

A gasoline service station with a carwash was formerly located on the Site. Three 10,000-gallon gasoline USTs and one 2-stage clarifier were removed from the Site in the past. Soil samples were collected from the excavation sidewalls of the USTs and clarifier for chemical analysis.

Groundwater was reportedly not encountered during removal of the USTs and clarifier (maximum excavation depth of 10 feet bgs). During subsequent investigations, groundwater was reported at depths of about 5 feet bgs in the area of the former USTs and about 0.5 feet bgs at the former clarifier.

Groundwater samples were collected for chemical analysis from monitoring wells installed on the Site. In January 1996, the ACEHD indicated that the Site qualified as a "low risk groundwater case" except for the former clarifier sump area. Residual concentrations of TPH-g, TPH-d, O&G, and select heavy metals were noted by ACEHD as remaining in on-site soil.

BSK conducted a subsurface investigation and performed a human health risk assessment in 1998. BSK concluded that the area which would present a potential excess cancer risk due to the migration of vapors into buildings appeared to be limited to a small area with a radius of less than 10 feet of sampling point V-1 (located adjacent to the east of the former clarifier). BSK recommended that the ACEHD grant case closure with a deed restriction that would prohibit construction of buildings within a 10-foot radius of sampling point V-1 or require special construction techniques which would prevent vapor intrusion into future on-site buildings.

The RMP prepared by BSK in 1999 presented procedures to protect construction workers should construction activities occur at the Site in the future. The RMP notes that a health and safety plan should be prepared and submitted to the ACEHD for review prior to future construction activities. The RMP indicated that buildings should not be placed in the area south of the former clarifier without remediation of the soil that has been impacted by petroleum hydrocarbons or use of construction techniques which would prevent the migration of petroleum hydrocarbon vapors through the floor slab and into the buildings.

2.3 Objectives and Scope of Work

The objective of this Limited Phase II ESA was to evaluate current subsurface conditions in the area of the former clarifier. To meet this objective, soil gas and soil samples were collected from the Site for chemical analysis and comparison of the analytical results to established screening levels.

This Limited Phase II ESA conducted by ERA included the following services:

- advancing five borings to a depth of about 3 feet bgs and collecting soil gas samples;
- advancing four borings to a depth of about 5 feet bgs and collecting soil samples;
- submitting the samples to the project laboratory for analysis; and
- preparing this Report presenting our findings, evaluation, conclusions, and recommendations, as warranted.

2.4 Limitations and Exceptions

The opinions and recommendations presented in this Report are based upon the scope of services, information obtained through the performance of the services, and the schedule as agreed upon by ERA and the party for whom this report was originally prepared. This Report is an instrument of professional service and was prepared in accordance with the generally accepted standards and level of skill and care under similar conditions and circumstances established by the environmental consulting industry. No representation, warranty, or guarantee, express or implied, is intended or given. To the extent that ERA relied upon any information prepared by other parties not under contract to ERA, ERA makes no representation as to the accuracy or completeness of such information.

This Report is expressly for the sole and exclusive use of the parties for which this Report was originally prepared for a particular purpose. Only the parties for which this Report was originally prepared and/or other specifically named parties, may make use of and rely upon the information in this Report. Reuse of this Report or any portion thereof for other than its intended purpose, or if modified, or if used by third parties without proper authorization, shall be at the user's sole risk.

The findings presented in this Report apply solely to site conditions existing at the time when ERA's assessment was performed. It must be recognized, however, that a Limited Phase II ESA is conducted for the purpose of evaluating the potential for contamination through limited investigative activities and in no way represents a conclusive or complete site characterization. Conditions in other parts of the project site may vary from those at the locations where data were collected. ERA's ability to interpret investigation results is related to the availability of the data and the extent of the investigation activities. As such, 100 percent confidence in limited Phase II ESA conclusions cannot reasonably be achieved.

Nothing contained in this document shall relieve any other party of its responsibility to abide by contract documents and applicable laws, codes, regulations, or standards.

2.5 Special Terms and Conditions

The scope of work for this Limited Phase II ESA was presented in ERA's proposal dated July 21, 2014. The scope of work for this assessment did not include tasks not specifically noted in the proposal.

2.6 User Reliance

This Report is for the exclusive use of the parties for which it was prepared, their agents, and assignees, and for such other parties as ERA agrees may rely on the Report. Use of this Report by any other party shall be at such party's sole risk.

2.7 Qualifications

A summary of the ERA personnel who worked on this project follows:

 Ms. Lita Freeman, California Professional Geologist and California Asbestos Consultant, has over 24 years of experience providing site assessment services. This has included evaluating potential property impacts from historical on- and off-site operations, conducting subsurface investigations, and implementing site remediation plans. Ms. Freeman works with property owners, attorneys, and regulators to mitigate and resolve environmental issues.

3. VAPOR ENCROACHMENT

Vapor encroachment occurs when vapors from volatile chemicals in polluted soil or groundwater are present in sufficient concentrations and under certain conditions such that volatile chemical vapors may migrate upwards into the indoor air of overlying buildings. Vapor encroachment chemicals of concern (COCs) include VOCs. Once contaminant vapors enter a structure, they may accumulate and potentially pose health hazards for building occupants.

To ensure that vapor encroachment is appropriately considered when performing an environmental site assessment, the American Society for Testing and Materials International (ASTM) released its Vapor Encroachment Standard (ASTM E2600-10) in 2010. In accordance with the new standard, two conditions are evaluated: Vapor Encroachment Condition (VEC) and potential Vapor Encroachment Condition (pVEC). A VEC results from "the presence or likely presence of any chemicals of concern in the indoor air environment of existing or planned structures on a property caused by the release of vapor from contaminated soil or groundwater on the property or within close proximity to the property, at a concentration that presents or may present an unacceptable health risk to occupants." A pVEC is "a condition that exists when screening indicates the possibility of a VEC, but where there is insufficient data to ascertain the presence or likely presence of COCs in the indoor air environment." "Chemicals of Concern" are defined by the ASTM to be "chemicals in the subsurface environment that are known or reasonably expected to be present, that can potentially migrate as a vapor into an existing or planned structure on a property, and that are generally recognized as having the potential for an adverse impact on human health."

Previous investigations have identified vapor encroachment COCs (as identified in ASTM E 2600) into the Site's subsurface from past site operations. Therefore, soil gas sampling was conducted as part of this Limited Phase II ESA.

4. FIELD INVESTIGATION

This Limited Phase II ESA was conducted to evaluate current conditions by collecting soil gas and soil samples from select on-site locations for analysis with comparison of the analytical results to established screening levels. The scope of work and results of this Limited Phase II ESA are presented below.

Photographs of the site and site investigation are included in Appendix A.

4.1 Pre-Field Activities

Prior to conducting field activities associated with the proposed assessment, the pre-field tasks described below were completed.

4.1.1 Health and Safety

ERA prepared a site-specific *Health and Safety Plan* for the scope of work as required by the Occupational Health and Safety Administration (OSHA) Standard "Hazardous Waste Operations and Emergency

Response" guidelines (29 CFR 1910.120). The document was reviewed and signed by ERA personnel and subcontractors performing work at the Site.

4.1.2 Permitting

ERA obtained a soil boring permit from the Alameda County Public Works Agency (ACPWA) prior to commencing intrusive field activities. ERA coordinated field activities with the ACPWA and scheduled an ACPWA inspector to document compliance with permit requirements. A copy of the approved permit is presented in Appendix B.

4.2 Field Activities

4.2.1 Utility Clearance

Prior to conducting subsurface work at the Site, the soil boring locations were cleared for underground utilities by notifying Underground Services Alert North (USA North) at least 48 hours prior to intrusive field activities.

4.2.2 Drilling and Sampling

On August 11, 2014, ERA personnel provided oversight of Environmental Control Associates, a California licensed driller, during advancement of the borings using a Geoprobe direct-push drilling rig. A total of nine borings were advanced at on-site locations (Figure 3); the boring locations were selected based on available historical information and site observations. Table 2 presents a summary of the sampling and analysis program for this Limited Phase II ESA.

Down-hole drilling and sampling equipment was washed in a tri-sodium phosphate solution following the completion of sample collection activities for each soil boring.

The borings were located on the eastern side of the former clarifier in the area of highest historical contaminant concentrations in soil gas (sampling point V-1) and soil (sampling points B-101, HA-4-5, and HA-7-5). Soil gas samples were collected from five borings at a depth of about 3 feet bgs and soil samples were collected from four borings at the 4.5 to 5.0 feet bgs depth interval. The boring identifications are as follows:

- Boring SB-1: soil gas sample at location of former sampling point V-1
- Boring SB-2: soil gas sample at location of former sampling point V-2
- Boring SB-3: soil gas sample at location of former sampling point V-3
- Boring SB-4: soil gas sample at location of former sampling point V-4
- Boring SB-5: soil gas sample at location of former sampling point V-5
- Boring SB-6: soil sample at location of former sampling point B-101
- Boring SB-7: soil sample at location of former sampling point HA-4-5
- Boring SB-8: soil sample at location of former sampling point HA-7-5
- Boring SB-9: soil sample at southern end of sampling area

Soil sampling was conducted during drilling using new acetate sleeves. Soil samples were screened in the field with a photoionization detector (PID) and observed for evidence of chemical staining. The soil screening procedures involved measuring approximately 30 grams from a relatively undisturbed soil sample and placing this sample in a sealed zip-lock bag. The container was warmed in the sun for approximately 20 minutes, then the head space within the bag was tested for total organic vapor, measured in parts per million volume (ppmv). Elevated (above background) PID measurements and evidence of impacted soil (i.e. staining, odors, sheen, etc.) were not noted during sampling. The highest PID reading (145 ppmv) was in sample SB-6 at 3 feet. Elevated readings (above the background level of 0.0 ppmv) were also recorded in sample SB-6 at 4 feet (58.2 ppmv) and sample SB-7 at 5 feet (101 ppmv). The PID results were recorded on the field boring logs which are included in Appendix C.

4.2.2.1 Soil Gas Sampling

A truck-mounted direct-push unit was used to drive a steel probe equipped with a hardened, reversethreaded steel driving point into the subsurface to a depth of about 3 feet bgs to collect a soil gas sample. Inert nylon tubing with a screened sampling port at the tip was placed through the center of the rod and the rod was withdrawn; the tubing was sealed by filling the annular space around the tubing with clean fill sand in the lower 1 foot of the borehole (two 6-inch sand layers with a diffuser between the sand layers). A 6inch thick layer of unhydrated granulated bentonite was placed above the sand with hydrated granulated bentonite placed above the unhydrated bentonite to the pavement surface to seal the borehole.

Each soil gas sample was collected in an evacuated 1-liter stainless steel Summa canisters equipped with regulators to control sample collection flow rate. At each sampling location, the tubing was connected to the vacuum gauge which was then connected to the Summa canister; the valve on the canister was opened, thereby placing a vacuum on the sampling tip and drawing the soil gas sample into the canister. The tubing was purged for approximately 2 minutes at each location prior to sampling. The serial numbers of the vacuum gauge and Summa canister used at each sampling location were recorded, along with the initial and final vacuum readings.

A leak test was performed using a tracer gas to evaluate possible ambient air intrusion into the Summa canisters during the soil gas sampling. The tracer gas that was used during this project was 1,1- difluoroethane (1,1-DFA), which is the propellant found in duster spray. The leak test consisted of placing a cloth soaked in 1,1-DFA into a sealed plastic bag at each soil gas sample location. The plastic bag was placed adjacent to the sampling train and opened after the valve on the Summa canister was opened to allow collection of the soil gas sample into the canister. After an internal vacuum of approximately -5 inches mercury (Hg) was reached (from an initial vacuum of approximately -30 inches Hg), the Summa canister's valve was closed and the canister capped, labeled, and transported to the project laboratory under chain of custody documentation.

Pertinent field sampling data for the soil gas sampling are presented in Table 3.

4.2.2.2 Soil Sampling

A truck-mounted direct-push unit was used to drive a steel probe lined with acetate tubes into the ground to the desired depth. The soil samples were retained in the acetate tubes, capped with Teflon squares and plastic end caps, and sealed in zip-lock bags. Soil samples were labeled with the boring identification number and the bottom depth (5 feet bgs) of the sampling interval. The soil samples were placed on ice and transported under chain-of-custody protocols to the project laboratory.

4.2.3 Borehole Abandonment and Investigation-Derived Waste Handling

After the sampling activities were complete, each boring was backfilled with cement grout and bentonite in accordance with the ACPWA permit requirements and the ACPWA inspector's directions.

Investigation-derived waste (IDW), which was limited to soil cuttings, produced during sampling activities were containerized in one 5-gallon container and left on the Site pending receipt of analytical results. Appropriate off-site disposal options will be presented to the client after evaluation of the analytical results.

5. ANALYSIS, RESULTS, AND EVALUATION

The soil gas and soil samples were submitted to McCampbell Analytical Laboratories of Pittsburg, California, a laboratory certified by the State of California to perform the requested analyses. The analytical methods,

results, and evaluation of this Limited Phase II ESA are presented below. Copies of the laboratory analytical report and chain-of-custody documentation are presented in Appendix D.

5.1 Soil Gas Analysis and Results

The five soil gas samples were analyzed for VOCs using U.S. Environmental Protection Agency (U.S. EPA) Method TO-15.

Various VOCs were detected in soil gas at concentrations at or above their respective laboratory reporting limit. Detected VOCs included benzene, toluene, ethylbenzene, xylenes, and PCE.

The leak detection compound 1,1-DFA was detected in three (SB-1, SB-2, and SB-4) of the five soil gas samples.

The analytical results for the soil gas samples are presented in Table 3.

5.2 Soil Analysis and Results

One soil sample was collected from each boring and analyzed as follows:

- TPH-g and TPH-d using U.S. EPA Method 8015B;
- O&G using U.S. EPA Method SM5520C/F ;
- VOCs, including benzene, toluene, ethylbenzene, and xylenes, using U.S. EPA Method 8260B; and
- Leaking Underground Fuel Tank (LUFT) 5 metals, cadmium, chromium, lead, nickel, and zinc, using U.S. EPA Method 6000/7000 Series.

Petroleum hydrocarbons, VOCs, and metals were detected in one or more of the soil samples, as discussed below. The analytical results for the soil samples are presented in Table 4.

- Petroleum hydrocarbons (TPH-g, TPH-d, and O&G) were detected in each of the soil samples at concentrations up to 1,200 mg/kg TPH-g, 400 mg/kg TPH-d, and 910 O&G.
- Various VOCs, including benzene and naphthalene, were detected in soil samples SB-6-5, SB-7-5, and SB-8-5. Concentrations of benzene up to 8.6 mg/kg and naphthalene up to 19 mg/kg were reported in these samples. VOCs were not detected in sample SB-9-5 at concentrations at or above their laboratory reporting limits.
- Cadmium was not detected in the soil samples at concentrations at or above the laboratory reporting limits. Chromium, lead, nickel, and zinc were detected in each of the soil samples.

5.3 EVALUATION

The concentrations of compounds of concern detected in soil gas and soil samples were compared to Environmental Screening Levels (ESLs) as established by the California Environmental Protection Agency, San Francisco Bay Regional Water Quality Control Board (SFBRWQCB, Soil Gas Screening Levels for Evaluation of Potential Vapor Intrusion, Table E-2, December 2013, and Shallow Soil Screening Levels [<3 m bgs] Commercial/Industrial Land Use [groundwater is a current or potential drinking water resource], Table A-2, December 2013) for commercial/industrial land use shallow soil (see Tables 3 and 4).

The ESLs for shallow soil where groundwater is not a current or potential drinking water resource (Shallow Soil Screening Levels [<3 m bgs] Commercial/Industrial Land Use [groundwater is a current or potential drinking water resource], Table B-2, December 2013) for commercial/industrial land use shallow soil were also used for evaluation.

In addition, the soil sample results were compared to ESLs for protection of construction workers in direct contact with impacted soil as established by the SFBRWQCB for commercial/ industrial land use (SFBRWQCB, Direct Exposure Soil Screening Levels, Commercial/Industrial Worker Exposure Scenario, Table K-2, December 2013).

5.3.1 Soil Gas Results Evaluation

Comparison of the VOC concentrations to the ESLs for soil gas (SFBRWQCB, Soil Gas Screening Levels for Evaluation of Potential Vapor Intrusion, Table E-2, December 2013) indicate that detected benzene concentrations in soil gas samples SB-1 and SB-2 were above its ESL of 420 micrograms per cubic meter. The remaining VOC concentrations detected in the soil gas samples were less than their respective laboratory reporting limit and/or ESL; however, the laboratory reporting limits for some VOCs (benzene in SB-5, PCE in SB-1 and SB-5, and ethylbenzene in SB-5) were above their respective ESL.

ESLs have not been established for all of the detected VOCs, including heptane and hexane.

The presence of 1,1-DFA indicates leakage of ambient air into the Summa canister during the sampling event; results for samples with detection of 1,1-DFA are considered an underestimate of actual VOC concentrations in the soil gas samples.

5.3.2 Soil Results Evaluation

The soil sample results were compared to ESLs for soil as established by the SFBRWQCB for commercial/ industrial land use (SFBRWQCB, Shallow Soil Screening Levels [<3m bgs] Commercial/ Industrial Land Use [groundwater is a current or potential drinking water resource], Table A-2, December 2013). The soil data revealed the following:

- The concentrations of TPH-g, TPH-d, and O&G in soil samples SB-6-5 and SB-7-5 were above their respective ESL of 500 mg/kg, 110 mg/kg, and 500 mg/kg for commercial/industrial land use.
- The VOCs benzene and naphthalene were detected in soil samples SB-6-5 and SB-7-5 at concentrations above their respective ESL of 0.044 mg/kg and 1.2 mg/kg for commercial/industrial land use. In addition, ethylbenzene was detected in soil sample SB-6-5 at a concentration above its ESL of 3.3 mg/kg for commercial/industrial land use.
- The concentrations of chromium, lead, nickel, and zinc detected in each of the soil samples were below their respective ESL of 2,500 mg/kg, 320 mg/kg, 150 mg/kg, and 600 mg/kg for commercial/industrial land use.

The soil sample results were also compared to ESLs for soil as established by the SFBRWQCB for commercial/industrial land use where groundwater is *not* a current or potential drinking water resource (SFBRWQCB, Shallow Soil Screening Levels [<3m bgs] Commercial/ Industrial Land Use [groundwater is not a current or potential drinking water resource], Table B-2, December 2013). These screening levels are less conservative that those presented in Table A-2; however, using these screening levels did not change the results of the evaluation.

Comparison of the soil sample results to ESLs for protection of construction workers in direct contact with impacted soil as established by the SFBRWQCB for commercial/ industrial land use (SFBRWQCB, Direct Exposure Soil Screening Levels, Commercial/Industrial Worker Exposure Scenario, Table K-2, December 2013) indicated that benzene and naphthalene concentrations in soil sample SB-6-5 were above their respective ESLs of 3.7 mg/kg and 15 mg/kg.

6. CONCLUSIONS

The results of this Limited Phase II ESA indicate that residual impacts are still present in the area of the former clarifier at concentrations in soil gas that would present a potential excess cancer risk due to the migration of vapors into buildings and at concentrations in soil that would present a potential risk to construction workers in direct contact with the impacted soil. The highest VOC concentrations detected during this Limited Phase II ESA were reported at sampling location SB-1; this corresponds to data collected during past investigations.

7. RECOMMENDATIONS

Based on the findings of this limited Phase II ESA, ERA concurs with BSK's conclusion that future buildings should not be placed above the area of the former clarifier unless remedial actions are taken to reduce the residual concentrations of VOCs (specifically benzene) and petroleum hydrocarbons.

The RMP prepared by BSK presents procedures to protect construction workers from inhalation of vapors and/or contact with impacted soil in the area of the former clarifier should construction activities occur at the Site in the future. ERA recommends review and, if appropriate, update of the RMP using data collected during this Limited Phase II ESA. The RMP should be implemented during site work which would involve inhalation of vapors and/or direct contact with impacted soil in the area of the former clarifier.

8. REFERENCES

- American Society for Testing and Materials (ASTM), *Standard Guide for Vapor Encroachment Screening on Property Involved in Real Estate Transactions*, June 2010.
- California Environmental Protection Agency, San Francisco Bay Regional Water Quality Control Board, Environmental Screening Levels, Table E-2: Soil Gas Screening Levels for Evaluation of Potential Vapor Intrusion (volatile chemicals only), Interim Final, December 2013.
- California Environmental Protection Agency, San Francisco Bay Regional Water Quality Control Board, Environmental Screening Levels, Table A-2: Shallow Soil Screening Levels (<3m bgs) Commercial/Industrial Land Use (Groundwater is a Current or Potential Drinking Water Resource), Interim Final, December 2013.
- California Environmental Protection Agency, San Francisco Bay Regional Water Quality Control Board, Environmental Screening Levels, Table B-2: Shallow Soil Screening Levels (<3m bgs) Commercial/Industrial Land Use (Groundwater is not a Current or Potential Drinking Water Resource), Interim Final, December 2013.
- California Environmental Protection Agency, San Francisco Bay Regional Water Quality Control Board, Environmental Screening Levels, Table K-2: Direct Exposure Soil Screening Levels, Commercial/Industrial Worker Exposure Scenario, Interim Final, December 2013.

Limited Phase II Environmental Site Assessment Report Hegenberger Road, Oakland, CA

SIGNATURES OF ENVIRONMENTAL PROFESSIONAL

Report Prepared By:

Acta D. Freeman

August 26, 2014

Lita D. Freeman, P.G. Principal Geologist California Professional Geologist No. 7368 Date

* A professional geologist's certification of conditions comprises a declaration of his or her professional judgment. It does not constitute a warranty or guarantee, expressed or implied, nor does it relieve any other party of its responsibility to abide by contract documents, applicable codes, standards, regulations, and ordinances.

FIGURES

– Approximate Property Boundary

Former Clarifier Sump

Former Car Wash

 \bigcirc

- Former Groundwater Monitoring Well Location
- Soil Gas Sampling Location
- Soil Sampling Location (all locations are approximate)

Cor.	Former Clarifier Area and Sample Locations	PN: 01-2014-500-001
		Date: August 25, 2014
CRA	LIMITED PHASE II ENVIRONMENTAL SITE ASSESSMENT	EP: Lita Freeman
soil-water-vapor.	106 - 110 Hegenberger Road, Oakland, California	Figure 3

TABLES

Table 2 Sampling and Analysis Summary Hegenberger Road Property 106 - 110 Hegenberger Road Oakland, California

Location	Sample ID	Sample Depth (feet bgs) ¹	Matrix	VOCs ²	TPH-g, TPH-d ³	Oil & Grease⁴	LUFT 5 Metals⁵
Adjacent to Former Sampling Point V-1	SB-1	3.0	Soil Gas	X			
Adjacent to Former Sampling Point V-2	SB-2	3.0	Soil Gas	X			
Adjacent to Former Sampling Point V-3	SB-3	3.0	Soil Gas	Х	-		
Adjacent to Former Sampling Point V-4	SB-4	3.0	Soil Gas	X			
Adjacent to Former Sampling Point V-5	SB-5	3.0	Soil Gas	Х	-		
Adjacent to Former Sampling Point B-101	SB-6-5	4.5 - 5.0	Soil	X			
Adjacent to Former Sampling Point HA-4-5	SB-7-5	4.5 - 5.0	Soil	Х	Х	Х	Х
Adjacent to Former Sampling Point HA-7-5	SB-8-5	4.5 - 5.0	Soil	X	Х	Х	Х
Southern End of Sampling Area	SB-9-5	4.5 - 5.0	Soil	Х	Х	Х	Х

Notes:

1. bgs = below ground surface

2. VOCs = Volatile Organic Compound: soil vapor samples were analyzed using U.S. EPA Method TO-15, soil samples were analyzed using U.S. EPA Method 8260B.

3. TPH-g, TPH-d = Total Petroleum Hydrocarbons (TPH) quantified as gasoline, TPH quantified as diesel were analyzed using U.S. EPA Method 8015B.

 4. O& G = Oil and Grease was analyzed using U.S. EPA Method 5520C/F.
 5. LUFT 5 Metals = Leaking Underground Fuel Tank 5 Metals (cadmium, chromium, lead, nickel, and zinc) were analyzed using U.S. EPA Method 6010B.

Table 3 Soil Gas Samples Analytical Summary Hegenberger Road Property 106 - 110 Hegenberger Road Oakland, California

Sample ID	Canister Serial Number	Vacuum Gauge Serial Number	Start Time (hours)	End Time (hours)	Beginning Vacuum Reading (in. Hg)	Final Vacuum Reading (in. Hg)	1,1-DFA	Acetone	Benzene	1,3-Butadiene	Carbon Disulfide	Chloromethane	Cyclohexane	Heptane	Hexane	2-Hexanone	MIBK	PCE	Toluene	EB	4-Ethyltoluene	Xylenes	1,2,4-TMB	1,3,5-TMB
	ESL for Evaluation of Potential Vapor Intrusion							1.4x10 ⁸	420	NE	NE	390,000	NE	NE	NE	NE	NE	2,100	1,300,000	4,900	NE	440,000	NE	NE
SB-1	CAN6309-789	MAN316-725	1425	1515	-30	-4.5	28,000	<6.7x10 ⁴	50,000		<3,300	<3,300	-	-	-	<3,300	<3,300	<3,300	5,200	<3,300	-	<3,300	<3,300	<3,300
SB-2	CAN6311-791	MAN316-689	1450	1500	-29.5	-3	38	<60	3,200	<1.1	25	<1.0	6,900	140	1,300	<2.1	45	18	25	47	<2.5	27	<2.5	<2.5
SB-3	CAN5804-735	MAN316-682	1514	1535	-28	-3	<110	330	120	42	29	<4.2	490	270	400	12	<8.4	<14	21	18	<10	<26	<10	<10
SB-4	CAN6169-755	MAN316-676	1530	1535	-30	-3	430	83	25	11	8.5	1.8	28	<21	62	<2.1	2.6	<3.4	75	6.6	2.6	28	8.8	2.8
SB-5	CAN5808-739	MAN316-727	1355	1410	-30	-4	<10,000	<2.0x10 ⁵	<10,000		<10,000	<10,000	-	-	-	<10,000	<10,000	<10,000	<10,000	<10,000	-	-	<10,000	<10,000

Volatile Organic Compound (VOCs): soil gas samples were analyzed using U.S. EPA Method TO-15 $\mu g/m^3$ = micrograms per cubic meter

Vacuum reading in inches mercury (Hg) NE = Not Established

NA = Not Established NA = Not Available MIBK = 4-Methyl-2-pentanone PCE = Tetrachloroethene

TCE = Trichloroethene

EB = Ethylbenzene Xylenes = Total xylenes 1,2,4-TMB = 1,2,4- Trimethylbenzene

1,3,5-TMB = 1,3,5- Trimethylbenzene

ESL = Environmental Screening Levels for soil gas and commercial/industrial land use as established by the California Environmental Protection Agency, San Francisco Bay Regional Water Quality Control Board (SFBRWQCB, Soil Gas Screening Levels for Evaluation of Potential Vapor Intrusion (volatile chemicals only), Table E-2, December 2013).

Bold = Compound detected

Bold = Compound detected above ESL

Bold = Compound not detected above laboratory reporting limit; however, laboratory reporting limit is above the ESL.

Table 4 Soil Samples Analytical Summary Hegenberger Road Property 106 - 110 Hegenberger Road Oakland, California

Sample ID	Sample Depth (feet bgs) ¹	Former Sampling Point	Petrol	eum Hydroc (Units: mg/k	arbons² g)	LUFT 5 Metals ³ (Units: mg/kg)					VOCs⁴ (Units: mg/kg)								
	Analyte	95	6-HJT	трн-а	O&G	Cadmium	Chromium	Lead	Nickel	Zinc	Benzene	n-Butyl Benzene	sec-Butyl Benzene	Ethylbenzene	Isopropyl-benzene	Naphthalene	n-Propyl benzene	Xylenes, total	
ESL	for Shallow Soil	(GW isDWS)⁵	500	110	500	12	2,500	320	150	600	0.044	NE	NE	3.3	NE	1.2	NE	2.3	
ESL fo	or Shallow Soil (GW is not DWS) ⁶	500	110	500	12	2,500	320	150	600	1.2	NE	NE	4.7	NE	4.8	NE	11	
E	ESL for Worker	Protection ⁷	4,000	1,100	100,000	1,000	NE	320	19,000	310,000	3.7	NE	NE	24	NE	15	NE	2,600	
SB-6-5	4.5 - 5.0	B-101	1,200	400	910	<0.25	56	64	53	76	8.6	6.8	2.5	7.5	8.0	19.0	26	1.2	
SB-7-5	4.5 - 5.0	HA-4-5	1,200	180	530	<0.25	110	120	84	95	3.5	3	1.1	2.6	3.0	7.7	10	<1.0	
SB-8-5	4.5 - 5.0	HA-7-5	40	8.6	160	<0.25	88	190	88	100	<0.05	<0.05	<0.05	<0.05	0.21	<0.05	0.6	<0.05	
SB-9-5	4.5 - 5.0	NA	1.5	6.2	53	<0.25	89	30	82	65	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	

Notes:

1. bgs = below ground surface

2. Petroleum Hydrocarbons = TPH-g, TPH-d, O&G = Total Petroleum Hydrocarbons (TPH) quantified as gasoline and TPH quantified as diesel were analyzed using U.S. EPA Method 8015B, and Oil and Grease were analyzed using U.S. EPA Method SM5520C/F.

3. LUFT 5 Metals = Leaking Underground Fuel Tank 5 Metals (cadmium, chromium, lead, nickel, and zinc) were analyzed using U.S. EPA Method 6010B.

4. VOCs = Volatile Organic Compound were analyzed using U.S. EPA Method 8260B.

5. ESL for Shallow Soil (GW is DWS) = Environmental Screening Levels for shallow soil as established by the California Environmental Protection Agency, San Francisco Bay Regional Water Quality Control Board (SFBRWQCB, Shallow Soil Screening Levels (<3 m bgs) Commercial/Industrial Land Use (groundwater is a current or potential drinking water resource), Table A-2, December 2013).

6. ESL for Shallow Soil (GW is not DWS) = Environmental Screening Levels for shallow soil as established by the California Environmental Protection Agency, San Francisco Bay Regional Water Quality Control Board (SFBRWQCB, Shallow Soil Screening Levels (<3 m bgs) Commercial/Industrial Land Use (groundwater is not a current or potential drinking water resource), Table B-2, December 2013).

7. ESL for Worker Protection = Environmental Screening Levels for worker protection as established by the California Environmental Protection Agency, San Francisco Bay Regional Water Quality Control Board (SFBRWQCB, Direct Exposure Soil Screening Levels, Commercial/Industrial Worker Exposure Scenario, Table K-2, December 2013).

Units: mg/kg = milligrams per kilogram

<0.25 = Not detected at stated concentration

Bold = Compound detected

Bold = Compound detected above ESL

Appendix A

Site Photographs

Photographic Log Hegenberger Road Property 106 - 110 Hegenberger Road Oakland, California 94621 ERA Project No. 01-2014-500-001

Photograph: 1

Description:

Photo depicts the perimeter fencing along the western side of the Site. Hegenberger Road is on left of photo. View to northeast.

Photograph: 2

Description:

Photo depicts former car wash and clarifier areas. Building on right of photo is located adjacent to the south of the Site. View to the southeast from the northwestern portion of the Site.

Photographic Log Hegenberger Road Property 106 - 110 Hegenberger Road Oakland, California 94621 ERA Project No. 01-2014-500-001

Photograph: 3

Description:

Photo depicts drilling rig and sampling locations. Soil gas probes have been constructed with tubing extending above ground. View to the northwest from near the center of the Site.

Photograph: 4

Description:

Photo depicts former clarifier and car wash area. View to the north from near the center of the Site.

Photographic Log Hegenberger Road Property 106 - 110 Hegenberger Road Oakland, California 94621 ERA Project No. 01-2014-500-001

Photograph: 5

Description:

Photo depicts soil gas sampling set up at sampling location SB-2.

Photograph: 6

Description:

Photo depicts backfilled borehole at sampling location SB-4. Container of soil cuttings present in background of photo.

Appendix B

Approved Alameda County Public Works Agency Soil Boring Permit

Alameda County Public Works Agency - Water Resources Well Permit

399 Elmhurst Street Hayward, CA 94544-1395 Telephone: (510)670-6633 Fax:(510)782-1939

Application Approved	l on: 08/01/2014 By jamesy	Permit Numbers: W2 Permits Valid from 08/11/2014 to 0	014-0725 8/11/2014
Application Id:	1406582736746 110 Hegenberger Bd, Oakland, CA	City of Project Site:Oakland	
Project Start Date: Assigned Inspector:	08/11/2014 Contact Sam Brathwaite at (925) 570-7609 or sbr	Completion Date: 08/11/2014 rathwaite@groundzonees.com	
Applicant:	Basics Envr - Donovan Tom	Phone: 510-834-9099	
Property Owner:	Larry David JLD Oakland Mgmt. 11400 W Olympic Blyd Los Angeles, CA 90064	Phone: 626-836-2908	
Client:	** same as Property Owner **		
		Total Due:	\$265.00

Receipt Number: WR2014-0314 Total Amount Paid: \$265.00 Payer Name : Basics Envr Paid By: CHECK PAID IN FULL	Receipt Number: WR2014-0314 Payer Name : Basics Envr	Total Due: Total Amount Paid: Paid By: CHECK	\$265.00 \$265.00 PAID IN FULL
--	---	--	--------------------------------------

Works Requesting Permits:

Borehole(s) for Investigation-Environmental/Monitorinig Study - 9 Boreholes Driller: ECA - Lic #: 695970 - Method: DP

Work Total: \$265.00

Specifications

Permit	Issued Dt	Expire Dt	#	Hole Diam	Max Depth
Number			Boreholes		
W2014-	08/01/2014	11/09/2014	9	1.50 in.	5.00 ft
0725					

Specific Work Permit Conditions

1. Backfill bore hole by tremie with cement grout or cement grout/sand mixture. Upper two-three feet replaced in kind or with compacted cuttings. All cuttings remaining or unused shall be containerized and hauled off site. The containers shall be clearly labeled to the ownership of the container and labeled hazardous or non-hazardous.

2. Boreholes shall not be left open for a period of more than 24 hours. All boreholes left open more than 24 hours will need approval from Alameda County Public Works Agency, Water Resources Section. All boreholes shall be backfilled according to permit destruction requirements and all concrete material and asphalt material shall be to Caltrans Spec or County/City Codes. No borehole(s) shall be left in a manner to act as a conduit at any time.

3. Permittee shall assume entire responsibility for all activities and uses under this permit and shall indemnify, defend and save the Alameda County Public Works Agency, its officers, agents, and employees free and harmless from any and all expense, cost, liability in connection with or resulting from the exercise of this Permit including, but not limited to, properly damage, personal injury and wrongful death.

4. Applicant shall contact assigned inspector listed on the top of the permit at least five (5) working days prior to starting, once the permit has been approved. Confirm the scheduled date(s) at least 24 hours prior to drilling.

5. Copy of approved drilling permit must be on site at all times. Failure to present or show proof of the approved permit application on site shall result in a fine of \$500.00.

6. NOTE:

Under California laws, the owner/operator are responsible for reporting the contamination to the governmental regulatory

Alameda County Public Works Agency - Water Resources Well Permit

agencies under Section 25295(a). The owner/operator is liable for civil penalties under Section 25299(a)(4) and criminal penalties under Section 25299(d) for failure to report a leak. The owner/operator is liable for civil penalties under Section 25299(b)(4) for knowing failure to ensure compliance with the law by the operator. These penalty provisions do not apply to a potential buyer.

7. Prior to any drilling activities onto any public right-of-ways, it shall be the applicants responsibilities to contact and coordinate a Underground Service Alert (USA), obtain encroachment permit(s), excavation permit(s) or any other permits required for that City or to the County and follow all City or County Ordinances. It shall also be the applicants responsibilities to provide to the Cities or to Alameda County a Traffic Safety Plan for any lane closures or detours planned. No work shall begin until all the permits and requirements have been approved or obtained.

8. Permit is valid only for the purpose specified herein. No changes in construction procedures, as described on this permit application. Boreholes shall not be converted to monitoring wells, without a permit application process.

Appendix C

Soil Boring Logs

PRO	DJEC	T:	106	6 - 1'	10 H	egenberger Road, Oakland, California	of Bo	ing		SB- P/	B-1 PAGE 1 OF 1			
Borin	ng loca	ation:	S	ee Fi	igure	3	Lo	ged by	ŗ.					
Date	starte	d: {	8/11/	14		Date finished: 8/11/14		Lite E	roor					
Drillir	ng me	thod:	Di	irect F	Push			Litar	1991	man				
Ham	mer w	eight	/drop	∷ NA	۱	Hammer type: NA		LA	BOF	RATOR	Y TEST	DATA		
Sam	pler: ,	Jeff-E	Inviro	n. Co	ntrols	Associates/Lita Freeman-ERA				5			_	
et H	PID	SAMF	PLES	- ania	OLOGY	MATERIAL DESCRIPTION	Type of Strength	Test	Pressure .bs/Sq Ft	ar Streng bs/Sq Ft	% Fines	Natural Moisture ontent, %	ry Density bs/Cu Ft	
Ъ.	(ppmv)	San	Blow	85 N N N	Ē	Ground Surface Elevation: feet ²		`		she L		-0	<u> </u>	
1 —						Asphalt - 2 inches Gravelly Silt (MH), Olive Brown (2.5Y 4/4), medium plasticity, fine to coarse-grained gravel, stiff, dry	7							
2	0.6					Silty Sand (SP), Very Pale Brown (10YR 8/2), fine to medium-graned sand, fine grained gravel, loose, dry								
4 —						Silty Clay (CH), Dark Olive Gray (5Y 3/2), high plasticity, stiff, dry	/-							
5 — 6 —						Bottom of Boring = 3 feet	_							
7 -	-						_							
8 -							_							
9 —							-							
10 —							-							
11 —							-							
12 —							-							
13 —							-							
14 —							-							
15 —	ĺ						-							
16 —	1						-							
17 -	1						-							
18 -	1													
19 -														
20 -]													
22 -														
23 -							_							
24 -							_							
25 -							_							
26 -	-						_							
27 —							_							
28 —							-							
29 —							_							
30 —	Baring	terminat	ed at e	depth o	13_10	at below ground surface. Boring		6		Faulte	montol	Dick Arr		
	backfile	ed with	cemer	nt grout				ERO	2	environ	mental	KISK ASS	essors	
	Groundwater encountered at a depth of _NA feet during drilling.NA Project No.: 01-2014_500_001 Figure: C-1													

PRC	DJEC	T:	106	5 - 1'	10 H	egenberger Road, Oakland, California	Boriı	ng	SB- P/	B-2 PAGE 1 OF 1			
Borin	ng loca	tion:	S	ee Fi	gure	3	Logge	ed by:					
Date	starte	d: {	3/11/	14		Date finished: 8/11/14] .	ita Eraa					
Drillir	ng mel	hod:	Di	irect F	Push			ita Free	man				
Ham	mer w	eight	/drop): NA	1	Hammer type: NA	_	LABOR	RATOR	Y TEST	DATA		
Sam	pler: ,	Jeff-E	nviro	n. Co	ntrols	Associates/Lita Freeman-ERA			£				
H (j)	PID	SAMF 율	PLES ້ອ	PT alue	VD0GY	MATERIAL DESCRIPTION	Type of Strength Test	Confining Pressure Lbs/Sq Ft	sar Streng Lbs/Sq Ft	Rines %	Natural Moisture content, %	ry Density Jes/Cu Ft	
(fer	(ppmv)	Sarr	Blow	S N-N	Ē	Ground Surface Elevation: feet ²		0-1	₩.		-0	0-2	
					11	Asphalt - 2 inches Gravelly Silt (MH) Olive Brown (2 5X 4/4), medium	-						
1-	0.2			1		plasticity, fine to coarse-grained gravel, stiff, dry							
2 — 3 —						Silty Sand (SP), Very Pale Brown (10YR 8/2), fine to medium-graned sand, fine grained gravel, loose, dry							
4 —						Silty Clay (CH), Dark Olive Gray (5Y 3/2), high plasticity, stiff, dry	-						
5 — 6 —						Bottom of Boring = 3 feet							
7 -							_						
8 -													
Ĩ													
9 -	1												
10 -	1						1						
11 -	1						-						
12 —	ł						-						
13 —							_						
14 -							_						
15 -													
40													
10 -													
17 -	1												
18 —	1						-						
19 —	1						-						
20 -	ł						-						
21 —	-						-						
22 -							_						
23 -	1												
24 -													
24 -													
25 -	1						1						
26 -	1						-						
27 —	ł						-						
28 -							-						
29 -							4						
30 -													
	Boring t Boring	erminat backFIL	ed at a ed with	depth o	f <u>3</u> fe	et below ground surface.		9	Enviror	mental	Risk Ass	essors	
	Ground	water o	incoun	itered a	t a dep	th of <u>NA</u> feet during drilling.	Project	No		Figures			
	Project No.: Figure: C-2												

PROJECT: 106 - 110 Hegenberger Road, Oakland, California								Boring SI			SB-3 PAGE 1 OF 1		
Boring location: See Figure 3								Logged by:					
Date started: 8/11/14 Date finished: 8/11/14								Lita Freeman					
Drilling method: Direct Push													
Hammer weight/drop: NA Hammer type: NA									LABORATORY TEST DATA				
Sampler: Jeff-Environ. Controls Associates/Lita Freeman-ERA													
Εœ	PID	SAMF 응	PLES	SPT N-Value ¹	ИТНОГОСУ	MATERIAL DESCRIPTION	Type of Strength Test	onfining Tressure be/Sq Ft	er Streng ba/Sq Ft	Fines %	Natural Moisture ontent, %	y Density bs/Cu Ft	
DEP (fee	(ppmv)	Sam	Blow			Ground Surface Elevation:feet ²		043	efs		- ŭ	22	
					77	Asphalt - 2 inches Gravelly Silt (MH), Olive Brown (2 5X 4/4), medium	-						
1 -				1		plasticity, fine to coarse-grained gravel, stiff, dry	1						
2 — 3 —	0.6					Silty Sand with Gravel (SP), Red Brown (2.5YR 4/4), fine to medium-grained sand, fine grained gravel, loose, dry							
4 —				\backslash		Silty Clay (CH), Dark Olive Gray (5Y 3/2), high plasticity, stiff, dry	+						
5 — 6 —						Bottom of Boring = 3 feet							
7 -													
8 -						-							
9 -						-							
10 -													
11 -						-							
12 -						-							
13 —							-						
14 —							-						
15 —						-	-						
16 —							-						
17 —						-	-						
18 —							-						
19 —						-	-						
20 —						· ·	-						
21 —						-	-						
22 —						-	1						
23 —						-	1						
24 —						-	1						
25 —							1						
26 —							1						
27 —							1						
28 —						-	1						
29 -							1						
30 Boring terminated at a depth of <u>3</u> feet below ground surface.													
	Ground	water e	ea with encour	tered a	k grout ta dep	th of <u>NA</u> feet during drilling.	1	era		_			
								Project No.: Figur 01-2014-500-001			^{re:} C-3		
PRC	JEC	T:	106	5 - 1'	10 H	egenberger Road, Oakland, California	Bori	ng	SB- P/	-4 AGE 1	OF 1		
------------	----------	---	---------	------------	---------------	---	-----------------------------	-----------------------------------	-----------------------	-------------	-----------------------------------	-------------------------	
Borin	g loca	tion:	S	ee Fi	gure	3	Logge	ed by:					
Date	starte	d: {	3/11/	14		Date finished: 8/11/14	4.	ita Eree	man				
Drillir	ng mel	thod:	Di	irect F	Push			na i ree	man				
Ham	mer w	eight	/drop): NA	1	Hammer type: NA	_	LABOF	RATOR	Y TEST	DATA		
Sam	pler: ,	Jeff-E	inviro	n. Co	ntrols	s Associates/Lita Freeman-ERA	-		\$			2	
PTH et)	PID	SAMP E	*LES	PT alue	HOLOGY	MATERIAL DESCRIPTION	Type of Strength Test	Confining Pressure Lbs/Sq P	ear Stren Lbs/Sq R	Fires %	Natural Moisture Content, 1	Dry Densit Lbs/Cu Fl	
E)	(ppmv)	ŝ	â	8 7. 2	5	Ground Surface Elevation: feet ²			5		Ŭ	-	
1 —						Asphalt - 2 inches Silty Sand with Gravel (SP), Red Brown (2.5YR 4/4), fine to medium-grained sand, fine grained gravel, loose, dry							
2 — 3 —	0.2	0.2 Silty Clay (CH), Dark Olive Gray (5Y 3/2), high plasticity, stiff, dry											
4 —		Bottom of Boring = 3 feet											
5 —	-												
6 —													
7 -							1						
8 -													
9 -													
10 -													
12 -													
13 —							_						
14 —							-						
15 —							-						
16 —							-						
17 —							1						
18 -													
20													
21 -													
22 -							_						
23 —							-						
24 —							-						
25 —							-						
26 —							-						
27 —													
28 -							1						
29 -							1						
30 -	Boring t	erminat	ed at a	depth o	1 <u>3</u> fe	eet below ground surface.		6	Enviror	nmental	Risk Ass	essors	
	Ground	hwater e	encoun	dered a	t a dep	th of <u>NA</u> feet during drilling.	Project	No:		Figure			
							01-20	14-500-0	001	angure.	C-4	I	

PRC	PROJECT: 106 - 110 Hegenberger Road, Oakland, California							ng	SB- P/	-5 AGE 1	OF 1	
Borin	ng loca	tion:	S	ee Fi	igure	3	Logge	d by:				
Date	starte	d: 8	3/11/	14		Date finished: 8/11/14		to Eroo				
Drillir	ng mel	hod:	Di	irect F	Push			la Free	man			
Ham	mer w	eight	/drop	: NA	1	Hammer type: NA	4	LABOR	ATOR	Y TEST	DATA	
Sam	pler: ,	Jeff-E	inviro	n. Co	ntrols	Associates/Lita Freeman-ERA			£			_
HT (te	PID	SAMF 율	PLES	PT alue	1000GY	MATERIAL DESCRIPTION	Type of Strength Test	Confining Pressure Lbs/Sq Ft	ser Streng Lbs/Sq Ft	Fines %	Natural Moisture Content, %	ry Density Lbs/Cu Ft
ЩĘ,	(ppmv)	San	Blow	N-V	Ē	Ground Surface Elevation: feet ²			\$° -		-0	0-
1 -	0.8					Asphalt - 2 inches Silty Sand with Gravel (SP), Red Brown (2.5YR 4/4), fine to medium-grained sand, fine grained gravel, loose, dry						
2 -		Silty Clay (CH), Dark Olive Gray (5Y 3/2), high plasticity, stiff, dry										
4 -						Bottom of Boring = 3 feet						
5 —						-	-					
6 —												
7 -						-	-					
8 -	-					-	-					
9 —						-	-					
10 —	-					-	-					
11 -						-	-					
12 -						-	4					
13 —						-	4					
14 -						-	4					
15 —						-	-					
16 —						-	-					
17 —						-	-					
18 —						-	-					
19 —	-					-	-					
20 -						-	-					
21 —	-					-	-					
22 -						-	-					
23 -						-	-					
24 -						-	-					
25 -						-	-					
26 -						-	-					
27 —						-	-					
28 -												
29 —						-	-					
30 —	Boring t	erminat	ed at a	depth o	r_ <u>3</u> re	et below ground surface.	(S	Enviror	mental	Risk Ace	essore
	Boring I Ground	backfilk water e	ed with	i cemer itered a	nt grout t a den	th of NA feet during drilling.	4	ena	2.001.01	anental	1126 1923	
	- Support of the second s						Project 01-20	No.: 14-500-0	001	Figure:	C-5	

PRC	ROJECT: 106 - 110 Hegenberger Road, Oakland, California							orir	ng	SB- P/	-6 AGE 1	OF 1	
Borin	g loca	tion:	S	ee Fi	gure	3		Logge	d by:				
Date	starte	d: {	3/11/	14		Date finished: 8/11/14		Li	ta Eroor	man			
Drillir	ng me	thod:	Di	irect F	ush				arree	man			
Ham	mer w	eight	/drop	: NA	1	Hammer type: NA			LABOR	RATOR	Y TEST	DATA	
Sam	pler: ,	Jeff-E	nviro	n. Co	ntrols	Associates/Lita Freeman-ERA				ŧ			
et H	PID	SAMF 물	PLES	PT alue	OLOGY	MATERIAL DESCRIPTION		Type of Strength Test	Confining Pressure Lbs/Sq Ft	sar Streng ba/Sq Ft	% Fines	Natural Moisture ontent, %	ry Density bs/Cu Ft
В	(ppmv)	ŝ	Blow	N 20	Ē	Ground Surface Elevation:feet ²			0-5	Ϋ́ς Ϋ́ς		0	<u> </u>
					11	Asphalt - 2 inches Gravelly Silt (MH) Olive Brown (2 5Y 4/4) medium	_						
1-				1		plasticity, fine to coarse-grained gravel, stiff, dry	\square						
2 -					11	Silty Clay (CH), Dark Olive Gray (5Y 3/2), high plasticity,							
3 —	145					stiff, dry	-						
4 -	58.2						_						
6 -						Bottom of Boring = 5 feet	_						
7 -							_						
8 -							_						
,													
9-							Γ						
10 -							-						
11 -							-						
12 —							-						
13 —							-						
14 -							_						
15 —							_						
16 —							_						
17 —							_						
18 -							_						
19 —													
20 -													
21 -													
22 -													
23 -													
24 -													
25 -							_						
26 -													
27 -							_						
28 -													
29 -													
30 -													
~	Boring t	erminat	ed at a	depth o	5_fe	eet below ground surface.		(8	Environ	mental	Risk Ass	essors
	Ground	water e	ed with	itered a	t a dep	Ih of <u>NA</u> feet during drilling.		4	çna				
							F	*roject I 01-20	No.: 14-500-0	001	Figure:	C-6	

PRC	ROJECT: 106 - 110 Hegenberger Road, Oakland, California							ng	SB- P/	-7 AGE 1	OF 1	
Borin	g loca	tion:	S	ee Fi	gure	3	Logg	ed by:				
Date	starte	d: a	8/11/1	14		Date finished: 8/11/14	<u> </u>					
Drillir	ng mel	hod:	Di	rect F	Push			Ita Free	man			
Ham	mer w	eight	/drop	: NA	1	Hammer type: NA		LABOR	RATOR	Y TEST	DATA	
Sam	pler: ,	leff-E	nviro	n. Co	ntrols	Associates/Lita Freeman-ERA			5			
Ξœ	BID	SAMF	LES ف		LOGY	MATERIAL DESCRIPTION	ype of trength Test	onfining essure s/Sq Ft	r Streng s/Sq Ft	% Lines	latural cisture ntent, %	Density 8/Ou Ft
(feel	(ppmv)	Samp	Blows	SP' N-Val	Ĕ	Ground Surface Elevation: feet ²	- 00	043	Shee		~≥8	53
_	-			/		Asphalt - 2 inches						
1 -						Gravelly Silt (MH), Olive Brown (2.5Y 4/4), medium plasticity, fine to coarse-grained gravel, stiff, dry						
2 -						Silty Clay (CH), Dark Olive Gray (5Y 3/2), high plasticity, stiff, dry						
4 -												
5_	101				1							
6 -						Bottom of Boring = 5 feet						
7 -							_					
8 -							_					
9 -							_					
10 —							-					
11 -							-					
12 —							-					
13 —							-					
14 —							-					
15 —							-					
16 -							1					
17 -												
10 -												
20 -							_					
21 -							_					
22 -							_					
23 -							_					
24 -							-					
25 —							-					
26 -							-					
27 —							-					
28 -							-					
29 —							-					
30 -	Boring t	erminab	ed at a	depth o	15_1	et below ground surface.		6	Enviror	mental	Risk Ass	essors
	Bonng I Ground	water e	ea with Incoun	tered a	nt grout t a dep	th of <u>NA</u> feet during drilling.		ena				
							Project 01-20	No.:)14-500-0	001	Figure:	C-7	

PRC	JEC	T:	106	6 - 11	10 H	egenberger Road, Oakland, California	Boriı	Boring SB-8 PAGE 1 OF 1				
Borin	ig loca	tion:	S	iee Fi	gure	3	Logge	ad by:				
Date	starte	d: {	3/11/	14		Date finished: 8/11/14	4 .	ita Free	man			
Drillir	ng mel	thod:	Di	irect F	Push				man			
Ham	mer w	eight	/drop	: NA	۱	Hammer type: NA	4	LABOR	RATOR	Y TEST	DATA	
Sam	pler: ,	Jeff-E	nviro	n. Co	ntrols	Associates/Lita Freeman-ERA	-		£			<u>,</u>
et) H	PID	SAMF 읉	۹LES پة	PT alue	HOLOGY	MATERIAL DESCRIPTION	Type of Strength Test	Confining Pressure Lbe/Sq Ft	ear Streng Lba/Sq Ft	% Fines	Natural Moisture Content, 9	bry Densit Lbs/Cu Ft
Щ£	(ppmv)	Sa	BIO	s > z	ŝ	Ground Surface Elevation:feet ²			ත්		Ŭ	
					11	Asphalt - 2 inches Gravelly Silt (MH), Olive Brown (2.5Y 4/4), medium						
						plasticity, fine to coarse-grained gravel, stiff, dry						
2 -						Silty Clay (CH), Dark Olive Gray (5Y 3/2), high plasticity,	1					
3 -												
4 5 -	4.3											
6 -						Bottom of Boring = 5 feet						
7 -							-					
8 —							-					
9 —							-					
10 —							-					
11 —							-					
12 —							-					
13 —							-					
14 —							1					
15 —							1					
16 -							1					
17 -												
19 -												
20 -							_					
21 -							_					
22 —							-					
23 —							-					
24 —							-					
25 —							-					
26 -							-					
27 —							1					
28 —							1					
29 -							1					
30 -	Boring t	erminat	ed at a	depth o	1 <u>5</u> 1e	et below ground surface.		8	Enviror	mental	Risk Ass	essors
	Boring Ground	oackfill water e	ed with Incoun	tered a	t a dep	th of <u>_NA_</u> feet during drilling.	1	era		-		
							Project 01-20	No.:)14-500-(001	Figure:	C-8	

PRC	PROJECT: 106 - 110 Hegenberger Road, Oakland, California							rir	ng	SB- P/	-9 AGE 1	OF 1		
Borin	g loca	tion:	S	ee Fi	gure	3	Lo	gge	d by:					
Date	starte	d: {	3/11/ [,]	14		Date finished: 8/11/14		1.8	ta Eroor					
Drillir	ng mel	thod:	Di	rect P	ush				ariee	nan				
Ham	mer w	eight	/drop	: NA		Hammer type: NA			LABOR	ATOR	Y TEST	DATA		
Sam	pler: ,	Jeff-E	inviro	n. Co	ntrols	Associates/Lita Freeman-ERA				£				
et) H	PID	SAMF	PLES	PT alue ¹	10LOGY	MATERIAL DESCRIPTION	Type of	Test	Confining Pressure Lbs/Sq Ft	ear Streng Lbs/Sq Ft	Fines %	Natural Moisture Content, %	Iry Density Lbs/Qu Ft	
DEF (fe	(ppmv)	Ser	Blow	N-V N	Ś	Ground Surface Elevation: feet ²				8		Ŭ	<u> </u>	
					11	Asphalt - 2 inches Gravelly Silt (MH) Olive Brown (2 5X 4/4), medium								
1 -				1		plasticity, fine to coarse-grained gravel, stiff, dry	\square							
2 -	0.3					Silty Sand with Gravel (SP), Red Brown (2.5YR 4/4), fine to medium project and fine project actual lange day								
3 -	0.5				1	medium-grained sand, fine grained gravel, loose, dry	_							
4 -						Silty Clay (CH), Dark Olive Gray (5Y 3/2), high plasticity, stiff, dry	-							
6 -						Bottom of Boring = 5 feet	_							
7 -							_							
8 -							_							
0														
9 -														
10 -							_							
11 —							-							
12 —							-							
13 —							-							
14 —							_							
15 —							_							
16 —							_							
17 —							_							
18 —							_							
19 —							_							
20 —							-							
21 —							-							
22 —							-							
23 —							-							
24 —							-							
25 —							-							
26 -							-							
27 —														
28 —														
29 —							-							
30 —	Boring	aminat	ed et e	denth of	5.6	tel below around surface.			<u>e</u> .					
	Boring	backfill	ed with	cemen	t grout				na	Enviror	mental	Risk Ass	essors	
	Groundwater encountered at a depth of <u>NA</u> feet during drilling.						Proj 01	ject I 1-20	No.: 14-500-0	001	Figure:	C-9		

Appendix D

Laboratory Analytical Report and Chain-of-Custody Documentation

McCampbell Analytical, Inc.

"When Quality Counts"

Analytical Report

WorkOrder:	1408336
Report Created for:	Basics Environmental 655 12th Street, Suite 126 Oakland, CA 94607
Project Contact:	Lita Freeman
Project Name:	Oakland, CA
Project Received:	08/11/2014

Analytical Report reviewed & approved for release on 08/19/2014 by:

Angela Rydelius, Laboratory Manager

The report shall not be reproduced except in full, without the written approval of the laboratory. The analytical results relate only to the items tested. Results reported conform to the most current NELAP standards, where applicable, unless otherwise stated in the case narrative.

1534 Willow Pass Rd. Pittsburg, CA 94565 ♦ TEL: (877) 252-9262 ♦ FAX: (925) 252-9269 ♦ www.mccampbell.com NELAP: 4033ORELAP ♦ ELAP: 1644 ♦ ISO/IEC: 17025:2005 ♦ WSDE: C972-11 ♦ ADEC: UST-098 ♦ UCMR3

Glossary of Terms & Qualifier Definitions

Client: Basics Environmental

Project: Oakland, CA WorkOrder: 1408336

Glossary Abbreviation

95% Interval	95% Confident Interval
DF	Dilution Factor
DUP	Duplicate
EDL	Estimated Detection Limit
ITEF	International Toxicity Equivalence Factor
LCS	Laboratory Control Sample
MB	Method Blank
MB % Rec	% Recovery of Surrogate in Method Blank, if applicable
MDL	Method Detection Limit
ML	Minimum Level of Quantitation
MS	Matrix Spike
MSD	Matrix Spike Duplicate
ND	Not detected at or above the indicated MDL or RL
NR	Matrix interferences, or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix; or sample diluted due to high matrix or analyte content.
PF	Prep Factor
RD	Relative Difference
RL	Reporting Limit (The RL is the lowest calibration standard in a multipoint calibration.)
RPD	Relative Percent Deviation
RRT	Relative Retention Time
SPK Val	Spike Value
SPKRef Val	Spike Reference Value
TEQ	Toxicity Equivalence

Analytical Qualifiers

S	spike recovery outside accepted recovery limits
a2	sample diluted due to cluttered chromatogram
a3	sample diluted due to high organic content.
c2	surrogate recovery outside of the control limits due to matrix interference.

Quality Control Qualifiers

F2 LCS recovery for this compound is outside of acceptance limits.

McCampbell Analytical, Inc. "When Quality Counts" 1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Case Narrative

Client: Basics Environmental Project: Oakland, CA Work Order: 1408336 August 20, 2014

TO-15 ANALYSIS

All summa canisters are EVACUATED 5 days after the reporting of the results. Please call or email if a longer retention time is required.

Polymer (Tedlar) bags are not recommended for TO15 samples. The disadvantages are listed in Appendix B of the DTSC Advisory of April 2012.

In an effort to attain the lowest reporting limits possible for the majority of the TO-15 target list, high level compounds may be analyzed using EPA Method 8260B.

Angela Rydelius, Lab Manager

CDPH ELAP 1644 ♦ NELAP 4033ORELAP

Client: Project: Date Received: Date Prepared:	Basics Environmenta Oakland, CA 8/11/14 19:28 8/15/14	1	V E A U	VorkOrder: Extraction Methoc Inalytical Method Init:	14083 I: SW50 : SW82 μg/m ³	36 30B 60B	
	V	olatile Organi	cs by P&T and	GC/MS in µg/	′m³		
Client ID		Lab ID	Matrix/ExtType	Date Collected	Instrum	nent	Batch ID
SB-1		1408336-001A	Soil Gas	08/11/2014 14:25	GC16		94130
Initial Pressure	(psia)	Final Pressure	e (psia)				
12.58		25.07					
Analytes			<u>Result</u>		<u>RL</u>	DF	Date Analyzed
Acetone			ND		67,000	6.7	08/15/2014 17:47
tert-Amyl methyl e	ther (TAME)		ND		3300	6.7	08/15/2014 17:47
Benzene			50,000		3300	6.7	08/15/2014 17:47
Bromobenzene			ND		3300	6.7	08/15/2014 17:47
Bromodichloromet	thane		ND		3300	6.7	08/15/2014 17:47
Bromoform			ND		3300	6.7	08/15/2014 17:47
Bromomethane			ND		3300	6.7	08/15/2014 17:47
2-Butanone (MEK)		ND		13,000	6.7	08/15/2014 17:47
t-Butyl alcohol (TB	BA)		ND		33,000	6.7	08/15/2014 17:47
n-Butyl benzene			ND		3300	6.7	08/15/2014 17:47
sec-Butyl benzene	è		ND		3300	6.7	08/15/2014 17:47
tert-Butyl benzene			ND		3300	6.7	08/15/2014 17:47
Carbon Disulfide			ND		3300	6.7	08/15/2014 17:47
Carbon Tetrachlor	ide		ND		3300	6.7	08/15/2014 17:47
Chlorobenzene			ND		3300	6.7	08/15/2014 17:47
Chloroethane			ND		3300	6.7	08/15/2014 17:47
Chloroform			ND		3300	6.7	08/15/2014 17:47
Chloromethane			ND		3300	6.7	08/15/2014 17:47
2-Chlorotoluene			ND		3300	6.7	08/15/2014 17:47
4-Chlorotoluene			ND		3300	6.7	08/15/2014 17:47
Dibromochlorome	thane		ND		3300	6.7	08/15/2014 17:47
1,2-Dibromo-3-chl	oropropane		ND		3300	6.7	08/15/2014 17:47
1,2-Dibromoethan	e (EDB)		ND		3300	6.7	08/15/2014 17:47
Dibromomethane			ND		3300	6.7	08/15/2014 17:47
1,2-Dichlorobenze	ene		ND		3300	6.7	08/15/2014 17:47
1,3-Dichlorobenze	ene		ND		3300	6.7	08/15/2014 17:47
1,4-Dichlorobenze	ene		ND		3300	6.7	08/15/2014 17:47
Dichlorodifluorome	ethane		ND		3300	6.7	08/15/2014 17:47
1,1-Dichloroethane	e		ND		3300	6.7	08/15/2014 17:47
1,2-Dichloroethane	e (1,2-DCA)		ND		3300	6.7	08/15/2014 17:47
1,1-Dichloroethene	е		ND		3300	6.7	08/15/2014 17:47
cis-1,2-Dichloroeth	hene		ND		3300	6.7	08/15/2014 17:47
trans-1,2-Dichloro	ethene		ND		3300	6.7	08/15/2014 17:47
1,2-Dichloropropa	ne		ND		3300	6.7	08/15/2014 17:47

Client:	Basics Environmental	l		WorkOrder:	14083	36	
Project:	Oakland, CA			Extraction Method	l: SW50	30B	
Date Received:	8/11/14 19:28			Analvtical Method	: SW82	60B	
Date Prenared	8/15/14			Init	ιισ/m ³		
Bator roparoa.	0/10/11				μg/m		
	Vo	olatile Organi	cs by P&T and	d GC/MS in µg/	′m³		
Client ID		Lab ID	Matrix/ExtTyp	e Date Collected	Instrun	nent	Batch ID
SB-1		1408336-001A	Soil Gas	08/11/2014 14:25	GC16		94130
Initial Pressure	(psia)	Final Pressure	e (psia)				
12.58		25.07					
Analytes			<u>Result</u>		<u>RL</u>	DF	Date Analyzed
1,3-Dichloropropa	ne		ND		3300	6.7	08/15/2014 17:47
2,2-Dichloropropa	ne		ND		3300	6.7	08/15/2014 17:47
1,1-Dichloroprope	ne		ND		3300	6.7	08/15/2014 17:47
cis-1,3-Dichloropro	opene		ND		3300	6.7	08/15/2014 17:47
trans-1,3-Dichloro	propene		ND		3300	6.7	08/15/2014 17:47
1,2-Dichloro-1,1,2	,2-tetrafluoroethane		ND		3300	6.7	08/15/2014 17:47
Diisopropyl ether ((DIPE)		ND		3300	6.7	08/15/2014 17:47
Ethylbenzene			ND		3300	6.7	08/15/2014 17:47
Ethyl tert-butyl eth	ner (ETBE)		ND		3300	6.7	08/15/2014 17:47
Freon 113			ND		67,000	6.7	08/15/2014 17:47
Hexachlorobutadie	ene		ND		3300	6.7	08/15/2014 17:47
Hexachloroethane	9		ND		3300	6.7	08/15/2014 17:47
2-Hexanone			ND		3300	6.7	08/15/2014 17:47
Isopropylbenzene			ND		3300	6.7	08/15/2014 17:47
4-Isopropyl toluen	e		ND		3300	6.7	08/15/2014 17:47
Methyl-t-butyl ethe	er (MTBE)		ND		3300	6.7	08/15/2014 17:47
Methylene chloride	e		ND		3300	6.7	08/15/2014 17:47
4-Methyl-2-pentan	none (MIBK)		ND		3300	6.7	08/15/2014 17:47
Naphthalene			ND		3300	6.7	08/15/2014 17:47
n-Propyl benzene			ND		3300	6.7	08/15/2014 17:47
Styrene			ND		3300	6.7	08/15/2014 17:47
1,1,1,2-Tetrachlor	oethane		ND		3300	6.7	08/15/2014 17:47
1,1,2,2-Tetrachlor	oethane		ND		3300	6.7	08/15/2014 17:47
Tetrachloroethene	è		ND		3300	6.7	08/15/2014 17:47
Tetrahydrofuran			ND		3300	6.7	08/15/2014 17:47
Toluene			5200		3300	6.7	08/15/2014 17:47
1,2,3-Trichloroben	izene		ND		3300	6.7	08/15/2014 17:47
1,2,4-Trichloroben	izene		ND		3300	6.7	08/15/2014 17:47
1,1,1-Trichloroetha	ane		ND		3300	6.7	08/15/2014 17:47
1,1,2-Trichloroetha	ane		ND		3300	6.7	08/15/2014 17:47
Trichloroethene			ND		3300	6.7	08/15/2014 17:47
Trichlorofluoromet	thane		ND		3300	6.7	08/15/2014 17:47
1,2,3-Trichloropro	pane		ND		3300	6.7	08/15/2014 17:47
1,2,4-Trimethylber	nzene		ND		3300	6.7	08/15/2014 17:47

Client: Project: Date Received: Date Prepared:	Basics Environmental Oakland, CA 8/11/14 19:28 8/15/14			WorkOrder: Extraction Method Analytical Method: Unit:	140833 : SW503 SW820 μg/m ³	36 30B 60B	
	Vo	latile Organio	cs by P&T and	d GC/MS in µg/	m³		
Client ID		Lab ID	Matrix/ExtTyp	e Date Collected	Instrum	nent	Batch ID
SB-1		1408336-001A	Soil Gas	08/11/2014 14:25	GC16		94130
Initial Pressure	(psia)	Final Pressure	e (psia)				
12.58		25.07					
Analytes			<u>Result</u>		<u>RL</u>	DF	Date Analyzed
1,3,5-Trimethylbe	nzene		ND		3300	6.7	08/15/2014 17:47
Vinyl Chloride			ND		3300	6.7	08/15/2014 17:47
Xylenes, Total			ND		3300	6.7	08/15/2014 17:47
Ourse a stars				Lingthe			

Surrogates	<u>REC (%)</u>	Limits	
Dibromofluoromethane	93	70-130	08/15/2014 17:47
Toluene-d8	100	70-130	08/15/2014 17:47
4-BFB	77	70-130	08/15/2014 17:47

Client: Project: Date Received: Date Prepared:	Basics Environment Oakland, CA 8/11/14 19:28 8/15/14	tal	M E A U	/orkOrder: xtraction Methoc nalytical Method nit:	140833 : SW503 : SW826 μg/m ³	6 0B 0B	
	١	/olatile Organi	cs by P&T and	GC/MS in µg/	m³		
Client ID		Lab ID	Matrix/ExtType	Date Collected	Instrum	ent	Batch ID
SB-5		1408336-005A	Soil Gas	08/11/2014 13:55	GC16		94130
Initial Pressure	(psia)	Final Pressure	e (psia)				
12.74		25.39					
Analytes			<u>Result</u>		<u>RL</u>	DF	Date Analyzed
Acetone			ND		200,000	20	08/15/2014 20:39
tert-Amyl methyl e	ether (TAME)		ND		10,000	20	08/15/2014 20:39
Benzene			ND		10,000	20	08/15/2014 20:39
Bromobenzene			ND		10,000	20	08/15/2014 20:39
Bromodichloromet	thane		ND		10,000	20	08/15/2014 20:39
Bromoform			ND		10,000	20	08/15/2014 20:39
Bromomethane			ND		10,000	20	08/15/2014 20:39
2-Butanone (MEK)		ND		40,000	20	08/15/2014 20:39
t-Butyl alcohol (TE	BA)		ND		100,000	20	08/15/2014 20:39
n-Butyl benzene			ND		10,000	20	08/15/2014 20:39
sec-Butyl benzene	e		ND		10,000	20	08/15/2014 20:39
tert-Butyl benzene	;		ND		10,000	20	08/15/2014 20:39
Carbon Disulfide			ND		10,000	20	08/15/2014 20:39
Carbon Tetrachlor	ride		ND		10,000	20	08/15/2014 20:39
Chlorobenzene			ND		10,000	20	08/15/2014 20:39
Chloroethane			ND		10,000	20	08/15/2014 20:39
Chloroform			ND		10,000	20	08/15/2014 20:39
Chloromethane			ND		10,000	20	08/15/2014 20:39
2-Chlorotoluene			ND		10,000	20	08/15/2014 20:39
4-Chlorotoluene			ND		10,000	20	08/15/2014 20:39
Dibromochlorome	thane		ND		10,000	20	08/15/2014 20:39
1,2-Dibromo-3-chl	oropropane		ND		10,000	20	08/15/2014 20:39
1,2-Dibromoethan	e (EDB)		ND		10,000	20	08/15/2014 20:39
Dibromomethane			ND		10,000	20	08/15/2014 20:39
1,2-Dichlorobenze	ene		ND		10,000	20	08/15/2014 20:39
1,3-Dichlorobenze	ene		ND		10,000	20	08/15/2014 20:39
1,4-Dichlorobenze	ene		ND		10,000	20	08/15/2014 20:39
Dichlorodifluorome	ethane		ND		10,000	20	08/15/2014 20:39
1,1-Dichloroethan	e		ND		10,000	20	08/15/2014 20:39
1,2-Dichloroethan	e (1,2-DCA)		ND		10,000	20	08/15/2014 20:39
1,1-Dichloroethen	e		ND		10,000	20	08/15/2014 20:39
cis-1,2-Dichloroeth	hene		ND		10,000	20	08/15/2014 20:39
trans-1,2-Dichloro	ethene		ND		10,000	20	08/15/2014 20:39
1,2-Dichloropropa	ne		ND		10,000	20	08/15/2014 20:39

Client:	Basics Environmenta	1	N N	NorkOrder:	140833	86	
Project:	Oakland, CA		I	Extraction Method	: SW503	80B	
Date Received:	8/11/14 19:28			Analytical Method	: SW826	60B	
Date Prenared	8/15/14		1	Init [.]	$\mu\sigma/m^3$		
Butor ropurou.	0/10/11			,	μg/m		
	Ve	olatile Organi	cs by P&T and	∃GC/MS in μg/	m³		
Client ID		Lab ID	Matrix/ExtTyp	e Date Collected	Instrum	ent	Batch ID
SB-5		1408336-005A	Soil Gas	08/11/2014 13:55	GC16		94130
Initial Pressure	(psia)	Final Pressure	e (psia)				
12.74		25.39					
Analytes			<u>Result</u>		<u>RL</u>	DF	Date Analyzed
1,3-Dichloropropa	ne		ND		10,000	20	08/15/2014 20:39
2,2-Dichloropropa	ne		ND		10,000	20	08/15/2014 20:39
1,1-Dichloroprope	ne		ND		10,000	20	08/15/2014 20:39
cis-1,3-Dichloropr	opene		ND		10,000	20	08/15/2014 20:39
trans-1,3-Dichloro	propene		ND		10,000	20	08/15/2014 20:39
1,2-Dichloro-1,1,2	,2-tetrafluoroethane		ND		10,000	20	08/15/2014 20:39
Diisopropyl ether	(DIPE)		ND		10,000	20	08/15/2014 20:39
Ethylbenzene			ND		10,000	20	08/15/2014 20:39
Ethyl tert-butyl eth	ner (ETBE)		ND		10,000	20	08/15/2014 20:39
Freon 113			ND		200,000	20	08/15/2014 20:39
Hexachlorobutadie	ene		ND		10,000	20	08/15/2014 20:39
Hexachloroethane	;		ND		10,000	20	08/15/2014 20:39
2-Hexanone			ND		10,000	20	08/15/2014 20:39
Isopropylbenzene			ND		10,000	20	08/15/2014 20:39
4-Isopropyl toluen	e		ND		10,000	20	08/15/2014 20:39
Methyl-t-butyl ethe	er (MTBE)		ND		10,000	20	08/15/2014 20:39
Methylene chloride	e		ND		10,000	20	08/15/2014 20:39
4-Methyl-2-pentan	none (MIBK)		ND		10,000	20	08/15/2014 20:39
Naphthalene			ND		10,000	20	08/15/2014 20:39
n-Propyl benzene			ND		10,000	20	08/15/2014 20:39
Styrene			ND		10,000	20	08/15/2014 20:39
1,1,1,2-Tetrachlor	oethane		ND		10,000	20	08/15/2014 20:39
1,1,2,2-Tetrachlor	oethane		ND		10,000	20	08/15/2014 20:39
Tetrachloroethene	9		ND		10,000	20	08/15/2014 20:39
Tetrahydrofuran			ND		10,000	20	08/15/2014 20:39
Toluene			ND		10,000	20	08/15/2014 20:39
1,2,3-Trichlorober	izene		ND		10,000	20	08/15/2014 20:39
1,2,4-Trichlorober	izene		ND		10,000	20	08/15/2014 20:39
1,1,1-Trichloroeth	ane		ND		10,000	20	08/15/2014 20:39
1,1,2-Trichloroeth	ane		ND		10,000	20	08/15/2014 20:39
Trichloroethene			ND		10,000	20	08/15/2014 20:39
Trichlorofluoromet	thane		ND		10,000	20	08/15/2014 20:39
1,2,3-Trichloropro	pane		ND		10,000	20	08/15/2014 20:39
1,2,4-Trimethylber	nzene		ND		10,000	20	08/15/2014 20:39

Client: Project: Date Received: Date Prepared:	Basics Environmental Oakland, CA 8/11/14 19:28 8/15/14	latile Organij	W E A U Cs by P&T and	/orkOrder: xtraction Method nalytical Method nit: GC/MS in ug	1408336 d: SW5030E l: SW8260E μg/m ³	3 3	
Client ID		Lab ID	Matrix/ExtType	Date Collected	Instrumen	t	Batch ID
SB-5		1408336-005A	Soil Gas	08/11/2014 13:55	GC16		94130
Initial Pressure	(psia)	Final Pressure	e (psia)				
12.74		25.39					
Analytes			Result		<u>RL</u>	<u>DF</u>	Date Analyzed
1,3,5-Trimethylber	nzene		ND		10,000	20	08/15/2014 20:39
Vinyl Chloride			ND		10,000	20	08/15/2014 20:39
Xylenes, Total			ND		10,000	20	08/15/2014 20:39
Surrogates		<u>REC (%)</u>		<u>Limits</u> Ana	lytical Comme	nts: a2,a3	
Dibromofluoromet	hane	90		70-130			08/15/2014 20:39
Toluene-d8		100		70-130			08/15/2014 20:39
4-BFB		79		70-130			08/15/2014 20:39

Client:	Basics Environmental		V	VorkOrder:	140833	36	
Project:	Oakland, CA		E	xtraction Method	: SW503	80B	
Date Received:	8/11/14 19:28		A	nalytical Method	: SW826	60B	
Date Prepared:	8/15/14		U	Init:	$\mu g/m^3$		
		Lea	k Check Comp	ound			
Client ID		Lab ID	Matrix/ExtType	Date Collected	Instrum	ent	Batch ID
SB-1		1408336-001A	Soil Gas	08/11/2014 14:25	GC16		94130
Initial Pressure	(psia)	Final Pressure	e (psia)				
12.58		25.07					
Analytes			<u>Result</u>		<u>RL</u>	DF	Date Analyzed
1,1-Difluoroethane	e as Dichlorodifluoromethar	ie	28,000		3300	6.7	08/15/2014 17:47
SB-5		1408336-005A	Soil Gas	08/11/2014 13:55	GC16		94130
Initial Pressure	(psia)	Final Pressure	e (psia)				
12.74		25.39					
Analytes			Result		RL	DF	Date Analyzed
1,1-Difluoroethane	e as Dichlorodifluoromethar	ie	ND		10,000	20	08/15/2014 20:39

Client: Project: Date Received: Date Prepared:	Basics Environmental Oakland, CA 8/11/14 19:28 8/12/14-8/13/14		W E; A U	'orkOrder: xtraction Method nalytical Method nit:	140833 1: TO15 : TO15 μg/m ³	6	
		Lea	k Check Comp	ound			
Client ID		Lab ID	Matrix/ExtType	Date Collected	Instrum	ent	Batch ID
SB-2		1408336-002A	Soil Gas	08/11/2014 14:50	GC24		94042
Initial Pressure	(psia)	Final Pressure	(psia)				
12.49		24.88					
<u>Analytes</u> 1,1-Difluoroethane	e as Dichlorodifluoromethan	e	Result 38		<u>RL</u> 28	<u>DF</u> 1	Date Analyzed 08/13/2014 01:36
SB-3		1408336-003A	Soil Gas	08/11/2014 15:14	GC24		94042
ѕв-з Initial Pressure	(psia)	1408336-003A Final Pressure	Soil Gas (psia)	08/11/2014 15:14	GC24		94042
SB-3 Initial Pressure 12.24	(psia)	1408336-003A Final Pressure 24.40	Soil Gas (psia)	08/11/2014 15:14	GC24		94042
SB-3 Initial Pressure 12.24 <u>Analytes</u> 1,1-Difluoroethane	(psia) e as Dichlorodifluoromethan	1408336-003A Final Pressure 24.40 e	Soil Gas (psia) Result ND	08/11/2014 15:14	GC24 <u>RL</u> 110	<u>DF</u> 4	94042 Date Analyzed 08/12/2014 22:04
SB-3 Initial Pressure 12.24 Analytes 1,1-Difluoroethane SB-4	(psia) e as Dichlorodifluoromethan	1408336-003A Final Pressure 24.40 e 1408336-004A	Soil Gas (psia) <u>Result</u> ND Soil Gas	08/11/2014 15:14	GC24 RL 110 GC24	DE 4	94042 Date Analyzed 08/12/2014 22:04 94042
SB-3 Initial Pressure 12.24 Analytes 1,1-Difluoroethane SB-4 Initial Pressure	(psia) e as Dichlorodifluoromethan (psia)	1408336-003A Final Pressure 24.40 e 1408336-004A Final Pressure	Soil Gas (psia) Result ND Soil Gas (psia)	08/11/2014 15:14	GC24 RL 110 GC24	DF 4	94042 Date Analyzed 08/12/2014 22:04 94042
SB-3 Initial Pressure 12.24 Analytes 1,1-Difluoroethane SB-4 Initial Pressure 13.77	(psia) e as Dichlorodifluoromethan (psia)	1408336-003A Final Pressure 24.40 e 1408336-004A Final Pressure 27.45	Soil Gas (psia) Result ND Soil Gas (psia)	08/11/2014 15:14	GC24 RL 110 GC24	DE 4	94042 Date Analyzed 08/12/2014 22:04 94042

Client:	Basics Environmental		W	orkOrder:	1408	336		
Project:	Oakland, CA	Extraction Method: TO15						
Date Received:	8/11/14 19:28		A	nalytical Method	: TO1	5		
Date Prepared:	8/12/14-8/15/14		U	nit:	μg/n	1 ³		
		Volatile Or	ganic Compour	nds in µg/m³				
Client ID		Lab ID	Matrix/ExtType	Date Collected	Instru	iment	Batch ID	
SB-2		1408336-002A	Soil Gas	08/11/2014 14:50	GC24		94042	
Initial Pressure	(psia)	Final Pressure	e (psia)					
12.49		24.88						
Analytes			Result		<u>RL</u>	DF	Date Analyzed	
Acetone			ND		60	1	08/13/2014 01:36	
Acrolein			ND		1.2	1	08/13/2014 01:36	
Acrylonitrile			ND		1.1	1	08/13/2014 01:36	
tert-Amyl methyl e	ether (TAME)		ND		2.1	1	08/13/2014 01:36	
Benzene			3200		16	10	08/15/2014 16:46	
Benzyl chloride			ND		2.6	1	08/13/2014 01:36	
Bromodichlorome	thane		ND		3.5	1	08/13/2014 01:36	
Bromoform			ND		5.2	1	08/13/2014 01:36	
Bromomethane			ND		2.0	1	08/13/2014 01:36	
1,3-Butadiene			ND		1.1	1	08/13/2014 01:36	
2-Butanone (MEK)		ND		75	1	08/13/2014 01:36	
t-Butyl alcohol (TE	BA)		ND		31	1	08/13/2014 01:36	
Carbon Disulfide			25		1.6	1	08/13/2014 01:36	
Carbon Tetrachlor	ride		ND		3.2	1	08/13/2014 01:36	
Chlorobenzene			ND		2.4	1	08/13/2014 01:36	
Chloroethane			ND		1.3	1	08/13/2014 01:36	
Chloroform			ND		2.4	1	08/13/2014 01:36	
Chloromethane			ND		1.0	1	08/13/2014 01:36	
Cyclohexane			6900		180	10	08/15/2014 16:46	
Dibromochlorome	thane		ND		4.4	1	08/13/2014 01:36	
1,2-Dibromo-3-chl	loropropane		ND		0.12	1	08/13/2014 01:36	
1,2-Dibromoethan	e (EDB)		ND		3.9	1	08/13/2014 01:36	
1,2-Dichlorobenze	ene		ND		3.0	1	08/13/2014 01:36	
1,3-Dichlorobenze	ene		ND		3.0	1	08/13/2014 01:36	
1,4-Dichlorobenze	ene		ND		3.0	1	08/13/2014 01:36	
Dichlorodifluorom	ethane		ND		2.5	1	08/13/2014 01:36	
1,1-Dichloroethan	e		ND		2.0	1	08/13/2014 01:36	
1,2-Dichloroethan	e (1,2-DCA)		ND		2.0	1	08/13/2014 01:36	
1,1-Dichloroethen	e		ND		2.0	1	08/13/2014 01:36	
cis-1,2-Dichloroet	hene		ND		2.0	1	08/13/2014 01:36	
trans-1,2-Dichloro	ethene		ND		2.0	1	08/13/2014 01:36	
1,2-Dichloropropa	ne		ND		2.4	1	08/13/2014 01:36	
cis-1,3-Dichloropr	opene		ND		2.3	1	08/13/2014 01:36	
trans-1,3-Dichloro	propene		ND		2.3	1	08/13/2014 01:36	

Analytical Report

Client:	Basics Environmental		W	'orkOrder:	1408	336		
Project:	Oakland, CA	Extraction Method: TO15						
Date Received:	8/11/14 19:28		А	nalytical Method	: TO1	5		
Date Prepared:	8/12/14-8/15/14		U	nit:	ug/n	1 ³		
					1.9.1			
		Volatile Or	ganic Compou	nas in µg/m³				
Client ID		Lab ID	Matrix/ExtType	Date Collected	Instru	ıment	Batch ID	
SB-2		1408336-002A	Soil Gas	08/11/2014 14:50	GC24		94042	
Initial Pre ss ure	(psia)	Final Pressur	e (psia)					
12.49		24.88						
Analytes			Result		<u>RL</u>	DF	Date Analyzed	
1,2-Dichloro-1,1,2	,2-tetrafluoroethane		ND		3.6	1	08/13/2014 01:36	
Diisopropyl ether ((DIPE)		ND		2.1	1	08/13/2014 01:36	
1,4-Dioxane	,		ND		1.8	1	08/13/2014 01:36	
Ethanol			ND		96	1	08/13/2014 01:36	
Ethyl acetate			ND		1.8	1	08/13/2014 01:36	
Ethyl tert-butyl eth	er (ETBE)		ND		2.1	1	08/13/2014 01:36	
Ethylbenzene			47		2.2	1	08/13/2014 01:36	
4-Ethyltoluene			ND		2.5	1	08/13/2014 01:36	
Freon 113			ND		3.9	1	08/13/2014 01:36	
Heptane			140		21	1	08/13/2014 01:36	
Hexachlorobutadie	ene		ND		5.4	1	08/13/2014 01:36	
Hexane			1300		72	4	08/12/2014 21:24	
2-Hexanone			ND		2.1	1	08/13/2014 01:36	
4-Methyl-2-pentan	ione (MIBK)		45		2.1	1	08/13/2014 01:36	
Methyl-t-butyl ethe	er (MTBE)		ND		1.8	1	08/13/2014 01:36	
Methylene chloride	е		ND		1.8	1	08/13/2014 01:36	
Methyl methacryla	ite		ND		2.1	1	08/13/2014 01:36	
Naphthalene			ND		5.3	1	08/13/2014 01:36	
Propene			ND		88	1	08/13/2014 01:36	
Styrene			ND		2.2	1	08/13/2014 01:36	
1,1,1,2-Tetrachlor	oethane		ND		3.5	1	08/13/2014 01:36	
1,1,2,2-Tetrachlor	oethane		ND		3.5	1	08/13/2014 01:36	
Tetrachloroethene	2		18		3.4	1	08/13/2014 01:36	
Tetrahydrofuran			ND		1.5	1	08/13/2014 01:36	
Toluene			25		1.9	1	08/13/2014 01:36	
1,2,4-Trichloroben	izene		ND		3.8	1	08/13/2014 01:36	
1,1,1-Trichloroetha	ane		ND		2.8	1	08/13/2014 01:36	
1,1,2-Trichloroetha	ane		ND		2.8	1	08/13/2014 01:36	
Trichloroethene			ND		2.8	1	08/13/2014 01:36	
Trichlorofluoromet	thane		ND		2.8	1	08/13/2014 01:36	
1,2,4-Trimethylber	nzene		ND		2.5	1	08/13/2014 01:36	
1,3,5-Trimethylber	nzene		ND		2.5	1	08/13/2014 01:36	
Vinyl Acetate			ND		1.8	1	08/13/2014 01:36	
Vinyl Chloride			ND		1.3	1	08/13/2014 01:36	

(Cont.)

Client: Project: Date Received: Date Prepared:	Basics Environmental Oakland, CA 8/11/14 19:28 8/12/14-8/15/14		V E A L	VorkOrder: Extraction Method Analytical Method Jnit:	1408336 : TO15 : TO15 μg/m ³	5	
		Volatile Or	ganic Compou	ınds in µg/m³			
Client ID		Lab ID	Matrix/ExtType	e Date Collected	Instrume	nt	Batch ID
SB-2		1408336-002A	Soil Gas	08/11/2014 14:50	GC24		94042
Initial Pressure	(psia)	Final Pressure	(psia)				
12.49		24.88					
Analytes			<u>Result</u>		<u>RL</u>	DE	Date Analyzed
Xylenes, Total			27		6.6	1	08/13/2014 01:36
<u>Surrogates</u>		<u>REC (%)</u>		<u>Limits</u>			
1,2-DCA-d4		109		70-130			08/13/2014 01:36
Toluene-d8		103		70-130			08/13/2014 01:36
4-BFB		104		70-130			08/13/2014 01:36

Client:	Basics Environmental		W	orkOrder:	1408	336			
Proiect:	Oakland. CA	Extraction Method: TO15							
, Date Received	8/11/14 19:28		А	nalytical Method	· TO1	5			
Date Prenared:	8/12/14_8/15/14			nit [.]	. 101	3			
	0/12/14-0/13/14		0	int.	μg/11	1			
		Volatile Or	rganic Compour	nd s in µg/m³					
Client ID		Lab ID	Matrix/ExtType	Date Collected	ln s tru	ment	Batch ID		
SB-3		1408336-003A	Soil Gas	08/11/2014 15:14	GC24		94042		
Initial Pressure	(psia)	Final Pressure	e (psia)						
12.24		24.40							
Analytes			Result		<u>RL</u>	DE	Date Analyzed		
Acetone			330		240	4	08/12/2014 22:04		
Acrolein			ND		4.6	4	08/12/2014 22:04		
Acrylonitrile			ND		4.4	4	08/12/2014 22:04		
tert-Amyl methyl e	ether (TAME)		ND		8.4	4	08/12/2014 22:04		
Benzene			120		6.4	4	08/12/2014 22:04		
Benzyl chloride			ND		11	4	08/12/2014 22:04		
Bromodichlorome	thane		ND		14	4	08/12/2014 22:04		
Bromoform			ND		21	4	08/12/2014 22:04		
Bromomethane			ND		7.8	4	08/12/2014 22:04		
1,3-Butadiene			42		4.4	4	08/12/2014 22:04		
2-Butanone (MEK)		ND		300	4	08/12/2014 22:04		
t-Butyl alcohol (TE	BA)		ND		120	4	08/12/2014 22:04		
Carbon Disulfide			29		6.4	4	08/12/2014 22:04		
Carbon Tetrachlor	ride		ND		13	4	08/12/2014 22:04		
Chlorobenzene			ND		9.4	4	08/12/2014 22:04		
Chloroethane			ND		5.4	4	08/12/2014 22:04		
Chloroform			ND		9.8	4	08/12/2014 22:04		
Chloromethane			ND		4.2	4	08/12/2014 22:04		
Cyclohexane			490		70	4	08/12/2014 22:04		
Dibromochlorome	thane		ND		17	4	08/12/2014 22:04		
1,2-Dibromo-3-chl	loropropane		ND		0.49	4	08/12/2014 22:04		
1,2-Dibromoethan	e (EDB)		ND		16	4	08/12/2014 22:04		
1,2-Dichlorobenze	ene		ND		12	4	08/12/2014 22:04		
1,3-Dichlorobenze	ene		ND		12	4	08/12/2014 22:04		
1,4-Dichlorobenze	ene		ND		12	4	08/12/2014 22:04		
Dichlorodifluorom	ethane		ND		10	4	08/12/2014 22:04		
1,1-Dichloroethan	e		ND		8.2	4	08/12/2014 22:04		
1,2-Dichloroethan	e (1,2-DCA)		ND		8.2	4	08/12/2014 22:04		
1,1-Dichloroethen	e		ND		8.0	4	08/12/2014 22:04		
cis-1,2-Dichloroet	hene		ND		8.0	4	08/12/2014 22:04		
trans-1,2-Dichloro	ethene		ND		8.0	4	08/12/2014 22:04		
1,2-Dichloropropa	ne		ND		9.4	4	08/12/2014 22:04		
cis-1,3-Dichloropr	opene		ND		9.2	4	08/12/2014 22:04		
trans-1,3-Dichloro	propene		ND		9.2	4	08/12/2014 22:04		

Client:	Basics Environmental		W	/orkOrder:	1408	336		
Project:	Oakland, CA	Extraction Method: TO15						
Date Received	8/11/14 19:28		А	nalytical Method	· TO1	5		
Date Prenared:	8/12/14 8/15/14			nit.	. 101.	3		
	0/12/14-0/13/14		0		μg/II	1		
		Volatile Or	rganic Compou	nds in µg/m³				
Client ID		Lab ID	Matrix/ExtType	Date Collected	Instru	ment	Batch ID	
SB-3		1408336-003A	Soil Gas	08/11/2014 15:14	GC24		94042	
Initial Pressure	(psia)	Final Pressure	e (psia)					
12.24		24.40						
Analytes			Result		<u>RL</u>	DF	Date Analyzed	
1,2-Dichloro-1,1,2	,2-tetrafluoroethane		ND		14	4	08/12/2014 22:04	
Diisopropyl ether ((DIPE)		ND		8.4	4	08/12/2014 22:04	
1,4-Dioxane	. ,		ND		7.4	4	08/12/2014 22:04	
Ethanol			ND		380	4	08/12/2014 22:04	
Ethyl acetate			ND		7.4	4	08/12/2014 22:04	
Ethyl tert-butyl eth	ner (ETBE)		ND		8.4	4	08/12/2014 22:04	
Ethylbenzene			18		8.8	4	08/12/2014 22:04	
4-Ethyltoluene			ND		10	4	08/12/2014 22:04	
Freon 113			ND		16	4	08/12/2014 22:04	
Heptane			270		84	4	08/12/2014 22:04	
Hexachlorobutadie	ene		ND		22	4	08/12/2014 22:04	
Hexane			400		72	4	08/12/2014 22:04	
2-Hexanone			12		8.4	4	08/12/2014 22:04	
4-Methyl-2-pentan	one (MIBK)		ND		8.4	4	08/12/2014 22:04	
Methyl-t-butyl ethe	er (MTBE)		ND		7.4	4	08/12/2014 22:04	
Methylene chloride	е		ND		7.0	4	08/12/2014 22:04	
Methyl methacryla	ate		ND		8.3	4	08/12/2014 22:04	
Naphthalene			ND		21	4	08/12/2014 22:04	
Propene			ND		350	4	08/12/2014 22:04	
Styrene			ND		8.6	4	08/12/2014 22:04	
1,1,1,2-Tetrachlor	oethane		ND		14	4	08/12/2014 22:04	
1,1,2,2-Tetrachlor	oethane		ND		14	4	08/12/2014 22:04	
Tetrachloroethene	;		ND		14	4	08/12/2014 22:04	
Tetrahydrofuran			ND		6.0	4	08/12/2014 22:04	
Toluene			21		7.6	4	08/12/2014 22:04	
1,2,4-Trichloroben	izene		ND		15	4	08/12/2014 22:04	
1,1,1-Trichloroetha	ane		ND		11	4	08/12/2014 22:04	
1,1,2-Trichloroetha	ane		ND		11	4	08/12/2014 22:04	
Trichloroethene			ND		11	4	08/12/2014 22:04	
Trichlorofluoromet	thane		ND		11	4	08/12/2014 22:04	
1,2,4-Trimethylber	nzene		ND		10	4	08/12/2014 22:04	
1,3,5-Trimethylber	nzene		ND		10	4	08/12/2014 22:04	
Vinyl Acetate			ND		7.2	4	08/12/2014 22:04	
Vinyl Chloride			ND		5.2	4	08/12/2014 22:04	

Client: Project: Date Received: Date Prepared:	Basics Environmental Oakland, CA 8/11/14 19:28 8/12/14-8/15/14		V E A L	VorkOrder: Extraction Methoc Analytical Method Init:	1408336 I: TO15 : TO15 μg/m ³	5	
		Volatile Or	ganic Compou	nds in µg/m³			
Client ID		Lab ID	Matrix/ExtType	e Date Collected	Instrume	nt	Batch ID
SB-3		1408336-003A	Soil Gas	08/11/2014 15:14	GC24		94042
Initial Pressure	(psia)	Final Pressure	e (psia)				
12.24		24.40					
Analytes			<u>Result</u>		<u>RL</u>	<u>DF</u>	Date Analyzed
Xylenes, Total			ND		26	4	08/12/2014 22:04
Surrogates		<u>REC (%)</u>	Qualifiers	Limits Anal	ytical Comm	ients: c2	
1,2-DCA-d4		97		70-130			08/12/2014 22:04
Toluene-d8		106		70-130			08/12/2014 22:04
4-BFB		201	S	70-130			08/12/2014 22:04

Client: Project:	Basics Environmental		W	'orkOrder: xtraction Method	1408 • TO1	336 5	
Data Pacaiyad:	0/11/1/ 10:29			nalytical Mathod	· TO1	5	
Date Necerveu.	0/11/14 19.20		A	nalytical Mictilu	. 101.	3	
Date Prepared:	8/12/14-8/15/14		U	nit:	μg/m	17	
		Volatile Or	ganic Compou	nds in µg/m³			
Client ID		Lab ID	Matrix/ExtType	Date Collected	Instru	ment	Batch ID
SB-4		1408336-004A	Soil Gas	08/11/2014 15:30	GC24		94042
Initial Pressure	(psia)	Final Pressure	e (p s ia)				
13.77		27.45					
Analytes			<u>Result</u>		<u>RL</u>	DF	Date Analyzed
Acetone			83		60	1	08/13/2014 02:58
Acrolein			ND		1.2	1	08/13/2014 02:58
Acrylonitrile			ND		1.1	1	08/13/2014 02:58
tert-Amyl methyl e	ether (TAME)		ND		2.1	1	08/13/2014 02:58
Benzene			25		1.6	1	08/13/2014 02:58
Benzyl chloride			ND		2.6	1	08/13/2014 02:58
Bromodichlorome	thane		ND		3.5	1	08/13/2014 02:58
Bromoform			ND		5.2	1	08/13/2014 02:58
Bromomethane			ND		2.0	1	08/13/2014 02:58
1,3-Butadiene			11		1.1	1	08/13/2014 02:58
2-Butanone (MEK)		ND		75	1	08/13/2014 02:58
t-Butyl alcohol (TE	BA)		ND		31	1	08/13/2014 02:58
Carbon Disulfide			8.5		1.6	1	08/13/2014 02:58
Carbon Tetrachlor	ride		ND		3.2	1	08/13/2014 02:58
Chlorobenzene			ND		2.4	1	08/13/2014 02:58
Chloroethane			ND		1.3	1	08/13/2014 02:58
Chloroform			ND		2.4	1	08/13/2014 02:58
Chloromethane			1.8		1.0	1	08/13/2014 02:58
Cyclohexane			28		18	1	08/13/2014 02:58
Dibromochlorome	thane		ND		4.4	1	08/13/2014 02:58
1,2-Dibromo-3-chl	loropropane		ND		0.12	1	08/13/2014 02:58
1,2-Dibromoethan	e (EDB)		ND		3.9	1	08/13/2014 02:58
1,2-Dichlorobenze	ene		ND		3.0	1	08/13/2014 02:58
1,3-Dichlorobenze	ene		ND		3.0	1	08/13/2014 02:58
1,4-Dichlorobenze	ene		ND		3.0	1	08/13/2014 02:58
Dichlorodifluorome	ethane		ND		2.5	1	08/13/2014 02:58
1,1-Dichloroethan	e		ND		2.0	1	08/13/2014 02:58
1,2-Dichloroethan	e (1,2-DCA)		ND		2.0	1	08/13/2014 02:58
1,1-Dichloroethen	e		ND		2.0	1	08/13/2014 02:58
cis-1,2-Dichloroetl	hene		ND		2.0	1	08/13/2014 02:58
trans-1,2-Dichloro	ethene		ND		2.0	1	08/13/2014 02:58
1,2-Dichloropropa	ne		ND		2.4	1	08/13/2014 02:58
cis-1,3-Dichloropro	opene		ND		2.3	1	08/13/2014 02:58
trans-1,3-Dichloro	propene		ND		2.3	1	08/13/2014 02:58

Client:	Basics Environmental		W	/orkOrder:	1408	336	
Project:	Oakland, CA	Extraction Method: TO15					
Date Received:	8/11/14 19:28		А	nalytical Method	: TO1	5	
Date Prepared: 8/12/14-8/15/14 Unit:			nit:	ug/n	1 ³		
					10		
		Volatile Or	ganic Compou	nds in µg/m³			
Client ID		Lab ID	Matrix/ExtType	Date Collected	In s tru	ıment	Batch ID
SB-4		1408336-004A	Soil Gas	08/11/2014 15:30	GC24		94042
Initial Pressure	(psia)	Final Pressure	e (psia)				
13.77		27.45					
Analytes			Result		<u>RL</u>	DF	Date Analyzed
1,2-Dichloro-1,1,2	,2-tetrafluoroethane		ND		3.6	1	08/13/2014 02:58
Diisopropyl ether ((DIPE)		ND		2.1	1	08/13/2014 02:58
1,4-Dioxane			ND		1.8	1	08/13/2014 02:58
Ethanol			ND		96	1	08/13/2014 02:58
Ethyl acetate			ND		1.8	1	08/13/2014 02:58
Ethyl tert-butyl eth	ner (ETBE)		ND		2.1	1	08/13/2014 02:58
Ethylbenzene			6.6		2.2	1	08/13/2014 02:58
4-Ethyltoluene			2.6		2.5	1	08/13/2014 02:58
Freon 113			ND		3.9	1	08/13/2014 02:58
Heptane			ND		21	1	08/13/2014 02:58
Hexachlorobutadie	ene		ND		5.4	1	08/13/2014 02:58
Hexane			62		18	1	08/13/2014 02:58
2-Hexanone			ND		2.1	1	08/13/2014 02:58
4-Methyl-2-pentan	one (MIBK)		2.6		2.1	1	08/13/2014 02:58
Methyl-t-butyl ethe	er (MTBE)		ND		1.8	1	08/13/2014 02:58
Methylene chloride	е		ND		1.8	1	08/13/2014 02:58
Methyl methacryla	ate		ND		2.1	1	08/13/2014 02:58
Naphthalene			ND		5.3	1	08/13/2014 02:58
Propene			ND		88	1	08/13/2014 02:58
Styrene			ND		2.2	1	08/13/2014 02:58
1,1,1,2-Tetrachlor	oethane		ND		3.5	1	08/13/2014 02:58
1,1,2,2-Tetrachlor	oethane		ND		3.5	1	08/13/2014 02:58
Tetrachloroethene	;		ND		3.4	1	08/13/2014 02:58
Tetrahydrofuran			ND		1.5	1	08/13/2014 02:58
Toluene			75		1.9	1	08/13/2014 02:58
1,2,4-Trichloroben	izene		ND		3.8	1	08/13/2014 02:58
1,1,1-Trichloroetha	ane		ND		2.8	1	08/13/2014 02:58
1,1,2-Trichloroetha	ane		ND		2.8	1	08/13/2014 02:58
Trichloroethene			ND		2.8	1	08/13/2014 02:58
Trichlorofluoromet	thane		ND		2.8	1	08/13/2014 02:58
1,2,4-Trimethylber	nzene		8.8		2.5	1	08/13/2014 02:58
1,3,5-Trimethylber	nzene		2.8		2.5	1	08/13/2014 02:58
Vinyl Acetate			ND		1.8	1	08/13/2014 02:58
Vinyl Chloride			ND		1.3	1	08/13/2014 02:58

Analytical Report

Client: Project: Date Received: Date Prepared:	Basics Environmental Oakland, CA 8/11/14 19:28 8/12/14-8/15/14		V E A U	VorkOrder: xtraction Method nalytical Method nit:	1408336 : TO15 : TO15 μg/m ³	6	
		Volatile Or	ganic Compou	nd s in µg/m³			
Client ID		Lab ID	Matrix/ExtType	Date Collected	Instrume	nt	Batch ID
SB-4		1408336-004A	Soil Gas	08/11/2014 15:30	GC24		94042
Initial Pressure	(psia)	Final Pressure	e (psia)				
13.77		27.45					
Analytes			<u>Result</u>		<u>RL</u>	DF	Date Analyzed
Xylenes, Total			28		6.6	1	08/13/2014 02:58
<u>Surrogates</u>		<u>REC (%)</u>		<u>Limits</u>			
1,2-DCA-d4		96		70-130			08/13/2014 02:58
Toluene-d8		104		70-130			08/13/2014 02:58
4-BFB		104		70-130			08/13/2014 02:58

AK Analyst's Initial

Client:	Basics Environmental
Date Prepared:	8/18/14
Date Analyzed:	8/15/14
Instrument:	GC16
Matrix:	Water
Project:	Oakland, CA

WorkOrder:	1408336
BatchID:	94130
Extraction Method:	SW5030B
Analytical Method:	SW8260B
Unit:	μg/L
Sample ID:	MB/LCS-94130

QC Summary Report for SW8260B

Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
Acetone	ND	-	10	-	-	-	-
tert-Amyl methyl ether (TAME)	ND	15.4	0.50	20	-	76.8	70-130
Benzene	ND	18.7	0.50	20	-	93.4	70-130
Bromobenzene	ND	-	0.50	-	-	-	-
Bromochloromethane	ND	-	0.50	-	-	-	-
Bromodichloromethane	ND	-	0.50	-	-	-	-
Bromoform	ND	-	0.50	-	-	-	-
Bromomethane	ND	-	0.50	-	-	-	-
2-Butanone (MEK)	ND	-	2.0	-	-	-	-
t-Butyl alcohol (TBA)	ND	56.0	2.0	80	-	70	70-130
n-Butyl benzene	ND	-	0.50	-	-	-	-
sec-Butyl benzene	ND	-	0.50	-	-	-	-
tert-Butyl benzene	ND	-	0.50	-	-	-	-
Carbon Disulfide	ND	-	0.50	-	-	-	-
Carbon Tetrachloride	ND	-	0.50	-	-	-	-
Chlorobenzene	ND	19.2	0.50	20	-	96.3	70-130
Chloroethane	ND	-	0.50	-	-	-	-
Chloroform	ND	-	0.50	-	-	-	-
Chloromethane	ND	-	0.50	-	-	-	-
2-Chlorotoluene	ND	-	0.50	-	-	-	-
4-Chlorotoluene	ND	-	0.50	-	-	-	-
Dibromochloromethane	ND	-	0.50	-	-	-	-
1,2-Dibromo-3-chloropropane	ND	-	0.20	-	-	-	-
1,2-Dibromoethane (EDB)	ND	15.9	0.50	20	-	79.7	70-130
Dibromomethane	ND	-	0.50	-	-	-	-
1,2-Dichlorobenzene	ND	-	0.50	-	-	-	-
1,3-Dichlorobenzene	ND	-	0.50	-	-	-	-
1,4-Dichlorobenzene	ND	-	0.50	-	-	-	-
Dichlorodifluoromethane	ND	-	0.50	-	-	-	-
1,1-Dichloroethane	ND	-	0.50	-	-	-	-
1,2-Dichloroethane (1,2-DCA)	ND	17.0	0.50	20	-	84.8	70-130
1,1-Dichloroethene	ND	19.0	0.50	20	-	95.1	70-130
cis-1,2-Dichloroethene	ND	-	0.50	-	-	-	-
trans-1,2-Dichloroethene	ND	-	0.50	-	-	-	-
1,2-Dichloropropane	ND	-	0.50	-	-	-	-
1,3-Dichloropropane	ND	-	0.50	-	-	-	-
2,2-Dichloropropane	ND	-	0.50	-	-	-	-
1,1-Dichloropropene	ND	-	0.50	-	-	-	-
cis-1,3-Dichloropropene	ND	-	0.50	-	-	-	-
trans-1,3-Dichloropropene	ND	-	0.50	-	-	-	-

(Cont.)

Client:	Basics Environmental
Date Prepared:	8/18/14
Date Analyzed:	8/15/14
Instrument:	GC16
Matrix:	Water
Project:	Oakland, CA

WorkOrder:	1408336
BatchID:	94130
Extraction Method:	SW5030B
Analytical Method:	SW8260B
Unit:	μg/L
Sample ID:	MB/LCS-94130

QC Summary Report for SW8260B

Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
Diisopropyl ether (DIPE)	ND	18.3	0.50	20	_	91.6	70-130
Ethylbenzene	ND	-	0.50	-	-	-	-
Ethyl tert-butyl ether (ETBE)	ND	17.0	0.50	20	-	85.1	70-130
Freon 113	ND	-	0.50	-	-	-	-
Hexachlorobutadiene	ND	-	0.50	-	-	-	-
Hexachloroethane	ND	-	0.50	-	-	-	-
2-Hexanone	ND	-	0.50	-	-	-	-
Isopropylbenzene	ND	-	0.50	-	-	-	-
4-Isopropyl toluene	ND	-	0.50	-	-	-	-
Methyl-t-butyl ether (MTBE)	ND	14.6	0.50	20	-	73.3	70-130
Methylene chloride	ND	-	0.50	-	-	-	-
4-Methyl-2-pentanone (MIBK)	ND	-	0.50	-	-	-	-
Naphthalene	ND	-	0.50	-	-	-	-
n-Propyl benzene	ND	-	0.50	-	-	-	-
Styrene	ND	-	0.50	-	-	-	-
1,1,1,2-Tetrachloroethane	ND	-	0.50	-	-	-	-
1,1,2,2-Tetrachloroethane	ND	-	0.50	-	-	-	-
Tetrachloroethene	ND	-	0.50	-	-	-	-
Toluene	ND	19.5	0.50	20	-	97.3	70-130
1,2,3-Trichlorobenzene	ND	-	0.50	-	-	-	-
1,2,4-Trichlorobenzene	ND	-	0.50	-	-	-	-
1,1,1-Trichloroethane	ND	-	0.50	-	-	-	-
1,1,2-Trichloroethane	ND	-	0.50	-	-	-	-
Trichloroethene	ND	19.5	0.50	20	-	97.7	70-130
Trichlorofluoromethane	ND	-	0.50	-	-	-	-
1,2,3-Trichloropropane	ND	-	0.50	-	-	-	-
1,2,4-Trimethylbenzene	ND	-	0.50	-	-	-	-
1,3,5-Trimethylbenzene	ND	-	0.50	-	-	-	-
Vinyl Chloride	ND	-	0.50	-	-	-	-
Surrogate Recovery							
Dibromofluoromethane	24.0	23.1		25	96	92	70-130
Toluene-d8	25.0	24.6		25	100	98	70-130
4-BFB	1.96	2.05		2.5	78	82	70-130

Client:	Basics Environmental
Date Prepared:	8/14/14
Date Analyzed:	8/12/14
Instrument:	GC24
Matrix:	Soilgas
Project:	Oakland, CA

WorkOrder:	1408336
BatchID:	94042
Extraction Method:	TO15
Analytical Method:	TO15
Unit:	nL/L
Sample ID:	MB/LCS-94042

QC Summary Report for TO15 LCS Analyte ΜВ RL SPK MB SS LCS LCS Result Result Val %REC %REC Limits 25 ND 33.8 25 135 60-140 Acetone Acrolein ND 36.0 0.50 25 144, F2 60-140 Acrylonitrile ND 28.8 0.50 25 115 60-140 tert-Amyl methyl ether (TAME) ND 27.8 0.50 25 111 60-140 -25 93.7 60-140 Benzene ND 23.4 0.50 _ 0.50 25 116 60-140 Benzyl chloride ND 29.1 _ Bromodichloromethane ND 25.7 0.50 25 103 60-140 Bromoform ND 38.0 0.50 25 152. F2 60-140 _ Bromomethane ND 25.9 0.50 25 104 60-140 -1,3-Butadiene ND 28.9 0.50 25 _ 116 60-140 2-Butanone (MEK) ND 28.0 25 25 112 60-140 _ t-Butyl alcohol (TBA) 10 25 108 ND 26.9 60-140 Carbon Disulfide ND 25.2 0.50 25 101 60-140 Carbon Tetrachloride ND 25.1 0.50 25 101 60-140 -Chlorobenzene ND 24.8 0.50 25 99.4 60-140 _ 25 Chloroethane ND 26.0 0.50 104 60-140 _ 81.8 Chloroform 20.4 0.50 25 ND 60-140 Chloromethane ND 26.1 0.50 25 104 60-140 Cvclohexane ND 25.3 5.0 25 101 60-140 -Dibromochloromethane ND 28.6 0.50 25 -114 60-140 1,2-Dibromo-3-chloropropane ND 35.8 0.012 25 143, F2 60-140 _ ND 0.50 25 1,2-Dibromoethane (EDB) 24.9 99.5 60-140 1,2-Dichlorobenzene ND 24.9 0.50 25 99.6 60-140 _ 1,3-Dichlorobenzene ND 25.6 0.50 25 102 60-140 ND 24.6 0.50 25 98.3 60-140 1,4-Dichlorobenzene -Dichlorodifluoromethane ND 23.0 0.50 25 92.1 60-140 _ 25 1,1-Dichloroethane ND 25.7 0.50 103 60-140 _ 0.50 25 1,2-Dichloroethane (1,2-DCA) ND 23.7 94.7 60-140 _ 1,1-Dichloroethene ND 25.1 0.50 25 100 60-140 cis-1.2-Dichloroethene ND 25.1 0.50 25 101 60-140 -0.50 25 98.6 60-140 trans-1,2-Dichloroethene ND 24.6 -ND 0.50 25 105 60-140 1,2-Dichloropropane 26.1 _ ND 0.50 25 110 cis-1,3-Dichloropropene 27.6 60-140 0.50 25 104 trans-1,3-Dichloropropene ND 25.9 _ 60-140 1,2-Dichloro-1,1,2,2-tetrafluoroethane ND 0.50 25 93.8 60-140 23.4

(Cont.)

ND

ND

ND

ND

ND

27.9

25.4

27.2

26.7

0.50

0.50

0.50

0.50

50

25

25

25

25

-

_

_

_

Diisopropyl ether (DIPE)

Ethyl tert-butyl ether (ETBE)

1,4-Dioxane

Ethyl acetate

Ethanol

60-140

60-140

60-140

60-140

112

102

109

107

Client:	Basics Environmental
Date Prepared:	8/14/14
Date Analyzed:	8/12/14
Instrument:	GC24
Matrix:	Soilgas
Project:	Oakland, CA

WorkOrder:	1408336
BatchID:	94042
Extraction Method:	TO15
Analytical Method:	TO15
Unit:	nL/L
Sample ID:	MB/LCS-94042

QC Summary Report for TO15

Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
Ethylbenzene	ND	25.8	0.50	25	-	103	60-140
4-Ethyltoluene	ND	25.9	0.50	25	-	104	60-140
Freon 113	ND	22.5	0.50	25	-	90.1	60-140
Heptane	ND	26.2	5.0	25	-	105	60-140
Hexachlorobutadiene	ND	23.0	0.50	25	-	92	60-140
Hexane	ND	28.6	5.0	25	-	115	60-140
2-Hexanone	ND	29.6	0.50	25	-	119	60-140
4-Methyl-2-pentanone (MIBK)	ND	33.4	0.50	25	-	133	60-140
Methyl-t-butyl ether (MTBE)	ND	25.6	0.50	25	-	102	60-140
Methylene chloride	ND	21.7	0.50	25	-	86.7	60-140
Methyl methacrylate	ND	29.9	0.50	25	-	119	60-140
Naphthalene	ND	65.4	1.0	50	-	131	60-140
Propene	ND	-	50	-	-	-	-
Styrene	ND	28.5	0.50	25	-	114	60-140
1,1,1,2-Tetrachloroethane	ND	27.1	0.50	25	-	108	60-140
1,1,2,2-Tetrachloroethane	ND	24.4	0.50	25	-	97.4	60-140
Tetrachloroethene	ND	26.2	0.50	25	-	105	60-140
Tetrahydrofuran	ND	23.6	0.50	25	-	94.5	60-140
Toluene	ND	25.3	0.50	25	-	101	60-140
1,2,4-Trichlorobenzene	ND	27.4	0.50	25	-	109	60-140
1,1,1-Trichloroethane	ND	26.9	0.50	25	-	107	60-140
1,1,2-Trichloroethane	ND	22.1	0.50	25	-	88.5	60-140
Trichloroethene	ND	23.5	0.50	25	-	93.9	60-140
Trichlorofluoromethane	ND	29.6	0.50	25	-	119	60-140
1,2,4-Trimethylbenzene	ND	23.9	0.50	25	-	95.7	60-140
1,3,5-Trimethylbenzene	ND	22.6	0.50	25	-	90.5	60-140
Vinyl Acetate	ND	31.6	0.50	25	-	127	60-140
Vinyl Chloride	ND	25.8	0.50	25	-	103	60-140
Xylenes, Total	ND	72.6	1.5	75	-	96.8	60-140
Surrogate Recovery							
1,2-DCA-d4	493	493		500	99	99	60-140
Toluene-d8	518	521		500	104	104	60-140
4-BFB	494	500		500	99	100	60-140

McCampbell Analytical, Inc. 1534 Willow Pass Rd Pittsburg, CA 94565-1701

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

(925) 252-9262				WorkOr	der: 1408336	Clien	tCode: BEO		
	WaterTrax	WriteOn	EDF	Excel	EQuIS	Email	HardCopy	ThirdParty	J-flag
Report to:				Bil	I to:		Req	uested TAT:	5 days
Lita Freeman	Email: I	itafreeman@gma	ail.com		Accounts Pay	able			
Basics Environmental	cc/3rd Party:	pasics@aol.com;	basicsenviron	mental@g	Basics Enviro	nmental			
655 12th Street, Suite 126	PO:				655 12th Stree	et, Suite 126	Dat	e Received:	08/11/2014
Oakland, CA 94607	ProjectNo: (Oakland, CA			Oakland, CA	94607	Dat	e Printed:	08/20/2014
(510) 834-9099 FAX: (510) 834-9098									

					Requested Tests (See legend below)											
Lab ID	Client ID	Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
1408336-001	SB-1	Soil Gas	8/11/2014 14:25		Α											
1408336-002	SB-2	Soil Gas	8/11/2014 14:50		Α											
1408336-003	SB-3	Soil Gas	8/11/2014 15:14		Α											
1408336-004	SB-4	Soil Gas	8/11/2014 15:30		Α											
1408336-005	SB-5	Soil Gas	8/11/2014 13:55		Α											

Test Legend:

1 O15_Scan-SIM_SOIL(UG/M	2	3	4	5
6	7	8	9	10
11	12			

The following SampIDs: 001A, 002A, 003A, 004A, 005A contain testgroup.

Prepared by: Jena Alfaro

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

	<u>Mc</u>	Campbell A "When Quality	nalytical, Counts"	lnc.		1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com									
				W O	RK ORD	ER Sl	JMMARY								
Client Name	E: BASICS ENV	IRONMENTAL			QC Le	Level: LEVEL 2 Work Order: 1408336									
Project:	Oakland, CA				Client Cont	Contact: Lita Freeman Date Received: 8/11/2014									
Comments:					Contact's En	nail: lita	freeman@gmail.com								
		□WaterTrax	WriteOn	EDF	Excel		Fax 🖌 Email	HardC	opyThirdPart	ty 🗌	J-flag				
Lab ID	Client ID	Matrix	Test Name		Nur Cor	nber of Itainer s	Bottle & Preservative	De- chlorinated	Collection Date & Time	TAT	Sedimen Content	t Hold SubOut			
1408336-001A	SB-1	Soil Gas	TO15 for Soil V	apor		1	1L Summa		8/11/2014 14:25	5 days					
1408336-002A	SB-2	Soil Gas	TO15 for Soil V	apor		1	1L Summa		8/11/2014 14:50	5 days					
1408336-003A	SB-3	Soil Gas	TO15 for Soil V	apor		1	1L Summa		8/11/2014 15:14	5 days					
1408336-004A	SB-4	Soil Gas	TO15 for Soil V	apor		1	1L Summa		8/11/2014 15:30	5 days					
1408336-005A	SB-5	Soil Gas	TO15 for Soil V	apor		1	1L Summa		8/11/2014 13:55	5 days					

* NOTE: STLC and TCLP extractions require 48 hrs to complete; therefore, all TATs begin after the extraction is completed (i.e., 24hr TAT yields results in 72 hrs from sample submission).

Bottle Legend:

1L Summa = 1L Summa Canister

Page 1 of 1

1418330						CHAIN OF CLISTODY RECORD												
McCa	mpk	bell	Analyticc	I, Inc.														
1.534 Willow Pass Rd. / Pittsburg, Cg. 94565-1701				TURN AROUND TIME: RUSHL 1 Day 2 Day 3 Day 5 DAY														
www.mccampbell.com / main@mccampbell.com					GeoTracker EDF PDF PDF EDD EDD EQUIS 10 DAY													
Telephone	Telephone: (877) 252-9262 / Fax: (925) 252-9269						UST Clean Up Fund Project 🛄 Claim #											
Report To: / itz Freen	an		Bill To: Pasic	5 Environmental				A	nalysis	Red	quest	ed			He	lium S	Shroud SN#	•
Company: Basies En	Vivon	nerta						Ó	le	T					Otl	ner:	1 · · ·	
655 12th :	Street,	Sutz	126 litafizen	nan@gmail.com				G, C	ne, circ)uL					Not	tes: Ple	ease Specify unit	s if different than
Oakland, CA	9460	7	E-Maik hasiess	nuronmental Q			-	ehyd	Ethar	ircle		le,	natic		uL/	L. Lea	k check default is	s IPA.
Tele: ()			Project Name:	gmail.com	()		-	nald	ne, I O (pl	ase c	7	loran 3	Aron		Le	akch	eek 1, 1, - DF	A
Project Location: HEQCAD	sizer f	load.	Dakland		g/m	/m3)	F	Fon	etha e, C((ple;	/ln :	Norfl	l/or , n3		RE	portt	o Lita Freen	unand
Sampler Signature:	10-D7	ean	ion		5 (u	gu) č	()	CH,	2, N ylen otes	N2	pane	PA,]	c and ug/r		DON	ovan	Tom	
Collection			[-0]	0-1;	g/m	c. 4P Cs)	CO Acet	02	: Pro	cck (I	phati rcle)	a.	M	atrix	- Cannister			
Field Sample ID		1		Sampler Kit SN#	/OCs by	by T	g) (u	VOC	Gas ene, icate	Gas	Gas	Cheo	Alip	:r:	as	or	Pressur	e/ Vacuum
(Location)	Date	Time	Canister SN#			010)Hd.	Cotal	ixed thyl r ind	ixed	ixed	eak 1-di	DH: pleas)ther	oilg	ndo vir	Initial	Final
	01.1.1	1.1	- A 1. D Q 100		-	~	, -		щщо						N.		-20	-115
5B-1-	8/11/14	1.425	CAN 6307-189		V										N		-30	-4.0
56-2	8/11/14	1450	CAN 6311-191	se ·	V					+					T		- 29.5	- 3
56-3	8/11/14	1514	CAN 110 755		V	-									X		- 20	- 2
0.6-4	0/11/14	1530	CHN6167-199	•	1	-				+					1		- 20	-4
005	0/14/19	1333	MAN 3808-12-1200	r	-										~		30	
										+		+						
				1						+		+						
					+						_							
										+		-						
		,			-					+	-+-		-					
										++		+			in the second se			
Relinquished By:	Date:	Time:	Received By:	1		l	I		I	11			1	I	1		. ~	1
LiteDfleemen	B/11/14	1820	$()$	\rightarrow	Te	emp	o (°C	:):_		,	Worl	Orde	r #: _				x	
Relinquished By:	Date:	Time:	Received By:		C	ondi	ition	ı: <u> </u>	A.,								- 2003	10#4018
			C	usto	dy S	Seals	Intact?	: Ye	es	N	0	N	one_		QUU			
Relinquished By: Date: Time: Received By:					Sł	nipp	ed V	Via:	() 1		20		4					
								A	RCO	30.	tai	hes	5	RP	C	d	unlable	d.
								6	m	C	m	ed	P	211	Co	nist	PTH	
								C	UII	1 11	1		d	U	C	(10)		Page 27 of

Page 27 of 28

McCampbell Analytical, Inc. "When Quality Counts" 1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Sample Receipt Checklist

Client Name:	Basics Environment	al			Date and	Time Received:	8/11/2014 7:28:27 PM		
Project Name:	Oakland, CA				LogIn Rev	iewed by:	Jena Alfaro		
WorkOrder №:	1408336	Matrix: Soil Gas			Carrier:	Client Drop-In			
		<u>Ch</u>	ain of C	ustody (COC) Information				
Chain of custody	present?		Yes	✓	No 🗌				
Chain of custody	signed when relinquis	hed and received?	Yes	✓	No 🗌				
Chain of custody	agrees with sample la	abels?	Yes		No 🖌				
Sample IDs note	d by Client on COC?		Yes	✓	No 🗌				
Date and Time o	f collection noted by C	lient on COC?	Yes	✓	No 🗌				
Sampler's name	noted on COC?		Yes	✓	No 🗌				
Sample Receipt Information									
Custody seals in	tact on shipping contai	iner/cooler?	Yes		No 🗌		NA 🗹		
Shipping contain	er/cooler in good cond	ition?	Yes	✓	No 🗌				
Samples in prope	er containers/bottles?		Yes	✓	No 🗌				
Sample containe	rs intact?		Yes	✓	No 🗌				
Sufficient sample	e volume for indicated	test?	Yes	✓	No 🗌				
		Sample Pre	servatio	n and Hold	<u>Time (HT) Info</u>	ormation			
All samples rece	ived within holding tim	e?	Yes	✓	No 🗌				
Container/Temp	Blank temperature		Coole	er Temp:			NA 🗹		
Water - VOA vial	s have zero headspac	e / no bubbles?	Yes		No 🗌				
Sample labels ch	necked for correct pres	ervation?	Yes	✓	No				
pH acceptable up	oon receipt (Metal: pH·	<2; 522: pH<4)?	Yes		No 🗌		NA 🗹		
Samples Receive	ed on Ice?		Yes		No 🖌				

* NOTE: If the "No" box is checked, see comments below.

Comments: Sample labels blank.

McCampbell Analytical, Inc.

"When Quality Counts"

Analytical Report

WorkOrder:	1408335
Report Created for:	Basics Environmental 655 12th Street, Suite 126 Oakland, CA 94607
Project Contact:	Lita Freeman
Project Name:	Oakland, CA
Project Received:	08/11/2014

Analytical Report reviewed & approved for release on 08/19/2014 by:

Question about your data? <u>Click here to email</u> <u>McCampbell</u>

Angela Rydelius, Laboratory Manager

The report shall not be reproduced except in full, without the written approval of the laboratory. The analytical results relate only to the items tested. Results reported conform to the most current NELAP standards, where applicable, unless otherwise stated in the case narrative.

1534 Willow Pass Rd. Pittsburg, CA 94565 ♦ TEL: (877) 252-9262 ♦ FAX: (925) 252-9269 ♦ www.mccampbell.com NELAP: 4033ORELAP ♦ ELAP: 1644 ♦ ISO/IEC: 17025:2005 ♦ WSDE: C972-11 ♦ ADEC: UST-098 ♦ UCMR3

Glossary of Terms & Qualifier Definitions

Client: Basics Environmental

Project: Oakland, CA WorkOrder: 1408335

Glossary Abbreviation

95% Interval	95% Confident Interval
DF	Dilution Factor
DUP	Duplicate
EDL	Estimated Detection Limit
ITEF	International Toxicity Equivalence Factor
LCS	Laboratory Control Sample
MB	Method Blank
MB % Rec	% Recovery of Surrogate in Method Blank, if applicable
MDL	Method Detection Limit
ML	Minimum Level of Quantitation
MS	Matrix Spike
MSD	Matrix Spike Duplicate
ND	Not detected at or above the indicated MDL or RL
NR	Matrix interferences, or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix; or sample diluted due to high matrix or analyte content.
PF	Prep Factor
RD	Relative Difference
RL	Reporting Limit (The RL is the lowest calibration standard in a multipoint calibration.)
RPD	Relative Percent Deviation
RRT	Relative Retention Time
SPK Val	Spike Value
SPKRef Val	Spike Reference Value
TEQ	Toxicity Equivalence

Analytical Qualifiers

S	spike recovery outside accepted recovery limits
c4	surrogate recovery outside of the control limits due to coelution with another peak(s) / cluttered chromatogram.
d1	weakly modified or unmodified gasoline is significant
d6	one to a few isolated non-target peaks present in the TPH(g) chromatogram
e2	diesel range compounds are significant; no recognizable pattern
e4	gasoline range compounds are significant.
e7	oil range compounds are significant

Quality Control Qualifiers

F1

MS/MSD recovery and/or RPD was out of acceptance criteria; LCS validated the prep batch.

Client:Basics EnvironmentalProject:Oakland, CADate Received:8/11/14 18:49Date Prepared:8/12/14

WorkOrder:	1408335
Extraction Method:	SM5520E/F
Analytical Method:	SM5520E/F
Unit:	mg/Kg

Petroleum Oil & Grease with Silica Gel Clean-Up						
Client ID	Lab ID	Matrix/ExtType	Date Collected	Instrument	Batch ID	
SB-6-5	1408335-001A	Soil	08/11/2014 12:45	O&G	93932	
Analytes	Result		<u>RL</u> <u>DF</u>		Date Analyzed	
POG	910		50 1		08/12/2014 15:00	

Client ID	Lab ID	Matrix/ExtType	Date Collect	ed Instrument	Batch ID
SB-7-5	1408335-002A	Soil	08/11/2014 13	00 O&G	93932
Analytes	Result		<u>RL</u> DF		Date Analyzed
POG	530		50 1		08/12/2014 15:05

Client ID	Lab ID	Matrix/ExtType	Date C	ollected Instrument	Batch ID
SB-8-5	1408335-003A	Soil	08/11/20	014 13:10 O&G	93932
Analytes	Result		<u>RL</u>	DF	Date Analyzed
POG	160		50	1	08/12/2014 15:10

Client ID	Lab ID	Matrix/ExtType	Date	Collected Instrumen	t Batch ID
SB-9-5	1408335-004A	Soil	08/11/	2014 13:25 O&G	93932
Analytes	Result		<u>RL</u>	DF	Date Analyzed
POG	53		50	1	08/12/2014 14:45

Client:Basics EnvironmentalProject:Oakland, CADate Received:8/11/14 18:49Date Prepared:8/11/14

WorkOrder:1408335Extraction Method:SW5030BAnalytical Method:SW8260BUnit:mg/kg

Volatile Organics by P&T and GC/MS (Basic Target List)

Client ID	Lab ID	Matrix/ExtType	Date Collect	ted Instrument	Batch ID
SB-6-5	1408335-001A	Soil	08/11/2014 12	2:45 GC10	93910
Analytes	<u>Result</u>		<u>RL</u> DF	1	Date Analyzed
Acetone	ND		20 20	00	08/19/2014 12:58
tert-Amyl methyl ether (TAME)	ND		1.0 2	00	08/19/2014 12:58
Benzene	8.6		1.0 2	00	08/19/2014 12:58
Bromobenzene	ND		1.0 2	00	08/19/2014 12:58
Bromochloromethane	ND		1.0 2	00	08/19/2014 12:58
Bromodichloromethane	ND		1.0 2	00	08/19/2014 12:58
Bromoform	ND		1.0 2	00	08/19/2014 12:58
Bromomethane	ND		1.0 2	00	08/19/2014 12:58
2-Butanone (MEK)	ND		4.0 2	00	08/19/2014 12:58
t-Butyl alcohol (TBA)	ND		10 2	00	08/19/2014 12:58
n-Butyl benzene	6.8		1.0 2	00	08/19/2014 12:58
sec-Butyl benzene	2.5		1.0 2	00	08/19/2014 12:58
tert-Butyl benzene	ND		1.0 2	00	08/19/2014 12:58
Carbon Disulfide	ND		1.0 2	00	08/19/2014 12:58
Carbon Tetrachloride	ND		1.0 2	00	08/19/2014 12:58
Chlorobenzene	ND		1.0 2	00	08/19/2014 12:58
Chloroethane	ND		1.0 2	00	08/19/2014 12:58
Chloroform	ND		1.0 2	00	08/19/2014 12:58
Chloromethane	ND		1.0 2	00	08/19/2014 12:58
2-Chlorotoluene	ND		1.0 2	00	08/19/2014 12:58
4-Chlorotoluene	ND		1.0 2	00	08/19/2014 12:58
Dibromochloromethane	ND		1.0 2	00	08/19/2014 12:58
1,2-Dibromo-3-chloropropane	ND		0.80 2	00	08/19/2014 12:58
1,2-Dibromoethane (EDB)	ND		0.80 2	00	08/19/2014 12:58
Dibromomethane	ND		1.0 2	00	08/19/2014 12:58
1,2-Dichlorobenzene	ND		1.0 2	00	08/19/2014 12:58
1,3-Dichlorobenzene	ND		1.0 2	00	08/19/2014 12:58
1,4-Dichlorobenzene	ND		1.0 2	00	08/19/2014 12:58
Dichlorodifluoromethane	ND		1.0 2	00	08/19/2014 12:58
1,1-Dichloroethane	ND		1.0 2	00	08/19/2014 12:58
1,2-Dichloroethane (1,2-DCA)	ND		0.80 2	00	08/19/2014 12:58
1,1-Dichloroethene	ND		1.0 2	00	08/19/2014 12:58
cis-1,2-Dichloroethene	ND		1.0 2	00	08/19/2014 12:58
trans-1,2-Dichloroethene	ND		1.0 2	00	08/19/2014 12:58
1,2-Dichloropropane	ND		1.0 2	00	08/19/2014 12:58
1,3-Dichloropropane	ND		1.0 2	00	08/19/2014 12:58
2,2-Dichloropropane	ND		1.0 2	00	08/19/2014 12:58
1,1-Dichloropropene	ND		1.0 2	00	08/19/2014 12:58

(Cont.)

Client: **Basics** Environmental Project: Oakland, CA Date Received: 8/11/14 18:49 Date Prepared: 8/11/14

WorkOrder: 1408335 Extraction Method: SW5030B Analytical Method: SW8260B Unit: mg/kg

Volatile Organics by P&T and GC/MS (Basic Target List)

Client ID	Lab ID	Matrix/ExtType	Date Collected	d Instrument	Batch ID
SB-6-5	1408335-001A	Soil	08/11/2014 12:4	5 GC10	93910
Analytes	Result		<u>RL</u> <u>DF</u>		Date Analyzed
cis-1,3-Dichloropropene	ND		1.0 200		08/19/2014 12:58
trans-1,3-Dichloropropene	ND		1.0 200		08/19/2014 12:58
Diisopropyl ether (DIPE)	ND		1.0 200		08/19/2014 12:58
Ethylbenzene	7.5		1.0 200		08/19/2014 12:58
Ethyl tert-butyl ether (ETBE)	ND		1.0 200		08/19/2014 12:58
Freon 113	ND		20 200		08/19/2014 12:58
Hexachlorobutadiene	ND		1.0 200		08/19/2014 12:58
Hexachloroethane	ND		1.0 200		08/19/2014 12:58
2-Hexanone	ND		1.0 200		08/19/2014 12:58
Isopropylbenzene	8.0		1.0 200		08/19/2014 12:58
4-Isopropyl toluene	ND		1.0 200		08/19/2014 12:58
Methyl-t-butyl ether (MTBE)	ND		1.0 200		08/19/2014 12:58
Methylene chloride	ND		1.0 200		08/19/2014 12:58
4-Methyl-2-pentanone (MIBK)	ND		1.0 200		08/19/2014 12:58
Naphthalene	19		1.0 200		08/19/2014 12:58
n-Propyl benzene	26		1.0 200		08/19/2014 12:58
Styrene	ND		1.0 200		08/19/2014 12:58
1,1,1,2-Tetrachloroethane	ND		1.0 200		08/19/2014 12:58
1,1,2,2-Tetrachloroethane	ND		1.0 200		08/19/2014 12:58
Tetrachloroethene	ND		1.0 200		08/19/2014 12:58
Toluene	ND		1.0 200		08/19/2014 12:58
1,2,3-Trichlorobenzene	ND		1.0 200		08/19/2014 12:58
1,2,4-Trichlorobenzene	ND		1.0 200		08/19/2014 12:58
1,1,1-Trichloroethane	ND		1.0 200		08/19/2014 12:58
1,1,2-Trichloroethane	ND		1.0 200		08/19/2014 12:58
Trichloroethene	ND		1.0 200		08/19/2014 12:58
Trichlorofluoromethane	ND		1.0 200		08/19/2014 12:58
1,2,3-Trichloropropane	ND		1.0 200		08/19/2014 12:58
1,2,4-Trimethylbenzene	ND		1.0 200		08/19/2014 12:58
1,3,5-Trimethylbenzene	ND		1.0 200		08/19/2014 12:58
Vinyl Chloride	ND		1.0 200		08/19/2014 12:58
Xylenes, Total	1.2		1.0 200		08/19/2014 12:58
Surrogates	<u>REC (%)</u>		<u>Limits</u>		
Dibromofluoromethane	98		70-130		08/19/2014 12:58
Toluene-d8	94		70-130		08/19/2014 12:58
4-BFB	101		70-130		08/19/2014 12:58

Client:Basics EnvironmentalProject:Oakland, CADate Received:8/11/14 18:49Date Prepared:8/11/14

WorkOrder:1408335Extraction Method:SW5030BAnalytical Method:SW8260BUnit:mg/kg

Volatile Organics by P&T and GC/MS (Basic Target List)

Client ID	Lab ID	Matrix/ExtType	Date Collected	Instrument	Batch ID
SB-7-5	1408335-002A	Soil	08/11/2014 13:00	GC10	93910
Analytes	Result		<u>RL</u> <u>DF</u>		Date Analyzed
Acetone	ND		20 200		08/16/2014 01:39
tert-Amyl methyl ether (TAME)	ND		1.0 200		08/16/2014 01:39
Benzene	3.5		1.0 200		08/16/2014 01:39
Bromobenzene	ND		1.0 200		08/16/2014 01:39
Bromochloromethane	ND		1.0 200		08/16/2014 01:39
Bromodichloromethane	ND		1.0 200		08/16/2014 01:39
Bromoform	ND		1.0 200		08/16/2014 01:39
Bromomethane	ND		1.0 200		08/16/2014 01:39
2-Butanone (MEK)	ND		4.0 200		08/16/2014 01:39
t-Butyl alcohol (TBA)	ND		10 200		08/16/2014 01:39
n-Butyl benzene	3.0		1.0 200		08/16/2014 01:39
sec-Butyl benzene	1.1		1.0 200		08/16/2014 01:39
tert-Butyl benzene	ND		1.0 200		08/16/2014 01:39
Carbon Disulfide	ND		1.0 200		08/16/2014 01:39
Carbon Tetrachloride	ND		1.0 200		08/16/2014 01:39
Chlorobenzene	ND		1.0 200		08/16/2014 01:39
Chloroethane	ND		1.0 200		08/16/2014 01:39
Chloroform	ND		1.0 200		08/16/2014 01:39
Chloromethane	ND		1.0 200		08/16/2014 01:39
2-Chlorotoluene	ND		1.0 200		08/16/2014 01:39
4-Chlorotoluene	ND		1.0 200		08/16/2014 01:39
Dibromochloromethane	ND		1.0 200		08/16/2014 01:39
1,2-Dibromo-3-chloropropane	ND		0.80 200		08/16/2014 01:39
1,2-Dibromoethane (EDB)	ND		0.80 200		08/16/2014 01:39
Dibromomethane	ND		1.0 200		08/16/2014 01:39
1,2-Dichlorobenzene	ND		1.0 200		08/16/2014 01:39
1,3-Dichlorobenzene	ND		1.0 200		08/16/2014 01:39
1,4-Dichlorobenzene	ND		1.0 200		08/16/2014 01:39
Dichlorodifluoromethane	ND		1.0 200		08/16/2014 01:39
1,1-Dichloroethane	ND		1.0 200		08/16/2014 01:39
1,2-Dichloroethane (1,2-DCA)	ND		0.80 200		08/16/2014 01:39
1,1-Dichloroethene	ND		1.0 200		08/16/2014 01:39
cis-1,2-Dichloroethene	ND		1.0 200		08/16/2014 01:39
trans-1,2-Dichloroethene	ND		1.0 200		08/16/2014 01:39
1,2-Dichloropropane	ND		1.0 200		08/16/2014 01:39
1,3-Dichloropropane	ND		1.0 200		08/16/2014 01:39
2,2-Dichloropropane	ND		1.0 200		08/16/2014 01:39
1,1-Dichloropropene	ND		1.0 200		08/16/2014 01:39

(Cont.)

Client:Basics EnvironmentalProject:Oakland, CADate Received:8/11/14 18:49Date Prepared:8/11/14

WorkOrder:1408335Extraction Method:SW5030BAnalytical Method:SW8260BUnit:mg/kg

Volatile Organics by P&T and GC/MS (Basic Target List)

Client ID	Lab ID	Matrix/ExtType	Date Collected	Instrument	Batch ID
SB-7-5	1408335-002A	Soil	08/11/2014 13:00	GC10	93910
Analytes	Result		<u>RL</u> <u>DF</u>		Date Analyzed
cis-1,3-Dichloropropene	ND		1.0 200		08/16/2014 01:39
trans-1,3-Dichloropropene	ND		1.0 200		08/16/2014 01:39
Diisopropyl ether (DIPE)	ND		1.0 200		08/16/2014 01:39
Ethylbenzene	2.6		1.0 200		08/16/2014 01:39
Ethyl tert-butyl ether (ETBE)	ND		1.0 200		08/16/2014 01:39
Freon 113	ND		20 200		08/16/2014 01:39
Hexachlorobutadiene	ND		1.0 200		08/16/2014 01:39
Hexachloroethane	ND		1.0 200		08/16/2014 01:39
2-Hexanone	ND		1.0 200		08/16/2014 01:39
Isopropylbenzene	3.0		1.0 200		08/16/2014 01:39
4-Isopropyl toluene	ND		1.0 200		08/16/2014 01:39
Methyl-t-butyl ether (MTBE)	ND		1.0 200		08/16/2014 01:39
Methylene chloride	ND		1.0 200		08/16/2014 01:39
4-Methyl-2-pentanone (MIBK)	ND		1.0 200		08/16/2014 01:39
Naphthalene	7.7		1.0 200		08/16/2014 01:39
n-Propyl benzene	10		1.0 200		08/16/2014 01:39
Styrene	ND		1.0 200		08/16/2014 01:39
1,1,1,2-Tetrachloroethane	ND		1.0 200		08/16/2014 01:39
1,1,2,2-Tetrachloroethane	ND		1.0 200		08/16/2014 01:39
Tetrachloroethene	ND		1.0 200		08/16/2014 01:39
Toluene	ND		1.0 200		08/16/2014 01:39
1,2,3-Trichlorobenzene	ND		1.0 200		08/16/2014 01:39
1,2,4-Trichlorobenzene	ND		1.0 200		08/16/2014 01:39
1,1,1-Trichloroethane	ND		1.0 200		08/16/2014 01:39
1,1,2-Trichloroethane	ND		1.0 200		08/16/2014 01:39
Trichloroethene	ND		1.0 200		08/16/2014 01:39
Trichlorofluoromethane	ND		1.0 200		08/16/2014 01:39
1,2,3-Trichloropropane	ND		1.0 200		08/16/2014 01:39
1,2,4-Trimethylbenzene	ND		1.0 200		08/16/2014 01:39
1,3,5-Trimethylbenzene	ND		1.0 200		08/16/2014 01:39
Vinyl Chloride	ND		1.0 200		08/16/2014 01:39
Xylenes, Total	ND		1.0 200		08/16/2014 01:39
<u>Surrogates</u>	<u>REC (%)</u>		<u>Limits</u>		
Dibromofluoromethane	98		70-130		08/16/2014 01:39
Toluene-d8	100		70-130		08/16/2014 01:39
4-BFB	97		70-130		08/16/2014 01:39

Client:Basics EnvironmentalProject:Oakland, CADate Received:8/11/14 18:49Date Prepared:8/11/14

WorkOrder:1408335Extraction Method:SW5030BAnalytical Method:SW8260BUnit:mg/kg

Volatile Organics by P&T and GC/MS (Basic Target List)

Client ID	Lab ID	Matrix/ExtType	Date Collected	Instrument	Batch ID
SB-8-5	1408335-003A	Soil	08/11/2014 13:10	GC10	93910
Analytes	Result		<u>RL</u> <u>DF</u>		Date Analyzed
Acetone	ND		1.0 10		08/16/2014 02:20
tert-Amyl methyl ether (TAME)	ND		0.050 10		08/16/2014 02:20
Benzene	ND		0.050 10		08/16/2014 02:20
Bromobenzene	ND		0.050 10		08/16/2014 02:20
Bromochloromethane	ND		0.050 10		08/16/2014 02:20
Bromodichloromethane	ND		0.050 10		08/16/2014 02:20
Bromoform	ND		0.050 10		08/16/2014 02:20
Bromomethane	ND		0.050 10		08/16/2014 02:20
2-Butanone (MEK)	ND		0.20 10		08/16/2014 02:20
t-Butyl alcohol (TBA)	ND		0.50 10		08/16/2014 02:20
n-Butyl benzene	ND		0.050 10		08/16/2014 02:20
sec-Butyl benzene	ND		0.050 10		08/16/2014 02:20
tert-Butyl benzene	ND		0.050 10		08/16/2014 02:20
Carbon Disulfide	ND		0.050 10		08/16/2014 02:20
Carbon Tetrachloride	ND		0.050 10		08/16/2014 02:20
Chlorobenzene	ND		0.050 10		08/16/2014 02:20
Chloroethane	ND		0.050 10		08/16/2014 02:20
Chloroform	ND		0.050 10		08/16/2014 02:20
Chloromethane	ND		0.050 10		08/16/2014 02:20
2-Chlorotoluene	ND		0.050 10		08/16/2014 02:20
4-Chlorotoluene	ND		0.050 10		08/16/2014 02:20
Dibromochloromethane	ND		0.050 10		08/16/2014 02:20
1,2-Dibromo-3-chloropropane	ND		0.040 10		08/16/2014 02:20
1,2-Dibromoethane (EDB)	ND		0.040 10		08/16/2014 02:20
Dibromomethane	ND		0.050 10		08/16/2014 02:20
1,2-Dichlorobenzene	ND		0.050 10		08/16/2014 02:20
1,3-Dichlorobenzene	ND		0.050 10		08/16/2014 02:20
1,4-Dichlorobenzene	ND		0.050 10		08/16/2014 02:20
Dichlorodifluoromethane	ND		0.050 10		08/16/2014 02:20
1,1-Dichloroethane	ND		0.050 10		08/16/2014 02:20
1,2-Dichloroethane (1,2-DCA)	ND		0.040 10		08/16/2014 02:20
1,1-Dichloroethene	ND		0.050 10		08/16/2014 02:20
cis-1,2-Dichloroethene	ND		0.050 10		08/16/2014 02:20
trans-1,2-Dichloroethene	ND		0.050 10		08/16/2014 02:20
1,2-Dichloropropane	ND		0.050 10		08/16/2014 02:20
1,3-Dichloropropane	ND		0.050 10		08/16/2014 02:20
2,2-Dichloropropane	ND		0.050 10		08/16/2014 02:20
1,1-Dichloropropene	ND		0.050 10		08/16/2014 02:20

(Cont.)

Client: **Basics** Environmental Project: Oakland, CA Date Received: 8/11/14 18:49 Date Prepared: 8/11/14

WorkOrder: 1408335 Extraction Method: SW5030B Analytical Method: SW8260B Unit: mg/kg

Volatile Organics by P&T and GC/MS (Basic Target List)

Client ID	Lab ID	Matrix/ExtType	Date Collected	Instrument	Batch ID
SB-8-5	1408335-003A	Soil	08/11/2014 13:10	GC10	93910
Analytes	Result		<u>RL</u> <u>DF</u>		Date Analyzed
cis-1,3-Dichloropropene	ND		0.050 10		08/16/2014 02:20
trans-1,3-Dichloropropene	ND		0.050 10		08/16/2014 02:20
Diisopropyl ether (DIPE)	ND		0.050 10		08/16/2014 02:20
Ethylbenzene	ND		0.050 10		08/16/2014 02:20
Ethyl tert-butyl ether (ETBE)	ND		0.050 10		08/16/2014 02:20
Freon 113	ND		1.0 10		08/16/2014 02:20
Hexachlorobutadiene	ND		0.050 10		08/16/2014 02:20
Hexachloroethane	ND		0.050 10		08/16/2014 02:20
2-Hexanone	ND		0.050 10		08/16/2014 02:20
Isopropylbenzene	0.21		0.050 10		08/16/2014 02:20
4-Isopropyl toluene	ND		0.050 10		08/16/2014 02:20
Methyl-t-butyl ether (MTBE)	ND		0.050 10		08/16/2014 02:20
Methylene chloride	ND		0.050 10		08/16/2014 02:20
4-Methyl-2-pentanone (MIBK)	ND		0.050 10		08/16/2014 02:20
Naphthalene	ND		0.050 10		08/16/2014 02:20
n-Propyl benzene	0.60		0.050 10		08/16/2014 02:20
Styrene	ND		0.050 10		08/16/2014 02:20
1,1,1,2-Tetrachloroethane	ND		0.050 10		08/16/2014 02:20
1,1,2,2-Tetrachloroethane	ND		0.050 10		08/16/2014 02:20
Tetrachloroethene	ND		0.050 10		08/16/2014 02:20
Toluene	ND		0.050 10		08/16/2014 02:20
1,2,3-Trichlorobenzene	ND		0.050 10		08/16/2014 02:20
1,2,4-Trichlorobenzene	ND		0.050 10		08/16/2014 02:20
1,1,1-Trichloroethane	ND		0.050 10		08/16/2014 02:20
1,1,2-Trichloroethane	ND		0.050 10		08/16/2014 02:20
Trichloroethene	ND		0.050 10		08/16/2014 02:20
Trichlorofluoromethane	ND		0.050 10		08/16/2014 02:20
1,2,3-Trichloropropane	ND		0.050 10		08/16/2014 02:20
1,2,4-Trimethylbenzene	ND		0.050 10		08/16/2014 02:20
1,3,5-Trimethylbenzene	ND		0.050 10		08/16/2014 02:20
Vinyl Chloride	ND		0.050 10		08/16/2014 02:20
Xylenes, Total	ND		0.050 10		08/16/2014 02:20
Surrogates	<u>REC (%)</u>		Limits		
Dibromofluoromethane	100		70-130		08/16/2014 02:20
Toluene-d8	102		70-130		08/16/2014 02:20
4-BFB	103		70-130		08/16/2014 02:20

Client:Basics EnvironmentalProject:Oakland, CADate Received:8/11/14 18:49Date Prepared:8/11/14

WorkOrder:1408335Extraction Method:SW5030BAnalytical Method:SW8260BUnit:mg/kg

Volatile Organics by P&T and GC/MS (Basic Target List)

Client ID	Lab ID	Matrix/ExtType	Date Collected	Instrument	Batch ID
SB-9-5	1408335-004A	Soil	08/11/2014 13:25	GC10	93910
Analytes	Result		<u>RL</u> <u>DF</u>		Date Analyzed
Acetone	ND		0.10 1		08/13/2014 03:55
tert-Amyl methyl ether (TAME)	ND		0.0050 1		08/13/2014 03:55
Benzene	ND		0.0050 1		08/13/2014 03:55
Bromobenzene	ND		0.0050 1		08/13/2014 03:55
Bromochloromethane	ND		0.0050 1		08/13/2014 03:55
Bromodichloromethane	ND		0.0050 1		08/13/2014 03:55
Bromoform	ND		0.0050 1		08/13/2014 03:55
Bromomethane	ND		0.0050 1		08/13/2014 03:55
2-Butanone (MEK)	ND		0.020 1		08/13/2014 03:55
t-Butyl alcohol (TBA)	ND		0.050 1		08/13/2014 03:55
n-Butyl benzene	ND		0.0050 1		08/13/2014 03:55
sec-Butyl benzene	ND		0.0050 1		08/13/2014 03:55
tert-Butyl benzene	ND		0.0050 1		08/13/2014 03:55
Carbon Disulfide	ND		0.0050 1		08/13/2014 03:55
Carbon Tetrachloride	ND		0.0050 1		08/13/2014 03:55
Chlorobenzene	ND		0.0050 1		08/13/2014 03:55
Chloroethane	ND		0.0050 1		08/13/2014 03:55
Chloroform	ND		0.0050 1		08/13/2014 03:55
Chloromethane	ND		0.0050 1		08/13/2014 03:55
2-Chlorotoluene	ND		0.0050 1		08/13/2014 03:55
4-Chlorotoluene	ND		0.0050 1		08/13/2014 03:55
Dibromochloromethane	ND		0.0050 1		08/13/2014 03:55
1,2-Dibromo-3-chloropropane	ND		0.0040 1		08/13/2014 03:55
1,2-Dibromoethane (EDB)	ND		0.0040 1		08/13/2014 03:55
Dibromomethane	ND		0.0050 1		08/13/2014 03:55
1,2-Dichlorobenzene	ND		0.0050 1		08/13/2014 03:55
1,3-Dichlorobenzene	ND		0.0050 1		08/13/2014 03:55
1,4-Dichlorobenzene	ND		0.0050 1		08/13/2014 03:55
Dichlorodifluoromethane	ND		0.0050 1		08/13/2014 03:55
1,1-Dichloroethane	ND		0.0050 1		08/13/2014 03:55
1,2-Dichloroethane (1,2-DCA)	ND		0.0040 1		08/13/2014 03:55
1,1-Dichloroethene	ND		0.0050 1		08/13/2014 03:55
cis-1,2-Dichloroethene	ND		0.0050 1		08/13/2014 03:55
trans-1,2-Dichloroethene	ND		0.0050 1		08/13/2014 03:55
1,2-Dichloropropane	ND		0.0050 1		08/13/2014 03:55
1,3-Dichloropropane	ND		0.0050 1		08/13/2014 03:55
2,2-Dichloropropane	ND		0.0050 1		08/13/2014 03:55
1,1-Dichloropropene	ND		0.0050 1		08/13/2014 03:55

(Cont.)

Client:Basics EnvironmentalProject:Oakland, CADate Received:8/11/14 18:49Date Prepared:8/11/14

WorkOrder:1408335Extraction Method:SW5030BAnalytical Method:SW8260BUnit:mg/kg

Volatile Organics by P&T and GC/MS (Basic Target List)

Client ID	Lab ID	Matrix/ExtType	Date Collecte	d Instrument	Batch ID
SB-9-5	1408335-004A	Soil	08/11/2014 13:2	5 GC10	93910
Analytes	Result		<u>RL</u> <u>DF</u>		Date Analyzed
cis-1,3-Dichloropropene	ND		0.0050 1		08/13/2014 03:55
trans-1,3-Dichloropropene	ND		0.0050 1		08/13/2014 03:55
Diisopropyl ether (DIPE)	ND		0.0050 1		08/13/2014 03:55
Ethylbenzene	ND		0.0050 1		08/13/2014 03:55
Ethyl tert-butyl ether (ETBE)	ND		0.0050 1		08/13/2014 03:55
Freon 113	ND		0.10 1		08/13/2014 03:55
Hexachlorobutadiene	ND		0.0050 1		08/13/2014 03:55
Hexachloroethane	ND		0.0050 1		08/13/2014 03:55
2-Hexanone	ND		0.0050 1		08/13/2014 03:55
Isopropylbenzene	ND		0.0050 1		08/13/2014 03:55
4-Isopropyl toluene	ND		0.0050 1		08/13/2014 03:55
Methyl-t-butyl ether (MTBE)	ND		0.0050 1		08/13/2014 03:55
Methylene chloride	ND		0.0050 1		08/13/2014 03:55
4-Methyl-2-pentanone (MIBK)	ND		0.0050 1		08/13/2014 03:55
Naphthalene	ND		0.0050 1		08/13/2014 03:55
n-Propyl benzene	ND		0.0050 1		08/13/2014 03:55
Styrene	ND		0.0050 1		08/13/2014 03:55
1,1,1,2-Tetrachloroethane	ND		0.0050 1		08/13/2014 03:55
1,1,2,2-Tetrachloroethane	ND		0.0050 1		08/13/2014 03:55
Tetrachloroethene	ND		0.0050 1		08/13/2014 03:55
Toluene	ND		0.0050 1		08/13/2014 03:55
1,2,3-Trichlorobenzene	ND		0.0050 1		08/13/2014 03:55
1,2,4-Trichlorobenzene	ND		0.0050 1		08/13/2014 03:55
1,1,1-Trichloroethane	ND		0.0050 1		08/13/2014 03:55
1,1,2-Trichloroethane	ND		0.0050 1		08/13/2014 03:55
Trichloroethene	ND		0.0050 1		08/13/2014 03:55
Trichlorofluoromethane	ND		0.0050 1		08/13/2014 03:55
1,2,3-Trichloropropane	ND		0.0050 1		08/13/2014 03:55
1,2,4-Trimethylbenzene	ND		0.0050 1		08/13/2014 03:55
1,3,5-Trimethylbenzene	ND		0.0050 1		08/13/2014 03:55
Vinyl Chloride	ND		0.0050 1		08/13/2014 03:55
Xylenes, Total	ND		0.0050 1		08/13/2014 03:55
<u>Surrogates</u>	<u>REC (%)</u>		<u>Limits</u>		
Dibromofluoromethane	94		70-130		08/13/2014 03:55
Toluene-d8	103		70-130		08/13/2014 03:55
4-BFB	106		70-130		08/13/2014 03:55

Client:Basics EnvironmentalProject:Oakland, CADate Received:8/11/14 18:49Date Prepared:8/11/14-8/14/14

WorkOrder:1408335Extraction Method:SW5030BAnalytical Method:SW8021B/8015BmUnit:mg/Kg

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE

Client ID	Lab ID	Matrix/ExtType	Date Col	lected	Instrument	Batch ID
SB-6-5	1408335-001A	Soil	08/11/2014	4 12:45	GC19	93897
Analytes	Result		<u>RL</u>	DF		Date Analyzed
TPH(g)	1200		200	200		08/12/2014 19:16
MTBE			10	200		08/12/2014 19:16
Benzene			1.0	200		08/12/2014 19:16
Toluene			1.0	200		08/12/2014 19:16
Ethylbenzene			1.0	200		08/12/2014 19:16
Xylenes			1.0	200		08/12/2014 19:16
Surrogates	<u>REC (%)</u>	<u>Qualifiers</u>	<u>Limits</u>	Anal	ytical Comments: d1,c	24
2-Fluorotoluene	640	S	70-130			08/12/2014 19:16
Client ID	Lab ID	Matrix/ExtType	Date Col	lected	Instrument	Batch ID
SB-7-5	1408335-002A	Soil	08/11/2014	13:00	GC19	93897
Analytes	<u>Result</u>		<u>RL</u>	<u>DF</u>		Date Analyzed
TPH(g)	1200		200	200		08/12/2014 23:16
MTBE			10	200		08/12/2014 23:16
Benzene			1.0	200		08/12/2014 23:16
Toluene			1.0	200		08/12/2014 23:16
Ethylbenzene			1.0	200		08/12/2014 23:16
Xylenes			1.0	200		08/12/2014 23:16
Surrogates	<u>REC (%)</u>	Qualifiers	<u>Limits</u>	Anal	ytical Comments: d1,c	:4
2-Fluorotoluene	424	S	70-130			08/12/2014 23:16
Client ID	Lab ID	Matrix/ExtType	Date Col	lected	Instrument	Batch ID
SB-8-5	1408335-003A	Soil	08/11/2014	13:10	GC19	93897
Analytes	Result		RL	<u>DF</u>		Date Analyzed
TPH(g)	40		10	10		08/13/2014 19:12
MTBE			0.50	10		08/13/2014 19:12
Benzene			0.050	10		08/13/2014 19:12
Toluene			0.050	10		08/13/2014 19:12
Ethylbenzene			0.050	10		08/13/2014 19:12
Xylenes			0.050	10		08/13/2014 19:12
Surrogates	<u>REC (%)</u>		Limits	Anal	ytical Comments: d1	
2-Fluorotoluene	98		70-130			08/13/2014 19:12

Analytical Report

Client:Basics EnvironmentalProject:Oakland, CADate Received:8/11/14 18:49Date Prepared:8/11/14-8/14/14

WorkOrder:1408335Extraction Method:SW5030BAnalytical Method:SW8021B/8015BmUnit:mg/Kg

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE

Client ID	Lab ID	Matrix/ExtType	Date Co	llected Instrument	Batch ID
SB-9-5	1408335-004A	Soil	08/11/201	14 13:25 GC19	94016
Analytes	<u>Result</u>		<u>RL</u>	DF	Date Analyzed
TPH(g)	1.5		1.0	1	08/15/2014 18:59
МТВЕ			0.050	1	08/15/2014 18:59
Benzene			0.0050	1	08/15/2014 18:59
Toluene			0.0050	1	08/15/2014 18:59
Ethylbenzene			0.0050	1	08/15/2014 18:59
Xylenes			0.0050	1	08/15/2014 18:59
Surrogates	<u>REC (%)</u>		<u>Limits</u>	Analytical Comments: d6	
2-Fluorotoluene	97		70-130		08/15/2014 18:59

Analytical Report

Client:Basics EnvironmentalProject:Oakland, CADate Received:8/11/14 18:49Date Prepared:8/11/14

WorkOrder:1408335Extraction Method:SW3050BAnalytical Method:SW6020Unit:mg/Kg

LUFT 5 Metals

Client ID	Lab ID	Matrix/ExtType	Date Collected	Instrument	Batch ID
SB-6-5	1408335-001A	Soil/TOTAL	08/11/2014 12:45	ICP-MS2	93907
Analytes	Result		<u>RL DF</u>		Date Analyzed
Cadmium	ND		0.25 1		08/12/2014 20:22
Chromium	56		0.50 1		08/12/2014 20:22
Lead	64		0.50 1		08/12/2014 20:22
Nickel	53		0.50 1		08/12/2014 20:22
Zinc	76		5.0 1		08/12/2014 20:22
<u>Surrogates</u>	<u>REC (%)</u>		<u>Limits</u>		
Tb 350.917	109		70-130		08/12/2014 20:22
Client ID	Lab ID	Matrix/ExtType	Date Collected	Instrument	Batch ID
SB-7-5	1408335-002A	Soil/TOTAL	08/11/2014 13:00	ICP-MS2	93907
Analytes	Result		<u>RL</u> <u>DF</u>		Date Analyzed
Cadmium	ND		0.25 1		08/12/2014 20:28
Chromium	110		5.0 10		08/15/2014 02:15
Lead	120		5.0 10		08/15/2014 02:15
Nickel	84		5.0 10		08/15/2014 02:15
Zinc	95		5.0 1		08/12/2014 20:28
Surrogates	<u>REC (%)</u>		<u>Limits</u>		
Tb 350.917	112		70-130		08/12/2014 20:28
Client ID	Lab ID	Matrix/ExtType	Date Collected	Instrument	Batch ID
SB-8-5	1408335-003A	Soil/TOTAL	08/11/2014 13:10	ICP-MS2	93907
Analytes	<u>Result</u>		<u>RL</u> <u>DF</u>		Date Analyzed
Cadmium	ND		0.25 1		08/12/2014 20:34
Chromium	88		5.0 10		08/15/2014 02:20
Lead	190		5.0 10		08/15/2014 02:20
Nickel	88		5.0 10		08/15/2014 02:20
Zinc	100		5.0 1		08/12/2014 20:34
Surrogates	<u>REC (%)</u>		Limits		
Tb 350.917	127		70-130		08/12/2014 20:34

Analytical Report

Client:Basics EnvironmentalProject:Oakland, CADate Received:8/11/14 18:49Date Prepared:8/11/14

WorkOrder:1408335Extraction Method:SW3050BAnalytical Method:SW6020Unit:mg/Kg

LUFT 5 Metals

Client ID	Lab ID	Matrix/ExtType	Date C	ollected I	Instrument	Batch ID
SB-9-5	1408335-004A	Soil/TOTAL	08/11/20	014 13:25 I	CP-MS2	93907
Analytes	Result		<u>RL</u>	DF		Date Analyzed
Cadmium	ND		0.25	1		08/12/2014 20:41
Chromium	89		0.50	1		08/12/2014 20:41
Lead	30		0.50	1		08/12/2014 20:41
Nickel	82		5.0	10		08/15/2014 02:24
Zinc	65		5.0	1		08/12/2014 20:41
Surrogates	<u>REC (%)</u>		<u>Limits</u>			
Tb 350.917	111		70-130			08/12/2014 20:41

Analytical Report

Client:Basics EnvironmentalProject:Oakland, CADate Received:8/11/14 18:49Date Prepared:8/11/14

WorkOrder:1408335Extraction Method:SW3550B/3630CAnalytical Method:SW8015BUnit:mg/Kg

Total Extractable Petroleum Hydrocarbons with Silica Gel Clean-Up

Client ID	Lab ID	Matrix/ExtType	Date Coll	ected	Instrument	Batch ID
SB-6-5	1408335-001A	Soil	08/11/2014	12:45	GC2A	93906
Analytes	Result		<u>RL</u>	DF		Date Analyzed
TPH-Diesel (C10-C23)	400		50	50		08/16/2014 22:29
<u>Surrogates</u>	<u>REC (%)</u>		Limits	Anal	vtical Comments:	e7,e4,e2
C9	116		70-130			08/16/2014 22:29
Client ID	Lab ID	Matrix/ExtType	Date Coll	ected	Instrument	Batch ID
SB-7-5	1408335-002A	Soil	08/11/2014	13:00	GC2A	93906
Analytes	<u>Result</u>		<u>RL</u>	<u>DF</u>		Date Analyzed
TPH-Diesel (C10-C23)	180		50	50		08/16/2014 23:45
Surrogates	<u>REC (%)</u>		Limits	Anal	vtical Comments:	e7,e4,e2
C9	110		70-130			08/16/2014 23:45
Client ID	Lab ID	Matrix/ExtType	Date Coll	ected	Instrument	Batch ID
SB-8-5	1408335-003A	Soil	08/11/2014	13:10	GC9a	93906
Analytes	<u>Result</u>		<u>RL</u>	<u>DF</u>		Date Analyzed
TPH-Diesel (C10-C23)	8.6		2.0	2		08/18/2014 16:14
Surrogates	<u>REC (%)</u>		Limits	Anal	vtical Comments:	e7,e4,e2
C9	103		70-130			08/18/2014 16:14
Client ID	Lab ID	Matrix/ExtType	Date Coll	ected	Instrument	Batch ID
SB-9-5	1 400005 0044	Soil	08/11/201/	12.25	GC11B	93906
	1408335-004A	3011	00/11/2014	13.25	donib	
Analytes	Result	301	<u>RL</u>	<u>DF</u>		Date Analyzed
Analytes TPH-Diesel (C10-C23)	<u>Result</u> 6.2		<u>RL</u> 1.0	<u>DF</u> 1		<u>Date Analyzed</u> 08/17/2014 09:23
Analytes TPH-Diesel (C10-C23) Surrogates	Result 6.2 REC (%)	3011	<u>RL</u> 1.0 <u>Limits</u>	DF 1 Analy	ytical Comments:	Date Analyzed 08/17/2014 09:23 e7,e2

Client:	Basics Environmental	WorkOrder:	1408335
Date Prepared:	8/12/14	BatchID:	93932
Date Analyzed:	8/12/14	Extraction Method:	SM5520E/F
Instrument:	O&G	Analytical Method:	SM5520E/F
Matrix:	Soil	Unit:	mg/Kg
Project:	Oakland, CA	Sample ID:	MB/LCS-93932 1408335-004AMS/MSD

QC Summary Report for SM5520E/F ΜВ LCS SPK RL ΜВ LCS LCS Analyte Result Result Val SS %REC %REC Limits POG 1760 50 2000 87.8 ND 70-130 _

Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
POG	1880	1720	2000	53.33	91.2	83.4	70-130	8.62	30

Client:Basics EnvironmentalDate Prepared:8/11/14Date Analyzed:8/12/14Instrument:GC10Matrix:SoilProject:Oakland, CA

WorkOrder:	1408335
BatchID:	93910
Extraction Method:	SW5030B
Analytical Method:	SW8260B
Unit:	mg/Kg
Sample ID:	MB/LCS-93910
	1408335-004AMS/MSD

QC Summary Report for SW8260B

Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
Acetone	ND	-	0.10	-	-	-	-
tert-Amyl methyl ether (TAME)	ND	0.0382	0.0050	0.050	-	76.5	61-115
Benzene	ND	0.0424	0.0050	0.050	-	84.7	75-126
Bromobenzene	ND	-	0.0050	-	-	-	-
Bromochloromethane	ND	-	0.0050	-	-	-	-
Bromodichloromethane	ND	-	0.0050	-	-	-	-
Bromoform	ND	-	0.0050	-	-	-	-
Bromomethane	ND	-	0.0050	-	-	-	-
2-Butanone (MEK)	ND	-	0.020	-	-	-	-
t-Butyl alcohol (TBA)	ND	0.175	0.050	0.20	-	87.4	63-125
n-Butyl benzene	ND	-	0.0050	-	-	-	-
sec-Butyl benzene	ND	-	0.0050	-	-	-	-
tert-Butyl benzene	ND	-	0.0050	-	-	-	-
Carbon Disulfide	ND	-	0.0050	-	-	-	-
Carbon Tetrachloride	ND	-	0.0050	-	-	-	-
Chlorobenzene	ND	0.0454	0.0050	0.050	-	90.9	80-118
Chloroethane	ND	-	0.0050	-	-	-	-
Chloroform	ND	-	0.0050	-	-	-	-
Chloromethane	ND	-	0.0050	-	-	-	-
2-Chlorotoluene	ND	-	0.0050	-	-	-	-
4-Chlorotoluene	ND	-	0.0050	-	-	-	-
Dibromochloromethane	ND	-	0.0050	-	-	-	-
1,2-Dibromo-3-chloropropane	ND	-	0.0040	-	-	-	-
1,2-Dibromoethane (EDB)	ND	0.0430	0.0040	0.050	-	86	74-121
Dibromomethane	ND	-	0.0050	-	-	-	-
1,2-Dichlorobenzene	ND	-	0.0050	-	-	-	-
1,3-Dichlorobenzene	ND	-	0.0050	-	-	-	-
1,4-Dichlorobenzene	ND	-	0.0050	-	-	-	-
Dichlorodifluoromethane	ND	-	0.0050	-	-	-	-
1,1-Dichloroethane	ND	-	0.0050	-	-	-	-
1,2-Dichloroethane (1,2-DCA)	ND	0.0436	0.0040	0.050	-	87.2	68-122
1,1-Dichloroethene	ND	0.0448	0.0050	0.050	-	89.6	65-138
cis-1,2-Dichloroethene	ND	-	0.0050	-	-	-	-
trans-1,2-Dichloroethene	ND	-	0.0050	-	-	-	-
1,2-Dichloropropane	ND	-	0.0050	-	-	-	-
1,3-Dichloropropane	ND	-	0.0050	-	-	-	-
2,2-Dichloropropane	ND	-	0.0050	-	-	-	-
1,1-Dichloropropene	ND	-	0.0050	-	-	-	-
cis-1,3-Dichloropropene	ND	-	0.0050	-	-	-	-
trans-1,3-Dichloropropene	ND	-	0.0050	-	-	-	-

A____QA/QC Officer Page 18 of 29

Client:Basics EnvironmentalDate Prepared:8/11/14Date Analyzed:8/12/14Instrument:GC10Matrix:SoilProject:Oakland, CA

WorkOrder:	1408335
BatchID:	93910
Extraction Method:	SW5030B
Analytical Method:	SW8260B
Unit:	mg/Kg
Sample ID:	MB/LCS-93910
	1408335-004AMS/MSD

QC Summary Report for SW8260B

Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
Diisopropyl ether (DIPE)	ND	0.0412	0.0050	0.050	-	82.4	68-117
Ethylbenzene	ND	-	0.0050	-	-	-	-
Ethyl tert-butyl ether (ETBE)	ND	0.0399	0.0050	0.050	-	79.7	67-116
Freon 113	ND	-	0.0050	-	-	-	-
Hexachlorobutadiene	ND	-	0.0050	-	-	-	-
Hexachloroethane	ND	-	0.0050	-	-	-	-
2-Hexanone	ND	-	0.0050	-	-	-	-
Isopropylbenzene	ND	-	0.0050	-	-	-	-
4-Isopropyl toluene	ND	-	0.0050	-	-	-	-
Methyl-t-butyl ether (MTBE)	ND	0.0395	0.0050	0.050	-	79	66-118
Methylene chloride	ND	-	0.0050	-	-	-	-
4-Methyl-2-pentanone (MIBK)	ND	-	0.0050	-	-	-	-
Naphthalene	ND	-	0.0050	-	-	-	-
n-Propyl benzene	ND	-	0.0050	-	-	-	-
Styrene	ND	-	0.0050	-	-	-	-
1,1,1,2-Tetrachloroethane	ND	-	0.0050	-	-	-	-
1,1,2,2-Tetrachloroethane	ND	-	0.0050	-	-	-	-
Tetrachloroethene	ND	-	0.0050	-	-	-	-
Toluene	ND	0.0461	0.0050	0.050	-	92.1	84-129
1,2,3-Trichlorobenzene	ND	-	0.0050	-	-	-	-
1,2,4-Trichlorobenzene	ND	-	0.0050	-	-	-	-
1,1,1-Trichloroethane	ND	-	0.0050	-	-	-	-
1,1,2-Trichloroethane	ND	-	0.0050	-	-	-	-
Trichloroethene	ND	0.0455	0.0050	0.050	-	90.9	82-130
Trichlorofluoromethane	ND	-	0.0050	-	-	-	-
1,2,3-Trichloropropane	ND	-	0.0050	-	-	-	-
1,2,4-Trimethylbenzene	ND	-	0.0050	-	-	-	-
1,3,5-Trimethylbenzene	ND	-	0.0050	-	-	-	-
Vinyl Chloride	ND	-	0.0050	-	-	-	-
Xylenes, Total	ND	-	0.0050	-	-	-	-
Surrogate Recovery							
Dibromofluoromethane	0.118	0.122		0.12	95	97	80-120
Toluene-d8	0.135	0.132		0.12	108	106	80-120
4-BFB	0.0137	0.0120		0.012	109	96	80-120

A____QA/QC Officer Page 19 of 29

Client:Basics EnvironmentalDate Prepared:8/11/14Date Analyzed:8/12/14Instrument:GC10Matrix:SoilProject:Oakland, CA

WorkOrder:	1408335
BatchID:	93910
Extraction Method:	SW5030B
Analytical Method:	SW8260B
Unit:	mg/Kg
Sample ID:	MB/LCS-93910
	1408335-004AMS/MSD

QC Summary Report for SW8260B

Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
tert-Amyl methyl ether (TAME)	0.0365	0.0376	0.050	ND	73	75.2	70-130	3.04	30
Benzene	0.0376	0.0385	0.050	ND	75.2	77.1	70-130	2.42	30
t-Butyl alcohol (TBA)	0.176	0.177	0.20	ND	87.9	88.4	70-130	0.648	30
Chlorobenzene	0.0410	0.0402	0.050	ND	82	80.4	70-130	1.95	30
1,2-Dibromoethane (EDB)	0.0397	0.0396	0.050	ND	79.4	79.2	70-130	0.239	30
1,2-Dichloroethane (1,2-DCA)	0.0408	0.0413	0.050	ND	81.6	82.7	70-130	1.26	30
1,1-Dichloroethene	0.0337	0.0387	0.050	ND	67.4,F1	77.3	70-130	13.7	30
Diisopropyl ether (DIPE)	0.0374	0.0390	0.050	ND	74.8	78	70-130	4.11	30
Ethyl tert-butyl ether (ETBE)	0.0373	0.0390	0.050	ND	74.6	78	70-130	4.39	30
Methyl-t-butyl ether (MTBE)	0.0381	0.0387	0.050	ND	76.2	77.4	70-130	1.48	30
Toluene	0.0412	0.0407	0.050	ND	82.4	81.4	70-130	1.15	30
Trichloroethene	0.0397	0.0395	0.050	ND	79.4	78.9	70-130	0.619	30
Surrogate Recovery									
Dibromofluoromethane	0.123	0.121	0.12		99	97	70-130	1.70	30
Toluene-d8	0.130	0.132	0.12		104	105	70-130	0.749	30
4-BFB	0.0123	0.0131	0.012		98	105	70-130	6.53	30

A____QA/QC Officer Page 20 of 29

Client:Basics EnvironmentalDate Prepared:8/11/14Date Analyzed:8/12/14Instrument:GC7Matrix:SoilProject:Oakland, CA

V	/orkOrder:	1408335
В	atchID:	93897
E	xtraction Method:	SW5030B
А	nalytical Method:	SW8021B/8015Bm
U	nit:	mg/Kg
S	ample ID:	MB/LCS-93897
		1408325-001AMS/MSD

QC Summary Report for SW8021B/8015Bm

Analyte	MB Result	LCS Result		RL	SPK Val	MB SS 1	%REC	LCS %RE	LC C Li	CS mits
TPH(btex)	ND	0.615		0.40	0.60	-		103	70)-130
MTBE	ND	0.0760		0.050	0.10	-		76	70)-130
Benzene	ND	0.114		0.0050	0.10	-		114	70)-130
Toluene	ND	0.108		0.0050	0.10	-		108	70)-130
Ethylbenzene	ND	0.115		0.0050	0.10	-		115	70)-130
Xylenes	ND	0.344		0.0050	0.30	-		115	70)-130
Surrogate Recovery										
2-Fluorotoluene	0.0915	0.114			0.10	91		114	70)-130
Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MS Limits	SD	RPD	RPD Limit
Analyte TPH(btex)	MS Result 0.569	MSD Result	SPK Val 0.60	SPKRef Val	MS %REC 94.8	MSD %REC 98	MS/MS Limits	SD 5	RPD 3.38	RPD Limit
Analyte TPH(btex) MTBE	MS Result 0.569 0.0717	MSD Result 0.588 0.0716	SPK Val 0.60 0.10	SPKRef Val ND ND	MS %REC 94.8 71.7	MSD %REC 98 71.5	MS/MS Limits 70-130 70-130	SD 5	RPD 3.38 0.209	RPD Limit 20 20
Analyte TPH(btex) MTBE Benzene	MS Result 0.569 0.0717 0.102	MSD Result 0.588 0.0716 0.103	SPK Val 0.60 0.10 0.10	SPKRef Val ND ND ND	MS %REC 94.8 71.7 101	MSD %REC 98 71.5 103	MS/MS Limits 70-130 70-130 70-130	SD 5 0 0	RPD 3.38 0.209 1.71	RPD Limit 20 20 20
Analyte TPH(btex) MTBE Benzene Toluene	MS Result 0.569 0.0717 0.102 0.0973	MSD Result 0.588 0.0716 0.103 0.101	SPK Val 0.60 0.10 0.10 0.10	SPKRef Val ND ND ND ND	MS %REC 94.8 71.7 101 97.3	MSD %REC 98 71.5 103 101	MS/MS Limits 70-130 70-130 70-130 70-130	SD ;)))	RPD 3.38 0.209 1.71 3.59	RPD Limit 20 20 20 20
Analyte TPH(btex) MTBE Benzene Toluene Ethylbenzene	MS Result 0.569 0.0717 0.102 0.0973 0.104	MSD Result 0.588 0.0716 0.103 0.101 0.104	SPK Val 0.60 0.10 0.10 0.10 0.10	SPKRef Val ND ND ND ND ND ND	MS %REC 94.8 71.7 101 97.3 105	MSD %REC 98 71.5 103 101 104	MS/M3 Limits 70-130 70-130 70-130 70-130	SD ;))))	RPD 3.38 0.209 1.71 3.59 0.0901	RPD Limit 20 20 20 20 20 20
Analyte TPH(btex) MTBE Benzene Toluene Ethylbenzene Xylenes	MS Result 0.569 0.0717 0.102 0.0973 0.104 0.310	MSD Result 0.588 0.0716 0.103 0.101 0.104 0.312	SPK Val 0.60 0.10 0.10 0.10 0.10 0.10 0.30	SPKRef Val ND ND ND ND ND ND ND	MS %REC 94.8 71.7 101 97.3 105 103	MSD %REC 98 71.5 103 101 104 104	MS/M3 Limits 70-130 70-130 70-130 70-130 70-130	SD 5))))))	RPD 3.38 0.209 1.71 3.59 0.0901 0.750	RPD Limit 20 20 20 20 20 20 20
Analyte TPH(btex) MTBE Benzene Toluene Ethylbenzene Xylenes Surrogate Recovery	MS Result 0.569 0.0717 0.102 0.0973 0.104 0.310	MSD Result 0.588 0.0716 0.103 0.101 0.104 0.312	SPK Val 0.60 0.10 0.10 0.10 0.10 0.30	SPKRef Val ND ND ND ND ND ND ND	MS %REC 94.8 71.7 101 97.3 105 103	MSD %REC 98 71.5 103 101 104 104	MS/M3 Limits 70-130 70-130 70-130 70-130 70-130	SD))))))	RPD 3.38 0.209 1.71 3.59 0.0901 0.750	RPD Limit 20 20 20 20 20 20 20

Client:Basics EnvironmentalDate Prepared:8/13/14Date Analyzed:8/14/14Instrument:GC19Matrix:SoilProject:Oakland, CA

WorkOrder:	1408335
BatchID:	94016
Extraction Method:	SW5030B
Analytical Method:	SW8021B/8015Bm
Unit:	mg/Kg
Sample ID:	MB/LCS-94016
	1408456-011AMS/MSD

QC Summary Report for SW8021B/8015Bm

	MB Result	LCS Result		RL	SPK Val	MB SS S	%REC	%REC	L	imits
TPH(btex)	ND	0.555		0.40	0.60	-	ę	92.5	7	0-130
МТВЕ	ND	0.0905		0.050	0.10	-	ę	90.5	7	0-130
Benzene	ND	0.101		0.0050	0.10	-		101	7	0-130
Toluene	ND	0.102		0.0050	0.10	-		101	7	0-130
Ethylbenzene	ND	0.101		0.0050	0.10	-		101	7	0-130
Xylenes	ND	0.322		0.0050	0.30	-		107	7	0-130
Surrogate Recovery										
2-Fluorotoluene	0.102	0.100			0.10	102		100	7	0-130
Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MS Limits	\$D	RPD	RPD Limit
Analyte TPH(btex)	MS Result	MSD Result	SPK Val 0.60	SPKRef Val	MS %REC 83.9	MSD %REC 84.1	MS/MS Limits	SD	RPD 0.289	RPD Limit
Analyte TPH(btex) MTBE	MS Result 0.503 0.0705	MSD Result 0.505 0.0728	SPK Val 0.60 0.10	SPKRef Val ND ND	MS %REC 83.9 70.5	MSD %REC 84.1 72.7	MS/MS Limits 70-130 70-130	3D	RPD 0.289 3.12	RPD Limit 20 20
Analyte TPH(btex) MTBE Benzene	MS Result 0.503 0.0705 0.0961	MSD Result 0.505 0.0728 0.0939	SPK Val 0.60 0.10 0.10	SPKRef Val ND ND ND	MS %REC 83.9 70.5 96.1	MSD %REC 84.1 72.7 93.9	MS/MS Limits 70-130 70-130	SD	RPD 0.289 3.12 2.30	RPD Limit 20 20 20
Analyte TPH(btex) MTBE Benzene Toluene	MS Result 0.503 0.0705 0.0961 0.0971	MSD Result 0.505 0.0728 0.0939 0.0944	SPK Val 0.60 0.10 0.10 0.10	SPKRef Val ND ND ND ND	MS %REC 83.9 70.5 96.1 97.1	MSD %REC 84.1 72.7 93.9 94.4	MS/MS Limits 70-130 70-130 70-130 70-130		RPD 0.289 3.12 2.30 2.79	RPD Limit 20 20 20 20
Analyte TPH(btex) MTBE Benzene Toluene Ethylbenzene	MS Result 0.503 0.0705 0.0961 0.0971 0.0971	MSD Result 0.505 0.0728 0.0939 0.0944 0.0933	SPK Val 0.60 0.10 0.10 0.10 0.10	SPKRef Val ND ND ND ND ND ND	MS %REC 83.9 70.5 96.1 97.1 97.1	MSD %REC 84.1 72.7 93.9 94.4 93.3	MS/MS Limits 70-130 70-130 70-130 70-130 70-130	SD	RPD 0.289 3.12 2.30 2.79 3.95	RPD Limit 20 20 20 20 20 20 20 20 20 20 20 20
Analyte TPH(btex) MTBE Benzene Toluene Ethylbenzene Xylenes	MS Result 0.503 0.0705 0.0961 0.0971 0.0971 0.307	MSD Result 0.505 0.0728 0.0939 0.0944 0.0933 0.297	SPK Val 0.60 0.10 0.10 0.10 0.10 0.30	SPKRef Val ND ND ND ND ND ND ND	MS %REC 83.9 70.5 96.1 97.1 97.1 102	MSD %REC 84.1 72.7 93.9 94.4 93.3 98.9	MS/MS Limits 70-130 70-130 70-130 70-130 70-130		RPD 0.289 3.12 2.30 2.79 3.95 3.24	RPD Limit 20 20 20 20 20 20 20
Analyte TPH(btex) MTBE Benzene Toluene Ethylbenzene Xylenes Surrogate Recovery	MS Result 0.503 0.0705 0.0961 0.0971 0.0971 0.307	MSD Result 0.505 0.0728 0.0939 0.0944 0.0933 0.297	SPK Val 0.60 0.10 0.10 0.10 0.10 0.30	SPKRef Val ND ND ND ND ND ND	MS %REC 83.9 70.5 96.1 97.1 97.1 102	MSD %REC 84.1 72.7 93.9 94.4 93.3 98.9	MS/MS Limits 70-130 70-130 70-130 70-130 70-130 70-130		RPD 0.289 3.12 2.30 2.79 3.95 3.24	RPD Limit 20 20 20 20 20 20 20 20

A____QA/QC Officer Page 22 of 29

Client:	Basics Environmental
Date Prepared:	8/11/14
Date Analyzed:	8/12/14
Instrument:	ICP-MS1, ICP-MS2
Matrix:	Soil
Project:	Oakland, CA

WorkOrder:	1408335
BatchID:	93907
Extraction Method:	SW3050B
Analytical Method:	SW6020
Unit:	mg/Kg
Sample ID:	MB/LCS-93907
	1408333-002BMS/MSD

QC Summary Report for SW6020

Analyte	MB Result	LCS Result		RL	SPK Val	MB SS 1	%REC	LCS %REC	;	LCS Limits
Cadmium	ND	55.7		0.25	50	-		111		75-125
Chromium	ND	59.3		0.50	50	-		119		75-125
Lead	ND	56.8		0.50	50	-		114		75-125
Nickel	ND	61.2		0.50	50	-		122		75-125
Zinc	ND	581		5.0	500	-		116		75-125
Surrogate Recovery										
Tb 350.917	491	554			500	98		111		70-130
Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/M Limit	ISD s	RPD	RPD Limit
Analyte Cadmium	MS Result 51.4	MSD Result 57.1	SPK Val	SPKRef Val	MS %REC 103	MSD %REC 114	MS/M Limita 75-12	ISD s	RPD 10.5	RPD Limit
Analyte Cadmium Chromium	MS Result 51.4 NR	MSD Result 57.1 NR	SPK Val 50 50	SPKRef Val ND 57.18	MS %REC 103 NR	MSD %REC 114 NR	MS/M Limits 75-12 75-12	ISD s 5 5	RPD 10.5 NR	RPD Limit 20 20
Analyte Cadmium Chromium Lead	MS Result 51.4 NR 62.2	MSD Result 57.1 NR 69.3	SPK Val 50 50 50	SPKRef Val ND 57.18 10.18	MS %REC 103 NR 104	MSD %REC 114 NR 118	MS/M Limits 75-12 75-12 75-12	ISD s 5 5 5	RPD 10.5 NR 10.8	RPD Limit 20 20 20
Analyte Cadmium Chromium Lead Nickel	MS Result 51.4 NR 62.2 NR	MSD Result 57.1 NR 69.3 NR	SPK Val 50 50 50 50	SPKRef Val ND 57.18 10.18 90.95	MS %REC 103 NR 104 NR	MSD %REC 114 NR 118 NR	MS/M Limits 75-12 75-12 75-12 75-12	SD 5 5 5 5 5 5	RPD 10.5 NR 10.8 NR	RPD Limit 20 20 20 20 20

500

557

500

100

111

70-130

10.8

20

Tb 350.917

Client:	Basics Environmental
Date Prepared:	8/11/14
Date Analyzed:	8/12/14
Instrument:	GC6A
Matrix:	Soil
Project:	Oakland, CA

WorkOrder:	1408335
BatchID:	93906
Extraction Method:	SW3550B/3630C
Analytical Method:	SW8015B
Unit:	mg/Kg
Sample ID:	MB/LCS-93906
	1408333-002BMS/MSD

QC Summary Report for SW8015B

Analyte	MB Result	LCS Result		RL	SPK Val	MB SS	L %REC %	CS REC	LCS Limits
TPH-Diesel (C10-C23)	ND	46.0		1.0	40	-	1	15	70-130
Surrogate Recovery C9	23.2	25.1			25	93	1	00	70-130
Analyte	MS Bocult	MSD	SPK	SPKRef	MS	MSD	MS/MSI) RPD	RPD
	Hesuit	Result	Val	Val	%REC	%REC	Limits		Limit
TPH-Diesel (C10-C23)	35.4	35.8	Val 40	Val ND	%REC 88.5	%REC 89.4	Limits 70-130	1.04	Limit 30

QA/QC Officer Page 24 of 29

McCampbell Analytical, Inc. 1534 Willow Pass Rd Pittsburg, CA 94565-1701

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

(925) 252-9262				WorkOr	der: 1408335	Clien	tCode: BEO		
	WaterTrax	WriteOn	EDF	Excel	EQuIS	✓ Email	HardCopy	ThirdParty	J-flag
Report to:				Bil	I to:		Req	uested TAT:	5 days
Lita Freeman	Email: I	itafreeman@gma	ail.com		Accounts Pay	able			
Basics Environmental	cc/3rd Party:	pasics@aol.com;	basicsenviron	mental@g	Basics Enviro	nmental			
655 12th Street, Suite 126	PO:				655 12th Stree	et, Suite 126	Dat	e Received:	08/11/2014
Oakland, CA 94607	ProjectNo: (Oakland, CA			Oakland, CA	94607	Dat	e Printed:	08/19/2014
(510) 834-9099 FAX: (510) 834-9098									

					Requested Tests (See legend below)											
Lab ID	Client ID	Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
1408335-001	SB-6-5	Soil	8/11/2014 12:45		Α	Α	А	Α								
1408335-002	SB-7-5	Soil	8/11/2014 13:00		Α	Α	Α	Α								
1408335-003	SB-8-5	Soil	8/11/2014 13:10		А	Α	Α	Α								
1408335-004	SB-9-5	Soil	8/11/2014 13:25		А	А	А	Α								

Test Legend:

1	5520E_SG_S	2 8260B_S	3	LUFTMS_S	4	TPH(D)WSG_S	5
6		7	8		9		10
11		12					

The following SampIDs: 001A, 002A, 003A, 004A contain testgroup.

Prepared by: Jena Alfaro

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

	<u>Mc(</u>	Campbell A "When Quality	nalytical, ty Counts "	<u>Inc.</u>		1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com													
				WORK	K ORDER	SUMMARY													
Client Name Project: Comments:	: BASICS ENVI Oakland, CA	RONMENTAL		C Coi	Wor Date F	k Order: 1408335 Received: 8/11/2014													
		WaterTrax	WriteOn	EDF	Excel	□Fax ✓E	mail 🗌 HardC	opy ThirdPar	ty 🗌	J-flag									
Lab ID	Client ID	Matrix	Test Name		Number o Containe	of Bottle & Preser rs	vative De- chlorinated	Collection Date & Time	TAT	Sediment Hold SubOut Content									
1408335-001A	SB-6-5	Soil	Multi-Range TPI Clean-Up	H(g,d,mo) w/ S.G.	1	Acetate Line	er 🗌	8/11/2014 12:45	5 days										
			SW6020 (LUFT))					5 days										
			SW8260B (VOC	Cs)					5 days										
			SM5520B (O&C	6 w/ S.G. Clean-Up	p)				5 days										
1408335-002A	SB-7-5	Soil	Multi-Range TPI Clean-Up	H(g,d,mo) w/ S.G.	1	Acetate Line	er 🗌	8/11/2014 13:00	5 days										
			SW6020 (LUFT))					5 days										
			SW8260B (VOC	S)	-)				5 days										
1408335 0034	SD 8 5	Soil	Multi Pange TPl	H(a d ma) w/SG	1	A catata L ing		8/11/2014 12:10	5 days										
1408555-005A	31-8-3	5011	Clean-Up	n(g,u,iiio) w/ 3.0.	1	Acetate Line		8/11/2014 13:10	Juays										
			SW6020 (LUFT))					5 days										
			SW8260B (VOC	Cs)					5 days										
			SM5520B (O&C	G w/ S.G. Clean-Up)				5 days										
1408335-004A	SB-9-5	Soil	Multi-Range TPI Clean-Up	H(g,d,mo) w/ S.G.	1	Acetate Line	er 🗌	8/11/2014 13:25	5 days										
			SW6020 (LUFT))					5 days										
			SW8260B (VOC	Cs)					5 days										

* NOTE: STLC and TCLP extractions require 48 hrs to complete; therefore, all TATs begin after the extraction is completed (i.e., 24hr TAT yields results in 72 hrs from sample submission).

Bottle Legend:

Acetate Liner = Acetate Liner

	<u>Mc</u>	Campbell A "When Quality	nalytical, ty Counts "	<u>, Inc.</u>		1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com												
				WORK	(ORDEF	SUMN	/I A R Y											
Client Name: Project: Comments:	BASICS ENV Oakland, CA	TRONMENTAL		C Col	QC Level lient Contact ntact's Email	: LEVEL 2 : Lita Free: : litafreema	2 man an@gmail.com			Work Date R	cOrder: 1408335 eceived: 8/11/2014							
		□WaterTrax	WriteOn	EDF	Excel	Fax	✓ Email	HardCo	opyThirdPart	y 🗍	-flag							
Lab ID	Client ID	Matrix	Test Name		Numbe Contair	r of Bottle hers	e & Preservative	De- chlorinated	Collection Date & Time	TAT	Sediment Hold SubOut Content							
1408335-004A	SB-9-5	Soil	SM5520B (O&	G w/ S.G. Clean-Up	p) 1		Acetate Liner		8/11/2014 13:25	5 days								

* NOTE: STLC and TCLP extractions require 48 hrs to complete; therefore, all TATs begin after the extraction is completed (i.e., 24hr TAT yields results in 72 hrs from sample submission).

Bottle Legend:

Acetate Liner = Acetate Liner

				i.										custo di lisee bi									11	10	83	3	5						-	
_ WW A	ACC	am	nhe		А	nc	лŀ	/tic	\sim	lr	Ir								CI	HA		C)F	С	US	TC	DD	γ	RE	EC	0	RD)	
	vice		PN				лту 						•			ΤΙ	JRN	AR	OUN	D T	IME	: RI	USH		11	DAY		2 D	AY-[3	DAY		5 D	AY [
	1534 Wi	llow Pa	iss Rd. , ell com	/ Pitt n / r	tsbu mair	rg, (n@m		456 mp	bel	/01 I.co	m					Ge	oTra	ker	EDF		PDF		EDF		Writ	te Or		wП	E	DuIS		- cauld	10 Г	ΊΥΑ
Ś	Telepho	one: (87	77) 252-	-926	2 / F	ax:	(925) 25	2-92	269								. a		-cardi		((X))	000		1100		. (27)		i D.			CI .		•
ŝ	,						T) man	019	20	To	\sim				Efi	luen	t Sar	nple	Requ	iring	"J"	flag		USI	Clea	an U	p Fu	nd P	rojec	tЦ	; Clai	m #	
Report To: Lita	Freen	ran	~		Bil	ll To	: R	2510	C5 8	Env	iro	nn	ENT	hal				SG						Ana	lysis	Rec	lues	t						
Company: Ba	sies	Envin	onne	Ita	1			,	~						-		1	F)						in.										
45	5 12+1	h57728	t, Suit	2/2	6		16	tat	VEE	nan	Q	zme	211	Con	1_			E/B&			s										sis			
Talas (alla) (-	land, C	17 94	60/	÷.,	E-J Fa	vian	- aa	SIC	5201	an	nme	Ma.	10	1		15)		520]			genei							020)	020)		analy			
Project #:	11-12	27/			Pro	oject	Nar	ne: /	Dal	Na	rd	CF	}			1/80		64/5	18.1)		Con		ides)	(0			As)	10/6	0 / 6		tals			
Project Location:	HZQE	nber	88-Ro	l	Pu	rcha	se O	rder	•#		7	, set				(802	5	e (16	ns (4	cides	ors /	(Si	erbic	(826		(s)	/PN	/ 60	/ 601	5020)	D me			
Sampler Signature	e: Le	tost	lean	100	~								-			s Gas	N	reas	arbo	Pesti	Arocl	ticide	CI-H	s Gas	/0C	VOC	AHs	200.8	00.8	10/0	LVE			
-	0	SAME	PLING				Μ	ATI	RIX				ME PRE:	SERV	DD /ED	PH as	5)	I & G	droc	1 (CI]	8's; /	P Pesi	cidic (PH a:	260 (V	270 (S	10 (P	0.7 /	0.7/2	8 / 60	ISSO			
SAMPLE ID	Location/ Field Point Name	Date	Time	ontainers	und Water	ste Water	ıking Water	Water			lge	er		03	er ,	EXAMTBE & TI	I as Diesel (801:	al Petroleum Oil	al Petroleum Hy	1 505/ 608 / 8081	A 608 / 8082 PCI	A 507 / 8141 (NI	A 515 / 8151 (Ac	EX/ MTBE & TI	1 524.2 / 624 / 82	4 525.2 / 625 / 82	A 8270 SIM / 83	M 17 Metals (20	FT 5 Metals (200	als (200.7 / 200.	er sample for D)			
58-1-5	SPI	Rhihit	1245	# C	Gro	Was	Drir	Sea	< Soil	Air	Sluc	Oth	HCJ	HN	Oth	THE Y	TPF	Tot:	Tota	EPA	EPA	EPA	EPA	BTH	EPA	EPA	EPA	CAI	TU	Met	Filt			
22-7-5	52-7	philit	1300	ì				_	\checkmark				i.			\checkmark	1	1							\checkmark		· .		V					
58-8-5	SAR	Blubt	1310	11					V							\checkmark	1	V							VI				V	1				
SB-9-5	589	8/11/4	1325	1												V	V	V							\checkmark				V					
								с. 																										
																														-				
																															19.1.2			
										abasi	ttod		lasin		antr	ation	e the	may	cane	imm	ediat	e har	mor	serio	us fut	ure h	ealth	enda	nger	ment	asar	esult	of bri	ef.
*™AI clients MUST di gloved, open air, sample	e handling	by MAI st	aff. Non-o	disclo:	sure i	ncurs	an in	medi	iate \$	250 s	urch	arge	and t	the cli	ient i	is sub	ject t	o full	legal	liabil	ity fo	r har	m suf	fered	l. The	ank y	ou fo	r you	r und	lersta	nding	and	for all	lowing
us to work safely. Relinguished By:		Date:	Time:		Rece	ived F	By:							IC	CE/t°											(COM	MEN	TS:					
tota Dieem	en	8/11/14	1B2	D			5	3	\times		5		-	G	OOI EAD	O CO	NDIT CE A	ION BSE	NT	-								(VV	OH	5#	40	219	б
Relinquished By:		Date:	Time:		Rece	ived F	By:		9	E	/			DI Al PI	ECH PPR RESI	LOR OPR ERVI	INATE ED IN	CON	IN LA NTAII B	B NERS			-3						~~					
Relinquished By:	5	Date:	Time:		Recei	ived F	By:							PI	RESI	ERV	ATIO	VO N	AS	0&0	G M	ІЕТА Н<2_	LS	ΟΤΙ	HER		HAZA	ARDO	OUS:					

McCampbell Analytical, Inc. "When Quality Counts" 1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Sample Receipt Checklist

Client Name:	Basics Environment	al			Date and	Time Received:	8/11/2014 6:49:54 PM
Project Name:	Oakland, CA				LogIn Rev	iewed by:	Jena Alfaro
WorkOrder №:	1408335	Matrix: <u>Soil</u>			Carrier:	Client Drop-In	
		Cha	ain of Cu	ustody (COC	<u>) Information</u>		
Chain of custody	present?		Yes	✓	No 🗌		
Chain of custody	signed when relinquis	shed and received?	Yes	✓	No 🗌		
Chain of custody	agrees with sample la	abels?	Yes	✓	No 🗌		
Sample IDs note	d by Client on COC?		Yes		No 🗌		
Date and Time o	f collection noted by C	lient on COC?	Yes	✓	No 🗌		
Sampler's name	noted on COC?		Yes	✓	No 🗌		
			<u>Sample</u>	e Receipt Inf	ormation		
Custody seals in	tact on shipping conta	iner/cooler?	Yes		No 🗌		
Shipping contain	er/cooler in good conc	lition?	Yes	✓	No 🗌		
Samples in prope	er containers/bottles?		Yes		No 🗌		
Sample containe	ers intact?		Yes		No 🗌		
Sufficient sample	e volume for indicated	test?	Yes		No 🗌		
		Sample Pres	servatio	n and Hold [.]	<u>Time (HT) Info</u>	ormation	
All samples rece	ived within holding tim	e?	Yes		No 🗌		
Container/Temp	Blank temperature		Coole	er Temp:			NA 🗹
Water - VOA vial	ls have zero headspac	e / no bubbles?	Yes		No 🗌		NA 🗹
Sample labels ch	necked for correct pres	servation?	Yes	✓	No 🗌		
pH acceptable up	pon receipt (Metal: pH	<2; 522: pH<4)?	Yes		No 🗌		NA 🗹
Samples Receive	ed on Ice?		Yes		No 🖌		

* NOTE: If the "No" box is checked, see comments below.

Comments:
