RECEIVED

By Alameda County Environmental Health at 2:38 pm, Jan 05, 2015

November 13, 2014

Mr. Mark Detterman Alameda County Environmental Health 1131 Harbor Bay Parkway Alameda, CA 94502-6540

I, Reid Settlemier, hereby authorize ERAS Environmental, Inc. to submit the Addl Lmtd Soil Invest for 3037-3115 Adeline St., Oakland in Oakland, California, dated December 23, 2014 to the Alameda County Health Care Services Agency.

I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge.

Printed Name: B. Reid Settlemier

Reid Settlemier **RWW Properties LLC** 6114 LaSalle Avenue, #535 Oakland, CA 94611 reid@rww-llc.com

ERAS 1533 B Street

Environmental, Inc.

Hayward, CA 94541

(510) 247-9885 Facsimile: (510) 886-5399

info@eras.biz

December 23, 2014

Mr. John Murray John Murray Productions 1196 32nd Street Oakland, CA 94608

and

Mr. Reid Settlemier RWW Properties LLC 6114 LaSalle Avenue, #535 Oakland, CA 94611

Subject: Additional Limited Soil Investigation

3037-3115 Adeline Street, Oakland, California

ERAS Project Number 14063D

Dear Mr. Murray and Mr. Settlemier:

ERAS Environmental, Inc. (ERAS) is pleased to present the results of the limited subsurface investigation for the collection of a soil sample at 3037-3115 Adeline Street in Oakland, California (the "Property"). ERAS performed a subsurface soil investigation project and the results were summarized in a report dated November 13, 2014. Elevated concentrations of total petroleum hydrocarbons quantified as diesel range organics (TPH-dro¹) and oil range organics (TPH-oro) were detected in ERAS boring B-2.

In a letter dated November 25, 2014 additional investigation was requested by Mr. Mark Detterman of the Alameda County Health Care Services Agency (ACHCSA). Specifically Mr. Detterman requested additional laboratory analyses of the soil in the vicinity B-2. A copy of the letter is included as **Attachment B**.

The location of the Property is shown on Figure 1 and the boring locations are shown on Figure 2

¹ TPH-gro, TPH-dro, and TPH-oro are methods that compare analytical results to standards for gasoline, diesel and motor oil, respectively. Therefore analytical results are estimates of quantities based on what would be expected for the range of hydrocarbon results for the standard. Gasoline range organics (gro) are those hydrocarbon compounds that are in the range of C6 to C10, diesel range organics (dro) are those hydrocarbon compounds that are in the range of C10 to C23, and oil range organics (oro) are those hydrocarbon compounds that are in the range of C18 to C36. There can be overlap in reporting methods as well as identification of compounds that fall within the standard that may not necessarily be derived from gasoline, diesel, or oil.

included as Attachment A.

BACKGROUND

Phase 1 and Phase 2 investigations have recently been performed on the Property.

Phase 1 Investigation

A Phase 1 Environmental Site Assessment (ESA) was conducted by Rincon Associates, Inc. (Rincon) and the results were presented in a report dated November 15, 2013. Rincon identified the following information for the Property.

- A bronze foundry operated at part of the Property (3037 and 3101 Adeline Street) from at least 1928 to 1963.
- Machine shops operated at 3101 and 3115 Adeline Street from at least 1951 until 1959.
- Six nearby historic auto stations were listed on the environmental database. Rincon
 indicated these sites were located hydrologically up-gradient and there is potential
 that contamination from these sites could have impacted groundwater beneath the
 subject property.

Rincon concluded foundry operations can involve the use of heavy metals including copper, lead, nickel and zinc. Machine shop operations can involve the use of cutting oil and degreasing solvents. Rincon indicated the former use of the Property represented a potential recognized environmental condition (REC) and recommended a subsurface investigation.

Soil and Groundwater Investigation

-Partner Investigation

A Phase 2 soil and groundwater investigation was performed by Partner Engineering and Science, Inc. (Partner). A total of 5 soil borings were drilled on the Property in the general areas of the former foundry and machine shops. The locations of the borings are shown on the Boring Location Map in **Appendix A**.

Partner reported concentrations of TPH-dro and TPH-oro in Boring PES-B2 at 3 feet and 7 feet. Concentrations of TPH-dro and TPH-oro were 1,200 milligrams per kilogram (mg/Kg) and 950 mg/Kg at 3 feet and 1,600 and 860 mg/Kg at 7 feet. Concentrations of TPH-dro were above the California Regional Water Quality Control Board Environmental Screening Level (ESL) of 110 mg/Kg (Table A, RWQCB, December 2013). The sample from 3 feet also contained total petroleum hydrocarbons as gasoline (TPH-gro) at a concentration of 46 mg/Kg. Partner does not appear to have had the laboratory run silica gel cleanup on the samples prior to analysis to remove biogenic hydrocarbon interferences.

Naphthalene was detected at 5.3 mg/Kg in the sample from Boring PES-B2 at 3 feet. This concentration was above the ESL of 1.2 mg/Kg (Table A, RWQCB, December 2013). No other concentrations of TPH-dro, TPH-oro or naphthalene were detected in soil samples.

Lead and copper were detected in soil at 3 feet in borings PES-B1 and PESB-2 which appear to be above background concentrations. However the maximum concentration of copper of 1,200 mg/Kg is below the ESL of 5,000 mg/Kg (Table A, RWQCB, December 2013). The maximum concentration of lead of 140 mg/Kg is below the ESL of 320 mg/Kg (Table A, RWQCB, December 2013).

No concentrations of TPH-dro or TPH-oro were detected in groundwater samples from Borings PES-B1 and PES-B2. Volatile organic compounds (VOCs) were not detected in the groundwater sample collected from PES-B1. Naphthalene was not detected in the groundwater sample from PES-B2. No groundwater samples were collected from borings PES-B3, PES-B4, or PES-B5.

-ERAS Investigation

ERAS collected soil samples from seven soil borings on October 21, 2014. The locations of the borings are shown on **Figure 2**.

Borings B-1, B-3, B-4, and B-7 were advanced to a depth of 12 feet bgs, borings B-2 and B-6 were advanced to 16 feet bgs, and boring B-8 was advanced to 4 feet bgs.

Soil samples were collected from the following depths from each boring:

- B-1 1.5-2 feet bgs, 3-3.5 feet bgs, and 9-9.5 feet bgs
- B-2 2-2.5 feet bgs, 3-3.5 feet bgs, 7.5-8 feet bgs, and 15.5-16 feet bgs
- B-3 2-2.5 feet bgs, 3-3.5 feet bgs, 7.5-8 feet bgs, and 11.5-12 feet bgs
- B-4 3-3.5 feet bgs, 7.5-8 feet bgs, and 9.5-10 feet bgs
- B-6 1.5-2 feet bgs, 2.5-3 feet bgs, 7.5-8 feet bgs, and 15.5-16 feet bgs
- B-7 2-2.5 feet bgs, 3-3.5 feet bgs, 7.5-8 feet bgs, and 11.5-12 feet bgs
- B-8 1.5-2 feet bgs

The soil samples collected from the zone of 1.5-2.5 feet bgs and 2.5-3.5 feet bgs were analyzed for TPH-gro by EPA Method SW8021B/8015B, TPH-dro and TPH-oro by EPA Method SW8015B, and copper, lead, and tin by EPA Method SW6020 with the exception of borings B-1, B-4, and B-7 where the 2.-3.5 foot sample was only analyzed for the three metals and not the hydrocarbons

The soil samples collected from depth greater than 3.5 feet bgs were analyzed for only the presence of the hydrocarbons.

The results of the soil sample analyses are presented in the table below.

Sample ID	Date	TPH-gro	TPH-dro	TPH-dro*	TPH-oro	TPH-oro*	Copper	Lead	Tin
					(mg/Kg)				
B-1, 1.5-2	21-Oct-14	<1	<1.0	NA	< 5.0	NA	210	25	< 5.0
B-1, 3-3.5	21-Oct-14	NA	NA	NA	NA	NA	22	6.7	< 5.0
B-1, 9-9.5	21-Oct-14	<1	11	NA	100	NA	NA	NA	NA
B-1, 10.5-11	21-Oct-14	<1	<1.0	NA	< 5.0	NA	NA	NA	NA
B-2, 2-2.5	21-Oct-14	540	17,000	20,000	8,700	11,000	1,200	650	78
B-2, 3-3.5	21-Oct-14	190	270	NA	<250	NA	24	7.8	<5
B-2, 7.5-8	21-Oct-14	200	2,700	NA	1,700	NA	NA	NA	NA
B-2, 15.5-16	21-Oct-14	4.1	49	NA	38	NA	NA	NA	NA
B-3, 2-2.5	21-Oct-14	<1	480	NA	430	NA	31	7.0	<5
B-3, 3-3.5	21-Oct-14	150	370	NA	<250	NA	22	8.8	<5
B-3, 7.5-8	21-Oct-14	<1	120	NA	100	NA	NA	NA	NA
B-3, 11.5-12	21-Oct-14	<1	< 5.0	NA	< 5.0	NA	NA	NA	NA
B-4, 3-3.5	21-Oct-14	NA	NA	NA	NA	NA	18	5.8	<5
B-4, 7.5-8	21-Oct-14	<1	< 5.0	NA	< 5.0	NA	NA	NA	NA
B-4, 9.5-10	21-Oct-14	<1	1.2	NA	< 5.0	NA	NA	NA	NA
B-6, 1.5-2	21-Oct-14	55	1,400	NA	1,200	NA	380	120	20
B-6, 2.5-3	21-Oct-14	180	670	NA	280	NA	22	7.1	<5
B-6, 7.5-8	21-Oct-14	40	480	NA	280	NA	NA	NA	NA
B-6, 15.5-16	21-Oct-14	<1	<1.0	NA	< 5.0	NA	NA	NA	NA
B-7, 2-2.5	21-Oct-14	<1	<1.0	NA	< 5.0	NA	87	18	<5
B-7, 3-3.5	21-Oct-14	NA	NA	NA	NA	NA	18	7.1	<5
B-7, 7.5-8	21-Oct-14	<1	3.1	NA	14	NA	NA	NA	NA
B-7, 11.5-12	21-Oct-14	<1	<1.0	NA	< 5.0	NA	NA	NA	NA
B-8, 1.5-2	21-Oct-14	NA	NA	NA	NA	NA	23	10	<5
							-		
ESL <3m		500	110	110	500	500	230	320	-
ESL >3m		770	110	110	1000	1000	5,000	320	-

Notes

NA = Not Analyzed (mg/Kg) = Milligrams per Kilogram

Bold Type Indicates Reported Value Above the ESL.

TPH-gro = Total petroleum hydrocarbons quantified as gasoline range organics

TPH-dro = Total petroleum hydrocarbons quantified as diesel range organics

TPH-oro = Total petroleum hydrocarbons quantified as oil range organics

TPH-dro* = Total petroleum hydrocarbons quantified as diesel range organics run without silica gel cleanup

TPH-oro* = Total petroleum hydrocarbons quantified as oil range organics run without silica gel cleanup

ESL < 3m = environmental screening limits set forth by the RWQCQ for soil shallower than 3 meters on a commercial Property where groundwater is considered a potential source of drinking water

ESL >3m = environmental screening limits set forth by the RWQCQ for soil deeper than 3 meters on a commercial Property where groundwater is considered a potential source of drinking water

The concentrations of the contaminants of concern above the ESL appear to be limited to the area of borings B-2, B-3, B-6, and PES-B2. Concentrations of contaminants above the ESL were detected to a depth of approximately 8 feet bgs. Samples collected at depths of 12 feet bgs did not contain concentrations above the ESLs. Based on the depth to water (17.5 to 19.5 feet bgs), the lack of groundwater contamination in the prior borings (PES-B1 & -B2), the attenuation of the degree of contamination in the soil samples with depth above 12 ft bgs, and the concentrations of deeper soil samples in comparison to the ESLs, contaminants detected in the soil column do not appear to pose a risk of contamination to groundwater beneath the Property.

REGIONAL GEOLOGY/HYDROLOGY

The Property is in the southern part of the City of Oakland in the San Francisco Bay area. The San Francisco Bay area occupies a broad alluvial valley that slopes gently northward and is flanked by alluvial fans deposited at the foot of the Diablo Range to the east and the Santa Cruz Mountains to the west. Surface topography in the immediate vicinity of the Property is gently sloping down to the west towards Oakland Outer Harbor.

The Property is at an elevation of approximately 20 feet above Mean Sea Level according to the United States Geological Survey (USGS) Oakland East Quadrangle California 7.5 Minute Series topographic map.

Materials underlying the site are unconsolidated deposits of near shore and beach sediments, deposited in Oakland Bay at higher sea level stands. At shallow depths beneath these sediments are chert, greywacke, serpentine and shale bedrock that are a part of the Cretaceous to Jurassicaged Franciscan Formation. Bedrock is exposed to the east-northeast on the upland surfaces.

The subject site is located on the San Francisco Bay Plain in the northernmost part of the Santa Clara Valley Groundwater Basin, (DWR, 1967), the surface of which slopes gently down toward west.

The regional groundwater flow follows the topography, moving from areas of higher elevation to areas of lower elevation. The regional groundwater flow direction in the area of the Property is estimated to be toward the west-southwest toward the Oakland Outer Harbor.

Based on the previous borings drilled on the Property, the subsurface sediments consist of mostly medium stiff to stiff clay to the depths explored of approximately 20 feet. Coarser sediments were observed in Boring PES-B1 at approximately 10-15 feet. Groundwater was reported in the borings at depths of approximately 17.5 to 19.5 feet.

FIELD WORK PERFORMED

One soil boring was advanced near ERAS previous boring B-2 using hand digging equipment on December 4th, 2014 to collect a soil sample for laboratory analysis. The sample was labeled B-2-2.5 and was collected from a depth of 2 to 2.5 feet below ground surface.

The Standard Operating Procedures for soil sampling used hand digging equipment is included as **Attachment C**.

A strong petroleum hydrocarbon odor was detected during the collection of the soil sample.

ANALYTICAL RESULTS

The soil sample was transported under chain-of-custody procedures to McCampbell Analytical, a state-certified laboratory in Pittsburg, California. The laboratory report and chain of custody form are included as **Attachment D**.

The sample was analyzed for the presence of polychlorinated dibenzo-p-dioxins (PCDD's) and polychlorinated dibenzofurans (PCDF's) by EPA Method E1613, semi-volatile organic compounds (SVOC's) by EPA Method SW8270C, poly chlorinated biphenyl's (PCB's) by EPA Method SW8082, and TPH-dro and oro by EPA Method SW8015B. Below were the compounds detected:

	B-2-2.5	WHO-TEF	ESL
PCDD's & PCDF's	Results in pg/g		pg/g
1,2,3,4,6,7,8-HpCDD	4.16	0.01	180
OCDD	8.42	0.0003	6,000
2,3,4,7,8-PeCDF	4.10	0.3	60
1,2,3,4,7,8-HxCDF	5.42	0.1	18
1,2,3,6,7,8-HxCDF	5.42	0.1	18
2,3,4,6,7,8-HxCDF	8.82	0.1	18
1,2,3,4,6,7,8-HpCDF	31.9	0.01	180
Total tetradioxins	5.70		
Total heptadioxins	8.76		
Total tetrafurans	19.6		
Total heptafurans	31.9		
Total hexafurans	60.6		
Total pentafurans	23.7		
SVOC's	Results in mg/Kg		ESL
2-methylnapththalene	31		0.25
PCB's			
Non detected above	their respective det	ection limit	
TPH	Results in mg/Kg		ESL
TPH-dro	3,500		110
TPH-oro	2,200		500

Table Notes:

pg/g = grams per picogram

WHO-TEF = World Health Organization Toxic Equivalency Factor

ESL – environmental screening limits set forth by the California Regional Water Quality Control Board as of December 2013

Each dioxin compound is assigned a Toxic Equivalency Factor, or WHO-TEF. This factor denotes a given dioxin compound's toxicity relative to 2,3,7,8-TCDD, which is assigned the maximum toxicity designation of one. The ESL for 2,3,7,8-TCDD is 0.000018 mg/Kg or 1.8x10⁻⁹ picograms per Kg or 1.8 x10⁻¹² picograms per gram.

Other dioxin compounds are given equal or lower numbers, with each number roughly proportional to its toxicity relative to that of 2,3,7,8-TCDD. Developed by the World Health Organization, TEFs are used extensively by scientists and governments around the world. Since individual ESL's are not provided for the various dioxin compounds to determine an ESL the WHO-TEF was applied to the ESL for 2,3,7,8-TCDD.

No concentrations of the dioxin compounds detected were above their respective ESLs. The only concentration of SVOC's detected was 2-methylnaphthalene at 31 mg/Kg which is above the ESL of 0.25 mg/Kg. TPH-dro and TPH-oro were also detected above their respective ESL's of 110 mg/Kg and 500 mg/Kg. TPH-dro was detected at 3,500 mg/Kg and TPH-oro was detected at 2,200 mg/Kg.

CONCLUSIONS AND RECOMMENDATIONS

A sample collected from the vicinity of former boring B-2 from a depth of 2-2.5 feet bgs was analyzed for polychlorinated dibenzo-p-dioxins (PCDD's) and polychlorinated dibenzofurans (PCDF's) by EPA Method E1613, semi volatile organic compounds (SVOC's) by EPA Method SW8270C, poly chlorinated biphenyl's (PCB's) by EPA Method SW8082, and TPH-dro and oro by EPA Method SW8015B.

No concentrations of PCDD's, PCDF's, or PCB's were detected above their respective ESL's. The only concentration of SVOC's detected was 2-methylnaphthalene at 31 mg/Kg which is above the ESL of 0.25 mg/Kg. TPH-dro and TPH-oro were also detected above their respective ESL's of 110 mg/Kg and 500 mg/Kg. TPH-dro was detected at 3,500 mg/Kg and TPH-oro was detected at 2,200 mg/Kg.

ERAS recommends that a Site Management Plan and Deed Restriction since it is unlikely that all contaminant impacted soil beneath the Property could be removed due to the development of the Property. Moreover, the results of the analyses indicate a relatively rapid decline in concentration of contaminants with distance from the source; indicating a low potential for exposure to human and ecological receptors, especially with the proposed institutional controls implemented.

CERTIFICATION

Our firm has prepared this report for the Client's exclusive use for this particular project and in general accordance with the accepted standard of practice that exists in Northern California at the time the investigation was performed. No other representations, expressed or implied, and no warranty or guarantee is included or intended. No subsurface investigation is complete enough to guarantee that no contamination exists on a particular site and the judgments leading to conclusions and recommendations are generally made based on the data collected according to the scope of work performed and are therefore potentially limited and incomplete. More extensive studies can tend to reduce the uncertainties associated with this type of investigation.

This report may be used only by the client and only for the purposes stated within a reasonable time from its issuance. Land use, site conditions (both on-site and off-site) or other factors may change over time, and additional work may be required with the passage of time. Any party other than the client who wishes to use this report shall notify ERAS of such intended use. Based on the intended use of report, ERAS may require that additional work be performed and that an updated report be issued. Non-compliance with any of these requirements by the client or anyone else will release ERAS from any liability resulting from the use of this report by any unauthorized party.

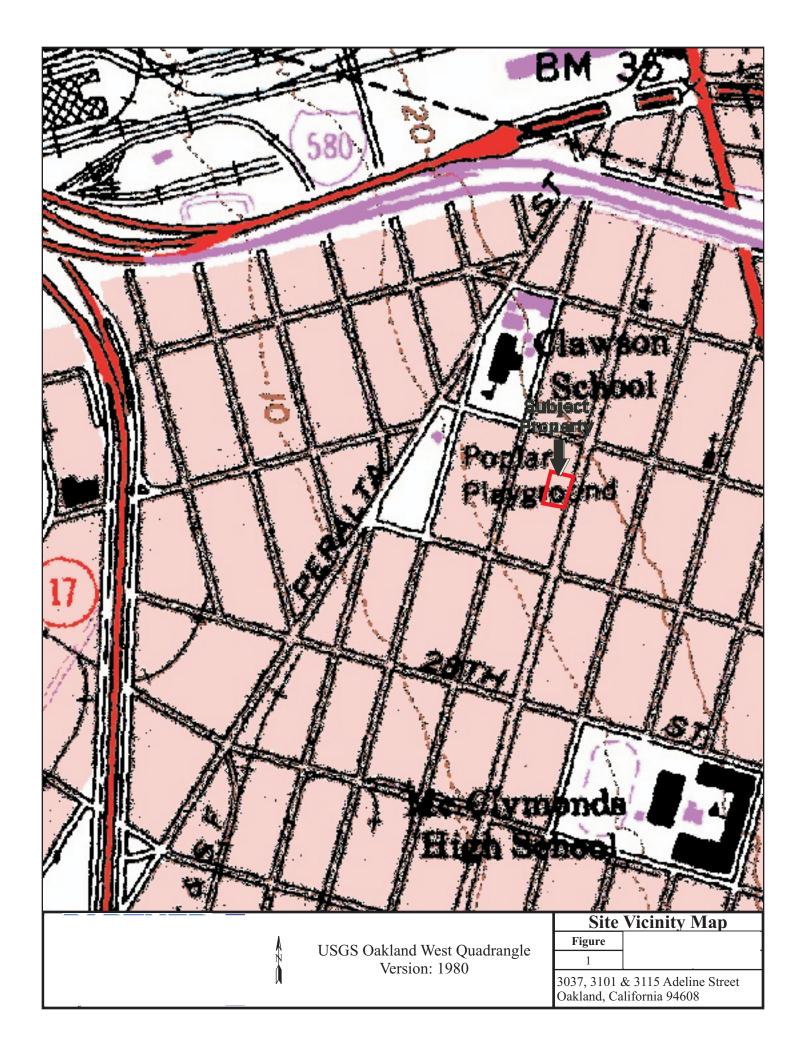
If you have questions or comments regarding this report please contact Andrew Savage at 510-247-9885 x302, or by e-mail andrew@eras.biz.

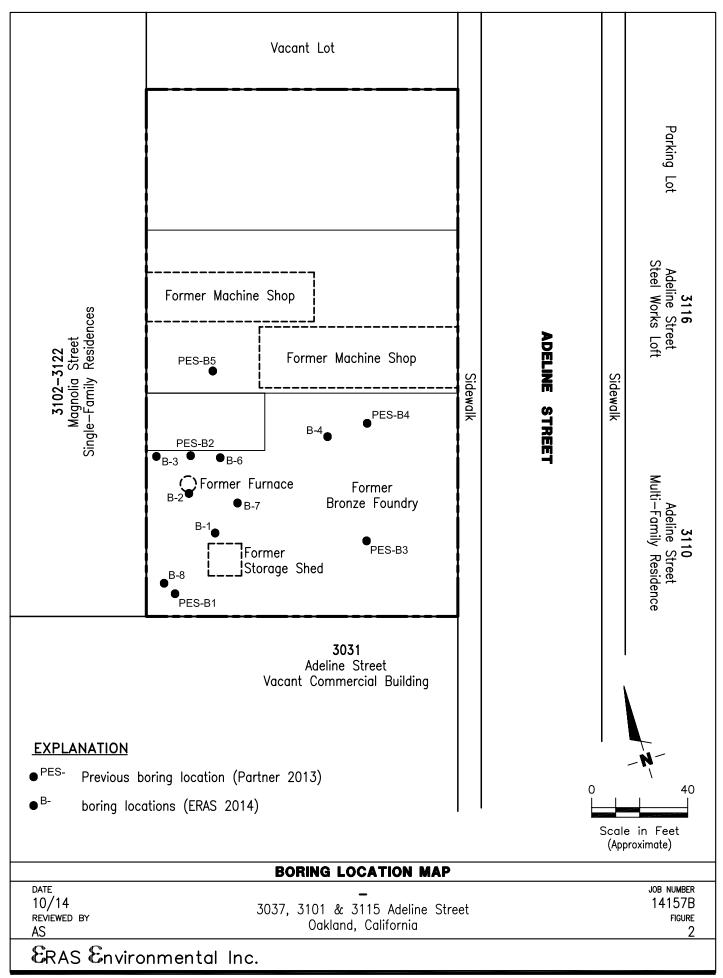
ERAS thanks you for the opportunity to serve you.

Sincerely,

ERAS Environmental, Inc.

Curtis Payton


California Registered Professional Geologist 5608


Andrew Savage Project Geologist

Attachments

- A Figures
- B ACHCSA Letter
- C Standard Operating Procedures
- D Laboratory Reports and Chain of Custody Form

ATTACHMENT A FIGURES

ATTACHMENT B

ACHCSA LETTER

ALAMEDA COUNTY HEALTH CARE SERVICES AGENCY

ALEX BRISCOE, Director

ENVIRONMENTAL HEALTH SERVICES ENVIRONMENTAL PROTECTION 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577 (510) 567-6700 FAX (510) 337-9335

November 25, 2014

Mr. John Murray
John Murray Productions
1196 32nd Street, Oakland, CA 94608
(Sent via email to johnm@johnmurray.com)

Mr. Reid Settlemier RWW Properties LLC 6114 LaSalle Avenue, #535 Oakland, CA 94611 (Sent via email to reid@rww-llc.com)

Subject: Work Plan Request; Site Cleanup Program (SCP) Case No. RO0003142, Adeline Foundry,

3037-3115 Adeline Street, Oakland, CA 94608

Dear Mr. Murray and Mr. Settlemier:

Alameda County Environmental Health (ACEH) has reviewed the case file including the Subsurface Soil Investigation Report, dated November 13, 2014. The report was prepared and submitted on your behalf by ERAS Environmental Inc. (ERAS). Thank you for submitting the report.

Based on ACEH staff review of the case file, we request that you address the following technical comments and send us the reports described below.

TECHNICAL COMMENTS

1. Work Plan Request – The referenced report indicates that an area of soil contamination is present in the vicinity of soil bores PES-B2, B-2, B-6, and B-3 at the subject site, that the contamination appears to be limited to a depth less than approximately 10 – 15 feet below grade surface (bgs), and that it does not appear to impact groundwater. These bore locations appear to be associated with a former furnace for the former bronze foundry once located at the site. The northerly extent of the contamination is undefined but is inaccessible beneath the southerly building at the site. Concentrations up to 540 milligrams per kilogram (mg/kg) Total Petroleum Hydrocarbons as gasoline (TPHg), 20,000 mg/kg TPH as diesel (TPHd), 11,000 mg/kg TPH as oil (TPHo), 1,200 mg/kg copper, and 650 mg/kg lead were detected.

Because some of the hydrocarbon concentrations are particularly elevated and the fuel stock is unknown, ACEH requests a brief work plan for the collection and submittal of shallow soil samples for additional laboratory analysis, some not previously analyzed for at the site. This includes analysis for semi-volatile organic compounds (SVOCs), including poly-aromatic compounds (PAHs) and pentachlorophenol, poly-chlorinated biphenyls (PCBs), dioxins, and creosote by appropriate EPA analytical methods. Please be aware that PAH analysis must include naphthalene, acenaphthene, acenaphthene, anthracene, chrysene, fluorine, fluoranthene, phenanthrene, pyrene, benzo(b)fluoranthene, benzo(a)pyrene, benzo(k)fluoranthene, benzo(a)anthracene, indeno(1,2,3-c,d)pyrene, dibenzo(a,b)anthracene, and benzo(g,h,i)perylene. Please submit the work plan by the date identified below.

2. GeoTracker Compliance – A review of the State Water Resources Control Board's (SWRCB) GeoTracker website indicates the site has not been claimed. Because this is a state requirement, ACEH requests that the site be claimed in GeoTracker by the date identified below.

In accordance with California Code of Regulations, Title 23, Division 3, Chapter 16, Article 12, Sections 2729 and 2729.1, beginning September 1, 2001, all analytical data, including monitoring well samples, submitted in a report to a regulatory agency as part of the UST or LUST program, must be transmitted electronically to the SWRCB GeoTracker system via the internet. Also, beginning January 1, 2002, all permanent monitoring points utilized to collect groundwater samples (i.e.

monitoring wells) and submitted in a report to a regulatory agency, must be surveyed (top of casing) to mean sea level and latitude and longitude to sub-meter accuracy using NAD 83. A California licensed surveyor may be required to perform this work. In September 2004, the SWRCB adopted regulations that require electronic submittal of information for all groundwater cleanup programs, including SCP programs such as this site. Additionally, pursuant to California Code of Regulations, Title 23, Division 3, Chapter 30, Articles 1 and 2, Sections 3893, 3894, and 3895, beginning July 1, 2005, the successful submittal of electronic information (i.e. report in PDF format) shall replace the requirement for the submittal of a paper copy. Please claim your site and upload all future submittals to GeoTracker and ACEH's ftp server by the date specified below. Electronic reporting is described below on the attachments.

Additional information regarding the SWRCB's GeoTracker website may be obtained online at http://www.waterboards.ca.gov/water_issues/programs/ust/electronic_submittal/ and http://www.swrcb.ca.gov/ust/electronic_submittal/report_rqmts.shtml) or by contacting the GeoTracker Help Desk at geotracker@waterboards.ca.gov or (866) 480-1028.

- 3. Site Management Plan and Deed Restriction At present, it appears that there are limited volatile compounds beneath the site (however, this can change with the addition of additional data requested above), and that it is unlikely that the full extent of contamination can be successfully removed due to the presence of the southern onsite building. Additionally, contaminated soil is isolated from the surface by approximately 2 feet of fill material (baserock). Consequently, it appears that there are two methods to manage residual contaminated soil beneath the site. These include:
 - Interim remedial excavation of known areas of contaminated soil, and
 - Management of residual soil with a Site Manage Plan (SMP) and a Deed Restriction.

Because it is unlikely that all contaminated soil can be removed, it appears likely that a SMP and deed restriction would still be required after a remedial excavation. ACEH has been informed that the use of a SMP and deed restriction has been discussed with you by your consultant and that this is the preferred option by you for the site. As you may know, the intent of a SMP to define health and safety protocols for future subsurface work, and procedures for the characterization and management of contaminated soil and groundwater when subsurface intrusion is necessary, such as for utility repair, building expansion, or site redevelopment. A deed restriction is required for all Site Cleanup Program (SCP) cases to document the presence of contamination for future landowners. The SMP should also define contaminated areas, should additional characterization be required at a future date. As indicated above, provided there is limited additional contaminants that change the understanding of low contaminant volatility at the site, an SMP and deed restriction appear appropriate at the site.

Consequently, ACEH requests the submittal of a draft SMP and deed restriction in conjunction with the results of the planned work, by the date identified below.

TECHNICAL REPORT REQUEST

Please upload technical reports to the ACEH ftp site (Attention: Mark Detterman), and to the State Water Resources Control Board's Geotracker website, in accordance with Attachment 1 and the specified file naming convention below, according to the following schedule:

- December 12, 2014 Work Plan
 File to be named: RO3142_SWI_R_yyyy-mm-dd
- December 19, 2014 Claim Geotracker and Upload Required Documents
 File to be named: RO3142_CORRES_L_yyyy-mm-dd
- 60 Days After Work Plan Approval -- Site Investigation File to be named: RO3142_SWI_R_yyyy-mm-dd

Mr. Murray and Mr. Settlemier RO0003142 November 25, 2014, Page 3

Online case files are available for review at the following website: http://www.acgov.org/aceh/index.htm. If your email address does not appear on the cover page of this notification, ACEH is requesting you provide your email address so that we can correspond with you quickly and efficiently regarding your case.

Should you have any questions, please contact me at (510) 567--6876 or send me an electronic mail message at mark.detterman@acgov.org.

Sincerely,

Make

Digitally signed by Mark E. Detterman DN: cn=Mark E. Detterman, o, ou, email, c=US
Date: 2014.11.25 17:00:38 -08'00'

Mark E. Detterman, P.G., C.E.G. Senior Hazardous Materials Specialist

Enclosures:

Attachment 1 - Responsible Party (ies) Legal Requirements / Obligations

Electronic Report Upload (ftp) Instructions

cc: Clinton Stockton, John Murray Productions, Inc, 1196 32nd Street, Oakland, CA 94608; (Sent via E-mail to: <u>Clinton@johnmurray.com</u>)

David Siegel, ERAS Environmental, Inc., 1533 B Street, Hayward, CA 94541 (Sent via E-mail to: dave@eras.biz)

Dilan Roe (sent via electronic mail to dilan.roe@acgov.org)
Mark Detterman, ACEH, (sent via electronic mail to mark.detterman@acgov.org)
Geotracker, Electronic File

Attachment 1

Responsible Party(ies) Legal Requirements / Obligations

REPORT REQUESTS

These reports are being requested pursuant to California Health and Safety Code Section 25296.10. 23 CCR Sections 2652 through 2654, and 2721 through 2728 outline the responsibilities of a responsible party in response to an unauthorized release from a petroleum UST system, and require your compliance with this request.

ELECTRONIC SUBMITTAL OF REPORTS

ACEH's Environmental Cleanup Oversight Programs (LOP and SLIC) require submission of reports in electronic form. The electronic copy replaces paper copies and is expected to be used for all public information requests. regulatory review, and compliance/enforcement activities. Instructions for submission of electronic documents to the Alameda County Environmental Cleanup Oversight Program FTP site are provided on the attached "Electronic Report Upload Instructions." Submission of reports to the Alameda County FTP site is an addition to existing requirements for electronic submittal of information to the State Water Resources Control Board (SWRCB) GeoTracker website. In September 2004, the SWRCB adopted regulations that require electronic submittal of information for all groundwater cleanup programs. For several years, responsible parties for cleanup of leaks from underground storage tanks (USTs) have been required to submit groundwater analytical data, surveyed locations of monitoring wells, and other data to the GeoTracker database over the Internet. Beginning July 1, 2005, these same reporting requirements were added to Spills, Leaks, Investigations, and Cleanup (SLIC) sites. Beginning July 1, 2005, electronic submittal of a complete copy of all reports for all sites is required in GeoTracker (in PDF format). website for more information these requirements Please visit the **SWRCB** (http://www.waterboards.ca.gov/water_issues/programs/ust/electronic_submittal/).

PERJURY STATEMENT

All work plans, technical reports, or technical documents submitted to ACEH must be accompanied by a cover letter from the responsible party that states, at a minimum, the following: "I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge." This letter must be signed by an officer or legally authorized representative of your company. Please include a cover letter satisfying these requirements with all future reports and technical documents submitted for this fuel leak case.

PROFESSIONAL CERTIFICATION & CONCLUSIONS/RECOMMENDATIONS

The California Business and Professions Code (Sections 6735, 6835, and 7835.1) requires that work plans and technical or implementation reports containing geologic or engineering evaluations and/or judgments be performed under the direction of an appropriately registered or certified professional. For your submittal to be considered a valid technical report, you are to present site specific data, data interpretations, and recommendations prepared by an appropriately licensed professional and include the professional registration stamp, signature, and statement of professional certification. Please ensure all that all technical reports submitted for this fuel leak case meet this requirement.

UNDERGROUND STORAGE TANK CLEANUP FUND

Please note that delays in investigation, later reports, or enforcement actions may result in your becoming ineligible to receive grant money from the state's Underground Storage Tank Cleanup Fund (Senate Bill 2004) to reimburse you for the cost of cleanup.

AGENCY OVERSIGHT

If it appears as though significant delays are occurring or reports are not submitted as requested, we will consider referring your case to the Regional Board or other appropriate agency, including the County District Attorney, for possible enforcement actions. California Health and Safety Code, Section 25299.76 authorizes enforcement including administrative action or monetary penalties of up to \$10,000 per day for each day of violation.

Alameda County Environmental Cleanup Oversight Programs (LOP and SLIC)

REVISION DATE: May 15, 2014

ISSUE DATE: July 5, 2005

PREVIOUS REVISIONS: October 31, 2005; December 16, 2005; March 27, 2009; July 8, 2010,

July 25, 2010

SECTION: Miscellaneous Administrative Topics & Procedures | SUB

SUBJECT: Electronic Report Upload (ftp) Instructions

The Alameda County Environmental Cleanup Oversight Programs (LOP and SLIC) require submission of all reports in electronic form to the county's ftp site. Paper copies of reports will no longer be accepted. The electronic copy replaces the paper copy and will be used for all public information requests, regulatory review, and compliance/enforcement activities.

REQUIREMENTS

- Please do not submit reports as attachments to electronic mail.
- Entire report including cover letter must be submitted to the ftp site as a single portable document format (PDF) with no password protection.
- It is preferable that reports be converted to PDF format from their original format, (e.g., Microsoft Word) rather than scanned.
- Signature pages and perjury statements must be included and have either original or electronic signature.
- Do not password protect the document. Once indexed and inserted into the correct electronic case file, the document will be secured in compliance with the County's current security standards and a password. Documents with password protection will not be accepted.
- Each page in the PDF document should be rotated in the direction that will make it easiest to read on a computer monitor.
- Reports must be named and saved using the following naming convention:

RO#_Report Name_Year-Month-Date (e.g., RO#5555_WorkPlan_2005-06-14)

Submission Instructions

- 1) Obtain User Name and Password
 - a) Contact the Alameda County Environmental Health Department to obtain a User Name and Password to upload files to the ftp site.
 - i) Send an e-mail to deh.loptoxic@acgov.org
 - b) In the subject line of your request, be sure to include "ftp PASSWORD REQUEST" and in the body of your request, include the Contact Information, Site Addresses, and the Case Numbers (RO# available in Geotracker) you will be posting for.
- 2) Upload Files to the ftp Site
 - a) Using Internet Explorer (IE4+), go to ftp://alcoftp1.acgov.org
 - (i) Note: Netscape, Safari, and Firefox browsers will not open the FTP site as they are NOT being supported at this time.
 - b) Click on Page located on the Command bar on upper right side of window, and then scroll down to Open FTP Site in Windows Explorer.
 - c) Enter your User Name and Password. (Note: Both are Case Sensitive.)
 - d) Open "My Computer" on your computer and navigate to the file(s) you wish to upload to the ftp site.
 - e) With both "My Computer" and the ftp site open in separate windows, drag and drop the file(s) from "My Computer" to the ftp window.
- 3) Send E-mail Notifications to the Environmental Cleanup Oversight Programs
 - a) Send email to deh.loptoxic@acgov.org notify us that you have placed a report on our ftp site.
 - b) Copy your Caseworker on the e-mail. Your Caseworker's e-mail address is the entire first name then a period and entire last name @acgov.org. (e.g., firstname.lastname@acgov.org)
 - c) The subject line of the e-mail must start with the RO# followed by **Report Upload**. (e.g., Subject: RO1234 Report Upload) If site is a new case without an RO#, use the street address instead.
 - d) If your document meets the above requirements and you follow the submission instructions, you will receive a notification by email indicating that your document was successfully uploaded to the ftp site.

ATTACHMENT C STANDARD OPERATING PROCEDURES

STANDARD OPERATING PROCEDURE – HAND BORINGS

SOIL CORING AND SAMPLING PROCEDURES

Prior to drilling, the surface is either cored if concrete or hammered through using a pick, if asphalt.

A hand operated coring device equipped with a 3-inch diameter auger bit is advanced into the soil until full. The auger is removed and emptied and this process is repeated until the desired depth is reached. The hand auger is removed and a slide hammer core sampling device, equipped with two 3-inch long, 2-inch diameter brass liners is advanced six inches into the undisturbed soil at the bottom of the borehole.

One of the 3-inch liners is selected and the ends of the tube are covered with Teflon liner and sealed with plastic caps. The soil-filled liner is labeled with the borehole number, sample depth, site location, date, and time. The samples are placed in bags and stored in a cooler containing ice. Soil from the core adjacent to the interval selected for analyses is placed in a plastic zip-top bag. The soil is allowed to volatilize for a period of time, depending on the ambient temperature. The soil is scanned with a flame-ionization detector (FID) or photo-ionization detector (PID).

All sample barrels, rods, and tools are cleaned with Alconox or equivalent detergent and deionized water. All rinsate from the cleaning is contained in covered 5-gallon plastic buckets or 55-gallon drums at the project site.

BOREHOLE GROUTING FOR HAND BORINGS

Upon completion of soil and water sampling, boreholes will be abandoned with neat cement grout. If the borehole was advanced into groundwater, the grout is pumped through a grouting tube positioned at the bottom of the borehole.

ATTACHMENT D

LABORATORY REPORT AND CHAIN OF CUSTODY FORM

McCampbell Analytical, Inc.

"When Quality Counts"

Analytical Report

WorkOrder: 1412318

Report Created for: ERAS Environmental, Inc.

1533 B Street

Hayward, CA 94541

Project Contact: Andrew Savage

Project P.O.:

Project Name: #14063D

Project Received: 12/05/2014

Analytical Report reviewed & approved for release on 12/18/2014 by:

Question about your data?

Click here to email
McCampbell

Angela Rydelius,

Laboratory Manager

The report shall not be reproduced except in full, without the written approval of the laboratory. The analytical results relate only to the items tested. Results reported conform to the most current NELAP standards, where applicable, unless otherwise stated in the case narrative.

1534 Willow Pass Rd. Pittsburg, CA 94565 ♦ TEL: (877) 252-9262 ♦ FAX: (925) 252-9269 ♦ www.mccampbell.com NELAP: 4033ORELAP ♦ ELAP: 1644 ♦ ISO/IEC: 17025:2005 ♦ WSDE: C972-11 ♦ ADEC: UST-098 ♦ UCMR3

Glossary of Terms & Qualifier Definitions

Client: ERAS Environmental, Inc.

Project: #14063D **WorkOrder:** 1412318

Glossary Abbreviation

95% Interval 95% Confident Interval

DF Dilution Factor
DUP Duplicate

EDL Estimated Detection Limit

ITEF International Toxicity Equivalence Factor

LCS Laboratory Control Sample

MB Method Blank

MB % Rec % Recovery of Surrogate in Method Blank, if applicable

MDL Method Detection Limit

ML Minimum Level of Quantitation

MS Matrix Spike

MSD Matrix Spike Duplicate

ND Not detected at or above the indicated MDL or RL

NR Data Not Reported due to matrix interference or insufficient sample amount.

PF Prep Factor

RD Relative Difference

RL Reporting Limit (The RL is the lowest calibration standard in a multipoint calibration.)

RPD Relative Percent Deviation
RRT Relative Retention Time

SPK Val Spike Value

SPKRef Val Spike Reference Value TEQ Toxicity Equivalence

Analytical Qualifiers

a3 sample diluted due to high organic content.

a4 reporting limits raised due to the sample's matrix prohibiting a full volume extraction.

e1/e2 unmodified or weakly modified diesel is significant; and/or diesel range compounds are significant; no

recognizable pattern

e1/e unmodified or weakly modified diesel is significant; and/or value above quantitation range

e7 oil range compounds are significante8 kerosene/kerosene range/jet fuel range

h4 sulfuric acid permanganate (EPA 3665) cleanup

Analytical Report

Client:ERAS Environmental, Inc.WorkOrder:1412318Project:#14063DExtraction Method:E1613Date Received:12/5/14 21:38Analytical Method:E1613

Date Prepared: 12/11/14 **Unit:** pg/g Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans **Client ID** Lab ID Matrix/ExtType Date Collected Instrument **Batch ID** B-2-2.5 1412318-001A 12/04/2014 12:25 GC36 98887 **Analytes** ITEF Result RL DF lon **RRT** TEQ Date Analyzed Ratio 2,3,7,8-TCDD ND 0.500 1 12/15/2014 12:43 1.2.3.7.8-PeCDD ND 2.50 1 12/15/2014 12:43 1,2,3,4,7,8-HxCDD ND 2.50 12/15/2014 12:43 1,2,3,6,7,8-HxCDD ND 2.50 12/15/2014 12:43 12/15/2014 12:43 ND 1,2,3,7,8,9-HxCDD 2.50 1,2,3,4,6,7,8-HpCDD 0.01 4.16 2.50 1 1.16 0.0416 12/15/2014 12:43 OCDD 0.001 0.00842 8.42 5.00 1.02 12/15/2014 12:43 1 1 2,3,7,8-TCDF ND 0.500 1 12/15/2014 12:43 2,3,4,7,8-PeCDF 0.5 4.10 2.50 1.62 2.05 12/15/2014 12:43 1,2,3,7,8-PeCDF ND 2.50 1 12/15/2014 12:43 0.1 5.42 0.542 1,2,3,4,7,8-HxCDF 2.50 1.22 12/15/2014 12:43 0.1 0.542 1,2,3,6,7,8-HxCDF 5.42 2.50 1.19 12/15/2014 12:43 1 1 ND 1 1,2,3,7,8,9-HxCDF 2.50 12/15/2014 12:43 0.1 0.882 2,3,4,6,7,8-HxCDF 8.82 2.50 1 1.11 12/15/2014 12:43 0.01 1.04 0.319 12/15/2014 12:43 1,2,3,4,6,7,8-HpCDF 31.9 2.50 1 1,2,3,4,7,8,9-HpCDF ND 2.50 12/15/2014 12:43 **OCDF** ND 5.00 1 12/15/2014 12:43 Total-Tetradioxins 5.70 0.500 1 12/15/2014 12:43 Total-Heptadioxins 2.50 1 12/15/2014 12:43 8.76 Total-Hexadioxins ND 2.50 1 12/15/2014 12:43 Total-Pentadioxins 12/15/2014 12:43 2.50 Total-Tetrafurans 19.6 0.500 1 12/15/2014 12:43 1 Total-Heptafurans 31.9 2.50 12/15/2014 12:43 Total-Hexafurans 2.50 1 12/15/2014 12:43 60.6 Total-Pentafurans 2.50 12/15/2014 12:43 23.7 Total TEQ: 4.39 Cleanup Standard **REC (%) Limits** 37CI-2,3,7,8-TCDD 108 35-197 12/15/2014 12:43 **Labeled Compound Recovery** 13C-2,3,7,8-TCDD 90 25-164 12/15/2014 12:43 13C-1,2,3,7,8-PeCDD 91 25-181 12/15/2014 12:43 13C-1,2,3,4,7,8-HxCDD 85 32-141 12/15/2014 12:43 13C-1,2,3,6,7,8-HxCDD 73 28-139 12/15/2014 12:43 13C-1,2,3,4,6,7,8-HpCDD 67 23-140 12/15/2014 12:43 13C-OCDD 61 17-157 12/15/2014 12:43 13C-2,3,7,8-TCDF 12/15/2014 12:43 104 24-169

(Cont.)

Analytical Report

Client:ERAS Environmental, Inc.WorkOrder:1412318Project:#14063DExtraction Method:E1613Date Received:12/5/14 21:38Analytical Method:E1613Date Prepared:12/11/14Unit:pg/g

Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans

Client ID		Lab ID	Matrix/ExtType	trix/ExtType Date Collected Instrument			ıment		Batch ID		
B-2-2.5		1412318-001A	Soil	12/04/20	14 12:25	GC36			98887		
Analytes	ITEF	Result		<u>RL</u>	<u>DF</u>	<u>lon</u> Ratio	<u>RRT</u>	<u>TEQ</u>	Date Analyzed		
13C-1,2,3,7,8-PeCDF		95		24-185					12/15/2014 12:43		
13C-2,3,4,7,8-PeCDF		85		21-178					12/15/2014 12:43		
13C-1,2,3,4,7,8-HxCDF		79		26-152					12/15/2014 12:43		
13C-1,2,3,6,7,8-HxCDF		74		26-123					12/15/2014 12:43		
13C-2,3,4,6,7,8-HxCDF		85		28-136					12/15/2014 12:43		
13C-1,2,3,7,8,9-HxCDF		82		29-147					12/15/2014 12:43		
13C-1,2,3,4,6,7,8-HpCDF		60		28-143					12/15/2014 12:43		
13C-1,2,3,4,7,8,9-HpCDF		72		26-138					12/15/2014 12:43		

Analytical Report

Client:ERAS Environmental, Inc.WorkOrder:1412318Project:#14063DExtraction Method:SW3550BDate Received:12/5/14 21:38Analytical Method:SW8082

Date Prepared: 12/5/14 **Unit:** mg/kg

Polychlorinated Biphenyls (PCBs) Aroclors

Client ID	Lab ID	Matrix/ExtType	Date Co	ollected Instrument	Batch ID
B-2-2.5	1412318-001A	Soil	12/04/20	14 12:25 GC22	98654
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
Aroclor1016	ND		0.050	1	12/09/2014 00:37
Aroclor1221	ND		0.050	1	12/09/2014 00:37
Aroclor1232	ND		0.050	1	12/09/2014 00:37
Aroclor1242	ND		0.050	1	12/09/2014 00:37
Aroclor1248	ND		0.050	1	12/09/2014 00:37
Aroclor1254	ND		0.050	1	12/09/2014 00:37
Aroclor1260	ND		0.050	1	12/09/2014 00:37
PCBs, total	ND		0.050	1	12/09/2014 00:37
Surrogates	<u>REC (%)</u>		<u>Limits</u>	Analytical Comments: h4	
Decachlorobiphenyl	93		70-130		12/09/2014 00:37
Analyst(s): SS					

Analytical Report

Client:ERAS Environmental, Inc.WorkOrder:1412318Project:#14063DExtraction Method:SW3550B

Date Received:12/5/14 21:38Analytical Method:SW8270CDate Prepared:12/5/14Unit:mg/Kg

Semi-Volatile Organics by GC/MS (Basic Target List)

Client ID	Lab ID	Matrix/ExtType	Date Collected	Instrument	Batch ID
B-2-2.5	1412318-001A	Soil	12/04/2014 12:2	5 GC17	98629
Analytes	Result		<u>RL</u> <u>DF</u>		Date Analyzed
Acenaphthene	ND		10 5		12/09/2014 22:37
Acenaphthylene	ND		10 5		12/09/2014 22:37
Acetochlor	ND		10 5		12/09/2014 22:37
Anthracene	ND		10 5		12/09/2014 22:37
Benzidine	ND		52 5		12/09/2014 22:37
Benzo (a) anthracene	ND		10 5		12/09/2014 22:37
Benzo (b) fluoranthene	ND		10 5		12/09/2014 22:37
Benzo (k) fluoranthene	ND		10 5		12/09/2014 22:37
Benzo (g,h,i) perylene	ND		10 5		12/09/2014 22:37
Benzo (a) pyrene	ND		10 5		12/09/2014 22:37
Benzyl Alcohol	ND		52 5		12/09/2014 22:37
1,1-Biphenyl	ND		10 5		12/09/2014 22:37
Bis (2-chloroethoxy) Methane	ND		10 5		12/09/2014 22:37
Bis (2-chloroethyl) Ether	ND		10 5		12/09/2014 22:37
Bis (2-chloroisopropyl) Ether	ND		10 5		12/09/2014 22:37
Bis (2-ethylhexyl) Adipate	ND		10 5		12/09/2014 22:37
Bis (2-ethylhexyl) Phthalate	ND		10 5		12/09/2014 22:37
4-Bromophenyl Phenyl Ether	ND		10 5		12/09/2014 22:37
Butylbenzyl Phthalate	ND		10 5		12/09/2014 22:37
4-Chloroaniline	ND		20 5		12/09/2014 22:37
4-Chloro-3-methylphenol	ND		10 5		12/09/2014 22:37
2-Chloronaphthalene	ND		10 5		12/09/2014 22:37
2-Chlorophenol	ND		10 5		12/09/2014 22:37
4-Chlorophenyl Phenyl Ether	ND		10 5		12/09/2014 22:37
Chrysene	ND		10 5		12/09/2014 22:37
Dibenzo (a,h) anthracene	ND		10 5		12/09/2014 22:37
Dibenzofuran	ND		10 5		12/09/2014 22:37
Di-n-butyl Phthalate	ND		10 5		12/09/2014 22:37
1,2-Dichlorobenzene	ND		10 5		12/09/2014 22:37
1,3-Dichlorobenzene	ND		10 5		12/09/2014 22:37
1,4-Dichlorobenzene	ND		10 5		12/09/2014 22:37
3,3-Dichlorobenzidine	ND		20 5		12/09/2014 22:37
2,4-Dichlorophenol	ND		10 5		12/09/2014 22:37
Diethyl Phthalate	ND		10 5		12/09/2014 22:37
2,4-Dimethylphenol	ND		10 5		12/09/2014 22:37
Dimethyl Phthalate	ND		10 5		12/09/2014 22:37
4,6-Dinitro-2-methylphenol	ND		52 5		12/09/2014 22:37
2,4-Dinitrophenol	ND		250 5		12/09/2014 22:37

(Cont.)

1412318

Analytical Report

Client: ERAS Environmental, Inc. WorkOrder:

Project:#14063DExtraction Method:SW3550BDate Received:12/5/14 21:38Analytical Method:SW8270CDate Prepared:12/5/14Unit:mg/Kg

Semi-Volatile Organics by GC/MS (Basic Target List)

Client ID	Lab ID	Matrix/ExtType	Date Co	llected	Instrument	Batch ID
B-2-2.5	1412318-001A	Soil	12/04/201	4 12:25	GC17	98629
Analytes	Result		<u>RL</u>	<u>DF</u>		Date Analyzed
2,4-Dinitrotoluene	ND		10	5		12/09/2014 22:37
2,6-Dinitrotoluene	ND		10	5		12/09/2014 22:37
Di-n-octyl Phthalate	ND		20	5		12/09/2014 22:37
1,2-Diphenylhydrazine	ND		10	5		12/09/2014 22:37
Fluoranthene	ND		10	5		12/09/2014 22:37
Fluorene	ND		10	5		12/09/2014 22:37
Hexachlorobenzene	ND		10	5		12/09/2014 22:37
Hexachlorobutadiene	ND		10	5		12/09/2014 22:37
Hexachlorocyclopentadiene	ND		52	5		12/09/2014 22:37
Hexachloroethane	ND		10	5		12/09/2014 22:37
Indeno (1,2,3-cd) pyrene	ND		10	5		12/09/2014 22:37
Isophorone	ND		10	5		12/09/2014 22:37
2-Methylnaphthalene	31		10	5		12/09/2014 22:37
2-Methylphenol (o-Cresol)	ND		10	5		12/09/2014 22:37
3 & 4-Methylphenol (m,p-Cresol)	ND		10	5		12/09/2014 22:37
Naphthalene	ND		10	5		12/09/2014 22:37
2-Nitroaniline	ND		52	5		12/09/2014 22:37
3-Nitroaniline	ND		52	5		12/09/2014 22:37
4-Nitroaniline	ND		52	5		12/09/2014 22:37
Nitrobenzene	ND		10	5		12/09/2014 22:37
2-Nitrophenol	ND		52	5		12/09/2014 22:37
4-Nitrophenol	ND		52	5		12/09/2014 22:37
N-Nitrosodiphenylamine	ND		10	5		12/09/2014 22:37
N-Nitrosodi-n-propylamine	ND		10	5		12/09/2014 22:37
Pentachlorophenol	ND		52	5		12/09/2014 22:37
Phenanthrene	ND		10	5		12/09/2014 22:37
Phenol	ND		10	5		12/09/2014 22:37
Pyrene	ND		10	5		12/09/2014 22:37
1,2,4-Trichlorobenzene	ND		10	5		12/09/2014 22:37
2,4,5-Trichlorophenol	ND		10	5		12/09/2014 22:37
2,4,6-Trichlorophenol	ND		10	5		12/09/2014 22:37

Analytical Report

Client:ERAS Environmental, Inc.WorkOrder:1412318Project:#14063DExtraction Method:SW3550BDate Received:12/5/14 21:38Analytical Method:SW8270CDate Prepared:12/5/14Unit:mg/Kg

Semi-Volatile Organics by GC/MS (Basic Target List)

Lab ID	Matrix/ExtType	Date Co	ollected Instrument	Batch ID			
1412318-001A	Soil	12/04/20	14 12:25 GC17	98629			
Result		<u>RL</u>	<u>DF</u>	Date Analyzed			
REC (%)		<u>Limits</u>	Analytical Comments: a3,a4				
96		30-130		12/09/2014 22:37			
93		30-130		12/09/2014 22:37			
99		30-130		12/09/2014 22:37			
99		30-130		12/09/2014 22:37			
101		16-130		12/09/2014 22:37			
89		30-130		12/09/2014 22:37			
	1412318-001A Result REC (%) 96 93 99 99 101	1412318-001A Soil Result REC (%) 96 93 99 101	Tata 12/04/20 Result RL REC (%) Limits 96 30-130 93 30-130 99 30-130 99 30-130 99 30-130 101 16-130	1412318-001A Soil 12/04/2014 12:25 GC17 Result RL DF REC (%) Limits Analytical Comments: a3,a4 96 30-130 93 30-130 99 30-130 99 30-130 99 30-130 101 16-130			

Analytical Report

Client: ERAS Environmental, Inc. WorkOrder: 1412318

Project: #14063D Extraction Method: SW3550B/3630C

Date Received:12/5/14 21:38Analytical Method:SW8015BDate Prepared:12/5/14Unit:mg/Kg

Total Extractable Petroleum Hydrocarbons with Silica Gel Clean-Up

Client ID	Lab ID	Matrix/ExtType	Date Co	ollected Instrument	Batch ID
B-2-2.5	1412318-001A	Soil	12/04/20	14 12:25 GC6A	98653
<u>Analytes</u>	<u>Result</u>		<u>RL</u>	<u>DF</u>	Date Analyzed
TPH-Diesel (C10-C23)	3500		100	100	12/07/2014 17:19
TPH-Motor Oil (C18-C36)	2200		500	100	12/07/2014 17:19
Surrogates	<u>REC (%)</u>		<u>Limits</u>	Analytical Comments	: e8,e7,e1/e2
C9	106		70-130		12/07/2014 17:19
Analyst(s): TK					

ERAS Environmental, Inc.

ANALYTICAL QC SUMMARY REPORT

Date: 18-Dec-14

Work Order: 1412318 **Project:** #14063D

CLIENT:

BatchID: 98887

SampleID MB-98887	TestCode: 1613_FULL_S		Units:	pg/g		Prep Date: 12/11/2014
Batch ID: 98887	TestNo: E1613		Run ID:	GC36_1	41218B	Analysis Date: 12/15/2014
Analyte	Result	PQL SPKValue	SPKRefVal	%REC	Limits	RPDRefVal %RPD RPDLimit Qua
2,3,7,8-TCDD	ND	0.500			-	
1,2,3,7,8-PeCDD	ND	2.50			-	
1,2,3,4,7,8-HxCDD	ND	2.50			-	
1,2,3,6,7,8-HxCDD	ND	2.50			-	
1,2,3,7,8,9-HxCDD	ND	2.50			-	
1,2,3,4,6,7,8-HpCDD	ND	2.50			-	
OCDD	ND	5.00			-	
2,3,7,8-TCDF	ND	0.500			-	
2,3,4,7,8-PeCDF	ND	2.50			-	
1,2,3,7,8-PeCDF	ND	2.50			-	
1,2,3,4,7,8-HxCDF	ND	2.50			-	
1,2,3,6,7,8-HxCDF	ND	2.50			-	
1,2,3,7,8,9-HxCDF	ND	2.50			-	
2,3,4,6,7,8-HxCDF	ND	2.50			-	
1,2,3,4,6,7,8-HpCDF	ND	2.50			-	
1,2,3,4,7,8,9-HpCDF	ND	2.50			-	
OCDF	ND	5.00			-	
Cleanup Standard						
37CI-2,3,7,8-TCDD	12.9	10		129	35 - 197	
Labeled Compound Recovery						
13C-2,3,7,8-TCDD	101	100		101	25 - 164	
13C-1,2,3,7,8-PeCDD	132	100		132	25 - 181	
13C-1,2,3,4,7,8-HxCDD	83.2	100		83	32 - 141	
13C-1,2,3,6,7,8-HxCDD	81.2	100		81	28 - 130	
13C-1,2,3,4,6,7,8-HpCDD	99.4	100		99	23 - 140	
13C-OCDD	166	200		83	17 - 157	
13C-2,3,7,8-TCDF	97.6	100		98	24 - 169	
13C-1,2,3,7,8-PeCDF	128	100		128	24 - 185	
13C-2,3,4,7,8-PeCDF	131	100		131	21 - 178	
13C-1,2,3,4,7,8-HxCDF	78.1	100		78	26 - 152	
13C-1,2,3,6,7,8-HxCDF	71.3	100		71	26 - 123	
13C-2,3,4,6,7,8-HxCDF	76.9	100		77	28 - 136	
13C-1,2,3,7,8,9-HxCDF	86.2	100		86	29 - 147	
13C-1,2,3,4,6,7,8-HpCDF	91.0	100		91	28 - 143	
13C-1,2,3,4,7,8,9-HpCDF	96.0	100		96	26 - 138	

Qualifiers: ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

M - Estimate Maximum Possible Concentration

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

CLIENT: ERAS Environmental, Inc.

ANALYTICAL QC SUMMARY REPORT Work Order: 1412318

work Order:	1412318		
Project:	#14063D	BatchID:	98887

SampleID LCS-98887	TestCode: 1613_FULL_S			Units:	pg/g		Prep Date: 12/11/2014
Batch ID: 98887	TestNo: E1613			Run ID:	GC36_	141218C	Analysis Date: 12/15/2014
Analyte	Result	PQL	SPKValue	SPKRefVal	%REC	Limits	RPDRefVal %RPD RPDLimit Qual
2,3,7,8-TCDD	11.3	0.500	10	0	113	67 - 158	
1,2,3,7,8-PeCDD	55.2	2.50	50	0.12	110	70 - 142	
1,2,3,4,7,8-HxCDD	52.5	2.50	50	0	105	70 - 164	
1,2,3,6,7,8-HxCDD	51.6	2.50	50	0.12	103	76 - 134	
1,2,3,7,8,9-HxCDD	56.6	2.50	50	0.14	113	64 - 162	
1,2,3,4,6,7,8-HpCDD	51.4	2.50	50	0	103	70 - 140	
OCDD	101	5.00	100	0	101	78 - 144	
2,3,7,8-TCDF	10.4	0.500	10	0	104	75 - 158	
2,3,4,7,8-PeCDF	49.9	2.50	50	0.16	99	68 - 160	
1,2,3,7,8-PeCDF	49.2	2.50	50	0.12	98	80 - 134	
1,2,3,4,7,8-HxCDF	51.1	2.50	50	0	102	72 - 134	
1,2,3,6,7,8-HxCDF	50.1	2.50	50	0.14	100	84 - 130	
1,2,3,7,8,9-HxCDF	50.6	2.50	50	0.1	101	78 - 130	
2,3,4,6,7,8-HxCDF	50.9	2.50	50	0	102	70 - 156	
1,2,3,4,6,7,8-HpCDF	50.6	2.50	50	0	101	82 - 122	
1,2,3,4,7,8,9-HpCDF	49.8	2.50	50	0	100	78 - 138	
OCDF	93.9	5.00	100	0	94	63 - 170	
Cleanup Standard							
37CI-2,3,7,8-TCDD	13.4		10		134	31 - 191	
Labeled Compound Recovery	,						
13C-2,3,7,8-TCDD	108		100		108	20 - 175	
13C-1,2,3,7,8-PeCDD	146		100		146	21 - 227	
13C-1,2,3,4,7,8-HxCDD	83.3		100		83	21 - 193	
13C-1,2,3,6,7,8-HxCDD	81.1		100		81	25 - 163	
13C-1,2,3,4,6,7,8-HpCDD	86.5		100		86	26 - 166	
13C-OCDD	153		200		76	13 - 199	
13C-2,3,7,8-TCDF	105		100		105	22 - 152	
13C-1,2,3,7,8-PeCDF	129		100		129	21 - 192	
13C-2,3,4,7,8-PeCDF	136		100		136	13 - 328	
13C-1,2,3,4,7,8-HxCDF	79.4		100		79	19 - 202	
13C-1,2,3,6,7,8-HxCDF	77.4		100		77	21 - 159	
13C-2,3,4,6,7,8-HxCDF	78.7		100		79	22 - 176	
13C-1,2,3,7,8,9-HxCDF	84.3		100		84	17 - 205	
13C-1,2,3,4,6,7,8-HpCDF	81.3		100		81	21 - 158	
13C-1,2,3,4,7,8,9-HpCDF	81.6		100		82	20 - 186	

Qualifiers: ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

M - Estimate Maximum Possible Concentration

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

CLIENT: ERAS Environmental, Inc.

ERAS Environmental, Inc.

ANALYTICAL QC SUMMARY REPORT

Work Order: 1412318

Project: #14063D

BatchID: 98887

SampleID 1412318-001AMS	TestCode: 1613_FULL_S			Units:	pg/g		Prep Date: 1	12/11/2014	4
Batch ID: 98887	TestNo: E1613			Run ID:	GC36_	141218D	Analysis Date: 1	12/15/2014	4
Analyte	Result	PQL	SPKValue	SPKRefVal	%REC	Limits	RPDRefVal %RPD	RPDLimit	t Qual
2,3,7,8-TCDD	13.5	0.500	10	0	135	67 - 158			
1,2,3,7,8-PeCDD	56.8	2.50	50	0	114	70 - 142			
1,2,3,4,7,8-HxCDD	54.3	2.50	50	0	109	70 - 164			
1,2,3,6,7,8-HxCDD	54.2	2.50	50	1.64	105	76 - 134			
1,2,3,7,8,9-HxCDD	58.9	2.50	50	0	118	64 - 162			
1,2,3,4,6,7,8-HpCDD	56.6	2.50	50	4.16	105	70 - 140			
OCDD	116	5.00	100	8.42	107	78 - 144			
2,3,7,8-TCDF	14.1	0.500	10	0	141	75 - 158			
2,3,4,7,8-PeCDF	54.0	2.50	50	4.1	100	68 - 160			
1,2,3,7,8-PeCDF	52.0	2.50	50	0	104	80 - 134			
1,2,3,4,7,8-HxCDF	57.2	2.50	50	5.42	104	72 - 134			
1,2,3,6,7,8-HxCDF	57.9	2.50	50	5.42	105	84 - 130			
1,2,3,7,8,9-HxCDF	56.3	2.50	50	0	113	78 - 130			
2,3,4,6,7,8-HxCDF	61.5	2.50	50	8.82	105	70 - 156			
1,2,3,4,6,7,8-HpCDF	80.5	2.50	50	31.88	97	82 - 122			
1,2,3,4,7,8,9-HpCDF	49.4	2.50	50	0	99	78 - 138			
OCDF	105	5.00	100	4.2	101	63 - 170			
Cleanup Standard									
37Cl-2,3,7,8-TCDD	11.9		10		119	31 - 191			
Labeled Compound Recovery									
13C-2,3,7,8-TCDD	94.3		100		94	20 - 175			
13C-1,2,3,7,8-PeCDD	104		100		104	21 - 227			
13C-1,2,3,4,7,8-HxCDD	83.6		100		84	21 - 193			
13C-1,2,3,6,7,8-HxCDD	74.2		100		74	25 - 163			
13C-1,2,3,4,6,7,8-HpCDD	65.8		100		66	26 - 166			
13C-OCDD	106		200		53	13 - 199			
13C-2,3,7,8-TCDF	119		100		119	22 - 152			
13C-1,2,3,7,8-PeCDF	114		100		114	21 - 192			
13C-2,3,4,7,8-PeCDF	99.6		100		100	13 - 328			
13C-1,2,3,4,7,8-HxCDF	84.9		100		85	19 - 202			
13C-1,2,3,6,7,8-HxCDF	76.8		100		77	21 - 159			
13C-2,3,4,6,7,8-HxCDF	83.7		100		84	22 - 176			
13C-1,2,3,7,8,9-HxCDF	80.9		100		81	17 - 205			
13C-1,2,3,4,6,7,8-HpCDF	62.4		100		62	21 - 158			
13C-1,2,3,4,7,8,9-HpCDF	69.8		100		70	20 - 186			

Qualifiers: ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

M - Estimate Maximum Possible Concentration

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

CLIENT: ERAS Environmental, Inc.

Work Order: 1412318

ANALYTICAL QC SUMMARY REPORT

Project: #14063D BatchID: 98887

SampleID 1412318-001AMSD	TestCode: 1613_FULL_S			Units:	pg/g		Prep D)ate: 1	2/11/2014	
Batch ID: 98887	TestNo: E1613			Run ID:	GC36_	141218D	Analysis D	Date: 1	2/15/2014	
Analyte	Result	PQL	SPKValue	SPKRefVal	%REC	Limits	RPDRefVal	%RPD	RPDLimit	Qual
2,3,7,8-TCDD	13.0	0.500	10	0	130	67 - 158	13.52	3.77	20	
1,2,3,7,8-PeCDD	53.5	2.50	50	0	107	70 - 142	56.82	5.98	20	
1,2,3,4,7,8-HxCDD	53.6	2.50	50	0	107	70 - 164	54.26	1.15	20	
1,2,3,6,7,8-HxCDD	52.0	2.50	50	1.64	101	76 - 134	54.2	4.10	20	
1,2,3,7,8,9-HxCDD	58.5	2.50	50	0	117	64 - 162	58.88	0.647	20	
1,2,3,4,6,7,8-HpCDD	57.7	2.50	50	4.16	107	70 - 140	56.64	1.89	20	
OCDD	114	5.00	100	8.42	106	78 - 144	115.8	1.50	20	
2,3,7,8-TCDF	12.7	0.500	10	0	127	75 - 158	14.14	10.7	20	
2,3,4,7,8-PeCDF	54.3	2.50	50	4.1	100	68 - 160	53.96	0.665	20	
1,2,3,7,8-PeCDF	49.7	2.50	50	0	99	80 - 134	52	4.44	20	
1,2,3,4,7,8-HxCDF	52.9	2.50	50	5.42	95	72 - 134	57.18	7.70	20	
1,2,3,6,7,8-HxCDF	55.3	2.50	50	5.42	100	84 - 130	57.86	4.52	20	
1,2,3,7,8,9-HxCDF	49.1	2.50	50	0	98	78 - 130	56.28	13.6	20	
2,3,4,6,7,8-HxCDF	59.9	2.50	50	8.82	102	70 - 156	61.52	2.67	20	
1,2,3,4,6,7,8-HpCDF	77.1	2.50	50	31.88	90	82 - 122	80.52	4.37	20	
1,2,3,4,7,8,9-HpCDF	47.4	2.50	50	0	95	78 - 138	49.44	4.17	20	
OCDF	102	5.00	100	4.2	98	63 - 170	105.1	3.09	20	
Cleanup Standard										
37CI-2,3,7,8-TCDD	11.9		10		119	31 - 191				
Labeled Compound Recovery										
13C-2,3,7,8-TCDD	98.3		100		98	20 - 175				
13C-1,2,3,7,8-PeCDD	114		100		113	21 - 227				
13C-1,2,3,4,7,8-HxCDD	82.0		100		82	21 - 193				
13C-1,2,3,6,7,8-HxCDD	70.9		100		71	25 - 163				
13C-1,2,3,4,6,7,8-HpCDD	66.9		100		67	26 - 166				
13C-OCDD	109		200		55	13 - 199				
13C-2,3,7,8-TCDF	126		100		126	22 - 152				
13C-1,2,3,7,8-PeCDF	125		100		125	21 - 192				
13C-2,3,4,7,8-PeCDF	107		100		107	13 - 328				
13C-1,2,3,4,7,8-HxCDF	83.9		100		84	19 - 202				
13C-1,2,3,6,7,8-HxCDF	75.5		100		76	21 - 159				
13C-2,3,4,6,7,8-HxCDF	80.0		100		80	22 - 176				
13C-1,2,3,7,8,9-HxCDF	81.1		100		81	17 - 205				
13C-1,2,3,4,6,7,8-HpCDF	60.4		100		60	21 - 158				
13C-1,2,3,4,7,8,9-HpCDF	68.9		100		69	20 - 186				

Qualifiers: ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

M - Estimate Maximum Possible Concentration

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Quality Control Report

Client: ERAS Environmental, Inc.

Date Prepared: 12/5/14

Date Analyzed: 12/8/14 - 12/9/14

Instrument: GC22 Matrix: Soil

Project: #14063D

WorkOrder: 1412318

BatchID: 98654

Extraction Method: SW3550B

Analytical Method: SW8082 **Unit:** mg/kg

Sample ID: MB/LCS-98654

1412318-001AMS/MSD

QC Summary Report for SW8082								
Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits	
Aroclor1016	ND	-	0.050	-	-	-	-	
Aroclor1221	ND	-	0.050	-	-	-	-	
Aroclor1232	ND	-	0.050	-	-	-	-	
Aroclor1242	ND	-	0.050	-	-	-	-	
Aroclor1248	ND	-	0.050	-	-	-	-	
Aroclor1254	ND	-	0.050	-	-	-	-	
Aroclor1260	ND	0.126	0.050	0.15	-	84	70-130	
PCBs, total	ND	-	0.050	-	-	-	-	
Surrogate Recovery								
Decachlorobiphenyl	0.0504	0.0519		0.050	101	104	70-130	

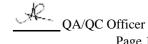
Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
Aroclor1260	0.171	0.164	0.15	ND	114	109	70-130	4.11	30
Surrogate Recovery									
Decachlorobiphenyl	0.0460	0.0437	0.050		92	87	70-130	5.10	30

Quality Control Report

Client: ERAS Environmental, Inc. WorkOrder: 1412318 **Date Prepared:** 12/5/14 **BatchID:** 98629

Date Analyzed: 12/8/14 **Extraction Method: SW3550B Instrument:** GC17 **Analytical Method:** SW8270C

Matrix: Soil **Unit:** mg/Kg


Sample ID: Project: #14063D MB/LCS-98629

1412240-008AMS/MSD

QC Sullina	ary Keport for Sv	V02/UC
MD	1.00	

Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
Acenaphthene	ND	3.93	0.25	5	-	79	30-130
Acenaphthylene	ND	-	0.25	=	-	-	-
Acetochlor	ND	-	0.25	=	-	-	-
Anthracene	ND	-	0.25	=	-	-	-
Benzidine	ND	-	1.3	=	-	-	-
Benzo (a) anthracene	ND	-	0.25	-	-	-	-
Benzo (b) fluoranthene	ND	-	0.25	-	-	-	-
Benzo (k) fluoranthene	ND	-	0.25	-	-	-	-
Benzo (g,h,i) perylene	ND	-	0.25	-	-	-	-
Benzo (a) pyrene	ND	-	0.25	-	-	-	-
Benzyl Alcohol	ND	-	1.3	-	-	-	-
1,1-Biphenyl	ND	-	0.25	=	-	-	-
Bis (2-chloroethoxy) Methane	ND	-	0.25	-	-	-	-
Bis (2-chloroethyl) Ether	ND	-	0.25	-	-	-	-
Bis (2-chloroisopropyl) Ether	ND	-	0.25	-	-	-	-
Bis (2-ethylhexyl) Adipate	ND	-	0.25	-	-	-	-
Bis (2-ethylhexyl) Phthalate	ND	-	0.25	-	-	-	-
4-Bromophenyl Phenyl Ether	ND	-	0.25	-	-	-	-
Butylbenzyl Phthalate	ND	-	0.25	-	-	-	-
4-Chloroaniline	ND	-	0.50	-	-	-	-
4-Chloro-3-methylphenol	ND	4.40	0.25	5	-	88	30-130
2-Chloronaphthalene	ND	_	0.25	-	-	-	-
2-Chlorophenol	ND	4.02	0.25	5	-	80	30-130
4-Chlorophenyl Phenyl Ether	ND	_	0.25	-	-	-	-
Chrysene	ND	_	0.25	-	-	-	-
Dibenzo (a,h) anthracene	ND	-	0.25	-	-	-	-
Dibenzofuran	ND	_	0.25	-	-	-	-
Di-n-butyl Phthalate	ND	_	0.25	-	-	-	-
1,2-Dichlorobenzene	ND	-	0.25	-	-	-	-
1.3-Dichlorobenzene	ND	-	0.25	-	-	-	-
1,4-Dichlorobenzene	ND	3.45	0.25	5	-	69	30-130
3,3-Dichlorobenzidine	ND	-	0.50	<u> </u>	_	-	-
2,4-Dichlorophenol	ND	_	0.25	=	_		_
Diethyl Phthalate	ND	-	0.25	-	_	-	_
2,4-Dimethylphenol	ND	_	0.25	<u>.</u>	-	-	-
Dimethyl Phthalate	ND	-	0.25	-	_	-	-
4,6-Dinitro-2-methylphenol	ND	-	1.3	-	_	_	-
2,4-Dinitrophenol	ND	-	6.3	_	_	_	-
2,4-Dinitrotoluene	ND	4.26	0.25	5	_	85	30-130
_,		0	0.20	-		-	55 100

(Cont.)

Quality Control Report

Client: ERAS Environmental, Inc. WorkOrder:

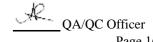
Date Prepared: 12/5/14

BatchID:

Date Prepared:12/5/14BatchID:98629Date Analyzed:12/8/14Extraction Method:SW3550BInstrument:GC17Analytical Method:SW8270C

Matrix: Soil Unit: mg/Kg

3.97


3.72

Project: #14063D **Sample ID:** MB/LCS-98629

1412240-008AMS/MSD

1412318

QC Summary Report for SW8270C									
Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits		
Di-n-octyl Phthalate	ND	-	0.50	-	-	-	-		
1,2-Diphenylhydrazine	ND	-	0.25	-	-	-	-		
Fluoranthene	ND	-	0.25	-	-	-	-		
Fluorene	ND	-	0.25	-	-	-	-		
Hexachlorobenzene	ND	-	0.25	-	-	-	-		
Hexachlorobutadiene	ND	-	0.25	-	-	-	-		
Hexachlorocyclopentadiene	ND	-	1.3	-	-	-	-		
Hexachloroethane	ND	-	0.25	-	-	-	-		
Indeno (1,2,3-cd) pyrene	ND	-	0.25	-	-	-	-		
Isophorone	ND	-	0.25	-	-	-	-		
2-Methylnaphthalene	ND	-	0.25	-	-	-	-		
2-Methylphenol (o-Cresol)	ND	-	0.25	-	-	-	-		
Naphthalene	ND	-	0.25	-	-	-	-		
2-Nitroaniline	ND	-	1.3	-	-	-	-		
3-Nitroaniline	ND	-	1.3	-	-	-	-		
4-Nitroaniline	ND	-	1.3	-	-	-	-		
Nitrobenzene	ND	-	0.25	-	-	-	-		
2-Nitrophenol	ND	-	1.3	-	-	-	-		
4-Nitrophenol	ND	3.99	1.3	5	-	80	30-130		
N-Nitrosodiphenylamine	ND	-	0.25	-	-	-	-		
N-Nitrosodi-n-propylamine	ND	3.39	0.25	5	-	68	30-130		
Pentachlorophenol	ND	2.86	1.3	5	-	57	30-130		
Phenanthrene	ND	-	0.25	-	-	-	-		
Phenol	ND	3.98	0.25	5	-	80	30-130		
Pyrene	ND	3.84	0.25	5	-	77	30-130		
1,2,4-Trichlorobenzene	ND	4.28	0.25	5	-	86	30-130		
2,4,5-Trichlorophenol	ND	-	0.25	-	-	-	-		
2,4,6-Trichlorophenol	ND	-	0.25	-	-	-	_		
Surrogate Recovery									
2-Fluorophenol	4.25	3.97		5	85	79	30-130		
Phenol-d5	3.94	3.63		5	79	73	30-130		
Nitrobenzene-d5	4.13	4.06		5	83	81	30-130		
2-Fluorobiphenyl	3.88	3.74		5	78	75	30-130		
2,4,6-Tribromophenol	2.57	3.04		5	51	61	16-130		

74

79

4-Terphenyl-d14

30-130

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Quality Control Report

Client: ERAS Environmental, Inc. WorkOrder: 1412318

Date Prepared:12/5/14BatchID:98629Date Analyzed:12/8/14Extraction Method:SW3550BInstrument:GC17Analytical Method:SW8270CMatrix:SoilUnit:mg/Kg

Project: #14063D **Sample ID:** MB/LCS-98629

1412240-008AMS/MSD

QC Summary Report for SW8270C

Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
Acenaphthene	3.99	4.37	5	ND	80	87	30-130	9.10	30
4-Chloro-3-methylphenol	4.51	4.64	5	ND	90	93	30-130	2.86	30
2-Chlorophenol	4.22	4.18	5	ND	84	84	30-130	0	30
1,4-Dichlorobenzene	3.31	3.38	5	ND	66	68	30-130	2.04	30
2,4-Dinitrotoluene	4.36	4.82	5	ND	87	96	30-130	10.0	30
4-Nitrophenol	4.23	4.74	5	ND	85	95	30-130	11.4	30
N-Nitrosodi-n-propylamine	3.43	3.44	5	ND	69	69	30-130	0	30
Pentachlorophenol	3.50	3.83	5	ND	70	77	30-130	8.91	30
Phenol	4.54	4.45	5	0.4456	82	80	30-130	2.01	30
Pyrene	4.13	4.18	5	ND	83	84	30-130	1.16	30
1,2,4-Trichlorobenzene	3.99	4.18	5	ND	80	83	30-130	4.57	30
Surrogate Recovery									
2-Fluorophenol	3.92	3.93	5		78	79	30-130	0.266	30
Phenol-d5	3.72	3.66	5		74	73	30-130	1.61	30
Nitrobenzene-d5	3.74	3.87	5		75	77	30-130	3.37	30
2-Fluorobiphenyl	3.66	4.01	5		73	80	30-130	8.92	30
2,4,6-Tribromophenol	2.93	3.08	5		59	62	16-130	4.78	30
4-Terphenyl-d14	4.03	4.06	5		81	81	30-130	0	30

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Quality Control Report

Client: ERAS Environmental, Inc. WorkOrder: 1412318

Date Prepared: 12/5/14 **BatchID:** 98653

Date Analyzed:12/7/14Extraction Method:SW3550B/3630CInstrument:GC6AAnalytical Method:SW8015B

Matrix: Soil Unit: mg/Kg

Project: #14063D **Sample ID:** MB/LCS-98653

1412318-001AMS/MSD

Analyte	MB Result	LCS Result		RL	SPK Val			LCS %REC	LCS Limits
TPH-Diesel (C10-C23)	ND	42.9		1.0	40	-		107	70-130
TPH-Motor Oil (C18-C36)	ND	-		5.0	-	-		-	-
Surrogate Recovery									
C9	21.2	21.8			25	85	;	37	70-130
Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MS Limits	D RPI	D RPE Limi
TPH-Diesel (C10-C23)	NR	NR		3500	NR	NR	-	NR	
Surrogate Recovery									
C9	NR	NR			NR	NR	_	NR	

McCampbell Analytical, Inc.

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

WorkOrder: 1412318 ClientCode: ERAS

WaterTrax	WriteOn	□ EDF	Excel	■ EQuIS	✓ Email	HardCopy	ThirdParty	J-flag

Report to: Bill to: Requested TAT: 5 days

Andrew Savage Email: info@eras.biz; andrew@eras.biz Kasey Cordoza

ERAS Environmental, Inc. cc/3rd Party: ERAS Environmental, Inc.

1533 B Street PO: 1533 B Street *Date Received:* 12/05/2014

Hayward, CA 94541 ProjectNo: #14063D Hayward, CA 94541 **Date Printed:** 12/12/2014 (510) 247-9885 FAX: (510) 886-5399

					Requested Tests (See legend below)										
Lab ID	Client ID	Matrix	Collection Date Hole	d 1	2	3	4	5	6	7	8	9	10	11	12
1412318-001	B-2-2.5	Soil	12/4/2014 12:25	Α	Α	Α	Α								

Test Legend:

1	1613_FULL_S	2 8082A_PCB_S	3 8270D_S	4 TPH(DMO)WSG_S	5
6		7	8	9	10
11		12			

Prepared by: Agustina Venegas

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days).

Hazardous samples will be returned to client or disposed of at client expense.

McCampbell Analytical, Inc. "When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

WORK ORDER SUMMARY

ERAS ENVIR	RONMENTAL, INC			QC Level:	LEVEL	. 2			Work Or	der:	1412318
#14063D			Cli	ent Contact:	Andrew	Savage			Date Recei	ved:	12/5/2014
			Cont	tact's Email:	info@e	ras.biz; andrew@e	eras.biz				
	☐ WaterTrax	WriteOn	□EDF	Excel	Fax	∠ Email	HardCo	ppyThirdPart	yJ-flag		
Client ID	Matrix	Test Name				tle & Preservative	De- chlorinated	Collection Date & Time			Hold SubOut
B-2-2.5	Soil	SW8270C (SV SW8082 (PCB	OCs) s Only)	ı-Up) 1	Bra	ass Tube (2x3 Liner)		12/4/2014 12:25	5 days 5 days 5 days 15 days		
	#14063D Client ID	#14063D WaterTrax Client ID Matrix	#14063D WaterTrax WriteOn Client ID Matrix Test Name B-2-2.5 Soil SW8015B (TP SW8270C (SV SW8082 (PCB	#14063D Cli Con WaterTrax WriteOn EDF Client ID Matrix Test Name	#14063D Client Contact: Contact's Email: WaterTrax WriteOn EDF Excel Client ID Matrix Test Name Containe /Composi B-2-2.5 Soil SW8015B (TPH-d,mo w/ S.G. Clean-Up) SW8270C (SVOCs) SW8082 (PCBs Only)	#14063D Client Contact: Andrew Contact's Email: info@e WaterTrax WriteOn EDF Excel Fax Client ID Matrix Test Name Containers //Composites B-2-2.5 Soil SW8015B (TPH-d,mo w/ S.G. Clean-Up) 1 Brack SW8270C (SVOCs) SW8082 (PCBs Only)	#14063D Client Contact: Andrew Savage Contact's Email: info@eras.biz; andrew@e WaterTrax	#14063D Client Contact: Andrew Savage Contact's Email: info@eras.biz; andrew@eras.biz WaterTrax	#14063D Client Contact: Andrew Savage Contact's Email: info@eras.biz; andrew@eras.biz WaterTrax WriteOn EDF Excel Fax Email HardCopy ThirdPart Client ID Matrix Test Name Containers Bottle & Preservative De-chlorinated & Time B-2-2.5 Soil SW8015B (TPH-d,mo w/ S.G. Clean-Up) 1 Brass Tube (2x3 Liner) 12/4/2014 12:25 SW8270C (SVOCs)	#14063D Client Contact: Andrew Savage Contact's Email: info@eras.biz; andrew@eras.biz WaterTrax WriteOn EDF Excel Fax Email HardCopy ThirdParty J-flag	#14063D Client Contact: Andrew Savage Contact's Email: info@eras.biz; andrew@eras.biz WaterTrax WriteOn EDF Excel Fax Email HardCopy ThirdParty J-flag

* NOTE: STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

CHAIN OF CUSTODY FORM Turnaround Time: 24Hr 48 Hr 72 Hr Rush 5 Day McCampbell Analytical, Inc Geotracker: PDF Excel Write On (DW 1534 Willow Pass Rd. **Analysis Requested** Other Comments Pittsburg, CA 94565 877.252.9262 925.252.9269 - fax TPH-diesel and oil EPA 8015 with silica gel cleanup EPA 8270 Full List **Report To: ERAS** Bill To: **ERAS** ERAS Environmental, Inc. Company: **Email:** info@eras.biz 510-886-5399 **Telephone:** 510-247-9885 Fax: Project # 14063D of Containers Project location 3037-3115 Adeline Street Container Type Dioxins by EPA 1613 Sampler: Andrew Savage PCB's by EPA 8082 Sampling **Matrix Preservative** Waste H2S04 Water Location/Fiel Sample ID **Date Time** d Point Name 12/4/2014 12:25 Tube X X X B-2-2.5 RECEIVED BY: Comments: Please PDF RELINQUISHED BY: ICE/to Condition Relinquished by: Recieved by:

Relinguished by:

ICE/t°
Condition
Head space absent
Dechlorinated in lab
Appropriate containers
Preserved in Lab

VOA's O&G Metals Other
Preservation

PH<2

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Sample Receipt Checklist

Client Name:	ERAS Environmen	tai, inc.			Date and 1	ime Received.	12/5/2014 9:38:47 PW
Project Name:	#14063D				LogIn Revi	ewed by:	Agustina Venegas
WorkOrder №:	1412318	Matrix: Soil			Carrier:	Benjamin Yslas	s (MAI Courier)
		Chain of C	ustody	(COC)	<u>Information</u>		
Chain of custody	present?		Yes	✓	No 🗆		
Chain of custody	signed when relinqu	ished and received?	Yes	•	No 🗆		
Chain of custody	agrees with sample	labels?	Yes	•	No 🗌		
Sample IDs note	d by Client on COC?		Yes	✓	No 🗆		
Date and Time o	f collection noted by	Client on COC?	Yes	✓	No \square		
Sampler's name	noted on COC?		Yes	•	No 🗌		
		Sampl	e Rece	eipt Info	rmation		
Custody seals in	tact on shipping cont	ainer/cooler?	Yes		No 🗆		NA 🗹
Shipping contain	er/cooler in good cor	dition?	Yes	✓	No 🗌		
Samples in prope	er containers/bottles?	•	Yes	✓	No \square		
Sample containe	ers intact?		Yes	•	No 🗆		
Sufficient sample	e volume for indicated	d test?	Yes	•	No 🗌		
		Sample Preservation	on and	Hold Ti	me (HT) Info	rmation	
All samples rece	ived within holding tir	me?	Yes	•	No 🗌		
Sample/Temp Bl	ank temperature			Temp	: 3°C		NA 🗌
Water - VOA vial	ls have zero headspa	ace / no bubbles?	Yes		No 🗌		NA 🗹
Sample labels ch	necked for correct pre	eservation?	Yes	•	No 🗌		
pH acceptable up	pon receipt (Metal: <2	2; 522: <4; 218.7: >8)?	Yes		No 🗌		NA 🗸
Samples Receive	ed on Ice?		Yes	✓	No 🗌		
		(Ice Type	e: WE	TICE)		
UCMR3 Samples Total Chlorine	_	e upon receipt for EPA 522?	Yes		No 🗌		NA 🗹
	tested and acceptable	e upon receipt for EPA 218.7,			No 🗆		NA 🗹
* NOTE: If the "N	lo" box is checked, s	ee comments below.					
Comments:							

ATTACHMENT A FIGURES

ATTACHMENT B

ACHCSA LETTER

ATTACHMENT C STANDARD OPERATING PROCEDURES

STANDARD OPERATING PROCEDURE – HAND BORINGS

SOIL CORING AND SAMPLING PROCEDURES

Prior to drilling, the surface is either cored if concrete or hammered through using a pick, if asphalt.

A hand operated coring device equipped with a 3-inch diameter auger bit is advanced into the soil until full. The auger is removed and emptied and this process is repeated until the desired depth is reached. The hand auger is removed and a slide hammer core sampling device, equipped with two 3-inch long, 2-inch diameter brass liners is advanced six inches into the undisturbed soil at the bottom of the borehole.

One of the 3-inch liners is selected and the ends of the tube are covered with Teflon liner and sealed with plastic caps. The soil-filled liner is labeled with the borehole number, sample depth, site location, date, and time. The samples are placed in bags and stored in a cooler containing ice. Soil from the core adjacent to the interval selected for analyses is placed in a plastic zip-top bag. The soil is allowed to volatilize for a period of time, depending on the ambient temperature. The soil is scanned with a flame-ionization detector (FID) or photo-ionization detector (PID).

All sample barrels, rods, and tools are cleaned with Alconox or equivalent detergent and deionized water. All rinsate from the cleaning is contained in covered 5-gallon plastic buckets or 55-gallon drums at the project site.

BOREHOLE GROUTING FOR HAND BORINGS

Upon completion of soil and water sampling, boreholes will be abandoned with neat cement grout. If the borehole was advanced into groundwater, the grout is pumped through a grouting tube positioned at the bottom of the borehole.

ATTACHMENT D

LABORATORY REPORT AND CHAIN OF CUSTODY FORM