Cathedral Gardens Oakland, L.P.

2169 East Francisco Boulevard, Suite EAH San Rafael, CA 94901 (415) 295-8857

August 18, 2014

Mr. Jerry Wickham Alameda County Department of Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502

SUBJECT: SUBSURFACE INVESTIGATION REPORT CERTIFICATION RO 0003138 Cathedral Gardens 638 21st Street Oakland, California

Dear Mr. Wickham:

You will find enclosed one copy of the following document prepared by P&D Environmental, Inc. for the subject site.

• Subsurface Investigation Report dated August 18, 2014 (document 0553.R5).

I declare, under penalty of perjury, that the information and/or recommendations contained in the above-mentioned work plan for the subject site is true and correct to the best of my knowledge.

Please don't hesitate to call me if you have any questions.

Sincerely,

Benny Kwong EAH, Inc. for Cathedral Gardens Oakland, L.P.

0553.L7

55 Santa Clara Ave, Suite 240 Oakland, CA 94610 (510) 658-6916

August 18, 2014 Report 0553.R5

Mr. Benny Kwong EAH Housing 2169 East Francisco Blvd, Suite EAH San Rafael, CA 94901

SUBJECT: SUBSURFACE INVESTIGATION REPORT (B6 THROUGH B17 AND SG1) Cathedral Gardens 638 21st Street Oakland, CA

Dear Mr. Kwong:

P&D Environmental, Inc. (P&D) has prepared this report documenting subsurface investigation activities in accordance with P&D's Subsurface Investigation Work Plan dated June 13, 2014 (document 0553.W4). The work plan was approved in a letter from the Alameda County Department of Environmental Health (ACDEH) dated June 18, 2014.

Drilling for soil and groundwater sample collection from boreholes B6 through B15 was performed on July 21, and 22, 2014 and soil gas sample collection from soil gas well SG1 was performed on July 28, 2014. Based on the groundwater sample results, additional drilling at locations B16 and B17 for additional groundwater sample collection was performed on August 4, 2014.

A Site Location Map is attached as Figure 1, a Site Vicinity Aerial Photograph showing the groundwater grab sample collection locations is attached as Figure 3, and a Site Plan Detail showing the Former UST and soil sample locations and soil gas well SG1 is attached as Figure 4. All work was performed under the direct supervision of a professional geologist.

BACKGROUND

During May 2014 a heating oil UST was discovered and removed from the subject site. Based on soil and groundwater sample results for samples collected from beneath the UST, a work plan dated June 13, 2014 prepared by P&D for investigation of the extent of petroleum hydrocarbons in soil and groundwater and for the presence of petroleum hydrocarbons in soil gas was provided to the ACDEH. A detailed discussion of the site background is provided in the work plan.

FIELD ACTIVITIES

Prior to performing field activities, drilling permits W2014-0664 and W2014-0665 were obtained from the Alameda County Public Works Agency (ACPWA), city excavation permits 1401779 and 1401780 and city obstruction permits OB1400503 and OB1400504 were obtained from City of

Oakland Planning and Building Department for work on 21st and 22nd Streets, drilling locations were marked with white paint, Underground Service Alert was notified for underground utility location, a health and safety plan was prepared, and traffic control plans were prepared. Notification of the drilling dates and sampling dates was also provided to ACDEH.

Continuous Coring and Sample Collection

P&D personnel oversaw hand augering and drilling at locations B6 through B15 on July 21 and 22, 2014, at locations B16 through B17 on August 4, 2014, and at location B13A on August 5, 2014 (see Figure 2). Borehole B13 was drilled in the former UST pit, and replacement boring B13A was drilled as close to the south side of the UST pit as possible based on the location of underground utilities that were identified immediately to the south of the UST pit (see Figure 2). Boreholes B6 through B11, B16 and B17 were drilled or hand augered for groundwater sample collection to evaluate the presence and extent of petroleum hydrocarbons in groundwater. Boreholes B12 through B15 were drilled for the collection of soil samples to evaluate the presence and extent of petroleum hydrocarbons in soil in the vicinity of the former UST pit. All boreholes were hand augered to a depth of 5.0 feet below the ground surface (bgs) for utility clearance purposes.

All drilling was performed by Vironex, Inc. of Concord, California (Vironex) using Geoprobe dual tube or Macrocore direct push methods with a Macrocore barrel sampler lined with transparent PVC sleeves, with the exception of B16 and B17 which were hand augered in the parking structure basement (located within the footprint of the site building). Boreholes B7, B8, B11, and B12 through B15 were continuously cored to a total depth of 20.0 feet bgs, boreholes B9 and B10 were continuously cored to a total depth of 15.0 feet bgs, and borehole B6 was continuously cored to a depth of 16 feet bgs using a Geoprobe Macrocore barrel sampler lined with transparent PVC sleeves. Boreholes B16 and B17 were located in the underground parking structure and were both hand augered from the parking structure floor (beginning at a depth of 8.0 feet bgs) to a depth of 16.0 feet bgs (a depth of 8 feet below the top of the parking structure floor slab). Although dual wall drilling rods were used to drill at location B6, heaving sand inside the drilling rods between the depths of 14.0 and 17.0 feet bgs resulted in drilling refusal at a depth of 17.0 feet bgs at this location.

The soil from the boreholes was logged in the field in accordance with standard geologic field techniques and the Unified Soil Classification System, and was evaluated with a Photoionization Detector (PID) equipped with a 10.6 eV bulb that was calibrated with a 100 parts per million (ppm) isobutylene standard. The soil was also evaluated for other evidence of petroleum hydrocarbon contamination such as odors, staining, and discoloration. No elevated PID values, odors, staining, or discoloration were detected in any of the boreholes, with the exception of B13 which was drilled in the former UST pit where moderate petroleum hydrocarbon odors, bluish gray staining, and elevated PID values ranging from 1.3 to 32 ppm were detected between the depths of 7.0 and 18.5 feet bgs.

Soil samples were retained from boreholes B12, B13, B13A, B14, and B15 at depths of 10.0, 15.0, and 20.0 feet bgs for laboratory analysis in the following manner. A 6-inch long section of transparent PVC tube soil core corresponding to the desired sample depth was cut from the Macrocore barrel core liner, the ends of the tube were evaluated with the PID, and then were

sequentially covered with aluminum foil and plastic endcaps. The sample was then labeled and placed into a cooler with ice pending delivery to the laboratory. Chain of custody procedures were observed for all sample handling. All of the continuous cores were logged as described above. Copies of the boring logs are attached with this report as Appendix A.

Groundwater was first encountered at a depth of approximately 14.0 feet bgs in all of the continuously cored boreholes (B6 through B15), except B10 where groundwater was first encountered at a depth of 12.5 feet bgs. Groundwater was encountered in hand augered boreholes B16 and B17 during hand augering at a depth of 15.0 feet bgs (7.0 feet below the top of the parking garage floor slab). The measured depth to water after drilling or hand augering and prior to groundwater sample collection in boreholes B7, B8, B9, B10, B11, B16, and B17 was 14.8, 15.8, 14.0, 9.7, 12.7, 14.3, and 14.5 feet, respectively. Because groundwater samples were not collected from boreholes B12 through B15, no water level measurements were recorded in these boreholes after the completion of drilling. Similarly, because no groundwater grab sample was collected from first encountered groundwater in borehole B6 (the borehole was drilled for lithologic logging purposes to identify the associated Hydropunch groundwater sample collection interval to define the vertical extent of impact to groundwater), no water level measurement was recorded in this borehole after the completion of drilling.

Following verification of the presence of groundwater in boreholes B11, B16, and B17 a temporary 1-inch diameter slotted PVC pipe was placed into the borehole. A groundwater grab sample was collected from the temporary PVC pipe at locations B11, B16, and B17 as follows: Approximately 0.25-gallons of groundwater was purged from borehole B11, and approximately 0.1-gallons of groundwater was purged from boreholes B16 and B17 prior to groundwater sample collection. The groundwater samples were collected directly from the discharge tubing at each location into 40-milliliter Volatile Organic Analysis (VOA) vials that were preserved with hydrochloric acid preservative and that were sealed with Teflon-lined screw caps. The VOA vials were overturned and tapped to ensure that no air bubbles were present, and then were labeled and transferred to a cooler with ice until they were transported to the laboratory. Chain of custody documentation accompanied the samples to the laboratory. No odor or sheen was detected on the water purged from the boreholes.

Immediately adjacent to continuously cored borehole B6 one depth-discrete groundwater sample was collected with a Hydropunch to evaluate the vertical extent of petroleum in groundwater. The Hydropunch groundwater sample was collected as described below.

Based on the presence of heaving sand in continuously cored boreholes B6, B7, B8, B9, and B10, a Hydropunch was pushed to total depths of 20.0, 20.0, 18.0, and 20.0 feet bgs for groundwater sample collection at locations immediately adjacent to the continuously cored boreholes. Following placement of the Hydropunch to the sample collection depth and prior to retraction of the drilling rods to expose the Hydropunch screen, the interior of the Hydropunch drilling rods were evaluated with an electric water level indicator to verify that water had not entered the drill rods or Hydropunch. Following verification that the interior of the drilling rods and Hydropunch were dry, the drilling rods were retracted to expose a 4-foot section of Hydropunch screen. The sample collection depths in feet bgs were as follows:

- B6: 46 to 50,
- B7: 16 to 20,
- B8: 16 to 20,
- B9: 14 to 18,
- B10: 16 to 20,

Approximately 0.25-gallons of groundwater was purged from boreholes B7 through B10, and approximately 0.1-gallons of groundwater was purged from boreholes B16 and B17 prior to groundwater sample collection. Groundwater was not purged from B6 prior to sample collection. The groundwater samples were collected directly from the discharge tubing at each location into 40-milliliter VOA vials that were preserved with hydrochloric acid preservative and that were sealed with Teflon-lined screw caps. The VOA vials were overturned and tapped to ensure that no air bubbles were present, and then were labeled and transferred to a cooler with ice until they were transported to the laboratory. Chain of custody documentation accompanied the samples to the laboratory. No odor or sheen was detected on the water purged from the boreholes. One boring log for the Hydropunch advanced at location B6 is attached with this report in Appendix A.

Immediately following groundwater sample collection from each borehole, the boreholes were grouted with neat cement grout using the drilling rods and the Hydropunch drill rods as a tremie pipe. Boreholes B11, B16 and B17 were grouted using neat cement grout and the temporary PVC casing as a tremie pipe. All drilling and sampling equipment was cleaned with an Alconox solution followed by a clean water rinse prior to use in each borehole. All soil and water generated during subsurface investigation was stored in 55-gallon drums at the site and labeled pending characterization and proper disposal.

Soil Gas Well Construction and Sample Collection

One permanent soil gas well was constructed at location SG1 adjacent to a site building (see Figure 4) to evaluate the presence of petroleum hydrocarbon soil vapors in the vicinity of the former UST location. Soil gas well installation at location SG1 was performed on July 22, 2014, and soil gas sample collection was performed on July 28, 2014.

Soil gas well SG1 was constructed by Vironex by hand augering with a 3.0-inch outside diameter hand auger to a depth of 5.0 feet bgs. A #2/16 Lonestar sack sand was then added to the annular borehole to fill the lowermost 6 inches of the borehole with sand. A 7.5-foot long 0.250-inch outside diameter (0.187-inch inside diameter) polyethylene tube with a HDPE filter at the bottom of the tube was inserted to the top of the sand (a depth of 6 inches above the bottom of the borehole), and additional #2/16 Lonestar sack sand was added to the borehole to one foot above the bottom of the borehole (the lowermost one foot of the borehole was filled with sand with the filter at the end of the tube in the middle of the sand interval).

Granular bentonite (measuring approximately 1 to 2 millimeters in diameter) was placed in the annular space above the sand to 6 inches above the sand, and the remaining borehole was filled with hydrated bentonite slurry. The top of soil gas well SG1 was enclosed in a well box with a lid that was secured with bolts. Following construction, the soil gas well was not sampled for a minimum of 48 hours.

No precipitation occurred during the five days prior to the soil gas sample collection date (July 28, 2014). A soil gas sampling manifold with a 1-liter Summa canister as the sampling canister (see Figure 5) was assembled in a shroud consisting of a 35-gallon Rubbermaid bin that had been modified by cutting viewing ports into the sides of the shroud and covering the viewing ports with transparent polycarbonate sheets. A hole measuring approximately two inches square in the bottom of the shroud allowed the shroud to cover the soil gas well while still allowing access to the temporary well through the bottom of the bin. At the time that the sampling manifold was assembled, the vacuum for the sample canister was verified with a vacuum gauge and recorded.

Prior to soil gas sample collection, a 10 minute shut-in test of the sampling manifold was performed by closing the valve located between the filter and the pressure gauge, opening the purge canister valve, and recording the manifold system vacuum (see Figure 5). No purge testing for purge volume determination was performed because the sample was collected using a Summa canister. Following successful verification of the manifold shut-in test, a default of three purge volumes was extracted prior to sample collection. The purge volume was calculated based on the void space surrounding the HDPE filter and the volume of the tube. The purge time was calculated using a nominal flow rate provided by the flow controller of 150 cubic centimeters per minute. Copies of the purge volume calculation sheet is attached with this report as Appendix B.

Following completion of the purging of three volumes, a lid was placed onto the shroud and a tracer gas 1,1-Difluoroethane (DFA) was sprayed into the shroud interior for one second through a tube connected to a hole in the side of the shroud. Gloves in the lid of the shroud were used to open the sample canister valve. During Summa canister sample collection an air sample was collected from the shroud atmosphere to quantify the shroud tracer gas concentration while the soil gas sample was being collected. The shroud atmosphere sample was collected into a Tedlar bag that was placed into a vacuum chamber with the Tedlar bag inlet connected to a new piece of Teflon or polyethylene tubing that was inserted into the shroud atmosphere through a hole in the side of the shroud.

The gloves in the lid of the shroud were used to close the sample canister valve once the vacuum for the sample canister vacuum had decreased to 5 inches of mercury. The pressure gage on the inlet side of the flow controller (see Figure 5) was monitored during sample collection to ensure that the vacuum applied to the soil gas well did not exceed 100 inches of water.

One duplicate soil gas sample was collected into a Summa canister at location SG1 ath the time that the SG1 soil gas sample was collected by using a stainless steel sampling tee to connect the duplicate Summa canister to the sampling manifold. Following soil gas sample collection, a PID was connected to the Teflon tubing to obtain a preliminary field value for the sample collection location. The soil gas Summa canister samples were stored in a box and promptly shipped to the laboratory for extraction and analysis.

In addition to collection of Summa canister samples as described above, a sorbent tube sample was collected at SG1 as follows. The manifold was equipped with a tee located downstream from the flow controller. At the time that the manifold was assembled (prior to the shut-in test) a sorbent tube was connected inside the shroud to the tee located downstream from the flow controller, with a valve located between the sorbent tube and the tee. The downstream side of

the sorbent tube was connected with a polyethylene tube to a flow meter and a vacuum pump. Following Summa canister sample collection, a dish containing 2-Propanol was placed in the shroud and used as a tracer gas for EPA Method TO-17 sample analysis. The Summa canister was then isolated from the manifold with a valve, and the valve between the manifold and the sorbent tube was opened. A vacuum pump was used to apply a vacuum to the sorbent tube and a flow meter was used to measure the soil gas flow rate at a nominal flow rate of 150 cubic centimeters per minute for collection of a 200 cubic centimeter sample. In addition, one replicate sorbent tube sample was collected at location SG1. Following collection of the sorbent tube soil gas sample the ends of each sorbent tube was sealed. Before and after connection of the sorbent tube to the manifold the sorbent tube was stored in a cooler with ice.

Chain of custody procedures were observed for all sample handling. Clean, unused vacuum gages and stainless steel sampling manifolds were used for all sample collection location. Measurements of vacuums, purging and equilibration time intervals, and PID readings were recorded on Soil Gas Sampling Data Sheets that are attached with this report as Appendix B.

WEATHER

No precipitation occurred during the days of soil gas sampling (July 28, 2014), or during the five days preceding each day of soil gas sampling. Weather data, including precipitation and barometric pressure for the days of the sampling event and also for the two weeks preceding and following the day of sampling is provided as Appendix C. The weather station is located on the southwest corner of the intersection of Broadway and 20th Street in Oakland at an elevation of 16 feet above sea level, approximately 1,500 feet to the west-southwest of the subject site. The subject site is located at an elevation of approximately 25 feet above sea level. An internet link to the weather station information is provided in Appendix C.

WASTE DISPOSAL

One drum of investigation derived solid waste was generated during borehole drilling activities and was removed from the site on August 18, 2014 as non-hazardous waste by Big Sky Environmental Solutions, Inc. of Benicia, California. A copy of the non-hazardous waste manifest associated with removal of the drum from the site is attached with this report as Appendix D.

GEOLOGY AND HYDROGEOLOGY

Based on review of regional geologic maps from U. S. Geological Survey Professional Paper 943, "Flatland Deposits - Their Geology and Engineering Properties and Their Importance to Comprehensive Planning," by E. J. Helley and K. R. Lajoie, 1979, the subject site is underlain by Pleistocene Beach and Dune Sand Deposits (Merrit Sand)(Qps), which is described as loose well-sorted fine to medium sand. Immediately to the north of the site the materials are identified as Late Pleistocene Alluvium (Qpa), which is described as weakly consolidated slightly weathered poorly sorted irregularly interbedded clay, silt, sand, and gravel.

Review of the subsurface materials encountered in borehole B6 through B17 (see Appendix A) shows that the materials consisted predominantly of sandy clay and silty clay that were underlain by coarse-grained materials to the total depth explored at depths in feet bgs as follows:

- B6: • 12.0 to 14.0 clayey sand, 14.0 to 17.0 (refusal) silty fine sand. B7: • 12.0 to 20.0 silty fine sand. B8: 9.5 to 12.0 gravelly sand, 12.0 to 20.0 silty fine sand. **B9**: 12.0 to 13.0 gravelly sand, 13.0 to 15.0 silty fine sand. B10: 10.0 to 12.5 clayey fine sand, 12.5 to 14.5 silty fine sand, 14.5 to 15.0 fine sand. B11: • 10.0 to 14.0 silty fine sand, 14.0 to 20.0 fine sand. B12: • 14.0 to 20.0 silty fine sand.
- B13:
 - 12.0 to 14.0 clayey fine sand,
 - 14.0 to 20.0 silty fine sand.
- B13A:
 - 8.0 to 11.0 silty fine sand,
 - 12.5 to 20.0 silty fine sand.
- B14:
- 12.0 to 14.0 clayey sand,
- 14.0 to 20.0 silty fine sand.
- B15:
 - 14.0 to 20.0 silty fine sand.
- B16:
 - 10.5 to 16.0 silty fine sand.
- B17:

• 15.0 to 16.0 silty fine sand.

The materials encountered in the boreholes to a depth of approximately 10.0 to 15.0 feet bgs are consistent with the Qpa map description, and beneath the Qpa are best described as Qps to the total depth explored in all of the boreholes. The materials encountered in the boreholes are also consistent with the materials identified at the Greyhound Lines Terminal (Greyhound) site located at 2103 San Pablo Avenue across San Pablo Avenue from the subject site. Geologic cross sections obtained from a December 21, 2011 Revised Site Conceptual Model for the Greyhound site at 2103 San Pablo Avenue were included with P&D's June 13, 2014 Subsurface Investigation Work Plan. Review of the cross sections shows that sand bodies ranging in thickness from 10 to greater than 25 feet in thickness are identified at the Greyhound site. The subsurface materials

encountered in and beneath the UST pit at the subject site consisted of sandy silt to a depth of approximately 12.5 feet bgs, beneath which fine sand was encountered to the total depth explored of 15.5 feet bgs. Groundwater was encountered in the former UST pit at a depth of approximately 15.0 feet bgs.

Groundwater was first encountered at a depth of 14.0 feet bgs in all of the continuously cored boreholes at the subject site, except B10 where groundwater was first encountered at a depth of 12.5 feet bgs, and in hand augered boreholes B16 and B17 where groundwater was first encountered at a depth of 15.0 feet bgs.

Figure 2 shows the locations of fuel release sites in the immediate vicinity of the subject site where the historical groundwater flow direction has been identified based on measurements of water levels in groundwater monitoring wells. Based on the groundwater flow directions at the nearby sites, the subject site is located in the immediate vicinity of a groundwater divide where the groundwater flow direction for sites located to the east of the subject site is easterly and the groundwater flow direction information for the Greyhound site located at 2103 San Pablo Avenue (location # 1 on Figure 2, approximately 180 feet to the west of the subject site) shows that the groundwater flow direction during one of the well sampling events was to the east, suggesting that the location of the groundwater divide may change seasonally. The groundwater divide is suspected to generally be located approximately beneath the subject site.

Lake Merritt is located approximately 2,900 feet to the east-southeast of the subject site, and the Oakland Inner Harbor is located approximately 1.3 miles south of the subject site (see Figure 1).

LABORATORY ANALYSIS

All of the borehole soil and groundwater samples were analyzed at McCampbell Analytical, Inc. (McCampbell) in Pittsburg, California. The soil samples were analyzed for Total Petroleum Hydrocarbons as Gasoline (TPH-G) using EPA Method 8021B in conjunction with modified EPA Method 8015B, for Total Petroleum Hydrocarbons as Diesel (TPH-D) and Total Petroleum Hydrocarbons as Motor Oil (TPH-MO)using EPA Method 3550B in conjunction with EPA Method 8015B, and for Volatile Organic Compounds (VOCs) including methyl-tert-butyl ether (MTBE), benzene, toluene, ethylbenzene, and xylenes (MBTEX), and naphthalene using EPA Method 5030B in conjunction with EPA Method 8260B.

All of the groundwater samples were analyzed for TPH-G by EPA Method 5030 in conjunction with EPA Method 8021B and modified EPA Method 8015B; TPH-D and TPH-MO by EPA Method 3510 in conjunction with modified EPA Method 8015B: and for VOCs, including BTEX, MTBE, and naphthalene by EPA Method 8260B.

All of the soil gas samples were analyzed at Air Toxics, Limited in Folsom, California. The samples collected in Summa canisters were analyzed for TPH-G, BTEX, MTBE, and DFA (the tracer gas) using EPA Method TO-15, and for oxygen, methane and carbon dioxide using method ASTM D-1946. The samples collected on sorbent tubes were analyzed for TPH-D, naphthalene and 2-Propanol (the tracer gas) using EPA Method TO-17. All of the shroud air Tedlar bags were analyzed for the tracer gases DFA and 2-Propanol using EPA Method TO-15.

The borehole soil sample laboratory analytical results are summarized in Table 1, the borehole groundwater grab sample laboratory analytical are summarized in Table 2, the soil gas TO-15 and TO-17 laboratory analytical results are summarized in Table 3A, the shroud air Tedlar bag sample results are summarized in Table 3B, and the soil gas ASTM D-1946 laboratory analytical results are summarized in Table 3C. Copies of the laboratory analytical reports and chain of custody documentation are attached with this report as Appendix E.

DISCUSSION AND RECOMMENDATIONS

Review of the sample results with respect to the State Water Resources Control Board (SWRCB) Low Threat Closure Policy (LTCP) is provided below.

Soil

Review of the soil sample results in Table 1 shows that petroleum hydrocarbons were encountered in soil at concentrations exceeding RWQCB December 2013 commercial and residential soil Environmental Screening Level Table C-1 and C-2 values at depths of 10.0 and 15.0 feet bgs in borehole B13 (located in the former UST pit). The detected concentrations of TPH-D in soil samples B13-10 and B13-15 of 1,300 and 3,100 milligrams per kilogram (mg/kg) exceed the Table C1 and Table C2 value for TPH-D of 110 mg/kg, and the detected concentration of TPH-MO in soil sample B13-15 of 1,300 mg/kg exceeds the Table C1 and Table C2 values for TPH-MO of 500 and 1,000 mg/kg, respectively. However, review of the soil sample results for borehole B13A shows that no analytes were detected in any of the samples.

MTBE and BTEX were not detected in any of the soil samples, and no analytes were detected in any of the soil samples collected from boreholes B12, B13A, B14, and B15, with the exceptions of TPH-D in soil samples B12-15, B12-20, and B14-10 at concentrations of 1.0, 1.3, and 1.9 mg/kg, respectively, and additionally TPH-MO in sample B14-10 at a concentration of 6.5 mg/kg. No VOCs were detected in any of the soil samples with the exception of sec-Butyl benzene in soil samples B13-10 and B13-15 at concentrations of 0.11 and 0.39 mg/kg, respectively. Further review of the laboratory analytical report shows that the laboratory described the TPH-G results for samples B13-10 and B13-15 as consisting of strongly aged gasoline- or diesel-range compounds; the laboratory described the TPH-D results for samples B12-15, B12-20, and B13-20 as consisting of diesel-range compounds with no recognizable pattern; and described the TPH-D and TPH-MO results for soil sample B14-10 as consisting of both oil-range compounds and diesel-range compounds with no recognizable pattern. Based on the sample results obtained from boreholes B12, B13A, B14 and B15 (see Table 1 and Figure 4) the extent of petroleum hydrocarbons in soil in the vicinity of the former UST pit has been defined.

Table 1 includes values from the LTCP Table 1 Concentrations of Petroleum Constituents in Soil That Will Have No Significant Risk of Affecting Human Health for benzene, ethylbenzene, and naphthalene for 5.0 to 10.0 feet bgs in a residential land use scenario, and for 0.0 to 10 feet bgs for utility workers. Since MTBE, benzene, and naphthalene were not detected in any soil samples, they do not exceed LTCP criteria. Additionally, the absence of evidence of contamination (staining, discoloration, odor, or detectable organic vapor concentrations with the PID) in all of the boreholes surrounding the former UST pit indicates that the petroleum hydrocarbon contamination in soil has

been horizontally and vertically defined. Based on the sample results, P&D recommends that no further investigation of soil at the subject site be performed.

Groundwater

Review of Table 2 shows that MTBE and BTEX were not detected in any of the groundwater samples, and that no analytes were detected in any of the groundwater samples collected from any of the boreholes with the exception of chloroform detected in the sample collected from borehole B7 at a concentration of 0.82 micrograms per Liter (ug/L), and TPH-D and TPH-MO which were detected in groundwater sample B11-W at concentrations of 230 and 1,300 ug/L, respectively. Further review of the laboratory analytical results show that the lab described the TPH-D and TPH-MO results as consisting of both oil-range compounds and diesel-range compounds with no recognizable pattern.

Table 2 includes values from the LTCP Groundwater Specific Criteria scenarios 2 and 4 for MTBE and benzene. Since MTBE and benzene were not detected in any groundwater samples, they do not exceed LTCP criteria.

Groundwater grab samples B16 and B17 were collected at locations between the former USTs at the site and borehole B11 where TPH-D and TPH-MO were detected. The absence of detectable concentrations of petroleum hydrocarbons in the B16 and B17 groundwater samples indicates that neither of the former USTs is the source of the petroleum hydrocarbons detected at borehole B11.

During construction of the current subject site buildings, excavation to a depth of approximately 9.0 feet bgs was performed in the western portion of the property between 21^{st} and 22^{nd} Streets for construction of a subsurface parking structure. No petroleum hydrocarbons were reported in soil at the time of excavation. Based on the absence of detected petroleum hydrocarbons in excavated soil to a depth of 9.0 feet bgs for the majority of the site and the absence of petroleum hydrocarbons detected in groundwater samples collected at locations B16 and B17, the petroleum hydrocarbons detected in the groundwater sample at location B11 appear to have originated from an offsite source.

Based on the groundwater sample results, the petroleum hydrocarbon contamination detected in groundwater at the former UST pit has been horizontally and vertically defined. P&D recommends that no further investigation of petroleum hydrocarbons in groundwater be performed.

Soil Gas

Review of the Table 3A Percent Shroud columns shows that the tracer gas concentrations detected in the samples are less than 5 percent of the shroud atmosphere tracer gas concentrations (see Table 3B for the shroud tracer gas concentrations). Additionally, review of Table 3A shows that none of the TO-15 or TO-17 analytes were detected with the exception of tracer gases.

Table 3A includes values for benzene, ethylbenzene, and naphthalene from the LTCP Appendix 4 Soil Gas Criteria Direct Measurement of Soil Gas Concentration with no bioattenuation zone in a residential land use scenario. Since MTBE, benzene, and naphthalene were not detected in the soil gas sample or the duplicate sample, they do not exceed LTCP criteria. Based on the soil gas sample results, P&D recommends that no further investigation of soil gas be performed at the subject site.

Case Closure

The Chemicals of Potential Concern (COPCs) for the site are TPH-D and TPH-MO. The physical and chemical characteristics associated with the migration of the COPCs are summarized in Table 4. The values provided in Table 3 were obtained from the December 2013 RWQCB Table J-1 "Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater" guidance document.

In accordance with December 2013 RWQCB "Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater" Table J-1, chemicals are considered to be "volatile" if the Henry's Law constant as expressed in atm m3/mole is greater than 0.00001 and the molecular weight is less than 200. For comparison with Table 3 Physical-Chemical data, 0.00001 is 1.0E-05. Review of Table 4 shows that based on Henry's Law constants and molecular weights, all of the COPCs are considered to be volatile with the exception of TPH-MO. Similarly, review of Table 3 shows that based on solubility, all of the compounds are considered soluble with the exception of TPH-MO. Based on the volatility these compounds can potentially migrate in soil vapor to indoor air, and based on their solubility all of these compounds can migrate in groundwater.

Based on the detected presence of COPCs in groundwater at the site, the COPCs appear to have migrated at the site in groundwater, with the extent of COPCs appearing to be limited primarily to the immediate vicinity of the former UST pit.

The general criteria for the LTCP are satisfied as follows:

(a) The subject site is located within the municipal water supply service area of EBMUD;

(b) The unauthorized release consists only of petroleum;

(c) The release has been stopped by removal of the 1,000-gallon gasoline UST, and in-place closure of the three 280-gallon gasoline USTs;

(d) No free product has been detected in any soil or water samples collected at the site and for this reason removal of free product is not required,

(e) A conceptual site model that assesses the nature, extent, and mobility of the release has been developed;

(f) The extent of petroleum-impacted soil and groundwater has been defined and is limited, and for this reason no secondary source removal is required;

(g) Soil and groundwater have been tested for MTBE, the results show that MTBE was not detected in any of the samples, for this reason MTBE is not a COPC for the site, and the results have been reported in accordance with Health and Safety Code section 25296.15; and

(h) Review of site conditions shows that a nuisance as defined by Water Code section 13050 does not exist at the site.

The media-specific criteria are satisfied as discussed above based on the absence of detectable concentrations of COPCs associated with the LTCP closure criteria.

Based on the defined extent of petroleum hydrocarbons in soil and groundwater, the absence of detectable concentrations of petroleum hydrocarbons in soil gas, and the absence of conditions exceeding LTCP criteria, P&D recommends that the case be closed.

DISTRIBUTION

A copy of this report will be uploaded to the County ftp website and to GeoTracker.

LIMITATIONS

This report was prepared solely for the use of the EAH Housing. The content and conclusions provided by P&D in this assessment are based on information collected during our investigation, which may include, but not be limited to, visual site inspections; interviews with site owner, regulatory agencies and other pertinent individuals; review of available public documents; subsurface exploration and our professional judgment based on said information at the time of preparation of this document. Any subsurface sample results and observations presented herein are considered to be representative of the area of investigation; however, geological conditions may vary between boreholes and may not necessarily apply to the general site as a whole. If future subsurface or other conditions are revealed which vary from these findings, the newly revealed conditions must be evaluated and may invalidate the findings of this report.

This report is issued with the understanding that it is the responsibility of the owner, or his representative, to ensure that the information contained herein is brought to the attention of the appropriate regulatory agencies, where required by law. Additionally, it is the sole responsibility of the owner to properly dispose of any hazardous materials or hazardous wastes left onsite, in accordance with existing laws and regulations.

This report has been prepared in accordance with generally accepted practices using standards of care and diligence normally practiced by recognized consulting firms performing services of a similar nature. P&D is not responsible for the accuracy or completeness of information provided by other individuals or entities which is used in this report. This report presents our professional judgment based upon data and findings identified in this report and interpretation of such data based upon our experience and background, and no warranty, either express or implied, is made. The conclusions presented are based upon the current regulatory climate and may require revision if future regulatory changes occur.

Should you have any questions, please do not hesitate to contact us at (510) 658-6916.

Sincerely, P&D Environmental, Inc.

Paul H. King Professional Geologist # 5901 Expires: 12/31/15 PAUL H. KING PAUL H. KING No. 5901

Attachments:

 Table 1 - Summary of Borehole Soil Sample Analytical Results

 Table 2 - Summary of Borehole Groundwater Sample Analytical Results

Table 3A - Summary of Soil Gas Sample Analytical Results - TPH-G and VOCs

Table 3B - Summary of Soil Gas Shroud Sample Analytical Results - 1,1,-Difluoroethane and 2-Propanol

Table 3C - Summary of Soil Gas Sample Analytical Results - Oxygen, Methane, and Carbon Dioxide

Table 4 - Physical-Chemical Characteristics for Chemicals of Potential Concern

Figure 1 - Site Location Map

- Figure 2 Site Location Map Detail
- Figure 3 Site Vicinity Aerial Photograph Showing Groundwater Grab Sample Locations
- Figure 4 Site Plan Detail Showing Former UST and Sample Collection Locations
- Figure 5 Typical Soil Gas Sampling Manifold

Appendix A - Boring Logs

- Appendix B Purge Volume Calculations and Soil Gas Sampling Data Sheets
- Appendix C Weather Information
- Appendix D Non-Hazardous Waste Manifest

Appendix E - Laboratory Analytical Reports and Chain of Custody Documentation

PHK\mlbd\sjc 0553.R5

TABLES

Table 1 Summary of Borehole Soil Sample Analytical Results

				Sum	mary of Boreh	ole Soil Sample	Analytical Res	ults			
Sample ID	Sample Collection Date	Sample Collection Depth (ft bgs)	TPH-G	TPH-D	TPH-MO	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	Other VOCs by EPA Method 8260B
B12-10	7/22/2014	10.0	ND<1.0	ND<1.0	ND<5.0	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	All ND
B12-15	7/22/2014	15.0	ND<1.0	1.0, b	ND<5.0	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	All ND
B12-20	7/22/2014	20.0	ND<1.0	1.3, b	ND<5.0	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	All ND
B13-10	7/22/2014	10.0	30, a	<u>1,300</u>	480	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010	All ND, except sec-Butyl benzene = 0.11
B13-15	7/22/2014	15.0	120, a	<u>3,100</u>	<u>1,300</u>	ND<0.033	ND<0.033	ND<0.033	ND<0.033	ND<0.033	All ND, except sec-Butyl benzene = 0.39
B13-20	7/22/2014	20.0	ND<1.0	1.0, b	ND<5.0	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	All ND
B13A-10	8/5/2014	10.0	ND<1.0	ND<1.0	ND<5.0	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	All ND
B13A-15	8/5/2014	15.0	ND<1.0	ND<1.0	ND<5.0	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	All ND
B13A-20	8/5/2014	20.0	ND<1.0	ND<1.0	ND<5.0	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	All ND
B14-10	7/22/2014	10.0	ND<1.0	1.9, b,c	6.5, b,c	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	All ND
B14-15	7/22/2014	15.0	ND<1.0	ND<1.0	ND<5.0	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	All ND
B14-20	7/22/2014	20.0	ND<1.0	ND<1.0	ND<5.0	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	All ND
B15-10	7/22/2014	10.0	ND<1.0	ND<1.0	ND<5.0	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	All ND
B15-15	7/22/2014	15.0	ND<1.0	ND<1.0	ND<5.0	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	All ND
B15-20	7/22/2014	20.0	ND<1.0	ND<1.0	ND<5.0	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	All ND
LTCP	Residential Residential						5-10' = 2.8 0-10' = 14		5-10' = 32 0-10' = 314		5-10' = Naphthalene = 9.7 0-10' = Naphthalene = 219
	Utility Worker										
ESL ¹	deper res		500	110	500	0.023	0.044	2.9	3.3	2.3	sec-Butyl benzene = No Value,
ESL ²	deeper comm		770	110	1,000	0.023	0.044	2.9	3.3	2.3	sec-Butyl benzene = No Value,
TPH-D = Total Petr	roleum Hydrocarbons as Gar roleum Hydrocarbons as Die etroleum Hydrocarbons as N	sel.									
PCE = Tetrachloroe	rganic Compounds.										
ft bgs = feet below g ND = Not detected.	ground surface.										
b = Laboratory Note	a = Laboratory Note: Strongly aged gasoline or diesel range compounds are significant in the TPH-G chromatogram. b = Laboratory Note: Diesel range compounds are significant; no recognizable pattern.										
c = Laboratory Note: Oil range compounds are significant. Concentrations of Petroleum Constituents in Soil That Will Have No Significant Risk of Adversely Affecting Human Health. Residential land use and Utility Worker.											
ESL ¹ = Environmental Screening Level, by San Francisco Bay – Regional Water Quality Control Board, updated December 2013, from Table C-1 – Deep Soil Screening Levels, groundwater is a current or potential drinking water resource. Residential Land Use.											
drinking water resor	ntal Screening Level, by Sar urce. Commerical/Industrial	Land Use.		ality Control B	oard, updated	December 2013,	from Table C	C-2 – Deep Soil S	Screening Levels, gro	undwater is a currer	nt or potential
Results in bold exc	Hi-lighted depths include the transformed their respective ESL ¹ exceed their respective ESL ²	value.									
	ESL values, reported in µg/		er), unless othe	wise indicated		I	I	I	I	I	

 Table 2

 Summary of Borehole Groundwater Sample Analytical Results

					of Borenole G	, ,	, ,			1
Sample ID	Sample Collection Date	TPH-G	TPH-D	TPH-MO	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	Other VOCs by EPA Metod 8260B
B6-W	7/22/2014	ND<50	ND<50	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	All ND
B7-W	7/21/2014	ND<50	ND<150	ND<750	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	All ND, except
										Chloroform = 0.82
B8-W	7/21/2014	ND<50	ND<50	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	All ND
Do-w	//21/2014	ND<30	ND<30	ND<230	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	All ND
B9-W	7/22/2014	ND<50	ND<100	ND<500	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	All ND
B10-W	7/21/2014	ND<50	ND<50	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	All ND
Dio II	112112011	TTD 000	1.12 .00	112 (250	112 (0120	112 (0120	112 (0.00	112 10120	112 (0120	
B11-W	7/21/2014	ND<50	230, a,b	1,300, a,b	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	All ND
B16-W	8/4/2014	ND<50	ND<50	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	All ND
			ND 50		ND 0.50	ND 0.50	ND 0.50	ND 0.50	ND 0.50	
B17-W	8/4/2014	ND<50	ND<50	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	All ND
LTCP	Scenario 2	None	None	None	1,000	3,000	None	None	None	None
Groundwater	Scenario 4	None	None	None	1,000	1,000	None	None	None	None
Specific										
Criteria										
ESL^1		100	100	100	5.0	1.0	40	30	20	Chloroform = 80
ESL^2		No Value	No Value	No Value	9,900	27	95,000	310	37,000	Chloroform = 170
ESL ³		No Value	No Value	No Value	100,000	270	No Value	3,100	No Value	Chloroform = 1,700
NOTES: TPH G = Total Patr	roleum Hydrocarbons a	. Gasolino								
	roleum Hydrocarbons a									
MTBE = Methyl ter		5 10 10 50 11								
	rganic Compounds.									
ND = Not detected.	_									
	e: Oil range compounds	are significan	t.							
,	e: Diesel range compou	Ũ		izable pattern						
5	t Closure Policy, by Sta	U	, 0	.	August 17 20	2 from Group	dwater Specific	Criteria Scenarios 2 a	and 4	
					<u> </u>		1			g Levels, groundwater is a current or
otential drinking v		, sui runeise				_, upunicu Do	2013, 11	russer in Ore	die bereenin	
U		v San Francisc	o Bay – Region	nal Water Ouali	ity Control Boa	d. undated Dec	ember 2013 fr	om Table E-1 – Grou	Indwater Screening	Levels for Evaluation of Potential
	ne-Coarse Mix. Reside					a, apanea Dec	2013, 11		ina nator bereening	
				nal Water Oual	ity Control Boa	rd, updated De	cember 2013. fr	om Table E-1 – Grou	undwater Screening	g Levels for Evaluation of Potential
	ne-Coarse Mix. Comm	2	, ,	Zum	., <u></u>	-,	2010, 11		Sereening	
	ceed their respective E									
ACSUITS III DOIU CAU										

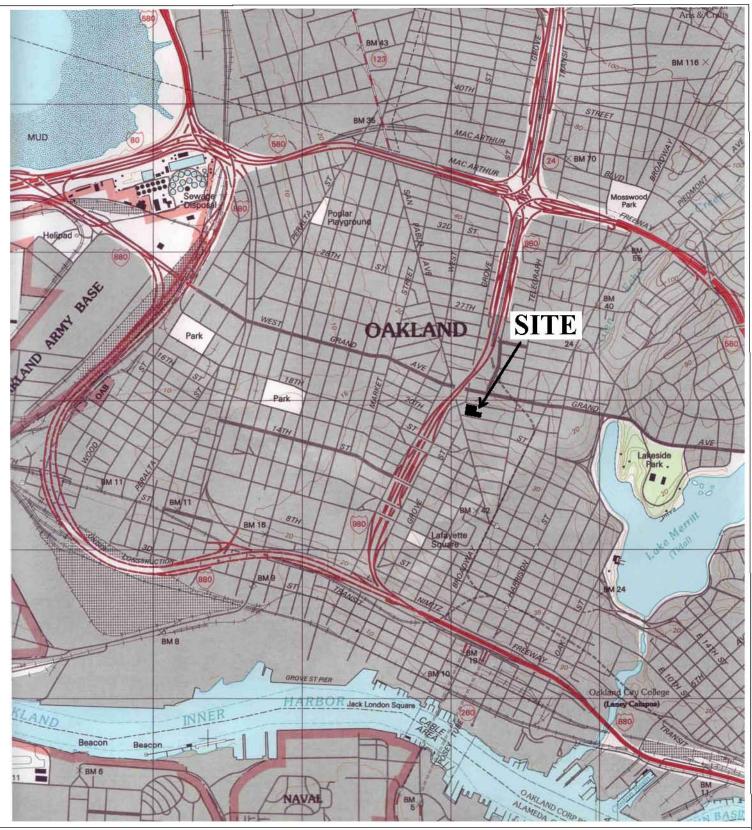
Table 3A Summary of Soil Gas Sample Analytical Results - TPH-G and VOCs

Sample ID	Sample Date	TPH-D	TPH-G	MTBE	Benzene	Toluene	Ethyl- benzene	m,p-Xylenes	o-Xylenes	Naphthalene	1,1-DFA	Percent Shroud	2-Propanol	Percent Shroud
SG1	7/28/2014	ND<5,000	ND<510	ND<8.9	ND<7.9	ND<9.3	ND<11	ND<11	ND<11	ND<2.5	10,000, a	0	ND<240	0
SG1-DUP	7/28/2014	NA	ND<510	ND<8.9	ND<7.9	ND<9.3	ND<11	ND<11	ND<11	NA	14,000, a	0	NA	NA
SG1-REP	7/28/2014	ND<5,000	NA	NA	NA	NA	NA	NA	NA	ND<2.5	NA	NA	ND<240	0
LTCP														
(No Bioattenuation Zone) Residential		No Value	No Value	No Value	85	No Value	1,100	No Value	No Value	93	No Value		No Value	
ESL ¹		68,000	300,000	4,700	42	160,000	490	Combined	d = 52,000	36	No Value		No Value	
ESL ²		570,000	2,500,000	47,000	420	1,300,000	4,900	Combined	<i>l</i> = 440,000	360	No Value		No Value	
<u>Notes:</u> TPH-D = Total Petroleum TPH-G = Total Petroleum	2													
MTBE = Methyl-tert-Butyl 1,1-DFA = 1,1-Difluoroeth	Ether.													
ND = Not Detected. NA = Not Analyzed.														
a = Laboratory Note: excee LTCP = Low Threat Closu			0	sources Contr	rol Board , effec	tive August 17, 2	2012, from Ap	vendix 4 Soil Gas	criteria Direct l	Measurement of S	oil Gas Concer	tration (No I	Bioattenuation	Zone)
Residential Land Use. $ESL^{1} = Environmental Sci$														
Levels for Residential Land ESL ² = Environmental Sci		el, by San Fra	uncisco Bay –	Regional Wat	er Quality Cont	rol Board , upda	ted December	2013 from Table	e E – Indoor Air a	nd Soil Gas (Vap	or Intrusion Co	ncerns) Shall	low Soil Gas So	creening
Levels for Commerical/Ind Results and LTCP values re	ustrial Lana	l Use.												

Table 3BSummary of Soil Gas Shroud Sample Analytical Results - 1,1-Difluoroethane and 2-Propanol

Sample ID	Sample Date	1,1-DFA, #	2-Propanol, ##					
SG1 DFA	7/28/2014	20,000,000	NA					
SG1 2-Propanol	7/28/2014	NA	810,000					
Notes:								
ND = Not Detected.								
NA = Not Analyzed.								
# = 1,1-Difluoroethane (1,1-DFA) used as leal	k detection compound	d fo TO-15 analysis.					
## = 2-Propanol used as	## = 2-Propanol used as leak detection compound for TO-17 analysis.							
Results in micrograms per cubic meter (μ g/m3), unless otherwise indicated.								

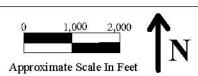
 Table 3C


 Summary of Soil Gas Sample Analytical Results - Oxygen, Methane, Carbon Dioxide

Sample ID	Sample Date	Oxygen (%)	Methane (%)	Carbon Dioxide (%)					
		(,*)	(, •)	(/*)					
SG1	7/28/2014	15	ND<0.00025	1.7					
SG1 DUP	7/28/2014	15	ND<0.00025	1.8					
NOTES:									
ND = Not Detected	ND = Not Detected.								
Results in percent (%), unless otherwise indicated.									

Table 4 Physical-Chemical Characteristics for Chemicals of Potential Concern

	Organic			Duro		Henn/s	Honry's			Enthalov of	
	ÿ						,	Normal			
	partition	Diffusivity	Diffusivity	water	Henry's	at reference	reference	boiling	Critical	the normal	Molecular
	coefficient,	in air,	in water,	solubility,	law constant	temperature,	temperature,	point,	emperature	boiling point,	weight,
	K _{oc}	Da	Dw	S	H'	H	T _R	T _B	T _c	DH _{v,b}	MW
Chemical	(cm ³ /g)	(cm ² /s)	(cm ² /s)	(mg/L)	(unitless)	(atm-m ³ /mol)	(°C)	(°K)	(°K)	(cal/mol)	(g/mol)
Naphthalene	1.54E+03	6.05E-02	8.38E-06	3.10E+01	1.80E-02	4.40E-04	25	491.1	748.4	10,373	1.28E+02
TPH Diesel (TPH-D)	5.00E+03	7.00E-02	1.00E-05	3.00E+00	3.20E+01	7.80E+00	25	NA	NA	NA	1.70E+02
TPH Motor Oil (TPH-MO)	5.00E+03	0.00E+00	0.00E+00	3.00E+00	0.00E+00	0.00E+00	25	NA	NA	NA	0.00E+00
											+
vailable											
ne and TPH values obtained fro	m Environme	ntal Screen	ing Level, b	y San Francis	sco Bay – Regi	onal Water Quali	y Control Board	, updated	December 20)13,	
e J-1 Physical-Chemical Values	3										
	Naphthalene TPH Diesel (TPH-D) TPH Motor Oil (TPH-MO) vailable e and TPH values obtained fro	coefficient, K _{oc} Chemical (cm³/g) Naphthalene 1.54E+03 TPH Diesel (TPH-D) 5.00E+03 TPH Motor Oil (TPH-MO) 5.00E+03 vailable	carbon partition Diffusivity coefficient, in air, K _{oc} Da Chemical (cm³/g) Naphthalene 1.54E+03 TPH Diesel (TPH-D) 5.00E+03 TPH Motor Oil (TPH-MO) 5.00E+03 Vailable a e and TPH values obtained from Environmental Screen	carbon partition Diffusivity Diffusivity partition Diffusivity Diffusivity Diffusivity coefficient, in air, in water, K _{oc} Da Dw Chemical (cm³/g) (cm²/s) Naphthalene 1.54E+03 6.05E-02 8.38E-06 TPH Diesel (TPH-D) 5.00E+03 7.00E-02 1.00E-05 TPH Motor Oil (TPH-MO) 5.00E+03 0.00E+00 0.00E+00 vailable	carbon component partition Diffusivity Diffusivity water coefficient, in air, in water, solubility, K _{oc} Da Dw S Chemical (cm³/g) (cm²/s) (cm²/s) (mg/L) Naphthalene 1.54E+03 6.05E-02 8.38E-06 3.10E+01 TPH Diesel (TPH-D) 5.00E+03 7.00E-02 1.00E-05 3.00E+00 TPH Motor Oil (TPH-MO) 5.00E+03 0.00E+00 0.00E+00 3.00E+00 vailable	carbon component partition Diffusivity Diffusivity water Henry's coefficient, in air, in water, solubility, law constant K _{oc} Da Dw S H' Chemical (cm³/g) (cm²/s) (mg/L) (unitless) Naphthalene 1.54E+03 6.05E-02 8.38E-06 3.10E+01 1.80E-02 TPH Diesel (TPH-D) 5.00E+03 7.00E-02 1.00E-05 3.00E+00 3.20E+01 TPH Motor Oil (TPH-MO) 5.00E+03 0.00E+00 0.00E+00 3.00E+00 0.00E+00 vailable	carbon component law constant partition Diffusivity Diffusivity water Henry's at reference coefficient, in air, in water, solubility, law constant temperature, Koc Da Dw S H' H Chemical (cm³/g) (cm²/s) (cm²/s) (mg/L) (unitless) (atm-m³/mol) Naphthalene 1.54E+03 6.05E-02 8.38E-06 3.10E+01 1.80E-02 4.40E-04 TPH Diesel (TPH-D) 5.00E+03 7.00E-02 1.00E-05 3.00E+00 3.20E+01 7.80E+00 TPH Motor Oil (TPH-MO) 5.00E+03 0.00E+00 0.00E+00 0.00E+00 0.00E+00 vailable	carbon component law constant law constant partition Diffusivity Diffusivity water Henry's at reference reference coefficient, in air, in water, solubility, law constant temperature, temperature, Koc Da Dw S H' H TR Chemical (cm³/g) (cm²/s) (cm²/s) (mg/L) (unitless) (atm-m³/mol) (°C) Naphthalene 1.54E+03 6.05E-02 8.38E-06 3.10E+01 1.80E-02 4.40E-04 25 TPH Diesel (TPH-D) 5.00E+03 7.00E-02 1.00E-05 3.00E+00 3.20E+01 7.80E+00 25 TPH Motor Oil (TPH-MO) 5.00E+03 0.00E+00 0.00E+00 0.00E+00 0.00E+00 25 vailable Image: solutioned from Environmental Screening Level, by San Francisco Bay – Regional Water Quality Control Board	carboncomponentlaw constantlaw constantNormalpartitionDiffusivityDiffusivitywaterHenry'sat referencereferenceboilingcoefficient,in air,in water,solubility,law constanttemperature,temperature,point,KocDaDwSH'HTRTBChemical(cm³/g)(cm²/s)(cm²/s)(mg/L)(unitless)(atm-m³/mol)(°C)(°K)Naphthalene1.54E+036.05E-028.38E-063.10E+011.80E-024.40E-0425491.1TPH Diesel (TPH-D)5.00E+037.00E-021.00E-053.00E+003.20E+017.80E+0025NATPH Motor Oil (TPH-MO)5.00E+030.00E+000.00E+003.00E+000.00E+0025NAvailableaaaaaaaae and TPH values obtained from Environmental Screening Level, by San Francisco Bay – Regional Water Quality Control Board, updated	carboncomponentlaw constantlaw constantNormalpartitionDiffusivityDiffusivitywaterHenry'sat referencereferenceboilingCriticalcoefficient,in air,in water,solubility,law constanttemperature,temperature,point,emperature,KocDaDwSH'HTRTBTcChemical(cm³/g)(cm²/s)(cm²/s)(mg/L)(unitless)(atm-m³/mol)(°C)(°K)(°K)Naphthalene1.54E+036.05E+028.38E+063.10E+011.80E+024.40E+0425491.1748.4TPH Diesel (TPH-D)5.00E+037.00E+021.00E+053.00E+000.00E+000.00E+0025NANATPH Motor Oil (TPH-MO)5.00E+030.00E+000.00E+000.00E+000.00E+0025NANAvailableImage: solution of the solution of th	Carboncomponentlaw constantlaw constantNormalvaporization atpartitionDiffusivityDiffusivitywaterHenry'sat referencereferenceboilingCriticalthe normalcoefficient,in air,in water,solubility,law constanttemperature,temperature,point,emperatureboiling point,KocDaDwSH'HTRTRTCDHv,bChemical(cm³/g)(cm²/s)(cm²/s)(mg/L)(unitless)(atm-m³/mol)(°C)(°K)(°K)(cal/mol)Naphthalene1.54E+036.05E-028.38E-063.10E+011.80E-024.40E-0425491.1748.410,373TPH Diesel (TPH-D)5.00E+037.00E-021.00E-053.00E+000.00E+000.00E+0025NANANATPH Motor Oil (TPH-MO)5.00E+030.00E+000.00E+000.00E+000.00E+000.00E+0025NANANAvailableImage: second s


FIGURES

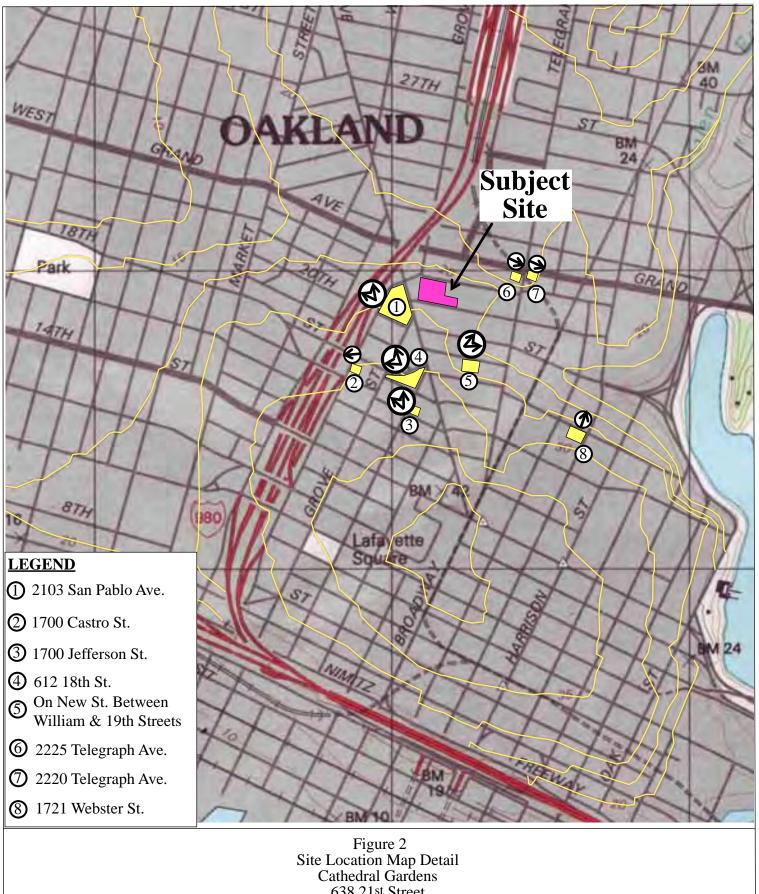


Figure 1 Site Location Map Cathedral Gardens 638 21st Street Oakland, California

Base Map From:

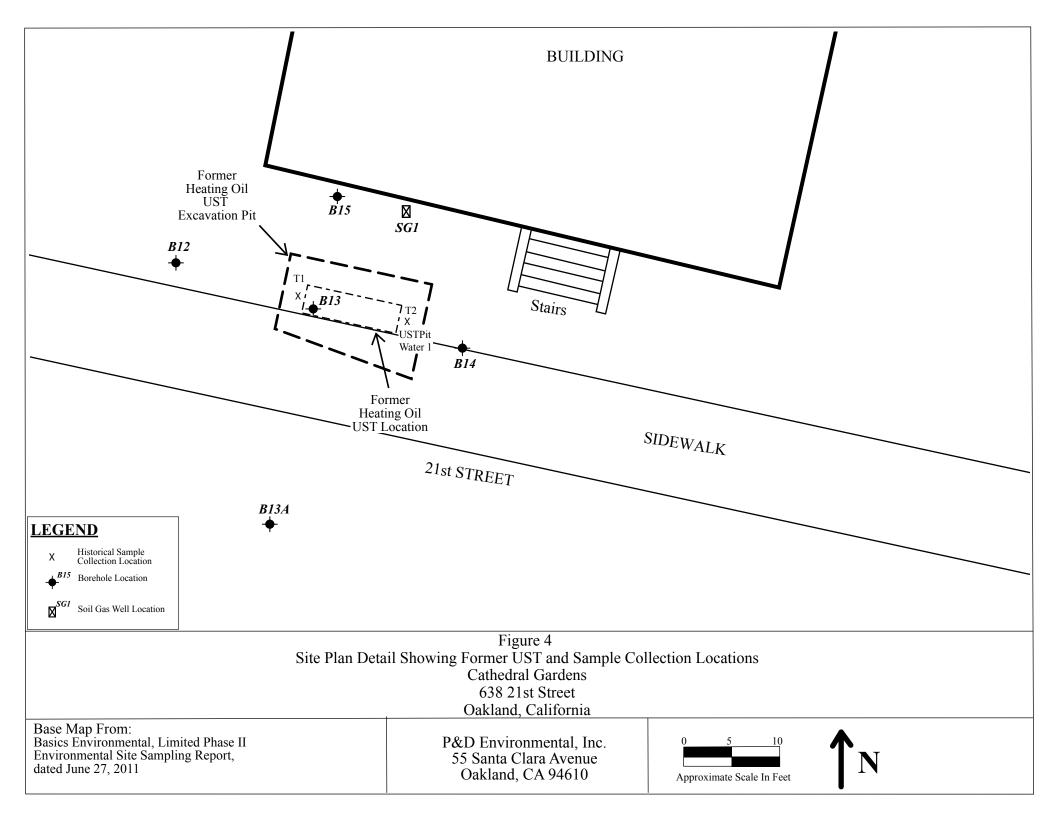
U.S. Geological Survey Oakland West, California 7.5-Minute Quadrangle Photorevised 1993 P&D Environmental, Inc. 55 Santa Clara Ave., Suite 240 Oakland, CA 94610

638 21st Street Oakland. California

Base Map From: U.S. Geological Survey Oakland West, California 7.5-Minute Quadrangle Photorevised 1993

P&D Environmental, Inc. 55 Santa Clara Ave., Suite 240 Oakland, CA 94610

1,000 500 0 Approximate Scale In Feet


Figure 3 Site Vicinity Aerial Photograph Showing Groundwater Grab Sample Collection Locations Cathedral Gardens 638 21st Street Oakland, California

Base Map From:

U.S. Geological Survey Oakland West, California 7.5-Minute Quadrangle Photorevised 1993 P&D Environmental, Inc. 55 Santa Clara Ave., Suite 240 Oakland, CA 94610

0) 4	0	80
Ap	proximate	Scale I	n Feet

APPENDIX A

Boring Logs

PAGE	1	OF	1

В			BORING NO.: B6 PROJECT NO.: 0553 PROJECT NAME: Cathedral Gardens 638 21st Street, Oakland							
1	BORING LOCATION: Approximately 23 ft. east and 13 ft. south of southwest corner of brick building ELEVATION AND DATUM: None								ELEVATION A	AND DATUM: None
\vdash			SENCY: Vironex, Inc.		DRILLEF	a: Joe	1	DA	TE & TIME STARTED: 07/22/14 1200	DATE & TIME FINISHED: 07/22/14
			QUIPMENT: Geoprobe 6600						1300 Logged by:	1630 снескер ву:
-			N DEPTH: 17.0 Feet BEDROCK DEPTH:			ntere	d			
FI		ATEF	R DEPTH: 14.0 Feet NO. OF SAMPLES:	Nor	ne		z			
LE HL DESCRIPTIO			DESCRIPTION		GRAPHIC COLUMN	BLOW COUNT PER 6"	WELL CONSTRUCTION LOG	QIId	REM	ARKS
			0.0 to 2.0 ft. Dark brown gravelly silty sand (FILL).		FILL		No Well Constructed		ft. using a 3.0-inch d	ugered from 0.0 to 5.0 iameter hand auger. uously cored from 5.0
			2.0 to 4.0 ft. Olive-brown silty clay (CL); medium stiff, moist, with black mottling. No Petroleum Hydrocarbon (PHC) odor. (0,0,100)	_	CL				dual wall drilling rod long 2.0-inch O.D. G	
E	5		4.0 to 5.0 ft. Brown clayey sand (SC); medium dense, moist. No PHC odor. (0,70,30)	_	SC	×		0	barrel sampler. The b with a 4.8-foot long transparent PVC tube	
			5.0 to 12.0 ft. Brown silty clay (CL); medium					0	5.0 to 10.0 ft. 10.0 to 15.0 ft. 15.0 to 17.0 ft.	4.6 ft. recovery 4.8 ft. recovery 2.0 ft. recovery
	10		stiff, moist, with few fine sand and black mottling. No PHC odor. (0,15,85)		CL				Water encountered d at 1330. 14.0 to 17.0 ft. heavi	uring drilling at 14.0 ft. ng sands.
								0	Borehole terminated on 7/22/14.	at 17.0 ft. (refusal)
			12.0 to 14.0 ft. Grayish-brown clayey sand (SC); medium dense, moist to saturated. No PHC odor. (0,70,30) Wet at 13.5 ft. Saturated at 14.0 ft.		SC		Ā	0		
	15		14.0 to 17.0 ft. Grayish-brown silty fine sand (SM); medium dense, moist, with orange mottling. No PHC odor. (0,80,20)		SM			0		
F		_		_						
	20								Borehole grouted on cement grout and a ti	
	20								Mr. Steve Miller with Public Works Agency authorization to grou	y gave verbal
									Drilling Notes:	
	25								 Field estimates of p sand, and fines are sho parentheses. 	
									 Density determinat qualitative and are no quantitative evaluatio 	t based on
	30									

PAGE	1	OF	1

BORING NO.: B6 PROJECT NO.: 0553 PROJECT NAME: Cathedral Gardens 638 21s BORING LOCATION: Approximately 4 ft. east of continuously cored borehole B6			
BORING LOCATION: Approximately 4 ft. east of continuously cored borehole B6	ELEVATION	N	
	ELEVATION AND DATUM: None		
DRILLER, JUIII	& TIME STARTED: 07/22/14 1400	DATE & TIME FINISHED: 07/22/14 1630	
	LOGGED BY:	CHECKED BY:	
Com Lettor del fil. Hydropulch to 50.0 Feet Bedrock der fil: Not Encountered	MLBD	>HK	
FIRST WATER DEPTH: NO. OF SAMPLES: 1 Water			
DEPTH (FT.) DEPTH (FT.) DEPTH (FT.) DEPTH (FT.)	REM	ARKS	
No Well On Constructed ft.e Hyg Hyg Hyg	east of continuous ydropunch was pus ydropunch seal inte- ing an eletrical wa ydropunch rods we The water level in as measured at 45.2 at 1500. Yater sample B6-W ew unused disposal tached to a peristal leen on sample. Wa ibsequently measur he Hydropunch bor	egrity was confirmed ter level indicator. The bre then retracted to 46.0 the Hydropunch rods 2 ft. at 1450, and at 16.1 collected at 1500 using ble polyethylene tubing tic pump. No odor or tter level was red at 16.8 ft. at 1602. rehole was grouted on cement grout and the a tremie pipe. h Alameda County y gave verbal tt the borehole. percent gravel, own in	

PAGE	1	OF	1

BORING NO.: B7 PROJECT NO.: 0553 PROJECT NAME: Cathedral Gardens 638 21st Street, Oakland										
В	ORING	LO	CATION: Approximately 92 ft. east of southwest corner of p	orope	erty, i	n pla	inter area		ELEVATION	and datum: None
			GENCY: Vironex, Inc.	DR	RILLEF	: Joh	n	DATE & TIME STARTED: DATE & TIME FINISH 07/21/14 07/21/14		
			QUIPMENT: Geoprobe 6600						1500 Logged by:	1715 снескед ву:
-			N DEPTH: 20.0 Feet BEDROCK DEPTH: N			ntere	d		MLBD	
FI		ATE	R DEPTH: 14.0 Feet NO. OF SAMPLES: 1	Wate	er		7		1	
	DEPTH (FT.)		DESCRIPTION	GRAPHIC	COLUMN	BLOW COUNT PER 6"	WELL CONSTRUCTION LOG	DID	E REMARKS	
			0.0 to 3.0 ft. Dark brown clayey sand (FILL); with brick fragments.	F	TLL		No Well Constructed	0	ft. using a 3.0-inch d Borehole was contin to 20.0 ft. using a 5.0 Geoprobe Macrocord	uously cored from 5.0)-foot long 2.0-inch O.D e barrel sampler. The
			3.0 to 5.0 ft. Olive-brown sandy clay (CL); medium stiff, moist. No Petroleum Hydrocarbon (PHC) odor. (0,35,65)		CL			0	barrel sampler was li long 1.5-inch O.D. ti	ned with a 4.8-foot ansparent PVC tube.
	5		5.0 to 6.0 ft. Brown fine sand (SP); medium dense, moist, with orange and black mottling. No PHC odor. (0,95,5)		SP				5.0 to 10.0 ft. 10.0 to 15.0 ft. 15.0 to 20.0 ft.	4.6 ft. recovery 4.6 ft. recovery 4.5 ft. recovery
E			-					0		uring drilling at 14.0 ft.
			6.0 to 12.0 ft. Olive-brown silty clay (CL); medium stiff, moist, with black mottling. No PHC odor. (0,0,100)	_ (CL				12.0 to 20.0 ft. heavi	ng sands.
	10							0	Hydropunch pushed to 20.0 ft. Hydropunch seal integrity was confirmed using an electric water level indicator. The Hydropunch rods were then retracted to 16.0 ft. The water level in the Hydropunch rods	
			12.0 to 20.0 ft. Olive-brown silty fine sand (SM); medium dense, moist, with orange and black mottling. No PHC odor. (0,70,30)	,. <u>.</u>			₽	0	was measured at 15.1 ft. at 1640, and at 14.8 ft. at 1650. Approximately 0.25-gallon purged from borehole prior to groundwater sample collection using new unused disposable polyethylene tubing attached to a peristaltic	
	15		Wet at 13.5 ft. Saturated at 14.0 ft.	_			₹			undwater sample unused disposable
					SM			0		B7-W collected at 1700 charge tubing. No odor Water level
	20							0		
									Borehole grouted on cement grout and a t	
									Mr. Steve Miller with Public Works Agency authorization to grou	y gave verbal
E	25		-				Dri		Drilling Notes:	
				_					1) Field estimates of p sand, and fines are sh parentheses.	
			-						2) Density determination qualitative and are no quantitative evaluation	t based on
	30	-	-	-						

PAGE	1	OF	1

в	BORING NO.: B8 PROJECT NO.: 0553 PROJECT NAME: Cathedral Gardens 638 21st Street, Oakland									
в	ORING	LOC	CATION: Approximately 35 ft. east of northwest corner of 6	535	21st Str	eet b	uilding, in t	ree p	blanter ELEVATION	AND DATUM: None
⊢			GENCY: Vironex, Inc. QUIPMENT: Geoprobe 6600		DRILLE	≀: Joh	n	DA	re & time started: 07/21/14 1330	DATE & TIME FINISHED: 07/21/14 1520
c	OMPLE	ετιο	N DEPTH: 20.0 Feet BEDROCK DEPTH:	No	t Encou	ntere	d		LOGGED BY:	CHECKED BY:
FI	FIRST WATER DEPTH: 14.0 Feet NO. OF SAMPLES: 1 Water							MLBD	7-MK	
	DEPTH (FT.)		DESCRIPTION			BLOW COUNT PER 6"	WELL CONSTRUCTION LOG	OIId	REM	ARKS
		_	0.0 to 1.5 ft. Brown gravelly sand (FILL).	_	FILL		No Well Constructed		Borehole was hand a ft. using a 3.0-inch d	ugered from 0.0 to 5.0 jameter hand auger.
	5		1.5 to 6.0 ft. Brown fine sand (SP); medium dense, moist. No Petroleum Hydrocarbon (PHC) odor. (0,90,10)		SP			0	Borehole was contin	Lously cored from 5.0 -foot long 2.0-inch O.D barrel sampler. The ned with a 4.8-foot
			6.0 to 9.5 ft. Olive-brown sandy clay (CL); medium stiff, moist, with black mottling. No PHC odor. (0,35,65)		CL			0		uring drilling at 14.0 ft.
	10		9.5 to 12.0 ft. Brown gravelly sand (SW); medium dense, moist, with few coarse angular gravel to 0.25- inch diameter. No PHC odor. (10,85,5)		SW		Ţ	0	Hydropunch pushed seal integrity was con electric water level in Hydropunch rods we	to 20.0 ft. Hydropunch
	15		12.0 to 20.0 ft. Gray silty fine sand (SM); medium dense, moist to saturated. No PHC odor. (0,80,20) Wet at 13.5 ft. Saturated at 14.0 ft.		SM		Ā	0	was measured at 16.7 ft. at 1422. Approximately 0.25- borehole prior to gro collection using new	ft. at 1412 and at 15.8 gallon purged from undwater sample unused disposable attached to a peristaltic B8-W collected at te discharge tubing. sample. Water level
	20							0	Borehole grouted on cement grout and a tr	07/21/14 using neat
	20								document grouting o	y onsite to observe and f the borehole.
	25								 Field estimates of p sand, and fines are sh parentheses. Density determinat qualitative and are no quantitative evaluatio 	ions are t based on
F	30	_			1					

PAGE 1	OF _1
--------	-------

BORING NO.: B9 PROJECT NO.: 0553 PROJECT NAME: Cathedral Gardens 638 21st Street, Oakland									
В	ORING	LOC	CATION: Approximately 7 ft. east of southwest corner of br	ck build	ing, a	idjacent to	sidev	walk elevation	AND DATUM: None
			GENCY: Vironex, Inc. QUIPMENT: Geoprobe 6600	DRILLE	r: Joe	1	DATE & TIME STARTED: DATE & TIME FINISE 07/22/14 07/22/14 0730 1430		
-			N DEPTH: 15.0 Feet BEDROCK DEPTH: N	d		LOGGED BY:	CHECKED BY:		
-			R DEPTH: 14.0 Feet NO. OF SAMPLES: 1			.u		MLBD	MK
DEPTH (FT.)			DESCRIPTION			WELL CONSTRUCTION LOG	DID	REM	ARKS
E		_	0.0 to 1.5 ft. Dark brown gravelly sandy clay (FILL).	FILL		No Well			ugered from 0.0 to 5.0
	5 10 15		 1.5 to 6.0 ft. Brown silty clay (CL); medium stiff, moist. No Petroleum Hydrocarbon (PHC) odor. (0,0,100) 6.0 to 7.0 ft. Brown clayey fine sand (SC); medium dense, moist, with black mottling. No PHC odor. (0,80,20) 7.0 to 12.0 ft. Brown silty clay (CL); medium stiff, moist, with few fine sand and black mottling. No PHC odor. (0,15,85) 12.0 to 13.0 ft. Brown gravelly sand (SW); medium dense, moist, with coarse angular gravel to 0.25-inch diameter. No PHC odor. (0,80,20) 13.0 to 15.0 ft. Olive-brown silty fine sand (SM); medium dense, moist to saturated, with orange mottling. No PHC odor. (0,80,20) We ta 13.5 ft. Saturated at 14.0 ft. 	CL CL CL SW SW	-	Constructed ⊻ ▼	0	to 15.0 ft. using a 5.0 Geoprobe Macrocord barrel sampler was li long 1.5-inch O.D. tr 5.0 to 10.0 ft. 10.0 to 15.0 ft. Water encountered d at 0810. 13.0 to 15.0 ft heavin Hydropunch pushed seal integrity was con electric water level in Hydropunch rods we ft. The water level in	uously cored from 5.0 D-foot long 2.0-inch O.D e barrel sampler. The ned with a 4.8-foot ansparent PVC tube. 4.6 ft. recovery 4.8 ft. recovery uring drilling at 14.0 ft. ng sands. to 18.0 ft. Hydropunch nfirmed using an
	15						0	Approximately 0.25- borehole prior to gro collection using new polyethylene tubing pump.	undwater sample
	20						0	or sheen on sample.	charge tubing. No odor
E								Borehole grouted on cement grout and a tr	
	25							Mr. Steve Miller with Public Works Agency document grouting of Drilling Notes:	y onsite to observe and
								1) Field estimates of j sand, and fines are sh parentheses.	
	30	-		-				2) Density determinat qualitative and are no quantitative evaluatio	t based on

PAGE	_1	OF	1
------	----	----	---

в	BORING NO.: B10 PROJECT NO.: 0553 PROJECT NAME: Cathedral Gardens 638 21st Street, Oakland									
В	ORING	LO	CATION: Approximately 4 ft. west and 2 ft. north of northea	st co	orner o	f 627	22nd Stree	et bu	ilding Elevation A	AND DATUM: None
┢			GENCY: Vironex, Inc. QUIPMENT: Geoprobe 6600	D	ORILLER	≀: Joh	n	DA	te & time started: 07/21/14 0800	DATE & TIME FINISHED: 07/21/14 1315
			N DEPTH: 15.0 Feet BEDROCK DEPTH: 1	Not]	Encou	ntere	d		LOGGED BY:	CHECKED BY:
F	FIRST WATER DEPTH: 12.5 Feet NO. OF SAMPLES: 1 Water							MLBD	MK	
DEPTH (FT.)			DESCRIPTION		GRAPHIC COLUMN BLOW COUNT PER 6" WELL CONSTRUCTION LOG			DID	REM	ARKS
			0.0 to 2.0 ft. Base rock and sand (FILL).		FILL		No Well Constructed	0	ft. using a 3.0-inch d Borehole was contin	uously cored from 5.0
	_		2.0 to 5.0 ft. Gray silt (ML); medium stiff, moist. No Petroleum Hydrocarbon (PHC) odor. (0,0,100)		ML			0	Geoprobe Macrocore barrel sampler was li long 1.5-inch O.D. tr	ned with a 4.8-foot ransparent PVC tube.
	5		5.0 to 10.0 ft. Gray silty clay (CL); medium stiff, moist. No PHC odor. (0,0,100)		CL		₹ <u>₹</u>	0	at 0830. 12.0 to 15.0 ft. heavi	4.8 ft. recovery 4.8 ft. recovery uring drilling at 12.5 ft. ng sands. O.D. slotted PVC casing
	10		10.0 to 12.5 ft. Gray clayey fine sand (SC); medium dense, moist to saturated. No PHC odor. (0,65,35) Wet at 12.0 ft. Saturated at 12.5 ft.		SC			0	placed in borehole. V	Vater level measured at t 9.7 at 0842. Inadequate VC pipe for
			12.5 to 14.5 ft. Gray silty fine sand (SM); medium dense, saturated. No PHC odor. (0,85,15) / 14.5 to 15.0 ft. Brown fine sand (SP); medium dense, saturated. No PHC odor. (0,95,5)		SM SP			0	seal integrity was con electric water level in	
	15							0	Approximately 0.25- borehole prior to gro	undwater sample
	- 20 -								collection using new unused disposable polyethylene tubing attached to a peristaltic pump. Water sample B10-W collected at 0900 directly from the discharge tubing. No odor or sheen on sample. Water level subsequently measured at 10.5 ft. at 0935.	
									Borehole grouted on cement grout and a tr	remie pipe.
	25								Mr. Steve Miller with Public Works Agency authorization to grou	y gave verbal
									Drilling Notes: 1) Field estimates of p sand, and fines are sh parentheses.	
	30	_							2) Density determinat qualitative and are no quantitative evaluatio	t based on

PAGE	1	OF	1

BORING NO.: B11 PROJECT NO.: 0553 PROJECT NAME: Cathedral Gardens 638 21st Street, Oakland										
в	ORING	LOG	CATION: Approximately 14 ft. east of property line and 6 ft	. no	rth of 2	2nd	Street curb		ELEVATION	AND DATUM: None
			GENCY: Vironex, Inc. QUIPMENT: Geoprobe 6600]	DRILLEF	ı: Joh	in	DATE & TIME STARTED: DATE & TIME FINISI 07/21/14 07/21/14 0930 1315		
	*								LOGGED BY:	CHECKED BY:
-	COMPLETION DEPTH: 20.0 Feet BEDROCK DEPTH: Not Encountered								MLBD	
FI		ATEI	R DEPTH: 13.0 Feet NO. OF SAMPLES:	IW	ater	1	Z		1	
	DEPTH (FT.)		DESCRIPTION	DESCUIDIN BLOW COUNT PER 6" WELL COLUMN LOG			DID	REM	ARKS	
			0.0 to 2.0 ft. Base rock and sand (FILL).		FILL		No Well Constructed	0	ft. using a 3.0-inch d Borehole was contin	uously cored from 5.0
			2.0 to 5.0 ft. Brown fine sand (SP); medium dense, moist. No Petroleum Hydrocarbon (PHC) odor. (0,90,10)		SP			0	Geoprobe Macrocor barrel sampler was l)-foot long 2.0-inch O.D e barrel sampler. The ned with a 4.8-foot ransparent PVC tube.
	5		5.0 to 6.0 ft. Brown sandy clay (CL); medium stiff, moist, with abundant fine sand. No PHC odor. (0,40,60)						5.0 to 10.0 ft. 10.0 to 15.0 ft. 15.0 to 20.0 ft.	4.6 ft. recovery 4.6 ft. recovery 4.8 ft. recovery
			6.0 to 10.0 ft. Olive-brown silty clay (CL); medium stiff, moist, with black and orange mottling. No PHC odor. (0,0,100)		CL			0	Water encountered d at 1015. 10.0 to 20.0 ft. heavi	uring drilling at 13.0 ft. ng sands.
_	10		10.0 to 14.0 ft. Brown silty fine sand (SM); medium dense, moist to saturated, with black mottling.				Ţ		Temporary 1.0-inch	O.D. slotted PVC casing Vater level measured at
			No PHC odor. (0,80,20) Wet at 12.5 ft. Saturated at 13.0 ft. 13.0 to 14.0 ft. Color change to gray.		SM		Ā	0	Approximately 0.25-gallon purged from borehole prior to groundwater sample collection using new unused disposable polyethylene tubing attached to a peristaltic pump. Water sample B11-W collected at 1100 directly from the discharge tubing. No odor or sheen on sample. Water level subsequently measured at 10.5 ft. at 0935.	undwater sample unused disposable attached to a peristaltic
	15	 	14.0 to 20.0 ft. Brown fine sand (SP); medium dense,					0		
			saturated, with orange mottling. No PHC odor. (0,95,5)		SP					
_	20	_		_				0		
	20								Borehole grouted on cement grout and a t	07/21/14 using neat remie pipe.
									Mr. Steve Miller wit Public Works Agenc document grouting o	y onsite to observe and
	25								Drilling Notes:	
									1) Field estimates of sand, and fines are sh parentheses.	
									2) Density determina qualitative and are no quantitative evaluation	t based on
	30	_								

PAGE 1	OF _1
--------	-------

BORING NO.: B12 PROJECT NO.: 0553 PROJECT NAME: Cathedral Gardens 638 21st Street, Oakland											
1	BORIN	G LO	CATION: Approximately 3 ft. west and 12 ft. south of southy	vest	corne	r of b	rick buildin	g	ELEVATION	AND DATUM: None	
\vdash			GENCY: Vironex, Inc. QUIPMENT: Geoprobe 6600	D	RILLEF	۹: Joe	1	DATE & TIME STARTED: DATE & TIME FINISHE 07/22/14 07/22/14 1100 1330			
	COMPLETION DEPTH: 20.0 Feet BEDROCK DEPTH: Not Encountered								LOGGED BY:	CHECKED BY:	
\vdash			R DEPTH: 14.0 Feet NO. OF SAMPLES: 3						MLBD	>MK	
							NO				
	DFPTH (FT)		DESCRIPTION		GRAPHIC COLUMN	BLOW COUNT PER 6"	WELL CONSTRUCTION LOG	QIId	E REMARKS		
			0.0 to 2.5 ft. Dark brown gravelly silty sand (FILL).		FILL		No Well Constructed	0	ft. using a 3.0-inch d Borehole was contin to 20.0 ft. using a 5.0	uously cored from 5.0 -foot long 2.0-inch O.D	
	5		2.5 to 5.0 ft. Olive-brown silty clay (CL); medium stiff, moist, with black mottling. No Petroleum Hydrocarbon (PHC) odor. (0,0,100)					0	Geoprobe Macrocore barrel sampler. The barrel sampler was lined with a 4.8-foot long 1.5-inch O.D. transparent PVC tube. 5.0 to 10.0 ft. 4.6 ft. recovery		
	5								10.0 to 15.0 ft. 4.8 ft. recovery 15.0 to 20.0 ft. 4.6 ft. recovery Water encountered during drilling at 14.0 ft.		
			5.0 to 14.0 ft. Brown silty clay (CL); medium stiff, moist, with black mottling. No PHC odor. (0,0,100) Wet at 13.5 ft.		CL			U	at 1108.		
	10		Wet at 13.5 ft. Saturated at 14.0 ft.	<u>X</u>			B12-10.0	0			
			14.0 to 15.0 ft. Brown silty fine sand (SM); medium dense, saturated, with orange mottling, No PHC odor. (0.80,20)				Ā	0			
	15	_		X			B12-15.0				
		_	15.0 to 20.0 ft. Brown silty fine sand (SM); medium dense, saturated. No PHC odor. (0,80,20)		SM			0			
	20			 X			D10 0 0 0	0			
							B12-20.0		Borehole grouted on cement grout and a t		
	25								Mr. Steve Miller with Public Works Agency authorization to grou	y gave verbal	
	25	_							Drilling Notes:		
									1) Field estimates of j sand, and fines are sh parentheses.		
	30								2) Density determinat qualitative and are no quantitative evaluatio	t based on	

PAGE	1	OF	1

BC	ORING	NO.:	B13 project no.: 0553 project n	ame: C	athed	ral Gardens	638	21st Street, Oaklar	nd				
во	ORING	LOC	CATION: Approximately 8 ft. east and 25 ft. south of southwe	st corn	er of b	orick buildin	g	ELEVATION A	AND DATUM: None				
DR	RILLING	G AC	SENCY: Vironex, Inc.	DRILL	er: Jo	el	DA	te & time started: 07/22/14	DATE & TIME FINISHED: 07/22/14				
DF	RILLIN	G E(QUIPMENT: Geoprobe 6600					1030	1330				
сс	OMPLE	TIO	N DEPTH: 20.0 Feet BEDROCK DEPTH: N		unter	ed		logged by: MLBD	CHECKED BY:				
FII		ATEF	R DEPTH: 14.0 Feet NO. OF SAMPLES: 3	Soil		7			1- MF				
	DEPTH (FT.)		DESCRIPTION	GRAPHIC COLUMN	BLOW COUNT PEP 6"	WELL CONSTRUCTION LOG	OII	REM	ARKS				
	5		0.0 to 7.0 ft. Dark brown gravelly silty sand (FILL). No Petroleum Hydrocarbon (PHC) odor.	- FIL)		No Well Constructed	0	ft. using a 3.0-inch d Borehole was contin to 20.0 ft. using a 5.0 Geoprobe Macrocord barrel sampler was li long 1.5-inch O.D. tr 5.0 to 10.0 ft. 10.0 to 15.0 ft. 15.0 to 20.0 ft.	uously cored from 5.0)-foot long 2.0-inch O.D e barrel sampler. The				
	10		7.0 to 12.0 ft. Olive-brown silty clay (CL); medium stiff, moist, with bluish-gray staining. Moderate PHC odor. (0,0,100)	CL SC		B13-10.0	1.8327.6	at 1038.	a ng a nning at 17.0 k.				
	15		Saturated at 14.0 ft.	SM		⊻ B13-15.0	1.3						
_	20	_	=	-			0						
	20		Σ 			B13-20.0		Borehole grouted on cement grout and a tr					
	25							Mr. Steve Miller with Public Works Agency authorization to grou	y gave verbal				
		_	-	-				Drilling Notes:					
				-			 Field estimates of percent gravel, sand, and fines are shown in parentheses. 						
	30			-				2) Density determinat qualitative and are no quantitative evaluatio	t based on				

в	DRING	NO.	: B13A рројест но.: 0553 рројес	T NA	ме: Са	thedr	al Gardens	638	21st Street, Oaklar	nd
в	ORING	LO	CATION: Approximately 6 ft. east of southwest corner of bri	ick t	ouilding	and	11 ft. south	of str	eet curb elevation	and datum: None
DI	RILLIN	G A(GENCY: Vironex, Inc.		DRILLEI	R: Joe	1	DA	te & time started: 08/05/14	DATE & TIME FINISHED: 08/05/14
D	RILLIN	G E	QUIPMENT: Geoprobe 6600						0730	08/05/14
С	OMPLE	тю	DN DEPTH: 20.0 Feet BEDROCK DEPTH:	Not	t Encou	intere	d		LOGGED BY:	CHECKED BY:
FIRST WATER DEPTH: 14.0 Feet NO. OF SAMPLES: 3 Soil									MLBD	1-MK
	DEPTH (FT.)		DESCRIPTION		GRAPHIC COLUMN	BLOW COUNT PER 6"	WELL CONSTRUCTION LOG	DID	REM	ARKS
\vdash		_	0.0 to 0.5 ft. Asphalt (3-inches) and base rock.	_			No Well			ugered from 0.0 to 5.0
			0.5 to 3.0 ft. Dark brown silt (ML); medium stiff, mois No Petroleum Hydrocarbon (PHC) odor. (0,0,100)	st	ML		Constructed	0		uously cored from 5.0)-foot long 2.0-inch O.D
			3.0 to 5.0 ft. Olive-brown sandy clay (CL); medium stiff, moist, with abundant fine sand, and orange mottling. No PHC odor. (0,45,65)					0	barrel sampler was li long 1.5-inch O.D. ti	
	5		5.0 to 8.0 ft. Olive-brown silty clay (CL); medium stiff, moist, with black mottling.		CL				5.0 to 10.0 ft. 10.0 to 15.0 ft. 15.0 to 20.0 ft.	4.6 ft. recovery 4.8 ft. recovery 4.8 ft. recovery
E			No PHC odor. (0,0,100)					0	Water encountered d at 0751.	uring drilling at 14.0 ft.
	10		8.0 to 11.0 ft. Brown silty fine sand (SM); medium dense, moist, with orange mottling. No PHC odor. (0,80,20)	 	SM		B13-10.0	0		
=			11.0 to 12.5 ft. Olive-brown sandy clay (CL); medium stiff, moist, with some fine sand. No PHC odor. (0,25,75)		CL	_				
		_					Ā	0		
	15	_	12.5 to 20.0 ft. Brown silty fine sand (SM); medium dense, moist to saturated, with orange mottling.	X			B13-15.0			
_			No PHC odor. (0,80,20) Wet at 13.5 ft. Saturated at 14.0 ft.		SM			0		
								0		
	20	_		X			B13-20.0		Borehole grouted on	
		_							cement grout and a t	lenne pipe.
									Mr. Steve Miller with Public Works Agency authorization to grou	y gave verbal
	25								Drilling Notes:	
									1) Field estimates of sand, and fines are sh parentheses.	
	30	_							2) Density determinat qualitative and are no quantitative evaluatio	t based on

PAGE	1	OF	1

в	ORING	NO.:	B14 project no.: 0553 project	NAN	ME: Ca	thedr	al Gardens	638	21st Street, Oaklar	nd
В	ORING	LO	CATION: Approximately 25 ft. east and 13 ft. south of south	wes	st corne	er of l	orick buildi	ıg	ELEVATION	and datum: None
┢			GENCY: Vironex, Inc. QUIPMENT: Track Rig	1	DRILLEF	a: Joe	1	DATE & TIME STARTED: DATE & TIME FIN 07/22/14 07/22/ 1255 1330		
-			N DEPTH: 20.0 Feet BEDROCK DEPTH:	Not	Encou	ntere	d		LOGGED BY:	CHECKED BY:
-			R DEPTH: 14.0 Feet NO. OF SAMPLES:			incre	u		MLBD	MK
	DEPTH (FT.)		DESCRIPTION		GRAPHIC COLUMN	BLOW COUNT PER 6"	WELL CONSTRUCTION LOG	DID	REM	ARKS
			0.0 to 2.0 ft. Dark brown gravelly silty sand (FILL).		FILL		No Well Constructed	0	ft. using a 3.0-inch d Borehole was contin	uously cored from 5.0
			2.0 to 5.0 ft. Olive-brown silty clay (CL); medium stiff, moist, with black mottling.No Petroleum Hydrocarbon (PHC) odor. (0,15,85)					0	Geoprobe Macrocore barrel sampler was li long 1.5-inch O.D. tr	
	5				CL				5.0 to 10.0 ft. 10.0 to 15.0 ft. 15.0 to 20.0 ft.	4.8 ft. recovery 4.8 ft. recovery 4.6 ft. recovery uring drilling at 14.0 ft.
			5.0 to 12.0 ft. Brown silty clay (CL); medium stiff, moist, with few fine sand and black mottling. No PHC odor. (0,15,85)					0	at 1258.	uning unning at 14.0 ft.
	10			<u>x</u> 			B14-10.0	0		
			12.0 to 14.0 ft. Grayish-brown clayey sand (SC); medium dense, moist to saturated. No PHC odor. (0,70,30) Wet at 13.5 ft. Saturated at 14.0 ft.		SC		Ā	0		
	15		14.0 to 20.0 ft. Grayish-brown silty fine sand (SM);	X			B14-15.0	0		
			medium dense, moist, with orange mottling. No PHC odor. (0,80,20)		SM					
=	20							0		
	20			X 			B14-20.0		Borehole grouted on cement grout and a tr	
									Mr. Steve Miller with Public Works Agency authorization to grou	y gave verbal
	25								Drilling Notes: 1) Field estimates of J	percent gravel,
									sand, and fines are sh parentheses. 2) Density determinat	own in tions are
F	30			_					qualitative and are no quantitative evaluatio	

PAGE	1	OF	1

во	ORING	NO.	B15 project no.: 0553 project	NAI	ме: Са	thedr	al Gardens	638	21st Street, Oaklar	nd
в	ORING	LO	CATION: Approximately 5 ft. east and 3 ft. south of southwe	est o	corner o	of bri	ck building		ELEVATION	AND DATUM: None
			GENCY: Vironex, Inc. QUIPMENT: Geoprobe 6600		DRILLEF	R: Joe	1	DA	te & time started: 07/22/14 1130	DATE & TIME FINISHED: 07/22/14 1330
			N DEPTH: 20.0 Feet BEDROCK DEPTH:]	Not	t Encou	ntere	d		LOGGED BY:	CHECKED BY:
FI	RST WA	TE	R DEPTH: 14.0 Feet NO. OF SAMPLES:	3 S	oil				MLBD	PAK
	DEPTH (FT.)		DESCRIPTION		GRAPHIC COLUMN	BLOW COUNT PER 6"	WELL CONSTRUCTION LOG	DID	REM	ARKS
			0.0 to 3.0 ft. Dark brown gravelly silty sand (FILL).		FILL		No Well Constructed	0	ft. using a 3.0-inch d Borehole was contin to 20.0 ft. using a 5.0 Geoprobe Macrocord	uously cored from 5.0 0-foot long 2.0-inch O.D e barrel sampler. The
	5		 3.0 to 5.0 ft. Olive-brown silty clay (CL); medium stiff, moist, with black mottling. No Petroleum Hydrocarbon (PHC) odor. (0,0,100) 5.0 to 6.0 ft. Grayish-brown clayey fine sand (SC); medium 		CL	-		0	5.0 to 10.0 ft.	ansparent PVC tube. 4.8 ft. recovery
E		_	dense, moist. No PHC odor. (0,65,35)		SC				10.0 to 15.0 ft. 15.0 to 20.0 ft.	4.8 ft. recovery 4.6 ft. recovery
								0	Water encountered d at 1138.	uring drilling at 14.0 ft.
	10		6.0 to 14.0 ft. Grayish-brown silty clay (CL); medium stiff, moist to saturated, with black mottling. No PHC odor. (0,0,100) Wet at 13.5 ft. Saturated at 14.0 ft.		CL		B15-10.0	0		
							Ā	0		
E	15	_		X			B15-15.0			
			14.0 to 20.0 ft. Grayish-brown silty fine sand (SM); medium dense, saturated, with orange mottling to 15.0 ft. No PHC odor. (0,80,20)		SM			0		
	20	_						0		
	20			X 			B15-20.0		Borehole grouted on cement grout and a tr	
	25								Mr. Steve Miller with Public Works Agency documentgrouting of	y onsite to observe and
	-0								Drilling Notes: 1) Field estimates of J	
									sand, and fines are sh parentheses. 2) Density determinat	ions are
	30	_		_					qualitative and are no quantitative evaluatio	

в	RING	NO.:	B16 PROJECT NO.: 0553 PROJECT	ΓNA	ме: Са	thedr	al Gardens	638	21st Street, Oaklar	nd		
в	ORING	LOC	CATION: Approx. 20 ft. west and 50 ft. north of southwest con	mer	of brick	c buil	ding, in gara	ige b	asement ELEVATION	and datum: None		
Dł	ILLIN	G AC	GENCY: Vironex, Inc.	e	DA	TE & TIME STARTED: 08/4/14	DATE & TIME FINISHED: 08/4/14					
DI	RILLIN	G E	QUIPMENT: 3.0-Inch O.D. Hand Auger						1000	1355		
С	OMPLE	тю	N DEPTH: 16.0 Feet BEDROCK DEPTH:	No	t Encou	ntere	d		LOGGED BY:	CHECKED BY:		
FIRST WATER DEPTH: 15.0 Feet NO. OF SAMPLES: 1									MLBD	1-MK		
	DEPTH (FT.)		DESCRIPTION		GRAPHIC COLUMN	BLOW COUNT PER 6"	WELL CONSTRUCTION LOG	DID	REM	ARKS		
							No Well Constructed	0	ft. using a 3.0-inch d	ugered from 8.5 to 16.0 iameter hand auger. uring augering at 15.0 ft.		
	5		Garage Basement					0	casing placed in bore	diameter slotted PVC chole. Water level was at 1120 and at 14.3 ft. at		
			8.0 to 8.5 ft. Concrete (5-inches) and base rock. 8.5 to 10.5 ft. Brown gravelly silt (ML); medium stiff, moist.		FILL			0	Approximately 0.1-gallon purged fro borehole prior to groundwater sample collection using new unused disposal polyethylene tubing connected to a peristaltic pump. Water sample B16-			
	10		 No Petroleum Hydrocarbon (PHC) odor. (10,0,90) 10.5 to 12.0 ft. Brown silty fine sand (SM); medium dense, moist, with orange mottling. (0,80,20) 		IVIL			0	collected at 1150 dir tubing. No odor or sl recharge. Water leve measured at 14.4 ft.			
	15		 12.0 to 16.0 ft. Dark brown silty fine sand (SM); medium dense, moist. No PHC odor. 13.5 to 16.0 ft. Color change to olive-brown. (0,80,20) Wet at 14.5 ft. Saturated at 15.0 ft. 		SM		¥. ∑.	0				
									Borehole grouted on cement grout and a t	remie pipe.		
	20							0	Mr. Steve Miller wit Public Works Agenc document grouting o Drilling Notes:	y onsite to observe and		
									1) Field estimates of parentheses.			
	25								 Density determina qualitative and are no quantitative evaluatio 	t based on		
E	30	-		_								

в	DRING	NO.:	B17 project no.: 0553 project	T NA	ме: Са	thedr	al Gardens	638	21st Street, Oaklar	nd				
В	ORING	LOC	CATION: Approx. 42 ft. west and 154 ft. north of southwest co	ornei	r of bricl	k buil	ding, in gara	ige b	asement ELEVATION	AND DATUM: None				
DI	RILLIN	G AC	SENCY: Vironex, Inc.		DRILLEF	a: Jos	e	DA	TE & TIME STARTED: 08/4/14	DATE & TIME FINISHED: 08/4/14				
D	RILLIN	G EQ	QUIPMENT: 3.0-Inch O.D. Hand Auger						1130	1345				
С	OMPLE	τιο	N DEPTH: 16.0 Feet BEDROCK DEPTH:	No	t Encou	ntere	d		LOGGED BY:	CHECKED BY:				
FIRST WATER DEPTH: 15.0 Feet NO. OF SAMPLES: 1 Water									MLBD	1-MK				
	DEPTH (FT.)		DESCRIPTION		GRAPHIC COLUMN	BLOW COUNT PER 6"	WELL CONSTRUCTION LOG	DID	REM	ARKS				
F		_					No Well Constructed		Borehole was hand a ft. using a 3.0-inch d	ugered from 8.5 to 16.0 iameter hand auger.				
-		_		_				0		uring augering at 15.0 ft.				
E									at 1240.					
			Garage Basement					0		diameter slotted PVC chole. Water level was				
	5								measured at 14.7 ft. a 1300.	at 1250 and at 14.5 ft. at				
				_					Approximately 0.1-g	allon purged from				
E			8.0 to 8.5 ft. Concrete (5-inches) and base rock.		FILL	-		0	borehole prior to groundwater sample collection using new unused disposabl					
=		_	8.5 to 10.0 ft. Brown silt (ML); medium stiff, moist.		ML				polyethylene tubing peristaltic pump. Wa	connected to a				
	10		No Petroleum Hydrocarbon (PHC) odor. (0,0,100)	_		-			collected at 1310 dir	ectly from the discharge neen on sample. Slow				
E		_	10.0 to 15.0 ft. Brown silty clay (CL); medium stiff,	_					recharge. Water level measured at 14.8 ft.	l was subsequently				
F		_	moist, with black mottling. (0,0,100) Wet at 14.5 ft.	_	CL					at 1 <i>522</i> .				
E		_	Saturated at 15.0 ft.	_				0						
E	15	_	15.0 to 16.0 ft. Brown silty fine sand (SM); medium dense,				₹ Ţ							
E		_	saturated. (0,85,15)	_	SM				Daughala anastad an	08/04/14				
E				_					Borehole grouted on cement grout and a tr	remie pipe.				
		_		_					Mr. Steve Miller with Public Works Agency	h Alameda County y onsite to observe and				
_	20	_		_					document grouting o	f the borehole.				
	20			_					Drilling Notes:					
_		_		_					 Field estimates of j sand, and fines are sh 	percent gravel,				
				_					parentheses.	own m				
E				_					 Density determinate qualitative and are not 	t based on				
	25			_					quantitative evaluatio	n.				
E		_		_										
F		_		_										
F		_												
F	30	_		_										

APPENDIX B

Purge Volume Calculations and Soil Gas Sampling Data Sheets

Report 0553.R5

7.5 feet tubing, 12 inch sand interval, 6 inch non-hydrated bentonite interval above sand

Soil Gas Purge Volume Calculations

Notes:

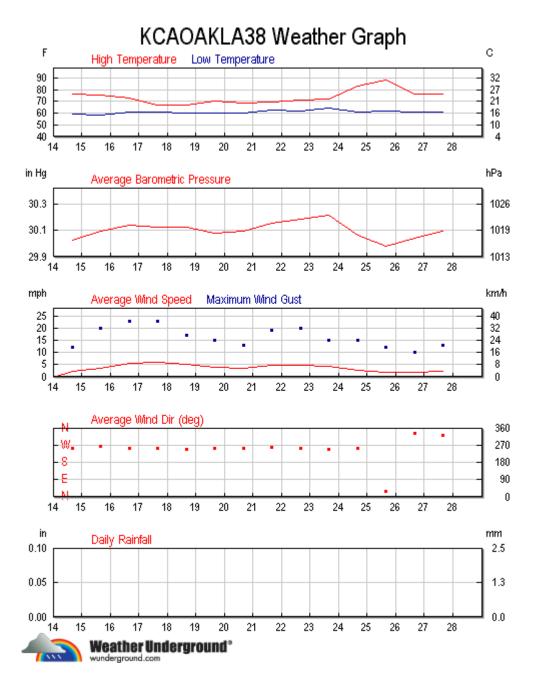
Yellow hi-lite indicates data entry required. Blue hi-lite indicates values are calculated or automatically updated.

Sand interval is 1 ft from 5 to 6 ft bgs, filter is at center of sand pack, 6-inches bentonite above sand is non-hydrated.

SOIL GAS SA	MPLING DA	TA SHEET	pland.											
Address 💪 💆	8 24	ST. DO	plands											
Job #	0554			Probe Method (ch	neck one)									
Date	7/20	14		o PRT o Temp Well										
Sampler Nam		a dev		Permanent We	1									
Drining Comp	ULL OF	The		o Vapor Pin										
Soil Gas Location Designation	Probe Depth (Ft.)	Time Probe Installation Completed	Canister #	Sample Canister Initial Vacuum Check (In. Hg) and time	Start leak check vacuum (In. Hg) and time	End leak check vacuum (In. Hg) and time	ADDITIONAL leak check vacuum (In. Hg) and time	Start PURGE	End PURGE	Start of tracer gas injection time	Begin sample collection vacuum (In. Hg) and time	End sample collection vacuum (In. Hg) and time	PID value in Teflon tube after sample collection	NOTES
SG			Canister # 35546	vac - 29 time 0930	vac * 30	vac - 30	vac	time	PFA	1047	vac - 30	vac - 5	ppm	
				time AQ 20	time 1 0 cm	time	time	time i chi or	time Ant	Htime	time 12 H/	10 59 in 59	-	2- BROPANOL 1100
				0100	une Loco	une roco	une	une lotter	aner also	ame	unie oc	110724	pone	a worked 1100
			122/0	- 2 -	2.	12-				Serveni	110600	uciac		
SG			12368	vac 30	vac - 20	vac " 20	vac	(1)			vac = 30	vac ")	ppm	
DUP				vac - 30 time 6935	time 1000	time 1010	time	time	time(0262	Lime	time 6460	20im 6585	time	
								time 0 KOO	Sora	AV-REP	111500	20 impo 585		
SG		1		vac	vac	vac	vac			and the second	vac	vac	ppm	
00								Alies e	Alman	41 miles				Success 1
				time	time	time	time	time	time	time	time	time	time	SORBERT SAMPLE
												1		dooce
SG				vac	vac	vac	vac				vac	vac	ppm	
				time	time	time	time	time	time	time	time	time	time	
SG								-		-				
30		1		vac	vac	vac	vac			-	vac	vac	ppm	
				time	time	time	time	time	time	time	time	time	time	
SG				vac	vac	vac	vac				vac	vac	ppm	
				time	time	time	time	time	time	time	time	time	time	
												unite	unio	
SG		-												
36		-		vac	vac	vac	vac		-		vac	vac	ppm	
				time	time	time	time	time	time	time	time	time	time	
SG				vac	vac	vac	vac				vac	vac	ppm	
				time	time	time	time	time	time	time	time	time	time	
					unio		unio	unio	lunio	une	unio	une	une	
				-			-				-			
SG				vac	vac	vac	vac		-		vac	vac	ppm	
				time	time	time	time	time	time	time	time	time	time	
SG				vac	vac	vac	vac				vac	vac	ppm	
				time	time	time	time	time	time	time	time	time	time	
		-							arris	untre	anto		unio	
00									-			-	-	
SG				vac	vac	vac	vac				vac	vac	ppm	
				time	time	time	time	time	time	time	time	time	time	
SG				vac	vac	vac	vac				vac	vac	ppm	
				time	time	time	time	time	time	time	time	time	time	
				unte	une	une	unte	unte	unie	une	unie	unie	unie	
SG				vac	vac	vac	vac	-		-	vac	vac	ppm	
				time	time	time	time	time	time	time	time	time	time	

APPENDIX C

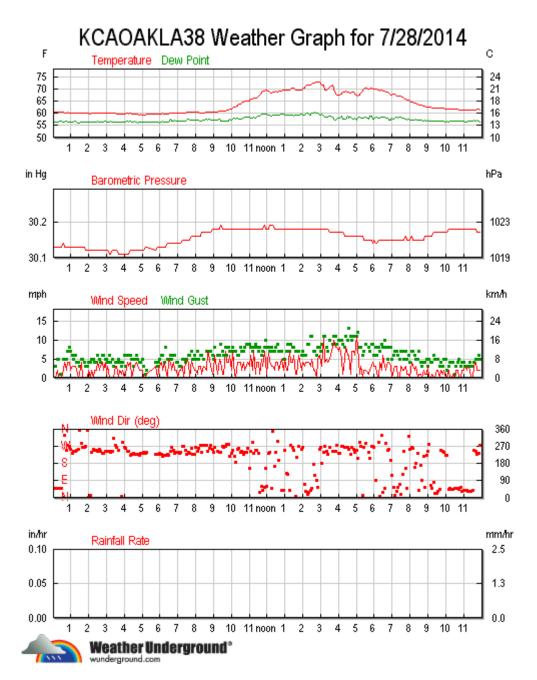
Weather Information


Report 0553.R5 Appendix C

http://www.wunderground.com/weatherstation/WXDailyHistory.asp?ID=KCAOAKLA38&graphspan=cust om&month=7&day=14&year=2014&monthend=7&dayend=28&yearend=2014

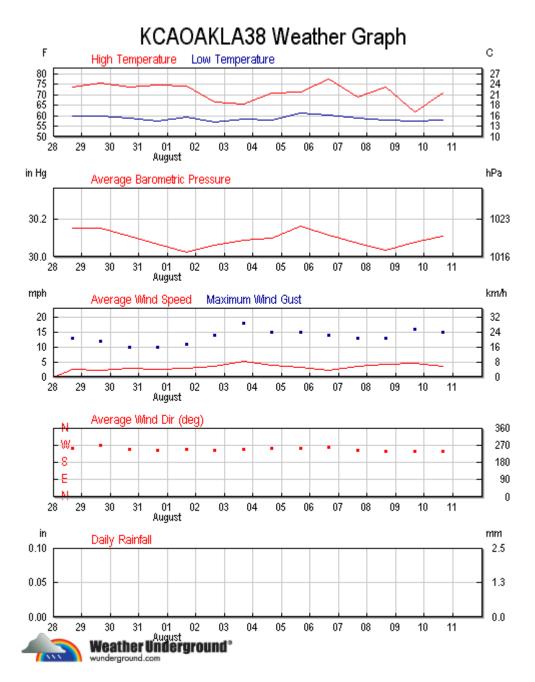
Weather History for KCAOAKLA38 Downtown Oakland, Oakland, CA

About This Weather Station Lat: N 37 ° 48 ' 31 " (37.809 °) Lon: W 122 ° 16 ' 3 " (-122.268 °) Elevation (ft): 16 Hardware: Weather Station Software:


July 1 Daily Weekly Monthly Yearly Custom	4 2014 - TO - July	28 2014	Go
	High:	Low:	Average:
Temperature:	88.3 °F	58.1 °F	66.0 °F
Dew Point:	64.0 °F	54.1 °F	59.2 °F
Humidity:	94.0%	36.0%	79.9%
Wind Speed:	23.0mph from the WNW	-	3.6mph
Wind Gust:	23.0mph from the SW	-	-
Wind:	-	-	WSW
Pressure:	30.27 in	29.95in	-
Precipitation:	0.00 in		

Report 0553.R5 Appendix C

http://www.wunderground.com/weatherstation/WXDailyHistory.asp?ID=KCAOAKLA38&graphspan=day &month=7&day=28&year=2014


<u>« Previous Day</u>	July	28 2	2014 🚽 View	Next Day »
Daily Weekly Monthly Year	ly Custom			
	Current:	High:	Low:	Average:
Temperature:	67.1 °F	73.5 °F	59.9 °F	64.5 °F
Dew Point:	58.9 °F	60.9 °F	56.4 °F	57.9 °F
Humidity:	75%	91%	63%	80%
Wind Speed:	5.0 mph	11.0 mph	-	2.7 mph
Wind Gust:	7.0 mph	13.0 mph	-	-
Wind:	West		-	WSW
Pressure:	30.08 in	30.19 in	30.11 in	-
Precipitation:	0.00 in			
Weather History for the Rest	of This Month			
		High:	Low:	Average:
Temperature:		88.3 °F	54.9 °F	64.0 °F
Dew Point:		64.0 °F	52.1 °F	57.6 °F
Humidity:		95.0%	36.0%	80.7%
Wind Speed:		23.0mph from the WNW	-	3.6 mph
Wind Gust:		23.0mph from the SW	-	-
Wind:		-	-	WSW
Pressure:		30.27 in	29.92 in	-
Precipitation:		0.00 in		

Report 0553.R5 Appendix C

http://www.wunderground.com/weatherstation/WXDailyHistory.asp?ID=KCAOAKLA38&graphspan=cust om&month=7&day=28&year=2014&monthend=8&dayend=11&yearend=2014

July 🚽 28	2014 🔽 - TO - August	▼ 11▼ 2014	Go
Daily Weekly Monthly Yearly Custom			
	High:	Low:	Average:
Temperature:	77.5 °F	57.0 °F	63.3 °F
Dew Point:	64.5 °F	54.2 °F	57.7 °F
Humidity:	95.0%	56.0%	82.7%
Wind Speed:	13.0mph from the WSW	-	3.4mph
Wind Gust:	18.0mph from the WSW	-	-
Wind:	-	-	WSW
Pressure:	30.20in	29.99in	-
Precipitation:	0.00in		

APPENDIX D

Non-Hazardous Waste Manifest

NON-HAZARDOUS WASTE MANIFEST

Pleas	se print or type (Form designed for use on elite	e (12 pitch) typewriter)					
	NON-HAZARDOUS WASTE MANIFEST	1. Generator's US EPA	10 No.		Manifest Document No.	081214	2. Page 1 of
	2169 FRANCISCO B	LID STEB	CARE OF EAH IUC	<u>,</u>		21ST.C	/ 17
	4. Generator's Phone () 5. Transporter 1 Company Name	94901	6. US EPA ID Number		A. State Transpo	D, CA 94	
	BK SKY EDURODULE	ATTAL SUSTERS	5 CN-000 3460	010		Phone SED 479	-7993
	7. Transporter 2 Company Name		8. US EPA ID Number	1.1	C. State Transpo		
		A second second			D. Transporter 2		
	9. Designated Facility Name and Site Address BL SKY ENTERPRIE	SES	10. US EPA ID Number		E. State Facility'	s ID	
	HOIW. CLANDE BEDERA CD 945	L KOAU 10	CAL 0003016	39	F. Facility's Pho	1-0-0	93
	11. WASTE DESCRIPTION				ontainers Type	13. Total Quantity	14. Unit Wt./Vol.
	"Nou Hazazda	STEAWE	Soil	001	DM	250	P
GENER	b.	-					
A T	с.						a de la companya de la compan
OR	d.			and the second second			11
	G. Additional Descriptions for Materials Listed Ab	ove	in reference and a second		H. Handling Cod	des for Wastes Listed Abo	ve
					- marker		
					All and a second		
	15. Special Handling Instructions and Additional I	nformation					
	EMERGEDCY CONTA	ET STER	- RHOPES	5	0 54	11-2128	
	16. GENERATOR'S CERTIFICATION: I hereby on in proper condition for transport. The material	certify that the contents of thi	is shipment are fully and accurately describe	ed and are in			
							Date
	Printed/Typed Name		Signature SAVA	L		Ma	nth Day Year
TR	17. Transporter 1 Acknowledgement of Receipt o	f Materials					Date
TRANSPORTER	Printed/Typed Name Edilberts Del Arthough 18. Transporter 2 Acknowledgement of Receipt o	f Materials	Signature Fel b. 18		Agi	Mo O I	nth Day Year X X IA Date
RTER	Printed/Typed Name		Signature			Ма	nth Day Year
FAC	19. Discrepancy Indication Space						
	20. Facility Owner or Operator; Certification of rea	ceipt of the waste materials of	covered by this manifest, except as noted in	item 19.	in fr		Date
T Y	Printed/Typed Name AP Rhoc	(E)	Signature Al alla	ecle		Mg	BI AI A
F-1	4 © 2002 LABEL ASTER (800) 621-5808 www	v.labelmaster.com		PRINTE	INK		Rev. 3/95

APPENDIX E

Laboratory Analytical Reports and Chain of Custody Documentation

Soil

- McCampbell W/O# 1407857 B12 through B15 Soil Sample Results
- McCampbell W/O# 1408147 B13A Soil Sample Results

Groundwater

- McCampbell W/O# 1407844 B6-W (Hydropunch) and B7-W through B11-W First Encountered Groundwater Sample Results
- McCampbell W/O# 1408149 B16-W and B17-W First Encountered Groundwater Sample Results

Soil Gas

- Air Toxics W/O # 1407517 A SG1 and SG1-DUP TO-15 Results
- Air Toxics W/O # 1407520 SG1 and SG1-DUP TO-17 Results
- Air Toxics W/O # 1407514 SG1 DFA and SG1 2-Propanol Shroud TO-15 Results
- Air Toxics W/O # 1407517B SG1 and SG1-DUP ASTM D-1946 Results

McCampbell Analytical, Inc.

"When Quality Counts"

Analytical Report

WorkOrder:	1407857
Report Created for:	P & D Environmental 55 Santa Clara, Ste.240 Oakland, CA 94610
Project Contact: Project P.O.:	Michael Deschenes
Project Name:	#0553; Cathedral Gardens
Project Received:	07/23/2014

Analytical Report reviewed & approved for release on 07/30/2014 by:

Angela Rydelius, Laboratory Manager

The report shall not be reproduced except in full, without the written approval of the laboratory. The analytical results relate only to the items tested. Results reported conform to the most current NELAP standards, where applicable, unless otherwise stated in the case narrative.

1534 Willow Pass Rd. Pittsburg, CA 94565 ♦ TEL: (877) 252-9262 ♦ FAX: (925) 252-9269 ♦ www.mccampbell.com NELAP: 4033ORELAP ♦ ELAP: 1644 ♦ ISO/IEC: 17025:2005 ♦ WSDE: C972-11 ♦ ADEC: UST-098 ♦ UCMR3

Glossary of Terms & Qualifier Definitions

Client: P & D Environmental

Project: #0553; Cathedral Gardens

WorkOrder: 1407857

Glossary Abbreviation

95% Interval	95% Confident Interval
DF	Dilution Factor
DUP	Duplicate
EDL	Estimated Detection Limit
ITEF	International Toxicity Equivalence Factor
LCS	Laboratory Control Sample
MB	Method Blank
MB % Rec	% Recovery of Surrogate in Method Blank, if applicable
MDL	Method Detection Limit
ML	Minimum Level of Quantitation
MS	Matrix Spike
MSD	Matrix Spike Duplicate
ND	Not detected at or above the indicated MDL or RL
NR	Matrix interferences, or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix; or sample diluted due to high matrix or analyte content.
RD	Relative Difference
RL	Reporting Limit (The RL is the lowest calibration standard in a multipoint calibration.)
RPD	Relative Percent Deviation
RRT	Relative Retention Time
SPK Val	Spike Value
SPKRef Val	Spike Reference Value
TEQ	Toxicity Equivalence

Analytical Qualifiers

- d7strongly aged gasoline or diesel range compounds are significant in the TPH(g) chromatograme1unmodified or weakly modified diesel is significant
- e2 diesel range compounds are significant; no recognizable pattern
- e7 oil range compounds are significant

Quality Control Qualifiers

F1

MS/MSD recovery and/or RPD was out of acceptance criteria; LCS validated the prep batch.

Client:	P & D Environmental	WorkOrder:	1407857
Project:	#0553; Cathedral Gardens	Extraction Method:	SW5030B
Date Received:	7/23/14 17:12	Analytical Method:	SW8260B
Date Prepared:	7/23/14	Unit:	mg/kg

B12-10 Analytes	1407857-001A <u>Result</u>	Soil	07/22/201	4 11:00	0040	00404
Analytes	Result				GCIU	93134
			<u>RL</u>	DF		Date Analyzed
Acetone	ND		0.10	1		07/25/2014 20:42
tert-Amyl methyl ether (TAME)	ND		0.0050	1		07/25/2014 20:42
Benzene	ND		0.0050	1		07/25/2014 20:42
Bromobenzene	ND		0.0050	1		07/25/2014 20:42
Bromochloromethane	ND		0.0050	1		07/25/2014 20:42
Bromodichloromethane	ND		0.0050	1		07/25/2014 20:42
Bromoform	ND		0.0050	1		07/25/2014 20:42
Bromomethane	ND		0.0050	1		07/25/2014 20:42
2-Butanone (MEK)	ND		0.020	1		07/25/2014 20:42
t-Butyl alcohol (TBA)	ND		0.050	1		07/25/2014 20:42
n-Butyl benzene	ND		0.0050	1		07/25/2014 20:42
sec-Butyl benzene	ND		0.0050	1		07/25/2014 20:42
tert-Butyl benzene	ND		0.0050	1		07/25/2014 20:42
Carbon Disulfide	ND		0.0050	1		07/25/2014 20:42
Carbon Tetrachloride	ND		0.0050	1		07/25/2014 20:42
Chlorobenzene	ND		0.0050	1		07/25/2014 20:42
Chloroethane	ND		0.0050	1		07/25/2014 20:42
Chloroform	ND		0.0050	1		07/25/2014 20:42
Chloromethane	ND		0.0050	1		07/25/2014 20:42
2-Chlorotoluene	ND		0.0050	1		07/25/2014 20:42
4-Chlorotoluene	ND		0.0050	1		07/25/2014 20:42
Dibromochloromethane	ND		0.0050	1		07/25/2014 20:42
1,2-Dibromo-3-chloropropane	ND		0.0040	1		07/25/2014 20:42
1,2-Dibromoethane (EDB)	ND		0.0040	1		07/25/2014 20:42
Dibromomethane	ND		0.0050	1		07/25/2014 20:42
1,2-Dichlorobenzene	ND		0.0050	1		07/25/2014 20:42
1,3-Dichlorobenzene	ND		0.0050	1		07/25/2014 20:42
1,4-Dichlorobenzene	ND		0.0050	1		07/25/2014 20:42
Dichlorodifluoromethane	ND		0.0050	1		07/25/2014 20:42
1,1-Dichloroethane	ND		0.0050	1		07/25/2014 20:42
1,2-Dichloroethane (1,2-DCA)	ND		0.0040	1		07/25/2014 20:42
1,1-Dichloroethene	ND		0.0050	1		07/25/2014 20:42
cis-1,2-Dichloroethene	ND		0.0050	1		07/25/2014 20:42
trans-1,2-Dichloroethene	ND		0.0050	1		07/25/2014 20:42
1,2-Dichloropropane	ND		0.0050	1		07/25/2014 20:42
1,3-Dichloropropane	ND		0.0050	1		07/25/2014 20:42
2,2-Dichloropropane	ND		0.0050	1		07/25/2014 20:42
1,1-Dichloropropene	ND		0.0050	1		07/25/2014 20:42

Client:	P & D Environmental	WorkOrder:	1407857
Project:	#0553; Cathedral Gardens	Extraction Method:	SW5030B
Date Received:	7/23/14 17:12	Analytical Method:	SW8260B
Date Prepared:	7/23/14	Unit:	mg/kg

Client ID	Lab ID	Matrix/ExtType	Date Collec	ted Instrument	Batch ID
B12-10	1407857-001A	Soil	07/22/2014 11	:00 GC10	93134
Analytes	<u>Result</u>		<u>RL</u> D	E	Date Analyzed
cis-1,3-Dichloropropene	ND		0.0050 1		07/25/2014 20:42
trans-1,3-Dichloropropene	ND		0.0050 1		07/25/2014 20:42
Diisopropyl ether (DIPE)	ND		0.0050 1		07/25/2014 20:42
Ethylbenzene	ND		0.0050 1		07/25/2014 20:42
Ethyl tert-butyl ether (ETBE)	ND		0.0050 1		07/25/2014 20:42
Freon 113	ND		0.10 1		07/25/2014 20:42
Hexachlorobutadiene	ND		0.0050 1		07/25/2014 20:42
Hexachloroethane	ND		0.0050 1		07/25/2014 20:42
2-Hexanone	ND		0.0050 1		07/25/2014 20:42
Isopropylbenzene	ND		0.0050 1		07/25/2014 20:42
4-Isopropyl toluene	ND		0.0050 1		07/25/2014 20:42
Methyl-t-butyl ether (MTBE)	ND		0.0050 1		07/25/2014 20:42
Methylene chloride	ND		0.0050 1		07/25/2014 20:42
4-Methyl-2-pentanone (MIBK)	ND		0.0050 1		07/25/2014 20:42
Naphthalene	ND		0.0050 1		07/25/2014 20:42
n-Propyl benzene	ND		0.0050 1		07/25/2014 20:42
Styrene	ND		0.0050 1		07/25/2014 20:42
1,1,1,2-Tetrachloroethane	ND		0.0050 1		07/25/2014 20:42
1,1,2,2-Tetrachloroethane	ND		0.0050 1		07/25/2014 20:42
Tetrachloroethene	ND		0.0050 1		07/25/2014 20:42
Toluene	ND		0.0050 1		07/25/2014 20:42
1,2,3-Trichlorobenzene	ND		0.0050 1		07/25/2014 20:42
1,2,4-Trichlorobenzene	ND		0.0050 1		07/25/2014 20:42
1,1,1-Trichloroethane	ND		0.0050 1		07/25/2014 20:42
1,1,2-Trichloroethane	ND		0.0050 1		07/25/2014 20:42
Trichloroethene	ND		0.0050 1		07/25/2014 20:42
Trichlorofluoromethane	ND		0.0050 1		07/25/2014 20:42
1,2,3-Trichloropropane	ND		0.0050 1		07/25/2014 20:42
1,2,4-Trimethylbenzene	ND		0.0050 1		07/25/2014 20:42
1,3,5-Trimethylbenzene	ND		0.0050 1		07/25/2014 20:42
Vinyl Chloride	ND		0.0050 1		07/25/2014 20:42
Xylenes, Total	ND		0.0050 1		07/25/2014 20:42
<u>Surrogates</u>	<u>REC (%)</u>		<u>Limits</u>		
Dibromofluoromethane	91		70-130		07/25/2014 20:42
Toluene-d8	97		70-130		07/25/2014 20:42
4-BFB	96		70-130		07/25/2014 20:42

Client:	P & D Environmental	WorkOrder:	1407857
Project:	#0553; Cathedral Gardens	Extraction Method:	SW5030B
Date Received:	7/23/14 17:12	Analytical Method:	SW8260B
Date Prepared:	7/23/14	Unit:	mg/kg

Client ID	Lab ID	Matrix/ExtType	Date Co	llected Instrument	Batch ID
B12-15	1407857-002A	Soil	07/22/201	4 11:05 GC10	93134
Analytes	<u>Result</u>		<u>RL</u>	DF	Date Analyzed
Acetone	ND		0.10	1	07/25/2014 21:24
tert-Amyl methyl ether (TAME)	ND		0.0050	1	07/25/2014 21:24
Benzene	ND		0.0050	1	07/25/2014 21:24
Bromobenzene	ND		0.0050	1	07/25/2014 21:24
Bromochloromethane	ND		0.0050	1	07/25/2014 21:24
Bromodichloromethane	ND		0.0050	1	07/25/2014 21:24
Bromoform	ND		0.0050	1	07/25/2014 21:24
Bromomethane	ND		0.0050	1	07/25/2014 21:24
2-Butanone (MEK)	ND		0.020	1	07/25/2014 21:24
t-Butyl alcohol (TBA)	ND		0.050	1	07/25/2014 21:24
n-Butyl benzene	ND		0.0050	1	07/25/2014 21:24
sec-Butyl benzene	ND		0.0050	1	07/25/2014 21:24
tert-Butyl benzene	ND		0.0050	1	07/25/2014 21:24
Carbon Disulfide	ND		0.0050	1	07/25/2014 21:24
Carbon Tetrachloride	ND		0.0050	1	07/25/2014 21:24
Chlorobenzene	ND		0.0050	1	07/25/2014 21:24
Chloroethane	ND		0.0050	1	07/25/2014 21:24
Chloroform	ND		0.0050	1	07/25/2014 21:24
Chloromethane	ND		0.0050	1	07/25/2014 21:24
2-Chlorotoluene	ND		0.0050	1	07/25/2014 21:24
4-Chlorotoluene	ND		0.0050	1	07/25/2014 21:24
Dibromochloromethane	ND		0.0050	1	07/25/2014 21:24
1,2-Dibromo-3-chloropropane	ND		0.0040	1	07/25/2014 21:24
1,2-Dibromoethane (EDB)	ND		0.0040	1	07/25/2014 21:24
Dibromomethane	ND		0.0050	1	07/25/2014 21:24
1,2-Dichlorobenzene	ND		0.0050	1	07/25/2014 21:24
1,3-Dichlorobenzene	ND		0.0050	1	07/25/2014 21:24
1,4-Dichlorobenzene	ND		0.0050	1	07/25/2014 21:24
Dichlorodifluoromethane	ND		0.0050	1	07/25/2014 21:24
1,1-Dichloroethane	ND		0.0050	1	07/25/2014 21:24
1,2-Dichloroethane (1,2-DCA)	ND		0.0040	1	07/25/2014 21:24
1,1-Dichloroethene	ND		0.0050	1	07/25/2014 21:24
cis-1,2-Dichloroethene	ND		0.0050	1	07/25/2014 21:24
trans-1,2-Dichloroethene	ND		0.0050	1	07/25/2014 21:24
1,2-Dichloropropane	ND		0.0050	1	07/25/2014 21:24
1,3-Dichloropropane	ND		0.0050	1	07/25/2014 21:24
2,2-Dichloropropane	ND		0.0050	1	07/25/2014 21:24
1,1-Dichloropropene	ND		0.0050	1	07/25/2014 21:24

Client:	P & D Environmental	WorkOrder:	1407857
Project:	#0553; Cathedral Gardens	Extraction Method:	SW5030B
Date Received:	7/23/14 17:12	Analytical Method:	SW8260B
Date Prepared:	7/23/14	Unit:	mg/kg

Client ID	Lab ID	Matrix/ExtType	Date Collect	ed Instrument	Batch ID
B12-15	1407857-002A	Soil	07/22/2014 11	05 GC10	93134
Analytes	Result		<u>RL</u> <u>D</u>	-	Date Analyzed
cis-1,3-Dichloropropene	ND		0.0050 1		07/25/2014 21:24
trans-1,3-Dichloropropene	ND		0.0050 1		07/25/2014 21:24
Diisopropyl ether (DIPE)	ND		0.0050 1		07/25/2014 21:24
Ethylbenzene	ND		0.0050 1		07/25/2014 21:24
Ethyl tert-butyl ether (ETBE)	ND		0.0050 1		07/25/2014 21:24
Freon 113	ND		0.10 1		07/25/2014 21:24
Hexachlorobutadiene	ND		0.0050 1		07/25/2014 21:24
Hexachloroethane	ND		0.0050 1		07/25/2014 21:24
2-Hexanone	ND		0.0050 1		07/25/2014 21:24
Isopropylbenzene	ND		0.0050 1		07/25/2014 21:24
4-Isopropyl toluene	ND		0.0050 1		07/25/2014 21:24
Methyl-t-butyl ether (MTBE)	ND		0.0050 1		07/25/2014 21:24
Methylene chloride	ND		0.0050 1		07/25/2014 21:24
4-Methyl-2-pentanone (MIBK)	ND		0.0050 1		07/25/2014 21:24
Naphthalene	ND		0.0050 1		07/25/2014 21:24
n-Propyl benzene	ND		0.0050 1		07/25/2014 21:24
Styrene	ND		0.0050 1		07/25/2014 21:24
1,1,1,2-Tetrachloroethane	ND		0.0050 1		07/25/2014 21:24
1,1,2,2-Tetrachloroethane	ND		0.0050 1		07/25/2014 21:24
Tetrachloroethene	ND		0.0050 1		07/25/2014 21:24
Toluene	ND		0.0050 1		07/25/2014 21:24
1,2,3-Trichlorobenzene	ND		0.0050 1		07/25/2014 21:24
1,2,4-Trichlorobenzene	ND		0.0050 1		07/25/2014 21:24
1,1,1-Trichloroethane	ND		0.0050 1		07/25/2014 21:24
1,1,2-Trichloroethane	ND		0.0050 1		07/25/2014 21:24
Trichloroethene	ND		0.0050 1		07/25/2014 21:24
Trichlorofluoromethane	ND		0.0050 1		07/25/2014 21:24
1,2,3-Trichloropropane	ND		0.0050 1		07/25/2014 21:24
1,2,4-Trimethylbenzene	ND		0.0050 1		07/25/2014 21:24
1,3,5-Trimethylbenzene	ND		0.0050 1		07/25/2014 21:24
Vinyl Chloride	ND		0.0050 1		07/25/2014 21:24
Xylenes, Total	ND		0.0050 1		07/25/2014 21:24
Surrogates	<u>REC (%)</u>		<u>Limits</u>		
Dibromofluoromethane	93		70-130		07/25/2014 21:24
Toluene-d8	97		70-130		07/25/2014 21:24
4-BFB	99		70-130		07/25/2014 21:24

Client:	P & D Environmental	WorkOrder:	1407857
Project:	#0553; Cathedral Gardens	Extraction Method:	SW5030B
Date Received:	7/23/14 17:12	Analytical Method:	SW8260B
Date Prepared:	7/23/14	Unit:	mg/kg

Client ID	Lab ID	Matrix/ExtType	Date Co	llected Instrument	Batch ID
B12-20	1407857-003A	Soil	07/22/201	4 11:10 GC10	93134
Analytes	Result		<u>RL</u>	DF	Date Analyzed
Acetone	ND		0.10	1	07/25/2014 22:15
tert-Amyl methyl ether (TAME)	ND		0.0050	1	07/25/2014 22:15
Benzene	ND		0.0050	1	07/25/2014 22:15
Bromobenzene	ND		0.0050	1	07/25/2014 22:15
Bromochloromethane	ND		0.0050	1	07/25/2014 22:15
Bromodichloromethane	ND		0.0050	1	07/25/2014 22:15
Bromoform	ND		0.0050	1	07/25/2014 22:15
Bromomethane	ND		0.0050	1	07/25/2014 22:15
2-Butanone (MEK)	ND		0.020	1	07/25/2014 22:15
t-Butyl alcohol (TBA)	ND		0.050	1	07/25/2014 22:15
n-Butyl benzene	ND		0.0050	1	07/25/2014 22:15
sec-Butyl benzene	ND		0.0050	1	07/25/2014 22:15
tert-Butyl benzene	ND		0.0050	1	07/25/2014 22:15
Carbon Disulfide	ND		0.0050	1	07/25/2014 22:15
Carbon Tetrachloride	ND		0.0050	1	07/25/2014 22:15
Chlorobenzene	ND		0.0050	1	07/25/2014 22:15
Chloroethane	ND		0.0050	1	07/25/2014 22:15
Chloroform	ND		0.0050	1	07/25/2014 22:15
Chloromethane	ND		0.0050	1	07/25/2014 22:15
2-Chlorotoluene	ND		0.0050	1	07/25/2014 22:15
4-Chlorotoluene	ND		0.0050	1	07/25/2014 22:15
Dibromochloromethane	ND		0.0050	1	07/25/2014 22:15
1,2-Dibromo-3-chloropropane	ND		0.0040	1	07/25/2014 22:15
1,2-Dibromoethane (EDB)	ND		0.0040	1	07/25/2014 22:15
Dibromomethane	ND		0.0050	1	07/25/2014 22:15
1,2-Dichlorobenzene	ND		0.0050	1	07/25/2014 22:15
1,3-Dichlorobenzene	ND		0.0050	1	07/25/2014 22:15
1,4-Dichlorobenzene	ND		0.0050	1	07/25/2014 22:15
Dichlorodifluoromethane	ND		0.0050	1	07/25/2014 22:15
1,1-Dichloroethane	ND		0.0050	1	07/25/2014 22:15
1,2-Dichloroethane (1,2-DCA)	ND		0.0040	1	07/25/2014 22:15
1,1-Dichloroethene	ND		0.0050	1	07/25/2014 22:15
cis-1,2-Dichloroethene	ND		0.0050	1	07/25/2014 22:15
trans-1,2-Dichloroethene	ND		0.0050	1	07/25/2014 22:15
1,2-Dichloropropane	ND		0.0050	1	07/25/2014 22:15
1,3-Dichloropropane	ND		0.0050	1	07/25/2014 22:15
2,2-Dichloropropane	ND		0.0050	1	07/25/2014 22:15
1,1-Dichloropropene	ND		0.0050	1	07/25/2014 22:15

Client:	P & D Environmental	WorkOrder:	1407857
Project:	#0553; Cathedral Gardens	Extraction Method:	SW5030B
Date Received:	7/23/14 17:12	Analytical Method:	SW8260B
Date Prepared:	7/23/14	Unit:	mg/kg

Client ID	Lab ID	Matrix/ExtType	Date Collec	ted Instrument	Batch ID
B12-20	1407857-003A	Soil	07/22/2014 11	:10 GC10	93134
Analytes	<u>Result</u>		<u>RL</u>	E	Date Analyzed
cis-1,3-Dichloropropene	ND		0.0050 1		07/25/2014 22:15
trans-1,3-Dichloropropene	ND		0.0050 1		07/25/2014 22:15
Diisopropyl ether (DIPE)	ND		0.0050 1		07/25/2014 22:15
Ethylbenzene	ND		0.0050 1		07/25/2014 22:15
Ethyl tert-butyl ether (ETBE)	ND		0.0050 1		07/25/2014 22:15
Freon 113	ND		0.10 1		07/25/2014 22:15
Hexachlorobutadiene	ND		0.0050 1		07/25/2014 22:15
Hexachloroethane	ND		0.0050 1		07/25/2014 22:15
2-Hexanone	ND		0.0050 1		07/25/2014 22:15
Isopropylbenzene	ND		0.0050 1		07/25/2014 22:15
4-Isopropyl toluene	ND		0.0050 1		07/25/2014 22:15
Methyl-t-butyl ether (MTBE)	ND		0.0050 1		07/25/2014 22:15
Methylene chloride	ND		0.0050 1		07/25/2014 22:15
4-Methyl-2-pentanone (MIBK)	ND		0.0050 1		07/25/2014 22:15
Naphthalene	ND		0.0050 1		07/25/2014 22:15
n-Propyl benzene	ND		0.0050 1		07/25/2014 22:15
Styrene	ND		0.0050 1		07/25/2014 22:15
1,1,1,2-Tetrachloroethane	ND		0.0050 1		07/25/2014 22:15
1,1,2,2-Tetrachloroethane	ND		0.0050 1		07/25/2014 22:15
Tetrachloroethene	ND		0.0050 1		07/25/2014 22:15
Toluene	ND		0.0050 1		07/25/2014 22:15
1,2,3-Trichlorobenzene	ND		0.0050 1		07/25/2014 22:15
1,2,4-Trichlorobenzene	ND		0.0050 1		07/25/2014 22:15
1,1,1-Trichloroethane	ND		0.0050 1		07/25/2014 22:15
1,1,2-Trichloroethane	ND		0.0050 1		07/25/2014 22:15
Trichloroethene	ND		0.0050 1		07/25/2014 22:15
Trichlorofluoromethane	ND		0.0050 1		07/25/2014 22:15
1,2,3-Trichloropropane	ND		0.0050 1		07/25/2014 22:15
1,2,4-Trimethylbenzene	ND		0.0050 1		07/25/2014 22:15
1,3,5-Trimethylbenzene	ND		0.0050 1		07/25/2014 22:15
Vinyl Chloride	ND		0.0050 1		07/25/2014 22:15
Xylenes, Total	ND		0.0050 1		07/25/2014 22:15
Surrogates	<u>REC (%)</u>		<u>Limits</u>		
Dibromofluoromethane	92		70-130		07/25/2014 22:15
Toluene-d8	99		70-130		07/25/2014 22:15
4-BFB	98		70-130		07/25/2014 22:15

Client:	P & D Environmental	WorkOrder:	1407857
Project:	#0553; Cathedral Gardens	Extraction Method:	SW5030B
Date Received:	7/23/14 17:12	Analytical Method:	SW8260B
Date Prepared:	7/23/14	Unit:	mg/kg

Client ID	Lab ID	Matrix/ExtType	Date Co	llected Instrument	Batch ID
B13-10	1407857-004A	Soil	07/22/201	4 10:35 GC10	93134
Analytes	Result		<u>RL</u>	DE	Date Analyzed
Acetone	ND		0.20	2	07/26/2014 05:11
tert-Amyl methyl ether (TAME)	ND		0.010	2	07/26/2014 05:11
Benzene	ND		0.010	2	07/26/2014 05:11
Bromobenzene	ND		0.010	2	07/26/2014 05:11
Bromochloromethane	ND		0.010	2	07/26/2014 05:11
Bromodichloromethane	ND		0.010	2	07/26/2014 05:11
Bromoform	ND		0.010	2	07/26/2014 05:11
Bromomethane	ND		0.010	2	07/26/2014 05:11
2-Butanone (MEK)	ND		0.040	2	07/26/2014 05:11
t-Butyl alcohol (TBA)	ND		0.10	2	07/26/2014 05:11
n-Butyl benzene	ND		0.010	2	07/26/2014 05:11
sec-Butyl benzene	0.11		0.010	2	07/26/2014 05:11
tert-Butyl benzene	ND		0.010	2	07/26/2014 05:11
Carbon Disulfide	ND		0.010	2	07/26/2014 05:11
Carbon Tetrachloride	ND		0.010	2	07/26/2014 05:11
Chlorobenzene	ND		0.010	2	07/26/2014 05:11
Chloroethane	ND		0.010	2	07/26/2014 05:11
Chloroform	ND		0.010	2	07/26/2014 05:11
Chloromethane	ND		0.010	2	07/26/2014 05:11
2-Chlorotoluene	ND		0.010	2	07/26/2014 05:11
4-Chlorotoluene	ND		0.010	2	07/26/2014 05:11
Dibromochloromethane	ND		0.010	2	07/26/2014 05:11
1,2-Dibromo-3-chloropropane	ND		0.0080	2	07/26/2014 05:11
1,2-Dibromoethane (EDB)	ND		0.0080	2	07/26/2014 05:11
Dibromomethane	ND		0.010	2	07/26/2014 05:11
1,2-Dichlorobenzene	ND		0.010	2	07/26/2014 05:11
1,3-Dichlorobenzene	ND		0.010	2	07/26/2014 05:11
1,4-Dichlorobenzene	ND		0.010	2	07/26/2014 05:11
Dichlorodifluoromethane	ND		0.010	2	07/26/2014 05:11
1,1-Dichloroethane	ND		0.010	2	07/26/2014 05:11
1,2-Dichloroethane (1,2-DCA)	ND		0.0080	2	07/26/2014 05:11
1,1-Dichloroethene	ND		0.010	2	07/26/2014 05:11
cis-1,2-Dichloroethene	ND		0.010	2	07/26/2014 05:11
trans-1,2-Dichloroethene	ND		0.010	2	07/26/2014 05:11
1,2-Dichloropropane	ND		0.010	2	07/26/2014 05:11
1,3-Dichloropropane	ND		0.010	2	07/26/2014 05:11
2,2-Dichloropropane	ND		0.010	2	07/26/2014 05:11
1,1-Dichloropropene	ND		0.010	2	07/26/2014 05:11

Client:	P & D Environmental	WorkOrder:	1407857
Project:	#0553; Cathedral Gardens	Extraction Method:	SW5030B
Date Received:	7/23/14 17:12	Analytical Method:	SW8260B
Date Prepared:	7/23/14	Unit:	mg/kg

Volatile Organics by P&T and GC/MS (Basic Target List)

Client ID	Lab ID	Matrix/ExtType	Date Co	llected Instrument	Batch ID
B13-10	1407857-004A	Soil	07/22/201	4 10:35 GC10	93134
Analytes	<u>Result</u>		<u>RL</u>	DF	Date Analyzed
cis-1,3-Dichloropropene	ND		0.010	2	07/26/2014 05:11
trans-1,3-Dichloropropene	ND		0.010	2	07/26/2014 05:11
Diisopropyl ether (DIPE)	ND		0.010	2	07/26/2014 05:11
Ethylbenzene	ND		0.010	2	07/26/2014 05:11
Ethyl tert-butyl ether (ETBE)	ND		0.010	2	07/26/2014 05:11
Freon 113	ND		0.20	2	07/26/2014 05:11
Hexachlorobutadiene	ND		0.010	2	07/26/2014 05:11
Hexachloroethane	ND		0.010	2	07/26/2014 05:11
2-Hexanone	ND		0.010	2	07/26/2014 05:11
Isopropylbenzene	ND		0.010	2	07/26/2014 05:11
4-Isopropyl toluene	ND		0.010	2	07/26/2014 05:11
Methyl-t-butyl ether (MTBE)	ND		0.010	2	07/26/2014 05:11
Methylene chloride	ND		0.010	2	07/26/2014 05:11
4-Methyl-2-pentanone (MIBK)	ND		0.010	2	07/26/2014 05:11
Naphthalene	ND		0.010	2	07/26/2014 05:11
n-Propyl benzene	ND		0.010	2	07/26/2014 05:11
Styrene	ND		0.010	2	07/26/2014 05:11
1,1,1,2-Tetrachloroethane	ND		0.010	2	07/26/2014 05:11
1,1,2,2-Tetrachloroethane	ND		0.010	2	07/26/2014 05:11
Tetrachloroethene	ND		0.010	2	07/26/2014 05:11
Toluene	ND		0.010	2	07/26/2014 05:11
1,2,3-Trichlorobenzene	ND		0.010	2	07/26/2014 05:11
1,2,4-Trichlorobenzene	ND		0.010	2	07/26/2014 05:11
1,1,1-Trichloroethane	ND		0.010	2	07/26/2014 05:11
1,1,2-Trichloroethane	ND		0.010	2	07/26/2014 05:11
Trichloroethene	ND		0.010	2	07/26/2014 05:11
Trichlorofluoromethane	ND		0.010	2	07/26/2014 05:11
1,2,3-Trichloropropane	ND		0.010	2	07/26/2014 05:11
1,2,4-Trimethylbenzene	ND		0.010	2	07/26/2014 05:11
1,3,5-Trimethylbenzene	ND		0.010	2	07/26/2014 05:11
Vinyl Chloride	ND		0.010	2	07/26/2014 05:11
Xylenes, Total	ND		0.010	2	07/26/2014 05:11
Surrogates	<u>REC (%)</u>		<u>Limits</u>		
Dibromofluoromethane	92		70-130		07/26/2014 05:11
Toluene-d8	99		70-130		07/26/2014 05:11
4-BFB	95		70-130		07/26/2014 05:11

Angela Rydelius, Lab Manager

Client:	P & D Environmental	WorkOrder:	1407857
Project:	#0553; Cathedral Gardens	Extraction Method:	SW5030B
Date Received:	7/23/14 17:12	Analytical Method:	SW8260B
Date Prepared:	7/23/14	Unit:	mg/kg

Client ID	Lab ID	Matrix/ExtType	Date Co	llected Instrument	Batch ID
B13-15	1407857-005A	Soil	07/22/201	4 10:40 GC10	93134
Analytes	<u>Result</u>		<u>RL</u>	DF	Date Analyzed
Acetone	ND		0.67	6.7	07/26/2014 05:53
tert-Amyl methyl ether (TAME)	ND		0.033	6.7	07/26/2014 05:53
Benzene	ND		0.033	6.7	07/26/2014 05:53
Bromobenzene	ND		0.033	6.7	07/26/2014 05:53
Bromochloromethane	ND		0.033	6.7	07/26/2014 05:53
Bromodichloromethane	ND		0.033	6.7	07/26/2014 05:53
Bromoform	ND		0.033	6.7	07/26/2014 05:53
Bromomethane	ND		0.033	6.7	07/26/2014 05:53
2-Butanone (MEK)	ND		0.13	6.7	07/26/2014 05:53
t-Butyl alcohol (TBA)	ND		0.33	6.7	07/26/2014 05:53
n-Butyl benzene	ND		0.033	6.7	07/26/2014 05:53
sec-Butyl benzene	0.39		0.033	6.7	07/26/2014 05:53
tert-Butyl benzene	ND		0.033	6.7	07/26/2014 05:53
Carbon Disulfide	ND		0.033	6.7	07/26/2014 05:53
Carbon Tetrachloride	ND		0.033	6.7	07/26/2014 05:53
Chlorobenzene	ND		0.033	6.7	07/26/2014 05:53
Chloroethane	ND		0.033	6.7	07/26/2014 05:53
Chloroform	ND		0.033	6.7	07/26/2014 05:53
Chloromethane	ND		0.033	6.7	07/26/2014 05:53
2-Chlorotoluene	ND		0.033	6.7	07/26/2014 05:53
4-Chlorotoluene	ND		0.033	6.7	07/26/2014 05:53
Dibromochloromethane	ND		0.033	6.7	07/26/2014 05:53
1,2-Dibromo-3-chloropropane	ND		0.027	6.7	07/26/2014 05:53
1,2-Dibromoethane (EDB)	ND		0.027	6.7	07/26/2014 05:53
Dibromomethane	ND		0.033	6.7	07/26/2014 05:53
1,2-Dichlorobenzene	ND		0.033	6.7	07/26/2014 05:53
1,3-Dichlorobenzene	ND		0.033	6.7	07/26/2014 05:53
1,4-Dichlorobenzene	ND		0.033	6.7	07/26/2014 05:53
Dichlorodifluoromethane	ND		0.033	6.7	07/26/2014 05:53
1,1-Dichloroethane	ND		0.033	6.7	07/26/2014 05:53
1,2-Dichloroethane (1,2-DCA)	ND		0.027	6.7	07/26/2014 05:53
1,1-Dichloroethene	ND		0.033	6.7	07/26/2014 05:53
cis-1,2-Dichloroethene	ND		0.033	6.7	07/26/2014 05:53
trans-1,2-Dichloroethene	ND		0.033	6.7	07/26/2014 05:53
1,2-Dichloropropane	ND		0.033	6.7	07/26/2014 05:53
1,3-Dichloropropane	ND		0.033	6.7	07/26/2014 05:53
2,2-Dichloropropane	ND		0.033	6.7	07/26/2014 05:53
1,1-Dichloropropene	ND		0.033	6.7	07/26/2014 05:53

Client:	P & D Environmental	WorkOrder:	1407857
Project:	#0553; Cathedral Gardens	Extraction Method:	SW5030B
Date Received:	7/23/14 17:12	Analytical Method:	SW8260B
Date Prepared:	7/23/14	Unit:	mg/kg

Client ID	Lab ID	Matrix/ExtType	Date Colle	ected Instrument	Batch ID
B13-15	1407857-005A	Soil	07/22/2014	10:40 GC10	93134
Analytes	Result		<u>RL</u>	DF	Date Analyzed
cis-1,3-Dichloropropene	ND		0.033	6.7	07/26/2014 05:53
trans-1,3-Dichloropropene	ND		0.033	6.7	07/26/2014 05:53
Diisopropyl ether (DIPE)	ND		0.033	6.7	07/26/2014 05:53
Ethylbenzene	ND		0.033	6.7	07/26/2014 05:53
Ethyl tert-butyl ether (ETBE)	ND		0.033	6.7	07/26/2014 05:53
Freon 113	ND		0.67	6.7	07/26/2014 05:53
Hexachlorobutadiene	ND		0.033	6.7	07/26/2014 05:53
Hexachloroethane	ND		0.033	6.7	07/26/2014 05:53
2-Hexanone	ND		0.033	6.7	07/26/2014 05:53
Isopropylbenzene	ND		0.033	6.7	07/26/2014 05:53
4-Isopropyl toluene	ND		0.033	6.7	07/26/2014 05:53
Methyl-t-butyl ether (MTBE)	ND		0.033	6.7	07/26/2014 05:53
Methylene chloride	ND		0.033	6.7	07/26/2014 05:53
4-Methyl-2-pentanone (MIBK)	ND		0.033	6.7	07/26/2014 05:53
Naphthalene	ND		0.033	6.7	07/26/2014 05:53
n-Propyl benzene	ND		0.033	6.7	07/26/2014 05:53
Styrene	ND		0.033	6.7	07/26/2014 05:53
1,1,1,2-Tetrachloroethane	ND		0.033	6.7	07/26/2014 05:53
1,1,2,2-Tetrachloroethane	ND		0.033	6.7	07/26/2014 05:53
Tetrachloroethene	ND		0.033	6.7	07/26/2014 05:53
Toluene	ND		0.033	6.7	07/26/2014 05:53
1,2,3-Trichlorobenzene	ND		0.033	6.7	07/26/2014 05:53
1,2,4-Trichlorobenzene	ND		0.033	6.7	07/26/2014 05:53
1,1,1-Trichloroethane	ND		0.033	6.7	07/26/2014 05:53
1,1,2-Trichloroethane	ND		0.033	6.7	07/26/2014 05:53
Trichloroethene	ND		0.033	6.7	07/26/2014 05:53
Trichlorofluoromethane	ND		0.033	6.7	07/26/2014 05:53
1,2,3-Trichloropropane	ND		0.033	6.7	07/26/2014 05:53
1,2,4-Trimethylbenzene	ND		0.033	6.7	07/26/2014 05:53
1,3,5-Trimethylbenzene	ND		0.033	6.7	07/26/2014 05:53
Vinyl Chloride	ND		0.033	6.7	07/26/2014 05:53
Xylenes, Total	ND		0.033	6.7	07/26/2014 05:53
Surrogates	<u>REC (%)</u>		<u>Limits</u>		
Dibromofluoromethane	94		70-130		07/26/2014 05:53
Toluene-d8	96		70-130		07/26/2014 05:53
4-BFB	90		70-130		07/26/2014 05:53

Client:	P & D Environmental	WorkOrder:	1407857
Project:	#0553; Cathedral Gardens	Extraction Method:	SW5030B
Date Received:	7/23/14 17:12	Analytical Method:	SW8260B
Date Prepared:	7/23/14	Unit:	mg/kg

Client ID	Lab ID	Matrix/ExtType	Date Col	llected Instrument	Batch ID
B13-20	1407857-006A	Soil	07/22/201	4 10:45 GC10	93134
Analytes	<u>Result</u>		<u>RL</u>	DF	Date Analyzed
Acetone	ND		0.10	1	07/25/2014 22:57
tert-Amyl methyl ether (TAME)	ND		0.0050	1	07/25/2014 22:57
Benzene	ND		0.0050	1	07/25/2014 22:57
Bromobenzene	ND		0.0050	1	07/25/2014 22:57
Bromochloromethane	ND		0.0050	1	07/25/2014 22:57
Bromodichloromethane	ND		0.0050	1	07/25/2014 22:57
Bromoform	ND		0.0050	1	07/25/2014 22:57
Bromomethane	ND		0.0050	1	07/25/2014 22:57
2-Butanone (MEK)	ND		0.020	1	07/25/2014 22:57
t-Butyl alcohol (TBA)	ND		0.050	1	07/25/2014 22:57
n-Butyl benzene	ND		0.0050	1	07/25/2014 22:57
sec-Butyl benzene	ND		0.0050	1	07/25/2014 22:57
tert-Butyl benzene	ND		0.0050	1	07/25/2014 22:57
Carbon Disulfide	ND		0.0050	1	07/25/2014 22:57
Carbon Tetrachloride	ND		0.0050	1	07/25/2014 22:57
Chlorobenzene	ND		0.0050	1	07/25/2014 22:57
Chloroethane	ND		0.0050	1	07/25/2014 22:57
Chloroform	ND		0.0050	1	07/25/2014 22:57
Chloromethane	ND		0.0050	1	07/25/2014 22:57
2-Chlorotoluene	ND		0.0050	1	07/25/2014 22:57
4-Chlorotoluene	ND		0.0050	1	07/25/2014 22:57
Dibromochloromethane	ND		0.0050	1	07/25/2014 22:57
1,2-Dibromo-3-chloropropane	ND		0.0040	1	07/25/2014 22:57
1,2-Dibromoethane (EDB)	ND		0.0040	1	07/25/2014 22:57
Dibromomethane	ND		0.0050	1	07/25/2014 22:57
1,2-Dichlorobenzene	ND		0.0050	1	07/25/2014 22:57
1,3-Dichlorobenzene	ND		0.0050	1	07/25/2014 22:57
1,4-Dichlorobenzene	ND		0.0050	1	07/25/2014 22:57
Dichlorodifluoromethane	ND		0.0050	1	07/25/2014 22:57
1,1-Dichloroethane	ND		0.0050	1	07/25/2014 22:57
1,2-Dichloroethane (1,2-DCA)	ND		0.0040	1	07/25/2014 22:57
1,1-Dichloroethene	ND		0.0050	1	07/25/2014 22:57
cis-1,2-Dichloroethene	ND		0.0050	1	07/25/2014 22:57
trans-1,2-Dichloroethene	ND		0.0050	1	07/25/2014 22:57
1,2-Dichloropropane	ND		0.0050	1	07/25/2014 22:57
1,3-Dichloropropane	ND		0.0050	1	07/25/2014 22:57
2,2-Dichloropropane	ND		0.0050	1	07/25/2014 22:57
1,1-Dichloropropene	ND		0.0050	1	07/25/2014 22:57

Client:	P & D Environmental	WorkOrder:	1407857
Project:	#0553; Cathedral Gardens	Extraction Method:	SW5030B
Date Received:	7/23/14 17:12	Analytical Method:	SW8260B
Date Prepared:	7/23/14	Unit:	mg/kg

Volatile Organics by P&T and GC/MS (Basic Target List)

Client ID	Lab ID	Matrix/ExtType	Date Colle	ected Instrument	Batch ID
B13-20	1407857-006A	Soil	07/22/2014	10:45 GC10	93134
Analytes	Result		<u>RL</u>	DF	Date Analyzed
cis-1,3-Dichloropropene	ND		0.0050	1	07/25/2014 22:57
trans-1,3-Dichloropropene	ND		0.0050	1	07/25/2014 22:57
Diisopropyl ether (DIPE)	ND		0.0050	1	07/25/2014 22:57
Ethylbenzene	ND		0.0050	1	07/25/2014 22:57
Ethyl tert-butyl ether (ETBE)	ND		0.0050	1	07/25/2014 22:57
Freon 113	ND		0.10	1	07/25/2014 22:57
Hexachlorobutadiene	ND		0.0050	1	07/25/2014 22:57
Hexachloroethane	ND		0.0050	1	07/25/2014 22:57
2-Hexanone	ND		0.0050	1	07/25/2014 22:57
Isopropylbenzene	ND		0.0050	1	07/25/2014 22:57
4-Isopropyl toluene	ND		0.0050	1	07/25/2014 22:57
Methyl-t-butyl ether (MTBE)	ND		0.0050	1	07/25/2014 22:57
Methylene chloride	ND		0.0050	1	07/25/2014 22:57
4-Methyl-2-pentanone (MIBK)	ND		0.0050	1	07/25/2014 22:57
Naphthalene	ND		0.0050	1	07/25/2014 22:57
n-Propyl benzene	ND		0.0050	1	07/25/2014 22:57
Styrene	ND		0.0050	1	07/25/2014 22:57
1,1,1,2-Tetrachloroethane	ND		0.0050	1	07/25/2014 22:57
1,1,2,2-Tetrachloroethane	ND		0.0050	1	07/25/2014 22:57
Tetrachloroethene	ND		0.0050	1	07/25/2014 22:57
Toluene	ND		0.0050	1	07/25/2014 22:57
1,2,3-Trichlorobenzene	ND		0.0050	1	07/25/2014 22:57
1,2,4-Trichlorobenzene	ND		0.0050	1	07/25/2014 22:57
1,1,1-Trichloroethane	ND		0.0050	1	07/25/2014 22:57
1,1,2-Trichloroethane	ND		0.0050	1	07/25/2014 22:57
Trichloroethene	ND		0.0050	1	07/25/2014 22:57
Trichlorofluoromethane	ND		0.0050	1	07/25/2014 22:57
1,2,3-Trichloropropane	ND		0.0050	1	07/25/2014 22:57
1,2,4-Trimethylbenzene	ND		0.0050	1	07/25/2014 22:57
1,3,5-Trimethylbenzene	ND		0.0050	1	07/25/2014 22:57
Vinyl Chloride	ND		0.0050	1	07/25/2014 22:57
Xylenes, Total	ND		0.0050	1	07/25/2014 22:57
Surrogates	<u>REC (%)</u>		<u>Limits</u>		
Dibromofluoromethane	94		70-130		07/25/2014 22:57
Toluene-d8	98		70-130		07/25/2014 22:57
4-BFB	101		70-130		07/25/2014 22:57

Angela Rydelius, Lab Manager

Client:	P & D Environmental	WorkOrder:	1407857
Project:	#0553; Cathedral Gardens	Extraction Method:	SW5030B
Date Received:	7/23/14 17:12	Analytical Method:	SW8260B
Date Prepared:	7/23/14	Unit:	mg/kg

Client ID	Lab ID	Matrix/ExtType	Date Co	llected Instrument	Batch ID
B14-10	1407857-007A	Soil	07/22/201	4 12:55 GC10	93134
Analytes	<u>Result</u>		<u>RL</u>	DF	Date Analyzed
Acetone	ND		0.10	1	07/25/2014 23:39
tert-Amyl methyl ether (TAME)	ND		0.0050	1	07/25/2014 23:39
Benzene	ND		0.0050	1	07/25/2014 23:39
Bromobenzene	ND		0.0050	1	07/25/2014 23:39
Bromochloromethane	ND		0.0050	1	07/25/2014 23:39
Bromodichloromethane	ND		0.0050	1	07/25/2014 23:39
Bromoform	ND		0.0050	1	07/25/2014 23:39
Bromomethane	ND		0.0050	1	07/25/2014 23:39
2-Butanone (MEK)	ND		0.020	1	07/25/2014 23:39
t-Butyl alcohol (TBA)	ND		0.050	1	07/25/2014 23:39
n-Butyl benzene	ND		0.0050	1	07/25/2014 23:39
sec-Butyl benzene	ND		0.0050	1	07/25/2014 23:39
tert-Butyl benzene	ND		0.0050	1	07/25/2014 23:39
Carbon Disulfide	ND		0.0050	1	07/25/2014 23:39
Carbon Tetrachloride	ND		0.0050	1	07/25/2014 23:39
Chlorobenzene	ND		0.0050	1	07/25/2014 23:39
Chloroethane	ND		0.0050	1	07/25/2014 23:39
Chloroform	ND		0.0050	1	07/25/2014 23:39
Chloromethane	ND		0.0050	1	07/25/2014 23:39
2-Chlorotoluene	ND		0.0050	1	07/25/2014 23:39
4-Chlorotoluene	ND		0.0050	1	07/25/2014 23:39
Dibromochloromethane	ND		0.0050	1	07/25/2014 23:39
1,2-Dibromo-3-chloropropane	ND		0.0040	1	07/25/2014 23:39
1,2-Dibromoethane (EDB)	ND		0.0040	1	07/25/2014 23:39
Dibromomethane	ND		0.0050	1	07/25/2014 23:39
1,2-Dichlorobenzene	ND		0.0050	1	07/25/2014 23:39
1,3-Dichlorobenzene	ND		0.0050	1	07/25/2014 23:39
1,4-Dichlorobenzene	ND		0.0050	1	07/25/2014 23:39
Dichlorodifluoromethane	ND		0.0050	1	07/25/2014 23:39
1,1-Dichloroethane	ND		0.0050	1	07/25/2014 23:39
1,2-Dichloroethane (1,2-DCA)	ND		0.0040	1	07/25/2014 23:39
1,1-Dichloroethene	ND		0.0050	1	07/25/2014 23:39
cis-1,2-Dichloroethene	ND		0.0050	1	07/25/2014 23:39
trans-1,2-Dichloroethene	ND		0.0050	1	07/25/2014 23:39
1,2-Dichloropropane	ND		0.0050	1	07/25/2014 23:39
1,3-Dichloropropane	ND		0.0050	1	07/25/2014 23:39
2,2-Dichloropropane	ND		0.0050	1	07/25/2014 23:39
1,1-Dichloropropene	ND		0.0050	1	07/25/2014 23:39

Client:	P & D Environmental	WorkOrder:	1407857
Project:	#0553; Cathedral Gardens	Extraction Method:	SW5030B
Date Received:	7/23/14 17:12	Analytical Method:	SW8260B
Date Prepared:	7/23/14	Unit:	mg/kg

Volatile Organics by P&T and GC/MS (Basic Target List)

Client ID	Lab ID	Matrix/ExtType	Date Collec	eted Instrument	Batch ID
B14-10	1407857-007A	Soil	07/22/2014 1	2:55 GC10	93134
Analytes	<u>Result</u>		<u>RL [</u>	DF	Date Analyzed
cis-1,3-Dichloropropene	ND		0.0050 1		07/25/2014 23:39
trans-1,3-Dichloropropene	ND		0.0050 1		07/25/2014 23:39
Diisopropyl ether (DIPE)	ND		0.0050 1		07/25/2014 23:39
Ethylbenzene	ND		0.0050 1		07/25/2014 23:39
Ethyl tert-butyl ether (ETBE)	ND		0.0050 1		07/25/2014 23:39
Freon 113	ND		0.10 1		07/25/2014 23:39
Hexachlorobutadiene	ND		0.0050 1		07/25/2014 23:39
Hexachloroethane	ND		0.0050 1		07/25/2014 23:39
2-Hexanone	ND		0.0050 1		07/25/2014 23:39
Isopropylbenzene	ND		0.0050 1		07/25/2014 23:39
4-Isopropyl toluene	ND		0.0050 1		07/25/2014 23:39
Methyl-t-butyl ether (MTBE)	ND		0.0050 1		07/25/2014 23:39
Methylene chloride	ND		0.0050 1		07/25/2014 23:39
4-Methyl-2-pentanone (MIBK)	ND		0.0050 1		07/25/2014 23:39
Naphthalene	ND		0.0050 1		07/25/2014 23:39
n-Propyl benzene	ND		0.0050 1		07/25/2014 23:39
Styrene	ND		0.0050 1		07/25/2014 23:39
1,1,1,2-Tetrachloroethane	ND		0.0050 1		07/25/2014 23:39
1,1,2,2-Tetrachloroethane	ND		0.0050 1		07/25/2014 23:39
Tetrachloroethene	ND		0.0050 1		07/25/2014 23:39
Toluene	ND		0.0050 1		07/25/2014 23:39
1,2,3-Trichlorobenzene	ND		0.0050 1		07/25/2014 23:39
1,2,4-Trichlorobenzene	ND		0.0050 1		07/25/2014 23:39
1,1,1-Trichloroethane	ND		0.0050 1		07/25/2014 23:39
1,1,2-Trichloroethane	ND		0.0050 1		07/25/2014 23:39
Trichloroethene	ND		0.0050 1		07/25/2014 23:39
Trichlorofluoromethane	ND		0.0050 1		07/25/2014 23:39
1,2,3-Trichloropropane	ND		0.0050 1		07/25/2014 23:39
1,2,4-Trimethylbenzene	ND		0.0050 1		07/25/2014 23:39
1,3,5-Trimethylbenzene	ND		0.0050 1		07/25/2014 23:39
Vinyl Chloride	ND		0.0050 1		07/25/2014 23:39
Xylenes, Total	ND		0.0050		07/25/2014 23:39
Surrogates	<u>REC (%)</u>		<u>Limits</u>		
Dibromofluoromethane	92		70-130		07/25/2014 23:39
Toluene-d8	98		70-130		07/25/2014 23:39
4-BFB	96		70-130		07/25/2014 23:39

Angela Rydelius, Lab Manager

Client:	P & D Environmental	WorkOrder:	1407857
Project:	#0553; Cathedral Gardens	Extraction Method:	SW5030B
Date Received:	7/23/14 17:12	Analytical Method:	SW8260B
Date Prepared:	7/23/14	Unit:	mg/kg

Client ID	Lab ID	Matrix/ExtType	Date Coll	ected Instrument	Batch ID
B14-15	1407857-008A	Soil	07/22/2014	13:00 GC10	93134
Analytes	<u>Result</u>		<u>RL</u>	DF	Date Analyzed
Acetone	ND		0.10	1	07/26/2014 00:20
tert-Amyl methyl ether (TAME)	ND		0.0050	1	07/26/2014 00:20
Benzene	ND		0.0050	1	07/26/2014 00:20
Bromobenzene	ND		0.0050	1	07/26/2014 00:20
Bromochloromethane	ND		0.0050	1	07/26/2014 00:20
Bromodichloromethane	ND		0.0050	1	07/26/2014 00:20
Bromoform	ND		0.0050	1	07/26/2014 00:20
Bromomethane	ND		0.0050	1	07/26/2014 00:20
2-Butanone (MEK)	ND		0.020	1	07/26/2014 00:20
t-Butyl alcohol (TBA)	ND		0.050	1	07/26/2014 00:20
n-Butyl benzene	ND		0.0050	1	07/26/2014 00:20
sec-Butyl benzene	ND		0.0050	1	07/26/2014 00:20
tert-Butyl benzene	ND		0.0050	1	07/26/2014 00:20
Carbon Disulfide	ND		0.0050	1	07/26/2014 00:20
Carbon Tetrachloride	ND		0.0050	1	07/26/2014 00:20
Chlorobenzene	ND		0.0050	1	07/26/2014 00:20
Chloroethane	ND		0.0050	1	07/26/2014 00:20
Chloroform	ND		0.0050	1	07/26/2014 00:20
Chloromethane	ND		0.0050	1	07/26/2014 00:20
2-Chlorotoluene	ND		0.0050	1	07/26/2014 00:20
4-Chlorotoluene	ND		0.0050	1	07/26/2014 00:20
Dibromochloromethane	ND		0.0050	1	07/26/2014 00:20
1,2-Dibromo-3-chloropropane	ND		0.0040	1	07/26/2014 00:20
1,2-Dibromoethane (EDB)	ND		0.0040	1	07/26/2014 00:20
Dibromomethane	ND		0.0050	1	07/26/2014 00:20
1,2-Dichlorobenzene	ND		0.0050	1	07/26/2014 00:20
1,3-Dichlorobenzene	ND		0.0050	1	07/26/2014 00:20
1,4-Dichlorobenzene	ND		0.0050	1	07/26/2014 00:20
Dichlorodifluoromethane	ND		0.0050	1	07/26/2014 00:20
1,1-Dichloroethane	ND		0.0050	1	07/26/2014 00:20
1,2-Dichloroethane (1,2-DCA)	ND		0.0040	1	07/26/2014 00:20
1,1-Dichloroethene	ND		0.0050	1	07/26/2014 00:20
cis-1,2-Dichloroethene	ND		0.0050	1	07/26/2014 00:20
trans-1,2-Dichloroethene	ND		0.0050	1	07/26/2014 00:20
1,2-Dichloropropane	ND		0.0050	1	07/26/2014 00:20
1,3-Dichloropropane	ND		0.0050	1	07/26/2014 00:20
2,2-Dichloropropane	ND		0.0050	1	07/26/2014 00:20
1,1-Dichloropropene	ND		0.0050	1	07/26/2014 00:20

Client:	P & D Environmental	WorkOrder:	1407857
Project:	#0553; Cathedral Gardens	Extraction Method:	SW5030B
Date Received:	7/23/14 17:12	Analytical Method:	SW8260B
Date Prepared:	7/23/14	Unit:	mg/kg

Volatile Organics by P&T and GC/MS (Basic Target List)

Client ID	Lab ID	Matrix/ExtType	Date Collec	ted Instrument	Batch ID
B14-15	1407857-008A	Soil	07/22/2014 13	:00 GC10	93134
Analytes	Result		<u>RL</u> D	E	Date Analyzed
cis-1,3-Dichloropropene	ND		0.0050 1		07/26/2014 00:20
trans-1,3-Dichloropropene	ND		0.0050 1		07/26/2014 00:20
Diisopropyl ether (DIPE)	ND		0.0050 1		07/26/2014 00:20
Ethylbenzene	ND		0.0050 1		07/26/2014 00:20
Ethyl tert-butyl ether (ETBE)	ND		0.0050 1		07/26/2014 00:20
Freon 113	ND		0.10 1		07/26/2014 00:20
Hexachlorobutadiene	ND		0.0050 1		07/26/2014 00:20
Hexachloroethane	ND		0.0050 1		07/26/2014 00:20
2-Hexanone	ND		0.0050 1		07/26/2014 00:20
Isopropylbenzene	ND		0.0050 1		07/26/2014 00:20
4-Isopropyl toluene	ND		0.0050 1		07/26/2014 00:20
Methyl-t-butyl ether (MTBE)	ND		0.0050 1		07/26/2014 00:20
Methylene chloride	ND		0.0050 1		07/26/2014 00:20
4-Methyl-2-pentanone (MIBK)	ND		0.0050 1		07/26/2014 00:20
Naphthalene	ND		0.0050 1		07/26/2014 00:20
n-Propyl benzene	ND		0.0050 1		07/26/2014 00:20
Styrene	ND		0.0050 1		07/26/2014 00:20
1,1,1,2-Tetrachloroethane	ND		0.0050 1		07/26/2014 00:20
1,1,2,2-Tetrachloroethane	ND		0.0050 1		07/26/2014 00:20
Tetrachloroethene	ND		0.0050 1		07/26/2014 00:20
Toluene	ND		0.0050 1		07/26/2014 00:20
1,2,3-Trichlorobenzene	ND		0.0050 1		07/26/2014 00:20
1,2,4-Trichlorobenzene	ND		0.0050 1		07/26/2014 00:20
1,1,1-Trichloroethane	ND		0.0050 1		07/26/2014 00:20
1,1,2-Trichloroethane	ND		0.0050 1		07/26/2014 00:20
Trichloroethene	ND		0.0050 1		07/26/2014 00:20
Trichlorofluoromethane	ND		0.0050 1		07/26/2014 00:20
1,2,3-Trichloropropane	ND		0.0050 1		07/26/2014 00:20
1,2,4-Trimethylbenzene	ND		0.0050 1		07/26/2014 00:20
1,3,5-Trimethylbenzene	ND		0.0050 1		07/26/2014 00:20
Vinyl Chloride	ND		0.0050 1		07/26/2014 00:20
Xylenes, Total	ND		0.0050 1		07/26/2014 00:20
Surrogates	<u>REC (%)</u>		<u>Limits</u>		
Dibromofluoromethane	93		70-130		07/26/2014 00:20
Toluene-d8	98		70-130		07/26/2014 00:20
4-BFB	99		70-130		07/26/2014 00:20

Angela Rydelius, Lab Manager

Client:	P & D Environmental	WorkOrder:	1407857
Project:	#0553; Cathedral Gardens	Extraction Method:	SW5030B
Date Received:	7/23/14 17:12	Analytical Method:	SW8260B
Date Prepared:	7/23/14	Unit:	mg/kg

Client ID	Lab ID	Matrix/ExtType	Date Colle	ected]	Instrument	Batch ID
B14-20	1407857-009A	Soil	07/22/2014	13:05	GC10	93134
<u>Analytes</u>	<u>Result</u>		<u>RL</u>	DF		Date Analyzed
Acetone	ND		0.10	1		07/26/2014 01:02
tert-Amyl methyl ether (TAME)	ND		0.0050	1		07/26/2014 01:02
Benzene	ND		0.0050	1		07/26/2014 01:02
Bromobenzene	ND		0.0050	1		07/26/2014 01:02
Bromochloromethane	ND		0.0050	1		07/26/2014 01:02
Bromodichloromethane	ND		0.0050	1		07/26/2014 01:02
Bromoform	ND		0.0050	1		07/26/2014 01:02
Bromomethane	ND		0.0050	1		07/26/2014 01:02
2-Butanone (MEK)	ND		0.020	1		07/26/2014 01:02
t-Butyl alcohol (TBA)	ND		0.050	1		07/26/2014 01:02
n-Butyl benzene	ND		0.0050	1		07/26/2014 01:02
sec-Butyl benzene	ND		0.0050	1		07/26/2014 01:02
tert-Butyl benzene	ND		0.0050	1		07/26/2014 01:02
Carbon Disulfide	ND		0.0050	1		07/26/2014 01:02
Carbon Tetrachloride	ND		0.0050	1		07/26/2014 01:02
Chlorobenzene	ND		0.0050	1		07/26/2014 01:02
Chloroethane	ND		0.0050	1		07/26/2014 01:02
Chloroform	ND		0.0050	1		07/26/2014 01:02
Chloromethane	ND		0.0050	1		07/26/2014 01:02
2-Chlorotoluene	ND		0.0050	1		07/26/2014 01:02
4-Chlorotoluene	ND		0.0050	1		07/26/2014 01:02
Dibromochloromethane	ND		0.0050	1		07/26/2014 01:02
1,2-Dibromo-3-chloropropane	ND		0.0040	1		07/26/2014 01:02
1,2-Dibromoethane (EDB)	ND		0.0040	1		07/26/2014 01:02
Dibromomethane	ND		0.0050	1		07/26/2014 01:02
1,2-Dichlorobenzene	ND		0.0050	1		07/26/2014 01:02
1,3-Dichlorobenzene	ND		0.0050	1		07/26/2014 01:02
1,4-Dichlorobenzene	ND		0.0050	1		07/26/2014 01:02
Dichlorodifluoromethane	ND		0.0050	1		07/26/2014 01:02
1,1-Dichloroethane	ND		0.0050	1		07/26/2014 01:02
1,2-Dichloroethane (1,2-DCA)	ND		0.0040	1		07/26/2014 01:02
1,1-Dichloroethene	ND		0.0050	1		07/26/2014 01:02
cis-1,2-Dichloroethene	ND		0.0050	1		07/26/2014 01:02
trans-1,2-Dichloroethene	ND		0.0050	1		07/26/2014 01:02
1,2-Dichloropropane	ND		0.0050	1		07/26/2014 01:02
1,3-Dichloropropane	ND		0.0050	1		07/26/2014 01:02
2,2-Dichloropropane	ND		0.0050	1		07/26/2014 01:02
1,1-Dichloropropene	ND		0.0050	1		07/26/2014 01:02

Client:	P & D Environmental	WorkOrder:	1407857
Project:	#0553; Cathedral Gardens	Extraction Method:	SW5030B
Date Received:	7/23/14 17:12	Analytical Method:	SW8260B
Date Prepared:	7/23/14	Unit:	mg/kg

Client ID	Lab ID	Matrix/ExtType	Date Colle	ected Instrument	Batch ID
B14-20	1407857-009A	Soil	07/22/2014	13:05 GC10	93134
Analytes	<u>Result</u>		<u>RL</u>	DF	Date Analyzed
cis-1,3-Dichloropropene	ND		0.0050	1	07/26/2014 01:02
trans-1,3-Dichloropropene	ND		0.0050	1	07/26/2014 01:02
Diisopropyl ether (DIPE)	ND		0.0050	1	07/26/2014 01:02
Ethylbenzene	ND		0.0050	1	07/26/2014 01:02
Ethyl tert-butyl ether (ETBE)	ND		0.0050	1	07/26/2014 01:02
Freon 113	ND		0.10	1	07/26/2014 01:02
Hexachlorobutadiene	ND		0.0050	1	07/26/2014 01:02
Hexachloroethane	ND		0.0050	1	07/26/2014 01:02
2-Hexanone	ND		0.0050	1	07/26/2014 01:02
Isopropylbenzene	ND		0.0050	1	07/26/2014 01:02
4-Isopropyl toluene	ND		0.0050	1	07/26/2014 01:02
Methyl-t-butyl ether (MTBE)	ND		0.0050	1	07/26/2014 01:02
Methylene chloride	ND		0.0050	1	07/26/2014 01:02
4-Methyl-2-pentanone (MIBK)	ND		0.0050	1	07/26/2014 01:02
Naphthalene	ND		0.0050	1	07/26/2014 01:02
n-Propyl benzene	ND		0.0050	1	07/26/2014 01:02
Styrene	ND		0.0050	1	07/26/2014 01:02
1,1,1,2-Tetrachloroethane	ND		0.0050	1	07/26/2014 01:02
1,1,2,2-Tetrachloroethane	ND		0.0050	1	07/26/2014 01:02
Tetrachloroethene	ND		0.0050	1	07/26/2014 01:02
Toluene	ND		0.0050	1	07/26/2014 01:02
1,2,3-Trichlorobenzene	ND		0.0050	1	07/26/2014 01:02
1,2,4-Trichlorobenzene	ND		0.0050	1	07/26/2014 01:02
1,1,1-Trichloroethane	ND		0.0050	1	07/26/2014 01:02
1,1,2-Trichloroethane	ND		0.0050	1	07/26/2014 01:02
Trichloroethene	ND		0.0050	1	07/26/2014 01:02
Trichlorofluoromethane	ND		0.0050	1	07/26/2014 01:02
1,2,3-Trichloropropane	ND		0.0050	1	07/26/2014 01:02
1,2,4-Trimethylbenzene	ND		0.0050	1	07/26/2014 01:02
1,3,5-Trimethylbenzene	ND		0.0050	1	07/26/2014 01:02
Vinyl Chloride	ND		0.0050	1	07/26/2014 01:02
Xylenes, Total	ND		0.0050	1	07/26/2014 01:02
Surrogates	<u>REC (%)</u>		<u>Limits</u>		
Dibromofluoromethane	93		70-130		07/26/2014 01:02
Toluene-d8	97		70-130		07/26/2014 01:02
4-BFB	102		70-130		07/26/2014 01:02

Client:	P & D Environmental	WorkOrder:	1407857
Project:	#0553; Cathedral Gardens	Extraction Method:	SW5030B
Date Received:	7/23/14 17:12	Analytical Method:	SW8260B
Date Prepared:	7/23/14	Unit:	mg/kg

Client ID	Lab ID	Matrix/ExtType	Date Col	lected Instrument	Batch ID
B15-10	1407857-010A	Soil	07/22/2014	11:35 GC10	93143
Analytes	<u>Result</u>		<u>RL</u>	DF	Date Analyzed
Acetone	ND		0.10	1	07/24/2014 14:08
tert-Amyl methyl ether (TAME)	ND		0.0050	1	07/24/2014 14:08
Benzene	ND		0.0050	1	07/24/2014 14:08
Bromobenzene	ND		0.0050	1	07/24/2014 14:08
Bromochloromethane	ND		0.0050	1	07/24/2014 14:08
Bromodichloromethane	ND		0.0050	1	07/24/2014 14:08
Bromoform	ND		0.0050	1	07/24/2014 14:08
Bromomethane	ND		0.0050	1	07/24/2014 14:08
2-Butanone (MEK)	ND		0.020	1	07/24/2014 14:08
t-Butyl alcohol (TBA)	ND		0.050	1	07/24/2014 14:08
n-Butyl benzene	ND		0.0050	1	07/24/2014 14:08
sec-Butyl benzene	ND		0.0050	1	07/24/2014 14:08
tert-Butyl benzene	ND		0.0050	1	07/24/2014 14:08
Carbon Disulfide	ND		0.0050	1	07/24/2014 14:08
Carbon Tetrachloride	ND		0.0050	1	07/24/2014 14:08
Chlorobenzene	ND		0.0050	1	07/24/2014 14:08
Chloroethane	ND		0.0050	1	07/24/2014 14:08
Chloroform	ND		0.0050	1	07/24/2014 14:08
Chloromethane	ND		0.0050	1	07/24/2014 14:08
2-Chlorotoluene	ND		0.0050	1	07/24/2014 14:08
4-Chlorotoluene	ND		0.0050	1	07/24/2014 14:08
Dibromochloromethane	ND		0.0050	1	07/24/2014 14:08
1,2-Dibromo-3-chloropropane	ND		0.0040	1	07/24/2014 14:08
1,2-Dibromoethane (EDB)	ND		0.0040	1	07/24/2014 14:08
Dibromomethane	ND		0.0050	1	07/24/2014 14:08
1,2-Dichlorobenzene	ND		0.0050	1	07/24/2014 14:08
1,3-Dichlorobenzene	ND		0.0050	1	07/24/2014 14:08
1,4-Dichlorobenzene	ND		0.0050	1	07/24/2014 14:08
Dichlorodifluoromethane	ND		0.0050	1	07/24/2014 14:08
1,1-Dichloroethane	ND		0.0050	1	07/24/2014 14:08
1,2-Dichloroethane (1,2-DCA)	ND		0.0040	1	07/24/2014 14:08
1,1-Dichloroethene	ND		0.0050	1	07/24/2014 14:08
cis-1,2-Dichloroethene	ND		0.0050	1	07/24/2014 14:08
trans-1,2-Dichloroethene	ND		0.0050	1	07/24/2014 14:08
1,2-Dichloropropane	ND		0.0050	1	07/24/2014 14:08
1,3-Dichloropropane	ND		0.0050	1	07/24/2014 14:08
2,2-Dichloropropane	ND		0.0050	1	07/24/2014 14:08
1,1-Dichloropropene	ND		0.0050	1	07/24/2014 14:08
(2)					

Client:	P & D Environmental	WorkOrder:	1407857
Project:	#0553; Cathedral Gardens	Extraction Method:	SW5030B
Date Received:	7/23/14 17:12	Analytical Method:	SW8260B
Date Prepared:	7/23/14	Unit:	mg/kg

Client ID	Lab ID	Matrix/ExtType	Date Colle	cted Instrument	Batch ID
B15-10	1407857-010A	Soil	07/22/2014 1	1:35 GC10	93143
Analytes	<u>Result</u>		<u>RL</u>	DF	Date Analyzed
cis-1,3-Dichloropropene	ND		0.0050	1	07/24/2014 14:08
trans-1,3-Dichloropropene	ND		0.0050	1	07/24/2014 14:08
Diisopropyl ether (DIPE)	ND		0.0050	1	07/24/2014 14:08
Ethylbenzene	ND		0.0050	1	07/24/2014 14:08
Ethyl tert-butyl ether (ETBE)	ND		0.0050	1	07/24/2014 14:08
Freon 113	ND		0.10	1	07/24/2014 14:08
Hexachlorobutadiene	ND		0.0050	1	07/24/2014 14:08
Hexachloroethane	ND		0.0050	1	07/24/2014 14:08
2-Hexanone	ND		0.0050	1	07/24/2014 14:08
Isopropylbenzene	ND		0.0050	1	07/24/2014 14:08
4-Isopropyl toluene	ND		0.0050	1	07/24/2014 14:08
Methyl-t-butyl ether (MTBE)	ND		0.0050	1	07/24/2014 14:08
Methylene chloride	ND		0.0050	1	07/24/2014 14:08
4-Methyl-2-pentanone (MIBK)	ND		0.0050	1	07/24/2014 14:08
Naphthalene	ND		0.0050	1	07/24/2014 14:08
n-Propyl benzene	ND		0.0050	1	07/24/2014 14:08
Styrene	ND		0.0050	1	07/24/2014 14:08
1,1,1,2-Tetrachloroethane	ND		0.0050	1	07/24/2014 14:08
1,1,2,2-Tetrachloroethane	ND		0.0050	1	07/24/2014 14:08
Tetrachloroethene	ND		0.0050	1	07/24/2014 14:08
Toluene	ND		0.0050	1	07/24/2014 14:08
1,2,3-Trichlorobenzene	ND		0.0050	1	07/24/2014 14:08
1,2,4-Trichlorobenzene	ND		0.0050	1	07/24/2014 14:08
1,1,1-Trichloroethane	ND		0.0050	1	07/24/2014 14:08
1,1,2-Trichloroethane	ND		0.0050	1	07/24/2014 14:08
Trichloroethene	ND		0.0050	1	07/24/2014 14:08
Trichlorofluoromethane	ND		0.0050	1	07/24/2014 14:08
1,2,3-Trichloropropane	ND		0.0050	1	07/24/2014 14:08
1,2,4-Trimethylbenzene	ND		0.0050	1	07/24/2014 14:08
1,3,5-Trimethylbenzene	ND		0.0050	1	07/24/2014 14:08
Vinyl Chloride	ND		0.0050	1	07/24/2014 14:08
Xylenes, Total	ND		0.0050	1	07/24/2014 14:08
Surrogates	<u>REC (%)</u>		<u>Limits</u>		
Dibromofluoromethane	93		70-130		07/24/2014 14:08
Toluene-d8	96		70-130		07/24/2014 14:08
4-BFB	89		70-130		07/24/2014 14:08

Client:	P & D Environmental	WorkOrder:	1407857
Project:	#0553; Cathedral Gardens	Extraction Method:	SW5030B
Date Received:	7/23/14 17:12	Analytical Method:	SW8260B
Date Prepared:	7/23/14	Unit:	mg/kg

Volatile Organics by P&T and GC/MS (Basic Target List)

Client ID	Lab ID	Matrix/ExtType	Date Coll	ected Instrument	Batch ID
B15-15	1407857-011A	Soil	07/22/2014	11:40 GC10	93143
Analytes	Result		<u>RL</u>	DF	Date Analyzed
Acetone	ND		0.10	1	07/26/2014 01:43
tert-Amyl methyl ether (TAME)	ND		0.0050	1	07/26/2014 01:43
Benzene	ND		0.0050	1	07/26/2014 01:43
Bromobenzene	ND		0.0050	1	07/26/2014 01:43
Bromochloromethane	ND		0.0050	1	07/26/2014 01:43
Bromodichloromethane	ND		0.0050	1	07/26/2014 01:43
Bromoform	ND		0.0050	1	07/26/2014 01:43
Bromomethane	ND		0.0050	1	07/26/2014 01:43
2-Butanone (MEK)	ND		0.020	1	07/26/2014 01:43
t-Butyl alcohol (TBA)	ND		0.050	1	07/26/2014 01:43
n-Butyl benzene	ND		0.0050	1	07/26/2014 01:43
sec-Butyl benzene	ND		0.0050	1	07/26/2014 01:43
tert-Butyl benzene	ND		0.0050	1	07/26/2014 01:43
Carbon Disulfide	ND		0.0050	1	07/26/2014 01:43
Carbon Tetrachloride	ND		0.0050	1	07/26/2014 01:43
Chlorobenzene	ND		0.0050	1	07/26/2014 01:43
Chloroethane	ND		0.0050	1	07/26/2014 01:43
Chloroform	ND		0.0050	1	07/26/2014 01:43
Chloromethane	ND		0.0050	1	07/26/2014 01:43
2-Chlorotoluene	ND		0.0050	1	07/26/2014 01:43
4-Chlorotoluene	ND		0.0050	1	07/26/2014 01:43
Dibromochloromethane	ND		0.0050	1	07/26/2014 01:43
1,2-Dibromo-3-chloropropane	ND		0.0040	1	07/26/2014 01:43
1,2-Dibromoethane (EDB)	ND		0.0040	1	07/26/2014 01:43
Dibromomethane	ND		0.0050	1	07/26/2014 01:43
1,2-Dichlorobenzene	ND		0.0050	1	07/26/2014 01:43
1,3-Dichlorobenzene	ND		0.0050	1	07/26/2014 01:43
1,4-Dichlorobenzene	ND		0.0050	1	07/26/2014 01:43
Dichlorodifluoromethane	ND		0.0050	1	07/26/2014 01:43
1,1-Dichloroethane	ND		0.0050	1	07/26/2014 01:43
1,2-Dichloroethane (1,2-DCA)	ND		0.0040	1	07/26/2014 01:43
1,1-Dichloroethene	ND		0.0050	1	07/26/2014 01:43
cis-1,2-Dichloroethene	ND		0.0050	1	07/26/2014 01:43
trans-1,2-Dichloroethene	ND		0.0050	1	07/26/2014 01:43
1,2-Dichloropropane	ND		0.0050	1	07/26/2014 01:43
1,3-Dichloropropane	ND		0.0050	1	07/26/2014 01:43
2,2-Dichloropropane	ND		0.0050	1	07/26/2014 01:43
1,1-Dichloropropene	ND		0.0050	1	07/26/2014 01:43

(Cont.)

Client:	P & D Environmental	WorkOrder:	1407857
Project:	#0553; Cathedral Gardens	Extraction Method:	SW5030B
Date Received:	7/23/14 17:12	Analytical Method:	SW8260B
Date Prepared:	7/23/14	Unit:	mg/kg

Client ID	Lab ID	Matrix/ExtType	Date Colle	ected Instrument	Batch ID
B15-15	1407857-011A	Soil	07/22/2014	11:40 GC10	93143
Analytes	<u>Result</u>		<u>RL</u>	DF	Date Analyzed
cis-1,3-Dichloropropene	ND		0.0050	1	07/26/2014 01:43
trans-1,3-Dichloropropene	ND		0.0050	1	07/26/2014 01:43
Diisopropyl ether (DIPE)	ND		0.0050	1	07/26/2014 01:43
Ethylbenzene	ND		0.0050	1	07/26/2014 01:43
Ethyl tert-butyl ether (ETBE)	ND		0.0050	1	07/26/2014 01:43
Freon 113	ND		0.10	1	07/26/2014 01:43
Hexachlorobutadiene	ND		0.0050	1	07/26/2014 01:43
Hexachloroethane	ND		0.0050	1	07/26/2014 01:43
2-Hexanone	ND		0.0050	1	07/26/2014 01:43
Isopropylbenzene	ND		0.0050	1	07/26/2014 01:43
4-Isopropyl toluene	ND		0.0050	1	07/26/2014 01:43
Methyl-t-butyl ether (MTBE)	ND		0.0050	1	07/26/2014 01:43
Methylene chloride	ND		0.0050	1	07/26/2014 01:43
4-Methyl-2-pentanone (MIBK)	ND		0.0050	1	07/26/2014 01:43
Naphthalene	ND		0.0050	1	07/26/2014 01:43
n-Propyl benzene	ND		0.0050	1	07/26/2014 01:43
Styrene	ND		0.0050	1	07/26/2014 01:43
1,1,1,2-Tetrachloroethane	ND		0.0050	1	07/26/2014 01:43
1,1,2,2-Tetrachloroethane	ND		0.0050	1	07/26/2014 01:43
Tetrachloroethene	ND		0.0050	1	07/26/2014 01:43
Toluene	ND		0.0050	1	07/26/2014 01:43
1,2,3-Trichlorobenzene	ND		0.0050	1	07/26/2014 01:43
1,2,4-Trichlorobenzene	ND		0.0050	1	07/26/2014 01:43
1,1,1-Trichloroethane	ND		0.0050	1	07/26/2014 01:43
1,1,2-Trichloroethane	ND		0.0050	1	07/26/2014 01:43
Trichloroethene	ND		0.0050	1	07/26/2014 01:43
Trichlorofluoromethane	ND		0.0050	1	07/26/2014 01:43
1,2,3-Trichloropropane	ND		0.0050	1	07/26/2014 01:43
1,2,4-Trimethylbenzene	ND		0.0050	1	07/26/2014 01:43
1,3,5-Trimethylbenzene	ND		0.0050	1	07/26/2014 01:43
Vinyl Chloride	ND		0.0050	1	07/26/2014 01:43
Xylenes, Total	ND		0.0050	1	07/26/2014 01:43
Surrogates	<u>REC (%)</u>		<u>Limits</u>		
Dibromofluoromethane	94		70-130		07/26/2014 01:43
Toluene-d8	97		70-130		07/26/2014 01:43
4-BFB	92		70-130		07/26/2014 01:43

Client:	P & D Environmental	WorkOrder:	1407857
Project:	#0553; Cathedral Gardens	Extraction Method:	SW5030B
Date Received:	7/23/14 17:12	Analytical Method:	SW8260B
Date Prepared:	7/23/14	Unit:	mg/kg

Client ID	Lab ID	Matrix/ExtType	Date Col	lected Instrument	Batch ID
B15-20	1407857-012A	Soil	07/22/2014	4 11:45 GC10	93143
Analytes	Result		<u>RL</u>	DF	Date Analyzed
Acetone	ND		0.10	1	07/26/2014 02:25
tert-Amyl methyl ether (TAME)	ND		0.0050	1	07/26/2014 02:25
Benzene	ND		0.0050	1	07/26/2014 02:25
Bromobenzene	ND		0.0050	1	07/26/2014 02:25
Bromochloromethane	ND		0.0050	1	07/26/2014 02:25
Bromodichloromethane	ND		0.0050	1	07/26/2014 02:25
Bromoform	ND		0.0050	1	07/26/2014 02:25
Bromomethane	ND		0.0050	1	07/26/2014 02:25
2-Butanone (MEK)	ND		0.020	1	07/26/2014 02:25
t-Butyl alcohol (TBA)	ND		0.050	1	07/26/2014 02:25
n-Butyl benzene	ND		0.0050	1	07/26/2014 02:25
sec-Butyl benzene	ND		0.0050	1	07/26/2014 02:25
tert-Butyl benzene	ND		0.0050	1	07/26/2014 02:25
Carbon Disulfide	ND		0.0050	1	07/26/2014 02:25
Carbon Tetrachloride	ND		0.0050	1	07/26/2014 02:25
Chlorobenzene	ND		0.0050	1	07/26/2014 02:25
Chloroethane	ND		0.0050	1	07/26/2014 02:25
Chloroform	ND		0.0050	1	07/26/2014 02:25
Chloromethane	ND		0.0050	1	07/26/2014 02:25
2-Chlorotoluene	ND		0.0050	1	07/26/2014 02:25
4-Chlorotoluene	ND		0.0050	1	07/26/2014 02:25
Dibromochloromethane	ND		0.0050	1	07/26/2014 02:25
1,2-Dibromo-3-chloropropane	ND		0.0040	1	07/26/2014 02:25
1,2-Dibromoethane (EDB)	ND		0.0040	1	07/26/2014 02:25
Dibromomethane	ND		0.0050	1	07/26/2014 02:25
1,2-Dichlorobenzene	ND		0.0050	1	07/26/2014 02:25
1,3-Dichlorobenzene	ND		0.0050	1	07/26/2014 02:25
1,4-Dichlorobenzene	ND		0.0050	1	07/26/2014 02:25
Dichlorodifluoromethane	ND		0.0050	1	07/26/2014 02:25
1,1-Dichloroethane	ND		0.0050	1	07/26/2014 02:25
1,2-Dichloroethane (1,2-DCA)	ND		0.0040	1	07/26/2014 02:25
1,1-Dichloroethene	ND		0.0050	1	07/26/2014 02:25
cis-1,2-Dichloroethene	ND		0.0050	1	07/26/2014 02:25
trans-1,2-Dichloroethene	ND		0.0050	1	07/26/2014 02:25
1,2-Dichloropropane	ND		0.0050	1	07/26/2014 02:25
1,3-Dichloropropane	ND		0.0050	1	07/26/2014 02:25
2,2-Dichloropropane	ND		0.0050	1	07/26/2014 02:25
1,1-Dichloropropene	ND		0.0050	1	07/26/2014 02:25

Client:	P & D Environmental	WorkOrder:	1407857
Project:	#0553; Cathedral Gardens	Extraction Method:	SW5030B
Date Received:	7/23/14 17:12	Analytical Method:	SW8260B
Date Prepared:	7/23/14	Unit:	mg/kg

Client ID	Lab ID	Matrix/ExtType	Date Coll	ected Instrument	Batch ID
B15-20	1407857-012A	Soil	07/22/2014	11:45 GC10	93143
Analytes	Result		<u>RL</u>	DF	Date Analyzed
cis-1,3-Dichloropropene	ND		0.0050	1	07/26/2014 02:25
trans-1,3-Dichloropropene	ND		0.0050	1	07/26/2014 02:25
Diisopropyl ether (DIPE)	ND		0.0050	1	07/26/2014 02:25
Ethylbenzene	ND		0.0050	1	07/26/2014 02:25
Ethyl tert-butyl ether (ETBE)	ND		0.0050	1	07/26/2014 02:25
Freon 113	ND		0.10	1	07/26/2014 02:25
Hexachlorobutadiene	ND		0.0050	1	07/26/2014 02:25
Hexachloroethane	ND		0.0050	1	07/26/2014 02:25
2-Hexanone	ND		0.0050	1	07/26/2014 02:25
Isopropylbenzene	ND		0.0050	1	07/26/2014 02:25
4-Isopropyl toluene	ND		0.0050	1	07/26/2014 02:25
Methyl-t-butyl ether (MTBE)	ND		0.0050	1	07/26/2014 02:25
Methylene chloride	ND		0.0050	1	07/26/2014 02:25
4-Methyl-2-pentanone (MIBK)	ND		0.0050	1	07/26/2014 02:25
Naphthalene	ND		0.0050	1	07/26/2014 02:25
n-Propyl benzene	ND		0.0050	1	07/26/2014 02:25
Styrene	ND		0.0050	1	07/26/2014 02:25
1,1,1,2-Tetrachloroethane	ND		0.0050	1	07/26/2014 02:25
1,1,2,2-Tetrachloroethane	ND		0.0050	1	07/26/2014 02:25
Tetrachloroethene	ND		0.0050	1	07/26/2014 02:25
Toluene	ND		0.0050	1	07/26/2014 02:25
1,2,3-Trichlorobenzene	ND		0.0050	1	07/26/2014 02:25
1,2,4-Trichlorobenzene	ND		0.0050	1	07/26/2014 02:25
1,1,1-Trichloroethane	ND		0.0050	1	07/26/2014 02:25
1,1,2-Trichloroethane	ND		0.0050	1	07/26/2014 02:25
Trichloroethene	ND		0.0050	1	07/26/2014 02:25
Trichlorofluoromethane	ND		0.0050	1	07/26/2014 02:25
1,2,3-Trichloropropane	ND		0.0050	1	07/26/2014 02:25
1,2,4-Trimethylbenzene	ND		0.0050	1	07/26/2014 02:25
1,3,5-Trimethylbenzene	ND		0.0050	1	07/26/2014 02:25
Vinyl Chloride	ND		0.0050	1	07/26/2014 02:25
Xylenes, Total	ND		0.0050	1	07/26/2014 02:25
Surrogates	<u>REC (%)</u>		<u>Limits</u>		
Dibromofluoromethane	93		70-130		07/26/2014 02:25
Toluene-d8	98		70-130		07/26/2014 02:25
4-BFB	100		70-130		07/26/2014 02:25

Client:	P & D Environmental	WorkOrder:	1407857
Project:	#0553; Cathedral Gardens	Extraction Method:	SW5030B
Date Received:	7/23/14 17:12	Analytical Method:	SW8021B/8015Bm
Date Prepared:	7/23/14	Unit:	mg/Kg

Client ID	Lab ID	Matrix/ExtType	Date Co	llected Instrument	Batch ID
B12-10	1407857-001A	Soil	07/22/201	4 11:00 GC7	93065
Analytes	<u>Result</u>		<u>RL</u>	DF	Date Analyzed
TPH(g)	ND		1.0	1	07/24/2014 23:05
MTBE			0.050	1	07/24/2014 23:05
Benzene			0.0050	1	07/24/2014 23:05
Toluene			0.0050	1	07/24/2014 23:05
Ethylbenzene			0.0050	1	07/24/2014 23:05
Xylenes			0.0050	1	07/24/2014 23:05
Surrogates	<u>REC (%)</u>		<u>Limits</u>		
2-Fluorotoluene	102		70-130		07/24/2014 23:05
B12-15	1407857-002A	Soil	07/22/201	4 11:05 GC7	93065

Analytes	Result	<u>RL</u> <u>DF</u>	Date Analyzed
TPH(g)	ND	1.0 1	07/24/2014 23:36
MTBE		0.050 1	07/24/2014 23:36
Benzene		0.0050 1	07/24/2014 23:36
Toluene		0.0050 1	07/24/2014 23:36
Ethylbenzene		0.0050 1	07/24/2014 23:36
Xylenes		0.0050 1	07/24/2014 23:36
Surrogates	<u>REC (%)</u>	<u>Limits</u>	
2-Fluorotoluene	99	70-130	07/24/2014 23:36

B12-20	1407857-003A Soil	07/22/201	I4 11:10 GC7	93065
Analytes	Result	<u>RL</u>	<u>DF</u>	Date Analyzed
TPH(g)	ND	1.0	1	07/25/2014 00:06
MTBE		0.050	1	07/25/2014 00:06
Benzene		0.0050	1	07/25/2014 00:06
Toluene		0.0050	1	07/25/2014 00:06
Ethylbenzene		0.0050	1	07/25/2014 00:06
Xylenes		0.0050	1	07/25/2014 00:06
Surrogates	<u>REC (%)</u>	<u>Limits</u>		
2-Fluorotoluene	101	70-130		07/25/2014 00:06

Client:	P & D Environmental	WorkOrder:	1407857
Project:	#0553; Cathedral Gardens	Extraction Method:	SW5030B
Date Received:	7/23/14 17:12	Analytical Method:	SW8021B/8015Bm
Date Prepared:	7/23/14	Unit:	mg/Kg

Client ID	Lab ID	Matrix/ExtType	Date Co	llected Instrument	Batch ID
B13-10	1407857-004A	Soil	07/22/201	4 10:35 GC7	93145
Analytes	Result		<u>RL</u>	DF	Date Analyzed
TPH(g)	30		1.0	1	07/25/2014 01:07
MTBE			0.050	1	07/25/2014 01:07
Benzene			0.0050	1	07/25/2014 01:07
Toluene			0.0050	1	07/25/2014 01:07
Ethylbenzene			0.0050	1	07/25/2014 01:07
Xylenes			0.0050	1	07/25/2014 01:07
<u>Surrogates</u>	<u>REC (%)</u>		<u>Limits</u>	Analytical Comments: d7	
2-Fluorotoluene	116		70-130		07/25/2014 01:07
B13-15	1407857-005A	Soil	07/22/201	4 10:40 GC7	93145
Analytes	<u>Result</u>		<u>RL</u>	DF	Date Analyzed

TPH(g)	120	10	10	07/25/2014 01:37
MTBE		0.50	10	07/25/2014 01:37
Benzene		0.050	10	07/25/2014 01:37
Toluene		0.050	10	07/25/2014 01:37
Ethylbenzene		0.050	10	07/25/2014 01:37
Xylenes		0.050	10	07/25/2014 01:37
Surrogates	<u>REC (%)</u>	<u>Limits</u>	Analytical Comments: d7	
aaa-TFT_2	92	70-130		07/25/2014 01:37

B13-20	1407857-006A Soil	07/22/2014 10:45 GC19	93145
<u>Analytes</u>	Result	<u>RL</u> <u>DF</u>	Date Analyzed
TPH(g)	ND	1.0 1	07/25/2014 15:53
MTBE		0.050 1	07/25/2014 15:53
Benzene		0.0050 1	07/25/2014 15:53
Toluene		0.0050 1	07/25/2014 15:53
Ethylbenzene		0.0050 1	07/25/2014 15:53
Xylenes		0.0050 1	07/25/2014 15:53
<u>Surrogates</u>	<u>REC (%)</u>	Limits	
2-Fluorotoluene	92	70-130	07/25/2014 15:53

Client:	P & D Environmental	WorkOrder:	1407857
Project:	#0553; Cathedral Gardens	Extraction Method:	SW5030B
Date Received:	7/23/14 17:12	Analytical Method:	SW8021B/8015Bm
Date Prepared:	7/23/14	Unit:	mg/Kg

Client ID	Lab ID	Matrix/ExtType	Date Co	llected Instrument	Batch ID
B14-10	1407857-007A	Soil	07/22/201	4 12:55 GC19	93145
Analytes	<u>Result</u>		<u>RL</u>	<u>DF</u>	Date Analyzed
TPH(g)	ND		1.0	1	07/25/2014 16:40
MTBE			0.050	1	07/25/2014 16:40
Benzene			0.0050	1	07/25/2014 16:40
Toluene			0.0050	1	07/25/2014 16:40
Ethylbenzene			0.0050	1	07/25/2014 16:40
Xylenes			0.0050	1	07/25/2014 16:40
<u>Surrogates</u>	<u>REC (%)</u>		<u>Limits</u>		
2-Fluorotoluene	98		70-130		07/25/2014 16:40

B14-15	1407857-008A Soil	07/22/2014 13:00 GC19	93145
Analytes	<u>Result</u>	<u>RL</u> <u>DF</u>	Date Analyzed
TPH(g)	ND	1.0 1	07/25/2014 23:12
МТВЕ		0.050 1	07/25/2014 23:12
Benzene		0.0050 1	07/25/2014 23:12
Toluene		0.0050 1	07/25/2014 23:12
Ethylbenzene		0.0050 1	07/25/2014 23:12
Xylenes		0.0050 1	07/25/2014 23:12
<u>Surrogates</u>	<u>REC (%)</u>	Limits	
2-Fluorotoluene	92	70-130	07/25/2014 23:12

B14-20	1407857-009A Soil	07/22/2014 13:05 GC19	93145
Analytes	Result	<u>RL</u> <u>DF</u>	Date Analyzed
TPH(g)	ND	1.0 1	07/25/2014 23:45
MTBE		0.050 1	07/25/2014 23:45
Benzene		0.0050 1	07/25/2014 23:45
Toluene		0.0050 1	07/25/2014 23:45
Ethylbenzene		0.0050 1	07/25/2014 23:45
Xylenes		0.0050 1	07/25/2014 23:45
Surrogates	<u>REC (%)</u>	Limits	
2-Fluorotoluene	89	70-130	07/25/2014 23:45

Client:	P & D Environmental	WorkOrder:	1407857
Project:	#0553; Cathedral Gardens	Extraction Method:	SW5030B
Date Received:	7/23/14 17:12	Analytical Method:	SW8021B/8015Bm
Date Prepared:	7/23/14	Unit:	mg/Kg

Client ID	Lab ID	Matrix/ExtType	Date Co	llected Instrument	Batch ID
B15-10	1407857-010A	Soil	07/22/201	4 11:35 GC19	93145
Analytes	Result		<u>RL</u>	DF	Date Analyzed
TPH(g)	ND		1.0	1	07/26/2014 00:18
МТВЕ			0.050	1	07/26/2014 00:18
Benzene			0.0050	1	07/26/2014 00:18
Toluene			0.0050	1	07/26/2014 00:18
Ethylbenzene			0.0050	1	07/26/2014 00:18
Xylenes			0.0050	1	07/26/2014 00:18
<u>Surrogates</u>	<u>REC (%)</u>		<u>Limits</u>		
2-Fluorotoluene	100		70-130		07/26/2014 00:18

B15-15	1407857-011A Soil	07/22/2014 11:40 GC19	93145
Analytes	<u>Result</u>	<u>RL</u> DF	Date Analyzed
TPH(g)	ND	1.0 1	07/26/2014 01:51
MTBE		0.050 1	07/26/2014 01:51
Benzene		0.0050 1	07/26/2014 01:51
Toluene		0.0050 1	07/26/2014 01:51
Ethylbenzene		0.0050 1	07/26/2014 01:51
Xylenes		0.0050 1	07/26/2014 01:51
<u>Surrogates</u>	<u>REC (%)</u>	Limits	
2-Fluorotoluene	91	70-130	07/26/2014 01:51

B15-20	1407857-012A Soil	07/22/2014 11:45 GC19	93145
Analytes	Result	<u>RL</u> <u>DF</u>	Date Analyzed
TPH(g)	ND	1.0 1	07/24/2014 14:49
MTBE		0.050 1	07/24/2014 14:49
Benzene		0.0050 1	07/24/2014 14:49
Toluene		0.0050 1	07/24/2014 14:49
Ethylbenzene		0.0050 1	07/24/2014 14:49
Xylenes		0.0050 1	07/24/2014 14:49
Surrogates	<u>REC (%)</u>	Limits	
2-Fluorotoluene	91	70-130	07/24/2014 14:49

Client:	P & D Environmental	WorkOrder:	1407857
Project:	#0553; Cathedral Gardens	Extraction Method:	SW3550B
Date Received:	7/23/14 17:12	Analytical Method:	SW8015B
Date Prepared:	7/23/14	Unit:	mg/Kg

Total Extractable Petroleum Hydrocarbons

Client ID	Lab ID	Matrix/ExtType	Date Co	llected Instrument	Batch ID
B12-10	1407857-001A	Soil	07/22/2014 11:00 GC9a		93136
Analytes	Result		<u>RL</u>	DF	Date Analyzed
TPH-Diesel (C10-C23)	ND		1.0	1	07/29/2014 17:56
TPH-Motor Oil (C18-C36)	ND		5.0	1	07/29/2014 17:56
Surrogates	<u>REC (%)</u>		<u>Limits</u>		
C9	119		70-130		07/29/2014 17:56
B12-15	1407857-002A	Soil	07/22/201	4 11:05 GC11B	93136
Analytes	<u>Result</u>		<u>RL</u>	<u>DF</u>	Date Analyzed
TPH-Diesel (C10-C23)	1.0		1.0	1	07/24/2014 19:22
TPH-Motor Oil (C18-C36)	ND		5.0	1	07/24/2014 19:22
Surrogates	<u>REC (%)</u>		<u>Limits</u>	Analytical Comments: e2	
C9	115		70-130		07/24/2014 19:22
B12-20	1407857-003A	Soil	07/22/201	4 11:10 GC9a	93136
Analytes	<u>Result</u>		<u>RL</u>	DF	Date Analyzed
TPH-Diesel (C10-C23)	1.3		1.0	1	07/25/2014 05:51
TPH-Motor Oil (C18-C36)	ND		5.0	1	07/25/2014 05:51
Surrogates	<u>REC (%)</u>		<u>Limits</u>	Analytical Comments: e2	
C9	117		70-130		07/25/2014 05:51
B13-10	1407857-004A	Soil	07/22/201	4 10:35 GC9a	93136
Analytes	<u>Result</u>		<u>RL</u>	DF	Date Analyzed
TPH-Diesel (C10-C23)	1300		10	10	07/28/2014 15:35
TPH-Motor Oil (C18-C36)	480		50	10	07/28/2014 15:35
Surrogates	<u>REC (%)</u>		<u>Limits</u>	Analytical Comments: e1	
C9	104		70-130		07/28/2014 15:35

Client:	P & D Environmental	WorkOrder:	1407857
Project:	#0553; Cathedral Gardens	Extraction Method:	SW3550B
Date Received:	7/23/14 17:12	Analytical Method:	SW8015B
Date Prepared:	7/23/14	Unit:	mg/Kg

Total Extractable Petroleum Hydrocarbons

Client ID	Lab ID	Matrix/ExtType	Date Co	llected Instrument	Batch ID
B13-15	1407857-005A	Soil	07/22/201	4 10:40 GC9b	93136
Analytes	<u>Result</u>		<u>RL</u>	DF	Date Analyzed
TPH-Diesel (C10-C23)	3100		20	20	07/28/2014 15:35
TPH-Motor Oil (C18-C36)	1300		100	20	07/28/2014 15:35
Surrogates	<u>REC (%)</u>		<u>Limits</u>	Analytical Comments: e1	
C9	101		70-130		07/28/2014 15:35
B13-20	1407857-006A	Soil	07/22/201	4 10:45 GC11B	93136
<u>Analytes</u>	<u>Result</u>		<u>RL</u>	DF	Date Analyzed
TPH-Diesel (C10-C23)	1.0		1.0	1	07/24/2014 18:13
TPH-Motor Oil (C18-C36)	ND		5.0	1	07/24/2014 18:13
Surrogates	<u>REC (%)</u>		<u>Limits</u>	Analytical Comments: e2	
C9	112		70-130		07/24/2014 18:13
B14-10	1407857-007A	Soil	07/22/201	4 12:55 GC9a	93136
Analytes	<u>Result</u>		<u>RL</u>	DF	Date Analyzed
TPH-Diesel (C10-C23)	1.9		1.0	1	07/26/2014 01:58
TPH-Motor Oil (C18-C36)	6.5		5.0	1	07/26/2014 01:58
Surrogates	<u>REC (%)</u>		Limits	Analytical Comments: e7,e2	
C9	122		70-130		07/26/2014 01:58
B14-15	1407857-008A	Soil	07/22/201	4 13:00 GC9a	93136
Analytes	<u>Result</u>		<u>RL</u>	DF	Date Analyzed
TPH-Diesel (C10-C23)	ND		1.0	1	07/26/2014 07:53
TPH-Motor Oil (C18-C36)	ND		5.0	1	07/26/2014 07:53
Surrogates	<u>REC (%)</u>		<u>Limits</u>		

Client:	P & D Environmental	WorkOrder:	1407857
Project:	#0553; Cathedral Gardens	Extraction Method:	SW3550B
Date Received:	7/23/14 17:12	Analytical Method:	SW8015B
Date Prepared:	7/23/14	Unit:	mg/Kg

Total Extractable Petroleum Hydrocarbons

Client ID	Lab ID	Matrix/ExtType	Date Col	lected	Instrument	Batch ID
B14-20	1407857-009A	Soil	07/22/201	4 13:05	GC9a	93136
Analytes	Result		<u>RL</u>	DF		Date Analyzed
TPH-Diesel (C10-C23)	ND		1.0	1		07/25/2014 22:22
TPH-Motor Oil (C18-C36)	ND		5.0	1		07/25/2014 22:22
Surrogates	<u>REC (%)</u>		<u>Limits</u>			
С9	124		70-130			07/25/2014 22:22
B15-10	1407857-010A	Soil	07/22/201	4 11:35 (GC9a	93144
<u>Analytes</u>	<u>Result</u>		<u>RL</u>	<u>DF</u>		Date Analyzed
TPH-Diesel (C10-C23)	ND		1.0	1		07/26/2014 13:53
TPH-Motor Oil (C18-C36)	ND		5.0	1		07/26/2014 13:53
Surrogates	<u>REC (%)</u>		<u>Limits</u>			
C9	124		70-130			07/26/2014 13:53
B15-15	1407857-011A	Soil	07/22/201	4 11:40	GC9a	93144
Analytes	Result		<u>RL</u>	<u>DF</u>		Date Analyzed
TPH-Diesel (C10-C23)	ND		1.0	1		07/25/2014 07:02
TPH-Motor Oil (C18-C36)	ND		5.0	1		07/25/2014 07:02
<u>Surrogates</u>	<u>REC (%)</u>		<u>Limits</u>			
C9	119		70-130			07/25/2014 07:02
B15-20	1407857-012A	Soil	07/22/201	4 11:45 (GC11B	93144
Analytes	Result		<u>RL</u>	DF		Date Analyzed
TPH-Diesel (C10-C23)	ND		1.0	1		07/24/2014 20:30
TPH-Motor Oil (C18-C36)	ND		5.0	1		07/24/2014 20:30
Surrogates	<u>REC (%)</u>		<u>Limits</u>			
C9	116		70-130			07/24/2014 20:30

Quality Control Report

Client:	P & D Environmental
Date Prepared:	7/23/14
Date Analyzed:	7/23/14
Instrument:	GC10
Matrix:	Soil
Project:	#0553; Cathedral Gardens

WorkOrder:	1407857
BatchID:	93134
Extraction Method:	SW5030B
Analytical Method:	SW8260B
Unit:	mg/Kg
Sample ID:	MB/LCS-93134
	1407842-001AMS/MSD

QC Summary Report for SW8260B MB LCS RL SPK MB LCS LCS Analyte Result Result Val SS %REC %REC Limits ND 0.10 Acetone _ tert-Amyl methyl ether (TAME) ND 0.0391 0.0050 0.050 78.3 70-130 ND 0.0451 0.050 90.2 Benzene 0.0050 70-130 -Bromobenzene ND 0.0050 _ ND 0.0050 Bromochloromethane _ _ Bromodichloromethane ND 0.0050 -----Bromoform ND -0.0050 -_ --Bromomethane ND 0.0050 _ -_ _ _ 2-Butanone (MEK) ND 0.020 -_ _ t-Butyl alcohol (TBA) ND 0.188 0.050 0.20 -93.9 70-130 n-Butyl benzene ND -0.0050 ----ND 0.0050 sec-Butyl benzene _ --_ _ ND 0.0050 tert-Butyl benzene --ND Carbon Disulfide -0.0050 ---_ Carbon Tetrachloride ND 0.0050 _ _ _ _ Chlorobenzene ND 0.0459 0.0050 0.050 91.9 70-130 _ Chloroethane ND 0.0050 -----Chloroform ND 0.0050 -----Chloromethane ND 0.0050 _ -_ _ _ 2-Chlorotoluene ND _ 0.0050 _ _ ND 4-Chlorotoluene 0.0050 -----ND Dibromochloromethane 0.0050 -_ _ -ND 1,2-Dibromo-3-chloropropane 0.0040 _ -1,2-Dibromoethane (EDB) ND 0.0415 0.0040 0.050 83 70-130 Dibromomethane ND -0.0050 ----1,2-Dichlorobenzene ND _ 0.0050 _ _ _ -1,3-Dichlorobenzene ND 0.0050 -_ ---ND 1,4-Dichlorobenzene 0.0050 -----Dichlorodifluoromethane ND 0.0050 -----1,1-Dichloroethane ND 0.0050 -----

ND

0.0433

0.0418

-

-

-

-

-

0.0040

0.0050

0.0050

0.0050

0.0050

0.0050

0.0050

0.0050

0.0050

0.0050

0.050

0.050

-

-

-

-

-

-

-

_

-

-

_

.

-

_

(Cont.)

1,2-Dichloroethane (1,2-DCA)

1,1-Dichloroethene

cis-1,2-Dichloroethene

1,2-Dichloropropane

1,3-Dichloropropane

2,2-Dichloropropane

1,1-Dichloropropene

cis-1,3-Dichloropropene

trans-1,3-Dichloropropene

trans-1,2-Dichloroethene

86.5

83.6

-

_

_

-

70-130

70-130

-

_

-

-

Quality Control Report

Client:	P & D Environmental
Date Prepared:	7/23/14
Date Analyzed:	7/23/14
Instrument:	GC10
Matrix:	Soil
Project:	#0553; Cathedral Gardens

WorkOrder: 1407857 BatchID: 93134 Extraction Method: SW5030B Analytical Method: SW8260B Unit: mg/Kg Sample ID: MB/LCS-93134 1407842-001AMS/MSD

QC Summary Report for SW8260B MB LCS RL SPK MB LCS LCS Analyte Result Result Val SS %REC %REC Limits Diisopropyl ether (DIPE) ND 0.0425 0.0050 0.050 85 70-130 -Ethylbenzene ND 0.0050 Ethyl tert-butyl ether (ETBE) ND 0.0419 0.0050 0.050 83.8 -70-130 ND Freon 113 0.0050 _ ND 0.0050 Hexachlorobutadiene _ _ _ Hexachloroethane ND 0.0050 -----2-Hexanone ND -0.0050 -_ --Isopropylbenzene ND _ 0.0050 -_ _ _ 4-Isopropyl toluene ND 0.0050 --_ 70-130 Methyl-t-butyl ether (MTBE) ND 0.0416 0.0050 0.050 83.1 -Methylene chloride ND -0.0050 ----4-Methyl-2-pentanone (MIBK) ND 0.0050 _ ----ND 0.0050 Naphthalene -n-Propyl benzene ND 0.0050 ---_ -Styrene ND _ 0.0050 _ _ _ _ 1,1,1,2-Tetrachloroethane ND 0.0050 _ _ _ _ _ 1,1,2,2-Tetrachloroethane ND 0.0050 -----Tetrachloroethene ND 0.0050 _ -_ Toluene ND 0.0482 0.0050 0.050 96.3 70-130 _ 1,2,3-Trichlorobenzene ND 0.0050 _ ND 1,2,4-Trichlorobenzene 0.0050 ---_ -ND 1,1,1-Trichloroethane 0.0050 -_ _ 1,1,2-Trichloroethane ND 0.0050 _ -Trichloroethene ND 0.0457 0.0050 0.050 91.4 70-130 Trichlorofluoromethane ND -0.0050 ----1,2,3-Trichloropropane ND _ 0.0050 _ _ _ -1,2,4-Trimethylbenzene ND 0.0050 -_ --0.0050 1,3,5-Trimethylbenzene ND -----Vinyl Chloride ND 0.0050 ----_ ND Xylenes, Total 0.0050 -----Surrogate Recovery Dibromofluoromethane 0.122 0.168 0.18 98 96 70-130 Toluene-d8 0.130 0.171 0.18 104 98 70-130 4-BFB 0.0130 0.0163 0.018 104 93 70-130

A-___QA/QC Officer Page 35 of 48

Client:	P & D Environmental
Date Prepared:	7/23/14
Date Analyzed:	7/23/14
Instrument:	GC10
Matrix:	Soil
Project:	#0553; Cathedral Gardens

WorkOrder:	1407857
BatchID:	93134
Extraction Method:	SW5030B
Analytical Method:	SW8260B
Unit:	mg/Kg
Sample ID:	MB/LCS-93134
	1407842-001AMS/MSD

QC Summary Report for SW8260B									
Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
tert-Amyl methyl ether (TAME)	0.0378	0.0382	0.050	ND	75.7	76.4	70-130	0.924	30
Benzene	0.0435	0.0439	0.050	ND	87	87.7	70-130	0.856	30
t-Butyl alcohol (TBA)	0.176	0.180	0.20	ND	87.8	90	70-130	2.43	30
Chlorobenzene	0.0434	0.0436	0.050	ND	86.7	87.3	70-130	0.634	30
1,2-Dibromoethane (EDB)	0.0390	0.0405	0.050	ND	78	81.1	70-130	3.82	30
1,2-Dichloroethane (1,2-DCA)	0.0412	0.0420	0.050	ND	82.3	84	70-130	2.07	30
1,1-Dichloroethene	0.0402	0.0410	0.050	ND	80.4	82.1	70-130	2.13	30
Diisopropyl ether (DIPE)	0.0409	0.0415	0.050	ND	81.8	83	70-130	1.53	30
Ethyl tert-butyl ether (ETBE)	0.0402	0.0405	0.050	ND	80.4	81	70-130	0.685	30
Methyl-t-butyl ether (MTBE)	0.0404	0.0410	0.050	ND	80.7	81.9	70-130	1.45	30
Toluene	0.0455	0.0456	0.050	ND	91	91.3	70-130	0.310	30
Trichloroethene	0.0435	0.0448	0.050	ND	86.9	89.6	70-130	3.00	30
Surrogate Recovery									
Dibromofluoromethane	0.168	0.172	0.18		96	98	70-130	2.22	30
Toluene-d8	0.169	0.169	0.18		97	96	70-130	0.237	30
4-BFB	0.0162	0.0163	0.018		92	93	70-130	0.855	30

QA/QC Officer Page 36 of 48

Quality Control Report

Client:	P & D Environmental	WorkOrder:	1407857
Date Prepared:	7/23/14	BatchID:	93143
Date Analyzed:	7/24/14	Extraction Method:	SW5030B
Instrument:	GC10	Analytical Method:	SW8260B
Matrix:	Soil	Unit:	mg/Kg
Project:	#0553; Cathedral Gardens	Sample ID:	MB/LCS-93143 1407857-010AMS/MSD

QC Summary Report for SW8260B MB LCS RL SPK LCS LCS Analyte MB Result Result Val SS %REC %REC Limits ND 0.10 Acetone _ tert-Amyl methyl ether (TAME) ND 0.0384 0.0050 0.050 76.7 70-130 ND 0.0456 0.050 91.2 Benzene 0.0050 70-130 -Bromobenzene ND 0.0050 _ ND 0.0050 Bromochloromethane _ _ Bromodichloromethane ND 0.0050 -----Bromoform ND -0.0050 -_ --Bromomethane ND 0.0050 _ -_ _ _ 2-Butanone (MEK) ND 0.020 -_ _ t-Butyl alcohol (TBA) ND 0.182 0.050 0.20 91.1 -70-130 n-Butyl benzene ND -0.0050 _ ---ND 0.0050 sec-Butyl benzene _ --_ _ ND 0.0050 tert-Butyl benzene --ND Carbon Disulfide -0.0050 --_ _ Carbon Tetrachloride ND 0.0050 _ _ _ _ Chlorobenzene ND 0.0453 0.0050 0.050 90.5 70-130 _ Chloroethane ND 0.0050 -----Chloroform ND 0.0050 -----Chloromethane ND 0.0050 _ -_ _ _ 2-Chlorotoluene ND _ 0.0050 _ _ ND 4-Chlorotoluene 0.0050 --_ _ _ ND Dibromochloromethane 0.0050 -_ _ -ND 1,2-Dibromo-3-chloropropane 0.0040 _ 1,2-Dibromoethane (EDB) ND 0.0415 0.0040 0.050 83.1 70-130 Dibromomethane ND -0.0050 ----1,2-Dichlorobenzene ND _ 0.0050 _ _ _ -1,3-Dichlorobenzene ND 0.0050 -_ --ND 1,4-Dichlorobenzene 0.0050 -----Dichlorodifluoromethane ND 0.0050 -----1,1-Dichloroethane ND 0.0050 -----1,2-Dichloroethane (1,2-DCA) ND 0.0429 0.0040 0.050 85.7 70-130 1,1-Dichloroethene ND 0.0433 0.0050 0.050 86.5 70-130 -ND 0.0050 cis-1,2-Dichloroethene _ trans-1,2-Dichloroethene ND 0.0050 -1,2-Dichloropropane ND 0.0050 --ND 1,3-Dichloropropane 0.0050 -----2,2-Dichloropropane ND 0.0050 --_ _ _ 1,1-Dichloropropene ND 0.0050 -_ _ --ND 0.0050 cis-1,3-Dichloropropene ----trans-1,3-Dichloropropene ND 0.0050 -_

(Cont.)

Quality Control Report

Client:	P & D Environmental
Date Prepared:	7/23/14
Date Analyzed:	7/24/14
Instrument:	GC10
Matrix:	Soil
Project:	#0553; Cathedral Gardens

WorkOrder: 1407857 BatchID: 93143 Extraction Method: SW5030B Analytical Method: SW8260B Unit: mg/Kg Sample ID: MB/LCS-93143 1407857-010AMS/MSD

QC Summary Report for SW8260B

Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
Diisopropyl ether (DIPE)	ND	0.0424	0.0050	0.050	-	84.7	70-130
Ethylbenzene	ND	-	0.0050	-	-	-	-
Ethyl tert-butyl ether (ETBE)	ND	0.0410	0.0050	0.050	-	82	70-130
Freon 113	ND	-	0.0050	-	-	-	-
Hexachlorobutadiene	ND	-	0.0050	-	-	-	-
Hexachloroethane	ND	-	0.0050	-	-	-	-
2-Hexanone	ND	-	0.0050	-	-	-	-
Isopropylbenzene	ND	-	0.0050	-	-	-	-
4-Isopropyl toluene	ND	-	0.0050	-	-	-	-
Methyl-t-butyl ether (MTBE)	ND	0.0408	0.0050	0.050	-	81.5	70-130
Methylene chloride	ND	-	0.0050	-	-	-	-
4-Methyl-2-pentanone (MIBK)	ND	-	0.0050	-	-	-	-
Naphthalene	ND	-	0.0050	-	-	-	-
n-Propyl benzene	ND	-	0.0050	-	-	-	-
Styrene	ND	-	0.0050	-	-	-	-
1,1,1,2-Tetrachloroethane	ND	-	0.0050	-	-	-	-
1,1,2,2-Tetrachloroethane	ND	-	0.0050	-	-	-	-
Tetrachloroethene	ND	-	0.0050	-	-	-	-
Toluene	ND	0.0472	0.0050	0.050	-	94.4	70-130
1,2,3-Trichlorobenzene	ND	-	0.0050	-	-	-	-
1,2,4-Trichlorobenzene	ND	-	0.0050	-	-	-	-
1,1,1-Trichloroethane	ND	-	0.0050	-	-	-	-
1,1,2-Trichloroethane	ND	-	0.0050	-	-	-	-
Trichloroethene	ND	0.0468	0.0050	0.050	-	93.6	70-130
Trichlorofluoromethane	ND	-	0.0050	-	-	-	-
1,2,3-Trichloropropane	ND	-	0.0050	-	-	-	-
1,2,4-Trimethylbenzene	ND	-	0.0050	-	-	-	-
1,3,5-Trimethylbenzene	ND	-	0.0050	-	-	-	-
Vinyl Chloride	ND	-	0.0050	-	-	-	-
Xylenes, Total	ND	-	0.0050	-	-	-	-
Surrogate Recovery							
Dibromofluoromethane	0.114	0.171		0.18	91	98	70-130
Toluene-d8	0.125	0.166		0.18	100	95	70-130
4-BFB	0.0125	0.0167		0.018	100	95	70-130

QA/QC Officer Page 38 of 48

Quality Control Report

Client:	P & D Environmental
Date Prepared:	7/23/14
Date Analyzed:	7/24/14
Instrument:	GC10
Matrix:	Soil
Project:	#0553; Cathedral Gardens

WorkOrder: 1407857 **BatchID:** 93143 Extraction Method: SW5030B Analytical Method: SW8260B Unit: mg/Kg Sample ID: MB/LCS-93143 1407857-010AMS/MSD

QC Summary Report for SW8260B										
Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit	
tert-Amyl methyl ether (TAME)	0.0376	0.0369	0.050	ND	75.1	73.7	70-130	1.90	30	
Benzene	0.0437	0.0420	0.050	ND	87.4	83.9	70-130	4.11	30	
t-Butyl alcohol (TBA)	0.182	0.185	0.20	ND	91.2	92.5	70-130	1.44	30	
Chlorobenzene	0.0448	0.0434	0.050	ND	89.6	86.8	70-130	3.07	30	
1,2-Dibromoethane (EDB)	0.0426	0.0415	0.050	ND	85.3	83.1	70-130	2.61	30	
1,2-Dichloroethane (1,2-DCA)	0.0411	0.0395	0.050	ND	82.2	79	70-130	3.89	30	
1,1-Dichloroethene	0.0416	0.0393	0.050	ND	83.2	78.6	70-130	5.72	30	
Diisopropyl ether (DIPE)	0.0409	0.0394	0.050	ND	81.7	78.8	70-130	3.58	30	
Ethyl tert-butyl ether (ETBE)	0.0392	0.0385	0.050	ND	78.4	76.9	70-130	1.92	30	
Methyl-t-butyl ether (MTBE)	0.0393	0.0382	0.050	ND	78.6	76.5	70-130	2.70	30	
Toluene	0.0469	0.0447	0.050	ND	93.9	89.4	70-130	4.83	30	
Trichloroethene	0.0442	0.0429	0.050	ND	88.5	85.8	70-130	3.09	30	
Surrogate Recovery										
Dibromofluoromethane	0.161	0.161	0.18		92	92	70-130	0	30	
Toluene-d8	0.164	0.160	0.18		93	91	70-130	2.15	30	
4-BFB	0.0168	0.0166	0.018		96	95	70-130	1.13	30	

Client:	P & D Environmental	WorkOrder:	1407857
Date Prepared:	7/22/14	BatchID:	93065
Date Analyzed:	7/23/14	Extraction Method:	SW5030B
Instrument:	GC7	Analytical Method:	SW8021B/8015Bm
Matrix:	Soil	Unit:	mg/Kg
Project:	#0553; Cathedral Gardens	Sample ID:	MB/LCS-93065 1407739-006AMS/MSD

Analyte	MB Result	LCS Result		RL	SPK Val	MB SS 1		LCS %REC	LCS Limit	
TPH(btex)	ND	0.643		0.40	0.60	-		107	70-13	30
МТВЕ	ND	0.0784		0.050	0.10	-		78.4	70-13	30
Benzene	ND	0.108		0.0050	0.10	-		108	70-13	30
Toluene	ND	0.108		0.0050	0.10	-		108	70-13	30
Ethylbenzene	ND	0.113		0.0050	0.10	-		113	70-13	30
Xylenes	ND	0.346		0.0050	0.30	-		115	70-13	30
Surrogate Recovery										
2-Fluorotoluene	0.110	0.107			0.10	110		107	70-13	30
Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/M Limits	-		RPD _imi
Analyte TPH(btex)		-			-	-		5		
TPH(btex)	Result	Result	Val	Val	%REC	%REC	Limits	s N	L	
TPH(btex)	Result	Result NR	Val 0	Val	%REC	%REC	Limits -	5 N N	R IR	
TPH(btex) MTBE	Result NR NR	Result NR NR	Val 0 0	Val ND ND	%REC NR NR	%REC NR NR	Limits - -	5 N N N	IR IR	
TPH(btex) MTBE Benzene Toluene	Result NR NR NR	Result NR NR NR	Val 0 0 0 0 0	Val ND ND ND	%REC NR NR NR	%REC NR NR NR	Limits - - -	5 N N N	IR IR IR	
TPH(btex) MTBE Benzene Toluene Ethylbenzene	Result NR NR NR NR NR	Result NR NR NR NR	Val 0 0 0 0 0 0 0	Val ND ND ND ND	%REC NR NR NR NR	%REC NR NR NR NR	Limits	5 N N N N	IR IR IR IR	
TPH(btex) MTBE Benzene	Result NR NR NR NR NR NR NR NR	Result NR NR NR NR NR NR NR NR	Val 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Val ND ND ND ND ND	%RECNRNRNRNRNRNR	%REC NR NR NR NR NR	Limits	5 N N N N	IR IR IR IR IR	

Client:	P & D Environmental	WorkOrder:	1407857
Date Prepared:	7/23/14	BatchID:	93145
Date Analyzed:	7/24/14	Extraction Method:	SW5030B
Instrument:	GC19	Analytical Method:	SW8021B/8015Bm
Matrix:	Soil	Unit:	mg/Kg
Project:	#0553; Cathedral Gardens	Sample ID:	MB/LCS-93145
			1407857-012AMS/MSD

Analyte	MB Result	LCS Result		RL	SPK Val	MB SS 1		CS BREC	LCS Limits
TPH(btex)	ND	0.544		0.40	0.60	-	9	0.6	70-130
МТВЕ	ND	0.0920		0.050	0.10	-	9	2	70-130
Benzene	ND	0.0995		0.0050	0.10	-	9	9.5	70-130
Toluene	ND	0.101		0.0050	0.10	-	1	01	70-130
Ethylbenzene	ND	0.100		0.0050	0.10	-	1	00	70-130
Xylenes	ND	0.316		0.0050	0.30	-	1	05	70-130
Surrogate Recovery									
2-Fluorotoluene	0.103	0.0998			0.10	103	1	00	70-130
Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSI Limits	D RPD	
	_	-	-		-	-		D RPD	Limit
Analyte TPH(btex) MTBE	Result	Result	Val	Val	%REC	%REC	Limits		Limit
TPH(btex)	Result 0.507	Result 0.503	Val 0.60	Val ND	%REC 84.5	%REC 83.8	Limits 70-130	0.77 [,]	Limit 1 20 20
TPH(btex) MTBE	Result 0.507 0.0761	Result 0.503 0.0832	Val 0.60 0.10	Val ND ND	%REC 84.5 76.1	%REC 83.8 83.2	Limits 70-130 70-130	0.77	Limit 1 20 20 20
TPH(btex) MTBE Benzene	Result 0.507 0.0761 0.0821	Result 0.503 0.0832 0.0846	Val 0.60 0.10 0.10	Val ND ND ND	%REC 84.5 76.1 82.1	%REC 83.8 83.2 84.7	Limits 70-130 70-130 70-130	0.77 ⁻ 8.90 3.10	Limit 1 20 20 20 6 20
TPH(btex) MTBE Benzene Toluene Ethylbenzene	Result 0.507 0.0761 0.0821 0.0889	Result 0.503 0.0832 0.0846 0.0896	Val 0.60 0.10 0.10 0.10	Val ND ND ND ND	%REC 84.5 76.1 82.1 88.9	%REC 83.8 83.2 84.7 89.6	Limits 70-130 70-130 70-130 70-130	0.77 ⁻ 8.90 3.10 0.800	Limit 1 20 20 5 20 7 20
TPH(btex) MTBE Benzene Toluene	Result 0.507 0.0761 0.0821 0.0889 0.0914	Result 0.503 0.0832 0.0846 0.0896 0.0910	Val 0.60 0.10 0.10 0.10 0.10	Val ND ND ND ND ND	%REC 84.5 76.1 82.1 88.9 91.4	%REC 83.8 83.2 84.7 89.6 91	Limits 70-130 70-130 70-130 70-130 70-130	0.77 ⁻ 8.90 3.10 0.800 0.48	Limit 1 20 20 20 5 20

QA/QC Officer Page 41 of 48

Client:	P & D Environmental	WorkOrder:	1407857
Date Prepared:	7/23/14	BatchID:	93136
Date Analyzed:	7/23/14	Extraction Method:	SW3550B
Instrument:	GC6A	Analytical Method:	SW8015B
Matrix:	Soil	Unit:	mg/Kg
Project:	#0553; Cathedral Gardens	Sample ID:	MB/LCS-93136 1407842-003AMS/MSD

QC Summary Report for SW8015B									
Analyte	MB Result	LCS Result		RL	SPK Val	MB SS 1	LCS %REC %RI		.CS .imits
TPH-Diesel (C10-C23)	ND	45.1		1.0	40	-	113	7	0-130
Surrogate Recovery									
C9	22.8	22.6			25	91	90	7	0-130
Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
TPH-Diesel (C10-C23)	63.0	66.2	40	12.94	125	133,F1	70-130	4.97	30
Surrogate Recovery									
C9	30.7	30.9	25		123	124	70-130	0.700	30

Client:	P & D Environmental	WorkOrder:	1407857
Date Prepared:	7/23/14	BatchID:	93144
Date Analyzed:	7/24/14	Extraction Method:	SW3550B
Instrument:	GC6A, GC9a	Analytical Method:	SW8015B
Matrix:	Soil	Unit:	mg/Kg
Project:	#0553; Cathedral Gardens	Sample ID:	MB/LCS-93144
			1407857-011AMS/MSD

QC Summary Report for SW8015B									
Analyte	MB Result	LCS Result		RL	SPK Val	MB SS	LCS %REC %R		LCS Limits
TPH-Diesel (C10-C23)	ND	44.4		1.0	40	-	111		70-130
Surrogate Recovery									
C9	27.3	24.0			25	109	96		70-130
Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
TPH-Diesel (C10-C23)	51.3	52.8	40	ND	128	132,F1	70-130	2.85	30
Surrogate Recovery									
C9	29.6	30.0	25		118	120	70-130	1.32	30

QA/QC Officer Page 43 of 48

McCampbell Analytical, Inc.

FAX: 510-834-0152

Report to:

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

Michael Deschenes

P & D Environmental

(510) 658-6916

55 Santa Clara, Ste.240 Oakland, CA 94610

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

			WorkOrd	ler: 1407857	Client	Code: PDEO		
WaterTrax	WriteOn	EDF	Excel	EQuIS	🖌 Email	HardCopy	ThirdParty	J-flag
Bill to:				Req	5 days			
	o@pdenviro.com			Accounts Paya	ıble			
cc/3rd Party:				P & D Environr	nental			
PO:				55 Santa Clara	, Ste.240	Dat	e Received:	07/23/2014
ProjectNo: #(553; Cathedral G	Sardens		Oakland, CA 9	4610	Dat	e Printed:	07/30/2014

							Requested Tests (See legend below)										
Lab ID	Client ID	Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12	
1407857-001	B12-10	Soil	7/22/2014 11:00		А	Α											
1407857-002	B12-15	Soil	7/22/2014 11:05		А	Α											
1407857-003	B12-20	Soil	7/22/2014 11:10		А	Α											
1407857-004	B13-10	Soil	7/22/2014 10:35		А	Α											
1407857-005	B13-15	Soil	7/22/2014 10:40		А	Α											
1407857-006	B13-20	Soil	7/22/2014 10:45		А	Α											
1407857-007	B14-10	Soil	7/22/2014 12:55		А	Α											
1407857-008	B14-15	Soil	7/22/2014 13:00		А	Α											
1407857-009	B14-20	Soil	7/22/2014 13:05		А	Α											
1407857-010	B15-10	Soil	7/22/2014 11:35		А	Α											
1407857-011	B15-15	Soil	7/22/2014 11:40		А	Α											
1407857-012	B15-20	Soil	7/22/2014 11:45		А	А											

Test Legend:

1	8260B_S	
6		
11		

3	
8	

4	
9	
9	

5	
10	

The following SampIDs: 001A, 002A, 003A, 004A, 005A, 006A, 007A, 008A, 009A, 010A, 011A, 012A contain testgroup.

G-MBTEX S

2

7 12

Prepared by: Maria Venegas

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

⊡WriteOn

□WaterTrax

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

ThirdParty

WORK ORDER SUMMARY

Client Name:P & D ENVIRONMENTALProject:#0553; Cathedral GardensComments:

QC Level: LEVEL 2 Client Contact: Michael Deschenes Contact's Email: lab@pdenviro.com

Fax

Fmail

Work Order: 1407857 **Date Received:** 7/23/2014

□.I-flag

		waterirax		Excel		Hardu		y	л-пад
Lab ID	Client ID	Matrix	Test Name	Number of Containers	Bottle & Preservative	De- chlorinated	Collection Date & Time	TAT	Sediment Hold SubOut Content
1407857-001A	B12-10	Soil	Multi-Range TPH(g,d,mo)	1	Acetate Liner		7/22/2014 11:00	5 days	
			SW8260B (VOCs)					5 days	
1407857-002A	B12-15	Soil	Multi-Range TPH(g,d,mo)	1	Acetate Liner		7/22/2014 11:05	5 days	
			SW8260B (VOCs)					5 days	
1407857-003A	B12-20	Soil	Multi-Range TPH(g,d,mo)	1	Acetate Liner		7/22/2014 11:10	5 days	
			SW8260B (VOCs)					5 days	
1407857-004A	B13-10	Soil	Multi-Range TPH(g,d,mo)	1	Acetate Liner		7/22/2014 10:35	5 days	
			SW8260B (VOCs)					5 days	
1407857-005A	B13-15	Soil	Multi-Range TPH(g,d,mo)	1	Acetate Liner		7/22/2014 10:40	5 days	
			SW8260B (VOCs)					5 days	
1407857-006A	B13-20	Soil	Multi-Range TPH(g,d,mo)	1	Acetate Liner		7/22/2014 10:45	5 days	
			SW8260B (VOCs)					5 days	
1407857-007A	B14-10	Soil	Multi-Range TPH(g,d,mo)	1	Acetate Liner		7/22/2014 12:55	5 days	
			SW8260B (VOCs)					5 days	
1407857-008A	B14-15	Soil	Multi-Range TPH(g,d,mo)	1	Acetate Liner		7/22/2014 13:00	5 days	
			SW8260B (VOCs)					5 days	
1407857-009A	B14-20	Soil	Multi-Range TPH(g,d,mo)	1	Acetate Liner		7/22/2014 13:05	5 days	

* NOTE: STLC and TCLP extractions require 48 hrs to complete; therefore, all TATs begin after the extraction is completed (i.e., 24hr TAT yields results in 72 hrs from sample submission).

Bottle Legend:

Acetate Liner = Acetate Liner

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

WORK ORDER SUMMARY

Client Name Project: Comments:	#0553; Cathedral Gardens Client Contact: Michael Deschenes								A Order: 1407857 (eccived: 7/23/2014
		WaterTrax	WriteOn EDF	Excel	Fax Fax	Hard	Copy ThirdPart	ty 🔲 J	-flag
Lab ID	Client ID	Matrix	Test Name	Number of Containers	Bottle & Preservative	De- chlorinated	Collection Date & Time	ТАТ	Sediment Hold SubOut Content
1407857-009A	B14-20	Soil	SW8260B (VOCs)	1	Acetate Liner		7/22/2014 13:05	5 days	
1407857-010A	B15-10	Soil	Multi-Range TPH(g,d,mo) SW8260B (VOCs)	1	Acetate Liner		7/22/2014 11:35	5 days 5 days	
1407857-011A	B15-15	Soil	Multi-Range TPH(g,d,mo) SW8260B (VOCs)	1	Acetate Liner		7/22/2014 11:40	5 days 5 days	
1407857-012A	B15-20	Soil	Multi-Range TPH(g,d,mo) SW8260B (VOCs)	1	Acetate Liner		7/22/2014 11:45	5 days 5 days	

* NOTE: STLC and TCLP extractions require 48 hrs to complete; therefore, all TATs begin after the extraction is completed (i.e., 24hr TAT yields results in 72 hrs from sample submission).

Bottle Legend:

Acetate Liner = Acetate Liner

					-							PAG	E OF
55.5	VIRON Santa Clara Oakland, (510) 6		DF CUSTODY NTAL, INC.					BaloR .		/	//		
PROJECT NUMBER:		ATHEI 63	NAME: PRAL GARDENS 8 21 st st KLAND, CA	ONTAINERS		LALO SISTES.	UNALENCE DECK	EXERT.					
SAMPLED BY: (PRINTED & <u>MICHAEL BASS-DESCHENE</u> SAMPLE NUMBER DAT	s up		Barrileschenn SAMPLE LOCATION	NUMBER OF CONTAINERS	ANA	and sol	MAPHTHALENE				FERE	HALIKAND REM	IARKS
B12-10 7/22/ B12-15 11 B12-20 K	14 1100 1105 1110	Soil K		Z (XX	X X X	2	/ /			1CE 4	LÖRUAL	
.B 13-10 7/22/ B 13-15 11	14 1035	BiL 1		1	X X X	× × ×						NO RUAL	TAT
B 14-10 7/22/1 B 14-15 "	1045	50°2 ((1	×××	× × ×					0 0 11	NORMAL	TAT
B15-10 B15-15	1305	Soil		1	××	X					n U	NORMAL	V
B 15-20 II RELINQUISHED BY: (SIGNATURE)	1145	1	TIME RECEIVED BY: (SIG		× ×	X	Total No	of Samp	les		() ()		
RELINQUISHED BY: (SIGNATURE)	in Ef	23/14 DATE 2/14 DATE	TIME RECEIVED FOR LAB	NATUR	RE)	BY:	(This Shi LABOR	of Conta pment) ATORY	r CONTA	ius	MC G	ATORY PHONE 1	
Results and billing to: P&D Environmental, Inc. lab@pdenviro.com			REMARKS:				ATTAC) YE	S () ICE/t ^o	NO	APPROPRIATE

Sample Receipt Checklist

Client Name:	P & D Environmenta	al			Date and T	Time Received:	7/23/2014 5	:12:34 PM
Project Name:	#0553; Cathedral G	ardens			LogIn Revi	ewed by:		Maria Venegas
WorkOrder №:	1407857	Matrix: Soil			Carrier:	<u>Rob Pringle (M</u>	<u>Al Courier)</u>	
		<u>Cha</u>	in of Cu	istody (C	OC) Information			
Chain of custody	present?		Yes	✓	No 🗌			
Chain of custody	v signed when relinquis	shed and received?	Yes	✓	No 🗌			
Chain of custody	agrees with sample l	abels?	Yes	✓	No 🗌			
Sample IDs note	d by Client on COC?		Yes	✓	No 🗌			
Date and Time o	f collection noted by C	Client on COC?	Yes	✓	No 🗌			
Sampler's name	noted on COC?		Yes	✓	No 🗌			
			<u>Sample</u>	Receipt	Information			
Custody seals in	tact on shipping conta	iner/cooler?	Yes		No 🗌		NA 🔽	
Shipping contain	er/cooler in good cond	dition?	Yes	✓	No 🗌			
Samples in prope	er containers/bottles?		Yes	✓	No 🗌			
Sample containe	ers intact?		Yes	✓	No 🗌			
Sufficient sample	e volume for indicated	test?	Yes	✓	No 🗌			
		Sample Pres	ervatio	n and Ho	<u>ld Time (HT) Info</u>	rmation		
All samples rece	ived within holding tim	ie?	Yes	✓	No 🗌			
Container/Temp	Blank temperature		Coole	r Temp:	4.5°C		NA	
Water - VOA vial	ls have zero headspac	ce / no bubbles?	Yes		No 🗌		NA 🗹	
Sample labels ch	necked for correct pres	servation?	Yes	✓	No 🗌			
pH acceptable up	pon receipt (Metal: pH	<2; 522: pH<4)?	Yes		No 🗌		NA 🗹	
Samples Receive	ed on Ice?		Yes	✓	No 🗌			
		(Ісе Тур	e: WE	TICE)				
* NOTE: If the "N	lo" box is checked, se	e comments below.						

Comments:

McCampbell Analytical, Inc.

"When Quality Counts"

Analytical Report

WorkOrder:	1408147
Report Created for:	P & D Environmental 55 Santa Clara, Ste.240 Oakland, CA 94610
Project Contact: Project P.O.:	Michael Deschenes
Project Name:	#0553; Cathedral Gradens 638 21st Street Oakland, ca
Ducient Deceined.	08/05/2014

Project Received: 08/05/2014

Analytical Report reviewed & approved for release on 08/12/2014 by:

Angela Rydelius, Laboratory Manager

The report shall not be reproduced except in full, without the written approval of the laboratory. The analytical results relate only to the items tested. Results reported conform to the most current NELAP standards, where applicable, unless otherwise stated in the case narrative.

1534 Willow Pass Rd. Pittsburg, CA 94565 ♦ TEL: (877) 252-9262 ♦ FAX: (925) 252-9269 ♦ www.mccampbell.com NELAP: 4033ORELAP ♦ ELAP: 1644 ♦ ISO/IEC: 17025:2005 ♦ WSDE: C972-11 ♦ ADEC: UST-098 ♦ UCMR3

Glossary of Terms & Qualifier Definitions

Client: P & D Environmental

Project: #0553; Cathedral Gradens 638 21st Street Oakland, ca

WorkOrder: 1408147

Glossary Abbreviation

95% Interval	95% Confident Interval
DF	Dilution Factor
DUP	Duplicate
EDL	Estimated Detection Limit
ITEF	International Toxicity Equivalence Factor
LCS	Laboratory Control Sample
MB	Method Blank
MB % Rec	% Recovery of Surrogate in Method Blank, if applicable
MDL	Method Detection Limit
ML	Minimum Level of Quantitation
MS	Matrix Spike
MSD	Matrix Spike Duplicate
ND	Not detected at or above the indicated MDL or RL
NR	Matrix interferences, or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix; or sample diluted due to high matrix or analyte content.
PF	Prep Factor
RD	Relative Difference
RL	Reporting Limit (The RL is the lowest calibration standard in a multipoint calibration.)
RPD	Relative Percent Deviation
RRT	Relative Retention Time
SPK Val	Spike Value
SPKRef Val	Spike Reference Value
TEQ	Toxicity Equivalence

Quality Control Qualifiers

- F1 MS/MSD recovery and/or RPD was out of acceptance criteria; LCS validated the prep batch.
- F2 LCS recovery for this compound is outside of acceptance limits.

Client:	P & D Environmental	WorkOrder:	1408147
Project:	#0553; Cathedral Gradens 638 21st Street Oakland, c	Extraction Method:	SW5030B
Date Received:	8/5/14 19:40	Analytical Method:	SW8260B
Date Prepared:	8/5/14	Unit:	mg/kg

Volatile Organics by P&T and GC/MS (Basic Target List)

Client ID	Lab ID	Matrix/ExtType	Date Co	llected	Instrument	Batch ID
B13A-10	1408147-001A	Soil	08/05/201	4 07:45	GC16	93668
Analytes	<u>Result</u>		<u>RL</u>	DF		Date Analyzed
Acetone	ND		0.10	1		08/08/2014 10:50
tert-Amyl methyl ether (TAME)	ND		0.0050	1		08/08/2014 10:50
Benzene	ND		0.0050	1		08/08/2014 10:50
Bromobenzene	ND		0.0050	1		08/08/2014 10:50
Bromochloromethane	ND		0.0050	1		08/08/2014 10:50
Bromodichloromethane	ND		0.0050	1		08/08/2014 10:50
Bromoform	ND		0.0050	1		08/08/2014 10:50
Bromomethane	ND		0.0050	1		08/08/2014 10:50
2-Butanone (MEK)	ND		0.020	1		08/08/2014 10:50
t-Butyl alcohol (TBA)	ND		0.050	1		08/08/2014 10:50
n-Butyl benzene	ND		0.0050	1		08/08/2014 10:50
sec-Butyl benzene	ND		0.0050	1		08/08/2014 10:50
tert-Butyl benzene	ND		0.0050	1		08/08/2014 10:50
Carbon Disulfide	ND		0.0050	1		08/08/2014 10:50
Carbon Tetrachloride	ND		0.0050	1		08/08/2014 10:50
Chlorobenzene	ND		0.0050	1		08/08/2014 10:50
Chloroethane	ND		0.0050	1		08/08/2014 10:50
Chloroform	ND		0.0050	1		08/08/2014 10:50
Chloromethane	ND		0.0050	1		08/08/2014 10:50
2-Chlorotoluene	ND		0.0050	1		08/08/2014 10:50
4-Chlorotoluene	ND		0.0050	1		08/08/2014 10:50
Dibromochloromethane	ND		0.0050	1		08/08/2014 10:50
1,2-Dibromo-3-chloropropane	ND		0.0040	1		08/08/2014 10:50
1,2-Dibromoethane (EDB)	ND		0.0040	1		08/08/2014 10:50
Dibromomethane	ND		0.0050	1		08/08/2014 10:50
1,2-Dichlorobenzene	ND		0.0050	1		08/08/2014 10:50
1,3-Dichlorobenzene	ND		0.0050	1		08/08/2014 10:50
1,4-Dichlorobenzene	ND		0.0050	1		08/08/2014 10:50
Dichlorodifluoromethane	ND		0.0050	1		08/08/2014 10:50
1,1-Dichloroethane	ND		0.0050	1		08/08/2014 10:50
1,2-Dichloroethane (1,2-DCA)	ND		0.0040	1		08/08/2014 10:50
1,1-Dichloroethene	ND		0.0050	1		08/08/2014 10:50
cis-1,2-Dichloroethene	ND		0.0050	1		08/08/2014 10:50
trans-1,2-Dichloroethene	ND		0.0050	1		08/08/2014 10:50
1,2-Dichloropropane	ND		0.0050	1		08/08/2014 10:50
1,3-Dichloropropane	ND		0.0050	1		08/08/2014 10:50
2,2-Dichloropropane	ND		0.0050	1		08/08/2014 10:50
1,1-Dichloropropene	ND		0.0050	1		08/08/2014 10:50

(Cont.)

Client:	P & D Environmental	WorkOrder:	1408147
Project:	#0553; Cathedral Gradens 638 21st Street Oakland, c	Extraction Method:	SW5030B
Date Received:	8/5/14 19:40	Analytical Method:	SW8260B
Date Prepared:	8/5/14	Unit:	mg/kg

Volatile Organics by P&T and GC/MS (Basic Target List)

Client ID	Lab ID	Matrix/ExtType	Date Col	llected	Instrument	Batch ID
B13A-10	1408147-001A	Soil	08/05/201	4 07:45	GC16	93668
Analytes	<u>Result</u>		<u>RL</u>	DF		Date Analyzed
cis-1,3-Dichloropropene	ND		0.0050	1		08/08/2014 10:50
trans-1,3-Dichloropropene	ND		0.0050	1		08/08/2014 10:50
Diisopropyl ether (DIPE)	ND		0.0050	1		08/08/2014 10:50
Ethylbenzene	ND		0.0050	1		08/08/2014 10:50
Ethyl tert-butyl ether (ETBE)	ND		0.0050	1		08/08/2014 10:50
Freon 113	ND		0.10	1		08/08/2014 10:50
Hexachlorobutadiene	ND		0.0050	1		08/08/2014 10:50
Hexachloroethane	ND		0.0050	1		08/08/2014 10:50
2-Hexanone	ND		0.0050	1		08/08/2014 10:50
Isopropylbenzene	ND		0.0050	1		08/08/2014 10:50
4-Isopropyl toluene	ND		0.0050	1		08/08/2014 10:50
Methyl-t-butyl ether (MTBE)	ND		0.0050	1		08/08/2014 10:50
Methylene chloride	ND		0.0050	1		08/08/2014 10:50
4-Methyl-2-pentanone (MIBK)	ND		0.0050	1		08/08/2014 10:50
Naphthalene	ND		0.0050	1		08/08/2014 10:50
n-Propyl benzene	ND		0.0050	1		08/08/2014 10:50
Styrene	ND		0.0050	1		08/08/2014 10:50
1,1,1,2-Tetrachloroethane	ND		0.0050	1		08/08/2014 10:50
1,1,2,2-Tetrachloroethane	ND		0.0050	1		08/08/2014 10:50
Tetrachloroethene	ND		0.0050	1		08/08/2014 10:50
Toluene	ND		0.0050	1		08/08/2014 10:50
1,2,3-Trichlorobenzene	ND		0.0050	1		08/08/2014 10:50
1,2,4-Trichlorobenzene	ND		0.0050	1		08/08/2014 10:50
1,1,1-Trichloroethane	ND		0.0050	1		08/08/2014 10:50
1,1,2-Trichloroethane	ND		0.0050	1		08/08/2014 10:50
Trichloroethene	ND		0.0050	1		08/08/2014 10:50
Trichlorofluoromethane	ND		0.0050	1		08/08/2014 10:50
1,2,3-Trichloropropane	ND		0.0050	1		08/08/2014 10:50
1,2,4-Trimethylbenzene	ND		0.0050	1		08/08/2014 10:50
1,3,5-Trimethylbenzene	ND		0.0050	1		08/08/2014 10:50
Vinyl Chloride	ND		0.0050	1		08/08/2014 10:50
Xylenes, Total	ND		0.0050	1		08/08/2014 10:50
Surrogates	<u>REC (%)</u>		<u>Limits</u>			
Dibromofluoromethane	97		70-130			08/08/2014 10:50
Toluene-d8	102		70-130			08/08/2014 10:50
4-BFB	93		70-130			08/08/2014 10:50

Angela Rydelius, Lab Manager

Client:	P & D Environmental	WorkOrder:	1408147
Project:	#0553; Cathedral Gradens 638 21st Street Oakland, c	Extraction Method:	SW5030B
Date Received:	8/5/14 19:40	Analytical Method:	SW8260B
Date Prepared:	8/5/14	Unit:	mg/kg

Volatile Organics by P&T and GC/MS (Basic Target List)

B13A-15 1408147-002A Soil 08/05/2014 07:50 GC16 93668 Analytes Result RL DE Date Analyzed Acetone ND 0.10 1 08/08/2014 11:33 tert-Amyl methyl ether (TAME) ND 0.0050 1 08/08/2014 11:33 Bromochoromethane ND 0.0050 1 08/08/2014 11:33 Pathyl barcene ND 0.0050 1 08/08/2014 11:33 Bromochoromethane ND 0.0050 1 08/08/2014 11:33 Bromochoromethane ND 0.0050 1 08/08/2014 11:33 Bromochoromethane ND	Client ID	Lab ID	Matrix/ExtType	Date Co	llected	Instrument	Batch ID
Acetone ND 0.10 1 08/08/2014 11:33 tert-Amyt methyl ether (TAME) ND 0.0050 1 08/08/2014 11:33 Bornzene ND 0.0050 1 08/08/2014 11:33 Bromobenzene ND 0.0050 1 08/08/2014 11:33 Bromochloromethane ND 0.0050 1 08/08/2014 11:33 Bromochloromethane ND 0.0050 1 08/08/2014 11:33 Bromoethane ND 0.0050 1 08/08/2014 11:33 Bromoethane ND 0.0050 1 08/08/2014 11:33 Z-Butanone (MEK) ND 0.020 1 08/08/2014 11:33 Sec-Butyl benzene ND 0.0050 1 08/08/2014 11:33 Sec-Butyl benzene ND 0.0050 1 08/08/2014 11:33 Carbon Tetrachloride ND 0.0050 1 08/08/2014 11:33 Carbon Tetrachloride ND 0.0050 1 08/08/2014 11:33 Chlorobenzene ND 0.0050 1 <th>B13A-15</th> <th>1408147-002A</th> <th>Soil</th> <th>08/05/201</th> <th>4 07:50</th> <th>GC16</th> <th>93668</th>	B13A-15	1408147-002A	Soil	08/05/201	4 07:50	GC16	93668
tert-Amyl methyl ether (TAME) ND 0.0050 1 08/08/2014 11:33 Berzene ND 0.0050 1 08/08/2014 11:33 Bromobenzene ND 0.0050 1 08/08/2014 11:33 Bromochloromethane ND 0.0050 1 08/08/2014 11:33 Bromochloromethane ND 0.0050 1 08/08/2014 11:33 Bromodichloromethane ND 0.0050 1 08/08/2014 11:33 Bromomethane ND 0.0050 1 08/08/2014 11:33 Bromoloft(TA) ND 0.020 1 08/08/2014 11:33 Steutyl aborzene ND 0.0050 1 08/08/2014 11:33 Brutyl benzene ND 0.0050 1 08/08/2014 11:33 Carbon Tetrachloride ND 0.0050 1 08/08/2014 11:33 Carbon Tetrachloride ND 0.0050 1 08/08/2014 11:33 Chlorobenzene ND 0.0050 1 08/08/2014 11:33 Chloromethane ND 0.0050	Analytes	<u>Result</u>		<u>RL</u>	<u>DF</u>		Date Analyzed
Benzene ND 0.0050 1 08/08/2014 11:33 Bromobenzene ND 0.0050 1 08/08/2014 11:33 Bromochloromethane ND 0.0050 1 08/08/2014 11:33 2-Butanone (MEK) ND 0.020 1 08/08/2014 11:33 arc-Buty lachol (TBA) ND 0.050 1 08/08/2014 11:33 arc-Buty lachol (TBA) ND 0.0050 1 08/08/2014 11:33 arc-Buty lachol (TBA) ND 0.0050 1 08/08/2014 11:33 Carbon Disulfide ND 0.0050 1 08/08/2014 11:33 Carbon Disulfide ND 0.0050 1 08/08/2014 11:33 Chloroberhane ND 0.0050 1 08/08/2014 11:33 Chlorobercene ND 0.0050	Acetone	ND		0.10	1		08/08/2014 11:33
Bromobenzene ND 0.0050 1 08/08/2014 11:33 Bromochloromethane ND 0.0050 1 08/08/2014 11:33 Bromochloromethane ND 0.0050 1 08/08/2014 11:33 Bromoterhane ND 0.0050 1 08/08/2014 11:33 Bromomethane ND 0.0050 1 08/08/2014 11:33 2-Butanone (MEK) ND 0.020 1 08/08/2014 11:33 2-Buty lochol (TBA) ND 0.0050 1 08/08/2014 11:33 sec-Buty benzene ND 0.0050 1 08/08/2014 11:33 tert-Buty benzene ND 0.0050 1 08/08/2014 11:33 carbon Disulfide ND 0.0050 1 08/08/2014 11:33 Carbon Disulfide ND 0.0050 1 08/08/2014 11:33 Carbon Tetrachloride ND 0.0050 1 08/08/2014 11:33 Chlorobenzene ND 0.0050 1 08/08/2014 11:33 Chlorotofurem ND 0.0050 1<	tert-Amyl methyl ether (TAME)	ND		0.0050	1		08/08/2014 11:33
Bromochloromethane ND 0.0050 1 08/08/2014 11:33 Bromodichloromethane ND 0.0050 1 08/08/2014 11:33 Bromoform ND 0.0050 1 08/08/2014 11:33 Bromoform ND 0.0050 1 08/08/2014 11:33 Bromomethane ND 0.0050 1 08/08/2014 11:33 T-Buryl alcohol (TBA) ND 0.050 1 08/08/2014 11:33 sec-Buryl benzene ND 0.0050 1 08/08/2014 11:33 sec-Buryl benzene ND 0.0050 1 08/08/2014 11:33 Carbon Disulide ND 0.0050 1 08/08/2014 11:33 Carbon Disulide ND 0.0050 1 08/08/2014 11:33 Chlorochtane ND 0.0050 1	Benzene	ND		0.0050	1		08/08/2014 11:33
Bromodichloromethane ND 0.0050 1 08/08/2014 11:33 Bromodrom ND 0.0050 1 08/08/2014 11:33 Bromomethane ND 0.0050 1 08/08/2014 11:33 Bromomethane ND 0.0050 1 08/08/2014 11:33 E-Butyl alcohol (TBA) ND 0.0050 1 08/08/2014 11:33 Bres-Butyl berzene ND 0.0050 1 08/08/2014 11:33 Garbon Disulfide ND 0.0050 1 08/08/2014 11:33 Carbon Disulfide ND 0.0050 1 08/08/2014 11:33 Chlorobenzene ND 0.0050 1 08/08/2014 11:33 Chlorobenzene ND 0.0050 1 08/08/2014 11:33 Chlorobenzene ND 0.0050 1 08/08/2014 11:33 Chloroberhane ND 0.0050 1 08/08/2014 11:33 Chloroberhane ND 0.0050 1 08/08/2014 11:33 2-Chlorotoluene ND 0.0050 1	Bromobenzene	ND		0.0050	1		08/08/2014 11:33
Bromotorm ND 0.0050 1 08/08/2014 11:33 Bromomethane ND 0.0050 1 08/08/2014 11:33 2-Butanone (MEK) ND 0.020 1 08/08/2014 11:33 2-Butyl benzene ND 0.050 1 08/08/2014 11:33 n-Butyl benzene ND 0.0050 1 08/08/2014 11:33 sec-Butyl benzene ND 0.0050 1 08/08/2014 11:33 Carbon Disulfide ND 0.0050 1 08/08/2014 11:33 Carbon Disulfide ND 0.0050 1 08/08/2014 11:33 Chlorobenzene ND 0.0050 1 08/08/2014 11:33 Chlorobenzene ND 0.0050 1 08/08/2014 11:33 Chloroform ND 0.0050 1 08/08/2014 11:33 <td>Bromochloromethane</td> <td>ND</td> <td></td> <td>0.0050</td> <td>1</td> <td></td> <td>08/08/2014 11:33</td>	Bromochloromethane	ND		0.0050	1		08/08/2014 11:33
Bromomethane ND 0.0050 1 08/08/2014 11:33 2-Butanone (MEK) ND 0.020 1 08/08/2014 11:33 t-Butyl banzene ND 0.050 1 08/08/2014 11:33 sec-Butyl benzene ND 0.0050 1 08/08/2014 11:33 sec-Butyl benzene ND 0.0050 1 08/08/2014 11:33 Carbon Disulfide ND 0.0050 1 08/08/2014 11:33 Carbon Disulfide ND 0.0050 1 08/08/2014 11:33 Carbon Disulfide ND 0.0050 1 08/08/2014 11:33 Chlorobenzene ND 0.0050 1 08/08/2014 11:33 Chloroform ND 0.0050 1 08/08/2014 11:33 Chloroform ND 0.0050 1 08/08/2014 11:33 Chloroform ND 0.0050 1 08/08/2014 11:33 Chlorotoluene ND 0.0050 1 08/08/2014 11:33 J-Dibromochlarne ND 0.0050 1 08/08	Bromodichloromethane	ND		0.0050	1		08/08/2014 11:33
2-Butanone (MEK) ND 0.020 1 08/08/2014 11:33 I-Butyl alcohol (TBA) ND 0.0550 1 08/08/2014 11:33 n-Butyl benzene ND 0.0050 1 08/08/2014 11:33 see-Butyl benzene ND 0.0050 1 08/08/2014 11:33 Garbon Disulfide ND 0.0050 1 08/08/2014 11:33 Carbon Disulfide ND 0.0050 1 08/08/2014 11:33 Chlorobenzene ND 0.0050 1 08/08/2014 11:33 1_2-Dibromo-Schloropropane ND 0.0050 1<	Bromoform	ND		0.0050	1		08/08/2014 11:33
t-Butyl alcohol (TBA) ND 0.050 1 08/08/2014 11:33 n-Butyl benzene ND 0.0050 1 08/08/2014 11:33 sec-Butyl benzene ND 0.0050 1 08/08/2014 11:33 iert-Butyl benzene ND 0.0050 1 08/08/2014 11:33 Carbon Disulfide ND 0.0050 1 08/08/2014 11:33 Carbon Disulfide ND 0.0050 1 08/08/2014 11:33 Chlorobenzene ND 0.0050 1 08/08/2014 11:33 Chlorobertene ND 0.0050 1 08/08/2014 11:33 Chloroform ND 0.0050 1 08/08/2014 11:33 Chlorotoluene ND 0.0050 1 08/08/2014 11:33 2-Chlorotoluene ND 0.0050 1 08/08/2014 11:33 12-Dibromo-3-chloropropane ND 0.0050 1 08/08/2014 11:33 12-Dibromo-3-chloropropane ND 0.0050 1 08/08/2014 11:33 12-Dibrhorobenzene ND 0.0050<	Bromomethane	ND		0.0050	1		08/08/2014 11:33
n-Butyl benzene ND 0.0050 1 08/08/2014 11:33 sec-Butyl benzene ND 0.0050 1 08/08/2014 11:33 tert-Butyl benzene ND 0.0050 1 08/08/2014 11:33 Carbon Disulfide ND 0.0050 1 08/08/2014 11:33 Carbon Disulfide ND 0.0050 1 08/08/2014 11:33 Chorobenzene ND 0.0050 1 08/08/2014 11:33 Chlorobenzene ND 0.0050 1 08/08/2014 11:33 Chlorothane ND 0.0050 1 08/08/2014 11:33 Chlorothuene ND 0.0050 1 08/08/2014 11:33 2-Chlorotoluene ND 0.0050 1 08/08/2014 11:33 12-Dibromoethane ND 0.0050 1 08/08/2014 11:33 12-Dibromoethane ND 0.0050 1 08/08/2014 11:33 12-Dibromoethane ND 0.0050 1 08/08/2014 11:33 12-Dibromoethane (EDB) ND 0.0050 1 <td>2-Butanone (MEK)</td> <td>ND</td> <td></td> <td>0.020</td> <td>1</td> <td></td> <td>08/08/2014 11:33</td>	2-Butanone (MEK)	ND		0.020	1		08/08/2014 11:33
sec-Butyl benzene ND 0.0050 1 08/08/2014 11:33 tert-Butyl benzene ND 0.0050 1 08/08/2014 11:33 Carbon Disulfide ND 0.0050 1 08/08/2014 11:33 Carbon Disulfide ND 0.0050 1 08/08/2014 11:33 Chlorobenzene ND 0.0050 1 08/08/2014 11:33 Chlorobenzene ND 0.0050 1 08/08/2014 11:33 Chloroform ND 0.0050 1 08/08/2014 11:33 Chloroform ND 0.0050 1 08/08/2014 11:33 2-Chlorotoluene ND 0.0050 1 08/08/2014 11:33 2-Chlorotoluene ND 0.0050 1 08/08/2014 11:33 12-Dibromochloromethane ND 0.0050 1 08/08/2014 11:33 1,2-Dibromochloropropane ND 0.0050 1 08/08/2014 11:33 1,2-Dibromochlane (EDB) ND 0.0040 1 08/08/2014 11:33 1,2-Dichlorobenzene ND 0.0050	t-Butyl alcohol (TBA)	ND		0.050	1		08/08/2014 11:33
tert-Butyl benzene ND 0.0050 1 08/08/2014 11:33 Carbon Disulfide ND 0.0050 1 08/08/2014 11:33 Carbon Tetrachloride ND 0.0050 1 08/08/2014 11:33 Chlorobenzene ND 0.0050 1 08/08/2014 11:33 Chlorobenzene ND 0.0050 1 08/08/2014 11:33 Chlorotothane ND 0.0050 1 08/08/2014 11:33 Chlorototuene ND 0.0050 1 08/08/2014 11:33 Chlorotoluene ND 0.0050 1 08/08/2014 11:33 2-Chlorotoluene ND 0.0050 1 08/08/2014 11:33 12-Dibromo-3-chloropropane ND 0.0050 1 08/08/2014 11:33 1,2-Dibromo-dichoropropane ND 0.0040 1 08/08/2014 11:33 1,2-Diblorobenzene ND 0.0050 1 08/08/2014 11:33 1,2-Dichlorobenzene ND 0.0050 1 08/08/2014 11:33 1,2-Dichlorobenzene ND 0	n-Butyl benzene	ND		0.0050	1		08/08/2014 11:33
Carbon Disulfide ND 0.0050 1 08/08/2014 11:33 Carbon Tetrachloride ND 0.0050 1 08/08/2014 11:33 Chlorobenzene ND 0.0050 1 08/08/2014 11:33 Chlorobenzene ND 0.0050 1 08/08/2014 11:33 Chlorothane ND 0.0050 1 08/08/2014 11:33 Chlorotorm ND 0.0050 1 08/08/2014 11:33 Chlorotoluene ND 0.0050 1 08/08/2014 11:33 2-Chlorotoluene ND 0.0050 1 08/08/2014 11:33 3-Chlorotoluene ND 0.0050 1 08/08/2014 11:33 1,2-Dibromo-dhoromethane ND 0.0050 1 08/08/2014 11:33 1,2-Dibromo-dhane (EDB) ND 0.0040 1 08/08/2014 11:33 1,2-Dibromoethane ND 0.0050 1 08/08/2014 11:33 1,2-Dibromoethane ND 0.0050 1 08/08/2014 11:33 1,2-Dichlorobenzene ND 0.0050	sec-Butyl benzene	ND		0.0050	1		08/08/2014 11:33
Carbon Tetrachloride ND 0.0050 1 08/08/2014 11:33 Chlorobenzene ND 0.0050 1 08/08/2014 11:33 Chlorobenzene ND 0.0050 1 08/08/2014 11:33 Chloroform ND 0.0050 1 08/08/2014 11:33 Chloroform ND 0.0050 1 08/08/2014 11:33 Chloroform ND 0.0050 1 08/08/2014 11:33 2-Chlorotoluene ND 0.0050 1 08/08/2014 11:33 2-Chlorotoluene ND 0.0050 1 08/08/2014 11:33 1/2-Dibromo-3-chloropropane ND 0.0050 1 08/08/2014 11:33 1/2-Dibromoethane (EDB) ND 0.0040 1 08/08/2014 11:33 1/2-Dichlorobenzene ND 0.0050	tert-Butyl benzene	ND		0.0050	1		08/08/2014 11:33
Chlorobenzene ND 0.0050 1 08/08/2014 11:33 Chloroethane ND 0.0050 1 08/08/2014 11:33 Chloroform ND 0.0050 1 08/08/2014 11:33 Chlorotofuene ND 0.0050 1 08/08/2014 11:33 2-Chlorotoluene ND 0.0050 1 08/08/2014 11:33 3-Chlorotoluene ND 0.0050 1 08/08/2014 11:33 3-Chlorotoluene ND 0.0050 1 08/08/2014 11:33 1,2-Dibromo-3-chloropropane ND 0.0050 1 08/08/2014 11:33 1,2-Dibromo-s-chloropropane ND 0.0040 1 08/08/2014 11:33 1,2-Dibromoethane (EDB) ND 0.0040 1 08/08/2014 11:33 1,3-Dichlorobenzene ND 0.0050 1 08/08/2014 11:33 1,4-Dichlorobenzene ND 0.0050 1 08/08/2014 11:33 1,4-Dichlorobenzene ND 0.0050 1 08/08/2014 11:33 1,1-Dichloroethane ND <t< td=""><td>Carbon Disulfide</td><td>ND</td><td></td><td>0.0050</td><td>1</td><td></td><td>08/08/2014 11:33</td></t<>	Carbon Disulfide	ND		0.0050	1		08/08/2014 11:33
Chlorostrane ND 0.0050 1 08/08/2014 11:33 2-Chlorostoluene ND 0.0050 1 08/08/2014 11:33 3-Chlorostoluene ND 0.0050 1 08/08/2014 11:33 Dibromochloromethane ND 0.0050 1 08/08/2014 11:33 1,2-Dibromo-3-chloropropane ND 0.0040 1 08/08/2014 11:33 1,2-Dibromoethane (EDB) ND 0.0040 1 08/08/2014 11:33 1,2-Dichlorobenzene ND 0.0050 1 08/08/2014 11:33 1,2-Dichlorobenzene ND 0.0050 1 08/08/2014 11:33 1,3-Dichlorobenzene ND 0.0050 1 08/08/2014 11:33 1,4-Dichlorobenzene ND 0.0050 1 08/08/2014 11:33 1,1-Dichloroethane ND <td< td=""><td>Carbon Tetrachloride</td><td>ND</td><td></td><td>0.0050</td><td>1</td><td></td><td>08/08/2014 11:33</td></td<>	Carbon Tetrachloride	ND		0.0050	1		08/08/2014 11:33
Chloroform ND 0.0050 1 08/08/2014 11:33 Chloromethane ND 0.0050 1 08/08/2014 11:33 2-Chlorotoluene ND 0.0050 1 08/08/2014 11:33 4-Chlorotoluene ND 0.0050 1 08/08/2014 11:33 Dibromochloromethane ND 0.0050 1 08/08/2014 11:33 1,2-Dibromo-3-chloropropane ND 0.0040 1 08/08/2014 11:33 1,2-Dibromo-thane (EDB) ND 0.0040 1 08/08/2014 11:33 1,2-Dichlorobenzene ND 0.0050 1 08/08/2014 11:33 1,2-Dichlorobenzene ND 0.0050 1 08/08/2014 11:33 1,3-Dichlorobenzene ND 0.0050 1 08/08/2014 11:33 1,4-Dichlorobenzene ND 0.0050 1 08/08/2014 11:33 1,4-Dichlorobenzene ND 0.0050 1 08/08/2014 11:33 1,1-Dichloroethane ND 0.0050 1 08/08/2014 11:33 1,2-Dichloroethane ND	Chlorobenzene	ND		0.0050	1		08/08/2014 11:33
Chloromethane ND 0.0050 1 08/08/2014 11:33 2-Chlorotoluene ND 0.0050 1 08/08/2014 11:33 4-Chlorotoluene ND 0.0050 1 08/08/2014 11:33 Dibromochloromethane ND 0.0050 1 08/08/2014 11:33 1,2-Dibromo-3-chloropropane ND 0.0040 1 08/08/2014 11:33 1,2-Dibromoethane (EDB) ND 0.0050 1 08/08/2014 11:33 1,2-Dibromoethane ND 0.0050 1 08/08/2014 11:33 1,2-Dibromoethane ND 0.0050 1 08/08/2014 11:33 1,2-Dichlorobenzene ND 0.0050 1 08/08/2014 11:33 1,3-Dichlorobenzene ND 0.0050 1 08/08/2014 11:33 1,4-Dichlorobenzene ND 0.0050 1 08/08/2014 11:33 1,1-Dichloroethane ND 0.0050 1 08/08/2014 11:33 1,1-Dichloroethane ND 0.0050 1 08/08/2014 11:33 1,1-Dichloroethene ND <td>Chloroethane</td> <td>ND</td> <td></td> <td>0.0050</td> <td>1</td> <td></td> <td>08/08/2014 11:33</td>	Chloroethane	ND		0.0050	1		08/08/2014 11:33
2-Chlorotoluene ND 0.0050 1 08/08/2014 11:33 4-Chlorotoluene ND 0.0050 1 08/08/2014 11:33 Dibromochloromethane ND 0.0050 1 08/08/2014 11:33 1,2-Dibromo-3-chloropropane ND 0.0040 1 08/08/2014 11:33 1,2-Dibromo-3-chloropropane ND 0.0040 1 08/08/2014 11:33 1,2-Dibromoethane (EDB) ND 0.0050 1 08/08/2014 11:33 1,2-Dichlorobenzene ND 0.0050 1 08/08/2014 11:33 1,2-Dichlorobenzene ND 0.0050 1 08/08/2014 11:33 1,4-Dichlorobenzene ND 0.0050 1 08/08/2014 11:33 1,4-Dichlorobenzene ND 0.0050 1 08/08/2014 11:33 1,4-Dichlorobenzene ND 0.0050 1 08/08/2014 11:33 1,1-Dichloroethane ND 0.0050 1 08/08/2014 11:33 1,1-Dichloroethane ND 0.0050 1 08/08/2014 11:33 1,1-Dichloroethene	Chloroform	ND		0.0050	1		08/08/2014 11:33
4-Chlorotoluene ND 0.0050 1 08/08/2014 11:33 Dibromochloromethane ND 0.0050 1 08/08/2014 11:33 1,2-Dibromo-3-chloropropane ND 0.0040 1 08/08/2014 11:33 1,2-Dibromo-sthane (EDB) ND 0.0040 1 08/08/2014 11:33 Dibromoethane (EDB) ND 0.0050 1 08/08/2014 11:33 1,2-Dichlorobenzene ND 0.0050 1 08/08/2014 11:33 1,2-Dichlorobenzene ND 0.0050 1 08/08/2014 11:33 1,3-Dichlorobenzene ND 0.0050 1 08/08/2014 11:33 1,4-Dichlorobenzene ND 0.0050 1 08/08/2014 11:33 1,4-Dichloroethane ND 0.0050 1 08/08/2014 11:33 1,1-Dichloroethane ND 0.0050 1 08/08/2014 11:33 1,2-Dichloroethane ND 0.0050 1 08/08/2014 11:33 1,2-Dichloroethane ND 0.0050 1 08/08/2014 11:33 1,1-Dichloroethene	Chloromethane	ND		0.0050	1		08/08/2014 11:33
Dibromochloromethane ND 0.0050 1 08/08/2014 11:33 1,2-Dibromo-3-chloropropane ND 0.0040 1 08/08/2014 11:33 1,2-Dibromoethane (EDB) ND 0.0040 1 08/08/2014 11:33 Dibromomethane ND 0.0050 1 08/08/2014 11:33 1,2-Dichlorobenzene ND 0.0050 1 08/08/2014 11:33 1,3-Dichlorobenzene ND 0.0050 1 08/08/2014 11:33 1,3-Dichlorobenzene ND 0.0050 1 08/08/2014 11:33 1,4-Dichlorobenzene ND 0.0050 1 08/08/2014 11:33 1,4-Dichlorobenzene ND 0.0050 1 08/08/2014 11:33 1,1-Dichloroethane ND 0.0050 1 08/08/2014 11:33 1,2-Dichloroethane ND 0.0050 1 08/08/2014 11:33 1,2-Dichloroethane ND 0.0050 1 08/08/2014 11:33 1,2-Dichloroethene ND 0.0050 1 08/08/2014 11:33 i,1-Dichloroethene	2-Chlorotoluene	ND		0.0050	1		08/08/2014 11:33
1,2-Dibromo-3-chloropropane ND 0.0040 1 08/08/2014 11:33 1,2-Dibromoethane (EDB) ND 0.0040 1 08/08/2014 11:33 Dibromomethane ND 0.0050 1 08/08/2014 11:33 1,2-Dichlorobenzene ND 0.0050 1 08/08/2014 11:33 1,2-Dichlorobenzene ND 0.0050 1 08/08/2014 11:33 1,3-Dichlorobenzene ND 0.0050 1 08/08/2014 11:33 1,4-Dichlorobenzene ND 0.0050 1 08/08/2014 11:33 1,4-Dichlorobenzene ND 0.0050 1 08/08/2014 11:33 1,4-Dichlorobenzene ND 0.0050 1 08/08/2014 11:33 1,1-Dichloroethane ND 0.0050 1 08/08/2014 11:33 1,2-Dichloroethane (1,2-DCA) ND 0.0050 1 08/08/2014 11:33 1,1-Dichloroethene ND 0.0050 1 08/08/2014 11:33 1,1-Dichloroethene ND 0.0050 1 08/08/2014 11:33 1,1-Dichloroethene <td>4-Chlorotoluene</td> <td>ND</td> <td></td> <td>0.0050</td> <td>1</td> <td></td> <td>08/08/2014 11:33</td>	4-Chlorotoluene	ND		0.0050	1		08/08/2014 11:33
1,2-Dibromoethane (EDB) ND 0.0040 1 08/08/2014 11:33 Dibromomethane ND 0.0050 1 08/08/2014 11:33 1,2-Dichlorobenzene ND 0.0050 1 08/08/2014 11:33 1,3-Dichlorobenzene ND 0.0050 1 08/08/2014 11:33 1,4-Dichlorobenzene ND 0.0050 1 08/08/2014 11:33 1,4-Dichlorobenzene ND 0.0050 1 08/08/2014 11:33 1,1-Dichlorobenzene ND 0.0050 1 08/08/2014 11:33 1,1-Dichloroethane ND 0.0050 1 08/08/2014 11:33 1,2-Dichloroethane (1,2-DCA) ND 0.0050 1 08/08/2014 11:33 1,1-Dichloroethene ND 0.0050 1 08/08/2014 11:33 1,1-Dichloroethene ND 0.0050 1 08/08/2014 11:33 1,2-Dichloroethene ND 0.0050 1 08/08/2014 11:33 1,2-Dichloroethene ND 0.0050 1 08/08/2014 11:33 1,2-Dichloroethene	Dibromochloromethane	ND		0.0050	1		08/08/2014 11:33
Dibromomethane ND 0.0050 1 08/08/2014 11:33 1,2-Dichlorobenzene ND 0.0050 1 08/08/2014 11:33 1,3-Dichlorobenzene ND 0.0050 1 08/08/2014 11:33 1,3-Dichlorobenzene ND 0.0050 1 08/08/2014 11:33 1,4-Dichlorobenzene ND 0.0050 1 08/08/2014 11:33 1,4-Dichlorobenzene ND 0.0050 1 08/08/2014 11:33 1,1-Dichlorobenzene ND 0.0050 1 08/08/2014 11:33 1,1-Dichloroethane ND 0.0050 1 08/08/2014 11:33 1,2-Dichloroethane (1,2-DCA) ND 0.0050 1 08/08/2014 11:33 1,1-Dichloroethene ND 0.0050 1 08/08/2014 11:33 1,1-Dichloroethene ND 0.0050 1 08/08/2014 11:33 1,2-Dichloroethene ND 0.0050 1 08/08/2014 11:33 1,2-Dichloroethene ND 0.0050 1 08/08/2014 11:33 1,2-Dichloropropane <t< td=""><td>1,2-Dibromo-3-chloropropane</td><td>ND</td><td></td><td>0.0040</td><td>1</td><td></td><td>08/08/2014 11:33</td></t<>	1,2-Dibromo-3-chloropropane	ND		0.0040	1		08/08/2014 11:33
1,2-DichlorobenzeneND0.0050108/08/2014 11:331,3-DichlorobenzeneND0.0050108/08/2014 11:331,4-DichlorobenzeneND0.0050108/08/2014 11:33DichlorodifluoromethaneND0.0050108/08/2014 11:331,1-DichlorobethaneND0.0050108/08/2014 11:331,2-DichloroethaneND0.0050108/08/2014 11:331,2-DichloroethaneND0.0050108/08/2014 11:331,2-DichloroethaneND0.0050108/08/2014 11:331,1-DichloroetheneND0.0050108/08/2014 11:331,2-DichloroetheneND0.0050108/08/2014 11:331,2-DichloroetheneND0.0050108/08/2014 11:331,2-DichloroetheneND0.0050108/08/2014 11:331,2-DichloroetheneND0.0050108/08/2014 11:331,2-DichloroetheneND0.0050108/08/2014 11:331,2-DichloroetheneND0.0050108/08/2014 11:331,2-DichloropropaneND0.0050108/08/2014 11:332,2-DichloropropaneND0.0050108/08/2014 11:332,2-DichloropropaneND0.0050108/08/2014 11:332,2-DichloropropaneND0.0050108/08/2014 11:33	1,2-Dibromoethane (EDB)	ND		0.0040	1		08/08/2014 11:33
1,3-DichlorobenzeneND0.0050108/08/2014 11:331,4-DichlorobenzeneND0.0050108/08/2014 11:33DichlorodifluoromethaneND0.0050108/08/2014 11:331,1-DichloroethaneND0.0050108/08/2014 11:331,2-Dichloroethane (1,2-DCA)ND0.0040108/08/2014 11:331,1-DichloroetheneND0.0050108/08/2014 11:331,1-DichloroetheneND0.0050108/08/2014 11:331,2-DichloroetheneND0.0050108/08/2014 11:331,2-DichloroetheneND0.0050108/08/2014 11:331,2-DichloroetheneND0.0050108/08/2014 11:331,2-DichloroetheneND0.0050108/08/2014 11:331,2-DichloroptopaneND0.0050108/08/2014 11:332,2-DichloropropaneND0.0050108/08/2014 11:332,2-DichloropropaneND0.0050108/08/2014 11:332,2-DichloropropaneND0.0050108/08/2014 11:332,2-DichloropropaneND0.0050108/08/2014 11:332,2-DichloropropaneND0.0050108/08/2014 11:332,2-DichloropropaneND0.0050108/08/2014 11:33	Dibromomethane	ND		0.0050	1		08/08/2014 11:33
1,4-DichlorobenzeneND0.0050108/08/2014 11:33DichlorodifluoromethaneND0.0050108/08/2014 11:331,1-DichloroethaneND0.0050108/08/2014 11:331,2-Dichloroethane (1,2-DCA)ND0.0040108/08/2014 11:331,1-DichloroetheneND0.0050108/08/2014 11:331,1-DichloroetheneND0.0050108/08/2014 11:331,2-DichloroetheneND0.0050108/08/2014 11:33trans-1,2-DichloroetheneND0.0050108/08/2014 11:331,2-DichloroetheneND0.0050108/08/2014 11:331,2-DichloropropaneND0.0050108/08/2014 11:332,2-DichloropropaneND0.0050108/08/2014 11:332,2-DichloropropaneND0.0050108/08/2014 11:332,2-DichloropropaneND0.0050108/08/2014 11:33	1,2-Dichlorobenzene	ND		0.0050	1		08/08/2014 11:33
DichlorodifluoromethaneND0.0050108/08/2014 11:331,1-DichloroethaneND0.0050108/08/2014 11:331,2-Dichloroethane (1,2-DCA)ND0.0040108/08/2014 11:331,1-DichloroethaneND0.0050108/08/2014 11:331,1-DichloroetheneND0.0050108/08/2014 11:331,2-DichloroetheneND0.0050108/08/2014 11:33trans-1,2-DichloroetheneND0.0050108/08/2014 11:331,2-DichloroptopaneND0.0050108/08/2014 11:331,3-DichloropropaneND0.0050108/08/2014 11:332,2-DichloropropaneND0.0050108/08/2014 11:332,2-DichloropropaneND0.0050108/08/2014 11:33	1,3-Dichlorobenzene	ND		0.0050	1		08/08/2014 11:33
1,1-DichloroethaneND0.0050108/08/2014 11:331,2-Dichloroethane (1,2-DCA)ND0.0040108/08/2014 11:331,1-DichloroetheneND0.0050108/08/2014 11:33cis-1,2-DichloroetheneND0.0050108/08/2014 11:33trans-1,2-DichloroetheneND0.0050108/08/2014 11:331,2-DichloroetheneND0.0050108/08/2014 11:331,2-DichloroptopaneND0.0050108/08/2014 11:331,3-DichloropropaneND0.0050108/08/2014 11:332,2-DichloroptopaneND0.0050108/08/2014 11:332,2-DichloroptopaneND0.0050108/08/2014 11:33	1,4-Dichlorobenzene	ND		0.0050	1		08/08/2014 11:33
1,2-Dichloroethane (1,2-DCA)ND0.0040108/08/2014 11:331,1-DichloroetheneND0.0050108/08/2014 11:33cis-1,2-DichloroetheneND0.0050108/08/2014 11:33trans-1,2-DichloroetheneND0.0050108/08/2014 11:331,2-DichloroptopaneND0.0050108/08/2014 11:331,3-DichloropropaneND0.0050108/08/2014 11:332,2-DichloropropaneND0.0050108/08/2014 11:332,2-DichloropropaneND0.0050108/08/2014 11:33	Dichlorodifluoromethane	ND		0.0050	1		08/08/2014 11:33
1,1-DichloroetheneND0.0050108/08/2014 11:33cis-1,2-DichloroetheneND0.0050108/08/2014 11:33trans-1,2-DichloroetheneND0.0050108/08/2014 11:331,2-DichloropropaneND0.0050108/08/2014 11:331,3-DichloropropaneND0.0050108/08/2014 11:332,2-DichloropropaneND0.0050108/08/2014 11:332,2-DichloropropaneND0.0050108/08/2014 11:33	1,1-Dichloroethane	ND		0.0050	1		08/08/2014 11:33
cis-1,2-DichloroetheneND0.0050108/08/2014 11:33trans-1,2-DichloroetheneND0.0050108/08/2014 11:331,2-DichloropropaneND0.0050108/08/2014 11:331,3-DichloropropaneND0.0050108/08/2014 11:332,2-DichloropropaneND0.0050108/08/2014 11:332,2-DichloropropaneND0.0050108/08/2014 11:33	1,2-Dichloroethane (1,2-DCA)	ND		0.0040	1		08/08/2014 11:33
trans-1,2-DichloroetheneND0.0050108/08/2014 11:331,2-DichloropropaneND0.0050108/08/2014 11:331,3-DichloropropaneND0.0050108/08/2014 11:332,2-DichloropropaneND0.0050108/08/2014 11:33	1,1-Dichloroethene	ND		0.0050	1		08/08/2014 11:33
1,2-DichloropropaneND0.0050108/08/2014 11:331,3-DichloropropaneND0.0050108/08/2014 11:332,2-DichloropropaneND0.0050108/08/2014 11:33	cis-1,2-Dichloroethene	ND		0.0050	1		08/08/2014 11:33
1,3-Dichloropropane ND 0.0050 1 08/08/2014 11:33 2,2-Dichloropropane ND 0.0050 1 08/08/2014 11:33	trans-1,2-Dichloroethene	ND		0.0050	1		08/08/2014 11:33
ND 0.0050 1 08/08/2014 11:33	1,2-Dichloropropane	ND		0.0050	1		08/08/2014 11:33
	1,3-Dichloropropane	ND		0.0050	1		08/08/2014 11:33
1,1-Dichloropropene ND 0.0050 1 08/08/2014 11:33	2,2-Dichloropropane	ND		0.0050	1		08/08/2014 11:33
	1,1-Dichloropropene	ND		0.0050	1		08/08/2014 11:33

(Cont.)

Client:	P & D Environmental	WorkOrder:	1408147
Project:	#0553; Cathedral Gradens 638 21st Street Oakland, c	Extraction Method:	SW5030B
Date Received:	8/5/14 19:40	Analytical Method:	SW8260B
Date Prepared:	8/5/14	Unit:	mg/kg

Client ID	Lab ID	Matrix/ExtType	Date Col	lected	Instrument	Batch ID
B13A-15	1408147-002A	Soil	08/05/2014	4 07:50	GC16	93668
Analytes	<u>Result</u>		<u>RL</u>	<u>DF</u>		Date Analyzed
cis-1,3-Dichloropropene	ND		0.0050	1		08/08/2014 11:33
trans-1,3-Dichloropropene	ND		0.0050	1		08/08/2014 11:33
Diisopropyl ether (DIPE)	ND		0.0050	1		08/08/2014 11:33
Ethylbenzene	ND		0.0050	1		08/08/2014 11:33
Ethyl tert-butyl ether (ETBE)	ND		0.0050	1		08/08/2014 11:33
Freon 113	ND		0.10	1		08/08/2014 11:33
Hexachlorobutadiene	ND		0.0050	1		08/08/2014 11:33
Hexachloroethane	ND		0.0050	1		08/08/2014 11:33
2-Hexanone	ND		0.0050	1		08/08/2014 11:33
Isopropylbenzene	ND		0.0050	1		08/08/2014 11:33
4-Isopropyl toluene	ND		0.0050	1		08/08/2014 11:33
Methyl-t-butyl ether (MTBE)	ND		0.0050	1		08/08/2014 11:33
Methylene chloride	ND		0.0050	1		08/08/2014 11:33
4-Methyl-2-pentanone (MIBK)	ND		0.0050	1		08/08/2014 11:33
Naphthalene	ND		0.0050	1		08/08/2014 11:33
n-Propyl benzene	ND		0.0050	1		08/08/2014 11:33
Styrene	ND		0.0050	1		08/08/2014 11:33
1,1,1,2-Tetrachloroethane	ND		0.0050	1		08/08/2014 11:33
1,1,2,2-Tetrachloroethane	ND		0.0050	1		08/08/2014 11:33
Tetrachloroethene	ND		0.0050	1		08/08/2014 11:33
Toluene	ND		0.0050	1		08/08/2014 11:33
1,2,3-Trichlorobenzene	ND		0.0050	1		08/08/2014 11:33
1,2,4-Trichlorobenzene	ND		0.0050	1		08/08/2014 11:33
1,1,1-Trichloroethane	ND		0.0050	1		08/08/2014 11:33
1,1,2-Trichloroethane	ND		0.0050	1		08/08/2014 11:33
Trichloroethene	ND		0.0050	1		08/08/2014 11:33
Trichlorofluoromethane	ND		0.0050	1		08/08/2014 11:33
1,2,3-Trichloropropane	ND		0.0050	1		08/08/2014 11:33
1,2,4-Trimethylbenzene	ND		0.0050	1		08/08/2014 11:33
1,3,5-Trimethylbenzene	ND		0.0050	1		08/08/2014 11:33
Vinyl Chloride	ND		0.0050	1		08/08/2014 11:33
Xylenes, Total	ND		0.0050	1		08/08/2014 11:33
Surrogates	<u>REC (%)</u>		<u>Limits</u>			
Dibromofluoromethane	95		70-130			08/08/2014 11:33
Toluene-d8	102		70-130			08/08/2014 11:33
4-BFB	90		70-130			08/08/2014 11:33

Client:	P & D Environmental	WorkOrder:	1408147
Project:	#0553; Cathedral Gradens 638 21st Street Oakland, c	Extraction Method:	SW5030B
Date Received:	8/5/14 19:40	Analytical Method:	SW8260B
Date Prepared:	8/5/14	Unit:	mg/kg

Volatile Organics by P&T and GC/MS (Basic Target List)

B13A-20 1408147-003A Soil 08/05/2014 07:55 GC16 93668 Analytes Result EL DE Date Analyzed Acetone ND 0.10 1 08/08/2014 12:16 Ierr-Anryl methyl tehr (TAME) ND 0.0050 1 08/08/2014 12:16 Bornenchoromethane ND 0.0050 1 08/08/2014 12:16 Bromochoromethane ND 0.0050 1 08/08/2014 12:16 Pathyl banzene ND 0.0050 1 08/08/2014 12:16 Farbuly banzene ND 0.0050 1 08/08/2014 12:16 Carbon Disulfide ND 0.0050 1 08/08/2014 12:16 Carbon Disulfide ND <t< th=""><th>Client ID</th><th>Lab ID</th><th>Matrix/ExtType</th><th>Date Co</th><th>llected</th><th>Instrument</th><th>Batch ID</th></t<>	Client ID	Lab ID	Matrix/ExtType	Date Co	llected	Instrument	Batch ID
Acetone ND 0.10 1 08/08/2014 12:16 tert-Anyl methyl ether (TAME) ND 0.0050 1 08/08/2014 12:16 Benzene ND 0.0050 1 08/08/2014 12:16 Bromobenzene ND 0.0050 1 08/08/2014 12:16 Bromocharomethane ND 0.0050 1 08/08/2014 12:16 Bromocharomethane ND 0.0050 1 08/08/2014 12:16 Bromosthane ND 0.0050 1 08/08/2014 12:16 Charbon Etrachioride ND 0.0050 1 08/08/2014 12:16	B13A-20	1408147-003A	Soil	08/05/201	4 07:55	GC16	93668
tert-Amyl methyl ether (TAME) ND 0.0050 1 08/08/2014 12:16 Berzene ND 0.0050 1 06/08/2014 12:16 Bromobenzene ND 0.0050 1 06/08/2014 12:16 Bromochloromethane ND 0.0050 1 06/08/2014 12:16 Bromodichioromethane ND 0.0050 1 06/08/2014 12:16 Bromodichioromethane ND 0.0050 1 06/08/2014 12:16 Bromodentomethane ND 0.0050 1 06/08/2014 12:16 Bromodentomethane ND 0.0050 1 06/08/2014 12:16 Bromodent (TBA) ND 0.0050 1 06/08/2014 12:16 N=Butyl benzene ND 0.0050 1 06/08/2014 12:16 Carbon Disulfide ND 0.0050 1 06/08/2014 12:16 Carbon Disulfide ND 0.0050 1 06/08/2014 12:16 Carbon Disulfide ND 0.0050 1 06/08/2014 12:16 Chioromethane ND 0.0050	Analytes	<u>Result</u>		<u>RL</u>	DF		Date Analyzed
Benzene ND 0.0050 1 08/08/2014 12:16 Bromobenzene ND 0.0050 1 08/08/2014 12:16 Bromochoromethane ND 0.0050 1 08/08/2014 12:16 Semanne (MEK) ND 0.0050 1 08/08/2014 12:16 Semanne (MEK) ND 0.0050 1 08/08/2014 12:16 Ses-Butyl benzene ND 0.0050 1 08/08/2014 12:16 Carbon Tetrachioride ND 0.0050 1 08/08/2014 12:16 Carbon Tetrachioride ND 0.0050 1 08/08/2014 12:16 Carbon Tetrachioride ND 0.0050 1 08/08/2014 12:16 Chiorotorm ND 0.0050 1<	Acetone	ND		0.10	1		08/08/2014 12:16
Bromobenzene ND 0.0050 1 08/08/2014 12:16 Bromochloromethane ND 0.0050 1 08/08/2014 12:16 Bromochloromethane ND 0.0050 1 08/08/2014 12:16 Bromothrom ND 0.0050 1 08/08/2014 12:16 Bromothrane ND 0.0050 1 08/08/2014 12:16 Bromothrane ND 0.020 1 08/08/2014 12:16 2-Butanone (MEK) ND 0.020 1 08/08/2014 12:16 Pauly lacohol (TBA) ND 0.0050 1 08/08/2014 12:16 re-Butyl benzene ND 0.0050 1 08/08/2014 12:16 catoon Disulfide ND 0.0050 1 08/08/2014 12:16 Carbon Disulfide ND 0.0050 1 08/08/2014 12:16 Chloroetnane ND 0.0050 1 08/08/2014 12:16 Chloroetnane ND 0.0050 1 08/08/2014 12:16 Chloroetnane ND 0.0050 1 08/	tert-Amyl methyl ether (TAME)	ND		0.0050	1		08/08/2014 12:16
Bromachloromethane ND 0.0050 1 08/08/2014 12:16 Bromadichloromethane ND 0.0050 1 08/08/2014 12:16 Bromadichloromethane ND 0.0050 1 08/08/2014 12:16 Bromaditane ND 0.0050 1 08/08/2014 12:16 Setuatione (MEK) ND 0.020 1 08/08/2014 12:16 -Butyl barzene ND 0.0050 1 08/08/2014 12:16 -Butyl barzene ND 0.0050 1 08/08/2014 12:16 carbon Disulfide ND 0.0050 1 08/08/2014 12:16 Carbon Disulfide ND 0.0050 1 08/08/2014 12:16 Charbon Tetrachloride ND 0.0050 1 08/08/2014 12:16 Chlorodehane ND 0.0050 1 08/08/2014 12:16 Chlorothane ND 0.0050 1 08/08/2014 12:16 Chlorothane ND 0.0050 1 08/08/2014 12:16 Chlorothane ND 0.0050 1	Benzene	ND		0.0050	1		08/08/2014 12:16
Bromodichloromethane ND 0.0050 1 08/08/2014 12:16 Bromodichloromethane ND 0.0050 1 08/08/2014 12:16 Bromodichloromethane ND 0.0050 1 08/08/2014 12:16 Bromodichloromethane ND 0.020 1 08/08/2014 12:16 E-Butanone (MEK) ND 0.050 1 08/08/2014 12:16 L-Butyl alcohol (TBA) ND 0.0050 1 08/08/2014 12:16 cs-Butyl benzene ND 0.0050 1 08/08/2014 12:16 carbon Disulfide ND 0.0050 1 08/08/2014 12:16 Carbon Tetrachloride ND 0.0050 1 08/08/2014 12:16 Chlorobenzene ND 0.0050 1 08/08/2014 12:16 Chlorobenzene ND 0.0050 1 08/08/2014 12:16 Chloromethane ND 0.0050 1 08/08/2014 12:16 Chloromethane ND 0.0050 1 08/08/2014 12:16 Chloromethane ND 0.0050	Bromobenzene	ND		0.0050	1		08/08/2014 12:16
Bromoform ND 0.0050 1 08/08/2014 12:16 Bromomethane ND 0.0050 1 08/08/2014 12:16 2-Butanone (MEK) ND 0.020 1 08/08/2014 12:16 1-Butyl benzene ND 0.050 1 08/08/2014 12:16 n-Butyl benzene ND 0.0050 1 08/08/2014 12:16 carbon Disulfide ND 0.0050 1 08/08/2014 12:16 Carbon Disulfide ND 0.0050 1 08/08/2014 12:16 Carbon Disulfide ND 0.0050 1 08/08/2014 12:16 Charbon Disulfide ND 0.0050 1 08/08/2014 12:16 Chiorothareene ND 0.0050 1 08/08/2014 12:16 Chiorothane ND 0.0050 1 08/08/2014 1	Bromochloromethane	ND		0.0050	1		08/08/2014 12:16
Bromomethane ND 0.0050 1 08/08/2014 12:16 2-Butanone (MEK) ND 0.020 1 08/08/2014 12:16 t-Butyl alcohol (TBA) ND 0.050 1 08/08/2014 12:16 n-Butyl benzene ND 0.0050 1 08/08/2014 12:16 sec-Butyl benzene ND 0.0050 1 08/08/2014 12:16 Carbon Disulfide ND 0.0050 1 08/08/2014 12:16 Carbon Disulfide ND 0.0050 1 08/08/2014 12:16 Chiorobenzene ND 0.0050 1 08/08/2014 12:16 Chiorobenzene ND 0.0050 1 08/08/2014 12:16 Chioroform ND 0.0050 1 08/08/2014 12:16 Chioroform ND 0.0050 1 08/08/2014 12:16 Chiorotoluene ND 0.0050 1 08/08/2014 12:16 Dibromochioromethane ND 0.0050 1 08/08/2014 12:16 Dibromochioromethane ND 0.0050 1	Bromodichloromethane	ND		0.0050	1		08/08/2014 12:16
2-Butanone (MEK) ND 0.020 1 08/08/2014 12:16 t-Butyl alcohol (TBA) ND 0.050 1 08/08/2014 12:16 n-Butyl benzene ND 0.0050 1 08/08/2014 12:16 ser-Butyl benzene ND 0.0050 1 08/08/2014 12:16 Carbon Disulfide ND 0.0050 1 08/08/2014 12:16 Carbon Disulfide ND 0.0050 1 08/08/2014 12:16 Chlorobenzene ND 0.0050 1 08/08/2014 12:16 L-Chlorobulene ND 0.0050 1	Bromoform	ND		0.0050	1		08/08/2014 12:16
t-Butyl alcohol (TBA) ND 0.050 1 08/08/2014 12:16 n-Butyl benzene ND 0.0050 1 08/08/2014 12:16 sec-Butyl benzene ND 0.0050 1 08/08/2014 12:16 tert-Butyl benzene ND 0.0050 1 08/08/2014 12:16 Carbon Disulfide ND 0.0050 1 08/08/2014 12:16 Carbon Tetrachloride ND 0.0050 1 08/08/2014 12:16 Chlorobenzene ND 0.0050 1 08/08/2014 12:16 Chloroform ND 0.0050 1 08/08/2014 12:16 Chloroform ND 0.0050 1 08/08/2014 12:16 Chloroform ND 0.0050 1 08/08/2014 12:16 Chlorotoluene ND 0.0050 1 08/08/2014 12:16 2-Chlorotoluene ND 0.0050 1 08/08/2014 12:16 12-Dibromo-3-chloropropane ND 0.0050 1 08/08/2014 12:16 12-Dibromo-3-chloropropane ND 0.0050	Bromomethane	ND		0.0050	1		08/08/2014 12:16
n-Butyl benzene ND 0.0050 1 08/08/2014 12:16 sec-Butyl benzene ND 0.0050 1 08/08/2014 12:16 tert-Butyl benzene ND 0.0050 1 08/08/2014 12:16 Carbon Disulfide ND 0.0050 1 08/08/2014 12:16 Carbon Tetrachloride ND 0.0050 1 08/08/2014 12:16 Chlorobenzene ND 0.0050 1 08/08/2014 12:16 Chlorobenzene ND 0.0050 1 08/08/2014 12:16 Chlorothrm ND 0.0050 1 08/08/2014 12:16 Chlorothrme ND 0.0050 1 08/08/2014 12:16 2-Chlorotoluene ND 0.0050 1 08/08/2014 12:16 2-Chlorotoluene ND 0.0050 1 08/08/2014 12:16 1/2-Dibromo-schloropropane ND 0.0050 1 08/08/2014 12:16 1/2-Dibromo-schloropropane ND 0.0050 1 08/08/2014 12:16 1/2-Dichlorobenzene ND 0.0050 <td>2-Butanone (MEK)</td> <td>ND</td> <td></td> <td>0.020</td> <td>1</td> <td></td> <td>08/08/2014 12:16</td>	2-Butanone (MEK)	ND		0.020	1		08/08/2014 12:16
sec-Butyl benzene ND 0.0050 1 08/08/2014 12:16 tert-Butyl benzene ND 0.0050 1 08/08/2014 12:16 Carbon Disulfide ND 0.0050 1 08/08/2014 12:16 Carbon Tetrachloride ND 0.0050 1 08/08/2014 12:16 Chlorobenzene ND 0.0050 1 08/08/2014 12:16 Chlorobenzene ND 0.0050 1 08/08/2014 12:16 Chlorobenzene ND 0.0050 1 08/08/2014 12:16 Chloroform ND 0.0050 1 08/08/2014 12:16 Chlorotoluene ND 0.0050 1 08/08/2014 12:16 2-Chlorotoluene ND 0.0050 1 08/08/2014 12:16 1,2-Dibromochloromethane ND 0.0050 1 08/08/2014 12:16 1,2-Dibromochloropropane ND 0.0050 1 08/08/2014 12:16 1,2-Dibromochlaropropane ND 0.0050 1 08/08/2014 12:16 1,2-Dichlorobenzene ND 0.00	t-Butyl alcohol (TBA)	ND		0.050	1		08/08/2014 12:16
tert-Butyl benzene ND 0.0050 1 08/08/2014 12:16 Carbon Disulfide ND 0.0050 1 08/08/2014 12:16 Carbon Tetrachloride ND 0.0050 1 08/08/2014 12:16 Chlorobenzene ND 0.0050 1 08/08/2014 12:16 Chlorothane ND 0.0050 1 08/08/2014 12:16 4-Chlorotoluene ND 0.0050 1 08/08/2014 12:16 4-Chlorotoluene ND 0.0050 1 08/08/2014 12:16 1,2-Dibromo-3-chloropropane ND 0.0050 1 08/08/2014 12:16 1,2-Dibromoethane (EDB) ND 0.0050 1 08/08/2014 12:16 1,2-Dichlorobenzene ND 0.0050 1 08/08/2014 12:16 1,2-Dichlorobenzene ND 0.0050	n-Butyl benzene	ND		0.0050	1		08/08/2014 12:16
Carbon Disulfide ND 0.0050 1 08/08/2014 12:16 Carbon Tetrachloride ND 0.0050 1 08/08/2014 12:16 Chlorobenzene ND 0.0050 1 08/08/2014 12:16 Chlorobenzene ND 0.0050 1 08/08/2014 12:16 Chlorobenzene ND 0.0050 1 08/08/2014 12:16 Chlorotorm ND 0.0050 1 08/08/2014 12:16 Chlorotormethane ND 0.0050 1 08/08/2014 12:16 2-Chlorotoluene ND 0.0050 1 08/08/2014 12:16 1_2-Dibromo-dhoromethane ND 0.0050 1 08/08/2014 12:16 1_2-Dibromo-dhoromethane ND 0.0050 1 08/08/2014 12:16 1_2-Dibromo-dhoromethane ND 0.0040 1 08/08/2014 12:16 1_2-Dibromo-dhoromethane ND 0.0040 1 08/08/2014 12:16 1_2-Dibromo-dhoropropane ND 0.0040 1 08/08/2014 12:16 1_2-Dichlorobenzene ND	sec-Butyl benzene	ND		0.0050	1		08/08/2014 12:16
Carbon Tetrachloride ND 0.0050 1 08/08/2014 12:16 Chlorobenzene ND 0.0050 1 08/08/2014 12:16 Chlorobenzene ND 0.0050 1 08/08/2014 12:16 Chloroform ND 0.0050 1 08/08/2014 12:16 Chloroform ND 0.0050 1 08/08/2014 12:16 Chloroform ND 0.0050 1 08/08/2014 12:16 2-Chlorotoluene ND 0.0050 1 08/08/2014 12:16 2-Chlorotoluene ND 0.0050 1 08/08/2014 12:16 Dibromochloromethane ND 0.0050 1 08/08/2014 12:16 1,2-Dibromo-3-chloropropane ND 0.0040 1 08/08/2014 12:16 1,2-Dibromoethane (EDB) ND 0.0050 1 08/08/2014 12:16 1,3-Dichlorobenzene ND 0.0050 1 08/08/2014 12:16 1,3-Dichlorobenzene ND 0.0050 1 08/08/2014 12:16 1,4-Dichlorobenzene ND 0.0050 <td>tert-Butyl benzene</td> <td>ND</td> <td></td> <td>0.0050</td> <td>1</td> <td></td> <td>08/08/2014 12:16</td>	tert-Butyl benzene	ND		0.0050	1		08/08/2014 12:16
Chlorobenzene ND 0.0050 1 08/08/2014 12:16 Chloroethane ND 0.0050 1 08/08/2014 12:16 Chloroform ND 0.0050 1 08/08/2014 12:16 Chloroform ND 0.0050 1 08/08/2014 12:16 Chlorotoluene ND 0.0050 1 08/08/2014 12:16 2-Chlorotoluene ND 0.0050 1 08/08/2014 12:16 Dibromochloromethane ND 0.0050 1 08/08/2014 12:16 1,2-Dibromo-3-chloropropane ND 0.0050 1 08/08/2014 12:16 1,2-Dibromoethane (EDB) ND 0.0040 1 08/08/2014 12:16 1,2-Dichlorobenzene ND 0.0050 1 08/08/2014 12:16 1,3-Dichlorobenzene ND 0.0050 1 08/08/2014 12:16 1,4-Dichlorobenzene ND 0.0050 1 08/08/2014 12:16 1,4-Dichlorobenzene ND 0.0050 1 08/08/2014 12:16 1,1-Dichloroethane ND 0.0050	Carbon Disulfide	ND		0.0050	1		08/08/2014 12:16
Chlorosthane ND 0.0050 1 08/08/2014 12:16 Chloroform ND 0.0050 1 08/08/2014 12:16 Chlorotoluene ND 0.0050 1 08/08/2014 12:16 2-Chlorotoluene ND 0.0050 1 08/08/2014 12:16 4-Chlorotoluene ND 0.0050 1 08/08/2014 12:16 1.2-Dibromochloromethane ND 0.0050 1 08/08/2014 12:16 1.2-Dibromo-3-chloropropane ND 0.0050 1 08/08/2014 12:16 1.2-Dibromo-d-s-chloropropane ND 0.0040 1 08/08/2014 12:16 1.2-Dibromoethane (EDB) ND 0.0040 1 08/08/2014 12:16 1.2-Dichlorobenzene ND 0.0050 1 08/08/2014 12:16 1.2-Dichlorobenzene ND 0.0050 1 08/08/2014 12:16 1.4-Dichlorobenzene ND 0.0050 1 08/08/2014 12:16 1.4-Dichlorobenzene ND 0.0050 1 08/08/2014 12:16 1.4-Dichloroethane N	Carbon Tetrachloride	ND		0.0050	1		08/08/2014 12:16
Chloroform ND 0.0050 1 08/08/2014 12:16 Chloromethane ND 0.0050 1 08/08/2014 12:16 2-Chlorotoluene ND 0.0050 1 08/08/2014 12:16 4-Chlorotoluene ND 0.0050 1 08/08/2014 12:16 Dibromochloromethane ND 0.0050 1 08/08/2014 12:16 1,2-Dibromo-3-chloropropane ND 0.0040 1 08/08/2014 12:16 1,2-Dibromoethane (EDB) ND 0.0040 1 08/08/2014 12:16 1,2-Dibromoethane (EDB) ND 0.0050 1 08/08/2014 12:16 1,2-Dichlorobenzene ND 0.0050 1 08/08/2014 12:16 1,4-Dichlorobenzene ND 0.0050 1 08/08/2014 12:16 1,4-Dichlorobenzene ND 0.0050 1 08/08/2014 12:16 1,4-Dichlorobenzene ND 0.0050 1 08/08/2014 12:16 1,1-Dichloroethane ND 0.0050 1 08/08/2014 12:16 1,1-Dichloroethane ND <td>Chlorobenzene</td> <td>ND</td> <td></td> <td>0.0050</td> <td>1</td> <td></td> <td>08/08/2014 12:16</td>	Chlorobenzene	ND		0.0050	1		08/08/2014 12:16
Chloromethane ND 0.0050 1 08/08/2014 12:16 2-Chlorotoluene ND 0.0050 1 08/08/2014 12:16 4-Chlorotoluene ND 0.0050 1 08/08/2014 12:16 Dibromochloromethane ND 0.0050 1 08/08/2014 12:16 1,2-Dibromo-3-chloropropane ND 0.0040 1 08/08/2014 12:16 1,2-Dibromoethane (EDB) ND 0.0050 1 08/08/2014 12:16 Dibromomethane ND 0.0050 1 08/08/2014 12:16 1,2-Dichlorobenzene ND 0.0050 1 08/08/2014 12:16 1,3-Dichlorobenzene ND 0.0050 1 08/08/2014 12:16 1,4-Dichlorobenzene ND 0.0050 1 08/08/2014 12:16 1,4-Dichlorobenzene ND 0.0050 1 08/08/2014 12:16 1,1-Dichlorobenzene ND 0.0050 1 08/08/2014 12:16 1,1-Dichloroethane ND 0.0050 1 08/08/2014 12:16 1,1-Dichloroethene ND <td>Chloroethane</td> <td>ND</td> <td></td> <td>0.0050</td> <td>1</td> <td></td> <td>08/08/2014 12:16</td>	Chloroethane	ND		0.0050	1		08/08/2014 12:16
2-Chlorotoluene ND 0.0050 1 08/08/2014 12:16 4-Chlorotoluene ND 0.0050 1 08/08/2014 12:16 Dibromochloromethane ND 0.0050 1 08/08/2014 12:16 1,2-Dibromo-3-chloropropane ND 0.0040 1 08/08/2014 12:16 1,2-Dibromo-3-chloropropane ND 0.0040 1 08/08/2014 12:16 1,2-Dibromoethane (EDB) ND 0.0050 1 08/08/2014 12:16 1,2-Dichlorobenzene ND 0.0050 1 08/08/2014 12:16 1,3-Dichlorobenzene ND 0.0050 1 08/08/2014 12:16 1,4-Dichlorobenzene ND 0.0050 1 08/08/2014 12:16 1,4-Dichlorobenzene ND 0.0050 1 08/08/2014 12:16 1,4-Dichlorobenzene ND 0.0050 1 08/08/2014 12:16 1,1-Dichloroethane ND 0.0050 1 08/08/2014 12:16 1,1-Dichloroethane ND 0.0050 1 08/08/2014 12:16 1,1-Dichloroethene	Chloroform	ND		0.0050	1		08/08/2014 12:16
4-Chlorotoluene ND 0.0050 1 08/08/2014 12:16 Dibromochloromethane ND 0.0050 1 08/08/2014 12:16 1,2-Dibromo-3-chloropropane ND 0.0040 1 08/08/2014 12:16 1,2-Dibromo-3-chloropropane ND 0.0040 1 08/08/2014 12:16 1,2-Dibromoethane (EDB) ND 0.0050 1 08/08/2014 12:16 Dibromomethane ND 0.0050 1 08/08/2014 12:16 1,2-Dichlorobenzene ND 0.0050 1 08/08/2014 12:16 1,3-Dichlorobenzene ND 0.0050 1 08/08/2014 12:16 1,4-Dichlorobenzene ND 0.0050 1 08/08/2014 12:16 1,1-Dichloroethane ND 0.0050 1 08/08/2014 12:16 1,1-Dichloroethene	Chloromethane	ND		0.0050	1		08/08/2014 12:16
Dibromochloromethane ND 0.0050 1 08/08/2014 12:16 1,2-Dibromo-3-chloropropane ND 0.0040 1 08/08/2014 12:16 1,2-Dibromoethane (EDB) ND 0.0040 1 08/08/2014 12:16 Dibromomethane ND 0.0050 1 08/08/2014 12:16 1,2-Dichlorobenzene ND 0.0050 1 08/08/2014 12:16 1,3-Dichlorobenzene ND 0.0050 1 08/08/2014 12:16 1,4-Dichlorobenzene ND 0.0050 1 08/08/2014 12:16 1,4-Dichlorobenzene ND 0.0050 1 08/08/2014 12:16 1,4-Dichlorotenzene ND 0.0050 1 08/08/2014 12:16 1,1-Dichloroethane ND 0.0050 1 08/08/2014 12:16 1,1-Dichloroethane ND 0.0050 1 08/08/2014 12:16 1,2-Dichloroethane ND 0.0050 1 08/08/2014 12:16 1,1-Dichloroethene ND 0.0050 1 08/08/2014 12:16 1,2-Dichloroethene	2-Chlorotoluene	ND		0.0050	1		08/08/2014 12:16
1,2-Dibromo-3-chloropropane ND 0.0040 1 08/08/2014 12:16 1,2-Dibromoethane (EDB) ND 0.0040 1 08/08/2014 12:16 Dibromomethane ND 0.0050 1 08/08/2014 12:16 1,2-Dichlorobenzene ND 0.0050 1 08/08/2014 12:16 1,3-Dichlorobenzene ND 0.0050 1 08/08/2014 12:16 1,4-Dichlorobenzene ND 0.0050 1 08/08/2014 12:16 1,4-Dichlorobenzene ND 0.0050 1 08/08/2014 12:16 1,4-Dichlorobenzene ND 0.0050 1 08/08/2014 12:16 1,1-Dichloroethane ND 0.0050 1 08/08/2014 12:16 1,1-Dichloroethane ND 0.0050 1 08/08/2014 12:16 1,2-Dichloroethane (1,2-DCA) ND 0.0050 1 08/08/2014 12:16 1,1-Dichloroethene ND 0.0050 1 08/08/2014 12:16 1,2-Dichloroethene ND 0.0050 1 08/08/2014 12:16 1,2-Dichloroethene <td>4-Chlorotoluene</td> <td>ND</td> <td></td> <td>0.0050</td> <td>1</td> <td></td> <td>08/08/2014 12:16</td>	4-Chlorotoluene	ND		0.0050	1		08/08/2014 12:16
1,2-Dibromoethane (EDB) ND 0.0040 1 08/08/2014 12:16 Dibromomethane ND 0.0050 1 08/08/2014 12:16 1,2-Dichlorobenzene ND 0.0050 1 08/08/2014 12:16 1,3-Dichlorobenzene ND 0.0050 1 08/08/2014 12:16 1,4-Dichlorobenzene ND 0.0050 1 08/08/2014 12:16 Dichlorobenzene ND 0.0050 1 08/08/2014 12:16 Dichlorobenzene ND 0.0050 1 08/08/2014 12:16 1,1-Dichloroethane ND 0.0050 1 08/08/2014 12:16 1,2-Dichloroethane (1,2-DCA) ND 0.0050 1 08/08/2014 12:16 1,1-Dichloroethene ND 0.0050 1 08/08/2014 12:16 1,1-Dichloroethene ND 0.0050 1 08/08/2014 12:16 1,2-Dichloroethene ND 0.0050 1 08/08/2014 12:16 1,2-Dichloroethene ND 0.0050 1 08/08/2014 12:16 1,2-Dichloroethene ND<	Dibromochloromethane	ND		0.0050	1		08/08/2014 12:16
Dibromomethane ND 0.0050 1 08/08/2014 12:16 1,2-Dichlorobenzene ND 0.0050 1 08/08/2014 12:16 1,3-Dichlorobenzene ND 0.0050 1 08/08/2014 12:16 1,4-Dichlorobenzene ND 0.0050 1 08/08/2014 12:16 1,4-Dichlorobenzene ND 0.0050 1 08/08/2014 12:16 Dichlorodifluoromethane ND 0.0050 1 08/08/2014 12:16 1,1-Dichloroethane ND 0.0050 1 08/08/2014 12:16 1,2-Dichloroethane ND 0.0050 1 08/08/2014 12:16 1,1-Dichloroethane ND 0.0050 1 08/08/2014 12:16 1,2-Dichloroethane ND 0.0050 1 08/08/2014 12:16 1,1-Dichloroethene ND 0.0050 1 08/08/2014 12:16 1,2-Dichloroethene ND 0.0050 1 08/08/2014 12:16 1,2-Dichloroethene ND 0.0050 1 08/08/2014 12:16 1,2-Dichloropropane ND <td>1,2-Dibromo-3-chloropropane</td> <td>ND</td> <td></td> <td>0.0040</td> <td>1</td> <td></td> <td>08/08/2014 12:16</td>	1,2-Dibromo-3-chloropropane	ND		0.0040	1		08/08/2014 12:16
1,2-Dichlorobenzene ND 0.0050 1 08/08/2014 12:16 1,3-Dichlorobenzene ND 0.0050 1 08/08/2014 12:16 1,4-Dichlorobenzene ND 0.0050 1 08/08/2014 12:16 Dichlorodifluoromethane ND 0.0050 1 08/08/2014 12:16 1,1-Dichloroethane ND 0.0050 1 08/08/2014 12:16 1,2-Dichloroethane ND 0.0050 1 08/08/2014 12:16 1,1-Dichloroethane ND 0.0050 1 08/08/2014 12:16 1,2-Dichloroethane (1,2-DCA) ND 0.0050 1 08/08/2014 12:16 1,1-Dichloroethene ND 0.0050 1 08/08/2014 12:16 1,1-Dichloroethene ND 0.0050 1 08/08/2014 12:16 1,2-Dichloroethene ND 0.0050 1 08/08/2014 12:16 1,2-Dichloroethene ND 0.0050 1 08/08/2014 12:16 1,2-Dichloropropane ND 0.0050 1 08/08/2014 12:16 1,3-Dichloropropane	1,2-Dibromoethane (EDB)	ND		0.0040	1		08/08/2014 12:16
1,3-DichlorobenzeneND0.0050108/08/2014 12:161,4-DichlorobenzeneND0.0050108/08/2014 12:16DichlorodifluoromethaneND0.0050108/08/2014 12:161,1-DichloroethaneND0.0050108/08/2014 12:161,2-Dichloroethane (1,2-DCA)ND0.0040108/08/2014 12:161,1-DichloroetheneND0.0050108/08/2014 12:161,2-DichloroetheneND0.0050108/08/2014 12:161,2-DichloroetheneND0.0050108/08/2014 12:161,2-DichloroetheneND0.0050108/08/2014 12:161,2-DichloroetheneND0.0050108/08/2014 12:161,2-DichloroetheneND0.0050108/08/2014 12:161,2-DichloropropaneND0.0050108/08/2014 12:162,2-DichloropropaneND0.0050108/08/2014 12:162,2-DichloropropaneND0.0050108/08/2014 12:162,2-DichloropropaneND0.0050108/08/2014 12:16	Dibromomethane	ND		0.0050	1		08/08/2014 12:16
1,4-DichlorobenzeneND0.0050108/08/2014 12:16DichlorodifluoromethaneND0.0050108/08/2014 12:161,1-DichloroethaneND0.0050108/08/2014 12:161,2-Dichloroethane (1,2-DCA)ND0.0040108/08/2014 12:161,1-DichloroetheneND0.0050108/08/2014 12:161,1-DichloroetheneND0.0050108/08/2014 12:161,2-DichloroetheneND0.0050108/08/2014 12:16trans-1,2-DichloroetheneND0.0050108/08/2014 12:161,2-DichloropropaneND0.0050108/08/2014 12:161,3-DichloropropaneND0.0050108/08/2014 12:162,2-DichloropropaneND0.0050108/08/2014 12:162,2-DichloropropaneND0.0050108/08/2014 12:162,2-DichloropropaneND0.0050108/08/2014 12:16	1,2-Dichlorobenzene	ND		0.0050	1		08/08/2014 12:16
DichlorodifluoromethaneND0.0050108/08/2014 12:161,1-DichloroethaneND0.0050108/08/2014 12:161,2-Dichloroethane (1,2-DCA)ND0.0040108/08/2014 12:161,1-DichloroetheneND0.0050108/08/2014 12:161,1-DichloroetheneND0.0050108/08/2014 12:161,2-DichloroetheneND0.0050108/08/2014 12:16trans-1,2-DichloroetheneND0.0050108/08/2014 12:161,2-DichloropropaneND0.0050108/08/2014 12:161,3-DichloropropaneND0.0050108/08/2014 12:162,2-DichloropropaneND0.0050108/08/2014 12:162,2-DichloropropaneND0.0050108/08/2014 12:16	1,3-Dichlorobenzene	ND		0.0050	1		08/08/2014 12:16
1,1-Dichloroethane ND 0.0050 1 08/08/2014 12:16 1,2-Dichloroethane (1,2-DCA) ND 0.0040 1 08/08/2014 12:16 1,1-Dichloroethane ND 0.0050 1 08/08/2014 12:16 1,1-Dichloroethene ND 0.0050 1 08/08/2014 12:16 cis-1,2-Dichloroethene ND 0.0050 1 08/08/2014 12:16 trans-1,2-Dichloroethene ND 0.0050 1 08/08/2014 12:16 1,2-Dichloroethene ND 0.0050 1 08/08/2014 12:16 1,2-Dichloroethene ND 0.0050 1 08/08/2014 12:16 1,2-Dichloropropane ND 0.0050 1 08/08/2014 12:16 1,3-Dichloropropane ND 0.0050 1 08/08/2014 12:16 2,2-Dichloropropane ND 0.0050 1 08/08/2014 12:16	1,4-Dichlorobenzene	ND		0.0050	1		08/08/2014 12:16
1,2-Dichloroethane (1,2-DCA)ND0.0040108/08/2014 12:161,1-DichloroetheneND0.0050108/08/2014 12:16cis-1,2-DichloroetheneND0.0050108/08/2014 12:16trans-1,2-DichloroetheneND0.0050108/08/2014 12:161,2-DichloroptopaneND0.0050108/08/2014 12:161,3-DichloropropaneND0.0050108/08/2014 12:162,2-DichloropropaneND0.0050108/08/2014 12:162,2-DichloropropaneND0.0050108/08/2014 12:16	Dichlorodifluoromethane	ND		0.0050	1		08/08/2014 12:16
1,1-DichloroetheneND0.0050108/08/2014 12:16cis-1,2-DichloroetheneND0.0050108/08/2014 12:16trans-1,2-DichloroetheneND0.0050108/08/2014 12:161,2-DichloropropaneND0.0050108/08/2014 12:161,3-DichloropropaneND0.0050108/08/2014 12:162,2-DichloropropaneND0.0050108/08/2014 12:162,2-DichloropropaneND0.0050108/08/2014 12:16	1,1-Dichloroethane	ND		0.0050	1		08/08/2014 12:16
1,1-DichloroetheneND0.0050108/08/2014 12:16cis-1,2-DichloroetheneND0.0050108/08/2014 12:16trans-1,2-DichloroetheneND0.0050108/08/2014 12:161,2-DichloropropaneND0.0050108/08/2014 12:161,3-DichloropropaneND0.0050108/08/2014 12:162,2-DichloropropaneND0.0050108/08/2014 12:162,2-DichloropropaneND0.0050108/08/2014 12:16	1,2-Dichloroethane (1,2-DCA)	ND		0.0040	1		08/08/2014 12:16
trans-1,2-DichloroetheneND0.0050108/08/2014 12:161,2-DichloropropaneND0.0050108/08/2014 12:161,3-DichloropropaneND0.0050108/08/2014 12:162,2-DichloropropaneND0.0050108/08/2014 12:16		ND		0.0050	1		08/08/2014 12:16
1,2-DichloropropaneND0.0050108/08/2014 12:161,3-DichloropropaneND0.0050108/08/2014 12:162,2-DichloropropaneND0.0050108/08/2014 12:16	cis-1,2-Dichloroethene	ND		0.0050	1		08/08/2014 12:16
ND 0.0050 1 08/08/2014 12:16 2,2-Dichloropropane ND 0.0050 1 08/08/2014 12:16	trans-1,2-Dichloroethene	ND		0.0050	1		08/08/2014 12:16
ND 0.0050 1 08/08/2014 12:16	1,2-Dichloropropane	ND		0.0050	1		08/08/2014 12:16
	1,3-Dichloropropane	ND		0.0050	1		08/08/2014 12:16
1,1-Dichloropropene ND 0.0050 1 08/08/2014 12:16	2,2-Dichloropropane	ND		0.0050	1		08/08/2014 12:16
	1,1-Dichloropropene	ND		0.0050	1		08/08/2014 12:16

(Cont.)

Client:	P & D Environmental	WorkOrder:	1408147
Project:	#0553; Cathedral Gradens 638 21st Street Oakland, c	Extraction Method:	SW5030B
Date Received:	8/5/14 19:40	Analytical Method:	SW8260B
Date Prepared:	8/5/14	Unit:	mg/kg

Client ID	Lab ID	Matrix/ExtType	Date Col	lected	Instrument	Batch ID
B13A-20	1408147-003A	Soil	08/05/2014	4 07:55	GC16	93668
Analytes	Result		<u>RL</u>	DF		Date Analyzed
cis-1,3-Dichloropropene	ND		0.0050	1		08/08/2014 12:16
trans-1,3-Dichloropropene	ND		0.0050	1		08/08/2014 12:16
Diisopropyl ether (DIPE)	ND		0.0050	1		08/08/2014 12:16
Ethylbenzene	ND		0.0050	1		08/08/2014 12:16
Ethyl tert-butyl ether (ETBE)	ND		0.0050	1		08/08/2014 12:16
Freon 113	ND		0.10	1		08/08/2014 12:16
Hexachlorobutadiene	ND		0.0050	1		08/08/2014 12:16
Hexachloroethane	ND		0.0050	1		08/08/2014 12:16
2-Hexanone	ND		0.0050	1		08/08/2014 12:16
Isopropylbenzene	ND		0.0050	1		08/08/2014 12:16
4-Isopropyl toluene	ND		0.0050	1		08/08/2014 12:16
Methyl-t-butyl ether (MTBE)	ND		0.0050	1		08/08/2014 12:16
Methylene chloride	ND		0.0050	1		08/08/2014 12:16
4-Methyl-2-pentanone (MIBK)	ND		0.0050	1		08/08/2014 12:16
Naphthalene	ND		0.0050	1		08/08/2014 12:16
n-Propyl benzene	ND		0.0050	1		08/08/2014 12:16
Styrene	ND		0.0050	1		08/08/2014 12:16
1,1,1,2-Tetrachloroethane	ND		0.0050	1		08/08/2014 12:16
1,1,2,2-Tetrachloroethane	ND		0.0050	1		08/08/2014 12:16
Tetrachloroethene	ND		0.0050	1		08/08/2014 12:16
Toluene	ND		0.0050	1		08/08/2014 12:16
1,2,3-Trichlorobenzene	ND		0.0050	1		08/08/2014 12:16
1,2,4-Trichlorobenzene	ND		0.0050	1		08/08/2014 12:16
1,1,1-Trichloroethane	ND		0.0050	1		08/08/2014 12:16
1,1,2-Trichloroethane	ND		0.0050	1		08/08/2014 12:16
Trichloroethene	ND		0.0050	1		08/08/2014 12:16
Trichlorofluoromethane	ND		0.0050	1		08/08/2014 12:16
1,2,3-Trichloropropane	ND		0.0050	1		08/08/2014 12:16
1,2,4-Trimethylbenzene	ND		0.0050	1		08/08/2014 12:16
1,3,5-Trimethylbenzene	ND		0.0050	1		08/08/2014 12:16
Vinyl Chloride	ND		0.0050	1		08/08/2014 12:16
Xylenes, Total	ND		0.0050	1		08/08/2014 12:16
Surrogates	<u>REC (%)</u>		<u>Limits</u>			
Dibromofluoromethane	97		70-130			08/08/2014 12:16
Toluene-d8	101		70-130			08/08/2014 12:16
4-BFB	89		70-130			08/08/2014 12:16

Client:	P & D Environmental	WorkOrder:	1408147
Project:	#0553; Cathedral Gradens 638 21st Street Oakland, c	Extraction Method:	SW5030B
Date Received:	8/5/14 19:40	Analytical Method:	SW8260B
Date Prepared:	8/5/14	Unit:	mg/Kg

Volatile Organics by P&T and GC/MS

Client ID	Lab ID	Matrix/ExtType	Date Co	ollected Instrument	Batch ID
B13A-10	1408147-001A	Soil	08/05/20 ⁻	14 07:45 GC16	93668
Analytes	Result		<u>RL</u>	DF	Date Analyzed
Benzene	ND		0.0050	1	08/08/2014 10:50
Ethylbenzene	ND		0.0050	1	08/08/2014 10:50
Methyl-t-butyl ether (MTBE)	ND		0.0050	1	08/08/2014 10:50
Naphthalene	ND		0.0050	1	08/08/2014 10:50
Toluene	ND		0.0050	1	08/08/2014 10:50
Xylenes	ND		0.0050	1	08/08/2014 10:50
Surrogates	<u>REC (%)</u>		<u>Limits</u>		
Dibromofluoromethane	97		70-130		08/08/2014 10:50
Toluene-d8	102		70-130		08/08/2014 10:50
4-BFB	93		70-130		08/08/2014 10:50

Client ID	Lab ID	Matrix/ExtType	Date Co	ollected Instrument	Batch ID
B13A-15	1408147-002A	Soil	08/05/20 ⁻	14 07:50 GC16	93668
Analytes	Result		<u>RL</u>	DF	Date Analyzed
Benzene	ND		0.0050	1	08/08/2014 11:33
Ethylbenzene	ND		0.0050	1	08/08/2014 11:33
Methyl-t-butyl ether (MTBE)	ND		0.0050	1	08/08/2014 11:33
Naphthalene	ND		0.0050	1	08/08/2014 11:33
Toluene	ND		0.0050	1	08/08/2014 11:33
Xylenes	ND		0.0050	1	08/08/2014 11:33
<u>Surrogates</u>	<u>REC (%)</u>		<u>Limits</u>		
Dibromofluoromethane	95		70-130		08/08/2014 11:33
Toluene-d8	102		70-130		08/08/2014 11:33
4-BFB	90		70-130		08/08/2014 11:33

Client:	P & D Environmental	WorkOrder:	1408147
Project:	#0553; Cathedral Gradens 638 21st Street Oakland, c	Extraction Method:	SW5030B
Date Received:	8/5/14 19:40	Analytical Method:	SW8260B
Date Prepared:	8/5/14	Unit:	mg/Kg

Volatile Organics by P&T and GC/MS

Client ID	Lab ID	Matrix/ExtType	Date Co	ollected Instrument	Batch ID
B13A-20	1408147-003A	Soil	08/05/20 ⁻	14 07:55 GC16	93668
Analytes	Result		<u>RL</u>	DF	Date Analyzed
Benzene	ND		0.0050	1	08/08/2014 12:16
Ethylbenzene	ND		0.0050	1	08/08/2014 12:16
Methyl-t-butyl ether (MTBE)	ND		0.0050	1	08/08/2014 12:16
Naphthalene	ND		0.0050	1	08/08/2014 12:16
Toluene	ND		0.0050	1	08/08/2014 12:16
Xylenes	ND		0.0050	1	08/08/2014 12:16
Surrogates	<u>REC (%)</u>		<u>Limits</u>		
Dibromofluoromethane	97		70-130		08/08/2014 12:16
Toluene-d8	101		70-130		08/08/2014 12:16
4-BFB	89		70-130		08/08/2014 12:16

Client:	P & D Environmental	WorkOrder:	1408147
Project:	#0553; Cathedral Gradens 638 21st Street Oakland, c	Extraction Method:	SW5030B
Date Received:	8/5/14 19:40	Analytical Method:	SW8021B/8015Bm
Date Prepared:	8/5/14	Unit:	mg/Kg

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE

Client ID	Lab ID	Matrix/ExtType	Date Co	ollected Instrument	Batch ID
B13A-10	1408147-001A	Soil	08/05/20 ⁻	14 07:45 GC19	93639
Analytes	<u>Result</u>		<u>RL</u>	DF	Date Analyzed
TPH(g)	ND		1.0	1	08/07/2014 04:06
MTBE			0.050	1	08/07/2014 04:06
Benzene			0.0050	1	08/07/2014 04:06
Toluene			0.0050	1	08/07/2014 04:06
Ethylbenzene			0.0050	1	08/07/2014 04:06
Xylenes			0.0050	1	08/07/2014 04:06
<u>Surrogates</u>	<u>REC (%)</u>		<u>Limits</u>		
2-Fluorotoluene	101		70-130		08/07/2014 04:06

Client ID	Lab ID	Matrix/ExtType	Date Co	ollected Instrument	Batch ID
B13A-15	1408147-002A	Soil	08/05/201	14 07:50 GC19	93639
Analytes	Result		<u>RL</u>	DF	Date Analyzed
TPH(g)	ND		1.0	1	08/07/2014 06:06
MTBE			0.050	1	08/07/2014 06:06
Benzene			0.0050	1	08/07/2014 06:06
Toluene			0.0050	1	08/07/2014 06:06
Ethylbenzene			0.0050	1	08/07/2014 06:06
Xylenes			0.0050	1	08/07/2014 06:06
Surrogates	<u>REC (%)</u>		<u>Limits</u>		
2-Fluorotoluene	100		70-130		08/07/2014 06:06

Client ID	Lab ID	Matrix/ExtType	Date Co	ollected Instrument	Batch ID
B13A-20	1408147-003A	Soil	08/05/201	14 07:55 GC19	93639
Analytes	<u>Result</u>		<u>RL</u>	DE	Date Analyzed
TPH(g)	ND		1.0	1	08/07/2014 06:36
MTBE			0.050	1	08/07/2014 06:36
Benzene			0.0050	1	08/07/2014 06:36
Toluene			0.0050	1	08/07/2014 06:36
Ethylbenzene			0.0050	1	08/07/2014 06:36
Xylenes			0.0050	1	08/07/2014 06:36
Surrogates	<u>REC (%)</u>		<u>Limits</u>		
2-Fluorotoluene	94		70-130		08/07/2014 06:36

C26

Analytical Report

Client:	P & D Environmental	WorkOrder:	1408147
Project:	#0553; Cathedral Gradens 638 21st Street Oakland, c	Extraction Method:	SW3550B
Date Received:	8/5/14 19:40	Analytical Method:	SW8015B
Date Prepared:	8/5/14	Unit:	mg/Kg

130

Total Extractable Petroleum Hydrocarbons

Client ID	Lab ID	Matrix/ExtType	Date Collect	ted Instrument	Batch ID
B13A-10	1408147-001A	Soil	08/05/2014 07	:45 GC6B	93664
Analytes	<u>Result</u>		<u>RL</u> DF		Date Analyzed
TPH-Diesel (C10-C23)	ND		1.0 1		08/08/2014 00:18
TPH-Motor Oil (C18-C36)	ND		5.0 1		08/08/2014 00:18
Surrogates	<u>REC (%)</u>		<u>Limits</u>		
C9	122		70-130		08/08/2014 00:18
Client ID	Lab ID	Matrix/ExtType	Date Collect	ted Instrument	Batch ID
B13A-15	1408147-002A	Soil	08/05/2014 07	:50 GC6A	93664
Analytes	<u>Result</u>		<u>RL</u> DF		Date Analyzed
TPH-Diesel (C10-C23)	ND		1.0 1		08/09/2014 21:50
TPH-Motor Oil (C18-C36)	ND		5.0 1		08/09/2014 21:50
<u>Surrogates</u>	<u>REC (%)</u>		<u>Limits</u>		
C9	106		70-130		08/09/2014 21:50
Client ID	Lab ID	Matrix/ExtType	Date Collect	ted Instrument	Batch ID
B13A-20	1408147-003A	Soil	08/05/2014 07	:55 GC6B	93664
Analytes	<u>Result</u>		<u>RL</u> DF		Date Analyzed
TPH-Diesel (C10-C23)	ND		1.0 1		08/09/2014 15:51
TPH-Motor Oil (C18-C36)	ND		5.0 1		08/09/2014 15:51
Surrogates	<u>REC (%)</u>		<u>Limits</u>		

70-130

08/09/2014 15:51

McCampbell Analytical, Inc. "When Quality Counts"

Quality Control Report

Client:	P & D Environmental	WorkOrder:	1408147
Date Prepared:	8/5/14	BatchID:	93668
Date Analyzed:	8/7/14	Extraction Method:	SW5030B
Instrument:	GC16	Analytical Method:	SW8260B
Matrix:	Soil	Unit:	mg/Kg
Project:	#0553; Cathedral Gradens 638 21st Street Oakland, ca	Sample ID:	MB/LCS-93668 1408119-001AMS/MSD

Analyte Acetone tert-Amyl methyl ether (TAME) Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane Charactere (MEI())	MB Result ND ND ND ND ND ND ND ND ND	LCS Result - 0.0363 0.0413 - -	RL 0.10 0.0050 0.0050	SPK Val - 0.050	MB SS %REC -	LCS %REC	LCS Limits
tert-Amyl methyl ether (TAME) Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane	ND ND ND ND ND	0.0363 0.0413 -	0.0050		-		
Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane	ND ND ND ND	0.0413		0.050		-	-
Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane	ND ND ND	-	0.0050		-	72.6	61-115
Bromochloromethane Bromodichloromethane Bromoform Bromomethane	ND ND			0.050	-	82.7	75-126
Bromodichloromethane Bromoform Bromomethane	ND	-	0.0050	-	-	-	-
Bromoform Bromomethane			0.0050	-	-	-	-
Bromomethane	ND	-	0.0050	-	-	-	-
		-	0.0050	-	-	-	-
	ND	-	0.0050	-	-	-	-
2-Butanone (MEK)	ND	-	0.020	-	-	-	-
t-Butyl alcohol (TBA)	ND	0.183	0.050	0.20	-	91.6	63-125
n-Butyl benzene	ND	-	0.0050	-	-	-	-
sec-Butyl benzene	ND	-	0.0050	-	_	-	-
tert-Butyl benzene	ND	-	0.0050	-	-	-	-
Carbon Disulfide	ND	-	0.0050	-	-	_	-
Carbon Tetrachloride	ND	-	0.0050	-	-	-	-
Chlorobenzene	ND	0.0426	0.0050	0.050	-	85.2	80-118
Chloroethane	ND	-	0.0050	-	-	-	-
Chloroform	ND	-	0.0050	-	-	-	-
Chloromethane	ND	-	0.0050	-	-	-	-
2-Chlorotoluene	ND	-	0.0050	-	-	_	-
4-Chlorotoluene	ND	-	0.0050	-	-	-	-
Dibromochloromethane	ND	-	0.0050	-	-	-	-
1,2-Dibromo-3-chloropropane	ND		0.0040	-	-	-	-
1,2-Dibromoethane (EDB)	ND	0.0371	0.0040	0.050	-	74.3	74-121
Dibromomethane	ND	-	0.0050	-	-	-	-
1.2-Dichlorobenzene	ND		0.0050	-	-	-	_
1,3-Dichlorobenzene	ND	-	0.0050	-	-	-	-
1,4-Dichlorobenzene	ND	-	0.0050	-	-	-	-
Dichlorodifluoromethane	ND	-	0.0050	-	-	-	-
1,1-Dichloroethane	ND		0.0050	-	-	_	_
1,2-Dichloroethane (1,2-DCA)	ND	0.0483	0.0040	0.050	-	96.5	68-122
1,1-Dichloroethene	ND	0.0365	0.0050	0.050	-	73.1	65-138
cis-1,2-Dichloroethene	ND	-	0.0050	-	_	-	-
trans-1,2-Dichloroethene	ND	-	0.0050	-	-	-	-
1,2-Dichloropropane	ND	-	0.0050	-	_	_	-
1,3-Dichloropropane	ND	-	0.0050	-	-	-	-
2,2-Dichloropropane	ND	-	0.0050	-	-	-	-
1,1-Dichloropropene	ND	-	0.0050	-	-	-	-
cis-1,3-Dichloropropene	ND	-	0.0050	-	-	-	-
trans-1,3-Dichloropropene	ND	-	0.0050	-	-	-	-

(Cont.)

QA/QC Officer Page 13 of 21

Client:	P & D Environmental	WorkOrder:	1408147
Date Prepared:	8/5/14	BatchID:	93668
Date Analyzed:	8/7/14	Extraction Method:	SW5030B
Instrument:	GC16	Analytical Method:	SW8260B
Matrix:	Soil	Unit:	mg/Kg
Project:	#0553; Cathedral Gradens 638 21st Street Oakland, ca	Sample ID:	MB/LCS-93668 1408119-001AMS/MSD

QC Summary Report for SW8260B							
Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
Diisopropyl ether (DIPE)	ND	0.0438	0.0050	0.050	-	87.6	68-117
Ethylbenzene	ND	-	0.0050	-	-	-	-
Ethyl tert-butyl ether (ETBE)	ND	0.0429	0.0050	0.050	-	85.8	67-116
Freon 113	ND	-	0.0050	-	-	-	-
Hexachlorobutadiene	ND	-	0.0050	-	-	-	-
Hexachloroethane	ND	-	0.0050	-	-	-	-
2-Hexanone	ND	-	0.0050	-	-	-	-
Isopropylbenzene	ND	-	0.0050	-	-	-	-
4-Isopropyl toluene	ND	-	0.0050	-	-	-	-
Methyl-t-butyl ether (MTBE)	ND	0.0394	0.0050	0.050	-	78.7	66-118
Methylene chloride	ND	-	0.0050	-	-	-	-
4-Methyl-2-pentanone (MIBK)	ND	-	0.0050	-	-	-	-
Naphthalene	ND	-	0.0050	-	-	-	-
n-Propyl benzene	ND	-	0.0050	-	-	-	-
Styrene	ND	-	0.0050	-	-	-	-
1,1,1,2-Tetrachloroethane	ND	-	0.0050	-	-	-	-
1,1,2,2-Tetrachloroethane	ND	-	0.0050	-	-	-	-
Tetrachloroethene	ND	-	0.0050	-	-	-	-
Toluene	ND	0.0413	0.0050	0.050	-	82.5, F2	84-129
1,2,3-Trichlorobenzene	ND	-	0.0050	-	-	-	-
1,2,4-Trichlorobenzene	ND	-	0.0050	-	-	-	-
1,1,1-Trichloroethane	ND	-	0.0050	-	-	-	-
1,1,2-Trichloroethane	ND	-	0.0050	-	-	-	-
Trichloroethene	ND	0.0446	0.0050	0.050	-	89.2	82-130
Trichlorofluoromethane	ND	-	0.0050	-	-	-	-
1,2,3-Trichloropropane	ND	-	0.0050	-	-	-	-
1,2,4-Trimethylbenzene	ND	-	0.0050	-	-	-	-
1,3,5-Trimethylbenzene	ND	-	0.0050	-	-	-	-
Vinyl Chloride	ND	-	0.0050	-	-	-	-
Xylenes, Total	ND	-	0.0050	-	-	-	-
Surrogate Recovery							
Dibromofluoromethane	0.121	0.163		0.18	97	93	80-120
Toluene-d8	0.124	0.166		0.18	99	95	80-120
4-BFB	0.0110	0.0156		0.018	88	89	80-120

Client:	P & D Environmental	WorkOrder:	1408147
Date Prepared:	8/5/14	BatchID:	93668
Date Analyzed:	8/7/14	Extraction Method:	SW5030B
Instrument:	GC16	Analytical Method:	SW8260B
Matrix:	Soil	Unit:	mg/Kg
Project:	#0553; Cathedral Gradens 638 21st Street Oakland, ca	Sample ID:	MB/LCS-93668 1408119-001AMS/MSD

QC Summary Report for SW8260B									
Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
tert-Amyl methyl ether (TAME)	0.0298	0.0306	0.050	ND	59.7,F1	61.2,F1	70-130	2.63	30
Benzene	0.0307	0.0316	0.050	ND	61.3,F1	63.2,F1	70-130	3.05	30
t-Butyl alcohol (TBA)	0.146	0.156	0.20	ND	72.9	77.8	70-130	6.47	30
Chlorobenzene	0.0342	0.0339	0.050	ND	68.4,F1	67.8,F1	70-130	0.865	30
1,2-Dibromoethane (EDB)	0.0290	0.0290	0.050	ND	58.1,F1	58.1,F1	70-130	0	30
1,2-Dichloroethane (1,2-DCA)	0.0393	0.0369	0.050	ND	78.5	73.9	70-130	6.11	30
1,1-Dichloroethene	0.0522	0.0577	0.050	ND	104	115	70-130	10.0	30
Diisopropyl ether (DIPE)	0.0343	0.0357	0.050	ND	68.6,F1	71.5	70-130	4.09	30
Ethyl tert-butyl ether (ETBE)	0.0342	0.0355	0.050	ND	68.3,F1	71.1	70-130	3.94	30
Methyl-t-butyl ether (MTBE)	0.0323	0.0333	0.050	ND	64.6,F1	66.7,F1	70-130	3.17	30
Toluene	0.0312	0.0319	0.050	ND	62.5,F1	63.9,F1	70-130	2.23	30
Trichloroethene	0.0778	0.0806	0.050	ND	156,F1	161,F1	70-130	3.56	30
Surrogate Recovery									
Dibromofluoromethane	0.124	0.122	0.18		71	70	70-130	1.58	30
Toluene-d8	0.154	0.156	0.18		88	89	70-130	1.15	30
4-BFB	0.0138	0.0140	0.018		79	80	70-130	1.44	30

QA/QC Officer Page 15 of 21

Client:	P & D Environmental	WorkOrder:	1408147
Date Prepared:	8/5/14	BatchID:	93639
Date Analyzed:	8/5/14	Extraction Method:	SW5030B
Instrument:	GC3	Analytical Method:	SW8021B/8015Bm
Matrix:	Soil	Unit:	mg/Kg
Project:	#0553; Cathedral Gradens 638 21st Street Oakland,	Sample ID:	MB/LCS-93639
	ca		

Analyte	MB	LCS	RL	SPK	MB	LCS	LCS
	Result	Result		Val	SS %REC	%REC	Limits
TPH(btex)	ND	0.661	0.40	0.60	-	110	70-130
MTBE	ND	0.0961	0.050	0.10	-	96.1	70-130
Benzene	ND	0.0994	0.0050	0.10	-	99.4	70-130
Toluene	ND	0.0997	0.0050	0.10	-	99.7	70-130
Ethylbenzene	ND	0.100	0.0050	0.10	-	100	70-130
Xylenes	ND	0.306	0.0050	0.30	-	102	70-130
Surrogate Recovery							
2-Fluorotoluene	0.0960	0.0915		0.10	96	92	70-130

Client:	P & D Environmental	WorkOrder:	1408147
Date Prepared:	8/5/14	BatchID:	93664
Date Analyzed:	8/6/14	Extraction Method:	SW3550B
Instrument:	GC11A	Analytical Method:	SW8015B
Matrix:	Soil	Unit:	mg/Kg
Project:	#0553; Cathedral Gradens 638 21st Street Oakland, ca	Sample ID:	MB/LCS-93664 1407A51-001BMS/MSD

	QC Summary Report for SW8015B														
Analyte	MB Result	LCS Result		RL	SPK Val	MB SS	LCS %REC %R		LCS Limits						
TPH-Diesel (C10-C23)	ND	39.8		1.0	40	-	99.4	1	70-130						
Surrogate Recovery															
C9	26.2	26.1			25	105	104		70-130						
Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit						
TPH-Diesel (C10-C23)	NR	NR	0	39	NR	NR	-	NR							
Surrogate Recovery															
C9	NR	NR	0		NR	NR	-	NR							

QA/QC Officer Page 17 of 21

McCampbell Analytical, Inc.

1534 Willow Pass Rd Pittsburg CA 94565-1701

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

(925) 252-9262			WorkO	Order: 1408147	Clie	ntCode: PDEO		
	□ WaterTrax □ Write	On DEDF	Excel	EQuIS	🖌 Email	HardCopy	ThirdParty	J-flag
Report to:			В	sill to:		Req	uested TAT:	5 days
Michael Deschenes	Email: lab@pdenv	iro.com		Accounts Pay	able			
P & D Environmental	cc/3rd Party:			P & D Environ	mental			
55 Santa Clara, Ste.240	PO:			55 Santa Clar	a, Ste.240	Dat	te Received:	08/05/2014
Oakland, CA 94610 (510) 658-6916 FAX: 510-834-0152						Dat	08/12/2014	

					Requested Tests (See legend below)											
Lab ID	Client ID	Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
1408147-001	B13A-10	Soil	8/5/2014 7:45		А	А										
1408147-002	B13A-15	Soil	8/5/2014 7:50		А	А										
1408147-003	B13A-20	Soil	8/5/2014 7:55		А	А										

Test Legend:

1	8260B_S
6	
11	

2	G-MBTEX_S
7	
12	

3	
8	

4	
	1
9	

5	
10	

The following SampIDs: 001A, 002A, 003A contain testgroup.

Prepared by: Shana Carter

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

WORK ORDER SUMMARY

Client Name Project: Comments:		IRONMENTAL edral Gradens 638 21st	Street Oakland, ca	QC Level: Li Client Contact: M Contact's Email: la	lichael Deschenes				k Order: 1408147 Received: 8/5/2014
		WaterTrax	WriteOn EDF	Excel	_Fax √ Email		Copy ThirdPar	ty 🔲 J	l-flag
Lab ID	Client ID	Matrix	Test Name	Number of Containers	Bottle & Preservative	De- chlorinated	Collection Date & Time	TAT	Sediment Hold SubOut Content
1408147-001A	B13A-10	Soil	Multi-Range TPH(g,d,mo)	1	Acetate Liner		8/5/2014 7:45	5 days	
			SW8260B (VOCs)					5 days	
1408147-002A	B13A-15	Soil	Multi-Range TPH(g,d,mo)	1	Acetate Liner		8/5/2014 7:50	5 days	
			SW8260B (VOCs)					5 days	
1408147-003A	B13A-20	Soil	Multi-Range TPH(g,d,mo)	1	Acetate Liner		8/5/2014 7:55	5 days	
			SW8260B (VOCs)					5 days	

* NOTE: STLC and TCLP extractions require 48 hrs to complete; therefore, all TATs begin after the extraction is completed (i.e., 24hr TAT yields results in 72 hrs from sample submission).

Bottle Legend:

Acetate Liner = Acetate Liner

9.	0	CHA	IN (DFC	CUSTODY	RE	C	OR	D		1	11	AS	14	7	.78	ŀ	PAGE –	<u>/</u> OF -)
P&D	ENVI 55 Santa Oa	NTA uite 240	$_{40}^{\text{L}}$, INC.			/		C. C. C.	2013	/		/				2				
PROJECT NUMBER: 0553		PI	COJECT COJECT COJECT COJECT COJECT COJECT COJECT COJECT COJECT COJECT COJECT	NAME Nal 215	Hardens F street , cA	NUMBER OF CONTAINERS		Leve) SIS(ES)		PETER	S. East									
SAMPLED BY: (PRIN Michael BASS: DES				w Ba	20-1Deoch	BER OF	VV-	General I	LIGE	MANTHALENC	/	/ /				PRESERVATIVE				
SAMPLE NUMBER	DATE	/	TYPE	SA	MPLE LOCATION	NUM	0	13		HIN	/	/		/		PRES		REMARI	ŚŚ	
B13A - 10 B13A - 15 B13A - 20	8/5/14	0745 0750 0755					× ×	× × ×									Nover		TAT	
											ICI G(H ¹ Di	CHLC	DNDIT PACE A RINA	ION_ BSEN TED IN VON	LAB	- 	APPROPE CONTAIN PRESERV METALS	ERS	<u></u>	
			1.								Ŀi	(ESP)	(VAL)			2-0			يى ئە	
RELINQUISHED BY: (SIGNATU RELINQUISHED BY: (SIGNATU RELINQUISHED BY: (SIGNATU	Aisalin JRE)	unt:	5/14	TIME TIME 700	RECEIVED BY: (SIG	MATUR	RE)		I I	ANG	o. of C nipmer RAT(ELA	ontaine t) ORY (R)	TS CONT	iss	LAB	CA ORAT 77)	ORY PHO	ONE NUN		ų iuse
Results and billing to: P&D Environmental, Inc. lab@pdenviro.com			DATE	TIME	RECEIVED FOR LAE (SIGNATURE) REMARKS:	ORAT	URY	BY:		SAMI ATTA				REQU) YE		SHEE	ET) NO	ĸ	2	

Sample Receipt Checklist

Client Name:	P & D Environmental			Date and	Time Received:	8/5/2014 7:4	40:03 PM	
Project Name:	#0553; Cathedral Gradens 638 21st Street Oakland, ca			LogIn Reviewed by: Shana Carter			Shana Carter	
WorkOrder №:	1408147	Matrix: Soil			Carrier:	<u>Rob Pringle (M</u>	IAI Courier)	
		<u>Cha</u>	<u>in of Cι</u>	ustody (COC	:) Information			
Chain of custody	present?		Yes		No 🗌			
Chain of custody	v signed when relinqui	shed and received?	Yes		No 🗌			
Chain of custody	agrees with sample l	abels?	Yes		No 🗌			
Sample IDs note	d by Client on COC?		Yes		No 🗌			
Date and Time o	f collection noted by C	Client on COC?	Yes		No 🗌			
Sampler's name	noted on COC?		Yes		No 🗌			
			Sample	e Receipt Inf	ormation			
Custody seals in	tact on shipping conta	iner/cooler?	Yes		No 🗌		NA 🗹	
Shipping container/cooler in good condition?		Yes		No 🗌				
Samples in prope	er containers/bottles?		Yes		No 🗌			
Sample containe	ers intact?		Yes		No 🗌			
Sufficient sample	e volume for indicated	test?	Yes	✓	No 🗌			
		Sample Pres	servatio	n and Hold	<u>Time (HT) Info</u>	ormation		
All samples rece	ived within holding tim	ie?	Yes	✓	No 🗌			
Container/Temp	Blank temperature		Coole	er Temp: 1.	.2°C			
Water - VOA vial	ls have zero headspac	ce / no bubbles?	Yes		No 🗌		NA 🗹	
Sample labels ch	necked for correct pres	servation?	Yes		No 🗌			
pH acceptable up	pon receipt (Metal: pH	<2; 522: pH<4)?	Yes		No 🗌		NA 🖌	
Samples Receive	ed on Ice?		Yes	\checkmark	No 🗌			
		(Ісе Тур	be: WE	TICE)				
* NOTE: If the "N	* NOTE: If the "No" box is checked, see comments below.							

Comments:

McCampbell Analytical, Inc.

"When Quality Counts"

Analytical Report

WorkOrder:	1407844
Report Created for:	P & D Environmental 55 Santa Clara, Ste.240 Oakland, CA 94610
Project Contact: Project P.O.: Project Name:	Michael Deschenes #0553; Cathedral Gardens 638 21st St Oakland, CA
Project Received:	07/23/2014

Analytical Report reviewed & approved for release on 07/30/2014 by:

Angela Rydelius, Laboratory Manager

The report shall not be reproduced except in full, without the written approval of the laboratory. The analytical results relate only to the items tested. Results reported conform to the most current NELAP standards, where applicable, unless otherwise stated in the case narrative.

1534 Willow Pass Rd. Pittsburg, CA 94565 ♦ TEL: (877) 252-9262 ♦ FAX: (925) 252-9269 ♦ www.mccampbell.com NELAP: 4033ORELAP ♦ ELAP: 1644 ♦ ISO/IEC: 17025:2005 ♦ WSDE: C972-11 ♦ ADEC: UST-098 ♦ UCMR3

Glossary of Terms & Qualifier Definitions

Client: P & D Environmental

Project: #0553; Cathedral Gardens 638 21st St Oakland, CA

WorkOrder: 1407844

Glossary Abbreviation

95% Interval	95% Confident Interval
DF	Dilution Factor
DUP	Duplicate
EDL	Estimated Detection Limit
ITEF	International Toxicity Equivalence Factor
LCS	Laboratory Control Sample
MB	Method Blank
MB % Rec	% Recovery of Surrogate in Method Blank, if applicable
MDL	Method Detection Limit
ML	Minimum Level of Quantitation
MS	Matrix Spike
MSD	Matrix Spike Duplicate
ND	Not detected at or above the indicated MDL or RL
NR	Matrix interferences, or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix; or sample diluted due to high matrix or analyte content.
RD	Relative Difference
RL	Reporting Limit (The RL is the lowest calibration standard in a multipoint calibration.)
RPD	Relative Percent Deviation
RRT	Relative Retention Time
SPK Val	Spike Value
SPKRef Val	Spike Reference Value
TEQ	Toxicity Equivalence

Analytical Qualifiers

- a4 the reporting limits were raised due to the sample's matrix prohibiting a full volume extraction.
- b1 aqueous sample that contains greater than ~1 vol. % sediment
- e2 diesel range compounds are significant; no recognizable pattern
- e7 oil range compounds are significant

Quality Control Qualifiers

F1

MS/MSD recovery and/or RPD was out of acceptance criteria; LCS validated the prep batch.

Client:	P & D Environmental	WorkOrder:	1407844
Project:	#0553; Cathedral Gardens 638 21st St Oakland, CA	Extraction Method:	SW5030B
Date Received:	7/23/14 16:29	Analytical Method:	SW8260B
Date Prepared:	7/25/14-7/29/14	Unit:	µg/L

Client ID	Lab ID	Matrix/ExtType	Date Co	ollected	Instrument	Batch ID
B6-W	1407844-001B	Water	07/22/20 ²	14 15:00	GC16	93297
Analytes	<u>Result</u>		<u>RL</u>	DF		Date Analyzed
Acetone	ND		10	1		07/25/2014 10:48
tert-Amyl methyl ether (TAME)	ND		0.50	1		07/25/2014 10:48
Benzene	ND		0.50	1		07/25/2014 10:48
Bromobenzene	ND		0.50	1		07/25/2014 10:48
Bromochloromethane	ND		0.50	1		07/25/2014 10:48
Bromodichloromethane	ND		0.50	1		07/25/2014 10:48
Bromoform	ND		0.50	1		07/25/2014 10:48
Bromomethane	ND		0.50	1		07/25/2014 10:48
2-Butanone (MEK)	ND		2.0	1		07/25/2014 10:48
t-Butyl alcohol (TBA)	ND		2.0	1		07/25/2014 10:48
n-Butyl benzene	ND		0.50	1		07/25/2014 10:48
sec-Butyl benzene	ND		0.50	1		07/25/2014 10:48
tert-Butyl benzene	ND		0.50	1		07/25/2014 10:48
Carbon Disulfide	ND		0.50	1		07/25/2014 10:48
Carbon Tetrachloride	ND		0.50	1		07/25/2014 10:48
Chlorobenzene	ND		0.50	1		07/25/2014 10:48
Chloroethane	ND		0.50	1		07/25/2014 10:48
Chloroform	ND		0.50	1		07/25/2014 10:48
Chloromethane	ND		0.50	1		07/25/2014 10:48
2-Chlorotoluene	ND		0.50	1		07/25/2014 10:48
4-Chlorotoluene	ND		0.50	1		07/25/2014 10:48
Dibromochloromethane	ND		0.50	1		07/25/2014 10:48
1,2-Dibromo-3-chloropropane	ND		0.20	1		07/25/2014 10:48
1,2-Dibromoethane (EDB)	ND		0.50	1		07/25/2014 10:48
Dibromomethane	ND		0.50	1		07/25/2014 10:48
1,2-Dichlorobenzene	ND		0.50	1		07/25/2014 10:48
1,3-Dichlorobenzene	ND		0.50	1		07/25/2014 10:48
1,4-Dichlorobenzene	ND		0.50	1		07/25/2014 10:48
Dichlorodifluoromethane	ND		0.50	1		07/25/2014 10:48
1,1-Dichloroethane	ND		0.50	1		07/25/2014 10:48
1,2-Dichloroethane (1,2-DCA)	ND		0.50	1		07/25/2014 10:48
1,1-Dichloroethene	ND		0.50	1		07/25/2014 10:48
cis-1,2-Dichloroethene	ND		0.50	1		07/25/2014 10:48
trans-1,2-Dichloroethene	ND		0.50	1		07/25/2014 10:48
1,2-Dichloropropane	ND		0.50	1		07/25/2014 10:48
1,3-Dichloropropane	ND		0.50	1		07/25/2014 10:48
2,2-Dichloropropane	ND		0.50	1		07/25/2014 10:48
1,1-Dichloropropene	ND		0.50	1		07/25/2014 10:48

(Cont.)

Client:	P & D Environmental	WorkOrder:	1407844
Project:	#0553; Cathedral Gardens 638 21st St Oakland, CA	Extraction Method:	SW5030B
Date Received:	7/23/14 16:29	Analytical Method:	SW8260B
Date Prepared:	7/25/14-7/29/14	Unit:	µg/L

Client ID	Lab ID	Matrix/ExtType	Date Col	llected Ir	nstrument	Batch ID
B6-W	1407844-001B	Water	07/22/201	4 15:00 G	C16	93297
Analytes	Result		<u>RL</u>	DF		Date Analyzed
cis-1,3-Dichloropropene	ND		0.50	1		07/25/2014 10:48
trans-1,3-Dichloropropene	ND		0.50	1		07/25/2014 10:48
Diisopropyl ether (DIPE)	ND		0.50	1		07/25/2014 10:48
Ethylbenzene	ND		0.50	1		07/25/2014 10:48
Ethyl tert-butyl ether (ETBE)	ND		0.50	1		07/25/2014 10:48
Freon 113	ND		0.50	1		07/25/2014 10:48
Hexachlorobutadiene	ND		0.50	1		07/25/2014 10:48
Hexachloroethane	ND		0.50	1		07/25/2014 10:48
2-Hexanone	ND		0.50	1		07/25/2014 10:48
Isopropylbenzene	ND		0.50	1		07/25/2014 10:48
4-Isopropyl toluene	ND		0.50	1		07/25/2014 10:48
Methyl-t-butyl ether (MTBE)	ND		0.50	1		07/25/2014 10:48
Methylene chloride	ND		0.50	1		07/25/2014 10:48
4-Methyl-2-pentanone (MIBK)	ND		0.50	1		07/25/2014 10:48
Naphthalene	ND		0.50	1		07/25/2014 10:48
n-Propyl benzene	ND		0.50	1		07/25/2014 10:48
Styrene	ND		0.50	1		07/25/2014 10:48
1,1,1,2-Tetrachloroethane	ND		0.50	1		07/25/2014 10:48
1,1,2,2-Tetrachloroethane	ND		0.50	1		07/25/2014 10:48
Tetrachloroethene	ND		0.50	1		07/25/2014 10:48
Toluene	ND		0.50	1		07/25/2014 10:48
1,2,3-Trichlorobenzene	ND		0.50	1		07/25/2014 10:48
1,2,4-Trichlorobenzene	ND		0.50	1		07/25/2014 10:48
1,1,1-Trichloroethane	ND		0.50	1		07/25/2014 10:48
1,1,2-Trichloroethane	ND		0.50	1		07/25/2014 10:48
Trichloroethene	ND		0.50	1		07/25/2014 10:48
Trichlorofluoromethane	ND		0.50	1		07/25/2014 10:48
1,2,3-Trichloropropane	ND		0.50	1		07/25/2014 10:48
1,2,4-Trimethylbenzene	ND		0.50	1		07/25/2014 10:48
1,3,5-Trimethylbenzene	ND		0.50	1		07/25/2014 10:48
Vinyl Chloride	ND		0.50	1		07/25/2014 10:48
Xylenes, Total	ND		0.50	1		07/25/2014 10:48
Surrogates	<u>REC (%)</u>		<u>Limits</u>	Analytic	al Comments: b1	
Dibromofluoromethane	93		70-130			07/25/2014 10:48
Toluene-d8	101		70-130			07/25/2014 10:48
4-BFB	86		70-130			07/25/2014 10:48

Client:	P & D Environmental	WorkOrder:	1407844
Project:	#0553; Cathedral Gardens 638 21st St Oakland, CA	Extraction Method:	SW5030B
Date Received:	7/23/14 16:29	Analytical Method:	SW8260B
Date Prepared:	7/25/14-7/29/14	Unit:	µg/L

Client ID	Lab ID	Matrix/ExtType	Date Co	ollected	Instrument	Batch ID
B7-W	1407844-002B	Water	07/21/201	14 17:00	GC16	93297
Analytes	<u>Result</u>		<u>RL</u>	DF		Date Analyzed
Acetone	ND		10	1		07/28/2014 22:29
tert-Amyl methyl ether (TAME)	ND		0.50	1		07/28/2014 22:29
Benzene	ND		0.50	1		07/28/2014 22:29
Bromobenzene	ND		0.50	1		07/28/2014 22:29
Bromochloromethane	ND		0.50	1		07/28/2014 22:29
Bromodichloromethane	ND		0.50	1		07/28/2014 22:29
Bromoform	ND		0.50	1		07/28/2014 22:29
Bromomethane	ND		0.50	1		07/28/2014 22:29
2-Butanone (MEK)	ND		2.0	1		07/28/2014 22:29
t-Butyl alcohol (TBA)	ND		2.0	1		07/28/2014 22:29
n-Butyl benzene	ND		0.50	1		07/28/2014 22:29
sec-Butyl benzene	ND		0.50	1		07/28/2014 22:29
tert-Butyl benzene	ND		0.50	1		07/28/2014 22:29
Carbon Disulfide	ND		0.50	1		07/28/2014 22:29
Carbon Tetrachloride	ND		0.50	1		07/28/2014 22:29
Chlorobenzene	ND		0.50	1		07/28/2014 22:29
Chloroethane	ND		0.50	1		07/28/2014 22:29
Chloroform	0.82		0.50	1		07/28/2014 22:29
Chloromethane	ND		0.50	1		07/28/2014 22:29
2-Chlorotoluene	ND		0.50	1		07/28/2014 22:29
4-Chlorotoluene	ND		0.50	1		07/28/2014 22:29
Dibromochloromethane	ND		0.50	1		07/28/2014 22:29
1,2-Dibromo-3-chloropropane	ND		0.20	1		07/28/2014 22:29
1,2-Dibromoethane (EDB)	ND		0.50	1		07/28/2014 22:29
Dibromomethane	ND		0.50	1		07/28/2014 22:29
1,2-Dichlorobenzene	ND		0.50	1		07/28/2014 22:29
1,3-Dichlorobenzene	ND		0.50	1		07/28/2014 22:29
1,4-Dichlorobenzene	ND		0.50	1		07/28/2014 22:29
Dichlorodifluoromethane	ND		0.50	1		07/28/2014 22:29
1,1-Dichloroethane	ND		0.50	1		07/28/2014 22:29
1,2-Dichloroethane (1,2-DCA)	ND		0.50	1		07/28/2014 22:29
1,1-Dichloroethene	ND		0.50	1		07/28/2014 22:29
cis-1,2-Dichloroethene	ND		0.50	1		07/28/2014 22:29
trans-1,2-Dichloroethene	ND		0.50	1		07/28/2014 22:29
1,2-Dichloropropane	ND		0.50	1		07/28/2014 22:29
1,3-Dichloropropane	ND		0.50	1		07/28/2014 22:29
2,2-Dichloropropane	ND		0.50	1		07/28/2014 22:29
1,1-Dichloropropene	ND		0.50	1		07/28/2014 22:29

(Cont.)

Client:	P & D Environmental	WorkOrder:	1407844
Project:	#0553; Cathedral Gardens 638 21st St Oakland, CA	Extraction Method:	SW5030B
Date Received:	7/23/14 16:29	Analytical Method:	SW8260B
Date Prepared:	7/25/14-7/29/14	Unit:	µg/L

Client ID	Lab ID	Matrix/ExtType	Date Coll	ected Instrument	Batch ID
B7-W	1407844-002B	Water	07/21/2014	17:00 GC16	93297
Analytes	Result		<u>RL</u>	DF	Date Analyzed
cis-1,3-Dichloropropene	ND		0.50	1	07/28/2014 22:29
trans-1,3-Dichloropropene	ND		0.50	1	07/28/2014 22:29
Diisopropyl ether (DIPE)	ND		0.50	1	07/28/2014 22:29
Ethylbenzene	ND		0.50	1	07/28/2014 22:29
Ethyl tert-butyl ether (ETBE)	ND		0.50	1	07/28/2014 22:29
Freon 113	ND		0.50	1	07/28/2014 22:29
Hexachlorobutadiene	ND		0.50	1	07/28/2014 22:29
Hexachloroethane	ND		0.50	1	07/28/2014 22:29
2-Hexanone	ND		0.50	1	07/28/2014 22:29
Isopropylbenzene	ND		0.50	1	07/28/2014 22:29
4-Isopropyl toluene	ND		0.50	1	07/28/2014 22:29
Methyl-t-butyl ether (MTBE)	ND		0.50	1	07/28/2014 22:29
Methylene chloride	ND		0.50	1	07/28/2014 22:29
4-Methyl-2-pentanone (MIBK)	ND		0.50	1	07/28/2014 22:29
Naphthalene	ND		0.50	1	07/28/2014 22:29
n-Propyl benzene	ND		0.50	1	07/28/2014 22:29
Styrene	ND		0.50	1	07/28/2014 22:29
1,1,1,2-Tetrachloroethane	ND		0.50	1	07/28/2014 22:29
1,1,2,2-Tetrachloroethane	ND		0.50	1	07/28/2014 22:29
Tetrachloroethene	ND		0.50	1	07/28/2014 22:29
Toluene	ND		0.50	1	07/28/2014 22:29
1,2,3-Trichlorobenzene	ND		0.50	1	07/28/2014 22:29
1,2,4-Trichlorobenzene	ND		0.50	1	07/28/2014 22:29
1,1,1-Trichloroethane	ND		0.50	1	07/28/2014 22:29
1,1,2-Trichloroethane	ND		0.50	1	07/28/2014 22:29
Trichloroethene	ND		0.50	1	07/28/2014 22:29
Trichlorofluoromethane	ND		0.50	1	07/28/2014 22:29
1,2,3-Trichloropropane	ND		0.50	1	07/28/2014 22:29
1,2,4-Trimethylbenzene	ND		0.50	1	07/28/2014 22:29
1,3,5-Trimethylbenzene	ND		0.50	1	07/28/2014 22:29
Vinyl Chloride	ND		0.50	1	07/28/2014 22:29
Xylenes, Total	ND		0.50	1	07/28/2014 22:29
Surrogates	<u>REC (%)</u>		<u>Limits</u>	Analytical Comments: b	1
Dibromofluoromethane	90		70-130		07/28/2014 22:29
Toluene-d8	98		70-130		07/28/2014 22:29
4-BFB	86		70-130		07/28/2014 22:29

Client:	P & D Environmental	WorkOrder:	1407844
Project:	#0553; Cathedral Gardens 638 21st St Oakland, CA	Extraction Method:	SW5030B
Date Received:	7/23/14 16:29	Analytical Method:	SW8260B
Date Prepared:	7/25/14-7/29/14	Unit:	µg/L

Client ID	Lab ID	Matrix/ExtType	Date Co	llected	Instrument	Batch ID
B8-W	1407844-003B	Water	07/21/201	4 14:30	GC16	93297
Analytes	<u>Result</u>		<u>RL</u>	DF		Date Analyzed
Acetone	ND		10	1		07/25/2014 12:25
tert-Amyl methyl ether (TAME)	ND		0.50	1		07/25/2014 12:25
Benzene	ND		0.50	1		07/25/2014 12:25
Bromobenzene	ND		0.50	1		07/25/2014 12:25
Bromochloromethane	ND		0.50	1		07/25/2014 12:25
Bromodichloromethane	ND		0.50	1		07/25/2014 12:25
Bromoform	ND		0.50	1		07/25/2014 12:25
Bromomethane	ND		0.50	1		07/25/2014 12:25
2-Butanone (MEK)	ND		2.0	1		07/25/2014 12:25
t-Butyl alcohol (TBA)	ND		2.0	1		07/25/2014 12:25
n-Butyl benzene	ND		0.50	1		07/25/2014 12:25
sec-Butyl benzene	ND		0.50	1		07/25/2014 12:25
tert-Butyl benzene	ND		0.50	1		07/25/2014 12:25
Carbon Disulfide	ND		0.50	1		07/25/2014 12:25
Carbon Tetrachloride	ND		0.50	1		07/25/2014 12:25
Chlorobenzene	ND		0.50	1		07/25/2014 12:25
Chloroethane	ND		0.50	1		07/25/2014 12:25
Chloroform	ND		0.50	1		07/25/2014 12:25
Chloromethane	ND		0.50	1		07/25/2014 12:25
2-Chlorotoluene	ND		0.50	1		07/25/2014 12:25
4-Chlorotoluene	ND		0.50	1		07/25/2014 12:25
Dibromochloromethane	ND		0.50	1		07/25/2014 12:25
1,2-Dibromo-3-chloropropane	ND		0.20	1		07/25/2014 12:25
1,2-Dibromoethane (EDB)	ND		0.50	1		07/25/2014 12:25
Dibromomethane	ND		0.50	1		07/25/2014 12:25
1,2-Dichlorobenzene	ND		0.50	1		07/25/2014 12:25
1,3-Dichlorobenzene	ND		0.50	1		07/25/2014 12:25
1,4-Dichlorobenzene	ND		0.50	1		07/25/2014 12:25
Dichlorodifluoromethane	ND		0.50	1		07/25/2014 12:25
1,1-Dichloroethane	ND		0.50	1		07/25/2014 12:25
1,2-Dichloroethane (1,2-DCA)	ND		0.50	1		07/25/2014 12:25
1,1-Dichloroethene	ND		0.50	1		07/25/2014 12:25
cis-1,2-Dichloroethene	ND		0.50	1		07/25/2014 12:25
trans-1,2-Dichloroethene	ND		0.50	1		07/25/2014 12:25
1,2-Dichloropropane	ND		0.50	1		07/25/2014 12:25
1,3-Dichloropropane	ND		0.50	1		07/25/2014 12:25
2,2-Dichloropropane	ND		0.50	1		07/25/2014 12:25
1,1-Dichloropropene	ND		0.50	1		07/25/2014 12:25
,				•		

Client:	P & D Environmental	WorkOrder:	1407844
Project:	#0553; Cathedral Gardens 638 21st St Oakland, CA	Extraction Method:	SW5030B
Date Received:	7/23/14 16:29	Analytical Method:	SW8260B
Date Prepared:	7/25/14-7/29/14	Unit:	µg/L

Client ID	Lab ID	Matrix/ExtType	Date Col	llected Instrument	Batch ID
B8-W	1407844-003B	Water	07/21/201	4 14:30 GC16	93297
Analytes	Result		<u>RL</u>	DF	Date Analyzed
cis-1,3-Dichloropropene	ND		0.50	1	07/25/2014 12:25
trans-1,3-Dichloropropene	ND		0.50	1	07/25/2014 12:25
Diisopropyl ether (DIPE)	ND		0.50	1	07/25/2014 12:25
Ethylbenzene	ND		0.50	1	07/25/2014 12:25
Ethyl tert-butyl ether (ETBE)	ND		0.50	1	07/25/2014 12:25
Freon 113	ND		0.50	1	07/25/2014 12:25
Hexachlorobutadiene	ND		0.50	1	07/25/2014 12:25
Hexachloroethane	ND		0.50	1	07/25/2014 12:25
2-Hexanone	ND		0.50	1	07/25/2014 12:25
Isopropylbenzene	ND		0.50	1	07/25/2014 12:25
4-Isopropyl toluene	ND		0.50	1	07/25/2014 12:25
Methyl-t-butyl ether (MTBE)	ND		0.50	1	07/25/2014 12:25
Methylene chloride	ND		0.50	1	07/25/2014 12:25
4-Methyl-2-pentanone (MIBK)	ND		0.50	1	07/25/2014 12:25
Naphthalene	ND		0.50	1	07/25/2014 12:25
n-Propyl benzene	ND		0.50	1	07/25/2014 12:25
Styrene	ND		0.50	1	07/25/2014 12:25
1,1,1,2-Tetrachloroethane	ND		0.50	1	07/25/2014 12:25
1,1,2,2-Tetrachloroethane	ND		0.50	1	07/25/2014 12:25
Tetrachloroethene	ND		0.50	1	07/25/2014 12:25
Toluene	ND		0.50	1	07/25/2014 12:25
1,2,3-Trichlorobenzene	ND		0.50	1	07/25/2014 12:25
1,2,4-Trichlorobenzene	ND		0.50	1	07/25/2014 12:25
1,1,1-Trichloroethane	ND		0.50	1	07/25/2014 12:25
1,1,2-Trichloroethane	ND		0.50	1	07/25/2014 12:25
Trichloroethene	ND		0.50	1	07/25/2014 12:25
Trichlorofluoromethane	ND		0.50	1	07/25/2014 12:25
1,2,3-Trichloropropane	ND		0.50	1	07/25/2014 12:25
1,2,4-Trimethylbenzene	ND		0.50	1	07/25/2014 12:25
1,3,5-Trimethylbenzene	ND		0.50	1	07/25/2014 12:25
Vinyl Chloride	ND		0.50	1	07/25/2014 12:25
Xylenes, Total	ND		0.50	1	07/25/2014 12:25
Surrogates	<u>REC (%)</u>		<u>Limits</u>	Analytical Comments: b1	
Dibromofluoromethane	93		70-130		07/25/2014 12:25
Toluene-d8	102		70-130		07/25/2014 12:25
4-BFB	84		70-130		07/25/2014 12:25

Client:	P & D Environmental	WorkOrder:	1407844
Project:	#0553; Cathedral Gardens 638 21st St Oakland, CA	Extraction Method:	SW5030B
Date Received:	7/23/14 16:29	Analytical Method:	SW8260B
Date Prepared:	7/25/14-7/29/14	Unit:	µg/L

Client ID	Lab ID	Matrix/ExtType	Date Co	ollected	Instrument	Batch ID
B9-W	1407844-004B	Water	07/22/20 ⁻	14 09:15	GC16	93297
Analytes	<u>Result</u>		<u>RL</u>	DF		Date Analyzed
Acetone	ND		10	1		07/25/2014 13:08
tert-Amyl methyl ether (TAME)	ND		0.50	1		07/25/2014 13:08
Benzene	ND		0.50	1		07/25/2014 13:08
Bromobenzene	ND		0.50	1		07/25/2014 13:08
Bromochloromethane	ND		0.50	1		07/25/2014 13:08
Bromodichloromethane	ND		0.50	1		07/25/2014 13:08
Bromoform	ND		0.50	1		07/25/2014 13:08
Bromomethane	ND		0.50	1		07/25/2014 13:08
2-Butanone (MEK)	ND		2.0	1		07/25/2014 13:08
t-Butyl alcohol (TBA)	ND		2.0	1		07/25/2014 13:08
n-Butyl benzene	ND		0.50	1		07/25/2014 13:08
sec-Butyl benzene	ND		0.50	1		07/25/2014 13:08
tert-Butyl benzene	ND		0.50	1		07/25/2014 13:08
Carbon Disulfide	ND		0.50	1		07/25/2014 13:08
Carbon Tetrachloride	ND		0.50	1		07/25/2014 13:08
Chlorobenzene	ND		0.50	1		07/25/2014 13:08
Chloroethane	ND		0.50	1		07/25/2014 13:08
Chloroform	ND		0.50	1		07/25/2014 13:08
Chloromethane	ND		0.50	1		07/25/2014 13:08
2-Chlorotoluene	ND		0.50	1		07/25/2014 13:08
4-Chlorotoluene	ND		0.50	1		07/25/2014 13:08
Dibromochloromethane	ND		0.50	1		07/25/2014 13:08
1,2-Dibromo-3-chloropropane	ND		0.20	1		07/25/2014 13:08
1,2-Dibromoethane (EDB)	ND		0.50	1		07/25/2014 13:08
Dibromomethane	ND		0.50	1		07/25/2014 13:08
1,2-Dichlorobenzene	ND		0.50	1		07/25/2014 13:08
1,3-Dichlorobenzene	ND		0.50	1		07/25/2014 13:08
1,4-Dichlorobenzene	ND		0.50	1		07/25/2014 13:08
Dichlorodifluoromethane	ND		0.50	1		07/25/2014 13:08
1,1-Dichloroethane	ND		0.50	1		07/25/2014 13:08
1,2-Dichloroethane (1,2-DCA)	ND		0.50	1		07/25/2014 13:08
1,1-Dichloroethene	ND		0.50	1		07/25/2014 13:08
cis-1,2-Dichloroethene	ND		0.50	1		07/25/2014 13:08
trans-1,2-Dichloroethene	ND		0.50	1		07/25/2014 13:08
1,2-Dichloropropane	ND		0.50	1		07/25/2014 13:08
1,3-Dichloropropane	ND		0.50	1		07/25/2014 13:08
2,2-Dichloropropane	ND		0.50	1		07/25/2014 13:08
1,1-Dichloropropene	ND		0.50	1		07/25/2014 13:08
						· · · · · · · · · · · · · · · · · · ·

Client:	P & D Environmental	WorkOrder:	1407844
Project:	#0553; Cathedral Gardens 638 21st St Oakland, CA	Extraction Method:	SW5030B
Date Received:	7/23/14 16:29	Analytical Method:	SW8260B
Date Prepared:	7/25/14-7/29/14	Unit:	µg/L

Client ID	Lab ID	Matrix/ExtType	Date Col	llected	Instrument	Batch ID
B9-W	1407844-004B	Water	07/22/201	4 09:15	GC16	93297
Analytes	<u>Result</u>		<u>RL</u>	<u>DF</u>		Date Analyzed
cis-1,3-Dichloropropene	ND		0.50	1		07/25/2014 13:08
trans-1,3-Dichloropropene	ND		0.50	1		07/25/2014 13:08
Diisopropyl ether (DIPE)	ND		0.50	1		07/25/2014 13:08
Ethylbenzene	ND		0.50	1		07/25/2014 13:08
Ethyl tert-butyl ether (ETBE)	ND		0.50	1		07/25/2014 13:08
Freon 113	ND		0.50	1		07/25/2014 13:08
Hexachlorobutadiene	ND		0.50	1		07/25/2014 13:08
Hexachloroethane	ND		0.50	1		07/25/2014 13:08
2-Hexanone	ND		0.50	1		07/25/2014 13:08
Isopropylbenzene	ND		0.50	1		07/25/2014 13:08
4-Isopropyl toluene	ND		0.50	1		07/25/2014 13:08
Methyl-t-butyl ether (MTBE)	ND		0.50	1		07/25/2014 13:08
Methylene chloride	ND		0.50	1		07/25/2014 13:08
4-Methyl-2-pentanone (MIBK)	ND		0.50	1		07/25/2014 13:08
Naphthalene	ND		0.50	1		07/25/2014 13:08
n-Propyl benzene	ND		0.50	1		07/25/2014 13:08
Styrene	ND		0.50	1		07/25/2014 13:08
1,1,1,2-Tetrachloroethane	ND		0.50	1		07/25/2014 13:08
1,1,2,2-Tetrachloroethane	ND		0.50	1		07/25/2014 13:08
Tetrachloroethene	ND		0.50	1		07/25/2014 13:08
Toluene	ND		0.50	1		07/25/2014 13:08
1,2,3-Trichlorobenzene	ND		0.50	1		07/25/2014 13:08
1,2,4-Trichlorobenzene	ND		0.50	1		07/25/2014 13:08
1,1,1-Trichloroethane	ND		0.50	1		07/25/2014 13:08
1,1,2-Trichloroethane	ND		0.50	1		07/25/2014 13:08
Trichloroethene	ND		0.50	1		07/25/2014 13:08
Trichlorofluoromethane	ND		0.50	1		07/25/2014 13:08
1,2,3-Trichloropropane	ND		0.50	1		07/25/2014 13:08
1,2,4-Trimethylbenzene	ND		0.50	1		07/25/2014 13:08
1,3,5-Trimethylbenzene	ND		0.50	1		07/25/2014 13:08
Vinyl Chloride	ND		0.50	1		07/25/2014 13:08
Xylenes, Total	ND		0.50	1		07/25/2014 13:08
Surrogates	<u>REC (%)</u>		<u>Limits</u>	Analy	tical Comments: b1	
Dibromofluoromethane	95		70-130			07/25/2014 13:08
Toluene-d8	101		70-130			07/25/2014 13:08
4-BFB	82		70-130			07/25/2014 13:08

Client:	P & D Environmental	WorkOrder:	1407844
Project:	#0553; Cathedral Gardens 638 21st St Oakland, CA	Extraction Method:	SW5030B
Date Received:	7/23/14 16:29	Analytical Method:	SW8260B
Date Prepared:	7/25/14-7/29/14	Unit:	µg/L

Client ID	Lab ID	Matrix/ExtType	Date Co	ollected]	Instrument	Batch ID
B10-W	1407844-005B	Water	07/21/20	14 09:00	GC16	93297
Analytes	<u>Result</u>		<u>RL</u>	DF		Date Analyzed
Acetone	ND		10	1		07/25/2014 18:11
tert-Amyl methyl ether (TAME)	ND		0.50	1		07/25/2014 18:11
Benzene	ND		0.50	1		07/25/2014 18:11
Bromobenzene	ND		0.50	1		07/25/2014 18:11
Bromochloromethane	ND		0.50	1		07/25/2014 18:11
Bromodichloromethane	ND		0.50	1		07/25/2014 18:11
Bromoform	ND		0.50	1		07/25/2014 18:11
Bromomethane	ND		0.50	1		07/25/2014 18:11
2-Butanone (MEK)	ND		2.0	1		07/25/2014 18:11
t-Butyl alcohol (TBA)	ND		2.0	1		07/25/2014 18:11
n-Butyl benzene	ND		0.50	1		07/25/2014 18:11
sec-Butyl benzene	ND		0.50	1		07/25/2014 18:11
tert-Butyl benzene	ND		0.50	1		07/25/2014 18:11
Carbon Disulfide	ND		0.50	1		07/25/2014 18:11
Carbon Tetrachloride	ND		0.50	1		07/25/2014 18:11
Chlorobenzene	ND		0.50	1		07/25/2014 18:11
Chloroethane	ND		0.50	1		07/25/2014 18:11
Chloroform	ND		0.50	1		07/25/2014 18:11
Chloromethane	ND		0.50	1		07/25/2014 18:11
2-Chlorotoluene	ND		0.50	1		07/25/2014 18:11
4-Chlorotoluene	ND		0.50	1		07/25/2014 18:11
Dibromochloromethane	ND		0.50	1		07/25/2014 18:11
1,2-Dibromo-3-chloropropane	ND		0.20	1		07/25/2014 18:11
1,2-Dibromoethane (EDB)	ND		0.50	1		07/25/2014 18:11
Dibromomethane	ND		0.50	1		07/25/2014 18:11
1,2-Dichlorobenzene	ND		0.50	1		07/25/2014 18:11
1,3-Dichlorobenzene	ND		0.50	1		07/25/2014 18:11
1,4-Dichlorobenzene	ND		0.50	1		07/25/2014 18:11
Dichlorodifluoromethane	ND		0.50	1		07/25/2014 18:11
1,1-Dichloroethane	ND		0.50	1		07/25/2014 18:11
1,2-Dichloroethane (1,2-DCA)	ND		0.50	1		07/25/2014 18:11
1,1-Dichloroethene	ND		0.50	1		07/25/2014 18:11
cis-1,2-Dichloroethene	ND		0.50	1		07/25/2014 18:11
trans-1,2-Dichloroethene	ND		0.50	1		07/25/2014 18:11
1,2-Dichloropropane	ND		0.50	1		07/25/2014 18:11
1,3-Dichloropropane	ND		0.50	1		07/25/2014 18:11
2,2-Dichloropropane	ND		0.50	1		07/25/2014 18:11
1,1-Dichloropropene	ND		0.50	1		07/25/2014 18:11

Client:	P & D Environmental	WorkOrder:	1407844
Project:	#0553; Cathedral Gardens 638 21st St Oakland, CA	Extraction Method:	SW5030B
Date Received:	7/23/14 16:29	Analytical Method:	SW8260B
Date Prepared:	7/25/14-7/29/14	Unit:	µg/L

Client ID	Lab ID	Matrix/ExtType	Date Col	llected Instrument	Batch ID
B10-W	1407844-005B	Water	07/21/201	4 09:00 GC16	93297
Analytes	<u>Result</u>		<u>RL</u>	DF	Date Analyzed
cis-1,3-Dichloropropene	ND		0.50	1	07/25/2014 18:11
trans-1,3-Dichloropropene	ND		0.50	1	07/25/2014 18:11
Diisopropyl ether (DIPE)	ND		0.50	1	07/25/2014 18:11
Ethylbenzene	ND		0.50	1	07/25/2014 18:11
Ethyl tert-butyl ether (ETBE)	ND		0.50	1	07/25/2014 18:11
Freon 113	ND		0.50	1	07/25/2014 18:11
Hexachlorobutadiene	ND		0.50	1	07/25/2014 18:11
Hexachloroethane	ND		0.50	1	07/25/2014 18:11
2-Hexanone	ND		0.50	1	07/25/2014 18:11
Isopropylbenzene	ND		0.50	1	07/25/2014 18:11
4-Isopropyl toluene	ND		0.50	1	07/25/2014 18:11
Methyl-t-butyl ether (MTBE)	ND		0.50	1	07/25/2014 18:11
Methylene chloride	ND		0.50	1	07/25/2014 18:11
4-Methyl-2-pentanone (MIBK)	ND		0.50	1	07/25/2014 18:11
Naphthalene	ND		0.50	1	07/25/2014 18:11
n-Propyl benzene	ND		0.50	1	07/25/2014 18:11
Styrene	ND		0.50	1	07/25/2014 18:11
1,1,1,2-Tetrachloroethane	ND		0.50	1	07/25/2014 18:11
1,1,2,2-Tetrachloroethane	ND		0.50	1	07/25/2014 18:11
Tetrachloroethene	ND		0.50	1	07/25/2014 18:11
Toluene	ND		0.50	1	07/25/2014 18:11
1,2,3-Trichlorobenzene	ND		0.50	1	07/25/2014 18:11
1,2,4-Trichlorobenzene	ND		0.50	1	07/25/2014 18:11
1,1,1-Trichloroethane	ND		0.50	1	07/25/2014 18:11
1,1,2-Trichloroethane	ND		0.50	1	07/25/2014 18:11
Trichloroethene	ND		0.50	1	07/25/2014 18:11
Trichlorofluoromethane	ND		0.50	1	07/25/2014 18:11
1,2,3-Trichloropropane	ND		0.50	1	07/25/2014 18:11
1,2,4-Trimethylbenzene	ND		0.50	1	07/25/2014 18:11
1,3,5-Trimethylbenzene	ND		0.50	1	07/25/2014 18:11
Vinyl Chloride	ND		0.50	1	07/25/2014 18:11
Xylenes, Total	ND		0.50	1	07/25/2014 18:11
<u>Surrogates</u>	<u>REC (%)</u>		<u>Limits</u>	Analytical Comments:	b1
Dibromofluoromethane	94		70-130		07/25/2014 18:11
Toluene-d8	101		70-130		07/25/2014 18:11
4-BFB	84		70-130		07/25/2014 18:11

Client:	P & D Environmental	WorkOrder:	1407844
Project:	#0553; Cathedral Gardens 638 21st St Oakland, CA	Extraction Method:	SW5030B
Date Received:	7/23/14 16:29	Analytical Method:	SW8260B
Date Prepared:	7/25/14-7/29/14	Unit:	µg/L

Client ID	Lab ID	Matrix/ExtType	Date C	ollected Instrument	Batch ID
B11-W	1407844-006B	Water	07/21/20	14 11:00 GC16	93297
Analytes	<u>Result</u>		<u>RL</u>	DF	Date Analyzed
Acetone	ND		10	1	07/29/2014 23:44
tert-Amyl methyl ether (TAME)	ND		0.50	1	07/29/2014 23:44
Benzene	ND		0.50	1	07/29/2014 23:44
Bromobenzene	ND		0.50	1	07/29/2014 23:44
Bromochloromethane	ND		0.50	1	07/29/2014 23:44
Bromodichloromethane	ND		0.50	1	07/29/2014 23:44
Bromoform	ND		0.50	1	07/29/2014 23:44
Bromomethane	ND		0.50	1	07/29/2014 23:44
2-Butanone (MEK)	ND		2.0	1	07/29/2014 23:44
t-Butyl alcohol (TBA)	ND		2.0	1	07/29/2014 23:44
n-Butyl benzene	ND		0.50	1	07/29/2014 23:44
sec-Butyl benzene	ND		0.50	1	07/29/2014 23:44
tert-Butyl benzene	ND		0.50	1	07/29/2014 23:44
Carbon Disulfide	ND		0.50	1	07/29/2014 23:44
Carbon Tetrachloride	ND		0.50	1	07/29/2014 23:44
Chlorobenzene	ND		0.50	1	07/29/2014 23:44
Chloroethane	ND		0.50	1	07/29/2014 23:44
Chloroform	ND		0.50	1	07/29/2014 23:44
Chloromethane	ND		0.50	1	07/29/2014 23:44
2-Chlorotoluene	ND		0.50	1	07/29/2014 23:44
4-Chlorotoluene	ND		0.50	1	07/29/2014 23:44
Dibromochloromethane	ND		0.50	1	07/29/2014 23:44
1,2-Dibromo-3-chloropropane	ND		0.20	1	07/29/2014 23:44
1,2-Dibromoethane (EDB)	ND		0.50	1	07/29/2014 23:44
Dibromomethane	ND		0.50	1	07/29/2014 23:44
1,2-Dichlorobenzene	ND		0.50	1	07/29/2014 23:44
1,3-Dichlorobenzene	ND		0.50	1	07/29/2014 23:44
1,4-Dichlorobenzene	ND		0.50	1	07/29/2014 23:44
Dichlorodifluoromethane	ND		0.50	1	07/29/2014 23:44
1,1-Dichloroethane	ND		0.50	1	07/29/2014 23:44
1,2-Dichloroethane (1,2-DCA)	ND		0.50	1	07/29/2014 23:44
1,1-Dichloroethene	ND		0.50	1	07/29/2014 23:44
cis-1,2-Dichloroethene	ND		0.50	1	07/29/2014 23:44
trans-1,2-Dichloroethene	ND		0.50	1	07/29/2014 23:44
1,2-Dichloropropane	ND		0.50	1	07/29/2014 23:44
1,3-Dichloropropane	ND		0.50	1	07/29/2014 23:44
2,2-Dichloropropane	ND		0.50	1	07/29/2014 23:44
1,1-Dichloropropene	ND		0.50	1	07/29/2014 23:44
· · ·					

Client:	P & D Environmental	WorkOrder:	1407844
Project:	#0553; Cathedral Gardens 638 21st St Oakland, CA	Extraction Method:	SW5030B
Date Received:	7/23/14 16:29	Analytical Method:	SW8260B
Date Prepared:	7/25/14-7/29/14	Unit:	µg/L

Client ID	Lab ID	Matrix/ExtType	Date Col	lected Instrument	Batch ID
B11-W	1407844-006B	Water	07/21/201	4 11:00 GC16	93297
Analytes	<u>Result</u>		<u>RL</u>	DF	Date Analyzed
cis-1,3-Dichloropropene	ND		0.50	1	07/29/2014 23:44
trans-1,3-Dichloropropene	ND		0.50	1	07/29/2014 23:44
Diisopropyl ether (DIPE)	ND		0.50	1	07/29/2014 23:44
Ethylbenzene	ND		0.50	1	07/29/2014 23:44
Ethyl tert-butyl ether (ETBE)	ND		0.50	1	07/29/2014 23:44
Freon 113	ND		0.50	1	07/29/2014 23:44
Hexachlorobutadiene	ND		0.50	1	07/29/2014 23:44
Hexachloroethane	ND		0.50	1	07/29/2014 23:44
2-Hexanone	ND		0.50	1	07/29/2014 23:44
Isopropylbenzene	ND		0.50	1	07/29/2014 23:44
4-Isopropyl toluene	ND		0.50	1	07/29/2014 23:44
Methyl-t-butyl ether (MTBE)	ND		0.50	1	07/29/2014 23:44
Methylene chloride	ND		0.50	1	07/29/2014 23:44
4-Methyl-2-pentanone (MIBK)	ND		0.50	1	07/29/2014 23:44
Naphthalene	ND		0.50	1	07/29/2014 23:44
n-Propyl benzene	ND		0.50	1	07/29/2014 23:44
Styrene	ND		0.50	1	07/29/2014 23:44
1,1,1,2-Tetrachloroethane	ND		0.50	1	07/29/2014 23:44
1,1,2,2-Tetrachloroethane	ND		0.50	1	07/29/2014 23:44
Tetrachloroethene	ND		0.50	1	07/29/2014 23:44
Toluene	ND		0.50	1	07/29/2014 23:44
1,2,3-Trichlorobenzene	ND		0.50	1	07/29/2014 23:44
1,2,4-Trichlorobenzene	ND		0.50	1	07/29/2014 23:44
1,1,1-Trichloroethane	ND		0.50	1	07/29/2014 23:44
1,1,2-Trichloroethane	ND		0.50	1	07/29/2014 23:44
Trichloroethene	ND		0.50	1	07/29/2014 23:44
Trichlorofluoromethane	ND		0.50	1	07/29/2014 23:44
1,2,3-Trichloropropane	ND		0.50	1	07/29/2014 23:44
1,2,4-Trimethylbenzene	ND		0.50	1	07/29/2014 23:44
1,3,5-Trimethylbenzene	ND		0.50	1	07/29/2014 23:44
Vinyl Chloride	ND		0.50	1	07/29/2014 23:44
Xylenes, Total	ND		0.50	1	07/29/2014 23:44
Surrogates	<u>REC (%)</u>		<u>Limits</u>	Analytical Comments:	b1
Dibromofluoromethane	92		70-130		07/29/2014 23:44
Toluene-d8	99		70-130		07/29/2014 23:44
4-BFB	84		70-130		07/29/2014 23:44

Client:	P & D Environmental	WorkOrder:	1407844
Project:	#0553; Cathedral Gardens 638 21st St Oakland, CA	Extraction Method:	SW5030B
Date Received:	7/23/14 16:29	Analytical Method:	SW8021B/8015Bm
Date Prepared:	7/24/14-7/25/14	Unit:	μg/L

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE

Client ID	Lab ID	Matrix/ExtType	Date Co	llected Instrument	Batch ID
B6-W	1407844-001A	Water	07/22/201	4 15:00 GC3	93159
Analytes	Result		<u>RL</u>	DF	Date Analyzed
TPH(g)	ND		50	1	07/24/2014 05:25
MTBE			5.0	1	07/24/2014 05:25
Benzene			0.50	1	07/24/2014 05:25
Toluene			0.50	1	07/24/2014 05:25
Ethylbenzene			0.50	1	07/24/2014 05:25
Xylenes			0.50	1	07/24/2014 05:25
<u>Surrogates</u>	<u>REC (%)</u>		<u>Limits</u>	Analytical Comments: b1	
aaa-TFT_2	99		70-130		07/24/2014 05:25

B7-W	1407844-002A Water	07/21/2014 17:00 GC3	93159
Analytes	Result	<u>RL</u> DF	Date Analyzed
TPH(g)	ND	50 1	07/24/2014 05:55
MTBE		5.0 1	07/24/2014 05:55
Benzene		0.50 1	07/24/2014 05:55
Toluene		0.50 1	07/24/2014 05:55
Ethylbenzene		0.50 1	07/24/2014 05:55
Xylenes		0.50 1	07/24/2014 05:55
<u>Surrogates</u>	<u>REC (%)</u>	Limits Analytical Comments	5: b1
aaa-TFT_2	101	70-130	07/24/2014 05:55

B8-W	1407844-003A Water	07/21/201	4 14:30 GC3	93159
Analytes	Result	<u>RL</u>	DF	Date Analyzed
TPH(g)	ND	50	1	07/25/2014 02:45
MTBE		5.0	1	07/25/2014 02:45
Benzene		0.50	1	07/25/2014 02:45
Toluene		0.50	1	07/25/2014 02:45
Ethylbenzene		0.50	1	07/25/2014 02:45
Xylenes		0.50	1	07/25/2014 02:45
Surrogates	<u>REC (%)</u>	<u>Limits</u>	Analytical Comments: b1	
aaa-TFT_2	100	70-130		07/25/2014 02:45

Client:	P & D Environmental	WorkOrder:	1407844
Project:	#0553; Cathedral Gardens 638 21st St Oakland, CA	Extraction Method:	SW5030B
Date Received:	7/23/14 16:29	Analytical Method:	SW8021B/8015Bm
Date Prepared:	7/24/14-7/25/14	Unit:	μg/L

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE

Client ID	Lab ID	Matrix/ExtType	Date Co	ollected Instrument	Batch ID
B9-W	1407844-004A	Water	07/22/20 ⁻	14 09:15 GC3	93159
Analytes	<u>Result</u>		<u>RL</u>	<u>DF</u>	Date Analyzed
TPH(g)	ND		50	1	07/24/2014 08:23
MTBE			5.0	1	07/24/2014 08:23
Benzene			0.50	1	07/24/2014 08:23
Toluene			0.50	1	07/24/2014 08:23
Ethylbenzene			0.50	1	07/24/2014 08:23
Xylenes			0.50	1	07/24/2014 08:23
Surrogates	<u>REC (%)</u>		<u>Limits</u>	Analytical Comments: b1	
aaa-TFT_2	101		70-130		07/24/2014 08:23

B10-W	1407844-005A Water	07/21/2014 09:00 GC3	93159
Analytes	Result	<u>RL</u> <u>DF</u>	Date Analyzed
TPH(g)	ND	50 1	07/24/2014 08:53
MTBE		5.0 1	07/24/2014 08:53
Benzene		0.50 1	07/24/2014 08:53
Toluene		0.50 1	07/24/2014 08:53
Ethylbenzene		0.50 1	07/24/2014 08:53
Xylenes		0.50 1	07/24/2014 08:53
<u>Surrogates</u>	<u>REC (%)</u>	Limits Analytical Comments	: b1
aaa-TFT_2	104	70-130	07/24/2014 08:53

B11-W	1407844-006A Water	07/21/2014 11:00 GC3	93159
Analytes	Result	<u>RL</u> <u>DF</u>	Date Analyzed
TPH(g)	ND	50 1	07/24/2014 09:23
MTBE		5.0 1	07/24/2014 09:23
Benzene		0.50 1	07/24/2014 09:23
Toluene		0.50 1	07/24/2014 09:23
Ethylbenzene		0.50 1	07/24/2014 09:23
Xylenes		0.50 1	07/24/2014 09:23
Surrogates	<u>REC (%)</u>	Limits Analytical Comn	nents: b1
aaa-TFT_2	100	70-130	07/24/2014 09:23

Client:	P & D Environmental	WorkOrder:	1407844
Project:	#0553; Cathedral Gardens 638 21st St Oakland, CA	Extraction Method:	SW3510C
Date Received:	7/23/14 16:29	Analytical Method:	SW8015B
Date Prepared:	7/23/14	Unit:	µg/L

Total Extractable Petroleum Hydrocarbons

Client ID	Lab ID	Matrix/ExtType	Date Col	llected Instrument	Batch ID
B6-W	1407844-001A	Water	07/22/201	93092	
Analytes	<u>Result</u>		<u>RL</u>	<u>DF</u>	Date Analyzed
TPH-Diesel (C10-C23)	ND		50	1	07/25/2014 01:35
TPH-Motor Oil (C18-C36)	ND		250	1	07/25/2014 01:35
Surrogates	<u>REC (%)</u>		<u>Limits</u>	Analytical Comments: b1	
C9	95		70-130		07/25/2014 01:35
B7-W	1407844-002A	Water	07/21/201	4 17:00 GC9a	93092
Analytes	<u>Result</u>		<u>RL</u>	DF	Date Analyzed
TPH-Diesel (C10-C23)	ND		150	1	07/27/2014 09:00
TPH-Motor Oil (C18-C36)	ND		750	1	07/27/2014 09:00
Surrogates	<u>REC (%)</u>		<u>Limits</u>	Analytical Comments: a4,b1	
C9	101		70-130		07/27/2014 09:00
B8-W	1407844-003A	Water	07/21/201	4 14:30 GC6A	93092
Analytes	<u>Result</u>		<u>RL</u>	DF	Date Analyzed
TPH-Diesel (C10-C23)	ND		50	1	07/25/2014 03:59
TPH-Motor Oil (C18-C36)	ND		250	1	07/25/2014 03:59
Surrogates	<u>REC (%)</u>		<u>Limits</u>	Analytical Comments: b1	
C9	93		70-130		07/25/2014 03:59
B9-W	1407844-004A	Water	07/22/201	4 09:15 GC9a	93092
Analytes	<u>Result</u>		<u>RL</u>	DF	Date Analyzed
TPH-Diesel (C10-C23)	ND		100	1	07/27/2014 07:49
TPH-Motor Oil (C18-C36)	ND		500	1	07/27/2014 07:49
Surrogates	<u>REC (%)</u>		<u>Limits</u>	Analytical Comments: b1	
C9	103		70-130		07/27/2014 07:49

Client:	P & D Environmental	WorkOrder:	1407844
Project:	#0553; Cathedral Gardens 638 21st St Oakland, CA	Extraction Method:	SW3510C
Date Received:	7/23/14 16:29	Analytical Method:	SW8015B
Date Prepared:	7/23/14	Unit:	µg/L

Total Extractable Petroleum Hydrocarbons

Client ID	Lab ID	Matrix/ExtType	Date Co	llected Instrument	Batch ID	
B10-W	1407844-005A	Water	07/21/201	4 09:00 GC6A	93092	
Analytes	<u>Result</u>		<u>RL</u>	DF	Date Analyzed	
TPH-Diesel (C10-C23)	ND		50	1	07/25/2014 02:47	
TPH-Motor Oil (C18-C36)	ND		250	1	07/25/2014 02:47	
Surrogates	<u>REC (%)</u>		<u>Limits</u>	Analytical Comments: b1		
С9	95		70-130		07/25/2014 02:47	
B11-W	1407844-006A	Water	07/21/201	4 11:00 GC2A	93092	
Analytes	Result		<u>RL</u>	DF	Date Analyzed	
<u>Analytes</u> TPH-Diesel (C10-C23)	<u>Result</u> 230		<u>RL</u> 50	<u>DF</u> 1		
					Date Analyzed	
TPH-Diesel (C10-C23)	230		50	1	Date Analyzed 07/25/2014 05:19 07/25/2014 05:19	

Client:	P & D Environmental	WorkOrder:	1407844
Date Prepared:	7/28/14	BatchID:	93297
Date Analyzed:	7/25/14	Extraction Method:	SW5030B
Instrument:	GC16	Analytical Method:	SW8260B
Matrix:	Water	Unit:	μg/L
Project:	#0553; Cathedral Gardens 638 21st St Oakland, CA	Sample ID:	MB/LCS-93297 1407844-005BMS/MSD

	QC Summary Report for SW8260B						
Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
Acetone	ND	-	10	-	-	-	-
tert-Amyl methyl ether (TAME)	ND	17.2	0.50	20	-	86.2	70-130
Benzene	ND	21.1	0.50	20	-	105	70-130
Bromobenzene	ND	-	0.50	-	-	-	-
Bromochloromethane	ND	-	0.50	-	-	-	-
Bromodichloromethane	ND	-	0.50	-	-	-	-
Bromoform	ND	-	0.50	-	-	-	-
Bromomethane	ND	-	0.50	-	-	-	-
2-Butanone (MEK)	ND	-	2.0	-	-	-	-
t-Butyl alcohol (TBA)	ND	62.6	2.0	80	-	78.2	70-130
n-Butyl benzene	ND	-	0.50	-	-	-	-
sec-Butyl benzene	ND	-	0.50	-	-	-	-
tert-Butyl benzene	ND	-	0.50	-	-	-	-
Carbon Disulfide	ND	-	0.50	-	-	-	-
Carbon Tetrachloride	ND	-	0.50	-	-	-	-
Chlorobenzene	ND	19.5	0.50	20	-	97.4	70-130
Chloroethane	ND	-	0.50	-	-	-	-
Chloroform	ND	-	0.50	-	-	-	-
Chloromethane	ND	-	0.50	-	-	-	-
2-Chlorotoluene	ND	-	0.50	-	-	-	-
4-Chlorotoluene	ND	-	0.50	-	-	-	-
Dibromochloromethane	ND	-	0.50	-	-	-	-
1,2-Dibromo-3-chloropropane	ND	-	0.20	-	_	-	-
1,2-Dibromoethane (EDB)	ND	16.8	0.50	20	_	83.8	70-130
Dibromomethane	ND	-	0.50	-	_	-	-
1,2-Dichlorobenzene	ND	-	0.50	-	_	-	-
1,3-Dichlorobenzene	ND	-	0.50		-	-	-
1,4-Dichlorobenzene	ND	-	0.50		-	-	-
Dichlorodifluoromethane	ND	-	0.50		-	-	-
1,1-Dichloroethane	ND	-	0.50		-	-	-
1,2-Dichloroethane (1,2-DCA)	ND	17.7	0.50	20	-	88.6	70-130
1.1-Dichloroethene	ND	18.0	0.50	20	-	90.2	70-130
cis-1,2-Dichloroethene	ND	-	0.50	-	-	-	-
trans-1,2-Dichloroethene	ND	-	0.50	-	-	-	-
1,2-Dichloropropane	ND	-	0.50	-	-	-	-
1,3-Dichloropropane	ND	-	0.50	-	-	-	-
2,2-Dichloropropane	ND	-	0.50	-	_	-	-
1,1-Dichloropropene	ND	-	0.50	-	_	-	-
cis-1,3-Dichloropropene	ND	_	0.50	-	_	-	-
trans-1,3-Dichloropropene			0.00				

(Cont.)

Client:	P & D Environmental	WorkOrder:	1407844
Date Prepared:	7/28/14	BatchID:	93297
Date Analyzed:	7/25/14	Extraction Method:	SW5030B
Instrument:	GC16	Analytical Method:	SW8260B
Matrix:	Water	Unit:	µg/L
Project:	#0553; Cathedral Gardens 638 21st St Oakland, CA	Sample ID:	MB/LCS-93297 1407844-005BMS/MSD

Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
Diisopropyl ether (DIPE)	ND	17.1	0.50	20	-	85.6	70-130
Ethylbenzene	ND	-	0.50	-	-	-	-
Ethyl tert-butyl ether (ETBE)	ND	17.2	0.50	20	-	85.8	70-130
Freon 113	ND	-	0.50	-	-	-	-
Hexachlorobutadiene	ND	-	0.50	-	-	-	-
Hexachloroethane	ND	-	0.50	-	-	-	-
2-Hexanone	ND	-	0.50	-	-	-	-
Isopropylbenzene	ND	-	0.50	-	-	-	-
4-Isopropyl toluene	ND	-	0.50	-	-	-	-
Methyl-t-butyl ether (MTBE)	ND	16.6	0.50	20	-	82.8	70-130
Methylene chloride	ND	-	0.50	-	-	-	-
4-Methyl-2-pentanone (MIBK)	ND	-	0.50	-	-	-	-
Naphthalene	ND	-	0.50	-	-	-	-
n-Propyl benzene	ND	-	0.50	-	-	-	-
Styrene	ND	-	0.50	-	-	-	-
1,1,1,2-Tetrachloroethane	ND	-	0.50	-	-	-	-
1,1,2,2-Tetrachloroethane	ND	-	0.50	-	-	-	-
Tetrachloroethene	ND	-	0.50	-	-	-	-
Toluene	ND	19.3	0.50	20	-	96.3	70-130
1,2,3-Trichlorobenzene	ND	-	0.50	-	-	-	-
1,2,4-Trichlorobenzene	ND	-	0.50	-	-	-	-
1,1,1-Trichloroethane	ND	-	0.50	-	-	-	-
1,1,2-Trichloroethane	ND	-	0.50	-	-	-	-
Trichloroethene	ND	20.3	0.50	20	-	101	70-130
Trichlorofluoromethane	ND	-	0.50	-	-	-	-
1,2,3-Trichloropropane	ND	-	0.50	-	-	-	-
1,2,4-Trimethylbenzene	ND	-	0.50	-	-	-	-
1,3,5-Trimethylbenzene	ND	-	0.50	-	-	-	-
Vinyl Chloride	ND	-	0.50	-	-	-	-
Xylenes, Total	ND	-	0.50	-	-	-	-
Surrogate Recovery							
Dibromofluoromethane	23.3	42.4		45	93	94	70-130
Toluene-d8	25.0	45.0		45	100	100	70-130
4-BFB	2.14	3.93		4.5	86	87	70-130

Client:	P & D Environmental	WorkOrder:	1407844
Date Prepared:	7/28/14	BatchID:	93297
Date Analyzed:	7/25/14	Extraction Method:	SW5030B
Instrument:	GC16	Analytical Method:	SW8260B
Matrix:	Water	Unit:	µg/L
Project:	#0553; Cathedral Gardens 638 21st St Oakland, CA	Sample ID:	MB/LCS-93297 1407844-005BMS/MSD

QC Summary Report for SW8260B									
Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
tert-Amyl methyl ether (TAME)	21.1	18.0	20	ND	105	90	70-130	15.7	20
Benzene	23.2	19.4	20	ND	116	96.8	70-130	18.1	20
t-Butyl alcohol (TBA)	107	80.6	80	ND	134,F1	101	70-130	28.1,F1	20
Chlorobenzene	21.3	17.5	20	ND	107	87.3	70-130	19.9	20
1,2-Dibromoethane (EDB)	20.2	17.8	20	ND	101	88.8	70-130	12.9	20
1,2-Dichloroethane (1,2-DCA)	20.9	17.8	20	ND	104	88.8	70-130	16.2	20
1,1-Dichloroethene	19.6	16.4	20	ND	97.7	81.8	70-130	17.7	20
Diisopropyl ether (DIPE)	19.6	16.9	20	ND	98.1	84.4	70-130	15.1	20
Ethyl tert-butyl ether (ETBE)	20.5	17.4	20	ND	103	87.2	70-130	16.1	20
Methyl-t-butyl ether (MTBE)	20.9	17.7	20	ND	105	88.4	70-130	16.8	20
Toluene	20.5	17.0	20	ND	102	85.3	70-130	18.3	20
Trichloroethene	21.9	18.0	20	ND	109	89.8	70-130	19.6	20
Surrogate Recovery									
Dibromofluoromethane	45.9	41.5	45		102	92	70-130	10.2	20
Toluene-d8	45.8	42.4	45		102	94	70-130	7.77	20
4-BFB	4.06	3.68	4.5		90	82	70-130	9.82	20

_QA/QC Officer Page 21 of 27

Client:	P & D Environmental	WorkOrder:	1407844
Date Prepared:	7/24/14	BatchID:	93159
Date Analyzed:	7/23/14	Extraction Method:	SW5030B
Instrument:	GC3	Analytical Method:	SW8021B/8015Bm
Matrix:	Water	Unit:	µg/L
Project:	#0553; Cathedral Gardens 638 21st St Oakland, CA	Sample ID:	MB/LCS-93159 1407849-004AMS/MSD

Analyte	МВ	LCS		RL	SPK	МВ	LCS		LCS
Analyte	Result	Result		RL.	Val		%REC %R		Limits
TPH(btex)	ND	63.4		40	60	-	106		70-130
МТВЕ	ND	10.1		5.0	10	-	101		70-130
Benzene	ND	9.83		0.50	10	-	98.3	3	70-130
Toluene	ND	9.76		0.50	10	-	97.6	6	70-130
Ethylbenzene	ND	9.76		0.50	10	-	97.6	6	70-130
Xylenes	ND	29.5		0.50	30	-	98.4	1	70-130
Surrogate Recovery									
aaa-TFT 2	9.79	9.54			10	98	95		70-130
aaa-11 1_2	9.79	5.54			10	50	00		
Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD
Analyte	MS	MSD	-		MS	MSD	MS/MSD		RPD Limit
_	MS Result	MSD Result	Val	Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
Analyte TPH(btex)	MS Result 64.7	MSD Result 63.4	Val 60	Val ND	MS %REC 108	MSD %REC 106	MS/MSD Limits 70-130	RPD	RPD Limit
Analyte TPH(btex) MTBE	MS Result 64.7 10.6	MSD Result 63.4 10.7	Val 60 10	Val ND ND	MS %REC 108 106	MSD %REC 106 107	MS/MSD Limits 70-130 70-130	RPD 1.98 0.452	RPD Limit 20 20
Analyte TPH(btex) MTBE Benzene	MS Result 64.7 10.6 10.4	MSD Result 63.4 10.7 10.7	Val 60 10 10	Val ND ND ND	MS %REC 108 106 104	MSD %REC 106 107 107	MS/MSD Limits 70-130 70-130 70-130	RPD 1.98 0.452 3.41	RPD Limit 20 20 20
Analyte TPH(btex) MTBE Benzene Toluene Ethylbenzene	MS Result 64.7 10.6 10.4 10.3	MSD Result 63.4 10.7 10.7 10.6	Val 60 10 10 10	Val ND ND ND ND	MS %REC 108 106 104 103	MSD %REC 106 107 107 106	MS/MSD Limits 70-130 70-130 70-130 70-130	RPD 1.98 0.452 3.41 2.86	RPD Limit 20 20 20 20 20 20
Analyte TPH(btex) MTBE Benzene Toluene	MS Result 64.7 10.6 10.4 10.3 10.3	MSD Result 63.4 10.7 10.7 10.6 10.6	Val 60 10 10 10 10	Val ND ND ND ND ND	MS %REC 108 106 104 103 103	MSD % REC 106 107 107 106 106	MS/MSD Limits 70-130 70-130 70-130 70-130 70-130	RPD 1.98 0.452 3.41 2.86 2.42	RPD Limit 20 20 20 20

_QA/QC Officer Page 22 of 27

Client:	P & D Environmental	WorkOrder:	1407844
Date Prepared:	7/23/14	BatchID:	93092
Date Analyzed:	7/23/14 - 7/24/14	Extraction Method:	SW3510C
Instrument:	GC11B, GC2B	Analytical Method:	SW8015B
Matrix:	Water	Unit:	μg/L
Project:	#0553; Cathedral Gardens 638 21st St Oakland, CA	Sample ID:	MB/LCS-93092

	QC Sum	mary Report	for SW8015B				
Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
TPH-Diesel (C10-C23)	ND	924	50	1000	-	92.5	70-130
Surrogate Recovery							
C9	614	737		625	98	118	70-130

McCampbell Analytical, Inc.

1534 Willow Pass Rd ---- CA 04565 1701

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

Pittsburg, CA 94565-1701 (925) 252-9262				WorkO	rder: 1407844	Clie	ntCode: PDEO		
	WaterTrax	WriteOn	EDF	Excel	EQuIS	🖌 Email	HardCopy	ThirdParty	J-flag
Report to:				Bi	ill to:		Req	uested TAT:	5 days
Michael Deschenes	Email:	lab@pdenviro.com			Accounts Pay	able			
P & D Environmental	cc/3rd Party:				P & D Environ	mental			
55 Santa Clara, Ste.240	PO:				55 Santa Clara	a, Ste.240	Dat	e Received:	07/23/2014
Oakland, CA 94610 (510) 658-6916 FAX: 510-834-0152	ProjectNo:	#0553; Cathedral G Oakland, CA	ardens 638 2 ⁻	1st St	Oakland, CA S	94610	Dat	e Printed:	07/30/2014

								Re	quested	l Tests (See leg	end bel	ow)			
Lab ID	Client ID	Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
1407844-001	B6-W	Water	7/22/2014 15:00		В	Α										
1407844-002	B7-W	Water	7/21/2014 17:00		В	Α										
1407844-003	B8-W	Water	7/21/2014 14:30		В	Α										
1407844-004	B9-W	Water	7/22/2014 9:15		В	Α										
1407844-005	B10-W	Water	7/21/2014 9:00		В	Α										
1407844-006	B11-W	Water	7/21/2014 11:00		В	A										

Test Legend:

1	8260B_W
6	
11	

2	G-MBTEX_W
7	
12	

3	
8	

	4	
ĺ	9	

5	
10	

The following SampIDs: 001A, 002A, 003A, 004A, 005A, 006A contain testgroup.

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

Prepared by: Shana Carter

WORK ORDER SUMMARY

Client Name:	P & D ENVIRONMENTAL	QC Level:	LEVEL 2	Work Order:	1407844
Project:	#0553; Cathedral Gardens 638 21st St Oakland, CA	Client Contact:	Michael Deschenes	Date Received:	7/23/2014
Comments:		Contact's Email:	lab@pdenviro.com		

		WaterTrax	WriteOn EDF	Excel	Fax Fmail	HardC	opy ThirdPart	у 🗌 .	l-flag	
Lab ID	Client ID	Matrix	Test Name	Number of Containers	Bottle & Preservative	De- chlorinated	Collection Date & Time	ТАТ	Sediment Content	Hold SubOut
1407844-001A	B6-W	Water	Multi-Range TPH(g,d,mo)	4	VOA w/ HCl		7/22/2014 15:00	5 days	1%+	
1407844-001B	B6-W	Water	SW8260B (VOCs)	3	VOA w/ HCl		7/22/2014 15:00	5 days	1%+	
1407844-002A	B7-W	Water	Multi-Range TPH(g,d,mo)	4	VOA w/ HCl		7/21/2014 17:00	5 days	5%+	
1407844-002B	B7-W	Water	SW8260B (VOCs)	3	VOA w/ HCl		7/21/2014 17:00	5 days	5%+	
1407844-003A	B8-W	Water	Multi-Range TPH(g,d,mo)	4	VOA w/ HCl		7/21/2014 14:30	5 days	1%+	
1407844-003B	B8-W	Water	SW8260B (VOCs)	3	VOA w/ HCl		7/21/2014 14:30	5 days	1%+	
1407844-004A	B9-W	Water	Multi-Range TPH(g,d,mo)	4	VOA w/ HCl		7/22/2014 9:15	5 days	2%+	
1407844-004B	B9-W	Water	SW8260B (VOCs)	3	VOA w/ HCl		7/22/2014 9:15	5 days	2%+	
1407844-005A	B10-W	Water	Multi-Range TPH(g,d,mo)	4	VOA w/ HCl		7/21/2014 9:00	5 days	2%+	
1407844-005B	B10-W	Water	SW8260B (VOCs)	3	VOA w/ HCl		7/21/2014 9:00	5 days	2%+	
1407844-006A	B11-W	Water	Multi-Range TPH(g,d,mo)	4	VOA w/ HCl		7/21/2014 11:00	5 days	5%+	
1407844-006B	B11-W	Water	SW8260B (VOCs)	3	VOA w/ HCl		7/21/2014 11:00	5 days	5%+	

* NOTE: STLC and TCLP extractions require 48 hrs to complete; therefore, all TATs begin after the extraction is completed (i.e., 24hr TAT yields results in 72 hrs from sample submission).

Bottle Legend:

VOA w/ HCI = 43mL VOA w/ HCI

	CHA	IN	OF C	CUSTOD	Y R	E	C	OR	D				19	$\left(\right)$	17	SC	14	PAG		OF -
P&D ENV 55 Sa	TRON nta Clara Oakland, (510) 6	IME Ave., S CA 946 58-691	NTA Suite 24 510 6	$_{0}^{L}$, INC.	Ê	ð		Ø	Ø		BY CA PUNK	Elog	7		/	/				
PROJECT NUMBER:	P	ROJECT	ΓΝΑΜΕ	::		SS		. /	/ /		1		1	/ /	/ /	/	/	/		
0553	C	ATHE 38 DAK	EDRA 215	L GARDEN ST.), CA		CONTAINERS	4715-	Lun SISES		JE _ EE	BYER		/		/	/		/		
SAMPLED BY: (PRINTED &	SIGNATU	JRE)	1 .	_			AN	A	MIR.	LEX	/ /		/ /		/		MI			
MichAEL BASS-DESCHENE	s a	field	na K	Bes- Desche	in	BER	K	E	5	HI-	/		/	/		Ebr.				
SAMPLE NUMBER DATE	TIM	TYPE	SA	MPLE LOCATIO	ON NC	NUMBER OF	1 M		NAD	THALENC -			/		/	PRES	ATTIVE	REM	ARKS	
100 B6-W 7/22/1	1 1500				•	7	×	X						1	14	E	No	Raul	- TA	17
3 B B7-W 7/21/1		1				7	X	X							•(1		
2010 B8-W 7/21/11 2010 B9-W 7/22/1		the second se				7	X	X							le					
	4 0915 4 0900					4	X	X							1(
5% BIL-W 7/21/14		1720		÷.		1	6	X							11	_				
		1120				(7							11	(V		V
						+						,								
											ICE/1	1,6	2		-					
			14								GOC	D COA	CE AF	SENT		_	APPRO CONTA	INERS	LAB	
											DEC	HLOR	INATI	D IN I	BI (0&0				
											B SE	SERV	ATIO	N		=				
													2							۲.
RELINQUISHED BY: (SIGNATURE)	min	DATE	TIME	RECEIVED BY:	(SIGNAT	UR	E)	7		otal No This Sh	o. of Sa nipmen o. of Co	mples		7	4		ATORY:		~	
RELINQUISHED BY: (SIGNATURE)	21	DATE	TIME	RECEIVED BY:	(SIGNAT	UR	E)	1-	(1	This Sh	nipmen)		ACT	Me	OR	ATORY	- ANA L PHONE 1	TICAL	, TWC
	571	3/4	1615	Mana	av	1	er	/ .							1			2-9:		
RELINQUISHED BY: (SIGNATURE)	1	DATE	TIME	RECEIVED FOR (SIGNATURE)	LABORA	ATC	ORY I	BY:	S	AMF	PLE A	NAL	YSIS	REQU	JEST	SHI	EET		. wax	
Deputte en d billio								,			CHEI) YE		() NO			
Results and billing to: P&D Environmental, Inc. lab@pdenviro.com				REMARKS: 🙏	LL Ve	OA	5	PRI	ESE	RUI	Œ	Wr	1ª	HCL	-					

Sample Receipt Checklist

Client Name: P & D Environmental						Fime Received:	7/23/2014 4:29:12 PM
Project Name:	#0553; Cathedral G	ardens 638 21st St O	akland,	СА	LogIn Rev	iewed by:	Shana Carter
WorkOrder №:	1407844	Matrix: Water			Carrier:	<u>Rob Pringle (M</u>	IAI Courier)
		<u>Cha</u>	<u>in of Cι</u>	istody (CO	C) Information		
Chain of custody	v present?		Yes		No 🗌		
Chain of custody	v signed when relinqui	shed and received?	Yes		No 🗌		
Chain of custody	agrees with sample I	abels?	Yes		No 🗌		
Sample IDs note	d by Client on COC?		Yes		No 🗌		
Date and Time o	of collection noted by (Client on COC?	Yes		No 🗌		
Sampler's name	noted on COC?		Yes	✓	No 🗌		
			<u>Sample</u>	Receipt In	formation		
Custody seals in	tact on shipping conta	ainer/cooler?	Yes		No 🗌		NA 🗹
Shipping contain	er/cooler in good con	dition?	Yes		No 🗌		
Samples in prop	er containers/bottles?		Yes		No 🗌		
Sample containe	ers intact?		Yes		No 🗌		
Sufficient sample	e volume for indicated	test?	Yes		No 🗌		
		Sample Pres	servatio	n and Hold	<u>Time (HT) Info</u>	ormation	
All samples rece	ived within holding tin	ne?	Yes	✓	No 🗌		
Container/Temp	Blank temperature		Coole	r Temp: 1	.5°C		
Water - VOA via	ls have zero headspa	ce / no bubbles?	Yes		No 🗌		
Sample labels ch	necked for correct pre	servation?	Yes		No 🗌		
pH acceptable u	pon receipt (Metal: p⊦	I<2; 522: pH<4)?	Yes		No 🗌		NA 🗹
Samples Receive	ed on Ice?		Yes	✓	No 🗌		
		(Ісе Тур	be: WE	TICE)			
* NOTE: If the "N	No" box is checked, se	e comments below.					

Comments:

McCampbell Analytical, Inc.

"When Quality Counts"

Analytical Report

WorkOrder:	1408149
Report Created for:	P & D Environmental 55 Santa Clara, Ste.240 Oakland, CA 94610
Project Contact: Project P.O.:	Michael Deschenes
Project Name:	#0553; Cathedral Gradens 638 21st Street Oakland, ca
Developed Developed	00/05/2014

Project Received: 08/05/2014

Analytical Report reviewed & approved for release on 08/12/2014 by:

Angela Rydelius, Laboratory Manager

The report shall not be reproduced except in full, without the written approval of the laboratory. The analytical results relate only to the items tested. Results reported conform to the most current NELAP standards, where applicable, unless otherwise stated in the case narrative.

1534 Willow Pass Rd. Pittsburg, CA 94565 ♦ TEL: (877) 252-9262 ♦ FAX: (925) 252-9269 ♦ www.mccampbell.com NELAP: 4033ORELAP ♦ ELAP: 1644 ♦ ISO/IEC: 17025:2005 ♦ WSDE: C972-11 ♦ ADEC: UST-098 ♦ UCMR3

Glossary of Terms & Qualifier Definitions

Client: P & D Environmental

Project: #0553; Cathedral Gradens 638 21st Street Oakland, ca

WorkOrder: 1408149

Glossary Abbreviation

95% Interval	95% Confident Interval
DF	Dilution Factor
DUP	Duplicate
EDL	Estimated Detection Limit
ITEF	International Toxicity Equivalence Factor
LCS	Laboratory Control Sample
MB	Method Blank
MB % Rec	% Recovery of Surrogate in Method Blank, if applicable
MDL	Method Detection Limit
ML	Minimum Level of Quantitation
MS	Matrix Spike
MSD	Matrix Spike Duplicate
ND	Not detected at or above the indicated MDL or RL
NR	Matrix interferences, or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix; or sample diluted due to high matrix or analyte content.
PF	Prep Factor
RD	Relative Difference
RL	Reporting Limit (The RL is the lowest calibration standard in a multipoint calibration.)
RPD	Relative Percent Deviation
RRT	Relative Retention Time
SPK Val	Spike Value
SPKRef Val	Spike Reference Value
TEQ	Toxicity Equivalence

Analytical Qualifiers

В

analyte detected in the associated Method Blank

Client:	P & D Environmental	WorkOrder:	1408149
Project:	#0553; Cathedral Gradens 638 21st Street Oakland, c	Extraction Method:	SW5030B
Date Received:	8/5/14 19:48	Analytical Method:	SW8260B
Date Prepared:	8/7/14	Unit:	µg/L

Volatile Organics by P&T and GC/MS (Basic Target List)

Client ID	Lab ID	Matrix/ExtType	Date Co	ollected	Instrument	Batch ID
B16-w	1408149-001B	Water	08/04/20	14 11:50	GC28	93791
Analytes	Result	<u>Qualifiers</u>	<u>RL</u>	DF		Date Analyzed
Acetone	ND	В	10	1		08/07/2014 17:21
tert-Amyl methyl ether (TAME)	ND		0.50	1		08/07/2014 17:21
Benzene	ND		0.50	1		08/07/2014 17:21
Bromobenzene	ND		0.50	1		08/07/2014 17:21
Bromochloromethane	ND		0.50	1		08/07/2014 17:21
Bromodichloromethane	ND		0.50	1		08/07/2014 17:21
Bromoform	ND		0.50	1		08/07/2014 17:21
Bromomethane	ND		0.50	1		08/07/2014 17:21
2-Butanone (MEK)	ND		2.0	1		08/07/2014 17:21
t-Butyl alcohol (TBA)	ND		2.0	1		08/07/2014 17:21
n-Butyl benzene	ND		0.50	1		08/07/2014 17:21
sec-Butyl benzene	ND		0.50	1		08/07/2014 17:21
tert-Butyl benzene	ND		0.50	1		08/07/2014 17:21
Carbon Disulfide	ND		0.50	1		08/07/2014 17:21
Carbon Tetrachloride	ND		0.50	1		08/07/2014 17:21
Chlorobenzene	ND		0.50	1		08/07/2014 17:21
Chloroethane	ND		0.50	1		08/07/2014 17:21
Chloroform	ND		0.50	1		08/07/2014 17:21
Chloromethane	ND		0.50	1		08/07/2014 17:21
2-Chlorotoluene	ND		0.50	1		08/07/2014 17:21
4-Chlorotoluene	ND		0.50	1		08/07/2014 17:21
Dibromochloromethane	ND		0.50	1		08/07/2014 17:21
1,2-Dibromo-3-chloropropane	ND		0.20	1		08/07/2014 17:21
1,2-Dibromoethane (EDB)	ND		0.50	1		08/07/2014 17:21
Dibromomethane	ND		0.50	1		08/07/2014 17:21
1,2-Dichlorobenzene	ND		0.50	1		08/07/2014 17:21
1,3-Dichlorobenzene	ND		0.50	1		08/07/2014 17:21
1,4-Dichlorobenzene	ND		0.50	1		08/07/2014 17:21
Dichlorodifluoromethane	ND		0.50	1		08/07/2014 17:21
1,1-Dichloroethane	ND		0.50	1		08/07/2014 17:21
1,2-Dichloroethane (1,2-DCA)	ND		0.50	1		08/07/2014 17:21
1,1-Dichloroethene	ND		0.50	1		08/07/2014 17:21
cis-1,2-Dichloroethene	ND		0.50	1		08/07/2014 17:21
trans-1,2-Dichloroethene	ND		0.50	1		08/07/2014 17:21
1,2-Dichloropropane	ND		0.50	1		08/07/2014 17:21
1,3-Dichloropropane	ND		0.50	1		08/07/2014 17:21
2,2-Dichloropropane	ND		0.50	1		08/07/2014 17:21
1,1-Dichloropropene	ND		0.50	1		08/07/2014 17:21

(Cont.)

Client:	P & D Environmental	WorkOrder:	1408149
Project:	#0553; Cathedral Gradens 638 21st Street Oakland, c	Extraction Method:	SW5030B
Date Received:	8/5/14 19:48	Analytical Method:	SW8260B
Date Prepared:	8/7/14	Unit:	µg/L

Volatile Organics by P&T and GC/MS (Basic Target List)

Client ID	Lab ID	Matrix/ExtType	Date Co	ollected	Instrument	Batch ID
B16-w	1408149-001B	Water	08/04/20	14 11:50	GC28	93791
Analytes	Result	<u>Qualifiers</u>	<u>RL</u>	DF		Date Analyzed
cis-1,3-Dichloropropene	ND		0.50	1		08/07/2014 17:21
trans-1,3-Dichloropropene	ND		0.50	1		08/07/2014 17:21
Diisopropyl ether (DIPE)	ND		0.50	1		08/07/2014 17:21
Ethylbenzene	ND		0.50	1		08/07/2014 17:21
Ethyl tert-butyl ether (ETBE)	ND		0.50	1		08/07/2014 17:21
Freon 113	ND		0.50	1		08/07/2014 17:21
Hexachlorobutadiene	ND		0.50	1		08/07/2014 17:21
Hexachloroethane	ND		0.50	1		08/07/2014 17:21
2-Hexanone	ND		0.50	1		08/07/2014 17:21
Isopropylbenzene	ND		0.50	1		08/07/2014 17:21
4-Isopropyl toluene	ND		0.50	1		08/07/2014 17:21
Methyl-t-butyl ether (MTBE)	ND		0.50	1		08/07/2014 17:21
Methylene chloride	ND		0.50	1		08/07/2014 17:21
4-Methyl-2-pentanone (MIBK)	ND		0.50	1		08/07/2014 17:21
Naphthalene	ND		0.50	1		08/07/2014 17:21
n-Propyl benzene	ND		0.50	1		08/07/2014 17:21
Styrene	ND		0.50	1		08/07/2014 17:21
1,1,1,2-Tetrachloroethane	ND		0.50	1		08/07/2014 17:21
1,1,2,2-Tetrachloroethane	ND		0.50	1		08/07/2014 17:21
Tetrachloroethene	ND		0.50	1		08/07/2014 17:21
Toluene	ND		0.50	1		08/07/2014 17:21
1,2,3-Trichlorobenzene	ND		0.50	1		08/07/2014 17:21
1,2,4-Trichlorobenzene	ND		0.50	1		08/07/2014 17:21
1,1,1-Trichloroethane	ND		0.50	1		08/07/2014 17:21
1,1,2-Trichloroethane	ND		0.50	1		08/07/2014 17:21
Trichloroethene	ND		0.50	1		08/07/2014 17:21
Trichlorofluoromethane	ND		0.50	1		08/07/2014 17:21
1,2,3-Trichloropropane	ND		0.50	1		08/07/2014 17:21
1,2,4-Trimethylbenzene	ND		0.50	1		08/07/2014 17:21
1,3,5-Trimethylbenzene	ND		0.50	1		08/07/2014 17:21
Vinyl Chloride	ND		0.50	1		08/07/2014 17:21
Xylenes, Total	ND		0.50	1		08/07/2014 17:21
Surrogates	<u>REC (%)</u>		<u>Limits</u>			
Dibromofluoromethane	90		70-130			08/07/2014 17:21
Toluene-d8	89		70-130			08/07/2014 17:21
4-BFB	77		70-130			08/07/2014 17:21

Angela Rydelius, Lab Manager

Client:	P & D Environmental	WorkOrder:	1408149
Project:	#0553; Cathedral Gradens 638 21st Street Oakland, c	Extraction Method:	SW5030B
Date Received:	8/5/14 19:48	Analytical Method:	SW8260B
Date Prepared:	8/7/14	Unit:	µg/L

Volatile Organics by P&T and GC/MS (Basic Target List)

Client ID	Lab ID	Matrix/ExtType	Date Co	ollected	Instrument	Batch ID
B17-w	1408149-002B	Water	08/04/20 ⁻	14 13:10	GC28	93791
Analytes	<u>Result</u>	<u>Qualifiers</u>	<u>RL</u>	DF		Date Analyzed
Acetone	ND	В	10	1		08/07/2014 18:01
tert-Amyl methyl ether (TAME)	ND		0.50	1		08/07/2014 18:01
Benzene	ND		0.50	1		08/07/2014 18:01
Bromobenzene	ND		0.50	1		08/07/2014 18:01
Bromochloromethane	ND		0.50	1		08/07/2014 18:01
Bromodichloromethane	ND		0.50	1		08/07/2014 18:01
Bromoform	ND		0.50	1		08/07/2014 18:01
Bromomethane	ND		0.50	1		08/07/2014 18:01
2-Butanone (MEK)	ND		2.0	1		08/07/2014 18:01
t-Butyl alcohol (TBA)	ND		2.0	1		08/07/2014 18:01
n-Butyl benzene	ND		0.50	1		08/07/2014 18:01
sec-Butyl benzene	ND		0.50	1		08/07/2014 18:01
tert-Butyl benzene	ND		0.50	1		08/07/2014 18:01
Carbon Disulfide	ND		0.50	1		08/07/2014 18:01
Carbon Tetrachloride	ND		0.50	1		08/07/2014 18:01
Chlorobenzene	ND		0.50	1		08/07/2014 18:01
Chloroethane	ND		0.50	1		08/07/2014 18:01
Chloroform	ND		0.50	1		08/07/2014 18:01
Chloromethane	ND		0.50	1		08/07/2014 18:01
2-Chlorotoluene	ND		0.50	1		08/07/2014 18:01
4-Chlorotoluene	ND		0.50	1		08/07/2014 18:01
Dibromochloromethane	ND		0.50	1		08/07/2014 18:01
1,2-Dibromo-3-chloropropane	ND		0.20	1		08/07/2014 18:01
1,2-Dibromoethane (EDB)	ND		0.50	1		08/07/2014 18:01
Dibromomethane	ND		0.50	1		08/07/2014 18:01
1,2-Dichlorobenzene	ND		0.50	1		08/07/2014 18:01
1,3-Dichlorobenzene	ND		0.50	1		08/07/2014 18:01
1,4-Dichlorobenzene	ND		0.50	1		08/07/2014 18:01
Dichlorodifluoromethane	ND		0.50	1		08/07/2014 18:01
1,1-Dichloroethane	ND		0.50	1		08/07/2014 18:01
1,2-Dichloroethane (1,2-DCA)	ND		0.50	1		08/07/2014 18:01
1,1-Dichloroethene	ND		0.50	1		08/07/2014 18:01
cis-1,2-Dichloroethene	ND		0.50	1		08/07/2014 18:01
trans-1,2-Dichloroethene	ND		0.50	1		08/07/2014 18:01
1,2-Dichloropropane	ND		0.50	1		08/07/2014 18:01
1,3-Dichloropropane	ND		0.50	1		08/07/2014 18:01
2,2-Dichloropropane	ND		0.50	1		08/07/2014 18:01
1,1-Dichloropropene	ND		0.50	1		08/07/2014 18:01

(Cont.)

Client:	P & D Environmental	WorkOrder:	1408149
Project:	#0553; Cathedral Gradens 638 21st Street Oakland, c	Extraction Method:	SW5030B
Date Received:	8/5/14 19:48	Analytical Method:	SW8260B
Date Prepared:	8/7/14	Unit:	µg/L

Volatile Organics by P&T and GC/MS (Basic Target List)

Client ID	Lab ID	Matrix/ExtType	Date Co	ollected	Instrument	Batch ID
B17-w	1408149-002B	Water	08/04/20	14 13:10	GC28	93791
Analytes	<u>Result</u>	<u>Qualifiers</u>	<u>RL</u>	DF		Date Analyzed
cis-1,3-Dichloropropene	ND		0.50	1		08/07/2014 18:01
trans-1,3-Dichloropropene	ND		0.50	1		08/07/2014 18:01
Diisopropyl ether (DIPE)	ND		0.50	1		08/07/2014 18:01
Ethylbenzene	ND		0.50	1		08/07/2014 18:01
Ethyl tert-butyl ether (ETBE)	ND		0.50	1		08/07/2014 18:01
Freon 113	ND		0.50	1		08/07/2014 18:01
Hexachlorobutadiene	ND		0.50	1		08/07/2014 18:01
Hexachloroethane	ND		0.50	1		08/07/2014 18:01
2-Hexanone	ND		0.50	1		08/07/2014 18:01
Isopropylbenzene	ND		0.50	1		08/07/2014 18:01
4-Isopropyl toluene	ND		0.50	1		08/07/2014 18:01
Methyl-t-butyl ether (MTBE)	ND		0.50	1		08/07/2014 18:01
Methylene chloride	ND		0.50	1		08/07/2014 18:01
4-Methyl-2-pentanone (MIBK)	ND		0.50	1		08/07/2014 18:01
Naphthalene	ND		0.50	1		08/07/2014 18:01
n-Propyl benzene	ND		0.50	1		08/07/2014 18:01
Styrene	ND		0.50	1		08/07/2014 18:01
1,1,1,2-Tetrachloroethane	ND		0.50	1		08/07/2014 18:01
1,1,2,2-Tetrachloroethane	ND		0.50	1		08/07/2014 18:01
Tetrachloroethene	ND		0.50	1		08/07/2014 18:01
Toluene	ND		0.50	1		08/07/2014 18:01
1,2,3-Trichlorobenzene	ND		0.50	1		08/07/2014 18:01
1,2,4-Trichlorobenzene	ND		0.50	1		08/07/2014 18:01
1,1,1-Trichloroethane	ND		0.50	1		08/07/2014 18:01
1,1,2-Trichloroethane	ND		0.50	1		08/07/2014 18:01
Trichloroethene	ND		0.50	1		08/07/2014 18:01
Trichlorofluoromethane	ND		0.50	1		08/07/2014 18:01
1,2,3-Trichloropropane	ND		0.50	1		08/07/2014 18:01
1,2,4-Trimethylbenzene	ND		0.50	1		08/07/2014 18:01
1,3,5-Trimethylbenzene	ND		0.50	1		08/07/2014 18:01
Vinyl Chloride	ND		0.50	1		08/07/2014 18:01
Xylenes, Total	ND		0.50	1		08/07/2014 18:01
Surrogates	<u>REC (%)</u>		<u>Limits</u>			
Dibromofluoromethane	91		70-130			08/07/2014 18:01
Toluene-d8	88		70-130			08/07/2014 18:01
4-BFB	79		70-130			08/07/2014 18:01

Client:	P & D Environmental	WorkOrder:	1408149
Project:	#0553; Cathedral Gradens 638 21st Street Oakland, c	Extraction Method:	SW5030B
Date Received:	8/5/14 19:48	Analytical Method:	SW8021B/8015Bm
Date Prepared:	8/7/14	Unit:	μg/L

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE

Client ID	Lab ID	Matrix/ExtType	Date C	ollected	Instrument	Batch ID
B16-w	1408149-001A	Water	08/04/20	14 11:50	GC3	93729
Analytes	<u>Result</u>		<u>RL</u>	DF		Date Analyzed
TPH(g)	ND		50	1		08/07/2014 04:06
MTBE			5.0	1		08/07/2014 04:06
Benzene			0.50	1		08/07/2014 04:06
Toluene			0.50	1		08/07/2014 04:06
Ethylbenzene			0.50	1		08/07/2014 04:06
Xylenes			0.50	1		08/07/2014 04:06
Surrogates	<u>REC (%)</u>		<u>Limits</u>			
aaa-TFT_2	99		70-130			08/07/2014 04:06
Client ID	Lab ID	Matrix/ExtType	Date C	ollected	Instrument	Batch ID
B17-w	1408149-002A	Water	08/04/20	14 13:10	GC3	93729
Analytes	<u>Result</u>		<u>RL</u>	<u>DF</u>		Date Analyzed
TPH(g)	ND		50	1		08/07/2014 04:36
MTBE			5.0	1		08/07/2014 04:36
Benzene			0.50	1		08/07/2014 04:36
Toluene			0.50	1		08/07/2014 04:36
Ethylbenzene			0.50	1		08/07/2014 04:36
Xylenes			0.50	1		08/07/2014 04:36
,			0.50 <u>Limits</u>	1		08/07/2014 04:36

Client:	P & D Environmental	WorkOrder:	1408149
Project:	#0553; Cathedral Gradens 638 21st Street Oakland, c	Extraction Method:	SW3510C
Date Received:	8/5/14 19:48	Analytical Method:	SW8015B
Date Prepared:	8/5/14	Unit:	µg/L

Total Extractable Petroleum Hydrocarbons

Client ID	Lab ID	Matrix/ExtType	Date C	ollected	Instrument	Batch ID
B16-w	1408149-001A	Water	08/04/20	14 11:50	GC6B	93657
Analytes	<u>Result</u>		<u>RL</u>	DF		Date Analyzed
TPH-Diesel (C10-C23)	ND		50	1		08/09/2014 11:01
TPH-Motor Oil (C18-C36)	ND		250	1		08/09/2014 11:01
Surrogates	<u>REC (%)</u>		<u>Limits</u>			
C9	122		70-130			08/09/2014 11:01
Client ID	Lab ID	Matrix/ExtType	Date C	ollected	Instrument	Batch ID
Client ID B17-w	Lab ID 1408149-002A	Matrix/ExtType Water		ollected 14 13:10		Batch ID 93657
B17-w	1408149-002A		08/04/20	14 13:10		93657
B17-w Analytes	1408149-002A <u>Result</u>		08/04/20 <u>RL</u>	14 13:10 <u>DF</u>		93657 Date Analyzed
B17-w Analytes TPH-Diesel (C10-C23)	1408149-002A <u>Result</u> ND		08/04/20 <u>RL</u> 50	14 13:10 <u>DF</u> 1		93657 <u>Date Analyzed</u> 08/08/2014 09:52

Client:	P & D Environmental	WorkOrder:	1408149
Date Prepared:	8/8/14	BatchID:	93791
Date Analyzed:	8/7/14	Extraction Method:	SW5030B
Instrument:	GC28	Analytical Method:	SW8260B
Matrix:	Water	Unit:	µg/L
Project:	#0553; Cathedral Gradens 638 21st Street Oakland, ca	Sample ID:	MB/LCS-93791 1408149-001BMS/MSD

QC Summary Report for SW8260B							
Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
Acetone	24.4	-	10	-	-	-	-
tert-Amyl methyl ether (TAME)	ND	16.9	0.50	20	-	84.7	70-130
Benzene	ND	17.4	0.50	20	-	87.1	70-130
Bromobenzene	ND	-	0.50	-	-	-	-
Bromochloromethane	ND	-	0.50	-	-	-	-
Bromodichloromethane	ND	-	0.50	-	-	-	-
Bromoform	ND	-	0.50	-	-	-	-
Bromomethane	ND	-	0.50	-	-	-	-
2-Butanone (MEK)	ND	-	2.0	-	-	-	-
t-Butyl alcohol (TBA)	ND	63.8	2.0	80	-	79.7	70-130
n-Butyl benzene	ND	-	0.50	-	-	-	-
sec-Butyl benzene	ND	-	0.50	-	-	-	-
tert-Butyl benzene	ND	-	0.50	-	-	-	-
Carbon Disulfide	ND	-	0.50	-	-	-	-
Carbon Tetrachloride	ND	-	0.50	-	-	-	-
Chlorobenzene	ND	16.9	0.50	20	-	84.6	70-130
Chloroethane	ND	-	0.50	-	-	-	-
Chloroform	ND	-	0.50	-	-	-	-
Chloromethane	ND	-	0.50	-	-	-	-
2-Chlorotoluene	ND	-	0.50	-	-	-	-
4-Chlorotoluene	ND	-	0.50	-	-	-	-
Dibromochloromethane	ND	-	0.50	-	_	-	-
1,2-Dibromo-3-chloropropane	ND	-	0.20	-	_	-	-
1,2-Dibromoethane (EDB)	ND	16.4	0.50	20	_	82	70-130
Dibromomethane	ND	-	0.50	-	_	-	-
1,2-Dichlorobenzene	ND	-	0.50	-	-	-	-
1,3-Dichlorobenzene	ND	-	0.50	-	-	-	-
1.4-Dichlorobenzene	ND	-	0.50	-	-	-	-
Dichlorodifluoromethane	ND	-	0.50	-	-	-	-
1,1-Dichloroethane	ND	-	0.50	-	_	-	-
1,2-Dichloroethane (1,2-DCA)	ND	15.4	0.50	20	-	77.1	70-130
1,1-Dichloroethene	ND	17.0	0.50	20	-	84.9	70-130
cis-1,2-Dichloroethene	ND	-	0.50	-	_	-	-
trans-1,2-Dichloroethene	ND	-	0.50	-	_	-	-
1,2-Dichloropropane	ND	-	0.50	-	_	-	-
1,3-Dichloropropane	ND	-	0.50	-	_	-	-
2,2-Dichloropropane	ND	-	0.50	-	_	-	-
1,1-Dichloropropene	ND	-	0.50	-	_	-	-
cis-1,3-Dichloropropene	ND	-	0.50	-	_	-	-
trans-1,3-Dichloropropene	ND	-	0.50	-	-	-	-

(Cont.)

Client:	P & D Environmental	WorkOrder:	1408149
Date Prepared:	8/8/14	BatchID:	93791
Date Analyzed:	8/7/14	Extraction Method:	SW5030B
Instrument:	GC28	Analytical Method:	SW8260B
Matrix:	Water	Unit:	µg/L
Project:	#0553; Cathedral Gradens 638 21st Street Oakland, ca	Sample ID:	MB/LCS-93791 1408149-001BMS/MSD

QC Summary Report for SW8260B							
Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
Diisopropyl ether (DIPE)	ND	17.0	0.50	20	-	85.3	70-130
Ethylbenzene	ND	-	0.50	-	-	-	-
Ethyl tert-butyl ether (ETBE)	ND	17.0	0.50	20	-	84.8	70-130
Freon 113	ND	-	0.50	-	-	-	-
Hexachlorobutadiene	ND	-	0.50	-	-	-	-
Hexachloroethane	ND	-	0.50	-	-	-	-
2-Hexanone	ND	-	0.50	-	-	-	-
Isopropylbenzene	ND	-	0.50	-	-	-	-
4-Isopropyl toluene	ND	-	0.50	-	-	-	-
Methyl-t-butyl ether (MTBE)	ND	16.6	0.50	20	-	83	70-130
Methylene chloride	ND	-	0.50	-	-	-	-
4-Methyl-2-pentanone (MIBK)	ND	-	0.50	-	-	-	-
Naphthalene	ND	-	0.50	-	-	-	-
n-Propyl benzene	ND	-	0.50	-	-	-	-
Styrene	ND	-	0.50	-	-	-	-
1,1,1,2-Tetrachloroethane	ND	-	0.50	-	-	-	-
1,1,2,2-Tetrachloroethane	ND	-	0.50	-	-	-	-
Tetrachloroethene	ND	-	0.50	-	-	-	-
Toluene	ND	17.4	0.50	20	-	86.8	70-130
1,2,3-Trichlorobenzene	ND	-	0.50	-	-	-	-
1,2,4-Trichlorobenzene	ND	-	0.50	-	-	-	-
1,1,1-Trichloroethane	ND	-	0.50	-	-	-	-
1,1,2-Trichloroethane	ND	-	0.50	-	-	-	-
Trichloroethene	ND	17.1	0.50	20	-	85.6	70-130
Trichlorofluoromethane	ND	-	0.50	-	-	-	-
1,2,3-Trichloropropane	ND	-	0.50	-	-	-	-
1,2,4-Trimethylbenzene	ND	-	0.50	-	-	-	-
1,3,5-Trimethylbenzene	ND	-	0.50	-	-	-	-
Vinyl Chloride	ND	-	0.50	-	-	-	-
Xylenes, Total	ND	-	0.50	-	-	-	-
Surrogate Recovery							
Dibromofluoromethane	22.9	22.6		25	91	90	70-130
Toluene-d8	21.5	21.8		25	86	87	70-130
4-BFB	1.95	1.96		2.5	78	78	70-130

QA/QC Officer Page 10 of 17

Client:	P & D Environmental	WorkOrder:	1408149
Date Prepared:	8/8/14	BatchID:	93791
Date Analyzed:	8/7/14	Extraction Method:	SW5030B
Instrument:	GC28	Analytical Method:	SW8260B
Matrix:	Water	Unit:	µg/L
Project:	#0553; Cathedral Gradens 638 21st Street Oakland, ca	Sample ID:	MB/LCS-93791 1408149-001BMS/MSD

QC Summary Report for SW8260B									
Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
tert-Amyl methyl ether (TAME)	20.0	21.4	20	ND	99.9	107	70-130	7.04	20
Benzene	19.2	20.2	20	ND	95.8	101	70-130	5.58	20
t-Butyl alcohol (TBA)	84.8	98.9	80	ND	106	124	70-130	15.3	20
Chlorobenzene	18.8	20.0	20	ND	93.8	100	70-130	6.35	20
1,2-Dibromoethane (EDB)	19.2	20.5	20	ND	96.2	103	70-130	6.32	20
1,2-Dichloroethane (1,2-DCA)	17.3	18.8	20	ND	86.5	94	70-130	8.29	20
1,1-Dichloroethene	18.4	19.7	20	ND	91.8	98.5	70-130	6.98	20
Diisopropyl ether (DIPE)	19.1	20.4	20	ND	95.6	102	70-130	6.20	20
Ethyl tert-butyl ether (ETBE)	19.7	21.2	20	ND	98.3	106	70-130	7.70	20
Methyl-t-butyl ether (MTBE)	19.7	21.4	20	ND	98.4	107	70-130	8.54	20
Toluene	19.1	20.5	20	ND	95.6	102	70-130	7.01	20
Trichloroethene	18.8	20.2	20	ND	93.8	101	70-130	7.08	20
Surrogate Recovery									
Dibromofluoromethane	22.6	22.6	25		90	90	70-130	0	20
Toluene-d8	21.6	21.6	25		86	86	70-130	0	20
4-BFB	1.89	1.93	2.5		76	77	70-130	2.32	20

QA/QC Officer Page 11 of 17

Client:	P & D Environmental	WorkOrder:	1408149
Date Prepared:	8/7/14	BatchID:	93729
Date Analyzed:	8/6/14 - 8/7/14	Extraction Method:	SW5030B
Instrument:	GC3	Analytical Method:	SW8021B/8015Bm
Matrix:	Water	Unit:	µg/L
Project:	#0553; Cathedral Gradens 638 21st Street Oakland, ca	Sample ID:	MB/LCS-93729 1408179-001BMS/MSD

Analyte	MB	LCS		RL	SPK	MB		LCS		CS
	Result	Result			Val	SS	%REC	%REC	L	imits
TPH(btex)	ND	63.1		40	60	-		105	7	70-130
MTBE	ND	11.4		5.0	10	-		114	7	70-130
Benzene	ND	10.1		0.50	10	-		101	7	70-130
Toluene	ND	10.3		0.50	10	-		103	7	70-130
Ethylbenzene	ND	10.4		0.50	10	-		104	7	70-130
Xylenes	ND	31.5		0.50	30	-		105	7	70-130
Surrogate Recovery										
aaa-TFT 2	10.4	9.39			10	103		94	7	70-130
	10.1	0.00								
Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MS		RPD	
Analyte	MS Result	MSD Result	Val	Val	MS %REC	%REC	Limits	;		Limit
Analyte TPH(btex)	MS	MSD Result	Val 60	Val ND	MS	-) 0)	Limi 20
Analyte TPH(btex) MTBE	MS Result 61.0	MSD Result	Val	Val	MS %REC 102	%REC 102	Limits 70-130) 0)	20
_	MS Result 61.0 10.4	MSD Result 61.5 10.4	Val 60 10	Val ND ND	MS %REC 102 104	%REC 102 104	Limits 70-130 70-130) 0) 0) 2)	20 20 20
Analyte TPH(btex) MTBE Benzene Toluene	MS Result 61.0 10.4 9.75	MSD Result 61.5 10.4 9.97	Val 60 10 10	Val ND ND ND	MS %REC 102 104 97.5	%REC 102 104 99.7	Limits 70-130 70-130 70-130) 0) 0) 2) 2)) 2.25	Limit 20 20 20 20
Analyte TPH(btex) MTBE Benzene Toluene Ethylbenzene	MS Result 61.0 10.4 9.75 10.0	MSD Result 61.5 10.4 9.97 10.2	Val 60 10 10 10	Val ND ND ND ND	MS %REC 102 104 97.5 100	%REC 102 104 99.7 102	Limits 70-130 70-130 70-130 70-130) 0) 0) 2) 2) 2) 2.25 2.02	Limit 20 20 20 20 20 20
Analyte TPH(btex) MTBE Benzene	MS Result 61.0 10.4 9.75 10.0 10.1	MSD Result 61.5 10.4 9.97 10.2 10.4	Val 60 10 10 10 10	Val ND ND ND ND ND	MS %REC 102 104 97.5 100 101	%REC 102 104 99.7 102 104	Limits 70-130 70-130 70-130 70-130 70-130) 0) 0) 2) 2) 2) 2.25 2.02 2.84	RPD Limit 200 200 200 200 200 200 200

QA/QC Officer Page 12 of 17

Client:	P & D Environmental	WorkOrder:	1408149
Date Prepared:	8/5/14	BatchID:	93657
Date Analyzed:	8/5/14	Extraction Method:	SW3510C
Instrument:	GC6A	Analytical Method:	SW8015B
Matrix:	Water	Unit:	μg/L
Project:	#0553; Cathedral Gradens 638 21st Street Oakland,	Sample ID:	MB/LCS-93657
	ca		

	QC Sum	mary Report	for SW8015B				
Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
TPH-Diesel (C10-C23)	ND	1060	50	1000	-	106	70-130
Surrogate Recovery							
C9	577	576		625	92	92	70-130

QA/QC Officer Page 13 of 17

McCampbell Analytical, Inc.

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

Pittsburg, CA 94565-1701 (925) 252-9262				WorkO	order: 1408149	Clie	ntCode: PDEO		
	WaterTrax	WriteOn	EDF	Excel	EQuIS	🖌 Email	HardCopy	ThirdParty	J-flag
Report to:				В	ill to:		Req	uested TAT:	5 days
Michael Deschenes	Email:	lab@pdenviro.con	n		Accounts Pay	able			
P & D Environmental	cc/3rd Party:				P & D Environ	mental			
55 Santa Clara, Ste.240	PO:				55 Santa Clar	a, Ste.240	Dat	e Received:	08/05/2014
Oakland, CA 94610 (510) 658-6916 FAX: 510-834-0152		#0553; Cathedral Oakland, ca	Gradens 638	21st Street	Oakland, CA S	94610	Dat	e Printed:	08/12/2014

							Request	ed Tests ((See leg	end bel	ow)			
Lab ID	Client ID	Matrix	Collection Date Ho	d 1	2	3	4 5	6	7	8	9	10	11	12
1408149-001	B16-w	Water	8/4/2014 11:50] B	А	А								
1408149-002	B17-w	Water	8/4/2014 13:10	B	А	А								

Test Legend:

1	8260B_W	
6		
11		

2	G-MBTEX_W	
7		
12		

3	TPH(DMO)_W	
8		

4	
9	

5	
10	

The following SampIDs: 001A, 002A contain testgroup.

Prepared by: Shana Carter

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

WORK ORDER SUMMARY

Client Name Project: Comments:		CONMENTAL Iral Gradens 638 21st	t Street Oaklan	,	QC Level: Li lient Contact: M ntact's Email: la	ichael Deschenes				k Order: Acceived:	
		WaterTrax	WriteOn	EDF	Excel]Fax √ Email	HardC	opy 🗌 ThirdPar	ty 🗌 .	I-flag	
Lab ID	Client ID	Matrix	Test Name		Number of Containers	Bottle & Preservative	De- chlorinated	Collection Date & Time	TAT	Sediment Content	t Hold SubOut
1408149-001A	B16-w	Water	Multi-Range T	'PH(g,d,mo)	3	VOA w/ HCl		8/4/2014 11:50	5 days	Present	
1408149-001B	B16-w	Water	Ethylbenzene,	DCs) <benzene, Methyl-t-butyl ether nthalene, Toluene,</benzene, 	2	VOA w/ HCl		8/4/2014 11:50	5 days	Present	
1408149-002A	B17-w	Water	Multi-Range T	'PH(g,d,mo)	3	VOA w/ HCl		8/4/2014 13:10	5 days	Present	
1408149-002B	B17-w	Water	Ethylbenzene,	DCs) <benzene, Methyl-t-butyl ether nthalene, Toluene,</benzene, 	2	VOA w/ HCl		8/4/2014 13:10	5 days	Present	

* NOTE: STLC and TCLP extractions require 48 hrs to complete; therefore, all TATs begin after the extraction is completed (i.e., 24hr TAT yields results in 72 hrs from sample submission).

Bottle Legend:

VOA w/ HCl = 43mL VOA w/ HCl

X		CHA	IN C	DF C	USTODY	RE	C	OR	D	19	101	510	10	1		PAGE	<u> </u>	F <u>1</u>
P&D	P&D ENVIRONMENTAL, INC. 55 Santa Clara Ave., Suite 240 Oakland, CA 94610 (510) 658-6916								WCULDINE 27.	99	/						28 7	
PROJECT NUMBER: 0553		PH Cli 6	ROJECT a thea 38 Sabl	name: ral 21 sr 5	Gardens treet	NUMBER OF CONTAINERS	A.r.,	Q. M.	FER	By Egg					B	/		
SAMPLED BY: (PRI			. /	ban-	Ducher	BER OF	/	6	UMPHINAL AN			/		PRESERVAN				
SAMPLE NUMBER	DATE	TIME	TYPE	SAI	MPLE LOCATION	MUN	12		Tak			/	/	PRES	/	REMAI	RKS	
BIG-W BIT-W						55	××								Nor	"		
												4						, SK
RELINQUISHED BY: (SIGNAT RELINQUISHED BY: (SIGNAT RELINQUISHED BY: (SIGNAT	URE)	- 8/3	DATE DATE DATE DATE	TIME TIME 700 TIME	RECEIVED BY: (SIG) RECEIVED BY: (SIG) RECEIVED FOR LAB (SIGNATURE)	ORATO	RE) H ORY	1	Tota (This LAE ANC SA AT	MPLE . TACHE	Container nt) ORY C R/C ANALY D:	ONTA ELI (ACT: IS REQU) YE	LABORA (<mark>817</mark> JEST SHI	ATORY PI	HONE NU	JMBER	inc
Results and billing to: P&D Environmental, Inc. lab@pdenviro.com		4 9	st.		REMARKS: ALL	JOA.	s P	PES	ERU	ED I	W CTI	f H	cL					

Sample Receipt Checklist

Client Name:	P & D Environmental				Date and Time Received: 8/5/2014 7:48:16 PM				
Project Name:	#0553; Cathedral G	radens 638 21st Stree	et Oakla	ind, ca		LogIn Revi	iewed by:		Shana Carter
WorkOrder №:	1408149	Matrix: Water				Carrier:	<u>Rob Pringle (M</u>	AI Courier)	
		<u>Cha</u>	in of Cι	ustody (C	OC) Ir	nformation			
Chain of custody	present?		Yes	✓	Ν	lo 🗌			
Chain of custody	signed when relinquis	hed and received?	Yes	✓	Ν	lo 🗌			
Chain of custody	agrees with sample la	abels?	Yes	✓	Ν	lo 🗌			
Sample IDs note	d by Client on COC?		Yes	✓	Ν	lo 🗌			
Date and Time o	f collection noted by C	lient on COC?	Yes	✓	Ν	lo 🗌			
Sampler's name	noted on COC?		Yes	✓	Ν	lo 🗌			
			<u>Sample</u>	Receipt	Inform	nation			
Custody seals in	tact on shipping conta	iner/cooler?	Yes		Ν	lo 🗌		NA 🗹	
Shipping contain	er/cooler in good cond	lition?	Yes	✓	Ν	lo 🗌			
Samples in prope	er containers/bottles?		Yes	✓	Ν	lo 🗌			
Sample containe	rs intact?		Yes	✓	Ν	lo 🗌			
Sufficient sample	e volume for indicated	test?	Yes	✓	Ν	lo 🗌			
		Sample Pres	ervatio	n and Ho	ld Tim	<u>ne (HT) Info</u>	ormation		
All samples rece	ived within holding tim	e?	Yes	✓	Ν	lo 🗌			
Container/Temp	Blank temperature		Coole	er Temp:	1.2°C)		NA 🗌	
Water - VOA vial	s have zero headspac	e / no bubbles?	Yes	✓	Ν	lo 🗌		NA 🗌	
Sample labels ch	necked for correct pres	servation?	Yes	✓	Ν	lo 🗌			
pH acceptable up	pon receipt (Metal: pH	<2; 522: pH<4)?	Yes		Ν	lo 🗌		NA 🗹	
Samples Receive	ed on Ice?		Yes	✓	Ν	lo 🗌			
		(Ісе Тур	e: WE	TICE)					
* NOTE: If the "N	lo" box is checked, se	e comments below.							

Comments:

8/12/2014 Mr. Paul King P & D Environmental 55 Santa Clara Suite 240 Oakland CA 94610

Project Name: Cathedral Gardens 638 21st Street Project #: 0553 Workorder #: 1407517A

Dear Mr. Paul King

The following report includes the data for the above referenced project for sample(s) received on 7/30/2014 at Air Toxics Ltd.

The data and associated QC analyzed by TO-15 are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Air Toxics Ltd. for your air analysis needs. Air Toxics Ltd. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Kyle Vagadori at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Kga Vych

Kyle Vagadori Project Manager

180 Blue Ravine Road, Suite B Folsom, CA 95630

WORK ORDER #: 1407517A

Work Order Summary

CLIENT:	Mr. Paul King P & D Environmental 55 Santa Clara Suite 240 Oakland, CA 94610	BILL TO:	Mr. Paul King P & D Environmental 55 Santa Clara Suite 240 Oakland, CA 94610
PHONE:	510-658-6916	P.O. #	
FAX: DATE RECEIVED: DATE COMPLETED:	510-834-0772 07/30/2014 08/11/2014	PROJECT # CONTACT:	0553 Cathedral Gardens 638 21st Street Kyle Vagadori

			RECEIPT	FINAL
FRACTION #	NAME	<u>TEST</u>	VAC./PRES.	PRESSURE
01A	SG1	TO-15	5.5 "Hg	15 psi
02A	SG1-DUP	TO-15	5.5 "Hg	15 psi
03A	Lab Blank	TO-15	NA	NA
04A	CCV	TO-15	NA	NA
05A	LCS	TO-15	NA	NA
05AA	LCSD	TO-15	NA	NA

CERTIFIED BY:

lay

08/12/14 DATE:

Technical Director

Certification numbers: AZ Licensure AZ0775, NJ NELAP - CA016, NY NELAP - 11291, TX NELAP - T104704434-13-6, UT NELAP CA009332014-5, VA NELAP - 460197, WA NELAP - C935 Name of Accrediting Agency: NELAP/ORELAP (Oregon Environmental Laboratory Accreditation Program) Accreditation number: CA300005, Effective date: 10/18/2013, Expiration date: 10/17/2014. Eurofins Air Toxics Inc.. certifies that the test results contained in this report meet all requirements of the NELAC standards

> This report shall not be reproduced, except in full, without the written approval of Eurofins Air Toxics, Inc. 180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 9563 (916) 985-1000. (800) 985-5955. FAX (916) 985-1020

LABORATORY NARRATIVE EPA Method TO-15 P & D Environmental Workorder# 1407517A

Two 1 Liter Summa Canister samples were received on July 30, 2014. The laboratory performed analysis via EPA Method TO-15 using GC/MS in the full scan mode.

This workorder was independently validated prior to submittal using 'USEPA National Functional Guidelines' as generally applied to the analysis of volatile organic compounds in air. A rules-based, logic driven, independent validation engine was employed to assess completeness, evaluate pass/fail of relevant project quality control requirements and verification of all quantified amounts.

Receiving Notes

There were no receiving discrepancies.

Analytical Notes

Dilution was performed on samples SG1 and SG1-DUP due to the presence of high level target species.

A single point calibration for TPH referenced to Gasoline was performed for each daily analytical batch. Recovery is reported as 100% in the associated results for each CCV.

The reported CCV for each daily batch may be derived from more than one analytical file due to the client's request for non-standard compounds. Non-standard compounds may have different acceptance criteria than the standard TO-14A/TO-15 compound list as per contract or verbal agreement.

Definition of Data Qualifying Flags

Eight qualifiers may have been used on the data analysis sheets and indicates as follows:

B - Compound present in laboratory blank greater than reporting limit (background subtraction not performed).

- J Estimated value.
- E Exceeds instrument calibration range.
- S Saturated peak.
- Q Exceeds quality control limits.

U - Compound analyzed for but not detected above the reporting limit, LOD, or MDL value. See data page for project specific U-flag definition.

UJ- Non-detected compound associated with low bias in the CCV

N - The identification is based on presumptive evidence.

File extensions may have been used on the data analysis sheets and indicates as follows:

a-File was requantified

- b-File was quantified by a second column and detector
- r1-File was requantified for the purpose of reissue

Summary of Detected Compounds EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: SG1

Lab ID#: 1407517A-01A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
1,1-Difluoroethane	9.9	3800 E	27	10000 E
Client Sample ID: SG1-DUP				
Lab ID#: 1407517A-02A				
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
1,1-Difluoroethane	9.9	5100 E	27	14000 E

Client Sample ID: SG1 Lab ID#: 1407517A-01A EPA METHOD TO-15 GC/MS FULL SCAN

٦

File Name: Dil. Factor:	17080110 4.95	Date of Collection: 7/28/14 Date of Analysis: 8/1/14 01:42 PM				
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)		
Methyl tert-butyl ether	2.5	Not Detected	8.9	Not Detected		
Benzene	2.5	Not Detected	7.9	Not Detected		
Toluene	2.5	Not Detected	9.3	Not Detected		
Ethyl Benzene	2.5	Not Detected	11	Not Detected		
m,p-Xylene	2.5	Not Detected	11	Not Detected		
o-Xylene	2.5	Not Detected	11	Not Detected		
TPH ref. to Gasoline (MW=100)	120	Not Detected	510	Not Detected		
1,1-Difluoroethane	9.9	3800 E	27	10000 E		

E = Exceeds instrument calibration range.

Container Type: 1 Liter Summa Canister

		Method
Surrogates	%Recovery	Limits
Toluene-d8	95	70-130
1,2-Dichloroethane-d4	93	70-130
4-Bromofluorobenzene	98	70-130

Client Sample ID: SG1-DUP Lab ID#: 1407517A-02A EPA METHOD TO-15 GC/MS FULL SCAN

٦

File Name: Dil. Factor:	17080111 4.95	Date of Collection: 7/28/14 Date of Analysis: 8/1/14 02:05 PM				
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)		
Methyl tert-butyl ether	2.5	Not Detected	8.9	Not Detected		
Benzene	2.5	Not Detected	7.9	Not Detected		
Toluene	2.5	Not Detected	9.3	Not Detected		
Ethyl Benzene	2.5	Not Detected	11	Not Detected		
m,p-Xylene	2.5	Not Detected	11	Not Detected		
o-Xylene	2.5	Not Detected	11	Not Detected		
TPH ref. to Gasoline (MW=100)	120	Not Detected	510	Not Detected		
1,1-Difluoroethane	9.9	5100 E	27	14000 E		

E = Exceeds instrument calibration range.

Container Type: 1 Liter Summa Canister

		Method
Surrogates	%Recovery	Limits
Toluene-d8	100	70-130
1,2-Dichloroethane-d4	96	70-130
4-Bromofluorobenzene	97	70-130

Client Sample ID: Lab Blank Lab ID#: 1407517A-03A EPA METHOD TO-15 GC/MS FULL SCAN

٦

File Name: Dil. Factor:	17080107a 1.00	Date of Collection: NA Date of Analysis: 8/1/14 12:12 PM				
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)		
Methyl tert-butyl ether	0.50	Not Detected	1.8	Not Detected		
Benzene	0.50	Not Detected	1.6	Not Detected		
Toluene	0.50	Not Detected	1.9	Not Detected		
Ethyl Benzene	0.50	Not Detected	2.2	Not Detected		
m,p-Xylene	0.50	Not Detected	2.2	Not Detected		
o-Xylene	0.50	Not Detected	2.2	Not Detected		
TPH ref. to Gasoline (MW=100)	25	Not Detected	100	Not Detected		
1,1-Difluoroethane	2.0	Not Detected	5.4	Not Detected		

		Method
Surrogates	%Recovery	Limits
Toluene-d8	97	70-130
1,2-Dichloroethane-d4	94	70-130
4-Bromofluorobenzene	100	70-130

Client Sample ID: CCV Lab ID#: 1407517A-04A EPA METHOD TO-15 GC/MS FULL SCAN

٦

File Name: Dil. Factor:	17080102 1.00	Date of Collection: NA Date of Analysis: 8/1/14 09:47 AM
Compound		%Recovery
Methyl tert-butyl ether		94
Benzene		97
Toluene		99
Ethyl Benzene		101
m,p-Xylene		103
o-Xylene		100
TPH ref. to Gasoline (MW=100)		100
1,1-Difluoroethane		102

Container Type. NA Not Applicable		Method
Surrogates	%Recovery	Limits
Toluene-d8	102	70-130
1,2-Dichloroethane-d4	101	70-130
4-Bromofluorobenzene	108	70-130

Client Sample ID: LCS Lab ID#: 1407517A-05A EPA METHOD TO-15 GC/MS FULL SCAN

٦

File Name: Dil. Factor:	17080103 1.00	Date of Collection: NA Date of Analysis: 8/1/14 10:09 A						
Compound		%Recovery	Method Limits					
Methyl tert-butyl ether		92	70-130					
Benzene		93	70-130					
Toluene		94	70-130					
Ethyl Benzene		97	70-130					
m,p-Xylene		97	70-130					
o-Xylene		91	70-130					
TPH ref. to Gasoline (MW=100)		Not Spiked						
1,1-Difluoroethane		Not Spiked						

······		Method		
Surrogates	%Recovery	Limits		
Toluene-d8	103	70-130		
1,2-Dichloroethane-d4	103	70-130		
4-Bromofluorobenzene	108	70-130		

Client Sample ID: LCSD Lab ID#: 1407517A-05AA EPA METHOD TO-15 GC/MS FULL SCAN

٦

File Name: Dil. Factor:	17080104 1.00	Date of Collection: NA Date of Analysis: 8/1/14 10:31 AM						
Compound		%Recovery	Method Limits					
Methyl tert-butyl ether		90	70-130					
Benzene		92	70-130					
Toluene		94	70-130					
Ethyl Benzene		96	70-130					
m,p-Xylene		98	70-130					
o-Xylene		94	70-130					
TPH ref. to Gasoline (MW=100)		Not Spiked						
1,1-Difluoroethane		Not Spiked						

		Method		
Surrogates	%Recovery	Limits		
Toluene-d8	103	70-130		
1,2-Dichloroethane-d4	98	70-130		
4-Bromofluorobenzene	106	70-130		

	<u> </u>	CHA	IN (DF C	CUSTC	DDY I	RE	C	OR	RD_		140	75	17			PAGI	E <u>(</u> OF	(
P&D ENVIRONMENTAL, INC. 55 Santa Clara Ave., Suite 240 Oakland, CA 94610 (510) 658-6916						TIPLE ANALYSISES		A A	37-9 ×	*/	/	/	//	[]					
PROJECT NUMBER: 0553			ROJECT athe 38 Sabl	NAME Chaf 21-51 encl	Hard Sheet	lens f	NUMBER OF CONTAINERS	1 r	Tr. Asisters)	EL THE	A THE LEW								
SAMPLED BY: (PRIN	TED & SI	GNATU	RE)				OF (AN.	1 2	1 al				'	/ /				
Michael BASS: DES	<u>CHENES</u>	-70	Jielu	re B	s Deoce	les	BER	/	A	, to									
SAMPLE NUMBER	DATE	TIME		SA	MPLE LOC	ATION PID(PPM)	NUM	1		₹ 1	/ /			/	PRES	TERNATIVE	REM	ARKS	
014 561	7/28/14	104600	Silas	- 30	-5	0	1	X	X						NONE	NC	RMA	LTAT	
DA SGI-DUP	<u> </u>	104600	1 11	-30		0	1	X	ĻΧ.						٤(1	с i.	
							<u> </u>	<u> </u>					┼──	 					
							+												
								 -											
													<u> </u>						
								<u> </u>	<u> </u>				ļ		ļ				
	·····												 						
															┼┤				
RELINQUISHED BY: (SIGNATU			date 7/30	TIME 9:49	RECEIVED	BY-SKIN	ATUI	RE)	[Tot (TI	l tal No. o tis Shipr al No. o	f Samples nent) f Containe		[}	LABOR			p.	
RELIQUISHED BY: (SIGNATU	JRE)		DATE	TIMÉ	RECEIVED	BY: (SIGN	IATUI	RE)		- 1 CTł	us Shipr	nent)	1.23		LABOR	<u>haas//</u> Atory	PHONE 1	<u>ácc im .</u> NUMBER:	
7/30/14 1/55			1	my FATL Kyle Vage			Vage	AV CONTACT: LABORATORY PHONE NUMBER: GALDAN (GIL) 925-1000×3329											
RELINQUISHED BY: (SIGNATURE) DATE TIME RECE (SIGN			RECEIVED (SIGNATUR				BY:	SA	MPLI TACI	E ANAI	YSIS	REQI) YE	JEST SH	EET) NO					
Results and billing to: P&D Environmental, Inc. lab@pdenviro.com					REMARKS	: 1-	lı	Ľ	1 &	un	lme	Ľ						ntact? H	0

8/12/2014 Mr. Paul King P & D Environmental 55 Santa Clara Suite 240 Oakland CA 94610

Project Name: Cathedral Gardens 638 21st Street Oaklan Project #: 0553 Workorder #: 1407520

Dear Mr. Paul King

The following report includes the data for the above referenced project for sample(s) received on 7/30/2014 at Air Toxics Ltd.

The data and associated QC analyzed by Modified TO-17 VI are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Air Toxics Ltd. for your air analysis needs. Air Toxics Ltd. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Kyle Vagadori at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Kga Vych

Kyle Vagadori Project Manager

180 Blue Ravine Road, Suite B Folsom, CA 95630

WORK ORDER #: 1407520

Work Order Summary

CLIENT:	Mr. Paul King P & D Environmental 55 Santa Clara Suite 240 Oakland, CA 94610	BILL TO:	Mr. Paul King P & D Environmental 55 Santa Clara Suite 240 Oakland, CA 94610
PHONE:	510-658-6916	P.O. #	
FAX:	510-834-0772	PROJECT #	0553 Cathedral Gardens 638 21st Street
DATE RECEIVED:	07/30/2014	CONTACT:	Oaklan Kyle Vagadori
DATE COMPLETED:	08/12/2014	connen	

FRACTION #	NAME	<u>TEST</u>
01A	SG1	Modified TO-17 VI
02A	SG1-REP	Modified TO-17 VI
03A	Lab Blank	Modified TO-17 VI
04A	CCV	Modified TO-17 VI
05A	LCS	Modified TO-17 VI
05AA	LCSD	Modified TO-17 VI

CERTIFIED BY:

Rayes Terde

DATE: <u>08/12/14</u>

Technical Director

Certification numbers: AZ Licensure AZ0775, NJ NELAP - CA016, NY NELAP - 11291, TX NELAP - T104704434-13-6, UT NELAP CA009332014-5, VA NELAP - 460197, WA NELAP - C935 Name of Accrediting Agency: NELAP/ORELAP (Oregon Environmental Laboratory Accreditation Program) Accreditation number: CA300005, Effective date: 10/18/2013, Expiration date: 10/17/2014. Eurofins Air Toxics Inc.. certifies that the test results contained in this report meet all requirements of the NELAC standards

> This report shall not be reproduced, except in full, without the written approval of Eurofins Air Toxics, Inc. 180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 956: (916) 985-1000. (800) 985-5955. FAX (916) 985-1020

🛟 eurofins

LABORATORY NARRATIVE Modified EPA Method TO-17 (VI Tubes) P & D Environmental Workorder# 1407520

Two TO-17 VI Tube samples were received on July 30, 2014. The laboratory performed the analysis via modified EPA Method TO-17 using GC/MS in the full scan mode. TO-17 'VI' sorbent tubes are thermally desorbed onto a secondary trap. The trap is thermally desorbed to elute the components into the GC/MS system for compound separation and detection.

A modification that may be applied to EPA Method TO-17 at the client's discretion is the requirement to transport sorbent tubes at 4 deg C. Laboratory studies demonstrate a high level of stability for VOCs on the TO-17 'VI' tube at room temperature for periods of up to 14 days. Tubes can be shipped to and from the field site at ambient conditions as long as the 14-day sample hold time is upheld. Trip blanks and field surrogate spikes are used as additional control measures to monitor recovery and background contribution during tube transport.

Since the TO-17 VI application significantly extends the scope of target compounds addressed in EPA Method TO-15 and TO-17, the laboratory has implemented several method modifications outlined in the table below. Specific project requirements may over-ride the laboratory modifications.

Requirement	TO-17	ATL Modifications
Initial Calibration	%RSD =30% with 2<br allowed out up to 40%	VOC list: %RSD =30% with 2 allowed out up to 40%<br SVOC list: %RSD =30% with 2 allowed out up to 40%</td
Daily Calibration	%D for each target compound within +/-30%.	Fluorene, Phenanthrene, Anthracene, Fluoranthene, and Pyrene within +/-40%D
Audit Accuracy	70-130%	Second source recovery limits for Fluorene, Phenanthrene, Anthracene, Fluoranthene, and Pyrene = 60-140%.
Distributed Volume Pairs	Collection of distributed volume pairs required for monitoring ambient air to insure high quality.	If site is well-characterized or performance previously verified, single tube sampling may be appropriate. Distributed pairs may be impractical for soil gas collection due to configuration and volume constraints.

Receiving Notes

A Temperature Blank was included with the shipment. Temperature was measured and was not within 4 ± 2 °C. Coolant in the form of blue ice was present. Analysis proceeded.

Analytical Notes

A sampling volume of 0.200 L was used to convert ng to ug/m3 for the associated Lab Blank.

The reported CCV and LCS for each daily batch may be derived from more than one analytical file.

Definition of Data Qualifying Flags

Eight qualifiers may have been used on the data analysis sheets and indicates as follows:

B - Compound present in blank (subtraction not performed).

- J Estimated value.
- E Exceeds instrument calibration range.
- S Saturated peak.
- Q Exceeds quality control limits.

U - Compound analyzed for but not detected above the reporting limit, LOD, or MDL value. See data page for project specific U-flag definition.

UJ- Non-detected compound associated with low bias in the CCV

N - The identification is based on presumptive evidence.

File extensions may have been used on the data analysis sheets and indicates as follows:

a-File was requantified

b-File was quantified by a second column and detector

r1-File was requantified for the purpose of reissue

Summary of Detected Compounds EPA METHOD TO-17

Client Sample ID: SG1 Lab ID#: 1407520-01A No Detections Were Found.

Client Sample ID: SG1-REP Lab ID#: 1407520-02A No Detections Were Found.

Client Sample ID: SG1 Lab ID#: 1407520-01A EPA METHOD TO-17

File Name: Dil. Factor:	18073015 Date of Extraction: NA Date of Collection: 7/2 1.00 Date of Analysis: 7/31/			
Compound	Rɒt. Limit (ng)	Rpt. Limit (ug/m3)	Amount Amo (ng) (ug/i	
2-Propanol	49	240	Not Detected	Not Detected
Naphthalene	0.50	2.5	Not Detected	Not Detected
TPH (Diesel Range C10-C24)	1000	5000	Not Detected	Not Detected

Air Sample Volume(L): 0.200

Container Type: TO-17 VI Tube

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	77	50-150	
Toluene-d8	73	50-150	
Naphthalene-d8	74	50-150	

Client Sample ID: SG1-REP

Lab ID#: 1407520-02A

EPA METHOD TO-17

File Name: Dil. Factor:	18073016 Date of 1.00		te of Collection: 7/28 te of Analysis: 7/31/1	
Compound	Rɒt. Limit (ng)	Rpt. Limit (ug/m3)	Amount (ng)	Amount (ug/m3)
2-Propanol	49	240	Not Detected	Not Detected
Naphthalene	0.50	2.5	Not Detected	Not Detected
TPH (Diesel Range C10-C24)	1000	5000	Not Detected	Not Detected

Air Sample Volume(L): 0.200

Container Type: TO-17 VI Tube

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	94	50-150	
Toluene-d8	90	50-150	
Naphthalene-d8	94	50-150	

Client Sample ID: Lab Blank Lab ID#: 1407520-03A EPA METHOD TO-17

File Name: Dil. Factor:				4 12:42 AM
Compound	Rɒt. Limit (ng)	Rpt. Limit (ug/m3)	Amount Am (ng) (ug	
2-Propanol	49	240	Not Detected	Not Detected
Naphthalene	0.50	2.5	Not Detected	Not Detected
TPH (Diesel Range C10-C24)	1000	5000	Not Detected	Not Detected

Air Sample Volume(L): 0.200 Container Type: NA - Not Applicable

Surrogates	%Recovery	Method Limits
1,2-Dichloroethane-d4	83	50-150
Toluene-d8	80	50-150
Naphthalene-d8	81	50-150

Client Sample ID: CCV Lab ID#: 1407520-04A EPA METHOD TO-17

File Name:	18073007	Date of Extraction: NA Date of Collection: NA
Dil. Factor:	1.00 Date of Analysis: 7/30/14 06:27 PM	
Compound		%Recovery
2-Propanol	90	
Naphthalene		98
TPH (Diesel Range C10-C24)		135

Air Sample Volume(L): 1.00 Container Type: NA - Not Applicable

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	96	50-150	
Toluene-d8	93	50-150	
Naphthalene-d8	99	50-150	

Client Sample ID: LCS Lab ID#: 1407520-05A EPA METHOD TO-17

File Name: Dil. Factor:	18073008 1.00	Date of Extraction: NA Date of Collection: NA Date of Analysis: 7/30/14 07:09 PM	
Compound		%Recovery	Method Limits
2-Propanol		93	70-130
Naphthalene		105	70-130
TPH (Diesel Range C10-C24)		125	60-140
Air Sample Volume(L): 1.00			
Container Type: NA - Not Applicable			
			Method
Surrogates		%Recovery	Limits
1,2-Dichloroethane-d4		102	50-150
Toluene-d8		96	50-150
Naphthalene-d8		100	50-150

Client Sample ID: LCSD Lab ID#: 1407520-05AA EPA METHOD TO-17

File Name: Dil. Factor:	1.00	18073009 Date of Extraction: NA Date of Collection: NA 1.00 Date of Analysis: 7/30/1			
Compound		%Recovery	Method Limits		
2-Propanol		90	70-130		
Naphthalene		101	70-130		
TPH (Diesel Range C10-C24)		Not Spiked	60-140		
Air Sample Volume(L): 1.00					
Container Type: NA - Not Applicat	le				
			Method		
Surrogates		%Recovery	Limits		
1,2-Dichloroethane-d4		98	50-150		
Toluene-d8		94	50-150		
Naphthalene-d8		98	50-150		

×	Ċ	HAI	N C)) (USTODY	RE	CO	RD						PAGE L C	<u>ж (</u>
P&D) ENVII 55 Santa Oa	RON Clara A kland, C 510) 658	MEN Ne., Si A 946 8-6916	10 1110 10	Ļ, INC.					[]	//	//	7	//	
PROJECT NUMBER. 2553		PRO Ce	рласт 12. година 13. година 13. година 13. година 14. година	NANA Art Di St Di St Di Chi	Gendens Suit A	NUMBER OF CONTAINERS	4MACTSHSTER	Can Transfer	7/	[]					
SAMPLED BY: (PRI VichAEL 150-5-DESC	•	INATUR	E)	and the	eoli	SER OF ([]	//	/	PRESERVATION		
SAMPLE NUMBER	DATE	r(M)∕	- 1	SA.	MPLE LOCATION			∛,	[]	/		[]	AFE /		
<u>SGI</u> <u>SGI-REP</u>	<u>7/22/4</u>					<u>(</u>	X						2 15	NORMAL M	
·····	 				···									<u> Assilyables = 500</u>	\$6L
· · · · · · · · · · · · · · · · · · ·							+								
			·												
									_						· · · · · · · · · · · · · · · · · · ·
								┼╾╍╿							
				•• ••											
RELINQUISTED IV SIGNAT	and st.	7	<u> </u>	1.11	RECEIVED IN	Saru	(<u> </u> (1))	1.10	k htt:: No. of ht:: No. of dai No. of Jot Slaipur	Containe	 		HORA NA 644	rons; Tun/ <u>nis Tayles -</u>	
REMNQUISITED BY: (SIGNAT		1	/30	TIME' 1/58				1	ARORA	IORY C	IONTAC		BORAJ	TORY PHONE NUMBER 935 - 1200 x 3	: 222
REF INQUISITED BY: (SIGNAT	(. RF)	: J.	DAD	TIME	RECEIVEDFOR LAE (SIGNAPORE)	ORAT	ORY BY.		ÄMPLE TUACH		YSIS RI (- 94) NO	<u> </u>
Results and hilling to: P&D Eavironmental, the Jabaapdenvers.com					BEMARKS.	Səl	beat.	Lat	¥ ^d sf				C: Y	stody Seal Inta N None Tomp.	st? /
													4 4	6 M C 1 6	

1407520

8/8/2014 Mr. Paul King P & D Environmental 55 Santa Clara Suite 240 Oakland CA 94610

Project Name: Cathedral Gardens 638 21st Street Project #: 0553 Workorder #: 1407514

Dear Mr. Paul King

The following report includes the data for the above referenced project for sample(s) received on 7/30/2014 at Air Toxics Ltd.

The data and associated QC analyzed by Modified TO-15 (5&20 ppbv) are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Air Toxics Ltd. for your air analysis needs. Air Toxics Ltd. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Kyle Vagadori at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Kga Vych

Kyle Vagadori Project Manager

180 Blue Ravine Road, Suite B Folsom, CA 95630

WORK ORDER #: 1407514

Work Order Summary

CLIENT:	Mr. Paul King P & D Environmental 55 Santa Clara Suite 240 Octoberd, CA, 04610	BILL TO:	Mr. Paul King P & D Environmental 55 Santa Clara Suite 240 Oakland CA 04610
PHONE:	Oakland, CA 94610 510-658-6916	P.O. #	Oakland, CA 94610
FAX:	510-834-0772	PROJECT #	0553 Cathedral Gardens 638 21st Street
DATE RECEIVED:	07/30/2014	CONTACT:	Kyle Vagadori
DATE COMPLETED:	08/07/2014	connen	ityle vugutoli

			RECEIPT	FINAL
FRACTION #	NAME	<u>TEST</u>	VAC./PRES.	PRESSURE
01A	SG1 DFA	Modified TO-15 (5&20 ppbv	Tedlar Bag	Tedlar Bag
02A	SG1 2-PROPANOL	Modified TO-15 (5&20 ppbv	Tedlar Bag	Tedlar Bag
03A	Lab Blank	Modified TO-15 (5&20 ppbv	NA	NA
04A	CCV	Modified TO-15 (5&20 ppbv	NA	NA
05A	LCS	Modified TO-15 (5&20 ppbv	NA	NA
05AA	LCSD	Modified TO-15 (5&20 ppbv	NA	NA

CERTIFIED BY:

layes

08/08/14 DATE:

Technical Director

Certification numbers: AZ Licensure AZ0775, NJ NELAP - CA016, NY NELAP - 11291, TX NELAP - T104704434-13-6, UT NELAP CA009332014-5, VA NELAP - 460197, WA NELAP - C935 Name of Accrediting Agency: NELAP/ORELAP (Oregon Environmental Laboratory Accreditation Program) Accreditation number: CA300005, Effective date: 10/18/2013, Expiration date: 10/17/2014. Eurofins Air Toxics Inc.. certifies that the test results contained in this report meet all requirements of the NELAC standards

> This report shall not be reproduced, except in full, without the written approval of Eurofins Air Toxics, Inc. 180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 9563 (916) 985-1000 . (800) 985-5955 . FAX (916) 985-1020

LABORATORY NARRATIVE EPA Method TO-15 Soil Gas P & D Environmental Workorder# 1407514

Two 1 Liter Tedlar Bag samples were received on July 30, 2014. The laboratory performed analysis via EPA Method TO-15 using GC/MS in the full scan mode. The method involves concentrating up to 50 mLs of air. The concentrated aliquot is then flash vaporized and swept through a water management system to remove water vapor. Following dehumidification, the sample passes directly into the GC/MS for analysis.

This workorder was independently validated prior to submittal using 'USEPA National Functional Guidelines' as generally applied to the analysis of volatile organic compounds in air. A rules-based, logic driven, independent validation engine was employed to assess completeness, evaluate pass/fail of relevant project quality control requirements and verification of all quantified amounts.

Receiving Notes

🔅 eurofins

There were no receiving discrepancies.

Analytical Notes

Dilution was performed on samples SG1 DFA and SG1 2-PROPANOL due to the presence of high level target species.

The reported CCV for each daily batch may be derived from more than one analytical file due to the client's request for non-standard compounds. Non-standard compounds may have different acceptance criteria than the standard TO-14A/TO-15 compound list as per contract or verbal agreement.

Method TO-15 is validated for samples collected in specially treated canisters. As such, the use of Tedlar bags for sample collection is outside the scope of the method and not recommended for ambient or indoor air samples. It is the responsibility of the data user to determine the usability of TO-15 results generated from Tedlar bags.

Definition of Data Qualifying Flags

Eight qualifiers may have been used on the data analysis sheets and indicates as follows:

B - Compound present in laboratory blank greater than reporting limit (background subtraction not performed).

- J Estimated value.
- E Exceeds instrument calibration range.
- S Saturated peak.
- Q Exceeds quality control limits.

U - Compound analyzed for but not detected above the reporting limit, LOD, or MDL value. See data page for project specific U-flag definition.

UJ- Non-detected compound associated with low bias in the CCV

N - The identification is based on presumptive evidence.

File extensions may have been used on the data analysis sheets and indicates as follows:

a-File was requantified

b-File was quantified by a second column and detector r1-File was requantified for the purpose of reissue

Summary of Detected Compounds EPA METHOD TO-15 GC/MS

Client Sample ID: SG1 DFA

Lab ID#: 1407514-01A

Compound	Rpt. Limit	Amount	Rpt. Limit	Amount
	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
1,1-Difluoroethane	250000	7600000	680000	2000000

Client Sample ID: SG1 2-PROPANOL

Lab ID#: 1407514-02A

Compound	Rpt. Limit	Amount	Rpt. Limit	Amount	
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)	
2-Propanol	25000	330000	61000	810000	

Client Sample ID: SG1 DFA Lab ID#: 1407514-01A EPA METHOD TO-15 GC/MS

File Name: Dil. Factor:	14073109 12500	Date of Collection: 7/28/14 10:47: Date of Analysis: 7/31/14 07:53 P						
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)				
1,1-Difluoroethane	250000	7600000	680000	20000000				

٦

Container Type: 1 Liter Tedlar Bag

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	113	70-130
Toluene-d8	101	70-130
4-Bromofluorobenzene	90	70-130

Client Sample ID: SG1 2-PROPANOL Lab ID#: 1407514-02A

EPA METHOD TO-15 GC/MS

٦

File Name:	14073110	Date of Collection: 7/28/14 11:00:0		
Dil. Factor:	1250	Date of Analysis: 7/31/14 08:25 PM		
Compound	Rpt. Limit	Amount	Rpt. Limit	Amount
	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
2-Propanol	25000	330000	61000	810000

Container Type: 1 Liter Tedlar Bag

Surrogates	%Recovery	Method Limits
1,2-Dichloroethane-d4	113	70-130
Toluene-d8	101	70-130
4-Bromofluorobenzene	94	70-130

Toluene-d8

4-Bromofluorobenzene

Air Toxics

Client Sample ID: Lab Blank Lab ID#: 1407514-03A EPA METHOD TO-15 GC/MS

٦

70-130

70-130

File Name: Dil. Factor:	14073108a 1.00	Date of Collection: NA Date of Analysis: 7/31/14 07:04 PM				
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)		
2-Propanol	20	Not Detected	49	Not Detected		
1,1-Difluoroethane	20	Not Detected	54	Not Detected		
Container Type: NA - Not Ap	plicable					
				Method		
Surrogates		%Recovery		Limits		
1,2-Dichloroethane-d4		112		70-130		

102

93

Client Sample ID: CCV Lab ID#: 1407514-04A EPA METHOD TO-15 GC/MS

File Name: Dil. Factor:	14073103 1.00	Date of Collection: NA Date of Analysis: 7/31/14 04:31 PM		
Compound		%Recovery		
2-Propanol		115		
1,1-Difluoroethane		108		
Container Type: NA - Not Ap	plicable			
			Method	
Surrogates		%Recovery	Limits	
1,2-Dichloroethane-d4		113	70-130	
Toluene-d8		103	70-130	
4-Bromofluorobenzene		94	70-130	

Client Sample ID: LCS Lab ID#: 1407514-05A EPA METHOD TO-15 GC/MS

٦

File Name: Dil. Factor:	14073104 1.00	Date of Collection: NA Date of Analysis: 7/31/14 04:59 PM		
Compound		%Recovery	Method Limits	
2-Propanol		115	70-130	
1,1-Difluoroethane		Not Spiked		
Container Type: NA - Not Ap	plicable			
			Method	
Surrogates		%Recovery	Limits	
1,2-Dichloroethane-d4		116	70-130	
Toluene-d8		103	70-130	

Client Sample ID: LCSD Lab ID#: 1407514-05AA EPA METHOD TO-15 GC/MS

		0D 10-15 GC/MS			
File Name:	14073105	Date of Collec	lection: NA		
Dil. Factor:	1.00	Date of Analys	Date of Analysis: 7/31/14 05:22 PM		
Compound		%Recovery	Method Limits		
2-Propanol		107	70-130		
1,1-Difluoroethane		Not Spiked			
Container Type: NA - Not A	pplicable				
			Method		
Surrogates		%Recovery	Limits		
1,2-Dichloroethane-d4		115	70-130		
Toluene-d8		102	70-130		
4-Bromofluorobenzene		94	70-130		

	CH	<u>AIN (</u>	DFC	USTODY	RE	C	OR	D	1	407	514		PAGE ·	<u></u>
P&D E	NVIRO 55 Santa Cla Oaklan		NTA uite 24							//				an a
PROJECT NUMBER:		PROJECT Calle 638 Cale	NAME dsal Zf St and	Street CA	L L L NUMBER OF CONTAINERS		PLA BER	Party May					<i>4</i> 0	
SAMPLED BY: (PRINTE Michael BASS- DESC	;		Kan-	Dennh	JER OF (AN /	17	27 / 87 /				PRESERVICE	NULLY	
	DATE TIK	/ ~~~~~	SA	MPLE LOCATION	NUME							PRESI	REMAR	KS
014 SG/ DFA 7 DA SG/2-PROPAUSI	1/28/14 104 /11 11				1	X	X					NEWE	NORMAL TUEL	TAT
				······································									······	
RELINQUISHED BY: (ŞIGNATURE		DATE	TIME	DECTIVED DV. (SIC)		~								
RELINGUISHED BY: (SIGNATURE RELINQUISHED BY: (SIGNATURE	le		TIME 9:49 TIME	RECEIVED BY: (SICK RECEIVED BY: (SICK	2			Total N (This S (This S (This S	to, of Sai hipment lo, of Co hipment	ntainers	Z Z	LABOR	ATORY: <i>Tas / an Ta-</i> ATORY PHONE NU	ds-
RELINQUISHED BY: (SIGNATURE		7/30/ DATE			47 L	·	BV-	Ky	le I	lacar	torí	ILABORA (<u>916</u> UEST SHI) 985-1000;	MBER: <u>x 3339</u>
Results and billing to:	·	Date		(SIGNATURE)					ACHEI		S REQ	es (,	K) NO	the of the
P&D Environmental, Inc. lab@pdenviro.com				REMARKS:	DA	e.	BAĘ	Ś				C Y	ustody Seal I N None Ter	ntaci: 12

8/12/2014 Mr. Paul King P & D Environmental 55 Santa Clara Suite 240 Oakland CA 94610

Project Name: Cathedral Gardens 638 21st Street Project #: 0553 Workorder #: 1407517B

Dear Mr. Paul King

The following report includes the data for the above referenced project for sample(s) received on 7/30/2014 at Air Toxics Ltd.

The data and associated QC analyzed by Modified ASTM D-1946 are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Air Toxics Ltd. for your air analysis needs. Air Toxics Ltd. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Kyle Vagadori at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Kga Vych

Kyle Vagadori Project Manager

180 Blue Ravine Road, Suite B Folsom, CA 95630

WORK ORDER #: 1407517B

Work Order Summary

CLIENT:	Mr. Paul King P & D Environmental 55 Santa Clara Suite 240 Oakland, CA 94610	BILL TO:	Mr. Paul King P & D Environmental 55 Santa Clara Suite 240 Oakland, CA 94610
PHONE:	510-658-6916	P.O. #	
FAX:	510-834-0772	PROJECT #	0553 Cathedral Gardens 638 21st Street
DATE RECEIVED:	07/30/2014	CONTACT:	Kyle Vagadori
DATE COMPLETED:	08/12/2014	continen	ityle v ugudoli

			RECEIPT	FINAL
FRACTION #	NAME	<u>TEST</u>	VAC./PRES.	PRESSURE
01A	SG1	Modified ASTM D-1946	5.5 "Hg	15 psi
02A	SG1-DUP	Modified ASTM D-1946	5.5 "Hg	15 psi
03A	Lab Blank	Modified ASTM D-1946	NA	NA
04A	LCS	Modified ASTM D-1946	NA	NA
04AA	LCSD	Modified ASTM D-1946	NA	NA

CERTIFIED BY:

layes

08/12/14 DATE:

Technical Director

Certification numbers: AZ Licensure AZ0775, NJ NELAP - CA016, NY NELAP - 11291, TX NELAP - T104704434-13-6, UT NELAP CA009332014-5, VA NELAP - 460197, WA NELAP - C935 Name of Accrediting Agency: NELAP/ORELAP (Oregon Environmental Laboratory Accreditation Program) Accreditation number: CA300005, Effective date: 10/18/2013, Expiration date: 10/17/2014. Eurofins Air Toxics Inc.. certifies that the test results contained in this report meet all requirements of the NELAC standards

> This report shall not be reproduced, except in full, without the written approval of Eurofins Air Toxics, Inc. 180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 9563 (916) 985-1000 . (800) 985-5955 . FAX (916) 985-1020

🛟 eurofins

LABORATORY NARRATIVE Modified ASTM D-1946 P & D Environmental Workorder# 1407517B

Two 1 Liter Summa Canister samples were received on July 30, 2014. The laboratory performed analysis via Modified ASTM Method D-1946 for Methane and fixed gases in air using GC/FID or GC/TCD. The method involves direct injection of 1.0 mL of sample.

On the analytical column employed for this analysis, Oxygen coelutes with Argon. The corresponding peak is quantitated as Oxygen.

Method modifications taken to run these samples are summarized in the table below. Specific project requirements may over-ride the ATL modifications.

Requirement	ASTM D-1946	ATL Modifications
Calibration	A single point calibration is performed using a reference standard closely matching the composition of the unknown.	A minimum of 5-point calibration curve is performed. Quantitation is based on average Response Factor.
Reference Standard	The composition of any reference standard must be known to within 0.01 mol % for any component.	The standards used by ATL are blended to a >/= 95% accuracy.
Sample Injection Volume	Components whose concentrations are in excess of 5 % should not be analyzed by using sample volumes greater than 0.5 mL.	The sample container is connected directly to a fixed volume sample loop of 1.0 mL on the GC. Linear range is defined by the calibration curve. Bags are loaded by vacuum.
Normalization	Normalize the mole percent values by multiplying each value by 100 and dividing by the sum of the original values. The sum of the original values should not differ from 100% by more than 1.0%.	Results are not normalized. The sum of the reported values can differ from 100% by as much as 15%, either due to analytical variability or an unusual sample matrix.
Precision	Precision requirements established at each concentration level.	Duplicates should agree within 25% RPD for detections > 5 X's the RL.

Receiving Notes

There were no receiving discrepancies.

Analytical Notes

There were no analytical discrepancies.

Definition of Data Qualifying Flags

Seven qualifiers may have been used on the data analysis sheets and indicate as follows:

- B Compound present in laboratory blank greater than reporting limit.
- J Estimated value.
- E Exceeds instrument calibration range.
- S Saturated peak.
- Q Exceeds quality control limits.
- U Compound analyzed for but not detected above the detection limit.
- M Reported value may be biased due to apparent matrix interferences.

File extensions may have been used on the data analysis sheets and indicates as follows:

a-File was requantified

b-File was quantified by a second column and detector

r1-File was requantified for the purpose of reissue

Summary of Detected Compounds MODIFIED NATURAL GAS ANALYSIS BY ASTM D-1946

Client Sample ID: SG1

Lab ID#: 1407517B-01A

	Rpt. Limit	Amount
Compound	(%)	(%)
Oxygen	0.25	15
Carbon Dioxide	0.025	1.7

Client Sample ID: SG1-DUP

Lab ID#: 1407517B-02A

	Rpt. Limit	Amount
Compound	(%)	(%)
Oxygen	0.25	15
Carbon Dioxide	0.025	1.8

Client Sample ID: SG1 Lab ID#: 1407517B-01A MODIFIED NATURAL GAS ANALYSIS BY ASTM D-1946

File Name: Dil. Factor:	9080116 2.47		ction: 7/28/14 /sis: 8/1/14 04:49 PM
Compound		Rpt. Limit (%)	Amount (%)
Oxygen		0.25	15
Methane		0.00025	Not Detected
Carbon Dioxide		0.025	1.7

Container Type: 1 Liter Summa Canister

Client Sample ID: SG1-DUP Lab ID#: 1407517B-02A MODIFIED NATURAL GAS ANALYSIS BY ASTM D-1946

File Name: Dil. Factor:	9080117 2.47		ction: 7/28/14 /sis: 8/1/14 05:17 PM	
Compound		Rpt. Limit (%)	Amount (%)	
Oxygen		0.25	15	
Methane		0.00025	Not Detected	
Carbon Dioxide		0.025	1.8	

٦

Container Type: 1 Liter Summa Canister

Client Sample ID: Lab Blank Lab ID#: 1407517B-03A MODIFIED NATURAL GAS ANALYSIS BY ASTM D-1946

File Name: Dil. Factor:	9080105 1.00	Date of Colle Date of Analy	ction: NA /sis: 8/1/14 11:04 AM	
Compound		Rpt. Limit (%)	Amount (%)	
Oxygen		0.10	Not Detected	
Methane		0.00010	Not Detected	
Carbon Dioxide		0.010	Not Detected	

٦

Container Type: NA - Not Applicable

Client Sample ID: LCS Lab ID#: 1407517B-04A MODIFIED NATURAL GAS ANALYSIS BY ASTM D-1946

File Name: Dil. Factor:	9080102 1.00	Date of Collection: NA Date of Analysis: 8/1/14 09:17 AM		
Compound	und %Recovery		Method Limits	
Oxygen		100	85-115	
Methane		95	85-115	
Carbon Dioxide		101	85-115	

٦

Container Type: NA - Not Applicable

Client Sample ID: LCSD Lab ID#: 1407517B-04AA MODIFIED NATURAL GAS ANALYSIS BY ASTM D-1946

File Name: Dil. Factor: Compound	9080120 1.00	Date of Collection: NA Date of Analysis: 8/1/14 07:02 PM					
		%Recovery					
Oxygen		99	85-115				
Methane		94	85-115				
Carbon Dioxide		100	85-115				

٦

Container Type: NA - Not Applicable

	. (CHA	IN (OF C	CUSTODY	RE	\mathbf{C}	OR	D	-	140	75	17			PAGE _	OF(
P&D	ENVI 55 Santa Oa	RON a Clara ikland, (510) 63	ME Ave., S CA 946 58-6910	NTA 500 510 510 510 510 510 510 510 510 510	L, INC.					T-T-T	[]	/		//			Kelinkkon kurkelin kanadara
PROJECT NUMBER: 0553		PI Co Co Co	ROJECT attu 38 Jabl	r NAME dhaf 21-st and	Handens street	NUMBER OF CONTAINERS		RE D SISTES	P. C. M. P. D. S.	TATIN PLAN						1	
SAMPLED BY: (PRIN <i>Michael Bass: Des</i> Sample number			Jielu	sA	MPLE LOCATION	NUMBER OF (AN	1 1	A STATION	//				PRESHIE	ALLAN	REMARK	XS
DIA SGI	7/28/14	104600 105856	Sila	1001 TE	-5 0				/		-	4		{	NOR	MAL	- A 77
MA SGI-DUP	100111	104600	1	-30	-5 0		K	Ń						NONE 11			TAT
		<u> </u>					<u> </u>										
	·				······												<u></u>
		[ļ										
							ļ				_						
							<u> </u>										······
	-]					
**************************************			1000 A 101 A 101 A 101				-	<u> </u>						 	*****		
	·						<u> </u>						- 1				
	· · ·						-										
RELINQUISHED BY: (SIGNATU	JRE)		DATE 7/20	TIME 9-49	RECEIVED BY	ONATU	RE)	<u></u>	10 10 11 11	tal No. of his Shipm	Samples ent)	a	¢		ATORY:	e	
Michael Abus - Deselver 7/30 9:49 REL/AQUISHED BY: (SIGNATURE) DATE TIME 7/3D/14 1/55 RELINQUISHED BY: (SIGNATURE) DATE TIME							Total No. of Containers (This Shipment) LABORATORY CONTACT: LA					ATORY PH	ATOMICS	<u>CLM -</u>			
		RECEIVED FOR LABORATORY BY:					Kyle Vagadari (916) SAMPLE ANALYSIS REQUEST SHEET ATTACHED: ()YES ()										
													<u></u>				
Results and billing to: P&D Environmental, Inc. lab@pdenviro.com					REMARKS:	i - b	t	1 &	. I			· · · · · ·	,	Cu	stody S		ict? HW