475 Lesser Street, LLC

RECEIVED

By Alameda County Environmental Health at 3:55 pm, Jun 23, 2014

June 11, 2014

Mr. Jerry Wickham Alameda County Department of Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502

SUBJECT:

SUBSURFACE INVESTIGATION REPORT CERTIFICATION

County Case # RO 3135 Lesser Commercial Property

475 Lesser Street Oakland, CA

Dear Mr. Wickham:

You will find enclosed one copy of the following document prepared by P&D Environmental, Inc. for the subject site.

Subsurface Investigation Report dated June 11, 2014 (document 0675.R2).

I declare, under penalty of perjury, that the information and/or recommendations contained in the above-mentioned work plan for the subject site is true and correct to the best of my knowledge.

Please don't hesitate to call me if you have any questions.

Sincerely,

Daniel Rabin

475 Lesser Street, LLC.

0675.L2

P&D ENVIRONMENTAL, INC.

55 Santa Clara Avenue, Suite 240 Oakland, CA 94610 (510) 658-6916

June 11, 2014 Report 0675.R2

Ms. Kendra Marshall 475 Lesser Street, LLC 731 Sansome Street, 2nd Floor San Francisco, CA 94111

SUBJECT: SUBSURFACE INVESTIGATION REPORT

(B1A, B5 THROUGH B8, AND SG1 THROUGH SG3)

Lesser Street Commercial Property

475 Lesser Street Oakland, California

Dear Ms. Marshall:

P&D Environmental, Inc. (P&D) has prepared this report documenting the drilling of five boreholes designated as B1A, and B5 through B8 for collection of soil and groundwater samples, and installation and sampling of three soil gas wells designated as SG1 through SG3 at and near the subject site. Field activities were performed to further investigate the presence and extent of petroleum hydrocarbons in soil, groundwater, and soil gas at and near the subject site associated with a historically closed in-place diesel Underground Storage Tank (UST). Field activities for the drilling and sampling of boreholes B1A and B5 through B8 were performed on May 15, 2014; the soil gas wells were installed on May 16, 2014; and the soil gas wells were sampled on May 19, 2014. This work was performed in accordance with P&D's Subsurface Investigation Work Plan (document 0675.W1) dated May 7, 2014 which was approved in a letter from the Alameda County Department of Environmental Health (ACDEH) dated May 8, 2014.

A Site Location Map (Figure 1) and a Site Vicinity Aerial Photograph showing sample collection locations with Total Petroleum Hydrocarbons as Diesel (TPH-D) groundwater grab sample concentrations at and near the subject site (Figure 2) are attached with this report. All work was performed under the direct supervision of a California professional geologist.

BACKGROUND

Based on review of an AllWest Environmental, Inc. (AllWest) September 28, 2012 Environmental Site Assessment report, the subject site is a rectangular 20,000 square foot parcel developed with four 1-story slab-on-grade light industrial buildings, with the remaining portion of the property covered with a concrete-paved driveway and outdoor service area. The two buildings located closest to Lesser Street were constructed in 1967 and 1969 and were used for food product processing. The two buildings located farthest

from the Lesser Street were constructed in 1981 and 1983 and were used for food storage. The land was identified in the report as being undeveloped land from 1887 until construction of a Federal Housing Authority apartment complex throughout the area in the early-1940's. The apartment complex was demolished in 1965. The property was occupied from 1967 through 2011 by Tip Top Foods, Inc. for production of dairy-based and other food products. An unscaled site plan showing the different building locations obtained from the AllWest report is attached as Figure 3.

A detailed discussion of the findings of the September 28, 2012 AllWest Environmental Site Assessment, and an April 3, 2014 Phase I Environmental Site Assessment prepared by Basics Environmental, Inc. (Basics) is presented in P&D's May 7, 2014 Subsurface Investigation Work Plan (document 0675.W1). Based on the identification of a closed inplace 8,000-gallon diesel fuel UST, P&D oversaw the drilling of boreholes B1 through B4 on March 26, 2014 for collection of soil and groundwater grab samples. Based on the detected presence of petroleum hydrocarbons in groundwater samples, P&D recommended that a copy of the subsurface investigation report be provided to local regulatory agencies for review. Documentation of the subsurface investigation is provided in P&D's April 3, 2014 Subsurface Investigation Report (document 0675.R1).

FIELD ACTIVITIES

Prior to performing field activities, permits W2014-0484 and W2014-0485 were obtained from the Alameda County Public Works Agency (ACPWA), drilling locations were marked with white paint, Underground Service Alert was notified for underground utility location, a health and safety plan was prepared, permission was obtained for access to the property located at the nearby Tez Marble Facility to drill offsite borehole B8, and site access was arranged with the subject site property owner. Notification of the drilling dates was also provided to the ACPWA and the ACDEH.

Soil Coring and Sample Collection

On May 15, 2014, P&D personnel oversaw drilling at locations B1A and B5 through B8 shown on Figure 2 for the collection of soil and groundwater samples at and near the subject site. All drilling was performed by Vironex, Inc. of Concord, California (Vironex) by continuously coring using Geoprobe direct push technology to drive a 2.0-inch outside diameter Geoprobe macrocore barrel sampler lined with transparent PVC sleeves. Borehole B1A was continuously cored to a depth of 8.0 feet below the ground surface (bgs), and boreholes B5 through B8 were continuously cored to a total depth of 10.0 feet bgs.

The soil from each of the boreholes was logged in the field in accordance with standard geologic field techniques and the Unified Soil Classification System. All soil from the boreholes was evaluated with a Photoionization Detector (PID) equipped with a 10.6 eV bulb and calibrated using a 100 ppm isobutylene standard. No elevated PID values were measured and no odors, staining, or discoloration were observed in the soil from any of the boreholes. Field observations of the soil cores for each borehole related to lithology,

discoloration, moisture, density, odor and PID readings were recorded on boring logs that are attached with this report as Appendix A.

The subsurface materials encountered in boreholes B1A and B5 through B8 consisted predominantly of fill material from the depths of 0.5 to 4.0 feet bgs, and clay, sandy clay, and silty clay, with coarse-grained material encountered in the boreholes as follows.

- B1A: clayey sand between the depths of 4.5 to 5.5 feet bgs.
- B5: fine sand between the depths of 3.5 and 4.0 feet bgs, and gravelly clayey sand between the depths of 5.0 and 10.0 feet bgs.
- B6: fine sand between the depths of 3.5 and 6.5 feet bgs.
- B7: well graded sand between the depths of 4.0 and 5.0 feet bgs, and gravelly silty sand between the depths of 6.5 and 8.5 feet bgs.
- B8: well graded sand between the depths of 5.5 and 6.5 feet bgs.

Groundwater was encountered during drilling in borehole B1A at a depth of 6.0 feet bgs, in boreholes B5 and B8 at a depth of 5.5 feet bgs, and in boreholes B6 and B7 at a depth of 4.5 feet bgs.

Soil samples were collected at the 3-foot and 5.5-foot depths from borehole B1A for laboratory analysis in the following manner. A 6-inch long 2-inch diameter section of transparent PVC tube soil core was cut from the continuous core at the designated depths. The ends of the tube were evaluated with the PID, and then sequentially covered with aluminum foil and plastic endcaps. The sample was then labeled and placed into a cooler with ice pending delivery to the laboratory. Chain of custody procedures were observed for all sample handling.

One groundwater grab sample was collected from each of boreholes B5, B6, B7, and B8 by placing a temporary 1-inch diameter slotted PVC pipe into the borehole, inserting a polypropylene tube into the PVC pipe, and using a peristaltic pump to withdraw water from the temporary pipe. Prior to groundwater sample collection, approximately 0.3-gallons of water was purged from each borehole. The groundwater samples were pumped directly into 40-milliliter VOAs that were supplied by the laboratory and contained hydrochloric acid preservative. The sample bottles were labeled and placed in a cooler with ice pending delivery to the laboratory. Chain of custody procedures were observed for all sample handling. No odor or sheen were detected or observed for any of the groundwater grab samples. The measured depth to groundwater in boreholes B5 through B8 after drilling and before groundwater sample collection was 1.9, 3.7, 2.9 and 2.8 feet bgs, respectively.

Following collection of the borehole groundwater grab samples, the boreholes were filled with neat cement grout using the temporary PVC casing as a tremie pipe. Inspector Steve Miller of the ACPWA was present at the site to observe grouting of boreholes B5, B6, and B7, and gave verbal authorization to grout boreholes B1A and B8.

Soil Gas Well Construction and Sample Collection

On May 16, 2014 permanent soil gas wells were constructed at locations SG1 through SG3 (see Figure 2) to evaluate the presence of petroleum soil vapor concentrations and oxygen in the suspected vicinity of the former diesel UST. On May 19, 2014 the soil gas samples were collected in accordance with procedures recommended in the December 2013 San Francisco Bay Regional Water Quality Control Board User's Guide: Derivation and Application of Environmental Screening Levels, and the following Department of Toxic Substances Control (DTSC) documents:

- March 2013 FAQ for the 2012 Advisory,
- April 2012 Advisory Active Soil Gas Investigations,
- October 2011 Vapor Intrusion Guidance,
- October 2011 Vapor Intrusion Mitigation Advisory.

The soil gas wells were constructed by Vironex by driving a hollow 1-inch diameter Geoprobe steel rod with an expendable tip with a slide hammer to a depth of 3.0 feet bgs. The depth of 3.0 feet bgs was selected based on the depth to groundwater encountered in the boreholes at and near the site. The expendable tip was then dislodged and the lowermost 6 inches of the borehole was filled with #2/16 Lonestar sack sand as the steel rod was withdrawn from the ground. A 0.250-inch outside diameter (0.187-inch inside diameter) polyethylene tube with a HDPE filter at the bottom of the tube was inserted to the top of the sand (a depth of 6 inches above the bottom of the borehole), and additional #2/16 Lonestar sack sand was added to the annular space between the hollow rod and the polyethylene tube to one foot above the bottom of the borehole (the lowermost one foot of the borehole was filled with sand with the filter at the end of the tube in the middle of the sand interval).

Granular bentonite (measuring approximately 1 to 2 millimeters in diameter) was placed in the annular space above the sand to 6 inches above the sand, and the remaining borehole was filled with hydrated bentonite slurry as the steel rod was withdrawn from the ground. The tubing length was 4.5 feet for all three boreholes. The top of each soil gas well was enclosed in a well box with a lid that was secured with bolts. At the time of soil gas well construction a strong petroleum hydrocarbon diesel odor was detected on the drilling rod at location SG3. No odors were detected at soil gas wells SG1 and SG2.

Following construction, the soil gas wells were not sampled for a minimum of 48 hours. A soil gas sampling manifold with a 1-liter Summa canister as the sampling canister for each location (see Figure 4) was assembled in a shroud consisting of a 35-gallon Rubbermaid bin that had been modified by cutting viewing ports into the sides of the shroud and covering the viewing ports with transparent polycarbonate sheets. A hole measuring approximately two inches square in the bottom of the shroud allowed the shroud to cover the soil gas well while still allowing access to the temporary well through the bottom of the bin. At the time that the sampling manifold was assembled, the vacuum for the sample canister was verified with a vacuum gauge and recorded.

Prior to sampling the soil gas, a 10 minute shut-in test of the sampling manifold was performed by closing the valve located between the filter and the pressure gauge, opening the purge canister valve, and recording the manifold system vacuum (see Figure 4). No purge testing for purge volume determination was performed because the samples were collected using Summa canisters. Following successful verification of the manifold shut-in test, a default of three purge volumes was extracted prior to sample collection. The purge volume was calculated based on the void space surrounding the HDPE filter and the volume of the tube. The purge time was calculated using a nominal flow rate provided by the flow controller of 150 cubic centimeters per minute.

Following completion of the purging of three volumes, a lid was placed onto the shroud and a tracer gas 1,1-Difluoroethane (DFA) was sprayed into the shroud interior for one second through a tube connected to a hole in the side of the shroud. DFA was used as the tracer gas for EPA Method TO-15 sample analysis. Gloves in the lid of the shroud were used to open the sample canister valve. After verifying that low flow conditions were not present associated with the soil gas sample, an air sample was collected from the shroud atmosphere to quantify the shroud tracer gas concentration while the soil gas sample was being collected. The shroud atmosphere sample was collected into a Tedlar bag that was placed into a vacuum chamber with the Tedlar bag inlet connected to a new piece of Teflon or polyethylene tubing that was inserted into the shroud atmosphere through a hole in the side of the shroud. Groundwater was pulled into the sample tubing at soil gas wells SG1 and SG2.

Once the vacuum for the sample canister valve had decreased to 5 inches of mercury, the gloves in the lid of the bin were used to close the sample canister valve. The pressure gage on the inlet side of the flow controller (see Figure 4) was monitored during sample collection to ensure that the vacuum applied to the soil gas well did not exceed 100 inches of water. The manifold vacuum gage was determined to be defective during Summa canister sample collection and was replaced for soil gas collection. Although the Soil Gas Sampling Field Data Sheet identifies the SG3 manifold gage as defective, data provided in subsequent rows shows conditions observed during SG3 soil gas sample collection following replacement of the defective manifold.

One duplicate soil gas sample was collected into a 1-liter Summa canister at location SG3 using a stainless steel sampling tee for the Summa canisters, using methods described above. Following soil gas sample collection, a PID was connected to the Teflon tubing to obtain a preliminary field value for the sample collection location. A strong petroleum hydrocarbon diesel odor and a PID value of 175 ppm were detected at location SG3. The soil gas Summa canister samples were stored in a box and promptly shipped to the laboratory for extraction and analysis. Similarly, the shroud atmosphere Tedlar bag sample was stored in a cooler with the lid closed pending delivery to the laboratory. Chain of custody procedures were observed for all sample handling.

In addition to collection of Summa canister samples as described above, a sorbent tube sample was collected at location SG3 as follows. The manifold was equipped with a tee located downstream from the flow controller. At the time that the manifold was assembled

(prior to the shut-in test) a sorbent tube was connected inside the shroud to the tee that was located downstream from the flow controller, with a valve located between the sorbent tube and the tee. The downstream side of the sorbent tube was connected with a polyethylene tube to a flow meter and a vacuum pump. In addition, a dish containing 2-Propanol was placed in the shroud and used as the tracer gas for EPA Method TO-17 sample analysis.

Following Summa canister sample collection, the valve between the manifold and the sorbent tube was opened. A vacuum pump was used to apply a vacuum to the sorbent tube and a flow meter was used to measure the soil gas flow rate at a nominal flow rate of 150 cubic centimeters per minute for collection of a 200 cubic centimeter sample. In addition to collection of one sample at each soil gas well location, a total of one replicate sample was collected. Following collection of the sorbent tube soil gas sample the ends of the sorbent tube were sealed. Following collection of the sorbent tube sample, a replicate sorbent tube sample identified as SG3-REP was also collected at location SG3 using methods as described above. Before and after connection of the sorbent tube to the manifold each sorbent tube was stored in a cooler with ice. Chain of custody procedures were observed for all sample handling.

Measurements of vacuums, purging and equilibration time intervals, and PID readings were recorded on Soil Gas Sampling Data Sheets. New Teflon tubing and filters were used at each sample collection location. Clean, unused vacuum gages and stainless steel sampling manifolds were used at each sample collection location. All soil and water generated during soil gas well construction were stored in 55-gallon drums at the site and labeled pending characterization and proper disposal. Copies of the purge volume calculation sheet and the Soil Gas Sampling Data Sheets are attached with this report as Appendix B.

GEOLOGY AND HYDROGEOLOGY

Based on review of regional geologic maps from U. S. Geological Survey Professional Paper 943, "Flatland Deposits - Their Geology and Engineering Properties and Their Importance to Comprehensive Planning," by E. J. Helley and K. R. Lajoie, 1979, the subject site is underlain by Holocene Deposits, Bay mud (Qhbm), which is described as unconsolidated water-saturated dark plastic carbonaceous clay and silty clay. It may contain a few lenses of well-sorted fine sand and silt and a few shelly and peaty layers.

Review of the Geologic map and map database of the Oakland metropolitan area, Alameda, Contra Costa, and San Francisco Counties, California: A Digital Database that was compiled by R.W. Graymer (U. S. Geological Survey Miscellaneous Field Studies, MF-2342, Version 1.0 in 2000), shows the subject site as being underlain by artificial fill (af) which is described as consisting of Man-made deposits of various materials and ages. The materials are further described as some being compacted and quite firm, but fills made before 1965 are nearly everywhere not compacted and consist simply of dumped materials.

Based on the materials encountered in the borehole cores at drilling locations B1 through B4 to depths of 8.0 and 10.0 feet bgs the subsurface materials encountered at the site consisted of gravelly sand and gravelly clayey sand fill to a depth of 2.0 to 4.5 feet bgs, beneath which variable amounts of clay, silty sand, and sand were encountered. The maximum sand layer thickness encountered was 2.5 feet. Groundwater was encountered during drilling in borehole B1 at a depth of 6.5 feet bgs, and at a depth of 6.0 feet bgs in the remaining boreholes, and was subsequently measured in boreholes B1, B2, B3, and B4 at 2.8, 2.9, 3.2, and 4.0 feet bgs, respectively.

Based on the materials encountered in the borehole cores at drilling locations B1A and B5 through B8 to depths of 8.0 and 10.0 feet bgs the subsurface materials encountered consisted of gravelly clayey sand and gravelly silty sand fill to a depth of 3.5 to 4.5 feet bgs, beneath which variable amounts of clay, silt, clayey sand, silty sand, and fine sand were encountered. The maximum known coarse-grained layer thickness encountered was 3.0 feet at borehole B6. Although 5.0 feet of clayey sand is identified in borehole B5 between the depths of 5.0 and 10.0 feet bgs, there was no recovery in the sampler for this interval and the material identified for this interval is speculated based on material retrieved from the shoe do the drilling tools.

Groundwater was encountered during drilling in borehole B1A at a depth of 6.0 feet bgs, in boreholes B5 and B8 at a depth of 5.5 feet bgs, and in boreholes B6 and B7 at a depth of 4.5 feet bgs. The measured depth to groundwater in boreholes B5 through B8 after drilling and before groundwater sample collection was 1.9, 3.7, 2.9 and 2.8 feet bgs, respectively.

The nearest surface water body to the subject site is a tidal canal located approximately 1,450 feet to the south of the site that is connected to the San Leandro Bay estuary, and San Leandro Bay which is located approximately 1,450 feet to the south. An underground culvert or storm drain portion of Peralta Creek is approximately 630 feet west of the subject site and runs north-south along Coliseum Way. The groundwater flow direction at the site is unknown, but a presumed range of flow directions from westerly to southerly towards these nearby surface water bodies is shown on Figure 2. It is unknown if groundwater levels at the site are tidally influenced. Additionally, the conductivity of the water at the site is presently unknown.

WEATHER INFORMATION

No precipitation occurred during the week prior to the soil gas sampling event, and no precipitation occurred on the day of soil gas sampling (May 19, 2014). Weather data, including precipitation and barometric pressure for the two weeks preceding the sampling event, the day of sampling, and for the two weeks following the sampling event are provided with this report as Appendix C. The weather station used for this weather information is located at the intersection of Fernside Boulevard and High Street in Alameda at an elevation of 16 feet above mean sea level, approximately 0.4 miles to the west-southwest of the subject site. The subject site is located at an elevation of approximately 12 feet above mean sea level. An internet link to the weather station information is provided with this report in Appendix C.

LABORATORY ANALYSIS

All of the soil and groundwater samples were analyzed at McCampbell Analytical, Inc. (McCampbell) in Pittsburg, California. McCampbell is a State-accredited hazardous waste testing laboratory. The soil samples were analyzed for Total Petroleum Hydrocarbons as Gasoline (TPH-G), using EPA Method 5030B in conjunction with EPA Method 8021B and modified EPA Method 8015B, for TPH-D and Total Petroleum Hydrocarbons as Motor Oil (TPH-MO) by EPA Method 3550B in conjunction with EPA Method 8015B: for Methyltert Butyl Ether (MTBE), benzene, toluene, ethylbenzene, and total xylenes (BTEX) using EPA Method 5030B in conjunction with EPA Method 8260B, and for Semi-Volatile Organic Compounds (SVOCs) using EPA Method 3550B in conjunction with EPA Method 8270C. All of the borehole groundwater grab samples were analyzed for TPH-G using EPA Method 5030B in conjunction with EPA Method 8021B and/or modified EPA Method 8015B, for TPH-D and TPH-MO using EPA Method 3510C in conjunction with EPA Method 8015B, for MTBE and BTEX using EPA Method 8260B, and for Volatile Organic Compounds (VOCs) including MBTEX using EPA Method 5030B in conjunction with EPA Method 8260B.

The Summa canister and sorbent tube soil gas samples were analyzed at Air Toxics Limited of Folsom California (Air Toxics). The samples were analyzed for TPH-G, MTBE, BTEX, and DFA (the tracer gas) using EPA Method TO-15, and for oxygen, methane and carbon dioxide using method ASTM D-1946. The samples collected using sorbent tubes were analyzed for naphthalene and 2-Propanol (the tracer gas) using EPA Method TO-17. The analyses were performed with detection limits that equal or are less than San Francisco Bay Regional Water Quality Control Board (RWQCB) December 2013 Table E-2 soil gas commercial/industrial Environmental Screening Levels (ESLs).

All of the Tedlar bags were analyzed at Air Toxics using EPA Method TO-15 for the tracer gas DFA for shroud air samples that were collected during Summa canister sample collection for TO-15 analysis, and for the tracer gas 2-Propanol for shroud atmosphere samples that were collected during sorbent tube sample collection for TO-17 analysis.

The laboratory analytical results for the borehole soil samples are summarized in Table 1, the laboratory analytical results for the borehole groundwater grab samples are summarized in Table 2, and the soil gas sample results are summarized in Tables 3A through 3C. Copies of the laboratory analytical reports are attached with this report as Appendix D.

DISCUSSION AND RECOMMENDATIONS

Based on the shallow depth to groundwater at the site, the soil gas wells were each constructed to a depth of 3.0 feet bgs. During soil gas sample collection groundwater was drawn into the tubing for soil gas wells SG1 and SG2, resulting in no sample collection at these locations. Based on petroleum hydrocarbon diesel odors and elevated PID readings at soil gas well SG3 at the time of well construction and at the time of soil

gas sample collection, soil gas well SG3 appears to be located in the immediate vicinity of the former UST.

Review of Table 1 shows that MBTEX and SVOCs were not detected in either of the soil samples collected from borehole B1A, that TPH-D was detected in soil sample B1A-3.0 and B1A-5.5 at concentrations of 1.2 and 7.5 mg/kg, respectively, and that TPH-MO was detected at concentrations of 17 and 78 mg/kg, respectively. Review of the laboratory analytical report shows that the laboratory described the TPH-D results for soil samples B1A-3.0 and B1A-5.5 as consisting of both oil-range compounds and diesel-range compounds with no recognizable pattern. Comparison of the soil sample results with their respective RWQCB December 2013 Table A-1 residential and Table A-2 commercial/industrial ESL values shows that none of the detected compounds exceed their respective ESL values. Similarly, no compounds were detected in soil for evaluation using the State Water Resources Control Board (SWRCB) 2012 Low Threat Closure Policy (LTCP) Table 1 criteria for concentrations of petroleum constituents in soil that will have no significant risk of adversely affecting human health for residential and utility worker exposure scenarios.

Review of Table 2 shows that TPH-G, MTBE and BTEX compounds were not detected in any of the borehole groundwater grab samples, and that TPH-D, and TPH-MO were not detected in the groundwater samples collected from boreholes B5, B6, and B7. TPH-D and TPH-MO were detected in groundwater grab sample B8-W at concentrations of 290, and 4,600 µg/L, respectively. The only other analytes detected in any of the groundwater grab samples were chloroform in sample B5-W at a concentration of 7.9 ug/L, and carbon disulfide in sample B6-W at a concentration of 2.0 ug/L. Review of the laboratory analytical report shows that the laboratory described the TPH-D and TPH-MO results for groundwater sample B8-W as consisting of both oil-range compounds and diesel-range compounds with no recognizable pattern. Based on the presumed southwesterly to easterly groundwater flow direction, borehole B8 is assumed to be located upgradient of the subject site, and the downgradient extent of petroleum hydrocarbons in groundwater is defined. Based on the absence of BTEX in the B8 groundwater grab sample, the TPH-D and TPH-MO detected in B8 do not appear to be related to the source of the TPH-D and BTEX detected in borehole B3 at the subject site. Based on the absence of petroleum hydrocarbons in presumed downgradient boreholes B5, B6, and B7 the petroleum hydrocarbons in groundwater at the subject site has been defined, and no further investigation of the extent of petroleum in groundwater is recommended.

Comparison of the groundwater grab sample results with their respective RWQCB December 2013 Table F-1a groundwater ESL values shows that all of the detected petroleum concentrations exceed their respective ESL values with the exception of TPH-D at B1 and toluene and ethylbenzene at B3. Comparison of the groundwater grab sample results with their respective RWQCB December 2013 Table E-1 groundwater screening levels for evaluation of potential vapor intrusion for a fine-coarse mix for residential land use shows that none of the detected compounds exceed their respective ESL values.

Review of Tables 3A and 3B shows that none of the tracer gases were detected at concentrations exceeding 5 percent of the shroud vapor concentrations, indicating that the samples were valid. Review of Table 3A also shows that MTBE, ethylbenzene, o-xylenes, and naphthalene were not detected in soil gas sample SG3 or field duplicate SG3-DUP or field replicate SG3-REP. TPH-G was detected in SG3 and SG3-DUP at concentrations of 3,600,000 and 3,500,000 micrograms per cubic meter (ug/m³), respectively, and benzene was detected at a concentration of 1,200 ug/m³ in both the sample and the duplicate. Review of Table 3C shows that oxygen was detected in sample SG3 and SG3-DUP at concentrations of 2.1 and 2.6 percent, respectively.

Comparison of the groundwater grab sample results with their respective RWQCB December 2013 Table F-1a groundwater ESL values shows that all of the detected petroleum concentrations exceed their respective ESL values with the exception of TPH-D at B1 and toluene and ethylbenzene at B3. Comparison of the groundwater grab sample results with their respective RWQCB December 2013 Table E-1 groundwater screening levels for evaluation of potential vapor intrusion for a fine-coarse mix for residential land use shows that none of the detected compounds exceed their respective ESL values.

Comparison of the soil sample results with their respective RWQCB December 2013 Table E-2 residential and Table E-2 commercial/industrial ESL soil gas screening levels for evaluation of potential vapor intrusion shows that TPH-G and benzene were detected in each of SG3 and SG3-DUP at concentrations exceeding their respective residential and commercial/industrial ESL values. Similarly, benzene was detected in SG3 and SG3-DUP at concentrations exceeding the SWRCB LTCP no bioattenuation zone soil gas residential and the commercial exposure levels.

Based on the detected TPH-D, benzene and total xylenes groundwater concentrations and the TPH-G and benzene soil gas concentrations, P&D recommends that a copy of this report be provided to the ACDEH for review and comment.

DISTRIBUTION

A pdf copy of this report will be uploaded to the Alameda County ftp website and to GeoTracker.

LIMITATIONS

This report was prepared solely for the use of 475 Lesser Street, LLC. The content and conclusions provided by P&D in this assessment are based on information collected during our investigation, which may include, but not be limited to, visual site inspections; interviews with the site owner, regulatory agencies and other pertinent individuals; review of available public documents; subsurface exploration and our professional judgment based on said information at the time of preparation of this document. Any subsurface sample results and observations presented herein are considered to be representative of the area of investigation; however, geological conditions may vary between borings and may not necessarily apply to the general site as a whole. If future subsurface or other conditions are revealed which vary from these findings, the newly revealed conditions must be evaluated and may invalidate the findings of this report.

This report is issued with the understanding that it is the responsibility of the owner, or his representative, to ensure that the information contained herein is brought to the attention of the appropriate regulatory agencies, where required by law. Additionally, it is the sole responsibility of the owner to properly dispose of any hazardous materials or hazardous wastes left onsite, in accordance with existing laws and regulations.

This report has been prepared in accordance with generally accepted practices using standards of care and diligence normally practiced by recognized consulting firms performing services of a similar nature. P&D is not responsible for the accuracy or completeness of information provided by other individuals or entities which is used in this report. This report presents our professional judgment based upon data and findings identified in this report and interpretation of such data based upon our experience and background, and no warranty, either express or implied, is made. The conclusions presented are based upon the current regulatory climate and may require revision if future regulatory changes occur.

June 11, 2014 Report 0675.R2

Should you have any questions, please do not hesitate to contact us at (510) 658-6916.

Sincerely,

P&D Environmental, Inc.

Paul H. King

Professional Geologist #5901

Expires: 12/31/15

Attachments:

Table 1 - Summary of Borehole Soil Sample Analytical Results

Table 2 - Summary of Borehole Groundwater Grab Sample Analytical Results

Table 3A - Summary of Soil Gas Sample Analytical Results - TPH-G and VOCs

Table 3B - Summary of Soil Gas Shroud Sample Analytical Results - 1,1-Difluoroethane and 2-Propanol

Table 3C - Summary of Soil Gas Sample Analytical Results - Oxygen, Methane, and Carbon Dioxide

Figure 1 - Site Location Map

Figure 2 - Site Vicinity Aerial Photograph Showing Proposed Sample Collection Locations

Figure 3 - AllWest Site Plan

Figure 4 - Typical Soil Gas Sample Collection Manifold

Appendix A - Soil Boring Logs

Appendix B - Purge Volume Calculation Sheet and Soil Gas Sampling Field Data Sheet

Appendix C - Weather Information

Appendix D - Laboratory Analytical Results and Chain of Custody Documentation

PHK/hd/sjc 0675.R2

Table 1
Summary of Borehole Soil Sample Analytical Results

Sample ID	Sample Date	Sample Depth (Ft bgs)	ТРН-G	TPH-D	TPH-MO	MTBE	Benzene	Toluene	Ethyl-benzene	Total Xylenes	SVOCs using EPA Method 8270C
B1A-3.0	5/15/2014	3.0	ND<1.0	1.2, a,b	17, a,b	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	All ND
B1A-5.5	5/15/2014	5.5	ND<1.0	7.5, a,b	78, a,b	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	All ND
B1-5.0	3/26/2014	5.0	NA	6.0, a,b	NA	NA	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	NA
B2-5.0	3/26/2014	5.0	NA	ND<1.0	NA	NA	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	NA
B3-5.0	3/26/2014	5.0	NA	ND<1.0	NA	NA	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	NA
B4-5.0	3/26/2014	5.0	NA	2.4, a,b	NA	NA	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	NA
LTCP	Residential Residential						0-5' = 1.9 5-10' = 2.8		0-5' = 21 5-10' = 32		
ESL ¹			100	100	100	0.023	0.044	2.9	3.3	2.3	Various
ESL			100	100	100	0.023	0.044	2.7	3.3	2.0	various
ESL ²			500	110	500	0.023	0.044	2.9	3.3	2.3	Various
<u>NOTES</u>											
	Below Ground S										
		drocarbons as Gas drocarbons as Die									
	-	lydrocarbons as M									
	hyl-tert-Butyl Et	,	IOIOI OII.								
	ni-Volatile Organ										
ND = Not Det		1									
NA = Not Ana											
		compounds are si									
		ige compounds ar									
					effective Augu	ıst 17, 2012, fro	m Table 1 - Conce	entrations of Petrol	eum Constituents	in Soil That Will Have	No Significant
		luman Health. Res									
ESL' = Envir	onmental Screen	ing Level, by San	Francisco Bay –	Regional Wat	er Quality Con	ntrol Board, upd	lated December 20	013, from Table A	-1 – Shallow Soil S	Screening Levels, Grou	indwater is a
		ater resource. Res			. 0 11: 0	(1D 1	1. 10 1 2	012 6 77 11 1	2 61 11 6 11	0 1 1 0	1
ESL = Envir	ronmental Screen	ning Level, by Sar rater resource. Cor	n Francisco Bay -	- Kegional Wa	ter Quality Co	ntrol Board, upo	nated December 2	U13, from Table A	-2 – Shallow Soil	Screening Levels, Grou	indwater is a
		ater resource. Con nilligrams per kild			indicated						
results and E	ses reported III I	iningrams per kilo	ogram (mg/kg) ui	mess omerwise	maicateu.						

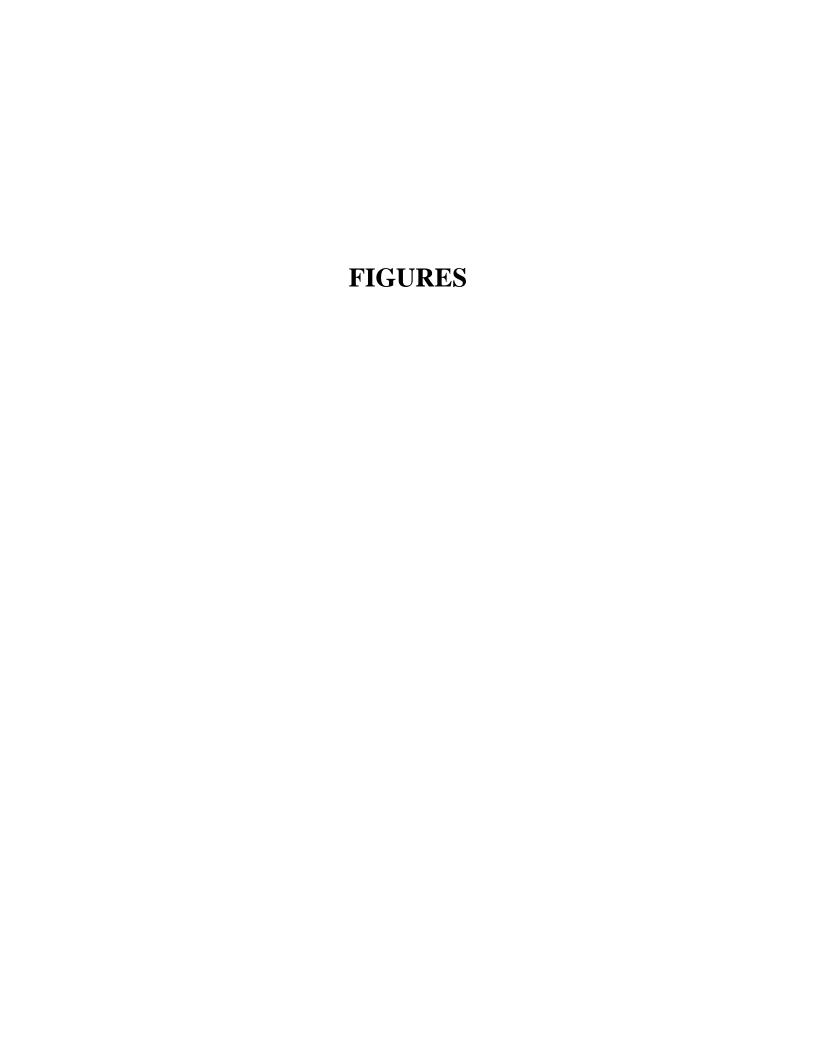
 ${\bf Table~2}$ Summary of Borehole Groundwater Grab Sample Analytical Results

Sample ID	Sample Date	TPH-G	TPH-D	TPH-MO	MTBE	Benzene	Toluene	Ethylbenzene	Total Xylenes	VOCs using EPA Method 8260B
Sumple 12	Sumple Date	1111 0	11112	1111 1110	MIDE	Benzene	Totache	EdityToenzene	Total Hylonos	VOCS using El 11 Mediod 0200B
5.4.55	2/24/2014	***		27.			NT 0.50		ND 0.50	NA.
B1-W	3/26/2014	NA	67, a,b	NA	NA	ND<0.50	ND<0.50	ND<0.50	ND<0.50	NA
B2-W	3/26/2014	NA	450, a,b	NA	NA	ND<0.50	ND<0.50	ND<0.50	ND<0.50	NA
D2-W	3/20/2014	IVA	450, 4,0	IVA	IVA	ND<0.50	ND<0.50	ND<0.30	ND<0.50	1421
B3-W	3/26/2014	NA	790, a,b,c	NA	NA	2.6	0.64	4.3	20	NA
			, , . , . , . , . , . , . , . ,		-					
B4-W	3/26/2014	NA	240, a,b	NA	NA	ND<0.50	ND<0.50	ND<0.50	0.50	NA
B5-W	5/15/2014	ND<50	ND<50	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	All ND, except
										Chloroform $= 7.9$
DC W	5/15/2014	NID -50	NID :50	ND -250	NID +0.50	NID 40 50	ND 40.50	NID 40 50	ND 40 50	All ND avaget
B6-W	5/15/2014	ND<50	ND<50	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	All ND, except Carbon disulfide = 2.0
										Carbon disuffide = 2.0
B7-W	5/15/2014	ND<50	ND<50	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	All ND
	0,00,000		3.00	3,20,20		7.2 1010	7.00 1010	7.00 1010	7.0 1010	
B8-W	5/15/2014	ND<50	290, a,b	4,600, a,b	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	All ND
LTCP	Scenario 2		None	None	1,000	3,000	None	None	None	None
Groundwater	Scenario 4		None	None	1,000	1,000	None	None	None	None
Specific Criteria										
Criteria										
ESL 1		100	100	100	5.0	1.0	40	30	20	Chloroform = 80,
ESE										Carbon disulfide = No Value
ESL ²		No Value	No Value	No Value	9,900	27	95,000	310	37,000	Chloroform = 170,
										Carbon disulfide = No Value
NOTES:										
	roleum Hydrocarbor									
	roleum Hydrocarbor									
	etroleum Hydrocarb	ons as Motor C	Oil.							
MTBE = Methyl-te										
	rganic Compounds.									
ND = Not Detected $NA = Not Analyze$										
-	a. e: oil range compour	ds are significa	ant					1		
	e: diesel range comp			nizable pattern						
	e: gasoline range comp			Pattern						
	t Closure Policy, de			ces Control Boa	rd, effective Au	gust 17, 2012, fro	m Groundwater S	specific Criteria Sco	enarios 2 and 4	
										Levels, groundwater is a
	drinking water reso		, -8-				., ,			
			isco Bay – Regi	onal Water Oual	itv Control Boar	d. updated Decer	nber 2013, from	Table E-1 – Grour	ndwater Screening I	evels for Evaluation of Potential Vapo
	arse Mix). Residentia				,, , , , , , , , , , , , , , , , , , , ,			21 31041		The state of the s
	licate a concentrati		ceeding the res	pective ESL ¹ va	lue.					
Doculta and ESI a r	eported in microgran	ns per liter (u.g	/L) unless other	wise indicated						

Table 3A Summary of Soil Gas Sample Analytical Results - TPH-G and VOCs

Sample ID	Sample Date	TPH-G	MTBE	Benzene	Toluene	Ethyl- benzene	m,p-Xylenes	o-Xylenes	Naphthalene	1,1-DFA	Percent Shroud	2-Propanol	Percent Shroud
SG3	5/19/2014	3,600,000	ND<430	<u>1,200</u>	2,800	ND<520	790	ND<520	ND<25	1,500	0.04	ND<2,400	0
SG3-DUP	5/19/2014	3,500,000	ND<430	<u>1,200</u>	2,800	ND<520	640	ND<520	NA	1,400	0.04	NA	NA
SG3-REP	5/19/2014	NA	NA	NA	NA	NA	NA	NA	ND<25	NA	NA	ND<2,400	0
LTCP with No Bioattenuatio	n Zone (reside	ential)		85		1,100			93				
(commercial)	Zone (reside	ontiur)		280		3,600			310				
ESL ¹		300,000	4,700	42	160,000	490	Combined	1 = 52,000	36	No Value	No Value	No Value	No Value
ESL^2		2,500,000	47,000	420	1,300,000	4,900	Combined	= 440,000	360	No Value	No Value	No Value	No Value
Notes: TPH-G = Total Petrole MTBE = Methyl-tert-l	Butyl Ether.	bons as Gasolin	ne.										
1,1-DFA = 1,1-Difluor ND = Not Detected. NA = Not Analyzed.													
LTCP = Low Threat C Criteria with no bioatt ESL ¹ = Environmental	enuation zone							••					
Potential Vapor Intrus ESL ² = Environmental				Regional Wate	er Quality Cor	ntrol Board , u	pdated Decembe	r 2013 from Tal	ble E2 – Soil Gas	s Screening L	evels for Eval	uation of	
Potential Vapor Intrus. Italicized values excee	ion for Comm d their respec	ercial/Industria	l Land Use.	3	, , , , , , , , , , , , , , , , , , ,								
Values in bold exceed													
Underlined values exc Results in micrograms				e indicated.									

Table 3B
Summary of Soil Gas Shroud Sample Analytical Results - 1,1-Difluoroethane and 2-Propanol


Report 0675.R2

Sample ID	Sample	1,1-DFA,#	2-Propanol, ##
	Date		
SG3_DFA	5/19/2014	22,000,000	NA
SG3 ISOPROPYL	5/19/2014	NA	3,100,000
SG3-REP ISOPROPYL	5/19/2014	NA	1,700,000
Notes:			
ND = Not Detected.			
NA = Not Analyzed.			
# = 1,1-DFA used as leak d	etection com	pound	
for TO-15 analysis.			
## = 2-Propanol used as lea	k detection of	compound	
for TO-17 analysis.			
Results in micrograms per c	cubic meter ($(\mu g/m3)$,	
unless otherwise indicated.			

Table 3C Summary of Soil Gas Sample Analytical Results - Oxygen, Methane, and Carbon Dioxide

Report 0675.R2

Sample ID	Sample Date	Oxygen	Methane	Carbon Dioxide
		(%)	(%)	(%)
SG3	5/19/2014	2.1	0.18	10
503	3/17/2011	2.1	0.10	10
SG3-DUP	5/19/2014	2.6	0.18	10
NOTES:				
ND = Not Detected	•			
Results in percentag	ge (%), unless other	wise indicated.		

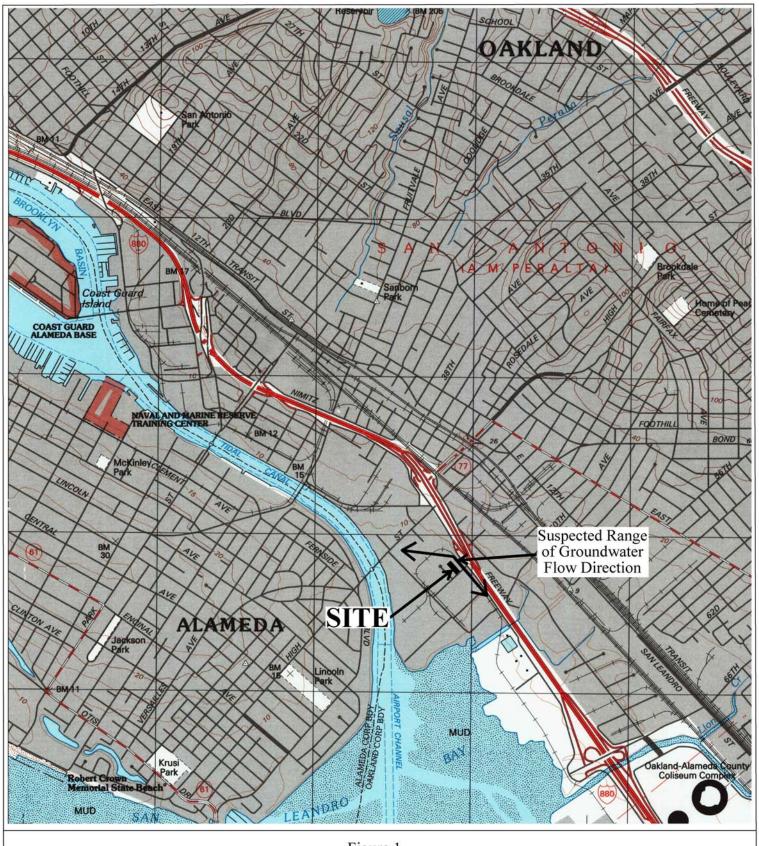
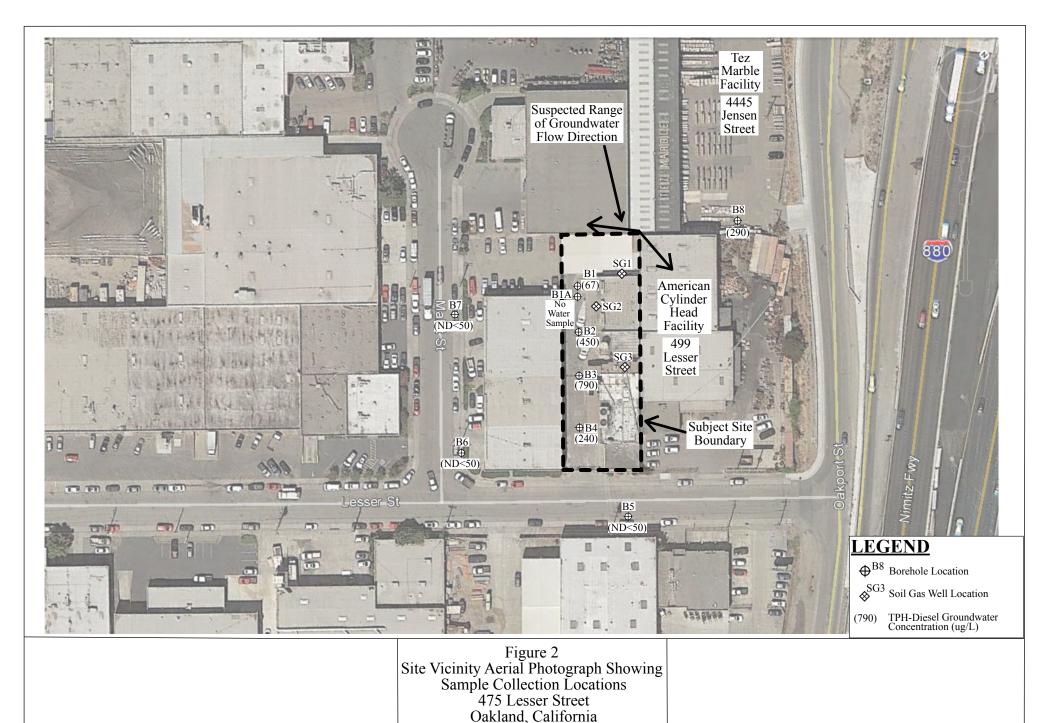
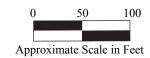



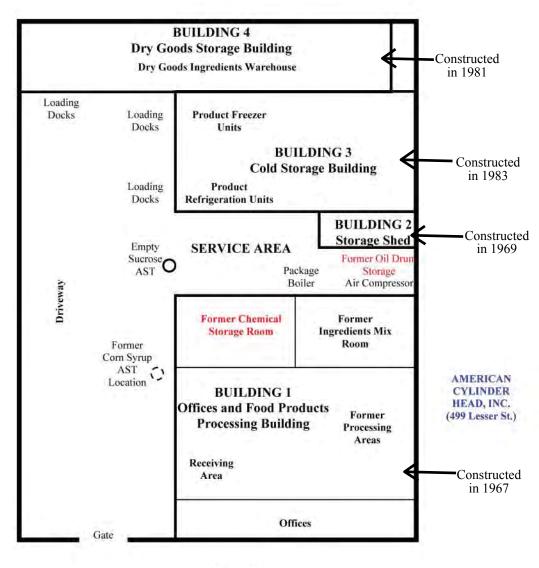
Figure 1 Site Location Map 475 Lesser Street Oakland, California

Basemap from: U.S. Geological Survey Oakland East, California 7.5-Minute Quadrangle, Map edited 1996



Base Map From:

Basics Environmental, Inc., dated April 3, 2014, and Google Earth, $8/28/2012\,$



BAY BOLT, INC. (4610 Malat St.) TEZ MARBLE (4445 Jensen St.)

TIDEWATER TIRE & AUTO CENTER (4626 Malat St.)

KYZAA BIOPAK CORPORATION

BLUE CAT & BIG B LUMBER WAREHOUSES (4638 Malat St.)

Lesser Street

 8,000-Gallon Diesel UST Installed in 1980

UST Closed in Place 1987

- UST Location Unknown

CROMER EQUIPMENT COMPANY (488 Lesser St.) CROMER EQUIPMENT COMPANY (4701 Oakport St.)

Figure 3 AllWest Site Plan 475 Lesser Street Oakland, California

Basemap from: AllWest Environmental, Inc. Environmental Site Assessment dated September 28, 2012

Figure 4
Typical Soil Gas Sampling Manifold
475 Lesser Street
Oakland, California

APPENDIX A Soil Boring Logs

BORING N	o.: B1A	PROJECT NO.:	0675 PROJEC	ΓΝΑ	ме: 47	5 Les	ser Street,	Oakl	and	
BORING L	OCATION:	Approximately 183 ft. no	orth and 12 ft. east of so	uthv	west co	rner (of subject si	ite pı	coperty elevation	AND DATUM: None
DRILLING	AGENCY:	Vironex, Inc.			DRILLEI	R: Sco	ott	DA	TE & TIME STARTED: 05/15/14	DATE & TIME FINISHED: 05/15/14
DRILLING	EQUIPMEN	T: Geoprobe 6600							1400	1500
COMPLET	ION DEPTH	8.0 Feet	BEDROCK DEPTH:	No	t Encou	ntere	d		LOGGED BY:	CHECKED BY:
FIRST WAT	ER DEPTH:	6.0 Feet	NO. OF SAMPLES:	2 S	oil				MLBD	1-MK
DEPTH (FT.)		DESCRIP			GRAPHIC COLUMN	BLOW COUNT PER 6"	WELL CONSTRUCTION LOG	PID	REM	ARKS
_		to 0.5 ft. Concrete (3-inc		_			No Well			uously cored from 0.5
	0.5 (FILI	to 4.5 ft. Orange-brown .); medium dense, moist angular gravel to 0.5- No Petroleum Hydrocal (25,55,2	with abundant coarse inch diameter. rbon (PHC) odor.	<u>X</u>	FILL		Constructed B1A-3.0		Geoprobe Macrocor barrel sampler was l	foot long 2.0-inch O.D. e barrel sampler. The ined with a 4.8-foot ransparent PVC tube.
_	4.5 to 5	, , ,	ey sand (SC); loose, wet		2.2			0	0.0 to 5.0 ft. 5.0 to 8.0 ft.	4.1 ft. recovery 3.0 ft. recovery
<u> </u>		to saturated. No PHC Wet at 5.5 Saturated at	odor. (0,65,35) ft.	<u>X</u>	SC		<u>∑</u> B1A-5.5		Water encountered d at 1423.	uring drilling at 6.0 ft.
5 - 10 -	5.5 to	3.0 ft. Olive-gray sandy wet. No PHC odd 7.5 to 8.0 ft. N	clay (CL); medium stiff or. (0,40,60) No sand	; 	CL			0		
									Borehole grouted on cement grout and a t	05/15/14 using neat remie pipe.
15									Mr. Steve Miller wit Public Works Agenc permission to grout t	y gave verbal
_ _ 15				_					Drilling Notes:	
_ 13 				_					1) Field estimates of sand, and fines are sh parentheses.	percent gravel, own in
				_ _					2) Density determina qualitative and are no quantitative evaluation	t based on
20 -				=						
_ :				_						
_ :				=						
_ :				\equiv						
_ :										
25				_						
_ :				\equiv						
_ :				=						
_ :				_						
				_						
— 30 ·				_						

BORING NO.	.: B5	PROJECT NO.: 0675	PROJECT	NAME	E: 475	Les	ser Street,	Oakl	and	
BORING LO	CATION:	Approximately 160 ft. wes	st of Oakport Stree	t on s	south	side	of Lesser S	treet	ELEVATION A	AND DATUM: None
DRILLING A	GENCY:	Vironex, Inc.		DR	RILLER	: Sco	tt	DA	TE & TIME STARTED: 05/15/14	DATE & TIME FINISHED: 05/15/14
DRILLING E	QUIPMENT:	Geoprobe 6600							0730	1200
COMPLETIC	ON DEPTH:	10.0 Feet	BEDROCK DEPTH:]	Not E	Encou	ntere	d		LOGGED BY:	СНЕСКЕВ ВУ:
FIRST WATE	R DEPTH: 5.5	Feet	NO. OF SAMPLES:	Wat	ter				MLBD	1-MK
DEPTH (FT.)		DESCRIPTION		CRAPHIC	COLUMN	BLOW COUNT PER 6"	WELL CONSTRUCTION LOG	PID	REM	ARKS
	1.5 to 3.5 ft. moist, with	Brown gravelly silty sand (FI few coarse angular gravel to lo Petroleum Hydrocarbon (Pl (15,70,15)	LL); medium dense, 0.5-inch diameter.	F	FILL		No Well Constructed		to 10.0 ft. using a 5.0 Geoprobe Macrocord barrel sampler was li	
 5	\	ft. Gray fine sand (SP); medium d No PHC odor. (0,95,5) Black clay (CL); medium stiff, m mottling. No PHC odor. (0,0,1	oist, with olive-gray		SP CL		∇	0	0.0 to 5.0 ft. 5.0 to 10.0 ft.	3.8 ft. recovery No recovery
	5.0 to 10.0 in shoe (\$	ft. No recovery. Gray grav SC); loose, saturated, large gravel to 1.0-inch diame No PHC odor. (0,0,10 Wet at 5.0 ft. Saturated at 5.5 ft.	velly clayey sand coarse angular eter.		SC		⊻	0	at 0755. Temporary 1 PVC casing placed in was measured at 2.1 at 0812. Approximately 0.3-g borehole prior to gro collection using new	undwater sample unused disposable
									polyethylene tubing pump. Water sample directly from the dis- or sheen on sample. subsequently measur Borehole grouted on cement grout and a to Mr. Steve Miller with	attached to a peristaltic B5-W collected at 0810 charge tubing. No odor Water level ed at 2.1 ft. at 0837. 05/15/14 using neat remie pipe. In Alameda County your observe and f the borehole. Dercent gravel, own in tions are t based on

BORING NO	о.: В6	PROJECT NO.: 0675	PROJECT	NAN	1E: 475	Les	ser Street,	Oakl	and	
BORING LO	OCATION:	Approximately 20 ft. north	n of Lesser Street	on th	ne east	side	of Malat St	reet	ELEVATION A	AND DATUM: None
DRILLING .	AGENCY:	Vironex, Inc.		I	DRILLER	: Sco	ott	DA	TE & TIME STARTED: 05/15/14	DATE & TIME FINISHED: 05/15/14
DRILLING	EQUIPMENT:	Geoprobe 6600							0900	1200
COMPLETI	ON DEPTH:	10.0 Feet	BEDROCK DEPTH:	Not	Encou	ntere	d		LOGGED BY:	CHECKED BY:
FIRST WAT	ER DEPTH: 4.	5 Feet	NO. OF SAMPLES:	1 W	ater				MLBD	1-MK
DEPTH (FT.)		DESCRIPTION			GRAPHIC	BLOW COUNT PER 6"	WELL CONSTRUCTION LOG	PID	REM	ARKS
	1.5 to 3.5 f	1.5 ft. Concrete (12-inches) ft. Brown gravelly silty sand (FI ith few coarse angular gravel to No Petroleum Hydrocarbon (P. (15,70,15)	LL); medium dense, 0.5-inch diameter.	·	FILL		No Well Constructed			ned with a 4.8-foot
	3.5 to 6.5	5 ft. Gray fine sand (SP); loc dense, wet to saturated No PHC odor. (0,90,10 Wet at 4.0 ft. Saturated at 4.5 ft.			SP		<u> </u>	0	0.0 to 5.0 ft. 5.0 to 10.0 ft. Water encountered d	4.2 ft. recovery 4.8 ft. recovery uring drilling at 4.5 ft. 1.0-inch diameter slotted
5 -	6.5 to 9	.0 ft. Gray clay (CL); mediu No PHC odor. (0,0,100	m stiff, moist.		CL			0	PVC casing placed in	n borehole. Water level ft. at 0930 and at 3.7 ft.
	9.0 to	o 10.0 ft. Grayish-brown clay (CL); ist, with abundant roots. No PHC ode	medium stiff, or. (0,0,100)							
15									pump. Water sample	undwater sample unused disposable attached to a peristaltic B6-W collected at 0945 tharge tubing. No odor Water level
_ 13 - 									Borehole grouted on cement grout and a tr	
 									Mr. Steve Miller with Public Works Agency document grouting of	y onsite to observe and
20									Drilling Notes: 1) Field estimates of sand, and fines are sh parentheses.	
									2) Density determinal qualitative and are no quantitative evaluation	t based on
25	_									
— 30 -	_			+						

BORING	NO.:	B7 PROJECT NO.: 0675 PROJECT	NAN	ие: 475	5 Les	ser Street,	Oakl	and	
BORING	LOC	CATION: Approximately 160 ft. north of Lesser Street	on	the eas	t side	e of Malat S	Stree	t ELEVATION A	AND DATUM: None
DRILLIN	G AC	GENCY: Vironex, Inc.]	DRILLER	: Sco	ott	DA	TE & TIME STARTED: 05/15/14	DATE & TIME FINISHED: 05/15/14
DRILLIN	G E	QUIPMENT: Geoprobe 6600						1015	1200
COMPLI	TIO	N DEPTH: 10.0 Feet BEDROCK DEPTH: 1	Not	Encou	ntere	d		LOGGED BY:	CHECKED BY:
FIRST W	ATEI	R DEPTH: 4.5 Feet NO. OF SAMPLES:	1 W	ater				MLBD	1-MK
DEPTH (FT.)		DESCRIPTION		GRAPHIC COLUMN	BLOW COUNT PER 6"	WELL CONSTRUCTION LOG	PID	REM	ARKS
_ _ _ _		0.0 to 1.5 ft. Concrete (12-inches) and base rock. 1.5 to 4.0 ft. Brown gravelly silty sand (FILL); medium dense, moist to wet, with few coarse angular gravel to 0.5-inch		FILL		No Well Constructed		to 10.0 ft. using a 5.0 Geoprobe Macrocord barrel sampler was li	ned with a 4.8-foot
_		diameter. No Petroleum Hydrocarbon (PHC) odor. (10,75,15)						long 1.5-inch O.D. to 0.0 to 5.0 ft.	ransparent PVC tube. 4.3 ft. recovery
_ - 5		Wet at 4.0 ft. Saturated at 4.5 ft. 5.0 to 5.5 ft. Gray silt (ML); medium stiff, moist.	\exists	SW ML		₹	0	5.0 to 10.0 ft.	4.8 ft. recovery
_		5.5 to 5.5 ft. Gray slit (ML), inedium stiff, moist. No PHC odor. (0,0,100) 5.5 to 6.5 ft. Gray clay (CL); medium stiff, moist.		CL				at 1045. Temporary	uring drilling at 4.5 ft. I.0-inch diameter slotted n borehole. Water level
5		No PHC odor. (0,0,100) 6.5 to 8.5 ft. Grayish-brown gravelly silty sand (SM); loose, saturated, with few coarse angular gravel to 0.5-inch diameter.		SM			0		ft. at 1055 and at 2.9 ft.
_		No PHC odor. (5,80,15) 8.5 to 9.0 ft. Gray silty clay (CL); medium stiff, moist. No PHC odor. (0,0,100)	\Rightarrow	CL					
	4	9.0 to 10.0 ft. Grayish-brown clay (CL); medium stiff, moist, with abundant roots. No PHC odor. (0,0,100)	4	<u>CL</u>					
								pump. Water sample	undwater sample unused disposable attached to a peristaltic B7-W collected at 1115 charge tubing. No odor Water level
— 15 —								Borehole grouted on cement grout and a tr	05/15/14 using neat
								Mr. Steve Miller with Public Works Agency document grouting of	y onsite to observe and
								Drilling Notes:	
20 								1) Field estimates of sand, and fines are sh parentheses.	
								2) Density determinate qualitative and are no quantitative evaluation	t based on
25	_		<u> </u>						
_									
<u> </u>									

BORING NO	.: B8 PROJECT NO.: 0675	PROJECT NA	ме: 47:	5 Les	ser Street,	Oakl	and	
BORING LO	ocation: Approximately 10 ft. north and	70 ft. west of souther	ast con	ner o	f Tez Marbl	e pr	operty ELEVATION A	AND DATUM: None
DRILLING A	,		DRILLE	R: Scc	ott	DA	TE & TIME STARTED: 05/15/14	DATE & TIME FINISHED: 05/15/14
DRILLING F	EQUIPMENT: Geoprobe 6600						1230	1345
COMPLETIC		BEDROCK DEPTH: No		ntere	<u>d</u>		LOGGED BY: MLBD	CHECKED BY:
	er depth: 5.5 Feet	NO. OF SAMPLES: 1 V	Vater					1, 44
DEPTH (FT.)	DESCRIPTION		GRAPHIC COLUMN	BLOW COUNT PER 6"	WELL CONSTRUCTION LOG	Œ	REM	ARKS
5 -	0.0 to 0.5 ft. Asphalt and base 0.5 to 3.5 ft. Brown gravelly silty sand dense, moist to wet, with few coarse 0.5-inch diameter. No Petroleum Hydrocarbon (PHC) 3.5 to 4.0 ft. Dark brown sandy clay (CL); monophysical production of the composition of the compo	d (FILL); medium angular gravel to odor. (5,80,15) edium stiff, moist. on stiff, moist to wet. soft, saturated. dium stiff, moist. on stiff, moist, with	FILL CL ML CL SW		No Well Constructed ▼ □	0	to 10.0 ft. using a 5.0 Geoprobe Macrocore barrel sampler was li long 1.5-inch O.D. tr 0.0 to 5.0 ft. 5.0 to 10.0 ft. Water encountered dat 1250. Temporary PVC casing placed in	ned with a 4.8-foot
	8.5 to 10.0 ft. Olive-brown clay (CL); m moist, with abundant roots. No PHC odd	edium stiff,						
10 -							pump. Water sample	undwater sample unused disposable attached to a peristaltic B8-W collected at 1315 charge tubing. No odor Water level ed at 2.8 ft. at 1327.
_ =							Mr. Steve Miller with Public Works Agency authorization to grou	n Alameda County y gave verbal
20 =		=======================================					Drilling Notes: 1) Field estimates of parentheses. 2) Density determinat qualitative and are no	own in ions are t based on
20 - 20							quantitative evaluatio	n.
_ 30 _	-							

APPENDIX B

Purge Volume Calculation Sheet and Soil Gas Sampling Field Data Sheet

4.5 feet tubing, 12 inch sand interval, 6 inch non-hydrated bentonite interval

Soil Gas Purge Volume Calculations

One Purge Volume is calculated as the volume of the tubing interior plus the volume of the sand interval of the borehole.

The tubing interior volume is calculated as follows:

V tubing = pi x (r x r) x h, where pi = 3.14, r = 0.187 in./2, and h = 4.5 ft.

V tubing = $3.14 \times (0.0935 \times 0.0935) \times (4.5 \text{ ft.} \times 12 \text{ in./ft.}) =$

1.48 cubic inches.

The sand interval volume is calculated as follows:

V sand interval = pi x (r x r) x h x porosity, where pi = 3.14, r = 1.75 in./2, h = 1.75 in./2

1.75 in./2, h = 18 in., and porosity = 0.35

V sand interval = $3.14 \times (0.875 \times 0.875) \times 18 \times 0.35 =$

15.15 cubic inches.

The total volume for one purge volume is V tubing + V sand interval, where

V total = 1.48 cubic inches + 15.15 cubic inches =

16.63 cubic inches.

272.5

818

327

To convert to cubic centimeters:

V total = 16.63 cubic inches x 16.39 cubic centimeters/cubic inches =

cubic centimeters.

The total volume to be purged is 3 purge volumes.

V purge total = 272.5 cubic centimeters x 3 =

cubic centimeters.

The flow controller has a nominal flow rate of

cubic centimeters per minute.

The purge time is calculated as follows:

T purge = 818 cubic centimeters/ 150 cubic centimeters per minute =

5.45 minutes.

Converting the purge time to seconds,

5.45 minutes x 60seconds/ minute =

seconds.

OIL GAS S	AMPLING D	ATA SHEET	,	 		1 1								
Address	175 L	EBSER S	T, OAKU	IND	+			1	++	-i i		ļ — i-	+ -	
ob# Q	919/14			LIONE MERIOR (C	heck one)	4 - 1					I			
Sampler Na	me 3/14	00	 	o PRT o Temp Well	<u> </u>				+	-, ;	ļ	;		
Orilling Com	pany 14	BD Rouex, in	<u>, </u>	Permanent W	ell			† — —				T	1	
	L		I	o Vapor Pin						· · · · · · · · · · · · · · · · · · ·			T	
		+		1	-1	+	++			<u> </u>	Begin			
Soil Gas	Probe	Time Probe		Sample Canister Initial Vacuum	Start leak	End leak check	ADDITIONAL leak check			Start of tracer gas	sample collection vacuum (in.	End sample collection vacuum (In.	PID value in Teflon tube after	
ocation esignation	Depth (Ft.)	Installation Completed		Check (In. Hg) and time	vacuum (In. Hg) and time	vacuum (In. Hg) and time	vacuum (In. Hg) and time	Start PURGE time	End PURGE time	injection time	Hg) and time	Hg) and time	sample collection	NOTES
6G 1	3	5/16/14	24402	vac - 39	vac 32	vac -JA	vac				vac ·- JC	vac - 19	ppm	WATER PLUEP
				time UIO	time (0.20	time 1030	time	time / 05540	time [LOC 3	7 time ++6+			time	in tubing
G 2	3	5/16/14	31783	vac - 39	vac	vac	vac	+		-i	vac	vac	ppm	
~~~		SIGHT	31703	time (13c		time	time	time (14800	1	a	time	time	time	WHITER PLUED
							unc	une (148CC	une (47,3	7.41116			une	IN TUBING
sg <b>3</b>	3	5/16/14	31723	vac - 29		vac	vac				vac - 30	vac 32	ppm	!
	-		_	time 1130	time	time	time	time 130330	time 13683	<b>Z</b> time	time 12 23 0	time 1 3 30 2	Otime	LANGEAD GAGE DEFECTIVE
iG "3	3	= 156-100	22105	vac - 29	Type	vac	ļ	+	<del> </del>				innm	- Crecitoe
DUP	_ <b></b>	2/14/14	00100				time	1	-		vac 🏎	vac	ppm	
	+		!i	time ¿; 🛶 🕏	time	time	ume	time	time	time	time	time	time	<u> </u>
G 🕉			]	vac	vac 20	vac - 20	vac	1		1 - 1	vac - 29	vac -	ppm 175	TEPLAR DEA
	-	<del>                                     </del>		time	time   3 1 1 02	time   32.1 a	time	time 336ct	1 timel 331 3	7time  338	time (334a	Aime 13544	Sime 1430	135800
G <b>3</b>	<u> </u>			i t	++	+	·	-i		-	-1+	!	+	
34.3		+! $ +$	<b>∤·</b> — · →	vac	vac	vac	vac	<del>_</del>	·	<del></del>	vac	vac	ppm	<del></del>
שני	<del> </del>		!	time	time	time	time	time	time	time	time	time	time	
G3	<u> </u>	<del></del>	<del>,</del>	vac	vac	vac	vac	1			vac	vac	ppm	
GRBE	ИT			time	time	time	time	time	time	time/403				TEDUR ISCHUPIL
6G 3	<u> </u>	<u> </u>	I	4			ļ		<del></del>	+ +			<u> </u>	140564
હ <i>્ર</i> ્	<u> </u>	$\dotplus$ $ \dotplus$		vac	vac	vac	vac	_!	1		vac	vac	ippm 17.5	
crbell Ref	<u> </u>	11 - 1	l	time	time	time	time	time	time	time   434	time 43600	Itime   437	Stime 1750	TEDIAR ISITE PYL 142416
SG			!	vac	lvac	vac	vac	1			vac	vac	ppm	STRIBERT GUPLLS
				time	time	time	time	time	time	time	time	time	time	COLLECTEDAT
				T T						1 202	1-27	T T	1 7	150 cc/min
iG				vac	vac	vac	vac	T			vac	vac	ppm	
				time	time	time	time	time	time	time	time	time	time	
		II.				1	<u> </u>							
SG .		1	:	vac	vac	vac	vac			-	vac	vac	ppm	
	1	1	<u>.                                    </u>	time	time	time	time	time	time	time	time	time	time	<u> </u>
6G	<u> </u>	+		vac	vac	vac	vac	1 i	7	<del>-</del>	vac	vac	ppm	
				time	time	time	time	time	time	time	time	time	time	
SG		1	<u> </u>	vac	vac	vac	vac		1 -		vac	vac	ppm	_;
	Ė	<u>. I </u>		time	time	time	time	time	time	time	time	time	time	

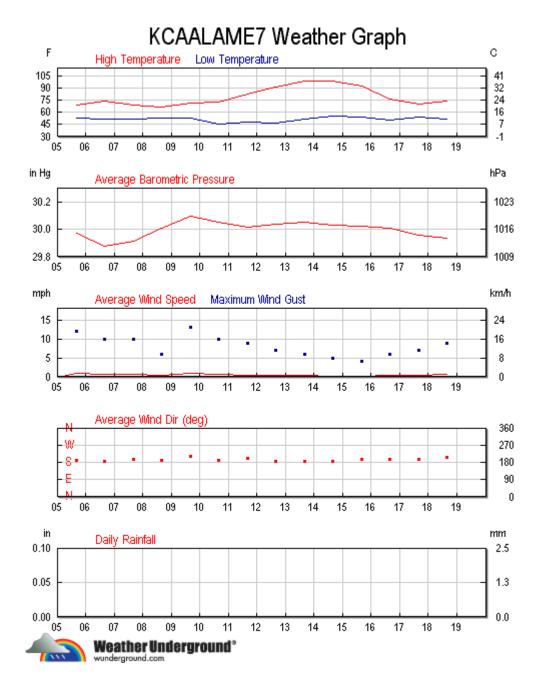
# **APPENDIX C**Weather Information

## Report 0675.R2 Appendix D

http://www.wunderground.com/weatherstation/WXDailyHistory.asp?ID=KCAALAME7&graphspan=custom&month=5&day=5&year=2014&monthend=5&dayend=19&yearend=2014

### Weather History for KCAALAME7

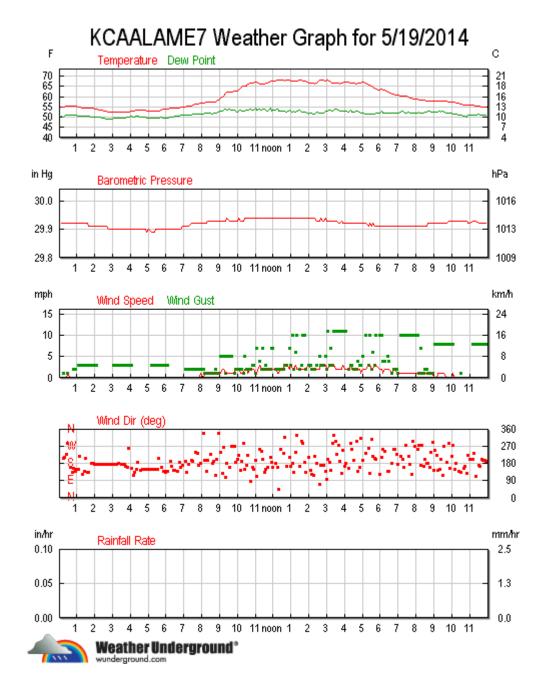

High St Bridge, Alameda, CA


About This Weather Station

Lat: N 37 ° 45 ' 48 " ( 37.763 ° ) Lon: W 122 ° 13 ' 33 " ( -122.226 ° )

Elevation (ft): 16

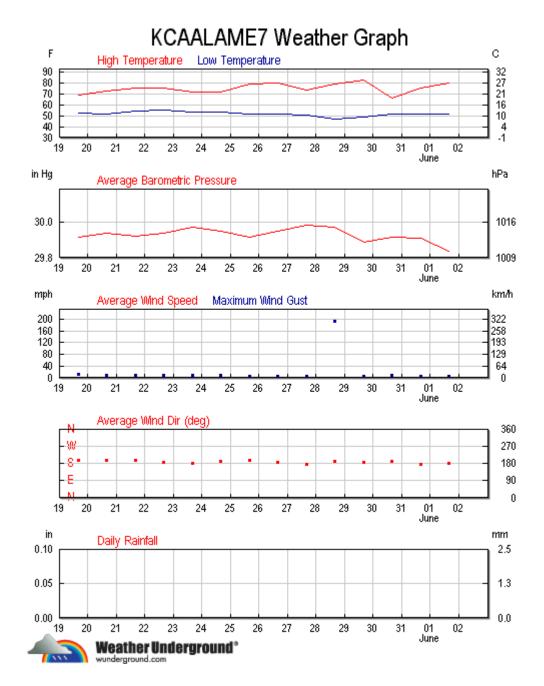
Hardware: Davis Vantage VUE Weather Station Software:






#### Report 0675.R2 Appendix D

 $\frac{\text{http://www.wunderground.com/weatherstation/WXDailyHistory.asp?ID=KCAALAME7\&graphspan=day}}{\text{\&month=}5\&day=19\&year=2014}$ 






#### Report 0675.R2 Appendix D

 $\frac{\text{http://www.wunderground.com/weatherstation/WXDailyHistory.asp?ID=KCAALAME7\&graphspan=cust}{om\&month=5\&day=19\&year=2014\&monthend=6\&dayend=2\&yearend=2014}$ 





### APPENDIX D

# Laboratory Analytical Reports and Chain of Custody Documentation

- McCampbell Work Order # 1405698: Soil Samples B1A-3.0 and B1A-5.5 TPH-G, TPH-D, TPH-MO, MBTEX and SVOC Results
- McCampbell Work Order # 1405703: Water Samples B5-W, B6-W, B7-W, and B8-W TPH-G, TPH-D, TPH-MO, and VOC Results
- Air Toxics Work Order # 1405390A: Soil Gas Samples SG3 and SG3-DUP TPH-G, MBTEX, and 1,1-DFA Results
- Air Toxics Work Order # 1405369: Soil Gas Samples SG3 and SG3-DUP Naphthalene and 2-Propanol Results
- Air Toxics Work Order # 1405390B: Soil Gas Samples SG3 and SG3-DUP Oxygen, Methane, and Carbon Dioxide Results
- Air Toxics Work Order # 1405368: Soil Gas Sampling Shroud Samples SG3 DFA, SG3 ISOPROPYL, and SG3 REP ISOPROPYL 1,1-DFA and 2-Propanol Results



# McCampbell Analytical, Inc.

"When Quality Counts"

# **Analytical Report**

**WorkOrder:** 1405698

**Report Created for:** P & D Environmental

55 Santa Clara, Ste.240 Oakland, CA 94610

**Project Contact:** Paul King

**Project P.O.:** 

**Project Name:** #0675; 475 Lesser St. Oakland

**Project Received:** 05/16/2014

Analytical Report reviewed & approved for release on 05/27/2014 by:

Question about your data?

Click here to email
McCampbell

Angela Rydelius,

Laboratory Manager

The report shall not be reproduced except in full, without the written approval of the laboratory. The analytical results relate only to the items tested. Results reported conform to the most current NELAP standards, where applicable, unless otherwise stated in the case narrative.



1534 Willow Pass Rd. Pittsburg, CA 94565 ♦ TEL: (877) 252-9262 ♦ FAX: (925) 252-9269 ♦ www.mccampbell.com NELAP: 4033ORELAP ♦ ELAP: 1644 ♦ ISO/IEC: 17025:2005 ♦ WSDE: C972-11 ♦ ADEC: UST-098 ♦ UCMR3

### McCampbell Analytical, Inc. "When Quality Counts"

### **Glossary of Terms & Qualifier Definitions**

**Client:** P & D Environmental

**Project:** #0675; 475 Lesser St. Oakland

WorkOrder: 1405698

#### **Glossary Abbreviation**

95% Confident Interval 95% Interval

DF **Dilution Factor** DUP **Duplicate** 

**EDL Estimated Detection Limit** 

**ITEF** International Toxicity Equivalence Factor

LCS Laboratory Control Sample

MB Method Blank

MB % Rec % Recovery of Surrogate in Method Blank, if applicable

MDL Method Detection Limit

Minimum Level of Quantitation ML

Matrix Spike MS

MSD Matrix Spike Duplicate

Not detected at or above the indicated MDL or RL ND

NR Matrix interferences, or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x

spike amount for water matrix; or sample diluted due to high matrix or analyte content.

RD Relative Difference

RL Reporting Limit (The RL is the lowest calibration standard in a multipoint calibration.)

**RPD** Relative Percent Deviation **RRT** Relative Retention Time

SPK Val Spike Value

SPKRef Val Spike Reference Value Toxicity Equivalence **TEQ** 

#### **Analytical Qualifiers**

а3 sample diluted due to high organic content.

diesel range compounds are significant; no recognizable pattern e2

e7 oil range compounds are significant



# **Analytical Report**

Client:P & D EnvironmentalWorkOrder:1405698Project:#0675; 475 Lesser St. OaklandExtraction Method:SW3550BDate Received:5/16/14 20:10Analytical Method:SW8270C

**Date Prepared:** 5/17/14 **Unit:** mg/Kg

#### Semi-Volatile Organics by GC/MS (Basic Target List)

Client ID	Lab ID	Matrix/ExtType	Date Co	ollected	Instrument	Batch ID
B1A-3.0	1405698-001A	Soil	05/15/20	14 14:15	GC21	90528
<u>Analytes</u>	<u>Result</u>		<u>RL</u>	<u>DF</u>		Date Analyzed
Acenaphthene	ND		0.25	1		05/19/2014 16:57
Acenaphthylene	ND		0.25	1		05/19/2014 16:57
Acetochlor	ND		0.25	1		05/19/2014 16:57
Anthracene	ND		0.25	1		05/19/2014 16:57
Benzidine	ND		1.3	1		05/19/2014 16:57
Benzo (a) anthracene	ND		0.25	1		05/19/2014 16:57
Benzo (b) fluoranthene	ND		0.25	1		05/19/2014 16:57
Benzo (k) fluoranthene	ND		0.25	1		05/19/2014 16:57
Benzo (g,h,i) perylene	ND		0.25	1		05/19/2014 16:57
Benzo (a) pyrene	ND		0.25	1		05/19/2014 16:57
Benzyl Alcohol	ND		1.3	1		05/19/2014 16:57
1,1-Biphenyl	ND		0.25	1		05/19/2014 16:57
Bis (2-chloroethoxy) Methane	ND		0.25	1		05/19/2014 16:57
Bis (2-chloroethyl) Ether	ND		0.25	1		05/19/2014 16:57
Bis (2-chloroisopropyl) Ether	ND		0.25	1		05/19/2014 16:57
Bis (2-ethylhexyl) Adipate	ND		0.25	1		05/19/2014 16:57
Bis (2-ethylhexyl) Phthalate	ND		0.25	1		05/19/2014 16:57
4-Bromophenyl Phenyl Ether	ND		0.25	1		05/19/2014 16:57
Butylbenzyl Phthalate	ND		0.25	1		05/19/2014 16:57
4-Chloroaniline	ND		0.25	1		05/19/2014 16:57
4-Chloro-3-methylphenol	ND		0.25	1		05/19/2014 16:57
2-Chloronaphthalene	ND		0.25	1		05/19/2014 16:57
2-Chlorophenol	ND		0.25	1		05/19/2014 16:57
4-Chlorophenyl Phenyl Ether	ND		0.25	1		05/19/2014 16:57
Chrysene	ND		0.25	1		05/19/2014 16:57
Dibenzo (a,h) anthracene	ND		0.25	1		05/19/2014 16:57
Dibenzofuran	ND		0.25	1		05/19/2014 16:57
Di-n-butyl Phthalate	ND		0.25	1		05/19/2014 16:57
1,2-Dichlorobenzene	ND		0.25	1		05/19/2014 16:57
1,3-Dichlorobenzene	ND		0.25	1		05/19/2014 16:57
1,4-Dichlorobenzene	ND		0.25	1		05/19/2014 16:57
3,3-Dichlorobenzidine	ND		0.50	1		05/19/2014 16:57
2,4-Dichlorophenol	ND		0.25	1		05/19/2014 16:57
Diethyl Phthalate	ND		0.25	1		05/19/2014 16:57
2,4-Dimethylphenol	ND		0.25	1		05/19/2014 16:57
Dimethyl Phthalate	ND		0.25	1		05/19/2014 16:57
4,6-Dinitro-2-methylphenol	ND		1.3	1		05/19/2014 16:57
2,4-Dinitrophenol	ND		6.3	1		05/19/2014 16:57

(Cont.)

HK Analyst's Initial

# **Analytical Report**

P & D Environmental **Client:** WorkOrder: 1405698 **Project:** #0675; 475 Lesser St. Oakland **Extraction Method: SW3550B Date Received:** 5/16/14 20:10 **Analytical Method: SW8270C** 

**Date Prepared:** 5/17/14 Unit:

### Semi-Volatile Organics by GC/MS (Basic Target List)

Client ID	Lab ID	Matrix/ExtType	Date Co	ollected	Instrument	Batch ID
B1A-3.0	1405698-001A	Soil	05/15/20 ⁻	14 14:15	GC21	90528
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>		Date Analyzed
2,4-Dinitrotoluene	ND		0.25	1		05/19/2014 16:57
2,6-Dinitrotoluene	ND		0.25	1		05/19/2014 16:57
Di-n-octyl Phthalate	ND		0.50	1		05/19/2014 16:57
1,2-Diphenylhydrazine	ND		0.25	1		05/19/2014 16:57
Fluoranthene	ND		0.25	1		05/19/2014 16:57
Fluorene	ND		0.25	1		05/19/2014 16:57
Hexachlorobenzene	ND		0.25	1		05/19/2014 16:57
Hexachlorobutadiene	ND		0.25	1		05/19/2014 16:57
Hexachlorocyclopentadiene	ND		1.3	1		05/19/2014 16:57
Hexachloroethane	ND		0.25	1		05/19/2014 16:57
Indeno (1,2,3-cd) pyrene	ND		0.25	1		05/19/2014 16:57
Isophorone	ND		0.25	1		05/19/2014 16:57
2-Methylnaphthalene	ND		0.25	1		05/19/2014 16:57
2-Methylphenol (o-Cresol)	ND		0.25	1		05/19/2014 16:57
3 &/or 4-Methylphenol (m,p-Cresol)	ND		0.25	1		05/19/2014 16:57
Naphthalene	ND		0.25	1		05/19/2014 16:57
2-Nitroaniline	ND		1.3	1		05/19/2014 16:57
3-Nitroaniline	ND		1.3	1		05/19/2014 16:57
4-Nitroaniline	ND		1.3	1		05/19/2014 16:57
Nitrobenzene	ND		0.25	1		05/19/2014 16:57
2-Nitrophenol	ND		1.3	1		05/19/2014 16:57
4-Nitrophenol	ND		1.3	1		05/19/2014 16:57
N-Nitrosodiphenylamine	ND		0.25	1		05/19/2014 16:57
N-Nitrosodi-n-propylamine	ND		0.25	1		05/19/2014 16:57
Pentachlorophenol	ND		1.3	1		05/19/2014 16:57
Phenanthrene	ND		0.25	1		05/19/2014 16:57
Phenol	ND		0.25	1		05/19/2014 16:57
Pyrene	ND		0.25	1		05/19/2014 16:57
1,2,4-Trichlorobenzene	ND		0.25	1		05/19/2014 16:57
2,4,5-Trichlorophenol	ND		0.25	1		05/19/2014 16:57
2,4,6-Trichlorophenol	ND		0.25	1		05/19/2014 16:57

(Cont.)

# **Analytical Report**

P & D Environmental **Client:** WorkOrder: 1405698 **Project:** #0675; 475 Lesser St. Oakland **Extraction Method: SW3550B Date Received:** 5/16/14 20:10 **Analytical Method: SW8270C Date Prepared:** 5/17/14

Unit: mg/Kg

#### Semi-Volatile Organics by GC/MS (Basic Target List)

Client ID	Lab ID	Matrix/ExtType	<b>Date Collected Instrument</b>	Batch ID
B1A-3.0	1405698-001A	Soil	05/15/2014 14:15 GC21	90528
Analytes	Result		<u>RL</u> <u>DF</u>	Date Analyzed
Surrogates	REC (%)		<u>Limits</u>	
2-Fluorophenol	103		30-130	05/19/2014 16:57
Phenol-d5	100		30-130	05/19/2014 16:57
Nitrobenzene-d5	89		30-130	05/19/2014 16:57
2-Fluorobiphenyl	89		30-130	05/19/2014 16:57
2,4,6-Tribromophenol	83		16-130	05/19/2014 16:57
4-Terphenyl-d14	110		30-130	05/19/2014 16:57



# **Analytical Report**

Client: P & D Environmental WorkOrder: 1405698

Project: #0675; 475 Lesser St. Oakland Extraction Method: SW3550B

Date Received:5/16/14 20:10Analytical Method:SW8270CDate Prepared:5/17/14Unit:mg/Kg

#### Semi-Volatile Organics by GC/MS (Basic Target List)

Client ID	Lab ID	Matrix/ExtType	Date C	ollected Ins	trument	Batch ID
B1A-5.5	1405698-002A	Soil	05/15/20	14 14:20 GC	21	90528
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>		Date Analyzed
Acenaphthene	ND		1.2	5		05/19/2014 17:25
Acenaphthylene	ND		1.2	5		05/19/2014 17:25
Acetochlor	ND		1.2	5		05/19/2014 17:25
Anthracene	ND		1.2	5		05/19/2014 17:25
Benzidine	ND		6.5	5		05/19/2014 17:25
Benzo (a) anthracene	ND		1.2	5		05/19/2014 17:25
Benzo (b) fluoranthene	ND		1.2	5		05/19/2014 17:25
Benzo (k) fluoranthene	ND		1.2	5		05/19/2014 17:25
Benzo (g,h,i) perylene	ND		1.2	5		05/19/2014 17:25
Benzo (a) pyrene	ND		1.2	5		05/19/2014 17:25
Benzyl Alcohol	ND		6.5	5		05/19/2014 17:25
1,1-Biphenyl	ND		1.2	5		05/19/2014 17:25
Bis (2-chloroethoxy) Methane	ND		1.2	5		05/19/2014 17:25
Bis (2-chloroethyl) Ether	ND		1.2	5		05/19/2014 17:25
Bis (2-chloroisopropyl) Ether	ND		1.2	5		05/19/2014 17:25
Bis (2-ethylhexyl) Adipate	ND		1.2	5		05/19/2014 17:25
Bis (2-ethylhexyl) Phthalate	ND		1.2	5		05/19/2014 17:25
4-Bromophenyl Phenyl Ether	ND		1.2	5		05/19/2014 17:25
Butylbenzyl Phthalate	ND		1.2	5		05/19/2014 17:25
4-Chloroaniline	ND		1.2	5		05/19/2014 17:25
4-Chloro-3-methylphenol	ND		1.2	5		05/19/2014 17:25
2-Chloronaphthalene	ND		1.2	5		05/19/2014 17:25
2-Chlorophenol	ND		1.2	5		05/19/2014 17:25
4-Chlorophenyl Phenyl Ether	ND		1.2	5		05/19/2014 17:25
Chrysene	ND		1.2	5		05/19/2014 17:25
Dibenzo (a,h) anthracene	ND		1.2	5		05/19/2014 17:25
Dibenzofuran	ND		1.2	5		05/19/2014 17:25
Di-n-butyl Phthalate	ND		1.2	5		05/19/2014 17:25
1,2-Dichlorobenzene	ND		1.2	5		05/19/2014 17:25
1,3-Dichlorobenzene	ND		1.2	5		05/19/2014 17:25
1,4-Dichlorobenzene	ND		1.2	5		05/19/2014 17:25
3,3-Dichlorobenzidine	ND		2.5	5		05/19/2014 17:25
2,4-Dichlorophenol	ND		1.2	5		05/19/2014 17:25
Diethyl Phthalate	ND		1.2	5		05/19/2014 17:25
2,4-Dimethylphenol	ND		1.2	5		05/19/2014 17:25
Dimethyl Phthalate	ND		1.2	5		05/19/2014 17:25
4,6-Dinitro-2-methylphenol	ND		6.5	5		05/19/2014 17:25
2,4-Dinitrophenol	ND		32	5		05/19/2014 17:25

(Cont.)

HK Analyst's Initial

# **Analytical Report**

P & D Environmental **Client:** WorkOrder: 1405698 **Project:** #0675; 475 Lesser St. Oakland **Extraction Method: SW3550B Date Received:** 5/16/14 20:10 **Analytical Method: SW8270C** 

**Date Prepared:** 5/17/14 Unit:

### Semi-Volatile Organics by GC/MS (Basic Target List)

Client ID	Lab ID	Matrix/ExtType	Date Col	lected	Instrument	Batch ID
B1A-5.5	1405698-002A	Soil	05/15/2014	14:20	GC21	90528
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>		Date Analyzed
2,4-Dinitrotoluene	ND		1.2	5		05/19/2014 17:25
2,6-Dinitrotoluene	ND		1.2	5		05/19/2014 17:25
Di-n-octyl Phthalate	ND		2.5	5		05/19/2014 17:25
1,2-Diphenylhydrazine	ND		1.2	5		05/19/2014 17:25
Fluoranthene	ND		1.2	5		05/19/2014 17:25
Fluorene	ND		1.2	5		05/19/2014 17:25
Hexachlorobenzene	ND		1.2	5		05/19/2014 17:25
Hexachlorobutadiene	ND		1.2	5		05/19/2014 17:25
Hexachlorocyclopentadiene	ND		6.5	5		05/19/2014 17:25
Hexachloroethane	ND		1.2	5		05/19/2014 17:25
Indeno (1,2,3-cd) pyrene	ND		1.2	5		05/19/2014 17:25
Isophorone	ND		1.2	5		05/19/2014 17:25
2-Methylnaphthalene	ND		1.2	5		05/19/2014 17:25
2-Methylphenol (o-Cresol)	ND		1.2	5		05/19/2014 17:25
3 &/or 4-Methylphenol (m,p-Cresol)	ND		1.2	5		05/19/2014 17:25
Naphthalene	ND		1.2	5		05/19/2014 17:25
2-Nitroaniline	ND		6.5	5		05/19/2014 17:25
3-Nitroaniline	ND		6.5	5		05/19/2014 17:25
4-Nitroaniline	ND		6.5	5		05/19/2014 17:25
Nitrobenzene	ND		1.2	5		05/19/2014 17:25
2-Nitrophenol	ND		6.5	5		05/19/2014 17:25
4-Nitrophenol	ND		6.5	5		05/19/2014 17:25
N-Nitrosodiphenylamine	ND		1.2	5		05/19/2014 17:25
N-Nitrosodi-n-propylamine	ND		1.2	5		05/19/2014 17:25
Pentachlorophenol	ND		6.5	5		05/19/2014 17:25
Phenanthrene	ND		1.2	5		05/19/2014 17:25
Phenol	ND		1.2	5		05/19/2014 17:25
Pyrene	ND		1.2	5		05/19/2014 17:25
1,2,4-Trichlorobenzene	ND		1.2	5		05/19/2014 17:25
2,4,5-Trichlorophenol	ND		1.2	5		05/19/2014 17:25
2,4,6-Trichlorophenol	ND		1.2	5		05/19/2014 17:25

(Cont.)

**Date Prepared:** 5/17/14

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

# **Analytical Report**

Client:P & D EnvironmentalWorkOrder:1405698Project:#0675; 475 Lesser St. OaklandExtraction Method:SW3550BDate Received:5/16/14 20:10Analytical Method:SW8270C

Semi-Volatile Organics by GC/MS (Basic Target List)

Unit:

Semi-volatile Organics by GC/MS (Basic Target List)						
Client ID	Lab ID	Matrix/ExtType	Date Co	llected Instrument	Batch ID	
B1A-5.5	1405698-002A	Soil	05/15/201	4 14:20 GC21	90528	
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>	Date Analyzed	
<u>Surrogates</u>	<u>REC (%)</u>		<u>Limits</u>	Analytical Comments: a3		
2-Fluorophenol	98		30-130		05/19/2014 17:25	
Phenol-d5	94		30-130		05/19/2014 17:25	
Nitrobenzene-d5	83		30-130		05/19/2014 17:25	
2-Fluorobiphenyl	89		30-130		05/19/2014 17:25	
2,4,6-Tribromophenol	68		16-130		05/19/2014 17:25	
4-Terphenyl-d14	111		30-130		05/19/2014 17:25	

# **Analytical Report**

Client:P & D EnvironmentalWorkOrder:1405698Project:#0675; 475 Lesser St. OaklandExtraction Method:SW5030B

**Date Received:** 5/16/14 20:10 Analytical Method: SW8021B/8015Bm

**Date Prepared:** 5/16/14 **Unit:** mg/Kg

#### Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE

Client ID	Lab ID	Matrix/ExtType	Date Col	lected Instrument	Batch ID
B1A-3.0	1405698-001A	Soil	05/15/2014	1 14:15 GC19	90548
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
TPH(g)	ND		1.0	1	05/19/2014 20:30
MTBE			0.050	1	05/19/2014 20:30
Benzene			0.0050	1	05/19/2014 20:30
Toluene			0.0050	1	05/19/2014 20:30
Ethylbenzene			0.0050	1	05/19/2014 20:30
Xylenes			0.0050	1	05/19/2014 20:30
<u>Surrogates</u>	REC (%)		<u>Limits</u>		
2-Fluorotoluene	97		70-130		05/19/2014 20:30

B1A-5.5	1405698-002A Soil	05/15/201	4 14:20 GC19	90548
<u>Analytes</u>	Result	<u>RL</u>	<u>DF</u>	Date Analyzed
TPH(g)	ND	1.0	1	05/19/2014 21:00
MTBE		0.050	1	05/19/2014 21:00
Benzene		0.0050	1	05/19/2014 21:00
Toluene		0.0050	1	05/19/2014 21:00
Ethylbenzene		0.0050	1	05/19/2014 21:00
Xylenes		0.0050	1	05/19/2014 21:00
Surrogates	REC (%)	<u>Limits</u>		
2-Fluorotoluene	94	70-130		05/19/2014 21:00

# **Analytical Report**

Client:P & D EnvironmentalWorkOrder:1405698Project:#0675; 475 Lesser St. OaklandExtraction Method:SW5030BDate Received:5/16/14 20:10Analytical Method:SW8260B

Date Prepared: 5/16/14

Unit: mg/kg

#### MTBE and BTEX by GC/MS

Client ID	Lab ID	Matrix/ExtType	Date Co	llected Instrument	Batch ID
B1A-3.0	1405698-001A	Soil	05/15/201	4 14:15 GC10	90545
Analytes	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
Benzene	ND		0.0050	1	05/22/2014 12:07
Ethylbenzene	ND		0.0050	1	05/22/2014 12:07
Methyl-t-butyl ether (MTBE)	ND		0.0050	1	05/22/2014 12:07
Toluene	ND		0.0050	1	05/22/2014 12:07
Xylenes, Total	ND		0.0050	1	05/22/2014 12:07
<u>Surrogates</u>	REC (%)		<u>Limits</u>		
Dibromofluoromethane	108		70-130		05/22/2014 12:07
Toluene-d8	109		70-130		05/22/2014 12:07

B1A-5.5	1405698-002A Soil	05/15/2014 14:20 GC10	90545
Analytes	Result	<u>RL</u> <u>DF</u>	Date Analyzed
Benzene	ND	0.0050 1	05/22/2014 12:49
Ethylbenzene	ND	0.0050 1	05/22/2014 12:49
Methyl-t-butyl ether (MTBE)	ND	0.0050 1	05/22/2014 12:49
Toluene	ND	0.0050 1	05/22/2014 12:49
Xylenes, Total	ND	0.0050 1	05/22/2014 12:49
Surrogates	<u>REC (%)</u>	<u>Limits</u>	
Dibromofluoromethane	107	70-130	05/22/2014 12:49
Toluene-d8	109	70-130	05/22/2014 12:49

# **Analytical Report**

Client:P & D EnvironmentalWorkOrder:1405698Project:#0675; 475 Lesser St. OaklandExtraction Method:SW3550BDate Received:5/16/14 20:10Analytical Method:SW8015B

Client ID	Lab ID	Matrix/ExtType	Date Co	ollected Instrument	Batch ID
B1A-3.0	1405698-001A	Soil	05/15/20 ⁻	14 14:15 GC2A	90550
Analytes	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
TPH-Diesel (C10-C23)	1.2		1.0	1	05/27/2014 13:45
TPH-Motor Oil (C18-C36)	17		5.0	1	05/27/2014 13:45
Surrogates	<u>REC (%)</u>		<u>Limits</u>	Analytical Comments: e7,e2	
C9	100		70-130		05/27/2014 13:45
	100		10-130		03/21/2014 1

B1A-5.5	1405698-002A Soil	05/15/2014 14:20 GC11A	90550
Analytes	Result	<u>RL</u> <u>DF</u>	Date Analyzed
TPH-Diesel (C10-C23)	7.5	1.0 1	05/24/2014 18:34
TPH-Motor Oil (C18-C36)	78	5.0 1	05/24/2014 18:34
Surrogates	REC (%)	<u>Limits</u> Analytical Comments:	e7,e2
C9	96	70-130	05/24/2014 18:34



# **Quality Control Report**

**Client:** P & D Environmental

**Date Prepared:** 5/16/14 Date Analyzed: 5/16/14 **Instrument:** GC21 Matrix: Soil

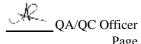
**Project:** #0675; 475 Lesser St. Oakland

WorkOrder: 1405698 **BatchID:** 90528

**Extraction Method: SW3550B** 

**Analytical Method:** SW8270C

Unit: mg/Kg


Sample ID: MB/LCS-90528

1405574-003AMS/MSD

#### **QC Summary Report for SW8270C**

Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
Acenaphthene	ND	4.21	0.25	5	-	84.1	30-130
Acenaphthylene	ND	-	0.25	-	-	-	-
Acetochlor	ND	-	0.25	-	-	-	-
Anthracene	ND	-	0.25	-	-	-	-
Benzidine	ND	-	1.3	-	-	-	-
Benzo (a) anthracene	ND	-	0.25	-	-	-	-
Benzo (b) fluoranthene	ND	-	0.25	-	-	-	-
Benzo (k) fluoranthene	ND	-	0.25	-	-	-	-
Benzo (g,h,i) perylene	ND	-	0.25	-	-	-	-
Benzo (a) pyrene	ND	-	0.25	-	-	-	-
Benzyl Alcohol	ND	-	1.3	-	-	-	-
1,1-Biphenyl	ND	-	0.25	-	-	-	-
Bis (2-chloroethoxy) Methane	ND	-	0.25	-	=	-	-
Bis (2-chloroethyl) Ether	ND	-	0.25	-	=	-	-
Bis (2-chloroisopropyl) Ether	ND	-	0.25	-	=	-	-
Bis (2-ethylhexyl) Adipate	ND	-	0.25	-	_	-	-
Bis (2-ethylhexyl) Phthalate	ND	-	0.25	-	=	-	-
4-Bromophenyl Phenyl Ether	ND	_	0.25	-		-	-
Butylbenzyl Phthalate	ND	_	0.25	-		-	-
4-Chloroaniline	ND	_	0.25	-		-	-
4-Chloro-3-methylphenol	ND	5.31	0.25	5	=	106	30-130
2-Chloronaphthalene	ND	-	0.25	-	=	-	-
2-Chlorophenol	ND	5.05	0.25	5	=	101	30-130
4-Chlorophenyl Phenyl Ether	ND	-	0.25	-	=	-	-
Chrysene	ND	-	0.25	-	=	-	-
Dibenzo (a,h) anthracene	ND	-	0.25	-	=	-	-
Dibenzofuran	ND	_	0.25	-		-	-
Di-n-butyl Phthalate	ND	-	0.25	-	=	-	-
1,2-Dichlorobenzene	ND	-	0.25	-	=	-	-
1,3-Dichlorobenzene	ND	_	0.25	-		-	-
1,4-Dichlorobenzene	ND	4.44	0.25	5		88.9	30-130
3,3-Dichlorobenzidine	ND	_	0.50	-		-	-
2,4-Dichlorophenol	ND	_	0.25	-		-	-
Diethyl Phthalate	ND	-	0.25	-	-	-	-
2,4-Dimethylphenol	ND	-	0.25	-	-	-	-
Dimethyl Phthalate	ND	-	0.25	-	-	-	-
4,6-Dinitro-2-methylphenol	ND	-	1.3	-	-	-	-
2,4-Dinitrophenol	ND	-	6.3	-	-	-	-
2,4-Dinitrotoluene	ND	4.72	0.25	5	-	94.5	30-130
2,6-Dinitrotoluene	ND	-	0.25	-		-	-

(Cont.)





# **Quality Control Report**

**Client:** P & D Environmental

Date Prepared: 5/16/14Date Analyzed: 5/16/14Instrument: GC21Matrix: Soil

**Project:** #0675; 475 Lesser St. Oakland

**WorkOrder:** 1405698 **BatchID:** 90528

**Extraction Method:** SW3550B

**Analytical Method:** SW8270C

**Unit:** mg/Kg

Sample ID: MB/LCS-90528

1405574-003AMS/MSD

#### **QC Summary Report for SW8270C**

Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
Di-n-octyl Phthalate	ND	-	0.50	-	-	-	-
1,2-Diphenylhydrazine	ND	-	0.25	-	-	-	-
Fluoranthene	ND	-	0.25	-	-	-	-
Fluorene	ND	-	0.25	-	-	-	-
Hexachlorobenzene	ND	-	0.25	-	-	-	-
Hexachlorobutadiene	ND	-	0.25	-	-	-	-
Hexachlorocyclopentadiene	ND	-	1.3	-	-	-	-
Hexachloroethane	ND	-	0.25	-	-	-	-
Indeno (1,2,3-cd) pyrene	ND	-	0.25	-	-	-	-
Isophorone	ND	-	0.25	-	-	-	-
2-Methylnaphthalene	ND	-	0.25	-	-	-	-
2-Methylphenol (o-Cresol)	ND	-	0.25	-	-	-	-
3 &/or 4-Methylphenol (m,p-Cresol)	ND	-	0.25	-	-	-	-
Naphthalene	ND	-	0.25	-	-	-	-
2-Nitroaniline	ND	-	1.3	-	-	-	-
3-Nitroaniline	ND	-	1.3	-	-	-	-
4-Nitroaniline	ND	-	1.3	-	-	-	-
Nitrobenzene	ND	-	0.25	-	-	-	-
2-Nitrophenol	ND	-	1.3	-	-	-	-
4-Nitrophenol	ND	3.95	1.3	5	-	79	30-130
N-Nitrosodiphenylamine	ND	-	0.25	-	-	-	-
N-Nitrosodi-n-propylamine	ND	5.12	0.25	5	-	102	30-130
Pentachlorophenol	ND	4.16	1.3	5	-	83.2	30-130
Phenanthrene	ND	-	0.25	-	-	-	-
Phenol	ND	4.91	0.25	5	-	98.1	30-130
Pyrene	ND	4.84	0.25	5	-	96.8	30-130
1,2,4-Trichlorobenzene	ND	4.77	0.25	5	-	95.4	30-130
2,4,5-Trichlorophenol	ND	-	0.25	-	-	-	-
2,4,6-Trichlorophenol	ND	-	0.25	=	-	-	-
Surrogate Recovery							
2-Fluorophenol	4.33	4.54		5	87	91	30-130
Phenol-d5	4.29	4.43		5	86	89	30-130
Nitrobenzene-d5	3.98	4.21		5	80	84	30-130
2-Fluorobiphenyl	4.03	4.21		5	81	84	30-130
2,4,6-Tribromophenol	3.58	4.00		5	72	80	16-130
4-Terphenyl-d14	4.91	5.44		5	98	109	30-130



# **Quality Control Report**

Client: P & D Environmental

Date Prepared: 5/16/14Date Analyzed: 5/16/14Instrument: GC21Matrix: Soil

**Project:** #0675; 475 Lesser St. Oakland

**WorkOrder:** 1405698 **BatchID:** 90528

**Extraction Method:** SW3550B **Analytical Method:** SW8270C

**Unit:** mg/Kg

Sample ID: MB/LCS-90528

1405574-003AMS/MSD

<b>OC Summary</b>	Report	for	SW8270C
	IZCDOI (	IUI	3 W 04/UC

Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
Acenaphthene	NR	NR	0	ND<10	NR	NR	-	NR	
4-Chloro-3-methylphenol	NR	NR	0	ND<10	NR	NR	-	NR	
2-Chlorophenol	NR	NR	0	ND<10	NR	NR	-	NR	
1,4-Dichlorobenzene	NR	NR	0	ND<10	NR	NR	-	NR	
2,4-Dinitrotoluene	NR	NR	0	ND<10	NR	NR	-	NR	
4-Nitrophenol	NR	NR	0	ND<52	NR	NR	-	NR	
N-Nitrosodi-n-propylamine	NR	NR	0	ND<10	NR	NR	-	NR	
Pentachlorophenol	NR	NR	0	ND<52	NR	NR	-	NR	
Phenol	NR	NR	0	ND<10	NR	NR	-	NR	
Pyrene	NR	NR	0	ND<10	NR	NR	-	NR	
1,2,4-Trichlorobenzene	NR	NR	0	ND<10	NR	NR	-	NR	
Surrogate Recovery									
2-Fluorophenol	NR	NR	0		NR	NR	-	NR	
Phenol-d5	NR	NR	0		NR	NR	-	NR	
Nitrobenzene-d5	NR	NR	0		NR	NR	-	NR	
2-Fluorobiphenyl	NR	NR	0		NR	NR	-	NR	
2,4,6-Tribromophenol	NR	NR	0		NR	NR	-	NR	
4-Terphenyl-d14	NR	NR	0		NR	NR	-	NR	-

1405698

### **Quality Control Report**

Client: P & D Environmental WorkOrder:

Date Prepared:5/16/14BatchID:90548Date Analyzed:5/16/14Extraction Method:SW5030B

**Instrument:** GC7 **Analytical Method:** SW8021B/8015Bm

Matrix: Soil Unit: mg/Kg

**Project:** #0675; 475 Lesser St. Oakland **Sample ID:** MB/LCS-90548

1405695-009AMS/MSD

#### QC Summary Report for SW8021B/8015Bm

Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
TPH(btex)	ND	0.658	0.40	0.60	-	110	70-130
MTBE	ND	0.0821	0.050	0.10	-	82.1	70-130
Benzene	ND	0.106	0.0050	0.10	-	106	70-130
Toluene	ND	0.105	0.0050	0.10	-	105	70-130
Ethylbenzene	ND	0.111	0.0050	0.10	-	111	70-130
Xylenes	ND	0.338	0.0050	0.30	-	113	70-130

2-Fluorotoluene 0.106 0.108 0.10 106 108 70-130

Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
TPH(btex)	0.607	0.604	0.60	ND	101	101	70-130	0	20
MTBE	0.0789	0.0791	0.10	ND	78.9	79.1	70-130	0.243	20
Benzene	0.105	0.104	0.10	ND	105	104	70-130	0.760	20
Toluene	0.102	0.102	0.10	ND	103	102	70-130	0.282	20
Ethylbenzene	0.108	0.108	0.10	ND	107	108	70-130	0.120	20
Xylenes	0.328	0.327	0.30	ND	109	109	70-130	0	20
Surrogate Recovery									
2-Fluorotoluene	0.106	0.105	0.10		106	105	70-130	0.687	20

# **Quality Control Report**

**Client:** P & D Environmental

**Date Prepared:** 5/16/14

**Date Analyzed:** 5/16/14 - 5/17/14

**Instrument:** GC10 **Matrix:** Soil

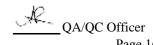
**Project:** #0675; 475 Lesser St. Oakland

WorkOrder: 1405698

**BatchID:** 90545

**Extraction Method:** SW5030B **Analytical Method:** SW8260B

Unit: mg/Kg


Sample ID: MB/LCS-90545

1405693-001AMS/MSD

#### **QC Summary Report for SW8260B**

Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
Acetone	ND	-	0.10	-	-	-	-
tert-Amyl methyl ether (TAME)	ND	-	0.0050	-	-	-	-
Benzene	ND	0.0432	0.0050	0.050	-	86.3	70-130
Bromobenzene	ND	-	0.0050	-	-	-	-
Bromochloromethane	ND	-	0.0050	-	-	-	-
Bromodichloromethane	ND	-	0.0050	-	-	-	-
Bromoform	ND	-	0.0050	-	-	-	-
Bromomethane	ND	-	0.0050	-	-	-	-
2-Butanone (MEK)	ND	-	0.020	-	-	-	-
t-Butyl alcohol (TBA)	ND	-	0.050	-	-	-	-
n-Butyl benzene	ND	-	0.0050	-	-	-	-
sec-Butyl benzene	ND	-	0.0050	-	-	-	-
tert-Butyl benzene	ND	-	0.0050	-	=	-	-
Carbon Disulfide	ND	-	0.0050	-	=	-	-
Carbon Tetrachloride	ND	-	0.0050	-	=	-	_
Chlorobenzene	ND	_	0.0050	-	-	-	-
Chloroethane	ND	_	0.0050	-	-	-	-
Chloroform	ND	_	0.0050	-	=	-	-
Chloromethane	ND	_	0.0050	-	=	-	-
2-Chlorotoluene	ND	_	0.0050	-	=	-	-
4-Chlorotoluene	ND	_	0.0050	-	=	-	-
Dibromochloromethane	ND	_	0.0050	-	-	-	-
1,2-Dibromo-3-chloropropane	ND	-	0.0040	-	_	-	-
1,2-Dibromoethane (EDB)	ND	-	0.0040	-	-	-	-
Dibromomethane	ND	-	0.0050	-	_	-	-
1,2-Dichlorobenzene	ND	-	0.0050		_	-	-
1,3-Dichlorobenzene	ND	-	0.0050		_	-	-
1,4-Dichlorobenzene	ND	-	0.0050		_	-	-
Dichlorodifluoromethane	ND	-	0.0050	-	-	-	-
1,1-Dichloroethane	ND	-	0.0050		_	-	-
1,2-Dichloroethane (1,2-DCA)	ND	-	0.0040		_	-	-
1,1-Dichloroethene	ND	-	0.0050		_	-	-
cis-1,2-Dichloroethene	ND	-	0.0050		-	-	-
trans-1,2-Dichloroethene	ND	-	0.0050	-	-	-	-
1,2-Dichloropropane	ND	_	0.0050	-	-	-	-
1,3-Dichloropropane	ND	_	0.0050	-	_	-	-
2,2-Dichloropropane	ND	_	0.0050	-	_	-	-
1,1-Dichloropropene	ND	-	0.0050	-	-	-	
cis-1,3-Dichloropropene	ND	-	0.0050	-	-	-	
trans-1,3-Dichloropropene	ND		0.0050	_		-	_

(Cont.)



# **Quality Control Report**

**Client:** P & D Environmental

**Date Prepared:** 5/16/14

**Date Analyzed:** 5/16/14 - 5/17/14

**Instrument:** GC10 **Matrix:** Soil

**Project:** #0675; 475 Lesser St. Oakland WorkOrder: 1405698

**BatchID:** 90545

**Extraction Method: SW5030B Analytical Method:** SW8260B

**Unit:** mg/Kg

**Sample ID:** MB/LCS-90545

1405693-001AMS/MSD

<b>OC Summary</b>	Report for	SW8260B
		O M OZOUD

Ethyl terr-buryl ether (ETBE)         ND         -         0.0050         -         -         -           Ethyl terr-buryl ether (ETBE)         ND         -         0.0050         -         -         -           Freon 113         ND         -         0.0050         -         -         -           Hexachlorobutadiene         ND         -         0.0050         -         -         -           Hexachloroethane         ND         -         0.0050         -         -         -           2-Hexanone         ND         -         0.0050         -         -         -           Stopropylenzene         ND         -         0.0050         -         -         -           4-Isopropyl toluene         ND         -         0.0050         -         -         -           Methyl-t-butyl ether (MTBE)         ND         0.0457         0.0050         0.050         -         -         -           Methyl-t-butyl ether (MTBE)         ND         0.0457         0.0050         -         -         -           Methyl-t-butyl ether (MTBE)         ND         0.0457         0.0050         -         -         -           4-Methyl-2-pertanone (MIBK) <th>Analyte</th> <th>MB Result</th> <th>LCS Result</th> <th>RL</th> <th>SPK Val</th> <th>MB SS %REC</th> <th>LCS %REC</th> <th>LCS Limits</th>	Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
Ethyl tert-butyl ether (ETBE)	Diisopropyl ether (DIPE)	ND	-	0.0050	-	-	-	-
Freon 113	Ethylbenzene	ND	-	0.0050	=	-	-	-
Hexachlorobutadiene   ND	Ethyl tert-butyl ether (ETBE)	ND	-	0.0050	=	-	-	-
Hexachloroethane	Freon 113	ND	-	0.0050	=	-	-	-
2-Hexanone   ND	Hexachlorobutadiene	ND	-	0.0050	=	-	-	-
Sopropylbenzene	Hexachloroethane	ND	-	0.0050	-	-	-	-
Alsopropy  toluene   ND	2-Hexanone	ND	-	0.0050	-	-	-	-
Methyl-t-butyl ether (MTBE)         ND         0.0457         0.0050         -         91.3           Methylene chloride         ND         -         0.0050         -         -         -           4-Methyl-2-pentanone (MIBK)         ND         -         0.0050         -         -         -           Naphthalene         ND         -         0.0050         -         -         -           Naphthalene         ND         -         0.0050         -         -         -           Np         -         0.0050         -         -         -         -           Styrene         ND         -         0.0050         -         -         -           1,1,2-Tetrachloroethane         ND         -         0.0050         -         -         -           1,1,2-Tetrachloroethane         ND         -         0.0050         -         -         -           Tetrachloroethane         ND         -         0.0050         -         -         -           Toluene         ND         -         0.0050         -         -         -           1,2,3-Trichlorobenzene         ND         -         0.0050         -         -	Isopropylbenzene	ND	-	0.0050	-	-	-	-
Methylene chloride         ND         -         0.0050         -         -         -           4-Methyl-2-pentanone (MIBK)         ND         -         0.0050         -         -         -           Naphthalene         ND         -         0.0050         -         -         -           n-Propyl benzene         ND         -         0.0050         -         -         -           Styrene         ND         -         0.0050         -         -         -           1,1,2-Tetrachloroethane         ND         -         0.0050         -         -         -           1,1,2-Tetrachloroethane         ND         -         0.0050         -         -         -           1,1,2-Tetrachloroethane         ND         -         0.0050         -         -         -           Toluene         ND         -         0.0050         -         -         -           1,2,3-Trichlorobenzene         ND         -         0.0050         -         -         -           1,2,4-Trichloroethane         ND         -         0.0050         -         -         -           1,1,2-Trichloroethane         ND         -         0.0050	4-Isopropyl toluene	ND	-	0.0050	-	-	-	-
4-Methyl-2-pentanone (MIBK)         ND         -         0.0050         -         -         -           Naphthalene         ND         -         0.0050         -         -         -           n-Propyl benzene         ND         -         0.0050         -         -         -           Styrene         ND         -         0.0050         -         -         -           1,1,1,2-Tetrachloroethane         ND         -         0.0050         -         -         -           1,1,2,2-Tetrachloroethane         ND         -         0.0050         -         -         -           Tetrachloroethane         ND         -         0.0050         -         -         -           Toluene         ND         0.0475         0.0050         -         -         -           1,2,3-Trichlorobenzene         ND         -         0.0050         -         -         -           1,2,4-Trichlorobenzene         ND         -         0.0050         -         -         -           1,1,1-Trichloroethane         ND         -         0.0050         -         -         -           1,1,1-Trichloroethane         ND         -         0.0050	Methyl-t-butyl ether (MTBE)	ND	0.0457	0.0050	0.050	-	91.3	70-130
Naphthalene         ND         -         0.0050         -         -         -           n-Propyl benzene         ND         -         0.0050         -         -         -           Styrene         ND         -         0.0050         -         -         -           1,1,2-Tetrachloroethane         ND         -         0.0050         -         -         -           1,1,2-Tetrachloroethane         ND         -         0.0050         -         -         -           1,1,2-Tetrachloroethane         ND         -         0.0050         -         -         -           Tetrachloroethane         ND         -         0.0050         -         -         -         -           Toluene         ND         0.0475         0.0050         0.050         -         -         -           Toluene         ND         -         0.0050         -         -         -         -           1,2,3-Trichloroebnzene         ND         -         0.0050         -         -         -         -           1,1,1-Trichloroethane         ND         -         0.0050         -         -         -         -           Trichloroethane	Methylene chloride	ND	-	0.0050	-	-	-	-
n-Propyl benzene         ND         -         0.0050         -         -         -           Styrene         ND         -         0.0050         -         -         -           1,1,2-Tetrachloroethane         ND         -         0.0050         -         -         -           1,1,2,2-Tetrachloroethane         ND         -         0.0050         -         -         -           Tetrachloroethane         ND         -         0.0050         -         -         -           Toluene         ND         0.0475         0.0050         0.050         -         -         -           Toluene         ND         -         0.0050         -         -         -         -           Toluene         ND         -         0.0050         -         -         -         -         -           Toluene         ND         -         0.0050         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -	4-Methyl-2-pentanone (MIBK)	ND	-	0.0050	-	-	-	-
Styrene         ND         -         0.0050         -         -         -           1,1,1,2-Tetrachloroethane         ND         -         0.0050         -         -         -           1,1,2,2-Tetrachloroethane         ND         -         0.0050         -         -         -           Tetrachloroethane         ND         -         0.0050         -         -         -           Toluene         ND         0.0475         0.0050         0.050         -         94.9           1,2,3-Trichlorobenzene         ND         -         0.0050         -         -         -           1,2,4-Trichlorobenzene         ND         -         0.0050         -         -         -           1,2,4-Trichloroethane         ND         -         0.0050         -         -         -           1,1,2-Trichloroethane         ND         -         0.0050         -         -         -           1,1,2-Trichloroethane         ND         -         0.0050         -         -         -           Trichlorofluoromethane         ND         -         0.0050         -         -         -           1,2,3-Trichloropropane         ND         -	Naphthalene	ND	-	0.0050	-	-	-	-
1,1,1,2-Tetrachloroethane         ND         -         0.0050         -         -         -           1,1,2,2-Tetrachloroethane         ND         -         0.0050         -         -         -           Tetrachloroethene         ND         -         0.0050         -         -         -           Toluene         ND         0.0475         0.0050         -         -         -           1,2,3-Trichlorobenzene         ND         -         0.0050         -         -         -           1,2,4-Trichlorobenzene         ND         -         0.0050         -         -         -           1,1,1-Trichloroethane         ND         -         0.0050         -         -         -           1,1,2-Trichloroethane         ND         -         0.0050         -         -         -           1,1,2-Trichloroethane         ND         -         0.0050         -         -         -           Trichlorofluoromethane         ND         -         0.0050         -         -         -           1,2,3-Trichloropropane         ND         -         0.0050         -         -         -           1,3,5-Trimethylbenzene         ND         -	n-Propyl benzene	ND	-	0.0050	-	-	-	-
1,1,2,2-Tetrachloroethane       ND       -       0.0050       -       -       -         Tetrachloroethene       ND       -       0.0050       -       -       -         Toluene       ND       0.0475       0.0050       0.050       -       94.9         1,2,3-Trichlorobenzene       ND       -       0.0050       -       -       -         1,2,4-Trichlorobenzene       ND       -       0.0050       -       -       -         1,1,1-Trichloroethane       ND       -       0.0050       -       -       -         1,1,2-Trichloroethane       ND       -       0.0050       -       -       -         1,1,2-Trichloroethane       ND       -       0.0050       -       -       -         1,1,2-Trichloroethane       ND       -       0.0050       -       -       -         Trichloroethane       ND       -       0.0050       -       -       -         Trichloroethane       ND       -       0.0050       -       -       -         1,2,3-Trichloropropane       ND       -       0.0050       -       -       -         1,3,5-Trimethylbenzene       ND       -<	Styrene	ND	-	0.0050	-	-	-	-
Tetrachloroethene         ND         -         0.0050         -         -         -           Toluene         ND         0.0475         0.0050         0.050         -         94.9           1,2,3-Trichlorobenzene         ND         -         0.0050         -         -         -           1,2,4-Trichlorobenzene         ND         -         0.0050         -         -         -           1,1,1-Trichloroethane         ND         -         0.0050         -         -         -           1,1,2-Trichloroethane         ND         -         0.0050         -         -         -           1,1,2-Trichloroethane         ND         -         0.0050         -         -         -           1,1,2-Trichloroethane         ND         -         0.0050         -         -         -           Trichlorofluoromethane         ND         -         0.0050         -         -         -           1,2,3-Trichloropropane         ND         -         0.0050         -         -         -           1,2,4-Trimethylbenzene         ND         -         0.0050         -         -         -           Vinyl Chloride         ND         -	1,1,1,2-Tetrachloroethane	ND	-	0.0050	-	-	-	-
Toluene         ND         0.0475         0.0050         0.050         -         94.9           1,2,3-Trichlorobenzene         ND         -         0.0050         -         -         -           1,2,4-Trichlorobenzene         ND         -         0.0050         -         -         -           1,1,1-Trichloroethane         ND         -         0.0050         -         -         -           1,1,2-Trichloroethane         ND         -         0.0050         -         -         -           Trichloroethene         ND         -         0.0050         -         -         -           Trichlorofluoromethane         ND         -         0.0050         -         -         -           1,2,3-Trichloropropane         ND         -         0.0050         -         -         -           1,2,4-Trimethylbenzene         ND         -         0.0050         -         -         -           1,3,5-Trimethylbenzene         ND         -         0.0050         -         -         -           Vinyl Chloride         ND         -         0.0050         -         -         -           Xylenes, Total         ND         -         0.0	1,1,2,2-Tetrachloroethane	ND	-	0.0050	-	-	-	-
1,2,3-Trichlorobenzene         ND         -         0.0050         -         -         -           1,2,4-Trichlorobenzene         ND         -         0.0050         -         -         -           1,1,1-Trichloroethane         ND         -         0.0050         -         -         -           1,1,2-Trichloroethane         ND         -         0.0050         -         -         -           Trichloroethane         ND         -         0.0050         -         -         -           Trichlorofluoromethane         ND         -         0.0050         -         -         -           1,2,3-Trichloropropane         ND         -         0.0050         -         -         -           1,2,4-Trimethylbenzene         ND         -         0.0050         -         -         -           1,3,5-Trimethylbenzene         ND         -         0.0050         -         -         -           Vinyl Chloride         ND         -         0.0050         -         -         -           Xylenes, Total         ND         -         0.0050         -         -         -           Surrogate Recovery           Dibromofluoromethane <td>Tetrachloroethene</td> <td>ND</td> <td>-</td> <td>0.0050</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td>	Tetrachloroethene	ND	-	0.0050	-	-	-	-
1,2,4-Trichlorobenzene       ND       -       0.0050       -       -       -         1,1,1-Trichloroethane       ND       -       0.0050       -       -       -         1,1,2-Trichloroethane       ND       -       0.0050       -       -       -         Trichloroethane       ND       -       0.0050       -       -       -         Trichlorofluoromethane       ND       -       0.0050       -       -       -         1,2,3-Trichloropropane       ND       -       0.0050       -       -       -         1,2,4-Trimethylbenzene       ND       -       0.0050       -       -       -         1,3,5-Trimethylbenzene       ND       -       0.0050       -       -       -         Vinyl Chloride       ND       -       0.0050       -       -       -         Xylenes, Total       ND       -       0.0050       -       -       -         Surrogate Recovery         Dibromofluoromethane       0.130       0.183       0.18       104       105         Toluene-d8       0.138       0.191       0.18       111       109	Toluene	ND	0.0475	0.0050	0.050	-	94.9	70-130
1,1,1-Trichloroethane         ND         -         0.0050         -         -         -           1,1,2-Trichloroethane         ND         -         0.0050         -         -         -           Trichloroethene         ND         -         0.0050         -         -         -           Trichlorofluoromethane         ND         -         0.0050         -         -         -           1,2,3-Trichloropropane         ND         -         0.0050         -         -         -           1,2,4-Trimethylbenzene         ND         -         0.0050         -         -         -           1,3,5-Trimethylbenzene         ND         -         0.0050         -         -         -           Vinyl Chloride         ND         -         0.0050         -         -         -           Xylenes, Total         ND         -         0.0050         -         -         -           Surrogate Recovery           Dibromofluoromethane         0.130         0.183         0.18         104         105           Toluene-d8         0.138         0.191         0.18         111         109	1,2,3-Trichlorobenzene	ND	-	0.0050	-	-	-	-
1,1,2-Trichloroethane       ND       -       0.0050       -       -       -         Trichloroethene       ND       -       0.0050       -       -       -         Trichloroffluoromethane       ND       -       0.0050       -       -       -         1,2,3-Trichloropropane       ND       -       0.0050       -       -       -         1,2,4-Trimethylbenzene       ND       -       0.0050       -       -       -         1,3,5-Trimethylbenzene       ND       -       0.0050       -       -       -         Vinyl Chloride       ND       -       0.0050       -       -       -         Xylenes, Total       ND       -       0.0050       -       -       -         Surrogate Recovery         Dibromofluoromethane       0.130       0.183       0.18       104       105         Toluene-d8       0.138       0.191       0.18       111       109	1,2,4-Trichlorobenzene	ND	-	0.0050	-	-	-	-
Trichloroethene         ND         -         0.0050         -         -         -           Trichlorofluoromethane         ND         -         0.0050         -         -         -           1,2,3-Trichloropropane         ND         -         0.0050         -         -         -           1,2,4-Trimethylbenzene         ND         -         0.0050         -         -         -           1,3,5-Trimethylbenzene         ND         -         0.0050         -         -         -           Vinyl Chloride         ND         -         0.0050         -         -         -           Xylenes, Total         ND         -         0.0050         -         -         -           Surrogate Recovery           Dibromofluoromethane         0.130         0.183         0.18         104         105           Toluene-d8         0.138         0.191         0.18         111         109	1,1,1-Trichloroethane	ND	-	0.0050	-	-	-	-
Trichlorofluoromethane         ND         -         0.0050         -         -         -           1,2,3-Trichloropropane         ND         -         0.0050         -         -         -           1,2,4-Trimethylbenzene         ND         -         0.0050         -         -         -           1,3,5-Trimethylbenzene         ND         -         0.0050         -         -         -           Vinyl Chloride         ND         -         0.0050         -         -         -           Xylenes, Total         ND         -         0.0050         -         -         -           Surrogate Recovery           Dibromofluoromethane         0.130         0.183         0.18         104         105           Toluene-d8         0.138         0.191         0.18         111         109	1,1,2-Trichloroethane	ND	-	0.0050	-	-	-	-
1,2,3-Trichloropropane       ND       -       0.0050       -       -       -         1,2,4-Trimethylbenzene       ND       -       0.0050       -       -       -         1,3,5-Trimethylbenzene       ND       -       0.0050       -       -       -         Vinyl Chloride       ND       -       0.0050       -       -       -         Xylenes, Total       ND       -       0.0050       -       -       -         Surrogate Recovery         Dibromofluoromethane       0.130       0.183       0.18       104       105         Toluene-d8       0.138       0.191       0.18       111       109	Trichloroethene	ND	-	0.0050	-	-	-	-
1,2,4-Trimethylbenzene       ND       -       0.0050       -       -       -         1,3,5-Trimethylbenzene       ND       -       0.0050       -       -       -         Vinyl Chloride       ND       -       0.0050       -       -       -         Xylenes, Total       ND       -       0.0050       -       -       -         Surrogate Recovery         Dibromofluoromethane       0.130       0.183       0.18       104       105         Toluene-d8       0.138       0.191       0.18       111       109	Trichlorofluoromethane	ND	-	0.0050	-	-	-	-
1,3,5-Trimethylbenzene       ND       -       0.0050       -       -       -         Vinyl Chloride       ND       -       0.0050       -       -       -         Xylenes, Total       ND       -       0.0050       -       -       -         Surrogate Recovery         Dibromofluoromethane       0.130       0.183       0.18       104       105         Toluene-d8       0.138       0.191       0.18       111       109	1,2,3-Trichloropropane	ND	-	0.0050	=	-	-	-
Vinyl Chloride         ND         -         0.0050         -         -         -           Xylenes, Total         ND         -         0.0050         -         -         -           Surrogate Recovery           Dibromofluoromethane         0.130         0.183         0.18         104         105           Toluene-d8         0.138         0.191         0.18         111         109	1,2,4-Trimethylbenzene	ND	-	0.0050	=	-	-	-
Xylenes, Total         ND         -         0.0050         -         -         -           Surrogate Recovery           Dibromofluoromethane         0.130         0.183         0.18         104         105           Toluene-d8         0.138         0.191         0.18         111         109	1,3,5-Trimethylbenzene	ND	-	0.0050	-	-	-	-
Surrogate Recovery           Dibromofluoromethane         0.130         0.183         0.18         104         105           Toluene-d8         0.138         0.191         0.18         111         109	Vinyl Chloride	ND	-	0.0050	-	-	-	-
Dibromofluoromethane         0.130         0.183         0.18         104         105           Toluene-d8         0.138         0.191         0.18         111         109		ND	-	0.0050	-	-	-	-
Toluene-d8 0.138 0.191 0.18 111 109	Surrogate Recovery							
	Dibromofluoromethane	0.130	0.183		0.18	104	105	70-130
4-BFB 0.0111 - 0.0125 89 -	Toluene-d8	0.138	0.191		0.18	111	109	70-130
	4-BFB	0.0111	-		0.0125	89	-	-

Dibromofluoromethane	0.130	0.183	0.18	104	105	70-130
Toluene-d8	0.138	0.191	0.18	111	109	70-130
4-BFB	0.0111	-	0.0125	89	-	-

# **Quality Control Report**

**Client:** P & D Environmental

**Date Prepared:** 5/16/14

**Date Analyzed:** 5/16/14 - 5/17/14

**Instrument:** GC10 **Matrix:** Soil

**Project:** #0675; 475 Lesser St. Oakland

**WorkOrder:** 1405698

**BatchID:** 90545

**Extraction Method:** SW5030B

**Analytical Method:** SW8260B **Unit:** mg/Kg

Sample ID: MB/LCS-90545

1405693-001AMS/MSD

<b>QC Summary</b>	Report for	: SW8260B

Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
Benzene	0.0393	0.0399	0.050	ND	78.7	79.7	70-130	1.35	30
Methyl-t-butyl ether (MTBE)	0.0416	0.0423	0.050	ND	83.1	84.5	70-130	1.69	30
Toluene	0.0409	0.0420	0.050	ND	81.9	83.9	70-130	2.47	30
Surrogate Recovery									
Dibromofluoromethane	0.181	0.180	0.18		104	103	70-130	0.577	30
Toluene-d8	0.182	0.183	0.18		104	104	70-130	0	30

# **Quality Control Report**

**Client:** P & D Environmental

**Date Prepared:** 5/16/14

**Date Analyzed:** 5/18/14 - 5/19/14 **Instrument:** GC11A, GC6A

Matrix: Soil

**Project:** #0675; 475 Lesser St. Oakland

WorkOrder:

1405698

**BatchID:** 90550

**Extraction Method:** SW3550B

**Analytical Method:** SW8015B

**Unit:** mg/Kg

Sample ID: MB/LCS-90550

1405695-008AMS/MSD

	QC Sum	mary Rep	port for	SW80151	В					
Analyte	MB Result	LCS Result		RL	SPK Val	MB SS	%REC	LCS %REC		LCS Limits
TPH-Diesel (C10-C23)	ND	40.3		1.0	40	-		101		70-130
Surrogate Recovery										
C9	23.4	29.4			25	93		118		70-130
Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/M Limits	_	RPD	RPD Limit
TPH-Diesel (C10-C23)	NR	NR	0	170	NR	NR	-	ı	NR	
Surrogate Recovery										
C9	NR	NR	0		NR	NR	-	1	NR	

### McCampbell Analytical, Inc.

# **CHAIN-OF-CUSTODY RECORD**

Page 1 of

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

WorkOrder: 1405698 ClientCode: PDEO

	☐ WaterTrax ☐ Write	OnEDF	Excel	EQuIS	<b>✓</b> Email	HardCopy	ThirdParty	J-flag
Report to:			Bil	l to:		Req	uested TAT:	5 days
Paul King	Email: lab@pdenv	iro.com		Accounts Pay	/able			
P & D Environmental	cc/3rd Party:			P & D Enviror	nmental			
55 Santa Clara, Ste.240	PO:			55 Santa Clai	ra, Ste.240	Dat	e Received:	05/16/2014
Oakland, CA 94610	ProjectNo: #0675; 475	Lesser St. Oakland		Oakland, CA	94610	Dat	e Printed:	05/19/2014

(510) 658-6916 FAX: 510-834-0152

					Requested Tests (See legend below)											
Lab ID	Client ID	Matrix	<b>Collection Date</b>	Hold	1	2	3	4	5	6	7	8	9	10	11	12
1405698-001	B1A-3.0	Soil	5/15/2014 14:15		Α	Α	Α									
1405698-002	B1A-5.5	Soil	5/15/2014 14:20		Α	Α	Α									

#### Test Legend:

1	8270D_S	2	G-MBTEX_S	3	MBTEX-8260B_S	4	5	
6		7		8		9	10	
11		12						

The following SampIDs: 001A, 002A contain testgroup.

#### **Comments:**

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days).

Hazardous samples will be returned to client or disposed of at client expense.

Prepared by: Ana Venegas



# McCampbell Analytical, Inc. "When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

#### **WORK ORDER SUMMARY**

<b>Client Name</b>	Tame: P & D ENVIRONMENTAL QC Level: LEVEL 2						Worl	k Order:	1405698	
Project:	#0675; 475	Lesser St. Oakland		Client Contact: Pa	ul King			Date R	eceived:	5/16/2014
<b>Comments:</b>			(	Contact's Email: lab	o@pdenviro.com					
		☐ WaterTrax	☐WriteOn ☐EDF	Excel	]Fax <b></b> ✓Email	HardC	copy ThirdPar	tyJ	-flag	
Lab ID	Client ID	Matrix	Test Name	Number of Containers	Bottle & Preservative	De- chlorinated	Collection Date & Time	TAT	Sediment Content	t Hold SubOu
1405698-001A	B1A-3.0	Soil	Multi-Range TPH(g,d,mo)	1	Acetate Liner		5/15/2014 14:15	5 days		
			SW8260B (MTBE & BTEX)					5 days		
			SW8270C (SVOCs)					5 days		
1405698-002A	B1A-5.5	Soil	Multi-Range TPH(g,d,mo)	1	Acetate Liner		5/15/2014 14:20	5 days		
			SW8260B (MTBE & BTEX)					5 days		
			SW8270C (SVOCs)					5 days		

* NOTE: STLC and TCLP extractions require 48 hrs to complete; therefore, all TATs begin after the extraction is completed (i.e., 24hr TAT yields results in 72 hrs from sample submission).

**Bottle Legend:** 

Acetate Liner = Acetate Liner

Comments:

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

### **Sample Receipt Checklist**

Client Name:	P & D Environmenta	I			Date and	Time Received:	5/16/2014 8:10	):02 PM
Project Name:	#0675; 475 Lesser S	it. Oakland			LogIn Rev	iewed by:	,	Ana Venegas
WorkOrder N°:	1405698	Matrix: Soil			Carrier:	Brian STANFO	RD (MAI Courie	<u>r)</u>
		<u>Cha</u>	in of Cւ	ustody (COC	) Information			
Chain of custody	present?		Yes	<b>✓</b>	No 🗌			
Chain of custody	signed when relinquis	hed and received?	Yes	<b>✓</b>	No $\square$			
Chain of custody	agrees with sample la	bels?	Yes	<b>✓</b>	No $\square$			
Sample IDs noted	d by Client on COC?		Yes	✓	No 🗌			
Date and Time of	f collection noted by Cl	lient on COC?	Yes	<b>✓</b>	No 🗌			
Sampler's name	noted on COC?		Yes	<b>✓</b>	No 🗌			
			Sample	Receipt Inf	<u>ormation</u>			
Custody seals int	tact on shipping contai	ner/cooler?	Yes		No 🗌		NA 🗸	
Shipping containe	er/cooler in good condi	ition?	Yes	<b>✓</b>	No $\square$			
Samples in prope	er containers/bottles?		Yes	<b>✓</b>	No 🗌			
Sample container	rs intact?		Yes	<b>✓</b>	No 🗌			
Sufficient sample	e volume for indicated t	est?	Yes	✓	No $\square$			
		Sample Pres	servatio	n and Hold	Time (HT) Info	ormation		
All samples recei	ived within holding time	e?	Yes	✓	No 🗌			
Container/Temp I	Blank temperature		Coole	er Temp: 3.	3°C		NA 🗌	
Water - VOA vials	s have zero headspace	e / no bubbles?	Yes		No 🗌		NA 🗸	
Sample labels ch	necked for correct pres	ervation?	Yes	<b>✓</b>	No 🗌			
pH acceptable up	oon receipt (Metal: pH<	<2; 522: pH<4)?	Yes		No 🗌		NA 🗸	
Samples Receive	ed on Ice?		Yes	<b>✓</b>	No 🗆			
		(Ice Typ	oe: WE	TICE )				
* NOTE: If the "N	lo" box is checked, see	e comments below.						
		=====						



# McCampbell Analytical, Inc.

"When Quality Counts"

# **Analytical Report**

**WorkOrder:** 1405703

**Report Created for:** P & D Environmental

55 Santa Clara, Ste.240 Oakland, CA 94610

**Project Contact:** Paul King

**Project P.O.:** 

**Project Name:** #0675; 475 Lesser St Oakland,Ca

**Project Received:** 05/16/2014

Analytical Report reviewed & approved for release on 05/27/2014 by:

Question about your data?

Click here to email
McCampbell

Angela Rydelius,

Laboratory Manager

The report shall not be reproduced except in full, without the written approval of the laboratory. The analytical results relate only to the items tested. Results reported conform to the most current NELAP standards, where applicable, unless otherwise stated in the case narrative.



1534 Willow Pass Rd. Pittsburg, CA 94565 ♦ TEL: (877) 252-9262 ♦ FAX: (925) 252-9269 ♦ www.mccampbell.com NELAP: 4033ORELAP ♦ ELAP: 1644 ♦ ISO/IEC: 17025:2005 ♦ WSDE: C972-11 ♦ ADEC: UST-098 ♦ UCMR3



### **Glossary of Terms & Qualifier Definitions**

**Client:** P & D Environmental

**Project:** #0675; 475 Lesser St Oakland, Ca

WorkOrder: 1405703

#### **Glossary Abbreviation**

95% Interval 95% Confident Interval

DF Dilution Factor
DUP Duplicate

EDL Estimated Detection Limit

ITEF International Toxicity Equivalence Factor

LCS Laboratory Control Sample

MB Method Blank

MB % Rec % Recovery of Surrogate in Method Blank, if applicable

MDL Method Detection Limit

ML Minimum Level of Quantitation

MS Matrix Spike

MSD Matrix Spike Duplicate

ND Not detected at or above the indicated MDL or RL

NR Matrix interferences, or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x

spike amount for water matrix; or sample diluted due to high matrix or analyte content.

RD Relative Difference

RL Reporting Limit (The RL is the lowest calibration standard in a multipoint calibration.)

RPD Relative Percent Deviation
RRT Relative Retention Time

SPK Val Spike Value

SPKRef Val Spike Reference Value TEQ Toxicity Equivalence

#### **Analytical Qualifiers**

e2 diesel range compounds are significant; no recognizable pattern

e7 oil range compounds are significant

Analytical Method: SW8260B

**Date Received:** 5/16/14 20:49

### **Analytical Report**

Client:P & D EnvironmentalWorkOrder:1405703Project:#0675; 475 Lesser St Oakland,CaExtraction Method:SW5030B

**Date Prepared:** 5/21/14-5/22/14 **Unit:** μg/L

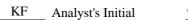
### **Volatile Organics by P&T and GC/MS (Basic Target List)**

Client ID	Lab ID	Matrix/ExtType	Date Co	ollected	Instrument	Batch ID
B5-W	1405703-001B	Water	05/15/20	14 08:20	GC28	90662
Analytes	Result		<u>RL</u>	<u>DF</u>		Date Analyzed
Acetone	ND		10	1		05/22/2014 01:14
tert-Amyl methyl ether (TAME)	ND		0.50	1		05/22/2014 01:14
Benzene	ND		0.50	1		05/22/2014 01:14
Bromobenzene	ND		0.50	1		05/22/2014 01:14
Bromochloromethane	ND		0.50	1		05/22/2014 01:14
Bromodichloromethane	ND		0.50	1		05/22/2014 01:14
Bromoform	ND		0.50	1		05/22/2014 01:14
Bromomethane	ND		0.50	1		05/22/2014 01:14
2-Butanone (MEK)	ND		2.0	1		05/22/2014 01:14
t-Butyl alcohol (TBA)	ND		2.0	1		05/22/2014 01:14
n-Butyl benzene	ND		0.50	1		05/22/2014 01:14
sec-Butyl benzene	ND		0.50	1		05/22/2014 01:14
tert-Butyl benzene	ND		0.50	1		05/22/2014 01:14
Carbon Disulfide	ND		0.50	1		05/22/2014 01:14
Carbon Tetrachloride	ND		0.50	1		05/22/2014 01:14
Chlorobenzene	ND		0.50	1		05/22/2014 01:14
Chloroethane	ND		0.50	1		05/22/2014 01:14
Chloroform	7.9		0.50	1		05/22/2014 01:14
Chloromethane	ND		0.50	1		05/22/2014 01:14
2-Chlorotoluene	ND		0.50	1		05/22/2014 01:14
4-Chlorotoluene	ND		0.50	1		05/22/2014 01:14
Dibromochloromethane	ND		0.50	1		05/22/2014 01:14
1,2-Dibromo-3-chloropropane	ND		0.20	1		05/22/2014 01:14
1,2-Dibromoethane (EDB)	ND		0.50	1		05/22/2014 01:14
Dibromomethane	ND		0.50	1		05/22/2014 01:14
1,2-Dichlorobenzene	ND		0.50	1		05/22/2014 01:14
1,3-Dichlorobenzene	ND		0.50	1		05/22/2014 01:14
1,4-Dichlorobenzene	ND		0.50	1		05/22/2014 01:14
Dichlorodifluoromethane	ND		0.50	1		05/22/2014 01:14
1,1-Dichloroethane	ND		0.50	1		05/22/2014 01:14
1,2-Dichloroethane (1,2-DCA)	ND		0.50	1		05/22/2014 01:14
1,1-Dichloroethene	ND		0.50	1		05/22/2014 01:14
cis-1,2-Dichloroethene	ND		0.50	1		05/22/2014 01:14
trans-1,2-Dichloroethene	ND		0.50	1		05/22/2014 01:14
1,2-Dichloropropane	ND		0.50	1		05/22/2014 01:14
1,3-Dichloropropane	ND		0.50	1		05/22/2014 01:14
2,2-Dichloropropane	ND		0.50	1		05/22/2014 01:14
1,1-Dichloropropene	ND		0.50	1		05/22/2014 01:14

(Cont.)

KF Analyst's Initial

# **Analytical Report**


Client:P & D EnvironmentalWorkOrder:1405703Project:#0675; 475 Lesser St Oakland,CaExtraction Method:SW5030BDate Received:5/16/14 20:49Analytical Method:SW8260B

**Date Prepared:** 5/21/14-5/22/14 **Unit:** μg/L

### Volatile Organics by P&T and GC/MS (Basic Target List)

Client ID	Lab ID	Matrix/ExtType	Date Co	llected	Instrument	Batch ID
B5-W	1405703-001B	Water	05/15/201	4 08:20	GC28	90662
Analytes	Result		<u>RL</u>	<u>DF</u>		Date Analyzed
cis-1,3-Dichloropropene	ND		0.50	1		05/22/2014 01:14
trans-1,3-Dichloropropene	ND		0.50	1		05/22/2014 01:14
Diisopropyl ether (DIPE)	ND		0.50	1		05/22/2014 01:14
Ethylbenzene	ND		0.50	1		05/22/2014 01:14
Ethyl tert-butyl ether (ETBE)	ND		0.50	1		05/22/2014 01:14
Freon 113	ND		0.50	1		05/22/2014 01:14
Hexachlorobutadiene	ND		0.50	1		05/22/2014 01:14
Hexachloroethane	ND		0.50	1		05/22/2014 01:14
2-Hexanone	ND		0.50	1		05/22/2014 01:14
Isopropylbenzene	ND		0.50	1		05/22/2014 01:14
4-Isopropyl toluene	ND		0.50	1		05/22/2014 01:14
Methyl-t-butyl ether (MTBE)	ND		0.50	1		05/22/2014 01:14
Methylene chloride	ND		0.50	1		05/22/2014 01:14
4-Methyl-2-pentanone (MIBK)	ND		0.50	1		05/22/2014 01:14
Naphthalene	ND		0.50	1		05/22/2014 01:14
n-Propyl benzene	ND		0.50	1		05/22/2014 01:14
Styrene	ND		0.50	1		05/22/2014 01:14
1,1,1,2-Tetrachloroethane	ND		0.50	1		05/22/2014 01:14
1,1,2,2-Tetrachloroethane	ND		0.50	1		05/22/2014 01:14
Tetrachloroethene	ND		0.50	1		05/22/2014 01:14
Toluene	ND		0.50	1		05/22/2014 01:14
1,2,3-Trichlorobenzene	ND		0.50	1		05/22/2014 01:14
1,2,4-Trichlorobenzene	ND		0.50	1		05/22/2014 01:14
1,1,1-Trichloroethane	ND		0.50	1		05/22/2014 01:14
1,1,2-Trichloroethane	ND		0.50	1		05/22/2014 01:14
Trichloroethene	ND		0.50	1		05/22/2014 01:14
Trichlorofluoromethane	ND		0.50	1		05/22/2014 01:14
1,2,3-Trichloropropane	ND		0.50	1		05/22/2014 01:14
1,2,4-Trimethylbenzene	ND		0.50	1		05/22/2014 01:14
1,3,5-Trimethylbenzene	ND		0.50	1		05/22/2014 01:14
Vinyl Chloride	ND		0.50	1		05/22/2014 01:14
Xylenes, Total	ND		0.50	1		05/22/2014 01:14
<u>Surrogates</u>	<u>REC (%)</u>		<u>Limits</u>			
Dibromofluoromethane	110		70-130			05/22/2014 01:14
Toluene-d8	115		70-130			05/22/2014 01:14
4-BFB	99		70-130			05/22/2014 01:14

(Cont.)



### **Analytical Report**

Client:P & D EnvironmentalWorkOrder:1405703Project:#0675; 475 Lesser St Oakland,CaExtraction Method:SW5030BDate Received:5/16/14 20:49Analytical Method:SW8260B

**Date Prepared:** 5/21/14-5/22/14 **Unit:** μg/L

#### **Volatile Organics by P&T and GC/MS (Basic Target List)**

Client ID	Lab ID	Matrix/ExtType	Date Co	ollected	Instrument	Batch ID
B6-W	1405703-002B	Water	05/15/20	14 09:45	GC28	90662
<u>Analytes</u>	Result		<u>RL</u>	DF		Date Analyzed
Acetone	ND		10	1		05/22/2014 01:52
tert-Amyl methyl ether (TAME)	ND		0.50	1		05/22/2014 01:52
Benzene	ND		0.50	1		05/22/2014 01:52
Bromobenzene	ND		0.50	1		05/22/2014 01:52
Bromochloromethane	ND		0.50	1		05/22/2014 01:52
Bromodichloromethane	ND		0.50	1		05/22/2014 01:52
Bromoform	ND		0.50	1		05/22/2014 01:52
Bromomethane	ND		0.50	1		05/22/2014 01:52
2-Butanone (MEK)	ND		2.0	1		05/22/2014 01:52
t-Butyl alcohol (TBA)	ND		2.0	1		05/22/2014 01:52
n-Butyl benzene	ND		0.50	1		05/22/2014 01:52
sec-Butyl benzene	ND		0.50	1		05/22/2014 01:52
tert-Butyl benzene	ND		0.50	1		05/22/2014 01:52
Carbon Disulfide	2.0		0.50	1		05/22/2014 01:52
Carbon Tetrachloride	ND		0.50	1		05/22/2014 01:52
Chlorobenzene	ND		0.50	1		05/22/2014 01:52
Chloroethane	ND		0.50	1		05/22/2014 01:52
Chloroform	ND		0.50	1		05/22/2014 01:52
Chloromethane	ND		0.50	1		05/22/2014 01:52
2-Chlorotoluene	ND		0.50	1		05/22/2014 01:52
4-Chlorotoluene	ND		0.50	1		05/22/2014 01:52
Dibromochloromethane	ND		0.50	1		05/22/2014 01:52
1,2-Dibromo-3-chloropropane	ND		0.20	1		05/22/2014 01:52
1,2-Dibromoethane (EDB)	ND		0.50	1		05/22/2014 01:52
Dibromomethane	ND		0.50	1		05/22/2014 01:52
1,2-Dichlorobenzene	ND		0.50	1		05/22/2014 01:52
1,3-Dichlorobenzene	ND		0.50	1		05/22/2014 01:52
1,4-Dichlorobenzene	ND		0.50	1		05/22/2014 01:52
Dichlorodifluoromethane	ND		0.50	1		05/22/2014 01:52
1,1-Dichloroethane	ND		0.50	1		05/22/2014 01:52
1,2-Dichloroethane (1,2-DCA)	ND		0.50	1		05/22/2014 01:52
1,1-Dichloroethene	ND		0.50	1		05/22/2014 01:52
cis-1,2-Dichloroethene	ND		0.50	1		05/22/2014 01:52
trans-1,2-Dichloroethene	ND		0.50	1		05/22/2014 01:52
1,2-Dichloropropane	ND		0.50	1		05/22/2014 01:52
1,3-Dichloropropane	ND		0.50	1		05/22/2014 01:52
2,2-Dichloropropane	ND		0.50	1		05/22/2014 01:52
1,1-Dichloropropene	ND		0.50	1		05/22/2014 01:52

(Cont.)

KF Analyst's Initial

### **Analytical Report**


Client:P & D EnvironmentalWorkOrder:1405703Project:#0675; 475 Lesser St Oakland,CaExtraction Method:SW5030BDate Received:5/16/14 20:49Analytical Method:SW8260B

**Date Prepared:** 5/21/14-5/22/14 **Unit:** μg/L

### Volatile Organics by P&T and GC/MS (Basic Target List)

Client ID Lab II		Matrix/ExtType	Date C	ollected	Instrument	Batch ID
B6-W	1405703-002B	Water	05/15/20	14 09:45	GC28	90662
Analytes	Result		<u>RL</u>	<u>DF</u>		Date Analyzed
cis-1,3-Dichloropropene	ND		0.50	1		05/22/2014 01:52
trans-1,3-Dichloropropene	ND		0.50	1		05/22/2014 01:52
Diisopropyl ether (DIPE)	ND		0.50	1		05/22/2014 01:52
Ethylbenzene	ND		0.50	1		05/22/2014 01:52
Ethyl tert-butyl ether (ETBE)	ND		0.50	1		05/22/2014 01:52
Freon 113	ND		0.50	1		05/22/2014 01:52
Hexachlorobutadiene	ND		0.50	1		05/22/2014 01:52
Hexachloroethane	ND		0.50	1		05/22/2014 01:52
2-Hexanone	ND		0.50	1		05/22/2014 01:52
Isopropylbenzene	ND		0.50	1		05/22/2014 01:52
4-Isopropyl toluene	ND		0.50	1		05/22/2014 01:52
Methyl-t-butyl ether (MTBE)	ND		0.50	1		05/22/2014 01:52
Methylene chloride	ND		0.50	1		05/22/2014 01:52
4-Methyl-2-pentanone (MIBK)	ND		0.50	1		05/22/2014 01:52
Naphthalene	ND		0.50	1		05/22/2014 01:52
n-Propyl benzene	ND		0.50	1		05/22/2014 01:52
Styrene	ND		0.50	1		05/22/2014 01:52
1,1,1,2-Tetrachloroethane	ND		0.50	1		05/22/2014 01:52
1,1,2,2-Tetrachloroethane	ND		0.50	1		05/22/2014 01:52
Tetrachloroethene	ND		0.50	1		05/22/2014 01:52
Toluene	ND		0.50	1		05/22/2014 01:52
1,2,3-Trichlorobenzene	ND		0.50	1		05/22/2014 01:52
1,2,4-Trichlorobenzene	ND		0.50	1		05/22/2014 01:52
1,1,1-Trichloroethane	ND		0.50	1		05/22/2014 01:52
1,1,2-Trichloroethane	ND		0.50	1		05/22/2014 01:52
Trichloroethene	ND		0.50	1		05/22/2014 01:52
Trichlorofluoromethane	ND		0.50	1		05/22/2014 01:52
1,2,3-Trichloropropane	ND		0.50	1		05/22/2014 01:52
1,2,4-Trimethylbenzene	ND		0.50	1		05/22/2014 01:52
1,3,5-Trimethylbenzene	ND		0.50	1		05/22/2014 01:52
Vinyl Chloride	ND		0.50	1		05/22/2014 01:52
Xylenes, Total	ND		0.50	1		05/22/2014 01:52
Surrogates	<u>REC (%)</u>		<u>Limits</u>			
Dibromofluoromethane	108		70-130			05/22/2014 01:52
Toluene-d8	117		70-130			05/22/2014 01:52
4-BFB	99		70-130			05/22/2014 01:52

(Cont.)





### **Analytical Report**

Client:P & D EnvironmentalWorkOrder:1405703Project:#0675; 475 Lesser St Oakland,CaExtraction Method:SW5030BDate Received:5/16/14 20:49Analytical Method:SW8260B

**Date Prepared:** 5/21/14-5/22/14 **Unit:** μg/L

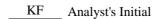
### Volatile Organics by P&T and GC/MS (Basic Target List)

Client ID	Lab ID	Matrix/ExtType	Date C	ollected	Instrument	Batch ID
B7-W	1405703-003B	Water	05/15/20	14 11:15	GC16	90662
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>		Date Analyzed
Acetone	ND		10	1		05/21/2014 04:24
tert-Amyl methyl ether (TAME)	ND		0.50	1		05/21/2014 04:24
Benzene	ND		0.50	1		05/21/2014 04:24
Bromobenzene	ND		0.50	1		05/21/2014 04:24
Bromochloromethane	ND		0.50	1		05/21/2014 04:24
Bromodichloromethane	ND		0.50	1		05/21/2014 04:24
Bromoform	ND		0.50	1		05/21/2014 04:24
Bromomethane	ND		0.50	1		05/21/2014 04:24
2-Butanone (MEK)	ND		2.0	1		05/21/2014 04:24
t-Butyl alcohol (TBA)	ND		2.0	1		05/21/2014 04:24
n-Butyl benzene	ND		0.50	1		05/21/2014 04:24
sec-Butyl benzene	ND		0.50	1		05/21/2014 04:24
tert-Butyl benzene	ND		0.50	1		05/21/2014 04:24
Carbon Disulfide	ND		0.50	1		05/21/2014 04:24
Carbon Tetrachloride	ND		0.50	1		05/21/2014 04:24
Chlorobenzene	ND		0.50	1		05/21/2014 04:24
Chloroethane	ND		0.50	1		05/21/2014 04:24
Chloroform	ND		0.50	1		05/21/2014 04:24
Chloromethane	ND		0.50	1		05/21/2014 04:24
2-Chlorotoluene	ND		0.50	1		05/21/2014 04:24
4-Chlorotoluene	ND		0.50	1		05/21/2014 04:24
Dibromochloromethane	ND		0.50	1		05/21/2014 04:24
1,2-Dibromo-3-chloropropane	ND		0.20	1		05/21/2014 04:24
1,2-Dibromoethane (EDB)	ND		0.50	1		05/21/2014 04:24
Dibromomethane	ND		0.50	1		05/21/2014 04:24
1,2-Dichlorobenzene	ND		0.50	1		05/21/2014 04:24
1,3-Dichlorobenzene	ND		0.50	1		05/21/2014 04:24
1,4-Dichlorobenzene	ND		0.50	1		05/21/2014 04:24
Dichlorodifluoromethane	ND		0.50	1		05/21/2014 04:24
1,1-Dichloroethane	ND		0.50	1		05/21/2014 04:24
1,2-Dichloroethane (1,2-DCA)	ND		0.50	1		05/21/2014 04:24
1,1-Dichloroethene	ND		0.50	1		05/21/2014 04:24
cis-1,2-Dichloroethene	ND		0.50	1		05/21/2014 04:24
trans-1,2-Dichloroethene	ND		0.50	1		05/21/2014 04:24
1,2-Dichloropropane	ND		0.50	1		05/21/2014 04:24
1,3-Dichloropropane	ND		0.50	1		05/21/2014 04:24
2,2-Dichloropropane	ND		0.50	1		05/21/2014 04:24
1,1-Dichloropropene	ND		0.50	1		05/21/2014 04:24

(Cont.)

KF Analyst's Initial

### **Analytical Report**


Client:P & D EnvironmentalWorkOrder:1405703Project:#0675; 475 Lesser St Oakland,CaExtraction Method:SW5030BDate Received:5/16/14 20:49Analytical Method:SW8260B

**Date Prepared:** 5/21/14-5/22/14 **Unit:**  $\mu g/L$ 

### Volatile Organics by P&T and GC/MS (Basic Target List)

Client ID	Lab ID	Matrix/ExtType	<b>Date Collected Instrument</b>		Batch ID
B7-W	1405703-003B	Water	05/15/20	14 11:15 GC16	90662
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
cis-1,3-Dichloropropene	ND		0.50	1	05/21/2014 04:24
trans-1,3-Dichloropropene	ND		0.50	1	05/21/2014 04:24
Diisopropyl ether (DIPE)	ND		0.50	1	05/21/2014 04:24
Ethylbenzene	ND		0.50	1	05/21/2014 04:24
Ethyl tert-butyl ether (ETBE)	ND		0.50	1	05/21/2014 04:24
Freon 113	ND		0.50	1	05/21/2014 04:24
Hexachlorobutadiene	ND		0.50	1	05/21/2014 04:24
Hexachloroethane	ND		0.50	1	05/21/2014 04:24
2-Hexanone	ND		0.50	1	05/21/2014 04:24
Isopropylbenzene	ND		0.50	1	05/21/2014 04:24
4-Isopropyl toluene	ND		0.50	1	05/21/2014 04:24
Methyl-t-butyl ether (MTBE)	ND		0.50	1	05/21/2014 04:24
Methylene chloride	ND		0.50	1	05/21/2014 04:24
4-Methyl-2-pentanone (MIBK)	ND		0.50	1	05/21/2014 04:24
Naphthalene	ND		0.50	1	05/21/2014 04:24
n-Propyl benzene	ND		0.50	1	05/21/2014 04:24
Styrene	ND		0.50	1	05/21/2014 04:24
1,1,1,2-Tetrachloroethane	ND		0.50	1	05/21/2014 04:24
1,1,2,2-Tetrachloroethane	ND		0.50	1	05/21/2014 04:24
Tetrachloroethene	ND		0.50	1	05/21/2014 04:24
Toluene	ND		0.50	1	05/21/2014 04:24
1,2,3-Trichlorobenzene	ND		0.50	1	05/21/2014 04:24
1,2,4-Trichlorobenzene	ND		0.50	1	05/21/2014 04:24
1,1,1-Trichloroethane	ND		0.50	1	05/21/2014 04:24
1,1,2-Trichloroethane	ND		0.50	1	05/21/2014 04:24
Trichloroethene	ND		0.50	1	05/21/2014 04:24
Trichlorofluoromethane	ND		0.50	1	05/21/2014 04:24
1,2,3-Trichloropropane	ND		0.50	1	05/21/2014 04:24
1,2,4-Trimethylbenzene	ND		0.50	1	05/21/2014 04:24
1,3,5-Trimethylbenzene	ND		0.50	1	05/21/2014 04:24
Vinyl Chloride	ND		0.50	1	05/21/2014 04:24
Xylenes, Total	ND		0.50	1	05/21/2014 04:24
<u>Surrogates</u>	<u>REC (%)</u>		<u>Limits</u>		
Dibromofluoromethane	105		70-130		05/21/2014 04:24
Toluene-d8	98		70-130		05/21/2014 04:24
4-BFB	114		70-130		05/21/2014 04:24

(Cont.)





# **Analytical Report**

Client:P & D EnvironmentalWorkOrder:1405703Project:#0675; 475 Lesser St Oakland,CaExtraction Method:SW5030BDate Received:5/16/14 20:49Analytical Method:SW8260B

**Date Prepared:** 5/21/14-5/22/14 **Unit:** μg/L

# Volatile Organics by P&T and GC/MS (Basic Target List)

Client ID	Lab ID	Matrix/ExtType	Date Co	ollected	Instrument	Batch ID
B8-W	1405703-004B	Water	05/15/20	14 13:15	GC16	90662
Analytes	Result		<u>RL</u>	<u>DF</u>		Date Analyzed
Acetone	ND		10	1		05/21/2014 05:07
tert-Amyl methyl ether (TAME)	ND		0.50	1		05/21/2014 05:07
Benzene	ND		0.50	1		05/21/2014 05:07
Bromobenzene	ND		0.50	1		05/21/2014 05:07
Bromochloromethane	ND		0.50	1		05/21/2014 05:07
Bromodichloromethane	ND		0.50	1		05/21/2014 05:07
Bromoform	ND		0.50	1		05/21/2014 05:07
Bromomethane	ND		0.50	1		05/21/2014 05:07
2-Butanone (MEK)	ND		2.0	1		05/21/2014 05:07
t-Butyl alcohol (TBA)	ND		2.0	1		05/21/2014 05:07
n-Butyl benzene	ND		0.50	1		05/21/2014 05:07
sec-Butyl benzene	ND		0.50	1		05/21/2014 05:07
tert-Butyl benzene	ND		0.50	1		05/21/2014 05:07
Carbon Disulfide	ND		0.50	1		05/21/2014 05:07
Carbon Tetrachloride	ND		0.50	1		05/21/2014 05:07
Chlorobenzene	ND		0.50	1		05/21/2014 05:07
Chloroethane	ND		0.50	1		05/21/2014 05:07
Chloroform	ND		0.50	1		05/21/2014 05:07
Chloromethane	ND		0.50	1		05/21/2014 05:07
2-Chlorotoluene	ND		0.50	1		05/21/2014 05:07
4-Chlorotoluene	ND		0.50	1		05/21/2014 05:07
Dibromochloromethane	ND		0.50	1		05/21/2014 05:07
1,2-Dibromo-3-chloropropane	ND		0.20	1		05/21/2014 05:07
1,2-Dibromoethane (EDB)	ND		0.50	1		05/21/2014 05:07
Dibromomethane	ND		0.50	1		05/21/2014 05:07
1,2-Dichlorobenzene	ND		0.50	1		05/21/2014 05:07
1,3-Dichlorobenzene	ND		0.50	1		05/21/2014 05:07
1,4-Dichlorobenzene	ND		0.50	1		05/21/2014 05:07
Dichlorodifluoromethane	ND		0.50	1		05/21/2014 05:07
1,1-Dichloroethane	ND		0.50	1		05/21/2014 05:07
1,2-Dichloroethane (1,2-DCA)	ND		0.50	1		05/21/2014 05:07
1,1-Dichloroethene	ND		0.50	1		05/21/2014 05:07
cis-1,2-Dichloroethene	ND		0.50	1		05/21/2014 05:07
trans-1,2-Dichloroethene	ND		0.50	1		05/21/2014 05:07
1,2-Dichloropropane	ND		0.50	1		05/21/2014 05:07
1,3-Dichloropropane	ND		0.50	1		05/21/2014 05:07
2,2-Dichloropropane	ND		0.50	1		05/21/2014 05:07
1,1-Dichloropropene	ND		0.50	1		05/21/2014 05:07

(Cont.)

KF Analyst's Initial

Angela Rydelius, Lab Manager

# **Analytical Report**

Client:P & D EnvironmentalWorkOrder:1405703Project:#0675; 475 Lesser St Oakland,CaExtraction Method:SW5030BDate Received:5/16/14 20:49Analytical Method:SW8260B

### **Volatile Organics by P&T and GC/MS (Basic Target List)**

Client ID	Lab ID	Matrix/ExtType	Date Coll	ected	Instrument	Batch ID
B8-W	1405703-004B	Water	05/15/2014	05/15/2014 13:15 GC16		90662
<u>Analytes</u>	Result		<u>RL</u>	DF		Date Analyzed
cis-1,3-Dichloropropene	ND		0.50	1		05/21/2014 05:07
trans-1,3-Dichloropropene	ND		0.50	1		05/21/2014 05:07
Diisopropyl ether (DIPE)	ND		0.50	1		05/21/2014 05:07
Ethylbenzene	ND		0.50	1		05/21/2014 05:07
Ethyl tert-butyl ether (ETBE)	ND		0.50	1		05/21/2014 05:07
Freon 113	ND		0.50	1		05/21/2014 05:07
Hexachlorobutadiene	ND		0.50	1		05/21/2014 05:07
Hexachloroethane	ND		0.50	1		05/21/2014 05:07
2-Hexanone	ND		0.50	1		05/21/2014 05:07
Isopropylbenzene	ND		0.50	1		05/21/2014 05:07
4-Isopropyl toluene	ND		0.50	1		05/21/2014 05:07
Methyl-t-butyl ether (MTBE)	ND		0.50	1		05/21/2014 05:07
Methylene chloride	ND		0.50	1		05/21/2014 05:07
4-Methyl-2-pentanone (MIBK)	ND		0.50	1		05/21/2014 05:07
Naphthalene	ND		0.50	1		05/21/2014 05:07
n-Propyl benzene	ND		0.50	1		05/21/2014 05:07
Styrene	ND		0.50	1		05/21/2014 05:07
1,1,1,2-Tetrachloroethane	ND		0.50	1		05/21/2014 05:07
1,1,2,2-Tetrachloroethane	ND		0.50	1		05/21/2014 05:07
Tetrachloroethene	ND		0.50	1		05/21/2014 05:07
Toluene	ND		0.50	1		05/21/2014 05:07
1,2,3-Trichlorobenzene	ND		0.50	1		05/21/2014 05:07
1,2,4-Trichlorobenzene	ND		0.50	1		05/21/2014 05:07
1,1,1-Trichloroethane	ND		0.50	1		05/21/2014 05:07
1,1,2-Trichloroethane	ND		0.50	1		05/21/2014 05:07
Trichloroethene	ND		0.50	1		05/21/2014 05:07
Trichlorofluoromethane	ND		0.50	1		05/21/2014 05:07
1,2,3-Trichloropropane	ND		0.50	1		05/21/2014 05:07
1,2,4-Trimethylbenzene	ND		0.50	1		05/21/2014 05:07
1,3,5-Trimethylbenzene	ND		0.50	1		05/21/2014 05:07
Vinyl Chloride	ND		0.50	1		05/21/2014 05:07
Xylenes, Total	ND		0.50	1		05/21/2014 05:07
Surrogates	<u>REC (%)</u>		<u>Limits</u>			
Dibromofluoromethane	105		70-130			05/21/2014 05:07
Toluene-d8	98		70-130			05/21/2014 05:07
4-BFB	113		70-130			05/21/2014 05:07

# **Analytical Report**

**Client:** P & D Environmental WorkOrder: 1405703 **Project:** #0675; 475 Lesser St Oakland, Ca **Extraction Method: SW5030B** 

**Date Received:** 5/16/14 20:49 Analytical Method: SW8021B/8015Bm

**Date Prepared:** 5/19/14-5/21/14 Unit:

### Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE

Client ID	Lab ID	Matrix/ExtType	<b>Date Collected Instrument</b>		Batch ID
B5-W	1405703-001A	Water	05/15/20 ⁻	14 08:20 GC3	90609
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
TPH(g)	ND		50	1	05/19/2014 17:05
MTBE			5.0	1	05/19/2014 17:05
Benzene			0.50	1	05/19/2014 17:05
Toluene			0.50	1	05/19/2014 17:05
Ethylbenzene			0.50	1	05/19/2014 17:05
Xylenes			0.50	1	05/19/2014 17:05
Surrogates	<u>REC (%)</u>		<u>Limits</u>		
aaa-TFT	105		70-130		05/19/2014 17:05

B6-W	1405703-002A Water	05/15/201	4 09:45 GC3	90639
<u>Analytes</u>	Result	<u>RL</u>	<u>DF</u>	Date Analyzed
TPH(g)	ND	50	1	05/21/2014 01:57
MTBE		5.0	1	05/21/2014 01:57
Benzene		0.50	1	05/21/2014 01:57
Toluene		0.50	1	05/21/2014 01:57
Ethylbenzene		0.50	1	05/21/2014 01:57

Xylenes		0.50 1	
Surrogates	<u>REC (%)</u>	<u>Limits</u>	
aaa-TFT	104	70-130	

B7-W	N 1405703-003A Water		014 11:15 GC3	90609		
<u>Analytes</u>	Result	<u>RL</u>	<u>DF</u>	Date Analyzed		
TPH(g)	ND	50	1	05/19/2014 17:35		
MTBE		5.0	1	05/19/2014 17:35		
Benzene		0.50	1	05/19/2014 17:35		
Toluene		0.50	1	05/19/2014 17:35		
Ethylbenzene		0.50	1	05/19/2014 17:35		
Xylenes		0.50	1	05/19/2014 17:35		
<u>Surrogates</u>	<u>REC (%)</u>	<u>Limits</u>				
aaa-TFT	98	70-130		05/19/2014 17:35		

05/21/2014 01:57

05/21/2014 01:57

# **Analytical Report**

Client:P & D EnvironmentalWorkOrder:1405703Project:#0675; 475 Lesser St Oakland,CaExtraction Method:SW5030B

**Date Received:** 5/16/14 20:49 **Analytical Method:** SW8021B/8015Bm

**Date Prepared:** 5/19/14-5/21/14 **Unit:** μg/L

### Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE

Client ID	Lab ID	Matrix/ExtType	Date Col	llected Instrument	Batch ID
B8-W	1405703-004A	Water	05/15/201	4 13:15 GC3	90609
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>	Date Analyzed
TPH(g)	ND		50	1	05/19/2014 18:05
MTBE			5.0	1	05/19/2014 18:05
Benzene			0.50	1	05/19/2014 18:05
Toluene			0.50	1	05/19/2014 18:05
Ethylbenzene			0.50	1	05/19/2014 18:05
Xylenes			0.50	1	05/19/2014 18:05
Surrogates	REC (%)		<u>Limits</u>		
aaa-TFT	102		70-130		05/19/2014 18:05

1405703

# **Analytical Report**

P & D Environmental **Client:** WorkOrder: **Project:** #0675; 475 Lesser St Oakland, Ca **Extraction Method:** SW3510C

**Date Received:** 5/16/14 20:49 **Analytical Method: SW8015B** 

**Date Prepared:** 5/20/14 Unit:

	Total Extract	able Petroleum	Hydroca	rbons		
Client ID	Lab ID	Matrix/ExtType	Date Coll	ected Instrument	Batch ID	
B5-W	1405703-001A	Water	05/15/2014	08:20 GC6B	90595	
Analytes	<u>Result</u>		<u>RL</u>	<u>DF</u>	Date Analyzed	
TPH-Diesel (C10-C23)	ND		50	1	05/23/2014 05:40	
TPH-Motor Oil (C18-C36)	ND		250	1	05/23/2014 05:40	
Surrogates	<u>REC (%)</u>		<u>Limits</u>			
C9	100		70-130		05/23/2014 05:40	
B6-W	1405703-002A	Water	05/15/2014	09:45 GC6B	90595	
<u>Analytes</u>	Result		<u>RL</u>	DF	Date Analyzed	
TPH-Diesel (C10-C23)	ND		50	1	05/24/2014 10:51	
TPH-Motor Oil (C18-C36)	ND		250	1	05/24/2014 10:51	
Surrogates	REC (%)		<u>Limits</u>			
C9	101		70-130		05/24/2014 10:51	
B7-W	1405703-003A	Water	05/15/2014	11:15 GC6B	90595	
<u>Analytes</u>	Result		<u>RL</u>	<u>DF</u>	Date Analyzed	
TPH-Diesel (C10-C23)	ND		50	1	05/24/2014 07:10	
TPH-Motor Oil (C18-C36)	ND		250	1	05/24/2014 07:10	
Surrogates	REC (%)		<u>Limits</u>			
C9	101		70-130		05/24/2014 07:10	
B8-W	1405703-004A	Water	05/15/2014	13:15 GC11A	90595	
Analytes	Result		<u>RL</u>	DF	Date Analyzed	
TPH-Diesel (C10-C23)	290		50	1	05/24/2014 10:21	
TPH-Motor Oil (C18-C36)	4600		250	1	05/24/2014 10:21	
Surrogates	REC (%)		<u>Limits</u>	Analytical Comments:	e7,e2	
C9	96		70-130		05/24/2014 10:21	

# **Quality Control Report**

Client: P & D Environmental

**Date Prepared:** 5/21/14 **Date Analyzed:** 5/20/14 **Instrument:** GC16

Matrix: Water

**Project:** #0675; 475 Lesser St Oakland,Ca

**WorkOrder:** 1405703 **BatchID:** 90662

**Extraction Method:** SW5030B

**Analytical Method:** SW8260B

**Unit:** μg/L

Sample ID: MB/LCS-90662

1405704-027AMS/MSD

## **QC Summary Report for SW8260B**

Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
Acetone	ND	-	10	-	-	-	-
tert-Amyl methyl ether (TAME)	ND	18.1	0.50	20	-	90.6	70-130
Benzene	ND	19.8	0.50	20	-	99	70-130
Bromobenzene	ND	-	0.50	-	-	-	-
Bromochloromethane	ND	-	0.50	-	-	-	-
Bromodichloromethane	ND	-	0.50	-	-	-	-
Bromoform	ND	-	0.50	-	-	-	-
Bromomethane	ND	-	0.50	-	-	-	-
2-Butanone (MEK)	ND	-	2.0	-	-	-	-
t-Butyl alcohol (TBA)	ND	76.7	2.0	80	-	95.8	70-130
n-Butyl benzene	ND	-	0.50	-	-	-	-
sec-Butyl benzene	ND	-	0.50	-	-	-	-
tert-Butyl benzene	ND	-	0.50	-	-	-	-
Carbon Disulfide	ND	-	0.50	-	-	-	-
Carbon Tetrachloride	ND	-	0.50	-	-	-	-
Chlorobenzene	ND	19.1	0.50	20	-	95.3	70-130
Chloroethane	ND	-	0.50	-	-	-	-
Chloroform	ND	-	0.50	-	-	-	-
Chloromethane	ND	-	0.50	-	=	-	-
2-Chlorotoluene	ND	-	0.50	-	=	-	-
4-Chlorotoluene	ND	-	0.50	-	-	-	-
Dibromochloromethane	ND	-	0.50	-	=	-	-
1,2-Dibromo-3-chloropropane	ND	-	0.20	-	=	-	-
1,2-Dibromoethane (EDB)	ND	19.9	0.50	20	=	99.4	70-130
Dibromomethane	ND	=	0.50	-	=	-	-
1,2-Dichlorobenzene	ND	-	0.50	-	=	-	-
1,3-Dichlorobenzene	ND	-	0.50	-	=	-	-
1,4-Dichlorobenzene	ND	-	0.50	-	=	-	-
Dichlorodifluoromethane	ND	-	0.50	-	-	-	-
1,1-Dichloroethane	ND	-	0.50	-	-	-	-
1,2-Dichloroethane (1,2-DCA)	ND	19.4	0.50	20	=	97.1	70-130
1,1-Dichloroethene	ND	19.8	0.50	20	-	99.1	70-130
cis-1,2-Dichloroethene	ND	-	0.50	-	-	-	-
trans-1,2-Dichloroethene	ND	-	0.50	-	=	-	-
1,2-Dichloropropane	ND	-	0.50	-	-	-	_
1,3-Dichloropropane	ND	-	0.50	-	-	-	_
2,2-Dichloropropane	ND	<u> </u>	0.50	-	-	-	-
1,1-Dichloropropene	ND	<u> </u>	0.50	-	-	-	-
cis-1,3-Dichloropropene	ND	=	0.50	-	-	-	-
trans-1,3-Dichloropropene	ND	-	0.50	_	-	-	_

(Cont.)



# **Quality Control Report**

**Client:** P & D Environmental

Date Prepared:5/21/14Date Analyzed:5/20/14Instrument:GC16

Matrix: Water

**Project:** #0675; 475 Lesser St Oakland,Ca

**WorkOrder:** 1405703 **BatchID:** 90662

**Extraction Method:** SW5030B **Analytical Method:** SW8260B

Unit:  $\mu g/L$ 

Sample ID: MB/LCS-90662

1405704-027AMS/MSD

<b>OC Summary</b>	Report for	· SW8260R
OC Sullilliai v	Neboltion	O WOZUUD

Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
Diisopropyl ether (DIPE)	ND	19.4	0.50	20	-	97.1	70-130
Ethylbenzene	ND	-	0.50	-	-	-	-
Ethyl tert-butyl ether (ETBE)	ND	18.8	0.50	20	-	94.2	70-130
Freon 113	ND	-	0.50	-	-	=	-
Hexachlorobutadiene	ND	-	0.50	-	-	=	-
Hexachloroethane	ND	-	0.50	-	-	-	-
2-Hexanone	ND	-	0.50	-	-	-	-
Isopropylbenzene	ND	-	0.50	-	-	-	-
4-Isopropyl toluene	ND	-	0.50	-	-	-	-
Methyl-t-butyl ether (MTBE)	ND	18.8	0.50	20	-	93.9	70-130
Methylene chloride	ND	-	0.50	-	-	-	-
4-Methyl-2-pentanone (MIBK)	ND	-	0.50	-	-	-	-
Naphthalene	ND	-	0.50	-	-	-	-
n-Propyl benzene	ND	-	0.50	-	-	-	-
Styrene	ND	-	0.50	-	-	-	-
1,1,1,2-Tetrachloroethane	ND	-	0.50	-	-	-	-
1,1,2,2-Tetrachloroethane	ND	-	0.50	-	-	-	-
Tetrachloroethene	ND	-	0.50	-	-	-	-
Toluene	ND	19.0	0.50	20	-	95	70-130
1,2,3-Trichlorobenzene	ND	-	0.50	-	-	-	-
1,2,4-Trichlorobenzene	ND	-	0.50	-	-	-	-
1,1,1-Trichloroethane	ND	-	0.50	=	-	-	-
1,1,2-Trichloroethane	ND	-	0.50	=	-	-	-
Trichloroethene	ND	20.4	0.50	20	-	102	70-130
Trichlorofluoromethane	ND	-	0.50	=	-	-	-
1,2,3-Trichloropropane	ND	-	0.50	=	-	-	-
1,2,4-Trimethylbenzene	ND	-	0.50	=	-	-	-
1,3,5-Trimethylbenzene	ND	-	0.50	=	-	-	-
Vinyl Chloride	ND	-	0.50	=	-	-	-
Xylenes, Total	ND	-	0.50	-	-	-	-
Surrogate Recovery							
Dibromofluoromethane	26.1	46.5		45	105	103	70-130
Toluene-d8	24.6	43.0		45	98	96	70-130
4-BFB	2.85	4.83		4.5	114	107	70-130

# **Quality Control Report**

**Client:** P & D Environmental

**Date Prepared:** 5/21/14 **Date Analyzed:** 5/20/14 **Instrument:** GC16

Matrix: Water

**Project:** #0675; 475 Lesser St Oakland,Ca

WorkOrder: 1405703

**BatchID:** 90662

**Extraction Method:** SW5030B **Analytical Method:** SW8260B

**Unit:** μg/L

Sample ID: MB/LCS-90662

1405704-027AMS/MSD

### **QC Summary Report for SW8260B**

Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
tert-Amyl methyl ether (TAME)	19.4	19.9	20	ND	96.7	99.4	70-130	2.75	20
Benzene	20.2	20.5	20	ND	101	103	70-130	1.58	20
t-Butyl alcohol (TBA)	99.5	98.9	80	ND	124	124	70-130	0	20
Chlorobenzene	19.2	19.2	20	ND	95.9	96.2	70-130	0.320	20
1,2-Dibromoethane (EDB)	21.2	21.4	20	ND	106	107	70-130	0.902	20
1,2-Dichloroethane (1,2-DCA)	20.6	20.8	20	ND	103	104	70-130	1.07	20
1,1-Dichloroethene	19.8	20.2	20	ND	99.2	101	70-130	1.66	20
Diisopropyl ether (DIPE)	20.2	20.7	20	ND	101	103	70-130	2.56	20
Ethyl tert-butyl ether (ETBE)	20.0	20.6	20	ND	100	103	70-130	2.67	20
Methyl-t-butyl ether (MTBE)	20.2	20.8	20	ND	101	104	70-130	2.89	20
Toluene	19.0	19.1	20	ND	95	95.4	70-130	0.519	20
Trichloroethene	20.6	20.9	20	ND	103	104	70-130	1.22	20
Surrogate Recovery									
Dibromofluoromethane	48.1	47.7	45		107	106	70-130	0.920	20
Toluene-d8	42.6	42.5	45		95	94	70-130	0.284	20
4-BFB	4.74	4.76	4.5		105	106	70-130	0.404	20

# **Quality Control Report**

**Client:** P & D Environmental

**Date Prepared:** 5/20/14 **Date Analyzed:** 5/19/14

**Instrument:** GC3

Matrix: Water

**Project:** #0675; 475 Lesser St Oakland,Ca

WorkOrder: 1405703

**BatchID:** 90609

**Extraction Method:** SW5030B **Analytical Method:** SW8021B/8015Bm

**Unit:** μg/L

Sample ID: MB/LCS-90609

1405647-001AMS/MSD

QC Summary Repor	t for SW8021B/8015Bm
------------------	----------------------

Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
TPH(btex)	ND	58.2	40	60	-	97.1	70-130
MTBE	ND	9.12	5.0	10	-	91.2	70-130
Benzene	ND	9.26	0.50	10	-	92.6	70-130
Toluene	ND	9.23	0.50	10	-	92.3	70-130
Ethylbenzene	ND	9.27	0.50	10	-	92.7	70-130
Xylenes	ND	27.9	0.50	30	-	93.1	70-130

### **Surrogate Recovery**

aaa-TFT 9.88 9.97 10 99 100 70-130

Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
TPH(btex)	58.8	59.1	60	ND	98.1	98.6	70-130	0.519	20
MTBE	11.8	12.8	10	ND	117	128	70-130	8.73	20
Benzene	8.76	10.2	10	ND	87.6	102	70-130	15.3	20
Toluene	8.74	10.2	10	ND	87.4	102	70-130	15.3	20
Ethylbenzene	8.84	10.1	10	ND	88.4	101	70-130	13.5	20
Xylenes	26.8	30.3	30	ND	89.3	101	70-130	12.2	20
Surrogate Recovery									
aaa-TFT	9.39	10.4	10		94	104	70-130	9.73	20

# **Quality Control Report**

Client: P & D Environmental

**Date Prepared:** 5/20/14 **Date Analyzed:** 5/20/14

**Instrument:** GC3

Matrix: Water

**Project:** #0675; 475 Lesser St Oakland,Ca

WorkOrder: 1405703

**BatchID:** 90639 **Extraction Method:** SW5030B

**Analytical Method:** SW8021B/8015Bm

Unit:  $\mu g/L$ 

Sample ID: MB/LCS-90639

1405730-003AMS/MSD

Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
TPH(btex)	ND	61.1	40	60	-	102	70-130
MTBE	ND	11.1	5.0	10	-	111	70-130
Benzene	ND	9.05	0.50	10	-	90.5	70-130
Toluene	ND	9.07	0.50	10	-	90.7	70-130
Ethylbenzene	ND	9.11	0.50	10	-	91.1	70-130
Xylenes	ND	27.5	0.50	30	-	91.7	70-130

#### **Surrogate Recovery**

aaa-TFT 9.66 9.39 10 97 94 70-130

Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/MSD Limits	RPD	RPD Limit
TPH(btex)	58.0	63.2	60	ND	96.7	105	70-130	8.47	20
MTBE	9.34	9.25	10	ND	93.4	92.5	70-130	0.961	20
Benzene	8.85	9.22	10	ND	88.5	92.2	70-130	4.16	20
Toluene	8.84	9.24	10	ND	88.4	92.4	70-130	4.37	20
Ethylbenzene	9.02	9.24	10	ND	90.2	92.4	70-130	2.37	20
Xylenes	27.1	28.4	30	ND	90.3	94.6	70-130	4.64	20
Surrogate Recovery									
aaa-TFT	9.48	9.35	10		95	94	70-130	1.34	20

1405703

90595

# **Quality Control Report**

Client: P & D Environmental WorkOrder:

Date Prepared: 5/19/14 BatchID:

Date Analyzed:5/20/14Extraction Method:SW3510CInstrument:GC6A, GC6BAnalytical Method:SW8015B

 $\begin{tabular}{lll} \textbf{Matrix:} & Water & \textbf{Unit:} & \mu g/L \\ \end{tabular}$ 

**Project:** #0675; 475 Lesser St Oakland,Ca **Sample ID:** MB/LCS-90595

QC Summary Report for SW8015B								
Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits	
TPH-Diesel (C10-C23)	ND	765	50	1000	-	76.5	70-130	
Surrogate Recovery C9	599	622		625	96	100	70-130	

# McCampbell Analytical, Inc.

# **CHAIN-OF-CUSTODY RECORD**

Page 1 o	f
----------	---

(925) 252-9262

1534 Willow Pass Rd Pittsburg, CA 94565-1701

			WorkOr	der: 1405703	Clier	ntCode: PDEO		
☐ WaterTrax	WriteOn	□EDF	Excel	EQuIS	<b>✓</b> Email	∏HardCopy	ThirdParty	☐ J-flag

Report to: Requested TAT: 5 days

lab@pdenviro.com Accounts Payable Paul King cc/3rd Party: P & D Environmental P & D Environmental

Date Received: 05/16/2014 PO: 55 Santa Clara, Ste.240 55 Santa Clara, Ste.240 05/19/2014

Oakland, CA 94610 ProjectNo: #0675: 475 Lesser St Oakland.Ca Oakland, CA 94610 Date Printed: (510) 658-6916 FAX: 510-834-0152

					Requested Tests (See legend below)											
Lab ID	Client ID	Matrix	<b>Collection Date</b>	Hold	1	2	3	4	5	6	7	8	9	10	11	12
1405703-001	B5-W	Water	5/15/2014 8:20		В	Α										
1405703-002	B6-W	Water	5/15/2014 9:45		В	Α										
1405703-003	B7-W	Water	5/15/2014 11:15		В	Α										
1405703-004	B8-W	Water	5/15/2014 13:15		В	A										

#### Test Legend:

1	8260B_W	2	G-MBTEX_W	3	4	5	
6		7		8	9	10	
11		12					

The following SampIDs: 001A, 002A, 003A, 004A contain testgroup. Prepared by: Shana Carter

#### **Comments:**

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.



# McCampbell Analytical, Inc. "When Quality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

## **WORK ORDER SUMMARY**

Client Name:	P & D ENVIRONMENTAL	<b>QC Level:</b> LEVEL 2	Work Order:	1405703
Project:	#0675:475 Lesser St Oakland.Ca	Client Contact: Paul King	Date Received:	5/16/2014

Contact's Email: lab@pdenviro.com **Comments:** 

		☐ WaterTrax	WriteOn	EDF	Excel	_Fax ✓	Email Hard0	Copy ThirdPa	arty 🗌	J-flag	
Lab ID	Client ID	Matrix	Test Name		Number of Container		ervative De- chlorinated	Collection Date  8 Time	TAT	Sediment Content	Hold SubOut
1405703-001A	B5-W	Water	Multi-Range T	PH(g,d,mo)	4	VOA w/ H	ICI	5/15/2014 8:20	5 days	Present	
1405703-001B	B5-W	Water	SW8260B (VC	OCs)	3	VOA w/ H	ICI	5/15/2014 8:20	5 days	Present	
1405703-002A	B6-W	Water	Multi-Range T	PH(g,d,mo)	4	VOA w/ H	ICI	5/15/2014 9:45	5 days	Present	
1405703-002B	B6-W	Water	SW8260B (VC	OCs)	3	VOA w/ H	ICI	5/15/2014 9:45	5 days	Present	
1405703-003A	B7-W	Water	Multi-Range T	PH(g,d,mo)	4	VOA w/ H	ICI	5/15/2014 11:15	5 days	Present	
1405703-003B	B7-W	Water	SW8260B (VC	OCs)	3	VOA w/ H	ICI	5/15/2014 11:15	5 days	Present	
1405703-004A	B8-W	Water	Multi-Range T	PH(g,d,mo)	4	VOA w/ H	ICI	5/15/2014 13:15	5 days	Present	
1405703-004B	B8-W	Water	SW8260B (VC	OCs)	3	VOA w/ H	ICI	5/15/2014 13:15	5 days	Present	

* NOTE: STLC and TCLP extractions require 48 hrs to complete; therefore, all TATs begin after the extraction is completed (i.e., 24hr TAT yields results in 72 hrs from sample submission).

**Bottle Legend:** 

VOA w/ HCI = 43mL VOA w/ HCI

		HA	INC	JF C	0210	<u> JDY F</u>	(L		JK	<u>U</u>				2.				PAG	E	- FOF	
P&D 140:5703	ENVII 55 Santa Oa	RON a Clara akland, ( (510) 65	MEN Ave., S CA 946 58-6916	VTAI uite 240 10	L, INC	•						9				//	///				
PROJECT NUMBER:		PF	ROJECT	NAME:			SS		. /	/ /	2	1 /	/ /	/		/	/				
0675		1			er st ), ca		NUMBER OF CONTAINERS	41	D KSIS(ES)	BY FOR			/ /	/	/	//	/ / /				
SAMPLED BY: (PRIN	NTED & SIG	GNATU	RE)	,			OF (	AN	14	1 x	1	/ /		/			474				
MICHAEL BASS-D	ESCHE	NES-	ulic	land	Ben-K	lesch-	BER	/	9	7							CKV.				
SAMPLE NUMBER	DATE	-	TYPE	SAI	MPLE LOC	CATION	NUM	1				/ ,	/	/		PRES	SERVATIVE	REM	IARKS	5	
B5-W	5/15/14						7	X	X							ICE	No	RNAL	T	AT	
B6-W	· if	0945					1	X	X							7(		11		17	
B8-W	ч	1115	U				7	X	X				100			Ч		n		li .	
120-W	vl	1315	11				/	$\wedge$	_						į.	Ü		"		il	
			20												•						
								41		ı	1 /	*						outen double with same to an april plant to be disease			
									ICE	/t¤	116	2				L	-				
									111	OD S	PACE	ABSE	NTTV	-	CON	TAINER	S				
					**				12E	chil	YK FIXV	A CENT	OAS	0&G	ME	TALS O	THER	·			
				a					联.	TSE	EVAF	ON_									
												ā									
															• 1						
DEL BIOLIGIES DI GROVIES	IDE)									20											
RELINQUISHED BY: (SIGNATU	JRE)	,	5/16	14:25	RECEIVE	DBY: (SIGN	ATUF	RE)	*	-	Total N	of Co	ntainer	_		LABOR					
RELINQUISHED BY: (SIGNATU	IRE)	_	DATE	TIME	DECEIVE	D BY: (SIGN		DE)			This S	hipmen	t)	de		Mc CAN	NPBELL	LAVA!	YTIC	ALI	NC.
3/2 18:30			Man	a Cal-	Le	(E)		1					NTACT: LABORATORY PHONE NUMBER:								
RELINQUISHED BY: (SIGNATU	URE)		DATE	TIME	RECEIVE	FOR LABO	RAT	ORY	BY:							JEST SH			20		
(SIGNATURE) ATTACHED: ( ) Y					) YE	S (	$(\mathbf{X})$ NO	)													
Results and billing to: P&D Environmental, Inc. lab@pdenviro.com					REMARK	S: ALL	UO.	A's	PK	RES	ER	VEI	N	iTT	1 H	CL.					

Comments:

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

# **Sample Receipt Checklist**

Client Name:	P & D Environmenta	ıl			Date and 1	Γime Received:	5/16/2014 8:	49:00 PM
Project Name:	#0675;475 Lesser St	t Oakland,Ca			LogIn Revi	iewed by:		Shana Carter
WorkOrder N°:	1405703	Matrix: Water			Carrier:	Brian STANFO	RD (MAI Cour	<u>ier)</u>
			Chain of Cu	ustody (C	COC) Information			
Chain of custody	present?		Yes	✓	No 🗆			
Chain of custody	signed when relinquis	hed and received	d? Yes	✓	No 🗌			
Chain of custody	agrees with sample la	bels?	Yes	<b>✓</b>	No 🗆			
Sample IDs noted	d by Client on COC?		Yes	<b>✓</b>	No 🗌			
Date and Time of	f collection noted by C	lient on COC?	Yes	<b>✓</b>	No 🗌			
Sampler's name	noted on COC?		Yes	✓	No 🗆			
			Sample	Receip	t Information			
Custody seals int	act on shipping contai	ner/cooler?	Yes		No 🗌		NA 🗸	
Shipping containe	er/cooler in good cond	ition?	Yes	<b>✓</b>	No 🗌			
Samples in prope	er containers/bottles?		Yes	<b>✓</b>	No 🗌			
Sample container	rs intact?		Yes	<b>✓</b>	No 🗌			
Sufficient sample	volume for indicated t	test?	Yes	<b>✓</b>	No 🗌			
		<u>Sample</u>	Preservatio	n and Ho	old Time (HT) Info	rmation		
All samples recei	ved within holding time	e?	Yes	<b>✓</b>	No 🗆			
Container/Temp I	Blank temperature		Coole	er Temp:	4.6°C		NA 🗌	
Water - VOA vials	s have zero headspac	e / no bubbles?	Yes	<b>✓</b>	No 🗌		NA $\square$	
Sample labels ch	ecked for correct pres	ervation?	Yes	✓	No 🗌			
pH acceptable up	oon receipt (Metal: pH-	<2; 522: pH<4)?	Yes		No 🗌		NA 🗹	
Samples Receive	ed on Ice?		Yes	✓	No 🗌			
		(Ice	e Type: WE	T ICE	)			
* NOTE: If the "N	lo" box is checked, see	e comments belo	W.					



6/4/2014 Mr. Paul King P & D Environmental 55 Santa Clara Suite 240 Oakland CA 94610

Project Name: 475 LESSER ST. OAKLAND, CA

Project #: 0675

Workorder #: 1405390A

Dear Mr. Paul King

The following report includes the data for the above referenced project for sample(s) received on 5/20/2014 at Air Toxics Ltd.

The data and associated QC analyzed by TO-15 are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Air Toxics Ltd. for your air analysis needs. Air Toxics Ltd. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Kyle Vagadori at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Kyle Vagadori

Project Manager

Kya Vych



### **WORK ORDER #: 1405390A**

Work Order Summary

CLIENT: Mr. Paul King BILL TO: Mr. Paul King

P & D Environmental

55 Santa Clara

Suite 240

P & D Environmental

55 Santa Clara

Suite 240

Suite 240

Oakland, CA 94610 Oakland, CA 94610

PHONE: 510-658-6916 P.O.#

FAX: 510-834-0772 PROJECT # 0675 475 LESSER ST. OAKLAND, CA

**DATE RECEIVED:** 05/20/2014 **CONTACT:** Kyle Vagadori **DATE COMPLETED:** 06/04/2014

			RECEIPT	FINAL
FRACTION #	<u>NAME</u>	<u>TEST</u>	VAC./PRES.	<b>PRESSURE</b>
01A	SG3	TO-15	4.7 "Hg	14.9 psi
02A	SG3-DUP	TO-15	4.7 "Hg	14.9 psi
03A	Lab Blank	TO-15	NA	NA
04A	CCV	TO-15	NA	NA
05A	LCS	TO-15	NA	NA
05AA	LCSD	TO-15	NA	NA

	Meide Thayes	
CERTIFIED BY:	0 00	DATE: $\frac{06/04/14}{}$

Technical Director

Certification numbers: AZ Licensure AZ0775, CA NELAP - 12282CA, NJ NELAP - CA016, NY NELAP - 11291, TX NELAP - T104704434-13-6, UT NELAP CA009332013-4, VA NELAP - 460197, WA NELAP - C935 Name of Accrediting Agency: NELAP/ORELAP (Oregon Environmental Laboratory Accreditation Program) Accreditation number: CA300005, Effective date: 10/18/2013, Expiration date: 10/17/2014.

Eurofins Air Toxics Inc.. certifies that the test results contained in this report meet all requirements of the NELAC standards

This report shall not be reproduced, except in full, without the written approval of Eurofins Air Toxics, Inc.



### LABORATORY NARRATIVE EPA Method TO-15 P & D Environmental Workorder# 1405390A

Two 1 Liter Summa Canister samples were received on May 20, 2014. The laboratory performed analysis via EPA Method TO-15 using GC/MS in the full scan mode.

This workorder was independently validated prior to submittal using 'USEPA National Functional Guidelines' as generally applied to the analysis of volatile organic compounds in air. A rules-based, logic driven, independent validation engine was employed to assess completeness, evaluate pass/fail of relevant project quality control requirements and verification of all quantified amounts.

### **Receiving Notes**

There were no receiving discrepancies.

### **Analytical Notes**

The reported CCV for each daily batch may be derived from more than one analytical file due to the client's request for non-standard compounds. Non-standard compounds may have different acceptance criteria than the standard TO-14A/TO-15 compound list as per contract or verbal agreement.

A single point calibration for TPH referenced to Gasoline was performed for each daily analytical batch. Recovery is reported as 100% in the associated results for each CCV.

Dilution was performed on samples SG3 and SG3-DUP due to the presence of high level non-target species.

## **Definition of Data Qualifying Flags**

Eight qualifiers may have been used on the data analysis sheets and indicates as follows:

- B Compound present in laboratory blank greater than reporting limit (background subtraction not performed).
  - J Estimated value.
  - E Exceeds instrument calibration range.
  - S Saturated peak.
  - Q Exceeds quality control limits.
- U Compound analyzed for but not detected above the reporting limit, LOD, or MDL value. See data page for project specific U-flag definition.
  - UJ- Non-detected compound associated with low bias in the CCV
  - N The identification is based on presumptive evidence.

File extensions may have been used on the data analysis sheets and indicates as follows:

a-File was requantified

b-File was quantified by a second column and detector

r1-File was requantified for the purpose of reissue



# **Summary of Detected Compounds EPA METHOD TO-15 GC/MS FULL SCAN**

Client Sample ID: SG3 Lab ID#: 1405390A-01A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)	
Benzene	120	370	380	1200	
Toluene	120	750	450	2800	
m,p-Xylene	120	180	520	790	
TPH ref. to Gasoline (MW=100)	6000	870000	24000	3600000	
1,1-Difluoroethane	480	560	1300	1500	

**Client Sample ID: SG3-DUP** 

Lab ID#: 1405390A-02A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)	
Benzene	120	380	380	1200	
Toluene	120	740	450	2800	
m,p-Xylene	120	150	520	640	
TPH ref. to Gasoline (MW=100)	6000	850000	24000	3500000	
1,1-Difluoroethane	480	510	1300	1400	



## Client Sample ID: SG3 Lab ID#: 1405390A-01A

## EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	17060231	Date of Collection: 5/19/14 1:54:00 PM
Dil. Factor:	239	Date of Analysis: 6/2/14 10:56 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Methyl tert-butyl ether	120	Not Detected	430	Not Detected
Benzene	120	370	380	1200
Toluene	120	750	450	2800
Ethyl Benzene	120	Not Detected	520	Not Detected
m,p-Xylene	120	180	520	790
o-Xylene	120	Not Detected	520	Not Detected
TPH ref. to Gasoline (MW=100)	6000	870000	24000	3600000
1,1-Difluoroethane	480	560	1300	1500

### **Container Type: 1 Liter Summa Canister**

		Method
Surrogates	%Recovery	Limits
Toluene-d8	100	70-130
1,2-Dichloroethane-d4	116	70-130
4-Bromofluorobenzene	104	70-130



## Client Sample ID: SG3-DUP Lab ID#: 1405390A-02A

### EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	17060232	Date of Collection: 5/19/14 1:54:00 PM
Dil. Factor:	239	Date of Analysis: 6/2/14 11:21 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Methyl tert-butyl ether	120	Not Detected	430	Not Detected
Benzene	120	380	380	1200
Toluene	120	740	450	2800
Ethyl Benzene	120	Not Detected	520	Not Detected
m,p-Xylene	120	150	520	640
o-Xylene	120	Not Detected	520	Not Detected
TPH ref. to Gasoline (MW=100)	6000	850000	24000	3500000
1,1-Difluoroethane	480	510	1300	1400

### **Container Type: 1 Liter Summa Canister**

Surrogates	%Recovery	Method Limits
Toluene-d8	98	70-130
1,2-Dichloroethane-d4	124	70-130
4-Bromofluorobenzene	102	70-130



## Client Sample ID: Lab Blank Lab ID#: 1405390A-03A

### FPA METHOD TO-15 CC/MS FIII I SCAN

File Name: Dil. Factor:	17060208 1.00	Date of Collection: NA Date of Analysis: 6/2/14 10:45 AM										
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)								
Methyl tert-butyl ether	0.50	Not Detected	1.8	Not Detected								
Benzene	0.50	Not Detected	1.6	Not Detected								
Toluene	0.50	Not Detected	1.9	Not Detected								
Ethyl Benzene	0.50	Not Detected	2.2	Not Detected Not Detected								
m,p-Xylene	0.50	Not Detected	2.2									
o-Xylene	0.50	Not Detected	2.2	Not Detected								
TPH ref. to Gasoline (MW=100)	25	Not Detected	100	Not Detected								
1,1-Difluoroethane	2.0	2.0 Not Detected 5.4										
Container Type: NA - Not Applicat	ole											
				Method								
Surrogates		%Recovery										
Toluene-d8		101		70-130								
1,2-Dichloroethane-d4		101		70-130								
4-Bromofluorobenzene		98		70-130								



## Client Sample ID: CCV Lab ID#: 1405390A-04A

## EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	17060202	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 6/2/14 07:59 AM

Compound	%Recovery	
Methyl tert-butyl ether	102	
Benzene	97	
Toluene	96	
Ethyl Benzene	98	
m,p-Xylene	99	
o-Xylene	102	
TPH ref. to Gasoline (MW=100)	100	
1,1-Difluoroethane	121	

		Method				
Surrogates	%Recovery	Limits				
Toluene-d8	103	70-130				
1,2-Dichloroethane-d4	102	70-130				
4-Bromofluorobenzene	104	70-130				



## Client Sample ID: LCS Lab ID#: 1405390A-05A

## EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	17060203	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 6/2/14 08:21 AM

Compound	%Recovery	Method Limits			
Methyl tert-butyl ether	114	70-130			
Benzene	108	70-130			
Toluene	103	70-130			
Ethyl Benzene	103	70-130			
m,p-Xylene	104	70-130			
o-Xylene	106	70-130			
TPH ref. to Gasoline (MW=100)	Not Spiked				
1,1-Difluoroethane	Not Spiked				

Community Type Title The Type Touris		Method			
Surrogates	%Recovery	Limits			
Toluene-d8	104	70-130			
1,2-Dichloroethane-d4	106	70-130			
4-Bromofluorobenzene	103	70-130			



## Client Sample ID: LCSD Lab ID#: 1405390A-05AA

### EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	17060204	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 6/2/14 08:42 AM

Compound	%Recovery	Method Limits			
Methyl tert-butyl ether	114	70-130			
Benzene	105	70-130			
Toluene	100	70-130			
Ethyl Benzene	102	70-130			
m,p-Xylene	105	70-130			
o-Xylene	104	70-130			
TPH ref. to Gasoline (MW=100)	Not Spiked				
1,1-Difluoroethane	Not Spiked				

Communication Types Title The Transportation		Method			
Surrogates	%Recovery	Limits			
Toluene-d8	102	70-130			
1,2-Dichloroethane-d4	102	70-130			
4-Bromofluorobenzene	104	70-130			

Section 2011	C	HA	IN (	OF C	CUST	DDY:I	RE	C	<u>)R</u>	D		14	0.5	37	0-	ON	5/21	기년 PAG	E	of L	-			
P&D	ENVII 55 Santa Oa	RON a Clara ıkland, (510) 65	MEN Ave., S CA 946 58-6916	VTA] uite 240 10	L, INC	•					A. Lewis San		//	//	/	//	7/							
PROJECT NUMBER:		أيستم	PROJECT NAME: 475 LESSER ST. OAKLAND, CA			ROJECT NAME: 175 LESSER ST.				NUMBER OF CONTAINERS	173.	CO CALLER SINES			//	//	//	/	//	/ m				NACL-MAINTENANCH INTRACHANTAN CONTRACTOR OF STREETS
SAMPLED BY: (PRIN	<u> </u>	<u>Wich</u>	ps di	24-10 24-10	Less-	ATYAN.	MBER OF	AN		TOT	//					EKER	ACATIVE.	-			NA GATORIA NO TONO EN MANOREMENTANDO EN MANOREMENTANDO EN MANOREMENTANDO EN MANOREMENTANDO EN MANOREMENTANDO E			
SAMPLE NUMBER  01A 5G3	DATE *		TYPE Said	STAP	MPLE LOC F END	FID (PPM)	ž	/K	7	7/		_/	_/	_/		<u> </u>		REN	MARKS	<del></del>	otto karantaran			
01A 5G3 02A 5G3-DUP	5/19/14	135406	i.,	- 29		175	I i	X	X							<i>NO DE</i>	LOR	JUAL U	TAT		dasaneerkaseer			
																***************************************			***************************************		enegyanistem			
					<b></b>	· · · · · · · · · · · · · · · · · · ·															an secondocate and			
						***************************************	<b> </b>														errosiiestististella			
							-														enderpose established			
							_														намерикальна			
					***************************************											-Cus -Y-}	tody.S <del>(Non</del>	Seal I	ntact?	4				
																			EA,	- Do	o ot H			
RELINQUISHED BY: (SIGNATION OF THE PROPERTY OF	URE)		DATE (	TIME 1(06	RECEIVE	BY SIGN	100	RE)		To	tal No. his Shir tal No. his Shir	of Con	tainers	2 2			RATORY:		······································					
REJINQUISHED BY: (SIGNATO	ÚRE)		DATE	TIME	RECEIVE	O BY: (SIGN	IATU.	RE)		LA		ATOI	RY CC	)NTA(	CT: I	LABOR	ATORY I	PHONE	NUMBEI	₹:				
RELINQUISHED BY: (SIGNAT	URE)	. 1	DATE	TIME	RECEIVED (SIGNATU	FOR LABC RE)	ORAT	ORY	BY:	S.		Æ AN	NALY		-	EST SI			<u>'2 51</u>					
Results and billing to: P&D Environmental, Inc. lab@pdenviro.com		· · · · · · · · · · · · · · · · · · ·			REMARKS	S: 50	. کما د	N(A)	Ca	ani	STE	7.RS	C	16	ite	<u> </u>		1	1053	90				



6/5/2014 Mr. Paul King P & D Environmental 55 Santa Clara Suite 240 Oakland CA 94610

Project Name: 475 LESSER st. OAKLAND, CA

Project #: 0675

Workorder #: 1405369

Dear Mr. Paul King

The following report includes the data for the above referenced project for sample(s) received on 5/20/2014 at Air Toxics Ltd.

The data and associated QC analyzed by Modified TO-17 VI are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Air Toxics Ltd. for your air analysis needs. Air Toxics Ltd. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Kyle Vagadori at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Kyle Vagadori

**Project Manager** 

Kya Vych



### WORK ORDER #: 1405369

### Work Order Summary

CLIENT: Mr. Paul King BILL TO: Mr. Paul King

P & D Environmental
P & D Environmental
P & D Environmental
Suite 240
P & D Environmental
S Santa Clara
Suite 240
Suite 240

Oakland, CA 94610 Oakland, CA 94610

PHONE: 510-658-6916 P.O. #

FAX: 510-834-0772 PROJECT # 0675 475 LESSER st. OAKLAND, CA

**DATE RECEIVED:** 05/20/2014 **CONTACT:** Kyle Vagadori **DATE COMPLETED:** 06/05/2014

FRACTION# **NAME** TEST 01A SG3 Modified TO-17 VI 02A SG3-REP Modified TO-17 VI Modified TO-17 VI 03A Lab Blank 03B Lab Blank Modified TO-17 VI Modified TO-17 VI 04A **CCV CCV** Modified TO-17 VI 04B Modified TO-17 VI 05A LCS 05AA LCSD Modified TO-17 VI 05B LCS Modified TO-17 VI LCSD Modified TO-17 VI 05BB

	10	eide Thayes			
CERTIFIED BY:		00	DATE:	06/05/14	

Technical Director

Certification numbers: AZ Licensure AZ0775, CA NELAP - 12282CA, NJ NELAP - CA016, NY NELAP - 11291, TX NELAP - T104704434-13-6, UT NELAP CA009332013-4, VA NELAP - 460197, WA NELAP - C935 Name of Accrediting Agency: NELAP/ORELAP (Oregon Environmental Laboratory Accreditation Program)

Accreditation number: CA300005, Effective date: 10/18/2013, Expiration date: 10/17/2014.

Eurofins Air Toxics Inc.. certifies that the test results contained in this report meet all requirements of the NELAC standards

This report shall not be reproduced, except in full, without the written approval of Eurofins Air Toxics, Inc.



### LABORATORY NARRATIVE Modified EPA Method TO-17 (VI Tubes) P & D Environmental Workorder# 1405369

Two TO-17 VI Tube samples were received on May 21, 2014. The laboratory performed the analysis via modified EPA Method TO-17 using GC/MS in the full scan mode. TO-17 'VI' sorbent tubes are thermally desorbed onto a secondary trap. The trap is thermally desorbed to elute the components into the GC/MS system for compound separation and detection.

A modification that may be applied to EPA Method TO-17 at the client's discretion is the requirement to transport sorbent tubes at 4 deg C. Laboratory studies demonstrate a high level of stability for VOCs on the TO-17 'VI' tube at room temperature for periods of up to 14 days. Tubes can be shipped to and from the field site at ambient conditions as long as the 14-day sample hold time is upheld. Trip blanks and field surrogate spikes are used as additional control measures to monitor recovery and background contribution during tube transport.

Since the TO-17 VI application significantly extends the scope of target compounds addressed in EPA Method TO-15 and TO-17, the laboratory has implemented several method modifications outlined in the table below. Specific project requirements may over-ride the laboratory modifications.

Requirement	TO-17	ATL Modifications
Initial Calibration	%RSD =30% with 2 allowed out up to 40%</td <td>VOC list: %RSD<!--=30% with 2 allowed out up to 40% SVOC list: %RSD</=30% with 2 allowed out up to 40%</td--></td>	VOC list: %RSD =30% with 2 allowed out up to 40% SVOC list: %RSD</=30% with 2 allowed out up to 40%</td
Daily Calibration	%D for each target compound within +/-30%.	Fluorene, Phenanthrene, Anthracene, Fluoranthene, and Pyrene within +/-40%D
Audit Accuracy	70-130%	Second source recovery limits for Fluorene, Phenanthrene, Anthracene, Fluoranthene, and Pyrene = 60-140%.
Distributed Volume Pairs	Collection of distributed volume pairs required for monitoring ambient air to insure high quality.	If site is well-characterized or performance previously verified, single tube sampling may be appropriate.  Distributed pairs may be impractical for soil gas collection due to configuration and volume constraints.

### **Receiving Notes**

There were no receiving discrepancies.

### **Analytical Notes**

A sampling volume of 0.200 L was used to convert ng to ug/m3 for the associated Lab Blanks.

Field surrogate, 1,2-Dichloroethane-d4, in sample SG3 exceeded the laboratory limits of 50-150% due to high level hydrocarbon matrix interference.

Field surrogates, 1,2-Dichloroethane-d4 and Toluene-d8, in sample SG3-REP exceeded the laboratory limits of 50-150% due to high level hydrocarbon matrix interference.

Samples SG3 and SG3-REP had mass concentrations for non-target compounds well above the standard calibration range. In order to analyze the samples effectively and maintain instrument performance, the samples were analyzed at a higher split than the initial calibration. The split used resulted in a dilution of 10, and the reporting limit and calibration range were raised accordingly.

### **Definition of Data Qualifying Flags**

Eight qualifiers may have been used on the data analysis sheets and indicates as follows:

- B Compound present in blank (subtraction not performed).
- J Estimated value.
- E Exceeds instrument calibration range.
- S Saturated peak.
- Q Exceeds quality control limits.
- U Compound analyzed for but not detected above the reporting limit, LOD, or MDL value. See data page for project specific U-flag definition.
  - UJ- Non-detected compound associated with low bias in the CCV
  - N The identification is based on presumptive evidence.

File extensions may have been used on the data analysis sheets and indicates as follows:

- a-File was requantified
- b-File was quantified by a second column and detector
- r1-File was requantified for the purpose of reissue



# **Summary of Detected Compounds EPA METHOD TO-17**

Client Sample ID: SG3

Lab ID#: 1405369-01A

No Detections Were Found.

**Client Sample ID: SG3-REP** 

Lab ID#: 1405369-02A
No Detections Were Found.



Client Sample ID: SG3 Lab ID#: 1405369-01A EPA METHOD TO-17

File Name:	18060329	Date of Extraction: NADate of Collection: 5/19/14 2:14:00 PM
Dil. Factor:	10.0	Date of Analysis: 6/4/14 08:40 AM

	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ng)	(ug/m3)	(ng)	(ug/m3)
2-Propanol	490	2400	Not Detected	Not Detected
Naphthalene	5.0	25	Not Detected	Not Detected

Air Sample Volume(L): 0.200 Q = Exceeds Quality Control limits. Container Type: TO-17 VI Tube

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	270 Q	50-150	
Toluene-d8	80	50-150	
Naphthalene-d8	84	50-150	



# Client Sample ID: SG3-REP Lab ID#: 1405369-02A EPA METHOD TO-17

File Name:	18060429	Date of Extraction: NADate of Collection: 5/19/14 2:27:00 PM
Dil. Factor:	10.0	Date of Analysis: 6/5/14 11:39 AM

	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ng)	(ug/m3)	(ng)	(ug/m3)
2-Propanol	490	2400	Not Detected	Not Detected
Naphthalene	5.0	25	Not Detected	Not Detected

Air Sample Volume(L): 0.200 Q = Exceeds Quality Control limits. Container Type: TO-17 VI Tube

• •		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	311 Q	50-150	
Toluene-d8	228 Q	50-150	
Naphthalene-d8	94	50-150	



Client Sample ID: Lab Blank Lab ID#: 1405369-03A EPA METHOD TO-17

File Name:	18060308	Date of Extraction: NADate of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 6/3/14 03:33 PM

	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ng)	(ug/m3)	(ng)	(ug/m3)
2-Propanol	49	240	Not Detected	Not Detected
Naphthalene	0.50	2.5	Not Detected	Not Detected

Air Sample Volume(L): 0.200

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	102	50-150	
Toluene-d8	95	50-150	
Naphthalene-d8	87	50-150	



## Client Sample ID: Lab Blank Lab ID#: 1405369-03B EPA METHOD TO-17

File Name: 18060410 Date of Extraction: NADate of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 6/4/14 07:50 PM

Compound	Rpt. Limit (ng)	Rpt. Limit (ug/m3)	Amount (ng)	Amount (ug/m3)
2-Propanol	49	240	Not Detected	Not Detected
Naphthalene	0.50	2.5	Not Detected	Not Detected

Air Sample Volume(L): 0.200

		Method Limits
Surrogates	%Recovery	
1,2-Dichloroethane-d4	103	50-150
Toluene-d8	95	50-150
Naphthalene-d8	85	50-150



Client Sample ID: CCV Lab ID#: 1405369-04A EPA METHOD TO-17

File Name: 18060307 Date of Extraction: NADate of Collection: NA

Dil. Factor: 1.00 Date of Analysis: 6/3/14 02:37 PM

Compound	%Recovery	
2-Propanol	96	
Naphthalene	81	

Air Sample Volume(L): 1.00

		Method Limits
Surrogates	%Recovery	
1,2-Dichloroethane-d4	107	50-150
Toluene-d8	101	50-150
Naphthalene-d8	102	50-150



Client Sample ID: CCV Lab ID#: 1405369-04B EPA METHOD TO-17

File Name: 18060409 Date of Extraction: NADate of Collection: NA

Dil. Factor: 1.00 Date of Analysis: 6/4/14 07:07 PM

Compound%Recovery2-Propanol97Naphthalene74

Air Sample Volume(L): 1.00

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	108	50-150
Toluene-d8	96	50-150
Naphthalene-d8	86	50-150



Client Sample ID: LCS Lab ID#: 1405369-05A EPA METHOD TO-17

File Name:	18060304	Date of Extraction: NADate of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 6/3/14 12:27 PM

		Method
Compound	%Recovery	Limits
2-Propanol	81	70-130
Naphthalene	85	70-130

Air Sample Volume(L): 1.00

остано турстите постършоване		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	121	50-150	
Toluene-d8	112	50-150	
Naphthalene-d8	107	50-150	



Client Sample ID: LCSD Lab ID#: 1405369-05AA EPA METHOD TO-17

File Name:	18060305	Date of Extraction: NADate of Collection: NA

Dil. Factor: 1.00 Date of Analysis: 6/3/14 01:10 PM

Compound	%Recovery	Limits
2-Propanol	79	70-130
Naphthalene	90	70-130

Air Sample Volume(L): 1.00

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	120	50-150
Toluene-d8	113	50-150
Naphthalene-d8	108	50-150



Client Sample ID: LCS Lab ID#: 1405369-05B EPA METHOD TO-17

File Name: 18060406 Date of Extraction: NADate of Collection: NA

Dil. Factor: 1.00 Date of Analysis: 6/4/14 04:55 PM

		Method	
Compound	%Recovery	Limits	
2-Propanol	79	70-130	
Naphthalene	82	70-130	

Air Sample Volume(L): 1.00

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	109	50-150
Toluene-d8	95	50-150
Naphthalene-d8	82	50-150



Client Sample ID: LCSD Lab ID#: 1405369-05BB EPA METHOD TO-17

File Name:	18060407	Date of Extraction: NADate of Collection: NA

Dil. Factor: 1.00 Date of Analysis: 6/4/14 05:39 PM

		Method	
Compound	%Recovery	Limits	
2-Propanol	76	70-130	
Naphthalene	83	70-130	

Air Sample Volume(L): 1.00

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	98	50-150	
Toluene-d8	89	50-150	
Naphthalene-d8	79	50-150	

generalista and a supplementary of the supplementar	CI	IAIN O	F CUSTOD	YRE	C	RI	)	ng kamananana paman	14	)53	69	PAGE ื OF	
P&D	ENVIRO 55 Santa C Oakla (51	ONMEN Ilara Ave., Sui and, CA 94610 0) 658-6916	TAL, INC.		nersoners erste erst	/	[], Q				//		
PROJECT NUMBER:			ser st.	NERS				/ /	/ /	/ /	/ /		
0675		OAKLAN	D, CA	CONTAI	ANAIV		Ŋ	//			//	/ _{&amp;} /	
SAMPLED BY: (PRIN			Best-Mach	NO NUMBER OF CONTAINERS	A.			/ /	/ /	/ /	/ /	REMARKS	
SAMPLE NUMBER	DATE T	TME TYPE	SAMPLE LOCATION	ON NO	134	J Y		//	' /		PRES	REMARKS	
\$G3	5/19/14	\$ 14/645	141300 1414	18	×	X					ICE	NORMAL TAT	
5G3-REP.	111		142600 1427		X	X					и	L ii	***************************************
												SAMPLED AT 150CC	Mis
							-			-	<u> </u>		
							+	_		-	1		
						_  -	+			_	-		
							1			1			
							1 1			<u> </u>			
										-			
							-			-	1		
RELINQUISHED BY: (SIGNAT)	JRE)	DATE T	IME RECEIVED BY	7SIGNATU	RE)		Total No	o, of Samp	oles	<u> </u> Z	LABOR	ATORY:	
RELINQUISHED BY: (SIGNATU	20 C	. 5-2014	ME RECEIVED BY		A STATE OF THE PARTY OF THE PAR		(This St Total No	o. of Samp nipment) o. of Conta nipment)	ainers	Z Z	_1	Taxics	
RÉLINQUISHED BY: (SIGNATI	JRE)	DATE T	IME RECEIVED BY	(SIGNATU	RE)		LABO		Y CON	TACT:	LABOR	AATORY PHONE NUMBER:	***************************************
RELINQUISHED BY: (SIGNATI	URE)	DATE 7	TME RECEIVED FOR (SIGNATURE)	LABORAT	ORY I	BY:	SAMI		ÁLYSIS		UEST ŠF	HEET  (X) NO	
Results and billing to: P&D Environmental, Inc. lab@pdenviro.com			REMARKS:		UT	TLI	<u> </u>		<del></del>	C	ustody	y Seal Intact?	



6/4/2014 Mr. Paul King P & D Environmental 55 Santa Clara Suite 240 Oakland CA 94610

Project Name: 475 LESSER ST. OAKLAND, CA

Project #: 0675

Workorder #: 1405390B

Dear Mr. Paul King

The following report includes the data for the above referenced project for sample(s) received on 5/20/2014 at Air Toxics Ltd.

The data and associated QC analyzed by Modified ASTM D-1946 are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Air Toxics Ltd. for your air analysis needs. Air Toxics Ltd. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Kyle Vagadori at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Kyle Vagadori

**Project Manager** 

Kya Vych



#### WORK ORDER #: 1405390B

Work Order Summary

CLIENT: Mr. Paul King BILL TO: Mr. Paul King

P & D Environmental
P & D Environmental
P & D Environmental
Suite 240
P & D Environmental
Standard Suite 240
P & D Environmental
Suite 240

Oakland, CA 94610 Oakland, CA 94610

**PHONE:** 510-658-6916 **P.O.** # NA

FAX: 510-834-0772 PROJECT # 0675 475 LESSER ST. OAKLAND, CA

**DATE RECEIVED:** 05/20/2014 **CONTACT:** Kyle Vagadori **DATE COMPLETED:** 06/04/2014

RECEIPT **FINAL** VAC./PRES. FRACTION# **NAME** TEST **PRESSURE** 01A SG3 Modified ASTM D-1946 4.7 "Hg 14.9 psi Modified ASTM D-1946 4.7 "Hg 14.9 psi 02A SG3-DUP 03A Lab Blank Modified ASTM D-1946 NA NA 04A LCS Modified ASTM D-1946 NA NA Modified ASTM D-1946 NA NA 04AA **LCSD** 

	The	ide Thayes		
CERTIFIED BY:			DATE: <u>06/04/14</u>	

Technical Director

Certification numbers: AZ Licensure AZ0775, CA NELAP - 12282CA, NJ NELAP - CA016, NY NELAP - 11291, TX NELAP - T104704434-13-6, UT NELAP CA009332013-4, VA NELAP - 460197, WA NELAP - C935 Name of Accrediting Agency: NELAP/ORELAP (Oregon Environmental Laboratory Accreditation Program) Accreditation number: CA300005, Effective date: 10/18/2013, Expiration date: 10/17/2014. Eurofins Air Toxics Inc.. certifies that the test results contained in this report meet all requirements of the NELAC standards

This report shall not be reproduced, except in full, without the written approval of Eurofins Air Toxics, Inc.



#### LABORATORY NARRATIVE Modified ASTM D-1946 P & D Environmental Workorder# 1405390B

Two 1 Liter Summa Canister samples were received on May 20, 2014. The laboratory performed analysis via Modified ASTM Method D-1946 for Methane and fixed gases in air using GC/FID or GC/TCD. The method involves direct injection of 1.0 mL of sample.

On the analytical column employed for this analysis, Oxygen coelutes with Argon. The corresponding peak is quantitated as Oxygen.

Method modifications taken to run these samples are summarized in the table below. Specific project requirements may over-ride the ATL modifications.

Requirement	ASTM D-1946	ATL Modifications
Calibration	A single point calibration is performed using a reference standard closely matching the composition of the unknown.	A minimum of 5-point calibration curve is performed.  Quantitation is based on average Response Factor.
Reference Standard	The composition of any reference standard must be known to within 0.01 mol % for any component.	The standards used by ATL are blended to a >/= 95% accuracy.
Sample Injection Volume	Components whose concentrations are in excess of 5 % should not be analyzed by using sample volumes greater than 0.5 mL.	The sample container is connected directly to a fixed volume sample loop of 1.0 mL on the GC. Linear range is defined by the calibration curve. Bags are loaded by vacuum.
Normalization	Normalize the mole percent values by multiplying each value by 100 and dividing by the sum of the original values. The sum of the original values should not differ from 100% by more than 1.0%.	Results are not normalized. The sum of the reported values can differ from 100% by as much as 15%, either due to analytical variability or an unusual sample matrix.
Precision	Precision requirements established at each concentration level.	Duplicates should agree within 25% RPD for detections > 5 X's the RL.

#### **Receiving Notes**

There were no receiving discrepancies.



## **Analytical Notes**

There were no analytical discrepancies.

#### **Definition of Data Qualifying Flags**

Seven qualifiers may have been used on the data analysis sheets and indicate as follows:

- B Compound present in laboratory blank greater than reporting limit.
- J Estimated value.
- E Exceeds instrument calibration range.
- S Saturated peak.
- Q Exceeds quality control limits.
- U Compound analyzed for but not detected above the detection limit.
- M Reported value may be biased due to apparent matrix interferences.

File extensions may have been used on the data analysis sheets and indicates as follows:

- a-File was requantified
- b-File was quantified by a second column and detector
- r1-File was requantified for the purpose of reissue



# Summary of Detected Compounds MODIFIED NATURAL GAS ANALYSIS BY ASTM D-1946

Client Sample ID: SG3 Lab ID#: 1405390B-01A

	Rpt. Limit	Amount
Compound	(%)	(%)
Oxygen	0.24	2.1
Methane	0.00024	0.18
Carbon Dioxide	0.024	10

**Client Sample ID: SG3-DUP** 

Lab ID#: 1405390B-02A

	Rpt. Limit	Amount
Compound	(%)	(%)
Oxygen	0.24	2.6
Methane	0.00024	0.18
Carbon Dioxide	0.024	10



## Client Sample ID: SG3 Lab ID#: 1405390B-01A

## MODIFIED NATURAL GAS ANALYSIS BY ASTM D-1946

		Rpt. Limit	Amount
Dil. Factor:	2.39	Date of Analysis:	5/23/14 08:40 PM
File Name:	10052406	Date of Collection	n: 5/19/14 1:54:00 PM

	Rpt. Limit	Amount
Compound	(%)	(%)
Oxygen	0.24	2.1
Methane	0.00024	0.18
Carbon Dioxide	0.024	10

Container Type: 1 Liter Summa Canister



## Client Sample ID: SG3-DUP Lab ID#: 1405390B-02A

## MODIFIED NATURAL GAS ANALYSIS BY ASTM D-1946

File Name: Dil. Factor:	10052407 2.39		tion:  5/19/14 1:54:00 PN sis:  5/23/14 09:01 PM
Compound		Rpt. Limit (%)	Amount (%)
Oxygen		0.24	2.6
Methane		0.00024	0.18
Carbon Dioxide		0.024	10

**Container Type: 1 Liter Summa Canister** 



## Client Sample ID: Lab Blank Lab ID#: 1405390B-03A

#### MODIFIED NATURAL GAS ANALYSIS BY ASTM D-1946

File Name: Dil. Factor:  Compound	10052405 1.00	Date of Collection: NA Date of Analysis: 5/23/14 07:48 PM							
		Rpt. Limit (%)	Amount (%)						
Oxygen		0.10	Not Detected						
Methane		0.00010	Not Detected						
Carbon Dioxide		0.010	Not Detected						



## Client Sample ID: LCS Lab ID#: 1405390B-04A

## MODIFIED NATURAL GAS ANALYSIS BY ASTM D-1946

File Name: 10052402 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 5/23/14 06:24 PM

	Wethod
%Recovery	Limits
100	85-115
105	85-115
99	85-115
	100 105



## Client Sample ID: LCSD Lab ID#: 1405390B-04AA

#### MODIFIED NATURAL GAS ANALYSIS BY ASTM D-1946

File Name: 10052430a Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 5/24/14 02:06 PM

	2/5	Wethod
Compound	%Recovery	Limits
Oxygen	100	85-115
Methane	106	85-115
Carbon Dioxide	99	85-115

	C	HA	IN (	OF C	CUST	DDY:I	RE	C	)R	D		1	40	13:	70-	· OV	5/21	// <mark>4</mark> PAGI	E <u> </u>	of I	-
P&D ENVIRONMENTAI 55 Santa Clara Ave., Suite 240 Oakland, CA 94610 (510) 658-6916				L, INC.					Z@	D-1977			/		//						
PROJECT NUMBER:		إسة	75 W		NE: RST. ), GA			( ) X y =	TE R. R.	CALLER SE		//				//		/			arch-Herdescher Bereitster (1946) archester (1946) arches
SAMPLED BY: (PRIN MICHAEL BASS-DESCHE	TES C	<u>(flich</u>	ps di	] 24-1	Swal-	grand the same of	NUMBER OF CONTAINERS	AN	が対対が		//	//					TACATINE A				·
SAMPLE NUMBER	DATE '	ļ	TYPE	STAP	MPLE LOC F <u>énid</u>		N	1/3		1/	/	/	/_/	/	_			REM	ARKS		
01A 5G3	5/19/14	135446	Silv	- 29	Service Services	175	į	X	X							NONE	LUR	MIL	TAT		
02A SG3-DUP	1,	54	į, į					X	X							3.	į	1	<i>ji</i> .		in the second se
											_										AND DESIGNATION OF THE PROPERTY OF THE PROPERT
																					Anterboursesson
											1										n blasseranserient
						WIVE THE RESERVE TO T					_										oceana de la companya del companya de la companya del companya de la companya de
													7777711			-Cus	tody S	eal L	ntact?	1	oo ka
																<del>Y</del> f	(Non	<del>/Ten</del>	IP MY	÷ Do	p of f
						<b>/</b> 2)	/												***************************************		ess section de
RELINQUISHED BY: (SIGNATION OF THE PROPERTY OF	URE)			TIME 1(06	RÉCÈIVE	BY SIGN	KyCi	RE)		To (T) To (T)	tal No. his Shi tal No. his Shi	of Sar pment of Cor pment	mples ) ntainer: )		? 2		CATORY:	·			
REJINQUISHED BY: (SIGNAT)	URE)		DATE	TIME	RECEIVE	O BY: (SIGN	ATU	RE)		LA	BOR	ATO	RY C	ONT	ACT:	LABOR	ATORY I	PHONE	NUMBER	t:	MENERALDISA
RELINQUISHED BY: (SIGNAT	URE)		DATE	TIME	RECEIVED (SIGNATU	FOR LABORE)	ORAT	ORY	BY:	S		LE A	NAL	SIS		JEST SH		- <u> </u>	J 57		HART STREET
Results and billing to: P&D Environmental, Inc. lab@pdenviro.com					REMARKS	S: Si	. اسماد	L(L)	Co	4Ni	572	E/2S	<i>C</i>	110	Lita	Erz)		14	053	90	Breed of the property of the p



6/9/2014 Mr. Paul King P & D Environmental 55 Santa Clara Suite 240 Oakland CA 94610

Project Name: 475 Lesser St, Oakland

Project #: 0675

Workorder #: 1405368

Dear Mr. Paul King

The following report includes the data for the above referenced project for sample(s) received on 5/20/2014 at Air Toxics Ltd.

The data and associated QC analyzed by Modified TO-15 (5&20 ppbv) are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Air Toxics Ltd. for your air analysis needs. Air Toxics Ltd. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Kyle Vagadori at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Kyle Vagadori

Project Manager

Kya Vych



#### WORK ORDER #: 1405368

Work Order Summary

CLIENT: Mr. Paul King BILL TO: Mr. Paul King

P & D Environmental
P & D Environmental
Source 240
P & D Environmental
Source 240
Suite 240
Suite 240

Oakland, CA 94610 Oakland, CA 94610

**PHONE:** 510-658-6916 **P.O.** #

**FAX:** 510-834-0772 **PROJECT** # 0675 475 Lesser St, Oakland

DATE RECEIVED: 05/20/2014 CONTACT: Kyle Vagadori DATE COMPLETED: 06/04/2014

RECEIPT FINAL FRACTION# **NAME TEST** VAC./PRES. **PRESSURE** 01A SG3_DFA Modified TO-15 (5&20 ppbv) Tedlar Bag Tedlar Bag 02A SG3 ISOPROPYL Modified TO-15 (5&20 ppbv) Tedlar Bag Tedlar Bag 03A SG3-REP ISOPROPYL Modified TO-15 (5&20 ppbv) Tedlar Bag Tedlar Bag 04A Lab Blank Modified TO-15 (5&20 ppbv) NA NA 04B Modified TO-15 (5&20 ppbv) NA NA Lab Blank 05A **CCV** Modified TO-15 (5&20 ppbv) NA NA 05B Modified TO-15 (5&20 ppbv) NA **CCV** NA 06A LCS Modified TO-15 (5&20 ppbv) NA NA 06AA **LCSD** Modified TO-15 (5&20 ppbv) NA NA

	Meide Tlayer	
CERTIFIED BY:	0 00	DATE: 06/09/14

Technical Director

Certification numbers: AZ Licensure AZ0775, CA NELAP - 12282CA, NJ NELAP - CA016, NY NELAP - 11291, TX NELAP - T104704434-13-6, UT NELAP CA009332013-4, VA NELAP - 460197, WA NELAP - C935

Name of Accrediting Agency: NELAP/ORELAP (Oregon Environmental Laboratory Accreditation Program)

Accreditation number: CA300005, Effective date: 10/18/2013, Expiration date: 10/17/2014.

Eurofins Air Toxics Inc.. certifies that the test results contained in this report meet all requirements of the NELAC standards

This report shall not be reproduced, except in full, without the written approval of Eurofins Air Toxics, Inc. 180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 9563



#### LABORATORY NARRATIVE EPA Method TO-15 Soil Gas P & D Environmental Workorder# 1405368

Three 1 Liter Tedlar Bag samples were received on May 20, 2014. The laboratory performed analysis via EPA Method TO-15 using GC/MS in the full scan mode. The method involves concentrating up to 50 mLs of air. The concentrated aliquot is then flash vaporized and swept through a water management system to remove water vapor. Following dehumidification, the sample passes directly into the GC/MS for analysis.

This workorder was independently validated prior to submittal using 'USEPA National Functional Guidelines' as generally applied to the analysis of volatile organic compounds in air. A rules-based, logic driven, independent validation engine was employed to assess completeness, evaluate pass/fail of relevant project quality control requirements and verification of all quantified amounts.

#### **Receiving Notes**

The Chain of Custody was missing method information or contained incorrect method information. Eurofins Air Toxics proceeded with the analysis as per the original contract.

#### **Analytical Notes**

All of the samples were transferred from Tedlar bags into summa canisters to extend the hold time from 72 hours to 30 days. Canister pressurization resulted in a dilution factor which was applied to all analytical results.

Dilution was performed on all of the samples due to the presence of high level target species.

The reported CCV for each daily batch may be derived from more than one analytical file due to the client's request for non-standard compounds. Non-standard compounds may have different acceptance criteria than the standard TO-14A/TO-15 compound list as per contract or verbal agreement.

Method TO-15 is validated for samples collected in specially treated canisters. As such, the use of Tedlar bags for sample collection is outside the scope of the method and not recommended for ambient or indoor air samples. It is the responsibility of the data user to determine the usability of TO-15 results generated from Tedlar bags.

#### **Definition of Data Qualifying Flags**

Eight qualifiers may have been used on the data analysis sheets and indicates as follows:

- B Compound present in laboratory blank greater than reporting limit (background subtraction not performed).
  - J Estimated value.
  - E Exceeds instrument calibration range.
  - S Saturated peak.
  - Q Exceeds quality control limits.
- U Compound analyzed for but not detected above the reporting limit, LOD, or MDL value. See data page for project specific U-flag definition.
  - UJ- Non-detected compound associated with low bias in the CCV
  - N The identification is based on presumptive evidence.



File extensions may have been used on the data analysis sheets and indicates as follows:

a-File was requantified

b-File was quantified by a second column and detector

r1-File was requantified for the purpose of reissue



# **Summary of Detected Compounds EPA METHOD TO-15 GC/MS**

**Client Sample ID: SG3_DFA** 

Lab ID#: 1405368-01A

Compound	Rbt. Limit (ppbv)	(ppbv)	(ug/m3)	Amount (ug/m3)	
1,1-Difluoroethane	1000000	8000000	2800000	22000000	

Client Sample ID: SG3 ISOPROPYL

Lab ID#: 1405368-02A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Kpt. Limit (ug/m3)	(ug/m3)	
2-Propanol	8200	1300000	20000	3100000	_

Client Sample ID: SG3-REP ISOPROPYL

Lab ID#: 1405368-03A

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
2-Propanol	4100	680000	10000	1700000



# Client Sample ID: SG3 _DFA Lab ID#: 1405368-01A EPA METHOD TO-15 GC/MS

File Name: Dil. Factor:	14052933 51200		e of Collection: 5/19 e of Analysis: 5/29/1	
Compound	Rɒt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
1,1-Difluoroethane	1000000	8000000	2800000	22000000
Container Type: 1 Liter Tedla	r Bag			
Surrogates		%Recovery		Method Limits
1,2-Dichloroethane-d4		101		70-130
Toluene-d8		99		70-130
4-Bromofluorobenzene		96		70-130



## Client Sample ID: SG3 ISOPROPYL Lab ID#: 1405368-02A

#### **EPA METHOD TO-15 GC/MS**

File Name: Dil. Factor:	14052938 410		e of Collection: 5/19/ e of Analysis: 5/29/1	
Compound	Rɒt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
2-Propanol	8200	1300000	20000	3100000
Container Type: 1 Liter Tedlar E	Bag			Madhad
Surrogates		%Recovery		Method Limits
1,2-Dichloroethane-d4		98		70-130
Toluene-d8		95		70-130
4-Bromofluorobenzene		100		70-130



# Client Sample ID: SG3-REP ISOPROPYL

## Lab ID#: 1405368-03A EPA METHOD TO-15 GC/MS

File Name:	14052935	Date	e of Collection: 5/19/	<i>'</i> 14
Dil. Factor:	205	Date of Analysis: 5/29/14 08:06 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
2-Propanol	4100	680000	10000	1700000
Container Type: 1 Liter Tedlar B	Bag			
				Method
Surrogates		%Recovery		Limits
1,2-Dichloroethane-d4		101		70-130
Toluene-d8		99		70-130
4-Bromofluorobenzene		98		70-130



## Client Sample ID: Lab Blank Lab ID#: 1405368-04A EPA METHOD TO-15 GC/MS

File Name: Dil. Factor:	14052932 1.00		of Collection: NA of Analysis: 5/29/	14 06:37 PM
Compound	Rɒt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
2-Propanol	20	Not Detected	49	Not Detected
Container Type: NA - Not Appl	icable			Mathad
Surrogates		%Recovery		Method Limits
1,2-Dichloroethane-d4		105		70-130
Toluene-d8		99		70-130
4-Bromofluorobenzene		104		70-130



## Client Sample ID: Lab Blank Lab ID#: 1405368-04B EPA METHOD TO-15 GC/MS

File Name: Dil. Factor:	14052932a 1.00		of Collection: NA of Analysis: 5/29/	14 06:37 PM
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
1,1-Difluoroethane	20	Not Detected	54	Not Detected
Container Type: NA - Not App	olicable			
Surrogates		%Recovery		Method Limits
1,2-Dichloroethane-d4		105		70-130
Toluene-d8		99		70-130
4-Bromofluorobenzene		104		70-130



# Client Sample ID: CCV Lab ID#: 1405368-05A EPA METHOD TO-15 GC/MS

File Name: 14052907c Date of Collection: NA

Dil. Factor: 1.00 Date of Analysis: 5/29/14 07:56 AM

Compound %Recovery

2-Propanol 96

		wethod	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	97	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	101	70-130	



# Client Sample ID: CCV Lab ID#: 1405368-05B EPA METHOD TO-15 GC/MS

File Name: 14052930a Date of Collection: NA

Dil. Factor: 1.00 Date of Analysis: 5/29/14 05:47 PM

Compound %Recovery

1,1-Difluoroethane 99

		wethod
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	96	70-130
Toluene-d8	100	70-130
4-Bromofluorobenzene	101	70-130



# Client Sample ID: LCS Lab ID#: 1405368-06A

## EPA METHOD TO-15 GC/MS

File Name:	14052908c	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 5/29/14 08:24 AM

		Method
Compound	%Recovery	Limits
2-Propanol	111	70-130

		wethod	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	97	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	103	70-130	



# Client Sample ID: LCSD Lab ID#: 1405368-06AA EPA METHOD TO-15 GC/MS

File Name:	14052909c	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 5/29/14 08:47 AM

		Method
Compound	%Recovery	Limits
2-Propanol	110	70-130

Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	98	70-130
Toluene-d8	100	70-130
4-Bromofluorobenzene	103	70-130