ALAMEDA COUNTY HEALTH CARE SERVICES

AGENCY

ALEX BRISCOE, Director

ENVIRONMENTAL HEALTH SERVICES ENVIRONMENTAL PROTECTION 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577 (510) 567-6700 FAX (510) 337-9335

May 26, 2015

Daniel Rabin 475 Lesser Street, LLC 731 Sansome Street, 2nd Floor San Francisco, CA 94111

Flavor Right Foods NW, Inc. c/o William E. Grieshober, Jr. 1 Robert Rich Way Buffalo, NY 14213

Tip Top Foods, Inc. c/o Tom Michaelides Instantwhip Foods 2200 Cardigan Avenue Columbus, OH 43215-1092

Subject: Case Closure for Fuel Leak Case No. RO0003135 and GeoTracker Global ID T10000005847, Lesser Commercial Property, 475 Lesser Street, Oakland, CA 94601

Dear Responsible Parties:

This letter transmits the enclosed underground storage tank (UST) case closure letter in accordance with Chapter 6.75 (Article 4. Section 25296.10[q]). The State Water Resources Control Board adopted this letter on February 20, 1997. As of March 1, 1997, the Alameda County Environmental Health (ACEH) is required to use this case closure letter for all UST leak sites. We are also transmitting to you the enclosed case closure summary. These documents confirm the completion of the investigation and cleanup of the reported release at the subject site. The subject fuel leak case is closed. This case closure letter and the case closure summary can also be viewed on the State Water Resources Control Board's Geotracker website (http://geotracker.swrcb.ca.gov) Alameda County Environmental Health website and the (http://www.acgov.org/aceh/index.htm).

Due to residual contamination, the site was closed with Site Management Requirements that limit future land use to the current commercial land use. Site Management Requirements are further described in Additional Information section of the attached Case Closure Summary.

If you have any questions, please call Jerry Wickham at (510) 567-6791. Thank you.

Sincerely,

Dilan Roe, P.E.

LOP and SCP Program Manager

1.

Enclosures:

Remedial Action Completion Certification

2. Case Closure Summary Responsible Parties RO0003135 May 26, 2015 Page 2

Cc w/enc.:

cc: Mark J. Arniola, City of Oakland Public Works Environmental Services, 250 Frank H. Ogawa Plaza, Suite 4314, Oakland, CA 94612 (Sent via E-mail to: marniola@oaklandnet.com)

Gopakumar Nair, City of Oakland Public Works Environmental Services, 250 Frank H. Ogawa Plaza, Suite 4314, Oakland, CA 94612 (Sent via E-mail to: gnair@oaklandnet.com)

Kendra Marshall, 475 Lesser Street LLC, 731 Sansome Street, 2nd Floor, San Francisco, CA 94111 (Sent via E-mail to kendra.marshall@rabin.com)

Paul King, P & D Environmental, 55 Santa Clara Avenue, Suite 240, Oakland, CA 94610 (Sent via E-mail to PDKing0000@aol.com)

Steve Carmack, P & D Environmental, 55 Santa Clara Avenue, Suite 240, Oakland, CA 94610 (Sent via E-mail to steven.carmack@pdenviro.com)

Jerry Wickham, ACEH (Sent via E-mail to: jerry.wickham@acgov.org)

GeoTracker, eFile

ALAMEDA COUNTY HEALTH CARE SERVICES AGENCY

EOF

DEPARTMENT OF ENVIRONMENTAL HEALTH
OFFICE OF THE DIRECTOR
1131 HARBOR BAY PARKWAY
ALAMEDA, CA 94502
(510) 567-6777
FAX (510) 337-9135

ALEX BRISCOE, Agency Director

REMEDIAL ACTION COMPLETION CERTIFICATION

May 26, 2015

Daniel Rabin 475 Lesser Street, LLC 731 Sansome Street, 2nd Floor San Francisco, CA 94111 Flavor Right Foods NW, Inc. c/o William E. Grieshober, Jr. 1 Robert Rich Way Buffalo, NY 14213

Tip Top Foods, Inc. c/o Tom Michaelides Instantwhip Foods 2200 Cardigan Avenue Columbus, OH 43215-1092

Subject: Case Closure for Fuel Leak Case No. RO0003135 and GeoTracker Global ID T10000005847, Lesser Commercial Property, 475 Lesser Street, Oakland, CA 94601

Dear Responsible Parties:

This letter confirms the completion of a site investigation and remedial action for the underground storage tanks formerly located at the above-described location. Thank you for your cooperation throughout this investigation. Your willingness and promptness in responding to our inquiries concerning the former underground storage tank(s) are greatly appreciated.

Based on information in the above-referenced file and with the provision that the information provided to this agency was accurate and representative of site conditions, this agency finds that the site investigation and corrective action carried out at your underground storage tank(s) site is in compliance with the requirements of subdivisions (a) and (b) of Section 25296.10 of the Health and Safety Code and with corrective action regulations adopted pursuant to Section 25299.3 of the Health and Safety Code and that no further action related to the petroleum release(s) at the site is required.

Please be aware that claims for reimbursement of corrective action costs submitted to the Underground Storage Tank Cleanup Fund more than 365 days after the date of this letter or issuance or activation of the Fund's Letter of Commitment, whichever occurs later, will not be reimbursed unless one of the following exceptions applies:

- Claims are submitted pursuant to Section 25299.57, subdivision (k) (reopened UST case); or
- Submission within the timeframe was beyond the claimant's reasonable control, ongoing work is required
 for closure that will result in the submission of claims beyond that time period, or that under the
 circumstances of the case, it would be unreasonable or inequitable to impose the 365-day time period.

This notice is issued pursuant to subdivision (g) of Section 25296.10 of the Health and Safety Code. Please contact our office if you have any questions regarding this matter.

Sincerely.

Ronald Browder Director

UST Case Closure Summary Form

Agency Information

Date: March 25, 2015

Agency Name: Alameda County Environmental Health	Address: 1131 Harbor Bay Parkway
City/State/Zip: Alameda, CA 94502-6577	Phone: (510) 567-6791
Staff Person: Jerry Wickham	Title: Senior Hazardous Materials Specialist

Case Information

Facility Name: Lesser Commerc	cial Property	
Facility Address: 475 Lesser St	reet, Oakland, CA 94601	9
RB LUSTIS Case No:	Local Case No.:	LOP Case No.: RO0003135
URF Filing Date:	GeoTracker Global ID: T100000	05847
APN: 34-2304-4-2	Current Land Use: Commercial	
Responsible Party(s):	Address:	Phone:
Daniel Rabin 475 Lesser Street LLC	731 Sansome Street, 2 nd Floor San Francisco, CA 94111	
Flavor Right Foods NW, Inc. c/o William E. Grieshober, Jr.	1 Robert Rich Way Buffalo, NY 14213	e e
Tip Top Foods, Inc. c/o Tom Michaelides Instantwhip Foods	2200 Cardigan Avenue Columbus, OH 43215-1092	

Tank Information

Tank No.	Size (gal)	Contents	Closed in-Place/ Removed/Active	Date
1	8,000-gallon	Diesel Gasoline	Closed in place	04/09/1987

Conceptual Site Model (Attachment 1, 2 pages)

Closure Criteria Met (Attachment 2, 2 pages)

LTCP Groundwater Specific Criteria (Attachment 3, 1 page)

LTCP Vapor Specific Criteria (Attachment 4, 1 page)

LTCP Direct Contact and Outdoor Air Exposure Criteria (Attachment 5, 1 page)

Optional Site Map(s) (Attachment 6, 6 pages)

Analytical Data (Attachment 7, 10 pages)

Covenant and Environmental Restriction on Property (Attachment 8, 11 pages)

UST Case Closure Summary Form

Additional Information:

Site Management Requirements: This fuel leak case has been evaluated for closure consistent with the State Water Resource Control Board Low-Threat Underground Storage Tank Closure Policy (LTCP). Benzene was detected in indoor air within Building 2 at concentrations that exceed human health screening criteria for indoor air and exceed ambient air concentrations. The entrance to Building 2 is to remain sealed to prevent entry and signage is to be prominently posted at the entrance indicating that entry to Building 2 is not allowed due to potential vapor intrusion concerns.

Site management requirements are further described in the Covenant and Environmental Restriction on Property which has been recorded for the site. Case closure is granted for the current commercial land use and with the site management requirements described in the Covenant and Environmental Restriction on Property.

If a change in land use to any residential or other conservative land use or if any redevelopment occurs, Alameda County Environmental health (ACEH) must be notified as required by Government Code Section 65850.2.2. Due to the potential for vapor intrusion to indoor air for future buildings, ACEH will re-evaluate the case upon receipt of approved development/construction plans.

Excavation or construction activities in areas of residual contamination require planning and implementation of appropriate health and safety procedures by the responsible party prior to and during excavation and construction activities.

This site is to be entered into the City of Oakland Permit Tracking System due to the residual contamination on site.

RWQCB Notification	Notification Date: 01/12/2015
RWQCB Staff Name: Cherie McCaulou	Title: Engineering Geologist
	3,4

Local Agency Representative

Prepared by: Jerry Wickham	Title: Senior Hazardous Materials Specialist
Signature: Juny Wildram	Date: 411/2015
Approved by: Dilan Roe	Title: LOP and SCP Program Manager
Signature: Dlen Poz	Date: 4/1/2015

This Case Closure Summary along with the Case Closure Transmittal letter and the Remedial Action Completion Certification provides documentation of the case closure. This closure approval is based upon the available information and with the provision that the information provided to this agency was accurate and representative of site conditions. The Conceptual Site Model may not contain all available data. Additional information on the case can be viewed in the online case file. The entire case file can be viewed over the Internet on the Alameda County Environmental Health (ACEH) website (http://www.acgov.org/aceh/lop/ust.htm) or the State of California Water Resources Control Board GeoTracker website (http://geotracker.waterboards.ca.gov). Not all historic documents for the fuel leak case may be available on GeoTracker. A more complete historic case file for this site is located on the ACEH website.

CSM Report

▼ Go

GEOTRACKER HOME | MANAGE PROJECTS | REPORTS | SEARCH | LOGOUT

LESSER COMMERCIAL PROPERTY (T10000005847) - MAP THIS SITE

OPEN - ELIGIBLE FOR CLOSURE

475 LESSER STREET OAKLAND, CA 94601 ALAMEDA COUNTY

ACTIVITIES REPORT PUBLIC WEBPAGE

VIEW PRINTABLE CASE SUMMARY FOR THIS SITE

CLEANUP OVERSIGHT AGENCIES

ALAMEDA COUNTY LOP (LEAD) - CASE #: RO0003135

CASEWORKER: Jerry Wickham - SUPERVISOR: DILAN ROE

SAN FRANCISCO BAY RWQCB (REGION 2)

CASEWORKER: Cherie McCaulou - SUPERVISOR: Cheryl L. Prowell

CR Site ID #: NOT SPECIFIED

THIS PROJECT WAS LAST MODIFIED BY JERRY WICKHAM ON 4/1/2015 8:29:06 AM - HISTORY

THIS SITE HAS UNAPPROVED SUBMITTALS. CLICK HERE TO OPEN A NEW WINDOW WITH THE SUBMITTAL APPROVAL PAGE FOR THIS SITE.

CSM REPORT - VIEW PUBLIC NOTICING VERSION OF THIS REPORT

UST CLEANUP FUND CLAIM INFORMATION (DATA PULLED FROM SCUFIIS)

CLAIM NO

PRIORITY CLAIMANT

SITE ADDRESS

REIMB

AGE <u>OF</u> LOC IMPACTED WELLS?

REVIEW REVIEWER NUM

RECOMMENDATION

AGE

<u>OF</u>

CASE

1

OVERSIGHT DATE

TO CLAIMANT DATE

PROJECT INFORMATION (DATA PULLED FROM GEOTRACKER) - MAP THIS SITE

SITE NAME / ADDRESS

STATUS

STATUS DATE

RELEASE REPORT DATE

CLEANUP OVERSIGHT AGENCIES

LESSER COMMERCIAL PROPERTY (Global ID:

T10000005847)

475 LESSER STREET OAKLAND, CA 94601

for Closure

Open - Eligible 3/25/2015 4/3/2014

ALAMEDA COUNTY LOP (LEAD) - CASE #: RO0003135 CASEWORKER: Jerry

Wickham - SUPERVISOR: DILAN ROE SAN FRANCISCO BAY RWQCB

(REGION 2) CASEWORKER: Cherie

McCaulou - SUPERVISOR: Chervi L.

STAFF NOTES (INTERNAL) <NO STAFF NOTES ENTERED>

SITE HISTORY

Diesel fuel was detected in grab groundwater samples collected from four soil borings advanced in the site in March 2014. An 8,000gallon underground storage tank was reportedly closed in place at the site on April 9, 1987. Soil, soil vapor, groundwater, and indoor air sampling was completed at the site in 2014. Indoor air sampling indicated that the potential for vapor intrusion concerns was limited to a storage building (Building 2). The site is under consideration for case closure with site management requirements that restrict access to Building 2 and require further evaluation if the site is to be redeveloped in the future.

RESPONSIBLE PARTIES

NAME INSTANT WHIP FOODS, INC. KENDRA MARSHALL

ORGANIZATION

Tip Top Foods, Inc. c/o Instantwhip Foods

475 Lesser Street LLC Flavor Right Foods NW Inc. **ADDRESS**

2200 CARDIGAN AVENUE 731 SANSOME STREET, 2ND FLOOR

CITY COLUMBUS

SAN FRANCISCO

EMAIL

1 ROBERT RICH WAY BUFFALO

CLEANUP ACTION INFO

WILLIAM E. GRIESHOBER, JR.

NO CLEANUP ACTIONS HAVE BEEN REPORTED

RISK INFORMATION

VIEW LTCP CHECKLIST

VIEW PATH TO CLOSURE PLAN

VIEW CASE REVIEWS

CONTAMINANTS OF CONCERN

CURRENT LAND USE

BENEFICIAL USE GW - Municipal and DISCHARGE SOURCE

LAST ESI

UPLOAD

3/10/2015

REPORTED

STOP METHOD Close and Fill Tank in Place

NEARBY / IMPACTED WELLS 0

Diesel, Gasoline

Commercial

Domestic Supply NAME OF WATER LAST REGULATORY SYSTEM

ACTIVITY

1/12/2015

Other

4/3/2014 LAST EDF

UPLOAD

1/5/2015

EXPECTED CLOSURE DATE

MOST RECENT **CLOSURE REQUEST**

CDPH WELLS WITHIN 1500 FEET OF THIS SITE

OTHER

CONSTITUENTS

NO

NONE

PRODUCT

NO

CALCULATED FIELDS (BASED ON LATITUDE / LONGITUDE)

EBMUD

<u>APN</u>

GW BASIN NAME

WATERSHED NAME

https://geotracker.waterboards.ca.gov/regulators/screens/menu.asp?GLOBAL_ID=T10000005847&TABLE_NAME=CSM_REPORT

034 230400402 Santa Clara Valley - East Bay Plain (2-9.04) South Bay - East Bay Cities (204.20) COUNTY **PUBLIC WATER SYSTEM(S)** • EAST BAY MUD - 375 ELEVENTH STREET, OAKLAND, CA 94607 Alameda MOST RECENT CONCENTRATIONS OF PETROLEUM CONSTITUENTS IN GROUNDWATER - HIDE **VIEW ESI SUBMITTALS** FIELD PT NAME **DATE** 3/26/2014 **TPH**g BENZENE TOLUENE **XYLENES** ETHYL-BENZENE MTBE TBA B1 ND ND ND ND B2 3/26/2014 ND ND ND ND B3 3/26/2014 2.6 UG/L 4.3 UG/L 0.64 UG/L 20 UG/L B4 3/26/2014 ND ND 0.5 UG/L ND B5 ND ND 5/15/2014 **OTHER** ND ND ND ND ND ND ND **B6** 5/15/2014 **OTHER** ND ND ND ND OTHER **B7** 5/15/2014 ND ND ND ND ND B8 5/15/2014 **OTHER** ND ND ND ND ND ND MOST RECENT CONCENTRATIONS OF PETROLEUM CONSTITUENTS IN SOIL - HIDE **VIEW ESI SUBMITTALS** FIELD PT NAME DATE **TPHg** BENZENE TOLUENE ETHYL-BENZENE **XYLENES** MTBE TBA **B1** 3/26/2014 ND ND ND ND B₁A 5/15/2014 ND ND ND ND ND B2 3/26/2014 ND ND ND ND **B3** 3/26/2014 ND ND ND ND 3/26/2014 ND ND ND ND MOST RECENT GEO_WELL DATA - HIDE **VIEW ESI SUBMITTALS**

LOGGED IN AS JWICKHAM

NO GEO_WELL DATA HAS BEEN SUBMITTED TO GEOTRACKER ESI FOR THIS SITE

CONTACT GEOTRACKER HELP

LTCP Checklist	▼ Go	GEOTRACKER HOME MANAGE F	ROJECTS REPORTS	S SEARCH L	OGOUT
LESSER COMMERCIAL PROPER	TY (T10000005847) - MAP THIS SITE	6	OPEN - ELIGIBLE	FOR CLOSU	RE
475 LESSER STREET OAKLAND, CA 94601 ALAMEDA COUNTY VIEW PRINTABLE CASE SUMMARY FOR THE	ACTIVITIES REPORT PUBLIC WEBPAGE	CLEANUP OVERSIGHT AGENCIES ALAMEDA COUNTY LOP (LEAD) - CASE #: ROOD CASEWORKER: Jerry Wickham - SUPERVIS SAN FRANCISCO BAY RWQCB (REGION 2) CASEWORKER: Cherie McCaulou - SUPERVICE CR Site ID #: NOT SPECIFIED	OR: DILAN ROE	:!! -	
	THIS PROJECT WAS LAST MODIFIED BY JERRY WICKHAM	M ON 3/25/2015 3:01:20 PM - <u>HISTORY</u>			
	THIS SITE HAS UNAPPROVED SUBMITTALS. CLICK HERE TO OPEN A NEW WINDO	W WITH THE SUBMITTAL APPROVAL PAGE FOR THIS SITE.	382		
CLOSURE POLICY	THIS VERSION IS FINAL AS OF 3/25/2015	CHECKLIST INITIATED ON 4/17/2014	CLOSURE	POLICY HIST	ORY
General Criteria - The site satisfie	s the policy general criteria - CLEAR SECTION ANSWERS		Y	/ES	
a. Is the unauthorized release located Name of Water System: EBMUD	within the service area of a public water system?			• YES	ОИ (
b. The unauthorized release consists	only of petroleum <u>(info)</u> . se from the UST system has been stopped.		a a		ои Ои
d. Free product has been removed to	the maximum extent practicable (info).		Not Encountered		ON O
e. A conceptual site model that asses	ses the nature, extent, and mobility of the release has been developed <u>(info</u> ed to the extent practicable <u>(info</u>).	<u>n</u> .	a		NO ON
All and the state of the state	d for MTBE and results reported in accordance with Health and Safety Cod	e Section 25296.15.	O Not Required	• YES	ОИ
h. Does a nuisance exist, as defined l	by Water Code section 13050.			O YES	NO.
Media-Specific Criteria: Groun characteristics of one of the five cl	dwater - The contaminant plume that exceeds water quality objectives asses of sites listed below CLEAR SECTION ANSWERS	s is stable or decreasing in areal extent, and meets	all of the additional	Y	ES
EXEMPTION - Soil Only Case (Relea	ise has <u>not</u> Affected Groundwater - <u>Info</u>)	3	. 8	O YES	NO.
N 1	ndwater specific criteria scenarios?			YES	ON
1.1 - The contaminant plume that exc feet from the defined plume boundary	eeds water quality objectives is <100 feet in length. There is no free produc /.	t. The nearest existing water supply well or surface wate	er body is >250	• YES	ои С
2. Media Specific Criteria: Petroloitems 2a, 2b, or 2c - CLEAR SECTION	eum Vapor Intrusion to Indoor Air - The site is considered low-threa	nt for the vapor-intrusion-to-air pathway if site-specifi	c conditions satisf	y YI	ES
EXEMPTION - Active Commercial P	etroleum Fueling Facility	i de la companya de l		O YES	ON (
HII.	leum Vapor Intrusion to Indoor Air specific criteria scenarios?	3		• YES	ON C
2c - Petroleum Vapor Intrusion to Indo affecting human health as a result of	oor Air - The regulatory agency has determined petroleum vapors migrating controlling exposure through the use of mitigation measures or through the	from soil or groundwater will have no significant risk of use of institutional or engineering controls.	adversely	• YES	ON C
3. Media Specific Criteria: Direct	Contact and Outdoor Air Exposure - The site is considered low-three	eat for direct contact and outdoor air exposure if it m	eets 1, 2, or 3 belo	ow Y	ES

LOGGED IN AS JWICKHAM

LESSER COMMERCIAL PROPERTY

CLEAR SECTION ANSWERS		
EXEMPTION - The upper 10 feet of soil is free of petroleum contamination	O YES	● NO
Does the site meet any of the Direct Contact and Outdoor Air Exposure criteria scenarios?	● YES	O NO
3.1 - Maximum concentrations of petroleum constituents in soil are less than or equal to those listed in the following table (LINK) for the specified depth below ground sur	face. • YES	○ №
Additional Information		
This case should be kept OPEN in spite of meeting policy criteria.	O YES	● NO
Has this LTCP Checklist been updated for FY 14/15?	YES	О ио
SPELL CHECK		
Save Form as Partially Completed Save Form as Complete		

CONTACT GEOTRACKER HELP

ATTACHMENT 3 LTCP GROUNDWATER SPECIFIC CRITERIA

LTCP Groundwater Specific Scenario under which case was closed: Scenario 1

Site D)ata		LTCP Scenario 1 Criteria	LTCP Scenario 2 Criteria	LTCP Scenario 3 Criteria	LTCP Scenario 4 Criteria
Plume Length	150 feet		<100 feet	<250 feet	<250 feet	<1,000 feet
					Removed to	
Free Product	No free	product	No free product	No free product	maximum extent practicable	No free product
Plume Stable or Decreasing	Likely	Stable	Stable or decreasing	Stable or decreasing	Stable or decreasing for minimum of 5 Years	Stable or decreasing
Distance to Nearest Water Supply Well	> 250	feet	>250 feet	>1,000 feet	>1,000 feet	>1,000 feet
Distance to Nearest Surface Water and Direction	1,400 feet downgradient, of site		>250 feet	>1,000 feet	>1,000 feet	>1,000 feet
Property Owner Willing to Accept a Land Use Restriction?	Yes		Not applicable	Not applicable	Yes	Not applicable
	GRO	UNDWATER	CONCENTRAT	TONS		
Constituent	Historic Site Maximum (μg/L)	Current Site Maximum (µg/L)	LTCP Scenario 1 Criteria (μg/L)	LTCP Scenario 2 Criteria (µg/L)	LTCP Scenario 3 Criteria (µg/L)	LTCP Scenario 4 Criteria (µg/L)
Benzene	2.6	2.6	No criteria	<3,000	No criteria	<1,000
MTBE	<0.5	<0.5	No criteria	<1,000	No criteria	<1,000

Water Supply Wells in Vicinity: No water supply wells were identified within 250 feet of the site.

health and safety and to the environment and water quality objectives will

be achieved within a reasonable time frame?

ATTACHMENT 4 LTCP VAPOR SPECIFIC CRITERIA

LTCP Vapor Specific Scenario under which case was closed: Controlling exposure through use of mitigation measures or institutional controls

Active Fueling Station	No						
**************************************	8	LTCP	LTCP	LTCP	LTCP	LTCP	LTCP
Site Data		Scenario 1	Scenario 2	Scenario 3A	Scenario 3B	Scenario 3C	Scenario 4
		Criteria	Criteria	Criteria	Criteria	Criteria	Criteria
Unweathered LNAPL	No LNAPL	LNAPL in groundwater	LNAPL in soil	No LNAPL	No LNAPL	No LNAPL	No criteria
Thickness of							
Bioattenuation Zone	4 feet	≥30 feet	≥30 feet	≥5 feet	≥10 feet	≥5 feet	≥5 feet
Beneath Foundation							
Total TPH in Soil in	z 1 malka	<100 mg/kg	<100	<100	<100	<100	<100 //
Bioattenuation Zone	< 1 mg/kg	<100 mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	<100 mg/kg
Maximum Current			No		≥100 and	<1.000	
Benzene Concentration in	2.6 µg/L	No criteria	No	<100 µg/L	<1,000	<1,000	No criteria
Groundwater	F		criteria		μg/L	µg/L	
Overgon Data within	No ovugon		No	No oxygen	No oxygen	≥4% at	≥4% at
Oxygen Data within	No oxygen	No criteria	No	data or	data or	lower end	lower end
Bioattenuation Zone	data		criteria	<4%	<4%	of zone	of zone
Depth of soil vapor measurement beneath	3.0 feet	No criteria	No criteria	No criteria	No criteria	No criteria	≥5 feet
foundation			Citteria				

SCENARIO 4 DIRECT MEASUREMENT OF SOIL VAPOR CONCENTRATIONS

Site So	il Vapor Data		No Bioatte	nuation Zone	Bioattenuation Zone		
Constituent	Historic Maximum (µg/m³)	Current Maximum (µg/m³)	Residential	Commercial	Residential	Commercial	
Benzene	3,400	1,000	<85	<280	<85,000	<280,000	
Ethylbenzene	30	30	<1,100	<3,600	<1,100,000	<3,600,000	
Naphthalene	8.1	8.1	<93	<310	<93,000	<310,000	

If the site does not meet scenarios 1 through 4, does a site-specific risk assessment for the vapor intrusion pathway demonstrate that human health is protected?

No

If the site does not meet scenarios 1 through 4, has a determination been made that petroleum vapors from soil or groundwater will have no significant risk of adversely affecting human health?

Yes. As a result of controlling exposure through site management requirements.

Comments: Benzene was detected in indoor air within Building 2 at concentrations that exceed human health screening criteria for indoor air and exceed ambient air concentrations. The entrance to Building 2 is to remain sealed to prevent entry and signage is to be prominently posted at the entrance indicating that entry to Building 2 is not allowed due to potential vapor intrusion concerns. Site management requirements are further described in the Covenant and Environmental Restriction on Property which has been recorded for the site. Case closure is granted for the current commercial land use and with the site management requirements described in the Covenant and Environmental Restriction on Property.

ATTACHMENT 5 LTCP DIRECT CONTACT AND OUTDOOR AIR EXPOSURE CRITERIA

LTCP Direct Contact and Outdoor Air Exposure Specific Scenario under which case was closed: Maximum concentrations of petroleum hydrocarbons are less than or equal to those in Table 1 below

		Resi	idential	Commerc	ial/Industrial	Utility Worker
Constituent		0 to 5 feet bgs (mg/kg)	Volatilization to outdoor air (5 to 10 feet bgs) mg/kg	0 to 5 feet bgs (mg/kg)	Volatilization to outdoor air (5 to 10 feet bgs) mg/kg	0 to 10 feet bgs (mg/kg)
Site Maximum	Benzene	<0.005	<0.005	<0.005	<0.005	<0.005
LTCP Criteria	Benzene	≤1.9	≤2.8	≤8.2	≤12	≤14
Site Maximum	Ethylbenzene	<0.005	<0.005	<0.005	<0.005	<0.005
LTCP Criteria	Ethylbenzene	≤21	≤32	≤89	≤134	≤314
Site Maximum	Naphthalene	<0.005	<0.005	<0.005	<0.005	<0.005
_TCP Criteria	Naphthalene ≤9.7 ≤9.7 ≤45	≤45	≤219			
Site Maximum	PAHs		Per Maria das			
_TCP Criteria	PAHs	≤0.063	. NA	≤0.68	NA NA	≤4.5
	ncentrations are grant and levels from a s					
nas a determina petroleum in so affecting humar	icentrations are gration been made to ill will have no signate health as a result of mitigation meatrols?	nat the concent ificant risk of a t of controlling e	rations of dversely exposure		a a	¥* ÿ

Comments:

P&D Environmental, Inc. 55 Santa Clara Ave., Suite 240 Oakland, CA 94610

Google Earth, 8/28/2012

Table 1
Summary of Borehole Soil Sample Analytical Results

Sample ID	Sample Date	Sample Depth (Ft bgs)	TPH-G	TPH-D	ТРН-МО	MTBE	Benzene	Toluene	Ethyl-benzene	Total Xyle	nes	SVOCs using EPA Method 8270C
B1A-3.0	5/15/2014	3.0	ND<1.0	1.2, a,b	17, a,b	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.005	50	All ND
B1A-5.5	5/15/2014	5.5	ND<1.0	7.5, a,b	78, a,b	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.005	50	All ND
B1-5.0	3/26/2014	5.0	NA	6.0, a,b	NA	NA	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.005	50	NA
B2-5.0	3/26/2014	5.0	NA	ND<1.0	NA	NA	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.005	50	NA
B3-5.0	3/26/2014	5.0	NA	ND<1.0	NA	NA	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.005	50	NA
B4-5.0	3/26/2014	5.0	NA	2.4, a,b	NA	NA	ND<0.0050	ND<0.0050	ND<0.0050	ND<0.005	50	NA
LTCP	Residential					-	0-5' = 1.9		0-5' = 21	=		
Dici	Residential						5-10' = 2.8		5-10' = 32			*
ESL I			100	100	100	0.023	0.044	2.9	3.3	2.3		Various
ESL			,,,,	100								
ESL ²			500	110	500	0.023	0.044	2.9	3.3	2.3		Various
NOTES												
Ft bgs = Feet	Below Ground S	Surface.					-					
		drocarbons as Gas							22			
A THURSDAY BUT TO SERVE		drocarbons as Die				-						
(11) / 11 - 11 (/ 11) (11) (11) (11) (11) (11)	Desired the second of the seco	Iydrocarbons as N	Iotor Oil.	-							-	
	hyl-tert-Butyl Et ni-Volatile Orga										-	
ND = Not Det		ine Compounds.			<u> </u>						_	
NA = Not An												
		compounds are si	gnificant.				\$					
b = Laborator	v note: diesel rar	nge compounds ar	e significant; no	recognizable p	attern.						E .	
LTCP = Low	Threat Closure I	Policy, by State W	ater Resources C	Control Board,	effective Aug	ust 17, 2012, fro	om Table 1 - Conc	entrations of Petro	leum Constituents i	in Soil That Wi	ill Have	No Significant
Risk of Adver	sely Affecting H	Iuman Health. Re:	sidential and Uti	lity Worker.			9 -					
					ter Quality Co	ntrol Board, up	dated December 2	013, from Table A	-1 – Shallow Soil S	Screening Level	ls, Grou	ındwater is a
		vater resource. Res										
					ter Quality Co	ontrol Board, up	dated December 2	2013, from Table A	A-2 – Shallow Soil S	Screening Leve	ls, Gro	undwater is a
		vater resource. Con										
Results and E	SLs reported in a	milligrams per kile	ogram (mg/kg) u	inless otherwise	e indicated.							

Table 2 Summary of Borehole Groundwater Grab Sample Analytical Results

Sample ID	Sample Date	TPH-G	TPH-D	TPH-MO	MTBE	Benzene	Toluene	Ethylbenzene	Total Xylenes	VOCs using EPA Method 8260B
B1-W -	3/26/2014	NA	67, a,b	NA	NA	ND<0.50	ND<0.50	ND<0.50	ND<0.50	NA
B2-W	3/26/2014	NA	450, a,b	NA	NA	ND<0.50	ND<0.50	ND<0.50	ND<0.50	NA
B3-W	3/26/2014	NA	790, a,b,c	NA	NA	2.6	0.64	4.3	20	NA
B4-W	3/26/2014	NA	240, a,b	NA	NA	ND<0.50	ND<0.50	ND<0.50	0.50	NA
B5-W	5/15/2014	ND<50	ND<50	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	All ND, except Chloroform = 7.9
B6-W	5/15/2014	ND<50	ND<50	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0,50	All ND, except Carbon disulfide = 2.0
B7-W	5/15/2014	ND<50	ND<50	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	All ND
B8-W	5/15/2014	ND<50	290, a,b	4,600, a,b	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	All ND
- 1					1.000				N	, v
LTCP Groundwater Specific	Scenario 2 Scenario 4		None None	None None	1,000 1,000	3,000 1,000	None None	None None	None None	None None
Criteria ESL I		100	100	100	5.0	1.0	40	30	20	Chloroform = 80, Carbon disulfide = No Value
ESL 2	- A	No Value	No Value	No Value	9,900	27	95,000	310	37,000	Chloroform = 170, Carbon disulfide = No Value
NOTES:	8				-					
PH-G = Total Pet	roleum Hydrocarbo roleum Hydrocarbo etroleum Hydrocarl	ns as Diesel.	iil							
MTBE = Methyl-te VOCs = Volatile C	rt-Butyl Ether rganic Compounds.				7 3					÷ ×
ND = Not Detected NA = Not Analyze L= Laboratory note	d. e: oil range compou	nds are significa	nt.							
= Laboratory note TCP = Low Three	e: diesel range comp e: gasoline range con at Closure Policy, de	mpounds are sig eveloped by Stat	nificant. e Water Resour	ces Control Boar						
urrent or potential	drinking water reso	ource.	N .		*					Levels, groundwater is a
ntrusion (Fine-Coa	ental Screening Leve arse Mix). Residenti licate a concentrat	al Land Use.	76			d, updated Decer	mber 2013, from	Table E-1 – Grour	dwater Screening	Levels for Evaluation of Potential Vapor
Results and ESLs r	eported in microgra	ms per liter (μg/	L) unless other	wise indicated.	unico del del					

Table 1 Summary of Soil Gas Sample Analytical Results

9					Summary o	f Soil Gas Sai	mple Analytical	Results -					
Sample ID	Sample Date	TPH-G	MTBE	Benzene	Toluene	Ethyl- benzene	m,p-Xylenes	o-Xylenes	Naphthalene	1,1-DFA	Percent Shroud	2-Propanol	Percent Shroud
001	7/10/2014	380	ND<4.3	ND<3.8	12	ND<5.2	12	6.0	ND<2.5	20,000, a	0.1	ND<240	0
SS1	7/10/2014	380	ND<4.3	ND<3.0	12	NDCJ.Z	12	0.0	1115-2.5	20,000, a	0.1	1,0 0,10	
SS1-DUP	7/10/2014	300	ND<4.3	ND<3.8	5.2	ND<5.2	13	5.9	NA	45,000, a	0.3	NA	NA
				- Carrow		2000			VID 0.5	27.4	DIA	NTD -240	0
SS1-REP	7/10/2014	NA	NA	NA	NA	NA	NA	NA	ND<2.5	NA	NA	ND<240	0
SS2	7/10/2014	3,700	ND<4.3	ND<3.8	84	8.7	28	6.0	ND<2.5	2,700, a	0	ND<240	0
SS3	7/10/2014	760	ND<4.4	ND<3.9	6.3	30	120	58	ND<2.5	16	0	ND<240	0
						FI.					100		
SS4	7/10/2014	2,700,000	240	3,400	480	ND<250	ND<250	ND<250	ND<2.5	5,200	0	ND<240	0
SS5	7/10/2014	2,200,000	ND<320	ND<280	440	ND<390	ND<390	ND<390	ND<2.5	ND<960	0	ND<240	0
SS6	7/10/2014	ND<240	ND<4.2	ND<3.7	ND<4.4	ND<5.1	5.6	ND<5.1	ND<2.5	5,900, a	0	ND<240	0
550	7710/2011	1,2 12.0	112 1112										
SS6	8/7/2014	ND<240	ND<4.2	ND<3.8	5.6	ND<5.1	6.2	ND<5.1	ND<2.5	ND<13	0	ND<240	0
SS7	8/7/2014	ND<250	ND<4.4	ND<3.9	ND<4.6	ND<5.3	ND<5.3	ND<5.3	ND<2.5	6,900. a	0	ND<240	0
SS7-DUP	8/7/2014	ND<250	ND<4.4	ND<3.9	ND<4.6	ND<5.3	ND<5.3	ND<5.3	NA	2,300, a	0	NA	NA
337-D01	0///2014	110 250	110 41.1	1115 45.5	112 110	112 010						7 E	
SS7-REP	8/7/2014	NA	NA	NA	NA	NA	NA	NA	8.1	NA	NA	ND<240	0
SS8	8/7/2014	ND<230	ND<4.1	ND<3.6	ND<4.3	ND<4.9	ND<5.0	ND<5.0	ND<2.5	7,500, a	0	ND<240	0
		Three and accommon	The second second	THE STATE OF THE STATE OF					NT 0.5	1.50		ND -240	0
SS9	8/7/2014	ND<240	ND<4.3	ND<3.8	6.5	ND<5.2	8.2	ND<5.2	ND<2.5	150	0	ND<240	
LTCP	2			280	=	3,600			310				
		2 500 000	47,000		1 200 000	4,900	Combined	= 440,000	360	No Value	No Value	No Value	No Value
ESL		2,500,000	47,000	420	1,300,000	4,900	Combined	= 440,000	300	140 Value	140 value	140 Value	110 Value
Notes:	-			<i>y</i>									
TPH-G = Total Petrol	eum Hydroca	rbons as Gasol	ine.										
MTBE = Methyl-tert-l													
1,1-DFA = 1,1-Difluo:													
ND = Not Detected.													
NA = Not Analyzed.													
a = Laboratory Note: 6	exceeds instru	ment calibration	on range.			ee	. 10 0012 5	1 1 2 -	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		o Consente di	ora Coll Co-	-
LTCP = Low Threat C			State Water	Resources Co	ntrol Board , e	ttective Augu	ist 17, 2012, from	n Appendix 4 I	Direct Measurem	ent of Soil Ga	is Concentrati	ons. Son Gas	
Criteria with no bioatt	enuation zon	е.					L	2010.0			1- F- T-		
ESL = Environmental				Regional Wat	er Quality Co	ntrol Board,	updated Decemb	er 2013 from T	able E – Soil Ga	is Screening L	evels for Eva	uation of	
Potential Vapor Intrus	San							1					-
talicized values excee													
Values in bold exceed	their respe	cuve ESL valu	ies.	(/ 0)					0				-
Results and LTCP and	ESL values	in micrograms	per cubic met	er (µg/m3).	<u></u>								

Table 3A Summary of Soil Gas Sample Analytical Results - TPH-G and VOCs

Sample ID	Sample Date	TPH-G	MTBE	Benzene	Toluene	Ethyl- benzene	m,p-Xylenes	o-Xylenes	Naphthalene	1,1-DFA	Percent Shroud	2-Propanol	Percent Shroud
SG3	5/19/2014	3,600,000	ND<430	<u>1,200</u>	2,800	ND<520	790	ND<520	ND<25	1,500	0.04	ND<2,400	0
SG3-DUP	5/19/2014	3,500,000	ND<430	<u>1,200</u>	2,800	ND<520	640	ND<520	NA	1,400	0.04	NA	NA
SG3-REP	5/19/2014	NA	NA	NA	NA	NA -	NA	NA	ND<25	NA	NA	ND<2,400	0
<u> </u>													
LTCP				0.5		1 100		W 25	93		-		
with No Bioattenuatio	n Zone (reside	ential)		85	0.7	1,100	7.00		310				
(commercial)		**	A 11.147-2-1-1-1	280		3,600		***	310				11
ESL ¹		300,000	4,700	42	160,000	490	Combined	1 = 52,000	36	No Value	No Value	No Value	No Value
ESL ²		2,500,000	47,000	420	1,300,000	4,900	Combined	= 440,000	360	No Value	No Value	No Value	No Value
Notes:		102											
TPH-G = Total Petrole	eum Hydrocarl	bons as Gasolir	ne.										
MTBE = Methyl-tert-													
1,1-DFA = 1,1-Difluo							U						
ND = Not Detected.													
NA = Not Analyzed.		N. C.											
LTCP = Low Threat C	Closure Policy,	developed by	State Water R	esources Cont	rol Board, eff	ective August	17, 2012, from A	Appendix 4 Dir	ect Measurement	of Soil Gas C	Concentration	s. Soil Gas	
Criteria with no bioatt													
ESL ¹ = Environmenta	1 Screening Le	vel, by San Fra	ncisco Bay -	Regional Wat	er Quality Cor	ntrol Board, u	pdated Decembe	r 2013 from Ta	ble E2 – Soil Ga	s Screening L	evels for Eval	uation of	
Potential Vapor Intrus	ion for Reside	ntial Land Use	•			=							
ESL ² = Environmenta	l Screening Le	vel, by San Fra	ncisco Bay -	Regional Wat	er Quality Cor	ntrol Board, u	pdated Decembe	r 2013 from Ta	ble E2 – Soil Ga	s Screening L	evels for Eval	uation of	
Potential Vapor Intrus	ion for Comm	ercial/Industria	al Land Use.										
Italicized values exce	ed their respec	tive LTCP vali	ues.	19						12	= (4)		
Values in bold excee	d their respec	tive ESL1 valu	ies.								= 187		
Underlined values exc													
Results in micrograms				e indicated.						s			

Values in bold exceed their respective ESL values.

Results and LTCP and ESL values in micrograms per cubic meter (µg/m3).

Table 2

Summary of Sub-Slab Soil Gas Sample Analytical Results 1,1-DFA 2-Propanol m,p-Xylenes o-Xylenes Naphthalene Percent Percent TPH-G MTBE Benzene Toluene Ethyl-Sample ID Sample Shroud Shroud benzene Date 0 ND<240 0 ND<500 ND<500 4.0 24,000 2,200,000 ND<420 1,000 2,600 ND<500 9/12/2014 SS4 ND<240 ND<250 ND<250 ND<250 ND<2.5 0. 0 554 7/10/2014 2,700,000 240 3.400 480 ND<520 ND<520 ND<520 NA 16,000 0 NA NA 9/12/2014 2,200,000 ND<430 970 2,400 SS4-DUP ND<240 0 ND<2.5 NA NA NA NA NA NA SS4-REP 9/12/2014 NA NA NA 310 280 3,600 LTCP No Value No Value No Value No Value Combined = 440,000 360 47,000 420 1,300,000 4,900 ESL 2,500,000 Notes: TPH-G = Total Petroleum Hydrocarbons as Gasoline. MTBE = Methyl-tert-Butyl Ether. 1,1-DFA = 1,1-Difluoroethane. ND = Not Detected. NA = Not Analyzed.a = Laboratory Note: exceeds instrument calibration range. LTCP = Low Threat Closure Policy, developed by State Water Resources Control Board, effective August 17, 2012, from Appendix 4 Direct Measurement of Soil Gas Concentrations. Soil Gas Criteria with no bioattenuation zone. ESL = Environmental Screening Level, by San Francisco Bay - Regional Water Quality Control Board, updated December 2013 from Table E - Soil Gas Screening Levels for Evaluation of Potential Vapor Intrusion for Commercial/Industrial Land Use. Italicized values exceed their respective LTCP values.

Table 4A Indoor and Ambient Air Risk Calculation Results

Equation	an and an	Concentration in Air	X	Exposure Time	X	Exposure Frequency	Х	Exposure X Duration	Inhalation Unit Risk Factor		Averaging Time for Carcinogens	x	365	X	24	Calculated Individual Compound Incremental Carcinogenic Risk	Cumulative Carcinogenic Risk	Comments
Units		(ug/m3)		(hrs/day)		(days/yr)		(yrs)	(ug/m3)		(yrs)		(days/yr)	4	(hr/day)		-	
Location	Compound																	
IA1	Benzene	1.4		10		250		25	2.90E-05	H	70		365		24	4.14E-06		Commercial Exposure
IA1	Ethylbenzene	0.77	_	10		250		25	2.50E-06		70		365	_	24	1.96E-07	4.3E-06	
IA1-DUP	Benzene	1.4	\pm	10	+	250		25	2.90E-05		70		365		24	4.14E-06		Commercial Exposure
IA1-DUP	Ethylbenzene	0.63	1	10		250		. 25	2.50E-06		70		365		24	1.61E-07	4.3E-06	
IA2	Benzene .	1.3		10		250		25	2.90E-05	4	70		365		24	3.84E-06		Commercial Exposure
IA2	Ethylbenzene	0.62	1	10		250	1	25	2.50E-06	*	70	_	365		24	1.58E-07	4.0E-06	
AA1	Benzene	0.43	+	10		250		25	2.90E-05		70		365	1	24	1.27E-06		Commercial Exposure
AA1	Ethylbenzene	0.80		10	-	250		25	2,50E-06		70		365	- 8	24	2.04E-07	1.5E-06	
Notes:																		
ND = Not I NA = Not A			+		4	1.5	+					-		-				
		ined from HERD Soil	Con	Caranina Ma	J-1 X	77 OOK -1 /1	*******	late d Manak 2014)				-		-				

Table 1 Summary of Indoor and Ambient Air Sample Laboratory Analytical Results

Sample ID	Sample Date	TPH-G	MTBE	Benzene	Toluene	Ethyl- benzene	m,p-Xylenes	o-Xylenes	Naphthalene
IA1	9/12/2014	200	ND<0.77	1.4	2.4	0.77	2.6	0.98	ND<5.6
IA1-DUP	9/12/2014	200	ND<0.57	1.4	1.6	0.63	2.4	0.89	ND<4.1
IA2	9/12/2014	140	ND<0.70	1.3	.1.8	0.62	2.3	0.85	ND<5.1
AA1	9/12/2014	78	ND<0.63	0.43	1.4	0.80	3.3	1.1	ND<4.6
,									
ESL	-	2,500	47	0.42	1,300	4.9	440 Cor	mbined	0.36
Notes:		0						- 8	
TPH-G = Total Petrole		oons as Gasol	ine.			18			*
MTBE = Methyl-tert-I	Butyl Ether.		8						
ND = Not Detected.			-						
NA = Not Analyzed.								2	
ESL = Environmental	Screening Lev	el, by San Fra	ncisco Bay - I	Regional Wate	r Quality Cor	ntrol Board, u	pdated December	r 2013 from Ta	ble E –
Indoor Air Screening I									
Values in bold exceed	l their respect	tive ESL valu	es.						
Results and ESL value	es in microgran	ns per cubic n	neter (µg/m3).						

Table 4B Indoor and Ambient Air Hazard Calculation Results

Juits Jocation Compound Al TPH-G Al Benzene Al Toluene Al Ethylbenzen Al O-Xylene Al-DUP TPH-G Al-DUP Benzene Al-DUP Toluene	2.6 0.98 200 1.4 1.6 0.63 2.4 0.89	(hrs/day) (hrs/day) 10 10 10 10 10 10 10 10 10 10 10 10 10	250 250 250 250 250 250 250 250 250 250	X Exposure Duration (yrs) 25 25 25 25 25 25 25 25 25 25 25 25 25	all divided by	Averaging Time for Non-cancer Toxic Effects (yrs) 30 30 30 30 30 30 30 30 30 30 30 30 30	X	365 X (days/yr) 365 365 365 365 365 365 365 365 365 36	24 (hr/day) 24 24 24 24 24 24 24 24 24 24 24 24 24	x	Reference Concentration (Rfc) (ug/m3) 5.70E+02 3.00E+00 1.00E+02 1.00E+02 1.00E+02 3.00E+00 3.00E+00 3.00E+00	Calculated Individual Compound Hazard Quotient 8.34E-02 1.11E-01 1.90E-03 1.83E-04 6.18E-03 2.33E-03 8.34E-02 1.11E-01 1.17E-03	Hazard Index	Comments Commercial Exposur used p-xylene RfC
Al TPH-G Al Benzene Al Toluene Al Ethylbenzene Al m.p-Xylene Al o-Xylene Al DUP TPH-G Al-DUP Benzene Al-DUP Toluene Al-DUP Toluene Al-DUP Ethylbenzene Al-DUP o-Xylene Al-DUP o-Xylene Al-DUP m.p-Xylene Al-DUP o-Xylene	200 1.4 2.4 2.7 2.6 0.98 200 1.4 1.6 2.6 0.63 2.4 0.89	10 10 10 10 10 10 10 10 10 10 10 10 10	250 250 250 250 250 250 250 250 250 250	25 25 25 25 25 25 25 25 25 25 25 25 25 2		30 30 30 30 30 30 30 30 30 30 30 30 30 3		365 365 365 365 365 365 365 365 365 365	24 24 24 24 24 24 24 24 24 24 24 24 24		5,70E+02 3,00E+00 3,00E+02 1,00E+03 1,00E+02 1,00E+02 5,70E+02 3,00E+00 3,00E+00	1.11E-01 1.90E-03 1.83E-04 6.18E-03 2.33E-03 8.34E-02 1.11E-01	2.1E-01	used p-xylene RfC
A1 TPH-G A1 Benzene A1 Toluene A1 Ethylbenzen A1 Ethylbenzen A1 DIP TPH-G A1-DUP TPH-G A1-DUP Benzene A1-DUP Ethylbenzen A1-DUP Ethylbenzen A1-DUP o-Xylene A1-DUP o-Xylene A2 TPH-G A2 Benzene A2 TPH-G A2 Benzene A2 Toluene A2 Ethylbenzen A2 Toluene A2 Toluene A2 Typi-G A2 Denzene A3 Denzene A4 Denzene A5 Denzene A6 Denzene A7 Toluene A8 Denzene A9 O-Xylene	200 1.4 2.6 0.98 200 1.4 1.6 2 0.63 2.4 0.89	10 10 10 10 10 10 10 10 10 10 10	250 250 250 250 250 250 250 250 250 250	25 25 25 25 25 25 25 25 25 25 25 25 25 2		30 30 30 30 30 30 30 30 30 30 30 30 30		365 365 365 365 365 365 365 365 365 365	24 24 24 24 24 24 24 24 24 24 24		3.00E+00 3.00E+02 1.00E+03 1.00E+02 1.00E+02 1.00E+02 5.70E+02 3.00E+00 3.00E+00	1.11E-01 1.90E-03 1.83E-04 6.18E-03 2.33E-03 8.34E-02 1.11E-01	2.1E-01	used p-xylene RfC
1 Benzene	200 1.4 2.6 0.98 200 1.4 1.6 2 0.63 2.4 0.89	10 10 10 10 10 10 10 10 10 10 10	250 250 250 250 250 250 250 250 250 250	25 25 25 25 25 25 25 25 25 25 25 25 25 2		30 30 30 30 30 30 30 30 30 30 30 30 30		365 365 365 365 365 365 365 365 365 365	24 24 24 24 24 24 24 24 24 24 24		3.00E+00 3.00E+02 1.00E+03 1.00E+02 1.00E+02 1.00E+02 5.70E+02 3.00E+00 3.00E+00	1.11E-01 1.90E-03 1.83E-04 6.18E-03 2.33E-03 8.34E-02 1.11E-01	2.1E-01	used p-xylene RfC
Al Benzene Al Toluene Al Ethylbenzen Al Ethylbenzen Al M., Ethylbenzen Al DUP TPH-G Al-DUP Benzene Al-DUP Ethylbenzen Al-DUP Benzene Al-DUP o-Xylene	200 1.4 2.6 0.98 200 1.4 1.6 2 0.63 2.4 0.89	10 10 10 10 10 10 10 10 10 10 10	250 250 250 250 250 250 250 250 250 250	25 25 25 25 25 25 25 25 25 25 25 25 25 2		30 30 30 30 30 30 30 30 30 30 30 30 30		365 365 365 365 365 365 365 365 365 365	24 24 24 24 24 24 24 24 24		3.00E+02 1.00E+03 1.00E+03 1.00E+02 1.00E+02 5.70E+02 3.00E+00 3.00E+00	1.90E-03 1.83E-04 6.18E-03 2.33E-03 8.34E-02 1.11E-01	2.1E-01	8
Toluene	2.4 0.77 2.6 0.98 200 1.4 1.6 2 0.63 2.4 0.89	10 10 10 10 10 10 10 10 10 10	250 250 250 250 250 250 250 250 250 250	25 25 25 25 25 25 25 25 25 25 25 25 25 2		30 30 30 30 30 30 30 30 30 30		365 365 365 365 365 365 365 365	24 24 24 24 24 24 24 24		1.00E+03 1.00E+02 1.00E+02 5.70E+02 3.00E+00 3.00E+02	1.83E-04 6.18E-03 2.33E-03 8.34E-02 1.11E-01	2.1E-01	9.
Al Ethylbenzen Al m.p-Xylene Al o-Xylene Al-DUP TPH-G Al-DUP Benzene Al-DUP Toluene Al-DUP Ethylbenzen Al-DUP o-Xylene	200 1.4 1.6 2.4 0.89	10 10 10 10 10 10 10 10 10	250 250 250 250 250 250 250 250 250 250	25 25 25 25 25 25 25 25 25 25 25 25		30 30 30 30 30 30 30 30 30 30		365 365 365 365 365 365 365 365	24 24 24 24 24 24		1.00E+02 1.00E+02 5.70E+02 3.00E+00 3.00E+02	6.18E-03 2.33E-03 8.34E-02 1.11E-01	2.1E-01	9.
Al m.p-Xylene Al-DUP TPH-G Al-DUP Benzene Al-DUP Ethylbenzen Al-DUP o-Xylene	2.6 0.98 200 1.4 1.6 2 0.63 2.4 0.89	10 10 10 10 10 10 10	250 250 250 250 250 250 250 250 250	25 25 25 25 25 25 25 25 25 25		30 30 30 30 30 30		365 365 365 365 365	24 24 24 24 24		1.00E+02 5.70E+02 3.00E+00 3.00E+02	2.33E-03 8.34E-02 1.11E-01	2.1E-01	8
A1 o-Xylene A1-DUP TPH-G A1-DUP Benzene A1-DUP Ethylbenzen A1-DUP mp-Xylene A1-DUP o-Xylene A1-DUP o-Xylene A2 TPH-G A2 Benzene A2 Toluene A2 Ethylbenzen A2 m,p-Xylene A2 o-Xylene	200 1.4 1.6 2 0.63 2.4 0.89	10 10 10 10 10 10	250 250 250 250 250 250 250	25 25 25 25 25 25		30 30 30 30 30		365 365 365 365	24 24 24 24		5.70E+02 3.00E+00 3.00E+02	8.34E-02 1.11E-01	2.1E-01	
A1-DUP TPH-G A1-DUP Benzene A1-DUP Toluene A1-DUP Ethylbenzen A1-DUP o-Xylene A1-DUP o-Xylene A2 TPH-G A2 Benzene A2 Toluene A2 Toluene A2 Ethylbenzen A2 m,p-Xylene	200 1.4 1.6 2 0.63 2.4 0.89	10 10 10 10 10	250 250 250 250 250 250	25 25 25 25 25 25		30 30 30 30		365 365 365	24 24		3.00E+00 3.00E+02	1.11E-01	2.1E-01	
A1-DUP Benzene A1-DUP Toluene A1-DUP Ehylbenzen A1-DUP Ehylbenzen A1-DUP o-Xylene A1-DUP o-Xylene A2 TPH-G A2 Benzene A2 Toluene A2 Ethylbenzen A2 m.p-Xylene A2 o-Xylene	1.4 1.6 0.63 2.4 0.89	10 10 10 10	250 250 250 250 250	25 25 25 25 25		30 30 30 30		365 365 365	24 24		3.00E+00 3.00E+02	1.11E-01	E	Commercial Exposu
A1-DUP Benzene A1-DUP Toluene A1-DUP Ehylbenzene A1-DUP m.p-Xylene A1-DUP o-Xylene A1-DUP o-Xylene A2 TPH-G A2 Benzene A2 Toluene A2 Ethylbenzen A2 m.p-Xylene A2 o-Xylene	1.4 1.6 0.63 2.4 0.89	10 10 10 10	250 250 250 250 250	25 25 25 25 25		30 30 30 30		365 365 365	24 24		3.00E+00 3.00E+02	1.11E-01		***************************************
A1-DUP Toluene A1-DUP Ethylbenzen A1-DUP m.p-Xylene A1-DUP o-Xylene A1-DUP o-Xylene A2 TPH-G A2 Benzene A2 Toluene A2 Ethylbenzen A2 m.p-Xylene A2 o-Xylene	1.6 0.63 2.4 0.89	10 10 10	250 250 250	25 25 25		30 30 30		365 365	24		3.00E+02			
\(\begin{align*} \(\begin{align*} \text{L1-DUP} & \text{Ethylbenzen} \\ \text{L1-DUP} & \text{m.p-Xylene} \\ \text{L2-DUP} & \text{o-Xylene} \\ \text{L2-DUP} & \text{o-Xylene} \\ \text{L2-DUP} & \text{Benzene} \\ \text{L2-Duene} & \text{Toluene} \\ \text{L2-Duene} & \text{Ethylbenzen} \\ \text{L2-Duene} & \text{o-Xylene} \\ \text{L2-O-Xylene} & \text{o-Xylene} \\ \text{L3-Duene} & \text{L3-Duene} \\ \text{L3-Duene} & \text{L3-Duene} & \text{L3-Duene} & \text{L3-Duene} & \text{L3-Duene} \\ \text{L3-Duene} & \text{L3-Duene} & \text{L3-Duene} & \text{L3-Duene} & \text{L3-Duene} & \text{L3-Duene} \\ \text{L3-Duene} & \text{L3-Duenee} & L3-Dueneee	2.4 0.89	10 10	250 250	25 25		30 30	Ħ	365		+				
A1-DUP m,p-Xylene A1-DUP o-Xylene A2 TPH-G A2 Benzene A2 Toluene A2 Ethylbenzen A2 m,p-Xylene A2 o-Xylene	2.4 0.89	10	250	25		30					1.00E+03	1.50E-04		
A2 TPH-G A2 Benzene A2 Toluene A2 Ethylbenzen A2 m,p-Xylene A2 o-Xylene	0.89								24	1	1.00E+02	5.71E-03		used p-xylene RfC
A2 TPH-G A2 Benzene A2 Toluene A2 Ethylbenzen A2 m,p-Xylene A2 o-Xylene		10	230	2.3			1 1	365	24	-	1,00E+02	2.12E-03		
A2 Benzene A2 Toluene A2 Ethylbenzen A2 m,p-Xylene A2 o-Xylene													2.0E-01	
A2 Benzene A2 Toluene A2 Ethylbenzen A2 m,p-Xylene A2 o-Xylene	140	10	250	25		30		365	24		5.70E+02	5.84E-02		Commercial Exposu
A2 Toluene A2 Ethylbenzen A2 m.p-Xylene A2 o-Xylene	1,3	10	250	25	-	30	1	365	24		3.00E+00	1.03E-01		
A2 Ethylbenzen A2 m,p-Xylene A2 o-Xylene	1.8	10	250	25		30		365	24		3,00E+02	1.43E-03		
A2 m,p-Xylene A2 o-Xylene		10	250	25		30		365	24		1.00E+03	1.47E-04		
A2 o-Xylene	2.3	10	250	25		. 30		365	24		1.00E+02	5,47E-03		used p-xylene RfC
A1 TPH-G	0,85	10	250	25		30		365	. 24		1.00E+02	2.02E-03	1.7E-01	
A1 TPH-G			*											
	78	10	250	25		30	1	365	24		5.70E+02	3.25E-02		
A1 Benzene	0,43	10	250	25		30		365	24	-	3.00E+00	3.41E-02		
A1 Toluene	1.4	10	250	25		30		365	24		3.00E+02	1.11E-03		
A1 Ethylbenzen		10	250	25		30		365	24		1.00E+03	1.90E-04		
Al m,p-Xylene	3,3	10	250	25		30		365	24		1.00E+02	7.85E-03		used p-xylene RfC
Al o-Xylene	1.1	10	250	25		30		365	24		1.00E+02	2.62E-03		- N 8
							H						7.8E-02	
lotes:	II. dans dans a Caral'													
PH-G = Total Petroleum ID = Not Detected	Hydrocarbons as Gasoline		-		1		+							
NA = Not Applicable					4.0		+							
	entration used for m,p-Xylene l	hazard calculation		-			1							
eference Concentration	alue obtained from HERD Soil	Gas Screening Mod	el VI.OOK sheet (last	undated March 201	4 excent for TI	PH-G).	+			1				
deference Concentration v		SERWOCE Decemb	er 2013 FSL Table L	2	. s.toopt tot 11	-/-	+			-			34	

Table 4C
Indoor and Ambient Air Risk and Hazard Calculation Results Summary

		Calculated	Calculated	Calculated			
	Sample	Cumulative Incremental	Cumulative Incremental	Cumulative Incremental	Calculated	Recommendations Based on	
Air Sample	Collection	Carcinogenic	Carcinogenic Risk	Carcinogenic Risk	Hazard	DTSC-Recommended	N TO THE REST OF T
Designation	Date	Risk	Alternate Description	Alternate Description	Index	Guidance for Action or Response	
Location					R		
5.119.55						•	
[A1	9/12/2014	4.3E-06	0,0000043	4.3 in a million	0.21	Evaluate need for action-risk greater than 1.	
IA1-DUP	9/12/2014	4.3E-06	0.0000043	4.3 in a million	0.20	Evaluate need for action- risk greater than 1.	
IA2	9/12/2014	4.0E-06	0.0000040	' 4.0 in a million	0.17	Evaluate need for action- risk greater than 1.	
AAI	9/12/2014	1.5E-06	0.0000015	1.5 in a million	0.078	Not Applicable - Ambient Air.	
Notes:				- 10:			
RISK MANAGEMENT N	MATRIX FOR V	APOR INTRUSION					
Risk	Hazard	Response	Activities				
Less than 1 in a million	x ≤ 1.0	No Further Action	None			-	
l to 100 in a million	x ≥ 1.0	Evaluate Need	Possible Actions			*	
		for Action	o Additional Data Collection				
			o Monitoring				
		-	o Additional Risk Characterization	1		*	
			o Mitigation				
			o Source Remediation				
More than 100 in a million		Response	o Vapor Intrusion Mitigation				
		Action Needed	o Source Remediation				

Table 5
Summary of Incremental Carcinogenic Risk Calculations Using Different Exposure Scenarios

Equation	3.0	Concentration in Air	X Exposure Time	X Exposure Frequency X	Exposure Duration	X Inhalation Unit Risk Factor	all divided by	Averaging Time for Carcinogens	х	365 2	24	Calculated Individual Compound Incremental Carcinogenic Risk	Cumulative Carcinogenic Risk	Comments
		28			8				-			-		
Jnits		(ug/m3)	(hrs/day)	(days/yr)	(yrs)	(ug/m3)		(yrs)		(days/yr)	(hr/day)			
ocation	Compound								1					
			18.0					70		365	24	4.14E-06		Commercial Exposure
A1	Benzene	1.4	10	250	25	2.90E-05		70	_			1.96E-07	4.3E-06	Commercial Exposure
A 1	Ethylbenzene	0.77	10	250	25 .	2.50E-06		70	+	365	24	1.96E-07	4.3E-00	
	Benzene	1,4	5	250	25	2.90E-05		70		365	24	2.07E-06		Commercial Exposure
Al Al	Ethylbenzene	0.77	5	250	25	2.50E-06		70		365	24	9.81E-08	2.2E-06	
West -						2007.05		70	-	365	24	1,66E-06		Commercial Exposure
Al	Benzene	1.4	4	250	25	2.90E-05		70	-	365		7.85E-08	1.7E-06	Commercial Exposure
4 1	Ethylbenzene	0.77	4	250	25	2,50E-06		70	-	363	24	7.63E-06	1.72-00	
A1 -	Benzene	1,4	2	250	25	2.90E-05		70		365	24	8.28E-07		Commercial Exposure
A1	Ethylbenzene	0.77	2	250	25	2,50E-06		70		365	24	3.92E-08	8.7E-07	
A1	Benzene	1.4	1	250	25	2.90E-05		70	-	365	24	4.14E-07		Commercial Exposure
Al	Ethylbenzene	0.77	i	250	25	2.50E-06		70		365	24 -	1.96E-08	4.3E-07	
	7/													
A1	Benzene	1.4	10	250	25	2,90E-05		70	-	365	24	4.14E-06		Commercial Exposure
Al	Ethylbenzene	0.77	10	250	25	2.50E-06		70		365	24	1.96E-07	4.3E-06	
**	Dailyleonadhe													
41	Benzene	1.4	10	250	20	2,90E-05		70		365	24	3.31E-06		Commercial Exposure
Al	Ethylbenzene	0.77	10	250	20	2.50E-06		70	-	365	24	1.57E-07	3.5E-06	
A1	Benzene	1,4	10 *	250	15	2,90E-05		70	+	365	24	2,48E-06		Commercial Exposure
Al	Ethylbenzene	0.77	10	250	15	2.50E-06		70		365	24	1.18E-07	2.6E-06	
						2.000.05		70		365	24	1.66E-06		Commercial Exposure
A1	Benzene	1.4	10	250	10	2.90E-05		70 70	-	365	24	7.85E-08	1.7E-06	Commercial Exposure
A1	Ethylbenzene	0,77	10	250	10	2.50E-06		70		303	24		1.72-00	
Al	Benzene	1.4	10	250	5	2.90E-05		70		365	24	8.28E-07		Commercial Exposure
A 1	Ethylbenzene	0.77	10	250	5	2.50E-06		70		365	24	3.92E-08	8.7E-07	
lotes:														3 2
ND = Not De									-		_			
NA = Not Ap	piicable	from HERD Soil Gas Screeni											-	

Recording Requested By:

475 Lesser Street, LLC 200 Pine Street, 8th Floor San Francisco, California 94104 COPY of document to be recorded Has not been compared with Original 2015142318 05/29/2015 10:49 AM OFFICIAL RECORDS OF ALAMEDA COUNTY STEVE MANNING RECORDING FEE: 80.00

11 PGS

When Recorded, Mail To:

Jerry Wickham Alameda County Environmental Health Services 1131 Harbor Bay Parkway Alameda, California 94502

COVENANT AND ENVIRONMENTAL RESTRICTION ON PROPERTY

[NAME OF SITE and ADDRESS OF PROPERTY]

This Covenant and Environmental Restriction on Property (this "Covenant") is made as of the low day of ______, 20_15 by 475 Lesser Street LLC ("Covenantor") who is the Owner of record of that certain property situated at 475 Lesser Street, in the City of Oakland, County of Alameda, State of California, which is more particularly described in Exhibit A attached hereto and incorporated herein by this reference (such portion hereinafter referred to as the "Burdened Property"), for the benefit of the Alameda County Environmental Health Services (the "County"), with reference to the following facts:

- A. The Burdened Property and groundwater underlying the property contains hazardous materials.
- B. Contamination of the Burdened Property. Soil at the Burdened Property was contaminated by unknown operations conducted by unknown persons. These operations resulted in contamination of soil and groundwater underneath Building 2 with organic chemicals including Total Petroleum Hydrocarbons as Diesel, Total Petroleum Hydrocarbons as Gasoline, MTBE, benzene, toluene, ethylbenzene, xylenes and naphthalene, which constitute hazardous materials as that term is defined in Health & Safety Code Section 25260. At the request of Alameda County Environmental Health, the entrance to Building 2 has been sealed, and a notice identifying vapor intrusion concerns has been posted on the door.
- C. Exposure Pathways. The contaminants addressed in this Covenant are present in soil gas and groundwater on the Burdened Property. Without the mitigation measures which have been performed on the Burdened Property, exposure to these contaminants could take place via inhalation. The risk of public exposure to the contaminants has been substantially lessened by the remediation and controls described herein.
 - D. Adjacent Land Uses and Population Potentially Affected. The Burdened Property is used

inhalation. The risk of public exposure to the contaminants has been substantially lessened by the remediation and controls described herein.

- D. <u>Adjacent Land Uses and Population Potentially Affected</u>. The Burdened Property is used for commercial use and is adjacent to commercial and industrial land uses.
- E. Full and voluntary disclosure to the County of the presence of hazardous materials on the Burdened Property has been made and extensive sampling of the Burdened Property has been conducted.
- F. Covenantor desires and intends that in order to benefit the County, and to protect the present and future public health and safety, the Burdened Property shall be used in such a manner as to avoid potential harm to persons or property that may result from hazardous materials that may have been deposited on portions of the Burdened Property.

ARTICLE I GENERAL PROVISIONS

- 1.1 Provisions to Run with the Land. This Covenant sets forth protective provisions, covenants, conditions and restrictions (collectively referred to as "Restrictions") upon and subject to which the Burdened Property and every portion thereof shall be improved, held, used, occupied, leased, sold, hypothecated, encumbered, and/or conveyed. The restrictions set forth in Article III are reasonably necessary to protect present and future human health and safety or the environment as a result of the presence on the land of hazardous materials. Each and all of the Restrictions shall run with the land, and pass with each and every portion of the Burdened Property, and shall apply to, inure to the benefit of, and bind the respective successors in interest thereof, for the benefit of the County and all Owners and Occupants. Each and all of the Restrictions are imposed upon the entire Burdened Property unless expressly stated as applicable to a specific portion of the Burdened Property. Each and all of the Restrictions run with the land pursuant to section 1471 of the Civil Code. Each and all of the Restrictions are enforceable by the County.
- 1.2 Concurrence of Owners and Lessees Presumed. All purchasers, lessees, or possessors of any portion of the Burdened Property shall be deemed by their purchase, leasing, or possession of such Burdened Property, to be in accord with the foregoing and to agree for and among themselves, their heirs, successors, and assignees, and the agents, employees, and lessees of such owners, heirs, successors, and assignees, that the Restrictions as herein established must be adhered to for the benefit of the County and the Owners and Occupants of the Burdened Property and that the interest of the Owners and Occupants of the Burdened Property shall be subject to the Restrictions contained herein.
- 1.3 <u>Incorporation into Deeds and Leases</u>. Covenantor desires and covenants that the Restrictions set out herein shall be incorporated in and attached to each and all deeds and leases of any portion of the Burdened Property. Recordation of this Covenant shall be deemed binding

on all successors, assigns, and lessees, regardless of whether a copy of this Covenant and Agreement has been attached to or incorporated into any given deed or lease.

1.4 <u>Purpose</u>. It is the purpose of this instrument to convey to the County real property rights, which will run with the land, to facilitate the remediation of past environmental contamination and to protect human health and the environment by reducing the risk of exposure to residual hazardous materials.

ARTICLE II DEFINITIONS

- 2.1 <u>County</u>. "County" shall mean the Alameda County Environmental Health Services and shall include its successor agencies, if any.
- 2.2 <u>Improvements</u>. "Improvements" shall mean all buildings, roads, driveways, regradings, and paved parking areas, constructed or placed upon any portion of the Burdened Property.
- 2.3 Occupants. "Occupants" shall mean Owners and those persons entitled by ownership, leasehold, or other legal relationship to the exclusive right to use and/or occupy all or any portion of the Burdened Property.
- 2.4 Owner or Owners. "Owner" or "Owners" shall mean the Covenantor and/or its successors in interest, who hold title to all or any portion of the Burdened Property.

ARTICLE III DEVELOPMENT, USE AND CONVEYANCE OF THE BURDENED PROPERTY

- 3.1 <u>Restrictions on Development and Use</u>. Covenantor promises to restrict the use of the Burdened Property as follows:
 - a. Sealing entrances to Building 2 (see Figure 1 in Exhibit B) to prevent entry;
 - b. Posting signs at entrances indicating that entry is prohibited;
 - c. Annual inspections to ensure that access is still sealed and the signs still posted;
- d. Submittal of an annual report to the County by the property owner to certify that the restrictions in items a through c remain in place;
 - e. Record a deed notification.
- f. Development of the Burdened Property shall be restricted to industrial, commercial or office space;

- g. No residence for human habitation shall be permitted on the Burdened Property;
- h. No hospitals shall be permitted on the Burdened Property;
- i. No schools for persons under 21 years of age shall be permitted on the Burdened Property;
- j. No day care centers for children or day care centers for Senior Citizens shall be permitted on the Burdened Property;
- k. No Owners or Occupants of the Property or any portion thereof shall conduct any excavation work on the Property, unless expressly permitted in writing by the County. Any contaminated soils brought to the surface by grading, excavation, trenching, or backfilling shall be managed by Covenantor or his agent in accordance with all applicable provisions of local, state and federal law;
- l. All uses and development of the Burdened Property shall be consistent with any applicable County Cleanup Order or Risk Management Plan, each of which is hereby incorporated by reference including future amendments thereto. All uses and development shall preserve the integrity of any cap, any remedial measures taken or remedial equipment installed, and any groundwater monitoring system installed on the Burdened Property pursuant to the requirements of the County, unless otherwise expressly permitted in writing by the County.
- m. No Owners or Occupants of the Property or any portion thereof shall drill, bore, otherwise construct, or use a well for the purpose of extracting water for any use, including but not limited to, domestic, potable, or industrial uses, unless expressly permitted in writing by the County.
- n. The Owner shall notify the County of each of the following: (1) The type, cause, location and date of any disturbance to any cap, any remedial measures taken or remedial equipment installed, and of the groundwater monitoring system installed on the Burdened Property pursuant to the requirements of the County, which could affect the ability of such cap or remedial measures, remedial equipment, or monitoring system to perform their respective functions and (2) the type and date of repair of such disturbance. Notification to the County shall be made by registered mail within ten (10) working days of both the discovery of such disturbance and the completion of repairs;
- o. The Covenantor agrees that the County, and/or any persons acting pursuant to County cleanup orders, shall have reasonable access to the Burdened Property for the purposes of inspection, surveillance, maintenance, or monitoring, as provided for in Division 7 of the Water Code.
- p. No Owner or Occupant of the Burdened Property shall act in any manner that will aggravate or contribute to the existing environmental conditions of the Burdened Property. All use and development of the Burdened Property shall preserve the integrity of any capped areas.

- q. No Owner or User of the Burdened Property shall grow fruits or vegetables for consumption using site soils. Gardening on the Burdened Property shall only be permitted using imported soil within raised beds that do not allow direct contact between plant roots and the underlying site soil.
- 3.2 <u>Enforcement</u>. Failure of an Owner or Occupant to comply with any of the restrictions, as set forth in paragraph 3.1, shall be grounds for the County, by reason of this Covenant, to have the authority to require that the Owner modify or remove any Improvements constructed in violation of that paragraph. Violation of the Covenant shall be grounds for the County to file civil actions against the Owner as provided by law.
- 3.3 <u>Notice in Agreements</u>. After the date of recordation hereof, all Owners and Occupants shall execute a written instrument which shall accompany all purchase agreements or leases relating to the property. Any such instrument shall contain the following statement:

n)	The land described herein contains hazardous materials in soils and in	the
gro	and water under the property, and is subject to a deed restriction dated	l as
of _	, 20, and recorded on, 20,	, in
the	Official Records of Alameda County, California, as Document 1	No.
	, which Covenant and Restriction imposes certain covenant	nts,
con	litions, and restrictions on usage of the property described herein. T	his
stat	ement is not a declaration that a hazard exists.	

ARTICLE IV VARIANCE AND TERMINATION

- 4.1 <u>Variance</u>. Any Owner or, with the Owner's consent, any Occupant of the Burdened Property or any portion thereof may apply to the County for a written variance from the provisions of this Covenant.
- 4.2 <u>Termination</u>. Any Owner or, with the Owner's consent, any Occupant of the Burdened Property or a portion thereof may apply to the County for a termination of the Restrictions as they apply to all or any portion of the Burdened Property.
- 4.3 <u>Term</u>. Unless terminated in accordance with paragraph 4.2 above, by law or otherwise, this Covenant shall continue in effect in perpetuity.

ARTICLE V MISCELLANEOUS

- 5.1 <u>No Dedication Intended</u>. Nothing set forth herein shall be construed to be a gift or dedication, or offer of a gift or dedication, of the Burdened Property or any portion thereof to the general public.
- 5.2 <u>Notices</u>. Whenever any person gives or serves any notice, demand, or other communication with respect to this Covenant, each such notice, demand, or other communication shall be in writing and shall be deemed effective (1) when delivered, if personally delivered to the person being served or official of a government agency being served, or (2) three (3) business days after deposit in the mail if mailed by United States mail, postage paid certified, return receipt requested:

If To: "Covenantor"
475 Lesser Street, LLC
200 Pine Street, 8th Floor
San Francisco, California 94104

If To: "County"
Alameda County Environmental Health Services
Attention: Director
1131 Harbor Bay Parkway
Alameda, California 94502

- 5.3 <u>Partial Invalidity</u>. If any portion of the Restrictions or terms set forth herein is determined to be invalid for any reason, the remaining portion shall remain in full force and effect as if such portion had not been included herein.
- 5.4 <u>Article Headings</u>. Headings at the beginning of each numbered article of this Covenant are solely for the convenience of the parties and are not a part of the Covenant.
- 5.5 <u>Recordation</u>. This instrument shall be executed by the Covenantor and by the Director of Environmental Health Services. This instrument shall be recorded by the Covenantor in the County of Alameda within ten (10) days of the date of execution.
 - 5.6 <u>References</u>. All references to Code sections include successor provisions.
- 5.7 <u>Construction</u>. Any general rule of construction to the contrary notwithstanding, this instrument shall be liberally construed in favor of the Covenant to effect the purpose of this instrument and the policy and purpose of the Water Code. If any provision of this instrument is found to be ambiguous, an interpretation consistent with the purpose of this instrument that would render the provision valid shall be favored over any interpretation that would render it invalid.

IN WITNESS WHEREOF, the parties execute this Covenant as of the date set forth ab	ove.
Covenantor: 475 Lesser Street, LLC	
\mathcal{A}	
By: 1/6- 1-1	((4))
Title: Manager	
Date: 5/20/15	
Agency:	
Agency: Alameda County	
Environmental Health Services	
Land Manuella	
By: Mark Dunger	
Title: Director	
Date: 05-20-2015	

STATE OF CALIFORNIA, COUNTY OF <u>Mameda</u>
On 5/20/2015, before me Traina OkuN, Notary Public,
personally appeared Dayie / M. Rakin
who proved to me on the basis of satisfactory evidence to be the person(s) whose name(s) is /are subscribed to the within instrument and acknowledged to me that he/she/they executed the same in his/her/their authorized capacity(ies), and that by his/her/their signature(s) on the instrument the person(s), or the entity upon behalf of which the person(s) acted, executed the instrument.
I certify under PENALTY OF PERJURY under the laws of the State of California that the foregoing paragraph is true and correct.
WITNESS my hand and official seal.
Notary Public in and for said County and State IRINA OKUN COMM. # 2040278 NOTARY #UBLIC - CALIFORNIA SAN FRANCISCO COUNTY My Comm. Expires 10-02-2017
STATE OF CALIFORNIA, COUNTY OF <u>Alameda</u>
On 5 20 2015, before me Trua Ohu, Notary Public, personally appeared D
Konald Drowder
who proved to me on the basis of satisfactory evidence to be the person(s) whose name(s) is /are subscribed to the within instrument and acknowledged to me that he/she/they executed the same in his/her/their authorized capacity(ies), and that by his/her/their signature(s) on the instrument the person(s), or the entity upon behalf of which the person(s) acted, executed the instrument.
I certify under PENALTY OF PERJURY under the laws of the State of California that the foregoing paragraph is true and correct.
WITNESS my hand and official seal.
Still Cleve IRINA OKUN 10
Notary Public in and for said County and State

EXHIBIT A

LEGAL DESCRIPTION OF PROPERTY

THE LAND REFERRED TO HEREIN BELOW IS SITUATED IN THE CITY OF OAKLAND, COUNTY OF ALAMEDA, STATE OF CALIFORNIA, AND IS DESCRIBED AS FOLLOWS:

The Northeastern 80 feet, right angle measurement of Lot 6, as said Lot is shown on the Map of Tract No. 2660, Oakland, Alameda County, California, filed June 25, 1965, in Book 50 of Maps, Pages 28 and 29, in the Office of the County Recorder of Alameda County.

APN: 034-2304-004-02

EXHIBIT B

LOCATION OF BUILDING 2

