PERJURY STATEMENT

Subject: 1395 MacArthur Boulevard, San Leandro, California Indoor Air & Sub-Slab Monitoring Report – First Quarter 2017

I certify, under penalty of law, that I have personally examined and am familiar with the information submitted in this document and all attachments, and that, based on my inquiry of those individuals immediately responsible for obtaining the information, I believe the information is true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment.

Mr. Sayed Hussain, agent for ESC PARTNERS, L. P. and Mr. William Mathews Brooks 4725 Thornton Avenue Fremont, CA, 94536

08 March 2017 AGE-Project No. 12-2461

PREPARED FOR:

Mr. William Mathews Brooks ARDENBROOK

PREPARED BY:

Environmental • Compliance • Industrial Hygiene • Geotechnical Phone: 800-511-9300 Fax: 888-445-8786 www.advgeoenv.com

"Working in Partnership with People, Business and the Environment"

> 08 March 2017 AGE-Project No. 12-2461

Environmental • Compliance • Industrial Hygiene • Geotechnical Phone: 800-511-9300 Fax: 888-445-8786 www.advgeoenv.com

"Working in Partnership with People, Business and the Environment"

PREPARED BY:

71.00

Daniel J. Villanueva Senior Project Geologist

PROJECT MANAGER:

Daniel J. Villanueva Senior Project Geologist

REVIEWED BY:

ONAL GE MR. No. 7473 William R. Little

OF CALIF Senior Project Geologist California Professional Geologist No. 7473

TABLE OF CONTENTS

SECTION

PAGE

1.0. INTRODUCTION	1
2.0. PROCEDURES	
2.1. INDOOR AIR SAMPLING	1
2.1.1. Pre-Field Work Preparations	1
2.1.2. Indoor Air Sampling	2
3.0. FINDINGS	3
3.1. ANALYTICAL RESULTS OF INDOOR AIR SAMPLES	
3.2. ANALYTICAL RESULTS OF SUB-SLAB VAPOR SAMPLES	6
4.0. PROPOSED SVE REBOUND TESTING	7
5.0. SUMMARY/CONCLUSIONS	7
6.0. RECOMMENDATIONS	8
7.0. LIMITATIONS	8

FIGURES

Figure 1 – <i>Location Map</i>	
Figure 2 – Regional Site Plan – Soil Boring Locations	
Figure 3 – Regional Site Plan – Vapor Sampling Locations	

TABLES

Table 1 – Indoor Air Analytical Results Table 2 – Sub-Slab Vapor Analytical Results

APPENDICES

Appendix A – Sub-Slab Vapor Sampling Logs Appendix B – Laboratory Analytical Reports – Indoor Air Appendix C – Laboratory Analytical Reports – Sub-Slab

1.0. INTRODUCTION

Advanced GeoEnvironmental, Inc. has prepared this, Indoor Air and Sub-Slab Monitoring Report – First Quarter 2017, for the above-referenced site. The scope of work included the sampling of indoor air in the subject (1395 MacArthur Boulevard) and adjacent suite (1383 MacArthur Boulevard) and the sampling of three sub-slab vapor wells (SS-2 through SS-4) at the subject site; Estudillo Plaza Optometry was closed for the holiday (20 February 2017) and SS-1 was not accessible during the sampling event.

The location of the site and the surrounding area are illustrated in Figure 1; detailed maps of site features and boring and soil-vapor sampling locations are included as Figures 2 and 3.

2.0. PROCEDURES

The purpose of this sampling event was to evaluate the performance of the onsite soilvapor extraction system and to continue to monitor chlorinated hydrocarbon concentrations in indoor air and sub-slab vapor. Additionally, results from this monitoring event were intended to aid in the determination of the feasibility of reoccupation of the subject suite by a new dry cleaning business.

Indoor air and sub-slab vapor well sampling procedures were outlined in the AGEprepared, *Site Assessment and Sub-Slab Vapor Well Installation Work Plan,* dated 05 November 2014. Procedures were further modified by the Alameda County Environmental Health Services (ACEHS) directive letter, dated 11 March 2014.

2.1. INDOOR AIR SAMPLING

Field work was performed utilizing procedures provided in the Interstate Technology Regulatory Council (ITRC)-prepared, *Vapor Intrusion Pathway: A Practical Guideline* dated January 2007 and the Department of Toxic Substance Control (DTSC)-prepared, Guidance For The Evaluation And Mitigation Of Subsurface Vapor Intrusion To Indoor Air - Final (Vapor Intrusion Guidance) dated October 2011.

2.1.1. Pre-Field Work Preparations

On 20 February 2017, prior to the start of indoor air sample collection, all suites sampled (1383 [Solthea Salon & Beauty Supply] and 1395 MacArthur Boulevard

08 March 2017 AGE Project No. 12-2461 Page 2 of 8

[Former Swiss Valley Cleaners]) were inspected to locate indoor contaminant sources and products that could potentially bias the sampling results (Figure 3). Several products with chemicals of concern had been previously identified in 1383 MacArthur Boulevard (Solthea Beauty Supply and Salon). Organic vapor was not measured during the survey of each building prior to deployment of the indoor air sampling canisters, as historical values had been established.

2.1.2. Indoor Air Sampling

During the February 2017 indoor air sampling event, passive integrated air samples were collected from inside the suites of 1383 and 1395 MacArthur Boulevard. During the sampling events one 6-liter summa canister was deployed in the center or rear of each of the facilities in areas lacking public access.

The sampling inlet on each canister was connected to a mass flow controller containing a particulate filter; the flow controllers were calibrated to a flow rate of 3.5 milliliters/minute (ml/min) in order to collect air samples over a 24-hour period. Each canister's initial vacuum was measured and recorded to ensure the initial vacuum was greater than 20 inches of mercury (in/Hg); initial vacuum's was measured at 29 in/Hg prior to air sample collection. Upon can retrieval final vacuum measurements were observed between 2 and 3 in/Hg.

The air samples were transported under chain-of-custody procedures to McCampbell Analytical Inc. (MAI) located in Pittsburg, California. The indoor air samples were analyzed for VOCs in accordance with EPA Method TO-15.

2.2. SUB-SLAB VAPOR WELL SAMPLING

On 20 February 2017 sub-slab vapor points SS-2, SS-3 and SS-4 were sampled; SS-1 was not accessible during the sampling event. During the sampling event, one-liter (sampling) and six-liter Summa purge canisters were used to collect sub-slab vapor samples. The sampling and purge canisters were connected together with a dedicated and serialized sampling inlet manifold. The sampling inlet manifold consisted of a vapor-tight valve; a particulate filter; a calibrated flow restrictor calibrated to 50 milliliters per minute (ml/min); a stainless steel tee-fitting; two vacuum gauges at either end of the flow controller and connections for both purge and sampling canisters (manifold assembly).

The manifold assembly was attached to Teflon® tubing with a compression sleeve and nut, which was attached to a dedicated brass barb that was fitted to the fitting at the top of the sub-slab monitoring point. The threads of each fitting were covered with Teflon® tape to ensure an airtight seal. The purge canister was attached to the end of the sampling manifold, while the sample canister was attached to the middle of the manifold

08 March 2017 AGE Project No. 12-2461 Page 3 of 8

assembly. Teflon® tape was placed on the threads of each fitting of the manifold assembly prior to attaching the sampling and purge canisters.

The initial vacuum of each canister was measured and recorded in inches of mercury (in Hg) on field logs (Appendix A). Leak tests were performed on each assembly by attaching and securing the sample and purge canisters to the manifold and opening the valves on the purge canister and the manifold. The leak test was performed for approximately 10 minutes on each assembly. Adjustments were made (tightening of fittings) and a leak test was performed again, if necessary. Once a proper seal was assured, each sub-slab monitoring location was isolated from ambient air by enclosing the sub-slab point, tubing and manifold/canister assembly in clear plastic shroud. Isopropyl alcohol (IPA) as a liquid was placed in a stainless steel bowl within the plastic shroud and allowed to volatilize into the air enclosed within the shroud surrounding the sub-slab monitoring point, tubing and manifold/canister assembly.

The purge volume was pre-determined prior to sampling by calculating the internal volume of the tubing of the manifold and well volume including filter pack.

Once the sampling apparatus was leak-tested and sealed within the shroud, the purge canister valve was opened for a calculated period of time (35 seconds) to allow the three calculated volumes of air and soil vapor to be purged. The purge vacuum gauge was monitored and recorded to ensure a proper decrease of vacuum purged.

Upon achieving the targeted purge volume, the purge canister valve was closed and the sample canister valve opened. The initial pressure on the sample canister and time were recorded. Upon reaching at least -5 in Hg or less, the sample canister valve was closed and final pressure and time recorded. The sampling port on the sampling canister was capped with a brass end-cap and sealed with Teflon® tape.

The vapor samples were transported by AGE under chain-of-custody procedures to MAI. The sub-slab vapor samples were analyzed for VOCs and iso-propyl alcohol (IPA - tracer gas) in accordance with EPA Method TO-15.

3.0. FINDINGS

Chlorinated hydrocarbon and VOC impact was quantified based on laboratory analysis of indoor air and sub-slab vapor samples collected at the site during the February 2017 investigations.

3.1. ANALYTICAL RESULTS OF INDOOR AIR SAMPLES

Two indoor air samples (IA-1383 MacArthur and IA-1395 MacArthur) were collected at the site during the 20 February 2017 sampling event. All samples were analyzed for

08 March 2017 AGE Project No. 12-2461 Page 4 of 8

VOCs in accordance with EPA method TO-15. Results are summarized below: *IA-1383 MacArthur:*

- Acetone was detected at a concentration of 2,000 micrograms per cubic meter (µg/m³);
- Benzene was detected at a concentration of 0.71 μg/m³;
- 2-Butanone (MEK) was detected a concentration of 6.6 μg/m³;
- Carbon tetrachloride (CT) was detected at a concentration of 0.46 µg/m³;
- Chloroform was detected at a concentration of 0.53 µg/m³;
- Chloromethane was detected at a concentration of 0.96 µg/m³;
- Cyclohexane was detected at a concentration of 0.46 μg/m³;
- 1,4-dichlorobenzene was detected at a concentration of 0.22 μg/m³;
- Dichlorodifluoromethane (DCDFM) was detected at a concentration of 2.3 µg/m³;
- 1,2-dichloroethane (1,2-DCA) was detected at a concentration of 0.41 μg/m³;
- 1,2-dichloropropane (1,2-DCP) was detected at a concentration of 0.039 μg/m³;
- 1,2-dichloro-1,1,2,2-tetrafluoroethane (1,2-D,1,1,2,2-TFA) was detected at a concentration of 0.15 μg/m³;
- Ethyl acetate was detected at a concentration of 200 µg/m³;
- Ethylbenzene was detected at a concentration of 0.38 µg/m³;
- Freon 113 was detected at a concentration of 0.63 µg/m³;
- Heptane was detected at a concentration of 1.3 µg/m³;
- Hexane was detected at a concentration of 1.2 μg/m³;
- 4-methyl-2-pentanone (MIBK) was detected at a concentration of 0.33 μg/m³;
- Methylene chloride was detected at a concentration of 0.71 µg/m³;
- Methyl methacrylate was detected at a concentration of 930 µg/m³;
- Naphthalene was detected at a concentration of 0.17 μg/m³;
- Styrene was detected at a concentration of 0.41 µg/m³;
- 1,1,1,2-Tetrachloroethane was detected at a concentration of 0.32 µg/m³;
- Tetrachloroethene (PCE) was detected at a concentration of 0.83 µg/m³;
- Tetrahydrofuran was detected at a concentration of 1.2 µg/m³;
- Toluene was detected at a concentration of 11 µg/m³;
- Trichloroethene (TCE) was detected at a concentration of 0.077 µg/m³;

08 March 2017 AGE Project No. 12-2461 Page 5 of 8

- Trichlorofluoromethane was detected at a concentration of 1.4 μg/m³;
- 1,2,4-trimethylbenzene (1,2,4-TMB) was detected at a concentration of 0.40 μg/m³;
- 1,3,5-trimethylbenzene (1,2,5-TMB) was detected at a concentration of 0.13 $\mu\text{g/m}^3\text{;}$ and
- Total xylenes were detected at a concentration of 1.2 µg/m³;

IA-1395 MacArthur:

- Acetone was detected at a concentration of 76 μg/m³;
- Benzene was detected at a concentration of 0.57 μg/m³;
- MEK was detected a concentration of 5.2 µg/m³;
- CT was detected at a concentration of 0.46 µg/m³;
- Chloroform was detected at a concentration of 0.21 µg/m³;
- Chloromethane was detected at a concentration of 0.92 µg/m³;
- Cyclohexane was detected at a concentration of 0.36 µg/m³;
- 1,4-dichlorobenzene was detected at a concentration of 0.20 μg/m³;
- DCDFM was detected at a concentration of 2.5 µg/m³;
- 1,2-DCA was detected at a concentration of 0.20 μg/m³;
- 1,2-DCP was detected at a concentration of 0.028 µg/m³;
- 1,2-D,1,1,2,2-TFA was detected at a concentration of 0.14 µg/m³;
- Ethyl acetate was detected at a concentration of 7.0 μg/m³;
- Ethylbenzene was detected at a concentration of 0.25 µg/m³;
- Freon 113 was detected at a concentration of 0.63 μg/m³;
- Heptane was detected at a concentration of 1.1 µg/m³;
- Hexane was detected at a concentration of 0.45 μg/m³;
- MIBK was detected at a concentration of 0.19 µg/m³;
- Methylene chloride was detected at a concentration of 0.98 µg/m³;
- Methyl methacrylate was detected at a concentration of 29 μg/m³;
- Naphthalene was detected at a concentration of 0.12 μg/m³;
- Styrene was detected at a concentration of 0.14 μg/m³;
- PCE was detected at a concentration of 0.38 µg/m³;

08 March 2017 AGE Project No. 12-2461 Page 6 of 8

- Tetrahydrofuran was detected at a concentration of 21 μg/m³;
- Toluene was detected at a concentration of 3.5 µg/m³;
- TCE was detected at a concentration of 0.019 μg/m³;
- Trichlorofluoromethane was detected at a concentration of 1.4 µg/m³;
- 1,2,4-TMB was detected at a concentration of 0.40 μg/m³;
- 1,2,5-TMB was detected at a concentration of 0.35 μ g/m³; and
- Total xylenes were detected at a concentration of 0.90 µg/m³;

A summary of analytical results from samples collected during the February 2017 sampling event are included in Table 1. The laboratory report (MAI work order number 1702A12), quality assurance/quality control report, and chain-of-custody form are included in Appendix B. Laboratory analytical was uploaded to the State GeoTracker database under confirmation number 9412489473.

3.2. ANALYTICAL RESULTS OF SUB-SLAB VAPOR SAMPLES

A total of three (3) sub-slab vapor samples were collected at the site in February 2017 2017 and analyzed for VOCs and IPA. The following is a summary of the results:

- Acetone was detected in the sample collected from SS-2 at a concentrations of 160 $\mu g/m^3;$
- Ethyl acetate was detected in the sample collected from SS-2 at a concentration of 2.7 μg/m³;
- 2-Hexanone was detected in the sample collected from SS-2 at a concentration of 2.2 µg/m³;
- Methyl methacrylate was detected in the sample collected from SS-2 at a concentration of 16 μ g/m³;
- PCE was detected in all three sub-slab vapor samples at a maximum concentration of 420 μg/m³ (SS-4);
- Tetrahydrofuran was detected in the sample collected from SS-3 at a concentration 5.5 μ g/m³;
- Toluene was detected in the sample collected from SS-2 at a concentration of 1.9 $\mu g/m^3;$
- Tracer gas isopropyl alcohol (IPA) was detected in two of the three samples (SS-2 and SS-4) at concentrations of 91 μg/m³ and 1,300 μg/m³.

No other constituents of concern were detected in the sub-slab samples collected during the February 2017 monitoring event. A summary of the analytical results from the

08 March 2017 AGE Project No. 12-2461 Page 7 of 8

sampling event are included in Table 2. The laboratory report (MAI work order number 1702A13), quality assurance/quality control report, and chain-of-custody forms are included in Appendix C. Laboratory analytical data was uploaded to the State GeoTracker database under confirmation number 3573564529.

4.0. PROPOSED SVE REBOUND TESTING

In November 2016 corrective action began with the initiation of soil-vapor extraction (SVE) at the subject site, using a network of 21 SVE wells within and surrounding the former dry cleaning suite. Startup and monthly remediation system sampling have been conducted at the site to monitor removal rates and evaluate the effectiveness of the system. Based on influent analytical data collected to date concentrations have sharply declined (demonstrating asymptotic levels) and mass removal rates are starting to show reduced increase with time. Based on these findings, low levels of concentrations reported during the initial progress indoor air/sub-slab monitoring event and to evaluate the feasibility of reoccupation of the cleaners suite, AGE proposes to temporarily shut off the SVE system.

Starting 01 April 2017, AGE proposes to pause the operation of the on-site SVE system to perform rebound testing and to evaluate the effects of non-operation of the system on sub-slab and indoor impact. After a period of 30 days, AGE proposes to collect indoor air samples concurrently with sub-slab samples from the subject unit and two adjacent suites. Results from the sampling will be used to gauge the feasibility of reoccupying the subject suite and to evaluate future operation of the SVE system.

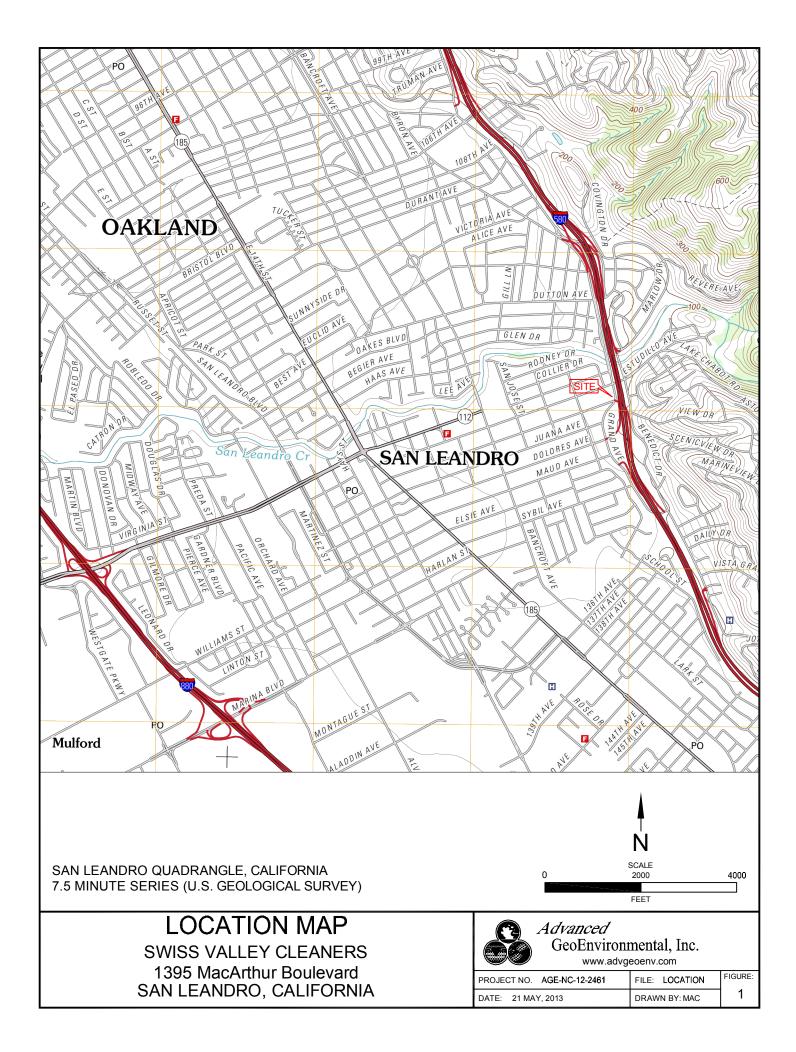
5.0. SUMMARY/CONCLUSIONS

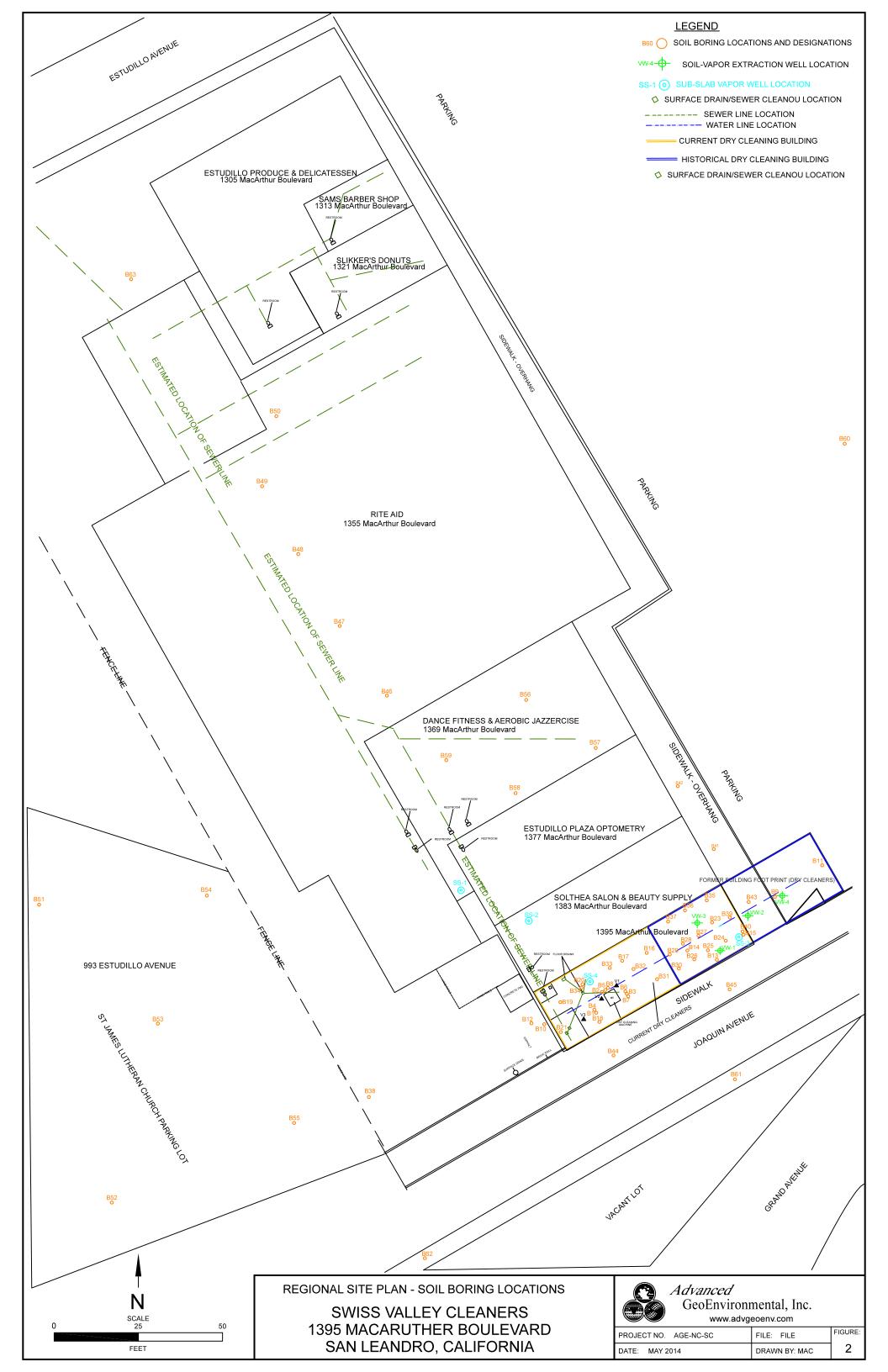
Based upon the findings of this investigation, AGE concludes:

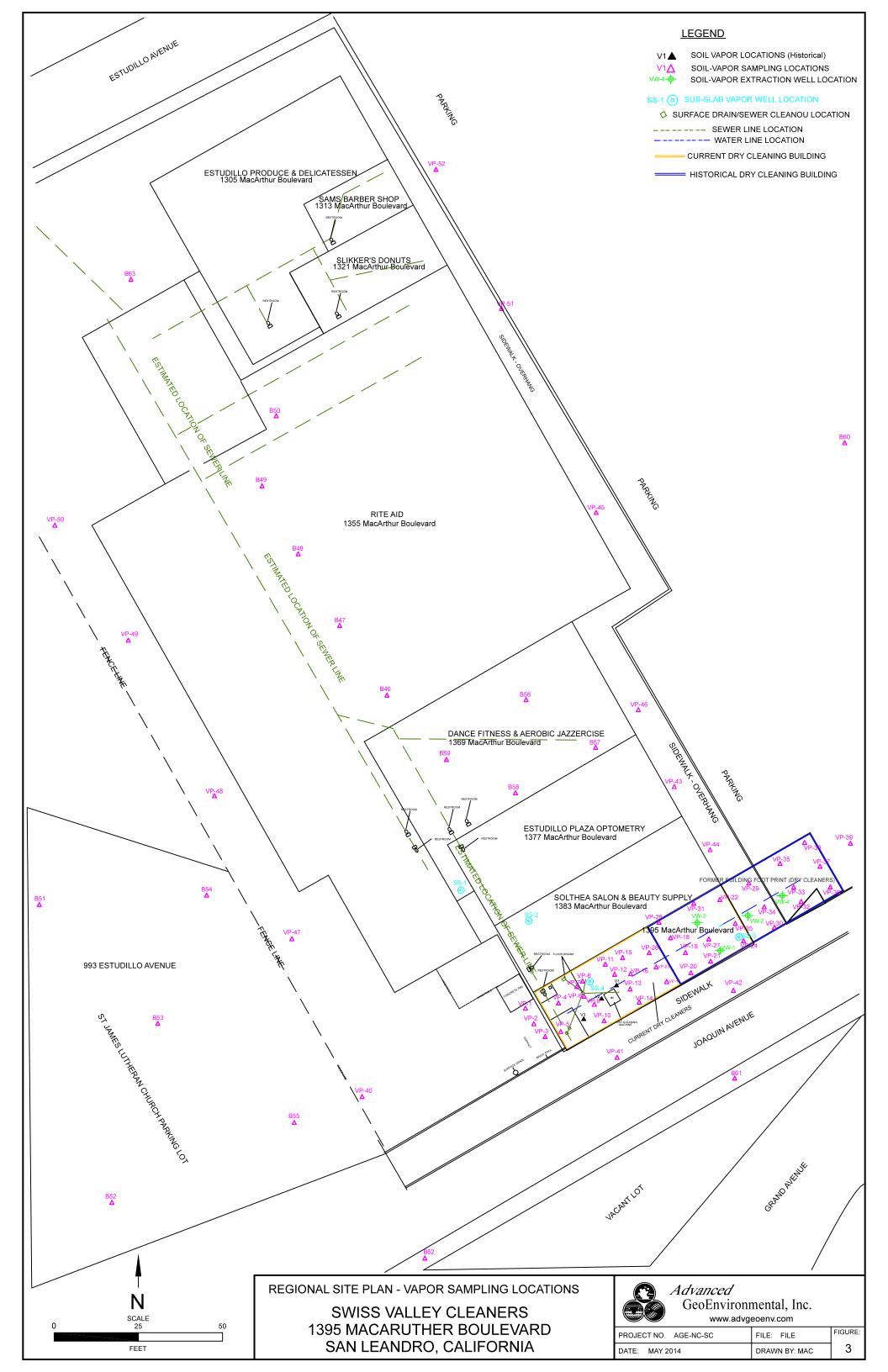
- Based on sub-slab vapor samples and a comparison to indoor air samples collected during all sampling events (pre- and post-startup of remediation system), significant attenuation appears to be taking place from five feet bsg to just beneath the concrete slab and into the indoor air (Tables 1 and 2).
- PCE concentrations detected during this event in sub-slab soil-vapor samples SS-2 though SS-4 are below San Francisco Bay Regional Water Quality Control Board Environmental Screening Levels for a commercial setting. Accumulation of chlorinated hydrocarbon impact below the sub-slab appears to be decreasing as a result of remedial system operation.
- PCE concentrations detected in indoor air samples are significantly lower than those reported during previous monitoring events, prior to when SVE remedial equipment was operational.

08 March 2017 AGE Project No. 12-2461 Page 8 of 8

 Active correction action has significantly reduced concentration in both the indoor air and sub-slab. As evident in the declining concentrations in the influent vapor stream during monthly monitoring, a significant amount of the original mass has been removed as a result of the operation of the SVE system. As mentioned above, AGE is of the opinion that the system should be temporarily shut-down for performance of rebound testing.


6.0. **RECOMMENDATIONS**


Based on the results of this investigation, AGE recommends that starting at on 01 April 2017 the on-site remediation system be turned off for the performance of rebound testing. Sub-slab and indoor air samples should be collected in the subject and adjacent units following a period of 30 days to evaluate if significant rebound has occurred additional sub-slab and indoor air samples be collected in the summer of 2017, following active soil-vapor remediation.


7.0. LIMITATIONS

Our professional services were performed using the degree of care and skill ordinarily exercised by environmental consultants practicing in this or similar localities. The findings were based mainly upon analytical results provided by an independent laboratory. Evaluations of the geologic conditions at the site for the purpose of this investigation are made from a limited number of available data points (i.e. soil-vapor samples indoor air samples) and subsurface conditions may vary away from these data points. No other warranty, expressed or implied, is made as to the professional recommendations contained in this report.

FIGURES

TABLES

									TO	-15								
Sample ID	Date	PCE	TCE	1,2-DCA	EDB	Naphthalene	1,4-DCB	Acetone	СТ	B	Т	Ш	Х	Chloromethane	DCDFM	Ethyl Acetate	TCFM	Chloroform
	04-10-2014	12	0.038	0.085	<0.0078	0.34	0.099	46	0.41	0.52	1.4	<0.44	1.2	0.60	2.0	2.7	1.4	0.19
	05-08-2014	14	0.11	0.19	<0.0078	0.17	0.063	75	0.44	0.27	0.74	<0.44	<1.3	0.67	2.0	8.8	1.1	0.22
IA-1395 MacArthur	03-23-2015	16	0.03	0.10	<0.0078	0.17	0.074	110	0.46	0.50	2.3	<0.44	<1.3	0.62	2.4	14.0	1.3	0.33
(Subject Suite)	10-30-2015	0.77	<0.17	<0.13	<0.25	-	<0.19	<1.9	<0.20	0.85	3.0	0.44	2.03	1.0	-	-	-	0.18
	10-13-2016	40	<0.17	<0.13	<0.25	-	<0.19	<1.9	0.35	0.42	3.1	0.24	1.05	-	-	-	-	0.39
	02-20-2017	0.38	0.019	0.20	<0.0023	0.12	0.20	76	0.45	0.57	3.5	0.25	0.90	0.92	2.5	7.0	1.4	0.21
SFBRWCE (Commer		2.1	3.0	0.58	0.17	0.36	1.1	140,000	0.29	0.42	1,300	4.9	440	390	-	-	-	2.3

									TO	-15								
Sample ID	Date	PCE	TCE	1,2-DCA	EDB	Naphthalene	1,4-DCB	Acetone	СТ	B	Т	Э	×	Chloromethane	DCDFM	Ethyl Acetate	TCFM	Chloroform
	04-10-2014	11	0.057	0.43	0.011	0.26	0.096	3,600	0.38	0.65	11	0.49	2.0	<0.21	<0.50	260	<0.57	0.51
	05-08-2014	17	0.055	1.1	<0.0078	0.36	0.12	5,200	0.45	0.69	21	<0.44	1.5	<0.21	<0.50	1600	<0.57	0.49
IA-1383 MacArthur (Sothea's Beauty Salon; First	03-23-2015	19	0.064	0.37	<0.0078	0.41	0.33	8,600	0.56	0.64	15	0.53	2.0	<0.21	0.89	580	0.84	5.3
Adjacent Unit to North of Subject Suite)	10-30-2015	3.5	<0.17	<1.3	<2.5	-	<1.9	1,300	<2.0	<2.6	5.2	<1.4	<1.4	1.7	-	-	-	<1.6
	10-13-2016	7.2	<1.7	<1.3	<2.4	-	<1.9	6,300	<2.0	<2.5	14	<1.4	<1.4	-	-	-	-	<1.5
	02-20-2017	0.83	0.077	0.41	<0.0023	0.17	0.22	2,000	0.46	0.71	11	0.38	1.2	0.96	<0.0035	200	1.4	0.53
SFBRWCE (Commer		2.1	3.0	0.58	0.17	0.36	1.1	140,000	0.29	0.42	1,300	4.9	440	390	-	-	-	2.3

									TO	-15								
Sample ID	Date	PCE	TCE	1,2-DCA	EDB	Naphthalene	1,4-DCB	Acetone	СТ	В	Т	Ш	×	Chloromethane	DCDFM	Ethyl Acetate	TCFM	Chloroform
	04-10-2014	2.1	0.027	0.76	<0.0078	0.22	0.10	110	0.39	0.54	2.8	0.69	3.0	0.54	1.8	7.4	0.78	0.18
IA-1377 MacArthur (Estudillo Plaza	05-08-2014	5.1	0.033	1.10	<0.0078	0.38	0.37	38	0.45	0.37	6.9	1.1	4.4	0.67	2.1	4.9	1	0.2
Optometry; Second Adjacent Unit)	10-30-2015	3.2	<1.8	<1.3	<2.5	-	<2.0	97	<2.1	<2.6	4.8	<1.4	<1.4	<1.7	-	-	-	<1.6
	10-13-2016	5.3	<0.38	<0.28	<0.54	-	<0.42	310	<0.44	<0.56	2.1	0.88	3.8	-	-	I	-	<0.34
SFBRWCE (Commer		2.1	3.0	0.58	0.17	0.36	1.1	140,000	0.29	0.42	1,300	4.9	440	390	-	-	-	2.3

									TO	-15								
Sample ID	Date	PCE	TCE	1,2-DCA	EDB	Naphthalene	1,4-DCB	Acetone	СТ	B	Т	Э	Х	Chloromethane	DCDFM	Ethyl Acetate	TCFM	Chloroform
IA-1369 MacArthur (Former Jazzercise)	05-08-2014	0.045	0.020	2.2	<0.0078	0.26	0.17	18	0.47	0.60	2.1	<0.44	<1.3	0.68	2.0	2.2	1.3	0.25
Outside 1395 MacArthur (Ambiant Air)	05-08-2014	0.042	0.014	0.067	<0.0078	0.12	0.023	13	0.47	0.20	0.41	<0.44	<1.3	0.64	2.0	2.1	1.1	0.24
SFBRWCE (Commer		2.1	3.0	0.58	0.17	0.36	1.1	140,000	0.29	0.42	1,300	4.9	440	390	-	-	-	2.3

<u>Notes:</u>

SFBRWCB ESL: San Francisco Bay Regional Water Quality Control Board Environmental Screening Level for indoor Air.

<: Indicates constituents were not detected at a concentration greater than the reporting limit shown.

PCE: Tetrachloroethene

TCE: Trichloroethene

1,2-DCA: 1,2-Dichloroethane

EDB: 1,2-Dibromoethane

1,4-DCB: 1,4-dichlorobenzene

VC: Vinyl Chloride

CT: Carbon Tetrachloride DCDFM: Dichlorodifluoromethane TCFM: Trichlorofluoromethane IPA: Isopropyl Alcohol B: Benzene; T: Toluene; E: Ethyl-benzene; X: Total Xylenes

*Concentrations denoted with orange fill are above ambiant and indoor air screening levels for a commercial setting.

TABLE 2

SUB-SLAB VAPOR ANALYTICAL RESULTS

Swiss Valley Cleaners

1395 MacArthur Boulevard, San Leandro, California

(micrograms per cubic meter)

													TO-15										
				Dry	Cleanir	g Constitu	ients	1						Chem	icals fro	om oth	er sou	rces					
Sample ID	Location	Date	PCE	TCE	1,1-DCE	Trans 1,2-DCE	Cis 1,2-DCE	VC	AGI	1,2-DCA	В	F	Ш	×	1,2-DCP	Ethanol	4-ET	1,2,4-TMB	Ethyl Acetate	Naphthalene	1,3,5-TMB	Acetone	2-Butanone
SS-1	1369 MacArthur	03-23-2015	5,700	3.3	<2.0	<2.0	<2.0	<1.3	<50	<2.0	42	58	39	190	<2.4	<96	53	98	<1.8	<5.3	64	<60	<75
33-1	Boulvard	10-30-2015	1,700	<5.9	<4.4	<4.4	<4.4	<2.8	<11	<4.5	<3.5	<4.2	<4.8	<4.8	<5.1	<8.3	<5.4	<33	-	-	<5.4	<26	<13
		03-23-2015	5,400	<2.8	<2.0	<2.0	<2.0	<1.3	<50	<2.0	8.6	2.2	<2.2	<6.6	<2.4	<96	<2.5	9.8	4.7	<5.3	2.7	<60	<75
SS-2	1383 MacArthur	10-30-2015	12,000	<41	<30	<30	<30	<20	<76	<31	<24	<29	<33	<33	<36	<58	<38	<38	-	-	<38	<180	<91
55-2	Boulevard	10-13-2016	15,000	<31	<23	<22	<22	<14	79	<23	<18	<21	<25	<25	<26	<43	<28	<170	-	-	<28	<140	<67
		02-20-2017	37	<2.8	<2.0	<2.0	<2.3	<1.3	91	<2.0	<1.6	1.9	<2.2	<6.6	<2.4	<96	<2.5	<2.5	2.7	<5.3	<2.5	160	<67
		03-23-2015	8,300	19	<2.0	<2.0	<2.0	<1.3	<50	<2.0	13	5.1	3.9	24	<2.4	<96	6.2	29	<1.8	<5.3	6.8	<60	<75
	1395 MacArthur	10-30-2015	24,000	67	<46	<46	<46	<29	<110	<46	<37	<43	<50	<50	<53	<87	<56	<56	-	-	<56	<270	<140
SS-3	Boulevard (Front of Suite)	10-13-2016	20,000	<73	<55	<54	<54	<35	<130	<55	<43	<51	<59	<59	<63	<100	<67	<67	-	-	<67	<320	<160
		02-20-2017	99	<2.8	<2.0	<2.0	<2.3	<1.3	<50	<2.0	<1.6	<1.9	<2.2	<6.6	<2.4	<96	<2.5	<2.5	<1.8	<5.3	<2.5	<60	<75

TABLE 2

SUB-SLAB VAPOR ANALYTICAL RESULTS

Swiss Valley Cleaners

1395 MacArthur Boulevard, San Leandro, California

(micrograms per cubic meter)

			TO-15																				
				Dry	Cleanin	g Constitu	ients							Chem	icals fro	om oth	er sou	rces					
Sample ID	Location	Date	PCE	TCE	1,1-DCE	Trans 1,2-DCE	Cis 1,2-DCE	VC	Adi	1,2-DCA	В	Т	ш	×	1,2-DCP	Ethanol	4-ET	1,2,4-TMB	Ethyl Acetate	Naphthalene	1,3,5-TMB	Acetone	2-Butanone
		03-23-2015	7,600	5.6	<2.0	<2.0	<2.0	<1.3	<50	2.2	17	14	9.4	44	<2.4	<96	9.6	29	<1.8	<5.3	5.7	<60	<75
SS-4	1395 MacArthur Boulevard	10-30-2015	21,000	<48	<48	<47	<47	<30	<120	<48	<38	<45	<51	<51	<55	<89	<58	<58	-	-	<58	<280	<140
33-4	(Rear of Suite)	10-13-2016	19,000	<40	<30	<29	<29	<19	<72	<48	<23	<28	<32	<32	<34	<55	<36	<36	-	-	<36	<170	<87
		02-20-2017	420	<2.8	<2.0	<2.0	<2.3	<1.3	1,300	<2.0	<1.6	<1.9	<2.2	<6.6	<2.4	<96	<2.5	<2.5	<1.8	<5.3	<2.5	<60	<75
Cł	HHSLs (Comm	ercial)	1,600	1,300	-	240,000	120,000	95.0	-	360	280	890,000	3,600	6,700,000	-	-	-	-	-	310	-	-	-
SFBR	WCB ESL (Co	mmercial)	2,100	3,000	880,000	2,600,000	-	160	-	580	420	1,300,000	4,900	440,000	1,200	-	-	-	-	360	-	140,000,000	22,000,000

Notes:

SFBRWCB ESL: San Francisco Bay Regional Water Quality Control Board Environmental Screening Level for shallow soil gas

<: Indicates constituents were not detected at a concentration greater than the reporting limit shown.

CHHSLs: California Human Health Screening Levels (Soil Gas Screening for VOC's below bulidings constructed with engineere fill below sub-slab gravel)

PCE: Tetrachloroethene

TCE: Trichloroethene 1,1-DCE: 1,1-Dichloroethene Trans 1,2-DCE: Trans 1,2-Dichloroethene Cis 1,2-DCE: Cis 1,2-Dichloroethene VC: Vinyl Chloride IPA: Isopropyl Alcohol B: Benzene; T: Toluene; E: Ethyl-benzene; X: Total Xylenes 1,2-DCA: 1,2-Dichloroethane 1,2-DCP: 1,2-Dichloropropane 4-ET: 4-Ethyltoluene 1,2,4-TMB: 1,2,4-Trimethylbenzene 1,3,5-TMB: 1,3,5-Trimethylbenzene

APPENDIX A

Soil Vapor Sampling Field Log											
)ate: <u>וט־/ א</u>	<u>-\\)</u> Fiel	d Personnel:	DINKC							
Purge Apparatus:		200ml/min	low flow pump								
Purge Volume:		118	in line								
Purge Time:		123	10 second	•							
Sample Canister To	tal Volume:	<i>v</i>	6.0L								
Field Point: 55	-2 (50	(thea)	Sample ID: 5	5-2	= 0.7 ppm						
Canister #:	30-364	lab P	lurge	San	nple						
Manifold#: 309	505	Initial	Post	Initial	Post						
Time		1021	1022	1622	1029						
Pressure (ii	n Hg)	1		2940	412						
		Manifold Leak	Test (10 Minutes):	and the second second second							
Start Time:	1010		End Time:	1020							
Field Point: 55	-3 (FA	ont of suc) Sample ID:	=0.2	00m						
Canister # 200	5-49	P	urge	= 0,2 ppm Sample							
Manifold#:	601	Initial	Post	Initial toris	Post						
Time		1046	1047	ZAHE	1053						
Pressure (i	n Hg)			2B HR	Y HE						
			Test (10 Minutes):								
Start Time:	103	0 .	End Time:	1040							
Field Point: 55 -	LI (Rea	rot SUC	Sample ID:	O.7ppm							
Canister #: 21	281	P	lurge	Sar	nple						
Manifold#: 36	166	Initial	Post	Initial UN	Post						
Time		1112	1113	Zauta	11172						
Pressure (ii	n Hg)			2911							
		Manifold Leak	Test (10 Minutes):	2							
Start Time:	110	D	End Time:	1110							
					100.0000.00000000000000000000000000000						

Soil Vapor Sampling Field Log

Field Point:		Sample ID:		
Canister #:	Pu	rge	Sar	nple
Manifold#:	Initial	Post	Initial	Post
Time				
Pressure (in Hg)				
	Manifold Leak T	est (10 Minutes):	Constant and	
Start Time:		End Time:		3

APPENDIX B

McCampbell Analytical, Inc.

"When Quality Counts"

Analytical Report

WorkOrder: 1702A12

Report Created for: Advanced GeoEnvironmental, Inc.

837 Shaw Road Stockton, CA 95215

- **Project Contact:** Daniel Villanueva
- Project P.O.:

Project Name: Swiss Valley Cleaners

Project Received: 02/21/2017

Analytical Report reviewed & approved for release on 02/23/2017 by:

Angela Rydelius, Laboratory Manager

The report shall not be reproduced except in full, without the written approval of the laboratory. The analytical results relate only to the items tested. Results reported conform to the most current NELAP standards, where applicable, unless otherwise stated in the case narrative.

1534 Willow Pass Rd. Pittsburg, CA 94565 TEL: (877) 252-9262 FAX: (925) 252-9269 www.mccampbell.com

CA ELAP 1644 ♦ NELAP 4033ORELAP

Glossary of Terms & Qualifier Definitions

Client: Advanced GeoEnvironmental, Inc.

Project: Swiss Valley Cleaners

WorkOrder: 1702A12

Glossary Abbreviation

%D	Serial Dilution Percent Difference
95% Interval	95% Confident Interval
DF	Dilution Factor
DI WET	(DISTLC) Waste Extraction Test using DI water
DISS	Dissolved (direct analysis of 0.45 μm filtered and acidified water sample)
DLT	Dilution Test (Serial Dilution)
DUP	Duplicate
EDL	Estimated Detection Limit
ITEF	International Toxicity Equivalence Factor
LCS	Laboratory Control Sample
MB	Method Blank
MB % Rec	% Recovery of Surrogate in Method Blank, if applicable
MDL	Method Detection Limit
ML	Minimum Level of Quantitation
MS	Matrix Spike
MSD	Matrix Spike Duplicate
N/A	Not Applicable
ND	Not detected at or above the indicated MDL or RL
NR	Data Not Reported due to matrix interference or insufficient sample amount.
PDS	Post Digestion Spike
PDSD	Post Digestion Spike Duplicate
PF	Prep Factor
RD	Relative Difference
RL	Reporting Limit (The RL is the lowest calibration standard in a multipoint calibration.)
RPD	Relative Percent Deviation
RRT	Relative Retention Time
SPK Val	Spike Value
SPKRef Val	Spike Reference Value
SPLP	Synthetic Precipitation Leachate Procedure
ST	Sorbent Tube
TCLP	Toxicity Characteristic Leachate Procedure
TEQ	Toxicity Equivalents
WET (STLC)	Waste Extraction Test (Soluble Threshold Limit Concentration)

Analytical Qualifiers

Banalyte detected in the associated Method Blank and in the sampleJresult is less than the RL/ML but greater than the MDL. The reported concentration is an estimated value.

Glossary of Terms & Qualifier Definitions

Client: Advanced GeoEnvironmental, Inc.

Project: Swiss Valley Cleaners

WorkOrder: 1702A12

Quality Control Qualifiers

F2 LCS/LCSD recovery and/or RPD is out of acceptance criteria.

Case Narrative

Client: Advanced GeoEnvironmental, Inc.

Project: Swiss Valley Cleaners

Work Order: 1702A12 February 22, 2017

TO-15 ANALYSIS

All summa canisters are EVACUATED 5 days after the reporting of the results. Please call or email if a longer retention time is required.

In an effort to attain the lowest reporting limits possible for the majority of the TO-15 target list, high level compounds may be analyzed using EPA Method 8260B.

Polymer (Tedlar) bags are not recommended for TO15 samples. The disadvantages are listed in Appendix B of the DTSC Active Soil Gas Advisory of July 2015.

Client:	Advanced GeoEnvironmental, Inc.
Date Received:	2/21/17 13:15
Date Prepared:	2/22/17
Project:	Swiss Valley Cleaners

WorkOrder:	1702A12
Extraction Method:	TO15
Analytical Method:	TO15
Unit:	$\mu g/m^3$

Volatile Organic Compounds

Client ID	Lab ID	Matrix	Date (Collected	Instrum	nent	Batch ID
IA-1383 MacArthur	1702A12-001A	Indoor Air	02/20/2	017 12:25	GC29		134550
Initial Pressure (psia)	Final Pressure	Final Pressure (psia)			Analyst(s)		
13.38	13.38						AK
Analytes		<u>Result</u>	<u>Qualifiers</u>	MDL	<u>RL</u>	DF	Date Analyzed
Acetone		2000		26	150	25	02/22/2017 01:02
Acrolein		ND		0.047	0.58	1	02/22/2017 08:55
Acrylonitrile		ND		0.035	0.22	1	02/22/2017 08:55
tert-Amyl methyl ether (TAME)		ND		0.21	0.42	1	02/22/2017 08:55
Benzene		0.71		0.0030	0.032	1	02/22/2017 08:55
Benzyl chloride		ND		0.053	0.53	1	02/22/2017 08:55
Bromodichloromethane		ND		0.0028	0.0070	1	02/22/2017 08:55
Bromoform		ND		0.12	1.1	1	02/22/2017 08:55
Bromomethane		ND		0.058	0.39	1	02/22/2017 08:55
1,3-Butadiene		ND		0.048	0.22	1	02/22/2017 08:55
2-Butanone (MEK)		6.6	J	1.0	7.5	1	02/22/2017 08:55
t-Butyl alcohol (TBA)		ND		5.7	6.2	1	02/22/2017 08:55
Carbon Disulfide		ND		0.045	0.32	1	02/22/2017 08:55
Carbon Tetrachloride		0.46		0.0026	0.0064	1	02/22/2017 08:55
Chlorobenzene		ND		0.024	0.47	1	02/22/2017 08:55
Chloroethane		ND		0.046	0.27	1	02/22/2017 08:55
Chloroform		0.53		0.0034	0.025	1	02/22/2017 08:55
Chloromethane		0.96		0.025	0.21	1	02/22/2017 08:55
Cyclohexane		0.46	J	0.052	1.8	1	02/22/2017 08:55
Dibromochloromethane		ND		0.0035	0.87	1	02/22/2017 08:55
1,2-Dibromo-3-chloropropane		ND		0.0049	0.050	1	02/22/2017 08:55
1,2-Dibromoethane (EDB)		ND		0.0023	0.0078	1	02/22/2017 08:55
1,2-Dichlorobenzene		ND		0.079	0.61	1	02/22/2017 08:55
1,3-Dichlorobenzene		ND		0.061	0.61	1	02/22/2017 08:55
1,4-Dichlorobenzene		0.22		0.0031	0.030	1	02/22/2017 08:55
Dichlorodifluoromethane		2.3		0.050	0.50	1	02/22/2017 08:55
1,1-Dichloroethane		ND		0.14	0.41	1	02/22/2017 08:55
1,2-Dichloroethane (1,2-DCA)		0.41		0.0012	0.0041	1	02/22/2017 08:55
1,1-Dichloroethene		ND		0.076	0.10	1	02/22/2017 08:55
cis-1,2-Dichloroethene		ND		0.040	0.40	1	02/22/2017 08:55
trans-1,2-Dichloroethene		ND		0.028	0.40	1	02/22/2017 08:55
1,2-Dichloropropane		0.039		0.0020	0.0047	1	02/22/2017 08:55
cis-1,3-Dichloropropene		ND		0.0014	0.12	1	02/22/2017 08:55

Client:	Advanced GeoEnvironmental, Inc.
Date Received:	2/21/17 13:15
Date Prepared:	2/22/17
Project:	Swiss Valley Cleaners

WorkOrder:	1702A12
Extraction Method:	TO15
Analytical Method:	TO15
Unit:	$\mu g/m^3$

LA-1383 MacArthur 1702A12-001A Indoor Air 92/20/2017 12:25 GC29 13 Initial Pressure (psia) Final Pressure (psia) Analyst(13.38 13.38 AK Analytes Result Qualifiers MDL RL DE Date Analytes trans-1,3-Dichloropropene ND 0.092 0.12 1 02/22/201 1,2-Dichloro-1,1,2,2-tetrafiluoroethane 0.15 J 0.071 0.71 1 02/22/201 1,2-Dichloro-1,1,2,2-tetrafiluoroethane ND 0.034 0.42 1 02/22/201 1,4-Dioxane ND 0.034 0.42 1 02/22/201 Ethyl actate 200 0.74 23 25 02/22/201 Ethyl actate 0.38 J 0.035 0.44 1 02/22/201 Heptane ND 0.035 0.50 1 02/22/201 Heptane 1.3 J 0.029 2.1 1 02/22/201 Hestanle 0.33	Volatile Organic Compounds							
Initial Pressure (psia) Final Pressure (psia) Analyst(13.38 13.38 AK Analytes Result Qualifiers MDL EL DE Date Analytes Itans-1,3-Dichioropropene ND 0.092 0.12 1 02/22/201 Diisopropyl ether (DIPE) ND 0.034 0.42 1 02/22/201 Li-Schioro-1,1,2,2-tetrafuoroethane ND 0.0011 0.18 1 02/22/201 Li-Schioro-1,1/2,2-tetrafuoroethane ND 0.034 0.42 1 02/22/201 Li-Schiorobyl ether (DIPE) ND 0.13 0.42 1 02/22/201 Li-Schiorobyl ether (ETBE) ND 0.035 0.50 1 02/22/201 Li-Schiorobyl ether (BTBE) ND 0.035 0.50 1 02/22/201 Heptaha 1.3 J 0.026 0.78 1 02/22/201 Heyanone ND 0.034 0.42 1 02/22/201 Heyanone ND 0.033	Client ID	Lab ID	Matrix	ix Date Collected Instrument				Batch ID
13.38 13.38 AK Analytes Result Qualifiers MDL RL DE Date Analytes Itana-1,3-Dichloropropene ND 0.092 0.12 1 02/22/201 1,2-Dichloro-1,1,2,2-tetrafluoroethane 0.15 J 0.071 0.71 1 02/22/201 1,4-Dioxane ND 0.031 0.42 1 02/22/201 Ethyl acetate 200 0.74 23 25 02/22/201 Ethyl acetate 200 0.74 23 25 02/22/201 Ethyl acetate 0.038 J 0.035 0.50 1 02/22/201 Ethylaenzene 0.38 J 0.035 0.50 1 02/22/201 Heptane 1.3 J 0.062 0.78 1 02/22/201 Hesachiorobutadiene ND 0.033 J 0.42 1 02/22/201 Hesachiorobutadiene ND 0.033 J 0.42 1 02/22/201	IA-1383 MacArthur	1702A12-001A	Indoor Air	02/20/2017 12:25		GC29		134550
Analytes Result Qualifiers MD RL DE Date Analytes Analytes ND 0.092 0.12 1 02/22/201 1,2-Dichloropropene ND 0.031 0.71 0.71 02/22/201 Diisopropyl ether (DIPE) ND 0.0011 0.018 1 02/22/201 Ithyl acetate 200 0.74 23 25 02/22/201 Ethyl terb-tutyl ether (ETBE) ND 0.13 0.42 1 02/22/201 Ethyl acetate 200 0.74 23 25 02/22/201 Ethyl acetate 200 0.74 23 02/22/201 Ethyl acetate 0.03 J 0.055 0.50 1 02/22/201 Heptane 1.3 J 0.062 0.78 1 02/22/201 Hexanore ND 0.033 J 0.42 1 02/22/201 Hexanore ND 0.033 J 0.42 1 02/22/201	Initial Pressure (psia)	Final Pressure	e (psia)					Analyst(s)
Itans-1,3-Dichloropropene ND 0.092 0.12 1 02/22/201 1,2-Dichloro-1,1,2,2-tetrafluoroethane 0.15 J 0.071 0.71 1 02/22/201 Diisopropyl ether (DIPE) ND 0.034 0.42 1 02/22/201 1,4-Dixane ND 0.011 0.018 1 02/22/201 Ethyl acetale 200 0.74 23 25 02/22/201 Ethyl tert-butyl ether (ETBE) ND 0.13 0.42 1 02/22/201 Ethyl tert-butyl ether (ETBE) ND 0.035 0.50 1 02/22/201 Heptane 0.63 J 0.062 0.78 1 02/22/201 Hexanchorobutadiene ND 0.067 1.1 1 02/22/201 Hexane 1.2 J 0.047 1.8 1 02/22/201 Hexane 1.2 J 0.047 1.8 1 02/22/201 Hexane 0.17 B 0.028 0.50 1	13.38	13.38	13.38					AK
1,2-Dichloro-1,1,2,2-tetrafiluoroethane 0.15 J 0.071 0.71 1 02/22/201 Diisopropyl ether (DIPE) ND 0.034 0.42 1 02/22/201 1.4-Dioxane ND 0.011 0.018 1 02/22/201 Ethyl acetate 200 0.74 23 25 02/22/201 Ethyl tert-butyl ether (ETBE) ND 0.13 0.42 1 02/22/201 Ethyl tert-butyl ether (ETBE) ND 0.035 0.44 1 02/22/201 4-Ethyltoluene ND 0.035 0.42 1 02/22/201 Heptane 1.3 J 0.029 2.1 1 02/22/201 Hexane 1.2 J 0.076 1.1 1 02/22/201 Hexane 1.2 J 0.047 1.8 1 02/22/201 4-Methyl-2-pentanone (MIBK) 0.33 J 0.042 0.42 1 02/22/201 Methyl-t-butyl ether (MTBE) ND 0.083 0.88	Analytes		<u>Result</u>	<u>Qualifiers</u>	MDL	<u>RL</u>	DF	Date Analyzed
Disopropyl ether (DIPE) ND 0.034 0.42 1 02/22/201 1.4-Dixane ND 0.0011 0.018 1 02/22/201 Ethyl acetate 200 0.74 23 25 02/22/201 Ethyl terbutyl ether (ETBE) ND 0.13 0.42 1 02/22/201 Ethylterzene 0.38 J 0.035 0.44 1 02/22/201 4-Ethyltoluene ND 0.035 0.50 1 02/22/201 Freen 113 0.63 J 0.062 0.78 1 02/22/201 Hexachlorobutadiene ND 0.076 1.1 1 02/22/201 Hexachorobutadiene ND 0.033 0.042 1 02/22/201 Hexanone 0.33 J 0.047 1.8 1 02/22/201 Hethyl+2-pentanone (MIBK) 0.33 J 0.042 1 02/22/201 Methyl-tudy ether (MTEE) ND 0.084 0.37 1 02/22/201 <	trans-1,3-Dichloropropene		ND		0.092	0.12	1	02/22/2017 08:55
1.4-Dioxane ND 0.0011 0.018 1 02/22/201 Ethyl acetate 200 0.74 23 25 02/22/201 Ethyl acetate 200 0.74 23 25 02/22/201 Ethyl bert-butyl ether (ETBE) ND 0.035 0.44 1 02/22/201 Ethyl locene ND 0.035 0.50 1 02/22/201 Freon 113 0.63 J 0.062 0.78 1 02/22/201 Heptane 1.3 J 0.029 2.1 1 02/22/201 Hexane 1.2 J 0.047 1.8 1 02/22/201 Hexane ND 0.033 J 0.042 0.42 1 02/22/201 4-Methyl-2-pentanone (MIBK) 0.33 J 0.042 0.42 1 02/22/201 Methyl methacrylate 930 1.0 10 25 02/22/201 Npthene chloride 0.71 B 0.0063 0.0070	1,2-Dichloro-1,1,2,2-tetrafluoroethane		0.15	J	0.071	0.71	1	02/22/2017 08:55
Ethyl acetate 200 0.74 23 25 02/22/201 Ethyl tert-butyl ether (ETBE) ND 0.13 0.42 1 02/22/201 Ethyl tert-butyl ether (ETBE) ND 0.035 0.44 1 02/22/201 Ethyltoluene ND 0.035 0.50 1 02/22/201 Freen 113 0.663 J 0.062 0.78 1 02/22/201 Hexachlorobutadiene ND 0.076 1.1 1 02/22/201 Hexane 1.2 J 0.047 1.8 1 02/22/201 2-Hexanone ND 0.033 J 0.042 1 02/22/201 4-Hethyl-2-pentanone (MIBK) 0.33 J 0.042 0.42 1 02/22/201 Methyl-butyl ether (MTBE) ND 0.084 0.37 1 02/22/201 Methylene chloride 0.17 B 0.0021 0.0070 1 02/22/201 Methylene thoride 0.17 B 0.0021	Diisopropyl ether (DIPE)		ND		0.034	0.42	1	02/22/2017 08:55
Ethyl tert-butyl ether (ETBE) ND 0.13 0.42 1 02/22/201 Ethyl berzene 0.38 J 0.035 0.44 1 02/22/201 4-Ethylbouene ND 0.035 0.50 1 02/22/201 Freon 113 0.63 J 0.029 2.1 1 02/22/201 Hexachlorobutadiene ND 0.076 1.1 1 02/22/201 Hexane 1.2 J 0.047 1.8 1 02/22/201 2-Hexanone ND 0.033 J 0.42 1 02/22/201 4-Methyl-2-pentanone (MIBK) 0.33 J 0.042 0.42 1 02/22/201 Methyl-butyl ether (MTBE) ND 0.084 0.37 1 02/22/201 Methylene chloride 0.71 J 0.063 0.88 1 02/22/201 Methylene chloride 0.17 B 0.020 1 02/22/201 Inthylene 0.17 B 0.033 <td< td=""><td>1,4-Dioxane</td><td></td><td>ND</td><td></td><td>0.0011</td><td>0.018</td><td>1</td><td>02/22/2017 08:55</td></td<>	1,4-Dioxane		ND		0.0011	0.018	1	02/22/2017 08:55
Ethylbenzene 0.38 J 0.035 0.44 1 02/22/201 4-Ethylboluene ND 0.035 0.50 1 02/22/201 Freon 113 0.63 J 0.062 0.78 1 02/22/201 Heptane 1.3 J 0.029 2.1 1 02/22/201 Hexanehorobutadiene ND 0.076 1.1 1 02/22/201 Hexane 1.2 J 0.047 1.8 1 02/22/201 2-Hexanone ND 0.034 0.42 1 02/22/201 Methyl-2-pentanone (MIBK) 0.33 J 0.042 0.42 02/22/201 Methyl-enchloride 0.71 J 0.063 0.88 1 02/22/201 Methylene chloride 0.71 J 0.063 0.88 1 02/22/201 Methylene chloride 0.17 B 0.0082 0.050 1 02/22/201 Ithylene 0.41 J 0.034 0.43	Ethyl acetate		200		0.74	23	25	02/22/2017 01:02
4-Ethyltoluene ND 0.035 0.50 1 02/22/201 Freon 113 0.63 J 0.062 0.78 1 02/22/201 Heptane 1.3 J 0.029 2.1 1 02/22/201 Hexachlorobutadiene ND 0.076 1.1 1 02/22/201 Hexane 1.2 J 0.047 1.8 1 02/22/201 4-Methyl-2-pentanone (MIBK) 0.33 J 0.042 0.42 1 02/22/201 Methyl-2-pentanone (MIBK) 0.33 J 0.042 0.42 1 02/22/201 Methyl-butyl ether (MTBE) ND 0.084 0.37 1 02/22/201 Methyl methacrylate 930 1.0 10 25 02/22/201 Naphthalene 0.17 B 0.0082 0.50 1 02/22/201 Styrene 0.41 J 0.33 0.0021 0.0070 1 02/22/201 1,1,2-Tetrachloroethane ND <td< td=""><td>Ethyl tert-butyl ether (ETBE)</td><td></td><td>ND</td><td></td><td>0.13</td><td>0.42</td><td>1</td><td>02/22/2017 08:55</td></td<>	Ethyl tert-butyl ether (ETBE)		ND		0.13	0.42	1	02/22/2017 08:55
Freon 113 0.63 J 0.062 0.78 1 02/22/201 Heptane 1.3 J 0.029 2.1 1 02/22/201 Hexachlorobutadiene ND 0.076 1.1 1 02/22/201 Hexane 1.2 J 0.047 1.8 1 02/22/201 2-Hexanone ND 0.033 0.42 1 02/22/201 4-Methyl-2-pentanone (MIBK) 0.33 J 0.042 0.42 1 02/22/201 Methyl-butyl ether (MTBE) ND 0.084 0.37 1 02/22/201 Methyl methacrylate 930 1.0 10 25 02/22/201 Naphthalene 0.17 B 0.063 0.88 1 02/22/201 Npene 0.41 J 0.033 1 02/22/201 02/22/201 1,1,2.2-Tetrachloroethane 0.32 0.0021 0.0070 1 02/22/201 1,1,2.2-Tetrachloroethane 0.33 0.002 0.0070	Ethylbenzene		0.38	J	0.035	0.44	1	02/22/2017 08:55
Heptane 1.3 J 0.029 2.1 1 02/22/201 Hexachlorobutadiene ND 0.076 1.1 1 02/22/201 Hexane 1.2 J 0.047 1.8 1 02/22/201 2-Hexanone ND 0.033 0.42 1 02/22/201 4-Methyl-2-pentanone (MIBK) 0.33 J 0.042 0.42 1 02/22/201 Methyl-butyl ether (MTBE) ND 0.084 0.37 1 02/22/201 Methylene chloride 0.71 J 0.063 0.88 1 02/22/201 Methylene chloride 0.71 J 0.063 0.88 1 02/22/201 Methyl methacrylate 930 1.0 10 25 02/22/201 Nppene ND 1.8 8.8 1 02/22/201 Styrene 0.41 J 0.0070 1 02/22/201 1,1,2.2-Tetrachloroethane ND 0.0021 0.0070 1 02/22/20	4-Ethyltoluene		ND		0.035	0.50	1	02/22/2017 08:55
Hexachlorobutadiene ND 0.076 1.1 1 02/22/201 Hexane 1.2 J 0.047 1.8 1 02/22/201 2-Hexanone ND 0.034 0.42 1 02/22/201 4-Methyl-2-pentanone (MIBK) 0.33 J 0.042 0.42 1 02/22/201 Methyl-2-pentanone (MIBK) 0.33 J 0.042 0.42 1 02/22/201 Methyl-t-butyl ether (MTBE) ND 0.084 0.37 1 02/22/201 Methylene chloride 0.71 J 0.063 0.88 1 02/22/201 Methylene chloride 0.71 B 0.082 0.050 1 02/22/201 Naphthalene 0.17 B 0.082 0.050 1 02/22/201 Styrene 0.41 J 0.034 0.43 1 02/22/201 1,1,2.2-Tetrachloroethane ND 0.0028 0.0070 1 02/22/201 1,1,2.2-Tetrachloroethane ND	Freon 113		0.63	J	0.062	0.78	1	02/22/2017 08:55
Hexane1.2J0.0471.8102/22/2012-HexanoneND0.0340.42102/22/2014-Methyl-2-pentanone (MIBK)0.33J0.0420.42102/22/201Methyl-t-butyl ether (MTBE)ND0.0840.37102/22/201Methyl-thethyl ether (MTBE)ND0.0840.37102/22/201Methyl-thethyl ether (MTBE)0.71J0.0630.88102/22/201Methyl methacrylate9301.0102502/22/201Naphthalene0.17B0.00820.050102/22/201PropeneND1.88.8102/22/2011,1,2-Tetrachloroethane0.320.00210.0070102/22/2011,1,2-TetrachloroethaneND0.00630.0070102/22/2011,1,2-TetrachloroethaneND0.00330.60102/22/2011,2,4-TrichloroethaneND0.00330.60102/22/2011,1,2-TrichloroethaneND0.0990.55102/22/2011,1,2-TrichloroethaneND0.0035102/22/2011,1,2-TrichloroethaneND0.0055102/22/2011,1,2-TrichloroethaneND0.0055102/22/2011,1,2-TrichloroethaneND0.0055102/22/2011,2,4-TrichloroethaneND0.00550.027102/22/2011,1,2-TrichloroethaneND0.0055 <td>Heptane</td> <td></td> <td>1.3</td> <td>J</td> <td>0.029</td> <td>2.1</td> <td>1</td> <td>02/22/2017 08:55</td>	Heptane		1.3	J	0.029	2.1	1	02/22/2017 08:55
2-Hexanone ND 0.034 0.42 1 02/22/201 4-Methyl-2-pentanone (MIBK) 0.33 J 0.042 0.42 1 02/22/201 Methyl-2-pentanone (MIBK) ND 0.084 0.37 1 02/22/201 Methylene chloride 0.71 J 0.063 0.88 1 02/22/201 Methyl methacrylate 930 1.0 10 25 02/22/201 Naphthalene 0.17 B 0.0082 0.050 1 02/22/201 Naphthalene 0.41 J 0.034 0.43 1 02/22/201 Styrene 0.41 J 0.034 0.43 1 02/22/201 1,1,2.2-Tetrachloroethane 0.32 0.0021 0.0070 1 02/22/201 1,1,2.2-Tetrachloroethane ND 0.033 0.600 1 02/22/201 1,1,2.2-Tetrachloroethane ND 0.033 0.601 02/22/201 1,1,1.2-Trichlorobenzene ND 0.033 0.60	Hexachlorobutadiene		ND		0.076	1.1	1	02/22/2017 08:55
4-Methyl-2-pentanone (MIBK) 0.33 J 0.042 0.42 1 02/22/201 Methyl-L-butyl ether (MTBE) ND 0.084 0.37 1 02/22/201 Methyl-L-butyl ether (MTBE) 0.71 J 0.063 0.88 1 02/22/201 Methyl methacrylate 930 1.0 10 25 02/22/201 Naphthalene 0.17 B 0.0082 0.050 1 02/22/201 Propene ND 1.8 8.8 1 02/22/201 Styrene 0.41 J 0.034 0.43 1 02/22/201 1,1,2,2-Tetrachloroethane 0.32 0.0021 0.0070 1 02/22/201 1,1,2,2-Tetrachloroethane ND 0.0033 0.609 1 02/22/201 1,1,2,2-Tetrachloroethane ND 0.0033 0.609 1 02/22/201 Tetrachloroethane ND 0.033 0.60 1 02/22/201 1,1,2,4-Trichloroethane ND 0.030 0.05	Hexane		1.2	J	0.047	1.8	1	02/22/2017 08:55
Methyl-butyl ether (MTBE) ND 0.084 0.37 1 02/22/201 Methyl-butyl ether (MTBE) 0.71 J 0.063 0.88 1 02/22/201 Methyl methacrylate 930 1.0 10 25 02/22/201 Naphthalene 0.17 B 0.0082 0.050 1 02/22/201 Propene ND 1.8 8.8 1 02/22/201 Styrene 0.41 J 0.034 0.43 1 02/22/201 1,1,2.2-Tetrachloroethane 0.32 0.0021 0.0070 1 02/22/201 1,1,2.2-Tetrachloroethane ND 0.0083 0.0070 1 02/22/201 1,1,2.2-Tetrachloroethane ND 0.0063 0.0070 1 02/22/201 Tetrachloroethane 0.83 0.0028 0.699 1 02/22/201 Tetrachloroethane ND 0.033 0.60 1 02/22/201 1,1,1-Trichloroethane ND 0.099 0.55 1	2-Hexanone		ND		0.034	0.42	1	02/22/2017 08:55
Methylene chloride 0.71 J 0.063 0.88 1 02/22/201 Methyl methacrylate 930 1.0 10 25 02/22/201 Naphthalene 0.17 B 0.0082 0.050 1 02/22/201 Propene ND 1.8 8.8 1 02/22/201 Styrene 0.41 J 0.034 0.43 1 02/22/201 1,1,2-Tetrachloroethane 0.32 0.0021 0.0070 1 02/22/201 1,1,2-Tetrachloroethane ND 0.0063 0.0070 1 02/22/201 1,1,2-Tetrachloroethane ND 0.0063 0.0070 1 02/22/201 1,1,2-Tetrachloroethane ND 0.0063 0.0070 1 02/22/201 1,1,2-Tetrachloroethane ND 0.003 0.609 1 02/22/201 1,2,4-Trichlorobenzene ND 0.099 0.55 1 02/22/201 1,1,2-Trichloroethane ND 0.0030 0.0055 1	4-Methyl-2-pentanone (MIBK)		0.33	J	0.042	0.42	1	02/22/2017 08:55
Metyl methacrylate 930 1.0 10 25 02/22/201 Naphthalene 0.17 B 0.0082 0.050 1 02/22/201 Propene ND 1.8 8.8 1 02/22/201 Styrene 0.41 J 0.034 0.43 1 02/22/201 1,1,2-Tetrachloroethane 0.32 0.0021 0.0070 1 02/22/201 1,1,2-Tetrachloroethane ND 0.0083 0.0070 1 02/22/201 1,1,2-Tetrachloroethane ND 0.0063 0.0070 1 02/22/201 1,1,2-Tetrachloroethane ND 0.0083 0.009 1 02/22/201 1,1,2-Tetrachloroethane ND 0.003 0.60 1 02/22/201 Tetrachloroethane ND 0.031 0.38 1 02/22/201 1,2,4-Trichloroethane ND 0.099 0.55 1 02/22/201 1,1,2-Trichloroethane ND 0.0030 0.0055 1 02/22/201 </td <td>Methyl-t-butyl ether (MTBE)</td> <td></td> <td>ND</td> <td></td> <td>0.084</td> <td>0.37</td> <td>1</td> <td>02/22/2017 08:55</td>	Methyl-t-butyl ether (MTBE)		ND		0.084	0.37	1	02/22/2017 08:55
Naphtalene 0.17 B 0.082 0.050 1 02/22/201 Propene ND 1.8 8.8 1 02/22/201 Styrene 0.41 J 0.034 0.43 1 02/22/201 1,1,1,2-Tetrachloroethane 0.32 0.0021 0.0070 1 02/22/201 1,1,2,2-Tetrachloroethane ND 0.063 0.0070 1 02/22/201 1,1,2,2-Tetrachloroethane ND 0.0063 0.0070 1 02/22/201 1,1,2,2-Tetrachloroethane ND 0.0083 0.0070 1 02/22/201 Tetrachloroethane 0.83 0.0028 0.069 1 02/22/201 Tetrachloroethane 1.2 0.033 0.60 1 02/22/201 Toluene 11 0.031 0.38 1 02/22/201 1,1,2-Trichloroethane ND 0.099 0.55 1 02/22/201 1,1,2-Trichloroethane ND 0.0030 0.0055 1 02/22/201	Methylene chloride		0.71	J	0.063	0.88	1	02/22/2017 08:55
PropeneND1.88.8102/22/201Styrene0.41J0.0340.43102/22/2011,1,1,2-Tetrachloroethane0.320.00210.0070102/22/2011,1,2,2-TetrachloroethaneND0.00630.0070102/22/2011,1,2,2-TetrachloroethaneND0.00630.0070102/22/201Tetrachloroethane0.830.00280.069102/22/201Tetrachloroethane1.20.0330.60102/22/201Toluene110.0310.38102/22/2011,2,4-TrichloroethaneND0.0900.75102/22/2011,1,1-TrichloroethaneND0.0990.55102/22/2011,1,2-TrichloroethaneND0.00550.027102/22/2011,1,2-TrichloroethaneND0.00550.027102/22/2011,1,2-TrichloroethaneND0.00550.027102/22/2011,2,4-Trimethylbenzene0.40J0.0450.50102/22/2011,3,5-Trimethylbenzene0.13J0.0600.50102/22/201	Methyl methacrylate		930		1.0	10	25	02/22/2017 01:02
Styrene0.41J0.0340.43102/22/2011,1,1,2-Tetrachloroethane0.320.00210.0070102/22/2011,1,2,2-TetrachloroethaneND0.00630.0070102/22/201Tetrachloroethane0.830.00280.069102/22/201Tetrachloroethene0.830.00280.60102/22/201Tetrahydrofuran1.20.0330.60102/22/201Toluene110.0310.38102/22/2011,2,4-TrichloroethaneND0.0900.75102/22/2011,1,1-TrichloroethaneND0.0990.55102/22/2011,1,2-TrichloroethaneND0.00300.0055102/22/2011,1,2-TrichloroethaneND0.00300.0055102/22/2011,1,2-TrichloroethaneND0.00300.0055102/22/2011,1,2-TrichloroethaneND0.00300.0055102/22/2011,1,2-Trichloroethane0.0770.00550.027102/22/2011,2,4-Trimethylbenzene0.40J0.0450.50102/22/2011,3,5-Trimethylbenzene0.13J0.0600.50102/22/201	Naphthalene		0.17	В	0.0082	0.050	1	02/22/2017 08:55
1,1,2-Tetrachloroethane0.320.00210.0070102/22/2011,1,2,2-TetrachloroethaneND0.00630.0070102/22/201Tetrachloroethene0.830.00280.069102/22/201Tetrahydrofuran1.20.0330.60102/22/201Toluene110.0310.38102/22/2011,2,4-TrichloroethaneND0.0900.75102/22/2011,1,1-TrichloroethaneND0.0900.55102/22/2011,1,2-TrichloroethaneND0.00300.0055102/22/2011,1,2-TrichloroethaneND0.00300.0055102/22/2011,1,2-TrichloroethaneND0.00300.0055102/22/2011,1,2-TrichloroethaneND0.00300.0055102/22/2011,1,2-TrichloroethaneND0.00300.0055102/22/2011,1,2-Trichloroethane0.0770.00550.027102/22/2011,2,4-Trimethylbenzene0.40J0.0450.50102/22/2011,3,5-Trimethylbenzene0.13J0.0600.50102/22/201	Propene		ND		1.8	8.8	1	02/22/2017 08:55
ND0.00630.0070102/22/201Tetrachloroethene0.830.00280.069102/22/201Tetrachloroethene1.20.0330.60102/22/201Tetrahydrofuran1.20.0330.60102/22/201Toluene110.0310.38102/22/2011,2,4-TrichlorobenzeneND0.0900.75102/22/2011,1,1-TrichloroethaneND0.0990.55102/22/2011,1,2-TrichloroethaneND0.00300.0055102/22/2011,1,2-Trichloroethane0.0770.00550.027102/22/2011,2,4-Trimethylbenzene0.40J0.0450.50102/22/2011,3,5-Trimethylbenzene0.13J0.0600.50102/22/201	Styrene		0.41	J	0.034	0.43	1	02/22/2017 08:55
Tetrachloroethene0.830.00280.069102/22/201Tetrahydrofuran1.20.0330.60102/22/201Toluene110.0310.38102/22/2011,2,4-TrichlorobenzeneND0.0900.75102/22/2011,1,1-TrichloroethaneND0.0990.55102/22/2011,1,2-TrichloroethaneND0.00300.0055102/22/2011,1,2-TrichloroethaneND0.00300.0055102/22/2011,1,2-Trichloroethane0.0770.00550.027102/22/201Trichlorofluoromethane1.40.0680.57102/22/2011,2,4-Trimethylbenzene0.40J0.0450.50102/22/2011,3,5-Trimethylbenzene0.13J0.0600.50102/22/201	1,1,1,2-Tetrachloroethane		0.32		0.0021	0.0070	1	02/22/2017 08:55
Tetrahydrofuran1.20.0330.60102/22/201Toluene110.0310.38102/22/2011,2,4-TrichlorobenzeneND0.0900.75102/22/2011,1,1-TrichloroethaneND0.0990.55102/22/2011,1,2-TrichloroethaneND0.00300.0055102/22/2011,1,2-TrichloroethaneND0.00300.0055102/22/201Trichloroethane0.0770.00550.027102/22/201Trichlorofluoromethane1.40.0680.57102/22/2011,2,4-Trimethylbenzene0.40J0.0450.50102/22/2011,3,5-Trimethylbenzene0.13J0.0600.50102/22/201	1,1,2,2-Tetrachloroethane		ND		0.0063	0.0070	1	02/22/2017 08:55
Toluene 11 0.031 0.38 1 02/22/201 1,2,4-Trichlorobenzene ND 0.090 0.75 1 02/22/201 1,1,1-Trichloroethane ND 0.099 0.55 1 02/22/201 1,1,2-Trichloroethane ND 0.0030 0.0055 1 02/22/201 1,1,2-Trichloroethane ND 0.0030 0.0055 1 02/22/201 1,1,2-Trichloroethane ND 0.0030 0.0055 1 02/22/201 1,1,2-Trichloroethane ND 0.0055 0.027 1 02/22/201 Trichloroethene 0.077 0.0055 0.027 1 02/22/201 Trichlorofluoromethane 1.4 0.068 0.57 1 02/22/201 1,2,4-Trimethylbenzene 0.40 J 0.045 0.50 1 02/22/201 1,3,5-Trimethylbenzene 0.13 J 0.060 0.50 1 02/22/201	Tetrachloroethene		0.83		0.0028	0.069	1	02/22/2017 08:55
1,2,4-Trichlorobenzene ND 0.090 0.75 1 02/22/201 1,1,1-Trichloroethane ND 0.099 0.55 1 02/22/201 1,1,2-Trichloroethane ND 0.0030 0.0055 1 02/22/201 1,1,2-Trichloroethane ND 0.0030 0.0055 1 02/22/201 1,1,2-Trichloroethane 0.0077 0.0055 0.027 1 02/22/201 Trichloroethane 1.4 0.068 0.57 1 02/22/201 1,2,4-Trimethylbenzene 0.400 J 0.045 0.50 1 02/22/201 1,3,5-Trimethylbenzene 0.13 J 0.060 0.50 1 02/22/201	Tetrahydrofuran		1.2		0.033	0.60	1	02/22/2017 08:55
ND 0.099 0.55 1 02/22/201 1,1,2-Trichloroethane ND 0.0030 0.0055 1 02/22/201 Trichloroethane 0.077 0.0055 0.027 1 02/22/201 Trichlorofluoromethane 1.4 0.068 0.57 1 02/22/201 1,2,4-Trimethylbenzene 0.40 J 0.045 0.50 1 02/22/201 1,3,5-Trimethylbenzene 0.13 J 0.060 0.50 1 02/22/201	Toluene		11		0.031	0.38	1	02/22/2017 08:55
ND 0.099 0.55 1 02/22/201 1,1,2-Trichloroethane ND 0.0030 0.0055 1 02/22/201 Trichloroethane 0.077 0.0055 0.027 1 02/22/201 Trichlorofluoromethane 1.4 0.068 0.57 1 02/22/201 1,2,4-Trimethylbenzene 0.40 J 0.045 0.50 1 02/22/201 1,3,5-Trimethylbenzene 0.13 J 0.060 0.50 1 02/22/201	1,2,4-Trichlorobenzene		ND		0.090	0.75	1	02/22/2017 08:55
Trichloroethene 0.077 0.0055 0.027 1 02/22/201 Trichlorofluoromethane 1.4 0.068 0.57 1 02/22/201 1,2,4-Trimethylbenzene 0.40 J 0.045 0.50 1 02/22/201 1,3,5-Trimethylbenzene 0.13 J 0.060 0.50 1 02/22/201	1,1,1-Trichloroethane		ND				1	02/22/2017 08:55
Trichlorofluoromethane 1.4 0.068 0.57 1 02/22/201 1,2,4-Trimethylbenzene 0.40 J 0.045 0.50 1 02/22/201 1,3,5-Trimethylbenzene 0.13 J 0.060 0.50 1 02/22/201	1,1,2-Trichloroethane		ND		0.0030	0.0055	1	02/22/2017 08:55
1,2,4-Trimethylbenzene 0.40 J 0.045 0.50 1 02/22/201 1,3,5-Trimethylbenzene 0.13 J 0.060 0.50 1 02/22/201	Trichloroethene		0.077		0.0055	0.027	1	02/22/2017 08:55
1,3,5-Trimethylbenzene 0.13 J 0.060 0.50 1 02/22/201	Trichlorofluoromethane		1.4		0.068	0.57	1	02/22/2017 08:55
1,3,5-Trimethylbenzene 0.13 J 0.060 0.50 1 02/22/201	1,2,4-Trimethylbenzene		0.40	J	0.045	0.50	1	02/22/2017 08:55
	1,3,5-Trimethylbenzene			J	0.060	0.50	1	02/22/2017 08:55
	Vinyl Acetate		ND		0.12	1.8	1	02/22/2017 08:55

Client:	Advanced GeoEnvironmental, Inc.
Date Received:	2/21/17 13:15
Date Prepared:	2/22/17
Project:	Swiss Valley Cleaners

WorkOrder:	1702A12
Extraction Method:	TO15
Analytical Method:	TO15
Unit:	$\mu g/m^3$

Client ID	Lab ID	Matrix	Date Collected		Instrument		Batch ID
IA-1383 MacArthur	1702A12-001A	Indoor Air	02/20/2	2017 12:25	GC29		134550
Initial Pressure (psia)	tial Pressure (psia) Final Pressure (psia)					Analyst(s)	
13.38	13.38						AK
Analytes		<u>Result</u>	<u>Qualifiers</u>	MDL	<u>RL</u>	DF	Date Analyzed
Vinyl Chloride		ND		0.0016	0.013	1	02/22/2017 08:55
Xylenes, Total		1.2	J	0.079	1.3	1	02/22/2017 08:55
Surrogates		<u>REC (%)</u>			<u>Limits</u>		
1,2-DCA-d4		99			70-130		02/22/2017 08:55
Toluene-d8		103			70-130		02/22/2017 08:55
4-BFB		99			70-130		02/22/2017 08:55

Client:	Advanced GeoEnvironmental, Inc.
Date Received:	2/21/17 13:15
Date Prepared:	2/22/17
Project:	Swiss Valley Cleaners

WorkOrder:	1702A12
Extraction Method:	TO15
Analytical Method:	TO15
Unit:	$\mu g/m^3$

Volatile Organic Compounds

Client ID	Lab ID	Matrix	Date (Collected	Instrun	nent	Batch ID
IA-1395 MacArthur	1702A12-002A	Indoor Air	02/20/2	017 12:30	GC29		134550
Initial Pressure (psia)	Final Pressure	Final Pressure (psia)					Analyst(s)
13.62	13.62						AK
Analytes		<u>Result</u>	<u>Qualifiers</u>	MDL	<u>RL</u>	DF	Date Analyzed
Acetone		76		1.0	6.0	1	02/22/2017 02:47
Acrolein		ND		0.047	0.58	1	02/22/2017 02:47
Acrylonitrile		ND		0.035	0.22	1	02/22/2017 02:47
tert-Amyl methyl ether (TAME)		ND		0.21	0.42	1	02/22/2017 02:47
Benzene		0.57		0.0030	0.032	1	02/22/2017 02:47
Benzyl chloride		ND		0.053	0.53	1	02/22/2017 02:47
Bromodichloromethane		ND		0.0028	0.0070	1	02/22/2017 02:47
Bromoform		ND		0.12	1.1	1	02/22/2017 02:47
Bromomethane		ND		0.058	0.39	1	02/22/2017 02:47
1,3-Butadiene		ND		0.048	0.22	1	02/22/2017 02:47
2-Butanone (MEK)		5.2	J	1.0	7.5	1	02/22/2017 02:47
t-Butyl alcohol (TBA)		ND		5.7	6.2	1	02/22/2017 02:47
Carbon Disulfide		ND		0.045	0.32	1	02/22/2017 02:47
Carbon Tetrachloride		0.45		0.0026	0.0064	1	02/22/2017 02:47
Chlorobenzene		ND		0.024	0.47	1	02/22/2017 02:47
Chloroethane		ND		0.046	0.27	1	02/22/2017 02:47
Chloroform		0.21		0.0034	0.025	1	02/22/2017 02:47
Chloromethane		0.92		0.025	0.21	1	02/22/2017 02:47
Cyclohexane		0.36	J	0.052	1.8	1	02/22/2017 02:47
Dibromochloromethane		ND		0.0035	0.87	1	02/22/2017 02:47
1,2-Dibromo-3-chloropropane		ND		0.0049	0.050	1	02/22/2017 02:47
1,2-Dibromoethane (EDB)		ND		0.0023	0.0078	1	02/22/2017 02:47
1,2-Dichlorobenzene		ND		0.079	0.61	1	02/22/2017 02:47
1,3-Dichlorobenzene		ND		0.061	0.61	1	02/22/2017 02:47
1,4-Dichlorobenzene		0.20		0.0031	0.030	1	02/22/2017 02:47
Dichlorodifluoromethane		2.5		0.050	0.50	1	02/22/2017 02:47
1,1-Dichloroethane		ND		0.14	0.41	1	02/22/2017 02:47
1,2-Dichloroethane (1,2-DCA)		0.20		0.0012	0.0041	1	02/22/2017 02:47
1,1-Dichloroethene		ND		0.076	0.10	1	02/22/2017 02:47
cis-1,2-Dichloroethene		ND		0.040	0.40	1	02/22/2017 02:47
trans-1,2-Dichloroethene		ND		0.028	0.40	1	02/22/2017 02:47
1,2-Dichloropropane		0.028		0.0020	0.0047	1	02/22/2017 02:47
cis-1,3-Dichloropropene		ND		0.0014	0.12	1	02/22/2017 02:47

Client:	Advanced GeoEnvironmental, Inc.
Date Received:	2/21/17 13:15
Date Prepared:	2/22/17
Project:	Swiss Valley Cleaners

WorkOrder:	1702A12
Extraction Method:	TO15
Analytical Method:	TO15
Unit:	$\mu g/m^3$

Irans-1,3-Dichloropropene ND 0.092 0.12 1 1,2-Dichloro-1,1,2,2-tetrafluoroethane 0.14 J 0.071 0.71 1 Diisopropyl ether (DIPE) ND 0.034 0.42 1 1,4-Dioxane ND 0.011 0.018 1 Ethyl acetate 7.0 0.030 0.92 1 Ethyl tert-butyl ether (ETBE) ND 0.13 0.42 1 4-Ethyltonee 0.25 J 0.035 0.44 1 4-Ethyltoluene ND 0.035 0.50 1 Freon 113 0.63 J 0.062 0.78 1 Heptane 1.1 J 0.029 2.1 1 Hexachlorobutadiene ND 0.076 1.1 1 2-Hexanone 0.27 J 0.034 0.42 1 4-Methyl-2-pentanone (MIBK) 0.19 J 0.042 0.42 1 Methylene chloride 0.98 0.063 0.88 <th>t Batch II 134550</th>	t Batch II 134550
Initial Pressure (psia) Final Pressure (psia) 13.62 13.62 Analytes Result Qualifiers MDL RL I trans-1,3-Dichloropropene ND 0.092 0.12 1 1,2-Dichloro-1,1,2,2-tetrafluoroethane 0.14 J 0.071 0.71 1 Diisopropyl ether (DIPE) ND 0.034 0.42 1 1.4-Dioxane ND 0.0011 0.018 1 Ethyl acetate 7.0 0.030 0.92 1 Ethyl betre- (ETBE) ND 0.13 0.42 1 Freon 113 0.63 J 0.035 0.50 1 Heptane 1.1 J 0.029 2.1 1 Heptane 1.1 J 0.029 2.1 1 Hexachlorobutadiene ND 0.034 0.42 1 Hexane 0.45 J 0.047 1.8 1 2-Hexanone 0.27 J 0.034 <td< th=""><th>134550</th></td<>	134550
13.62 13.62 Analytes Result Qualifiers MDL RL CL trans-1,3-Dichloropropene ND 0.092 0.12 1 1,2-Dichloro-1,1,2,2-tetrafluoroethane 0.14 J 0.071 0.71 1 Diisopropyl ether (DIPE) ND 0.034 0.42 1 1.4-Dioxane ND 0.011 0.018 1 Ethyl acetate 7.0 0.030 0.92 1 Ethyl tert-butyl ether (ETBE) ND 0.13 0.42 1 Ethyltbenzene 0.25 J 0.035 0.50 1 Heptane 1.1 J 0.029 2.1 1 Hesane 0.45 J 0.047 1.8 1 2-Hexanone 0.27 J 0.034 0.42 1 4-Methyl-2-pentanone (MIBK) 0.19 J 0.42 1 Methylene chloride 0.98 0.063 0.88 1 Methylene chloride	
Analytes Result Qualifiers MDL RL PL trans-1,3-Dichloropropene ND 0.992 0.12 1 1,2-Dichloro-1,1,2,2-tetrafluoroethane 0.14 J 0.071 0.71 1 Diisopropyl ether (DIPE) ND 0.034 0.42 1 1.4-Dioxane ND 0.0011 0.018 1 1,4-Dioxane ND 0.031 0.012 1 1 1.4-Dioxane ND 0.031 0.42 1 Ethyl acetate 7.0 0.035 0.44 1 1 0.42 1 Ethyl acetate 7.0 0.035 0.50 1 1 1 0.42 1 4-Ethyltoluene ND 0.035 0.50 1 1 1 1 1 0.029 2.1 1 Heptane 1.1 J 0.029 2.1 1 1 1 1 1 1 1 1 1 1 1 1	Analyst(s)
Irans-1,3-Dichloropropene ND 0.092 0.12 1 1,2-Dichloropropene 0.14 J 0.071 0.71 1 Diisopropyl ether (DIPE) ND 0.034 0.42 1 1,4-Dioxane ND 0.030 0.92 1 Ethyl acetate 7.0 0.030 0.92 1 Ethyl tert-butyl ether (ETBE) ND 0.13 0.42 1 4-Ethyltoluene ND 0.13 0.42 1 4-Ethyltoluene ND 0.035 0.50 1 Freon 113 0.63 J 0.062 0.78 1 Heptane 1.1 J 0.029 2.1 1 Hexachlorobutadiene ND 0.076 1.1 1 1 2-Hexanone 0.27 J 0.034 0.42 1 4-Methyl-2-pentanone (MIBK) 0.19 J 0.042 0.42 1 Methyl methacrylate 29 0.042 0.42 1	AK
1,2-Dichloro-1,1,2,2-tetrafluoroethane 0.14 J 0.071 0.71 1 Diisopropyl ether (DIPE) ND 0.034 0.42 1 1,4-Dioxane ND 0.0011 0.018 1 Ethyl acetate 7.0 0.030 0.92 1 Ethyl acetate 7.0 0.035 0.42 1 Ethyl tert-butyl ether (ETBE) ND 0.13 0.42 1 Ethylbenzene 0.25 J 0.035 0.50 1 4-Ethyltoluene ND 0.035 0.50 1 Freon 113 0.63 J 0.062 0.78 1 Heptane 1.1 J 0.029 2.1 1 Hexane 0.45 J 0.047 1.8 1 2-Hexanone 0.27 J 0.034 0.42 1 4-Methyl-2-pentanone (MIBK) 0.19 J 0.042 0.42 1 Methyl methacrylate 29 0.042 0.42 1 Npptne 0.12 B 0.0034 0.43	DF Date Analyzed
Disopropyl ether (DIPE) ND 0.034 0.42 1 1,4-Dioxane ND 0.0011 0.018 1 Ethyl acetate 7.0 0.030 0.92 1 Ethyl acetate 7.0 0.13 0.42 1 Ethyl tert-butyl ether (ETBE) ND 0.13 0.42 1 4-Ethyltoluene ND 0.035 0.50 1 Freon 113 0.63 J 0.062 0.78 1 Heptane 1.1 J 0.029 2.1 1 Hexachlorobutadiene ND 0.076 1.1 1	1 02/22/2017 02:4
1.4-Dioxane ND 0.0011 0.018 1 Ethyl acetate 7.0 0.030 0.92 1 Ethyl tert-butyl ether (ETBE) ND 0.13 0.42 1 4-Ethyltorene 0.25 J 0.035 0.44 1 4-Ethyltoluene ND 0.035 0.50 1 Freon 113 0.63 J 0.062 0.78 1 Heptane 1.1 J 0.029 2.1 1 Hexachlorobutadiene ND 0.076 1.1 1 Hexane 0.45 J 0.047 1.8 1 2-Hexanone 0.27 J 0.034 0.42 1 4-Methyl-2-pentanone (MIBK) 0.19 J 0.042 0.42 1 Methyl nethacrylate 29 0.042 0.42 1 Methyl methacrylate 0.12 B 0.0021 0.0070 1 Naphthalene ND 1.8 8.8 1 Styrene 0.14 J 0.034 0.43 1 <	1 02/22/2017 02:4
Ethyl acetate 7.0 0.030 0.92 1 Ethyl tert-butyl ether (ETBE) ND 0.13 0.42 1 Ethylbenzene 0.25 J 0.035 0.44 1 4-Ethylbuene ND 0.035 0.50 1 Freon 113 0.63 J 0.062 0.78 1 Heptane 1.1 J 0.029 2.1 1 Hexachlorobutadiene ND 0.076 1.1 1 1 Hexane 0.45 J 0.047 1.8 1 2-Hexanone 0.27 J 0.034 0.42 1 4-Methyl-2-pentanone (MIBK) 0.19 J 0.042 0.42 1 Methyl methacrylate 29 0.042 0.42 1 Nphthalene 0.14 J 0.034 0.43 1 1,1,2.2-Tetrachloroethane ND 1.8 8.8 1 1,1,2.2-Tetrachloroethane ND 0.0033 0.0070 1 1,1,2.2-Tetrachloroethane ND 0.0028 0.0070	1 02/22/2017 02:4
Ethyl tert-butyl ether (ETBE) ND 0.13 0.42 1 Ethylbenzene 0.25 J 0.035 0.44 1 4-Ethylboluene ND 0.035 0.50 1 Freon 113 0.63 J 0.062 0.78 1 Heptane 1.1 J 0.029 2.1 1 Hexachlorobutadiene ND 0.076 1.1 1 Hexane 0.45 J 0.047 1.8 1 2-Hexanone 0.27 J 0.034 0.42 1 4-Methyl-2-pentanone (MIBK) 0.19 J 0.042 0.42 1 Methyl-t-butyl ether (MTBE) ND 0.084 0.37 1 Methyl methacrylate 29 0.042 0.42 1 Nppene ND 1.8 8.8 1 Styrene 0.14 J 0.034 0.43 1 1,1,2.2-Tetrachloroethane ND 0.0021 0.0070 1	1 02/22/2017 02:4
Ethylbenzene 0.25 J 0.035 0.44 1 4-Ethyltoluene ND 0.035 0.50 1 Freon 113 0.63 J 0.062 0.78 1 Heptane 1.1 J 0.029 2.1 1 Hexachlorobutadiene ND 0.076 1.1 1 Hexane 0.45 J 0.047 1.8 1 2-Hexanone 0.27 J 0.034 0.42 1 4-Methyl-2-pentanone (MIBK) 0.19 J 0.042 0.42 1 Methyl-2-pentanone (MIBK) 0.19 J 0.042 0.42 1 Methyl-2-pentanone (MIBK) 0.19 J 0.042 0.42 1 Methylene chloride 0.98 0.063 0.88 1 Methylene chloride 0.98 0.063 0.88 1 Naphthalene 0.12 B 0.0021 0.0070 1 1,1,2.2-Tetrachloroethane ND	1 02/22/2017 02:4
4-Ethyltoluene ND 0.035 0.50 1 Freon 113 0.63 J 0.062 0.78 1 Heptane 1.1 J 0.029 2.1 1 Hexachlorobutadiene ND 0.076 1.1 1 Hexachlorobutadiene ND 0.047 1.8 1 2-Hexanone 0.27 J 0.034 0.42 1 4-Methyl-2-pentanone (MIBK) 0.19 J 0.042 0.42 1 Methyl-t-butyl ether (MTBE) ND 0.084 0.37 1 Methylene chloride 0.98 0.063 0.88 1 Methyl methacrylate 29 0.042 0.42 1 Naphthalene 0.12 B 0.0082 0.50 1 Propene ND 1.8 8.8 1 1,1,2,2-Tetrachloroethane ND 0.003 0.0070 1 1,1,2,2-Tetrachloroethane ND 0.003 0.0070 1 1,1,2,2-Tetrachloroethane ND 0.0033 0.609 1	1 02/22/2017 02:4
Freen 113 0.63 J 0.062 0.78 1 Heptane 1.1 J 0.029 2.1 1 Hexachlorobutadiene ND 0.076 1.1 1 Hexane 0.45 J 0.047 1.8 1 2-Hexanone 0.27 J 0.034 0.42 1 4-Methyl-2-pentanone (MIBK) 0.19 J 0.042 0.42 1 Methyl-t-butyl ether (MTBE) ND 0.084 0.37 1 Methyl methacrylate 0.98 0.063 0.88 1 Nphthalene 0.12 B 0.0022 0.42 1 Npopene ND 1.8 8.8 1 Styrene 0.14 J 0.034 0.43 1 1,1,2.2-Tetrachloroethane ND 0.0021 0.0070 1 1,1,2.2-Tetrachloroethane ND 0.0033 0.069 1 1,1,2.2-Tetrachloroethane ND 0.0033 0.0070	1 02/22/2017 02:4
Heptane 1.1 J 0.029 2.1 1 Hexachlorobutadiene ND 0.076 1.1 1 Hexane 0.45 J 0.047 1.8 1 2-Hexanone 0.27 J 0.034 0.42 1 4-Methyl-2-pentanone (MIBK) 0.19 J 0.042 0.42 1 Methyl-t-butyl ether (MTBE) ND 0.084 0.37 1 Methylene chloride 0.98 0.063 0.88 1 Methyl methacrylate 29 0.042 0.42 1 Naphthalene 0.12 B 0.0082 0.050 1 Propene ND 1.8 8.8 1 Styrene 0.14 J 0.034 0.43 1 1,1,2,2-Tetrachloroethane ND 0.0021 0.0070 1 1,1,2,2-Tetrachloroethane ND 0.0063 0.0070 1 1,1,2,2-Tetrachloroethane ND 0.0028 0.069 1 1,1,2,2-Tetrachloroethane 0.38 0.0028 0.069 1 <td>1 02/22/2017 02:4</td>	1 02/22/2017 02:4
Hexachlorobutadiene ND 0.076 1.1 1 Hexane 0.45 J 0.047 1.8 1 2-Hexanone 0.27 J 0.034 0.42 1 4-Methyl-2-pentanone (MIBK) 0.19 J 0.042 0.42 1 Methyl-t-butyl ether (MTBE) ND 0.084 0.37 1 Methyl methacrylate 0.98 0.063 0.88 1 Methyl methacrylate 29 0.042 0.42 1 Naphthalene 0.12 B 0.0082 0.050 1 Propene ND 1.8 8.8 1 Styrene 0.14 J 0.034 0.43 1 1,1,2.2-Tetrachloroethane ND 0.0021 0.0070 1 1,1,2.2-Tetrachloroethane 0.38 0.0028 0.069 1 Tetrachloroethene 0.38 0.0028 0.069 1	1 02/22/2017 02:4
Hexane 0.45 J 0.047 1.8 1 2-Hexanone 0.27 J 0.034 0.42 1 4-Methyl-2-pentanone (MIBK) 0.19 J 0.042 0.42 1 Methyl-t-butyl ether (MTBE) ND 0.084 0.37 1 Methyl-t-butyl ether (MTBE) ND 0.063 0.88 1 Methyl methacrylate 29 0.042 0.42 1 Naphthalene 0.12 B 0.0082 0.050 1 Propene ND 1.8 8.8 1 Styrene 0.14 J 0.034 0.43 1 1,1,2,2-Tetrachloroethane ND 0.0021 0.0070 1 Tetrachloroethene 0.38 0.0028 0.069 1 Tetrachloroethene 0.38 0.0028 0.069 1	1 02/22/2017 02:4
2-Hexanone 0.27 J 0.034 0.42 1 4-Methyl-2-pentanone (MIBK) 0.19 J 0.042 0.42 1 Methyl-t-butyl ether (MTBE) ND 0.084 0.37 1 Methylene chloride 0.98 0.063 0.88 1 Methyl methacrylate 29 0.042 0.42 1 Naphthalene 0.12 B 0.0082 0.050 1 Propene ND 1.8 8.8 1 Styrene 0.14 J 0.034 0.43 1 1,1,2,2-Tetrachloroethane ND 0.0021 0.0070 1 Tetrachloroethene 0.38 0.038 0.069 1	1 02/22/2017 02:4
4-Methyl-2-pentanone (MIBK) 0.19 J 0.042 0.42 1 Methyl-t-butyl ether (MTBE) ND 0.084 0.37 1 Methyl-t-butyl ether (MTBE) ND 0.084 0.37 1 Methyl-t-butyl ether (MTBE) 0.98 0.063 0.88 1 Methyl-t-butyl ether (MTBE) 0.98 0.063 0.88 1 Methyl methacrylate 29 0.042 0.42 1 Naphthalene 0.12 B 0.0082 0.050 1 Propene ND 1.8 8.8 1 Styrene 0.14 J 0.034 0.43 1 1,1,1,2-Tetrachloroethane ND 0.0021 0.0070 1 1,1,2,2-Tetrachloroethane ND 0.0063 0.0070 1 Tetrachloroethene 0.38 0.0028 0.069 1 Tetrahydrofuran 21 0.033 0.60 1	1 02/22/2017 02:4
Methyl-t-butyl ether (MTBE) ND 0.084 0.37 1 Methylene chloride 0.98 0.063 0.88 1 Methyl methacrylate 29 0.042 0.42 1 Naphthalene 0.12 B 0.0082 0.050 1 Propene ND 1.8 8.8 1 Styrene 0.14 J 0.034 0.43 1 1,1,1,2-Tetrachloroethane ND 0.0021 0.0070 1 1,1,2,2-Tetrachloroethane ND 0.0063 0.0070 1 Tetrachloroethene 0.38 0.0028 0.069 1 Tetrahydrofuran 21 0.033 0.60 1	1 02/22/2017 02:4
Methylene chloride 0.98 0.063 0.88 1 Methyl methacrylate 29 0.042 0.42 1 Naphthalene 0.12 B 0.0082 0.050 1 Propene ND 1.8 8.8 1 Styrene 0.14 J 0.034 0.43 1 1,1,1,2-Tetrachloroethane ND 0.0021 0.0070 1 Tetrachloroethene 0.38 0.0028 0.069 1 Tetrahydrofuran 21 0.033 0.60 1	1 02/22/2017 02:4
Methyl methacrylate 29 0.042 0.42 1 Naphthalene 0.12 B 0.0082 0.050 1 Propene ND 1.8 8.8 1 Styrene 0.14 J 0.034 0.43 1 1,1,2-Tetrachloroethane ND 0.0021 0.0070 1 1,1,2,2-Tetrachloroethane ND 0.0063 0.0070 1 Tetrachloroethene 0.38 0.0028 0.069 1	1 02/22/2017 02:4
Naphthalene 0.12 B 0.0082 0.050 1 Propene ND 1.8 8.8 1 Styrene 0.14 J 0.034 0.43 1 1,1,1,2-Tetrachloroethane ND 0.0021 0.0070 1 1,1,2,2-Tetrachloroethane ND 0.0063 0.0070 1 Tetrachloroethene 0.38 0.0028 0.069 1 Tetrahydrofuran 21 0.033 0.60 1	1 02/22/2017 02:4
Propene ND 1.8 8.8 1 Styrene 0.14 J 0.034 0.43 1 1,1,1,2-Tetrachloroethane ND 0.0021 0.0070 1 1,1,2,2-Tetrachloroethane ND 0.0063 0.0070 1 Tetrachloroethene 0.38 0.0028 0.069 1 Tetrahydrofuran 21 0.033 0.60 1	1 02/22/2017 02:4
Styrene 0.14 J 0.034 0.43 1 1,1,1,2-Tetrachloroethane ND 0.0021 0.0070 1 1,1,2,2-Tetrachloroethane ND 0.0063 0.0070 1 Tetrachloroethene 0.38 0.0028 0.069 1 Tetrahydrofuran 21 0.033 0.60 1	1 02/22/2017 02:4
ND 0.0021 0.0070 1 1,1,2,2-Tetrachloroethane ND 0.0063 0.0070 1 1,1,2,2-Tetrachloroethane ND 0.0063 0.0070 1 Tetrachloroethene 0.38 0.0028 0.069 1 Tetrahydrofuran 21 0.033 0.60 1	1 02/22/2017 02:4
ND 0.0063 0.0070 1 1,1,2,2-Tetrachloroethane 0.38 0.0028 0.069 1 Tetrachloroethene 0.38 0.0033 0.609 1 Tetrahydrofuran 21 0.033 0.60 1	1 02/22/2017 02:4
Tetrachloroethene 0.38 0.0028 0.069 1 Tetrahydrofuran 21 0.033 0.60 1	1 02/22/2017 02:4
Tetrahydrofuran 21 0.033 0.60 1	1 02/22/2017 02:4
	1 02/22/2017 02:4
	1 02/22/2017 02:4
Toluene 3.5 0.031 0.38 1	1 02/22/2017 02:4
1,2,4-Trichlorobenzene ND 0.090 0.75 1	1 02/22/2017 02:4
	1 02/22/2017 02:4
1,1,2-Trichloroethane ND 0.0030 0.0055 1	1 02/22/2017 02:4
Trichloroethene 0.019 J 0.0055 0.027 1	1 02/22/2017 02:4
Trichlorofluoromethane 1.4 0.068 0.57 1	1 02/22/2017 02:4
1,2,4-Trimethylbenzene 0.87 0.045 0.50 1	1 02/22/2017 02:4
•	1 02/22/2017 02:4
	1 02/22/2017 02:4

Client:	Advanced GeoEnvironmental, Inc.		
Date Received:	2/21/17 13:15		
Date Prepared:	2/22/17		
Project:	Swiss Valley Cleaners		

WorkOrder:	1702A12
Extraction Method:	TO15
Analytical Method:	TO15
Unit:	$\mu g/m^3$

Volatile Organi	c Compounds
-----------------	-------------

Client ID	Lab ID	Matrix Date Co		Collected Instrument			Batch ID
IA-1395 MacArthur	1702A12-002A	02A12-002A Indoor Air 02/20/2017			GC29	134550	
Initial Pressure (psia)	Final Pressu	re (psia)					Analyst(s)
13.62	13.62						AK
Analytes		<u>Result</u>	<u>Qualifiers</u>	MDL	<u>RL</u>	DF	Date Analyzed
Vinyl Chloride		ND		0.0016	0.013	1	02/22/2017 02:47
Xylenes, Total		0.90	J	0.079	1.3	1	02/22/2017 02:47
Surrogates		<u>REC (%)</u>			<u>Limits</u>		
1,2-DCA-d4		108			70-130		02/22/2017 02:47
Toluene-d8		106			70-130		02/22/2017 02:47
4-BFB		98			70-130		02/22/2017 02:47

Client:	Advanced GeoEnvironmental, Inc.	WorkOrder:	1702A12
Date Prepared:	2/21/17	BatchID:	134550
Date Analyzed:	2/21/17	Extraction Method:	TO15
Instrument:	GC29	Analytical Method:	TO15
Matrix:	Indoor Air	Unit:	$\mu g/m^3$
Project:	Swiss Valley Cleaners	Sample ID:	MB/LCS-134550

QC Summary Report for TO15

Analyte	MB Result	LCS Result	MDL	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
Acetone	ND	14.2	1.0	6.0	12	-	118	60-140
Acrolein	ND	14.9	0.047	0.58	11.65	-	128	60-140
Acrylonitrile	ND	15.3	0.035	0.22	11	-	139	60-140
tert-Amyl methyl ether (TAME)	ND	26.7	0.21	0.42	21	-	127	60-140
Benzene	ND	20.8	0.0030	0.032	16	-	130	60-140
Benzyl chloride	ND	33.4	0.053	0.53	26.5	-	126	60-140
Bromodichloromethane	ND	42.0	0.0028	0.0070	35	-	120	60-140
Bromoform	ND	71.5	0.12	1.1	52.5	-	136	60-140
Bromomethane	ND	23.4	0.058	0.39	19.5	-	120	60-140
1,3-Butadiene	ND	11.1	0.048	0.22	11	-	101	60-140
2-Butanone (MEK)	ND	19.3	1.0	7.5	15	-	129	60-140
t-Butyl alcohol (TBA)	ND	19.2	5.7	6.2	15.5	-	124	60-140
Carbon Disulfide	ND	19.8	0.045	0.32	16	-	124	60-140
Carbon Tetrachloride	ND	39.6	0.0026	0.0064	32	-	124	60-140
Chlorobenzene	ND	29.3	0.024	0.47	23.5	-	125	60-140
Chloroethane	ND	15.9	0.046	0.27	13.5	-	118	60-140
Chloroform	ND	27.4	0.0034	0.025	24.5	-	112	60-140
Chloromethane	ND	11.2	0.025	0.21	10.5	-	107	60-140
Cyclohexane	ND	20.4	0.052	1.8	17.5	-	117	60-140
Dibromochloromethane	ND	57.5	0.0035	0.87	43.5	-	132	60-140
1,2-Dibromo-3-chloropropane	ND	63.1	0.0049	0.050	49	-	129	60-140
1,2-Dibromoethane (EDB)	ND	45.6	0.0023	0.0078	39	-	117	60-140
1,2-Dichlorobenzene	ND	37.3	0.079	0.61	30.5	-	122	60-140
1,3-Dichlorobenzene	ND	37.1	0.061	0.61	30.5	-	122	60-140
1,4-Dichlorobenzene	0.01337,J	37.0	0.0031	0.030	30.5	-	121	60-140
Dichlorodifluoromethane	ND	27.8	0.050	0.50	25	-	111	60-140
1,1-Dichloroethane	ND	24.4	0.14	0.41	20.5	-	119	60-140
1,2-Dichloroethane (1,2-DCA)	0.001681,J	22.2	0.0012	0.0041	20.5	-	108	60-140
1,1-Dichloroethene	ND	22.2	0.076	0.10	20	-	111	60-140
cis-1,2-Dichloroethene	ND	23.9	0.040	0.40	20	-	120	60-140
trans-1,2-Dichloroethene	ND	24.3	0.028	0.40	20	-	122	60-140
1,2-Dichloropropane	ND	26.8	0.0020	0.0047	23.5	-	114	60-140
cis-1,3-Dichloropropene	ND	28.6	0.0014	0.12	23	-	124	60-140
trans-1,3-Dichloropropene	ND	28.9	0.092	0.12	23	-	126	60-140
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	40.7	0.071	0.71	35.5	-	115	60-140
Diisopropyl ether (DIPE)	ND	27.0	0.034	0.42	21	-	129	60-140
1,4-Dioxane	ND	28.1	0.0011	0.018	18.5	-	152, F2	60-140

_____QA/QC Officer Page 11 of 16

Client:	Advanced GeoEnvironmental, Inc.	WorkOrder:	1702A12
Date Prepared:	2/21/17	BatchID:	134550
Date Analyzed:	2/21/17	Extraction Method:	TO15
Instrument:	GC29	Analytical Method:	TO15
Matrix:	Indoor Air	Unit:	$\mu g/m^3$
Project:	Swiss Valley Cleaners	Sample ID:	MB/LCS-134550

QC Summary Report for TO15

Analyte	MB Result	LCS Result	MDL	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
Ethyl acetate	ND	22.9	0.030	0.92	18.5	-	124	60-140
Ethyl tert-butyl ether (ETBE)	ND	25.9	0.13	0.42	21	-	123	60-140
Ethylbenzene	ND	27.0	0.035	0.44	22	-	123	60-140
4-Ethyltoluene	ND	31.4	0.035	0.50	25	-	126	60-140
Freon 113	ND	46.6	0.062	0.78	39	-	119	60-140
Heptane	ND	25.5	0.029	2.1	21	-	122	60-140
Hexachlorobutadiene	ND	67.4	0.076	1.1	54	-	125	60-140
Hexane	ND	22.1	0.047	1.8	18	-	123	60-140
2-Hexanone	ND	26.3	0.034	0.42	21	-	125	60-140
4-Methyl-2-pentanone (MIBK)	ND	27.2	0.042	0.42	21	-	130	60-140
Methyl-t-butyl ether (MTBE)	ND	22.0	0.084	0.37	18.5	-	119	60-140
Methylene chloride	ND	20.6	0.063	0.88	17.5	-	117	60-140
Methyl methacrylate	ND	26.7	0.042	0.42	20.8	-	128	60-140
Naphthalene	0.05015	63.5	0.0082	0.050	53	-	120	60-140
Propene	ND	7.62	1.8	8.8	8.5	-	90	60-140
Styrene	ND	26.7	0.034	0.43	21.5	-	124	60-140
1,1,1,2-Tetrachloroethane	ND	45.1	0.0021	0.0070	35	-	129	60-140
1,1,2,2-Tetrachloroethane	ND	42.6	0.0063	0.0070	35	-	122	60-140
Tetrachloroethene	ND	44.8	0.0028	0.069	34.5	-	130	60-140
Tetrahydrofuran	0.1205,J	15.4	0.033	0.60	15	-	103	60-140
Toluene	ND	22.9	0.031	0.38	19	-	121	60-140
1,2,4-Trichlorobenzene	ND	49.8	0.090	0.75	37.5	-	133	60-140
1,1,1-Trichloroethane	ND	33.4	0.099	0.55	27.5	-	121	60-140
1,1,2-Trichloroethane	ND	32.8	0.0030	0.0055	27.5	-	119	60-140
Trichloroethene	ND	32.1	0.0055	0.027	27.5	-	117	60-140
Trichlorofluoromethane	ND	34.6	0.068	0.57	28.5	-	121	60-140
1,2,4-Trimethylbenzene	ND	31.5	0.045	0.50	25	-	126	60-140
1,3,5-Trimethylbenzene	ND	33.5	0.060	0.50	25	-	134	60-140
Vinyl Acetate	ND	22.4	0.12	1.8	18	-	125	60-140
Vinyl Chloride	ND	12.6	0.0016	0.013	13	-	97	60-140
Xylenes, Total	ND	82.4	0.079	1.3	66	-	125	60-140
Surrogate Recovery								
1,2-DCA-d4	104.4	98.9			100	104	99	70-130
Toluene-d8	104.9	102			100	105	102	70-130
4-BFB	96.8	97.2			100	97	97	70-130

_____QA/QC Officer Page 12 of 16

McCampbell Analytical	, Inc.			CH	AIN	-0F	-CU	ST) Dy	RE	CORD	Pa	ge 1	of 1	
Pittsburg, CA 94565-1701 (925) 252-9262				Worl	kOrdei	:: 1702	2A12		Client	Code:	AGES				
	WaterTrax	WriteOn	EDF	E	Excel		EQuIS	\checkmark	Email		HardCopy	ThirdPart	у	_J-flag]
Report to: Daniel Villanueva Advanced GeoEnvironmental, Inc. 837 Shaw Road Stockton, CA 95215 (209) 467-1006 FAX: (209) 467-1118	cc/3rd Party: PO: ProjectNo: S	lvillanueva@adv Gwiss Valley Cle				837 Sh Stockto	ced Geo aw Roa on, CA S lvgeoer	ad 95215		al, Inc.	Dat	uested TATs: te Received: te Logged:	5 0	days; days; 2/21/20 2/21/20	
Lab ID Client ID		Matrix	Collection Date	Hold	1	ap@ac	3			Tests (6	See legend 7 8		10	11	12

1702A12-001	IA-1383 MacArthur	Indoor Air	2/20/2017 12:25		А					
1702A12-002	IA-1395 MacArthur	Indoor Air	2/20/2017 12:30		А					
1702A12-003	Un-Used Summa	Indoor Air	<not provided=""></not>	А		Α				

Test Legend:

1	PRUNUSEDSUMMA	2	
5		6	
9		10	

2	TO15_SCAN-SIM_Indoor(ug/m3)
6	
10	

3	UNUSED_SUMMA
7	
11	

	n
4	
8	
12	

Prepared by: Maria Venegas

The following SampIDs: 001A, 002A contain testgroup TO15_INDOOR.

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

L	- 94
6	20

WORK ORDER SUMMARY

Client Name	e: ADVANCE	ED GEOENVIRONM	MENTAL, INC.	Р	roject: Swiss V	alley Cleaners			Wor	k Order: 1702A12
Client Conta	act: Daniel Villa	anueva							Q	C Level: LEVEL 2
Contact's Er	mail: dvillanueva	@advgeoenv.com		C	omments:				Date	Logged: 2/21/2017
		□WaterTrax	WriteOn	EDF	Excel	_Fax √ Email	HardCo	opyThirdPart	у 🗌	l-flag
Lab ID	Client ID	Matrix	Test Name		Containers /Composites	Bottle & Preservative	De- chlorinated	Collection Date & Time	TAT	Sediment Hold SubOut Content
	Client ID IA-1383 MacArthur			r Air (Scan-SIM)					TAT 2 days	
1702A12-001A		Indoor Air	TO15 for Indoor	()				& Time		

NOTES: - STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- MAI assumes that all material present in the provided sampling container is considered part of the sample - MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

RUSH MAI Work Order # 1702A12

Summa COC

Mc Mc	CAN	PBEL		ALYTICAL, I	NC.						СН	AIN	OF	CUS	TODY	R	ECOF	RD							
	1534 Wille	ow Pass F	Rd. Pittsb	urg, Ca. 94565-170	01	Turn	Aroun	d Tim	e:1 Da	y Rush		2 Day	Rush	X	3 Day F	ush	5	TD)uote #					
	Telephon	e: (877) 2	252-9262	/ Fax: (925) 252-92	69		J-Flag	MDL		ESL				1	proved					Order #					
www.mcc	ampbell.	com		main@mccamp	bell.com	Deliv	ery Fo	rmat:	GeoT	racker l	EDF		PDF	-	EDD		Write	On (D			EQuIS				
Report To: Daniel Ville	hnue	Vh	Bill To			1			A	nalys	is Re	quest	ed				Helium Sl		-		JQuib				
Company: Advanced be	OE	nulton	MMPN	otal						1										efault is	IPA				
Email: Dullannevale	ADVG	EDEN	NV.C	om		1			6, CO	hylen		circl					and the second se	101 01200 0120			fferent than				
Email:			Tele:			otes			chydo	ne, Et		atic (1.1.			default:	VOCs i	s report		/m ³ , fixed				
Project Name/#: Sw155 Va	alley	Cle	aner	5		see N			mald	Ethai		Vrom		orane			is report	ed in %	<i>'</i> o.						
Project Location:	5		PO #			-	(m ³)		For	thane, 0) %	%	l/or /	% >	Norfl		- 1									
Sampler Signature:	-0	M				VOCs TO-15 (μg/m ³) - See Notes	8010 by TO-15 (μg/m ³)	- <u>-</u> -	LEED: (inc. 4PCH, Formaldehyde, CO, Total VOCs)	Fixed Gas (CO ₂ , Methane, Ethane, Ethylene, Acetylene,Propane, CO) %	Fixed Gas: (O ₂ , N ₂)	c and	Check	Leak Check (IPA, Norflorane, difluroethane) μg/m³		ľ	Ma	trix	T						
SAMPLE ID	Sampli	ng Start	End		Samula Vit /	0-15	1-0-1	TPH(g) (μg/m ³)	nc. 4 Cs)	s (CO Propa	s: (0	: (0 ₂		s: (0 ₂	APH: Aliphatic and/or Aromatic (circle one) µg/m ³	Helium Leak Check %	Check (IF oethane) j	ane	and	ł	× .			Can	1ster / Vacuum
Location / Field Point	Dete			Canister SN#	Sample Kit / Manifold #	Cs T(l yd (l(g) (LEED: (inc. Fotal VOCs)	d Ga /lene,]	d Ga	APH: Alipt one) μg/m ³	m	c Cho			Soilgas Indoor Air	100		ressure	vacuum				
	Date	Time	Time			Ň	801(TPH	LEE Tota	Fixe Acety	Fixe	APH one)	Heli	Leak diflu			S.		II	nitial	Final				
IA-1383 MacArthwi						X											1	0	2	9	3				
IA-1395 MacArthur	2/2017	1235	1230	0239-1952	-	V												Č.	2		2				
						t							-			-			~		~				
													_			-		-	_						
																+		-	1						
											-					+		+-	+						
																+		_							
**MAI clients MUST disclose any dangerous staff. Non-disc	chemicals ki closure incur	nown to be j s an immed	present in th iate S250 su	eir submitted samples in rcharge and the client is	n concentrations that n subject to full legal li	nay cau ability i	se imm for harn	ediate h suffer	arm or ed. Tha	serious ink you	future for you	health ei r unders	ndange tandin	rment a	as a result	of bri g us te	ef, glove o work sa	l, open a felv.	air, samp	le handlir	ig by MAI				

Relinquished By / Company Name	Date	Time	Received By / Company Name	Date	Time	Comments / Instructions
The PACE	2-21-17	1315	Munn 2-0	2/07/17	1315	
		10.0		1007.1		

Sample Receipt Checklist

Client Name: Project Name:	Advanced GeoEnvir Swiss Valley Cleane				Date and Time Received Date Logged:	2/21/2017 13:15 2/21/2017
r toject Name.	Swiss valley clearle	15			Received by:	Maria Venegas
WorkOrder №: Carrier:	1702A12 Client Drop-In	Matrix: Indoor Air			Logged by:	Maria Venegas
		Chain of C	ustody	/ (COC) Infor	mation	
Chain of custody	present?		Yes	✓	No 🗌	
Chain of custody	signed when relinquis	hed and received?	Yes	✓	No 🗌	
Chain of custody	agrees with sample la	abels?	Yes	✓	No 🗌	
Sample IDs note	d by Client on COC?		Yes	✓	No 🗌	
Date and Time of	f collection noted by C	lient on COC?	Yes	✓	No 🗌	
Sampler's name	noted on COC?		Yes	✓	No 🗌	
		Sample	e Rece	eipt Informati	on	
Custody seals int	act on shipping conta	ner/cooler?	Yes		No 🗌	NA 🗹
Shipping containe	er/cooler in good cond	ition?	Yes	✓	No 🗌	
Samples in prope	er containers/bottles?		Yes	✓	No 🗌	
Sample containe	rs intact?		Yes	✓	No 🗌	
Sufficient sample	volume for indicated	test?	Yes	✓	No 🗌	
		Sample Preservation	on and	Hold Time (ł	HT) Information	
All samples recei	ved within holding tim	e?	Yes	✓	No 🗌	
Sample/Temp Bl	ank temperature			Temp:		NA 🗹
Water - VOA vial	s have zero headspac	e / no bubbles?	Yes		No 🗌	NA 🗹
Sample labels ch	ecked for correct pres	ervation?	Yes		No 🗌	
pH acceptable up	oon receipt (Metal: <2;	522: <4; 218.7: >8)?	Yes		No 🗌	NA 🗹
Samples Receive	ed on Ice?		Yes		No 🖌	
UCMR3 Samples						
		upon receipt for EPA 522?	Yes		No 🗌	NA 🗹
Free Chlorine t 300.1, 537, 539		upon receipt for EPA 218.7,	Yes		No 🗌	NA 🗹

Comments:

APPENDIX C

McCampbell Analytical, Inc.

"When Quality Counts"

Analytical Report

WorkOrder: 1702A13

Report Created for: Advanced GeoEnvironmental, Inc.

837 Shaw Road Stockton, CA 95215

- **Project Contact:** Daniel Villanueva
- Project P.O.:
- Project Name: Swiss Valley Cleaners

Project Received: 02/21/2017

Analytical Report reviewed & approved for release on 02/23/2017 by:

Angela Rydelius, Laboratory Manager

The report shall not be reproduced except in full, without the written approval of the laboratory. The analytical results relate only to the items tested. Results reported conform to the most current NELAP standards, where applicable, unless otherwise stated in the case narrative.

1534 Willow Pass Rd. Pittsburg, CA 94565 TEL: (877) 252-9262 FAX: (925) 252-9269 www.mccampbell.com

CA ELAP 1644 ♦ NELAP 4033ORELAP

Glossary of Terms & Qualifier Definitions

Client: Advanced GeoEnvironmental, Inc.

Project: Swiss Valley Cleaners

WorkOrder: 1702A13

Glossary Abbreviation

%D	Serial Dilution Percent Difference
95% Interval	95% Confident Interval
DF	Dilution Factor
DI WET	(DISTLC) Waste Extraction Test using DI water
DISS	Dissolved (direct analysis of 0.45 μm filtered and acidified water sample)
DLT	Dilution Test (Serial Dilution)
DUP	Duplicate
EDL	Estimated Detection Limit
ITEF	International Toxicity Equivalence Factor
LCS	Laboratory Control Sample
MB	Method Blank
MB % Rec	% Recovery of Surrogate in Method Blank, if applicable
MDL	Method Detection Limit
ML	Minimum Level of Quantitation
MS	Matrix Spike
MSD	Matrix Spike Duplicate
N/A	Not Applicable
ND	Not detected at or above the indicated MDL or RL
NR	Data Not Reported due to matrix interference or insufficient sample amount.
PDS	Post Digestion Spike
PDSD	Post Digestion Spike Duplicate
PF	Prep Factor
RD	Relative Difference
RL	Reporting Limit (The RL is the lowest calibration standard in a multipoint calibration.)
RPD	Relative Percent Deviation
RRT	Relative Retention Time
SPK Val	Spike Value
SPKRef Val	Spike Reference Value
SPLP	Synthetic Precipitation Leachate Procedure
ST	Sorbent Tube
TCLP	Toxicity Characteristic Leachate Procedure
TEQ	Toxicity Equivalents
WET (STLC)	Waste Extraction Test (Soluble Threshold Limit Concentration)

Quality Control Qualifiers

F2

LCS/LCSD recovery and/or RPD is out of acceptance criteria.

Case Narrative

Client: Advanced GeoEnvironmental, Inc.

Project: Swiss Valley Cleaners

Work Order: 1702A13 February 23, 2017

TO-15 ANALYSIS

All summa canisters are EVACUATED 5 days after the reporting of the results. Please call or email if a longer retention time is required.

In an effort to attain the lowest reporting limits possible for the majority of the TO-15 target list, high level compounds may be analyzed using EPA Method 8260B.

Polymer (Tedlar) bags are not recommended for TO15 samples. The disadvantages are listed in Appendix B of the DTSC Active Soil Gas Advisory of July 2015.

Client:	Advanced GeoEnvironmental, Inc.
Date Received:	2/21/17 13:15
Date Prepared:	2/21/17-2/22/17
Project:	Swiss Valley Cleaners

WorkOrder:	1702A13
Extraction Method:	TO15
Analytical Method:	TO15
Unit:	$\mu g/m^3$

Leak Check Compound							
Client ID	Lab ID	Matrix	Date Collected	Instru	iment	Batch ID	
SS-2	1702A13-001A	SoilGas	02/20/2017 11:46	GC29		134551	
Initial Pressure (psia)	Final Pressure	e (psia)				Analyst(s)	
12.03	24.09					AK	
Analytes		<u>Result</u>		<u>RL</u>	DF	Date Analyzed	
Isopropyl Alcohol		91		50	1	02/22/2017 10:27	

SS-3	1702A13-002A SoilGas	02/20/2017 10:29 GC29	134551
Initial Pressure (psia)	Final Pressure (psia)		Analyst(s)
12.23	24.38		AK
Analytes Isopropyl Alcohol	<u>Result</u> ND	<u>RL</u> <u>DF</u> 50 1	Date Analyzed 02/22/2017 11:12

SS-4	1702A13-003A SoilGas	02/20/2017 11:07 GC29	134551
Initial Pressure (psia)	Final Pressure (psia)		Analyst(s)
12.69	25.38		AK
Analytes Isopropyl Alcohol	<u>Result</u> 1300	<u>RL</u> <u>DF</u> 500 10	<u>Date Analyzed</u> 02/21/2017 18:35

Client:	Advanced GeoEnvironmental, Inc.
Date Received:	2/21/17 13:15
Date Prepared:	2/22/17
Project:	Swiss Valley Cleaners

WorkOrder:	1702A13
Extraction Method:	TO15
Analytical Method:	TO15
Unit:	$\mu g/m^3$

Client ID	Lab ID	Matrix	Date Collected	Instru	Batch ID	
SS-2	1702A13-001A	SoilGas	02/20/2017 11:46	GC29		134551
Initial Pressure (psia)	Final Pressure	e (psia)				Analyst(s)
12.03	24.09					AK
Analytes		<u>Result</u>		<u>RL</u>	DF	Date Analyzed
Acetone		160		60	1	02/22/2017 10:27
Acrolein		ND		5.8	1	02/22/2017 10:27
Acrylonitrile		ND		1.1	1	02/22/2017 10:27
tert-Amyl methyl ether (TAME)		ND		2.1	1	02/22/2017 10:27
Benzene		ND		1.6	1	02/22/2017 10:27
Benzyl chloride		ND		2.6	1	02/22/2017 10:27
Bromodichloromethane		ND		3.5	1	02/22/2017 10:27
Bromoform		ND		5.2	1	02/22/2017 10:27
Bromomethane		ND		2.0	1	02/22/2017 10:27
1,3-Butadiene		ND		1.1	1	02/22/2017 10:27
2-Butanone (MEK)		ND		75	1	02/22/2017 10:27
t-Butyl alcohol (TBA)		ND		31	1	02/22/2017 10:27
Carbon Disulfide		ND		1.6	1	02/22/2017 10:27
Carbon Tetrachloride		ND		3.2	1	02/22/2017 10:27
Chlorobenzene		ND		2.4	1	02/22/2017 10:27
Chloroethane		ND		1.3	1	02/22/2017 10:27
Chloroform		ND		2.4	1	02/22/2017 10:27
Chloromethane		ND		1.0	1	02/22/2017 10:27
Cyclohexane		ND		18	1	02/22/2017 10:27
Dibromochloromethane		ND		4.4	1	02/22/2017 10:27
1,2-Dibromo-3-chloropropane		ND		0.12	1	02/22/2017 10:27
1,2-Dibromoethane (EDB)		ND		3.9	1	02/22/2017 10:27
1,2-Dichlorobenzene		ND		3.0	1	02/22/2017 10:27
1,3-Dichlorobenzene		ND		3.0	1	02/22/2017 10:27
1,4-Dichlorobenzene		ND		3.0	1	02/22/2017 10:27
Dichlorodifluoromethane		ND		2.5	1	02/22/2017 10:27
1,1-Dichloroethane		ND		2.0	1	02/22/2017 10:27
1,2-Dichloroethane (1,2-DCA)		ND		2.0	1	02/22/2017 10:27
1,1-Dichloroethene		ND		2.0	1	02/22/2017 10:27
cis-1,2-Dichloroethene		ND		2.0	1	02/22/2017 10:27
trans-1,2-Dichloroethene		ND		2.0	1	02/22/2017 10:27
1,2-Dichloropropane		ND		2.4	1	02/22/2017 10:27
cis-1,3-Dichloropropene		ND		2.3	1	02/22/2017 10:27

Client:	Advanced GeoEnvironmental, Inc.
Date Received:	2/21/17 13:15
Date Prepared:	2/22/17
Project:	Swiss Valley Cleaners

WorkOrder:	1702A13
Extraction Method:	TO15
Analytical Method:	TO15
Unit:	$\mu g/m^3$

Volatile Organic Compounds **Client ID** Lab ID **Date Collected Instrument Batch ID** Matrix SS-2 1702A13-001A SoilGas 02/20/2017 11:46 GC29 134551 Initial Pressure (psia) **Final Pressure (psia)** Analyst(s) 12.03 24.09 AK **Analytes** Result <u>RL</u> <u>DF</u> Date Analyzed ND 2.3 02/22/2017 10:27 trans-1,3-Dichloropropene 1 1,2-Dichloro-1,1,2,2-tetrafluoroethane ND 3.6 1 02/22/2017 10:27 Diisopropyl ether (DIPE) ND 2.1 1 02/22/2017 10:27 1,4-Dioxane ND 1.8 1 02/22/2017 10:27 Ethanol ND 96 1 02/22/2017 10:27 Ethyl acetate 1.8 1 02/22/2017 10:27 2.7 Ethyl tert-butyl ether (ETBE) ND 2.1 1 02/22/2017 10:27 2.2 02/22/2017 10:27 Ethylbenzene ND 1 4-Ethyltoluene ND 2.5 1 02/22/2017 10:27 Freon 113 ND 3.9 1 02/22/2017 10:27 Heptane ND 21 1 02/22/2017 10:27 Hexachlorobutadiene ND 5.4 1 02/22/2017 10:27 ND Hexane 18 1 02/22/2017 10:27 2-Hexanone 2.2 2.1 1 02/22/2017 10:27 4-Methyl-2-pentanone (MIBK) ND 2.1 1 02/22/2017 10:27 Methyl-t-butyl ether (MTBE) ND 1.8 1 02/22/2017 10:27 Methylene chloride ND 8.8 1 02/22/2017 10:27 Methyl methacrylate 16 2.1 1 02/22/2017 10:27 Naphthalene ND 5.3 1 02/22/2017 10:27 Propene ND 88 1 02/22/2017 10:27 Styrene ND 2.2 1 02/22/2017 10:27 1,1,1,2-Tetrachloroethane ND 3.5 1 02/22/2017 10:27 1,1,2,2-Tetrachloroethane ND 3.5 1 02/22/2017 10:27 1 Tetrachloroethene 37 3.4 02/22/2017 10:27 ND Tetrahydrofuran 3.0 02/22/2017 10:27 1 Toluene 1.9 1.9 1 02/22/2017 10:27 1,2,4-Trichlorobenzene ND 3.8 1 02/22/2017 10:27

Client:	Advanced GeoEnvironmental, Inc.
Date Received:	2/21/17 13:15
Date Prepared:	2/22/17
Project:	Swiss Valley Cleaners

WorkOrder:	1702A13
Extraction Method:	TO15
Analytical Method:	TO15
Unit:	$\mu g/m^3$

Client ID	Lab ID	Matrix	Date Collected	Instru	ment	Batch ID
SS-2	1702A13-001A	SoilGas	02/20/2017 11:46	GC29		134551
Initial Pressure (psia)	Final Pressure	e (psia)				Analyst(s)
12.03	24.09					AK
Analytes		<u>Result</u>		<u>RL</u>	DF	Date Analyzed
Vinyl Acetate		ND		18	1	02/22/2017 10:27
Vinyl Chloride		ND		1.3	1	02/22/2017 10:27
Xylenes, Total		ND		6.6	1	02/22/2017 10:27
<u>Surrogates</u>		<u>REC (%)</u>		<u>Limits</u>		
1,2-DCA-d4		98		70-130		02/22/2017 10:27
Toluene-d8		105		70-130		02/22/2017 10:27
4-BFB		96		70-130		02/22/2017 10:27

Client:	Advanced GeoEnvironmental, Inc.
Date Received:	2/21/17 13:15
Date Prepared:	2/22/17
Project:	Swiss Valley Cleaners

WorkOrder:	1702A13
Extraction Method:	TO15
Analytical Method:	TO15
Unit:	$\mu g/m^3$

Client ID	Lab ID	Matrix	Date Collected	Instru	ment	Batch ID
SS-3	1702A13-002A	SoilGas	02/20/2017 10:29	GC29		134551
Initial Pressure (psia)	Final Pressure	e (psia)				Analyst(s)
12.23	24.38					AK
Analytes		<u>Result</u>		<u>RL</u>	DF	Date Analyzed
Acetone		ND		60	1	02/22/2017 11:12
Acrolein		ND		5.8	1	02/22/2017 11:12
Acrylonitrile		ND		1.1	1	02/22/2017 11:12
tert-Amyl methyl ether (TAME)		ND		2.1	1	02/22/2017 11:12
Benzene		ND		1.6	1	02/22/2017 11:12
Benzyl chloride		ND		2.6	1	02/22/2017 11:12
Bromodichloromethane		ND		3.5	1	02/22/2017 11:12
Bromoform		ND		5.2	1	02/22/2017 11:12
Bromomethane		ND		2.0	1	02/22/2017 11:12
1,3-Butadiene		ND		1.1	1	02/22/2017 11:12
2-Butanone (MEK)		ND		75	1	02/22/2017 11:12
t-Butyl alcohol (TBA)		ND		31	1	02/22/2017 11:12
Carbon Disulfide		ND		1.6	1	02/22/2017 11:12
Carbon Tetrachloride		ND		3.2	1	02/22/2017 11:12
Chlorobenzene		ND		2.4	1	02/22/2017 11:12
Chloroethane		ND		1.3	1	02/22/2017 11:12
Chloroform		ND		2.4	1	02/22/2017 11:12
Chloromethane		ND		1.0	1	02/22/2017 11:12
Cyclohexane		ND		18	1	02/22/2017 11:12
Dibromochloromethane		ND		4.4	1	02/22/2017 11:12
1,2-Dibromo-3-chloropropane		ND		0.12	1	02/22/2017 11:12
1,2-Dibromoethane (EDB)		ND		3.9	1	02/22/2017 11:12
1,2-Dichlorobenzene		ND		3.0	1	02/22/2017 11:12
1,3-Dichlorobenzene		ND		3.0	1	02/22/2017 11:12
1,4-Dichlorobenzene		ND		3.0	1	02/22/2017 11:12
Dichlorodifluoromethane		ND		2.5	1	02/22/2017 11:12
1,1-Dichloroethane		ND		2.0	1	02/22/2017 11:12
1,2-Dichloroethane (1,2-DCA)		ND		2.0	1	02/22/2017 11:12
1,1-Dichloroethene		ND		2.0	1	02/22/2017 11:12
cis-1,2-Dichloroethene		ND		2.0	1	02/22/2017 11:12
trans-1,2-Dichloroethene		ND		2.0	1	02/22/2017 11:12
1,2-Dichloropropane		ND		2.4	1	02/22/2017 11:12
cis-1,3-Dichloropropene		ND		2.3	1	02/22/2017 11:12

Client:	Advanced GeoEnvironmental, Inc.
Date Received:	2/21/17 13:15
Date Prepared:	2/22/17
Project:	Swiss Valley Cleaners

WorkOrder:	1702A13
Extraction Method:	TO15
Analytical Method:	TO15
Unit:	$\mu g/m^3$

Client ID	Lab ID	Matrix	Date Collected	Instru	iment	Batch ID
SS-3	1702A13-002A	SoilGas	02/20/2017 10:29	GC29		134551
Initial Pressure (psia)	Final Pressure	Final Pressure (psia)			Analyst(s)	
12.23	24.38					AK
Analytes		<u>Result</u>		<u>RL</u>	DF	Date Analyzed
trans-1,3-Dichloropropene		ND		2.3	1	02/22/2017 11:12
1,2-Dichloro-1,1,2,2-tetrafluoroethane		ND		3.6	1	02/22/2017 11:12
Diisopropyl ether (DIPE)		ND		2.1	1	02/22/2017 11:12
1,4-Dioxane		ND		1.8	1	02/22/2017 11:12
Ethanol		ND		96	1	02/22/2017 11:12
Ethyl acetate		ND		1.8	1	02/22/2017 11:12
Ethyl tert-butyl ether (ETBE)		ND		2.1	1	02/22/2017 11:12
Ethylbenzene		ND		2.2	1	02/22/2017 11:12
4-Ethyltoluene		ND		2.5	1	02/22/2017 11:12
Freon 113		ND		3.9	1	02/22/2017 11:12
Heptane		ND		21	1	02/22/2017 11:12
Hexachlorobutadiene		ND		5.4	1	02/22/2017 11:12
Hexane		ND		18	1	02/22/2017 11:12
2-Hexanone		ND		2.1	1	02/22/2017 11:12
4-Methyl-2-pentanone (MIBK)		ND		2.1	1	02/22/2017 11:12
Methyl-t-butyl ether (MTBE)		ND		1.8	1	02/22/2017 11:12
Methylene chloride		ND		8.8	1	02/22/2017 11:12
Methyl methacrylate		ND		2.1	1	02/22/2017 11:12
Naphthalene		ND		5.3	1	02/22/2017 11:12
Propene		ND		88	1	02/22/2017 11:12
Styrene		ND		2.2	1	02/22/2017 11:12
1,1,1,2-Tetrachloroethane		ND		3.5	1	02/22/2017 11:12
1,1,2,2-Tetrachloroethane		ND		3.5	1	02/22/2017 11:12
Tetrachloroethene		99		3.4	1	02/22/2017 11:12
Tetrahydrofuran		5.5		3.0	1	02/22/2017 11:12
Toluene		ND		1.9	1	02/22/2017 11:12
1,2,4-Trichlorobenzene		ND		3.8	1	02/22/2017 11:12
1,1,1-Trichloroethane		ND		2.8	1	02/22/2017 11:12
1,1,2-Trichloroethane		ND		2.8	1	02/22/2017 11:12
Trichloroethene		ND		2.8	1	02/22/2017 11:12
Trichlorofluoromethane		ND		2.8	1	02/22/2017 11:12
1,2,4-Trimethylbenzene		ND		2.5	1	02/22/2017 11:12
1,3,5-Trimethylbenzene		ND		2.5	1	02/22/2017 11:12

Client:	Advanced GeoEnvironmental, Inc.
Date Received:	2/21/17 13:15
Date Prepared:	2/22/17
Project:	Swiss Valley Cleaners

WorkOrder:	1702A13
Extraction Method:	TO15
Analytical Method:	TO15
Unit:	$\mu g/m^3$

Client ID	Lab ID	Matrix	Date Collected	Instru	ment	Batch ID
SS-3	1702A13-002A	SoilGas	02/20/2017 10:29	GC29		134551
Initial Pressure (psia)	Final Pressur	e (psia)				Analyst(s)
12.23	24.38					AK
Analytes		<u>Result</u>		<u>RL</u>	DF	Date Analyzed
Vinyl Acetate		ND		18	1	02/22/2017 11:12
Vinyl Chloride		ND		1.3	1	02/22/2017 11:12
Xylenes, Total		ND		6.6	1	02/22/2017 11:12
<u>Surrogates</u>		<u>REC (%)</u>		<u>Limits</u>		
1,2-DCA-d4		98		70-130		02/22/2017 11:12
Toluene-d8		105		70-130		02/22/2017 11:12
4-BFB		98		70-130		02/22/2017 11:12

Client:	Advanced GeoEnvironmental, Inc.
Date Received:	2/21/17 13:15
Date Prepared:	2/22/17
Project:	Swiss Valley Cleaners

WorkOrder:	1702A13
Extraction Method:	TO15
Analytical Method:	TO15
Unit:	$\mu g/m^3$

Client ID	Lab ID	Matrix	Date Collected	Instru	ment	Batch ID
SS-4	1702A13-003A	SoilGas	02/20/2017 11:07	GC29		134551
Initial Pressure (psia)	Final Pressure	e (psia)				Analyst(s)
12.69	25.38					AK
Analytes		<u>Result</u>		<u>RL</u>	DF	Date Analyzed
Acetone		ND		60	1	02/22/2017 11:58
Acrolein		ND		5.8	1	02/22/2017 11:58
Acrylonitrile		ND		1.1	1	02/22/2017 11:58
tert-Amyl methyl ether (TAME)		ND		2.1	1	02/22/2017 11:58
Benzene		ND		1.6	1	02/22/2017 11:58
Benzyl chloride		ND		2.6	1	02/22/2017 11:58
Bromodichloromethane		ND		3.5	1	02/22/2017 11:58
Bromoform		ND		5.2	1	02/22/2017 11:58
Bromomethane		ND		2.0	1	02/22/2017 11:58
1,3-Butadiene		ND		1.1	1	02/22/2017 11:58
2-Butanone (MEK)		ND		75	1	02/22/2017 11:58
t-Butyl alcohol (TBA)		ND		31	1	02/22/2017 11:58
Carbon Disulfide		ND		1.6	1	02/22/2017 11:58
Carbon Tetrachloride		ND		3.2	1	02/22/2017 11:58
Chlorobenzene		ND		2.4	1	02/22/2017 11:58
Chloroethane		ND		1.3	1	02/22/2017 11:58
Chloroform		ND		2.4	1	02/22/2017 11:58
Chloromethane		ND		1.0	1	02/22/2017 11:58
Cyclohexane		ND		18	1	02/22/2017 11:58
Dibromochloromethane		ND		4.4	1	02/22/2017 11:58
1,2-Dibromo-3-chloropropane		ND		0.12	1	02/22/2017 11:58
1,2-Dibromoethane (EDB)		ND		3.9	1	02/22/2017 11:58
1,2-Dichlorobenzene		ND		3.0	1	02/22/2017 11:58
1,3-Dichlorobenzene		ND		3.0	1	02/22/2017 11:58
1,4-Dichlorobenzene		ND		3.0	1	02/22/2017 11:58
Dichlorodifluoromethane		ND		2.5	1	02/22/2017 11:58
1,1-Dichloroethane		ND		2.0	1	02/22/2017 11:58
1,2-Dichloroethane (1,2-DCA)		ND		2.0	1	02/22/2017 11:58
1,1-Dichloroethene		ND		2.0	1	02/22/2017 11:58
cis-1,2-Dichloroethene		ND		2.0	1	02/22/2017 11:58
trans-1,2-Dichloroethene		ND		2.0	1	02/22/2017 11:58
1,2-Dichloropropane		ND		2.4	1	02/22/2017 11:58
cis-1,3-Dichloropropene		ND		2.3	1	02/22/2017 11:58

Client:	Advanced GeoEnvironmental, Inc.
Date Received:	2/21/17 13:15
Date Prepared:	2/22/17
Project:	Swiss Valley Cleaners

WorkOrder:	1702A13
Extraction Method:	TO15
Analytical Method:	TO15
Unit:	$\mu g/m^3$

Client ID	Lab ID	Matrix	Date Collected	Instru	iment	Batch ID
SS-4	1702A13-003A	SoilGas	02/20/2017 11:07	GC29		134551
Initial Pressure (psia)	Final Pressure	e (psia)				Analyst(s)
12.69	25.38					AK
Analytes		<u>Result</u>		<u>RL</u>	DF	Date Analyzed
trans-1,3-Dichloropropene		ND		2.3	1	02/22/2017 11:58
1,2-Dichloro-1,1,2,2-tetrafluoroethane		ND		3.6	1	02/22/2017 11:58
Diisopropyl ether (DIPE)		ND		2.1	1	02/22/2017 11:58
1,4-Dioxane		ND		1.8	1	02/22/2017 11:58
Ethanol		ND		96	1	02/22/2017 11:58
Ethyl acetate		ND		1.8	1	02/22/2017 11:58
Ethyl tert-butyl ether (ETBE)		ND		2.1	1	02/22/2017 11:58
Ethylbenzene		ND		2.2	1	02/22/2017 11:58
4-Ethyltoluene		ND		2.5	1	02/22/2017 11:58
Freon 113		ND		3.9	1	02/22/2017 11:58
Heptane		ND		21	1	02/22/2017 11:58
Hexachlorobutadiene		ND		5.4	1	02/22/2017 11:58
Hexane		ND		18	1	02/22/2017 11:58
2-Hexanone		ND		2.1	1	02/22/2017 11:58
4-Methyl-2-pentanone (MIBK)		ND		2.1	1	02/22/2017 11:58
Methyl-t-butyl ether (MTBE)		ND		1.8	1	02/22/2017 11:58
Methylene chloride		ND		8.8	1	02/22/2017 11:58
Methyl methacrylate		ND		2.1	1	02/22/2017 11:58
Naphthalene		ND		5.3	1	02/22/2017 11:58
Propene		ND		88	1	02/22/2017 11:58
Styrene		ND		2.2	1	02/22/2017 11:58
1,1,1,2-Tetrachloroethane		ND		3.5	1	02/22/2017 11:58
1,1,2,2-Tetrachloroethane		ND		3.5	1	02/22/2017 11:58
Tetrachloroethene		420		3.4	1	02/22/2017 11:58
Tetrahydrofuran		ND		3.0	1	02/22/2017 11:58
Toluene		ND		1.9	1	02/22/2017 11:58
1,2,4-Trichlorobenzene		ND		3.8	1	02/22/2017 11:58
1,1,1-Trichloroethane		ND		2.8	1	02/22/2017 11:58
1,1,2-Trichloroethane		ND		2.8	1	02/22/2017 11:58
Trichloroethene		ND		2.8	1	02/22/2017 11:58
Trichlorofluoromethane		ND		2.8	1	02/22/2017 11:58
1,2,4-Trimethylbenzene		ND		2.5	1	02/22/2017 11:58
1,3,5-Trimethylbenzene		ND		2.5	1	02/22/2017 11:58

Client:	Advanced GeoEnvironmental, Inc.
Date Received:	2/21/17 13:15
Date Prepared:	2/22/17
Project:	Swiss Valley Cleaners

WorkOrder:	1702A13
Extraction Method:	TO15
Analytical Method:	TO15
Unit:	$\mu g/m^3$

Client ID	Lab ID	Matrix	Date Collected	Instru	ment	Batch ID
SS-4	1702A13-003A	SoilGas	02/20/2017 11:07	GC29		134551
Initial Pressure (psia)	Final Pressur	e (psia)				Analyst(s)
12.69	25.38					AK
Analytes		<u>Result</u>		<u>RL</u>	DF	Date Analyzed
Vinyl Acetate		ND		18	1	02/22/2017 11:58
Vinyl Chloride		ND		1.3	1	02/22/2017 11:58
Xylenes, Total		ND		6.6	1	02/22/2017 11:58
<u>Surrogates</u>		<u>REC (%)</u>		<u>Limits</u>		
1,2-DCA-d4		99		70-130		02/22/2017 11:58
Toluene-d8		105		70-130		02/22/2017 11:58
4-BFB		98		70-130		02/22/2017 11:58

Client:	Advanced GeoEnvironmental, Inc.	WorkOrder:	1702A13
Date Prepared:	2/21/17	BatchID:	134551
Date Analyzed:	2/21/17	Extraction Method:	TO15
Instrument:	GC29	Analytical Method:	TO15
Matrix:	SoilGas	Unit:	$\mu g/m^3$
Project:	Swiss Valley Cleaners	Sample ID:	MB/LCS-134551

QC Summary Report for TO15

Acetone Acrolein Acrylonitrile tert-Amyl methyl ether (TAME) Benzene Benzyl chloride Bromodichloromethane Bromoform Bromomethane 1,3-Butadiene	ND ND ND ND ND ND ND ND ND ND ND ND ND N	71.0 74.5 76.4 133 104 167 210 357 117 55.5 96.6 96.0 96.1	30 2.9 0.55 1.0 0.80 1.3 1.8 2.6 1.0 0.55 38	60 58.25 55 105 80 132.5 175 262.5 97.5 55 75	- - - - - - - - - - - - -	118 128 139 127 130 126 120 136 120 101	60-140 60-140 60-140 60-140 60-140 60-140 60-140 60-140 60-140 60-140
Acrylonitrile tert-Amyl methyl ether (TAME) Benzene Benzyl chloride Bromodichloromethane Bromoform Bromomethane 1,3-Butadiene	ND ND ND ND ND ND ND ND ND ND ND ND	76.4 133 104 167 210 357 117 55.5 96.6 96.0	0.55 1.0 0.80 1.3 1.8 2.6 1.0 0.55 38	55 105 80 132.5 175 262.5 97.5 55	- - - -	139 127 130 126 120 136 120	60-140 60-140 60-140 60-140 60-140 60-140 60-140
tert-Amyl methyl ether (TAME) Benzene Benzyl chloride Bromodichloromethane Bromoform Bromomethane 1,3-Butadiene	ND ND ND ND ND ND ND ND ND ND ND	133 104 167 210 357 117 55.5 96.6 96.0	1.0 0.80 1.3 1.8 2.6 1.0 0.55 38	105 80 132.5 175 262.5 97.5 55	- - - - -	127 130 126 120 136 120	60-140 60-140 60-140 60-140 60-140 60-140
Benzene Benzyl chloride Bromodichloromethane Bromoform Bromomethane 1,3-Butadiene	ND ND ND ND ND ND ND ND ND	104 167 210 357 117 55.5 96.6 96.0	0.80 1.3 1.8 2.6 1.0 0.55 38	80 132.5 175 262.5 97.5 55	- - - - -	130 126 120 136 120	60-140 60-140 60-140 60-140 60-140
Benzyl chloride Bromodichloromethane Bromoform Bromomethane 1,3-Butadiene	ND ND ND ND ND ND ND ND	167 210 357 117 55.5 96.6 96.0	1.3 1.8 2.6 1.0 0.55 38	132.5 175 262.5 97.5 55	- - - -	126 120 136 120	60-140 60-140 60-140 60-140
Bromodichloromethane Bromoform Bromomethane 1,3-Butadiene	ND ND ND ND ND ND ND	210 357 117 55.5 96.6 96.0	1.8 2.6 1.0 0.55 38	175 262.5 97.5 55		120 136 120	60-140 60-140 60-140
Bromoform Bromomethane 1,3-Butadiene	ND ND ND ND ND ND	357 117 55.5 96.6 96.0	2.6 1.0 0.55 38	262.5 97.5 55	-	136 120	60-140 60-140
Bromomethane 1,3-Butadiene	ND ND ND ND ND	117 55.5 96.6 96.0	1.0 0.55 38	97.5 55	-	120	60-140
1,3-Butadiene	ND ND ND ND	55.5 96.6 96.0	0.55 38	55			
-	ND ND ND	96.6 96.0	38			101	60-140
	ND ND	96.0		75			50 110
2-Butanone (MEK)	ND			-	-	129	60-140
t-Butyl alcohol (TBA)		00.4	16	77.5	-	124	60-140
Carbon Disulfide		99.1	0.80	80	-	124	60-140
Carbon Tetrachloride	ND	198	1.6	160	-	124	60-140
Chlorobenzene	ND	146	1.2	117.5	-	125	60-140
Chloroethane	ND	79.5	0.65	67.5	-	118	60-140
Chloroform	ND	137	1.2	122.5	-	112	60-140
Chloromethane	ND	56.2	0.50	52.5	-	107	60-140
Cyclohexane	ND	102	9.0	87.5	-	117	60-140
Dibromochloromethane	ND	288	2.2	217.5	-	132	60-140
1,2-Dibromo-3-chloropropane	ND	316	0.060	245	-	129	60-140
1,2-Dibromoethane (EDB)	ND	228	2.0	195	-	117	60-140
1,2-Dichlorobenzene	ND	186	1.5	152.5	-	122	60-140
1,3-Dichlorobenzene	ND	186	1.5	152.5	-	122	60-140
1,4-Dichlorobenzene	ND	185	1.5	152.5	-	121	60-140
Dichlorodifluoromethane	ND	139	1.2	125	-	111	60-140
1,1-Dichloroethane	ND	122	1.0	102.5	-	119	60-140
1,2-Dichloroethane (1,2-DCA)	ND	111	1.0	102.5	-	108	60-140
1,1-Dichloroethene	ND	111	1.0	100	-	111	60-140
cis-1,2-Dichloroethene	ND	120	1.0	100	-	120	60-140
trans-1,2-Dichloroethene	ND	122	1.0	100	-	122	60-140
1,2-Dichloropropane	ND	134	1.2	117.5	-	114	60-140
cis-1,3-Dichloropropene	ND	143	1.2	115	-	124	60-140
trans-1,3-Dichloropropene	ND	144	1.2	115	-	126	60-140
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	204	1.8	177.5	-	115	60-140
Diisopropyl ether (DIPE)	ND	135	1.0	105	-	129	60-140
1,4-Dioxane	ND	140	0.90	92.5	-	152, F2	60-140

Client:	Advanced GeoEnvironmental, Inc.	WorkOrder:	1702A13
Date Prepared:	2/21/17	BatchID:	134551
Date Analyzed:	2/21/17	Extraction Method:	TO15
Instrument:	GC29	Analytical Method:	TO15
Matrix:	SoilGas	Unit:	$\mu g/m^3$
Project:	Swiss Valley Cleaners	Sample ID:	MB/LCS-134551

QC Summary Report for TO15

Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
Ethanol	ND	59.8	48	47.5	-	126	60-140
Ethyl acetate	ND	114	0.90	92.5	-	124	60-140
Ethyl tert-butyl ether (ETBE)	ND	130	1.0	105	-	123	60-140
Ethylbenzene	ND	135	1.1	110	-	123	60-140
4-Ethyltoluene	ND	157	1.2	125	-	126	60-140
Freon 113	ND	233	2.0	195	-	119	60-140
Heptane	ND	128	10	105	-	122	60-140
Hexachlorobutadiene	ND	337	2.7	270	-	125	60-140
Hexane	ND	111	9.0	90	-	123	60-140
2-Hexanone	ND	132	1.0	105	-	125	60-140
Isopropyl Alcohol	ND	79.0	25	62.5	-	126	60-140
4-Methyl-2-pentanone (MIBK)	ND	136	1.0	105	-	130	60-140
Methyl-t-butyl ether (MTBE)	ND	110	0.90	92.5	-	119	60-140
Methylene chloride	ND	103	4.4	87.5	-	117	60-140
Methyl methacrylate	ND	133	1.0	104	-	128	60-140
Naphthalene	ND	318	2.6	265	-	120	60-140
Propene	ND	ND	44	42.5	-	90	60-140
Styrene	ND	134	1.1	107.5	-	124	60-140
1,1,1,2-Tetrachloroethane	ND	226	1.8	175	-	129	60-140
1,1,2,2-Tetrachloroethane	ND	213	1.8	175	-	122	60-140
Tetrachloroethene	ND	224	1.7	172	-	130	60-140
Tetrahydrofuran	ND	77.1	1.5	75	-	103	60-140
Toluene	ND	115	0.95	95	-	121	60-140
1,2,4-Trichlorobenzene	ND	249	1.9	187.5	-	133	60-140
1,1,1-Trichloroethane	ND	167	1.4	137.5	-	121	60-140
1,1,2-Trichloroethane	ND	164	1.4	137.5	-	119	60-140
Trichloroethene	ND	161	1.4	137.5	-	117	60-140
Trichlorofluoromethane	ND	173	1.4	142.5	-	121	60-140
1,2,4-Trimethylbenzene	ND	158	1.2	125	-	126	60-140
1,3,5-Trimethylbenzene	ND	168	1.2	125	-	134	60-140
Vinyl Acetate	ND	112	9.0	90	-	125	60-140
Vinyl Chloride	ND	63.1	0.65	65	-	97	60-140
Xylenes, Total	ND	412	3.3	330	-	125	60-140

QA/QC Officer

Client:	Advanced GeoEnvironmental, Inc.	WorkOrder:	1702A13
Date Prepared:	2/21/17	BatchID:	134551
Date Analyzed:	2/21/17	Extraction Method:	TO15
Instrument:	GC29	Analytical Method:	TO15
Matrix:	SoilGas	Unit:	$\mu g/m^3$
Project:	Swiss Valley Cleaners	Sample ID:	MB/LCS-134551

	QC Sur	nmary Repor	t for TO15				
Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
Surrogate Recovery							
1,2-DCA-d4	521.9	494		500	104	99	70-130
Toluene-d8	524.4	510		500	105	102	70-130
4-BFB	484	486		500	97	97	70-130

R ___QA/QC Officer

McCampbell Analytical, Inc. ^{1534 Willow Pass Rd} Pittsburg, CA 94565-1701				CHAIN WorkOrder:			RECORD	Page	e 1 of 1
(925) 252-9262	WaterTrax	WriteOn	EDF		EQuIS	✓ Email	HardCopy	ThirdParty	_J-flag
Report to: Daniel Villanueva	Email: d	lvillanueva@adv	/geoenv.com	Bill	to: Erica		Req	uested TATs:	2 days; 5 days;
Advanced GeoEnvironmental, Inc. 837 Shaw Road Stockton, CA 95215 (209) 467-1006 FAX: (209) 467-1118	cc/3rd Party: PO: ProjectNo: S	Swiss Valley Cle	aners	8	Advanced Geol 337 Shaw Road Stockton, CA 9 ap@advgeoen\	1 5215	Dat	te Received: te Logged:	02/21/2017 02/21/2017

								Requested Tests (See legend below)									
Lab ID	Client ID	Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12	
1702A13-001	SS-2	SoilGas	2/20/2017 11:46			Α	Α	Α	А								
1702A13-002	SS-3	SoilGas	2/20/2017 10:29			Α	Α	А	Α								
1702A13-003	SS-4	SoilGas	2/20/2017 11:07			Α	Α	А	Α								
1702A13-004	Un-Used Summa	SoilGas	<not provided=""></not>		А					А							

Test Legend:

1	PRUNUSEDSUMMA
5	TO15-LC8260_SOIL(UG/M3)
9	

2	TO15_Scan-SIM_SOIL(UG/M3)
6	UNUSED_SUMMA
10	

3	TO15-8260_SOIL(UG/M3)
7	
11	

4	TO15-LC_SOIL(UG/M3)
8	
12	

Prepared by: Maria Venegas

The following SampIDs: 001A, 002A, 003A contain testgroup TO15_SG(UG/M3).

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

"When Quality Counts"

WORK ORDER SUMMARY

Client Name Client Conta		ED GEOENVIRONN anueva	MENTAL, INC.	P	roject: Swiss	Valley Cleaners				• k Order: 1702A13)C Level: LEVEL 2
Contact's Email: dvillanueva@advgeoenv.com			C	omments:					Logged: 2/21/2017	
		□WaterTrax	WriteOn	EDF	Excel	☐Fax ✔Em	ail 🔤 HardC	opyThirdPart	у 🗌	J-flag
Lab ID	Client ID	Matrix	Test Name		Containe /Composi		ntive De- chlorinated	Collection Date & Time	ТАТ	Sediment Hold SubOut Content
1702A13-001A	SS-2	SoilGas	TO15 for Soil V	vapor (Scan-SIM)	1	1L Summa		2/20/2017 11:46	2 days	
1702A13-002A	SS-3	SoilGas	TO15 for Soil V	vapor (Scan-SIM)	1	1L Summa		2/20/2017 10:29	2 days	
1702A13-003A	SS-4	SoilGas	TO15 for Soil V	vapor (Scan-SIM)	1	1L Summa		2/20/2017 11:07	2 days	
1702A13-004A	Un-Used Summa	SoilGas	Unused Summa		1	1L Summa		<not provided=""></not>	5 days	

NOTES: - STLC and TCLP extractions require 2 days to complete; therefore, all TATs begin after the extraction is completed (i.e., One-day TAT yields results in 3 days from sample submission).

- MAI assumes that all material present in the provided sampling container is considered part of the sample - MAI does not exclude any material from the sample prior to sample preparation unless requested in writing by the client.

Summa COC

McCAMPBELL ANALYTICAL, INC.						CHAIN OF CUSTODY RECORD														
1534 Willow Pass Rd. Pittsburg, Ca. 94565-1701														4						
Telephone: (877) 252-9262 / Fax: (925) 252-9269						J-Flag / MDL ESL					Cleanup Approved				STD Quote # Bottle Order #					
www.mccampbell.com main@mccampbell.com						Delivery Format: GeoTracker EDF					PDF EDD			_	Write On (DW) EQuIS					
Report To: Daniel Villanueva Bill To:						Analysis Requested Helium Shroud SN#						EQUIS								
Company: Advanced Geo Environmental						T	1		T		Ī	T	1	Т		Tienun			k Default is	IDA
Email: DVillannevap ADVGEOENV.COM								3	hylene		circle	. the	k 70 Norflorane, 1,1- n ³		d	Notes	Notes: Please specify units if different than			
Email: Tele:								naldehyde	Ethane, Eth		romatic (<i>¥</i>				default: VOCs is reported in $\mu g/m^3$, fixed is reported in %.				
Project Name/#: Swiss Valley Cleaners																				
Project Location: PO #					- (r	(_f m		For	hane,)) %	%	Vor A	%	iorflo 3		- 1					
Sampler Signature: 7/	A				VOCs TO-15 (µg/m ³) - See Notes	8010 by TO-15 (μg/m ³)	ΓΡΗ(g) (μg/m ³)	LEED: (inc. 4PCH, Formaldehyde, CO, Total VOCs)	2, Metha ne, CO)	(, N ₂)	APH: Aliphatic and/or Aromatic (circle onc) µg/m ³	Helium Leak Check %	Check (PA) oethane) µg/1		h		Matrix			
SAMPLE ID Samp	ling Start	End	Canister SN#	Sample Kit / Manifold #					rotar V.O.Cs) Fixed Gas (CO., Methane, Ethane, Ethylene, Acetylene, Propane, CO) %	Fixed Gas: (O ₂ , N ₂)					ŀ	s			Canister Pressure / Vacuum	
Location / Field Point Date	Time	ime Time														Soilgas	Indoor Air		Tressure	/ vacuum
20 0			31146 500 600		- 0 <u>7</u>	801	ITPI	LEI Tots	Fixe	Fixe	APH: /	Heli	Leak diftur			Sc	Ind		Initial	Final
35-7 Z12011	1133	1146			N								X			X			28	4
55-3 N	1015	1029	0899-2527	316-813	X								X		_	X			28.5	4
55-4 n	1050	1127	6205-746	3167-774	X								x		+	V				
				5101 001	1								~		+	2			29	9
					-			-							+					
					<u> </u>															
																			1	
															+					
															+					
								-							+	-+		-+		
															\rightarrow					
**MAI aliante MUST die de		100.920 Mills								2										
**MAI clients MUST disclose any dangerous chemicals } staff. Non-disclosure incu	nown to be j rs an immed	present in the	eir submitted samples i rcharge and the client i	n concentrations that n s subject to full legal is	nay cau ahility	se imm	ediate h	arm or	serious	future	health o	endang	erment a	s a result	t of bri	ief, glo	ved, op	en air, s	ample handli	ng by MAI

Relinquished By / Company Name	Data	T ¹				
211 221 102	Date	Time	Received By / Company Name	Date	Time	Comments / Instructions
ALL ALE	2-21-17	1315	Maria art	2/2/17	1215	
		1005	eriana 00	404/11	1510	
				-		

Page ___ of ____

Sample Receipt Checklist

Client Name:	Advanced GeoEnvir	Date and Time Received				
Project Name:	Swiss Valley Cleane	ers			Date Logged: Received by:	2/21/2017 Maria Venegas
WorkOrder №:	1702A13	Matrix: <u>SoilGas</u>			Logged by:	Maria Venegas
Carrier:	Client Drop-In					C C
		Chain of C	ustody	(COC) Infor	mation	
Chain of custody	present?	<u>enam er e</u>	Yes			
-	signed when relinguis	bod and received?	Yes			
	0					
	agrees with sample la	abeis?	Yes	 ✓ 		
	d by Client on COC?		Yes		No 🗌	
Date and Time of	f collection noted by C	lient on COC?	Yes	✓	No	
Sampler's name	noted on COC?		Yes	✓	No	
		Sample	e Rece	eipt Informati	on	
Custody seals int	act on shipping conta	iner/cooler?	Yes		No 🗌	NA 🗹
Shipping containe	er/cooler in good conc	lition?	Yes	✓	No 🗌	
Samples in prope	er containers/bottles?		Yes	✓	No	
Sample containe	rs intact?		Yes	✓	No	
Sufficient sample	volume for indicated	test?	Yes	✓	No	
		Sample Preservation	on and	Hold Time (H	IT) Information	
All samples recei	ved within holding tim	e?	Yes		No 🗌	
Sample/Temp Bla	ank temperature			Temp:		NA 🗹
Water - VOA vial	s have zero headspac	e / no bubbles?	Yes		No 🗌	NA 🗹
Sample labels ch	ecked for correct pres	servation?	Yes		No	
pH acceptable up	oon receipt (Metal: <2;	522: <4; 218.7: >8)?	Yes		No 🗌	NA 🗹
Samples Receive	ed on Ice?		Yes		No 🖌	
UCMR3 Samples	_	upon receipt for EPA 522?	Yes		No 🗌	
	ested and acceptable	upon receipt for EPA 218.7,				

Comments: