PERJURY STATEMENT

Subject: 1395 MacArthur Boulevard, San Leandro, California Site Assessment Report

I certify, under penalty of law, that I have personally examined and am familiar with the information submitted in this document and all attachments, and that, based on my inquiry of those individuals immediately responsible for obtaining the information, I believe the information is true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment.

W (Agent)

Mr. William Mathews Brooks 4725 Thornton Avenue Fremont, CA, 94536

14 July 2014 AGE Project No. 12-2461

PREPARED FOR:

Mr. William Matthew Brooks ARDENBROOK, INC.

PREPARED BY:

Advanced GeoEnvironmental, Inc.

Stockton • San Francisco Bay Area • Monterey • Los Angeles • Spokane • Reno •

Dallas (800) 511-9300 www.advgeoenv.com

By Alameda County Environmental Health at 8:47 am, Jul 15, 2014

Site Assessment Report SWISS VALLEY CLEANERS 1395 MacArthur Boulevard, San Leandro, California

14 July 2014 AGE-Project No. 12-2461

Advanced GeoEnvironmental, Inc.

Stockton • San Francisco Bay Area • Monterey • Los Angeles • Spokane • Reno • Dallas (800) 511-9300 www.advgeoenv.com

PREPARED BY:

7/lla

Daniel J. Villanueva Project Geologist

PROJECT MANAGER:

M B.

Daniel J. Villanueva Project Geologist

REVIEWED BY:

No. 7473

William R. Little Senior Project Geologist California Professional Geologist No. 7473

TABLE OF CONTENTS

SECTION	PAGE
1.0. INTRODUCTION	1
2.0. PROCEDURES	
2.1. SOIL PROBE BORING ADVANCEMENT	
2.2. SOIL-VAPOR SAMPLE COLLECTION	
2.3. SOIL SAMPLE COLLECTION	2
2.4. EQUIPMENT DECONTAMINATION	3
2.5. BOREHOLE ABANDONMENT	3
3.0. FINDINGS	3
3.1. ANALYTICAL RESULTS OF SOIL-VAPOR SAMPLES	3
3.2 STRATIGRAPHY AND SUMMARY OF PID MEASUREMENTS	4
3.3. ANALYTICAL RESULTS OF SOIL SAMPLES	4
4.0. SUMMARY/CONCLUSIONS	5
5.0. RECOMMENDATIONS	6
	-
6.0. LIMITATIONS	6
	•

TABLE OF CONTENTS

FIGURES

Figure 1 – Location Map Figure 2 – Site Plan Figure 3 – Regional Site Plan Figure 4 – Lateral Extent of PCE Impact to Soil Vapor – 5 feet bsg Figure 5 – Adsorbed PCE – 1.5-2.0 feet bsg Figure 6 – Adsorbed PCE – 2.5-3.0 feet bsg Figure 7 – Adsorbed PCE – 4.5-5.0 feet bsg Figure 8 – Proposed Soil Vapor Well

TABLES

- Table 1 Analytical Results of Soil-Vapor Samples
- Table 2 Soil Analytical Results

APPENDICES

Appendix A – ACEHS Directive Letter

- Appendix B Alameda County Public Works and City of San Leandro Permits
- Appendix C Boring Logs
- Appendix D TEG Laboratory Analytical Report

1.0. INTRODUCTION

Advanced GeoEnvironmental, Inc. (AGE) has prepared this, *Site Assessment Report,* for the site located at 1395 MacArthur Boulevard, San Leandro, California (site). The scope of work included the advancement of twenty-three (23) soil borings for collection of soil samples and twelve (12) soil borings for collection of soil-vapor samples to assess chlorinated hydrocarbon impact resulting from historic dry-cleaning operations conducted at the site. The location of the site and the surrounding area are illustrated in Figure 1; a detailed map of the site is included as Figure 2. A map showing a regional view of the site, which includes site structures and boring locations, is included as Figure 3.

2.0. PROCEDURES

Soil boring advancement and sampling procedures were outlined in the AGE-prepared, *Site Assessment and Soil-Vapor Extraction Pilot Test Work Plan,* dated 20 January 2014. Procedures were further modified by the Alameda County Environmental Health Services (ACEHS) directive letter, dated 11 March 2014 (Appendix A). Borings were advanced at the site under Alameda County Public Works Agency - Water Resources permit and City of San Leandro encroachment permits, which have been included in Appendix B.

2.1. SOIL PROBE BORING ADVANCEMENT

Between 28 April 2014 and 07 May 2014, AGE advanced twelve (12) soil probe borings for collection of soil-vapor samples at the site, utilizing a limited access direct-push power probe, or a van-mounted direct-push probing unit. All borings were advanced to a depth of five feet below surface grade (bsg) for the collection of soil-vapor samples.

Additionally, between 28 April 2014 and 07 May 2014 a total of twenty-three (23) soil borings were advanced at the site for collection of soil samples, utilizing a limited access direct-push power probe, van-mounted direct-push probing unit or hand auger. All borings were advanced to a total depth of five feet bsg.

The locations of the soil and soil-vapor borings are illustrated in Figures 2 and 3.

14 July 2014 AGE Project No. 12-2461 Page 2 of 6

2.2. SOIL-VAPOR SAMPLE COLLECTION

Soil-vapor samples were collected from borings VP-41 through VP-52 at depths of five feet bsg utilizing the limited access or standard access direct-push drilling rig and temporary vapor implants.

For vapor samples collected using the direct-push probing units, 1¹/₄ -inch rods were used to drive the rods to total depth. Once total depth was reached, the rods were pulled and vapor implants with ¹/₄-inch Teflon tubing were used to create a temporary sampling point. Once the sampling implant was in place, clean #2/12 sand was used to fill the void of the area surrounding the implant to a depth of approximately 4 feet bsg. The rest of the void space between 4 feet bsg and ground surface was then filled with granular bentonite and hydrated in order to prevent ambient air and tracer gas from intruding into the subsurface sampling points.

All samples were collected following a minimum of 20 minutes equilibration time. Further, all samples were collected following three purge volumes (previously determined by step sampling at the first vapor sampling point VP-1; samples collected and analyzed at 1, 3 and 10 purge volumes).

All samples were collected by a representative of TEG Northern California (TEG) and analyzed on-site in a mobile laboratory to provide real time results of subsurface conditions at the site. All vapor samples collected were analyzed for volatile organic compounds by EPA method 8260B and leak check compound 1,1-difluroethane (1,1-DFE).

2.3. SOIL SAMPLE COLLECTION

Soil samples were collected continuously, between 0.5 and 5 feet bsg; soil samples were collected from 0.5 to 2.0 feet bsg, from 2.0 to 4.0 feet bsg and from 4.0 to 5.0 feet bsg using utilizing a 1.5-inch Geoprobe soil sampling assembly loaded with a two-foot acetate liner, with the exception of B38, which were hand-packed at each sampling depth following boring by hand auger. After sample collection, all soil was evaluated at half-foot intervals from 0.5 to 5 feet bsg by extruding the soil into zip-lock bags. Soil was first visually classified in accordance with the Unified Soil Classification System (USCS) and recorded on a boring log. Additionally, soil samples were field screened for the presence of organic vapors using an organic vapor meter (OVM), equipped with a photo-ionization detector (PID). After field evaluation and screening, selected samples were hand delivered to the mobile laboratory for immediate analysis.

Boring logs documenting field observations are included in Appendix C.

2.4. EQUIPMENT DECONTAMINATION

Prior to use, all subsurface tools for sample collection were thoroughly rinsed with clean tap water after being washed with a solution of Alconox. All probing rods were cleaned prior to advancement at each probe boring location.

2.5. BOREHOLE ABANDONMENT

Following soil boring activities at B23 through B45, each borehole was permanently sealed to prevent the vertical migration of contaminants. Under Alameda County oversight, the boreholes were backfilled with Portland type II cement slurry from the total depth to surface grade. For all vapor borings (VP41 through V52), the tubing was removed, and bentonite crumbles were used to fill the boreholes from total depth to near surface grade. Once in place, the crumbles were hydrated and the surfaces were completed with rapid setting concrete.

3.0. FINDINGS

Chlorinated hydrocarbon impact was quantified based on laboratory analysis of soilvapor and soil samples collected at the site during the April 2014 and May 2014 investigations.

3.1. ANALYTICAL RESULTS OF SOIL-VAPOR SAMPLES

A total of fifteen (15) soil-vapor samples were collected from borings advanced between 28 April and 07 May 2014; duplicate analysis was conducted from borings VP-43, VP-46 and VP-52. All soil-vapor samples were analyzed for volatile organic compounds by EPA method 8260B and leak check compound 1,1-DFE.

Tetrachloroethene (PCE) was detected in all fifteen soil-vapor samples at concentrations ranging between of 570 micrograms per cubic meter (μ g/m³) in VP-50 and 38,000 μ g/m³ in VP-44.

1,1-trichloroethene (1,1-TCE) was detected in two of the fifteen soil-vapor samples collected at concentrations of 210 μ g/m³ (VP-46) and 170 μ g/m³ (VP-46 dup).

No other analytes were reported in the analyzed soil-vapor samples. Analytical results of soil-vapor samples are summarized in Table 1. A map showing the current extent of PCE concentrations in soil-vapor at five feet bsg is included as Figure 4. The laboratory

14 July 2014 AGE Project No. 12-2461 Page 4 of 6

report (TEG Project# 40428E), QA/QC reports and chain of custody forms are included in Appendix D. Laboratory results will be uploaded to the State Geotracker database upon receipt.

3.2 STRATIGRAPHY AND SUMMARY OF PID MEASUREMENTS

A total of twenty-three (23) borings were advanced within the subject facility and areas surrounding the facility during the April and May 2014 subsurface investigation. Based on field observations, fill material consisting of sand, silt, clay and gravel were generally observed just below the slab at a depth of 0.5 feet bsg to a maximum depth of 2 feet bsg, depending on the location of the boring. Thereafter, lithology was generally found to be fine grained silts and clays from 2 to 5 feet bsg; intermittent layers of silty sand were also encountered during boring advancement. All soils were generally dry to moist and clays were observed to be either slightly plastic or plastic.

During sample collection no odors or soil staining were observed in any of the samples collected. Organic vapor was detected at low concentrations in selected borings at concentrations ranging between 0.1 and 17.7 parts per million volume (ppmv).

Boring logs summarizing findings from the April and May 2014 investigation are included in Appendix C. Boring logs were uploaded to the State Geotracker database under confirmation numbers 1149223089, 6192420303, 6934312343, 8906592667, 2568673312, 2497580826, 2458988037, 6581001043, 9410849034, 9952146182, 5475837051, 7421746432, 1470155835, 2965224504, 5936378240, 1792591154, 9890649020, 5682557582, 3252022922, 8812150478, 2185783147, 7745612442, and 9790926098.

3.3. ANALYTICAL RESULTS OF SOIL SAMPLES

A total of seventy-three (73) soil samples were submitted for laboratory analysis during the April and May 2014 investigation. PCE was detected in sixty-two (62) of the seventy-three (73) samples collected at concentrations ranging from 0.0052 milligrams per kilogram (mg/kg; B45-1.5-2.0 and B45-2.5-3.0) to 0.12 mg/kg (B23-2.5-3.0).

No other constituents of concern were reported in samples collected during the April and May 2014 investigation. Soil analytical results are summarized in Table 2. Maps illustrating the lateral extent of adsorbed PCE from 1.5 to 2.0 feet bsg, 2.5 to 3.0 feet bsg and from 4.5 to 5.0 feet bsg are included as Figures 5, 6 and 7. The laboratory report (TEG Project# 40428E), QA/QC reports and chain of custody forms are included in Appendix D. Laboratory results will be uploaded to the State Geotracker database upon receipt. 14 July 2014 AGE Project No. 12-2461 Page 5 of 6

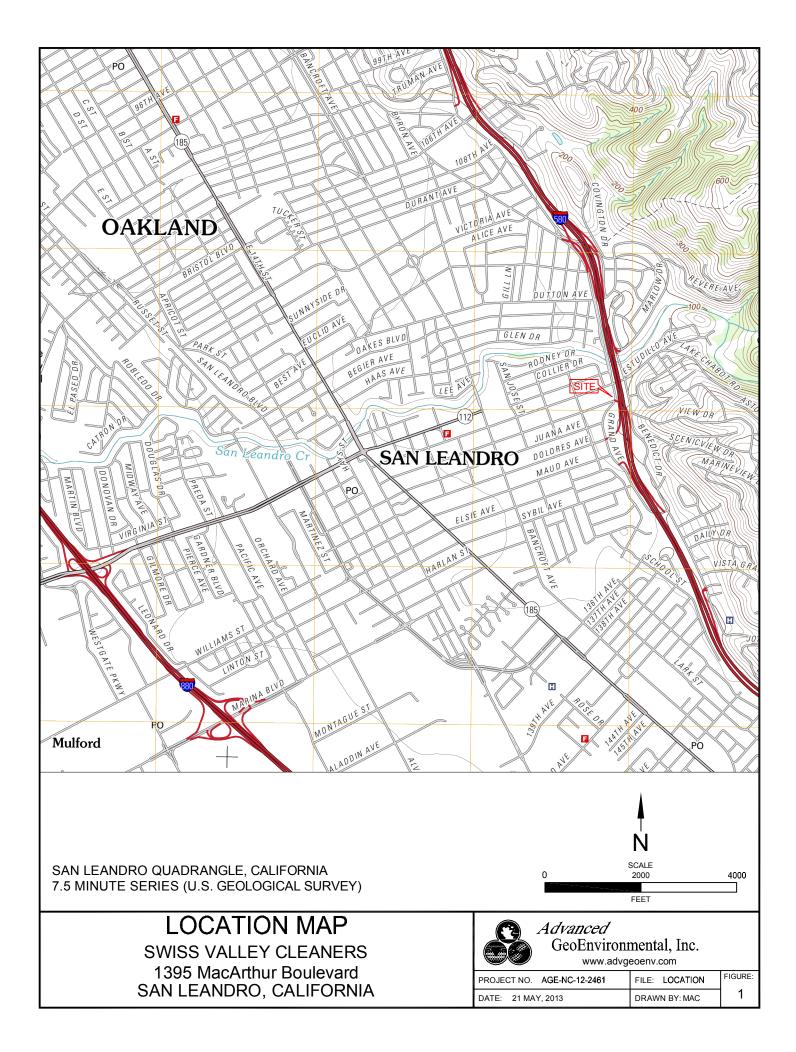
4.0. SUMMARY/CONCLUSIONS

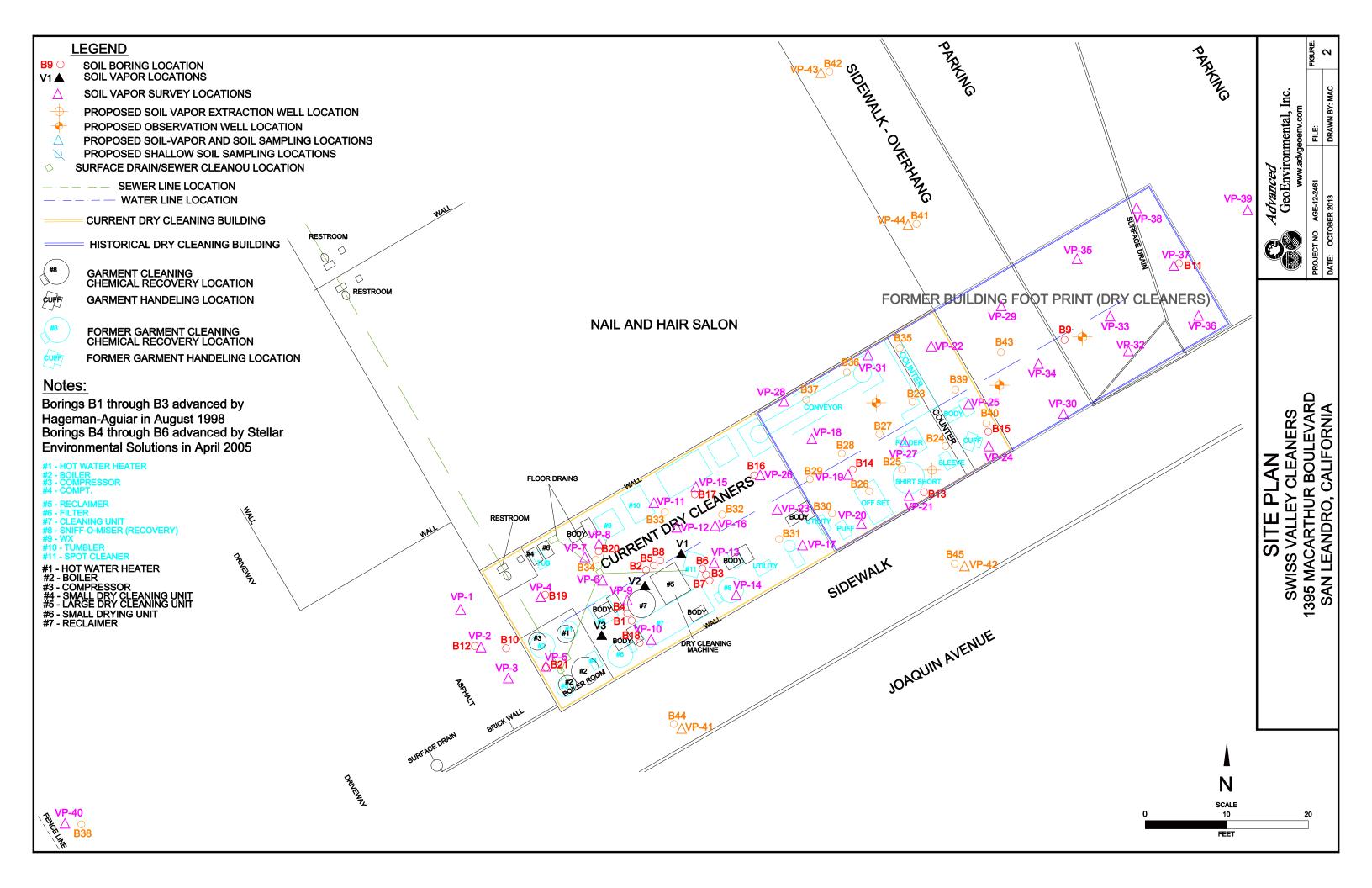
Based upon the findings of this investigation, AGE concludes:

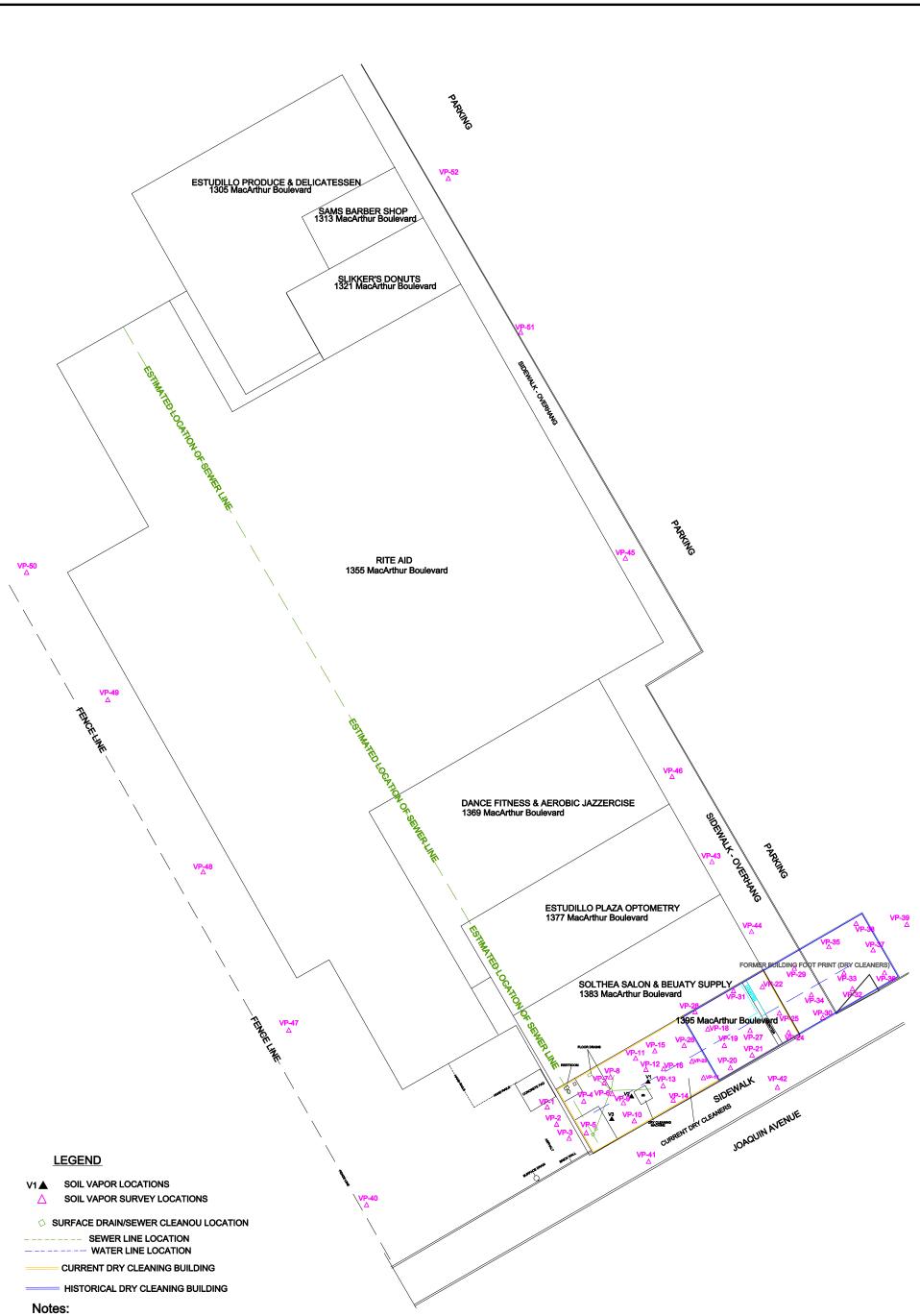
- A total of twelve (12) borings were advanced at the site for collection of soil-vapor samples and a total twenty-three (23) borings were advanced for soil sample collection. Borings for soil-vapor collection were advanced around the parameter of the entire strip mall and soil samples were generally collected within the building and areas surrounding the site building (Figures 2 and 3);
- Based on soil samples collected during the April and May 2014 investigation fill
 material consisting of mixtures of sand, silt, clay and gravel were encountered
 from below the concrete slab to depths as great as 2 feet bsg. In general, fine
 grained silts and clays were observed from 2 feet bsg to the total sampling depth
 of 5 feet bsg (Appendix C).
- A total of fifteen soil-vapor samples were collected around the parameter of the Estudillo Plaza Shopping Center strip-mall during the April and May 2014 investigation (Figure 3). PCE was detected in all fifteen soil-vapor samples, with concentrations detected in the majority of the samples exceeding San Francisco Bay Regional Water Quality Control Board Environmental Screening Levels (ESLs) for a commercial setting (except samples VP-45, VP-47 and VP-50). Based on samples collected to date the "core" area/source area has been demonstrated to be located near the eastern edge of the subject facility (formerly the western edge of former cleaners). The PCE-soil-vapor plume is largely undefined in all directions surrounding the source area, but appears to attenuate significantly laterally in all directions away from the source area. Additional assessment does appear warranted at this time to the west and east of the site building (Figure 4).
- Based on soil samples collected at the site, during the April and May 2014, PCE impact was generally not detected in samples collected just below slab grade. However, adsorbed PCE was generally detected at low concentrations in all samples collected from 1.5 to 5.0 feet bsg. Based on all soil samples collected to date, the PCE source continues to be distributed under the eastern edge of the current building layout (formerly the western edge of the former building layout; Figures 5 through 7).
- Based on soil samples collected to date, adsorbed PCE impact is generally most concentrated at depths between 1.5 to 5 feet bsg and attenuates vertically. Adsorbed PCE impact is currently undefined to the north of the subject site building and to the west of boring B38 (Figures 5 through 7). Additional shallow soil assessment does appear warranted at this time to define the lateral limits of the adsorbed PCE.

 Adsorbed PCE concentrations reported during the investigation are below residential and commercial ESLs. However, adsorbed PCE impact at the site appears to be generating elevated soil-vapor concentrations in shallow vadose zone soils beneath the subject site and likely within the building structure.

5.0. **RECOMMENDATIONS**

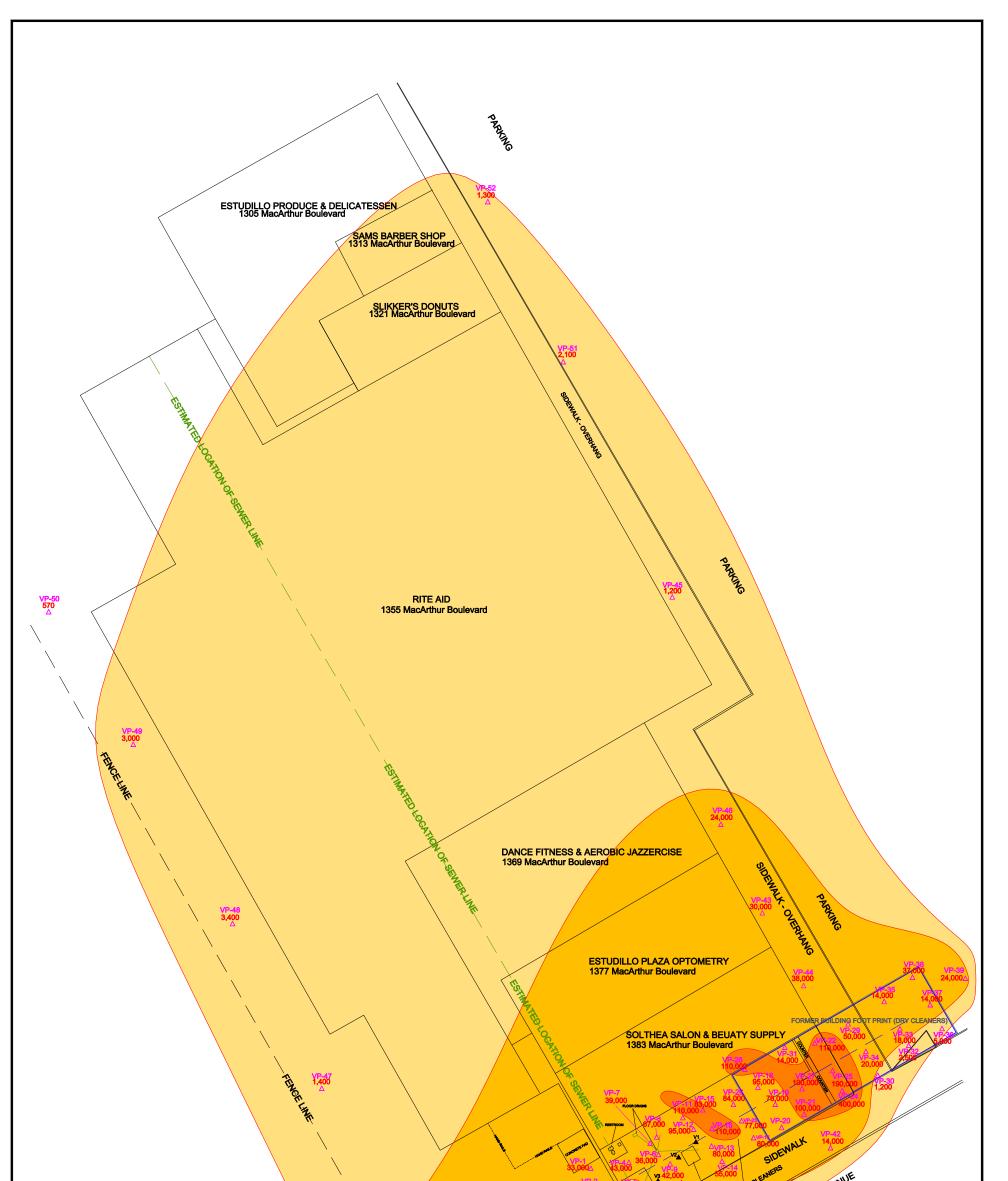

Based on the results of this investigation, AGE recommends the following:

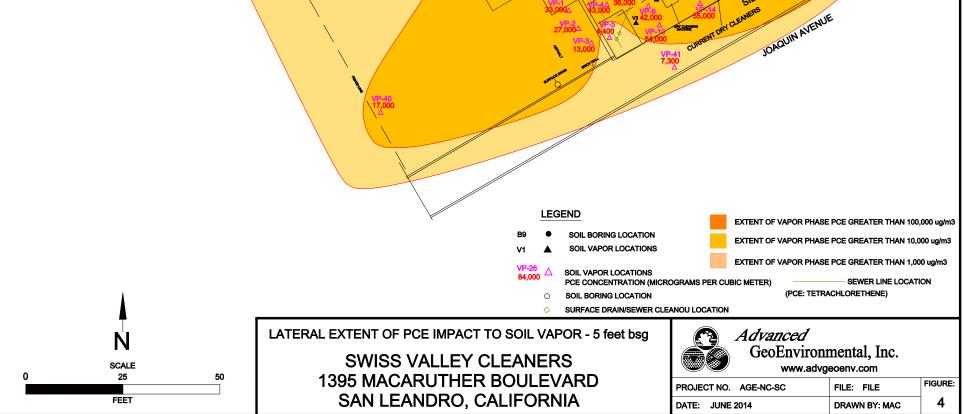

- Installation of the proposed soil vapor extraction (SVE) wells as proposed in the AGE prepared, Site Assessment and Soil Vapor Extraction Pilot Test Work Plan, dated 20 January 2014. The SVE pilot test should be conducted without delay to determine the effectiveness of active soil remediation on residual known impact within the site subsurface. Furthermore, modification of the well screens, based on the residual known impact to subsurface sites appears warranted at this time. As such, AGE recommends that all proposed wells in the above referenced work plan be installed to total depths of seven feet bsg, instead of the original 15 bsg. Furthermore, the screened section of the well should be built from the proposed base of 7 feet bsg to a depth of 2 feet bsg. The proposed modified well SVE construction details as proposed are included in Figure 8.
- Preparation of a sub-slab, soil-vapor sampling-network installation work plan. At this time it appears necessary to install sub-slab vapor wells to evaluate vapor accumulation below the slab in, at minimum, locations within the dry cleaning suite. The work plan will provide procedures for the well installations and future sampling of the wells.
- Preparation of an additional site assessment work plan to define the lateral limits of PCE-impacted soil and soil-vapor at the site. The work plan should details advancement of borings to the north and east of the dry cleaning suite, for soil and soil-vapor sample collection.

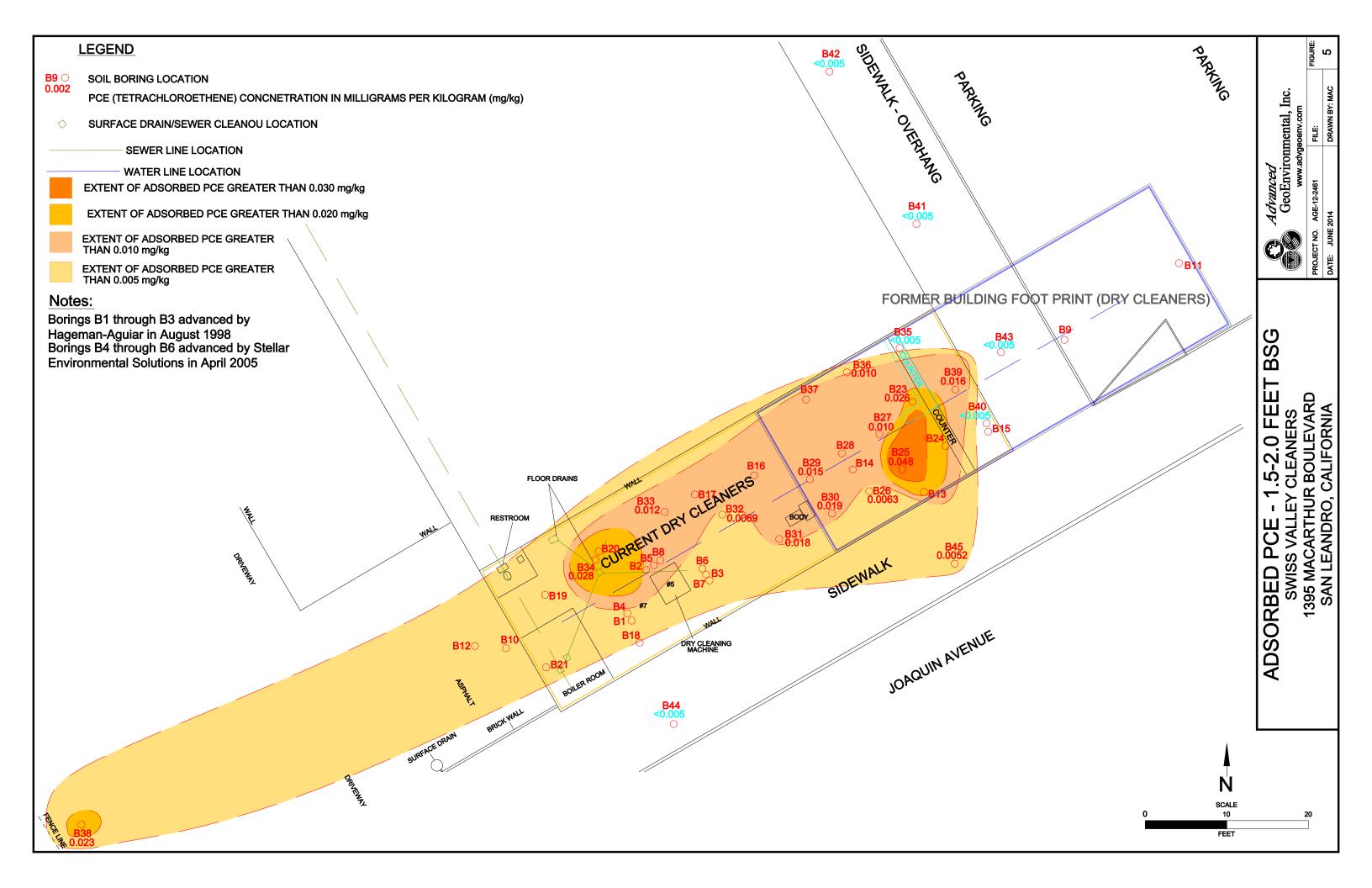

6.0. LIMITATIONS

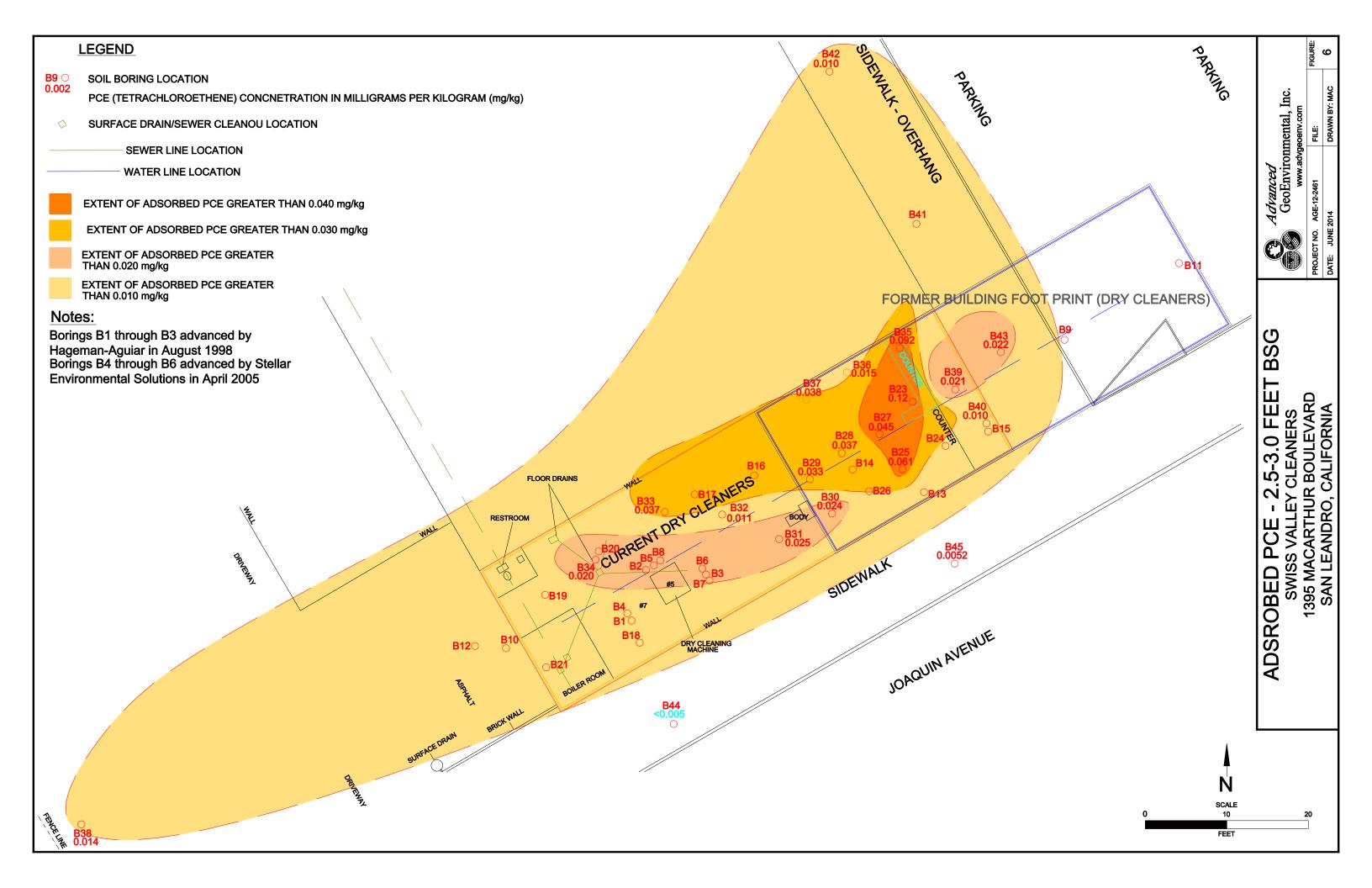
Our professional services were performed using the degree of care and skill ordinarily exercised by environmental consultants practicing in this or similar localities. The findings were based mainly upon analytical results provided by an independent laboratory. Evaluations of the geologic/ hydrogeologic conditions at the site for the purpose of this investigation are made from a limited number of available data points (i.e. soil borings, soil samples and soil-vapor samples) and subsurface conditions may vary away from these data points. No other warranty, expressed or implied, is made as to the professional recommendations contained in this report.

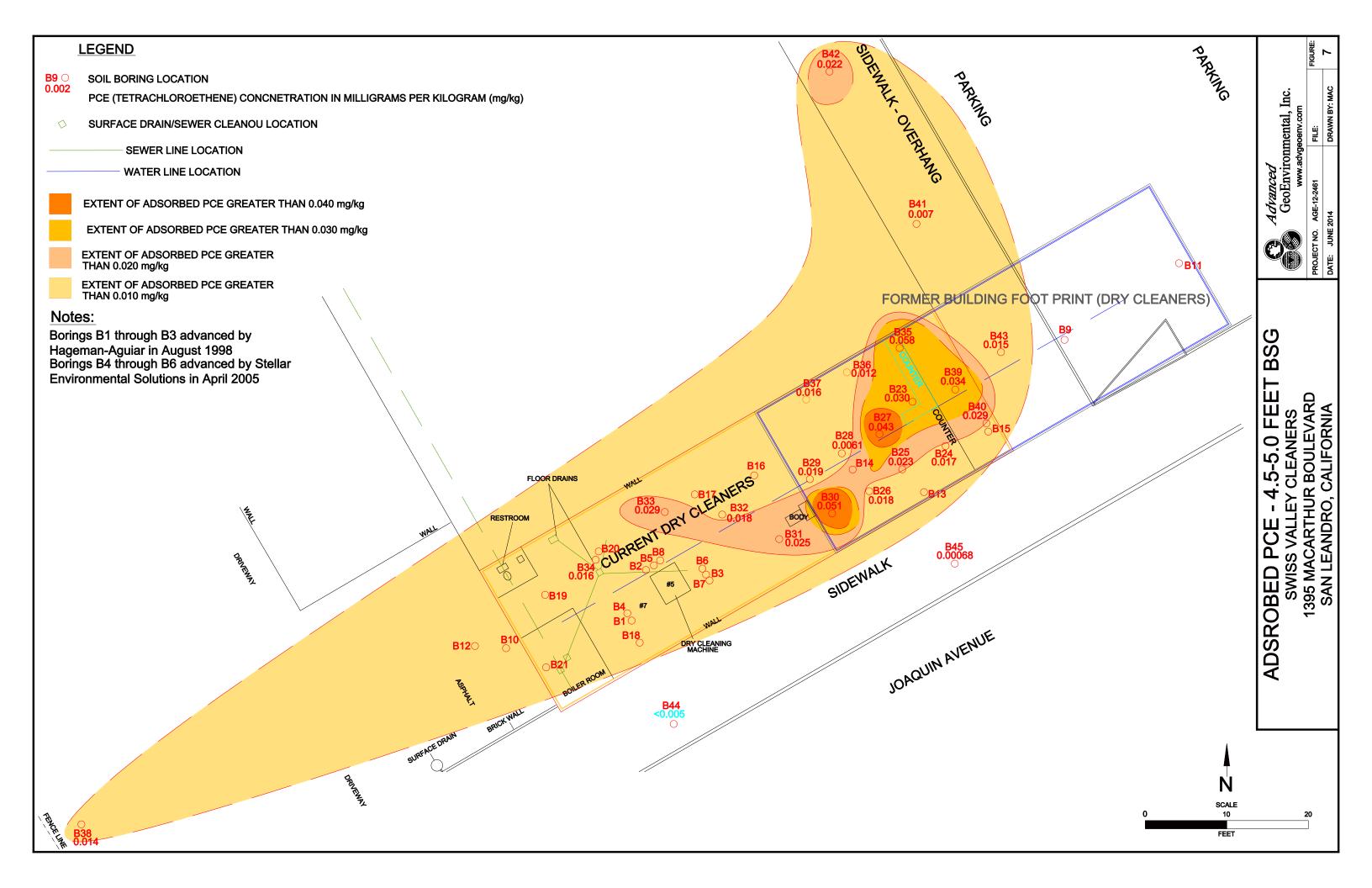
FIGURES

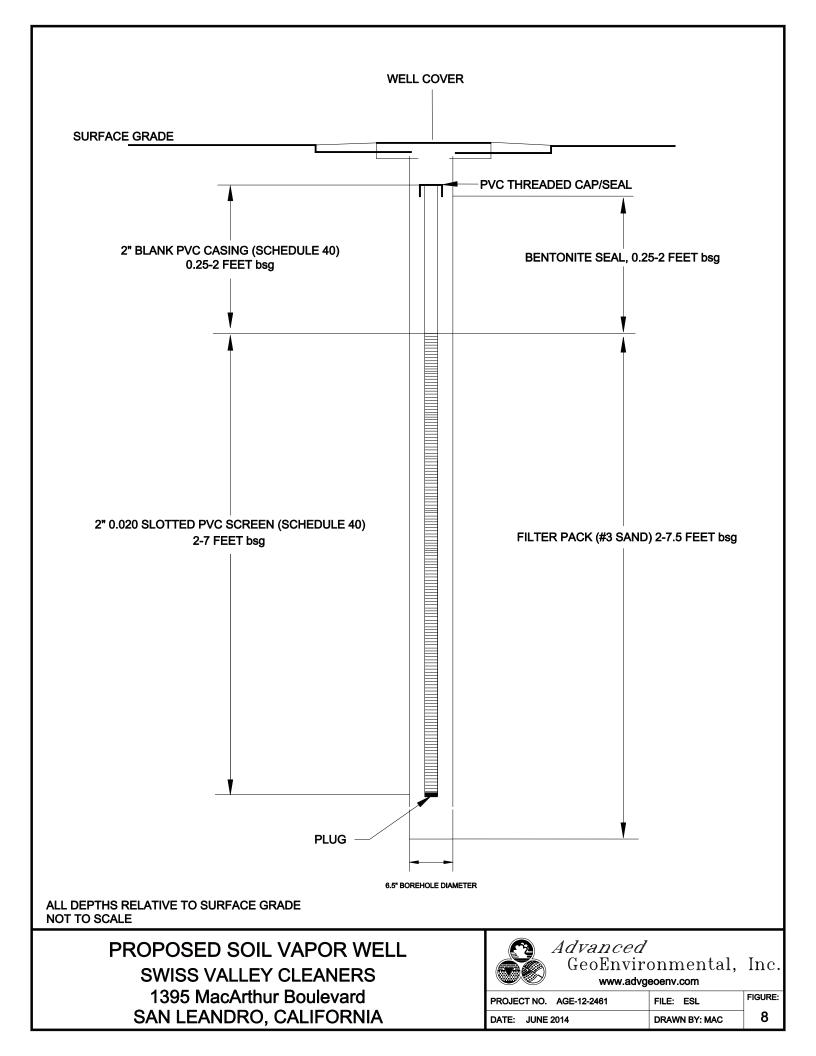





0


Borings B1 through B3 advanced by Hageman-Aguiar in August 1998 Borings B4 through B6 advanced by Stellar Environmental Solutions in April 2005


	50	REGIONAL SITE PLAN SWISS VALLEY CLEANERS	Advanced GeoEnviron www.adv	mental, Inc. geoenv.com	
25	50	1395 MACARUTHER BOULEVARD	PROJECT NO. AGE-NC-SC	FILE: FILE	FIGURE:
FEET		SAN LEANDRO, CALIFORNIA	DATE: MAY 2014	DRAWN BY: MAC	3



ANALYTICAL RESULTS OF SOIL-VAPOR SAMPLES Swiss Valley Cleaners 1395 MacArthur Boulevard, San Leandro, California (micrograms per cubic meter)

					EPA I	Method 826	0B	ſ	
Sample ID	Date	Depth (feet bsg)	PCE	TCE	1,1-DCE	Trans 1,2-DCE	Cis 1,2-DCE	NC	Chloroform
V-1	05-08-2013	5	29,000	<2	<2	<2	<2	<2	<1
V-2	05-08-2013	5	23,000	<2	<2	<2	<2	<2	<1
V-3	05-08-2013	5	15,000	<2	<2	<2	<2	<2	<1
VP-1 (1 puge volume)	10-15-2013	5	33,000	<100	<100	<100	<100	<100	<100
VP-1 (3 purge volumes)	10-15-2013	5	33,000	<100	<100	<100	<100	<100	<100
VP-1 (10 purge volumes)	10-15-2013	5	33,000	<100	<100	<100	<100	<100	<100
VP-2	10-15-2013	5	27,000	<100	<100	<100	<100	<100	<100
VP-3	10-15-2013	3	13,000	<100	<100	<100	<100	<100	<100
VP-4	10-15-2013	5	43,000	<100	<100	<100	<100	<100	<100
VP-5	10-15-2013	5	4,400	<100	<100	<100	<100	<100	240
VP-6	10-15-2013	5	36,000	<100	<100	<100	<100	<100	<100
VP-7	10-15-2013	5	39,000	<100	<100	<100	<100	<100	<100
VP-7 (dup)	10-15-2013	5	37,000	<100	<100	<100	<100	<100	<100
VP-8	10-15-2013	5	67,000*	<100	<100	<100	<100	<100	<100
VP-9	10-16-2013	5	42,000	<100	<100	<100	<100	<100	<100
VP-10	10-16-2013	5	54,000*	<100	<100	<100	<100	<100	<100
VP-11	10-16-2013	5	110,000	<100	<100	<100	<100	<100	<100
VP-12	10-16-2013	5	95,000	<100	<100	<100	<100	<100	<100

ANALYTICAL RESULTS OF SOIL-VAPOR SAMPLES Swiss Valley Cleaners 1395 MacArthur Boulevard, San Leandro, California (micrograms per cubic meter)

	EPA Method 8260B								
Sample ID	Date	Depth (feet bsg)	PCE	TCE	1,1-DCE	Trans 1,2-DCE	Cis 1,2-DCE	NC	Chloroform
VP-13	10-16-2013	5	80,000	<100	<100	<100	<100	<100	<100
VP-14	10-16-2013	5	55,000	<100	<100	<100	<100	<100	<100
VP-14 (dup)	10-16-2013	5	57,000	<100	<100	<100	<100	<100	<100
VP-15	10-16-2013	5	83,000	<100	<100	<100	<100	<100	<100
VP-16	10-16-2013	5	110,000	<100	<100	<100	<100	<100	<100
VP-17	10-16-2013	5	80,000	<100	<100	<100	<100	<100	<100
VP-18	10-16-2013	5	95,000	<100	<100	<100	<100	<100	<100
VP-19	10-16-2013	5	76,000	<100	<100	<100	<100	<100	<100
VP-20				not c	ompleted				
VP-21	10-17-2013	5	100,000	<100	<100	<100	<100	<100	<100
VP-22	10-17-2013	5	110,000	<100	<100	<100	<100	<100	<100
VP-23	10-17-2013	5	77,000	<100	<100	<100	<100	<100	<100
VP-24	10-17-2013	3	400,000	<100	<100	<100	<100	<100	<100
VP-25	10-17-2013	5	190,000	<100	<100	<100	<100	<100	<100
VP-26	10-17-2013	5	84,000	<100	<100	<100	<100	<100	<100
VP-27	10-17-2013	5	100,000	<100	<100	<100	<100	<100	<100
VP-28	10-17-2013	5	110,000	<100	<100	<100	<100	<100	<100
VP-29	10-17-2013	5	50,000	<100	<100	<100	<100	<100	<100

ANALYTICAL RESULTS OF SOIL-VAPOR SAMPLES Swiss Valley Cleaners 1395 MacArthur Boulevard, San Leandro, California (micrograms per cubic meter)

			EPA Method 8260B						
Sample ID	Date	Depth (feet bsg)	PCE	TCE	1,1-DCE	Trans 1,2-DCE	Cis 1,2-DCE	NC	Chloroform
VP-30	10-17-2013	5	1,200	<100	<100	<100	<100	<100	<100
VP-31	10-18-2013	5	100,000	<100	<100	<100	<100	<100	<100
VP-32	10-18-2013	5	2,500	<100	<100	<100	<100	<100	<100
VP-32 (dup)	10-18-2013	5	2,100	<100	<100	<100	<100	<100	<100
VP-33	10-18-2013	5	18,000	<100	<100	<100	<100	<100	<100
VP-34	10-18-2013	5	20,000	<100	<100	<100	<100	<100	<100
VP-35	10-18-2013	5	14,000	<100	<100	<100	<100	<100	<100
VP-36	10-18-2013	5	5,900	<100	<100	<100	<100	<100	<100
VP-37	10-18-2013	5	14,000	<100	<100	<100	<100	<100	<100
VP-38	10-18-2013	5	37,000	<100	<100	<100	<100	<100	<100
VP-39	10-18-2013	5	24,000	<100	<100	<100	<100	<100	<100
VP-40	10-18-2013	5	17,000	220	<100	<100	<100	<100	<100
VP-41	05-05-2014	5	7,300	<100	<100	<100	<100	<100	<100
VP-42	05-05-2014	5	14,000	<100	<100	<100	<100	<100	<100
VP-43	05-05-2014	5	32,000	<100	<100	<100	<100	<100	<100
VP-43 (dup)	05-05-2014	5	30,000	<100	<100	<100	<100	<100	<100
VP-44	05-05-2014	5	38,000	<100	<100	<100	<100	<100	<100
VP-45	05-06-2014	5	1,200	<100	<100	<100	<100	<100	<100

ANALYTICAL RESULTS OF SOIL-VAPOR SAMPLES Swiss Valley Cleaners 1395 MacArthur Boulevard, San Leandro, California (micrograms per cubic meter)

				ſ	EPA	Method 826	0B	1	
Sample ID	Date	Depth (feet bsg)	PCE	TCE	1,1-DCE	Trans 1,2-DCE	Cis 1,2-DCE	ЗЛ	Chloroform
VP-46	05-06-2014	5	24,000	<100	<100	<100	<100	<100	<100
VP-46 (dup)	05-06-2014	5	21,000	<100	<100	<100	<100	<100	<100
VP-47	05-07-2014	5	1,400	<100	<100	<100	<100	<100	<100
VP-48	05-07-2014	5	3,400	<100	<100	<100	<100	<100	<100
VP-49	05-07-2014	5	3,000	<100	<100	<100	<100	<100	<100
VP-50	05-07-2014	5	570	<100	<100	<100	<100	<100	<100
VP-51	05-07-2014	5	2,100	<100	<100	<100	<100	<100	<100
VP-52	05-07-2014	05-07-2014 5		<100	<100	<100	<100	<100	<100
VP-52 (dup)	05-07-2014	5	1,500	<100	<100	<100	<100	<100	<100
CHHSI	CHHSLs (Residential)		180	528	-	31,900	15,900	13.3	-
	SFBRWCB ESL Shallow Soil Gas (Commercial)			3,000	100,000	260,000	-	16	230
	SFBRWCB ESL Shallow Soil Gas (Residential)			300	880,000	31,000	-	160	2,300

<u>Notes:</u> SFBRWCB ESL: San Francisco Bay Regional Water Quality Control Board Environmental

Screening Level for shallow soil gas

<: Indicates constituents were not detected at a concentration greater than the reporting limit shown. CHHSLs: California Human Health Screening Levels

PCE: Tetrachloroethene

TCE: Trichloroethene

1,1-DCE: 1,1-Dichloroethene Trans 1,2-DCE: Trans 1,2-Dichloroethene

Cis 1,2-DCE: Cis 1,2-Dichloroethene

VC: Vinyl Chloride

bsg: below surface grade

* : notation for detection above the liner range of calibration

				EPA SW 846/8260B							
Sample ID	Depth (feet bsg)	Date	Tetrachloroethene (PCE)	Trichloroethene (TCE)	1,1- Dichloroethene (1,1-DCE)	Trans 1,2- Dichloroethene (Trans 1,2-DCE)	Cis 1,2- Dichloroethene (Cis 1,2-DCE)	Vinyl Chloride (VC)			
B-1@3'	3	08-19-1998	<0.005	<0.005	<0.005	-	-	<0.005			
B-1@5'	5	08-19-1998	<0.005	<0.005	<0.005	-	-	<0.005			
B-2@3'	3	08-19-1998	<0.005	<0.005	<0.005	-	-	<0.005			
B-2@5'	5	08-19-1998	<0.005	<0.005	<0.005	-	-	<0.005			
B-3@3'	3	08-19-1998	<0.005	<0.005	<0.005	-	-	<0.005			
B-3@5'	5	08-19-1998	<0.005	<0.005	<0.005	-	-	<0.005			
B-4	1.75	04-06-2005	0.0057	<0.0049	<0.0049	<0.0049	<0.0049	<0.0098			
B-5	1.83	04-06-2005	0.0074	<0.0047	<0.0047	<0.0047	<0.0047	< 0.0094			
B-6	1.67	04-06-2005	0.022	<0.0046	<0.0046	<0.0046	<0.0046	< 0.0093			
B-7	2	07-08-2008	<0.005	<0.0047	<0.0047	<0.0047	<0.0047	<0.0094			
B-8	2	07-08-2008	0.060	<0.0047	<0.0047	<0.0047	<0.0047	< 0.0094			
B9-5	5	05-07-2013	0.028	<0.005	<0.005	<0.005	<0.005	<0.005			
B9-10	10	05-07-2013	0.012	<0.005	<0.005	<0.005	<0.005	<0.005			
B9-15	15	05-07-2013	0.022	<0.005	<0.005	<0.005	<0.005	<0.005			
B10-5	5	05-07-2013	0.010	<0.005	<0.005	<0.005	<0.005	<0.005			
B10-10	10	05-07-2013	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005			
B10-15	15	05-07-2013	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005			
B11-5	5	10-22-2013	0.009	<0.005	<0.005	<0.005	<0.005	<0.005			
B11-10	10	10-22-2013	0.011	<0.005	<0.005	<0.005	<0.005	<0.005			
B11-15	15	10-22-2013	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005			
B12-5	5	10-22-2013	0.005	<0.005	<0.005	<0.005	<0.005	<0.005			
B12-10	10	10-22-2013	0.011	<0.005	<0.005	<0.005	<0.005	<0.005			
B12-15	15	10-22-2013	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005			
B13-5	5	10-22-2013	0.008	<0.005	<0.005	<0.005	<0.005	<0.005			
B13-10	10	10-22-2013	0.006	<0.005	<0.005	<0.005	<0.005	<0.005			

Advanced GeoEnvironmental, Inc.

					EPA SW 846/82	260B		
Sample ID	Depth (feet bsg)	Date	Tetrachloroethene (PCE)	Trichloroethene (TCE)	1,1- Dichloroethene (1,1-DCE)	Trans 1,2- Dichloroethene (Trans 1,2-DCE)	Cis 1,2- Dichloroethene (Cis 1,2-DCE)	Vinyl Chloride (VC)
B13-15	15	10-22-2013	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
B14-5	5	10-22-2013	0.015	<0.005	<0.005	<0.005	<0.005	<0.005
B14-10	10	10-22-2013	0.008	<0.005	<0.005	<0.005	<0.005	<0.005
B14-15	15	10-22-2013	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
B15-5	5	10-22-2013	0.030	<0.005	<0.005	<0.005	< 0.005	<0.005
B15-10	10	10-22-2013	0.018	<0.005	<0.005	<0.005	<0.005	<0.005
B15-15	15	10-22-2013	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
B16-5	5	10-23-2013	0.020	<0.005	<0.005	<0.005	<0.005	<0.005
B16-10	10	10-23-2013	0.010	<0.005	<0.005	<0.005	<0.005	<0.005
B16-15	15	10-23-2013	0.006	<0.005	<0.005	<0.005	<0.005	<0.005
B17-5	5	10-23-2013	0.018	<0.005	<0.005	<0.005	<0.005	< 0.005
B17-10	10	10-23-2013	0.010	<0.005	<0.005	<0.005	<0.005	<0.005
B17-15	15	10-23-2013	0.011	<0.005	<0.005	<0.005	<0.005	<0.005
B18-5	5	10-23-2013	<0.005	<0.005	<0.005	<0.005	<0.005	< 0.005
B18-10	10	10-23-2013	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
B19-5	5	10-23-2013	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005

				EPA SW 846/8260B							
Sample ID	Depth (feet bsg)	Date	Tetrachloroethene (PCE)	Trichloroethene (TCE)	1,1- Dichloroethene (1,1-DCE)	Trans 1,2- Dichloroethene (Trans 1,2-DCE)	Cis 1,2- Dichloroethene (Cis 1,2-DCE)	Vinyl Chloride (VC)			
B19-10	10	10-23-2013	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005			
B20-5	5	10-23-2013	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005			
B20-10	10	10-23-2013	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005			
B21-5	5	10-24-2013	0.010	<0.005	<0.005	<0.005	<0.005	<0.005			
B21-10	10	10-24-2013	0.009	<0.005	<0.005	<0.005	<0.005	<0.005			
B23-0.5-1.0	0.5-1.0	04-28-2014	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005			
B23-1.5-2.0	1.5-2.0	04-28-2014	0.026	<0.005	<0.005	<0.005	<0.005	<0.005			
B23-2.5-3.0	2.5-3.0	04-28-2014	0.12	<0.005	<0.005	<0.005	<0.005	<0.005			
B23-3.5-4.0	3.5-4.0	04-28-2014	0.040	<0.005	<0.005	<0.005	<0.005	<0.005			
B23-4.5-5.0	4.5-5.0	04-28-2014	0.030	<0.005	<0.005	<0.005	<0.005	<0.005			
B24-0.5-1.0	0.5-1.0	04-28-2014	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005			
B24-1.5-2.0	1.5-2.0	04-28-2004	0.032	<0.005	<0.005	<0.005	<0.005	< 0.005			
B24-4.5-5.0	4.5-50	04-28-2014	0.017	<0.005	<0.005	<0.005	<0.005	<0.005			
B25-0.5-1.0	0.5-1.0	04-28-2014	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005			
B25-1.5-2.0	1.5-2.0	04-28-2014	0.048	<0.005	<0.005	<0.005	<0.005	<0.005			
B25-2.5-3.0	2.5-3.0	04-28-2014	0.061	<0.005	<0.005	<0.005	<0.005	<0.005			
B25-4.5-5.0	4.5-5.0	04-28-2014	0.023	<0.005	<0.005	<0.005	<0.005	<0.005			
B26-0.5-1.0	0.5-1.0	04-28-2014	0.0056	<0.005	<0.005	<0.005	<0.005	<0.005			
B26-1.5-2.0	1.5-2.0	04-29-2014	0.0063	<0.005	<0.005	<0.005	<0.005	<0.005			
B26-3.0-3.5	3.0-3.5	04-29-2014	0.043	<0.005	<0.005	<0.005	<0.005	<0.005			
B26-4.5-5.0	4.5-5.0	04-29-2014	0.018	<0.005	<0.005	<0.005	<0.005	<0.005			
B27-0.5-1.0	0.5-1.0	04-29-2014	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005			
B27-1.5-2.0	1.5-3.0	04-29-2014	0.010	<0.005	<0.005	<0.005	<0.005	<0.005			
B27-2.5-3.0	2.5-3.0	04-29-2014	0.045	<0.005	<0.005	<0.005	<0.005	<0.005			

			EPA SW 846/8260B								
Sample ID	Depth (feet bsg)	Date	Tetrachloroethene (PCE)	Trichloroethene (TCE)	1,1- Dichloroethene (1,1-DCE)	Trans 1,2- Dichloroethene (Trans 1,2-DCE)	Cis 1,2- Dichloroethene (Cis 1,2-DCE)	Vinyl Chloride (VC)			
B27-4.5-5.0	4.5-5.0	04-29-2014	0.043	<0.005	<0.005	<0.005	<0.005	<0.005			
B28-0.5-1.0	1.5-3.0	04-29-2014	0.0053	<0.005	<0.005	<0.005	<0.005	<0.005			
B28-2.5-3.0	2.5-3.0	04-29-2014	0.037	<0.005	<0.005	<0.005	<0.005	<0.005			
B28-4.5-5.0	4.5-5.0	04-29-2014	0.021	<0.005	<0.005	<0.005	<0.005	<0.005			
B29-1.5-2.0	1.5-3.0	04-29-2014	0.015	<0.005	<0.005	<0.005	<0.005	<0.005			
B29-2.5-3.0	2.5-3.0	04-29-2014	0.033	<0.005	<0.005	<0.005	<0.005	<0.005			
B29-4.5-5.0	4.5-5.0	04-29-2014	0.019	<0.005	<0.005	<0.005	<0.005	<0.005			
B30-1.5-2.0	1.5-3.0	04-30-2014	0.019	<0.005	<0.005	<0.005	<0.005	<0.005			
B30-2.5-3.0	2.5-3.0	04-30-2014	0.024	<0.005	<0.005	<0.005	<0.005	<0.005			
B30-4.5-5.0	4.5-5.0	04-30-2014	0.051	<0.005	<0.005	<0.005	<0.005	<0.005			
B31-1.5-2.0	1.5-2.0	04-30-2014	0.018	<0.005	<0.005	<0.005	<0.005	<0.005			
B31-2.5-3.0	2.5-3.0	04-30-2014	0.025	<0.005	<0.005	<0.005	<0.005	<0.005			
B32-1.5-2.0	1.5-3.0	04-30-2014	0.0069	<0.005	<0.005	<0.005	<0.005	<0.005			
B32-2.5-3.0	2.5-3.0	04-30-2014	0.011	<0.005	<0.005	<0.005	<0.005	<0.005			
B32-4.5-5.0	4.5-5.0	04-30-2014	0.018	<0.005	<0.005	<0.005	<0.005	<0.005			
B33-1.5-2.0	1.5-3.0	04-30-2014	0.012	<0.005	<0.005	<0.005	<0.005	<0.005			
B33-2.5-3.0	2.5-3.0	04-30-2014	0.037	<0.005	<0.005	<0.005	<0.005	<0.005			
B33-4.5-5.0	4.5-5.0	04-30-2014	0.029	<0.005	<0.005	<0.005	<0.005	<0.005			
B34-1.5-2.0	1.5-3.0	05-01-2014	0.028	<0.005	<0.005	<0.005	<0.005	<0.005			
B34-2.5-3.0	2.5-3.0	05-01-2014	0.020	<0.005	<0.005	<0.005	<0.005	<0.005			
B34-4.5-5.0	4.5-5.0	05-01-2014	0.016	<0.005	<0.005	<0.005	<0.005	<0.005			
B35-1.5-2.0	1.5-3.0	05-01-2014	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005			
B35-2.5-3.0	2.5-3.0	05-01-2014	0.092	<0.005	<0.005	<0.005	<0.005	<0.005			
B35-4.5-5.0	4.5-5.0	05-01-2014	0.058	<0.005	<0.005	<0.005	<0.005	<0.005			

				EPA SW 846/8260B								
Sample ID	Depth (feet bsg)	Date	Tetrachloroethene (PCE)	Trichloroethene (TCE)	1,1- Dichloroethene (1,1-DCE)	Trans 1,2- Dichloroethene (Trans 1,2-DCE)	Cis 1,2- Dichloroethene (Cis 1,2-DCE)	Vinyl Chloride (VC)				
B36-1.5-2.0	1.5-3.0	05-01-2014	0.11	<0.005	<0.005	<0.005	<0.005	< 0.005				
B36-2.5-3.0	2.5-3.0	05-01-2014	0.015	<0.005	<0.005	<0.005	<0.005	<0.005				
B36-4.5-5.0	4.5-5.0	05-01-2014	0.012	<0.005	<0.005	<0.005	<0.005	<0.005				
B37-1.5-2.0	1.5-3.0	05-01-2014	0.018	<0.005	<0.005	<0.005	<0.005	<0.005				
B37-2.5-3.0	2.5-3.0	05-01-2014	0.038	<0.005	<0.005	<0.005	<0.005	<0.005				
B37-4.5-5.0	4.5-5.0	05-01-2014	0.016	<0.005	<0.005	<0.005	<0.005	<0.005				
B38-1.0-1.5	1.0-1.5	05-02-2014	0.023	<0.005	<0.005	<0.005	<0.005	<0.005				
B38-1.5-2.0	1.5-2.0	05-02-2014	0.023	<0.005	<0.005	<0.005	<0.005	<0.005				
B38-2.5-3.0	2.5-3.0	05-02-2014	0.014	<0.005	<0.005	<0.005	<0.005	<0.005				
B38-4.5-5.0	4.5-5.0	05-02-2014	0.0061	<0.005	<0.005	<0.005	<0.005	<0.005				
B39-1.5-2.0	1.5-3.0	05-02-2014	0.016	<0.005	<0.005	<0.005	<0.005	<0.005				
B39-2.5-3.0	2.5-3.0	05-02-2014	0.021	<0.005	<0.005	<0.005	<0.005	<0.005				
B39-4.5-5.0	4.5-5.0	05-02-2014	0.034	<0.005	<0.005	<0.005	<0.005	<0.005				
B40-1.5-2.0	1.5-3.0	05-02-2014	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005				
B40-2.5-3.0	2.5-3.0	05-02-2014	0.010	<0.005	<0.005	<0.005	<0.005	<0.005				
B40-4.5-5.0	4.5-5.0	05-02-2014	0.029	<0.005	<0.005	<0.005	<0.005	<0.005				
B41-1.5-2.0	1.5-2.0	05-05-2014	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005				
B41-4.5-5.0	4.5-5.0	05-05-2014	0.0076	<0.005	<0.005	<0.005	<0.005	< 0.005				
B42-1.5-2.0	1.5-3.0	05-05-2014	<0.005	<0.005	<0.005	<0.005	<0.005	< 0.005				
B42-2.5-3.0	2.5-3.0	05-05-2014	0.010	<0.005	<0.005	<0.005	<0.005	<0.005				
B42-4.5-5.0	4.5-5.0	05-05-2014	0.022	<0.005	<0.005	<0.005	<0.005	< 0.005				
B43-1.5-2.0	1.5-2.0	05-06-2014	<0.005	<0.005	<0.005	<0.005	<0.005	< 0.005				
B43-2.5-3.0	2.5-3.0	05-06-2014	0.022	<0.005	<0.005	<0.005	<0.005	< 0.005				
B43-4.5-5.0	4.5-5.0	05-06-2014	0.015	<0.005	<0.005	<0.005	<0.005	<0.005				

					EPA SW 846/8	260B		
Sample ID	Depth (feet bsg)	Date	Tetrachloroethene (PCE)	Trichloroethene (TCE)	1,1- Dichloroethene (1,1-DCE)	Trans 1,2- Dichloroethene (Trans 1,2-DCE)	Cis 1,2- Dichloroethene (Cis 1,2-DCE)	Vinyl Chloride (VC)
B44-1.5-2.0	1.5-3.0	05-07-2014	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
B44-2.5-3.0	2.5-3.0	05-07-2014	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
B44-4.5-5.0	4.5-5.0	05-07-2014	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
B45-1.5-2.0	1.5-3.0	05-07-2014	0.0052	<0.005	<0.005	<0.005	<0.005	<0.005
B45-2.5-3.0	2.5-3.0	05-07-2014	0.0052	<0.005	<0.005	<0.005	<0.005	<0.005
B45-4.5-5.0	4.5-5.0	05-07-2014	0.0068	<0.005	<0.005	<0.005	<0.005	<0.005

Notes:

mg/kg: milligrams per kilogram

bsg: below surface grade

<: Indicates constituents were not detected at a concentration greater than the reporting limit shown.

APPENDIX A

ENVIRONMENTAL HEALTH SERVICES ENVIRONMENTAL PROTECTION 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577 (510) 567-6700 FAX (510) 337-9335

March 11, 2014

Mr. William Mathews Brooks 4725 Thornton Avenue Fremont, CA 94536 (Sent via electronic mail to <u>REWMB@aol.com</u>)

ALEX BRISCOE, Agency Director

Subject: Modified Approval of Work Plans; Site Cleanup Program (SCP) Case No. RO0003120 and GeoTracker Global ID T10000005063, Swiss Valley Cleaners, 1395 MacArthur Blvd, Oakland, CA 94577

Dear Mr. Brooks:

Alameda County Environmental Health (ACEH) has reviewed the *Site Assessment and Soil Vapor Extraction Pilot Test Work Plan*, dated January 24, 2014 and the *Indoor Air Quality Sampling Work Plan*, dated February 4, 2014, prepared and submitted on your behalf by Advanced GeoEnvironmental, Inc, (AGE). Thank you for submitting the reports. The January work plan proposed the installation of one soil-vapor extraction (SVE) well, three SVE observation wells, an 8-hour pilot test of the SVE wells, four shallow soil bores to investigate the potential of shallow contamination beneath the site, and four intermediate depth soil bores with shallow vapor sampling to investigate the lateral extent of contamination beneath the site. The February work plan proposed the collection of indoor air quality samples in the subject unit, and the two adjacent units on a seasonal basis (summer / winter). A building screen and inventory are also proposed for the units using standard DTSC forms.

Based on the review of the case file ACEH requests that you address the following technical comments and send us the documents requested below.

TECHNICAL COMMENTS

- Subsurface Work Plan Modification The referenced subsurface work plan proposes a series of actions with which ACEH is in general agreement of undertaking; however, ACEH requests several modifications to the approach. Please submit the results of the investigation in a site investigation report as requested below.
 - a. Shallow Soil Bores Four shallow soil bores are proposed to be installed in order to characterize tetrachlorethene (PCE) concentrations in shallow soil. Each location appears appropriate; however, ACEH requests additional bores in the two areas identified on Figure 3 of the work plan as "vapor phase PCE greater than 100,000 µg/m³". It appears that the two areas relate to the former building layout, rather than the current building layout. Because the location of equipment in the former building does not appear to be sufficiently known, it appears appropriate to install a series of shallow soil bores to characterize the extent and magnitude of contaminated shallow soil in the former use areas. Thus in the smaller western area it appears prudent that a minimum of two soil bores be installed in the vicinity of VP-11 and VP-16. In the larger eastern area, due to the lack of the known locations of the former equipment, it appears prudent to install additional soil bores on an approximately 5 foot center grid pattern to help determine former use areas and associated contamination, as generally recommended in the April 2012 DTSC *Soil Gas Investigations Advisory*. At a minimum these bores should be in the vicinity of VP-22, VP-25, and VP-31 where higher PCE soil vapor concentrations were detected as these locations may correlate with former use areas. This strategy is consistent with recommendations contained in

the October 2010 *Conducting Contamination Assessment Work at Drycleaning Sites* report issued by the State Coalition for Remediation of Dry Cleaners.

ACEH requests that particular attention to potentially very shallow soil contamination, including base course, or other granular materials, beneath the slab or pavement, be observed, and multiple soil samples and photo-ionization detection (PID) readings be collected within these materials. Consequently, please submit a revised Figure 2, as a Work Plan Addendum, to document proposed revised bore locations, by the date referenced below.

- b. Intermediate Depth Bores Four bores are proposed to be installed to 15 feet below surface grade (bgs) and will be used to provide initial lateral delineation of soil and soil vapor concentrations to the north and south /southwest of likely release areas. ACEH notes that the locations appear appropriate; however, also notes that PCE soil contamination directly beneath the site has not found soil contamination above Regional Water Quality Control Board (RWQCB) Environmental Screening Levels (ESLs) for residential use, at this commercial property. As described in Technical Comment 1, ACEH thus judges the shallow soil zone and the soil vapor component of these four bores to be more critical components. Consequently, unless significant soil contamination is detected by the onsite mobile lab, ACEH requests that investigative efforts be limited to a depth of five feet bgs, rather than the proposed 15 feet.
- c. Determination of Lateral Extent of Vapor Contamination Initial determination of the lateral extent of PCE soil vapor contamination is proposed with the installation of four lateral soil bores. ACEH is in agreement with this initial determination; however, confirmation of the lateral limits will require the installation of permanent soil vapor probes in order to obtain seasonal repeatable analytical data.
- d. Shroud Tracer Gas Analysis The work plan proposes the use of isopropyl alcohol as a tracer gas in order to determine if outside air has diluted soil vapor concentrations. Please be aware that laboratory analysis for any tracer is required to be collected from inside the shroud as well as from the soil vapor sample for this to be determined. The determination of the lateral as well as the vertical extent of PCE contamination will require this analysis.
- e. Soil Vapor Extraction Wells -- Four wells are proposed for a soil vapor extraction pilot test (one extraction, three observation wells). Based on telephone conversations, ACEH understands that while one bore has been marked as the vapor extraction well, and three wells have been marked as observation wells, on Figure 2 of the work plan, all wells will be tested as extraction wells during the pilot test. This appears appropriate.

Well screens are proposed to be installed between 2.5 and 12 feet bgs; however, ACEH notes that a soil source has not been found at the site. As such while ACEH judges the pilot test will be useful, significant effort to locate the soil source(s) may provide alternative, more cost effective or appropriate corrective action methods. Consequently, ACEH requests that well design be confirmed and then installed after the results of the soil grid sampling investigation are available. To help expedite site progress, please present the results of the gridding (tabulated data, figures, and bore logs as needed) to ACEH with final extraction well design confirmation.

- f. Bore Logs A review of all bore logs generated to date by AGE indicates that no lithologic details from the upper five feet have been reported either in the text of the report or on submitted bore logs. This is not acceptable for multiple reasons; however, especially because a soil source has not been located beneath the site it is particularly important to focus on this depth interval. Therefore please log the full depth of all bores.
- Indoor Air Sampling Work Plan Modifications The referenced indoor air work plan proposes a series
 of actions with which ACEH is in general agreement of undertaking; however, ACEH requests several
 modifications to the approach. Please submit the results of the investigation in a site investigation report
 as requested below.
 - a. Fact Sheet Modifications The Fact Sheet attached to the *Indoor Air Quality Sampling Work Plan*, does not contain sufficient information to inform occupants of the adjacent units of the importance of, and what will happen during, the indoor air sampling work that has been requested. Examples of this type of communication are contained in the March 5, 2012 DTSC Vapor Intrusion

Public Participation Advisory (especially pages 76 to 83). Consequently, ACEH requests the submittal of a draft Indoor Air Sampling Fact Sheet intended for units in which indoor air will be sampled, by the date identified below. The draft version will be reviewed quickly for appropriateness.

- b. Fact Sheet Distribution After ACEH approval of the draft indoor air fact sheet, please ensure that the indoor air sampling fact sheet be distributed a minimum of 1 week prior to site interviews and observations. Please also ensure that the occupants of the three units have not used chemicals that contain or could confuse PCE vapor sampling results (for example that contain PCE, TCE, or other potential breakdown products etc.) are not used for a minimum of one week prior to the indoor air sampling effort. Finally, please ensure that the heating, ventilation, and air conditioning (HVAC) systems are not operating during the 24 hour sampling events in each unit (EPA Region 9 Guidelines and Supplemental Information Needed for Vapor Intrusion Evaluations at the South Bay National Priorities List (NPL) Sites, December 3, 2013, US EPA).
- c. Indoor Air Sampling Two seasonal indoor air sampling events are proposed in the subject unit, and the two adjacent units. Following each event a report is proposed to be generated and submitted to ACEH. ACEH requests that should indoor air results exceed indoor air RWQCB ESLs for commercial facilities, ACEH is to be informed immediately (verbally and in writing) and mitigation measures, such as high speed fan ventilation, be implemented at each occupied unit.
- **d.** Residual Summa Canister Vacuum Please ensure that each vapor sampling summa canister contains a residual vacuum at the end of the sampling period. This ensures the ability to calculate the rate of filling and sampling.
- e. Laboratory Certification The referenced work plan proposes to analyze the samples by standard method TO-15 at a State of California Department of Public Health Services-certified laboratory. The California Environmental Laboratory Accreditation Program (ELAP) does not certify toxic organic (TO) methods; however, other accepted accreditation programs do. ACEH requires all vapor analytical work to be conducted by a laboratory that has been accredited by an appropriate program.

TECHNICAL REPORT REQUEST

Please upload technical reports to the ACEH ftp site (Attention: Mark Detterman), and to the State Water Resources Control Board's Geotracker website, in accordance with Attachment 1 and the specified file naming convention below, according to the following schedule:

- March 31, 2014 Work Plan Addendum (Revised Figure 2, Draft Indoor Air Sampling Fact Sheet) File to be named: RO3120_WP_ADEND_R_yyyy-mm-dd
- April 25, 2014 Results of Indoor Air Sampling File to be named: RO3120_ANALYT_R_yyyy-mm-dd
- May 2, 2014 Results of Soil Gridding File to be named: RO3120_MISC_R_yyyy-mm-dd
- June 6, 2014 Site Investigation Report File to be named: RO3120_SWI_R_yyyy-mm-dd

Online case files are available for review at the following website: <u>http://www.acgov.org/aceh/index.htm</u>. If your email address does not appear on the cover page of this notification, ACEH is requesting you provide your email address so that we can correspond with you quickly and efficiently regarding your case.

Mr. William Mathews Brooks RO0003120 March 11, 2014, Page 4

Should you have any questions, please contact me at (510) 567--6876 or send me an electronic mail message at mark.detterman@acgov.org.

Sincerely,

Marke

Mark E. Detterman, P.G., C.E.G. Senior Hazardous Materials Specialist Digitally signed by Mark E. Detterman DN: cn=Mark E. Detterman, o, ou, email, c=US Date: 2014.03.11 11:03:22 -07'00'

Enclosures: Attachment 1 – Responsible Party (ies) Legal Requirements / Obligations Electronic Report Upload (ftp) Instructions

cc: Daniel Villanueva, Advanced GeoEnvironmental, Inc, 837 Shaw Road, Stockton, CA 95215 (sent via electronic mail to <u>DVillanueva@advgeoenv.com</u>)

William Little, Advanced GeoEnvironmental, Inc, 837 Shaw Road, Stockton, CA 95215 (sent via electronic mail to <u>WLittle@advgeoenv.com</u>)

Dilan Roe (sent via electronic mail to <u>dilan.roe@acgov.org</u>) Mark Detterman, ACEH, (sent via electronic mail to <u>mark.detterman@acgov.org</u>) Geotracker, Electronic File

Attachment 1

Responsible Party(ies) Legal Requirements/Obligations

REPORT/DATA REQUESTS

These reports/data are being requested pursuant to Division 7 of the California Water Code (Water Quality), Chapter 6.7 of Division 20 of the California Health and Safety Code (Underground Storage of Hazardous Substances), and Chapter 16 of Division 3 of Title 23 of the California Code of Regulations (Underground Storage Tank Regulations).

ELECTRONIC SUBMITTAL OF REPORTS

ACEH's Environmental Cleanup Oversight Programs (Local Oversight Program [LOP] for unauthorized releases from petroleum Underground Storage Tanks [USTs], and Site Cleanup Program [SCP] for unauthorized releases of non-petroleum hazardous substances) require submission of reports in electronic format pursuant to Chapter 3 of Division 7, Sections 13195 and 13197.5 of the California Water Code, and Chapter 30, Articles 1 and 2, Sections 3890 to 3895 of Division 3 of Title 23 of the California Code of Regulations (23 CCR). Instructions for submission of electronic documents to the ACEH FTP site are provided on the attached "Electronic Report Upload Instructions."

Submission of reports to the ACEH FTP site is in addition to requirements for electronic submittal of information (ESI) to the State Water Resources Control Board's (SWRCB) Geotracker website. In April 2001, the SWRCB adopted 23 CCR, Division 3, Chapter 16, Article 12, Sections 2729 and 2729.1 (Electronic Submission of Laboratory Data for UST Reports). Article 12 required electronic submittal of analytical laboratory data submitted in a report to a regulatory agency (effective September 1, 2001), and surveyed locations (latitude, longitude and elevation) of groundwater monitoring wells (effective January 1, 2002) in Electronic Deliverable Format (EDF) to Geotracker. Article 12 was subsequently repealed in 2004 and replaced with Article 30 (Electronic Submittal of Information) which expanded the ESI requirements to include electronic submittal of any report or data required by a regulatory agency from a cleanup site. The expanded ESI submittal requirements for petroleum UST sites subject to the requirements of 23 CCR, Division, 3, Chapter 16, Article 11, became effective December 16, 2004. All other electronic submittals required pursuant to Chapter 30 became effective January 1, 2005. Please visit the SWRCB website information for more on these requirements: (http://www.waterboards.ca.gov/water issues/programs/ust/electronic submittal/).

PERJURY STATEMENT

All work plans, technical reports, or technical documents submitted to ACEH must be accompanied by a cover letter from the responsible party that states, at a minimum, the following: "I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge." This letter must be signed by an officer or legally authorized representative of your company. Please include a cover letter satisfying these requirements with all future reports and technical documents submitted for this fuel leak case.

PROFESSIONAL CERTIFICATION & CONCLUSIONS/RECOMMENDATIONS

The California Business and Professions Code (Sections 6735, 7835, and 7835.1) requires that work plans and technical or implementation reports containing geologic or engineering evaluations and/or judgments be performed under the direction of an appropriately registered or certified professional. For your submittal to be considered a valid technical report, you are to present site specific data, data interpretations, and recommendations prepared by an appropriately licensed professional and include the professional registration stamp, signature, and statement of professional certification. Please ensure all that all technical reports submitted for this fuel leak case meet this requirement.

UNDERGROUND STORAGE TANK CLEANUP FUND

Please note that delays in investigation, late reports, or enforcement actions may result in your becoming ineligible to receive grant money from the state's Underground Storage Tank Cleanup Fund (Senate Bill 2004) to reimburse you for the cost of cleanup.

AGENCY OVERSIGHT

If it appears as though significant delays are occurring or reports are not submitted as requested, we will consider referring your case to the Regional Board or other appropriate agency, including the County District Attorney, for possible enforcement actions. California Health and Safety Code, Section 25299.76 authorizes enforcement including administrative action or monetary penalties of up to \$10,000 per day for each day of violation.

Alameda County Environmental Cleanup	REVISION DATE: July 25, 2012
Oversight Programs (LOP and SCP)	ISSUE DATE: July 5, 2005
	PREVIOUS REVISIONS: October 31, 2005; December 16, 2005; March 27, 2009; July 8, 2010
SECTION: Miscellaneous Administrative Topics & Procedures	SUBJECT: Electronic Report Upload (ftp) Instructions

The Alameda County Environmental Cleanup Oversight Programs (petroleum UST and SCP) require submission of all reports in electronic form to the county's FTP site. Paper copies of reports will no longer be accepted. The electronic copy replaces the paper copy and will be used for all public information requests, regulatory review, and compliance/enforcement activities.

REQUIREMENTS

- Please <u>do not</u> submit reports as attachments to electronic mail.
- Entire report including cover letter must be submitted to the ftp site as a single Portable Document Format (PDF) with no password protection.
- It is preferable that reports be converted to PDF format from their original format, (e.g., Microsoft Word) rather than scanned.
- Signature pages and perjury statements must be included and have either original or electronic signature.
- <u>Do not</u> password protect the document. Once indexed and inserted into the correct electronic case file, the document will be secured in compliance with the County's current security standards and a password. Documents with password protection <u>will not</u> be accepted.
- Each page in the PDF document should be rotated in the direction that will make it easiest to read on a computer monitor.
- Reports must be named and saved using the following naming convention:

RO#_Report Name_Year-Month-Date (e.g., RO#5555_WorkPlan_2005-06-14)

Submission Instructions

- 1) Obtain User Name and Password
 - a) Contact the Alameda County Environmental Health Department to obtain a User Name and Password to upload files to the ftp site.
 - i) Send an e-mail to <u>deh.loptoxic@acgov.org</u>
 - b) In the subject line of your request, be sure to include "ftp PASSWORD REQUEST" and in the body of your request, include the Contact Information, Site Addresses, and the Case Numbers (RO# available in Geotracker) you will be posting for.
- 2) Upload Files to the ftp Site
 - a) Using Internet Explorer (IE4+), go to http://alcoftp1.acgov.org
 - (i) Note: Netscape, Safari, and Firefox browsers will not open the FTP site as they are NOT being supported at this time.
 - b) Click on Page located on the Command bar on upper right side of window, and then scroll down to Open FTP Site in Windows Explorer.
 - c) Enter your User Name and Password. (Note: Both are Case Sensitive.)
 - d) Open "My Computer" on your computer and navigate to the file(s) you wish to upload to the ftp site.
 - e) With both "My Computer" and the ftp site open in separate windows, drag and drop the file(s) from "My Computer" to the ftp window.
- 3) Send E-mail Notifications to the Environmental Cleanup Oversight Programs
 - a) Send email to <u>deh.loptoxic@acgov.org</u> notify us that you have placed a report on our ftp site.
 - b) Copy your Caseworker on the e-mail. Your Caseworker's e-mail address is the entire first name then a period and entire last name @acgov.org. (e.g., firstname.lastname@acgov.org)
 - c) The subject line of the e-mail must start with the RO# followed by **Report Upload**. (e.g., Subject: RO1234 Report Upload) If site is a new case without an RO#, use the street address instead.
 - d) If your document meets the above requirements and you follow the submission instructions, you will receive a notification by email indicating that your document was successfully uploaded to the ftp site.

APPENDIX B

Alameda County Public Works Agency - Water Resources Well Permit

Public Works Agency Alameda County-

399 Elmhurst Street Hayward, CA 94544-1395 Telephone: (510)670-6633 Fax:(510)782-1939

Application Approved on: 03/31/2014 By jamesy

Permit Numbers: W2014-0291 Permits Valid from 04/28/2014 to 05/07/2014

Application Id: Site Location: Project Start Date: Assigned Inspector:	1395951317295 1395 MacArthur Boulevard 04/28/2014 Contact Steve Miller at (510) 670-5517 or ste	City of Project Site:San Leandro Completion Date:05/07/2014 /em@acpwa.org
Applicant:	Advaned GeoEnvironmental Inc Daniel	Phone: 209-467-1006
Property Owner: Client: Contact:	Villanueva 837 Shaw Road, Stockton, CA 95215 William Brooks 4725 Thornton Aveneu, Fremont, CA 94536 ** same as Property Owner ** Daniel Villanueva	Phone: Phone: 209-467-1006 Cell: 209-601-3541

	Total Due:	\$265.00
Receipt Number: WR2014-0116 Payer Name : Robert Marty		\$265.00 PAID IN FULL

Works Requesting Permits:

Borehole(s) for Investigation-Environmental/Monitorinig Study - 32 Boreholes Driller: Advanced GeoEnvironmental Inc. - Lic #: 680227 - Method: DP

Work Total: \$265.00

Specifications

Permit Number	Issued Dt	Expire Dt	# Boreholes	Hole Diam	Max Depth
W2014-	03/31/2014	07/27/2014	32	1.25 in.	15.00 ft
0291					

Specific Work Permit Conditions

1. Backfill bore hole by tremie with cement grout or cement grout/sand mixture. Upper two-three feet replaced in kind or with compacted cuttings. All cuttings remaining or unused shall be containerized and hauled off site. The containers shall be clearly labeled to the ownership of the container and labeled hazardous or non-hazardous.

2. Boreholes shall not be left open for a period of more than 24 hours. All boreholes left open more than 24 hours will need approval from Alameda County Public Works Agency, Water Resources Section. All boreholes shall be backfilled according to permit destruction requirements and all concrete material and asphalt material shall be to Caltrans Spec or County/City Codes. No borehole(s) shall be left in a manner to act as a conduit at any time.

3. Permittee shall assume entire responsibility for all activities and uses under this permit and shall indemnify, defend and save the Alameda County Public Works Agency, its officers, agents, and employees free and harmless from any and all expense, cost, liability in connection with or resulting from the exercise of this Permit including, but not limited to, properly damage, personal injury and wrongful death.

4. Applicant shall contact Steve Miller for an inspection time at (510) 670-5517 or email to stevem@acpwa.org at least five (5) working days prior to starting, once the permit has been approved. Confirm the scheduled date(s) at least 24 hours prior to drilling.

5. Copy of approved drilling permit must be on site at all times. Failure to present or show proof of the approved permit application on site shall result in a fine of \$500.00.

Alameda County Public Works Agency - Water Resources Well Permit

6. NOTE:

Under California laws, the owner/operator are responsible for reporting the contamination to the governmental regulatory agencies under Section 25295(a). The owner/operator is liable for civil penalties under Section 25299(a)(4) and criminal penalties under Section 25299(d) for failure to report a leak. The owner/operator is liable for civil penalties under Section 25299(b)(4) for knowing failure to ensure compliance with the law by the operator. These penalty provisions do not apply to a potential buyer.

7. Prior to any drilling activities onto any public right-of-ways, it shall be the applicants responsibilities to contact and coordinate a Underground Service Alert (USA), obtain encroachment permit(s), excavation permit(s) or any other permits required for that City or to the County and follow all City or County Ordinances. It shall also be the applicants responsibilities to provide to the Cities or to Alameda County a Traffic Safety Plan for any lane closures or detours planned. No work shall begin until all the permits and requirements have been approved or obtained.

8. Permit is valid only for the purpose specified herein. No changes in construction procedures, as described on this permit application. Boreholes shall not be converted to monitoring wells, without a permit application process.

	Fration	City of San Leandro ring and Transportation Depar	Standard Standard
- C. MENGINIZA		835 East 14th Street	rtment
educer designed and a second	RTATICIN	San Leandro, California 94577	
	(remov	(510) 577-3428	Offonnies.
	El	NCROACHMENT PERMIT	
Permit Type	Environmental		J.
Permit Number: ENC20)14-00222 Job Address: 1	205 Manual 1	
			Issued: 4/28/2014
Project Name: ADVAN Description of Work:	CED GEO ENVIRONME		
Description of work:	vertical borings for collection of side of Joaquin Ave., Borings w	f soil and soil vapor sm;les in sidewalk on r ill be advanced with 1.25" probe rods. A tw	orth Customer # o-inch 26027
	pre-core will be completed in pr	eparation for 1.25-inch drive rods for samp	ling.
Planned Start Date : Apr	il 29, 2014 Planned Comp	letion Date: July 29, 2014	JSA Tag No . 141506
Emergency Contact	Daniel Villanueva	Contact Phone Number	209-601-3541
	Applicant:		Owner:
ADVANCED GEO ENVIR	ONMENTAL INC		
837 SHAW AVE			
STOCKTON CA 95215			
	Contractor:		Agent:
ADVANCED GEO ENVIE 837 SHAW RD	CONMENTAL INC	DANIEL VILLANUEVA	
STOCKTON CA 95215		837 SHAW AVE STOCKTON CA 95215	
Associated P	ormito:	15- manufactor	
	······	To Acct #3306	Utility /Job Number
Building Permit No. Oro Loma Permit No.	PLAN CHECKE	R <u>Hrs</u>	
Cal State Permit No.	RESTORE/INSP	PECT DEPOSIT 500 -	
Ala County Permit No. y	V2014-0291 To CN# 2	6027	
Grading Permit No.	STREET CUT F	EE To Acct #3304	
	TOTAL:	565-	
Method of Repair		All work shall be per City Sta safety and access shall be main	indard Provisions. Pedestrian
Backfill Required			ituniou ut an times.
Pavement Section Requi	r Min Depth o	of Cover	
Section 1			
Section 2			
Section 3			
Consent Form Pre	Video Post Video		
RLE	ASE CALL (510) 577-3308 F	OR INSPECTIONS 24 HOURS PRIO	R TO WORK
with all applicable provisions	of this permit and all regulations, provi	tending to be legally bound does hereby agree that slons, and specifications as adopted by the City. F	urther, the undersigned agrees that this
permit is to serve as a guaran applicant on this form shall ma	ty for payment for all permit and/or insor	ection charges as billed by the City. Any misreprese	entation of information requested from the
	ano ano portina ion delu volu,		
Stanot	7-110		
Signature: O-	n T-ile Pri	nt Name: <u>DANIEL VILLANUEVA</u>	Date: <u>4/28/2014 9:06:33A1</u>
· ·			
•		Page 1 of 2	
		•	

GENERAL PROVISIONS ENC2014-00222

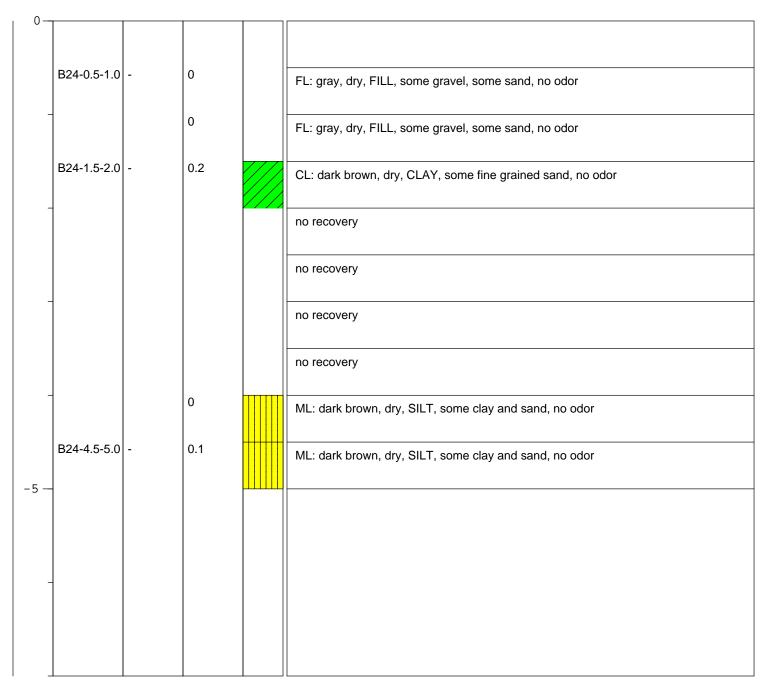
(a) All work must be performed in accordance with City of San Leandro Standard Plans, Specifications, and Tille V Chapter 1 of the Municipal Code. (b) Twenty four hours notice required ptor to start and/or requests for inspection. All work must be completed between the hours of 8:00AM to 4:00PM. No work is permitted on Saturday, Sunday, City holidays, or Furlough days. The City website has a schedule of holidays and furlough days: http://www.sanleandro.org/holidayschedule.html

- (c) City to be notified next working day (by permit application) of all emergency work performed.
- (d) . Permittee shall be responsible for all liability imposed by law for personal injury or property damage proximately caused by failure on permittee's part to perform his obligations under said permit respect to maintenance. If any claim of such liability is made against the City of San Leandro or its officers or employees, permittee shall defend, indemnify and hold each of them harmless from such claim.
- (e) No utility contractor or subcontractor shall park their construction equipment, including personal vehicles, entirely or partially in the sidewalk area. Per Section 5610 of the Streets and Highways Code, the permittee shall be responsible for the repair of any damaged sidewalk where utility contractor's or subcontractor's vehicles or equipment are parked whether or not the damage was preexisting.
- Cost of emergency work required to restore unsatisfactorily construction that becomes hazardous will be charged to permittee. (f)
- Permit void 90 days from issue date unless otherwise noted. Extension time may be granted when requested in writing. (\mathbf{q})
- (h) Permit must be readily available at work site. Permit is not assignable.
- Section 6500 of the Labor Code requires permit from the State Division of Industrial Safety (CAL OSHA) prior to an excavation five feet or (1) deeper.
- 6 Prior to digging or drilling, permittee shall request Undergrounding Service Alert (USA) markings; phone #800-227-2600.
- (k). Trenches are to be inspected prior to backfilling. Backfill compaction tests may be required.
- All tunneling prohibited. Pipe must be bored or jacked or open trenched Including under curb, gutter and/or sidewalk. (1)
- Forms for concrete work must be inspected prior to placing concrete. (ສາ)
- All concrete, including concrete pavement (overlayed with A.C. or not), must be sawcut prior to breakout. Concrete sections to be replaced (n) shall be no smaller than 30 inches in either length or width. All sawcuts must be along scorelines, 1.5" minimum depth (special conditions for concrete pavements). If a sawcut falls within 30 Inches of a construction joint, expansion joint, or edge, the concrete shall be removed to the Joint or edge. Forms for concrete work must be inspected prior to placing concrete.
- Temporary paving is required in all street and sidewalk areas and is to be placed the same day work is performed. Front ober 15 through (o)
- April 15, only A.C. paving Is to be used. Temporary paving is to be maintained by applicant.
- Permanent paving or sidewalk is to be replaced withi30 days. Permittee shall notify City before placing surfacing. (D)
- Permittee shall provide, erect, and/or maintain such lights, barriers, warning signs, patrols, watchmen and other safeguards as are necessary (a) to protect the traveling public in accordance with the current State "Manual of Warning Signs, Lights, and Devices for Use In Performance of Work Upon Highways".
- Before any work is begun that will interrupt the normal flow of public traffic, proposed lane closures or advanced warning light, sign, and (r) barricade with flashing light details and layout plans shall be submitted to the City. If flagmen are required copies of certifications must be provided prior to issuance of a permit.
- (s) Open trench one lane at a time, with necessary traffic control, to keep traffic moving in both directions during working hours. If at the end of the work day backfilling operations have not been completed, steel bridging shall be required to make the entire traveled way available to the public traffic.
- Pedestrian safety shall be maintained at all times. (t)
- Permittee shall contact City for final inspection and approval of completed work. (u) ART · Arterial
 - Col · Collector

Res - Residential

INSPECTION RECORD

inspected Date	Comments	Inspector	Hours Charged	Date Charged
ip/20/14	Review 7 CP	D.H	Dist	
		Subtotal		


Page 2 of 2

APPENDIX C

	Advanced GeoEnviro 837 Shaw Road, St (209) 467-1006 F/	ockton, C	CA 95215		BOREHOLE NO. TOTAL DEPTH:	: B23	
Project:	SWISS VALLEY	CLEANE	RS	Drilling Co.	:	AGE	
Site Location	1395 MacArthur	Bouleva	ard	Rig/Auger Type: Mobile LAR Powerprobe			
	San Leandro, Ca	alifornia		Logged By:	:	D. Villanueva	
Project No.:	AGE- 12-2461			Reviewed E Date(s) Dri	•	W. Little 28 April 2014	
110100. *	advanced to 5 feet bsg. Boi rith Portland cement.	ing backfill	ed			during drilling in completed well	Page 1 of 1
Depth Sample	Blows PID (per 6") (ppm)	Soil Symbol	USCS Class and Soil Description				

0 —				
	B23-0.5-1.0	-	0.3	FL: brown to red, dry, FILL/SILTY SAND, fine grained sand, some fines, no odor
-			0.3	FL: brown to red, dry, FILL/CLAYEY SAND, fine grained sand, some gravel, no odor
	B23-1.5-2.0	-	1.1	CL: dark brown, dry, CLAY, no odor
-			2.3	CL: dark brown, dry, CLAY, no odor
	B23-2.5-3.0	-	2.0	CL: dark brown, dry, CLAY, no odor
-			1.7	CL: dark brown, dry, CLAY, no odor
	B23-3.5-4.0	-	2.1	CL: dark brown, dry, CLAY, no odor
-			0.5	ML: dark brown, dry, SILT, some clay, no odor
-5	B23-4.5-5.0	-	0.6	ML: dark brown, dry, SILT, some clay, no odor
-	-			

	2) -	Advanc GeoE 837 Shaw F (209) 467-1	nvir(Road, St	ockton, C			BOREHOLE NO. TOTAL DEPTH:	: B24	
Project:	:	SWISS VA	LLEY (CLEANE	RS	Drilling Co.	.:	AGE	
Site Loo	cation:	1395 Ma	cArthur	Bouleva	ard	Rig/Auger Type: Mobile LAR Powerprobe			
		San Lear	idro, Ca	lifornia		Logged By	:	D. Villanueva	
Project	No.:	AGE- 12-2	2461			Reviewed Date(s) Dri	•	W. Little 28 April 2014	
Notes: Boring advanced to 5 feet bsg. Boring backfilled to surface grade with Portland cement.					ed			during drilling in completed well	Page 1 of 1
Depth	Sample ID	Blows (per 6")	PID (ppm)	Soil Symbol	USCS Class and Soil Description				

	Advanc GeoE 837 Shaw F (209) 467-1	nvir(Road, St	ockton, C			BOREHOLE NO. TOTAL DEPTH:	: B25	
Project:	SWISS VA	ALLEY (CLEANE	RS	Drilling Co.	.:	AGE	
Site Location:	1395 Ma	cArthur	Bouleva	ard	Rig/Auger Type: Mobile LAR Powerprobe			
	San Lear	ndro, Ca	lifornia		Logged By	' :	D. Villanueva	
					Reviewed	By:	W. Little	
Project No.:	AGE- 12-2	2461			Date(s) Dri	illed:	28 April 2014	
Notes: Boring advanced to 5 feet bsg. Boring backfilled to surface grade with Portland cement.							during drilling in completed well	Page 1 of 1
Depth Sample	Blows	PID	Soil			USCS	S Class and	
ID	(per 6")	(ppm)	Symbol			Soil [Description	

0 —	1			
_	B25-0.5-1.0	-	0.2	FL: gray to white, dry, FILL, some gravel and sand, no odor
			0.2	FL: gray to white, dry, FILL, some gravel and sand, no odor
	B25-1.5-2.0	-	0.3	CL: dark brown, dry, CLAY, some fined grained sand, no odor
-			0.1	CL: dark brown, dry, CLAY, no odor
	B25-2.5-3.0	-	0.2	CL: dark brown, dry, CLAY, no odor
_	-		0	CL: dark brown, dry, CLAY, no odor
			0	ML: dark brown, dry, SILT, some clay, no odor
-			0	ML: dark brown, dry, SILT, some clay, no odor
-5	B25-4.5-5.0	-	0	ML: dark brown, dry, SILT, some clay, no odor
-				
_				

		Advanc GeoE 837 Shaw F (209) 467-1	nvir(Road, St	ockton, C			BOREHOLE NO. TOTAL DEPTH:	·· B26	
Project	t:	SWISS VA	ALLEY (CLEANE	RS	Drilling Co	.:	AGE	
Site Lo	ocation:	1395 Ma	Bouleva	ard	Rig/Auger Type: Mobile LAR Powerprobe				
		San Lear	ndro, Ca	alifornia		Logged By	<i>'</i> :	D. Villanueva	
Project	t No.:	AGE- 12-2	2461			Reviewed Date(s) Dri	-	W. Little 29 April 2014	
Notes: Boring advanced to 5 feet bsg. Boring backfilled to surface grade with Portland cement.					ed			during drilling in completed well	Page 1 of 1
Depth	Sample ID	Blows (per 6")	PID (ppm)	Soil Symbol	USCS Class and Soil Description				

0-	1 1			
	B26-0.5-1.0	-	0.3	FL: gray to white to brown, dry, FILL, some gravel and sand, no odor
-			14.3	SC: brown, dry, CLAYEY SAND, fine grained, no odor
	B26-1.5-2.0	-	15.2	SC: brown, dry, CLAYEY SAND, fine grained, no odor
-			2.1	CL: dark brown, dry, CLAY, some silt, friable, slightly plastic, no odor
			2.5	CL: dark brown, dry, CLAY, some silt, friable, slightly plastic, no odor
_	B26-2.5-3.0	-	17.7	CL: dark brown, dry, CLAY, some silt, friable, slightly plastic, no odor
			7.6	CL: dark brown, dry, CLAY, some silt, friable, slightly plastic, no odor
-	-		2.2	CL: dark brown, dry, CLAY, some silt, friable, slightly plastic, no odor
_	B26-4.5-5.0	-	2.2	CL: dark brown, dry, CLAY, some silt, friable, slightly plastic, no odor
-5				
-				

	Advanc GeoE 837 Shaw F (209) 467-1	nvir(Road, St	ockton, C				BOREHOLE NO. TOTAL DEPTH:	: B27	
Project:	Project: SWISS VALLEY CLEANERS					.:	AGE		
Site Location:	1395 Ma	cArthur	Bouleva	ard	Rig/Auger Type: Mobile LAR Powerprobe				
	San Lear	ndro, Ca	lifornia		Logged By: D. Villanueva				
		AGE- 12-2461					W. Little		
Project No.:	AGE- 12-2						29 April 2014		
110100.	Notes: Boring advanced to 5 feet bsg. Boring backfilled to surface grade with Portland cement.						 ✓ Water level during drilling ✓ Water level in completed well 		
Depth Sample	Blows	PID	Soil			USCS	S Class and		
ID	(per 6")	(ppm)	Symbol			Soil [Description		

0-	1		
	B27-0.5-1.0 -	0.4	FL: gray to white to light brown, dry, FILL, some sand and gravel, no odor
		0.5	SC: brown, dry, CLAYEY SAND, fine grained sand, no odor
	B27-1.5-2.0 -	0.5	SC: brown, dry, CLAYEY SAND, fine grained sand, no odor
-		0.5	CL: brown, dry, CLAY, plastic, no odor
	B27-2.5-3.0 -	0.4	CL: brown, dry, CLAY, plastic, no odor
-		0.7	CL: brown, dry, CLAY, plastic, no odor
		0.9	CL: brown, dry, CLAY, plastic, no odor
-		0.5	ML: brown, dry, SILT, no odor
-5	B27-4.5-5.0 -	0.9	ML: brown, dry, SILT, no odor
5			
-			

	Advanc GeoE 837 Shaw F (209) 467-1	nvir(Road, St	ockton, C				BOREHOLE NO. TOTAL DEPTH:	: B28	
Project:	Project: SWISS VALLEY CLEANERS					.:	AGE		
Site Location:	1395 Ma	cArthur	Bouleva	ard	Rig/Auger Type: Mobile LAR Powerprobe				
	San Lear	ndro, Ca	lifornia		Logged By	Logged By: D. Villanueva			
		AGE- 12-2461					W. Little		
Project No.:	AGE- 12-2						29 April 2014		
110100.	Notes: Boring advanced to 5 feet bsg. Boring backfilled to surface grade with Portland cement.						 ✓ Water level during drilling ✓ Water level in completed well 		
Depth Sample	Blows	PID	Soil			USCS	S Class and		
ID	(per 6")	(ppm)	Symbol			Soil Description			

0-				
	B28-0.5-1.0	-	1.4	FL: brown, dry, FILL/SILTY SAND, fine grained, no odor
_	B28-1.0-1.5	-	0.7	SM: brown, dry, SILTY SAND, fine grained, no odor
	B28-1.5-2.0	-	0.7	SM: brown, dry, SILTY SAND, fine grained, no odor
-			1.3	CL: brown, dry, CLAY, plastic, no odor
	B28-2.5-3.0	-	0.9	CL: brown, dry, CLAY, plastic, no odor
_			1.1	CL: brown, dry, CLAY, plastic, no odor
			0.6	CL: brown, dry, CLAY, plastic, no odor
_			1.1	CL: brown, dry, CLAY, plastic, no odor
-5	B28-4.5-5.0	-	0.7	CL: brown, dry, CLAY, plastic, no odor
_				

	Advanc GeoE 837 Shaw F (209) 467-1	nvir(Road, St	ockton, C				BOREHOLE NO. TOTAL DEPTH:	: B29		
Project:	Project: SWISS VALLEY CLEANERS					.:	AGE			
Site Location:	1395 Ma	cArthur	Bouleva	rd Rig/Auger Type: Mobile LAR Powerprob				rprobe		
	San Lear	ndro, Ca	lifornia		Logged By: D. Villanueva					
		AGE- 12-2461					W. Little			
Project No.:	AGE- 12-2						29 April 2014			
110100.	Notes: Boring advanced to 5 feet bsg. Boring backfilled to surface grade with Portland cement.						 ✓ Water level during drilling ✓ Water level in completed well 			
Depth Sample	Blows	PID	Soil			USCS	S Class and			
ID	(per 6")	(ppm)	Symbol		Soil Description					

0-				
			0	FL: white to brown, dry, FILL, some gravel, sand and silt, no odor
-			0.7	SM: brown, dry, SILTY SAND, fine grained sand, no odor
	B29-1.5-2.0 -	-	0.8	SM: brown, dry, SILTY SAND, fine grained sand, no odor
_			0.9	ML: dark brown, dry, SILT, some fine grained sand and clay, no odor
	B29-2.5-3.0 -	-	1.3	CL: dark brown, dry, CLAY, hard, plastic, no odor
_			1.2	CL: dark brown, dry, CLAY, hard, plastic, no odor
			0.8	CL: dark brown, dry, CLAY, hard, plastic, no odor
_			0.7	CL: dark brown, dry, CLAY, hard, plastic, no odor
_	B29-4.5-5.0 -	-	0.8	CL: dark brown, dry, CLAY, hard, plastic, no odor
-5				
_				

	Advanc GeoEi 837 Shaw R (209) 467-10	nvir(load, St	ockton, C				BOREHOLE NO. TOTAL DEPTH:	: B30		
Project:	Project: SWISS VALLEY CLEANERS					.:	AGE			
Site Location	1395 Mac	Arthur	Bouleva	ard	Rig/Auger Type: Mobile LAR Powerprobe					
	San Lean	San Leandro, California					Logged By: D. Villanueva			
Project No.:	AGE- 12-2	2461			Reviewed Date(s) Dri	,	W. Little 30 April 2014			
	Notes: Boring advanced to 5 feet bsg. Boring backfilled to surface grade with Portland cement.						 ✓ Water level during drilling ✓ Water level in completed well 			
DepthSampleBlowsPIDSoilID(per 6")(ppm)Symbol					USCS Class and Soil Description					

0 —				
			0.1	FL: white to brown, dry, FILL, some fine grained sand and gravel, some clay, no odor
-			0.1	FL: white to brown, dry, FILL, some fine grained sand and gravel, some clay, no odor
	B30-1.5-2.0	-	0.3	CL: dark brown, dry, CLAY, some fine grained sand, no odor
-			1.0	CL: dark brown, dry, CLAY, plastic, no odor
	B30-2.5-3.0	-	0.3	CL: dark brown, dry, CLAY, plastic, no odor
-			0.8	CL: dark brown, dry, CLAY, plastic, no odor
			0.3	CL: dark brown, dry, CLAY, plastic, no odor
-			0.2	CL: light brown, dry, SILT, some fine grained sand, no odor
-5	B30-4.5-5.0	-	0.2	ML: light brown, dry, SILT, some fine grained sand, no odor
U				
-				
_				

	Advanced GeoEnviro 837 Shaw Road, St (209) 467-1006 F/	ockton, C	CA 95215			BOREHOLE NO. TOTAL DEPTH:	: B31
Project:	Project: SWISS VALLEY CLEANERS					AGE	
Site Location:	1395 MacArthur	Bouleva	ard	Rig/Auger Type: Mobile LAR Powerprobe			
	San Leandro, Ca	alifornia		Logged By: D. Villanueva			
Project No.:	AGE- 12-2461			Reviewed I Date(s) Dri	•	W. Little 30 April 2014	
110100. *	advanced to 5 feet bsg. Boi rith Portland cement.	ring backfill	ed	 ✓ Water level during drilling ✓ Water level in completed well 			
Depth Sample	Blows PID (per 6") (ppm)	Soil Symbol				S Class and Description	

0 —				
		0.7		white to brown dry. Fill Learne fine grained and and gravel, some alow no
-		0.7	odo	
	B31-1.5-2.0 -	0.8	odo	
-		1.3		dark brown, dry, CLAY, some fine grained sand, no odor
	B31-2.5-3.0 -	1.8		dark brown, dry, CLAY, plastic, no odor
-		1.7		dark brown, dry, CLAY, plastic, no odor dark brown, dry, CLAY, plastic, no odor
		1.7		dark brown, dry, CLAY, plastic, no odor
-		no		light brown, dry, SILT, some fine grained sand, no odor
		no recovery		light brown, dry, SILT, some fine grained sand, no odor
-5				
-				

	Advance GeoEi 837 Shaw R (209) 467-10	nvir (ockton, C				BOREHOLE NO. TOTAL DEPTH:	.: B32	
Project:	Project: SWISS VALLEY CLEANERS					.:	AGE		
Site Location	1395 Mac	Arthur	Bouleva	ard	Rig/Auger Type: Mobile LAR Powerprobe				
	San Lean	San Leandro, California					Logged By: D. Villanueva		
Project No.:	AGE- 12-2	2461			Reviewed Date(s) Dri	,	W. Little 30 April 2014		
	Notes: Boring advanced to 5 feet bsg. Boring backfilled to surface grade with Portland cement.						 ✓ Water level during drilling ✓ Water level in completed well 		
DepthSampleBlowsPIDSoilID(per 6")(ppm)Symbol					USCS Class and Soil Description				

lor
lor
lor
-

	Advanc GeoE 837 Shaw F (209) 467-1	nvir(Road, St	ockton, C				BOREHOLE NO. TOTAL DEPTH:	: B33
Project:	SWISS VA	ALLEY (CLEANE	RS	Drilling Co.	.:	AGE	
Site Location:	1395 Ma	cArthur	Bouleva	ard	Rig/Auger Type: Mobile LAR Powerprobe			
	San Lear	ndro, Ca	lifornia		Logged By	gged By: D. Villanueva		
		AGE- 12-2461					W. Little	
Project No.:	AGE- 12-2						30 April 2014	
Notes: Boring to surface grade w	advanced to 5 fe ith Portland cem	0	ing backfill	ed	 ✓ Water level during drilling ✓ Water level in completed well 			
Depth Sample	Blows	Blows PID Soil					S Class and	
ID	(per 6")	(ppm)	Symbol		Soil Description			

0 —			1	
			1.7	FL: brown to white, dry, FILL, some sand, gravel and clay
-			1.7	FL: brown to white, dry, FILL, some sand, gravel and clay
	B33-1.5-2.0	-	3.8	CL: brown to light brown, dry, FILL, some fine grained sand and gravel, no odor
-			2.2	CL: dark brown, dry, CLAY, plastic, no odor
	B33-2.5-3.0	-	3.0	CL: dark brown, dry, CLAY, plastic, no odor
-			3.0	CL: dark brown, dry, CLAY, plastic, no odor
			2.8	CL: dark brown, dry, CLAY, plastic, no odor
-			1.6	ML: brown, dry, SILT, some fine grained sand, no odor
	B33-4.5-5.0	-	1.6	ML: brown, dry, SILT, some clay, no odor
-5 —				
-				
-				

	Advanced GeoEnviro 837 Shaw Road, St (209) 467-1006 F/	ockton, C	CA 95215			BOREHOLE NO. TOTAL DEPTH:	: B34	
Project:	SWISS VALLEY	CLEANE	RS	Drilling Co.	:	AGE		
Site Location:	1395 MacArthur	Bouleva	ard	Rig/Auger Type: Mobile LAR Powerprobe				
	San Leandro, Ca	alifornia		Logged By:	gged By: D. Villanueva			
Project No.:	AGE- 12-2461			Reviewed I Date(s) Dri	•	W. Little 30 April 2014		
110100. *	advanced to 5 feet bsg. Bo rith Portland cement.	ring backfill	ed	 ✓ Water level during drilling ✓ Water level in completed well 				
Depth Sample	Blows PID (per 6") (ppm)	Soil Symbol				S Class and Description		

0			
		0.9	FL: brown to red, dry, FILL, some fine grained sand and gravel, some clay, no odor
_		1	FL: brown to red, dry, FILL, some fine grained sand and gravel, some clay, no odor
B34-1	.5-2.0 -	1.1	FL: brown to red, dry, FILL, some fine grained sand and gravel, some clay, no odor
_		0.5	CL: dark brown, dry, CLAY, plastic, no odor
B34-2	.5-3.0 -	1.2	ML: dark brown, dry, SILT, no odor
-		1.2	ML: dark brown, dry, SILT, no odor
		1.2	ML: dark brown, dry, SILT, no odor
-		1.5	ML: dark brown, dry, SILT, no odor
B34-4	.5-5.0 -	2.0	ML: dark brown, dry, SILT, no odor
-5			

	Advanc GeoE 837 Shaw (209) 467-	nvir(Road, St	ockton, C				BOREHOLE NO TOTAL DEPTH:	.: B 35	
Project:	SWISS V	ALLEY (CLEANE	RS	Drilling Co.	.:	AGE		
Site Locatio	n: 1395 Ma	cArthur	Bouleva	ard	Rig/Auger Type: Mobile LAR Powerprobe				
	San Lea	ndro, Ca	alifornia		Logged By	3y: D. Villanueva			
Project No.:	AGE- 12-	2461			Reviewed Date(s) Dri	,	W. Little 01 May 2014		
110100.	g advanced to 5 fe with Portland cerr	•	ring backfill	ed	 ✓ Water level during drilling ✓ Water level in completed well 				
Depth Sam	le Blows (per 6")	PID (ppm)	Soil Symbol				S Class and Description		

		2.2		FL: brown, dry, FILL, some fine grained sand, some gravel and clay, no odor
-		2.2		FL: brown, dry, FILL, some fine grained sand, some gravel and clay, no odor
B35-1.5-2.0	-	2.3		FL: brown, dry, FILL, some fine grained sand, some gravel and clay, no odor
-		1.9		FL: brown, dry, FILL, some fine grained sand, some gravel and clay, no odor
B35-2.5-3.0	-	3.1		CL: dark brown, dry, CLAY, slightly plastic, no odor
		2.9		CL: dark brown, dry, CLAY, slightly plastic, no odor
		2.9		CL: dark brown, dry, CLAY, slightly plastic, no odor
		2.4		CL: dark brown, dry, CLAY, slightly plastic, no odor
B35-4.5-5.0	-	2.4		CL: dark brown, dry, CLAY, slightly plastic, no odor
	B35-2.5-3.0	B35-1.5-2.0 - B35-2.5-3.0 - B35-4.5-5.0 -	B35-1.5-2.0 - 2.3 B35-2.5-3.0 - 3.1 2.9 2.9 2.9 2.9 2.4	B35-1.5-2.0 - 2.3 B35-2.5-3.0 - 3.1 2.9 2.9 2.9 2.9 2.4

		Advanc GeoE 837 Shaw F (209) 467-1	nvir(Road, St	ockton, C				BOREHOLE NO. TOTAL DEPTH:	: B36		
Project	t:	SWISS VA	LLEY (CLEANE	RS	Drilling Co.	.:	AGE			
Site Lo	ocation:	1395 Ma	cArthur	Bouleva	ard	Rig/Auger Type: Mobile LAR Powerprobe					
		San Lear	ndro, Ca	alifornia		Logged By	ged By: D. Villanueva				
Project	t No.:	AGE- 12-2	2461			Reviewed Date(s) Dri	-	W. Little 01 May 2014			
	Notes: Boring advanced to 5 feet bsg. Boring backfilled to surface grade with Portland cement.							 ✓ Water level during drilling ✓ Water level in completed well 			
Depth	Sample ID	Blows (per 6")	PID (ppm)	Soil Symbol							

		1.3		FL: white to brown, dry, FILL, some silt and sand, no odor
_		1.3		FL: white to brown, dry, FILL, some silt and sand, no odor
B36-1.5-2.0	-	1.6		CL: dark brown, dry, CLAY, plastic, no odor
-		2.4		CL: dark brown, dry, CLAY, plastic, no odor
B36-2.5-3.0	-	3.2		CL: dark brown, dry, CLAY, plastic, no odor
-		0.8		CL: dark brown, dry, CLAY, plastic, no odor
		0.8		CL: dark brown, dry, CLAY, plastic, no odor
-		1.0		ML: brown, dry, SILT, no odor
B36-4.5-5.0	-	1.0		ML: brown, dry, SILT, no odor
	B36-2.5-3.0	B36-1.5-2.0 - B36-2.5-3.0 - B36-4.5-5.0 -	B36-1.5-2.0 - 1.6 2.4 B36-2.5-3.0 - 3.2 0.8 0.8 1.0	B36-1.5-2.0 - 1.6 2.4 B36-2.5-3.0 - 3.2 0.8 0.8 1.0

		Advanc GeoE 837 Shaw F (209) 467-1	nvir(Road, St	ockton, C				BOREHOLE NO. TOTAL DEPTH:	: B37
Projec	:t:	SWISS VA	ALLEY (CLEANE	RS	Drilling Co.	.:	AGE	
Site Lo	ocation:	1395 Ma	cArthur	Bouleva	ard	Rig/Auger Type: Mobile LAR Powerprobe			
		San Lear	ndro, Ca	alifornia		Logged By	ged By: D. Villanueva		
Projec	t No.:	AGE- 12-2	2461			Reviewed Date(s) Dri	-	W. Little 01 May 2014	
Notes: to surfac		lvanced to 5 fee h Portland cem	0	ing backfill	ed	 ✓ Water level during drilling ✓ Water level in completed well 			
Depth	Sample ID	Blows (per 6")	PID (ppm)	Soil Symbol					

0 —					
			1.3		FL: brown to white, dry, FILL, some fine grained sand, silt and clay, no odor
-			1.3		FL: brown to white, dry, FILL, some fine grained sand, silt and clay, no odor
	B37-1.5-2.0	-	2.0		CL: dark brown, dry, CLAY, slightly plastic, no odor
-	-		1.5		CL: dark brown, dry, CLAY, slightly plastic, no odor
	B37-2.5-3.0	-	2.8		ML: brown, dry, SILT, no odor
-	_		3.3		ML: brown, dry, SILT, no odor
			3.3		ML: brown, dry, SILT, no odor
-	-		2.4		ML: brown, dry, SILT, no odor
-5	B37-4.5-5.0	-	2.4		ML: brown, dry, SILT, no odor
C					
-	-				

	Advanc GeoE 837 Shaw F (209) 467-1	nvir(Road, St	ockton, C			BORING BOREHOLE NO.: TOTAL DEPTH:	B38	
Project:	SWISS VA	ALLEY (CLEANE	RS	Drilling Co	o.:	AGE	
Site Location:	1395 Ma	cArthur	Bouleva	ard	Rig/Auger Type: Hand Auger			
	San Lear	ndro, Ca	alifornia		Logged B	.ogged By: D. Villanueva		
					Reviewed	By:	W. Little	
Project No.:	AGE- 12-2	2461			Date(s) D	rilled:	02 May 2014	
Notes: Boring a to surface grade w	advanced to 5 fea ith Portland cem	Ū	ing backfill	ed	 ✓ Water level during drilling ✓ Water level in completed well 			
Depth Sample	Blows	PID	Soil			USCS	S Class and	
ID	(per 6")	(ppm)	Symbol		Soil Description			

0-			— I Г	
		0.2	-	FL: brown, dry, FILL, some fine grained sand, clay and gravel, no odor
_	B38-1.0-1.5 -	4.6		FL: brown, dry, FILL, some fine grained sand, clay and gravel, no odor
	B38-1.5-2.0 -	3.1		CL: dark brown, dry, CLAY, slightly plastic, no odor
_		3.3		CL: dark brown, dry, CLAY, slightly plastic, no odor
	B38-2.5-3.0 -	1.0		ML: brown, dry, SILT, some fine grained sand, no odor
_		0.6		ML: brown, dry, SILT, some fine grained sand, no odor
		0.6		ML: brown, dry, SILT, some fine grained sand, no odor
_		0.6		ML: brown, dry, SILT, some fine grained sand, no odor
_	B38-4.5-5.0 -	0.6		ML: brown, dry, SILT, some fine grained sand, no odor
-5 —				
_				

		A <i>dvanc</i> GeoE 837 Shaw F (209) 467-1	nvir(Road, St	ockton, C				BOREHOLE NO. TOTAL DEPTH:	: B39
Project:		SWISS VA	LLEY (CLEANE	RS	Drilling Co.: AGE			
Site Loc	ation:	1395 Ma	cArthur	Bouleva	ard	Rig/Auger	Type:	Mobile LAR Powe	rprobe
		San Lear	idro, Ca	lifornia		Logged By	:	D. Villanueva	
Project I	No.:	AGE- 12-2	2461			Reviewed Date(s) Dri		W. Little 02 May 2014	
110100.	vanced to 5 fee Portland cem	•	ing backfill	ed			during drilling in completed well	Page 1 of 1	
Depth	Sample ID	Blows (per 6")	Soil Symbol				S Class and Description		

0 —			1	
			0.7	FL: light brown, dry, FILL, some sand, clay, gravel, silt, no odor
_			0.7	FL: light brown, dry, FILL, some sand, clay, gravel, silt, no odor
	B39-1.5-2.0	-	0.8	CL: dark brown, dry, CLAY, plastic, no odor
_			1.3	CL: dark brown, dry, CLAY, plastic, no odor
	B39-2.5-3.0	-	2.2	CL: dark brown, dry, CLAY, plastic, no odor
_			1.8	CL: dark brown, dry, CLAY, plastic, no odor
			1.4	ML: brown, dry, SILT, no odor
_			1.4	ML: brown, dry, SILT, no odor
F	B39-4.5-5.0	-	1.4	ML: brown, dry, SILT, no odor
-5				
_				

		Advanc GeoE 837 Shaw F (209) 467-1	nvir(Road, St	ockton, C				BOREHOLE NO. TOTAL DEPTH:	: B40
Projec	:t:	SWISS VA	LLEY (CLEANE	RS	Drilling Co.	.:	AGE	
Site Lo	ocation:	1395 Ma	cArthur	Bouleva	ard	Rig/Auger	Type:	Mobile LAR Powe	rprobe
		San Lear	ndro, Ca	alifornia		Logged By	<i>'</i> :	D. Villanueva	
Projec	t No.:	AGE- 12-2	2461			Reviewed Date(s) Dri	-	W. Little 02 May 2014	
Notes: to surfac		Ivanced to 5 fee h Portland cem	U	ing backfill	ed			during drilling in completed well	Page 1 of 1
Depth	Sample ID	Blows (per 6")	Soil Symbol				S Class and Description		

0-				
			1.7	FL: brown, dry, FILL, some sand, gravel, silt and clay, no odor
_	-		1.7	FL: brown, dry, FILL, some sand, gravel, silt and clay, no odor
	B40-1.5-2.0	-	1.9	FL: brown, dry, FILL, some sand, gravel, silt and clay, no odor
_	_		2.2	CL: dark brown, dry, CLAY, plastic, no odor
	B40-2.5-3.0	-	1.7	CL: dark brown, dry, CLAY, plastic, no odor
_			1.4	CL: dark brown, dry, CLAY, plastic, no odor
_	-		1.4 2.5	CL: dark brown, dry, CLAY, plastic, no odor
	B40-4.5-5.0	_	2.5	ML: brown, moist, SILT, some clay, plastic, no odor
-5 —				ML: brown, moist, SILT, some clay, plastic, no odor
_				
I _				

		Advanc GeoE 837 Shaw F (209) 467-1	nvir(Road, St	ockton, C				BOREHOLE NO. TOTAL DEPTH:	: B41
Projec	:t:	SWISS VA	LLEY (CLEANE	RS	Drilling Co.: AGE			
Site Lo	ocation:	1395 Mac	Arthur	Bouleva	rd	Rig/Auger Type: Mobile LAR Powerprobe			
		San Lean	dro, Ca	lifornia		Logged By	/:	D. Villanueva	
Dualis -	4 NI					Reviewed	By:	W. Little	
Projec	t NO.:	AGE- 12-2	2461			Date(s) Dr	illed:	05 May 2014	
Notes: to surfac		lvanced to 5 fee	-	ing backfille	ed			during drilling in completed well	Page 1 of 1
Depth	Sample	Blows	Soil		USCS Class and				
	ID	(per 6")	Symbol		Soil Description				

0				
0	B41-1.5-2.0	_	0 0 0	FL: gray, dry, CLAY, some medium grained sand, some gravel, plastic, no odor FL: gray, dry, CLAY, some medium grained sand, some gravel, plastic, no odor FL: gray, dry, CLAY, some medium grained sand, some gravel, plastic, no odor
_			-	no recovery
			-	no recovery
-			-	no recovery
_			-	 no recovery
			-	ML: brown, dry, SILT, no odor
-5	B41-4.5-5.0	-	0.3	ML: brown, dry, SILT, no odor
_				

		Advanc GeoE 837 Shaw F (209) 467-1	nvir(Road, St	ockton, C				BOREHOLE NO. TOTAL DEPTH:	: B42
Project	t:	SWISS VA	LLEY (CLEANE	RS	Drilling Co.	.:	AGE	
Site Lo	ocation:	1395 Ma	cArthur	Bouleva	ard	Rig/Auger	Туре	Mobile LAR Powe	rprobe
		San Lear	ndro, Ca	alifornia		Logged By	/:	D. Villanueva	
Project	t No.:	AGE- 12-2	2461			Reviewed Date(s) Dri	-	W. Little 05 May 2014	
Notes: to surfac	Ũ	vanced to 5 fee	0	ing backfill	ed			during drilling in completed well	Page 1 of 1
Depth	Sample ID	Blows (per 6")	Soil Symbol				S Class and Description		

0-				
			0	CL: gray, moist, CLAY, plastic, some gravel, no odor
_			0	CL: gray, moist, CLAY, plastic, some gravel, no odor
	B42-1.5-2.0 -	-	0.3	CL: gray, moist, CLAY, plastic, some gravel, no odor
-	-		0	CL: gray, moist, CLAY, plastic, some gravel, no odor
	B42-2.5-3.0 -	-	0.5	CL: dark brown, dry to moist, CLAY, plastic, some gravel, no odor
-			0.3	CL: dark brown, dry to moist, CLAY, plastic, some gravel, no odor
			0.3	CL: dark brown, dry to moist, CLAY, plastic, some gravel, no odor
-			0.5	ML: brown, dry, SILT, no odor
	B42-4.5-5.0 -	-	0.5	ML: brown, dry, SILT, no odor
-5 —				
_				
_				

		Advanc GeoE 837 Shaw F (209) 467-1	nvir(Road, St	ockton, C				BOREHOLE NO. TOTAL DEPTH:	: B43
Project	t:	SWISS VA	LLEY (CLEANE	RS	Drilling Co.: AGE			
Site Lo	ocation:	1395 Ma	cArthur	Bouleva	ard	Rig/Auger	Type:	Mobile LAR Powe	rprobe
		San Lear	ndro, Ca	alifornia		Logged By	<i>'</i> :	D. Villanueva	
Project	t No.:	AGE- 12-2	2461			Reviewed Date(s) Dri	-	W. Little 06 May 2014	
Notes: to surfac	-	vanced to 5 fee	•	ing backfill	ed			during drilling in completed well	Page 1 of 1
Depth	Sample ID	Blows (per 6")	Soil Symbol				S Class and Description		

0-				
			0.5	SM: brown, dry, SILTY SAND, very fine grained sand, no odor
_			0.5	SM: brown, dry, SILTY SAND, very fine grained sand, no odor
	B43-1.5-2.0	-	0.5	SM: brown, dry, SILTY SAND, very fine grained sand, no odor
-			0.4	SM: brown, dry, SILTY SAND, very fine grained sand, no odor
	B43-2.5-3.0	-	0.4	CL: dark brown, dry, CLAY, plastic, no odor
_			0.4	CL: dark brown, dry, CLAY, plastic, no odor
			0.4	CL: dark brown, dry, CLAY, plastic, no odor
_			0.6	ML: brown, dry, SILT, no odor
-5	B43-4.5-5.0	-	0.6	ML: brown, dry, SILT, no odor
-5				
-				
_				

		Advanc GeoE 837 Shaw F (209) 467-1	nvir(Road, St	ockton, C				BOREHOLE NO.: TOTAL DEPTH:	B44
Projec	:t:	SWISS VA	LLEY (CLEANE	RS	Drilling Co.	.:	AGE	
Site Lo	ocation:	1395 Ma	cArthur	Bouleva	ard	Rig/Auger	Type:	Geoprobe 5400	
		San Lear	ndro, Ca	alifornia		Logged By	<i>'</i> :	D. Villanueva	
Projec	t No.:	AGE- 12-2	2461			Reviewed Date(s) Dri	-	W. Little 07 May 2014	
Notes: to surfac		lvanced to 5 fee	0	ing backfill	ed			during drilling in completed well	Page 1 of 1
Depth	Sample ID	Blows (per 6")	Soil Symbol				S Class and Description		

0-			1	
		0.1		CL: brown, dry, CLAY, slightly plastic, no odor
-		0.1		CL: brown, dry, CLAY, slightly plastic, no odor
	B44-1.5-2.0 -	0.1		CL: brown, dry, CLAY, slightly plastic, no odor
-		0.6		ML: light brown, dry, SILT, some very fine grained sand, no odor
	B44-2.5-3.0 -	0.6		ML: light brown, dry, SILT, some very fine grained sand, no odor
-		0.5		ML: light brown, dry, SILT, some very fine grained sand, no odor
		0.5		ML: light brown, dry, SILT, some very fine grained sand, no odor
-		0.4		ML: light brown, dry, SILT, some very fine grained sand, no odor
	B44.5-5.0 -	0.4		ML: light brown, dry, SILT, some very fine grained sand, no odor
-5				

Advanced GeoEnvironmental, Inc. 837 Shaw Road, Stockton, CA 95215 (209) 467-1006 FAX: (209) 467-1118						BOREHOLE NO.: TOTAL DEPTH:	B45				
Project:		SWISS VALLEY CLEANERS				Drilling Co.: AGE					
Site Loc	cation:	1395 MacArthur Boulevard				Rig/Auger Type: Geoprobe 5400					
		San Leandro, California				Logged By: D. Villanueva					
Project I	No.:	AGE- 12-2461				Reviewed Date(s) Dri	iewed By: W. Little e(s) Drilled: 07 May 2014				
		dvanced to 5 feet bsg. Boring backfilled ith Portland cement.			 ✓ Water level during drilling ✓ Water level in completed well 			Page 1 of 1			
Depth	Sample ID	Blows (per 6")	PID (ppm)	Soil Symbol	4			USCS Class and Soil Description			

0-				
		0.1		FL: brown, dry, FILL, some fine grained sand, some gravel, no odor
-		0.4		CL: dark brown, dry, CLAY, no odor
	B44-1.5-2.0 -	0.3		CL: dark brown, dry, CLAY, no odor
_		0.6		ML: light brown, dry, SILT, some fine grained sand, no odor
	B44-2.5-3.0 -	1.0		ML: light brown, dry, SILT, some fine grained sand, no odor
_		0.5		ML: light brown, dry, SILT, some fine grained sand, no odor
		0.5		ML: light brown, dry, SILT, some fine grained sand, no odor
_		0.4		ML: light brown, dry, SILT, some fine grained sand, no odor
_	B44.5-5.0 -	0.4		ML: light brown, dry, SILT, some fine grained sand, no odor
-5				
_				

APPENDIX D

23 May 2014

Mr. Daniel Villanueva Advanced GeoEnvironmental, Inc. 837 Shaw Road Stockton, CA 95215

SUBJECT: DATA REPORT - Advanced GeoEnvironmental, Inc. Project # 12-2461 Swiss Valley Cleaners 1395 MacArthur Boulevard, San Leandro, California

TEG Project # 40428E

Mr. Villanueva:

Please find enclosed a data report for the soil vapor samples analyzed from the above referenced project for Advanced GeoEnvironmental, Inc. The samples were analyzed on site in TEG's mobile laboratory. TEG conducted a total of 15 analyses on 15 soil vapor samples.

-- 15 analyses on soil vapors for volatile organic hydrocarbons by EPA method 8260B.

The results of the analyses are summarized in the enclosed tables. Applicable detection limits and calibration data are included in the tables.

TEG appreciates the opportunity to have provided analytical services to Advanced GeoEnvironmental, Inc. on this project. If you have any further questions relating to these data or report, please do not hesitate to contact us.

Sincerely,

Mark Jerpbak Director, TEG-Northern California

Advanced GeoEnvironmental, Inc. Project # 12-2461 Swiss Valley Cleaners 1395 MacArthur Boulevard, San Leandro, California

TEG Project #40428E

EPA Method 8260B VOC Analyses of SOIL VAPOR in micrograms per cubic meter of Vapor

SAMPLE NUMBER	R:	Syringe Blank	Syringe Blank	Syringe Blank	VP-41	VP-42	VP-43
SAMPLE DEPTH (feet,):				5.0	5.0	5.0
PURGE VOLUME					3	3	3
COLLECTION DATE		5/5/14	5/6/14	5/7/14	5/5/14	5/5/14	5/5/14
COLLECTION TIME:		09:50	11:56	08:32	11:20	12:04	13:20
DILUTION FACTOR		1	1	1	1	1	1
	RL						
Dichlorodifluoromethane	100	nd	nd	nd	nd	nd	nd
Vinyl Chloride	100	nd	nd	nd	nd	nd	nd
Chloroethane	100	nd	nd	nd	nd	nd	nd
Trichlorofluoromethane	100	nd	nd	nd	nd	nd	nd
1,1-Dichloroethene	100	nd	nd	nd	nd	nd	nd
1,1,2-Trichloro-trifluoroethane	100	nd	nd	nd	nd	nd	nd
Methylene Chloride	100	nd	nd	nd	nd	nd	nd
trans-1,2-Dichloroethene	100	nd	nd	nd	nd	nd	nd
1,1-Dichloroethane	100	nd	nd	nd	nd	nd	nd
cis-1,2-Dichloroethene	100	nd	nd	nd	nd	nd	nd
Chloroform	100	nd	nd	nd	nd	nd	nd
1,1,1-Trichloroethane	100	nd	nd	nd	nd	nd	nd
Carbon Tetrachloride	100	nd	nd	nd	nd	nd	nd
1,2-Dichloroethane	100	nd	nd	nd	nd	nd	nd
Benzene	80	nd	nd	nd	nd	nd	nd
Trichloroethene	100	nd	nd	nd	nd	nd	nd
Toluene	200	nd	nd	nd	nd	nd	nd
1,1,2-Trichloroethane	100	nd	nd	nd	nd	nd	nd
Tetrachloroethene	100	nd	nd	nd	7300	14000	32000
Ethylbenzene	100	nd	nd	nd	nd	nd	nd
1,1,1,2-Tetrachloroethane	100	nd	nd	nd	nd	nd	nd
m,p-Xylene	200	nd	nd	nd	nd	nd	nd
o-Xylene	100	nd	nd	nd	nd	nd	nd
1,1,2,2-Tetrachloroethane	100	nd	nd	nd	nd	nd	nd
1,1-Difluoroethane (leak check)	10000	nd	nd	nd	nd	nd	nd
Surrogate Recovery (DBFM) Surrogate Recovery (Toluene-d8) Surrogate Recovery (1,4-BFB)		88% 87% 87%	88% 87% 88%	90% 87% 86%	89% 87% 87%	87% 87% 86%	87% 86% 87%

'RL' Indicates reporting limit at a dilution factor of 1

'nd' Indicates not detected at listed reporting limits

Analyses performed in TEG-Northern California's lab Analyses performed by: Mr. Lane Sharon

page 1

Advanced GeoEnvironmental, Inc. Project # 12-2461 Swiss Valley Cleaners 1395 MacArthur Boulevard, San Leandro, California

TEG Project #40428E

EPA Method 8260B VOC Analyses of SOIL VAPOR in micrograms per cubic meter of Vapor

SAMPLE NUMBER	र:	VP-43	VP-44	VP-45	VP-46	VP-46	VP-47
		dup				dup	
SAMPLE DEPTH (feet):	5.0	5.0	5.0	5.0	5.0	5.0
PURGE VOLUME	:	3	3	3	3	3	3
COLLECTION DATE	Ξ:	5/5/14	5/5/14	5/6/14	5/6/14	5/6/14	5/7/14
COLLECTION TIME	Ē	13:20	12:51	12:05	12:42	12:42	10:50
DILUTION FACTOR		1	1	1	1	1	1
	RL						
Dichlorodifluoromethane	100	nd	nd	nd	nd	nd	nd
Vinyl Chloride	100	nd	nd	nd	nd	nd	nd
Chloroethane	100	nd	nd	nd	nd	nd	nd
Trichlorofluoromethane	100	nd	nd	nd	nd	nd	nd
1,1-Dichloroethene	100	nd	nd	nd	nd	nd	nd
1,1,2-Trichloro-trifluoroethane	100	nd	nd	nd	nd	nd	nd
Methylene Chloride	100	nd	nd	nd	nd	nd	nd
trans-1,2-Dichloroethene	100	nd	nd	nd	nd	nd	nd
1,1-Dichloroethane	100	nd	nd	nd	nd	nd	nd
cis-1,2-Dichloroethene	100	nd	nd	nd	nd	nd	nd
Chloroform	100	nd	nd	nd	nd	nd	nd
1,1,1-Trichloroethane	100	nd	nd	nd	210	170	nd
Carbon Tetrachloride	100	nd	nd	nd	nd	nd	nd
1,2-Dichloroethane	100	nd	nd	nd	nd	nd	nd
Benzene	80	nd	nd	nd	nd	nd	nd
Trichloroethene	100	nd	nd	nd	nd	nd	nd
Toluene	200	nd	nd	nd	nd	nd	nd
1,1,2-Trichloroethane	100	nd	nd	nd	nd	nd	nd
Tetrachloroethene	100	30000	38000	1200	24000	21000	1400
Ethylbenzene	100	nd	nd	nd	nd	nd	nd
1,1,1,2-Tetrachloroethane	100	nd	nd	nd	nd	nd	nd
m,p-Xylene	200	nd	nd	nd	nd	nd	nd
o-Xylene	100	nd	nd	nd	nd	nd	nd
1,1,2,2-Tetrachloroethane	100	nd	nd	nd	nd	nd	nd
1,1-Difluoroethane (leak check)	10000	nd	nd	nd	nd	nd	nd
Surrogate Recovery (DBFM) Surrogate Recovery (Toluene-d8) Surrogate Recovery (1,4-BFB)		86% 86% 86%	87% 87% 86%	86% 86% 86%	89% 88% 88%	103% 100% 86%	88% 87% 86%

'RL' Indicates reporting limit at a dilution factor of 1

'nd' Indicates not detected at listed reporting limits

Analyses performed in TEG-Northern California's lab Analyses performed by: Mr. Lane Sharon

page 2

Advanced GeoEnvironmental, Inc. Project # 12-2461 Swiss Valley Cleaners 1395 MacArthur Boulevard, San Leandro, California

TEG Project #40428E

EPA Method 8260B VOC Analyses of SOIL VAPOR in micrograms per cubic meter of Vapor

SAMPLE NUMBER.		VP-48	VP-49	VP-50	VP-51	VP-52	VP-52
							dup
SAMPLE DEPTH (feet).		5.0	5.0	5.0	5.0	5.0	5.0
PURGE VOLUME	2	3	3	3	3	3	3
COLLECTION DATE		5/7/14	5/7/14	5/7/14	5/7/14	5/7/14	5/7/14
COLLECTION TIME	i.	11:10	11:33	11:58	12:25	12:59	13:50
DILUTION FACTOR		1	1	1	1	1	1
	RL	-					
Dichlorodifluoromethane	100	nd	nd	nd	nd	nd	nd
Vinyl Chloride	100	nd	nd	nd	nd	nd	nd
Chloroethane	100	nd	nd	nd	nd	nd	nd
Trichlorofluoromethane	100	nd	nd	nd	nd	nd	nd
1,1-Dichloroethene	100	nd	nd	nd	nd	nd	nd
1,1,2-Trichloro-trifluoroethane	100	nd	nd	nd	nd	nd	nd
Methylene Chloride	100	nd	nd	nd	nd	nd	nd
trans-1,2-Dichloroethene	100	nd	nd	nd	nd	nd	nd
1,1-Dichloroethane	100	nd	nd	nd	nd	nd	nd
cis-1,2-Dichloroethene	100	nd	nd	nd	nd	nd	nd
Chloroform	100	nd	nd	nd	nd	nd	nd
1,1,1-Trichloroethane	100	nd	nd	nd	nd	nd	nd
Carbon Tetrachloride	100	nd	nd	nd	nd	nd	nd
1,2-Dichloroethane	100	nd	nd	nd	nd	nd	nd
Benzene	80	nd	nd	nd	nd	nd	nd
Trichloroethene	100	nd	nd	nd	nd	nd	nd
Toluene	200	nd	nd	nd	nd	nd	nd
1,1,2-Trichloroethane	100	nd	nd	nd	nd	nd	nd
Tetrachloroethene	100	3400	3000	570	2100	1300	1500
Ethylbenzene	100	nd	nd	nd	nd	nd	nd
1,1,1,2-Tetrachloroethane	100	nd	nd	nd	nd	nd	nd
m,p-Xylene	200	nd	nd	nd	nd	nd	nd
o-Xylene	100	nd	nd	nd	nd	nd	nd
1,1,2,2-Tetrachloroethane	100	nd	nd	nd	nd	nd	nd
1,1-Difluoroethane (leak check)	10000	nd	nd	nd	nd	nd	nd
Surrogate Recovery (DBFM) Surrogate Recovery (Toluene-d8) Surrogate Recovery (1,4-BFB)		91% 88% 88%	90% 87% 87%	89% 88% 88%	91% 87% 88%	105% 102% 89%	81% 75% 88%

'RL' Indicates reporting limit at a dilution factor of 1 'nd' Indicates not detected at listed reporting limits

Analyses performed in TEG-Northern California's lab Analyses performed by: Mr. Lane Sharon

page 3

Advanced GeoEnvironmental, Inc. Project # 12-2461 Swiss Valley Cleaner 1395 MacArthur Boulevard, San Leandro, California

TEG Project #40428E

CALIBRATION DATA - Calibration Check Compounds

	Vinyl Chloride	1,1 DCE	Chloroform	1,2 DCP	Toluene	Ethylbenzene
Midpoint	10.0	10.0	10.0	10.0	10.0	10.0
Continuing Calibra	tion - Midpoint					
5/05/14	9.9	8.2	9.4	10.1	9.4	8.5
	99%	82%	94%	101%	94%	85%
5/06/14	8.9	8.2	8.8	8.8	9.1	8.7
	89%	82%	88%	88%	91%	87%
5/07/14	10.8	9.8	10.2	9.8	9.9	9.7
	108%	98%	102%	98%	99%	97%

23 May 2014

Mr. Daniel Villanueva Advanced GeoEnvironmental, Inc. 837 Shaw Road Stockton, CA 95215

SUBJECT: DATA REPORT - Advanced GeoEnvironmental, Inc. Project # 12-2461 Swiss Valley Cleaners 1395 MacArthur Boulevard, San Leandro, California

TEG Project # 40428E

Mr. Villanueva:

Please find enclosed a data report for the soil samples analyzed from the above referenced project for Advanced GeoEnvironmental, Inc. The samples were analyzed on site in TEG's mobile laboratory. TEG conducted a total of 73 analyses on 73 soil samples.

-- 73 analyses on soils for volatile organic hydrocarbons by EPA method 8260B.

The results of the analyses are summarized in the enclosed tables. Applicable detection limits and QA/QC data are included in the tables.

TEG appreciates the opportunity to have provided analytical services to Advanced GeoEnvironmental, Inc. on this project. If you have any further questions relating to these data or report, please do not hesitate to contact us.

Sincerely,

Mark Jerpbak Director, TEG-Northern California

Advanced GeoEnvironmental, Inc. Project # 12-2461 Swiss Valley Cleaners 1395 MacArthur Boulevard, San Leandro, California

EPA Method 8260B	Analyses of SOIL	in mg/Kg
------------------	------------------	----------

		EPA Metho	a 8260B /	Analyses of S	OIL IN MG/Kg	2			
SAMPLE NUMBER		Blank	Blank	Blank	Blank	Blank	Blank	Blank	Blank
COLLECTION DATE.								al good an anna an anna	
ANALYSIS DATE		4/28/14	4/29/14	4/30/14	5/01/14	5/02/14	5/05/14	5/06/14	5/07/1
DILUTION FACTOR		1	1	1	1	1	1	1	1
	RL				3		10 H		
Dichlorodifluoromethane	0.0050	nd	nd	nd	nd	nd	nd	nd	nd nd
Chloromethane	0.0050	nd	nd	nd	nd	nd nd	nd nd	nd nd	nd
Vinyl Chloride	0.0050 0.0050	nd nd	nd nd	nd nd	nd nd	nd	nd	nd	nd
Bromomethane Chloroethane	0.0050	nd	nd	nd	nd	nd	nd	nd	nd
Trichlorofluoromethane	0.0050	nd	nd	nd	nd	nd	nd	nd	nd
1,1-Dichloroethene	0.0050	nd	nd	nd	nd	nd	nd	nd	nd
Methylene Chloride	0.0050	nd	nd	nd	nd	nd	nd	nd	nd
trans-1,2-Dichloroethene	0.0050	nd	nd	nd	nd	nd	nd	nd	nd
1,1-Dichloroethane	0.0050	nd	nd	nd	nd	nd	nd	nd	nd
2,2-Dichloropropane	0.0050	nd	nd	nd	nd	nd	nd	nd	nd
cis-1,2-Dichloroethene	0.0050	nd	nd	nd	nd	nd	nd	nd	nd
Chloroform	0.0050	nd	nd	nd	nd	nd	nd	nd	nd
Bromochloromethane	0.0050	nd	nd	nd	nd	nd	nd	nd	nd
1,1,1-Trichloroethane	0.0050	nd	nd	nd	nd	nd	nd	nd	nd
1,1-Dichloropropene	0.0050	nd	nd	nd	nd	nd	nd	nd	nd
Carbon Tetrachloride	0.0050	nd	nd	nd	nd	nd	nd	nd	nd
1,2-Dichloroethane	0.0050	nd	nd	nd	nd	nd	nd	nd	nd nd
Benzene	0.0050	nd	nd	nd	nd	nd nd	nd nd	nd nd	na nd
Trichloroethene	0.0050	nd	nd nd	nd nd	nd nd	nd nd	nd nd	nd	nd
1,2-Dichloropropane	0.0050 0.0050	nd nd	nd	nd	nd	nd	nd	nd	nd
Bromodichloromethane	0.0050	nd	nd	nd	nd	nd	nd	nd	nd
Dibromomethane	0.0050	nd	nd	nd	nd	nd	nd	nd	nd
cis-1,3-Dichloropropene Toluene	0.0050	nd	nd	nd	nd	nd	nd	nd	nd
trans-1,3-Dichloropropene	0.0050	nd	nd	nd	nd	nd	nd	nd	nd
1,1,2-Trichloroethane	0.0050	nd	nd	nd	nd	nd	nd	nd	nd
1,2-Dibromoethane	0.0050	nd	nd	nd	nd	nd	nd	nd	nd
1,3-Dichloropropane	0.0050	nd	nd	nd	nd	nd	nd	nd	nd
Tetrachloroethene	0.0050	nd	nd	nd	nd	nd	nd	nd	nd
Dibromochloromethane	0.0050	nd	nd	nd	nd	nd	nd	nd	nd
Chlorobenzene	0.0050	nd	nd	nd	nd	nd	nd	nd	nd
Ethylbenzene	0.0050	nd	nd	nd	nd	nd	nd	nd	nd
1, 1, 1, 2-Tetrachloroethane	0.0050	nd	nd	nd	nd	nd	nd	nd	nd
m,p-Xylene	0.0050	nd	nd	nd	nd	nd	nd	nd	nd
o-Xylene	0.0050	nd	nd	nd	nd	nd	nd	nd	nd nd
Styrene	0.0050	nd	nd	nd	nd	nd	nd nd	nd nd	nd
Bromoform	0.0050	nd	nd	nd	nd	nd nd	nd	nd	nd
Isopropylbenzene	0.0050 0.0050	nd	nd	nd	nd nd	nd	nd	nd	nd
1,1,2,2-Tetrachloroethane	0.0050	nd nd	nd nd	nd nd	nd	nd	nd	nd	nd
1,2,3-Trichloropropane	0.0050	nd	nd	nd	nd	nd	nd	nd	nd
n-propylbenzene	0.0050	nd	nd	nd	nd	nd	nd	nd	nd
Bromobenzene 1,3,5-Trimethylbenzene	0.0050	nd	nd	nd	nd	nd	nd	nd	nd
2-Chlorotoluene	0.0050	nd	nd	nd	nd	nd	nd	nd	nd
4-Chlorotoluene	0.0050	nd	nd	nd	nd	nd	nd	nd	nd
tert-Butylbenzene	0.0050	nd	nd	nd	nd	nd	nd	nd	nd
1,2,4-Trimethylbenzene	0.0050	nd	nd	nd	nd	nd	nd	nd	nd
sec-Butylbenzene	0.0050	nd	nd	nd	nd	nd	nd	nd	nd
p-Isopropyltoluene	0.0050	nd	nd	nd	nd	nd	nd	nd	nď
1,3-Dichlorobenzene	0.0050	nd	nd	nd	nd	nd	nd	nd	nd
1,4-Dichlorobenzene	0.0050	nd	nd	nd	nd	nd	nd	nd	nd
n-Butylbenzene	0.0050	nd	nd	nd	nd	nd	nd	nd	nd
1,2-Dichlorobenzene	0.0050	nd	nd	nd	nd	nd	nd	nd	nd
1,2-Dibromo-3-chloropropane	0.0050	nd	nd	nd	nd	nd	nd	nd	nd
1,2,4-Trichlorobenzene	0.0050	nd	nd	nd	nd	nd	nd	nd	nd
Hexachlorobutadiene	0.0050	nd	nd	nd	nd	nd	nd	nd	nd nd
Naphthalene	0.0050	nd	nd	nd	nd	nd	nd	nd	na nd
1,2,3-Trichlorobenzene	0.0050	nd	nd	nd	nd	nd	nd	nd	na
Surrante Persyan (1 2 DCA	-14)	84%	95%	87%	87%	89%	93%	90%	94%
Surrogate Recovery (1,2-DCA- Surrogate Recovery (Toluene-c		87%	85%	87%	86%	86%	87%	87%	86%
Surrogate Recovery (1,4-BFB)	-/	83%	86%	84%	85%	85%	86%	84%	89%
Surrodate Recovery 11 4-000									

11350 Monier Park Place, Rancho Cordova, CA 95742 • Phone (916) 853-8010 • Fax (916) 853-8020

Advanced GeoEnvironmental, Inc. Project # 12-2461 Swiss Valley Cleaners 1395 MacArthur Boulevard, San Leandro, California

EPA Method 8260B	Analy	ses of SOIL	in mg/Kg
------------------	-------	-------------	----------

SAMPLE NUMBER		B23-0.5-1.0	B23-1.5-2.0	B23-2.5-3.0	B23-3.5-4.0	B23-4.5-5.0	B24-0.5-1.0	B24-1.5-2
COLLECTION DATE. ANALYSIS DATE.		4/28/14 4/28/14						
DILUTION FACTOR.	RL	1	1	1	1	1	1	1
Dichlorodifluoromethane	0.0050	nd						
Chloromethane	0.0050	nd						
/inyl Chloride	0.0050	nd						
Bromomethane	0.0050	nd						
Chloroethane	0.0050	nd						
Trichlorofluoromethane	0.0050	nd						
,1-Dichloroethene /lethylene Chloride	0.0050 0.0050	nd						
rans-1,2-Dichloroethene	0.0050	nd						
,1-Dichloroethane	0.0050	nd nd	nd	nd	nd	nd	nd	nd
, 1-Dichloropropane	0.0050	nd	nd nd	nd nd	nd	nd nd	nd nd	nd
is-1,2-Dichloroethene	0.0050	nd	nd	nd	nd nd	nd	nd	nd nd
Chloroform	0.0050	nd						
Bromochloromethane	0.0050	nd						
,1,1-Trichloroethane	0.0050	nd						
,1-Dichloropropene	0.0050	nd						
Carbon Tetrachloride	0.0050	nd						
.2-Dichloroethane	0.0050	nd						
Benzene	0.0050	nd						
Frichloroethene	0.0050	nd						
,2-Dichloropropane	0.0050	nd						
Bromodichloromethane	0.0050	nd						
Dibromomethane	0.0050	nd						
is-1,3-Dichloropropene	0.0050	nd						
oluene	0.0050	nd						
ans-1,3-Dichloropropene	0.0050	nd						
,1,2-Trichloroethane	0.0050	nd						
,2-Dibromoethane	0.0050	nd						
,3-Dichloropropane	0.0050	nd						
etrachloroethene	0.0050	nd	0.026	0.12	0.040	0.030	nd	0.032
Dibromochloromethane	0.0050	nd						
Chlorobenzene	0.0050	nd						
Ethylbenzene	0.0050	nd						
,1,1,2-Tetrachloroethane	0.0050	nd						
n,p-Xylene	0.0050	nd						
o-Xylene	0.0050	nd						
Styrene	0.0050	nd						
Bromoform	0.0050	nd						
sopropylbenzene	0.0050	nd						
,1,2,2-Tetrachloroethane	0.0050	nd						
,2,3-Trichloropropane	0.0050	nd						
-propylbenzene	0.0050	nd						
Bromobenzene	0.0050	nd						
,3,5-Trimethylbenzene	0.0050	nd						
-Chlorotoluene	0.0050	nd						
-Chlorotoluene	0.0050	nd						
ert-Butylbenzene	0.0050	nd						
,2,4-Trimethylbenzene	0.0050	nd						
ec-Butylbenzene	0.0050	nd						
-Isopropyltoluene	0.0050	nd						
3-Dichlorobenzene	0.0050	nd						
,4-Dichlorobenzene	0.0050	nd						
-Butylbenzene	0.0050	nd						
,2-Dichlorobenzene	0.0050	nd						
,2-Dibromo-3-chloropropane	0.0050	nd						
,2,4-Trichlorobenzene	0.0050	nd						
lexachlorobutadiene	0.0050	nd						
laphthalene	0.0050	nd						
,2,3-Trichlorobenzene	0.0050	nd						
Surrogate Recovery (1,2-DCA-d		97%	94%	102%	110%	104%	96%	102%
Surrogate Recovery (Toluene-d&	3)	85% 86%	84% 84%	77% 70%	81% 77%	80%	86% 81%	82% 81%
Surrogate Recovery (1,4-BFB)					770/	71%	U 7 0/	110/

11350 Monier Park Place, Rancho Cordova, CA 95742 • Phone (916) 853-8010 • Fax (916) 853-8020

Advanced GeoEnvironmental, Inc. Project # 12-2461 Swiss Valley Cleaners 1395 MacArthur Boulevard, San Leandro, California

EPA Method 8260B	Analys	es of SOIL	in mg/Kg
------------------	--------	------------	----------

SAMPLE NUMBER		B24-4.5-5.0	B25-0.5-1.0	B25-1.5-2.0	B25-2.5-3.0	B25-4.0-5.0	B26-0.5-1.0	B26-1.5-2
COLLECTION DATE: ANALYSIS DATE:		4/28/14 4/28/14	4/28/14 4/28/14	4/28/14 4/28/14	4/28/14 4/28/14	4/28/14 4/28/14	4/29/14 4/29/14	4/29/14 4/29/14
DILUTION FACTOR		1	1	1	1	1	1	1
Dichlorodifluoromethane	0.0050	nd						
Chloromethane	0.0050	nd						
/inyl Chloride	0.0050	nd						
Bromomethane	0.0050	nd						
Chloroethane	0.0050	nd						
richlorofluoromethane	0.0050	nd	nd	nd	nd	nd	nd	nd nd
,1-Dichloroethene	0.0050	nd	nd	nd	nd	nd nd	nd nd	nd
Nethylene Chloride	0.0050 0.0050	nd nd	nd nd	nd nd	nd nd	nd	nd	nd
rans-1,2-Dichloroethene ',1-Dichloroethane	0.0050	nd						
, 1-Dichloropropane	0.0050	nd						
cis-1,2-Dichloroethene	0.0050	nd	nd	nd	nd	nđ	nd	nd
Chloroform	0.0050	nd						
Bromochloromethane	0.0050	nd						
1,1,1-Trichloroethane	0.0050	nd						
1.1-Dichloropropene	0.0050	nd						
Carbon Tetrachloride	0.0050	nd						
1,2-Dichloroethane	0.0050	nd						
Benzene	0.0050	nd						
Trichloroethene	0.0050	nd						
,2-Dichloropropane	0.0050	nd						
Bromodichloromethane	0.0050	nd						
Dibromomethane	0.0050	nd						
sis-1,3-Dichloropropene	0.0050	nd						
Foluene	0.0050	nd						
rans-1,3-Dichloropropene	0.0050	nd						
,1,2-Trichloroethane	0.0050	nd						
1,2-Dibromoethane	0.0050	nd						
1,3-Dichloropropane	0.0050	nd						
Tetrachloroethene	0.0050	0.017	nd	0.048	0.061	0.023	0.0056	0.0063
Dibromochloromethane	0.0050	nd						
Chlorobenzene	0.0050	nd						
Ethylbenzene	0.0050	nd	nd	nd	nd	nd	nd	nd nd
1,1,1,2-Tetrachloroethane	0.0050	nd	nd	nd	nd	nd	nd nd	nd
n,p-Xylene	0.0050	nd	nd	nd nd	nd nd	nd nd	nd	nd
o-Xylene	0.0050 0.0050	nd nd	nd nd	nd	nd	nd	nd	nd
Styrene	0.0050	nd						
Bromoform sopropylbenzene	0.0050	nd						
sopropymenzene 1.1.2.2-Tetrachloroethane	0.0050	nd						
1,2,3-Trichloropropane	0.0050	nd						
n-propylbenzene	0.0050	nd						
Bromobenzene	0.0050	nd						
1,3,5-Trimethylbenzene	0.0050	nd						
2-Chlorotoluene	0.0050	nd						
t-Chlorotoluene	0.0050	nd						
ert-Butylbenzene	0.0050	nd						
1,2,4-Trimethylbenzene	0.0050	nd						
sec-Butylbenzene	0.0050	nd						
o-Isopropyltoluene	0.0050	nd						
.3-Dichlorobenzene	0.0050	nd						
,4-Dichlorobenzene	0.0050	nd						
Butylbenzene	0.0050	nd						
,2-Dichlorobenzene	0.0050	nd						
,2-Dibromo-3-chloropropane	0.0050	nd						
1,2,4-Trichlorobenzene	0.0050	nd						
lexachlorobutadiene	0.0050	nd						
Vaphthalene	0.0050	nd						
1,2,3-Trichlorobenzene	0.0050	nd						
Surrogate Recovery (1,2-DCA-c	(4)	110%	97%	105%	121%	109%	96%	101%
Surrogate Recovery (Toluene-d		82%	82%	81%	73%	79%	86%	83%
Surrogate Recovery (1,4-BFB)	90 7 0	76%	81%	75%	75%	77%	82%	83%
RL' Indicates reporting limit at	a dilution facto	r of 1						

o-Xylene

Bromoform

Isopropylbenzene

n-propylbenzene

Bromobenzene

2-Chlorotoluene

4-Chlorotoluene

tert-Butylbenzene

sec-Butylbenzene

p-Isopropyltoluene

n-Butylbenzene

Naphthalene

1,3-Dichlorobenzene

1,4-Dichlorobenzene

1,2-Dichlorobenzene

1,2,4-Trichlorobenzene

1,2,3-Trichlorobenzene

Hexachlorobutadiene

1,2-Dibromo-3-chloropropane

Surrogate Recovery (1,2-DCA-d4)

Surrogate Recovery (Toluene-d8)

Surrogate Recovery (1,4-BFB)

1, 1, 2, 2-Tetrachloroethane

1,2,3-Trichloropropane

1,3,5-Trimethylbenzene

1,2,4-Trimethylbenzene

Styrene

Advanced GeoEnvironmental, Inc. Project # 12-2461 Swiss Valley Cleaners 1395 MacArthur Boulevard, San Leandro, California

		EPA Method	18260B Ana	lyses of SOIL	in mg/Kg			
SAMPLE NUMBE	R:	B26-3.0-3.5	B26-4.0-5.0	B27-0.5-1.0	B27-1.5-2.0	B27-2.5-3.0	B27-4.5-5.0	B28-0.5-1.0
COLLECTION DAT	'F'	4/29/14	4/29/14	4/29/14	4/29/14	4/29/14	4/29/14	4/29/14
ANALYSIS DAT		4/29/14	4/29/14	4/29/14	4/29/14	4/29/14	4/29/14	4/29/14
DILUTION FACTO		1	1	1	1	1	1	1
Dizerierritere	RL		(14)	70 	с.			
Dichlorodifluoromethane	0.0050	nd	nd	nd	nd	nd	nd	nd
Chloromethane	0.0050	nd	nd	nd	nd	nd	nd	nd
Vinyl Chloride	0.0050	nd	nd	nd	nd	nd	nd	nd
Bromomethane	0.0050	nd	nd	nd	nd	nd	nd	nd
Chloroethane	0.0050	nd	nd	nd	nd	nd	nd	nd
Trichlorofluoromethane	0.0050	nd	nd	nd	nd	nd	nd	nd
1.1-Dichloroethene	0.0050	nd	nd	nd	nd	nd	nd	nd
Methylene Chloride	0.0050	nd	nd	nd	nd	nd	nd	nd
trans-1.2-Dichloroethene	0.0050	nd	nd	nd	nd	nd	nd	nd
1,1-Dichloroethane	0.0050	nd	nd	nd	nd	nd	nd	nd
2,2-Dichloropropane	0.0050	nd	nd	nd	nd	nd	nd	nd
cis-1,2-Dichloroethene	0.0050	nd	nd	nd	nd	nd	nd	nd
Chloroform	0.0050	nd	nd	nd	nd	nd	nd	nd
Bromochloromethane	0.0050	nd	nd	nd	nd	nd	nd	nd
1.1.1-Trichloroethane	0.0050	nd	nd	nd	nd	nd	nd	nd
1.1-Dichloropropene	0.0050	nd	nd	nd	nd	nd	nd	nd
Carbon Tetrachloride	0.0050	nd	nd	nd	nd	nd	nd	nd
1.2-Dichloroethane	0.0050	nd	nd	nd	nd	nd	nd	nd
Benzene	0.0050	nd	nd	nd	nd	nd	nd	nd
Trichloroethene	0.0050	nd	nd	nd	nd	nd	nd	nd
1.2-Dichloropropane	0.0050	nd	nd	nd	nd	nd	nd	nd
Bromodichloromethane	0.0050	nd	nd	nd	nd	nd	nd	nd
Dibromomethane	0.0050	nd	nd	nd	nd	nd	nd	nd
cis-1,3-Dichloropropene	0.0050	nd	nd	nd	nd	nd	nd	nd
Toluene	0.0050	nd	nd	nd	nd	nd	nd	nd
trans-1,3-Dichloropropene	0.0050	nd	nd	nd	nd	nd	nd	nd
1.1.2-Trichloroethane	0.0050	nd	nd	nd	nd	nd	nd	nd
1,1,2-Dibromoethane	0.0050	nd	nd	nd	nd	nd	nd	nd
	0.0050	nd	nd	nd	nd	nd	nd	nd
1,3-Dichloropropane	0.0050	0.043	0.018	nd	0.010	0.045	0.043	0.0053
Tetrachloroethene	0.0050	0.040 nd	nd	nd	nd	nd	nd	nd
Dibromochloromethane	0.0050	nd	nd	nd	nd	nd	nd	nd
Chlorobenzene	0.0050	nd	nd	nd	nd	nd	nd	nd
Ethylbenzene	0.0050	nd	nd	nd	nd	nd	nd	nd
1,1,1,2-Tetrachloroethane	0.0050	nd	nd	nd	nd	nd	nd	nd
m,p-Xylene	0.0050	na	nd	nd	nd	nd	nd	nd

'RL' Indicates reporting limit at a dilution factor of 1 'nd' Indicates not detected at listed reporting limits

0.0050

0.0050

0.0050

0.0050

0.0050

0 0050

0.0050

0.0050

0.0050

0 0050

0.0050

0.0050

0.0050

0.0050

0.0050

0.0050

0.0050

0.0050

0.0050

0.0050

0.0050

0.0050

0.0050

0.0050

nd

125%

78%

73%

nd

nđ

nd

nd

nd

nd

nd

nd

nd

117%

80%

77%

Analyses performed by: Mr. Lane Sharon

nd

пd

nd

nd

nd

nd

nd

nd

nd

103%

83%

82%

nd

110%

83%

85%

page 4

nd

103%

80%

71%

nd

126%

70%

68%

nd

101%

86%

85%

Fax (916) 853-8020 11350 Monier Park Place, Rancho Cordova, CA 95742 Phone (916) 853-8010 0 0

Advanced GeoEnvironmental, Inc. Project # 12-2461 Swiss Valley Cleaners 1395 MacArthur Boulevard, San Leandro, California

EPA Method 8260B	Analyses of SOIL in mg/Kg
------------------	---------------------------

SAMPLE NUMBER:		B28-2.5-3.0	B28-4.5-5.0	B29-1.5-2.0	B29-2.5-3.0	B29-4.5-5.0	B30-1.5-2.0	B30-2.5-3
COLLECTION DATE: ANALYSIS DATE:		4/29/14 4/29/14	4/29/14 4/29/14	4/29/14 4/29/14	4/29/14 4/29/14	4/29/14 4/29/14	4/30/14 4/30/14	4/30/14 4/30/14
DILUTION FACTOR:		1	1	1	1	1	1	1
	RL							
Dichlorodifluoromethane	0.0050	nd	nd	nd nd	nd nd	nd nd	nd nd	nd nd
Chloromethane	0.0050 0.0050	nd nd	nd nd	nd	nd	nd	nd	nd
/inyl Chloride Bromomethane	0.0050	nd						
Chloroethane	0.0050	nd						
Trichlorofluoromethane	0.0050	nd						
1.1-Dichloroethene	0.0050	nd						
Nethylene Chloride	0.0050	nd						
rans-1,2-Dichloroethene	0.0050	nd						
1,1-Dichloroethane	0.0050	nd						
2,2-Dichloropropane	0.0050	nd						
cis-1,2-Dichloroethene	0.0050	nd						
Chloroform	0.0050	nd	nd	nd	nd	nd	nd	nd nd
Bromochloromethane	0.0050	nd	nd	nd	nd	nd	nd nd	nd
1,1,1-Trichloroethane	0.0050	nd	nd	nd nd	nd nd	nd nd	nd	nd
1,1-Dichloropropene	0.0050	nd	nd nd	na nd	nd	nd	nd	nd
Carbon Tetrachloride	0.0050 0.0050	nd nd	na nd	nd	nd	nd	nd	nd
1,2-Dichloroethane	0.0050	nd						
Benzene Trichloroethene	0.0050	nd						
1,2-Dichloropropane	0.0050	nd						
Bromodichloromethane	0.0050	nd						
Dibromomethane	0.0050	nd						
cis-1,3-Dichloropropene	0.0050	nd						
Toluene	0.0050	nd						
rans-1,3-Dichloropropene	0.0050	nd						
1,1,2-Trichloroethane	0.0050	nd						
1,2-Dibromoethane	0.0050	nd	nd	nd	nd	nd	nd	nd nd
1,3-Dichloropropane	0.0050	nd	nd	nd 0.015	nd 0.033	nd 0.019	nd 0.019	0.024
Tetrachloroethene	0.0050	0.037	0.021			nd	nd	nd
Dibromochloromethane	0.0050	nd	nd	nd nd	nd nd	nd	nd	nd
Chlorobenzene	0.0050 0.0050	nd	nd nd	nd	nd	nd	nd	nd
Ethylbenzene	0.0050	nd nd	nd	nd	nd	nd	nd	nd
1,1,1,2-Tetrachloroethane	0.0050	nd						
m,p-Xylene	0.0050	nd						
o-Xylene Styrene	0.0050	nd						
Bromoform	0.0050	nd						
Isopropylbenzene	0.0050	nd						
1,1,2,2-Tetrachloroethane	0.0050	nd						
1,2,3-Trichloropropane	0.0050	nd						
n-propylbenzene	0.0050	nd						
Bromobenzene	0.0050	nd						
1,3,5-Trimethylbenzene	0.0050	nd						
2-Chlorotoluene	0.0050	nd	nd	nd	nd	nd	nd	na nd
4-Chlorotoluene	0.0050	nd	nd	nd	nd nd	nd nd	nd nd	nd nd
tert-Butylbenzene	0.0050	nd	nd	nd nd	nd	nd	nd	nd
1,2,4-Trimethylbenzene	0.0050	nd	nd nd	nd nd	nd	nd	nd	nd
sec-Butylbenzene	0.0050 0.0050	nd nd	nd	nd	nd	nd	nd	nd
p-Isopropyltoluene	0.0050	nd						
1,3-Dichlorobenzene 1.4-Dichlorobenzene	0.0050	nd						
	0.0050	nd						
n-Butylbenzene 1.2-Dichlorobenzene	0.0050	nd						
1,2-Dibromo-3-chloropropane	0.0050	nd						
1,2.4-Trichlorobenzene	0.0050	nd						
Hexachlorobutadiene	0.0050	nd						
Naphthalene	0.0050	nd						
1,2,3-Trichlorobenzene	0.0050	nd						
	10	4000/	117%	101%	117%	69%	97%	114%
Surrogate Recovery (1,2-DCA-	(4)	130% 76%	78%	83%	83%	74%	82%	80%
Surrogate Recovery (Toluene-c								

'nd' Indicates not detected at listed reporting limits

Analyses performed by: Mr. Lane Sharon

Advanced GeoEnvironmental, Inc. Project # 12-2461 Swiss Valley Cleaners 1395 MacArthur Boulevard, San Leandro, California

EPA Method 8260B	Analy	ses of SOIL	in mg/Kg
------------------	-------	-------------	----------

Surrogate Recovery (Toluene-c	100 C	77%	83%	77%	85%	050/		060/
Surrogate Recovery (1,2-DCA-	14)	104%	105%	126%	100%	103% 85%	140% 72%	100% 86%
1,2,3-Trichlorobenzene	0.0050	nd	nd	nd	nd	nd	nd	nd
Naphthalene	0.0050	nd	nd	nd	nd	nd	nd	nd
Hexachlorobutadiene	0.0050	nd	nd	nd	nd	nd	nd	nd
1,2-Dibromo-3-chloropropane 1,2,4-Trichlorobenzene	0.0050	nd	nd	nd	nd	nd	nd	nd
1,2-Dichlorobenzene	0.0050 0.0050	nd nd	nd nd	nd nd	nd	nd	nd	nd
n-Butylbenzene	0.0050	nd	nd nd	nd nd	nd nd	nd nd	nd	nd
1,4-Dichlorobenzene	0.0050	nd	nd	nd	nd	nd	nd nd	nd nd
1,3-Dichlorobenzene	0.0050	nd	nd	nd	nd	nd	nd	nd
p-Isopropyltoluene	0.0050	nd	nd	nd	nd	nd	nd	nd
sec-Butylbenzene	0.0050	nd	nd	nd	nd	nd	nd	nd
en-Bulybenzene 1,2,4-Trimethylbenzene	0.0050	nd	nd	nd	nd	nd	nd	nd
4-Chlorotoluene ert-Butylbenzene	0.0050	nd	nd	nd	nd	nd	nd	nd
2-Chlorotoluene	0.0050 0.0050	nd nd	nd nd	nd nd	nd nd	nd nd	nd	nd
1,3,5-Trimethylbenzene	0.0050	nd	nd	nd	nd	nd nd	nd nd	nd nd
Bromobenzene	0.0050	nd	nd	nd	nd	nd	nd	nd
-propylbenzene	0.0050	nd	nd	nd	nd	nd	nd	nd
1,2,3-Trichloropropane	0.0050	nd	nd	nd	nd	nd	nd	nd
1,1,2,2-Tetrachloroethane	0.0050	nd	nd	nd	nd	nd	nd	nd
Bromoform sopropylbenzene	0.0050	nd	nd	nd	nd	nd	nd	nd
Styrene	0.0050 0.0050	nd nd	nd nd	nd	nd	nd	nd	nd
o-Xylene	0.0050	nd	nd	nd nd	nd nd	nd nd	na nd	nd nd
n,p-Xylene	0.0050	nd	nd	nd	nd	nd	nd nd	nd nd
1,1,1,2-Tetrachloroethane	0.0050	nd	nd	nd	nd	nd	nd	nd
Ethylbenzene	0.0050	nd	nd	nd	nd	nd	nd	nd
Chlorobenzene	0.0050	nd	nd	nd	nd	nd	nd	nd
Dibromochloromethane	0.0050	nd	nd	nd	nd	nd	nd	nd
l,3-Dichloropropane Fetrachloroethene	0.0050	0.051	0.018	0.025	0.0069	0.011	0.018	0.012
,2-Dibromoethane	0.0050 0.0050	nd nd	nd nd	nd nd	nd nd	nd nd	nd nd	nd
,1,2-Trichloroethane	0.0050	nd	nd	nd	nd	nd	nd	nd nd
rans-1,3-Dichloropropene	0.0050	nd	nd	nd	nd	nd	nd	nd
Toluene	0.0050	nd	nd	nd	nd	nd	nd	nd
is-1,3-Dichloropropene	0.0050	nd	nd	nd	nd	nd	nd	nd
Dibromomethane	0.0050	nd	nd	nd	nd	nd	nd	nd
,2-Dichloropropane Bromodichloromethane	0.0050	nd	nd	nd	nd	nd	nd	nd
richloroethene ,2-Dichloropropane	0.0050	nd	nd	nd	nd	nd	nd	nd
Benzene	0.0050 0.0050	nd nd	nd nd	nd nd	nd nd	nd nd	nd	nd
,2-Dichloroethane	0.0050	nd	nd	nd	nd	nd	nd nd	nd nd
Carbon Tetrachloride	0.0050	nd	nd	nd	nd	nd	nd	nd
,1-Dichloropropene	0.0050	nd	nd	nd	nd	nd	nd	nd
I,1,1-Trichloroethane	0.0050	nd	nd	nd	nd	nd	nd	nd
Bromochloromethane	0.0050	nd	nd	nd	nd	nd	nd	nd
Chloroform	0.0050	nd	nd	nd	nd	nd	nd	nd
2,2-Dichloropropane cis-1,2-Dichloroethene	0.0050 0.0050	nd nd	nd nd	nd	nd	nd	nd	nd
I,1-Dichloroethane	0.0050	nd	nd	nd nd	nd nd	nd nd	nd nd	nd
rans-1,2-Dichloroethene	0.0050	nd	nd	nd	nd	nd	nd	nd nd
Methylene Chloride	0.0050	nd	nd	nd	nd	nd	nd	nd
.1-Dichloroethene	0.0050	nd	nd	nd	nd	nd	nd	nd
richlorofluoromethane	0.0050	nd	nd	nd	nd	nd	nd	nd
Bromomethane Chloroethane	0.0050 0.0050	nd nd	nd nd	nd	nd	nd	nd	nd
/inyl Chloride	0.0050	nd	nd	nd nd	nd nd	nd nd	nd nd	nd
Chloromethane	0.0050	nd	nd	nd	nd	nd	nd	nd nd
Dichlorodifluoromethane	0.0050	nd	nd	nd	nd	nd	nd	nd
	RL							
DILUTION FACTOR		1	1	1	1	1	1	1
ANALYSIS DATE.		4/30/14	4/30/14	4/30/14	4/30/14	4/30/14	4/30/14	4/30/14
COLLECTION DATE.								
COLLECTION DATE.		4/30/14	4/30/14	4/30/14	4/30/14	4/30/14	4/30/14	4/30/14

'nd' Indicates not detected at listed reporting limits

Analyses performed by: Mr. Lane Sharon

Advanced GeoEnvironmental, Inc. Project # 12-2461 Swiss Valley Cleaners 1395 MacArthur Boulevard, San Leandro, California

EPA Method 8260B A	nalyses of SOIL	in mg/Kg
--------------------	-----------------	----------

SAMPLE NUMBER:		B33-2.5-3.0	B33-4.5-5.0	B34-1.5-2.0	B34-2.5-3.0	B34-4.5-5.0	B35-1.5-2.0	B35-2.5-3
COLLECTION DATE: ANALYSIS DATE:		4/30/14 4/30/14	4/30/14 4/30/14	5/01/14 5/01/14	5/01/14 5/01/14	5/01/14 5/01/14	5/01/14 5/01/14	5/01/14 5/01/14
DILUTION FACTOR:	RL	1	1	1	1	1	1	1
Dichlorodifluoromethane	0.0050	nd						
Chloromethane	0.0050	nd						
/inyl Chloride	0.0050	nd						
Bromomethane	0.0050	nd	nd	nd	nd	nd	nd	nd nd
Chloroethane	0.0050	nd						
richlorofluoromethane	0.0050	nd	nd	nd	nd	nd	nd nd	nd
,1-Dichloroethene	0.0050	nd						
Aethylene Chloride	0.0050	nd	nd	nd	nd	nd nd	nd	nd
rans-1,2-Dichloroethene	0.0050	nd						
,1-Dichloroethane	0.0050	nd	nd	nd	nd nd	nd	nd	nd
2,2-Dichloropropane	0.0050	nd						
is-1,2-Dichloroethene	0.0050	nd						
Chloroform	0.0050	nd	nd	nd nd	nd	nd	nd	nd
Bromochloromethane	0.0050	nd	nd		nd	nd	nd	nd
1,1,1-Trichloroethane	0.0050	nd	nd	nd nd	nd	nd	nd	nd
,1-Dichloropropene	0.0050	nd	nd nd	nd	nd	nd	nd	nd
Carbon Tetrachloride	0.0050	nd nd	nd	nd	nd	nd	nd	nd
,2-Dichloroethane	0.0050		nd	nd	nd	nd	nd	nd
Benzene	0.0050 0.0050	nd nd	nd	nd	nd	nd	nd	nd
Frichloroethene	0.0050	na nd	nd	nd	nd	nd	nd	nd
I,2-Dichloropropane	0.0050	nd						
Bromodichloromethane	0.0050	nd						
Dibromomethane	0.0050	nd						
sis-1,3-Dichloropropene Foluene	0.0050	nd						
rans-1,3-Dichloropropene	0.0050	nd						
1,1,2-Trichloroethane	0.0050	nd						
1,2-Dibromoethane	0.0050	nd						
1,3-Dichloropropane	0.0050	nd						
Tetrachloroethene	0.0050	0.037	0.029	0.028	0.020	0.016	nd	0.092
Dibromochloromethane	0.0050	nd						
Chlorobenzene	0.0050	nd						
Ethylbenzene	0.0050	nd						
1,1,1,2-Tetrachloroethane	0.0050	nd						
n,p-Xylene	0.0050	nd						
o-Xylene	0.0050	nd						
Styrene	0.0050	nd						
Bromoform	0.0050	nd						
sopropylbenzene	0.0050	nd						
1,1,2,2-Tetrachloroethane	0.0050	nd						
1,2,3-Trichloropropane	0.0050	nd						
n-propylbenzene	0.0050	nd						
Bromobenzene	0.0050	nd	nd	nd	nd	nd	nd	nd nd
1,3,5-Trimethylbenzene	0.0050	nd	nd	nd	nd	nd	nd	
2-Chlorotoluene	0.0050	nd	nd	nd	nd	nd	nd nd	nd nd
4-Chlorotoluene	0.0050	nd						
ert-Butylbenzene	0.0050	nd	nd	nd	nd	nd	nd nd	nd
1,2,4-Trimethylbenzene	0.0050	nd						
sec-Butylbenzene	0.0050	nd	nd	nd	nd	nd nd	nd	nd
p-Isopropyltoluene	0.0050	nd						
1,3-Dichlorobenzene	0.0050	nd						
1,4-Dichlorobenzene	0.0050	nd						
-Butylbenzene	0.0050	nd						
1,2-Dichlorobenzene	0.0050	nd						
1,2-Dibromo-3-chloropropane	0.0050	nd	nd	nd	nd nd	nd	nd	nd
1,2,4-Trichlorobenzene	0.0050	nd	nd	nd	nd nd	nd	nd	nd
Hexachlorobutadiene	0.0050	nd	nd	nd	na nd	nd	nd	nd
Naphthalene	0.0050	nd	nd	nd	na nd	nd	nd	nd
1,2,3-Trichlorobenzene	0.0050	nd	nd	nd	na	10	110	
Surrogate Recovery (1,2-DCA-	14)	108%	116%	105%	114%	118%	100%	122%
Surrodate Recovery (1,2-DCA-C				77%	80%	76%	84%	73%
Surrogate Recovery (Toluene-o	18)	77%	75%	1170	0070	71%	86%	66%

'nd' Indicates not detected at listed reporting limits

Analyses performed by: Mr. Lane Sharon

Advanced GeoEnvironmental, Inc. Project # 12-2461 Swiss Valley Cleaners 1395 MacArthur Boulevard, San Leandro, California

EPA Method 8260B	Anal	vses	of	SOIL	in	mg/Kg	
------------------	------	------	----	------	----	-------	--

SAMPLE NUMBER	:	B35-4.5-5.0	B36-1.5-2.0	B36-2.5-3.0	B36-4.5-5.0	B37-1.5-2.0	B37-2.5-3.0	B37-4.5-5.
COLLECTION DATE		5/01/14	5/01/14	5/01/14	5/01/14	5/01/14	5/01/14	5/01/14
ANALYSIS DATE		5/01/14	5/01/14	5/01/14	5/01/14	5/01/14	5/01/14	5/01/14
DILUTION FACTOR	RL	1	1	1	1	1	1	1
Dichlorodifluoromethane	0.0050	nd	nd	nd	nd	nd	nd	nd
Chloromethane	0.0050	nd	nd	nd	nd	nd	nd	nd
Vinyl Chloride	0.0050	nd	nd	nd	nd	nd	nd	nd
Bromomethane	0.0050	nd	nd	nd	nd	nd	nd	nd
Chloroethane	0.0050	nd	nd	nd	nd	nd	nd	nd
Trichlorofluoromethane	0.0050	nd	nd	nd	nd	nd	nd	nd
1,1-Dichloroethene	0.0050 0.0050	nd	nd	nd	nd	nd	nd	nd
Methylene Chloride rans-1,2-Dichloroethene	0.0050	nd nd	nd nd	nd nd	nd nd	nd nd	nd nd	nd nd
1,1-Dichloroethane	0.0050	nd	nd	nd	nd	nd	nd	nd
2,2-Dichloropropane	0.0050	nd	nd	nd	nd	nd	nd	nd
cis-1,2-Dichloroethene	0.0050	nd	nd	nd	nd	nd	nd	nd
Chloroform	0.0050	nd	nd	nd	nd	nd	nd	nd
Bromochloromethane	0.0050	nd	nd	nd	nd	nd	nd	nd
1,1,1-Trichloroethane	0.0050	nd	nd	nd	nd	nd	nd	nd
1,1-Dichloropropene	0.0050	nd	nd	nd	nd	nd	nd	nd
Carbon Tetrachloride	0.0050	nd	nd	nd	nd	nd	nd	nd
1,2-Dichloroethane	0.0050	nd	nd	nd	nd	nd	nd	nd
Benzene	0.0050	nd	nd	nd	nd	nd	nd	nd
Trichloroethene	0.0050	nd	nd	nd	nd	nd	nd	nd
1,2-Dichloropropane	0.0050	nd	nd	nd	nd	nd	nd	nd
Bromodichloromethane	0.0050	nd	nd	nd	nd	nd	nd	nd
Dibromomethane	0.0050	nd	nd	nd	nd	nd	nd	nd
is-1,3-Dichloropropene	0.0050	nd	nd	nd	nd	nd	nd	nd
oluene	0.0050	nd	nd	nd	nd	nd	nd nd	nd
rans-1,3-Dichloropropene	0.0050 0.0050	nd nd	nd nd	nd nd	nd nd	nd nd	nd	nd nd
,1,2-Trichloroethane ,2-Dibromoethane	0.0050	nd	nd	nd	nd	nd	nd	nd
,3-Dichloropropane	0.0050	nd	nd	nd	nd	nd	nd	nd
etrachloroethene	0.0050	0.058	0.11	0.015	0.012	0.018	0.038	0.016
Dibromochloromethane	0.0050	nd	nd	nd	nd	nd	nd	nd
Chlorobenzene	0.0050	nd	nd	nd	nd	nd	nd	nd
Ethylbenzene	0.0050	nd	nd	nd	nd	nd	nd	nd
1,1,1,2-Tetrachloroethane	0.0050	nd	nd	nd	nd	nd	nd	nd
n,p-Xylene	0.0050	nd	nd	nd	nd	nd	nd	nd
o-Xylene	0.0050	nd	nd	nd	nd	nd	nd	nd
Styrene	0.0050	nd	nd	nd	nd	nd	nd	nd
Bromoform	0.0050	nd	nd	nd	nd	nd	nd	nd
sopropylbenzene	0.0050	nd	nd	nd	nd	nd	nd	nd
1,1,2,2-Tetrachloroethane	0.0050	nd	nd	nd	nd	nd	nd	nd
1,2,3-Trichloropropane	0.0050	nd	nd	nd	nd	nd	nd	nd
n-propylbenzene	0.0050	nd	nd	nd	nd	nd	nd	nd
Bromobenzene	0.0050	nd	nd	nd	nd	nd	nd	nd
1,3,5-Trimethylbenzene	0.0050	nd	nd	nd	nd	nd	nd	nd
2-Chlorotoluene I-Chlorotoluene	0.0050 0.0050	nd nd	nd nd	nd nd	nd nd	nd nd	nd nd	nd nd
ert-Butylbenzene	0.0050	nd	nd	nd	nd	nd	nd	nd
,2,4-Trimethylbenzene	0.0050	nd	nd	nd	nd	nd	nd	nd
ec-Butylbenzene	0.0050	nd	nd	nd	nd	nd	nd	nd
-Isopropyltoluene	0.0050	nd	nd	nd	nd	nd	nd	nd
,3-Dichlorobenzene	0.0050	nd	nd	nd	nd	nd	nd	nd
,4-Dichlorobenzene	0.0050	nd	nd	nd	nd	nd	nd	nd
-Butylbenzene	0.0050	nd	nd	nd	nd	nd	nd	nd
,2-Dichlorobenzene	0.0050	nd	nd	nd	nd	nd	nd	nd
2-Dibromo-3-chloropropane	0.0050	nd	nd	nd	nd	nd	nd	nd
,2,4-Trichlorobenzene	0.0050	nd	nd	nd	nd	nd	nd	nd
lexachlorobutadiene	0.0050	nd	nd	nd	nd	nd	nd	nd
Japhthalene	0.0050	nd	nd	nd	nd	nd	nd	nd
,2,3-Trichlorobenzene	0.0050	nd	nd	nd	nd	nd	nd	nd
Surrogate Recovery (1,2-DCA-c	(4)	140%	103%	100%	120%	109%	127%	122%
Surrogate Recovery (Toluene-d		72%	81%	80%	77%	78%	75%	74%

'nd' Indicates not detected at listed reporting limits

Analyses performed by: Mr. Lane Sharon

Advanced GeoEnvironmental, Inc. Project # 12-2461 Swiss Valley Cleaners 1395 MacArthur Boulevard, San Leandro, California

EPA N	lethod	8260B	Analy	/ses	of	SOIL	in mg/Kg	

SAMPLE NUMBER:		B38-1.0-1.5	B38-1.5-2.0	B38-2.5-3.0	B38-4.5-5.0	B39-1.5-2.0	B39-2.5-3.0	B39-4.5-5
COLLECTION DATE: ANALYSIS DATE:		5/02/14 5/02/14						
DILUTION FACTOR:		1	1	1	1	1	1	_ 1
Dichlorodifluoromethane	0.0050	nd						
Chloromethane	0.0050	nd						
/inyl Chloride	0.0050	nd						
Bromomethane	0.0050	nd						
Chloroethane	0.0050	nd						
Frichlorofluoromethane	0.0050	nd						
I,1-Dichloroethene	0.0050	nd						
Methylene Chloride	0.0050	nd	nd	nd	nd	nd	nd	nd nd
rans-1,2-Dichloroethene	0.0050	nd	nd	nd	nd	nd	nd nd	nd
1,1-Dichloroethane	0.0050	nd	nd	nd	nd	nd nd	nd	nd
2,2-Dichloropropane	0.0050	nd	nd	nd nd	nd nd	nd	nd	nd
cis-1,2-Dichloroethene	0.0050	nd	nd nd	nd	nd	nd	nd	nd
Chloroform	0.0050 0.0050	nd nd	nd	nd	nd	nd	nd	nd
Bromochloromethane	0.0050		nd	nd	nd	nd	nd	nd
1,1,1-Trichloroethane	0.0050	nd nd	nd	nd	nd	nd	nd	nd
1,1-Dichloropropene Carbon Tetrachloride	0.0050	nd						
Jarbon Tetrachionde 1.2-Dichloroethane	0.0050	nd						
a,2-Dichloroethane Benzene	0.0050	nd						
Trichloroethene	0.0050	nd						
1,2-Dichloropropane	0.0050	nd						
Bromodichloromethane	0.0050	nd						
Dibromomethane	0.0050	nd						
cis-1,3-Dichloropropene	0.0050	nd						
Toluene	0.0050	nd						
rans-1,3-Dichloropropene	0.0050	nd						
1.1.2-Trichloroethane	0.0050	nd						
1.2-Dibromoethane	0.0050	nd						
1,3-Dichloropropane	0.0050	nd						
Tetrachloroethene	0.0050	0.023	0.023	0.014	0.0061	0.016	0.021	0.034
Dibromochloromethane	0.0050	nd						
Chlorobenzene	0.0050	nd						
Ethylbenzene	0.0050	nd						
1, 1, 1, 2-Tetrachloroethane	0.0050	nd						
n,p-Xylene	0.0050	nd						
o-Xylene	0.0050	nd						
Styrene	0.0050	nd						
Bromoform	0.0050	nd						
sopropylbenzene	0.0050	nd						
1,1,2,2-Tetrachloroethane	0.0050	nd						
1,2,3-Trichloropropane	0.0050	nd						
n-propylbenzene	0.0050	nd						
Bromobenzene	0.0050	nd						
1,3,5-Trimethylbenzene	0.0050	nd						
2-Chlorotoluene	0.0050	nd						
4-Chlorotoluene	0.0050	nd						
ert-Butylbenzene	0.0050	nd						
1,2,4-Trimethylbenzene	0.0050	nd						
sec-Butylbenzene	0.0050	nd						
o-Isopropyltoluene	0.0050	nd						
1,3-Dichlorobenzene	0.0050	nd						
1,4-Dichlorobenzene	0.0050	nd						
n-Butylbenzene	0.0050	nd	nd	nd	nd	nd	nd	nd nd
1,2-Dichlorobenzene	0.0050	nd						
1,2-Dibromo-3-chloropropane	0.0050	nd						
1,2,4-Trichlorobenzene	0.0050	nd						
Hexachlorobutadiene	0.0050	nd						
Naphthalene	0.0050	nd						
1,2,3-Trichlorobenzene	0.0050	nd						
Surrogate Recovery (1,2-DCA-	14)	116%	120%	125%	124%	94%	108%	127%
		79%	73%	76%	77%	83%	83%	75%
Surrogate Recovery (Toluene-o	0/	1970	1370	1070				70%

'nd' Indicates not detected at listed reporting limits

Analyses performed by: Mr. Lane Sharon

Advanced GeoEnvironmental, Inc. Project # 12-2461 Swiss Valley Cleaners 1395 MacArthur Boulevard, San Leandro, California

EPA Method 8260B	Analyses of SOIL in mg/Kg
------------------	---------------------------

SAMPLE NUMBER:		B40-1.5-2.0	B40-2.5-3.0	B40-4.5-5.0	B41-1.5-2.0	B41-4.5-5.0	B42-1.5-2.0	B42-2.5-3
COLLECTION DATE: ANALYSIS DATE:		5/02/14 5/02/14	5/02/14 5/02/14	5/02/14 5/02/14	5/05/14 5/05/14	5/05/14 5/05/14	5/05/14 5/05/14	5/05/14 5/05/14
DILUTION FACTOR:	RL	1	1	1	1	1	1	1
Dichlorodifluoromethane	0.0050	nd						
Chloromethane	0.0050	nd						
Vinyl Chloride	0.0050	nd						
Bromomethane	0.0050	nd						
Chloroethane	0.0050	nd						
Trichlorofluoromethane	0.0050	nd						
1,1-Dichloroethene	0.0050	nd						
Methylene Chloride	0.0050	nd						
rans-1,2-Dichloroethene	0.0050	nd						
1,1-Dichloroethane	0.0050	nd						
2,2-Dichloropropane	0.0050	nd						
cis-1,2-Dichloroethene	0.0050	nd						
Chloroform	0.0050	nd						
Bromochloromethane	0.0050	nd						
1, 1, 1-Trichloroethane	0.0050	nd						
1,1-Dichloropropene	0.0050	nd						
Carbon Tetrachloride	0.0050	nd						
1,2-Dichloroethane	0.0050	nd						
Benzene	0.0050	nd						
Trichloroethene	0.0050	nd						
1,2-Dichloropropane	0.0050	nd						
Bromodichloromethane	0.0050	nd						
Dibromomethane	0.0050	nd						
cis-1,3-Dichloropropene	0.0050	nd						
Toluene	0.0050	nd						
rans-1,3-Dichloropropene	0.0050	nd						
1,1,2-Trichloroethane	0.0050	nd						
1,2-Dibromoethane	0.0050	nd						
1,3-Dichloropropane	0.0050	nd	nd	nd	nd	0.0076	nd	nd 0.010
Tetrachloroethene	0.0050	nd	0.010	0.029	nd		nd	
Dibromochloromethane	0.0050	nd						
Chlorobenzene	0.0050	nd						
Ethylbenzene	0.0050	nd						
1,1,1,2-Tetrachloroethane	0.0050	nd						
m,p-Xylene	0.0050	nd						
o-Xylene	0.0050	nd						
Styrene	0.0050	nd						
Bromoform	0.0050	nd						
Isopropylbenzene	0.0050	nd						
1,1,2,2-Tetrachloroethane	0.0050	nd						
1,2,3-Trichloropropane	0.0050	nd	nd	nd	nd	nd	nd	nd nd
n-propylbenzene	0.0050	nd	nd	nd	nd	nd	nd	
Bromobenzene	0.0050	nd	nd	nd	nd	nd	nd	nd nd
1,3,5-Trimethylbenzene	0.0050	nd	nd	nd	nd	nd	nd	
2-Chlorotoluene	0.0050	nd	nd	nd	nd	nd	nd	nd nd
4-Chlorotoluene	0.0050	nd						
tert-Butylbenzene	0.0050	nd	nd	nd	nd	nd	nd nd	na nd
1,2,4-Trimethylbenzene	0.0050	nd	nd	nd	nd	nd	na nd	nd
sec-Butylbenzene	0.0050	nd	nd	nd	nd	nd	na nd	na nd
p-Isopropyltoluene	0.0050	nd						
1,3-Dichlorobenzene	0.0050	nd						
1,4-Dichlorobenzene	0.0050	nd						
n-Butylbenzene	0.0050	nd	nd	nd	nd	nd	na nd	nd
1,2-Dichlorobenzene	0.0050	nd	nd	nd	nd	nd		na nd
1,2-Dibromo-3-chloropropane	0.0050	nđ	nd	nd	nd	nd	nd	na nd
1,2,4-Trichlorobenzene	0.0050	nd	nd	nd	nd	nd	nd	
Hexachlorobutadiene	0.0050	nd						
Naphthalene	0.0050	nd						
1,2,3-Trichlorobenzene	0.0050	nd						
Surrogate Recovery (1,2-DCA-c		102%	106%	106%	92%	110% 83%	95% 87%	101% 82%
Surrogate Recovery (Toluene-d	8)	86%	86%	83% 81%	86% 87%	80%	85%	79%
Surrogate Recovery (1,4-BFB)		85%	86%	67%	0/70	0076	00/0	1 3 70

Analyses performed by: Mr. Lane Sharon

Advanced GeoEnvironmental, Inc. Project # 12-2461 Swiss Valley Cleaners 1395 MacArthur Boulevard, San Leandro, California

EPA Method 8260B	Anal	ses of SOIL	in mg/Kg
------------------	------	-------------	----------

SAMPLE NUMBER:		B42-4.5-5.0	B43-1.5-2.0	B43-2.5-3.0	B43-4.5-5.0	B44-1.5-2.0	B44-2.5-3.0	B44-4.5-5
COLLECTION DATE: ANALYSIS DATE:		5/05/14 5/05/14	5/06/14 5/06/14	5/06/14 5/06/14	5/06/14 5/06/14	5/07/14 5/07/14	5/07/14 5/07/14	5/07/14 5/07/14
DILUTION FACTOR:	RL	1	1	1	1	1	1	1
Dichlorodifluoromethane	0.0050	nd						
Chloromethane	0.0050	nd						
/inyl Chloride	0.0050	nd						
Bromomethane	0.0050	nd						
Chloroethane	0.0050	nd						
Frichlorofluoromethane	0.0050	nd						
,1-Dichloroethene	0.0050	nd						
Nethylene Chloride	0.0050	nd						
rans-1,2-Dichloroethene	0.0050	nd						
1,1-Dichloroethane	0.0050	nd	nd	nd	nd	nd	nd	nd nd
2,2-Dichloropropane	0.0050	nd	nd	nd	nd nd	nd nd	nd nd	nd
is-1,2-Dichloroethene	0.0050	nd						
Chloroform	0.0050	nd	nd nd	nd nd	nd	nd	nd	nd
Bromochloromethane	0.0050 0.0050	nd nd	nd	nd	nd	nd	nd	nd
1,1,1-Trichloroethane	0.0050	nd						
,1-Dichloropropene Carbon Tetrachloride	0.0050	nd						
.2-Dichloroethane	0.0050	nd						
, <i>z-Dichloroethane</i> Benzene	0.0050	nd						
richloroethene	0.0050	nd						
,2-Dichloropropane	0.0050	nd						
Promodichloromethane	0.0050	nd						
Dibromomethane	0.0050	nd						
is-1,3-Dichloropropene	0.0050	nd						
oluene	0.0050	nd						
ans-1,3-Dichloropropene	0.0050	nd						
1.2-Trichloroethane	0.0050	nd						
,2-Dibromoethane	0.0050	nd						
,3-Dichloropropane	0.0050	nd						
Tetrachloroethene	0.0050	0.022	nd	0.022	0.015	nd	nd	nd
Dibromochloromethane	0.0050	nd						
Chlorobenzene	0.0050	nd						
Ethylbenzene	0.0050	nd						
1,1,1,2-Tetrachloroethane	0.0050	nd	nd	nd	nd	nd	nd	nd nd
n,p-Xylene	0.0050	nd	nd	nd	nd	nd	nd nd	nd
o-Xylene	0.0050	nd						
Styrene	0.0050	nd	nd	nd	nd	nd nd	nd	nd
Bromoform	0.0050	nd	nd	nd	nd nd	nd	nd	nd
sopropylbenzene	0.0050	nd	nd	nd nd	nd	nd	nd	nd
1,1,2,2-Tetrachloroethane	0.0050	nd	nd nd	nd	nd	nd	nd	nd
1,2,3-Trichloropropane	0.0050 0.0050	nd nd	nd	nd	nd	nd	nd	nd
n-propylbenzene	0.0050	nd						
Bromobenzene	0.0050	nd						
1,3,5-Trimethylbenzene 2-Chlorotoluene	0.0050	nd						
l-Chlorotoluene	0.0050	nd						
ert-Butvlbenzene	0.0050	nd						
1,2,4-Trimethylbenzene	0.0050	nd						
ec-Butylbenzene	0.0050	nd						
p-isopropyitoluene	0.0050	nd						
.3-Dichlorobenzene	0.0050	nd						
,4-Dichlorobenzene	0.0050	nd						
-Butylbenzene	0.0050	nd						
.2-Dichlorobenzene	0.0050	nd						
.2-Dibromo-3-chloropropane	0.0050	nd						
2.4-Trichlorobenzene	0.0050	nd						
lexachlorobutadiene	0.0050	nd						
Vaphthalene	0.0050	nd						
1,2,3-Trichlorobenzene	0.0050	nd						
Surrogate Recovery (1,2-DCA-c	14)	126%	101%	113%	76%	105%	109%	115%
		81%	85%	82%	76%	86%	82%	84%
Surrogate Recovery (Toluene-d				76%	67%	84%	75%	79%

teg Pro

Advanced GeoEnvironmental, Inc. Project # 12-2461 Swiss Valley Cleaners 1395 MacArthur Boulevard, San Leandro, California

EPA Method 8260B Analyses of SOIL in mg/Kg

1,2,3-Trichloropropane n-propylbenzene Bromobenzene 1,3,5-Trimethylbenzene 2-Chlorotoluene 4-Chlorotoluene tert-Butylbenzene 1,2,4-Trimethylbenzene p-Isopropyltoluene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dibromo-3-chloropropane 1,2,4-Trichlorobenzene Hexachlorobutadiene Naphthalene	0.0050 0.0050	nd nd nd nd nd nd nd nd nd nd nd nd nd n	nd nd nd nd nd nd nd nd nd nd nd nd nd n	nd nd nd nd nd nd nd nd nd nd nd nd nd n	
1, 2, 3-Trichloropropane n-propylbenzene Bromobenzene 1, 3, 5-Trimethylbenzene 2-Chlorotoluene 4-Chlorotoluene tert-Butylbenzene 1, 2, 4-Trimethylbenzene sec-Butylbenzene 1, 3-Dichlorobenzene 1, 4-Dichlorobenzene 1, 2-Dichlorobenzene 1, 2-Dichlorobenzene 1, 2-Dibromo-3-chloropropane 1, 2, 4-Trichlorobenzene Hexachlorobutadiene Naphthalene 1, 2, 3-Trichlorobenzene	0.0050 0.0050	nd nd nd nd nd nd nd nd nd nd nd nd nd n	nd nd nd nd nd nd nd nd nd nd nd nd nd n	nd nd nd nd nd nd nd nd nd nd nd nd nd n	
1, 2, 3-Trichloropropane n-propylbenzene Bromobenzene 1, 3, 5-Trimethylbenzene 2-Chlorotoluene 4-Chlorotoluene tert-Butylbenzene 1, 2, 4-Trimethylbenzene sec-Butylbenzene p-Isopropyltoluene 1, 3-Dichlorobenzene 1, 4-Dichlorobenzene 1, 2-Dichlorobenzene 1, 2-Dichlorobenzene 1, 2-Dibromo-3-chloropropane 1, 2, 4-Trichlorobenzene Hexachlorobutadiene Naphthalene	0.0050 0.0050	nd nd nd nd nd nd nd nd nd nd nd nd nd n	nd nd nd nd nd nd nd nd nd nd nd nd nd n	nd nd nd nd nd nd nd nd nd nd nd nd nd n	
1, 2, 3-Trichloropropane n-propylbenzene Bromobenzene 1, 3, 5-Trimethylbenzene 2-Chlorotoluene 4-Chlorotoluene tert-Butylbenzene 1, 2, 4-Trimethylbenzene sec-Butylbenzene p-Isopropyltoluene 1, 3-Dichlorobenzene n-Butylbenzene 1, 2-Dichlorobenzene 1, 2-Dichlorobenzene 1, 2-Dichlorobenzene 1, 2-Altrichlorobenzene 1, 2, 4-Trichlorobenzene Hexachlorobutadiene	0.0050 0.0050	nd nd nd nd nd nd nd nd nd nd nd nd nd n	nd nd nd nd nd nd nd nd nd nd nd nd nd n	nd nd nd nd nd nd nd nd nd nd nd nd nd n	
1, 2, 3-Trichloropropane n-propylbenzene Bromobenzene 1, 3, 5-Trimethylbenzene 2-Chlorotoluene 4-Chlorotoluene tert-Butylbenzene 1, 2, 4-Trimethylbenzene sec-Butylbenzene p-lsopropyltoluene 1, 3-Dichlorobenzene n-Butylbenzene 1, 2-Dichlorobenzene 1, 2-Dichlorobenzene 1, 2-Dichlorobenzene 1, 2-Dichlorobenzene 1, 2-Dichlorobenzene 1, 2, 4-Trichlorobenzene	0.0050 0.0050	nd nd nd nd nd nd nd nd nd nd nd nd nd n	nd nd nd nd nd nd nd nd nd nd nd nd nd n	nd nd nd nd nd nd nd nd nd nd nd nd nd n	
1, 2, 3-Trichloropropane n-propylbenzene Bromobenzene 1, 3, 5-Trimethylbenzene 2-Chlorotoluene 4-Chlorotoluene tert-Butylbenzene 1, 2, 4-Trimethylbenzene sec-Butylbenzene p-Isopropyltoluene 1, 3-Dichlorobenzene 1, 4-Dichlorobenzene n-Butylbenzene 1, 2-Dichlorobenzene 1, 2-Dichlorobenzene 1, 2-Dichlorobenzene	0.0050 0.0050	nd nd nd nd nd nd nd nd nd nd nd nd nd n	nd nd nd nd nd nd nd nd nd nd nd nd nd n	nd nd nd nd nd nd nd nd nd nd nd nd nd n	
1, 2, 3-Trichloropropane n-propylbenzene Bromobenzene 1, 3, 5-Trimethylbenzene 2-Chlorotoluene 4-Chlorotoluene tert-Butylbenzene 1, 2, 4-Trimethylbenzene sec-Butylbenzene 1, 3-Dichlorobenzene 1, 4-Dichlorobenzene 1, 4-Dichlorobenzene 1, 2-Dichlorobenzene	0.0050 0.0050	nd nd nd nd nd nd nd nd nd nd nd nd nd n	nd nd nd nd nd nd nd nd nd nd nd nd nd n	nd nd nd nd nd nd nd nd nd nd nd nd nd n	
1, 2, 3-Trichloropropane n-propylbenzene Bromobenzene 1, 3, 5-Trimethylbenzene 2-Chlorotoluene 4-Chlorotoluene tert-Butylbenzene 1, 2, 4-Trimethylbenzene sec-Butylbenzene 0-Isopropyltoluene 1, 3-Dichlorobenzene 1, 4-Dichlorobenzene	0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050	nd nd nd nd nd nd nd nd nd nd nd nd nd n	nd nd nd nd nd nd nd nd nd nd nd nd nd	nd nd nd nd nd nd nd nd nd nd nd nd nd	
1, 2, 3-Trichloropropane n-propylbenzene Bromobenzene 1, 3, 5-Trimethylbenzene 2-Chlorotoluene 4-Chlorotoluene tert-Butylbenzene 1, 2, 4-Trimethylbenzene sec-Butylbenzene p-Isopropyltoluene 1, 3-Dichlorobenzene	0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050	nd nd nd nd nd nd nd nd nd nd nd nd nd n	nd nd nd nd nd nd nd nd nd nd nd nd	nd nd nd nd nd nd nd nd nd nd nd nd	
1, 2, 3-Trichloropropane n-propylbenzene Bromobenzene 1, 3, 5-Trimethylbenzene 2-Chlorotoluene 4-Chlorotoluene tert-Butylbenzene 1, 2, 4-Trimethylbenzene sec-Butylbenzene p-Isopropyltoluene	0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050	nd nd nd nd nd nd nd nd nd nd nd nd nd	nd nd nd nd nd nd nd nd nd nd nd	nd nd nd nd nd nd nd nd nd nd nd	
1, 2, 3-Trichloropropane n-propylbenzene Bromobenzene 1, 3, 5-Trimethylbenzene 2-Chlorotoluene 4-Chlorotoluene tert-Butylbenzene 1, 2, 4-Trimethylbenzene sec-Butylbenzene	0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050	nd nd nd nd nd nd nd nd nd nd nd	nd nd nd nd nd nd nd nd nd nd	nd nd nd nd nd nd nd nd nd nd	
1, 2, 3-Trichloropropane n-propylbenzene Bromobenzene 1, 3, 5-Trimethylbenzene 2-Chlorotoluene 4-Chlorotoluene tert-Butylbenzene 1, 2, 4-Trimethylbenzene	0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050	nd nd nd nd nd nd nd nd nd nd nd	nd nd nd nd nd nd nd nd nd nd	nd nd nd nd nd nd nd nd nd	
1, 2, 3-Trichloropropane n-propylbenzene Bromobenzene 1, 3, 5-Trimethylbenzene 2-Chlorotoluene 4-Chlorotoluene tert-Butylbenzene	0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050	nd nd nd nd nd nd nd nd nd nd nd	nd nd nd nd nd nd nd nd nd	nd nd nd nd nd nd nd nd	
1, 2, 3-Trichloropropane n-propylbenzene Bromobenzene 1, 3, 5-Trimethylbenzene 2-Chlorotoluene 4-Chlorotoluene	0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050	nd nd nd nd nd nd nd nd nd	nd nd nd nd nd nd nd nd	nd nd nd nd nd nd nd	
1, 2, 3-Trichloropropane n-propylbenzene Bromobenzene 1, 3, 5-Trimethylbenzene 2-Chlorotoluene	0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050	nd nd nd nd nd nd nd	nd nd nd nd nd nd nd	nd nd nd nd nd nd nd	
1,2,3-Trichloropropane n-propylbenzene Bromobenzene	0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050	nd nd nd nd nd nd	nd nd nd nd nd	nd nd nd nd nd	
1,2,3-Trichloropropane n-propylbenzene	0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050	nd nd nd nd nd	nd nd nd nd nd	nd nd nd nd	
1,2,3-Trichloropropane	0.0050 0.0050 0.0050 0.0050 0.0050 0.0050	nd nd nd nd	nd nd nd nd	nd nd nd	
	0.0050 0.0050 0.0050 0.0050 0.0050	nd nd nd	nd nd nd	nd nd nd	
	0.0050 0.0050 0.0050 0.0050	nd nd	nd nd	nd nd	
	0.0050 0.0050 0.0050	nđ	nd	nd	
	0.0050 0.0050				
	0.0050	1000		nd	
		nd	nd	nd	
m,p-Xylene	0.0050	nd	nd	nd	
	0.0050	nd	nd	nd	
	0.0050	nd	nd	nd	
	0.0050	nd	nd	nd	
	0.0050 0.0050	0.0052 nd	0.0052 nd	0.0008 nd	
	0.0050	nd 0.0052	nd 0.0052	nd 0.0068	
	0.0050	nđ	nd	nd	
	0.0050	nd	nd	nd	
	0.0050	nd	nd	nd	
Toluene	0.0050	nd	nd	nd	
cis-1,3-Dichloropropene	0.0050	nd	nd	nd	
	0.0050	nd	nd	nd	
	0.0050	nd	nd	nd	
	0.0050	nd	nd	nd	
	0.0050	nd	nd	nd	
	0.0050	nd nd	nd nd	na nd	
	0.0050 0.0050	nd	nd nd	nd nd	
	0.0050	nd	nd	nd	
	0.0050	nd	nd	nd	
	0.0050	nd	nd	nd	
	0.0050	nd	nd	nd	
	0.0050	nd	nd	nd	
	0.0050	nd	nd	nd	
	0.0050	nd	nd	nd	
	0.0050	nd	nd	nd	
	0.0050	nd	nd	nd	
	0.0050	nd nd	nd nd	nd	
	0.0050 0.0050	nd	nd	nd nd	
	0.0050	nd	nd	nd	
	0.0050	nd	nd	nd	
Chloromethane	0.0050	nd	nd	nd	
Dichlorodifluoromethane	0.0050	nd	nd	nd	
DIEG HONT ACTOR.	RL		,		
ANALYSIS DATE: DILUTION FACTOR:		5/07/14	5/07/14	1	
COLLECTION DATE:		5/07/14 5/07/14	5/07/14 5/07/14	5/07/14 5/07/14	
		= 10 = 11 I		E107144	
SAMPLE NUMBER:		B45-1.5-2.0	B45-2.5-3.0	B45-4.5-5.0	

Advanced GeoEnvironmental, Inc. Project # 12-2461 Swiss Valley Cleaner 1395 MacArthur Boulevard, San Leandro, California

TEG Project #40428E

SAMPLE	DATE	1,1 DCE	Benzene	Trichloroethene	Toluene	Chlorobenzen
NUMBER	ANALYZED	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
B26-1.5-2.0						
Spiked Conc.	4/29/14	25.0	25.0	25.0	25.0	25.0
Measured Conc.		24.5	27.5	25.5	25.9	30.4
% Recovery		98%	110%	102%	104%	122%
Spiked Conc.	4/29/14	25.0	25.0	25.0	25.0	25.0
Measured Conc.		23.7	26.6	24.3	25.2	29.4
% Recovery		95%	106%	97%	101%	118%
RPD		3.3%	3.3%	4.8%	2.7%	3.3%
LCS						
Spiked Conc.	4/29/14	25.0	25.0	25.0	25.0	25.0
Measured Conc.		27.9	29.5	28.0	28.4	33.7
% Recovery		112%	118%	112%	114%	135%
336-4.5-5.0						
Spiked Conc.	5/01/14	25.0	25.0	25.0	25.0	25.0
Measured Conc.		26.2	27.2	24.1	23.2	27.6
% Recovery		105%	109%	96%	93%	110%
Spiked Conc.	5/01/14	25.0	25.0	25.0	25.0	25.0
Measured Conc.		27.5	27.4	24.2	22.0	28.8
% Recovery		110%	110%	97%	88%	115%
RPD		4.8%	0.7%	0.4%	5.3%	4.3%
CS						
Spiked Conc.	5/01/14	25.0	25.0	25.0	25.0	25.0
Measured Conc.		25.8	26.9	25.8	26.0	30.9
% Recovery		103%	108%	103%	104%	124%

Acceptable RPD Limit = 25%

Advanced GeoEnvironmental, Inc. Project # 12-2461 Swiss Valley Cleaner 1395 MacArthur Boulevard, San Leandro, California

TEG Project #40428E

SAMPLE	DATE	1,1 DCE	Benzene	Trichloroethene	Toluene	Chlorobenzene
NUMBER	ANALYZED	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
B38-4.5-5.0						
Spiked Conc.	5/02/14	25.0	25.0	25.0	25.0	25.0
Measured Conc.		19.2	22.2	19.2	19.9	23.6
% Recovery		77%	89%	77%	80%	94%
Spiked Conc.	5/02/14	25.0	25.0	25.0	25.0	25.0
Measured Conc.		21.8	22.6	20.2	20.3	24.9
% Recovery		87%	90%	81%	81%	100%
RPD		12.7%	1.8%	5.1%	2.0%	5.4%
LCS						
Spiked Conc.	5/02/14	25.0	25.0	25.0	25.0	25.0
Measured Conc.		24.5	26.0	24.6	25.0	28.7
% Recovery		98%	104%	98%	100%	115%
B43-1.5-2.0						
Spiked Conc.	5/06/14	25.0	25.0	25.0	25.0	25.0
Measured Conc.		19.7	22.3	21.8	23.7	25.8
% Recovery		79%	89%	87%	95%	103%
Spiked Conc.	5/06/14	25.0	25.0	25.0	25.0	25.0
Measured Conc.		19.8	21.4	19.8	20.2	23.2
% Recovery		79%	86%	79%	81%	93%
RPD		0.5%	4.1%	9.6%	15.9%	10.6%
LCS						
Spiked Conc.	5/06/14	25.0	25.0	25.0	25.0	25.0
Measured Conc.		19.4	20.6	19.5	20.0	22.8
% Recovery		78%	82%	78%	80%	91%

Acceptable RPD Limit = 25%

TEG No	rthern Califor	nia, Inc	•		Cł	ain	of (Cust	ody	Re	cord	ł									
Rancho Co	ier Park Place rdova, CA 95742	Fax:		3020																age: _/ of	
Client:	Advanced	GeoE	nviro	menter	, Inc.			Proj	ect M	lana	ger:	Dar	1R	1.	J.V.	illai	n Leva	×E-N	/ail:	dvillanue va e advoje	serv.
							•	TEC	S Proi	iect ‡	+: 4	LOA	-2.F	3F			Clie	enf F	roied	ct#: 12-2461	
	837 Shar Stock ton	CA	95	215			•	loc	ation:		: <u> </u>	29	5 /		. Δ.,	ц.,		B.		rand, San Leondro, Calif	
Phone:	209-467-1	006	Fax:	2.09.	-467-11	18	•	Coll	ector	: D.,	vel	<u>J.</u>	<u> </u>	anne	ron	inu.	<u>(</u>	Date	e of (Collection: 4/25/14	<u>ecnie</u>
			Date /	Sample	Container												1				# of containers
	e Designation	Depth	Time	Matrix	Type	Į (v)	ŹŚ	<u> </u>	<u>~</u> ~	25	\mathbb{Z}^{q}	<u> </u>	\mathbb{Z}^{\times}	$\mathbb{Z}^{\mathcal{X}}$	<u>Y</u>			\square	\square	Field Notes	¥
).5-1.0			Soic	PLASTIC MY BAG																
1565-1	1.5-20					X															
025-	2.5-3.0					X	<u> </u>			<u> </u>									ļ		
	3.5-4.0					X	<u> </u>							ļ	ļ						
	4.5-5.0					X													ļ		
6/4-	0.5-20					X		<u> </u>							ļ				ļ		l
						<u> X</u>	<u> </u>		[
	4.5-5.0					ĻΧ_															1
625-	0.5-1.0					X	ļ														
K25-	1.5 - 2.0 2.5 - 3.0					X_	Ļ								ļ						1
625 -	4,5-3,0					X															1
325	4.0-5.0					$ \times $															
END	<u> </u>					<u> </u>													}		
	· · · · · · · · · · · · · · · · · · ·																				
						<u> </u>															
						┠															
																					==
Relinquished	l by:	Date 4-7{	/Time 3-14	570	Received by	<u>ب</u>			ا ــــــــــا		Date /	1.	1500		nple	Rec	eipt:		L	Remarks:	
Relinquished	i by:	Date	/Time		Received by						Date					lition?			*		
Relinquished	l by:	Date	/ Time		Received by						Date	Time			Intac	12			MA	1	
					·												Contro		1.4		ļ
Distribution: W	nile - Lab, Yellow - File, Pink		_						LINIA	NUM	er of (Junia	ners		I						

.

TEG Northern Califor	nia, Inc.	•		Ch	nain	of C	ust	ody	Re	cord	1													· · · ·		
11350 Monier Park Place Rancho Cordova, CA 95742		916.853.8 916.853.8						-										Pa	ige: _			of	1	-	-	
Client: <u>Advance</u>	d Geo	Envir	onment	al, Inc			Proje	ect M	lanag	ger:	D	ni	el 1	/:11	anv	eva	E-N	Mail:	dv	illa	nu	evia	Qa	dvae	caen	1.com
Address: <u>837 Sh</u>	aw Ro	ad					TEG	Proj	ect #	#:	니아	128	Έ			Clie	ent F	Projec	ct #: _	12-	24	6		- J		
<u>Stockton</u>						•													۔ بەك ب					J.L		
Phone: (209) 467	-1006	Fax:	(209)	467-1119	8																				<u></u>	<u>~</u>
Sample Designation	26-1.5-2.0 Soil PLASTIN 26-1.5-2.0										E E E E	t Bar	a) a) a) a) a) a) a) a) a) a) a) a) a) a	AN A	Jesel In	iden o				Field	Note	s				# of containers
B76-0.5-1.0			Soil	PLASTIC NJ BAG	X	10 A 10	A EB					[-		Í	[1
					Y																					1
326-3.0-3.5		. <u> </u>			$\left \boldsymbol{\chi} \right $																					1
B26-4.0-J.O					~																					1
BZ7 -0.5'-1.0	······				\prec													l	ļ							
BZ7-1.5-2.0	······································				X													<u> </u>	ļ							1
327-25-30					X																					1
B72-4,5-6.0		•	ļ		X							L							<u> </u>							1
328-0.5-1.0			<u> </u>		N.																					1
\$20 - 2.5 - 3.0			<u> </u>		X							<u> </u>							ļ				<u></u>			1
323 - 4,5-5.0					X													ļ								1
B29-1.5-20					X							<u> </u>							ļ							
1829-25-3.0.					\times																				_	
B79- 4.5-50				J	ĮΧ.													<u> </u>								
END																										<u> </u>
					<u> </u>								<u> </u>													
																			<u> </u>							
······································									<u> </u>																	
Relinquished by:	4-29		500	Received by	- 4	<u> </u>		4	1/29	Date /14	15	00	San	nple	Rec	eipt:			Rem	arks:						
Relinquished by:	Date	/ Time		Received by	- T					Date	/ Time	•	Good	Conc	lition?			X]							
													Cold?	>												
Relinquished by:	Date	/ Time		Received by						Date	/ Time	•	Seals	Intac	t?			NA								1
	•												Total	Numb	er of (Conta	iners	14]							

•

TEG No	rthern Califor	nia, Inc.			Ch	ain	of C	ust	ody	Re	cord	ł									
	ier Park Place rdova, CA 95742		916.853.8 916.853.8																	ge: of	
Client:	Advances	1 Geo	Environ	mente	1, Inc.			Proje	ect M	lanag	ger:	Da	nì	el	Vil	an	<u>uera</u>	ξE-N	lail:	dvillanueva@advgeee	nv.com
	837 Sh							TEG	i Proj	ect #	t: 4	04	28	E			Clie	ent P	rojec	st#: 12-2461	
	Stockto																			-d, San Leandro, Celifa	ma
Phone:	(209)467-K	<u></u>	Fax:	(209)	467-111	8		Colle	ector	:	Da	nie	1	/i k	<u>in</u>	0,10	<u>z</u>	Date	of C	Collection: 4/20/14	
Samol	e Designation	Depth	Date / Time	Sample Matrix	Container	18	11 A	8 65 65 FL		A DE LE	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		+ 8250 + 8250	A H C	and to the total t	nud IT	ioto of			Field Notes	of containers
	- 1.5-2.0	Depin		Soil	Type PLASTIC BAG -	Ιx	\sim		<u>ک</u>	<u></u>	\sim	\sim	$Z \sim$		<u> </u>	<u> </u>		/	<u> </u>		
R30	-2.5-3.0				<u> </u>	$\overline{\mathbf{x}}$			-												1
	- 4.5 -5.0					$\left \right\rangle$														·····	1
B3	1-1.5-2.0					\mathbf{x}															1
B31	- 2-5-3.0					Х															١
B37	- 1.5-2.0	•				X															1
332	- 2.5-30					$\boldsymbol{\lambda}$															1
622	- 4.5-5.0					X															١
B33	- 1.5-2.0					X															1
833	- 2.5-3.0					X															1
1333	- 4.5-50					$ \lambda $															1
ENI	>											***				*****					_
	15																				
													and the owner of the								
										ļ											
				and the second designed and the second designed and the second designed and the second designed and the second											*****		-				
•																					
Relinquishe		4-	/ Time 30 -14 / Time	טז <i>ו</i> /	Received by	7	-)	F	_	4/:	30/1	/ Time 	500		•	Rec				Remarks:	
					-									Cold					<u> </u>		
Relinquishe	d by:	Date	/ Time		Received by						Date	/ Time	3	Seals					NA		
	ennquished by. Date / Time Received by													}		er of (Conta	iners			

TEG Northern Califor	EG Northern California, Inc. Chain																				
11350 Monier Park Place Rancho Cordova, CA 95742		916.853.8 916.853.8							-											ge: of	
Client: <u>Advanc</u>	ed (FeoEr	Nira	mer	stal, 1	<u>مد</u> ر		^{>} roje	ect M	anag	jer:	Do	<u>20 i</u>	el	V: []	anu	<u>era</u>	E-N	lail:	dvillanue vale	Dad geoenv.c
Address: <u>837 S</u>	haw	Boad	L		e		-	TEG	Proj	ect#	. 1	40-	12.7	κF			Clie	nt P	rojec	t#: 12-2461	
_ Stockt				5			I	_oca	tion:	13	95	, M	act	+r+t	214	c T	Zaul	e.vi	and	1, Son Leandro, Ce	lifornic
Phone: (209) 467	,						(Colle	ector:	\underline{D}	ani	ie.	V	llar	SW	e.vc	اا	Date	of C	ollection: <u>5/1/14</u>	
Sample Designation	Depth	Date / Time	Samp Matri		ntainer Type	18	100 A 10		10 00 00 00 00 00 00 00 00 00 00 00 00 0	Line of the of t	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		+ 18290 + 18290 + 18290	al al al	t BOLL	nesell in	otor off			Field Notes	# of containers
B34-1.5-2.0	Dopin	11110	501		GTIC SAG A	ľΧ	\sim	Ť		<u>/ ,,</u>			\frown	\rightarrow			(
BZY-1.5-3.0					1	X															l
334-4.5-5.0						X															1
1335-1.5-2,0						X														n - 1000- Aut]
B352-5-3.0						\times															1
B35-4.5-5.0						\mathbf{X}															
15-6-1.5-2.0						4															1
336-25.3.0						17															1
1376-4.5-50						X															<u> </u>
B37-1.5-2.0						X															
B37-2.5-3.0						X															L.
337-45-50					\downarrow	Y															1
END																					
\leq																					
					·····																
																				<u> </u>	
																				······································	
Relinquished by:	Date 5-1	/Time - 14 /(560	Rec	eived by	- Y			5	1 .	Date	Time		San	nple	Rec	eipt:			Remarks:	
Relinguished by:	Date	/Time *		Reb	ejved by						Date	/ Time	3	Good Cold?		lition?			X		
Relinquished by:	Date	/ Time	·····	Rec	eived by						Date	/ Time		Seals		t?			NA		
														[Contai		12		· · · ·
Distribution: White - Lab, Yellow - File, Pink	- Originator		Sa	mple di	sposal i	instru	ctions	s: _	_ Ret	urn t	o clie	ent _	Pi	f							

TEG Northern Ca	aliforn	ia, Inc.				Ch	ain	of C	ust	ody	Re	cord	1										
11350 Monier Park Pla			916.853.8																	Pa	ge: of		Ì
Rancho Cordova, CA	95742	Fax:	916.853.8	020		i	1						*		,	6.1	;				t		
Client: Adv	ance	<u>id (</u>	JeoE	invin	nma	nto	<u>, In</u>	C.	Proje	ect M	lana	ger:		<u>Sonì</u>	e	V_i	bni	<u>nave</u>	RE-N	lail:	dvillanuevage	digesen	.con
Address: X51	Sh	and	hd.						TEC	Deal	iaat t	4. /	$L \wedge H$					i	smt D	roion	+#+ 19 . 7719 1		
<u>Sto</u>	chte	sn,	CA	952	45				Loca	ation:		39	51	Nar.	Arth	w	BI	vd	.5	an	Leardro (alifor	nla	
Phone: (209)	46	7-100	Fax:	(209)	-410	1-111	8		Colle	ector	: D	Jan	iel	V	a	ทเล	<u>, vy</u>	<u></u>	Date	of C	Leadro, Celifer iollection: $5/02/1$	<u> </u>	
Concello Desciment		Deeth	Date /	Sample						20 40 40 10 10 10 10 10 10 10 10 10 10 10 10 10	A A A A A A A A A A A A A A A A A A A	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	S.	H BO	A LA								of containers
Sample Designat		Depth	Time	Matrix SolL		ype	X	\sim	<u> </u>	<u>7</u>	<u>/ ^`</u>	\bigwedge	\sim	$\angle \uparrow$	\sim	<u> </u>		\leftarrow	\leftarrow	<u> </u>	Field Notes		#
B38-1.5-2	2		· .			<u>ка</u> . ю. [X																$\left \frac{1}{1}\right $
138-2.5.3							X																
B38-4.5-	5.0			<u>├</u>			\mathbf{x}																
B39-1.5-							X														· · · · · · · · · · · · · · · · · · ·	<u> </u>	1
039-75	-2 0				17		X																1
B29-4.5	-5-0						X																l
240-1.5	2.0						\checkmark																1
<u><u><u></u><u><u></u><u><u></u><u><u></u><u></u><u><u></u><u></u><u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u></u></u></u></u></u></u>							X															<u> </u>	1
<u>B'40 - 4.5</u>	-50				J		\mathbf{x}																1
END -					_						<u> </u>												2_
	K				_																		
		·			_						L												
									\geq		\equiv												
								[ļ						<u> </u>	-				_
· · · · · · · · · · · · · · · · · · ·							ļ			ļ		 								ļ			
					_							A MARCONSTRUCT	مىسىرى ى .	ann an								The second s	
Delizevieked hu			(Time	1			<u> </u>	L		<u> </u>			/ Time					Ļ			O		
Relinquished by:			/Time 2 - 19	500		ived by	h.	L	5	12h	4	150		•	San	ple	Rec	eipt:			Remarks:		
Relinquished by:		- Date	/ Time			ived by	J	X					/ Time	9	Good	Cond	lition?			X			
															Cold7								
Relinquished by:		Date	/ Time		Rece	ived by						Date	/ Time	9	Seals	Intac	t?			MA			
															Total	Numb	per of	Conta	iners	10			

•

TEG Northe	rn Califor	nia, Inc.			Ch	ain	of Cu	stod	y Re	cord												· · ·	
11350 Monier Pa			916.853.8						-								Pa	ge:	1	_ of			
Rancho Cordova					ί.						*		٨.1								- .		. [
Client: Ad	vonced	Geo	Envir	ronme	intal, li	<u>nc.</u> ,	Р	roject	Mana	ger:	Dor	nie!	l Villa	mue	Non	E-M	lail: (<u>dvt </u>	GYNG	2/0	e)ady	i <u>a der</u>	W COM
Address: <u>8</u> 2							•		5,000,7	<u> </u>			a second		- UII		iojoc	<i>м</i> п			<u> </u>		
	tockt	on(<u>CA C</u>	75215)		L	ocatior	1: 2	29	SM	lac	Arth	w	B	11	d.	Sax	1/2	an	tro	, C	Ľ
Phone:	09)46	7-100	GFax:	(209)	14107-11	18	С	ollecto	or: D	nia	LL	ΔI	lonu	2.1/0		Date	e of C	Collectio	on:	5/5	14	1	
<u>B42-</u> B42-			Date / Time	Sample Matrix Soil Soil Soil Soil	Container Type PLASTIC BAC 149					Date			Sampl					F Rema	ield Nc				- - - + - - - + +
$ \langle \wedge \rangle$	\smile		5-14	1500	A	۲ س	× ~		- 5	15/14			Sampl	e Red	ceipt			rtema	IKS:				
Relinguished by:			2 ~(/ Time	19-0	Received by	-		·	Y	Date			Good Co	ndition	 2	·	×						
i i													Cold?	nution	1								
Relinquished by:		Date	/ Time		Received by					Date	Time		Seals Int	act?			MA						
													Total Nu		Conta	iners							.

. •

•

Sample disposal instructions: ____ Return to client ____ Pickup

TEG Northern C	alifornia, Ir	nc.		Ch	ain d	of Ci	ustod	y Re	cord	1												
11350 Monier Park Pla		n: 916.853.														Pa	ge:		of	<u> </u>		
Rancho Cordova, CA	•	ax: 916.853.		1.						Ν	_	1.1.	11				1		,	•		.
Client: Havar	red Ge	sEnvi	conne	ntel In	c_{i}	F	Project	Mana	ger: <u>}</u>	Da	nie	A Vi	ller	ner	E-N	lail:	dvill	2 nuc	wale	<u>P</u> advş	eser	<u>Wice</u>
Address: <u>837</u>	Shew	Bd				٦	rEG Pr	oject #	¥: 4	04	78	E		Clie	ent P	rojec	t#:	2-2	24(0)	1 -	, _	
Stoc	Kton,	CA 9:	<u>5215</u>			L	ocatio	n:?	395	5 h	Nac	Art	hy	<u> </u>	<u>5 1</u>	<u> </u>	1Sa	n Lec	andra	2,6	liton	nia
Phone: (209) 4	1107-100	Fax:	(209)	467-1	18	(Collecto	or: <u> </u>	Sor	ne	$\Box V$	ille	nvo	ve~	Date	of C	ollectio	on: <u>5</u>	5/06	120	14	
Sample Designat B43-1,5-2. B43-2.5- B43-4.5- END END	0.3.0	Date / Time	Sample Matrix Soil	Container Type Putstic					A WI BESS BASS		A A A A A A A A A A A A A A A A A A A											✓ — — — — — # of containers
Refineuished by: Relinquished by:	5	ate / Time	1500	Received by Received by	₩-)	ł		5/01	Date	l r	<u>5-20</u>	Samp Good C Cold?		•		X	Rema	rks:				
Relinquished by:	D	ate / Time		Received by					Date	/ Time	•	Seals In Total N		of Conta	iners	pw[a 3						

.

TEG Northern Califor	nia, Inc			Ch	ain	of C	ust	odv	Re	cor	d							١		
11350 Monier Park Place	Ph:	916.853.8						,										Pa	ge: of	
Rancho Cordova, CA 95742																			- 1	
Client: Advonces	Geze	Envia	sameia	tal, In	с,	•	Proj	ect N	lana	ger:	.	Da	nie	V_{1}^{*}	10	nuer	aE-N	/ail:	dvillanue va Cadvagen-	end
Address: <u>\$37 Sha</u>	in Re	ad_					TEG	i Proj	ject ‡	<u>‡:</u>	04	28	e			Clie	ent F	rojec	st #: 12-2446	
_Stock to	n a	<u>4</u> 9	5215	-			Loca	ation:	1	39	5	Ma	car	th.	N	- F	Soul	Lt.	erd, Son Leandra,	(A)
Phone: 209 46						-	Colle	ector	: N	αn	ie,	1V	110	ni	eV	e_	Date	e of C	ollection: 5/7/14	
		Date /	Sample											7	/		· · ·			of containers
Sample Designation	Depth	Time	Matrix	Туре		Σ	$\angle \heartsuit$	25	<u> </u>	$\angle \underline{\sim}$	Z^{\wedge}	<u> </u>	Σ^{\sim}	<u> </u>		\square			Field Notes	#
844-1.5-2.0			Sail	PLASTIC BAG	X								ļ					<u> </u>		i
BY4-25-3.0			<u> </u>		X							<u> </u>						ļ		<u> </u>
BY4-4.5-50			<u> </u>		X							<u> </u>						ļ		
845-1.5-2.0					\overline{X}							<u> </u>	<u> </u>					ļ		
B45-2-5-3.0					x							_								<u> </u>
B45-4.5-5.0		· · · ·			\times							<u> </u>								
END -	1				<u> </u>															
F		· .																ļ		
						<u> </u>											_	ļ		
													<u> </u>							
· · · · · · · · · · · · · · · · · · ·													<u> </u>							
				ļ	<u> </u>					~	\leq									
																	-			
						A														
Relinquished by:		/Time 7-14	1500	Received by	r	A		5/7	14	Date	/ Tim		San	nple	Rec	eipt:			Remarks:	
Relinquished by:	Date	/ Time	• -	Received by		- 4		/ '	1.1	Date			Good	Conc	lition?			X	1	
													Cold					<u> </u>		
Relinquished by:	Date	/ Time		Received by						Date	/ Tim	e	Seals		f2			NAF		
	Date / Time Received by													Numt		Conta	iners	6	ŗ	

۰.

.