

December 18, 2015

Bancroft and 77th, LLC Attn: Victoria Vela 6500 Flotilla St. Los Angeles, CA 90040

Re: **Soil Gas Sampling Report** 7701 Bancroft Avenue Oakland, California 94605 Fuel Leak Case No. RO0003115 Global ID T10000004796

Dear Ms. Vela:

On behalf of Bancroft and 77th, LLC, Pangea Environmental Services, Inc has prepared this *Soil Gas Sampling Report*). This report describes shallow soil gas sampling to evaluate potential human health impacts during future site use.

If you have any questions, please contact me at (510) 435-8664 or email briddell@pangeaenv.com.

Sincerely, **Pangea Environmental Services, Inc.**

Bob Clark-Riddell, P.E. Principal Engineer

Attachment: Soil Gas Sampling Report

cc: Karel Detterman (electronic copy)

SOIL GAS SAMPLING REPORT

7701 Bancroft Avenue Oakland, California 94605 Fuel Leak Case No. RO0003115 Global ID T10000004796

December 18, 2015

Prepared for:

Bancroft and 77th, LLC Attn: Victoria Vela 6500 Flotilla St. Los Angeles, CA 90040

Prepared by:

Pangea Environmental Services, Inc. 1710 Franklin Street, Suite 200 Oakland, California 94612

Written by:

Elizabeth Avery Project Geologist

Bob Clark-Riddell, P.E. Principal Engineer

PANGEA Environmental Services, Inc.

1710 Franklin Street, Suite 200, Oakland, CA 94612 Telephone 510.836.3700 Facsimile 510.836.3709 www.pangeaenv.com

INTRODUCTION

On behalf of Bancroft and 77th, LLC, Pangea Environmental Services, Inc has prepared this *Soil Gas Sampling Report*. This report describes shallow soil gas sampling to evaluate potential human health impacts for future site use.

SITE BACKGROUND

The site is a vacant lot located in a residential neighborhood with an adjacent liquor store. According to reviewed documentation, the subject site was occupied by a Wilshire Oil Company (Gulf) gasoline service station from the 1962 to 1969 and a Stop N Go convenience store from 1974 to approximately the mid 1980's. No records were apparently found regarding the installation, operation, or removal of the underground storage tanks (USTs), although building department records indicate the demolition of the site building 1997, leaving the lot vacant since that time.

A *Limited Phase II Spoil and Groundwater Investigation Letter Report* dated April 16, 2012 was prepared on behalf of Union Bank by Geologica Inc. A geophysical survey was conducted and seven direct-push soil borings were drilled onsite for evaluation of the presence of historic USTs and residual petroleum hydrocarbon in soil and/or groundwater at the site. While the geophysical survey did not identify USTs, the survey identified an anomaly in the northern corner of the property presumed as the former UST location and identified suspected reinforced concrete pad (potential dispenser location). Hydrocarbon impact detected in soil and groundwater indicates that an unauthorized release from the underground storage tanks (USTs) had occurred at the site. Concentrations of up to 110 milligrams per kilogram (mg/kg) total petroleum hydrocarbons (TPH) as gasoline (TPHG), 1,500 mg/kg TPH as diesel (TPHD), 4,500 mg/kg TPH as motor oil (TPHmo), and 0.019 mg/kg ethylbenzene were documented in soil samples. Concentrations of up to 150 micrograms per liter (ug/l) TPHD and 370 ug/l TPHmo were documented in grab groundwater samples. The TPH impact in soil was found at 4 ft and 14 ft below grade surface (bgs) at the site. The TPH impact in grab groundwater was found in boring GP-1 and GP-2 located near the apparent former UST location. Groundwater was first encountered at depths of 13 to 18 ft bgs, and static was estimated between 12 and 14 ft bgs. Soil was relatively low permeability clayey soil.

The release was referred to the Alameda County Environmental Health - Local Oversight Program (ACEH-LOP), the lead agency for oversight of investigation and cleanup of petroleum hydrocarbon releases in Alameda County. ACEH-LOP subsequently listed the subject case on our data base of fuel leak sites. The February 10, 2014 letter from ACEH-LOP requested a *Data Gap Investigation Work Plan* supported by a Site Conceptual Model (SCM) to guide further site corrective action.

SITE ASSESSMENT PROCEDURES

The objective of the investigation is to evaluate the potential for vapor intrusion for current site use and potential future site buildings.

Pre-Field Activities

Drilling permits were obtained from Alameda County Public Works Agency (ACPWA). A comprehensive site safety plan was prepared to protect site workers and the plan was kept onsite during all field activities. The proposed drilling locations were marked and Underground Service Alert was notified at least 48 hours before the proposed field activities. Drilling permits are included in Appendix A.

Soil Gas Probe Installation

On July 7, 2014, Pangea coordinated installation of three soil gas probes (SG-1 through SG-3) to facilitate evaluation of shallow soil gas conditions. Pangea retained Confluence Environmental (Confluence) of Sacramento, California, to hand auger the borings and install the soil gas probes. Soil gas probe SG-1 was installed within the boundary of a GPR anomalous zone representing a possible former excavation. Soil gas probe SG-2 was installed along the southeastern boundary of a buried reinforced concrete pad. Soil gas probe SG-3 was installed in the southern portion of the site within a vertical magnetic gradient anomaly. Soil gas probe locations are shown in Figure 1.

The soil gas probe boreholes were advanced with a 3.25-inch diameter hand auger to a total depth of approximately 5 ft below grade surface (bgs) (SG-1), 7 ft bgs (SG-2), and 9 ft bgs (SG-3). At boring locations SG-1, SG-2, and SG-3, soil samples were collected at approximately 4 ft bgs, 4 ft and 7 ft bgs, and 4 ft and 9 ft bgs, respectively. Soil samples were collected within new brass or stainless steel liners driven into undisturbed soil with a slide-hammer. The soil samples were classified according to the United Soil Classification System (USCS) and screened for field indications of petroleum hydrocarbons using visual and olfactory observations. All site investigation activities were performed under the supervision of a California Registered Civil Professional Engineer (P.E.). Additional soil and assessment procedures are presented in our Standard Operating Procedures (SOPs) for Soil Borings in Appendix B.

Following soil sampling, six semi-permanent soil gas probes were constructed with a stainless steel GeoprobeTM implant connected to new ¹/₄-inch diameter Teflon tubing and capped with a Swagelok[®] type fitting. The implant was placed in a 0.5 ft thick sand pack with 0.5 ft of dry granular bentonite above, followed by hydrated bentonite. Probe sampling intervals are approximately 5.0 to 6.0 ft bgs (for SG-5 the sampling interval is 3.5 to 4.5 ft bgs). A schematic of the soil gas probe construction is shown in the SOPs in Appendix B.

SOIL GAS SAMPLING PROCEDURES

To evaluate shallow soil gas conditions, Pangea coordinated soil gas sampling from three semi-permanent soil gas probe locations (SG-1 through SG-3) on July 7, 2014. Soil gas analytical results are summarized on Table 1. Laboratory analytical reports are in Appendix C.

The soil gas sampling was conducted in general accordance with procedures described in Pangea's Standard Operating Procedures (SOPs) for Soil Gas Sampling in Appendix C. The soil and soil gas sampling was performed by Pangea staff Scott Polston under the supervision of Pangea's Bob Clark-Riddell, a California Registered Professional Civil Engineer.

To prepare for the soil gas sampling, a site safety plan (SSP) was prepared to protect site workers. Pangea collected soil gas samples using tedlar bags (SG-1 through SG-3) for sampling. Tedlar bag samples were collected using a vacuum chamber and vacuum pump. The vacuum chamber was connected to the probe using new Teflon tubing and a Swagelok fitting. After purging approximately five or more times the ambient volume of air in the assembly/probe, each sample was collected in a new Tedlar Bag.

The soil gas sampling was also conducted in general accordance with procedures described in California EPA's *Advisory Active Soil Gas Investigations* April 2012. The soil gas samples were submitted for analysis to McCampbell Analytical, Inc., of Pittsburg, California, a State-certified laboratory.

Soil Gas Analyses

Soil gas samples were analyzed for total petroleum hydrocarbons as gasoline (TPHg) by EPA Method 8015; for benzene, toluene, ethylbenzene, xylene(s) (BTEX), methyl-tertiary butyl ether (MTBE), and naphthalene by EPA Method 8260; and for percent oxygen (leak check compound) by Method ASTM D-1946. The oxygen analysis helps evaluate the potential for future degradation and bio-attenuation of detected hydrocarbons, and helps assess soil column characteristics (>= 4% oxygen in soil gas is referenced as a bio-attenuation zone in the SWRCB's Underground Storage Tank Low-Threat Site Closure Policy).

SITE ASSESSMENT RESULTS

Analytical results from soil gas sampling are described below. The soil samples collected during this assessment were not analyzed due to temporary discontinuance of the property transaction.

Soil Gas Analytical Results

All hydrocarbons and VOCs in samples from soil gas probes SG-1 through SG-3 were below method reporting limits ('non-detect'). Soil gas analytical results are summarized in Table 1.

The percent oxygen detected in soil gas probes SG-1 through SG-3 were between 4.5% and 5.5%. These percentages exceed the 4% oxygen presented in the Low Threat UST Closure Policy as sufficient to represent a 'bioattenuation zone' that provides biodegradation of residual hydrocarbon vapors.

CONCLUSIONS AND RECOMMENDATIONS

Based on the above information, Pangea offers the following conclusions and recommendations:

• All hydrocarbon and VOC concentrations detected in *soil gas* this investigation were below applicable ESLs and LTCP criteria. The oxygen concentrations in soil gas represent a 'bioattenuation zone' that provides biodegradation of residual hydrocarbon vapors based on LTCP criteria.

REFERENCES

California EPA, 2012, *Advisory-Active Soil Gas Investigation*, California Environmental Protection Agency, Department of Toxic Substances Control, Los Angeles Regional Water Quality Control Board, San Francisco Regional Water Quality Control Board, April.

ATTACHMENTS

Figure 1 – Soil Gas Sampling Locations

Table 1 – Soil Gas Analytical Data

Appendix A – Permit Appendix B – Standard Operating Procedures Appendix C – Laboratory Analytical Reports

Pangea

Table 1. Soil Gas Analytical Data - 7701 Bancroft Avenue, Oakland, California

Boring/	Date	Depth	TPHI Gasolin	Benzene	Tolucine	Ethylbenetter	Avlenes	MIBE	Naphthalene	Notes
Sample ID	Sampled	(ft-ft bgs)	←			– ug/m ³ —			\longrightarrow	%
Residential ESL for sh	allow soil gas:		50,000	42	160,000	490	52,000	4,700	36	
Commercial ESL for s	hallow soil gas:		50,000	420	1,300,000	4,900	220,000	47,000	360	
LTCP Commercial Cri	teria (With Bioatten	uation Zone)		280,000		3,600,000			310,000	
LTCP Commercial Cri	teria (No Bioattenua	tion Zone)		280		3,600			310	
SG-1 SG-2 SG-3	7/7/2014 7/7/2014 7/7/2014	4-5 4-5	<25,000 <25,000 <25,000	<250 <250 <250	<250 <250 <250	<250 <250 <250	<250 <250 <250	<250 <250 <250	<250 <250 <250	5.0 4.5 5.5

Abbreviations:

TPH(g) by EPA method 8015 Cm

VOCs by EPA method 8260 B

Oxygen by ASTM D 1946-90

SG-1 = Soil Gas Sample

ug/m3 = Micrograms per cubic meter of air results calculated by laboratory from parts per billion results using normal temperature and pressure (NPT).

ft - ft bgs = Depth interval below ground surface (bgs) in feet.

< n = Chemical not present at a concentration in excess of detection limit shown.

--- = Not analyzed

MRL = Method reporting limit.

ESL = Environmental Screening Level for Shallow Soil Gas with Residential and Commercial/Industrial Land Use, for samples less than five feet below a building foundation or ESL established by the SFBRWQCB, Interim Final - November 2007 (revised December 2013).

LTCP = Low Threat Closure Policy established by the State Water Resources Control Board and adopted May 1, 2012. Soil Gas Criteria.

Bold = Concentrations above ESLs for Residential and/or Commercial Land Use for shallow soil gas (SG samples).

APPENDIX A

Permit

Alameda County Public Works Agency - Water Resources Well Permit

Extension Start Date: 07/07/2014

Application Id:

Site Location:

Project Start Date:

Extension Count:

Assigned Inspector:

399 Elmhurst Street Hayward, CA 94544-1395 Telephone: (510)670-6633 Fax:(510)782-1939

Application Approved on: 06/25/2014 By jamesy

1

1403734880540

07/07/2014

7701 Bancroft Ave

Permit Numbers: W2014-0630 Permits Valid from 07/07/2014 to 07/07/2014 City of Project Site:Oakland Completion Date:07/08/2014 Contact Sam Brathwaite at (925) 570-7609 or sbrathwaite@groundzonees.com Extension End Date: 07/07/2014 Extended By: jamesy

Applicant:	Pangea Environmental Services, Inc Morgan	Phone: 510-836-3700
Property Owner: Client:	Gillies 1710 Franklin St, #200, Oakland, CA 94612 Union Bank 332 SW Everett Mall Way, Everette, WA 98204 ** same as Property Owner **	Phone: 425-513-6633

	Total Due:	\$265.00
Receipt Number: WR2014-0267	Total Amount Paid:	\$265.00
Payer Name : Robert Clark-Riddell	Paid By: VISA	PAID IN FULL
•	,	

Works Requesting Permits:

Specifications

Well Construction-Vapor monitoring well-Vapor monitoring well - 3 Wells Driller: Confluence Environmental - Lic #: 913194 - Method: Hand

Work Total: \$265.00

opcomoutio	115						
Permit #	Issued Date	Expire Date	Owner Well Id	Hole Diam.	Casing Diam.	Seal Depth	Max. Depth
W2014- 0630	06/25/2014	10/05/2014	SG-1	3.25 in.	0.25 in.	4.00 ft	5.00 ft
W2014- 0630	06/25/2014	10/05/2014	SG-2	3.25 in.	0.25 in.	4.00 ft	5.00 ft
W2014- 0630	06/25/2014	10/05/2014	SG-3	3.25 in.	0.25 in.	4.00 ft	5.00 ft

Specific Work Permit Conditions

1. Drilling Permit(s) can be voided/ cancelled only in writing. It is the applicant's responsibility to notify Alameda County Public Works Agency, Water Resources Section in writing for an extension or to cancel the drilling permit application. No drilling permit application(s) shall be extended beyond ninety (90) days from the original start date. Applicants may not cancel a drilling permit application after the completion date of the permit issued has passed.

2. Compliance with the above well-sealing specifications shall not exempt the well-sealing contractor from complying with appropriate state reporting-requirements related to well destruction (Sections 13750 through 13755 (Division 7, Chapter 10, Article 3) of the California Water Code). Contractor must complete State DWR Form 188 and mail original to the Alameda County Public Works Agency, Water Resources Section, within 60 days, including permit number and site map.

3. Permittee shall assume entire responsibility for all activities and uses under this permit and shall indemnify, defend and save the Alameda County Public Works Agency, its officers, agents, and employees free and harmless from any and all expense, cost, liability in connection with or resulting from the exercise of this Permit including, but not limited to, properly damage, personal injury and wrongful death.

4. Permittee, permittee's contractors, consultants or agents shall be responsible to assure that all material or waters

Alameda County Public Works Agency - Water Resources Well Permit

generated during drilling, boring destruction, and/or other activities associated with this Permit will be safely handled, properly managed, and disposed of according to all applicable federal, state, and local statutes regulating such. In no case shall these materials and/or waters be allowed to enter, or potentially enter, on or off-site storm sewers, dry wells, or waterways or be allowed to move off the property where work is being completed.

5. Prior to any drilling activities, it shall be the applicant's responsibility to contact and coordinate an Underground Service Alert (USA), obtain encroachment permit(s), excavation permit(s) or any other permits or agreements required for that Federal, State, County or City, and follow all City or County Ordinances. No work shall begin until all the permits and requirements have been approved or obtained. It shall also be the applicants responsibilities to provide to the Cities or to Alameda County an Traffic Safety Plan for any lane closures or detours planned. No work shall begin until all the permits and requirements have been approved or obtained.

6. No changes in construction procedures or well type shall change, as described on this permit application. This permit may be voided if it contains incorrect information.

7. Applicant shall submit the copies of the approved encroachment permit to this office within 60 days.

8. Applicant shall contact assigned inspector listed on the top of the permit at least five (5) working days prior to starting, once the permit has been approved. Confirm the scheduled date(s) at least 24 hours prior to drilling.

9. Wells shall have a Christy box or similar structure with a locking cap or cover. Well(s) shall be kept locked at all times. Well(s) that become damaged by traffic or construction shall be repaired in a timely manner or destroyed immediately (through permit process). No well(s) shall be left in a manner to act as a conduit at any time.

10. Copy of approved drilling permit must be on site at all times. Failure to present or show proof of the approved permit application on site shall result in a fine of \$500.00.

11. Vapor monitoring wells above water level constructed with tubing maybe be backfilled with pancake-batter consistency bentonite. Minimum surface seal thickness is two inches of cement grout around well box.

Vapor monitoring wells above water level constructed with pvc pipe shall have a minimum seal depth (Neat Cement Seal) of 2 feet below ground surface (BGS). Minimum surface seal thickness is two inches of cement grout around well box. All other conditions for monitoring well construction shall apply.

APPENDIX B

Standard Operating Procedures

STANDARD OPERATING PROCEDURE FOR SOIL VAPOR SAMPLING

1.0 PURPOSE

This standard operating procedure (SOP) describes the procedures for collecting soil vapor samples using temporary and semi-permanent soil gas probes/wells and evacuated stainless-steel Summa canisters. The SOP is modified from procedures and information presented in Cal/EPA 2012 (*Advisory-Active Soil Investigations*); Cal/EPA 2011; Cal/EPA 2010; U.S. EPA, 2006; and DiGiulio, 2003. This SOP includes (a) real-time leak-check procedures to evaluate integrity of the soil gas probe and sampling assembly during probe purging and post sampling, and (b) real-time field screening of soil gas concentrations during probe purging and post sampling.

2.0 REQUIRED EQUIPMENT

- Hammer drill with fittings for installing and removing vapor probes (for direct push vapor probes)
- Vapor probes with retractable or dedicated drop-off tips (e.g. AMS SGVP) (for direct push vapor probes).
- Hand auger (for soil vapor wells)
- Tubing with Swagelok or similar threaded compression-fittings, vapor-tight caps, valves
- Screens (for soil vapor wells)
- Filter-pack sand (for dedicated tips and soil vapor wells)
- Granular bentonite (for vapor well construction)
- VOA vials
- Vacuum pump with rotameter for purging and leak testing
- 1-Liter Summa canister with vacuum gauge for each sample
- Tedlar bags (for helium measurement and vapor screening)
- Stainless-steel sampling manifold
- Leak-check compound (e.g., helium)
- Calibrated photoionization detector (PID) or other organic vapor analyzer
- Isobutylene for PID calibration
- Vacuum chamber (iron lung) for pre- and post-sampling leak-check
- Leak-check enclosure(s) (small bucket [or similar] with openings for sample tubing, helium introduction and sampling enclosure atmosphere)
- Weather stripping or bentonite (for leak check enclosure seal)
- Record-keeping materials
- Latex or nitrile gloves

3.0 PROCEDURES

3.1 Boring Clearance

Prior to installing soil vapor probes, ensure that a utility clearance has been conducted.

3.2 Probe Depths

This SOP describes procedures for installing soil gas probes/wells at sufficient depth to provide a minimum of 5 feet between the ground surface and the top of the dry bentonite overlying the sand pack that surrounds the soil gas screen interval. This is because soil gas samples collected shallower than 5 ft depth may be subject to barometric pressure effects and prone to breakthrough of ambient air through the soil column.

In some cases shallower probe installation may be required to provide soil gas characterization immediately above the contaminant impact zone, to avoid shallow groundwater/capillary fringe, or to provide additional vertical characterization. Variation of sample depths and the need for deeper sample locations should be evaluated based on site specific characteristics and data quality objectives. If vertical characterization to groundwater is needed, the deepest soil gas sample should be collected near the top of the capillary fringe. Soil gas probes/wells should not be installed within or below the capillary fringe.

Collecting soil gas sampling near contaminant sources is recommended when performing vapor intrusion modeling. Risk estimates may be biased low if quantified with shallow soil gas measurements (five feet below grade) using the Johnson & Ettinger 1991 model. Vertical soil gas sampling should be conducted to determine the source of subsurface contamination, ideally using numerous vertical profiles of soil gas to accurately locate subsurface sources. Once located, soil gas can be targeted at these depths site wide.

3.3 Semi-permanent Direct-Push Vapor Probe Installation

- 1. Use a rotary hammer drill or concrete-coring equipment to core any paved surfaces.
- 2. The drive rod is driven to a predetermined depth and then partially or fully removed (depending on soil type), leaving a disposable drop-off tip in the hole. The hole should be sufficiently deep that there is a minimum of 5 feet between the surface and the top of the dry bentonite overlying the sand pack (see below for details). If possible, remove the drive rod and place 3" of sand in the hole before placing the drop-off tip.
- 3. The inner soil gas pathway from probe tip to the surface should be continuously sealed (e.g., a sampling tube attached to the probe tip with a barbed fitting or a screw adapter with an o-ring) to prevent leakage. If a screw adapter with o-ring is used, inspect the o-ring to ensure that it is not flawed and use rigid tubing that can be tightened from the surface. Tightly cap the top end of the sampling tube. The volume of the sampling apparatus should be minimized. DTSC guidance requires that tubing should be no greater than ¹/₄" nominal diameter.
- 4. Cover the probe tip with at least 3" of sand (resulting in a minimum 6" sand pack), followed by at least 6" of dry granular bentonite (see **Figure 1**). Fill the remainder of the boring with hydrated bentonite slurry. For multiple depth soil gas probes, separate vapor probe sand packs with hydrated bentonite as shown on **Figure 2**. VOA vials are useful for measuring and placing these materials because they have approximately the same inside diameter as the AMS SGVP drive rod outer diameter. Check the annular space for bridging and construction material depths using a narrow rod.
- 5. Equilibration Time: Record probe installation time/date, and wait at least 2 hours before conducting purge volume tests, leak tests, or soil gas sampling -- if there is a minimum of 5

feet between the surface and the top of the dry bentonite overlying the sand pack. If there is less than 5 feet between the surface and the top of the dry bentonite overlying the sand pack or the borehole was hand augered, wait at least **48 hours** after probe installation and capping before conducting purge volume tests, leak tests, or soil gas sampling. If the probe was installed with a combination of hand augering and direct-push drilling methods and there is less than 5 feet between the bottom of the hand auger depth and the top of the dry bentonite overlying the sand pack, wait at least **48 hours** after probe installation and capping before conducting purge volume tests, leak tests, or soil gas sampling.

6. Decontamination: Decontaminate drive rods and other reusable components between sample locations by washing equipment with Alconox or Liquinox soap and rinsing with tap water and/or by steam-cleaning. Use new flexible tubing for each sample point (do not reuse).

3.4 Semi-permanent Augered Vapor Well Installation

- 1. Use a rotary hammer drill or concrete-coring equipment to core any paved surfaces.
- 2. Auger to a depth sufficient to allow a minimum of 5 feet between the surface and the top of the dry bentonite overlying the sand pack (see below for details). It is recommended to use the smallest diameter auger feasible to minimize future purging volumes and optimize representativeness of soil gas data.
- 3. Install small diameter tubing with a short (<6" long) screened section close to the bottom of the hole. The soil gas pathway from screen to the surface should be continuously sealed (e.g., a sampling tube attached to the probe tip with a barbed fitting or a screw adapter with an o-ring) to prevent leakage. If a screw adapter with o-ring is used, inspect the o-ring to ensure that it is now flawed and use rigid tubing that can be tightened from the surface. The volume of the sampling apparatus should be minimized. DTSC guidance specifies that tubing should be no greater than ¼" nominal diameter.</p>
- 4. For deep wells (>10 feet), install a down-hole rod or other support to ensure that the screened section remains at the proper depth.
- 5. Cover the screened section with at least 6" of sand, followed by at least 6" of dry granular bentonite. Ensure that the screened section is near the center of the sand pack. Fill the remainder of the boring with hydrated bentonite. The bentonite should be hydrated at the surface and poured into the borehole.
- 6. **Equilibration Time:** After probe installation, tightly cap the tubing, record probe installation time/date, and wait at least **48 hours** before conducting purge volume tests, leak tests, or soil gas sampling:
- 7. Decontamination: Decontaminate drive rods and other reusable components between sample locations by washing equipment with Alconox or Liquinox soap and rinsing with tap water and/or by steam-cleaning. Use new flexible tubing for each sample point (do not reuse).

3.5 Temporary Vapor Probe Installation Using Tubing and Expendable Tip

- 1. This method should only be used for qualitative assessments due to the possibility of vapor leaks along the drive rods. This method should not be used when sampling in coarse granular materials due to potential leakage along the probe.
- 2. Use a rotary hammer drill or concrete-coring equipment to core any paved surfaces.
- 3. The drive rod is driven to a predetermined depth (generally 6 feet minimum) and then pulled back (approximately 1") to expose the short screened section of the probe (typically an expendable tip, **Figure 3**).

- 4. The probe tip should be attached to the sampling tube with either a barbed fitting or a screw adapter with an o-ring to prevent leakage. If a screw adapter with o-ring is used, replace o-rings daily and inspect them for flaws before installing each probe. Use rigid tubing that can be tightened from the surface to ensure that the o-ring is properly sealed. The volume of the sampling apparatus should be minimized. DTSC guidance requires that tubing should be no greater than ¹/₄" nominal diameter.
- 5. Hydrated bentonite should be used to seal around the drive rod at the ground surface to prevent ambient air intrusion
- 6. **Equilibration Time:** After probe installation, tightly cap the tubing, record probe installation time/date, wait at least **2 hours** before conducting purge volume tests, leak tests, or soil gas sampling.

3.6 Vapor Sample Collection

During vapor sampling, record all valve open/close times and canister/manifold vacuum readings at each step. Do not conduct sampling within **5 days following a significant rain event** (0.5 inches of rainfall during any 24-hour period) or after significant nearby irrigation.

<u>Setup</u>

1. Calculate and record the volume of the sampling assembly, tubing, vapor probe, and any *permeable* air-, sand-, or dry bentonite-filled annular space around the vapor probe tip.

One Purge Volume = $\pi * r^2 * L = 3.14 \text{ x} (1/2*ID) \text{ x} (1/2*ID) * L$,

where ID = tubing or manifold inside diameter and L = length of tubing/manifold/borehole segment.

- 1/8" ID tubing volume = 2.4 ml/ft,
- 1/4" ID tubing volume = 9.7 ml/ft,
- 1/4" OD (0.17" ID) tubing volume = 4.5 ml/ft
- 2-1/8" auger boring volume = 697 ml/ft * 0.4 = 278 ml/ft (sand) minus tubing volume
- 2-1/8" auger boring volume = 697 ml/ft * 0.5 = 349 ml/ft (dry bentonite) minus tubing volume
- 3-1/4" auger boring volume = 1631 ml/ft * 0.4 = 652 ml/ft (sand) minus tubing volume
- 3-1/4" auger boring volume = 1631 ml/ft * 0.5 = 816 ml/ft (dry bentonite) minus tubing volume

ltem	One (1) Purge Volume (approx)	Three (3) Purge Volumes	Ten (10) Purge Volumes
¹ /4" ID tubing (10 ft)	100 ml	300 ml	1,000 ml
¹ /4" ID tubing (10 ft) with 6" dry bentonite and 6" sand, inside 3-1/4" diameter auger boring	830 ml	2,500 ml	8,300 ml
¹ / ₄ " ID tubing (10 ft) with 1 ft dry bentonite and 1 ft sand, inside 3-1/4" diameter auger boring	1,550 ml	4,650 ml	15,550 ml

Sample Purge Volumes

- 2. Wear latex or nitrile gloves while handling sampling equipment. Change gloves whenever a new sample is collected and after handling leak-check compound.
- 3. Replace the vapor probe cap with a closed Swagelok valve. Connect the sampling manifold to the vapor probe, sample Summa canister and vacuum pump using Swagelok fittings and stainless-steel, nylon, or Teflon tubing. Check all fittings for tightness (do not over-tighten).
- 4. Close all valves. Record pre-test vacuum reading on the Summa canister.

Shut-In Check

- 1. Open valve on vapor sampling manifold and open 3-way valve #1 so the vacuum pump of the purging assembly can evacuate the vapor sampling manifold assembly (keep valves #2 and #3 closed to the Tedlar bag/vacuum chamber of the vapor screening assembly) (**Figure 4**). Start the vacuum pump. Do *not* open #1 valve to the probe assembly, or the valve on the sample Summa canister. Allow manifold/tubing vacuum to stabilize at approximately 10" Hg.
- Stop the vacuum pump, close 3-way valves #2 and #3 (to allow shut-in testing of vapor sampling manifold), and conduct a shut-in test by waiting at least 5 minutes (if using 150 inches of water gauge) or 10 minutes (if using 30 inches of mercury gauge). Monitor manifold vacuum gauge to test for leaks. If the vacuum decreases, rectify the leak before proceeding.

Purge, Flow and Leak Check

1. **Calculate purge volume and duration.** Do *not* over-purge. Purge volumes should be determined in one of the following ways:

a) For vapor sampling in support of sensitive human health risk assessments for regulatory review, a step-purge test should be conducted at a "worst case" sampling point, **using 1, 3 and 10 purge volumes** (including tubing, sampling assembly and annular space) to determine the appropriate volume that yields the highest target compound concentration.

b) For collecting samples from depths of 5 feet or less, or if step purge tests yield no detectable target compounds, use a default purge of approximately **3 purge volumes** (including tubing, sampling assembly and annular space).

c) For semi-permanent wells subject to frequent sampling, **purge 1 volume** only of the tubing and manifold volume (not including the dry bentonite or sand pack section) after waiting at least **2 weeks** following the previous sampling event.

- 2. Place leak-check enclosure over vapor probe and seal to ground using hydrated bentonite or weather stripping.
- 3. Introduce helium gas into the leak-check enclosure and monitor with the helium gas analyzer until it reads between 20% and 30% helium.
- 4. **Conduct purging.** Start vacuum pump and open 3-way valve #1 (and 3-way valves #2 and #3) so the vacuum pump can evacuate the probe. Do *not* over-purge. Closely monitor the flow on the rotameter and the vacuum on the vacuum gauge. For most samples flow should be limited to 150mL/min or 200 mL/min maximum. Flow rates greater than 200 mL/min may be used when purging times are excessive, such as for deep wells with larger-diameter tubing. However, a vacuum of 100" of water or less must be maintained during sampling whenever a higher flow rate is used. If the vacuum remains below approximately 7" Hg, then sufficient flow is present to collect a representative sample (Cal/EPA 2012) and continue purging for the planned purge duration.

- 5. If the probe-side vacuum exceeds approximately 7" Hg, then insufficient flow may be present to collect a representative sample and this condition should be noted. (Evaluate probe integrity or consider re-installation of probe, especially if probe installed in coarse-grain material). To sample soil gas under low flow conditions, follow this alternate sampling method derived from Appendix D, Cal/EPA 2012. Make a reasonable attempt to purge one purge volume (as defined above), but as a minimum purge one volume of the sampling assembly, tubing, and probe. After purging, open sample Summa canister until sampling manifold vacuum threshold is achieved, then close Summa sample valve until probe vacuum dissipates. Repeat this sampling procedure as necessary to sufficiently fill the sample Summa canister. Alternatively, consider installing a soil gas probe with a larger probe annulus space, or employing passive soil gas sampling methods.
- 6. Pre-Sample Vapor Screening. To pre-screen soil vapor, open valves #2 and #3 of the vapor screening assembly to route vapor into the Tedlar bag within a vacuum chamber (iron lung). Partially fill the Tedlar bag (and return valves #2 and #3 to purging position). Monitor the rotameter for changes in flow while filling the Tedlar bag. Check bag with the helium gas analyzer to screen probe vapors for leakage (indicated by presence of helium). If helium concentration in bag is below 1% then continue sampling. If helium concentration in bag is above 1%, then discontinue sampling and check for leaks around the probe. The probe may need to be repaired or re-installed. Additionally, check the Tedlar bag for contaminants using the PID for qualitative contaminant assessment (optional). For tight soil formations, consider skipping the pre-sample vapor screening or conducting screening as initial probe purging.
- 7. When purge duration complete and ready to discontinue purging, close 3-way valve #1 so that the probe is connected to the sampling manifold, and then stop the vacuum pump.
- 8. Record helium reading for leak-check enclosure about each minute during purging and sampling.

Sample Collection

- 1. **Opening Sample Canister.** Once a helium reading of at least 20% has been reached, open sample canister valve. **Sampling takes approximately 5 minutes for a 1-liter Summa canister** (at 150 ml/min sampling flow rate).
- 2. Close sampling canister valve when vacuum decreases to 5" mercury. Do *not* allow vacuum to fall below this range.
- 3. **Post-Sample Vapor Screening.** After sampling, open 3-way valve #1 so that the vapor screening assembly is connected to the probe, turn on the vacuum pump, and open 3-way valves #2 and #3 to partially fill the Tedlar bag within the vacuum chamber (iron lung). When Tedlar bag is sufficiently filled, return valves #2 and #3 to purging position. Check Tedlar bag for indication of sampling leakage using the helium gas analyzer. If helium concentration is below 1% then sample is sufficiently representative. If helium concentration is above 1%, then the sample may not be sufficiently representative; the probe may need to be repaired or reinstalled and re-sampled. Additionally, check the Tedlar bag for contaminants using the PID for qualitative contaminant assessment (optional).
- 4. **Shroud Sample.** To confirm helium meter readings, collect one shroud sample per day to analyze for percent helium. Connect the shroud sample Summa canister and manifold to a port near the bottom of the shroud and open the canister valve at the beginning of sampling. Close sampling canister valve when vacuum decreases to 5" mercury. Do *not* allow vacuum to fall below this range. Disassemble sampling assembly, and cap (or remove and restore) vapor sampling point.

- 5. Analyses. Fill out chain-of-custody form for analysis for chemicals of concern (i.e. TO-15), and for leak-check compound for at least 10% of samples. Analyze all samples for percent oxygen by ASTM D1946-90. Additionally, samples may be analyzed for percent methane and carbon dioxide by ASTM D1946-90 when in support of sensitive human health risk assessments for regulatory review. Include final vacuum reading and serial numbers of canister and flow restrictor on chain-of-custody form.
- 6. For vapor sampling in support of sensitive human health risk assessments for regulatory review, collect at least one *duplicate* sample per site per sampling event from the sampling point with the anticipated highest vapor concentrations. The duplicate sample should be collected by attaching a fresh sample canister following collection of the initial sample. If a new manifold is used, follow the same purging and sampling procedures used for the original sample. If the same manifold is used, collect a sample without further purging, using the same sampling procedures used for the original sample.

Decontamination and Decommissioning

- 1. Use a decontaminated sampling manifold and new tubing for each sample location. Return equipment to laboratory for decontamination.
- 2. Backfill any open soil vapor probe holes with bentonite slurry or Portland cement and cap with concrete or other surface material to match the area.
- 3. To retain the soil gas probe for future sampling, cap the Swagelock fitting and cover the probe with a small vault or other protective device.

REFERENCES

- Cal/EPA, 2012, Advisory-Active Soil Gas Investigation, California Environmental Protection Agency, Department of Toxic Substances Control, Los Angeles Regional Water Quality Control Board, San Francisco Regional Water Quality Control Board, April.
- Cal/EPA, 2011, Guidance for the evaluation and mitigation of subsurface vapor intrusion to indoor air (vapor intrusion guidance), California Environmental Protection Agency, Department of Toxic Substances Control, October.
- Cal/EPA, 2010, Advisory Active Soil Gas Investigation, California Environmental Protection Agency, Department of Toxic Substances Control, March.
- U.S. EPA, 2006,Office Of Research and Development, National Risk Management Research Laboratory, Cincinnati, OH, Assessment of vapor intrusion in homes near the Raymark Superfund Site using basement and sub-slab air samples, March.
- Dominic DiGiulio, 2003, Standard Operating Procedure (SOP) for installation of sub-slab vapor probes and sampling using EPA Method TO-15 to support vapor intrusion investigations, U.S. Environmental Protection Agency, Office of Research and Development, National Risk Management Research Laboratory, Ground-Water and Ecosystem Restoration Division, Ada, Oklahoma (included as Appendix C of Colorado Department of Public Health and Environment, 2004, Draft Indoor Air Guidance, Hazardous Materials and Waste Division), September.

PANGEA

Figure 1 – Permanent/Semi-permanent Gas

Figure 2 – Multi-depth Gas Vapor Well

Soil Gas Vapor Well **Emplacement Methods**

Soil Vapor Sampling Manifold Schematic

APPENDIX C

Laboratory Analytical Reports

McCampbell Analytical, Inc.

"When Quality Counts"

Analytical Report

WorkOrder:	1407185
Report Created for:	Pangea Environmental Svcs., Inc. 1710 Franklin Street, Ste. 200 Oakland, CA 94612
Project Contact:	Morgan Gillies
Project P.O.: Project Name:	7701 BANCROFT OAKLAND
Project Received:	07/07/2014

Analytical Report reviewed & approved for release on 07/09/2014 by:

Question about your data? <u>Click here to email</u> McCampbell

Angela Rydelius, Laboratory Manager

The report shall not be reproduced except in full, without the written approval of the laboratory. The analytical results relate only to the items tested. Results reported conform to the most current NELAP standards, where applicable, unless otherwise stated in the case narrative.

1534 Willow Pass Rd. Pittsburg, CA 94565 ♦ TEL: (877) 252-9262 ♦ FAX: (925) 252-9269 ♦ www.mccampbell.com NELAP: 4033ORELAP ♦ ELAP: 1644 ♦ ISO/IEC: 17025:2005 ♦ WSDE: C972-11 ♦ ADEC: UST-098 ♦ UCMR3

Glossary of Terms & Qualifier Definitions

Client: Pangea Environmental Svcs., Inc.

Project: 7701 BANCROFT OAKLAND

WorkOrder: 1407185

Glossary Abbreviation

95% Interval	95% Confident Interval
DF	Dilution Factor
DUP	Duplicate
EDL	Estimated Detection Limit
ITEF	International Toxicity Equivalence Factor
LCS	Laboratory Control Sample
MB	Method Blank
MB % Rec	% Recovery of Surrogate in Method Blank, if applicable
MDL	Method Detection Limit
ML	Minimum Level of Quantitation
MS	Matrix Spike
MSD	Matrix Spike Duplicate
ND	Not detected at or above the indicated MDL or RL
NR	Matrix interferences, or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix; or sample diluted due to high matrix or analyte content.
RD	Relative Difference
RL	Reporting Limit (The RL is the lowest calibration standard in a multipoint calibration.)
RPD	Relative Percent Deviation
RRT	Relative Retention Time
SPK Val	Spike Value
SPKRef Val	Spike Reference Value
TEQ	Toxicity Equivalence

Analytical Qualifiers

Н

samples were analyzed out of holding time

Client:	Pangea Environmental Svcs., Inc.	WorkOrder:	1407185
Project:	7701 BANCROFT OAKLAND	Extraction Method:	SW5030B
Date Received:	7/7/14 18:03	Analytical Method:	SW8260B
Date Prepared:	7/8/14	Unit:	$\mu g/m^3$
	Veletile Organies by D&T and CC	MAG (Decie Terre	•4 T : •4)

Client ID	Lab ID	Matrix/ExtTyp	e Date Collected	Instrum	nent	Batch ID
SG-2	1407185-006A	Air	07/07/2014 12:29	GC28		92480
Initial Pressure (psia)	Final Pressure	e (psia)				
1.00	1.00					
Analytes		Result	Qualifiers	<u>RL</u>	DF	Date Analyzed
Benzene		ND	Н	250	1	07/08/2014 13:20
Ethylbenzene		ND	Н	250	1	07/08/2014 13:20
Methyl-t-butyl ether (MTBE)		ND	Н	250	1	07/08/2014 13:20
Naphthalene		ND	Н	250	1	07/08/2014 13:20
Toluene		ND	Н	250	1	07/08/2014 13:20
Xylenes, Total		ND	Н	250	1	07/08/2014 13:20
Surrogates	<u>REC (%)</u>	<u>Qualifiers</u>	<u>Limits</u>			
Dibromofluoromethane	88	Н	70-130			07/08/2014 13:20
Toluene-d8	94	Н	70-130			07/08/2014 13:20
4-BFB	86	Н	70-130			07/08/2014 13:20
SG-3	1407185-007A	Air	07/07/2014 12:37	GC28		92480
Initial Pressure (psia)	Final Pressur	e (psia)				
1.00	1.00					
Analytes		<u>Result</u>	Qualifiers	<u>RL</u>	DF	Date Analyzed
Benzene		ND	Н	250	1	07/08/2014 14:00
Ethylbenzene		ND	Н	250	1	07/08/2014 14:00
Methyl-t-butyl ether (MTBE)		ND	Н	250	1	07/08/2014 14:00
Naphthalene		ND	Н	250	1	07/08/2014 14:00
Toluene		ND	Н	250	1	07/08/2014 14:00
Xylenes, Total		ND	Н	250	1	07/08/2014 14:00
Surrogates	<u>REC (%)</u>	<u>Qualifiers</u>	<u>Limits</u>			
Dibromofluoromethane	91	Н	70-130			07/08/2014 14:00
Toluene-d8	92	Н	70-130			07/08/2014 14:00
4-BFB	86	Н	70-130			07/08/2014 14:00

Client:	Pangea Environmental Svcs., Inc.	WorkOrder:	1407185
Project:	7701 BANCROFT OAKLAND	Extraction Method:	SW5030B
Date Received:	7/7/14 18:03	Analytical Method:	SW8260B
Date Prepared:	7/8/14	Unit:	$\mu g/m^3$

Client ID	Lab ID	Matrix/ExtTyp	e Date Collected	Instrum	ent	Batch ID
SG-1	1407185-008A	Air	07/07/2014 12:45	GC28		92480
Initial Pressure (psia)	Final Pressur	e (psia)				
1.00	1.00					
Analytes		<u>Result</u>	Qualifiers	<u>RL</u>	<u>DF</u>	Date Analyzed
Benzene		ND	Н	250	1	07/08/2014 14:39
Ethylbenzene		ND	Н	250	1	07/08/2014 14:39
Methyl-t-butyl ether (MTBE)		ND	Н	250	1	07/08/2014 14:39
Naphthalene		ND	Н	250	1	07/08/2014 14:39
Toluene		ND	Н	250	1	07/08/2014 14:39
Xylenes, Total		ND	Н	250	1	07/08/2014 14:39
Surrogates	<u>REC (%)</u>	<u>Qualifiers</u>	<u>Limits</u>			
Dibromofluoromethane	94	Н	70-130			07/08/2014 14:39
Toluene-d8	91	Н	70-130			07/08/2014 14:39
4-BFB	88	Н	70-130			07/08/2014 14:39

Client:	Pangea Environmental Svcs., Inc.	WorkOrder:	1407185
Project:	7701 BANCROFT OAKLAND	Extraction Method:	SW5030B
Date Received:	7/7/14 18:03	Analytical Method:	SW8260B
Date Prepared:	7/8/14	Unit:	μg/L

Client ID	Lab ID	Matrix/ExtType	Date Col	llected Instru	ument Batch ID
SG-2	1407185-006A	Air	07/07/201	4 12:29 GC28	92480
Analytes	Result	<u>Qualifiers</u>	<u>RL</u>	DF	Date Analyzed
Benzene	ND	Н	0.25	1	07/08/2014 13:20
Ethylbenzene	ND	Н	0.25	1	07/08/2014 13:20
Methyl-t-butyl ether (MTBE)	ND	Н	0.25	1	07/08/2014 13:20
Naphthalene	ND	Н	0.25	1	07/08/2014 13:20
Toluene	ND	Н	0.25	1	07/08/2014 13:20
Xylenes, Total	ND	Н	0.25	1	07/08/2014 13:20
Surrogates	<u>REC (%)</u>	Qualifiers	<u>Limits</u>		
Dibromofluoromethane	88	Н	70-130		07/08/2014 13:20
Toluene-d8	94	Н	70-130		07/08/2014 13:20
4-BFB	86	Н	70-130		07/08/2014 13:20
SG-3	1407185-007A	Air	07/07/201	4 12:37 GC28	92480
Analytes	Result	<u>Qualifiers</u>	<u>RL</u>	DF	Date Analyzed
Benzene	ND	Н	0.25	1	07/08/2014 14:00
Ethylbenzene	ND	Н	0.25	1	07/08/2014 14:00
Methyl-t-butyl ether (MTBE)	ND	Н	0.25	1	07/08/2014 14:00
Naphthalene	ND	Н	0.25	1	07/08/2014 14:00
Toluene	ND	Н	0.25	1	07/08/2014 14:00
Xylenes, Total	ND	Н	0.25	1	07/08/2014 14:00
Surrogates	<u>REC (%)</u>	Qualifiers	<u>Limits</u>		
Dibromofluoromethane	91	Н	70-130		07/08/2014 14:00
Toluene-d8	92	Н	70-130		07/08/2014 14:00
	86	н —	70-130		07/08/2014 14:00

Client:	Pangea Environmental Svcs., Inc.	WorkOrder:	1407185
Project:	7701 BANCROFT OAKLAND	Extraction Method:	SW5030B
Date Received:	7/7/14 18:03	Analytical Method:	SW8260B
Date Prepared:	7/8/14	Unit:	μg/L

Client ID	Lab ID	Matrix/ExtType	Date Col	llected Instrument	Batch ID
SG-1	1407185-008A	Air	07/07/201	4 12:45 GC28	92480
Analytes	<u>Result</u>	<u>Qualifiers</u>	<u>RL</u>	<u>DF</u>	Date Analyzed
Benzene	ND	Н	0.25	1	07/08/2014 14:39
Ethylbenzene	ND	Н	0.25	1	07/08/2014 14:39
Methyl-t-butyl ether (MTBE)	ND	Н	0.25	1	07/08/2014 14:39
Naphthalene	ND	Н	0.25	1	07/08/2014 14:39
Toluene	ND	Н	0.25	1	07/08/2014 14:39
Xylenes, Total	ND	Н	0.25	1	07/08/2014 14:39
Surrogates	<u>REC (%)</u>	<u>Qualifiers</u>	<u>Limits</u>		
Dibromofluoromethane	94	Н	70-130		07/08/2014 14:39
Toluene-d8	91	Н	70-130		07/08/2014 14:39
4-BFB	88	Н	70-130		07/08/2014 14:39

Client: Project: Date Received: Date Prepared:	Pangea Environmental 7701 BANCROFT OA 7/7/14 18:03 7/8/14	Svcs., Inc. KLAND		WorkOrder: Extraction Method Analytical Method Unit:	140718 I: ASTM : ASTM uL/L	5 D 1946-90 D 1946-90	
			Light Gase	S			
Client ID		Lab ID	Matrix/ExtTy	pe Date Collected	Instrume	ent	Batch ID
SG-2		1407185-006A	Air	07/07/2014 12:29	GC26		92486
Initial Pressure	(psia)	Final Pressure	e (psia)				
1.00		1.00					
<u>Analytes</u> Oxygen			<u>Result</u> 45,000	<u>Qualifiers</u> H	<u>RL</u> 4000	<u>DF</u> 1	Date Analyzed 07/08/2014 14:27
SG-3		1407185-007A	Air	07/07/2014 12:37	GC26		92486
Initial Processo		Final Pressure	e (psia)				
initial i ressure	(psia)	r mai i i cosui c	. ,				
1.00	(psia)	1.00					
1.00 Analytes Oxygen	(psia)	1.00	Result 55,000	<u>Qualifiers</u> H	<u>RL</u> 4000	<u>DF</u> 1	Date Analyzed 07/08/2014 14:48
1.00 Analytes Oxygen	(psia)	1.00 1407185-008A	Result 55,000 Air	Qualifiers H 07/07/2014 12:45	RL 4000 GC26	<u>D</u> E 1	Date Analyzed 07/08/2014 14:48 92486
1.00 Analytes Oxygen SG-1 Initial Pressure	(psia) (psia)	1.00 1.00 1407185-008A Final Pressure	Result 55,000 Air e (psia)	Qualifiers H 07/07/2014 12:45	RL 4000	<u>DF</u> 1	Date Analyzed 07/08/2014 14:48 92486
1.00 Analytes Oxygen SG-1 Initial Pressure 1.00	(psia) (psia)	1.00 1407185-008A Final Pressure 1.00	Result 55,000 Air 2 (psia)	Qualifiers H 07/07/2014 12:45	RL 4000 GC26	<u>DF</u> 1	Date Analyzed 07/08/2014 14:48 92486

Client:	Pangea Environmental Svcs., Inc.	WorkOrder:	1407185
Date Prepared:	7/8/14	BatchID:	92480
Date Analyzed:	7/8/14	Extraction Method:	SW5030B
Instrument:	GC28	Analytical Method:	SW8260B
Matrix:	Water	Unit:	μg/L
Project:	7701 BANCROFT OAKLAND	Sample ID:	MB/LCS-92480

	QC Sum	mary Report	for SW8260	B	QC Summary Report for SW8260B											
Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits									
Acetone	ND	-	10	-	-	-	-									
tert-Amyl methyl ether (TAME)	ND	16.8	0.50	20	-	84	70-130									
Benzene	ND	19.6	0.50	20	-	98.2	70-130									
Bromobenzene	ND	-	0.50	-	-	-	-									
Bromochloromethane	ND	-	0.50	-	-	-	-									
Bromodichloromethane	ND	-	0.50	-	-	-	-									
Bromoform	ND	-	0.50	-	-	-	-									
Bromomethane	ND	-	0.50	-	-	-	-									
2-Butanone (MEK)	ND	-	2.0	-	-	-	-									
t-Butyl alcohol (TBA)	ND	57.6	2.0	80	-	72.1	70-130									
n-Butyl benzene	ND	-	0.50	-	-	-	-									
sec-Butyl benzene	ND	-	0.50	-	-	-	-									
tert-Butyl benzene	ND	-	0.50	-	-	-	-									
Carbon Disulfide	ND	-	0.50	-	-	-	-									
Carbon Tetrachloride	ND	-	0.50	-	-	-	-									
Chlorobenzene	ND	19.7	0.50	20	-	98.3	70-130									
Chloroethane	ND	-	0.50	-	-	-	-									
Chloroform	ND	-	0.50	-	-	-	-									
Chloromethane	ND	-	0.50	-	-	-	-									
2-Chlorotoluene	ND	-	0.50	-	-	-	-									
4-Chlorotoluene	ND	-	0.50	-	-	-	-									
Dibromochloromethane	ND	-	0.50	-	-	-	-									
1,2-Dibromo-3-chloropropane	ND	-	0.20	-	-	-	-									
1,2-Dibromoethane (EDB)	ND	15.7	0.50	20	-	78.7	70-130									
Dibromomethane	ND	-	0.50	-	-	-	-									
1,2-Dichlorobenzene	ND	-	0.50	-	-	-	-									
1,3-Dichlorobenzene	ND	-	0.50	-	-	-	-									
1,4-Dichlorobenzene	ND	-	0.50	-	-	-	-									
Dichlorodifluoromethane	ND	-	0.50	-	-	-	-									
1,1-Dichloroethane	ND	-	0.50	-	-	-	-									
1,2-Dichloroethane (1,2-DCA)	ND	16.1	0.50	20	-	80.4	70-130									
1,1-Dichloroethene	ND	17.6	0.50	20	-	88	70-130									
cis-1,2-Dichloroethene	ND	-	0.50	-	-	-	-									
trans-1,2-Dichloroethene	ND	-	0.50	-	-	-	-									
1,2-Dichloropropane	ND	-	0.50	-	-	-	-									
1,3-Dichloropropane	ND	-	0.50	-	-	-	-									
2,2-Dichloropropane	ND	-	0.50	-	-	-	-									
1,1-Dichloropropene	ND	-	0.50	-	-	-	-									
cis-1,3-Dichloropropene	ND	-	0.50	-	-	-	-									
trans-1,3-Dichloropropene	ND	-	0.50	-	-	-	-									

(Cont.)

Client:	Pangea Environmental Svcs., Inc.	WorkOrder:	1407185
Date Prepared:	7/8/14	BatchID:	92480
Date Analyzed:	7/8/14	Extraction Method:	SW5030B
Instrument:	GC28	Analytical Method:	SW8260B
Matrix:	Water	Unit:	μg/L
Project:	7701 BANCROFT OAKLAND	Sample ID:	MB/LCS-92480

	QC Sum	mary Report	for SW8260	B			
Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits
Diisopropyl ether (DIPE)	ND	17.0	0.50	20	-	85	70-130
Ethylbenzene	ND	-	0.50	-	-	-	-
Ethyl tert-butyl ether (ETBE)	ND	17.1	0.50	20	-	85.6	70-130
Freon 113	ND	-	0.50	-	-	-	-
Hexachlorobutadiene	ND	-	0.50	-	-	-	-
Hexachloroethane	ND	-	0.50	-	-	-	-
2-Hexanone	ND	-	0.50	-	-	-	-
Isopropylbenzene	ND	-	0.50	-	-	-	-
4-Isopropyl toluene	ND	-	0.50	-	-	-	-
Methyl-t-butyl ether (MTBE)	ND	16.4	0.50	20	-	82	70-130
Methylene chloride	1.04	-	0.50	-	-	-	-
4-Methyl-2-pentanone (MIBK)	ND	-	0.50	-	-	-	-
Naphthalene	ND	-	0.50	-	-	-	-
n-Propyl benzene	ND	-	0.50	-	-	-	-
Styrene	ND	-	0.50	-	-	-	-
1,1,1,2-Tetrachloroethane	ND	-	0.50	-	-	-	-
1,1,2,2-Tetrachloroethane	ND	-	0.50	-	-	-	-
Tetrachloroethene	ND	-	0.50	-	-	-	-
Toluene	ND	19.8	0.50	20	-	98.9	70-130
1,2,3-Trichlorobenzene	ND	-	0.50	-	-	-	-
1,2,4-Trichlorobenzene	ND	-	0.50	-	-	-	-
1,1,1-Trichloroethane	ND	-	0.50	-	-	-	-
1,1,2-Trichloroethane	ND	-	0.50	-	-	-	-
Trichloroethene	ND	20.2	0.50	20	-	101	70-130
Trichlorofluoromethane	ND	-	0.50	-	-	-	-
1,2,3-Trichloropropane	ND	-	0.50	-	-	-	-
1,2,4-Trimethylbenzene	ND	-	0.50	-	-	-	-
1,3,5-Trimethylbenzene	ND	-	0.50	-	-	-	-
Vinyl Chloride	ND	-	0.50	-	-	-	-
Xylenes, Total	ND	-	0.50	-	-	-	-
Surrogate Recovery							
Dibromofluoromethane	22.7	40.8		45	91	91	70-130
Toluene-d8	23.7	41.3		45	95	92	70-130
4-BFB	2.10	3.93		4.5	84	87	70-130

_QA/QC Officer Page 9 of 14

Client:	Pangea Environmental Svcs., Inc.	WorkOrder:	1407185
Date Prepared:	7/8/14	BatchID:	92486
Date Analyzed:	7/8/14	Extraction Method:	ASTM D 1946-90
Instrument:	GC26	Analytical Method:	ASTM D 1946-90
Matrix:	SoilGas	Unit:	uL/L
Project:	7701 BANCROFT OAKLAND	Sample ID:	MB/LCS-92486

QC Summary Report for ASTM D1946-90										
Analyte	MB Result	LCS Result	RL	SPK Val	MB SS %REC	LCS %REC	LCS Limits			
Oxygen	ND	6670	4000	7000	-	95.2	70-130			

McCampbell Analytical, Inc.			CHAIN	CHAIN-OF-CUSTODY RECORD Page 1						
Pittsburg, CA 94565-1701 (925) 252-9262	WorkOrder: 1407185				Clie	ntCode: PEO				
	WaterTrax	WriteOn	EDF	Excel	EQuIS	🖌 Email	HardCopy	ThirdParty	_ J-flag	
Report to:				Bi	I to:		Re	quested TAT:	2 days	
Morgan Gillies Pangea Environmental Svcs., Inc. 1710 Franklin Street, Ste. 200 Oakland, CA 94612 (510) 836-3700 FAX: (510) 836-3709	Email: cc/3rd Party: PO: ProjectNo:	mgillies@pangea	env.com; tdela Γ OAKLAND	afuente@pa	Bob Clark-Rido Pangea Enviro 1710 Franklin Oakland, CA 9	dell onmental Svcs Street, Ste. 20 4612	s., Inc. 00 Da Da	te Received: te Printed:	07/07/2014 07/08/2014	
						Deguasted	Taata (Caa lawana	helew)		

					Requested Tests (See legend below)											
Lab ID	Client ID	Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
1407185-006	SG-2	Air	7/7/2014 12:29		Α											
1407185-007	SG-3	Air	7/7/2014 12:37		Α											
1407185-008	SG-1	Air	7/7/2014 12:45		Α											

Test Legend:

1	8260B_A
6	
11	

2	
7	
12]

3	
8	

ĺ	4	
[9	

5	
10	

Prepared by: Shana Carter

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

<u> </u>	

WORK ORDER SUMMARY

Client Name Project: Comments:	e: PANGEA E 7701 BANC	NVIRONMENTAL S ROFT OAKLAND	VCS., INC.	Cl Cor	QC Level: 1 ient Contact: 1 ntact's Email: 1	LEVEL 2 Morgan Gill mgillies@pa tdelafuente@	lies angeaenv.com @pangeaenv.co	; om		Work Date Re	Order: ceived:	1407185 7/7/2014
		WaterTrax	WriteOn	EDF	Excel	Fax	✓ Email	HardCo	opy ThirdPart	ty ∏J-f	lag	
Lab ID	Client ID	Matrix	Test Name		Number o Container	f Bottle & 's	Preservative	De- chlorinated	Collection Date & Time	TAT	Sediment Content	Hold SubOut
1407185-001A	SG-2-4	Soil			1				7/7/2014 7:50			✓
1407185-002A	SG-2-7	Soil			1				7/7/2014 8:12			✓
1407185-003A	SG-3-4	Soil			1				7/7/2014 8:45			✓
1407185-004A	SG-3-9	Soil			1				7/7/2014 9:08			✓
1407185-005A	SG-1-4	Soil			1				7/7/2014 9:47			✓
1407185-006A	SG-2	Air	SW8260B (MT	BE & BTEX)	1		Tedlar		7/7/2014 12:29	2 days		
			SW8260B (VO Xylenes, Total>	Cs) <naphthalene,< td=""><td></td><td></td><td></td><td></td><td></td><td>2 days</td><td></td><td></td></naphthalene,<>						2 days		
1407185-007A	SG-3	Air	SW8260B (MT	BE & BTEX)	1		Tedlar		7/7/2014 12:37	2 days		
			SW8260B (VO Xylenes, Total>	Cs) <naphthalene,< td=""><td></td><td></td><td></td><td></td><td></td><td>2 days</td><td></td><td></td></naphthalene,<>						2 days		
1407185-008A	SG-1	Air	SW8260B (MT	BE & BTEX)	1		Tedlar		7/7/2014 12:45	2 days		
			SW8260B (VO Xylenes, Total>	Cs) <naphthalene,< td=""><td></td><td></td><td></td><td></td><td></td><td>2 days</td><td></td><td></td></naphthalene,<>						2 days		

* NOTE: STLC and TCLP extractions require 48 hrs to complete; therefore, all TATs begin after the extraction is completed (i.e., 24hr TAT yields results in 72 hrs from sample submission).

Bottle Legend:

=

Tedlar = Tedlar Air Bag

									1	C	T)	7	18	Z	5																	
M Wet Telepho	ne: (925) 252	BELL 1534 V Pittsl campbell. -9262	ANA Villow Pass burg, CA 9 com Ema	LYT Road 4565 iil: ma	FIC. ain@r F	AL ncca Fax:	, IN	IC.	om 2-92	269				T	UF DF 1	RN Req	AR	d?	H NI Coel	t (P	N	OF E nal)	C		ST H W	OI 24 /rite	DY HR	R (W)	K N	RI 7	D 2 HR	□ 5 DA1
Report To: Morg	gan Gillies		B	ill To	o: Pa	nge	a						8	+					A	nal	ysis	Rec	jues	it i						(Othe	r	Comme
Company: Pange 1710 Franklin Str	ea Environm reet, Suite 20	ental Ser 0, Oakla	vices, In and, CA	c. 94612	2	_			_	_		,	820	E	dn	6						m		teve	100					05	Q		Filter
			E	-Mai	l: mg	illie	apa	ange	eaen	iv.c	om			MIM	lean	/B&	G					5		Ŧ	0	310				82(10		for Met
Tele: (510) 836-3	702		F	ax: ((510)	836-	3709)						15	elC	E&F	418					A	-1	E	8	3/0				thod	H		analysis
Project #:	La La		Р	rojec	t Nar	ne:								+ 80	a G	520	ons ((0)		X	7	26	pt		827	-	1		Me	t	(Î	Yes / No
Project Location:	77041	SANG	rott	0	DAL	LL	in	~	>					020	Silic	se (5	arbo		/ 80	(0	NL	Nr.	Ŧ	5		525 /	5020	020)	(0	EPA	35)	q (C	
Sampler Signatur	re:	-110	A			_							1	02/8	/M	Grea	Iroc	-	602	d,m	0 S.	N	F	0		PA	0/0	0/0	601	by I	P.	man	
		SAMI	PLING	LS	iners		MAT	RE	X	l PF	MET	ERV	D ED	se Gas (6	1 (8015)	a Oil & o	um Hyc	10 / 802	(EPA	(PH (g,	82 PCB	H C	* =	24/820	5 / 8270	's by El	als (601	ils (601	200.9 /	genates	ed Soli	gen Dei	
SAMPLE ID	LOCATION (Field Point Name)	Date	Time	# Containe	Type Contai	Water	Soil	Sludge	Other	ICE	HCL	HNO ₃	Other	BTEX & TPH-	TPH as Diese	Total Petroleun	Total Petrole	EPA 601 / 801	BTEX ONLY	Multi-range 7	EPA 608 / 808	EPA 8140 / 81	EPA 8150 / 81	EPA 524.276	EPA 525 / 625	PAH's/PNA	CAM-17 Met	LUFT 5 Meta	Lead (200.8 /	Five fuel oxyg	Total Suspend	Chemical Oxy	
51-7-4		2/2/11	6750	1	T		V		-	V	1			~			-	-			-	-									×		
54-2-7		1114	0817	1	1		î	+	-	h	-		-			-	-	-	-			-	-	-	-	-					2		
81-2-4	N		ARUS	1	++				-	Ħ	-		-		-	-	-	+					-		-	-	-	-			0		
36-3 1			0200	-	++			+	1	H	-		-			-	-	-	-	-		-			-					-	\bigcirc		
56-1-4	1		0947	2				+		1	1		-										-		-						X		
							*			Г				1.										1									1.1.1
56-2		7/7/14		1	B		X	(X	×										×									
56-3				1										X	t									X	-	-	-	-			-		
SE-1		1		T	V			/						YX										X									1
			1.00										v																				
																							£										£-
				-				-	-	-	-		-	-	-		-	-	-		-	-				-							
111	11	e					-	+	+	t	-		-			-	-	-				-								-	-		
Relinquished By:	1	Date:	Time:	Rece	eived B	iy:	~	~	/					IC	E/t°	Ver		TION									2	CON	MM	INTS	S:		
11/1/2	Y ľ	1111	11:2	2	11	20	26	2			_			HE	EAD	SPA	CE A	ABSI	NT_		_												
Relinquished By:	ť	Date:	Time:	Rece	eived B	y:								DE	PRO	DPRI	ATH	TED E CO	IN L NTA	AB_INEI	RS_	-	4										
Relinquished By:	C	Date:	Time:	Rece	eived B	By:								PR	ESE	RVI	TIC	VON_	B	08	&G	ME pH<	TAI	S	оті	IER							

Sample Receipt Checklist

Client Name:	Pangea Environmer	tal Svcs., Inc.				Date and	Time Received:	7/7/2014 6:03:30 PM
Project Name:	7701 BANCROFT O	AKLAND				LogIn Rev	iewed by:	Shana Carter
WorkOrder №:	1407185	Matrix: <u>Air/Soil</u>				Carrier:	Client Drop-In	
		<u>Cha</u>	<u>in of Cւ</u>	ustody (C	OC) I	nformation		
Chain of custody	present?		Yes	✓	I	No 🗌		
Chain of custody	signed when relinquis	hed and received?	Yes	✓	I	No 🗌		
Chain of custody	agrees with sample la	abels?	Yes	✓	I	No 🗌		
Sample IDs note	d by Client on COC?		Yes	✓	I	No 🗌		
Date and Time of	f collection noted by C	lient on COC?	Yes	✓	I	No 🗌		
Sampler's name	noted on COC?		Yes	✓	I	No 🗌		
			<u>Sample</u>	Receipt	Infor	<u>mation</u>		
Custody seals int	tact on shipping conta	iner/cooler?	Yes		I	No 🗌		NA 🗹
Shipping contain	er/cooler in good cond	lition?	Yes	✓	I	No 🗌		
Samples in prope	er containers/bottles?		Yes	✓	I	No 🗌		
Sample containe	rs intact?		Yes	✓	I	No 🗌		
Sufficient sample	e volume for indicated	test?	Yes	✓	I	No 🗌		
		Sample Pres	ervatio	<u>n and Ho</u>	old Tin	<u>ne (HT) Info</u>	ormation	
All samples recei	ived within holding tim	e?	Yes	✓	I	No 🗌		
Container/Temp	Blank temperature		Coole	er Temp:	6°C			
Water - VOA vial	s have zero headspac	e / no bubbles?	Yes	✓	I	No 🗌		
Sample labels ch	necked for correct pres	servation?	Yes	✓	I	No 🗌		
pH acceptable up	oon receipt (Metal: pH	<2; 522: pH<4)?	Yes		I	No 🗌		NA 🔽
Samples Receive	ed on Ice?		Yes	✓	I	No 🗌		
		(Ісе Тур	e: WE	TICE))			

* NOTE: If the "No" box is checked, see comments below.

Comments:

McCampbell Analytical, Inc.

"When Quality Counts"

Analytical Report

WorkOrder:	1407185 A
Report Created for:	Pangea Environmental Svcs., Inc. 1710 Franklin Street, Ste. 200 Oakland, CA 94612
Project Contact:	Morgan Gillies
Project P.O.: Project Name:	7701 BANCROFT OAKLAND
Project Received:	07/07/2014

Analytical Report reviewed & approved for release on 07/09/2014 by:

Angela Rydelius, Laboratory Manager

The report shall not be reproduced except in full, without the written approval of the laboratory. The analytical results relate only to the items tested. Results reported conform to the most current NELAP standards, where applicable, unless otherwise stated in the case narrative.

1534 Willow Pass Rd. Pittsburg, CA 94565 ♦ TEL: (877) 252-9262 ♦ FAX: (925) 252-9269 ♦ www.mccampbell.com NELAP: 4033ORELAP ♦ ELAP: 1644 ♦ ISO/IEC: 17025:2005 ♦ WSDE: C972-11 ♦ ADEC: UST-098 ♦ UCMR3

Glossary of Terms & Qualifier Definitions

Client: Pangea Environmental Svcs., Inc.

Project: 7701 BANCROFT OAKLAND

WorkOrder: 1407185

Glossary Abbreviation

95% Interval	95% Confident Interval
DF	Dilution Factor
DUP	Duplicate
EDL	Estimated Detection Limit
ITEF	International Toxicity Equivalence Factor
LCS	Laboratory Control Sample
MB	Method Blank
MB % Rec	% Recovery of Surrogate in Method Blank, if applicable
MDL	Method Detection Limit
ML	Minimum Level of Quantitation
MS	Matrix Spike
MSD	Matrix Spike Duplicate
ND	Not detected at or above the indicated MDL or RL
NR	Matrix interferences, or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix; or sample diluted due to high matrix or analyte content.
RD	Relative Difference
RL	Reporting Limit (The RL is the lowest calibration standard in a multipoint calibration.)
RPD	Relative Percent Deviation
RRT	Relative Retention Time
SPK Val	Spike Value
SPKRef Val	Spike Reference Value
TEQ	Toxicity Equivalence

Analytical Qualifiers

Н

samples were analyzed out of holding time

Client:	Pangea Environmental Svcs., Inc.	WorkOrder:	1407185
Project:	7701 BANCROFT OAKLAND	Extraction Method:	SW5030B
Date Received:	7/7/14 18:03	Analytical Method:	SW8021B/8015Bm
Date Prepared:	7/8/14	Unit:	$\mu g/m^3$

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE

Client ID	Lab ID	Matrix/ExtType	Date Coll	lected Instrument	Batch ID
SG-2	1407185-006A	Air	07/07/2014	12:29 GC7	92497
Analytes	<u>Result</u>	<u>Qualifiers</u>	<u>RL</u>	DF	Date Analyzed
TPH(g)	ND	Н	25,000 1		07/08/2014 19:59
MTBE			2500	1	07/08/2014 19:59
Benzene			250	1	07/08/2014 19:59
Toluene			250	1	07/08/2014 19:59
Ethylbenzene			250	1	07/08/2014 19:59
Xylenes			250	1	07/08/2014 19:59
Surrogates	<u>REC (%)</u>	Qualifiers	<u>Limits</u>		
aaa-TFT_2	95	Н	70-130		07/08/2014 19:59

SG-3	1407185-007A	Air	07/07/2014	4 12:37 GC7	92497
Analytes	<u>Result</u>	Qualifiers	<u>RL</u>	DF	Date Analyzed
TPH(g)	ND	н	25,000	1	07/08/2014 21:00
МТВЕ			2500	1	07/08/2014 21:00
Benzene			250	1	07/08/2014 21:00
Toluene			250	1	07/08/2014 21:00
Ethylbenzene			250	1	07/08/2014 21:00
Xylenes			250	1	07/08/2014 21:00
<u>Surrogates</u>	<u>REC (%)</u>	Qualifiers	<u>Limits</u>		
aaa-TFT_2	96	Н	70-130		07/08/2014 21:00

SG-1	1407185-008A	Air	07/07/201	4 12:45 GC7	92497
Analytes	<u>Result</u>	Qualifiers	<u>RL</u>	DF	Date Analyzed
TPH(g)	ND	н	25,000	1	07/08/2014 20:29
МТВЕ			2500	1	07/08/2014 20:29
Benzene			250	1	07/08/2014 20:29
Toluene			250	1	07/08/2014 20:29
Ethylbenzene			250	1	07/08/2014 20:29
Xylenes			250	1	07/08/2014 20:29
Surrogates	<u>REC (%)</u>	Qualifiers	<u>Limits</u>		
aaa-TFT_2	101	н	70-130		07/08/2014 20:29

Client:	Pangea Environmental Svcs., Inc.	WorkOrder:	1407185
Project:	7701 BANCROFT OAKLAND	Extraction Method:	SW5030B
Date Received:	7/7/14 18:03	Analytical Method:	SW8021B/8015Cm
Date Prepared:	7/8/14	Unit:	μg/L

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE

Client ID	Lab ID	Matrix/ExtType	Date Col	llected Instrument	Batch ID
SG-2	1407185-006A	Air	07/07/2014	4 12:29 GC7	92497
Analytes	<u>Result</u>	<u>Qualifiers</u>	<u>RL</u>	DF	Date Analyzed
TPH(g)	ND	н	25	1	07/08/2014 19:59
MTBE			2.5	1	07/08/2014 19:59
Benzene			0.25	1	07/08/2014 19:59
Toluene			0.25	1	07/08/2014 19:59
Ethylbenzene			0.25	1	07/08/2014 19:59
Xylenes			0.25	1	07/08/2014 19:59
Surrogates	<u>REC (%)</u>	Qualifiers	<u>Limits</u>		
aaa-TFT	95	Н	70-130		07/08/2014 19:59

SG-3	1407185-007A	Air	07/07/201	4 12:37 GC7	92497
Analytes	Result	Qualifiers	RL	DF	Date Analyzed
TPH(g)	ND	ND H		1	07/08/2014 21:00
MTBE				1	07/08/2014 21:00
Benzene			0.25	1	07/08/2014 21:00
Toluene			0.25	1	07/08/2014 21:00
Ethylbenzene			0.25	1	07/08/2014 21:00
Xylenes			0.25	1	07/08/2014 21:00
Surrogates	<u>REC (%)</u>	<u>Qualifiers</u>	<u>Limits</u>		
aaa-TFT	96	н	70-130		07/08/2014 21:00

SG-1	1407185-008A	Air	07/07/201	14 12:45 GC7	92497
Analytes	<u>Result</u>	<u>Qualifiers</u>	<u>RL</u>	DF	Date Analyzed
TPH(g)	ND	Н	25	1	07/08/2014 20:29
MTBE			2.5	1	07/08/2014 20:29
Benzene			0.25	1	07/08/2014 20:29
Toluene			0.25	1	07/08/2014 20:29
Ethylbenzene			0.25	1	07/08/2014 20:29
Xylenes			0.25	1	07/08/2014 20:29
Surrogates	<u>REC (%)</u>	Qualifiers	<u>Limits</u>		
aaa-TFT	101	Н	70-130		07/08/2014 20:29

Client:	Pangea Environmental Svcs., Inc.	WorkOrder:	1407185
Date Prepared:	7/9/14	BatchID:	92497
Date Analyzed:	7/8/14	Extraction Method:	SW5030B
Instrument:	GC7	Analytical Method:	SW8021B/8015Bm
Matrix:	Water	Unit:	μg/L
Project:	7701 BANCROFT OAKLAND	Sample ID:	MB/LCS-92497 1407107-001AMS/MSD

QC Summary Report for SW8021B/8015Bm										
Analyte	MB Result	LCS Result		RL	SPK Val	MB SS 1	%REC	LCS %REC		LCS Limits
TPH(btex)	ND	60.4		40	60	-		101		70-130
MTBE	ND	10.3		5.0	10	-		103	-	70-130
Benzene	ND	10.5		0.50	10	-		105	-	70-130
Toluene	ND	10.6		0.50	10	-		106	-	70-130
Ethylbenzene	ND	10.9		0.50	10	-		109		70-130
Xylenes	ND	33.0		0.50	30	-		110		70-130
Surrogate Recovery										
aaa-TFT_2	9.89	8.55			10	99		86		70-130
Analyte	MS Result	MSD Result	SPK Val	SPKRef Val	MS %REC	MSD %REC	MS/M Limits	SD F	RPD	RPD Limit
TPH(btex)	NR	NR	0	610	NR	NR	-	Ν	IR	
МТВЕ	NR	NR	0	1400	NR	NR	-	Ν	١R	
Benzene	NR	NR	0	3700	NR	NR	-	Ν	١R	
Toluene	NR	NR	0	43	NR	NR	-	Ν	١R	
Ethylbenzene	NR	NR	0	110	NR	NR	-	Ν	١R	
Xylenes	NR	NR	0	200	NR	NR	-	Ν	١R	
Surrogate Recovery										
aaa-TFT_2	NR	NR	0		NR	NR	-	Ν	IR	

McCampbell Analytical, 1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262	Inc.			CHAIN WorkOrd	↓-0F-CU der: 1407185	ISTODY A clie	RECOF	RD Page	1 of 1
(723) 232-7202	WaterTrax	WriteOn	EDF	Excel	Fax	🖌 Email	HardCo	opy ThirdParty	J-flag
Report to:				Bi	ill to:			Requested TAT:	2 days
Morgan Gillies Pangea Environmental Svcs., Inc. 1710 Franklin Street, Ste. 200 Oakland, CA 94612 (510) 836-3700 FAX: (510) 836-3709	Email: mgil cc/3rd Party: PO: ProjectNo: 7701	lies@pangeae	env.com; tdela OAKLAND	afuente@pa	Bob Clark-R Pangea Env 1710 Frankli Oakland, CA	iddell ironmental Svcs in Street, Ste. 20 v 94612	s., Inc. 00	Date Received: Date Add-On: Date Printed:	07/07/2014 07/08/2014 07/08/2014
						Requested 1	Fests (See leg	end below)	

Lab ID **Client ID** Matrix Collection Date Hold 2 3 5 7 10 1 4 6 8 9 11 12 1407185-006 SG-2 7/7/2014 12:29 Air А А 1407185-007 SG-3 Air 7/7/2014 12:37 А А 1407185-008 SG-1 Air 7/7/2014 12:45 А А

Test Legend:

1	G-MBTEX(UG/M3)_A	2 G-MBTEX_A	3	4	5
6		7	8	9	10
11		12			

Prepared by: Shana Carter

Add-On Prepared By: Maria Venegas

Comments: Gas by 8015 & O2 added 7/8/14 Rush TAT.

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

WORK ORDER SUMMARY

Client Name:PANGEA ENVIRONMENTAL SVCS., INC.Project:7701 BANCROFT OAKLANDComments:Gas by 8015 & O2 added 7/8/14 Rush TAT.

QC Level: LEVEL 2 Client Contact: Morgan Gillies Contact's Email: mgillies@pangeaenv.com; tdelafuente@pangeaenv.com

Work Order:	1407185
Date Received:	7/7/2014
Date Add-On:	7/8/2014

Lab ID **Client ID** Matrix **Test Name** Number of **Bottle & Preservative Collection Date** TAT Sediment Hold SubOut Containers & Time Content 1407185-006A SG-2 TPH(g) + MBTEX Tedlar 7/7/2014 12:29 1 day Air 1 SG-3 1407185-007A Air TPH(g) + MBTEX1 Tedlar 7/7/2014 12:37 1 day TPH(g) + MBTEX 1407185-008A SG-1 Air 1 Tedlar 7/7/2014 12:45 1 day

* NOTE: STLC and TCLP extractions require 48 hrs to complete; therefore, all TATs begin after the extraction is completed (i.e., 24hr TAT yields results in 72 hrs from sample submission).

Bottle Legend:

Tedlar = Tedlar Air Bag

										1	T	2	57	1	8	9	5																	
N Wet Telepho	McCAMPBELL ANALYTICAL, INC. 1534 Willow Pass Road Pittsburg, CA 94565 Website: www.mccampbell.com Tolophone: (025) 252, 0260 Email: main@mccampbell.com													CHAIN OF CUSTODY RECORD TURN AROUND TIME RUSH 24 HR 18 HR 72 HR 5 D EDF Required? Coelt (Normal) No Write On (DW) No																				
Report To: Morgan Gillies Bill To: Pangea													2	+		-		-	1	Anal	ysis	Re	que	st			-			(Othe	r	Comme	
Company: Pangea Environmental Services. Inc.												31	É				-	In					3	0				Π		0		E.L		
1710 Franklin Street, Suite 200, Oakland, CA 94612										P		dn	(J		6	1-14	Ŧ		3		3	9					9	4		Filter				
			E	-Mai	l: mg	illie	s@p	an	geae	env	.coi	m				lean	/B&	1.	J	4	I.		2		I	P	3310				1 82	10		for Met
Tele: (510) 836-3702 Fax: (510) 836-3709											151	elC	E&F	418	00	5			A	+ 1	E	00	3/0				thoc	1		analysis				
Project #: Project Name:										+ 80	a G	520	Suc	3	02		X	X	-	40		827	-			Me	r	(QO	Yes / No					
Project Location:	77041	BANGI	rott	0	DAN	L	-13	~	P			_	_		020	Silic	se (5	arbe	3	/802	0	N	N	Ŧ	5		25/	020	020)	6	Ad	88)	d (C	
Sampler Signatur	re:	-plis	A	_											02/8	/M	Grea	roc	9	205	d,m	0 S	N	E	R		A 6	0/6	9/0	6010	by I	T.	nano	
SAMPLE ID		SAMI	PLING	S	Type Containers		MA	MATRI			METHOD PRESERVED		D	6) sej 8	(8015)	Oil & C	um Hyd	07802	(EPA (PH (g,	2 PCB	÷	121	24/826	5/8270	's by El	als (601	uls (601	200.9 /	genates	ed Soli	/gen Dei		
	LOCATION (Field Point Name)	Date	# Containe	# Containe		Water	Soil	Air	Sludge	Uther	ICE	HCL	HNO ₃	Other	BTEX & THUA	TPH as Diesel	Total Petroleum	Total Petroleu	EPA 601/801	BTEX ONLY	Multi-range 1	EPA 608 / 808	EPA 8140 / 81	EPA 8150 / 8	EPA 524.216	EPA 525 / 62	PAH's/PNA'	CAM-17 Met	LUFT 5 Meta	Lead (200.8 /	Five fuel oxyg	Total Suspend	Chemical Oxy,	
51-7-4		2 Jul	6750	1	T		×		-	1	V	+	-		4										-							×		
81-27		1414	0817		1	\vdash	1	-	-	+	î	+	+	+	+			-	-	-	+	1	-	-	1	-	-	-	-					
36-2-4			0012	Ļ	++-	\vdash		-	-	+	+	+	-	+	-			-	-	-	-	-	-	-	-	-	-	-	-	-	-	\cap		
56-5-4	·		0845	1	11	-		-	-	+	+	-	-	+	-				-	-	-	-	-	-	-	-	-	-	-	-	-	X		
56-3-9			0708	1					_	-			_	+	-												-					X		
56-1-4		V	0947	2	V		V				V																					×		
															1.										1									· · · · · · · ·
5(7-		7/1/14			B		1	X		1)	X	×	-	1	1	R	1			R		×									
61-3		"		1	T			î	-	+		1		11	X				Ø				X		~	,								
Cal						+			-	+	+	+	-	\mathbf{H}	X		-		X		+	-	R		C	7	-	-	-	+		-		
26-1		V		-	V	+		V		+	+	-	1	H	1	-	-		P	-	+	-	0	1	2	-	-	-	-	-	\vdash	-	-	-
					-	-		-		+	-	-	-	+	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
1								_		4			_		_						-						-	-					-	
																											-							
																					-	-										18	1	
111	11	1			1					1				1						1		1		1	1	1								
Relinquished By:	11	Date:	Time:	Reco	eived B	By:		-	-	-	-		-	-	ICE	C/t°	6	0	-	-	-	-	-	-	1	-		-	CO	MMI	ENTS	S:		
1.11/3	11111111111111111111111111111111111111									GO	OD	CON	NDIT	TION	N. North																			
Refinquished By:	Date: Time: Received By:										HE DE AP	CHI PRO	SPA LOR PRI	INA'	TED CO	INI	LAB	RS_	_	4														
Relinquished By: Date: Time: Received By:											1		PRESERVED IN LAB VOAS O&G METALS OTHER PRESERVATION																					