READY FAMILY PARTNERSHIP, LP c/o Shelter Bay Retail Group 655 Redwood Highway, Suite 177 Mill Valley, California 94941

RECEIVED

5:37 pm, Dec 04, 2012

Alameda County Environmental Health

November 28, 2012

Ms. Donna Drogos Alameda County Department of Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502

SUBJECT: LIMITED PHASE II ENVIRONMENTAL SITE SAMPLING REPORT CERTIFICATION 7100-7120 Dublin Boulevard Dublin, CA

Dear Ms. Drogos:

You will find enclosed one copy of the following document prepared by Basics Environmental, Inc.

 Limited Phase II Environmental Site Sampling Report dated November 9, 2012 (document 0614.R1).

I declare under penalty of perjury that the contents and conclusions in the document are true and correct to the best of my knowledge. In addition, as recommended in the report, I request that the case be considered for closure.

Should you have any questions, please do not hesitate to contact my property manager, Sharlene Hassler at Shelter Bay Retail Group (415) 388-4460, ext. 428 or Paul King at P&D Environmental (510) 658-6916.

Sincerely,

Kim Jorthuer

Kim Gonthier President and General Partner Ready Family Partnership, LP

LIMITED PHASE II ENVIRONMENTAL SITE SAMPLING REPORT

7100-7120 Dublin Boulevard Dublin California

FOR

Mechanics Bank 1999 Harrison Street, Suite 810 Oakland, CA 94612

November 9, 2012 12-ENV2949

65512TH STREET, #126•OAKLAND, CA•94607•TEL / FAX 510-834-9099 / 9098

November 9, 2012 12-ENV2949

Mechanics Bank 1999 Harrison Street, Suite 810 Oakland, CA 94612

Attention: Ms. Barbara Roesner

Subject: Limited Phase II Environmental Site Sampling Report 7100-7120 Dublin Boulevard Dublin, California 94568

Dear Ms. Roesner:

Basics Environmental, Inc. (Basics) is pleased to present the results of a Limited Phase II Environmental Site Sampling Report for the site located at 7100-7120 Dublin Boulevard in Dublin, California.

Three soil samples were collected inside the building at 4.5 foot depth. Two groundwater grab samples were collected outside the building in a parking lot southeast of the building from first-encountered groundwater. Five soil gas samples were also collected inside the building from 3 different tenant spaces.

No detectable concentrations exceeding their respective regulatory screening levels of multi range total petroleum hydrocarbons as gasoline, Stoddard solvent, kerosene, diesel, bunker oil or motor oil or volatile organic compounds (VOCs) were detected within any of the soil samples.

Detectable concentrations exceeding the regulatory screening level of multi range total petroleum hydrocarbons as bunker oil were detected within both of the groundwater samples, and the VOC cis-1,2-dichloroethene (cis-1,2-DCE) which is a dry cleaning chemical decomposition product was detected in one of the groundwater samples at a concentration exceeding the regulatory screening level. The dry cleaning chemical tetrachloroethene was detected in all of the soil gas samples with concentrations exceeding the regulatory screening level for commercial land use at two locations in the current dry cleaning store.

Should you have any questions regarding this report, please contact the undersigned.

Sincerely,

Basics Environmental, Inc.

Donavan G. Forn, M.B.A., R.E.A. II Principal Consultant

TABLE OF CONTENTS

PROFESSIONAL CERTIFICATION

1.0	INTRODUCTION	. 1-1
1.1 1.2 1.3 1.4	Purpose of Assessment Background Scope of Work Permits and Regulatory Compliance	. 1-1 . 1-4
2.0	SOIL AND GROUND WATER SAMPLING	. 2-1
2.1	Field Activities	. 2-1
3.0	SOIL GAS SAMPLING	. 3-1
3.1	Field Activities	. 3-1
4.0	CHEMICAL ANALYSES AND RESULTS	. 4-1
4.1	Chemical Analyses	. 4-1
4.2	Analytical Results	
5.0	HERD SOIL GAS RISK AND HAZARD ANALYSIS	. 5-1
5.1	Soil Gas Risk and Hazard Evaluation	. 5-1
6.0	DISCUSSION AND RECOMMENDATIONS	. 6-1
6.1	Discussion	. 6-1
6.2	Recommendations	. 6-3

LIST OF TABLES

Table 1:	Summary of Soil Sample Analytical Results
Table 2:	Summary of Groundwater Sample Analytical Results
Table 3A:	Summary of Soil Gas Sample Analytical Results - VOCs
Table 3B:	Summary of Soil Gas Sample Shroud Tracer Gas Analytical Results - 1,1 -
	Difluoroethane

LIST OF FIGURES

Figure 1:	Site Location Map
Figure 2:	Site Vicinity Aerial Photograph
Figure 3:	Site Vicinity Map
Figure 4:	Site Map Detail Showing Sample Collection Locations
Figure 5:	Site Map Detail of Unit 7112

Figure 6: Site Map Detail of Units 7102, 7104 and 7106

LIMITED PHASE II

Figure 7: Groundwater Gradient Map Detail: Upper Aquifer, Spring 2007Figure 8: Groundwater Gradient Map Detail: Upper Aquifer, Fall 2007Figure 9: Typical Soil Gas Sampling Manifold

LIST OF APPENDICES

Appendix A: Appendix B:	Boring Logs Soil Gas Purge Volume Calculations and Soil Gas Sampling Data Sheets
Appendix C:	Weather Information
Appendix D: Appendix E:	Laboratory Analytical Reports and Chain of Custody Documentation HERD December 2011 Vapor Intrusion Risk and Hazard Calculation Work Sheets

PROFESSIONAL CERTIFICATION

ENVIRONMENTAL SITE SAMPLING REPORT 7100-7120 Dublin Boulevard Dublin, California For Mechanics Bank 12-ENV2949 November 9, 2012

This report has been prepared by the staff of Basics Environmental, Inc. (Basics) under the professional supervision of the Principal Consultant whose seal and signature appears hereon. The findings, interpretations of data, recommendations, specifications or professional opinions are presented within the limits prescribed by available information at the time the report was prepared, in accordance with generally accepted professional environmental practice and within the requirements by the Client. There is no other warranty, either expressed or implied.

The data and findings of this report are based on the data and information obtained from the agreed upon scope of work between Basics and the Client. Because contamination is not necessarily evenly distributed across the property's soils and ground water, it can easily remain undetected and geology may control the subsurface distribution of contamination. Additional scope of services including geologic interpretation (at greater cost) may or may not disclose information which may significantly modify the findings of this report. We accept no liability on completeness or accuracy of the information presented and or provided to us, or any conclusions and decisions which may be made by the Client or others regarding the subject site.

This report was prepared solely for the benefit of Basic's Client. Basics consents to the release of this report to third parties involved in the evaluation of the property for which the report was prepared, including without limitation, lenders, title companies, public institutions, attorneys, and other consultants. However, any use of or reliance upon this report shall be solely at the risk of such party and without legal recourse against Basics, or its subcontractors, affiliates, or their respective employees, officers, or directors, regardless of whether the action in which recovery of damage is sought is based upon contract, tort (including the sole, concurrent or other negligence and strict liability of Basics), statute or otherwise. This report shall not be used or relied upon by a party that does not agree to be bound by the above statements.

No. 20039

Donavan G. Tom, R.E.A. II Principal Consultant (Expires 11/30/12)

Paul H. King, P.G. #5901 Associate Consultant (Expires 12/31/13)

LIMITED PHASE II

12-ENV2949

1.0 INTRODUCTION

1.1 <u>Purpose of Assessment</u>

Basics Environmental, Inc. (Basics) has performed this Phase II Environmental Site Sampling Report (Phase II) for Mechanics Bank pursuant to our signed agreement on August 28, 2012 and associated with a property transaction. The "subject site" is at 7100-7120 Dublin Boulevard, Dublin, California (See Drawing 1). An aerial photograph of the subject site is attached as Drawing 2. A site vicinity map showing current and historical dry cleaning machine locations is attached as Figure 3, and a site map showing the sample collection locations is attached as Figure 4.

1.2 Background

Basics prepared a Phase I Environmental Site Assessment for the subject property dated July 19, 2012. The historical use of the subject property identified in the Phase I report is summarized below.

In 1976, the subject site was developed with two, one-story commercial buildings (7100 & 7120 Dublin Boulevard), a one-story multi-tenant commercial building, and associated paved parking and landscaped areas. The entire subject site consists of a three building complex "Dublin Village Center" (7100-7120 Dublin Boulevard). Prior to that time, the subject site appeared undeveloped.

According to local regulatory agency files reviewed, Park Avenue Cleaners operated a laundry and dry cleaning facility at the address 7102B Dublin Boulevard from 1990 to 2004. The cleaners subsequently moved operations to 7104 Dublin Boulevard (the adjacent unit), and has occupied the business unit from 2004 to the present.

<u>Park Avenue Cleaners (7102B Dublin Boulevard)</u> – Park Avenue Cleaners occupied the subject unit from 1990 to 2004. As part of onsite operations, the cleaners utilized perchloroethylene (PERC) in the dry cleaning machining. Notes from an inspection conducted on September 26, 1997, indicated that the dry cleaners had a storage capacity of approximately 150-gallons for new PERC and water in the dry cleaning unit, and a 55-gallon container for waste PERC. Still bottom oil was noted. Also, noted were 2 x 55-gallon drums of used cartridge filters. The hazardous waste was reported as picked up by Technichem Co. of Emeryville. A site diagram indicating the locations of the various machines including the boilers and dry cleaning unit was provided in Appendix E of the July 19, 2012 Basics Phase I report.

Park Avenue Cleaners (7104 Dublin Boulevard) – Park Avenue Cleaners has occupied the subject unit from 2004 to the present. Located within the central portion of the suite are two dry cleaning machines. According to discussions with Mr. Major Brar, the southernmost dry cleaning machine utilizes PERC as part of dry cleaning operations. The machine was purchased sometime around 2000 (replacing a similar machine from a different manufacturer), and was moved from the previous location at 7102B Dublin Boulevard to the current suite. In addition, the northernmost dry cleaning machine is noted to utilize hydrocarbon fluid (TL HCS 800) as part of dry cleaning operations, and was purchased around 2005 or 2006. Mr. Brar indicated that hazardous waste is collected and disposed of by Technichem (waste PERC approximately every three months; waste hydrocarbon approximately once per year; and waste water and filters every six months). Visual observations of the dry cleaning areas did not reveal any obvious evidence of drains, sumps or other conduits to the subsurface.

A hazardous materials inventory completed in 2004 noted a maximum daily amount of: 1 x 200-gallon tank of C10-C13 Isoparaffins (Ecosolv) and 1 x 200-gallon tank of PERC. The annual waste amounts noted were: 50 gallons of Ecosolv and 50 gallons of PERC (See Appendix C). According to the information provided by EDR, this site is listed as a small quantity generator of hydrocarbon solvents, solids or sludges with halogenated organic compounds \geq 1,000 Mg./L, and Aqueous solution with total organic residues less than 10 percent (CAL EPA IDs: CAL000297021/ CAL000320965/ CAD982429102). The site is also permitted for air emissions.

In addition, these areas may also be of concern:

<u>Kragen Auto Parts (formerly located at 7104 Dublin Blvd)</u> – This business unit was previously occupied by Kragen Auto Parts from 1976 to 2004. On April 14, 1997, an HMBP was completed for the site (See Appendix B). The hazardous materials inventory noted maximum daily amounts of: 120-gallons of antifreeze in plastic bottles, 600-gallons of motor oil in plastic bottles, 370-gallons of used motor oil in an above ground storage tank (AST), 40-gallons of sulfuric acid from used automotive batteries, 150-gallons of sulfuric acid from new automotive batteries, 50-gallons of methanol from windshield wiper fluid in plastic bottles, and 0.881 cubic feet of freon in cylinders. The annual waste stream included: 19,240-gallons of used motor oil and 2,080-gallons of used automotive batteries in battery cases.

Kragen Auto Parts are typically noted to store numerous small containers (1 pint or less) of household automotive supplies (i.e. auto parts, accessories, motor oils, cleaners, etc.) packaged for retail sale within the retail area on shelves and displays. Typical of Kragen Auto Parts stores, waste oil and batteries are reported to be collected, manifested and recycled for customers. Waste oil and batteries are noted to be collected within aboveground storage tanks and recycled by appropriate waste haulers and recyclers. Subsequently, the proper permit, fees, CAL EPA#, etc. are required to be submitted. No reports of major violations, stains, spills or unauthorized releases were noted within the local regulatory agency files reviewed.

<u>Acclaim Print Center (formerly located at 7106 Dublin Blvd)</u> – This business unit was previously occupied by Acclaim Print Center from at least the late 1990s to the early 2010s. A hazardous waste manifest was completed on November 16, 2009. The manifest noted 150 pints of waste paint related material (CAL EPA ID: CAL000236102). The transported was noted as Albert Hobson. However, no other information regarding the type, quantities or locations of hazardous materials stored onsite was uncovered for this time frame within the scope of work performed.

<u>One Hour Photo/ Presto Prints (formerly located at 7112 Dublin Blvd)</u> – This business unit was occupied by One Hour Photo from at least the early 1980s to the late 1980s, and Presto Prints in the early 1990s. Hazardous materials were most likely utilized as part of onsite operations, however, no specific information regarding the type, quantities or locations of hazardous materials was uncovered for this time frame within the scope of work performed.

It is conceivable that soil and/or groundwater may have been impacted. Inadvertent discharges of hazardous materials to the subsurface are not always evident. However, the use of (1) appreciable amounts of hazardous materials over an extended period of time; and (2) presence of conduits to the subsurface (i.e. sewer lines connected to dry cleaning machines) increases the potential of inadvertent discharges to the subsurface.

The subject site is not currently listed as a contaminated facility. However, given the use of appreciable amounts of hazardous materials for an extended period of time this would represent a "recognized environmental condition".

As such, Basics was authorized to perform environmental site sampling at the current and former dry cleaning stores, the former auto parts store, and the former photo developing store to assess potential subsurface environmental impacts from past business operations..

1.3 <u>Scope of Work</u>

To address the site-specific suspect areas of concern, Basics proposed the following Limited Phase II Environmental Site Sampling approach to preliminarily assess potential environmental impacts from the identified recognized environmental conditions.

- Under the direction of a California Registered Environmental Assessor II and California Professional Geologist, at least five shallow exploratory borings were to be advanced at the subject site (designated as B1 through B5).
- Basics proposed collection of at least three shallow soil samples at 4.5 feet below the ground surface (bgs) from borings B1 through B3 located inside the strip mall (distributed at 3 different store locations).
- Basics proposed collection of two groundwater grab samples in the parking lot located southeast of the subject property at borehole locations B4 and B5. Based on previous local subsurface investigations, first ground water was anticipated to be encountered at approximately 20 feet bgs or less.

- The soil and groundwater samples were to be collected, labeled, placed in a cooler with ice, and transported with chain of custody documentation to McCampbell Analytical, Inc. of Pittsburg, California, a State-accredited laboratory with the Department of Toxic Substances Control (DTSC) of the California Environmental Protection Agency, for analysis.
- All of the soil samples and groundwater samples were to be analyzed for Total Petroleum Hydrocarbons as Gasoline, Diesel, Stoddard Solvent, Kerosene, Bunker Oil, and Motor Oil (TPH-G/D/SS/K/BO/MO); and for Volatile Organic Compounds (VOCs) by EPA Method 8260B.
- Basics proposed collection of five soil gas samples designated SG1 through SG5 from temporary soil gas wells at a depth of 5 feet bgs, located inside the strip mall (distributed at 4 different store locations).
- The soil gas samples were to be collected, labeled, placed in a cooler, and transported with chain of custody documentation to Eurofins/Air Toxics Limited of Folsom, California, a NELAP-accredited laboratory, for analysis.
- Basics proposed collection of three soil gas sample shroud atmosphere samples while collecting soil gas samples from temporary soil gas wells to evaluate shroud atmosphere tracer gas concentrations.
- The soil gas sample shroud atmosphere samples were to be collected, labeled, placed in a cooler, and transported with chain of custody documentation to McCampbell for analysis;
- All of the soil gas samples were to be analyzed for VOCs using EPA Method TO-15 and for the tracer gas that was used during sample collection.
- All of the soil gas sample shroud atmosphere samples were to be analyzed for the tracer gas that was used during soil gas sample collection using EPA Method 8260B.

The work for this Limited Phase II Environmental Site Sampling was performed within the client-approved scope of work and budget for the assessment. It should be noted that this scope of work only screens the potential of inadvertent discharges of constituents of concern as defined within the previous Phase I Environmental Site Assessment conducted by Basics within representative areas and not the presence of undocumented underground storage tanks. Based on the visual site inspection, no obvious evidence of undocumented underground storage tanks and/or associated appurtenances have been noted for the subject site. If future plans include the major redevelopment of the subject site, a search for any unforeseen underground storage tanks and/or collection of additional soil samples and ground water samples may be warranted.

1.4 <u>Permits and Regulatory Compliance</u>

Agencies were contacted prior to the beginning of this work and the permits necessary to proceed were obtained. Permits and/or approvals were obtained from the following agencies:

- Zone 7 Water Agency Well Permit# 2012100; and
- Underground Services Alert (U.S.A.), U.S.A. Ticket # 384029.

2.0 SOIL AND GROUND WATER SAMPLING

2.1 <u>Field Activities</u>

2.1.1 Limited Subsurface Investigation

On October 23, 2012, five soil borings were advanced by Vironex, Inc. of Concord, California under the direction of a California Registered Environmental Assessor II and Professional Geologist. Borings B1 through B3 were specifically intended to sample the shallow subsurface soil, and borings B4 and B5 were specifically intended to sample first-encountered groundwater. The targeted areas of concern are shown on Figure 4 and include the following:

- One boring (B1) was advanced in the kitchen area (inside the Mr. Pickles Sandwich Shop located at 7112 Dublin Boulevard).
- One boring (B2) was advanced near the existing dry cleaning machines (inside the Park Avenue Cleaners space located at 7104 Dublin Boulevard).
- One boring (B3) was advanced near the former dry cleaning machines (inside the Pretty in Pink Clothing Store located at 7102 Dublin Boulevard).
- One boring (B4) was advanced outside the building in the parking lot in the downgradient groundwater flow direction from the dry cleaning stores.
- One boring (B5) was advanced outside the building in the parking lot in an alternate downgradient groundwater flow direction from the dry cleaning stores.

Prior to drilling activities, a representative of Basics performed an inspection of the facility. On October 22, 2912 a plumber located sewer pipes located beneath the building floor slab. Site map details showing the sample collection locations and sub-slab plumbing pipe locations are shown in Figures 5 and 6. Boring locations were based on the locations of the current and former dry cleaning activities at the subject property, and also based on the historical use of chemicals at the stores located at 7106 and 7112 Dublin Boulevard.

2-1

The sampling locations were marked at the site with white paint and notification was provided to Underground Service Alert for underground utility location prior to drilling activities. All drilling was performed by Vironex, Inc. of Concord. Boreholes B1 through B3 (located inside the building) were hand- augered using a 3.5-inch outside diameter stainless steel auger to a depth of 4.5 feet bgs. At soil boring locations B1 through B3, a soil sample was collected using a slide hammer to drive a steel sampler containing a 2-inch diameter, six-inch stainless steel tube. Soil samples from boreholes B1 through B3 were retained from the discrete depth of approximately 4.5 to 5.0 feet bgs within the native soil for delivery to the laboratory.

Vironex, Inc. utilized Geoprobe® 6600 DPT drilling methods for borings B4 and B5. DPT uses dry impact methods to drive boring tools into the subsurface. Soil borings B4 and B5 were continuously cored using GeoProbe direct push technology by driving a 2.5-inch outside diameter GeoProbe macrocore barrel sampler lined with transparent PVC sleeves. No soil samples were retained for analysis in boreholes B4 and B5.

The soil from the boreholes was logged in the field in accordance with standard geologic field techniques and the Unified Soil Classification System. Subsurface materials were identified and evaluated based on the continuous cores from the boreholes and relative drilling difficulty. The soil from the boreholes was evaluated with a Photoionization Detector (PID) equipped with a 10.6 eV bulb and calibrated with a 100 ppm isobutylene standard, and PID values were recorded on the boring logs. The soil was also evaluated for other evidence of petroleum hydrocarbon contamination such as odors, staining, and discoloration. No elevated PID values, odors, staining, or discoloration were detected in any of the boreholes.

The subsurface materials encountered in the boreholes B1 through B3 consisted of silty clay to the total depth explored of 4.5 feet bgs at each location. The subsurface materials encountered in the borehole B4 consisted of silty clay and clay to the total depth explored of 15.0 feet bgs with silty sand encountered between the depths of 7.0 to 9.0 and 11.5 to 12.5 feet bgs. The subsurface materials encountered in the borehole B4 consisted of silty sand encountered between the depth explored of 15.0 feet bgs with silty clay and clay to the total depth explored of 15.0 feet bgs with silty sand encountered in the borehole B4 consisted of silty clay and clay to the total depth explored of 15.0 feet bgs. The subsurface materials encountered between the depths of 7.0 to 9.0 and 11.5 to 12.5 feet bgs. The subsurface materials encountered in the borehole B5 consisted of silty clay and clay to the total depth explored of 23.0 feet bgs with silty sand encountered

LIMITED PHASE II

between the depths of 5.5 to 6.0 feet bgs and clayey sand encountered between the depths of 20.5 to 21.0 feet bgs.

Groundwater was not encountered in boreholes B1 through B3. Groundwater was initially encountered in boreholes B4 and B5 during drilling at depths of 11.5 and 20.5 feet bgs, respectively, and was subsequently measured at depths of 10.9 and 21.1 feet bgs, respectively prior to groundwater sample collection. One groundwater grab sample was collected from each of boreholes B4 and B5. The grab groundwater sampling procedures followed by Vironex are as follows:

- Threading together and lowering into the boring 1-inch diameter slotted PVC pipe to the bottom of the borehole,
- Allowing time for groundwater to enter the slotted pipe,
- Lowering a polyethylene tube into the slotted pipe and lifting the water sample to the surface with a peristaltic pump,
- Purging approximately 0.10 and 0.25 gallons from each of the boreholes, respectively,
- Discharging the sample directly from the peristaltic pump discharge tubing into labeled, laboratory-provided containers and placing the containers into a cooler containing ice.

Once retained for laboratory analysis, all samples were maintained in a cooler with ice with chain of custody documentation until delivered to the laboratory. The soil and groundwater samples were subsequently delivered to McCampbell.

Following groundwater sample collection, the temporary slotted PVC pipe was removed and the boreholes were backfilled to the surface with neat cement slurry using a tremie pipe. The drill cuttings were placed in a 55-gallon drum, which was labeled and stored at the site pending receipt of the laboratory analysis. Mr. Jeff Jones with Zone 7 Water Agency was on site to observe and document the grouting of borehole B1 through B5. Copies of the boring logs are attached with this report as Appendix A. Based on review of regional geologic maps from U. S. Geological Survey Professional Paper 943, "Flatland Deposits - Their Geology and Engineering Properties and Their Importance to Comprehensive Planning," by E. J. Helley and K. R. Lajoie, 1979, the subject site is underlain by Quaternary Fine-Grained Alluvium (Qhaf), which is described as unconsolidated plastic moderately to poorly sorted carbonaceous silt and clay.

Based upon information obtained from the internet application Google Earth, the subject site is located at an elevation of approximately 335 feet above sea level. Based on groundwater level maps obtained from the Zone 7 Water Agency for water levels in the vicinity of the subject site in the Spring and Fall of 2007 the groundwater flow direction at the site is to the southwest (See Figures 7 and 8).

3.0 SOIL GAS SAMPLING

3.1 <u>Field Activities</u>

3.1.1 Limited Subsurface Investigation

Review of the boring logs in Appendix A shows that the fill materials encountered beneath the building floor slab consisted of pea gravel to a depth of 1.0 feet bgs, beneath which silty clay was encountered.

On October 22, 2012 soil gas samples SG1 through SG5 (see Figures 4, 5 and 6 for the sample collection locations) were collected between the depths of 4.0 and 5.0 feet bgs using a temporary soil gas sampling well. The temporary wells were constructed by driving a hollow 1.0-inch diameter Geoprobe rod with an expendable tip to a depth of 5 feet, dislodging the expendable tip, and then inserting a 6.5-foot length of 0.250-inch outside diameter (0.170-inch inside diameter) polyethylene tube into the hollow rod to a depth of approximately 4.5 feet bgs. Prior to inserting the Teflon tubing a 2-inch long, 1/2-inch outside diameter high density porous polyethylene filter was attached to the Teflon tubing with a stainless steel fitting. A #2/16 Lonestar sack sand was added to the annular space between the hollow rod interior and the Teflon tube as the hollow rod was withdrawn from the ground until the lowermost 12 inches of the hole was filled with sand. Granular bentonite (with grains measuring approximately 2 to 3 millimeters in diameter) was placed in the annular space above the sand to a height of 1 foot above the screen. The remaining annular space was filled with hydrated bentonite slurry.

A soil gas sampling manifold with a 6-liter Summa purge canister and 1-liter Summa canister as the sampling canister for each location (see Figure 9) was assembled inside a shroud consisting of a 35-gallon Rubbermaid bin that had been modified by cutting viewing ports into the sides of the bin and covering the viewing ports with transparent polycarbonate sheets. The Rubbermaid bin shroud was also modified to include a hole measuring approximately two inches square in the bottom of the bin to allow the bin to cover the soil gas well while still allowing access to the well through the bottom of the bin. At the time that the sampling manifold was assembled, the vacuum for the sample canister was checked with a vacuum gauge and recorded

LIMITED PHASE II

on a Soil Gas Sampling Data Sheet (see Appendix B). Following construction of the temporary soil gas well, no activity was performed for approximately 2.5 to 3.5 hours to allow subsurface soil gas equilibration. The temporary soil gas well construction completion time and the start time for soil gas purging were recorded on a Soil Gas Sampling Data Sheet.

Prior to sampling the soil gas, a 10 minute leak check of the sampling manifold was performed by closing the valve located between the filter and the pressure gauge, opening the purge canister valve, and recording the manifold system vacuum (see Figure 9). Discrepancies in Summa canister vacuum between the vacuum prior to assembling the sampling manifold and during the 10 minute leak check are attributed to lower vacuums in the purge canister than in the sample canister. No purge testing for purge volume determination was performed because the samples were collected using Summa canisters. Following successful verification of the manifold leak check, a default of three purge volumes was extracted prior to sample collection. The purge volume was calculated based on the volume of the void space surrounding the sand interval of the borehole and the tubing interior. The purge time was calculated using a nominal flow rate provided by the manifold flow controller of 170 milliliters per minute. A copy of the purge time calculations is provided in Appendix B.

Following completion of the purging of three volumes, the valve to the purge canister was closed, a lid for the shroud that had been modified to include two gauntlet nitrile gloves for adjustment of equipment inside the shroud while the shroud lid is in place and a viewing port covered with a transparent polycarbonate sheet was placed over the top of the shroud, enclosing the well, the sampling manifold, and the 1-liter sample canister. A tracer gas (1,1-Difluoroethane) was sprayed for one second into the shroud through a small diameter hole in the side the shroud, followed by verification that subsurface low flow conditions were not present at each sampling location.

The gloves in the lid of the shroud were then used to open the sample canister valve. During soil gas collection at three locations (SG2, SG4 and SG5) one air sample was collected from the shroud atmosphere using a 1-liter Tedlar bag in a vacuum chamber. A new piece of tubing was used to connect the shroud atmosphere to the Tedlar bag in the vacuum chamber for each location. Following shroud gas sample collection, the Tedlar bags were stored in a cooler pending delivery to McCampbell. Chain of custody procedures were observed for all sample LIMITED PHASE II 3-2 12-ENV2949 handling. Once the vacuum for the sample canister valve had decreased to 5 inches of mercury, the gloves in the lid of the shroud were used to close the sample canister valve. The pressure gage on the inlet side of the flow controller (see Figure 9) was monitored during sample collection to ensure that the vacuum applied to the soil gas well did not exceed 100 inches of water.

One duplicate soil gas sample (designated as SG3 DUP) was collected into a Summa canister at location SG3 using a new sampling manifold for the Summa canister using methods described above. Following completion of soil gas sample collection, the Summa canisters were stored in a box and promptly shipped to the laboratory for extraction and analysis. Chain of custody procedures were observed for all sample handling.

All soil gas sample leak check start and end times, purge start and end times, sample collection start and end times, and final vacuums were recorded on the Soil Gas Sampling Data Sheet (see Appendix B).

No rain fell during the five days preceding the day of soil gas sampling. Approximately 0.64 inches of rain fell on the day of soil gas sampling (October 22, 2012). Weather data, including precipitation and barometric pressure for the day of the sampling event and also for the two weeks preceding and two weeks following the sample date of October 22, 2012 is provided as Appendix C. The weather station used for quantification of precipitation and barometric pressure is located on the south side of Brookside Court to the southeast of the intersection of Brookside Court and Stonedale Drive in Dublin at an elevation of 341 feet, approximately 1.1 miles to the south of the subject site. Based upon information obtained from the internet application Google Earth, the subject site is located at an elevation of approximately 335 feet above sea level. An internet link to the weather station information is also provided in Appendix C.

All drilling rods and associated drilling fittings were cleaned with an Alconox solution wash followed by a clean water rinse. New Teflon tubing was used at each sample collection location. Clean, unused vacuum gages and stainless steel sampling manifolds were used at each sample collection location. Following soil gas sample collection the Teflon tubing was pulled from each temporary soil gas sampling well and a 1-inch diameter solid steel rod was driven through the bentonite and sand to the total depth of the temporary soil gas sampling well. The solid steel rod was then removed, and the borehole was filled with neat cement.

4.0 CHEMICAL ANALYSES AND RESULTS

4.1 <u>Chemical Analyses</u>

All of the soil and groundwater samples were analyzed at McCampbell. The soil samples collected from boreholes B1 through B3 were analyzed for the following:

• Total Petroleum Hydrocarbons as Gasoline (TPH-G), Total Petroleum Hydrocarbons as Stoddard Solvent (TPH-SS), Methyl tert-Butyl Ether (MTBE), benzene, toluene, ethylbenzene, and total xylenes (MBTEX) using EPA Methods 5030B in conjunction with EPA Method 8021B and modified EPA Method 8015B, for Total Petroleum Hydrocarbons as Kerosene (TPH-K), Total Petroleum Hydrocarbons as Diesel (TPH-D), Total Petroleum Hydrocarbons as Bunker Oil, (TPH-BO), and Total Petroleum Hydrocarbons as Motor Oil (TPH-MO) using EPA Methods 3550B in conjunction with EPA Method 8015B, and for Volatile Organic Compounds (VOCs) using EPA Method 8260B.

The groundwater samples collected from boreholes B4 and B5 were analyzed for the following:

• TPH-G and TPH-SS using EPA Methods 5030B in conjunction with modified EPA Method 8015B, for TPH-K, TPH-D, TPH-BO, and TPH-MO using EPA Methods 3510C in conjunction with EPA Method 8015B, and for VOCs including MBTEX using EPA Method 8260B.

Soil gas samples SG1 through SG5 and the field duplicate collected at location SG3 were all analyzed at Air Toxics, Ltd. (Air Toxics) of Folsom, California, and the soil gas sample shroud atmosphere samples were analyzed at McCampbell. The soil gas samples were analyzed for the following:

• VOCs including MBTEX and the tracer gas leak detection compound 1,1-Difluoroethane (1,1-DFA) using Modified EPA Method TO-15.

The soil gas sample shroud atmosphere samples were analyzed for the following:

• the tracer gas leak detection compound 1,1-DFA using Modified EPA Method 8260B.

LIMITED PHASE II

4.2 <u>Analytical Results</u>

The results of laboratory analytical reports for the soil and groundwater samples collected on October 23, 2012 are presented in Tables 1 and 2, respectively. The results of the laboratory analytical reports for the soil gas samples are presented in Table 3A, and the laboratory analytical results for the shroud atmosphere samples are presented in Table 3B. The laboratory analytical reports and chain of custody documentation are attached with this report as Appendix D.

5.0 HERD SOIL GAS RISK AND HAZARD ANALYSIS

5.1 Soil Gas Risk and Hazard Evaluation

DTSC guidance for evaluation of vapor intrusion to indoor air indicates that if look-up table screening levels are exceeded, that a site-specific evaluation of the site be conducted using appropriate fate and transport modeling. The DTSC has developed with the CalEPA Human and Ecological Risk Division (HERD) a California-specific spreadsheet for calculation of risk and hazard associated with exposure to chemicals based upon the Johnson and Ettinger (JE) model that has been adopted by the USEPA for vapor intrusion fate and transport modeling. At the time that risk and hazard for vapor intrusion to indoor air were evaluated, the DTSC had most recently updated the spreadsheet on December 6, 2011. The spreadsheet is used in the screening mode.

The risk and hazard associated with vapor intrusion to indoor air were calculated using the highest detected soil gas PCE concentration for a commercial/industrial land use scenario using HERD soil gas spreadsheet default values with the following exceptions:

- Averaging time for noncarcinogens and exposure duration were changed from 30 to 25 years for a commercial/industrial exposure scenario,
- Exposure frequency changed from 350 to 250 days a year for a commercial/industrial exposure scenario
- A soil type of silty clay (SIC) was used

The DTSC vapor intrusion model spreadsheet input, intermediate calculation, and output sheet results for the highest PCE soil gas concentration in a commercial/industrial land use scenario are provided in Appendix E. Review of the Appendix E output sheet shows that the hazard quotient was calculated to be less than one for the highest detected concentration of PCE. The cumulative carcinogenic risk for the highest detected concentration of PCE in soil gas was calculated to be 47 per million (4.7E-05).

LIMITED PHASE II

6.0 DISCUSSION AND RECOMMENDATIONS

6.1 <u>Discussion</u>

6.1.1 Soil Samples

No analytes were detected in any of the soil samples, with the exceptions of TPH-K and TPH-D in sample B1-4.5 at concentrations of 1.1 and 2.1 milligrams per kilogram (mg/kg), respectively, TPH-D in soil samples B2-4.5 and B3-4.5 at concentrations of 1.4 and 1.1 mg/kg, respectively, and PCE in the same two samples at concentrations of 0.011 and 0.012 mg/kg, respectively. All of the detected concentrations in the soil samples were below their respective May 2008 San Francisco Regional Water Quality Board (SF-RWQCB), Table A Environmental Screening Levels (ESLs) for shallow soil and commercial land use. Review of the laboratory analytical report shows that the laboratory described the TPH-D results for all three soil samples as consisting of diesel-range compounds with no recognizable pattern.

6.1.2 Grab Groundwater Samples

TPH-BO, TPH-MO, and cis-1,2-Dichloroethene (cis-1,2-DCE) were detected in groundwater grab sample B4-W at concentrations of 310, 280, and 220 micrograms per Liter (ug/L), respectively, and TPH-BO was detected in sample B5-W at a concentration of 270 ug/L. All of the detected concentrations in the borehole grab groundwater samples exceed their corresponding May 2008 SFRWQCB Table A ESL values where groundwater is a current or potential source of drinking water. Review of the laboratory analytical report shows that the laboratory described the TPH-BO and TPH-MO results for both grab groundwater samples as consisting of oil-range compounds.

The chemical cis-1,2-DCE is a PCE decomposition product, indicating that the source of the cis-1,2-DCE is related to a dry cleaning fluid release. The cis-1,2-DCE also indicates that PCE degradation is occurring at the subject site. No TPH-SS was detected in either of the water samples, suggesting that the detected TPH-BO and TPH-MO is not related to dry cleaning operations. The source of the detected TPH-BO and TPH-MO is presently unknown.

LIMITED PHASE II

6.1.3 Soil Gas Samples

Comparison of the tracer gas concentrations in all of the soil gas samples in Table 3A with the corresponding shroud tracer gas concentrations in Table 3B shows that none of the tracer gas concentrations detected in the samples exceeds 5 percent of the shroud tracer gas concentration. For samples where a shroud sample was not collected, the shroud tracer gas concentration can be approximated from the shroud tracer gas concentrations that were collected. Based on this information, all of the samples are considered to be valid with respect to sample equipment leaks and short circuiting of atmospheric air into the soil gas wells.

PCE was detected in soil gas samples SG1, SG2, SG3, the duplicate soil gas sample collected at location SG3 (SG3-DUP), SG4, and SG5 at concentrations of 130, 150, 46000, 54000, 3200, and 150 micrograms per cubic meter (ug/m3), respectively. In addition, various other VOCs were detected at concentrations ranging from 5.0 to 160 ug/m3. None of the detected concentrations in the soil gas samples exceed their corresponding May 2008 SFRWQCB Table E ESL value for shallow soil gas in a commercial/industrial land use scenario with the exception of PCE in samples SG3, SG3-DUP, and SG4 which all exceed the corresponding ESL of 1,400 ug/m3. The soil gas samples with PCE concentrations exceeding the Table E ESL for shallow soil gas are located in the vicinity of the existing dry cleaning machines at 7104 Dublin Boulevard.

6.1.4 HERD Soil Gas Risk and Hazard Analysis

DTSC guidance suggests that when the calculated hazard quotient is less than 1.0 that no further action is required. However, DTSC guidance also suggests that when the calculated cumulative carcinogenic risk exceeds 1 per million but is less than 100 per million, that additional action be taken which may include installation of permanent soil gas wells, periodic monitoring of the soil gas concentrations, mitigation or remediation.

The hazard quotient was calculated to be less than one and the cumulative carcinogenic risk was calculated to be 47 per million (4.7E-05) for the highest detected PCE soil gas concentration in a commercial/industrial land use scenario.

6.2 <u>Recommendations</u>

On the basis of the information obtained from three soil samples collected from the depths of approximately 4.5 feet bgs within the building footprint, two groundwater grab samples collected from outside the building footprint, and five soil gas samples and one duplicate soil gas sample collected from inside the building footprint our findings indicate the following:

- (1) No Total Petroleum Hydrocarbons as gasoline, Stoddard solvent, kerosene, diesel, bunker oil, and motor oil (TPH-g/ss/k/d/bo/mo) and no VOCs were detected at concentrations exceeding their respective SF-RWQCB May 2008 Table A ESL values within any of the soil samples. As such, Basics recommends no further investigation of soil at this time.
- (2) TPH-BO, TPH-MO, and cis-1,2-Dichloroethene (cis-1,2-DCE) were detected in groundwater grab sample B4-W and TPH-BO was detected in sample B5-W at concentrations exceeding their corresponding May 2008 SFRWQCB Table A ESL values where groundwater is a current or potential source of drinking water. As such, Basics recommends that a copy of this report be submitted to an appropriate regulatory agency for review.
- (3) PCE was detected in soil gas samples SG3, SG3-DUP, and SG4 at concentrations exceeding their corresponding May 2008 SFRWQCB Table E ESL value for shallow soil gas in a commercial/industrial land use scenario. Calculation of the risk and hazard posed by vapor intrusion to indoor air using the highest detected PCE concentration resulted in a calculated hazard of less than 1.0 and a calculated risk of 47 per million (4.7E-05). Based on the calculated risk, P&D recommends that additional soil gas sample collection be performed six months from the time that the soil gas samples were collected to evaluate any seasonal changes in soil gas concentrations, and that a copy of this report be submitted to an appropriate regulatory agency for review.
- (4) No evidence of contamination was detected associated with the historical use of the former Kragen Auto Parts, the former One Hour Photo/Presto Prints and the Acclaim Print Center stores. We also need to state that the soil gas concentrations of PCE detected below ESLs are interpreted to be related to the PCE release that appears to be in the vicinity of location SG3.

LIMITATIONS:

The content and conclusions provided by Basics in this assessment are based on information collected during our investigation, which may include, but not be limited to, visual site inspections; interviews with the site owner, regulatory agencies and other pertinent individuals; review of available public documents; subsurface exploration and our professional judgment based on said information at the time of preparation of this document. Any subsurface sample results and observations presented herein are considered to be representative of the area of investigation; however, geological conditions may vary between borings and may not necessarily apply to the general site as a whole. If future subsurface or other conditions are revealed which vary from these findings, the newly revealed conditions must be evaluated and may invalidate the findings of this report.

This report is issued with the understanding that it is the responsibility of the owner, or his representative, to ensure that the information contained herein is brought to the attention of the appropriate regulatory agencies, where required by law. Additionally, it is the sole responsibility of the owner to properly dispose of any hazardous materials or hazardous wastes left onsite, in accordance with existing laws and regulations.

This report has been prepared in accordance with generally accepted practices using standards of care and diligence normally practiced by recognized consulting firms performing services of a similar nature. Basics is not responsible for the accuracy or completeness of information provided by other individuals or entities which is used in this report. This report presents our professional judgment based upon data and findings identified in this report and interpretation of such data based upon our experience and background, and no warranty, either express or implied, is made. The conclusions presented are based upon the current regulatory climate and may require revision if future regulatory changes occur.

TABLES

Table 1 Summary of Soil Sample Analytical Results

Sample ID	Sample	Sample	TPH-G	TPH-SS	TPH-K	TPH-D	TPH-BO	TPH-MO	MTBE	Benzene	Toluene	Ethylbenzene	Total	Other VOCs
	Date	Depth											Xylenes	By EPA Method
		(Feet)												8260B
B1-4.5	10/23/2012	4.5	ND<1.0	ND<1.0	1.1	2.1, a	ND<5.0	ND<5.0	ND<0.05	ND<0.005	ND<0.005	ND<0.005	ND<0.005	All ND
B2-4.5	10/23/2012	4.5	ND<1.0	ND<1.0	ND<1.0	1.4, a	ND<5.0	ND<5.0	ND<0.05	ND<0.005	ND<0.005	ND<0.005	ND<0.005	All ND, except
														PCE = 0.011
B3-4.5	10/23/2012	4.5	ND<1.0	ND<1.0	ND<1.0	1.1, a	ND<5.0	ND<5.0	ND<0.05	ND<0.005	ND<0.005	ND<0.005	ND<0.005	All ND, except
														PCE = 0.012
ESL			83	83	83	83	2,500	2,500	0.023	0.044	2.9	3.3	2.3	PCE = 0.70
ESL			00	00	03	05	2,500	2,300	0.025	0.044	2.9	5.5	2.3	FUE = 0.70

Notes:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-SS = Total Petroleum Hydrocarbons as Stoddard solvent.

TPH-K = Total Petroleum Hydrocarbons as Kerosene.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

TPH-BO = Total Petroleum Hydrocarbons as Bunker Oil.

TPH-MO = Total Petroleum Hydrocarbons as Motor Oil.

MTBE = Methyl-tert-butyl ether

VOCs = Volatile Organic Compounds.

PCE = Tetrachloroethene.

ND = Not Detected.

a = Laboratory Analytical Note: diesel-range compounds are significant; no recognizable pattern.

ESL= Environmental Screening Level, by San Francisco Bay - Regional Water Quality Control Board (SF-RWQCB), updated May 2008, from

Table A- Shallow Soils, Groundwater is a current or potential source of drinking water, Commercial/ Industrial Land Use.

Results in bold exceed their respective ESL Table A values.

Results and ESLs in milligrams per kilogram (mg/kg) unless otherwise indicated.

 Table 2

 Summary of Groundwater Sample Analytical Results

Sample ID	Sample	TPH-G	TPH-SS	TPH-K	TPH-D	TPH-BO	TPH-MO	MTBE	Benzene	Toluene	Ethylbenzene	Total	Other VOCs
	Date											Xylenes	By EPA Method
													8260B
B4-W	10/23/2012	ND<50	ND<50	ND<50	ND<50	310, a	280, a	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<5.0	All ND, except
													cis-1,2-DCE = 220
B5-W	10/23/2012	ND<50	ND<50	ND<50	ND<50	270, a	ND<250	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	All ND
ESL		100	100	100	100	100	100	5.0	1.0	40	30	20	<i>cis-1,2-DCE</i> = 6.0

Notes:

TPH-G = Total Petroleum Hydrocarbons as Gasoline.

TPH-SS = Total Petroleum Hydrocarbons as Stoddard solvent.

TPH-K = Total Petroleum Hydrocarbons as Kerosene.

TPH-D = Total Petroleum Hydrocarbons as Diesel.

TPH-BO = Total Petroleum Hydrocarbons as Bunker Oil.

TPH-MO = Total Petroleum Hydrocarbons as Motor Oil.

MTBE = Methyl-tert-butyl ether

VOCs = Volatile Organic Compounds.

cis-1,2-DCE = cis-1,2-Dichloroethene.

ND = Not Detected.

a = Laboratory Analytical Note: oil-range compounds are significant.

ESL= Environmental Screening Level, by San Francisco Bay - Regional Water Quality Control Board (SF-RWQCB), updated May 2008, from

Table A- Shallow Soils, Groundwater is a current or potential source of drinking water.

Results in bold exceed their respective ESL Table A values.

Results and ESLs in micrograms per Liter (ug/L) unless otherwise indicated.

Table 3A Summary of Soil Gas Sample Analytical Results - VOCs

		1		-				1
Compound	Sample ID	SGI	SG2	SG3	SG3-DUP	SG4	SG5	ESL
Sample Collection Date		10/22/2012	10/22/2012	10/22/2012	10/22/2012	10/22/2012	10/22/2012	
Sample Collection Date Sample Collection Depth (feet)		5	5	5	5	5	5	
Sample Concetion Depth (reet)		5	5	5	5	5	5	
Tetrachloroethene (PCE)		130	150	46,000	54,000	3,200	150	1,400
Benzene		35	18	ND<130	ND<160	ND<6.3	5.3	280
Toluene		160	85	ND<160	ND<190	34	47	180,000
Ethylbenzene		29	15	ND<180	ND<220	11	17	3,300
m, p-Xylenes		100	60	ND<180	ND<220	45	78	50,000 (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
o-Xylene		32	20	ND<180	ND<220	14	26	58,000 (total xylenes)
1,3-Butadiene		8.0	ND<2.4	ND<91	ND<110	ND<4.4	ND<2.7	None
2-Butanone (Methyl Ethyl Ketone)		19	14	ND<480	ND<600	ND<23	21	2,900,000
Ethanol		10	14	ND<310	ND<380	ND<15	ND<9.1	None
Acetone		57	46	ND<390	ND<480	ND<47	69	1,800,000
Hexane		59	12	ND<140	ND<180	ND<7.0	5.2	None
Cyclohexane		14	5.0	ND<140	ND<170	ND<6.8	ND<4.2	None
2,2,4-Trimethylpentane		14	7.4	ND<190	ND<240	ND<9.3	ND<5.6	None
Heptane		59	20	ND<170	ND<210	ND<8.1	6.1	None
4-Methyl-2-pentanone (Methyl Isobutyl Ketone)		12	11	ND<170	ND<210	9.1	9.2	1,800,000
4-Ethyltoluene		20	15	ND<200	ND<250	17	ND<5.9	None
1,3,5-Trimethylbenzene		6.2	ND<5.2	ND<200	ND<250	ND<9.8	ND<5.9	None
1,2,4-Trimethylbenzene		19	14	ND<200	ND<250	15	28	None
Carbon Disulfide		ND<15	14	ND<130	ND<160	ND<25	ND<15	None
Propylbenzene		ND<5.9	ND<5.2	ND<200	ND<250	ND<9.8	6.0	None
1,1 - Difluoroethane (tracer gas)		ND<13	ND<12	ND<440	660	ND<21	ND<13	None
Notes:								
ND = Not Detected.								
ESL = Environmental Screening Level, developed by San	Francis	co Bay - Regional V	Vater Quality Control B	oard (SF-RWQCB)	updated May 2008, fron	n Table E		
- Indoor Air and Soil Gas (Vapor Intrusion Concerns) Sh	allow So	oil Gas Screening L	evels for Commercial/In	ndustrial Land Use.	•			
Results in bold exceed their respective ESL Table E Sh	allow S	oil Gas values.						
Results and ESLs in micrograms per cubic meter (µg/m ³),	unless c	otherwise noted.						

Report 0614.R1 Table 3B Summary of Soil Gas Sample Shroud Tracer Gas Analytical Results - 1,1-Difluoroethane

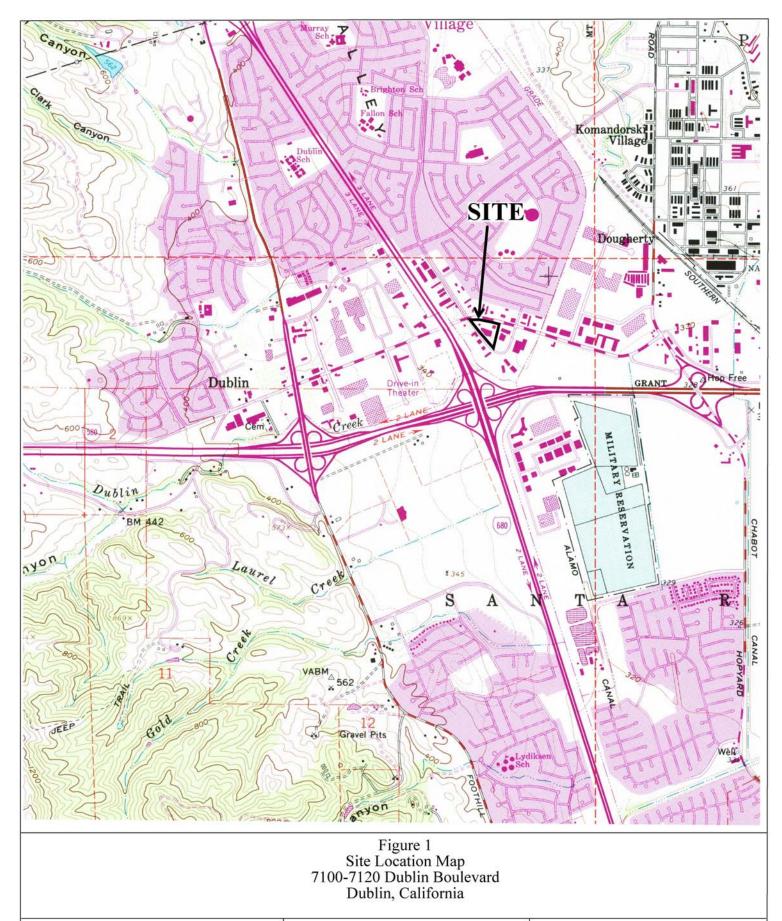
Sample ID	Sample Date	Sample Depth (feet)	1,1-Difluoroethane, d
SG2 (Shroud)	10/22/2012	NA	9,800,000
SG4 (Shroud)	10/22/2012	NA	10,000,000
SG5 (Shroud)	10/22/2012	NA	12,000,000
ESL1			None
ESL2			None

NOTES:

d = 1,1-Difluoroethane used in field as leak detector for samples collected on 10/22/2012.

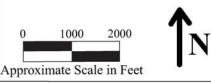
ESL₁ = Environmental Screening Level, developed by San Francisco Bay – Regional Water Quality Control Board(SF-RWQCB), from Table E – Indoor Air and Soil Gas (Vapor Intrusion Concerns) Control Board Shallow Soil Gas Screening Levels for Residential Land Use.

ESL2 = Environmental Screening Level, developed by San Francisco Bay -


Regional Water Quality Control Board (SF-RWQCB), from Table E – Indoor

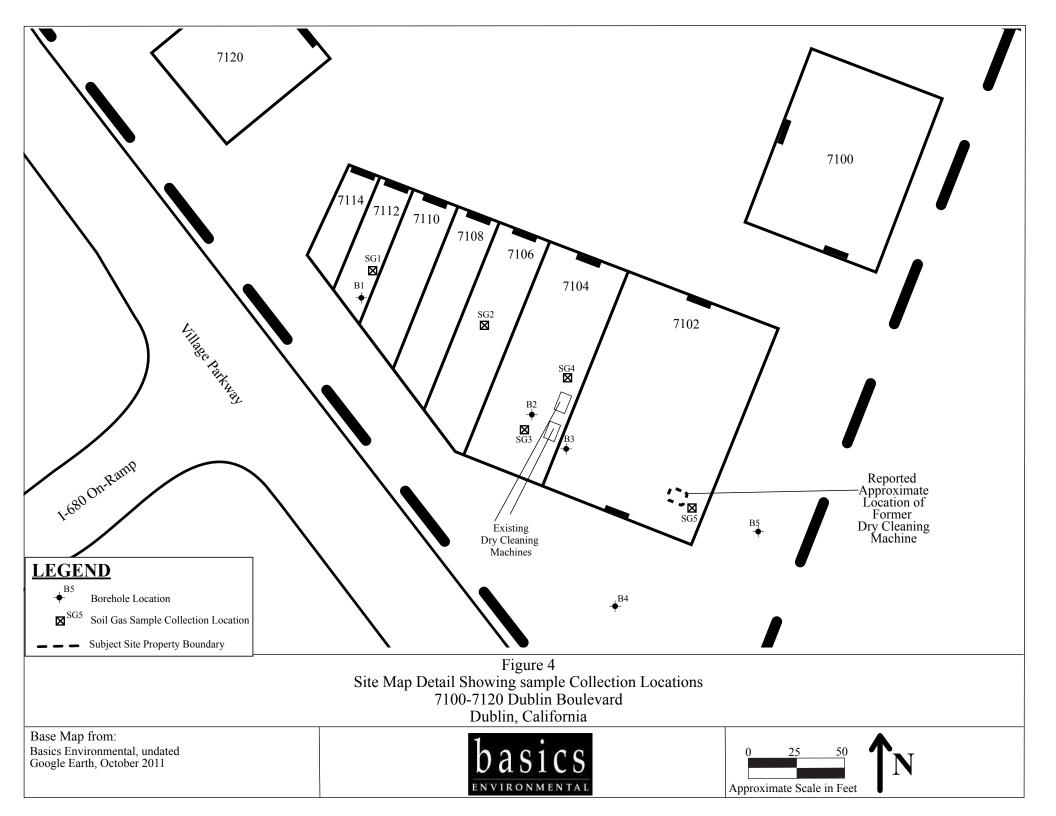
Air and Soil Gas (Vapor Intrusion Concerns) Shallow Soil Gas

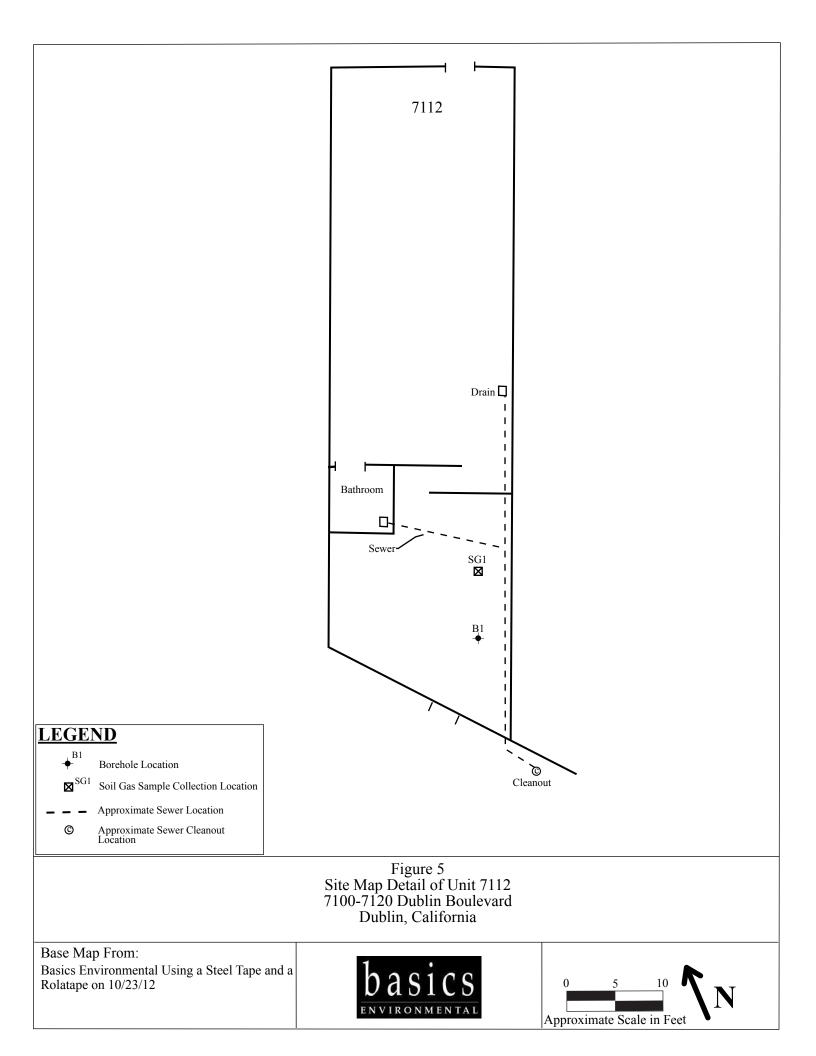
Screening Levels for Commercial/Industrial Land Use.


Results in micrograms per cubic meter ($\mu g/m3$), unless otherwise indicated.

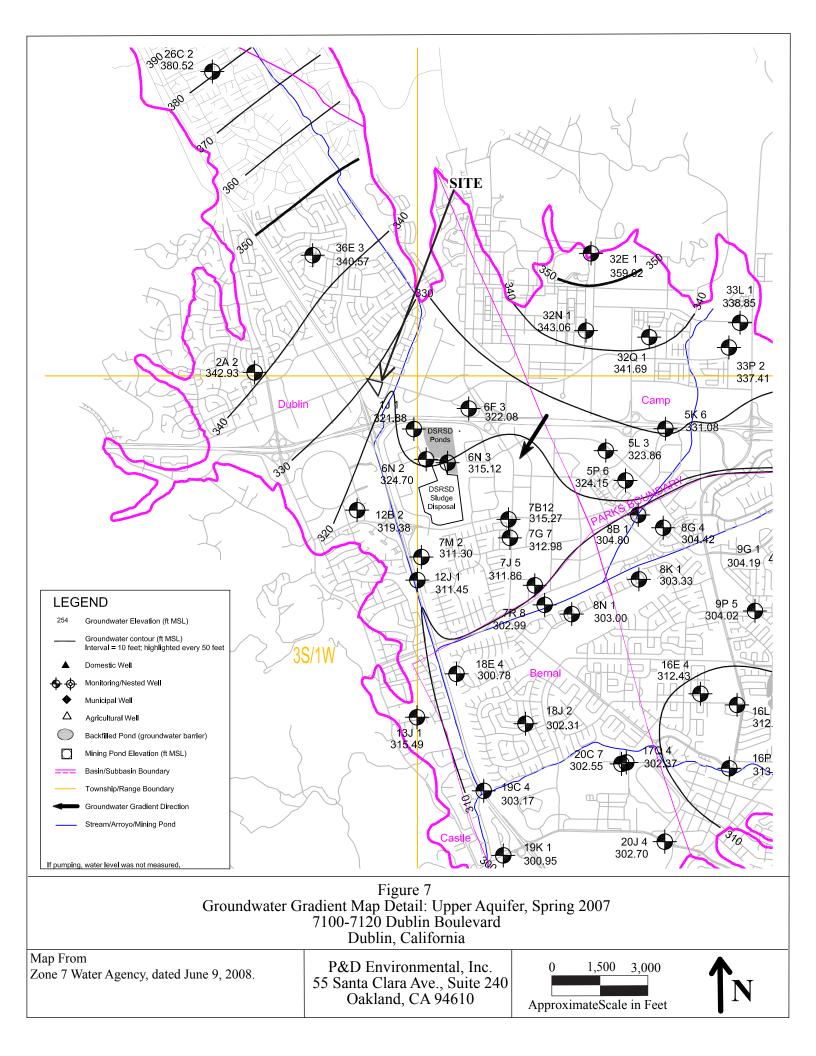
FIGURES

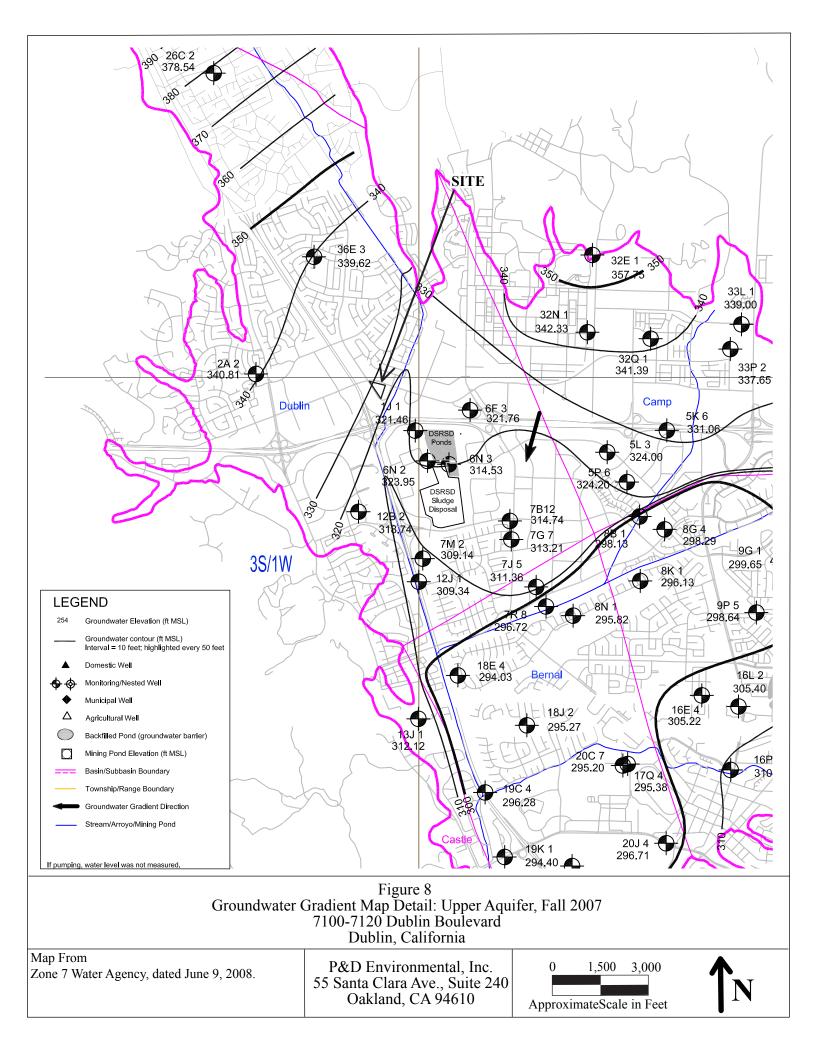



Base Map From: US Geological Survey Dublin, California, 7.5-Minute Quadrangle Map Edited 1980









APPENDIX A

Boring Logs

DRII DRII COM	LLING # ILLING #	CATION: Approximately 9 ft. north and 3 ft. west from the s GENCY: Vironex, Inc. QUIPMENT: 3.5-inch O.D. Hand Auger N DEPTH: 4.5 Feet BEDROCK DEPTH: N R DEPTH: Not Encountered NO. OF SAMPLES: 1	Not	DRILLER	:: Joel, Brett			n Blvd. Elevation fe & time started: 10/23/12 0830	NAND DATUM: None DATE & TIME FINISHED: 10/23/12 1400	
DRI CON	ILLING MPLETI ST WAT	QUIPMENT: 3.5-inch O.D. Hand Auger N DEPTH: 4.5 Feet BEDROCK DEPTH: N	Not		-	t	DA	10/23/12	10/23/12	
CON	MPLETI ST WAT	N DEPTH: 4.5 Feet BEDROCK DEPTH: 1		Encou	ntered			0830	1400	
-	ST WAT			Encou	ntered					
		r depth: Not Encountered no. of samples: 1	l Sc					LOGGED BY: MLD	CHECKED BY:	
	DEPTH (FT.)			oil					JSHK	
		DESCRIPTION		GRAPHIC COLUMN	WELL CONSTRUCTION LOG	BLOW COUNT PER 6"	DID	REMA	ARKS	
	-	0.0 to 0.5 ft. Concrete. 0.5 to 1.0 ft. Pea gravel (FILL)		FILL	No Well Constructed			Borehole was hand a 4.5 ft. using 3.5-inch No groundwater enco	O.D. Hand Auger.	
	-	1.0 to 4.5 ft. Dark brown silty clay (CL); medium stiff, moist, with light brown mottling. No PHC or solvent odor. (0,0,100)		CL				drilling.		
F	5 -		X		B1-4.5			Soil Sample B1-4.5 c hammer to drive a st 6.0-inch long 2.0-inc tube.	collected using a slide eel sampler containing a h O.D. stainless steel	
	-							Borehole grouted on cement grout. Mr. Jet Water Agency on site document grouting o	ff Jones with Zone 7 to observe and	
	10 - - -							DININ		
	-							Drilling Notes: 1) Field estimates of p sand, and fines are shi parentheses.	percent gravel, own in	
	15 -							 Density determinat qualitative and are no quantitative evaluatio 	t based on	
	20									
	-									
	25 -									
	_									

BORING NO.:	B2 PROJECT NO.: 0614 PROJECT	NA	ме: 71()0-7120 Dul	blin	Blvc	1., Dublin	
BORING LOO	CATION: Approximately 32 ft. north and 18 ft. west from th	e so	outheast	corner of 7	104	Dubl	lin Blvd. Elevation	NAND DATUM: None
DRILLING AG	,		DRILLEF	e: Joel, Brett	t	DA	TE & TIME STARTED: 10/23/12	DATE & TIME FINISHED: 10/23/12
DRILLING E	- 6						0730	1400
COMPLETIO				ntered			logged by: MLD	CHECKED BY:
FIRST WATE	R DEPTH: Not Encountered NO. OF SAMPLES:	15	011	z				1-4K
DEPTH (FT.)	DESCRIPTION		GRAPHIC COLUMN	WELL CONSTRUCTION LOG	BLOW COUNT PER 6"		REMA	
	0.0 to 0.5 ft. Concrete. 0.5 to 1.0 ft. Pea gravel (FILL)		FILL	No Well Constructed			Borehole was hand a 4.5 ft. using 3.5-inch	ugered from 0.5 to O.D. Hand Auger.
	1.0 to 4.5 ft. Dark brown silty clay (CL); medium stiff, moist, with light gray mottling. No PHC or solvent odor. (0,0,100)		CL				No groundwater enco	ountered during drilling.
5 –				B2-4.5			hammer to drive a ste 6.0-inch long 2.0-inc tube.	
							Borehole grouted on cement grout. Mr. Jet Water Agency on site document grouting o	e to observe and
							Deilling Materi	
							Drilling Notes: 1) Field estimates of J sand, and fines are sh parentheses.	percent gravel, own in
15 							2) Density determinat qualitative and are no quantitative evaluatio	t based on
20 								
25								

				AL								
во	RING N	NO.:	B3	PROJECT NO.:	0614 PROJECT	ΓNA	ме: 710	00-7120 Du	blin	Blvo	1., Dublin	
в	DRING I	LOC	атіон: Арр	proximately 22 ft. north	n and 4 ft. east from th	e so	outhwes	t corner of 7	7102	Duł	olin Blvd. elevation	N AND DATUM: None
			ENCY:	Vironex, Inc.			DRILLEF	a: Joel, Bret	t	DA	TE & TIME STARTED: 10/23/12	DATE & TIME FINISHED: 10/23/12
DI	RILLING	G EQ	UIPMENT:	3.5-inch O.D. Hand A	-						1200	1400
-			N DEPTH:	4.5 Feet	BEDROCK DEPTH:			ntered			LOGGED BY: MLD	CHECKED BY:
FI		TER	DEPTH:	Not Encountered	NO. OF SAMPLES:	1 S	501l	7			1	JOHK
	DEPTH (FT.)			DESCRIPT			GRAPHIC COLUMN	WELL CONSTRUCTION LOG	BLOW COUNT PER 6"	DID		ARKS
				0.0 to 0.5 ft. Cor 0.5 to 1.0 ft. Pea grav ft. Dark brown silty cla moist, with light gray No PHC or solvent od	vel (FILL) ay (CL); medium stiff, v mottling.		FILL CL	No Well Constructed			Borehole was hand a 4.5 ft. using 3.5-inch No groundwater enc	nugered from 0.5 to O.D. Hand Auger. ountered during drilling.
	5					X		B3-4.5			hammer to drive a st	e to observe and
	10 15										Drilling Notes: 1) Field estimates of j sand, and fines are sh parentheses. 2) Density determinar qualitative and are no quantitative evaluatio	tions are to based on
	20											
	25 30											

вс	ORING NO	.: B4 project no.: 0614 project	T NA	ме: 71	00-7120 Du	blin	Blvc	d., Dublin	
в	ORING LO	CATION: Approximately 45 ft. south and 25 ft. west from	the	e southe	east corner o	of bu	ildir	ng ELEVATION	AND DATUM: None
	RILLING			DRILLEF	a: Joel, Bret	t	DA	te & time started: 10/23/12 0930	DATE & TIME FINISHED: 10/23/12 1400
		* 	NT	(F				LOGGED BY:	CHECKED BY:
-		DN DEPTH:15.0 FeetBEDROCK DEPTH:ER DEPTH:11.5 FeetNO. OF SAMPLES:			ntered			MLD	PAK
FI		R DEPTH: 11.5 FCCL NO. OF SAMPLES:	1 1		N				THE
	DEPTH (FT.)	DESCRIPTION		GRAPHIC COLUMN	WELL CONSTRUCTION LOG	BLOW COUNT PER 6"	PID	REMA	ARKS
	5	 0.0 to 0.5 ft. Asphalt and base rock. 0.5 to 1.0 ft. Brown gravelly sand (FILL); medium dense, moist. No Petroleum Hydrocarbon (PHC) or solvent odor. 1.0 to 1.5 ft. Brown clay (CL); medium stiff, moist, with olive-gray mottling. No PHC or solvent odor. (0,0,00) 1.5 to 2.5 ft. Bluish-gray clay (CL); medium stiff, moist, with brown mottling. No PHC or solvent odor. (0,0,100) 2.5 to 7.0 ft. Grayish-brown silty clay (CL); medium stiff, moist. No PHC or solvent odor. (0,0,100) 7.0 to 9.0 ft. Brown silty fine sand (SM); loose, moist. No PHC or solvent odor. (0,85,15) 9.0 to 11.5 ft. Gray silty clay (CL); soft, moist to wet. No PHC or solvent odor. (0,0,100) Wet at 11.0 ft. Saturated at 11.5 ft. 11.5 to 12.5 ft. Brown silty sand (SM); loose, saturated. No PHC or solvent odor. (0,90,10) 12.5 to 15.0 ft. Brown clay (CL); medium stiff, moist, with few coarse sand. No PHC or solvent odor. (0,10,90) 		FILL CL SM CL SM	No Well Constructed		0 0 0 0 0	long 2.0-inch Ò.D. G barrel sampler. The s 4.8-foot long 1.5-inc tubes. 0-5 ft 5-10 ft 10-15 ft Water encountered di at 0940. Temporary 1.0-inch c casing placed in bore measured at 11.2 ft. a at 0957. Approximate from borehole prior t collection using new polyethylene tubing c peristaltic pump. Wat collected at 1000 dire	ampler was lined with h O.D. transparent PVC 4.6 ft recovery 4.4 ft recovery 4.6 ft recovery uring drilling at 11.5 ft. liameter slotted PVC hole. Water level t 0947, and at 10.9 ft. ely 0.1-gallons purged o groundwater sample unused disposable connected to a er sample B4-W ectly from discharge ieen on sample. Water
	15							Borehole grouted on cement grout and a tr Jones with Zone 7 W observe and documer borehole. Drilling Notes: 1) Field estimates of p sand, and fines are she parentheses. 2) Density determinat qualitative and are no quantitative evaluatio	emie pipe. Mr. Jeff ater Agency on site to at grouting of the percent gravel, own in ions are t based on
		-							

r							
BORING NO.	B5 project no.: 0614 project	name: 71	00-7120 Du	blin l	Blvo	d., Dublin	
BORING LO	CATION: Approximately 17 ft. north and 20 ft. east from	the southe	ast corner of	f buil	din	g ELEVATION	NAND DATUM: None
DRILLING A	GENCY: Vironex	DRILLE	R: Joel, Bret	t	DA	TE & TIME STARTED: 10/23/12	DATE & TIME FINISHED: 10/23/12
DRILLING E	QUIPMENT: Geoprobe 6600					1030	1400
COMPLETIO	N DEPTH: 23.0 Feet BEDROCK DEPTH:	Not Encou	intered			LOGGED BY:	CHECKED BY:
FIRST WATE	R DEPTH: 20.5 Feet NO. OF SAMPLES:	1 Water				MLD	PAK
DEPTH (FT.)	DESCRIPTION	GRAPHIC COLUMN	WELL CONSTRUCTION LOG	BLOW COUNT PER 6"	DID	REM/	
	 0.0 to 0.5 ft. Asphalt and base rock. 0.5 to 1.0 ft. Brown gravelly sand (FILL); loose, dry. No Petroleum Hydrocarbon (PHC) or solvent odor. 1.0 to 5.5 ft. Dark brown silty clay (CL); medium stiff, moist, with abundant roots. No PHC or solvent odor. (0,0,100) 5.5 to 6.0 ft. Brown silty fine sand (SM); loose, dry. No PHC or solvent odor. (0,80,20) 6.0 to 10.5 ft. Black clay (CL); medium stiff, moist, with olive-brown mottling. No PHC or solvent odor. (0,0,100) 10.5 to 20.5 ft. Dark brown silty clay (CL); medium stiff, moist, with olive-brown dor. (0,0,100) 	FILL CL SM CL	No Well Constructed		0	long 2.0-inch Ò.D. C barrel sampler. The s 4.8-foot long 1.5-inc tubes. 0-5 ft 5-10 ft 10-15 ft 15-20 ft 20-23 ft Water encountered d at 1055. Temporary 1.0-inch o casing placed in bore measured at 22.3 ft. a t1113. Approximate from borehole prior t collection using new polyethylene tubing o peristaltic pump. Wat collected at 1205 dire	ampler was lined with h O.D. transparent PVC 4.6 ft recovery 4.8 ft recovery 1.0 ft recovery 2.8 ft recovery 2.8 ft recovery uring drilling at 20.5 ft. diameter slotted PVC hole. Water level tt 1103, and at 21.1 ft. ely 0.25-gallons purged o groundwater sample connected to a ter sample B5-W ectly from the discharge leen on sample. Water
20	20.5 to 21.0 ft. Grayish-brown clayey sand (SC); loose, saturated. No PHC or solvent odor. (0,70,30) 21.0 to 23.0 ft. Olive-brown clay (CL); stiff, moist. No PHC or solvent odor. (0,0,100)	SC CL	▼ <u>▼</u>		0	Borehole grouted on cement grout and a tr Jones with Zone 7 W observe and documen borehole.	emie pipe. Mr. Jeff ater Agency on site to
						Drilling Notes: 1) Field estimates of p sand, and fines are sh parentheses. 2) Density determinat qualitative and are no quantitative evaluatio	own in ions are t based on

APPENDIX B

Soil Gas Purge Volume Calculations and Soil Gas Sampling Data Sheets

Soil Gas Purge Volume Calculations

One Purge Volume is calculated as the volume of the tubing interior plus the volume of the sand interval of the borehole.

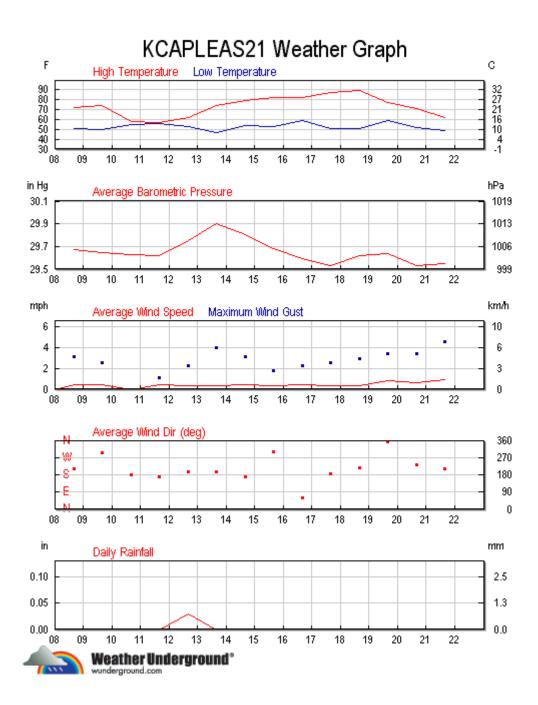
The tubing interior volume is calculated as follows:		
Tubing length (h) = length below ground 4.5 + length above ground 2 =	6.5	feet
Tubing diameter = 0.187 inches		
V tubing = pi x (r x r) x h, where pi = 3.14 , r = 0.187 in./2, and h = 6.5 ft.		
V tubing = 3.14 x (0.0935 x 0.0935) x (6.5 ft. x 12 in./ft.) =	2.14	cubic inches.
The sand interval volume is calculated as follows:		
Borehole diameter = 1 inches		
V sand interval = pi x (r x r) x h x porosity, where pi = 3.14 , r = 1 in./2, h = 12 in., and porosity = 0.35		
V sand interval = 3.14 x (0.5 x 0.5) x 12 x 0.35 =	3.30	cubic inches.
The total volume for one purge volume is V tubing + V sand interval, where		
V total = 2.14 cubic inches + 3.30 cubic inches =	5.44	cubic inches.
To convert to cubic centimeters:		
V total = 5.44 cubic inches x 16.39 cubic centimeters/cubic inches =	89.1	cubic centimeters.
The total volume for <u>3</u> purge volumes is calculated as follows:		
V purge total = 89.1 cubic centimeters x 3 =	267	cubic centimeters.
The flow controller has a nominal flow rate of 170 cubic centimeters per minute.		
The purge time is calculated as follows:		
T purge = 267 cubic centimeters/ 170 cubic centimeters per minute =	1.57	minutes.
Converting the purge time to seconds, 1.57 minutes x 60seconds/ minute =	94	seconds.
Notes: Vellow hi-lite indicates data entry required		
Yellow hi-lite indicates data entry required.		

Blue hi-lite indicates values are calculated.

5614	x yuy		Probe Method (c	heck one)	+		· • • • • • • • • • • • • • • • • • • •	1	· · · · · · · · · · · · · · · · · · ·				
10/22	/12	-+	o PRT			-,							
ML	2.5	+	Temp Well					i					
	open	· ····································	· · · · · · · · · · · · · · · · · · ·		·····							· · · · · · · · · · · · · · · · · · ·	
Probe Depth (Ft)	Time Probe	Canister #	Sample Canister Initial Vacuum Check (In. Hg) and time	Start leak check vacuum (In. Ho) and time	End leak check vacuum (In. Ho) and time	ADDITIONAL leak check vacuum (In. Hg) and time	Start PURGE	End PURGE	Start of tracer gas equilibration time	Time and conc. (ppm) of tracer gas equilibration	Begin sample collection vacuum (In. Hg) and Itime	End sample collection vacuum (In. Hg) and time	NOTES
	1/120	36399	vac - 29	vac 39	vac-29	vac				conc.	vac 2;;	vac -5	
	10.00	5-211	time 0940	time 0950	time 1000	time	time/14200	time 11433	U time	time	time 453	0 time 1/530	25
		0-71 -0		-					•	·			
	1135	31628	vac d8	vac - 27	vac - 27	vac	121024	191191	1.		vac- 2	vac 7	2
			time 10 3	time 11.30		time	time 21020	ume 311.3"	T ^{ume}	time	ume(233	Jume () So	
5	Iam	1359	vac - 29	vac - 🗚	vac -24	vac	· · · · · · · · · · · · · · · · · · ·			conc.	vac - 20	vac-5	
~	au	· ·	time 0830	time /140	time/150	time	time 14800	time11493	Ö time	time	time 14000	Citime/439	17
1						· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·
	; <u>.</u>	35543	vac - 29	vac		vac		·		conc.	Vac	vac	
			time 06 35	time	time	ume	ume	ume	time	time	time	ume	· · · · · · · · · · · · · · · · · · ·
5	DACO	37378	vac - 29	vac -25	vac -25	vac				conc.	vao. 29	vac -5	
	~	0101-	time 085 0	time 0930	time0940	time	time/05000	time#05134	time	time	time 1043	Stime 1/140	5
E	In	25177			· · ·		· · · · · · · · · · · · · · · · · · ·						
	ivsu	73611	vac - d	vac-d	vac g7	vac	112100	12112	/ time	time	vac - 30	Vac - D	
	·		time / W	time ACC	ume IX ID	ume	umelaric	une kara 21		ume	une la Sa	Willer Jar	174
			vac	vac	vac	vac	<u> </u>	1		conc.	vac	vac	
			time	time	time	time	time	time	time	time	time	time	
							· · · · · · · · · · · · · · · · · · ·						
	+	· · · <u>-</u> · · · · · · · · · · · · · · · · · · ·	vac	vac	vac	vac	<u> </u>		+	conc	vac	vac	
:			time	itime	tume	time	tume	time	time	time	ume	ume	
			vac	vac	vac	vac				conc.	vac	vac	······································
	1		time	time	time	time	time	time	time	time	time	time	
									-				· · · · · · · · · · · · · · · · · · ·
		·	vac	vac	vac	vac	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		сопс.	vac	vac	
		ļ.	time	time	time	time	time	time	time	time	time	time	
• • • • • • • • • • • • • • • • • • •					1400	var	+ +	· · · · · · · · · · · · · · · · · · ·		conc	vac	var	· · · · · · · · · · · · · · · · · · ·
ļ.i			1 G G G G G G G G G G G G G G G G G G G				time	time	time		time	time	
+		·	vac	vac	vac	vac				conc.	vac	vac	
			time	time	time	time	time	time	time	time	time	time	· · · · · · · · · · · · · · · · · · ·
<u> </u>													
<u> </u>		· · · · · · · · · · · · · · · · · · ·	vac	vac	vac	vac	i <u>-</u>			conc.	vac	vac	
	Probe Depth (Ft) 5 5 5	Probe Depth (Ft) 5 1030 5 1135 5 1200	Probe Depth Time Probe Installed Canister # 5 1030 363479 5 1135 37658 5 1200 1359 355593 37578	Probe Depth (Ft.) Time Probe Installed Sample Canister thitial Vacuum Check (In. Hg) and time 5 1030 36349 vac - 29 time 0130 5 1135 37658 vac - 29 time 0230 5 1200 1359 vac - 29 time 0230 5 1200 1359 vac - 29 time 0230 5 1200 1359 vac - 29 time 0230 5 0900 37378 vac - 29 time 0230 5 0900 37378 vac - 29 time 0230 5 1050 355677 vac 2 2 2 2 4 2 2 2 5 1050 355677 vac 2 2 2 2 2 2 2 2 3	Probe Depth (Ft) Time Probe Installed Canister # Canister # Canister Initial Vacuum (heck (in. Hg) and time vac - 39 ume 0940 Start feak check (in. Hg) and time vac - 39 ume 0940 5 1030 36349 vac - 39 ume 0940 vac - 39 ume 0940 vac - 37 time 0930 5 1135 37658 vac - 28 ume 0930 vac - 27 time 1/30 vac - 27 ume 0930 5 1200 1359 vac - 29 ume 0835 vac - 29 ume 0835 vac - 34 ume 0835 5 0900 37378 vac - 29 ume 0900 vac - 29 ume 0930 5 1050 355677 vac - 29 ume 0900 vac - 29 ume 0900 5 1050 355677 vac - 29 ume 0900 vac - 29 ume 0900 5 1050 355677 vac - 29 ume 0900 vac - 29 ume 1200 5 1050 355677 vac - 29 ume 0900 vac - 29 ume 1200 5 1050 355677 vac - 29 ume 0900 vac - 29 ume 1200 5 1050 355677 vac - 29 ume 0900 vac - 29 ume 1200 5 1050 1050 1050 1050	Probe Depth InstalledTime Canister #Sample Canister initial Cace with the Check (in Hg) and time (Fi) Start leak check (in Hg) and time (Fi) End leak check (racuum (in Hg) and time (Fi) and time (Fi) End leak check (Fi) End leak check (Fi) Canister if inte (Fi)Canister	Probe Depth Probe (Pr) Instaled Depth Probe (Canister # Distaled Canister # Canister	Probe (Ft) Time Installed Canister # Canister # Probe Installed Sample Canister # Canister # Canister # Probe (Ft) Start teak check (in ref) vacuum (in Hg) and time vacuum (in Hg) and time time if HO time time time time time time time time	Probe (F1) Time Probe Installed Canister # Canister # Canister # 15 Start leak Check (In. Hg) and time (F1) End leak check (In. Hg) and time (F2) ADDITIONAL leak check check (In. Hg) and time (F2) Start PURCE time (F2) End PURCE time (F2) 5 10300 36.3499 vac - 39 time 2449 vac - 39 time 2449 vac - 29 time 2449 vac - 29 time 2449 vac - 27 time 2449 vac - 27 tim	Probe Depth Installed (Probe Installed Canster in that Canster in the Canster in the can time inter Canster in the can time inter can time inter can the inter canster in	Probe (Pr) (Pr) Time (Probe matine) Sample Canster (new) Stert teak Canster (new) Stert teak Canster (new) Stert teak Canster (new) Canster (new) Stert teak (new) Canster (new) Stert teak (new) Canster (new) Stert (new) Stert (new) Ste	Prode Trote (P) (P) (P) (P) (P) (P) (P) (P) (P) (P)	Probe Sample Sample </td

APPENDIX C

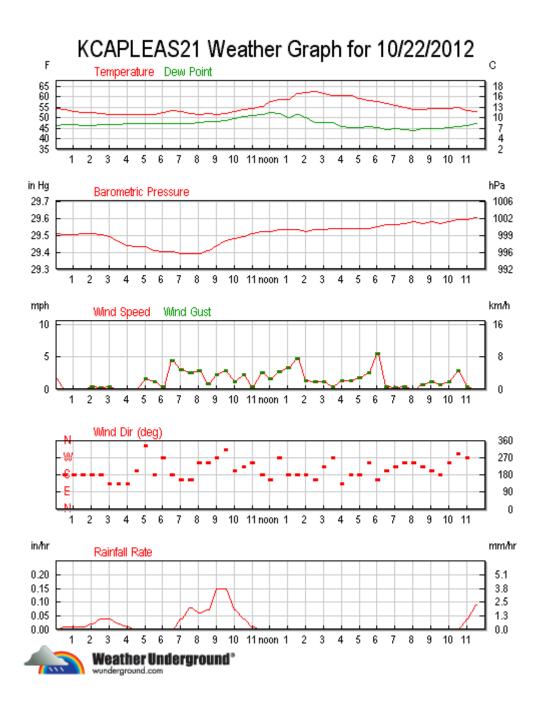
Weather Information


http://www.wunderground.com/weatherstation/WXDailyHistory.asp?ID=KCAPLEAS21&graphspan=cust om&month=10&day=8&year=2012&monthend=10&dayend=22&yearend=2012

History for KCAPLEAS21 Pleasanton Foothills, Pleasanton, CA

About This Station

Lat: N 37 ° 41 ' 20 " (37.689 °) Lon: W 121 ° 55 ' 17 " (-121.922 °) Elevation (ft): 341 MADIS ID: TT060 Hardware: Lacrosse WS-2813U-IT


October 🗾 8	▼ 2012 ▼ - ⊤O - October	22 🔽 2012	Go
Daily Weekly Monthly Yearly Custom			
	High:	Low:	Average:
Temperature:	89.6 °F	47.5 °F	61.5 °F
Dew Point:	66.0 °F	37.7 °F	51.2 °F
Humidity:	89.0%	18.0%	71.1%
Wind Speed:	5.6mph from the SSE	-	0.5mph
Wind Gust:	5.6mph from the SSE	-	-
Wind:	-	-	SW
Pressure:	29.97 in	29.39in	-
Precipitation:	0.50 in		

Report 0416.R1

http://www.wunderground.com/weatherstation/WXDailyHistory.asp?ID=KCAPLEAS21&graphspan=day &month=10&day=22&year=2012

<u>« Previous Day</u>	October 22	✓ 2012 ✓ View	w	<u>Next Day »</u>
Daily Weekly Monthly Y	early Custom			
	Current:	High:	Low:	Average:
Temperature:	65.5 °F	63.4 °F	52.2 °F	55.9 °F
Dew Point:	54.6 °F	53.4 °F	44.9 °F	48.2 °F
Humidity:	68%	89%	57%	76%
Wind Speed:	0.9 mph	5.6mph	-	1.4mph
Wind Gust:	0.9 mph	5.6mph	-	-
Wind:	NNW		-	SSW
Pressure:	29.61in	29.60in	29.39in	
Precipitation:	0.47 in			
Statistics for the rest of th	e month			
		High:	Low:	Average:
Temperature:		101.2 °F	44.5 °F	62.4 °F
Dew Point:		66.0 °F	36.8 °F	50.3 °F
Humidity:		89.0%	12.0%	67.9%
Wind Speed:		5.6mph from the SSE	-	0.4 mph
Wind Gust:		5.6mph from the SSE	-	
Wind:			-	SSW
Pressure:		29.97in	29.39in	
Precipitation:		0.64 in		

APPENDIX D

Laboratory Analytical Reports and Chain of Custody Documentation

Air

- Field Date 10/22/2012 SG1 through SG5, SG3-DUP Air Toxics Lab Report #1210556
- Field Date 10/22/2012 SG2 through SG5 (Shroud) McCampbell Analytical Lab Report #1210765

Soil

• Field Date 10/23/12 B1-4.5, B2-4.5 and B3-4.5 McCampbell Analytical Lab Report #1210834

Groundwater

• Field Date 10/23/12 B4-W and B5-W McCampbell Analytical Lab Report #1210837

11/1/2012 Mr. Michael Deschenes P & D Environmental 55 Santa Clara Suite 240 Oakland CA 94610

Project Name: 7100 /7120 Dublin Blvd. DUBLIN, CA Project #: 0614 Workorder #: 1210556

Dear Mr. Michael Deschenes

The following report includes the data for the above referenced project for sample(s) received on 10/25/2012 at Air Toxics Ltd.

The data and associated QC analyzed by Modified TO-15 are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Air Toxics Ltd. for your air analysis needs. Air Toxics Ltd. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Kyle Vagadori at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Kga Vych

Kyle Vagadori Project Manager

180 Blue Ravine Road, Suite B Folsom, CA 95630

WORK ORDER #: 1210556

Work Order Summary

CLIENT:	Mr. Michael Deschenes P & D Environmental 55 Santa Clara Suite 240 Oakland, CA 94610	BILL TO:	Mr. Michael Deschenes P & D Environmental 55 Santa Clara Suite 240 Oakland, CA 94610
PHONE:	510-658-6916	P.O. #	
FAX: DATE RECEIVED: DATE COMPLETED:	10/25/2012 11/01/2012	PROJECT # CONTACT:	0614 7100 /7120 Dublin Blvd. DUBLIN, CA Kyle Vagadori

<u>TEST</u>	VAC./PRES.	PRESSURE
Modified TO-15	5.0 "Hg	15 psi
Modified TO-15	1.5 "Hg	15 psi
Modified TO-15	5.5 "Hg	15 psi
Modified TO-15	6.0 "Hg	15 psi
Modified TO-15	4.5 "Hg	15 psi
Modified TO-15	5.0 "Hg	15 psi
Modified TO-15	NA	NA
	Modified TO-15 Modified TO-15	Modified TO-15 5.0 "Hg Modified TO-15 1.5 "Hg Modified TO-15 5.5 "Hg Modified TO-15 6.0 "Hg Modified TO-15 4.5 "Hg Modified TO-15 5.0 "Hg Modified TO-15 5.0 "Hg Modified TO-15 NA Modified TO-15 NA

Lau

DATE: <u>11/01/12</u>

RECEIPT

FINAL

Technical Director

CERTIFIED BY:

Certification numbers: AZ Licensure AZ0775, CA NELAP - 12282CA, NY NELAP - 11291, TX NELAP - T104704434-12-5, UT NELAP CA009332012-3, WA NELAP - C935 Name of Accrediting Agency: NELAP/ORELAP (Oregon Environmental Laboratory Accreditation Program) Accreditation number: CA300005, Effective date: 10/18/2011, Expiration date: 10/17/2012. Eurofins Air Toxics Ltd. certifies that the test results contained in this report meet all requirements of the NELAC standards

This report shall not be reproduced, except in full, without the written approval of Eurofins Air Toxics, Inc.

180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 9563 (916) 985-1000 . (800) 985-5955 . FAX (916) 985-1020

Page 2 of 35

LABORATORY NARRATIVE EPA Method TO-15 P & D Environmental Workorder# 1210556

Six 1 Liter Summa Canister samples were received on October 25, 2012. The laboratory performed analysis via EPA Method TO-15 using GC/MS in the full scan mode.

This workorder was independently validated prior to submittal using 'USEPA National Functional Guidelines' as generally applied to the analysis of volatile organic compounds in air. A rules-based, logic driven, independent validation engine was employed to assess completeness, evaluate pass/fail of relevant project quality control requirements and verification of all quantified amounts.

Receiving Notes

There were no receiving discrepancies.

Analytical Notes

All Quality Control Limit exceedances and affected sample results are noted by flags. Each flag is defined at the bottom of this Case Narrative and on each Sample Result Summary page. Target compound non-detects in the samples that are associated with high bias in QC analyses have not been flagged.

Dilution was performed on samples SG3-DUP, SG4 and SG5 due to the presence of high level target species.

The reported CCV for each daily batch may be derived from more than one analytical file due to the client's request for non-standard compounds.

Non-standard compounds may have different acceptance criteria than the standard TO-14A/TO-15 compound list as per contract or verbal agreement.

Definition of Data Qualifying Flags

Eight qualifiers may have been used on the data analysis sheets and indicates as follows:

B - Compound present in laboratory blank greater than reporting limit (background subtraction not performed).

- J Estimated value.
- E Exceeds instrument calibration range.
- S Saturated peak.
- Q Exceeds quality control limits.
- U Compound analyzed for but not detected above the reporting limit.
- UJ- Non-detected compound associated with low bias in the CCV and/or LCS.
- N The identification is based on presumptive evidence.

File extensions may have been used on the data analysis sheets and indicates as follows:

a-File was requantified

b-File was quantified by a second column and detector

r1-File was requantified for the purpose of reissue

Summary of Detected Compounds EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: SG1

Lab ID#: 1210556-01A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
1,3-Butadiene	1.2	3.6	2.7	8.0
Ethanol	4.8	5.4	9.1	10
Acetone	12	24	29	57
Hexane	1.2	17	4.3	59
2-Butanone (Methyl Ethyl Ketone)	4.8	6.4	14	19
Cyclohexane	1.2	3.9	4.2	14
2,2,4-Trimethylpentane	1.2	3.0	5.6	14
Benzene	1.2	11	3.9	35
Heptane	1.2	14	5.0	59
4-Methyl-2-pentanone	1.2	3.0	5.0	12
Toluene	1.2	42	4.6	160
Tetrachloroethene	1.2	19	8.2	130
Ethyl Benzene	1.2	6.7	5.2	29
m,p-Xylene	1.2	24	5.2	100
o-Xylene	1.2	7.5	5.2	32
4-Ethyltoluene	1.2	4.0	5.9	20
1,3,5-Trimethylbenzene	1.2	1.3	5.9	6.2
1,2,4-Trimethylbenzene	1.2	3.9	5.9	19

Client Sample ID: SG2

Lab ID#: 1210556-02A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Ethanol	4.3	7.2	8.0	14
Acetone	11	19	25	46
Carbon Disulfide	4.3	4.5	13	14
Hexane	1.1	3.3	3.8	12
2-Butanone (Methyl Ethyl Ketone)	4.3	4.6	12	14
Cyclohexane	1.1	1.4	3.7	5.0
2,2,4-Trimethylpentane	1.1	1.6	5.0	7.4
Benzene	1.1	5.5	3.4	18
Heptane	1.1	4.8	4.4	20
4-Methyl-2-pentanone	1.1	2.7	4.4	11

Summary of Detected Compounds EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: SG2

Lab ID#: 1210556-02A				
Toluene	1.1	22	4.0	85
Tetrachloroethene	1.1	22	7.2	150
Ethyl Benzene	1.1	3.4	4.6	15
m,p-Xylene	1.1	14	4.6	60
o-Xylene	1.1	4.5	4.6	20
4-Ethyltoluene	1.1	3.0	5.2	15
1,2,4-Trimethylbenzene	1.1	2.9	5.2	14

Client Sample ID: SG3

Lab ID#: 1210556-03A

Compound	Rpt. Limit	Amount	Rpt. Limit	Amount
	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Tetrachloroethene	41	6700	280	46000

Client Sample ID: SG3-DUP

Lab ID#: 1210556-04A

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Tetrachloroethene	50	8000	340	54000
1,1-Difluoroethane	200	240	540	660

Client Sample ID: SG4

Lab ID#: 1210556-05A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
4-Methyl-2-pentanone	2.0	2.2	8.1	9.1
Toluene	2.0	9.1	7.5	34
Tetrachloroethene	2.0	480	13	3200
Ethyl Benzene	2.0	2.5	8.6	11
m,p-Xylene	2.0	10	8.6	45
o-Xylene	2.0	3.2	8.6	14
4-Ethyltoluene	2.0	3.4	9.8	17
1,2,4-Trimethylbenzene	2.0	3.1	9.8	15

Summary of Detected Compounds EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: SG5

Lab ID#: 1210556-06A

Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
12	29	29	69
1.2	1.5	4.3	5.2
4.8	7.2	14	21
1.2	1.7	3.9	5.3
1.2	1.5	5.0	6.1
1.2	2.2	5.0	9.2
1.2	12	4.6	47
1.2	22	8.2	150
1.2	3.9	5.2	17
1.2	18	5.2	78
1.2	6.0	5.2	26
1.2	1.2	5.9	6.0
1.2	5.7	5.9	28
	12 1.2 4.8 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Client Sample ID: SG1 Lab ID#: 1210556-01A EPA METHOD TO-15 GC/MS FULL SCAN

٦

File Name: Dil. Factor:	j102618 2.42		of Collection: 10/ of Analysis: 10/2	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	1.2	Not Detected	6.0	Not Detected
Freon 114	1.2	Not Detected	8.4	Not Detected
Chloromethane	12	Not Detected	25	Not Detected
Vinyl Chloride	1.2	Not Detected	3.1	Not Detected
1,3-Butadiene	1.2	3.6	2.7	8.0
Bromomethane	12	Not Detected	47	Not Detected
Chloroethane	4.8	Not Detected	13	Not Detected
Freon 11	1.2	Not Detected	6.8	Not Detected
Ethanol	4.8	5.4	9.1	10
Freon 113	1.2	Not Detected	9.3	Not Detected
,1-Dichloroethene	1.2	Not Detected	4.8	Not Detected
Acetone	12	24	29	57
2-Propanol	4.8	Not Detected	12	Not Detected
Carbon Disulfide	4.8	Not Detected	15	Not Detected
3-Chloropropene	4.8	Not Detected	15	Not Detected
Methylene Chloride	12	Not Detected	42	Not Detected
Methyl tert-butyl ether	1.2	Not Detected	4.4	Not Detected
rans-1,2-Dichloroethene	1.2	Not Detected	4.8	Not Detected
lexane	1.2	17	4.3	59
I,1-Dichloroethane	1.2	Not Detected	4.9	Not Detected
2-Butanone (Methyl Ethyl Ketone)	4.8	6.4	14	19
cis-1,2-Dichloroethene	1.2	Not Detected	4.8	Not Detected
Fetrahydrofuran	1.2	Not Detected	3.6	Not Detected
Chloroform	1.2	Not Detected	5.9	Not Detected
I,1,1-Trichloroethane	1.2	Not Detected	6.6	Not Detected
Cyclohexane	1.2	3.9	4.2	14
Carbon Tetrachloride	1.2	Not Detected	4.2 7.6	Not Detected
	1.2	3.0	5.6	14
2,2,4-Trimethylpentane Benzene	1.2	3.0 11	3.9	35
I,2-Dichloroethane	1.2	Not Detected	4.9	Not Detected
,		14		
	1.2		5.0	59 Not Data ato d
Trichloroethene	1.2	Not Detected	6.5	Not Detected
,2-Dichloropropane	1.2	Not Detected	5.6	Not Detected
I,4-Dioxane	4.8	Not Detected	17	Not Detected
Bromodichloromethane	1.2	Not Detected	8.1	Not Detected
sis-1,3-Dichloropropene	1.2	Not Detected	5.5	Not Detected
1-Methyl-2-pentanone	1.2	3.0	5.0	12
Foluene	1.2	42	4.6	160
rans-1,3-Dichloropropene	1.2	Not Detected	5.5	Not Detected
1,1,2-Trichloroethane	1.2	Not Detected	6.6	Not Detected
Tetrachloroethene	1.2	19	8.2	130
2-Hexanone	4.8	Not Detected	20	Not Detected

Client Sample ID: SG1 Lab ID#: 1210556-01A EPA METHOD TO-15 GC/MS FULL SCAN

EPA METHOD TO-15 GC/MS FULL SCAN				
File Name: Dil. Factor:	j102618 Date of Collection: 10/22/12 11:53:0 2.42 Date of Analysis: 10/26/12 06:01 PM			
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	1.2	Not Detected	10	Not Detected
1,2-Dibromoethane (EDB)	1.2	Not Detected	9.3	Not Detected
Chlorobenzene	1.2	Not Detected	5.6	Not Detected
Ethyl Benzene	1.2	6.7	5.2	29
m,p-Xylene	1.2	24	5.2	100
o-Xylene	1.2	7.5	5.2	32
Styrene	1.2	Not Detected	5.2	Not Detected
Bromoform	1.2	Not Detected	12	Not Detected
Cumene	1.2	Not Detected	5.9	Not Detected
1,1,2,2-Tetrachloroethane	1.2	Not Detected	8.3	Not Detected
Propylbenzene	1.2	Not Detected	5.9	Not Detected
4-Ethyltoluene	1.2	4.0	5.9	20
1,3,5-Trimethylbenzene	1.2	1.3	5.9	6.2
1,2,4-Trimethylbenzene	1.2	3.9	5.9	19
1,3-Dichlorobenzene	1.2	Not Detected	7.3	Not Detected
1,4-Dichlorobenzene	1.2	Not Detected	7.3	Not Detected
alpha-Chlorotoluene	1.2	Not Detected	6.3	Not Detected
1,2-Dichlorobenzene	1.2	Not Detected	7.3	Not Detected
1,2,4-Trichlorobenzene	4.8	Not Detected	36	Not Detected
Hexachlorobutadiene	4.8	Not Detected	52	Not Detected
1,1-Difluoroethane	4.8	Not Detected	13	Not Detected

Container Type: 1 Liter Summa Canister

		Method
Surrogates	%Recovery	Limits
Toluene-d8	100	70-130
1,2-Dichloroethane-d4	108	70-130
4-Bromofluorobenzene	83	70-130

Client Sample ID: SG2 Lab ID#: 1210556-02A EPA METHOD TO-15 GC/MS FULL SCAN

٦

File Name: Dil. Factor:	j102619 2.13		of Collection: 10/2 of Analysis: 10/2	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	1.1	Not Detected	5.3	Not Detected
Freon 114	1.1	Not Detected	7.4	Not Detected
Chloromethane	11	Not Detected	22	Not Detected
Vinyl Chloride	1.1	Not Detected	2.7	Not Detected
1,3-Butadiene	1.1	Not Detected	2.4	Not Detected
Bromomethane	11	Not Detected	41	Not Detected
Chloroethane	4.3	Not Detected	11	Not Detected
Freon 11	1.1	Not Detected	6.0	Not Detected
Ethanol	4.3	7.2	8.0	14
Freon 113	1.1	Not Detected	8.2	Not Detected
1,1-Dichloroethene	1.1	Not Detected	4.2	Not Detected
Acetone	11	19	25	46
2-Propanol	4.3	Not Detected	10	Not Detected
Carbon Disulfide	4.3	4.5	13	14
3-Chloropropene	4.3	Not Detected	13	Not Detected
Methylene Chloride	11	Not Detected	37	Not Detected
Methyl tert-butyl ether	1.1	Not Detected	3.8	Not Detected
trans-1,2-Dichloroethene	1.1	Not Detected	4.2	Not Detected
Hexane	1.1	3.3	3.8	12
1,1-Dichloroethane	1.1	Not Detected	4.3	Not Detected
2-Butanone (Methyl Ethyl Ketone)	4.3	4.6	12	14
cis-1,2-Dichloroethene	1.1	Not Detected	4.2	Not Detected
Tetrahydrofuran	1.1	Not Detected	3.1	Not Detected
Chloroform	1.1	Not Detected	5.2	Not Detected
1,1,1-Trichloroethane	1.1	Not Detected	5.8	Not Detected
	1.1	1.4	3.7	5.0
Cyclohexane	1.1	Not Detected	6.7	Not Detected
Carbon Tetrachloride	1.1	1.6	5.0	7.4
2,2,4-Trimethylpentane Benzene	1.1	5.5	3.4	18
1,2-Dichloroethane	1.1	Not Detected	4.3	Not Detected
	1.1	4.8	4.4	20 Not Data at a d
Trichloroethene	1.1	Not Detected	5.7	Not Detected
1,2-Dichloropropane	1.1	Not Detected	4.9	Not Detected
1,4-Dioxane	4.3	Not Detected	15	Not Detected
Bromodichloromethane	1.1	Not Detected	7.1	Not Detected
cis-1,3-Dichloropropene	1.1	Not Detected	4.8	Not Detected
4-Methyl-2-pentanone	1.1	2.7	4.4	11
Toluene	1.1	22	4.0	85
trans-1,3-Dichloropropene	1.1	Not Detected	4.8	Not Detected
1,1,2-Trichloroethane	1.1	Not Detected	5.8	Not Detected
Tetrachloroethene	1.1	22	7.2	150
2-Hexanone	4.3	Not Detected	17	Not Detected

Client Sample ID: SG2 Lab ID#: 1210556-02A EPA METHOD TO-15 GC/MS FULL SCAN

٦

File Name: Dil. Factor:	j102619 Date of Collection: 10/22/12 1:52:00 2.13 Date of Analysis: 10/26/12 06:38 PM			
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	1.1	Not Detected	9.1	Not Detected
1,2-Dibromoethane (EDB)	1.1	Not Detected	8.2	Not Detected
Chlorobenzene	1.1	Not Detected	4.9	Not Detected
Ethyl Benzene	1.1	3.4	4.6	15
m,p-Xylene	1.1	14	4.6	60
o-Xylene	1.1	4.5	4.6	20
Styrene	1.1	Not Detected	4.5	Not Detected
Bromoform	1.1	Not Detected	11	Not Detected
Cumene	1.1	Not Detected	5.2	Not Detected
1,1,2,2-Tetrachloroethane	1.1	Not Detected	7.3	Not Detected
Propylbenzene	1.1	Not Detected	5.2	Not Detected
4-Ethyltoluene	1.1	3.0	5.2	15
1,3,5-Trimethylbenzene	1.1	Not Detected	5.2	Not Detected
1,2,4-Trimethylbenzene	1.1	2.9	5.2	14
1,3-Dichlorobenzene	1.1	Not Detected	6.4	Not Detected
1,4-Dichlorobenzene	1.1	Not Detected	6.4	Not Detected
alpha-Chlorotoluene	1.1	Not Detected	5.5	Not Detected
1,2-Dichlorobenzene	1.1	Not Detected	6.4	Not Detected
1,2,4-Trichlorobenzene	4.3	Not Detected	32	Not Detected
Hexachlorobutadiene	4.3	Not Detected	45	Not Detected
1,1-Difluoroethane	4.3	Not Detected	12	Not Detected

Container Type: 1 Liter Summa Canister

		Method
Surrogates	%Recovery	Limits
Toluene-d8	98	70-130
1,2-Dichloroethane-d4	109	70-130
4-Bromofluorobenzene	81	70-130

Client Sample ID: SG3 Lab ID#: 1210556-03A EPA METHOD TO-15 GC/MS

	EPA METHO	D TO-15 GC/MS			
File Name: 14102621 Date of Collection: 10/22/12 2:39:00 PM					
Dil. Factor:	8.23	Date of Analysis: 10/26/12 04:34 PM			
	Rpt. Limit	Amount	Rpt. Limit	Amount	
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)	
Freon 12	41	Not Detected	200	Not Detected	
Freon 114	41	Not Detected	290	Not Detected	
Chloromethane	160	Not Detected	340	Not Detected	
Vinyl Chloride	41	Not Detected	100	Not Detected	
1,3-Butadiene	41	Not Detected	91	Not Detected	
Bromomethane	41	Not Detected	160	Not Detected	
Chloroethane	160	Not Detected	430	Not Detected	
Freon 11	41	Not Detected	230	Not Detected	
Ethanol	160	Not Detected	310	Not Detected	
Freon 113	41	Not Detected	320	Not Detected	
1,1-Dichloroethene	41	Not Detected	160	Not Detected	
Acetone	160	Not Detected	390	Not Detected	
2-Propanol	160	Not Detected	400	Not Detected	
Carbon Disulfide	41	Not Detected	130	Not Detected	
3-Chloropropene	160	Not Detected	520	Not Detected	
Methylene Chloride	41	Not Detected	140	Not Detected	
Methyl tert-butyl ether	41	Not Detected	150	Not Detected	
trans-1,2-Dichloroethene	41	Not Detected	160	Not Detected	
Hexane	41	Not Detected	140	Not Detected	
1,1-Dichloroethane	41	Not Detected	170	Not Detected	
2-Butanone (Methyl Ethyl Ketone)	160	Not Detected	480	Not Detected	
cis-1,2-Dichloroethene	41	Not Detected	160	Not Detected	
Tetrahydrofuran	41	Not Detected	120	Not Detected	
Chloroform	41	Not Detected	200	Not Detected	
1,1,1-Trichloroethane	41	Not Detected	220	Not Detected	
Cyclohexane	41	Not Detected	140	Not Detected	
Carbon Tetrachloride	41	Not Detected	260	Not Detected	
2,2,4-Trimethylpentane	41	Not Detected	190	Not Detected	
Benzene	41	Not Detected	130	Not Detected	
1,2-Dichloroethane	41	Not Detected	170	Not Detected	
Heptane	41	Not Detected	170	Not Detected	
Trichloroethene	41	Not Detected	220	Not Detected	
1,2-Dichloropropane	41	Not Detected	190	Not Detected	
1,4-Dioxane	160	Not Detected	590	Not Detected	
Bromodichloromethane	41	Not Detected	280	Not Detected	
cis-1,3-Dichloropropene	41	Not Detected	190	Not Detected	
4-Methyl-2-pentanone	41	Not Detected	170	Not Detected	
Toluene	41	Not Detected	160	Not Detected	
trans-1,3-Dichloropropene	41	Not Detected	190	Not Detected	
1,1,2-Trichloroethane	41	Not Detected	220	Not Detected	
Tetrachloroethene	41	6700	280	46000	
2-Hexanone	160	Not Detected	670	Not Detected	

Client Sample ID: SG3 Lab ID#: 1210556-03A EPA METHOD TO-15 GC/MS

٦

File Name: Dil. Factor:	14102621 8.23	Date of Collection: 10/22/12 2:39:00 PM Date of Analysis: 10/26/12 04:34 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	41	Not Detected	350	Not Detected
1,2-Dibromoethane (EDB)	41	Not Detected	320	Not Detected
Chlorobenzene	41	Not Detected	190	Not Detected
Ethyl Benzene	41	Not Detected	180	Not Detected
m,p-Xylene	41	Not Detected	180	Not Detected
o-Xylene	41	Not Detected	180	Not Detected
Styrene	41	Not Detected	180	Not Detected
Bromoform	41	Not Detected	420	Not Detected
Cumene	41	Not Detected	200	Not Detected
1,1,2,2-Tetrachloroethane	41	Not Detected	280	Not Detected
Propylbenzene	41	Not Detected	200	Not Detected
4-Ethyltoluene	41	Not Detected	200	Not Detected
1,3,5-Trimethylbenzene	41	Not Detected	200	Not Detected
1,2,4-Trimethylbenzene	41	Not Detected	200	Not Detected
1,3-Dichlorobenzene	41	Not Detected	250	Not Detected
1,4-Dichlorobenzene	41	Not Detected	250	Not Detected
alpha-Chlorotoluene	41	Not Detected	210	Not Detected
1,2-Dichlorobenzene	41	Not Detected	250	Not Detected
1,2,4-Trichlorobenzene	160	Not Detected	1200	Not Detected
Hexachlorobutadiene	160	Not Detected	1800	Not Detected
1,1-Difluoroethane	160	Not Detected	440	Not Detected

Container Type: 1 Liter Summa Canister

		Method Limits	
Surrogates	%Recovery		
1,2-Dichloroethane-d4	106	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	100	70-130	

Client Sample ID: SG3-DUP Lab ID#: 1210556-04A EPA METHOD TO-15 GC/MS

	EPA METHO	D TO-15 GC/MS			
File Name: 14102622 Date of Collection: 10/22/12 2:39:00 PM					
Dil. Factor:	10.1	Date of Analysis: 10/26/12 05:48 PM			
	Rpt. Limit	Amount	Rpt. Limit	Amount	
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)	
Freon 12	50	Not Detected	250	Not Detected	
Freon 114	50	Not Detected	350	Not Detected	
Chloromethane	200	Not Detected	420	Not Detected	
Vinyl Chloride	50	Not Detected	130	Not Detected	
1,3-Butadiene	50	Not Detected	110	Not Detected	
Bromomethane	50	Not Detected	200	Not Detected	
Chloroethane	200	Not Detected	530	Not Detected	
Freon 11	50	Not Detected	280	Not Detected	
Ethanol	200	Not Detected	380	Not Detected	
Freon 113	50	Not Detected	390	Not Detected	
1,1-Dichloroethene	50	Not Detected	200	Not Detected	
Acetone	200	Not Detected	480	Not Detected	
2-Propanol	200	Not Detected	500	Not Detected	
Carbon Disulfide	50	Not Detected	160	Not Detected	
3-Chloropropene	200	Not Detected	630	Not Detected	
Methylene Chloride	50	Not Detected	180	Not Detected	
Methyl tert-butyl ether	50	Not Detected	180	Not Detected	
trans-1,2-Dichloroethene	50	Not Detected	200	Not Detected	
Hexane	50	Not Detected	180	Not Detected	
1,1-Dichloroethane	50	Not Detected	200	Not Detected	
2-Butanone (Methyl Ethyl Ketone)	200	Not Detected	600	Not Detected	
cis-1,2-Dichloroethene	50	Not Detected	200	Not Detected	
Tetrahydrofuran	50	Not Detected	150	Not Detected	
Chloroform	50	Not Detected	250	Not Detected	
1,1,1-Trichloroethane	50	Not Detected	280	Not Detected	
Cyclohexane	50	Not Detected	170	Not Detected	
Carbon Tetrachloride	50	Not Detected	320	Not Detected	
2,2,4-Trimethylpentane	50	Not Detected	240	Not Detected	
Benzene	50	Not Detected	160	Not Detected	
1,2-Dichloroethane	50	Not Detected	200	Not Detected	
Heptane	50	Not Detected	210	Not Detected	
Trichloroethene	50	Not Detected	270	Not Detected	
1,2-Dichloropropane	50	Not Detected	230	Not Detected	
1,4-Dioxane	200	Not Detected	730	Not Detected	
Bromodichloromethane	50	Not Detected	340	Not Detected	
cis-1,3-Dichloropropene	50	Not Detected	230	Not Detected	
4-Methyl-2-pentanone	50	Not Detected	210	Not Detected	
Toluene	50	Not Detected	190	Not Detected	
trans-1,3-Dichloropropene	50	Not Detected	230	Not Detected	
1,1,2-Trichloroethane	50	Not Detected	280	Not Detected	
Tetrachloroethene	50	8000	340	54000	
	200	Not Detected	830	Not Detected	
2-Hexanone	200	NOI DELECIEU	030	NUL DELECIEU	

Client Sample ID: SG3-DUP Lab ID#: 1210556-04A EPA METHOD TO-15 GC/MS

EPA METHOD 10-15 GC/MS				
File Name:	14102622		of Collection: 10/	
Dil. Factor:	10.1		of Analysis: 10/2	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	50	Not Detected	430	Not Detected
1,2-Dibromoethane (EDB)	50	Not Detected	390	Not Detected
Chlorobenzene	50	Not Detected	230	Not Detected
Ethyl Benzene	50	Not Detected	220	Not Detected
m,p-Xylene	50	Not Detected	220	Not Detected
o-Xylene	50	Not Detected	220	Not Detected
Styrene	50	Not Detected	220	Not Detected
Bromoform	50	Not Detected	520	Not Detected
Cumene	50	Not Detected	250	Not Detected
1,1,2,2-Tetrachloroethane	50	Not Detected	350	Not Detected
Propylbenzene	50	Not Detected	250	Not Detected
4-Ethyltoluene	50	Not Detected	250	Not Detected
1,3,5-Trimethylbenzene	50	Not Detected	250	Not Detected
1,2,4-Trimethylbenzene	50	Not Detected	250	Not Detected
1,3-Dichlorobenzene	50	Not Detected	300	Not Detected
1,4-Dichlorobenzene	50	Not Detected	300	Not Detected
alpha-Chlorotoluene	50	Not Detected	260	Not Detected
1,2-Dichlorobenzene	50	Not Detected	300	Not Detected
1,2,4-Trichlorobenzene	200	Not Detected	1500	Not Detected
Hexachlorobutadiene	200	Not Detected	2200	Not Detected
1,1-Difluoroethane	200	240	540	660

Container Type: 1 Liter Summa Canister

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	106	70-130
Toluene-d8	99	70-130
4-Bromofluorobenzene	100	70-130

Client Sample ID: SG4 Lab ID#: 1210556-05A EPA METHOD TO-15 GC/MS FULL SCAN

٦

File Name: Dil. Factor:	j102621 3.97		of Collection: 10/2 of Analysis: 10/2	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	2.0	Not Detected	9.8	Not Detected
Freon 114	2.0	Not Detected	14	Not Detected
Chloromethane	20	Not Detected	41	Not Detected
Vinyl Chloride	2.0	Not Detected	5.1	Not Detected
1,3-Butadiene	2.0	Not Detected	4.4	Not Detected
Bromomethane	20	Not Detected	77	Not Detected
Chloroethane	7.9	Not Detected	21	Not Detected
Freon 11	2.0	Not Detected	11	Not Detected
Ethanol	7.9	Not Detected	15	Not Detected
Freon 113	2.0	Not Detected	15	Not Detected
1,1-Dichloroethene	2.0	Not Detected	7.9	Not Detected
Acetone	20	Not Detected	47	Not Detected
2-Propanol	7.9	Not Detected	20	Not Detected
Carbon Disulfide	7.9	Not Detected	25	Not Detected
3-Chloropropene	7.9	Not Detected	25	Not Detected
Methylene Chloride	20	Not Detected	69	Not Detected
Methyl tert-butyl ether	2.0	Not Detected	7.2	Not Detected
trans-1,2-Dichloroethene	2.0	Not Detected	7.9	Not Detected
Hexane	2.0	Not Detected	7.0	Not Detected
1,1-Dichloroethane	2.0	Not Detected	8.0	Not Detected
	7.9	Not Detected	23	Not Detected
2-Butanone (Methyl Ethyl Ketone)	2.0	Not Detected	7.9	Not Detected
cis-1,2-Dichloroethene	2.0	Not Detected	5.8	Not Detected
Tetrahydrofuran	2.0	Not Detected	9.7	Not Detected
Chloroform	2.0	Not Detected	9.7 11	Not Detected
1,1,1-Trichloroethane				
Cyclohexane	2.0	Not Detected	6.8	Not Detected
Carbon Tetrachloride	2.0	Not Detected	12	Not Detected
2,2,4-Trimethylpentane	2.0	Not Detected	9.3	Not Detected
Benzene	2.0	Not Detected	6.3	Not Detected
1,2-Dichloroethane	2.0	Not Detected	8.0	Not Detected
Heptane	2.0	Not Detected	8.1	Not Detected
Trichloroethene	2.0	Not Detected	11	Not Detected
1,2-Dichloropropane	2.0	Not Detected	9.2	Not Detected
1,4-Dioxane	7.9	Not Detected	29	Not Detected
Bromodichloromethane	2.0	Not Detected	13	Not Detected
cis-1,3-Dichloropropene	2.0	Not Detected	9.0	Not Detected
4-Methyl-2-pentanone	2.0	2.2	8.1	9.1
Toluene	2.0	9.1	7.5	34
trans-1,3-Dichloropropene	2.0	Not Detected	9.0	Not Detected
1,1,2-Trichloroethane	2.0	Not Detected	11	Not Detected
Tetrachloroethene	2.0	480	13	3200
2-Hexanone	7.9	Not Detected	32	Not Detected

Client Sample ID: SG4 Lab ID#: 1210556-05A EPA METHOD TO-15 GC/MS FULL SCAN

٦

File Name: Dil. Factor:	j102621 3.97		of Collection: 10/2 of Analysis: 10/2	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	2.0	Not Detected	17	Not Detected
1,2-Dibromoethane (EDB)	2.0	Not Detected	15	Not Detected
Chlorobenzene	2.0	Not Detected	9.1	Not Detected
Ethyl Benzene	2.0	2.5	8.6	11
m,p-Xylene	2.0	10	8.6	45
o-Xylene	2.0	3.2	8.6	14
Styrene	2.0	Not Detected	8.4	Not Detected
Bromoform	2.0	Not Detected	20	Not Detected
Cumene	2.0	Not Detected	9.8	Not Detected
1,1,2,2-Tetrachloroethane	2.0	Not Detected	14	Not Detected
Propylbenzene	2.0	Not Detected	9.8	Not Detected
4-Ethyltoluene	2.0	3.4	9.8	17
1,3,5-Trimethylbenzene	2.0	Not Detected	9.8	Not Detected
1,2,4-Trimethylbenzene	2.0	3.1	9.8	15
1,3-Dichlorobenzene	2.0	Not Detected	12	Not Detected
1,4-Dichlorobenzene	2.0	Not Detected	12	Not Detected
alpha-Chlorotoluene	2.0	Not Detected	10	Not Detected
1,2-Dichlorobenzene	2.0	Not Detected	12	Not Detected
1,2,4-Trichlorobenzene	7.9	Not Detected	59	Not Detected
Hexachlorobutadiene	7.9	Not Detected	85	Not Detected
1,1-Difluoroethane	7.9	Not Detected	21	Not Detected

Container Type: 1 Liter Summa Canister

		Method
Surrogates	%Recovery	Limits
Toluene-d8	99	70-130
1,2-Dichloroethane-d4	108	70-130
4-Bromofluorobenzene	80	70-130

Client Sample ID: SG5 Lab ID#: 1210556-06A EPA METHOD TO-15 GC/MS FULL SCAN

٦

File Name: Dil. Factor:	j102620 2.42		of Collection: 10/ of Analysis: 10/2	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	1.2	Not Detected	6.0	Not Detected
Freon 114	1.2	Not Detected	8.4	Not Detected
Chloromethane	12	Not Detected	25	Not Detected
Vinyl Chloride	1.2	Not Detected	3.1	Not Detected
1,3-Butadiene	1.2	Not Detected	2.7	Not Detected
Bromomethane	12	Not Detected	47	Not Detected
Chloroethane	4.8	Not Detected	13	Not Detected
Freon 11	1.2	Not Detected	6.8	Not Detected
Ethanol	4.8	Not Detected	9.1	Not Detected
Freon 113	1.2	Not Detected	9.3	Not Detected
1,1-Dichloroethene	1.2	Not Detected	4.8	Not Detected
Acetone	12	29	29	69
2-Propanol	4.8	Not Detected	12	Not Detected
Carbon Disulfide	4.8	Not Detected	15	Not Detected
3-Chloropropene	4.8	Not Detected	15	Not Detected
Methylene Chloride	12	Not Detected	42	Not Detected
Methyl tert-butyl ether	1.2	Not Detected	4.4	Not Detected
trans-1,2-Dichloroethene	1.2	Not Detected	4.8	Not Detected
Hexane	1.2	1.5	4.3	5.2
1,1-Dichloroethane	1.2	Not Detected	4.9	Not Detected
2-Butanone (Methyl Ethyl Ketone)	4.8	7.2	14	21
cis-1,2-Dichloroethene	1.2	Not Detected	4.8	Not Detected
Tetrahydrofuran	1.2	Not Detected	3.6	Not Detected
Chloroform	1.2	Not Detected	5.9	Not Detected
1,1,1-Trichloroethane	1.2	Not Detected	6.6	Not Detected
	1.2	Not Detected	4.2	Not Detected
Cyclohexane	1.2	Not Detected	4.2 7.6	Not Detected
Carbon Tetrachloride	1.2		5.6	
2,2,4-Trimethylpentane Benzene	1.2	Not Detected 1.7		Not Detected 5.3
	1.2	Not Detected	3.9	Not Detected
1,2-Dichloroethane			4.9	
	1.2	1.5	5.0	6.1
Trichloroethene	1.2	Not Detected	6.5	Not Detected
1,2-Dichloropropane	1.2	Not Detected	5.6	Not Detected
1,4-Dioxane	4.8	Not Detected	17	Not Detected
Bromodichloromethane	1.2	Not Detected	8.1	Not Detected
cis-1,3-Dichloropropene	1.2	Not Detected	5.5	Not Detected
4-Methyl-2-pentanone	1.2	2.2	5.0	9.2
Toluene	1.2	12	4.6	47
trans-1,3-Dichloropropene	1.2	Not Detected	5.5	Not Detected
1,1,2-Trichloroethane	1.2	Not Detected	6.6	Not Detected
Tetrachloroethene	1.2	22	8.2	150
2-Hexanone	4.8	Not Detected	20	Not Detected

Client Sample ID: SG5 Lab ID#: 1210556-06A EPA METHOD TO-15 GC/MS FULL SCAN

EPA METHOD TO-15 GC/MS FULL SCAN					
File Name: Dil. Factor:	j102620 2.42			ection: 10/22/12 1:24:00 PM ysis: 10/26/12 07:01 PM	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)	
Dibromochloromethane	1.2	Not Detected	10	Not Detected	
1,2-Dibromoethane (EDB)	1.2	Not Detected	9.3	Not Detected	
Chlorobenzene	1.2	Not Detected	5.6	Not Detected	
Ethyl Benzene	1.2	3.9	5.2	17	
m,p-Xylene	1.2	18	5.2	78	
o-Xylene	1.2	6.0	5.2	26	
Styrene	1.2	Not Detected	5.2	Not Detected	
Bromoform	1.2	Not Detected	12	Not Detected	
Cumene	1.2	Not Detected	5.9	Not Detected	
1,1,2,2-Tetrachloroethane	1.2	Not Detected	8.3	Not Detected	
Propylbenzene	1.2	1.2	5.9	6.0	
4-Ethyltoluene	1.2	Not Detected	5.9	Not Detected	
1,3,5-Trimethylbenzene	1.2	Not Detected	5.9	Not Detected	
1,2,4-Trimethylbenzene	1.2	5.7	5.9	28	
1,3-Dichlorobenzene	1.2	Not Detected	7.3	Not Detected	
1,4-Dichlorobenzene	1.2	Not Detected	7.3	Not Detected	
alpha-Chlorotoluene	1.2	Not Detected	6.3	Not Detected	
1,2-Dichlorobenzene	1.2	Not Detected	7.3	Not Detected	
1,2,4-Trichlorobenzene	4.8	Not Detected	36	Not Detected	
Hexachlorobutadiene	4.8	Not Detected	52	Not Detected	
1,1-Difluoroethane	4.8	Not Detected	13	Not Detected	

Container Type: 1 Liter Summa Canister

		Method
Surrogates	%Recovery	Limits
Toluene-d8	97	70-130
1,2-Dichloroethane-d4	107	70-130
4-Bromofluorobenzene	81	70-130

Client Sample ID: Lab Blank Lab ID#: 1210556-07A EPA METHOD TO-15 GC/MS FULL SCAN

٦

File Name: Dil. Factor:	j102608a 1.00		of Collection: NA of Analysis: 10/2	S/10 11.96 AM
	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Freon 12	0.50	Not Detected	2.5	Not Detected
Freon 114	0.50	Not Detected	3.5	Not Detected
Chloromethane	5.0	Not Detected	10	Not Detected
Vinyl Chloride	0.50	Not Detected	1.3	Not Detected
1,3-Butadiene	0.50	Not Detected	1.1	Not Detected
Bromomethane	5.0	Not Detected	19	Not Detected
Chloroethane	2.0	Not Detected	5.3	Not Detected
Freon 11	0.50	Not Detected	2.8	Not Detected
Ethanol	2.0	Not Detected	3.8	Not Detected
Freon 113	0.50	Not Detected	3.8	Not Detected
1,1-Dichloroethene	0.50	Not Detected	2.0	Not Detected
Acetone	5.0	Not Detected	12	Not Detected
2-Propanol	2.0	Not Detected	4.9	Not Detected
Carbon Disulfide	2.0	Not Detected	6.2	Not Detected
3-Chloropropene	2.0	Not Detected	6.3	Not Detected
Methylene Chloride	5.0	Not Detected	17	Not Detected
Methyl tert-butyl ether	0.50	Not Detected	1.8	Not Detected
trans-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected
Hexane	0.50	Not Detected	1.8	Not Detected
1,1-Dichloroethane	0.50	Not Detected	2.0	Not Detected
2-Butanone (Methyl Ethyl Ketone)	2.0	Not Detected	5.9	Not Detected
cis-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected
Tetrahydrofuran	0.50	Not Detected	1.5	Not Detected
Chloroform	0.50	Not Detected	2.4	Not Detected
1,1,1-Trichloroethane	0.50	Not Detected	2.7	Not Detected
Cyclohexane	0.50	Not Detected	1.7	Not Detected
Carbon Tetrachloride	0.50	Not Detected	3.1	Not Detected
2,2,4-Trimethylpentane	0.50	Not Detected	2.3	Not Detected
Benzene	0.50	Not Detected	1.6	Not Detected
1,2-Dichloroethane	0.50	Not Detected	2.0	Not Detected
Heptane	0.50	Not Detected	2.0	Not Detected
Trichloroethene	0.50	Not Detected	2.7	Not Detected
1,2-Dichloropropane	0.50	Not Detected	2.3	Not Detected
1,4-Dioxane	2.0	Not Detected	7.2	Not Detected
Bromodichloromethane	0.50	Not Detected	3.4	Not Detected
cis-1,3-Dichloropropene	0.50	Not Detected	2.3	Not Detected
4-Methyl-2-pentanone	0.50	Not Detected	2.0	Not Detected
Toluene	0.50	Not Detected	1.9	Not Detected
trans-1,3-Dichloropropene	0.50	Not Detected	2.3	Not Detected
1,1,2-Trichloroethane	0.50	Not Detected	2.7	Not Detected
Tetrachloroethene	0.50	Not Detected	3.4	Not Detected
2-Hexanone	2.0	Not Detected	8.2	Not Detected

Client Sample ID: Lab Blank Lab ID#: 1210556-07A EPA METHOD TO-15 GC/MS FULL SCAN

٦

File Name: Dil. Factor:	j102608a 1.00		of Collection: NA of Analysis: 10/2	6/12 11:36 AM
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	0.50	Not Detected	4.2	Not Detected
1,2-Dibromoethane (EDB)	0.50	Not Detected	3.8	Not Detected
Chlorobenzene	0.50	Not Detected	2.3	Not Detected
Ethyl Benzene	0.50	Not Detected	2.2	Not Detected
m,p-Xylene	0.50	Not Detected	2.2	Not Detected
o-Xylene	0.50	Not Detected	2.2	Not Detected
Styrene	0.50	Not Detected	2.1	Not Detected
Bromoform	0.50	Not Detected	5.2	Not Detected
Cumene	0.50	Not Detected	2.4	Not Detected
1,1,2,2-Tetrachloroethane	0.50	Not Detected	3.4	Not Detected
Propylbenzene	0.50	Not Detected	2.4	Not Detected
4-Ethyltoluene	0.50	Not Detected	2.4	Not Detected
1,3,5-Trimethylbenzene	0.50	Not Detected	2.4	Not Detected
1,2,4-Trimethylbenzene	0.50	Not Detected	2.4	Not Detected
1,3-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
1,4-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
alpha-Chlorotoluene	0.50	Not Detected	2.6	Not Detected
1,2-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
1,2,4-Trichlorobenzene	2.0	Not Detected	15	Not Detected
Hexachlorobutadiene	2.0	Not Detected	21	Not Detected
1,1-Difluoroethane	2.0	Not Detected	5.4	Not Detected

		Method
Surrogates	%Recovery	Limits
Toluene-d8	100	70-130
1,2-Dichloroethane-d4	114	70-130
4-Bromofluorobenzene	81	70-130

Client Sample ID: Lab Blank Lab ID#: 1210556-07B EPA METHOD TO-15 GC/MS

٦

File Name: Dil. Factor:	14102606d 1.00		of Collection: NA of Analysis: 10/2	6/12 09:57 AM
	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Freon 12	5.0	Not Detected	25	Not Detected
Freon 114	5.0	Not Detected	35	Not Detected
Chloromethane	20	Not Detected	41	Not Detected
Vinyl Chloride	5.0	Not Detected	13	Not Detected
1,3-Butadiene	5.0	Not Detected	11	Not Detected
Bromomethane	5.0	Not Detected	19	Not Detected
Chloroethane	20	Not Detected	53	Not Detected
Freon 11	5.0	Not Detected	28	Not Detected
Ethanol	20	Not Detected	38	Not Detected
Freon 113	5.0	Not Detected	38	Not Detected
1,1-Dichloroethene	5.0	Not Detected	20	Not Detected
Acetone	20	Not Detected	48	Not Detected
2-Propanol	20	Not Detected	49	Not Detected
Carbon Disulfide	5.0	Not Detected	16	Not Detected
3-Chloropropene	20	Not Detected	63	Not Detected
Methylene Chloride	5.0	Not Detected	17	Not Detected
Methyl tert-butyl ether	5.0	Not Detected	18	Not Detected
trans-1,2-Dichloroethene	5.0	Not Detected	20	Not Detected
Hexane	5.0	Not Detected	18	Not Detected
1,1-Dichloroethane	5.0	Not Detected	20	Not Detected
2-Butanone (Methyl Ethyl Ketone)	20	Not Detected	59	Not Detected
cis-1,2-Dichloroethene	5.0	Not Detected	20	Not Detected
Tetrahydrofuran	5.0	Not Detected	15	Not Detected
Chloroform	5.0	Not Detected	24	Not Detected
1,1,1-Trichloroethane	5.0	Not Detected	27	Not Detected
Cyclohexane	5.0	Not Detected	17	Not Detected
Carbon Tetrachloride	5.0	Not Detected	31	Not Detected
2,2,4-Trimethylpentane	5.0	Not Detected	23	Not Detected
Benzene	5.0	Not Detected	16	Not Detected
1,2-Dichloroethane	5.0	Not Detected	20	Not Detected
Heptane	5.0	Not Detected	20	Not Detected
Trichloroethene	5.0	Not Detected	27	Not Detected
1,2-Dichloropropane	5.0	Not Detected	23	Not Detected
1,4-Dioxane	20	Not Detected	72	Not Detected
Bromodichloromethane	5.0	Not Detected	34	Not Detected
cis-1,3-Dichloropropene	5.0	Not Detected	23	Not Detected
4-Methyl-2-pentanone	5.0	Not Detected	23	Not Detected
Toluene	5.0	Not Detected	19	Not Detected
trans-1,3-Dichloropropene	5.0	Not Detected	23	Not Detected
1,1,2-Trichloroethane	5.0	Not Detected	23	Not Detected
Tetrachloroethene	5.0	Not Detected	34	Not Detected
i etrachioroethene 2-Hexanone	5.0 20	Not Detected	34 82	Not Detected

Client Sample ID: Lab Blank Lab ID#: 1210556-07B EPA METHOD TO-15 GC/MS

Dil. Factor:	14102606d 1.00	Date of Collection: NA Date of Analysis: 10/26/12 09:57 AM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	5.0	Not Detected	42	Not Detected
,2-Dibromoethane (EDB)	5.0	Not Detected	38	Not Detected
Chlorobenzene	5.0	Not Detected	23	Not Detected
Ethyl Benzene	5.0	Not Detected	22	Not Detected
n,p-Xylene	5.0	Not Detected	22	Not Detected
o-Xylene	5.0	Not Detected	22	Not Detected
Styrene	5.0	Not Detected	21	Not Detected
Bromoform	5.0	Not Detected	52	Not Detected
Cumene	5.0	Not Detected	24	Not Detected
,1,2,2-Tetrachloroethane	5.0	Not Detected	34	Not Detected
Propylbenzene	5.0	Not Detected	24	Not Detected
I-Ethyltoluene	5.0	Not Detected	24	Not Detected
,3,5-Trimethylbenzene	5.0	Not Detected	24	Not Detected
,2,4-Trimethylbenzene	5.0	Not Detected	24	Not Detected
,3-Dichlorobenzene	5.0	Not Detected	30	Not Detected
,4-Dichlorobenzene	5.0	Not Detected	30	Not Detected
alpha-Chlorotoluene	5.0	Not Detected	26	Not Detected
,2-Dichlorobenzene	5.0	Not Detected	30	Not Detected
,2,4-Trichlorobenzene	20	Not Detected	150	Not Detected
lexachlorobutadiene	20	Not Detected	210	Not Detected
,1-Difluoroethane	20	Not Detected	54	Not Detected

Surrogates	%Recovery	Method Limits
1,2-Dichloroethane-d4	103	70-130
Toluene-d8	100	70-130
4-Bromofluorobenzene	99	70-130

Client Sample ID: CCV Lab ID#: 1210556-08A EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	j102602 1.00	Date of Collection: NA Date of Analysis: 10/26/12 08:45 AM
Compound		%Recovery
Freon 12		113
Freon 114		94
Chloromethane		115
Vinyl Chloride		90
1,3-Butadiene		80
Bromomethane		90
Chloroethane		92
Freon 11		112
Ethanol		86
Freon 113		90
1,1-Dichloroethene		86
Acetone		88
2-Propanol		91
Carbon Disulfide		90
3-Chloropropene		91
Methylene Chloride		100
Methyl tert-butyl ether		97
trans-1,2-Dichloroethene		90
Hexane		85
1,1-Dichloroethane		102
2-Butanone (Methyl Ethyl Ketone)		93
cis-1,2-Dichloroethene		91
Tetrahydrofuran		94
Chloroform		109
1,1,1-Trichloroethane		108
Cyclohexane		93
Carbon Tetrachloride		114
2,2,4-Trimethylpentane		86
Benzene		113
1,2-Dichloroethane		138 Q
Heptane		114
Trichloroethene		120
1,2-Dichloropropane		111
1,4-Dioxane		103
Bromodichloromethane		129
		115
cis-1,3-Dichloropropene		92
4-Methyl-2-pentanone Toluene		92 109
		109
trans-1,3-Dichloropropene		
1,1,2-Trichloroethane		125
Tetrachloroethene		112
2-Hexanone		104

Client Sample ID: CCV Lab ID#: 1210556-08A EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	j102602	Date of Collection: NA	
Dil. Factor: 1.00		Date of Analysis: 10/26/12 08:45 AM	
Compound		%Recovery	
Dibromochloromethane		128	
1,2-Dibromoethane (EDB)		120	
Chlorobenzene		103	
Ethyl Benzene		111	
m,p-Xylene		111	
o-Xylene		112	
Styrene		104	
Bromoform		117	
Cumene		117	
1,1,2,2-Tetrachloroethane		128	
Propylbenzene		127	
4-Ethyltoluene		115	
1,3,5-Trimethylbenzene		112	
1,2,4-Trimethylbenzene		105	
1,3-Dichlorobenzene		107	
1,4-Dichlorobenzene		109	
alpha-Chlorotoluene		112	
1,2-Dichlorobenzene		108	
1,2,4-Trichlorobenzene		92	
Hexachlorobutadiene		101	
1,1-Difluoroethane		114	

Q = Exceeds Quality Control limits.

	1/ Decement	Method
Surrogates	%Recovery	Limits
Toluene-d8	108	70-130
1,2-Dichloroethane-d4	119	70-130
4-Bromofluorobenzene	82	70-130

Client Sample ID: CCV Lab ID#: 1210556-08B EPA METHOD TO-15 GC/MS

File Name: Dil. Factor:	14102602 1.00	Date of Collection: NA Date of Analysis: 10/26/12 08:27 AM
Compound		%Recovery
Freon 12		106
Freon 114		100
Chloromethane		98
Vinyl Chloride		90
1,3-Butadiene		84
Bromomethane		82
Chloroethane		95
Freon 11		95 103
Ethanol		93
		95
Freon 113		
1,1-Dichloroethene		98
Acetone		95
2-Propanol		87
Carbon Disulfide		93
3-Chloropropene		88
Methylene Chloride		101
Methyl tert-butyl ether		88
trans-1,2-Dichloroethene		97
Hexane		92
1,1-Dichloroethane		98
2-Butanone (Methyl Ethyl Ketone)		90
cis-1,2-Dichloroethene		99
Tetrahydrofuran		92
Chloroform		97
1,1,1-Trichloroethane		93
Cyclohexane		92
Carbon Tetrachloride		100
2,2,4-Trimethylpentane		96
Benzene		95
1,2-Dichloroethane		99
Heptane		92
Trichloroethene		94
1,2-Dichloropropane		95
1,4-Dioxane		93
Bromodichloromethane		99
cis-1,3-Dichloropropene		90
4-Methyl-2-pentanone		87
Toluene		93
trans-1,3-Dichloropropene		89
1,1,2-Trichloroethane		96
Tetrachloroethene		95
2-Hexanone		86

Client Sample ID: CCV Lab ID#: 1210556-08B EPA METHOD TO-15 GC/MS

File Name: 14102602 Dil. Factor: 1.00		Date of Collection: NA Date of Analysis: 10/26/12 08:27 AM	
Compound		%Recovery	
Dibromochloromethane		105	
1,2-Dibromoethane (EDB)		99	
Chlorobenzene		95	
Ethyl Benzene		92	
m,p-Xylene		92	
o-Xylene		89	
Styrene		94	
Bromoform		108	
Cumene		96	
1,1,2,2-Tetrachloroethane		99	
Propylbenzene		98	
4-Ethyltoluene		98	
1,3,5-Trimethylbenzene		98	
1,2,4-Trimethylbenzene		98	
1,3-Dichlorobenzene		99	
1,4-Dichlorobenzene		98	
alpha-Chlorotoluene		92	
1,2-Dichlorobenzene		101	
1,2,4-Trichlorobenzene		107	
Hexachlorobutadiene		105	
1,1-Difluoroethane		95	

		Method Limits	
Surrogates	%Recovery		
1,2-Dichloroethane-d4	103	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	101	70-130	

Client Sample ID: LCS Lab ID#: 1210556-09A EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	j102603 1.00	Date of Collection: NA Date of Analysis: 10/26/12 09:26 AM
Compound		%Recovery
Freon 12		134 Q
Freon 114		113
Chloromethane		127
Vinyl Chloride		107
1,3-Butadiene		95
Bromomethane		101
Chloroethane		104
Freon 11		131 Q
Ethanol		91
Freon 113		105
1,1-Dichloroethene		104
Acetone		106
2-Propanol		98
Carbon Disulfide		128
3-Chloropropene		114
Methylene Chloride		113
Methyl tert-butyl ether		110
trans-1,2-Dichloroethene		114
Hexane		95
1,1-Dichloroethane		115
2-Butanone (Methyl Ethyl Ketone)		102
cis-1,2-Dichloroethene		98
Tetrahydrofuran		100
Chloroform		122
1,1,1-Trichloroethane		123
Cyclohexane		102
Carbon Tetrachloride		130
2,2,4-Trimethylpentane		93
Benzene		114
1.2-Dichloroethane		138 Q
Heptane		110
Trichloroethene		121
1,2-Dichloropropane		109
1,4-Dioxane		98
Bromodichloromethane		130
cis-1,3-Dichloropropene		117
4-Methyl-2-pentanone		91
Toluene		107
trans-1,3-Dichloropropene		129
1,1,2-Trichloroethane		125
Tetrachloroethene		113
2-Hexanone		99

Client Sample ID: LCS Lab ID#: 1210556-09A EPA METHOD TO-15 GC/MS FULL SCAN

File Name: j102603		Date of Collection: NA	
Dil. Factor: 1.00		Date of Analysis: 10/26/12 09:26 AM	
Compound		%Recovery	
Dibromochloromethane		132 Q	
1,2-Dibromoethane (EDB)		123	
Chlorobenzene		106	
Ethyl Benzene		114	
m,p-Xylene		114	
o-Xylene		114	
Styrene		100	
Bromoform		118	
Cumene		119	
1,1,2,2-Tetrachloroethane		132 Q	
Propylbenzene		129	
4-Ethyltoluene		104	
1,3,5-Trimethylbenzene		119	
1,2,4-Trimethylbenzene		106	
1,3-Dichlorobenzene		113	
1,4-Dichlorobenzene		112	
alpha-Chlorotoluene		110	
1,2-Dichlorobenzene		108	
1,2,4-Trichlorobenzene		99	
Hexachlorobutadiene		102	
1,1-Difluoroethane		Not Spiked	

Q = Exceeds Quality Control limits.

-		Method	
Surrogates	%Recovery	Limits	
Toluene-d8	101	70-130	
1,2-Dichloroethane-d4	123	70-130	
4-Bromofluorobenzene	82	70-130	

Client Sample ID: LCSD Lab ID#: 1210556-09AA EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	j102604 1.00	Date of Collection: NA Date of Analysis: 10/26/12 09:44 AM
Compound		%Recovery
Freon 12		121
Freon 114		103
Chloromethane		117
Vinyl Chloride		98
1,3-Butadiene		85
Bromomethane		97
Chloroethane		100
Freon 11		121
Ethanol		84
Freon 113		100
1,1-Dichloroethene		95
Acetone		103
2-Propanol		94
Carbon Disulfide		123
3-Chloropropene		107
Methylene Chloride		108
Methyl tert-butyl ether		104
trans-1,2-Dichloroethene		112
Hexane		91
1,1-Dichloroethane		109
2-Butanone (Methyl Ethyl Ketone)		103
		97
cis-1,2-Dichloroethene		96
Tetrahydrofuran		90 117
Chloroform		117
1,1,1-Trichloroethane		
Cyclohexane		101
Carbon Tetrachloride		125
2,2,4-Trimethylpentane		91
Benzene		111
1,2-Dichloroethane		135 Q
Heptane		108
Trichloroethene		115
1,2-Dichloropropane		106
1,4-Dioxane		99
Bromodichloromethane		124
cis-1,3-Dichloropropene		112
4-Methyl-2-pentanone		84
Toluene		105
trans-1,3-Dichloropropene		125
1,1,2-Trichloroethane		122
Tetrachloroethene		112
2-Hexanone		97

Client Sample ID: LCSD Lab ID#: 1210556-09AA EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	j102604	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 10/26/12 09:44 AM
Compound		%Recovery
Dibromochloromethane		125
1,2-Dibromoethane (EDB)		122
Chlorobenzene		103
Ethyl Benzene		113
m,p-Xylene		112
o-Xylene		110
Styrene		98
Bromoform		114
Cumene		116
1,1,2,2-Tetrachloroethane		130
Propylbenzene		126
4-Ethyltoluene		112
1,3,5-Trimethylbenzene		110
1,2,4-Trimethylbenzene		103
1,3-Dichlorobenzene		112
1,4-Dichlorobenzene		111
alpha-Chlorotoluene		107
1,2-Dichlorobenzene		110
1,2,4-Trichlorobenzene		104
Hexachlorobutadiene		105
1,1-Difluoroethane		Not Spiked

Q = Exceeds Quality Control limits.

Surrogates	%Recovery	Method Limits				
Toluene-d8	103	70-130				
1,2-Dichloroethane-d4	122	70-130				
4-Bromofluorobenzene	85	70-130				

Client Sample ID: LCS Lab ID#: 1210556-09B EPA METHOD TO-15 GC/MS

File Name: Dil. Factor:	14102603 1.00	Date of Collection: NA Date of Analysis: 10/26/12 08:50 AM
Compound		%Recovery
		·
Freon 12		106
Freon 114		98
Chloromethane		100
Vinyl Chloride		89
1,3-Butadiene		81
Bromomethane		104
Chloroethane		104
Freon 11		103
Ethanol		92
Freon 113		96
1,1-Dichloroethene		103
Acetone		93
2-Propanol		85
Carbon Disulfide		116
3-Chloropropene		96
Methylene Chloride		98
Methyl tert-butyl ether		86
trans-1,2-Dichloroethene		106
Hexane		90
1,1-Dichloroethane		96
2-Butanone (Methyl Ethyl Ketone)		86
cis-1,2-Dichloroethene		97
Tetrahydrofuran		87
Chloroform		96
1,1,1-Trichloroethane		94
Cyclohexane		91
Carbon Tetrachloride		100
2,2,4-Trimethylpentane		93
Benzene		95
1,2-Dichloroethane		97
Heptane		89
Trichloroethene		94
1,2-Dichloropropane		94
1,4-Dioxane		87
Bromodichloromethane		98
cis-1,3-Dichloropropene		89
4-Methyl-2-pentanone		83
Toluene		91
trans-1,3-Dichloropropene		88
1,1,2-Trichloroethane		92
Tetrachloroethene		92
2-Hexanone		81

Client Sample ID: LCS Lab ID#: 1210556-09B EPA METHOD TO-15 GC/MS

Dil. Factor: 1.00 Compound	Date of Analysis: 10/26/12 08:50 AM %Recovery 101
Dibromochloromethane 1,2-Dibromoethane (EDB) Chlorobenzene Ethyl Benzene m,p-Xylene o-Xylene Styrene	-
1,2-Dibromoethane (EDB) Chlorobenzene Ethyl Benzene m,p-Xylene o-Xylene Styrene	101
Chlorobenzene Ethyl Benzene m,p-Xylene o-Xylene Styrene	101
Ethyl Benzene m,p-Xylene o-Xylene Styrene	96
m,p-Xylene o-Xylene Styrene	95
o-Xylene Styrene	89
Styrene	93
	91
Promoform	93
Biomolom	105
Cumene	96
1,1,2,2-Tetrachloroethane	102
Propylbenzene	98
4-Ethyltoluene	95
1,3,5-Trimethylbenzene	97
1,2,4-Trimethylbenzene	93
1,3-Dichlorobenzene	100
1,4-Dichlorobenzene	103
alpha-Chlorotoluene	90
1,2-Dichlorobenzene	102
1,2,4-Trichlorobenzene	118
Hexachlorobutadiene	
1,1-Difluoroethane	116

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	104	70-130
Toluene-d8	101	70-130
4-Bromofluorobenzene	101	70-130

Client Sample ID: LCSD Lab ID#: 1210556-09BB EPA METHOD TO-15 GC/MS

File Name: Dil. Factor:	14102604 1.00	Date of Collection: NA Date of Analysis: 10/26/12 09:13 AM
Compound		%Recovery
Freon 12		102
Freon 114		98
Chloromethane		99
Vinyl Chloride		89
1,3-Butadiene		81
Bromomethane		103
Chloroethane		101
Freon 11		101
Ethanol		89
Freon 113		94
1,1-Dichloroethene		105
Acetone		92
2-Propanol		86
Carbon Disulfide		115
3-Chloropropene		97
Methylene Chloride		97
Methyl tert-butyl ether		84
trans-1,2-Dichloroethene		106
Hexane		89
1,1-Dichloroethane		94
2-Butanone (Methyl Ethyl Ketone)		87
cis-1,2-Dichloroethene		96
Tetrahydrofuran		86
Chloroform		94
1,1,1-Trichloroethane		92
Cyclohexane		90
Carbon Tetrachloride		98
2,2,4-Trimethylpentane		91
Benzene		94
1,2-Dichloroethane		99
Heptane		90
Trichloroethene		93
1,2-Dichloropropane		94
1,4-Dioxane		86
Bromodichloromethane		98
cis-1,3-Dichloropropene		88
4-Methyl-2-pentanone		84
		92
Toluene		92 88
trans-1,3-Dichloropropene		
1,1,2-Trichloroethane		93
Tetrachloroethene		94
2-Hexanone		83

Client Sample ID: LCSD Lab ID#: 1210556-09BB EPA METHOD TO-15 GC/MS

Dibromochloromethane 102 1,2-Dibromoethane (EDB) 97 Chlorobenzene 96 Ethyl Benzene 91 m,p-Xylene 92 o-Xylene 91 Styrene 92 Bromoform 106 Cumene 97 1,1,2,2-Tetrachloroethane 91 Propylbenzene 99 4-Ethyltoluene 93 1,3,5-Trimethylbenzene 96 1,2,4-Trimethylbenzene 96 1,2-Dichlorobenzene 101 1,4-Dichlorobenzene 91 1,2-Dichlorobenzene 101 1,4-Dichlorobenzene 101 1,2-Dichlorobenzene 101 1,2-Dichlorobenzene 101 1,2-Dichlorobenzene 103 1,2,4-Trichlorobenzene 103 1,2,4-Trichlorobenzene 124 Hexachlorobutadiene 117	File Name: Dil. Factor:	14102604 1.00	Date of Collection: NA Date of Analysis: 10/26/12 09:13 AM
1,2-Dibromoethane (EDB) 97 Chlorobenzene 96 Ethyl Benzene 91 m,p-Xylene 92 o-Xylene 91 Styrene 92 Bromoform 106 Cumene 97 1,1,2,2-Tetrachloroethane 97 1,1,2,2-Tetrachloroethane 91 Propylbenzene 99 4-Ethyltoluene 93 1,3,5-Trimethylbenzene 96 1,2,4-Trimethylbenzene 94 1,3-Dichlorobenzene 101 1,4-Dichlorobenzene 101 1,4-Dichlorobenzene 101 1,4-Dichlorobenzene 101 1,2-Dichlorobenzene 101 1,2-Dichlorobenzene 103 1,2,4-Trichlorobenzene 103 1,2,4-Trichlorobenzene 103 1,2,4-Trichlorobenzene 124 Hexachlorobutadiene 117	Compound		%Recovery
All Database 96 Ethyl Benzene 91 m,p-Xylene 92 o-Xylene 91 Styrene 92 Bromoform 106 Cumene 97 1,1,2,2-Tetrachloroethane 91 Propylbenzene 99 4-Ethyltoluene 93 1,3,5-Trimethylbenzene 96 1,2,4-Trimethylbenzene 96 1,4-Dichlorobenzene 101 1,4-Dichlorobenzene 101 1,4-Dichlorobenzene 101 1,4-Dichlorobenzene 101 1,2-Dichlorobenzene 101 1,2-Dichlorobenzene 103 1,2,4-Trichlorobenzene 103 1,2,4-Trichlorobenzene 124 Hexachlorobutadiene 117	Dibromochloromethane		102
Ethyl Benzene 91 m,p-Xylene 92 o-Xylene 91 Styrene 92 Bromoform 92 Cumene 106 1,1,2,2-Tetrachloroethane 97 1,1,2,2-Tetrachloroethane 91 Propylbenzene 99 4-Ethyltoluene 93 1,3,5-Trimethylbenzene 96 1,2,4-Trimethylbenzene 94 1,3-Dichlorobenzene 101 1,4-Dichlorobenzene 101 1,4-Dichlorobenzene 101 1,2-Dichlorobenzene 101 1,2-Dichlorobenzene 103 1,2,4-Trichlorobenzene 103 1,2,4-Trichlorobenzene 124 Hexachlorobutadiene 117	1,2-Dibromoethane (EDB)		97
m,p-Xylene 92 o-Xylene 91 Styrene 92 Bromoform 92 Bromoform 106 Cumene 97 1,1,2,2-Tetrachloroethane 91 Propylbenzene 99 4-Ethyltoluene 93 1,3,5-Trimethylbenzene 96 1,2,4-Trimethylbenzene 94 1,3-Dichlorobenzene 101 1,4-Dichlorobenzene 101 1,2-Dichlorobenzene 101 1,2-Dichlorobenzene 103 1,2,4-Trichlorobenzene 103 1,2,4-Trichlorobenzene 103 1,2,4-Trichlorobenzene 103 1,2,4-Trichlorobenzene 103 1,2,4-Trichlorobenzene 124 Hexachlorobutadiene 117	Chlorobenzene		96
o-Xylene 91 Styrene 92 Bromoform 106 Cumene 97 1,1,2,2-Tetrachloroethane 91 Propylbenzene 99 4-Ethyltoluene 93 1,3,5-Trimethylbenzene 96 1,2,4-Trimethylbenzene 94 1,3-Dichlorobenzene 101 1,4-Dichlorobenzene 101 1,2-Dichlorobenzene 101 1,2-Dichlorobenzene 103 1,2,4-Trichlorobenzene 103 1,2,4-Trichlorobenzene 103 1,2,4-Trichlorobenzene 124	Ethyl Benzene		91
Styrene 92 Bromoform 106 Cumene 97 1,1,2,2-Tetrachloroethane 97 1,1,2,2-Tetrachloroethane 90 4-Ethyltoluene 93 1,3,5-Trimethylbenzene 93 1,3,5-Trimethylbenzene 96 1,2,4-Trimethylbenzene 94 1,3-Dichlorobenzene 101 1,4-Dichlorobenzene 101 1,2-Dichlorobenzene 101 1,2-Dichlorobenzene 103 1,2,4-Trinchorobenzene 124 Hexachlorobutadiene 117	m,p-Xylene		92
Bromoform 106 Cumene 97 1,1,2,2-Tetrachloroethane 97 1,1,2,2-Tetrachloroethane 101 Propylbenzene 99 4-Ethyltoluene 93 1,3,5-Trimethylbenzene 96 1,2,4-Trimethylbenzene 94 1,3-Dichlorobenzene 101 1,4-Dichlorobenzene 101 1,4-Dichlorobenzene 101 1,2-Dichlorobenzene 101 1,2-Dichlorobenzene 103 1,2,4-Trinchlorobenzene 103 1,2,4-Trichlorobenzene 103 1,2,4-Trichlorobenzene 103 1,2,4-Trichlorobenzene 103 1,2,4-Trichlorobenzene 103	o-Xylene		91
Cumene971,1,2,2-Tetrachloroethane971,1,2,2-Tetrachloroethane101Propylbenzene994-Ethyltoluene931,3,5-Trimethylbenzene961,2,4-Trimethylbenzene941,3-Dichlorobenzene1011,4-Dichlorobenzene911,2-Dichlorobenzene911,2-Dichlorobenzene1031,2,4-Trichlorobenzene1031,2,4-Trichlorobenzene124Hexachlorobutadiene117	Styrene		92
1,1,2,2-Tetrachloroethane101Propylbenzene994-Ethyltoluene931,3,5-Trimethylbenzene961,2,4-Trimethylbenzene941,3-Dichlorobenzene1011,4-Dichlorobenzene1011,2-Dichlorobenzene911,2-Dichlorobenzene1031,2,4-Trinchlorobenzene1031,2,4-Trichlorobenzene1031,2,4-Trichlorobenzene1031,2,4-Trichlorobenzene124Hexachlorobutadiene117	Bromoform		106
Propylbenzene994-Ethyltoluene931,3,5-Trimethylbenzene961,2,4-Trimethylbenzene941,3-Dichlorobenzene1011,4-Dichlorobenzene101alpha-Chlorotoluene911,2-Dichlorobenzene1031,2,4-Trichlorobenzene124Hexachlorobutadiene117	Cumene		97
4-Ethyltoluene931,3,5-Trimethylbenzene961,2,4-Trimethylbenzene941,3-Dichlorobenzene1011,4-Dichlorobenzene101alpha-Chlorotoluene911,2-Dichlorobenzene1031,2,4-Trichlorobenzene124Hexachlorobutadiene117	1,1,2,2-Tetrachloroethane		101
1,3,5-Trimethylbenzene961,2,4-Trimethylbenzene941,3-Dichlorobenzene1011,4-Dichlorobenzene101alpha-Chlorotoluene911,2-Dichlorobenzene1031,2,4-Trichlorobenzene124Hexachlorobutadiene117	Propylbenzene		99
1,2,4-Trimethylbenzene941,3-Dichlorobenzene1011,4-Dichlorobenzene91alpha-Chlorotoluene911,2-Dichlorobenzene1031,2,4-Trichlorobenzene124Hexachlorobutadiene117	4-Ethyltoluene		93
1,3-Dichlorobenzene1011,4-Dichlorobenzene101alpha-Chlorotoluene911,2-Dichlorobenzene1031,2,4-Trichlorobenzene124Hexachlorobutadiene117	1,3,5-Trimethylbenzene		96
1,4-Dichlorobenzene101alpha-Chlorotoluene911,2-Dichlorobenzene1031,2,4-Trichlorobenzene124Hexachlorobutadiene117	1,2,4-Trimethylbenzene		94
alpha-Chlorotoluene911,2-Dichlorobenzene1031,2,4-Trichlorobenzene124Hexachlorobutadiene117	1,3-Dichlorobenzene		101
1,2-Dichlorobenzene1031,2,4-Trichlorobenzene124Hexachlorobutadiene117	1,4-Dichlorobenzene		101
1,2,4-Trichlorobenzene124Hexachlorobutadiene117	alpha-Chlorotoluene		91
Hexachlorobutadiene 117	1,2-Dichlorobenzene		103
	1,2,4-Trichlorobenzene		124
1,1-Difluoroethane Not Spiked	Hexachlorobutadiene		117
	1,1-Difluoroethane		Not Spiked

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	102	70-130
Toluene-d8	100	70-130
4-Bromofluorobenzene	101	70-130

gantomularia-navernaviniointe tototomizzanovaneozzanovanymunimozzanov		CHA	<u>IN (</u>	OF C	CUSTODY	RE	CO	RD) 、	prostationalistati						PAGE	– OF –
P&D	55 Santa	RON a Clara akland, 0 (510) 65	MEN Ave., S CA 946 58-6916	NTA uite 240 510	L, INC.			/	Lacer DEA			/ /					
PROJECT NUMBER: OG14		PF	ROJECT	NAME		NUMBER OF CONTAINERS	ANALYSISTER	12 - 12 -12 - 12 -12 - 12			/	/	/			/	
SAMPLED BY: (PRI Michael DESC	1	GNATU GNATU	RE) 1010	y l	lescheren	L L MBER OF C							/	PRESERVAN		1210	556
SAMPLE NUMBER	DATE	TIME		inirSA VAC	MPLE LOCATION	5 N	10/00/						, ;		/	REMARKS	
561	10/22/12	115305	Sil Gas 11	-30	36399 -5	$\frac{1}{1}$	X X							NONE	NORM	AL TURUS	RANUED U
562 563 \$63-DUP	11	14391	7 11	- 30	1359 -5	1	x			+				.0	()	1	
\$63-DUP	141	1437.3	1l	-30	35593-5		x						<	11	11	11	ι(
564	01	111425			37378 -5	1	X							11	/(11	11
565	12	132446	11_	-30	35677-5		X							//	11	111	11
		>				<u> </u>		_									
											_						
									+								
In the second sec																	
	1				and a second												
				-		-											
				Ì													
· · · · ·																	
RELINQUISHED BY: (SIGNA	TURE)		DATE	TIME	RECEIVED BY: (SIG	NATU	RE)		Total N (This S	o. of Sar hipment)	nples	6		LABOR	ATORY:		-
Cleftoal Alsi	Mun		10/23/12		FedEX				(This S	o. of Cor hipment)		0	GT	AIRT	DXIC	s, too	
RELEAQUISHED BY: (SIGNAT	UKE)		DATE	TIME	RECEIVED BY: (SIG	NATU	KE)									HONE NUM	BER:
RELINQUISHED BY: (SIGNA	TURE) Fæld	NGA	DATE	TIME 1330	RECEIVED FOR LAF (SIGNATURE)	BORAT 21 A=	ORY B	Y:	SAM	E VA PLE AI CHEC	NALY		EQU	ÆST ŚHI		5-1020	
Results and billing to: P&D Environmental, Inc. lab@pdenviro.com	Custoo Y N K	ly Sea	l Intac	:t?	REMARKS:	FLIC	NOT		Ξu	445	ان ہ	27	-Rø	a cere	GAS	S	

McCampbell Analytical, Inc. "When Quality Counts"

Analytical Report

P & D Environmental	Client Project ID: #0614; 7100-7120 Dublin Blvd, Dublin, CA	Date Sampled:	10/22/12
55 Santa Clara, Ste.240		Date Received:	10/23/12
	Client Contact: Paul King	Date Reported:	10/26/12
Oakland, CA 94610	Client P.O.:	Date Completed:	10/25/12

WorkOrder: 1210765

October 29, 2012

Dear Paul:

Enclosed within are:

- 1) The results of the 3 analyzed samples from your project: #0614; 7100-7120 Dublin Blvd, Dublin, CA,
- 2) QC data for the above samples, and
- 3) A copy of the chain of custody.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

The analytical results relate only to the items tested.

	С	HA	IN C	OF C	US	TODY	RE	C)R	D				12	10-	76	5	PA	GE 🚽	_ 0)F _
P&D	D ENVII 55 Santa Oal	Clara	and the second se	VTAI uite 240						/	//	/		/		//	//	/	/		
project number: 0614	2	71	00-7	DJECT NAME: D-7120_DUBLIN BEVID JBLINI, CA					LI FULLED E	The HALE	(32-6)	/				//	E				
SAMPLED BY: (PR Michael Des SAMPLE NUMBER	1	Ce	RE) Vich	an SAI	As MPLE	LOCATION	NUMBER OF CONTAINERS	AN - C	TEMER	14:4	/	//	/			PREGE	POERVATIVE	RE	MARK	S	
5G2	10/22/12	1220	10	cherry .			1		H	/	\vdash	_	-	\vdash	1	((0		1	- 0.
SG4	H	1105		TED	U	BAE	1	X						-	-	NON	NO	RANI	-114		ARA
565	u	1255			u	u .	1	X								11		11	č		r l
-							-			_		-	-		-						
					_		+			_			-	-	-	-					*
							-													_	
							+			_	-			-	-						
											ICE	t°	no						/		
							-				HEA	DSP		RSEA	AB		RIATE FAINER SERVEI				
							+	_		-			ATION	VOI	6108	DI META	SERVE	R	8		
							+			-				-							
ELINQUISHED BY: (SIGNA	TURE)		DATE	TIME	RECE	IVED BY: (SIG	NATU	RE)	5	T	Total N (This S	vo. of S Shipme	amples nt)		3	LABO	RATOR	Y:			•
Under Al	lo Ollen	A	83/K	1/4		1	_	/			(This S	Shipme			3		CAUG				
ELINQUISHED BY: (SIGNA	TURE	71	DATE	TIME 1645	RECI	EIVED BY: (SIG	CO CO	RE)								LABO					
ELINQUISHED BY: (SIGNA	TURE	194	DATE		RECE	IVED FOR LAB ATURE)	ORAT	ORY	BY:		SAM	_	ANAI	YSIS		UEST SI ES			726	A	
esults and billing to: &D Environmental, Inc. b@pdenviro.com					REM	ARKS: DIFL	HOR	OE	THA	NE	u	IA S	5 01	DR-	TRA	CER	GAS				

McCampbell Analytical, Inc.

Page 1 of 1

Pittsburg, CA 94565-1701 (925) 252-9262				WorkO	rder: 1210765	Clier	ntCode: PDEO		
	WaterTrax	WriteOn	EDF	Excel	EQuIS	🖌 Email	HardCopy	ThirdParty	J-flag
Report to:				Bi	ll to:		Req	uested TAT:	5 days
Paul King P & D Environmental	Email: la cc:	ab@pdenviro.com			Accounts Pay P & D Environ				
55 Santa Clara, Ste.240	PO:				55 Santa Clar	a, Ste.240	Date	e Received:	10/23/2012
Oakland, CA 94610 (510) 658-6916 FAX: 510-834-0152	ProjectNo: #	0614; 7100-7120	Dublin Blvd,	Dublin, CA	Oakland, CA S	94610	Date	e Printed:	10/23/2012

				Γ				R	equested	Tests (See leg	end belo	ow)			
Lab ID	Client ID	Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
1210765-001	SG2	Air	10/22/2012 13:38		А	Α										
1210765-002	SG4	Air	10/22/2012 11:05		А	А										
1210765-003	SG5	Air	10/22/2012 12:55		А	А										

Test Legend:

1	8260B_PPMV
6	
11	

2	8260VOC_A
7	
12	

3	
8	

4

9

5	
10	

Prepared by: Melissa Valles

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

Sample Receipt Checklist

Client Name:	P & D Environmen	tal			Date a	nd Time Received:	10/23/2012	5:00:41 PM
Project Name:	#0614; 7100-7120	Dublin Blvd, Dublin, C	Α		LogIn F	Reviewed by:		Melissa Valles
WorkOrder N°:	1210765	Matrix: <u>Air</u>			Carrier	: <u>Rob Pringle (M</u>	IAI Courier)	
		<u>Cha</u>	in of Cu	ustody (COC	:) Informati	ion		
Chain of custody	present?		Yes	✓	No			
Chain of custody	signed when relinqu	ished and received?	Yes	✓	No			
Chain of custody	agrees with sample	labels?	Yes		No 🗌			
Sample IDs note	d by Client on COC?		Yes	✓	No			
Date and Time o	f collection noted by	Client on COC?	Yes	✓	No 🗌			
Sampler's name	noted on COC?		Yes	✓	No 🗌			
			<u>Sample</u>	Receipt Inf	ormation			
Custody seals in	tact on shipping cont	ainer/cooler?	Yes		No 🗌		NA 🗹	
Shipping contain	er/cooler in good con	dition?	Yes		No 🗌			
Samples in prop	er containers/bottles?	,	Yes		No 🗌			
Sample containe	ers intact?		Yes	✓	No 🗌			
Sufficient sample	e volume for indicated	test?	Yes	✓	No 🗌			
		Sample Pres	servatio	n and Hold	<u>Time (HT) I</u>	Information		
All samples rece	ived within holding tir	ne?	Yes	✓	No 🗌			
Container/Temp	Blank temperature		Coole	er Temp:			NA 🖌	
Water - VOA via	ls have zero headspa	ce / no bubbles?	Yes		No 🗌	No VOA vials submi	itted 🗹	
Sample labels ch	necked for correct pre	eservation?	Yes		No			
Metal - pH accep	otable upon receipt (p	H<2)?	Yes		No 🗌		NA 🗹	
Samples Receive	ed on Ice?		Yes		No 🗹			

* NOTE: If the "No" box is checked, see comments below.

Comments:

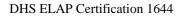
	Campbell And "When Quality Co	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com								
P & D Environmental		Client Project ID: Dublin Blvd, Dub	Date Sampled: 10/22/12 Date Received: 10/23/12							
55 Santa Clara, S	te.240	Client Contact: Pa	Client Contact: Paul King			Date Extracted 10/24/12				
Oakland, CA 946	10	Client P.O.:		Date Analyz	zed 10	/24/12				
Extraction method: SW50			T and GC/MS in PPM nethods: SW8260B	IV*	We	ork Order:	1210765			
Lab ID	Client ID	Matrix 1,	1-Difluoroethane as Dichloro	difluoromethane	DF	% SS	Comments			
001A	SG2	A	2000		2000	96				
002A	SG4	А	2100		2000	103				
003A	SG5	А	2300		2000	96				

Reporting Limit for DF =1; ND means not detected at or	А	0.061	μL/L
above the reporting limit	S	NA	NA

* air samples reported in ppmv (µL/L).

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

DHS ELAP Certification 1644


Angela Rydelius, Lab Manager

	Campbell Ana ''When Quality Co	1534 Willow P Toll Free Telephor http://www.mccamp		/ Fax: (92	5) 252-9269		
P & D Environmental		Client Project ID Dublin Blvd, Du	Date Sampled: 10/22/12 Date Received: 10/23/12				
55 Santa Clara, S	te.240	Client Contact: 1	Paul King	Date Extracted 10/24/12			
Oakland, CA 946	10	Client P.O.:		Date Analyz	ed 10	/24/12	
Extraction method: SW50		-	by P&T and GC/MS* methods: SW8260B		We	ork Order:	1210765
Lab ID	Client ID	Matrix	1,1-Difluoroethane as Dichlorod	ifluoromethane	DF	% SS	Comments
001A	SG2	А	9800		2000	96	
002A	SG4	А	10,000		2000	103	
003A	SG5	А	12,000		2000	96	

Reporting Limit for $DF = 1$; ND means not detected at or	А	0.25	µg/L
above the reporting limit	S	NA	NA

* vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Air	QC Matrix:	QC Matrix: Water						WorkC	WorkOrder: 1210765		
EPA Method: SW8260B	Extraction: SW5030B					:	Spiked Sam	Spiked Sample ID: N/A			
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	Acceptance Criteria (%)				
, individ	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS		
tert-Amyl methyl ether (TAME)	N/A	10	N/A	N/A	N/A	98.5	N/A	N/A	70 - 130		
Benzene	N/A	10	N/A	N/A	N/A	97.9	N/A	N/A	70 - 130		
t-Butyl alcohol (TBA)	N/A	40	N/A	N/A	N/A	106	N/A	N/A	70 - 130		
Chlorobenzene	N/A	10	N/A	N/A	N/A	99.6	N/A	N/A	70 - 130		
1,2-Dibromoethane (EDB)	N/A	10	N/A	N/A	N/A	101	N/A	N/A	70 - 130		
1,2-Dichloroethane (1,2-DCA)	N/A	10	N/A	N/A	N/A	92.2	N/A	N/A	70 - 130		
1,1-Dichloroethene	N/A	10	N/A	N/A	N/A	102	N/A	N/A	70 - 130		
Diisopropyl ether (DIPE)	N/A	10	N/A	N/A	N/A	111	N/A	N/A	70 - 130		
Ethyl tert-butyl ether (ETBE)	N/A	10	N/A	N/A	N/A	110	N/A	N/A	70 - 130		
Methyl-t-butyl ether (MTBE)	N/A	10	N/A	N/A	N/A	108	N/A	N/A	70 - 130		
Toluene	N/A	10	N/A	N/A	N/A	105	N/A	N/A	70 - 130		
Trichloroethene	N/A	10	N/A	N/A	N/A	87.8	N/A	N/A	70 - 130		
%SS1:	N/A	25	N/A	N/A	N/A	94	N/A	N/A	70 - 130		
%SS2:	N/A	25	N/A	N/A	N/A	108	N/A	N/A	70 - 130		
%SS3:	N/A	2.5	N/A	N/A	N/A	100	N/A	N/A	70 - 130		
%SS3: All target compounds in the Method Blank of NONE								N/A	70 - 130		

BATCH 71936 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1210765-001A	10/22/12 1:38 PM	10/24/12	10/24/12 1:43 PM	1210765-002A	10/22/12 11:05 AM	10/24/12	10/24/12 2:25 PM
1210765-003A	10/22/12 12:55 PM	10/24/12	10/24/12 3:18 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

DHS ELAP Certification 1644

McCampbell Analytical, Inc. "When Quality Counts"

Analytical Report

P & D Environmental	& D Environmental Client Project ID: #0614; 7100-7120 Dublin Blvd.				
55 Santa Clara, Ste.240		Date Received:	10/24/12		
55 Sulla Chala, 510.2 10	Client Contact: Paul King	Date Reported:	10/31/12		
Oakland, CA 94610	Client P.O.:	Date Completed:	10/29/12		

WorkOrder: 1210834

October 31, 2012

Dear Paul:

Enclosed within are:

- 1) The results of the 3 analyzed samples from your project: #0614; 7100-7120 Dublin Blvd.,
- 2) QC data for the above samples, and
- 3) A copy of the chain of custody.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits. If you have any questions or concerns, please feel free to give me a call. Thank you for choosing McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

The analytical results relate only to the items tested.

<i>v</i> .	C	HA	IN C	F C	USTODY	RE	C	DR	D		13	12	10	9	34	L	PA	GE	1	OF 1
P&D	ENVII 55 Santa Oa	RON Clara kland, (510) 65	MEN Ave., Su CA 946 8-6916	ITAL nite 240	., INC.				1. 2	(om to	7	1	/	/	/	/	/ /	/		
project number: 0614				NAME: 7/20_	Dublin Bha CA	CONTAINERS	Arv.	IL Constates).	1.7	1						E				
SAMPLED BY: (PRIN Michael Desch SAMPLE NUMBER		au	RE) <i>Judio</i> TYPE	*	Aschener	NUMBER OF CONTAINERS	AN	The Mulls Constraints	tas	/	/		/	/		PRESERVATIVE	R	EMAF	RKS	
B1-4.5 B2-4.5 B3-4.5	10/23/12	0900 0815 1235	5012 11 11				×××	X X X							14		i) II	11 11		n n
										DEC	D CO	ANDITH CE AI	SENT DIN VO/	AB		CONTA	PRIATE INERS RVED IN I S OTHER			
RELINQUISHED BY: (SIGNAT	ana	1/2	DATE	TIME 1322 TIME	RECEIVED BY: (SI RECEIVED BY: (SI	\geq		1	I	Total N (This S Total N (This S (ABC	lo. of C hipmer RAT(amples it) ontainer it) ORY (ONT	ACT:	<u>М</u> с LAB	ORAT	ORY PHO	NE N	UMBI	ER:
RELINQUISHED BY: (SIGNAT	URE)	197	DATE	- TIME	RECEIVED FOR LA (SIGNATURE)	BOKAT	ORY	BY:		SAM		ANAL	YSIS		UEST	SHEE	252- T NO	921	62	-
Results and billing to: P&D Environmental, Inc. lab@pdenviro.com					REMARKS:															

Page	2	of	14
------	---	----	----

McCampbell Analytical, Inc.

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

Pittsburg, CA 94565-1701 (925) 252-9262				WorkOr	der: 1210834	Clie	ntCode: PDEO		
	WaterTrax	WriteOn	EDF	Excel	EQuIS	✓ Email	HardCopy	ThirdParty	J-flag
Report to:				Bil	l to:		Req	uested TAT:	5 days
Paul King	Email: I	ab@pdenviro.co	m		Accounts Pay	able			
P & D Environmental	cc:				P & D Environ	mental			
55 Santa Clara, Ste.240	PO:				55 Santa Clar	a, Ste.240	Dat	e Received:	10/24/2012
Oakland, CA 94610	ProjectNo: #	#0614; 7100-712	0 Dublin Blvd.		Oakland, CA S	94610	Dat	e Printed:	10/24/2012
(510) 658-6916 FAX: 510-834-0152									

					Requested Tests (See legend below)											
Lab ID	Client ID	Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
1210834-001	B1-4.5	Soil	10/23/2012 9:00		А	Α										
1210834-002	B2-4.5	Soil	10/23/2012 8:15		А	Α										
1210834-003	B3-4.5	Soil	10/23/2012 12:35		A	A										

Test Legend:

1	8260B_S
6	
11	

2	G-MBTEX_S
7	
12	

3	
8	

4 9

5	
10	

The following SampIDs: 001A, 002A, 003A contain testgroup.

Prepared by: Zoraida Cortez

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

Sample Receipt Checklist

Client Name:	P & D Environment	al			C	Date and Time Received: 10/24/2012 7:53:28 PM							
Project Name:	#0614; 7100-7120	Dublin Blvd.			L	ogIn Rev	viewed by:		Zoraida Cortez				
WorkOrder N°:	1210834	Matrix: Soil			С	Carrier:	<u>Rob Pringle (M</u>	Al Courier)					
		<u>Cha</u>	<u>in of Cι</u>	<u>ıstody (C</u>	OC) Info	ormation	1						
Chain of custody	present?		Yes	✓	No								
Chain of custody	Yes	✓	No										
Chain of custody	Yes	✓	No										
Sample IDs note	d by Client on COC?		Yes	✓	No								
Date and Time o	f collection noted by	Client on COC?	Yes	✓	No								
Sampler's name	noted on COC?		Yes	✓	No								
Sample Receipt Information													
Custody seals in	Yes		No			NA 🗹							
Shipping contain	er/cooler in good con	dition?	Yes	✓	No								
Samples in prope	er containers/bottles?		Yes	✓	No								
Sample containe	ers intact?		Yes	✓	No								
Sufficient sample	e volume for indicated	I test?	Yes	✓	No								
		Sample Pres	ervatio	n and Ho	old Time	<u>(HT) Inf</u>	ormation						
All samples rece	ived within holding tin	ne?	Yes	✓	No								
Container/Temp	Blank temperature		Coole	r Temp:	3.2°C			NA					
Water - VOA vial	ls have zero headspa	ce / no bubbles?	Yes		No	□ No	VOA vials submi	tted 🗹					
Sample labels ch	necked for correct pre	servation?	Yes	✓	No								
Metal - pH accep	otable upon receipt (p	H<2)?	Yes		No			NA 🗹					
Samples Receive	ed on Ice?		Yes	✓	No								
		(Ісе Тур	be: WE	TICE))								
* NOTE: If the "N	lo" box is checked, s	ee comments below.											

Comments:

McCampbell Analytical, Inc.				1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com					
P & D Environmental	Client l	ent Project ID: #0614; 7100-7120			Date Sampled:	10/23/12			
	Dublin	Dublin Blvd.				: 10/24/12			
55 Santa Clara, Ste.240		Contact.	Paul K	ing	Date Extracted: 10/24/12				
		t Contact: Paul King			Date Analyzed: 10/24/12				
					. 10/29/12				
	Volatile Organ	·		d GC/MS (Basic]	Farget List)*				
Extraction Method: SW5030B		Analyt	ical Metho	od: SW8260B		Work Order: 12108	334		
Lab ID	1210834-001A								
Client ID				B1-					
Matrix			Reporting	So				Reporting	
Compound	Concentration *	DF	Limit	Compou	nd	Concentration *	DF	Limit	
Acetone	ND	1.0	0.05	tert-Amyl methyl ethe	er (TAME)	ND	1.0	0.005	
Benzene	ND	1.0	0.005	Bromobenzene		ND	1.0	0.005	
Bromochloromethane	ND	1.0	0.005	Bromodichloromethane		ND	1.0	0.005	
Bromoform	ND	1.0	0.005	Bromomethane		ND	1.0	0.005	
2-Butanone (MEK)	ND	1.0	0.02	t-Butyl alcohol (TBA	.)	ND	1.0	0.05	
n-Butyl benzene	ND	1.0	0.005	sec-Butyl benzene		ND	1.0	0.005	
tert-Butyl benzene	ND	1.0	0.005	Carbon Disulfide		ND	1.0	0.005	
Carbon Tetrachloride	ND	1.0	0.005	Chlorobenzene		ND	1.0	0.005	
Chloroethane	ND	1.0	0.005	Chloroform		ND	1.0	0.005	
Chloromethane	ND	1.0	0.005	2-Chlorotoluene		ND	1.0	0.005	
4-Chlorotoluene	ND	1.0	0.005	Dibromochloromethane		ND	1.0	0.005	
1,2-Dibromo-3-chloropropane	ND	1.0	0.004	1,2-Dibromoethane (EDB) 1,2-Dichlorobenzene		ND ND	1.0	0.004	
Dibromomethane	ND	1.0	0.005	1,4-Dichlorobenzene			1.0	0.005	
1,3-Dichlorobenzene Dichlorodifluoromethane	ND	1.0	0.005	1,1-Dichloroethane		ND ND	1.0 1.0	0.005	
	ND ND	1.0	0.003	1,1-Dichloroethene		ND	1.0	0.005	
1,2-Dichloroethane (1,2-DCA) cis-1,2-Dichloroethene	ND	1.0	0.004	trans-1,2-Dichloroethene		ND	1.0	0.005	
,	ND	1.0	0.005	1,3-Dichloropropane		ND	1.0		
1,2-Dichloropropane 2,2-Dichloropropane	ND	1.0	0.005	1,1-Dichloropropene		ND	1.0	0.005	
cis-1,3-Dichloropropene	ND	1.0	0.005	trans-1,3-Dichloropropene		ND	1.0	0.005	
Diisopropyl ether (DIPE)	ND	1.0	0.005	Ethylbenzene		ND	1.0	0.005	
Ethyl tert-butyl ether (ETBE)	ND	1.0	0.005	Freon 113		ND	1.0	0.1	
Hexachlorobutadiene	ND	1.0	0.005	Hexachloroethane		ND	1.0	0.005	
2-Hexanone	ND	1.0	0.005	Isopropylbenzene		ND	1.0	0.005	
4-Isopropyl toluene	ND	1.0	0.005	Methyl-t-butyl ether (MTBE)		ND	1.0	0.005	
Methylene chloride	ND	1.0	0.005	4-Methyl-2-pentanone (MIBK)		ND	1.0	0.005	
Naphthalene	ND	1.0	0.005	n-Propyl benzene		ND	1.0	0.005	
Styrene	ND	1.0	0.005	1,1,1,2-Tetrachloroethane		ND	1.0	0.005	
1,1,2,2-Tetrachloroethane	ND	1.0	0.005	Tetrachloroethene		ND	1.0	0.005	
Toluene	ND	1.0	0.005	1,2,3-Trichlorobenzene		ND	1.0	0.005	
1,2,4-Trichlorobenzene	ND	1.0	0.005	1,1,1-Trichloroethane		ND	1.0	0.005	
1,1,2-Trichloroethane	ND	1.0	0.005	Trichloroethene		ND	1.0	0.005	
Trichlorofluoromethane	ND	1.0	0.005	1,2,3-Trichloropropane		ND	1.0	0.005	
1,2,4-Trimethylbenzene	ND	1.0	0.005	1,3,5-Trimethylbenzene		ND	1.0	0.005	
Vinyl Chloride	ND	1.0	0.005	Xylenes, Total		ND	1.0	0.005	
		Surr	ogate R	ecoveries (%)					
%SS1:	108 %SS2:				109				
%SS3:	11	3							
Comments:									

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

McCampbell Analytical, Inc.				1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com					
P & D Environmental	Client l	ent Project ID: #0614; 7100-7120			Date Sampled	: 10/23/12			
	Dublin	Dublin Blvd.				: 10/24/12			
55 Santa Clara, Ste.240		Contact.	Paul K	inσ	Date Extracted: 10/24/12				
		Contact: Paul King							
Gakland, CA 94010						1: 10/20/12			
	Volatile Organ	ics by P	&T an	d GC/MS (Basic '	Farget List)*				
Extraction Method: SW5030B		Analyt	ical Metho	od: SW8260B		Work Order: 12108	334		
Lab ID	1210834-002A								
Client ID		B2-4.5							
Matrix	Matrix Soil							Reporting	
Compound	Concentration *	DF	Reporting Limit	Compou	nd	Concentration *	DF	Limit	
Acetone	ND	1.0	0.05	tert-Amyl methyl eth	er (TAME)	ND	1.0	0.005	
Benzene	ND	1.0	0.005	Bromobenzene		ND	1.0	0.005	
Bromochloromethane	ND	1.0	0.005	Bromodichlorometha	ine	ND	1.0	0.005	
Bromoform	ND	1.0	0.005	Bromomethane		ND	1.0	0.005	
2-Butanone (MEK)	ND	1.0	0.02	t-Butyl alcohol (TBA)		ND	1.0	0.05	
n-Butyl benzene	ND	1.0	0.005	sec-Butyl benzene		ND	1.0	0.005	
tert-Butyl benzene	ND	1.0	0.005	Carbon Disulfide		ND	1.0	0.005	
Carbon Tetrachloride	ND	1.0	0.005	Chlorobenzene		ND	1.0	0.005	
Chloroethane	ND	1.0	0.005	Chloroform		ND	1.0	0.005	
Chloromethane	ND	1.0	0.005	2-Chlorotoluene		ND	1.0	0.005	
4-Chlorotoluene	ND	1.0	0.005	Dibromochloromethane		ND	1.0	0.005	
1,2-Dibromo-3-chloropropane	ND	1.0	0.004	1,2-Dibromoethane (EDB)		ND	1.0	0.004	
Dibromomethane	ND	1.0	0.005	1,2-Dichlorobenzene		ND	1.0	0.005	
1,3-Dichlorobenzene	ND	1.0	0.005	1,4-Dichlorobenzene		ND	1.0	0.005	
Dichlorodifluoromethane	ND	1.0	0.005	1,1-Dichloroethane		ND	1.0	0.005	
1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.004	1,1-Dichloroethene		ND	1.0	0.005	
cis-1,2-Dichloroethene	ND	1.0	0.005	trans-1,2-Dichloroethene		ND	1.0	0.005	
1,2-Dichloropropane	ND	1.0	0.005	1,3-Dichloropropane		ND	1.0	0.005	
2,2-Dichloropropane	ND	1.0	0.005	1,1-Dichloropropene		ND	1.0	0.005	
cis-1,3-Dichloropropene	ND	1.0	0.005	trans-1,3-Dichloropropene		ND	1.0	0.005	
Diisopropyl ether (DIPE)	ND	1.0	0.005	Ethylbenzene		ND	1.0	0.005	
Ethyl tert-butyl ether (ETBE)	ND	1.0	0.005	Freon 113		ND	1.0	0.1	
Hexachlorobutadiene	ND	1.0	0.005	Hexachloroethane		ND	1.0	0.005	
2-Hexanone	ND	1.0	0.005	Isopropylbenzene		ND	1.0	0.005	
4-Isopropyl toluene	ND	1.0	0.005	Methyl-t-butyl ether (MTBE)		ND	1.0	0.005	
Methylene chloride	ND	1.0	0.005	4-Methyl-2-pentanone (MIBK)		ND	1.0	0.005	
Naphthalene	ND	1.0	0.005	n-Propyl benzene		ND	1.0	0.005	
Styrene	ND	1.0	0.005	1,1,1,2-Tetrachloroethane		ND	1.0	0.005	
1,1,2,2-Tetrachloroethane	ND	1.0	0.005	Tetrachloroethene		0.011	1.0	0.005	
Toluene	ND	1.0	0.005	1,2,3-Trichlorobenzene		ND	1.0	0.005	
1,2,4-Trichlorobenzene	ND	1.0	0.005	1,1,1-Trichloroethane		ND	1.0	0.005	
1,1,2-Trichloroethane	ND	1.0	0.005	Trichloroethene		ND	1.0	0.005	
Trichlorofluoromethane	ND	1.0	0.005	1,2,3-Trichloropropane		ND	1.0	0.005	
1,2,4-Trimethylbenzene	ND	1.0	0.005	1,3,5-Trimethylbenzene		ND	1.0	0.005	
Vinyl Chloride	ND	1.0	0.005	Xylenes, Total		ND	1.0	0.005	
		Surr	ogate R	ecoveries (%)					
%SS1:	101 % SS2:			%SS2:	110				
%SS3:	11	6							
Comments:									

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

McCampbell Analytical, Inc.				1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com						
P & D Environmental	Client Project ID: #0614; 7100-7120			Date Sampled:	10/23/12					
	Dublin	Dublin Blvd.				Date Received: 10/24/12				
55 Santa Clara, Ste.240		Contact: Paul King			Date Extracted: 10/24/12					
Oakland, CA 94610										
	Client P.O.: Date Analyzed: Volatile Organics by P&T and GC/MS (Basic Target List)*					10/20/12				
Extraction Method: SW5030B	Volatile Organ	•		d GC/MS (Basic 1 od: SW8260B	l'arget List)*	Work Order: 1210	834			
Lab ID										
Client ID	1210834-003A B3-4.5									
Matrix				So						
	Concentration *	DF	Reporting		Concentration *	DF	Reporting			
Compound			Limit	Compou				Limit		
Acetone	ND	1.0	0.05	tert-Amyl methyl ethe	er (TAME)	ND	1.0	0.005		
Benzene Bromochloromethane	ND	1.0 1.0	0.005	Bromobenzene	20	ND	1.0	0.005		
	ND	1.0	0.005	Bromodichlorometha	ne	ND	1.0	0.005		
Bromoform	ND		0.005	Bromomethane		ND	1.0	0.005		
2-Butanone (MEK)	ND	1.0	0.02	t-Butyl alcohol (TBA)	ND	1.0	0.05		
n-Butyl benzene	ND	1.0	0.005	sec-Butyl benzene		ND	1.0	0.005		
tert-Butyl benzene	ND	1.0	0.005	Carbon Disulfide		ND	1.0	0.005		
Carbon Tetrachloride	ND	1.0	0.005	Chlorobenzene		ND	1.0	0.005		
Chloroethane	ND	1.0	0.005	Chloroform		ND	1.0	0.005		
Chloromethane	ND	1.0	0.005	2-Chlorotoluene		ND	1.0	0.005		
4-Chlorotoluene	ND	1.0	0.005	Dibromochloromethane		ND	1.0	0.005		
1,2-Dibromo-3-chloropropane	ND	1.0	0.004	1,2-Dibromoethane (EDB)		ND	1.0	0.004		
Dibromomethane	ND	1.0	0.005	1,2-Dichlorobenzene		ND	1.0	0.005		
1,3-Dichlorobenzene	ND	1.0	0.005	1,4-Dichlorobenzene 1,1-Dichloroethane		ND	1.0	0.005		
Dichlorodifluoromethane	ND	1.0	0.005	· ·		ND	1.0	0.005		
1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.004	1,1-Dichloroethene trans-1,2-Dichloroethene		ND	1.0	0.005		
cis-1,2-Dichloroethene	ND	1.0	0.005	· · · · · · · · · · · · · · · · · · ·		ND	1.0	0.005		
1,2-Dichloropropane	ND	1.0	0.005	1,3-Dichloropropane		ND	1.0	0.005		
2,2-Dichloropropane	ND	1.0	0.005	1,1-Dichloropropene trans-1,3-Dichloropropene		ND	1.0	0.005		
cis-1,3-Dichloropropene Diisopropyl ether (DIPE)	ND ND	1.0 1.0	0.005	Ethylbenzene		ND ND	1.0 1.0	0.005		
Ethyl tert-butyl ether (ETBE)		1.0				ND	1.0			
Hexachlorobutadiene	ND ND	1.0	0.005	Freon 113		ND	1.0	0.1		
	ND	1.0	0.005	Hexachloroethane		ND	1.0			
2-Hexanone 4-Isopropyl toluene	ND	1.0	0.005	Isopropylbenzene Methyl-t-butyl ether (MTBE)		ND ND	1.0	0.005		
4-isopropyi toluene Methylene chloride	ND	1.0	0.005	4-Methyl-2-pentanone (MIBK)		ND	1.0	0.005		
	ND	1.0		n-Propyl benzene		ND ND				
Naphthalene Styrene	ND	1.0	0.005	n-Propyl benzene 1,1,1,2-Tetrachloroethane		ND	1.0 1.0	0.005		
1,1,2,2-Tetrachloroethane	ND	1.0	0.005	Tetrachloroethene		0.012	1.0	0.005		
Toluene	ND	1.0	0.005	1,2,3-Trichlorobenzene		0.012 ND	1.0	0.005		
1,2,4-Trichlorobenzene	ND	1.0	0.005	1,1,1-Trichloroethane		ND ND	1.0	0.005		
1,1,2-Trichloroethane	ND	1.0	0.005	Trichloroethene		ND	1.0	0.005		
Trichlorofluoromethane	ND	1.0	0.005	1,2,3-Trichloropropane		ND	1.0	0.005		
1,2,4-Trimethylbenzene	ND	1.0	0.005	1,2,5-Trinethylbenzene		ND	1.0	0.005		
Vinyl Chloride	ND	1.0	0.005	1,3,5-1rimethylbenzene Xylenes, Total		ND	1.0	0.005		
, myr Chloride	nD						1.0	0.005		
Surrogate Recoveries (%) %SS1: 98 %SS2: 109										
%SS1:	98 %SS2:			%552:		10	9			
%SS3:	11	ð		1						
Comments:										

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

	Analytical ality Counts''	<u>, Inc.</u>	Toll Free Teleph	Pass Road, Pittsburg, CA one: (877) 252-9262 / Fax npbell.com / E-mail: main	: (925) 252-9269			
P & D Environmental	Client Pr Dublin F	roject ID: #061 Blvd.	4; 7100-7120	Date Sampled:				
55 Santa Clara, Ste.240				Date Received:	red: 10/24/12			
	Client C	ontact: Paul Kin	g	Date Extracted:	10/24/12			
Oakland, CA 94610	Client P.	0.:		Date Analyzed:	10/26/12			
Gasoline Range (C6-C12) St Extraction Method: SW5030B		Range (C9-C12 alytical Method: SW802	· •	ocarbons with B'	TEX & MT Work Order:			
Lab ID	1210834-001A	1210834-002A	1210834-003A					
Client ID	B1-4.5	B2-4.5	B3-4.5		Reporting DF			
Matrix	S	S	S		_			
DF	1	1	1		S	W		
Compound		Conc	entration		mg/Kg	ug/L		
TPH(g)	ND	ND	ND		1.0	NA		
TPH(ss)	ND	ND	ND		1.0	NA		
MTBE	ND	ND	ND		0.05	NA		
Benzene	ND	ND	ND		0.005	NA		
Toluene	ND	ND	ND		0.005	NA		
Ethylbenzene	ND	ND	ND		0.005	NA		
Xylenes	ND	ND	ND		0.005	NA		
	Surr	ogate Recoverie	s (%)					
%SS:	93	94	97					
Comments								
%SS: Comments * water and vapor samples are reported in μ and all TCLP & SPLP extracts in mg/L. # cluttered chromatogram; sample peak coel Surrogate Standard; DF = Dilution Factor	93 g/L, soil/sludge/solid	94 samples in mg/kg,	97 wipe samples in µg/v					

The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

<u>McCampbell</u> "When Qua	Analytical lity Counts''	<u>, Inc.</u>	Toll Free Telephor	Pass Road, Pittsburg, CA ne: (877) 252-9262 / Fax: bbell.com / E-mail: main@	(925) 252-9269				
P & D Environmental		oject ID: #0614	;7100-7120	Date Sampled:	10/23/12				
55 Santa Clara. Ste.240	Dublin B	lvd.	Date Received:	10/24/12					
55 Santa Clara, Stc.240	Client Co	ontact: Paul Kin	g	Date Extracted:	1: 10/24/12				
Oakland, CA 94610	Client P.	0.:		Date Analyzed:	10/29/12-10/	30/12			
	Total Ext	ractable Petrole	eum Hydrocarbo	ons*					
Extraction Method: SW3550B	Ana	alytical Method: SW801	5B		Work Order: 1210	834			
Lab ID	1210834-001A	1210834-002A	1210834-003A						
Client ID	B1-4.5	B2-4.5	B3-4.5		Reporting DF				
Matrix	S	S	S						
DF	1	1	1		S	W			
Compound		Conc	entration		mg/Kg	ug/L			
TPH-Diesel (C10-C23)	2.1	1.4	1.1		1.0	NA			
TPH-Motor Oil (C18-C36)	ND	ND	ND		5.0	NA			
TPH-Bunker Oil (C10-C36)	ND	ND	ND		5.0	NA			
TPH-Kerosene (C9-C18)	1.1	ND	ND		1.0	NA			
		Surrogate Reco	veries (%)						
%SS	104	99	109						
Comments	e2	e2	e2						
^k water samples are reported in μg/L, wipe s DISTLC / STLC / SPLP / TCLP extracts are t cluttered chromatogram resulting in coelut	reported in µg/L.		ate peak is on elevate						

The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: e2) diesel range compounds are significant; no recognizable pattern

QC SUMMARY REPORT FOR SW8260B

EPA Method: SW8260B	Extraction: SW5030B					;	Spiked Sam	ple ID:	1210799-001A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	Acc	eptance	Criteria (%)
Analyte	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS
tert-Amyl methyl ether (TAME)	ND	0.050	97.6, F1	80.2	19.6	79.1	56 - 94	30	70 - 130
Benzene	ND	0.050	103	83.6	20.8	84.3	60 - 106	30	70 - 130
t-Butyl alcohol (TBA)	ND	0.20	125	121	3.56	100	56 - 140	30	70 - 130
Chlorobenzene	ND	0.050	107	82.1	26.7	88.1	61 - 108	30	70 - 130
1,2-Dibromoethane (EDB)	ND	0.050	110	85.1	25.3	86.3	54 - 119	30	70 - 130
1,2-Dichloroethane (1,2-DCA)	ND	0.050	97.2	80.5	18.8	79	48 - 115	30	70 - 130
1,1-Dichloroethene	ND	0.050	89.4	79.1	12.2	84.3	46 - 111	30	70 - 130
Diisopropyl ether (DIPE)	ND	0.050	109	91.8	16.8	89.3	53 - 111	30	70 - 130
Ethyl tert-butyl ether (ETBE)	ND	0.050	107, F1	89.8	17.6	87	61 - 104	30	70 - 130
Methyl-t-butyl ether (MTBE)	ND	0.050	114, F1	94	18.9	87.8	58 - 107	30	70 - 130
Toluene	ND	0.050	119, F1	91	26.3	98	64 - 114	30	70 - 130
Trichloroethene	ND	0.050	93.1	75.1	21.4	80.5	60 - 116	30	70 - 130
%SS1:	98	0.12	87	95	8.07	87	70 - 130	30	70 - 130
%SS2:	112	0.12	109	109	0	109	70 - 130	30	70 - 130
%SS3:	112	0.012	111	108	2.77	111	70 - 130	30	70 - 130
All target compounds in the Method Blank NONE	of this extraction batch were ND	less than th	e method	RL with th	he following	g exceptior	is:		
F1 = MS/MSD recovery was out of accepta	nce criteria; LCS validated the pro	ep batch.							

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1210834-001A	10/23/12 9:00 AM	10/24/12	10/29/12 9:49 PM	1210834-002A	10/23/12 8:15 AM	10/24/12	10/26/12 10:09 PM
1210834-003A	10/23/12 12:35 PM	10/24/12	10/26/12 10:48 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

DHS ELAP Certification 1644

A QA/QC Officer

QC SUMMARY REPORT FOR SW8021B/8015Bm

W.O. Sample Matrix: Soil	QC Matrix:	Soil			BatchID	: 71873		WorkO	rder: 1210834
EPA Method: SW8021B/8015Bm Extraction: S	W5030B				D MS-MSD LCS ac. % RPD % Re a 1.96 114 a 7.57 100 a 4.28 108 7 0.746 108 3 12.7 111 1 17.4 114 3.24 105		Spiked Sam	ple ID:	1210766-012A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	Acc	eptance	Criteria (%)
	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS
TPH(btex) [£]	ND	0.60	111	113	1.96	114	70 - 130	20	80 - 120
MTBE	ND	0.10	95.7	103	7.57	100	70 - 130	20	80 - 120
Benzene	ND	0.10	101	96.3	4.28	108	70 - 130	20	80 - 120
Toluene	ND	0.10	99.5	98.7	0.746	108	70 - 130	20	80 - 120
Ethylbenzene	ND	0.10	113	99.8	12.7	111	70 - 130	20	80 - 120
Xylenes	ND	0.30	121	102	17.4	114	70 - 130	20	80 - 120
%SS:	108	0.10	101	98	3.24	105	70 - 130	20	70 - 130
All target compounds in the Method Blank of this extraction ba NONE	tch were ND	less than th	e method	RL with tl	ne following	g exceptio	ns:		

BATCH 71873 SUMMARY										
Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed			
1210834-001A	10/23/12 9:00 AM	10/24/12	10/26/12 6:13 AM							

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

 \pounds TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

QC SUMMARY REPORT FOR SW8021B/8015Bm

W.O. Sample Matrix: Soil	QC Matrix:	Soil			BatchID	: 71925	WorkOrder: 1210834			
EPA Method: SW8021B/8015Bm Extraction: S	W5030B						Spiked Sam	ple ID:	1210828-004A	
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	Acc	eptance	Criteria (%)	
	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS	
TPH(btex) [£]	3.2	0.60	NR	NR	NR	108	N/A	N/A	80 - 120	
MTBE	ND<0.25	0.10	NR	NR	NR	95.7	N/A	N/A	80 - 120	
Benzene	ND<0.025	0.10	NR	NR	NR	101	N/A	N/A	80 - 120	
Toluene	ND<0.025	0.10	NR	NR	NR	109	N/A	N/A	80 - 120	
Ethylbenzene	ND<0.025	0.10	NR	NR	NR	115	N/A	N/A	80 - 120	
Xylenes	0.03	0.30	NR	NR	NR	117	N/A	N/A	80 - 120	
%SS:	111	0.10	NR	NR	NR	110	N/A	N/A	70 - 130	
All target compounds in the Method Blank of this extraction ba NONE	tch were ND	less than th	e method	RL with th	he following	g exceptio	ns:			

BATCH 71925 SUMMARY											
Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed				
1210834-002A	10/23/12 8:15 AM	10/24/12	10/26/12 6:42 AM	1210834-003A	10/23/12 12:35 PM	10/24/12	10/26/12 7:11 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

QA/QC Officer

QC SUMMARY REPORT FOR SW8015B

W.O. Sample Matrix: Soil	QC Matrix:	Soil			BatchID	: 71874	WorkOrder: 1210834		
EPA Method: SW8015B Ext	raction: SW3550B						Spiked Sam	ple ID:	1210766-012A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	Acc	eptance	Criteria (%)
	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS
TPH-Diesel (C10-C23)	ND	40	103	103	0	104	70 - 130	30	70 - 130
%SS:	90	25	90	89	0.434	88	70 - 130	30	70 - 130
All target compounds in the Method Blank of this e NONE	extraction batch were ND	less than th	e method	RL with th	ne following	g exception	ns:		

BATCH 71874 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1210834-001A	10/23/12 9:00 AM	I 10/24/12	10/29/12 12:11 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

DHS ELAP Certification 1644

K_____QA/QC Officer

QC SUMMARY REPORT FOR SW8015B

W.O. Sample Matrix: Soil	QC Matrix:	Soil			BatchID	: 71928	WorkOrder: 1210834		
EPA Method: SW8015B	Extraction: SW3550B					:	Spiked Sam	ple ID:	1210834-003A
Analyte	Sample	Spiked	MS	MSD	MS-MSD LCS Acceptance C			Criteria (%)	
	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS
TPH-Diesel (C10-C23)	1.1	40	118	123	3.47	100	70 - 130	30	70 - 130
%SS:	109	25	109	112	2.94	82	70 - 130	30	70 - 130
All target compounds in the Method Blank of NONE	this extraction batch were ND	less than th	e method	RL with th	ne following	g exception	18:		

BATCH 71928 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1210834-002A	10/23/12 8:15 AM	I 10/24/12	10/29/12 1:20 PM	1210834-003A	10/23/12 12:35 PM	I 10/24/12	10/30/12 3:25 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

DHS ELAP Certification 1644

QA/QC Officer

McCampbell Analytical, Inc. "When Quality Counts"

Analytical Report

P & D Environmental	Client Project ID: #0614; 7100-7120 Dublin Blvd.	Date Sampled: 10/23/12
55 Santa Clara, Ste.240		Date Received: 10/24/12
55 Sunta Chata, 510.2 10	Client Contact: Paul King	Date Reported: 10/30/12
Oakland, CA 94610	Client P.O.:	Date Completed: 10/29/12

WorkOrder: 1210837

October 31, 2012

Dear Paul:

Enclosed within are:

- 1) The results of the 2 analyzed samples from your project: #0614; 7100-7120 Dublin Blvd.,
- 2) QC data for the above samples, and
- 3) A copy of the chain of custody.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits. If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

The analytical results relate only to the items tested.

		C	HA	IN C	FC	USTODY	RE	CC	DR	D	•	(21	08	31	PAGE OF
	P&D	ENVIF 55 Santa Oal	Clara A Clara A kland, C 510) 65	MEN Ave., Su CA 9461 8-6916	TAL iite 240	, INC.				100.00	1/	7	/	//	[]	
	project number: 0614		710			ablin Blod.	NUMBER OF CONTAINERS	ANALVES		8260 455 K						H2
	SAMPLED BY: (PRIN MICHAEL DESCHEN SAMPLE NUMBER		Juli	-1	Yana a	dener MPLE LOCATION	VUMBER OF (Pri AN	HIN THINK	*			/	/	PRESFIE	REMARKS
++	BH-W BS-W	10/23/12					7	XX	×		\square		/		ICE	Wormal Turn Around
										-	-					
											0	E/t°	OND	FION		A 1///// 11111 1/9/0
												EAD S ECHLO RESEI	RINA	VO	T HLAB AS O	APPROPRIATE CONTAINERS PRESERVED IN LAB
	RELINQUISHED BY: (SIGNAT	URE)		DATH	21/1	RECEIVED BY: (SIG	INATU	RE	1	Tota	I No. of Shipme	Samples			LABOI	RATORY:
-	RELINQUISHED BY: (SIGNAT	URE	- 10	DATE DATE	1377 TIME	RECEIVED BY: (SK		RE)	~	LAI	I No. of 0 s Shipme BORAT	ORY (CONI	ACT:	LABOR	ANBELL ANALYTICAL RATORY PHONE NUMBER:
	RELINQUISHED BY: (SIGNAT	URE)	1	DATE	TIME	RECEIVED FOR LAI (SIGNATURE)		V		SA	MPLE	ANĂĬ ED:	YSIS (REQU) YE	JEST SI S	heet (X) No
	Results and billing to: P&D Environmental, Inc. lab@pdenviro.com						VOA.						UBE	12 0	ONT	AINERS

McCampbell Analytical, Inc.

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

Pittsburg, CA 94565-1701 (925) 252-9262				WorkOr	der: 1210837	Clie	ntCode: PDEO		
	WaterTrax	WriteOn	EDF	Excel	EQuIS	✓ Email	HardCopy	ThirdParty	J-flag
Report to:				Bill	to:		Requ	lested TAT:	5 days
Paul King	Email: I	ab@pdenviro.co	m		Accounts Pay	able			
P & D Environmental	CC:				P & D Environ	mental			
55 Santa Clara, Ste.240	PO:				55 Santa Clar	a, Ste.240	Date	e Received:	10/24/2012
Oakland, CA 94610	ProjectNo: #	#0614; 7100-712	0 Dublin Blvd.		Oakland, CA S	94610	Date	e Printed:	10/24/2012
(510) 658-6916 FAX: 510-834-0152									

							Re	questec	l Tests (See leg	end bel	ow)			
Lab ID	Client ID	Matrix	Collection Date Hold	1	2	3	4	5	6	7	8	9	10	11	12
1210837-001	B4-W	Water	10/23/2012 10:00	Α	В										
1210837-002	B5-W	Water	10/23/2012 12:05	Α	В										

Test Legend:

1	8260B_W
6	
11	

2	G-MBTEX_W
7	
12	

ir		

4 9

5	
10	

The following SampIDs: 001B, 002B contain testgroup.

Prepared by: Zoraida Cortez

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

Sample Receipt Checklist

Client Name:	P & D Environme	ental			Dat	e and [·]	Time Received:	10/24/2012	8:48:48 PM
Project Name:	#0614; 7100-712	0 Dublin Blvd.			Log	In Rev	viewed by:		Zoraida Cortez
WorkOrder N°:	1210837	Matrix: Water			Car	rier:	<u>Rob Pringle (M</u>	Al Courier)	
		<u>Cha</u>	in of Cu	stody (C	OC) Inform	nation	l		
Chain of custody	present?		Yes	✓	No]			
Chain of custody	signed when reline	quished and received?	Yes	✓	No]			
Chain of custody	agrees with samp	e labels?	Yes	✓	No]			
Sample IDs note	d by Client on COC	??	Yes	✓	No]			
Date and Time o	f collection noted b	y Client on COC?	Yes	✓	No]			
Sampler's name	noted on COC?		Yes	✓	No]			
			<u>Sample</u>	Receipt	Informatio	<u>on</u>			
Custody seals in	tact on shipping co	ntainer/cooler?	Yes		No]		NA 🖌	
Shipping contain	er/cooler in good c	ondition?	Yes	✓	No]			
Samples in prope	er containers/bottle	s?	Yes	✓	No]			
Sample containe	ers intact?		Yes	✓	No]			
Sufficient sample	e volume for indicat	ed test?	Yes	✓	No]			
		Sample Pres	ervation	n and Ho	old Time (H	<u>T) Info</u>	ormation		
All samples rece	ived within holding	time?	Yes	✓	No]			
Container/Temp	Blank temperature		Coole	r Temp:	3.4°C			NA	
Water - VOA vial	ls have zero heads	pace / no bubbles?	Yes	✓	No	No	VOA vials submi	tted	
Sample labels ch	necked for correct p	preservation?	Yes	✓	No]			
Metal - pH accep	otable upon receipt	(pH<2)?	Yes		No]		NA 🖌	
Samples Receive	ed on Ice?		Yes	✓	No]			
		(Ісе Тур	e: WE	TICE))				
* NOTE: If the "N	lo" box is checked,	see comments below.							

Comments:

	ll Analytica Quality Counts''	l <u>, Inc</u> .		Toll Free Teleph	Pass Road, Pittsburg, CA one: (877) 252-9262 / Fa npbell.com / E-mail: mair	x: (925) 252-9269		
P & D Environmental			: #0	514; 7100-7120	Date Sampled:	10/23/12		
	Dublin	Blvd.			Date Received:	10/24/12		
55 Santa Clara, Ste.240	Client (Contact: I	Paul K	ing	Date Extracted:	10/27/12		
Oakland, CA 94610			aurn	ling				
Oakland, CA 94010	Client I				Date Analyzed	: 10/2//12		
	Volatile Organ	ics by Pð	zT an	d GC/MS (Basic '	Farget List)*			
Extraction Method: SW5030B		Analytic	al Meth	od: SW8260B		Work Order: 12108	337	
Lab ID				121083				
Client ID				B4				
Matrix		τ	eporting	Wa	iter			Reporting
Compound	Concentration *	DF	Limit	Compou	nd	Concentration *	DF	Limit
Acetone	ND<100	10	10	tert-Amyl methyl eth	er (TAME)	ND<5.0	10	0.5
Benzene	ND<5.0	10	0.5	Bromobenzene		ND<5.0	10	0.5
Bromochloromethane	ND<5.0	10	0.5	Bromodichlorometha	ne	ND<5.0	10	0.5
Bromoform	ND<5.0	10	0.5	Bromomethane		ND<5.0	10	0.5
2-Butanone (MEK)	ND<20	10	2.0	t-Butyl alcohol (TBA	.)	ND<20	10	2.0
n-Butyl benzene	ND<5.0	10	0.5	sec-Butyl benzene		ND<5.0	10	0.5
tert-Butyl benzene	ND<5.0	10	0.5	Carbon Disulfide		ND<5.0	10	0.5
Carbon Tetrachloride	ND<5.0	10	0.5	Chlorobenzene		ND<5.0	10	0.5
Chloroethane	ND<5.0	10	0.5	Chloroform		ND<5.0	10	0.5
Chloromethane	ND<5.0	10	0.5	2-Chlorotoluene		ND<5.0	10	0.5
4-Chlorotoluene	ND<5.0	10	0.5	Dibromochlorometha	ine	ND<5.0	10	0.5
1,2-Dibromo-3-chloropropane	ND<2.0	10	0.2	1,2-Dibromoethane (EDB)	ND<5.0	10	0.5
Dibromomethane	ND<5.0	10	0.5	1,2-Dichlorobenzene		ND<5.0	10	0.5
1,3-Dichlorobenzene	ND<5.0	10	0.5	1,4-Dichlorobenzene		ND<5.0	10	0.5
Dichlorodifluoromethane	ND<5.0	10	0.5	1,1-Dichloroethane		ND<5.0	10	0.5
1,2-Dichloroethane (1,2-DCA)	ND<5.0	10	0.5	1,1-Dichloroethene		ND<5.0	10	0.5
cis-1,2-Dichloroethene	220	10	0.5	trans-1,2-Dichloroeth	iene	ND<5.0	10	0.5
1,2-Dichloropropane	ND<5.0	10	0.5	1,3-Dichloropropane		ND<5.0	10	0.5
2,2-Dichloropropane	ND<5.0	10	0.5	1,1-Dichloropropene		ND<5.0	10	0.5
cis-1,3-Dichloropropene	ND<5.0	10	0.5	trans-1,3-Dichloropro	opene	ND<5.0	10	0.5
Diisopropyl ether (DIPE)	ND<5.0	10	0.5	Ethylbenzene		ND<5.0	10	0.5
Ethyl tert-butyl ether (ETBE)	ND<5.0	10	0.5	Freon 113		ND<100	10	10
Hexachlorobutadiene	ND<5.0	10	0.5	Hexachloroethane		ND<5.0	10	0.5
2-Hexanone	ND<5.0	10	0.5	Isopropylbenzene		ND<5.0	10	0.5
4-Isopropyl toluene	ND<5.0	10	0.5	Methyl-t-butyl ether		ND<5.0	10	0.5
Methylene chloride	ND<5.0	10	0.5	4-Methyl-2-pentanon	e (MIBK)	ND<5.0	10	0.5
Naphthalene	ND<5.0	10	0.5	n-Propyl benzene		ND<5.0	10	0.5
Styrene	ND<5.0	10	0.5	1,1,1,2-Tetrachloroet	hane	ND<5.0	10	0.5
1,1,2,2-Tetrachloroethane	ND<5.0	10	0.5	Tetrachloroethene		ND<5.0	10	0.5
Toluene	ND<5.0	10	0.5	1,2,3-Trichlorobenze		ND<5.0	10	0.5
1,2,4-Trichlorobenzene	ND<5.0	10	0.5	1,1,1-Trichloroethane	2	ND<5.0	10	0.5
1,1,2-Trichloroethane	ND<5.0	10	0.5	Trichloroethene		ND<5.0	10	0.5
Trichlorofluoromethane	ND<5.0	10	0.5	1,2,3-Trichloropropa		ND<5.0	10	0.5
1,2,4-Trimethylbenzene	ND<5.0	10	0.5	1,3,5-Trimethylbenze	ene	ND<5.0	10	0.5
Vinyl Chloride	ND<5.0	10	0.5	Xylenes, Total		ND<5.0	10	0.5
			gate R	ecoveries (%)		T		
%SS1:	8			%SS2:		112	2	
%SS3:	10	9						
Comments:								

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

McCampbel	l Analytica Quality Counts''	l <u>, Inc.</u>		Toll Free Telepho	Pass Road, Pittsburg, CA one: (877) 252-9262 / Fa npbell.com / E-mail: mair	x: (925) 252-9269		
P & D Environmental			D: #00	514; 7100-7120	Date Sampled:	10/23/12		
	Dublin	Blvd.			Date Received:	10/24/12		
55 Santa Clara, Ste.240	Client (Contact:	Paul K	ing	Date Extracted:	10/27/12		
Oakland, CA 94610	Client H				Date Analyzed			
						10/27/12		
	Volatile Organ	•		d GC/MS (Basic 7	Farget List)*	W 1.0.1 10100		
Extraction Method: SW5030B		Anaiyu	cal Meth	od: SW8260B		Work Order: 12108	537	
Lab ID				121083				
Client ID Matrix				B5- Wa				
	a	DE	Reporting				DE	Reporting
Compound	Concentration *	DF	Limit	Compou		Concentration *	DF	Limit
Acetone	ND	1.0	10	tert-Amyl methyl ethe	er (TAME)	ND	1.0	0.5
Benzene	ND	1.0	0.5	Bromobenzene		ND	1.0	0.5
Bromochloromethane	ND	1.0	0.5	Bromodichlorometha	ne	ND	1.0	0.5
Bromoform	ND	1.0	0.5	Bromomethane	、 、	ND	1.0	0.5
2-Butanone (MEK)	ND	1.0	2.0	t-Butyl alcohol (TBA)	ND	1.0	2.0
n-Butyl benzene	ND	1.0	0.5	sec-Butyl benzene		ND	1.0	0.5
tert-Butyl benzene	ND	1.0	0.5	Carbon Disulfide		ND	1.0	0.5
Carbon Tetrachloride	ND	1.0	0.5	Chlorobenzene		ND	1.0	0.5
Chloroethane	ND	1.0	0.5	Chloroform		ND	1.0	0.5
Chloromethane	ND	1.0	0.5	2-Chlorotoluene		ND	1.0	0.5
4-Chlorotoluene	ND	1.0	0.5	Dibromochlorometha		ND	1.0	0.5
1,2-Dibromo-3-chloropropane	ND	1.0	0.2	1,2-Dibromoethane (1	,	ND	1.0	0.5
Dibromomethane	ND	1.0	0.5	1,2-Dichlorobenzene		ND	1.0	0.5
1,3-Dichlorobenzene	ND	1.0	0.5	1,4-Dichlorobenzene		ND	1.0	0.5
Dichlorodifluoromethane	ND	1.0	0.5	1,1-Dichloroethane		ND	1.0	0.5
1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.5	1,1-Dichloroethene		ND	1.0	0.5
cis-1,2-Dichloroethene	ND	1.0	0.5	trans-1,2-Dichloroeth	iene	ND	1.0	0.5
1,2-Dichloropropane	ND	1.0	0.5	1,3-Dichloropropane		ND	1.0	0.5
2,2-Dichloropropane	ND	1.0	0.5	1,1-Dichloropropene		ND ND	1.0	0.5
cis-1,3-Dichloropropene Diisopropyl ether (DIPE)	ND ND	1.0 1.0	0.5	trans-1,3-Dichloropro Ethylbenzene	opene	ND	1.0 1.0	0.5
		1.0	0.5	Freon 113		ND	1.0	10
Ethyl tert-butyl ether (ETBE) Hexachlorobutadiene	ND ND	1.0	0.5	Hexachloroethane		ND	1.0	0.5
2-Hexanone	ND	1.0	0.5	Isopropylbenzene		ND	1.0	0.5
4-Isopropyl toluene	ND	1.0	0.5	Methyl-t-butyl ether ((MTRF)	ND	1.0	0.5
Methylene chloride	ND	1.0	0.5	4-Methyl-2-pentanon	· · · · · · · · · · · · · · · · · · ·	ND	1.0	0.5
Naphthalene	ND	1.0	0.5	n-Propyl benzene		ND	1.0	0.5
Styrene	ND	1.0	0.5	1,1,1,2-Tetrachloroet	hane	ND	1.0	0.5
1,1,2,2-Tetrachloroethane	ND	1.0	0.5	Tetrachloroethene	nune	ND	1.0	0.5
Toluene	ND	1.0	0.5	1,2,3-Trichlorobenzer	ne	ND	1.0	0.5
1,2,4-Trichlorobenzene	ND	1.0	0.5	1,1,1-Trichloroethane		ND	1.0	0.5
1,1,2-Trichloroethane	ND	1.0	0.5	Trichloroethene	~	ND	1.0	0.5
Trichlorofluoromethane	ND	1.0	0.5	1,2,3-Trichloropropa	ne	ND	1.0	0.5
1,2,4-Trimethylbenzene	ND	1.0	0.5	1,3,5-Trimethylbenze		ND	1.0	0.5
Vinyl Chloride	ND	1.0	0.5	Xylenes, Total		ND	1.0	0.5
<u></u>	1,125	1		ecoveries (%)		1.120	1.0	0.0
%SS1:	90		igate K	%SS2:		111	1	
%SS3:	10			70332.		111	L	
70.000.	10	17						

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

	''When Quality (Counts''	http://www.mcca	mpbell.com / E-mail: main@	nccampbel	l.com		
P & D Enviro	nmental	Client Project ID Dublin Blvd.	b : #0614; 7100-7120	Date Sampled:	10/23	8/12		
55 Santa Clare	Sto 240	Dubini Biva.		Date Received:	10/24	/12		
55 Santa Clara	a, Ste.240	Client Contact:	Paul King	Date Extracted:	10/25	5/12-10/2	26/12	
Oakland, CA 9	94610	Client P.O.:		Date Analyzed:	10/25/12-10/26/12			
		-	Hydrocarbons as Gasolin	ne & Stoddard Solven				
Extraction method:	SW5030B	Analytical met				ork Order:		
Lab ID	Client ID	Matrix	TPH(g)	TPH(ss)	DF	% SS	Comments	
1210837-001B	B4-W	W	ND	ND	1	103		
1210837-002B	B5-W	W	ND	ND	1	85		
Re	porting Limit for $DF = 1$;	W	50	50			r	
ND	D means not detected at or bove the reporting limit	S	NA	NA SU		μg/. mg/I		

* water and vapor samples are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples and all TCLI & SPLP extracts in mg/L.

cluttered chromatogram; sample peak coelutes w/surrogate peak; low surrogate recovery due to matrix interference. %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

DHS ELAP Certification 1644

Angela Rydelius, Lab Manager

		alytical _{Counts} ''	<u>, Inc.</u>		Toll Free Teleph	Pass Road, Pittsburg, CA one: (877) 252-9262 / Fax: npbell.com / E-mail: main@	(925) 252-9269	
P & D Environmental				#0614	; 7100-7120	Date Sampled:	10/23/12	
55 Santa Clara, Ste.240		Dublin Blvd.				Date Received:	10/24/12	
55 Salita Claia, Ste.240		Client Contact: Paul King				Date Extracted:	10/24/12	
Oakland, CA 94610		Client P.	0.:		Date Analyzed:	10/29/12-	10/30/12	
Extraction Method: SW3510C	ŗ		table Petr		Hydrocarbons 5B	*	Work Order:	1210837
Lab	ID 12	210837-001B	1210837-	-002B				
Client	ID	B4-W	B5-V	N			Reporting DF	Limit for $T=1$
Ma	rix	W	W				-	
	DF	1 1				S	W	
Compound				Conce	entration		ug/kg	μg/L
TPH-Diesel (C10-C23)		ND	ND	,			NA	50
TPH-Motor Oil (C18-C36)		280	ND	1			NA	250
TPH-Bunker Oil (C10-C36)		310	270)			NA	100
TPH-Kerosene (C9-C18)		ND	ND	1			NA	50
	<u> </u>	Surro	ogate Rec	overies	(%)	·		
%SS:		76	93					
Comments		e7	e7				•	

liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in µg/L.

cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: e7) oil range compounds are significant

Angela Rydelius, Lab Manager

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Water	QC Matrix:	Water			BatchID	: 72003		WorkO	rder: 1210837
EPA Method: SW8260B Extraction: S	W5030B					ę	Spiked Sam	ple ID:	1210851-002A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	Acc	eptance	Criteria (%)
	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS
tert-Amyl methyl ether (TAME)	ND	10	102	101	0.976	103	70 - 130	20	70 - 130
Benzene	ND	10	91.1	92.6	1.60	96.1	70 - 130	20	70 - 130
t-Butyl alcohol (TBA)	ND	40	106	105	1.18	110	70 - 130	20	70 - 130
Chlorobenzene	ND	10	90.3	90.7	0.487	95.2	70 - 130	20	70 - 130
1,2-Dibromoethane (EDB)	ND	10	102	100	1.21	105	70 - 130	20	70 - 130
1,2-Dichloroethane (1,2-DCA)	ND	10	95.8	93.5	2.46	93.1	70 - 130	20	70 - 130
1,1-Dichloroethene	2.4	10	95.6	98.9	2.78	104	70 - 130	20	70 - 130
Diisopropyl ether (DIPE)	ND	10	99.5	99.8	0.279	102	70 - 130	20	70 - 130
Ethyl tert-butyl ether (ETBE)	ND	10	101	99.9	0.643	102	70 - 130	20	70 - 130
Methyl-t-butyl ether (MTBE)	ND	10	100	98.8	1.37	103	70 - 130	20	70 - 130
Toluene	ND	10	87.3	89.9	2.95	93.6	70 - 130	20	70 - 130
Trichloroethene	ND	10	90.6	91.6	1.16	97.6	70 - 130	20	70 - 130
%SS1:	84	25	86	86	0	85	70 - 130	20	70 - 130
%SS2:	114	25	111	111	0	111	70 - 130	20	70 - 130
%SS3:	108	2.5	105	106	1.15	106	70 - 130	20	70 - 130
All target compounds in the Method Blank of this extraction ba NONE	tch were ND	less than th	e method	RL with t	he following	g exception	s:		

BATCH 72003 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1210837-001A	10/23/12 10:00 AM	1 10/27/12	10/27/12 4:57 AM	1210837-002A	10/23/12 12:05 PM	10/27/12	10/27/12 5:35 AM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

QC SUMMARY REPORT FOR SW8021B/8015Bm

W.O. Sample Matrix: Water	QC Matrix:	Water			BatchID	: 71976		WorkO	rder: 1210837
EPA Method: SW8021B/8015Bm Extraction: S	W5030B						Spiked Sam	ple ID:	1210838-004A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	Acc	eptance	Criteria (%)
	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS
TPH(btex) [£]	7300	60	NR	NR	NR	105	N/A	N/A	80 - 120
MTBE	ND<500	10	NR	NR	NR	80.4	N/A	N/A	80 - 120
Benzene	1800	10	NR	NR	NR	95.4	N/A	N/A	80 - 120
Toluene	57	10	NR	NR	NR	98.5	N/A	N/A	80 - 120
Ethylbenzene	2500	10	NR	NR	NR	98.4	N/A	N/A	80 - 120
Xylenes	2900	30	NR	NR	NR	102	N/A	N/A	80 - 120
%SS:	115	10	NR	NR	NR	91	N/A	N/A	70 - 130
All target compounds in the Method Blank of this extraction ba NONE	tch were ND	less than th	e method	RL with t	he following	g exceptio	ns:		

			BATCH 71976 SI	UMMARY				
Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed	
1210837-001B	10/23/12 10:00 AM	10/25/12	10/25/12 2:53 PM					

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

 \pounds TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content, or inconsistency in sample containers.

QA/QC Officer

QC SUMMARY REPORT FOR SW8021B/8015Bm

W.O. Sample Matrix: Water	QC Matrix:	Water			BatchID	: 72010		WorkO	rder: 1210837
EPA Method: SW8021B/8015Bm Extraction: S	W5030B						Spiked Sam	ple ID:	1210837-002A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	Acc	eptance	Criteria (%)
	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS
TPH(btex) [£]	ND	60	109	112	2.50	107	70 - 130	20	80 - 120
MTBE	ND	10	93.8	98.4	4.82	80.2	70 - 130	20	80 - 120
Benzene	ND	10	103	103	0	99.3	70 - 130	20	80 - 120
Toluene	ND	10	105	105	0	100	70 - 130	20	80 - 120
Ethylbenzene	ND	10	105	104	0.650	101	70 - 130	20	80 - 120
Xylenes	ND	30	108	107	0.782	104	70 - 130	20	80 - 120
%SS:	85	10	93	92	0.848	97	70 - 130	20	70 - 130
All target compounds in the Method Blank of this extraction ba NONE	tch were ND	less than th	e method	RL with th	ne following	g exception	ns:		

			BATCH 72010 SI	UMMARY			
Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1210837-002B	10/23/12 12:05 PM	10/26/12	10/26/12 3:09 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

 \pounds TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content, or inconsistency in sample containers.

QA/QC Officer

QC SUMMARY REPORT FOR SW8015B

W.O. Sample Matrix: Water QC Matrix: Water					BatchID	: 71829		WorkOrder: 1210837		
EPA Method: SW8015B	Extraction: SW3510C	/3510C				Spike			N/A	
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	Acc	eptance	Criteria (%)	
	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS	
TPH-Diesel (C10-C23)	N/A	1000	N/A	N/A	N/A	109	N/A	N/A	70 - 130	
%SS:	N/A	625	N/A	N/A	N/A	88	N/A	N/A	70 - 130	
All target compounds in the Method Blank of NONE	of this extraction batch were ND	less than th	e method	RL with t	he following	g exceptior	is:	*	-	

BATCH 71829 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1210837-001B	10/23/12 10:00 AM	10/24/12	10/30/12 4:25 AM	1210837-002B	10/23/12 12:05 PM	I 10/24/12	10/29/12 2:44 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

DHS ELAP Certification 1644

K_____QA/QC Officer

APPENDIX E

HERD December 2011 Vapor Intrusion Risk and Hazard Calculation Work Sheets

DATA ENTRY SHEET

SG-SCREEN A Version 2.0; 04/		Soil	Gas Concentratio	n Data		DTSC Vapor Intrusion Guidance Interim Final 12/04	
Reset to Defaults	ENTER Chemical CAS No. (numbers only,	ENTER Soil gas conc., C _g	OR	ENTER Soil gas conc., C _g		(last modified 12/6/2011)	
	no dashes)	(µg/m ³)	•	(ppmv)		Chemical	
	127184	5.40E+04]			Tetrachloroethylene	
	ENTER Depth	ENTER	ENTER	ENTER		ENTER	
MORE	below grade	Soil gas		Vadose zone		User-defined	
₩ORE ↓	to bottom of enclosed space floor,	sampling depth below grade,	Average soil temperature,	SCS soil type (used to estimate	OR	vadose zone soil vapor permeability,	
-	to bottom of enclosed	sampling depth	soil	SCS soil type	OR	vadose zone soil vapor	

	ENTER	ENTER	ENTER	ENTER	
MORE	Vandose zone	Vadose zone	Vadose zone	Vadose zone	
$\mathbf{+}$	SCS	soil dry	soil total	soil water-filled	
	soil type	bulk density,	porosity,	porosity,	
	Lookup Soil	ρ _b Α	n ^v	θ_w^{\vee}	
	Parameters	(g/cm ³)	(unitless)	(cm ³ /cm ³)	
	SIC	1.38	0.481	0.216	

ENTER
Average vapor
flow rate into bldg.
(Leave blank to calculate)
Q _{soil}
(L/m)
5

ENTER	ENTER	ENTER	ENTER	
Averaging	Averaging	LITER	ENTER	
time for	time for	Exposure	Exposure	
carcinogens,	noncarcinogens,	duration,	frequency,	
AT _C	AT _{NC}	ED	EF	
(yrs)	(yrs)	(yrs)	(days/yr)	_
	-			_
70	25	25	250	

END

INTERMEDIATE CALCULATIONS SHEET

Source- building separation, L _T (cm)	Vadose zone soil air-filled porosity, θ_a^{V} (cm ³ /cm ³)	Vadose zone effective total fluid saturation, S _{te} (cm ³ /cm ³)	Vadose zone soil intrinsic permeability, k _i (cm ²)	Vadose zone soil relative air permeability, k _{rg} (cm ²)	Vadose zone soil effective vapor permeability, k _v (cm ²)	Floor- wall seam perimeter, X _{crack} (cm)	Soil gas conc. (µg/m ³)	Bldg. ventilation rate, Q _{building} (cm ³ /s)
137.4	0.265	0.284	1.52E-09	0.844	1.28E-09	4,000	5.40E+04	3.39E+04
Area of enclosed space below grade, A _B (cm ²)	Crack- to-total area ratio, η (unitless)	Crack depth below grade, Z _{crack} (cm)	Enthalpy of vaporization at ave. soil temperature, ΔH _{v,TS} (cal/mol)	Henry's law constant at ave. soil temperature, H _{TS} (atm-m ³ /mol)	Henry's law constant at ave. soil temperature, H' _{TS} (unitless)	Vapor viscosity at ave. soil temperature, μ _{TS} (g/cm-s)	Vadose zone effective diffusion coefficient, D ^{eff} v (cm ² /s)	Diffusion path length, L _d (cm)
1.00E+06	5.00E-03	15	9,410	1.74E-02	7.14E-01	1.80E-04	3.74E-03	137.4
Convection path length, L _p (cm)	Source vapor conc., C _{source} (μg/m ³)	Crack radius, r _{crack} (cm)	Average vapor flow rate into bldg., Q _{soil} (cm ³ /s)	Crack effective diffusion coefficient, D ^{crack} (cm ² /s)	Area of crack, A _{crack} (cm ²)	Exponent of equivalent foundation Peclet number, exp(Pe ^f) (unitless)	Infinite source indoor attenuation coefficient, α (unitless)	Infinite source bldg. conc., C _{building} (μg/m ³)
15	5.40E+04	1.25	8.33E+01	3.74E-03	5.00E+03	2.35E+19	6.05E-04	3.27E+01

Unit	
risk	Reference
factor,	conc.,
URF	RfC
(µg/m ³) ⁻¹	(mg/m ³)
5.9E-06	3.5E-02
END	

RESULTS SHEET

INCREMENTAL RISK CALCULATIONS:

Incremental	Hazard		
risk from	quotient		
vapor	from vapor		
intrusion to	intrusion to		
indoor air,	indoor air,		
carcinogen	noncarcinogen		
(unitless)	(unitless)		
4.7E-05	6.4E-01		
(unitless)	(unitless)		

MESSAGE SUMMARY BELOW:

END

Г