PHASE II SUBSURFACE INVESTIGATION

2700 23rd Avenue Oakland, Alameda County, California

Prepared for:

Mr. Dean McBeth Vice President and Chief Credit Administrator Summit Bank 2969 Broadway Oakland, CA 94611

> Mr. Mark Bryant MJB Associates 4617 Davenport Avenue Oakland, CA 94619

> > Prepared by:

SCHUTZE & Associates, Inc. 2100 Embarcadero, Suite 100 Oakland, California 94606

> SCS370 August 24, 2010

2100 EMBARCADERO, SUITE 100, OAKLAND, CA 94606, TELEPHONE: (510) 434-1333, FAX: (510) 434-1441

August 24, 2010 Project No. SCS370

Mr. Dean McBeth Vice President and Chief Credit Administrator Summit Bank 2969 Broadway Oakland, CA 94611

Mr. Mark Bryant MJB Associates 4617 Davenport Avenue Oakland, CA 94619

Reference: 2700 23rd Avenue Oakland, Alameda County, California

Subject: Report: Phase II Subsurface Investigation

Dear Mr. McBeth and Mr. Bryant,

SCHUTZE & Associates, Inc. has completed a Subsurface Investigation for the property located at 2700 23rd Avenue, Oakland, California (subject site). The purpose of the work was to investigate whether soil and/or groundwater at the site have been environmentally impacted as a result of a former, on-site gasoline service station.

The work was supervised by a California Professional Geologist (P.G.) and was conducted in accordance with the scope and limitations of ASTM¹ Practice E 1903-97 (re-approved 2002).

The subject site consisted of the following parcel:

Property Address	APN ² Number	Approximate Parcel Size	Location
2700 23 rd Avenue, Oakland, Alameda County, California	26-793-31	6,400 sq ft	NE corner of 23 rd Avenue and East 27 th Street

The subject property is shown on the Site Map (Figure 1) attached to this report.

¹ American Society for Testing and Materials

² Assessor's Parcel Number

A. BACKGROUND

SCHUTZE & Associates, Inc. reviewed a Local Regulatory Agency File Review of the subject site prepared by Basics Environmental, Inc. (Basics).³ According to Basics' findings, the subject site was developed with a gasoline service station from approximately 1928 to 1964. A dispenser island was at the southwestern corner of the property and a "kiosk" was at the northeastern corner. By 1936, an auto repair shop had been added to the eastern portion of the site. The presence of the former gasoline service station would represent a "Recognized Environmental Condition" (REC) for the subject site property.

According to information received by Basics from the Oakland Building Department (OBD), a permit was issued in 1964 to demolish a "service station and lube room" at the subject site address. In 1968, plans were submitted for the construction of the current building, a liquor store. A note on the 1968 plans referred to the intended removal of the gasoline storage tanks which existed at the site (the number, capacity and location of the tanks was not given). The OBD records viewed by Basics did not include confirmation that the tank removal was completed.

B. PHYSICAL SETTINGS

B.1 Topography

The subject site is situated at the base of the Oakland Hills. The approximate elevation at the subject site is 165 feet above mean sea level (MSL). The topography at the subject site is relatively flat with a gentle slope to the south. The topography within the vicinity of the subject site slopes to the southwest towards Brooklyn Basin, which flows into San Francisco Bay.⁴

B.2 Geology of the Shallow Subsurface

Subsurface deposits encountered at the subject site during this investigation consisted of approximately three feet of sandy/silty fill material, underlain by a minimum of 22 feet of tight, dry (or slightly-moist) silty-clays.

B.3 Groundwater

SCHUTZE & Associates, Inc. reviewed the GeoTracker⁵ database for environmental data within an approximate 3,000-foot radius of the subject site. Relevant groundwater data are tabulated in Table 1.

³ Basics Environmental, Inc., *Local Regulatory Agency File Review, 2700 23rd Avenue, Oakland, CA*, May 7, 2010

⁴ USGS, Oakland East, California 15' Quadrangle Topographic Map, 1997

⁵ California State Water Resources Control Board, http://geotracker.swrcb.ca.gov/, accessed June 6, 2010

2700 23 ^{ra} Avenue, Oakland, California				
Source	Distance from Subject Site	Depth to Groundwater (ft bgs)	Groundwater Confined to Significantly Greater Depths?	Flow Direction
Conoco Phillips, Semi Annual Summary Report – Third and Fourth Quarter 2009, 3070 Fruitvale Ave., Oakland, CA	2,500 ft Northeast	7-10 ft bgs	Possibly to 54 ft bgs in one monitoring well, not in others	West
Conestoga-Rovers & Associates, Groundwater Monitoring Report, Second Quarter 2009, 1499 Macarthur Blvd., Oakland, CA	2,600 ft North	7-10 ft bgs	No	Southwest
Ceres Associates, Quarterly Groundwater Monitoring Report, Fourth Quarter 2008, 2547 East 27 th St., Oakland, CA	1,200 ft Southeast	5-13 ft bgs	No, only shallow perched groundwater encountered	East- Southeast
All distances approximated; ft bgs = feet below ground surface.				

TABLE 1
GeoTracker Groundwater Data for Nearby Properties
2700 23 rd Avenue, Oakland, California

Based on the above-mentioned reports, shallow perched groundwater was encountered at various depths beneath the area surrounding the subject site. During this investigation, shallow groundwater was encountered beneath the subject site in two of the four on-site borings, in a thin, discontinuous, sandy horizon at depths between 15 and 18 ft bgs. Information regarding deeper groundwater aquifers in the area was not readily available.

C. PRE-FIELD ACTIVITIES

Prior to drilling, SCHUTZE & Associates, Inc. submitted a site plan, work plan, drilling contractor's credentials and permit application to the Alameda County Department of Public Works. The drilling permit is attached as Appendix C.

SCHUTZE & Associates, Inc. marked the proposed boring locations with white spray paint. Subsequently, Underground Services Alert (USA) was contacted to clear the proposed boring locations for utilities. The ticket number provided by USA for this procedure was #215219. As an additional safety precaution, a private utilities locator was also hired to clear the boring locations (OHJ Subsurface, Oakland, California).

A health and safety meeting was held before commencing fieldwork.

D. DRILLING AND SAMPLING

D.1 Drilling Methodology

Drilling was conducted on July 29, 2010 using a Geoprobe 6600 Series direct-push rig. Four exploratory soil borings were advanced to a maximum depth of approximately 22 ft bgs. Soil cores were continuously recovered inside four-foot, 1.5-inch-diameter acetate liners as the drill rods were hammered into the subsurface. Shorter liners were used based on the soil density. Three additional soil vapor borings were advanced to 5 ft bgs using the direct-push method, and one additional soil vapor boring was advanced to 5 ft bgs via a hand auger. Subsequent to sampling, the borings were backfilled with Portland neat cement. Soil boring information is tabulated in Table 2. The boring locations are depicted on the attached Figure 1. The Boring Logs are attached as Appendix B.

Boring Number	Location / Comments	Total Depth (ft bgs)	Method	Soil Samples Collected and Submitted for Analyses	Soil Vapor Samples Collected	Groundwater Samples Collected
B1	Parking lot, adjacent to south property boundary and southeast building perimeter (potential/former UST location).	20		B1-8', B1-14', B1-20		B-1-W
B2	Southwest property boundary (potential/former UST location).	20	чs	B2-8', B2-16'		
В3	Central west parking lot (potential/former UST location).	22	.ect-pu	B3-7', B3-12'		B-3-W
B4	Northwest parking lot (location of former maintenance shop).	20	obe dir	B4-7', B4-14'		
SV1	Southeast property boundary, adjacent to south building perimeter.	5	Geopr		SV-1	
SV2	South-central parking lot, (potential/former UST location).	5		SV-2-5'	SV-2	
SV3	Parking lot, adjacent to northwest building perimeter (location of former maintenance shop).	5			SV-3	
SV4	Northeast property boundary, behind building.	5	Hand auger		SV-4	
ft bgs = feet below ground surface; = not collected/not encountered						

TABLE 2Soil Boring Data2700 23rd Avenue, Oakland, California

D.2 Photo Ionization Detector (PID) Readings

A hand-held PID was used during the investigation in order to screen for VOCs⁶ potentially occurring in soil and ambient air at the site. Readings were collected by placing soil samples and the PID sensor in a plastic bag. The readings are tabulated in Table 3. Readings were not collected from the soil vapor borings.

The highest PID reading collected during the investigation was 1,548 parts per million (ppm), recorded from boring B1 at approximately 15 ft bgs. A green-stained silty-sand lense was observed in boring B1 at that depth. The lense emitted a strong hydrocarbon odor and was indicative of contamination by petroleum hydrocarbons.

⁶ Volatile organic compound(s)

27	00 23 ^{°°} Ave	enue, Oakla	nd, Californ	ia
Ft bgs	B1	B2	B3	B4
0-5	0.3	0.3	0.3	1.1
5-10	0.5	0.3	0.4	0.9
10-15	1,548	0.3	0.3	0.7
15-20	13.0	0.3	0.3	0.7
20-25			0.1	
Ambient	0.2 - 0.7			
PID = photo ionization detector; ppm = parts per million; ft bgs = feet below ground surface; Values indicate the highest PID reading collected per five-foot interval.				

TABLE 3 PID Readings (ppm) 2700 23rd Avenue, Oakland, California

D.3 Soil and Groundwater Sampling Methodology

Soil cores were continuously recovered inside 1.5-inch-diameter acetate liners. Soil samples were collected by cutting a specific depth interval from the acetate liner and then sealing it at both ends with Teflon septa and tight fitting plastic caps. Nitrile gloves were utilized to prevent cross contamination.

Perched groundwater was encountered in borings B1 and B3. No groundwater was observed in the remaining soil borings or soil vapor borings. Due to the apparent low permeability of the adjacent formation, temporary PVC screens were placed in borings B1 and B3 so that groundwater could enter the borings over time. Sufficient groundwater for sampling was observed in borings B1 and B3 after approximately two hours.

Groundwater samples were collected in one-liter amber jars and 40-milliliter Volatile Organics Analyses (VOAs) via tubing and a foot valve. Groundwater sample containers were pre-preserved with hydrogen chloride (HCI). Groundwater collected from boring B1 was filtered in the field using a 0.45 micron in-line filter and was then preserved with nitric acid (HNO₃).

The samples were stored on ice in a cooler and were subsequently transported to McCampbell Analytical, Inc. (CA DHS ELAP⁷ #1644) for analyses. Samples were analyzed based on the work plan and field observations. Samples submitted to the laboratory but not analyzed were placed on hold for potential future analyses, if required.

D.4 Soil Vapor Sampling Methodology

A soil vapor survey was conducted on July 29, 2010. Soil vapor samples were collected in one-liter evacuated, stainless steel, SUMMA canisters provided by McCampbell Analytical, Inc. After confirming the initial pressure, the canister was left open until the pressure had increased to approximately -5 in Hg⁸ (approximately four to six minutes).

⁷ California Department of Health Services Environmental Laboratory Accreditation Program

⁸ Inches of Mercury

The samples were collected from a minimum of five ft bgs, the minimum depth recommended by the Department of Toxic Substances Control (DTSC) in order to collect a soil vapor sample that is not impacted or diluted by up-hole ambient air. A flow rate of 200 ml/min⁹ is recommended by the DTSC and was requested by SCHUTZE & Associates, Inc. for the regulators. Based on this requested flow rate, a minimum of three tubing/sample train volumes were purged prior to collecting the samples. The following methodology was used:

- Advance the soil vapor boring to the desired sampling depth via a Geoprobe direct-push rig or hand auger.
- Purge a minimum of three sample train volumes based on a flow rate of approximately 200 ml/min. Purging is conducted via an in-line evacuated six-liter SUMMA canister.
- Collect the soil vapor sample from the soil boring in a one-liter SUMMA canister provided by McCampbell Analytical, Inc. SUMMA canisters are supplied with a negative pressure, meaning the pressure inside the canister is less than the atmospheric pressure outside the canister. When the regulators are opened, soil vapor is drawn into the canister as long as the pressure inside the canister is negative. In order to collect the sample, a porous tip is attached to a rigid tube, which is then inserted into the boring at the desired sampling depth. One foot of coarse Monterey #2/12 sand is then poured into the boring to surround the tip with a porous media. The sand is covered with approximately one foot of dry bentonite clay. Subsequently, bentonite clay is placed in layers into the boring and water is poured onto each bentonite layer to seal the drill hole and prevent vapor intrusion from above. The tube is connected to a stainless steel sample train, with a purge canister at the distant connection and the sample canister on the closer connection. Five-micron in-line filters are used to prevent particulate matter from entering the canisters and to increase canister fill times. Vacuum gauges are used to measure the initial vacuum of the canister before sampling and the final vacuum upon completion. A second in-line vacuum gauge is used to measure the pressure differential. Isopropyl is used as a tracer.
- Collect one outdoor ambient air sample. This sample is collected so that concentrations of compounds potentially existing in soil can be compared to concentrations of compounds potentially existing in ambient outdoor air.
- Close the regulators on the SUMMAs subsequent to collecting each sample; replace the brass caps on the intakes of the canisters; and place the canisters into the original shipping containers to be delivered to McCampbell Analytical, Inc. using appropriate chain-of-custody procedures.

The filled SUMMA canisters were delivered to McCampbell Analytical, Inc. following chain-of-custody procedures. Holding times were observed. SCHUTZE & Associates, Inc. requested EPA¹⁰ Method TO-15 analyses for all soil vapor samples. The TO-15

⁹ Milliliter per minute

¹⁰ Environmental Protection Agency

method uses a gas chromatograph with a mass spectrometer detector, analogous to the U.S. EPA Method 8260B used to analyze soil and groundwater samples for VOCs.

Due to matrix interference (as reported by the laboratory), soil vapor sample SV-2 was analyzed using EPA Method 8260.

E. LABORATORY RESULTS FOR SOIL AND GROUNDWATER

Soil and groundwater samples were delivered to McCampbell Analytical, Inc. following standard chain-of-custody procedures. Holding times were observed. Field observations were considered when selecting the specific soil samples for analyses, including visual/odoriferous signs of contamination and PID readings.

Submitted samples and corresponding analyses are as follows:

- Soil samples B1-8', B1-14' and SV-2.5' were submitted to be analyzed for VOCs (EPA Method 8260B).
- Soil samples B1-8', B1-14', B1-20', B2-8', B3-7', B4-7' and SV-2.5' were submitted and analyzed for TPH-g, TPH-d and TPH-mo¹¹ (EPA Method 8015B).
- Groundwater samples B-1-W and B-3-W were submitted and analyzed for VOCs (EPA Method 8260B) and TPH-g, TPH-d and TPH-mo (EPA Method 8015B).
- Groundwater sample B-1-W was submitted and analyzed for LUFT 5 Metals¹² (EPA Method E200.8).

Soil analytical results for TPH and VOCs are tabulated in the attached Table 6. Groundwater analytical results for TPH and VOCs are tabulated in the attached Table 7. The complete laboratory report is attached as Appendix A.

Soil and groundwater analytical results were compared to the environmental screening levels (ESLs) of the San Francisco Bay Area Regional Water Quality Control Board (RWQCB) at commercial/industrial sites that are not a source of drinking water.¹³

E.1 Compounds Detected at or Above Corresponding ESLs

Compounds detected at or above corresponding ESLs are tabulated in Table 4 below. Detected compounds not regulated by the RWQCB are not included, unless they are indicative of potential contamination not already identified by regulated compounds.

¹¹ Total petroleum hydrocarbons as gasoline, diesel and motor oil

¹² Five metals commonly associated with leaking under-ground fuel tanks (LUFTs): cadmium, chromium, lead, nickel and zinc

¹³ http://www.waterboards.ca.gov/sanfranciscobay/esl.shtml (Table B-2)

TABLE 4
Compounds Detected in Soil and Groundwater at or Above Corresponding ESLs
2700 23 rd Avenue, Oakland, California

Comp	ound	TPH-g	TPH-d	TPH-mo	Naphthalene
Sampling	Groundwater	B-1-W	B-1-W, B-3-W	B-1-W, B-3-W	B-1-W
Locations	Soil	B1-14', SV-2-5'	B1-14', SV-2-5'		
Highest	Groundwater	61,000 µg/L	36,000 µg/L	60,000 µg/L	200 µg/L
Concentration	Soil	420 mg/kg	710 mg/kg		
ESI o	Groundwater	210 µg/L	210 µg/L	210 µg/L	24 µg/L
EGES	Soil	180 mg/kg 180 mg/kg		2,500 mg/kg	2.8 mg/kg
Description/Notes Primarily aged gasoline/diesel, sheen on groundwater sample B-1-W Primarily motor oil-range Detected only in sample B-1-W			Detected only in sample B-1-W		
mg/kg = milligrams per kilogram; µg/L = micrograms per liter; = not detected at or above ESL; TPH = Total petroleum hydrocarbons specified as gasoline range (TPH-g), diesel range (TPH-d) and motor oil range (TPH-mo); ESLs = Environmental Screening Levels of San Francisco Bay Area Regional Water Quality Control Board (RWQCB) for commercial/industrial sites that are not a source of subsurface					

E.2 Boring B1

drinking water.

During drilling, visual/odoriferous petroleum hydrocarbon contamination was observed in boring B1 from approximately six to eighteen ft bgs.

<u>TPH</u>: TPH-g, TPH-d and TPH-mo were detected in groundwater sample B-1-W at concentrations of 61,000, 63,000 and 21,000 micrograms per liter (μ g/L), respectively. The corresponding ESL for all three of these compounds is 210 μ g/L. Groundwater was encountered at approximately 15 ft bgs in this boring.

The highest TPH-g and TPH-d concentrations in soil from boring B1 were detected at 14 ft bgs at concentrations of 420 and 710 milligrams per kilogram (mg/kg), respectively. The ESL for both of these compounds is 180 mg/kg.

<u>VOCs</u>: Naphthalene was detected in groundwater sample B-1-W at a concentration of 200 μ g/L, which exceeds the corresponding ESL of 24 μ g/L. Benzene and MTBE¹⁴ were not detected in soil and groundwater samples. No additional VOCs were detected at or above corresponding ESLs at this location.

The contamination in this boring appeared to be aged gasoline and motor oil.

E.3 Boring B3

No soil contamination was observed in this boring during drilling.

<u>TPH</u>: TPH-d and TPH-mo were detected in groundwater sample B-3-W at concentrations of 4,000 and 60,000 μ g/L, respectively. The corresponding ESL for both of these compounds is 210 μ g/L. TPH-g, TPH-d and TPH-mo were not detected in soil sampled from this boring.

<u>VOCs</u>: Significant concentrations of VOCs were not detected. Benzene and MTBE were not detected.

The contamination in samples from boring B-3 appeared to be motor oil, rather than

¹⁴ Methyl tert-butyl ether

aged gasoline/motor oil as in boring B-1.

E.4 Boring SV-2

Hydrocarbon contamination was observed in this boring at a depth of only 2 ft bgs.

TPH: TPH-g and TPH-d were detected in soil at concentrations of 420 and 370 mg/kg. The ESL for both of these compounds is 180 mg/kg. This soil vapor boring extended to 5 ft bgs. The depth of the TPH contamination at this location is unknown. Groundwater was not encountered.

E.5 Other Soil Borings and Soil Vapor Borings

Groundwater was encountered only in borings B1 and B3. Based on the analytical results and field work, soil in the areas of borings B2, B4, SV-1, SV-3 and SV-4 appears not to have been impacted by the former gasoline service station.

E.6 Metals

Groundwater sample B-1-W was analyzed for total dissolved LUFT 5 Metals. Nickel was detected at a concentration of 7.2 μ g/L. Cadmium, chromium, lead and zinc were not detected with respective detection levels of ND<0.25, ND<0.5, ND<0.5 and ND<5.0 μ g/L. The concentrations and/or detection levels were less than corresponding ESLs.

F. LABORATORY RESULTS FOR SOIL VAPOR SAMPLES

Soil vapor analytical results are tabulated in the attached Table 8. The complete laboratory report is attached as Appendix A. Soil vapor analytical results were compared to ESLs of the San Francisco Bay Area RWQCB for the evaluation of potential vapor intrusion concerns.¹⁵

F.1 Compounds Detected at or Above Corresponding ESLs

Compounds detected at or above corresponding ESLs are tabulated in Table 5 below. Detected compounds not regulated by the RWQCB are not included, unless they are indicative of potential contamination not already identified by regulated compounds.

¹⁵ http://www.waterboards.ca.gov/sanfranciscobay/esl.shtml (Table E-2)

Compound	Naphthalene	Ethylbenzene
Soil Vapor Sampling Locations	SV-2	SV-2
Highest Concentration	850 μg/m³	8,100 μg/m ³
ESLs	240 µg/m³	3,300 µg/m ³
Description/Notes	Compounds detect	ed only in sample SV-2
μg/m3 = micrograms per cubic meter; ESLs = Environmental Screening Levels of the San Francisco Bay Area Regional Water Quality Control Board (RWQCB) for the evaluation of potential vapor intrusion concerns.		

 TABLE 5

 Compounds Detected in Soil Vapor at or Above Corresponding ESLs

 2700 23rd Avenue, Oakland, California

F.2 Naphthalene and Ethylbenzene

Naphthalene and ethylbenzene were detected in soil vapor sample SV-2 at respective concentrations of 850 and 8,100 micrograms per cubic meter (μ g/m³), which exceeds the corresponding ESLs of 240 and 3,300 μ g/m³, respectively. The location at which these concentrations were detected is consistent with the highest TPH-g and TPH-d concentrations detected in soil and groundwater at the site. Naphthalene and ethylbenzene commonly exist in petroleum hydrocarbon mixtures.

Naphthalene was not detected in soil vapor samples SV-1, SV-3 or SV-4. Ethylbenzene was not detected in soil vapor sample SV-4, and was detected in SV-1 and SV-3 at negligible concentrations of 28 and 25 μ g/m³.

F.3 Other VOCs

The compounds acetone, benzene, methyl isobutyl ketone, tetrachloroethene (PCE), toluene and xylenes were detected in soil vapor at concentrations of up to 380, 50, 11, 18, 3,100, and 28,000 ug/m³, respectively. These concentrations were well below the corresponding ESLs of 1,800,000, 280, 1,800,000, 1,400, 180,000 and 58,000 μ g/m³.

The PCE concentration of 18 ug/m³ was detected at the southeast property boundary. The concentration appears to be the result of a small, historic, localized spill and does not appear indicative of significant, on-site contamination. PCE is often used as a solvent for cleaning metal parts, and is commonly detected in low concentrations at former gasoline service station sites.

G. DATA VALIDATION AND QUALITY CONTROL

G.1 Quality Control and Chain-of-Custody

The drilling and sampling equipment was appropriately decontaminated between borings and all field procedures were appropriate to minimize external sample contamination. McCampbell Analytical, Inc. provided sample containers in good condition and the samples were delivered to McCampbell Analytical in accordance with chain-of-custody procedures. The lab provided "Level II" Quality Control Data Reporting, which consists of Laboratory Control Sample (LCS) and surrogate 2700 23rd Avenue, Oakland, CA August 24, 2010 Page 11

recoveries.

G.2 Data Validation

All laboratory results underwent data validation. The purpose of data validation is to determine the degree of usability of the data. Laboratory results may be qualified as estimated ("J" or "UJ" flags) or may be rejected ("R" flagged). Rejected data is not usable for most purposes.

Results were reviewed for holding time, surrogate recovery, laboratory control sample (LCS) recoveries (accuracy), matrix spike and matrix spike duplicate (MS/MSD) recoveries (accuracy) and the relative percent difference (RPD) between the recoveries (precision), method blanks (contamination), and reporting limits and dilutions (sensitivity). Although, for this level of validation, chromatograms were not reviewed, laboratory descriptions of chromatograms were used to qualify results.

The validation resulted in the following observations, qualifications, and/or changes:

- The reporting limit was raised for groundwater sample B-1-W (DF=10). Based on the laboratory report, it appears that the reporting limit for this sample was raised due to high TPH concentrations in the sample. Although certain data quality objectives (DQOs) were compromised, the raised reporting limits are unlikely to affect the conclusions of this investigation and the associated recommendations.
- The reporting limits were raised for soil samples B1-8' (DF=2.0), B1-14' (DF=200) and SV-2-5' (DF=40). Based on the laboratory report, it appears that the reporting limits for these samples were raised due to high TPH concentrations in the sample. Although certain DQOs were compromised, the raised reporting limits are unlikely to affect the conclusions of this investigation and the associated recommendations (the soil will likely need to be further characterized and remediated).
- The reporting limits were raised for sample SV-2 (DF=500 for most analytes). Based on the laboratory report, it appears that the reporting limits for this sample were raised due to high TPH concentrations in the sample. Although certain DQOs were compromised, the raised reporting limits are unlikely to affect the conclusions and recommendations of this investigation.

H. CONCLUSION

SCHUTZE & Associates, Inc. has completed a Subsurface Investigation for the property located at 2700 23rd Avenue, Oakland, California (subject site). The work was conducted in accordance with the scope and limitations of ASTM Practice E 1903-97 (re-approved 2002). A drilling permit was obtained from the Alameda County Department of Public Works.

Four soil borings were advanced to approximately 22 ft bgs and four additional soil vapor borings were advanced to approximately five ft bgs. Shallow, perched groundwater was encountered in two of the deeper borings (B1 and B3). In total, two

groundwater samples, ten soil samples, four soil vapor samples and one ambient outdoor air sample were collected and submitted for analyses.

Based on field observations and laboratory results, soil, shallow perched groundwater at 15 to 20 ft bgs and soil vapor beneath the southwest portion of the subject site have been impacted by aged diesel and gasoline. Benzene and MTBE were not detected in soil and groundwater samples. The likely sources of the contamination are former leaking USTs and/or associated piping. TPH-g, TPH-d and naphthalene were detected in groundwater at concentrations of 61,000, 36,000 and 200 μ g/L, respectively (boring B1). TPH-g and TPH-d were detected in soil at concentrations of 420 and 710 mg/kg (approximately 14 ft bgs). In boring B3, the contamination appears to consist mainly of TPH-mo. There is a potential that the aged gasoline and diesel contamination has migrated in shallow groundwater in southwesterly direction beneath the sidewalks and East 27th Street. Based on the low permeability of the silty clay which underlies the site, the size of the impacted area is expected to be limited.

TPH-g, TPH-d, TPH-mo, naphthalene and ethylbenzene were detected at the site above the corresponding ESLs of the San Francisco Bay Area RWQCB.

I. RECOMMENDATIONS

Based on the results of the soil, groundwater and soil vapor survey, SCHUTZE & Associates, Inc. recommends the following:

- Conducting a geophysical survey of the asphalt parking lot and any other accessible areas of the subject site to investigate whether USTs and associated product lines still exist in the subsurface at the site.
- Determining the vertical and lateral extent of the soil and groundwater contamination in order to evaluate remediation strategies. This investigation should consist of the drilling of additional soil borings and the installation of, initially, three groundwater monitoring wells.
- Test pitting and limited soil removal, based on the results of the soil and groundwater investigation.
- Assisting the owner with the identification of a Potentially Responsible Party (PRP), such as a currently operating oil company.
- Assisting the owner with qualification under the California UST Fund for reimbursement of the remediation costs for the subject site.

We have enjoyed working on this project and appreciate the opportunity to be of service. Please call SCHUTZE & Associates, Inc. at (510) 434-1333 with questions or comments about this report.

2700 23rd Avenue, Oakland, CA August 24, 2010 Page 13

Respectfully submitted:

SCHUTZE & Associates, Inc.

Jan H. Schutze, P.G., M.Sc. President

Attachments

Acronyms and Abbreviations

- Figure 1 Site Map with Soil Boring and Soil Vapor Boring Locations
- Table 6 Soil Analytical Results for TPH and VOCs
- Table 7 Groundwater Analytical Results for TPH and VOCs
- Table 8 Soil Vapor Analytical Results for VOCs

Site Photographs

<u>Appendices</u>

- Appendix A: Laboratory Reports and Chain-of-Custody Forms
- Appendix B: Boring Logs
- Appendix C Well Permit

ACRONYMS & ABBREVIATIONS

ACRONYMS & ABBREVIATIONS

µg/L	Micrograms per liter
µg/m³	Micrograms per cubic meter
AAI	All Appropriate Inquiry
ACC	ACC Environmental Consultants
APN(s)	Assessor's Parcel Number(s)
AST(s)	Aboveground storage tank(s)
BTEX	Benzene, toluene, ethylbenzene and xylenes
COC(s)	Compound(s) of concern
CSM	Conceptual site model
DCA	Dichloroethane
DCE	Dichloroethene
ESA	Environmental site assessment
ESL(s)	Environmental screening level(s)
ft above msl	Feet above mean sea level
ft bgs	Feet below ground surface
ft ²	Square feet
GPR	Ground penetrating radar
HSP	Health and Safety Plan
HVOC(s)	Halogenated volatile organic compound(s)
LCS	Laboratory control sample
LUFT(s)	Leaking underground fuel tank(s)
LUST(s)	Leaking underground storage tank(s)
MBTEX	Methyl tert-butyl ether, benzene, toluene, ethylbenzene and xylenes
MCL(s)	Maximum contamination level(s)
MD	Metal detection
mg/kg	Milligrams per kilogram
mg/L	Milligrams per liter
MS/MSD	Matrix spike/matrix spike duplicate
MTBE	Methyl tert-butyl ether
ND	Non-Detect (not detected above the reporting limit)
OCP(s)	Organochlorine pesticide(s)
OPP(s)	Organophosphorous pesticide(s)
PAH(s)/PNA(s)	Polynuclear aromatic hydrocarbon(s)
PCB(s)	Polychlorinated biphenyl(s)
PCE	Tetrachloroethene
P.G.	Professional Geologist
PID	Photo Ionization Detector
ppm	Parts per million
PRG(s)	Preliminary remediation goal(s)
QA/QC	Quality Assurance/Quality Control

RAP	Remedial Action Plan
REC(s)	Recognized environmental condition(s)
RPD	Relative percent difference
SL	Screening level
STLC	Soluble threshold limit concentration
SVE	Soil vapor extraction
SVOC(s)	Semi volatile organic compound(s)
TAME	Tert-amyl methyl ether
TCA	Trichloroethane
TCE	Trichloroethene
TDS	Total dissolved solids
ТО	Toxic organic
TPH	Total petroleum hydrocarbons
TPH-bo	Total petroleum hydrocarbons as bunker oil
TPH-d	Total petroleum hydrocarbons as diesel
TPH-dro	Total petroleum hydrocarbons as hydraulic oil
TPH-g	Total petroleum hydrocarbons as gasoline
TPH-ho	Total petroleum hydrocarbons as heating oil
TPH-k	Total petroleum hydrocarbons as kerosene
TPH-mo	Total petroleum hydrocarbons as motor oil
TRG(s)	Target remediation goal(s)
TRPH	Total recoverable petroleum hydrocarbons
TTLC	Total threshold limit concentration
TVPH	Total volatile petroleum hydrocarbons
UST(s)	Underground storage tank(s)
VC	Vinyl chloride
VMG	Vertical magnetic gradient
VOA	Volatile organics analysis
VOC(s)	Volatile organic compound(s)

GOVERNMENT / AGENCY ACRONYMS

American Society for Testing and Materials
California Department of Public Health
California Facility Inventory Database
California Environmental Protection Agency
California Assessment Manual
California Code of Regulations
U.S. Center for Disease Control
Comprehensive Environmental Response, Compensation & Liability Information System

CEQA	California Environmental Quality Act
CFR	Code of Federal Regulations
CHHSL(s)	California Human Health Screening Level(s)
CHMIRS	California Hazardous Material Incident Report System
CORRACTS	Corrective Action Sites
DHS	(California) Department of Health Services
DTSC	Department of Toxic Substances Control
DWR	(California) Department of Water Resources
ELAP	Environmental Laboratory Accreditation Program
EPA	U.S. Environmental Protection Agency
ERNS	Emergency Response Notification System
FEMA	Federal Emergency Management Agency
FINDS	Facility Index System
HAZNET	Hazardous Waste Information System
HSC	Health and Safety Code
NFA	No Further Action
NPDES	National Pollutant Discharge Elimination System
NPL	National Priority List (Superfund sites)
OSHA	Occupational Safety & Health Administration
RCRA	Resource Conservation & Recovery Act of 1976
RCRA-LQG	Large Quantity Generator (per RCRA)
RCRA-NonGen	Non-Generator (per RCRA)
RCRA-SQG	Small Quantity Generator (per RCRA)
RWQCB	Regional Water Quality Control Board
SCVWD	Santa Clara Valley Water District
SLIC	Spills, Leaks, Investigation & Cleanups
SWEEPS	Statewide Environmental Evaluation & Planning System
SWRCB	(California) State Water Resources Control Board
TSCA	Toxic Substance Control Act
USA	Underground Services Alert (California)
USGS	United States Geological Survey
VCP	Voluntary Cleanup Program

FIGURE 1

SITE MAP WITH SOIL BORING & SOIL VAPOR BORING LOCATIONS 2700 23rd AVENUE OAKLAND, CALIFORNIA

SCHUTZE & ASSOCIATES, INC. PROJECT NO. SCS370 / AUGUST 2010

FIGURE 1

TABLES 6 – 8

TABLE 6
Soil Analytical Results (mg/kg) for TPH (EPA 8015B) and VOCs (EPA 8026B)
2700 23rd Avenue, Oakland, California

Sample ID	8-HdT	TPH-d	TPH-mo	Acetone	Benzene	Ethylbenzene	Isopropylbenzene	4-Isopropyl toluene	Methyl-t-butyl ether	MIBK	Naphthalene	n-Butyl benzene	n-Propyl benzene	sec-Butyl benzene	Tetrachloroethene	Toluene	1,2,4-Trimethylbenzene	1,3,5-Trimethylbenzene	Xylenes
B1-8'	43	33	ND<5.0	ND<0.10	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010	0.028	0.021	0.021	ND<0.010	ND<0.010	ND<0.010	ND<0.010	ND<0.010
B1-14'	420	710	5.1	ND<10	ND<1.0	ND<1.0	2.8	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	4.2	2.5	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
B1-20'	ND<1.0	ND<1.0	ND<5.0																
B2-8'	ND<1.0	ND<1.0	ND<5.0																
B3-7'	ND<1.0	ND<1.0	ND<5.0																
B4-7'	ND<1.0	ND<1.0	ND<5.0																
SV-2-5'	420	370	1,500	ND<2.0	ND<0.20	ND<0.20	0.35	0.27	ND<0.20	ND<0.20	ND<0.20	4.9	1.8	0.86	ND<0.20	ND<0.20	0.25	ND<0.20	ND<0.20
ESLs (Commercial)	180	180	2,500	0.50	0.27	4.7			8.4	3.9	2.8				0.95	9.3			11
mg/kg = millgrams per ki a detection level of 5.0; = not analyzed or no E	ng/kg = millgrams per kilogram; TPH = total petroleum hydrocarbons specified as gasoline range (-g), diesel range (-d) and motor oil range (-mo); VOCs = volatile organic compounds; MIBK = Methyl isobutyl ketone (4-Methyl-2-pentanone); ND<5.0 = non-detect with detection level of 5.0; ESLs (Commercial) = Environmental Screening Levels for shallow soil at commercial properties (California Regional Water Quality Control Board - Table B-2). - = not analyzed or no ESL listed.																		

SCHUTZE & Associates, Inc., August 2010

TABLE 7
Groundwater Analytical Results (ug/L) for TPH (EPA 8015B) and VOCs (EPA 8026B)
2700 23rd Avenue, Oakland, California

Sample ID	TPH-g	TPH-d	TPH-mo	Acetone	Benzene	Ethylbenzene	lsopropylbenzene	4-lsopropyl toluene	Methyl-t-butyl ether	MIBK	Naphthalene	n-Butyl benzene	n-Propyl benzene	sec-Butyl benzene	Tetrachloroethene	Toluene	1,2,4-Trimethylbenzene	Xylenes
B-1-W	61,000	36,000	21,000	ND<100	ND<5.0	ND<5.0	80	11	ND<5.0	ND<5.0	200	12	110	30	ND<5.0	ND<5.0	ND<5.0	ND<5.0
B-3-W	ND<50	4,000	60,000	ND<10	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5
ESLs (Commercial)	210	210	210	1,500	46	43			1,800	170	24				120	130		100

ug/L = micrograms per liter; TPH = total petroleum hydrocarbons specified as gasoline range (-g), diesel range (-d) and motor oil range (-mo); VOCs = volatile organic compounds; MIBK = Methyl isobutyl ketone (4-Methyl-2-pentanone); ND<100 = non-detect with a detection level of 100; ESLs (Commercial) = Environmental Screening Levels for groundwater that is not used as drinking water (California Regional Water Quality Control Board - Table F-1b).

-- = No ESL listed

SCHUTZE & Associates, Inc., August 2010

Sample I D	Acetone	Benzene	Carbon Disulfide	Ethanol	Ethyl acetate	Ethylbenzene	lsopropylbenzene	MIBK	Methyl-t-butyl ether	Naphthalene	n-Propyl benzene	Propene	sec-Butyl benzene	Tetrachloroethene	Toluene	1, 2, 4-Trimethylbenzene	1, 3, 5-Trimethy lbenzene	Xylenes
SV-1	220	44	ND<6.3	140	8.6	28		ND<8.3	ND<7.3	ND<11		250		18	270	ND<10	ND<10	100
SV-2*	ND<10,000	ND<500	ND<500	ND<50,000		8,100	3,400	ND<500	ND<500	850	4,500	NR	1,100	ND<500	3,100	1,100	910	28,000
SV-3	140	50	86	360	ND<7.3	25		ND<8.3	ND<7.3	ND<11		310		ND<14	220	21	ND<10	69
SV-4	380	17	ND<6.3	1,300	ND<7.3	ND<8.8		11	ND<7.3	ND<11		ND<88		ND<14	120	12	ND<10	ND<27
ELA (Ambient)	ND<120	ND<6.5	ND<6.3	ND<96	ND<7.3	ND<8.8		ND<8.3	ND<7.3	ND<11		ND<88		ND<14	ND<7.7	ND<10	ND<10	ND<27
ESLs (Commercial)	1,800,000	280				3,300		1,800,000	31,000	240				1,400	180,000			58,000
CHHSL (Commercial)		122							13,400	106				603	378,000			879,000

TABLE 8 Soil Vapor Analytical Results (ug/m^3) for VOCs (EPA TO-15 2700 23rd Avenue, Oakland, California

ug/m^3 = micrograms per cubic meter; MIBK = Methyl isobutyl ketone (4-Methyl-2-pentanone); ND<6.3 = non-detect with a detection level of 6.3; ESLs (Commercial) = shallow gas screening levels for the evaluation of potential vapor intrusion concerns (California Regional Water Quality Control Board - Table E-2); CHHSLs = California human health screening levels (California Department of Toxic Substances Control).

* Due to matrix interference, this sample was analyzed via EPA method 8260.

-- = not analyzed or not listed

SCHUTZE & Associates, Inc., August 2010

SITE PHOTOGRAPHS

Photograph 1: Drilling was conducted using a Geoprobe 6600 Series direct-push rig.

Photograph 2: Prior to drilling, boring locations were cleared for subsurface utility lines.

Photograph 3: As seen in the background, a photo-ionization detector was used to screen soil, groundwater and ambient air for VOCs.

Photograph 5: Drill rods were decontaminated in between borings to prevent cross contamination.

Photograph 4: A green-stained, moist, silty-sand layer was encountered in soil boring B1 at approximately 13.5 ft bgs.

Photograph 6: The soil vapor sampling set-up for soil vapor sample SV-4. Isopropyl was used as a tracer.

APPENDIX A

LABORATORY REPORTS

PROJECT: SCS370 – 2700 23rd Avenue, Oakland, CA

LABORATORY: McCampbell Analytical, Inc. (ELAP Certification 1644)

LAB REPORT NUMBER: 1008025

SAMPLES: B1-8', B1-14' and SV-2-5'

MATRIX: Soil

Analysis	VOCs (8260B)
Holding Time	\checkmark
Surrogate Recovery	\checkmark
MS/MSD	\checkmark
LCS (Blank Spike)	\checkmark
Method Blanks	\checkmark
Field Duplicates	N/A
Trip/Field/Equipment Blanks	N/A
Reporting Limits	See notes

 \checkmark – QC criteria were met.

Notes:

The reporting limits were raised for soil samples B1-8' (DF=2.0), B1-14' (DF=200) and SV-2-5' (DF=40). Based on the laboratory report, it appears that the reporting limits for these samples were raised due to high TPH concentrations in the sample. Although certain DQOs were compromised, the raised reporting limits are unlikely to affect the conclusions of this investigation and associated recommendations (the soil will likely need to be further characterized and remediated).

Summary:

PROJECT: SCS370 – 2700 23rd Avenue, Oakland, CA

LABORATORY: McCampbell Analytical, Inc. (ELAP Certification 1644)

LAB REPORT NUMBER: 1008025

SAMPLES: B-1-W, B-3-W

MATRIX: Groundwater

Analysis	VOCs (8260B)
Holding Time	\checkmark
Surrogate Recovery	\checkmark
MS/MSD	\checkmark
LCS (Blank Spike)	\checkmark
Method Blanks	\checkmark
Field Duplicates	N/A
Trip/Field/Equipment Blanks	N/A
Reporting Limits	See notes

 \checkmark – QC criteria were met.

Notes:

The reporting limit was raised for groundwater sample B-1-W (DF=10). Based on the laboratory report, it appears that the reporting limit for this sample was raised due to high TPH concentrations in the sample. Although certain DQOs were compromised, the raised reporting limits are unlikely to affect the conclusions of this investigation and associated recommendations (the groundwater will likely need to be further characterized).

Summary:

PROJECT: SCS370 – 2700 23rd Avenue, Oakland, CA

LABORATORY: McCampbell Analytical, Inc. (ELAP Certification 1644)

LAB REPORT NUMBER: 1008025

SAMPLES: B1-8', B1-14', B1-20', B2-8', B3-7', B4-7', and SV-2-5'

MATRIX: Soil

Analysis	TPH-g (8021B/8015B)					
Holding Time	\checkmark					
Surrogate Recovery	\checkmark					
MS/MSD	\checkmark					
LCS (Blank Spike)	\checkmark					
Method Blanks	\checkmark					
Field Duplicates	N/A					
Trip/Field/Equipment Blanks	N/A					
Reporting Limits	\checkmark					

 \checkmark – QC criteria were met.

Summary:

PROJECT: SCS370 – 2700 23rd Avenue, Oakland, CA

LABORATORY: McCampbell Analytical, Inc. (ELAP Certification 1644)

LAB REPORT NUMBER: 1008025

SAMPLES: B-1-W and B-3-W

MATRIX: Groundwater

Analysis	TPH-g (8021B/8015B)
Holding Time	\checkmark
Surrogate Recovery	✓
MS/MSD	\checkmark
LCS (Blank Spike)	\checkmark
Method Blanks	\checkmark
Field Duplicates	N/A
Trip/Field/Equipment Blanks	N/A
Reporting Limits	\checkmark

 \checkmark – QC criteria were met.

Summary:

PROJECT: SCS370 – 2700 23rd Avenue, Oakland, CA

LABORATORY: McCampbell Analytical, Inc. (ELAP Certification 1644)

LAB REPORT NUMBER: 1008025

SAMPLES: B-1-W

MATRIX: Groundwater

Analysis	Metals (200.8)
Holding Time	\checkmark
Surrogate Recovery	\checkmark
MS/MSD	\checkmark
LCS (Blank Spike)	✓
Method Blanks	✓
Field Duplicates	N/A
Trip/Field/Equipment Blanks	N/A
Reporting Limits	\checkmark

 \checkmark – QC criteria were met.

Summary:

PROJECT: SCS370 – 2700 23rd Avenue, Oakland, CA

LABORATORY: McCampbell Analytical, Inc. (ELAP Certification 1644)

LAB REPORT NUMBER: 1008025

SAMPLES: B1-8', B1-14', B1-20', B2-8', B3-7', B4-7' and SV-2-5'

MATRIX: Soil

Analysis	TPH-d (8015B)
Holding Time	\checkmark
Surrogate Recovery	\checkmark
MS/MSD	See notes
LCS (Blank Spike)	\checkmark
Method Blanks	\checkmark
Field Duplicates	N/A
Trip/Field/Equipment Blanks	N/A
Reporting Limits	\checkmark

 \checkmark – QC criteria were met.

Notes:

Analyte concentration in sample exceeded spike amount for soil matrix, LCS conducted.

Summary:

PROJECT: SCS370 - 2700 23rd Avenue, Oakland, CA

LABORATORY: McCampbell Analytical, Inc. (ELAP Certification 1644)

LAB REPORT NUMBER: 1008025

SAMPLES: B-1-W, B-3-W

MATRIX: Groundwater

Analysis	TPH-d (8015B)						
Holding Time	\checkmark						
Surrogate Recovery	\checkmark						
MS/MSD	See notes						
LCS (Blank Spike)	\checkmark						
Method Blanks	\checkmark						
Field Duplicates	N/A						
Trip/Field/Equipment Blanks	N/A						
Reporting Limits	\checkmark						

 \checkmark – QC criteria were met.

Notes:

Not enough sample to perform MS/MSD, LCS conducted.

Summary:

McCampbell An "When Ouality	nalytical, Inc.	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269								
Schutze & Associates	Date Sampled:	07/29/10								
2100 Embarcadero, Suite #100			Date Received:	08/02/10						
	Client Contact: Ian Suther	Date Reported: 08/06/10								
Oakland, CA 94606	Client P.O.:		Date Completed:	08/06/10						

WorkOrder: 1008025

August 06, 2010

Dear Ian:

Enclosed within are:

- 1) The results of the 9 analyzed samples from your project: #SCS370; Ed's Liquor, Oakland, CA,
- 2) A QC report for the above samples,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

																	1	00	80	>2	5											
McCAMPBELL ANALYTICAL, INC. 1534 WILLOW PASS ROAD PITTSBURG, CA 94565-1701 Website: www.mccampbell.com Telephone: (877) 252-9262 Fax: (925) 252-9269 Pitt Taylor (11): 7715											CHAIN OF CUSTODY RECORD TURN AROUND TIME Image: Constant of the state																					
Company: Tele: (510) - Project #: Project Location Sampler Signatu	134-1333 30.5370 : re:)qkla	N, CA	E-Mai Fax: (Projec	l: (a t Nan	ne:	et.	hvt is L	ze	in	ι. ι	6~		2/8021+8015)/MTBE	0 + W0	case (1664 / 5520 E/B&F)	rbons (418.1)	021 (HVOCs)	PA 602 / 8021)	esticides)	d.V; Aroclors / Congeners	cides)	I Herbicides)	0(3)	(00)	(Hs / PNAs)	00.8 / 0010 / 6020)	0.8 / 6010 / 6020)	(6020)	VED metals analysis		**Indicate here if these samples are potentially dangerous to handle:
SAMPLE ID	LOCATION/ Field Point Name	SAMF Date	Time	# Containers	Type Containers	Water	Spill	All All	Other	ICE E	HCL	HOO CONH	Other da	BTEX & TPH as Gas (602	TPH as Diesel (8015)	Total Petroleum Oil & Gro	Total Petroleum Hydrocar	EPA 502.27 6017 80107 80	MTBE / BTEN ONLY (EP	EPA 505/ 608 / 8081 (CI Pe	EPA 608 / \$082 PCB's ON	EPA 507 / 8141 (NP Pestic	EPA 515 / 8151 (Acidic CI	EPA 524.2 / 624 / 8260 (VC	EPA 525.2 / 625 / 8270 (SV	EPA 8270 SIM / 8310 (PA	CAM 17 Metals (200.7 / 20	LUFT 5 Metals (200.7 / 20	Lead (200.7 / 200.8 / 6010 /	Filter sample for DISSOL		
B1-8' B1-14' B1-20'	ja:	7.29.10		1 1	(XXX			XXV					XX									X								
Ba-16 B3-7 B3-7							XXX			(XXX)					X																	HOLD
B4-7-, B4-14 SV-2-5							X			XXX		1			X									X								HOLD
**MAI clients MUST gloved, open air, sam allowing us to works	' disclose any dar ple handling by ' afely.	igerous che MA1 staff.	emicals kn Non-discle	own to isure in	be pre icurs a	sent n im	in the media	eir su ite S2	ibmit 250 st	tted	samj	ples e ano	in co d the	clie	ntrat nt is	tions subj	that ect to	may ful	caus lega	e im I liab	medi: ility	ate h for h	arm	or so suffe	eriou ered.	s fut Tha	ure h ink y	ealtl ou fe	h end	lange our ui	erment : nderstar	a result of brief, ading and for
Relinquished By:	-	Date: 8/2/10 Date:	Time: 1825 Time:	Rece	ived B	y:	1.	z	~	_	_	-	_	IC GC HE DE AP	E/f [*] OOD AD CHI PRO	CO SPA LOR		TED CO	P9 INT INTA	AB	RS_	9	- 0					CON	IME	ENTS	Ve)
Relinquished By:		Date: Time: Received By:									PRESERVED IN LAB																6	10	1 V			
		W Te	ebsite: <u>www.m</u> lephone: (877	PITTSBU (ccampbel () 252-92	RG, CA 9 Leom Er 62	4565-17 nail: m	701 nain@ Fax	meca : (925	mpbe 5) 25:	ll.co 2-92	m 69				G	eo	Fra	cke	er E	EDF		P	DF	RU RU k if :	ISH E sam	24 xce ple i	4 HR I G s efi	t Ji V fluer	48 I Wri at ar	HR ite (72 F On (D J" flag	R 5 W) □ is requ
---	-----------------------	--------------	---------------------------------------	-----------------------------------	---------------------------	--------------------	---------------------	----------------	----------------	---------------	---------	-------	-------	---------	-----------------	-------------------	-------------------	------------------------	----------------	---------------	-------------------	------------------	---------------	--------------------	-------------------	--------------------	----------------------	--------------------	----------------------	-------------------	--------------------------	------------------------
1	Report	To: Io	in Sutherla	ind	1	Bill To): _5	CHU	TZE	51						_	_	_	-	A	naly	sis F	equ	est	_	-	-	-		0	ther	Com
4	Compa	ny:				_	_			_				-								*										**Ind
-	Tele: (510 74	34, 1333]	E-Mai Fax: (il: ia	nesc	:hut;	<u>ne -</u>	inc	. (0	m		/ MTBE		0 E/B&F)					Congener					(0)	(0		ntysis		here i sampl
1	Project	t #r, † (5(537)	6	I	rojec	t Nai	ne:	E	isL	iav	or			8015	-	1 551	0	Cs)	021)		lors /	1	6		()	/ 602	/ 602		IIS an		dange
	Project	Location	Da-	Dakle	my C	A		ASSAL.							+	X	1664	(418	IVO	2/8((c)	Aroc	1			PNA	6010	0105	-	meta		handl
4	Sample	er Signatu	rest		26		_								/ 802	+	ase (bons	21 (F	A 60	sticie	LY:	ILLER	3	00	Hs /	0.8 /	0.87	6020	1		C
			23	SAMP	PLING	s	lers	N	IAT	RIX	1	ME	THO	D ED	Gas (602	+ (510	Oil & Gre	Hydrocar	8010/80	NLV (EP	181 (C1 Pe	CB's ON	NF FESHC	8260 (VC	8270 (SV	8310 (PA	200.7 / 20	200.7 / 200	8/6010/	Hossia	-	-> Fi
	SAM	PLF. ID	LOCATION/ Field Point Name	Date	Time	# Container	Type Contain	Water	Air	Sludge	Other	ICE	HNO3	Other	BTEX & TPH as	TPH as Diesel (80	Total Petroleum (Total Petroleum	EPA 502.276017	MTBE / BTEN O	EPA 505/ 608 / 80	EPA 608 / 8082 P	DFA 20// 0141	EPA 524.2 / 624 /	EPA 525.2 / 628 /	EPA 8270 SIM /	CAM 17 Metals (LUFT 5 Metals ()	Lead (200.7 / 200	Filter sample for		m
	R-1.	~ 1/		7 30 10	_	7	12	X			-	X	X		-	V	202	-	2						/		-	V				
H	D 1	No/		1.99.10		T		0	-		-	X	2			\bigcirc	-				-	-	+	K		-	+	~		-		802.00
H	5-2	- WV		×		2		n	-	-		Y	1		-				-		-	-	-	1	4	-	-					
┝	-								-		-		-				_				-	-	+	-	-	-	-					
	_	1														_						_				-		1.1				
		1.		_			_						-				_															
L	5	持																		_												
	-	144																						1								
		3.81															_															
		11																														
		1 12	A LINE																													
		11																							T	1	1					
	*MAI c	lienta MUSI	f disclose any da	ngerous ch	emicals ki	nown to	be pr	esent i	n thei	r sub	mitte	ed sa	mples	s in c	once	ntra	tions	that	may	caus	e imn	redia	e har	mor	serio	ous fu	ture	healt	th en	dang	erment :	is a result
1	gloved, o allowing	pen hir, sam	ple handling by afely.	MAI staff.	Non-discl	osure ii	ncurs	an imn	rediat	e \$25	50 su	rchar	ge an	id th	e clie	nt is	subj	ect t	o ful	I lega	l liab	ility f	or ha	rm st	iffer	ed. T	hanl	c you	for y	ouri	understa	nding and
1	Relinquis	sheal By:		Date: 8/2/10	Time: 1825	Rece	ived B	y:	V	1	3				ICI GO HF	OD AD	CON	DIT	ION	NT	_							CO	MM	ENT	St	
4	Relinqui	shed By:		Date:	Time:	Rece	ived B	y:		2	142				DE	CHL	ORI	NAT	ED	IN LA	AB	<u>s</u>	2					(C	7	2)
1	Relinquis	shed By:		Date:	Time:	Rece	ived B	y:							PR	ESE	RVA	TIO	VON	DAS	0&	G	MET. H<2	ALS	01	THEF	ł	1	1	_	/	/

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

(925) 25	52-9262					WorkO	Order	1008	025	(Client	Code: S	CO				
		WaterTrax	WriteOr	n EDF	Ľ	Excel		Fax		🖌 Email		Hard	JCopy	🗌 Thi	rdParty	J.	-flag
Report to:						I	Bill to:						Req	uested	TAT:	5	days
Ian Sutherla	nd	Email: j	s@schutze-i	nc.com, ian@schu	utze-in	C.CO	Ac	counts	Payab	e							
Schutze & As 2100 Embar	ssociates cadero, Suite #100	cc: PO:					Sc 21	hutze C 00 Emb	consult arcad	ing ero, Sui	te #10	0	Dai	te Rece	eived:	08/02/	/2010
Oakland, CA (510) 434-133	A 94606 33 FAX (510) 625-8176	ProjectNo: <i>‡</i>	#SCS370; Ec	l's Liquor, Oakland	d,CA		Oa pri	ıkland, (scillajaz	CA 946 zz@yal	606 hoo.com	l		Dat	te Prin	ted:	08/02/	/2010
									Req	uested	Tests	(See le	gend b	oelow)			
Lab ID	Client ID		Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
1008025-001	B1-8'		Soil	7/29/2010		А		Α							T		
1008025-002	B1-14'		Soil	7/29/2010		А		А									
1008025-003	B1-20'		Soil	7/29/2010				А									
1008025-004	B2-8'		Soil	7/29/2010				А									
1008025-006	B3-7'		Soil	7/29/2010				А									
1008025-008	B4-7'		Soil	7/29/2010				А									
1008025-010	SV-2-5'		Soil	7/29/2010		А		А									
1008025-011	B-1-W		Water	7/29/2010			В		Α	С							T

В

7/29/2010

Test Legend:

1008025-012

1	8260B_S	2	8260B_W	3	G-MBTEX_S
6		7		8	3
11		12		7	

Water

B-3-W

4	G-MBTEX_W
9	

А

5	LUFTMS_DISS
10	

The following SampIDs: 001A, 002A, 003A, 004A, 006A, 008A, 010A, 011A, 012A contain testgroup.

Prepared by: Ana Venegas

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

McCampbell Analytical, Inc. "When Ouality Counts"

Sample Receipt Checklist

Client Name:	Schutze & Assoc	ciates			Date a	ind Time Received:	8/2/2010 6	:29:18 PM
Project Name:	#SCS370; Ed's Li	quor, Oaklaı	nd,CA		Check	list completed and r	eviewed by:	Ana Venegas
WorkOrder N°:	1008025	Matrix <u>Soil/M</u>	/ater		Carrie	r: <u>Client Drop-In</u>		
			<u>Chain of C</u>	ustody (<u>COC) Informa</u>	ition		
Chain of custody	present?		Ye	; V	No 🗆			
Chain of custody	signed when relinqui	shed and recei	ved? Ye	; V	No 🗆			
Chain of custody	agrees with sample I	abels?	Ye	; V	No 🗌			
Sample IDs noted	I by Client on COC?		Ye	; V	No 🗆			
Date and Time of	collection noted by Cli	ent on COC?	Ye	; 🗹	No 🗆			
Sampler's name r	noted on COC?		Ye	; /	No 🗆			
			<u>Samp</u>	e Receip	ot Information			
Custody seals int	tact on shipping conta	iner/cooler?	Ye	;	No 🗆		NA 🔽	
Shipping containe	er/cooler in good cond	ition?	Ye	; V	No 🗆			
Samples in prope	er containers/bottles?		Ye	; 🗹	No 🗆			
Sample containe	rs intact?		Ye	; Z	No 🗆			
Sufficient sample	volume for indicated	test?	Ye	5 V	No 🗌			
		<u>Sample</u>	Preservati	on and H	lold Time (HT)	Information		
All samples recei	ved within holding tim	e?	Ye	; V	No 🗌			
Container/Temp E	Blank temperature		Cod	ler Temp:	6.2°C		NA 🗆	
Water - VOA vial	ls have zero headspa	ce / no bubbles	? Ye	;	No 🗆	No VOA vials subm	itted 🗹	
Sample labels ch	necked for correct pres	servation?	Ye	; V	No 🗌			
Metal - pH accept	table upon receipt (pH	I<2)?	Ye	;	No 🗆		NA 🗹	
Samples Receive	ed on Ice?		Ye	; 🗸	No 🗆			
		(10	ce Type: V	ET ICE)			
* NOTE: If the "N	lo" box is checked, se	ee comments b	elow.					
					====			

Client contacted:

Date contacted:

Contacted by:

Comments:

When Ouality	McCampbell Analytical, Inc. "When Quality Counts" Schutze & Associates					A 94565-1701 n@mccampbell.com 25-252-9269					
Schutze & Associates	Cli	ent Project ID	#SC	S370; Ed's	Date Sampled:	07/29/10					
	Lic	uor, Oakland,	CA		Date Received:	08/02/10					
2100 Embarcadero, Suite #100	Cli	ent Contact	an Su	therland	Date Extracted:	08/02/10					
Oakland, CA 94606		$\operatorname{ont} \mathbb{P} \cap \cdot$	un ou		Date Analyzed	08/02/10					
		uni 1.0			Date Analyzed.	. 00/04/10					
	Volatile O	organics by Pe	&T and	d GC/MS (Basic Ta	arget List)*						
Extraction Method: SW5030B		Analytic	al Metho	od: SW8260B		Work Order: 1008	3025				
Lab ID				1008025	5-001A						
Client ID		<u>B1-8'</u>									
Matrix			11								
Compound	Concentration	on * DF	Limit	Compour	nd	Concentration *	DF	Limit Reporting			
Acetone	ND<0.10) 2.0	0.05	tert-Amyl methyl et	ther (TAME)	ND<0.010	2.0	0.005			
Benzene	ND<0.01	0 2.0	0.005	Bromobenzene		ND<0.010	2.0	0.005			
Bromochloromethane	ND<0.01	0 2.0	0.005	Bromodichlorometh	ane	ND<0.010	2.0	0.005			
Bromoform	ND<0.01	0 2.0	0.005	Bromomethane		ND<0.010	2.0	0.005			
2-Butanone (MEK)	ND<0.04	$\frac{0}{2.0}$	0.02	t-Butyl alcohol (TB	A)	ND<0.10	2.0	0.05			
n-Butyl benzene	0.02	$\frac{28}{2.0}$	0.005	Sec-Butyl benzene		0.021	2.0	0.005			
Carbon Tatnahlarida	ND<0.01	$\frac{0}{2.0}$	0.005	Chlorobongana	ND<0.010	2.0	0.005				
Chloroothana	ND<0.01	$\frac{0}{0}$ 2.0	0.005	Chloroform	ND<0.010	2.0	0.005				
Chloromothono	ND<0.01	$\frac{0}{2.0}$	0.005	2 Chlanatalyana		ND<0.010	2.0	0.005			
4-Chlorotoluene	ND<0.01	$\frac{0}{0}$ 2.0	0.005	2-Chlorotoluene Dibromochlorometh	1910	ND<0.010	2.0	0.005			
1.2-Dibromo-3-chloropropane	ND<0.00	$\frac{0}{2.0}$	0.003	1.2-Dibromoethane	(EDB)	ND<0.010	2.0	0.003			
Dibromomethane	ND<0.00	$\frac{30}{0}$ 2.0	0.004	1.2-Dichlorobenzen	e	ND<0.0030	2.0	0.004			
1.3-Dichlorobenzene	ND<0.01	0 2.0	0.005	1.4-Dichlorobenzen	ND<0.010	2.0	0.005				
Dichlorodifluoromethane	ND<0.01	0 2.0	0.005	1.1-Dichloroethane	•	ND<0.010	2.0	0.005			
1.2-Dichloroethane (1.2-DCA)	ND<0.008	30 2.0	0.004	1.1-Dichloroethene		ND<0.010	2.0	0.005			
cis-1,2-Dichloroethene	ND<0.01	0 2.0	0.005	trans-1,2-Dichloroe	thene	ND<0.010	2.0	0.005			
1,2-Dichloropropane	ND<0.01	0 2.0	0.005	1,3-Dichloropropan	e	ND<0.010	2.0	0.005			
2,2-Dichloropropane	ND<0.01	0 2.0	0.005	1,1-Dichloropropen	e	ND<0.010	2.0	0.005			
cis-1,3-Dichloropropene	ND<0.01	0 2.0	0.005	trans-1,3-Dichlorop	ropene	ND<0.010	2.0	0.005			
Diisopropyl ether (DIPE)	ND<0.01	0 2.0	0.005	Ethylbenzene		ND<0.010	2.0	0.005			
Ethyl tert-butyl ether (ETBE)	ND<0.01	0 2.0	0.005	Freon 113		ND<0.20	2.0	0.1			
Hexachlorobutadiene	ND<0.01	0 2.0	0.005	Hexachloroethane		ND<0.010	2.0	0.005			
2-Hexanone	ND<0.01	0 2.0	0.005	Isopropylbenzene		ND<0.010	2.0	0.005			
4-Isopropyl toluene	ND<0.01	0 2.0	0.005	Methyl-t-butyl ethe	r (MTBE)	ND<0.010	2.0	0.005			
Methylene chloride	ND<0.01	0 2.0	0.005	4-Methyl-2-pentance	one (MIBK)	ND<0.010	2.0	0.005			
Naphthalene	ND<0.01	0 2.0	0.005	n-Propyl benzene		0.021	2.0	0.005			
Styrene	ND<0.01	0 2.0	0.005	1,1,1,2-Tetrachloro	ethane	ND<0.010	2.0	0.005			
1,1,2,2-Tetrachloroethane	ND<0.01	0 2.0	0.005	Tetrachloroethene		ND<0.010	2.0	0.005			
Toluene	0 2.0	0.005	1,2,3-Trichlorobenz	ene	ND<0.010	2.0	0.005				
1,2,4-Trichlorobenzene	ND<0.01	0 2.0	0.005	1,1,1-Trichloroetha	ne	ND<0.010	2.0	0.005			
1,1,2-Trichloroethane	ND<0.01	0 2.0	0.005	Trichloroethene		ND<0.010	2.0	0.005			
1 2 4 T i d ll	ND<0.01	0 2.0	0.005	1,2,3-Trichloroprop	ane	ND<0.010	2.0	0.005			
1,2,4-1rimethylbenzene	ND<0.01	$\frac{0}{0}$ 2.0	0.005	1,3,5-Trimethylben:	zene	ND<0.010	2.0	0.005			
	ND<0.01	<u>v 2.0</u>	0.003	$\Delta vienes$		ND~0.010	2.0	10.005			
N/001		Surrog	gale Ke	vices (%)			-				
%SS1:		110		%882:		8	1				
Commonta	I	/ð		1							

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

%SS = Percent Recovery of Surrogate Standard DF = Dilution Factor

McCampbell An "When Ouality	nalytical, Counts"	Inc.		1534 Willow P Web: www.mccamp Telephone: 8	Pass Road, Pittsburg, C. bell.com E-mail: mai 277-252-9262 Fax: 92	A 94565-1701 n@mccampbell.com 25-252-9269						
Schutze & Associates	Clien	t Project ID:	#SC	S370; Ed's	Date Sampled:	07/29/10						
	Lique	or, Oakland, O	CA		Date Received:	08/02/10						
2100 Embarcadero, Suite #100	Clier	t Contact: I	an Su	therland	Date Extracted:	08/02/10						
Oakland CA 94606	Clien		un Su		Date Anal and	00/02/10						
Oakland, CA 94000	Clien	t P.O.:			Date Analyzed	08/05/10						
	Volatile Org	anics by P&	T and	d GC/MS (Basic Ta	arget List)*							
Extraction Method: SW5030B		Analytica	l Metho	od: SW8260B		Work Order: 1008	3025					
Lab ID				1008025	-002A							
Client ID		B1-14'										
Matrix		Soil										
Compound	Concentration	* DF R	eporting Limit	Compour	nd	Concentration *	DF	Reporting Limit				
Acetone	ND<10	200	0.05	tert-Amyl methyl et	ther (TAME)	ND<1.0	200	0.005				
Benzene	ND<1.0	200	0.005	Bromobenzene		ND<1.0	200	0.005				
Bromochloromethane	ND<1.0	200	0.005	Bromodichlorometh	ane	ND<1.0	200	0.005				
Bromoform	ND<1.0	200	0.005	Bromomethane		ND<1.0	200	0.005				
2-Butanone (MEK)	ND<4.0	200	0.02	t-Butyl alcohol (TB.	A)	ND<10	200	0.05				
n-Butyl benzene	ND<1.0	200	0.005	sec-Butyl benzene		2.5	200	0.005				
tert-Butyl benzene	ND<1.0	200	0.005	Carbon Disulfide	ND<1.0	200	0.005					
Carbon Tetrachloride	ND<1.0	200	0.005	Chlorobenzene		ND<1.0	200	0.005				
Chloroethane	ND<1.0	200	0.005	Chloroform		ND<1.0	200	0.005				
Chloromethane	ND<1.0	200	0.005	2-Chlorotoluene		ND<1.0	200	0.005				
4-Chlorotoluene	ND<1.0	200	0.005	Dibromochiorometh	(EDD)	ND<1.0	200	0.005				
1,2-Dibromo-3-chloropropane	ND<0.80	200	0.004	1,2-Dibromoetnane	(EDB)	ND<0.80	200	0.004				
1.3 Dichlorobenzene	ND<1.0	200	0.005	1.4 Dichlorobenzen	ND<1.0	200	0.005					
Dichlorodifluoromethane	ND<1.0	200	0.005	1 1-Dichloroethane	ND<1.0	200	0.005					
1 2-Dichloroethane (1 2-DCA)	ND<0.80	200	0.005	1 1-Dichloroethene		ND<1.0	200	0.005				
cis-1.2-Dichloroethene	ND<1.0	200	0.005	trans-1.2-Dichloroe	thene	ND<1.0	200	0.005				
1,2-Dichloropropane	ND<1.0	200	0.005	1,3-Dichloropropan	e	ND<1.0	200	0.005				
2,2-Dichloropropane	ND<1.0	200	0.005	1,1-Dichloropropen	e	ND<1.0	200	0.005				
cis-1,3-Dichloropropene	ND<1.0	200	0.005	trans-1,3-Dichlorop	ropene	ND<1.0	200	0.005				
Diisopropyl ether (DIPE)	ND<1.0	200	0.005	Ethylbenzene		ND<1.0	200	0.005				
Ethyl tert-butyl ether (ETBE)	ND<1.0	200	0.005	Freon 113		ND<20	200	0.1				
Hexachlorobutadiene	ND<1.0	200	0.005	Hexachloroethane		ND<1.0	200	0.005				
2-Hexanone	ND<1.0	200	0.005	Isopropylbenzene		2.8	200	0.005				
4-Isopropyl toluene	ND<1.0	200	0.005	Methyl-t-butyl ether	r (MTBE)	ND<1.0	200	0.005				
Methylene chloride	ND<1.0	200	0.005	4-Methyl-2-pentano	ne (MIBK)	ND<1.0	200	0.005				
Naphthalene	ND<1.0	200	0.005	n-Propyl benzene		4.2	200	0.005				
Styrene	ND<1.0	200	0.005	1,1,1,2-Tetrachloro	ethane	ND<1.0	200	0.005				
1,1,2,2-Tetrachloroethane	ND<1.0	200	0.005	Tetrachloroethene		ND<1.0	200	0.005				
	200	0.005	1,2,3-Trichlorobenz	ene	ND<1.0	200	0.005					
1,2,4-1richloropenzene	0.005	Trichloroothono	ne	ND<1.0	200	0.005						
Trichlorofluoromethane	ND<1.0	200	0.005	1 2 3-Trichloroprop	ane	ND<1.0	200	0.005				
1 2 4-Trimethylbenzene	ND<1.0	200	0.005	1 3 5-Trimethylben	zene	ND<1.0	200	0.005				
Vinyl Chloride	ND<1.0	200	0.005	Xvlenes		ND<1.0	200	0.005				
		Surrog	ate Re	coveries (%)			<u> </u>					
%SS1:		116		%SS2·		Q	3					
%SS3:		88		/0002.			<u>0</u>					
Comments:		8						·				

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

%SS = Percent Recovery of Surrogate Standard DF = Dilution Factor

When Ouality Con	<mark>lytical, In</mark> ^{unts"}	<u>nc.</u>		1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269						
Schutze & Associates	Client F	Project ID:	#SC	S370; Ed's	Date Sampled:	07/29/10				
2100 Emboradora Suita #100	Liquor,	Oakland,	CA		Date Received:	08/02/10				
2100 Embarcadero, Suite #100	Client (Contact: I	an Su	therland	Date Extracted:	08/02/10				
Oakland, CA 94606	Client P	2.0.:			Date Analyzed:	08/04/10				
V	olatile Orgar	nics by P&	T and	d GC/MS (Basic Ta	arget List)*					
Extraction Method: SW5030B	0	Analytica	l Metho	od: SW8260B	0	Work Order: 100	8025			
Lab ID				1008025	-010A					
Client ID				SV-2	-5'					
Matrix				Soi	1					
Compound	ncentration *	DF R	eporting	Compour	d.	Concentration *	DF	Reporting		
Asstance	ND<2.0	40	Limit	tant A mysl m athysl at			40	Limit		
Benzene	ND<0.20	40	0.05	Bromobenzene	iner (TAME)	ND<0.20	40	0.005		
Bromochloromethane	ND<0.20	40	0.005	Bromodichlorometh	ane	ND<0.20	40	0.005		
Bromoform	ND<0.20	40	0.005	Bromomethane		ND<0.20	40	0.005		
2-Butanone (MEK)	ND<0.80	40	0.005	t-Butyl alcohol (TB)	A)	ND<2.0	40	0.005		
n-Butyl benzene	4 9	40	0.005	sec-Butyl benzene		0.86	40	0.005		
tert-Butyl benzene	ND<0.20	40	0.005	Carbon Disulfide		ND<0.00	40	0.005		
Carbon Tetrachloride	ND<0.20	40	0.005	Chlorobenzene		ND<0.20	40	0.005		
Chloroethane	ND<0.20	40	0.005	Chloroform		ND<0.20	40	0.005		
Chloromethane	ND<0.20	40	0.005	2-Chlorotoluene		ND<0.20	40	0.005		
4-Chlorotoluene	ND<0.20	40	0.005	Dibromochlorometh	ane	ND<0.20	40	0.005		
1.2-Dibromo-3-chloropropane	ND<0.16	40	0.004	1.2-Dibromoethane	(EDB)	ND<0.16	40	0.004		
Dibromomethane	ND<0.20	40	0.005	1,2-Dichlorobenzene	ND<0.20	40	0.005			
1,3-Dichlorobenzene	ND<0.20	40	0.005	1,4-Dichlorobenzene	ND<0.20	40	0.005			
Dichlorodifluoromethane	ND<0.20	40	0.005	1,1-Dichloroethane	ND<0.20	40	0.005			
1,2-Dichloroethane (1,2-DCA)	ND<0.16	40	0.004	1,1-Dichloroethene		ND<0.20	40	0.005		
cis-1,2-Dichloroethene	ND<0.20	40	0.005	trans-1,2-Dichloroet	thene	ND<0.20	40	0.005		
1,2-Dichloropropane	ND<0.20	40	0.005	1,3-Dichloropropane	e	ND<0.20	40	0.005		
2,2-Dichloropropane	ND<0.20	40	0.005	1,1-Dichloropropen	e	ND<0.20	40	0.005		
cis-1,3-Dichloropropene	ND<0.20	40	0.005	trans-1,3-Dichlorop	ropene	ND<0.20	40	0.005		
Diisopropyl ether (DIPE)	ND<0.20	40	0.005	Ethylbenzene		ND<0.20	40	0.005		
Ethyl tert-butyl ether (ETBE)	ND<0.20	40	0.005	Freon 113		ND<4.0	40	0.1		
Hexachlorobutadiene	ND<0.20	40	0.005	Hexachloroethane		ND<0.20	40	0.005		
2-Hexanone	ND<0.20	40	0.005	Isopropylbenzene		0.35	40	0.005		
4-Isopropyl toluene	0.27	40	0.005	Methyl-t-butyl ether	r (MTBE)	ND<0.20	40	0.005		
Methylene chloride	ND<0.20	40	0.005	4-Methyl-2-pentano	ne (MIBK)	ND<0.20	40	0.005		
Naphthalene	ND<0.20	40	0.005	n-Propyl benzene		1.8	40	0.005		
Styrene	ND<0.20	40	0.005	1,1,1,2-Tetrachloro	ethane	ND<0.20	40	0.005		
1,1,2,2-Tetrachloroethane	ND<0.20	40	0.005	Tetrachloroethene		ND<0.20	40	0.005		
Toluene	ND<0.20	40	0.005	1,2,3-Trichlorobenz	ene	ND<0.20	40	0.005		
1,2,4-Trichlorobenzene	40	0.005	1,1,1-Trichloroetha	ne	ND<0.20	40	0.005			
1,1,2-Trichloroethane	ND<0.20	40	0.005	Trichloroethene		ND<0.20	40	0.005		
Trichlorofluoromethane	ND<0.20	40	0.005	1,2,3-Trichloroprop	ane	ND<0.20	40	0.005		
1,2,4-Trimethylbenzene	0.25	40	0.005	1,3,5-Trimethylbenz	zene	ND<0.20	40	0.005		
Vinvi Chloride	ND<0.20	40	0.005	Xvlenes		ND<0.20	40	0.005		
l		Surrog	ate Re	coveries (%)						
%SS1:	11	4		%SS2:		9	0			
%SS3:	8	8								

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

%SS = Percent Recovery of Surrogate Standard DF = Dilution Factor

McCampbell Analy "When Quality Count	nc.		1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269									
Schutze & Associates	Client l	Project ID	#SC	'S370; Ed's	Date Sampled:	07/29/10						
	Liquor,	, Oakland,	CA		Date Received:	08/02/10						
2100 Embarcadero, Suite #100	Client	Contact:	an Su	therland	Date Extracted:	08/05/10						
Oakland, CA 94606	Client I	P.O.:			Date Analyzed	: 08/05/10						
Vol	atile Orga	nics by Pa	&T an	d GC/MS (Basic Ta	arget List)*							
Extraction Method: SW5030B	C C	Analytic	al Metho	od: SW8260B	0	Work Order: 1008	3025					
Lab ID				1008025	-011B							
Client ID			B-1-W									
Matrix				Wat	er							
Compound Cond	Reporting Limit	Compour	ıd	Concentration *	DF	Reporting Limit						
Acetone	D<100	10	10	tert-Amyl methyl et	ther (TAME)	ND<5.0	10	0.5				
Benzene	ND<5.0	10	0.5	Bromobenzene		ND<5.0	10	0.5				
Bromochloromethane	ND<5.0	10	0.5	Bromodichlorometh	ane	ND<5.0	10	0.5				
Bromoform	ND<5.0	10	0.5	Bromomethane		ND<5.0	10	0.5				
2-Butanone (MEK)	ND<20	10	2.0	t-Butyl alcohol (TB.	A)	ND<20	10	2.0				
n-Butyl benzene	12	10	0.5	sec-Butyl benzene		30	10	0.5				
tert-Butyl benzene	ND<5.0	10	0.5	Carbon Disulfide	ND<5.0	10	0.5					
Carbon Tetrachloride	ND<5.0	10	0.5	Chlorobenzene		ND<5.0	10	0.5				
Chloroethane	ND<5.0	10	0.5	Chloroform		ND<5.0	10	0.5				
Chloromethane	ND<5.0	10	0.5	2-Chlorotoluene		ND<5.0	10	0.5				
4-Chlorotoluene	ND<5.0	10	0.5	Dibromochlorometh	ane	ND<5.0	10	0.5				
1,2-Dibromo-3-chloropropane	ND<2.0	10	0.2	1,2-Dibromoethane	(EDB)	ND<5.0	10	0.5				
	ND<5.0	10	0.5	1,2-Dichlorobenzen	ND<5.0	10	0.5					
1,3-Dichlorobenzene	ND<5.0	10	0.5	1,4-Dichlorobenzen	ND<5.0	10	0.5					
1 2 Dichlang (1 2 DCA)	VD<5.0	10	0.5	1,1-Dichlere ethane		ND<5.0	10	0.5				
1,2-Dichloroethane (1,2-DCA)	VD<5.0	10	0.5	trans 1.2 Diablaras	thana	ND<5.0	10	0.5				
1 2-Dichloropropage	$\frac{10 < 5.0}{10 < 5.0}$	10	0.5	1 3-Dichloropropan	e	ND<5.0	10	0.5				
2 2-Dichloropropane	<u>ND<5.0</u>	10	0.5	1 1-Dichloropropen	e	ND<5.0	10	0.5				
cis-1.3-Dichloropropene	ND<5.0	10	0.5	trans-1.3-Dichlorop	ropene	ND<5.0	10	0.5				
Diisopropyl ether (DIPE)	ND<5.0	10	0.5	Ethylbenzene		ND<5.0	10	0.5				
Ethyl tert-butyl ether (ETBE)	ND<5.0	10	0.5	Freon 113		ND<100	10	10				
Hexachlorobutadiene	ND<5.0	10	0.5	Hexachloroethane		ND<5.0	10	0.5				
2-Hexanone	ND<5.0	10	0.5	Isopropylbenzene		80	10	0.5				
4-Isopropyl toluene	11	10	0.5	Methyl-t-butyl ether	r (MTBE)	ND<5.0	10	0.5				
Methylene chloride	ND<5.0	10	0.5	4-Methyl-2-pentance	ne (MIBK)	ND<5.0	10	0.5				
Naphthalene	200	10	0.5	n-Propyl benzene		110	10	0.5				
Styrene	ND<5.0	10	0.5	1,1,1,2-Tetrachloro	ethane	ND<5.0	10	0.5				
1,1,2,2-Tetrachloroethane	ND<5.0	10	0.5	Tetrachloroethene		ND<5.0	10	0.5				
Toluene	ND<5.0	10	0.5	1,2,3-Trichlorobenz	ene	ND<5.0	10	0.5				
1,2,4-Trichlorobenzene	ND<5.0	10	0.5	1,1,1-Trichloroetha	ne	ND<5.0	10	0.5				
1,1,2-Trichloroethane	ND<5.0	10	0.5	Trichloroethene		ND<5.0	10	0.5				
Trichlorofluoromethane	ND<5.0	10	0.5	1,2,3-Trichloroprop	ane	ND<5.0	10	0.5				
1,2,4-Trimethylbenzene	<u>ND<5.0</u>	10	0.5	1,3,5-Trimethylben	zene	ND<5.0	10	0.5				
Vinvi Chloride	ND<5.0	10	0.5	Xvlenes		ND<5.0	10	0.5				
ļ		Surro	gate Re	ecoveries (%)		1						
%SS1:	1	14		%SS2:		10)2					
%SS3:	10	01										

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

%SS = Percent Recovery of Surrogate Standard DF = Dilution Factor

McCampbell A	nalytical, In v Counts"	nc.		1534 Willow F Web: www.mccamp Telephone: 8	Pass Road, Pittsburg, C. bell.com E-mail: mai 277-252-9262 Fax: 92	A 94565-1701 in@mccampbell.com 25-252-9269							
Schutze & Associates	Client I	Project ID:	#SC	S370; Ed's	Date Sampled:	07/29/10							
	Liquor,	Oakland,	CA		Date Received:	08/02/10							
2100 Embarcadero, Suite #100	Client	Contact:]	an Su	therland	Date Extracted:	08/04/10							
Oakland, CA 94606	Client I	20.			Date Analyzed	· 08/04/10							
	Volatilo Organ	nias hy Dí	-T on	d CC/MS (Desia T	wgot List)*								
Extraction Mathed, SW5020D	v olatile Ofgal	Analytia		U GC/IVIS (Dasic 17	ii get List)	Work Ordon 1009	2025						
		Analytic		100002	0100	work Older. 1006	5025						
		B-3-W											
Client ID		Water											
Matrix		F	enorting	wat	er			Reporting					
Compound	Concentration *	DF	Limit	Compour	nd	Concentration *	DF	Limit					
Acetone	ND	1.0	10	tert-Amyl methyl e	ther (TAME)	ND	1.0	0.5					
Benzene	ND	1.0	0.5	Bromobenzene		ND	1.0	0.5					
Bromochloromethane	ND	1.0	0.5	Bromodichlorometh	ane	ND	1.0	0.5					
Bromoform	ND	1.0	0.5	Bromomethane	• >	ND	1.0	0.5					
2-Butanone (MEK)	ND	1.0	2.0	t-Butyl alcohol (TB	A)	ND	1.0	2.0					
n-Butyl benzene	ND	1.0	0.5	Sec-Butyl benzene		ND	1.0	0.5					
Carbon Tetrachloride	ND	1.0	0.5	Chlorobenzene	ND	1.0	0.5						
Chloroethane	ND	1.0	0.5	Chloroform		ND	1.0	0.5					
Chloromethane	ND	1.0	0.5	2-Chlorotoluene		ND	1.0	0.5					
4-Chlorotoluene	ND	1.0	0.5	Dibromochlorometh	ane	ND	1.0	0.5					
1.2-Dibromo-3-chloropropane	ND	1.0	0.2	1.2-Dibromoethane	ND	1.0	0.5						
Dibromomethane	ND	1.0	0.5	1,2-Dichlorobenzen	ND	1.0	0.5						
1,3-Dichlorobenzene	ND	1.0	0.5	1,4-Dichlorobenzen	ND	1.0	0.5						
Dichlorodifluoromethane	ND	1.0	0.5	1,1-Dichloroethane		ND	1.0	0.5					
1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.5	1,1-Dichloroethene		ND	1.0	0.5					
cis-1,2-Dichloroethene	ND	1.0	0.5	trans-1,2-Dichloroe	thene	ND	1.0	0.5					
1,2-Dichloropropane	ND	1.0	0.5	1,3-Dichloropropan	e	ND	1.0	0.5					
2,2-Dichloropropane	ND	1.0	0.5	1,1-Dichloropropen	e	ND	1.0	0.5					
cis-1,3-Dichloropropene	ND	1.0	0.5	trans-1,3-Dichlorop	ropene	ND	1.0	0.5					
Diisopropyl ether (DIPE)	ND	1.0	0.5	Ethylbenzene		ND	1.0	0.5					
Ethyl tert-butyl ether (ETBE)	ND	1.0	0.5	Havashlarasthara		ND	1.0	10					
2-Hexanone	ND	1.0	0.5	Isopropylbenzene		ND	1.0	0.5					
4-Isopropyl toluene	ND	1.0	0.5	Methyl_t_butyl ethe	r (MTRF)	ND	1.0	0.5					
Methylene chloride	ND	1.0	0.5	4-Methyl-2-pentance	one (MIBK)	ND	1.0	0.5					
Naphthalene	ND	1.0	0.5	n-Propyl benzene		ND	1.0	0.5					
Styrene	ND	1.0	0.5	1,1,1,2-Tetrachloro	ethane	ND	1.0	0.5					
1,1,2,2-Tetrachloroethane	ND	1.0	0.5	Tetrachloroethene		ND	1.0	0.5					
Toluene	1.0	0.5	1,2,3-Trichlorobenz	ene	ND	1.0	0.5						
1,2,4-Trichlorobenzene	ND	1,1,1-Trichloroetha	ne	ND	1.0	0.5							
1,1,2-Trichloroethane	ND	1.0	0.5	Trichloroethene		ND	1.0	0.5					
Trichlorofluoromethane	ND	1.0	0.5	1,2,3-Trichloroprop	ane	ND	1.0	0.5					
1,2,4-Trimethylbenzene	ND	1.0	0.5	1,3,5-Trimethylben	zene	ND	1.0	0.5					
Vinvl Chloride	ND	1.0	0.5	Xvlenes		ND	1.0	0.5					
		Surrog	ate Re	ecoveries (%)									
%SS1:	12	21		%SS2:		10)5						
Commontor h1	1	15		1									

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

%SS = Percent Recovery of Surrogate Standard DF = Dilution Factor

	IcCampbell Analyti "When Ouality Counts"	cal, Inc.	1534 Willow F Web: www.mccamp Telephone: 8	Pass Road, Pittsburg, C bell.com E-mail: ma 377-252-9262 Fax: 9	CA 9450 ain@mco 925-252	65-1701 campbell.c -9269	om		
Schutze & A	ssociates	Client Project ID:	#SCS370; Ed's	Date Sampled:	07/2	29/10			
2100 Embaro	adero Suite #100	Liquor, Oakland,C	A	Date Received	: 08/0	02/10			
2100 Embard	adoro, Suite #100	Client Contact: Ia	n Sutherland	Date Extracted	: 08/0	02/10-08	8/05/10		
Oakland, CA	94606	Client P.O.:		Date Analyzed	1 08/0	03/10-08	8/05/10		
	Gasoline Ra	ange (C6-C12) Vola	tile Hydrocarbons as G	asoline*					
Extraction method	SW5030B	Analytical m	nethods SW8015Bm		Worl	1008025			
Lab ID	Client ID	Matrix	TPH(g)]	DF	% SS	Comments		
001A	B1-8'	S	43		1	107	d7,d9		
002A	B1-14'	S	420		20	105	d7,d9		
003A	B1-20'	S	ND		1	89			
004A	B2-8'	S	ND		1	83			
006A	B3-7'	S	ND		1	89			
008A	B4-7'	S	ND		1	82			
010A	SV-2-5'	S	420		67	86	d7		
011A	B-1-W	W	61,000		20	108	d7,d9,b6,b1		
012A	B-3-W	W	ND		1	99	b1		
R	eporting Limit for DF =1;	W	50			μg/L			
NI) means not detected at or above the reporting limit	S	1.0			mg/Kg	Ş		

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts in mg/L.

cluttered chromatogram; sample peak coelutes w/surrogate peak; low surrogate recovery due to matrix interference.

%SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

R INTE TIM

b1) aqueous sample that contains greater than ~1 vol. % sediment

b6) lighter than water immiscible sheen/product is present

d7) strongly aged gasoline or diesel range compounds are significant in the TPH(g) chromatogram

d9) no recognizable pattern

	McCampbe	<u>.</u>	1534 Web: www Te:	Willow F w.mccamp lephone: 8	ass Ro bell.co: 377-252	oad, Pittsburg, CA m E-mail: main(2-9262 Fax: 925	94565-1701 @mccampbell.com -252-9269	n				
Schutz	e & Associates		Client Pro	ject ID: 7	#SCS370; Ed's		Dat	te Sampled:	07/29/10			
2100 E	mbarcadero, Suite #1	00		akianu,CP	1		Dat	te Received:	08/02/10			
			Client Co	ntact: Iar	n Sutherland		Dat	te Extracted:	08/02/10			
Oaklan	d, CA 94606		Client P.C).:			Dat	te Analyzed:	08/06/10			
Extraction	n method: F200.8	I Anal	LUFT 5 Metals*	JFT 5 Metals*						W 1 0 1 1000005		
Lab ID	Client ID	Matrix	Extraction Type	Cadmiun	n Chromium	Lea	ıd	Nickel	Zinc	DF	% SS	Comments
011C	B-1-W	W	DISS.	ND	ND	NI)	7.2	ND	1	N/A	b1

Reporting Limit for DF =1;	W	DISS.	0.25	0.5	0.5	0.5	5.0	μg/L
above the reporting limit	S	TOTAL	NA	NA	NA	NA	NA	NA

*water samples are reported in µg/L, product/oil/non-aqueous liquid samples and all TCLP / STLC / DISTLC / SPLP extracts are reported in mg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, filter samples in µg/filter.

means surrogate diluted out of range; ND means not detected above the reporting limit/method detection limit; N/A means not applicable to this sample or instrument.

TOTAL = Hot acid digestion of a representative sample aliquot.

TRM = Total recoverable metals is the "direct analysis" of a sample aliquot taken from its acid-preserved container.

DISS = Dissolved metals by direct analysis of 0.45 μ m filtered and acidified sample.

%SS = Percent Recovery of Surrogate Standard

DF = Dilution Factor

b1) aqueous sample that contains greater than ~1 vol. % sediment

	Campbell Analyt	ical, Inc.		1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269					
Schutze & Ass	sociates	Client Project II	D: #SCS37); Ed's Liquor,	Date Sampled:	07/29/1	10		
2100 Embarca	lero Suite #100	Oakland,CA			Date Received:	08/02/1	10		
2100 Enibarca	100 , Suite $\pi 100$	Client Contact:	Ian Suthe	rland	Date Extracted:	08/02/1	10		
Oakland, CA 94	4606	Client P.O.:			Date Analyzed:	08/02/1	5/10		
Extraction method:	SW3510C/SW3550B	Total Extract Analytical	able Petrole methods: SW8	um Hydrocarbo 015B	ons*	Wo	ork Order:	1008025	
Lab ID	Client ID	Matrix	TPH-Di (C10-C	esel 23)	TPH-Motor Oil (C18-C36)	DF	% SS	Comments	
1008025-001A	B1-8'	S	33		ND	1	111	e8/e11	
1008025-002A	B1-14'	710		5.1	1	113	e8/e11		
1008025-003A	B1-20'	S	ND		ND	1	116		
1008025-004A	B2-8'	S	ND		ND	1	115		
1008025-006A	B3-7'	S	ND		ND	1	119		
1008025-008A	B4-7'	S	ND		ND	1	117		
1008025-010A	SV-2-5'	S	370		1500	50	94	e7,e11/e8	
1008025-011A	B-1-W	W	36,00	00	21,000	10	116	e11/e8,e7,b6,b1	
1008025-012A	B-3-W	W	400)	60,000	50	95	e7,b1	

Reporting Limit for $DF = 1$;	W	50	250	μg/L
ND means not detected at or above the reporting limit	S	1.0	5.0	mg/Kg

* water samples are reported in µg/L, wipe samples in µg/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC /

cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

%SS = Percent Recovery of Surrogate Standard DF = Dilution Factor

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

b1) aqueous sample that contains greater than ~1 vol. % sediment

b6) lighter than water immiscible sheen/product is present

e7) oil range compounds are significant

e8) kerosene/kerosene range/jet fuel range; and/or e11) stoddard solvent/mineral spirit (?)

e11) stoddard solvent/mineral spirit (?); and/or e8) kerosene/kerosene range/jet fuel range

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8021B/8015Bm

W.O. Sample Matrix: Water		(QC Matri	x: Water			Batch	ID: 52202	02 WorkOrder 1008025				
EPA Method SW8021B/8015Bm	Extrac	ction SW	5030B					5	Spiked Sample ID: 1008025-012A				
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	CS-LCSD Acceptance Criteria (%)				
	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD	
TPH(btex ^f	ND	60	121	126	4.22	119	123	3.71	70 - 130	20	70 - 130	20	
MTBE	ND	10	115	109	5.34	103	111	7.35	70 - 130	20	70 - 130	20	
Benzene	ND	10	90.2	87.1	3.53	89.2	89.8	0.687	70 - 130	20	70 - 130	20	
Toluene	ND	10	88.8	86	3.23	87.6	88.2	0.738	70 - 130	20	70 - 130	20	
Ethylbenzene	ND	10	88.9	87.4	1.68	87.4	89.2	2.02	70 - 130	20	70 - 130	20	
Xylenes	ND	30	88	86.2	2.05	86.1	88.7	2.95	70 - 130	20	70 - 130	20	
%SS:	99	10	92	89	3.68	93	89	3.82	70 - 130	20	70 - 130	20	
All target compounds in the Method B NONE	lank of this	extraction	batch we	re ND les	s than the	method R	L with th	e following	exceptions:				

BATCH 52202 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1008025-011A	07/29/10	08/03/10	08/03/10 12:45 PM	1008025-012A	07/29/10	08/03/10	08/03/10 7:21 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content, or inconsistency in sample containers.

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Soil			QC Matri	x: Soil			BatchID: 52216 WorkOrder 1008025						
EPA Method SW8260B	Extrac	ction SW	5030B					5	Spiked San	nple ID	: 1008027-0	003A	
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	Acceptance Criteria (%)			
Analyte	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD	
tert-Amyl methyl ether (TAME)	ND	0.050	76.8	76.3	0.594	80.7	84.8	5.02	70 - 130	30	70 - 130	30	
Benzene	ND	0.050	106	107	1.23	106	113	6.44	70 - 130	30	70 - 130	30	
t-Butyl alcohol (TBA)	ND	0.25	96.1	96.9	0.829	96.8	99.7	2.90	70 - 130	30	70 - 130	30	
Chlorobenzene	ND	0.050	115	112	2.67	115	120	4.77	70 - 130	30	70 - 130	30	
1,2-Dibromoethane (EDB)	ND	0.050	102	101	1.06	104	109	4.39	70 - 130	30	70 - 130	30	
1,2-Dichloroethane (1,2-DCA)	ND	0.050	110	106	3.09	112	119	6.71	70 - 130	30	70 - 130	30	
1,1-Dichloroethene	ND	0.050	103	103	0	106	109	3.00	70 - 130	30	70 - 130	30	
Diisopropyl ether (DIPE)	ND	0.050	101	104	2.45	105	112	6.51	70 - 130	30	70 - 130	30	
Ethyl tert-butyl ether (ETBE)	ND	0.050	88.8	89.1	0.404	89.3	95	6.15	70 - 130	30	70 - 130	30	
Methyl-t-butyl ether (MTBE)	ND	0.050	94.7	91.9	2.95	95.5	99.9	4.43	70 - 130	30	70 - 130	30	
Toluene	ND	0.050	113	114	0.478	115	122	5.26	70 - 130	30	70 - 130	30	
Trichloroethene	ND	0.050	113	112	0.526	114	117	3.00	70 - 130	30	70 - 130	30	
%SS1:	108	0.13	103	111	6.70	108	105	2.73	70 - 130	30	70 - 130	30	
%SS2:	101	0.13	116	114	1.07	115	115	0	70 - 130	30	70 - 130	30	
%SS3:	102	0.013	112	120	7.28	120	118	1.72	70 - 130	30	70 - 130	30	
All target compounds in the Method I NONE	Blank of this	extraction	batch we	re ND les	s than the	method R	L with th	e following	exceptions:				

BATCH 52216 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1008025-001A	07/29/10	08/02/10	08/04/10 2:13 PM	1008025-002A	07/29/10	08/02/10	08/05/10 2:50 PM
1008025-010A	07/29/10	08/02/10	08/04/10 3:56 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

K QA/QC Officer

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Water			QC Matri	x: Water			Batch	ID: 52235	WorkOrder 1008025			
EPA Method SW8260B	Extra	ction SW	5030B					5	Spiked San	nple ID	: 1008016-0)01A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	e Criteria (%))
/ maryto	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
tert-Amyl methyl ether (TAME)	ND	10	92.5	89.4	3.47	89.1	91.2	2.38	70 - 130	30	70 - 130	30
Benzene	ND	10	105	103	1.65	113	112	0.829	70 - 130	30	70 - 130	30
t-Butyl alcohol (TBA)	ND	50	104	105	0.824	73.4	76.8	4.50	70 - 130	30	70 - 130	30
Chlorobenzene	ND	10	112	113	0.772	109	110	0.372	70 - 130	30	70 - 130	30
1,2-Dibromoethane (EDB)	ND	10	113	119	4.92	103	104	1.51	70 - 130	30	70 - 130	30
1,2-Dichloroethane (1,2-DCA)	ND	10	120	116	3.23	111	113	1.50	70 - 130	30	70 - 130	30
1,1-Dichloroethene	ND	10	100	103	2.30	110	109	1.09	70 - 130	30	70 - 130	30
Diisopropyl ether (DIPE)	ND	10	108	104	4.08	113	115	2.24	70 - 130	30	70 - 130	30
Ethyl tert-butyl ether (ETBE)	ND	10	96.8	94.7	2.25	106	110	3.06	70 - 130	30	70 - 130	30
Methyl-t-butyl ether (MTBE)	1.5	10	99.6	102	2.05	113	114	1.24	70 - 130	30	70 - 130	30
Toluene	ND	10	99.4	104	4.20	109	109	0	70 - 130	30	70 - 130	30
Trichloroethene	ND	10	114	112	1.82	107	107	0	70 - 130	30	70 - 130	30
%SS1:	117	25	117	113	3.42	118	117	0.788	70 - 130	30	70 - 130	30
%SS2:	98	25	106	107	1.08	104	104	0	70 - 130	30	70 - 130	30
%SS3:	98	2.5	95	98	3.39	102	105	3.12	70 - 130	30	70 - 130	30

BATCH 52235 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1008025-011B	07/29/10	08/05/10	08/05/10 6:22 PM	1008025-012B	07/29/10	08/04/10	08/04/10 10:03 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8021B/8015Bm

W.O. Sample Matrix: Soil		QC Matrix: Soil						ID: 52193	93 WorkOrder 1008025				
EPA Method SW8015Bm	Extrac	tion SW	5030B					Spiked Sample ID: 1007835-001A					
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	CSD Acceptance Criteria (%)				
, indigite	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD	
TPH(btex ^f)	ND	0.60	96.3	94.8	1.53	97.9	95.7	2.23	70 - 130	20	70 - 130	20	
MTBE	ND	0.10	110	110	0	115	115	0	70 - 130	20	70 - 130	20	
Benzene	ND	0.10	109	108	0.983	109	115	5.04	70 - 130	20	70 - 130	20	
Toluene	ND	0.10	93.8	94.3	0.508	95.6	98.7	3.19	70 - 130	20	70 - 130	20	
Ethylbenzene	ND	0.10	97.6	97.5	0.108	98.3	101	2.97	70 - 130	20	70 - 130	20	
Xylenes	ND	0.30	109	108	0.680	109	113	3.25	70 - 130	20	70 - 130	20	
%SS:	80	0.10	101	101	0	101	104	2.45	70 - 130	20	70 - 130	20	
All target compounds in the Method B NONE	lank of this	extraction	batch we	re ND les	s than the	method R	L with th	e following	exceptions:				

			<u>BATCH 52193 SL</u>	JMMARY			
Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1008025-001A	07/29/10	0 08/02/10	08/03/10 5:34 PM	1008025-002A	07/29/10	08/02/10	08/03/10 4:20 PM
1008025-003A	07/29/10	08/02/10	08/03/10 6:06 PM	1008025-004A	07/29/10	08/02/10	08/05/10 3:19 AM
1008025-006A	07/29/10	08/02/10	08/03/10 7:43 PM	1008025-008A	07/29/10	08/02/10	08/03/10 8:14 PM
1008025-010A	07/29/10	08/02/10	08/04/10 3·21 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

<u>McCampbell Analytical, Inc.</u>

"When Ouality Counts"

QC SUMMARY REPORT FOR E200.8

W.O. Sample Matrix: Water	QC Matrix: Water BatchID: 5222/ WorkOrder 1008025												
EPA Method E200.8	Extra	ction E20	0.8				Spiked Sample ID: 1008003-0						
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	e Criteria (%))				
, and y to	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD	
Cadmium	ND	10	98.4	98	0.407	97.8	97.1	0.636	70 - 130	20	85 - 115	20	
Chromium	ND	10	101	102	0.677	101	100	1.19	70 - 130	20	85 - 115	20	
Lead	ND	10	99.5	99.3	0.251	97.5	96.6	0.948	70 - 130	20	85 - 115	20	
Nickel	ND	10	100	99.2	0.862	102	101	1.87	70 - 130	20	85 - 115	20	
Zinc	6.9	100	98.6	99.5	0.849	101	98.3	2.75	70 - 130	20	85 - 115	20	
%SS:	108	750	106	108	1.89	108	98	9.64	70 - 130	20	70 - 130	20	
All target compounds in the Method E NONE	lank of this	extraction	batch we	re ND les	s than the	method R	L with th	e following	exceptions:				

BATCH 52227 SUMMARY Lab ID Date Sampled Date Extracted Date Analyzed Lab ID Date Sampled Date Extracted Date Analyzed 1008025-011C 07/29/10 08/02/10 08/06/10 11:11 AM <td

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not applicable to this method.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

- QA/QC Officer

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8015B

W.O. Sample Matrix: Soil			QC Matri	Matrix: Soil BatchID: 52238 WorkOrder 1008025										
EPA Method SW8015B	Extra	ction SW	3550B				Spiked Sample ID: 1008025							
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	Acceptance Criteria (%)				
, mary to	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD		
TPH-Diesel (C10-C23)	370	40	NR	NR	NR	125	127	1.18	70 - 130	30	70 - 130	30		
%SS:	94	25	99	112	12.0	102	101	1.35	70 - 130	30	70 - 130	30		
All target compounds in the Metho NONE	od Blank of this	extraction	batch we	re ND les	s than the	method R	L with th	e following	exceptions:					

BATCH 52238 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1008025-001A	07/29/10	08/02/10	08/03/10 2:13 AM	1008025-002A	07/29/10	08/02/10	08/02/10 10:46 PM
1008025-003A	07/29/10	08/02/10	08/03/10 10:10 AM	1008025-004A	07/29/10	08/02/10	08/03/10 9:00 AM
1008025-006A	07/29/10	08/02/10	08/03/10 6:44 AM	1008025-008A	07/29/10	08/02/10	08/03/10 5:36 AM
1008025-010A	07/29/10	08/02/10	08/03/10 7:51 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

"When Ouality Counts"

QC SUMMARY REPORT FOR SW8015B

W.O. Sample Matrix: Water			QC Matri	x: Water		BatchID: 52224 WorkOrder 1008025								
EPA Method SW8015B	Extra	ction SW	3510C				Spiked Sample ID: N/A							
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance Criteria (%)					
	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD		
TPH-Diesel (C10-C23)	N/A	1000	N/A	N/A	N/A	105	105	0	N/A	N/A	70 - 130	30		
%SS:	N/A	625	N/A	N/A	N/A	87	89	2.58	N/A	N/A	70 - 130	30		
All target compounds in the Method NONE	Blank of this	extraction	batch we	re ND les	s than the	method R	L with th	e following	exceptions:					

BATCH 52224 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1008025-011A	07/29/10	0 08/02/10	08/04/10 5:42 AM	1008025-012A	07/29/10	08/02/10	08/05/10 9:59 AM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

LEVEL III Data Validation Report

PROJECT: SCS370 – 2700 23rd Avenue, Oakland, CA

LABORATORY: McCampbell Analytical, Inc. (ELAP Certification 1644)

LAB REPORT NUMBER: 1008030

SAMPLES: SV-1, SV-2, SV-3, SV-4, ELA

MATRIX: Soil Vapor

Analysis	VOCs (TO-15)
Holding Time	\checkmark
Surrogate Recovery	\checkmark
MS/MSD	See notes
LCS (Blank Spike)	\checkmark
Method Blanks	\checkmark
Field Duplicates	N/A
Trip/Field/Equipment Blanks	N/A
Reporting Limits	See notes

 \checkmark – QC criteria were met.

Notes:

MS/MSD is not typically conducted for TO-15.

Sample SV-2 was analyzed via EPA method 8260 due to high matrix interference.

The reporting limits were raised for sample SV-2 (DF=500 for most analytes). Based on the laboratory report, it appears that the reporting limits for this sample were raised due to high TPH concentrations in the sample. Although certain DQOs were compromised, the raised reporting limits are unlikely to affect the conclusions and recommendations of this investigation.

Summary:

Based on this Level III validation, these data are usable, as qualified, for their intended purpose. None of these data were rejected.

McCampbell An "When Ouality	nalytical, Inc.	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269						
Schutze & Associates	Client Project ID: #SCS370	; Ed's Liquor, Oakland, CA	Date Sampled:	07/29/10				
2100 Embarcadero, Suite #100			Date Received:	08/02/10				
	Client Contact: Ian Suther	land	Date Reported:	08/10/10				
Oakland, CA 94606	Client P.O.:		Date Completed:	08/10/10				

WorkOrder: 1008030

August 10, 2010

Dear Ian:

Enclosed within are:

- 1) The results of the 5 analyzed samples from your project: **#SCS370; Ed's Liquor, Oakland, CA,**
- 2) A QC report for the above samples,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

McCA Telephone: (925)	CHA TURN AROUND T EDF Required? Coelt (?	AIN OF IME Normal)		24 HR rite On (D		D 72 HR 51	X				
Report To: Ian 5	utherla	and	Bill To: Schu	tze			Lab Use	Only		1. 18. 18	Carlos and
Company:									P	ressurizati	on Gas
1995			F-Mail: 10+0	1 4	Pressurized	By		Date		N2	Не
Tele: (\$14) #24 -133	22		Fax: (Fig.)	Schurze-inc. com			-				
Project #: 50600	~		Project Name:	134-111							
Project Location:	0		A	ds Liquor			-				Sant China
Samplan Signature	Uakl	and C	1		Notes						a an an
Field Sample ID	Colle	ection	Canister SN#	Sampler Kit SN#	Analysis Baguested)	Sail	Ca	nistar Pro	centra/Vacu	
(Location)	Date	Time			Analysis Requested	Air	Gas	Initial	Final	Receipt	Final
51/-1	219	8:15	41515	211 - 241	70-15		X	-70 5	-5	To la contra	(psi)
51-2	2010	8:52	47513	311-673	10-0		X	-19.5	-5		10.00
51-3	1	1:14	1461	316-686			X	-29.0	-5		
SV-4		3:19	6436	316-715			×	-29.0	-5		
ELA		3:30	5808	NA	1		X				0
										A DEBUT	-
	V								14	NOTE A LOS	
0 0			12								
Relinquished By: Relinquished By:	Date: 8/2/10 Date:	Time: 1825 Time:	Received By: Received By:	8	Temp (°C) : Condition: Custody Seals Intact?: Ye	Work Order	#:	None			
Relinquished By:	Date:	Time:	Received By:		Shipped Via:						

1534 Willow Pass Rd Pittsburg CA 04565 Pittsburg CA 94565-1701

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

(925) 252-9262				,	WorkC	rder:	1008(030	C	lientC	ode: SC	C O				
	WaterTrax	WriteOr	n EDF		Excel	[Fax	V	Email		HardC	Сору	Thire	dParty	J	-flag
Report to:					E	3ill to:						Requ	uested	TAT:	5	days
lan Sutherland Schutze & Associates 2100 Embarcadero, Suite #100 Oakland, CA 94606 (510) 434-1333 FAX (510) 625-8176	Email: j: cc: PO: ProjectNo: / 5	s@schutze-ir #SCS370; Ed	nc.com, ian@schu 's Liquor, Oaklanc	tze-inc I, CA	:.CO	Acc Sch 21(Oa ^l pris	counts l nutze C 00 Emb kland, (scillajaz	Payable consultir arcade CA 9460 z2@yah	ng ro, Suit 06 00.com	e #100)	Date Date	e Recei e Print	ived: ed:	08/02/ 08/02/	/2010 /2010
				Γ				Requ	ested	Tests ((See leg	end be	elow)			
Lab ID Client ID		Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12

Easte		matrix	Concourse Paro			-	•	•	•	•	•	 	
				_									
1008030-001	SV-1	Soil Vapor	7/29/2010 8:25		А								
1008030-002	SV-2	Soil Vapor	7/29/2010 8:52		А								
1008030-003	SV-3	Soil Vapor	7/29/2010 9:14		А								
1008030-004	SV-4	Soil Vapor	7/29/2010 15:19		А								
1008030-005	ELA	Soil Vapor	7/29/2010 15:30		А								

Test Legend:

1 TO15_SOIL(UG/M3)	2
6	7
11	12

3	
8	

	4
<u> </u>	9

5			
10			

The following SampIDs: 001A, 002A, 003A, 004A, 005A contain testgroup.

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

Prepared by: Ana Venegas

McCampbell Analytical, Inc. "When Ouality Counts"

Sample Receipt Checklist

Client Name:	Schutze & Asso	ciates			Date a	and Time Received:	8/2/2010 7	:55:15 PM
Project Name:	#SCS370; Ed's Li	quor, Oakland, CA	4		Checl	klist completed and r	eviewed by:	Ana Venegas
WorkOrder N°:	1008030	Matrix Soil Vapor			Carrie	er: <u>Client Drop-In</u>		
		<u>Chain</u>	of Cu	stody (COC) Informa	ation		
Chain of custody	present?		Yes	\checkmark	No 🗆			
Chain of custody	signed when relinqui	shed and received?	Yes	\checkmark	No 🗆			
Chain of custody	agrees with sample I	abels?	Yes	\checkmark	No 🗌			
Sample IDs noted	by Client on COC?		Yes	\checkmark	No 🗆			
Date and Time of	collection noted by Cl	ent on COC?	Yes	✓	No 🗆			
Sampler's name	noted on COC?		Yes	✓	No 🗆			
		<u>Sa</u>	ample	Receipt Inf	ormation	<u>n</u>		
Custody seals in	tact on shipping conta	iner/cooler?	Yes		No 🗆		NA 🔽	
Shipping contain	er/cooler in good cond	ition?	Yes	\checkmark	No 🗆			
Samples in prope	er containers/bottles?		Yes	\checkmark	No 🗆			
Sample containe	rs intact?		Yes	\checkmark	No 🗆			
Sufficient sample	e volume for indicated	test?	Yes	✓	No 🗌			
		Sample Preser	vatio	n and Hold	<u>Time (HT</u>	<u>) Information</u>		
All samples recei	ived within holding tim	e?	Yes		No 🗌			
Container/Temp	Blank temperature		Coole	er Temp:			NA 🗹	
Water - VOA via	ls have zero headspa	ce / no bubbles?	Yes		No 🗆	No VOA vials subm	itted 🗹	
Sample labels ch	necked for correct pre	servation?	Yes	\checkmark	No			
Metal - pH accep	table upon receipt (p⊦	I<2)?	Yes		No 🗆		NA 🗹	
Samples Receive	ed on Ice?		Yes		No 🗹			

* NOTE: If the "No" box is checked, see comments below.

Client contacted:

Date contacted:

Contacted by:

Comments:

McCampbell Au "When Ouality	nalytical, I Counts"	<u>nc.</u>		1534 Willow F Web: www.mccamp Telephone: 8	Pass Road, Pittsburg, Ca bell.com E-mail: mai 277-252-9262 Fax: 92	A 94565-1701 n@mccampbell.com 25-252-9269				
Schutze & Associates	Client	Project ID:	#SC	S370; Ed's	Date Sampled:	07/29/10				
	Liquor	, Oakland, C	CA		Date Received:	08/02/10				
2100 Embarcadero, Suite #100	Client	Contact: Ia	ın Su	therland	Date Extracted:	08/09/10				
Oakland, CA 94606	Client I	P.O.:			Date Analyzed:	08/09/10	08/09/10			
Vo	by P&T an	d GC	C/MS in µg/m³ (Bas	ic Target List)*						
Extraction Method: SW5030B	C .	Analytical Met	thod:	SW8260B	U ,	Work Order: 1008	030			
Lab ID			1008	8030-002A		Initial Pressur	e (psia)	12.4		
Client ID				SV-2		Final Pressur	e (psia)	24.7		
Matrix				oil Vapor			(i)			
Compound	Concentration *	DE Re	porting	Compour	, d	Concentration *	DE	Reporting		
Combound	Concentration	Dr	Limit	Colliboui	lu	Concentration	DF	Limit		
Acetone	ND	1.0 1	0000	tert-Amyl methyl et	ther (TAME)	ND	1.0	500		
Benzene	ND	1.0	<u>500</u>	Bromobenzene		ND	1.0	500		
Bromochloromethane	ND	1.0	0.25 500	Bromodichlorometh	ane	ND	1.0	500		
2 Butanana (MEK)	ND	1.0	2000	t Putul alashal (TP	A.)	ND	1.0	5000		
2-Butahone (MEK)	ND	1.0	500	I-DULYI AICOHOI (ID.	A)	1100	1.0	5000		
II-Butyl benzene	ND	1.0	500	Carbon Disulfide		ND	1.0	500		
Carbon Tetrachloride	ND	1.0	500	Chlorobenzene		ND	1.0	500		
Chloroethane	ND	1.0	500	Chloroform		ND	1.0	500		
Chloromethane	ND	1.0	500	2-Chlorotoluene		ND	1.0	500		
4-Chlorotoluene	ND	1.0	500	Dibromochlorometh	ND	1.0	500			
1 2-Dibromo-3-chloropropane	ND	1.0	500	1 2-Dibromoethane	(EDB)	ND	1.0	500		
Dibromomethane	ND	1.0	500	1.2-Dichlorobenzen	e	ND	1.0	500		
1.3-Dichlorobenzene	ND	1.0	500	1.4-Dichlorobenzen	e	ND	1.0	500		
Dichlorodifluoromethane	ND	1.0	500	1,1-Dichloroethane	-	ND	1.0	500		
1,2-Dichloroethane (1,2-DCA)	ND	1.0	500	1,1-Dichloroethene	ND	1.0	500			
cis-1,2-Dichloroethene	ND	1.0	500	trans-1,2-Dichloroe	ND	1.0	500			
1,2-Dichloropropane	ND	1.0	500	1,3-Dichloropropan	ND	1.0	500			
2,2-Dichloropropane	ND	1.0	500	1,1-Dichloropropen	e	ND	1.0	500		
cis-1,3-Dichloropropene	ND	1.0	500	trans-1,3-Dichlorop	ropene	ND	1.0	500		
Diisopropyl ether (DIPE)	ND	1.0	500	Ethanol		ND	1.0	50000		
Ethylbenzene	8100	1.0	500	Ethyl tert-butyl ethe	er (ETBE)	ND	1.0	500		
Freon 113	ND	1.0 1	0000	Hexachlorobutadien	e	ND	1.0	500		
Hexachloroethane	ND	1.0	500	2-Hexanone		ND	1.0	500		
Isopropylbenzene	3400	1.0	500	4-Isopropyl toluene		ND	1.0	500		
Methyl-t-butyl ether (MTBE)	ND	1.0	500	Methylene chloride		ND	1.0	500		
4-Methyl-2-pentanone (MIBK)	ND	1.0	500	Naphthalene		850	1.0	500		
n-Propyl benzene	4500	1.0	500	Styrene	.1	ND	1.0	500		
1,1,1,2-Tetrachloroethane	ND	1.0	500	1,1,2,2-Tetrachloro	ethane	ND 2100	1.0	500		
1 2 2 Tricklandhangan	ND	1.0	500	1 2 4 Trichlandhan		3100	1.0	500		
1,2,3-Irichloropenzene	ND	1.0	500	1,2,4-Irichlorobenz	ene	ND	1.0	500		
Trichloroethene	ND	1.0	500	Trichlorofluorometh	ne	ND	1.0	500		
1.2.3-Trichloropropage	ND	1.0	500	1.2.4-Trimethylben	zene	1100	1.0	500		
1 3 5-Trimethylbenzene	1.0	500	Vinyl Chloride	Lene	ND	1.0	500			
Xylenes	1.0	500	(in) Children		112	110	000			
		Surroga	ate Re	coveries (%)						
%SS1·	1	18		%\$\$2.		8	7			
%SS3:	0	7		/0002.			,			
Comments:		1								
*acil vanor complete and reported in the	3									
son vapor samples are reported in µg/m ³	•									
ND means not detected above the report	ing limit/method d	etection limi	it; N/A	means analyte not ap	plicable to this ana	lysis.				

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

%SS = Percent Recovery of Surrogate Standard

	McCampbell Analy "When Ouality Count	<u>nc.</u>	15 Web: w	34 Willow F ww.mccamp Telephone: 8	Pass Road, Pittsburg, CA 94: bbell.com E-mail: main@m 377-252-9262 Fax: 925-25	565-1701 ccampbell 2-9269	.com			
Schut	ze & Associates	Client l	Project ID: #	SCS370; Ed's		Date Sampled: 0	7/29/10			
2100	Embarcadero, Suite #100	Liquor,	Oakland, CA	1		Date Received: 0	8/02/10			
		Contact: Ian	Sutherland		Date Extracted: 0	8/04/10				
Oakla	nd, CA 94606	P.O.:			Date Analyzed: 0	8/04/10				
Lea				heck Compou	ınd*					
Extracti	on method: TO15		Analy	tical methods: T	015			Work (Order: 10	008030
Lab ID	Client ID	Matrix	Initial Pressure	Final Pressure		Isopropyl Alcohol		DF	% SS	Comments
001A	SV-1	Soil Vapor	11.94	23.82		ND		1	N/A	
003A	SV-3	Soil Vapor	12.86	25.62		ND		1	N/A	
004A	SV-4	Soil Vapor	12.26	24.42		ND		1	N/A	
005A	ELA	Soil Vapor	12.86	25.66		ND		1	N/A	

Reporting Limit for DF =1;	А	psia	psia	10	μg/L							
ND means not detected at or above the reporting limitSpsiapsiaNA												
* leak check compound is reported in µg/L.												
ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis.												
The IPA reference is:												
DTSC, Advisory-Active Soil Gas Investigation	ns, January 2	8, 2003, page 1	0, section 2.4.2	:								
"Tracer compounds, such asisopropanol, may be used as leak check compounds, if a detection limit of 10 μ g/L or less can be achieved." This implies that 10 μ g/L is the cut off definition for a leak, which equals 10,000 μ g/m ³ . The other low IPA hits may be due to extremely small leaks or may be naturally occuring in soil gas, particularly at biologically active sites.												
%SS = Percent Recovery of Surrogate Standard												

	McCampbell Ana "When Ouality Cou	15 Web: w	34 Willow Pas www.mccampbe Telephone: 87	ss Road, Pittsburg, CA ell.com E-mail: main@ 7-252-9262 Fax: 925-	94565-1701 @mccampbel -252-9269	l.com				
Schut	ze & Associates	Client I	Project ID: #	SCS370; Ed's	;	Date Sampled:	07/29/10)		
2100 1	Embarcadero, Suite #100	Liquor,	Oakianu, CA	1		Date Received:	08/02/10)		
		Contact: Ian	Sutherland		Date Extracted:	08/09/10)			
Oaklar	nd, CA 94606	Client I	2.0.:			Date Analyzed:	08/09/10)		
			Leak C	heck Compou	ınd*					
Extraction	on method: SW5030B	Analy	tical methods: S	W8260B			Work (Order: 10	008030	
Lab ID	Client ID	Matrix	Initial Pressure	Final Pressure]	Isopropyl Alcohol		DF	% SS	Comments
002A	SV-2	Soil Vapor	12.4	24.72		ND		1	N/A	

ND means not detected at or above the reporting limitSoil Vaporpsiapsia10µg/L	Reporting Limit for DF =1;	W	psia	psia	NA	NA
	ND means not detected at or above the reporting limit	Soil Vapor	psia	psia	10	μg/L

* leak check compound is reported in $\mu g/L$.

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis.

The IPA reference is:

DTSC, Advisory-Active Soil Gas Investigations, January 28, 2003, page 10, section 2.4.2:

"Tracer compounds, such as ...isopropanol..., may be used as leak check compounds, if a detection limit of 10 ug/L or less can be achieved." This implies that 10 μ g/L is the cut off definition for a leak, which equals 10,000 μ g/m³.

The other low IPA hits may be due to extremely small leaks or may be naturally occuring in soil gas, particularly at biologically active sites.

%SS = Percent Recovery of Surrogate Standard DF = Dilution Factor

When Ouality Counts"				1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269					
Schutze & Associates	Client I	Project ID:	#SC	S370; Ed's	Date Sampled:	07/29/10			
	Liquor,	Oakland,	CA	-	08/02/10	08/02/10			
2100 Embarcadero, Suite #100	Client	Contact: 1	an Su	therland	08/04/10				
Oakland, CA 94606	Client I	? .0.:			Date Analyzed:	08/04/10			
	Vola	atile Orga	nic Co	ompounds in µg/m³	*				
Extraction Method: TO15		Analytical M	ethod:	TO15		Work Order: 1008	3030		
Lab ID			1008	3030-001A		Initial Pressur	e (psia)	11.9	
Client ID				SV-1		Final Pressur	e (psia)	23.8	
Matrix			Sc	vil Vapor			- (P)		
	C *	DE H	Leporting		1	с , ,; *	DE	Reporting	
Combound	Concentration *	DF	Limit	Compour	nd	Concentration *	DF	Limit	
Acetone	220	1.0	120	Acrylonitrile		ND	1.0	4.4	
Benzul chloride	ND	1.0	<u>8.3</u> 11	Bromodichlorometh	2000	44 ND	1.0	0.5	
Bromeform	ND	1.0	21	Bromomethane	alle	ND	1.0	7.9	
1 3-Butadiene	ND	1.0	4 5	2-Butanone (MEK)		ND	1.0	150	
t-Butyl alcohol (TBA)	ND	1.0	62	Carbon Disulfide		ND	1.0	63	
Carbon Tetrachloride	ND	1.0	13	Chlorobenzene		ND	1.0	9.4	
Chloroethane	ND	1.0	5.4	Chloroform	ND	1.0	9.9		
Chloromethane	ND 1.0 5			Cyclohexane		ND	1.0	180	
Dibromochloromethane	ND	1.0	17	1,2-Dibromo-3-chlo	ropropane	ND	1.0	20	
1,2-Dibromoethane (EDB)	ND	1.0	16	1,2-Dichlorobenzen	e	ND	1.0	12	
1,3-Dichlorobenzene	ND	1.0	12	1,4-Dichlorobenzen	e	ND	1.0	12	
Dichlorodifluoromethane	ND	1.0	10	1,1-Dichloroethane		ND	1.0	8.2	
1,2-Dichloroethane (1,2-DCA)	ND	1.0	8.2	1,1-Dichloroethene		ND	1.0	8.1	
cis-1,2-Dichloroethene	ND	1.0	8.1	trans-1,2-Dichloroe	ND	1.0	8.1		
1,2-Dichloropropane	ND	1.0	9.4	cis-1,3-Dichloropro	ND	1.0	9.2		
trans-1,3-Dichloropropene	ND	1.0	9.2	1,2-Dichloro-1,1,2,2	ND	1.0	14		
Diisopropyl ether (DIPE)	ND	1.0	8.5	1,4-Dioxane		ND	1.0	7.3	
Ethanol	140	1.0	96	Ethyl acetate		8.6	1.0	7.3	
Ethyl tert-butyl ether (ETBE)	ND	1.0	8.5	Ethylbenzene	28	1.0	8.8		
4-Ethyltoluene	ND	1.0	210	Freon 113	_	ND	1.0	16	
Heptane	ND	1.0	190	Hexachlorobutadien	8	ND	1.0	22	
A Mathyl 2 poptanona (MIPK)	ND	1.0	180	2-Hexanone Mothyl t butyl otho	· (MTDE)	ND	1.0	7.2	
4-Methylene chloride	ND	1.0	<u> </u>	Nanhthalana		ND	1.0	1.5	
Propene	250	1.0	88	Styrene		ND	1.0	8.6	
1 1 1 2-Tetrachloroethane	ND	1.0	14	1 1 2 2-Tetrachloro	ethane	ND	1.0	14	
Tetrachloroethene	18	1.0	14	Tetrahydrofuran	ethune	ND	1.0	6.0	
Toluene	270	1.0	7.7	1.2.4-Trichlorobenz	ene	ND	1.0	15	
1,1,1-Trichloroethane	ND	1.0	11	1,1,2-Trichloroetha	ne	ND	1.0	11	
Trichloroethene	11	Trichlorofluorometh	ND	1.0	11				
1,2,4-Trimethylbenzene ND 1.0				1,3,5-Trimethylben	zene	ND	1.0	10	
Vinyl Acetate	180	Vinyl Chloride		ND	1.0	5.2			
Xvlenes	27								
	ate Re	ecoveries (%)							
%SS1:		%SS2:		1	04				
%SS3:									
Comments:									
*vapor samples are reported in µg/m ³ .									

surrogate diluted out of range or surrogate coelutes with another peak.

%SS = Percent Recovery of Surrogate Standard

McCampbell An "When Ouality		1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269						
Schutze & Associates	Client l	Project ID:	#SC	S370; Ed's	Date Sampled:	07/29/10		
	Liquor,	Oakland,	CA		08/02/10	08/02/10		
2100 Embarcadero, Suite #100	Client	Contact: I	an Su	therland	Date Extracted:	08/04/10		
Oakland, CA 94606			Date Analyzed:	08/04/10				
	Vola	atile Orga	nic Co	ompounds in μg/m³	*			
Extraction Method: TO15		Analytical Me	thod:	TO15		Work Order: 1008	030	
Lab ID			1008	3030-003A		Initial Pressur	e (psia)	12.9
Client ID				SV-3		Final Pressur	e (psia)	25.6
Matrix			Sc	oil Vapor				
Compound	Concentration *	DF R	eporting Limit	Compour	ıd	Concentration *	DF	Reporting Limit
Acetone	140	1.0	120	Acrylonitrile		ND	1.0	4.4
tert-Amyl methyl ether (TAME)	ND	1.0	8.5	Benzene		50	1.0	6.5
Benzyl chloride	ND	1.0	11	Bromodichlorometh	ane	ND	1.0	14
Bromoform	ND	1.0	21	Bromomethane		ND	1.0	7.9
1,3-Butadiene	ND	1.0	4.5	2-Butanone (MEK)		ND	1.0	150
t-Butyl alcohol (TBA)	ND	1.0	62	Carbon Disulfide		86	1.0	6.3
Carbon Tetrachloride	ND	1.0	13	Chlorobenzene		ND	1.0	9.4
Chloropothane	ND	ND 1.0 5.4 Chloroform ND 1.0 4.2 C. 1.1				ND ND	1.0	9.9
Dibromochloromethane	ND 1.0 4			1.2 Dibromo 3 chlo	ronronana	ND	1.0	20
1 2-Dibromoethane (EDB)	ND 1.0 ND 1.0			1.2-Dichlorobenzen	e	ND	1.0	12
1.3-Dichlorobenzene	ND	1.0	12	1.4-Dichlorobenzen	0	ND	1.0	12
Dichlorodifluoromethane	ND	1.0	10	1,1-Dichloroethane	-	ND	1.0	8.2
1,2-Dichloroethane (1,2-DCA)	ND	1.0	8.2	1,1-Dichloroethene		ND	1.0	8.1
cis-1,2-Dichloroethene	ND	1.0	8.1	trans-1,2-Dichloroe	thene	ND	1.0	8.1
1,2-Dichloropropane	ND	1.0	9.4	cis-1,3-Dichloropro	ND	1.0	9.2	
trans-1,3-Dichloropropene	ND	1.0	9.2	1,2-Dichloro-1,1,2,2	ND	1.0	14	
Dilsopropyl ether (DIPE)	ND 2(0	1.0	8.5	1,4-Dioxane		ND	1.0	7.3
Ethanol Ethyl tert hutyl ether (ETRE)	360 ND	1.0	96	Ethyl acetate		ND 25	1.0	/.3
4-Ethyltoluene	ND	1.0	10	Freon 113		ND	1.0	16
Heptane	ND	1.0	210	Hexachlorobutadien	9	ND	1.0	22
Hexane	ND	1.0	180	2-Hexanone	-	ND	1.0	210
4-Methyl-2-pentanone (MIBK)	ND	1.0	8.3	Methyl-t-butyl ethe	r (MTBE)	ND	1.0	7.3
Methylene chloride	ND	1.0	7.1	Naphthalene		ND	1.0	11
Propene	310	1.0	88	Styrene		ND	1.0	8.6
1,1,1,2-Tetrachloroethane	ND	1.0	14	1,1,2,2-Tetrachloro	ethane	ND	1.0	14
Tetrachloroethene	ND	1.0	14	Tetrahydrofuran		ND	1.0	6.0
1 oluene	220 ND	1.0	1.1	1,2,4-Trichlorobenz	ene	ND	1.0	15
Trichloroethene	1.0	11	Trichlorofluorometh		ND	1.0	11	
TrichloroetheneND1.01.2.4-Trimethylbenzene211.0				1 3 5-Trimethylben	zene	ND	1.0	10
Vinyl Acetate ND 1.0				Vinyl Chloride	v	ND	1.0	5.2
Xvlenes	27							
	ate Re	ecoveries (%)						
%SS1: 95				%SS2:		10)5	
%SS3:								
Comments:								
*vapor samples are reported in $\mu g/m^3$.			_					

surrogate diluted out of range or surrogate coelutes with another peak.

%SS = Percent Recovery of Surrogate Standard

McCampbell An "When Ouality		1534 Willow F Web: www.mccamp Telephone: 8	Pass Road, Pittsburg, CA bell.com E-mail: main 277-252-9262 Fax: 92	A 94565-1701 n@mccampbell.com 25-252-9269					
Schutze & Associates	Client	Project ID:	#SC	S370; Ed's	Date Sampled:	07/29/10			
	Liquor	, Oakland,	CA		08/02/10	08/02/10			
2100 Embarcadero, Suite #100	Client	Contact:]	an Su	therland	Date Extracted:	08/03/10-08/04	08/03/10-08/04/10		
Oakland, CA 94606			Date Analyzed:	08/03/10-08/04	/10				
	Vol	atile Orga	nic Co	ompounds in µg/m³	*				
Extraction Method: TO15	ethod:	TO15		Work Order: 1008	8030				
Lab ID			1008	3030-004A		Initial Pressur	e (psia)	12.3	
Client ID				SV-4		Final Pressur	e (psia)	24.4	
Matrix			Sc	oil Vapor					
Compound	Concentration *	DF	Reporting	Compour	nd	Concentration *	DF	Reporting	
Acetone	380	1.0	120	Acrylonitrile		ND	1.0	4.4	
tert-Amyl methyl ether (TAME)	ND	1.0	8.5	Benzene		17	1.0	6.5	
Benzyl chloride	ND	1.0	11	Bromodichlorometh	ane	ND	1.0	14	
Bromoform	ND	1.0	21	Bromomethane		ND	1.0	7.9	
1,3-Butadiene	ND	1.0	4.5	2-Butanone (MEK)		ND	1.0	150	
t-Butyl alcohol (TBA)	ND	1.0	62	Carbon Disulfide		ND	1.0	6.3	
Carbon Tetrachloride	13	Chlorobenzene	ND	1.0	9.4				
Chloroethane	ND 1.0 5			Chloroform		ND	1.0	9.9	
Dil 11 11	ND	1.0	4.2	Cyclonexane		ND	1.0	180	
1 2 Dibromochloromethane (EDP)	ND	1.0	16	1,2-Dibromo-3-chlo	ropropane	ND ND	1.0	20	
1,2-Diblomoethalie (EDB)	ND	1.0	12	1.4 Dichlorobenzen		ND	1.0	12	
Dichlorodifluoromethane	ND	1.0	10	1,4-Dichloroethane	8	ND	1.0	82	
1 2-Dichloroethane (1 2-DCA)	ND	1.0	8.2	1,1-Dichloroethene		ND	1.0	8.1	
cis-1 2-Dichloroethene	ND	1.0	8.1	trans-1 2-Dichloroe	thene	ND	1.0	8.1	
1.2-Dichloropropane	ND	1.0	9.4	cis-1.3-Dichloropro	ND	1.0	9.2		
trans-1,3-Dichloropropene	ND	1.0	9.2	1,2-Dichloro-1,1,2,2	ND	1.0	14		
Diisopropyl ether (DIPE)	ND	1.0	8.5	1,4-Dioxane		ND	1.0	7.3	
Ethanol	1300	10	96	Ethyl acetate	ND	1.0	7.3		
Ethyl tert-butyl ether (ETBE)	ND	1.0	8.5	Ethylbenzene	ND	1.0	8.8		
4-Ethyltoluene	ND	1.0	10	Freon 113		ND	1.0	16	
Heptane	ND	1.0	210	Hexachlorobutadien	e	ND	1.0	22	
Hexane	ND	1.0	180	2-Hexanone		ND	1.0	210	
4-Methyl-2-pentanone (MIBK)	11	1.0	8.3	Methyl-t-butyl ether	r (MTBE)	ND	1.0	7.3	
Methylene chloride	ND	1.0	7.1	Naphthalene		ND	1.0	11	
Propene	ND	1.0	88	Styrene		ND	1.0	8.6	
1,1,1,2-Tetrachloroethane	ND	1.0	14	1,1,2,2-Tetrachloro	ethane	ND	1.0	14	
T	ND 120	1.0	14			ND	1.0	6.0	
1 oluene	120 ND	1.0	1.1	1,2,4-Irichlorobenz	ene	ND	1.0	15	
Trichlangethang	11	Trichlandfluoromat	ne	ND	1.0	11			
Trichloroethene ND 1.0 1.2.4 Trimathylhonzono 1.2 1.0				1 3 5 Trimethylben	iane	ND	1.0	10	
Vinyl Acetate	180	Vinyl Chloride	LUIIC	ND	1.0	52			
Xylenes	2.7	vinyr emoriae		T(D)	1.0	5.2			
	ate Re	coveries (%)							
%SS1· 93				%SS2·		1	05		
%SS1: 93 %SS3: 97				/0002.			~~		
Comments:				·					
vapor samples are reported in µg/m ³ .									

surrogate diluted out of range or surrogate coelutes with another peak.

%SS = Percent Recovery of Surrogate Standard

McCampbell An "When Ouality"		1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269						
Schutze & Associates	Client I	Project ID	: #SC	S370; Ed's	Date Sampled:	07/29/10		
	Liquor,	Oakland,	CA		08/02/10	08/02/10		
2100 Embarcadero, Suite #100	Client	Contact:	[an Su	therland	Date Extracted:	08/04/10		
Oakland, CA 94606 Client P.O.:					Date Analyzed:	08/04/10		
	Vola	atile Orga	nic Co	ompounds in μg/m³	*			
Extraction Method: TO15	ethod:	TO15		Work Order: 1008	030			
Lab ID			1008	8030-005A		Initial Pressur	e (psia)	12.9
Client ID				ELA		Final Pressur	e (psia)	25.7
Matrix			Sc	oil Vapor				
Compound	Concentration *	DF	Reporting Limit	Compour	ıd	Concentration *	DF	Reporting Limit
Acetone	ND	1.0	120	Acrylonitrile		ND	1.0	4.4
tert-Amyl methyl ether (TAME)	ND	1.0	8.5	Benzene		ND	1.0	6.5
Benzyl chloride	ND	1.0	11	Bromodichlorometh	ane	ND	1.0	14
Bromoform	ND	1.0	21	Bromomethane		ND	1.0	7.9
1,3-Butadiene	ND	1.0	4.5	2-Butanone (MEK)		ND	1.0	150
t-Butyl alcohol (TBA)	ND	1.0	62	Carbon Disulfide		ND	1.0	6.3
Carbon Tetrachloride ND 1.0				Chlorobenzene		ND	1.0	9.4
Chloroethane	ND	1.0	5.4	Chloroform		ND	1.0	9.9
Chloromethane	ND	1.0	4.2	Cyclohexane		ND	1.0	180
Dibromochloromethane	ND	1.0	17	1,2-Dibromo-3-chlo	ropropane	ND	1.0	20
1,2-Dibromoethane (EDB)	ND	1.0	16	1,2-Dichlorobenzen	2	ND	1.0	12
1,3-Dichlorobenzene	ND	1.0	12	1,4-Dichlorobenzen	2	ND	1.0	12
Dichlorodifluoromethane	ND	1.0	10	1,1-Dichloroethane		ND	1.0	8.2
1,2-Dichloroethane (1,2-DCA)	ND	1.0	8.2	1,1-Dichloroethene		ND	1.0	8.1
cis-1,2-Dichloroethene	ND	1.0	8.1	trans-1,2-Dichloroe	ND	1.0	8.1	
1,2-Dichloropropane	ND	1.0	9.4	cis-1,3-Dichloropro	ND	1.0	9.2	
trans-1,3-Dichloropropene	ND	1.0	9.2	1,2-Dichloro-1,1,2,2	2-tetrafluoroethan	ND	1.0	14
Ethanal	ND	1.0	8.5	T,4-Dioxane		ND	1.0	7.3
Ethanol Ethyl tort butyl other (ETPE)	ND	1.0	96	Ethyl acetate	ND ND	1.0	/.3	
4 Ethyltohuono	ND	1.0	<u>8.3</u>	Emyloenzene		ND	1.0	0.0
4-Ethyltoluene Hentane	ND	1.0	210	Hexachlorobutadien	2	ND	1.0	22
Heyane	ND	1.0	180	2-Hevanone		ND	1.0	210
4-Methyl-2-pentanone (MIBK)	ND	1.0	83	Methyl-t-butyl ethe	r (MTBE)	ND	1.0	73
Methylene chloride	ND	1.0	7 1	Naphthalene		ND	1.0	11
Propene	ND	1.0	88	Styrene		ND	1.0	8.6
1.1.1.2-Tetrachloroethane	ND	1.0	14	1.1.2.2-Tetrachloro	ethane	ND	1.0	14
Tetrachloroethene	ND	1.0	14	Tetrahydrofuran		ND	1.0	6.0
Toluene	ND	1.0	7.7	1,2,4-Trichlorobenz	ene	ND	1.0	15
1,1,1-Trichloroethane	ND	1.0	11	1,1,2-Trichloroetha	ne	ND	1.0	11
Trichloroethene	11	Trichlorofluorometh	nane	ND	1.0	11		
1,2,4-Trimethylbenzene	1,2,4-Trimethylbenzene ND 1.0			1,3,5-Trimethylben	zene	ND	1.0	10
Vinyl Acetate	180	Vinyl Chloride		ND	1.0	5.2		
Xvlenes	27							
	gate Recoveries (%)							
%SS1: 92				%SS2:		1	06	
%SS3: 99								
Comments:								
*vapor samples are reported in $\mu g/m^3$.								

surrogate diluted out of range or surrogate coelutes with another peak.

%SS = Percent Recovery of Surrogate Standard

"When Ouality Counts"

QC SUMMARY REPORT FOR TO15

W.O. Sample Matrix: Soil Vapor QC Matrix: Soil Vapor BatchID: 52168 WorkOrder 1008030 **EPA Method TO15 Extraction TO15** Spiked Sample ID: N/A LCS-LCSD MSD MS-MSD LCS LCSD Spiked MS Sample Acceptance Criteria (%) Analyte MS / MSD RPD I CS/I CSD RPD µg/m³ µg/m³ % Rec. % Rec. % RPD % Rec. % Rec. % RPD 93.3 70 - 130 Acrylonitrile N/A 2.5 N/A N/A N/A 87 6 6 3 0 N/A N/A 30 70 - 130 2.5 N/A N/A N/A 104 96.2 8 04 N/A N/A 30 tert-Amyl methyl ether (TAME) N/A N/A 25 N/A N/A N/A 101 91.4 10.3 N/A N/A 70 - 130 30 Benzene Benzyl chloride N/A 25 N/A N/A N/A 106 973 8 67 N/A N/A 70 - 13030 Bromodichloromethane N/A 25 N/A N/A N/A 126 117 7.28 N/A N/A 70 - 130 30 Bromoform N/A 25 N/A N/A N/A 103 95.2 7.76 N/A N/A 70 - 13030 25 t-Butyl alcohol (TBA) N/A N/A N/A N/A 89.3 81.7 8.84 N/A N/A 70 - 130 30 25 N/A Carbon Disulfide N/A N/A N/A N/A 104 95 4 8.83 N/A 70 - 130 30 30 Carbon Tetrachloride N/A 25 N/A N/A N/A 124 111 11.1 N/A N/A 70 - 130Chlorobenzene N/A 25 N/A N/A N/A 110 101 9.01 N/A N/A 70 - 130 30 Chloroethane N/A 25 N/A N/A N/A 102 90.9 11.1 N/A N/A 70 - 130 30 Chloroform N/A 2.5 N/A N/A N/A 102 92.9 9.54 N/A N/A 70 - 130 30 Chloromethane N/A 2.5 N/A N/A N/A 83.8 86 5 3.19 N/A N/A 70 - 130 30 Dibromochloromethane N/A 2.5 N/A N/A N/A 96.1 88.8 7.92 N/A N/A 70 - 130 30 1,2-Dibromo-3-chloropropane N/A 25 N/A N/A N/A 88.9 82.3 7.71 N/A N/A 70 - 130 30 1,2-Dibromoethane (EDB) 25 N/A N/A N/A 124 114 8 4 7 N/A N/A 30 N/A 70 - 13025 N/A 8.78 N/A 1,3-Dichlorobenzene N/A N/A N/A 124 114 N/A 70 - 13030 25 N/A N/A N/A 116 106 9.06 N/A N/A 70 - 130 30 1 4-Dichlorobenzene N/A 25 Dichlorodifluoromethane N/A N/A N/A N/A 90.2 80 7 11 1 N/A N/A 70 - 13030 1.1-Dichloroethane 2.5 N/A N/A 101 91.8 9 31 N/A N/A 70 - 13030 N/A N/A 1,2-Dichloroethane (1,2-DCA) N/A 2.5 N/A N/A N/A 98 90.1 8.45 N/A N/A 70 - 130 30 cis-1.2-Dichloroethene N/A 25 N/A N/A N/A 104 95.8 8.33 N/A N/A 70 - 130 30 2.5 N/A N/A trans-1,2-Dichloroethene N/A N/A N/A 104 96.7 7.74 N/A 70 - 13030 1,2-Dichloropropane N/A 25 N/A N/A N/A 104 95.5 8.07 N/A N/A 70 - 130 30 cis-1,3-Dichloropropene N/A 25 N/A N/A N/A 102 94.7 7.90 N/A N/A 70 - 130 30 trans-1,3-Dichloropropene N/A 2.5 N/A N/A N/A 102 94 7 7.77 N/A N/A 70 - 130 30 79,6 1,2-Dichloro-1,1,2,2-tetrafluoroetha 25 N/A N/A N/A 84 7 6 1 9 N/A N/A 70 - 13030 N/A N/A 25 N/A N/A 89.7 8.80 N/A 70 - 130 Diisopropyl ether (DIPE) N/A 82.1 N/A 30 25 N/A N/A N/A 112 100 113 N/A N/A 70 - 13030 1.4-Dioxane N/A 25 N/A 102 7.88 N/A 70 - 130 Ethyl acetate N/A N/A N/A 110 N/A 30 25 N/A Ethyl tert-butyl ether (ETBE) N/A N/A N/A N/A 89 1 81 5 8 93 N/A 70 - 13030

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

* MS and / or MSD spike recoveries may not be near 100% or the RPDs near 0% if: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

"When Ouality Counts"

QC SUMMARY REPORT FOR TO15

W.O. Sample Matrix: Soil Vapor		QC Matrix: Soil Vapor					BatchID: 52168			WorkOrder 1008030		
EPA Method TO15	Extrac	tion TO15					Spiked Sample ID: N/A					
Analyte	Sample Spiked MS			MSD	MS-MSD	LCS	LCSD LCS-LCSD Acceptance Criteria (%			e Criteria (%)		
Analyte	µg/m³	µg/m³	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
Ethylbenzene	N/A	25	N/A	N/A	N/A	116	108	7.80	N/A	N/A	70 - 130	30
Freon 113	N/A	25	N/A	N/A	N/A	98.4	90.2	8.70	N/A	N/A	70 - 130	30
Hexachlorobutadiene	N/A	25	N/A	N/A	N/A	94.5	90.2	4.65	N/A	N/A	70 - 130	30
4-Methyl-2-pentanone (MIBK)	N/A	25	N/A	N/A	N/A	121	111	8.47	N/A	N/A	70 - 130	30
Methyl-t-butyl ether (MTBE)	N/A	25	N/A	N/A	N/A	103	94.1	8.69	N/A	N/A	70 - 130	30
Methylene chloride	N/A	25	N/A	N/A	N/A	103	94.9	8.27	N/A	N/A	70 - 130	30
Naphthalene	N/A	25	N/A	N/A	N/A	82.2	77.4	5.93	N/A	N/A	70 - 130	30
Styrene	N/A	25	N/A	N/A	N/A	99.8	92	8.10	N/A	N/A	70 - 130	30
1,1,1,2-Tetrachloroethane	N/A	25	N/A	N/A	N/A	99.4	91.2	8.66	N/A	N/A	70 - 130	30
1,1,2,2-Tetrachloroethane	N/A	25	N/A	N/A	N/A	118	108	8.58	N/A	N/A	70 - 130	30
Tetrachloroethene	N/A	25	N/A	N/A	N/A	108	99	8.83	N/A	N/A	70 - 130	30
Tetrahydrofuran	N/A	25	N/A	N/A	N/A	105	96.9	8.00	N/A	N/A	70 - 130	30
Toluene	N/A	25	N/A	N/A	N/A	114	105	8.85	N/A	N/A	70 - 130	30
1,2,4-Trichlorobenzene	N/A	25	N/A	N/A	N/A	100	93.5	7.05	N/A	N/A	70 - 130	30
1,1,1-Trichloroethane	N/A	25	N/A	N/A	N/A	103	93.5	9.73	N/A	N/A	70 - 130	30
1,1,2-Trichloroethane	N/A	25	N/A	N/A	N/A	118	109	8.20	N/A	N/A	70 - 130	30
Trichloroethene	N/A	25	N/A	N/A	N/A	109	101	7.78	N/A	N/A	70 - 130	30
1,2,4-Trimethylbenzene	N/A	25	N/A	N/A	N/A	119	109	8.62	N/A	N/A	70 - 130	30
1,3,5-Trimethylbenzene	N/A	25	N/A	N/A	N/A	101	96.5	4.99	N/A	N/A	70 - 130	30
Vinyl Chloride	N/A	25	N/A	N/A	N/A	81.9	103	22.8	N/A	N/A	70 - 130	30
Xylenes	N/A	75	N/A	N/A	N/A	117	107	8.35	N/A	N/A	70 - 130	30
%SS1:	N/A	500	N/A	N/A	N/A	87	80	8.96	N/A	N/A	70 - 130	30
%SS2:	N/A	500	N/A	N/A	N/A	99	91	8.65	N/A	N/A	70 - 130	30
%SS3:	N/A	500	N/A	N/A	N/A	100	92	8.57	N/A	N/A	70 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

* MS and / or MSD spike recoveries may not be near 100% or the RPDs near 0% if: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate. NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

McCampbell Analytical, Inc. "When Ouality Counts"

QC SUMMARY REPORT FOR TO15

W.O. Sample Matrix: Soil Vapor QC Matrix: Soil Vapor BatchID: 52168 WorkOrder 1008030 **EPA Method TO15 Extraction TO15** Spiked Sample ID: N/A MSD MS-MSD LCS LCSD LCS-LCSD Sample Spiked MS Acceptance Criteria (%) Analyte % RPD % Rec. % Rec. % RPD MS / MSD RPD LCS/LCSD RPD µg/m³ µg/m³ % Rec. % Rec. BATCH 52168 SUMMARY Lab ID Date Sampled Date Extracted Date Analyzed Lab ID Date Sampled Date Extracted Date Analyzed 1008030-001A 07/29/10 8:25 AM 08/04/10 08/04/10 1:01 PM 1008030-003A 07/29/10 9:14 AM 08/04/10 08/04/10 1:48 PM 1008030-004A 07/29/10 3:19 PM 08/03/10 08/03/10 10:54 PM 1008030-004A 07/29/10 3:19 PM 08/04/10 08/04/10 2:50 PM 1008030-005A 07/29/10 3:30 PM 08/04/10 08/04/10 3:43 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

* MS and / or MSD spike recoveries may not be near 100% or the RPDs near 0% if: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate. NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

APPENDIX B

BORING LOGS

				SOIL BORING LOG								
	SCHU	JTZ	ZE	Drille	r/Ria:	ECA/Geo	Probe 6600	Date Drilled:	7/29/2010	Logged by:		
&	Asso	ciat	tes	Diam	eter:	2' continu	ous core	Boring Num	ber: B1 IS			
Sample Type	Sample Identification	Groundwater	Depth (ft bgs)	Highest PID per 5-ft interval/Odor	USCS Symbol	Lithology Symbol	Subsurface Description					
		ted			SM		Asphalt.					
\times	B1-4'	estiga		0.3		///	Yellowish-red, sand-silt mixture, dry to slightly moist					
		ce not inv	5 			\square	Dark-brov yellowish	Dark-brown, silty-clay, slightly moist, quickly yellowish-brown.				
\times	B1-8'	stric surfac	bility, potentiometric surfac	0.5			Black, sil	ty-clay, slightly mois enish-gray at appro	st, strong hydro ximately 8 ft bg	ocarbon odor, js.		
XXX	B1-12' B1-14' B-1-W B1-16'	bility, potentiome		1,548 	1,548 CL		Approximately 4-inch, greenish-gray, saturated silty-sand lense.					
X	B1-18'	permea		13.0 	CL	$\langle / / /$	Transition 18 ft bos	ns back to yellowish	ו-brown at appr	oximately		
	Б1-20		20 					Boring terminate	d @ 20 ft bgs.			
GeoProbe Boring Logs Ed's Liquor 2700 23rd Avenue Oakland, California								Notes: 2 ft drives from 12 ft bgs due to "tight" clays; Groundwater encountered at approximately 15 ft bgs (entered boring slowly, set temp PVC well); Backfilled with portland neat cement grout; Highest PID reading: 1,548 ppm; Visual contamination from approximately 6 -18 ft bgs.				
SCHUTZE & Associates, Inc. Project No. SCS370								oundwater sample bil sample	ft bgs = feet belo	etric surface (ft bgs) w ground surface		

WELL PERMIT

APPENDIX C

Alameda County Public Works Agency - Water Resources Well Permit

399 Elmhurst Street Hayward, CA 94544-1395 Telephone: (510)670-6633 Fax:(510)782-1939

Application Approved	l on: 07/28/2010 By jamesy	Permit Numbers: W2010-0577 Permits Valid from 07/29/2010 to 07/29/2010		
Application Id:	1280269755100 2700 23rd Ave, Oakland, CA 94601 07/29/2010 Contact John Shouldice at (510) 670-5424 or joh	City of Project Site: Oakland		
Site Location: Project Start Date: Assigned Inspector:		Completion Date:07/29/2010 hns@acpwa.org		
Applicant:	Schutze & Associates - Ian Sutherland	Phone: 510-434-1333		
Property Owner:	Pedro Pulido 2700 23rd Ave Oakland CA 94601	Phone: 510-436-6331		
Client:	Alan Lozito, Summit Bank 2000 Powell St., Emeryville, CA 94608	Phone: 510-839-8800		
	Receipt Number: WR2010-0266	Total Due: \$26 Total Amount Paid:\$26	35.00 35.00	

	Total Due.	φ203.00
Receipt Number: WR2010-0266	Total Amount Paid:	\$265.00
Payer Name Schutze and Associates	Paid By: CHECK	PAID IN FULL

Works Requesting Permits:

Borehole(s) for Investigation-Environmental/Monitorinig Study - 8 Boreholes Driller: ECA Inc. - Lic #: 57 - Method: DP

Work Total: \$265.00

Specifications

Permit	Issued Dt	Expire Dt	#	Hole Diam	Max Depth
Number			Boreholes		
W2010-	07/28/2010	10/27/2010	8	2.00 in.	30.00 ft
0577					

Specific Work Permit Conditions

1. Backfill bore hole by tremie with cement grout or cement grout/sand mixture. Upper two-three feet replaced in kind or with compacted cuttings. All cuttings remaining or unused shall be containerized and hauled off site. The containers shall be clearly labeled to the ownership of the container and labeled hazardous or non-hazardous.

2. Boreholes shall not be left open for a period of more than 24 hours. All boreholes left open more than 24 hours will need approval from Alameda County Public Works Agency, Water Resources Section. All boreholes shall be backfilled according to permit destruction requirements and all concrete material and asphalt material shall be to Caltrans Spec or County/City Codes. No borehole(s) shall be left in a manner to act as a conduit at any time.

3. Permittee shall assume entire responsibility for all activities and uses under this permit and shall indemnify, defend and save the Alameda County Public Works Agency, its officers, agents, and employees free and harmless from any and all expense, cost, liability in connection with or resulting from the exercise of this Permit including, but not limited to, properly damage, personal injury and wrongful death.

4. Applicant shall contact John Shouldice for an inspection time at 510-670-5424 at least five (5) working days prior to starting, once the permit has been approved. Confirm the scheduled date(s) at least 24 hours prior to drilling.

5. Copy of approved drilling permit must be on site at all times. Failure to present or show proof of the approved permit application on site shall result in a fine of \$500.00.

6. Prior to any drilling activities onto any public right-of-ways, it shall be the applicants responsibilities to contact and coordinate a Underground Service Alert (USA), obtain encroachment permit(s), excavation permit(s) or any other permits

Alameda County Public Works Agency - Water Resources Well Permit

required for that City or to the County and follow all City or County Ordinances. It shall also be the applicants responsibilities to provide to the Cities or to Alameda County a Traffic Safety Plan for any lane closures or detours planned. No work shall begin until all the permits and requirements have been approved or obtained.

7. Permit is valid only for the purpose specified herein. No changes in construction procedures, as described on this permit application. Boreholes shall not be converted to monitoring wells, without a permit application process.