WEINGARTEN REALTY

2600 Citadel Plaza Drive, Suite 125 Houston, TX 77008 713.866.6000 Main 713.866.6049 Fax www.weingarten.com

RECEIVED

Mr. Gabe Stivala, P.G Cardno ATC 701 University Drive, Suite 200 Sacramento, CA 95825

By Alameda County Environmental Health 8:01 am, Mar 16, 2016

SUBJECT Remedial Excavation Work Plan

Dry Clean 580 and Adjacent Retail Units 3735 East Castro Valley Boulevard Alameda County LOP No. RO 3097

Dear Mr. Stivala:

I have reviewed and approved the subject report. Please submit it to the regulatory agencies listed in the distribution section of the report. Should any of the agencies require it, I am prepared to declare, under penalty of perjury, that to the best of my knowledge, the information contained in the report is true and correct.

Charles Gurney

Weingarten Realty Investors

2600 Citadel Plaza Drive, Suite 300

Houston, Texas 77008

Date: 3-//-/6

915 Highland Pointe Drive Suite 250 Roseville, CA 95678 Telephone 916-724-5247 Fax 916-724-5201 www.atcgroupservices.com

March 14, 2016

Ms. Karel Detterman Alameda County Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502

Subject: Remedial Excavation Work Plan

580 Market Place Shopping Center 3735-4065 east Castro Valley Boulevard

Castro Valley, California ACEH Case No. RO000309 ATC Project No. Z075000152

Dear Ms. Detterman:

On behalf of Weingarten Realty, ATC Group Services LLC (ATC) has prepared this Remedial Excavation Work Plan for the 580 Market Place Shopping Center in Castro Valley, California. The Work Plan describes the recommended course of action for removal of elevated concentrations of tetrachloroethene (PCE) in soil in the suspected source area at the subject site. This document describes remedial objectives and methods, worker safety, sampling protocols, and air monitoring.

If you have questions or comments regarding this work plan, please contact Gabe Stivala at 925-223-7123 or gabe.stivala@atcassociates.com.

Sincerely,

Gabe Stivala, P.G Senior Project Manager

for ATC

Direct Line +1 925 223 7123

email: gabe.stivala@cardno.com

No. 7780

Sara Bostick

Senior Project Manager

for ATC

Direct Line +1 1 248 669 5140

email:sarabostickt@atcassociates.com

Remedial Excavation Work Plan

580 Market Place Shopping Center 3735–4065 East Castro Valley Boulevard Castro Valley, California ACEH Case No. RO0003097

Submitted to:

Ms. Karel Detterman Alameda County Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502

Prepared on Behalf of:

Mr. Charles Gurney Weingarten Realty Investors 2600 Citadel Plaza Drive, Suite 300 Houston, Texas 77008

Submitted by:

ATC Group Services LLC 915 Highland Pointe Drive, Suite # 250 Roseville, California 95678

ATC Project No. 1191600012

March 14, 2016

TABLE OF CONTENTS

		INTRODUCTION	. 1
		PROPOSED OBJECTIVE AND SCOPE OF WORK	. 1
		PRE-FIELD ACTIVITIES	. 2
1	Perr	mits and Notifications	. 2
2	Hea	lth and Safety	. 2
		FIELD ACTIVITIES	. 2
1	SITE	SECURITY	. 2
2	AIR	MONITORING AND CONTOL	. 2
4.2.1		Vapor Control	. 3
4.2.2	2	Dust Control	. 3
3	SOIL	EXCAVATION	. 3
4.3.1	l	Confirmation Sampling	3
4.3.2	2	Laboratory Analyses	3
4	ВАС	KFILLING THE EXCAVATION	. 4
5	MAI	NAGEMENT OF EXCAVATED/EXTRACTED SOIL AND GROUNDWATER	4
6	SITE	RESTORATION AND DEMOBILIZATION	. 4
		REPORTING	. 5
	2 1 2 4.2.2 3 4.3.1 4.3.2 4	2 Head 1 SITE 2 AIR 4.2.1 4.2.2 3 SOII 4.3.1 4.3.2 4 BAC 5 MAI	PROPOSED OBJECTIVE AND SCOPE OF WORK. PRE-FIELD ACTIVITIES. 1 Permits and Notifications. 2 Health and Safety

- Figure 1 Site Vicinity Map
- Figure 2 Site Plan with Soil Analytical Data for PCE and Proposed Excavation Extents
- Figure 3 Generalized Cross Section A-A'
- Figure 4 Generalized Cross Section A-A'
- Cumulative Data Tables- Soil, Soil Gas, Subslab Vapor and Indoor Air

1.0 INTRODUCTION

On behalf of Weingarten Realty, ATC Group Services LLC (ATC) has prepared this Remediation Excavation Work Plan (Work Plan) for the 580 Market Place Shopping Center in Castro Valley, California (**Figure 1**). The Work Plan describes the recommended course of action for removal of elevated concentrations of tetrachloroethene (PCE) in soil in the suspected source area at the subject site. This document describes remedial objectives and methods, worker safety, permit requirements, sampling protocols, and air monitoring.

The work is being proposed in response to vapor intrusion risks identified during the investigation of the subsurface chlorinated solvent release in vicinity of the DryClean 580 dry cleaning facility on the subject property. The conceptual excavation scope was initially proposed in a meeting with the ACEH on January 13, 2016. The ACEH generally concurred that excavation as an interim action to address vapor intrusion risks was appropriate for this case.

2.0 PROPOSED OBJECTIVE AND SCOPE OF WORK

The objective of the proposed excavation is to remove, to the extent practicable, shallow soil with the highest reported PCE concentrations in an effort to reduce the mass of PCE and other volatile organic compounds (VOCs) in the vicinity of occupied tenant spaces. This contaminant mass may be a contributor to vapor phase VOCs, and through removal, vapor intrusion risks may be reduced. Although impacts have been reported in deeper soil, the proposed excavation is limited to a maximum depth of four feet below ground surface (bgs). The rationale for limiting the excavation depth is three-fold; 1) a deeper excavation is a risk to the integrity of the structure to the north and the large utility corridor to the south, 2) reported soil results generally appear to attenuate with increased depths, and 3) it is generally accepted that the ability of vapors to migrate vertically is inhibited with increased overburden with depth, therefore deeper impacts likely have lower risk for vapor intrusion.

The proposed excavation also includes uncovering a portion of the sanitary sewer line that exits the dry cleaning facility. This will allow inspection of the sanitary sewer and surrounding fill to determine if this is a potential source of the impact.

The proposed limits of the excavation, in relation to PCE impacts, are shown on **Figures 2 through 4.** The proposed scope of work is summarized as follows:

- Acquire appropriate permits and make appropriate notifications including acquiring an excavation/grading permit and notification to the Bay Area Air Quality Management District.
- Notify Underground Service Alert (USA) and use the information provided by previous investigations by various private utility locators to identify utilities present. Subcontract a private utility locator to resurvey the area before excavating.
- Mobilize a backhoe/excavator, hydrovac excavator, disposal bins, and other equipment, as necessary.
- Uncover the sewer line and utility corridor by hand digging, as necessary.
- Excavate, store, transport, and dispose of impacted soil.
- Collect and analyze excavation sidewall and bottom confirmation soil samples for laboratory analyses.
- Backfill and compact the excavation with clean imported soil.

Cumulative Data for all media collected throughout the investigation have been included as an attachment.

All work described in this work plan will be performed under the direction of a California Registered Professional Geologist or Engineer. A licensed general engineering contractor will be subcontracted by ATC to conduct the excavation activities. An excavation summary report will be prepared and submitted to ACEH following completion of field work and receipt of laboratory analyses,

3.0 PRE-FIELD ACTIVITIES

3.1 Permits and Notifications

ATC and/or their subcontractors will obtain any required local and county permits and approvals, and provide notifications prior to conducting the work. A list of permits, approvals, and notifications identified to date include:

- Public notice as required by ACEH.
- Bay Area Air Quality Management notification, if necessary.
- Underground Service Alert (USA North).
- Any necessary permits from the City of Castro Valley.

3.2 Health and Safety

As with any project of this kind, there are a variety of potential hazards. ATC has established a Safety and Health Program (SHP) to enhance the personal health and safety of site workers, the public, and the environment. The SHP defines safety practices and procedures to be instituted in ATC work places, as applicable. The program meets or exceeds, the requirements promulgated by Occupational Health and Safety Administration (OSHA). As part of the SHP, all ATC personnel are appropriately trained and under a Medical Surveillance Program in accordance with OSHA 40 CFR 1910.120 and Cal-OSHA Title 8 Section 5-1-92(e) and (t).

ATC will prepare and implement a site-specific Health and Safety Plan (HASP) for this project based on the scope of work and the potential project-specific hazards. All individuals working for ATC or subcontracted to ATC will be required to review and sign the HASP prior beginning work to acknowledge their understanding of the information contained within. The HASP will be implemented on-site by ATC personnel.

At a minimum, the HASP will identify: roles and responsibilities of key site personnel; hazard analysis for potential chemical, physical, and physiochemical hazards anticipated; a personnel protection plan; site safety procedures for specific site operations; and an emergency response/contingency plan. The HASP will specify levels of protection for site personnel on a task-specific basis. ATC will provide on-going evaluation of all potentially hazardous conditions as the project is undertaken, and if necessary, will prescribe additional safety protocols to protect personnel, the public, and the environment.

4.0 FIELD ACTIVITIES

4.1 SITE SECURITY

ATC will implement engineering controls to protect the health and safety of on-site workers and the public throughout the duration of the project. During work hours, ATC will be responsible for controlling unauthorized access to the work area. Authorized site visitors entering active remediation areas will be required to participate in a site safety orientation, review job safety analysis, as necessary, and review and sign the Site Health and Safety Plan (HASP). Only authorized visitors will be allowed to enter the active remediation areas. During off working hours, temporary chain link fence will block access the site, and gates will be closed and locked.

4.2 AIR MONITORING AND CONTOL

During excavation activities, ATC will conduct monitoring of organic vapor concentrations to control worker exposure and off-site emissions. Air monitoring will be performed throughout the day in the work zone using a portable PID. The monitoring will be used to evaluate the need to upgrade PPE in accordance with the HASP, and help determine if additional environmental controls are needed to reduce air emissions from the site.

Baseline conditions will be established for all monitored parameters. Calibration checks of monitoring equipment will be performed at a minimum of once per day. Air monitoring data will be recorded and reviewed throughout the workday to evaluate against action levels defined in the ATC HASP, and to determine if additional engineering controls are needed to control air emissions. If action levels are exceeded, or any complaints received, the ATC project manager will be informed immediately so corrective actions can be implemented.

4.2.1 Vapor Control

Excavation of contaminated soil may produce vapors that are a risk to human health. ATC and subcontractors will employ the following vapor control measures as necessary throughout the project:

- Covering soil piles when they are not being actively worked, and at night;
- Minimizing drop heights while loading and unloading soil;
- Minimizing the excavation, loading, or unloading of soil during periods not devoid of winds or when other vapor control measures are not able to prevent explosive atmospheres or nuisance vapors from occurring;
- Use of vapor suppressing agents, if deemed necessary.

4.2.2 Dust Control

Construction activities such as excavation, backfilling, grading, stockpiling, and equipment traffic may generate dust and particulate matter when the exposed soil surfaces are dry. Wind is also a contributor. To mitigate the release of dust, the following dust control measures will be implemented as needed throughout the project:

- Covering of wetting debris, soil, or other dust-generating materials and equipment when they are not being actively worked, and at night;
- Minimizing drop heights while loading and unloading soil;
- Use of soil binding agents such as surfactants;
- Street sweeping;
- Suspending the excavation, loading, or unloading of soil during periods of high winds or when dust control measures are not able to prevent visible dust plumes.

4.3 SOIL EXCAVATION

Excavation activities will be performed by utilizing a backhoe/excavator, an airknife/airvac excavator, miniexcavator, and/or hand digging. To evaluate extent of impacted soil, ATC will field-screen soil using a photo ionization detector (PID) that measures volatile organics in concentrations in the parts per billion (ppb) range.

Excavated soil will be placed in a roll-off bin and stored on-site during the project.

4.3.1 Confirmation Sampling

Following completion of the proposed excavation, confirmation soil samples will be collected from the excavation sidewalls and the base of the excavation. Samples will be collected using hand tools or collected from an excavator bucket. Soil samples will be placed on ice and transported under chain-of-custody documentation to a State-certified laboratory for analyses.

4.3.2 Laboratory Analyses

Confirmation soil samples will be placed on ice and shipped under chain-of-custody documentation to a California-certified testing laboratory. Samples will be analyzed for full scan volatile organic compounds (VOCs), total petroleum hydrocarbons as quantified as gasoline (TPHg), and naphthalene by EPA Method 8260B.

4.4 BACKFILLING THE EXCAVATION

Following completion of confirmation sampling, the excavated areas will be backfilled with clean imported soil. Imported fill material will be suitable for compaction as required by the excavation or grading permit. The material shall not include organic or other deleterious materials. The excavation will be backfilled and compacted in lifts not exceeding 12 inches in depth at the direction of the engineers.

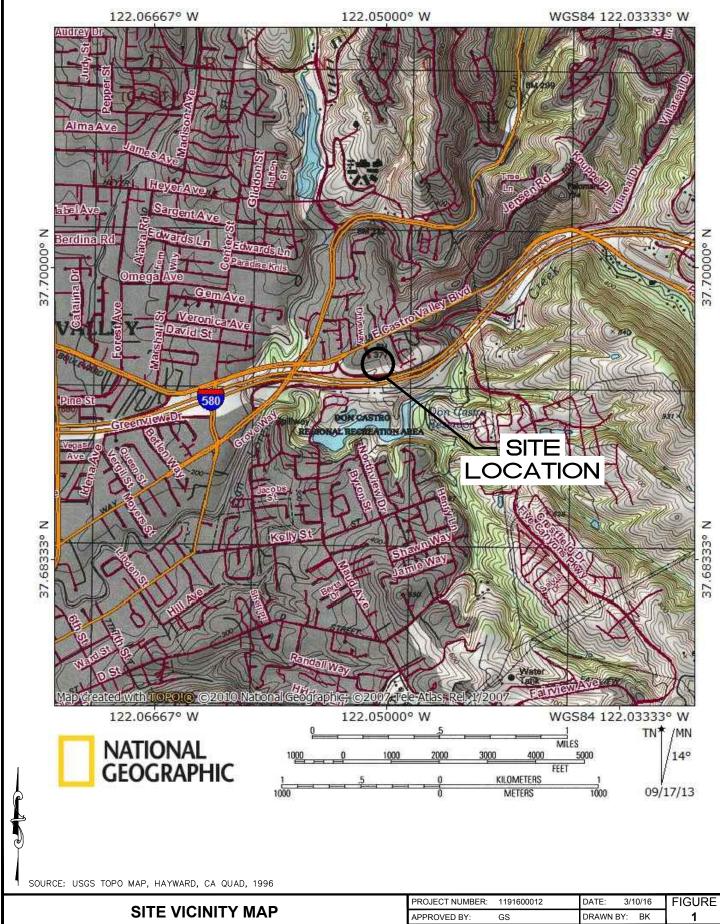
4.5 MANAGEMENT OF EXCAVATED/EXTRACTED SOIL AND GROUNDWATER

Excavated soil will be stored on-site in a roll-off bin. Based on laboratory analytical results, the soil will be profiled for proper disposal at a permitted landfill. Following acceptance by an appropriate landfill, soil will be transported by a certified waste hauler for disposal.

4.6 SITE RESTORATION AND DEMOBILIZATION

Site restoration will be performed following backfilling and compaction activities. Site restoration will include the following:

- Grading the excavated area.
- Surface restoration by paving with asphalt concrete.

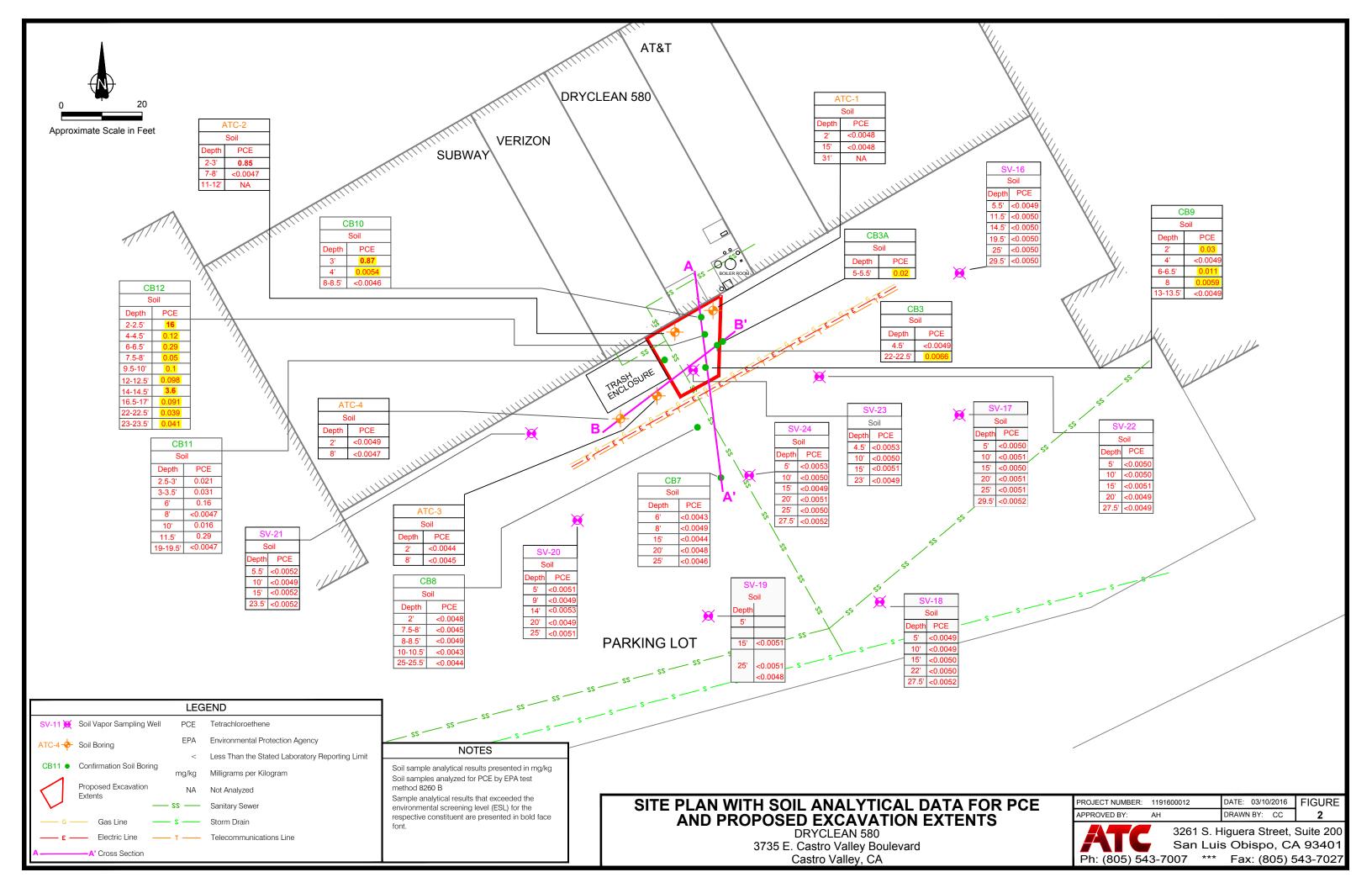


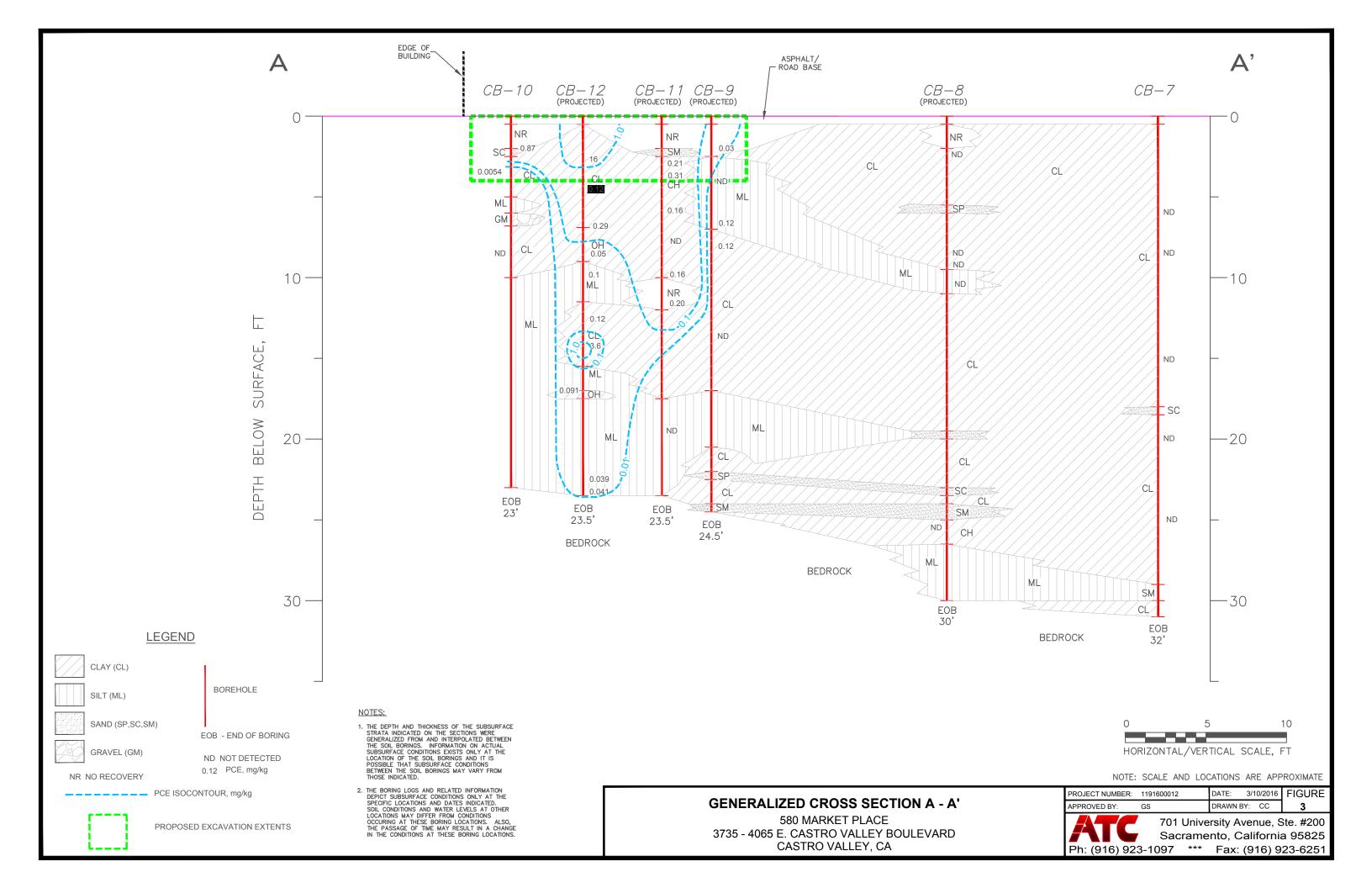
5.0 REPORTING

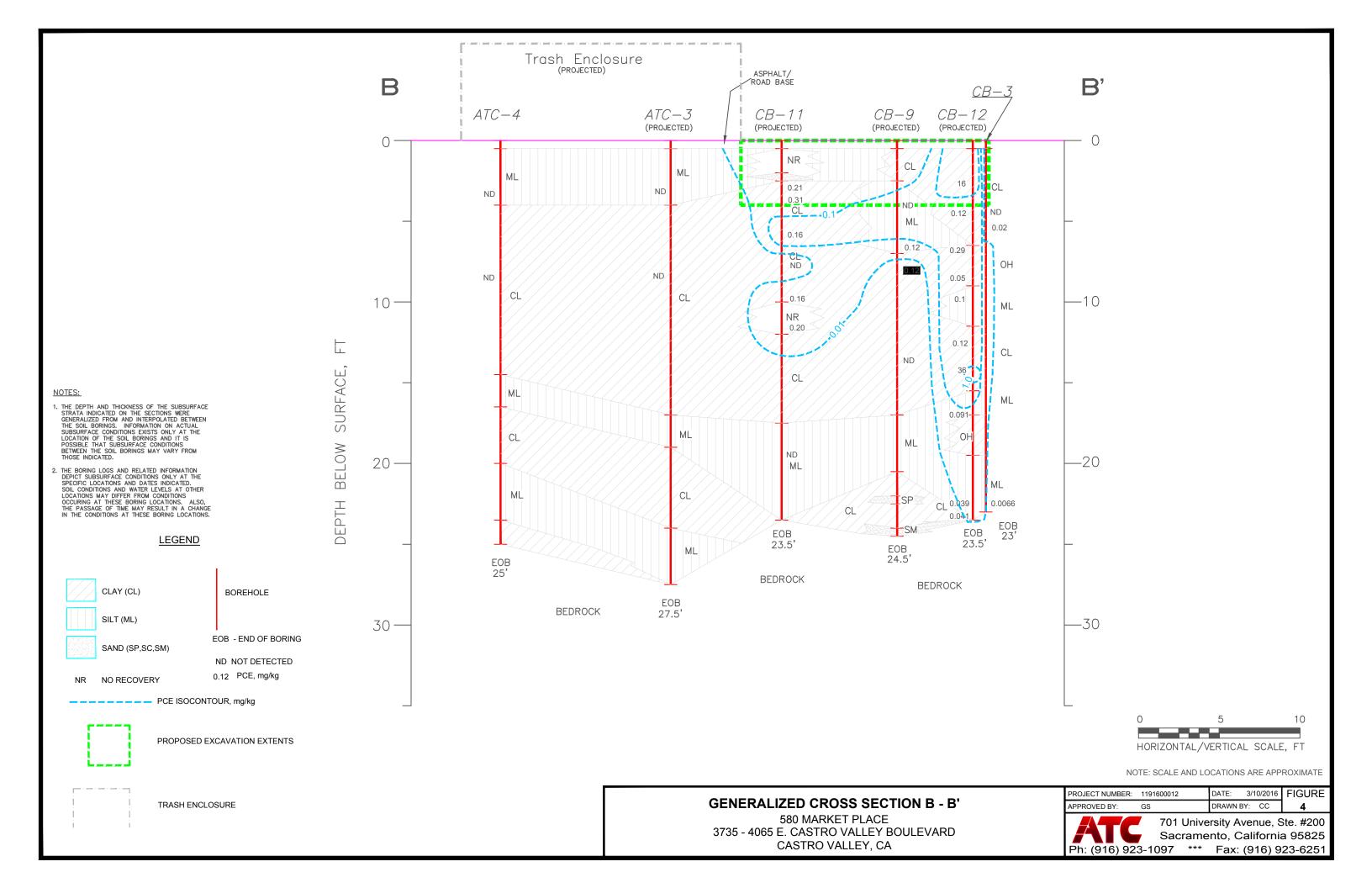
Upon completion of the proposed work, an excavation summary report will be prepared by ATC which, at a minimum will include the following:

- · Site history and previous investigation results;
- Summary of the excavation and restoration activities;
- Copies of permits obtained for the project;
- The volumes of material exported and imported;
- A site plan and cross-sections showing pre-remediation and post remediation limits of impacted soil (if encountered), and verification sample locations;
- Copies of the laboratory reports and chain-of custody documentation;
- Copies of waste manifests for soil and any materials disposed at off-site facilities;
- The soil compaction report, if required; and
- Conclusions and recommendations.

FIGURES




Marketplace\0002\1_VICINITY.dwg


580 MARKET PLACE SHOPPING CENTER 3735 - 4065 CASTRO VALLEY BOULEVARD CASTRO VALLEY, CA

PROJECT NUMBER:	1191600012	DATE: 3/10/16	FIGURE
APPROVED BY:	GS	DRAWN BY: BK	1

CUMULATIVE DATA TABLES

Dry Clean 580
3735 East Castro Valley Boulevard
Castro Valley, California
(Page 1 of 6)

			EPA 8015B						EPA 8260)B				
Sampling ID	Sampling Depth	Sampling Date	TPHg (mg/kg)	Ethyl- benzene (mg/kg)	o-Xylenes (mg/kg)	pm-Xylenes (mg/kg)	Total Xylenes (mg/kg)	Naph- thalene (mg/kg)	Tetrachloro- ethene (mg/kg)	Trichloro- ethene (mg/kg)	c-1,2- dichloro- ethene (mg/kg)	t-1,2-dichloro- ethene (mg/kg)	Acetone (mg/kg)	Additional VOCs (mg/kg)
Environmental			ò	· O	(0 0/	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	` 0 0,	, σ σ,	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	(IIIg/Kg)	(IIIg/kg)	(Hig/Kg)	(IIIg/kg)
Shallow (≤10 fee	_		500	3.3	2.3b	2.3b	2.3	1.2	0.7	0.46	0.19	0.67	0.5	
Deep (>10 feet b	O ,.		770	3.3	2.3b	2.3b	2.3	1.2	0.7	0.46	0.19	0.67	0.5	
Deep (> 10 1001 b	<i>1</i> 95), 14510 0		770	0.0	2.00	2.00	2.0	1.2	0.7	0.40	0.10	0.07	0.0	
Limited Subsur														
ATC-1 (2')	2-3	03/01/12		<0.0048			< 0.0097	<0.0097	<0.0048	<0.0048	<0.0048	<0.0048	<0.048	ND
ATC-1 (15')	14-15	03/01/12		<0.0048			<0.0097	<0.0097	<0.0048	<0.0048	<0.0048	<0.0048	0.062	ND
ATC-1 (31')	30-31	03/01/12												
ATC-2 (2')	2-3	03/01/12		<0.022			<0.043	<0.043	0.85	0.047	<0.022	<0.022	<0.22	ND
ATC-2 (7.5')	7-8	03/01/12		< 0.0047			<0.0093	<0.0093	<0.0047	< 0.0047	< 0.0047	< 0.0047	0.071	ND
ATC-2 (12')	11-12	03/01/12												
/ 0 = (.=)		00/01/12												
ATC-3 (2')	2-3	03/01/12		< 0.0044			<0.0088	<0.0088	< 0.0044	< 0.0044	< 0.0044	< 0.0044	< 0.044	ND
ATC-3 (8')	7-8	03/01/12		< 0.0045			< 0.0090	< 0.0090	< 0.0045	< 0.0045	< 0.0045	< 0.0045	< 0.045	ND
ATC-4 (2')	2-3	03/01/12		< 0.0049			< 0.0097	< 0.0097	< 0.0049	< 0.0049	< 0.0049	< 0.0049	< 0.049	ND
ATC-4 (8')	7-8	03/01/12		< 0.0047			<0.0094	<0.0094	<0.0047	< 0.0047	< 0.0047	<0.0047	0.079	ND
D-1- O A														
Data Gap Asses		00/00/44		.0.0040			0.0007	0.0007	0.0040	0.00	0.000	0.0057	0.040	ND
CB3-4.5 CB3 22-22.5	4.5 22-22.5	02/06/14 02/06/14		<0.0049 <0.0046			<0.0097 <0.0092	<0.0097 <0.0092	<0.0049 0.0066	0.08 <0.0046	0.063 <0.0046	0.0057 <0.0046	<0.049 0.12	ND ND
CB3 22-22.3	22-22.3	02/06/14		<0.0046			<0.0092	<0.0092	0.0066	<0.0040	<0.0046	<0.0046	0.12	ND
CB3A 5-5.5	5-5.5	02/07/14		<0.0044			<0.0088	<0.0088	0.02	0.03	<0.0044	<0.0044	<0.044	ND
CB7-6	6	02/05/14		0.014			0.096	<0.0086	<0.0043	<0.0043	< 0.0043	<0.0043	0.15	ND
CB7-8	8	02/05/14		0.0062			0.035	<0.0098	< 0.0049	< 0.0049	< 0.0049	< 0.0049	0.11	ND
CB7-15	15	02/05/14		0.0063			0.038	<0.0088	< 0.0044	< 0.0044	< 0.0044	< 0.0044	0.092	ND
CB7-20	20	02/05/14		0.0049			0.03	< 0.0095	< 0.0048	<0.0048	<0.0048	<0.0048	0.073	ND
CB7-25	25	02/05/14		<0.0046			<0.0091	<0.0091	<0.0046	<0.0046	<0.0046	<0.0046	0.077	ND
CB8-2	2	02/05/14		<0.0048			0.018	<0.0097	<0.0048	<0.0048	<0.0048	<0.0048	<0.048	ND
CB8 7.5-8	7.5-8	02/05/14		< 0.0045			<0.0091	< 0.0091	<0.0045	0.0055	< 0.0045	<0.0045	0.052	ND
CB8 8-8.5	8-8.5	02/05/14		< 0.0049			0.0098	<0.0098	< 0.0049	<0.0049	< 0.0049	< 0.0049	< 0.049	ND
CB8 10-10.5	10-10.5	02/05/14		0.025			0.16	18	< 0.0043	< 0.0043	< 0.0043	< 0.0043	0.11	ND
CB8 25-25.5	25-25.5	02/05/14		<0.0044			<0.0088	<0.0088	< 0.0044	< 0.0044	< 0.0044	<0.0044	0.074	ND
CB9-2	2	02/06/14		< 0.0047			< 0.0094	< 0.0094	0.03	0.011	< 0.0047	<0.0047	< 0.047	ND
CB9-4	4	02/06/14		<0.0049			<0.0099	<0.0099	<0.0049	<0.0049	0.007	<0.0049	<0.049	ND
CB9 6-6.5	6-6.5	02/06/14		<0.0048			<0.0096	<0.0096	0.011	<0.0048	<0.0048	<0.0048	<0.048	ND
CB9-8	8	02/06/14		<0.0048			<0.0096	<0.0096	0.0059	<0.0048	<0.0048	<0.0048	0.067	ND
CB9 13-13.5	13-13.5	02/06/14		<0.0049			<0.0098	<0.0098	< 0.0049	< 0.0049	<0.0049	< 0.0049	0.062	ND

Dry Clean 580
3735 East Castro Valley Boulevard
Castro Valley, California
(Page 2 of 6)

			EPA 8015B						EPA 8260	B				
											c-1,2-			
_	_	_		Ethyl-			Total	Naph-	Tetrachloro-	Trichloro-	dichloro-	t-1,2-dichloro-		Additional
Sampling	Sampling	Sampling	TPHg	benzene	o-Xylenes	pm-Xylenes		thalene	ethene	ethene	ethene	ethene	Acetone	VOCs
ID	Depth	Date	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Environmental								_		-	0.40	0.07	0.5	
Shallow (≤10 fee			500	3.3	2.3b	2.3b	2.3	1.2	0.7	0.46	0.19	0.67	0.5	
Deep (>10 feet b	igs), Table C-	-2	770	3.3	2.3b	2.3b	2.3	1.2	0.7	0.46	0.19	0.67	0.5	
CB10-3	3	02/06/14		< 0.0045			< 0.0090	< 0.0090	0.87	0.33	0.054	< 0.0045	0.053	ND
CB10-4	4	02/06/14		< 0.0046			<0.0091	< 0.0091	0.0054	<0.47	0.21	0.0057	0.056	ND
CB10 8-8.5	8-8.5	02/06/14		<0.0046			<0.0091	<0.0091	< 0.0046	<0.0046	0.035	<0.0046	<0.046	ND
CB11 2.5-3	2.5-3	02/06/14		<0.0042			<0.0084	<0.0084	0.021	<0.0042	<0.0042	<0.0042	<0.042	ND
CB11 3-3.5	3-3.5	02/06/14		<0.0045			<0.0090	<0.0090	0.031	<0.0045	<0.0045	<0.0045	<0.045	ND
CB11-6	6	02/06/14		<0.0044			<0.0088	<0.0088	0.16	0.012	0.0058	<0.0044	0.076	ND
CB11-8	8	02/06/14		<0.0047			<0.0093	<0.0093	<0.0047	<0.0047	<0.0047	<0.0047	0.048	ND
CB11-10	10	02/06/14		<0.0045			<0.0090	<0.0090	0.016	0.021	<0.0045	<0.0045	<0.045	ND
CB11-11.5	11.5	02/06/14		0.0077			0.052	<0.0089	0.29	0.0098	<0.0045	<0.0045	0.11	ND
CB11 19-19.5	19-19.5	02/06/14		<0.0047			<0.0095	<0.0095	<0.0047	<0.0047	<0.0047	<0.0047	0.052	ND
CB12 2-2.5	2-2.5	02/07/14		<0.023			<0.046	0.046	16	0.21	< 0.023	<0.023	<0.23	ND
CB12 4-4.5	4-4.5	02/07/14		< 0.0045			< 0.0090	< 0.0090	0.12	0.18	0.052	0.0046	< 0.045	ND
CB12 6-6.5	6-6.5	02/07/14		<0.0048			< 0.0095	< 0.0095	0.29	0.0095	0.01	<0.0048	<0.048	ND
CB12 7.5-8	7.5-8	02/07/14		< 0.0044			<0.0088	<0.0088	0.05	< 0.0044	<0.0044	< 0.0044	< 0.049	ND
CB12 9.5-10	9.5-10	02/07/14		< 0.0046			< 0.0091	< 0.0091	0.1	< 0.0046	< 0.0046	<0.0046	<0.046	ND
CB12 12-12.5	12-12.5	02/07/14		< 0.0044			< 0.0087	< 0.0087	0.098	< 0.0044	< 0.0044	< 0.0044	<0.044	ND
CB12 14-14.5	14-14.5	02/07/14		0.0058			0.035	<0.0089	3.6	0.011	< 0.0044	< 0.0044	< 0.044	ND
CB12 16.5-17	16.5-17	02/07/14		< 0.0045			< 0.0091	< 0.0091	0.091	< 0.0045	< 0.0045	< 0.0045	0.11	ND
CB12 22-22.5	22-22.5	02/07/14		<0.0048			< 0.0095	< 0.0095	0.039	<0.0048	<0.0048	<0.0048	0.12	ND
CB12 23-23.5	23-23.5	02/07/14		< 0.0046			<0.0091	< 0.0091	0.041	< 0.0046	<0.0046	<0.0046	<0.046	ND
Soil Vapor Well	Installation													
S-5.5-SV16	5.5	06/03/15	< 0.52	< 0.0049	< 0.0049	< 0.0049		< 0.049	< 0.0049	< 0.0049	< 0.0049	< 0.0049	<0.12	ND
S-11.5-SV16	11.5	06/03/15	< 0.50	< 0.0050	< 0.0050	< 0.0050		< 0.050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	<0.13	ND
S-14.5-SV16	14.5	06/03/15	< 0.50	< 0.0050	< 0.0050	<0.0050		< 0.050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	<0.13	ND
S-19.5-SV16	19.5	06/03/15	<0.51	< 0.0050	< 0.0050	<0.0050		< 0.050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	<0.12	ND
S-25-SV16	25	06/03/15	< 0.50	< 0.0050	< 0.0050	<0.0050		< 0.050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	<0.12	ND
S-29.5-SV16	29.5	06/03/15	<0.50	< 0.0050	<0.0050	< 0.0050		< 0.050	< 0.0050	< 0.0050	< 0.0050	<0.0050	<0.12	ND
S-5-SV17	5	06/03/15	<0.50	<0.0050	<0.0050	<0.0050		<0.050	<0.0050	<0.0050	<0.0050	<0.0050	<0.12	ND
S-5-SV17 S-10-SV17	ວ 10	06/03/15	<0.50 <0.50	<0.0050	<0.0050	<0.0050		<0.050	<0.0050	<0.0050	<0.0050	<0.0050	<0.12	ND
S-10-SV17 S-15-SV17	15	06/03/15	<0.50 <0.49	<0.0051	<0.0051	<0.0051		<0.051	<0.0051	<0.0051	<0.0051	<0.0051	<0.13 <0.12	ND
S-20-SV17	20	06/03/15	<0.49	<0.0050	<0.0050	<0.0050		<0.050	<0.0050	<0.0050	<0.0050	<0.0051	<0.12	ND
S-20-SV17 S-25-SV17	20 25	06/03/15	<0.50 <0.48	<0.0051	<0.0051	<0.0051		<0.051	<0.0051	<0.0051	<0.0051	<0.0051	<0.13 <0.13	ND
3-23-3717	∠5	00/04/15	<0.40	<0.0051	<0.000 I	<0.0051		<0.051	< U.UUO I	<0.0051	<0.000 l	< U.UU3 I	<0.13	ND

Dry Clean 580
3735 East Castro Valley Boulevard
Castro Valley, California
(Page 3 of 6)

			EPA 8015B						EPA 8260	В				
							,				c-1,2-			
				Ethyl-			Total	Naph-	Tetrachloro-	Trichloro-	dichloro-	t-1,2-dichloro-		Additional
Sampling	Sampling	Sampling	TPHg	benzene	o-Xylenes	pm-Xylenes		thalene	ethene	ethene	ethene	ethene	Acetone	VOCs
ID	Depth	Date	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Environmental								_	•	•				
Shallow (≤10 fee			500	3.3	2.3b	2.3b	2.3	1.2	0.7	0.46	0.19	0.67	0.5	
Deep (>10 feet l	bgs), Table C-	·2	770	3.3	2.3b	2.3b	2.3	1.2	0.7	0.46	0.19	0.67	0.5	
S-29.5-SV17	29.5	06/04/15	<0.51	<0.0052	<0.0052	<0.0052		<0.052	<0.0052	<0.0052	<0.0052	<0.0052	<0.13	ND
S-5-SV18	5	06/04/15	<0.48	< 0.0049	< 0.0049	< 0.0049		< 0.049	< 0.0049	< 0.0049	< 0.0049	< 0.0049	<0.12	ND
S-10-SV18	10	06/04/15	< 0.52	< 0.0049	< 0.0049	< 0.0049		< 0.049	< 0.0049	< 0.0049	< 0.0049	< 0.0049	< 0.12	ND
S-15-SV18	15	06/04/15	< 0.49	< 0.0050	< 0.0050	< 0.0050		< 0.050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.13	ND
S-22-SV18	22	06/04/15	< 0.50	< 0.0050	< 0.0050	< 0.0050		< 0.050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	<0.12	ND
S-27.5-SV18	27.5	06/04/15	<0.49	<0.0052	<0.0052	<0.0052		<0.052	<0.0052	<0.0052	<0.0052	<0.0052	<0.13	ND
S-5-SV19	5	06/04/15	<0.50	<0.0050	< 0.0050	< 0.0050		< 0.050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	<0.13	ND
S-10-SV19	10	06/04/15	<0.50	< 0.0051	< 0.0051	< 0.0051		< 0.051	<0.0051	< 0.0051	< 0.0051	<0.0051	<0.13	ND
S-15-SV19	15	06/04/15	<0.50	< 0.0051	< 0.0051	< 0.0051		<0.051	<0.0051	< 0.0051	< 0.0051	<0.0051	<0.13	ND
S-17.5-SV19	17.5	06/04/15	<0.48	< 0.0052	< 0.0052	< 0.0052		<0.052	< 0.0052	< 0.0052	<0.0052	<0.0052	<0.13	ND
S-25-SV19	25	06/04/15	<0.53	< 0.0051	< 0.0051	< 0.0051		< 0.051	<0.0051	< 0.0051	<0.0051	<0.0051	<0.13	ND
S-27.5-SV19	27.5	06/04/15	<0.51	<0.0048	<0.0048	<0.0048		<0.048	<0.0048	<0.0048	<0.0048	<0.0048	<0.12	ND
S-5-SV20	5	06/04/15	<0.50	<0.0051	<0.0051	<0.0051		<0.051	<0.0051	<0.0051	<0.0051	<0.0051	<0.13	ND
S-9-SV20	9	06/04/15	< 0.52	< 0.0049	< 0.0049	< 0.0049		< 0.049	< 0.0049	< 0.0049	<0.0049	< 0.0049	<0.12	ND
S-14-SV20	14	06/04/15	< 0.53	< 0.0053	< 0.0053	< 0.0053		< 0.053	< 0.0053	< 0.0053	< 0.0053	< 0.0053	<0.13	ND
S-20-SV20	20	06/04/15	<0.51	< 0.0049	< 0.0049	< 0.0049		<0.049	< 0.0049	< 0.0049	< 0.0049	<0.0049	<0.12	ND
S-25-SV20	25	06/04/15	1.0a	<0.0051	<0.0051	<0.0051		<0.051	<0.0051	<0.0051	<0.0051	<0.0051	<0.13	ND
S-5.5-SV21	5.5	06/05/15	< 0.49	<0.0052	<0.0052	<0.0052		<0.052	<0.0052	<0.0052	<0.0052	<0.0052	<0.13	ND
S-10-SV21	10	06/05/15	<0.49	< 0.0049	< 0.0049	<0.0049		<0.049	<0.0049	<0.0049	<0.0049	<0.0049	<0.12	ND
S-15-SV21	15	06/05/15	<0.51	< 0.0052	< 0.0052	<0.0052		< 0.052	<0.0052	<0.0052	<0.0052	<0.0052	<0.13	ND
S-23.5-SV21	23.5	06/05/15	<0.51	<0.0052	<0.0052	<0.0052		<0.052	<0.0052	<0.0052	<0.0052	<0.0052	<0.13	ND
S-5-SV22	5	06/04/15	<0.50	<0.0050	<0.0050	<0.0050		< 0.050	<0.0050	<0.0050	<0.0050	<0.0050	<0.12	ND
S-10-SV22	10	06/04/15	< 0.49	< 0.0050	< 0.0050	< 0.0050		< 0.050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	<0.12	ND
S-15-SV22	15	06/04/15	<0.51	< 0.0051	< 0.0051	<0.0051		< 0.051	<0.0051	< 0.0051	<0.0051	<0.0051	<0.13	ND
S-20-SV22	20	06/04/15	<0.51	< 0.0049	< 0.0049	< 0.0049		< 0.049	< 0.0049	< 0.0049	< 0.0049	< 0.0049	<0.12	ND
S-27.5-SV22	27.5	06/04/15	<0.48	<0.0049	<0.0049	<0.0049		<0.049	<0.0049	<0.0049	<0.0049	<0.0049	<0.12	ND
S-4.5-SV23	4.5	06/05/15	<0.51	<0.0053	<0.0053	<0.0053		<0.053	<0.0053	<0.0053	0.083	<0.0053	<0.13	ND
S-10-SV23	10	06/05/15	< 0.49	< 0.0050	< 0.0050	<0.0050		< 0.050	<0.0050	< 0.0050	<0.0050	<0.0050	<0.13	ND
S-15-SV23	15	06/05/15	< 0.53	<0.0051	<0.0051	<0.0051		<0.051	<0.0051	< 0.0051	<0.0051	<0.0051	<0.13	ND
S-23-SV23	23	06/05/15	< 0.53	< 0.0049	< 0.0049	< 0.0049		< 0.049	< 0.0049	< 0.0049	< 0.0049	< 0.0049	<0.12	ND

Dry Clean 580 3735 East Castro Valley Boulevard Castro Valley, California (Page 4 of 6)

			EPA 8015B						EPA 8260	В				
											c-1,2-			
				Ethyl-			Total	Naph-	Tetrachloro-	Trichloro-	dichloro-	t-1,2-dichloro-		Additional
Sampling	Sampling	Sampling	TPHg	benzene	o-Xylenes	pm-Xylenes	Xylenes	thalene	ethene	ethene	ethene	ethene	Acetone	VOCs
ID	Depth	Date	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Environmental	Screening L	evels, Comn	nercial/Indust	trial Soil wh	ere Ground	water is a Pot	ential Drinl	king Water	Source (Decem	ber 2013)				
Shallow (≤10 fee	et bgs), Table	A-2	500	3.3	2.3b	2.3b	2.3	1.2	0.7	0.46	0.19	0.67	0.5	
Deep (>10 feet b	ogs), Table C	-2	770	3.3	2.3b	2.3b	2.3	1.2	0.7	0.46	0.19	0.67	0.5	
S-5-SV24	5	06/05/15	<0.50	<0.0053	<0.0053	<0.0053		<0.053	<0.0053	< 0.0053	<0.0053	<0.0053	<0.13	ND
S-10-SV24	10	06/05/15	< 0.50	< 0.0050	< 0.0050	< 0.0050		< 0.050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	<0.12	ND
S-15-SV24	15	06/05/15	< 0.50	< 0.0049	< 0.0049	< 0.0049		< 0.049	< 0.0049	< 0.0049	< 0.0049	< 0.0049	< 0.12	ND
S-20-SV24	20	06/05/15	< 0.52	< 0.0051	< 0.0051	< 0.0051		< 0.051	< 0.0051	< 0.0051	< 0.0051	< 0.0051	< 0.13	ND
S-25-SV24	25	06/05/15	<0.48	< 0.0050	< 0.0050	< 0.0050		< 0.050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.12	ND
S-27.5-SV24	27.5	06/05/15	<0.49	<0.0052	<0.0052	<0.0052		<0.052	<0.0052	< 0.0052	<0.0052	<0.0052	<0.13	ND
Notes:														
TPHg	=	Total petrole	um hydrocarb	ons as gaso	oline.									
VOCs	=	Volatile orga	latile organic compounds.											
mg/kg	=	Milligrams p	grams per kilogram.											
ND	=	Not detected	d at or above t	he laborator	y reporting lir	nit.								
<	=	Less than th	an the stated laboratory reporting limit.											
	=	Not analyzed	, , , ,											

Chromatographic pattern does not match that of the specified standard.

Screening level for total xylenes.

а

TABLE 3A SOIL PROPERTIES

Dry Clean 580 3735 East Castro Valley Boulevard Castro Valley, California (Page 5 of 6)

			Mois	Moisture		sity		Po	rosity		Total Pore Fluid	Organio	Carbon	Permeab	ility to Air	Permeability	Hydraulic
Sample	Sample	Sample	Con	itent	Dry Bulk		Total	Air Filled	Water Filled		Saturations	Total	Fraction	Effective	Specific	To Water	Conductivity
Name	Date	Orientation	(% weight)	(cm ³ /cm ³)	(g/cm ³)	(g/cm ³)	(cm ³ /cm ³)	(%Pv)	(mg/kg)	(g/g)	(millidarcy)	(millidarcy)	(millidarcy)	(cm/s)			
S-6-Shelby23	06/05/15	Vertical	16.66	0.288	1.73	2.67	0.352	0.064	0.288	0.014	81.8	7,600	7.60E-03	6.27	3,689	0.0103	1.02E-08
S-6-Shelby24	06/05/15	Vertical	11.79	0.237	2.01	2.65	0.242	0.005	0.237	0.058	97.9	9,100	9.10E-03	85.0	3,281	0.192	1.90E-07

N	0	te	s
---	---	----	---

Particle Size Distribution = Grain size distribution analyzed using ASTM D4464.

USCS/Plasticity Chart Symbol = Unified Soil Classification System chart symbol analyzed using ATM D4318.

USCS Classification = Unified Soil Classification System classification analyzed using ASTM D2487.

USDA/SCS Soil Texture Scheme = United States Department of Agriculture/Soil Conservation Service soil texture scheme analyzed using USDA.

Atterberg Limits Atterberg limits analyzed using ASTM D4318. Moisture Content Moisture content analyzed using ASTM D2216. Dry Bulk Density Dry density analyzed using API RP40. Grain Density Grain density analyzed using API RP40. **Total Porosity** Total porosity analyzed using API RP40. Air Filled Porosity Air filled porosity analyzed using API RP40. Water Filled Porosity Water filled porosity analyzed using API RP40. Effective Porosity Effective porosity analyzed using modified ASTM D425.

Total Pore Fluid Saturations
Total Organic Carbon
Fraction Organic Carbon
Effective Permiability to Air
Specific Permiability to Air

Total Pore Fluid saturations analyzed using API RP40.

Total organic carbon analyzed using Walkley-Black.
Fraction organic carbon analyzed using Walkley-Black.
Effective Permiability to Air
Specific Permiability to Air
Specific Permiability to Air
Specific Permiability to Air

Permiability to Water = Effective permiability to water analyzed using API RP40.

Hydraulic Conductivity = Saturated hydraulic conductivity analyzed using EPA Method 9100.

feet bgs = Feet below ground surface.

mm = Millimeter.

%Pv = Percent per pore volume. g/cm³ = Grams per cubic centimeter.

cm³/cm³ = Cubic centimeter per cubic centimeter.

cm² = Centimeters squared.
cm/s = Centimeters per second.
mg/kg = Milligrams per kilogram.
g/g = Grams per gram.

--- = Not avaliable/Not applicable.

TABLE 3B ADDITIONAL SOIL PROPERTIES

Dry Clean 580 3735 East Castro Valley Boulevard Castro Valley, California (Page 6 of 6)

		At	tterberg l	_imits	USCS		USDA/SCS	Grain	Medium			Compo	nent Perd	entage	S			Silt
Sample	Sample	Liquid	Plastic	Plasticity	Chart	USCS	Soil Texture	Size	Grain				Sand Siz	ze				and
Name	Date	Limit	Limit	Index	Symbol	Classicfication	Scheme	Description	Size	Gravel	Vcoarse	Course	Medium	Fine	Vfine	Silt	Clay	Clay
S-6-Shelby23	06/05/15	37	17	20	CL	Lean Clay with Sand	Loam	Silt	0.019	0.00	0.00	0.00	3.62	10.92	13.78	48.77	22.90	71.7
S-6-Shelby24	06/05/15	23	15	8	CL	Sandy Lean Clay	Loam	Silt	0.033	0.00	0.00	1.36	8.97	12.43	15.26	43.51	18.46	62.0
D. (i.l. Oi. Di til. (i						10TH D 1101												
Particle Size Distribution	=				, .	ASTM D4464.												
USCS/Plasticity Chart Symbol	=	Unified	Soil Clas	sification S	System cha	art symbol analyzed usir	ng ATM D4318											
USCS Classification	=	Unified	Soil Clas	sification S	System cla	ssification analyzed usir	ng ASTM D248	7.										
USDA/SCS Soil Texture Scheme	=	United	States D	epartment	of Agricult	ure/Soil Conservation S	ervice soil texti	ire scheme an	alyzed using	USDA.								
Atterberg Limits	=	Atterberg limits analyzed using ASTM D4318.																
Moisture Content	=	= Moisture content analyzed using ASTM D2216.																
Dr. Bulk Donoite		Drydor	ocity one	vzod ucino	ADI DDA	1												

Dry Bulk Density = Dry density analyzed using API RP40.
Grain Density = Grain density analyzed using API RP40.
Total Porosity = Total porosity analyzed using API RP40.
Air Filled Porosity = Air filled porosity analyzed using API RP40.
Water Filled Porosity = Water filled porosity analyzed using API RP40.
Effective Porosity = Effective porosity analyzed using API RP40.
Total Organic Carbon = Total organic carbon analyzed using Walkley-Black.

Total Pore Fluid Saturations = Total pore fluid saturations analyzed using API RP40.

Total Organic Carbon = Total organic carbon analyzed using Walkley-Black.

Fraction Organic Carbon = Fraction organic carbon analyzed using Walkley-Black.

Effective Permiability to Air = Effective permiability to air analyzed using API RP40.

Specific Permiability to Water = Effective permiability to water analyzed using API RP40.

Hydraulic Conductivity = Saturated hydraulic conductivity analyzed using EPA Method 9100.

feet bgs = Feet below ground surface.

mm = Millimeter.

%Pv = Percent per pore volume. g/cm³ = Grams per cubic centimeter.

cm³/cm³ = Cubic centimeter per cubic centimeter.

cm² = Centimeters squared.
cm/s = Centimeters per second.
mg/kg = Milligrams per kilogram.
g/g = Grams per gram.

--- = Not avaliable/Not applicable.

Dry Clean 580
3735 East Castro Valley Boulevard
Castro Valley, California
(Page 1 of 4)

ID D Environmental Scr Commercial/Industr	Date creening I		ASTM D Methane (%V)	CO ₂ (%V)	O ₂ + Ar	TPHq	MTBE	п	_		.,	.,,			DOE	TOF	
Environmental Scr Commercial/Industr	creening I	Levels, S	, ,	(%V)				В	T	Ε	o-X	pm-X	1,2-DCA	TBA	PCE	TCE	Ethanol
Commercial/Industr	trial		allanı Call C	(,,,,	(%V)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m ³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m ³)	(µg/m³)
			nallow Soll G	as, Table	E-2 (Decer	mber 2013)											
						2,500,000	47,000	420	1,300,000	4,900	440,000d	440,000d	580		2,100	3,000	
Phase II Subsurfac	ice Invest	tigation															
SG-1 11/	/11/97														<1,000	<1,000	
SG-2 11/	/11/97														<1,000	<1,000	
SG-3 11/	/11/97														<1,000	<1,000	
SG-4 11/	/11/97														5,800	<1,000	
SG-4 11/	/11/97														4,000	<1,000	
SG-5 11/	/11/97														65,000	<1,000	
SG-5 11/	/11/97														119,700	6,800	
	/11/97														<1,000	<1,000	
SG-6 11/	/11/97														1,700	<1,000	
SG-7 11/	/11/97														<1,000	<1,000	
SG-8 11/	/12/97														29,700	2,100	
	/12/97														30,300	1,400	
•	/12/97														24,600	1,100	
	/12/97														33,500	<1,000	
	/12/97														14,000	<1,000	
	/12/97														4,700	<1,000	
SG-11 11/	/12/97														105,900	1,400	
Data Gap Assessm	ment																
•	/06/14							<35	<200	<100	<100	<200	<45		9,500	600	
-	/06/14							110	<200	<100	<100	<200	<45		190	<100	
	/06/14							170	<200	<100	<100	<200	<45		<100	<100	
	/07/14							72	<200	<100	<100	<200	<45		<100	<100	
	/07/14							56	<200	<100	<100	<200	<45		<100	450	
	/07/14							83	<200	<100	<100	<200	<45		1,800	1,400	
SV-7 01/9	/07/14							<35	<200	<100	<100	<200	<45		3,600	<100	
SV-8 01/0	/07/14							<35	<200	<100	<100	<200	<45		<100	<100	
	/17/14							170	<200	190	160	560	<45		160	<100	
	/17/14							170	<200	270	270	910	<45		<100	<100	
	/17/14							91	<200	<100	<100	270	<45		2,200	<100	
	/17/14							290	<200	<100	<100	<200	<45		<100	<100	
	/17/14							400	280	<100	<100	<200	<45		<100	<100	
	/17/14							150	<200	<100	<100	<200	<45		<100	<100	
	/17/14							150	<200	<100	<100	<200	<45		<100	<100	

Dry Clean 580 3735 East Castro Valley Boulevard Castro Valley, California (Page 2 of 4)

	ASTM D-1946			GC/MS						EPA TO-1	5						
Sampling	Sampling	Helium	Methane	CO ₂	O ₂ + Ar	TPHg	MTBE	В	Т	Е	o-X	pm-X	1,2-DCA	TBA	PCE	TCE	Ethanol
ID	Date	(%V)	(%V)	(%V)	(%V)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)
Environmental	I Screening	Levels, S	hallow Soil (Gas, Table	E-2 (Dece	mber 2013)											
Commercial/Ind	dustrial					2,500,000	47,000	420	1,300,000	4,900	440,000d	440,000d	580		2,100	3,000	
Soil Vapor Wel	II Installatio	on															
SV-16A	06/25/15	0.0687	0.25	2.6	3.8	15,000	<11	74	63	13	12	36	<3.0	<9.1	<5.1	<4.0	<14
SV-16B	06/25/15	0.0215	0.41	21	2.4	38,000	<9.4	56	40	12	9.0	22	3.0	<7.9	<4.4	<3.5	<12
SV-17A	06/25/15	0.0286	0.026	0.75	8.7	4,500	<7.2	12	18	4.0	4.4	13	<2.0	43	<3.4	<2.7	<9.4
SV-17B	06/25/15	0.0301	0.36	17	4.8	38,000	14	63	34	13	12	24	<2.7	160	<4.6	<3.6	<13
SV-18A	06/25/15	0.0137	0.026	0.69	8.0	5,500	<8.7	6.1	8.3	3.7	17	29	<2.4	22	<4.1	<3.2	<11
SV-18B	06/25/15	0.0219	0.38	23	6.4	14,000	<7.6	65	17	11	9.3	21	<2.1	<6.4	<3.6	<2.8	<10
SV-19A	06/25/15	0.0717	0.0043	0.14	8.8	8400	<9.7	270	15	130	3.8	<12	<2.7	24	25	<3.6	<13
SV-19B	06/25/15	0.0355	0.018	20	8.1	5,900	<7.2	25	11	<2.2	<2.2	<8.7	<2.0	74	<3.4	<2.7	14
SV-20A	06/25/15	0.0241	0.0039	4.6	4.1	8,800	<10	11	12	3.5	<3.1	<12	<2.9	25	<4.8	<3.8	<13
SV-20B	06/25/15	0.0297	0.041	11	7.6	25,000	30	37	27	13	10	18	<2.6	180	<4.3	<3.4	12
SV-21A	06/26/15	0.0316	0.61	3.8	5.0	29,000	<10	69	33	14	9.5	19	<2.9	<8.5	420	7.9	<13
SV-21B	06/26/15	0.0220	0.13	28	3.7	21,000	<9.7	63	25	23	23	56	<2.7	<8.1	140	4.3	<13
SV-22A	06/26/15	0.0279	0.82	1.1	4.8	21,000	<10	46	33	8.7	7.8	15	<2.9	18	<4.8	<3.8	<13
SV-22B	06/26/15	0.0187	0.55	56	2.2	16,000	<8.1	42	9.3	10	7.8	16	<2.3	55	<3.8	<3.0	11
SV-23A	06/26/15	0.0159	0.45	0.85	13	89,000	<29	90	37	<8.7	<8.7	<35	<8.1	<24	20,000	40,000	<38
SV-23A Dup	06/26/15	0.0139	0.49	1.1	10	86,000	<29	110	34	14	<8.7	<35	<8.1	<24	14,000	33,000	<38
SV-23B	06/26/15	0.0140	0.41	28	2.8	47,000	<8.8>	54	82	21	16	27	<2.5	<7.4	17,000	530	<11
SV-24A	06/26/15	0.0169	0.025	2.1	7.9	14,000	<9.2	18	8.5	<2.8	<2.8	<11	<2.6	<7.7	3,000	210	<12
SV-24B	06/26/15	0.0186	0.19	17	8.2	21,000	<8.6	40	26	12	8.6	16	<2.4	30	7.8	11	12

TPHg	=	Total petroleum hydrocarbons as gasoline.
MTBE	=	Methyl tertiary butyl ether.
BTEX	=	Benzene, ethylbenzene, toluene, and total xylenes.
1,2-DCA	=	1,2-dichloroethane.
TBA	=	Tertiary butyl alcohol.
PCE	=	Tetrachloroethene.
TCE	=	Trichloroethene.
VOCs	=	Volatile organic compounds.
CO ₂	=	Carbon dioxide.
O_2 + Ar	=	Oxygen plus argon.
μg/m³	=	Micrograms per cubic meter.
%V	=	Percent by volume.
ND	=	Not detected at or above the laboratory reporting limit.
<	=	Less than the stated laboratory reporting limit.
а	=	Chloroethane.
b	=	4-methyl-2-pentanone.
С	=	4-ethyltoluene.
d	=	ESL for total xylenes.
е	=	1,1-dichloroethene.

Notes:

TABLE 4B ADDITIONAL SELECT SOIL VAPOR ANALYTICAL RESULTS, DETECTED CONCENTRATIONS

Dry Clean 580
3735 East Castro Valley Boulevard
Castro Valley, California
(Page 3 of 4)

		EPA TO-17							E	PA TO-1	5 (EPA 8010) in 1997)						
					Bromo-						1,1-	c-1,2-	t-1,2-	Dichloro-	1,2,4-	1,3,5-		
		Naph-	Naph-		dichloro-	2-	Carbon	Chloro-	Chloro-	Chloro-	dichloro-	dichloro-	dichloro-	difluoro-	trimethyl-	trimethyl-	Vinyl	
Sampling	Sampling	thalene	thalene	Acetone	methane	Butanone	Disulfide	benzene	methane	form	ethane	ethene	ethene	methane	benzene	benzene	Chloride	Additional VOCs
ID	Date	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)
Environment	al Screening	g Levels, Sha	llow Soil (Gas, Table E-2	(December	2013)												
Commercial/Ir	ndustrial	360	360	140,000,000	330			4,400,000	390,000	2,300	7,700	31,000	260,000				160	
Phase II Subs	surface Inve	estigation																
SG-1	11/11/97											<1,000	<1,000				<1,000	ND
SG-2	11/11/97											<1,000	<1,000				<1,000	ND
SG-3	11/11/97											<1,000	<1,000				<1,000	ND
SG-4	11/11/97											<1,000	<1,000				<1,000	ND
SG-4	11/11/97											<1,000	<1,000				<1,000	ND
SG-5	11/11/97											<1,000	<1,000				<1,000	ND
SG-5	11/11/97											<1,000	<1,000				<1,000	ND
SG-5	11/11/97											<1,000	<1,000				<1,000	ND
SG-6	11/11/97											<1,000	<1,000				<1,000	ND
SG-7	11/11/97											<1,000	<1,000				<1,000	ND
SG-8	11/12/97											<1,000	<1,000				<1,000	ND
SG-8	11/12/97											<1,000	<1,000				<1,000	ND
SG-8 Dup	11/12/97											<1,000	<1,000				<1,000	ND
SG-9	11/12/97											<1,000	<1,000				<1,000	ND
SG-10	11/12/97											<1,000	<1,000				<1,000	ND
SG-10	11/12/97											<1,000	<1,000				<1,000	ND
SG-11	11/12/97											<1,000	<1,000				<1,000	ND
Data Gap Ass	sessment																	
SV-1	01/06/14									<100	280	7,400	330	<100			190	ND
SV-2	01/06/14									<100	<100	<100	<100	<100			<13	ND
SV-3	01/06/14									<100	<100	<100	<100	<100			<13	ND
SV-4	01/07/14									<100	<100	<100	<100	<100			<13	ND
SV-5	01/07/14									<100	<100	650	<100	<100			110	ND
SV-6	01/07/14									<100	110	960	<100	<100			110	ND
SV-7	01/07/14									<100	<100	<100	<100	<100			<13	ND
SV-8	01/07/14									<100	<100	<100	<100	<100			<13	ND
SV-9	01/17/14									<100	<100	<100	<100	<100			<13	ND
SV-10	01/17/14									<100	<100	<100	<100	<100			<13	ND
SV-11	01/17/14									<100	<100	<100	<100	<100			<13	ND
SV-12	01/17/14									<100	<100	<100	<100	<100			43	ND
SV-13	01/17/14									<100	<100	<100	<100	<100			<13	ND
SV-14	01/17/14									<100	<100	<100	<100	<100			<13	ND
SV-15	01/17/14									<100	<100	<100	<100	<100			<13	ND
	3 ., ,																	

TABLE 4B

ADDITIONAL SELECT SOIL VAPOR ANALYTICAL RESULTS, DETECTED CONCENTRATIONS

Dry Clean 580

3735 East Castro Valley Boulevard

Castro Valley, California

(Page 4 of 4)

		EPA TO-17							E	PA TO-1	5 (EPA 8010) in 1997)						
					Bromo-						1,1-	c-1,2-	t-1,2-	Dichloro-	1,2,4-	1,3,5-		
		Naph-	Naph-		dichloro-	2-	Carbon	Chloro-	Chloro-	Chloro-	dichloro-	dichloro-	dichloro-	difluoro-	trimethyl-	trimethyl-	Vinyl	
Sampling	Sampling	thalene	thalene	Acetone	methane	Butanone	Disulfide	benzene	methane	form	ethane	ethene	ethene	methane	benzene	benzene	Chloride	Additional VOCs
ID	Date	(µg/m³)	(µg/m ³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)
Environment	al Screening	g Levels, Sha	llow Soil	Gas, Table E-2	(December	2013)												
Commercial/I	ndustrial	360	360	140,000,000	330			4,400,000	390,000	2,300	7,700	31,000	260,000				160	
Soil Vapor W	ell Installati	on																
SV-16A	06/25/15	<20	<39	50	<5.0	<6.6	580	4.4	<1.5	16	<3.0	<3.0	<3.0	5.3	<11	<3.7	<1.9	ND
SV-16B	06/25/15	<20	<34	<6.2	<4.4	<5.8	690	4.0	<1.3	11	<2.6	<2.6	<2.6	<3.2	<9.6	<3.2	<1.7	ND
SV-17A	06/25/15	<20	<26	56	4.0	<4.4	55	3.6	3.2	12	<2.0	<2.0	<2.0	3.3	<7.4	<2.5	<1.3	ND
SV-17B	06/25/15	<20	<35	180	<4.5	8.2	510	8.0	2.3	3.9	<2.7	<2.7	<2.7	6.6	13	4.7	<1.7	ND
SV-18A	06/25/15	<20	<32	<5.7	15	<5.3	170	5.2	2.1	45	<2.4	<2.4	<2.4	4.8	24	11	<1.5	4.8c
SV-18B	06/25/15	<20	<28	<5.0	<3.6	<4.7	380	10	1.2	5.1	<2.1	<2.1	<2.1	<2.6	<7.8	<2.6	<1.4	ND
SV-19A	06/25/15	<20	<35	<6.4	22	9.2	190	4.6	3.3	57	<2.7	<2.7	<2.7	5.1	<9.9	<3.3	<1.7	ND
SV-19B	06/25/15	<20	<26	150	7.4	5.3	710	7.9	<1.0	11	<2.0	<2.0	<2.0	<2.5	<7.4	<2.5	<1.3	ND
SV-20A	06/25/15	<20	<37	<6.7	6.0	10	100	5.0	3.2	19	<2.9	<2.8	<2.8	<3.5	<10	<3.5	<1.8	ND
SV-20B	06/25/15	<20	<33	220	<4.3	14	1,100	4.8	1.9	7.7	<2.6	<2.5	<2.5	<3.1	<9.4	3.1	<1.6	ND
SV-21A	06/25/15	<20	<37	<6.7	<4.7	7.6	350	10	3.2	16	<2.9	<2.8	<2.8	3.8	<10	<3.5	2.5	ND
SV-21B	06/25/15	<20	<35	150	<4.5	13	480	38	<1.4	4.6	<2.7	<2.7	<2.7	<3.3	10	3.8	<1.7	ND
SV-22A	06/25/15	410	<37	<6.7	<4.7	8.8	82	<3.2	2.0	29	<2.9	<2.8	<2.8	4.7	<10	<3.5	<1.8	9.9b
SV-22B	06/25/15	<20	<30	100	<3.8	9.9	250	<2.6	<1.2	<2.8	<2.3	<2.2	<2.2	<2.8	<8.3	<2.8	<1.4	20b
SV-23A	06/25/15		<100	<19	<13	<18	600	<9.2	4.7	55	3,700	53,000	4,700	<9.9	<29	<9.8	1,700	ND
SV-23A Dup	06/25/15		<100	<19	<13	<18	910	<9.2	6.5	67	<8.1	47,000	4,300	<9.9	<29	<9.8	1,300	2,500e
SV-23B	06/25/15	<20	<32	<5.8	<4.1	<5.4	820	5.0	2.5	6.8	<2.5	1,000	86	<3.0	61	17	37	2.9a, 11c, 80e
SV-24A	06/25/15	<20	<33	<6.0	8.3	<5.6	410	4.7	5.9	51	<2.6	270	61	3.2	<9.4	<3.1	23	19e
SV-24B	06/25/15	<20	<31	<5.7	<4.0	19	2,400	11	3.8	3.9	<2.4	23	4.1	<2.9	<8.8	3.1	<1.5	ND

Notes:		
TPHg	=	Total petroleum hydrocarbons as gasoline.
MTBE	=	Methyl tertiary butyl ether.
BTEX	=	Benzene, ethylbenzene, toluene, and total xylenes.
1,2-DCA	=	1,2-dichloroethane.
TBA	=	Tertiary butyl alcohol.
PCE	=	Tetrachloroethene.
TCE	=	Trichloroethene.
VOCs	=	Volatile organic compounds.
CO_2	=	Carbon dioxide.
O_2 + Ar	=	Oxygen plus argon.
µg/m³	=	Micrograms per cubic meter.
%V	=	Percent by volume.
ND	=	Not detected at or above the laboratory reporting limit.
<	=	Less than the stated laboratory reporting limit.
а	=	Chloroethane.
b	=	4-methyl-2-pentanone.
С	=	4-ethyltoluene.
d	=	ESL for total xylenes.
е	=	1,1-dichloroethene.

TABLE 1A SUB-SLAB SOIL VAPOR ANALYTICAL RESULTS - HVOCs

Dry Clean 580 3735 East Castro Valley Boulevard Castro Valley, California (Page 1 of 11)

Sample ID Date $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$																			
Sample ID Date			Dichlor	odifluoro-			Tetra	chloro-	Tric	chloro-			1,1,2-Tric	hloro-1,2,2-	Trichl	orofluoro-	V	inyl	Add'l
EPA TO-15 SIM TO-15 SIM			me	thane	Methyle	ne Chloride	etl	nene	et	hene	1,1,1-Trich	loroethane	Trifluoi	roethane	me	ethane	Chl	oride	HVOCs
EPA EPA	Sample ID	Date	(µ <u>;</u>	g/m³)	(μ	ıg/m³)	(þ	g/m³)	(μ	g/m³)	(µg	/m ³)	(μς	g/m³)	(µ	ıg/m³)	(μς		(µg/m³)
Commercial/Industrial			EPA	EPA	EPA	EPA	EPA	EPA	EPA	EPA	EPA	EPA	EPA	EPA	EPA	EPA	EPA		EPA TO-15/
Commercial/Industrial 26 26 2.1 2.1 3.0 3.0 22,000 22,000 0.16 0.16 Calculated Sub-Slab (b) 520 520 42 42 60 60 60 440,000 440,000 3.2 3.2 3.2 SS-1R 03/04/15 <5.7 2.0 <40 <0.13 390 c 19 22 <6.2 <0.20 <26 0.51 <13 1.2 <2.9 <0.037 ND SS-1R Dup 03/04/15 <5.4 2.1 <38 <0.13 210 c 14 24 <5.9 <0.20 <25 0.52 <12 1.1 <2.8 <0.038 ND SS-2 03/04/15 <3.3 2.1 <23 0.19 9.4 21 <3.6 0.42 <3.7 <0.19 <16 0.54 <7.6 1.2 <1.7 0.049 ND SS-3 03/04/15 <3.3 2.0 <23 0.39 <4.6 5.8 <3.6 1.8 <3.7 <0.14 <16 0.51 <7.6 1.1 <1.7 0.032 ND SS-4 03/04/15 <3.5 1.8 <24 0.18 350 c 62 c <3.8 <0.15 <16 0.50 <7.9 1.0 <1.8 0.041 ND			TO-15	TO-15 SIM	TO-15	TO-15 SIM	TO-15	TO-15 SIM	TO-15	TO-15 SIM	TO-15	TO-15 SIM	TO-15	TO-15 SIM	TO-15	TO-15 SIM	TO-15		EPA TO-15 SIM
Calculated Sub-Slab (b) 520 520 42 42 60 60 60 440,000 3.2 3.2 3.2 3.2 SS-1R 03/04/15 <5.7 2.0 <40 <0.13 390 c 19 22 <6.2 <0.20 <26 0.51 <13 1.2 <2.9 <0.037 ND SS-1R Dup 03/04/15 <5.4 2.1 <38 <0.13 210 c 14 24 <5.9 <0.20 <25 0.52 <12 1.1 <2.8 <0.038 ND SS-2 03/04/15 <3.3 2.1 <23 0.19 9.4 21 <3.6 0.42 <3.7 <0.19 <16 0.54 <7.6 1.2 <1.7 0.049 ND SS-3 03/04/15 <3.3 2.0 <23 0.39 <4.6 5.8 <3.6 1.8 <3.7 <0.14 <16 0.51 <7.6 1.1 <1.7 0.032 ND SS-4 03/04/15 <3.5 1.8 <24 0.18 350 c 62 c <3.8 <0.15 <16 0.50 <7.9 1.0 <1.8 0.041 ND	Environmer	ntal Screeni	ing Levels,	Ambient and	d Indoor .	Air, Table E-	3 (Decem	ber 2013)											
SS-1R 03/04/15 <5.7 2.0 <40 <0.13 390 c 19 22 <6.2 <0.20 <26 0.51 <13 1.2 <2.9 <0.037 ND SS-1R Dup 03/04/15 <5.4 2.1 <38 <0.13 210 c 14 24 <5.9 <0.20 <25 0.52 <12 1.1 <2.8 <0.038 ND ND SS-2 03/04/15 <3.3 2.1 <23 0.19 9.4 21 <3.6 0.42 <3.7 <0.19 <16 0.54 <7.6 1.2 <1.7 0.049 ND SS-3 03/04/15 <3.3 2.0 <23 0.39 <4.6 5.8 <3.6 1.8 <3.7 <0.14 <16 0.51 <7.6 1.1 <1.7 0.032 ND SS-4 03/04/15 <3.5 1.8 <24 0.18 350 c 62 c <3.8 <0.15 <16 0.50 <7.9 1.0 <1.8 0.041 ND	Commercial	/Industrial			26	26	2.1	2.1	3.0	3.0	22,000	22,000					0.16	0.16	
SS-1R Dup 03/04/15 <5.4 2.1 <38 <0.13 210 c 14 24 <5.9 <0.20 <25 0.52 <12 1.1 <2.8 <0.038 ND SS-2 03/04/15 <3.3 2.1 <23 0.19 9.4 21 <3.6 0.42 <3.7 <0.19 <16 0.54 <7.6 1.2 <1.7 0.049 ND SS-3 03/04/15 <3.3 2.0 <23 0.39 <4.6 5.8 <3.6 1.8 <3.7 <0.14 <16 0.51 <7.6 1.1 <1.7 0.032 ND SS-4 03/04/15 <3.5 1.8 <24 0.18 350 c 62 c <3.8 <0.15 <16 0.50 <7.9 1.0 <1.8 0.041 ND	Calculated S	Sub-Slab (b)			520	520	42	42	60	60	440,000	440,000					3.2	3.2	
SS-1R Dup 03/04/15 <5.4 2.1 <38 <0.13 210 c 14 24 <5.9 <0.20 <25 0.52 <12 1.1 <2.8 <0.038 ND SS-2 03/04/15 <3.3 2.1 <23 0.19 9.4 21 <3.6 0.42 <3.7 <0.19 <16 0.54 <7.6 1.2 <1.7 0.049 ND SS-3 03/04/15 <3.3 2.0 <23 0.39 <4.6 5.8 <3.6 1.8 <3.7 <0.14 <16 0.51 <7.6 1.1 <1.7 0.032 ND SS-4 03/04/15 <3.5 1.8 <24 0.18 350 c 62 c <3.8 <0.15 <16 0.50 <7.9 1.0 <1.8 0.041 ND																			
SS-2 03/04/15 <3.3 2.1 <23 0.19 9.4 21 <3.6 0.42 <3.7 <0.19 <16 0.54 <7.6 1.2 <1.7 0.049 ND SS-3 03/04/15 <3.3 2.0 <23 0.39 <4.6 5.8 <3.6 1.8 <3.7 <0.14 <16 0.51 <7.6 1.1 <1.7 0.032 ND SS-4 03/04/15 <3.5 1.8 <24 0.18 350 c 62 c <3.8 <0.15 <16 0.50 <7.9 1.0 <1.8 0.041 ND	SS-1R	03/04/15	<5.7			<0.13		С		22						1.2	<2.9	< 0.037	
SS-3 03/04/15 <3.3 2.0 <23 0.39 <4.6 5.8 <3.6 1.8 <3.7 <0.14 <16 0.51 <7.6 1.1 <1.7 0.032 ND SS-4 03/04/15 <3.5 1.8 <24 0.18 350 c 62 c <3.8 <0.15 <16 0.50 <7.9 1.0 <1.8 0.041 ND	SS-1R Dup	03/04/15	<5.4	2.1	<38	<0.13	210	С	14	24	<5.9	<0.20	<25	0.52	<12	1.1	<2.8	<0.038	ND
SS-3 03/04/15 <3.3 2.0 <23 0.39 <4.6 5.8 <3.6 1.8 <3.7 <0.14 <16 0.51 <7.6 1.1 <1.7 0.032 ND SS-4 03/04/15 <3.5 1.8 <24 0.18 350 c 62 c <3.8 <0.15 <16 0.50 <7.9 1.0 <1.8 0.041 ND																			
SS-4 03/04/15 <3.5 1.8 <24 0.18 350 c 62 c <3.8 <0.15 <16 0.50 <7.9 1.0 <1.8 0.041 ND	SS-2	03/04/15	<3.3	2.1	<23	0.19	9.4	21	<3.6	0.42	<3.7	<0.19	<16	0.54	<7.6	1.2	<1.7	0.049	ND
SS-4 03/04/15 <3.5 1.8 <24 0.18 350 c 62 c <3.8 <0.15 <16 0.50 <7.9 1.0 <1.8 0.041 ND																			
	SS-3	03/04/15	<3.3	2.0	<23	0.39	<4.6	5.8	<3.6	1.8	<3.7	<0.14	<16	0.51	<7.6	1.1	<1.7	0.032	ND
	CC 4	00/04/45	-2.5	4.0	-0.4	0.40	050	_	00		.0.0	.0.45	.40	0.50	.7.0	4.0	.4.0	0.044	ND
SSV-1 03/04/15 <3.3 2.1 <23 0.18 110 c 5.4 11 <3.7 <0.19 <15 0.53 <7.5 1.3 <1.7 0.10 ND	55-4	03/04/15	<3.5	1.8	<24	0.18	350	С	62	С	<3.8	<0.15	<16	0.50	<7.9	1.0	<1.8	0.041	ND
55V-1 05/04/15 <5.5 2.1 <25 0.16 110 0 5.4 11 <5.7 <0.19 <15 0.55 <7.5 1.5 <1.7 0.10 ND	CCV 1	02/04/45	-2.2	2.1	-00	0.10	440	•	E 1	11	-0.7	-0.10	.1 E	0.52	.7 F	4.2	-17	0.10	ND
	33 V-1	03/04/15	<3.3	2.1	<23	0.16	110	C	5.4	11	<3.7	<0.19	<10	0.53	<1.5	1.3	<1.7	0.10	ND
SSA-1 03/04/15 <5.0 2.3 <35 <0.17 59 c 8.0 10 <5.5 <0.26 <23 0.55 <11 1.2 <2.6 0.21 ND	SSA-1	03/04/15	~ 5.0	23	-35	∠ 0.17	50	C	8.0	10	-55	∠ 0.26	~23	0.55	-11	1 2	-26	0.21	ND
50A-1 00/04/10 0.00 2.3 0.0 0.11 0.0 10 0.0 10 0.0 0.0 0.0 0.0	00A-1	03/04/13	\3.0	2.0	\ 33	\0.17	33	C	0.0	10	\3.3	₹0.20	\2 3	0.55	\ 11	1.2	\2.0	0.21	ND

Notes:

TPHg Total petroleum hydrocarbons as gasoline.

MTBE Methyl tertiary butyl ether.

TBA Tertiary butyl alcohol.

Add'l VOCs Additional volatile organic compounds. South Coast Air Quality Management District. SCAQMD American Society of Testing and Materials. ASTM

EPA Environmental Protection Agency.

% V Percent by volume.

Inches of mercury. in Hg =

Micrograms per meter cubed. μg/m³

ND Not detected.

Less than the stated laboratory reporting limit. <

Not applicable/Not specified.

Value for total xylenes. а

Protective sub-slab concentration calculated using the DTSC default attenuation factor of 0.05. b

Concentration exceeds calibration limit.

TABLE 1B SUB-SLAB SOIL VAPOR ANALYTICAL RESULTS - HVOCs

Dry Clean 580 3735 East Castro Valley Boulevard Castro Valley, California (Page 2 of 11)

		Bromodichl	loromethane	Carbon Te	etrachloride	Chloro	benzene	Chloro	ethane	Chl	oroform	Chloro	methane	c-1,2-Dic	hloroethene	t-1,2-Dic	hloroethene
Sample ID	Date	(µg	/m³)	(բն	_J /m ³)	(μ <u>ς</u>	g/m³)	(µg	/m ³)	(h	ıg/m³)	(þ	g/m³)	(μ	g/m³)	(þ	g/m³)
		EPA	EPA	EPA	EPA	EPA	EPA	EPA	EPA	EPA	EPA	EPA	EPA	EPA	EPA	EPA	EPA
		TO-15	TO-15 SIM	TO-15	TO-15 SIM	TO-15	TO-15 SIM	TO-15	TO-15 SIM	TO-15	TO-15 SIM	TO-15	TO-15 SIM	TO-15	TO-15 SIM	TO-15	TO-15 SIM
Environme	ntal Screen	ing Levels,	Ambient and	d Indoor Ai	r, Table E-3 (December	2013)										
Commercial		0.33	0.33	0.29	0.29	4,400	4,400	130,000	130,000	2.3	2.3	390	390	31	31	260	260
Calculated S	Sub-Slab (b)	6.6	6.6	5.8	5.8	88,000	88,000	2,600,000	2,600,000	46	46	7,800	7,800	620	620	5,200	5,200
SS-1R	03/04/15	<7.7	<0.24	<7.2	0.39	<5.3	<0.17	<3.0	<0.096	<5.6	<0.18	<2.4	0.33	<4.5	<0.16	<4.5	<0.16
SS-1R Dup	03/04/15	<7.3	<0.25	<6.9	0.42	<5.0	<0.17	<2.9	<0.099	<5.3	<0.18	<2.3	0.38	<4.3	<0.17	<4.3	<0.17
SS-2	03/04/15	<4.5	<0.24	<4.2	0.42	<3.1	<0.16	<1.8	<0.094	<3.3	1.3	<1.4	0.70	<2.7	<0.16	<2.7	<0.16
SS-3	03/04/15	<4.5	<0.17	<4.2	0.42	<3.1	<0.12	<1.8	<0.066	<3.3	<0.12	1.4	1.1	<2.7	<0.11	<2.7	<0.11
SS-4	03/04/15	<4.7	<0.19	<4.4	0.41	<3.2	<0.13	<1.8	<0.075	<3.4	0.20	<1.4	0.48	<2.8	<0.13	<2.8	<0.13
SSV-1	03/04/15	<4.5	<0.23	<4.2	0.38	<3.1	<0.16	<1.8	<0.092	<3.3	0.29	<1.4	0.59	<2.7	<0.16	<2.7	<0.16
SSA-1	03/04/15	<6.8	<0.32	<6.4	0.46	<4.7	<0.22	<2.7	<0.13	<5.0	0.48	<2.1	0.63	<4.0	<0.22	<4.0	<0.22

Notes:

TPHg = Total petroleum hydrocarbons as gasoline.

MTBE = Methyl tertiary butyl ether.

TBA = Tertiary butyl alcohol.

Add'l VOCs = Additional volatile organic compounds.

SCAQMD = South Coast Air Quality Management District.

ASTM = American Society of Testing and Materials.

EPA = Environmental Protection Agency.

% V = Percent by volume. in Hg = Inches of mercury.

 $\mu g/m^3$ = Micrograms per meter cubed.

ND = Not detected.

Less than the stated laboratory reporting limit.

-- = Not applicable/Not specified.

a = Value for total xylenes.

b = Protective sub-slab concentration calculated using the DTSC default attenuation factor of 0.05.

c = Concentration exceeds calibration limit.

TABLE 1C SUB-SLAB SOIL VAPOR ANALYTICAL RESULTS - ATMOSPHERIC GASES AND HYDROCARBONS

Dry Clean 580 3735 East Castro Valley Boulevard Castro Valley, California (Page 3 of 11)

		Methane	Carbon Dioxide	Oxygen + Argon	Helium	Vacuum	TPHg	M	TBE	Вє	enzene	Tol	uene	Ethy	benzene	o-Xy	lenes	pm-X	ylenes	TBA	Napl	hthalene	Ethanol
Sample ID	Date	(%V)	(%V)	(%V)	(%V)	(in Hg)	(µg/m³)	(μς	g/m³)	(h	ug/m³)	(µg	/m ³)	(F	ıg/m³)	(µg	ı/m³)	(µg	/m³)	$(\mu g/m^3)$	(μ	ıg/m³)	(µg/m ³)
		25.1M	SCAQMD 25.1M	25.1M	D-1946 (M)	Ü	GC/MS C6- C12 as Gasoline	EPA TO-15	EPA TO-15 SIM	EPA TO-15	EPA TO-15 SIM	EPA TO-15	EPA TO-15 SIM	EPA TO-15	EPA TO-15 SIM	EPA TO-15	EPA TO-15 SIM	EPA TO-15	EPA TO-15 SIM	EPA TO-15	EPA TO-15	EPA TO-15 SIM	EPA TO-15
Environmen		ning Levels	s, Ambient	and Indoo	r Air, Table E	-3 (Decen														1			
Commercial/							2,500	47	47	0.42	0.42	1,300	1,300	4.9	4.9	440a	440a	440a	440a		0.36	0.36	
Calculated S	Sub-Slab (b)					50,000	940	940	8.4	8.4	26,000	26,000	98	98	8,800a	8,800a	8,800a	8,800a		7.2	7.2	
SS-1R SS-1R Dup	03/04/15 03/04/15		0.12 0.12	22 22	0.0548 0.0252	-4.60 -6.30	<1,100 <1,000	<17 <16	<0.13 <0.14	<3.7 <3.5	2.1 2.1	<4.3 <4.1	1.1 1.2	<5.0 <4.7	0.52 0.54	<5.0 <4.7	0.67 0.62	<20 <19	1.7 1.6	<14 <13	<60 <57	0.33 0.25	<22 <21
SS-2	03/04/15	0.00012	0.036	22	<0.0100	-6.00	<630	<9.7	0.13	3.5	5.0	4.6	2.4	<2.9	0.94	<2.9	1.1	<12	2.6	<8.2	<35	0.22	30
SS-3	03/04/15	0.00017	0.035	22	<0.0100	-4.40	<630	<9.7	<0.090	<2.2	2.2	3.0	1.9	<2.9	0.51	<2.9	0.59	<12	1.5	<8.2	<35	0.16	23
SS-4	03/04/15	0.00016	0.020	22	0.0195	-5.90	1,300	<10	<0.10	<2.2	1.7	4.0	2.2	<3.0	1.1	<3.0	0.96	<12	3.1	<8.5	<37	1.7	45
SSV-1	03/04/15	0.00015	0.0073	22	0.0458	-4.20	<620	<9.7	0.23	<2.1	2.3	<2.5	1.6	<2.9	0.71	<2.9	0.65	<12	1.6	10	<35	0.24	1,000
SSA-1	03/04/15	0.00016	0.0089	22	0.0182	-7.40	<950	<15	0.36	<3.2	4.0	<3.8	1.9	<4.4	0.91	<4.4	1.0	<18	2.7	<12	<53	0.36	<19

Notes: TPHg

Total petroleum hydrocarbons as gasoline.

MTBE = Methyl tertiary butyl ether.

TBA = Tertiary butyl alcohol.

Add'l VOCs = Additional volatile organic compounds.

SCAOMD = South Coast Air Quality Management District.

ASTM = American Society of Testing and Materials.

EPA = Environmental Protection Agency.

 $\% \ V \qquad = \qquad \text{Percent by volume.}$ in Hg $= \qquad \text{Inches of mercury.}$ $\mu g/m^3 \qquad = \qquad \text{Micrograms per meter cubed.}$

ND = Not detected.

< = Less than the stated laboratory reporting limit.

--- = Not applicable/Not specified.

a = Value for total xylenes.

b = Protective sub-slab concentration calculated using the DTSC default attenuation factor of 0.05.

c = Concentration exceeds calibration limit.

TABLE 1D SUB-SLAB SOIL VAPOR ANALYTICAL RESULTS - VOCs

Dry Clean 580 3735 East Castro Valley Boulevard Castro Valley, California (Page 4 of 11)

		Acetone	Bromoi	methane	2-Bu	ıtanone	1,3- Butadiene	1,1- Diflouroethane	4-Ethy	Itoluene		rimethyl- zene		rimethyl- zene	Hexane	Sty	rene	Additional VOCs
Sample ID	Date	(µg/m ³)	(μց	g/m³)	(µ	g/m³)	(µg/m ³)	(µg/m³)	(μց	ı/m³)	(µg		(μς	ı/m³)	(µg/m ³)	(µg	/m³)	(µg/m³)
		EPA TO-15	EPA TO-15	TO-15	EPA TO-15	EPA TO-15 SIM	EPA TO-15 SIM	EPA TO-15 SIM	EPA TO-15	TO-15	EPA TO-15	TO-15	EPA TO-15	TO-15	TO-15	EPA TO-15	EPA TO-15 SIM	EPA TO-15
Environmen	ntal Screening	Levels, Ambie	ent and In		able E-3 ((December	2013)			<u> </u>		S1R/I		SIRA	ZIII.//			Z IIV#
Commercial/		140,000	22	22												3,900	3,900	
Calculated S	Sub-Slab (b)	2,800,000	440	440												78,000	78,000	
SS-1R SS-1R Dup	03/04/15 03/04/15	46 40	<4.4 <4.2	<0.14 <0.15	<10 <9.6	<2.1 <2.2	<0.080 <0.083	<0.98 1.0	<5.6 <5.4	0.50 0.48	<5.6 <5.4	0.31 0.29	<17 <16	1.1 1.1	<0.51 <0.53	<15 <14	<0.15 <0.16	ND ND
SS-2	03/04/15	40	<2.6	0.25	19	2.9	<0.079	<0.96	<3.3	0.51	<3.3	0.31	<10	1.3	0.53	<8.6	0.32	ND
SS-3	03/04/15	52	<2.6	<0.097	7.9	3.7	<0.055	<0.68	<3.3	0.28	<3.3	0.17	<10	0.62	0.55	<8.6	0.31	ND
SS-4	03/04/15	71	<2.7	<0.11	20	4.8	0.097	<0.76	<3.4	0.81	<3.4	0.56	<10	1.7	0.82	<8.9	0.20	ND
SSV-1	03/04/15	77	<2.6	<0.14	8.2	7.3	<0.077	7.8	<3.3	0.46	<3.3	0.26	<9.9	0.92	0.57	<8.6	0.67	ND
SSA-1	03/04/15	56	<3.9	<0.19	<9.0	6.3	<0.11	<1.3	<5.0	0.71	<5.0	0.45	<15	1.4	0.84	<13	0.20	ND

Notes:

TPHg Total petroleum hydrocarbons as gasoline.

MTBE Methyl tertiary butyl ether. Tertiary butyl alcohol. TBA =

Add'I VOCs Additional volatile organic compounds. South Coast Air Quality Management District. SCAQMD

ASTM American Society of Testing and Materials.

Environmental Protection Agency. EPA

% V Percent by volume. in Hg Inches of mercury.

µg/m³ Micrograms per meter cubed. =

ND Not detected.

Less than the stated laboratory reporting limit. <

= Not applicable/Not specified.

Value for total xylenes. а

Protective sub-slab concentration calculated using the DTSC default attenuation factor of 0.05. b

Concentration exceeds calibration limit.

TABLE 2A INDOOR AIR ANALYTICAL RESULTS - HVOCs

Dry Clean 580
3735 East Castro Valley Boulevard
Castro Valley, California
(Page 5 of 11)

Sample D Date Part Delicated Househouse Telephone Childred Ch		T			1												1		A 1 III
Sample D Date						011 11									-			,	Add'l
EPA EPA				_		-													
TO-15 TO-15 SIM TO-15 SIM TO-15 TO-15 SIM TO-15 SIM TO-15 TO-15 SIM TO-15 TO-15 SIM TO-15 TO-15 SIM TO-15 TO-15 SIM TO-15 SIM TO-15 TO-15 SIM TO-15 SIM TO-15 TO-15 SIM TO-15 SI	Sample ID	Date	(µg/m³)	()	, ,		· ·	(μ	y ,	"	<u>, , , , , , , , , , , , , , , , , , , </u>	,,,,	· ·	,	,	,,	,	" "
Environmental Screening Levels, Ambient and Indoor Air, Table E-3 (December 2013)																			
Commercial/Industrial										TO-15 SIM	TO-15	TO-15 SIM	TO-15	TO-15 SIM	TO-15	TO-15 SIM	TO-15	TO-15 SIM	EPA TO-15 SIM
Fluman Health Risk Assessment Note Number 2 (DTSC, 2014)			_	vels, Ambie				3 (Decembe											
Industrial 12 12 2.08 2.08 4.380 4.380 0.157 0.157					_			2.1	3.0	3.0	22,000	22,000					0.16	0.16	
Interface Total Response Action Levels EPA, 2014		alth Risk <i>i</i>		nent Note Nu															
Commercial Inclustrial Accelerated Response Action Level							2.08	2.08			4,380	4,380					0.157	0.157	
Shour Work Day																			
To-hour Work Day				ated Respons	se Actio	n Level					_		•		_				
Shour Work Day		•																	
Shour Work Day									7	7									
To-hour Work Day			Urgent I	Response Ac	tion Lev	<u>rel</u>			,		_				_				
Sector Control Contr																			
Livermore (BAAQMD) No.									21	21									
Minimum																			
Average		BAAQMD)		1	1	1				•	ı			•	ı		•	1	
Maximum	-				_		_											-	
Minimum																			
Minimum		1 (0 4 4 0)			4.14	4.14	2.11	2.11	0.11	0.11									
Average		nd (BAAQI		T							T		T		T		T	1	
Naximum	-				_														
Dry Clean 580 Unit IA1 03/05/15 2.9 1.9 <17 0.55 <3.4 0.58 3.0 3.1 <2.7 0.14 <11 0.51 <5.6 1.1 <1.3 <0.026 ND IA1 Dup 03/05/15 2.9 2.0 <17 0.43 <3.4 0.65 3.5 3.5 <2.7 0.16 <11 0.51 <5.6 1.1 <1.3 <0.026 ND IA2 03/05/15 2.9 1.9 <17 0.51 <3.4 0.43 <2.7 1.2 <2.7 <0.14 <11 0.51 <5.6 1.1 <1.3 <0.026 ND Verizon 3935 East Castro Valley Boulevard IAV1 03/05/15 2.9 2.0 <17 0.30 <3.4 1.5 <2.7 0.25 <2.7 <0.14 <11 0.40 <5.6 1.1 <1.3 <0.026 ND AT&T 3949 East Castro Valley Boulevard IAA1 03/05/15 2.9 2.0 <17 0.68 <3.4 0.63 <2.7 0.43 <2.7 0.41 <11 0.50 <5.6 1.1 <1.3 <0.026 ND Outdoor Air																			
ND NAT	Maximum				7.71	7.71	0.82	0.82	1.45	1.45									
ND NAT	Dm. Clas	E00	11																
ND ND ND ND ND ND ND ND	•																		
Name										-									
Verizon 3935 East Castro Valley Boulevard IAV1 03/05/15 2.9 2.0 <17 0.30 <3.4 1.5 <2.7 0.25 <2.7 <0.14 <11 0.40 <5.6 1.1 <1.3 <0.026 ND AT&T 3949 East Castro Valley Boulevard IAA1 03/05/15 2.9 2.0 <17 0.68 <3.4 0.63 <2.7 0.43 <2.7 0.43 <2.7 <0.14 <11 0.52 <5.6 1.1 <1.3 <0.026 ND AT&T 3949 East Castro Valley Boulevard IAA1 03/05/15 2.9 2.0 <17 0.68 <3.4 0.63 <2.7 0.43 <2.7 <0.14 <11 0.50 <5.6 1.1 <1.3 <0.026 ND Outdoor Air	IA1 Dup	03/05/15	2.9	2.0	<17	0.43	<3.4	0.65	3.5	3.5	<2.7	0.16	<11	0.52	<5.6	1.1	<1.3	<0.026	ND
Verizon 3935 East Castro Valley Boulevard IAV1 03/05/15 2.9 2.0 <17 0.30 <3.4 1.5 <2.7 0.25 <2.7 <0.14 <11 0.40 <5.6 1.1 <1.3 <0.026 ND AT&T 3949 East Castro Valley Boulevard IAA1 03/05/15 2.9 2.0 <17 0.68 <3.4 0.63 <2.7 0.43 <2.7 0.43 <2.7 <0.14 <11 0.52 <5.6 1.1 <1.3 <0.026 ND AT&T 3949 East Castro Valley Boulevard IAA1 03/05/15 2.9 2.0 <17 0.68 <3.4 0.63 <2.7 0.43 <2.7 <0.14 <11 0.50 <5.6 1.1 <1.3 <0.026 ND Outdoor Air																			
3935 East Castro Valley Boulevard IAV1 03/05/15 2.9 2.0 <17 0.30 <3.4 1.5 <2.7 0.25 <2.7 <0.14 <11 0.40 <5.6 1.1 <1.3 <0.026 ND IAV2 03/05/15 2.8 1.9 <17 0.64 <3.4 1.4 <2.7 0.31 <2.7 <0.14 <11 0.52 <5.6 1.1 <1.3 <0.026 ND AT&T 3949 East Castro Valley Boulevard IAA1 03/05/15 2.9 2.0 <17 0.68 <3.4 0.63 <2.7 0.43 <2.7 0.43 <2.7 <0.14 <11 0.53 <5.6 1.1 <1.3 <0.026 ND Outdoor Air	IA2	03/05/15	2.9	1.9	<17	0.51	<3.4	0.43	<2.7	1.2	<2.7	<0.14	<11	0.51	<5.6	1.0	<1.3	<0.026	ND
3935 East Castro Valley Boulevard IAV1 03/05/15 2.9 2.0 <17 0.30 <3.4 1.5 <2.7 0.25 <2.7 <0.14 <11 0.40 <5.6 1.1 <1.3 <0.026 ND IAV2 03/05/15 2.8 1.9 <17 0.64 <3.4 1.4 <2.7 0.31 <2.7 <0.14 <11 0.52 <5.6 1.1 <1.3 <0.026 ND AT&T 3949 East Castro Valley Boulevard IAA1 03/05/15 2.9 2.0 <17 0.68 <3.4 0.63 <2.7 0.43 <2.7 0.43 <2.7 <0.14 <11 0.53 <5.6 1.1 <1.3 <0.026 ND Outdoor Air																			
IAV1 03/05/15 2.9 2.0 <17 0.30 <3.4 1.5 <2.7 0.25 <2.7 <0.14 <11 0.40 <5.6 1.1 <1.3 <0.026 ND IAV2 03/05/15 2.8 1.9 <17 0.64 <3.4 1.4 <2.7 0.31 <2.7 <0.14 <11 0.52 <5.6 1.1 <1.3 <0.026 ND AT&T 3949 East Castro Valley Boulevard IAA1 03/05/15 2.9 2.0 <17 0.68 <3.4 0.63 <2.7 0.43 <2.7 <0.14 <11 0.53 <5.6 1.1 <1.3 <0.026 ND Outdoor Air	Verizon																		
IAV2 03/05/15 2.8 1.9 <17 0.64 <3.4 1.4 <2.7 0.31 <2.7 <0.14 <11 0.52 <5.6 1.1 <1.3 <0.026 ND AT&T 3949 East Castro Valley Boulevard IAA1 03/05/15 2.9 2.0 <17 0.68 <3.4 0.63 <2.7 0.43 <2.7 <0.14 <11 0.53 <5.6 1.1 <1.3 <0.026 ND Outdoor Air	3935 East 0	Castro Va	lley Bou	levard															
AT&T 3949 East Castro Valley Boulevard IAA1 03/05/15 2.9 2.0 <17 0.68 <3.4 0.63 <2.7 0.43 <2.7 <0.14 <11 0.53 <5.6 1.1 <1.3 <0.026 ND Outdoor Air	IAV1	03/05/15	2.9	2.0	<17	0.30	<3.4	1.5	<2.7	0.25	<2.7	< 0.14	<11	0.40	<5.6	1.1	<1.3	< 0.026	ND
AT&T 3949 East Castro Valley Boulevard IAA1 03/05/15 2.9 2.0 <17 0.68 <3.4 0.63 <2.7 0.43 <2.7 <0.14 <11 0.53 <5.6 1.1 <1.3 <0.026 ND Outdoor Air																			
3949 East Castro Valley Boulevard IAA1 03/05/15 2.9 2.0 <17 0.68 <3.4 0.63 <2.7 0.43 <2.7 <0.14 <11 0.53 <5.6 1.1 <1.3 <0.026 ND Outdoor Air	IAV2	03/05/15	2.8	1.9	<17	0.64	<3.4	1.4	<2.7	0.31	<2.7	<0.14	<11	0.52	<5.6	1.1	<1.3	<0.026	ND
3949 East Castro Valley Boulevard IAA1 03/05/15 2.9 2.0 <17 0.68 <3.4 0.63 <2.7 0.43 <2.7 <0.14 <11 0.53 <5.6 1.1 <1.3 <0.026 ND Outdoor Air	АТ&Т																		
IAA1 03/05/15 2.9 2.0 <17 0.68 <3.4 0.63 <2.7 0.43 <2.7 <0.14 <11 0.53 <5.6 1.1 <1.3 <0.026 ND Outdoor Air		Castro Va	llev Rou	levard															
Outdoor Air			-		_17	0.68	-21	0.63	-27	0.43	-27	∠0 1 <i>1</i>	_11	0.53	-5 G	1 1	-12	~n n26	ND
	IQQ I	03/03/13	2.9	2.0	<17	0.00	₹3.4	0.03	< 2.1	0.43	<2.1	₹0.14	< 1 I	0.55	₹3.0	1.1	<1.3	<0.0∠0	ND
	Outdoo	- Λ:-																	
OA1 03/05/15 2.9 2.0 <17 0.45 <3.4 <0.17 <2.7 <0.13 <2.7 <0.14 <11 0.53 <5.6 1.1 <1.3 <0.026 ND								a :=											
	OA1	03/05/15	2.9	2.0	<17	0.45	<3.4	<0.17	<2.7	<0.13	<2.7	<0.14	<11	0.53	<5.6	1.1	<1.3	<0.026	ND

TABLE 2A INDOOR AIR ANALYTICAL RESULTS - HVOCs

Dry Clean 580 3735 East Castro Valley Boulevard Castro Valley, California (Page 6 of 11)

Notes:

TPHg = Total petroleum hydrocarbons as gasoline.

MTBE = Methyl tertiary butyl ether.
TBA = Tertiary butyl alcohol.

Add'I VOCs = Additional volatile organic compounds.

SCAQMD = South Coast Air Quality Management District.

ASTM = American Society of Testing and Materials.

EPA = Environmental Protection Agency.

% V = Percent by volume. in Hg = Inches of mercury.

 μ g/m³ = Micrograms per meter cubed.

ND = Not detected.

Less than the stated laboratory reporting limit.

--- = Not applicable/Not specified.

TABLE 2B INDOOR AIR ANALYTICAL RESULTS - HVOCs

Dry Clean 580
3735 East Castro Valley Boulevard
Castro Valley, California
(Page 7 of 11)

Sample ID	Date		nloromethane g/m³)		Tetrachloride g/m³)		obenzene g/m³)		oethane g/m³)		oroform Ig/m³)		methane g/m ³)	Dichlo	-1,2- proethene g/m³)	Dichlo	-1,2- proethene g/m³)
		EPA TO-15	EPA TO-15 SIM	EPA TO-15	EPA TO-15 SIM		EPA TO-15 SIM	EPA TO-15	TO-15	EPA TO-15	TO-15	EPA TO-15	TO-15	EPA TO-15	TO-15	EPA TO-15	TO-15
Environmen	ntal Screening	g Levels, Ai	mbient and Ir	idoor Air,	Table E-3 (D	ecembe	r 2013)										
Commercial/		0.33	0.33	0.29	0.29	4,400	4,400	130,000	130,000	2.3	2.3	390	390	31	31	260	260
Human Hea	lth Risk Asse	ssment No	te Number 3	(DTSC, 20	14)												
Industrial		370	370	175	175									31	31		
Background	d Outdoor Air																
Livermore (B	BAAQMD)																
Minimum				0.37	0.37												
Average				0.67	0.67												
Maximum				1.22	1.22												
East Oakland	d (BAAQMD)																
Minimum				0.35	0.35												
Average				0.67	0.67												
Maximum				1.38	1.38												
Dry Clea IA1 IA1 Dup	03/05/15 03/05/15	<3.4 <3.4	<0.17 <0.17	<3.1 <3.1	0.43 0.44	<2.3 <2.3	<0.12 <0.12	<1.3 <1.3	<0.066 <0.066	<2.4 <2.4	0.27 0.28	1.6 1.6	1.2 1.2	<2.0 <2.0	<0.099 <0.099	<2.0 <2.0	<0.099 <0.099
IA2	03/05/15	<3.4	<0.17	<3.1	0.41	<2.3	<0.12	<1.3	<0.066	<2.4	0.21	1.6	1.2	<2.0	<0.099	<2.0	<0.099
Verizon																	
IAV1	astro Valley I 03/05/15		<0.17	<3.1	0.46	.0.0	.0.40	4.0	.0.000	.0.4	0.07	1.6	1.1	.0.0	0.000	.0.0	.0.000
IAVT	03/05/15	<3.4	<0.17	<3.1	0.46	<2.3	<0.12	<1.3	<0.066	<2.4	0.27	1.6	1.1	<2.0	<0.099	<2.0	<0.099
IAV2	03/05/15	<3.4	<0.17	<3.1	0.43	<2.3	<0.12	<1.3	<0.066	<2.4	0.31	1.7	1.3	<2.0	<0.099	<2.0	<0.099
AT&T 3949 East C IAA1	Castro Valley I 03/05/15	Boulevard <3.4	<0.17	<3.1	0.46	<2.3	<0.12	<1.3	<0.066	<2.4	0.27	1.9	1.3	<2.0	<0.099	<2.0	<0.099
Outdoor OA1	Air 03/05/15	<3.4	<0.17	<3.1	0.46	<2.3	<0.12	<1.3	<0.066	<2.4	<0.12	1.6	<0.12	<2.0	<0.099	<2.0	<0.099

TABLE 2B INDOOR AIR ANALYTICAL RESULTS - HVOCs

Dry Clean 580
3735 East Castro Valley Boulevard
Castro Valley, California
(Page 8 of 11)

Notes:		
TPHg	=	Total petroleum hydrocarbons as gasoline.
MTBE	=	Methyl tertiary butyl ether.
TBA	=	Tertiary butyl alcohol.
Add'I VOCs	=	Additional volatile organic compounds.
SCAQMD	=	South Coast Air Quality Management District.
ASTM	=	American Society of Testing and Materials.
EPA	=	Environmental Protection Agency.
% V	=	Percent by volume.
in Hg	=	Inches of mercury.
μg/m³	=	Micrograms per meter cubed.
ND	=	Not detected.
<	=	Less than the stated laboratory reporting limit.
	=	Not applicable/Not specified.
а	=	Value for total xylenes.

TABLE 2C INDOOR AIR ANALYTICAL RESULTS - ATMOSPHERIC GASES AND HYDROCARBONS

Dry Clean 580 3735 East Castro Valley Boulevard Castro Valley, California (Page 9 of 11)

			Carbon	Oxygen +																	
		Methane	Dioxide	Argon	TPHg	N	//TBE	В	enzene	T	oluene	Ethy	lbenzene	o->	Kylenes	pm-	Xylenes	TBA	Nar	ohthalene	Ethanol
Sample ID	Date	(%V)	(%V)	(%V)	(µg/m ³)	(F	ug/m³)	(ug/m³)	()	ug/m³)	()	ug/m³)	()	ug/m³)	(h	ug/m³)	$(\mu g/m^3)$	(µg/m³)	(µg/m ³)
Gap.6 .2	Date	SCAQMD	SCAQMD	SCAQMD	GC/MS C6-	EPA	EPA	EPA	EPA	EPA	EPA	EPA	EPA	EPA	EPA	EPA	EPA	EPA	EPA	EPA	EPA
		25.1M	25.1M	25.1M	C12 as															TO-15 SIM	TO-15
Environment	al Screeni	ing Levels	Amhient a	nd Indoor A	Gasoline Air. Table E-3 (I																
Commercial/Ir					2,500	47	47	0.42	0.42	1,300	1,300	4.9	4.9	440a	440a	440a	440a		0.36	0.36	
Background		Air			2,000			01.12	02	1,000	.,000			1100	1100		1.100		0.00	0.00	
Livermore (BA	AAQMD)																				
Minimum	,							0.11	0.11												
Average								0.71	0.71												
Maximum								2.63	2.63												
East Oakland	(BAAQME	D)																			
Minimum								0	0												
Average								0.95	0.95												
Maximum								4.03	4.03												
Dry Clear	า 580 U	nit																			
IA1	03/05/15	0.00019	0.043	22	9,100	<7.2	0.26	1.8	1.3	5.1	3.6	<2.2	0.38	<2.2	0.50	<8.7	1.3	<6.1	<26	0.30	220
IA1 Dup	03/05/15	0.00018	0.043	22	12,000	<7.2	< 0.090	<1.6	1.2	3.8	2.9	<2.2	0.32	<2.2	0.35	<8.7	0.92	<6.1	<26	0.25	240
IA2	03/05/15	0.00018	0.041	22	2,100	<7.2	< 0.090	<1.6	1.1	3.3	2.7	<2.2	0.31	<2.2	0.36	<8.7	0.90	<6.1	<26	0.22	230
Verizon																					
3935 East Ca	stro Valle	y Boulevard	t																		
IAV1	03/05/15	0.00019	0.049	22	<470	<7.2	< 0.090	<1.6	1.5	5.0	4.3	<2.2	0.34	<2.2	0.34	<8.7	0.86	<6.1	<26	0.12	1,100
IAV2	03/05/15	0.00019	0.050	22	610	<7.2	< 0.090	2.0	1.8	3.7	3.2	2.2	0.30	<2.2	0.35	<8.7	0.82	<6.1	<26	0.12	1,500
AT&T																					
3949 East Ca	stro Valle	y Boulevard	t																		
IAA1	03/05/15	0.00019	0.070	22	680	<7.2	< 0.090	2.0	1.9	5.2	4.3	<2.2	0.71	<2.2	0.53	<8.7	1.4	<6.1	<26	0.30	4,600
Outdoor	Air																				
OA1	03/05/15	0.00018	0.038	22	<470	<7.2	< 0.090	1.9	1.7	<1.9	0.86	<2.2	0.16	<2.2	0.22	<8.7	0.56	<6.1	<26	0.10	19
Maria	_					_		_		_		_		_		_			_	_	_

Notes: TPHg

= Total petroleum hydrocarbons as gasoline.

MTBE = Methyl tertiary butyl ether.

TBA = Tertiary butyl alcohol.

Add'l VOCs = Additional volatile organic compounds.

SCAQMD = South Coast Air Quality Management District.

ASTM = American Society of Testing and Materials.

EPA = Environmental Protection Agency.

% V = Percent by volume. in Hg = Inches of mercury.

 μ g/m³ = Micrograms per meter cubed.

ND = Not detected.

< = Less than the stated laboratory reporting limit.

-- = Not applicable/Not specified.

a = Value for total xylenes.

TABLE 2D INDOOR AIR ANALYTICAL RESULTS - VOCs

Dry Clean 580 3735 East Castro Valley Boulevard Castro Valley, California (Page 10 of 11)

							1,3-	1,1-			1,3,5	-Trimethyl-	1,2,4-	-Trimethyl-				
		Acetone	Brom	omethane	2-B	utanone	Butadiene	Diflouroethane	4-Eth	yltoluene	b	enzene	be	enzene	Hexane	St	yrene	Additional VOCs
Sample ID	Date	(µg/m ³)	()	µg/m³)	()	ug/m³)	(µg/m ³)	(µg/m ³)	(h	ıg/m³)	(µg/m³)	()	µg/m³)	(µg/m ³)	(µ	g/m³)	(µg/m³)
		EPA	EPA	EPA	EPA	EPA	EPA	EPA	EPA	EFA	EPA	EPA	EPA	EPA	EPA	EPA	LFA	EPA TO-15/
		TO-15	TO-15	TO-15 SIM	TO-15	TO-15 SIM	TO-15 SIM	TO-15 SIM	TO-15	TO-15	TO-15	TO-15 SIM	TO-15	TO-15 SIM	TO-15 SIM	TO-15	TO-15	EPA TO-15 SIM
Environme	ntal Screeni	ing Levels.								CIM							CIM	
Commercia		140,000	22	22												3,900	3,900	
Backgroun	d Outdoor A	Air																
Livermore (I	BAAQMD)																	
Minimum	·																	
Average																		
Maximum																		
East Oaklar	nd (BAAQME	0)																
Minimum																		
Average																		
Maximum																		
-																		
Dry Clea	an 580 U	nit																
IA1	03/05/15	25	<1.9	< 0.097	<4.4	<1.5	0.17	<0.68	<2.5	< 0.25	<2.5	0.12	<7.4	0.55	0.63	<6.4	0.16	ND
IA1 Dup	03/05/15	25	<1.9	< 0.097	<4.4	<1.5	0.14	<0.68	<2.5	< 0.25	<2.5	< 0.12	<7.4	0.46	< 0.35	<6.4	0.16	ND
IA2	03/05/15	25	<1.9	< 0.097	<4.4	<1.5	0.14	<0.68	<2.5	< 0.25	<2.5	< 0.12	<7.4	0.42	0.39	<6.4	0.15	ND
Verizon																		
	Castro Valle	v Boulevard																
IAV1	03/05/15	29	. <1.9	< 0.097	<4.4	<1.5	0.18	4.5	<2.5	< 0.25	<2.5	<0.12	<7.4	0.39	< 0.35	<6.4	0.59	ND
17 (V 1	00/00/10	20	\1.0	40.007	\ 7.7	<1.0	0.10	4.0	\2. 5	\0.25	\2. 0	VO.12	\1. 1	0.55	\0.55	<υ.∓	0.55	ND
IAV2	03/05/15	29	<1.9	< 0.097	<4.4	<1.5	0.24	3.5	<2.5	< 0.25	<2.5	<0.12	<7.4	0.43	< 0.35	<6.4	0.49	ND
""	00/00/10	20	\1.0	40.007	\ 7.7	<1.0	0.24	0.0	\Z.0	VO.20	\2.0	VO.12	\1. 4	0.40	\0.00	₹0.∓	0.40	ND
AT&T																		
	Seetre Velle	v Davilavana																
IAA1	Castro Valle			0.007	4.4	4 7	4.4	0.00	0.5	0.05	0.5	0.40	7.4	0.54	0.40	C 4	0.07	ND
IAA I	03/05/15	43	<1.9	<0.097	<4.4	1.7	1.1	<0.68	<2.5	<0.25	<2.5	0.12	<7.4	0.54	0.48	<6.4	0.67	ND
Outdoo	. A:																	
Outdoo													_					
OA1	03/05/15	14	<1.9	8.0	<4.4	<1.5	0.059	<0.68	<2.5	< 0.25	<2.5	<0.12	<7.4	0.32	< 0.35	<6.4	<0.11	ND

TABLE 2D INDOOR AIR ANALYTICAL RESULTS - VOCs

Dry Clean 580 3735 East Castro Valley Boulevard Castro Valley, California (Page 11 of 11)

Notes:

MTBE = Methyl tertiary butyl ether.
TBA = Tertiary butyl alcohol.

Add'l VOCs = Additional volatile organic compounds.

SCAQMD = South Coast Air Quality Management District.

ASTM = American Society of Testing and Materials.

EPA = Environmental Protection Agency.

% V = Percent by volume. in Hg = Inches of mercury.

 $\mu g/m^3$ = Micrograms per meter cubed.

ND = Not detected.

< = Less than the stated laboratory reporting limit.

--- = Not applicable/Not specified. a = Value for total xylenes.