ALAMEDA COUNTY HEALTH CARE SERVICES

ALEX BRISCOE, Director

ENVIRONMENTAL HEALTH DEPARTMENT ENVIRONMENTAL PROTECTION 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577 (510) 567-6700 FAX (510) 337-9335

December 15, 2014

East Bay Bridge Retail LLC c/o Darlene Houge 1626 East Jefferson St. Rockville, MD 94607-20852

Catellus Development Corporation n/k/a PAC Operating Limited Partnership 4545 Airport Way Denver, CO 80239 Attn: General Counsel

Emeryville Retail Properties, LP 18201 Von Karman Ste 1170 Irvine, CA 92612

Prologis Logistics Services, Inc. 4545 Airport Way Denver, CO 80239 Attn: General Counsel

Clipper Exxpress Company 3871 San Pablo Avenue Emeryville, CA 94608

Subject: Case Closure for Fuel Leak Case No. RO0003093 (Global ID T10000004342) - Yerba Buena - East Bay Bridge Center, 3838 Hollis Street, Emeryville and Oakland, CA 94608

Dear Responsible Parties:

This letter transmits the enclosed underground storage tank (UST) case closure letter in accordance with Chapter 6.75 (Article 4, Section 25296.10[g]). The State Water Resources Control Board adopted this letter on February 20, 1997. As of March 1, 1997, the Alameda County Environmental Health (ACEH) is required to use this case closure letter for all UST leak sites. We are also transmitting to you the enclosed case closure summary. These documents confirm the completion of the investigation and cleanup of the reported release at the subject site. The subject fuel leak case is closed. This case closure letter and the case closure summary can also be viewed on the State Water Resources Control Board's Geotracker website (http://geotracker.waterboards.ca.gov) and the Alameda County Environmental Health website (http://www.acgov.org/aceh/index.htm).

Due to residual contamination, the site was closed with Site Management Requirements that limit future land use to the current commercial land use. Site Management Requirements are further described in section IV of the attached Case Closure Summary.

If you have any questions, please call Keith Nowell at (510) 567 - 7674. Thank you.

Sincerely,

Dilan Roe, P.E. LOP and SCP Program Manager

1.

2.

Enclosures:

Remedial Action Completion Certification Case Closure Summary Cc w/enc.: Leroy Griffin, Oakland Fire Department 250 Frank H. Ogawa Plaza, Ste. 3341, Oakland, CA 94612-2032 (sent via electronic mail to <u>lgriffin@oaklandnet.com</u>)

City of Emeryville Planning Division, 1333 Park Avenue, Emeryville, CA 94608

Case Worker (sent via electronic mail to <u>keith.nowell@acgov.org</u>) eFile, GeoTracker

ALAMEDA COUNTY HEALTH CARE SERVICES AGENCY

ALEX BRISCOE, Agency Director

DEPARTMENT OF ENVIRONMENTAL HEALTH OFFICE OF THE DIRECTOR 1131 HARBOR BAY PARKWAY ALAMEDA, CA 94502 (510) 567-6777 FAX (510) 337-9135

REMEDIAL ACTION COMPLETION CERTIFICATION

December 15, 2014

East Bay Bridge Retail LLC c/o Darlene Houge 1626 East Jefferson St. Rockville, MD 94607-20852

Prologis Logistics Services, Inc. 4545 Airport Way Denver, CO 80239 Attn: General Counsel Catellus Development Corporation n/k/a PAC Operating Limited Partnership 4545 Airport Way Denver, CO 80239 Attn: General Counsel

Emeryville Retail Properties, LP 18201 Von Karman Ste 1170 Irvine, CA 92612

Clipper Exxpress Company 3871 San Pablo Avenue Emeryville, CA 94608

Subject: Case Closure for Fuel Leak Case No. RO0003093 (Global ID T10000004342) - Yerba Buena - East Bay Bridge Center, 3838 Hollis Street, Emeryville and Oakland, CA 94608

Dear Responsible Parties:

This letter confirms the completion of a site investigation and remedial action for the underground storage tanks formerly located at the above-described location. Thank you for your cooperation throughout this investigation. Your willingness and promptness in responding to our inquiries concerning the former underground storage tank(s) are greatly appreciated.

Based on information in the above-referenced file and with the provision that the information provided to this agency was accurate and representative of site conditions, this agency finds that the site investigation and corrective action carried out at your underground storage tank(s) site is in compliance with the requirements of subdivisions (a) and (b) of Section 25296.10 of the Health and Safety Code and with corrective action regulations adopted pursuant to Section 25299.3 of the Health and Safety Code and that no further action related to the petroleum release(s) at the site is required.

Please be aware that claims for reimbursement of corrective action costs submitted to the Underground Storage Tank Cleanup Fund more than 365 days after the date of this letter or issuance or activation of the Fund's Letter of Commitment, whichever occurs later, will not be reimbursed unless one of the following exceptions applies:

- · Claims are submitted pursuant to Section 25299.57, subdivision (k) (reopened UST case); or
- Submission within the timeframe was beyond the claimant's reasonable control, ongoing work is required for closure that will result in the submission of claims beyond that time period, or that under the circumstances of the case, it would be unreasonable or inequitable to impose the 365-day time period.

This notice is issued pursuant to subdivision (g) of Section 25296.10 of the Health and Safety Code. Please contact our office if you have any questions regarding this matter.

Sincerely, Ariu Levi Director

UST Case Closure Summary Form

Agency Information	Date: 12/15/2014
Agency Name: Alameda County Environmental Health	Address: 1131 Harbor Bay Parkway
City/State/Zip: Alameda, CA 94502-6577	Phone: (510) 567-6764
Staff Person: Keith Nowell	Title: Hazardous Materials Specialist

Case Information

Facility Name: Yerba Buena/ East Bay Bridge Center							
3838 Hollis St, Emeryville and 3838 Hollis St., Oakland, and 3839 Emery St.,Facility Address:Emeryville, CA 94608. Formerly 3871 San Pablo Ave., Emeryville, CA and 1268 Yerba Buena Ave., Emeryville, CA							
RB LUSTIS Case No: :01S0226	Local Case No.: LOP Case No.: RO0003093						
URF Filing Date:	GeoTracker Global ID: T10000004342						
APN: 49-619-2, 49-619-3, & 49-619-5	Current Land Use: Commercial	Current Land Use: Commercial					
Responsible Party(s):	Address:	Phone:					
Clipper Exxpress	3871 San Pablo Avenue Emeryville, CA 94608	Unknown					
Catellus Land Development Corp nka. PAC Operating Limited Partnership	4545 Airport Way Denver, CO 80239-5716	310 / 416 - 8681					
Prologis Logistics Services Inc.	4545 Airport Way Denver, CO 80239-5716	303 / 567 - 5000					
Federal Realty Investment Trust dba East Bay Bridge Retail LLC	1626 East Jefferson St Rockville, MD 94607-20852	301 / 998 - 8345					
Emeryville Retail Properties, LP	18201 Von Karman, Suite 1170 Irvine, CA 92612	949 / 545 - 0500					

Tank Information

Tank No.	Size (gal)	Contents	ntents Closed in-Place/ Removed/Active	
1	10,000	Diesel	Removed	November 1990
2	2,000	Fuel oil	Removed	10/01/1993
3	1,500	Fuel oil	Removed	10/01/1993
	Piping		Removed	1990 & 1993

Conceptual Site Model (Attachment 1, 4 pages)

Closure Criteria Met (Attachment 2, 2 pages)

LTCP Groundwater Specific Criteria (Attachment 3, 1 page)

LTCP Vapor Specific Criteria (Attachment 4, 1 page)

LTCP Direct Contact and Outdoor Air Exposure Criteria (Attachment 5, 1 page)

Site map(s) (Attachment 6, 28 pages)

Analytical Data (Attachment 7, 79 pages)

Additional Information:

Site Management Requirements: This fuel leak case has been evaluated for closure consistent with the State Water Resource Control Board Low-Threat Underground Storage Tank Closure Policy (LTCP). Concentrations of PAHs exceed the Direct Contact Residential criteria but are below the Commercial /Industrial criteria. Under the current land use, the site is paved or covered by concrete tilt-up structures resulting in a low potential for direct contact exposure under the current land use. Therefore, case closure is granted for the current commercial land use.

Due to the site receiving heavy petroleum hydrocarbon-impacted soil (TPH) from the surrounding properties comprising the Yerba Buena/East Baybridge redevelopment project, a deed restriction and Site Management Plan have been executed for the site.

If a change in land use to any residential, or conservative land use, or if any redevelopment occurs, Alameda County Environmental health (ACEH) must be notified as required by Government Code Section 65850.2.2. ACEH will re-evaluate the case upon receipt of approved development/construction plans.

Excavation or construction activities in areas of residual contamination require planning and implementation of appropriate health and safety procedures by the responsible party prior to and during excavation and construction activities.

This site is to be entered into the City of Oakland Permit Tracking System due to the residual contamination on site.

UST Case Closure Summary Form

RWQCB Notification	Notification Date: 12/05/2014		
RWQCB Staff Name: Cherie McCaulou	Title: Engineering Geologist		

Local Agency Representative

Prepared by: Keith Nowell	Title: Hazardous Materials Specialist
Signature: for Month	Date: 12/16/2014
Approved by: Dilan Roe	Title: LOP and SCP Program Manager
Signature: Dem Due	Date: 12/16/2014

This Case Closure Summary along with the Case Closure Transmittal letter and the Remedial Action Completion Certification provides documentation of the case closure. This closure approval is based upon the available information and with the provision that the information provided to this agency was accurate and representative of site conditions. The Conceptual Site Model may not contain all available data. Additional information on the case can be viewed in the online case file. The entire case file can be viewed over the Internet on the Alameda County Environmental Health (ACEH) website (http://www.acgov.org/aceh/lop/ust.htm) or the State of California Water Resources Control Board GeoTracker website (http://geotracker.waterboards.ca.gov). Not all historic documents for the fuel leak case may be available on GeoTracker. A more complete historic case file for this site is located on the ACEH website either under RO0003093 or the master case file for the entire Yerba Buena/East Baybridge redevelopment project RO0000049.

ATTACHMENT 1

0	CSM Report Go GEOTRACKER HOME MANAGE PROJECTS REPORTS SEARCH LOGOUT						
١	YERBA BUENA - EAST BAY BRIDGE CENTER (T10000004342) - MAP THIS SITE OPEN - ELIGIBLE FOR CLOSURE						
3838 HOLLIS ST ACTIVITIES REPORT EMERYVILLE, CA 94608 ALAMEDA COUNTY LOP (LEAD) - CASE #: R00003093 ALAMEDA COUNTY PUBLIC WEBPAGE VIEW PRINTABLE CASE SUMMARY FOR THIS SITE CLEANUP OVERSIGHT AGENCIES ALAMEDA COUNTY PUBLIC WEBPAGE VIEW PRINTABLE CASE SUMMARY FOR THIS SITE CASEWORKER: KEITH NOWELL - SUPERVISOR: DILAN RO SAN FRANCISCO BAY RWQCB (REGION 2) CASEWORKER: Cherie McCaulou - SUPERVISOR: Cheryl L. I CR Site ID #: NOT SPECIFIED CR Site ID #: NOT SPECIFIED							
	THERE ARE 5 OTHER CASES ASSOCIATED WITH THIS CASE - SHOW						
-	THIS PROJECT WAS LAST MODIFIED BY <u>KEITH NOWELL</u> ON 12/16/2014 2:17:56 PM - <u>HISTORY</u>						
	CSM REPORT - <u>VIEW PUBLIC NOTICING VERSION OF THIS REPORT</u>						
	UST CLEANUP FUND CLAIM INFORMATION (DATA PULLED FROM SCUFIIS)						
	FIVE YEAR REVIEW INFORMATION						
	CLAIM NO PRIORITY CLAIMANT SITE ADDRESS AGE NO IMPACTED OF LOC REVIEW NUM REVIEWER FUND REVIEWER IO NUM IO OVERSIGHT IO OVERSIGHT IO CLAIMANT NO DATE DATE IO DATE DATE						
	PROJECT INFORMATION (DATA PULLED FROM GEOTRACKER) - MAP THIS SITE						
	SITE NAME / ADDRESS STATUS STATUS RELEASE AGE OF CLEANUP OVERSIGHT AGENCIES						
	YERBA BUENA - EAST BAY Open - 8/2/2013 4/8/1996 19 ALAMEDA COUNTY LOP (LEAD) - CASE BRIDGE CENTER (Global ID: Eligible for Eligible for Closure #: R00003093 T10000004342) Closure Closure SAN FRANCISCO BAY RWQCB (REGION 2) EMERYVILLE, CA 94608 CASEWORKER: Cherie CASEWORKER: Cherie						
	STAFF NOTES (INTERNAL) Not all historic documents for the fuel leak case may be available on GeoTracker. A more complete historic case file for this site is located on the Alameda County Environmental Health website at https://ehgis.acgov.org/dehpublic/dehpublic.jsp. Not all files may be files may be found under RO0003093. Please review RO0000049 for additional file information.						
	SITE HISTORY The 17-acre Yerba Buena/ East Bay Bridge Center (YB/EBBC) fuel leak case was opened on October 9, 2012 by Alameda County Environmental Health (ACEH) to address impacts associated with this project. Documents historically associated with this fuel leak case were originally place in fuel leak case RO0000049 -Ransome Company. The Ransome Company fuel leak case was used as the sole repository for all documents for the greater 52-acre redevelopment project named the East Baybridge Center (EBC).						
	The YB/EBBC property was owned by the Atchison, Topeka and Santa Fe (AT&SF) Railway Company. Through mergers, acquisitions, and spinoffs, the AT&SF transferred land holdings to a subsidiary, the Santa Fe Pacific Realty Corporation (SFPRC), and then to Catellus Development Corporation (Catellus), a SFPRC subsidiary. Catellus became independent from SFPRC in 1990. Catellus developed the approximate 17-acre YB/EBBC property as part of a larger 52-acre EBC redevelopment project. Catellus merged with ProLogis in 2005. The project at the time of the ProLogis merger was identified as the "East Bay Bridge Shopping Center". The current owner is Federal Reality Investment Trust, dba East Bay Bridge Retail LLC.						
	The portion of the EBC comprising the Yerba Buena/ East bay Bridge Center consists of three parcels having APNs 49-619-2, 49-619-3, and 49-619-5. The YB/EBBC site is bounded by West MacArthur Boulevard to the south, Emery Street to the east and Hollis Street to the west and the Bridecourt apartment complex, which fronts 40th Street, to the north. The YB/EBBC property is commercially developed with approximately 215,000 sq ft of "tilt-up" single-story retail space and about 380,000 sq. ft. of paved parking. The YB/EBBC consists of three parcels and occupies pre-development regions known as former Area A and the southwestern portion of Area B. The separation of the former Areas A and B was the east-west trending Yerba Buena Avenue. The YB/EBBC site does not include the portions of Area A and Area B east of Emery Street or the portion off Area B fronting 40th Street occupied by the Bridgecourt Apartments.						
	Records indicate that prior to the current development, the most recent tenants of the YB/EBBC property were Santa Fe Terminal Services (SFTS), operating on the western portion of Area A, Clipper Exxpress Company (Clipper), which operated an approximately 60,000 sq-ft warehouse located in the south eastern portion of the site, and LDS warehouse located on the southern portion of Area B. The Clipper and LDS warehouses were leased from the SFPRC and were serviced by railroad spurs along the northern side of their respective warehouses. Clipper operated from the 1960s and LDS operated from about 1980. Operations continued until about 1990 when the warehouses were demolished. Operations at Clipper included carloading, material storage (including quantities of oxides, acid rinse, and chlorinated alkaline cleaner) and freight transfer. Clipper operated a diesel 10,000-gallon UST. Operations at LDS included carloading, material storage and freight transfer, and truck rental. SFTS occupied the western portion of the property by the 1970s and used it for storage of truck trailers on un-paved ground. Though no documentation of tank operations were reported, two heating oil USTs were encountered on the SFTS portion of the property during preparation for site redevelopment. Historical documentation indicates that from at least 1911 to 1925, the Area A portion of the YB/EBBC property was the site of railcar						
	repair and maintenance shops associated with the Oakland Traction Company, the Key System Limited, the Key System Transit lines,						

and the East Bay Transit Company. During this period Area A contained a number of buildings that housed a variety of operations, including foundries, car repair and painting, paint and oil storage, a blacksmith shop and engine room, auto and bus repair, and a sheet metal workshop. The eastern portion of Area A was occupied in 1931 and 1940 by an auto storage and wrecking yard, a print shop and a hay and grain warehouse. By 1959 all the buildings had been destroyed. The LDS warehouse was constructed circa 1910 while the Clipper warehouse was built in the in the late 1960s. The LDS and Clipper buildings were demolished 1990 in preparation for future site redevelopment.

Environmental investigations were conducted from 1989 through 1991 and included a review of recent and historical usage of the site, a review of previous investigations, several rounds of intrusive investigations for the recovery of soil and water samples for laboratory analysis, a soil gas survey, and water sampling that included grab-groundwater samples recovered from soil borings, samples collected from groundwater monitoring wells, and samples collected from open excavations. In addition, three underground storage tanks were removed from the site.

The Clipper diesel 10,000-gallon UST was removed in November 1990 by a contractor working on Clipper's behalf. Analysis of excavation floor and sidewall samples indicated concentrations less than 18 ppm TPHd and total petroleum hydrocarbons as oil (TPHo) and ND for BTEX. ACHA letter (January 24, 1991) approved excavation backfilling and did not request further investigation or cleanup. SFTS occupied the western portion of the property by the 1970s and used it for storage of truck trailers on un-paved ground.

Site characterization studies were conducted from 1989 through 1991. The results of the soils investigations revealed the presence of concentrations of up to 14,000 mg/kg TPHo. Toluene and ethyl benzene were reported at concentrations up to 0.29 mg/kg and 0.019 mg/kg, respectively. Pyrene was reported in one sample at a concentration of 0.39 mg/kg. Concentrations of TPHg, TPHd, benzene, and xylenes were documented below the laboratory reporting limit for the site soils. Maximum metals concentrations included As up to 26 mg/kg, Cd 2.8 mg/kg, Cr to 58 mg/kg, Ni to 68 mg/kg, Cu to 640 mg/kg, Pb to 1,400 mg/kg, and Zn to 410 mg/kg. Delineation of the lead impacted area indicated it was localized, and in June 1991, approximately 360 cubic yards of lead-impacted soil was excavated and transported to a US Ecology facility near Beatty, Nevada for disposal. Confirmation samples contained residual lead concentrations of up to 150 mg/kg. The excavation was backfilled with clean aggregate base import material. Subsequent mass grading resulted in dispersing the residual pockets of elevated metals.

Site cleanup criteria were established with Alameda County Health Care Services Agency (ACHA), predecessor to the Alameda County Department of Environmental Health (ACDEH) in January 1991. The cleanup criteria consisted of 1,000 mg/kg total oil and grease (TOG), 100 mg/kg total petroleum hydrocarbons as diesel (TPHd), 10 mg/kg total petroleum hydrocarbons as gasoline (TPHg), and 1 mg/kg benzene, toluene, ethyl benzene, and xylenes (BTEX) (combined). A 1992 revision to the clean up levels reduce the benzene concentration to non-detect. Clean up levels for metals were their respective Total Threshold Limit Concentrations (TTLCs).

Grab groundwater samples recovered during the site characterization studies documented up to 200 ug/l TPHg. The grab groundwater samples tested below the laboratory reporting limits for TPHd, TPHo, benzene, toluene, ethylbenzene, and xylenes (BTEX) compounds. Metals in the grab groundwater samples were to contain up to 3 ug/L arsenic (As), 1,000 ug/L nickel (Ni), selenium (Se) to 3 ug/L, and zinc (Zn) up to 26 ug/L.

Three shallow (screened to or above 25 feet below the ground surface- bgs) on-site groundwater monitoring wells, LF-3, LF-4, and LF-6, were installed during January 1990. Three additional shallow monitoring wells were installed in April 1990– (LF-17, LF-18, and LF-19) in the down gradient direction of LF-4. Two wells were installed to monitor deeper (intermediate) groundwater and establish vertical hydraulic gradients, were installed in the vicinity of LF-4 and LF-5, and designated LF-4D and LF-5D, respectively. LF-4D and LF-5D were screened in the interval of 29-feet to 39 feet bgs and 44 feet to 34 feet bgs, respectively. A third well, LF-4Z, was installed in the vicinity of LF-4 for the purpose of monitoring groundwater underlying LF-4D. Well LF-4Z was screened at the interval of 52 feet to 62 feet bgs. One intermediate (19D) well was installed in July 1991. LF-19D was installed adjacent to LF-19, but screened deeper (between 31 feet and 45 feet bgs). The two shallow wells were installed down gradient of the LF-19, just west of former Area A.

TPH compound analysis was limited to a few wells (LF-3, LF-4, LF-5, and LF-19) and performed for extractable range hydrocarbons only on a semiannual basis. Maximum concentrations of TPHd and TPHo reported in the pre-grading wells were 334 ug/L and 380 ug/L, respectively. TPHg concentrations were not reported above the laboratory reporting limits in any of the pre-grading monitoring wells. Pregrading groundwater levels at YB/EBBC ranged from 4.41 feet bgs to 19.83 feet bgs. The on-site LF-designated groundwater monitoring wells were destroyed in July 1993 in preparation of grading activities.

In accordance with the Soil Containment Plan, stockpiled TPH-impacted soil from the greater 52-acre EBC project was placed as engineered fill throughout the YB/EBBC property. Other than the heavier ranged petroleum hydrocarbons, the stockpiled soil met the 10 mg/kg TPHg, 1 mg/kg toluene, ethylbenzene, and xylenes (TEX) (combined), and the non-detect benzene concentration criteria. After placement, the soil would be capped by impermeable asphaltic concrete pavement or be covered by building pads. Residual concentrations of TPHd, TPHo, and TOG, documented up to 260 mg/kg, 4,400 mg/kg, and 18,000 mg/kg, respectively, were left in place at the site. In July 1994, replacement shallow wells MW -3 through MW-9, intermediate wells MW-6D, MW-7D and MW-9D, and deeper well MW-7Z were installed in the approximate locations of the LF-designated wells to monitor effects to groundwater due to the placement of TPH-impacted soil.

Post-grading groundwater levels ranging from 8.51 feet bgs to 17.15 feet bgs. Maximum concentrations of TPHg, TPHd, and TPHo reported during the final year (2001) for the post-grading monitoring wells were <50 ug/L, 88 ug/L and <200 ug/L, respectively. TPHg/d/o and BTEX concentrations were not reported above the laboratory reporting limits in any intermediate or deep of the pre- or post-grading monitoring wells. Based on the groundwater investigations it was determined the groundwater quality was not significantly affected by the presence of the heavy TPH fraction in the soil in spite of the relatively shallow groundwater. A review of the data trend over the seven years of groundwater monitoring revealed decreasing TPHg concentrations – reported as high as 200 ug/L in B-4 on January 26, 1990 to <50 ug/L (in well MW-3) for the final groundwater monitoring event conducted on December 7, 2001, and a stable- to decreasing TPHd concentrations reported as high as 334 ug/L in EX-4 on December 17, 1996 to 88 ug/L in MW-7 during the final year of groundwater monitoring (August 15, 2001). Concentrations of benzene, ethyl benzene, and naphthalene were not reported above laboratory reporting limits in any of the groundwater samples recovered at the site during the eleven years of groundwater sampling.

The RWQCB was the lead agency for a separate case at the YB-EBB site, which was open between 1992 and 2002. Volatile organic compound (VOC) -affected groundwater was identified in former Area A and southern portion of former Area B. The RWQCB case for the VOCs is not associated with Alameda County's LUST case. The RWQCB listed the site as the East Baybridge Center, Yerba Buena and Hollis, Emeryville, Alameda County, RWQCB file number is 01S0226, and Global ID of T0600191518. The RWQCB issued a No Further Action letter in June 2002.

RESPONSIBLE PARTIES

NAME CLIPPER EXXPRESS DARLENE HOUGE EMERYVILLE RETAIL PROPERTIES, LP	ORGANIZATION Clipper Exxpress Federal Reality Investment Emeryville Retail Properties	Trust 1626 EAST	3871 SAN PABLO AVE 1626 EAST JEFFERSON ST 18201 VON KARMEN, SUITE		EMAIL dhough@federalrealty.com
GENERAL COUNSEL	PAC OPERATING LIMITED PARTNERSHIP PROLOGIS LOGISTICS SE	4545 AIRP	4545 AIRPORT WAY		
c/o GENERAL COUNSEL	INC	4545 AIRP	ORI WAY	DENVER	amalhotra@prologis.com
CLEANUP ACTION INFO					
NO CLEANUP ACTIONS HAV	E BEEN REPORTED				
RISK INFORMATION	VIEW LTCP CHECKLIST	VIEW PAT	H TO CLOSURE P	LAN	VIEW CASE REVIEW
CONTAMINANTS OF CONCERN Lead, Benzene, Crude Oil, Die Ethylbenzene, Gasoline, Tolue Petroleum Hydrocarbons (TPH Motor / Hydraulic / Lubricating	ene, Total I), Waste Oil / Commer	E <u>USE</u>		REPORTED ME CI 4/8/1996 Re	NEARBY / OP IMPACTED ETHOD WELLS ose and emove 0 ank 0
FREE PRODUCTOTHER CONSTITUENTSNOYES	SYSTEM AC	EGULATORY LAST I TIVITY UPLO 16/2014		EXPECTE CLOSURE D	
CDPH WELLS WITHIN 1500 FEE	ET OF THIS SITE				
NONE					
CALCULATED FIELDS (BASED ()			
APN GW BA	<u>sin name</u> Clara Valley - East Bay	·		<u>SHED NAME</u> ridges - Berk	eley (20330)
COUNTY PUBI	LIC WATER SYSTEM(S) IT BAY MUD - 375 ELEVEI	. ,	AND, CA 94607		
COUNTY PUBL Alameda • EAS	T BAY MUD - 375 ELEVE	NTH STREET, OAKL			VIEW ESI SUBMITTAL
COUNTY PUBI	T BAY MUD - 375 ELEVE	NTH STREET, OAKL	WATER - <u>SHOW</u>		VIEW ESI SUBMITTAL

LOGGED IN AS KNOWELL

CONTACT GEOTRACKER HELP

ATTACHMENT 2

LTCP Checklist	Go GEOTRACKER HC	DME MANAGE PROJECTS REPORTS
YERBA BUENA - EAST BAY BRIDG	E CENTER (T1000004342) - MAP THIS SITE	OPEN - ELIGIBLE F
3838 HOLLIS ST EMERYVILLE , CA 94608 ALAMEDA COUNTY <u>VIEW PRINTABLE CASE SUMMARY FOR THIS SITE</u>	ACTIVITIES REPORT ACTIVITIES REPORT PUBLIC WEBPAGE CASEWORKER: KEITH NOWEL SAN FRANCISCO BAY RWOOG (Rec CASEWORKER: Cherie McCaulo CR Site ID #: NOT SPECIFIED	L - SUPERVISOR: DILAN ROE
	THERE ARE 5 OTHER CASES ASSOCIATED WITH THIS CASE - SHOW	
	THIS PROJECT WAS LAST MODIFIED BY KEITH NOWELL ON 12/15/2014 10:05:38 AM - HISTORY	
CLOSURE POLICY	THIS VERSION IS FINAL AS OF 12/15/2014 CHECKLIST INITIATED ON 8/2/201	3 <u>CLOSURE F</u>
General Criteria - The site satisfies the	policy general criteria - <u>CLEAR SECTION ANSWERS</u>	NO
a. Is the unauthorized release located within	the service area of a public water system?	
Name of Water System :		
b. The unauthorized release consists only of Contaminants : Chlorobenzene	f petroleum <u>(info).</u>] PCE	Г
Contaminants : □ Chlorobenzene □ ✓ Other:		C
c. The unauthorized ("primary") release from	i the UST system has been stopped.	•
d. Free product has been removed to the ma	aximum extent practicable (info).	FP Not Encountered C
	e nature, extent, and mobility of the release has been developed (info).	۲
f. Secondary source has been removed to th		۲
	ITBE and results reported in accordance with Health and Safety Code Section 25296.15.	Not Required C
h. Does a nuisance exist, as defined by Wate	er Code section 13050.	C
1. Media-Specific Criteria: Groundwat of one of the five classes of sites listed b	ter - The contaminant plume that exceeds water quality objectives is stable or decreasing in areal extent, and meets	all of the additional characterist
EXEMPTION - Soil Only Case (Release ha		C
Does the site meet any of the Groundwate	er specific criteria scenarios?	
	vater quality objectives is <100 feet in length. There is no free product. The nearest existing water supply well or surface water bo	dy is >250 feet from the
defined plume boundary.		
2. Media Specific Criteria: Petroleum V or 2c - <u>CLEAR SECTION ANSWERS</u>	Vapor Intrusion to Indoor Air - The site is considered low-threat for the vapor-intrusion-to-air pathway if site-specifi	ic conditions satisfy items 2a, 2l
EXEMPTION - Active Commercial Petroleu	um Fueling Facility	C
Does the site meet any of the Petroleum V	Vapor Intrusion to Indoor Air specific criteria scenarios?	C
	te only those conditions that do not meet the policy criteria:	
Soil Gas Samples : O No Soil Gas Samples O Taken Inco	orrectly	
Exposure Type :		
Residential Commercial Free Product :		
O In Groundwater O In Soil O Unkn	nown	
TPH in the Bioattenuation Zone :		
Bioattenuation Zone Thickness :	samples not taken at two depths within 5 ft. zone (only for Scenario 4 with BioZone)	
	and < 10 Feet O ≥ 10 Feet and < 30 Feet O ≥ 30 Feet O 30ft BioZone Compromised TPH > 100mg/kg O Unknown	
O2 Data in Bioattenuation Zone : \bigcirc No O ₂ Data \bigcirc O ₂ < 4% \bigcirc O ₂ ≥ 4 ⁰	96	
Benzene in Groundwater :		
O≥ 100 μg/l and < 1,000 μg/l O≥ 1,00	00 µg/l OUnknown	
Soil Gas Benzene : $\bigcirc \ge 85 \ \mu g/m^3 \text{ and } < 280 \ \mu g/m^3 \bigcirc \ge 280$	80 μg/m³ and < 85,000 μg/m³	
Soil Gas EthylBenzene :		
O ≥ 1,100 µg/m ³ and < 3,600 µg/m ³ C Soil Gas Naphthalene :	D≥ 3,600 μg/m³ and < 1,100,000 μg/m³	
II	10 µg/m ³ and < 93,000 µg/m ³ \bigcirc ≥ 93,000 µg/m ³ and < 310,000 µg/m ³ \bigcirc ≥ 310,000 µg/m ³ \textcircled{O} Unknown	
3. Media Specific Criteria: Direct Cont	tact and Outdoor Air Exposure - The site is considered low-threat for direct contact and outdoor air exposure if it n	neets 1, 2, or 3 below <u>CLEAR</u>
SECTION ANSWERS	· · ·	
EXEMPTION - The upper 10 feet of soil is		C
-	act and Outdoor Air Exposure criteria scenarios?	C
Exposure Type :	te only those conditions that do not meet the policy criteria:	
Residential Commercial Utili	ity Worker	
Petroleum Constituents in Soil : ● ≤ 5 Feet bgs ○ >5 Feet bgs and ≤10	0 Feet bgs O Unknown	
Soil Concentrations of Benzene :	-	
$\bigcirc > 1.9 \text{ mg/kg and} \le 2.8 \text{ mg/kg} \bigcirc > 2.$.8 mg/kg and ≤ 8.2 mg/kg \bigcirc > 8.2 mg/kg and ≤ 12 mg/kg \bigcirc > 12 mg/kg and ≤ 14 mg/kg \bigcirc > 14 mg/kg \bigcirc Unknown	

YERBA BUENA - EAST BAY BRIDGE CENTER

Soil Concentrations of EthylBenzene : ○ > 21 mg/kg and ≤ 32 mg/kg ○ > 32 mg/kg and ≤ 89 mg/kg ○ > 89 mg/kg and ≤ 134 mg/kg ○ > 134 mg/kg and ≤ 314 mg/kg ○ > 314 mg/kg ○ Unknown Soil Concentrations of Naphthalene : ○ > 9.7 mg/kg and ≤ 45 mg/kg ○ > 45 mg/kg and ≤ 219 mg/kg ○ > 219 mg/kg ● Unknown	
Soil Concentrations of PAH :	
\bigcirc > 0.063 mg/kg and ≤ 0,68 mg/kg \bigcirc > 0.68 mg/kg and ≤ 4.5 mg/kg \bigcirc > 4.5 mg/kg \bigcirc Unknown	
Area of Impacted Soil :	
Area of Impacted Soil > 82 by 82 Feet O Unknown	
Additional Information	
Should this case be closed in spite of NOT meeting policy criteria? Explain:	
This 17-acre site fails the LTCP General Criteria b (Petroleum Only), and Media Specific Criteria for Vapor Intrusion to Indoor Air and Direct Contact and Outdoor Air Exposure. In June 1991, 360 cubic yards of Lead-Impacted soil disposed off- site. In 1994 the site received soil impacted with TFHd, TFHd and TOG from the greater (52 acres) EBC redevelopment project. The soil was placed in accordance with the Soil Containment Plan approved by both ACEH and the RWQCB. A condition of the placement approval included the site receive a deed restriction, implemented on July 29, 1994. The site was subsequently capped with large tilt-up style slab-on-grade box stores and asphalt-paved parking constructed above the soil cap. Local raised-bed landscaping are located within the parking area. Due to low contaminant concentrations and lack of volatiles from onsite sources, the site poses a low risk to human health and or the environment. Residual contamination addressed with an implemented SMP.	Q
Has this LTCP Checklist been updated for FY 14/15?	(
Save Form as Partially Completed Save Form as Complete	

LOGGED IN AS KNOWELL

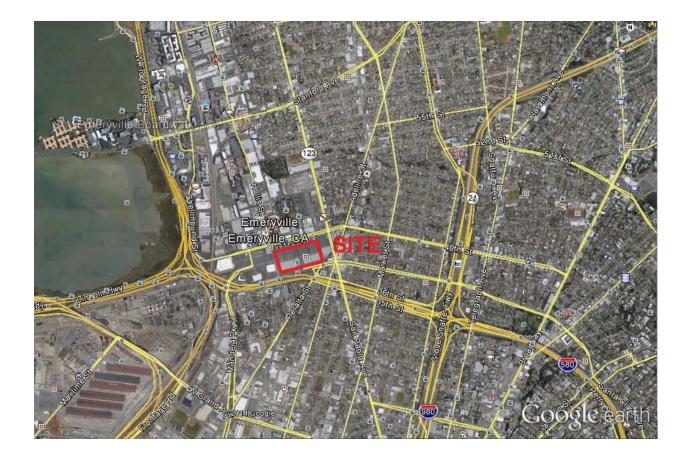
ATTACHMENT 3									
LTCP GROUNDWATER SPECIFIC CRITERIA									
LTCP Groundwater Specific	Scenario und	er which case	was closed <i>:</i>	Scenario 1					
LTCP LTCP LTCP LTCP									
Site D	lata		Scenario 1	Scenario 2	Scenario 3	Scenario 4			
			Criteria	Criteria	Criteria	Criteria			
Plume Length	<100	feet	<100 feet	<250 feet	<250 feet	<1,000 feet			
Free Product	No free	product	No free product	No free product	Removed to maximum extent practicable	No free product			
Plume Stable or Decreasing	Stable		Stable or decreasing	Stable or decreasing	Stable or decreasing for minimum of 5 Years	Stable or decreasing			
Distance to Nearest Water Supply Well	500 feet cro	ess gradient	>250 feet	>1,000 feet	>1,000 feet	>1,000 feet			
Distance to Nearest Surface Water and Direction	2,800 feet downgradient		>250 feet	>1,000 feet	>1,000 feet	>1,000 feet			
Property Owner Willing to Accept a Land Use Restriction?	Yes, se Manag Requirer Additional Ii	ement nents in	Not applicable	Yes	Not applicable	Not applicable			
	GRC	DUNDWATER	CONCENTRAT	IONS					
Constituent	Historic Site Maximum (µg/L)	Current Site Maximum (µg/L)	LTCP Scenario 1 Criteria (µg/L)	LTCP Scenario 2 Criteria (µg/L)	LTCP Scenario 3 Criteria (µg/L)	LTCP Scenario 4 Criteria (µg/L)			
Benzene	<0.50	<0.50	No criteria	3,000	No criteria	1,000			
MTBE			No criteria	1,000	No criteria	1,000			
Scenario 5: If the site does not meet scenarios 1 through 4, has a determination been made that under current and reasonably expected future scenarios, the contaminant plume poses a low threat to human health and safety and to the environment and water quality objectives will be achieved within a reasonable time frame?									

Comments: Water Supply Wells in Vicinity: The Water Resources Section of the Alameda County Public Works Agency (ACPWA) lists one water supply well within ¼-mile of the property. The well is identified by ACPWA as abandoned. The 163-foot deep well, is approximately 500 feet south and cross groundwater gradient of the former Clipper facility. Based on the distance, ground water direction, and low mobility of the residual TPH, the TPH-impacted soil is unlikely to affect the water quality at the abandoned well site.

Eight private wells were reported identified on a 1911 Sanborn map. The wells were located approximately 1.200 feet west (down groundwater gradient) of the YB-EBC site. No other records were located regarding the well field; however, one well, described as a steel-cased water supply well, was encountered and decommissioned during mid-September 1993 excavation activities. No other wells were reported encountered during excavation and grading activities. Based on the distance and low mobility of TPH, the TPH-impacted soil is unlikely to affect the water quality at the location of the former well field. No other water supply wells were identified within 2,000 feet of the site.

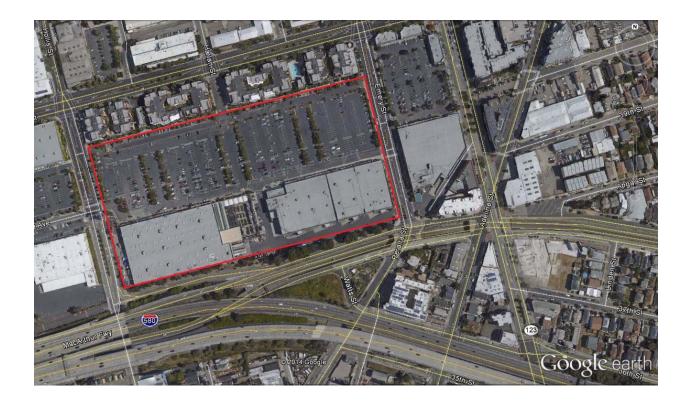
			ACHMENT 4					
LTCP Vapor Specific Scer vapor specific media crite		LTCP VAPOR			e closed in	spite of not	meeting the	
Active Fueling Station	Not applicable	e						
Site Data	LTCP Scenario 2 Criteria	LTCP Scenario 3A Criteria	LTCP Scenario 3E Criteria	LTCP Scenario 3 Criteria	LTCP C Scenario 4 Criteria			
Unweathered LNAPL	No LNAPL	LNAPL in groundwater	LNAPL in soil	No LNAPL	No LNAPL	No LNAPL	No criteria	
Thickness of Bioattenuation Zone Beneath Foundation	≥5 feet	≥30 feet	≥30 feet	≥5 feet	≥10 feet	0 feet ≥5 feet ≥5 f		
Total TPH in Soil in Bioattenuation Zone	>100 mg/kg	<100 mg/kg	<100 mg/kg	<100 mg/kg	<100 mg/kg	<100 mg/kg	<100 mg/kg	
Maximum Current Benzene Concentration in Groundwater	<0.5 µg/L	No criteria	No criteria	<100 µg/L	≥100 and <1,000 µg/L	<1,000 µg/L	No criteria	
Oxygen Data within Bioattenuation Zone	No oxygen data	No criteria	No criteria	No oxygen data or <4%	No oxygen data or <4%	≥4% at lower end of zone	≥4% at lower end of zone	
Depth of soil vapor measurement beneath foundation		No criteria	No criteria	No criteria	No criteria	No criteria	≥5 feet	
SCE	NARIO 4 DIRE	CT MEASUREM	IENT OF SOII		NCENTRATIO	ONS		
Site Soil	Vapor Data		No Bioat	tenuation Zon	e	Bioattenua	tion Zone	
Constituent	Historic Maximum (µg/m³)	Current Maximum (µg/m³)	Residential	Commer	cial Res	sidential	Commercial	
Benzene			<85	<280	<8	35,000	<280,000	
Ethylbenzene			<1,100	<3,600) <1,	100,000	<3,600,000	
Naphthalene			<93	<310	<9	93,000	<310,000	
	If the site does not meet scenarios 1 through 4, does a site-specific risk assessment for the vapor intrusion pathway demonstrate that human health is protected?							
If the site does not meet scenarios 1 through 4, has a determination been made that petroleum vapors from soil or groundwater will have no Yes significant risk of adversely affecting human health?								
Comments: Site does not n the bioattenuation zone. Ho petroleum releases at the si	wever, there ar	e no volatile cor	npounds pres	enting a vapo	r intrusion ris	k associated	with the	

ATTACHMENT 5 LTCP DIRECT CONTACT AND OUTDOOR AIR EXPOSURE CRITERIA

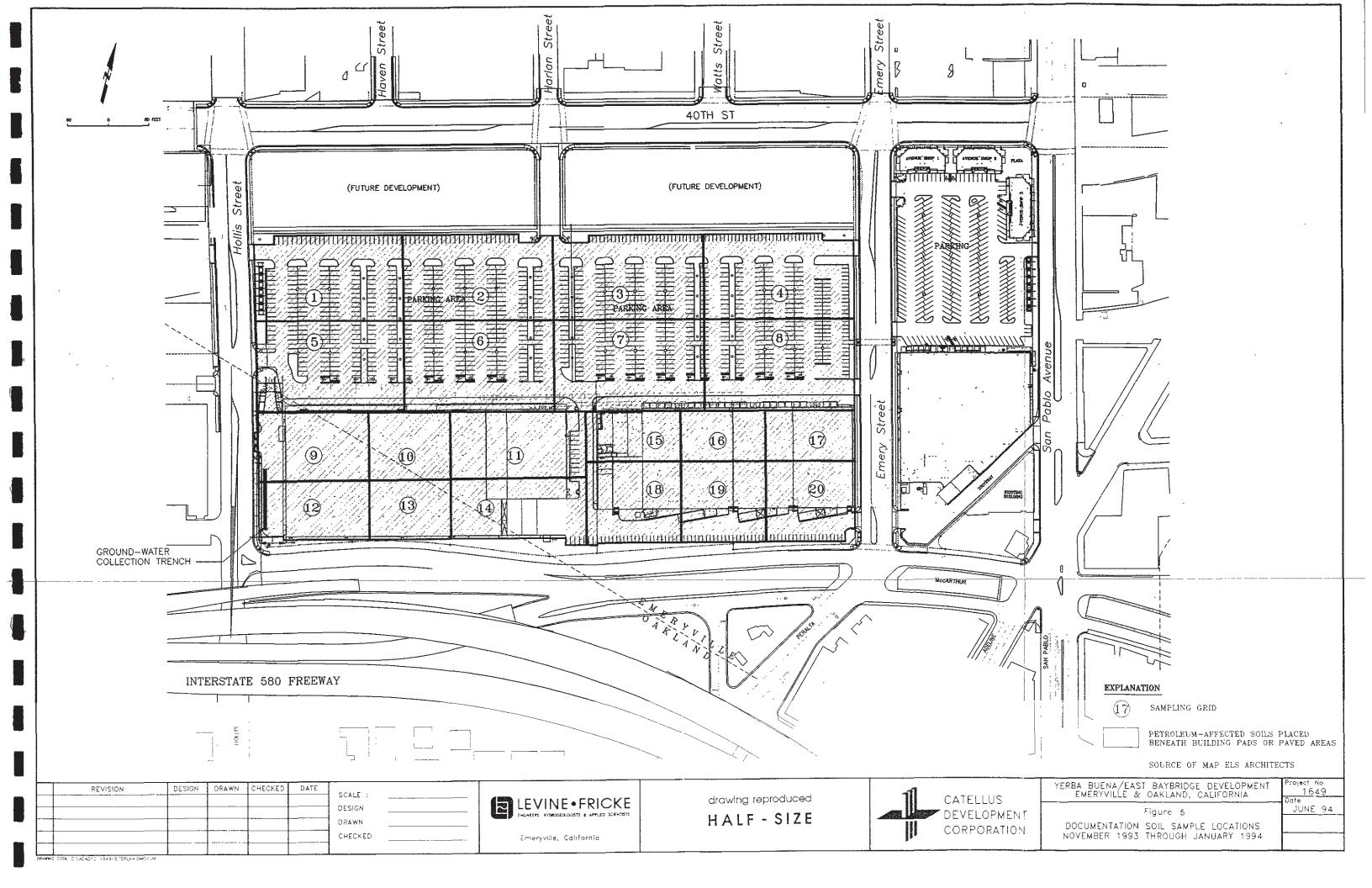

LTCP Direct	Contact and C		kposure Specif			case was closed:			
Commercial/Ind	Commercial/Industrial								
Are maximum c	oncentrations les	s than those in T	Yes						
Residential				Commercial/Industrial Utility Wo					
Constituent		0 to 5 feet bgs (mg/kg)	Volatilization to outdoor air (5 to 10 feet bgs) mg/kg	0 to 5 feet bgs (mg/kg)	Volatilization to outdoor air (5 to 10 feet bgs) mg/kg	0 to 10 feet bgs (mg/kg)			
Site Maximum	Benzene	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005			
LTCP Criteria	Benzene	≤1.9	≤2.8	≤8.2	≤12	≤14			
Site Maximum	Ethylbenzene	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005			
LTCP Criteria	Ethylbenzene	≤21	≤32	≤89 ≤134		≤314			
Site Maximum	Naphthalene	<0.33	<0.33	<0.33	<0.33	<0.33			
LTCP Criteria	Naphthalene	≤9.7	≤9.7	≤45 ≤45		≤219			
Site Maximum	PAHs	0.39	<0.33	0.39	<0.33	0.39			
LTCP Criteria	PAHs	≤0.063	NA	≤0.68	NA	≤4.5			
If maximum concentrations are greater than those in Table 1, are they less than levels from a site-specific risk assessment?									
If maximum concentrations are greater than those in Table 1, has a determination been made that the concentrations of petroleum in soil will have no significant risk of adversely affecting human health as a result of controlling exposure through the use of mitigation measures or through the use of institutional controls?									

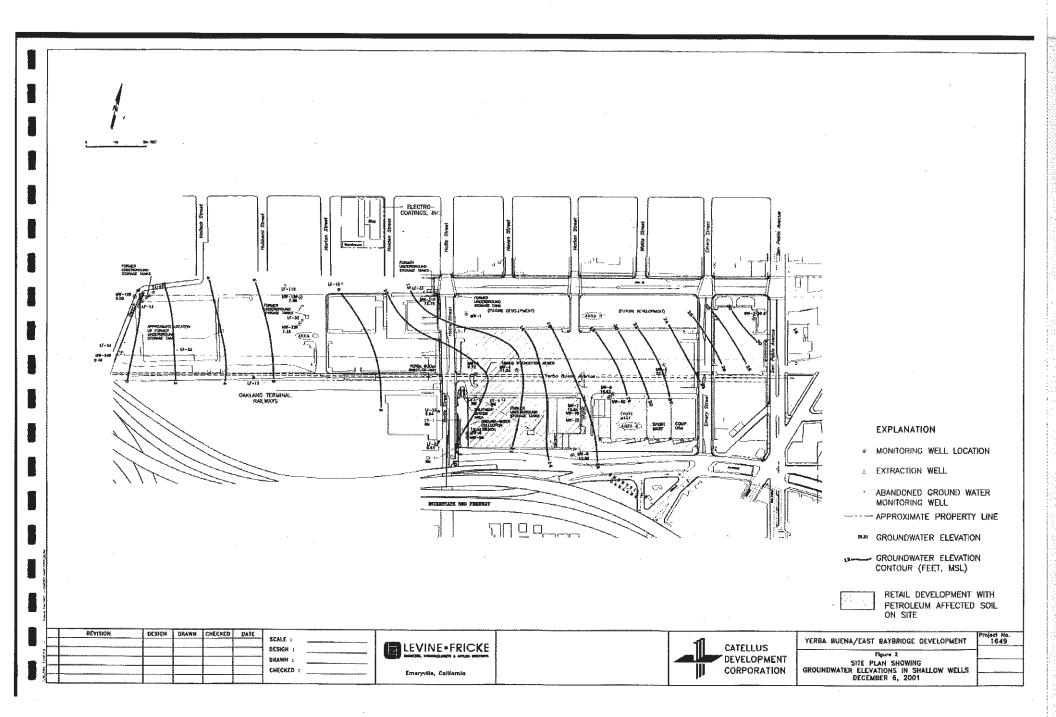
Comments: Does not meet Residential closure policy scenario as PAH concentrations exceed the Residential criteria.

Additionally, lead encountered at concentrations up to 1,400 mg/kg. Approximately 360 cy yds of lead-impacted soil was excavated and transported to a US Ecology facility near Beatty, Nevada for disposal. Confirmation samples contained residual lead concentrations of up to 150 mg/kg.


ATTACHMENT 6

Yerba Buena/ East Bay Bridge Center Emeryville and Oakland, CA




Site Vicinity Map

Aerial View of Current Development

Yerba Buena/ East Bay Bridge Center Emeryville and Oakland, CA

TABLE 1A

HISTORICAL SITE FEATURES

AREA A	
a.	oil warehouse
ь.	iron and brass foundry
с.	storage
d.	Waste room/scrap bins
е.	sandblasting
f.	store room
g.	machine shop, auto and bus repair
h.	blacksmith shop

i. water tank

- j. Lumber shed
- k. iron storage, iron shop, bins, lumber shed
- l. storage
- m. 9,000-gallon oil tank (possibly underground)
- n. engine room
- o. lumber shed, storage shed
- p. sheet metal workshop
- q. planing mill, car repairing
- r. car repairing
- s. transfer table runway
- t. car painting, paint, varnishing and oil storage room; car washing and reparing
- u. auto wrecking yard
- v. auto storage
- w. electric printing

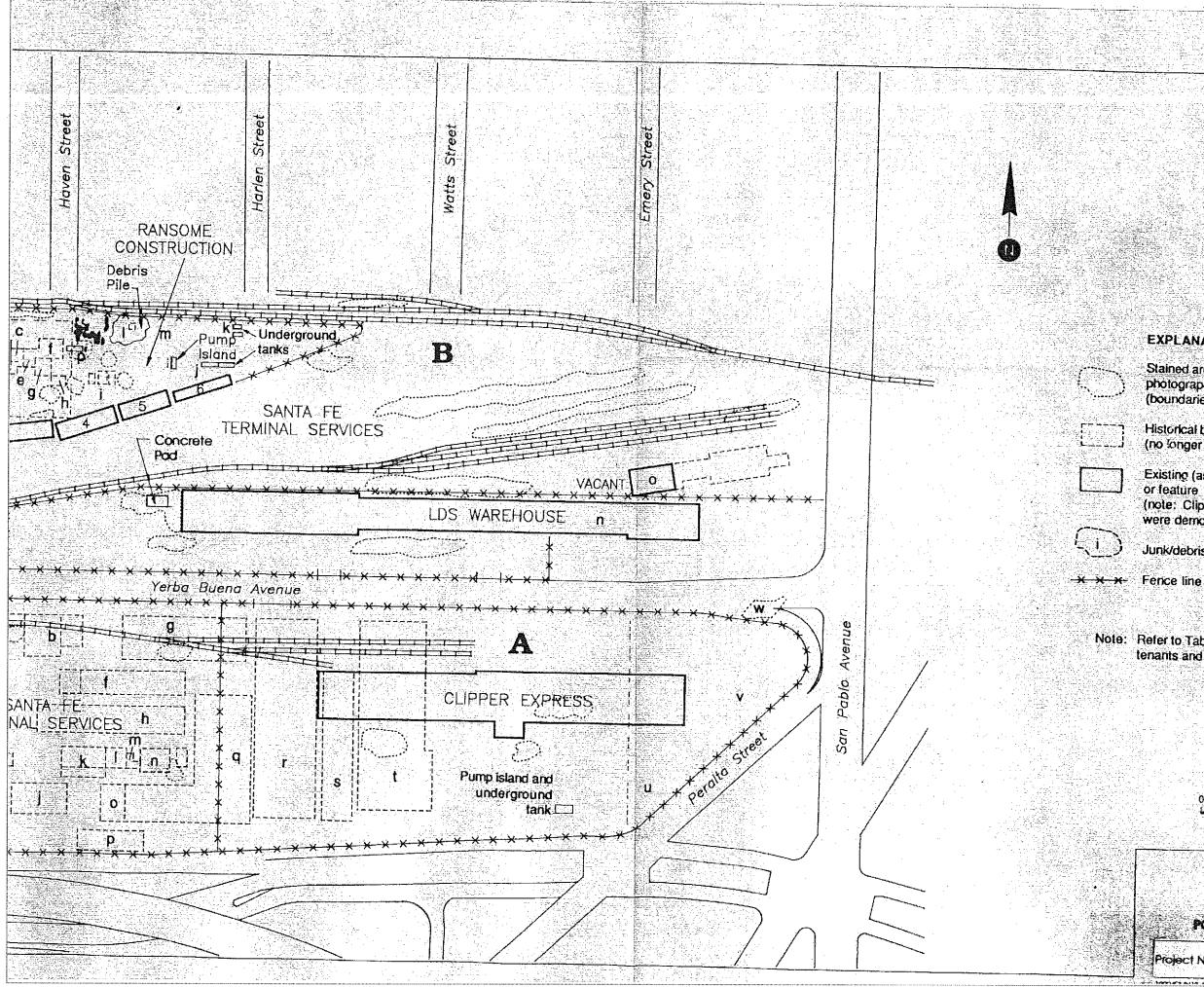

Page-1

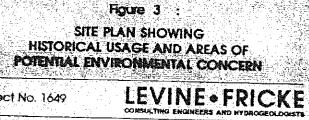
TABLE 1A

.

HISTORICAL SITE FEATURES

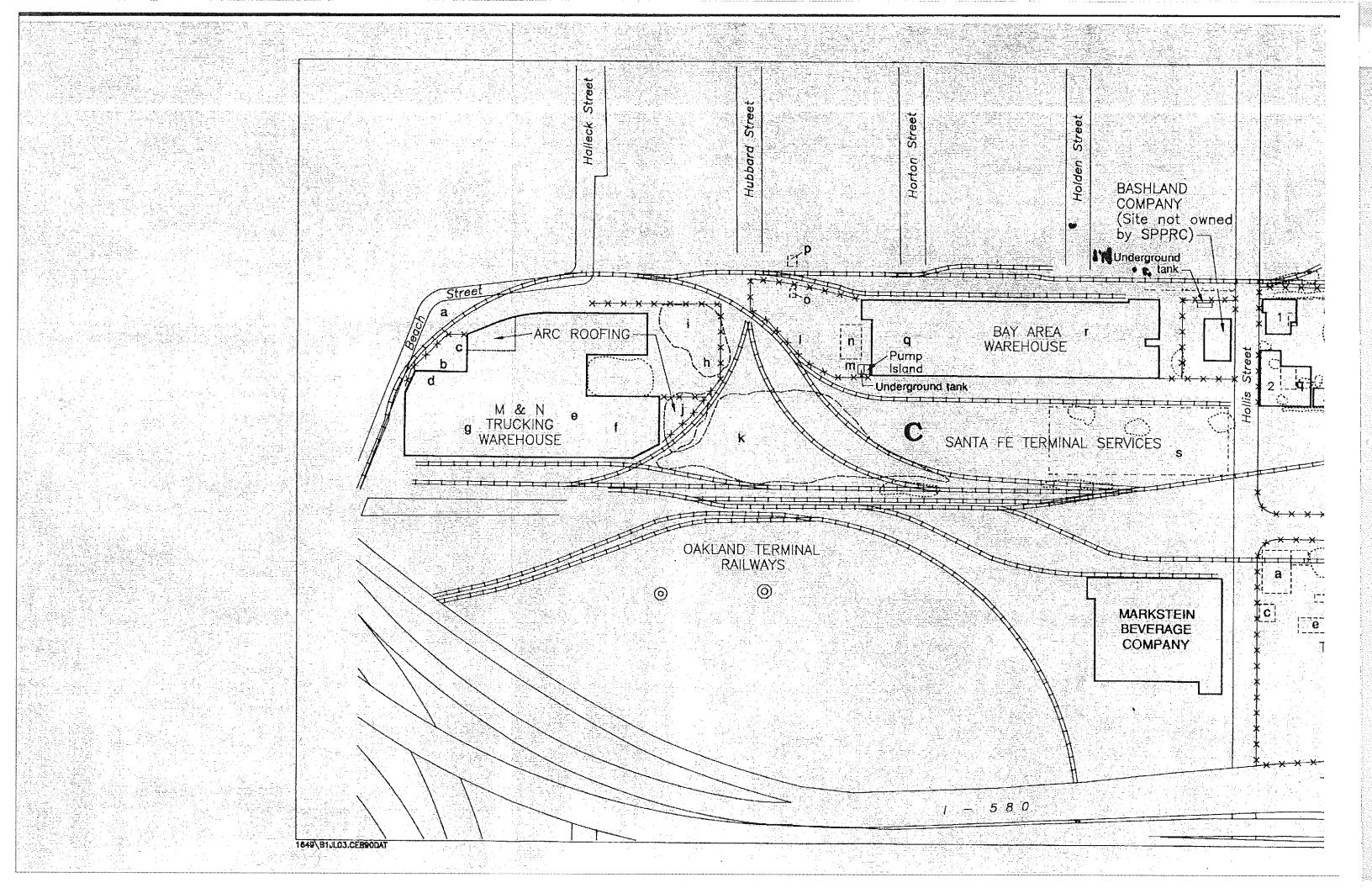
₩₩₩₽₽₩₽₩₩₩₩₩₽₩₽₩₽₩₽₩₽₩₽₩₩₩₩₩₩₩₩₩₩₩₩₩₩	₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩	.======================================
AREA B		
Building 1 - office		
Building 2 machine maintenance shop		
Building 3 - oil storage		
Building 4 - storage shed		
Building 5 - storage shed		
Building 6 - butane and propane cyclind	er filling	
Building 7 - steam cleaning shed		
Building 8 - lavatory		
a, open steel rock bunker		
b, concrete oil tank - underground		
c. steel asphalt banks		
d. cement storage		
e. boiler house, 3 asphalt mixers		
f. sand dryer	1	
g. asphalt kettles, mixer		
h. asphalt tank (7,722-gallon)		
i. butane control		•
j. underground tanks		
k. underground tanks		
l. incinerator		
m. electric company old pole yard		
n. freight depot		
o. passenger station		
p. SS-1 tank		
q. waste oil tank		
		the second se

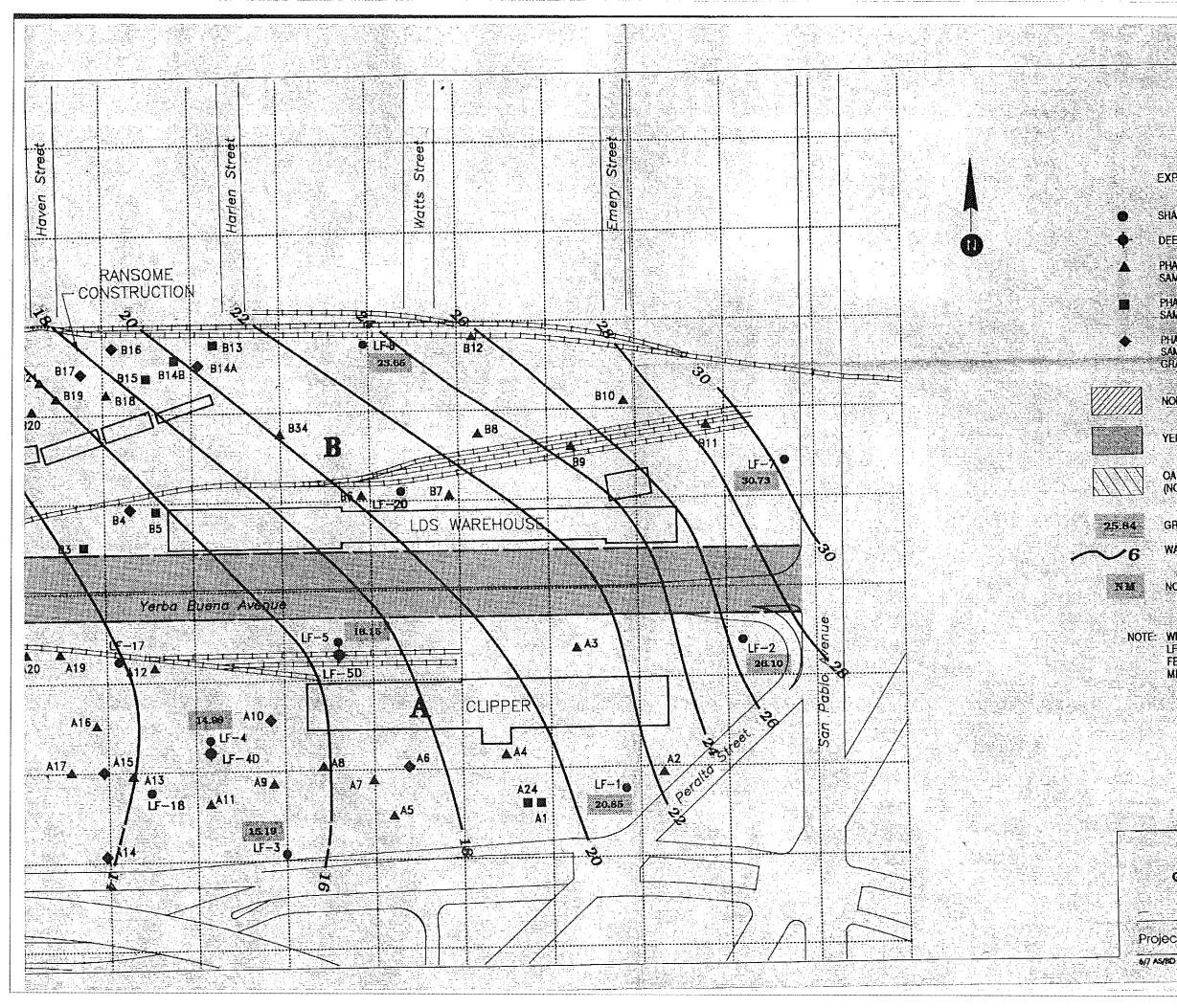
Stained areas observed in aerial photographs or during site inspection (boundaries approximate)


Historical building or feature (no longer present at the site)

Existing (as of January 1990) site building or feature (note: Clipper Express and LDS Warehouse were demolished between May and June 1990)

Junk/debris/materials storage or disposal


Note: Refer to Tables 1 and 1A for listing of historic tenants and key to historic site features.


150

300 FEET

Project No. 1649

SHALLOW MONITORING WELL (<25 FT)

بشايدهم

DEEP MONITORING WELL (35-45 FEET)

PHASE I INVESTIGATION SHALLOW SOIL SAMPLING LOCATION (LESS THAN 5 FEET)

PHASE 1 INVESTIGATION DEEPER SOIL SAMPLING LOCATION (6 TO 18 FEET)

PHASE I INVESTIGATION DEEPER SOIL SAMPLING LOCATION (13 TO 18 FEET) AND GRAB GROUND WATER SAMPLE LOCATION

NON-ACCESSIBLE AREA

YERBA BUENA RIGHT-OF-WAY

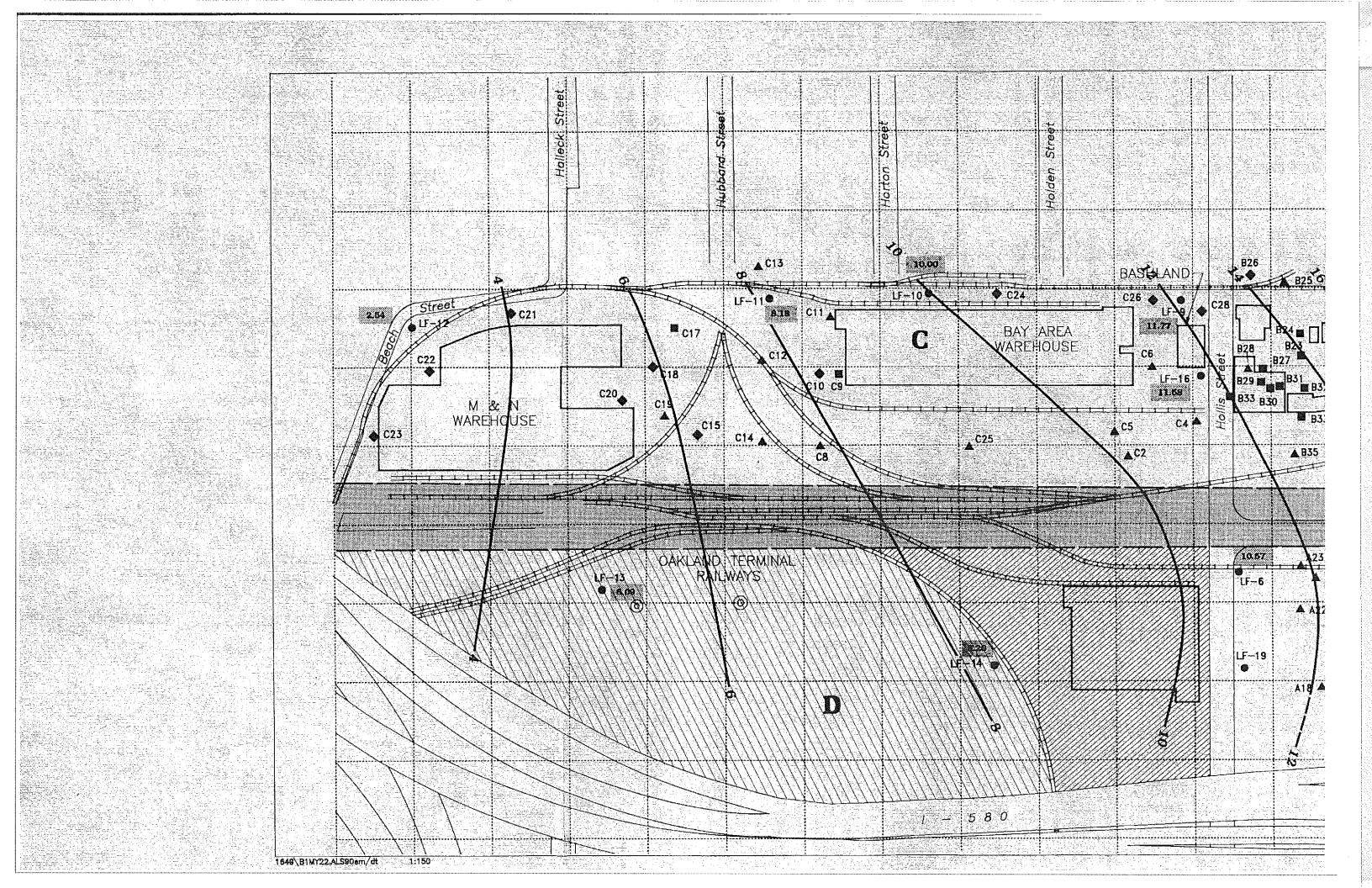
OAKLAND TERMINAL RAILWAYS (NOT INCLUDED IN THIS INVESTIGATION)

GROUND-WATER ELEVATION

WATER TABLE CONTOURS

NOT MEASURED

NOTE: WELLS LF-17 THROUGH LF-20, LF-4D AND LF-5D NOT INSTALLED AT TIME ON FEBRUARY 23, 1990 WATER LEVEL MEASUREMENT.


150

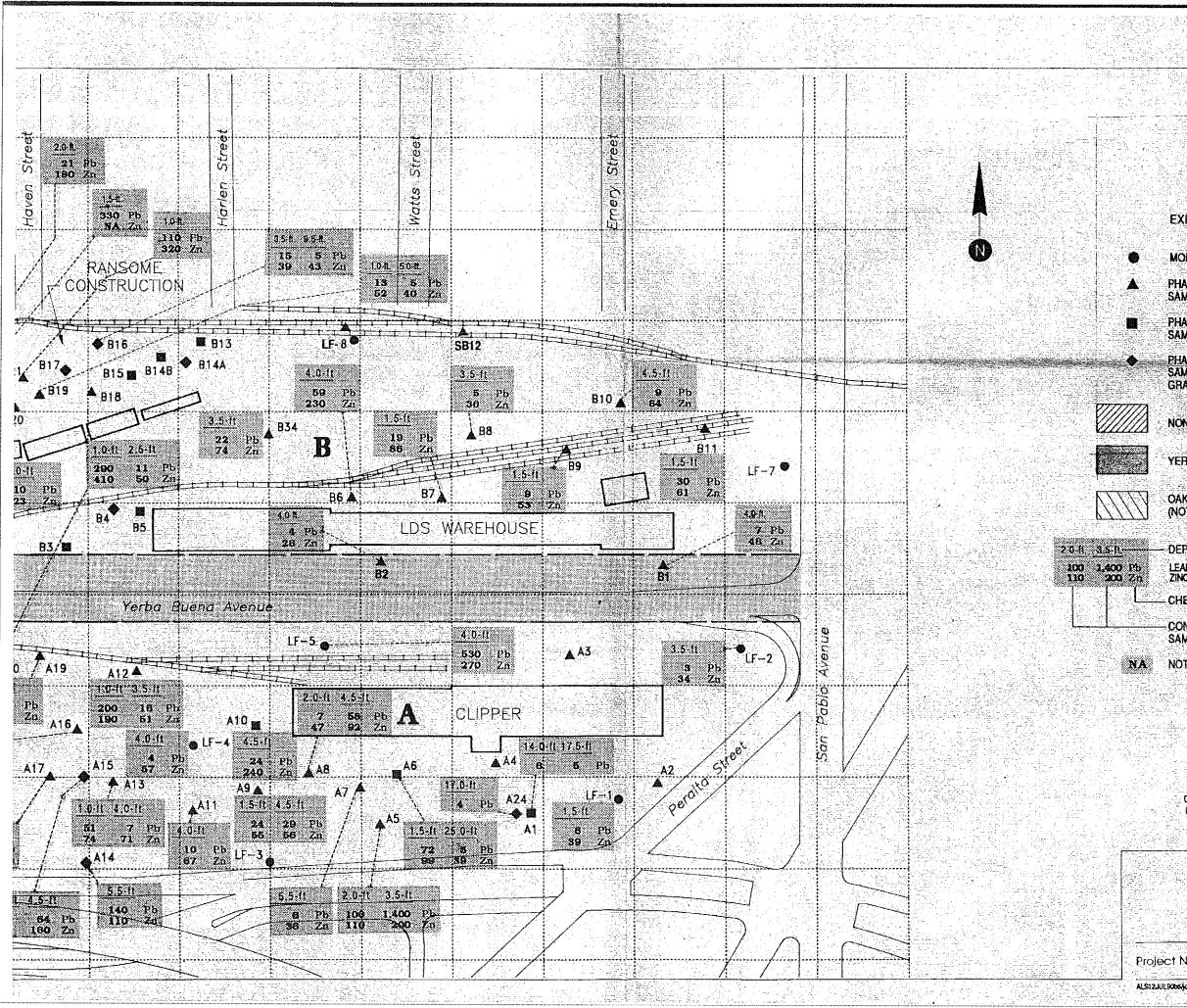

GROUND-WATER ELEVATION CONTOURS FEBRUARY 23, 1990

Figure 8 :

300 FEET

Project No. 1649 LEVINE • FRICKE CONSULTING ENGINEERS AND IMDIROGEOLOGISTIS

MONITORING WELL LOCATION

PHASE I INVESTIGATION SHALLOW SOIL SAMPLING LOCATION (LESS THAN 5 FEET)

PHASE I INVESTIGATION DEEPER SOIL SAMPLING LOCATION (6 TO 18 FEET)

PHASE I INVESTIGATION DEEPER SOIL SAMPLING LOCATION (13 TO 18 FEET) AND GRAB GROUND-WATER SAMPLE LOCATION

NON-ACCESSIBLE AREA

YERBA BUENA RIGHT-OF-WAY

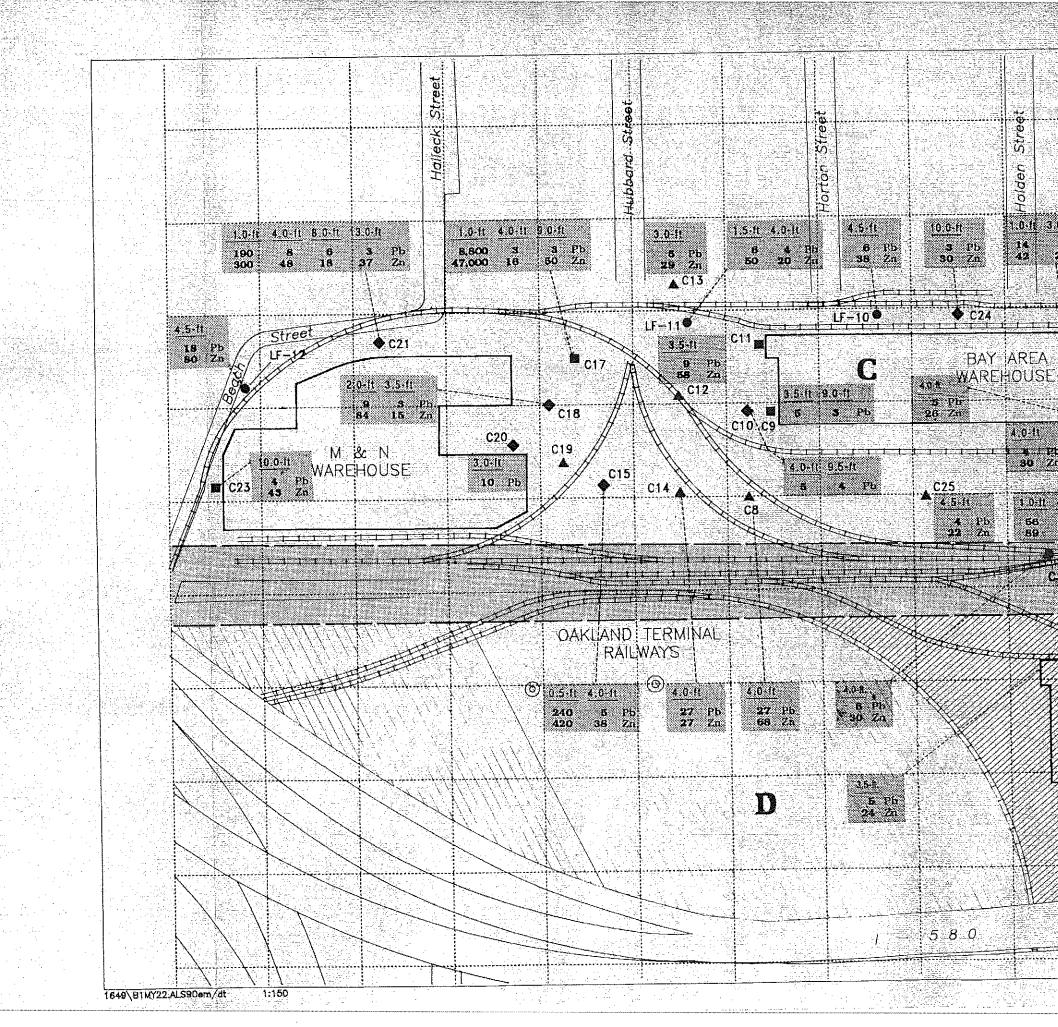
OAKLAND TERMINAL RAILWAYS (NOT INCLUDED IN THIS INVESTIGATION)

DEPTH OF SAMPLE

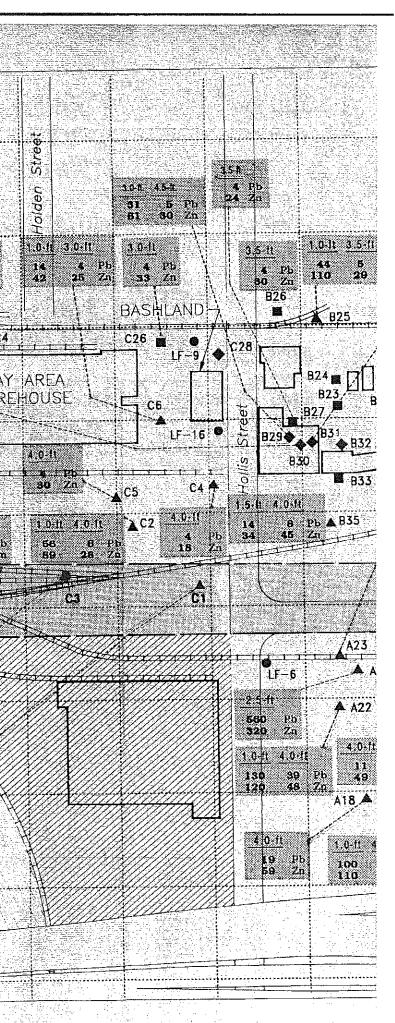
LEAD ZINC

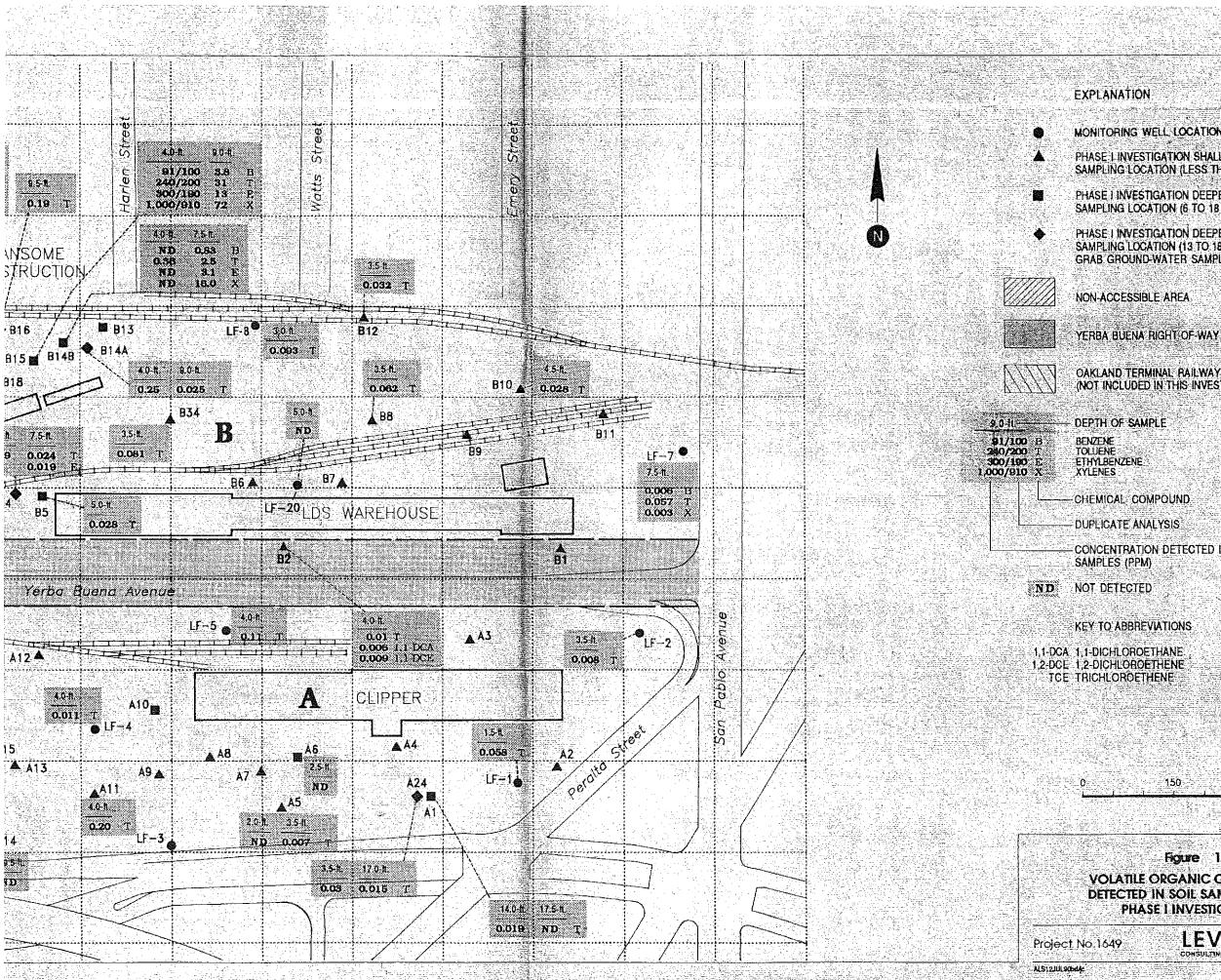
CHEMICAL COMPOUND

CONCENTRATION DETECTED IN SOIL SAMPLES (PPM)


NOT ANALYZED

300 FEET 150


Figure 10 : ZINC AND LEAD CONCENTRATIONS DETECTED IN SOIL SAMPLES (ppm) PHASE I INVESTIGATION


Project No.1649

LEVINE • FRICKE CONSULTING ENGINEERS AND HYDRO

2 2년 2 1년

MONITORING WELL LOCATION

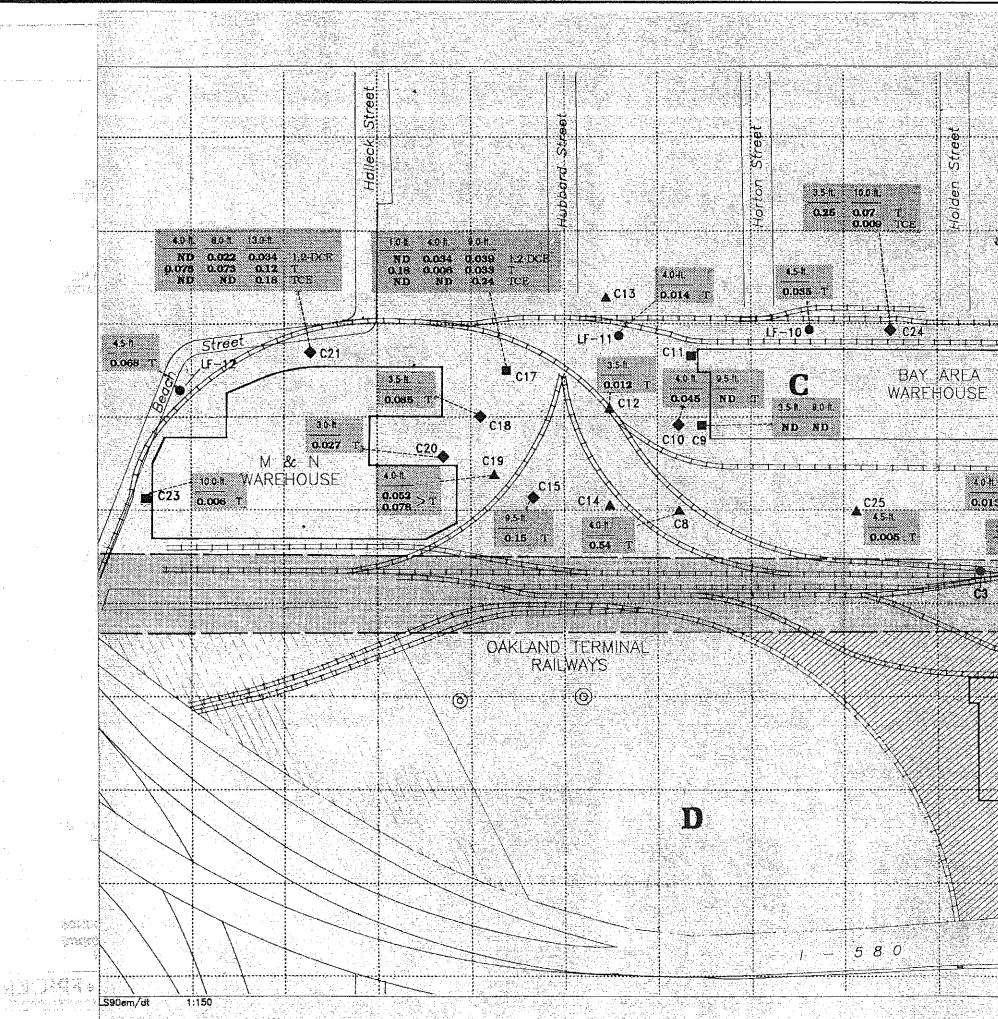
PHASE LINVESTIGATION SHALLOW SOIL SAMPLING LOCATION (LESS THAN 5 FEET)

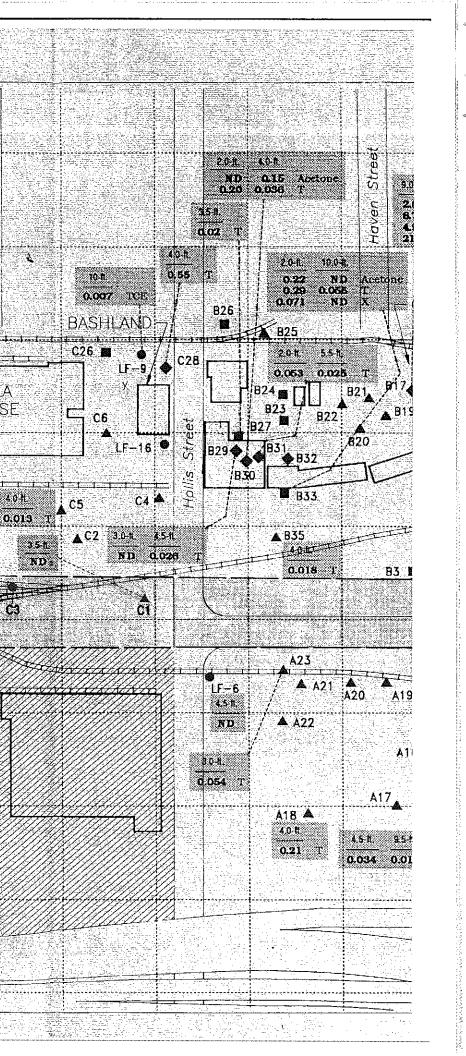
PHASE I INVESTIGATION DEEPER SOIL SAMPLING LOCATION (6 TO 18 FEET)

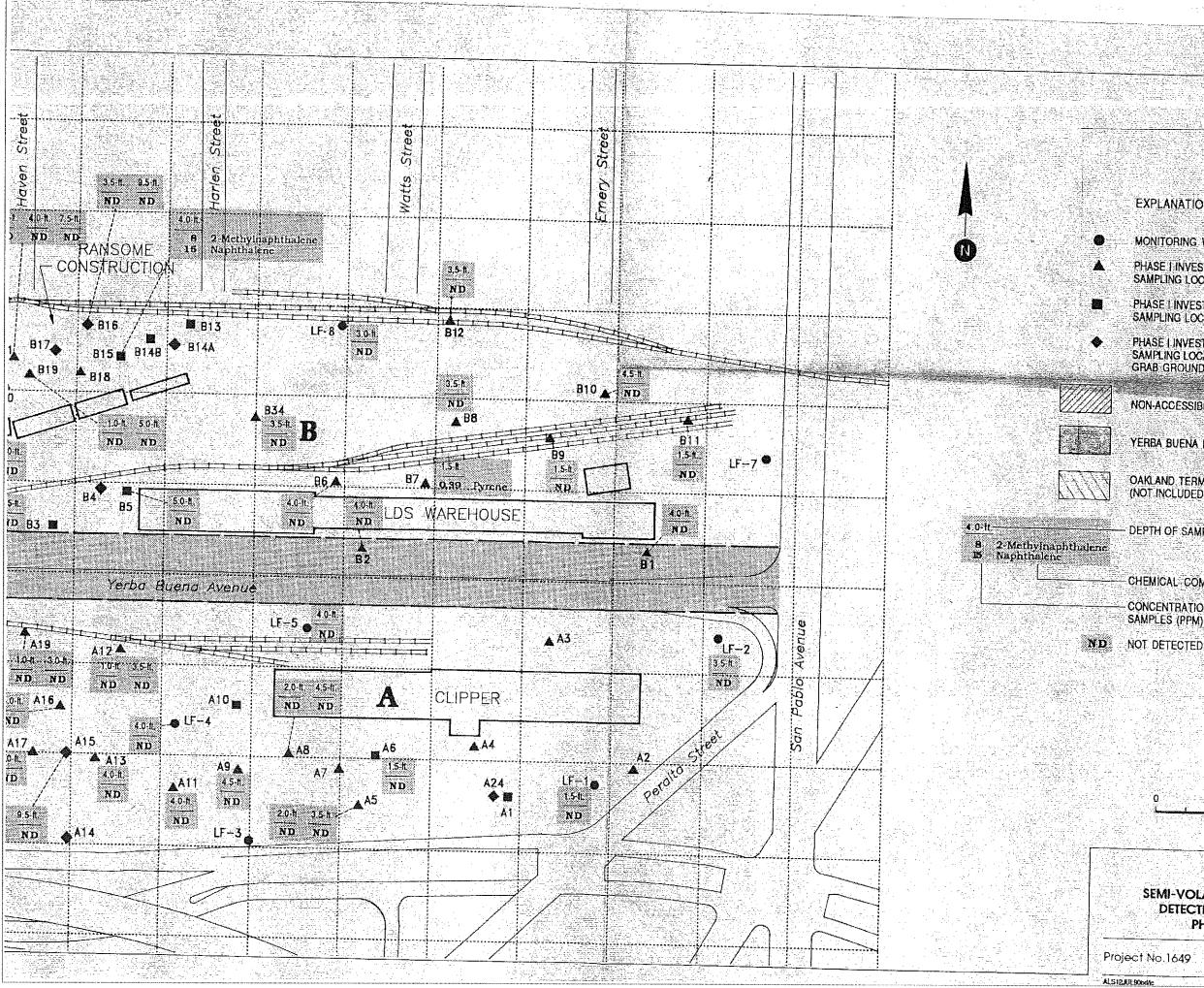
PHASE I INVESTIGATION DEEPER SOIL SAMPLING LOCATION (13 TO 18 FEET) AND GRAB GROUND-WATER SAMPLE LOCATION

OAKLAND TERMINAL RAILWAYS (NOT INCLUDED IN THIS INVESTIGATION)

CONCENTRATION DETECTED IN SOIL SAMPLES (PPM)


150


300 FEET


Figure 11 :

VOLATILE ORGANIC COMPOUNDS DETECTED IN SOIL SAMPLES (ppm) PHASE I INVESTIGATION

> **LEVINE** • FRICKE CONSULTING ENGINEERS AND HYDROGEOLOGIST

MONITORING WELL LOCATION

PHASE LINVESTIGATION SHALLOW SOIL SAMPLING LOCATION (LESS THAN 5 FEET)

PHASE I INVESTIGATION DEEPER SOIL SAMPLING LOCATION (6 TO 18 FEET)

PHASE LINVESTIGATION DEEPER SOIL SAMPLING LOCATION (13 TO 18 FEET) AND GRAB GROUND WATER SAMPLE LOCATION

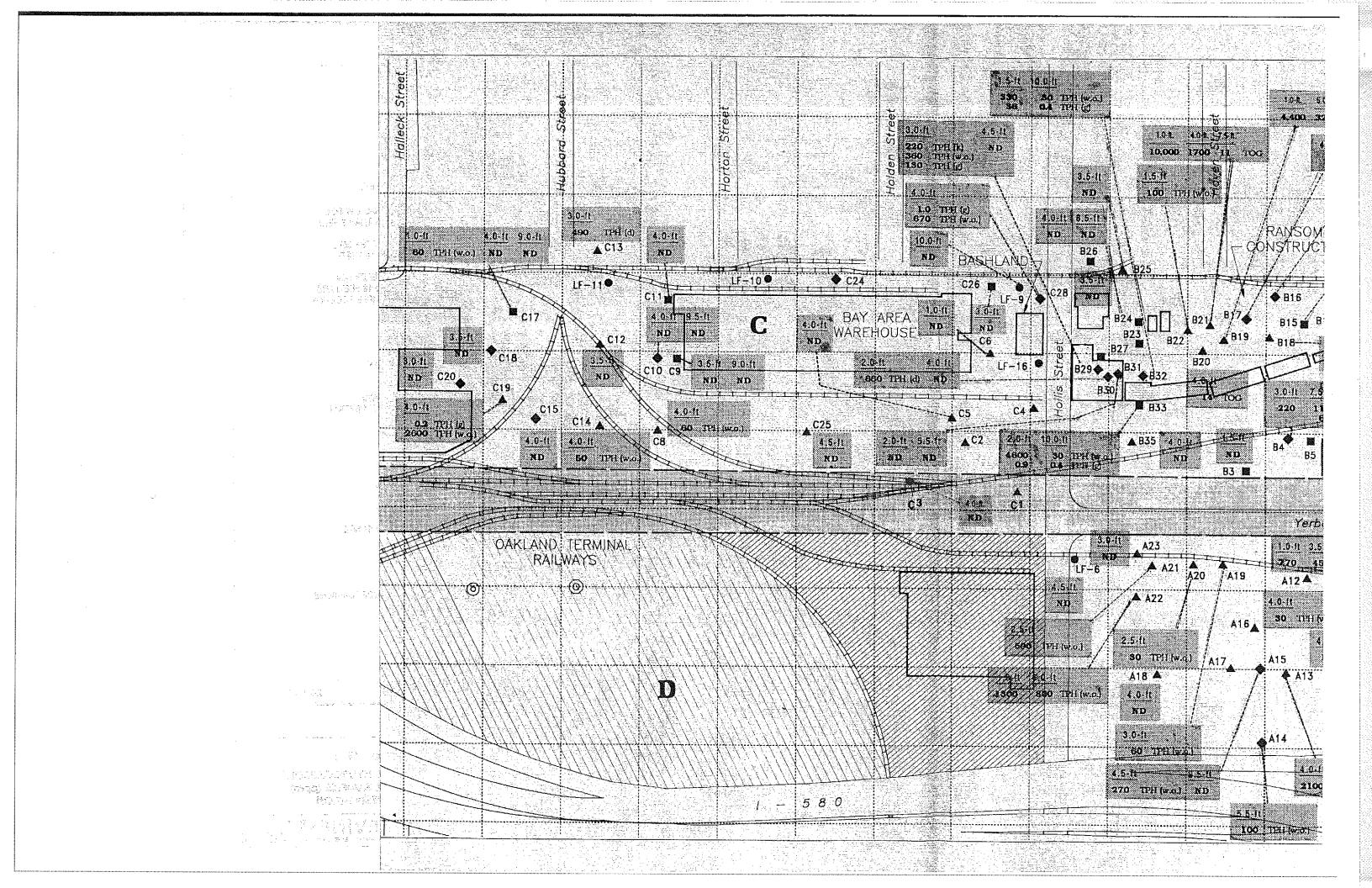
NON-ACCESSIBLE AREA

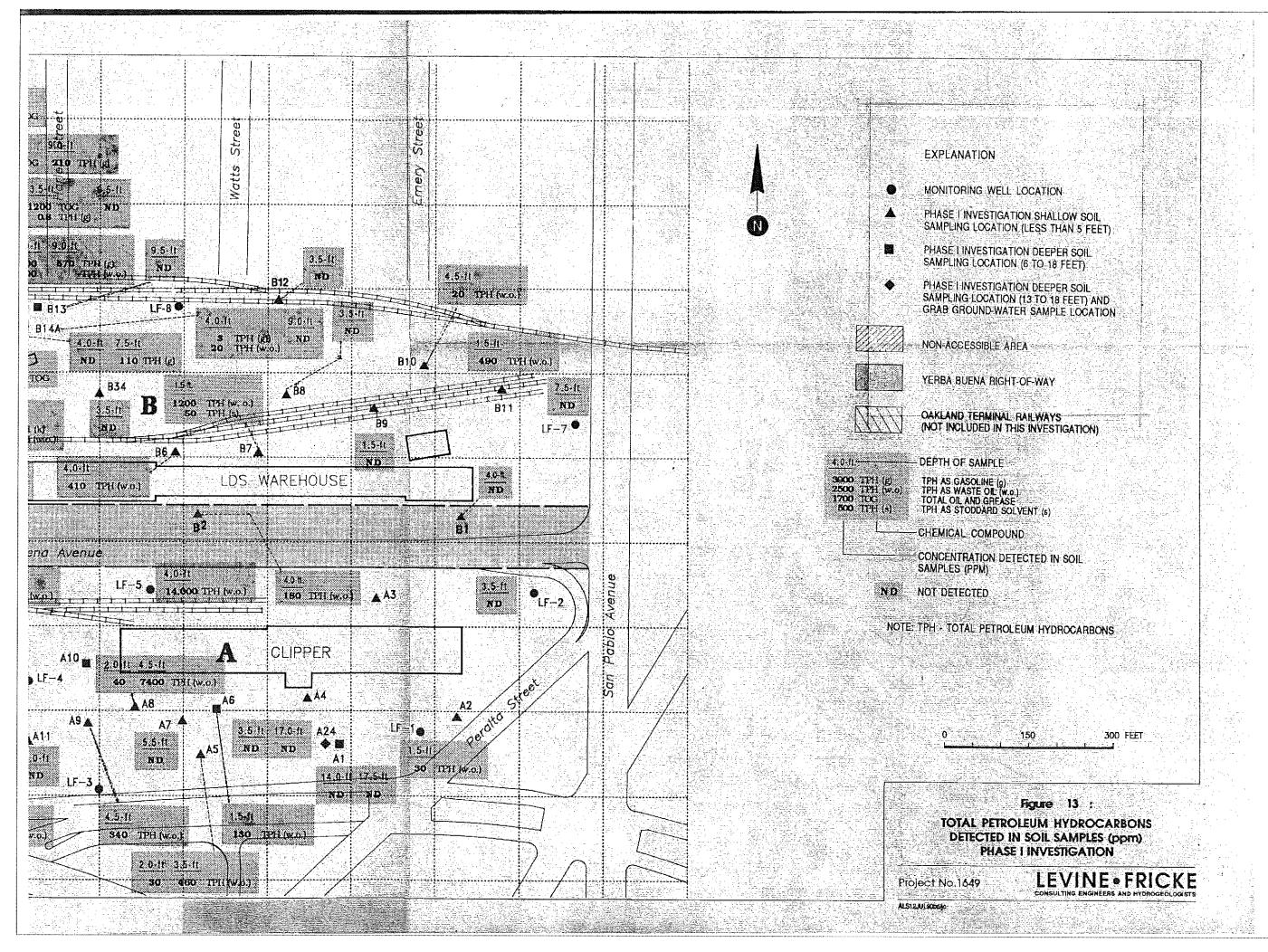
YERBA BUENA RIGHT-OF-WAY

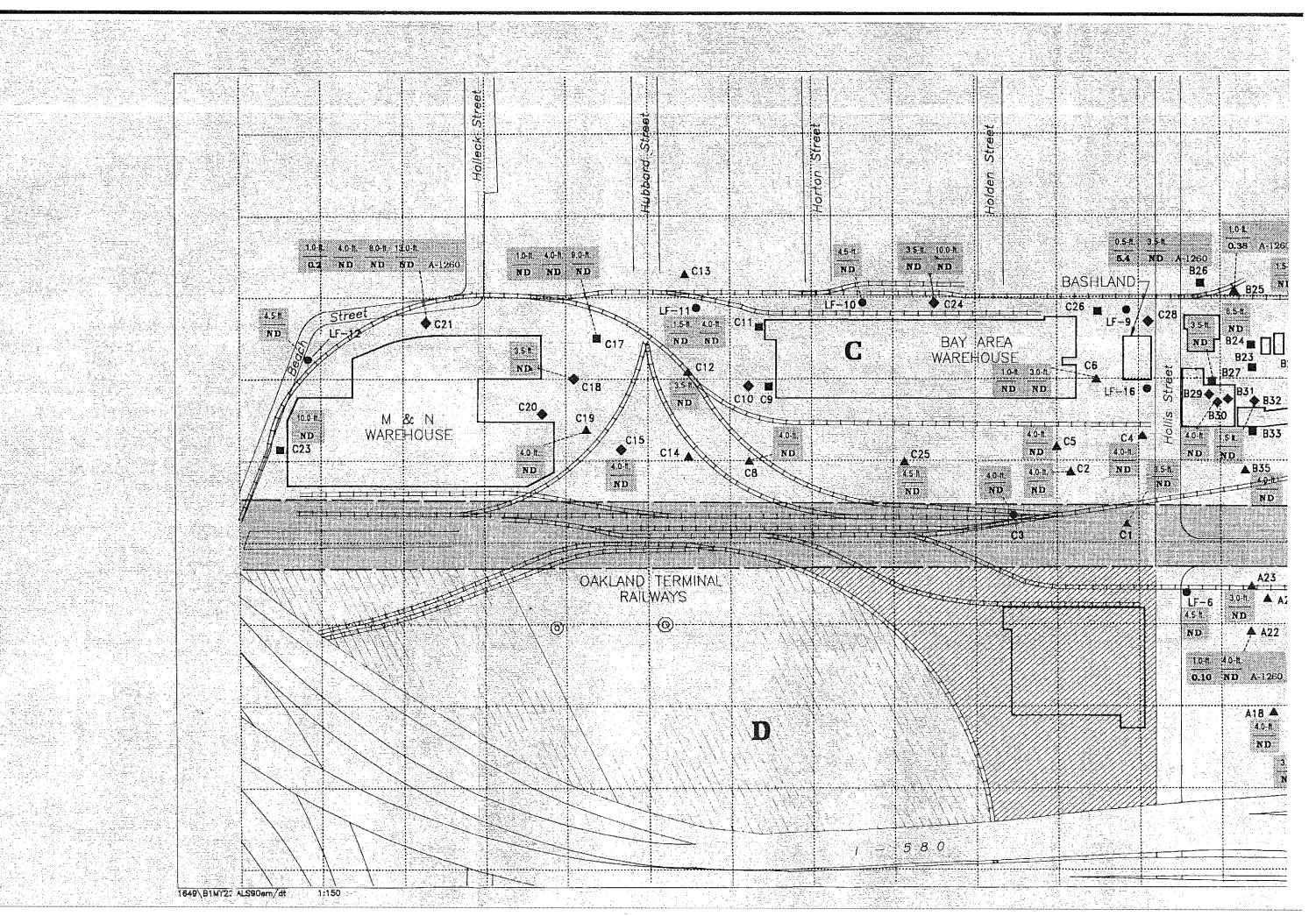
OAKLAND TERMINAL RAILWAYS (NOT INCLUDED IN THIS INVESTIGATION)

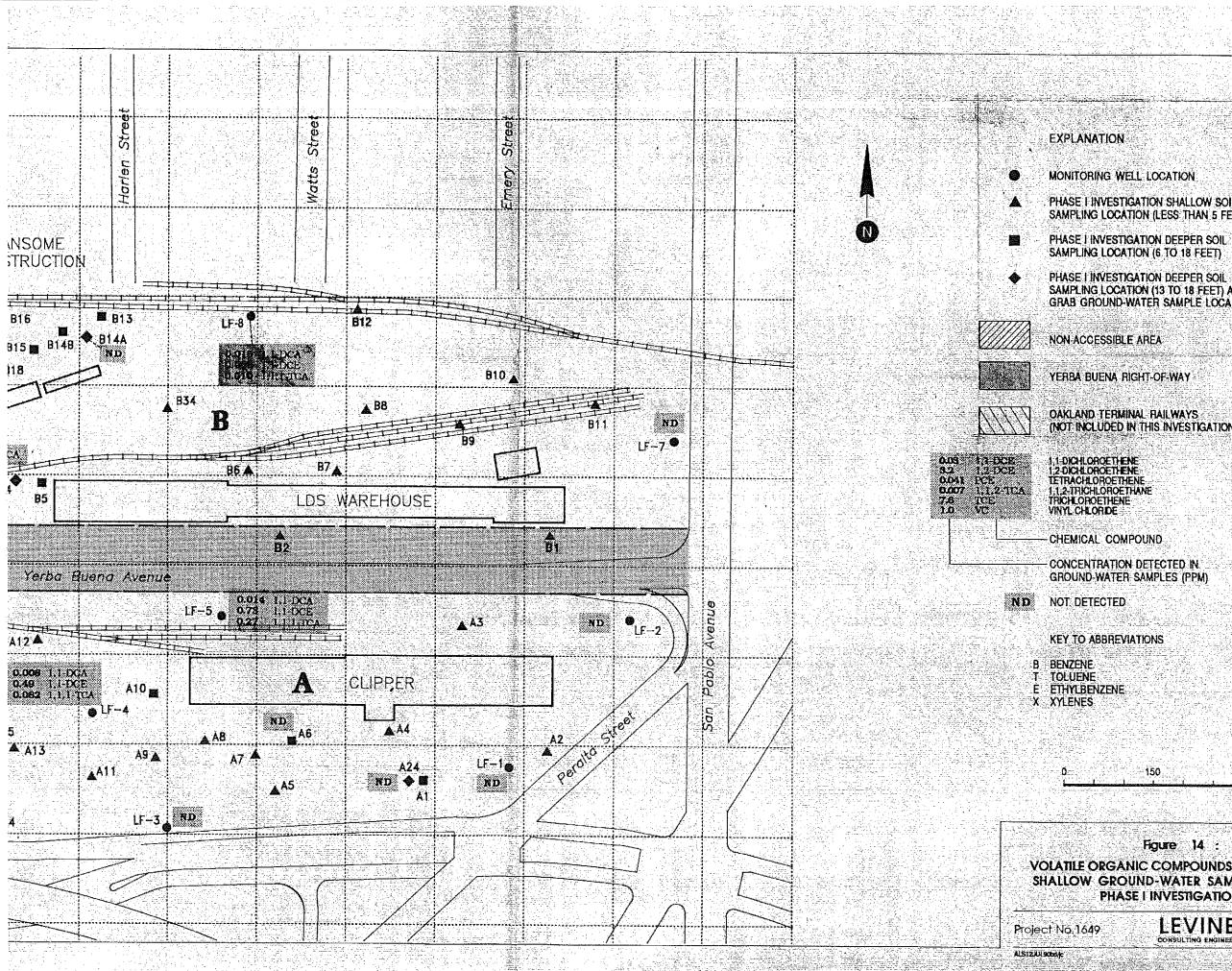
DEPTH OF SAMPLE

CHEMICAL COMPOUND


CONCENTRATION DETECTED IN SOIL SAMPLES (PPM)


150 300 FEET


Figure 12 :

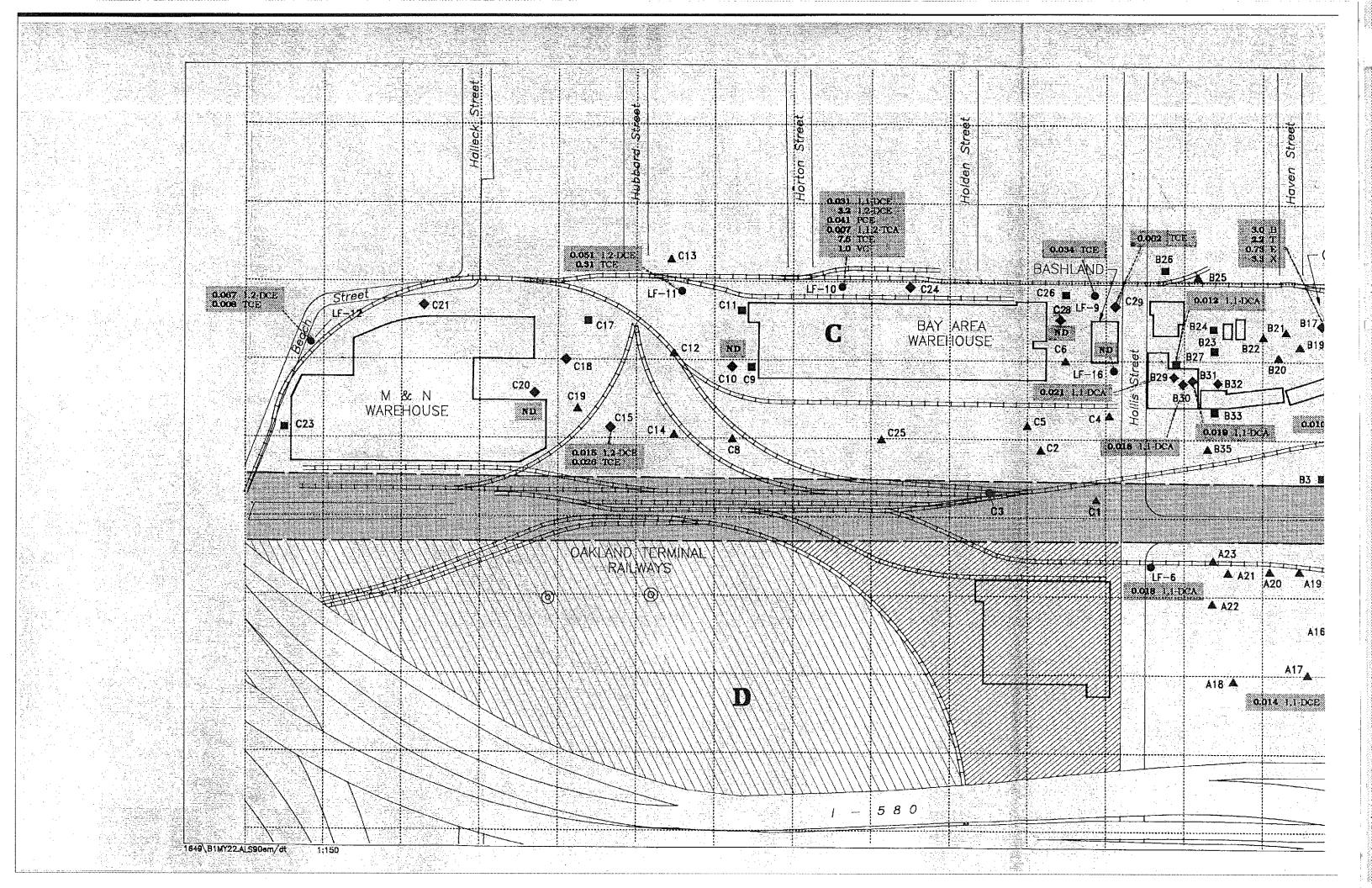

SEMI-VOLATILE ORGANIC COMPOUNDS DETECTED IN SOIL SAMPLES (ppm) PHASET INVESTIGATION

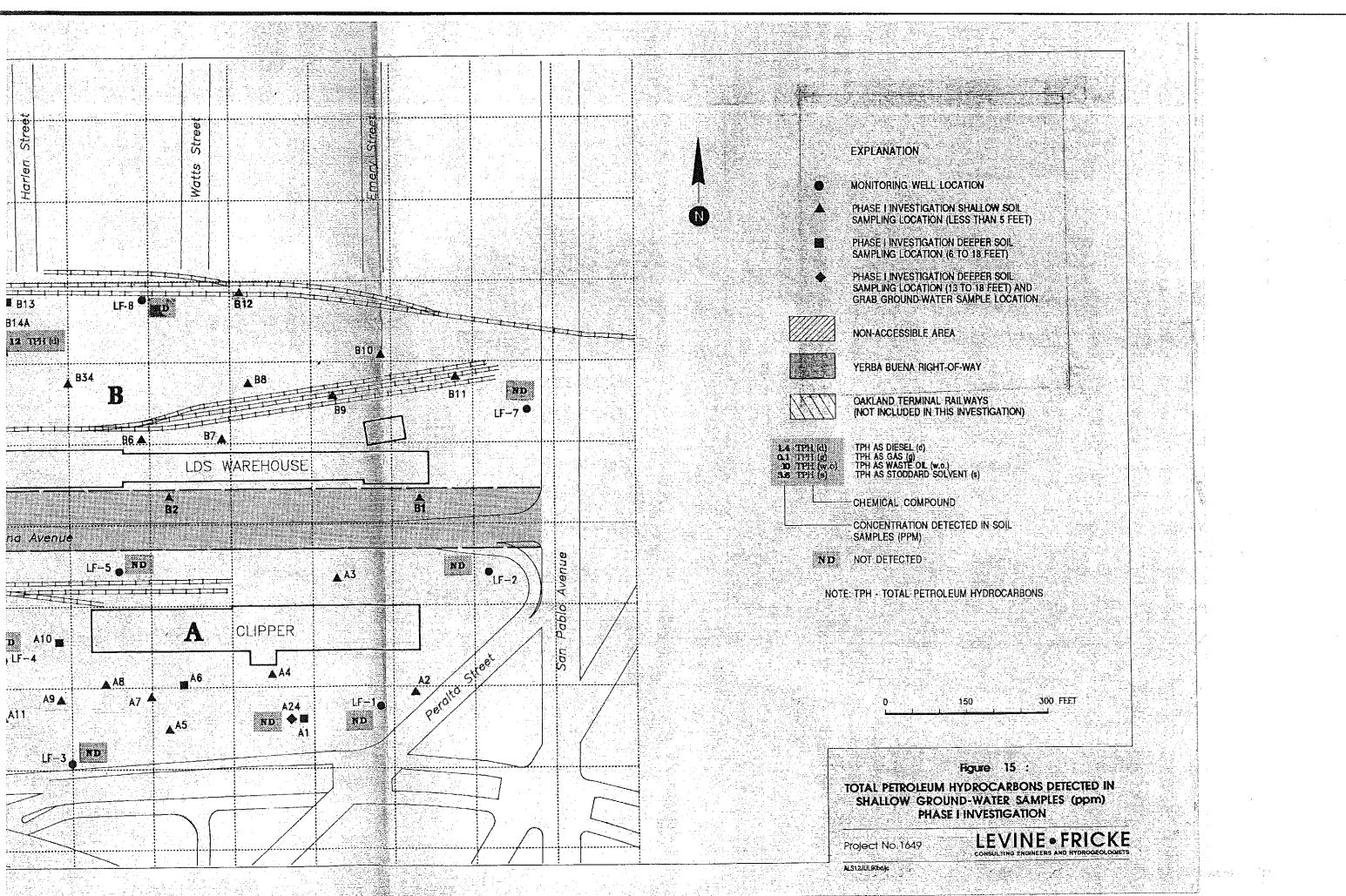
LEVINE • FRICKE

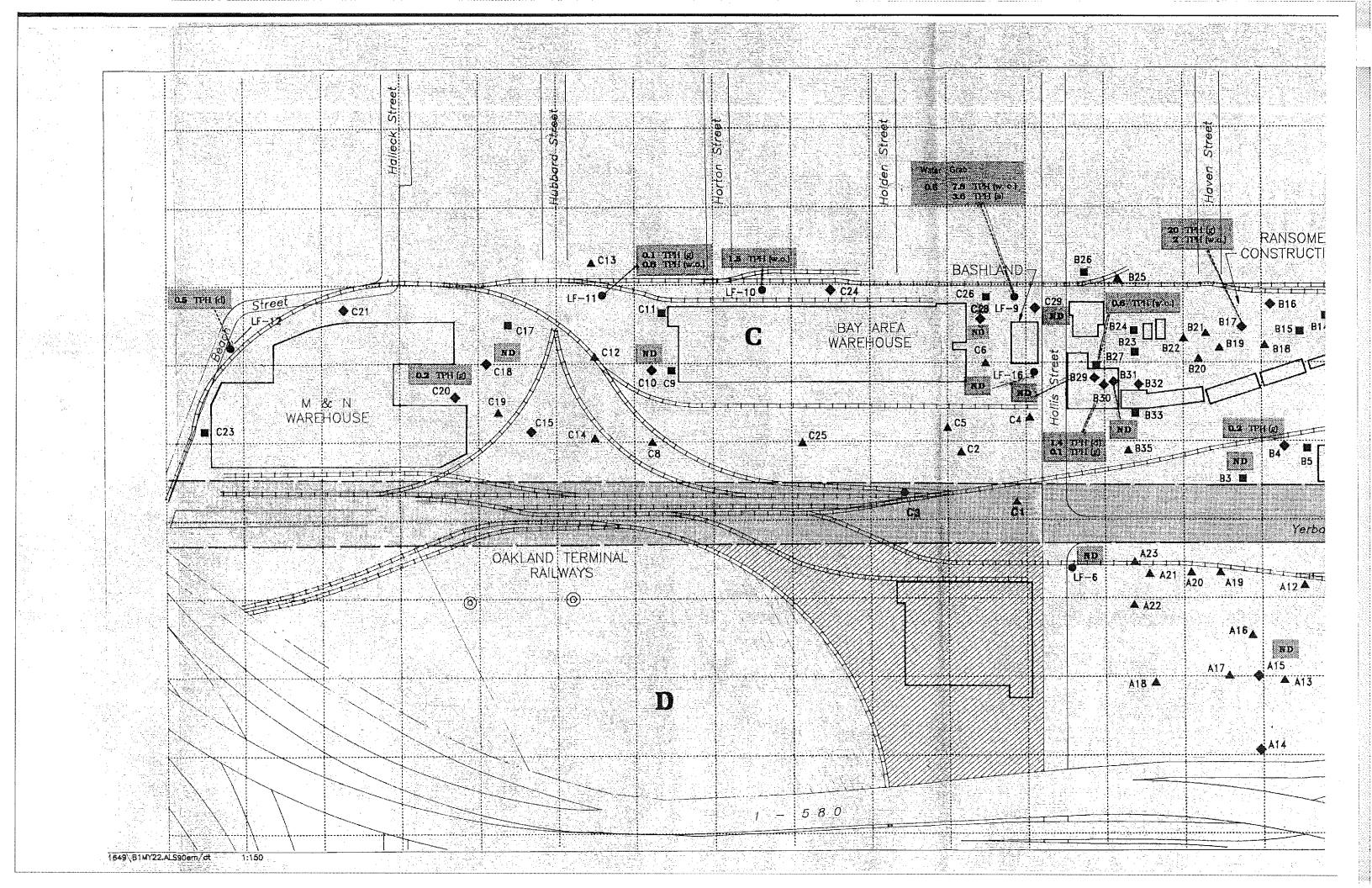
PHASE I INVESTIGATION SHALLOW SOIL SAMPLING LOCATION (LESS THAN 5 FEET)

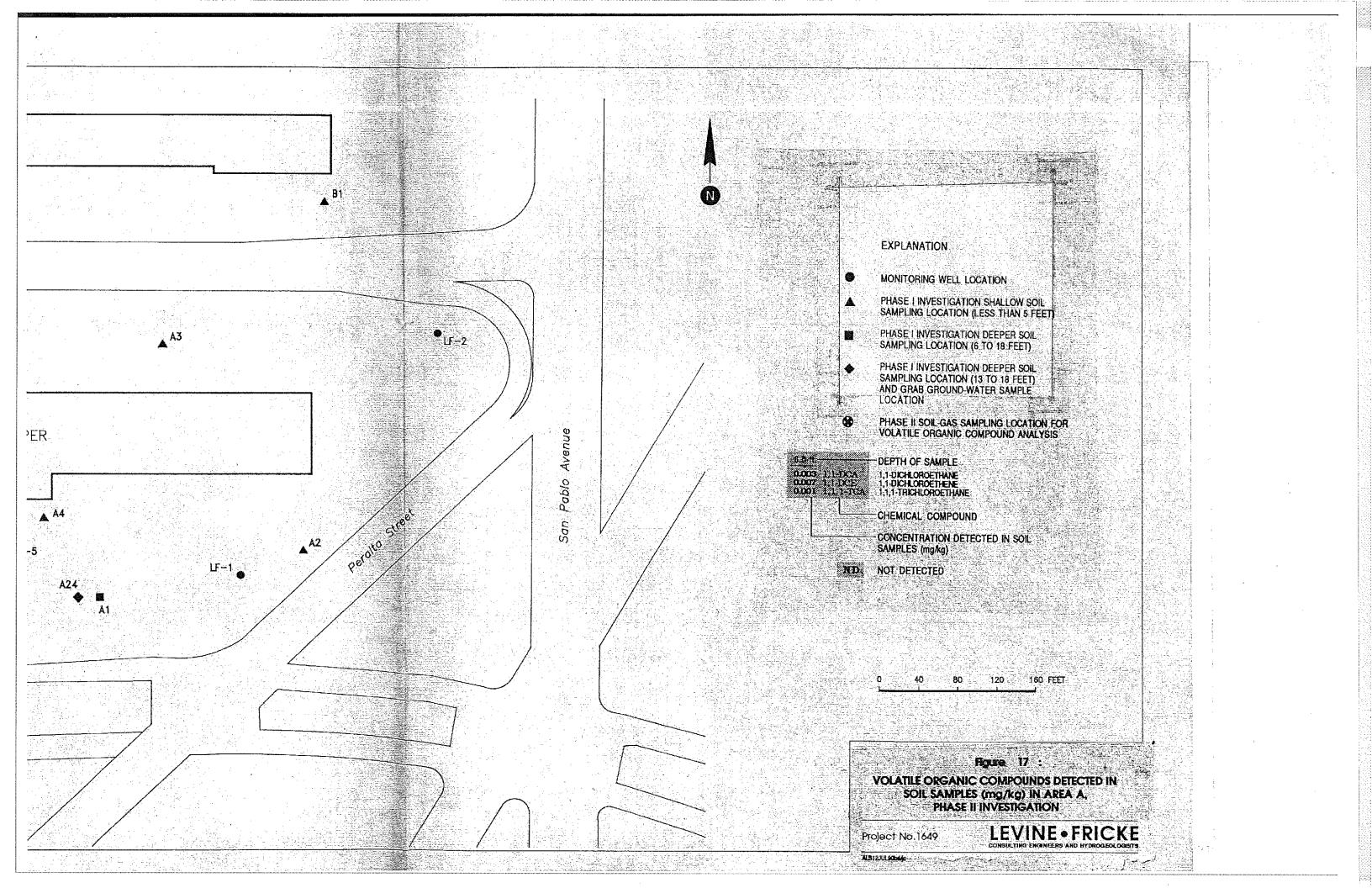
PHASE I INVESTIGATION DEEPER SOIL SAMPLING LOCATION (13 TO 18 FEET) AND GRAB GROUND-WATER SAMPLE LOCATION

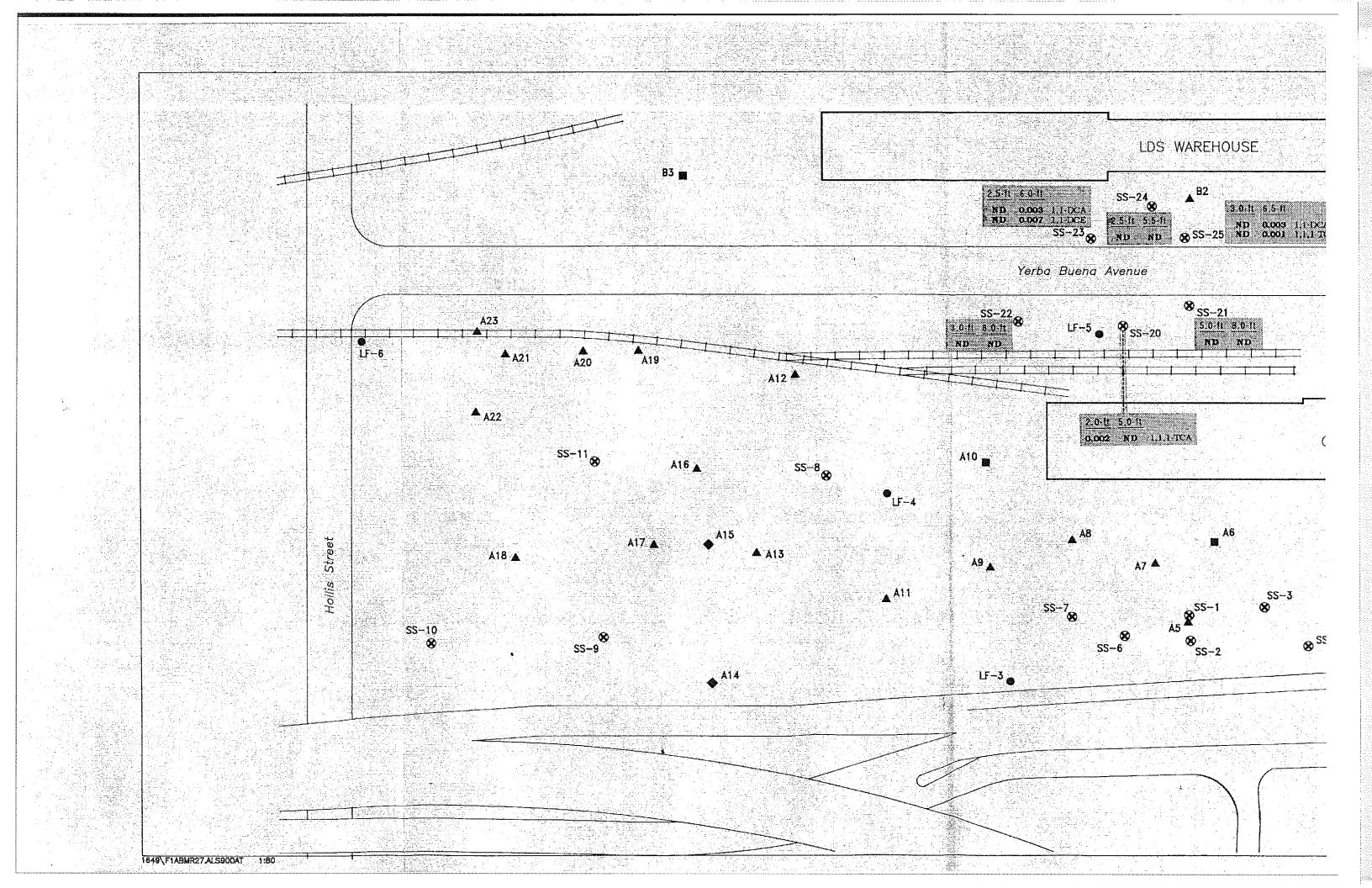
OAKLAND TERMINAL HAILWAYS (NOT INCLUDED IN THIS INVESTIGATION)

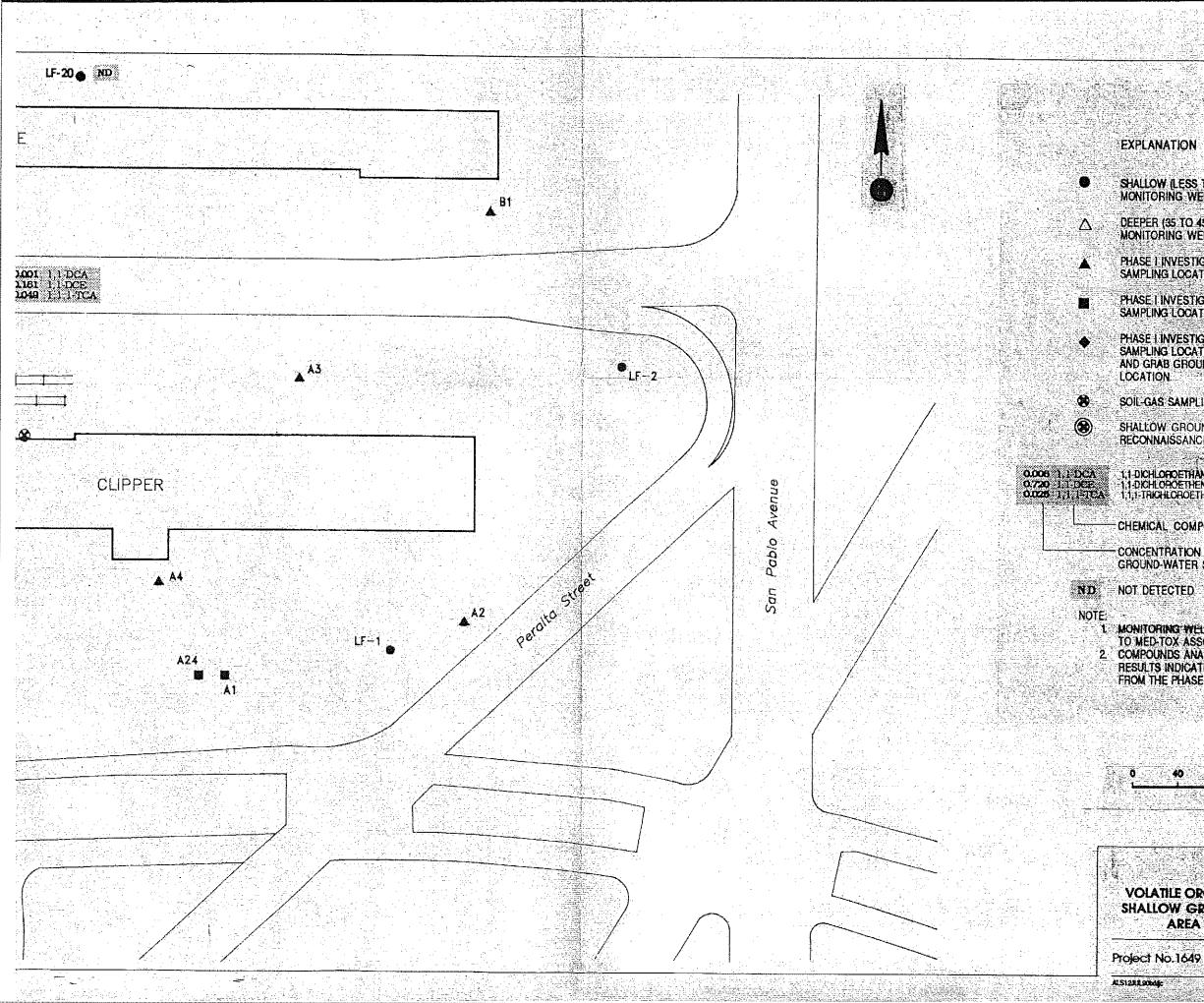

150


300 FEET


Figure 14 :


VOLATILE ORGANIC COMPOUNDS DETECTED IN SHALLOW GROUND-WATER SAMPLES (ppm) PHASE I INVESTIGATION


LEVINE • FRICKE



រាត្តភ្លឺភ្ល

SHALLOW (LESS THAN 25 FEET) MONITORING WELL LOCATION

DEEPER (35 TO 45 FEET) MONITORING WELL LOCATION

PHASE I INVESTIGATION SHALLOW SOIL SAMPLING LOCATION (LESS THAN 5 FEET)

-

PHASE I INVESTIGATION DEEPER SOIL SAMPLING LOCATION (6 TO 18 FEET)

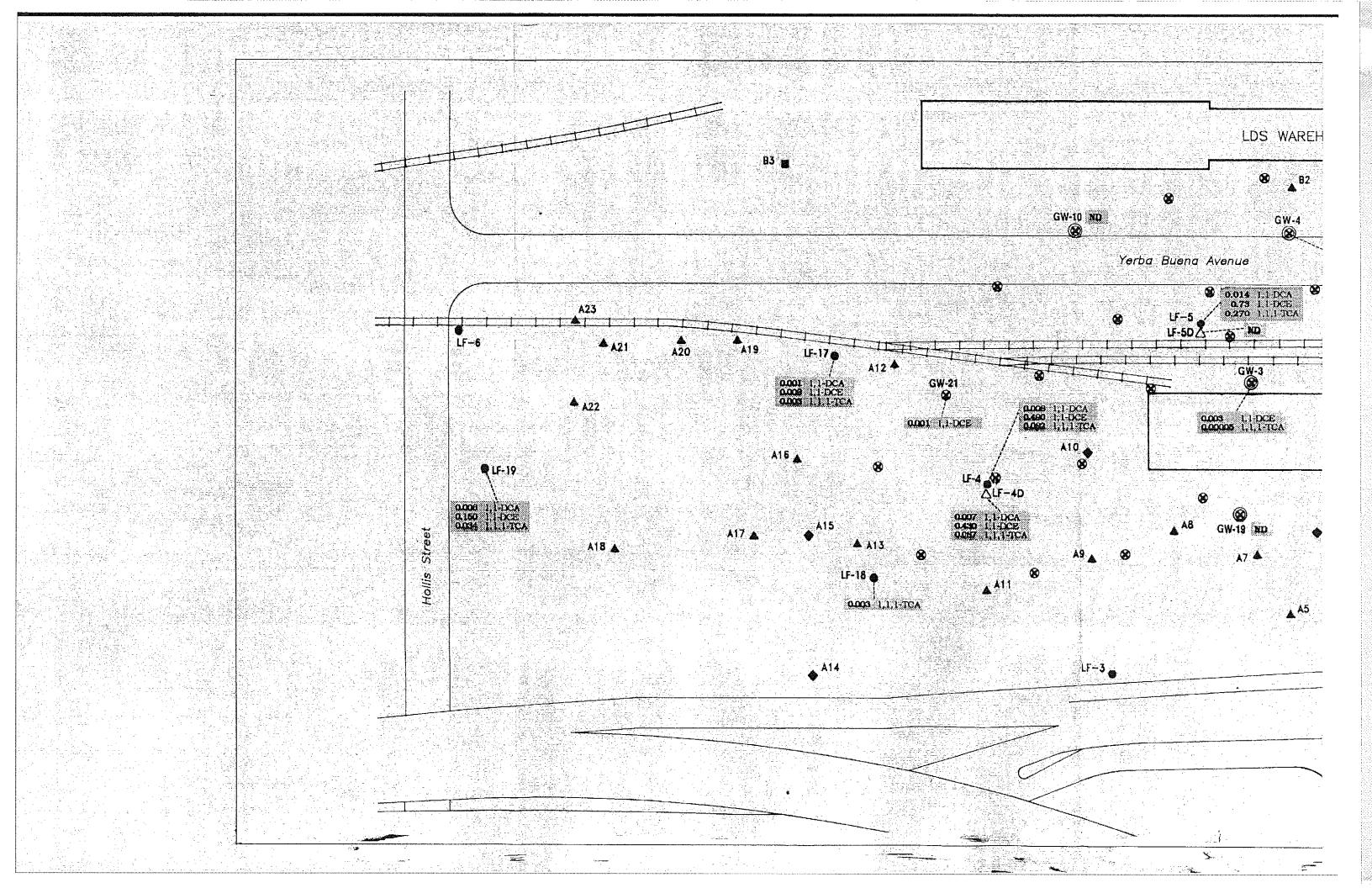
PHASE I INVESTIGATION DEEPER SOIL SAMPLING LOCATION (13 TO 18 FEET) AND GRAB GROUND-WATER SAMPLE

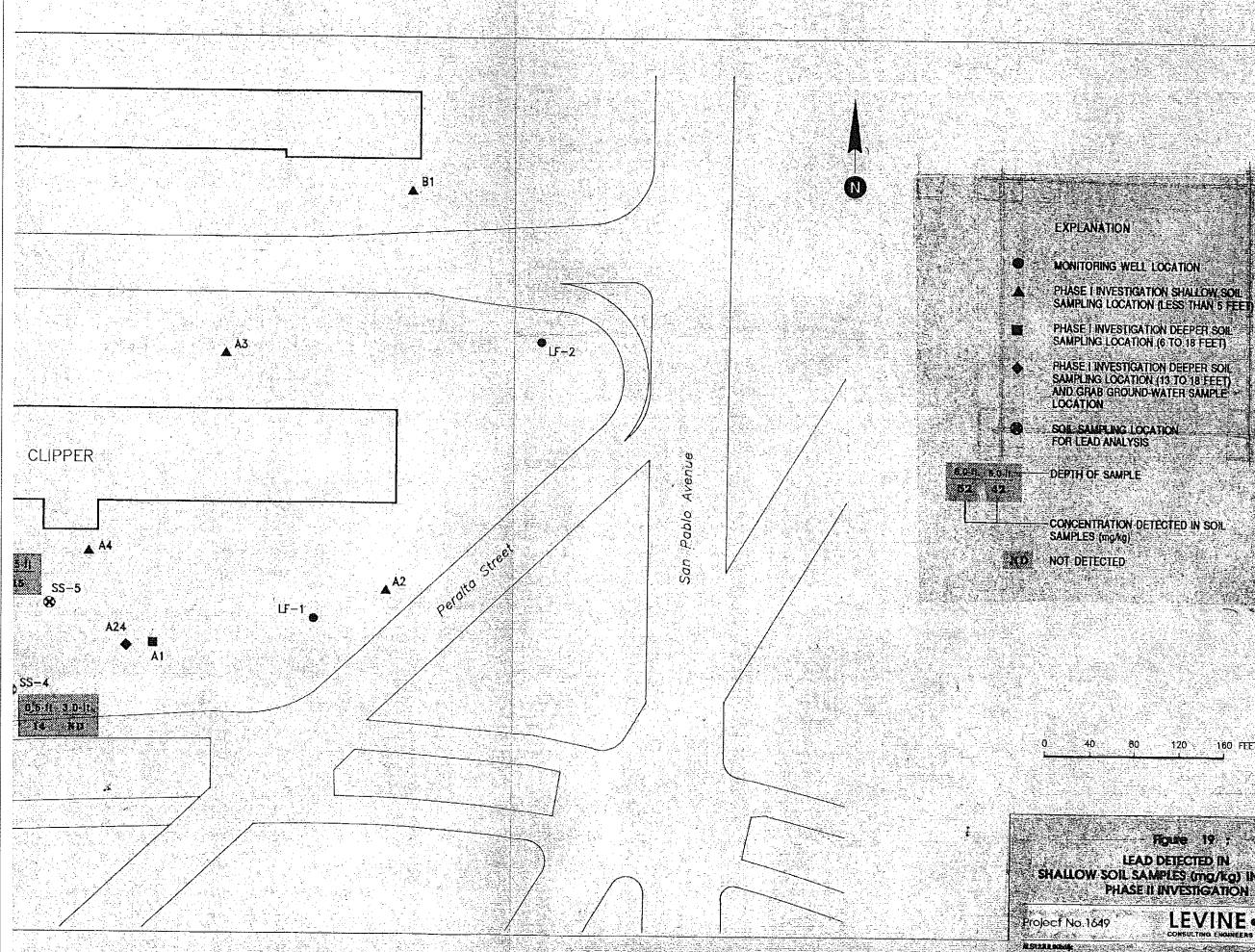
SOIL-GAS SAMPLING LOCATION

SHALLOW GROUNDWATER RECONNAISSANCE SAMPLING LOCATION

1.1-DICHLOROETHANE 111 TRICHLOROETHENE

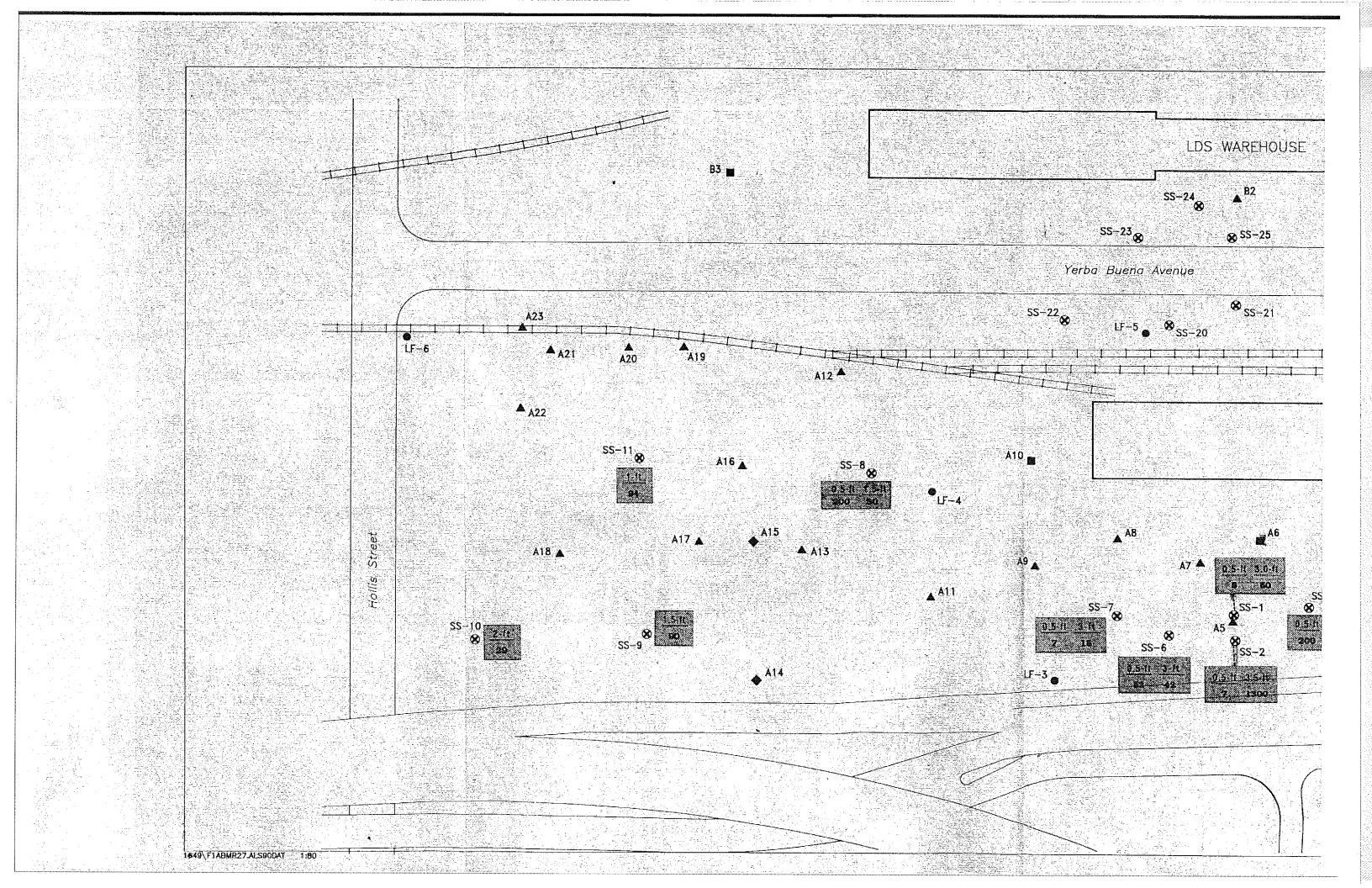
CHEMICAL COMPOUND


- CONCENTRATION DETECTED IN GROUND-WATER SAMPLES (PPM)


1. MONITORING WELL SAMPLES WERE SUBMITTED TO MED-TOX ASSOCIATES FOR VOLATILE ORGANIC 2. COMPOUNDS ANALYSIS USING EPA METHOD 8010. RESULTS INDICATED FOR WELLS LF-4 AND LF-5 ARE-FROM THE PHASE I INVESTIGATION.

> 160 FEET 40 80 120

Rouro 18 : VOLATILE ORGANIC COMPOUNDS DETECTED IN SHALLOW GROUND-WATER SAMPLES (DDM) IN AREA A, PHASE II INVESTIGATION



120 160 FEET

Route 19 ; LEAD DETECTED IN SKALLOW SOIL SAMPLES (mg/kg) IN AREA A, PHASE II INVESTIGATION

LEVINE • FRICKE

ATTACHMENT 7

	F	2000030	93 - Yerba Buena/ East Bay Bridge Center
			nary of Boring/ and Test Pit Identification by Facility- nvestigations Covering More Than One Facility And Groundwater Monitoring Wells by Facility
Facility	Area	ltem	Identification
Clipper Exxpress	A	Borings	A-1, A3 thru 11, A-24; PH3-1 thru -8; BB-31, -32, -35, -41; SS-1 thru 7, SS-20, 21, 22; GW-3, 19, 28, 29; BB-32, 41, 31, 35, 36, 37; SBVOC-1, SVOC-2, SVOC-10 -11, AW1-3, AW-2-2, AN1-2, AN2-2, A-TPH-1, A TPH-2; AE1-3, AE2-3, AS-1-3, AS-2-3, AF2-5, AF1-4, SG-1,2,3,4,5,7,11,12,13, 14, 15 (note two SG-15's), 17, 18, 22, 23;
		Wells	LF-3 thru LF-4 & 4D & 4Z; LF-5 & 5D; MW-6 & 6D, 7 & 7D & 7Z
LDS	В	Borings	B-1 thru 7; SG-4, 8, 9, , 24, 25; GW-4, 10, 30, 34; SS-23, 24, 25; BB-44; SVOC-3 thru 9
		Wells	LF-20 & 21; MW-3
Santa Fe Terminal	А	Borings	A-12 thru 23; GW-21, 26, 31, 32, 33; SG-19, 20; SG-19 thru 21; BB-38, 40; SS-8 thru 11; SS-14 (sidewall) TPI-8, BS-14, SSW-8, SW-14, SNW-8-R, SN-14, SN-8-RR, SNE-8, SE-8RR, SE-14, SSE-8;
Services -A		Wells	LF-5 & 6, LF-17 thru 19 & 19D, MW- 8, 9 & 9D; EX-1 thru 4
Santa Fe Terminal	В	Borings	B-35;
Services -B		Wells	LF-4 & 21;

METAL COMPOUNDS DETECTED IN SOIL SAMPLES PHASE I INVESTIGATION YERBA BUENA SITE, EMERYVILLE, CALIFORNIA

(concentrations in ppm)

SAMPLE LOCATION ID	SAMPLE ID	DATE SAMPLED	SAMPLE DEPTH (feet)	Sb	As	Be	Cd	Cr	Cu	Pb	Hg	Ni	Se	Ag	TI	Zn
A1	A1(14)C	22-Jan-90	14.0	NÁ	NA	NA	NA	NA	NA .		NA	NA	NA	NA	NA	N
A1	A1(17.5)C	22-Jan-90	17.5	NA	NA	NA	NA	NA	NA	5	NA	NA	NA	NA	NA	N
A5	A5(2)A	24-Jan-90	2.0	ND	6.9	0.5	0.6	42	51	100	ND	40	ND	ND	ND	11
A5	A5(3.5)B	24-Jan-90	3.5	ND	3.6	0.4	2.8	58	49	1400	1.9	27	2	ND	ND	20
A6	A6(1.5)B	23-Jan-90	1.5	ND	3.7	0.5	0.3	27	27	72	0.4	27	3	ND	ND	9
A6	A6(25)C	24-Jan-90	25.0	ND	6	0.3	0.2	42	17	5	ND	50	ND	ND	ND	3
A7	A7(5.5)B	24-Jan-90	5,5	ND	4.8	0.4	ND	28	16	6	ND	36	2	ND	ND	3
A8	A8(2)A	24-Jan-90	2.0	ND	4.4	0.7	0.2	47	20	7	ND	44	ND	ND	ND	4
88	A8(4.5)B	24-Jan-90	4.5	ND	3.2	0.4	0.3	30	35	58	0.4	31	2	ND	ND	9
A9	A9(1.5)A	24-Jan-90	1.5	ND	5.1	0.4	ND	26	17	24	0.2	35	3	ND	ND	5
A9	A9(4.5)B	24-Jan-90	4.5	ND	5.7	0.5	ND	30	25	29	0.4	32	4	ND	ND	5
A10	A10(4.5)B	25-Jan-90	4.5	ND	3.4	0.5	0.7	41	56	24	ND	42	NÐ	ND	ND	24
A11	A11(4)B	05-Feb-90	4.0	ND	1.8	0.5	0.3	44	32	10	ND	40	ND	ND	ND	6
A12	A12(1)A	05-Feb-90	1.0	ND	8.3	ND	0.7	52	130	200	ND	39	ND	ND	ND	19
A12	A12(3.5)B	05-Feb-90	3.5	ND	916	0.4	ND	43	30	16	ND	31	ND	ND	ND	5
A13	A13(1)A	05-Feb-90	1.0	ND	8	0.5	0.2	33	27	51	ND	31	ND	ND	ND	7
A13	A13(4)B	05-Feb-90	4.0	ND	1.6	0.6	0.2	44	23	7	NÐ	36	ND	ND	ND	7
A14	A14(5.5)8	25-Jan-90	5.5	ND	5.3	0.5	1.6	34	150	140	ND	32	ND	ND	ND	11
A15	A15(3)A	25-Jan-90	3.0	ND	15	0.5	0.3	38	110	92	ND	39	ND	ND	ND	9
A15	A15(4.5)B	25-Jan-90	4.5	ND	5.2	0.4	0.7	32	41	64	ND	47	` ND	NÐ	ND	16
A16	A16(4)B	05-Feb-90	4.0	ND	0.9	0.5	0.2	41	25	11	ND	36	ND	ND	ND	4
A17	A17(1)A	05-Feb-90	1.0	ND	2.8	0.4	0.5	34	47	100	0.2	39	ND	ND	ND	11
A17	A17(4)B	05-Feb-90	4.0	ND	1.7	0.7	0.3	39	20	6	ND	46	ND	ND	ND	ć
A18	A18(4)B	05-Feb-90	4.0	ND	2.7	0.5	0.4	45	91	19	ND	49	ND	ND	ND	5

ı b

METAL COMPOUNDS DETECTED IN SOIL SAMPLES PHASE I INVESTIGATION YERBA BUENA SITE, EMERYVILLE, CALIFORNIA

(concentrations in ppm)

SAMPLE LOCATION ID	SAMPLE ID	DATE SAMPLED	SAMPLE DEPTH (feet)	Sb	As	8e	Cd	Cr	Cu	Pb	Hg	Nİ	Se	Ag	τι	Zn
A19	A19(3)8	05-Feb-90	3.0	ND	0 .9	0.6	ND	42	29	18	ND	37	1	ND	ND	5
A20	A20(1)A	05-Feb-90	1.0	ND	3.4	0.2	1.5	51	640	290	0.5	36	ND	ND	ND	41
A20	A20(2.5)B	05-Feb-90	2.5	ND	0.9	0.4	ND	41	21	11	ND	34	ND	ND .	ND	5
A21	A21(2.5)B	05-Feb-90	2.5	ND	0.9	0.3	0.4	37	340	560	ND	31	1	ND	~ ND	32
A22	A22(1)A	05-Feb-90	1.0	ND	1.1	ND	0.4	31	120	130	1.9	33	ND	NÐ	ND	12
A22	A22(4)B	05-Feb-90	4.0	ND	ND	0.3	ND	35	40	39	ND	31	ND	ND	ND	4
A23	A23(3)B	25-Jan-90	3.0	ND	12	0.9	0.2	28	12	10	ND	22	ND	ND	ND	2
424	A24(17)C	23-Jan-90	17.0	NA	KA	NA	NA	NA	NA	4	NA	NA	NA	NA	NA	N
31	81(4)8	29-Jan-90	4.0	ND	3.7	0.4	0.3	45	19	7	NÐ	50	ND	ND	ND	4
32	B2(4)B	29-Jan-90	4.0	ND	2.3	0.4	ND	29	17	4	ND	20	ND	ND	ND	2
86	B6(4)B	26-Jan-90	4.0	ND	26	0.4	0.7	54	38	59	ND	68	ND	ND	ND	23
87	B7(1.5)A	26-Jan-90	1.5	ND	7.1	0.2	0.2	34	24	19	0.3	38	ND	ND	ND	8
38	88(3,5)8	30-Jan-90	3.5	NO	1:8	0.4	ND	42	25	5	ND	32	ND	ND	ND	3
39	B9(1.5)A	26-Jan-90	1.5	ND	34	0.3	ND	24	23	9	ND	30	ND	ND	NÐ	5
810	810(4.5)B	30-Jan-90	4.5	ND	2.2	0.7	0.4	40	25	9	ND	41	ND	ND	NÐ	6
311	B11(1.5)A	26-Jan-90	1.5	ND	8.9	0.4	0.2	61	30	30	ND	64	ND	ND	ND	6
812	B12(3.5)A	29-Jan-90	3,5	NÐ	15	0.4	0.3	38	20	7	ND	42	~ ND	ND	ND	5
316	B16(3.5)A	29-Jan-90	3.5	ND	23	ND	ND	14	14	15	NÐ	16	ND	ND	ND	3
816	B16(9.5)C	29-Jan-90	9.5	ND	6.1	0.6	0.3	43	17	5	ND	43	ND	ND	ND	4
319	819(1)A	01-Feb-90	1.0	ND	1.6	0.3	ND	20	26	13	ND	30	2	ND	ND	5
319	B19(5)B	01-Feb-90	5.0	ND	0.9	0.5	0.2	42	22	5	ND	37	ND	ND	ND	4
321	621(1)A	01-feb-90	1.0	ND	2.4	ND	0.6	24	38	110	ND	27	1	ND	ND	32

Į,

-

METAL COMPOUNDS DETECTED IN SOIL SAMPLES PHASE I INVESTIGATION YERBA BUENA SITE, EMERYVILLE, CALIFORNIA

(concentrations in ppm)

SAMPLE LOCATION ID	SAMPLE ID	DATE SAMPLED	SAMPLE DEPTH (feet)	Sb	As	Be	Cď	Cr	Cu	Pb	Hg	Ni	Se	Ag	тl	Zn
B22	B22(1.5)	02-Feb-90	1.5	NA	NA	NA	NA	NA	NA	330	NA	NA	NA	NA	NA	N
B25	B25(1)A	29-jan-90	1.0	ND	31	0.5	0.4	77	60	44	ŇD	93	ND	ND	ND	11
B25	B25(3.5)B	29 - Jan-90	3.5	ND	2.6	0.6	ND	31	17	5	ND	26	ND	ND	ND	2
B26	B26(3.5)B	29-jan-90	3.5	ND	2.4	0.3	ND	42	16	4	ND	26	ND	ND	ND	3
827	827(3.5)B	23-Feb-90	3.5	ND	1.4	0.5	ND	31	14	4	NÐ	24	ND	ND	ND	2
B29	B29(3)A	22-Feb-90	3.0	ND	5	0.3	0.2	32	27	31	ND	35	ND	ND	ND	6
B29	B29(4.5)B	22-Feb-90	4.5	ND	4	0.3	ND	35	15	5	ND	31	ND	ND	ND	3
B 30	830(4)B	22-Feb-90	4.0	ND	ND	0.2	ND	30	14	5	ND	26	NÐ	ND	ND	2
B31	B31(2)A	22-Feb-90	2.0	ND	2	0.3	0.5	38	38	21	0.2	38	ND	NÐ	ND	18
B34	B34(3.5)B	30-Jan-90	3.5	ND	3.5	0.6	0.4	44	35	22	ND	45	ND	ND	ND	7
B35	B35(1.5)A	29-Jan-90	1.5	ND	3.1	ND	ND	11	17	14	ND	13	ND	ND	ND	3
B35	B35(4) B	29-Jan-90	4.0	ND	2.8	0.5	0.3	37	23	8	ND	38	ND	ND	ND	4
C1	C1(3.5)B	31-Jan-90	3.5	NO	2:0	0.3	NO	30	12	5	ND	15	ND	ND	ND	2
C2	C2(1)A	30-Jan-90	1.0	ND	25	2.1	0.2	36	30	56	0.2	31	ND	ND	ND	8
C2	C2(4)B	30-Jan-90	4.0	ND	3	0.5	. ND	36	13	6	0.2	24	ND	ND	ND	2
C3	C3(4)B	31-Jan-90	4.0	ND	3.8	0.4	ND	34	15	6	ND	24	ND	ND	ND	3
C4	C4(4)B	30-Jan-90	4.0	ND	1.6	0.4	ND	30	9	4	NÐ	18	ND	ND	ND	1
C5	C5(4)B	30-Jan-90	4.0	ND	1.6	0.4	ND	39	16	4	ND	21	ND	ND	ND	3
C6	C6(1)A	15-Feb-90	1.0	ND	ND	0.3	0.2	39	21	14	ND	33	NÐ	ND	ND	4
C6	C6(3)B	15-Feb-90	. 3.0	ND	ND	0.4	ND	43	11	4	ND	32	ND	ND	ND	2
C7	C7(4)8	31-Jan-90	4.0	ND	2.1	0.6	ND	42	15	5	ND	25	ND	ND	ND	3
C8	C8(4)B	06-Feb-90	4.0	ND	1.3	0.4	0.3	33	29	27	ND	38	NÐ	ND	ND	e

METAL COMPOUNDS DETECTED IN SOIL SAMPLES PHASE I INVESTIGATION YERBA BUENA SITE, EMERYVILLE, CALIFORNIA

(concentrations in ppm)

LOCATION	SAMPLE	DATE	DEPTH													
ID	ID	SAMPLED	(feet)	Sb 	As	Be	Cd	Cr	Cu :	Pb	Hg	Ni 	Se	Ag	т ι	Z(
C9	C9(3.5)B	08-Feb-90	3.5	NA	NA	NA	NA	NA	NĂ.	5.0	NA	NA	NA	NA	NA	١
69	C9(9)C	08-Feb-90	9.0	NA	NA	NA	NA	NA	NA	3.0	NA	NA	NA	NA	NA	
:10	C10(4)B	08-Feb-90	4.0	NA	NA	NA	NA	NA	NA	5.0	NA	NA	NA	NA	NA	
210	C10(9.5)C	08-Feb-90	9.5	NA	NA	NA	NA	NA	NA	4.0	NA	NA	NA	NA	- NA	
:12	C12(3.5)B	31-Jan-90	3,5	ND	6.8	0.4	0,3	45	27	9	ND	33	ND	ND	ND	
:13	C13(3)B	15-Feb-90	3.0	ND	2	0.3	ND	41	16	5	ND	30	ND	ND	ND	
:14	C14(4)B	05-Feb-90	4.0	ND	ND	ND	ND	33	29	27	ND	38	ND	ND	ND	
C15	C15(.5)A	31-Jan-90	0.5	ND	22	0.4	0.9	39	72	240	0.2	42	ND	ND	ND	4
:15	C15(4)B	31-Jan-90	4.0	NÐ	ND	0.5	ND	33	29	5	ND	29	ND	ND	ND	
:16	C16(4)B	31-Jan-90	4.0	ND	5.6	0.6	0.2	36	24	7	ND	32	ND	ND	ND	
217	C17(1)A	08-Feb-90	1.0	ND	14	0.4	5.4	46	310	8800	0.5	33	ND	1	ND	47
017	C17(4)B	08-Feb-90	4.0	ND	ND	ND	ND	28	7.0	3.0	ND	14	1	ND	ND	
:17	C17(9)C	08-Feb-90	9.0	ND	3.4	0.3	0.5	22	20	3	ND	35	2	ND	ND	
C18	C18(2)A	07-Feb-90	2.0	ND	1.4	0.3	ND	21	64	9.0	ND	35	ND	ND	ND	
C18	C18(3.5)8	07-Feb-90	3.5	ND	1	0.3	ND	18	8.0	3.0	ND	16	ND	ND	ND	
20	C20(3)	07-Feb-90	3.0	NA	NA	NA	NA	NA	NA	10	NA	NA	NA	NA	NA	
21	C21(1)A	08-Feb-90	1.0	ND	7	0.2	1	35	120	190	0.6	58	NÐ	ND	ND	
21	C21(4)B	08-Feb-90	4.0	ND	1.7	0.3	ND	19	30	8	ND	31	ND	ND	ND	
C21	C21(8)C	08-Feb-90	8.0	ND	1.2	0.3	ND	17	12	6	ND	35	ND	ND	ND	
:21	C21(13)	08-Feb-90	13.0	ND	2.4	0.3	0.3	20	22	3	ND	25	`ND	ND	ND	
23	C23(10)C	07-Feb-90	10.0	ND	0.7	0.5	ND	27	21	4.0	ND	29	ND	ND	ND	
:24	C24(10)C	23-Feb-90	10.0	ND	1.6	0.4	ND	28	13	3.0	ND	21	ND	ND	ND	
:25	C25(4.5)B	30-Jan-90	4.5	ND	1.4	0.3	ND	38	10	4	ND	15	ND	ND	ND	
26	C26(3)B	23-Feb-90	3.0	ND	ND	0.4	ND	24	<u>,</u> 11	4	ND	21	ND	ND	ND	

METAL COMPOUNDS DETECTED IN SOIL SAMPLES PHASE I INVESTIGATION YERBA BUENA SITE, EMERYVILLE, CALIFORNIA

(concentrations in ppm)

SAMPLE LOCATION ID	SAMPLE ID	DATE Sampled	SAMPLE DEPTH (feet)	Sb	As	Be	Cd	Cr	Cu	Pb	Hg	Ni	Se	Ag	TL	Zn
C27	C27(10)C	07-Feb-90	10.0	ND	0.8	0.4	ND	23	11	4. 0	ND	12	ND	ND	ND	10
LF1	LF1(1.5)B	23-Jan-90	1.5	ND	4.5	0.4	0.3	25	18	6	ND	29	4	ND	ND	39
LF2	LF2(3.5)B	22-Jan-90	3.5	ND	2.2	0.2	ND	21	20	3	ND	14	ND	ND	ND	34
LF4	LF4(4)B	25 - Jan-90	4.0	ND	3.8	0.6	0.2	42	31	4	ND	44	ND	ND	ND	5
LF5	LF5(4)B	24-Jan-90	4.0	ND	12	0.3	1	25	160	530	ND	29	ND	ND	ND	27(
LF10	LF10(4.5)8	31-Jan-90	4.5	ND	3.8	0.5	ND	31	17	6	ND	37	ND	ND	ND	3
LF11	LF11(1.5)A	31-Jan-90	1.5	ND	2.2	0.6	0.2	35	30	6	ND	32	ND	ND	ND	50
LF11	LF11(4)B	01-Feb-90	4.0	ND	2.3	0.2	ND	36	8	4	ND	16	ND	ND	ND	20
LF12	LF12(4.5)B	12-Feb-90	4.5	ND	2	ND	ND	61	36	18	ND	43	ND	ND	ND	8
		Backgrou											•		*****	
	*0	bserved ran		<1	6.5	<1	0.01	150	30	30	0.082	30	<0.1	NL	NL	12
			high	10	65.0	<1	0.7	1,500	700	700	5.1	700	0.5	NL	NL	3,50
			TTLC	500	500	75	100	2,500	2,500	1,000	20	2,000	100	500	700	5,00
			STLC	15	5.0	0.75	1.0	560	25	5.0	0.2	20	1.0	5.0	7.0	25
•		Detection	Limit	5.0	0.5	0.2	0.2	1.0	1.0	1.0	0.2	1.0	1.0	0.3	1.0	2.
		Method Ref		7040	7060	7090	7130	7190	7210	7420	7471	7520	7740	7760	7840	795
======================================	************			===\$22	*****	Larra	32220	******				eviatio		222225	*****	22602

NA - not analyzed

ND - not detected

*Shacklette, H.T., and J.G. Boerngen, 1984. Element Concentrations in Soils and Other Surficial Materials of the Conterminous United States. U.S. Geological Survey Professional Paper 1270. TTLC - Total Threshold Limit Concentration STLC - Soluble Threshold Limit Concentration

Sb = Antimony	Hg = Mercury
As = Arsenic >	Ni = Nickel
Be = Beryllium	Se = Selenium
Cd = Cadmium	Ag = Silver
Cr = Chromium	Ti = Thailium
Cu = Copper	Zn = Zinc
Pb = Lead	

TABLE 6B

SEMI-VOLATILE ORGANIC CHEMICALS DETECTED IN SOIL SAMPLES PHASE I INVESTIGATION YERBA BUENA SITE, EMERYVILLE, CALIFORNIA

÷

(concentrations in ppm)

SAMPLE			SAMPLE			PC8
LOCATION	SAMPLE	DATE	DEPTH			AROCLO
ID	ID	SAMPLED	(feet)	Notes	PYRENE	1260
A5	A5(2)A	24-Jan-90	2.0		ND	N
	A5(3.5)8				ND	N
A6	A6(1.5)B	23-Jan-90	1.5		NA	N
88	A8(2)A	24-jan-90	2.0		NA	N
88	A8(4.5)B	24-Jan-90	4.5		NA	N
A9	A9(4.5)B	24-Jan-90	4.5		NA	N
A11	A11(4)B	05-Feb-90	4.0		ND	N
A12	A12(1)A	05-Feb-90	1.0		NA	N
A12	A12(3.5)B	05-Feb-90	3.5		NÐ	N
A13	A13(4)B	05-Feb-90	4.0		NA	N
A15	A15(3)A	25-Jan-90	3.0		ND	N
A15	A15(4.5)B	25-Jan-90	4.5		ND	N
A15	A15(9.5)	25-Jan-90	9.5		ND	N
A16	A16(4)B	05-Feb-90	4.0		ND	N
A17	A17(4)B	05-Feb-90	4.0		NA	N
A18	A18(4)B	05-Feb-90	4.0		ND	N
A19	A19(1)A	05-Feb-90	1.0		NA	N
A19	A19(3)B	05-Feb-90	3.0		ND	Ni
A22		05-Feb-90			NA	0.
A22	A22(4)8	05-Feb-90	4.0		NA	N
A23	A23(3)B	25-Jan-90	3.0		ND	N
B1	B1(4)B	29-Jan-90	4.0		ND	N
		29-Jan-90	4.0		NO	ĸ

.

.

21-Sep-90

TABLE 6B

SEMI-VOLATILE ORGANIC CHEMICALS DETECTED IN SOIL SAMPLES PHASE I INVESTIGATION YERBA BUENA SITE, EMERYVILLE, CALIFORNIA

. •

(concentrations in ppm)

SAMPLE			SAMPLE			PCB
LOCATION	SAMPLE	DATE	DEPTH			AROCLO
ID	1D	SAMPLED				1260
83	B3(1.5)A	26-Jan-90	1.5	.*	ND	N/
B5	85(5)8	26-Jan-90	5.0		ND	N/
B6	86(4)B	26-Jan-90	4.0		ND	N/
B7	87(1.5)A	26-Jan-90	1.5		0.39	N/
88	B8(3.5)B	30-Jan-90	3.5		ND	N/
B9	89(1.5)A	26-Jan-90	1.5		ND	N/
B10	B10(4.5)B	30-Jan-90	4.5		ND	N/
B11	B11(1.5)A	29-Jan-90	1.5		ND	N/
B12	B12(3.5)A	29-Jan-90	3.5		ND	N/
B15	B15(4)B	02-Feb-90	4.0		ND	++NC
B16	B16(3.5)A	' 29-Jan-90	3.5		ND	N/
B16	B16(9.5)C	29- Jan-90	9.5		ND	N/
B19	B19(1)A	01-Feb-90	1.0		ND	N/
B19	B19(5)B	01-Feb-90	5.0		ND	NC
B20	820(4)B	01-Feb-90	4.0		ND	N/
821	821(1)A	01-Feb-90	1.0		ND	~N/
B21	B21(4)B	01-Feb-90	4.0		ND	N/
B21	B21(7.5)C	01-Feb-90	7.5		ND	N/
B22	B22(1.5)	02-Feb-90	1.5		ND	++N(
B24	B24(8.5)C	22-Feb-90	8.5		ND	N/
B25	825(1)A	29-Jan-90	1.0		NA	0.38

21-Sep-90

- -

TABLE 6B

SEMI-VOLATILE ORGANIC CHEMICALS DETECTED IN SOIL SAMPLES PHASE I INVESTIGATION YERBA BUENA SITE, EMERYVILLE, CALIFORNIA

÷

. -

(concentrations in ppm)

SAMPLE	SAMPLE	DATE	SAMPLE DEPTH			PCB AROCLOR
ID	ID	SAMPLED	(feet)		PYRENE	
				· · · · · · · ·		
326	B26(.5)A	29-Jan-90	0.5		NA	5.4
326	826(3,5)B	29-Jan-90	3.5		ND	ND
827	B27(3.5)B	22-Feb-90	3.5		NA	ND
B30	B30(4)B	21-Feb-90	4.0		NA	ND
832	B32(1.5)A	21-Feb-90	1.5		NA	ND
B34	B34(3.5)B	30-Jan-90	3.5		ND	NÐ
B35	B35(4)B	29-Jan-90	4.0		ND	NA
C1	C1(3.5)B	31-Jan-90	3.5		ND	NA
C2	C2(4)B	30-Jan-90	4.0		ND	NA
C3	C3(4)B	31- Jan-90	4.0		ND	NA
C4	C4(4)B	30-Jan-90	4.0		NÐ	NA
C5	C5(4)B	30-Jan-90	4.0		ND	NA
C6	C6(1)A	15-Feb-90	1.0		NA	ND
66	C6(3)B	15-Feb-90	3.0		NA	ND
C7	C7(4)B	31-Jan-90	4.0		NA	NC
68	C8(4)B	06-feb-90	4.0		ND	~NA
C12	C12(3.5)B	31-Jan-90	3.5		ND	+NC
C15	C15(.5)A	31-Jan-90	0.5		ND	NA
C15	C15(4)8	31-Jan-90	4.0		ND	+ND
C16	C16(4)B	31-Jan-90	4.0		NA	NC

16491-3.wkq

. .

1

TABLE 68

SEMI-VOLATILE ORGANIC CHEMICALS DETECTED IN SOIL SAMPLES PHASE I INVESTIGATION YERBA BUENA SITE, EMERYVILLE, CALIFORNIA

÷

(concentrations in ppm)

SAMPLE			SAMPLE		PCB
LOCATION	SAMPLE	DATE	DEPTH		AROCLOR
ID	ID		(feet)		1260
C17	C17(1)A	08-Feb-90	1.0	ND	NA
C17	C17(4)B	08-Feb-90	4.0	ND	NA
C17	C17(9)C	08-Feb-90	9.0	ND	NA
C18	C18(3.5)8	07-Feb-90	3.5	ND	NA
C19	C19(4)B	08-Feb-90	4.0	ND	NA
C21	C21(1)A	08-Feb-90	1.0	NA	0.2
C21	C21(4)B	08-Feb-90	4.0	ND	NA
C21	C21(8)C	08-Feb-90	8.0	ND	NA
C21	C21(13)	08-Feb-90	13.0	ND	NA
C23	C23(10)C	07-Feb-90	10.0	ND	NA
C24	C24(3.5)B	22-Feb-90	3.5	ND	NA
C24	C24(10)C	22-Feb-90	10.0	ND	NA
C25	C25(4.5)B	30-Jan-90	4.5	ND	NA
C26	C26(3)B	22-Feb-90	3.0	ND	NA
C27	C27(3)B	07-Feb-90	3.0	ND	N/
C27	C27(10)C	07-Feb-90	10.0	ND	NA
LF1	LF1(1.5)B	23-Jan-90	1.5	ND	N#
LF2	LF2(3.5)B	22-Jan-90	3.5	ND	N/
LF4	LF4(4)B	25-Jan-90	4.0	ND	~ N#
LF5	LF5(4)B	24-Jan-90	4.0	**ND	N#
LF6	LF6(4.5)B	29-Jan-90	4.5	ND	N#
LF8	LF8(3)B	26-jan-90	3.0	ND	N/
LF10	LF10(4.5)8	31-Jan-90	4.5	ND	N#

.

,

TABLE 68

SEMI-VOLATILE ORGANIC CHEMICALS DETECTED IN SOIL SAMPLES PHASE I INVESTIGATION YERBA BUENA SITE, EMERYVILLE, CALIFORNIA

(concentrations in ppm)

SAMPLE			SAMPLE			PCB
OCATION	SAMPLE	DATE	DEPTH			AROCLOR
ID	ID	SAMPLED	(feet)	Notes	PYRENE	1260
LF11	LF11(1.5)A	31-Jan-90	1.5		ND	NA
LF11	LF11(4)B	01-Feb-90	4.0		ND	NA
LF12	LF12(4.5)B	12-Feb-90	4.5		ND	ND
	Limit				0.33	0.05

NOTES:

NA - not analyzed

ND - not detected

- * Detection Limit 1.7 ppm
- ** Detection Limit 3.3 ppm
- + Estimated Detection Limit 1.6 ppm
- ++ Estimated Detection Limit 8 ppm
- a Detection Limit .66 ppm
- Also detected: 2.8 ppm Acenaphthene; 2.0 ppm Anthracene, 0.85 ppm Be 0.85 ppm Benzo(a)pyrene; 0.78 ppm Benzo(b)fluoranthene; 0.75 ppm Benz 1.1 ppm Chrysene; 3.7 ppm Fluoranthene; 2.8 ppm Fluorene; 8.3 ppm Phe
- (2) Sample was diluted 100x due to significant diesel content. Detection limits were adjusted accordingly; 33 ppm for Pyrene, 2-Meth naphthalene, and Naphthalene

VOLATILE ORGANIC COMPOUNDS DETECTED IN SOIL SAMPLES PHASE I INVESTIGATION YERBA BUENA SITE, EMERYVILLE, CALIFORNIA

(concentrations in ppm)

SAMPLE OCATIO	พ	SAMPLE ID	DATE SAMPLED	DEPTH		-	_	_		1,1-	1,1-		1,2-
1D	NOTES			(feet)	ACE	B	T 	E 	X	DCA	DCE	TCE	DCE
1	(1)	A1(14)C	22-Jan-90	14.0	ND	ND	0.019	ND	ND	NA	NA	NA	N
1	(1)	A1(17.5)C	22-Jan-90	17.5	ND	ND	ND	ND	ND	NA	NA	NA	N
5		A5(2)A	24-Jan-90	2.0	ND	*ND	*ND	*ND	**ND	NÐ	ND	ND	N
5		A5(3,5)8	24-Jan-90	3.5	ND	*ND	0.007	*ND	**ND	ND	ND	ND	, N
6		A6(25)C	24-Jan-90	25.0	ND	*ND	*ND	*ND	*ND	ND	ND	ND	Ņ
.11		A11(4)B	05-Feb-90	4.0	ND	*ND	0.2	*ND	**ND	ND	ND	ND	N
14		A14(19-5)C	25-Jan-90	19.5	ND	*ND	*ND	*ND	**ND	ND	ND	ND	ŀ
15		A15(4.5)B	25-Jan-90	4.5	ND	*ND	0.034	*ND	**ND	ND	ND	ND	١
15		A15(9.5)	25-Jan-90	9,5	ND	*NÐ	0.016	*ND	**ND	ND	ND	ND)
18		A18(4)B	05-Feb-90	4.0	ND	*ND	0.21	*ND	**ND	ND	ND	ND	1
23		A23(3)B	25-Jan-90	3.0	ND	*ND	0.054	*ND	**ND	ND	ND	ND	I
24	(1)	A24(17)C	23-Jan-90	17.0	ND	ND	0.015	ND	ND	NA ·	NA	NA	ł
24	(1)	A24(3.5)B	23-Jan-90	3.5	ND	ND	0.03	ND	ND	NA	NA	NA	1
2		B2(4)B	29-Jan-90	4.0	ND	*ND	0.01	*ND	**ND	0.006	0.009	ND	I
4		B4(3)B	26-Jan-90	3.0	ND	*ND	0.29	*ND	**ND	ND	ND	ND	ł
4		84(7.5)C	26-Jan-90	7.5	ND	*ND	0.024	0.019	**ND	ND	ND	ND	1
5		B5(5)B	26-Jan-90	5.0	ND	*ND	*ND	*ND	**ND	ND	ND	ND	I
8		B8(3.5)B	30-Jan-90	3.5	ND	*ND	0.062	*ND	**ND	ND	ND	ND	1
10		B10(4.5)8	30-Jan-90	4.5	ND	*ND	0.028	*ND	**ND	ND	ND	ND	1
12		B12(3.5)A	29-Jan-90	. 3.5	ND	*ND	0.032	*ND	**ND	ND	ND	ND	1
14A	(1)	B14A(4)B	02-Feb-90	4.0	ND	*ND	0.25	*ND	***ND	NA	NA	NA	1
14A	(1)	B14A(9)C	02-Feb-90	9.0	ND	++ND	0.025	++ND	+++ND	NA	NA	NA	1
148	(1)	B14B(4)8	01-Feb-90	4.0	ND	ND	0.36	ND	ND	NA	NA	NA	

VOLATILE ORGANIC COMPOUNDS DETECTED IN SOIL SAMPLES PHASE I INVESTIGATION YERBA BUENA SITE, EMERYVILLE, CALIFORNIA

(concentrations in ppm)

÷

.

2

SAMPLE OCATIO		SAMPLE ID	DATE SAMPLED	SAMPLE DEPTH						1,1-	1,1-		1,2-
ID	NOTES			(feet)	ACE	B	T	E	X	DCA	DCE	TCE	DCE
148	(1)	B14B(7.5)C	01-Feb-90	7.5	ND	0.83	2.5	3.1	16	NA	NA	NA	N
15	(1)	B15(4)B	02-Feb-90	4.0	ND	100	200	190	910	NA	NA	NA	H
15	(1)	B15(4)B	02-Feb-90	4.0	ND	91	240	300	1000	NA	NA	NA	1
15	(1)	B15(9)C	02-Feb-90	9.0	ND	3.8	31	13	72	NA	NA	NA	
16	(1)	B16(9.5)C	29-jan-90	9.5	ND	ND	0.19	ND	ND	NA	NA	NA	1
17	(1)	B17(9)C	02-Feb-90	9.0	ND	2	8.7	4.9	21	NA	NA	NA	ļ
27		B27(3.5)B	22-Feb-90	3.5	ND	*ND	0.02	*ND	*ND	ND	ND	ND	
29		B29(3)A	21-Feb-90	3.0	ND	*ND	ND	*ND	*ND	ND	ND	ND	
29		829(4.5)B	21-Feb-90	4.5	ND	*ND	0.026	*ND	*ND	ND	ND	ND	
30		B30(2)A	21-Feb-90	2.0	ND	*ND	0.2	*ND	*ND	ND	ND	NÐ	
30		B30(4)B	21-Feb-90	4.0	0.15	*ND	0.036	*ND	*ND	ND	ND	ND	
31		831(2)A	21-Feb-90	2.0	ND	*ND	0.053	*ND	*ND	ND	ND	ND	
31		B31(5,5)B	21-Feb-90	5.5	ND	*ND	0.025	*ND	*ND	ND	ND	ND	
33		B33(2)A	21-Feb-90	2.0	0.22	*ND	0.29	*ND	0.071	ND	ND	ND	
33		B33(10)C	21-Feb-90	10.0	ND	*ND	0.055	*ND	*ND	ND	ND	. ND	
34		834(3.5)B	30-Jan-90	3.5	ND	*ND	0.081	*ND	**ND	ND	ND	ND	
35		B35(4)B	29-Jan-90	4.0	ND	*ND	0.018	*ND	**ND	ND	ND	ND	
1		C1(3,5)B	31-Jan-90	3.5	ND	*ND	*ND	*ND	**ND	ND	ND	ND	
:5		C5(4)B	30-jan-90	4.0	ND	*ND	0.013	*ND	**ND	ND	` ND	ND	
8		C8(4)B	06-Feb-90	4.0	ND	*ND	0.54	*ND	**ND	ND	ND	ND	
9	(1)	C9(3.5)8	08-Feb-90	3.5	ND	ND	ND	ND	ND	NA	NA	NA	
9	(1)	C9(9)C	08-Feb-90	9.0	ND	ND	ND	ND	ND	NA	NA	NA	
10	(1)	C10(4)B	08-Feb-90	4.0	ND	ND	0.045	ND	ND	NA	NA	NA	
10	(1)	C10(9.5)C	08-Feb-90	9.5	ND	ND	ND	ND	ND	NA	NA	NA	

16491-2.wkq

Page 2

VOLATILE ORGANIC COMPOUNDS DETECTED IN SOIL SAMPLES PHASE I INVESTIGATION YERBA BUENA SITE, EMERYVILLE, CALIFORNIA

(concentrations in ppm)

.. ÷

.

SAMPLE		SAMPLE	DATE	SAMPLE									4 -
OCATIO		ID	SAMPLED	DEPTH			-	-		1,1-	1,1-	TOP	1,2-
ID 	NOTES			(feet)	ACE	B	T 	E 	X 	DCA	DCE	TCE	DCE
12		C12(3.5)B	31-Jan-90	3.5	ND	*ND	0.012	*ND	**ND	ND	ND	ND	N
15		C15(9.5)C	31-Jan-90	9.5	ND	*ND	0.15	*ND	**ND	ND	NÐ	. ND	N
17		C17(1)A	08-Feb-90	1.0	ND	*ND	0.18	*ND	**ND	ND	ND	ND	N
17		C17(4)B	08-Feb-90	4.0	ND	*ND	0.006	*ND	**ND	ND	NÐ	ND	0.03
:17		C17(9)C	08-Feb-90	9.0	ND	*ND	0.033	*ND	**NÐ	ND	ND	0.24	0.03
18		C18(3.5)B	07-feb-90	3.5	ND	*ND	0.085	*ND	**ND	ND	ND	ND	N
19		C19(4)B	08-Feb-90	4.0	ND	*ND	0.052	*ND	**ND	ND	ND	ND	N
:19	(1)	C19(4)B	08-Feb-90	4.0	ND	ND	0.078	ND	ND	NA	NA	NA	N
20		C20(3)B	07-Feb-90	3.0	ND	ND	0.027	ND	ND	ND	NA	NA	H
21		C21(4)B	08-Feb-90	4.0	ND	*ND	0.078	*ND	**ND	ND	ND	ND	I
21		C21(8)C	08-Feb-90	8.0	ND	*ND	0.073	*ND	**ND	ND	ND	ND	0.0
21		C21(13)	08-Feb-90	13.0	ND	*ND	0.12	*ND	*ND	NO	ND	0.18	0.03
23		C23(10)C	07-Feb-90	10.0	ND	*ND	0.006	*ND	**ND	ND	ND	ND	ł
24		C24(10)C	22-Feb-90	10.0 *	ND	*ND	0.07	*ND	*ND	ND	ND	0.009	I
24		C24(3.5)B	22-Feb-90	3.5	ND	*ND	0.25	*ND	*ND	ND	ND	ND	I
25		C25(4.5)B	30-Jan-90	4.5	ND	*ND	0.005	*ND	**ND	ND	ND	ND	I
26		C26(3)B	22-Feb-90	3.0	ND	*ND	0.083	*ND	*ND	ND	ND	ND	ł
27		C27(10)C	07-Feb-90	10.0	ND	*ND	0.014	*ND	**ND	ND	ND	ND	1
27		C27(3)B	07-Feb-90	3.0	ND	*ND	0.015	*ND	**ND	ND	`NÐ	ND	1
28	(1)	C28(4)B	12-Feb-90	4.0	ND	ND	0.55	ND	ND	NA	NA	NA	1
F1		LF1(1.5)B	23-Jan-90	1.5	ND	*ND	0.058	*ND	**ND	ND	ND	NÐ	ł
F2		LF2(3.5)B	22-Jan-90	3.5	ND	*ND	0.008	*ND	**ND	ND	ND	ND	ļ
F4		LF4(4)B	25-Jan-90	4.0	ND	*ND	0.011	*ND	**ND	ND	ND	ND	

VOLATILE ORGANIC COMPOUNDS DETECTED IN SOIL SAMPLES PHASE 1 INVESTIGATION YERBA BUENA SITE, EMERYVILLE, CALIFORNIA

(concentrations in ppm)

÷

ł,

SAMPLE		SAMPLE ID	DATE SAMPLED	SAMPLE DEPTH						1,1-	1,1-		1,2-
ID	NOTES			(feet)	ACE	B	T	Е 	X	DCA	DCE	TCE	DCE
.F5		LF5(4)8	24-Jan-90	4.0	ND	+ND	0.11	+ND	and	ND	ND	ND	k
.F6		LF6(4.5)B	29-Jan-90	4.5	ND	*ND	*ND	*ND	**ND	ND	ND	ND	۱
.F7	(1)	LF7(7.5)	26-Jan-90	7.5	ND	0.006	0.057	ND	0.003	NA	NA	NA	· I
.F8		LF8(3)8	26-Jan-90	3.0	ND	*ND	0.093	*ND	**ND	ND	ND	ND	I
.F9		LF9(10)C	30-Jan-90	10	ND	*ND	*ND	*ND	**ND	ND	ND	0.007	I
.F10		LF10(4.5)B	31-Jan-90	4.5	ND	*ND	0.035	*ND	**ND	ND	ND	ND	I
.F11		LF11(4)B	01-Feb-90	4.0	ND	*ND	0.014	*ND	**ND	ND	ND	ND	I
.F12		LF12(4.5)B	12-Feb-90	4.5	ND	*NĐ	0.068	*ND	*ND	ND	ND	ND	I
Dete	ction Li	 mit			0.1	0.001	0.001	0.001	0.003	0.005	0.005	0.005	0.0

NOTES:

All samples analyzed by Med-Tox Associates of Pleasant Hilll, California, using EPA Method 8240 unless noted otherwise.

Key to Abbreviations:

-,	•••••••••		
	A = ACETONE	1,1-DCA = 1,1-DICHLOROETHANE	NA = not analyzed
	T = TOLUENE	1,1-DCE = 1,1-DICHLOROETHENE	ND = not detected
	8 = BENZENE	TCE = TRICHLOROETHENE	
	E = ETHYLBENZENE	1,2-DCE = 1,2-DICHLOROTHENE	
	X = Total XYLENES		
*	Detection Limit 0.00	5 ppm	`
**	Detection Limit 0.01	ppm	
***	Detection Limit 0.02	ppm	
+	Detection Limit 0.03	ppm	
++	Detection Limit 0.00	05 ppm	
+++	Detection Limit 0.00	2 ppm	
ລ	Detection Limit 0.05	ppn	
1	Sample analyzed usin	g EPA Method 8020	

.

•

TABLE 60

.

PETROLEUM HYDROCARBONS DETECTED IN SOIL SAMPLES PHASE I INVESTIGATION YERBA BUENA SITE, EMERYVILLE, CALIFORNIA

÷

(concentrations in ppm)

SAMPLE			SAMPLE						TOTAL OI
LOCATION	SAMPLE	DATE	DEPTH			WASTE		STODDARD	AND
ID	ID	SAMPLED	(feet)	GASOLINE	DIESEL	OIL	KEROSENE	SOLVENT	GREASE
A1	A1(14)C	22-Jan-90	14.0	NÐ	ND	ND	ND	ND	NA
A1	A1(17.5)C	22-Jan-90	17.5	and	ND	ND	ND	ND	NA
A5	A5(2)A	24-Jan-90	2.0	NA	NÐ	30	NA	NA	NA
45	A5(3.5)B	24-Jan-90	3.5	NA	ND	460	NA	NA	NA
A6	A6(1.5)B	23-Jan-90	1.5	NA	ND	130	NA	NA	NA
A7	A7(5.5)B	24-Jan-90	5.5	NA	ND	ND	NA	NA	NA
A8	A8(2)A	24-Jan-90	2.0	NA	ND	40	NA	NA	NA
88	A8(4.5)B	24-Jan-90	4.5	NA	ND	7400	NA	NA	NA
A9	A9(4.5)B	24-Jan-90	4.5	NA	ND	340	NA	NA	NA
A11	A11(4)B	05-Feb-90	4.0	NA	ND	ND	NA	NA	NA
A12	A12(1)A	05-Feb-90	1.0	NA	ND	770	NA	NA	NA
A12	A12(3.5)B	05-Feb-90	3.5	NA	ND	450	NA	NA	NA
A13	A13(4)B	05-Feb-90	4.0	NA	ND	2100	NA	NA	NA
A14	A14(5.5)B	25-Jan-90	5.5	NA	NÐ	100	NA	NA	NA
A15	A15(4.5)B	25-Jan-90	4.5	NA	ND	270	NA	NA	NA
A15	A15(9.5)	25-Jan-90	9.5	NA	ND	ND	NA	NA	NA
A16	A16(4)B	05-Feb-90	4.0	NA	ND	30	1	NA	NA
A18	A18(4)B	05-Feb-90	4.0	ND	NA	NA	ND	` ND	NA
19	A19(3)B	05-feb-90	3.0	NA	ND	60	NA	NA	NA
20	A20(2.5)B	05-feb-90	2.5	NA	ND	30	NA	NA	NA
21	A21(2.5)B	05-Feb-90	2.5	NA	ND	590	NA	NA	NA

1649T-5.wkg

.

15-Aug-90

PETROLEUM HYDROCARBONS DETECTED IN SOIL SAMPLES PHASE I INVESTIGATION YERBA BUENA SITE, EMERYVILLE, CALIFORNIA

÷

(concentrations in ppm)

SAMPLE			SAMPLE						TOTAL OI
LOCATION	SAMPLE	DATE	DEPTH			WASTE		STODDARD	AND
1D	10	SAMPLED	(feet)	GASOLINE	DIESEL	01L	KEROSENE	SOLVENT	GREASE
		05 - 4 00			ND		Na	LT &	
A22 A22	A22(1)A A22(4)B	05-Feb-90 05-Feb-90	1.0 4.0		ND ND	1300 800	NA NA	NA NA	NA NA
422	NCC(470	03-rep-90	4.0	AA	10	000	1971	· · ·	
A23	A23(3)B	25-Jan-90	3.0	NA	ND	ND	NA	NA	'NA
A24	A24(17)C	23-Jan-90	17.0	ND	ND	ND	ND	ND	NA
A24	A24(3.5)B	23-Jan-90	3.5	ND	ND	ND	ND	ND	NA
B1	B1(4)B	29-Jan-90	4.0	NA	ND	ND	NA	NA	NA
B2	B2(4)B	29- Jan-90	4.0	NA	ND	180	NA	NA	NA
B3	B3(1.5)A	26-jan-90	1.5	NA	ND	ND	NA	NA	NA
84	B4(3)B	26-Jan-90	3.0	ND	ND	220	ND	ND	NA
B4	B4(7.5)C	26-Jan-90	7.5	**ND	ND	60	110	ND	NA
85	B5(5)B	26-Jan-90	5.0	NA	ND	ND .	NA	NA	NA
86	B6(4)8	26-Jan-90	4.0	NA	ND	410	NA	NA	NA
B7	B7(1.5)A	26-Jan-90	1.5	NA	++ND	1200	NA	50	NA
B7	B7(4)B	26-Jan-90	4.0	NA	ND	ND	ND	ND	NA
88	88(3.5)B	30-Jan-90	3.5	NA	ND	ND	NA	NA	NA
B9	89(1.5)A	26-Jan-90	1.5	NA	ND	ND	NA	NA	NA
B10	B10(4.5)B	30-Jan-90	4.5	NA	ND	20	NA	~ NA	NA
B11	B11(1.5)A	26-Jan-90	1.5	NA	++ND	490	NA	NA	NA
B12	B12(3.5)A	29- Jan-90	3.5	NA	ND	ND	NA	NA	NA
B13	B13(9.5)C	29-jan-90	9.5	*ND	ND	ND	ND	ND	NA
B14A	B14A(4)B	02-Feb-90	4.0	3.0	ND	20	ND	ND	NA

.

PETROLEUM HYDROCARBONS DETECTED IN SOIL SAMPLES PHASE 1 INVESTIGATION YERBA BUENA SITE, EMERYVILLE, CÁLIFORNIA

(concentrations in ppm)

SAMPLE			SAMPLE						TOTAL OI
LOCATION	SAMPLE	DATE	DEPTH			WASTE		STODDARD	AND
ID	ID	SAMPLED	(feet)	GASOLINE	DIESEL.	OIL	KEROSENE	SOLVENT	GREASE
B14A	B14A(9)C	02-Feb-90	9.0	ND	ND	ND	ND	ND	NA
314B	B148(4)B	01-Feb-90	4.0	+++ND	ND	ND	ND	ND	NA
314 8	B14B(7.5)C	01-Feb-90	7.5	110	ND	ND	ND	ND	NA
315	815(4)B	02-Feb-90	4.0	3900	ND	2500	ND	ND	NA
815	B15(9)C	02-Feb-90	9.0	570	ND	ND	ND	ND	NA
316	B16(3.5)A	29-Jan-90	3.5	*0.8	NA	NA	ND	ND	1200
316	B16(9.5)C	29-Jan-90	9.5	ND	NA	NA	ND	ND	ND
317	B17(4)	02-Feb-90	4.0	NA	NA		NA	NA	290
317	B17(9)C	02-Feb-90	9.0	210	ND	ND	ND	ND	NA
B18	B18(4)B	01-Feb-90	4.0	NA	NA	NA	NA	NA	290
319	B19(1)A	01-Feb-90	1.0	NA	NA	NA	NA	NA	4400
19	B19(5)B	01-Feb-90	5.0	NA	NA	NA	NA	NA	320
320	B20(4)B	01-Feb-90	4.0	NA	NA	NA	NA	NA	14
321	B21(1)A	01-Feb-90	` 1.0	NA	NA	NA	NA	NA	10000
321	821(4)B	01-Feb-90	4.0	NA	NA	NA	NA	NA	1700
321	B21(7.5)C	01-Feb-90	7.5	NA	NA	NA	NA	NA	11
322	B22(1.5)	02-Feb-90	1.5	NA	ND	***100	NA	NA	NA
124	B24(4)B	22-Feb-90	4.0	NA	ND	ND	NA	NA	NA
324	B24(8.5)C	22-Feb-90	8.5	NA	ND	ND	NA	NA	NA
325	B25(3.5)B	29-Jan-90	3.5	NA	NÐ	ND	NA	NA	NA
26	826(3.5)B	29-Jan-90	3.5	NA	ND	ND	NA	NA	NA
27	827(3.5)B	22-Feb-90	3.5	ND	ND	ND	ND	ND	NA
29	829(3)A	02-Mar-90	3.0	130	ND	360	220	ND	NA
829	829(4.5)8	02-Mar-90	4.5	ND	ND	ND	ND	ND	NA

•

PETROLEUM HYDROCARBONS DETECTED IN SOIL SAMPLES PHASE I INVESTIGATION YERBA BUENA SITE, EMERYVILLE, CALIFORNIA

*

(concentrations in ppm)

SAMPLE			SAMPLE						TOTAL OI
OCATION	SAMPLE	DATE	DEPTH			WASTE		STODDARD	AND
ID	ID	SAMPLED	(feet)	GASOL INE	DIESEL	01L	KEROSENE	SOLVENT	GREASE
330	B30(2)A	02-Mar-90	2.0	NA	<u>aaa660</u>	ND	NA	NA	NA
30	B30(4)B	02-Mar-90	4.0	ND	ND	ND	ND	ND .	NA
331	B31(2)A	02-Mar-90	2.0	NA	ND	ND	NA	NA	NA
331	B31(5.5)B	02-Mar-90	5.5	NA	ND	ND	NA	NA	NA
332	B32(1.5)A	02-Mar-90	1.5	36	ND	330	ND	ND	NA
332	B32(10)C	02-Mar-90	10.0	0.4	NO	ND	ND	ND	NA
333	B33(2)A	02-Mar-90	2.0	0.9	NÐ	4600	ND	ND	NA
333	833(10)C	02-Mar-90	10.0	0.4	ND	30	ND	· ND	NA
334	B34(3.5)B	30-Jan-90	3.5	NA	NÐ	ND	NA	NA	NA
335	B35(4) B	29 - Jan-90	4.0	NA	ND	ND	NA	NA	NA
23	C3(4)B	31-Jan-90	4.0	NA	ND	ND	NA	NA	NA
34	C4(4)B	30-Jan-90	4.0	NA	NÐ	ND	NA	NA	NA
25	C5(4)B	30-Jan-90	4.0	NA	ND	ND	NA	NA	NA
6	C6(3)B	15-Feb-90	3.0	NA	ND	ND	NA	NA	NA
C7	C7(4)B	31-Jan-90	4.0	NA	ND	ND	NA	NA	NA
28	C8(4)B	06-Feb-90	4.0	NA	ND	60	NA	NA	NA
C9	C9(3.5)8	08-Feb-90	3.5	ND	ND	ND	ND	► ND	NA
69	C9(9)C	08-Feb-90	9.0	ND	ND	ND	ND	ND	NA
C10	C10(4)B	08-Feb-90	4.0		ND	ND	ND	ND	NA
C10	c10(9.5)C	08-Feb-90	9.5	ND	ND	ND	ND	ND	NA
:11	C11(4)B	08-Feb-90	4.0	ND	ND	ND	ND	ND	NA
:12	C12(3.5)B	31-Jan-90	3.5	NA	ND	ND	NA	NA	NA

.

÷.,

.

TABLE 60

PETROLEUM HYDROCARBONS DETECTED IN SOIL SAMPLES PHASE I INVESTIGATION YERBA BUENA SITE, EMERYVILLE, CALIFORNIA

÷

(concentrations in ppm)

SAMPLE LOCATION	SAMPLE	DATE	SAMPLE DEPTH			WASTE		STODDARD	TOTAL OIL AND
ID	ID			GASOL INE	•	0IL		SOLVENT	GREASE
C13	C13(3)B	15-feb-90	3.0	NA	490	ND	NA	NA	NA
014	C14(4)B	05-Feb-90	4.0	NA	ND	50	NA	NA	NA
c15	C15(4)B	31-Jan-90	4.0	NA	ND	ND	NA	NA	NA
C16	C16(4)B	31-Jan-90	4.0	NA	ND	ND	NA	NA	NA
C17	C17(1)A	08-Feb-90	1.0	NA	ND	60	NA	NA	NA
C17	C17(4)B	08-Feb-90	4.0		ND	ND	NA	NA	NA
C17	C17(9)C	08-Feb-90	9.0	NA	NÐ	ND	NA	NA	NA
C18	C18(3.5)B	07-Feb-90	3.5	NA	ND	ND	NA	NA	NA
C19	C19(4)B	08-Feb-90	4.0	0.2	ND	2600	ND	ND	NA
20	C20(3)	07-Feb-90	3.0	HA	ND	ND	NA	NA	NA
23	C23(10)C	07-Feb-90	10.0	NA	ND	ND	NA	NA	NA
25	C25(4.5)B	30-Jan-90	· 4.5	NA	ND	ND	NA	NA	NA
226	C26(3)B	22-Feb-90	3,0	NA	ND	ND	NA	NA	NA
c27	C27(10)C	07-Feb-90	10.0	ND	ND	ND	ND	ND	NA
C28	C28(4)B	12-Feb-90	4.0	aa1.0	ND	670	ND	ND	NA
LF1	LF1(1.5)B	23-Jan-90	1.5	NA	ND	30	NA	` NA	NA
LF2	LF2(3.5)B	22-Jan-90	3.5	NA	ND	ND	NA	NA	NA
LF4	LF4(4)B	25-Jan-90	4.0	ND	ND	ND	ND	ND	NA
.F5	LF5(4)B	24-Jan-90	4.0	NA	ND	14000	NA	NA	NA
.F6	LF6(4.5)B	29-Jan-90	4.5	ND	ND	ND	ND	ND	NA

1649T-5.wkg

.

PETROLEUM HYDROCARBONS DETECTED IN SOIL SAMPLES PHASE I INVESTIGATION YERBA BUENA SITE, EMERYVILLE, CALIFORNIA

(concentrations in ppm)

			********			********	**********	********	*=======
SAMPLE			SAMPLE						TOTAL OIL
LOCATION	SAMPLE	DATE	DEPTH			WASTE		STODDARD	AND
ID	ID	SAMPLED	(feet)	GASOLINE	DIESEL	01L	KEROSENE	SOLVENT	GREASE
LF7	LF7(7.5)	26-Jan-90	7.5	ND	ND	ND	ND	ND	NA
LF9	LF9(10)C	30-Jan-90	10.0	ND	ND	ND	ND	ND	NA
LF12	LF12(4.5)B	12-Feb-90	4.5	8.0	ND	620	ND	ND	NA
Detection	Limît			0.2	10	20	10	20	10
FRE932222	2222322222222		22203222		*********		:23222222022	*******	

NOTES:

NA - not analyzed

ND - not detected

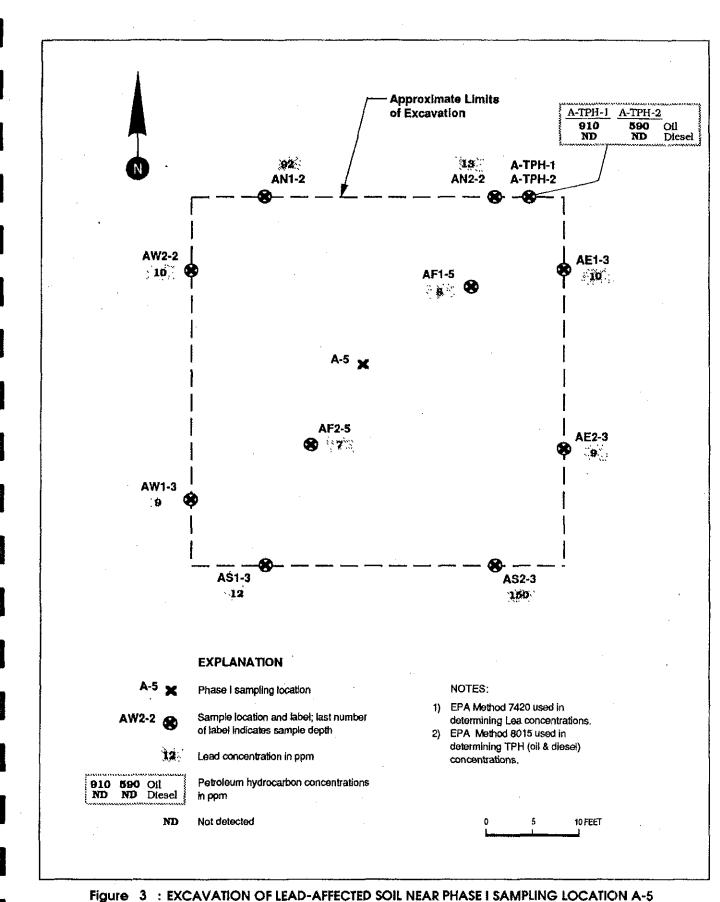
- * Sample appears to contain lighter hydrocarbons than those found in gasoline. Results based on gasoline calibration.
- ** Detection Limit elevated to 100 ppm due to presence of hydrocarbons heavier than those typically contained in gasoline.
- *** Sample appears to be a different "cut" of hydrocarbon than the SAE 30W motor oil. Concentration was based on motor oil calibration.
 - + Detection Limit 40 ppm
- ++ Detection Limit 20 ppm
- +++ Detection Limit 0.001 ppm
 - a Detection Limit 10 ppm
- aa Gasoline result is due primarily to presence of toluene
- ଇଉଇ Sample contains what appears to be a broader range of hydrocarbons than

normally found in diesel fuel. The reported concentration is based on diesel calibration.

TABLE 6E

ŝ

÷


HERBICIDES DETECTED IN SOIL SAMPLES PHASE I INVESTIGATION YERBA BUENA SITE, EMERYVILLE, CALIFORNIA

(concentrations in ppm)

SAMPLE			SAMPLE						
LOCATION	SAMPLE	DATE	DEPTH		2,4,5				2,4,5
ID	1D	SAMPLED	(feet)	PON	-TP	2,4-D	DCBA	DCP	-T
A12	A12(3.5)B	05-Feb-90	3.5	ND	ND	ND	ND	ND	ND
A23	A23(3)B	25-Jan-90	3.0	ND	ND	ND	0.054	ND	ND
89	B9(1.5)A	26-Jan-90	1.5	NÐ	ND	ND	ND	ND	0.24
B9	89(4.5)B	26-Jan-90	4.5	ND	ND	ND	ND	ND	ND
B11	B11(1.5)A		1.5	ND	ND	ND	ND	ND	0.51
B11	B11(4.5)B	29-Jan-90	4.5	ND	ND	ND	ND	ND	ND
B12	B12(3.5)A	29-Jan-90	3,5	ND	ND	0.017	ND	ND	ND
C1	C1(3.5)8	31-Jan-90	3.5	ND	ND	ND	0.008	ND	ND
C3	C3(4)B	31-Jan-90	4.0	NĎ	ND	ND	0.015	0.05	ND
LF5	LF5(4)B	24-Jan-90	4.0	0.07	0.034	ND	ND	ND	ND
LF8	LF8(3)B	26-Jan-90	3.0	ND	ND	ND	ND	ND	0.74
Detection	Limit			0.005	0.005	0.005	0.005	0.005	0.005
==#======== NOTES:		2222230000222	œ¢∓≈≡≡≡	:날글프로류류류	2209333	222 2348	======		
NA - not a ND - not c	•								
Key to Abb	previations:								-
· D)CBA = Dicamba)CP = dichloro	propane							

2,4,5-TP = 2,4,5-trichlorophenoxypropanionic acid 2,4-D = 2,4-dichlorophenoxyacetic acid

2,4,5-T = 2,4,5-trichlorophenol

IN AREA A, YERBA BÜENA PROJECT SITE

Project No. 1649

LEVINE+FRICKE ENGINEERS, HYDROGEOLOGISTS & APPLIED SCIENTISTS

1649VTK04oc191ctNjc#13

TABLE 2 SOIL QUALITY DATA SUMMARY YERBA BUENA SITE, EMERYVILLE, CALIFORNIA

(Concentrations expressed as mg/kg unless otherwise indicated)

		LAB	(LEAD) EPA Method 7420			EPA METHOD 8015			
Sample Number	Date Sampled			(ZINC) EPA Method 7950	(PCBs) EPA METHOD 8080	Diesel	Extractable Hydrocarbons as Oil		
AREA A				/*					
AE1-3	25-Jun-91	Med-Tox	10	NA	NA	NA	NA		
AE2-3	25-Jun-91	Med-Tox	9	NA	NA	NA	NA		
A\$1-3	25-Jun-91	Med-Tox	12	NA	NA	NA	NA		
AF1-5	26-Jun-91	Med-Tox	8	HA	NA	NA	NA		
AF2-5	26- Jun-91	Med-Tox	7	NA	NA	NA	NA		
AW1-3	26- Jun-91	Med-Tox	. 9	NA	NA	NA	NA		
A\$2-3	26-Jun-91	Med-Tox	150	NA	NA	NA	NA		
AN1-2	26-Jun-91	Med-Tox	92	NA	NA	NA	NA		
AN2-2	26- Jun-91	Med-Tox	13	NA	NA	NA	NA		
AW2-2	26- Jun-91	Med-Tox	10	NA	NA	NA	NA		
A-TPH-1	26-Jun-91	Med-Tox	NA	NA	NĂ	ND	910		
A-TPH-2	26-Jun-91	Med-Tox	NA	NA	NA	ND	590		
AREA B	• • • • • • • • • • • • • • • • • • •				-~ <u>.</u>				
BS1-2	26-Jun-91	Clayton	NA	ŅA	ND	NA	NA		
B\$2-2	26-Jun-91	Clayton	NA	NA	0.12	NA	NA		
853-2	26-Jun-91	Clayton	NA	NA	0.06	NA	NA		
8F1-2	26-Jun-91	Clayton	NA	NA	0.20	NA	NA		
BF2-2	26-Jun-91	Clayton	NA	NA	ND	NA	NA		
8F3-2	26-jun-91	Clayton	NA	NA	ND	NA	NA		
BN1-1	26-Jun-91	Clayton	NA	NA	0.08	NA	NA		

1

1649/SQD1091.WQ1

14-0ct-91

TABLE 1 ANALYTICAL RESULTS FOR SAMPLES OF EXCAVATED SOIL AREA A, YERBA BUENA/EAST BAYBRIDGE CENTER, OAKLAND AND EMERYVILLE, CALIFORNIA (concentrations reported in milligrams per kilogram [mg/kg])

Date	Depth (feet bgs)	TPHd	Oil & Grease	TPHmo	Benzene	Toluene	Ethyl - benzene	Total Xylenes

* * * * * * * * * * *	8	••• =	3,800		<0.005	<0.005	0.008	0.018
01-0ct-93	8	230	3,600	700	<0.005	<0.005	0.006	0.016
01-0ct-93	10	87	1,700	200	0.013	<0.005	0.013	0.055
04-0ct-93	8	470	3,100	650	<0.005	<0.005	<0.005	0.017
04-0ct-93	8	70	1,100	220	<0.005	<0.005	<0.005	<0.005
04-0ct-93	8	100			<0.005	+-		0.006
06-0ct-93	8	130	3,800	960	<0.005	<0.005	<0.005	<0.005
	01-0ct-93 01-0ct-93 01-0ct-93 04-0ct-93 04-0ct-93 04-0ct-93	(feet Date bgs) 01-0ct-93 8 01-0ct-93 8 01-0ct-93 10 04-0ct-93 8 04-0ct-93 8 04-0ct-93 8	(feet Date bgs) TPHd 01-0ct-93 8 190 01-0ct-93 8 230 01-0ct-93 10 87 04-0ct-93 8 470 04-0ct-93 8 70 04-0ct-93 8 100	(feet Oil & Date Date bgs) TPHd Grease 01-0ct-93 8 190 3,800 01-0ct-93 8 230 3,600 01-0ct-93 8 230 3,600 01-0ct-93 8 70 1,700 04-0ct-93 8 470 3,100 04-0ct-93 8 70 1,100 04-0ct-93 8 100 2,200	(feet Oil & bgs) Oil & TPHd Grease TPHmo 01-0ct-93 8 190 3,800 190 01-0ct-93 8 230 3,600 700 01-0ct-93 8 230 3,600 700 01-0ct-93 8 270 3,100 650 04-0ct-93 8 470 3,100 650 04-0ct-93 8 70 1,100 220 04-0ct-93 8 100 2,200 210	(feet Oil & bgs) Oil & TPHd Grease TPHmo Benzene 01-0ct-93 8 190 3,800 190 <0.005	(feet bgs) Oil & TPHd Oil & Grease TPHmo Benzene Toluene 01-0ct-93 8 190 3,800 190 <0.005	(feet bgs) Oil & TPHd Oil & Grease Ethyl- benzene 01-0ct-93 8 190 3,800 190 <0.005

Data entered by MEK/21-Oct-93. Data proofed by JJB. QA/QC by JJB/27-Oct-93.

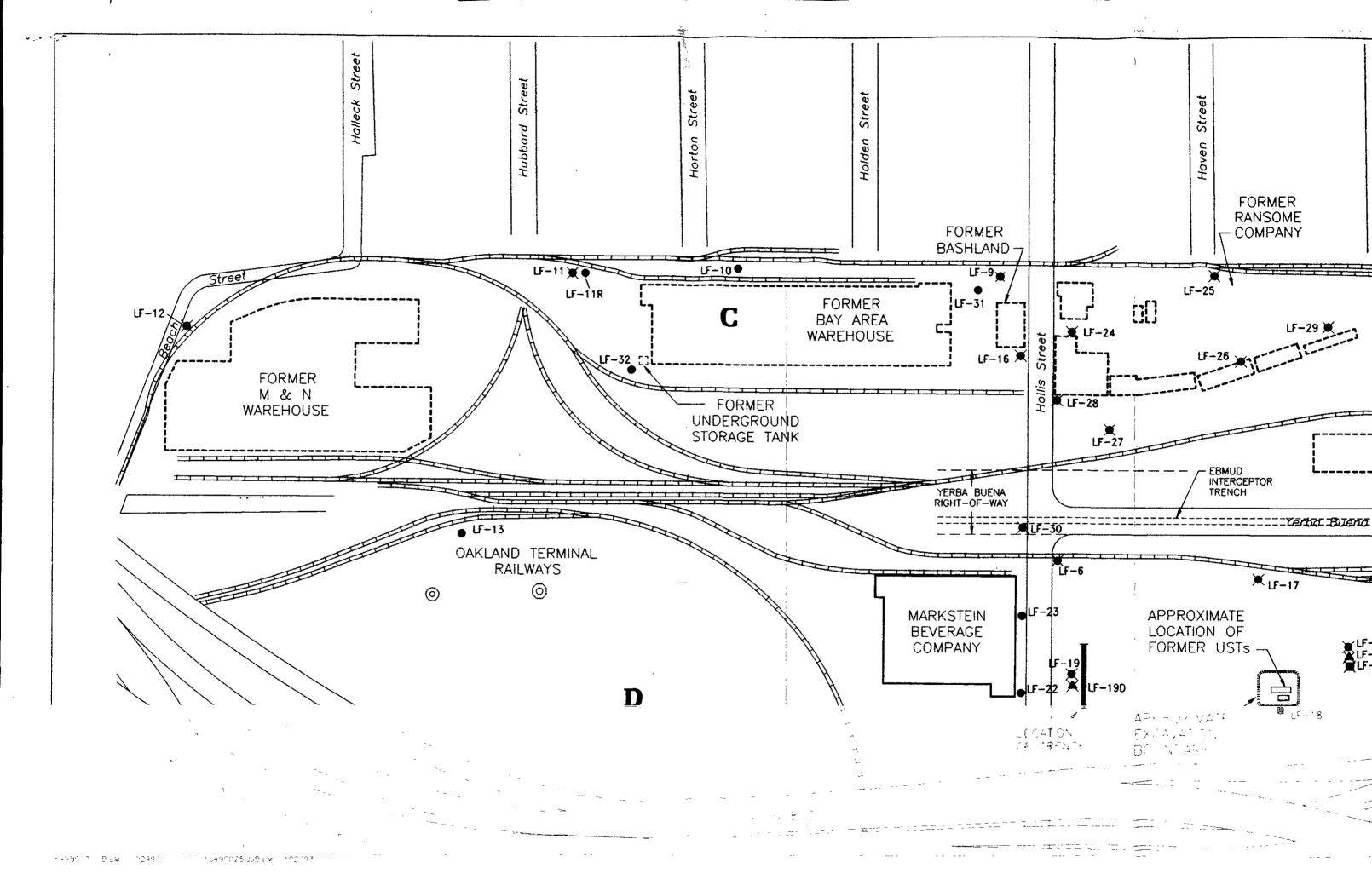
bgs - below ground surface TPHd - Total petroleum hydrocarbons as diesel using EPA Method 3550 Oil and grease using Standard Method 5520 E, F

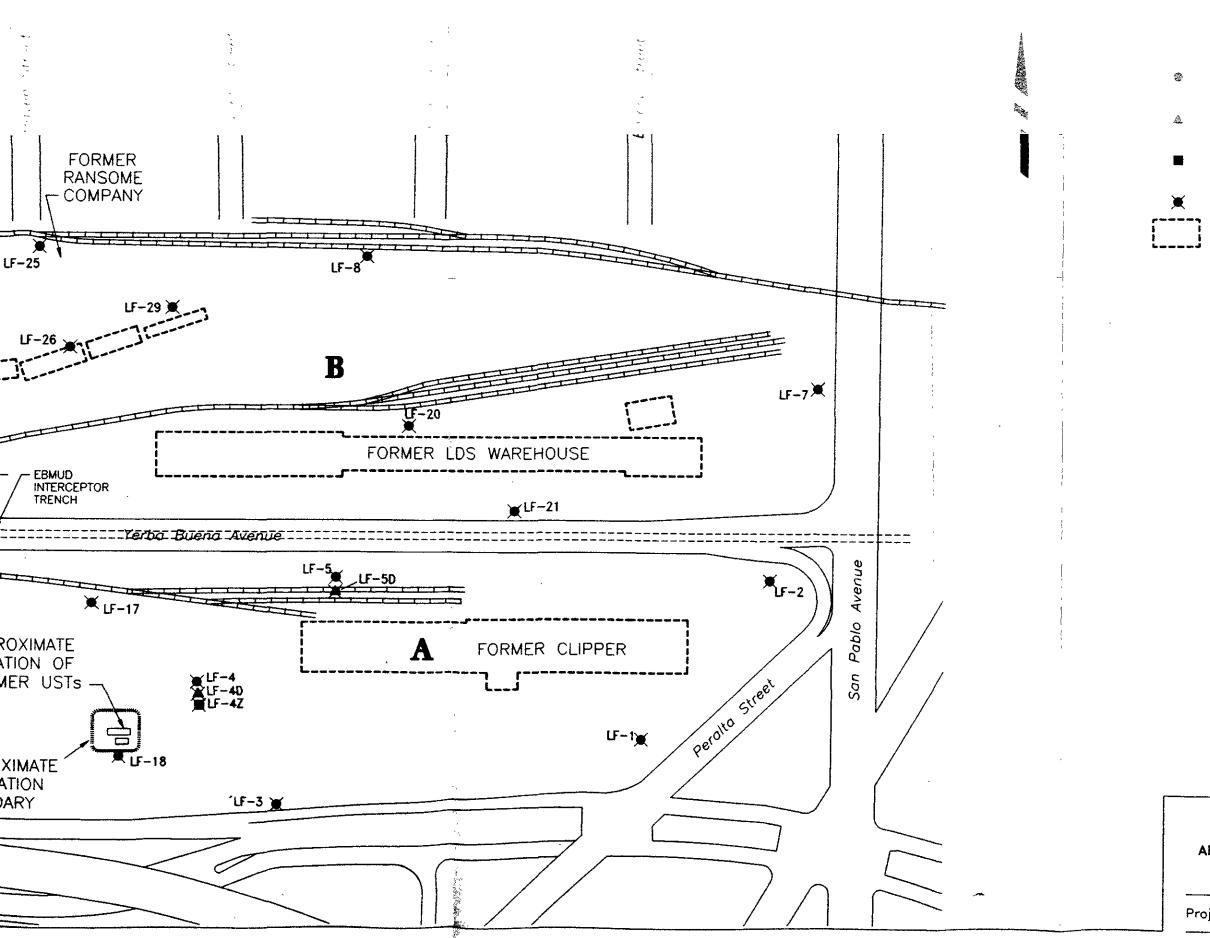
TPHmo - Total petroleum hydrocarbons as motor oil using EPA Method 3550 Benzene, toluene, ethylbenzene, and total xylenes using EPA Method 8020

One milligram per kilogram is equivalent to one part per million.

Analyses performed by Anametrix Laboratories, San Jose, California.

TABLE 2 ANALYTICAL RESULTS FOR FINAL SOIL SAMPLES COLLECTED FROM THE UST EXCAVATION AREA A, YERBA BUENA/EAST BAYBRIDGE CENTER, OAKLAND AND EMERYVILLE, CALIFORNIA (concentrations reported in milligrams per kilogram [mg/kg])


Sample ID	Date	Depth (feet bgs)	TPHd	Oil & Grease	TPHmo	Benzene	Toluene	Ethyl- benzene	Total Xylene
38-14	01-0ct-93	14	110	410	170	<0.005	<0.005	<0.005	0.007
rp1-18	01-0ct-93	18	11	230	57	<0.005	<0.005	<0.005	<0.005
SH-9	04-0ct-93	9	<10	90	<10	<0.005	<0.005	<0.005	<0.005
sn-14	05-0ct-93	14	29	430	58	<0.005	<0.005	<0.005	<0.005
E-14	05-Oct-93	14	24	400	58	<0.005	<0.005	<0.005	<0.005
W-14	05-0ct-93	14	22	330	61	<0.005	<0.005	<0.005	<0.005
SH-8	06-0ct-93	8	<10	53	<10	<0.005	<0.005	<0.005	<0.005
SE-8	06-0ct-93	8	<10	43	<10	<0.005	<0.005	<0.005	<0.005
NE-8	06-0ct-93	8	<10	43	<10	<0.005	<0.005	<0.005	<0.005
E-8-RR	06-0ct-93	8	<10	150	<10	<0.005	<0.005	<0.005	<0.005
N-8-RR	06-0ct-93	8	<10	53	26	<0.005	<0.005	<0.005	<0.005
s-14	06-0ct-93	14	<10	53	<10	<0.005	<0.005	<0.005	<0.005
NW-8-R	07-0ct-93	8	<10	67	<10	<0.005	<0.005	<0.005	<0.005


Data entered by MEK/21-Oct-93. Data proofed by MEK/21-Oct-93. QA/QC by JJB.

TPHd - Total petroleum hydrocarbons as diesel using EPA Method 3550 Oil and grease using Standard Method 5520 E, F TPHmo - Total petroleum hydrocarbons as motor oil using EPA Method 3550 Benzene, toluene, ethylbenzene, and total xylenes using EPA Method 8020

One milligram per kilogram is equivalent to one part per million.

Analyses performed by Anametrix Laboratories, San Jose, California.

Figure 2 :
0 150 300 FEET
LOCATION OF FORMER BUSINESSES
ABANDONED WELL
FORMER DEEPER (62 FEET) MONITORING WELL LOCATION
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

ENGINEERS, HYDROGEOLOGISTS, & APPLIED SCIENTISTS

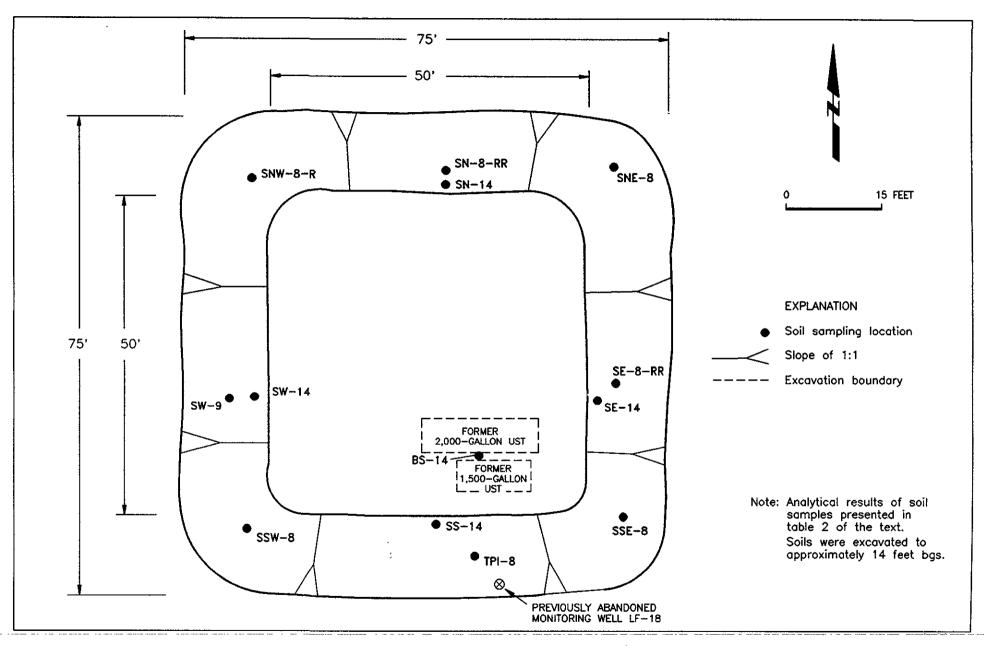


Figure 3 : FINAL EXCAVATION BOUNDARY AND FINAL CONFIRMATION SOIL SAMPLE LOCATIONS

Project No. 1649

LEVINE+FRICKE ENGINEERS, HYDROGEOLOGISTS, & APPLIED SCIENTISTS

1649S024.JJB:EM 102793

TABLE 1

ANALYTICAL	RESULTS	FOR	DOCUMENTATION	SOIL	SAMPLES	COLLECTED	FROM	CONTAINED	SOILS	
			EAST BAYBRID	E CE	NTER SITE					

EMERYVILLE AND OAKLAND, CALIFORNIA

(concentrations reported in milligrams per kilogram [mg/kg])

Sample	Sample			
ID	Date	TPHd	TPHmo	TOG
**************			********	
D1-0.5-1	28-Dec-93	<100	1200	2100
D1-1-1.5	28-Dec-93	<10	72	1200
D2-0.5-1	28-Dec-93	<50	690	1200
D2-1-1.5	28-Dec-93	<10	140	1200
D3-0.75	05-Jan-94	15	110	2000
D3-1.5	05-Jan-94	13	150	1000
D4-1.0	05-Jan-94	<100	460	3800
D4-1.75	05-Jan-94	<10	73	890
05-0.5-1	28-Dec-93	<10	85	340
D5-1-1.5	28-Dec-93	<20	230	1100
06-0.5-1	28-Dec-93	17	210	850
D6-1-1.5	28-Dec-93	15	240	840
D7-0.75	05-Jan-94	<10	68	2100
D7-1.5	05-Jan-94	48	87	1200
D8-1.5	05-Jan-94	<100	330	3100
D8-2.5	05-Jan-94	<10	96	1300
09-1.0	10-Nov-93	<500	1400	950
D9-2.0	10-Nov-93	<50	170	830
D10-1.0	10-Nov-93	<500	720	2200
D10-2.0	10-Nov-93	<50	290	1500
D11-1.0	10-Nov-93	<500	2000	8500
D11-1.5	<u>10-Nov-93</u>	<500	1100	1700
D12-1.0	10-Nov-93	<500	580	1500
012-2.5	10-Nov-93	<500	1400	4300
013-1.0	10-Nov-93	<500	730	2700
D13-2.0	10-Nov-93	<500	530	1400
D14-1.0	10-Nov-93	<500	900	18000
D14-1.5	10-Nov-93	<500	1300	4000
D15-0.5	17-Nov-93	<100	250	950
D15-1.5	17-Nov-93	<100	330	2000
D16-1.0	17-Nov-93	<500	710	1700
D16-2.0	17-Nov-93	<500	1800	15000
b17-1.0	17-Nov-93	<500	830	1900
017-2.0	17-Nov-93	<500	650	820
018-1.0	17-Nov-93	<10	36	280
D18-2.0		260	4400	8500
D19-1.0	17-Nov-93			
D19-2.0	17-Nov-93 17-Nov-93	<500	880	2200
				2200 1500
D20-1.0	17-Nov-93	<500	880 660 240	2200 1500 1600
D20-1.0 D20-2.0	17-Nov-93 17-Nov-93 17-Nov-93 17-Nov-93	<500 <500 <100 <500	880 660 240 2500	2200 1500

Data entered by MEK/18 Apr 94 Data proofed by MJS GA/GC by MJS/MEK

TPHd - total petroleum hydrocarbons as diesel analyzed by GCFID TPHmo - total petroleum hydrocarbons as motor oil analyzed by GCFID TOG - total oil and grease analyzed by EPA Method 5520EF

Samples analyzed by Anametrix, Inc., of San Jose, California.

"D14-1.5" refers to documentation samples series, sample grid location #14, sample depth 1.5 feet below the petroleum-affected soil surface (depth measured to top of sample).

1649\CONTAIN.WR1

TABLE 7A

METAL COMPOUNDS DETECTED IN GROUND-WATER SAMPLES PHASE I INVESTIGATION YERBA BUENA SITE, EMERYVILLE, CALIFORNIA (concentrations in ppm)

	:=#42====	*==========	======	============		#======	=======	*#=======	=======	s¤=====	**********	***=====		=======	=======
SAMPLE LOCATION	SAMPLE ID	DATE SAMPLED	Sb	As	Be	Cd	Cr	Cu	Pb	Hg	Ni	Se	Ág	τι	Zn
16	A6C	24-Jan-90	ND	0.003	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.026
424	A24C	23-Jan-90	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.003	ND	ND	0.026
327	B27₩	22-Feb-90	ND	ND	ND	ND	ND	0.006	ND	ND	0.05	*ND	ND	ND	0.04
329	B29W	22-Feb-90	ND	ND	ND	ND	ND	ND	ND	ND	0.03	ND	ND	ND	0.008
830	B30W	22-Feb-90	ND	0.001	NÐ	ND	ND	0.019	0.05	ND	0.05	ND	ND	ND	0.069
331	B31W	22-Feb-90	ND	ND	ND	ND	ND	ND	ND	ND	0.04	ND	ND	ND	0.01
C10	C10W	08-Feb-90	NA	NA	NA	NA	NA	NA	ND	NA	NA	NA	NA	NA	NA
C15	C15W	31-Jan-90	ND	0.002	ND	ND	ND	ND	ND	ND	0.02	ND	ND	ND	0.009
C18	C18W	07-Feb-90	ND	0.001	ND	ND	ND	ND	ND	ND	0.02	ND	ND	ND	0.017
20	C20W	07-Feb-90	NA	NA	NA	NA	NA	NA	ND	NA	NA	NA	NA	NA	NA
LF1	LF1-7503	05-Feb-90	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.015
.F2	LF2-7503	06-Feb-90	ND	0.002	ND	ND	ND	0.007	ND	ND	ND	ND	ND	ND	0.026
.F3	LF3-7503	06-Feb-90	ND	ND	ND	0.004	ND	0.006	ND	ND	ND	ND	ND	ND	0.024
.F4	LF4-7501	07-Feb-90	ND	ND	ND	ND	ND	ND	ND	ND	0.01	ND	ND	ND	0.051

.

TABLE 7A

METAL COMPOUNDS DETECTED IN GROUND-WATER SAMPLES PHASE I INVESTIGATION YERBA BUENA SITE, EMERYVILLE, CALIFORNIA (concentrations in ppm)

SAMPLE	SAMPLE	DATE															
LOCATION	ID	SAMPLED	Sb	As	Be	Cd	Cr		Cu	Pb	Kg		Ni	Se	Ag	τl	Zn
LF5	LF5-7503	06-Feb-90	ND	ND	ND	ND	ND		ND	ND	ND		ND	ND	ND	ND	0.018
LF6	LF6-7501	07-Feb-90	ND	0.001	ND	ND	ND		NĎ	ND	ND		ND	ND	ND	ND	0.016
.F7	LF7-7501	08-Feb-90	ND	0.001	ND	ND	ND		ND	ND	ND		ND	ND	ND	ND	0.019
LF8	LF8-7501	07-Feb-90	ND	0.001	ND	ND	ND		NĎ	ND	ND		ND	ND	ND	ND	0.018
.F9	LF9-7501	08-Feb-90	ND	ND	ND	ND	ND		ND	ND	ND		ND	ND	ND	ND	0.016
.F10	LF10-7501	08-Feb-90	ND	ND	ND	ND	ND		NĎ	ND	ND		0.05	ND	ND	ND	0.021
.F11	LF11-7501	09-Feb-90	ND	ND	ND	ND	ND		NĎ	ND	ND		0.05	ND	ND	ND	0.007
.F12	LF12W	23-Feb-90	ND	0.003	ND	ND	ND		0.011	ND	ND		0.02	ND	ND	ND	0.005
.F16	LF16W	23-Feb-90	ND	ND	ND	ND	ND		ND	NÐ	ND		ND	ND	ND	ND	0.005
etectio	n Limit		0.5	0.001	0.003	0.003	0.02		0.005	0.01	0.0003		0.01	0.003	0.01	0.02	0.003
lethod R	eference		7040	7060	7090	7130	7190		7210	7420	7471		7520	7740	7760	78 40	7950
ICL			NA	0.05	NA	0.01	0.05	(4)	1.30	0.05	0.002		NA	0.01	0.05	NA	5.0 (6
cean Pl	an (1)	,		0.008		0.003	0.002	(4)	0.005	0.008	0.14	(5)	0,020				0.020
Basin Pl			•	0.036		0.0093	0.050			0.0056		• •			0.45 (5)		• • - <u>,</u>
PA Crit	eria (3)			0.036		0.0093	0.002	(4)		0.0056	0.025	(5)	0.0083	0.071			0.086

--

TABLE 7A

METAL COMPOUNDS DETECTED IN GROUND-WATER SAMPLES PHASE I INVESTIGATION YERBA BUENA SITE, EMERYVILLE, CALIFORNIA (concentrations in ppm)

	SAMPLE	DATE													
LOCATION	ID	SAMPLED	Sb	As	Be	Cd	Cr	Cu	Pb	Hg	Ni	Se	Ag	τι	Zn
OTES:				******				Ke	ey to Al	obreviation	s:				
Detectio	n Limít	0.03 ppm							•	o = Antimon		Hg	a = Mercu	гy	
										s = Arsenic		Ni	i = Nicke	ι.	
NA - not a	nalyzed								B	e = Berylli	umi	Se	e = Selen	านก	
D - not d	etected									d = Cadmium		Ac	= Silve	r	
									C	r = Chromiu	m		= Thall		
tCL ≈ Cali	fornia D	HS Maximum C	ontamin	ant Lev	el for D	rinking	Water		Cu	u = Copper		Zr	a = Zinc		
(Cal	ifornia	Department o	f Healt	h Servî	ces)		-			o - Lead					
		cean Plan Li ntration	miting	Concent	rations	-6 mor	nth								
		Auality Cont	nal Dia	n liata	n Ouolit	w Obio	*****								
		o Bay Basin		•		• •									
		Water Qualit													
		- 4 day ave	•			JULC NO	3641								
(4) = Cr V		, uro													
		per billion													
	•	andard (tast		dan											

1

.

\$

TABLE 78

VOLATILE ORGANIC COMPOUNDS DETECTED IN GROUND-WATER SAMPLES PHASE I INVESTIGATION YERBA BUENA SITE, EMERYVILLE, CALIFORNIA (concentrations in ppm)

_

SAMPLE LOCATION	SAMPLE ID	NOTES	DATE SAMPLED	В	т	E	x	1,1- DCE	1,1- DCA	1,2- DCE	TCE	1,1,1- TCA	PCE	1,1,2 TCA	VNCL
LF1	LF1-7503		05-Feb-90	*ND	*ND	*ND	**ND	ND .	ND	ND	ND	ND	ND	ND	N
LF2	LF2-7503		06-Feb-90	*ND	*ND	*ND	**ND	ND	· ND	ND	ND	ND	ND	ND	N
LF3	LF3-7503		06-Feb-90	*ND	*ND	*ND	**ND	ND	ND	ND	ND	ND	ND	ND	N
LF4	LF4-7501		07-Feb-90	*ND	*ND	*ND	**ND	0.49	0.008	ND	ND	0.082	ND	ND	Ń
LF5	LF5-7503		06-Feb-90	*ND	*ND	*ND	**ND	0.73	0.014	ND	ND	0.27	ND	ND	N
LF6	LF6-7501		07-Feb-90	*ND	*ND	*ND	**ND	ND	0.018	ND	ND	ND	ND	ND	N
LF6	LF6D-750'	l	07-Feb-90	*ND	*ND	*ND	**ND	ND	0.018	ND	ND	ND	ND	ND	N
LF7	LF7-7501		08-Feb-90	*ND	*ND	*ND	**ND	ND	ND	ND	ND	ND	ND	ND	N
LF8	LF8-7501		07-Feb-90	*ND	*ND	*ND	**ND	0.006	0.015	ND	ND	0.01	ND	ND	ł
LF9	LF9-7501		08-Feb-90	*ND	*ND	*ND	**ND	ND	ND	ND	0.034	ND	ND	ND	N
LF9	LF9G		30-Jan-90	*ND	*ND	*ND	**ND	ND	ND	ND	ND	ND	ND	ND	M
LF10	LF10-7501	Ì	08-Feb-90	*ND	*ND	*ND	**ND	0.031	ND	3.2	7.6	ND	0.041	0.007	1.
LF11	LF11-7501	ł	09-Feb-90	*ND	*ND	*ND	**ND	ND	ND	0.051	0.31	ND	ND	ND	Ņ
LF12	LF12W		23-Feb-90	*ND	*ŇD	*ND	**ND	ND	ND	0.067	0.008	ND	ND	ND	١
LF16	LF16W		23-Feb-90	*ND	*ND	*ND	**ND	ND	ND	ND	ND	ND	ND	ND	Ņ
Field Bla	anks														
LF1-7503			05-Feb-90	*ND	*ND	*ND	**ND	ND	ND	ND	ND	ND	ND	ND	N
Detection				0.0005	0.0005	0.0005	0.002	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.0
1CL (1)				0.001	2.0	0.68	1.75	0.006	•••		0.005	0.2	0.002	0.032	0.000
State Act	tion Level	(2) (3)		0.1				0.005	0.006			0.005		

NOTES TO TABLE 78:

All samples analyzed by Med-Tox Associates of Pleasant Hill, California, using EPA Method 8240 unless noted otherwise.

*	Detection Limit	.005 ppm
**	Detection Limit	.01 ppm
***	Detection Limit	.0002 ppm

TABLE 7C

PETROLEUM HYDROCARBONS DETECTED IN GROUND-WATER SAMPLES PHASE I INVESTIGATION YERBA BUENA SITE, EMERYVILLE, CALIFORNIA

(concentrations in ppm)

*

•

.

•

			entrations			
SAMPLE LOCATION	SAMPLE ID	DATE SAMPLED	GASOLINE	DIESEL	WASTE OIL	STODDARD SOLVENT
		25-Jan-90				
A24	A24C	23-Jan-90	ND	ND '	ND	NA
B3	83C	26-Jan-90	NA	ND	ND	NA
B4	B4C	26-Jan-90	0.2	ND	ND	NA
B14	B14AW	02-Feb-90	+ND	12	**ND	NA
B15	815W	02-Feb-90	NA	NA	NA	NA
817	B17W	02-Feb-90	20	***ND	2	NA
B27	B27₩	22-Feb-90	ND	ND	0.6	NA
B29	829W	02-Mar-90	ND	ND	ND	NA
830	B30W	02-Mar-90	0.1	1.4	ND	NA
B31	B31₩	02-Mar-90	ND	ND	ND	NA
C7	C7W	31-Jan-90	ND	ND	0.5	NA
C10	C10W	08-Feb-90	ND	NA	NA	NA
C16	C16W	31-Jan-90	ND	ND	0.7	NA
C18	C18W	07-Feb-90	ND	++ND	NA	NA
C20	C20W	07-Feb-90	0.2	NA	NA	NA
C28	C28W	12-Feb-90	ND	ND	ND	NA
C29	C29W	15-Feb-90	ND	ND	ND	NA
LF1	LF1-7503	05-Feb-90	ND	ND	ND	NA
LF2	LF2-7503	06-Feb-90	ND	ND	ND	NA
lf3	LF3-7503	06-Feb-90	ND	ND	ND	NA
.F4	LF4-7501	07-Feb-90	ND	ND	ND	NA

TABLE 78

VOLATILE ORGANIC COMPOUNDS DETECTED IN GROUND-WATER SAMPLES PHASE I INVESTIGATION YERBA BUENA SITE, EMERYVILLE, CALIFORNIA (concentrations in ppm)

SAMPLE	SAMPLE		DATE			******	a zaz 2 2					#=° 1,1,1-		1,1,2	
LOCATION	ID	NOTES	SAMPLED	B	T	£	х	DCE	DCA	DCE	ŤCE	TCA	PCE	TCA	VNCL
NA ≈ not	analyze	d							I						

ND = not detected

(1) MCL = Maximum Contaminant Level for drinking water (California Department of Health Services)

1

.

(2) California Department of Health Services Action Level for drinking water

(3) State or federal surface water quality criteria for chronic or short-term exposure not available for VOCs

Key to Abbreviations:

T = TOLUENE B = BENZENE E = ETHYLBENZENE X = TOTAL XYLENES 1,1-DCE = 1,1-DICHLOROETHENE 1,2-DCE = 1,2-DICHLOROETHENE TCE = TRICHLOROETHENE 1,1,1-TCA = 1,1,1-TRICHLOROETHANE PCE = TETRACHLOROETHENE 1,1,2-TCA = 1,1,2-TRICHLOROETHANE VNCL = VINYL CHLORIDE . ^

LEVINE-FRICKE

CLIENT ID: A24C CLIENT JOB NO: 1649 DATE SAMPLED: 01/23/90 DATE RECEIVED: 01/24/90 REPORT DATE: 02/08/90

MED-TOX LAB NO:	9001131-01H
MED-TOX JOB NO:	9001131
DATE EXTRACTED:	01/29/90
DATE ANALYZED:	02/01/90
INSTRUMENT: 11	

EPA METHOD 8270 BASE/NEUTRAL EXTRACTABLES

COMPOUND	CAS #	CONCENTRATION (ug/L)	DETECTION LIMIT (ug/L)
Acenaphthene	83-32-9	ND	10
Acenaphthylene	208-96-8	ND	10
Anthracene	120-12-7	ND	10
Benzidine	92-87-5	ND	50
Benzoic Acid	65-85-0	ND	50
Benzo(a)anthracene	56-55-3	ND	10
Benzo(b)fluoranthene	205-99-2	ND	10
Benzo(k)fluoranthene	207-08-9	- ND	10
Benzo(g,h,i)perylene	191-24-2	ND	10
Benzo(a)pyrene	50-32-8	ND	10
Benzyl Alcohol	100-51-6	ND	20
Bis(2-chloroethoxy) methane	111-91-1	ND	10 '
Bis(2-chloroethyl)ether	111-44-4	ND	10
Bis(2-chloroisopropyl) ether	39638-32-9	ND	10
Bis(2-ethylhexyl) phthalate	117-81-7	ND	10
4-Bromophenyl phenyl ether	101-55-3	ND	10
Butylbenzyl phthalate	85-68-7	ND	10
4-Chloroaniline	106-47-8	ND	20
2-Chloronaphthalene	91-58-7	ND	10
4-Chlorophenyl phenyl ether	7005-72-3	ND	10
Chrysene	218-01-9	ND	10
Dibenzo(a,h)anthracene	53-70-3	ND	10
Dibenzofuran	132-64-9	ND	10
Di-n-butylphthalate	84-74-2	ND	10
1,2-Dichlorobenzene	95-50-1	ND	10

PAGE 5 OF 9

LEVINE-FRICKE

CLIENT ID: A24C CLIENT JOB NO: 1649 DATE SAMPLED: 01/23/90 DATE RECEIVED: 01/24/90 REPORT DATE: 02/08/90

MED-TOX LAB NO:	9001131-01H
MED-TOX JOB NO:	9001131
DATE EXTRACTED:	01/29/90
DATE ANALYZED:	02/01/90
INSTRUMENT: 11	

EPA METHOD 8270 BASE/NEUTRAL EXTRACTABLES (cont.)

COMPOUND	CAS #	CONCENTRATION (ug/L)	DETECTION LIMIT (ug/L)
1,3-Dichlorobenzene	541-73-1	ND	10
1,4-Dichlorobenzene	106-46-7	ND	10
3,3'-Dichlorobenzidine	91-94-1	ŇD	20
Diethylphthalate	84-66-2	ND	10
Dimethylphthalate	131-11-3	ND	10
2,4-Dinitrotoluene	121-14-2	ND	10
2,6-Dinitrotoluene	606-20-2	ND	10
Di-n-octylphthalate	117-84-0	ND	10
1,2-Diphenylhydrazine	122-66-7	ND	10
Fluoranthene	206-44-0	ND	10
Fluorene	86-73-7	ND	10
Hexachlorobenzene	118-74-1	ND	10
Hexachlorobutadiene	87-68-3	ND	10
Hexachlorocyclopentadiene	77-47-4	ND	10
Hexachloroethane	67-72-1	ND	10
Indeno(1,2,3-cd)pyrene	193-39-5	ND	10
Isophorone	78-59-1	ND	10
2-Methylnaphthalene	91-57-6	ND	10
Naphthalene	91-20-3	ND	10
2-Nitroaniline	88-74-4	ND	50
3-Nitroaniline	99-09-2	ND	50
4-Nitroaniline	100-01-6	ND	50
Nitrobenzene	98-95-3	ND	10
N-nitrosodimethylamine	62-75-9	ND	10
N-nitrosodiphenylamine	86-30-6	ND	10
N-nitroso-di-n- propylamine	621-64-7	ND	10
Phenanthrene	85-01-8	ND	10
Pyrene	129-00-0	ND	10
1,2,4-Trichlorobenzene	120-82-1	ND	10

į.

PAGE 6 OF 9

LEVINE-FRICKE

CLIENT ID: A24C CLIENT JOB NO: 1649 DATE SAMPLED: 01/23/90 DATE RECEIVED: 01/24/90 REPORT DATE: 02/08/90

1131-01H
1131
29/90 📜
1/90
•

EPA METHOD 8270

ACID EXTRACTABLES

Compound	CAS #	CONCENTRATION (ug/L)	DETECTION LIMIT (ug/L)
4-Chloro-3-methylphenol	59-50-7	ND	10
2-Chlorophenol	95-57-8	ND	10
2,4-Dichlorophenol	120-83-2	ND	10
2,4-Dimethylphenol	105-67-9	ND	10
4,6-Dinitro-2-methylphenol	534-52-1	ND	50 I
2,4-Dinitrophenol	51-28-5	ND	50
2-Methylphenol	95-48-7	ND	10
4-Methylphenol	106-44-5	ND	10
2-Nitrophenol	88-75-5	ND	10
4-Nitrophenol	100-02-7	ND	50
Pentachlorophenol	87-86-5	ND	50
Pheno1	108-95-2	ND	10
2,4,5-Trichlorophenol	95-95-4	ND	10
2,4,6-Trichlorophenol	88-06-2	ND ND	10

GROUND-WATER QUALITY DATA SUMMARY CHEMICAL COMPOUNDS DETECTED IN SHALLOW GROUND WATER AREA A AND AREA C AND VICINITY EMERYVILLE, CALIFORNIA YERBA BUENA PROJECT SITE (concentrations in milligrams per liter [mg/l]) Sample Date 1,1,1-TCA 1,1-DCE 1,1-DCA 1,2-DCE TCE PCE oil Diesel Location Sampled ND ND ND ŇA LF-3 06-Feb-90 ND ND ND NA ND ND ND ND ND ND ND ND 07-Jan-92 23-Jul-92 ND ND ND ND NÐ ND NA ŇĀ ND ND ND ND ND ND ND ND 10-Feb-93 0.008 ND ND 0.082 ND 07-Feb-90 0.49 NA HA LF-4 0.078 0.006 ND * ND * ND * MD ND 06-Jan-92 0.43 ND * 0.41 0.004 ND * ND * 0.075 ND ND duplicate ND ND 0.025 ND NA 0.25 ND НA 15-Apr-92 0.042 0.024 ND 24-Jul-92 0.22 ND ND ND ND ND 0.02 hA 21-0ct-92 0.19 ND ND ND NA ND 0.19 0.0041 ND + ND + 0.022 ND + ND 09-Feb-93 0.43 0.007 ND ND 0.087 ND NA NA 25-Apr-90 LF-4D ND ** ND ** ND ** 0.074 06-Jan-92 0.39 0.006 NA NA 16-Apr-92 ND ND 0.020 ND 0.16 ND NA NA 0.018 ND ND ND ND NA ŇΑ 23-Jul-92 0.15 21-0ct-92 0.15 ND ND ND 0.013 ND NA NA 0.0035 0.017 ND + ND + ND + NA 10-Feb-93 0.14 NA ND ND ND ND ND NA 21-Nov-90 ND ŇA LF-42 ND ND ND ND ND ND NA NA 06-Jan-92 16-Apr-92 ND ND ND ND ND ND NA NA ND ND ND MD NΔ NA. 23-Jul-92 ND ND ND ND ND ND NA NA 21-Oct-92 ND ND ND ND ND NA NA ND ND 10-Feb-93 ND ND 0.27 ND LF-5 06-Feb-90 0.73 0.014 ND ND ND ND *** ND *** ND *** 0.010 ND ND 06-Jan-92 0.88 0.011 16-Apr-92 ND ND 0.10 ND 0.44 ND NA NA 0.08 0.0058 ND 0.47 ND ND ND ND 23-Jul-92 NA 21-0ct-92 0.39 ND ND ND 0.042 ND NA ND ND ++ ND ++ 0.06 ND ++ ND 10-Feb-93 0.38 ND ++ ND ND ND NA ND ND ND NA LF-5D 26-Apr-90 29-Nov-90 ND ND ND ND ND ND NA NA 06-Jan-92 ND NA NA ND ND ND ND ND ND NA NA ND NÐ 16-Apr-92 ND ND ND NÐ ND ND ND ND NA NA 23-Jul-92 ND ND ND NA NA ND ND ND ND 21-0ct-92 ND ND ND ND NA NA 10-Feb-93 ND ND ND ND ND 07-Feb-90 ND 0.018 ND ND ND LE-6 0.018 ND ND ND ND ND NA ND duplicate NA 29-Nov-90 ND ND ND ND ND ND NA 0.0048 0.011 0.0005 0.0026 0.0044 0.018 NA NA 07-Jan-92 0.0065 0.0026 0.001 NA NA 0.004 0.0032 0.0025 15-Apr-92 23-Jul-92 (5) 0.0082 0.0033 0.0094 0.0071 0.0014 0.0094 NA NA 0.0046 0.0015 0.0025 NA. NA 20-Oct-92 0.0051 0.0026 0.016 (5) 09-Feb-93 0.0025 0.0029 0.0031 0.002 0.0079 NA NA 0.010 ND +++ ND +++ 0.368 1.600 ND +++ ND +++ NA NA LF-10 10-Feb-93 0.0359 0.140 ND + ND + NA NA ND + ND + LF-11 10-Feb-93 ND 0.0358 0.002 NO ND NA NA LF-12 10-Feb-93 ND ND 0.003 ND NA 0.009 0.001 ND NA LF-17 25-Apr-90 ND ND NA NA duplicate ND ND ND ND ND ** ND ** ND ** 0.490 0.012 0.092 NA NA 07-Jan-92 NA 16-Apr-92 0.350 ND ND ND 0.047 ND NA 0.049 ND NA NA ND ND duplicate 0.360 ND

TABLE 2

24-Jul-92

NA

ND

0.035

ND

NA

ND

0.320

ND

TABLE 2

TABLE 2 GROUND-WATER QUALITY DATA SUMMARY CHEMICAL COMPOUNDS DETECTED IN SHALLOW GROUND WATER AREA A AND AREA C AND VICINITY EMERYVILLE, CALIFORNIA YERBA BUENA PROJECT SITE (concentrations in milligrams per liter [mg/l])

Sample	Date									_
Location	Sampled		1,1-DCE	1,1-DCA	1,2-DCE	TCE	1,1,1-TCA	PCE	Oil	Diesel
	duplicate		0.460	ND	ND	ND	0.053	ND	NA	NA
	21-Oct-92		0.380	ND	ND	ND	0.04	ND	NA	NA
	duplicate		0.320	ND	ND	ND	0.033	ND	NA	NA.
	09-Feb-93		0.260	0.0059	ND ***	ND ***	0.035	ND ***	NA	KA.
	duplicate		0.240	ND ***	ND ***	ND ***	0.031	ND ***	NA	KA
- 40	25-Ame-00		0.003	ND	ND	ND	ND	ND	NA	NA
-18	25-Apr-90 07-Jan-92		0.003	ND ND	ND	ND	ND	ND	NA	NA
	16-Apr-92		0.0017	ND	ND	ND	ND	ND	NA	NA
	23-Jul-92		ND	ND	ND	ND	ND	ND	NA	NA
							ND	ND	NA	NA
	21-0ct-92 09-Feb-93		ND ND	ND ND	ND ND	ND ND	ND	ND	NA	NA
- 19	25-Apr-90		0.15	0.006	ND	ND	0.034	NÐ	NA	NA .
	06-Jan-92		0.100	0.0087	ND	ND	0.018	ND	ND	0.1
	15-Apr-92		0.064	0.0028	ND	ND	0.008	ND	NA	NA
	24-Jul-92		0.032	0,0032	ND	ND	0.0039	ND	0.200	ŅD
	20-0ct-92	(4)	0.0052	0.003	ND	ND	0.0011	ND	NA	NA
	09-Feb-93		0.018	0.0016	ND	ND	0.0022	ND	0.380	0.0
:-10n	12-Jul-91		ND	ND	ND	ND	NÐ	ND	NA	NA
-190	12-Jul-91 06-Jan-92		ND	ND	ND	ND	ND	ND	ND	ND
	15-Apr-92		ND	ND	ND	ND	ND	ND	NĂ	NA
			ND	0.0007	NÐ	ND	ND	ND	NA	NA
	23-Jul-92									NA
	20-Oct-92 09-Feb-93		ND 0.00057	ND 0.00097	ND ND	ND ND	ND ND	ND ND	NA NA	NA
-20	26-Apr-90		ND	ND	ND	ND	ND	ND	NA	NA
	duplicate		ND	ND	ND	ND	ND	ND	HA	NA
	07-Jan-92		ND	ND	ND	ND	ND	ND	NA	ŅA
	16-Apr-92		ND	ND	ND	ND	ND	ND	NA	NA
	24-Jul-92		ND	ND	ND	ND	ND	ND	NA	NA
	21-0ct-92		ND	ND	ND	ND	ND	ND	NA	NA
	11-Feb-93		ND	ND	ND	ND	ND	ND	NA	NA
	00 H-11 00		ND	10	ND	ND	ND	ND	NA	NA
-21	29-Nov-90		ND	ND						
	07-Jan-92		ND	ND	ND	ND	ND	ND	NA	NA
	16-Apr-92		ND	ND	ND	ND	ND	ND	NA	NA
	24-Jul-92		ND	ND	ND	ND	ND	ND		
	21-0ct-92		ND	ND	ND	ND	ND	ND	NA	NA
	11-Feb-93		ND	ND	ND	ND	ND	ND	NA	NA
-22	12-Jul-91		0.053	0.0063	0.0016	0.0007	0.012	0.0017	NA	NA
	07-Jan-92		0.041	0.0054	0.0011	ND	0.009	0.0037	NA	NA
			0.041	0.0021	ND	ND	0.0026	0.0018	NA	NA.
	16-Apr-92	175				ND	0.0028	0.0014	NA	NA
	23-Jul-92	(3)	0.027	0.0052	ND					
	20-0ct-92		0.014	0.004	ND	0.00078	0.0013	0.00066	NA	NA
	09-Feb-93		0.0081	0.0028	ND	0.00051	0.0013	0.0007	NA	NA
-23	12-Jul-91		0.0012	0.011	0.0009	0.0039	0,0009	0.027	NA	NA
	07-Jan-92		0.0034	0.012	0.0013	0.007	0.0023	0.056	NA	NA
	16-Apr-92		0.0044	0.0044	0.0011	0.0036	0.00068	0.020	NA	NA
	23-Jul-92		0.0061	0.0044	0.0014	0.0038	0.0013	0.029	NA	NA
						0.0033	0.00054	0.023	NA	NA
	20-0ct-92 09-Feb-93		0.0047	0.002	0.0015 0.0018	0.0033		0.023	NA	NA
F-30	22-0ct-92		0.00079	0.0058	0.0015	0,00065	0.001	ND	NA	NA
	duplicate		0.00081	0.0053	0.0013	0.00051	0.00056	ND	NA	NA
	12-Feb-93		ND	0.0029	0.00093	0.00069	0.00076	ND	NA	NA
	duplicate		ND	0.0029	0.00089	0.00071	0.00069	ND	NA	NA
eld Blanks:							ND	ND	NA	- NA

.

			(concer	COMPOUNDS AREA A EMER YERBA itrations	AND AREA C YVILLE, CA BUENA PRO in milligr	Y DATA SUA IN SHALLOW AND VICIN LIFORNIA JECT SITE ams per li	V GROUND WA NITY iter [mg/l])			
Sample Location	Date Sampled			1,1-DCA		TCE	1,1,1-TCA	PCE	Oil	Die	esel
LF-4FB LF-17FB LF-17FB LF-17-BB LF-17FB LF-17FB LF-4Z-FB	06-Jan-92 16-Apr-92 24-Jul-92 20-Oct-92 09-Feb-93 10-Feb-93		ND	ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND NA NA NA NA NA		ND NA NA NA NA
NA - not a	limit 0.002 a limit 0.005	pm. ppm.	equivale	ent to par	ts per mil	lion.	1,1-DCA 1,2-DCE TCE 1,1,1-TCA	- 1,1-Dichl - 1,1-Dichl - 1,2-Dichl - Trichlorc - 1,1,1-Tri - Tetrachlo	oroethar oroether othene ichloroet	xe xe :han	6
++ Detection +++ Detection (1) 0.0011 pp methylend	limit 0.010 limit 0.025 om methylene chloride is	ppm. ppm. chlori a com	mon lab	coratory o	contaminant	: .					
<pre>(2) 0.0015 p (3) 0.00081 ((4) 0.0012 p (5) 0.0023 p</pre>	opm vinyl chl om vinyl chlo	oride ride d	detecte ietectec	ed. 1.							

(6) 0.0016 ppm methylene chloride (a common laboratory contaminant) detected within normal laboratory background concentrations.

•

Summary of Groundwater Quality Data

East Baybridge Center

Emeryville and Oakland, California

(concentrations expressed in parts per million (ppm))

Well ID	Notes	Date Sampled	Lab	TPHg	TPHd	Benzene	Toluene	Ethyl- benzene	Total Xylenes	TCE	1,1,1-TCA	PCE	1,1-DCE	1,1-DCA	1,2-DCA	cis/trans-1,2- DCE	Total VOCs
			L		. , , , , , , , , , , , , , , , , , , ,	J					l				I		
							S	hallow Wells	s (20 to 25 fe	et below gr	ade)						
4W-1		13-Sep-94	AEN	< 0.005	0.30	<0.0005	< 0.0005	< 0.0005	< 0.0005	NA	NA	NA	NA	NA	NA	NA	NA
		30-Nov-94	AEN	NA	0.10	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	ND
		17-Feb-95	AEN	< 0.05	0.08	< 0.0005	< 0.0005	< 0.0005	< 0.002	NA	NA	NA	NA	NA	NA	NA	NA
		09-May-95	AEN	< 0.05	0.20	< 0.0005	< 0.0005	< 0.0005	< 0.002	NA	NA	NA	NA	NA	NA	NA	NA
		31-Aug-95	AEN	< 0.05	0.30	< 0.0005	< 0.0005	< 0.0005	< 0.002	NA	NA	NA	NA	NA	NA	NA	NA
		27-Dec-95		<0.05	0.10	< 0.0005	< 0.0005	< 0.0005	< 0.002	NA	NA	NA	NA	NA	NA	NA	NA
		27-Feb-96	AEN	< 0.05	0.18	< 0.0005	< 0.0005	< 0.0005	< 0.002	NA	NA	NA	NA	NA	NA	NA	NA
		01-May-96		< 0.05	0.10	< 0.0005	< 0.0005	< 0.0005	< 0.002	NA	NA	NA	NA	NA	NA	NA	NA
		04-Sep-96	AEN	< 0.05	0.25	< 0.0005	< 0.0005	< 0.0005	< 0.002	NA	NA	NA	NA	NA	NA	NA	NA
1W-2		01-Dec-94	AEN	7.10	NA	0.065	< 0.01	0.13	0.47	NA	NA	NA	NA	NA	NÁ	NA	NA
		17-Feb-95	AEN	3.50	0.30	0.045	0.005	0.11	0.35	ŇA	NA	NA	NA	NA	NA	NA	NA
		09-May-95	AEN	3.50	0.20	0.025	0.009	0.085	0.25	NA	NA	NA	NA	NA	NA	NA	NA
		31-Aug-95	AEN	0.90	0.20	0.011	< 0.0005	0.032	0.072	NA	NA	NA	NA	NA	NA	NA	NA
		20-Dec-95	AEN	2.60	< 0.05	0.016	0.002	0.079	0.24	NA	NA	NA	NA	NA	NA	NA	ŇĂ
		27-Feb-96	AEN	4.10	0.20	0.076	0.0095	0.21	0.62	NA	NA	NA	NA	NA	NA	NA	NA
		01-May-96	AEN	2.40	0.23	0.039	0.0047	0.098	0.26	ŇĂ	NA	NA	NA	NA	NA	NA	NA
		04-Sep-96	AEN	0.54	0.22	0.0024	< 0.0005	0.018	0.045	NA	NA	NA	NA	NA	NA	NA	NA
		17-Dec-96	A2AC	0.776	< 0.010	0.004	0.009	0.011	0.019	NA	NA	NA	NA	NA	NA	NA	NA
		18-Feb-97		1.2	0.24	0.015	0.0009	0.057	0.140	NA	NA	NA	NA	NA	NA	NA	NA
		15-May-97	AEN	0.46	0.11	0.0033	< 0.0005	0.035	0.059	NA	NA	NA	NA	NA	NA	NA	NA
	(44)	11-Dec-97	AEN	1.7	0.15	0.016	0.0010	0.061	0.106	NA	NA	NA	NA	NA	NA	NA	NA
		10-Mar-98	AEN	0.81	0.14	0.011	0.0006	0.045	0.086	NA	ŇĂ	NA	NA	NA	NA	NA	NA
		15-Sep-98		0.95	< 0.05	0.0061	< 0.0005	0.054	0.051	NA	NA	NA	NA	NA	NA	NA	NA
		02-Mar-99	CT	1.10	0.36	< 0.0005	0.0016	0.042	0.052	NA	NA	NA	NA	NA	NA	NA	NA
		22-Sep-99	CT	0.29	0.082	< 0.0005	< 0.0005	0.019	0.015	NA	NA	NA	NA	NA	NA	NA	NA
		10-May-00		0.92	0.085	< 0.0005	0.0011	0.043	0.035	NA	NA	NA	NA	NA	NA	NA	NA
		12-Sep-00		0.50	0.099	< 0.0005	< 0.0005	0.040	0.025	NA	NA	NA	NA	NA	NA	NA	NA
		08-May-01		0.15	NA	< 0.0005	< 0.0005	0.012	0.0045	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	ND
		07-Dec-01	CT	0.32	NA	< 0.0005	< 0.0005	0.017	0.0045	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	ND
1W-3		12-Sep-94	AEN	NA	NA	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	ND
		01-Dec-94	AEN	NA	0.07	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	ND
		16-Feb-95	AEN	NA	NA	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	ND
		08-May-95	AEN	NA	0.07	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	ND
		31-Aug-95	AEN	NA	NA	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	NE
		20-Dec-95	AEN	NÅ	< 0.05	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	NE
		27-Feb-96	AEN	NA	NA	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	NE
		30-Apr-96	AEN	NA	NA	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	NE
		04-Sep-96	AEN	NÅ	0.11	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	NE
		17-Dec-96	A2AC	NA	< 0.010	NA	NA	NA	NA	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	NI
		18-Feb-97	AEN	NA	NA	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	NI
	dup	18-Feb-97	AEN	NA	NA	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	NI
		15-May-97	AEN	NÁ	0.08	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	NE
		21-Aug-97	AEN	NA	NA	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0,0005	NE

Summary of Groundwater Quality Data

East Baybridge Center

Emeryville and Oakland, California

(concentrations expressed in parts per million [ppm])

Well ID	Notes	Date Sample	Lab	TPHg	TPHd	Benzene	Toluene	Ethyl- benzene	Total Xylenes	TCE	1,1,1-TCA	PCE	1, 1-DCE	1,1-DCA	1,2-DCA	cis/trans-1,2- DCE	Total VOCs
		11-Dec-97	AEN	NA	< 0.05	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	ND
		10-Mar-98	AEN	NA	< 0.05	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	ND ND
		15-Sep-98	ENT	NA	< 0.05	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	ND
		03-Mar-99	CT	NA	< 0.05	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	ND
		22-Sep-99	CT	NA	< 0.05	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	ND
		09-May-00	CT	NA	< 0.05	NA	ŇĂ	NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	ND
		12-Sep-00	CT	NA	< 0.05	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.0012	< 0.0005	< 0.0005	0.0012
		08-May-01	CT	< 0.05	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	ND
		07-Dec-01	CT	< 0.05	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	ND
MW-4		01-Dec-94	AEN	NA	0.09	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
		08-May-95	AEN	NA	0.10	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.004	< 0.0005	< 0.0005	0.004
		20-Dec-95	AEN	NA	0.09	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.001	< 0.0005	< 0.0005	0.001
		30-Apr-96	AEN	NA	NA	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.0022	< 0.0005	< 0.0005	0.0022
		04-Sep-96	AEN	NA	0.14	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	(27)	17-Dec-96	A2AC	NA	< 0.010	NA	NA	NA	NA	< 0.001	< 0.001	< 0.001	0.002	0.001	100.0>	0.001	0,004
		15-May-97	AEN	NA	0.45	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.0013	< 0.0005	< 0.0005	0.0013
		11-Dec-97	AEN	NA	0.08	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.0008	< 0.0005	< 0.0005	0.0008
		10-Mar-98	AEN	NA	0.08	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	ND
		15-Sep-98	ENT	NA	< 0.05	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	ND
		03-Mar-99	CT	NA	0.071	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.0005	< 0.0005	< 0.0005	0.0005
		22-Sep-99	CT	NA	0.073	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	ND
		09-May-00		NA	< 0.05	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	ND
		11-Sep-00		NA	< 0.05	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.0005	< 0.0005	< 0.0005	0.0005
		09-Feb-01		NA	0.072	NA	NA	NA	ŇA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0,0005
		09-May-01		NA	NA	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	ND
		15-Aug-01		NA	0.081	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	ND
		06-Dec-01	СТ	NA	NA	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	ND
MW-5		13-Sep-94		NA	NA	NA	NA	NA	NA	< 0.0005	0.001	0.0007	0.003	0.002	< 0.0005	< 0.0005	0.0067
		01-Dec-94		NA	0.05	NA	NA	NA	NA	< 0.0005	0.0007	0.0005	0.004	0.003	< 0.0005	< 0.0005	0.0082
		16-Feb-95		NA	NA	NA	NA	NA	NA	< 0.0005	0.001	0.002	0.008	0.003	< 0.0005	< 0.0005	0.014
		08-May-95		NA	0.09	NA	NA	NA	NA	0.0005	0.002	0.002	0.016	0.005	< 0.0005	< 0.0005	0.0255
		31-Aug-95		NA	NA	NA	NA	NA	NA	0.0007	0.002	0.002	0.013	0.004	< 0.0005	< 0.0005	0.0217
		20-Dec-95		NA	0.1	NA	NA	NA	NA	< 0.0005	0.001	0.0008	0.009	0.002	< 0.0005	< 0.0005	0.0128
		27-Feb-96		NA	NA	NA	NA	NA	NA	< 0.0005	0.0008	0.0024	0.010	0.0029	< 0.0005	< 0.0005	0.0161
		30-Apr-96		NA	NA	NA	NA	NA	NA	< 0.0005	< 0.0005	0.001	0.0051	0.0021	< 0.0005	< 0.0005	0.0082
		04-Sep-96		NA	0.24	NA	NA	NA	NA	< 0.0005	< 0.0005	0.0010	0.0051	0.0022	< 0.0005	< 0.0005	0.0083
		17-Dec-96		NA	NA	NA	NA	NA	NA	< 0.001	< 0.001	0.002	0.005	0.002	< 0.001	< 0.001	0.009
		18-Feb-97		NA	NA	NA	NA	NA	NA	< 0.0005	< 0.0005	0.0009	0.0079	0.002	< 0.0005	< 0.0005	0.0108
		15-May-97		NA	0.07	NA	NA	NA	NA	0.0006	0.0005	0.0021	0.019	0.0039	< 0.0005	< 0.0005	0.0261
		21-Aug-97		NA	NA	NA	NA	NA	NA	0.0006	< 0.0005	0.0026	0.019	0.0041	< 0.0005	< 0.0005	0.0263
duplicate		21-Aug-97		NA	NA	NA	NA	NA	NA	0.0005	< 0.0005	0.0024	0.015	0.0038	< 0.0005	< 0.0005	0.0217
		11-Dec-97		NA	0.06	NA	NA	NA	NA	< 0.0005	< 0.0005	0.0019	0.012	0.0029	< 0.0005	< 0.0005	0.0168
		10-Mar-98		NA.	0.05	NA	NA	NA	NA	< 0.0005	< 0.0005	0.0015	0.0071	0.0024	< 0.0005	< 0.0005	0.011
		15-Sep-98		NA	< 0.05	NA	NA	NA	NA	< 0.0005	< 0.005	0.0005	< 0.0005	0.0015	< 0.0005	< 0.0005	0.002
		02-Mar-99	CT	NA	< 0.05	NA	NA	NA	NA	< 0.0005	< 0.0005	0.0014	0.0092	0.0023	< 0.0005	< 0.0005	0.0129

Page 2 of 13

Summary of Groundwater Quality Data

East Baybridge Center

Emeryville and Oakland, California

(concentrations expressed in parts per million (ppm))

Well ID	Notes	Date Sampled	Lab	TPHg	TPHd	Benzene	Toluene	Ethyl- benzene	Total Xylenes	TCE	1,1,1-TCA	PCE	1,1-DCE	1,1-DCA	1,2-DCA	cis/trans-1,2- DCE	Total VOCs
		22-Sep-99	ст	NA	< 0.05	NA	NA	NA	NA	< 0.0005	< 0.0005	0.0019	0.0048	0.0014	< 0.0005	< 0.0005	0.0081
		09-May-00		NA	< 0.05	NA	NA	NA	NA	< 0.0005	< 0.0005	0.0009	0.0052	0.0013	< 0.0005	< 0.0005	0.0074
		11-Sep-00		NA	< 0.05	NA	NA	NA	NA	< 0.0005	< 0.0005	0.0013	0.0057	0.0014	< 0.0005	< 0.0005	0.0084
		09-Feb-01		NA	< 0.05	NA	NA	NA	NA	< 0.0005	< 0.0005	0.0014	0.011	0.0019	< 0.0005	< 0.0005	0.0143
		09-May-01		NA	NA	NA	NA	NA	NA	< 0.0005	< 0.0005	0.0014	0.0095	0.0014	< 0.0005	< 0.0005	0.0123
		15-Aug-01		NA	0.082	NA	NA	NA	NA	< 0.0005	< 0.0005	0.0015	0.0099	0.0016	< 0.0005	< 0.0005	0.013
	(78)	06-Dec-01		NA	NA	NA	NA	NA	NA	0.001	0.0005	0.0032	0.014	0.0019	< 0.0005	< 0.0005	0.0211
MW-6	(2)	13-Sep-94	AEN	NA	NA	NA	NA	NA	NA	0.0005	0.041	< 0.0005	0.280	0.005	0.001	0.001	0.3285
	(6)	01-Dec-94	AEN	NA	0.08	NA	NA	NA	NA	0.0006	0.041	< 0.0005	0.300	0.004	< 0.0005	< 0.0005	0.3456
		16-Feb-95	AEN	NA	NA	NA	NA	NA	NA	< 0.003	0.039	< 0.003	0.280	0.003	< 0.003	< 0.003	0.322
duplicate		16-Feb-95	AEN	NA	NA	NA	NA	NA	NA	< 0.003	0.045	< 0.003	0.290	0.004	< 0.003	< 0.003	0.339
		09-May-95	AEN	NA	0.20	NA	NA	NA	NA	< 0.003	0.031	< 0.003	0.260	0.003	< 0.003	< 0.003	0.294
		31-Aug-95	AEN	NA	NA	NA	NA	NA	NA	< 0.003	0.032	< 0.003	0.270	0.004	< 0.003	< 0.003	0.306
		28-Dec-95	AEN	NA	0.1	NA	NA	NA	NA	< 0.003	0.040	< 0.003	0.280	0.004	< 0.003	< 0.003	0.324
		27-Feb-96	AEN	NA	NA	NA	NA	NA	NA	< 0.005	0.031	< 0.005	0.270	< 0.005	< 0.005	< 0.005	0.301
		01-May-96	AEN	NA	NA	NA	NA	NA	NA	< 0.003	0.026	< 0.003	< 0.200	0.003	< 0.003	< 0.003	0.029
		04-Sep-96	AEN	NA	0.17	NA	NA	NA	NA	< 0.003	0.033	< 0.003	0.330	0.005	< 0.003	< 0.003	0.368
		17-Dec-96	A2AC	NA	< 0.010	NA	NA	NA	NA	0.010	0.060	< 0.001	0.310	< 0.001	< 0.001	< 0.001	0.38
		18-Feb-97	AEN	NA	NA	NA	NA	NA	NA	< 0.003	0.029	< 0.003	0.260	0.003	< 0.003	< 0.003	0.292
		15-May-97	AEN	NA	0.07	NA	NA	ŇĂ	NA	< 0.003	0.018	< 0.003	0.200	0.004	< 0.003	< 0.003	0.222
		21-Aug-97	AEN	NA	NA	NA	NA	NA	NA	< 0.003	0.019	< 0.003	0.230	0.003	< 0.003	< 0.003	0.252
		11-Dec-97	AEN	NA	0.07	NA	NA	NA	NA	< 0.003	0.020	< 0.003	0.210	0.004	< 0.003	< 0.003	0.234
		09-Mar-98	AEN	NA	0.08	NA	NA	NA	NA	< 0.003	0.015	< 0.003	0.180	0.003	< 0.003	< 0.003	0.198
		14-Sep-98	ENT	NA	< 0.05	NA	NA	NA	NA	< 0.003	0.0099	< 0.003	0.210	0.0048	< 0.003	< 0.003	0.2247
		02-Mar-99	CT	NA	< 0.05	NA	NA	NA	NA	< 0.001	0.015	< 0.001	0.210	0.0045	< 0.001	< 0.001	0.2295
	(61)	22-Sep-99	СТ	NA	0.059	NA	NA	NA	NA	< 0.001	0.015	< 0.001	0.240	0.0045	< 0.001	< 0.001	0.2624
	(63)	10-May-00	СТ	NA	< 0.05	NA	NA	NA	NA	< 0.001	0.0098	< 0.001	0.190	0.0033	< 0.001	< 0.001	0.2031
	(69)	11-Sep-00	СТ	NA	< 0.05	NA	NA	NA	NA	< 0.0005	0.011	< 0.0005	0.180	0.0034	< 0.0005	< 0.0005	0.1969
	(72)	09-Feb-01	CT	NA	0.059	NA	NA	NA	NA	< 0.0005	0.0086	< 0.0005	0.160	0.0033	< 0.0005	< 0.0005	0.1719
		08-May-01	СТ	NA	NA	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	ND
	(77)	15-Aug-01	CT	NA	0.062	NA	NA	NA	NA	< 0.0005	0.009	< 0.0005	0.140	0.0028	< 0.0005	< 0.0005	0.1538
	(79)	06-Dec-01	CT	NA	NA	NA	NA	NA	NA	< 0.0005	0.006	< 0.0005	0.120	0.0024	< 0.0005	< 0.0005	0.1298
MW-7		12-Sep-94	AEN	NA	NA	NA	NA	NA	NA	< 0.0005	0.017	< 0.0005	0.160	0.003	0.0009	< 0.0005	0.1809
		30-Nov-94		NA	NA	NA	NA	NA	NA	< 0.0005	0.016	< 0.0005	0.170	0.003	< 0.0005	< 0.0005	0.189
		16-Feb-95		NA	NA	NA	NA	NA	NA	< 0.003	0.011	< 0.003	0.120	< 0.003	< 0.003	< 0.003	0.131
		09-May-95	AEN	NA	0.09	NA	NA	NA	NA	< 0.0005	0.015	< 0.0005	0.180	0.004	< 0.0005	< 0.0005	0.199
		30-Aug-95		NA	NA	NA	NA	NA	NA	< 0.003	0.012	< 0.003	0.140	0.003	< 0.003	< 0.003	0.155
		20-Dec-95		NA	< 0.05	NA	NA	NA	NA	< 0.003	0.011	< 0.003	0.170	< 0.003	< 0.003	< 0.003	0.181
		27-Feb-96		NA	NA	NA	NA	NA	NA	< 0.003	0.018	< 0.003	0.210	0.0035	< 0.003	< 0.003	0.2315
duplicate		27-Feb-96		NA	NA	NA	NA	NA	NA	< 0.003	0.017	< 0.003	0.210	0.003	< 0.003	< 0.003	0.23
		30-Apr-96		NA	NA	NA	NA	NA	NA	< 0.003	0.016	< 0.003	0.220	0.003	< 0.003	< 0.003	0.239
		03-Sep-96		NA	0.11	NA	NA	NA	NA	< 0.003	0.021	< 0.003	0.290	0.004	< 0.003	< 0.003	0.315
		17-Dec-96	A2AC	. NA	< 0.010	NA	NA	NA	NA	< 0.001	0.050	< 0.001	0.280	< 0.001	< 0.001	< 0.001	0.33
		19-Feb-97	AEN	NA	NÅ	NA	NA	NA	NA	< 0.003	0.007	< 0.003	0.150	< 0.003	< 0.003	< 0.003	0.157
		15-May-97	AEN	NA	< 0.05	NA	NA	NA	NA	< 0.003	0.014	< 0.003	0.230	0.005	< 0.003	< 0.003	0.249

.

Summary of Groundwater Quality Data

East Baybridge Center

Emeryville and Oakland, California

(concentrations expressed in parts per million [ppm])

Well ID	Notes	Date Sampled	Lab	TPHg	TPHd	Benzene	Toluene	Ethyl-	Total	TCE	1,1,1-TCA	PCE	1,1-DCE	1,1-DCA	1,2-DCA	cis/trans-1,2-	Total
I	I		L			I		benzene	Xylenes	l			1			DCE	VOCs
		21-Aug-97	AEN	NA	NA	NA	NA	NA	NA	< 0.003	0.013	< 0.003	0.250	0.005	< 0.003	< 0.003	0.268
		11-Dec-97	AEN	NA	0.06	NA	NA	NA	NA	< 0.003	0.014	< 0.003	0.220	0.006	< 0.003	< 0.003	0.24
		09-Mar-98	AEN	NA	0.05	NA	NA	NA	NA	< 0.003	0.010	< 0.003	0.170	0.005	< 0.003	< 0.003	0.185
		15-Sep-98	ENT	NA	< 0.05	NA	NA	NA	NA	< 0.0005	0.0097	< 0.0005	0.270	0.008	< 0.0005	< 0.0005	0.2876
duplicate		15-Sep-98	ENT	NA	< 0.05	NA	NA	NA	NA	< 0.0005	0.0064	< 0.0005	0.190	0.0089	< 0.0005	< 0.0005	0.2053
	(51)	02-Mar-99	CT	NA	0.055	NA	NA	NA	NA	< 0.0005	0.011	< 0.0005	0.200	0.0081	< 0.0005	< 0.0005	0.2263
	(60)	22-Sep-99	СТ	NA	0.076	NA	NA	NA	NA	0.0012	0.010	< 0.0005	0.220	0.0076	< 0.0005	< 0.0005	0.247
	(64)	09-May-00	CT	NA	< 0.05	NA	NA	NA	NA	0.0011	0.008	< 0.0005	0.220	0.0062	< 0.0005	< 0.0005	0.243
	(67)	11-Sep-00	CT	NA	NA	NA	NA	NA	NA	< 0.0005	0.004	< 0.0005	0.120	0.0043	< 0.0005	< 0.0005	0.1349
duplicate	(68)	11-Sep-00	СТ	NA	NA	NA	NA	NA	NA	< 0.0005	0.0043	< 0.0005	0.120	0.0044	< 0.0005	< 0.0005	0.135
	(73)	09-Feb-01	СТ	NA	0.056	NA	NA	NA	NA	< 0.0005	0.0041	< 0.0005	0.140	0.0051	< 0.0005	< 0.0005	0.1544
		08-May-01	СТ	NA	NA	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	0.011	0.0007	< 0.0005	< 0.0005	0.0117
		15-Aug-01	СТ	NA	0.088	NA	NA	NA	NA	< 0.0005	0.0079	< 0.0005	0.170	0.006	< 0.0005	< 0.0005	0.1989
	(80)	06-Dec-01	СТ	NA	NA	NA	NA	NA	NA	< 0.0005	0.0056	< 0.0005	0.190	0.0065	< 0.0005	< 0.0005	0.2021
MW-8	(3)	13-Sep-94	AEN	NA	NA	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.0005	< 0.0005	< 0.0005	0.0005
		02-Dec-94	AEN	NA	NA	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	ND
		16-Feb-95	AEN	NA	NA	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	ND
		09-May-95	AEN	NA	NA	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	ND
		31-Aug-95	AEN	NA	NA	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	ND
		20-Dec-95	AEN	NA	NA	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	ND
		27-Feb-96	AEN	NA	ŇA	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	ND
		29-Apr-96	AEN	NĂ	NA	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	ND
		04-Sep-96	AEN	NA	NA	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	ND
		17-Dec-96	A2AC	NA	NA	NA	NA	NA	NA	< 0.001	< 0.001	< 0.001	< 0.001	<0.001	< 0.001	< 0.001	ND
		19-Feb-97	AEN	NA	NA	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	ND
		15-May-97	AEN	NA	NA	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	ND
duplicate		15-May-97	AEN	NA	NA	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	ND
		21-Aug-97	AEN	NA	NA	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	ND
		11-Dec-97	AEN	NA	NA	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	ND
		10-Mar-98	AEN	NA	NA	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	ND
		15-Sep-98	ENT	NA	NA	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	ND
		02-Mar-99	CT	NA	NA	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	ND
		21-Sep-99	CT	NA	NA	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	ND
		09-May-00	CT	NA	NA	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	ND
		12-Sep-00	СТ	NA	NA	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	ND
		06-Dec-01	CT	NA	NA	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	ND
ww-9		12-Sep-94	AEN	NA	NA	NA	NA	NA	NA	< 0.0005	0.017	< 0.0005	0.120	0.0005	0.006	< 0.0005	0.1435
duplicate		12-Sep-94	AEN	NA	NA	NA	NA	NA	NA	< 0.0005	0.015	< 0.0005	0.120	0.0005	0.009	< 0.0005	0.1445
		30-Nov-94		NA	NA	NA	NA	NA	NA	< 0.0005	0.016	< 0.0005	0.150	0.0005	< 0.0005	< 0.0005	0.1665
luplicate		30-Nov-94	AEN	NA	NA	NA	NA	NA	NA	< 0.0005	0.016	< 0.0005	0.160	0.0005	< 0.0005	< 0.0005	0.1765
		16-Feb-95	AEN	NA	NA	NA	NA	NA	NA	< 0.003	0.014	< 0.003	0.120	< 0.003	< 0.003	< 0.003	0.134
		08-May-95	AEN	NA	NA	NA	NA	NA	NA	< 0.0005	0.013	< 0.0005	0.110	0.005	< 0.0005	< 0.0005	0:134
		31-Aug-95		NA	NA	NA	NA	NA	NA	< 0.003	0.013	< 0.003	0.130	0.004	< 0.003	< 0.0003	0.120
		20-Dec-95		NA	NA	NA	NA	NA	NA	< 0.003	0.009	< 0.003	0.092	< 0.003	< 0.003	< 0.003	0.147
		27-Feb-96		NA										~ 0.000	~ 0.000	~0.000	0.101

Summary of Groundwater Quality Data

East Baybridge Center

Emeryville and Oakland, California

(concentrations expressed in parts per million [ppm])

Well ID	Notes	Date Sampled	Lab	TPHg	TPHd	Benzene	Тоіцепе	Ethyl- benzene	Total Xylenes	TCE	1,1,1•TCA	PCE	1,1-DCE	1,1•DCA	1,2-DCA	cis/trans-1,2- DCE	Total VOCs
		03-Sep-96	AEN	NA	NA	NA	NA	NA	NA	< 0.0005	0.0083	< 0.0005	0.099	0.0030	< 0.0005	< 0.0005	0.1103
duplicate		03-Sep-96		NA	NA	NA	NA	NA	NA	< 0.0005	0.0078	< 0.0005	0.097	0.0026	< 0.0005	< 0.0005	0.1074
•		17 Dec-96		NA	NA	NA	NA	NA	NA	< 0.001	0.005	< 0.001	0.059	0.002	< 0.001	< 0.001	0.066
	dup	17-Dec-96		NA	NA	NA	NA	NA	NA	< 0.001	0.006	< 0.001	0.064	0.002	< 0.001	< 0.001	0.072
		19-Feb-97		NA	NA	NA	NA	NA	NA	< 0.0005	0.008	< 0.0005	0.087	0.0023	< 0.0005	< 0,0005	0,0973
		15-May-97		NA	NA	NA	NA	ŇĂ	NA	< 0.0005	0.0056	< 0.0005	0.063	0.0025	< 0.0005	< 0.0005	0.0711
		22-Aug-97		NA	NA	NA	NA	NA	NA	< 0.0005	0.0080	< 0.0005	0.067	0.0022	< 0.0005	< 0.0005	0.0772
		11-Dec-97		NA	NA	NA	NA	NA	NA	< 0.0005	0.0050	< 0.0005	0.058	0.0022	< 0.0005	< 0.0005	0.0652
		10-Mar-98		NA	NA	NA	NA	NA	NA	< 0.0005	0.0060	< 0.0005	0.084	0.0018	< 0.0005	< 0.0005	0.0918
		14-Sep-98		NA	NA	NA	NA	NA	NA	< 0.0005	0.0037	< 0.0005	0.078	0.0030	< 0.0005	< 0.0005	0.0847
		02-Mar-99		NA	NA	NA	NA	NA	NA	< 0.0005	0.0049	< 0.0005	0.078	0.0022	< 0.0005	< 0.0005	0.0851
		22-Sep-99		NA	NA	ŇĂ	NA	NA	NA	< 0.0005	0.0052	0.0013	0.091	0.0022	< 0.0005	< 0.0005	0.0997
		08-Feb-01		NA	<.05	NA	NA	NA	NA	< 0.0005	0.0020	< 0.0005	0.044	0.0014	< 0.0005	< 0.0005	0.0474
		08-May-01		NA	NA	NA	NA	NA	NA	< 0.0005	0.0016	< 0.0005	0.032	0.0014	< 0.0005	< 0.0005	0.035
		24-Sep-01		NA	0.072	NA	NA	NA	NA	< 0.0005	0.0017	< 0.0005	0.042	0.0015	< 0.0005	< 0.0005	0.0452
		07-Dec-01		NA	NA	NA	NA	NA	NA	< 0.0005	0.0016	< 0.0005	0.050	0.0019	< 0.0005	< 0.0005	0.0535
MW-10R		20-Dec-95	AEN	NA	NA	NA	NA	NA	NA	0.910	< 0.005	0.007	< 0.005	< 0.005	< 0.005	0.222	1.139
	(19)	29-Apr-96	AEN	NA	NA	NA	NA	NA	NA	0.650	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	0.65
	(28)	17-Dec-96	A2AC	NA	NA	NA	NA	NA	NA	0.610	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	0.160	0.77
		15-May-97	AEN	NA	NA	NA	NA	NA	NA	0.500	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	0.156	0.656
	(47)	12-Dec-97	AEN	NA	NA	NA	NA	NA	NA	0.420	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	0.125	0.545
		10-Mar-98	AEN	NA	NA	NA	NA	NA	NA	0.500	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	0.140	0.64
		15-Sep-98	ENT	NA	NA	NA	NA	NA	NA	0.550	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	0.032	0.582
	(55)	03-Mar-99	CT	NA	NA	NA	NA	NA	NA	0.390	0.0011	0.0045	0.0019	< 0.0005	0.0005	0.141	0.539
	(58)	21-Sep-99	CT	NA	NA	NA	NA	NA	NA	0.400	< 0.0017	0.0065	0.0020	< 0.0017	< 0.0017	0.113	0.5315
	(65)	09-May-00	CT	NA	NA	NA	NA	NA	NA	0.340	< 0.0013	0.004	0.0016	< 0.0013	< 0.0013	0.108	0.4636
duplicate	(66)	09-May-00	CT	NA	NA	NA	ŇA	NA	NA	0.320	< 0.0013	0.0033	0.0170	< 0.0013	< 0.0013	0.100	0.4495
	(70)	12-Sep-00	CT	NA	NA	NA	NA	NA	NA	0.410	< 0.0017	0.0037	0.0021	< 0.0017	< 0.0017	0.144	0.5728
	(74)	08-May-01	СТ	NA	NA	NA	NA	NA	NA.	0.340	< 0.0017	0.0033	< 0.0017	< 0.0017	< 0.0017	0.124	0.4783
	(81)	06-Dec-01	СТ	NA	NA	NA	NA	NA	NA	0.290	< 0.0010	0.0026	0.0012	<0.0010	< 0.0010	0.108	0.4083
MW-12R		27-Dec-95	AEN	NA	0.2	NA	NA	NA	NA	0.003	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.002	0.005
		27-Feb-96	AEN	< 0.05	0.36	< 0.0005	< 0.0005	< 0.0005	< 0.002	NA	NA	NA	NA	NA	NA	NA	NA
	(20)	30-Apr-96	AEN	< 0.05	0.23	< 0.0005	< 0.0005	< 0.0005	< 0.002	0.0025	< 0.0005	< 0.0005	< 0.0005	0.0024	< 0.0005	< 0.0005	0.0049
		17 Dec-96	AZAC	NA	< 0.010	NA	NA	NA	NA	0.001	< 0.001	< 0.001	< 0.001	0.005	< 0.001	0.004	0.01
		15-May-97	AEN	NA	0.29	NA	NA	NA	NA	0.0009	< 0.0005	< 0.0005	< 0.0005	0.0059	< 0.0005	0.0007	0.0075
		12-Dec-97		NA	0.44	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.0014	< 0.0005	< 0.0005	0.0014
		10-Mar-98	AEN	NA	0.49	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	ND
		16-Sep-98		NA	< 0.05	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	ND
		03-Mar-99		NA	0.47	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.0006	< 0.0005	< 0.0005	0.0006
		22-Sep-99		NA	0.46	NA	NA	NA	NA	0.0006	< 0.0005	< 0.0005	< 0.0005	0.0013	< 0.0005	0.0009	0.0028
		09-May-00		NA	0.38	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005
		12-Sep-00		NA	0.43	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.001	< 0.0005	0.0007	0.0017
		08-May-01		NA	NA	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	ND
		06-Dec-01		NA	NA	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	ND

Summary of Groundwater Quality Data

East Baybridge Center

Emeryville and Oakland, California

(concentrations expressed in parts per million (ppm))

Well 1D	Notes	Date Sampled	Lab	TPHg	TPHd	Benzene	Toluene	Ethyl- benzene	Total Xylenes	TCE	1,1,1-TCA	PCE	1,1-DCE	1,1-DCA	1,2-DCA	cis/trans-1,2- DCE	Total VOCs
MW-31R		27-Dec-95	AEN	NA	0.3	NA	NA	NA	NA	0.018	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.009	0.027
		27-Feb-96	AEN	< 0.05	0.37	< 0.0005	< 0.0005	< 0.0005	< 0.002	NA	NA	NA	NA	NA	NA	NA	NA
	(21)	30-Apr-96	AEN	NA	0.19	NA	NA	NA	NA	0.015	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.015
		05-Sep-96	AEN	NA	0.54	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
		17-Dec-96	A2AC	NA	< 0.010	NA	NA	NA	NA	0.008	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	0.004	0.012
		19-Feb-97	AEN	NA	0.49	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
4W-32R	(15)	22-Dec-95	AEN	NA	0.2	NA	NA	NA	NA	0.058	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.055	0.113
		27-Feb-96	AEN	< 0.05	0.26	< 0.0005	< 0.0005	< 0.0005	< 0.002	NA	NA	NA	NA	NA	NA	NA	NA
	(22)	01-May-96	AEN	NA	0.17	NA	NA	NA	NA	0.074	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.074
		05-Sep-96	AEN	NA	0.34	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	(31)	17-Dec-96	A2AC	NA	< 0.010	NA	NA	NA	NA	0.110	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	0.100	0.21
		19-Feb-97	AEN	ŇA	0.35	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
/W-34R		27-Dec-95	AEN	NA	0.3	NA	NA	NA	NA	0.009	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.009
	(23)	29-Арг-9 б	AEN	NA	NA	NA	NA	NA	NA	0.035	0.0011	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.0361
		17-Dec-96	AEN	NA	NA	NA	NA	NA	NA	0.018	< 0.001	< 0.001	0.002	< 0.001	< 0.001	0.005	0.025
	(40)	15-May-97	AEN	NA	NA	NA	NA	NA	NA	0.0028	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.0008	0.0036
	(46)	12-Dec-97	AEN	NA	NA	NA	NA	NA	NA	0.0012	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.0012
	(49)	10-Mar-98	AEN	NA	NA	NA	NA	NA	NA	0.020	< 0.0005	< 0.0005	0.0021	< 0.0005	< 0.0005	0.0015	0.249
		16-Sep-98	ENT	NA	NA	NA	NA	NA	NA	0.0073	< 0.0005	< 0.0005	0.0010	< 0.0005	< 0.0005	0.0022	0.0022
	(54)	03-Mar-99	СТ	NA	NA	NA	NA	' NA	NA	0.011	< 0.0005	< 0.0005	0.0022	< 0.0005	< 0.0005	0.002	0.0152
	(57)	21-Sep-99	CT	NA	NA	NA	NA	NA	NA	0.018	0.0006	0.0013	0.0038	0.0007	< 0.0005	0.0032	0.0288
uplicate	(57)	21-Sep-99	CT	NA	NA	NA	NA	NA	NA	0.017	0.0006	0.0013	0.0035	0.0007	< 0.0005	0.0032	0.0275
		09-May-00	CT	NA	NA	NA	NA	NA	NA	0.018	< 0.0005	< 0.0005	0.0033	0.0006	< 0.0005	0.0027	0.0246
	(71)	12-Sep-00	CT	NA	NA	NA	NA	NA	NA	0.036	0.0007	< 0.0005	0.004	0.0008	< 0.0005	0.0038	0.046
		08-May-01	CT	NA	NA	NA	ŇĂ	NA	NA	0.018	< 0.0005	< 0.0005	0.0041	0.0006	< 0.0005	0.0029	0.0256
		06-Dec-01	CT	NA	NA	NA	NA	NA	NA	0.010	< 0.0005	< 0.0005	0.0029	< 0.0005	< 0.0005	0.0022	0.0151
uplicate		06-Dec-01	СТ	NA	NA	NA	NA	NA	NA	0.010	< 0.0005	< 0.0005	0.0028	< 0.0005	< 0.0005	0.0022	0.015
F-13		09-May-95	AEN	NA	NA	NA	NA	NA	NA	0.006	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.006
		28-Dec-95	AEN	NA	NA	NA	NA	NA	NA	0.006	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.006
		30-Apr-96	AEN	NA	NA	NA	NA	NA	NA	0.0031	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.0031
uplicate		30-Apr-96	AEN	NA	NA	NA	NA	NA	NA	0.0031	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.0031
	(38)	17-Dec-96	A2AC	NA	NA	NA	NA	NA	NA	0.003	< 0.001	< 0.001	< 0.001	<0.001	< 0.001	< 0.001	0.003
F-22		(2-Jul-91	ANA	NA	NA	NA	NA	NA	NA	0.0007	0.012	0.0017	0.053	0.0063	0.0016	< 0.0005	0.0753
		07-Jan-92	ANA	NA	NA	NA	NA	NA	NA	< 0.0005	0.009	0.0037	0.041	0.0054	0.0011	< 0.0005	0.0602
		16-Apr-92	ANA	NA	NA	NA	NA	NA	NA	< 0.0005	0.0026	0.0018	0.015	0.0021	< 0.0005	< 0.0005	0.0215
	(1)	23-Jul-92	ANA	NA	NA	NA	NA	NA	NA	< 0.0005	0.0034	0.0014	0.027	0.0052	< 0.0005	< 0.0005	0.037
		20-Oci-92	ANA	NA	NA	NA	NA	NA	NA	0.0008	0.0013	0.0007	0.014	0.004	< 0.0005	< 0.0005	0.02074
		25-May-93	ANA	NA	NA	NA	NA	NA	NA	< 0.0005	0.0008	0.0006	0.0061	0.0024	< 0.0005	< 0.0005	0.00992
		13-Jul-93	ANA	NA	NA	NA	NA	NA	NA	0.0007	0.001	0.0009	0.0077	0.0033	< 0.0005	< 0.0005	0.01352
	(4)	13-Sep-94	AEN	NA	NA	NA	NA	NA	NA	0.004	< 0.0005	0.008	0.003	0.001	0.0007	< 0.0005	0.0167
		01-Dec-94	AEN	NA	NA	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	0.0006	0.0009	< 0.0005	< 0.0005	0.0015
		17-Feb-95	AEN	NA	NA	NA	NA	NA	NA	< 0.0005	< 0.0005	0.0006	0.0007	0.001	< 0.0005	< 0.0005	0.0023
		09-May-95	AEN	NA	NA	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	0.0007	0.0007	< 0.0005	< 0.0005	0.0014

Page 6 of 13

Summary of Groundwater Quality Data

East Baybridge Center

Emeryville and Oakland, California

(concentrations expressed in parts per million [ppm])

Well ID	Notes	Date Sampled	Lab	TPHg	TPHd	Benzene	Toluene	Ethyl- benzene	Total Xylenes	TCE	1,1,1-TCA	PCE	1,1-DCE	1,1-DCA	1,2-DCA	cis/trans-1,2- DCE	Total VOCs
duplicate		09-May-95	AFN	NA	NA	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	0.0005	0.0006	< 0.0005	< 0.0005	0.0011
oupricate	(11)	31-Aug-95		NA	NA	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	0.001	0.001	< 0.0005	< 0.0005	0.002
duplicate	(11)	31-Aug-95		NA	NA	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	0.001	0.001	< 0.0005	< 0.0005	0.002
oupricate	(,	20-Dec-95		NA	NA	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	ND
	(17)	27-Feb-96		NA	NA	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	ND
	(24)	29-Apr-96		NA	NA	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	ND
	、 — · <i>)</i>	04-Sep-96		NA	NA	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	ND
		17-Dec-96		NA	NA	NA	NA	NA	NA	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	ND
		18-Feb-97		NA	NA	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	ND
		16-May-97		NA	NA	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	ND
		22-Aug-97		NA	NA	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	ND
		12-Dec-97		NA	NA	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	ND
		09-Mar-98	AEN	NA	NA	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	ND
		16-Sep-98	ENT	NA	NA	NA	NA	NA	NÅ	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	ND
		03-Mar-99	СТ	NA	NA	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	ND
		22-Sep-99	СТ	NA	NA	NA	NA	NA	NA	0.0008	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.0008
		09-May-00	СT	NA	NA	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	ND
		12-Sep-00	CT	NA	NA	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	ND
		08-Feb-01	CT	NA	<.05	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	ND
		09-May-01	CT	NA	NA	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	ND
		15-Aug-01	СТ	NA	0.065	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	ND
		07-Dec-01	СТ	NA	0.065	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	ND
LF-23		12-Jul-91		NA	NA	NA	NA	NA	NA	0.0039	0.0009	0.027	0.0012	0.011	0.0009	< 0.0005	0.0449
		07-Jan-92		NA	NA	NA	NA	NA	NA	0.007	0.0023	0.056	0.0034	0.012	0.0013	< 0.0005	0.082
		16-Apr-92		NA	NA	NA	NA	NA	NA	0.0036	0.0007	0.020	0.0044	0.0044	0.0011	< 0.0005	0.03418
		23-Jul-92		NA	NA	NA	NA	NA	NA	0.0038	0.0013	0.029	0.0061	0.0044	0.0014	< 0.0005	0.046
		20-Oct-92		NA	NA	NA	NA	NA	NA	0.0033	0.0005	0.023	0.0047	0.002	0.0015	< 0.0005	0.03504
		25-May-93		NA	NA	NA	NA	ŇĂ	ŇA	0.0042	0.0007	0.016	0.0035	0.0017	0.0019	< 0.0005	0.02795
		13-Jul-93		NA	NA	NA	NA	NA	NA	0.0081	0.0015	0.018	0.0074	0.0033	0.0051	< 0.0005	0.0434
		13-Sep-94		NA	NA	NA	NA	NA	NA	< 0.0005	< 0.0005	0.0006	0.002	0.003	0.0007	< 0.0005	0.0063
	(7)	01-Dec-94		ŇĂ	NA	NA	NA	NA	NA	0.004	< 0.0005	0.008	0.0006	< 0.0005	< 0.0005	0.002	0.0146
	(8)	17-Feb-95		NA	NA	NA	NA	NA	NA	0.003	< 0.0005	0.006	< 0.0005	< 0.0005	< 0.0005	0.002	0.011
	(9)	09-May-95		NA	NA	NA	NA	NA	NA	0.002	< 0.0005	0.005	< 0.0005	< 0.0005	< 0.0005	0.001	800.0
	(10)	31-Aug-95		NA	NA	NA	NA	NA	NA	0.002	< 0.0005	0.007	0.0007	0.0007	< 0.0005	0.001	0.0114
	(14)	20-Dec-95		NA	NA	NA	NA	NA	NA	0.001	< 0.0005	0.006	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.007
	(18)	27-Feb-96		NA	NA	NA	NA	NA	NA	0.0008	< 0.0005	0.0038	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.0046
	(25)	29-Арт-96		NA	NA	NA	NA	NA	NA	0.0006	< 0.0005	0.0028	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.0034
	(26)	04-Sep-96		NA	NA	NA	NA	NA	NA	0.0014	< 0.0005	0.0032	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.0046
	(35)	17-Dec-96		NA	NA	NA	NA	NA	NA	0.001	< 0.001	0.003	< 0.001	< 0.001	< 0.001	< 0.001 < 0.0005	0.004
	(39)	18-Feb-97		NA	NA	NA	NA	NA	NA	0.0007	< 0.0005	0.0017	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.0024
	(41)	16-May-97		NA	NA	NA	NA	NA	NA	0.0014	< 0.0005	0.0021	< 0.0005	< 0.0005	< 0.0005	0.0012	0.0047
	(43)	22-Aug-97		NA	NA NA	NA	NA	NA	NA	0.0013	< 0.0005	0.0025	< 0.0005	<0.0005 <0.0005	<0.0005 <0.0005	0.0009 0.0009	0.0047 0.0038
	(45)	11-Dec-97		NA	NA	NA NA	NA	NA	NA	0.0010	< 0.0005	0.0019	<0.0005 <0.0005	< 0.0003	< 0.0003	0.0009	0.0038
	(48)	09-Mar-98		NA	NA	NA NA	NA	NA	NA NA	0.0010	<0.0005 <0.0005	0.0024 0.0007	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.0045
	(67)	16-Sep-98		NA	NA	NA	NA	NA	NA	< 0.0005							
	(53)	03-Mar-99	UI -	NA	NA	NA	NA	NA	NA	0.0007	< 0.0005	0.001	< 0.0005	< 0.0005	< 0.0005	0.0006	0.0034

Summary of Groundwater Quality Data

East Baybridge Center

Emeryville and Oakland, California

(concentrations expressed in parts per million [ppm])

Well ID	Notes	Date Sampled	Lab	TPHg	TPHd	Benzene	Toluene	Ethyl- benzene	Total Xylenes	TCE	1,1,1-TCA	PCE	1,1-DCE	1,1-DCA	1,2-DCA	cis/trans-1,2- DCE	Total VOCs
	(59)	22-Sep-99	CT	NA	NA	NA	NA	NA	NA	0.0008	< 0.0005	0.0016	< 0.0005	< 0.0005	-0.0005	- 0.0005	0.0047
	(51)	09-May-00		NA	NA	NA	NA	NA	NA	0.0006	< 0.0005	0.0007	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.0047
		12-Sep-00		NA	NA	NA	NA	NA	NA	0.0008	< 0.0005	0.0007	< 0.0005	< 0.0005 0.001	<0.0005 0.0007	< 0.0005	0.0013
		08-Feb-01		NA	0.059	NA	NA	NA	NA	0.0005	< 0.0005	0.0009	< 0.0005	< 0.0005	< 0.0007	<0.0005 <0.0005	0.0036
duplicate		08-Feb-01		NA	0.073	NA	NA	NA	NA	0.0005	< 0.0005	0.0009	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.0014
		09-May-01		NA	NA	NA	NA	NA	NA	0.0005	< 0.0005	0.0006	< 0.0005	< 0.0005	< 0.0005		0.0014
duplicate		09-May-01		NA	NA	NA	NA	NA	NA	0.0005	< 0.0005	0.0006	< 0.0005	< 0.0005		< 0.0005	0.0011
e apricate	(75)	15-Aug-01		NA	0.069	NA	NA	NA	NA	0.0003	< 0.0005	0.000			< 0.0005	< 0.0005	0.0011
duplicate	(76)	15-Aug-01	Û.	NA	NA	NA	NA	NA	NA	0.0007	< 0.0005	0.0012	0.0018	< 0.0005	< 0.0005	< 0.0005	0.0068
dop-reates	(82)	07-Dec-01		NA	NA	NA	NA	NA	NA	< 0.0007	< 0.0003	0.0012	0.0017	< 0.0005	< 0.0005	< 0.0005	0.0073
	(02)	07-000-01		1111					Wells (20 to			0.0012	0.0013	< 0.0005	< 0.0005	< 0.0005	0.0067
EX-3		14-Sep-94	AFN	NA	NA	NA	NA	NA	NA	0.004	0.014	0.042	0.100	0.005	0.001		
		02-Dec-94		NA	0,10	NA	NA	NA	NA	0.004	0.014			0.005	0.001	0.008	0.174
		17-Feb-95		NA	< 0.05	NA	NA	NA	NA	0.004		0.045	0.140	0.005	< 0.0005	< 0.0005	0.209
		09-May-95		NA	0.10	NA	NA	NA	NA	0.003	0.014	0.037	0.096	0.005	< 0.0005	< 0.0005	0.155
		31-Aug-95		NA	0.10	NA	NA	NA	NA	< 0.003	0.012 0.012	0.031 0.027	0.120	0.005	< 0.0005	< 0.0005	0.171
		28-Dec-95		NA	0.10	NA	NA	NA	NA	< 0.003	0.012		0.120	0.005	< 0.003	< 0.003	0.164
		27-Feb-96		NA	0.12	NA	NA	NA			0.009	0.036	0.160	0.004	< 0.003	< 0.003	0.209
		30-Apr-96		NA	0.08	NA	NA	NA	NA	<0.003 <0.003		0.030	0.120	0.0032	< 0.003	< 0.003	0.1609
		05-Sep-96		NA	0.08	NA	NA		NA		0.008	0.026	0.120	0.003	< 0.003	< 0.003	0.157
		17-Dec-96		ŇA	< 0.010	NA	NA	NA NA	NA	< 0.003	0.008	0.029	0.140	0.004	< 0.003	< 0.003	0.181
		19-Feb-97		NA	< 0.05	NA	NA	NA	NA	0.006	0.010	0.020	0.098	0.003	< 0.001	0.004	0.141
		15-May-97		NA	0.12	NA	NA	NA	NA	< 0.003	0.006	< 0.003	0.070	< 0.003	< 0.003	<0.003	0.076
	(42)	21-Aug-97		NA	< 0.05	NA	NA	NA	NA	< 0.0005	0.007	0.0048	0.082	0.0025	< 0.0005	< 0.0005	0.0963
	(42)	12-Dec-97		NA	0.06	NA	NA	NA	NA	< 0.0005	0.0073	0.0053	0.075	0.0022	< 0.0005	< 0.0005	0.0898
		09-Mar-98		NA	0.05	NA	NA	NA	NA	< 0.0005	0.0079	0.0050	0.083	0.0029	< 0.0005	< 0.0005	0.0988
		16-Sep-98		NA	< 0.05	NA	NA		NA	< 0.0005	0.0043	0.0035	0.062	0.0021	< 0.0005	< 0.0005	0.0719
		14-Jun-99		NA	0.056	NA	NA	NA	NA	< 0.0005	0.0037	0.0300	0.150	< 0.0005	< 0.0005	< 0.0005	0.1837
		23-Sep-99		NA	< 0.050	NA	NA	NA	NA	0.0021	0.0075	0.0270	0.160	0.0040	< 0.0005	< 0.0005	0.2006
		10-May-00		NA	< 0.05	NA	NA	NA NA	NA	0.0024	0.0062	0.0310	0.140	0.0039	< 0.0005	< 0.0005	0.1835
		24-Oct-00		NA	< 0.05	NA	NA		NA	0.0022	0.0060	0.0260	0.160	0.0041	< 0.0005	< 0.0005	0.1983
		24-00-00	C1	MA	< 0.05	NA	NA	NA	NA	0.0016	0.0047	0.0210	0.130	0.0035	0.0007	< 0.0005	0.1615
EX-4		14-Sep-94	AEN	NA	NA	NA	NA	NA	NA	< 0.0005	0.025	0.010	0.220	0.006	0.001	< 0.0005	0,262
		02-Dec-94	AEN	NA	0.09	NA	NA	NA	NA	< 0.0005	0.020	0.011	0.240	0.006	< 0.0005	< 0.0005	0.277
		17-Feb-95	AEN	NA	< 0.05	NA	NA	NA	NA	< 0.003	0.017	0.011	0.210	0.004	< 0.003	< 0.003	0.242
		09-May-95	AEN	NA	0.10	NA	NA	NA	NA	< 0.003	0.020	0.011	0.210	0.004	< 0.003	< 0.003	0.245
		31-Aug-95	AEN	NA	0.20	NA	NA	NA	NA	< 0.003	0.016	0.010	0.200	0.005	< 0.003	< 0.003	0.231
		28-Dec-95	AEN	NA	0.10	NA	NA	NA	NA	< 0.003	0.014	0.014	0.210	0.004	< 0.003	< 0.003	0.242
		27-Feb-96	AEN	NA	0.13	NA	NA	NA	NA	< 0.0005	0.0086	0.012	0.150	< 0.0005	< 0.0005	< 0.0005	0.1706
		30-Apr-96	AEN	NA	0.06	NA	NA	NA	NA	< 0.003	0.010	0.010	0.150	< 0.003	< 0.0003	< 0.003	0.17
		05-Sep-96		NA	0.14	NA	NA	NA	NA	< 0.003	0.008	0.009	0.140	0.003	< 0.003	< 0.003	0.16
		17-Dec-96		NA	0.334	NA	NA	NA	NA	0.001	0.009	0.010	0.090	0.003	< 0.003	0.004	0.10
		19-Feb-97		NA	0.11	NA	NA	NA	NA	< 0.003	0.005	0.005	0.097	< 0.003	< 0.003	< 0.003	0.107
		15-May-97		NA	0.17	NA	NA	NA	NA	< 0.003	0.006	0.008	0.110	0.003	< 0.003	< 0.003	0.107
		21-Aug-97		NA	0.13	NA	NA	NA	NA	< 0.003	0.005	0.007	0.087	< 0.003	< 0.003	< 0.003	0.099
		12-Dec-97		NA	< 0.05	NA	NA	NA	NA	< 0.003	0.007	0.014	0.097	0.003	< 0.003	< 0.003	0.099
										< 0.00J	0.007	0.014	V-071	0.005	~ 0.005	<0.003	0.121

Page 8 of 13

Table 4Summary of Groundwater Quality DataEast Baybridge CenterEmeryville and Oakland, California(concentrations expressed in parts per million [ppm])

Well ID	Notes	Date Sampled	Lab	TPHg	TPHd	Benzene	Toluene	Ethyl- benzene	Total Xylenes	TCE	1,1,1-TCA	PCE	1,1-DCE	1,1-DCA	1,2-DCA	cis/trans-1,2- DCE	Total VOCs
		09-Mar-98	AEN	NA	0.13	NA	NA	NA	NA	< 0.0005	0.0051	0.0098	0.072	0.0023	< 0.0005	0.072	0.1612
		16-Sep-98		NA	< 0.05	NA	NA	NA	NA	< 0.0005	0.0025	0.0120	0.096	0.0009	< 0.0005	< 0.0005	0.1114
	(156)	03-Mar-99		NA	< 0.05	NA	NA	NA	NA	< 0.0005	0.0038	0.0091	0.063	0.0021	< 0.0005	< 0.0005	0.079
	• /	23-Sep-99		NA	< 0.05	NA	NA	NA	NA	< 0.0005	0.0037	0.012	0.071	0.0023	< 0.0005	< 0.0005	0.0927
		10-May-00	CT	NA	< 0.05	NA	NA	NA	NA	< 0.0005	0.0041	0.012	0.096	0.0027	< 0.0005	< 0.0005	0.1148
		24-Oct-00	CT	NA	< 0.05	NA	NA	NA	NA	< 0.0005	0.0028	0.009	0.065	0.0020	0.0008	< 0.0005	0.0794
EXTR		27-Feb-96	AEN	NA	0.15	NA	NA	NA	NA	< 0.0005	0.0069	0.0013	0.066	0.0028	< 0.0005	< 0.0005	0.077
		30-Apr-96	AEN	NA	0.11	NA	NA	NA	NA	< 0.0005	0.0055	0.0012	0.063	0.0024	< 0.0005	< 0.0005	0.0721
		05-Sep-96	AEN	NA	0.12	NA	NA	NA	NA	< 0.0005	0.0082	0.0031	0.099	0.0031	< 0.0005	< 0.0005	0.1134
		17-Dec-96	A2AC	NA	1.520	NA	NA	NA	NA	0.001	0.008	0.009	0.074	0.002	< 0.001	0.004	0.098
		19-Feb-97	AEN	NA	0.13	NA	NA	NA	NA	< 0.0005	0.0034	0.0021	0.059	0.0016	< 0.0005	< 0.0005	0.0661
		15-May-97	AEN	NA	0.08	NA	NA	NA	NA	< 0.0005	0.0041	0.0018	0.060	0.0021	< 0.0005	0.0006	0.0686
		21-Aug-97	AEN	NA	0.07	NA	NA	NA	NA	< 0.0005	0,007	0.0048	0.073	0.0023	< 0.0005	< 0.0005	0.0871
		12-Dec-97	AEN	NA	< 0.05	NA	NA	NA	NA	0.0006	0.0063	0.0040	0.075	0.0031	< 0.0005	0.0006	0.0896
		09-Mar-98	AEN	NA	0.07	NA	NA	NA	NA	< 0.0005	0.0043	0.0040	0.064	0.0021	< 0.0005	< 0.0005	0.0744
		16-Sep-98	ENT	NA	< 0.05	NA	NA	NA	NA	< 0.0005	< 0.0005	0.0150	0.150	< 0.0005	< 0.0005	< 0.0005	0.165
		03-Mar-99	CT	NA	< 0.05	NA	NA	NA	NA	< 0.0005	0.0039	0.0035	0.068	0.0022	< 0.0005	< 0.0005	0.0776
	(62)	23-Sep-99	CT	NA	< 0.05	NA	NA	NA	NA	< 0.0005	0.0023	0.0010	0.047	0.0013	< 0.0005	< 0.0005	0.0522
		10-May-00	CT	NA	< 0.05	NA	NA	NA	NA	< 0.0005	0.0031	0.0010	0.068	0.0018	< 0.0005	< 0.0005	0.0739
		24-Oct-00	СТ	NA	< 0.05	NA	NA	NA	NA		0.0027	0.0013	0.066	0.0016	0.0013	< 0,0005	0.0729
L							C	eeper Wells	(40 to 45 fe	et below gr	ade)						
MW-6D		13-Sep-94		NA	NA	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	0.003	< 0.0005	0.0005	< 0.0005	0.0035
		01-Dec-94		NA	NA	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	ND
		16-Feb-95		NA	NA	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	ND
		09-May-95		NA	NA	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	ND
		31-Aug-95		NA	NA	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	ND
		28-Dec-95		NA	NA	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	ND
		27-Feb-96		NA	NA	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	ND
		01-May-96		NA	NA	NA _	NA	ŇA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	ND
		03-Sep-96		NA	NA	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	ND
		17-Dec-96		NA	NA	NA	NA	NA	NA	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	ND
		18-Feb-97		NA	NA	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	ND
		16-May-97		NA	NA	NA	NA	NA	ŇĂ	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	ND
		22-Aug-97		NA	NA	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	ND
		11-Dec-97		NA	NA	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	ND
		09-Mar-98		NA	NA	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	ND
		14-Sep-98		NA	NA	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	ND
		02-Mar-99		NA	NA	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	ND
		23-Sep-99		NA	NA	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	ND
		10-May-00		NA	NA	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	ND
		11-Sep-00		NA	NA	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	ND
		07-Dec-01	СТ	NA	NA	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	ND
MW-7D		13-Sep-94	AEN	NA	NA	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	0.003	< 0.0005	< 0.0005	< 0.0005	0.003
		30-Nov-94		NA	ŇĂ	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	0.003	< 0.0005	< 0.0005	< 0.0005	0.003

Summary of Groundwater Quality Data

East Baybridge Center

Emeryville and Oakland, California

(concentrations expressed in parts per million [ppm])

Well ID	Notes	Date Sampled	Lab	TPHg	TPHd	Benzene	Toluene	Ethyl- benzene	Total Xylenes	TCE	1,1,1-TCA	PCE	1,1-DCE	1,1-DCA	1,2-DCA	cis/trans-1,2- DCE	Total VOCs
		16-Feb-95	AEN	NA	NA	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0:0005	0.003	< 0.0005	< 0.0005	< 0.0005	0.003
		09-May-95	AEN	NA	NA	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	ND
		30-Aug-95	AEN	NA	NA	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	0.002	< 0.0005	< 0.0005	< 0.0005	0.002
		20-Dec-95	AEN	NA	NA	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	ND
duplicate		20-Dec-95	AEN	NA	NA	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	ND
		27-Feb-96	AEN	NA	NA	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	ND
		30-Apr-96	AEN	NA	NA	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	ND
		03-Sep-96	AEN	NA	NA	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	0.0010	< 0.0005	< 0.0005	< 0.0005	0.001
		17-Dec-96	A2AC	NA	NA	NA	NA	NA	NA	< 0.001	< 0.001	< 0.001	0.008	< 0.001	< 0.001	< 0.001	0.008
		19-Feb-97	AEN	NA	NA	NA	NA	NA	NA	< 0.0025	0.0009	< 0.0005	0.0081	< 0.0005	< 0.0005	< 0.0005	0.009
		16-May-97	AEN	NA	NA	NA	NA	NA	NA	< 0.0025	< 0.0005	< 0.0005	0.0023	< 0.0005	< 0.0005	< 0.0005	0.0023
		22-Aug-97	AEN	NA	NA	NA	NA	NA	NA	< 0.0025	< 0.0005	< 0.0005	0.0083	< 0.0005	< 0.0005	< 0.0005	0.0083
		11-Dec-97	AEN	NA	NA	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	0.0081	< 0.0005	< 0.0005	< 0.0005	0.0081
		09-Mar-98	AEN	NA	NA	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	0.0081	< 0.0005	< 0.0005	< 0.0005	0.0081
	(50)	15-Sep-98	ENT	NA	NA	NA	NA	NA	NA	< 0.0005	< 0.0009	0.0008	0.0160	0.0013	< 0.0005	< 0.0005	0.0181
		02-Mar-99	CT	NA	NA	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	0.0098	0.0006	< 0.0005	< 0.0005	0.0104
duplicate		02-Mar-99	СТ	NA	NA	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	0.0084	0.0005	< 0.0005	< 0.0005	0.0089
		22-Sep-99		NA	NA	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	0.014	0.0008	< 0.0005	< 0.0005	0.0148
		09-May-00	СТ	NA	NA	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	0.015	0.0007	< 0.0005	< 0.0005	0.0157
		11-Sep-00		NA	NA	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	0.015	0.0008	0.0009	< 0.0005	0.0167
		07-Dec-01	СТ	NA	NA	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	0.016	0.0009	< 0.0005	< 0.0005	0.0169
MW-9D		12-Sep-94		NA	NA	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	ND
		30-Nov-94		NA	NA	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	ND
		16-Feb-95		NA	NA	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	ND
		08-May-95		NA	NA	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	ND
		31-Aug-95		NA	NA	ŇĂ	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	ND
		20-Dec-95		NA	NA	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	ND
		26-Feb-96		NA	NA	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	ND
		01-May-96		NA	NA	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	ND
		03-Sep-96		NA	NA	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	ND
		17-Dec-96		NA	NA	NA	NA	NA	NA	< 0.001	< 0.001	< 0.001	0.001	< 0.001	< 0.001	< 0.001	0.001
		19-Feb-97		NA	NA	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	ND
		16-May-97		NA	NA	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	ND
		22-Aug-97		ŇĂ	NA	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	ND
	DUB	11-Dec-97		NA	NA	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	0.0024	< 0.0005	< 0.0005	< 0.0005	0.0024
	DUP	11-Dec-97		NA	NA	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	0.0025	< 0.0005	< 0.0005	< 0.0005	0.0025
		10-Mar-98		NA	NA	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	ND
		14-Sep-98		NA	NA	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	ND
		02-Mar-99 22-Sep-99		NA NA	NA NA	NA NA	NA NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	0.0007	< 0.0005	< 0.0005	< 0.0005	0.0007
		22-3ep-99 07-Dec-01		NA	- NA			NA	NA	< 0.0005	< 0.0005	< 0.0005	0.0037	< 0.0005	< 0.0005	< 0.0005	0.0037
		07-Dec-01	<u></u>	NA	· NA	NA	NA	NA Deep We	NA II (65 feet be	< 0.0005 slow grade)	0.0006	< 0.0005	0.0020	0.0009	< 0.0005	< 0.0005	0.0035
MW-7Z		13-Sep-94	AEN	NA	NA	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	 ND
		30-Nov-94	AEN	NA	NA	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	ND
		16-Feb-95	AEN	NA	NA	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	ND

Summary of Groundwater Quality Data

East Baybridge Center

Emeryville and Oakland, California

(concentrations expressed in parts per million [ppm])

30-Aug-95 A 28-Dec-95 A 27-Feb-96 A 30-Apr-96 A 03-Sep-96 A 19-Feb-97 A 16-May-97 A 22-Aug-97 A 11-Dec-97 A 09-Mar-98 A 09-Mar-98 A 15-Sep-98 E 02-Mar-99 C	EN NA EN NA EN NA EN NA 2AC NA EN NA EN NA EN NA EN NA	NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA	NA NA NA NA NA NA	NA NA NA NA NA NA	NA NA NA NA NA	<0.0005 <0.0005 <0.0005 NA <0.0005 0.001	<0.0005 <0.0005 <0.0005 <0.0005 <0.0005	<0.0005 <0.0005 <0.0005 <0.0005 <0.0005	<0.0005 <0.0005 <0.0005 <0.0005 <0.0005	<0.0005 <0.0005 <0.0005 <0.0005 <0.0005	<0.0005 <0.0005 <0.0005 <0.0005 <0.0005	<0.0005 <0.0005 <0.0005 <0.0005 <0.0005	ND ND ND ND
28-Dec-95 A 27-Feb-96 A 30-Apr-96 A 03-Sep-96 A 19-Feb-97 A 16-May-97 A 22-Aug-97 A 11-Dec-97 A 09-Mar-98 A 09-Mar-98 A 15-Sep-98 E	EN NA EN NA EN NA EN NA 2AC NA EN NA EN NA EN NA EN NA	NA NA NA NA NA NA NA	NA NA NA NA NA NA	NA NA NA NA NA	NA NA NA NA	NA NA NA NA	<0.0005 <0.0005 NA <0.0005	< 0.0005 < 0.0005 < 0.0005 < 0.0005	<0.0005 <0.0005 <0.0005	<0.0005 <0.0005 <0.0005	<0.0005 <0.0005 <0.0005	<0.0005 <0.0005 <0.0005	<0.0005 <0.0005 <0.0005	ND ND ND
27-Feb-96 A 30-Apr-96 A 03-Sep-96 A 17-Dec-96 A 19-Feb-97 A 16-May-97 A 22-Aug-97 A 11-Dec-97 A 09-Mar-98 A 09-Mar-98 A 15-Sep-98 E	EN NA EN NA EN NA 2AC NA EN NA EN NA EN NA EN NA EN NA	NA NA NA NA NA NA	NA NA NA NA NA NA	NA NA NA NA	NA NA NA	NA NA NA NA	<0.0005 NA <0.0005	<0.0005 <0.0005 <0.0005	<0.0005 <0.0005	<0.0005 <0.0005	<0.0005 <0.0005	<0.0005 <0.0005	<0.0005 <0.0005	ND ND
03-Sep-96 A 17-Dec-96 A 19-Feb-97 A 16-May-97 A 22-Aug-97 A 11-Dec-97 A 09-Mar-98 A 09-Mar-98 A 15-Sep-98 E	EN NA 2AC NA EN NA EN NA EN NA EN NA EN NA	NA NA NA NA NA	NA NA NA NA	NA NA NA	NA NA	NA NA	< 0.0005	< 0.0005						
) 17-Dec-96 A 19-Feb-97 A 16-May-97 A 22-Aug-97 A 11-Dec-97 A 09-Mar-98 A 09-Mar-98 A 15-Sep-98 E	2AC NA EN NA EN NA EN NA EN NA EN NA	NA NA NA NA	NA NA NA NA	NA NA	NA	NA			< 0.0005	< 0.0005	< 0.0005	< 0.0005	~ 0.0005	
19-Feb-97 A 16-May-97 A 22-Aug-97 A 11-Dec-97 A 09-Mar-98 A 09-Mar-98 A 15-Sep-98 E	EN NA EN NA EN NA EN NA EN NA	NA NA NA NA	NA NA NA	NA			0.001						~0.000	ND
16-May-97 A 22-Aug-97 A 11-Dec-97 A 09-Mar-98 A 09-Mar-98 A 15-Sep-98 E	EN NA EN NA EN NA EN NA	NA NA NA	NA NA		NA			< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	0.004	0.005
22-Aug-97 A 11-Dec-97 A 09-Mar-98 A 09-Mar-98 A 15-Sep-98 E	EN NA EN NA EN NA	NA NA	NA	NA		NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	ND
11-Dec-97 A 09-Mar-98 A 09-Mar-98 A 15-Sep-98 E	EN NA EN NA	NA			NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	ND
09-Mar-98 A 09-Mar-98 A 15-Sep-98 E	EN NA		NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	ND
09-Mar-98 A 15-Sep-98 E		NA		NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	ND
15-Sep-98 E	EN NA	11/1	NA	NA	NA	NA	< 0.0005	< 0.0005	0.0092	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.0092
•		NA	NA	NA	NA	NA	< 0.0005	< 0.0005	0.0092	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.0092
02-Mar-99 C	NT NA	NA	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	ND
	T NA	NA	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	ND
22-Sep-99 C	T NA	NA	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	ND
10-May-00 C	T NA	NA	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	ND
11-Sep-00 C		NA	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	ND
07-Dec-01 C	T NA	NA	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	ND
					REGULATO	RY CONC	ENTRATIO	NS						
	NE	NÉ	0.005	1.000	0.700	10.00	0.005	0.200	0.005	0,0005	0.005	0.005	0.006/0.010	-
groundwater is NO	Та													
ng water	0.500	0.640	0.046	0.130	0.290	0.013	0.360	0.062	0.120	0.025	0.047	0.910	0.590/0.590	
groundwater is a														
ng water	0.100	0.100	1,000	0.040	0.030	0.013	0.005	0.062	0.005	0.0032	0.005	0.005	0.006/0.010	
		· · ·				Trip Blank	s							
17-Feb-95 A	EN NA	NA	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	ND
10-May-95 A	EN NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.002	< 0,0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	ND
31-Aug-95 A	EN NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.002	< 0,0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	ND
		NA	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	ND
						< 0.002	< 0.0005	< 0.0005	< 0.0005	<0.0005	< 0.0005	< 0.0005	< 0.0005	ND
			NA		NA	NA					< 0.0005	< 0.0005	< 0.0005	ND
			NA	NA		NA					< 0.0005			ND
*						NA					< 0.0005			ND
-		NA	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	. < 0.0005	ND
		NA	NA	NA	NA	NA	< 0.0005			< 0.0005	< 0.0005	< 0.0005	< 0.0005	ND
		NA	NA			NA					< 0.0005			ND
23-Sep-99 C	T NA	NA	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	ND
	ng water groundwater is a ng water 17-Feb-95 A 10-May-95 A 31-Aug-95 A 28-Dec-95 A 27-Feb-96 A 03-Sep-96 A 19-Feb-97 A 15-May-97 A 22-Aug-97 A 11-Dec-97 A 09-Mar-98 A	ro undwater is NOT a ng water 0.500 gro undwater is a ng water 0.100 17-Feb-95 AEN NA 10-May-95 AEN NA 31-Aug-95 AEN NA 28-Dec-95 AEN NA 28-Dec-95 AEN NA 27-Feb-96 AEN <0.02 03-Sep-96 AEN NA 19-Feb-97 AEN NA 15-May-97 AEN NA 22-Aug-97 AEN NA 11-Dec-97 AEN NA	groundwater is NOT a ng water 0.500 0.640 groundwater is a 0.100 0.100 ng water 0.100 0.100 17-Feb-95 AEN NA NA 10-May-95 AEN NA NA 31-Aug-95 AEN NA NA 28-Dec-95 AEN NA NA 03-Sep-96 AEN NA NA 19-Feb-97 AEN NA NA 10-Feb-97 AEN NA NA 11-Dec-97 AEN NA NA 09-Mar-98 AEN NA NA	Brown water is NOT a eng water 0.500 0.640 0.046 groundwater is a eng water 0.100 0.100 1,000 17-Feb-95 AEN NA NA NA 10-May-95 AEN NA NA <0.0005	NE NE 0.005 1.000 groundwater is NOT a 0.500 0.640 0.046 0.130 groundwater is a 0.100 0.100 1,000 0.040 17-Feb-95 AEN NA NA NA NA 10-May-95 AEN NA NA <0.0005	NE NE 0.005 1.000 0.700 groundwater is NOT a 0.500 0.640 0.046 0.130 0.290 groundwater is a 0.100 0.100 1,000 0.040 0.030 17-Feb-95 AEN NA NA NA NA NA 10-May-95 AEN NA NA <0.0005	NE NE 0.005 1.000 0.700 10.00 groundwater is NOT a ng water 0.500 0.640 0.046 0.130 0.290 0.013 groundwater is a ng water 0.100 1.000 0.040 0.030 0.013 mg water 0.100 0.100 1,000 0.040 0.030 0.013 Trip Blank 17-Feb-95 AEN NA NA NA NA 10-May-95 AEN NA NA <0.0005	NE NE 0.005 1.000 0.700 10.00 0.005 groundwater is NOT a 0.500 0.640 0.046 0.130 0.290 0.013 0.360 groundwater is a ng water 0.100 0.100 1,000 0.040 0.030 0.013 0.360 Trip Blanks Trip Blanks Trip Blanks 17-Feb-95 AEN NA NA NA NA NA NA NA NA O.0005 NA NA NA NA NA NA NA O.0005 10-May-95 AEN NA NA A NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA	NE NE 0.005 1.000 0.700 10.00 0.005 0.200 groundwater is NOT a 0.500 0.640 0.046 0.130 0.290 0.013 0.360 0.062 groundwater is a 0.100 0.100 1,000 0.040 0.030 0.013 0.360 0.062 Trip Blanks 17-Feb-95 AEN NA NA NA NA NA 0.0005 <0.0005	NE NE 0.005 1.000 0.700 10.00 0.005 0.200 0.005 groundwater is NOT a 0.500 0.640 0.046 0.130 0.290 0.013 0.360 0.062 0.120 groundwater is a ng water 0.100 0.100 1,000 0.040 0.030 0.013 0.005 0.062 0.005 Trip Blanks Trip Blanks Trip Blanks 17-Feb-95 AEN NA NA NA NA NA 0.0005 <0.0005	NE NE 0.005 1.000 0.700 10.00 0.005 0.200 0.005 0.0005 groundwater is NOT a 0.500 0.640 0.046 0.130 0.290 0.013 0.360 0.062 0.120 0.025 groundwater is a 0.100 0.100 1,000 0.040 0.030 0.013 0.360 0.062 0.005 0.0032 Trip Blanks Trip Blanks 17-Feb-95 AEN NA NA NA NA NA NA NA NA NA O.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0	NE NE 0.005 1.000 0.700 10.00 0.005 0.200 0.005 0.007 0.007 0.005 0.005 0.005 0.007 0.007 0.005 0.005 0.007 0.007 0.005 0.005 0.007 0.007 0.005 0.007 0.007 0.005 0.007 0.007 0.005 0.007 0.007 0.005 0.007	NE NE 0.005 1.000 0.700 10.00 0.005 0.200 0.005 0.0005 0.00	NE NE 0.005 1.000 0.700 10.00 0.005 0.200 0.005 0.0005 0.00

							Field Blan	ks							
LF-22	17-Feb-95 AEN	NA	NA	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	ND
LF-22	09-May-95 AEN	NA	NA	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	ND
MW-7Z	09-May-95 AEN	NA	NA	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	ND
LF-22-FB	31-Aug-95 AEN	NA	NA	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	ND

Summary of Groundwater Quality Data

East Baybridge Center

Emeryville and Oakland, California

(concentrations expressed in parts per million [ppm])

Well ID	Notes	Date Sampled	Lab	TPHg	TPHd	Benzene	Toluene	Ethyl- benzene	Total Xylenes	TCE	1, 1, 1-TCA	PCE	1,1-DCE	1,1-DCA	1,2-DCA	cis/trans-1,2- DCE	Total VOCs
MW-7D-FB		20-Dec-95	AEN	NA	NA	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	ND
MW-7-FB		26-Feb-96		NA	NA	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	ND
MW-9-FB		03-Sep-96		NA	NA	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	ND
LF-22-FB	(37)	17-Dec-96		NA	NA	NA	NA	NA	NA	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	ND
MW-8-FB		19-Feb-97	AEN	NA	NA	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	ND
MW-10R-FE	3	15-May-97	AEN	NA	NA	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	ND
MW-10R-FE	3	15-Sep-98	AEN	NA	NA	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.032	0.032
LF-23-FB		22-Aug-97	AEN	NA	NA	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	ND
MW-9-FB		11-Dec-97	AEN	NA	NA	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	ND
MW-6D-FB		09-Mar-98	AEN	NA	NA	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	ND
MW-34R-F8	1	16-Sep-98	ENT	NA	NA	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	ND
MW-7Z-FB	(52)	02-Mar-99	СТ	NA	NA	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.025
MW-10-FB		21-Sep-99	СТ	NA	NA	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	ND
MW-10-FB		09-May-00	CT	NA	NA	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	ND
MW-6D-FB		11-Sep-00	CT	NA	NA	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	ND
LF-22-FB		08-Feb-01	СТ	NA	<.05	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005
FBMWS		09-May-01	СТ	NA	NA	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	
MW12R		06-Dec-01	CT	NA	NA	NA	NA	NA	NA	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	

Data entered by KCK Data proofed by REG and QA/QC by SXS.

NOTES:

Key to abbreviations:

CT = Curtis & Tompkins, Berkeley, California

AEN = American Environmental Network in Pleasant Hill, California

ANA = Inchcape Testing Anametrix, Inc., in San Jose, California

A2AC - Aqua Air (A2) Analytical Corporation

ENT = Entech Analytical Labs, Inc. in Sunnyvale, California

MCL = U.S. EPA maximum contaminant levels; where available MCLs by the California Department of Health Services are provided.

NA = parameter not analyzed

ND = parameter not detected

NE = none established

RWQCB RBSL = Regional Water Quality Control Board Risk-Based Screening Level

TPHg = Total petroleum hydrocarbons as gasoline

TPHd = Total petroleum hydrocarbons as diesel

1,1-DCA = 1,1-Dichloroethane

1,2-DCA = 1,2-Dichloroethane

cis/trans-1,2-DCE = cis and trans-1,2-Dichloroethene

1,1-DCE = 1,1-Dichloroethene

PCE = Tetrachloroethene

1,1,1-TCA = 1,1,1-Trichloroethane

TCE = Trichloroethene

Page 12 of 13

Summary of Groundwater Quality Data

East Baybridge Center

Emeryville and Oakland, California

(concentrations expressed in parts per million [ppm])

Well ID Notes Date Sampled Lab TPH	TPHd Benzene	Toluene Ethyl- Total benzene Xylenes	TCE 1,1,1-TCA F	PCE 1,1-DCE 1,1-DCA	1,2-DCA cis/trans-1,2- Total DCE VOCs
------------------------------------	--------------	---	-----------------	---------------------	--

Notes:	
(1) 0.00081 ppm vinyl chloride	(50) A duplicate sample was collected at MW-7D. The results for this sample were rejected based on Entech's conclusion that the sample
(2) 0.002 ppm chloroform	reported false positive results because of cross contamination by the laboratory.
(3) 0.0008 ppm chioroform	(51) Vinyl chloride .0072
(4) 0.002 ppm chloroform	(52) Chloroform 0.025
(6) 0.002 ppm chloroform	(53) Chloroform 0.0011
(7) 0.0002 ppm chloroform	(54) Freon 113 0.0013
(8) 0.002 ppm chloroform	(55) Vinyl Chloride 0.015 and Trichlorofluoromethane 0.0027
(9) 0.014 ppm chloroform	(56) Chloroform 0.001
(10) Chloroform = 0.004	(57) Chloroform 0.0012
(11) Chloroform = 0.0006	(58) Vinyl Chloride 0.010
(14) Chloroform = 0.006	(59) Chloroform 0.0023
(15) Bromodichloroethane = 0.010 ppm, vinyl chioride = 0.017	(60) Vinyl chloride .0082
(17) Chloroform $= 0.0012$.	(61) Vinyl chloride .0029
(18) Chloroform = 0.010 , Bromodichlomethane = 0.0011	(62) Chloroform 0.0006
(19) 1.2 -DCE = 0.194	(63) Vinyl chloride .0017
(20) 1,2-DCE = 0.0024	(64) Vinyl chloride .008
(21) $1,2$ -DCE = 0.011	(65) Vinyl chloride .010
(22) Vinyl chloride = 0.025, 1,2-DCE = 0.087, Bromodichloromethane = 0.004	(66) Vinyl chloride .0092
(23) 1,1,2-Trichlorotrifluoroethane $= 0.0021$	(67) Vinyi chloride .0063
(24) Chloroform = 0.0015	(68) Vinyl chloride .0066
(25) Bromodichloromethane = 0.001, Chloroform = 0.013	(69) Vinyl chloride .0019 and Chloroform 0.0006
(26) Chloroform = 0.002	(70) Vinyl chloride .013
(27) Methylene Chloride-0.001	(71) Vinyl chloride .0007
(28) Chloroform-0.030	(72) Vinyl chloride .0012
(31) Methylene Chloride-0.010	(73) Vinyl chloride .0052
(35) Chloroform-0.002	(74) Vinyl chloride .011
(36) Chloroform-0.001	(75) Chloroform 0.033
(37) Chloroform-0.001	(76) Chloroform 0.037
(38) Methylene Chloride-0.001	(77) Chloroform 0.0006, and Vinyl chloride 0.0014
(39) Chloroform-0.0007	(78) Vinyl chloride 0.0005
(40) Bromodichloromethane-0.0014, Chloroform-0.043	(79) Vinyl chloride 0.0014
(41) Chloroform-0.0009	(80) Vinyi chloride 0.0063 and Chloroform 0.0005
(42) TPH as Oil .0003	(81) Vinyl chloride 0.0065
(43) Chloroform-0.0009	(82) Chloroform 0.0042 .
(44) Methyl t-Butyl Ether 0.063	
(45) Chloroform 0.0006	
(46) Bromodichloromethane 0.0010, Chloroform 0.015	
(47) Vinyl chloride 0.006	
(48) Vinyl chloride 0.006(49) 1,1,2-Trichlorotrifluoroethane	
(+7) 1,1,2-11tello(outrido) deulare	

.

ţ

22

PAGE 10 OF 22

LEVINE-FRICKE

CLIENT ID: LF5-7503 CLIENT JOB NO: 1649 DATE SAMPLED: 02/06/90 DATE RECEIVED: 02/06/90 REPORT DATE: 02/28/90

MED-TOX LAB NO: 9002034-	04C
MED-TOX JOB NO: 9002034	
DATE EXTRACTED: 02/09/90	
DATE ANALYZED: 02/11/90	1
INSTRUMENT: #11	I I

EPA METHOD 8270 BASE/NEUTRAL EXTRACTABLES

COMPOUND	CAS #	CONCENTRATION (ug/L)	DETECTION LIMIT (ug/L)
Acenaphthene	83-32-9	ND	10
Acenaphthylene	208-96-8	ND	10
Anthracene	120-12-7	ND	10
Benzidine	92-87-5	ND	50
Benzoic Acid	65-85-0	ND	,50 ·
Benzo(a)anthracene	56-55-3	ND	10
Benzo(b)fluoranthene	205-99-2	ND	10
Benzo(k)fluoranthene	207-08-9	ND	10
Benzo(g,h,i)perylene	191-24-2	ND	10
Benzo(a)pyrene	50-32-8	ND	10
Benzyl Alcohol	100-51-6	ND	20
Bis(2-chloroethoxy) methane	111-91-1	ND	10
Bis(2-chloroethyl)ether	111-44-4	ND	10
Bis(2-chloroisopropyl) ether	39638-32-9	ND	10
Bis(2-ethylhexyl) phthalate	117-81-7	ND	10
4-Bromophenyl phenyl ether	101-55-3	ND	10 · .
Butylbenzyl phthalate	85-68-7	ND	10
4-Chloroaniline	106-47-8	ND	20
2-Chloronaphthalene	91-58-7	ND	10
4-Chlorophenyl phenyl ether	7005-72-3	ND	10
Chrysene	218-01-9	ND	10
Dibenzo(a,h)anthracene	53-70-3	ND	10
Dibenzofuran	132-64-9	ND	10
Di-n-butylphthalate	84-74-2	ND	10
1,2-Dichlorobenzene	95-50-1	ND	10

PAGE 11 OF 22

LEVINE-FRICKE

CLIENT ID: LF5-7503 CLIENT JOB NO: 1649 DATE SAMPLED: 02/06/90 DATE RECEIVED: 02/06/90 REPORT DATE: 02/28/90 MED-TOX LAB NO: 9002034-04C MED-TOX JOB NO: 9002034 DATE EXTRACTED: 02/09/90 DATE ANALYZED: 02/11/90 INSTRUMENT: #11

EPA METHOD 8270 BASE/NEUTRAL EXTRACTABLES (cont.)

COMPOUND	CAS #	CONCENTRATION (ug/L)	DETECTIÓN LIMIT (ug/L)
1,3-Dichlorobenzene	541-73-1	ND	10
1,4-Dichlorobenzene	106-46-7	ND	10
3,3'-Dichlorobenzidine	91-94-1	ND	20
Diethylphthalate	84-66-2	ND	10
Dimethylphthalate	131-11-3	ND	10
2,4-Dinitrotoluene	121-14-2	ND	10
2,6-Dinitrotoluene	606-20-2	ND	10
Di-n-octylphthalate	117-84-0	ND	10
1,2-Diphenylhydrazine	122-66-7	ND	10
Fluoranthene	206-44-0	ND	10
Fluorene	86-73-7	ND	10 ·
Hexachlorobenzene	118-74-1	ND	10
Hexachlorobutadiene	87-68-3	ND	10
Hexachlorocyclopentadiene	77-47-4	ND	10 .
Hexachloroethane	67-72-1	ND	10
Indeno(1,2,3-cd)pyrene	193-39-5	ND	10
Isophorone	78-59-1	ND	10
2-Methylnaphthalene	91-57-6	ND	10
Naphthalene	91-20-3	ND	10
2-Nitroaniline	88-74-4	ND	50 -
3-Nitroaniline	99-09-2	ND	50 ;
4-Nitroaniline	100-01-6	ND	50 ,
Nitrobenzene	98-95-3	ND	10
N-nitrosodimethylamine	62-75-9	ND	10
N-nitrosodiphenylamine	86-30-6	ND	10,
N-nitroso-di-n-	621-64-7	ND	10
propylamine			
Phenanthrene	85-01-8	ND	10
Pyrene	129-00-0	ND	10,
1,2,4-Trichlorobenzene	120-82-1	ND	10

PAGE 12 OF 22

LEVINE-FRICKE

CLIENT ID: LF5-7503 CLIENT JOB NO: 1649 DATE SAMPLED: 02/06/90 DATE RECEIVED: 02/06/90 REPORT DATE: 02/28/90

MED-TOX LAB NO: 9002034-0)4C
MED-TOX JOB NO: 9002034	,
DATE EXTRACTED: 02/09/90	1
DATE ANALYZED: 02/11/90	
INSTRUMENT: #11	ł.
INDIRONLAL, HIL	1

EPA METHOD 8270

ACID EXTRACTABLES

COMPOUND	CAS #	CONCENTRATION (ug/L)	DETECTION LIMIT (ug/L)
4-Chloro-3-methylphenol	59-50-7	ND	10
2-Chlorophenol	95-57-8	ND	10
2,4-Dichlorophenol	120-83-2	ND	10
2,4-Dimethylphenol	105-67-9	ND	10
4,6-Dinitro-2-methylphenol	534-52-1	ND	50
2,4-Dinitrophenol	51-28-5	ND	50
2-Methylphenol	95-48-7	ND	10 '
4-Methylphenol	106-44-5	ND	10
2-Nitrophenol	88-75-5	ND	10
4-Nitrophenol	100-02-7	ND .	50
Pentachlorophenol	87-86-5	ND	50
Phenol	108-95-2	ND	10
2,4,5-Trichlorophenol	95-95-4	ND	10
2,4,6-Trichlorophenol	88-06-2	ND	10

PAGE 16 OF 22

LEVINE-FRICKE

CLIENT ID: LF3-7503 CLIENT JOB NO: 1649 DATE SAMPLED: 02/06/90 DATE RECEIVED: 02/06/90 REPORT DATE: 02/28/90

MED-TOX LAB NO:	9002034-06Ç
MED-TOX JOB NO:	9002034 .
DATE EXTRACTED:	02/09/90
DATE ANALYZED: 0	
INSTRUMENT: #11	

EPA METHOD 8270 BASE/NEUTRAL EXTRACTABLES

COMPOUND	CAS #	CONCENTRATION (ug/L)	DETECTION LIMIT (ug/L)
Acenaphthene	83-32-9	ND	10
Acenaphthylene	208-96-8	ND	10
Anthracene	120-12-7	ND	10
Benzidine	92-87-5	ND	50
Benzoic Acid	65-85-0	ND	50
Benzo(a)anthracene	56-55-3	ND	10
Benzo(b)fluoranthene	205-99-2	ND	10
Benzo(k)fluoranthene	207-08-9	ND	10
Benzo(g,h,i)perylene	191-24-2	ND	10
Benzo(a)pyrene	50-32-8	ND	10
Benzyl Alcohol	100-51-6	ND	20
Bis(2-chloroethoxy) methane	111-91-1	ND	10
Bis(2-chloroethyl)ether	111-44-4	ND	10
Bis(2-chloroisopropyl) ether	39638-32-9	ND	10
Bis(2-ethylhexyl) phthalate	117-81-7	ND	10
4-Bromophenyl phenyl ether	101-55-3	ND	10
Butylbenzyl phthalate	85-68-7	ND	10
4-Chloroaniline	106-47-8	ND	20
2-Chloronaphthalene	91-58-7	ND	10
4-Chlorophenyl phenyl ether	7005-72-3	ND	10
Chrysene	218-01-9	ND	10
Dibenzo(a,h)anthracene	53-70-3	ND	10
Dibenzofuran	132-64-9	ND	10
Di-n-butylphthalate	84-74-2	ND	10
1,2-Dichlorobenzene	95-50-1	ND	10

ι

PAGE 17 OF 22

LEVINE-FRICKE

CLIENT ID: LF3-7503 CLIENT JOB NO: 1649 DATE SAMPLED: 02/06/90 DATE RECEIVED: 02/06/90 REPORT DATE: 02/28/90

MED-TOX LAB NO: 9002034-	060
MED-TOX JOB NO: 9002034	-
DATE EXTRACTED: 02/09/90	í
DATE ANALYZED: 02/11/90	÷
INSTRUMENT: #11	
INSTRUMENT: #11	

EPA METHOD 8270 BASE/NEUTRAL EXTRACTABLES (cont.)

COMPOUND	CAS #	CONCENTRATION (ug/L)	DETECTION LIMIT (ug/L)
1,3-Dichlorobenzene	541-73-1	ND	10
1,4-Dichlorobenzene	106~46-7	ND	10 :
3,3'-Dichlorobenzidine	91-94-1	ND	20
Diethylphthalate	84-66-2	ND	10
Dimethylphthalate	131-11-3	ND	10
2,4-Dinitrotoluene	121-14-2	ND	10
2,6-Dinitrotoluene	606-20-2	ND	10
Di-n-octylphthalate	117-84-0	ND	10
1,2-Diphenylhydrazine	122-66-7	ND	10
Fluoranthene	206-44-0	ND	10
Fluorene	86-73-7	ND	10
Hexachlorobenzene	118-74-1	ND	10
Hexachlorobutadiene	87-68-3	ND	10
Hexachlorocyclopentadiene	77-47-4	ND	10
Hexachloroethane	67-72-1	ND	10
Indeno(1,2,3-cd)pyrene	193-39-5	ND	10
Isophorone	78-59-1	ND	10
2-Methylnaphthalene	91-57-6	ND	10
Naphthalene	91-20-3	ND	10
2-Nitroaniline	88-74-4	ND	50
3-Nitroaniline	99-09-2	ND	50
4-Nitroaniline	100-01-6	ND	50
Nitrobenzene	98-95-3	ND	10
N-nitrosodimethylamine	62-75-9	ND	10
N-nitrosodiphenylamine	86-30-6	ND	10
N-nitroso-di-n-	621-64-7	ND	10
propylamine			4
Phenanthrene	85-01-8	ND	10
Pyrene	129-00-0	ND	10
1,2,4-Trichlorobenzene	120-82-1	ND	10

PAGE 18 OF 22

LEVINE-FRICKE

CLIENT ID: LF3-7503 CLIENT JOB NO: 1649 DATE SAMPLED: 02/06/90 DATE RECEIVED: 02/06/90 REPORT DATE: 02/28/90

MED-TOX LAB NO:	9002034-060
MED-TOX JOB NO:	9002034
DATE EXTRACTED:	02/09/90
DATE ANALYZED:	
INSTRUMENT: #11	Ł,

EPA METHOD 8270

ACID EXTRACTABLES

COMPOUND	CAS #	CONCENTRATION (ug/L)	DETECTIÓN LIMIT (ug/L)
4-Chloro-3-methylphenol 2-Chlorophenol 2,4-Dichlorophenol 2,4-Dimethylphenol 4,6-Dinitro-2-methylphenol 2,4-Dinitrophenol 2-Methylphenol 4-Methylphenol 2-Nitrophenol 4-Nitrophenol Pentachlorophenol Phenol 2,4,5-Trichlorophenol	59-50-7 95-57-8 120-83-2 105-67-9 534-52-1 51-28-5 95-48-7 106-44-5 88-75-5 100-02-7 87-86-5 108-95-2 95-95-4	ND ND ND ND ND ND ND ND ND ND ND ND ND N	10 10 10 50 50 10 10 10 50 50 10 10

PAGE 17 OF 47

LEVINE-FRICKE

CLIENT ID: A15(3)A CLIENT JOB NO: 1649 DATE SAMPLED: 01/25/90 DATE RECEIVED: 01/26/90 REPORT DATE: 02/21/90

MED-TOX LAB NO:	9001146-05A
MED-TOX JOB NO:	9001146
DATE EXTRACTED:	02/03/90
DATE ANALYZED:	02/05/90
INSTRUMENT: 11	

EPA METHOD 8270 GC/MS EXTRACTABLES

COMPOUND	CAS #	CONCENTRATION (ug/kg)	DETECTION LIMIT (ug/kg)
Acenaphthene	83-32-9	ND	330
Acenaphthylene	208-96-8	ND	330
Anthracene	120-12-7	ND	330
Benzidine	92-87-5	ND	1,600
Benzoic Acid	65-85-0	ND	1,600
Benzo(a)anthracene	56-55-3	ND	330
Benzo(b)fluoranthene	205-99-2	ND	330
Benzo(k)fluoranthene	207-08-9	ND	330
Benzo(g,h,i)perylene	191-24-2	ND	3.30
Benzo(a)pyréne	50-32-8	ND	330
Benzyl Alcohol	100-51-6	ND	660
Bis(2-chloroethoxy) methane	111-91-1	ND	330
Bis(2-chloroethyl)ether	111-44-4	ND	330
Bis(2-chloroisopropyl) ether	39638-32-9	ND .	330
Bis(2-ethylhexyl) . phthalate	117-81-7	ND	330
4-Bromophenyl phenyl ether	101-55-3	ND	330
Butylbenzyl phthalate	85-68-7	ND	330
4-Chloroaniline	106-47-8	ND	660
2-Chloronaphthalene	91~58-7	ND	330
4-Chlorophenyl phenyl ether	7005-72-3	ND	330
Chrysene	218-01-9	ND	330
Dibenzo(a,h)anthracene	53-70-3	ND	330
Dibenzofuran	132-64-9	ND	330
Di-n-butylphthalate	84-74-2	ND	330
1,2-Dichlorobenzene	95-50-1	ND	330

PAGE 18 OF 47

LEVINE-FRICKE

CLIENT ID: A15(3)A CLIENT JOB NO: 1649 DATE SAMPLED: 01/25/90 DATE RECEIVED: 01/26/90 REPORT DATE: 02/21/90 MED-TOX LAB NO: 9001146-05A MED-TOX JOB NO: 9001146 DATE EXTRACTED: 02/03/90 DATE ANALYZED: 02/05/90 INSTRUMENT: 11

EPA METHOD 8270 GC/MS EXTRACTABLES (cont.)

COMPOUND	CAS #	CONCENTRATION (ug/kg)	DETECTION LIMIT (ug/kg)
1,3-Dichlorobenzene 1,4-Dichlorobenzene	541-73-1 106-46-7	ND ND	330 330
3,3'-Dichlorobenzidine	91-94-1	ND	660
Diethylphthalate	84-66-2	ND	330
Dimethylphthalate	131-11-3	ND	330
2,4-Dinitrotoluene	121-14-2	NĎ	330
2,6-Dinitrotoluene	606-20-2	ND	330
Di-n-octylphthalate	117-84-0	ND	330
1,2-Diphenylhydrazine	122-66-7	ND	330
Fluoranthene	206-44-0	ND	330
Fluorene	86-73-7	ND	330
Hexachlorobenzene	118-74-1	ND	330
Hexachlorobutadiene	87-68-3	ND	330
Hexachlorocyclopentadiene	77-47-4	ND	330
Hexachloroethane	67-72-1	ND	330
Indeno(1,2,3-cd)pyrene	193-39-5	ND	330
Isophorone	78-59-1	ND	330
2-Methylnaphthalene	91-57-6	ND	330
Naphthalene	91-20-3	ND	330
2-Nitroaniline	88-74-4	ND	1,600
3-Nitroaniline	99-09-2	ND	1,600
4-Nitroaniline	100-01-6	ND	1,600
Nitrobenzene	98-95-3	ND	330
N-nitrosodimethylamine	62-75-9	ND	330
N-nitrosodiphenylamine	86-30-6	ND	330
N-nitroso-di-n- propylamine	621-64-7	ND	330
Phenanthrene	85-01-8	ND	330
Pyrene	129-00-0	ND	330
1,2,4-Trichlorobenzene	120-82-1	ND	330

PAGE 19 OF 47

LEVINE-FRICKE

CLIENT ID: A15(3)A CLIENT JOB NO: 1649 DATE SAMPLED: 01/25/90 DATE RECEIVED: 01/26/90 REPORT DATE: 02/21/90

MED-TOX LAB NO:	9001146-05A
MED-TOX JOB NO:	9001146
DATE EXTRACTED:	02/03/90
DATE ANALYZED:	02/05/90
INSTRUMENT: 11	· · ·

EPA METHOD 8270

GC/MS EXTRACTABLES (cont.)

COMPOUND	CAS #	CONCENTRATION (ug/kg)	DETECTION LIMIT (ug/kg)
4-Chloro-3-methylphenol	59-50-7	ND .	330
2-Chlorophenol	95-57-8	NÐ	330
2,4-Dichlorophenol	120-83-2	ND	330
2,4-Dimethylphenol	105-67-9	ND	330
4,6-Dinitro-2-methylphenol	534-52-1	ND	1,600
2,4-Dinitrophenol	51-28-5	ND	1,600
2-Methylphenol	95-48-7	ND	330
4-Methylphenol	106-44-5	ND	330
2-Nitropheno]	88-75-5	ND	330
4-Nitrophenol	100-02-7	ND	1,600
Pentachlorophenol	87-86-5	ŃD	1,600
Phenol	108-95-2	ND	330
2,4,5-Trichlorophenol	95-95-4	ND	330
2,4,6-Trichlorophenol	88-06-2	ND	330

ND = Not Detected

1

ł

PAGE 20 OF 47

LEVINE-FRICKE

CLIENT ID: A15(4.5)B CLIENT JOB NO: 1649 DATE SAMPLED: 01/25/90 DATE RECEIVED: 01/26/90 REPORT DATE: 02/21/90

9001146-07A
9001146
02/03/90
02/05/90

EPA METHOD 8270 GC/MS EXTRACTABLES

COMPOUND	CAS #	CONCENTRATION (ug/kg)	DETECTIÓN LIMIT (ug/kg)
Acenaphthene	83-32-9	ND	330
Acenaphthylene	208-96-8	ND	330
Anthracene	120-12-7	ND	330
Benzidine	92-87-5	ND	1,600
Benzoic Acid	65-85-0	ND	1,600
Benzo(a)anthracene	56-55-3	ND	330 -
Benzo(b)fluoranthene	205-99-2	ND	330
Benzo(k)fluoranthene	207-08-9	ND	330
Benzo(g,h,i)perylene	191-24-2	ND	330
Benzo(a)pyrene	50-32-8	ND	330
Benzyl Alcohol	100-51-6	ND	660
Bis(2-chloroethoxy) methane	111-91-1	ND	330
Bis(2-chloroethyl)ether	111-44-4	ND	330
Bis(2-chloroisopropyl) ether	39638-32-9	ND	330
Bis(2-ethylhexyl) phthalate	117-81-7	ND	330
4-Bromophenyl phenyl ether	101-55-3	ND	330
Butylbenzyl phthalate	85-68 - 7	ND	330
4-Chloroaniline	106-47-8	ND	660
2-Chloronaphthalene	91-58-7	ND	330
4-Chlorophenyl phenyl ether	7005-72-3	ND	330 .
Chrysene	218-01-9	ND	330
Dibenzo(a,h)anthracene	53-70-3	ND	330
Dibenzofuran	132-64-9	ND	330
Di-n-butylphthalate	84-74-2	ND	330
1,2-Dichlorobenzene	95-50-1	ND	330

PAGE 21 OF 47

LEVINE-FRICKE

CLIENT ID: A15(4.5)B CLIENT JOB NO: 1649 DATE SAMPLED: 01/25/90 DATE RECEIVED: 01/26/90 REPORT DATE: 02/21/90

A CONTRACTOR

MED-TOX LAB NO:	9001146-07A
MED-TOX JOB NO:	9001146
DATE EXTRACTED:	02/03/90
DATE ANALYZED:	02/05/90
INSTRUMENT: 11	

EPA METHOD 8270 GC/MS EXTRACTABLES (cont.)

COMPOUND	CAS #	CONCENTRATION (ug/kg)	DETECTION LIMIT (ug/kg)
1,3-Dichlorobenzene	541-73-1	ND	330
1,4-Dichlorobenzene	106-46-7	ND	330
3,3'-Dichlorobenzidine	91-94-1	ND	660
Diethylphthalate	84-66-2	ND	330
Dimethylphthalate	131-11-3	ND	330
2,4-Dinitrotoluene	121-14-2	ND	330
2,6-Dinitrotoluene	606-20-2	ND	330
Di-n-octylphthalate	117-84-0	ND	330
1,2-Diphenylhydrazine	122-66-7	ND ND	330
Fluoranthene	206-44-0	ND	330
Fluorene	86-73-7	ND	330
Hexachlorobenzene	118-74-1	ND	330
Hexachlorobutadiene	87-68-3	ND	330
Hexachlorocyclopentadiene	77-47-4	ND	330
Hexachloroethane	67-72-1	ND	330
Indeno(1,2,3-cd)pyrene	193-39-5	ND	330
Isophorone	78-59-1	ND	330
2-Methylnaphthalene	91-57-6	ND	330
Naphthalene	91-20-3	ND	330
2-Nitroaniline	88-74-4	ND	1,600
3-Nitroaniline	99-09-2	ND	1,600
4-Nitroaniline	100-01-6	ND	1,600
Nitrobenzene	98-95-3	ND	330
N-nitrosodimethylamine	62~75-9	ND	330
N-nitrosodiphenylamine	86-30-6	ND	330
N-nitroso-di-n-	621-64-7	ND	330
propylamine			
Phenanthrene	85-01-8	ND	330
Pyrene	129-00-0	ND	330
1,2,4-Trichlorobenzene	120-82-1	ND	330

PAGE 22 OF 47

LEVINE-FRICKE

CLIENT ID: A15(4.5)B CLIENT JOB NO: 1649 DATE SAMPLED: 01/25/90 DATE RECEIVED: 01/26/90 REPORT DATE: 02/21/90

MED-TOX LAB NO:	9001146-07A
MED-TOX JOB NO:	9001146
DATE EXTRACTED:	02/03/90
DATE ANALYZED:	02/05/90
INSTRUMENT: 11	

EPA METHOD 8270

GC/MS EXTRACTABLES (cont.)

COMPOUND	CAS #	CONCENTRATION (ug/kg)	DETECTION LIMIT (ug/kg)
4-Chloro-3-methylphenol	59-50-7	ND	330
2-Chlorophenol	95-57-8	ND	330
2,4-Dichlorophenol	120-83-2	ND	330
2,4-Dimethylphenol	105-67-9	ND	330
4,6-Dinitro-2-methylphenol	534-52-1	ND	1,600
2,4-Dinitrophenol	51-28-5	ND	1,600
2-Methylphenol	95-48-7	ND	330
4-Methylphenol	106-44-5	ND	330
2-Nitrophenol	88-75-5	ND	330
4-Nitrophenol	100-02-7	ND	1,600
Pentachlorophenol	87-86-5	ND	1,600
Pheno1	108-95-2	ND	330
2,4,5-Trichlorophenol	95-95-4	ND	330
2,4,6-Trichlorophenol	88-06-2	ND	330

PAGE 38 OF 47

LEVINE-FRICKE

CLIENT ID: A15C CLIENT JOB NO: 1649 DATE SAMPLED: 01/25/90 DATE RECEIVED: 01/26/90 REPORT DATE: 02/21/90

MED-TOX LAB NO:	9001147-01D
MED-TOX JOB NO:	9001147
DATE EXTRACTED:	01/29/90
DATE ANALYZED:	02/01/90
INSTRUMENT: 11	• •

EPA METHOD 8270 BASE/NEUTRAL EXTRACTABLES

COMPOUND	CAS #	CONCENTRATION (ug/L)	DETECTION LIMIT (ug/L)
Acenaphthene	83-32-9	ND	10
Acenaphthylene	208-96-8	ND	10 .
Anthracene	120-12-7	ND	10
Benzidine	92-87-5	ND	50
Benzoic Acid	65-85-0	ND	50
Benzo(a)anthracene	56-55-3	ND	10
Benzo(b)fluoranthene	205-99-2	ND	10
Benzo(k)fluoranthene	207-08-9	ND	10
Benzo(g,h,i)perylene	191-24-2	ND	10
Benzo(a)pyrene	50-32-8	ND	10
Benzyl Alcohol	100-51-6	ND	20
Bis(2-chloroethoxy) methane	111-91-1	ND	10
Bis(2-chloroethyl)ether	111-44-4	ND	10
Bis(2-chloroisopropyl) ether	39638-32-9	ND	10
Bis(2-ethylhexyl) phthalate	117-81-7	ND	. 10
4-Bromophenyl phenyl ether	101-55-3	ND	10
Butylbenzyl phthalate	85-68-7	ND	10
4-Chloroaniline	106-47-8	ND	20
2-Chloronaphthalene	91-58-7	ND	10
4-Chlorophenyl phenyl ether	7005-72-3	ND	10
Chrysene	218-01-9	ND	10
Dibenzo(a,h)anthracene	53-70-3	ND	10
Dibenzofuran	132-64-9	ND	10
Di-n-butylphthalate	84-74-2	ND	10
1,2-Dichlorobenzene	95-50-1	ND	10

PAGE 39 OF 47

LEVINE-FRICKE

CLIENT ID: A15C CLIENT JOB NO: 1649 DATE SAMPLED: 01/25/90 DATE RECEIVED: 01/26/90 REPORT DATE: 02/21/90 MED-TOX LAB NO: 9001147-01D MED-TOX JOB NO: 9001147 DATE EXTRACTED: 01/29/90 DATE ANALYZED: 02/01/90 INSTRUMENT: 11

EPA METHOD 8270 BASE/NEUTRAL EXTRACTABLES (cont.)

COMPOUND	CAS #	CONCENTRATION (ug/L)	DETECTION LIMIT (ug/L)
1,3-Dichlorobenzene	541-73-1	ND	10
1,4-Dichlorobenzene	106-46-7	ND	10
3,3'-Dichlorobenzidine	91-94-1	ND	20
Diethylphthalate	84-66-2	ND	10
Dimethylphthalate	131-11-3	ND	10
2,4-Dinitrotoluene	121-14-2	ND	10
2,6-Dinitrotoluene	606-20-2	ND	10
Di-n-octylphthalate	117-84-0	ND	10
1,2-Diphenylhydrazine	122-66-7	ND	10
Fluoranthene	206-44-0	ND	10
Fluorene	86-73-7	ND	10
Hexachlorobenzene	118-74-1	ND	10
Hexachlorobutadiene	87-68-3	ND	10
Hexachlorocyclopentadiene	77-47-4	ND	10
Hexachloroethane	67-72-1	ND	10
Indeno(1,2,3-cd)pyrene	193-39-5	ND	10
Isophorone	78-59-1	ND	10
2-Methylnaphthalene	91-57-6	ND	10
Naphthalene	91-20-3	ND	10
2-Nitroaniline	88-74-4	ND	50
3-Nitroaniline	99-09-2	. ND	50
4-Nitroaniline	100-01-6	ND	50
Nitrobenzene	98-95-3	ND	10
N-nitrosodimethylamine	62-75-9	ND	10
N-nitrosodiphenylamine	86-30-6	ND	10
N-nitroso-di-n-	621-64-7	ND	10
propylamine			
Phenanthrene	85-01-8	· ND	10
Pyrene	129-00-0	ND	10
1,2,4-Trichlorobenzene	120-82 -1	ND	10

PAGE 40 OF 47

ł

LEVINE-FRICKE

CLIENT ID: A15C CLIENT JOB NO: 1649 DATE SAMPLED: 01/25/90 DATE RECEIVED: 01/26/90 REPORT DATE: 02/21/90

MED-TOX LAB NO:	9001147-01D
MED-TOX JOB NO:	9001147
DATE EXTRACTED:	01/29/90
DATE ANALYZED:	02/01/90
INSTRUMENT: 11	

EPA METHOD 8270

ACID EXTRACTABLES

COMPOUND	CAS #	CONCENTRATION (ug/L)	DETECTION LIMIT (ug/L)
4-Chloro-3-methylphenol	59-50-7	ND	10
2-Chlorophenol	95-57-8	ND	10
2,4-Dichlorophenol	120-83-2	- ND	10
2,4-Dimethylphenol	105-67-9	ND	10
4,6-Dinitro-2-methylphenol	534-52-1	ND	50
2,4-Dinitrophenol	51-28-5	ND	50
2-Methylphenol	95-48-7	ND	10
4-Methylphenol	106-44-5	ND	10
2-Nitrophenol	88-75-5	ND	10
4-Nitrophenol	100-02-7	ND	50
Pentachlorophenol	87-86-5	ND	50
Phenol	108-95-2	ND	10
2,4,5-Trichlorophenol	95-95-4	ND	10
2,4,6-Trichlorophenol	88-06-2	ND	10

ND = Not Detected

Verstander.

PAGE 15 OF 53

LEVINE-FRICKE

CLIENT ID: LF-4-7501 CLIENT JOB NO: 1649 DATE SAMPLED: 02/07/90 DATE RECEIVED: 02/09/90 REPORT DATE: 03/02/90

MED-TOX LAB NO:	9002064-02F
MED-TOX JOB NO:	9002064
DATE EXTRACTED:	02/13/90
DATE ANALYZED:	02/19/90
INSTRUMENT: 11	, .

EPA METHOD 8270 BASE/NEUTRAL EXTRACTABLES

COMPOUND	CAS #	CONCENTRATION (ug/L)	DETECTION LIMIT (ug/L)
Acenaphthene	83-32-9	ND	10
Acenaphthylene	208-96-8	ND	10
Anthracene	120-12-7	ND	10
Benzidine	92-87-5	ND	50
Benzoic Acid	65-85-0	ND	50
Benzo(a)anthracene	56-55-3	ND	10
Benzo(b)fluoranthene	205-99-2	ND	10
Benzo(k)fluoranthene	207-08-9	ND	10
Benzo(g,h,i)perylene	191-24-2	ND	10
Benzo(a)pyrene	50-32-8	ND	10
Benzyl Alcohol	100-51-6	ND	20
Bis(2-chloroethoxy) methane	111-91-1	ND	10
Bis(2-chloroethyl)ether	111-44-4	ND	10
Bis(2-chloroisopropyl) ether	108-60-1	ND	10
Bis(2-ethylhexyl) phthalate	117-81-7	ND	10
4-Bromophenyl phenyl ether	101-55-3	ND	10
Butylbenzyl phthalate	85-68-7	ND	10
4-Chloroaniline	106-47-8	ND	20
2-Chloronaphthalene	91-58-7	ND	10
4-Chlorophenyl phenyl ether	7005-72-3	ND	10 .
Chrysene	218-01-9	ND	10
Dibenzo(a,h)anthracene	53-70-3	ND	10
Dibenzofuran	132-64-9	ND	10
Di-n-butylphthalate	84-74-2	ND	10
1,2-Dichlorobenzene	95-50-1	ND	10

PAGE 16 OF 53

LEVINE-FRICKE

CLIENT ID: LF-4-7501 CLIENT JOB NO: 1649 DATE SAMPLED: 02/07/90 DATE RECEIVED: 02/09/90 REPORT DATE: 03/02/90

MED	-TOX	LAB	NO:	9002064-	02F
MED	-TOX	JOB	NO:	9002064	
DAT	E EX.	TRACI	TED:	02/13/90	
		ALYZE		02/19/90	
INS	TRUM	ENT:	11	• •	

EPA METHOD 8270 BASE/NEUTRAL EXTRACTABLES (cont.)

COMPOUND	CAS #	CONCENTRATION (ug/L)	DETECTION LIMIT (ug/L)
l,3-Dichlorobenzene	541-73-1	ND	10
1,4-Dichlorobenzene	106-46-7	ND	10
3,3'-Dichlorobenzidine	91-94-1	ND	20
Diethylphthalate	84-66-2	ND	10
Dimethylphthalate	131-11-3	ND	10
2,4-Dinitrotoluene	121-14-2	ND	10
2,6-Dinitrotoluene	606-20-2	ND	10
Di-n-octylphthalate	117-84-0	ND	10
1,2-Diphenylhydrazine	122-66-7	ND	10
Fluoranthene	206-44-0	ND	10
Fluorene	86-73-7	ND	10
Hexachlorobenzene	118-74-1	ND	10
Hexachlorobutadiene	87-68-3	ND	10
Hexachlorocyclopentadiene	77-47-4	ND	10
Hexachloroethane	67-72-1	ND	10
Indeno(1,2,3-cd)pyrene	193-39-5	ND	• 10
Isophorone	78-59-1	ND	10
2-Methylnaphthalene	91-57-6	ND	10
Naphthalene	91-20-3	ND	10
2-Nitroaniline	88-74-4	ND	50
3-Nitroaniline	99-09-2	ND	50
4-Nitroaniline	100-01-6	ND	50
Nitrobenzene	98-95-3	ND	. 10
N-nitrosodimethylamine	62-75-9	ND	10
N-nitrosodiphenylamine	86-30-6	ND	10
N-nitroso-di-n-	621-64-7	ND	10
propylamine	05 03 0	ND .	10
Phenanthrene	85-01-8	ND ND	10
Pyrene	129-00-0	ND	10
1,2,4-Trichlorobenzene	120-82-1	ND	10

ż

PAGE 17 OF 53

LEVINE-FRICKE

CLIENT ID: LF-4-7501 CLIENT JOB NO: 1649 DATE SAMPLED: 02/07/90 DATE RECEIVED: 02/09/90 REPORT DATE: 03/02/90

MED-TOX LAB NO:	9002064-02F
MED-TOX JOB NO:	9002064
DATE EXTRACTED:	02/13/90
DATE ANALYZED:	02/19/90
INSTRUMENT: 11	

EPA METHOD 8270

ACID EXTRACTABLES

COMPOUND	CAS #	CONCENTRATION (ug/L)	DETECTION LIMIT (ug/L)
4-Chloro-3-methylphenol	59-50-7	ND	10
2-Chlorophenol	95-57-8	ND	10
2,4-Dichlorophenol	120-83-2	ND	10
2,4-Dimethylphenol	105-67-9	ND	10
4.6-Dinitro-2-methylphenol	534-52-1	ND	50
2,4-Dinitrophenol	51-28-5	ND	50
2-Methylphenol	95-48-7	ND	10
4-Methylphenol	106-44-5	ND	10
2-Nitrophenol	88-75-5	ND	10
4-Nitrophenol	100-02-7	ND	50
Pentachlorophenol	87-86-5	ND	50
Phenol	108-95-2	ND	10
2,4,5-Trichlorophenol	95-95-4	ND	10
2,4,6-Trichlorophenol	88-06-2	ND	10

i

PAGE 18 OF 53

LEVINE-FRICKE

CLIENT ID: LF-6-7501 CLIENT JOB NO: 1649 DATE SAMPLED: 02/07/90 DATE RECEIVED: 02/09/90 REPORT DATE: 03/02/90

MED-TOX LAB NO:	9002064-03F
MED-TOX JOB NO:	9002064
DATE EXTRACTED:	02/13/90
DATE ANALYZED:	02/19/90
INSTRUMENT: 11	

EPA METHOD 8270 BASE/NEUTRAL EXTRACTABLES

COMPOUND	CAS #	CONCENTRATION (ug/L)	DETECTION LIMIT (ug/L)
Acenaphthene	83-32-9	ND	10
Acenaphthylene	208-96-8	ND	10
Anthracene	120-12-7	ND	10
Benzidine	92-87-5	ND	50
Benzoic Acid	65-85-0	ND	50
Benzo(a)anthracene	56-55-3	ND	10
Benzo(b)fluoranthene	205-99-2	ND	10
Benzo(k)fluoranthene	207-08-9	ND	10
Benzo(g,h,i)perylene	191-24-2	ND	10
Benzo(a)pyrene	50-32-8	ND	10
Benzyl Alcohol	100-51-6	ND	20
Bis(2-chloroethoxy) methane	111-91-1	ND	10
Bis(2-chloroethyl)ether	111-44-4	ND	10
Bis(2-chloroisopropyl) ether	108-60-1	ND	10
Bis(2-ethylhexyl) phthalate	117-81-7	ND	10
4-Bromophenyl phenyl ether	101-55-3	ND	10
Butylbenzyl phthalate	85-68-7	ND	10
4-Chloroaniline	106-47-8	ND	20
2-Chloronaphthalene	91-58-7	ND	10
4-Chlorophenyl phenyl ether	7005-72-3	ND	10
Chrysene	218-01-9	ND	10
Dibenzo(a,h)anthracene	53-70-3	ND	10
Dibenzofuran	132-64-9	ND	10
Di-n-butylphthalate	84-74-2	ND	10
1,2-Dichlorobenzene	95-50-1	ND	10

PAGE 19 OF 53

LEVINE-FRICKE

CLIENT ID: LF-6-7501 CLIENT JOB NO: 1649 DATE SAMPLED: 02/07/90 DATE RECEIVED: 02/09/90 REPORT DATE: 03/02/90 MED-TOX LAB NO: 9002064-03F MED-TOX JOB NO: 9002064 DATE EXTRACTED: 02/13/90 DATE ANALYZED: 02/19/90 INSTRUMENT: 11

EPA METHOD 8270 BASE/NEUTRAL EXTRACTABLES (cont.)

COMPOUND	CAS #	CONCENTRATION (ug/L)	DETECTION LIMIT (ug/L)
1,3-Dichlorobenzene	541-73-1	ND	10
1,4-Dichlorobenzene	106-46-7	ND	10
3,3'-Dichlorobenzidine	91-94-1	ND	20
Diethylphthalate	84-66-2	ND	10
Dimethylphthalate	131-11-3	ND	10
2,4-Dinitrotoluene	121-14-2	ND	10
2,6-Dinitrotoluene	606-20-2	ND	10
Di-n-octylphthalate	117-84-0	. ND	10
1,2-Diphenylhydrazine	122-66-7	ND	10
Fluoranthene	206-44-0	ND	10
Fluorene	86-73-7	ND	10
Hexachlorobenzene	118-74-1	ND	10 .
Hexachlorobutadiene	87-68-3	ND	10
Hexachlorocyclopentadiene	77-47-4	ND .	10
Hexachloroethane	67-72-1	ND	10
Indeno(1,2,3-cd)pyrene	193-39-5	ND	10
Isophorone	78-59-1	ND	10
2-Methylnaphthalene	91-57-6	ND	10
Naphthalene	91-20-3	ND	10
2-Nitroaniline	88-74-4	ND	50
3-Nitroaniline	99-09-2	ND	50
4-Nitroaniline	100-01-6	ND	, 50
Nitrobenzene	98-95-3	ND	10
N-nitrosodimethylamine	62-75-9	ND	10
N-nitrosodiphenylamine	86-30-6	ND	10
N-nitroso-di-n-	621-64-7	ND	10
propylamine			
Phenanthrene	85-01-8	ND	10
Pyrene	129-00-0	ND	10
1,2,4-Trichlorobenzene	120-82-1	ND	10

2222

PAGE 20 OF 53

LEVINE-FRICKE

CLIENT ID: LF-6-7501 CLIENT JOB NO: 1649 DATE SAMPLED: 02/07/90 DATE RECEIVED: 02/09/90 REPORT DATE: 03/02/90

MED-TOX LAB NO:	9002064-03F
MED-TOX JOB NO:	9002064
DATE EXTRACTED:	02/13/90
DATE ANALYZED:	02/19/90
INSTRUMENT: 11	• •

EPA METHOD 8270

ACID EXTRACTABLES

COMPOUND	CAS #	CONCENTRATION (ug/L)	DETECTION LIMIT (ug/L)
4-Chloro-3-methylphenol	59-50-7	ND	10
2-Chlorophenol	95-57-8	ND	10
2,4-Dichlorophenol	120-83-2	ND	10
2,4-Dimethylphenol	105-67-9	ND	10
4,6-Dinitro-2-methylphenol	534-52-1	ND	50
2,4-Dinitrophenol	51-28-5	ND	50
2-Methylphenol	95-48-7	ND	10
4-Methylphenol	106-44-5	ND	10
2-Nitrophenol	88-75-5	ND	10
4-Nitrophenol	100-02-7	ND	50
Pentachlorophenol	87-86-5	ND	50
Phenol	108-95-2	ND	10
2,4,5-Trichlorophenol	95-95-4	ND	10
2,4,6-Trichlorophenol	88-06-2	ND	10

ND = Not Detected

PAGE 21 OF 53

LEVINE-FRICKE

CLIENT ID: LF-6D-7501 CLIENT JOB NO: 1649 DATE SAMPLED: 02/07/90 DATE RECEIVED: 02/09/90 REPORT DATE: 03/02/90

MED-TOX LAB NO:	9002064-04E
MED-TOX JOB NO:	9002064
DATE EXTRACTED:	02/13/90
DATE ANALYZED:	02/19/90
INSTRUMENT: 11	¥ 7

EPA METHOD 8270 BASE/NEUTRAL EXTRACTABLES

	÷		
COMPOUND	CAS #	CONCENTRATION (ug/L)	DETECTION LIMIT (ug/L)
Acenaphthene	83-32-9	ND	10
Acenaphthylene	208-96-8	ND	10
Anthracene	120-12-7	ND	10
Benzidine	92-87-5	ND	50
Benzoic Acid	65-85-0	ND	50
Benzo(a)anthracene	56-55-3	ND	10
Benzo(b)fluoranthene	205-99-2	ND	10
Benzo(k)fluoranthene	207-08-9	ND	10
Benzo(g,h,i)perylene	191-24-2	ND	10
Benzo(a)pyrene	50-32-8	ND	10
Benzyl Alcohol	100-51-6	ND	20
Bis(2-chloroethoxy) methane	111-91-1	ND	10
Bis(2-chloroethyl)ether	111-44-4	ND	10
Bis(2-chloroisopropyl) ether	108-60-1	ND	10
Bis(2-ethylhexyl) phthalate	117-81-7	ND	10
4-Bromophenyl phenyl ether	101-55-3	ND	10
Butylbenzyl phthalate	85-68-7	ND	10
4-Chloroaniline	106-47-8	ND	20
2-Chloronaphthalene	91-58-7	ND	10
4-Chlorophenyl phenyl ether	7005-72-3	ND	10
Chrysene	218-01-9	ND	10
Dibenzo(a,h)anthracene	53-70-3	ND	10
Dibenzofuran	132-64-9	ND	10
Di-n-butylphthalate	84-74-2	ND	10
1,2-Dichlorobenzene	95-50-1	ND	10

1,000,000

PAGE 22 OF 53

LEVINE-FRICKE

CLIENT ID: LF-6D-7501 CLIENT JOB NO: 1649 DATE SAMPLED: 02/07/90 DATE RECEIVED: 02/09/90 REPORT DATE: 03/02/90

MED-TOX LAB NO:	9002064-04E
MED-TOX JOB NO:	9002064
DATE EXTRACTED:	02/13/90
DATE ANALYZED:	02/19/90
INSTRUMENT: 11	

EPA METHOD 8270 BASE/NEUTRAL EXTRACTABLES (cont.)

COMPOUND .	CAS #	CONCENTRATION (ug/L)	DETECTION LIMIT (ug/L)
1,3-Dichlorobenzene	541-73-1	ND	. 10
1,4-Dichlorobenzene	106-46-7	ND	10
3,3'-Dichlorobenzidine	91-94-1	ND	20
Diethylphthalate	84-66-2	ND	10
Dimethylphthalate	131-11-3	ND	. 10
2,4-Dinitrotoluene	121-14-2	ND	10
2,6-Dinitrotoluene	606-20-2	ND	10
Di-n-octylphthalate	117-84-0	ND	10
1,2-Diphenylhydrazine	122-66-7	ND	10
Fluoranthene	206-44-0	ND	10
Fluorene	86-73-7	ND	10
Hexachlorobenzene	118-74-1	ND	10
Hexachlorobutadiene	87-68-3	ND	10
Hexachlorocyclopentadiene	77-47-4	ND	10
Hexachloroethane	67-72-1	ND	10
Indeno(1,2,3-cd)pyrene	193-39-5	ND	10
Isophorone	78-59-1	ND	10
2-Methylnaphthalene	91-57-6	ND	10
Naphthalene	91-20-3	ND	10
2-Nitroaniline	88-74-4	ND	50
3-Nitroaniline	99-09-2	ND	50
4-Nitroaniline	100-01-6	ND	50
Nitrobenzene	98-95-3	ND	10
N-nitrosodimethylamine	62-75-9	ND	10
N-nitrosodiphenylamine	86-30-6	ND	10
N-nitroso-di-n-	621-64-7	ND	10
propylamine			
Phenanthrene	85-01-8	ND	10
Pyrene	129-00-0	ND	10
1,2,4-Trichlorobenzene	120-82-1	ND	10

PAGE 23 OF 53

LEVINE-FRICKE

CLIENT ID: LF-6D-7501 CLIENT JOB NO: 1649 DATE SAMPLED: 02/07/90 DATE RECEIVED: 02/09/90 REPORT DATE: 03/02/90

MED-TOX LAB NO:	9002064-04E
MED-TOX JOB NO:	9002064
DATE EXTRACTED:	02/13/90
DATE ANALYZED:	
INSTRUMENT: 11	

EPA METHOD 8270

ACID EXTRACTABLES

COMPOUND	CAS #	CONCENTRATION (ug/L)	DETECTION LIMIT (ug/L)
4-Chloro-3-methylphenol	59-50-7	ND	10
2-Chlorophenol	95-57-8	ND	10
2,4-Dichlorophenol	120-83-2	. ND	10
2,4-Dimethylphenol	105-67-9	ND	10
4,6-Dinitro-2-methylphenol	534-52-1	ND	50
2,4-Dinitrophenol	51-28-5	ND	50
2-Methylphenol	95-48-7	ND	10
4-Methylphenol	106-44-5	ND	10
2-Nitrophenol	88-75-5	ND	10
4-Nitrophenol	100-02-7	ND	50
Pentachlorophenol	87-86-5	ND	50
Phenol	108-95-2	ND	10
2,4,5-Trichlorophenol	95-95-4	ND	10
2,4,6-Trichlorophenol	88-06-2	ND	10