

August 23, 2011

PHASE II SUBSURFACE INVESTIGATION REPORT

Property Identification:

1534 Park Street Alameda, California 94501

AEI Project No. 299101

Prepared for:

EastWest Bank 900 Webster Street Oakland, California 94607

Prepared by:

AEI Consultants 2500 Camino Diablo Walnut Creek, CA 94597 (925) 746-6000 San Francisco HQ

Atlanta

Chicago

Costa Mesa

Dallas

Denver

Los Angeles

Miami

New York

Phoenix

Portland

San Jose

National Presence Regional Focus Local Solutions

2500 Camino Diablo, Walnut Creek, CA 94597

Environmental & Engineering Services

Tel: 925.746.6000 Fax: 925.746.6099

August 23, 2011

Ms. Jaiynne Ho EastWest Bank 900 Webster Street Oakland, California 94607

Subject: Phase II Subsurface Investigation 1534 Park Street Alameda, CA 94501 AEI Project No. 299101

Dear Ms. Ho,

The following report describes the activities and results of the subsurface investigation performed by AEI Consultants (AEI) at the above referenced property (Figure 1: Site Location Map) on August 4, 2011. The investigation included the collection of soil samples from four (4) locations throughout the property. This investigation was performed in order to assess whether the property had been impacted as a result of the historic operations on site and if associated hazardous materials have affected the subject property subsurface.

I Site Description and Background

The subject property, which consists of a commercial building, is located on the west side of Park Street in a mixed commercial and residential area of Alameda, California. The property is improved with a one-story, three-unit building totaling approximately 6,812 square feet and occupying the entire parcel footprint. The building is constructed slab-on-grade. The subject property is currently a vacant unit (1534 Park Street). Tenants have included a dry cleaning operation (at least 1968-1999).

A Phase I Environmental Site Assessment (ESA) was performed by AEI on June 15, 2011. According to historical sources reviewed during the Phase I ESA, the subject property was listed on the Resource Conservation and Recovery Act (RCRA) Small Quantity Generator (SQG) database in relation to former occupancy by a dry cleaner, Bell Cleaners. A review of City of Alameda Community Development Department Building Division (CACDDBD) permits for the subject property indicates that the subject property was occupied by a dry cleaner in at least 1968, at which time the dry cleaner underwent remodeling activities. Documentation states that the dry cleaning equipment and associated piping, motors, and chemicals were removed from the subject property by Trans Tech Consultants in 1999. While the work plan included with Trans Tech Consultants' report indicates that two cuttings were to be made into the existing cement flooring at the subject property, and that up to six soil samples would be collected and analyzed for dry-cleaning solvents, AEI was not provided with a copy of the

August 23, 2011, AEI Project # 299101 1534 Park Street, Alameda, CA 94501 Page 2 of 5

analytical data or any report discussing the analytical data. Therefore, AEI was unaware of the quality of the subsurface at the subject property.

Dry cleaning operations typically use chlorinated solvents, particularly tetrachloroethylene (PCE), during the dry cleaning process. These solvents, even when properly stored and handled, can readily migrate into the subsurface as a result of small releases associated with onsite operations. Chlorinated solvents are highly mobile chemicals that can easily accumulate in soil and migrate to groundwater beneath a facility. Based on this information, in conjunction with the length of occupancy (at least 31 years), the former presence of a dry cleaning facility at the subject property represented evidence of a Recognzied Environmental Condition (REC).

A Phase II Investigation was recommended by AEI to determine the subsurface impact, if any, resulting from the former dry cleaning operations in place at the subject property from at least 1968 until 1999.

II Geology and Hydrogeology

Based on a review of the United States Geological Survey (USGS) San Francisco Bay Quadrangle Geologic Map, the area surrounding the subject property is underlain by Holocene era saline marsh deposits which are commonly characterized by gray to grayish-black mud and silty mud with interbedded layers of silt, fine sand, peaty mud, and peat containing roots and sparse seeds of estuarine marsh plants.

Based upon topographic map interpretation, groundwater beneath the subject property is inferred to flow to the northeast. Based on groundwater monitoring data for the west adjacent site (1541 Park Street), groundwater was encountered at an estimated depth of seven to 11 feet below ground surface (bgs).

III Investigative Efforts

AEI performed a site inspection, marked the site, and notified Underground Service Alert North to identify public utilities in the work area more than two working days prior to commencement of drilling. All field activities were carried out under the direct supervision of a California Professional Geologist. Drilling permit #W2011-0390 was obtained from the Alameda County Department of Public Works. Encroachment permits #X1100662 & X1100663 and an obstruction permit were obtained from the City of Oakland.

Drilling and Soil Sample Collection

On August 4, 2011, AEI advanced a total of four (4) soil borings samples taken from four (4) locations (SB-1 through SB-4) at the property. Borings were advanced for the collection of soil and groundwater samples. Boring locations are shown on Figure 3: Site Plan. Soil borings were advanced with a track-mounted GeoProbe 6620 direct push drilling rig. Drilling was performed by RSI Drilling, a California C57 licensed drilling contractor (License # 802334).

The borings were advanced to a total depth of 16 feet bgs. The soil borings were continuously cored using a GeoProbe MacroCore[®] sampler which retained the soil cores in 1³/₄" diameter acrylic liners. The soil cores were examined and logged by the onsite AEI geologist. Soils were screened in the field with a portable photo-ionization detector (PID). In each of the borings,

August 23, 2011, AEI Project # 299101 1534 Park Street, Alameda, CA 94501 Page 3 of 5

soil samples were collected at approximately 2 to 4 foot intervals where a six-inch sample was cut from the liners. The selected samples were sealed with Teflon tape and plastic caps, labeled with a unique identifier, placed in a cooler filled with ice, and transported to an offsite laboratory. Soil descriptions, field observations and screening data is presented on the borings logs in Appendix A.

Boring Destruction

Upon completion of sampling and measurement activities, all sampling equipment was removed from the boreholes. Each boring was backfilled with neat cement grout to the existing grade.

Laboratory Analyses

Soil and groundwater samples were transported to McCampbell Analytical (Department of Health Services Certification #01644) under chain of custody protocol for analyses following current EPA analytical methodologies. Selected soil samples and all groundwater samples were analyzed for volatile organic compounds (VOCs) by EPA method 8260B.

Analytical results and chain of custody documents are included as Appendix B.

IV Findings

Soils encountered during this investigation consisted of fine to medium grained poorly graded sand and sandy silt. Groundwater was encountered in all four borings at depths ranging from 11.79 below ground surface (bgs) in SB-1 to 13.15 bgs in SB-3.

Soil Sample Analytical Data

Tetrachloroethene (PCE) was reported above the laboratory reporting limit in all four soil borings (SB-1 through SB-4) at concentrations of 0.10 mg/kg, 5.5 mg/kg, 0.23 mg/kg and 0.50 mg/kg, respectively. 1,2,4-Trimethylbenzene was reported at a concentration of 0.023 mg/kg in SB-3 but was reported as not detectable above a reporting limit of 0.005 mg/kg in soil borings SB-1, SB-2 and SB-4.

All other VOCs were not reported above the respective laboratory reporting limit.

Groundwater Sample Analytical Data

PCE was reported above the laboratory reporting limit in groundwater from soil borings SB-1 through SB-4 at concentrations of 8.2 μ g/L, 15 μ g/L, 16 μ g/L and 12 μ g/L, respectively.

t-Butyl Alcohol (TBA) was reported in SB-1 through SB-4 at concentrations of 10 μ g/L, 3.8 μ g/L, 2.2 μ g/L and 4.1 μ g/L, respectively.

All other VOCs were below the laboratory reporting limits for all four groundwater samples analyzed.

Soil and groundwater sample analytical data is presented in Tables 1 and 2, respectively.

V Summary and Conclusions

The scope of the investigation was requested by the client to evaluate whether the property had been significantly impacted by dry cleaning operations historically conducted onsite. Soil samples were collected from a total of four (4) soil borings advanced throughout the property.

Concentrations of PCE were detected in soil samples from all four borings SB-1 through SB-4 at concentrations ranging from 0.10 mg/kg to 5.5 mg/kg. Due to the presence of PCE in shallow soil samples there appears to have been a release originating from the subject site. Groundwater samples SB-1-W through SB-4-W contained concentrations of PCE exceeding the ESLs of 5.0 μ g/L at concentrations ranging from 8.2 μ g/L to 16 μ g/L.

For comparison, the concentrations of PCE detected are compared in Tables 1 and 2 with the Regional Water Quality Control Board (RWQCB) Environmental Screening Levels¹ (ESLs). Although the ESLs are not statutory cleanup goals, they are risk-based values that have been prepared to evaluate whether a particular chemical presents an environmental risk.

Based on analytical results of the soil and groundwater samples collected from the subject property, AEI recommends the property owner pursue further characterization of the release. AEI recommends the responsible party perform a soil vapor survey under the building of the subject property to determine whether the potential for vapor intrusion exists, which could create a significant health hazard for the occupants of the building.

This constitutes an unauthorized release, which under state law is required to be reported to the appropriate regulatory agency. AEI recommends submitting this report to the Alameda County Environmental Health (ACEH) which may require further investigation to characterize the release

VI Report Limitation

This report presents a summary of work completed by AEI Consultants. The completed work includes observations and descriptions of site conditions encountered. Where appropriate, it includes analytical results for samples taken during the course of the work. The number and location of samples were chosen to provide the requested information, but it cannot be assumed that they are representative of areas not sampled. In addition, AEI has relied on information provided by others, which is assumed to be correct, however, AEI cannot assume any responsibility for its correctness or accuracy. All conclusions and/or recommendations are based on these analyses, observations, provided information, and the governing regulations at the time of the assessment. Conclusions beyond those stated and reported herein should not be inferred from this document.

¹ Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater, Residential Land Use, Regional Water Quality Control Board (RWQCB), May 2008

August 23, 2011, AEI Project # 299101 1534 Park Street, Alameda, CA 94501 Page 5 of 5

These services were performed in accordance with generally accepted practices, in the environmental engineering and construction field, which existed at the time and location of the work.

If you have any questions regarding our investigation, please do not hesitate to contact either of the undersigned at (925) 746-6000.

Sincerely, **AEI Consultants**

anoul

Harmony TomSun Project Geologist

Robert F. Flory, PG Senior Project Geologist

Figures

Figure 1: Site Location Map Figure 2: Site Map Figure 3: Site Plan

Tables

Table 1: Soil Sample Analytical DataTable 2: Groundwater Sample Analytical Data

Appendix A Soil Boring Logs

Appendix B

Sample Analytical Documentation with Chain of Custody

FIGURES

76 GAS STATION ALAMEDA ALFA AUTO REPAIR (1541 PARK STREET) FORT KNOX (1546 PARK STREET) BEAD INSPIRATIONS (1544 PARK STREET) GRAND COMMUNICATIONS (1542 PARK STREET)

> VACANT COMMERCIAL UNITS (2402-2404 LINCOLN AVENUE) MILLIE'S SALON (2406 LINCOLN AVENUE)

> > LINCOL

TILDEN WAY

WIENERSCHNITZEL (1527-1529 PARK STREET)

> ALAMEDA PRINTING SERVICES AND VACANT APARTMENTS (2408 LINCOLN AVENUE)

ARKING LOT

FURNITURE FUTONS & MORE(1530 PARK STREET) NEW YORK PIZZA(1528 PARK STREET) QUICK COMMUNICATIONS OF ALAMEDA(1526 PARK STREET)

ALAMEDA CREDIT UNION ALI REZAI DDS (2411 WEBB AVENUE)

SITE MAP

1534 PARK STREET, ALAMEDA, CALIFORNIA 94501

Legend Approximate Property Boundary

FIGURE 2

Project Number: 299101

Ν

TABLES

Table 1Soil Sample Analytical Data

Sample ID	Date	PCE (mg/kg)	1,2,4-Trimethylbenzene (mg/kg)	All VOCs (mg/kg)
			EI A Melhou SW6200D	
SB-1-2	8/4/2011	0.10	<0.005	<rl< td=""></rl<>
SB-2-2	8/4/2011	5.5	< 0.005	<rl< td=""></rl<>
SB-3-2	8/4/2011	0.23	0.023	<rl< td=""></rl<>
SB-4-2	8/4/2011	0.50	<0.005	<rl< td=""></rl<>
EGI		0.27		Varias
ESL		0.57	-	varies
RL		0.005	0.005	varies

mg/kg = milligrams per kilogram

PCE = Tetrachloroethene

VOCs = volatile organic compounds

SB = Soil Boring

RL= Reporting Limit

ESL = Environmental Screening Levels, San Francisco Regional Water Quality Control Board

"<" = less than

"-" = not applicable

Table 2Groundwater Sample Analytical Data

Sample ID	Date	PCE (µg/L)	TBA (μg/L)	All VOCs (µg/L)
			EPA Method SW8260B	
SB-1-W	8/4/2011	8.2	10	<rl< td=""></rl<>
SB-2-W	8/4/2011	15	3.8	<rl< td=""></rl<>
SB-3-W	8/4/2011	16	2.2	<rl< td=""></rl<>
SB-4-W	8/4/2011	12	4.1	<rl< td=""></rl<>
ESL		5.0	12	varies
RL		0.5	0.5	varies

 $\mu g/L = micrograms per liter$

PCE = Tetrachloroethene

TBA = t-Butyl Alcohol

VOCs = volatile organic compounds

SB = Soil boring

RL= reporting limit (with no dilution)- see laboratory reports for sample specific dilution factors

ESL = Environmental Screening Levels, San Francisco Regional Water Quality Control Board

"<" = less than

"-" = not applicable

APPENDIX A

SOIL BORING LOGS

Key to Log of Boring

Sheet 1 of 1

Elevation (feet)	Depth (feet)	Sample Type	Sample Number	USCS Symbol	Sampling Resistance, blows/ft	Relative Consistency	Graphic Log	MATERIAL	DESCRIPTION	PID Reading, ppm	REMARKS AND OTHER TESTS		
1	2	3	4	5	6	7	8		9	10	[11]		
COLUM 1 Ele 2 De 3 Sa shu 4 Sa 5 US 6 Sa dri intu 7 Re	 COLUMN DESCRIPTIONS Elevation (feet): Elevation (MSL, feet). Depth (feet): Depth in feet below the ground surface. Sample Type: Type of soil sample collected at the depth interval shown. Sample Number: Sample identification number. USCS Symbol: USCS symbol of the subsurface material. Sampling Resistance, blows/ft: Number of blows to advance driven sampler one foot (or distance shown) beyond seating interval using the hammer identified on the boring log. Relative Consistency: Relative consistency of the subsurface material. Graphic Log: Graphic depiction of the subsurface material 												
8 Gr	8 Graphic Log: Graphic depiction of the subsurface material												
EIFL D													
COMP: COMP: CONS: LL: Liqu Dentor Benton Benton Benton Benton Clayste Clayste Clayste Clayste Clayste Clayste Clayste Clayste Clayste Clayste Clayste Clayste Clayste SiLTY SiLTY SiLTY SiLTY SiLTY SiLTY SiLTY SiLTY SiLTY	Chemic: Compact One-dir uid Limit, AL MATE iite iite chips iite powder AY, CLAY w/S AY/SILT (CH- LAY, CLAY w/S CLAY (CLAY w/S GRAVEL (GC CLAY (CL-ML GRAVEL (GC CLAY (CL-ML GRAVEL (GC CLAY (CL-ML MS MAL SAMI Iby Tube	al tes ction nens perc ERIA SAND, MH) //SANE SL-OL) C) PLEI	sts to test ional cent L GF SANDY SANDY	ASSES CONSO CLAY (CH Y CLAY (CH Y CLAY (CH NDY CLA APHIC	C SYM	sivity test BOLS Clayey GRA Clayey GRA Clayey GRA Sitty GRAVE Sitty Grave S	VEL to (VEL to (L (GM)) L to Cla L to Gra L to Gra L to Gra L to Gra A GRAVE GRAVE GRAVE GRAVE GRAVE GRAVE GRAVE GRAVE HI grade	ravelly CLAY (GC-CH) ravelly CLAY (GC-CL) ey GRAVEL (GM-GC) relly SILT (GM-MH) relly SILT (GM-MH) EL with Silt (GP-GM) . (GW) . (GW) . (GW) GRAVEL (GW-GM) GRAVEL (GW-GP) EL (GP) N 22.	PI: Plasticity In SA: Sieve anal UC: Unconfine WA: Wash siev SILT, SILT w/SAND SILT, SILT w/SAND SILT, SILT with SA High plasticity PEA Low to High plastic Sandstone Clayey SAND (SC) Clayey SAND to Sc Clayey SAND to Sc Clayey SAND to Sc Clayey SAND to Sc Shale Sitt Sittstone Sitty SAND (SM)	ndex, perc lysis (perc ed compre ve (perce D, SANDY SILT ND, SANDY SILT ND, SANDY SILT ND, SANDY SILT (ND, SANDY SILT (ND, SANDY SILT (ND, SANDY SILT (ND, SANDY SILT (ND, SANDY SILT) (ND, SANDY	cent cent passing No. 200 Sieve) essive strength test, Qu, in ksf nt passing No. 200 Sieve) Silty SAND to Sandy SILT (SM-MH) Silty SAND to Sandy SILT (SM-ML) Well graded SAND (SM) OH) Well graded SAND with Clay (SP-SC) Well graded SAND with Clay (SW-SC) Well graded SAND with Silt (SW-SM) SILT, SILT w/SAND, SANDY SILT (ML) >-CH) Bentonite plug Asphaltic Concrete (AC) Poorly graded SAND with Silt (SP-SM) Bilack Rock - fine grained, exhibiting a bedding Gray rock, large grain size OTHER GRAPHIC SYMBOLS Y Water level (at time of drilling, ATD)		
	n-walled,	fixe	d hea	id)	mod	ified		∎ c	alifornia w/ brass lir	ners	— ₩ Water level (after waiting a given time)		
	n-walled,	fixe	d hea	id)	Aug	er samp	ler	G	rab Sample		Minor change in material properties within a stratum		
Bulk	Sample					E Sampl	er	P	itcher Sample		 — Inferred or gradational contact between strata 		
venter Notice States	ch-OD Ca s rings	alifor	nia w	/	2-ind spoo	ch-OD u on (SPT)	nline)	l split			-?-?Queried contact between strata		
GENER 1: Soil cl be gradu 2: Descr represer	RAL NOT lassificatio ual. Field o iptions on ntative of s	TES Ins and lescr thes subsu	 3-inch-OD California w/ brass rings 2-inch-OD unlined split spoon (SPT) -?-?Queried contact between strata GENERAL NOTES 1: Soil classifications are based on the Unified Soil Classification System. Descriptions and stratum lines are interpretive, and actual lithologic changes may be gradual. Field descriptions may have been modified to reflect results of lab tests. 2: Descriptions on these logs apply only at the specific boring locations and at the time the borings were advanced. They are not warranted to be representative of subsurface conditions at other locations or times. 										

GENERAL NOTES

Log of Boring SB-1

Date(s) Drilled August 4, 2011	Logged By Harmony TomSun	Checked By Robert F. Flory
Drilling Method Direct Push	Drill Bit Size/Type	Total Depth of Borehole 16 feet bgs
Drill Rig Type GeoProbe	Drilling Contractor RSI Drilling	Approximate Surface Elevation
Groundwater Level 11.79 feet ATD 11.79 feet ATD	Sampling Method(s) Tube	Hammer Data
Borehole Backfill Neat Cement	Location	

	Elevation (feet)	Depth (feet)	Sample Type	Sample Number	USCS Symbol	Sampling Resistance, blows/ft	Relative Consistency	Graphic Log	MATERIAL DESCRIPTION	PID Reading, ppm	REMARKS AND OTHER TESTS	
	-	- 0	SE	B-1-2	SM				Silty Sand, dark yellowish brown 4/4 10YR, fine to medium grained sand, - 5% fine grained gravel, moderately loose	9.1		
	_	5 —	SE	B-1-4	SM				Silty Sand, yellowish brown 5/8 10YR, fine grained sand, friable	4.9		
Boring Logs.bgs [20.tpl]	-	-	SE	B-1-7	SP				Sand, dark greenish brown 4/2 10YR, fine grained, poorly graded, - friable, moist -	3.7		
DIL\299101 FWB (Alameda) - HT\	-	10 — - -	5B-	-1-11.5	SM				Silty Sand, brownish yellow 6/6 10YR, fine grained sand, moderately - soft, moist - 	8.3		
XIZATION & REMEDIATION/DUE		 -	с С	3-1-15					Bottom of Boring at 16 feet bgs	5.7		
K:\PROJECTS\CHARACTER	_	- 20 —										

Log of Boring SB-2

Date(s) Drilled August 4, 2011	Logged By Harmony TomSun	Checked By Robert F. Flory
Drilling Method Direct Push	Drill Bit Size/Type	Total Depth of Borehole 16 feet bgs
Drill Rig Type GeoProbe	Drilling Contractor RSI Drilling	Approximate Surface Elevation
Groundwater Level and Date Measured 11.98 feet ATD	Sampling Method(s) Tube	Hammer Data
Borehole Backfill Neat Cement	Location	

Elevation (feet)	Depth (feet)	Sample Type	Sample Number	PID Reading, ppm	USCS Symbol	Graphic Log	MATERIAL DESCRIPTION	Well Log	REMARKS AND OTHER TESTS
-			SB-2-2	3.4	SM		Silty Sand, dark brown 3/3 7.5YR, fine to medium - grained sand, 5% fine grained gravel, loose -	-	
_	_ · ·		SB-2-4	2.9	SM		_ Silty Sand, yellowish brown 5/8 10YR, fine grained sand, friable 	-	
ell Log.tpj	- ·	-	SB-2-7.5	<1	SP		Sand, strong brown 5/8 7.5YR, fine grained, poorly - graded, friable, moist	-	
ਸਾ≻ਦਾਂ ਤਰਿਹਾਤਰਿਹ । ਰਿਧਾਰਰਨ। । -	- 10 - ·		SB-2-12	3.8	SM		Silty Sand, yellowish brown 5/6 10YR mottled dark gray 4/1 10YR, fine grained sand, moderately soft, 型 moist to wet	-	
11 EWB (Alameda) - F	- 15 - - ·		SB-2-15.5	<1			Bottom of Boring at 16 feet bgs	-	
-	20	-				-	- 	-	
_		-					- - 	-	
		-				-	-	-	

Log of Boring SB-3

Date(s) Drilled August 4, 2011	Logged By Harmony TomSun	Checked By Robert F. Flory
Drilling Method Direct Push	Drill Bit Size/Type	Total Depth of Borehole 16 feet bgs
Drill Rig Type GeoProbe	Drilling Contractor RSI Drilling	Approximate Surface Elevation
Groundwater Level and Date Measured 13.15 feet ATD	Sampling Method(s) Tube	Hammer Data
Borehole Backfill Neat Cement	Location	

	Elevation (feet)	, Depth (feet)	Sample Type	Sample Number	USCS Symbol	Sampling Resistance, blows/ft	Relative Consistency	Graphic Log	MATERIAL DESCRIPTION	PID Reading, ppm	REMARKS AND OTHER TESTS	
	-			SB-3-2	SM				Silty Sand, dark brown 3/3 7.5YR, fine to medium grained sand, 5% - fine grained gravel, loose -	4.5		
	_	5-		SB-3-4.5	SM				Silty Sand, yellowish brown 5/8 10YR, fine to medium grained sand, - friable	2.1		
ng Logs.bgs [20.tpl]	-			SB-3-7	SP				Sand, strong brown 5/8 7.5YR, very fine grained sand, poorly graded, friable, moist	<1		
<u> (Alameda) - HT\Bori</u>	-	- 10 —		CD 2 11 5	SM				Silty Sand, yellowish brown 5/8 10YR, fine to medium grained sand, no plasticity, moist	-		
N/DUE DIL/299101 EM	-	· ·	-	0-0-11.0					<u>-</u>			
ATION & REMEDIATIO	-	- 15		SB-3-15					Bottom of Boring at 16 feet bgs	<1		
ECTS\CHARACTERIZ#	-		-							-		
X:\PRO.IE		- 20 -	-		-	-	-			-		

Log of Boring SB-4

Date(s) Drilled August 4, 2011	Logged By Harmony TomSun	Checked By Robert F. Flory
Drilling Method Direct Push	Drill Bit Size/Type	Total Depth of Borehole 16 feet bgs
Drill Rig Type GeoProbe	Drilling Contractor RSI Drilling	Approximate Surface Elevation
Groundwater Level and Date Measured 12.73 feet ATD	Sampling Method(s) Tube	Hammer Data
Borehole Backfill Neat Cement	Location	

Elevation (feet)	, Depth (feet)	Sample Type	Sample Number	Sampling Resistance, blows/ft	Relative Consistency	Graphic Log	MATERIAL DESCRIPTION	PID Reading, ppm	REMARKS AND OTHER TESTS	
-	- 0 –	SB	-4-2 SN	1			Silty Sand, dark brown 3/3 7.5YR, fine grained sand, 10% fine grained - gravel, loose	<1		
-	- 5 —	SB	4-5	1			Silty Sand, yellowish brown 5/8 10YR, fine to medium grained sand, friable, moist	<1		
-	-	SB	4-8	<u>,</u>			Sand, dark yellowish brown 4/4 10YR, fine grained sand, poorly graded, friable, moist	<1		
-	10 — - -	SB-	4-11 SN	1			Silty Sand, yellowish brown 5/8 10YR, fine to medium grained sand, - no plasticity, moist 	<1		
-	- 15 —		4-15				Bottom of Boring at 16 feet bgs	- <1		
-	- 20						- · ·	-		
	Elevation (feet)	(feet) (feet)	(teet) (teet)	(teet) (teet)	Elevation (feet)	Elevation (feet)	Elevation (feet)	(199) (199)	(a) (a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	(1) (1) (1) (1) (1) (1) (1) (1)

APPENDIX B

SAMPLE ANALYTICAL DOCUMENTATION WITH CHAIN OF CUSTODY

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

"When Quality Counts"

Analytical Report

AEI Consultants	Client Project ID: #299101; EWB Alameda	Date Sampled: 08/04/11
2500 Camino Diablo. Ste. #200		Date Received: 08/04/11
	Client Contact: Harmony TomSun	Date Reported: 08/09/11
Walnut Creek, CA 94597	Client P.O.: #WC083220	Date Completed: 08/08/11

WorkOrder: 1108147

August 09, 2011

Dear Harmony:

Enclosed within are:

- 1) The results of the **8** analyzed samples from your project: **#299101; EWB Alameda**,
- 2) A QC report for the above samples,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

The analytical results relate only to the items tested.

	McCAMPBELL ANALYTICAL INC. 1534 Willow Pass Road Pittsburg, CA 94565													Τ					CI	IA	IN	0	F	CU	IST	r0	DY	R	EC	OI	RD			
		1534 V Pittsł	Villow Pass	Road 4565										1	ru	RN	AR	101	UN	D 1	TIN	IE		C	3				Ę];			Ż.	
Telepho	ne: (925) 25	2-9262			F	ax:	(92	5) 2	52-9	26	9			E	DF	Rea	nire	ed?	1	-	Ves			RU	ISH No	-	24 H	R	48	HR	7	2 HR	5	DAY
Report To: Harm	ony TomSu	n	В	ill To	: san	ne	-	P	2.0.	W	C083	3220)	~		Acce			An	alys	is R	lequ	est		210	-	_	÷.		Othe	r	Co	mme	ents
Company: AEI C	onsultants															0				el														
2500 0	Camino Dial	olo, Suite	200													B&F				caG														
Waln	ut Creek, C.	A 94597		E-M	ail: ht	toms	un@	aeio	consi	ilta	nts.co	om		TBE		&F/I				Sili				310										
Tele: (925) 746-6	000		F	ax: (925)	746	-60	99						5)/M		20 E	8.1)			/m ()				0/8										
Project #: 299101			P	rojec	t Nar	ame: EWB Alameda							nge	(55)	s (41		6	8015	-			827(
Project Location:	1534 Park	Street, Al	ameda	A		8020 +							020 +	ti-ra	case	rbon		802	MO	NLY	5		25/			010)								
Sampler Signatur	e hans	Y	2x	P	\sim	MATDIN METHOD							02/80	Mul	G	roca		502	UQ/I	's O	20	ocs	PA 6			2/6								
	1	SĂMP	LING		ers	MATRIX PRESERVED							15)-	Oil	Hyd	09	PA (ce (0	PCB	7	-SV	by El	602(/239									
SAMPLE ID				lers	tain	as G								80	enm	eum	A 82	Y (E	Rang	080	260	270	A's l	etals	tals	7421								
(Field Point Name)	LOCATION	Dete	T	taiı	Con		TPH a								hese	strol	ctrol	EP	INC	ulti-l	8/8	8/8	5/8	PN	7 M	Me	240/			0				
		Date	Time	Con	be	atei	ater r her NO ₃ her								as D	al P	al Po	So	EX (WH	A 60	-	A 62	H's/H	M-I	FT 5	() p	_		5				
				#	L,	M	Ma Nair Nair Nair Nair Nair Nair Nair Nai							Hd	Tot	Tot	HV	BT	TPI	EP	EP	EP	PA	CA	LU	Lea	RC		#		1			
5B-1-2	5B-1	84	10:00	1	liner																X									1	\square			
SB-1-4	1	1	10:10	1	1		1			1	1											1								X				
SB-1-7			10:15		Π																									X				
SB-1-11.5			10:25																											X				
5B-1-15	1		10:30																											X				
58-2-2	SB-2		10:38		\square																	X												
58-2-4	1		10:41		Π					Τ																			Í	X				
SB-2-7.5			10:45																										1	X				
SB-2-12			10:52																										1	X				
SB-2-15.5	SECT	10:57	ANDER																										1	X				
SB-3-2	SB-3		11:00																			\times												
SB-3-4.5	1		11:04																			-)					
58-3-7			11:09																										-	X				
58-3-11.5		1	11:15	1			1																							5				
Relinquished By:	5	Date: /	Time:	Rece	ived B	y:	~	1	_			-	-	\top	-	-	2	1			_		_						1	-	1			
422		814	5.14	1	m	e (a	+-	7	5		_			ICF	1+0 -	5.	L					p	DF	SED	VA	TIO	VO.	AS	0&G	M	IETAL	5 0	THER
Relinquished By:		Date:	Time:	Rece	ived B	y:	-	1	1-	2	-				GO	OD	CON	DIT	ION	N			A	PPI	ROP	RI	TE							
Impan		-14/11	1005		L	~	0	_	0	V				-	HE	AD S	PAC	CE A	BS	ENT	-	0	C	ON	TAI	NE	RS_	IN F						
Relinquished By:		Date:	Time:	Rece	ived B	y:									DE	CHL	URI	NA	TED	IN	LA	<u> </u>		PE	RSE	RV	ED	INL	AB_		_			
		100000000000000000000000000000000000000																																

	McCAMPBELL ANALYTICAL INC. 1534 Willow Pass Road Pittsburg, CA 94565 Telephones (025) 252 0262 Fay: (925) 252-020																	CI	IA	IN	0	F	CL	S	ГО	D	Y R	E	CO	RD			i x		
Tologha	(025) 25	Pittsb	urg, CA 94	4565	17		(0.2	5) 2	52 1	026	0				[U]	KN	AF	0	UN	D		1E		RI	JSH		24 H	R	45	HR		721	IR	5 D/	Y
Telephol	ne: (925) 25	2-9202			r	ax:	(92	5) 4	54-	920	9			E	DF	Req	uire	ed?			Yes			PA I	No							_			
Report To: Harmo	ony TomSu	n	B	ill To	o: san	ıe		F	P.O.	W	C08.	3220)		_	_	_		An	alys	sis F	Redi	iest	_		_	_		-	Othe	er	+	Com	ment	8
Company: AEI C	onsultants			_				_					_	1		E				Gel															
2500 0	Camino Dial	blo, Suite	200						_		-	_	_	ω.		/B&				lica															
Waln	ut Creek, C.	A 94597	T	E-M	ail: ht	toms	sun(a	acto	cons	ulta	nts.c	om		Ę		E&F	0			v/Si				8310											
Tele: (925) 740-0	000		P	ax: (925)	/40	FW	99 B /	lan	hod	9			15)	0	520	118.1			(2) A				101											
Project #: 299101	1534 Park	Street Al	ameda (A	1 Mai	ne:	EW	DP	Man	neu	a			- *	rang	e (5	ns (4		(00)	801	X			/ 82			0								
Sampler Signature	1. Jan	Street, Al	ameua, C	21	\checkmark	~	-			_				8020	ulti-r	ireas	arbo		/ 80	/MO	N	2	2	625			6010								
Sampler Signatur	- spine	SAMP	LING		Y .,	Í	MA	TR	IX	Т	MI	TH	OD	(602/	-Mi	11 & C	ydroc		A 602	(G/D	B's (20	NOC	EPA	020		39.2/								
	,			LS	iner	\vdash	PRESERVED								8015	mO	m H	8260	(EP	nge	30 PC	00	2 - O	s by	als 60	s	21/2								
SAMPLE ID	LOCATION		8	line	onta		PH as								sel (oleu	oleu	PA	ALY	ti-Ra	808	82	82	NA	Meti	Aeta	0/74			~					
(Field Point Name)		Date	Time	onta	Ŭ	er	er er er								Die	Petu	Petr	CsE	XO	Mul	608	1	625	s/P	-11	L S N	(724			3					
				Ŭ	Lyp	Wat	Soil Sludg Sludg HCI HCI AINO AINO								H as	Cotal	Cotal	ONF	STE	Hd	PA	Ad	Ade	HY	AM	5	cad	ĩ		P					
(PA IN	50 7	CL III	11:00	46	-	F	N S V S S S S S S S S S S S S S S S S S								Ē	-	-	-	-	-	-	-	-	-	-	-	-	-	\vdash	7	+	+			
28-3-15	35-3	814/11	11.25	1	Liner	1	X		-	-	X	-	+	+	-	-	-	_	-	-		1	-	_	-	-			\vdash	X	+	+			
78-4-2	5B-4		11:30	1	11	-	1		-	+	++-	-	-	⊢	-	-	-		-	_	-	X	-	-	-		-		\vdash	-	-	-	_		
58-4-5			11:33	\square	11	1			_	_	11	_	-	1	-						-								\square	X	-				
58-4-8			11:37							\downarrow	11																			X					
SB-4-11			11:42																											X					
53-4-15	V		11:48	1	1		1				'	_																		\times		+			
SB-1-W	SR-1	84/1	12:05	3	VoA	X			_	+	X	+	+	╞	-		-		-	_		X	-		_				\vdash		+	+			
53-2-IN	58-2		11:10	1	1	f,				+	1	+	-	+	-			-	-			\Diamond							\square		-				
SQ 7 W	SP 2		12.15	+	++	Ħ				+	H	+	+	+	1		-					Ð	-	-	-	-			\square		+				
1. 1. 92	50.1		12:00	H	++	H				+	+		+	-	-	-		-		-		¢	-						\vdash	-	+	+			
3D-4-00	35-4	1	11.00		<u> </u>	H			-	+	+	+	+	+	-	-	-					Λ	-	-	-		-		\vdash	-	+	+			
Λ						\vdash																									+	+			_
1 -																																			
Relinquistred By:	\geq	Date: 874	Time: 3:14	Rec	eived B	ed By: mly Catter																					vo	DAS	0&0	3	MET	ALS	отн	ER	
Reinquished By:		Date:	Time:	Rec	eived B	a.By:							1	GO	DD C	CON	DI	FIOI	N	F	-	F A	PRE	ROI	PRL	TIO	N							-	
Relinquished By:		Date:	Time:	Rec	sived B	By:									DEC	CHL	ORI	NA	TEL) IN	LA	B	-	PE	RSI	ERV	ED	IN L	AB						

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

(925) 2:	52-9262					Work	Order	11081	147	Client	tCode: AE	EL				
		WaterTrax	WriteOn	EDF		Excel		Fax	√ E	Email	HardC	сору		Party	□ J-f	ílag
Report to:							Bill to:					Requ	uested TA	. T :	5	days
Harmony To AEI Consult 2500 Camir Walnut Cre (925) 944-28	omSun tants no Diablo, Ste. #200 ek, CA 94597 99 FAX: (925) 944-2895	Email: cc: PO: ProjectNo:	htomsun@aei #WC083220 #299101; EW	consultants.com B Alameda			Sa AE 250 Wa sgi	ra Guer I Consu 00 Cam alnut Cr uerin@a	rin ultants nino Diablo eek, CA 9 aeiconsult	, Ste. #20 4597 ants.com	00	Data Data	e Receive e Printed	ed: !:	08/04/ 08/04/	/2011 /2011
					ſ				Requ	ested Test	ts (See lege	nd be	low)			
Lab ID	Client ID		Matrix	Collection Date	Hold	1	2	3	4	5 6	7	8	9	10	11	12
1108147-001	SB-1-2		Soil	8/4/2011 10:00		А										
1108147-006	SB-2-2		Soil	8/4/2011 10:38		А										

А

А

А

А

А

А

 \square

8/4/2011 11:00

8/4/2011 11:30

8/4/2011 12:05

8/4/2011 12:10

8/4/2011 12:15

8/4/2011 12:20

SB-3-2

SB-4-2

SB-1-W

SB-2-W

SB-3-W

SB-4-W

2 7 12

Test Legend:

1108147-011

1108147-016

1108147-021

1108147-022

1108147-023

1108147-024

1	8260B_S
6	
11	

8260B_W	

Soil

Soil

Water

Water

Water

Water

3	
8	

4	
9	

5	
10	

Prepared by: Ana Venegas

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

McCampbell Analytical, Inc. "When Quality Counts"

Sample Receipt Checklist

Client Name:	AEI Consultants				Date	and 1	Time Received:	8/4/2011 5:1	3:25 PM
Project Name:	#299101; EWB Alam	eda			Cheo	cklist o	completed and re	viewed by:	Ana Venegas
WorkOrder N°:	1108147	Matrix: Soil/Water			Carri	ier:	<u>Derik Cartan (N</u>	/AI Courier)	
		<u>Chair</u>	<u>ո of Cւ</u>	ustody (C	OC) Inform	<u>ation</u>			
Chain of custody	present?		Yes	✓	No				
Chain of custody	signed when relinquisl	ned and received?	Yes	✓	No				
Chain of custody	agrees with sample la	bels?	Yes	✓	No 🗌				
Sample IDs noted	d by Client on COC?		Yes	✓	No				
Date and Time of	f collection noted by Cl	ient on COC?	Yes	✓	No				
Sampler's name	noted on COC?		Yes	✓	No				
		<u>S</u>	ample	e Receipt	Information	<u>n</u>			
Custody seals int	act on shipping contai	ner/cooler?	Yes		No 🗌			NA 🗹	
Shipping containe	er/cooler in good condi	tion?	Yes	✓	No				
Samples in prope	er containers/bottles?		Yes	✓	No				
Sample container	rs intact?		Yes	✓	No				
Sufficient sample	volume for indicated t	est?	Yes	✓	No 🗌				
		Sample Prese	rvatio	n and Ho	ld Time (HT	<u>[] Info</u>	ormation		
All samples recei	ved within holding time	?	Yes	✓	No				
Container/Temp	Blank temperature		Coole	er Temp:	3.2°C			NA	
Water - VOA vial	s have zero headspace	e / no bubbles?	Yes	✓	No 🗌	No	VOA vials submi	tted	
Sample labels ch	ecked for correct prese	ervation?	Yes	✓	No				
Metal - pH accep	table upon receipt (pH	<2)?	Yes		No			NA 🗹	
Samples Receive	ed on Ice?		Yes	✓	No				
		(Ісе Турє	: WE	TICE)	1				
* NOTE: If the "N	lo" box is checked, see	e comments below.							
									======

Client contacted:

Date contacted:

Contacted by:

Comments:

McCampbell An "When Quality	nalytical	<u>Inc.</u>		1534 Willow F Web: www.mccampl Telephone: 8	Pass Road, Pittsburg, CA bell.com E-mail: mai 77-252-9262 Fax: 92	x 94565-1701 in@mccampbell.com 25-252-9269		
AEI Consultants	Clie	ent Project ID:	#29	99101; EWB	Date Sampled:	08/04/11		
	Ala	meda			Date Received:	08/04/11		
2500 Camino Diablo, Ste. #200	Clie	ent Contact: H	armo	ony TomSun	Date Extracted:	08/04/11		
Walnut Creek, CA 94597	Clie	ent P.O.: #WC	0832	20	Date Analyzed:	08/05/11		
	Volatile Or	ganics by P&'	Гan	d GC/MS (Basic T	arget List)*			
Extraction Method: SW5030B		Analytica	l Meth	od: SW8260B		Work Order: 1108	3147	
Lab ID				1108147	-001A			
Client ID				SB-1	-2			
Matrix		Re	porting	Soi	1			Reporting
Compound	Concentratio	n* DF	Limit	Compour	d	Concentration *	DF	Limit
Acetone	ND	1.0	0.05	tert-Amyl methyl ether	(TAME)	ND	1.0	0.005
Benzene	ND	1.0 0	.005	Bromobenzene		ND	1.0	0.005
Bromochloromethane	ND	1.0 0	.005	Bromodichloromethan	e	ND	1.0	0.005
Bromoform	ND	1.0 0	.005	Bromomethane		ND	1.0	0.005
2-Butanone (MEK)	ND	1.0	0.02	t-Butyl alcohol (TBA)		ND	1.0	0.05
n-Butyl benzene	ND	1.0 0	.005	sec-Butyl benzene		ND	1.0	0.005
tert-Butyl benzene	ND	1.0 0	.005	Carbon Disulfide		ND	1.0	0.005
Carbon Tetrachloride	ND	1.0 0	.005	Chlorobenzene		ND	1.0	0.005
Chloroethane	ND	1.0 0	.005	Chloroform		ND	1.0	0.005
Chloromethane	ND	1.0 0	.005	2-Chlorotoluene		ND	1.0	0.005
4-Chlorotoluene	ND	1.0 0	.005	Dibromochloromethan	e	ND	1.0	0.005
1,2-Dibromo-3-chloropropane	ND	1.0 0	.004	1,2-Dibromoethane (E	DB)	ND	1.0	0.004
Dibromomethane	ND	1.0 0	.005	1,2-Dichlorobenzene		ND	1.0	0.005
1,3-Dichlorobenzene	ND	1.0 0	.005	1,4-Dichlorobenzene		ND	1.0	0.005
Dichlorodifluoromethane	ND	1.0 0	.005	1,1-Dichloroethane		ND	1.0	0.005
1,2-Dichloroethane (1,2-DCA)	ND	1.0 0	.004	1,1-Dichloroethene		ND	1.0	0.005
cis-1,2-Dichloroethene	ND	1.0 0	.005	trans-1,2-Dichloroethe	ene	ND	1.0	0.005
1,2-Dichloropropane	ND	1.0 0	.005	1,3-Dichloropropane		ND	1.0	0.005
2,2-Dichloropropane	ND	1.0 0	.005	1,1-Dichloropropene		ND	1.0	0.005
cis-1,3-Dichloropropene	ND	1.0 0	.005	trans-1,3-Dichloropro	bene	ND	1.0	0.005
Diisopropyl ether (DIPE)	ND	1.0 0	.005	Ethylbenzene		ND	1.0	0.005
Ethyl tert-butyl ether (ETBE)	ND	1.0 0	.005	Freon 113		ND	1.0	0.1
Hexachlorobutadiene	ND	1.0 0	.005	Hexachloroethane		ND	1.0	0.005
2-Hexanone	ND	1.0 0	.005	Isopropylbenzene		ND	1.0	0.005
4-Isopropyl toluene	ND	1.0 0	.005	Methyl-t-butyl ether (1	MTBE)	ND	1.0	0.005
Methylene chloride	ND	1.0 0	.005	4-Methyl-2-pentanone	(MIBK)	ND	1.0	0.005
Naphthalene	ND	1.0 0	.005	n-Propyl benzene		ND	1.0	0.005
Styrene	ND	1.0 0	.005	1,1,1,2-Tetrachloroeth	ane	ND	1.0	0.005
1,1,2,2-Tetrachloroethane	ND	1.0 0	.005	Tetrachloroethene		0.10	1.0	0.005
Toluene	ND	1.0 0	.005	1,2,3-Trichlorobenzen	e	ND	1.0	0.005
1,2,4-Trichlorobenzene	ND	1.0 0	.005	1,1,1-Trichloroethane		ND	1.0	0.005
1,1,2-Trichloroethane	ND	1.0 0	.005	Trichloroethene		ND	1.0	0.005
Trichlorofluoromethane	ND	1.0 0	.005	1,2,3-Trichloropropan	e	ND	1.0	0.005
1,2,4-Trimethylbenzene	ND	1.0 0	.005	1,3,5-Trimethylbenzer	ie	ND	1.0	0.005
Vinyl Chloride	ND	1.0 0	.005	Xylenes, Total		ND	1.0	0.005
	Surrog	ate R	ecoveries (%)		1			
%SS1:		96		%SS2:		10)9	
%SS3:		110						
Comments:								

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

McCampbell A	nalyti y Counts"	cal, Ir	<u>nc.</u>		1534 Willow I Web: www.mccamp Telephone: 8	Pass Road, Pittsburg, CA bell.com E-mail: mai 877-252-9262 Fax: 92	A 94565-1701 in@mccampbell.com 25-252-9269					
AEI Consultants		Client I	Project ID	: #29	99101; EWB	Date Sampled:	08/04/11					
		Alamed	la			Date Received:	08/04/11					
2500 Camino Diablo, Ste. #200		Client (Contact: I	Iarmo	ony TomSun	Date Extracted:	08/04/11					
Walnut Creek, CA 94597		Client I	P.O.: #W0	0832	20	Date Analyzed:	08/05/11					
	Volatil	e Organ	ics by P&	T an	d GC/MS (Basic T	`arget List)*						
Extraction Method: SW5030B			Analytic	al Meth	od: SW8260B		Work Order: 1108	147				
Lab ID Client ID					1108147	-006A						
Matrix					SB-2	1						
Comment	C	4	DE	eporting	C	. 1	C * *	DE	Reporting			
Compound	Concen	tration *	DF	Limit	Compour	nd	Concentration *	DF	Limit			
Acetone	ND	<2.0	40	0.05	tert-Amyl methyl ethe	r (TAME)	ND<0.20	40	0.005			
Benzene	ND<	< 0.20	40	0.005	Bromobenzene		ND<0.20	40	0.005			
Bromochloromethane	ND<	<0.20	40	0.005	Bromodichloromethar	ie	ND<0.20	40	0.005			
Bromotorm	ND<	<0.20	40	0.005	Bromomethane		ND<0.20	40	0.005			
2-Butanone (MEK)	ND<	<0.80	40	0.02	t-Butyl alconol (IBA)		ND<2.0	40	0.05			
n-Butyl benzene	ND<	<0.20	40	0.005	Sec-Butyl benzene	ND<0.20	40	0.005				
Carbon Tatrachlarida	ND<	<0.20	40	0.005	Chlorobonzono		ND<0.20	40	0.005			
Chloroethane	ND<	<0.20	40	0.005	Chloroform		ND<0.20	40	0.005			
Chloromethane	ND	<0.20	40	0.005	2-Chlorotoluene		ND<0.20	40	0.005			
4-Chlorotoluene	ND	<0.20	40	0.005	2-Cillolololuelle Dibromochloromethar	ne l	ND<0.20	40	0.005			
1.2-Dibromo-3-chloropropage	ND	<0.20	40	0.003	1.2-Dibromoethane (F		ND<0.20	40	0.003			
Dibromomethane	ND<	<0.10	40	0.004	1,2-Dichlorobenzene		ND<0.10	40	0.004			
1.3-Dichlorobenzene	ND<	<0.20	40	0.005	1.4-Dichlorobenzene		ND<0.20	40	0.005			
Dichlorodifluoromethane	ND<	<0.20	40	0.005	1,1-Dichloroethane		ND<0.20	40	0.005			
1,2-Dichloroethane (1,2-DCA)	ND<	< 0.16	40	0.004	1,1-Dichloroethene		ND<0.20	40	0.005			
cis-1,2-Dichloroethene	ND<	< 0.20	40	0.005	trans-1,2-Dichloroethe	ene	ND<0.20	40	0.005			
1,2-Dichloropropane	ND<	< 0.20	40	0.005	1,3-Dichloropropane		ND<0.20	40	0.005			
2,2-Dichloropropane	ND<	< 0.20	40	0.005	1,1-Dichloropropene		ND<0.20	40	0.005			
cis-1,3-Dichloropropene	ND<	< 0.20	40	0.005	trans-1,3-Dichloropro	pene	ND<0.20	40	0.005			
Diisopropyl ether (DIPE)	ND<	< 0.20	40	0.005	Ethylbenzene		ND<0.20	40	0.005			
Ethyl tert-butyl ether (ETBE)	ND<	< 0.20	40	0.005	Freon 113		ND<4.0	40	0.1			
Hexachlorobutadiene	ND<	< 0.20	40	0.005	Hexachloroethane		ND<0.20	40	0.005			
2-Hexanone	ND<	< 0.20	40	0.005	Isopropylbenzene		ND<0.20	40	0.005			
4-Isopropyl toluene	ND<	< 0.20	40	0.005	Methyl-t-butyl ether (MTBE)	ND<0.20	40	0.005			
Methylene chloride	ND<	< 0.20	40	0.005	4-Methyl-2-pentanone	e (MIBK)	ND<0.20	40	0.005			
Naphthalene	ND<	< 0.20	40	0.005	n-Propyl benzene		ND<0.20	40	0.005			
Styrene	ND<	< 0.20	40	0.005	1,1,1,2-Tetrachloroeth	ane	ND<0.20	40	0.005			
1,1,2,2-Tetrachloroethane	ND<	< 0.20	40	0.005	Tetrachloroethene		5.5	40	0.005			
Toluene	ND<	< 0.20	40	0.005	1,2,3-Trichlorobenzen	e	ND<0.20	40	0.005			
1,2,4-Trichlorobenzene	ND<	< 0.20	40	0.005	1,1,1-Trichloroethane		ND<0.20	40	0.005			
1,1,2-Trichloroethane	ND<	< 0.20	40	0.005	Trichloroethene		ND<0.20	40	0.005			
Trichlorofluoromethane	ND<	< 0.20	40	0.005	1,2,3-Trichloropropan	e	ND<0.20	40	0.005			
1,2,4-Trimethylbenzene	ND<	< 0.20	40	0.005	05 1,3,5-Trimethylbenzene ND<0.20 40 05 X, 1 T 1 1 1							
V1nyl Chloride	ND<	< 0.20	40	0.005	Xylenes, Total		ND<0.20 40 0.00					
		Surro	gate R	ecoveries (%)								
%SS1:	<u> </u>	10	1		%SS2:		10	13				
%SS3:		10	1]							
Comments:												

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

McCampbell A	nalyti y Counts"	cal, Ir	<u>nc.</u>		1534 Willow F Web: www.mccampl Telephone: 8	Pass Road, Pittsburg, CA bell.com E-mail: ma 877-252-9262 Fax: 92	A 94565-1701 in@mccampbell.com 25-252-9269		
AEI Consultants		Client I	Project ID	: #2	99101; EWB	Date Sampled:	08/04/11		
		Alamed	la			Date Received:	08/04/11		
2500 Camino Diablo, Ste. #200		Client (Contact: 1	Harmo	ony TomSun	Date Extracted:	08/04/11		
Walnut Creek, CA 94597		Client I	P.O.: #W0	20832	20	Date Analyzed:	08/05/11		
Extraction Method: SW5030B	Volatil	e Organ	ics by P& Analytic	T an al Meth	d GC/MS (Basic T od: SW8260B	`arget List)*	Work Order: 1108	147	
Lab ID					1108147	-011A			
Client ID					SB-3	3-2			
Matrix			I		Soi	1			Description
Compound	Concen	tration *	DF	Limit	Compour	nd	Concentration *	DF	Limit
Acetone	ND<	<0.20	4.0	0.05	tert-Amyl methyl ether	r (TAME)	ND<0.020	4.0	0.005
Benzene	ND<	0.020	4.0	0.005	Bromobenzene		ND<0.020	4.0	0.005
Bromochloromethane	ND<	0.020	4.0	0.005	Bromodichloromethan	ne	ND<0.020	4.0	0.005
Bromoform	ND<	0.020	4.0	0.005	Bromomethane		ND<0.020	4.0	0.005
2-Butanone (MEK)	ND<	0.080	4.0	0.02	t-Butyl alcohol (TBA)		ND<0.20	4.0	0.05
n-Butyl benzene	ND<	0.020	4.0	0.005	sec-Butyl benzene		ND<0.020	4.0	0.005
tert-Butyl benzene	ND<	0.020	4.0	0.005	Carbon Disulfide		ND<0.020	4.0	0.005
Carbon Tetrachloride	ND<	0.020	4.0	0.005	Chlorobenzene		ND<0.020	4.0	0.005
Chloroethane	ND<	0.020	4.0	0.005	Chloroform		ND<0.020	4.0	0.005
Chloromethane	ND<	0.020	4.0	0.005	2-Chlorotoluene		ND<0.020	4.0	0.005
4-Chlorotoluene	ND<	0.020	4.0	0.005	Dibromochloromethar	ne	ND<0.020	4.0	0.005
1,2-Dibromo-3-chloropropane	ND<	0.016	4.0	0.004	1,2-Dibromoethane (E	EDB)	ND<0.016	4.0	0.004
Dibromomethane	ND<	0.020	4.0	0.005	1,2-Dichlorobenzene		ND<0.020	4.0	0.005
1,3-Dichlorobenzene	ND<	0.020	4.0	0.005	1,4-Dichlorobenzene		ND<0.020	4.0	0.005
Dichlorodifluoromethane	ND<	0.020	4.0	0.005	1,1-Dichloroethane		ND<0.020	4.0	0.005
1,2-Dichloroethane (1,2-DCA)	ND<	0.016	4.0	0.004	1,1-Dichloroethene		ND<0.020	4.0	0.005
cis-1,2-Dichloroethene	ND<	0.020	4.0	0.005	trans-1,2-Dichloroethe	ene	ND<0.020	4.0	0.005
1,2-Dichloropropane	ND<	0.020	4.0	0.005	1,3-Dichloropropane		ND<0.020	4.0	0.005
2,2-Dichloropropane	ND<	0.020	4.0	0.005	1,1-Dichloropropene		ND<0.020	4.0	0.005
cis-1,3-Dichloropropene	ND<	0.020	4.0	0.005	trans-1,3-Dichloropro	pene	ND<0.020	4.0	0.005
Disopropyl ether (DIPE)	ND<	0.020	4.0	0.005	Ethylbenzene		ND<0.020	4.0	0.005
Ethyl tert-butyl ether (ETBE)	ND<	0.020	4.0	0.005	Freon 113		ND<0.40	4.0	0.1
Hexachlorobutadiene	ND<	0.020	4.0	0.005	Hexachloroethane		ND<0.020	4.0	0.005
2-Hexanone	ND<	0.020	4.0	0.005	Isopropylbenzene		ND<0.020	4.0	0.005
4-Isopropyl toluene	ND<	0.020	4.0	0.005	Methyl-t-butyl ether (I	MTBE)	ND<0.020	4.0	0.005
Methylene chloride	ND<	0.020	4.0	0.005	4-Methyl-2-pentanone	e (MIBK)	ND<0.020	4.0	0.005
Naphthalene	ND<	0.020	4.0	0.005	n-Propyl benzene		ND<0.020	4.0	0.005
Styrene	ND<	0.020	4.0	0.005	1,1,1,2-Tetrachloroeth	lane	ND<0.020	4.0	0.005
1,1,2,2-Tetrachloroethane	ND<	0.020	4.0	0.005	Tetrachloroethene		0.23	4.0	0.005
Toluene	ND<	0.020	4.0	0.005	1,2,3-Trichlorobenzen	e	ND<0.020	4.0	0.005
1,2,4-Trichlorobenzene	ND<	0.020	4.0	0.005	1,1,1-1richloroethane		ND<0.020	4.0	0.005
Till C d	ND<	0.020	4.0	0.005	1 richloroethene		ND<0.020	4.0	0.005
1 richlorofluoromethane	ND<	0.020	4.0	0.005	1,2,3-Trichloropropan	e	ND<0.020	4.0	0.005
1,2,4-Trimethylbenzene	ND	0.023	4.0	0.005	1,3,5-Trimethylbenzer	ne	ND<0.020	4.0	0.005
vinyi Chloride	ND<	0.020	4.0	0.005	Aylenes, Total		ND<0.020	4.0	0.005
			Surro	gate R	ecoveries (%)		1		
%SS1:		99	9		%SS2:		10	13	
%SS3:		10)1						
Comments:									

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

McCampbell An "When Quality	nalyti y Counts"	cal, Ir	<u>nc.</u>		1534 Willow I Web: www.mccamp Telephone: 8	Pass Road, Pittsburg, CA bell.com E-mail: ma 877-252-9262 Fax: 9	A 94565-1701 in@mccampbell.com 25-252-9269		
AEI Consultants		Client I	Project ID	: #2	99101; EWB	Date Sampled:	08/04/11		
		Alamed	la			Date Received:	08/04/11		
2500 Camino Diablo, Ste. #200		Client (Contact:]	Harmo	ony TomSun	Date Extracted:	08/04/11		
Walnut Creek, CA 94597		Client I	P.O.: #W	20832	220	Date Analyzed	: 08/05/11		
	Volatil	e Organ	ics by P&	kТ an	d GC/MS (Basic T	arget List)*			
Extraction Method: SW5030B			Analyti	al Meth	od: SW8260B		Work Order: 1108	3147	
Lab ID					1108147	-016A			
Client ID					SB-4	4-2			
Matrix			1.		Soi	il			
Compound	Concen	tration *	DF	Reporting Limit	Compour	nd	Concentration *	DF	Reporting Limit
Acetone	ND<	< 0.50	10	0.05	tert-Amyl methyl ethe	r (TAME)	ND<0.050	10	0.005
Benzene	ND<	0.050	10	0.005	Bromobenzene		ND<0.050	10	0.005
Bromochloromethane	ND<	0.050	10	0.005	Bromodichloromethan	ne	ND<0.050	10	0.005
Bromoform	ND<	0.050	10	0.005	Bromomethane		ND<0.050	10	0.005
2-Butanone (MEK)	ND<	< 0.20	10	0.02	t-Butyl alcohol (TBA)		ND<0.50	10	0.05
n-Butyl benzene	ND<	0.050	10	0.005	sec-Butyl benzene		ND<0.050	10	0.005
tert-Butyl benzene	ND<	0.050	10	0.005	Carbon Disulfide		ND<0.050	10	0.005
Carbon Tetrachloride	ND<	0.050	10	0.005	Chlorobenzene		ND<0.050	10	0.005
Chloroethane	ND<	0.050	10	0.005	Chloroform		ND<0.050	10	0.005
Chloromethane	ND<	0.050	10	0.005	2-Chlorotoluene		ND<0.050	10	0.005
4-Chlorotoluene	ND<	0.050	10	0.005	Dibromochloromethan	ne	ND<0.050	10	0.005
1,2-Dibromo-3-chloropropane	ND<	0.040	10	0.004	1,2-Dibromoethane (E	EDB)	ND<0.040	10	0.004
Dibromomethane	ND<	0.050	10	0.005	1,2-Dichlorobenzene		ND<0.050	10	0.005
1,3-Dichlorobenzene	ND<	0.050	10	0.005	1,4-Dichlorobenzene		ND<0.050	10	0.005
Dichlorodifluoromethane	ND<	0.050	10	0.005	1,1-Dichloroethane		ND<0.050	10	0.005
1,2-Dichloroethane (1,2-DCA)	ND<	0.040	10	0.004	1,1-Dichloroethene		ND<0.050	10	0.005
cis-1,2-Dichloroethene	ND<	0.050	10	0.005	trans-1,2-Dichloroethe	ene	ND<0.050	10	0.005
1,2-Dichloropropane	ND<	0.050	10	0.005	1,3-Dichloropropane		ND<0.050	10	0.005
2,2-Dichloropropane	ND<	0.050	10	0.005	1,1-Dichloropropene		ND<0.050	10	0.005
cis-1,3-Dichloropropene	ND<	0.050	10	0.005	trans-1,3-Dichloropro	pene	ND<0.050	10	0.005
Diisopropyl ether (DIPE)	ND<	0.050	10	0.005	Ethylbenzene	•	ND<0.050	10	0.005
Ethyl tert-butyl ether (ETBE)	ND<	0.050	10	0.005	Freon 113		ND<1.0	10	0.1
Hexachlorobutadiene	ND<	0.050	10	0.005	Hexachloroethane		ND<0.050	10	0.005
2-Hexanone	ND<	0.050	10	0.005	Isopropylbenzene		ND<0.050	10	0.005
4-Isopropyl toluene	ND<	0.050	10	0.005	Methyl-t-butyl ether (MTBE)	ND<0.050	10	0.005
Methylene chloride	ND<	0.050	10	0.005	4-Methyl-2-pentanone	e (MIBK)	ND<0.050	10	0.005
Naphthalene	ND<	0.050	10	0.005	n-Propyl benzene	(ND<0.050	10	0.005
Styrene	ND<	0.050	10	0.005	1.1.1.2-Tetrachloroeth	ane	ND<0.050	10	0.005
1.1.2.2-Tetrachloroethane	ND<	0.050	10	0.005	Tetrachloroethene		0.50	10	0.005
Toluene	ND<	0.050	10	0.005	1.2.3-Trichlorobenzer	ie.	ND<0.050	10	0.005
1 2 4-Trichlorobenzene	ND<	0.050	10	0.005	1 1 1-Trichloroethane		ND<0.050	10	0.005
1.1.2-Trichloroethane	ND~	0.050	10	0.005	Trichloroethene		ND<0.050	10	0.005
Trichlorofluoromethane	ND<	0.050	10	0.005	1.2.3-Trichloronronan	e	ND<0.050	10	0.005
1.2.4-Trimethylbenzene	ND<	0.050	10	0.005	1.3.5-Trimethylhenzer	ne	ND<0.050	10	0.005
Vinyl Chloride	ND<	0.050	10	0.005	Xylenes, Total		ND<0.050	10	0.005
			G	ant- P			112 (0.050	10	0.005
0/ 551.		10	Surro	gate R			17	12	
%551: // SS2:		10			%552:		10	15	
%553:		9	9						
Comments:									

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

McCampbell An "When Quality	Inc.		1534 Willow I Web: www.mccamp Telephone: 8	Pass Road, Pittsburg, C. bell.com E-mail: ma 377-252-9262 Fax: 9	A 94565-1701 in@mccampbell.com 25-252-9269			
AEI Consultants	Clie	ent Project II): #2	99101; EWB	Date Sampled:	08/04/11		
2500 Charles D' 11 Charles 1000	Ala	meda			Date Received	: 08/04/11		
2500 Camino Diablo, Ste. #200	Clie	ent Contact:	Harmo	ony TomSun	Date Extracted	: 08/06/11		
Walnut Creek, CA 94597	Clie	ent P.O.: #W	C0832	220	Date Analyzed	: 08/06/11		
Extraction Method: SW5030B	Volatile Or	ganics by Pa Analyti	&T an	d GC/MS (Basic T od: SW8260B	`arget List)*	Work Order: 1108	147	
Lab ID				1108147	-021A			
Client ID				SB-1	-W			
Matrix			Reporting	Wat	er			Reporting
Compound	Concentratio	n* DF	Limit	Compour	nd	Concentration *	DF	Limit
Acetone	ND	1.0	10	tert-Amyl methyl ethe	r (TAME)	ND	1.0	0.5
Benzene	ND	1.0	0.5	Bromobenzene		ND	1.0	0.5
Bromochloromethane	ND	1.0	0.5	Bromodichloromethan	ie	ND	1.0	0.5
Bromoform	ND	1.0	0.5	Bromomethane		ND	1.0	0.5
2-Butanone (MEK)	ND	1.0	2.0	t-Butyl alcohol (TBA)		10	1.0	2.0
n-Butyl benzene	ND	1.0	0.5	sec-Butyl benzene		ND	1.0	0.5
tert-Butyl benzene	ND	1.0	0.5	Carbon Disulfide		ND	1.0	0.5
Carbon Tetrachloride	ND	1.0	0.5	Chlorobenzene		ND	1.0	0.5
Chloroethane	ND	1.0	0.5	Chloroform		ND	1.0	0.5
Chloromethane	ND	1.0	0.5	2-Chlorotoluene		ND	1.0	0.5
4-Chlorotoluene	ND	1.0	0.5	Dibromochloromethai		ND	1.0	0.5
1,2-Dibromo-3-chloropropane	ND	1.0	0.2	1,2-Dibromoetnane (E	LDB)	ND	1.0	0.5
1 2 Dishlarahangana	ND	1.0	0.5	1,2-Dichlorobenzene		ND	1.0	0.5
Dichlorodifluoromethane	ND	1.0	0.5	1,4-Dichloroethane		ND	1.0	0.5
1 2-Dichloroethane (1 2-DCA)	ND	1.0	0.5	1,1-Dichloroethene		ND	1.0	0.5
cis-1.2-Dichloroethene	ND	1.0	0.5	trans-1.2-Dichloroethe	ene	ND	1.0	0.5
1.2-Dichloropropage	ND	1.0	0.5	1 3-Dichloropropane		ND	1.0	0.5
2.2-Dichloropropane	ND	1.0	0.5	1.1-Dichloropropene		ND	1.0	0.5
cis-1.3-Dichloropropene	ND	1.0	0.5	trans-1.3-Dichloropro	pene	ND	1.0	0.5
Diisopropyl ether (DIPE)	ND	1.0	0.5	Ethylbenzene		ND	1.0	0.5
Ethyl tert-butyl ether (ETBE)	ND	1.0	0.5	Freon 113		ND	1.0	10
Hexachlorobutadiene	ND	1.0	0.5	Hexachloroethane		ND	1.0	0.5
2-Hexanone	ND	1.0	0.5	Isopropylbenzene		ND	1.0	0.5
4-Isopropyl toluene	ND	1.0	0.5	Methyl-t-butyl ether (MTBE)	ND	1.0	0.5
Methylene chloride	ND	1.0	0.5	4-Methyl-2-pentanone	e (MIBK)	ND	1.0	0.5
Naphthalene	ND	1.0	0.5	n-Propyl benzene		ND	1.0	0.5
Styrene	ND	1.0	0.5	1,1,1,2-Tetrachloroeth	ane	ND	1.0	0.5
1,1,2,2-Tetrachloroethane	ND	1.0	0.5	Tetrachloroethene		8.2	1.0	0.5
Toluene	ND	1.0	0.5	1,2,3-Trichlorobenzen	e	ND	1.0	0.5
1,2,4-Trichlorobenzene	ND	1.0	0.5	1,1,1-Trichloroethane		ND	1.0	0.5
1,1,2-Trichloroethane	ND	1.0	0.5	Trichloroethene		ND	1.0	0.5
Trichlorofluoromethane	ND	1.0	0.5	1,2,3-Trichloropropan	e	ND	1.0	0.5
1,2,4-Trimethylbenzene	ND	1.0	0.5	1,3,5-Trimethylbenzer	ne	ND	1.0	0.5
V1nyl Chloride	ND	1.0	0.5	Xylenes, Total		ND	1.0	0.5
		Surr	gate R	ecoveries (%)				
%SS1:		111		%SS2:		10	6	
%SS3:		121						
Comments: b1								

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

McCampbell Ar	<u>nc.</u>		1534 Willow F Web: www.mccampl Telephone: 8	Pass Road, Pittsburg, CA bell.com E-mail: ma 177-252-9262 Fax: 92	A 94565-1701 in@mccampbell.com 25-252-9269			
AEI Consultants	Client	Project ID	: #2	99101; EWB	Date Sampled:	08/04/11		
2500 Comine Dishle Sta #200	Alame	da			Date Received:	08/04/11		
2300 Camino Diabio, S.C. #200	Client	Contact: H	Iarmo	ony TomSun	Date Extracted:	08/06/11		
Walnut Creek, CA 94597	Client	P.O.: #WC	0832	20	Date Analyzed:	08/06/11		
	Volatile Organ	nics by P&	:T an	d GC/MS (Basic T	'arget List)*			
Extraction Method: SW5030B		Analytic	al Meth	od: SW8260B		Work Order: 1108	147	
Lab ID				1108147	-022A			
Client ID				SB-2	-W			
Matrix		R	enorting	Wat	er			Reporting
Compound	Concentration *	DF	Limit	Compour	nd	Concentration *	DF	Limit
Acetone	ND	1.0	10	tert-Amyl methyl ether	r (TAME)	ND	1.0	0.5
Benzene	ND	1.0	0.5	Bromobenzene		ND	1.0	0.5
Bromochloromethane	ND	1.0	0.5	Bromodichloromethan	ie	ND	1.0	0.5
Bromoform	ND	1.0	0.5	Bromomethane		ND	1.0	0.5
2-Butanone (MEK)	ND	1.0	2.0	t-Butyl alcohol (TBA)		3.8	1.0	2.0
n-Butyl benzene	ND	1.0	0.5	sec-Butyl benzene		ND	1.0	0.5
tert-Butyl benzene	ND	1.0	0.5	Carbon Disulfide		ND	1.0	0.5
Carbon Tetrachloride	ND	1.0	0.5	Chlorobenzene		ND	1.0	0.5
Chloroethane	ND	1.0	0.5	Chloroform		ND	1.0	0.5
Chloromethane	ND	1.0	0.5	2-Chlorotoluene		ND	1.0	0.5
4-Chlorotoluene	ND	1.0	0.5	Dibromochloromethan	ie	ND	1.0	0.5
1,2-Dibromo-3-chloropropane	ND	1.0	0.2	1,2-Dibromoethane (E	(DB)	ND	1.0	0.5
Dibromomethane	ND	1.0	0.5 1,2-Dichlorobenzene ND					0.5
1,3-Dichlorobenzene	ND	1.0	0.5	1,4-Dichlorobenzene		ND	1.0	0.5
Dichlorodifluoromethane	ND	1.0	0.5	1,1-Dichloroethane		ND	1.0	0.5
1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.5	1,1-Dichloroethene		ND	1.0	0.5
cis-1,2-Dichloroethene	ND	1.0	0.5	trans-1,2-Dichloroethe	ene	ND	1.0	0.5
1,2-Dichloropropane	ND	1.0	0.5	1,3-Dichloropropane		ND	1.0	0.5
2,2-Dichloropropane	ND	1.0	0.5	1,1-Dichloropropene		ND	1.0	0.5
cis-1,3-Dichloropropene	ND	1.0	0.5	trans-1,3-Dichloropro	pene	ND	1.0	0.5
Diisopropyl ether (DIPE)	ND	1.0	0.5	Ethylbenzene		ND	1.0	0.5
Ethyl tert-butyl ether (ETBE)	ND	1.0	0.5	Freon 113		ND	1.0	10
Hexachlorobutadiene	ND	1.0	0.5	Hexachloroethane		ND	1.0	0.5
2-Hexanone	ND	1.0	0.5	Isopropylbenzene		ND	1.0	0.5
4-Isopropyl toluene	ND	1.0	0.5	Methyl-t-butyl ether (I	MTBE)	ND	1.0	0.5
Methylene chloride	ND	1.0	0.5	4-Methyl-2-pentanone	e (MIBK)	ND	1.0	0.5
Naphthalene	ND	1.0	0.5	n-Propyl benzene		ND	1.0	0.5
Styrene	ND	1.0	0.5	1,1,1,2-Tetrachloroeth	ane	ND	1.0	0.5
1,1,2,2-Tetrachloroethane	ND	1.0	0.5	Tetrachloroethene		15	1.0	0.5
Toluene	ND	1.0	0.5	1,2,3-Trichlorobenzen	e	ND	1.0	0.5
1,2,4-Trichlorobenzene	ND	1.0	0.5	1,1,1-Trichloroethane		ND	1.0	0.5
1,1,2-Trichloroethane	ND	1.0	0.5	Trichloroethene		ND	1.0	0.5
Trichlorofluoromethane	ND	1.0	0.5	1,2,3-Trichloropropan	e	ND	1.0	0.5
1,2,4-Trimethylbenzene	ND	1.0	0.5	1,3,5-Trimethylbenzer	ne	ND	1.0	0.5
Vinyl Chloride	ND	1.0	0.5	Xylenes, Total		ND	1.0	0.5
		Surro	vate R	ecoveries (%)				
%SS1:	1	12	, N	%SS2:		10	7	
%SS3:	1	21		/0552.		10		
Comments: b1				<u>.</u>				

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

McCampbell An "When Quality	<u>, Inc.</u>		1534 Willow Web: www.mccamp Telephone: 8	Pass Road, Pittsburg, C. bell.com E-mail: ma 377-252-9262 Fax: 9	A 94565-1701 in@mccampbell.com 25-252-9269			
AEI Consultants	Cli	ent Project	D: #2	99101; EWB	Date Sampled:	08/04/11		
2500 Charles D' 11 Charles 1000	Ala	imeda			Date Received	: 08/04/11		
2500 Camino Diablo, Ste. #200	Cli	ent Contact:	Harmo	ony TomSun	Date Extracted	: 08/06/11		
Walnut Creek, CA 94597	Cli	ent P.O.: #V	VC0832	220	Date Analyzed	: 08/06/11		
Extraction Method: SW5030B	Volatile Or	ganics by I Anal	P&T an	d GC/MS (Basic T od: SW8260B	farget List)*	Work Order: 1108	147	
Lab ID				1108147	7-023A			
Client ID				SB-3	-W			
Matrix			Demonting	Wat	ter			Departing
Compound	Concentratio	on * DF	Limit	Compour	nd	Concentration *	DF	Limit
Acetone	ND	1.0	10	tert-Amyl methyl ethe	r (TAME)	ND	1.0	0.5
Benzene	ND	1.0	0.5	Bromobenzene		ND	1.0	0.5
Bromochloromethane	ND	1.0	0.5	Bromodichloromethan	ne	ND	1.0	0.5
Bromoform	ND	1.0	0.5	Bromomethane		ND	1.0	0.5
2-Butanone (MEK)	ND	1.0	2.0	t-Butyl alcohol (TBA)		2.2	1.0	2.0
n-Butyl benzene	ND	1.0	0.5	sec-Butyl benzene		ND	1.0	0.5
tert-Butyl benzene	ND	1.0	0.5	Carbon Disulfide		ND	1.0	0.5
Carbon Tetrachloride	ND	1.0	0.5	Chlorobenzene		ND	1.0	0.5
Chloroethane	ND	1.0	0.5	Chloroform		ND	1.0	0.5
Chloromethane	ND	1.0	0.5	2-Chlorotoluene		ND	1.0	0.5
4-Chlorotoluene	ND	1.0	0.5	Dibromochlorometha	ne	ND	1.0	0.5
1,2-Dibromo-3-chloropropane	ND	1.0	0.2	1,2-Dibromoethane (H	EDB)	ND	1.0	0.5
Dibromomethane	ND	1.0	0.5	1,2-Dichlorobenzene		ND	1.0	0.5
1,3-Dichlorobenzene	ND	1.0	0.5	1,4-Dichlorobenzene		ND	1.0	0.5
Dichlorodifluoromethane	ND	1.0	0.5	1,1-Dichloroethane		ND	1.0	0.5
1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.5	1,1-Dichloroethene		ND	1.0	0.5
cis-1,2-Dichloroethene	ND	1.0	0.5	trans-1,2-Dichloroeth	ene	ND	1.0	0.5
1,2-Dichloropropane	ND	1.0	0.5	1,3-Dichloropropane		ND	1.0	0.5
2,2-Dichloropropane	ND	1.0	0.5	1,1-Dichloropropene		ND	1.0	0.5
cis-1,3-Dichloropropene	ND	1.0	0.5	trans-1,3-Dichloropro	pene	ND	1.0	0.5
Disopropyl ether (DIPE)	ND	1.0	0.5	Ethylbenzene		ND	1.0	0.5
Ethyl tert-butyl ether (ETBE)	ND	1.0	0.5	Freon 113		ND	1.0	10
Hexachlorobutadiene	ND	1.0	0.5	Hexachloroethane		ND	1.0	0.5
2-Hexanone	ND	1.0	0.5	Isopropylbenzene		ND	1.0	0.5
4-Isopropyl toluene	ND	1.0	0.5	Methyl-t-butyl ether (MTBE)	ND	1.0	0.5
Methylene chloride	ND	1.0	0.5	4-Methyl-2-pentanon	e (MIBK)	ND	1.0	0.5
Naphthalene	ND	1.0	0.5	n-Propyl benzene		ND	1.0	0.5
Styrene	ND	1.0	0.5	1,1,1,2-Tetrachloroeth	nane	ND	1.0	0.5
1,1,2,2-1etrachloroethane	ND	1.0	0.5	Tetrachloroethene		16	1.0	0.5
	ND	1.0	0.5	1,2,3-Trichlorobenzer	ie	ND	1.0	0.5
1,2,4-Trichlensethans	ND	1.0	0.5	Triable reactions		ND	1.0	0.5
T,1,2-Trichloroethane	ND	1.0	0.5			ND	1.0	0.5
	ND	1.0	0.5	1,2,3-Trichloropropar	ie	ND	1.0	0.5
1,2,4-1rimetnyibenzene	ND	1.0	0.5	1,3,3-1rimethylbenze	ne	ND	1.0	0.5
vinyi Unioride	ND	1.0	0.5	Aylenes, Total		ND	1.0	0.5
		Sur	rogate R	ecoveries (%)				
%SS1:		112		%SS2:		10	5	
%SS3:		119						
Comments: b1								

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

McCampbell An "When Quality	<u>, Inc.</u>		1534 Willow I Web: www.mccamp Telephone: 8	Pass Road, Pittsburg, CA bell.com E-mail: ma 377-252-9262 Fax: 92	A 94565-1701 in@mccampbell.com 25-252-9269			
AEI Consultants	Cli	ent Project I	D: #2	99101; EWB	Date Sampled:	08/04/11		
2500 Coming Distals Sta #200	Ala	ameda			Date Received:	08/04/11		
2500 Camino Diabio, Ste. #200	Cli	ent Contact:	Harmo	ony TomSun	Date Extracted:	08/06/11		
Walnut Creek, CA 94597	Cli	ent P.O.: #W	C0832	220	Date Analyzed:	08/06/11		
	Volatile Or	rganics by P	&T an	d GC/MS (Basic T	arget List)*			
Extraction Method: SW5030B		Analy	ical Meth	od: SW8260B		Work Order: 1108	147	
Lab ID				1108147	7-024A			
Client ID Matrix				SB-4	-W			
Mathx			Reporting	Wat	er			Reporting
Compound	Concentratio	on * DF	Limit	Compour	nd	Concentration *	DF	Limit
Acetone	ND	1.0	10	tert-Amyl methyl ethe	r (TAME)	ND	1.0	0.5
Benzene	ND	1.0	0.5	Bromobenzene		ND	1.0	0.5
Bromochloromethane	ND	1.0	0.5	Bromodichloromethan	ne	ND	1.0	0.5
Bromoform	ND	1.0	0.5	Bromomethane		ND	1.0	0.5
2-Butanone (MEK)	ND	1.0	2.0	t-Butyl alcohol (TBA))	4.1	1.0	2.0
n-Butyl benzene	ND	1.0	0.5	sec-Butyl benzene		ND	1.0	0.5
tert-Butyl benzene	ND	1.0	0.5	Carbon Disulfide		ND	1.0	0.5
Carbon Tetrachloride	ND	1.0	0.5	Chlorobenzene		ND	1.0	0.5
Chloroethane	ND	1.0	0.5	Chloroform		ND	1.0	0.5
Chloromethane	ND	1.0	0.5	2-Chlorotoluene		ND	1.0	0.5
4-Chiorotoluene	ND	1.0	0.5	1.2 Dibromocniorometna		ND	1.0	0.5
1,2-Dibromo-3-chioropropane	ND	1.0	0.2	1,2-Dibromoetnane (E	SDB)	ND	1.0	0.5
1 3-Dichlorobenzene	ND	1.0	0.5	1,2-Dichlorobenzene		ND	1.0	0.5
Dichlorodifluoromethane	ND	1.0	0.5	1,4-Dichloroethane		ND	1.0	0.5
1 2-Dichloroethane (1 2-DCA)	ND	1.0	0.5	1 1-Dichloroethene		ND	1.0	0.5
cis-1 2-Dichloroethene	ND	1.0	0.5	trans-1.2-Dichloroethe	ene	ND	1.0	0.5
1.2-Dichloropropage	ND	1.0	0.5	1 3-Dichloropropane		ND	1.0	0.5
2.2-Dichloropropane	ND	1.0	0.5	1.1-Dichloropropene		ND	1.0	0.5
cis-1.3-Dichloropropene	ND	1.0	0.5	trans-1.3-Dichloropro	pene	ND	1.0	0.5
Diisopropyl ether (DIPE)	ND	1.0	0.5	Ethylbenzene		ND	1.0	0.5
Ethyl tert-butyl ether (ETBE)	ND	1.0	0.5	Freon 113		ND	1.0	10
Hexachlorobutadiene	ND	1.0	0.5	Hexachloroethane		ND	1.0	0.5
2-Hexanone	ND	1.0	0.5	Isopropylbenzene		ND	1.0	0.5
4-Isopropyl toluene	ND	1.0	0.5	Methyl-t-butyl ether (MTBE)	ND	1.0	0.5
Methylene chloride	ND	1.0	0.5	4-Methyl-2-pentanone	e (MIBK)	ND	1.0	0.5
Naphthalene	ND	1.0	0.5	n-Propyl benzene		ND	1.0	0.5
Styrene	ND	1.0	0.5	1,1,1,2-Tetrachloroeth	ane	ND	1.0	0.5
1,1,2,2-Tetrachloroethane	ND	1.0	0.5	Tetrachloroethene		12	1.0	0.5
Toluene	ND	1.0	0.5	1,2,3-Trichlorobenzen	ie	ND	1.0	0.5
1,2,4-Trichlorobenzene	ND	1.0	0.5	1,1,1-Trichloroethane		ND	1.0	0.5
1,1,2-Trichloroethane	ND	1.0	0.5	Trichloroethene		ND	1.0	0.5
Trichlorofluoromethane	ND	1.0	0.5	1,2,3-Trichloropropan	e	ND	1.0	0.5
1,2,4-Trimethylbenzene	ND	1.0	0.5	1,3,5-Trimethylbenzer	ne	ND	1.0	0.5
Vinyl Chloride	ND	1.0	0.5	Xylenes, Total		ND	1.0	0.5
	1	Surr	ogate R	ecoveries (%)				
%SS1:		112		%SS2:		10	6	
%SS3:		119						
Comments: b1								

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

"When Quality Counts"

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Soil			QC Matrix	k: Soil			BatchID: 60213 WorkOrder: 1108147					
EPA Method: SW8260B	Extra	ction: SW	5030B					5	Spiked Sam	ple ID:	1108146-0	04A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptance	e Criteria (%)	
/ maryto	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
tert-Amyl methyl ether (TAME)	ND	0.050	82.8	80.3	2.81	89.8	86.2	3.82	70 - 130	30	70 - 130	30
Benzene	ND	0.050	103	101	1.94	104	104	0	70 - 130	30	70 - 130	30
t-Butyl alcohol (TBA)	ND	0.25	103	102	0.606	122	104	16.2	70 - 130	30	70 - 130	30
Chlorobenzene	ND	0.050	99.2	96.4	2.85	105	101	4.23	70 - 130	30	70 - 130	30
1,2-Dibromoethane (EDB)	ND	0.050	94.9	91.8	3.35	102	95.4	6.39	70 - 130	30	70 - 130	30
1,2-Dichloroethane (1,2-DCA)	ND	0.050	105	102	3.10	109	107	1.77	70 - 130	30	70 - 130	30
1,1-Dichloroethene	ND	0.050	106	106	0	106	108	1.94	70 - 130	30	70 - 130	30
Diisopropyl ether (DIPE)	ND	0.050	121	119	1.58	123	123	0	70 - 130	30	70 - 130	30
Ethyl tert-butyl ether (ETBE)	ND	0.050	109	108	1.12	112	110	2.19	70 - 130	30	70 - 130	30
Methyl-t-butyl ether (MTBE)	ND	0.050	107	101	5.07	108	106	1.85	70 - 130	30	70 - 130	30
Toluene	ND	0.050	105	105	0	108	108	0	70 - 130	30	70 - 130	30
Trichloroethene	ND	0.050	91.8	89	3.00	94.8	92.8	2.17	70 - 130	30	70 - 130	30
%SS1:	96	0.12	93	92	0.750	88	93	5.76	70 - 130	30	70 - 130	30
%SS2:	108	0.12	107	111	3.34	106	109	2.29	70 - 130	30	70 - 130	30
%SS3:	108	0.012	98	101	2.58	93	96	2.95	70 - 130	30	70 - 130	30
All target compounds in the Method Bla NONE	nk of this extr	action bate	h were NE	less than	the method	l RL with	the follow	ing exception	s:			

BATCH 60213 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1108147-001A	08/04/11 10:00 AM	08/04/11	08/05/11 4:02 AM	1108147-006A	08/04/11 10:38 AM	08/04/11	08/05/11 9:42 PM
1108147-011A	08/04/11 11:00 AM	08/04/11	08/05/11 10:21 PM	1108147-016A	08/04/11 11:30 AM	08/04/11	08/05/11 10:59 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

DHS ELAP Certification 1644

A QA/QC Officer

"When Quality Counts"

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Water	QC Matrix: Water BatchID: 60204 WorkOrder:						Order: 11081	47				
EPA Method: SW8260B	Extrac	ction: SW	5030B					5	Spiked Sam	ple ID:	1108098-0	09A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptance	e Criteria (%)	
	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
tert-Amyl methyl ether (TAME)	ND	10	74.7	74.8	0.185	80.6	80.3	0.365	70 - 130	30	70 - 130	30
Benzene	ND	10	99.4	101	1.70	95.1	93.2	2.05	70 - 130	30	70 - 130	30
t-Butyl alcohol (TBA)	ND	50	96.2	98.4	2.17	87.5	94.3	7.47	70 - 130	30	70 - 130	30
Chlorobenzene	ND	10	104	106	1.67	97	94.7	2.40	70 - 130	30	70 - 130	30
1,2-Dibromoethane (EDB)	ND	10	101	103	1.62	94	94.9	0.890	70 - 130	30	70 - 130	30
1,2-Dichloroethane (1,2-DCA)	ND	10	100	106	5.53	95.4	95	0.381	70 - 130	30	70 - 130	30
1,1-Dichloroethene	1.0	10	72.8	74.8	2.43	84.4	81.8	3.05	70 - 130	30	70 - 130	30
Diisopropyl ether (DIPE)	ND	10	104	105	0.947	99.6	97.8	1.82	70 - 130	30	70 - 130	30
Ethyl tert-butyl ether (ETBE)	ND	10	99.7	101	1.82	91.3	90.2	1.23	70 - 130	30	70 - 130	30
Methyl-t-butyl ether (MTBE)	ND	10	107	110	2.30	94.3	95	0.773	70 - 130	30	70 - 130	30
Toluene	ND	10	98.2	101	2.56	95.5	93.4	2.30	70 - 130	30	70 - 130	30
Trichloroethene	1.4	10	91.8	91.9	0.175	97.2	94.4	2.87	70 - 130	30	70 - 130	30
%SS1:	112	25	109	111	1.54	99	100	0.918	70 - 130	30	70 - 130	30
%SS2:	104	25	105	104	1.24	103	103	0	70 - 130	30	70 - 130	30
%SS3:	114	2.5	115	111	2.97	97	99	1.98	70 - 130	30	70 - 130	30
All target compounds in the Method Bl NONE	ank of this extr	action bate	h were NE	D less than	the method	l RL with	the follow	ing exception	s:	•	-	

BATCH 60204 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1108147-021A	08/04/11 12:05 PM	08/06/11	08/06/11 2:39 AM	1108147-022A	08/04/11 12:10 PM	08/06/11	08/06/11 3:22 AM
1108147-023A	08/04/11 12:15 PM	08/06/11	08/06/11 4:02 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

"When Quality Counts"

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Water		QC Matrix: Water						BatchID: 60236 WorkOrder: 1108147				47
EPA Method: SW8260B	Extrac	tion: SW	5030B					S	Spiked San	ple ID:	1108148-0	01A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptance	e Criteria (%)	
	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
tert-Amyl methyl ether (TAME)	ND	10	88.2	87.6	0.685	81.4	80.9	0.608	70 - 130	30	70 - 130	30
Benzene	ND	10	114	114	0	97.6	95.1	2.66	70 - 130	30	70 - 130	30
t-Butyl alcohol (TBA)	ND	50	110	111	0.958	88.6	89.6	1.13	70 - 130	30	70 - 130	30
Chlorobenzene	ND	10	106	106	0	100	97.5	2.81	70 - 130	30	70 - 130	30
1,2-Dibromoethane (EDB)	ND	10	112	112	0	95.9	93.9	2.12	70 - 130	30	70 - 130	30
1,2-Dichloroethane (1,2-DCA)	ND	10	106	105	1.09	95.7	95.2	0.505	70 - 130	30	70 - 130	30
1,1-Dichloroethene	ND	10	97.5	97.1	0.424	87.1	85.1	2.39	70 - 130	30	70 - 130	30
Diisopropyl ether (DIPE)	ND	10	121	122	0.978	100	98.6	1.87	70 - 130	30	70 - 130	30
Ethyl tert-butyl ether (ETBE)	ND	10	115	115	0	92.4	90.7	1.89	70 - 130	30	70 - 130	30
Methyl-t-butyl ether (MTBE)	ND	10	123	124	0.882	94.8	93.4	1.52	70 - 130	30	70 - 130	30
Toluene	3.9	10	107	108	0.292	98.7	95	3.80	70 - 130	30	70 - 130	30
Trichloroethene	ND	10	114	113	0.532	101	98	3.28	70 - 130	30	70 - 130	30
%SS1:	99	25	105	104	0.661	99	101	2.15	70 - 130	30	70 - 130	30
%SS2:	106	25	98	98	0	103	103	0	70 - 130	30	70 - 130	30
%SS3:	107	2.5	117	116	0.808	96	97	1.08	70 - 130	30	70 - 130	30
All target compounds in the Method Blar NONE	nk of this extr	action bate	h were NE	less than	the method	l RL with	the follow	ing exception	s:			

BATCH 60236 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1108147-024A	08/04/11 12:20 PM	08/06/11	08/06/11 4:44 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.