LAW OFFICE OF DILLINGHAM & MURPHY, LLP

601 CALIFORNIA STREET

SUITE 1900

SAN FRANCISCO, CALIFORNIA 94108

TELEPHONE (415) 397-2700

FAX (415) 397-3300

www.dillinghammurphy.com

RECEIVED

By Alameda County Environmental Health at 2:22 pm, May 10, 2013

May 7, 2013

Alameda County Environmental Health Department Attention: Jerry Wickham 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577

Re: Byron Power Company, 4901 Bruns Rd., Byron CA

Dear Mr. Wickham:

Attached please find a report, entitled Subsurface Site Characterization Report, dated May 7, 2013, prepared for Byron Power Company by Quest GeoSystems. As a legal authorized representative of Byron Power, I declare under penalty of perjury that, on information and belief, the information and/or recommendations contained in the attached documents and/or reports are true and correct to the best of my knowledge.

Very truly yours,

William F. Murphy

Encl.

Project: G09212012-02

May 7, 2013

Mr. Jerry Wickham Alameda County Environmental Health Services Environmental Protection 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577

SITE: SLIC CASE RO0003079; GEOTRACKER GLOBAL ID T10000003401 BYRON POWER COMPANY 4901 BRUNS ROAD BYRON, CALIFORNIA 94514

RE: SUBSURFACE SITE CHARACTERIZATION REPORT

Dear Mr. Wickham,

Quest GeoSystems Management (Quest) has prepared the enclosed report to document the results of the Subsurface Site Characterization performed at the above referenced Site in Byron, California. The site activities summarized in the enclosed report were performed consistent with the work scope outlined in previously submitted *Workplan for Additional Site Investigation* dated October 30, 2012 and *Workplan Addenda*, dated January 23, 2013. The investigation was performed consistent with the generally accepted environmental consulting principles and practices that are within the limitations described in the enclosed report. If you have any questions regarding this report, please contact us at (925) 756-1210.

Sincerely,

Quest GeoSystems Management, Inc.

Eric-W. Garcia, CEG, CHG Principal Geologist PG# 7007, CEG# 2230, CHG# 765

Enclosure: Subsurface Site Characterization Report

cc: File

SUBSURFACE SITE CHARACTERIZATION REPORT

BYRON POWER COMPANY 4901 BRUNS ROAD BYRON, CALIFORNIA 94514

> Prepared for: Byron Power Partners, L.P. 14 Philips Parkway Montvale, NJ 07645

Prepared by: Quest GeoSystems Management, Inc. 11275 Sunrise Gold Circle, Suite R Rancho Cordova, California 95742-6561

May 7, 2013

QUEST GSM # G09212012-02

TABLE OF CONTENTS

Secti	ion	Page
1	INTRODUCTION	1
1.1 1.1.1 1.2 1.2 1.2.1 1.2.2 1.3 1.3.1 1.3.2 1.3.3 1.3.4	Site Description Site History	1 1 2 2 2 2 2 4 4 4 4 5
2	INVESTIGATION SUMMARY	6
2.1 2.1.1 2.1.2 2.1.3 2.1.4 2.1.5 2.2 2.2.1	FIELD INVESTIGATION Surface Impoundment and Scale Deposit Sampling Groundwater Monitoring Well Installations Groundwater Monitoring and Sampling Additional Soil Probe Operations Investigation Derived Wastes (IDW) ANALYTICAL TESTING PROGRAM Sample Analysis Protocols	
3	FINDINGS	
3.1 3.2.1 3.2.2 3.3 3.3.1 3.3.2	Subsurface Conditions Soil Sample Analytical Results	
4	EVALUATION	14
4.1 4.1.1 4.1.2 4.1.3	REGULATORY EVALUATION Sludge and Scale Evaluation Subsurface Soil Guideline Evaluation Groundwater Guideline Evaluation	
5	CONCLUSIONS	20
5.1	SLUDGE AND SCALE EVALUATION	

5.2 5.2.1

5.2.2

6

7

LIST OF ILLUSTRATIONS

TABLES

- Table 1 Summary of Groundwater Elevation Data
- Table 2 Summary of Sludge & Scale Sample Analytical Results, U.S. EPA Methods SW-846, 9040, 1010, 600/R-93-116, & ASTM D2216-92
- Table 3 Summary of Sludge & Scale Sample Analytical Results, U.S. EPA Method 6020
- Table 4 Summary of Sludge, Scale, & Soil Sample Analytical Results, U.S. EPA Methods 8015B, 8260B, and 8270B
- Table 5 Summary of Groundwater Sample Analytical Results, Field-Based Measurements
- Table 6 Summary of Groundwater Sample Analytical Results, U.S. EPA Methods 8015B, 8260B, & 8270B

FIGURES

- Figure 1 Location Map
- Figure 2 Site Plan Depicting Sludge and Sale Deposit Sample Locations
- Figure 3 Site Plan Depicting Groundwater Monitoring Well Locations

Figure 4 – Site Plan Depicting Soil Sample Locations

Figure 5 – Groundwater Elevation Contour Map, December 28, 2012

APPENDICES

Appendix A - Permits and GeoTracker Well Survey Data

Appendix B – Boring Logs

Appendix C - Field Data Sheets

Appendix D – Certified Analytical Reports and Chain-of-Custody Documentation

LIMITATIONS

Opinions and recommendations contained in this report apply to conditions existing when services were performed and are intended only for the client, purposes, locations, time frames, and project parameters indicated. We are not responsible for the impacts of any changes in environmental standards, practices, or regulations subsequent to performance of services. We do not warrant the accuracy of information supplied by others, nor the use of segregated portions of this report.

The completed work summarized herein is intended to be a part of an ongoing interactive process. Additional work may be required to more fully assess the extent of petroleum and groundwater. The migration in soil purpose of a hydrocarbon (PHC) geological/hydrogeologic study is to reasonably characterize existing site conditions based on the geology/hydrogeology of the area. In performing such a study, it is understood that a balance must be struck between a reasonable inquiry into the site conditions and an exhaustive analysis of each conceivable environmental characteristic. Geologic/hydrogeologic conditions may exist at the site that cannot be identified solely by visual observation. Where subsurface exploratory work is performed, our professional opinions are based in part on interpretation of data from discrete sampling locations that may not represent actual conditions at unsampled locations. Therefore, no investigation is thorough enough to describe all geologic/hydrogeologic conditions of interest at a given site. Conditions not identified during the study should not be construed as a guarantee of the absence of such conditions at the site, but rather a limitation of the scope of services performed within the scope, limitations, and cost of the work authorized by the client.

This work plan has been prepared by Quest GeoSystems Management for the exclusive use of Byron Power Partners, L.P. (Byron Power) as it pertains to the Site located at 4901 Bruns Road, Byron, California. Our professional services will be performed using the degree of care and skill ordinarily exercised under similar circumstances by other geologists and engineers practicing in this field. No warranty, expressed or implied, is made as to professional advice in this report. Any reliance on this report by a third party is at party's sole risk.

Eric W. Garcia, CEG, CHG Principal Geologist

May 7, 2013

PG #7007; CEG #2230; CHG #765 expires 10/31/2013

Quest GeoSystems Management Project # G09212012-02

0

QUEST GEOSYSTEMS MANAGEMENT, INC. 11275 Sunrise Gold Circle - Suite R, Rancho Cordova, California 95742-6561 OFFICE (925) 756-1210 · FAX (925) 756-1227 · E-mail: info@questgsm.com · Internet: www.questgsm.com/

1 INTRODUCTION

This report was prepared by Quest GeoSystems Management, Inc. (Quest) of Rancho Cordova, California on behalf of Byron Power Partners, L.P. (Byron Power). This report summarizes site assessment activities conducted at the Site located at 4901 Bruns Road, Byron, Alameda County, California (Figure 1). The workscope presented below was performed consistent with the previously submitted *Workplan for Additional Site Investigation* dated October 30, 2012; *Workplan Addenda*, dated January 23, 2013; with the requirements of the Alameda County Environmental Health (ACEH), as indicated in their letter dated May 1, 2012; and subsequent workplan approvals dated November 20, 2012, and January 24, 2013. The scope of work completed was intended to establish the presence of soil and groundwater impacts related to petroleum hydrocarbons (PHC's) other Constituents of Concern (COC's) at the Site. Monitoring well installations at the Site were completed under an approved drilling permit (#2012134) with the Zone 7 Water District (Appendix A). Soil probe operations at the Site were completed under an approved soil boring permit (#2013007) with the Zone 7 Water District (Appendix A).

1.1 SCOPE OF WORK

The objective of the site assessment was to collect representative samples of the soil and groundwater samples in order to establish the vertical and lateral impacts of subsurface petroleum hydrocarbons (PHC's) and other constituents of concern (COC's) beneath the Site. An additional objective of the site assessment was to collect representative samples of the onsite surface impoundment sediments and scale stockpiles for waste identification/classification. The following work scope was completed in order to achieve the above-referenced objectives.

1.1.1 Surface Impoundment Sediment and Scale Stockpile Assessment

As part of the site characterization, Quest conducted the following activities:

- The collection of representative sludge and scale samples from within the onsite surface impoundment and scale deposit stockpile, respectively;
- The samples were delivered under Chain-of-Custody documentation to a State-Certified analytical laboratory for chemical analysis; and
- Creation of this report, summarizing the results of the assessment.

1.1.2 Site Assessment

As part of the subsurface site characterization of the Site, Quest conducted the following activities:

- □ The installation of four (4) groundwater monitoring wells by hollow-stem auger;
- □ The collection of soil samples from within the well boreholes;
- □ The completion of fourteen (14) direct push locations by truck-mounted Geoprobe®;
- □ The collection of soil samples from within the soil boreholes;
- Conduct one (1) groundwater monitoring and sampling event;
- □ The collection of groundwater samples from the onsite monitoring wells;

- Select soil and groundwater samples were delivered under Chain-of-Custody documentation to a State-Certified analytical laboratory for chemical analysis; and
- Creation of this report, summarizing the results of the site assessment and to present the findings of the investigation.

1.2 BACKGROUND

A description of the Site, the geologic and hydrologic conditions, and the project history are summarized in the following subsections.

1.2.1 Site Description

The Site was operated by Byron Power Partners, L.P. dba Byron Power Company (Byron Power), and is located at 4901 Bruns Road, Alameda County, California and is at an approximate elevation of 104 feet above mean sea level (MSL). Figure 1 is a site location map depicting the regional location of the site.

The rectangular Site is situated in the middle of a larger parcel (County Assessor's Parcel Number 99B-7050-001-10) owned by Mr. Steve Shin-Der and Mrs. Puang J. Lee and encompasses an area of approximately 1.43 acres. The remainder of the property is approximately 158 acres consisting of undeveloped land used for cattle grazing.

1.2.2 Site History

The facility was an electric and thermal energy cogeneration facility, which was in operation from 1991 through 2008. Byron Power operated the facility from 1995 through its closure in 2008.

In May through July of 2008 Quest conducted a Phase I Environmental Assessment of the Site (*Phase I Environmental Assessment Report, APN: 99B-7050-001-10, 4901 Bruns Road, Alameda County, California*). On May 20, 2008, Quest personnel completed the site reconnaissance of the facility. As part of the field reconnaissance, Quest reviewed the facilities Hazardous Materials Business Plan (HMBP), which contained chemical descriptions of hazardous materials maintained at the facility. The following Hazardous Materials Inventory – Chemical Description pages were reviewed and were reported to have been located onsite:

- □ Ethylene Glycol antifreeze;
- Petroleum Lubrication Oil waste oil;
- Mobil Pegasos 805 motor oil;
- Brominating Tablets;
- Mineral Spirits;
- Meras 2324 corrosion inhibiter (Polymaleic acid, Hydroxyethylidene diphosphonic acid);
- Chemisis 6190 corrosion inhibitor (polyethylene, sodium nitrite);
- Chemisis 4965 corrosion inhibitor (unknown); and
- □ Chemisis 5520 defoamer (unknown).
- □ Watercare 2381 defoamer (unknown);
- Watercare 2323 water treatment (potassium hydroxide);

In the course of conducting a Phase I Environmental Site Assessment of the Site, Quest personnel identified several areas of surface staining, which appeared to be impacted with petroleum hydrocarbons, and areas of wet soil or standing water.

Quest was retained by Byron Power to conduct a limited subsurface soil investigation in relation to the observations/recommendations identified in Section 6.3.8 of Quest's report titled *Phase I Environmental Assessment Report, APN: 99B-7050-001-10, 4901 Bruns Road, Alameda County, California* (Phase I), dated September 30, 2008.

On July 8, 2011, a Quest representative arrived at the Site to collect representative soil samples from areas of soil staining as identified in the Phase I. Upon arriving at the Site, Quest personnel observed additional areas of stained soils not originally noted in the Phase I report. Based on the field observations, additional soil sampling locations were completed. The samples were collected by hand augering a hole to the sample depths (12 and 24 inches below ground surface [bgs]). A total of six (6) sampling locations (S.01 through S.06) were selected and soil samples were collected at 12 and 24 inches bgs at locations S.01 through S.05, and at 12 inches bgs at location S.06. Initial scraping away of the gravel top cover at the Site revealed soil that appeared to be impacted with PHC's. Notable "green" stained coarse-grained (coarse sand) soil appeared prominent from ground surface to approximately 6 inched bgs. This soil was underlain by a moderately plastic fine-grained soil (silt/clay). Visual impacts to this finegrained soil appeared to extend to at least 1 foot bgs. A "brown" fine-grained (silt/clay) soil was noted toward the base of each borehole. A total of eleven (11) soil samples were collected and analyzed for Total Petroleum Hydrocarbons as gasoline (TPH-G), diesel (TPH-D), and motor oil (TPH-MO) by US EPA Method 8015B, Petroleum Oil & Grease (POG) by US EPA Method SM5520E/F, Volatile Organic Compounds (VOC's) by US EPA Method 8260B; Semi-Volatile Organic Compounds (SVOC's) by US EPA Method 8270C, PCB's by US EPA Method 8082, and LUFT 5 Metals by US EPA Method SW6010B. Soil samples collected for chemical characterization were transported to McCampbell Analytical, Inc., a State-certified analytical laboratory (ELAP #1644) of Pittsburg, California.

July 29, 2011 Quest prepared the report *Soil Sampling and Analysis Report* for Byron Power summarizing the results of the limited soil investigation. Based on a review of the analytical data, PHC impacts to soil appeared limited to within 2 feet of the surface in the areas of surficial staining. Excavation and off-site disposal of the upper 2 feet of this soil to an appropriate landfill was recommended as the most feasible remedial method at the Site. Following excavation of the soils it was proposed that an appropriate number of confirmation soil samples should be collected and chemically analyzed to confirm the removal of impacted soils.

On February 23, 2012, ACEH requested the submission of a workplan to evaluate potential soil and groundwater impacts at the Site.

On April 10, 2012, Quest submitted a report titled *Site Assessment Work Plan*, which proposed a subsurface investigation to assess the vertical and lateral extent of soil impacts at the site. The Workplan was subsequently approved by the ACEH in a letter dated May 1, 2012.

On July 2, 2102, Quest conducted subsurface investigation at the Site. The investigation consisted of the completion of six (6) direct push soil borings (SP.01 through SP.06) from which sixteen (16) soil samples and two (2) groundwater samples (SP.01W and SP.03W) were collected and analyzed for key chemical constituents of concern. Soil samples collected from soil probes SP.01 through SP.05 were found to exceed the environmental screening level (ESL) for Phenol for soil above groundwater, which is a current or potential source of drinking water for residential or commercial/industrial land use. However, no soil samples were found to exceed the ESL for groundwater that is not considered or is a potential source of drinking water for residential land use. Groundwater samples from soil probe SP.01 were found to exceed the ESL's for TPH-D, TPHMO, and TBA for groundwater, which is a current or potential source of drinking water was encountered during a subsequent resample attempt adjacent to soil probe SP.01 (SP.07) completed on July 2, 2102. On August 6, 2012, Quest submitted a Report summarizing the findings of the investigation at the Site and made recommendations for interim remedial measures.

On September 4, 2012, ACEH responded to the Quest's report submittal July 6, 2012. ACEH requested the submission of a workplan to further evaluate potential soil and groundwater impacts at the Site, and sample sediment and scale noted in and adjacent to the onsite surface impoundment.

On October 26, 2012, Quest submitted a report titled *Workplan For Additional Site Assessment Work Plan*, which proposed to install four (4) groundwater monitoring wells, collect representative soil and groundwater samples from the wells, and collect soil/sludge and scale samples at the site. The workplan was subsequently approved by the ACEH in a letter dated November 20, 2012.

On January 23, 2013, Quest submitted a report titled *Workplan Addenda*, which proposed to complete fourteen (14) soil probes, and collect representative soil samples from the beneath the building foundation at the site. The workplan was subsequently approved by the ACEH in an email dated January 24, 2013.

1.3 GEOLOGIC AND HYDROLOGIC CHARACTERISTICS

1.3.1 Regional and Local Physiographic Setting

The Site lies within the Coast Ranges Geomorphic Province, which extends approximately 550 miles in a northwest to southeast direction along the coast of California. The Coast Ranges comprises a series of northwest to southeast-trending ridges and narrow valleys, whose orientations are controlled by the fault-dominated geologic structure of the region.

1.3.2 Surface Topographic and Hydrology

Regionally, the general topographic slope of the area is to the north-northeast, ranging from approximately 261 feet above msl in the south to approximately 61 feet above msl to the north of the Site. In the vicinity of the Site, the topography appears relatively level with an elevation of approximately 104 feet above msl (USGS, 1978; EDR, 2008(a)). Surface topography in the

vicinity of the Site slopes moderately downward to the north and increases gently to the west. Nearby surface waters include Bethany Reservoir located approximately 0.90 miles southwest of the Site, the California Aqueduct located approximately 1.20 miles west of the Site and the Delta Mendota Canal located approximately 0.70 miles east of the Site. The Site is not identified as being located within the 100-year zone or 500-year zone, as defined by the Federal Emergency Management Agency (FEMA).

1.3.3 Geologic Review

The Site is underlain by soil referred to as the San Ysidro Series loam. The local vicinity surrounding the site is underlain by Altamont Series clay to the south and east, Linne Series clay loam to the northwest and southwest, and Rincon Series clay loam to the southwest, and San Ysidro loam to the north. The State Soil Geogrpahic Database (STATSGO) describes San Ysidro Series loam as moderately well drained soil with high corrosion potential. According to STATSGO database, the hydrologic group is categorized as Class D which are described as clayey, and having a high water or shallow to an impervious layer. In profile, the soil layers include loam from the ground surface to 16 inches below ground surface (bgs). The subsoil is clay from 16 to 33 inches bgs and silty clay loam from 33 inches to 59 inches. Permeability of the subsoil is very slow.

1.3.4 Hydrogeologic Review

The regional groundwater gradient is unknown. Information on the groundwater in the immediate vicinity of the Site is also not readily available. Review of State records (GeoTracker) did not indicate any groundwater monitoring wells near the Site, which could be used to determine groundwater elevation. However, Quest reviewed boring logs dated May 23, 2006 for the Chevron Holey-Byron Road facility located approximately 2.7 miles north of the Site. According to the boring logs, depth to groundwater ranged from 2 ft to 5 ft bgs.

2 INVESTIGATION SUMMARY

The following sections summarize activities conducted at the Site. The work scope included a field investigation, analytical program, and the preparation of this report of findings. The following sections summarize the investigation completed at the Site.

2.1 FIELD INVESTIGATION

The field investigation consisted of four (4) phases of field investigation, 1) Surface Impoundment and Scale Deposit Sampling, 2) Groundwater Monitoring Well Installations, 3) Groundwater Monitoring and Sampling, and 4) Additional Soil Probe Operations.

2.1.1 Surface Impoundment and Scale Deposit Sampling

On December 7, 2012, a Quest geologist collected discrete sludge and scale deposit samples at the Site (Figure 2). The two (2) discrete sludge samples (SI.01 & SI.02) were collected by driving a clean 6-inch stainless-steel sleeve into the sediment to retain a discrete sample from each sample location. One (1) scale sample (SCALE) was collected by hand digging a hole in the stockpile surface to the sample depth (6 inches below the surface). Then a clean 6-inch stainless-steel tube was driven into the stockpile to retain a discrete sample.

Once each sample was collected, each sleeve was sealed with tight-fitting plastic caps, labeled, placed in a chilled ice chest, and preserved for transport under chain-of-custody documentation to McCampbell Analytical, Inc. (MAI), a State-certified analytical laboratory of Pittsburg, California for chemical analysis. Section 2.2 summarizes the chemical analysis completed on the samples collected.

2.1.2 Groundwater Monitoring Well Installations

On December 18, 19, and 21 2012, a Quest geologist supervised Woodward Drilling (Woodward), a State-licensed C-57 Well Driller (#695970), of Rio Vista, California, in the installation of four (4) groundwater monitoring wells using an HK-81 and Mobile B-53 hollow-stem auger rigs (Figure 3). Soil borings for monitoring wells MW.01 through MW.04 were advanced to 27.0, 27.5, 26.0, and 31.0 feet bgs, respectively. Quest's geologist examined soil cuttings and discrete soil samples produced during drilling operations to prepare lithologic log of monitoring wells MW.01 through MW.04 (Appendix B). The boring logs also include well construction details for monitoring wells MW.01 through MW.04.

Soil Sampling Activities

Soil samples collected from each of the soil borings were field screened, observing the soil for lithologic data, odor, and unusual stains. A headspace analysis was conducted using a photoionization detector (PID) to detect the presence of volatile organic compounds (VOC's). Soil samples collected from monitoring wells MW.01, MW.03, and MW.04 were collected at approximately 4, and 8 feet bgs. The soil sample collected from monitoring well MW.02 was collected at approximately 8 feet bgs. A total of seven (7) soil samples were collected from monitoring wells MW.04. The soil samples were then appropriately labeled, placed in an ice chest, and preserved for transport under chain-of-custody documentation to MAI for chemical analysis. Section 2.2 summarizes the chemical analysis completed on the samples.

Monitoring Well Development

On December 21, 2012, Quest personnel completed well development of monitoring wells MW.01 through MW.04. Well development consisted of using a surge block to surge/flush the well screens. Subsequent to the use of the surge block a peristaltic pump with clean, dedicated poly tubing was used to evacuate the sediment laden groundwater from the well until the purged water was clear of sediments and water quality parameters stabilized. The purged water was appropriately containerized onsite consistent with Section 2.1.5

Groundwater Monitoring Well Elevation Survey

On December 31, 2012, Benchmark Consultants (Benchmark), a State-licensed Land Surveyor of Antioch, California, conducted an elevation survey of the groundwater monitoring wells and prominent site features. Benchmark subsequently provided requisite GEO X and GEO YZ data files for submission into the State of California GeoTracker database. Copies of the data submissions are included in Appendix A.

2.1.3 Groundwater Monitoring and Sampling

On December 28, 2012, the depth to groundwater and the total depth of each well were measured using an electronic well sounder. The well sounder was cleaned with a non-phosphatic cleaning solution and water, and then was double rinsed with tap water prior to gauging and purging each well. A summary of these measurements is presented in Table 1.

On December 28, 2012, subsequent to groundwater elevation measurements, monitoring wells MW.01 through MW.04 were purged using dedicated ¼" polyethylene tubing and a peristaltic pump. During purging, the temperature, pH, specific conductance (EC), Dissolved Oxygen (DO), and Oxygen Reduction Potential (ORP) were measured and recorded. Copies of the field data sheets are included in Appendix C.

The groundwater samples collected were then decanted into sampling containers appropriate to each analytical method being employed. The sample containers were then appropriately labeled, placed in an ice chest, and preserved for transport under chain-of-custody documentation to MAI for chemical analysis. Section 2.2 summarizes the chemical analysis completed on the samples collected.

2.1.4 Additional Soil Probe Operations

On January 30 and 31, 2013, a Quest geologist supervised Woodward in pushing soil probes SP-8 through SP-21, using a truck-mounted AMS direct-push dual-tube probe (Figure 4). Soil probe locations SP-8 through SP-21 were advanced to between 12 and 16 feet bgs. Quest's geologist examined soil cuttings and discrete soil samples produced during drilling operations to prepare lithologic logs of soil probes SP-8 through SP-21 (Appendix B). Groundwater was not encountered during this portion of the field operations at the Site.

Soil Sampling Activities

Soil samples collected from each of the soil probes were field screened, observing the soil for lithologic data, odor, and unusual stains. A headspace analysis was conducted using a PID to detect the presence of VOC's. Soil probes SP-8 through SP-21 were continuously cored to each location's termination depth. Soil samples collected from soil probes SP-8 through SP-21 were collected at approximately 2 feet bgs. Additional soil samples were collected from soil probes SP-12, SP-15, and SP-19 at approximately 1, 6, and 1 foot bgs, respectively. A total of seventeen (17) soil samples were collected from soil probes SP-8 through SP-21. The soil samples from each soil probe were then appropriately labeled, placed in an ice chest, and preserved for transport under chain-of-custody documentation to MAI for chemical analysis. Section 2.2 summarizes the chemical analysis completed on the samples collected.

Soil Probe Backfill

Upon completion of the soil probe, the tool strings were removed from the boreholes and the bore hole grouted by tremmie pipe, from the base of the borehole to the surface. The grout consisted of Portland cement.

2.1.5 Investigation Derived Wastes (IDW)

Investigation derived wastes (IDW) were generated during the Site investigation activities. Soil spoils generated at the Site were containerized onsite in DOT-approved 55-gallon drums. Equipment decontamination rinseate, well development and sampling purgewater were containerized onsite in DOT-approved 55-gallon drums. The drums were appropriately labeled and segregated to a secure location at the Site. The drums will be profiled using the Site analytical data and disposed/recycled at an appropriate facility.

2.2 ANALYTICAL TESTING PROGRAM

Soil and groundwater samples were collected and preserved in the field for transport to an analytical laboratory. The sample containers were labeled, stored at a temperature of less than 4 degrees centigrade (<4°C), and transported along with appropriate chain-of-custody documentation to MAI for chemical analysis. Sludge and scale sample analytical results are included in Tables 2, 3, and 4 and on the certified analytical reports in Appendix D. Soil sample analytical results are included in Tables 2 are included in Table 4 and on the certified analytical reports in Appendix D. Groundwater sample analytical results are included in Tables 5 and 6, and on the certified analytical reports in Appendix D.

2.2.1 Sample Analysis Protocols

The surface impoundment sludge samples were analyzed for:

- Total Petroleum Hydrocarbons as Diesel (TPH-D), and as Motor Oil (TPH-MO), and as Gasoline (TPH-G) using U.S. EPA Method 8015M;
- □ VOC's using U.S. EPA Method 8260;
- Semi-Volatile Organic Compounds (SVOC's) using U.S. EPA Method 8270;
- CAM-17 Metals using US EPA Method SW6020; and
- Percent Moisture using ASTM Method D2216-92.

The stockpiled scale deposit samples were analyzed for:

- **D** TPH-D, TPH-MO, TPH-G using U.S. EPA Method 8015M;
- □ VOC's using U.S. EPA Method 8260;
- SVOC's using U.S. EPA Method 8270;
- □ CAM-17 Metals using US EPA Method SW6020;
- Reactivity, Corrosivity, and Ignitability (RCI) using US EPA Methods SW-846, 9040, and 1010; and
- □ Asbestos using US EPA Method 600/R-93-116.

The soil samples collected from soil probes SP-8 through SP-21 were analyzed for:

- **D** TPH-D, TPH-MO, TPH-G using U.S. EPA Method 8015M;
- □ VOC's using U.S. EPA Method 8260; and
- SVOC's using U.S. EPA Method 8270.

The groundwater samples collected from monitoring wells MW.01 through MW.04 were analyzed for:

- **TPH-D**, TPH-MO, TPH-G using U.S. EPA Method 8015M;
- UOC's using U.S. EPA Method 8260;
- SVOC's using U.S. EPA Method 8270;
- Dissolved Oxygen (DO) by field meter;
- Oxygen Reduction Potential (ORP) by field meter;
- □ Temperature by field meter;
- □ Electrical Conductivity (EC) by field meter; and
- □ pH by field meter.

3 FINDINGS

3.1 SLUDGE AND SCALE SAMPLES

A total of two (2) sludge (SI.01 & SI.02) and one (1) scale stockpile (SCALE) sample were collected from the surface impoundment and scale deposit stockpile, and analyzed for key COC's. The analytical results of the samples submitted are summarized in Tables 2, 3, and 4, and on certified analytical reports in Appendix D. The following is a summary of COC's detected in the analyzed samples:

- TPH-G was detected in samples SI.01, SI.02, and SCALE at concentrations of 1.8 mg/Kg, 11 mg/Kg, and 0.26* mg/Kg, respectively (*flagged by laboratory as detected below quantitation limits);
- □ TPH-D was detected in samples SI.01, SI.02, and SCALE at concentrations of 72 mg/Kg, 430 mg/Kg, and 3.6 mg/Kg, respectively;
- □ TPH-MO was detected in samples SI.01, SI.02, and SCALE at concentrations of 160 mg/Kg, 660 mg/Kg, and 12 mg/Kg, respectively;
- Acetone was detected in sample SI.02 at a concentration of 0.15 mg/Kg;
- Methyl Ethyl Ketone (MEK) was detected in samples SI.01, and SI.02 at concentrations of 0.0076* mg/Kg, and 0.012* mg/Kg, respectively (*flagged by laboratory as detected below quantitation limits);
- Carbon Disulfide was detected in samples SI.01, and SI.02 at concentrations of 0.016 mg/Kg, and 0.019 mg/Kg, respectively;
- DIPE was detected in sample SI.02 at a concentration of 0.0028 mg/Kg;
- Ethyl-Benzene was detected in sample SI.02 at a concentration of 0.043 mg/Kg;
- □ Isopropyl Benzene was detected in sample SI.02 at a concentration of 0.011 mg/Kg;
- 4-Isopropyl Toluene was detected in sample SI.02 at a concentration of 0.0072* mg/Kg (*flagged by laboratory as detected below quantitation limits);
- Methylene Chloride was detected in sample SI.01 at a concentration of 0.0044* mg/Kg (*flagged by laboratory as detected below quantitation limits);
- Naphthalene was detected in samples SI.01, and SI.02 at concentrations of 0.0023* mg/Kg, and 0.16 mg/Kg, respectively (*flagged by laboratory as detected below quantitation limits);
- Toluene was detected in samples SI.01, and SI.02 at concentrations of 0.0058 mg/Kg, and 0.0059* mg/Kg, respectively (*flagged by laboratory as detected below quantitation limits);
- 1,2,4-Trimethyl-Benzene was detected in samples SI.01, and SI.02 at concentrations of 0.0035* mg/Kg, and 0.18 mg/Kg, respectively (*flagged by laboratory as detected below quantitation limits);
- 1,3,5-Trimethyl-Benzene was detected in sample SI.02 at a concentration of 0.089 mg/Kg;
- □ Total Xylenes was detected in sample SI.02 at a concentration of 0.48 mg/Kg;

- Antimony was detected in samples SI.01, SI.02, and SCALE at concentrations of 2.5 mg/Kg, 1.5 mg/Kg, and 1.2 mg/Kg, respectively;
- □ Arsenic was detected in samples SI.01, SI.02, and SCALE at concentrations of 1.2 mg/Kg, 1.8 mg/Kg, and 0.97 mg/Kg, respectively;
- □ Barium was detected in samples SI.01, SI.02, and SCALE at concentrations of 65 mg/Kg, 110 mg/Kg, and 150 mg/Kg, respectively;
- Cadmium was detected in samples SI.01, and SI.02 at concentrations of 0.24 mg/Kg, 0.21 mg/Kg, and 0.26 mg/Kg, respectively;
- Chromium was detected in samples SI.01, SI.02, and SCALE at concentrations of 5.6 mg/Kg, 8.5 mg/Kg, and 3.5 mg/Kg, respectively;
- □ Cobalt was detected in samples SI.01, SI.02, and SCALE at concentrations of 0.67 mg/Kg, 0.90 mg/Kg, and 0.83 mg/Kg, respectively;
- □ Copper was detected in samples SI.01, SI.02, and SCALE at concentrations of 58 mg/Kg, 44 mg/Kg, and 65 mg/Kg, respectively;
- ❑ Lead was detected in samples SI.01, SI.02, and SCALE at concentrations of 19 mg/Kg, 31 mg/Kg, and 21 mg/Kg, respectively;
- Mercury was detected in samples SI.01, SI.02, and SCALE at concentrations of 0.031 mg/Kg, 0.040 mg/Kg, and 0.036 mg/Kg, respectively;
- Molybdenum was detected in samples SI.01, SI.02, and SCALE at concentrations of 140 mg/Kg, 87 mg/Kg, and 6.6 mg/Kg, respectively;
- □ Nickel was detected in samples SI.01, SI.02, and SCALE at concentrations of 2.6 mg/Kg, 2.5 mg/Kg, and 3.0 mg/Kg, respectively;
- Selenium was detected in sample SI.01 at a concentrations of 0.23 mg/Kg;
- Vanadium was detected in samples SI.01, SI.02, and SCALE at concentrations of 2.0 mg/Kg, 1.8 mg/Kg, and 0.79 mg/Kg, respectively;
- □ Zinc was detected in samples SI.01, SI.02, and SCALE at concentrations of 180 mg/Kg, and 390 mg/Kg, and 190 mg/Kg, respectively; and
- □ No other key COC's were identified at or above their respective detection limit.

3.2 SOIL CONDITIONS

3.2.1 Subsurface Conditions

The subsurface conditions of the Site consisted primarily of sandy silts, sandy clays, silty sands, well-graded gravel with sand, gravels, volcanic ash, and welded tuff. Copies of the soil boring logs can be found in Appendix A.

3.2.2 Soil Sample Analytical Results

Seventeen (17) soil samples were collected from soil probes SP-8 through SP-21 and subsequently analyzed for key COC's. The analytical results of the soil samples submitted are summarized in Table 4, and on certified analytical reports in Appendix D. The following is a summary of COC's detected in soil samples:

TPH-D was detected in twenty-one (21) soil samples at concentrations ranging from 1.0 mg/Kg (SP-16-2) to 140 mg/Kg (SP-08-2); and

- TPH-MO was detected in thirteen (13) soil samples at concentrations ranging from 6.0 mg/Kg (SP-13-2) to 2,300 mg/Kg (SP-19-1);
- ❑ Acetone was detected in two (2) soil samples at concentrations ranging from 0.079 mg/Kg (SP-17-2) to 0.094 mg/Kg (SP-19-1); and
- □ No other key COC's were identified at or above their respective detection limit.
- 3.3 GROUNDWATER CONDITIONS

3.3.1 Hydrogeology

On December 28, 2012, the depth to groundwater was measured in groundwater monitoring wells MW.01 through MW.04. Groundwater elevation beneath the site ranged from 86.47 feet to 89.33 feet AMSL, with an average elevation of 87.82 feet AMSL. Groundwater elevation data are summarized in Table 1.

Groundwater flow beneath the Site appears to be northeast (N65°E) at an approximate groundwater gradient of 0.0238. Copies of the field data sheets are included in Appendix C, and groundwater elevation contours and the direction of groundwater flow are shown on Figure 5.

3.3.2 Groundwater Sample Analytical Results

Groundwater samples collected from groundwater monitoring wells MW.01 through MW.04 were analyzed for TPH-G, TPH-D, TPH-MO, VOC's, and SVOC's. Groundwater sample analytical results are included in Tables 5 and 6, on the field collection data sheets in Appendix C, and on the certified analytical reports in Appendix D. The following is a summary of key hydrocarbon compounds detected in groundwater samples:

- **TPH-G** was detected in groundwater sample MW.03 at a concentration of 51 μ g/L;
- □ TPH-D was detected in groundwater samples MW.01 through MW.04 at concentrations of 27* µg/L, 41* µg/L, 120 µg/L, and 56 µg/L, respectively (*flagged by laboratory as detected below quantitation limits);
- Benzene was detected in groundwater sample MW.03 at a concentration of 0.85 μg/L;
- Isopropyl Benzene was detected in groundwater sample MW.03 at a concentration of 6.8 µg/L;
- \square MIBK was detected in groundwater sample MW.03 at a concentration of 0.65 µg/L;
- Naphthalene (8260) was detected in groundwater sample MW.03 at a concentration of 1.4 µg/L;
- □ Total Xylenes was detected in groundwater sample MW.03 at a concentration of 0.72 µg/L;
- □ Benzoic Acid was detected in groundwater samples MW.01 and MW.04 at concentrations of 5.9 µg/L, and 6.3 µg/L, respectively;
- Naphthalene (8270) was detected in groundwater sample MW.03 at a concentration of 1.4 μg/L;
- □ pH was analyzed and found to range from 6.53 (MW.03) to 7.83 (MW.01);

- □ Electrical conductivity (EC) was analyzed and found to range from 3,301 µS/cm (MW.01) to 5,780 µS/cm (MW.02); and
- □ No other key COC's were identified at or above their respective detection limit.

4 EVALUATION

Based on the review of the subsurface data, hydrogeologic data, and analytical results of this investigation, petroleum hydrocarbon impacted soil and surficial water was identified at the Site. The following sections evaluate the collected data, and compare the findings with current State and Federal guidelines for subsurface soils and groundwater.

4.1 REGULATORY EVALUATION

Hazardous Waste Designation

In California hazardous wastes are regulated by California Health and Safety Code (HSC), Division 20, Chapter 6.5, Hazardous Waste Control Law, and California Code of Regulations (CCR), Division 4.5, Title 22 CCR. In California, the classification of wastes and the establishment of cleanup levels for sites which have been contaminated with toxic chemicals are performed by two separate State agencies with separate regulatory authority. The State Water Resources Control Board/Regional Water Quality Control Boards classify wastes according to the risk of impairment to water quality. The DTSC classifies wastes based on a direct threat of these wastes or sites to public health.

California Regional Water Quality Control Board, Central Valley Region – Basin Plan

The Porter-Cologne Water Quality Control Act (Division 7 of the California Water Code) requires the preparation and adoption of water quality control plans (basin plans) [California Water Code, Section 13240] by the State's nine Regional Water Quality Control Boards for watersheds within their regions. According to Section 13050 of the California Water Code, basin plans consist of a designation or establishment for the waters within a specified area of beneficial uses to be protected, water quality objectives (WQO's) to protect those uses, and a program of implementation needed for achieving the objectives. The Central Valley Regional Water Quality Control Board (CVRWQCB) has established basin plan WQO's (CVRWQCB, 1998) for ground waters and states that they shall not contain chemical constituents in concentrations that adversely affect beneficial uses. At a minimum, ground waters designated for use as domestic or municipal supply (MUN) shall not contain concentrations of chemical constituents in excess of the maximum contaminant levels (MCLs) specified in the following provisions of Title 22 of the California Code of Regulations. MCL's are subdivided into Primary and Secondary MCL's which address human health, taste, odor, and appearance of drinking water. Primary MCL's, which address human health, are regulated under Title 22 CCR §64431-§64444. Secondary MCL's, which address the taste, odor, or appearance of drinking water, and are regulated under Title 22 CCR §64449.

California Regional Water Quality Control Board, San Francisco Bay Region - ESL's

In May 2008 the staff of the San Francisco Bay Regional Water Quality Control Board (SFRWQCB) prepared a technical document entitled Screening For Environmental Concerns at Sites With Contaminated Soil and Groundwater (Interim Final – November 2007) [SFRWQCB, 2008]. This document establishes Environmental Screening Levels (ESL's) for chemicals commonly found in impacted soil and groundwater. The intent of the document is to help

expedite the preparation of environmental risk assessments at sites where impacted soil and groundwater have been identified as an alternative to preparing a formal risk assessment. In this process, soil and groundwater data collected at a site can be directly compared to the ESL's and the need for additional work evaluated. The SFRWQCB (SFRWQCB, 2008) issued tabulated ESL data for constituents of concern, which were subdivided into tables. In particular, the tables were organized to assess Land Use, Depth of Impacted Soil, and Groundwater Utility.

4.1.1 Sludge and Scale Evaluation

Analytical results indicated the presence of PHC's in samples collected during this investigation and submitted for chemical analysis. The following summarize analytical results as they relate to regulatory requirements/guidelines:

Hazardous Waste Classification

The following evaluations are reviewed against requirements of the Hazardous Waste Control Law and Title 22 for specific detected COC's:

- ❑ None (0) of the organic compounds detected were found to be listed within Title 22 §66261.24;
- Reactivity, Corrosivity, and Ignitability (RCI): Sample SCALE was not found to exceed RCI limits (Table 2); and
- CAM-17: No metal COC's were found to exceed the Soluble Threshold Limit Concentration (STLC) trigger value or the Total Threshold Limit Concentration (TTLC) limits for samples SI.01, SI.02, and SCALE (Table 3).

SFRWQCB ESL

Soil depths encountered at the Site were found to be less than 3 meters (9.8 feet) bgs. Tables A and B of SFRWQCB (2008) were used for the evaluation of PHC's in soil at the Site. Table 4 presents the sludge, scale, and soil sample analytical results along with respective analyte ESL's. The following summarize the evaluations ESL's for specific detected COC's:

- TPH-G was detected in three (3) samples (SI.01, SI.02, & SCALE). No (0) samples were found to exceed the ESL's for TPH-G;
- TPH-D was detected in three (3) samples (SI.01, SI.02, & SCALE). One (1) sample was found to exceed the ESL for water that is considered or is a potential source of drinking water for residential or commercial/industrial land uses (83 mg/Kg). No (0) samples were found to exceed the ESL for water that is not considered or is a potential source of drinking water for residential (100 mg/Kg) or commercial/industrial land uses (180 mg/Kg);
- TPH-MO D was detected in three (3) samples (SI.01, SI.02, & SCALE). One (1) sample was found to exceed the ESL's for water that is for residential uses (370 mg/Kg). No (0) samples were found to exceed the ESL's for water that is for commercial/industrial land uses (2,500 mg/Kg);
- Acetone was detected in one (1) sample (SI.02). No (0) samples were found to exceed the ESL's for acetone;

QUEST GEOSYSTEMS MANAGEMENT, INC. · 11275 Sunrise Gold Circle - Suite R, Rancho Cordova, California 95742-6561 OFFICE (925) 756-1210 · FAX (925) 756-1227 · E-mail: <u>info@questgsm.com</u> · Internet: www.questgsm.com/

- Methyl Ethyl Ketone (MEK) was detected in two (2) samples (SI.01 & SI.02). No (0) samples were found to exceed the ESL's for MEK;
- Carbon Disulfide was detected in two (2) samples (SI.01 & SI.02). There is no established ESL;
- DIPE was detected in one (1) sample (SI.02). There is no established ESL;
- Ethyl-Benzene was detected in one (1) sample (SI.02). No (0) samples were found to exceed the ESL's for Ethyl-Benzene;
- □ Isopropyl Benzene was detected in one (1) sample (SI.02). There is no established ESL;
- 4-Isopropyl Toluene was detected in one (1) sample (SI.02). There is no established ESL;
- Methylene Chloride was detected in one (1) sample (SI.01). There is no established ESL;
- Naphthalene was detected in two (2) samples (SI.01 & SI.02). No (0) samples were found to exceed the ESL's for Naphthalene;
- Toluene was detected in two (2) samples (SI.01 & SI.02). No (0) samples were found to exceed the ESL's for Toluene;
- 1,2,4-Trimethyl-Benzene was detected in two (2) samples (SI.01 & SI.02). There is no established ESL;
- □ 1,3,5-Trimethyl-Benzene was detected in one (1) sample (SI.02). There is no established ESL;
- Total Xylenes was detected in one (1) sample (SI.02). No (0) samples were found to exceed the ESL's for Total Xylenes;
- Arsenic was detected in three (3) samples (SI.01, SI.02, & SCALE). Three (3) samples were found to exceed the ESL's for water that is for residential uses (0.39 mg/Kg). One (1) sample was found to exceed the ESL's for water that is for commercial/industrial land uses (1.6 mg/Kg);
- Molybdenum was detected in three (3) samples (SI.01, SI.02, & SCALE). Two (2) samples were found to exceed the ESL's for water that is for residential or commercial/industrial land uses (40 mg/Kg); and
- □ No other key COC's were identified as exceeding their respective ESL.

Discussion

The sludge and scale deposits are contained within the lined containment structures at the Site. The deposits represented by samples SI.01, SI.02, and SCALE are not classified as hazardous wastes by designation or classification under Division 20, Chapter 6.5 (Hazardous Waste Control Law), or Title 22 CCR Division 4.5. Sample SI.02 was found to exceed the ESL's for TPH-D and TPH-MO for residential land uses. The ESL for Arsenic is relatively low in comparison to noted regional background for arsenic in northern California [11 mg/Kg (Duvergé, 2011), 20 mg/Kg (Scott, 1991), and 42 mg/Kg (LBNL, 2009). Since the deposits are currently contained, ESL's are not pertinent to their current disposition. However, the ESL's would be pertinent if the deposits were to be removed from the containment structures and deposited to open ground at the Site.

4.1.2 Subsurface Soil Guideline Evaluation

Analytical results indicated the presence of PHC's in soil samples collected during this investigation and submitted for chemical analysis. The following summarize analytical results as they relate to regulatory requirements/guidelines:

SFRWQCB ESL

Soil depths encountered at the Site were found to be less than 3 meters (9.8 feet) bgs. Tables A and B of SFRWQCB (2008) were used for the evaluation of PHC's in soil at the Site. The following evaluations are reviewed against Residential ESL's for specific detected COC's:

- TPH-D was detected in twenty-one (21) soil samples. Three (3) soil samples were found to exceed the ESL for water that is considered or is a potential source of drinking water (83 mg/Kg) for residential or commercial/industrial land uses, and the ESL for water that is not considered or is a potential source of drinking water (100 mg/Kg) for residential uses. No (0) soil samples were found to exceed the ESL for water that is not considered or is a potential source of drinking water (180 mg/Kg) for commercial/industrial land uses;
- TPH-MO was detected in thirteen (13) soil samples. Three (3) soil samples were found to exceed the ESL for residential land uses (370 mg/Kg). No (0) soil samples were found to exceed the ESL for water that is not considered or is a potential source of drinking water (2,500 mg/Kg) for commercial/industrial land uses;
- Acetone was detected in two (2) soil samples. No (0) soil samples were found to exceed the ESL for water that is considered or is a potential source of drinking water for residential or commercial/industrial land uses (0.5 mg/Kg) or the ESL for water that is not considered or is a potential source of drinking water (0.5 mg/Kg) for residential or commercial/industrial land uses;
- Phenol was not detected in the soil samples submitted for chemical analysis. It should be noted that the Reporting Limit (RL = 0.25 mg/Kg) and Method Detection Limit (MDL = 0.12 mg/Kg) for the analytical method is higher than the ESL for water that is considered or is a potential source of drinking water for residential or commercial/industrial land uses (0.076 mg/Kg); and
- □ No other key COC's were identified as exceeding their respective ESL.

Discussion

Based on the evaluation above, TPH-D and TPH-MO were the only analytes found to exceed the residential land use ESL's, and TPH-D was the only analyte found to exceed the commercial/industrial land use ESL for water that is considered or is a potential source of drinking water. SFRWQCB (2008) recommends that when evaluating TPH analytical results to ESL's, they should be evaluated in terms of both TPH and well characterized indicator chemicals (e.g., benzene, toluene, ethylbenzene, xylenes and targeted PAHs). No other indicator chemical analytes (VOC's or SVOC's) were identified with corresponding TPH results.

It should be noted that various SVOC analytes have ESL's that are lower than the MDL for those analytes. Further evaluation of these analytes is limited by the detection limit of the

analytical method. For the purposes of this evaluation it was noted that the dilution factor (DF) for all soil samples analyzed was low. Therefore, these analytes should be evaluated based on confirmed positive results above the respective MDL.

4.1.3 Groundwater Guideline Evaluation

Analytical results indicated the presence of PHC's in groundwater samples collected during this investigation. The following summarize analytical results as they relate to regulatory requirements/guidelines:

CVRWQCB – Basin Plan WQO's

Current Basin Plan WQO's were used for the evaluation of COC's in groundwater samples collected at the Site. The following evaluations are based on the specific detected COC's:

- TPH-G: Groundwater sample MW.03 (51 μg/L) was found to exceed the taste and odor threshold of 5.0 μg/L;
- □ TPH-D: Groundwater sample MW.03 (120 µg/L) was found to exceed the taste and odor threshold of 100 µg/L;
- □ Benzene: No (0) groundwater sample collected and analyzed were found to exceed the Basin Plan WQO of 1.0 µg/L;
- □ Isopropyl benzene: No listed Primary or Secondary MCL's;
- □ 4-Methyl-2-pentanone (MIBK): No listed Primary or Secondary MCL's;
- Naphthalene: No listed Primary or Secondary MCL's;
- Benzoic Acid: No listed Primary or Secondary MCL's;
- pH: Groundwater samples MW.01 through MW.04 were found to be within the Basin Plan WQO;
- EC: Groundwater samples MW.01 through MW.04 were found to be exceed the Basin Plan WQO of 900 μS/cm; and
- □ No other key COC's were identified as exceeding their respective WQO's.

SFRWQCB – ESL

Soil depths encountered at the Site were found to be less than 3 meters (9.8 feet) bgs. Tables F-1a and F-1b of SFRWQCB (2008) were used for the evaluation of PHC's in groundwater at the Site. The following evaluations are based on the specific detected COC's:

- TPH-D: Groundwater sample MW.03 (120 µg/L) was found to exceed the ESL for residential land uses (100 µg/L). No (0) groundwater samples were found to exceed the ESL for commercial/industrial land uses (210 µg/L);
- Benzene: No (0) groundwater samples were found to exceed the ESL for water that is considered or is a potential source of drinking water (1.0 µg/L) for residential or commercial/industrial land uses;
- Isopropyl benzene: No listed ESL;
- MIBK: No (0) groundwater samples were found to exceed the ESL for water that is considered or is a potential source of drinking water for residential (120 µg/L) or commercial/industrial land uses (170 µg/L);

- Naphthalene: No (0) groundwater samples were found to exceed the ESL for water that is considered or is a potential source of drinking water for residential (17 µg/L) or commercial/industrial land uses (24 µg/L);
- Total Xylenes: No (0) groundwater samples were found to exceed the ESL for water that is considered or is a potential source of drinking water for residential (20 µg/L) or commercial/industrial land uses (100 µg/L);
- Benzoic Acid: No listed ESL; and
- □ No other key COC's were identified as exceeding their respective ESL.

Discussion

Based on the evaluation above, only one (1) monitoring well (MW.03) was found to exceed the TPH-D ESL's for residential land use and the WQO's for TPH-g and TPH-D. Analysis of groundwater in the field identified that EC in monitoring wells MW.01 through MW.04 exceeded the respective WQO. SFRWQCB (2008) recommends that when evaluating TPH analytical results to ESL's, they should be evaluated in terms of both TPH and well characterized indicator chemicals (e.g., benzene, toluene, ethylbenzene, xylenes and targeted PAHs). No other indicator chemical analytes (VOC's or SVOC's) were identified with corresponding TPH results. The locally occurring groundwater indicated EC ranging from 3,301 to 5,780 μ S/cm, which are substantially in excess of the Basin Plan limit of 900 μ S/cm.

5 CONCLUSIONS

5.1 SLUDGE AND SCALE EVALUATION

By definition, the sludge and scale deposits represented by sludge samples SI.01 and SI.02, and scale sample SCALE, respectively, are not considered a hazardous waste. The waste materials are contained by an impervious liner. Future release of these deposits, or placement on open ground could pose some groundwater risk. Consideration might be given in the future to removal of the surface impoundment and scale deposits, and their appropriate disposition.

5.2 SITE SUBSURFACE EVALUATION

The Site and surrounding area are currently zoned Large Parcel Agriculture (Alameda County, 2000), which limits the use and size of the adjacent parcels. Based on the current zoning requirements, existing Site and adjacent property use, and the rural nature of the area, residential uses are limited. Therefore, review of the Site and local groundwater utility should be considered for agricultural and commercial/Industrial land uses. The following provide Quest conclusions based on soil and groundwater conditions at the Site:

5.2.1 Soil Conditions at the Site

TPH-D was the only analyte found to exceed the commercial/industrial land use ESL for water that is considered or is a potential source of drinking water. No other indicator chemical analytes (VOC's or SVOC's) were identified with corresponding TPH-D results. The results were for three (3) out of twenty-four (24) samples collected during this investigation. These three (3) samples are located beneath the building foundation and the soils they represent are therefore relatively immobile. The noted soil impacts are within 2 feet of the surface and are limited laterally to beneath the building slab. Based on the current use of the facility and surrounding properties, and the shallow, limited lateral extent, and immobile nature of the soil impacts noted, the Site should be considered low risk and No Further Action should be considered.

5.2.2 Groundwater Conditions at the Site

No (0) analytical samples were found to exceed the respective ESL's for commercial/industrial land uses. One (1) monitoring well (MW.03) was found to exceed the WQO's for TPH-G and TPH-D. Benzene was identified in monitoring well MW.03 below the respective ESL's and WQO. No other indicator chemical analytes (VOC's or SVOC's) were identified with corresponding TPH results. Groundwater in the area of the Site was found to exceed the respective WQO for EC.

The naturally occurring groundwater at the Site appears to be of poor quality. The EC measurements from monitoring wells MW.01 through MW.04 indicate very high EC that is four to six times the Basin Plan WQO. Based on the current use of the facility and surrounding properties, and the limited, low concentrations of COC impacts noted, the Site should be considered low risk and a No Further Action Letter issued.

6 RECOMMENDATIONS

Based on the findings and conclusions of this report it is recommended that the following should be conducted for this Site:

- Based on the limited extent of soil and groundwater impacts and the poor quality of the locally occurring groundwater, No Further Action (NFA) should be considered for the Site; and
- □ A copy of this report should be forwarded to ACEH for their review and action.

7 REFERENCES

- Alameda County, 2000, East County Area Plan (Revised by Initiative Nov. 2000); Alameda County Planning Department, November 2000, 134 p.
- CVRWQCB, 2010, Beneficial Use-Protective Water Quality Limits for Components of Petroleum-Base Fuels (Memo); Central Valley Regional Water Quality Control Board, April 1, 2004, 5 p.
- CVRWQCB, 1998, Fourth Edition of the Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins; Central Valley Regional Water Quality Control Board, September 1998, p.
- CVRWQCB, 1989, The Designated Level Methodology for Waste Classification and Cleanup Level Determination; Staff Report, Central Valley Regional Water Quality Control Board, June 1989, 79 p.
- Duvergé, Dylan Jacques, 2011, Establishing Background Arsenic in Soil of the Urbanized San Francisco Bay Region; Master's Thesis, San Francisco State University, San Francisco, California, 77 p.
- EDR, 2008, EDR Radius Map with GeoCheck®: Consultants Report, Environmental Data Resources, Inc., Milford, Connecticut, April 23, 2008, 63 p.
- LBNL, 2009, Analysis of Background Distributions of Metals in the Soil at Lawrence Berkeley National Laboratory; Lawrence Berkeley National Laboratory (LBNL), April 2009, 83 pp.
- Quest GSM, 2012, Site Assessment Workplan: Consultants Report, Quest GeoSystems Management, Rancho Cordova, California, April 10, 2012, 60 p.
- Quest GSM, 2011, Soil Sampling and Analysis Report: Consultants Report, Quest GeoSystems Management, Rancho Cordova, California, July 29, 2011, 55 p.
- Quest GSM, 2008, Phase I Environmental Site Assessment Report, APN: 99B-7050-001-10, 4901 Bruns Road, Alameda County, California: Consultants Report, Quest GeoSystems Management, Antioch, California, July 30, 2008, 176 p.
- Scott, Christina Marie, 1991, Background Metal Concentrations in Soils in Northern Santa Clara County, California; Master's Thesis, San Francisco State University, San Francisco, California, 120 p.
- SFRWQCB, 2008, Risk-Based Screening Levels and Decision Making to Sites with Impacted Soil and Groundwater (Interim Final – November 2007): San Francisco Bay Regional Water Quality Control Board, May 2008.

TABLES

TABLE 1 – Summary of Groundwater Elevation Data

Monitoring Well	MM	/.01	MM	/.02	MM	/.03	MW.04		
Well Head Elevation (Feet)	110.83		107	7.03	106	6.92	104.02		
Date									
12/28/2012	21.50	89.33	18.27	88.76	20.19	86.73	17.55	86.47	

Notes:

bgs

·---

= Below Ground Surface

= Site elevation datum established December 2012 by Benchmark Consultants.

= Not measured, unable to measure

TABLE 2 – Summary of Sludge & Scale Sample Analytical Results,U.S. EPA Methods SW-846, 9040, 1010, 600/R-93-116, & ASTM D2216-92

				ANA	LYSIS						
SAMPLE ID	DATE SAMPLED	Reac	tivity	Corrosivity	lgnitability	% Moisture	Asbestos				
		Sulfide Cyanide									
SI.01	12/07/12					67.4					
SI.02	12/07/12					58.5					
SCALE	12/07/12	Negative	Negative	8.90	Negative		ND				
Hazardous Waste Cla Characteristics - 22 C				≤2 or ≥12.5							
NOTES:	OTES:										

= Not Analyzed

TABLE 3 – Summary of Sludge & Scale Sample Analytical Results, U.S. EPA Method SW6020

ANALYTE		SAMPLE ID		STLC Trigger	STLC Limit	TCLP Trigger	TCLP Limit	TTLC Limit	R2 ESL	Regional Background*
	SI.01	SI.02	SCALE	(mg/kg)	(mg/L)	(mg/kg)	(mg/L)	(mg/kg)	(mg/kg)	(mg/kg)
	12/07/12	12/07/12	12/07/12	(((((iiig/iig/		(
Antinomy	2.5	1.5	1.2	150	15	300	15	500	6.3	22
Arsenic	1.2	1.8	0.97	50	5.0	100	5.0	500	0.39	20
Barium	65	110	150	1,000	100	2,000	100	10,000	750	410
Beryllium	ND<0.19	ND<0.19	ND<0.19	7.5	0.75	15	0.75	75	4.0	3.2
Cadmium	0.24	0.21	ND<0.16	10	1.0	20	1.0	100	1.7	14
Chromium	5.6	8.5	3.5	50	5.0	100	5.0	500	1,000	170
Cobalt	0.67	0.90	0.83	800	80	1,600	80	8,000	40	25
Copper	58	44	65	250	25	500	25	2,500	230	67
Lead	19	31	21	50	5.0	100	5.0	1,000	200	54
Mercury	0.031	0.040	0.036	2.0	0.2	4	0.2	20	1.3	1.3
Molybdenum	140	87	6.6	3,500	350	7,000	350	3,500	40	4.8
Nickel	2.6	2.5	3.0	200	20	400	20	2,000	150	145
Selenium	0.23	ND<0.22	ND<0.22	10	1.0	20	1.0	100	10	4.9
Silver	ND<0.13	ND<0.13	ND<0.13	50	5.0	100	5.0	500	20	4.8
Thallium	ND<0.14	ND<0.14	ND<0.14	70	7.0	140	7.0	700	1.3	3.8
Vanadium	2.0	1.8	0.79	240	24	480	24	2,400	16	90
Zinc	180	390	190	2,500	250	5,000	250	5,000	600	120

NOTES: mg/kg mg/L

 Milligram per Kilogram
 Milligram per Liter
 Background Metals Concentrations in Soil in Northern Santa Clara County (Scott, 1995).
 San Francisco Bay Regional Water Quality Control Board (RWQCB, 2008), Environmental Screening Levels; Residential Land Use, Shallow Soil, Drinking Water Resource R2 ESL

TABLE 4 – Summary of Sludge, Scale, & Soil Sample Analytical Results, U.S. EPA Methods 8015B, 8260B, and 8270B

							ANALYTES				
		SAMPLE		8015C				826	60B		
SAMPLE ID	DATE SAMPLED	INTERVAL (feet BSG)	TPH-G (mg/kg)	TPH-D (mg/kg)	TPH-MO (mg/kg)	Acetone (mg/kg)	TAME (mg/kg)	Benzene (mg/kg)	MEK (mg/kg)	TBA (mg/kg)	Carbon Disulfide (mg/kg)
MW.01-4	12/18/12	4.0	ND<1.0	1.5	ND<5.0	ND<0.05	ND<0.005	ND<0.005	ND<0.02	ND<0.05	ND<0.005
MW.01-8	12/18/12	8.0	ND<1.0	1.3	ND<5.0	ND<0.05	ND<0.005	ND<0.005	ND<0.02	ND<0.05	ND<0.005
MW.02-8	12/21/12	8.0	ND<1.0	2.3	7.4	ND<0.05	ND<0.005	ND<0.005	ND<0.02	ND<0.05	ND<0.005
MW.03-4	12/19/12	4.0	ND<1.0	1.3	ND<5.0	ND<0.05	ND<0.005	ND<0.005	ND<0.02	ND<0.05	ND<0.005
MW.03-8	12/19/12	8.0	ND<1.0	1.5	ND<5.0	ND<0.05	ND<0.005	ND<0.005	ND<0.02	ND<0.05	ND<0.005
MW.04-4	12/18/12	4.0	ND<1.0	1.8	7.4	ND<0.05	ND<0.005	ND<0.005	ND<0.02	ND<0.05	ND<0.005
MW.04-8	12/18/12	8.0	ND<1.0	1.6	ND<5.0	ND<0.05	ND<0.005	ND<0.005	ND<0.02	ND<0.05	ND<0.005
SI.01	12/07/12	0.5	1.8	72	160	ND<0.05	ND<0.005	ND<0.005	0.0076,J	ND<0.05	0.016
SI.02	12/07/12	0.5	11	430	660	0.15	ND<0.0020	ND<0.0032	0.012,J	ND<0.011	0.019
SCALE	12/07/12	0.5	0.26,J	3.6	12	ND<0.05	ND<0.005	ND<0.005	ND<0.02	ND<0.05	ND<0.005
SP-08-2	01/30/13	2.0	ND<1.0	140	1,000	ND<0.05	ND<0.005	ND<0.005	ND<0.02	ND<0.05	ND<0.005
SP-09-2	01/31/13	2.0	ND<1.0	120	1,400	ND<0.05	ND<0.005	ND<0.005	ND<0.02	ND<0.05	ND<0.005
SP-10-2	01/30/13	2.0	ND<1.0	1.9	6.5	ND<0.05	ND<0.005	ND<0.005	ND<0.02	ND<0.05	ND<0.005
SP-11-2	01/31/13	2.0	ND<1.0	13	170	ND<0.05	ND<0.005	ND<0.005	ND<0.02	ND<0.05	ND<0.005
SP-12-1	01/31/13	1.0	ND<1.0	20	98	ND<0.05	ND<0.005	ND<0.005	ND<0.02	ND<0.05	ND<0.005
SP-12-2	01/31/13	2.0	ND<1.0	2.9	7.9	ND<0.05	ND<0.005	ND<0.005	ND<0.02	ND<0.05	ND<0.005
SP-13-2	01/30/13	2.0	ND<1.0	1.1	6.0	ND<0.05	ND<0.005	ND<0.005	ND<0.02	ND<0.05	ND<0.005
SP-14-2	01/30/13	2.0	ND<1.0	1.4	ND<5.0	ND<0.05	ND<0.005	ND<0.005	ND<0.02	ND<0.05	ND<0.005
SP-15-2	01/30/13	2.0	ND<1.0	ND<1.0	ND<5.0	ND<0.05	ND<0.005	ND<0.005	ND<0.02	ND<0.05	ND<0.005
SP-15-6	01/30/13	6.0	ND<1.0	ND<1.0	9.0	ND<0.05	ND<0.005	ND<0.005	ND<0.02	ND<0.05	ND<0.005
SP-16-2	01/31/13	2.0	ND<1.0	1.0	ND<5.0	ND<0.05	ND<0.005	ND<0.005	ND<0.02	ND<0.05	ND<0.005
SP-17-2	01/31/13	2.0	ND<1.0	13	52	0.079	ND<0.005	ND<0.005	ND<0.02	ND<0.05	ND<0.005
SP-18-2	01/30/13	2.0	ND<1.0	2.1	ND<5.0	ND<0.05	ND<0.005	ND<0.005	ND<0.02	ND<0.05	ND<0.005
SP-19-1	01/30/13	1.0	ND<1.0	130	2,300	0.094	ND<0.005	ND<0.005	ND<0.02	ND<0.05	ND<0.005
SP-19-2	01/30/13	2.0	ND<1.0	1.9	20	ND<0.05	ND<0.005	ND<0.005	ND<0.02	ND<0.05	ND<0.005
SP-20-2	01/31/13	2.0	ND<1.0	1.3	ND<5.0	ND<0.05	ND<0.005	ND<0.005	ND<0.02	ND<0.05	ND<0.005
SP-21-2	01/31/13	2.0	ND<1.0	ND<1.0	ND<5.0	ND<0.05	ND<0.005	ND<0.005	ND<0.02	ND<0.05	ND<0.005
	Resources (Residentia	· /	83	83	370	0.5		0.044	3.9	0.075	
ESL Non-Drinking V	ater Resources (Resi	dential)	100	100	370	0.5		0.12	13	100	
y	Resources (Commerc		83	83	2,500	0.5		0.044	3.9	0.075	
ESL Drinking Water	Resources (Commerc	cial/Industrial)	180	180	2,500	0.5		0.270	13	110	
Notes:											

(mg/Kg)

= Milligrams per Kilogram = Not applicable = Not detected at or above representative detection limit = Total Petroleum Hydrocarbons as Gasoline = tert-Amyl Methyl Ether

---ND<0.5 TPH-G TAME MEK TBA J ESL

encryany meany cure
 encryany meany cure
 encry Charley Ketone
 e-Butyl Ketone
 e-Butyl Alcohol
 analyte detected below quantitation limits
 Environmental Screening Levels (RWQCB, 2008), Table A (Drinking Water Resource), Table B (Non-Drinking Water Resource)

TABLE 4 (Cont.) – Summary of Sludge, Scale, & Soil Sample Analytical Results,U.S. EPA Methods 8015B, 8260B, and 8270B

							ANALYTES				
		SAMPLE			-	i	8260B	-	T	•	
SAMPLE ID	DATE SAMPLED	INTERVAL (feet BSG)	DIPE (mg/kg)	Ethyl-Benzene (mg/kg)	ETBE (mg/kg)	2-Hexanone (mg/kg)	Isopropyl Benzene (mg/kg)	4-Isopropyl Toluene (mg/kg)	MTBE (mg/kg)	Methylene Chloride (mg/kg)	MIBK (mg/kg)
MW.01-4	12/18/12	4.0	ND0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.00
MW.01-8	12/18/12	8.0	ND0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.00
MW.02-8	12/21/12	8.0	ND0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.00
MW.03-4	12/19/12	4.0	ND0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.00
MW.03-8	12/19/12	8.0	ND0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.00
MW.04-4	12/18/12	4.0	ND0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.00
MW.04-8	12/18/12	8.0	ND0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.00
SI.01	12/07/12	0.5	ND>0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	0.0044,J	ND<0.00
SI.02	12/07/12	0.5	0.0028	0.043	ND<0.0026	ND<0.0050	0.011	0.0072,J	ND<0.0026	ND<0.0072	ND<0.00
SCALE	12/07/12	0.5	ND>0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.00
SP-08-2	01/30/13	2.0	ND0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.00
SP-09-2	01/31/13	2.0	ND0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.00
SP-10-2	01/30/13	2.0	ND0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.00
SP-11-2	01/31/13	2.0	ND0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.00
SP-12-1	01/31/13	1.0	ND0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.00
SP-12-2	01/31/13	2.0	ND0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.00
SP-13-2	01/30/13	2.0	ND0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.00
SP-14-2	01/30/13	2.0	ND0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.00
SP-15-2	01/30/13	2.0	ND0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.00
SP-15-6	01/30/13	6.0	ND0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.00
SP-16-2	01/31/13	2.0	ND0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.00
SP-17-2	01/31/13	2.0	ND0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.00
SP-18-2	01/30/13	2.0	ND0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.00
SP-19-1	01/30/13	1.0	ND0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.00
SP-19-2	01/30/13	2.0	ND0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.00
SP-20-2	01/31/13	2.0	ND0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.00
SP-21-2	01/31/13	2.0	ND0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.00
SL Drinking Wate	r Resources (Residenti	al)		2.3					0.023		2.8
SL Non-Drinking	Water Resources (Resi	dential)		2.3					8.4		3.9
SL Drinking Wate	r Resources (Commerc	ial/Industrial)		3.3					8.4		2.8
SL Drinking Wate	r Resources (Commerc	ial/Industrial)									3.9
ESL Drinking Wate	r Resources (Commerc	ial/Industrial) ial/Industrial)									2.
ND<0.5 DIPE ETBE MTBE MIBK J	= Total Petroleum Hy = Ethyl tert-butyl eth = Methyl tert-butyl eth = Methyl isobutyl ket	her	line								
SL		eening Levels (RWQ)		(Drinking Water Re	source), Table B (I	Non-Drinking Wate	r Resource)				

TABLE 4 (Cont.) – Summary of Sludge, Scale, & Soil Sample Analytical Results,U.S. EPA Methods 8015B, 8260B, and 8270B

1						ANAL	YTES			
l l					8260B				8270	
SAMPLE ID	DATE SAMPLED	SAMPLE INTERVAL (feet BSG)	Naphthalene (mg/kg)	Toluene (mg/kg)	1,2,4-Trimethyl- Benzene (mg/kg)	1,3,5-Trimethyl- Benzene (mg/kg)	Total Xylenes (mg/kg)	Benzoic Acid (mg/kg)	Naphthalene (mg/kg)	Phenol (mg/kg)
MW.01-4	12/18/12	4.0	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<1.0	ND<0.13	ND<0.12
MW.01-8	12/18/12	8.0	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<1.0	ND<0.13	ND<0.12
MW.02-8	12/21/12	8.0	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<1.0	ND<0.13	ND<0.12
MW.03-4	12/19/12	4.0	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<1.0	ND<0.13	ND<0.12
MW.03-8	12/19/12	8.0	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<1.0	ND<0.13	ND<0.12
MW.04-4	12/18/12	4.0	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<1.0	ND<0.13	ND<0.12
MW.04-8	12/18/12	8.0	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<1.0	ND<0.13	ND<0.12
SI.01	12/07/12	0.5	0.0023,J	0.0058	0.0035,J	ND<0.005	ND<0.005	ND<1.0	ND<0.13	ND<0.12
SI.02	12/07/12	0.5	0.16	0.0059,J	0.18	0.089	0.48	ND<1.0	ND<0.13	ND<0.12
SCALE	12/07/12	0.5	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<1.0	ND<0.13	ND<0.12
SP-08-2	01/30/13	2.0	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<20	ND<2.6	ND<2.4
SP-09-2	01/31/13	2.0	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<1.0	ND<0.13	ND<0.12
SP-10-2	01/30/13	2.0	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<1.0	ND<0.13	ND<0.12
SP-11-2	01/31/13	2.0	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<1.0	ND<0.13	ND<0.12
SP-12-1	01/31/13	1.0	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<1.0	ND<0.13	ND<0.12
SP-12-2	01/31/13	2.0	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<1.0	ND<0.13	ND<0.12
SP-13-2	01/30/13	2.0	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<1.0	ND<0.13	ND<0.12
SP-14-2	01/30/13	2.0	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<1.0	ND<0.13	ND<0.12
SP-15-2	01/30/13	2.0	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<1.0	ND<0.13	ND<0.12
SP-15-6	01/30/13	6.0	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<1.0	ND<0.13	ND<0.12
SP-16-2	01/31/13	2.0	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<1.0	ND<0.13	ND<0.12
SP-17-2	01/31/13	2.0	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<1.0	ND<0.13	ND<0.12
SP-18-2	01/30/13	2.0	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<1.0	ND<0.13	ND<0.12
SP-19-1	01/30/13	1.0	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<2.0	ND<0.26	ND<0.24
SP-19-2	01/30/13	2.0	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<1.0	ND<0.13	ND<0.12
SP-20-2	01/31/13	2.0	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<1.0	ND<0.13	ND<0.12
SP-21-2	01/31/13	2.0	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<1.0	ND<0.13	ND<0.12
ESL Drinking Water	Resources (Residenti	al)	1.3	2.9			2.3		1.3	0.076
ESL Non-Drinking V	Vater Resources (Resi	dential)	1.3	9.3			11		1.3	3.9
	Resources (Commerc		2.8	2.9			2.3		2.8	0.076
ESL Drinking Water	Resources (Commerc	cial/Industrial)	2.8	9.3			11.0		2.8	3.9
 ND<0.5 J	= Analyte detected b	ogram above representative elow quantitation limi reening Levels (RWQC	ts	Drinking Water Re	esource), Table B (f	Non-Drinking Wate	r Resource)			

TABLE 5 – Summary of Groundwater Sample Analytical Results, Field-Based Measurements

				ANALYSIS	5	
SAMPLE ID	DATE SAMPLED	рН	EC (µS/cm)	DO (mg/L)	Temperature (°C)	ORP (mV)
MW.01	12/28/12	7.83	3,301	6.70	20.30	47.8
MW.02	12/28/12	6.99	5,780	3.54	19.69	80.1
MW.03	12/28/12	6.53	4,465	5.82	19.46	135.0
MW.04	MW.04 12/28/12		3,672	6.73	20.31	83.2
SFBRWQCB Basin Plan	n	6.5 - 8.0	900			

NOTES

NOTES:		
EC	= Electrical Conductivity	
µS/cm	= micro Siemens per centimeter	
°C	= Degrees Celcius	
DO	= Dissolved Oxygen	
mg/L	= Milligrams per Liter	
ORP	= Oxygen Reduction Potential	
mV	= milli Volts	
SFBRWQCB	= San Francisco Bay Regional Water Quality Control Board	

TABLE 6 – Summary of Groundwater Sample Analytical Results, U.S. EPA Methods 8015B, 8260B, and 8270B

						ANAL	YTES				
			8015					8260			
SAMPLE ID	DATE	TPH-G (µg/L)	TPH-D (µg/L)	TPH-MO (µg/L)	Acetone (µg/L)	TAME (µg/L)	Benzene (µg/L)	МЕК (µg/L)	ТВА (µg/L)	DIPE (µg/L)	Ethyl-Benzene (µg/L)
MW.01	12/28/12	ND<50	27,J	ND<250	ND<10	ND<0.5	ND<0.5	ND<2.0	ND<2.0	ND<0.5	ND<0.5
MW.02	12/28/12	ND<50	41,J	ND<250	ND<10	ND<0.5	ND<0.5	ND<2.0	ND<2.0	ND<0.5	ND<0.5
MW.03	12/28/12	51	120	ND<250	ND<10	ND<0.5	0.85	ND<2.0	ND<2.0	ND<0.5	ND<0.5
MW.04	12/28/12	ND<50	56	ND<250	ND<10	ND<0.5	ND<0.5	ND<2.0	ND<2.0	ND<0.5	ND<0.5
SFBRWQCB Basin F	Plan WQO	5.0*	100*				1.0				700
ESL Drinking Water F (Residential)	Resources	100	100		1,500		1.0	4,200	12		30
ESL Non-Drinking Wa (Residential)	ater Resources	100	100		1,500		1.0	4,200	12		30
ESL Drinking Water F (Commercial/Industria		210	210		1,500		46	14,000	18,000		43
ESL Non-Drinking Water Resources (Commercial/Industrial)		210	210		1,500		46	14,000	18,000		43

Notes: µg/L ND<0.5

= microgram per Liter = Not detected at or above representative detection limit = tert-Amyl methyl ether = methyl ethyl ketone

TAME MEK TBA

= t-Butyl alcohol

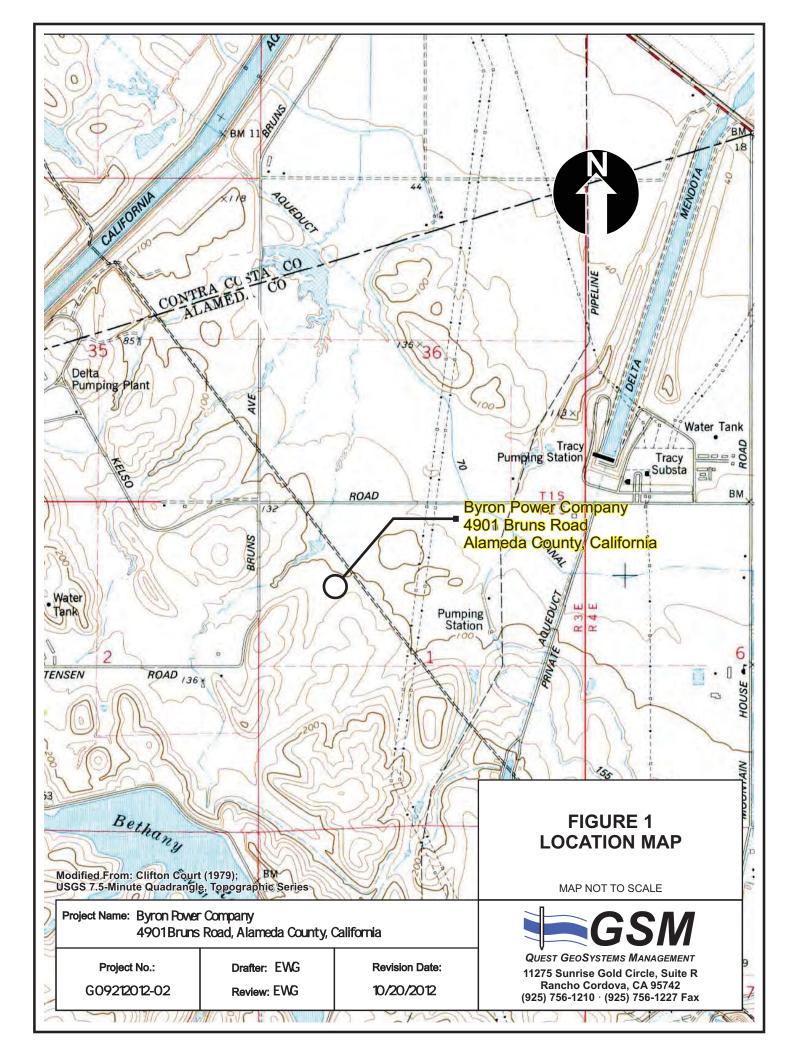
SFBRWQCB

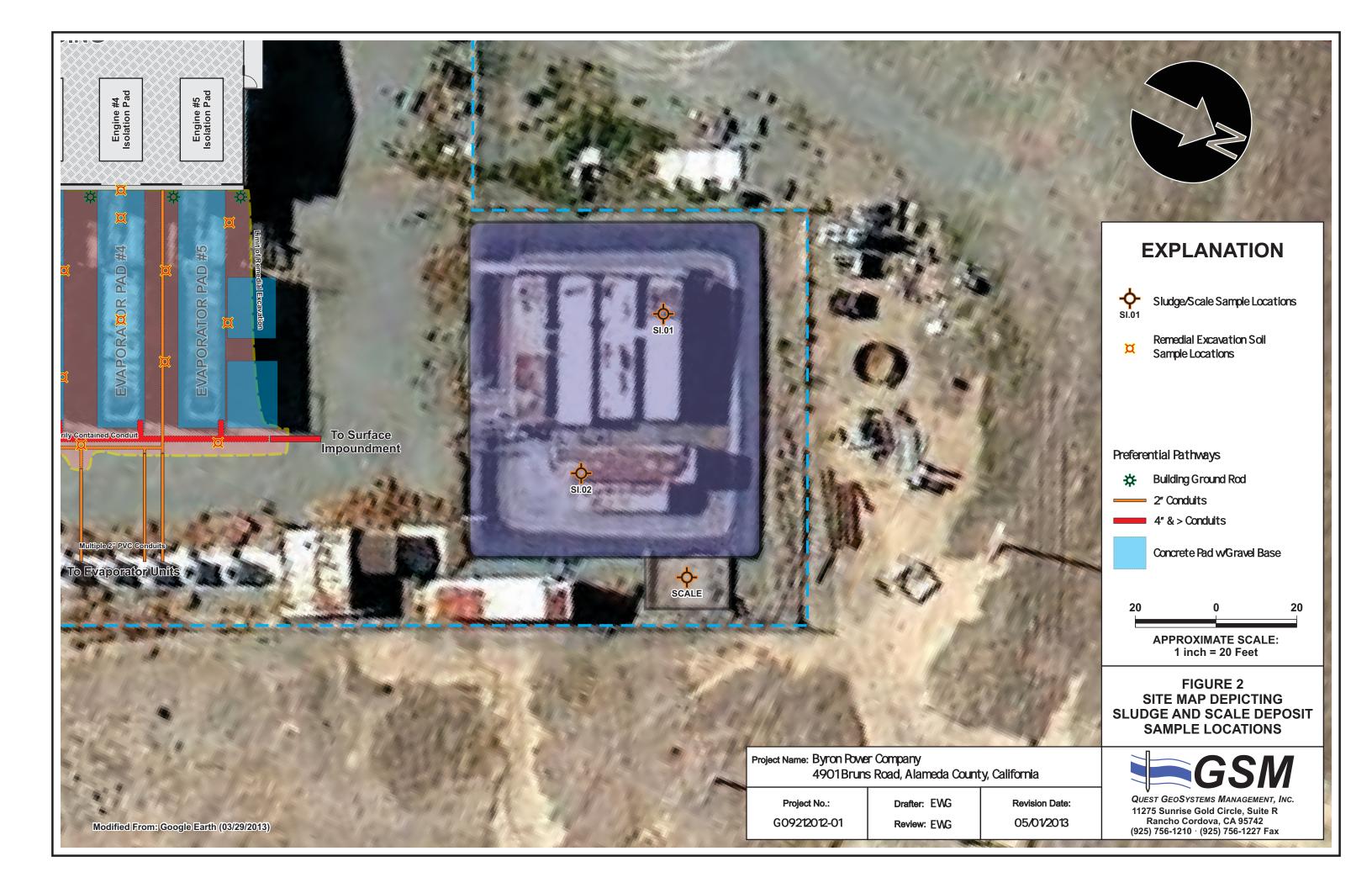
- Furty alconol
 - Analyte detected below quantitation limits
 - San Francisco Bay Regional Water Quality Control Board
 - Environmental Screening Levels (SFBRWQCB, 2008), Table A (Drinking Water Resource), Table B (Non-Drinking Water Resource)

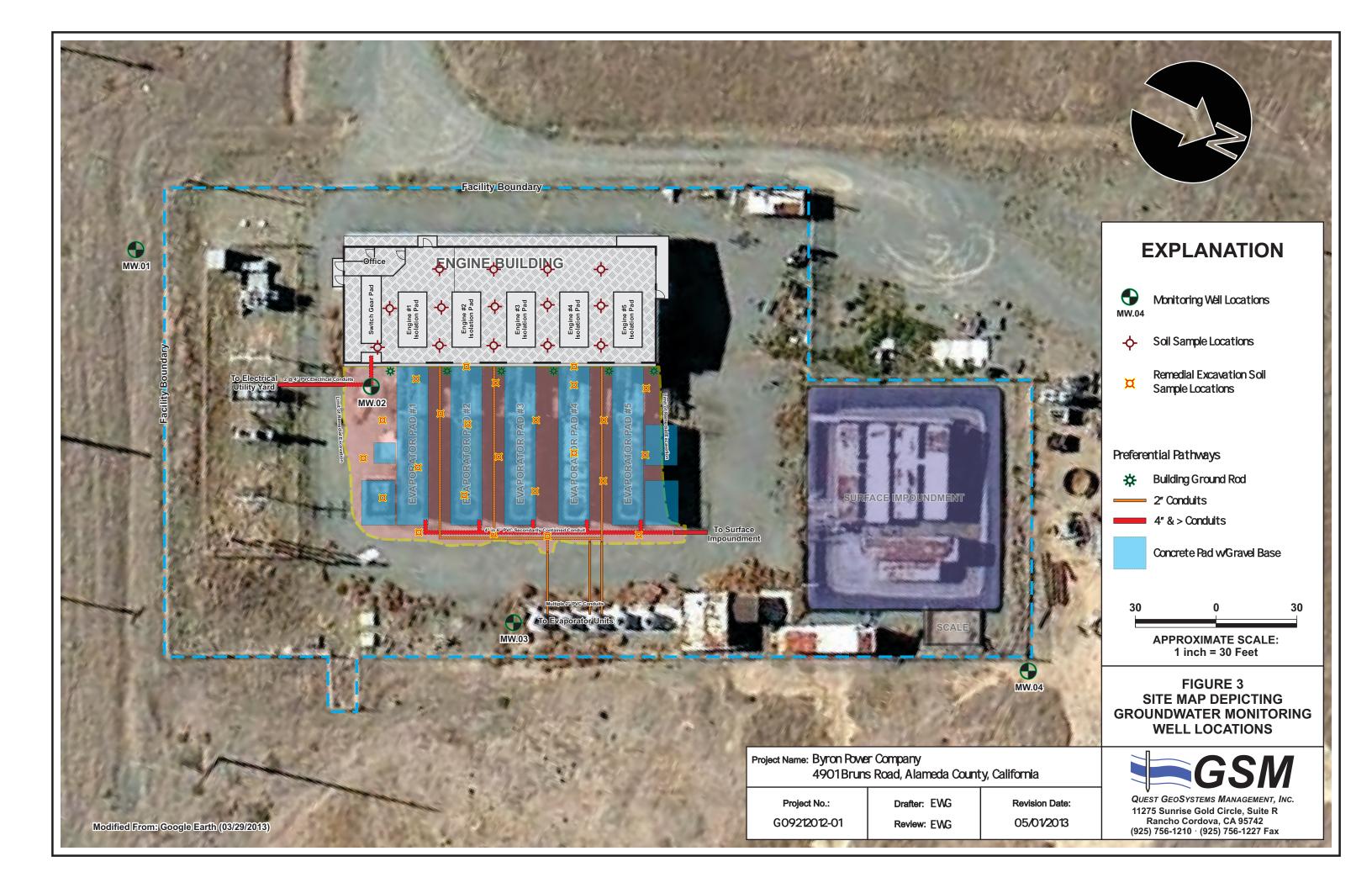
						ANAL	YTES				
					8260			-		8270	
SAMPLE ID	DATE	ЕТВЕ (µg/L)	Isopropyl benzene (μg/L)	МТВЕ (µg/L)	МІВК (μg/L)	Naphthalene (µg/L)	Toluene (μg/L)	Xylenes (µg/L)	Benzoic Acid (µg/L)	Naphthalene (µg/L)	Phenol (µg/L)
MW.01	12/28/12	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	5.9,J	ND<0.26	ND<0.36
MW.02	12/28/12	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<4.9	ND<0.25	ND<0.35
MW.03	12/28/12	ND<0.5	6.8	ND<0.5	0.65	1.4	ND<0.5	0.72	ND<5.5	0.75,J	ND<0.40
MW.04	12/28/12	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	6.3,J	ND<0.27	ND<0.38
SFBRWQCB Basin F	Plan WQO			13/5.0			150	1,750			
ESL Drinking Water F (Residential)	Resources			5.0	120	17	40	20		17	5.0
ESL Non-Drinking Wa (Residential)	ater Resources			5.0	120	17	40	20		17	5.0
ESL Drinking Water F (Commercial/Industria				5.0	170	24	130	100		24	260
ESL Non-Drinking Wa (Commercial/Industria				1,800	170	24	130	100		24	260

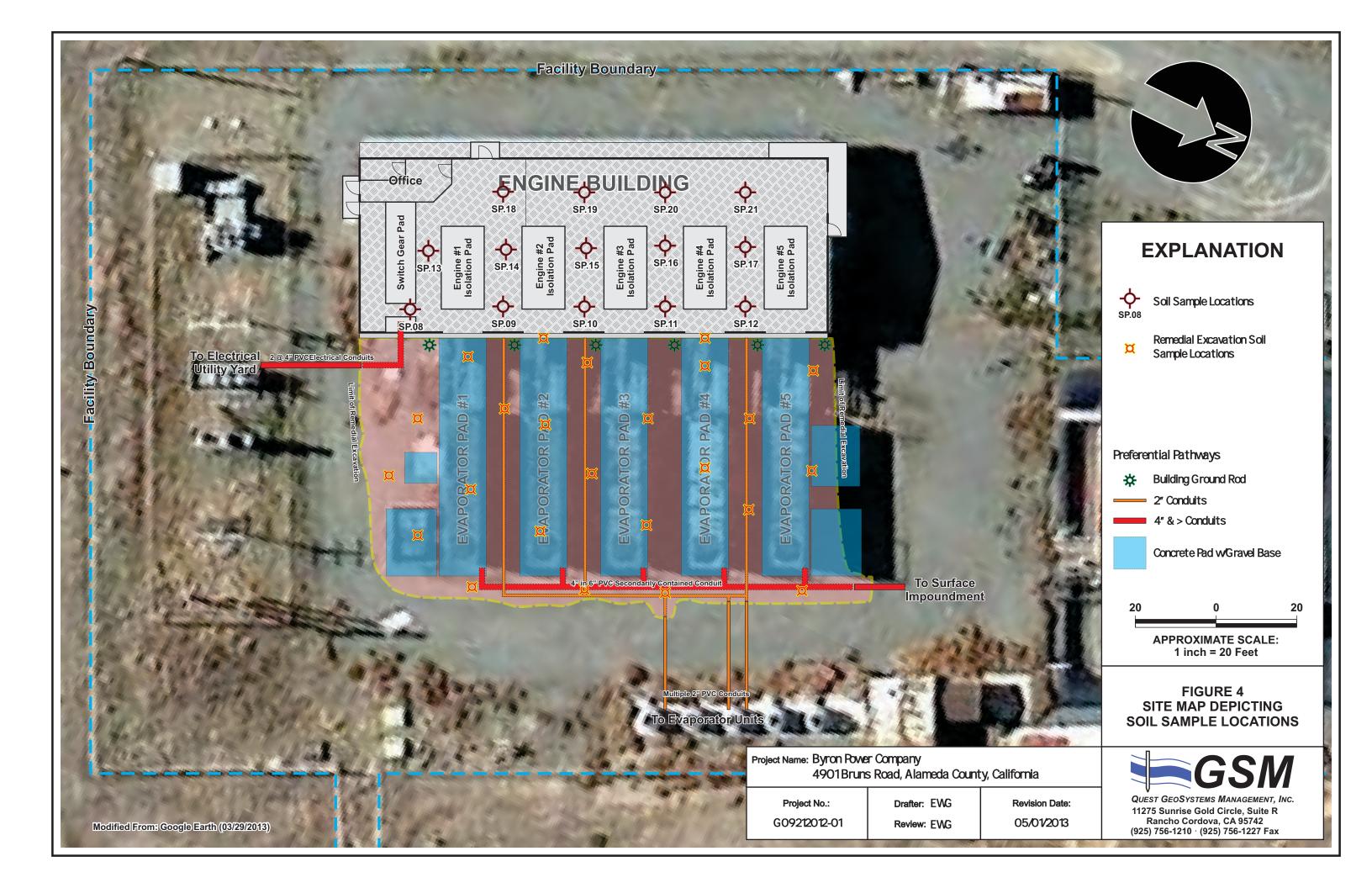
Notes: µg/L ND<0.5 DIPE ETBE MTBE MIBK

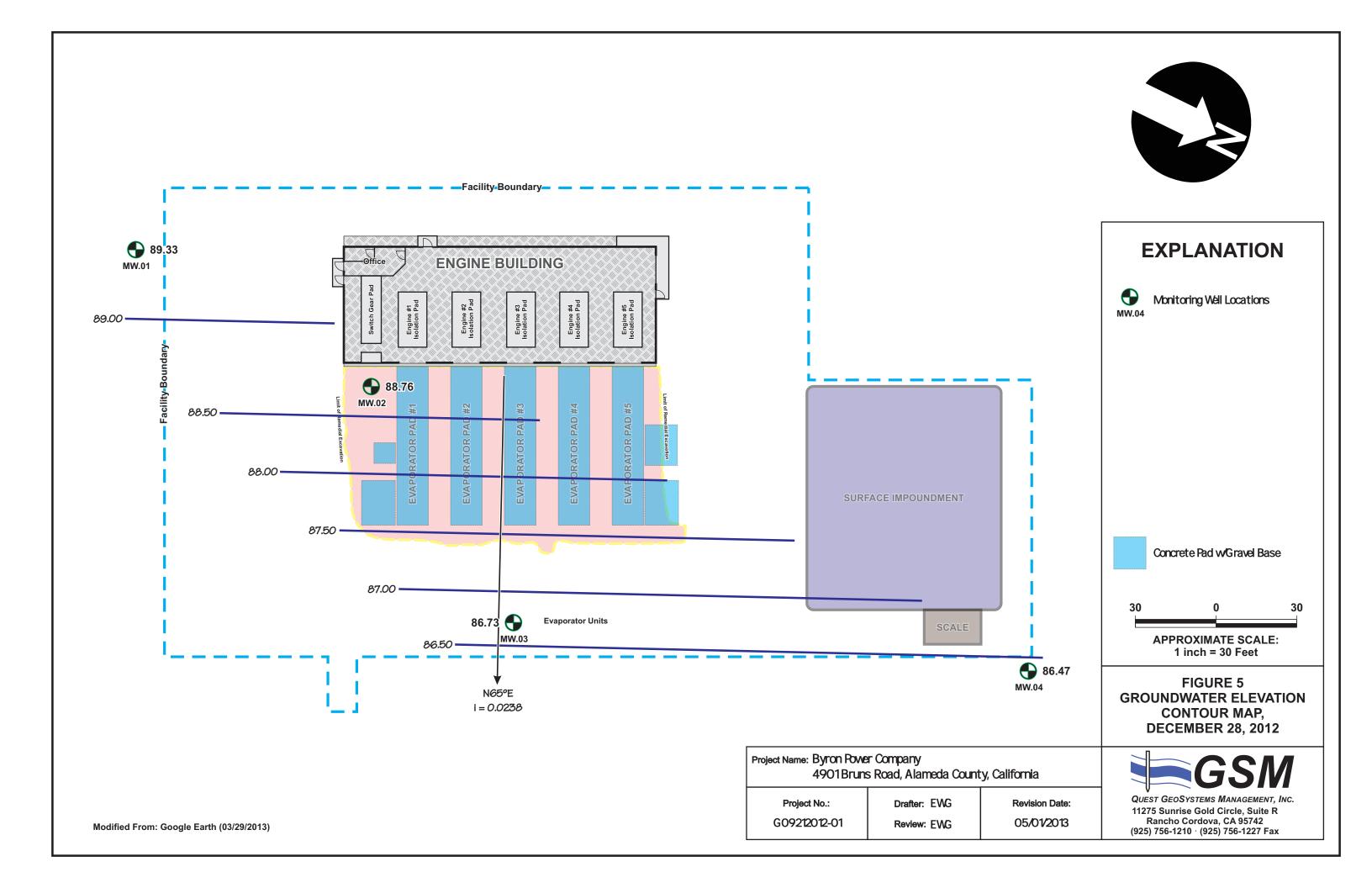
J


= microgram per Liter = Not detected at or above representative detection limit = Diisopropyl ether = Ethyl tert-butyl ether = Methyl tert-butyl ether = Methyl isobutyl ketone = Analyne deterged below granitation limite


SFBRWQCB ESL


= Analyte detected below quantitation limits = San Francisco Bay Regional Water Quality Control Board = Environmental Screening Levels (SFBRWQCB, 2008), Table A (Drinking Water Resource), Table B (Non-Drinking Water Resource)


QUEST GEOSYSTEMS MANAGEMENT, INC. · 11275 Sunrise Gold Circle - Suite R, Rancho Cordova, California 95742-6561 OFFICE (925) 756-1210 · FAX (925) 756-1227 · E-mail: info@questgsm.com · Internet: www.questgsm.com/


FIGURES

APPENDIX A

PERMITS AND GEOTRACKER WELL SURVEY DATA

QUEST GEOSYSTEMS MANAGEMENT, INC. · 11275 Sunrise Gold Circle - Suite R, Rancho Cordova, California 95742-6561 OFFICE (925) 756-1210 · FAX (925) 756-1227 · E-mail: <u>info@questgsm.com</u> · Internet: www.questgsm.com/

ZONE 7 WATER AGENCY

100 NORTH CANYONS PARKWAY, LIVERMORE, CALIFORNIA 94551 VOICE (925) 454-5000 FAX (925) 245-9306

E-MAIL whong@zone7water.com

DRILLING PERMIT APPLICATION

FOR APPLICANT TO COMPLETE	FOR OFFICE USE
LOCATION OF PROJECT Byron Power Company 4901 Bruns Road, Byron, CA 94514	PERMIT NUMBER 2013007 WELL NUMBER 99B-7050-001-10
Coordinates Sourceft. ft. Accuracy∀ft. LAT: 37.791719 ft. LONG: -121.60051 ft. APN 988-7050-1-10 ft. 1000000000000000000000000000000000000	PERMIT CONDITIONS (Circled Permit Requirements Apply)
CLIENT Name Dan Guling - Byron Power Partners, L.P. Address 14 Philips Parkway Phone (201) 447-0000 City Montvale, NJ Zip 07645 APPLICANT Name Eric Garcia - Quest GeoSystems Management, Inc. Email EWG@QUESTGSM.COM Fax (925) 756-1227 Address 11275 Sunrise Gold Cir, Ste R Phone (925) 756-1210 City Rancho Cordova, CA Zip 95742	 A GENERAL A permit application should be submitted so as to arrive at the Zone 7 office five days prior to your proposed starting date. Submit to Zone 7 within 60 days after completion of permitted work the original <u>Department of Water Resources Water Well</u> <u>Drillers Report (DWR Form 188), sloned by the driller</u>. Permit is void if project not begun within 90 days of approval date. Notify Zone 7 at least 24 hours before the start of work.
TYPE OF PROJECT: Geotechnical Investigation Well Construction Contamination Investigation Cathodic Protection Other PROPOSED WELL USE: Irrigation Domestic Irrigation Municipat Remediation Industrial Groundwater Monitoring Dewatering Other	 Minimum surface seal diameter is four inches greater than the well casing diameter. Minimum seal depth is 50 feet for municipal end industrial wells or 20 feet for domestic and irrigation wells unless a lesser depth is specially approved. Grout placed by tremie. An access port at least 0.5 inches in diameter is required on the wellhead for water level measurements. A sample port is required on the discharge pipe near the wellhead.
DRILLING METHOD: Mud Rotary Air Rotary Hollow Stem Auger Cable Tool Direct Push / Other DRILLING COMPANY Woodward Drilling Company, Inc. PO BOX 336, Rio Vista, CA 94571 DRILLER'S LICENSE NO. 710079	 C. GROUNDWATER MONITORING WELLS INCLUDING PIEZOMETERS 1. Minimum surface seal diameter is four inches greater than the well or piezometer casing diameter. 2. Minimum seal depth for monitoring wells is the maximum depth practicable or 20 feet. 3. Grout placed by tramie.
WELL SPECIFICATIONS: Drill Hole Diameterin. Maximum Casing Diameterin. Depthft. Surface Seal Depthft. Number	D. GEOTECHNICAL. Backfill bore hole with compacted cuttings or heavy bentonite and upper two feet with compacted material. In areas of known or suspected contamination, tremied cement grout shall be used in place of compacted cuttings.
SOIL BORINGS: Maximum Number of Borings 15 Maximum Hole Diameter 2.5 in. Depth 16 ft.	E. CATHODIC. Fill hole above anode zone with concrete placed by tremie.
ESTIMATED STARTING DATE 01/28/2913 ESTIMATED COMPLETION DATE 02/01/2013 I hereby agree to comply with stifequirements of this permit and Alameda County Ordinance No. 73-68.	 F. WELL DESTRUCTION. See attached. G. SPECIAL CONDITIONS. Submit to Zone 7 within 60 days after completion of permitted work the well installation report including all soil and water laboratory analysis results.
APPLICANTS Date 01/23/243	Approved

ZONE 7 WATER AGENCY

100 NORTH CANYONS PARKWAY, LIVERMORE. CALIFORNIA 94551 VOICE (925) 454-5000 FAX (925) 245-9306 E-MAIL whong@zone?water.com

DRILLING PERMIT APPLICATION

FOR APPLICA	NT TO	COMPLETE
I QITTU I LIGIT		COULT FREE FREE

L	
LOCATION OF PROJECT Byron Power Company 4901 Bruns Road, Byron, CA 94514	PERMIT NUMBER <u>2012134</u> WELL NUMBER <u>2S/3E-1C2</u> t
	APN 99B-7050-001-10
Coordinates Sourceft ft Accuracy∀ft LAT: 37.791719 ft. LONG: -121.60051 ft. APN 998-7050-1-10 ft. 1000000000000000000000000000000000000	PERMIT CC (Circled Permit R
CLIENT Name Dan Gulino - Byron Power Partners, L.P. Address 14 Philips Parkway Phone (201) 447-9000 City Montvale, NJ Zip 07645 APPLICANT Name Eric Garcia - Quest GeoSystems Management, Inc. Same Eric Garcia - Quest GeoSystems Management, Inc.	 A. GENERAL A permit application sho Zone 7 office five days p Submit to Zone 7 within work the original <u>Depart</u> <u>Drillers Report (DWR F</u> Permit is void if project date.
Email EWG@QUESTGSM.COM Fax (925) 756-1227 Address 11275 Sunrise Gold Cir, Ste R Phone (925) 756-1210	4. Notify Zone 7 at least 2
City Rancho Cordova, CA Zip 95742	 B. WATER SUPPLY WELLS 1. Minimum surface seal di well casing diameter.
Well Construction Image: Construction Image: Construction Image: Construction Well Destruction Image: Construction Image: Construction Image: Construction Cathodic Protection Image: Construction Image: Construction Image: Construction PROPOSED WELL USE: Image: Construction Image: Construction Image: Construction Domestic Image: Construction Image: Construction Image: Construction Image: Construction Industrial Groundwater Monitoring Image: Construction Image: Construction Image: Construction Dewatering Other Image: Construction Image: Construction Image: Construction	 Minimum seal depth is 50 or 20 feet for domestic an is specially approved. Grout placed by tremie An access port at least 0 on the wellhead for water A sample port is required wellhead.
DewateringOther DRILLING METHOD: Mud Rotary Air Rotary Hollow Stem Auger Cable Tool Direct Push Other	C. GROUNDWATER MONITOR PIEZOMETERS 1. Minimum surface seal the well or piezometer
DRILLING COMPANY Woodward Drilling Company, Inc. PO Box 336, Rio Vista, CA 94571 DRILLER'S LICENSE NO. 710079	 Minimum seal depth for depth practicable or 20 Grout placed by tremie
WELL SPECIFICATIONS: Drill Hole Diameter 8 in. Maximum Casing Diameter 2 in. Depth 35 ft. Surface Seal Depth 11 ft. Number 4 (temp)	D. GEOTECHNICAL. Backfill b heavy bentonite and upper to areas of known or suspect grout shall be used in place
SOIL BORINGS: Number of Borings Maximum Hole Diameter in. Depth ft.	E. CATHODIC. Fill hole above tremie.
ESTIMATED STARTING DATE 11/26/2012	F. WELL DESTRUCTION. See
ESTIMATED COMPLETION DATE 12/26/2012	G. SPECIAL CONDITIONS. Su completion of permitted v including all soil and wate
County Ordinance No.73-68 APPLICANT'S SIGNATURE Date 11/21/2012	Approved <u>Mymum</u> Ho Wyman Hong
ATTACH SITE PLAN OR SKETCH	

FOR OFFICE USE

2134 <u>-1C2 to 1C5 (MW-1 to MW-4)</u> -10

RMIT CONDITIONS

Permit Requirements Apply)

- ation should be submitted so as to arrive at the ve days prior to your proposed starting date.
- 7 within 60 days after completion of permitted al Department of Water Resources Water Well (DWR Form 188), signed by the driller
- f project not begun within 90 days of approval
- at least 24 hours before the start of work.

- e seal diameter is four inches greater than the neter.
- epth is 50 feet for municipal and industrial wells nestic and irrigation wells unless a lesser depth roved.
- tremie
- at least 0.5 inches in diameter is required for water level measurements.
- required on the discharge pipe near the
- **ONITORING WELLS INCLUDING**
 - ce seal diameter is four inches greater than ometer casing diameter.
 - depth for monitoring wells is the maximum ble or 20 feet.
 - v tremie.
- Backfill bore hole with compacted cuttings or upper two feet with compacted material. In suspected contamination, tremied cement in place of compacted cuttings.
- e above anode zone with concrete placed by
- ON. See attached.
- ONS. Submit to Zone 7 within 60 days after mitted work the well installation report nd water laboratory analysis results

Revised: January 4, 2010

Date 11/26/12

GLOBAL_ID T1000003401 T1000003401 T1000003401 T10000003401	MW.01 MW.02 MW.03	ELEV_SURVEY_DATE 12/28/2012 12/28/2012 12/28/2012 12/28/2012	2 110.83 CGPS 2 107.03 CGPS 2 106.92 CGPS	88 88	AL ELEV_SURVEY_ORG 99 BENCHMARK CONSULTANTS 99 BENCHMARK CONSULTANTS 99 BENCHMARK CONSULTANTS 99 BENCHMARK CONSULTANTS	2.62 Alameda County BM Elev. 116.459 2.59 Alameda County BM Elev. 116.460	EFF_DATE	
GLOBAL_ID T10000003401		FIELD_PT_CLASS MW	XY_SURVEY_LATITUDE 12/28/2012 37.7912067	LONGTITUDE XY_METHOD 7 -121.6004705 CGPS	XY_DATUM NAD83	XY_ACC_V.XY_SURVEY_ORG 99 Benchmark Consultants Antioch CA	GPS_EQUIP_TYPE HIP	XY_SURVEY_DES BMC Point Number

GLOBAL_ID FIELD_PT	_NAME FIELD_PT_CLASS	XY_SURVEY LATITUDE	LONGTITUDE XY_METHOD	XY_DATUM	XY_ACC_V.XY_SURVEY_ORG	GPS_EQUIP_TY	PE XY_SURVEY_DESC
T1000003401 MW.01	MW	12/28/2012 37.79	912067 -121.6004705 CGPS	NAD83	99 Benchmark Consultants Antioch CA	HIP	BMC Point Number 109
T1000003401 MW.02	MW	12/28/2012 37.79	914952 -121.6004439 CGPS	NAD83	99 Benchmark Consultants Antioch CA	HIP	BMC Point Number 105
T1000003401 MW.03	MW	12/28/2012 37.79	917013 -121.6002832 CGPS	NAD83	99 Benchmark Consultants Antioch CA	HIP	BMC Point Number 103
T1000003401 MW.04	MW	12/28/2012 37.79	921990 -121.6004971 CGPS	NAD83	99 Benchmark Consultants Antioch CA	HIP	BMC Point Number 113

APPENDIX B SOIL BORING LOGS

QUEST GEOSYSTEMS MANAGEMENT, INC. · 11275 Sunrise Gold Circle - Suite R, Rancho Cordova, California 95742-6561 OFFICE (925) 756-1210 · FAX (925) 756-1227 · E-mail: <u>info@questgsm.com</u> · Internet: www.questgsm.com/

PROJECT:		BORING LOG	Ì	KEY
DRILLING CONTRACTOR:		STARTED:		FINISHED:
DRILLER'S NAME:		NORTHING:		EASTING:
DRILLING METHOD:		COORD SYSTEM/DATUM:		
DRILLING EQUIPMENT:		HOLE DIAMETER [in]:		TOTAL DEPTH [ft]: 21
SAMPLING METHOD:		DEPTH TO WATER [ft]:		CASING DEPTH [ft]:
HAMMER WEIGHT:	DROP [in]:	LOGGED BY:		PROJECT MANAGER:
DEPTH [feet] Sample Sample Blows/ 6 in. [%] [%] [%] [%]	LITHOLOGIC	DESCRIPTION		LL CONSTRUCTION DETAILS ND/OR DRILLING REMARKS
	Surface Elevation:		Cond	itions:
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	• • • • GW • • • • GP • • • GM • • • GM • • • GC • • • SW • • • SP • • • SM • • • SC • • • ML • • • CL • • • OL • • • MH • • • CH • • • OH • • • Pt • • • Asphalt • • • Concrete • • • Topsoil • • • Baserock Fill			Casing Casing Screen Crout / Portland Cement Bentonite
19—	o ∴ ^ ∴ Volcanic Ash			
20				
Quest Geosystems Management, Inc	11275 Sunrise Gold Circle Suite R, I	Rancho Cordova, CA 95742-6561	Project I	No: Page 1 of 1

PROJECT			Power Is Road		ron, CA		BORING LOG	;		MW-1
DRILLING	CONTR	RACTOF	^{R:} Wo	odw	ard Dr	illing	STARTED: 12/17/2012		FINISHED: 12/	18/2012
DRILLER			Armar				NORTHING:		EASTING:	
DRILLING	METHC	DD: Ho	ollow	Sten	n Auge	er	COORD SYSTEM/DATUM:			
DRILLING	EQUIP	MENT:	HK-8	31			HOLE DIAMETER [in]: 8		TOTAL DE	PTH [ft]: 27
SAMPLING	G METH	^{OD:} 2	"x24"	Cal	Mod;	continuous core	DEPTH TO WATER [ft]:		CASING DI	EPTH [ft]: 27
HAMMER					DROP [ir		LOGGED BY: RLN		PROJECT MANAGEF	Eric Garcia
DEPTH [feet] ample ID	SAMPL		[%] PID Reading	Odor		LITHOLOGIC	DESCRIPTION			RUCTION DETAILS
DEPTH [feet] Sample ID	Sample	6 in.	Rea 8	ŏ	Su	Irface Elevation:		Cond	itions: cold	, clear, light wind
0						TOPSOIL		-		Above ground well completion, monument with
1-						SILTY SAND (SM): [4/4), loose, dry to mo	Dark yellowish brown (10YR vist, 60% fine sand, 30%			locking cap
2—						silt, 20% clay				
3—										Casing: 2" schedule 40 PVC (0-17')
4								-		-01 00 (0-17)
4–10.WM					7 7		/ to moist, deeply pen root burrows <1/8" staining along burrows			
5- 2				NO	, 7 >	diameter, neavy non				
6—		8	3							Grout (Portland cement) (0-12.5')
7-				NO	> . ۲ 					
		5			. ^{. ر} د ک 					
MW.01-8		0			× · · د · · ·					
9− ≥				NO	71					
10-		8	3		∠ 					
					، ک > . د					
11				NO	. ک د ک					
12—		50	0		× · · د · · ·					
13—				NO	77					
_ 14—		7	5		4 4					Bentonite pellets (12.5-15')
-					· · 2 · . · · · 2 · · · · · · 2 · · ·			-		
15—				NO	د <i>۲</i>					
16—		8	3		⊥ · · ∨ · · · · · · 7 · ·					
Quest Ge	osystem	ns Mana	igement,	, Inc.	11275 \$	Sunrise Gold Circle Suite R, I	Rancho Cordova, CA 95742-6561	Project N	No: G09212	2012-03 Page 1 of 2

PROJECT: Byron Power Co. 4901 Bruns Road, Byron, CA	BORING LOG	i MW-1
DRILLING CONTRACTOR: Woodward Drilling	STARTED: 12/17/2012	FINISHED: 12/18/2012
DRILLER'S NAME: Armand	NORTHING:	EASTING:
DRILLING METHOD: Hollow Stem Auger	COORD SYSTEM/DATUM:	
DRILLING EQUIPMENT: HK-81	HOLE DIAMETER [in]: 8	TOTAL DEPTH [ft]: 27
SAMPLING METHOD: 2 "x24" Cal Mod; continuous	s core DEPTH TO WATER [ft]:	CASING DEPTH [ft]: 27
HAMMER WEIGHT: DROP [in]:	LOGGED BY: RLN	PROJECT MANAGER: Eric Garcia
	OLOGIC DESCRIPTION	WELL CONSTRUCTION DETAILS AND/OR DRILLING REMARKS
		Conditions: cold, clear, light wind
17- NO SANDY SIL 18- 75 NO A- 19- 75 NO A- 19- 75 NO A- 20- 75 NO A- 21- 75 NO SILTY SAN 22- 79 NO SILTY SAN 23- 79 NO SILTY SAN 24- 0 NO SANDY FA 25- NO SANDY SIL 4/6), dense, 25- NO SANDY SIL SANDY FA	ASH ASH: Light olive brown (2.5Y 5/6), , very deeply weathered-clay rich D (SM): Dark yellowish brown (10YR , wet, 80% very fine to fine sand,	#3 Sand (15-27') Screen: 2" schedule 40 PVC with 0.010" slots (17-27')
27 Quest Geosystems Management, Inc. 11275 Sunrise Gold Circ	le Suite R, Rancho Cordova, CA 95742-6561	Project No: G09212012-03 Page 2 of 2

PROJECT	4901	on Po Bruns	Road	, By	ron, CA	N	BORING LOC	6		MW-2
ORILLING	CONTRA	CTOR:	Woo	odw	ard D	rilling	STARTED: 12/21/2012 1	1:00	FINISHED	/21/2012 15:15
ORILLER'		Jo					NORTHING:		EASTING	
DRILLING	METHOD	[:] Holl	low S	Ster	n Aug	er	COORD SYSTEM/DATUM:			
RILLING	EQUIPME	ENT:	Nobil	le B	-53		HOLE DIAMETER [in]: 8	5	TOTAL DI	EPTH [ft]: 27.5
SAMPLING	G METHO	^{D:} 2 ">	(24"	Cal	Mod;	continuous core	DEPTH TO WATER [ft]:		CASING	DEPTH [ft]: 27
	WEIGHT:	130			DROP [ir		LOGGED BY: RLN		PROJEC ⁻ MANAGE	
	SAMPLE		bu						LL CONS	TRUCTION DETAILS
[feet] Sample ID	Sample Blows/	6 in. Recovery [%]	PID Reading	Odor	Si	urface Elevation:				RILLING REMARKS
0 - 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 8 - 7 - 8 - 8 - 7 - 8 - 8 - 7 - 8 - 7 - 8 - 7 - 8 - 7 - 8 - 7 - 8 - 7 - 8 - 7 - - 8 - 7 - - - - - - - - - - - - -	5 7 3 6 7 6 3 6 5 9 10 14 5 8 10 12 12 12 12 12	75 92 83 83 22 22 50				3/6), loose to mediun fine sand, 40% silt	Dark yellowish brown (10YR n dense, moist, 60% very yellowish brown (10YR 4/6)			Above ground well completion, monument with locking cap Casing: 2" schedule 40 PVC (0-17') Portland Cement grout (0-13') Medium bentonite chips (13-15')
5—	4			NO						
6—	31	ı				VOLCANIC ASH: Mc	ottled light yellowish brown			
Quest Ge	osystems	Manage	ement,	Inc.	11275		Rancho Cordova, CA 95742-6561	Project N	No: G0921	12012-03 Page 1 of 2

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	NORTHING: COORD SYSTEM/DATUM: HOLE DIAMETER [in]:	8 TOTAL I CASING PROJEC MANAG WELL CONS AND/OR I	2/21/2012 15:15 G: DEPTH [ft]: 27.5 DEPTH [ft]: 27 CT Frie Caraia
DRILLER'S NAME: Joe DRILLING METHOD: Hollow Stem Auger DRILLING EQUIPMENT: Mobile B-53 SAMPLING METHOD: 2 "x24" Cal Mod; continuous co HAMMER WEIGHT: 130 DROP [in]: 30 Image: Sample Side Side Side Side Side Side Side Sid	NORTHING: COORD SYSTEM/DATUM: HOLE DIAMETER [in]: DEPTH TO WATER [ft]: LOGGED BY: RLN GIC DESCRIPTION ght olive brown (2.5Y 4.3), eply weathered, light iron	8 TOTAL I CASING PROJEC MANAG WELL CONS AND/OR I	G: DEPTH [ft]: 27.5 DEPTH [ft]: 27 CT Eric Garcia STRUCTION DETAILS DRILLING REMARKS ccasional rain, cold wind
Thomow orenin regeneration of the property of the p	HOLE DIAMETER [in]: DEPTH TO WATER [ft]: LOGGED BY: RLN GIC DESCRIPTION	CASING CASING PROJEC MANAG WELL CONS AND/OR D	DEPTH [ft]: 27 CT Eric Garcia STRUCTION DETAILS DRILLING REMARKS ccasional rain, cold wind
ORILLING EQUIPMENT: Mobile B-53 SAMPLING METHOD: 2 "x24" Cal Mod; continuous co IAMMER WEIGHT: 130 DROP [in]: 30 IAMMER WEIGHT: 130 DROP [in]: 30 IAMMER WEIGHT: 130 ITHOLOC Surface Elevation: IAMMER WEIGHT: 36 ITHOLOC Surface Elevation: IAMMER WEIGHT: 36 ITHOLOC Surface Elevation: IAMMER WEIGHT: 36 INO ITHOLOC IAMMER WEIGHT: 36 ITHOLOC Surface Elevation: IAMMER WEIGHT: 17 NO ITHOLOC Surface Elevation: IAMMER WEIGHT: 17 NO ITHOLOC Surface Elevation: IAMMER WEIGHT: 17 NO ITHOLOC Itholoc IAMER WEIGHT: 17 NO Ith	DEPTH TO WATER [ft]: LOGGED BY: RLN GIC DESCRIPTION ght olive brown (2.5Y 4.3), eply weathered, light iron	CASING CASING PROJEC MANAG WELL CONS AND/OR D	DEPTH [ft]: 27 CT Eric Garcia STRUCTION DETAILS DRILLING REMARKS ccasional rain, cold winc
TAMMER WEIGHT:130DROP [in]:30LITHOLOGSAMPLES $\begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 $	LOGGED BY: RLN GIC DESCRIPTION ght olive brown (2.5Y 4.3), eply weathered, light iron	PROJEC MANAG WELL CON AND/OR I	CT ER: Eric Garcia STRUCTION DETAILS DRILLING REMARKS ccasional rain, cold wind
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	GIC DESCRIPTION ght olive brown (2.5Y 4.3), eply weathered, light iron	WELL CON AND/OR I	SER: ETC Garcia STRUCTION DETAILS DRILLING REMARKS ccasional rain, cold wind
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ght olive brown (2.5Y 4.3), eply weathered, light iron	AND/OR [DRILLING REMARKS
36 60 11 20 11 NO 7 (2.5Y 6/3) and lig weak, friable, ded staining 17- 50/4" 50/4" 17 NO 7 (2.5Y 6/3) and lig weak, friable, ded staining 18- 17 NO 7 (2.5Y 6/3) and lig weak, friable, ded staining 19- 28 19 NO (2.5Y 6/3) and lig weak, friable, ded staining 20- 32 NO (2.5Y 6/3) and lig weak, friable, ded staining (2.5Y 6/3) and lig weak, friable, ded staining 20- 28 19 NO (2.5Y 6/3) and lig weak, friable, ded staining 20- 32 19 (2.5Y 6/3) and lig weak, friable, ded staining (2.5Y 6/3) and lig weak, friable, ded staining 20- 32 (2.5Y 6/3) and lig weak, friable, ded staining (2.5Y 6/3) and lig weak, friable, ded staining 21- 32 (2.5Y 6/3) and lig weak, friable, ded staining (2.5Y 6/3) and lig weak, friable, ded staining 22- 32 (2.5Y 6/3) and lig weak, friable, ded staining (2.5Y 6/3) and lig weak, friable, ded staining 23- (3.5Y 6/3) and lig weak, friable, ded staining (3.5Y 6/3) and lig weak, friable, ded staining 23- (3.5Y 6/3) and lig weak, friable, de	eply weathered, light iron	Conditions: or	
25- 26- 27- 27- 27- 27- 27- 27- 27- 27- 27- 27	I: Pale olive (5Y 6/3), wet,		Screen: 2" schedule 40 PVC with 0.010" slots (17-27') drill without sampling 23-27.5'

DRILLING CONTRACTOR Woodward Drilling STARTD 12/19/2012 13:00 FINISE 12/19/2012 FINISE 12/19/2012 DRILLIERS NAME: Armand NORTHING: EASTING: EASTING: DRILLING METHOD: Hollow Stem Auger COORD SYSTEMDATUM: EASTING: DRILLING METHOD: HK-81 HOLE DIAMETER [n]: 8 TOTAL DEPTH [N]: 25.5 SAMPLING METHOD: 2 "x24" Cal Mod; continuous core DEPTH TO WATER [n]: CASING DEPTH [N]: 25 SAMPLES BADP [n]: DEPDP [n]: LITHOLOGIC DESCRIPTION WELL CONSTRUCTION DETALLES ANNOCO REILLING REMARKS 0	PRO		49	01 B	runs		l, Byı	ron, CA		BORING LO	G	MW-3
DRILLER'S NAME: Armand NORTHING: EASTING: DRILLING METHOD: Hollow Stem Auger COORD SYSTEMDATUM: TOTAL DEPTH [ft]: 25.5 SAMPLING METHOD: 2 "x24" Cal Mod; continuous core DEPTH TO WATER [ft]: CASING DEPTH [ft]: 25.5 MAMMER WEIGHT: DROP [n]: LOGGED BY: RLN PROJECT: Eric Garcia SAMPLES Bage Bagee Bage Bagee Bagee Bagee Bagee Bagee Bagee Bagee Bagee Bagee Conditions: Oak page Conditions: Oak pagee <	DRILI	LING	CONT	[RAC]	FOR:	Woo	odw	ard D	rilling	STARTED: 12/19/2012	13.00	FINISHED: 12/19/2012
DRIVE COUPMENT: HK-81 HOLE DIAMETER [n]: 8 TOTAL DEPTH [ft]: 25.5 SAMPLING METHOD: 2 *X24" Cal Mod; continuous core DEPTH TO WATER [ft]: CASING DEPTH [ft]: 25.5 MAMMER WEIGHT: DROP [n]: LOGGED BY: RLN PROJECT PROJECT The second of the second se											.0.00	
SAMPLING METHOD: 2 X 24" Call Mod; continuous core DEPTH TO WATER (II): CASING DEPTH (II): 25.3 MAMARER WEIGHT: DROP [III): DROP [III]: LOGGED BY: RLN PROLOCT MANAGER: Eric Garcia AND/OR DRILLING REMARKS Sampling Sampling Sampling Sampling Sampling Conditions: clear, warm, calm MANAGER: Above ground well completion. Sampling Sampling Sampling Sampling Sampling Sampling Conditions: clear, warm, calm Manager Above ground well completion. Sampling Sampling Sampling Sampling Sampling Sampling Sampling Sampling Conditions: clear, warm, calm monument with locking cap Sampling Sam	DRILLING METHOD: Hollow Stem Auger							n Aug	er	COORD SYSTEM/DATUM:		
HAMMER WEIGHT: DROP [In]: LOGGED BY: RLN PPD/ECT MANAGER Eric Garcia MANAGER End big Big Big Big Big Big Big Big Big Big B							1			HOLE DIAMETER [in]:	8	TOTAL DEPTH [ft]: 25.5
SAMPLES Construction DETAILS and and an analysis and analysis ananalysis analysis	SAMF	PLING	G MET	HOD:	2 ">	(24"	Cal	Mod;	continuous core	DEPTH TO WATER [ft]:		CASING DEPTH [ft]: 25
Image: Section of the section of th	HAM	MER \	WEIGI	HT:				DROP [i	n]:	LOGGED BY: RLN		PROJECT MANAGER: Eric Garcia
a a a a a a a conducts. branch conducts	eet]				/ery	ding	dor		LITHOLOGIC	DESCRIPTION		
0 - - Above ground well 1- - - - - 2- - - - - - 3- -	<u>1</u> 2	Sam	Sam	Blow 6 ir	Recov	Р Rea	ŏ	S	urface Elevation:		Con	ditions: clear, warm, calm
5- 75 NO SANDY SILT (ML): Dark yellowish brown (10YR - <t< td=""><td>1 - 2</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>4/6), soft, moist, 40%</td><td>very fine sand, 55% silt,</td><td></td><td>Casing: 2" schedule</td></t<>	1 - 2								4/6), soft, moist, 40%	very fine sand, 55% silt,		Casing: 2" schedule
8- 83 NO 1	5— - 6—	MW.03-4			75				5/6), soft, dry to mois	bark yellowish brown (10YR t, 70% fine sand, 30% silt,		
1- 83 NO SILTY SAND (SM): Dark yellowish brown (10YR - <t< td=""><td>- 8— -</td><td>MW.03-8</td><td></td><td></td><td>83</td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td></t<>	- 8— -	MW.03-8			83						-	
12- 83 NO NO Image: second sec	_				67		NO					
14- 83 SILTY SAND (SM): Dark yellowish brown (10YR	2—				83				5/6), loose, dry to mo	ist		
SILTY SAND (SM): Dark yellowish brown (TUYR	13—						NO					
15-	_				83		NO		3/4), loose, dry to mo	ist, 10% fine subrounded		
	16—				50							

PROJECT: Byron Power Co. 4901 Bruns Road, Byron, CA	BORING LOG	MW-3
DRILLING CONTRACTOR: Woodward Drilling	STARTED: 12/19/2012 13:00	FINISHED: 12/19/2012
DRILLER'S NAME: Armand	NORTHING:	EASTING:
DRILLING METHOD: Hollow Stem Auger	COORD SYSTEM/DATUM:	
DRILLING EQUIPMENT: HK-81	HOLE DIAMETER [in]: 8	TOTAL DEPTH [ft]: 25.5
SAMPLING METHOD: 2 "x24" Cal Mod; continuous core	DEPTH TO WATER [ft]:	CASING DEPTH [ft]: 25
HAMMER WEIGHT: DROP [in]:	LOGGED BY: RLN	PROJECT MANAGER: Eric Garcia
LITHOLOGIC		ELL CONSTRUCTION DETAILS
LITHOLOGIC		ditions: clear, warm, calm
17- 67 18- 67 19- 83 20- 83	Yellowish brown (10YR 5/6), e subrounded sand, 20% ottled yellowish brown (5Y5/3), soft, moist, friable, ed, trace micaceous	#3 Sand (13-25.5') Screen: 2" schedule 40 PVC with 0.010" slots (15-25')

PROJE	_	Byron 901 Br				on, CA	BORING LOG	;	MW-4
DRILLIN	NG CON	TRACT	OR:	Wo	odwa	ard Drilling	STARTED: 12/18/2012		FINISHED: 12/18/2012
	ER'S NAM			mar		_	NORTHING:		EASTING:
DRILLIN	NG MET	HOD:	Holl	ow S	Stem	n Auger	COORD SYSTEM/DATUM:		
DRILLIN	NG EQU	IPMEN ⁻	^{r:}	IK-8	81		HOLE DIAMETER [in]: 8		TOTAL DEPTH [ft]: 31
SAMPLI	ING MET	THOD:	2 "x	24"	Cal	Mod; continuous core	DEPTH TO WATER [ft]:		CASING DEPTH [ft]: 24
	ER WEIG					DROP [in]:	LOGGED BY: RLN		PROJECT MANAGER: Eric Garcia
DEP IN [feet] ample		PLES	ery	D ding	ط ح	LITHOLOGIC	DESCRIPTION		LL CONSTRUCTION DETAILS
UEF [fe	Sample	Blows/ 6 in.	Recovery [%]	PID Reading	Odor	Surface Elevation:			ditions: clear, cold, light wind
0 1- 2- 3-	MW.04-4		100	0	NO	SILTY SAND (SM): moist, 60% fine sand plasticity trace calcite veining	Dark yellowish brown (10YR		Above ground well completion, monument with locking cap Casing: 2" schedule 40 PVC (0-14') Hand augered to 5'
7- 8- 9- 10-	MW. 04-8		75 67	0	NO	4/6), loose, moist, 60	0% very fine sand, 40% silt, sand with 80% fine sand,		Lean grout, Type II Portland cement (0-11')
11— - 12— -			100		NO		(CL): Yellowish brown t to moist, 30% very fine		Bentonite pellets (11-13')
13— _ 14—			83		NO	SILTY SAND (SM): dense, moist, 80% v	Yellowish brown (10YR 5/6), ery fine sand, 20% silt		
15—					NO				
16—			83			SILTY SAND (SM):	Yellowish brown (10YR 5/6),		
Quest (Geosyst	ems Ma	anage	ment,	Inc.	11275 Sunrise Gold Circle Suite R,		Project I	No: G09212012-03 Page 1 of 2

PROJECT	4901 E	Bruns F	wer C Road, B	yron, CA	A	BORING LOG)		MW-4		
ORILLING	CONTRAC	TOR:	Wood	ward Di	rilling	STARTED: 12/18/2012		FINISHED	2/18/2012		
DRILLER'S			mand			NORTHING:		EASTING			
RILLING	METHOD:			em Aug	er	COORD SYSTEM/DATUM:					
	EQUIPMEN	17.	IK-81			HOLE DIAMETER [in]: 8		TOTAL D	EPTH [ft]: 31		
AMPLING	G METHOD:			al Mod.	continuous core	DEPTH TO WATER [ft]:		CASING I	DEPTH [ft]: 24		
	WEIGHT:		21 00	DROP [ir		LOGGED BY: RLN		PROJEC			
-	SAMPLES						WE		RUCTION DETAILS		
[feet] Sample ID	Sample Blows/ 6 in.	Recovery [%]	PID Reading			DESCRIPTION	A	ND/OR D	RILLING REMARKS		
Sar	e Bic Sal	Rec	Å,	໌ Sເ	urface Elevation:	to opprop apple 20% silt	Cond	ditions: cle	ar, cold, light wind		
7		75 100 75 100			WELL GRADED GR. Yellowish brown (10) fine rounded to subro medium sand, 20% s SILTY SAND (SM): Y loose, wet, 80% fine	Yellowish brown (10YR 5/6), to medium sand, 20% silt, rer of fine gravel (Sandstone			#3 Sand (13-25') Screen: 2" schedule 40 PVC with 0.010" slots (14-24')		
- 25- - 26- - 27- - - 28- - - 29-		83 83	N	· · · · · · · · · · · · · · · · · · ·	(2.5Y 6/3); yellow bro				Bentonite chips (25-31')		
30- - 31		50									

4901 E		Road	l, By	ron, CA		BORING L	OG			SI	> -8
RILLING CONTRAC						STARTED: 1/30/2013	09:	50	FINISHED: 1/30/20	13	10:08
RILLER'S NAME:				arlos		NORTHING:	00.	00	EASTING:	10	10.00
RILLING METHOD:	Dire	ct P	ush	1		COORD SYSTEM/DATUN	Л:				
RILLING EQUIPMEN	^{NT:} A	MS	Po	wer Pi	robe 9500	HOLE DIAMETER [in]:	2		TOTAL DEPTH [ft]	:	16
AMPLING METHOD:	Con	tinu	ous	Core		DEPTH TO WATER [ft]:			CASING DEPTH [f	t]:	
AMMER WEIGHT:				DROP [ii	n]:	LOGGED BY: RLN			PROJECT MANAGER: E	ric G	Sarcia
[feet] D D D D D D D D D D D D D D D D D D D	ery	D ding	o.		LITHOLOGIC	DESCRIPTION			LL CONSTRUCT		
[feet] Sample ID Sample Blows/ 6 in.	Recovery [%]	PID Reading	Odor	S	urface Elevation:				itions: inside build		
	<u>~</u>			*****	CONCRETE					5	
SP-08-2	69	0	NO		to 2', moist below 2',	Brown (10YR 4/3), soft, w 70% very fine sand, 30% Dark yellowish brown (10 o fine sand, 30% silt, trace	5 silt YR				
	63	0	NO								
		0	NO		(10YR 5/6), soft, moi 70% clay, moderate	(CL): Yellowish brown st, 30% very fine sand, to high plasticity, trace					
	75	0	NO		medium stiff, moist, 7 trace iron staining, tr clasts VOLCANIC ROCK: N (10YR 6/4) and dark	Icanic clasts Yellowish brown (10YR 5/ 70% fine sand, 30% silt, ace weathered volcanic Mottled light yellowish bro yellowish brown (10YR yery deeply weathered			Backfilled 1/30/13	by W	/D

	49 CONT	TRACT	runs IOR:		, Dyl	011,		\ 	BORING LOC		FINISHED:
				VVO	odwa	ard	D	rilling	1/30/2013 1; NORTHING:	3:00	1/30/2013 13:20 EASTING:
DRILLER			Ju	ian a	& Ca	arlos	5				
DRILLING	METH	IOD:	Dire	ct P	ush				COORD SYSTEM/DATUM:		
RILLING	EQUI	PMEN	^{т:} А	MS	Pov	ver	P	robe 9500	HOLE DIAMETER [in]:	2	TOTAL DEPTH [ft]: 12
AMPLIN	G MET	HOD:	Cor	ntinu	ious	Со	re	- dual tube	DEPTH TO WATER [ft]:		CASING DEPTH [ft]:
AMMER	WEIG	HT:				DRO	> [i	n]:	LOGGED BY: RLN		PROJECT MANAGER: Eric Garcia
	SAM		2	ng				LITHOLOGIC	DESCRIPTION		ELL CONSTRUCTION DETAILS
[feet] Sample ID	Sample	Blows/ 6 in.	Recovery [%]	PID Reading	Odor		S	urface Elevation:		_	MD/OR DRILLING REMARKS
0 0	S	ш	Ř	ш.		***	8	CONCRETE			
-				0	NO		∞ ì⊓	GRAVEL			
1—									Brown (10YR 4/3), soft to 30% fine sand, 70% silt		
2			48	0	NO						
				Ũ							
_											
4—				0	NO						
-											
5—											
_									rellowish brown (10YR 5/6),	_	
6—			63	0	NO			stiff, moist, 70% fine	sand, 30% silt, low plasticity		
7—				0							
8—				0	NO						
_											
9—											
-											
0—			63	0	NO	· · ·			ottled yellowish brown	-	Hand drilling from 10'
							· .	weathered, friable, w	(5Y5/4), moist, deeply eak		
1_				0	NO	.7 	. 1				Refusal at 12.0'
				0		< ,	- 1				Backfilled 1/30/13 by WD

PROJECT	-	yror 01 B				• ron, CA	A Contraction of the second seco	BORING LO	G	SP-10
ORILLING								STARTED: 1/30/2013	13:34	FINISHED: 1 1/30/2013 13:55
RILLER'						arlos		NORTHING:		EASTING:
RILLING	METH	HOD:	Dire					COORD SYSTEM/DATUM:		
RILLING	EQUI	PMEN	^{т:} А	AMS		ver Pi	robe 9500	HOLE DIAMETER [in]:	2	TOTAL DEPTH [ft]: 16
AMPLING	G MET	HOD:						DEPTH TO WATER [ft]:		CASING DEPTH [ft]:
AMMER						DROP [ii		LOGGED BY: RLN		PROJECT MANAGER Eric Garcia
:_	SAM	PLES		D	,			DESCRIPTION	1	WELL CONSTRUCTION DETAILS
[feet] Sample ID	Sample	Blows/ 6 in.	Recovery [%]	PID Reading	Odor					AND/OR DRILLING REMARKS
Ő	Sa	Шщ	Re	Ř		50	urface Elevation:		C	onditions: inside building
0				0	NO					_
1—							GRAVEL SANDY SILT (ML): E 3/4), soft, wet, 30% f	Dark yellowish brown (10YR ine sand, 70% silt	-	-
-10-2			71				moist and stiff below	2'	_	-
<u></u> Ч			<i>,</i> ,							-
3									-	-
1-				0	NO				_	-
-								Yellowish brown (10YR 5/6) sand, 20% silt, low plasticit		-
5-									, -	-
- 6			50							
			50							_
7—									-	-
8				0	NO					
										_
9—							sand coarsens with c	depth	_	-
-										-
0—			63				trace roots from ~10		-	-
1-										
.							trace fine chert and s	sandstone gravels		-
2—				0	NO		VOLCANIC ASH: Mo	ottled brownish yellow		-
3—								wish brown (10YR 5/6), / weathered, friable, 10% zed volcanic clasts	-	-
4			75	0	NO	<			-	-
_						, r 1 1 1				-
5—				_		>: . د 			-	-
-				0	NO	د ک				Backfilled 1/30/13 by WD

PROJECT:	Byro 4901 E	runs	Road	d, By	ron, CA	A	BORING L	OG		SF	- 11
DRILLING C	ONTRAC	TOR:	Wo	odw	ard D	rilling	STARTED: 1/31/2013	09:	20	FINISHED: 1/31/2013	09:40
DRILLER'S I					arlos	~	NORTHING:	09.	20	EASTING:	00.40
DRILLING M	IETHOD:	Dire	ect P	Push	ו		COORD SYSTEM/DATUN	N:			
DRILLING E	QUIPMEN	^{NT:} A	AMS	Po	wer P	robe 9500	HOLE DIAMETER [in]:	2		TOTAL DEPTH [ft]:	16
SAMPLING I	METHOD	Cor	ntinu	ious	s Core	- dual tube	DEPTH TO WATER [ft]:			CASING DEPTH [ft]:	
HAMMER W	EIGHT:				DROP [i	n]:	LOGGED BY: RLN			PROJECT MANAGER: Eric (Garcia
	SAMPLES	very	PID Reading	Odor		LITHOLOGIC	DESCRIPTION			LL CONSTRUCTION ND/OR DRILLING RE	
ווידי [feet] Sample ID	Sample Blows/ 6 in.	Recovery [%]	Rea	Ō	S	urface Elevation:			Conc	litions: inside building	
0			1	Fain		CONCRETE			Ţ		
1-			I	rain			Dark greyish brown (10YF ine to very fine sand, 70%		_		
2- 1-		71				Sint			_		
3-									_		
4			0	NO			Dark yellowish brown (10 ¹ , 25% fine sand, 75% silt		_		
5-		83							_		
6-			0	NO	,				_		
7-		83							_		
8			0	NO					_		
9—		83							_		
10-			0	NO							
11-		75					Yellowish brown (10YR 5/ 30% very fine to medium		_		
12-			0	NO		sand, 20% silt					
13-		96			· · ^	VOLCANIC ASH: Mo	ottled brownish yellow wish brown (10YR 5/6),		_		
14			0	NO	· · · · · · · · · · · · · · · · · · ·	stiff, very deeply wea matrix	athered, friable, clay rich				
15—		83	0	NO	· · · · · · · · · · · · · · · · · · ·				_		
		1		UNU		1					

		yro r 001 B				n, CA BORING LOG	SP-12
DRILLING						STARTED: FINISHED:	1/2013 10:40
ORILLER'				ian a			1/2013 10.40
DRILLING	6 METH	HOD:	Dire	ect P	ush	COORD SYSTEM/DATUM:	
RILLING	6 EQUI	PMEN	^{T:} A	MS	Po	er Probe 9500 HOLE DIAMETER [in]: 2 TOTAL DEF	PTH [ft]: 14
	G MET	HOD:	Cor	ntinu	ious	Core DEPTH TO WATER [ft]: CASING DE	PTH [ft]:
IAMMER	WEIG	HT:				ROP [in]: LOGGED BY: RLN PROJECT MANAGER:	Eric Garcia
[feet] ample		PLES	ery	D ding	o		RUCTION DETAILS
[feet] Sample	Sample	Blows/ 6 in.	Recovery [%]	PID Reading	Odor	Surface Elevation: Conditions: inside	
0			ŭ.			CONCRETE: no odor	
P-12-1 - 12-1				0	Faint	GRAVEL SANDY SILT (ML): Dark greyish brown (10YR 4/2), medium stiff, moist, 30% very fine sand,	
2- 0			74			70% silt - SANDY SILT (ML): Dark yellowish brown (10YR -	
P-12-2			71	0	NO	4/6), stiff, moist, 40% fine sand, 60% silt	
^{3–} ^d							
4—				0	NO		
-							
5—			83				
6—				0	NO		
7—			75				
8—				0	NO		
9—			96				
0				0	NO	SANDY SILT (ML): Dark yellowish brown (10YR 4/6), stiff, moist, 30% fine sand, 70% silt	
_				0			
1-			83				
2—				0	NO		
-							
3-			75	0	NO	VOLCANIC ASH	4.0'
				0		Backfilled 1/	31/13 by WD

PROJECI		yror 01 Bi				• ron, CA	A	BORING LO	G	SP-13
DRILLING								STARTED: 1/30/2013	10:50	FINISHED: 1/30/2013 11:05
ORILLER'						arlos	-	NORTHING:	10.00	EASTING:
ORILLING	6 METH	HOD:	Dire	ect P	ush			COORD SYSTEM/DATUM:		
RILLING	EQUI	PMEN	^{т:} А	MS	Po	wer P	robe 9500	HOLE DIAMETER [in]:	2	TOTAL DEPTH [ft]: 16
SAMPLIN	G MET	HOD:	Cor	ntinu	ious	Core		DEPTH TO WATER [ft]:		CASING DEPTH [ft]:
IAMMER						DROP [i		LOGGED BY: RLN		PROJECT MANAGER: Eric Garcia
	SAM		>	БĽ			LITHOLOGIC		N	/ELL CONSTRUCTION DETAILS
[feet] Sample	Sample	Blows/ 6 in.	Recovery [%]	PID Reading	Odor	S	urface Elevation:		C0	AND/OR DRILLING REMARKS
0 0	S	ш	Re				CONCRETE			
-				0	NO		GRAVEL			
1-				0	NO		SANDY SILT (ML): E	Brown (10YR 4/3), medium % very fine sand, 70% silt,		
2- 2- 2-			74					derate plasticity	_	
SP-1:			71						-	
3										
4—		-		0	NO			Dark vollowish brown (40)/D		
-							4/6), stiff, moist, 70%	Dark yellowish brown (10YR 5 fine sand, 30% silt, low	` -	
5—							plasticity			
6—			63	0	NO					
_			05	0					_	
7—										
_									_	
8				0	NO					
9—										
-									-	
0			67							
1-										
_									-	
12—				0	NO			ellowish brown (10YR 5/6)	, -	
- 13—							dense, moist, 30% v	ery fine sand, 70% silt		
_									-	
14—			63					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
				0	NO		loose, moist to wet, 8	Yellowish brown (10YR 5/8) 30% fine rounded sand,	, _	
15—						7 . ^		llowish brown (10YR 5/6),		
16						. 7 .	clasts of ash in claye	therd, friable, angular 0.5" y matrix, 1.5" thick hard asl	ר ר	Backfilled 1/30/13 by WD
		ems Ma					layer at 15.5	Rancho Cordova, CA 95742-6561	_/	

PROJECT: Byro 4901 E	Bruns	Road	l, Byı	ron, CA	BORING LC)G	SP-14
ORILLING CONTRAC	TOR:	Woo	odw	ard Drilling	STARTED: 1/30/2013	12:00	FINISHED: 1/30/2013 12:30
DRILLER'S NAME:				arlos	NORTHING:		EASTING:
DRILLING METHOD:	Dire	ect P	ush		COORD SYSTEM/DATUM:		-
DRILLING EQUIPME	NT: A	AMS	Ρο	wer Probe 950	HOLE DIAMETER [in]:	2	TOTAL DEPTH [ft]: 16
SAMPLING METHOD	[:] Cor	ntinu	ious	Core	DEPTH TO WATER [ft]:		CASING DEPTH [ft]:
AMMER WEIGHT:				DROP [in]:	LOGGED BY: RLN		PROJECT MANAGER: Eric Garcia
		bu		LIT			ELL CONSTRUCTION DETAILS
IDEPTIA [feet] ID ID Blows/ Blows/ Blows/	Recovery [%]	PID Reading	Odor	Surface Eleva			AND/OR DRILLING REMARKS
<u>о о п</u>	<u> </u>						
		0	NO	GRAVEL			
1-					LT (ML): Dark yellowish brown (10YF noist, 30% fine sand, 70% silt	8 –	
_ N						-	
2-41-0	75	0	NO				
3-		0					
3							
4-		0	NO				
						_	
5—						_	
						_	
6-	63	0	NO			_	
-						_	
7-					ND (SM): Yellowish brown (10YR 5/4)		
-				soft, mois	to wet, 75% fine sand, 25% silt, low	-	
8-		0	NO	plasticity,	race fine clast gravel rounded	_	
-						-	
9—						-	
-						_	
0-	54						
11-							
2-		0	NO				
13—							
14	60	0	NO		C ASH: Light yellowish brown (10YR wet, friable, weak, clay rich matrix		
15—				>			
-		0	NO	<			
16				ч, <u>ч</u>			Backfilled 1/30/13 by WD

	JECT		-			[.] Co. d, Byr	. ron, CA	N N	BORING LOO	3	SP-15
DRIL	LING						ard D		STARTED: 1/30/2013 1	4:13	FINISHED: 1/30/2013 15:15
		S NAM					arlos		NORTHING:		EASTING:
RIL	LING	METH	HOD:	Dire	ect F	ush			COORD SYSTEM/DATUM:		
RIL	LING	EQUI	PMEN	т: А	AMS	ο Ροι	wer Pr	obe 9500	HOLE DIAMETER [in]:	2	TOTAL DEPTH [ft]: 12
AM	PLING	9 MET	HOD:	Cor	ntinu	Jous	Core	- dual tube	DEPTH TO WATER [ft]:		CASING DEPTH [ft]:
		WEIG					DROP [ir		LOGGED BY: RLN		PROJECT Eric Garcia
		SAM			, D	,			DESCRIPTION	W	ELL CONSTRUCTION DETAILS
[feet]	Sample ID	Sample	Blows/ 6 in.	Recovery [%]	PID Reading	Odor		urface Elevation:			AND/OR DRILLING REMARKS
0	Sa	Š	Ш¢	Re	~		SI 88888	CONCRETE		Coi	nditions: inside of building
· _							*****	GRAVEL: no odor		_	
-	2				2	Faint	t	SANDY SILT (ML): D	Dark yellowish brown (10YR 5 fine sand, 70% silt, faint odor		
2	SP-15-2							SANDY SILT (ML): Y stiff, moist, 30% fine	/ellowish brown (10YR 5/6), sand 70% silt		
	SF								oana, rozo sin		
_					0	Faint	t				
										_	
-											
;								SILTY SAND (SM): 1 stiff, moist, 60% fine	Yellowish brown (10YR 5/4), sand, 40% silt		
-	မှ			50	1	Faint	t				
;	P-15-(
,	SP										
_											
3—					0	NO					
-										-	
)_											
_											
)				67	0	NO			rk yellowish brown (10YR	\neg	
_							· · · ·	4/6), very stiff, dry to weathered, friable	moist, very deeply		Defund at 10
					0	NO	71				Refusal at 12'
2							7	VOLCANIC ASH: Mo (10YR 7/4) and vello	ottled very pale brown wish brown (10YR 5/4),		Backfilled 1/30/13 by WD
								very stiff, dry to mois	t, very deeply weathered	/	

	on Po			ron, CA		BORING LO	G	SP-16
DRILLING CONTRAC				ard D		STARTED:		FINISHED:
DRILLER'S NAME:				arlos		1/31/2013 C NORTHING:	8:49	1/31/2013 09:10 EASTING:
DRILLING METHOD	Dire	ect P	ush	1		COORD SYSTEM/DATUM:		
DRILLING EQUIPME	INT: A	AMS	Po	wer Pi	robe 9500	HOLE DIAMETER [in]:	2	TOTAL DEPTH [ft]: 16
SAMPLING METHOD	^{D:} Cor	ntinu	ious	s Core		DEPTH TO WATER [ft]:		CASING DEPTH [ft]:
HAMMER WEIGHT:				DROP [ii	n]:	LOGGED BY: RLN		PROJECT MANAGER: Eric Garcia
DEPTH [feet] [feet] DD mple ample ample fows/		PID Reading	Odor		LITHOLOGIC	DESCRIPTION		ELL CONSTRUCTION DETAILS
DEPTI [feet] Sample ID Blows/	6 IN. Recovery [%]	Rea	ð	S	urface Elevation:		Cond	ditions: inside of building
0					CONCRETE			-
		0	NO			Dark yellowish brown (10YR moist below 2', 30% fine		
2	67	0	NO				_	
4								
5	50	0	NO		sandy silt becomes s	tiff by 6'	-	
7	83	0	NO					
		0	NO					
9	83				4/6), loose, moist, 80	Dark yellowish brown (10YR % fine rounded sand, 20%		
10-		0	NO		silt		_	
11-	75					ht yellowish brown (10YR		
12		0	NO	· · · · · · · · · · · · · · · · · · ·	6/4), soft, moist, dee	ply weathered, friable, weak		
13—	100							
14-		0	NO	L				
15—	100			∠ · · · ×				Backfilled 1/31/13 by MD
16				<u> </u>				Backfilled 1/31/13 by WD
Quest Geosystems	Manage	ment	Inc	11275	Suprise Gold Circle Suite R	Rancho Cordova, CA 95742-6561	Project	No: G09212012-02 Page 1 of 1

ROJECT: Byron Power Co. 4901 Bruns Road, Byron, CA	BORING LOO	S SP-17
RILLING CONTRACTOR: Woodward Drilling	STARTED: 1/31/2013 10):48 FINISHED: 1/31/2013 11:20
RILLER'S NAME: Juan & Carlos	NORTHING:	EASTING:
RILLING METHOD: Direct Push	COORD SYSTEM/DATUM:	
RILLING EQUIPMENT: AMS Power Probe 9500	HOLE DIAMETER [in]: 2	TOTAL DEPTH [ft]: 16
AMPLING METHOD: Continuous Core	DEPTH TO WATER [ft]:	CASING DEPTH [ft]:
AMMER WEIGHT: DROP [in]:	LOGGED BY: RLN	PROJECT Frie Coroia
		WELL CONSTRUCTION DETAILS
LITHOL	OGIC DESCRIPTION	AND/OR DRILLING REMARKS
		Conditions: inside building
0 NO GRAVEL: no o	adar	
1- SANDY SILT	(ML): Dark yellowish brown (10YR	1_
- 1 Faint	40% fine sand, 60% silt	
C SANDY SILT	(ML): Dark yellowish brown (10YR	
3— 4/6), stiff, mois	st, 30% fine sand, 70% silt	
7		
B- 0 NO Sand coarsens	s with depth	
9		
	(SM): Yellowish brown (10YR 4/4),	
dense, moist, 30% silt	30% fine gravel, 50% fine sand,	
3		
4- 0 NO NO VOLCANIC AS	layer at 13.8' SH: Mottled dark yellowish brown	
– (10YR 3/4) an	d brownish yellow (10YR 5/4), eply weathered, friable, weak	
	api, would be of the second	
		Backfilled 1/31/13 by WD
<u>6</u>		

PROJECT		yror 01 Bi				• ron, C	A	BORING LOG SP-18		
DRILLING CONTRACTOR: Woodward Drilling								STARTED: 1/30/2013	11:20	FINISHED: 1/30/2013 11:55
DRILLER'S NAME: Juan & Carlos								NORTHING:	11.20	EASTING:
DRILLING METHOD: Direct Push								COORD SYSTEM/DATUM:		
DRILLING EQUIPMENT: AMS Power Probe 9500								HOLE DIAMETER [in]:	2	TOTAL DEPTH [ft]: 16
SAMPLING METHOD: Continuous Core								DEPTH TO WATER [ft]:	2	CASING DEPTH [ft]:
HAMMER WEIGHT: DROP [in]:								LOGGED BY: RLN		PROJECT Frie Coroio
Ifeet]			Odor		LITHOLOGIC	DESCRIPTION		AND/OR DRILLING REMARKS		
ű	Sar	ы В С	Rec [Re		5	Surface Elevation:		Cor	nditions: inside of building
0						×	CONCRETE			
1-				0	NO		GRAVEL SILTY SAND (SM): \ (10YR 4/2), loose, m silt, low plasticity	Very dark grayish brown oist, 80% fine sand, 20%		
2			71				SANDY SILT (ML): D	Dark yellowish brown (10YR soft, moist, 40% fine sand,		
				0	NO		60% silt			
3_				0	NO					
4—		-		0						
_										
5—				0	NO					
-										
6—			63					Yellowish brown (10YR 5/4),	, _ _	
7-								r fine to fine sand, 60% silt		
' _				0	NO					
8—										
_										
9—				0	NO					
			F 0							
10—			58				SANDY SILT (ML): [4/6), medium stiff to	Dark yellowish brown (10YR soft, moist, 30% fine sand,		
11-							70% silt	,, ee /e // /// ourld,		
_										
12—			63	0	NO					
-										
13—				_						
14—			63	0	NO					
· · 			55				(10YR 6/6) and yello	Mottled brownish yellow wish brown (10YR 5/6),		
15—							medium stiff, moist, 3	30% very fine sand, light		
_				0	NO					
16							11			Backfilled 1/30/13 by WD

PROJECT: Byron Power Co. 4901 Bruns Road, Byron, CA								BORING LOG	6	SP-19
DRILLING CONTRACTOR: Woodward Drilling								STARTED: 1/30/2013 15	5:15	FINISHED: 1/30/2013 15:45
DRILLER'S NAME: Juan & Carlos								NORTHING:		EASTING:
DRILLING METHOD: Direct Push								COORD SYSTEM/DATUM:		
DRILLING	S EQUI		-				roho 0500	HOLE DIAMETER [in]: 2		TOTAL DEPTH [ft]: 16
AMS Power Probe 9500 SAMPLING METHOD: Continuous Core								DEPTH TO WATER [ft]:		CASING DEPTH [ft]:
HAMMER WEIGHT: DROP [in]:										DDO IFOT
].	LOGGED BY: RLN		MANAGER: ETIC Garcia
DEPTH [feet] ample			PID Reading	Odor		LITHOLOGIC	DESCRIPTION		WELL CONSTRUCTION DETAILS AND/OR DRILLING REMARKS	
٥	Sam	Blows/ 6 in.	Recovery [%]	Ъе	0	S	urface Elevation:		Con	ditions: inside of building
0				2	Faint		CONCRETE			
1- 6				2	raint		GRAVEL: faint odor	in gravel /ery dark grayish brown	$\left\{ \right]$	
1- 1- - 1- - 1-				4	E-i-r		(10YR 3/2), stiff, moi	st, 40% fine to very fine		
S					Faint		sand, 60% silt			
2			90	0	NO					
-19-										
3- <mark>- 4</mark> S										
-							color change to dark	yellowish brown (10YR 4/6)	-	
4—				0	NO					
-										
5—			83							
-										
6—				0	NO		color change to vello	w brown (10YR 5/4) at 6'		
_				-						
7—			83							
· _			55							
8—				0	NO					
				0			SILTY SAND (SM): I	Dark yellowish brown (10YR)% fine sand, 20% silt		
			7-					70 mile Sanu, 2070 Sill		
9—			75							
1									1	
10—				0	NO	· ^	VOLCANIC ASH: Br	ownish yellow (10YR 6/6),	1 -1	
-				0	NO		moist, very deeply w friable, weak	eathered, clay rich matrix,		
11-			75			7.7				
-						· · · · · · · · · · · · · · · · · · ·				
12—				0	NO	· · · · · ·				
-						د <u>۲</u>				
13—			83			>. ۲				
-						. ^{. ـ ـ} ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ				
14—				0	NO	· · ^ · ·				
_										
15—			75			71				
			. 🧸			· · · · · · · · · · · · · · · · · · ·				
16										Backfilled 1/31/13 by WD

	on Po Bruns I				Ą	BORING L	OG	SP-20
DRILLING CONTRA						STARTED: 1/31/2013	08:2	FINISHED: 20 1/31/2013 08:42
DRILLER'S NAME:				arlos		NORTHING:	00.2	EASTING:
DRILLING METHOD	Dire	ct P	ush			COORD SYSTEM/DATUM	Л:	
DRILLING EQUIPME	NT: A	MS	Po	wer P	robe 9500	HOLE DIAMETER [in]:	2	TOTAL DEPTH [ft]: 16
SAMPLING METHO	^{D:} Cor	ntinu	ious	Core	9	DEPTH TO WATER [ft]:		CASING DEPTH [ft]:
HAMMER WEIGHT:				DROP [LOGGED BY: RLN		PROJECT MANAGER: Eric Garcia
DEPTH [feet] mple ample [iows/		ding	5	LITHOLOGIC		DESCRIPTION		WELL CONSTRUCTION DETAILS AND/OR DRILLING REMARKS
DEPTR [feet] Sample ID Blows/	o In. Recovery [%]	PID Reading	Odor	s	Surface Elevation:			Conditions: inside of building
0	<u> </u>			****	CONCRETE			
		0	NO			Dark yellowish brown (10) noist below 2', 30% fine to silt		-
2	67							_
3-								_
_		0	NO					-
4-								_
_					SANDY SILT (ML): medium stiff to stiff.	Yellowish brown (10YR 5/ moist, 25% very fine to fin	(6), ne	-
5—	83	0	NO		sand, 75% silt			
6-		0						_
_								-
7—	83							_
		0	NO			Dark yellowish brown (10)	YR	-
8-					4/6), loose, moist, 80	0% fine sand, 20% silt		_
9—	75							
_		0	NO					
10-								_
								-
11-	75	~						-
12—		0	NO					
								-
13—	100					ght yellowish brown (2.5Y	,	_
		0	NO	· · · · · · · · · · · · · · · · · · ·	6/3), moist, very dee	ply weathered, friable,		-
14-				· · / · · 7 · · ·		^		 Hand drilling at 14'
				<	·			-
15—	100	0	NO	, , , , , , , , , , , , , , , , , , ,				
16		U		· · · · · · · · · · · · · · · · · · ·				Backfilled 1/31/13 by WD
Quest Geosystems	Ma:	ma = 1	le r	4407		Rancho Cordova, CA 95742-656		roject No: G09212012-02 Page 1 of 1

PROJECT: Byron Power Co. 4901 Bruns Road, Byron, CA								BORING LOG	J	SP-21
DRILLING CONTRACTOR: Woodward Drilling								STARTED: 1/31/2013 11	:30	FINISHED: 1/31/2013 12:00
DRILLER'S NAME: Juan & Carlos								NORTHING:		EASTING:
DRILLING METHOD: Direct Push								COORD SYSTEM/DATUM:		
DRILLING EQUIPMENT: AMS Power Probe 9500								HOLE DIAMETER [in]: 2		TOTAL DEPTH [ft]: 12
SAMPLING METHOD: Continuous Core								DEPTH TO WATER [ft]:		CASING DEPTH [ft]:
HAMMER WEIGHT: DROP [in]:								LOGGED BY: RLN		PROJECT Eric Garcia
- SAMPLES - SAMPLES									WF	MANAGER: ETIC GATCIA
[feet] Sample ID		Blows/ 6 in.	Recovery [%]	PID Reading	Odor			DESCRIPTION		ND/OR DRILLING REMARKS
Sar 0	Sar	ы В С	Rec	Å			Surface Elevation:		Cond	ditions: inside of building
' –				0	NO	***	GRAVEL			
1—				0	Faint	t	SANDY SILT (ML):	Dark yellowish brown (10YR	1 -	
-							4/4), soft, moist, 30 silt	% fine to very fine sand, 70%		
2			86							
SP-S			00	0	NO				-	
3-										
-										
4—				0	NO					
-										
5—			75							
6—				0	NO					
7—			92							
' _			52							
8—				0	NO					
_							4/6), loose, moist, 8	Dark yellowish brown (10YR 30% fine to very fine sand,		
9—			83				20% silt			
_										
0—		-		0	NO			ight yellowish brown (2.5Y		
_						ن د. 	* 6/3), moist, very de	eply weathered, friable, weak		
1-			83			· 7 7.	clay rich matrix			Refusal at 12'
_						>.	· · ·			
							•			Backfilled 1/31/13 by WD

APPENDIX C FIELD DATA SHEETS

QUEST GEOSYSTEMS MANAGEMENT, INC. · 11275 Sunrise Gold Circle - Suite R, Rancho Cordova, California 95742-6561 OFFICE (925) 756-1210 · FAX (925) 756-1227 · E-mail: <u>info@questgsm.com</u> · Internet: www.questgsm.com/

FIELD LOGS

Fourth Quarter 2012 Groundwater Monitoring & Sampling Event

Phase II Subsurface Site Investigation

Byron Power Company 4901 Bruns Road Byron, California

12/28/2012 Quest GSM Project# G09212012-02

11275 Sunrise Gold Circle, Suite R Rancho Cordova, CA 95742 (925) 756-1210 Office (925) 756-1227 Fax Internet - http://www.questgsm.com/

MONITORING WELL ELEVATION FIELD DATA

Monitoring Well Identification	Well Head Elevation (Feet ± 0.01)	Depth to Groundwater (Feet ± 0.01)	Groundwater Elevation (Feet <u>+</u> 0.01)
MW.01	110.63	21.50	87.33
MW.02	107.05	18.27	88.16
MW.03	106 72	20.19	86. +3
MW.04	104.02	17.55	86
	•		

Guaged By F. Nem

1 N

Signature

Date 12-28-2012

- Qi	ust GS	M		WE	LL GAUGIN	NG/PURGING		ATIONS
Bud	on Powo	. 10	Date:	,	Job No.:		Location:	
	W Four		12/2	28/2012	6092	2/2012-02	Byro	of DRUMS used for this event
Tech(s):	At Nelson		Drums on Site	@ TOA/TOD			Total number	of DRUMS used for this event
1000	~7 N 2 50r	~	Soil:		Water:		Soil:	Water:
Well No.	Diameter (in)	DTB (ft)	DTW (ft)	ST (ft)	CV (gal)	PV (gal)	SPL (ft)	Notes
MW-4	2 ''	27.87	17.55	10.79	1.65	4.93	0	7:46
Mu.1	2"	30.18	21.50	8.68	1.39	4.17	0	9:50
MWZ	2″	26.38	20.19	6.19	0.99	2.97	0	9:54
27w-2	2"	30.58	18-27	12.31	1.97	5.91	0	10:00
\sum					i			
		-			a			

..

Explanation:

DTB = Depth to Bottom

DTW = Depth to Water

ST = Saturated Thickness (DTB-DTW) must be > 1 foot

CV = Casing Volume (ST x cf) PV = Purge Volume (standard 3 x CV, well development 10 x CV) SPL = Thickness of Separate Phase Liquid

Conversion Factors (cf) 2-inch diameter well cf = 0.16 gal/ft 4-inch diameter well cf = 0.65 gal/ft 6-inch diameter well cf = 1.44 gal.ft

4

Field Form Α

Page _____ of _____

11275 Sunrise Gold Circle, Suite R Rancho Cordova, CA 95742 (925) 756-1210 Office (925) 756-1227 Fax Internet - http://www.questgsm.com/

FLUID SAMPLE COLLECTION LOG

	TDATA
PROJECT NAME: Byron Power Company	
PROJECT NUMBER: G09212012-02	DATE: <u>12/28/2012</u>
PROJECT MANAGER: Eric W. Garcia	SAMPLE LOCATION JD:
A ROBEOT MANAGER. ENO W. Oatcia	SAMPLER: Kober L. Nokony
WELL CONSTRU CASING DIAMETER WELL VOLUMES PER UN 2" Well Casing Gal/ft. 4" 3/4 0.0229 2.0 0.1632 40 0.6528 6.0 1.490	
FLUID LEV DEPTH TO PRODUCT: PRODUCT THICKN DEPTH OF WELL: <u>30,18</u> WATER COLUMN: DEPTH TO WATER: <u>21.50</u> WELL CASING VOL	
WATER Q	UALITY
TIME VOL PH COND TURB DO (GAL) (GAL) $(mallen)$ $(mall$	27 <u>1868</u> <u>43.6</u> 00 <u>20.15</u> <u>49.9</u> 8 <u>20.41</u> <u>51.5</u>
PURGE METHOD Pump (Disp/Sub) Dother: Bailer (Tef/PVC/SS/D) Peristablic	SAMPLE METHOD Bailer (Tef/PVC/85(Dig) Dedicated Other:
SAMPLES CO ID TIME DA SAMPLE MW.01 1325 12/28/ DUPLICATE	· · · · · · · · · · · · · · · · · · ·
COMMENTS: Well dry at 3.5 gallors (1145); I=21 SAMPLER: Polath Nelen	1.45 @ 1320
SAMPLER: Police PL Nelan	

14

11275 Sunnise Gold Circle, Suite R Rancho Cordova, CA 95742 (925) 756-1210 Office (925) 756-1227 Fax Internet - http://www.questgsm.com/

FLUID SAMPLE COLLECTION LOG

PROJECT	ΑΤΑ
	ATE: <u>12/28/2012</u>
	AMPLE LOCATION ID: MW.02
PROJECT MANAGER: Eric W. Garcia S	AMPLER: _ Polort Nolson
WELL CONSTRUC	
WELL CONSTRUC CASING DIAMETER WELL VOLUMES PER UNIT	
2" Well Casing Galift.	SAMPLE TYPE
3/4 0.0229	Surface Water Treatment Effluent
2.0 0.1632 4.0 0.6528	
6.0 1.490	
FLUID LEVE DEPTH TO PRODUCT: \bigcirc PRODUCT THICKNES DEPTH OF WELL: 30.58 WATER COLUMN: DEPTH TO WATER: 18.27 WELL CASING VOLUM	S: $-\frac{0}{12\cdot3}$ MINIMUM PURGE VOLUME $-\frac{12\cdot3}{12\cdot3}$ (3 OR 4 WCV): $-\frac{6}{12\cdot3}$
WATER QU	ALITY
TIME VOL PH COND. TURB DO (GAL) (ms/cm (\$/cm)) (NTU) (mg/L)	TEMP. SAL TDS ORP OTHER
$\begin{array}{c} (GAL) \\ 12.05 \\ 2.0 \\ 7.93 \\ 3676 \\ 3676 \\ 6.67 \\ 6.67 \\ 7.93 \\ 3676 \\ 6.67 \\ 6.67 \\ 7.93 \\ 3676 \\ 6.67 \\ 6.67 \\ 7.93 \\ 3676 \\ 6.67 \\ 7.93 \\ 7$	(°FPD (%) (mg/L) (mV) 18.41 50.8
12:08 4.0 7.18 5471 3.18	<u>1962 61.4</u>
12:11 60 6.96 6357 3.25	
12:17 7.0 7.03 5650 3.76	$\frac{19.61}{19.19}$ $\frac{79.1}{19.19}$
11:25 8.0 4.99 5780 3.54	<u> </u>
PURGE METHOD	SAMPLE METHOD
Pump (Disp/Sub)	
Baller (Tef/PVC/SS/01st)	
SAMPLES COL	LECTRES -
ID TINKE DATE	
SAMPLE <u>MW.02</u> <u>1230</u> <u>1208/2</u>	12 Machinet Analytical Stream annuals
DUPLICATE	
SPLIT	
COMMENTS:	
	$\langle \langle \langle \rangle \rangle$
SAMPLER: Kolost, Nelson PRO	

11275 Sunrise Gold Circle, Suite R Rancho Cordova, CA 95742 (925) 756-1210 Office (925) 756-1227 Fax Internet - http://www.questgsm.com/

FLUID SAMPLE COLLECTION LOG

PROJECT DATA PROJECT NAME: Byron Power Company DATE: 12/28/2012 PROJECT NUMBER: G09212012-02 SAMPLE LOCATION ID: MW.03 PROJECT MANAGER: Eric W. Garcia SAMPLER: Keber Nelson
WELL CONSTRUCTION DATA CASING DIAMETER WELL VOLUMES PER UNIT SAMPLE TYPE 2" Well Casing Gal/ft. Groundwater Treatment Influent 4" 3/4 0.0229 Surface Water Treatment Effluent 4" 2.0 0.1632 Surface Water Treatment Effluent 0 Other: 3/4" 6.0 1.490 Other
FLUID LEVEL DATA DEPTH TO PRODUCT: PRODUCT THICKNESS: C? MINIMUM PURGE VOLUME DEPTH OF WELL: 26:38 WATER COLUMN: C.19 (3 OR 4 WCV): DEPTH TO WATER: 20:19 WELL CASING VOLUME: 1.0 ACTUAL VOL. PURGED:
WATER QUALITY TIME VOL PH COND TURB DO TEMP. SAL TDS ORP OTHER 1307 1.0 6.70 44359 5.72 18.49 (MTU) (MTU) (MgL) (MTU) (MgL) (MgL) (MT) <t< td=""></t<>
PURGE METHOD SAMPLE METHOD Pump (Disp/Sub) Other: Bailer (Tef/PVC/SS/Disp) Peristalitic
SAMPLES COLLECTED ID TIME DATE LAB ANALYTES SAMPLE MW.03 /350 12/28/2012 McCampbell Analytical TPHAN VOCA PAOCA DUPLICATE
COMMENTS: Dy at Z. Callons (1310) V= 20.49 at 1343 SAMPLER: Boln T. Nelson PROJECT MANAGER

ş

11275 Sunrise Gold Circle, Suite R Rancho Cordova, CA 95742 (925) 756-1210 Office (925) 756-1227 Fax Internet - http://www.questgsm.com/

FLUID SAMPLE COLLECTION LOG

		JECT DAT			
	ron Power Company 9212012-02			12/28/2012	
PROJECT NUMBER: <u>GO</u> PROJECT MANAGER: <u>Er</u>		SAMP SAMP	LE LOCATION IE		
FROJECT MANAGER: EI		JAMP			
	WELL CON	ISTRUCTIO	N DATA		
	WELL VOLUMES PI			PLE TYPE	
2 "			Groundwater	Treatment Influe	
☐ 4" ☐ Other: 3/4"	2.0 0.1	632 L 528	Surface Water	Treatment Efflue Other	ənt
	6,0 1.4	190			
			O MINIMUI 10.29 (3 OR 4)		, 0
	WAT		ΓY		
TIME VOL PH	COND. TURB		MP. SAL		HER
1040 1.5 7.40	(ms/cm (NTU) 339/		FPD (%) <u>台・74</u>	(mg/L) (mV) /0&+2	
1045 3.0 7.60		5.96 7			
	4 <u>3593</u> 2 <i>3654</i>	5.832	0,49 ~20	<u> </u>	
1056 5.6 7.3. 105 6.0 7.50		6.73 70	».7/	<u> </u>	·····
					4
Pump (Disp/Sub) Bailer (Tef/PVC/SS/Disp)				METHOD Top) Dedicated Dother:	
and a second	SAMPL			n an	
ID SAMPLE DUPLICATE SPLIT FIELD BLANK		DATE 12/20/2013		ANALYTI	- ÷.
COMMENTS:			Jelei / [$\overline{\mathcal{N}}$	
SAMPLER:_ Roberth.	Nelson	PROJEC	T MANAGER	Officia	
			C		

APPENDIX D CERTIFIED ANALYTICAL REPORT AND CHAIN-OF-CUSTODY DOCUMENTATION

McCampbell Analytical, Inc. "When Quality Counts"

Analytical Report

Quest GeoSystems Management	Client Project ID: #G09212012-02; Byron Power Company	Date Sampled:	12/07/12
11275 Sunrise Gold Cir., Ste. R	Company	Date Received:	12/07/12
	Client Contact: Eric Garcia	Date Reported:	12/17/12
Rancho Cordova, CA 95742	Client P.O.:	Date Completed:	12/17/12

WorkOrder: 1212191

December 17, 2012

Dear Eric:

Enclosed within are:

- 1) The results of the **3** analyzed samples from your project: **#G09212012-02; Byron Power Company,**
- 2) QC data for the above samples, and
- 3) A copy of the chain of custody.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

The analytical results relate only to the items tested.

1212191

PROJECT REPORTING PROJECT REPORTING Company: Quest GeoSystems Management, Inc. Attention: Mr. Eric W. Garcia Phone: (925) 756-1210 Fax: (925) 756-1227 Address: 11275 Sunrise Gold Circle, Suite R, Rancho Cordova, California 95742 Email: ericgarcia@questgsm.com						10 27		TURN AROUND TIME: RUSH 24 HOUR 48 HOUR *5 DAY OTHER: EDF Required? YES NO Image: Comparison of the comparison of th						COMMENTS																	
Project Name: Project Number: Project Location: Sampler Signature:	Byron Power (G09212012-02 4901 Brunk By Byron Cattor	Vad'		Atte	ntion:	Mr. El	t GeoS) ric W. G Sunrise G arcia@d	Barcia Bold Cir,	Manag Suite R.	Phoi Phoi Fax: Rancho	, <i>In</i> c. ne:	(925)	756-121 756-122 42				- 8270 SIN FULSVOCS				Corrosivity, Ignitability)	(W									
\bigcirc		SAME	PLING	iners	tainers		,	MATRI	х		PI		NATIO	N	1 20	B	Stewart					(CARB/PLM)									
SAMPLE ID (Field Point Name)	LOCATION	Date	Time	# of Containers	Type of Containers	Water	soil	Air	Sludge	Other	loa	HCI	HNO3	Other	TPH-MR - 8015	VOC's - 8260B	Phenol, PAR	LUFT 5	CAM17	% Moisture	RCI (Reactivity,	Asbestos (C									
Si.01		120712	1116	1	SS				х		X				x	x	x	-	X	X	-									1	3
Si.02)	1111	1	SS				х		х				х	х	x		x	х										0	
SCALE		4	1/06	1	SS					х	х				х	х	х		x		х	x									
										- 1		_															_				
			_							_										_			_	-	_						
					-			_		_	-					_			-	_	-	_	_	-	-	_	_	-			
			_			-		-	_	-	-	-	-	-			_	-	-	-	-	_	-	-	-	+	+	-			
					-	-	-	-		-	-		-				_	-	-		-	-	-	-	-	-	-	+			
						-	-				-			-			-	-			-			-	-	+	-	+	-		
							-																	-	-	-	-	+			
																									1	+	1	\square			_
																												\square			
	1				-															-											
													-			_					2	a		_							
TRIP			Date:	2	-VOA	Recei	ed By				×	_X_	-		Den	-	-	_	- 10	No.	2	_				A 900	OPRI	ATT			_
iquished By:	_		Date: 120712 Date:	Time: 127 Time:	15.	Receiv		U	la	a	1	1	-6	_	Rema	ITKS:			D	ECHI	SPAC ORIN	VATE	VOA	AB_	-	CONT	TAINE	ATE RS D IN L OTHER	AB	_	
																				- the second			-	_	_		-			Pa	ge 2

McCampbell Analytica	I, Inc.			CHAIN	-OF-CUS	STODY	RECORD	Pag	e 1 of 1
Pittsburg, CA 94565-1701 (925) 252-9262				WorkOr	der: 1212191	Clie	ntCode: QGSM		
	WaterTra	ax WriteOn	✓ EDF	Excel	EQuIS	🖌 Email	HardCopy	ThirdParty	✓ J-flag
Report to:				Bill	to:		Req	uested TAT:	5 days
Eric Garcia	Email:	eric.garcia@que	stgsm.com		Lexie Hinds				
Quest GeoSystems Management	cc:				Quest GeoSys	stems Manage			
11275 Sunrise Gold Cir., Ste. R	PO:				98 Daisyfield [Drive	Dat	e Received:	12/07/2012

ProjectNo: #G09212012-02; Byron Power Company

Matrix

Test Legend:

1	8260B_S	2	8270D_S		3 ASBEST400 (435 CARB)_S	4	CAM17MS_S] [5	G-MBTEX_S
6	Moisture_S	7	PREDF REPORT		B ReactS_S	9] [10	
11		12]						

The following SampIDs: 001A, 002A, 003A contain testgroup.

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

12/07/2012

11

12

Prepared by: Maria Venegas

Date Printed:

9

10

8

Requested Tests (See legend below)

7

6

1212191-001 Si.01 Soil 12/7/2012 11:16 А А А А А А 1212191-002 Si.02 Soil 12/7/2012 11:11 А А А А А 1212191-003 SCALE Soil 12/7/2012 11:06 А А А А А А

Collection Date Hold

1

2

Livermore, CA 94551

3

lexiehinds@yahoo.com

4

5

Rancho Cordova, CA 95742

FAX: (925) 756-1227

Client ID

(925) 756-1210

Lab ID

Sample Receipt Checklist

Client Name:	Quest GeoSyster	ns Management			Date a	and Time	12/7/2012 3:28:47 PM				
Project Name:	#G09212012-02;	Byron Power Company			LogIn	Reviewe	ed by:		Maria Venegas		
WorkOrder N°:	1212191	Matrix: Soil			Carrie	er: <u>Cl</u>	ient Drop-In				
		Cha	in of Cu	ustody (C	COC) Informa	<u>tion</u>					
Chain of custody	present?		Yes	✓	No						
Chain of custody	signed when relind	uished and received?	Yes	✓	No						
Chain of custody	agrees with sample	e labels?	Yes	✓	No 🗌						
Sample IDs note	d by Client on COC	?	Yes	✓	No						
Date and Time o	f collection noted by	y Client on COC?	Yes	✓	No						
Sampler's name	noted on COC?		Yes	✓	No						
			Sample	e Receipt	Information						
Custody seals in	tact on shipping co	ntainer/cooler?	Yes		No			NA 🗹			
Shipping contain	er/cooler in good co	ondition?	Yes	✓	No						
Samples in prop	er containers/bottle	s?	Yes	✓	No						
Sample containe	ers intact?		Yes	✓	No						
Sufficient sample	e volume for indicate	ed test?	Yes	✓	No						
		Sample Pres	servatio	n and Ho	old Time (HT)	Informa	ation				
All samples rece	ived within holding	time?	Yes	✓	No						
Container/Temp	Blank temperature		Coole	er Temp:	3.9°C			NA			
Water - VOA via	ls have zero headsp	bace / no bubbles?	Yes		No	No VO	A vials subm	itted 🖌			
Sample labels ch	necked for correct p	reservation?	Yes	✓	No						
Metal - pH accep	otable upon receipt	(pH<2)?	Yes		No			NA 🗹			
Samples Receive	ed on Ice?		Yes	✓	No						
		(Ісе Тур	be: WE	TICE)						
* NOTE: If the "N	lo" box is checked,	see comments below.									

Comments:

	ell Analy Quality Coun		<u>, Inc.</u>		1534 Willow Pass Road, Pit Toll Free Telephone: (877) 252- http://www.mccampbell.com / E-	-9262 /	Fax: (925) 252-9269					
Quest GeoSystems Manageme	nt			#G09	0212012-02; Byron		Date Sampled: 12/07/12					
11275 Sunrise Gold Cir., Ste.	R –					Date Received: 12/07/12						
Rancho Cordova, CA 95742		Client Co Client P.	ontact: E	ric Gai	rcia		Extracted: 1 Analyzed: 1					
Raheno Cordova, Cri 93742		Client F.	0			Date	Allalyzeu. I	2/11/12	2			
Extraction Method: SW5030B	Volati	le Orgar	•		d GC/MS (Basic Target I SW8260B	List)*		Work Orde	er: 1212191			
Lab ID					1212191-001A							
Client ID Matrix					Si.01 Soil							
Compound	Conc. *	DF	MDL	RL	Compound		Conc. *	DF	MDL	RL		
Acetone	ND	1.0	0.039	0.05	tert-Amyl methyl ether (TAME))	ND	1.0	0.001	0.005		
Benzene	ND	1.0	0.0016	0.005	Bromobenzene		ND	1.0	0.0017	0.005		
Bromochloromethane	ND	1.0	0.0015	0.005	Bromodichloromethane		ND	1.0	0.0012	0.005		
Bromoform	ND	1.0	0.0008	0.005	Bromomethane		ND	1.0	0.002	0.005		
2-Butanone (MEK)	0.0076.J		0.0054	0.000	t-Butyl alcohol (TBA)		ND	1.0	0.0053	0.005		
n-Butyl benzene	ND	1.0	0.0034	0.005	sec-Butyl benzene		ND	1.0	0.0034	0.005		
tert-Butyl benzene	ND	1.0	0.003	0.005	Carbon Disulfide		0.016	1.0	0.0017	0.005		
Carbon Tetrachloride	ND	1.0	0.003	0.005	Chlorobenzene		ND	1.0	0.0017	0.005		
										1		
Chloroethane	ND	1.0	0.0016	0.005	Chloroform		ND	1.0	0.0016	0.005		
Chloromethane	ND	1.0	0.0017	0.005	2-Chlorotoluene		ND	1.0	0.0022	0.005		
4-Chlorotoluene	ND	1.0	0.0021	0.005	Dibromochloromethane		ND	1.0	0.0011	0.005		
1,2-Dibromo-3-chloropropane	ND	1.0	0.0012	0.004	1,2-Dibromoethane (EDB)		ND	1.0	0.0013	0.004		
Dibromomethane	ND	1.0	0.0014	0.005	1,2-Dichlorobenzene		ND	1.0	0.0014	0.005		
1,3-Dichlorobenzene	ND	1.0	0.0018	0.005	1,4-Dichlorobenzene		ND	1.0	0.0018	0.005		
Dichlorodifluoromethane	ND	1.0	0.0011	0.005	1,1-Dichloroethane		ND	1.0	0.0017	0.005		
1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.0014	0.004	1,1-Dichloroethene		ND	1.0	0.0017	0.005		
cis-1,2-Dichloroethene	ND	1.0	0.0015	0.005	trans-1,2-Dichloroethene		ND	1.0	0.0016	0.005		
1,2-Dichloropropane	ND	1.0	0.0014	0.005	1,3-Dichloropropane		ND	1.0	0.0016	0.005		
2,2-Dichloropropane	ND	1.0	0.0013	0.005	1,1-Dichloropropene		ND	1.0	0.0018	0.005		
cis-1,3-Dichloropropene	ND	1.0	0.0015	0.005	trans-1,3-Dichloropropene	I	ND	1.0	0.0014	0.005		
Diisopropyl ether (DIPE)	ND	1.0	0.0014	0.005	Ethylbenzene		ND	1.0	0.002	0.005		
Ethyl tert-butyl ether (ETBE)	ND	1.0	0.0013	0.005	Freon 113		ND	1.0	0.0016	0.1		
Hexachlorobutadiene	ND	1.0	0.005	0.005	Hexachloroethane		ND	1.0	0.0025	0.005		
2-Hexanone	ND	1.0	0.0025	0.005	Isopropylbenzene		ND	1.0	0.0022	0.005		
4-Isopropyl toluene	ND	1.0	0.0031	0.005			ND	1.0	0.0013	0.005		
Methylene chloride	0.0044,J		0.0036	0.005	4-Methyl-2-pentanone (MIBK)		ND	1.0	0.0008	0.005		
Naphthalene	0.0023,J		0.0006	0.005	n-Propyl benzene		ND	1.0	0.0029	0.005		
Styrene	ND	1.0	0.0014	0.005	1,1,1,2-Tetrachloroethane		ND	1.0	0.0016	0.005		
1,1,2,2-Tetrachloroethane	ND	1.0	0.0014	0.005	Tetrachloroethene		ND	1.0	0.0023	0.005		
Toluene	0.0058	1.0	0.0013	0.005	1,2,3-Trichlorobenzene		ND	1.0	0.00023	0.005		
1,2,4-Trichlorobenzene	ND	1.0	0.0011	0.005	1,1,1-Trichloroethane	İ	ND	1.0	0.0018	0.005		
1,1,2-Trichloroethane	ND	1.0	0.0016	0.005	Trichloroethene		ND	1.0	0.0017	0.005		
Trichlorofluoromethane	ND	1.0	0.0016	0.005	1,2,3-Trichloropropane		ND	1.0	0.0019	0.005		
1,2,4-Trimethylbenzene	0.0035,J		0.0024	0.005	1,3,5-Trimethylbenzene		ND	1.0	0.0027	0.005		
Vinyl Chloride	ND	1.0	0.0015	0.005	Xylenes, Total		ND	1.0	0.0025	0.005		
•					ecoveries (%)							
%SS1:		110		-	%SS2:			114				
%SS3:		124			<u> </u>							
Comments:						-						

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

	ell Analy Quality Cour		<u>, Inc.</u>		1534 Willow Pass Road, Pit Toll Free Telephone: (877) 252- http://www.mccampbell.com / E-	·9262 / F	Fax: (925) 252-9269				
Quest GeoSystems Manageme	<u>~ ·</u>		•	#G09	0212012-02; Byron	Date Sampled: 12/07/12					
11275 Sunrise Gold Cir., Ste.	R		1 0				Received: 1				
Denshe Cardena CA 05742	-		ontact: E	ric Ga	rcia		Extracted: 1				
Rancho Cordova, CA 95742		Client P.	0.:			Date	Analyzed: 1	2/11/12	2		
Extraction Method: SW5030B	Volati	le Orgai	•		d GC/MS (Basic Target L SW8260B	.ist)*	v	Work Ord	er: 1212191		
Lab ID					1212191-002A						
Client ID					Si.02						
Matrix					Soil						
Compound	Conc. *	DF	MDL	RL	Compound		Conc. *	DF	MDL	RL	
Acetone	0.15	2.0	0.039	0.05	tert-Amyl methyl ether (TAME))	ND<0.0020	2.0	0.001	0.005	
Benzene	ND<0.0032	2.0	0.0016	0.005	Bromobenzene		ND<0.0034	2.0	0.0017	0.005	
Bromochloromethane	ND<0.0030	2.0	0.0015	0.005	Bromodichloromethane		ND<0.0024	2.0	0.0012	0.005	
Bromoform	ND<0.0016	2.0	0.0008	0.005	Bromomethane		ND<0.0040	2.0	0.002	0.005	
2-Butanone (MEK)	0.012,J	2.0	0.0054	0.02	t-Butyl alcohol (TBA)		ND<0.011	2.0	0.0053	0.05	
n-Butyl benzene	ND<0.0070	2.0	0.0035	0.005	sec-Butyl benzene		ND<0.0068	2.0	0.0034	0.005	
tert-Butyl benzene	ND<0.0060	2.0	0.003	0.005	Carbon Disulfide		0.019	2.0	0.0017	0.005	
Carbon Tetrachloride	ND<0.0034	2.0	0.0017	0.005	Chlorobenzene		ND<0.0036	2.0	0.0018	0.005	
Chloroethane	ND<0.0032	2.0	0.0016	0.005	Chloroform		ND<0.0032	2.0	0.0016	0.005	
Chloromethane	ND<0.0034	2.0	0.0017	0.005	2-Chlorotoluene		ND<0.0044	2.0	0.0022	0.005	
4-Chlorotoluene	ND<0.0042	2.0	0.0021	0.005	Dibromochloromethane		ND<0.0022	2.0	0.0011	0.005	
1,2-Dibromo-3-chloropropane	ND<0.0024	2.0	0.0012	0.004	1,2-Dibromoethane (EDB)		ND<0.0026	2.0	0.0013	0.004	
Dibromomethane	ND<0.0028	2.0	0.0014	0.005	1,2-Dichlorobenzene		ND<0.0028	2.0	0.0014	0.005	
1,3-Dichlorobenzene	ND<0.0036	2.0	0.0018	0.005	1,4-Dichlorobenzene		ND<0.0036	2.0	0.0018	0.005	
Dichlorodifluoromethane	ND<0.0022	2.0	0.0011	0.005	1,1-Dichloroethane		ND<0.0034	2.0	0.0017	0.005	
1,2-Dichloroethane (1,2-DCA)	ND<0.0028	2.0	0.0014	0.004	1,1-Dichloroethene		ND<0.0034	2.0	0.0017	0.005	
cis-1,2-Dichloroethene	ND<0.0030	2.0	0.0015	0.005	trans-1,2-Dichloroethene		ND<0.0032	2.0	0.0016	0.005	
1,2-Dichloropropane	ND<0.0028	2.0	0.0014	0.005	1,3-Dichloropropane		ND<0.0032	2.0	0.0016	0.005	
2,2-Dichloropropane	ND<0.0026	2.0	0.0013	0.005	1,1-Dichloropropene		ND<0.0036	2.0	0.0018	0.005	
cis-1,3-Dichloropropene	ND<0.0030	2.0	0.0015	0.005	trans-1,3-Dichloropropene		ND<0.0028	2.0	0.0014	0.005	
Diisopropyl ether (DIPE)	ND<0.0028	2.0	0.0014	0.005	Ethylbenzene		0.043	2.0	0.002	0.005	
Ethyl tert-butyl ether (ETBE)	ND<0.0026	2.0	0.0013	0.005	Freon 113		ND<0.0032	2.0	0.0016	0.1	
Hexachlorobutadiene	ND<0.010	2.0	0.005	0.005	Hexachloroethane		ND<0.0050	2.0	0.0025	0.005	
2-Hexanone	ND<0.0050	2.0	0.0025	0.005			0.011	2.0	0.0022	0.005	
4-Isopropyl toluene	0.0072,		0.0031	0.005			ND<0.0026	2.0	0.0013	0.005	
Methylene chloride	ND<0.0072	2.0	0.0036	0.005	4-Methyl-2-pentanone (MIBK)		ND<0.0016	2.0	0.0008	0.005	
Naphthalene	0.16	2.0	0.0006	0.005	n-Propyl benzene		0.013	2.0	0.0029	0.005	
Styrene	ND<0.0028	2.0	0.0014	0.005	1,1,1,2-Tetrachloroethane		ND<0.0032	2.0	0.0016	0.005	
1,1,2,2-Tetrachloroethane	ND<0.0026	2.0	0.0013	0.005	Tetrachloroethene		ND<0.0046	2.0	0.0023	0.005	
Toluene	0.0059,		0.0022	0.005	1,2,3-Trichlorobenzene		ND<0.0014	2.0	0.0007	0.005	
1,2,4-Trichlorobenzene	ND<0.0022	2.0	0.0011	0.005	1,1,1-Trichloroethane		ND<0.0036	2.0	0.0018	0.005	
1,1,2-Trichloroethane	ND<0.0032	2.0	0.0016	0.005	Trichloroethene		ND<0.0034	2.0	0.0017	0.005	
Trichlorofluoromethane	ND<0.0032	2.0	0.0016	0.005	1,2,3-Trichloropropane		ND<0.0038	2.0	0.0019	0.005	
1,2,4-Trimethylbenzene	0.18	2.0	0.0024	0.005	1,3,5-Trimethylbenzene		0.089	2.0	0.0027	0.005	
Vinyl Chloride	ND<0.0030	2.0	0.0015	0.005	Xylenes, Total		0.48	2.0	0.0025	0.005	
			Surr	ogate R	ecoveries (%)						
%SS1:		114		0	%SS2:			111			
%SS3:		124				1					
Comments:	1				<u></u>						

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

	ell Anal Quality Cou	-	<u>, Inc.</u>		1534 Willow Pass Road, Pir Toll Free Telephone: (877) 252 http://www.mccampbell.com / E-	-9262 /	Fax: (925) 252-926						
Quest GeoSystems Manageme				#G09	0212012-02; Byron		I I	2/07/12					
11275 Sunrise Gold Cir., Ste.	R						Date Received: 12/07/12						
Rancho Cordova, CA 95742		Client C	ontact: E	ric Gai	^c c1a		Extracted: 1						
							Date Analyzed: 12/10/12						
Extraction Method: SW5030B	Volat	ile Orgaı	•		d GC/MS (Basic Target I SW8260B	List)*		Work Orde	er: 1212191				
Lab ID					1212191-003A								
Client ID					SCALE								
Matrix					Soil								
Compound	Conc. *	DF	MDL	RL	Compound		Conc. *	DF	MDL	RL			
Acetone	ND	1.0	0.039	0.05	tert-Amyl methyl ether (TAME)	ND	1.0	0.001	0.005			
Benzene	ND	1.0	0.0016	0.005	Bromobenzene	/	ND	1.0	0.0017	0.005			
Bromochloromethane	ND	1.0	0.0015	0.005	Bromodichloromethane		ND	1.0	0.0012	0.005			
Bromoform	ND	1.0	0.0008	0.005	Bromomethane		ND	1.0	0.002	0.005			
2-Butanone (MEK)	ND	1.0	0.0054	0.005	t-Butyl alcohol (TBA)		ND	1.0	0.0053	0.05			
n-Butyl benzene	ND	1.0	0.0035	0.005	sec-Butyl benzene		ND	1.0	0.0034	0.00			
tert-Butyl benzene	ND	1.0	0.003	0.005	Carbon Disulfide		ND	1.0	0.0017	0.00			
Carbon Tetrachloride	ND	1.0	0.0017	0.005	Chlorobenzene		ND	1.0	0.0018	0.00			
Chloroethane	ND	1.0	0.0017	0.005	Chloroform		ND	1.0	0.0016	0.00			
Chloromethane	ND	1.0	0.0017	0.005	2-Chlorotoluene		ND	1.0	0.0010	0.00			
4-Chlorotoluene	ND	1.0	0.0021	0.005	Dibromochloromethane		ND	1.0	0.0011	0.00			
1,2-Dibromo-3-chloropropane	ND	1.0	0.0012	0.003	1,2-Dibromoethane (EDB)		ND	1.0	0.0011	0.004			
Dibromomethane	ND	1.0	0.0012	0.004	1,2-Dichlorobenzene		ND	1.0	0.0013	0.00			
1,3-Dichlorobenzene	ND	1.0	0.0014	0.005	1,4-Dichlorobenzene		ND	1.0	0.0014	0.00			
Dichlorodifluoromethane	ND	1.0	0.0010	0.005	1,1-Dichloroethane		ND	1.0	0.0010	0.00			
1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.0014	0.003	1,1-Dichloroethene		ND	1.0	0.0017	0.00			
cis-1,2-Dichloroethene	ND	1.0	0.0015	0.005	trans-1,2-Dichloroethene		ND	1.0	0.0016	0.00			
1,2-Dichloropropane	ND	1.0	0.0014	0.005	1,3-Dichloropropane		ND	1.0	0.0016	0.00			
2,2-Dichloropropane	ND	1.0	0.0013	0.005	1,1-Dichloropropene		ND	1.0	0.0018	0.00			
cis-1,3-Dichloropropene	ND	1.0	0.0015	0.005	trans-1,3-Dichloropropene		ND	1.0	0.0014	0.00			
Diisopropyl ether (DIPE)	ND	1.0	0.0014	0.005	Ethylbenzene		ND	1.0	0.002	0.005			
Ethyl tert-butyl ether (ETBE)	ND	1.0	0.0013	0.005	Freon 113		ND	1.0	0.0016	0.1			
Hexachlorobutadiene	ND	1.0	0.005	0.005	Hexachloroethane		ND	1.0	0.0025	0.00			
2-Hexanone	ND	1.0	0.0025	0.005			ND	1.0	0.0022	0.00			
4-Isopropyl toluene	ND	1.0	0.0031	0.005	Methyl-t-butyl ether (MTBE)		ND	1.0	0.0013	0.00			
Methylene chloride	ND	1.0	0.0036	0.005	4-Methyl-2-pentanone (MIBK)		ND	1.0	0.0008	0.00			
Naphthalene	ND	1.0	0.0006	0.005	n-Propyl benzene		ND	1.0	0.0029	0.005			
Styrene	ND	1.0	0.0014	0.005	1,1,1,2-Tetrachloroethane		ND	1.0	0.0016	0.00			
1,1,2,2-Tetrachloroethane	ND	1.0	0.0013	0.005	Tetrachloroethene		ND	1.0	0.0023	0.00			
Toluene	ND	1.0	0.0022	0.005	1,2,3-Trichlorobenzene		ND	1.0	0.0007	0.00			
1,2,4-Trichlorobenzene	ND	1.0	0.0011	0.005	1,1,1-Trichloroethane		ND	1.0	0.0018	0.00			
1,1,2-Trichloroethane	ND	1.0	0.0016	0.005	Trichloroethene		ND	1.0	0.0017	0.00			
Trichlorofluoromethane	ND	1.0	0.0016	0.005	1,2,3-Trichloropropane		ND	1.0	0.0019	0.00			
1,2,4-Trimethylbenzene	ND	1.0	0.0024	0.005	1,3,5-Trimethylbenzene		ND	1.0	0.0027	0.00			
Vinyl Chloride	ND	1.0	0.0015	0.005	Xylenes, Total		ND	1.0	0.0025	0.005			
			Surr	ogate R	ecoveries (%)								
%SS1:		107		0	%SS2:			116					
%SS3:		127											
Comments:													
Commento.													

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

<u>McCampbe</u> "When	ell Analyt		<u>, Inc.</u>		1534 Willow Pass Road, P Toll Free Telephone: (877) 25 http://www.mccampbell.com / H	2-9262 / Fax: (925) 252-926			
Quest GeoSystems Manageme	ent Cl	ient P	roject ID	: #G	609212012-02; Byron	Date Sampled:	12/07/	/12	
	Ро		Company			Date Received:	12/07/	/12	
11275 Sunrise Gold Cir., Ste.	R Cl	ient C	Contact: 1	Eric C	Garcia	Date Extracted:	2/07/	12	
Rancho Cordova, CA 95742	Cl	ient P	.0.:			Date Analyzed:	2/15/	12	
	Semi-Ve	olatile	•	-	GC/MS (Basic Target List				
Extraction Method: SW3550B			Analytical N	letnod:	SW8270C		work Oi	der: 1212	2191
Lab ID					1212191-001A				
Client ID					Si.01				
Matrix		-			Soil				1
Compound	Concentration *	DF	MDL	RL	Compound	Concentration *	DF	MDL	RL
Acenaphthene	ND<1.4	10	0.14	0.25	Acenaphthylene	ND<1.4	10	0.14	0.2
Acetochlor	ND<2.5	10	0.25	0.25	Anthracene	ND<1.4	10	0.14	0.2
Benzidine	ND<2.3	10	0.23	1.3	Benzoic Acid	ND<10	10	1.0	2.5
Benzo (a) anthracene	ND<1.4	10	0.14	0.25	Benzo (b) fluoranthene	ND<1.4	10	0.14	0.2
Benzo (k) fluoranthene	ND<1.6	10	0.16	0.25	Benzo (g,h,i) perylene	ND<1.5	10	0.15	0.2
Benzo (a) pyrene	ND<1.4	10	0.14	0.25	Benzyl Alcohol	ND<5.1	10	0.51	1.3
1,1-Biphenyl	ND<1.5	10	0.15	0.25	Bis (2-chloroethoxy) Methane	ND<1.4	10	0.14	0.2
Bis (2-chloroethyl) Ether	ND<1.3	10	0.13	0.25	Bis (2-chloroisopropyl) Ether	ND<1.2	10	0.12	0.2
Bis (2-ethylhexyl) Phthalate	ND<1.3	10	0.13	0.25	4-Bromophenyl Phenyl Ether	ND<1.6	10	0.16	0.2
Butylbenzyl Phthalate	ND<1.3	10	0.13	0.25	4-Chloroaniline	ND<1.3	10	0.13	0.2
4-Chloro-3-methylphenol	ND<1.2	10	0.12	0.25	2-Chloronaphthalene	ND<1.6	10	0.16	0.2
2-Chlorophenol	ND<1.4	10	0.14	0.25	4-Chlorophenyl Phenyl Ether	ND<1.5	10	0.15	0.2
Chrysene	ND<1.4	10	0.14	0.25	Dibenzo (a,h) anthracene	ND<1.6	10	0.16	0.2
Dibenzofuran	ND<1.3	10	0.13	0.25	Di-n-butyl Phthalate	ND<1.3	10	0.13	0.2
1,2-Dichlorobenzene	ND<1.2	10	0.12	0.25	1,3-Dichlorobenzene	ND<1.4	10	0.14	0.25
1,4-Dichlorobenzene	ND<1.3	10	0.13	0.25	3,3-Dichlorobenzidine	ND<1.2	10	0.12	0.5
2,4-Dichlorophenol	ND<1.3	10	0.13	0.25	Diethyl Phthalate	ND<1.4	10	0.14	0.2
2,4-Dimethylphenol	ND<1.3	10	0.13	0.25	Dimethyl Phthalate	ND<1.4	10	0.14	0.25
4,6-Dinitro-2-methylphenol	ND<1.3	10	0.13	1.3	2.4-Dinitrophenol	ND<13	10	1.3	6.3
2,4-Dinitrotoluene	ND<1.3	10	0.13	0.25	2.6-Dinitrotoluene	ND<1.4	10	0.14	0.25
Di-n-octyl Phthalate	ND<1.4	10	0.14	0.25	1,2-Diphenylhydrazine	ND<1.6	10	0.16	0.25
Fluoranthene	ND<1.3	10	0.13	0.25	Fluorene	ND<1.4	10	0.14	0.25
Hexachlorobenzene	ND<1.7	10	0.17	0.25	Hexachlorobutadiene	ND<1.5	10	0.15	0.25
Hexachlorocyclopentadiene	ND<7.3	10	0.73	1.3	Hexachloroethane	ND<1.4	10	0.14	0.25
Indeno (1,2,3-cd) pyrene	ND<1.4	10	0.14	0.25	Isophorone	ND<1.2	10	0.12	0.25
2-Methylnaphthalene	ND<1.4	10	0.14	0.25	2-Methylphenol (o-Cresol)	ND<1.4	10	0.14	0.25
3 &/or 4-Methylphenol (m,p-Cresol)	ND<1.2	10	0.12	0.25	Naphthalene	ND<1.3	10	0.13	0.25
2-Nitroaniline	ND<6.2	10	0.62	1.3	3-Nitroaniline	ND<5.9	10	0.59	1.3
4-Nitroaniline	ND<5.5	10	0.55	1.3	Nitrobenzene	ND<1.4	10	0.14	0.25
2-Nitrophenol	ND<6.4	10	0.64	1.3	4-Nitrophenol	ND<4.1	10	0.41	1.3
N-Nitrosodiphenylamine	ND<1.6	10	0.16	0.25	N-Nitrosodi-n-propylamine	ND<1.3	10	0.13	0.25
Pentachlorophenol	ND<0.61	10	0.061	1.3	Phenanthrene	ND<1.4	10	0.13	0.25
Phenol	ND<1.2	10	0.12	0.25	Pyrene	ND<1.3	10	0.13	0.25
1,2,4-Trichlorobenzene	ND<1.4	10	0.14	0.25	2,4,5-Trichlorophenol	ND<1.2	10	0.12	0.25
2,4,6-Trichlorophenol	ND<1.4	10	0.14	0.25					
*					Recoveries (%)				
%SS1:		91			%SS2:		87		
%SS3:		74			%SS2:		76		
%SS5:		53			%SS6:		86		
Comments: a3						I			

ND means not detected at or above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

surrogate diluted out of range or surrogate coelutes with another peak.

a3) sample diluted due to high organic content.

<u>McCampbe</u> "When	<u>ell Analyf</u> Quality Counts		<u>, Inc.</u>		1534 Willow Pass Road, F Toll Free Telephone: (877) 25 http://www.mccampbell.com / I	2-9262 / Fax: (925) 252-926				
Quest GeoSystems Manageme	ent Cl	ient P	roject II	D: #G	09212012-02; Byron	Date Sampled:	12/07/	/12		
		ower (Company	r		Date Received: 12/07/12				
11275 Sunrise Gold Cir., Ste.	R Cl	ient C	Contact:	Eric G	farcia	Date Extracted:	2/07/	12		
Rancho Cordova, CA 95742	Cl	ient P	2.0.:			Date Analyzed:	2/15/	12		
	Semi-Vo	olatile	Organi	cs by	GC/MS (Basic Target List)*				
Extraction Method: SW3550B			Analytical	Method:	SW8270C		Work Or	rder: 1212	2191	
Lab ID					1212191-002A					
Client ID					Si.02					
Matrix					Soil					
Compound	Concentration *	DF	MDL	RL	Compound	Concentration *	DF	MDL	RL	
Acenaphthene	ND<2.8	20	0.14	0.25	Acenaphthylene	ND<2.8	20	0.14	0.2	
Acetochlor	ND<5.0	20	0.25	0.25	Anthracene	ND<2.8	20	0.14	0.2	
Benzidine	ND<4.6	20	0.23	1.3	Benzoic Acid	ND<20	20	1.0	2.5	
Benzo (a) anthracene	ND<2.8	20	0.14	0.25	Benzo (b) fluoranthene	ND<2.8	20	0.14	0.2	
Benzo (k) fluoranthene	ND<3.2	20	0.16	0.25	Benzo (g,h,i) perylene	ND<3.0	20	0.15	0.2	
Benzo (a) pyrene	ND<2.8	20	0.14	0.25	Benzyl Alcohol	ND<10	20	0.51	1.3	
1,1-Biphenyl	ND<3.0	20	0.15	0.25	Bis (2-chloroethoxy) Methane	ND<2.8	20	0.14	0.2	
Bis (2-chloroethyl) Ether	ND<2.6	20	0.13	0.25	Bis (2-chloroisopropyl) Ether	ND<2.4	20	0.12	0.2	
Bis (2-ethylhexyl) Phthalate	ND<2.6	20	0.13	0.25	4-Bromophenyl Phenyl Ether	ND<3.2	20	0.16	0.2	
Butylbenzyl Phthalate	ND<2.6	20	0.13	0.25	4-Chloroaniline	ND<2.6	20	0.13	0.2	
4-Chloro-3-methylphenol	ND<2.4	20	0.12	0.25	2-Chloronaphthalene	ND<3.2	20	0.16	0.2	
2-Chlorophenol	ND<2.8	20	0.14	0.25	4-Chlorophenyl Phenyl Ether	ND<3.0	20	0.15	0.2	
Chrysene	ND<2.8	20	0.14	0.25	Dibenzo (a,h) anthracene	ND<3.2	20	0.16	0.2	
Dibenzofuran	ND<2.6	20	0.13	0.25	Di-n-butyl Phthalate	ND<2.6	20	0.13	0.2	
1,2-Dichlorobenzene	ND<2.4	20	0.12	0.25	1,3-Dichlorobenzene	ND<2.8	20	0.14	0.2	
1,4-Dichlorobenzene	ND<2.6	20	0.13	0.25	3,3-Dichlorobenzidine	ND<2.4	20	0.12	0.5	
2,4-Dichlorophenol	ND<2.6	20	0.13	0.25	Diethyl Phthalate	ND<2.8	20	0.14	0.2	
2,4-Dimethylphenol	ND<2.6	20	0.13	0.25	Dimethyl Phthalate	ND<2.8	20	0.14	0.2	
4,6-Dinitro-2-methylphenol	ND<2.6	20	0.13	1.3	2,4-Dinitrophenol	ND<26	20	1.3	6.3	
2,4-Dinitrotoluene	ND<2.6	20	0.13	0.25	2,6-Dinitrotoluene	ND<2.8	20	0.14	0.2	
Di-n-octyl Phthalate	ND<2.8	20	0.14	0.25	1,2-Diphenylhydrazine	ND<3.2	20	0.16	0.2	
Fluoranthene	ND<2.6	20	0.13	0.25	Fluorene	ND<2.8	20	0.14	0.2	
Hexachlorobenzene	ND<3.4	20	0.17	0.25	Hexachlorobutadiene	ND<3.0	20	0.15	0.2	
Hexachlorocyclopentadiene	ND<15	20	0.73	1.3	Hexachloroethane	ND<2.8	20	0.14	0.2	
Indeno (1,2,3-cd) pyrene	ND<2.8	20	0.14	0.25	Isophorone	ND<2.4	20	0.12	0.2	
2-Methylnaphthalene	ND<2.8	20	0.14	0.25	2-Methylphenol (o-Cresol)	ND<2.8	20	0.14	0.2	
3 &/or 4-Methylphenol (m,p-Cresol) 2-Nitroaniline	ND<2.4	20	0.12	0.25	Naphthalene 3 Nitroanilina	ND<2.6	20	0.13	0.2	
	ND<12	20	0.62	1.3	3-Nitroaniline	ND<12	20	0.59	1.3	
4-Nitroaniline	ND<11 ND<13	20 20	0.55 0.64	1.3 1.3	Nitrobenzene 4-Nitrophenol	ND<2.8	20 20	0.14 0.41	0.2	
2-Nitrophenol N-Nitrosodiphenylamine	ND<13 ND<3.2	20	0.64	0.25	4-Nitrophenol N-Nitrosodi-n-propylamine	ND<8.2 ND<2.6	20	0.41	0.2	
Pentachlorophenol	ND<3.2 ND<1.2	20	0.16	1.3	Phenanthrene	ND<2.8	20	0.13	0.2	
Phenol	ND<1.2 ND<2.4	20	0.001	0.25	Pyrene	ND<2.6	20	0.14	0.2	
1,2,4-Trichlorobenzene	ND<2.4	20	0.12	0.25	2,4,5-Trichlorophenol	ND<2.4	20	0.13	0.25	
2,4,6-Trichlorophenol	ND<2.8	20	0.14	0.25		11D\2.4	20	0.12	0.2.	
2, ., 5 1110110101	112 \2.0	20			ecoveries (%)					
%SS1:		108	Surf	Sur A	%SS2:		100			
%SS1: %SS3:		84			%\$\$2: %\$\$\$4:		88			
%\$\$\$5: %\$\$\$5:		84 50			%\$\$4: %\$\$6:		88 95			
Comments: a3					•					
^s water samples in µg/L, soil/sludge/so										

ND means not detected at or above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis; % SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

surrogate diluted out of range or surrogate coelutes with another peak.

a3) sample diluted due to high organic content.

	ell Analyt Quality Counts		<u>, Inc.</u>		1534 Willow Pass Road, F Toll Free Telephone: (877) 25 http://www.mccampbell.com / 1				
Quest GeoSystems Manageme	ent C	lient P	roiect ID	: #G	09212012-02; Byron	Date Sampled:	12/07/	/12	
	Pe		Company			Date Received:	12/07/	/12	
11275 Sunrise Gold Cir., Ste.	R C	lient C	ontact: E	Eric G	Jarcia	Date Extracted:	2/07/	12	
Rancho Cordova, CA 95742	C	lient P	.0.:			Date Analyzed:	2/14/	12	
	Semi-V	olatile	•	•	GC/MS (Basic Target List				
Extraction Method: SW3550B			Analytical M	lethod:			Work Oi	rder: 1212	2191
Lab ID					1212191-003A				
Client ID					SCALE				
Matrix			1 1		Soil	1		1	
Compound	Concentration *	DF	MDL	RL	Compound	Concentration *	DF	MDL	RL
Acenaphthene	ND	1.0	0.14	0.25	Acenaphthylene	ND	1.0	0.14	0.25
Acetochlor	ND	1.0	0.25	0.25	Anthracene	ND	1.0	0.14	0.25
Benzidine	ND	1.0	0.23	1.3	Benzoic Acid	ND	1.0	1.0	2.5
Benzo (a) anthracene	ND	1.0	0.14	0.25	Benzo (b) fluoranthene	ND	1.0	0.14	0.25
Benzo (k) fluoranthene	ND	1.0	0.16	0.25	Benzo (g,h,i) perylene	ND	1.0	0.15	0.25
Benzo (a) pyrene	ND	1.0	0.14	0.25	Benzyl Alcohol	ND	1.0	0.51	1.3
1,1-Biphenyl	ND	1.0	0.15	0.25	Bis (2-chloroethoxy) Methane	ND	1.0	0.14	0.25
Bis (2-chloroethyl) Ether	ND	1.0	0.13	0.25	Bis (2-chloroisopropyl) Ether	ND	1.0	0.12	0.25
Bis (2-ethylhexyl) Phthalate	ND	1.0	0.13	0.25	4-Bromophenyl Phenyl Ether	ND	1.0	0.16	0.25
Butylbenzyl Phthalate	ND	1.0	0.13	0.25	4-Chloroaniline	ND	1.0	0.13	0.25
4-Chloro-3-methylphenol	ND	1.0	0.12	0.25	2-Chloronaphthalene	ND	1.0	0.16	0.25
2-Chlorophenol	ND	1.0	0.14	0.25	4-Chlorophenyl Phenyl Ether	ND	1.0	0.15	0.25
Chrysene	ND	1.0	0.14	0.25	Dibenzo (a,h) anthracene	ND	1.0	0.16	0.25
Dibenzofuran	ND	1.0	0.13	0.25	Di-n-butyl Phthalate	ND	1.0	0.13	0.25
1,2-Dichlorobenzene	ND	1.0	0.12	0.25	1,3-Dichlorobenzene	ND	1.0	0.14	0.25
1,4-Dichlorobenzene	ND	1.0	0.13	0.25	3,3-Dichlorobenzidine	ND	1.0	0.12	0.5
2,4-Dichlorophenol	ND	1.0	0.13	0.25	Diethyl Phthalate	ND	1.0	0.14	0.25
2,4-Dimethylphenol	ND	1.0	0.13	0.25	Dimethyl Phthalate	ND	1.0	0.14	0.25
4,6-Dinitro-2-methylphenol	ND	1.0	0.13	1.3	2,4-Dinitrophenol	ND	1.0	1.3	6.3
2,4-Dinitrotoluene	ND	1.0	0.13	0.25	2,6-Dinitrotoluene	ND	1.0	0.14	0.25
Di-n-octyl Phthalate	ND ND	1.0	0.14	0.25	1,2-Diphenylhydrazine Fluorene	ND ND	1.0 1.0	0.16	0.25
Fluoranthene Hexachlorobenzene					Hexachlorobutadiene	ND	1.0	0.14	
Hexachlorocyclopentadiene	ND ND	1.0	0.17	0.25	Hexachloroethane	ND	1.0	0.13	0.25
Indeno (1,2,3-cd) pyrene	ND	1.0	0.13	0.25	Isophorone	ND	1.0	0.14	0.25
2-Methylnaphthalene	ND	1.0	0.14	0.25	2-Methylphenol (o-Cresol)	ND	1.0	0.12	0.25
3 &/or 4-Methylphenol (m,p-Cresol)	ND	1.0	0.14	0.25	Naphthalene	ND	1.0	0.14	0.25
2-Nitroaniline	ND	1.0	0.62	1.3	3-Nitroaniline	ND	1.0	0.13	1.3
4-Nitroaniline	ND	1.0	0.55	1.3	Nitrobenzene	ND	1.0	0.14	0.25
2-Nitrophenol	ND	1.0	0.64	1.3	4-Nitrophenol	ND	1.0	0.41	1.3
N-Nitrosodiphenylamine	ND	1.0	0.16	0.25	N-Nitrosodi-n-propylamine	ND	1.0	0.13	0.25
Pentachlorophenol	ND	1.0	0.061	1.3	Phenanthrene	ND	1.0	0.13	0.25
Phenol	ND	1.0	0.12	0.25	Pyrene	ND	1.0	0.13	0.25
1,2,4-Trichlorobenzene	ND	1.0	0.14	0.25	2,4,5-Trichlorophenol	ND	1.0	0.12	0.25
2,4,6-Trichlorophenol	ND	1.0	0.14	0.25				·	
			Surro	gate R	ecoveries (%)				
%SS1:		81			%SS2:		72		
%SS3:		64			%SS4:		64		
%SS5:		44			%SS6:		64		
Comments:									
			e samples i						

ND means not detected at or above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

surrogate diluted out of range or surrogate coelutes with another peak.

a3) sample diluted due to high organic content.

	<u>Analytical</u> <i>lity Counts''</i>	Toll Free Telepl	v Pass Road, Pittsburg, CA hone: (877) 252-9262 / Fax mpbell.com / E-mail: main	: (925) 252-9269				
Quest GeoSystems Management	Client Pr	oject ID: #G092	212012-02;	Date Sampled:	12/07/12			
	Byron Po	ower Company		Date Received	12/07/12			
11275 Sunrise Gold Cir., Ste. R	Client Co	ontact: Eric Garc	ia	Date Extracted 12/07/12				
Paraha Cardava CA 05742	Client P.							
Rancho Cordova, CA 95742				Date Analyzed	12/11/12			
	C	AM / CCR 17 Me	tals*					
Lab ID	1212191-001A	1212191-002A	1212191-0034	A	Reporting Lir	nit for DF =1;		
Client ID	Si.01	Si.02	SCALE		ND means	not detected eporting limit		
Matrix	S	S	S		MDL	RL		
Extraction Type	TOTAL	TOTAL	TOTAL		mg/Kg	mg/Kg		
51	ICI	Metals, Concent	ration*					
Analytical Method: SW6020		raction Method: SW305			Work Order:	1212191		
Dilution Factor	1	1	1		1	1		
Antimony	2.5	1.5	1.2		0.14	0.5		
Arsenic	1.2	1.8	0.97		0.27	0.5		
Barium	65	110	150		4.0	5.0		
Beryllium	ND	ND	ND		0.19	0.5		
Cadmium	0.24,J	0.21,J	ND		0.16	0.25		
Chromium	5.6	8.5	3.5		0.5	0.5		
Cobalt	0.67	0.90	0.83		0.17	0.5		
Copper	58	44	65		0.4	0.5		
Lead	19	31	21		0.5	0.5		
Mercury	0.031,J	0.040,J	0.036,J		0.01	0.05		
Molybdenum	140	87	6.6		0.17	0.5		
Nickel	2.6	2.5	3.0		0.25	0.5		
Selenium	0.23,J	ND	ND		0.22	0.5		
Silver	ND	ND	ND		0.13	0.5		
Thallium	ND	ND	ND		0.14	0.5		
Vanadium	2.0	1.8	0.79		0.5	0.5		
Zinc	180	390	190		2.0	5.0		
%SS:	95	91	91					
Comments								
 *water samples are reported in µg/L, production in goil/sludge/solid samples in mg/kg, wipe sare # means surrogate diluted out of range; ND is printer instrument. FOTAL = Hot acid digestion of a representation in the same interpretation interpretation in the same interpretation in the same interpretation interease interpretation interpretation interpretation interpretat	nples in µg/wipe, filt neans not detected a tive sample aliquot. ct analysis" of a samp of 0.45 µm filtered ar	er samples in µg/filte bove the reporting lin ple aliquot taken from	r. hit/method detectio	on limit; N/A means not	-	-		

<u> Мс</u>	Campbell Ana ''When Quality Cor	lytical, Inc. unts''	Toll Free Telepho	Pass Road, Pittsburg, C ne: (877) 252-9262 / F pbell.com / E-mail: ma	Fax: (925) 252-9269	
Quest GeoSyste	ems Management		#G09212012-02;	Date Sampled	l: 12/	07/12	
11275 Sunrise	Gold Cir., Ste. R	Byron Power Com	ipany	Date Received	d: 12/	07/12	
		Client Contact: En	ric Garcia	Date Extracted	d: 12/	07/12	
Rancho Cordov	va, CA 95742	Client P.O.:		Date Analyzed	d 12/	10/12-2	12/12/12
	Gasoline Ra	•	tile Hydrocarbons as (
Extraction method: SW			ethods: SW8015Bm			rk Order:	
Lab ID	Client ID	Matrix	TPH(g)		DF	% SS	Comments
001A	Si.01	S	1.8		1	62	d7,c2
002A	Si.02	S	11		1	63	d2,c2
003A	SCALE	S	0.26,J		1	83	

Reporting Limit for DF =1; ND means not detected at or above	MDL	0.09	mg/Kg
the reporting limit/method detection limit	RL	1.0	mg/Kg

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts in mg/L.

cluttered chromatogram; sample peak coelutes w/surrogate peak; low surrogate recovery due to matrix interference; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: J) analyte detected below quantitation limits

c2) low surrogate recovery, caused by matrix interference.

d2) heavier gasoline range compounds are significant (aged gasoline?)

d7) strongly aged gasoline or diesel range compounds are significant in the TPH(g) chromatogram

DHS ELAP Certification 1644

	McCampbell Anal "When Quality Cou		Inc.		Toll Free Telepho	ne: (8	Road, Pittsburg, CA 9456 (77) 252-9262 / Fax: (925) com / E-mail: main@mcca	252-9269			
Quest	GeoSystems Management	Client Pro Byron Po			2012-02;	Da	ate Sampled: 12	/07/12			
11275	Sunrise Gold Cir., Ste. R	Byron Po	wer Comj	pany		Da	ate Received: 12	2/07/12			
	, ,	Client Co	ntact: Er	ic Garcia	l	Da	ate Extracted: 12	/07/12-12/13/12			
Ranche	o Cordova, CA 95742	Client P.O	D.:			Da	ate Analyzed: 12	/07/12-12/13/12			
		RCI (H	Reactivity	, Corro	sivity , Ignita	bili	ty)	Work Order:	1212191		
Lab ID	Client ID	Matrix		Reac	-		Corrosivity	Ignitability	Comments		
			Sulf	fide	Cyanide						
003A	SCALE	S	ne	g	neg		8.90 @ 21.7°C	neg			

Reactivity: negative means no obvious evolution of gas or instability and contains no reactive cyanide or sulfide (<250 mg/L cyanide and <500 mg/L sulfide for Water matrix; <250 mg/Kg cyanide and <500 mg/Kg sulfide for Soil matrix, by EPA SW-846, chapter7, Rev. 3).

Corrosivity determined by EPA method 9040; pH = @ $_$ °C ; ± 0.05 units.

Ignitability: EPA method 1010; reported in °C; ±2°C; negative means that flashpoint was not detected below 100°C.

DHS ELAP Certification 1644

Angela Rydelius, Lab Manager

	mpbell Ana "When Quality Cod	lytical, Inc. unts''	Tol	ll Free Telepho	Pass Road, Pittsburg, CA ne: (877) 252-9262 / Fax: pbell.com / E-mail: main@	(925) 252-9269) om	
Quest GeoSystems N	lanagement	Client Project ID:		2-02;	Date Sampled: 12/07/12 Date Received: 12/07/12			
11275 Sunrise Gold	Cir., Ste. R	Byron Power Con	ipany					
		Client Contact: E	ric Garcia		Date Extracted:			
Rancho Cordova, CA	A 95742	Client P.O.:			Date Analyzed	12/11/12		
Analytical Method: ASTMD	2216-92	Percent	Moisture			Work Order:	1212191	
Lab ID	Client ID	M	atrix		% Moisture		Comments	
1212191-001A	Si.01		S		67.4			
1212191-002A	Si.02		S		58.5			
Reporting Limit or 1	Method Accuracy and Reporti	ng Units; M	IDL		±0.1, wet wt%			
ND mea	ans not detected at or above ng limit/method detection limit	I	RL		±0.1, wet wt%			

A = mass of the total, as received, sample (i.e., "wet weight") B = mass of the oven-dried sample

DF = Dilution Factor

	cCampbell ''When Qi				Toll Free Teleph	Pass Road, Pittsburg, CA one: (877) 252-9262 / Fax: npbell.com / E-mail: main@	(925) 252-92					
Quest GeoSys	tems Management		Client Project ID: Byron Power Comp		012-02;	Date Sampled: Date Received:	•					
11275 Sunrise	Gold Cir., Ste. R			J	12/0	12/07/12						
			Client Contact: Eri	ic Garcia		Date Extracted:	12/0	7/12				
Rancho Cordo	ova, CA 95742		Client P.O.:			Date Analyzed:	12/1	2/12-12/1	3/12			
Extraction method:	SW3550B		Total Extractable Analytical me		Hydrocarbo 8015B)ns*	W	ork Order:	1212191			
Lab ID	Client ID	Matrix	TPH-Diesel (C10	-C23)	TPH-Mo	otor Oil (C18-C36)	DF	% SS	Comments			
1212191-001A	Si.01	S	72			160	20	112	e7,e2			
1212191-002A	Si.02	S	430			660	50	96	e3,e7			
1212191-003A	SCALE	S	3.6			12	1	95	e7,e2			

Reporting Limit for DF =1;	MDL	0.7	5.0	mg/Kg
ND means not detected at or above the RL/MDL	RL	1.0	5.0	mg/Kg

* water samples are reported in µg/L, wipe samples in µg/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / STLP / TCLP extracts are reported in µg/L.

cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: e2) diesel range compounds are significant; no recognizable pattern

e3) aged diesel is significant

e7) oil range compounds are significant

DHS ELAP Certification 1644

Angela Rydelius, Lab Manager

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Soil	QC Matrix:	Soil			BatchID	: 72946	WorkOrder: 1212191				
EPA Method: SW8260B	Extraction: SW5030B					;	Spiked Sam	ple ID:	1212060-001A		
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	Acc	eptance	Criteria (%)		
7 tidiyto	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS		
tert-Amyl methyl ether (TAME)	ND<0.1	0.050	NR	NR	NR	94	N/A	N/A	70 - 130		
Benzene	ND<0.1	0.050	NR	NR	NR	95.2	N/A	N/A	70 - 130		
t-Butyl alcohol (TBA)	ND<1	0.20	NR	NR	NR	116	N/A	N/A	70 - 130		
Chlorobenzene	ND<0.1	0.050	NR	NR	NR	94.5	N/A	N/A	70 - 130		
1,2-Dibromoethane (EDB)	ND<0.08	0.050	NR	NR	NR	96.7	N/A	N/A	70 - 130		
1,2-Dichloroethane (1,2-DCA)	ND<0.08	0.050	NR	NR	NR	98.2	N/A	N/A	70 - 130		
1,1-Dichloroethene	ND<0.1	0.050	NR	NR	NR	95.2	N/A	N/A	70 - 130		
Diisopropyl ether (DIPE)	ND<0.1	0.050	NR	NR	NR	95.4	N/A	N/A	70 - 130		
Ethyl tert-butyl ether (ETBE)	ND<0.1	0.050	NR	NR	NR	96	N/A	N/A	70 - 130		
Methyl-t-butyl ether (MTBE)	ND<0.1	0.050	NR	NR	NR	98.5	N/A	N/A	70 - 130		
Toluene	0.28	0.050	NR	NR	NR	95.5	N/A	N/A	70 - 130		
Trichloroethene	ND<0.1	0.050	NR	NR	NR	95.2	N/A	N/A	70 - 130		
%SS1:	105	0.12	NR	NR	NR	99	N/A	N/A	70 - 130		
%SS2:	106	0.12	NR	NR	NR	100	N/A	N/A	70 - 130		
%SS3:	113	0.012	NR	NR	NR	96	N/A	N/A	70 - 130		

BATCH 72946 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1212191-001A	12/07/12 11:16 AM	12/07/12	12/11/12 3:43 AM	1212191-002A	12/07/12 11:11 AM	12/07/12	12/11/12 4:26 AM
1212191-003A	12/07/12 11:06 AM	12/07/12	12/10/12 2:40 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

DHS ELAP Certification 1644

MO O CARANTA MARKED O C'

Datable 72000

WorkOrdor, 1010101

QC SUMMARY REPORT FOR SW8270C

OC Matrix Call

EPA Method: SW8270C	Extraction: SW3550B						Spiked Sam	ple ID:	1212196-004A
Analyte	Sample	e Spiked	MS	MSD	MS-MSD	LCS	Acc	eptance	Criteria (%)
	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS
Acenaphthene	ND<0.6	6 5	NR	NR	NR	82.4	N/A	N/A	30 - 130
4-Chloro-3-methylphenol	ND<0.	5 5	NR	NR	NR	88.2	N/A	N/A	30 - 130
2-Chlorophenol	ND<0.	5 5	NR	NR	NR	80.6	N/A	N/A	30 - 130
1,4-Dichlorobenzene	ND<0.6	6 5	NR	NR	NR	67.2	N/A	N/A	30 - 130
2,4-Dinitrotoluene	ND<0.6	6 5	NR	NR	NR	93.7	N/A	N/A	30 - 130
4-Nitrophenol	ND<2.0	5 5	NR	NR	NR	51.9	N/A	N/A	30 - 130
N-Nitrosodi-n-propylamine	ND<0.6	6 5	NR	NR	NR	62.7	N/A	N/A	30 - 130
Pentachlorophenol	ND<2.0	5 5	NR	NR	NR	52.1	N/A	N/A	30 - 130
Phenol	ND<0.	5 5	NR	NR	NR	83.2	N/A	N/A	30 - 130
Pyrene	ND<0.6	6 5	NR	NR	NR	90	N/A	N/A	30 - 130
1,2,4-Trichlorobenzene	ND<0.6	6 5	NR	NR	NR	76.6	N/A	N/A	30 - 130
%SS1:	100	5	NR	NR	NR	100	N/A	N/A	30 - 130
%SS2:	97	5	NR	NR	NR	95	N/A	N/A	30 - 130
%SS3:	83	5	NR	NR	NR	91	N/A	N/A	30 - 130
%SS4:	83	5	NR	NR	NR	81	N/A	N/A	30 - 130
%SS5:	58	5	NR	NR	NR	65	N/A	N/A	30 - 130
%SS6:	85	5	NR	NR	NR	90	N/A	N/A	30 - 130

BATCH 73098 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1212191-001A	12/07/12 11:16 AM	12/07/12	12/15/12 3:01 AM	1212191-002A	12/07/12 11:11 AM	12/07/12	12/15/12 3:26 AM
1212191-003A	12/07/12 11:06 AM	12/07/12	12/14/12 11:13 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and / or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix, sample diluted due to high matrix or analyte content, or MS/MSD samples diluted due to high organic content.

#) surrogate diluted out of range; & = low or no recovery of surrogate or target analytes due to matrix interference.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

QA/QC Officer

QC SUMMARY REPORT FOR SW6020

W.O. Sample Matrix: Soil	QC Matrix:	Soil			BatchID	: 72976		WorkO	order: 1212191
EPA Method: SW6020	Extraction: SW3050B						Spiked Sam	ple ID:	1212191-001A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	Acc	eptance	Criteria (%)
, individ	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS
Antimony	2.5	50	111	118	5.40	104	75 - 125	20	75 - 125
Arsenic	1.2	50	109	115	5.34	108	75 - 125	20	75 - 125
Barium	65	500	113	121	5.95	103	75 - 125	20	75 - 125
Beryllium	ND	50	102	107	4.65	115	75 - 125	20	75 - 125
Cadmium	ND	50	110	116	4.96	107	75 - 125	20	75 - 125
Chromium	5.6	50	106	113	5.71	118	75 - 125	20	75 - 125
Cobalt	0.67	50	113	117	3.76	111	75 - 125	20	75 - 125
Copper	58	50	NR	NR	NR	114	N/A	N/A	75 - 125
Lead	19	50	107	117	6.55	109	75 - 125	20	75 - 125
Mercury	ND	1.25	104	112	7.11	101	75 - 125	20	75 - 125
Molybdenum	140	50	NR	NR	NR	108	N/A	N/A	75 - 125
Nickel	2.6	50	106	111	4.97	114	75 - 125	20	75 - 125
Selenium	ND	50	110	118	6.91	114	75 - 125	20	75 - 125
Silver	ND	50	110	114	3.87	101	75 - 125	20	75 - 125
Thallium	ND	50	105	109	3.54	102	75 - 125	20	75 - 125
Vanadium	2.0	50	108	114	5.75	116	75 - 125	20	75 - 125
Zinc	180	500	105	115	7.08	114	75 - 125	20	75 - 125
%SS:	95	500	91	100	9.99	117	70 - 130	20	70 - 130
All target compounds in the Method Blank of NONE	this extraction batch were ND	less than th	e method	RL with the	he following	g exception	ns:		

BATCH 72976 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1212191-001A	12/07/12 11:16 AM	12/07/12	12/11/12 12:38 AM	1212191-001A	12/07/12 11:16 AM	12/07/12	12/11/12 2:41 PM
1212191-002A	12/07/12 11:11 AM	12/07/12	12/11/12 12:01 AM	1212191-003A	12/07/12 11:06 AM	12/07/12	12/11/12 12:08 AM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not applicable to this method.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

DHS ELAP Certification 1644

____QA/QC Officer

QC SUMMARY REPORT FOR SW8021B/8015Bm

W.O. Sample Matrix: Soil	QC Matrix:	Soil			BatchID	: 72969		WorkO	rder: 1212191
EPA Method: SW8015Bm Extraction: S	W5030B						Spiked Sam	ple ID:	1212104-004A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	Acc	eptance	Criteria (%)
	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS
TPH(btex) [£]	ND	0.60	93	94.8	1.86	101	70 - 130	20	80 - 120
MTBE	ND	0.10	96	100	4.40	104	70 - 130	20	80 - 120
Benzene	ND	0.10	101	97.5	3.43	98.7	70 - 130	20	80 - 120
Toluene	ND	0.10	100	97	3.45	98.4	70 - 130	20	80 - 120
Ethylbenzene	ND	0.10	101	98.7	2.71	101	70 - 130	20	80 - 120
Xylenes	ND	0.30	102	99.4	2.93	103	70 - 130	20	80 - 120
%SS:	99	0.10	106	102	3.89	107	70 - 130	20	70 - 130
All target compounds in the Method Blank of this extraction ba NONE	tch were ND	less than th	e method	RL with th	he following	g exceptio	ns:		

			BATCH 72969 S	UMMARY			
Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1212191-001A	12/07/12 11:16 AM	12/07/12	12/12/12 7:07 PM	1212191-002A	12/07/12 11:11 AM	12/07/12	12/11/12 4:52 PM
1212191-003A	12/07/12 11:06 AM	12/07/12	12/10/12 6:52 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

 \pounds TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

K___QA/QC Officer

QC SUMMARY REPORT FOR WET CHEMISTRY TESTS

Test Method:	SWChpt7 (Ignitability)
--------------	------------------------

Matrix: S

WorkOrder: 1212191

Method Name	e: SWCh	ipt7_lgn			U	Inits: pos/neg	9				BatchID: 73241		
Lab ID	b ID Sample			DF	Dup	/ Ser. Dil.	DF		% RPD		Acceptance Criteria (%		
1212191-003A		neg		1		neg	1		N/A	1		N/A	
				BAT	CH 7324	1 SUMMARY	, -						
Lab ID	Date	Sampled [Date Extracted	Date Ar	nalyzed	Lab ID		Date S	Sampled	Date Ex	xtracted	Date Analyzed	
1212191-003A	12/07/1	12 11:06 AM	12/13/12	12/13/12	1:15 PM								

Dup = Duplicate; Ser. Dil. = Serial Dilution; MS = Matrix Spike; RD = Relative Difference; RPD = Relative Percent Deviation.

Precision = Absolute Value (Sample - Duplicate)

RPD = 100 * (Sample - Duplicate) / [(Sample + Duplicate) / 2]

%RPD is calculated using results of up to 10 significant figures, however the reported results are rounded to 2 or 3 significant figures. Therefore there may be a slight discrepancy between the %RPD displayed above and %RPD calculated using the reported results. MAI considers %RPD based upon more significant figures to be more accurate.

A _____QA/QC Officer

QC SUMMARY REPORT FOR WET CHEMISTRY TESTS

Test Method:	ASTM D	2216-92 (Percent Mo	isture)	Matrix: S			WorkOrder: 1212191				
Method Na	ame: ASTN	ID2216-92		Units: ±, wet v	/t%		BatchID: 72991				
Lab ID		Sample	DF	Dup / Ser. Dil. DF % RPD Accepta							
1212191-001A		67.4	1.42	67.0	1.414	0.628	<15				
1212191-002A		58.5	1.95	56.1	2.087	2.087 4.19 <15					
Lab ID 1212191-001A Test Method:		Sampled Date Extr /12 11:16 AM 12/10 D (pH) D		2			Extracted Date Analyzed 12/10/12 12/11/12 1:30 PM WorkOrder: 1212191				
Mathad											
Method Na	ame: SW90)45D		Units: ±, pH u	nits @ °C		BatchID: 72995				
Lab ID	ame: SW90	045D Sample	DF	Units: ±, pH u Dup / Ser. Dil.	nits @ °C DF	Precision	BatchID: 72995 Acceptance Criteria				
	ame: SW90		DF 1			Precision 0.01					

Dup = Duplicate; Ser. Dil. = Serial Dilution; MS = Matrix Spike; RD = Relative Difference; RPD = Relative Percent Deviation.

Precision = Absolute Value (Sample - Duplicate)

RPD = 100 * (Sample - Duplicate) / [(Sample + Duplicate) / 2]

%RPD is calculated using results of up to 10 significant figures, however the reported results are rounded to 2 or 3 significant figures. Therefore there may be a slight discrepancy between the %RPD displayed above and %RPD calculated using the reported results. MAI considers %RPD based upon more significant figures to be more accurate.

R__QA/QC Officer

QC SUMMARY REPORT FOR WET CHEMISTRY TESTS

Test Method:	SWchpt	7_CN (Reactive Cyan	ide)	Matrix: S			WorkOrder: 1212191
Method Na	ame: SWcł	npt7_CN		BatchID: 73239			
Lab ID		Sample	DF	Dup / Ser. Dil.	DF	% RPD	Acceptance Criteria (%)
1212191-003A		neg	1	neg	1	N/A	
			BAT	CH 73239 SUMMARY			
Lab ID	Date	Sampled Date Extr	acted Date Ar	nalyzed Lab ID	Date	Sampled Date	Extracted Date Analyzed
1212191-003A	12/07	/12 11:06 AM 12/13	3/12 12/13/12	2:00 PM			
1212191-003A Test Method:		/12 11:06 AM 12/1: 7_S (Reactive Sulfide		2:00 PM Matrix: S			WorkOrder: 1212191
	SWchpt	7_S (Reactive Sulfide					WorkOrder: 1212191 BatchID: 73239
Test Method:	SWchpt	7_S (Reactive Sulfide		Matrix: S	DF	% RPD	
Test Method: Method Na	SWchpt	7_S (Reactive Sulfide	9)	Matrix: S Units: pos/neg	DF 1	% RPD N/A	BatchID: 73239
Test Method: Method Na Lab ID	SWchpt	7_S (Reactive Sulfide npt7_S Sample) DF 1	Matrix: S Units: pos/neg Dup / Ser. Dil. neg			BatchID: 73239 Acceptance Criteria (%)
Test Method: Method Na Lab ID	SWchpt	7_S (Reactive Sulfide npt7_S Sample	9) DF 1 BAT	Matrix: S Units: pos/neg Dup / Ser. Dil. neg CH 73239 SUMMARY	1	N/A	BatchID: 73239 Acceptance Criteria (%)

Dup = Duplicate; Ser. Dil. = Serial Dilution; MS = Matrix Spike; RD = Relative Difference; RPD = Relative Percent Deviation.

Precision = Absolute Value (Sample - Duplicate)

RPD = 100 * (Sample - Duplicate) / [(Sample + Duplicate) / 2]

%RPD is calculated using results of up to 10 significant figures, however the reported results are rounded to 2 or 3 significant figures. Therefore there may be a slight discrepancy between the %RPD displayed above and %RPD calculated using the reported results. MAI considers %RPD based upon more significant figures to be more accurate.

A _____QA/QC Officer

QC SUMMARY REPORT FOR SW8015B

W.O. Sample Matrix: Soil	QC Matrix	: Soil			BatchID	: 72989	WorkOrder: 1212191		
EPA Method: SW8015B	Extraction: SW3550B						Spiked Sam	ple ID:	1212122-002A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	Acc	eptance	Criteria (%)
·	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS
TPH-Diesel (C10-C23)	1.2	40	124	127	2.48	99.5	70 - 130	30	70 - 130
%SS:	81	25	79	80	1.10	93	70 - 130	30	70 - 130
All target compounds in the Method Blank NONE	of this extraction batch were ND	less than th	e method	RL with t	he following	g exceptio	ns:		

BATCH 72989 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1212191-001A	12/07/12 11:16 AM	12/07/12	12/13/12 3:47 PM	1212191-002A	12/07/12 11:11 AM	12/07/12	12/12/12 9:35 AM
1212191-003A	12/07/12 11:06 AM	12/07/12	12/12/12 3:39 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

DHS ELAP Certification 1644

K__QA/QC Officer

Bulk Asbestos Analysis

(EPA Method 600/R-93-116, Visual Area Estimation)

McCampbell Analytical, Inc. Account Payable 1534 Wilow Pass Rd Pittsburg, CA 94565					Client ID: Report Number Date Received: Date Analyzed: Date Printed:	12/10/	337 /12 /12
Fittsburg, CA 94505					First Reported:		
Job ID/Site: G09212012-02 - Byron P	ower Company				FALI Job ID:	A3140)9
Date(s) Collected: 12/07/2012					Total Samples S Total Samples A		
Sample ID	Lab Number	Asbestos Type	Percent in Layer	Asbestos Type	Percent in A Layer	Asbestos Type	Percent in Layer
SCALE Layer: Off-White/Beige Soil	11325629		ND				
Total Composite Values of Fibrous Co Cellulose (Trace)	omponents: A	sbestos (ND)					

Lad Shower

Tad Thrower, Laboratory Supervisor, Hayward Laboratory

Note: Limit of Quantification ('LOQ') = 1%. 'Trace' denotes the presence of asbestos below the LOQ. 'ND' = 'None Detected'. Analytical results and reports are generated by Forensic Analytical Laboratories Inc. (FALI) at the request of and for the exclusive use of the person or entity (client) named on such report. Results, reports or copies of same will not be released by FALI to any third party without prior written request from client. This report applies only to the sample(s) tested. Supporting laboratory documentation is available upon request. This report must not be reproduced except in full, unless approved by FALI. The client is solely responsible for the use and interpretation of test results and reports requested from FALI. Forensic Analytical Laboratories Inc. is not able to assess the degree of hazard resulting from materials analyzed. FALI reserves the right to dispose of all samples after a period of thirty (30) days, according to all state and federal guidelines, unless otherwise specified. All samples were received in acceptable condition unless otherwise noted.

McCampbell Analytical, Inc. "When Quality Counts"

Analytical Report

Quest GeoSystems Management	Client Project ID: G09212012-02; Byron Power Company	Date Sampled:	12/18/12-12/19/12
11275 Sunrise Gold Cir., Ste. R	Company	Date Received:	12/19/12
	Client Contact: Eric Garcia	Date Reported:	12/28/12
Rancho Cordova, CA 95742	Client P.O.:	Date Completed:	12/28/12

WorkOrder: 1212525

January 04, 2013

Dear Eric:

Enclosed within are:

- 1) The results of the **6** analyzed samples from your project: **G09212012-02; Byron Power Company**,
- 2) QC data for the above samples, and
- 3) A copy of the chain of custody.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

The analytical results relate only to the items tested.

1212525

QUEST G 11275 Su						Mr. El	t GeoS ric W. (Sunvise)	ROJE(ystems Sarcia Gold Cir, questg	s Mana Suite R,	gemen Pho Fax Rancho	t, Inc. ne:	(925)	756-12 756-12 742				NUU0	D TIME:	ES	R		24		48 1		5 0			COMMENTS
Project Name: Project Number: Project Location: Sampler Signature	G09212012-02 4901 Bruns Re Byron, Califor	oad	-	Atte	ention: iress:	Mr. Er	t GeoS ric W. (Sunrise (Fax: (926) 756-1227 Gold Cir, Suite R, Rencho Cordove, CA 95742 Squestgsm.com MATRIX PRESERVATION METHOD																					
		SAM	PLING	ainers	of Containers			MATRI	x		P			ON	-	BO	70												
SAMPLE ID (Field Point Name)	LOCATION	Date	Time	# of Contain	Type of Cor	Water	soil	Air	Sludge	Other	lce	HCI	HNO3	Other	TPH-MR - 8015	VOC's - 8260B	SVOC's - 8270												
MW.01-4	MW.01	12-18	1455	1	SS		x				x				X	X	X		$^{+}$	1	1		1	+	-	+	-	-	depth in ft
MW.01 -8	MW.01	12-18	1510	1	SS		x				x				x	x	x										1		
MW.02	MW.02	0		1	SS		x				x				x	x	x												
MW.02	MW.02	RA		1	SS		x				x				x	x	x		1								-		
MW.03 - 7	MW.03	12-19	1340	1	SS		x				х				x	x	x		1										
MW.03 - 8	MW.03	12-19	1350	1	SS		x				x				x	x	x		T								-		
MW.04 - 4	MW,04	12-18	0925	1	SS		x				х				x	x	x		1										
MW.04 - 8	MW,04	1278	1000	1	SS		x				x				x	x	x	_	-	+	-	-	-	-			+	_	
															_				-	-		-	-	-		-	-		
															_			-	-	-	-	-	+	+	-	-			
	1	er l																	+			1	+			1			
		1																		1			+						
			1															R	-	2						+			
elinguished By: Roha IX elinguished By:	Nelom		Date:	Time:		Receiv		u	m	1	2-	6			Rema		STLC.	TE CON	NAT	ED B	NT_NLAN		p	UN 12 RESE	OPRI/ AINEI ERVEI LS C	RS_	LAB		

McCampbell Analytical, Inc.

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

(925) 252-9262				Work(Order: 1212525	Clie	ntCode: QGSM		
	WaterTrax	WriteOn	✓ EDF	Excel	EQuIS	✓ Email	HardCopy	ThirdParty	J-flag
Report to:				E	Bill to:		Req	uested TAT:	5 days
Eric Garcia Quest GeoSystems Management 11275 Sunrise Gold Cir., Ste. R Rancho Cordova, CA 95742 (925) 756-1210 FAX: (925) 756-1227	cc: PO:	eric.garcia@ques G09212012-02; B		ompany	Lexie Hinds Quest GeoSy 98 Daisyfield Livermore, CA lexiehinds@y	Drive \ 94551	Dat	te Received: te Printed:	12/19/2012 12/19/2012

								Re	questec	l Tests	(See leg	jend bel	ow)			
Lab ID	Client ID	Matrix	Collection Date Ho	old	1	2	3	4	5	6	7	8	9	10	11	12
4040505 004	N/N/ 04_4	Cail		<u> </u>	•	^	٨	•								
1212525-001	MW.01-4	Soil	12/18/2012 14:55		A	A	A	A	-							
1212525-002	MW.01-8	Soil	12/18/2012 15:10		A	A	A									
1212525-003	MW.03-4	Soil	12/19/2012 13:40		А	Α	А									
1212525-004	MW.03-8	Soil	12/19/2012 13:50		А	Α	А									
1212525-005	MW.04-4	Soil	12/18/2012 9:25		А	Α	А									
1212525-006	MW.04-8	Soil	12/18/2012 10:00		А	Α	А									

Test Legend:

1	8260B_S
6	
11	

2	8270D_S	
7		
12		

3	G-MBTEX_S
8	

PREDF REPORT

4

9

5	
10	

The following SampIDs: 001A, 002A, 003A, 004A, 005A, 006A contain testgroup.

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

Prepared by: Zoraida Cortez

Sample Receipt Checklist

Client Name:	Quest GeoSystems	Management			Date a	and Time Rece	ived: 12/19/201	2 6:15:40 PM
Project Name:	G09212012-02; Byre	on Power Company			LogIn	Reviewed by:		Zoraida Cortez
WorkOrder N°:	1212525	Matrix: Soil			Carrie	r: <u>Client Dr</u>	<u>rop-In</u>	
		<u>Cha</u>	in of Ըւ	ustody (Co	OC) Informat	tion		
Chain of custody	present?		Yes	✓	No 🗌			
Chain of custody	signed when relinquis	hed and received?	Yes	✓	No 🗌			
Chain of custody	agrees with sample la	abels?	Yes	✓	No 🗌			
Sample IDs note	d by Client on COC?		Yes	✓	No 🗌			
Date and Time o	f collection noted by C	lient on COC?	Yes	✓	No 🗌			
Sampler's name	noted on COC?		Yes		No 🗹			
			<u>Sample</u>	e Receipt	Information			
Custody seals in	tact on shipping contai	iner/cooler?	Yes		No 🗌		NA 🗹	
Shipping contain	er/cooler in good cond	lition?	Yes	✓	No 🗌			
Samples in prope	er containers/bottles?		Yes	✓	No 🗌			
Sample containe	rs intact?		Yes	✓	No 🗌			
Sufficient sample	e volume for indicated	test?	Yes	✓	No 🗌			
		Sample Pres	ervatio	n and Hol	<u>ld Time (HT)</u>	Information		
All samples recei	ived within holding tim	e?	Yes	✓	No 🗌			
Container/Temp	Blank temperature		Coole	er Temp:	3.3°C		NA	
Water - VOA vial	s have zero headspac	e / no bubbles?	Yes		No 🗌	No VOA vials	submitted 🗹	
Sample labels ch	necked for correct pres	servation?	Yes	✓	No			
Metal - pH accep	table upon receipt (p⊢	I<2)?	Yes		No 🗌		NA 🗹	
Samples Receive	ed on Ice?		Yes	✓	No 🗌			
		(Ісе Тур	e: WE	TICE)				
* NOTE: If the "N	lo" box is checked, se	e comments below.						

Comments:

	Analytica ality Counts''	l, Inc.	•	Toll Free Telep		g, CA 94565-1701 / Fax: (925) 252-9269 main@mccampbell.com				
Quest GeoSystems Management				9212012-02;	Date Sample	ed: 12/18/12				
11275 G	Byron I	Power C	ompany	4	Date Receiv	ed: 12/19/12	12/19/12			
11275 Sunrise Gold Cir., Ste. R	Client C	Contact:	Eric G	arcia	Date Extract	ed: 12/19/12				
Rancho Cordova, CA 95742	Client F	P.O.:			Date Analyz	ed: 12/20/12				
	Volatile Organ	ics bv P	&T an	d GC/MS (Basic	Target List)*					
Extraction Method: SW5030B	a a a a a a a a a a a a a a a a a a a	•		od: SW8260B		Work Order: 12125	525			
Lab ID				12125	25-001A					
Client ID				MW	V.01-4					
Matrix				S	Soil					
Compound	Concentration *	DF	Reporting Limit	Compo	und	Concentration *	DF	Reporting Limit		
Acetone	ND	1.0	0.05	tert-Amyl methyl et	her (TAME)	ND	1.0	0.005		
Benzene	ND	1.0	0.005	Bromobenzene		ND	1.0	0.005		
Bromochloromethane	ND	1.0	0.005	Bromodichlorometh	ane	ND	1.0	0.005		
Bromoform	ND	1.0	0.005	Bromomethane		ND	1.0	0.005		
2-Butanone (MEK)	ND	1.0	0.02	t-Butyl alcohol (TB.	A)	ND	1.0	0.05		
n-Butyl benzene	ND	1.0	0.005	sec-Butyl benzene		ND	1.0	0.005		
tert-Butyl benzene	ND	1.0	0.005	Carbon Disulfide		ND	1.0	0.005		
Carbon Tetrachloride	ND	1.0	0.005	Chlorobenzene		ND	1.0	0.005		
Chloroethane	ND	1.0	0.005	Chloroform		ND	1.0	0.005		
Chloromethane	ND	1.0	0.005	2-Chlorotoluene		ND	1.0	0.005		
4-Chlorotoluene	ND	1.0	0.005	Dibromochlorometh	ane	ND	1.0	0.005		
1,2-Dibromo-3-chloropropane	ND	1.0	0.004	1,2-Dibromoethane	(EDB)	ND	1.0	0.004		
Dibromomethane	ND	1.0	0.005	1,2-Dichlorobenzen	e	ND	1.0	0.005		
1,3-Dichlorobenzene	ND	1.0	0.005	1,4-Dichlorobenzen	ND	1.0	0.005			
Dichlorodifluoromethane	ND	1.0	0.005	1,1-Dichloroethane		ND	1.0	0.005		
1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.004	1,1-Dichloroethene		ND	1.0	0.005		
cis-1,2-Dichloroethene	ND	1.0	0.005	trans-1,2-Dichloroet	thene	ND	1.0	0.005		
1,2-Dichloropropane	ND	1.0	0.005	1,3-Dichloropropan	e	ND	1.0	0.005		
2,2-Dichloropropane	ND	1.0	0.005	1,1-Dichloropropen	e	ND	1.0	0.005		
cis-1,3-Dichloropropene	ND	1.0	0.005	trans-1,3-Dichlorop	ropene	ND	1.0	0.005		
Diisopropyl ether (DIPE)	ND	1.0	0.005	Ethylbenzene		ND	1.0	0.005		
Ethyl tert-butyl ether (ETBE)	ND	1.0	0.005	Freon 113		ND	1.0	0.1		
Hexachlorobutadiene	ND	1.0	0.005	Hexachloroethane		ND	1.0	0.005		
2-Hexanone	ND	1.0	0.005	Isopropylbenzene		ND	1.0	0.005		
4-Isopropyl toluene	ND	1.0	0.005	Methyl-t-butyl ether		ND	1.0	0.005		
Methylene chloride	ND	1.0	0.005	4-Methyl-2-pentano	one (MIBK)	ND	1.0	0.005		
Naphthalene	ND	1.0	0.005	n-Propyl benzene		ND	1.0	0.005		
Styrene	ND	1.0	0.005	1,1,1,2-Tetrachloroe	ethane	ND	1.0	0.005		
1,1,2,2-Tetrachloroethane	ND	1.0	0.005	Tetrachloroethene		ND	1.0	0.005		
Toluene	ND	1.0	0.005	1,2,3-Trichlorobenz		ND	1.0	0.005		
1,2,4-Trichlorobenzene	ND	1.0	0.005	1,1,1-Trichloroethan	ne	ND	1.0	0.005		
1,1,2-Trichloroethane	ND	1.0	0.005	Trichloroethene		ND	1.0	0.005		
Trichlorofluoromethane	ND	1.0	0.005	1,2,3-Trichloroprop		ND	1.0	0.005		
1,2,4-Trimethylbenzene	ND	1.0	0.005	1,3,5-Trimethylbenz	zene	ND	1.0	0.005		
Vinyl Chloride	ND	1.0	0.005	Xylenes, Total		ND	1.0	0.005		
			ogate Re	ecoveries (%)						
%SS1:	11			%SS2:		11:	5			
%SS3:	96	5]						

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

McCampbell Analytical, Inc. 1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com								
			roject ID: G09212012-02; Date Sampled			ed: 12/18/12		
11075 G	Byron Power Company				Date Received: 12/19/12			
11275 Sunrise Gold Cir., Ste. R	Client Contact: Eric Garcia Client P.O.:				Date Extracted: 12/19/12 Date Analyzed: 12/20/12			
Rancho Cordova, CA 95742								
	Volatile Organ	ics by P	&T an	d GC/MS (Basic	Target List)*			
Extraction Method: SW5030B		Analy	tical Metho	od: SW8260B		Work Order: 1212	525	
Lab ID	1212525-002A							
Client ID	MW.01-8							
Matrix	Soil							
Compound	Concentration *	DF	Reporting Limit	Compo	ound	Concentration *	DF	Reporting Limit
Acetone	ND	1.0	0.05	tert-Amyl methyl ether (TAME)		ND	1.0	0.005
Benzene	ND	1.0	0.005	Bromobenzene		ND	1.0	0.005
Bromochloromethane	ND	1.0	0.005	Bromodichloromethane		ND	1.0	0.005
Bromoform	ND	1.0	0.005	Bromomethane		ND	1.0	0.005
2-Butanone (MEK)	ND	1.0	0.02	t-Butyl alcohol (TBA)		ND	1.0	0.05
n-Butyl benzene	ND	1.0	0.005	sec-Butyl benzene		ND	1.0	0.005
tert-Butyl benzene	ND	1.0	0.005	Carbon Disulfide		ND	1.0	0.005
Carbon Tetrachloride	ND	1.0	0.005	Chlorobenzene		ND	1.0	0.005
Chloroethane	ND	1.0	0.005	Chloroform		ND	1.0	0.005
Chloromethane	ND	1.0	0.005	2-Chlorotoluene		ND	1.0	0.005
4-Chlorotoluene	ND	1.0	0.005	Dibromochloromethane		ND	1.0	0.005
1,2-Dibromo-3-chloropropane	ND	1.0	0.004	1,2-Dibromoethane (EDB)		ND	1.0	0.004
Dibromomethane	ND	1.0	0.005	1,2-Dichlorobenzene		ND	1.0	0.005
1,3-Dichlorobenzene	ND	1.0	0.005	1,4-Dichlorobenzene		ND	1.0	0.005
Dichlorodifluoromethane	ND	1.0	0.005	1,1-Dichloroethane		ND	1.0	0.005
1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.004	1,1-Dichloroethene		ND	1.0	0.005
cis-1,2-Dichloroethene	ND	1.0	0.005	trans-1,2-Dichloroethene		ND	1.0	0.005
1,2-Dichloropropane	ND	1.0	0.005	1,3-Dichloropropane		ND	1.0	0.005
2,2-Dichloropropane	ND	1.0	0.005	1,1-Dichloropropene		ND	1.0	0.005
cis-1,3-Dichloropropene	ND	1.0	0.005	trans-1,3-Dichloropropene		ND	1.0	0.005
Diisopropyl ether (DIPE)	ND	1.0	0.005	Ethylbenzene		ND	1.0	0.005
Ethyl tert-butyl ether (ETBE)	ND	1.0	0.005	Freon 113		ND	1.0	0.1
Hexachlorobutadiene	ND	1.0	0.005	Hexachloroethane		ND	1.0	0.005
2-Hexanone	ND	1.0	0.005	Isopropylbenzene		ND	1.0	0.005
4-Isopropyl toluene	ND	1.0	0.005	Methyl-t-butyl ether (MTBE)		ND	1.0	0.005
Methylene chloride	ND	1.0	0.005	4-Methyl-2-pentanone (MIBK)		ND	1.0	0.005
Naphthalene	ND	1.0	0.005	n-Propyl benzene		ND	1.0	0.005
Styrene	ND	1.0	0.005	1,1,1,2-Tetrachloroethane		ND	1.0	0.005
1,1,2,2-Tetrachloroethane	ND	1.0	0.005	Tetrachloroethene		ND	1.0	0.005
Toluene	ND	1.0	0.005	1,2,3-Trichlorobenzene		ND	1.0	0.005
1,2,4-Trichlorobenzene	ND	1.0	0.005	1,1,1-Trichloroethane		ND	1.0	0.005
1,1,2-Trichloroethane	ND	1.0	0.005	Trichloroethene		ND	1.0	0.005
Trichlorofluoromethane	ND	1.0	0.005	1,2,3-Trichloropropane		ND	1.0	0.005
1,2,4-Trimethylbenzene	ND	1.0	0.005	1,3,5-Trimethylbenzene		ND	1.0	0.005
Vinyl Chloride	ND	1.0	0.005	Xylenes, Total	ND	1.0	0.005	
		Surr	ogate Re	ecoveries (%)				
%SS1:	110 %SS2:					11	7	
%SS3:	95	5						

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

	Analytical ality Counts"	l, Inc.		Toll Free Telep		z, CA 94565-1701 / Fax: (925) 252-9269 main@mccampbell.com		
Quest GeoSystems Management				9212012-02;	Date Sample	ed: 12/19/12		
11275 Summing Could Cim. Sta. D	Byron I	Power Co	ompany	/	Date Receiv	ed: 12/19/12		
11275 Sunrise Gold Cir., Ste. R	Client C	Contact:	Eric G	arcia	Date Extract	ed: 12/19/12		
Rancho Cordova, CA 95742	Client F	P.O.:			Date Analyz	ed: 12/20/12		
	Volatile Organ	ics by P	&T an	d GC/MS (Basic	Target List)*			
Extraction Method: SW5030B		Analyt	tical Metho	od: SW8260B		Work Order: 12125	525	
Lab ID				12125	25-003A			
Client ID				MW	V.03-4			
Matrix				5	Soil			
Compound	Concentration *	DF	Reporting Limit	Compo	und	Concentration *	DF	Reporting Limit
Acetone	ND	1.0	0.05	tert-Amyl methyl et	her (TAME)	ND	1.0	0.005
Benzene	ND	1.0	0.005	Bromobenzene	, ,	ND	1.0	0.005
Bromochloromethane	ND	1.0	0.005	Bromodichlorometh	ane	ND	1.0	0.005
Bromoform	ND	1.0	0.005	Bromomethane		ND	1.0	0.005
2-Butanone (MEK)	ND	1.0	0.02	t-Butyl alcohol (TB.	A)	ND	1.0	0.05
n-Butyl benzene	ND	1.0	0.005	sec-Butyl benzene		ND	1.0	0.005
tert-Butyl benzene	ND	1.0	0.005	Carbon Disulfide		ND	1.0	0.005
Carbon Tetrachloride	ND	1.0	0.005	Chlorobenzene		ND	1.0	0.005
Chloroethane	ND	1.0	0.005	Chloroform		ND	1.0	0.005
Chloromethane	ND	1.0	0.005	2-Chlorotoluene		ND	1.0	0.005
4-Chlorotoluene	ND	1.0	0.005	Dibromochlorometh	ane	ND	1.0	0.005
1,2-Dibromo-3-chloropropane	ND	1.0	0.004	1,2-Dibromoethane	(EDB)	ND	1.0	0.004
Dibromomethane	ND	1.0	0.005	1,2-Dichlorobenzen	e	ND	1.0	0.005
1,3-Dichlorobenzene	ND	1.0	0.005	1,4-Dichlorobenzen	e	ND	1.0	0.005
Dichlorodifluoromethane	ND	1.0	0.005	1,1-Dichloroethane		ND	1.0	0.005
1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.004	1,1-Dichloroethene		ND	1.0	0.005
cis-1,2-Dichloroethene	ND	1.0	0.005	trans-1,2-Dichloroe	thene	ND	1.0	0.005
1,2-Dichloropropane	ND	1.0	0.005	1,3-Dichloropropan	e	ND	1.0	0.005
2,2-Dichloropropane	ND	1.0	0.005	1,1-Dichloropropen	e	ND	1.0	0.005
cis-1,3-Dichloropropene	ND	1.0	0.005	trans-1,3-Dichlorop	ropene	ND	1.0	0.005
Diisopropyl ether (DIPE)	ND	1.0	0.005	Ethylbenzene		ND	1.0	0.005
Ethyl tert-butyl ether (ETBE)	ND	1.0	0.005	Freon 113		ND	1.0	0.1
Hexachlorobutadiene	ND	1.0	0.005	Hexachloroethane		ND	1.0	0.005
2-Hexanone	ND	1.0	0.005	Isopropylbenzene		ND	1.0	0.005
4-Isopropyl toluene	ND	1.0	0.005	Methyl-t-butyl ether	(MTBE)	ND	1.0	0.005
Methylene chloride	ND	1.0	0.005	4-Methyl-2-pentano	ne (MIBK)	ND	1.0	0.005
Naphthalene	ND	1.0	0.005	n-Propyl benzene		ND	1.0	0.005
Styrene	ND	1.0	0.005	1,1,1,2-Tetrachloroe	ethane	ND	1.0	0.005
1,1,2,2-Tetrachloroethane	ND	1.0	0.005	Tetrachloroethene		ND	1.0	0.005
Toluene	ND	1.0	0.005	1,2,3-Trichlorobenz		ND	1.0	0.005
1,2,4-Trichlorobenzene	ND	1.0	0.005	1,1,1-Trichloroetha	ne	ND	1.0	0.005
1,1,2-Trichloroethane	ND	1.0	0.005	Trichloroethene		ND	1.0	0.005
Trichlorofluoromethane	ND	1.0	0.005	1,2,3-Trichloroprop		ND	1.0	0.005
1,2,4-Trimethylbenzene	ND	1.0	0.005	1,3,5-Trimethylbenz	zene	ND	1.0	0.005
Vinyl Chloride	ND	1.0	0.005	Xylenes, Total		ND	1.0	0.005
		Surr	ogate Re	ecoveries (%)				
%SS1:	11	1		%SS2:		110	5	
%SS3:	92							

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

	Analytical ality Counts''	l, Inc.		Toll Free Teleph	Pass Road, Pittsburg, CA one: (877) 252-9262 / Fay npbell.com / E-mail: main	x: (925) 252-9269		
Quest GeoSystems Management				9212012-02;	Date Sampled:	12/19/12		
11275 Summing Could Cire Ster D	Byron F	Power Co	ompany	ý	Date Received:	12/19/12		
11275 Sunrise Gold Cir., Ste. R	Client C	Contact:	Eric G	arcia	Date Extracted:	12/19/12		
Rancho Cordova, CA 95742	Client P	P.O.:			Date Analyzed:	12/20/12		
	Volatile Organi	ics by P	&T an	d GC/MS (Basic	Target List)*			
Extraction Method: SW5030B		•		od: SW8260B		Work Order: 12125	525	
Lab ID		1212525-004A						
Client ID		MW.03-8						
Matrix					oil			
Compound	Concentration *	DF	Reporting	Compor	-	Concentration *	DF	Reporting
•	-		Limit					Limit
Acetone	ND	1.0	0.05	tert-Amyl methyl eth	er (IAME)	ND	1.0	0.005
Benzene	ND	1.0	0.005	Bromobenzene Bromodichlorometha	220	ND	1.0	0.005
Bromochloromethane Bromoform	ND ND	1.0 1.0	0.005	Bromodichlorometha	me	ND ND	1.0 1.0	0.005
)			0.005
2-Butanone (MEK)	ND	1.0	0.02	t-Butyl alcohol (TBA	()	ND	1.0	
n-Butyl benzene	ND		0.005	sec-Butyl benzene		ND	1.0	0.005
tert-Butyl benzene	ND	1.0	0.005	Carbon Disulfide Chlorobenzene		ND	1.0	0.005
Carbon Tetrachloride Chloroethane	ND ND	1.0	0.005	Chloroform		ND ND	1.0 1.0	0.005
Chloromethane	ND	1.0	0.005	2-Chlorotoluene		ND	1.0	0.005
4-Chlorotoluene	ND	1.0	0.005	Dibromochlorometha		ND	1.0	0.005
1,2-Dibromo-3-chloropropane	ND	1.0	0.003	1,2-Dibromoethane (ND	1.0	0.003
Dibromomethane	ND	1.0	0.004	1,2-Dichlorobenzene	,	ND	1.0	0.004
1,3-Dichlorobenzene	ND	1.0	0.005	1,4-Dichlorobenzene		ND	1.0	0.005
Dichlorodifluoromethane	ND	1.0	0.005	1,1-Dichloroethane		ND	1.0	0.005
1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.003	1,1-Dichloroethene		ND	1.0	0.005
cis-1,2-Dichloroethene	ND	1.0	0.004	trans-1,2-Dichloroet	iene	ND	1.0	0.005
1,2-Dichloropropane	ND	1.0	0.005	1,3-Dichloropropane		ND	1.0	0.005
2,2-Dichloropropane	ND	1.0	0.005	1,1-Dichloropropene		ND	1.0	0.005
cis-1,3-Dichloropropene	ND	1.0	0.005	trans-1,3-Dichloropr		ND	1.0	0.005
Diisopropyl ether (DIPE)	ND	1.0	0.005	Ethylbenzene	spene	ND	1.0	0.005
Ethyl tert-butyl ether (ETBE)	ND	1.0	0.005	Freon 113		ND	1.0	0.1
Hexachlorobutadiene	ND	1.0	0.005	Hexachloroethane		ND	1.0	0.005
2-Hexanone	ND	1.0	0.005	Isopropylbenzene		ND	1.0	0.005
4-Isopropyl toluene	ND	1.0	0.005	Methyl-t-butyl ether	(MTBE)	ND	1.0	0.005
Methylene chloride	ND	1.0	0.005	4-Methyl-2-pentanor	````	ND	1.0	0.005
Naphthalene	ND	1.0	0.005	n-Propyl benzene	. /	ND	1.0	0.005
Styrene	ND	1.0	0.005	1,1,1,2-Tetrachloroe	hane	ND	1.0	0.005
1,1,2,2-Tetrachloroethane	ND	1.0	0.005	Tetrachloroethene		ND	1.0	0.005
Toluene	ND	1.0	0.005	1,2,3-Trichlorobenze	ne	ND	1.0	0.005
1,2,4-Trichlorobenzene	ND	1.0	0.005	1,1,1-Trichloroethan	e	ND	1.0	0.005
1,1,2-Trichloroethane	ND	1.0	0.005	Trichloroethene		ND	1.0	0.005
Trichlorofluoromethane	ND	1.0	0.005	1,2,3-Trichloropropa	ne	ND	1.0	0.005
1,2,4-Trimethylbenzene	ND	1.0	0.005	1,3,5-Trimethylbenz		ND	1.0	0.005
Vinyl Chloride	ND	1.0	0.005	Xylenes, Total		ND	1.0	0.005
		Surr	ogate Re	ecoveries (%)				
%SS1:	10		0	%SS2:		11:	5	
%\$\$\$1 %\$\$3:	93							

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

	Analytica ality Counts"	l, Inc.	•	Toll Free Telep		z, CA 94565-1701 / Fax: (925) 252-9269 main@mccampbell.com		
Quest GeoSystems Management				9212012-02;	Date Sample	ed: 12/18/12		
11275 G	Byron I	Power C	ompany	/	Date Receiv	ed: 12/19/12		
11275 Sunrise Gold Cir., Ste. R	Client C	Contact:	Eric G	arcia	Date Extract	ed: 12/19/12		
Rancho Cordova, CA 95742	Client F	P.O.:			Date Analyz	ed: 12/20/12		
	Volatile Organ	ics by P	&T an	d GC/MS (Basic	Target List)*			
Extraction Method: SW5030B	0	•		od: SW8260B	0 /	Work Order: 12125	25	
Lab ID				12125	25-005A			
Client ID				MW	V.04-4			
Matrix				5	Soil			
Compound	Concentration *	DF	Reporting Limit	Compo	und	Concentration *	DF	Reporting Limit
Acetone	ND	1.0	0.05	tert-Amyl methyl eth	her (TAME)	ND	1.0	0.005
Benzene	ND	1.0	0.005	Bromobenzene	, ,	ND	1.0	0.005
Bromochloromethane	ND	1.0	0.005	Bromodichlorometh	ane	ND	1.0	0.005
Bromoform	ND	1.0	0.005	Bromomethane		ND	1.0	0.005
2-Butanone (MEK)	ND	1.0	0.02	t-Butyl alcohol (TB.	A)	ND	1.0	0.05
n-Butyl benzene	ND	1.0	0.005	sec-Butyl benzene		ND	1.0	0.005
tert-Butyl benzene	ND	1.0	0.005	Carbon Disulfide		ND	1.0	0.005
Carbon Tetrachloride	ND	1.0	0.005	Chlorobenzene		ND	1.0	0.005
Chloroethane	ND	1.0	0.005	Chloroform		ND	1.0	0.005
Chloromethane	ND	1.0	0.005	2-Chlorotoluene		ND	1.0	0.005
4-Chlorotoluene	ND	1.0	0.005	Dibromochlorometh	ane	ND	1.0	0.005
1,2-Dibromo-3-chloropropane	ND	1.0	0.004	1,2-Dibromoethane	(EDB)	ND	1.0	0.004
Dibromomethane	ND	1.0	0.005	1,2-Dichlorobenzen	e	ND	1.0	0.005
1,3-Dichlorobenzene	ND	1.0	0.005	1,4-Dichlorobenzen	e	ND	1.0	0.005
Dichlorodifluoromethane	ND	1.0	0.005	1,1-Dichloroethane		ND	1.0	0.005
1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.004	1,1-Dichloroethene		ND	1.0	0.005
cis-1,2-Dichloroethene	ND	1.0	0.005	trans-1,2-Dichloroe	thene	ND	1.0	0.005
1,2-Dichloropropane	ND	1.0	0.005	1,3-Dichloropropan	e	ND	1.0	0.005
2,2-Dichloropropane	ND	1.0	0.005	1,1-Dichloropropen	e	ND	1.0	0.005
cis-1,3-Dichloropropene	ND	1.0	0.005	trans-1,3-Dichlorop	ropene	ND	1.0	0.005
Diisopropyl ether (DIPE)	ND	1.0	0.005	Ethylbenzene		ND	1.0	0.005
Ethyl tert-butyl ether (ETBE)	ND	1.0	0.005	Freon 113		ND	1.0	0.1
Hexachlorobutadiene	ND	1.0	0.005	Hexachloroethane		ND	1.0	0.005
2-Hexanone	ND	1.0	0.005	Isopropylbenzene		ND	1.0	0.005
4-Isopropyl toluene	ND	1.0	0.005	Methyl-t-butyl ether	(MTBE)	ND	1.0	0.005
Methylene chloride	ND	1.0	0.005	4-Methyl-2-pentano	ne (MIBK)	ND	1.0	0.005
Naphthalene	ND	1.0	0.005	n-Propyl benzene		ND	1.0	0.005
Styrene	ND	1.0	0.005	1,1,1,2-Tetrachloroe	ethane	ND	1.0	0.005
1,1,2,2-Tetrachloroethane	ND	1.0	0.005	Tetrachloroethene		ND	1.0	0.005
Toluene	ND	1.0	0.005	1,2,3-Trichlorobenz		ND	1.0	0.005
1,2,4-Trichlorobenzene	ND	1.0	0.005	1,1,1-Trichloroetha	ne	ND	1.0	0.005
1,1,2-Trichloroethane	ND	1.0	0.005	Trichloroethene		ND	1.0	0.005
Trichlorofluoromethane	ND	1.0	0.005	1,2,3-Trichloroprop		ND	1.0	0.005
1,2,4-Trimethylbenzene	ND	1.0	0.005	1,3,5-Trimethylbenz	zene	ND	1.0	0.005
Vinyl Chloride	ND	1.0	0.005	Xylenes, Total		ND	1.0	0.005
		Surr	ogate Re	ecoveries (%)				
%SS1:	11	0		%SS2:		11:	5	
%SS3:	93	3		1				

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

	Analytica ality Counts''	l, Inc	•	Toll Free Telep	w Pass Road, Pittsburg, C bhone: (877) 252-9262 / F ampbell.com / E-mail: ma	ax: (925) 252-9269				
Quest GeoSystems Management				9212012-02;	Date Sampled	: 12/18/12				
	Byron I	Power C	ompany	/	Date Received	l: 12/19/12				
11275 Sunrise Gold Cir., Ste. R	Client C	Contact:	Eric G	arcia	Date Extracted	l: 12/19/12				
Rancho Cordova, CA 95742	Client F		2		Date Analyzed					
,			0.75			1. 12/20/12				
Extraction Method: SW5030B	volatile Organ	•		d GC/MS (Basic od: SW8260B	arget List)*	Work Order: 1212525				
Lab ID				12125	25-006A					
Client ID		MW.04-8								
Matrix				-	Soil					
Compound	Concentration *	DF	Reporting Limit	Compo	ound	Concentration *	DF	Reporting Limit		
Acetone	ND	1.0	0.05	tert-Amyl methyl et	her (TAME)	ND	1.0	0.005		
Benzene	ND	1.0	0.005	Bromobenzene		ND	1.0	0.005		
Bromochloromethane	ND	1.0	0.005	Bromodichlorometh	nane	ND	1.0	0.005		
Bromoform	ND	1.0	0.005	Bromomethane		ND	1.0	0.005		
2-Butanone (MEK)	ND	1.0	0.02	t-Butyl alcohol (TB	A)	ND	1.0	0.05		
n-Butyl benzene	ND	1.0	0.005	sec-Butyl benzene		ND	1.0	0.005		
tert-Butyl benzene	ND	1.0	0.005	Carbon Disulfide		ND	1.0	0.005		
Carbon Tetrachloride	ND	1.0	0.005	Chlorobenzene		ND	1.0	0.005		
Chloroethane	ND	1.0	0.005	Chloroform		ND	1.0	0.005		
Chloromethane	ND	1.0	0.005	2-Chlorotoluene		ND	1.0	0.005		
4-Chlorotoluene	ND	1.0	0.005	Dibromochlorometh	nane	ND	1.0	0.005		
1,2-Dibromo-3-chloropropane	ND	1.0	0.004	1,2-Dibromoethane	(EDB)	ND	1.0	0.004		
Dibromomethane	ND	1.0	0.005	1,2-Dichlorobenzen	e	ND	1.0	0.005		
1,3-Dichlorobenzene	ND	1.0	0.005	1,4-Dichlorobenzen	e	ND	1.0	0.005		
Dichlorodifluoromethane	ND	1.0	0.005	1,1-Dichloroethane		ND	1.0	0.005		
1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.004	1,1-Dichloroethene		ND	1.0	0.005		
cis-1,2-Dichloroethene	ND	1.0	0.005	trans-1,2-Dichloroe		ND	1.0	0.005		
1,2-Dichloropropane	ND	1.0	0.005	1,3-Dichloropropan		ND	1.0	0.005		
2,2-Dichloropropane	ND	1.0	0.005	1,1-Dichloropropen		ND	1.0	0.005		
cis-1,3-Dichloropropene	ND	1.0	0.005	trans-1,3-Dichlorop	ropene	ND	1.0	0.005		
Diisopropyl ether (DIPE)	ND	1.0	0.005	Ethylbenzene		ND	1.0	0.005		
Ethyl tert-butyl ether (ETBE)	ND	1.0	0.005	Freon 113		ND	1.0	0.1		
Hexachlorobutadiene	ND	1.0	0.005	Hexachloroethane		ND	1.0	0.005		
2-Hexanone	ND	1.0	0.005	Isopropylbenzene		ND	1.0	0.005		
4-Isopropyl toluene	ND	1.0	0.005	Methyl-t-butyl ether		ND	1.0	0.005		
Methylene chloride	ND	1.0	0.005	4-Methyl-2-pentance	one (MIBK)	ND	1.0	0.005		
Naphthalene	ND	1.0	0.005	n-Propyl benzene		ND	1.0	0.005		
Styrene	ND	1.0	0.005	1,1,1,2-Tetrachloro	etnane	ND	1.0	0.005		
1,1,2,2-Tetrachloroethane	ND	1.0	0.005	Tetrachloroethene		ND	1.0	0.005		
Toluene	ND	1.0	0.005	1,2,3-Trichlorobenz		ND	1.0	0.005		
1,2,4-Trichlorobenzene 1,1,2-Trichloroethane	ND ND	1.0 1.0	0.005	1,1,1-Trichloroetha Trichloroethene	lic	ND ND	1.0 1.0	0.005		
Trichlorofluoromethane	ND	1.0	0.005	1,2,3-Trichloroprop	ane	ND	1.0	0.005		
1,2,4-Trimethylbenzene	ND	1.0	0.005	1,3,5-Trimethylben		ND	1.0	0.005		
Vinyl Chloride	ND	1.0	0.005	Xylenes, Total		ND	1.0	0.005		
v myi Chioride	nυ					nD	1.0	0.003		
0/ 001	10		ogate Re	ecoveries (%)			-			
%SS1:	10			%SS2:		11)			
%SS3: Comments:	92	2]						

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

	ell Analy Quality Counts		<u>, Inc.</u>		1534 Willow Pass Road, P Toll Free Telephone: (877) 252 http://www.mccampbell.com / E	2-9262 / Fax: (925) 252-926			
Quest GeoSystems Manageme	ent C	lient P	roject ID:	G0	9212012-02; Byron Power	Date Sampled:	12/18/	12-12/1	9/12
11275 Sunrise Gold Cir., Ste.	C	ompan				Date Received:			
11275 Sumse Gold Ch., Ste.	C	lient C	ontact: E	ric G	arcia	Date Extracted:	12/20/	12	
Rancho Cordova, CA 95742	С	lient P	.0.:			Date Analyzed:	12/27/	12	
Extraction Method: SW3550B	Semi-V	olatile	Organic Analytical M	-	GC/MS (Basic Target List) SW8270C		Work Or	der: 1212	525
Lab ID					1212525-001A				
Client ID					MW.01-4				
Matrix					Soil				
Compound	Concentration '	* DF	MDL	RL	Compound	Concentration *	DF	MDL	RL
Acenaphthene	ND	1.0	0.14	0.25	Acenaphthylene	ND	1.0	0.14	0.25
Acetochlor	ND	1.0	0.25	0.25	Anthracene	ND	1.0	0.14	0.25
Benzidine	ND	1.0	0.23	1.3	Benzoic Acid	ND	1.0	1.0	2.5
Benzo (a) anthracene	ND	1.0	0.14	0.25	Benzo (b) fluoranthene	ND	1.0	0.14	0.25
Benzo (k) fluoranthene	ND	1.0	0.16	0.25	Benzo (g,h,i) perylene	ND	1.0	0.15	0.25
Benzo (a) pyrene	ND	1.0	0.14	0.25	Benzyl Alcohol	ND	1.0	0.51	1.3
1,1-Biphenyl	ND	1.0	0.15	0.25	Bis (2-chloroethoxy) Methane	ND	1.0	0.14	0.25
Bis (2-chloroethyl) Ether	ND	1.0	0.13	0.25	Bis (2-chloroisopropyl) Ether	ND	1.0	0.12	0.25
Bis (2-ethylhexyl) Phthalate	ND	1.0	0.13	0.25	4-Bromophenyl Phenyl Ether	ND	1.0	0.16	0.25
Butylbenzyl Phthalate	ND	1.0		0.25	4-Chloroaniline	ND	1.0	0.13	0.2
4-Chloro-3-methylphenol	ND	1.0	0.12	0.25	2-Chloronaphthalene	ND	1.0	0.16	0.2
2-Chlorophenol	ND	1.0	0.14	0.25	4-Chlorophenyl Phenyl Ether	ND	1.0	0.15	0.2
Chrysene	ND	1.0		0.25	Dibenzo (a,h) anthracene	ND	1.0	0.16	0.2
Dibenzofuran	ND	1.0		0.25	Di-n-butyl Phthalate	ND	1.0	0.13	0.25
1,2-Dichlorobenzene	ND	1.0		0.25	1,3-Dichlorobenzene	ND	1.0	0.14	0.25
1,4-Dichlorobenzene	ND	1.0	0.13	0.25	3,3-Dichlorobenzidine	ND	1.0	0.12	0.5
2,4-Dichlorophenol	ND	1.0	0.13	0.25	Diethyl Phthalate	ND	1.0	0.14	0.2
2,4-Dimethylphenol	ND	1.0	0.13	0.25	Dimethyl Phthalate	ND	1.0	0.14	0.2
4,6-Dinitro-2-methylphenol	ND	1.0	0.13	1.3	2,4-Dinitrophenol	ND	1.0	1.3	6.3
2,4-Dinitrotoluene Di-n-octyl Phthalate	ND ND	1.0	0.13	0.25	2,6-Dinitrotoluene 1,2-Diphenylhydrazine	ND ND	1.0	0.14	0.2
Fluoranthene	ND	1.0	0.14	0.25	Fluorene	ND	1.0	0.10	0.2
Hexachlorobenzene	ND	1.0	0.13	0.25	Hexachlorobutadiene	ND	1.0	0.14	0.2
Hexachlorocyclopentadiene	ND	1.0	0.73	1.3	Hexachloroethane	ND	1.0	0.13	0.2
Indeno (1,2,3-cd) pyrene	ND	1.0	0.14	0.25	Isophorone	ND	1.0	0.14	0.2
2-Methylnaphthalene	ND	1.0	0.14	0.25	2-Methylphenol (o-Cresol)	ND	1.0	0.12	0.2
3 &/or 4-Methylphenol (m,p-Cresol)	ND	1.0	0.12	0.25	Naphthalene	ND	1.0	0.13	0.2
2-Nitroaniline	ND	1.0	0.62	1.3	3-Nitroaniline	ND	1.0	0.59	1.3
4-Nitroaniline	ND	1.0	0.55	1.3	Nitrobenzene	ND	1.0	0.14	0.2
2-Nitrophenol	ND	1.0	0.64	1.3	4-Nitrophenol	ND	1.0	0.41	1.3
N-Nitrosodiphenylamine	ND	1.0		0.25	N-Nitrosodi-n-propylamine	ND	1.0	0.13	0.2
Pentachlorophenol	ND	1.0	0.061	1.3	Phenanthrene	ND	1.0	0.14	0.2
Phenol	ND	1.0	0.12	0.25	Pyrene	ND	1.0	0.13	0.2
1,2,4-Trichlorobenzene	ND	1.0	0.14	0.25	2,4,5-Trichlorophenol	ND	1.0	0.12	0.2
2,4,6-Trichlorophenol	ND	1.0	0.14	0.25					
			Surrog	gate R	ecoveries (%)				
%SS1:		103			%SS2:		96		
%SS3:		80			%SS4:		76		
%SS5:		48			%SS6:		80		
Comments:									
water samples in µg/L, soil/sludge/so									

	ell Analyt Quality Counts		<u>, Inc.</u>		1534 Willow Pass Road, P Toll Free Telephone: (877) 25: http://www.mccampbell.com / E						
Quest GeoSystems Manageme	nt C	lient P	roiect ID:	G0	9212012-02; Byron Power	Date Sampled:	2/18/	12-12/1	9/12		
11275 Sunrise Gold Cir., Ste. 1	C	ompan	5			Date Received:	12/19/	12			
11275 Sumse Gold Cir., Ste. I	C	lient C	ontact: E	ric G	arcia	Date Extracted:	2/20/	12			
Rancho Cordova, CA 95742	C	lient P.	.0.:			Date Analyzed: 12/27/12					
Extraction Method: SW3550B	Semi-V		Organic Analytical M	•	GC/MS (Basic Target List SW8270C		Work Order: 1212525				
Lab ID					1212525-002A						
Client ID					MW.01-8						
Matrix					Soil						
Compound	Concentration *	DF	MDL	RL	Compound	Concentration *	DF	MDL	RL		
Acenaphthene	ND	1.0	0.14	0.25	Acenaphthylene	ND	1.0	0.14	0.25		
Acetochlor	ND	1.0	0.25	0.25	Anthracene	ND	1.0	0.14	0.25		
Benzidine	ND	1.0	0.23	1.3	Benzoic Acid	ND	1.0	1.0	2.5		
Benzo (a) anthracene	ND	1.0	0.14	0.25	Benzo (b) fluoranthene	ND	1.0	0.14	0.25		
Benzo (k) fluoranthene	ND	1.0	0.16	0.25	Benzo (g,h,i) perylene	ND	1.0	0.15	0.25		
Benzo (a) pyrene	ND	1.0	0.14	0.25	Benzyl Alcohol	ND	1.0	0.51	1.3		
1,1-Biphenyl	ND	1.0	0.15	0.25	Bis (2-chloroethoxy) Methane	ND	1.0	0.14	0.25		
Bis (2-chloroethyl) Ether	ND	1.0	0.13	0.25	Bis (2-chloroisopropyl) Ether	ND	1.0	0.12	0.25		
Bis (2-ethylhexyl) Phthalate	ND	1.0	0.13	0.25	4-Bromophenyl Phenyl Ether	ND	1.0	0.16	0.25		
Butylbenzyl Phthalate	ND	1.0	0.13	0.25	4-Chloroaniline	ND	1.0	0.13	0.25		
4-Chloro-3-methylphenol	ND	1.0	0.12	0.25	2-Chloronaphthalene	ND	1.0	0.16	0.25		
2-Chlorophenol	ND	1.0	0.14	0.25	4-Chlorophenyl Phenyl Ether	ND	1.0	0.15	0.25		
Chrysene	ND	1.0	0.14	0.25	Dibenzo (a,h) anthracene	ND	1.0	0.16	0.25		
Dibenzofuran	ND	1.0	0.13	0.25	Di-n-butyl Phthalate	ND	1.0	0.13	0.25		
1,2-Dichlorobenzene	ND	1.0	0.12	0.25	1,3-Dichlorobenzene	ND	1.0	0.14	0.25		
1,4-Dichlorobenzene	ND	1.0	0.13	0.25	3,3-Dichlorobenzidine	ND	1.0	0.12	0.5		
2,4-Dichlorophenol 2,4-Dimethylphenol	ND	1.0	0.13	0.25	Diethyl Phthalate	ND	1.0	0.14	0.25		
4,6-Dinitro-2-methylphenol	ND	1.0	0.13	0.25	Dimethyl Phthalate 2,4-Dinitrophenol	ND ND	1.0 1.0	0.14	0.25		
2.4-Dinitrotoluene	ND ND	1.0	0.13	0.25	2,4-Dinitrophenol	ND	1.0	0.14	6.3 0.25		
Di-n-octyl Phthalate	ND	1.0	0.13	0.25	1,2-Diphenylhydrazine	ND	1.0	0.14	0.25		
Fluoranthene	ND	1.0	0.14	0.25	Fluorene	ND	1.0	0.10	0.25		
Hexachlorobenzene	ND	1.0	0.17	0.25	Hexachlorobutadiene	ND	1.0	0.14	0.25		
Hexachlorocyclopentadiene	ND	1.0	0.73	1.3	Hexachloroethane	ND	1.0	0.13	0.25		
Indeno (1,2,3-cd) pyrene	ND	1.0	0.14	0.25	Isophorone	ND	1.0	0.14	0.25		
2-Methylnaphthalene	ND	1.0	0.14	0.25	2-Methylphenol (o-Cresol)	ND	1.0	0.12	0.25		
3 &/or 4-Methylphenol (m,p-Cresol)	ND	1.0	0.12	0.25	Naphthalene	ND	1.0	0.14	0.25		
2-Nitroaniline	ND	1.0	0.62	1.3	3-Nitroaniline	ND	1.0	0.59	1.3		
4-Nitroaniline	ND	1.0	0.55	1.3	Nitrobenzene	ND	1.0	0.14	0.25		
2-Nitrophenol	ND	1.0	0.64	1.3	4-Nitrophenol	ND	1.0	0.41	1.3		
N-Nitrosodiphenylamine	ND	1.0	0.16	0.25	N-Nitrosodi-n-propylamine	ND	1.0	0.13	0.25		
Pentachlorophenol	ND	1.0	0.061	1.3	Phenanthrene	ND	1.0	0.14	0.25		
Phenol	ND	1.0	0.12	0.25	Pyrene	ND	1.0	0.13	0.25		
1,2,4-Trichlorobenzene	ND	1.0	0.14	0.25	2,4,5-Trichlorophenol	ND	1.0	0.12	0.25		
2,4,6-Trichlorophenol	ND	1.0	0.14	0.25							
			Surro	gate R	ecoveries (%)						
%SS1:		112			%SS2:		105				
%SS3:		86			%SS4:		82				
%SS5:		46			%SS6:		81				
Comments:											
⁶ water samples in µg/L, soil/sludge/so		a .							0.00		

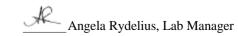
Acenaphthene Acetochlor Benzidine	Co Cli Cli	mpany ent Co ent P.	y ontact: E O.: Organic	Eric G	GC/MS (Basic Target List) SW8270C		12/19/ 12/20/	12 12 12	9/12		
11275 Sunrise Gold Cir., Ste. R Rancho Cordova, CA 95742 Extraction Method: SW3550B Lab ID Client ID Matrix Compound Compound Acenaphthene Acetochlor Benzidine	Co Cli Cli Semi-Vo oncentration *	mpan ent Co ent P.	y ontact: E O.: Organic	Eric G	arcia GC/MS (Basic Target List) SW8270C	Date Received: 1 Date Extracted: 1 Date Analyzed: 1	12/19/ 12/20/ 12/27/	12 12 12			
Rancho Cordova, CA 95742 Extraction Method: SW3550B Lab ID Client ID Matrix Compound Contemport Acenaphthene Acetochlor Benzidine	Cli Semi-Vo oncentration *	ent P.	O.: Organic	s by (GC/MS (Basic Target List) SW8270C	Date Analyzed:	12/27/	12			
Extraction Method: SW3550B Lab ID Client ID Matrix Compound Cc Acenaphthene Acetochlor Benzidine	Semi-Vo	latile	Organic	•	SW8270C)*					
Lab ID Client ID Matrix Compound Cc Acenaphthene Acetochlor Benzidine	oncentration * ND		0	•	SW8270C		Work Or	dam 1212			
Client ID Matrix Compound Co Acenaphthene Acetochlor Benzidine	ND	DF			Extraction Method: SW3550B Analytical Method: SW8270C						
Matrix Compound Compound Acenaphthene Acetochlor Benzidine Acetochlor	ND	DF			1212525-003A				<u>.</u>		
Compound Co Acenaphthene Acetochlor Benzidine	ND	DF			MW.03-4						
Acenaphthene Acetochlor Benzidine	ND	DF			Soil						
Acetochlor Benzidine			MDL	RL	Compound	Concentration *	DF	MDL	RL		
Benzidine	ND	1.0	0.14	0.25	Acenaphthylene	ND	1.0	0.14	0.25		
	ND	1.0	0.25	0.25	Anthracene	ND	1.0	0.14	0.25		
	ND	1.0	0.23	1.3	Benzoic Acid	ND	1.0	1.0	2.5		
Benzo (a) anthracene	ND	1.0	0.14	0.25	Benzo (b) fluoranthene	ND	1.0	0.14	0.25		
Benzo (k) fluoranthene	ND	1.0	0.16	0.25	Benzo (g,h,i) perylene	ND	1.0	0.15	0.25		
Benzo (a) pyrene	ND	1.0	0.14	0.25	Benzyl Alcohol	ND	1.0	0.51	1.3		
1,1-Biphenyl	ND	1.0	0.15	0.25	Bis (2-chloroethoxy) Methane	ND	1.0	0.14	0.25		
Bis (2-chloroethyl) Ether	ND	1.0	0.13	0.25	Bis (2-chloroisopropyl) Ether	ND	1.0	0.12	0.25		
Bis (2-ethylhexyl) Phthalate	ND	1.0	0.13	0.25	4-Bromophenyl Phenyl Ether	ND	1.0	0.16	0.25		
Butylbenzyl Phthalate	ND	1.0	0.13	0.25	4-Chloroaniline	ND	1.0	0.13	0.25		
4-Chloro-3-methylphenol	ND	1.0	0.12	0.25	2-Chloronaphthalene	ND	1.0	0.16	0.25		
2-Chlorophenol	ND	1.0	0.14	0.25	4-Chlorophenyl Phenyl Ether	ND	1.0	0.15	0.25		
Chrysene	ND	1.0	0.14	0.25	Dibenzo (a,h) anthracene	ND	1.0	0.16	0.25		
Dibenzofuran	ND	1.0	0.13	0.25	Di-n-butyl Phthalate	ND	1.0	0.13	0.25		
1,2-Dichlorobenzene	ND	1.0	0.12	0.25	1,3-Dichlorobenzene	ND	1.0	0.14	0.25		
1,4-Dichlorobenzene	ND	1.0	0.13	0.25	3,3-Dichlorobenzidine	ND	1.0	0.12	0.5		
2,4-Dichlorophenol	ND	1.0	0.13	0.25	Diethyl Phthalate	ND	1.0	0.14	0.25		
2,4-Dimethylphenol	ND	1.0	0.13	0.25	Dimethyl Phthalate	ND	1.0	0.14	0.25		
4,6-Dinitro-2-methylphenol	ND	1.0	0.13	1.3	2,4-Dinitrophenol	ND	1.0	1.3	6.3		
2,4-Dinitrotoluene	ND	1.0	0.13	0.25	2,6-Dinitrotoluene	ND	1.0	0.14	0.25		
Di-n-octyl Phthalate	ND	1.0	0.14	0.25	1,2-Diphenylhydrazine	ND	1.0	0.16	0.25		
Fluoranthene	ND	1.0	0.13	0.25	Fluorene	ND	1.0	0.14	0.25		
Hexachlorobenzene Hexachlorocyclopentadiene	ND ND	1.0	0.17 0.73	0.25	Hexachlorobutadiene Hexachloroethane	ND ND	1.0	0.15	0.25		
Indeno (1,2,3-cd) pyrene	ND	1.0	0.14	0.25	Isophorone	ND	1.0	0.14	0.25		
2-Methylnaphthalene	ND	1.0	0.14	0.25	2-Methylphenol (o-Cresol)	ND	1.0	0.12	0.25		
3 &/or 4-Methylphenol (m,p-Cresol)	ND	1.0	0.12	0.25	Naphthalene	ND	1.0	0.14	0.25		
2-Nitroaniline	ND	1.0	0.62	1.3	3-Nitroaniline	ND	1.0	0.15	1.3		
4-Nitroaniline	ND	1.0	0.55	1.3	Nitrobenzene	ND	1.0	0.14	0.25		
2-Nitrophenol	ND	1.0	0.64	1.3	4-Nitrophenol	ND	1.0	0.41	1.3		
N-Nitrosodiphenylamine	ND	1.0	0.16	0.25	N-Nitrosodi-n-propylamine	ND	1.0	0.13	0.25		
Pentachlorophenol	ND	1.0	0.061	1.3	Phenanthrene	ND	1.0	0.14	0.25		
Phenol	ND	1.0	0.12	0.25	Pyrene	ND	1.0	0.13	0.25		
1,2,4-Trichlorobenzene	ND	1.0	0.14	0.25	2,4,5-Trichlorophenol	ND	1.0	0.12	0.25		
2,4,6-Trichlorophenol	ND	1.0	0.14	0.25		i					
			Surro		ecoveries (%)						
%SS1:		98			%SS2:		92				
%SS3:		77			%SS4:		74				
%SS5:		49			%SS6:		73				
Comments:											
water samples in μg/L, soil/sludge/solid eported in mg/L.	l samples in mg/k	cg, wip	e samples i	n μg/w	ipe, product/oil/non-aqueous liquid	samples and all TCLP	& SPL	P extracts	are		

	Quality Counts				Toll Free Telephone: (877) 252 http://www.mccampbell.com / E				
Quest GeoSystems Manageme	ent C	lient P	roject ID	: G0	9212012-02; Byron Power	Date Sampled:	12/18/	12-12/1	9/12
11275 Sunrise Gold Cir., Ste.		ompan	У			Date Received:	12/19/	12	
	C C	lient C	ontact: I	Eric G	larcia	Date Extracted:	12/20/	12	
Rancho Cordova, CA 95742	C	lient P.	0.:			Date Analyzed:	12/27/	12	
	Semi-V		U	•	GC/MS (Basic Target List)				
Extraction Method: SW3550B			Analytical N	lethod:			Work Or	der: 1212	2525
Lab ID					1212525-004A				
Client ID					MW.03-8				
Matrix		-	1		Soil		r		
Compound	Concentration 3	^k DF	MDL	RL	Compound	Concentration *	DF	MDL	RL
Acenaphthene	ND	1.0	0.14	0.25	Acenaphthylene	ND	1.0	0.14	0.25
Acetochlor	ND	1.0	0.25	0.25	Anthracene	ND	1.0	0.14	0.25
Benzidine	ND	1.0	0.23	1.3	Benzoic Acid	ND	1.0	1.0	2.5
Benzo (a) anthracene	ND	1.0	0.14	0.25	Benzo (b) fluoranthene	ND	1.0	0.14	0.25
Benzo (k) fluoranthene	ND	1.0	0.16	0.25	Benzo (g,h,i) perylene	ND	1.0	0.15	0.2
Benzo (a) pyrene	ND	1.0	0.14	0.25	Benzyl Alcohol	ND	1.0	0.51	1.3
1,1-Biphenyl	ND	1.0	0.15	0.25	Bis (2-chloroethoxy) Methane	ND	1.0	0.14	0.2
Bis (2-chloroethyl) Ether	ND	1.0	0.13	0.25	Bis (2-chloroisopropyl) Ether	ND	1.0	0.12	0.2
Bis (2-ethylhexyl) Phthalate	ND	1.0	0.13	0.25	4-Bromophenyl Phenyl Ether	ND	1.0	0.16	0.25
Butylbenzyl Phthalate	ND	1.0	0.13	0.25	4-Chloroaniline	ND	1.0	0.13	0.2
4-Chloro-3-methylphenol	ND	1.0	0.12	0.25	2-Chloronaphthalene	ND	1.0	0.16	0.2
2-Chlorophenol	ND	1.0	0.14	0.25	4-Chlorophenyl Phenyl Ether	ND	1.0	0.15	0.2
Chrysene	ND	1.0	0.14	0.25	Dibenzo (a,h) anthracene	ND	1.0	0.16	0.2
Dibenzofuran	ND	1.0	0.13	0.25	Di-n-butyl Phthalate	ND	1.0	0.13	0.2
1,2-Dichlorobenzene	ND	1.0	0.12	0.25	1,3-Dichlorobenzene	ND	1.0	0.14	0.25
1,4-Dichlorobenzene	ND	1.0	0.13	0.25	3,3-Dichlorobenzidine	ND	1.0	0.12	0.5
2,4-Dichlorophenol	ND	1.0	0.13	0.25	Diethyl Phthalate	ND	1.0	0.14	0.25
2,4-Dimethylphenol	ND	1.0	0.13	0.25	Dimethyl Phthalate	ND	1.0	0.14	0.25
4,6-Dinitro-2-methylphenol	ND	1.0	0.13	1.3	2,4-Dinitrophenol	ND	1.0	1.3	6.3
2,4-Dinitrotoluene Di-n-octyl Phthalate	ND ND	1.0	0.13	0.25	2,6-Dinitrotoluene 1,2-Diphenylhydrazine	ND ND	1.0 1.0	0.14	0.2
Fluoranthene	ND	1.0	0.14	0.25	Fluorene	ND	1.0	0.10	0.2
Hexachlorobenzene	ND	1.0	0.13	0.25	Hexachlorobutadiene	ND	1.0	0.14	0.2
Hexachlorocyclopentadiene	ND	1.0	0.73	1.3	Hexachloroethane	ND	1.0	0.13	0.25
Indeno (1,2,3-cd) pyrene	ND	1.0	0.14	0.25	Isophorone	ND	1.0	0.14	0.25
2-Methylnaphthalene	ND	1.0	0.14	0.25	2-Methylphenol (o-Cresol)	ND	1.0	0.12	0.25
3 &/or 4-Methylphenol (m,p-Cresol)	ND	1.0	0.12	0.25	Naphthalene	ND	1.0	0.13	0.2
2-Nitroaniline	ND	1.0	0.62	1.3	3-Nitroaniline	ND	1.0	0.59	1.3
4-Nitroaniline	ND	1.0	0.55	1.3	Nitrobenzene	ND	1.0	0.14	0.2
2-Nitrophenol	ND	1.0	0.64	1.3	4-Nitrophenol	ND	1.0	0.41	1.3
N-Nitrosodiphenylamine	ND	1.0	0.16	0.25	N-Nitrosodi-n-propylamine	ND	1.0	0.13	0.2
Pentachlorophenol	ND	1.0	0.061	1.3	Phenanthrene	ND	1.0	0.14	0.25
Phenol	ND	1.0	0.12	0.25	Pyrene	ND	1.0	0.13	0.2
1,2,4-Trichlorobenzene	ND	1.0	0.14	0.25	2,4,5-Trichlorophenol	ND	1.0	0.12	0.25
2,4,6-Trichlorophenol	ND	1.0	0.14	0.25					
			Surro	gate R	ecoveries (%)				
%SS1:		104			%SS2:		96		
%SS3:		82			%SS4:		81		
%SS5:		49			%SS6:		81		
Comments:									
water samples in µg/L, soil/sludge/so								-	

<u>McCampbe</u> "When	Ell ANOIY Quality Count		<u>, inc.</u>		1534 Willow Pass Road, P Toll Free Telephone: (877) 252 http://www.mccampbell.com / E	2-9262 / Fax: (925) 252-926			
Quest GeoSystems Manageme	ent (Client P	roject ID:	G0	9212012-02; Byron Power	Date Sampled:	12/18/	12-12/1	9/12
	(Compan	•			Date Received:	12/19/	12	
11275 Sunrise Gold Cir., Ste.	K (Client C	ontact: E	ric G	arcia	Date Extracted:	12/20/	12	
Rancho Cordova, CA 95742	(Client P.	.0.:			Date Analyzed:	12/27/	12	
	Semi-V	olatile	-	-	GC/MS (Basic Target List				
Extraction Method: SW3550B			Analytical M	ethod:			work Of	der: 1212	2525
Lab ID					1212525-005A				
Client ID					MW.04-4				
Matrix					Soil			1	
Compound	Concentration	* DF	MDL	RL	Compound	Concentration *	DF	MDL	RL
Acenaphthene	ND	1.0	0.14	0.25	Acenaphthylene	ND	1.0	0.14	0.25
Acetochlor	ND	1.0	0.25	0.25	Anthracene	ND	1.0	0.14	0.25
Benzidine	ND	1.0	0.23	1.3	Benzoic Acid	ND	1.0	1.0	2.5
Benzo (a) anthracene	ND	1.0	0.14	0.25	Benzo (b) fluoranthene	ND	1.0	0.14	0.25
Benzo (k) fluoranthene	ND	1.0	0.16	0.25	Benzo (g,h,i) perylene	ND	1.0	0.15	0.25
Benzo (a) pyrene	ND	1.0		0.25	Benzyl Alcohol	ND	1.0	0.51	1.3
1,1-Biphenyl	ND	1.0	0.15	0.25	Bis (2-chloroethoxy) Methane	ND	1.0	0.14	0.25
Bis (2-chloroethyl) Ether	ND	1.0	0.13	0.25	Bis (2-chloroisopropyl) Ether	ND	1.0	0.12	0.25
Bis (2-ethylhexyl) Phthalate	ND	1.0	0.13	0.25	4-Bromophenyl Phenyl Ether	ND	1.0	0.16	0.2
Butylbenzyl Phthalate	ND	1.0		0.25	4-Chloroaniline	ND	1.0	0.13	0.2
4-Chloro-3-methylphenol	ND	1.0		0.25	2-Chloronaphthalene	ND	1.0	0.16	0.2
2-Chlorophenol	ND	1.0	1	0.25	4-Chlorophenyl Phenyl Ether	ND	1.0	0.15	0.2
Chrysene	ND	1.0		0.25	Dibenzo (a,h) anthracene	ND	1.0	0.16	0.2
Dibenzofuran	ND	1.0	1	0.25	Di-n-butyl Phthalate	ND	1.0	0.13	0.2
1,2-Dichlorobenzene	ND	1.0		0.25	1,3-Dichlorobenzene	ND	1.0	0.14	0.25
1,4-Dichlorobenzene	ND	1.0		0.25	3,3-Dichlorobenzidine	ND	1.0	0.12	0.5
2,4-Dichlorophenol 2,4-Dimethylphenol	ND ND	1.0		0.25	Diethyl Phthalate Dimethyl Phthalate	ND ND	1.0	0.14	0.2
4,6-Dinitro-2-methylphenol	ND	1.0	0.13	1.3	2,4-Dinitrophenol	ND	1.0	1.3	6.3
2,4-Dinitrotoluene	ND	1.0		0.25	2,4-Dinitrotoluene	ND	1.0	0.14	0.2
Di-n-octyl Phthalate	ND	1.0	1	0.25	1,2-Diphenylhydrazine	ND	1.0	0.14	0.2
Fluoranthene	ND	1.0	1	0.25	Fluorene	ND	1.0	0.10	0.2
Hexachlorobenzene	ND	1.0		0.25	Hexachlorobutadiene	ND	1.0	0.15	0.2
Hexachlorocyclopentadiene	ND	1.0	0.73	1.3	Hexachloroethane	ND	1.0	0.14	0.2
Indeno (1,2,3-cd) pyrene	ND	1.0		0.25	Isophorone	ND	1.0	0.12	0.2
2-Methylnaphthalene	ND	1.0		0.25	2-Methylphenol (o-Cresol)	ND	1.0	0.14	0.2
3 &/or 4-Methylphenol (m,p-Cresol)	ND	1.0		0.25	Naphthalene	ND	1.0	0.13	0.2
2-Nitroaniline	ND	1.0	0.62	1.3	3-Nitroaniline	ND	1.0	0.59	1.3
4-Nitroaniline	ND	1.0	0.55	1.3	Nitrobenzene	ND	1.0	0.14	0.2
2-Nitrophenol	ND	1.0	0.64	1.3	4-Nitrophenol	ND	1.0	0.41	1.3
N-Nitrosodiphenylamine	ND	1.0	0.16	0.25	N-Nitrosodi-n-propylamine	ND	1.0	0.13	0.2
Pentachlorophenol	ND	1.0	0.061	1.3	Phenanthrene	ND	1.0	0.14	0.2
Phenol	ND	1.0	0.12	0.25	Pyrene	ND	1.0	0.13	0.25
1,2,4-Trichlorobenzene	ND	1.0	0.14	0.25	2,4,5-Trichlorophenol	ND	1.0	0.12	0.2
2,4,6-Trichlorophenol	ND	1.0		0.25					
			Surrog	ate R	ecoveries (%)				
%SS1:		113			%SS2:		104		
%SS3:		87			%SS4:		87		
%SS5:		48			%SS6:		88		
Comments:									
water samples in µg/L, soil/sludge/so	olid samples in m	g/kg, wip	e samples in	1 μg/w	vipe, product/oil/non-aqueous liquid	d samples and all TCLP	& SPL	P extracts	are
eported in mg/L.	-	- 1	•			-			

<u>McCampbe</u> "When	ell Analy Quality Counts		<u>, Inc.</u>		1534 Willow Pass Road, P Toll Free Telephone: (877) 257 http://www.mccampbell.com/E	2-9262 / Fax: (925) 252-926					
Quest GeoSystems Manageme	ent C	lient P	roiect ID:	G0	9212012-02; Byron Power	Date Sampled:	12/18/	/12-12/1	9/12		
11275 Sunrise Gold Cir., Ste.	C	ompan	5	00	, 2, 2, 10, 10, 10, 10	Date Received:					
11275 Sumse Gold Cir., Ste.	C	lient C	ontact: E	ric G	arcia	Date Extracted:	12/20/	12			
Rancho Cordova, CA 95742	С	lient P.	.0.:			Date Analyzed: 12/27/12					
Extraction Method: SW3550B	Semi-V	olatile	Organic Analytical M	-	GC/MS (Basic Target List SW8270C		Work O	rder: 1212	2525		
Lab ID					1212525-006A						
Client ID					MW.04-8				-		
Matrix					Soil				-		
Compound	Concentration 3	* DF	MDL	RL	Compound	Concentration *	DF	MDL	RL		
Acenaphthene	ND	1.0	0.14	0.25	Acenaphthylene	ND	1.0	0.14	0.25		
Acetochlor	ND	1.0	0.25	0.25	Anthracene	ND	1.0	0.14	0.25		
Benzidine	ND	1.0	0.23	1.3	Benzoic Acid	ND	1.0	1.0	2.5		
Benzo (a) anthracene	ND	1.0	0.14	0.25	Benzo (b) fluoranthene	ND	1.0	0.14	0.25		
Benzo (k) fluoranthene	ND	1.0	0.16	0.25	Benzo (g,h,i) perylene	ND	1.0	0.15	0.25		
Benzo (a) pyrene	ND	1.0	0.14	0.25	Benzyl Alcohol	ND	1.0	0.51	1.3		
1,1-Biphenyl	ND	1.0		0.25	Bis (2-chloroethoxy) Methane	ND	1.0	0.14	0.25		
Bis (2-chloroethyl) Ether	ND	1.0	0.13	0.25	Bis (2-chloroisopropyl) Ether	ND	1.0	0.12	0.25		
Bis (2-ethylhexyl) Phthalate	ND	1.0	0.13	0.25	4-Bromophenyl Phenyl Ether	ND	1.0	0.16	0.25		
Butylbenzyl Phthalate	ND	1.0	1 1	0.25	4-Chloroaniline	ND	1.0	0.13	0.25		
4-Chloro-3-methylphenol	ND	1.0		0.25	2-Chloronaphthalene	ND	1.0	0.16	0.25		
2-Chlorophenol	ND	1.0	1	0.25	4-Chlorophenyl Phenyl Ether	ND	1.0	0.15	0.25		
Chrysene	ND	1.0	1	0.25	Dibenzo (a,h) anthracene	ND	1.0	0.16	0.25		
Dibenzofuran	ND	1.0	1	0.25	Di-n-butyl Phthalate	ND	1.0	0.13	0.25		
1,2-Dichlorobenzene	ND	1.0		0.25	1,3-Dichlorobenzene	ND	1.0	0.14	0.25		
1,4-Dichlorobenzene	ND	1.0		0.25	3,3-Dichlorobenzidine	ND	1.0	0.12	0.5		
2,4-Dichlorophenol 2,4-Dimethylphenol	ND	1.0		0.25	Diethyl Phthalate	ND	1.0	0.14	0.25		
4,6-Dinitro-2-methylphenol	ND ND	1.0	0.13	0.25	Dimethyl Phthalate 2,4-Dinitrophenol	ND ND	1.0	0.14	0.25 6.3		
2.4-Dinitrotoluene	ND	1.0	1	0.25	2,4-Dinitrophenor	ND	1.0	0.14	0.25		
Di-n-octyl Phthalate	ND	1.0	1 1	0.25	1,2-Diphenylhydrazine	ND	1.0	0.14	0.25		
Fluoranthene	ND	1.0		0.25	Fluorene	ND	1.0	0.14	0.25		
Hexachlorobenzene	ND	1.0		0.25	Hexachlorobutadiene	ND	1.0	0.14	0.25		
Hexachlorocyclopentadiene	ND	1.0	0.73	1.3	Hexachloroethane	ND	1.0	0.13	0.25		
Indeno (1,2,3-cd) pyrene	ND	1.0	1 1	0.25	Isophorone	ND	1.0	0.12	0.25		
2-Methylnaphthalene	ND	1.0		0.25	2-Methylphenol (o-Cresol)	ND	1.0	0.14	0.25		
3 &/or 4-Methylphenol (m,p-Cresol)	ND	1.0		0.25	Naphthalene	ND	1.0	0.13	0.25		
2-Nitroaniline	ND	1.0	0.62	1.3	3-Nitroaniline	ND	1.0	0.59	1.3		
4-Nitroaniline	ND	1.0	0.55	1.3	Nitrobenzene	ND	1.0	0.14	0.25		
2-Nitrophenol	ND	1.0	0.64	1.3	4-Nitrophenol	ND	1.0	0.41	1.3		
N-Nitrosodiphenylamine	ND	1.0	0.16	0.25	N-Nitrosodi-n-propylamine	ND	1.0	0.13	0.25		
Pentachlorophenol	ND	1.0	0.061	1.3	Phenanthrene	ND	1.0	0.14	0.25		
Phenol	ND	1.0		0.25	Pyrene	ND	1.0	0.13	0.25		
1,2,4-Trichlorobenzene	ND	1.0	0.14	0.25	2,4,5-Trichlorophenol	ND	1.0	0.12	0.25		
2,4,6-Trichlorophenol	ND	1.0	0.14	0.25							
		_	Surrog	ate R	ecoveries (%)		_	_	_		
%SS1:		112			%SS2:		105				
%SS3:		86			%SS4:		84				
%SS5:		42			%SS6:		85				
Comments:											
	olid samples in me	/kg. win	e samples i	า แช/พ	vipe, product/oil/non-aqueous liquid	d samples and all TCLP	& SPL	P extracts	are		
Comments: * water samples in µg/L, soil/sludge/so reported in mg/L. ND means not detected at or above the		•				•					

Campbell Anal "When Quality Cou	lytical, Inc. unts''	Toll Free Telepho	ne: (877) 252-9262 /	Fax: (925	5) 252-9269			
-			-					
old Cir., Ste. R	Client Contact: E	act: Eric Garcia Date Extracted 12/19/12						
CA 95742	Client P.O.:	Date Analyz						
Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline* Extraction method: SW5030B Analytical methods: SW8015Bm Work Or						1212525		
Client ID	Matrix	TPH(g)		DF	% SS	Comments		
MW.01-4	S	ND		1	111			
MW.01-8	S	ND		1	112			
MW.03-4	S	ND		1	112			
MW.03-8	S	ND		1	114			
MW.04-4	S	ND		1	106			
MW.04-8	S	ND		1	105			
	"When Quality Constraints" is Management old Cir., Ste. R CA 95742 Gasoline Ra 030B Client ID MW.01-4 MW.03-4 MW.03-8 MW.04-4	Byron Power Commonwer Commonwe Client Commonwer Commonwe	Compose I Analytical, Inc. Toll Free Telepho "When Quality Counts" Toll Free Telepho is Management Client Project ID: G09212012-02; Byron Power Company old Cir., Ste. R Client Contact: Eric Garcia CA 95742 Client P.O.: Gasoline Range (C6-C12) Volatile Hydrocarbons as O 030B Analytical methods: SW8015Bm MW.01-4 S ND MW.01-4 S ND MW.03-8 S ND MW.03-8 S ND MW.04-4 S ND	Campbell Andlyfical, Inc. Toll Free Telephone: (877) 252-9262. ''When Quality Counts'' http://www.mccampbell.com / E-mail: 1 s Management Client Project ID: G09212012-02; Date Sample Byron Power Company Date Receive Old Cir., Ste. R Client Contact: Eric Garcia Date Extract CA 95742 Client P.O.: Date Analyz Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline* MW.01-4 S ND MW.01-4 S ND MW.03-4 S ND MW.03-8 S ND MW.04-4 S ND	Campobell Andlyfical, Inc. Toll Free Telephone: (877) 252-9262 / Fax: (925 http://www.mccampbell.com / E-mail: main@mcc ''When Quality Counts'' Client Project ID: G09212012-02; Date Sampled: 12 Byron Power Company Date Received: 12 Old Cir., Ste. R Client Contact: Eric Garcia Date Extracted 12 CA 95742 Client P.O.: Date Analyzed 12 Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline* MW.01-4 S ND 1 MW.01-4 S ND 1 MW.03-8 S ND 1 MW.03-4 S ND 1 MW.04-4 S ND 1	"When Quality Counts" http://www.mccampbell.com / E-mail: main@mccampbell.co s Management Client Project ID: G09212012-02; Byron Power Company Date Sampled: 12/18/12- Date Received: 12/19/12 old Cir., Ste. R Client Contact: Eric Garcia Date Extracted 12/19/12 CA 95742 Client P.O.: Date Analyzed 12/20/12 Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline* MW.01-4 S ND 1 111 MW.01-8 S ND 1 112 MW.03-8 S ND 1 112 MW.03-4 S ND 1 114 MW.04-4 S ND 1 116		


Reporting Limit for DF =1; ND means not detected at or	W	NA	NA
above the reporting limit	S	1.0	mg/Kg

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts in mg/L.

cluttered chromatogram; sample peak coelutes w/surrogate peak; low surrogate recovery due to matrix interference; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

DHS ELAP Certification 1644

<u> </u>	McCampbell Analytical, Inc. "When Quality Counts" 1534 Willow Pass Road, Pittsburg, CA Toll Free Telephone: (877) 252-9262 / Fax: http://www.mccampbell.com / E-mail: main@											
Quest GeoSyst	ems Management		ID: G09212012-02;	Date Sampled:	12/18	/12-12/1	9/12					
11275 Suprise	Gold Cir., Ste. R	Byron Power (Company	Date Received:	12/19	/12						
11275 Sullise	Oold Cli., Ste. K	Client Contact	: Eric Garcia	Date Extracted:	12/19	/12						
Rancho Cordov	va, CA 95742	Client P.O.:		Date Analyzed:	12/21	12/21/12-12/26/12						
Extraction method:	SW3550B		table Petroleum Hydrod methods: SW8015B	carbons*	v	Work Order: 1212525						
Lab ID	Client ID	Matrix	TPH-Diesel (C10-C23)	TPH-Motor Oil (C18-C36)	DF	% SS	Comments					
1212525-001A	MW.01-4	S	1.5	ND	1	107	e2					
1212525-002A	MW.01-8	S	1.3	ND	1	122	e2					
1212525-003A	MW.03-4	S	1.3	ND	1	102	e2					
1212525-004A	MW.03-8	S	1.5	ND	1	123	e2					
1212525-005A	MW.04-4	S	1.8	7.4	1	128	e7,e2					
1212525-006A	MW.04-8	S	1.6	ND	1	121	e2					

Reporting Limit for DF =1; ND means not detected at or	W	NA	NA	ug/L
above the reporting limit	S	1.0	5.0	mg/Kg

* water samples are reported in µg/L, wipe samples in µg/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / SPLP / TCLP extracts are reported in µg/L.

cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: e2) diesel range compounds are significant; no recognizable pattern e7) oil range compounds are significant

DHS ELAP Certification 1644

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Soil	QC Matrix	Matrix: Soil BatchID: 73304						WorkOrder: 1212525						
EPA Method: SW8260B Extraction	on: SW5030B					;	Spiked Sample ID: 1212413-004A							
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	Acc	Criteria (%)						
, unary co	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS					
tert-Amyl methyl ether (TAME)	ND	0.050	78.3	77	1.71	78.2	56 - 94	30	70 - 130					
Benzene	ND	0.050	84.7	82.5	2.67	86.4	60 - 106	30	70 - 130					
t-Butyl alcohol (TBA)	ND	0.20	98.9	95	3.96	88.6	56 - 140	30	70 - 130					
Chlorobenzene	ND	0.050	86.4	83.7	3.13	88	61 - 108	30	70 - 130					
1,2-Dibromoethane (EDB)	ND	0.050	93.5	90.3	3.50	94	54 - 119	30	70 - 130					
1,2-Dichloroethane (1,2-DCA)	ND	0.050	85.6	84.1	1.71	85.5	48 - 115	30	70 - 130					
1,1-Dichloroethene	ND	0.050	89	87.1	2.15	93.6	46 - 111	30	70 - 130					
Diisopropyl ether (DIPE)	ND	0.050	85.8	84.7	1.24	86.6	53 - 111	30	70 - 130					
Ethyl tert-butyl ether (ETBE)	ND	0.050	86.6	85.7	1.08	86.7	61 - 104	30	70 - 130					
Methyl-t-butyl ether (MTBE)	ND	0.050	89	87.7	1.45	89.5	58 - 107	30	70 - 130					
Toluene	ND	0.050	101	97.8	2.83	103	64 - 114	30	70 - 130					
Trichloroethene	ND	0.050	87.6	85.7	2.20	89.5	60 - 116	30	70 - 130					
%SS1:	96	0.12	96	98	1.65	97	70 - 130	30	70 - 130					
%SS2:	108	0.12	123	120	2.86	124	70 - 130	30	70 - 130					
%SS3:	93	0.012	115	112	2.71	114	70 - 130	30	70 - 130					

BATCH 73304 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1212525-001A	12/18/12 2:55 PM	12/19/12	12/20/12 3:24 AM	1212525-002A	12/18/12 3:10 PM	12/19/12	12/20/12 4:06 AM
1212525-003A	12/19/12 1:40 PM	12/19/12	12/20/12 4:48 AM	1212525-004A	12/19/12 1:50 PM	12/19/12	12/20/12 5:30 AM
1212525-005A	12/18/12 9:25 AM	12/19/12	12/20/12 6:13 AM	1212525-006A	12/18/12 10:00 AM	12/19/12	12/20/12 6:55 AM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

DHS ELAP Certification 1644

♣<___QA/QC Officer

QC SUMMARY REPORT FOR SW8021B/8015Bm

W.O. Sample Matrix: Soil	QC Matrix:	Soil			BatchID	: 73396	WorkOrder: 1212525					
EPA Method: SW8021B/8015Bm Extraction: S	W5030B						Spiked Sam	ple ID:	1212490-003A			
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	Acc	eptance	Criteria (%)			
	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS			
TPH(btex) [£]	ND	0.60	103	110	6.68	90.6	70 - 130	20	70 - 130			
MTBE	ND	0.10	88.4	93.3	5.43	79.8	70 - 130	20	70 - 130			
Benzene	ND	0.10	99.8	103	2.93	93.5	70 - 130	20	70 - 130			
Toluene	ND	0.10	100	103	3.33	93.1	70 - 130	20	70 - 130			
Ethylbenzene	ND	0.10	100	106	5.58	93.8	70 - 130	20	70 - 130			
Xylenes	ND	0.30	100	106	5.99	93.8	70 - 130	20	70 - 130			
%SS:	92	0.10	108	97	10.0	95	70 - 130	20	70 - 130			
All target compounds in the Method Blank of this extraction ba NONE	atch were ND	less than th	e method	RL with t	he following	exception	ns:					

			BATCH 73396 SI	UMMARY			
Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1212525-001A	12/18/12 2:55 PM	12/19/12	12/20/12 7:34 AM	1212525-002A	12/18/12 3:10 PM	12/19/12	12/20/12 8:04 AM
1212525-003A	12/19/12 1:40 PM	12/19/12	12/20/12 8:33 AM	1212525-004A	12/19/12 1:50 PM	12/19/12	12/20/12 9:02 AM
1212525-005A	12/18/12 9:25 AM	12/19/12	12/20/12 6:51 PM	1212525-006A	12/18/12 10:00 AM	12/19/12	12/20/12 7:21 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

K___QA/QC Officer

McCampbell Analytical, Inc. "When Quality Counts"

QC SUMMARY REPORT FOR SW8270C

W.O. Sample Matrix: Soil	QC Mat	ix: Soil			BatchID	: 73479		WorkOrder: 1212525					
EPA Method: SW8270C	Extraction: SW3550B					:	Spiked Sam	1212490-002A					
Analyte	Sample	e Spiked	MS	MSD	MS-MSD	LCS	Acc	eptance	Criteria (%)				
Analyte	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS				
Acenaphthene	ND	5	72.4	74	2.24	60.9	30 - 130	30	30 - 130				
4-Chloro-3-methylphenol	ND	5	75.4	78.6	4.19	62.6	30 - 130	30	30 - 130				
2-Chlorophenol	ND	5	79.6	63.3	22.9	65.1	30 - 130	30	30 - 130				
1,4-Dichlorobenzene	ND	5	61.2	62.6	2.33	52.2	30 - 130	30	30 - 130				
2,4-Dinitrotoluene	ND	5	69	69.3	0.328	58.5	30 - 130	30	30 - 130				
4-Nitrophenol	ND	5	40.2	45.7	12.8	39.3	30 - 130	30	30 - 130				
N-Nitrosodi-n-propylamine	ND	5	63.5	48.3	27.1	52.8	30 - 130	30	30 - 130				
Pentachlorophenol	ND	5	40.1	38	5.42	40.4	30 - 130	30	30 - 130				
Phenol	ND	5	65.6	51.1	24.9	55.3	30 - 130	30	30 - 130				
Pyrene	ND	5	87	93.8	7.49	69.8	30 - 130	30	30 - 130				
1,2,4-Trichlorobenzene	ND	5	66.1	80.6	19.7	54.9	30 - 130	30	30 - 130				
%SS1:	87	5	95	89	5.88	77	30 - 130	30	30 - 130				
%SS2:	76	5	91	82	10.1	75	30 - 130	30	30 - 130				
%SS3:	81	5	80	80	0	65	30 - 130	30	30 - 130				
%SS4:	80	5	78	79	0.780	65	30 - 130	30	30 - 130				
%SS5:	42	5	59	60	1.88	50	30 - 130	30	30 - 130				
%SS6:	82	5	95	98	3.61	75	30 - 130	30	30 - 130				

BATCH 73479 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1212525-001A	12/18/12 2:55 PM	12/20/12	12/27/12 5:13 PM	1212525-002A	12/18/12 3:10 PM	12/20/12	12/27/12 5:38 PM
1212525-003A	12/19/12 1:40 PM	12/20/12	12/27/12 6:04 PM	1212525-004A	12/19/12 1:50 PM	12/20/12	12/27/12 6:29 PM
1212525-005A	12/18/12 9:25 AM	12/20/12	12/27/12 6:55 PM	1212525-006A	12/18/12 10:00 AM	12/20/12	12/27/12 7:20 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and / or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix, sample diluted due to high matrix or analyte content, or MS/MSD samples diluted due to high organic content.

#) surrogate diluted out of range; & = low or no recovery of surrogate or target analytes due to matrix interference.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

K QA/QC Officer

QC SUMMARY REPORT FOR SW8015B

550B								
					5	Spiked Sam	1212477-001A	
Sample	Spiked	MS	MSD	MS-MSD	LCS	Acce	Criteria (%)	
mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS
1800	40	NR	NR	NR	99	N/A	N/A	70 - 130
95	25	NR	NR	NR	86	N/A	N/A	70 - 130
r	ng/Kg 1800	ng/Kg mg/Kg 1800 40	ng/Kg mg/Kg % Rec. 1800 40 NR	ng/Kg mg/Kg % Rec. % Rec. 1800 40 NR NR	ng/Kg mg/Kg % Rec. % Rec. % RPD 1800 40 NR NR NR	ng/Kg mg/Kg % Rec. % Rec. % RPD % Rec. 1800 40 NR NR NR 99	ng/Kg mg/Kg % Rec. % Rec. % RPD % Rec. MS / MSD 1800 40 NR NR NR 99 N/A	mg/Kg mg/Kg % Rec. % Rec. % RPD % Rec. MS / MSD RPD 1800 40 NR NR NR 99 N/A N/A

BATCH 73419 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1212525-001A	12/18/12 2:55 PM	12/19/12	12/22/12 5:33 PM	1212525-002A	12/18/12 3:10 PM	12/19/12	12/21/12 11:22 PM
1212525-003A	12/19/12 1:40 PM	12/19/12	12/22/12 9:36 AM	1212525-004A	12/19/12 1:50 PM	12/19/12	12/26/12 6:02 PM
1212525-005A	12/18/12 9:25 AM	12/19/12	12/21/12 7:58 PM	1212525-006A	12/18/12 10:00 AM	12/19/12	12/26/12 9:26 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

DHS ELAP Certification 1644

K__QA/QC Officer

McCampbell Analytical, Inc. "When Quality Counts"

Analytical Report

Quest GeoSystems Management	Client Project ID: #G09212012-01; Byron Power Company	Date Sampled:	12/21/12
11275 Sunrise Gold Cir., Ste. R	Company	Date Received:	12/21/12
	Client Contact: Eric Garcia	Date Reported:	01/03/13
Rancho Cordova, CA 95742	Client P.O.:	Date Completed:	01/03/13

WorkOrder: 1212613

January 03, 2013

Dear Eric:

Enclosed within are:

- 1) The results of the 1 analyzed sample from your project: **#G09212012-01; Byron Power Company,**
- 2) QC data for the above sample, and
- 3) A copy of the chain of custody.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

The analytical results relate only to the items tested.

1212613

QUEST G 11275 Su Rancho	GeoSystems M. unrise Gold Circ Cordova, Califo	ANAGEMEN de, Suite R, ornia 95742	τ	At	tention	: Mr. E	it GeoS iric W. Sunrise	ROJE Systems Garcia Gold Cir, questg	s Mana Sulte R,	gemen Ph Fax Rancho	t, Inc. one: c:	(925)	756-12 756-12 742					E: YES [2		H 24		R 48		6 D	AY		R:	COMMENTS	~
Project Name: Project Number: Project Location: Sampler Signatur	Byron, Camor	oad		Att	tention	: Mr. E	t GeoS ric W. (Sunrise	PROJ systems Garcia Gold Cir, questg	s Mana, Suite R,	gemen Phi Fax Rancho	, Inc. one: c	(925)	756-12 756-12 742																
CAMPLE ID		SAM	PLING	Mainers	of Containers			MATR	x		PI		RVATIO	NC	15	SOB	- 8270												
SAMPLE ID (Field Point Name)	LOCATION	Date	Time	# of Contr	Type of Cor	Water	soil	Air	Sludge	Other	B	HCI	HN03	Other	TPH-MR - 8015	VOC's - 8260B	SVOC's - 8											depth in fl	
MW.02-8	MW.01	12/21/12	1120	1	SS		X				x				x	x	x											8	
		-		-	-			_			-	-						-	-		-	-	_	-	-				_
	-			-		-	-	-	-		_		-	-		-	-	-	+		-	-	-	-	-	-			
				+		-		-	-					-	\vdash	-	-		+		-	+	-	+	+	-			
																	-	-	+		+	-	-	+	-	1	-		-
																									+				-
																					-								
		-	-																										
				-	-		-	-									-	-	-		-	-	-	-	-		_		
				-	-		-		-					-	- 1	_	-	-	+		-	-	-	-	+				
				-		-	-	-					-			-	-	-	-		-	-	-	+	-				
				-										-		-		-	-		-	-	-	-	-		-		
				1								-						-	-		-	+	-	-	-				
																		-	-		-		-	-	-				
-		1									1							1	1	2									
Relinquished By:	h. Nels	2071	Date:	Time: [7] Time:	15.	0	ved By		n	11	n	1	2.		Rema	arks:		HEAD ! DECHL	COND SPACE ORIN	ABSE	INT_	B	- CO PR	PROP NTAII ESER	NERS.	NLA	B	_	

Lab ID Client II		Matrix	Collection Date	e Hold		2	2	Re	questec 5	Tests	(See leger	nd b 8		10	44	12
Rancho Cordova, CA 95742 (925) 756-1210 FAX: (925) 756-122	ProjectNo: #	G09212012-0	1; Byron Power (Company		Liverm	nore, C	A 9458 yahoo.o			L	Date	Printed:	1	2/21/2)12
Quest GeoSystems Management 11275 Sunrise Gold Cir., Ste. R	CC: PO:	no.garoia equ	corgoni.com			Quest	GeoS	ystems I Drive	Manag	gement		Date	Received:	1	2/21/2	012
Report to: Eric Garcia	Email: e	ric.garcia@qu	estasm com		Bill t		Hinds				R	equ	ested TAT:		5 d	ays
(925) 252-9262	WaterTrax	WriteOn	✓ EDF	Exc			EQuIS		Email		HardCop		ThirdPar	ty	_ J-fla	g
McCampbell Analytica 1534 Willow Pass Rd Pittsburg, CA 94565-1701	I, INC.						-CU 212613				COR 1e: 0GS		Pa	ige 1	l of :	

1212613-001 12/21/2012 11:20 MW.02-8 Soil А А А А

Test Legend:

1	8260B_S
6	
11	

2	8270D_S
7	
12	

3	G-MBTEX_S
8	

4	PREDF REPORT
9	

9

5	
10	

The following SampID: 001A contains testgroup.

Prepared by: Maria Venegas

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

Sample Receipt Checklist

Client Name:	Quest GeoSystem	s Management			Da	ite and	Time Received:	12/21/2012	6:13:22 PM
Project Name:	#G09212012-01; E	Byron Power Company			Log	gIn Rev	viewed by:		Maria Venegas
WorkOrder N°:	1212613	Matrix: Soil			Ca	rrier:	Client Drop-In		
		<u>Cha</u>	in of Ըւ	<u>ustody (C</u>	COC) Infor	mation			
Chain of custody	present?		Yes	✓	No				
Chain of custody	signed when relinqu	ished and received?	Yes	✓	No				
Chain of custody	agrees with sample	labels?	Yes	✓	No				
Sample IDs note	d by Client on COC?		Yes	✓	No				
Date and Time o	f collection noted by	Client on COC?	Yes	✓	No				
Sampler's name	noted on COC?		Yes	✓	No				
			<u>Sample</u>	e Receipt	Informati	<u>on</u>			
Custody seals in	tact on shipping cont	ainer/cooler?	Yes		No			NA 🖌	
Shipping contain	er/cooler in good cor	ndition?	Yes	✓	No				
Samples in prope	er containers/bottles	?	Yes	✓	No				
Sample containe	ers intact?		Yes	✓	No				
Sufficient sample	e volume for indicate	d test?	Yes	✓	No				
		Sample Pres	ervatio	n and Ho	old Time (H	HT) Info	ormation		
All samples rece	ived within holding ti	me?	Yes	✓	No				
Container/Temp	Blank temperature		Coole	er Temp:	1.2°C			NA	
Water - VOA vial	ls have zero headspa	ace / no bubbles?	Yes		No	No	VOA vials submi	tted 🗹	
Sample labels ch	necked for correct pro	eservation?	Yes	✓	No				
Metal - pH accep	otable upon receipt (p	0H<2)?	Yes		No			NA 🗹	
Samples Receive	ed on Ice?		Yes	✓	No				
		(Ісе Тур	e: WE	TICE))				
* NOTE: If the "N	lo" box is checked, s	ee comments below.							

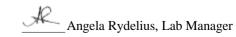
Comments:

	Analytical ality Counts''	l <u>, Inc</u>	<u>.</u>	Toll Free Telep	v Pass Road, Pittsburg, C hone: (877) 252-9262 / F mpbell.com / E-mail: mai	ax: (925) 252-9269				
Quest GeoSystems Management				09212012-01;	Date Sampled	12/21/12				
11075 0 ' C 11C' 0 D	Byron I	Power C	ompany	ý	Date Received: 12/21/12					
11275 Sunrise Gold Cir., Ste. R	Client C	Contact:	Eric G	arcia	Date Extracted	: 12/21/12				
Rancho Cordova, CA 95742	Client F	2.0.:			Date Analyzed	: 12/27/12				
	Volatile Organ	ics by P	&T an	d GC/MS (Basic	-					
Extraction Method: SW5030B	volatile Organ	•		od: SW8260B	Target List)	Work Order: 12126	513			
Lab ID				12126	13-001A					
Client ID				MW	/.02-8					
Matrix				S	loil					
Compound	Concentration *	DF	Reporting Limit	Compo	und	Concentration *	DF	Reporting Limit		
Acetone	ND	1.0	0.05	tert-Amyl methyl eth		ND	1.0	0.005		
Benzene	ND	1.0	0.005	Bromobenzene		ND	1.0	0.005		
Bromochloromethane	ND	1.0	0.005	Bromodichlorometh	ane	ND	1.0	0.005		
Bromoform	ND	1.0	0.005	Bromomethane		ND	1.0	0.005		
2-Butanone (MEK)	ND	1.0	0.02	t-Butyl alcohol (TB	A)	ND	1.0	0.05		
n-Butyl benzene	ND	1.0	0.005	sec-Butyl benzene		ND	1.0	0.005		
tert-Butyl benzene	ND	1.0	0.005	Carbon Disulfide		ND	1.0	0.005		
Carbon Tetrachloride	ND	1.0	0.005	Chlorobenzene		ND	1.0	0.005		
Chloroethane	ND	1.0	0.005	Chloroform		ND	1.0	0.005		
Chloromethane	ND	1.0	0.005	2-Chlorotoluene		ND	1.0	0.005		
4-Chlorotoluene	ND	1.0	0.005	Dibromochloromethane		ND	1.0	0.005		
1,2-Dibromo-3-chloropropane	ND	1.0	0.004	1,2-Dibromoethane (EDB)		ND	1.0	0.004		
Dibromomethane	ND	1.0	0.005	1,2-Dichlorobenzene		ND	1.0	0.005		
1,3-Dichlorobenzene	ND	1.0	0.005	1,4-Dichlorobenzene		ND	1.0	0.005		
Dichlorodifluoromethane	ND	1.0	0.005	1,1-Dichloroethane		ND	1.0	0.005		
1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.004	1,1-Dichloroethene		ND	1.0	0.005		
cis-1,2-Dichloroethene	ND	1.0	0.005	trans-1,2-Dichloroet	hene	ND	1.0	0.005		
1,2-Dichloropropane	ND	1.0	0.005	1,3-Dichloropropan	e	ND	1.0	0.005		
2,2-Dichloropropane	ND	1.0	0.005	1,1-Dichloropropen	e	ND	1.0	0.005		
cis-1,3-Dichloropropene	ND	1.0	0.005	trans-1,3-Dichlorop	ropene	ND	1.0	0.005		
Diisopropyl ether (DIPE)	ND	1.0	0.005	Ethylbenzene		ND	1.0	0.005		
Ethyl tert-butyl ether (ETBE)	ND	1.0	0.005	Freon 113		ND	1.0	0.1		
Hexachlorobutadiene	ND	1.0	0.005	Hexachloroethane		ND	1.0	0.005		
2-Hexanone	ND	1.0	0.005	Isopropylbenzene		ND	1.0	0.005		
4-Isopropyl toluene	ND	1.0	0.005	Methyl-t-butyl ether		ND	1.0	0.005		
Methylene chloride	ND	1.0	0.005	4-Methyl-2-pentano	ne (MIBK)	ND	1.0	0.005		
Naphthalene	ND	1.0	0.005	n-Propyl benzene		ND	1.0	0.005		
Styrene	ND	1.0	0.005	1,1,1,2-Tetrachloroe	ethane	ND	1.0	0.005		
1,1,2,2-Tetrachloroethane	ND	1.0	0.005	Tetrachloroethene		ND	1.0	0.005		
Toluene	ND	1.0	0.005	1,2,3-Trichlorobenz		ND	1.0	0.005		
1,2,4-Trichlorobenzene	ND	1.0	0.005	1,1,1-Trichloroethan	ne	ND	1.0	0.005		
1,1,2-Trichloroethane	ND	1.0	0.005	Trichloroethene		ND	1.0	0.005		
Trichlorofluoromethane	ND	1.0	0.005	1,2,3-Trichloroprop		ND	1.0	0.005		
1,2,4-Trimethylbenzene	ND	1.0	0.005	1,3,5-Trimethylbenz	zene	ND	1.0	0.005		
Vinyl Chloride	ND	1.0	0.005	Xylenes, Total		ND	1.0	0.005		
	1	Suri	ogate Re	ecoveries (%)		-				
%SS1:	10	1		%SS2:		10'	7			
%SS3:	10	6								

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

	ell Analy Quality Counts		<u>, Inc.</u>	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com							
Quest GeoSystems Manageme	ent C	lient P	roject ID:	#G	09212012-01; Byron	Date Sampled:	12/21/	12			
	Р		ompany		o, _ 1_01_ 01, _ j.o	Date Received: 12/21/12					
11275 Sunrise Gold Cir., Ste.	к С	lient C	ontact: E	ric G	arcia	Date Extracted:	12/28/	12			
Rancho Cordova, CA 95742	C	lient P.	.0.:			Date Analyzed:	2/28/	12			
Extraction Method: SW3550B	Semi-V		Organic Analytical M	•	GC/MS (Basic Target List SW8270C		Work Or	rder: 1212	613		
Lab ID					1212613-001A						
Client ID					MW.02-8						
Matrix					Soil						
Compound	Concentration *	∗ DF	MDL	RL	Compound	Concentration *	DF	MDL	RL		
Acenaphthene	ND	1.0	0.14	0.25	Acenaphthylene	ND	1.0	0.14	0.25		
Acetochlor	ND	1.0	0.25	0.25	Anthracene	ND	1.0	0.14	0.25		
Benzidine	ND	1.0	0.23	1.3	Benzoic Acid	ND	1.0	1.0	2.5		
Benzo (a) anthracene	ND	1.0	0.14	0.25	Benzo (b) fluoranthene	ND	1.0	0.14	0.25		
Benzo (k) fluoranthene	ND	1.0	0.16	0.25	Benzo (g,h,i) perylene	ND	1.0	0.15	0.25		
Benzo (a) pyrene	ND	1.0	0.14	0.25	Benzyl Alcohol	ND	1.0	0.51	1.3		
1,1-Biphenyl	ND	1.0		0.25	Bis (2-chloroethoxy) Methane	ND	1.0	0.14	0.2		
Bis (2-chloroethyl) Ether	ND	1.0	0.13	0.25	Bis (2-chloroisopropyl) Ether	ND	1.0	0.12	0.2		
Bis (2-ethylhexyl) Phthalate	ND	1.0		0.25	4-Bromophenyl Phenyl Ether	ND	1.0	0.16	0.2		
Butylbenzyl Phthalate	ND	1.0	0.13	0.25	4-Chloroaniline	ND	1.0	0.13	0.2		
4-Chloro-3-methylphenol	ND	1.0	1	0.25	2-Chloronaphthalene	ND	1.0	0.16	0.2		
2-Chlorophenol	ND	1.0	0.14	0.25	4-Chlorophenyl Phenyl Ether	ND	1.0	0.15	0.2		
Chrysene	ND	1.0		0.25	Dibenzo (a,h) anthracene	ND	1.0	0.16	0.2		
Dibenzofuran	ND	1.0		0.25	Di-n-butyl Phthalate	ND	1.0	0.13	0.2		
1,2-Dichlorobenzene	ND	1.0	0.12	0.25	1,3-Dichlorobenzene 3,3-Dichlorobenzidine	ND	1.0	0.14	0.2		
1,4-Dichlorobenzene 2,4-Dichlorophenol	ND	1.0	0.13	0.25	Diethyl Phthalate	ND ND	1.0	0.12	0.5		
2,4-Dimethylphenol	ND ND	1.0	0.13	0.25	Dimethyl Phthalate	ND	1.0	0.14	0.2		
4,6-Dinitro-2-methylphenol	ND	1.0	0.13	1.3	2,4-Dinitrophenol	ND	1.0	1.3	6.3		
2,4-Dinitrotoluene	ND	1.0		0.25	2,4-Dinitrotoluene	ND	1.0	0.14	0.2		
Di-n-octyl Phthalate	ND	1.0		0.25	1,2-Diphenylhydrazine	ND	1.0	0.14	0.2		
Fluoranthene	ND	1.0		0.25	Fluorene	ND	1.0	0.14	0.2		
Hexachlorobenzene	ND	1.0		0.25	Hexachlorobutadiene	ND	1.0	0.14	0.2		
Hexachlorocyclopentadiene	ND	1.0	0.73	1.3	Hexachloroethane	ND	1.0	0.14	0.2		
Indeno (1,2,3-cd) pyrene	ND	1.0		0.25	Isophorone	ND	1.0	0.12	0.2		
2-Methylnaphthalene	ND	1.0		0.25	2-Methylphenol (o-Cresol)	ND	1.0	0.14	0.2		
3 &/or 4-Methylphenol (m,p-Cresol)	ND	1.0	0.12	0.25	Naphthalene	ND	1.0	0.13	0.2		
2-Nitroaniline	ND	1.0	0.62	1.3	3-Nitroaniline	ND	1.0	0.59	1.3		
4-Nitroaniline	ND	1.0	0.55	1.3	Nitrobenzene	ND	1.0	0.14	0.2		
2-Nitrophenol	ND	1.0	0.64	1.3	4-Nitrophenol	ND	1.0	0.41	1.3		
N-Nitrosodiphenylamine	ND	1.0		0.25	N-Nitrosodi-n-propylamine	ND	1.0	0.13	0.2		
Pentachlorophenol	ND	1.0	0.061	1.3	Phenanthrene	ND	1.0	0.14	0.2		
Phenol	ND	1.0	1	0.25	Pyrene	ND	1.0	0.13	0.2		
1,2,4-Trichlorobenzene	ND	1.0	0.14	0.25	2,4,5-Trichlorophenol	ND	1.0	0.12	0.2		
2,4,6-Trichlorophenol	ND	1.0	0.14	0.25							
			Surrog	ate R	ecoveries (%)						
%SS1:		107			%SS2:		96				
%SS3:		77			%SS4:		87				
%SS5:		79			%SS6:		82				
Comments:											
water samples in µg/L, soil/sludge/so	olid samples in me	/kg, win	e samples i	n µg/w	ipe, product/oil/non-aqueous liqui	d samples and all TCLP	& SPL	P extracts	are		
eported in mg/L.		,p		1.9.1	1 / 1	1					

	cCampbell Anal ''When Quality Cou	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com							
Quest GeoSys	tems Management	Client Project ID: Byron Power Com	Date Sampled: 12/21/12 Date Received: 12/21/12						
11275 Sunrise	e Gold Cir., Ste. R								
		Client Contact: En	ric Garcia	Date Extract					
Rancho Cordo	ova, CA 95742	Client P.O.:		Date Analyz	zed 12	/27/12			
Extraction method: 5		-	tile Hydrocarbons as (ethods: SW8015Bm	Basoline*	W	ork Order:	1212613		
Lab ID	Client ID	Matrix	TPH(g)		DF	% SS	Comments		
001A	MW.02-8	S	ND		1	101			


Reporting Limit for DF =1; ND means not detected at or	W	NA	NA
above the reporting limit	S	1.0	mg/Kg

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts in mg/L.

cluttered chromatogram; sample peak coelutes w/surrogate peak; low surrogate recovery due to matrix interference; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

DHS ELAP Certification 1644

	Campbell And "When Quality Co		C. Toll Free	Willow Pass Road, Pittsburg, CA e Telephone: (877) 252-9262 / Fax: w.mccampbell.com / E-mail: main@	(925) 252-9	9269			
Quest GeoSystem	s Management		t ID: #G09212012-01	; Date Sampled:	12/21/12				
11275 Sunrise Go	ld Cir Sto D	Byron Power	Company	Date Received:	Date Received: 12/21/12				
11275 Sumise Go	nu CII., Ste. K	Client Contac	t: Eric Garcia	Date Extracted:	12/21	12/21/12			
Rancho Cordova,	CA 95742	Client P.O.:		Date Analyzed:	12/26	/12			
Extraction method: SW	3550B		ctable Petroleum Hydro al methods: SW8015B	ocarbons*	v	Vork Order:	1212613		
Lab ID	Client ID	Matrix	TPH-Diesel (C10-C23)	TPH-Motor Oil (C18-C36)	DF	% SS	Comments		
1212613-001A	MW.02-8	S	2.3	7.4	1	109	e7,e2		

Reporting Limit for DF =1; ND means not detected at or	W	NA	NA	ug/L
above the reporting limit	S	1.0	5.0	mg/Kg

* water samples are reported in µg/L, wipe samples in µg/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / SPLP / TCLP extracts are reported in µg/L.

cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: e2) diesel range compounds are significant; no recognizable pattern e7) oil range compounds are significant

DHS ELAP Certification 1644

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Soil	QC Matrix:	Soil			BatchID	: 73521	WorkOrder: 1212613						
EPA Method: SW8260B Extrac	tion: SW5030B						Spiked Sam	ple ID:	1212612-018A				
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	Acc	Criteria (%)					
	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS				
tert-Amyl methyl ether (TAME)	ND	0.050	86.7	91	4.83	80.9	56 - 94	30	70 - 130				
Benzene	ND	0.050	83.3	90.1	7.73	79.5	60 - 106	30	70 - 130				
t-Butyl alcohol (TBA)	ND	0.20	86.7	93	6.80	111	56 - 140	30	70 - 130				
Chlorobenzene	ND	0.050	82.3	86.3	4.72	85.8	61 - 108	30	70 - 130				
1,2-Dibromoethane (EDB)	ND	0.050	85	88.2	3.61	96.9	54 - 119	30	70 - 130				
1,2-Dichloroethane (1,2-DCA)	ND	0.050	82.6	88.2	6.55	78.1	48 - 115	30	70 - 130				
1,1-Dichloroethene	ND	0.050	69	85.2	21.0	73.5	46 - 111	30	70 - 130				
Diisopropyl ether (DIPE)	ND	0.050	80.3	85.7	6.55	79.4	53 - 111	30	70 - 130				
Ethyl tert-butyl ether (ETBE)	ND	0.050	82.6	86.6	4.78	82	61 - 104	30	70 - 130				
Methyl-t-butyl ether (MTBE)	ND	0.050	86.9	91.9	5.58	86.2	58 - 107	30	70 - 130				
Toluene	ND	0.050	84.1	89.1	5.74	85.7	64 - 114	30	70 - 130				
Trichloroethene	ND	0.050	95.8	99	3.26	93.9	60 - 116	30	70 - 130				
%SS1:	103	0.12	105	105	0	105	70 - 130	30	70 - 130				
%SS2:	107	0.12	107	107	0	106	70 - 130	30	70 - 130				
%SS3:	106	0.012	103	107	3.33	103	70 - 130	30	70 - 130				
All target compounds in the Method Blank of this extra NONE	action batch were ND	less than th	e method	RL with t	he following	g exception	ns:						

BATCH 73521 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1212613-001A	12/21/12 11:20 AM	M 12/21/12	12/27/12 7:47 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

DHS ELAP Certification 1644

A QA/QC Officer

QC SUMMARY REPORT FOR SW8270C

W.O. Sample Matrix: Soil	QC Matrix	Soil			BatchID	: 73615	WorkOrder: 1212613				
EPA Method: SW8270C	Extraction: SW3550B					:	Spiked Sam	1212612-009A			
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	Acc	eptance	Criteria (%)		
, mary co	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS		
Acenaphthene	ND	5	105	109	4.03	86.4	30 - 130	30	30 - 130		
4-Chloro-3-methylphenol	ND	5	101	117	14.3	75.2	30 - 130	30	30 - 130		
2-Chlorophenol	ND	5	95.8	114	17.3	74.8	30 - 130	30	30 - 130		
1,4-Dichlorobenzene	ND	5	73	74.3	1.79	72.3	30 - 130	30	30 - 130		
2,4-Dinitrotoluene	ND	5	90.5	107	15.9	76.4	30 - 130	30	30 - 130		
4-Nitrophenol	ND	5	63.8	73.3	13.8	50.3	30 - 130	30	30 - 130		
N-Nitrosodi-n-propylamine	ND	5	78.9	93.3	16.6	61.2	30 - 130	30	30 - 130		
Pentachlorophenol	ND	5	77.9	76.8	1.39	39.6	30 - 130	30	30 - 130		
Phenol	ND	5	79.7	97.2	19.9	63.6	30 - 130	30	30 - 130		
Pyrene	ND	5	99.4	101	1.84	84.6	30 - 130	30	30 - 130		
1,2,4-Trichlorobenzene	ND	5	89	89.2	0.213	81.9	30 - 130	30	30 - 130		
%SS1:	110	5	110	129	15.3	88	30 - 130	30	30 - 130		
%SS2:	99	5	106	128	18.5	79	30 - 130	30	30 - 130		
%SS3:	87	5	100	105	4.56	88	30 - 130	30	30 - 130		
%SS4:	90	5	106	105	0.489	92	30 - 130	30	30 - 130		
%SS5:	82	5	104	105	0.977	79	30 - 130	30	30 - 130		
%SS6:	93	5	99	101	1.21	85	30 - 130	30	30 - 130		

BATCH 73615 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1212613-001A	12/21/12 11:20 AM	I 12/28/12	12/28/12 7:16 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and / or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix, sample diluted due to high matrix or analyte content, or MS/MSD samples diluted due to high organic content.

#) surrogate diluted out of range; & = low or no recovery of surrogate or target analytes due to matrix interference.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

QA/QC Officer

QC SUMMARY REPORT FOR SW8021B/8015Bm

W.O. Sample Matrix: Soil	QC Matrix:	Matrix: Soil			BatchID	: 73523	WorkOrder: 1212613					
EPA Method: SW8021B/8015Bm Extraction: S	W5030B						Spiked Sam	ple ID:	1212613-001A			
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	S Acceptance Criteria (%)					
	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS			
TPH(btex) [£]	ND	0.60	110	97.5	12.1	102	70 - 130	20	70 - 130			
MTBE	ND	0.10	108	103	5.46	105	70 - 130	20	70 - 130			
Benzene	ND	0.10	103	100	3.24	100	70 - 130	20	70 - 130			
Toluene	ND	0.10	101	98	3.06	98.6	70 - 130	20	70 - 130			
Ethylbenzene	ND	0.10	103	98.4	4.27	101	70 - 130	20	70 - 130			
Xylenes	ND	0.30	104	99.5	4.82	102	70 - 130	20	70 - 130			
%SS:	101	0.10	90	86	4.21	92	70 - 130	20	70 - 130			
All target compounds in the Method Blank of this extraction ba NONE	tch were ND	less than th	e method	RL with tl	ne following	g exceptio	ns:					

BATCH 73523 SUMMARY													
Lab	D	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed					
121	2613-001A	12/21/12 11:20 AM	12/21/12	12/27/12 1:36 AM									

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

 \pounds TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

₩___QA/QC Officer

QC SUMMARY REPORT FOR SW8015B

W.O. Sample Matrix: Soil	QC Matrix:	Soil			: 73522	WorkOrder: 1212613					
EPA Method: SW8015B	Extraction: SW3550B						Spiked Sam	ple ID:	1212613-001A		
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	Acc	eptance	Criteria (%)		
	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS		
TPH-Diesel (C10-C23)	2.3	40	115	118	1.99	104	70 - 130	30	70 - 130		
%SS:	109	25	103	104	0.983	90	70 - 130	30	70 - 130		
All target compounds in the Method Blank of NONE	f this extraction batch were ND	less than th	e method	RL with th	ne following	g exceptio	ns:				

BATCH 73522 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1212613-001A	12/21/12 11:20 AN	1 12/21/12	12/26/12 8:18 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

DHS ELAP Certification 1644

K__QA/QC Officer

McCampbell Analytical, Inc. "When Quality Counts"

Analytical Report

Quest GeoSystems Management	Client Project ID: G09212012-02; Byron Power Company	Date Sampled: 12/28/12
11275 Sunrise Gold Cir., Ste. R	Company	Date Received: 12/28/12
	Client Contact: Eric Garcia	Date Reported: 01/08/13
Rancho Cordova, CA 95742	Client P.O.:	Date Completed: 01/08/13

WorkOrder: 1212722

January 08, 2013

Dear Eric:

Enclosed within are:

- 1) The results of the **5** analyzed samples from your project: **G09212012-02; Byron Power Company,**
- 2) QC data for the above samples, and
- 3) A copy of the chain of custody.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

The analytical results relate only to the items tested.

1212722

QUEST GE 11275 Sui		Company: Quest GeoSystems Management, Inc. Attention: Mr. Eric W. Garcia Phone: (925) 756-121 Fax: (925) 756-121 Fax: (925) 756-121 Fax: (925) 756-121 Fax: (925) 756-121							Attention: Mr. Eric W. Garcia Phone: (925) 756-1210 Fax: (925) 756-1227 Address: 11275 Sumrise Gold Cir, Sulte R, Rancho Cordova, CA 95742							Company: Quest GeoSystems Management, Inc. Attention: Mr. Eric W. Garcia Phone: (925) 756-1210 Fax: (925) 756-1227 fite R, Address: 11275 Sumrise Gold Cir, Sulte R, Rancho Cordova, CA 95742								ROUN		YES	×	RUSH	4 24	A OF CUSTODY REC 24 HOUR 48 HOUR 5 DAY NO S REQUEST			от	
Project Number:	4901 Bruns Ro Byron, Califon	oad nia	en .	Att	ompany: tention: idress: nail:	Quest Mr. Er 11275 S	t GeoS ric W. (PROJE ystems Garcia	ECT B Manag Suite R,	ILLIN gement Pho Fax Rancho	t, Inc. one:	(925)	758-12 758-12 742						8015M/8021															
		SAMP	LING	iners	tainers			MATRI	x		P		RVATIO	NO		8	02		EX - 801															
SAMPLE ID (Field Point Name)	LOCATION	Date	Time	# of Containers	Type of Contain	Water	soil	Air	Sludge	Other	lce	HCI	HN03	Other	TPH-MR - 8015	VOC's - 8260B	SVOC's - 8270		TPH-G/MBTEX -															
MVV.01	MW.01	12/28/12	1325			х					x	x			x	x	x												+	-	-			
MW.02	MW.02	12/28/12	1230			x					x	x			х	x	x														 _			
MW.03	MW.03	12/28/12	1350			x					x	х	(х	x	x																	
TRIP	-			2	VOA	х					x	х							х															
712.04	NW.3		1110			×					X	×				X	X																	
nquished By: Robert K. nquished By:	Nelson		Date: (V/VS Date:	Time: \ <u>8</u> (Time:	06	Receiv	he		~	A					Rema	arks:	G H D	OOD EAD ECHL	CON SPAC	DITIO E AB	SENT D IN	LAB		CON PRE	NTAL	RIAT NERS	IN L	AB_	+					

McCampbell Analytical, Inc.

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

(925) 252-9262				Work	Order: 1212722	Clie	ntCode: QGSM		
	WaterTrax	WriteOn	✓ EDF	Excel	EQuIS	Email	HardCopy	ThirdParty	J-flag
Report to:					Bill to:		Req	uested TAT:	5 days
Eric Garcia	Email:	eric.garcia@ques	stgsm.com		Lexie Hinds				
Quest GeoSystems Management	CC:				Quest GeoSy	stems Manage			
11275 Sunrise Gold Cir., Ste. R	PO:				98 Daisyfield	Drive	Dat	e Received:	12/28/2012
Rancho Cordova, CA 95742	ProjectNo:	G09212012-02; E	Byron Power Co	ompany	Livermore, CA	A 94551	Dat	e Printed:	12/28/2012
(925) 756-1210 FAX: (925) 756-1227					lexiehinds@y	ahoo.com			

Lab ID				Requested Tests (See legend below)											
	Client ID	Matrix	Collection Date Ho	d 1	2	3	4	5	6	7	8	9	10	11	12
1212722-001	MW.01	Water	12/28/2012 13:25] B	С	A	В								Τ
1212722-002	MW.02	Water	12/28/2012 12:30] B	С	Α									
1212722-003	MW.03	Water	12/28/2012 13:50] B	С	Α									
1212722-005	MW.04	Water	12/28/2012 11:10] B	С	А									

Test Legend:

1	8260B_W
6	
11	

2	8270D_W
7	
12	

3	G-MBTEX_W
8	

4 PREDF REPORT
9

5	
10	

The following SampIDs: 001A, 002A, 003A, 005A contain testgroup.

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

Prepared by: Zoraida Cortez

Sample Receipt Checklist

<i>, , , , , , , , , ,</i>					Date a	and Tin	ne Received:	12/28/2012	9:59:50 PM
Project Name:	G09212012-02; By	ron Power Company			LogIn	Review	ved by:		Zoraida Cortez
WorkOrder N°:	1212722	Matrix: Water			Carrie	r: <u>(</u>	Client Drop-In		
		<u>Cha</u>	<u>in of Cι</u>	ustody (C	OC) Informat	<u>tion</u>			
Chain of custody	present?		Yes	✓	No 🗌				
Chain of custody	signed when relinqu	ished and received?	Yes	✓	No 🗌				
Chain of custody	agrees with sample	labels?	Yes	✓	No 🗌				
Sample IDs note	d by Client on COC?		Yes	✓	No 🗌				
Date and Time o	f collection noted by	Client on COC?	Yes	✓	No 🗌				
Sampler's name	noted on COC?		Yes	✓	No 🗌				
			Sample	e Receipt	Information				
Custody seals in	tact on shipping cont	ainer/cooler?	Yes		No 🗌			NA 🗹	
Shipping contain	er/cooler in good cor	ndition?	Yes	✓	No 🗌				
Samples in prope	er containers/bottles	?	Yes	✓	No 🗌				
Sample containe	ers intact?		Yes	✓	No 🗌				
Sufficient sample	e volume for indicate	d test?	Yes	✓	No 🗌				
		Sample Pres	ervatio	n and Ho	ld Time (HT)	Inforn	nation		
All samples rece	ived within holding ti	me?	Yes	✓	No 🗌				
Container/Temp	Blank temperature		Coole	er Temp:	3.6°C			NA	
Water - VOA via	ls have zero headspa	ace / no bubbles?	Yes	✓	No 🗌	No VO	DA vials submi	tted	
Sample labels ch	necked for correct pre	eservation?	Yes	✓	No				
Metal - pH accep	otable upon receipt (p	0H<2)?	Yes		No 🗌			NA 🗹	
Samples Receive	ed on Ice?		Yes	✓	No 🗌				
		(Ісе Тур	e: WE	TICE)	1				
* NOTE: If the "N	lo" box is checked, s	ee comments below.							

Comments:

McCampbell	Analytical ality Counts''	l, Inc	:	Toll Free Teleph	Pass Road, Pittsburg, C one: (877) 252-9262 / H npbell.com / E-mail: ma	Fax: (925) 252-9269					
Quest GeoSystems Management				9212012-02;	Date Sampled	: 12/28/12					
11275 Summing Cold Cire Star D	Byron F	Power C	ompan	у	Date Received	1: 12/28/12					
11275 Sunrise Gold Cir., Ste. R	Client C	Contact:	Eric G	arcia	Date Extracted: 01/04/13						
Rancho Cordova, CA 95742	Client P	P.O.:			Date Analyze	1: 01/04/13					
	Volatile Organi	ics by P	&T an	d GC/MS (Basic '	Target List)*						
Extraction Method: SW5030B		Analy	tical Meth	od: SW8260B		Work Order: 1212	722				
Lab ID				121272	2-001B						
Client ID				MW	V.01						
Matrix				Wa	ater						
Compound	Concentration *	DF	Reporting Limit	Compou	ind	Concentration *	DF	Reporting Limit			
Acetone	ND	1.0	10	tert-Amyl methyl eth	er (TAME)	ND	1.0	0.5			
Benzene	ND	1.0	0.5	Bromobenzene		ND	1.0	0.5			
Bromochloromethane	ND	1.0	0.5	Bromodichlorometha	ine	ND	1.0	0.5			
Bromoform	ND	1.0	0.5	Bromomethane		ND	1.0	0.5			
2-Butanone (MEK)	ND	1.0	2.0	t-Butyl alcohol (TBA	()	ND	1.0	2.0			
n-Butyl benzene	ND	1.0	0.5	sec-Butyl benzene		ND	1.0	0.5			
tert-Butyl benzene	ND	1.0	0.5	Carbon Disulfide		ND	1.0	0.5			
Carbon Tetrachloride	ND	1.0	0.5	Chlorobenzene		ND	1.0	0.5			
Chloroethane	ND	1.0	0.5	Chloroform		ND	1.0	0.5			
Chloromethane	ND	1.0	0.5	2-Chlorotoluene		ND	1.0	0.5			
4-Chlorotoluene	ND	1.0	0.5	Dibromochloromethane		ND	1.0	0.5			
1,2-Dibromo-3-chloropropane	ND	1.0	0.2	1,2-Dibromoethane (EDB)		ND	1.0	0.5			
Dibromomethane	ND	1.0	0.5	1,2-Dichlorobenzene		ND	1.0	0.5			
1,3-Dichlorobenzene	ND	1.0	0.5	1,4-Dichlorobenzene		ND	1.0	0.5			
Dichlorodifluoromethane	ND	1.0	0.5	1,1-Dichloroethane		ND	1.0	0.5			
1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.5	1,1-Dichloroethene		ND	1.0	0.5			
cis-1,2-Dichloroethene	ND	1.0	0.5	trans-1,2-Dichloroeth		ND	1.0	0.5			
1,2-Dichloropropane	ND	1.0	0.5	1,3-Dichloropropane		ND	1.0	0.5			
2,2-Dichloropropane	ND	1.0	0.5	1,1-Dichloropropene		ND	1.0	0.5			
cis-1,3-Dichloropropene	ND	1.0	0.5	trans-1,3-Dichloropro	opene	ND	1.0	0.5			
Diisopropyl ether (DIPE)	ND	1.0	0.5	Ethylbenzene		ND	1.0	0.5			
Ethyl tert-butyl ether (ETBE)	ND	1.0	0.5	Freon 113		ND	1.0	10			
Hexachlorobutadiene	ND	1.0	0.5	Hexachloroethane		ND	1.0	0.5			
2-Hexanone	ND	1.0	0.5	Isopropylbenzene	(MTDE)	ND	1.0	0.5			
4-Isopropyl toluene Methylene chloride	ND ND	1.0 1.0	0.5	Methyl-t-butyl ether 4-Methyl-2-pentanor		ND ND	1.0	0.5			
Naphthalene	ND	1.0	0.5	a-Methyl-2-pentanor		ND	1.0	0.5			
Styrene	ND	1.0	0.5	1,1,1,2-Tetrachloroet	hane	ND	1.0	0.5			
1,1,2,2-Tetrachloroethane	ND	1.0	0.5	Tetrachloroethene		ND	1.0	0.5			
Toluene	ND	1.0	0.5	1,2,3-Trichlorobenze	ne	ND	1.0	0.5			
1,2,4-Trichlorobenzene	ND	1.0	0.5	1,1,1-Trichloroethan		ND	1.0	0.5			
1,1,2-Trichloroethane	ND	1.0	0.5	Trichloroethene	•	ND	1.0	0.5			
Trichlorofluoromethane	ND	1.0	0.5	1,2,3-Trichloropropa	ne	ND	1.0	0.5			
1,2,4-Trimethylbenzene	ND	1.0	0.5	1,3,5-Trimethylbenze		ND	1.0	0.5			
Vinyl Chloride	ND	1.0	0.5	Xylenes, Total		ND	1.0	0.5			
<u> </u>				ecoveries (%)			••				
%SS1:	98		ogait A	%SS2:		10	1				
%\$\$3:	74			/0552.		10					
Comments:	/4			1							

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

	Analytical ality Counts''	l, Inc	<u>.</u>	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com							
Quest GeoSystems Management				9212012-02;	Date Sampled						
11275 Suprise Gold Cir. Ste. P.	Byron F	Power C	ompan	y	Date Receive	d: 12/28/12					
11275 Sunrise Gold Cir., Ste. R	Client C	Contact:	Eric G	arcia	Date Extracted: 01/04/13						
Rancho Cordova, CA 95742	Client F	P.O.:			Date Analyze	d: 01/04/13					
	Volatile Organi	ics by P	&T an	d GC/MS (Basic	Target List)*						
Extraction Method: SW5030B	, on the organi	-		od: SW8260B	Turger List)	Work Order: 1212	722				
					000D						
Lab ID Client ID					22-002B W.02						
Matrix					ater						
Compound	Concentration *	DF	Reporting	Compo		Concentration *	DF	Reporting			
•			Limit	· · · ·				Limit			
Acetone	ND	1.0	10	tert-Amyl methyl eth	ier (TAME)	ND	1.0	0.5			
Benzene Bromochloromethane	ND ND	1.0 1.0	0.5	Bromobenzene Bromodichlorometh	200	ND ND	<u>1.0</u> 1.0	0.5			
Bromocniorometnane Bromoform	ND	1.0	0.5	Bromodichiorometh	ane	ND	1.0	0.5			
2-Butanone (MEK)	ND	1.0	2.0	t-Butyl alcohol (TBA	•	ND	1.0	2.0			
n-Butyl benzene	ND	1.0	0.5	sec-Butyl benzene	h)	ND	1.0	0.5			
tert-Butyl benzene	ND	1.0	0.5	Carbon Disulfide		ND	1.0	0.5			
Carbon Tetrachloride	ND	1.0	0.5	Chlorobenzene		ND	1.0	0.5			
Chloroethane	ND	1.0	0.5	Chloroform		ND	1.0	0.5			
Chloromethane	ND	1.0	0.5	2-Chlorotoluene		ND	1.0	0.5			
4-Chlorotoluene	ND	1.0	0.5	Dibromochloromethane		ND	1.0	0.5			
1,2-Dibromo-3-chloropropane	ND	1.0	0.2	1,2-Dibromoethane (EDB)		ND	1.0	0.5			
Dibromomethane	ND	1.0	0.2	1,2-Dichlorobenzene		ND	1.0	0.5			
1,3-Dichlorobenzene	ND	1.0	0.5	1,2-Dichlorobenzene		ND	1.0	0.5			
Dichlorodifluoromethane	ND	1.0	0.5	1,1-Dichloroethane	<u> </u>	ND	1.0	0.5			
1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.5	1,1-Dichloroethene		ND	1.0	0.5			
cis-1,2-Dichloroethene	ND	1.0	0.5	trans-1,2-Dichloroet	hene	ND	1.0	0.5			
1,2-Dichloropropane	ND	1.0	0.5	1,3-Dichloropropane		ND	1.0	0.5			
2,2-Dichloropropane	ND	1.0	0.5	1,1-Dichloropropene		ND	1.0	0.5			
cis-1,3-Dichloropropene	ND	1.0	0.5	trans-1,3-Dichlorop		ND	1.0	0.5			
Diisopropyl ether (DIPE)	ND	1.0	0.5	Ethylbenzene	•	ND	1.0	0.5			
Ethyl tert-butyl ether (ETBE)	ND	1.0	0.5	Freon 113		ND	1.0	10			
Hexachlorobutadiene	ND	1.0	0.5	Hexachloroethane		ND	1.0	0.5			
2-Hexanone	ND	1.0	0.5	Isopropylbenzene		ND	1.0	0.5			
4-Isopropyl toluene	ND	1.0	0.5	Methyl-t-butyl ether	(MTBE)	ND	1.0	0.5			
Methylene chloride	ND	1.0	0.5	4-Methyl-2-pentano	ne (MIBK)	ND	1.0	0.5			
Naphthalene	ND	1.0	0.5	n-Propyl benzene		ND	1.0	0.5			
Styrene	ND	1.0	0.5	1,1,1,2-Tetrachloroe	thane	ND	1.0	0.5			
1,1,2,2-Tetrachloroethane	ND	1.0	0.5	Tetrachloroethene		ND	1.0	0.5			
Toluene	ND	1.0	0.5	1,2,3-Trichlorobenz	ene	ND	1.0	0.5			
1,2,4-Trichlorobenzene	ND	1.0	0.5	1,1,1-Trichloroethar	ne	ND	1.0	0.5			
1,1,2-Trichloroethane	ND	1.0	0.5	Trichloroethene		ND	1.0	0.5			
Trichlorofluoromethane	ND	1.0	0.5	1,2,3-Trichloropropa		ND	1.0	0.5			
1,2,4-Trimethylbenzene					ene	ND	1.0	0.5			
Vinyl Chloride	ND	1.0	0.5	Xylenes, Total		ND	1.0	0.5			
		Suri	ogate R	ecoveries (%)							
%SS1:	99)		%SS2:		9	8				
%SS3:	76	5									

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

	Analytical ality Counts"	l, Inc	<u>.</u>	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com						
Quest GeoSystems Management				9212012-02;	Date Sample	d: 12/28/12				
11275 Summing Call Cir. Sta. D	Byron F	Power C	ompan	ý	Date Receive	d: 12/28/12				
11275 Sunrise Gold Cir., Ste. R	Client C	Contact:	Eric G	arcia	Date Extracted: 01/04/13					
Rancho Cordova, CA 95742	Client P	P.O.:			Date Analyze	ed: 01/04/13				
	Volatile Organi	ics hy P	&T an	d GC/MS (Basic	Target List)*					
Extraction Method: SW5030B	volutile of guilt	-		od: SW8260B	Turget List)	Work Order: 1212	.722			
Lab ID				12127	22-003B					
Client ID					W.03					
Matrix				W	ater					
Compound	Concentration *	DF	Reporting Limit	Compo	und	Concentration *	DF	Reporting Limit		
Acetone	ND	1.0	10	tert-Amyl methyl et	her (TAME)	ND	1.0	0.5		
Benzene	0.85	1.0	0.5	Bromobenzene	_/	ND	1.0	0.5		
Bromochloromethane	ND	1.0	0.5	Bromodichlorometh	ane	ND	1.0	0.5		
Bromoform	ND	1.0	0.5	Bromomethane		ND	1.0	0.5		
2-Butanone (MEK)	ND	1.0	2.0	t-Butyl alcohol (TB	A)	ND	1.0	2.0		
n-Butyl benzene	ND	1.0	0.5	sec-Butyl benzene	/	ND	1.0	0.5		
tert-Butyl benzene	ND	1.0	0.5	Carbon Disulfide		ND	1.0	0.5		
Carbon Tetrachloride	ND	1.0	0.5	Chlorobenzene		ND	1.0	0.5		
Chloroethane	ND	1.0	0.5	Chloroform		ND	1.0	0.5		
Chloromethane	ND	1.0	0.5	2-Chlorotoluene		ND	1.0	0.5		
4-Chlorotoluene	ND	1.0	0.5	Dibromochlorometh	nane	ND	1.0	0.5		
1,2-Dibromo-3-chloropropane	ND	1.0	0.2	1,2-Dibromoethane		ND	1.0	0.5		
Dibromomethane	ND	1.0	0.5	1,2-Dichlorobenzen	ND	1.0	0.5			
1,3-Dichlorobenzene	ND	1.0	0.5	1,4-Dichlorobenzen	ND	1.0	0.5			
Dichlorodifluoromethane	ND	1.0	0.5	1,1-Dichloroethane		ND	1.0	0.5		
1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.5	1,1-Dichloroethene		ND	1.0	0.5		
cis-1,2-Dichloroethene	ND	1.0	0.5	trans-1,2-Dichloroe	thene	ND	1.0	0.5		
1,2-Dichloropropane	ND	1.0	0.5	1,3-Dichloropropan	e	ND	1.0	0.5		
2,2-Dichloropropane	ND	1.0	0.5	1,1-Dichloropropen	e	ND	1.0	0.5		
cis-1,3-Dichloropropene	ND	1.0	0.5	trans-1,3-Dichlorop	ropene	ND	1.0	0.5		
Diisopropyl ether (DIPE)	ND	1.0	0.5	Ethylbenzene		ND	1.0	0.5		
Ethyl tert-butyl ether (ETBE)	ND	1.0	0.5	Freon 113		ND	1.0	10		
Hexachlorobutadiene	ND	1.0	0.5	Hexachloroethane		ND	1.0	0.5		
2-Hexanone	ND	1.0	0.5	Isopropylbenzene		6.8	1.0	0.5		
4-Isopropyl toluene	ND	1.0	0.5	Methyl-t-butyl ether	r (MTBE)	ND	1.0	0.5		
Methylene chloride	ND	1.0	0.5	4-Methyl-2-pentano	one (MIBK)	0.65	1.0	0.5		
Naphthalene	1.4	1.0	0.5	n-Propyl benzene		ND	1.0	0.5		
Styrene	ND	1.0	0.5	1,1,1,2-Tetrachloroe	ethane	ND	1.0	0.5		
1,1,2,2-Tetrachloroethane	ND	1.0	0.5	Tetrachloroethene		ND	1.0	0.5		
Toluene	ND	1.0	0.5	1,2,3-Trichlorobenz		ND	1.0	0.5		
1,2,4-Trichlorobenzene	ND	1.0	0.5	1,1,1-Trichloroethan	ne	ND	1.0	0.5		
1,1,2-Trichloroethane	ND	1.0	0.5	Trichloroethene		ND	1.0	0.5		
Trichlorofluoromethane	ND	1.0	0.5	1,2,3-Trichloroprop	ane	ND	1.0	0.5		
1,2,4-Trimethylbenzene	ND	1.0	0.5	1,3,5-Trimethylbenz	ND	1.0	0.5			
Vinyl Chloride	ND	1.0	0.5	Xylenes, Total		0.72	1.0	0.5		
			rogate R	ecoveries (%)						
%SS1:	98			%SS2:		9	8			
%SS3:	75	5								

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

	Analytical	, Inc	<u>.</u>	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com						
Quest GeoSystems Management				9212012-02;	Date Sample	d: 12/28/12				
11275 Sunrise Gold Cir., Ste. R	Byron F	ower C	ompan	У	Date Receive	ed: 12/28/12				
11275 Sumise Gold Cit., Ste. K	Client C	Contact:	Eric G	arcia	Date Extracted: 01/04/13					
Rancho Cordova, CA 95742	Client P	.0.:			Date Analyze	ed: 01/04/13				
	Volatile Organi	cs by P	&T an	d GC/MS (Basic '	Target List)*					
Extraction Method: SW5030B	-	-		od: SW8260B	_	Work Order: 1212	722			
Lab ID				121272	2-005B					
Client ID				MW	/.04					
Matrix				Wa	ater					
Compound	Concentration *	DF	Reporting Limit	Compou	ind	Concentration *	DF	Reporting Limit		
Acetone	ND	1.0	10	tert-Amyl methyl eth	er (TAME)	ND	1.0	0.5		
Benzene	ND	1.0	0.5	Bromobenzene		ND	1.0	0.5		
Bromochloromethane	ND	1.0	0.5	Bromodichlorometha	ine	ND	1.0	0.5		
Bromoform	ND	1.0	0.5	Bromomethane		ND	1.0	0.5		
2-Butanone (MEK)	ND	1.0	2.0	t-Butyl alcohol (TBA	<i>x</i>)	ND	1.0	2.0		
n-Butyl benzene	ND	1.0	0.5	sec-Butyl benzene		ND	1.0	0.5		
tert-Butyl benzene	ND	1.0	0.5	Carbon Disulfide		ND	1.0	0.5		
Carbon Tetrachloride	ND	1.0	0.5	Chlorobenzene		ND	1.0	0.5		
Chloroethane	ND	1.0	0.5	Chloroform		ND	1.0	0.5		
Chloromethane	ND	1.0	0.5	2-Chlorotoluene		ND	1.0	0.5		
4-Chlorotoluene	ND	1.0	0.5	Dibromochloromethane		ND	1.0	0.5		
1,2-Dibromo-3-chloropropane	ND	1.0	0.2	1,2-Dibromoethane (EDB)		ND	1.0	0.5		
Dibromomethane	ND	1.0	0.5	1,2-Dichlorobenzene		ND	1.0	0.5		
1,3-Dichlorobenzene	ND	1.0	0.5	1,4-Dichlorobenzene		ND	1.0	0.5		
Dichlorodifluoromethane	ND	1.0	0.5	1,1-Dichloroethane		ND	1.0	0.5		
1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.5	1,1-Dichloroethene		ND	1.0	0.5		
cis-1,2-Dichloroethene	ND	1.0	0.5	trans-1,2-Dichloroeth	nene	ND	1.0	0.5		
1,2-Dichloropropane	ND	1.0	0.5	1,3-Dichloropropane		ND	1.0	0.5		
2,2-Dichloropropane	ND	1.0	0.5	1,1-Dichloropropene		ND	1.0	0.5		
cis-1,3-Dichloropropene	ND	1.0	0.5	trans-1,3-Dichloropre	opene	ND	1.0	0.5		
Diisopropyl ether (DIPE)	ND	1.0	0.5	Ethylbenzene		ND	1.0	0.5		
Ethyl tert-butyl ether (ETBE)	ND	1.0	0.5	Freon 113		ND	1.0	10		
Hexachlorobutadiene	ND	1.0	0.5	Hexachloroethane		ND	1.0	0.5		
2-Hexanone	ND	1.0	0.5	Isopropylbenzene		ND	1.0	0.5		
4-Isopropyl toluene	ND	1.0	0.5	Methyl-t-butyl ether		ND	1.0	0.5		
Methylene chloride	ND	1.0	0.5	4-Methyl-2-pentanor	ne (MIBK)	ND	1.0	0.5		
Naphthalene	ND	1.0	0.5	n-Propyl benzene		ND	1.0	0.5		
Styrene	ND	1.0	0.5	1,1,1,2-Tetrachloroet	hane	ND	1.0	0.5		
1,1,2,2-Tetrachloroethane	ND	1.0	0.5	Tetrachloroethene		ND	1.0	0.5		
Toluene	ND	1.0	0.5	1,2,3-Trichlorobenze		ND	1.0	0.5		
1,2,4-Trichlorobenzene	ND	1.0	0.5	1,1,1-Trichloroethan	e	ND	1.0	0.5		
1,1,2-Trichloroethane	ND	1.0	0.5	Trichloroethene		ND	1.0	0.5		
Trichlorofluoromethane	ND	1.0	0.5	1,2,3-Trichloropropa		ND	1.0	0.5		
1,2,4-Trimethylbenzene	ND	1.0	0.5	1,3,5-Trimethylbenze	ene	ND	1.0	0.5		
Vinyl Chloride	ND	1.0	0.5	Xylenes, Total		ND	1.0	0.5		
			rogate R	ecoveries (%)						
%SS1:	94			%SS2:		90	5			
%SS3:	75			1						

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

	ell Anal Quality Cou	-	<u>, Inc.</u>	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com									
Quest GeoSystems Manageme				G092		Date Sampled	e Sampled: 12/28/12 te Received: 12/28/12						
11275 Sunrise Gold Cir., Ste.	R	Client C	ontact: E	ric Ga			ate Extracted: 01/03/13						
Rancho Cordova, CA 95742		Client P.				Date Analyze							
	Sen	ni-Volati	le Organi	cs by	GC/MS (Basic Target List)	*							
Extraction Method: SW3510C				•	: SW8270C		v	Work Orde	er: 1212722				
Lab ID					1212722-001C								
Client ID					MW.01								
Matrix					Water								
Compound	Conc. *	DF	MDL	RL	Compound	Conc.	*	DF	MDL	RL			
Acenaphthene	ND<0.26	1.0	0.24	2.0	Acenaphthylene	ND<0.		1.0	0.26	2.0			
Acetochlor	ND<1.1	1.0	1.0	2.0	Anthracene	ND<0.		1.0	0.15	2.0			
Benzidine	ND<0.31	1.0	0.29	10	Benzoic Acid		.9,J	1.0	4.7	2.0			
Benzo (a) anthracene	ND<0.17	1.0	0.16	2.0	Benzo (b) fluoranthene	ND<0.		1.0	0.16	2.0			
Benzo (k) fluoranthene	ND<0.21	1.0	0.2	2.0	Benzo (g,h,i) perylene	ND<0.		1.0	0.18	2.0			
Benzo (a) pyrene	ND<0.18	1.0	0.17	2.0	Benzyl Alcohol	ND<1		1.0	1.5	10			
1,1-Biphenyl	ND<0.28	1.0	0.26	2.0	Bis (2-chloroethoxy) Methane	ND<0.1		1.0	0.3	2.0			
Bis (2-chloroethyl) Ether	ND<0.26	1.0	0.24	2.0	Bis (2-chloroisopropyl) Ether	ND<0.1		1.0	0.28	2.0			
Bis (2-ethylhexyl) Adipate	ND<2.1	1.0	2.0	2.0	Bis (2-ethylhexyl) Phthalate	ND<1	0	1.0	0.34	4.0			
4-Bromophenyl Phenyl Ether	ND<0.18	1.0	0.17	10	Butylbenzyl Phthalate	ND<0.1		1.0	0.29	2.0			
4-Chloroaniline	ND<0.35	1.0	0.33	4.0	4-Chloro-3-methylphenol	ND<0.1	29	1.0	0.27	10			
2-Chloronaphthalene	ND<0.27	1.0	0.25	2.0	2-Chlorophenol	ND<0.1	28	1.0	0.26	2.0			
4-Chlorophenyl Phenyl Ether	ND<0.21	1.0	0.2	2.0	Chrysene	ND<0.	19	1.0	0.18	2.0			
Dibenzo (a,h) anthracene	ND<0.20	1.0	0.19	2.0	Dibenzofuran	ND<0.	22	1.0	0.21	2.0			
Di-n-butyl Phthalate	ND<0.32	1.0	0.3	2.0	1,2-Dichlorobenzene	ND<0.	24	1.0	0.23	2.0			
1,3-Dichlorobenzene	ND<0.23	1.0	0.22	2.0	1,4-Dichlorobenzene	ND<0.	23	1.0	0.22	2.0			
3,3-Dichlorobenzidine	ND<0.15	1.0	0.14	4.0	2,4-Dichlorophenol	ND<0.	30	1.0	0.28	2.0			
Diethyl Phthalate	ND<0.16	1.0	0.15	2.0	2,4-Dimethylphenol	ND<0.	10	1.0	0.098	2.0			
Dimethyl Phthalate	ND<0.19	1.0	0.18	2.0	4,6-Dinitro-2-methylphenol	ND<1	.0	1.0	0.98	10			
2,4-Dinitrophenol	ND<0.93	1.0	0.87	25	2,4-Dinitrotoluene	ND<0.	18	1.0	0.17	2.0			
2,6-Dinitrotoluene	ND<0.21	1.0	0.2	2.0	Di-n-octyl Phthalate	ND<0.1	29	1.0	0.27	2.0			
1,2-Diphenylhydrazine	ND<0.17	1.0	0.16	2.0	Fluoranthene	ND<0.	19	1.0	0.18	2.0			
Fluorene	ND<0.21	1.0	0.2	2.0	Hexachlorobenzene	ND<0.		1.0	0.18	2.0			
Hexachlorobutadiene	ND<0.26	1.0	0.24	2.0	Hexachlorocyclopentadiene	ND<1	.3	1.0	1.2	10			
Hexachloroethane	ND<0.31	1.0	0.29	2.0	Indeno (1,2,3-cd) pyrene	ND<0.2		1.0	0.19	2.0			
Isophorone	ND<0.34	1.0	0.32	2.0	2-Methylnaphthalene	ND<0.1		1.0	0.29	2.0			
2-Methylphenol (o-Cresol)	ND<0.20	1.0	0.19	2.0	3 &/or 4-Methylphenol (m,p-Cres	· · · ·		1.0	0.19	2.0			
Naphthalene	ND<0.26	1.0	0.24	2.0	2-Nitroaniline	ND<1		1.0	1.3	10			
3-Nitroaniline	ND<1.3	1.0	1.2	10	4-Nitroaniline	ND<1		1.0	1.2	10			
Nitrobenzene	ND<0.34	1.0	0.32	2.0	2-Nitrophenol	ND<1		1.0	1.4	10			
4-Nitrophenol	ND<1.8	1.0	1.7	10	N-Nitrosodiphenylamine	ND<0.		1.0	0.18	2.0			
N-Nitrosodi-n-propylamine	ND<0.37	1.0	0.35	2.0	Pentachlorophenol	ND<0.		1.0	0.5	10			
Phenanthrene	ND<0.23	1.0	0.22	2.0	Phenol	ND<0.		1.0	0.34	2.0			
Pyrene	ND<0.26	1.0	0.24	2.0	1,2,4-Trichlorobenzene	ND<0.		1.0	0.22	2.0			
2,4,5-Trichlorophenol	ND<0.22	1.0	0.21	2.0	2,4,6-Trichlorophenol	ND<0.1	24	1.0	0.23	2.0			
0/ 001			Surr	ogate R	ecoveries (%)			20					
%SS1:		53			%SS2:			38					
%SS3:		74 %SS4:						86					
%SS5:		75			% SS6:			85					
Comments:													

ND means not detected at or above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor; #) surrogate diluted out of range or surrogate coelutes with another peak.

J) analyte detected below quantitation limits

	ell Anal Quality Cou		<u>, Inc.</u>		Toll Free Telephone: (877) 252-92	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com							
Quest GeoSystems Manageme				G092		Date Sampled: 12/28/12 Date Received: 12/28/12							
11275 Sunrise Gold Cir., Ste.	R	Client C	ontact: E	ric Ga		Date Extracted: 01/03/13							
Rancho Cordova, CA 95742		Client P.				Date Analyzed:							
	Sen	ni-Volati	le Organi	cs by	GC/MS (Basic Target List)	*							
Extraction Method: SW3510C			-	•	: SW8270C		Work Ord	er: 1212722					
Lab ID					1212722-002C								
Client ID					MW.02								
Matrix					Water								
Compound	Conc. *	DF	MDL	RL	Compound	Conc. *	DF	MDL	RL				
Acenaphthene	ND<0.25	1.0	0.24	2.0	Acenaphthylene	ND<0.27	1.0	0.26	2.0				
Acetochlor	ND ND	1.0	1.0	2.0	Anthracene	ND<0.16	1.0	0.15	2.0				
Benzidine	ND<0.30	1.0	0.29	10	Benzoic Acid	ND<4.9	1.0	4.7	2.0				
Benzo (a) anthracene	ND<0.17	1.0	0.16	2.0	Benzo (b) fluoranthene	ND<0.17	1.0	0.16	2.0				
Benzo (k) fluoranthene	ND<0.21	1.0	0.2	2.0	Benzo (g,h,i) perylene	ND<0.19	1.0	0.18	2.0				
Benzo (a) pyrene	ND<0.18	1.0	0.17	2.0	Benzyl Alcohol	ND<1.6	1.0	1.5	10				
1,1-Biphenyl	ND<0.27	1.0	0.26	2.0	Bis (2-chloroethoxy) Methane	ND<0.31	1.0	0.3	2.0				
Bis (2-chloroethyl) Ether	ND<0.25	1.0	0.24	2.0	Bis (2-chloroisopropyl) Ether	ND<0.29	1.0	0.28	2.0				
Bis (2-ethylhexyl) Adipate	ND<2.1	1.0	2.0	2.0	Bis (2-ethylhexyl) Phthalate	ND<6.0	1.0	0.34	4.0				
4-Bromophenyl Phenyl Ether	ND<0.18	1.0	0.17	10	Butylbenzyl Phthalate	ND<0.30	1.0	0.29	2.0				
4-Chloroaniline	ND<0.34	1.0	0.33	4.0	4-Chloro-3-methylphenol	ND<0.28	1.0	0.27	10				
2-Chloronaphthalene	ND<0.26	1.0	0.25	2.0	2-Chlorophenol	ND<0.27	1.0	0.26	2.0				
4-Chlorophenyl Phenyl Ether	ND<0.21	1.0	0.2	2.0	Chrysene	ND<0.19	1.0	0.18	2.0				
Dibenzo (a,h) anthracene	ND<0.20	1.0	0.19	2.0	Dibenzofuran	ND<0.22	1.0	0.21	2.0				
Di-n-butyl Phthalate	ND<0.31	1.0	0.3	2.0	1,2-Dichlorobenzene	ND<0.24	1.0	0.23	2.0				
1,3-Dichlorobenzene	ND<0.23	1.0	0.22	2.0	1,4-Dichlorobenzene	ND<0.23	1.0	0.22	2.0				
3,3-Dichlorobenzidine	ND<0.15	1.0	0.14	4.0	2,4-Dichlorophenol	ND<0.29	1.0	0.28	2.0				
Diethyl Phthalate	ND<0.16	1.0	0.15	2.0	2,4-Dimethylphenol	ND<0.10	1.0	0.098	2.0				
Dimethyl Phthalate	ND<0.19	1.0	0.18	2.0	4,6-Dinitro-2-methylphenol	ND<1.0	1.0	0.98	10				
2,4-Dinitrophenol	ND<0.91	1.0	0.87	25	2,4-Dinitrotoluene	ND<0.18	1.0	0.17	2.0				
2,6-Dinitrotoluene	ND<0.21	1.0	0.2	2.0	Di-n-octyl Phthalate	ND<0.28	1.0	0.27	2.0				
1,2-Diphenylhydrazine	ND<0.17	1.0	0.16	2.0	Fluoranthene	ND<0.19	1.0	0.18	2.0				
Fluorene	ND<0.21	1.0	0.2	2.0	Hexachlorobenzene	ND<0.19	1.0	0.18	2.0				
Hexachlorobutadiene	ND<0.25	1.0	0.24	2.0	Hexachlorocyclopentadiene	ND<1.3	1.0	1.2	10				
Hexachloroethane	ND<0.30	1.0	0.29	2.0	Indeno (1,2,3-cd) pyrene	ND<0.20	1.0	0.19	2.0				
Isophorone	ND<0.33	1.0	0.32	2.0	2-Methylnaphthalene	ND<0.30	1.0	0.29	2.0				
2-Methylphenol (o-Cresol)	ND<0.20	1.0	0.19	2.0	3 &/or 4-Methylphenol (m,p-Cres		1.0	0.19	2.0				
Naphthalene	ND<0.25	1.0	0.24	2.0	2-Nitroaniline	ND<1.4	1.0	1.3	10				
3-Nitroaniline	ND<1.3 ND<0.33	1.0	1.2	10	4-Nitroaniline	ND<1.3	1.0	1.2	10				
Nitrobenzene 4-Nitrophenol	ND<0.33 ND<1.8	1.0	0.32	2.0	2-Nitrophenol N-Nitrosodiphenylamine	ND<1.5 ND<0.19	1.0	1.4 0.18	10				
•	ND<1.8 ND<0.37	1.0		10	1 1 1				2.0				
N-Nitrosodi-n-propylamine Phenanthrene	ND<0.37	1.0	0.35	2.0	Pentachlorophenol Phenol	ND<0.52 ND<0.35	1.0	0.5	10 2.0				
Pyrene	ND<0.23	1.0	0.22	2.0	1,2,4-Trichlorobenzene	ND<0.23	1.0	0.34	2.0				
2,4,5-Trichlorophenol	ND<0.23	1.0	0.24	2.0	2,4,6-Trichlorophenol	ND<0.23	1.0	0.22	2.0				
<u> </u>		· · ·	Surr	ogate R	ecoveries (%)	-							
%SS1:		26		0	%SS2:		19						
%SS3:		56			%SS4:	69							
%SS5:		47			%SS6:		75						
Comments: b1						1							

ND means not detected at or above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor; #) surrogate diluted out of range or surrogate coelutes with another peak.

J) analyte detected below quantitation limits

	ell Analy Quality Cou	-	<u>, Inc.</u>	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com							
Quest GeoSystems Manageme				G092		Date Sampled: Date Received					
11275 Sunrise Gold Cir., Ste.	R	Client C	ontact: E	ric Ga			te Extracted: 01/03/13				
Rancho Cordova, CA 95742	ŀ	Client P.				Date Analyzed					
	Sen	ni-Volati	le Organi	cs by	GC/MS (Basic Target List)	*					
Extraction Method: SW3510C	Jen	n- v olati	-	•	: SW8270C		Work Ord	er: 1212722			
Lab ID					1212722-003C						
Client ID					MW.03						
Matrix					Water						
Compound	Conc. *	DF	MDL	RL	Compound	Conc. *	DF	MDL	RL		
Acenaphthene	ND<0.28	1.0	0.24	2.0	Acenaphthylene	ND<0.30		0.26	2.0		
Acetochlor	ND<1.2	1.0	1.0	2.0	Anthracene	ND<0.17		0.15	2.0		
Benzidine	ND<0.34	1.0	0.29	10	Benzoic Acid	ND<5.5	1.0	4.7	2.0		
Benzo (a) anthracene	ND<0.19	1.0	0.16	2.0	Benzo (b) fluoranthene	ND<0.19		0.16	2.0		
Benzo (k) fluoranthene	ND<0.23	1.0	0.2	2.0	Benzo (g,h,i) perylene	ND<0.21		0.18	2.0		
Benzo (a) pyrene	ND<0.20	1.0	0.17	2.0	Benzyl Alcohol	ND<1.7	1.0	1.5	10		
1,1-Biphenyl	ND<0.30	1.0	0.26	2.0	Bis (2-chloroethoxy) Methane	ND<0.35		0.3	2.0		
Bis (2-chloroethyl) Ether	ND<0.33		0.28	2.0							
Bis (2-ethylhexyl) Adipate	ND<0.28 ND<2.3	1.0	2.0	2.0	Bis (2-chloroisopropyl) Ether Bis (2-ethylhexyl) Phthalate	ND<6.0	1.0	0.34	4.0		
4-Bromophenyl Phenyl Ether	ND<0.20	1.0	0.17	10	Butylbenzyl Phthalate	ND<0.34	1.0	0.29	2.0		
4-Chloroaniline	ND<0.38	1.0	0.33	4.0	4-Chloro-3-methylphenol	ND<0.31	1.0	0.27	10		
2-Chloronaphthalene	ND<0.29	1.0	0.25	2.0	2-Chlorophenol	ND<0.30	1.0	0.26	2.0		
4-Chlorophenyl Phenyl Ether	ND<0.23	1.0	0.2	2.0	Chrysene	ND<0.21	1.0	0.18	2.0		
Dibenzo (a,h) anthracene	ND<0.22	1.0	0.19	2.0	Dibenzofuran	ND<0.24	1.0	0.21	2.0		
Di-n-butyl Phthalate	ND<0.35	1.0	0.3	2.0	1,2-Dichlorobenzene	ND<0.27	1.0	0.23	2.0		
1,3-Dichlorobenzene	ND<0.26	1.0	0.22	2.0	1,4-Dichlorobenzene	ND<0.26	1.0	0.22	2.0		
3,3-Dichlorobenzidine	ND<0.16	1.0	0.14	4.0	2,4-Dichlorophenol	ND<0.33	1.0	0.28	2.0		
Diethyl Phthalate	ND<0.17	1.0	0.15	2.0	2,4-Dimethylphenol	ND<0.11	1.0	0.098	2.0		
Dimethyl Phthalate	ND<0.21	1.0	0.18	2.0	4,6-Dinitro-2-methylphenol	ND<1.1	1.0	0.98	10		
2,4-Dinitrophenol	ND<1.0	1.0	0.87	25	2,4-Dinitrotoluene	ND<0.20	1.0	0.17	2.0		
2,6-Dinitrotoluene	ND<0.23	1.0	0.2	2.0	Di-n-octyl Phthalate	ND<0.31		0.27	2.0		
1,2-Diphenylhydrazine	ND<0.19	1.0	0.16	2.0	Fluoranthene	ND<0.21	1.0	0.18	2.0		
Fluorene	ND<0.23	1.0	0.2	2.0	Hexachlorobenzene	ND<0.21		0.18	2.0		
Hexachlorobutadiene	ND<0.28	1.0	0.24	2.0	Hexachlorocyclopentadiene	ND<1.4		1.2	10		
Hexachloroethane	ND<0.34	1.0	0.29	2.0	Indeno (1,2,3-cd) pyrene	ND<0.22		0.19	2.0		
Isophorone	ND<0.37	1.0	0.32	2.0	2-Methylnaphthalene	ND<0.34		0.29	2.0		
2-Methylphenol (o-Cresol)	ND<0.22	1.0	0.19	2.0	3 &/or 4-Methylphenol (m,p-Cres			0.19	2.0		
Naphthalene	0.75,J		0.24	2.0	2-Nitroaniline	ND<1.5	1.0	1.3	10		
3-Nitroaniline	ND<1.4	1.0	1.2	10	4-Nitroaniline	ND<1.4		1.2	10		
Nitrobenzene	ND<0.37	1.0	0.32	2.0	2-Nitrophenol	ND<1.6		1.4	10		
4-Nitrophenol	ND<2.0	1.0	1.7	10	N-Nitrosodiphenylamine	ND<0.21		0.18	2.0		
N-Nitrosodi-n-propylamine	ND<0.41	1.0	0.35	2.0	Pentachlorophenol	ND<0.58		0.5	10		
Phenanthrene	ND<0.26	1.0	0.22	2.0	Phenol	ND<0.40		0.34	2.0		
Pyrene	ND<0.28	1.0	0.24	2.0	1,2,4-Trichlorobenzene	ND<0.20		0.22	2.0		
2,4,5-Trichlorophenol	ND<0.24	1.0	0.21	2.0	2,4,6-Trichlorophenol	ND<0.27	1.0	0.23	2.0		
0/ 001		20	Surr	ogate R	ecoveries (%)						
%SS1:		28			%SS2:		31				
%SS3:		64			%SS4:		77				
%SS5:		16			% SS6:		79				
Comments: b1											

ND means not detected at or above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor; #) surrogate diluted out of range or surrogate coelutes with another peak.

J) analyte detected below quantitation limits

Quest GeoSystems Management Power Company Date Sampled: Date Sampled: 12/28/12 Date Received: 12/28/12 Date Received:		ell Anal Quality Cou	-	<u>, Inc.</u>		1534 Willow Pass Road, Pitts Toll Free Telephone: (877) 252-9 http://www.mccampbell.com / E-m	262 / Fax: (925) 252-9	0269					
11275 Sunrise Gold Cir., Ste. R Client Contact: Eric Garcia Date Extracted: 01/03/13 Rancho Cordova, CA 95742 Client Contact: Eric Garcia Date Extracted: 01/03/13 Semi-Volatile Organics by GC/MS (Basic Target List)* Work Onter 121272 Tan ID Terraction Method: SW150C Work Onter 121272-005C Compound Conc.* DF MDL Retraction Conc.* DF MDL Retraction Conc.* DF MDL Compound Conc.* DF MDL Retraction Conc.* DF MDL Retraction Conc.* DF MDL Retraction Conc.* DF MDL Retraction Conce.* DF MDL Accentability on Conce.* DF MDL Retraction Conce.* DF MDL Retraction Conce.* DF MDL Retraction Conce.* DF MDL <th< td=""><td></td><td></td><td>Client Pr</td><td></td><td>G092</td><td></td><td>•</td><td></td><td></td><td></td></th<>			Client Pr		G092		•						
Rancho Cordova, CA 95742 Client P.O.: Date Analyzes: 0.1/07/13 Estracion Method: SW310C Work Orega 12/22/2005C Labi D 12/2722-005C Come: * DE MDL NIV.0 Matrix NIV.0 Work Orega Come; * DF MDL RL Work Orega DD 0.0 0.0 Analysia MDL Accorchior ND-0.12 1.0 0.2 A analysia MDL Accorchior ND-0.12 1.0 0.2 A analysia ND-0.2 1.0 0.2 A analysia ND-0.12 1.0 0.2 A analysia ND-0.12 1.0 0.2 A analysia ND-0.23 1.0 0.2 0.2 <th <="" colspan="2" td=""><td>11275 Sunrise Gold Cir., Ste. 1</td><td>R I</td><td></td><td>1 7</td><td>ria Ca</td><td></td><td></td><td colspan="4"></td></th>	<td>11275 Sunrise Gold Cir., Ste. 1</td> <td>R I</td> <td></td> <td>1 7</td> <td>ria Ca</td> <td></td> <td></td> <td colspan="4"></td>		11275 Sunrise Gold Cir., Ste. 1	R I		1 7	ria Ca						
Semi-Volatile Organics by GC/MS (Basic Target List)* Extraction Method: SWR20C Work Order: 1212722 Lab ID 1212722-005C Client ID MUL MUL Compound Conc.* DF MDL Compound Conc.* DF MDL Accorption ND-0.29 1.0 0.22 On provide a colspan="2">MDL-0.17 1.0 0.22 Accorption ND-0.29 1.0 0.22 0 Benzio (a) fuoranthene ND-0.20 1.0 0.2 0.0 DE DE <td>Rancho Cordova, CA 95742</td> <td></td> <td></td> <td></td> <td>ric Ga</td> <td></td> <td></td> <td></td> <td></td> <td></td>	Rancho Cordova, CA 95742				ric Ga								
Lanction Method: \$W3510C Analysical Method: \$W3270C Weth Other, 12/222, 205C Light Display Light Display Light Display Multical Accounts State Accounts State Accounts Matrix Water Water Water Multical Accounts Display International Accounts Display Accounts Display Accounts Display Accounts Display Accounts ND-0.17 1.0 0.26 Accounts ND-0.17 1.0 0.16 Accounts Accounts ND-0.17 1.0 0.16 Accounts Barray (A) flow numbers ND-0.17 1.0 0.16 Barray (A) flow numbers ND-0.20 1.0 0.17 1.0 0.18 1.0 0.16 Barray (A) flow numbers ND-0.20 1.0 0.18 1.0 0.16 1.0 0.0 1.0 0.17 0.0 0.28 0.0 Barray (A) flow numbers ND-0.20 1.0 0.28 Barray (A) flow numbers ND-0.20 1.0 0.28 Barray (A) flow numbers ND-0.20 1.0 0.28 1.0		Sor			oc hy		-		-				
MW.04 Water Value Compound Conc.* DF MDL Acenaphthee ND-0.27 1.0 0.24 2.0 Acenaphthee ND-0.2 1.0 0.10 0.2.2 Acenaphthee ND-0.12 1.0 0.16 Barzo (a) anthracene ND-0.12 1.0 0.16 Barzo (a) Informathee ND-0.20 1.0 0.16 Barzo (a) Informathee ND-0.12 1.0 0.16 0.0 0.16 0.0 0.16 0.0 0.16 0.0 0.16 0.0 0.16 0.0 0.16 0.0 0.16 0.0 0.16 0.0 0.16 0.0 0.0 <th co<="" td=""><td>Extraction Method: SW3510C</td><td>Sel</td><td>m- v olati</td><td></td><td>-</td><td></td><td></td><td>Work Ord</td><td>er: 1212722</td><td></td></th>	<td>Extraction Method: SW3510C</td> <td>Sel</td> <td>m- v olati</td> <td></td> <td>-</td> <td></td> <td></td> <td>Work Ord</td> <td>er: 1212722</td> <td></td>	Extraction Method: SW3510C	Sel	m- v olati		-			Work Ord	er: 1212722			
MW.04 Water Value Compound Conc.* DF MDL Acenaphthee ND-0.27 1.0 0.24 2.0 Acenaphthee ND-0.2 1.0 0.10 0.2.2 Acenaphthee ND-0.12 1.0 0.16 Barzo (a) anthracene ND-0.12 1.0 0.16 Barzo (a) Informathee ND-0.20 1.0 0.16 Barzo (a) Informathee ND-0.12 1.0 0.16 0.0 0.16 0.0 0.16 0.0 0.16 0.0 0.16 0.0 0.16 0.0 0.16 0.0 0.16 0.0 0.16 0.0 0.16 0.0 0.0 <th co<="" td=""><td>Lab ID</td><td></td><td></td><td></td><td></td><td>1212722-005C</td><td></td><td></td><td></td><td></td></th>	<td>Lab ID</td> <td></td> <td></td> <td></td> <td></td> <td>1212722-005C</td> <td></td> <td></td> <td></td> <td></td>	Lab ID					1212722-005C						
Matrix Water Compound Conc. * DF MDL RL Compound Conc. * DF MDL Accanptinene ND-0.32 1.0 0.24 2.0 Accanptinylane ND-0.17 1.0 0.26 Acetochlor ND-1.1 1.0 1.0 0.20 1.0 Berzo (a) antracene ND-0.17 1.0 0.15 Benzo (a) antracene ND-0.22 1.0 0.2 2.0 Benzo (a) perside ND-0.20 1.0 0.16 Benzo (a) prome ND-0.29 1.0 0.22 2.0 Benzo (a) prome ND-0.20 1.0 0.16 Benzo (a) prome ND-0.29 1.0 0.22 2.0 Benzo (a) prome ND-0.20 1.0 0.28 Sig (2-try)therytop ND-0.27 1.0 0.24 2.0 Bis (2-try)therytop Bis (2-try)therytop Bis (2-try)therytop Action onthip ND-0.33 1.0 0.3 Bis (2-try)therytop ND-0.27 1.0 0.24 Chiorophenol ND-0.32													
Acenaphthene ND=0.27 1.0 0.24 2.0 Acenaphthylene ND=0.29 1.0 0.26 Acetochlor ND>1.1 1.0 1.0 2.0 Anthracene ND=0.17 1.0 0.15 Benzol (a) anthracene ND=0.18 1.0 0.16 2.0 Benzo (b) fluoranthene ND=0.18 1.0 0.16 Benzo (a) anthracene ND=0.19 1.0 0.17 2.0 Benzo (a) (b) fluoranthene ND=0.20 1.0 0.16 Benzo (a) gyrene ND=0.19 1.0 0.24 2.0 Bis (2-chloroethoxy) Methane ND=0.33 1.0 0.3 Bis (2-chloroethoy) Ether ND=0.22 1.0 2.0 2.0 Bis (2-chloroethoxy) Methane ND=0.31 1.0 0.28 Lob (2-chloroethoy) Ether ND=0.37 1.0 0.33 4.0 4-Chlorosanthenel ND=0.32 1.0 0.27 C-Chloronphothalene ND=0.22 1.0 0.25 2.0 2-Chlorophenol ND=0.32 1.0 0.21 L-Chlorophenzene													
Acenaphthene ND ± 0.27 1.0 0.24 2.0 Acenaphthylene ND ± 0.29 1.0 0.26 Acetochlor ND ± 1.1 1.0 1.0 2.0 Anthracene ND ± 0.17 1.0 0.15 Benzo (a) ambracene ND ± 0.13 1.0 0.16 2.0 Benzo (a) fluoranthene ND ± 0.18 1.0 0.16 2.0 Benzo (a) fluoranthene ND ± 0.22 1.0 0.22 2.0 Benzo (a) fluoranthene ND ± 0.20 1.0 0.16 0.17 2.0 Benzo (a) fluoranthene ND ± 0.20 1.0 0.26 2.0 Bis (2-chloroethoxy) Methane ND ± 0.3 1.0 0.3 Bis (2-chloroethoxy) Ether ND ± 0.27 1.0 0.24 2.0 Bis (2-chloroethoxy) Ether ND ± 0.3 1.0 0.24 2.0 Bis (2-chloroethoxy) Ether ND ± 0.3 1.0 0.24 2.0 Bis (2-chloroethoxy) Ether ND ± 0.32 1.0 0.22 4-Chloroanthine ND ± 0.27 1.0 0.3 4.0 4-Chloroshethothylphenol ND \pm 0.22	Compound	Conc. *	DF	MDL	RL	Compound	Conc. *	DF	MDL	RL			
Acetochior ND<1.1 1.0 1.0 2.0 Anthracene ND<0.17 1.0 0.15 Benzol (a) infracene ND<0.32	•		1.0		2.0			1.0		2.0			
Benzidine ND-C0.32 1.0 0.29 1.0 Benzo ko fluoranthene ND-0.18 1.0 0.16 2.0 Benzo ko fluoranthene ND-0.18 1.0 0.16 Benzo ko fluoranthene ND-0.12 1.0 0.12 2.0 Benzo ko fluoranthene ND-0.12 1.0 0.17 2.0 Benzo ko fluoranthene ND-0.12 1.0 0.17 1.0 Benzo ko fluoranthene ND-0.19 1.0 0.26 2.0 Bis (2-chloroshopropyl) Ether ND-0.31 1.0 0.28 Bis (2-chloroshopropyl) Ether ND-0.32 1.0 0.24 2.0 Bis (2-chloroshopropyl) Ether ND-0.31 1.0 0.28 Bis (2-chloroshopthylexyl) Adipate ND-0.27 1.0 0.33 4.0 4-Chloroshopthylexyl Phthalate ND-0.32 1.0 0.29 4-Chloroshopthylexyl Phenyl Ether ND-0.23 1.0 0.25 2.0 2-Chloroshenol ND-0.30 1.0 0.27 2-Chloroshenyl Phenyl Ether ND-0.24 1.0 0.22 2.0 Chlyberxofuran ND-0.25 1.0										2.0			
Benzo (a) anthracene ND<0.18 1.0 0.16 2.0 Benzo (b) fluoranthene ND<0.18 1.0 0.16 Benzo (k) fluoranthene ND<0.22										2.0			
Benzo (k) fluoranthene ND> 0.2 1.0 0.2 2.0 Benzo (k), fluoranthene ND> 0.0 1.0 0.17 2.0 Benzyl Alcohol ND> 0.17 1.0 1.5 1.1-Biphenyl ND> 0.29 1.0 0.26 2.0 Bis (2-chloroethycy) Ether ND> 0.33 1.0 0.33 Bis (2-chloroethyl) Ether ND> 0.27 1.0 0.24 2.0 Bis (2-chloroethycy) Ether ND> 0.31 1.0 0.34 Abromophenyl Phenyl Ether ND> 0.17 1.0 Butylexyl Alphalate ND> 0.32 1.0 0.24 4Chloroantiline ND> 0.37 1.0 0.33 4.0 4-Chloro3-metrylphpenol ND> 0.30 1.0 0.27 2-Chloroapthufalene ND> 0.22 1.0 0.22 2.0 Chrysene ND> 0.23 1.0 0.18 Diebrazofuran ND> 0.23 1.0 0.3 2.0 Liberborebarzene ND> 0.23 1.0 0.22 1.0-bichlorobenzene ND> 0.24 1.0 0.12 2.0 Liberborebarzene N										2.0			
Benzo (a) pyrene ND<0.19 1.0 0.17 2.0 Benzyl Alcohol ND<1.7 1.0 1.5 1.1-Biphenyl ND<0.29										2.0			
1,1-Biphenyl ND-0.29 1.0 0.26 2.0 Bis (2-chloroethoxy) Methane ND-0.33 1.0 0.3 Bis (2-chloroethyl) Ether ND-0.27 1.0 0.24 2.0 Bis (2-chlorostropyl) Ether ND-0.31 1.0 0.28 Bis (2-chloroethyl) Ether ND-0.19 1.0 0.17 10 Butylenzyl Prhthalate ND-0.32 1.0 0.24 Chloroaphthale ND-0.25 1.0 0.33 4.0 4-Chloro-3-methylphenol ND-0.30 1.0 0.27 4Chloroaphthalene ND-0.22 1.0 0.2 2.0 Chloroaphthalate ND-0.20 1.0 0.18 Dibenzo (a,h) anthracene ND-0.21 1.0 0.19 2.0 Dibenzofuran ND-0.23 1.0 0.23 1.3-Dichlorobenzane ND-0.24 1.0 0.22 2.0 1.4-Dichlorobenzane ND-0.24 1.0 0.22 1.3-Dichlorobenzidine ND-0.17 1.0 0.14 4.0 2.4-Dichlorobenzane ND-0.24 1.0 0.23 1.3-Dichlorobenzidine ND-0.22 1.0 0.18 2.0 4-6-Dinitro-2-methylpheno										10			
Bis (2-chloroethyl) Ether ND<0.27 1.0 0.24 2.0 Bis (2-chloroisopropyl) Ether ND<0.31 1.0 0.28 Bis (2-chylhexyl) Adipate ND<2.2									1	2.0			
Bis (2-ethylhexyl) Adipate ND<2.2 1.0 2.0 2.0 Bis (2-ethylhexyl) Phthalate ND<16 1.0 0.34 4-Bromophenyl Phenyl Ether ND<0.19				1						2.0			
4+Bromophenyl Phenyl Ether ND<0.19 1.0 0.17 10 Butylbenzyl Phthalate ND<0.32 1.0 0.29 4-Chloronamine ND<0.37													
4-Chloroaniline ND<0.37 1.0 0.33 4.0 4-Chloro-3-methylphenol ND<0.30 1.0 0.27 2-Chloronaphthalene ND-0.28 1.0 0.25 2.0 2-Chlorophenol ND-0.29 1.0 0.26 4-Chlorophenyl Phenyl Ether ND-0.22 1.0 0.2 2.0 Chrysene ND-0.23 1.0 0.21 Dib-n-buyl Phthalate ND-0.23 1.0 0.3 2.0 1.2-Dichlorobenzene ND-0.25 1.0 0.22 3.0-bichlorobenzene ND-0.24 1.0 0.22 2.0 1.4-Dichlorobenzene ND-0.24 1.0 0.22 3.0-bichlorobenzidine ND-0.15 1.0 0.14 4.0 2.4-Disintophenol ND-0.11 1.0 0.098 2.4-Dinitrophenol ND-0.20 1.0 0.17 2.0 2.4-Dinitrotoluene ND-0.30 1.0 0.27 2.6-Dinitrotoluene ND-0.22 1.0 0.2 2.0 Hexachlorobenzene ND-0.20 1.0 0.18 Plourenhenol ND-0.22	· · · · · ·			1						4.0			
2-Chloronaphthalene ND<0.28 1.0 0.25 2.0 2-Chlorophenol ND<0.29 1.0 0.26 4-Chlorophenyl Phenyl Ether ND<0.22										2.0			
4-Chlorophenyl Phenyl Ether ND- 0.22 1.0 0.2 2.0 Chrysene ND- 0.20 1.0 0.18 Dibenzo (a,h) anthracene ND- 0.21 1.0 0.19 2.0 Dibenzoftran ND> 0.23 1.0 0.21 Di-n-butyl Phthalate ND- 0.23 1.0 0.3 2.0 1,2-Dichlorobenzene ND> 0.24 1.0 0.22 3,3-Dichlorobenzene ND> 0.24 1.0 0.14 4.0 2,4-Dichlorobenzene ND> 0.24 1.0 0.23 3,3-Dichlorobenzidine ND> 0.17 1.0 0.15 2.0 2,4-Dimitrylphenol ND< 0.11 1.0 0.098 Diethyl Phthalate ND> 0.17 1.0 0.18 2.0 4,6-Dimitro-2-methylphenol ND< 0.11 1.0 0.98 2,4-Dimitrylohenol ND> 0.25 1.0 0.22 2.0 Di-n-octyl Phthalate ND< 0.030 1.0 0.27 2,4-Dimitrylohenol ND< 0.22 1.0 0.2 2.0 Hexachlorocyclopentadiene ND< 0.20 1.0 0.17 <				i i						10			
Dibenzo (a,h) anthracene ND<0.21 1.0 0.19 2.0 Dibenzofuran ND<0.23 1.0 0.21 Din-butyl Phthalate ND<0.33	•					· · · · · · · · · · · · · · · · · · ·				2.0			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				1						2.0			
1,3-Dichorobenzene ND<0.24 1.0 0.22 2.0 1,4-Dichlorobenzene ND<0.24 1.0 0.22 3,3-Dichlorobenzidine ND<0.15				1						2.0			
3.3-Dichlorobenzidine ND<0.15 1.0 0.14 4.0 2,4-Dichlorophenol ND<0.31 1.0 0.28 Diethyl Phthalate ND<0.17						· ·				2.0			
Diethyl Phthalate ND<0.17 1.0 0.15 2.0 2,4-Dimethylphenol ND<0.11 1.0 0.098 Dimethyl Phthalate ND<0.20	,			i i						2.0			
Dimethyl Phthalate ND<0.20 1.0 0.18 2.0 4,6-Dinitro-2-methylphenol ND<1.1 1.0 0.98 2,4-Dinitrophenol ND<0.96	/			1						2.0			
2,4-Dinitrophenol ND<0.96 1.0 0.87 25 2,4-Dinitrotoluene ND<0.19 1.0 0.17 2,6-Dinitrotoluene ND<0.22				1						2.0			
2.6-Dinitrotoluene ND<0.22 1.0 0.2 2.0 Di-n-octyl Phthalate ND<0.30 1.0 0.27 1.2-Diphenylhydrazine ND<0.18				1						10			
1.2-Diphenylhydrazine ND<0.18 1.0 0.16 2.0 Fluoranthene ND<0.20 1.0 0.18 Fluorene ND<0.22						,				2.0			
Fluorene ND<0.22 1.0 0.2 2.0 Hexachlorobenzene ND<0.20 1.0 0.18 Hexachlorobutadiene ND<0.27	,									2.0			
Hexachlorobutadiene ND<0.27 1.0 0.24 2.0 Hexachlorocyclopentadiene ND<1.3 1.0 1.2 Hexachloroethane ND<0.32	1,2-Diphenylhydrazine			1						2.0			
Hexachloroethane ND<0.32 1.0 0.29 2.0 Indeno (1,2,3-cd) pyrene ND<0.21 1.0 0.19 Isophorone ND<0.35										2.0			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				1 1				1	1	10			
2-Methylphenol (o-Cresol) ND<0.21 1.0 0.19 2.0 3 &/or 4-Methylphenol (m,p-Cresol) ND<0.21 1.0 0.19 Naphthalene ND<0.27				1						2.0			
Naphthalene ND<0.27 1.0 0.24 2.0 2-Nitroaniline ND<1.4 1.0 1.3 3-Nitroaniline ND<1.3	•			1					1	2.0			
Nitroaniline ND<1.3 1.0 1.2 10 4-Nitroaniline ND<1.3 1.0 1.2 Nitrobenzene ND<0.35				1					1	2.0			
Nitrobenzene ND<0.35 1.0 0.32 2.0 2-Nitrophenol ND<1.5 1.0 1.4 4-Nitrophenol ND<1.9				1					1	10			
4-Nitrophenol ND<1.9 1.0 1.7 10 N-Nitrosodiphenylamine ND<0.20 1.0 0.18 N-Nitrosodi-n-propylamine ND<0.39			1.0	1				1.0	1	10			
N-Nitrosodi-n-propylamine ND<0.39 1.0 0.35 2.0 Pentachlorophenol ND<0.55 1.0 0.5 Phenanthrene ND<0.24				1					1	10			
Phenanthrene ND<0.24 1.0 0.22 2.0 Phenol ND<0.38 1.0 0.34 Pyrene ND<0.27	•			1						2.0			
Pyrene ND<0.27 1.0 0.24 2.0 1,2,4-Trichlorobenzene ND<0.24 1.0 0.22 2,4,5-Trichlorophenol ND<0.23				i i					1	10			
ND<0.23 1.0 0.21 2.0 2,4,6-Trichlorophenol ND<0.25 1.0 0.23 Surrogate Recoveries (%) %SS1: 40 %SS2: 30 94 %SS3: 81 %SS4: 94	Phenanthrene		1.0	1				1.0		2.0			
Surrogate Recoveries (%) %SS1: 40 %SS2: 30 %SS3: 81 %SS4: 94	Pyrene	ND<0.27	1.0	i i			ND<0.24	1.0	0.22	2.0			
%SS1: 40 %SS2: 30 %SS3: 81 %SS4: 94	2,4,5-Trichlorophenol	ND<0.23	1.0	0.21	2.0	2,4,6-Trichlorophenol	ND<0.25	1.0	0.23	2.0			
%SS3: 81 %SS4: 94				Surr	ogate R	ecoveries (%)							
	%SS1:		40			% SS2:		30					
%SS5: 66 %SS6: 84	%SS3:		81			%SS4:		94					
	%SS5:		66			%SS6:		84					
Comments: b1	Comments: b1												

ND means not detected at or above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis; %SS = Percent l Standard; DF = Dilution Factor; #) surrogate diluted out of range or surrogate coelutes with another peak.

J) analyte detected below quantitation limits

	McCamp	bell . When Qua			l <u>, Inc.</u>		oll Free Telepho	Pass Road, Pittsburg ne: (877) 252-9262 pbell.com / E-mail:	/ Fax: (925) 252	-9269		
Quest	GeoSystems Manag	ement				G09212012	2-02;	Date Sample	ed: 12/2	8/12		
11275	5 Sunrise Gold Cir., S	Ste. R		Byron	Power Com	pany		Date Receiv				
				Client (Contact: Eri	ic Garcia		Date Extract	ted: 01/0	3/13		
Ranch	no Cordova, CA 9574	42		Client I	Client P.O.:				xed: 01/0.	3/13		
Extractio	Gas on method: SW5030B	oline Ra	ange (C	C6-C12)	-C12) Volatile Hydrocarbons as Gasoli Analytical methods: SW8021B/8015				X and MT		k Order:	1212722
Lab ID	Client ID	Matrix	Tł	PH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS	Comments
004A	Trip	W]	ND	ND	ND	ND	ND	ND	1	103	

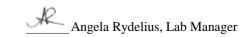
Reporting Limit for DF =1; ND means not detected at or	W	50	5.0	0.5	0.5	0.5	0.5	μg/L
above the reporting limit	S	1.0	0.05	0.005	0.005	0.005	0.005	mg/Kg

* water and vapor samples are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts in mg/L.

cluttered chromatogram; sample peak coelutes w/surrogate peak; low surrogate recovery due to matrix interference. %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

Mc Mc	Campbell Ana ''When Quality Con	lytical, Inc. unts''	Toll Free Telepho	Pass Road, Pittsburg, ne: (877) 252-9262 / 1 pbell.com / E-mail: m	Fax: (925	5) 252-9269	
Quest GeoSyste	ms Management	Client Project ID: Byron Power Com		Date Sampled			
11275 Sunrise C	Gold Cir., Ste. R			Date Received: 12/28/12			
		Client Contact: En	ric Garcia	Date Extracte	ed 01	/03/13	
Rancho Cordova	a, CA 95742	Client P.O.:		Date Analyze	ed 01	/03/13	
Extraction method: SW			tile Hydrocarbons as (ethods: SW8015Bm	Gasoline*	Wo	ork Order:	1212722
Lab ID	Client ID	Matrix	TPH(g)		DF	% SS	Comments
001A	MW.01	W	ND		1	108	
002A	MW.02	W	ND		1	105	b1
003A	MW.03	W	51		1	113	d9,b1
005A	MW.04	w	ND		1	104	b1


Reporting Limit for DF =1; ND means not detected at or	W	50	μg/L
above the reporting limit	S	NA	NA

* water and vapor samples are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts in mg/L.

cluttered chromatogram; sample peak coelutes w/surrogate peak; low surrogate recovery due to matrix interference. %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: b1) aqueous sample that contains greater than ~1 vol. % sediment d9) no recognizable pattern

DHS ELAP Certification 1644

<u> Мс</u>	Campbell Analy "When Quality Court	/tical, Ind	C. Toll Free	Willow Pass Road, Pittsburg, CA Felephone: (877) 252-9262 / Fax: .mccampbell.com / E-mail: main@	(925) 252-9	269			
Quest GeoSyste			ID: G09212012-02;	Date Sampled:	12/28	/12			
11275 Suprise	Gold Cir., Ste. R	Byron Power	Power Company Date Received:			12/28/12			
11275 Sullise	Gold Cll., Ste. K	Client Contact	t: Eric Garcia	Date Extracted:	12/28/12				
Rancho Cordov	va, CA 95742	Client P.O.:		Date Analyzed:	01/03	/13-01/0	5/13		
Extraction method:	SW3510C		ctable Petroleum Hydrod l methods: SW8015B	carbons*	W	Work Order: 1212722			
Lab ID Client ID Matrix TPH-Diesel TPH-Motor Oil (C10-C23) (C18-C36)						% SS	Comments		
1212722-001A	MW.01	W	27,J	ND	1	96			
1212722-002A	MW.02	w	41,J	ND	1	98	b1		
1212722-003A	MW.03	W	120	ND	1	103	e2,b1		
1212722-005A	MW.04	W	56	ND	1	115	e2,b1		

Reporting Limit for $DF = 1$; ND means not detected at or	W	50	250	μg/L
above the reporting limit	S	NA	NA	mg/Kg

* water samples are reported in $\mu g/L$, filter samples samples in $\mu g/filter$, $\mu g/wipe$ in $\mu g/wipe$, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / SPLP / TCLP extracts are reported in $\mu g/L$.

cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

J) analyte detected below quantitation limits

b1) aqueous sample that contains greater than ~1 vol. % sediment

e2) diesel range compounds are significant; no recognizable pattern

DHS ELAP Certification 1644

Angela Rydelius, Lab Manager

QC SUMMARY REPORT FOR SW8021B/8015Bm

W.O. Sample Matrix: Water	QC Matrix:	Water			BatchID	BatchID: 73691			rder: 1212722
EPA Method: SW8021B/8015Bm Extraction: S	W5030B						Spiked Sam	ple ID:	1212713-005A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	Acc	eptance	Criteria (%)
	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS
TPH(btex) [£]	ND	60	103	96.8	5.75	115	70 - 130	20	70 - 130
MTBE	ND	10	84.6	82.3	2.82	77.9	70 - 130	20	70 - 130
Benzene	ND	10	94.1	94.5	0.431	110	70 - 130	20	70 - 130
Toluene	ND	10	94.3	94.8	0.541	111	70 - 130	20	70 - 130
Ethylbenzene	ND	10	93.5	94.4	0.966	111	70 - 130	20	70 - 130
Xylenes	ND	30	92.1	93.5	1.49	112	70 - 130	20	70 - 130
%SS:	99	10	97	104	7.08	105	70 - 130	20	70 - 130
All target compounds in the Method Blank of this extraction ba NONE	atch were ND	less than th	e method	RL with the	he following	g exceptio	ns:		

	BATCH 73691 SUMMARY											
Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed					
1212722-001A	12/28/12 1:25 PM	01/03/13	01/03/13 10:42 PM	1212722-002A	12/28/12 12:30 PM	01/03/13	01/03/13 3:52 AM					
1212722-003A	12/28/12 1:50 PM	01/03/13	01/03/13 11:11 PM	1212722-004A	12/28/12	01/03/13	01/03/13 9:13 PM					
1212722-005A	12/28/12 11:10 AM	01/03/13	01/03/13 5:20 AM									

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

 \pounds TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content, or inconsistency in sample containers.

K___QA/QC Officer

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Water	QC Matrix: Water BatchID: 7372				: 73724		WorkO	rder: 1212722	
EPA Method: SW8260B Extraction: S	W5030B					ç	Spiked Sam	ple ID:	1212716-003A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	Acc	eptance	Criteria (%)
	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS
tert-Amyl methyl ether (TAME)	ND	10	83.6	82.8	0.973	89.7	70 - 130	20	70 - 130
Benzene	ND	10	87.2	87.6	0.465	100	70 - 130	20	70 - 130
t-Butyl alcohol (TBA)	ND	40	82.8	78.2	5.74	83.1	70 - 130	20	70 - 130
Chlorobenzene	ND	10	91.1	90.3	0.871	95.4	70 - 130	20	70 - 130
1,2-Dibromoethane (EDB)	ND	10	95.4	89.4	6.51	92	70 - 130	20	70 - 130
1,2-Dichloroethane (1,2-DCA)	ND	10	82.6	83.7	1.24	89.6	70 - 130	20	70 - 130
1,1-Dichloroethene	ND	10	91.3	93.3	2.23	103	70 - 130	20	70 - 130
Diisopropyl ether (DIPE)	ND	10	83.8	83.9	0.0333	93	70 - 130	20	70 - 130
Ethyl tert-butyl ether (ETBE)	ND	10	85.7	85.5	0.228	92.8	70 - 130	20	70 - 130
Methyl-t-butyl ether (MTBE)	ND	10	87.7	87.1	0.762	91.7	70 - 130	20	70 - 130
Toluene	ND	10	85.5	86.7	1.38	90.6	70 - 130	20	70 - 130
Trichloroethene	ND	10	91.9	92.2	0.326	104	70 - 130	20	70 - 130
%SS1:	96	25	98	100	2.23	107	70 - 130	20	70 - 130
%SS2:	100	25	95	97	2.48	96	70 - 130	20	70 - 130
%SS3:	79	2.5	74	75	2.16	72	70 - 130	20	70 - 130
All target compounds in the Method Blank of this extraction ba NONE	tch were ND	less than th	e method	RL with t	he following	g exception	s:		

BATCH 73724 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1212722-001B	12/28/12 1:25 PM	01/04/13	01/04/13 3:58 AM	1212722-002B	12/28/12 12:30 PM	01/04/13	01/04/13 4:40 AM
1212722-003B	12/28/12 1:50 PM	01/04/13	01/04/13 6:16 PM	1212722-005B	12/28/12 11:10 AM	01/04/13	01/04/13 6:57 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

QC SUMMARY REPORT FOR SW8015B

W.O. Sample Matrix: Water QC M		C Matrix: Water Batchl				hID: 73609		WorkOrder: 1212722	
EPA Method: SW8015B	Extraction: SW3510C	SW3510C			Spiked Sample ID: N/A				
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	Acceptance Criteria (%)		
, and yes	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS
TPH-Diesel (C10-C23)	N/A	1000	N/A	N/A	N/A	108	N/A	N/A	70 - 130
%SS:	N/A	625	N/A	N/A	N/A	99	N/A	N/A	70 - 130
All target compounds in the Method Blan	k of this extraction batch were N	D less than the	ne method	RL with t	he following	g exception	IS:		

BATCH 73609 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1212722-001A	12/28/12 1:25 PM	12/28/12	01/03/13 5:15 PM	1212722-002A	12/28/12 12:30 PM	12/28/12	01/03/13 10:02 PM
1212722-003A	12/28/12 1:50 PM	12/28/12	01/03/13 2:29 PM	1212722-005A	12/28/12 11:10 AM	12/28/12	01/05/13 10:39 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

DHS ELAP Certification 1644

K__QA/QC Officer

OC SUMMARY REPORT FOR SW8270C

W.O. Sample Matrix: Water	QC Mainx.	QC Matrix: Water			BatchID: 73679			WorkOrder: 1212722	
EPA Method: SW8270C Extraction: SW3510C Spiked Sample ID: N/A									N/A
Analyte	Sample	Sample Spiked			MS-MSD	LCS	Acceptance Criteria (%)		
· · · · · · · · · · · · · · · · · · ·	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS
Acenaphthene	N/A	20	N/A	N/A	N/A	63.1	N/A	N/A	47 - 145
4-Chloro-3-methylphenol	N/A	20	N/A	N/A	N/A	58.5	N/A	N/A	22 - 147
2-Chlorophenol	N/A	20	N/A	N/A	N/A	60.6	N/A	N/A	23 - 134
1,4-Dichlorobenzene	N/A	20	N/A	N/A	N/A	62.8	N/A	N/A	20 - 124
2,4-Dinitrotoluene	N/A	20	N/A	N/A	N/A	54	N/A	N/A	39 - 139
4-Nitrophenol	N/A	100	N/A	N/A	N/A	12.8	N/A	N/A	0 - 132
N-Nitrosodi-n-propylamine	N/A	20	N/A	N/A	N/A	62.4	N/A	N/A	0 - 230
Pentachlorophenol	N/A	40	N/A	N/A	N/A	55.9	N/A	N/A	14 - 176
Phenol	N/A	20	N/A	N/A	N/A	22.1	N/A	N/A	5 - 112
Pyrene	N/A	20	N/A	N/A	N/A	65.1	N/A	N/A	52 - 115
1,2,4-Trichlorobenzene	N/A	20	N/A	N/A	N/A	64.8	N/A	N/A	44 - 142
%SS1:	N/A	20	N/A	N/A	N/A	45	N/A	N/A	1 - 134
%SS2:	N/A	20	N/A	N/A	N/A	28	N/A	N/A	1 - 112
%SS3:	N/A	20	N/A	N/A	N/A	74	N/A	N/A	1 - 180
%SS4:	N/A	20	N/A	N/A	N/A	74	N/A	N/A	1 - 130
%SS5:	N/A	20	N/A	N/A	N/A	71	N/A	N/A	1 - 144
%SS6:	N/A	20	N/A	N/A	N/A	67	N/A	N/A	1 - 130

BATCH 73679 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1212722-001C	12/28/12 1:25 PM	01/03/13	01/07/13 1:49 PM	1212722-002C	12/28/12 12:30 PM	01/03/13	01/07/13 7:30 PM
1212722-003C	12/28/12 1:50 PM	01/03/13	01/07/13 7:58 PM	1212722-005C	12/28/12 11:10 AM	01/03/13	01/07/13 1:21 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

DHS ELAP Certification 1644

A QA/QC Officer