

Waste Management of Alameda County, Inc. 172 98th Avenue, Oakland, CA 94603

February 9, 2012

RECEIVED

Alameda County Health Care Services Agency Environmental Health Services, Environmental Protection 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577

11:21 am, Feb 16, 2012

Alameda County Environmental Health

and the second s

Attn: Mr. Jerry Wickman, PG, CEG, CHG Senior Hazardous Materials Specialist

Transmittal: Additional Site Investigation Report Former Waste Management of Alameda County, Inc. Property 6175 Southfront Road, Livermore, California 94550 GeoTracker Global ID T10000003066 SLIC Case RO0003076

Dear Mr. Wickman:

I declare, under penalty of perjury, that the information and recommendations contained in the attached Additional Site Investigation report are true and correct to the best of my knowledge.

Sincerely, Waste Management of Alameda County, Inc.

Barry Skolnick Area Vice President WM-California Bay Area

Attachment

Additional Site Investigation Report Former Waste Management of Alameda County, Inc. Property 6175 Southfront Road Livermore, California 94550 GeoTracker Global ID T10000003066 SLIC Case RO0003076

February 15, 2012

Prepared for:

Alameda County Health Care Services Agency Environmental Health Services, Environmental Protection 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577

Prepared by:

Tetra Tech GEO 2969 Prospect Park Drive, Suite 100 Rancho Cordova, California 95670

Keith Hoofard Senior Geologist

NAL G Stephen M. Carlton, PG, CHG Principal Hydrogeologist 4 STEPHEN M. CARLTON

۵ No. 4730 ŋ ン T, \Diamond OF CALIFO

Tetra Tech GEO Project 117-2402099.01

TABLE OF CONTENTS (continued)

TABLE OF CONTENTS

<u>Section</u>	<u>on</u>	<u>Page</u>
1.0		1
2.0	ADDITIONAL SITE INVESTIGATION	2
2.1 2.2 2.3 2.4 2.5	Pre-Field Soil and Groundwater Testing for TPH – Wash Rack Area Groundwater Testing for VOCs and TPH – Former SV-6 Boring Area Soil Vapor Testing for VOCs – Former Boring SV-6 Area Investigation Derived Wastes	2 3 4 6
3.0	FINDINGS AND ANALYTICAL RESULTS	7
3.1 3.2	Field Investigation Summary Table	7 8
4.0	Summary and CONCLUSIONS	10
5.0	LIMITATIONS	12

TABLES

Table 1	Analytical Results Summary – Soil
Table 2	Analytical Results Summary – Groundwater
Table 3	Analytical Results Summary – Soil Vapor

FIGURE

Figure 1 Plot Plan, Previous Sample Locations, and Additional Sample Locations

APPENDICES

- Appendix A Photographic Log
- Appendix B Soil Boring Logs
- Appendix C Drilling Permit
- Appendix D Laboratory Analytical Data Sheets

1.0 INTRODUCTION

Tetra Tech GEO was retained by Waste Management of Alameda County, Inc. (WMAC) to perform an additional site investigation at the former WMAC property located at 6175 Southfront Road, Livermore, California (the Property). Work was performed in accordance with Tetra Tech GEO's September 7, 2011 *Work Plan for Additional Investigation, Former Waste Management of Alameda County, Inc. Property,* 6175 *Southfront Road, Livermore, California 94550, GeoTracker Global ID T10000003066, SLIC Case RO0003076* (Work Plan), as modified by the Alameda County Health Care Services Agency in their *Conditional Work Plan Approval* letter dated October 11, 2011. The modifications included collection and analysis of soil vapor samples from three additional locations in the vicinity of former sample SV-6, the collection and analysis of a groundwater sample near SV-6, and the analysis of soil samples from the two proposed wash rack groundwater borings.

The objectives of the additional site investigation work were as follows:

- Acquire additional data on the presence of total petroleum hydrocarbons (TPH) in groundwater near the wash rack, in addition to evaluating potential TPH in soil; and
- Acquire additional soil vapor data for volatile organic compounds (VOCs) in the vicinity of sample SV-6, in addition to evaluating groundwater for the presence of VOCs and TPH.

2.0 ADDITIONAL SITE INVESTIGATION

The work scope, field sampling procedures and quality assurance (QA) methods were performed consistent with the protocols described in the Work Plan and Conditional Approval letter. There were no significant deviations from the Work Plan, aside from changing to a helium-based leak detection protocol during the soil vapor sampling (described in Section 2.4), and laboratory filtering the groundwater sample from boring SB-2 (versus field filtering).

The field work was performed on January 5 and 9, 2012. Tetra Tech GEO staff members Garrett Kuhl (Staff Geologist) and Keith Hoofard (Senior Geologist) performed the soil boring and soil gas probe installation work on January 5, 2012. Tetra Tech GEO staff members Keith Hoofard and Keith McIntyre (Senior Scientist) performed the soil gas probe sampling and abandonment on January 9, 2012. Vannucci Technologies of Woodland, California provided drilling and soil/groundwater sampling services, utilizing a track-mounted GeoProbe rig.

A site plan identifying the soil boring and soil vapor sampling locations is presented as Figure 1. A photographic log is provided in Appendix A. Soil boring logs are presented in Appendix B.

The field activities performed are described below.

2.1 Pre-Field

Prior to mobilizing to the field, the proposed soil boring and soil vapor probe locations were marked in the field and the site painted for Underground Service Alert (USA) notification. USA was notified 48 hours prior to the start of field work as required by law.

A drilling permit (#2011136) was obtained from the Zone 7 Water Agency prior to drilling. A copy of the permit is included in Appendix C.

A Health & Safety Plan was prepared addressing potential hazards associated with the proposed sampling work. based on existing laboratory data from the prior site investigation.

2.2 Soil and Groundwater Testing for TPH – Wash Rack Area

Soil and groundwater samples were collected from borings SB-1 and SB-2 near the wash rack for TPH-diesel and TPH-motor oil analyses using EPA Method 8015M, preceded by silica gel treatment (SGT). SGT removes naturally occurring organic material (polar compounds) which can cause false positive results. The borings were continuously cored in 5-foot intervals to 35 feet in depth, where water then entered the borings. No free water was encountered in the soil cores collected to total depth, and only a thin layer of very moist to saturated fine sand was present at the bottom of SB-1.

New, temporary PVC well screen and casing was placed in each completed boring, and after waiting a short time, groundwater entered each boring. Depth to water was subsequently measured at 10.3 feet below grade in SB-1 and 22.1 feet below grade in SB-2. The groundwater sample from SB-1 was field filtered. An attempt was made to field filter the groundwater sample from SB-2, however, the filters immediately clogged with sediment. The groundwater sample from SB-2 was therefore filtered at the laboratory prior to analysis. No odor, sheen or discoloration was noted in connection with either groundwater sample.

No indication of soil odor or discoloration was observed in borings SB-1 and SB-2. The only positive field screening photo-ionizing detector (PID) reading was 0.1 parts per million by volume (ppmv) at 10-feet in depth at SB-1. Ambient air concentrations were between 0.0 and 0.2 ppmv. Therefore, the 5-foot soil sample (default depth) from each boring was submitted for laboratory analysis.

The borings were grouted to near surface with neat cement following sampling, and the surface patched with concrete.

2.3 Groundwater Testing for VOCs and TPH – Former SV-6 Boring Area

One groundwater sample was collected from boring SB-3 located near former soil vapor sample location SV-6 for VOC analysis using EPA Method 8260B and for TPH (gas, diesel and motor oil) analysis using EPA Method 8015M preceded by SGT (for the diesel fuel and motor oil ranges). The boring was continuously cored in 5-foot intervals to 35 feet in depth, where water then entered the boring. No free water was encountered in the soil cores collected to total depth.

No indication of soil odor or discoloration was observed in boring SB-3, and no positive PID field screening readings were observed. Soil samples were not submitted for laboratory analysis from boring SB-3.

New, temporary PVC well screen and casing was placed in the completed boring, and after waiting a short time, groundwater entered the boring. Depth to water was subsequently measured at 11 feet below grade in SB-3. The groundwater sample from SB-3 was field filtered. No odor, sheen or discoloration was noted in connection with the groundwater sample.

The boring was grouted to near surface with neat cement following sampling, and the surface patched with concrete.

2.4 Soil Vapor Testing for VOCs – Former Boring SV-6 Area

Five shallow soil vapor probes (SV-13 through SV-17) were installed in the vicinity of former soil vapor sample location SV-6 and sampled for VOCs using Method TO-15 Direct Inject. Probes SV-13, SV-14 and SV-16 were completed through asphalt. Probes SV-15 and SV-17 were completed through concrete. The GeoProbe rig was used to continuously core a 2-inch diameter boring to 5-feet in depth at each location for the construction of the soil vapor probes. The soil vapor probes were completed as described in the Work Plan – 0.5" diameter x 6" probe screens placed at the bottom of the borehole, fitted with an anchor tip and compression-fitted to continuous $\frac{1}{4}$ "-diameter stainless steel tubing to the surface; 1-foot of $\frac{42}{12}$ sand from 4 to 5 feet; 6-inches of dry granular bentonite placed atop the sand pack from 3.5 to 4 feet; with a medium-solids bentonite slurry seal to the surface. The medium-solids slurry self-seals around the probe tubing that extends to the surface, should there be any movement of the tubing. The probe tubing at the surface was compression-fitted with a brass ball valve and brass tubing barb at each probe location (Photo 4). Teflon tape was used on all threaded connections.

The five soil vapor probes were sampled on January 9, 2012, after waiting three days following construction. Prior to sampling, the ball valve connection to the probe tubing was checked for tightness at each probe, and additional bentonite gel was used to top-off the borehole at each location to ensure a tight surface seal.

The soil vapor purge/sample train setup, and initial vacuum leak test (shut-in test), were as described in the Work Plan. The second leak test, using a leak detection compound, was however modified by the use of helium instead of Freon. [Note: The use of helium

as a leak detection compound is a method accepted by the Department of Toxics Substances Control (DTSC) in their soil gas sampling guidance.] A 5-quart plastic bucket was inverted over the soil gas probe surface completion, creating a "helium shroud". The bucket was fitted with rubber grommets to allow the probe sample tubing to connect to the sampling train through the shroud, and to allow the introduction of helium to the shroud, and a port for monitoring helium concentrations inside the shroud with a helium detector.

The sample tubing and purge/sample train were plumbed together through the shroud at each probe location, with the shroud elevated above grade during the shut-in test (to allow operation of the probe ball valve without disconnecting tubing, Photo 6). Once the shut-in test was complete, the probe valve was opened, and the shroud lowered down to grade. Three purge volumes of air were evacuated from each probe location prior to sampling utilizing a 6-liter Summa canister with an initial vacuum of -30 inches of Mercury. A steady flow of helium was then introduced to the shroud, at which point collection of the air sample was initiated. Helium concentrations were monitored throughout the sampling time period to insure a blanket of helium remained over the probe during sampling.

Each probe location passed the shut-in test, sustaining an equalized vacuum across the flow regulator for at least 60 seconds (indicating there was no ambient air leaking into the sample train after the upstream side of the probe ball valve). Complete soil vapor samples were obtained from locations SV-15 and SV-16; however, only low volume samples could be obtained from probes SV-13, SV-14 and SV-17 due to restricted air flow in the formation. The sample probes were left under vacuum for upwards of 45 minutes to 1 hour at these low-flow locations, after the vacuum across the flow regulator had equalized (indicating flow had stopped). Observation of soil lithology indicated the presence of low-plasticity, stiff, silty clay at these locations; the same as that encountered at boring locations SB-1 through SB-3 (see Appendix B). The lithology at probe locations SV-15 and SV-16 was similar, but also contained a small percentage of fine sand at depth.

Throughout the soil vapor sampling period, pungent odors were periodically noted coming from the nearby vehicle repair bays, particularly at location SV-15 completed in front of the repair bays. Hydraulic hoses are cut and assembled on-site, resulting in a burned rubber odor, in addition to welding fumes, and wire soldering fumes. Welding related gases such as acetylene, argon and helium are expected to be present in the repair shops. While these fugitive emissions are not expected to interfere with the soil vapor samples in the absence of short circuiting to the atmosphere, the presence of

potential VOCs in ambient air are noted as a matter of practice while performing a soil vapor investigation.

After completing the soil vapor sampling, each 5-foot probe assembly was pulled from the ground using a Hi-Lift jack fitted with a tubing puller, allowing the semi-solid bentonite gel to settle into the resulting void space left by the tubing. With each probe assembly, the downhole compression fitting connection between the tubing and the screen pulled apart during removal, leaving the anchored screen encased in the filter pack. This demonstrated the compression-fitting connection at the surface, between the tubing and ball valve, was tight. The borings were topped off with cement and patched with high strength concrete, except SV-16, which was patched with asphalt.

2.5 Investigation Derived Wastes

Equipment wash-water was used to mix the neat cement grout for borehole abandonment at SB-1, SB-2 and SB-3. The small amount of excess soil core material was placed in the landscaped areas on-site.

3.0 FINDINGS AND ANALYTICAL RESULTS

Soil and groundwater samples were submitted to CLS Laboratories in Rancho Cordova, California for analysis. The soil vapor samples were submitted to Air Toxics, LTD of Folsom, California for analysis. CLS and Air Toxics are both State-certified/accredited laboratories for the selected analyses. Laboratory analytical results are summarized in Table 1 (soil), Table 2 (groundwater) and Table 3 (soil vapor). Copies of the laboratory analytical data sheets and chain of custody forms are provided in Appendix D.

No indication of soil or groundwater impacts were observed in the three soil borings (SB-1, SB-2 and SB-3), and no indications of soil impacts were observed at soil gas probe locations SV-13 through SV-17. Strong odors were however noted coming from the nearby vehicle repair bays throughout the day during the soil vapor sampling, most notably during sampling at SV-15.

No free groundwater was observed during the drilling of boring SB-1, SB-2 and SB-3, but water did eventually enter each boring after a waiting period, rising to 10.3-feet, 22.1-feet and 11-feet below grade, respectively.

Boring	Total Depth	Soil Sample Depth	Field PID Reading	Soil Sample	Groundwater Sample	
	(feet)	(1001, 1993)	(ppmv)	Analyzed	Analyzed	
		5	0.0			
		10	0.1			
		15	0.0			
SB-1	35	20	0.0	5-foot	YES	
		25	0.0			
		30	0.0			
		35	0.0			
		5	0.0			
	35	10	0.0			
		15	0.0			
SB-2		20	0.0	5-foot	YES	
		25	0.0			
		30	0.0			
		35	0.0			
		5	0.0			
		10	0.0			
		15	0.0			
SB-3	35	20	0.0	NO	YES	
		25	0.0			
		30	0.0			
		35	0.0			

3.1 Field Investigation Summary Table

3.2 Results and Discussion

Soil, groundwater and soil vapor results are compared to commercial land use criteria presented in the May 2008 Environmental Screening Level (ESL) document prepared by the California Regional Water Quality Control Board – San Francisco Bay Region. Groundwater data were also compared to the State Water Resources Control Board Primary Maximum Contaminant Levels (MCLs – drinking water standards).

Table 1 presents the TPH soil sample results, Table 2 presents the TPH and VOC groundwater sample results, and Table 3 presents the soil vapor sample results.

Soil and Groundwater

TPH-diesel and TPH-motor oil were not found in soil or groundwater samples from SB-1 and SB-2, except for a trace detection of motor oil range petroleum hydrocarbons at a concentration of 9.1 milligrams per kilogram (mg/Kg) in soil at SB-1. The TPH motor oil detection is well below the commercial ESL value of 370 mg/Kg for motor oil range petroleum hydrocarbons in soil.

VOCs and TPH were not found in groundwater at boring SB-3, except for a trace detection of toluene at a concentration of 1.1 micrograms per liter (μ g/L). The toluene detection is well below the commercial ESL values of 530,000 μ g/L (vapor intrusion) and 41 μ g/L (groundwater protection) for toluene in water, and well below the 150 μ g/L drinking water standard.

<u>Soil Vapor</u>

As shown in Table 3, a variety of petroleum and chlorinated VOC compounds were detected in each of the soil vapor samples. Of the compounds detected, only vinyl chloride exceeded its respective commercial ESL value (100 μ g/m3 for vinyl chloride), with detections of 730 μ g/m3 (SV-13) and 17,000 μ g/m3 (SV-14). Both of these samples are in the vicinity of former sample SV-6, where vinyl chloride was previously reported in soil vapor at a concentration of 370 μ g/m3.

Most of the other compounds detected in soil vapor samples were petroleum related, including benzene, toluene, ethyl benzene, and xylenes (BTEX), trimethylbenzene, and methyl tert-butyl ether (MTBE). Chlorinated compounds were detected, including trichloroethene (TCE, one detection at 12 μ g/m3), tetrachloroethene (PCE, three detections with a maximum concentration of 400 μ g/m3)), cis-1,2-dichloroethene (cis-

1,2-DCE, two detections with a maximum concentration of 1,400 μ g/m3), and trans-1,2-dichloroethene (trans-1,2-DCE, two detections with a maximum concentration of 130 μ g/m3).

Helium, used as the leak detection compound, was detected at 20% in sample SV-15. Helium was not detected in the other four soil vapor samples. Each of the sample manifolds passed the vacuum shut-in test, indicating there were no topside leaks in the sampling train, all the way to the upstream side of the probe ball valve. Ambient air leakage is unlikely with the use of medium-solids bentonite gel. Although the compression fittings on the downstream side of the ball valve fit-tested tight, this fitting is the most likely source for a leak to have occurred at SV-15.

The types of compounds detected in soil vapor are generally consistent with those previously detected at SV-6, although several additional compounds were detected. Comparing sample results from SV-14 to those at previous sample SV-6 shows that concentrations of petroleum compounds benzene, toluene, ethyl benzene, m,p-xylenes and o-xylene in soil vapor are generally comparable. Two significant increases in concentrations at SV-14 as compared to SV-6 were observed for vinyl chloride (17,000 μ g/m3 vs. 370 μ g/m3) and cis-1,2-DCE (1,400 μ g/m3 vs. 210 μ g/m3).

The soil vapor sample from previous sample SV-6 was collected using post-run tubing sample collection methods and analyzed by a mobile lab.

To confirm if the elevated vinyl chloride concentrations detected at SV-13 and SV-14 were valid, and the results not affected by the low sample volumes, Tetra Tech GEO requested Air Toxics to review the sample chromatograms, and the laboratory QA/QC and sample canister preparation data. According to Air Toxics, the data are valid and no discrepancies in equipment preparation were noted.

The presence of an elevated vinyl chloride concentration in soil vapor at SV-14 is somewhat unusual in the absence of elevated concentrations of parent products such as cis-1,2-DCE, TCE or PCE in soil vapor, and in the absence of groundwater impact by VOCs. This suggests a possible vinyl chloride source, but vinyl chloride is not commonly found in solution as part of a solvent mix or other compound. Tetra Tech GEO reviewed a 2009-2010 chemical use inventory statement that was attached to a July 9, 2010 Site Closure Plan submitted to the City of Livermore. Vinyl chloride was not identified in the inventory. Chemical use inventories for prior years were not available for review.

4.0 SUMMARY AND CONCLUSIONS

- Soil and groundwater impacts by TPH were not identified up-gradient or downgradient of previous sample location SS-4/GW-4 in the wash rack area. Only a trace detection of TPH motor oil (9.1 mg/Kg) was found in soil at SB-1. The motor oil detection is well below the commercial ESL value of 370 mg/Kg for motor oil in soil. No additional work appears necessary in the wash rack area.
- 2) TPH and VOC impacts to groundwater were not identified in the vicinity of previous sample SV-6. Only a trace detection of toluene (1.1 μg/L) was found in the groundwater sample from SB-3, well below the commercial ESL values of 530,000 μg/L (vapor intrusion) and 41 μg/L (groundwater protection), and well below the 150 μg/L drinking water standard. No additional groundwater investigation work appears necessary in the SB-3 area.
- Vinyl chloride concentrations in soil vapor exceeding the 100 μg/m3 vapor intrusion ESL value were detected at SV-13 (730 μg/m3) and SV-14 (17,000 μg/m3).
- 4) Soil vapor samples from SV-15 and SV-16 were collected with sufficient sample flow and full samples were collected. Sample SV-15 was located directly down-gradient (with respect to groundwater flow) from, and closest to, the maintenance building. Sample SV-15 contained the fewest compounds, with no vinyl chloride detected, but also contained helium, indicating some breakthrough occurred and ambient air entered the sample container. SV-16 was located up-gradient of SV-13 and SV-14, and did not contain vinyl chloride above the reporting limit.
- 5) Only low volume samples could be obtained from probes SV-13, SV-14 and SV-17 due to restricted air flow in the formation, and these three samples contained the highest concentrations of compounds. While the low sample volumes may not directly correlate to higher sample results (they correlate to higher laboratory reporting limits), the association of low volume samples and higher VOC concentrations is noted.
- 6) The presence of vinyl chloride in soil vapor near SB-3 has not impacted groundwater in the SB-3 area, suggesting a possible minor surface release in the area.
- 7) The elevated vinyl chloride concentration in soil vapor at SV-14 is somewhat unusual in the absence of elevated concentrations of parent products such as

cis-1,2-DCE, TCE or PCE in soil vapor, and in the absence of groundwater impact by VOCs.

8) Additional soil vapor sampling would be needed to better assess vinyl chloride concentrations in soil vapor in the SV-14 area.

5.0 LIMITATIONS

The Property investigations performed as part of this assessment should not be construed to be complete characterizations of overall environmental regulatory compliance, or of conditions above or below grade. Tetra Tech GEO has assumed that the information sources utilized for this investigation provided complete and accurate information. Any reliance by WMAC shall be consistent and in keeping with the limitations expressed in the September 7, 2011 Tetra Tech GEO Work Plan and December 2, 2011 proposal, and subject to project work scope limitations.

The work performed is consistent with the standards of care and skill ordinarily exercised by members of the profession currently practicing in the same locality under similar conditions. No other representation, expressed or implied, and no warranty or guarantee is included or intended in this report.

TABLES

TABLE 1

Analytical Results Summary - Soil 6175 Southfront Avenue Livermore, California

			EPA 8 w/SGT	3015M (mg/kg)			
Boring	Depth below grade (feet)	Date	TPH Diesel	TPH Motor Oil			
SB-1-5'	5	1/5/2012	< 1.0	9.1			
SB-2-5'	5	1/5/2012	< 1.0	< 1.0			
	ESL		83	370			
Notes:							
mg/Kg	milligrams per kilogram or	parts per million (ppm	ı).				
TPH	Total petroleum hydrocarl	oons.					
SGT	Silica gel treatment to ren	nove naturally occuring	organic material (pola	ar compounds).			
ESL	Regional Water Quality Control Board - San Francisco Bay Region, Environmental Screening Levels (ESLs), Table A2 - Shallow Soil Screening Levels (<3m), Commercial/Industrial Land Use, May 2008.						
	No reported value.						
Shaded Value	Detected concentration.						
Bold Value	Exceeds the ESL value.						

TABLE 2

Analytical Results Summary - Groundwater 6175 Southfront Avenue Livermore, California

		GC FID (mg/L)	EPA w/SGT	8015M 「(mg/L)	VOCs EPA 8260B (μg/L)					
Boring	Date	TPH Gasoline	TPH Diesel	TPH Motor Oil	Toluene	Vinyl Chloride	Other VOCs			
SB-1-W (1)	1/5/2012	NA	< 0.050	< 0.050	NA	NA	NA			
SB-2-W (2)	1/5/2012	NA	< 0.050	< 0.050	NA	NA	NA			
SB-3-W (1,3)	1/5/2012	< 0.050	< 0.050	< 0.050	1.1	< 0.5	ND			
ESL	(E-1)				530,000	13				
ESL	(F-1a)	0.1	0.1	0.1	40	0.5				
N	CL				150	0.5				
Notes: (1) (2) (3) mg/L µg/L TPH SGT VOCs	 Initial control of the sample extracted beyond prescribed hold time; however, data are consistent with VOC results are considered representative. (2) Laboratory filtered prior to analysis. Elevated sediment precluded efficient field filtering. (3) TPH portion of the sample extracted beyond prescribed hold time; however, data are consistent with VOC results are considered representative. (3) milligrams per liter or parts per million (ppm). (4) micrograms per liter or parts per billion (ppb). (5) TPH portion of the remove naturally occuring organic material (polar compounds). (6) Volatile organic compounds. (7) Not Analyzed. (8) Not Detected. See laboratory analytical data sheets for compound-specific reporting limits. (6) California Regional Water Quality Control Board - San Francisco Bay Region, Environmental Screening Levels (ESLs), Table E-1, Groundwater Screening Levels (groundwater is a current or potential drinking water source), May 2008. 									

TABLE 3

Analytical Results Summary - Soil Vapor 6175 Southfront Avenue Livermore, California

			ASTM-1946D	VOCs by TO	-15 (μg/m3)
Sample ID	Date	Depth (ft, bgs)	Helium (%)	Vinyl Chloride	Other VOCs
SV-13 (1)	1/9/2012	4.5 - 5	ND	730	+ 27 others
SV-14 (1)	1/9/2012	4.5 - 5	ND	17,000	+ 17 others
SV-15	1/9/2012	4.5 - 5	20	< 2.6	+ 15 others
SV-16	1/9/2012	4.5 - 5	ND	< 2.9	+ 20 others
SV-17 (1)	1/9/2012	4.5 - 5	ND	< 9.2	+ 19 others
ES	L			100	< ESL (varies)

Notes:

All samples passed shut-in leak detection test.

ft, bgs Feet below ground surface.

(1) Low volume sample due to restricted air flow in the formation at this location.

µg/m3 micrograms per cubic meter.

ND Not Detected. See laboratory analytical data sheets for compound-specific reporting limitis

ESL California Regional Water Quality Control Board - San Francisco Bay Region, Environmental Screening Levels (ESLs), Table E-2, Shallow Soil Gas Screening Levels for Evaluation of Potential Vapor Intrusion Concerns, Commericial/Industrial exposure, May 2008.

Shaded Value Detected concentration.

Bold Value Exceeds the ESL value.

FIGURE

SOURCE: maps.google.com, 2011.

Legend:

- SCS Limited Phase II Sampling Location (soil vapor, soil and/or groundwater sample), July 27-28, 2010.
- --- > Sanitary Sewer Line (with direction of flow).
- **MW-1** Sormer groundwater monitoring well location (approximate).
- Soil and groundwater sample location for TPH-diesel and TPH-motor oil. SB-3 is groundwater only for VOCs (1/5/12).
- SV-13 🔵
- Soil vapor sample location for VOCs, including vinyl chloride. (1/9/12).

L

TITLE: Plot Plan, Previous Sample Locations and Additional Sample Locations						
LOCATION: 6175 Southfront Road Livermore, California						
	CHECKED:	тс	FIGURE:			
TETRA TECH GEO	DRAFTED:	кн	1			
	FILE:	117-2402099.01	<u> </u>			
)	DATE:	01-19-12				

APPENDIX A

Photographic Log

PHOTO 1: Overview of SB-1 after water sample collection and prior to grouting.

PHOTO 2: Checking for water in boring SB-2.

PHOTOGRAPHIC LOG

Former Waste Management Facility 6175 Southfront Road Livermore, California

PHOTO 3: Drilling at SB-3.

PHOTO 4: Typical soil gas probe surface completion.

PHOTOGRAPHIC LOG

Former Waste Management Facility 6175 Southfront Road Livermore, California

PHOTO 5: Grouting SB-3 after sampling.

PHOTO 6: Setting up for soil gas sampling at SV-13. Blue bucket is helium shroud. Helium is in cylinder to the left equipped with regulator.

PHOTOGRAPHIC LOG

Former Waste Management Facility 6175 Southfront Road Livermore, California

PHOTO 7: Setting up for soil gas sampling at SV-13. Large Summa canister is purge can; small Summa is sample can.

PHOTO 8: Typical surface patch after abandonment (concrete dyed black).

PHOTOGRAPHIC LOG

Former Waste Management Facility 6175 Southfront Road Livermore, California

APPENDIX B

Soil Boring Logs

Image: Stand of the stand	PROJEC PROJEC LOCATI DRILLIN SAMPLI DEPTH LOGGE	PROJECT NUMBER 117-2402099.01 PROJECT NAME WM-Livermore LOCATION 6175 Southfront Road, Livermore, CA DRILLING METHOD Direct Push SAMPLING METHOD Dual-Tube Continous Core DEPTH TO SATURATED SOIL (ft) LOGGED BY							BORING/WELL NUMBER DATE DRILLING BEGAN DATE DRILLING ENDED NORTHING EASTING GROUND SURFACE ELEV REMARKSNo free-w	SB-1 1/5/2012 1/5/2012 ATION (ft, MSL) rater encountered in soil cores during drilling.
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	PID (ppm)	BLOW COUNTS		SAMPLE IU.	DEPTH (ft. BGL)	U.S.C.S.	GRAPHIC LOG		LITHOLOGIC DE (Percent Gravel, S	ESCRIPTION and, Silt, Clay)
$\begin{array}{c c c c c c c } 0.0 \\ 0.0 $	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		SB-	1-5'		CL		0 - 0.2' ASPHALT. 0.2' - 0.5' ROAD BAS 0.5' - 35' SILTY CLAY moist. @ 11' - color change @ 17' - firm; slightly r @ 27' - 28' - soft; mo @ 33.5 - 34.5' - very Water level rose to 10	E FILL. ((CL): very dark gray (7.5Y) to brownish yellow (10YR 6 moist. ist; some fine sand. moist to saturated fine sand 0.3' below grade after reach	R 3/1); firm; slight to low plasticity; slighly /4); soft; moist.

	E TE	TF	RATE	Cŀ	I GEC	C						BORING LOG
PROJ	ECT NUN	IBE	R 1	17-2	240209	9.01			BORING/WELL N	UMBER	SB-2	
PROJ	PROJECT NAME WM-Livermore								DATE DRILLING	BEGAN _	1/5/2012	
LOCA	TION	6	175 Sou	thfr	ont Roa	ad, Live	ermore	, CA	DATE DRILLING	ENDED	1/5/2012	
DRILL	ING MET	ΉО	D D	irec	t Push				NORTHING			
SAMP	LING ME	TH	OD _	Du	al-Tube	e Conti	nous C	Core	EASTING			
DEPT	H TO SA	TUF	RATED S	OIL	. (ft)				GROUND SURFA	CE ELEVA	ATION (ft, MSL)	
LOGG	ED BY		K. Hoota	Ird					REMARKS!	No free-wa	ter encountered	in soil cores during drilling.
	(0)	(Ħ)		H			0					
PID (ppm	BLOW	RECOVERY (SAMPLE I	SAMPLE DEP	DEPTH (ft. BGL)	U.S.C.S.	GRAPHIC LOG		LITHOL (Percent (.OGIC DES Gravel, Sa	SCRIPTION Ind, Silt, Clay)	
								0 - 0.3' CONCRETE	•			/T
								0.3' - 0.5' ROAD BA	SE.	(7) (-		
								0.5' - 8.5' SILTY CL/ moist.	AY (CL): very dark g	ray (7.5YF	3/1); firm; slight	to low plasticity; slighly
0.0			SB-2-5	┝	- 5 -							
			0020									
							<i>\////</i>	8 5' - 13' SAND (SP)). Dark vellowish bro	own (10YB	(4/4) fine to med	fium, subangular, sand:
					L_10-			loose; very moist.	. Dank yone men bre			lani, cabaligalai, calla,
0.0						SP						
								13' - 35' SILTY CLA'	Y (CL): Yellowish br	own (10YF	R 5/6); stiff; slight	plasticity; slightly moist.
0.0				Γ	_ 13_							
0.0				\vdash	-20-							
					E I							
					╞ -	CL						
				⊢	-25-	-		@ 25' - Yellowish hr	own (10YB 5/4), mc	hist: minor	fine sand	
0.0						1					into ound.	
12/9/					F -	1						
01.GI				L	L_30-							
20.0						-						
LAE						-						
GPJ					-	ł	\////					
-Hereiter - Hereiter -		110					<i>\////</i>					
0.0					35			Water level rose to 2	22.1' below grade af	iter reachir	ng total depth.	
II GEO												

Γ

PROJECT NUMBER11 PROJECT NAMEWM LOCATION6175 Sout DRILLING METHODDi SAMPLING METHOD DEPTH TO SATURATED So LOGGED BYK. Hoofa	CH GEO 17-2402099.01 I-Livermore thfront Road, Livermore irect Push Dual-Tube Continous C OIL (ft) rd	BORING/WELL NUMBER SB-3 DATE DRILLING BEGAN 1/5/2012 CA DATE DRILLING ENDED 1/5/2012 NORTHING
PID (ppm) BLOW COUNTS RECOVENY (ft) SAMPLE ID.	SAMPLE DEPTH DEPTH (ft. BGL) U.S.C.S. GRAPHIC LOG	LITHOLOGIC DESCRIPTION (Percent Gravel, Sand, Silt, Clay)
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	CL 	 0 - 0.2' ASPHALT. 0.5' - 7.5' FIOAD BASE FILL. 0.5' - 7.5' SILTY CLAY (CL): Yellowish brown (10YR 5/4); stiff; slight plasticity; slightly moist. 7.5' - 11' CLAYEY SANDY GRAVEL (GC): Dark greenish gray (4/10Y); loose; fine, subangular gravel; fine to coarse, subangular, sand; moist. 11' - 19' SILTY CLAY (CL): Brown (10YR 5/3); stiff; low plasticity; moist. 19' - 21' SAND (SP): Brown (10YR 5/3); loose; fine sand; minor silt; moist to very moist. 21' - 35' SILTY CLAY (CL): Yellowish brown (10YR 5/4); soft; low plasticity; moist. (a) 27'-29' - 2" to 3" thick silt stringers. (a) 29' - return to firm to stiff silty clay.

Γ

1

APPENDIX C

Drilling Permit

ZONE 7 WATER AGENCY

100 NORTH CANYONS PARKWAY, LIVERMORE, CALIFORNIA 94551 VOICE (925) 454-5000 FAX (925) 245-9306 E-MAIL <u>whong@zone7water.com</u>

DRILLING PERMIT APPLICATION

FOR OFFICE USE FOR APPLICANT TO COMPLETE SOUTH FRONT RD. 6175 LOCATION OF PROJECT PERMIT NUMBER 2011136 LIVERMORE WELL NUMBER 099B-5875-017-06 APN Coordinates Source GOOGLE MAPS ft. Accuracy 125 fft PERMIT CONDITIONS LAT: 37, 7089/9 ft. LONG: ~ 121.721 398 ft. (Circled Permit Requirements Apply) 5875 APN 0998--017-06 GENERAL Α. CLIENT A permit application should be submitted so as to arrive at the 1. Name WASTE MANAGEMENT Zone 7 office five days prior to your proposed starting date. Address 10840 ALTAMONT PAS @Phone (925) 455-7300 Submit to Zone 7 within 60 days after completion of permitted 2. City LIVER MORE 0465 Zio work the original Department of Water Resources Water Well Drillers Report (DWR Form 188), signed by the driller. APPLICANT Permit is void if project not begun within 90 days of approval 3. KEITH HOFARD Name TETRA TECH date. Email Keith, hoofardete tratech comFax 916-893-1860 Notify Zone 7 at least 24 hours before the start of work. 4. Address 2969 Prospect ARE 02. 4100 Phone 910-853-1800 City RANGHO COLDONA, CA Zip 95670 В. WATER SUPPLY WELLS Minimum surface seal diameter is four inches greater than the 1. TYPE OF PROJECT: well casing diameter. Geotechnical Investigation Well Construction Minimum seal depth is 50 feet for municipal and industrial wells 2. Contamination Investigation $\overline{\mathbf{X}}$ Well Destruction or 20 feet for domestic and irrigation wells unless a lesser depth **Cathodic Protection** Other is specially approved. Grout placed by tremie. 3. An access port at least 0.5 inches in diameter is required PROPOSED WELL USE: 4. Irrigation Domestic on the wellhead for water level measurements. Remediation Municipal 5. A sample port is required on the discharge pipe near the Groundwater Monitoring Industrial wellhead. Other NAPOR MONITORING Dewatering POINT (VMP)-TEN ALAPH GROUNDWATER MONITORING WELLS INCLUDING C. (S days) DRILLING METHOD: PIEZOMETERS Air Rotary Hollow Stern Auger Mud Rotary Minimum surface seal diameter is four inches greater than 1. Direct Push 📈 Other Cable Tool the well or plezometer casing diameter. Minimum seal depth for monitoring wells is the maximum DRILLING COMPANY _ VANNUCCI TECH NOLOGIES 2. depth practicable or 20 feet. PO 60× 79/ NOODLAND, CA 95776 DRILLER'S LICENSE NO. C57 614760 3. Grout placed by tremie. DRILLER'S LICENSE NO. WELL SPECIFICATIONS: NMP-51-13 THRO-5V-17 GEOTECHNICAL. Backfill bore hole with compacted cuttings or D. heavy bentonite and upper two feet with compacted material. In <u> i</u>n. Maximum Drill Hole Diameter_ areas of known or suspected contamination, tremied cement 0.25 in. Depth 5.5 Casing Diameter ft. grout shall be used in place of compacted cuttings. Surface Seal Depth 4 ft. Number 5 SOIL BORINGS: 58-1, 58-2, 58-3 CATHODIC. Fill hole above anode zone with concrete placed by Ε. Number of Borings Maximum tremie. 20 Depth _ Hole Diameter ft. WELL DESTRUCTION. See attached. F. JAN 5,2012 ESTIMATED STARTING DATE - (DRILL 9, ESTIMATED COMPLETION DATE NAT 2012 SPECIAL CONDITIONS. Submit to Zone 7 within 60 days after G. (ABANDON VMPS) completion of permitted work the well installation report including all soll and water laboratory analysis results. I hereby agree to comply with all requirements of this permit and Alameda County Ordinance No. 73-68. Date 12/21/11 Approved APPLICANT'S Date 12-19-11 Wyman Hong SIGNATURE

ATTACH SITE PLAN OR SKETCH

(916)709-4732

APPENDIX D

Laboratory Analytical Data Sheets and Chain of Custody Forms

1/23/2012 Mr. Keith Hoofard Tetra Tech - GEO 2969 Prospect Park Suite 100 Rancho Cordova CA 95670

Project Name: WM-LIVERMORE Project #: Workorder #: 1201135A

Dear Mr. Keith Hoofard

The following report includes the data for the above referenced project for sample(s) received on 1/10/2012 at Air Toxics Ltd.

The data and associated QC analyzed by Modified TO-15 are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Air Toxics Ltd. for your air analysis needs. Air Toxics Ltd. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Kelly Buettner at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Killy Butte

Kelly Buettner Project Manager

WORK ORDER #: 1201135A

Work Order Summary

CLIENT:	Mr. Keith Hoofard Tetra Tech - GEO 2969 Prospect Park Suite 100 Rancho Cordova, CA 95670	BILL TO:	Mr. Keith Hoofard Tetra Tech - GEO 2969 Prospect Park Suite 100 Rancho Cordova, CA 95670
PHONE:	916-853-1800	P.O. #	117-2402099.01
FAX: DATE RECEIVED: DATE COMPLETED:	916-853-1860 01/10/2012 01/23/2012	PROJECT # CONTACT:	WM-LIVERMORE Kelly Buettner

			RECEIPT	FINAL
FRACTION #	NAME	<u>TEST</u>	VAC./PRES.	PRESSURE
01A	SV-13	Modified TO-15	17.5 "Hg	5 psi
02A	SV-14	Modified TO-15	24.5 "Hg	5 psi
03A	SV-15	Modified TO-15	2.5 "Hg	5 psi
04A	SV-16	Modified TO-15	4.0 "Hg	5 psi
05A	SV-17	Modified TO-15	23.0 "Hg	5 psi
06A	Lab Blank	Modified TO-15	NA	NA
06B	Lab Blank	Modified TO-15	NA	NA
07A	CCV	Modified TO-15	NA	NA
07B	CCV	Modified TO-15	NA	NA
08A	LCS	Modified TO-15	NA	NA
08AA	LCSD	Modified TO-15	NA	NA
08B	LCS	Modified TO-15	NA	NA
08BB	LCSD	Modified TO-15	NA	NA

CERTIFIED BY:

Sinda d. Fruman

01/23/12 DATE:

Laboratory Director

Certfication numbers: AZ Licensure AZ0719, CA NELAP - 02110CA, LA NELAP - 02089, NY NELAP - 11291, TX NELAP - T104704434-11-3, UT NELAP -CA009332011-1, WA NELAP - C935 Name of Accrediting Agency: NELAP/Florida Department of Health, Scope of Application: Clean Air Act, Accreditation number: E87680, Effective date: 07/01/11, Expiration date: 06/30/12. Air Toxics Ltd. certifies that the test results contained in this report meet all requirements of the NELAC standards This report shall not be reproduced, except in full, without the written approval of Air Toxics Ltd.

> 180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 95630 (916) 985-1000. (800) 985-5955. FAX (916) 985-1020

LABORATORY NARRATIVE EPA Method TO-15 Tetra Tech - GEO Workorder# 1201135A

Five 1 Liter Summa Canister samples were received on January 10, 2012. The laboratory performed analysis via EPA Method TO-15 using GC/MS in the full scan mode.

This workorder was independently validated prior to submittal using 'USEPA National Functional Guidelines' as generally applied to the analysis of volatile organic compounds in air. A rules-based, logic driven, independent validation engine was employed to assess completeness, evaluate pass/fail of relevant project quality control requirements and verification of all quantified amounts.

Receiving Notes

Samples SV-13, SV-14 and SV-17 were received with significant vacuum remaining in the canister. The residual canister vacuum resulted in elevated reporting limits.

Analytical Notes

All Quality Control Limit exceedances and affected sample results are noted by flags. Each flag is defined at the bottom of this Case Narrative and on each Sample Result Summary page. Target compound non-detects in the samples that are associated with high bias in QC analyses have not been flagged.

Dilution was performed on sample SV-14 due to the presence of high level target species.

The reported result for 4-Ethyltoluene in samples SV-13, SV-14, SV-15, SV-16 and SV-17 may be biased high due to co-elution with a non target compound with similar characteristic ions. Both the primary and secondary ion for 4-Ethyltoluene exhibited potential interference.

Definition of Data Qualifying Flags

Eight qualifiers may have been used on the data analysis sheets and indicates as follows:

B - Compound present in laboratory blank greater than reporting limit (background subtraction not performed).

- J Estimated value.
- E Exceeds instrument calibration range.
- S Saturated peak.
- Q Exceeds quality control limits.
- U Compound analyzed for but not detected above the reporting limit.
- UJ- Non-detected compound associated with low bias in the CCV and/or LCS.
- N The identification is based on presumptive evidence.

File extensions may have been used on the data analysis sheets and indicates as follows:

a-File was requantified

- b-File was quantified by a second column and detector r1-File was requantified for the purpose of reissue

Client Sample ID: SV-13

Lab ID#: 1201135A-01A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	1.6	280	4.1	730
Bromomethane	1.6	4.6 J	6.2	18 J
Ethanol	6.4	9.2	12	17
Acetone	6.4	120	15	290
Carbon Disulfide	6.4	59	20	180
Methylene Chloride	1.6	2.3	5.6	7.9
Methyl tert-butyl ether	1.6	35	5.8	130
trans-1,2-Dichloroethene	1.6	2.3	6.4	9.2
Hexane	1.6	99	5.7	350
2-Butanone (Methyl Ethyl Ketone)	6.4	14	19	41
cis-1,2-Dichloroethene	1.6	69	6.4	270
Chloroform	1.6	7.7	7.9	38
Cyclohexane	1.6	15	5.5	52
2,2,4-Trimethylpentane	1.6	40	7.5	190
Benzene	1.6	76	5.1	240
1,2-Dichloroethane	1.6	6.7	6.5	27
Heptane	1.6	20	6.6	82
Trichloroethene	1.6	2.2	8.6	12
Toluene	1.6	38	6.1	140
Tetrachloroethene	1.6	6.0	11	41
Ethyl Benzene	1.6	22	7.0	94
m,p-Xylene	1.6	120	7.0	500
o-Xylene	1.6	41	7.0	180
Cumene	1.6	58	7.9	280
Propylbenzene	1.6	11	7.9	55
4-Ethyltoluene	1.6	68	7.9	330
1,3,5-Trimethylbenzene	1.6	38	7.9	190
1,2,4-Trimethylbenzene	1.6	78	7.9	380

Client Sample ID: SV-14

Lab ID#: 1201135A-02A

Client Sample ID: SV-14

Lab ID#: 1201135A-02A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	20	6500	51	17000
Acetone	80	94	190	220
Methyl tert-butyl ether	20	54	72	200
trans-1,2-Dichloroethene	20	34	79	130
Hexane	20	23	70	83
cis-1,2-Dichloroethene	20	370	79	1400
2,2,4-Trimethylpentane	20	36	93	170
Benzene	20	75	64	240
Toluene	20	44	75	170
Tetrachloroethene	20	59	130	400
Ethyl Benzene	20	37	86	160
m,p-Xylene	20	220	86	940
o-Xylene	20	70	86	300
Cumene	20	38	98	190
Propylbenzene	20	21	98	100
4-Ethyltoluene	20	150	98	730
1,3,5-Trimethylbenzene	20	91	98	450
1,2,4-Trimethylbenzene	20	180	98	860

Client Sample ID: SV-15

Lab ID#: 1201135A-03A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Acetone	4.1	13	9.8	32
Carbon Disulfide	4.1	7.3	13	23
Hexane	1.0	1.6	3.6	5.5
2,2,4-Trimethylpentane	1.0	1.3	4.8	5.9
Benzene	1.0	1.9	3.3	6.0
Heptane	1.0	2.9	4.2	12
Toluene	1.0	4.3	3.9	16
Ethyl Benzene	1.0	2.1	4.5	9.0

Client Sample ID: SV-15

Lab ID#: 1201135A-03A				
m,p-Xylene	1.0	11	4.5	48
o-Xylene	1.0	3.7	4.5	16
Cumene	1.0	6.4	5.1	32
Propylbenzene	1.0	1.3	5.1	6.2
4-Ethyltoluene	1.0	9.0	5.1	44
1,3,5-Trimethylbenzene	1.0	6.5	5.1	32
1,2,4-Trimethylbenzene	1.0	12	5.1	60

Client Sample ID: SV-16

Lab ID#: 1201135A-04A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Bromomethane	1.1	11 J	4.4	42 J
Acetone	4.5	38	11	91
Methylene Chloride	1.1	2.3	3.9	8.0
Hexane	1.1	5.2	4.0	18
2-Butanone (Methyl Ethyl Ketone)	4.5	6.8	13	20
Chloroform	1.1	2.9	5.5	14
Cyclohexane	1.1	2.0	3.9	6.9
2,2,4-Trimethylpentane	1.1	1.8	5.3	8.6
Benzene	1.1	14	3.6	43
Heptane	1.1	2.8	4.6	12
4-Methyl-2-pentanone	1.1	2.6	4.6	10
Toluene	1.1	8.6	4.2	32
Ethyl Benzene	1.1	11	4.9	48
m,p-Xylene	1.1	67	4.9	290
o-Xylene	1.1	27	4.9	120
Cumene	1.1	18	5.6	86
Propylbenzene	1.1	9.7	5.6	48
4-Ethyltoluene	1.1	73	5.6	360
1,3,5-Trimethylbenzene	1.1	49	5.6	240
1,2,4-Trimethylbenzene	1.1	110	5.6	560

Client Sample ID: SV-17

Lab ID#: 1201135A-05A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Chloromethane	14	28	30	57
Acetone	14	97	34	230
Carbon Disulfide	14	49	45	150
Hexane	3.6	12	13	41
Chloroform	3.6	42	18	210
Cyclohexane	3.6	16	12	54
2,2,4-Trimethylpentane	3.6	9.7	17	45
Benzene	3.6	24	11	75
Heptane	3.6	20	15	80
Toluene	3.6	75	14	280
Tetrachloroethene	3.6	8.6	24	58
Ethyl Benzene	3.6	54	16	230
m,p-Xylene	3.6	310	16	1300
o-Xylene	3.6	110	16	490
Cumene	3.6	13	18	65
Propylbenzene	3.6	44	18	220
4-Ethyltoluene	3.6	300	18	1500
1,3,5-Trimethylbenzene	3.6	200	18	1000
1,2,4-Trimethylbenzene	3.6	420	18	2000

Client Sample ID: SV-13 Lab ID#: 1201135A-01A EPA METHOD TO-15 GC/MS FULL SCAN

٦

File Name: Dil. Factor:	3011227 3.22	Date of Collection: 1/9/12 12:25:00 PM Date of Analysis: 1/13/12 09:32 AM		
	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Freon 12	1.6	Not Detected	8.0	Not Detected
Freon 114	1.6	Not Detected	11	Not Detected
Chloromethane	6.4	Not Detected	13	Not Detected
Vinyl Chloride	1.6	280	4.1	730
1,3-Butadiene	1.6	Not Detected	3.6	Not Detected
Bromomethane	1.6	4.6 J	6.2	18 J
Chloroethane	6.4	Not Detected	17	Not Detected
Freon 11	1.6	Not Detected	9.0	Not Detected
Ethanol	6.4	9.2	12	17
Freon 113	1.6	Not Detected	12	Not Detected
1,1-Dichloroethene	1.6	Not Detected	6.4	Not Detected
Acetone	6.4	120	15	290
2-Propanol	6.4	Not Detected	16	Not Detected
Carbon Disulfide	6.4	59	20	180
3-Chloropropene	6.4	Not Detected	20	Not Detected
Methylene Chloride	1.6	2.3	5.6	7.9
Methyl tert-butyl ether	1.6	35	5.8	130
trans-1,2-Dichloroethene	1.6	2.3	6.4	9.2
Hexane	1.6	99	5.7	350
1,1-Dichloroethane	1.6	Not Detected	6.5	Not Detected
2-Butanone (Methyl Ethyl Ketone)	6.4	14	19	41
cis-1,2-Dichloroethene	1.6	69	6.4	270
Tetrahydrofuran	1.6	Not Detected	4.7	Not Detected
Chloroform	1.6	7.7	7.9	38
1,1,1-Trichloroethane	1.6	Not Detected	8.8	Not Detected
Cyclohexane	1.6	15	5.5	52
Carbon Tetrachloride	1.6	Not Detected	10	Not Detected
2,2,4-Trimethylpentane	1.6	40	7.5	190
Benzene	1.6	76	5.1	240
1,2-Dichloroethane	1.6	6.7	6.5	27
Heptane	1.6	20	6.6	82
Trichloroethene	1.6	2.2	8.6	12
1,2-Dichloropropane	1.6	Not Detected	7.4	Not Detected
1,4-Dioxane	6.4	Not Detected	23	Not Detected
Bromodichloromethane	1.6	Not Detected	11	Not Detected
cis-1,3-Dichloropropene	1.6	Not Detected	7.3	Not Detected
4-Methyl-2-pentanone	1.6	Not Detected	6.6	Not Detected
Toluene	1.6	38	6.1	140
trans-1,3-Dichloropropene	1.6	Not Detected	7.3	Not Detected
1,1,2-Trichloroethane	1.6	Not Detected	8.8	Not Detected
Tetrachloroethene	1.6	6.0	11	41

Client Sample ID: SV-13 Lab ID#: 1201135A-01A EPA METHOD TO-15 GC/MS FULL SCAN

٦

File Name: Dil. Factor:	3011227 3.22	Date of Collection: 1/9/12 12:25:00 P Date of Analysis: 1/13/12 09:32 AM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
2-Hexanone	6.4	Not Detected	26	Not Detected
Dibromochloromethane	1.6	Not Detected	14	Not Detected
1,2-Dibromoethane (EDB)	1.6	Not Detected	12	Not Detected
Chlorobenzene	1.6	Not Detected	7.4	Not Detected
Ethyl Benzene	1.6	22	7.0	94
m,p-Xylene	1.6	120	7.0	500
o-Xylene	1.6	41	7.0	180
Styrene	1.6	Not Detected	6.8	Not Detected
Bromoform	1.6	Not Detected	17	Not Detected
Cumene	1.6	58	7.9	280
1,1,2,2-Tetrachloroethane	1.6	Not Detected	11	Not Detected
Propylbenzene	1.6	11	7.9	55
4-Ethyltoluene	1.6	68	7.9	330
1,3,5-Trimethylbenzene	1.6	38	7.9	190
1,2,4-Trimethylbenzene	1.6	78	7.9	380
1,3-Dichlorobenzene	1.6	Not Detected	9.7	Not Detected
1,4-Dichlorobenzene	1.6	Not Detected	9.7	Not Detected
alpha-Chlorotoluene	1.6	Not Detected	8.3	Not Detected
1,2-Dichlorobenzene	1.6	Not Detected	9.7	Not Detected
1,2,4-Trichlorobenzene	6.4	Not Detected	48	Not Detected
Hexachlorobutadiene	6.4	Not Detected	69	Not Detected

J = Estimated value due to bias in the CCV.

Container Type: 1 Liter Summa Canister

		Method	
Surrogates	%Recovery	Limits	
Toluene-d8	101	70-130	
1,2-Dichloroethane-d4	112	70-130	
4-Bromofluorobenzene	100	70-130	

Client Sample ID: SV-14 Lab ID#: 1201135A-02A EPA METHOD TO-15 GC/MS FULL SCAN

٦

File Name: Dil. Factor:	3011422 39.8	Date of Collection: 1/9/12 12:47:00 PM Date of Analysis: 1/14/12 08:07 PM		
	Rot Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Freon 12	20	Not Detected	98	Not Detected
Freon 114	20	Not Detected	140	Not Detected
Chloromethane	80	Not Detected	160	Not Detected
Vinyl Chloride	20	6500	51	17000
1,3-Butadiene	20	Not Detected	44	Not Detected
Bromomethane	20	Not Detected	77	Not Detected
Chloroethane	80	Not Detected	210	Not Detected
Freon 11	20	Not Detected	110	Not Detected
Ethanol	80	Not Detected	150	Not Detected
Freon 113	20	Not Detected	150	Not Detected
1,1-Dichloroethene	20	Not Detected	79	Not Detected
Acetone	80	94	190	220
2-Propanol	80	Not Detected	200	Not Detected
Carbon Disulfide	80	Not Detected	250	Not Detected
3-Chloropropene	80	Not Detected	250	Not Detected
Methylene Chloride	20	Not Detected	69	Not Detected
Methyl tert-butyl ether	20	54	72	200
trans-1,2-Dichloroethene	20	34	79	130
Hexane	20	23	70	83
1,1-Dichloroethane	20	Not Detected	80	Not Detected
2-Butanone (Methyl Ethyl Ketone)	80	Not Detected	230	Not Detected
cis-1,2-Dichloroethene	20	370	79	1400
Tetrahydrofuran	20	Not Detected	59	Not Detected
Chloroform	20	Not Detected	97	Not Detected
1,1,1-Trichloroethane	20	Not Detected	110	Not Detected
Cyclohexane	20	Not Detected	68	Not Detected
Carbon Tetrachloride	20	Not Detected	120	Not Detected
2,2,4-Trimethylpentane	20	36	93	170
Benzene	20	75	64	240
1,2-Dichloroethane	20	Not Detected	80	Not Detected
Heptane	20	Not Detected	82	Not Detected
Trichloroethene	20	Not Detected	110	Not Detected
1,2-Dichloropropane	20	Not Detected	92	Not Detected
1,4-Dioxane	80	Not Detected	290	Not Detected
Bromodichloromethane	20	Not Detected	130	Not Detected
cis-1,3-Dichloropropene	20	Not Detected	90	Not Detected
4-Methyl-2-pentanone	20	Not Detected	82	Not Detected
Toluene	20	44	75	170
trans-1,3-Dichloropropene	20	Not Detected	90	Not Detected
1,1,2-Trichloroethane	20	Not Detected	110	Not Detected
Tetrachloroethene	20	59	130	400

Client Sample ID: SV-14 Lab ID#: 1201135A-02A EPA METHOD TO-15 GC/MS FULL SCAN

٦

File Name: Dil. Factor:	3011422 39.8	Date of Collection: 1/9/12 12:47:00 PM Date of Analysis: 1/14/12 08:07 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
2-Hexanone	80	Not Detected	330	Not Detected
Dibromochloromethane	20	Not Detected	170	Not Detected
1,2-Dibromoethane (EDB)	20	Not Detected	150	Not Detected
Chlorobenzene	20	Not Detected	92	Not Detected
Ethyl Benzene	20	37	86	160
m,p-Xylene	20	220	86	940
o-Xylene	20	70	86	300
Styrene	20	Not Detected	85	Not Detected
Bromoform	20	Not Detected	200	Not Detected
Cumene	20	38	98	190
1,1,2,2-Tetrachloroethane	20	Not Detected	140	Not Detected
Propylbenzene	20	21	98	100
4-Ethyltoluene	20	150	98	730
1,3,5-Trimethylbenzene	20	91	98	450
1,2,4-Trimethylbenzene	20	180	98	860
1,3-Dichlorobenzene	20	Not Detected	120	Not Detected
1,4-Dichlorobenzene	20	Not Detected	120	Not Detected
alpha-Chlorotoluene	20	Not Detected	100	Not Detected
1,2-Dichlorobenzene	20	Not Detected	120	Not Detected
1,2,4-Trichlorobenzene	80	Not Detected	590	Not Detected
Hexachlorobutadiene	80	Not Detected	850	Not Detected

Container Type: 1 Liter Summa Canister

		Method
Surrogates	%Recovery	Limits
Toluene-d8	100	70-130
1,2-Dichloroethane-d4	109	70-130
4-Bromofluorobenzene	102	70-130

Client Sample ID: SV-15 Lab ID#: 1201135A-03A EPA METHOD TO-15 GC/MS FULL SCAN

٦

File Name: Dil. Factor:	3011236 2.06	Date of Collection: 1/9/12 1:29:00 PM Date of Analysis: 1/13/12 02:52 PM		
	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Freon 12	1.0	Not Detected	5.1	Not Detected
Freon 114	1.0	Not Detected	7.2	Not Detected
Chloromethane	4.1	Not Detected	8.5	Not Detected
Vinyl Chloride	1.0	Not Detected	2.6	Not Detected
1,3-Butadiene	1.0	Not Detected	2.3	Not Detected
Bromomethane	1.0	Not Detected	4.0	Not Detected
Chloroethane	4.1	Not Detected	11	Not Detected
Freon 11	1.0	Not Detected	5.8	Not Detected
Ethanol	4.1	Not Detected	7.8	Not Detected
Freon 113	1.0	Not Detected	7.9	Not Detected
1,1-Dichloroethene	1.0	Not Detected	4.1	Not Detected
Acetone	4.1	13	9.8	32
2-Propanol	4.1	Not Detected	10	Not Detected
Carbon Disulfide	4.1	7.3	13	23
3-Chloropropene	4.1	Not Detected	13	Not Detected
Methylene Chloride	1.0	Not Detected	3.6	Not Detected
Methyl tert-butyl ether	1.0	Not Detected	3.7	Not Detected
trans-1,2-Dichloroethene	1.0	Not Detected	4.1	Not Detected
Hexane	1.0	1.6	3.6	5.5
1,1-Dichloroethane	1.0	Not Detected	4.2	Not Detected
2-Butanone (Methyl Ethyl Ketone)	4.1	Not Detected	12	Not Detected
cis-1,2-Dichloroethene	1.0	Not Detected	4.1	Not Detected
Tetrahydrofuran	1.0	Not Detected	3.0	Not Detected
Chloroform	1.0	Not Detected	5.0	Not Detected
1,1,1-Trichloroethane	1.0	Not Detected	5.6	Not Detected
Cyclohexane	1.0	Not Detected	3.5	Not Detected
Carbon Tetrachloride	1.0	Not Detected	6.5	Not Detected
2,2,4-Trimethylpentane	1.0	1.3	4.8	5.9
Benzene	1.0	1.9	3.3	6.0
1,2-Dichloroethane	1.0	Not Detected	4.2	Not Detected
Heptane	1.0	2.9	4.2	12
Trichloroethene	1.0	Not Detected	5.5	Not Detected
1,2-Dichloropropane	1.0	Not Detected	4.8	Not Detected
1,4-Dioxane	4.1	Not Detected	15	Not Detected
Bromodichloromethane	1.0	Not Detected	6.9	Not Detected
cis-1,3-Dichloropropene	1.0	Not Detected	4.7	Not Detected
4-Methyl-2-pentanone	1.0	Not Detected	4.2	Not Detected
Toluene	1.0	4.3	3.9	16
trans-1,3-Dichloropropene	1.0	Not Detected	4.7	Not Detected
1,1,2-Trichloroethane	1.0	Not Detected	5.6	Not Detected
Tetrachloroethene	1.0	Not Detected	7.0	Not Detected

Client Sample ID: SV-15 Lab ID#: 1201135A-03A EPA METHOD TO-15 GC/MS FULL SCAN

٦

File Name: Dil. Factor:	3011236 2.06	236 Date of Collection: 1/9/12 1:29:00 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
2-Hexanone	4.1	Not Detected	17	Not Detected
Dibromochloromethane	1.0	Not Detected	8.8	Not Detected
1,2-Dibromoethane (EDB)	1.0	Not Detected	7.9	Not Detected
Chlorobenzene	1.0	Not Detected	4.7	Not Detected
Ethyl Benzene	1.0	2.1	4.5	9.0
m,p-Xylene	1.0	11	4.5	48
o-Xylene	1.0	3.7	4.5	16
Styrene	1.0	Not Detected	4.4	Not Detected
Bromoform	1.0	Not Detected	11	Not Detected
Cumene	1.0	6.4	5.1	32
1,1,2,2-Tetrachloroethane	1.0	Not Detected	7.1	Not Detected
Propylbenzene	1.0	1.3	5.1	6.2
4-Ethyltoluene	1.0	9.0	5.1	44
1,3,5-Trimethylbenzene	1.0	6.5	5.1	32
1,2,4-Trimethylbenzene	1.0	12	5.1	60
1,3-Dichlorobenzene	1.0	Not Detected	6.2	Not Detected
1,4-Dichlorobenzene	1.0	Not Detected	6.2	Not Detected
alpha-Chlorotoluene	1.0	Not Detected	5.3	Not Detected
1,2-Dichlorobenzene	1.0	Not Detected	6.2	Not Detected
1,2,4-Trichlorobenzene	4.1	Not Detected	30	Not Detected
Hexachlorobutadiene	4.1	Not Detected	44	Not Detected

Container Type: 1 Liter Summa Canister

		Method
Surrogates	%Recovery	Limits
Toluene-d8	103	70-130
1,2-Dichloroethane-d4	106	70-130
4-Bromofluorobenzene	100	70-130

Client Sample ID: SV-16 Lab ID#: 1201135A-04A EPA METHOD TO-15 GC/MS FULL SCAN

٦

File Name: Dil. Factor:	3011235 2.26	Date of Collection: 1/9/12 1:57:00 PM Date of Analysis: 1/13/12 02:08 PM		
Compound	Rpt. Limit (ppby)	Amount (ppby)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freen 12	1 1	Not Detected	56	Not Detected
Freen 11/	1.1	Not Detected	7.9	Not Detected
Chloromethane	4.5	Not Detected	9.3	Not Detected
Vinyl Chloride	4.0	Not Detected	29	Not Detected
1.3-Butadiene	1.1	Not Detected	2.5	Not Detected
Bromomethane	1.1	11.1	4.4	42.1
Chloroethane	4.5	Not Detected	12	Not Detected
Freon 11	1.0	Not Detected	6.3	Not Detected
Ethanol	4.5	Not Detected	8.5	Not Detected
Freon 113	1.1	Not Detected	8.7	Not Detected
1 1-Dichloroethene	11	Not Detected	4.5	Not Detected
Acetone	4.5	38	11	91
2-Propanol	4.5	Not Detected	11	Not Detected
Carbon Disulfide	4.5	Not Detected	14	Not Detected
3-Chloropropene	4.5	Not Detected	14	Not Detected
Methylene Chloride	1.1	2.3	3.9	8.0
Methyl tert-butyl ether	1.1	Not Detected	4.1	Not Detected
trans-1.2-Dichloroethene	1.1	Not Detected	4.5	Not Detected
Hexane	1.1	5.2	4.0	18
1.1-Dichloroethane	1.1	Not Detected	4.6	Not Detected
2-Butanone (Methyl Ethyl Ketone)	4.5	6.8	13	20
cis-1.2-Dichloroethene	1.1	Not Detected	4.5	Not Detected
Tetrahydrofuran	1.1	Not Detected	3.3	Not Detected
Chloroform	1.1	2.9	5.5	14
1,1,1-Trichloroethane	1.1	Not Detected	6.2	Not Detected
Cyclohexane	1.1	2.0	3.9	6.9
Carbon Tetrachloride	1.1	Not Detected	7.1	Not Detected
2,2,4-Trimethylpentane	1.1	1.8	5.3	8.6
Benzene	1.1	14	3.6	43
1,2-Dichloroethane	1.1	Not Detected	4.6	Not Detected
Heptane	1.1	2.8	4.6	12
Trichloroethene	1.1	Not Detected	6.1	Not Detected
1,2-Dichloropropane	1.1	Not Detected	5.2	Not Detected
1,4-Dioxane	4.5	Not Detected	16	Not Detected
Bromodichloromethane	1.1	Not Detected	7.6	Not Detected
cis-1,3-Dichloropropene	1.1	Not Detected	5.1	Not Detected
4-Methyl-2-pentanone	1.1	2.6	4.6	10
Toluene	1.1	8.6	4.2	32
trans-1,3-Dichloropropene	1.1	Not Detected	5.1	Not Detected
1,1,2-Trichloroethane	1.1	Not Detected	6.2	Not Detected
Tetrachloroethene	1.1	Not Detected	7.7	Not Detected

Client Sample ID: SV-16 Lab ID#: 1201135A-04A EPA METHOD TO-15 GC/MS FULL SCAN

٦

File Name: Dil. Factor:	3011235 2.26	Date of Collection: 1/9/12 1:57:00 PM Date of Analysis: 1/13/12 02:08 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
2-Hexanone	4.5	Not Detected	18	Not Detected
Dibromochloromethane	1.1	Not Detected	9.6	Not Detected
1,2-Dibromoethane (EDB)	1.1	Not Detected	8.7	Not Detected
Chlorobenzene	1.1	Not Detected	5.2	Not Detected
Ethyl Benzene	1.1	11	4.9	48
m,p-Xylene	1.1	67	4.9	290
o-Xylene	1.1	27	4.9	120
Styrene	1.1	Not Detected	4.8	Not Detected
Bromoform	1.1	Not Detected	12	Not Detected
Cumene	1.1	18	5.6	86
1,1,2,2-Tetrachloroethane	1.1	Not Detected	7.8	Not Detected
Propylbenzene	1.1	9.7	5.6	48
4-Ethyltoluene	1.1	73	5.6	360
1,3,5-Trimethylbenzene	1.1	49	5.6	240
1,2,4-Trimethylbenzene	1.1	110	5.6	560
1,3-Dichlorobenzene	1.1	Not Detected	6.8	Not Detected
1,4-Dichlorobenzene	1.1	Not Detected	6.8	Not Detected
alpha-Chlorotoluene	1.1	Not Detected	5.8	Not Detected
1,2-Dichlorobenzene	1.1	Not Detected	6.8	Not Detected
1,2,4-Trichlorobenzene	4.5	Not Detected	34	Not Detected
Hexachlorobutadiene	4.5	Not Detected	48	Not Detected

J = Estimated value due to bias in the CCV.

Container Type: 1 Liter Summa Canister

		Method
Surrogates	%Recovery	Limits
Toluene-d8	103	70-130
1,2-Dichloroethane-d4	108	70-130
4-Bromofluorobenzene	103	70-130

Client Sample ID: SV-17 Lab ID#: 1201135A-05A EPA METHOD TO-15 GC/MS FULL SCAN

٦

File Name: Dil. Factor:	3011234 7.18	Date of Collection: 1/9/12 3:27:00 PM Date of Analysis: 1/13/12 01:43 PM		
	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Freon 12	3.6	Not Detected	18	Not Detected
Freon 114	3.6	Not Detected	25	Not Detected
Chloromethane	14	28	30	57
Vinyl Chloride	3.6	Not Detected	9.2	Not Detected
1,3-Butadiene	3.6	Not Detected	7.9	Not Detected
Bromomethane	3.6	Not Detected	14	Not Detected
Chloroethane	14	Not Detected	38	Not Detected
Freon 11	3.6	Not Detected	20	Not Detected
Ethanol	14	Not Detected	27	Not Detected
Freon 113	3.6	Not Detected	28	Not Detected
1,1-Dichloroethene	3.6	Not Detected	14	Not Detected
Acetone	14	97	34	230
2-Propanol	14	Not Detected	35	Not Detected
Carbon Disulfide	14	49	45	150
3-Chloropropene	14	Not Detected	45	Not Detected
Methylene Chloride	3.6	Not Detected	12	Not Detected
Methyl tert-butyl ether	3.6	Not Detected	13	Not Detected
trans-1,2-Dichloroethene	3.6	Not Detected	14	Not Detected
Hexane	3.6	12	13	41
1,1-Dichloroethane	3.6	Not Detected	14	Not Detected
2-Butanone (Methyl Ethyl Ketone)	14	Not Detected	42	Not Detected
cis-1.2-Dichloroethene	3.6	Not Detected	14	Not Detected
Tetrahvdrofuran	3.6	Not Detected	10	Not Detected
Chloroform	3.6	42	18	210
1,1,1-Trichloroethane	3.6	Not Detected	20	Not Detected
Cvclohexane	3.6	16	12	54
Carbon Tetrachloride	3.6	Not Detected	22	Not Detected
2.2.4-Trimethylpentane	3.6	9.7	17	45
Benzene	3.6	24	11	75
1,2-Dichloroethane	3.6	Not Detected	14	Not Detected
Heptane	3.6	20	15	80
Trichloroethene	3.6	Not Detected	19	Not Detected
1.2-Dichloropropane	3.6	Not Detected	16	Not Detected
1.4-Dioxane	14	Not Detected	52	Not Detected
Bromodichloromethane	3.6	Not Detected	24	Not Detected
cis-1 3-Dichloropropene	3.6	Not Detected	16	Not Detected
4-Methyl-2-pentanone	3.6	Not Detected	15	Not Detected
Toluene	3.6	75	14	280
trans-1.3-Dichloropropene	3.6	Not Detected	16	Not Detected
1.1.2-Trichloroethane	3.6	Not Detected	20	Not Detected
Tetrachloroethene	3.6	8.6	24	58

Client Sample ID: SV-17 Lab ID#: 1201135A-05A EPA METHOD TO-15 GC/MS FULL SCAN

٦

File Name: Dil. Factor:	3011234 7.18	Date of Collection: 1/9/12 3:27:00 Date of Analysis: 1/13/12 01:43 PN		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
2-Hexanone	14	Not Detected	59	Not Detected
Dibromochloromethane	3.6	Not Detected	30	Not Detected
1,2-Dibromoethane (EDB)	3.6	Not Detected	28	Not Detected
Chlorobenzene	3.6	Not Detected	16	Not Detected
Ethyl Benzene	3.6	54	16	230
m,p-Xylene	3.6	310	16	1300
o-Xylene	3.6	110	16	490
Styrene	3.6	Not Detected	15	Not Detected
Bromoform	3.6	Not Detected	37	Not Detected
Cumene	3.6	13	18	65
1,1,2,2-Tetrachloroethane	3.6	Not Detected	25	Not Detected
Propylbenzene	3.6	44	18	220
4-Ethyltoluene	3.6	300	18	1500
1,3,5-Trimethylbenzene	3.6	200	18	1000
1,2,4-Trimethylbenzene	3.6	420	18	2000
1,3-Dichlorobenzene	3.6	Not Detected	22	Not Detected
1,4-Dichlorobenzene	3.6	Not Detected	22	Not Detected
alpha-Chlorotoluene	3.6	Not Detected	18	Not Detected
1,2-Dichlorobenzene	3.6	Not Detected	22	Not Detected
1,2,4-Trichlorobenzene	14	Not Detected	110	Not Detected
Hexachlorobutadiene	14	Not Detected	150	Not Detected

Container Type: 1 Liter Summa Canister

		Method
Surrogates	%Recovery	Limits
Toluene-d8	107	70-130
1,2-Dichloroethane-d4	110	70-130
4-Bromofluorobenzene	102	70-130

Client Sample ID: Lab Blank Lab ID#: 1201135A-06A EPA METHOD TO-15 GC/MS FULL SCAN

٦

File Name: Dil. Factor:	3011221 1.00	Date of Collection: NA Date of Analysis: 1/12/12 09:15 PM		
	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Freon 12	0.50	Not Detected	2.5	Not Detected
Freon 114	0.50	Not Detected	3.5	Not Detected
Chloromethane	2.0	Not Detected	4.1	Not Detected
Vinyl Chloride	0.50	Not Detected	1.3	Not Detected
1,3-Butadiene	0.50	Not Detected	1.1	Not Detected
Bromomethane	0.50	Not Detected	1.9	Not Detected
Chloroethane	2.0	Not Detected	5.3	Not Detected
Freon 11	0.50	Not Detected	2.8	Not Detected
Ethanol	2.0	Not Detected	3.8	Not Detected
Freon 113	0.50	Not Detected	3.8	Not Detected
1,1-Dichloroethene	0.50	Not Detected	2.0	Not Detected
Acetone	2.0	Not Detected	4.8	Not Detected
2-Propanol	2.0	Not Detected	4.9	Not Detected
Carbon Disulfide	2.0	Not Detected	6.2	Not Detected
3-Chloropropene	2.0	Not Detected	6.3	Not Detected
Methylene Chloride	0.50	Not Detected	1.7	Not Detected
Methyl tert-butyl ether	0.50	Not Detected	1.8	Not Detected
trans-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected
Hexane	0.50	Not Detected	1.8	Not Detected
1,1-Dichloroethane	0.50	Not Detected	2.0	Not Detected
2-Butanone (Methyl Ethyl Ketone)	2.0	Not Detected	5.9	Not Detected
cis-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected
Tetrahydrofuran	0.50	Not Detected	1.5	Not Detected
Chloroform	0.50	Not Detected	2.4	Not Detected
1,1,1-Trichloroethane	0.50	Not Detected	2.7	Not Detected
Cyclohexane	0.50	Not Detected	1.7	Not Detected
Carbon Tetrachloride	0.50	Not Detected	3.1	Not Detected
2,2,4-Trimethylpentane	0.50	Not Detected	2.3	Not Detected
Benzene	0.50	Not Detected	1.6	Not Detected
1,2-Dichloroethane	0.50	Not Detected	2.0	Not Detected
Heptane	0.50	Not Detected	2.0	Not Detected
Trichloroethene	0.50	Not Detected	2.7	Not Detected
1,2-Dichloropropane	0.50	Not Detected	2.3	Not Detected
1,4-Dioxane	2.0	Not Detected	7.2	Not Detected
Bromodichloromethane	0.50	Not Detected	3.4	Not Detected
cis-1,3-Dichloropropene	0.50	Not Detected	2.3	Not Detected
4-Methyl-2-pentanone	0.50	Not Detected	2.0	Not Detected
Toluene	0.50	Not Detected	1.9	Not Detected
trans-1,3-Dichloropropene	0.50	Not Detected	2.3	Not Detected
1,1,2-Trichloroethane	0.50	Not Detected	2.7	Not Detected
Tetrachloroethene	0.50	Not Detected	3.4	Not Detected

Client Sample ID: Lab Blank Lab ID#: 1201135A-06A EPA METHOD TO-15 GC/MS FULL SCAN

٦

File Name: Dil. Factor:	3011221 1.00	Date of Collection: NA Date of Analysis: 1/12/12 09:15 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
2-Hexanone	2.0	Not Detected	8.2	Not Detected
Dibromochloromethane	0.50	Not Detected	4.2	Not Detected
1,2-Dibromoethane (EDB)	0.50	Not Detected	3.8	Not Detected
Chlorobenzene	0.50	Not Detected	2.3	Not Detected
Ethyl Benzene	0.50	Not Detected	2.2	Not Detected
m,p-Xylene	0.50	Not Detected	2.2	Not Detected
o-Xylene	0.50	Not Detected	2.2	Not Detected
Styrene	0.50	Not Detected	2.1	Not Detected
Bromoform	0.50	Not Detected	5.2	Not Detected
Cumene	0.50	Not Detected	2.4	Not Detected
1,1,2,2-Tetrachloroethane	0.50	Not Detected	3.4	Not Detected
Propylbenzene	0.50	Not Detected	2.4	Not Detected
4-Ethyltoluene	0.50	Not Detected	2.4	Not Detected
1,3,5-Trimethylbenzene	0.50	Not Detected	2.4	Not Detected
1,2,4-Trimethylbenzene	0.50	Not Detected	2.4	Not Detected
1,3-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
1,4-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
alpha-Chlorotoluene	0.50	Not Detected	2.6	Not Detected
1,2-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
1,2,4-Trichlorobenzene	2.0	Not Detected	15	Not Detected
Hexachlorobutadiene	2.0	Not Detected	21	Not Detected

Container Type: NA - Not Applicable

		Method
Surrogates	%Recovery	Limits
Toluene-d8	101	70-130
1,2-Dichloroethane-d4	93	70-130
4-Bromofluorobenzene	102	70-130

Client Sample ID: Lab Blank Lab ID#: 1201135A-06B EPA METHOD TO-15 GC/MS FULL SCAN

1

File Name: Dil. Factor:	3011407 1.00	Date Date	of Collection: NA of Analysis: 1/14/	12 11:29 AM
	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Freon 12	0.50	Not Detected	2.5	Not Detected
Freon 114	0.50	Not Detected	3.5	Not Detected
Chloromethane	2.0	Not Detected	4.1	Not Detected
Vinyl Chloride	0.50	Not Detected	1.3	Not Detected
1,3-Butadiene	0.50	Not Detected	1.1	Not Detected
Bromomethane	0.50	Not Detected	1.9	Not Detected
Chloroethane	2.0	Not Detected	5.3	Not Detected
Freon 11	0.50	Not Detected	2.8	Not Detected
Ethanol	2.0	Not Detected	3.8	Not Detected
Freon 113	0.50	Not Detected	3.8	Not Detected
1,1-Dichloroethene	0.50	Not Detected	2.0	Not Detected
Acetone	2.0	Not Detected	4.8	Not Detected
2-Propanol	2.0	Not Detected	4.9	Not Detected
Carbon Disulfide	2.0	Not Detected	6.2	Not Detected
3-Chloropropene	2.0	Not Detected	6.3	Not Detected
Methylene Chloride	0.50	Not Detected	1.7	Not Detected
Methyl tert-butyl ether	0.50	Not Detected	1.8	Not Detected
trans-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected
Hexane	0.50	Not Detected	1.8	Not Detected
1,1-Dichloroethane	0.50	Not Detected	2.0	Not Detected
2-Butanone (Methyl Ethyl Ketone)	2.0	Not Detected	5.9	Not Detected
cis-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected
Tetrahydrofuran	0.50	Not Detected	1.5	Not Detected
Chloroform	0.50	Not Detected	2.4	Not Detected
1,1,1-Trichloroethane	0.50	Not Detected	2.7	Not Detected
Cyclohexane	0.50	Not Detected	1.7	Not Detected
Carbon Tetrachloride	0.50	Not Detected	3.1	Not Detected
2,2,4-Trimethylpentane	0.50	Not Detected	2.3	Not Detected
Benzene	0.50	Not Detected	1.6	Not Detected
1,2-Dichloroethane	0.50	Not Detected	2.0	Not Detected
Heptane	0.50	Not Detected	2.0	Not Detected
Trichloroethene	0.50	Not Detected	2.7	Not Detected
1,2-Dichloropropane	0.50	Not Detected	2.3	Not Detected
1,4-Dioxane	2.0	Not Detected	7.2	Not Detected
Bromodichloromethane	0.50	Not Detected	3.4	Not Detected
cis-1,3-Dichloropropene	0.50	Not Detected	2.3	Not Detected
4-Methyl-2-pentanone	0.50	Not Detected	2.0	Not Detected
Toluene	0.50	Not Detected	1.9	Not Detected
trans-1,3-Dichloropropene	0.50	Not Detected	2.3	Not Detected
1,1,2-Trichloroethane	0.50	Not Detected	2.7	Not Detected
Tetrachloroethene	0.50	Not Detected	3.4	Not Detected

Client Sample ID: Lab Blank Lab ID#: 1201135A-06B EPA METHOD TO-15 GC/MS FULL SCAN

٦

File Name: Dil. Factor:	3011407 1.00	Date of Collection: NA Date of Analysis: 1/14/12 11:29 AM		/12 11:29 AM
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
2-Hexanone	2.0	Not Detected	8.2	Not Detected
Dibromochloromethane	0.50	Not Detected	4.2	Not Detected
1,2-Dibromoethane (EDB)	0.50	Not Detected	3.8	Not Detected
Chlorobenzene	0.50	Not Detected	2.3	Not Detected
Ethyl Benzene	0.50	Not Detected	2.2	Not Detected
m,p-Xylene	0.50	Not Detected	2.2	Not Detected
o-Xylene	0.50	Not Detected	2.2	Not Detected
Styrene	0.50	Not Detected	2.1	Not Detected
Bromoform	0.50	Not Detected	5.2	Not Detected
Cumene	0.50	Not Detected	2.4	Not Detected
1,1,2,2-Tetrachloroethane	0.50	Not Detected	3.4	Not Detected
Propylbenzene	0.50	Not Detected	2.4	Not Detected
4-Ethyltoluene	0.50	Not Detected	2.4	Not Detected
1,3,5-Trimethylbenzene	0.50	Not Detected	2.4	Not Detected
1,2,4-Trimethylbenzene	0.50	Not Detected	2.4	Not Detected
1,3-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
1,4-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
alpha-Chlorotoluene	0.50	Not Detected	2.6	Not Detected
1,2-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
1,2,4-Trichlorobenzene	2.0	Not Detected	15	Not Detected
Hexachlorobutadiene	2.0	Not Detected	21	Not Detected

Container Type: NA - Not Applicable

		Method	
Surrogates	%Recovery	Limits	
Toluene-d8	101	70-130	
1,2-Dichloroethane-d4	108	70-130	
4-Bromofluorobenzene	100	70-130	

Client Sample ID: CCV Lab ID#: 1201135A-07A EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	3011216	Date of Collection: NA
UII. Pactor:	1.00	Date of Analysis: 1/12/12 06:33 PM
Compound		%Recovery
Freon 12		131 Q
Freon 114		127
Chloromethane		107
Vinyl Chloride		128
1,3-Butadiene		120
Bromomethane		134 Q
Chloroethane		115
Freon 11		114
Ethanol		101
Freon 113		102
1,1-Dichloroethene		104
Acetone		108
2-Propanol		103
Carbon Disulfide		102
3-Chloropropene		103
Methylene Chloride		105
Methyl tert-butyl ether		112
trans-1,2-Dichloroethene		106
Hexane		108
1,1-Dichloroethane		104
2-Butanone (Methyl Ethyl Ketone)		106
cis-1,2-Dichloroethene		102
Tetrahydrofuran		104
Chloroform		107
1,1,1-Trichloroethane		108
Cyclohexane		110
Carbon Tetrachloride		114
2,2,4-Trimethylpentane		106
Benzene		104
1,2-Dichloroethane		112
Heptane		113
Trichloroethene		105
1,2-Dichloropropane		105
1,4-Dioxane		100
Bromodichloromethane		112
cis-1,3-Dichloropropene		107
4-Methyl-2-pentanone		107
Toluene		103
trans-1,3-Dichloropropene		110
1,1,2-Trichloroethane		106
Tetrachloroethene		103

Client Sample ID: CCV Lab ID#: 1201135A-07A EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	3011216 1.00	Date of Collection: NA Date of Analysis: 1/12/12 06:33 PM	
Compound		%Recovery	
2-Hexanone		110	
Dibromochloromethane		112	
1,2-Dibromoethane (EDB)		106	
Chlorobenzene		102	
Ethyl Benzene		104	
m,p-Xylene		104	
o-Xylene		108	
Styrene		107	
Bromoform		107	
Cumene		113	
1,1,2,2-Tetrachloroethane		99	
Propylbenzene		109	
4-Ethyltoluene		101	
1,3,5-Trimethylbenzene		110	
1,2,4-Trimethylbenzene		108	
1,3-Dichlorobenzene		99	
1,4-Dichlorobenzene		97	
alpha-Chlorotoluene		102	
1,2-Dichlorobenzene		96	
1,2,4-Trichlorobenzene		85	
Hexachlorobutadiene		95	

Q = Exceeds Quality Control limits. Container Type: NA - Not Applicable

		Method	
Surrogates	%Recovery	Limits	
Toluene-d8	103	70-130	
1,2-Dichloroethane-d4	105	70-130	
4-Bromofluorobenzene	101	70-130	

Client Sample ID: CCV Lab ID#: 1201135A-07B EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	3011403	Date of Collection: NA
DII. Factor:	1.00	Date of Analysis: 1/14/12 09:24 AM
Compound		%Recovery
Freon 12		124
Freon 114		122
Chloromethane		100
Vinyl Chloride		121
1,3-Butadiene		114
Bromomethane		130
Chloroethane		116
Freon 11		127
Ethanol		116
Freon 113		118
1,1-Dichloroethene		118
Acetone		105
2-Propanol		98
Carbon Disulfide		100
3-Chloropropene		99
Methylene Chloride		101
Methyl tert-butyl ether		108
trans-1,2-Dichloroethene		103
Hexane		107
1,1-Dichloroethane		102
2-Butanone (Methyl Ethyl Ketone)		101
cis-1,2-Dichloroethene		99
Tetrahydrofuran		103
Chloroform		105
1,1,1-Trichloroethane		105
Cyclohexane		106
Carbon Tetrachloride		112
2,2,4-Trimethylpentane		102
Benzene		101
1,2-Dichloroethane		106
Heptane		110
Trichloroethene		103
1,2-Dichloropropane		100
1,4-Dioxane		100
Bromodichloromethane		107
cis-1,3-Dichloropropene		104
4-Methyl-2-pentanone		105
Toluene		100
trans-1,3-Dichloropropene		109
1,1,2-Trichloroethane		105
Tetrachloroethene		104

Client Sample ID: CCV Lab ID#: 1201135A-07B EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	3011403 1.00	Date of Collection: NA Date of Analysis: 1/14/12 09:24 AM
Compound		%Recovery
2-Hexanone		111
Dibromochloromethane		110
1,2-Dibromoethane (EDB)		104
Chlorobenzene		100
Ethyl Benzene		103
m,p-Xylene		101
o-Xylene		104
Styrene		106
Bromoform		107
Cumene		112
1,1,2,2-Tetrachloroethane		100
Propylbenzene		106
4-Ethyltoluene		101
1,3,5-Trimethylbenzene		107
1,2,4-Trimethylbenzene		105
1,3-Dichlorobenzene		98
1,4-Dichlorobenzene		98
alpha-Chlorotoluene		103
1,2-Dichlorobenzene		95
1,2,4-Trichlorobenzene		91
Hexachlorobutadiene		99

Container Type: NA - Not Applicable

		Method	
Surrogates	%Recovery	Limits	
Toluene-d8	100	70-130	
1,2-Dichloroethane-d4	104	70-130	
4-Bromofluorobenzene	101	70-130	

Client Sample ID: LCS Lab ID#: 1201135A-08A EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	3011217 1.00	Date of Collection: NA Date of Analysis: 1/12/12 07:07 PM
Compound		%Recovery
Freon 12		120
Freon 114		115
Chloromethane		98
Vinyl Chloride		116
1,3-Butadiene		106
Bromomethane		120
Chloroethane		96
Freon 11		103
Ethanol		85
Freon 113		95
1,1-Dichloroethene		101
Acetone		101
2-Propanol		98
Carbon Disulfide		118
3-Chloropropene		108
Methylene Chloride		98
Methyl tert-butyl ether		102
trans-1,2-Dichloroethene		114
Hexane		100
1,1-Dichloroethane		98
2-Butanone (Methyl Ethyl Ketone	e)	99
cis-1,2-Dichloroethene		93
Tetrahydrofuran		94
Chloroform		103
1,1,1-Trichloroethane		102
Cyclohexane		103
Carbon Tetrachloride		106
2,2,4-Trimethylpentane		97
Benzene		96
1,2-Dichloroethane		104
Heptane		104
Trichloroethene		98
1,2-Dichloropropane		96
1,4-Dioxane		90
Bromodichloromethane		104
cis-1,3-Dichloropropene		101
4-Methyl-2-pentanone		99
Toluene		95
trans-1,3-Dichloropropene		106
1,1,2-Trichloroethane		99
Tetrachloroethene		97

Client Sample ID: LCS Lab ID#: 1201135A-08A EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	3011217 Date of Collection: NA 1.00 Date of Analysis: 1/12/12 07:00	
Compound		%Recovery
2-Hexanone		106
Dibromochloromethane		106
1,2-Dibromoethane (EDB)		101
Chlorobenzene		99
Ethyl Benzene		99
m,p-Xylene		100
o-Xylene		101
Styrene		102
Bromoform		100
Cumene		108
1,1,2,2-Tetrachloroethane		96
Propylbenzene		105
4-Ethyltoluene		96
1,3,5-Trimethylbenzene		102
1,2,4-Trimethylbenzene		100
1,3-Dichlorobenzene		95
1,4-Dichlorobenzene		94
alpha-Chlorotoluene		100
1,2-Dichlorobenzene		94
1,2,4-Trichlorobenzene		91
Hexachlorobutadiene		95

Container Type: NA - Not Applicable

		Method	
Surrogates	%Recovery	Limits	
Toluene-d8	103	70-130	
1,2-Dichloroethane-d4	105	70-130	
4-Bromofluorobenzene	103	70-130	

Client Sample ID: LCSD Lab ID#: 1201135A-08AA EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	3011218 1.00	Date of Collection: NA Date of Analysis: 1/12/12 07:24 PM
Compound		%Recovery
Freon 12		122
Freon 114		115
Chloromethane		100
Vinyl Chloride		107
1,3-Butadiene		104
Bromomethane		119
Chloroethane		107
Freon 11		108
Ethanol		83
Freon 113		96
1,1-Dichloroethene		99
Acetone		101
2-Propanol		97
Carbon Disulfide		117
3-Chloropropene		107
Methylene Chloride		100
Methyl tert-butyl ether		100
trans-1,2-Dichloroethene		113
Hexane		100
1,1-Dichloroethane		98
2-Butanone (Methyl Ethyl Ketone)		96
cis-1,2-Dichloroethene		93
Tetrahydrofuran		93
Chloroform		103
1,1,1-Trichloroethane		101
Cyclohexane		101
Carbon Tetrachloride		106
2,2,4-Trimethylpentane		102
Benzene		98
1,2-Dichloroethane		106
Heptane		106
Trichloroethene		98
1,2-Dichloropropane		96
1,4-Dioxane		91
Bromodichloromethane		103
cis-1,3-Dichloropropene		98
4-Methyl-2-pentanone		98
Toluene		95
trans-1,3-Dichloropropene		101
1,1,2-Trichloroethane		99
Tetrachloroethene		95

Client Sample ID: LCSD Lab ID#: 1201135A-08AA EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	3011218 1.00	Date of Collection: NA Date of Analysis: 1/12/12 07:24 PM
Compound		%Recovery
2-Hexanone		100
Dibromochloromethane		101
1,2-Dibromoethane (EDB)		99
Chlorobenzene		95
Ethyl Benzene		96
m,p-Xylene		95
o-Xylene		100
Styrene		102
Bromoform		99
Cumene		106
1,1,2,2-Tetrachloroethane		97
Propylbenzene		104
4-Ethyltoluene		94
1,3,5-Trimethylbenzene		104
1,2,4-Trimethylbenzene		100
1,3-Dichlorobenzene		94
1,4-Dichlorobenzene		95
alpha-Chlorotoluene		96
1,2-Dichlorobenzene		95
1,2,4-Trichlorobenzene		97
Hexachlorobutadiene		99

Container Type: NA - Not Applicable

		Method	
Surrogates	%Recovery	Limits	
Toluene-d8	103	70-130	
1,2-Dichloroethane-d4	107	70-130	
4-Bromofluorobenzene	102	70-130	

Client Sample ID: LCS Lab ID#: 1201135A-08B EPA METHOD TO-15 GC/MS FULL SCAN

-

File Name: Dil. Factor:	3011404 1.00	Date of Collection: NA Date of Analysis: 1/14/12 09:59 AM
Compound		%Recovery
Freon 12		113
Freon 114		111
Chloromethane		96
Vinyl Chloride		112
1,3-Butadiene		106
Bromomethane		115
Chloroethane		105
Freon 11		117
Ethanol		83
Freon 113		94
1,1-Dichloroethene		100
Acetone		96
2-Propanol		92
Carbon Disulfide		115
3-Chloropropene		106
Methylene Chloride		94
Methyl tert-butyl ether		98
trans-1,2-Dichloroethene		109
Hexane		96
1,1-Dichloroethane		95
2-Butanone (Methyl Ethyl Ketone)		96
cis-1,2-Dichloroethene		94
Tetrahydrofuran		90
Chloroform		99
1,1,1-Trichloroethane		98
Cyclohexane		100
Carbon Tetrachloride		102
2,2,4-Trimethylpentane		94
Benzene		94
1,2-Dichloroethane		102
Heptane		101
Trichloroethene		96
1,2-Dichloropropane		96
1,4-Dioxane		93
Bromodichloromethane		100
cis-1,3-Dichloropropene		100
4-Methyl-2-pentanone		96
Toluene		93
trans-1,3-Dichloropropene		104
1,1,2-Trichloroethane		96
Tetrachloroethene		93

Client Sample ID: LCS Lab ID#: 1201135A-08B EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	3011404 1.00	Date of Collection: NA Date of Analysis: 1/14/12 09:59 AM
Compound		%Recovery
2-Hexanone		102
Dibromochloromethane		101
1,2-Dibromoethane (EDB)		99
Chlorobenzene		96
Ethyl Benzene		97
m,p-Xylene		96
o-Xylene		99
Styrene		97
Bromoform		99
Cumene		104
1,1,2,2-Tetrachloroethane		94
Propylbenzene		101
4-Ethyltoluene		93
1,3,5-Trimethylbenzene		98
1,2,4-Trimethylbenzene		97
1,3-Dichlorobenzene		92
1,4-Dichlorobenzene		92
alpha-Chlorotoluene		97
1,2-Dichlorobenzene		91
1,2,4-Trichlorobenzene		92
Hexachlorobutadiene		95

Container Type: NA - Not Applicable

		Method	
Surrogates	%Recovery	Limits	
Toluene-d8	102	70-130	
1,2-Dichloroethane-d4	106	70-130	
4-Bromofluorobenzene	103	70-130	

Client Sample ID: LCSD Lab ID#: 1201135A-08BB EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	3011405 1.00	Date of Collection: NA Date of Analysis: 1/14/12 10:16 AM
••••••	1.00	
Compound		%Recovery
Freon 12		119
Freon 114		113
Chloromethane		98
Vinyl Chloride		105
1,3-Butadiene		104
Bromomethane		106
Chloroethane		97
Freon 11		112
Ethanol		86
Freon 113		97
1,1-Dichloroethene		101
Acetone		101
2-Propanol		98
Carbon Disulfide		118
3-Chloropropene		111
Methylene Chloride		99
Methyl tert-butyl ether		99
trans-1,2-Dichloroethene		114
Hexane		99
1,1-Dichloroethane		97
2-Butanone (Methyl Ethyl Ketone)	1	95
cis-1,2-Dichloroethene		95
Tetrahydrofuran		93
Chloroform		102
1,1,1-Trichloroethane		102
Cyclohexane		100
Carbon Tetrachloride		107
2,2,4-Trimethylpentane		100
Benzene		95
1,2-Dichloroethane		103
Heptane		102
Trichloroethene		96
1,2-Dichloropropane		95
1,4-Dioxane		88
Bromodichloromethane		100
cis-1,3-Dichloropropene		96
4-Methyl-2-pentanone		95
Toluene		92
trans-1,3-Dichloropropene		101
1,1,2-Trichloroethane		94
Tetrachloroethene		93

Client Sample ID: LCSD Lab ID#: 1201135A-08BB EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	3011405 1.00	Date of Collection: NA Date of Analysis: 1/14/12 10:16 AM
Compound		%Recovery
2-Hexanone		99
Dibromochloromethane		100
1,2-Dibromoethane (EDB)		97
Chlorobenzene		94
Ethyl Benzene		94
m,p-Xylene		95
o-Xylene		97
Styrene		98
Bromoform		96
Cumene		104
1,1,2,2-Tetrachloroethane		95
Propylbenzene		102
4-Ethyltoluene		92
1,3,5-Trimethylbenzene		102
1,2,4-Trimethylbenzene		96
1,3-Dichlorobenzene		95
1,4-Dichlorobenzene		92
alpha-Chlorotoluene		96
1,2-Dichlorobenzene		93
1,2,4-Trichlorobenzene		94
Hexachlorobutadiene		99

Container Type: NA - Not Applicable

		Method	
Surrogates	%Recovery	Limits	
Toluene-d8	101	70-130	
1,2-Dichloroethane-d4	110	70-130	
4-Bromofluorobenzene	103	70-130	

1/16/2012 Mr. Keith Hoofard Tetra Tech - GEO 2969 Prospect Park Suite 100 Rancho Cordova CA 95670

Project Name: WM-LIVERMORE Project #: Workorder #: 1201135B

Dear Mr. Keith Hoofard

The following report includes the data for the above referenced project for sample(s) received on 1/10/2012 at Air Toxics Ltd.

The data and associated QC analyzed by Modified ASTM D-1946 are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Air Toxics Ltd. for your air analysis needs. Air Toxics Ltd. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Kelly Buettner at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Killy Butte

Kelly Buettner Project Manager

Page 1 of 13

WORK ORDER #: 1201135B

Work Order Summary

CLIENT:	Mr. Keith Hoofard	BILL TO:	Mr. Keith Hoofard
	Tetra Tech - GEO		Tetra Tech - GEO
	2969 Prospect Park		2969 Prospect Park
	Suite 100		Suite 100
	Rancho Cordova, CA 95670		Rancho Cordova, CA 95670
PHONE:	916-853-1800	P.O. #	117-2402099.01
FAX:	916-853-1860	PROJECT #	WM-LIVERMORE
DATE RECEIVED:	01/10/2012	CONTACT	Kelly Buettner
DATE COMPLETED:	01/16/2012	comaci.	Keny Ductuler

			RECEIPT	FINAL
FRACTION #	<u>NAME</u>	TEST	VAC./PRES.	PRESSURE
01A	SV-13	Modified ASTM D-1946	17.5 "Hg	5 psi
02A	SV-14	Modified ASTM D-1946	24.5 "Hg	5 psi
03A	SV-15	Modified ASTM D-1946	2.5 "Hg	5 psi
04A	SV-16	Modified ASTM D-1946	4.0 "Hg	5 psi
05A	SV-17	Modified ASTM D-1946	23.0 "Hg	5 psi
06A	Lab Blank	Modified ASTM D-1946	NA	NA
07A	LCS	Modified ASTM D-1946	NA	NA
07AA	LCSD	Modified ASTM D-1946	NA	NA

CERTIFIED BY:

Sinda d. Fruman

DATE: 01/16/12

Laboratory Director

Certification numbers: AZ Licensure AZ0719, CA NELAP - 02110CA, LA NELAP - 02089, NY NELAP - 11291, TX NELAP - T104704434-11-3, UT NELAP -CA009332011-1, WA NELAP - C935 Name of Accrediting Agency: NELAP/Florida Department of Health, Scope of Application: Clean Air Act, Accreditation number: E87680, Effective date: 07/01/11, Expiration date: 06/30/12. Air Toxics Ltd. certifies that the test results contained in this report meet all requirements of the NELAC standards This report shall not be reproduced, except in full, without the written approval of Air Toxics Ltd.

> 180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 95630 (916) 985-1000. (800) 985-5955. FAX (916) 985-1020

LABORATORY NARRATIVE Modified ASTM D-1946 Tetra Tech - GEO Workorder# 1201135B

Five 1 Liter Summa Canister samples were received on January 10, 2012. The laboratory performed analysis via Modified ASTM Method D-1946 for Helium gas in air using GC/TCD. The method involves direct injection of 1.0 mL of sample.

Method modifications taken to run these samples are summarized in the table below. Specific project requirements may over-ride the ATL modifications.

Requirement	ASTM D-1946	ATL Modifications
Calibration	A single point calibration is performed using a reference standard closely matching the composition of the unknown.	A 3-point calibration curve is performed. Quantitation is based on a daily calibration standard which may or may not resemble the composition of the associated samples.
Reference Standard	The composition of any reference standard must be known to within 0.01 mol % for any component.	The standards used by ATL are blended to a >/= 95% accuracy.
Sample Injection Volume	Components whose concentrations are in excess of 5 % should not be analyzed by using sample volumes greater than 0.5 mL.	The sample container is connected directly to a fixed volume sample loop of 1.0 mL on the GC. Linear range is defined by the calibration curve. Bags are loaded by vacuum.
Normalization	Normalize the mole percent values by multiplying each value by 100 and dividing by the sum of the original values. The sum of the original values should not differ from 100% by more than 1.0%.	Results are not normalized. The sum of the reported values can differ from 100% by as much as 15%, either due to analytical variability or an unusual sample matrix.
Precision	Precision requirements established at each concentration level.	Duplicates should agree within 25% RPD for detections > 5 X's the RL.

Receiving Notes

Samples SV-13, SV-14 and SV-17 were received with significant vacuum remaining in the canister. The residual canister vacuum resulted in elevated reporting limits.

Analytical Notes

There were no analytical discrepancies.

Definition of Data Qualifying Flags

Seven qualifiers may have been used on the data analysis sheets and indicate as follows:

- B Compound present in laboratory blank greater than reporting limit.
- J Estimated value.
- E Exceeds instrument calibration range.
- S Saturated peak.
- Q Exceeds quality control limits.
- U Compound analyzed for but not detected above the detection limit.
- M Reported value may be biased due to apparent matrix interferences.

File extensions may have been used on the data analysis sheets and indicates as follows:

a-File was requantified

b-File was quantified by a second column and detector

r1-File was requantified for the purpose of reissue

Summary of Detected Compounds NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

Client Sample ID: SV-13

Lab ID#: 1201135B-01A

No Detections Were Found.

Client Sample ID: SV-14

Lab ID#: 1201135B-02A

No Detections Were Found.

Client Sample ID: SV-15

Lab ID#: 1201135B-03A

	Rpt. Limit	Amount
Compound	(%)	(%)
Helium	0.073	20

Client Sample ID: SV-16

Lab ID#: 1201135B-04A

No Detections Were Found.

Client Sample ID: SV-17

Lab ID#: 1201135B-05A

No Detections Were Found.

Client Sample ID: SV-13 Lab ID#: 1201135B-01A NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

٦

File Name: Dil. Factor:	9011030 3.22	Date of Colle Date of Anal	ection: 1/9/12 12:25:00 PM ysis: 1/10/12 09:14 PM
Compound		Rpt. Limit (%)	Amount (%)
Helium		0.16	Not Detected

Client Sample ID: SV-14 Lab ID#: 1201135B-02A NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

٦

File Name: Dil. Factor:	9011031 7.31	Date of Colle Date of Anal	ection: 1/9/12 12:47:00 PM ysis: 1/10/12 09:20 PM
Compound		Rpt. Limit (%)	Amount (%)
Helium		0.36	Not Detected

Client Sample ID: SV-15 Lab ID#: 1201135B-03A NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

٦

File Name: Dil. Factor:	9011032 1.46	Date of Colle Date of Analy	ction: 1/9/12 1:29:00 PM /sis: 1/10/12 09:26 PM
Compound		Rpt. Limit (%)	Amount (%)
Helium		0.073	20

Client Sample ID: SV-16 Lab ID#: 1201135B-04A NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

٦

File Name: Dil. Factor:	9011033 1.55	Date of Coll Date of Ana	ection: 1/9/12 1:57:00 PM lysis: 1/10/12 09:33 PM
Compound		Rpt. Limit (%)	Amount (%)
Helium		0.078	Not Detected

Client Sample ID: SV-17 Lab ID#: 1201135B-05A NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

٦

File Name: Dil. Factor:	9011034 5.74	Date of Colle Date of Anal	ection: 1/9/12 3:27:00 PM lysis: 1/10/12 09:39 PM
Compound		Rpt. Limit (%)	Amount (%)
Helium		0.29	Not Detected

Client Sample ID: Lab Blank Lab ID#: 1201135B-06A NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

٦

File Name: Dil. Factor:	9011029 1.00	Date of Coll Date of Ana	ection: NA Iysis: 1/10/12 09:04 PM
Compound		Rpt. Limit (%)	Amount (%)
Helium		0.050	Not Detected

Container Type: NA - Not Applicable

Client Sample ID: LCS Lab ID#: 1201135B-07A NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name:	9011028	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 1/10/12 08:56 PM

Compound

%Recovery 94 1

Helium

Container Type: NA - Not Applicable

Client Sample ID: LCSD Lab ID#: 1201135B-07AA NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name:	9011035	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 1/10/12 09:46 PM

Compound

%Recovery 93 Helium

Container Type: NA - Not Applicable