

RECEIVED

Project No. **7380.000.003**

August 15, 2011

9:47 am, Aug 18, 2011

Alameda County

Environmental Health

Mr. Jerry Wickham Alameda County Environmental Health 1131 Harbor Bay Parkway Alameda. CA 94502-6540

Subject: 1000 North Vasco Road

Livermore, California

UPDATED SITE CHARACTERIZATION REPORT

Dear Mr. Wickham:

ENGEO is pleased to present this site characterization report for the subject property ("Property"), located at 1000 North Vasco Road in Livermore, California (Figure 1). The original version of this report was prepared in accordance with the approved work plan dated April 1, 2011. This updated report includes additional characterization activities that were presented in an Interim Remedial Action Workplan dated July 12, 2011. Site remediation activities are currently in progress.

A leaking underground storage tank (LUST) case associated with the Property was closed in 2000; however, during recent removal of underground storage tanks (USTs) and associated piping and dispenser systems, evidence of soil and groundwater impact was encountered.

The purpose of this site characterization was to determine the extent of subsurface impact at the Property. Specifically, we addressed several data gaps that were identified in our April 2011 work plan. These data gaps were as follows:

- Vertical and lateral delineation of soil impacts in the vicinity of the former USTs and dispenser systems.
- Lateral delineation of groundwater impacts in the vicinity of the former USTs and dispenser systems.
- Potential soil vapor impacts resulting from identified soil and groundwater impacts.
- Potential VOC source at the Property.
- Determination of near-surface soil impact near pad-mounted transformer.

SUMMARY OF PREVIOUS ONSITE ENVIRONMENTAL INVESTIGATIONS

ENGEO; Modified Phase One Environmental Site Assessment, 1000 North Vasco Road, Livermore, California; October 27, 2006; Project No. 7380.1.001.02.

ENGEO performed a modified phase one environmental site assessment at the Property in 2006. Two Recognized Environmental Conditions (RECs) were noted – the gas station and the automotive service facility. The gas station had been identified as a LUST site. Four USTs were removed from the Property in 1994. At the time of the removal, evidence of leakage was observed at the tanks and/or associated piping. The tank pits and fuel dispenser locations were over-excavated as part of the remedial action. Hydrocarbon impact was confirmed within soils near the USTs. In May 1995, three groundwater wells were installed at the Property. One well (MW-1) exhibited detectable total petroleum hydrocarbons as diesel (TPH-d) concentrations for two (first and last) of the four quarters the wells were sampled. Gasoline was reported in one well (MW-3) during the initial 1995 sampling event. None of the BTEX (benzene, toluene, ethylbenzene and total xylene(s)) compounds were detected during the sampling events.

ACEH issued a Remedial Action Completion Certification (RACC) report dated May 22, 2000, stating that no further action related to the petroleum release(s) at the Property was required, and on May 23, 2000, issued a fuel leak site closure letter acknowledging the case was closed. The Regional Water Quality Control Board (RWQCB) signed and stamped the RACC report. The Property is listed as case closed in the LUST database maintained by the RWQCB.

Kens Tire, an automotive service facility, was observed in the south-central area of the Property. Hazardous and potentially hazardous materials were stored and generated at the facility. Though good housekeeping practices were observed at this facility, ENGEO opined that it was possible that unauthorized releases may have produced localized impacts to the subject property.

Additionally, approximately 600 cubic yards of material had been stockpiled on the vacant western portion of the property, which was generated from the UST removal.

Based on the initial findings of the assessment, ENGEO's work scope was revised to include soil and groundwater sampling. Borings were advanced near USTs and dispensing equipment to facilitate soil and groundwater sampling. Composite soil samples were also collected from soil stockpile on the vacant western portion of the Property.

A total of 12 direct push soil borings were advanced near the former USTs and fuel dispenser islands. Most of the collected soil samples exhibited either non-detectable or trace concentrations of hydrocarbon analytes; however, two samples collected near the diesel USTs exhibited elevated TPH as gasoline (TPH-g), TPH-d, and TPH as motor oil (TPH-mo) concentrations (maximum concentrations of 310 milligrams per kilogram (mg/kg), 730 mg/kg, and 2,200 mg/kg for TPH-g, TPH-d, and TPH-mo respectively). No BTEX or MTBE concentrations were detected in the collected soil samples.

Groundwater samples were collected from the two monitoring wells observed on the property. The groundwater samples were recovered from MW-1 (adjacent to the former diesel tank pit)

and from MW-3 (near former gasoline fuel dispensers). At the time of the investigation, MW-2 could not be located. The samples were analyzed for TPH-g, TPH-d, TPH-mo, BTEX, and MTBE. None of the samples exhibited detectable analyte concentrations.

A total of five 4-point composite soil samples were collected from the stockpiled soil. Trace concentrations of TPH-d, TPH-mo, and toluene were detected in some of the collected samples. These concentrations were below respective screening levels. Additionally, the samples exhibited detectable concentrations of several CAM-17 metal analytes; however, these were within expected background concentrations.

ENGEO; Supplemental Environmental Services, Shell Gas Station, 1000 North Vasco Road, Livermore, California; June 20, 2007; Project No. 7380.1.002.04.

ENGEO conducted a soil gas survey at the Property in 2007. The scope of work consisted of the recovery of three soil gas samples for laboratory analysis. One sample, G-1, was the only sample documented to contain concentrations of compounds at levels above Environmental Screening Levels (ESLs) established by the RWQCB and California Human Health Screening Levels (CHHSLs) established by the California EPA Office Of Environmental Health Hazard Assessment. The detected concentrations of benzene and tetrachloroethene (PCE) were above these respective screening levels. Additionally, elevated concentrations of hexane, tetrahydrofuran, cyclohexane, and 2, 2, 4-trimethylpentane were detected. At the time, ENGEO indicated that the elevated concentrations may have been attributable to a surface or subsurface gasoline release.

Krazan and Associates; Phase I Environmental Site Assessment, BOTW No. 09-510-02, Geno's Country Store, 1000 North Vasco Road, Livermore, California; April 3, 2009; Project No. 013-09074.

Krazan and Associates, Inc. (Krazan) performed a phase I environmental site assessment at the Property in 2009. Based on their assessment of the Property, Krazan identified two RECs, two potential RECs, and one historic REC as follows.

RECs

- At the time of the reconnaissance, five former gasoline dispenser islands were observed to the east of the restaurant, and four former diesel dispensers were observed to the north of the restaurant. Further, Krazan noted evidence of three USTs to the north and northeast of the restaurant. According to available records, these included two 15,000-gallon gasoline tanks and one 10,000-gallon diesel tank. The tanks and associated dispensers were reportedly installed in 1994 and temporarily sealed and abandoned in 2008.
- Four storm drains were observed during the site reconnaissance. According to the property owner at the time of the assessment, these drains were reportedly not connected to the municipal sewer system that services the Property, but instead were connected to dry wells measuring approximately 4 to 6 feet in diameter and 15 feet in depth. Given the Property use and the shallow groundwater table, these storm drains were considered an REC.

Potential RECs

- At the time of the reconnaissance, approximately 200 waste tires were observed at the Property. Although not considered an environmental condition, these were considered a potential code compliance issue and potential environmental concern.
- Krazan noted that a citizen's complaint of oil in the creek north of the Property was filed in January 1999. The Livermore-Pleasanton Fire Department (LPFD) reportedly responded to the complaint and observed an oil sheen extending approximately 1 mile in length. A file review did not identify records associated with the spill. The Property owner at the time of the assessment indicated that he was unaware of a release associated with the Property, and an overturned tanker truck near the Property around the time of the complaint may have been responsible for the release.

Historical REC

• Krazan identified the former LUST at the Property as a historical REC. Four USTs and associated piping and dispenser systems were removed in 1994. Following tank removal and over-excavation, elevated petroleum concentrations were identified within in-place soils at the excavation. Following additional soil excavation, it was reported that the bulk of impacted soil had been removed. Three groundwater monitoring wells were installed to a depth of 15 feet below the ground surface. Following on-going groundwater monitoring, ACEH issued a Remedial Action Completion Certification (RACC) report in May 2000.

Krazan and Associates, Phase II Environmental Site Assessment, BOTW No. 09-510-02, Geno's Country Store, 1000 North Vasco Road, Livermore, California; September 28, 2009; Project No. 013-09074.

Krazan performed a phase II environmental site assessment at the Property in 2009. The work was performed to assess the RECs identified in the Phase I report as well as other potential subsurface areas of impact. A total of 17 soil borings were advanced to depths between 5 and 20 feet below the ground surface in the location of the USTs, piping, dispensers, dry wells, and sumps (including near the car wash and the restaurant grease trap). Soil samples collected from the USTs, piping, and dispensers were analyzed for the presence of TPH-g, TPH-d, BTEX, and MTBE. Samples collected near the dry wells and sumps were analyzed for the presence of total extractable petroleum hydrocarbons (TEPH), volatile organic compounds (VOCs), and CAM-17 metals. Additionally, a groundwater sample was collected from MW-3 (located to the east of the restaurant) and analyzed for the presence of TPH-g, TPH-d, BTEX, and MTBE.

TPH-d concentrations were detected in selected samples collected near the dispensers; however, these concentrations were below applicable screening levels. None of the samples collected near the USTs, piping, or dispensers exhibited detectable concentrations of TPH-g, BTEX, or MTBE. None of the samples collected near the sumps or dry wells exhibited detectable concentrations of TEPH or VOCs. Detected metal analytes were below appropriate screening levels, or within typical background concentrations. The groundwater sample exhibited a detected MTBE concentration of 2.2 micrograms per liter (μ g/l). No other analytes were detected in the sample. Krazan attributed the MTBE detection to an offsite source.

Based on the results of the assessment, Krazan did not recommend additional subsurface assessment in the areas that had been investigated.

Tank and Pipeline Removal Narrative, 1000 N. Vasco Road Livermore, California, January 21, 2011 and January 27, 2011.

ENGEO reviewed a tank and pipeline report, summarizing work observed by Mr. Marc Papineau. Following diesel and gasoline tank removal, a total of 23 soil samples were collected, including four from the gasoline storage tank pit, four from the diesel tank pit, 12 from the piping trenches, one from the base of the vent pipe rack below elbow depth, and two from soil stockpiles generated during removal. Additionally, two pit water samples were collected (one from each of the two tank pits). The sampling was reportedly performed under the observation of Inspector Danielle Stefani of the LPFD.

Trace TPH-d concentrations were identified in some of the soil samples collected near the gasoline dispensers. Additionally, elevated concentrations of TPH-d (ranging from 1,400 to 3,200 mg/kg) were detected in three near-surface soil samples collected near the former diesel dispensers. Concentrations of TPH-g (240 μ g/l), MTBE (0.98 μ g/l), TBA (5 μ g/l), toluene (6.3-7.6 μ g/l), ethylbenzene (3.8-4.6 μ g/l), and xylene(s) (38-41 μ g/l) were detected in the water sample collected from the gasoline tank pit. The diesel tank pit water sample exhibited concentrations of 540,000 μ g/l of TPH-d, 190 μ g/l ethylbenzene, 800 μ g/l toluene, and 1,500 μ g/l xylene(s).

ENGEO; Phase I Environmental Site Assessment Update, Macedo Property, Livermore, California; March 18, 2011; Project No. 7380.000.002.

ENGEO prepared a phase I environmental site assessment update in March 2011. A review of regulatory databases maintained by county, state, and federal agencies identified the Property as a previous LUST case, having been granted closure in 2000. A review of regulatory agency records and available databases did not identify contaminated facilities within the appropriate ASTM search distances that would be expected to affect the Property. The ESA report noted the recent removal of diesel and gasoline tanks from the Property as well as the reported soil and groundwater impact near the tanks and appurtenant facilities.

During the March 2011 site reconnaissance, several standpipes were observed around the perimeter of the automotive repair facility. The purpose of these standpipes was subsequently reported to be affiliated with an unfinished sewer system. Additionally, the potential presence of asbestos-containing building materials (ACBM) and lead-based paints was noted, and a lead-based paint and asbestos survey was recommended prior to demolition or significant renovation of the structures.

Several locations across the Property were observed to include the storage and use of fresh and waste petroleum products and potentially hazardous materials, as well as waste tires. Although testing of these materials and locations was not recommended at the time of report preparation, recommendations were made for removal and proper disposal of these materials. Additionally, a recommendation was made for an environmental professional to observe demolition and grading activities in these locations to determine if environmental impact had occurred.

Based on the findings of this assessment, two Recognized Environmental Conditions (RECs) were identified: the documented soil and groundwater impact associated with the former USTs and the presence of an automotive service facility. Several potential and historical RECs were identified for the Property, including the potential presence of lead-based paint and asbestos-containing building materials, the historic LUST case (closed in 2000), and the aforementioned storage of fresh and waste petroleum product, potentially hazardous materials, and waste tires.

SITE CHARACTERIZATION FIELD WORK

To address these identified data gaps, several field sampling activities have been completed at the Property. These activities are presented below.

Soil Sampling

Subsurface Soil Sampling

The purpose of the subsurface soil sampling study was to define further the inferred area of soil impact located in the vicinity of the former USTs and dispenser systems, as well as to determine if soil in other portions of the Property had been impacted during historic land uses and operations. We collected continuous soil cores from a total of 14 locations (Figure 2) on April 19 and 20, 2011, with the assistance of a C-57 licensed Geoprobe® direct push rig. One boring, Boring GP8, was moved approximately 20 feet to the south of its originally intended location due to access issues.

Continuous soil cores from each boring were logged by an ENGEO representative. Specific soil samples were collected for laboratory analysis by cutting a 6-inch portion of the Geoprobe® soil core liners corresponding to the respective desired sampling depths. Generally speaking, three samples were collected from each boring at respective depths of 4, 8, and 12 feet below the ground surface. During sampling, the retrieved soils were screened for visual and olfactory evidence of impact as well as with a photoionization detector (PID) for volatile organic vapors. On occasion, there was evidence or suspicion of impact within the collected soil profile. In these instances, additional or alternate samples were collected and submitted for analysis.

The sample sleeves were sealed using Teflon sheets secured by tight-fitting plastic end caps and labeled with a unique sample number, sample location, time/date collected, lab analysis, and the sampler's identification. The soil samples were placed in an ice-cooled chest submitted under documented chain of custody to SunStar Laboratories, a State-certified laboratory based in Lake Forest, California. The submitted soil samples were analyzed for the following target analytes:

- TPH-g, methyl-tert butyl ether (MTBE), benzene, toluene, ethylbenzene, and xylene(s) (BTEX) and fuel oxygenates (EPA 8260B)
- TPH-d and TPH-mo (EPA/8015M with silica gel cleanup)
- Volatile organic compounds (VOCs) by EPA Test Method 8260B

As presented in Table 1 (attached), several samples exhibited detectable concentrations of TPH-d. These include samples collected from Borings GP2, GP4, GP9, GP10, GP11, GP12, and GP14. The borings are located in the vicinity of the former gasoline and diesel USTs, the diesel pump dispensers, and the former diesel tanks removed in 1994. In most cases, these detected residual concentrations were below representative ESLs residential land use scenario¹; however, detected concentrations exceeded representative ESLs in three samples. Sample GP4@4' (TPH-d = 110 mg/kg); GP9@10' (270 mg/kg), and GP10@10' (860 mg/kg) exceeded the respective ESL of 83 mg/kg. Additionally, two samples exhibited TPH-mo concentrations that exceeded the respective ESL of 370 mg/kg; GP2@4' (880 mg/kg) and GP4@4' (1,000 mg/kg). In all cases, these samples (collected from the areas of the former USTs and dispenser pumps) were underlain by samples that did not exhibit detectable TPH-d or TPH-mo concentrations. The concentrations and locations of TPH impact are similar to those encountered during previous investigations at the Property. Additional discussion of the extent and location of these impacts are presented in later sections of this report. The laboratory analysis report of these samples is presented in its entirety in Appendix A.

Soil Sampling Near Existing Transformer

Soil samples were collected near a pad-mounted transformer, located to the west of the existing restaurant structure. A total of four soil samples were collected from an approximate depth of 3 inches below the ground surface at the locations shown in Figure 2. The soil samples were recovered using 2-inch-diameter by 6-inch-long stainless steel liners. The samples were sealed with Teflon, plastic end caps and duct tape, and preserved in an ice-cooled chest before being transported under documented chain of custody to SunStar Laboratories, a State-certified laboratory based in Lake Forest, California. The submitted soil samples were analyzed as a four-point composite for the following target analytes:

- Polychlorinated biphenyls (PCBs) by EPA Method 8082
- TPH-d and TPH-mo (EPA/8015M with silica gel cleanup)

As presented in Table 2, the composite soil sample (labeled as "Composite"), did not exhibit detectable concentrations of PCBs. The sample exhibited detected concentrations of 34 and 39 mg/kg, respectively, for TPH-d and TPH-mo. These concentrations are below respective ESLs. The laboratory analysis report of these samples is presented in its entirety in Appendix A.

Soil Stockpiles

Approximately 600 cubic yards of stockpiled soil are located at the western portion of the Property. The stockpiled soil was reportedly excavated and placed at the time of UST removal in 1994. We understand that the stockpiled material will ultimately be transported from the Property for disposal at an appropriate facility. Although ENGEO staff sampled the soil material in 2006 (trace residual petroleum hydrocarbon concentrations were detected in selected samples), ACEH requested additional sampling.

¹ SFRWQCB ESLs, 2008: Table A-1 – Shallow Soil Screening Levels for Residential Land Use where Groundwater is a Potential Drinking Water Source.

At the time of sampling, the stockpiled soil was in a different configuration that at the time of the 2006 sampling. The current configuration was not observed or confirmed at the time of the 2011 ESA update; heavy vegetation obscured this area at the time of that study. The stockpile configuration present at the time of sampling is presented in Figure 2.

A total of eight surface soil samples were collected from these soils as depicted on Figure 2. The soil samples were recovered using 2-inch-diameter by 6-inch-long stainless steel liners. The sample sleeves were sealed using Teflon sheets secured by tight-fitting plastic end caps and labeled with a unique sample number, sample location, time/date collected, lab analysis, and the sampler's identification. The soil samples were placed in an ice-cooled chest submitted under documented chain of custody to SunStar Laboratories, a State-certified laboratory based in Lake Forest, California. The submitted soil samples were analyzed for the following target analytes:

- TPH-g, MTBE, BTEX, and fuel oxygenates (EPA 8260B)
- CAM-17 metals (EPA Methods 6010B and 7471)

As presented in Table 2 (attached), the soil samples (labeled as D1 through D8), did not exhibit detectable concentrations of TPH-g, BTEX, or fuel oxygenates. Several CAM-17 analytes were detected; however, these concentrations were within typical background concentrations in the Livermore area. These concentrations are below respective ESLs considering a residential land-use scenario. Also presented in Table 2, the samples collected in 2006 did not exhibit detectable TPH-g, BTEX, or MTBE concentrations. Residual concentrations of TPH-d and TPH-mo were detected in the 2006 samples; however, these were below ESLs assuming a residential land-use scenario. Additionally, the CAM-17 analyte concentrations in the 2006 and 2011 samples were of a similar magnitude and were within typical background concentrations. As the 2011 samples are similar to the 2006 samples, and none of the target analytes exceed respective ESLs, it is our opinion these soils have been adequately characterized and could be considered for appropriate disposal without special considerations or for unrestricted re-use at the Property. The laboratory analysis report of the 2011 samples is presented in its entirety in Appendix A.

Groundwater Sampling

To determine the extent (if any) of groundwater impact at the Property, a groundwater study was performed. Samples were collected at multiple locations across the Property, including near the former diesel and gasoline USTs and dispenser pumps. A total of nine grab groundwater samples were collected on April 19 and 20, 2011, from locations depicted on Figure 3. Although initially planned, groundwater could not be collected from Boring GP5-GW. An additional sample was collected from GP11. Additionally, a sample collected from GP9-GW was inadvertently destroyed following recovery. Sample recovery was also attempted from the three existing onsite groundwater wells. However, MW-1 did not yield groundwater, and MW-2 could not be located. Therefore, only MW-3 could be sampled.

The groundwater samples were collected from the depth of the first encountered groundwater, approximately 8 to 9 feet below the ground surface. The grab groundwater samples were collected using Geoprobe® direct push technology. Temporary PVC casings were used in each borehole to facilitate collection; groundwater samples were collected using dedicated disposable bailers. Following collection, well points were removed and backfilled in accordance with Zone 7 Water Agency requirements.

When collecting groundwater from MW-3, the depth to the groundwater surface was measured using an electronic water level indicator. Three well casing volumes of groundwater were purged from the well using a dedicated disposable bailer. The purge water was transferred into a drum and removed from the Property by the drilling contractor.

Upon collection, groundwater samples were placed into laboratory-provided, pre-preserved sample containers. Each container was labeled with sample identification, sample location, date and time of collection and sampler's identification. The groundwater samples were placed in an ice-cooled chest submitted under documented chain of custody to SunStar Laboratories, a State-certified laboratory based in Lake Forest, California. The submitted groundwater samples were analyzed for the following target analytes:

- TPH-g, MTBE, BTEX, and fuel oxygenates (EPA 8260B)
- TPH-d and TPH-mo (EPA/8015M with silica gel cleanup)
- VOCs by EPA Test Method 8260B

As presented in Table 3 and on Figure 3, in most cases, none of the collected groundwater samples exhibited detectable concentrations of TPH-mo, BTEX, fuel oxygenates, or most VOCs. Once sample (GP1-GW) exhibited a total xylene(s) concentration of 2.6 μ g/l. Additionally, three samples (GP7-GW, GP10-GW, and MW-3) exhibited respective trichloroethene (TCE) concentrations of 2, 2.3, and 1.2 μ g/l. These total xylene(s) and TCE concentrations are all below respective Maximum Contaminant Levels (MCLs).

One sample, GP1-GW, exhibited a TPH-g concentration of 55 μ g/l and a TPH-d concentration of 890 μ g/l. While the TPH-g concentration is below its respective ESL², the TPH-d concentration exceeds the ESL of 100 μ g/l assuming a residential land use scenario. Additionally, GP11-GW exhibited a TPH-g concentration of 110 μ g/l, exceeding its respective ESL of 100 μ g/l assuming a residential land use scenario. The laboratory analysis report of the 2011 samples is presented in its entirety in Appendix A.

As presented in the original site characterization report as well as the Interim Remedial Action Workplan dated July 12, 2011, A Sensitive Receptor Survey (SRS) identified one supply well, 2S/2E 35L2, at a listed address of 1151 Central Avenue. This well was sampled on July 13, 2011. The well system consisted of two standpipes – a shallow standpipe and a deep standpipe. For sample extraction, a portable irrigation pump and hose system was placed into the well. Each well was flushed for approximately five minutes prior to sampling. Once the flushing

² SFRWQCB ESLs, 2008: Table F-1A – Groundwater Screening Levels where Groundwater is a Potential Drinking Water Source.

was completed, groundwater samples were collected and placed into laboratory-provided, prepreserved sample containers. Each container was labeled with sample identification, sample location, date and time of collection and sampler's identification. The groundwater samples were placed in an ice-cooled chest submitted under documented chain of custody to TestAmerica Laboratories, Inc., a State-certified laboratory based in Pleasanton, California. The submitted groundwater samples were analyzed for the following target analytes:

- TPH-g and VOCs (EPA 8260B)
- TPH-d (EPA/8015M with silica gel cleanup)

As presented in Table 3, with the exception of a detection of MTBE in the shallow well, none of the target analytes were detected. The shallow well sample exhibited an MTBE concentration of 3.6 μ g/l, which is below its respective MCL and is not considered a COC associated with the subject Property. Based on the laboratory analysis, these nearby wells do not appear to have been impacted by the releases at the Property.

The laboratory analysis report of these samples is presented in its entirety in Appendix C.

Soil Vapor Sampling

In addition to soil and groundwater sampling, we performed a soil vapor sampling program. A total of 12 soil vapor monitoring wells were installed in locations situated across the Property, as shown in Figure 5. Some of the soil vapor monitoring wells were installed in different locations than originally intended as follows:

- SG-8 was moved from a location west of the northern metal shed to approximately 10 feet from the northeast corner of the shed due to access limitations.
- SG-7 was moved approximately 50 feet to the south of its originally intended location due to the placement of SG-8.
- SG-9 was moved approximately 20 feet to the south of its originally intended location due to access limitations.
- SG-1 was moved approximately 10 feet to the east of its originally intended location due to difficult drilling conditions.

The installation and sampling of the soil vapor monitoring wells was performed in accordance with the Department of Toxic Substances Control (DTSC) *Draft Advisory – Active Soil Gas Investigation (March 2010)*. The wells were installed on April 19 and 20, 2011. The soil vapor monitoring well casings consist of ¼-inch diameter Teflon® tubing equipped with a filter at the base of the tubing. The wells were installed within an approximately 4-inch-diameter soil boring to a depth of 5.5 feet below ground surface. Upon completion of the boring, approximately 6 inches of No. 3 sand was placed into the bottom of the boring. The well casing was inserted such that the filter is situated at 5 feet below the ground surface, with the top of the Teflon tubing extending approximately 6 inches above the ground surface. Approximately 6 inches of sand was placed into the annular space of the boring, followed by 12 inches of hydrated bentonite. The final well seal was installed by filling the remaining 3 feet of the boring with neat cement grout. A well construction diagram is included as Figure 6.

Vapor samples were collected from the soil vapor monitoring wells on May 13, 2011. The sample train was connected to the Teflon tubing emanating from the well using airtight connectors and a built-in flow controller set to 150 ml/min. Prior to sample collection, a purge canister was opened and three purge volumes were extracted from the well. The purging process also allowed for a system leak test. After purging, a sample was collected by opening the sample canister valve and allowing the sample canister to extract soil vapor until the vacuum in the sample canister reached approximately 5 inches Hg. The leak detection compound 1,1-Diflouroethane was applied to cloth rags, which were placed around the manifold fittings during sample collection as an additional system leak check.

Following sampling, each sample canister was submitted under documented chain of custody to SunStar Laboratories, a State-certified laboratory based in Lake Forest, California. The submitted soil vapor samples were analyzed for volatile organic compounds (VOCs), including TPH-g, by EPA Test Method TO-15.

As presented in Table 4 (attached), several VOCs were detected in the soil vapor samples. With limited exception, these detected concentrations were below respective ESLs considering a residential land use scenario³. Several of the detected VOCs, including a range of chlorinated solvents, were not present in soil and groundwater and are considered to have originated from an offsite source. One sample, SG4, exhibited a tetrachloroethene concentration of 450 $\mu g/m^3$, which exceeds the ESL of 410 $\mu g/m^3$. Additionally, several samples exhibited TPH-g concentrations that exceed the respective ESL of 10,000 $\mu g/m^3$. Additional discussion of the extent and location of these impacts are presented in later sections of this report. The laboratory analysis report of these samples is presented in its entirety in Appendix B.

A second round of soil vapor sampling was performed at the Property on July 13 and 14, 2011. The samples were collected following the protocols described above. Following sampling, each sample canister was submitted under documented chain of custody to Air Toxics Ltd., a State-certified laboratory based in Folsom, California. The submitted soil vapor samples were analyzed for volatile organic compounds (VOCs) by EPA Test Method TO-15 and for TPH-g and TPH-d by EPA Test Method TO-17. For three of the samples (SG-3, SG-5, and SG-10), vacuum remained in the canisters, resulting in elevated detection limits. Additionally, the TO-17 samples collected from Wells 2 and 3 were both inadvertently labeled as "SG-3"; however, both of these samples exhibited non-detectable concentrations of TPH-g and TPH-d.

As presented in Table 4 (attached), several VOCs were detected in the soil vapor samples. With the exception of TPH-g and TPH-d, all detected VOC concentrations were below respective ESLs considering a residential land use scenario³. Two samples, SG-1 and SG-6, exhibited TPH-g and/or TPH-d concentrations that exceed the respective ESLs of $10,000~\mu g/m^3$. However, these two vapor wells are located adjacent to impacted soil locations that will be remediated during proposed excavation activities. Therefore, these elevated concentrations are expected to attenuate to insignificant or non-detectable concentrations following completion of the remedial program.

_

³ SFRWQCB ESLs, 2008: Table E-2 – Shallow Soil Gas Screening Levels for Residential Land Use.

The laboratory analysis report for the July 2011 soil vapor sampling program is presented in its entirety in Appendix D.

CONCEPTUAL SITE MODEL

Combining the data from the recent workplan with that collected during the past explorations and sampling programs completed by ENGEO, Krazan, and Mr. Marc Papineau, we have prepared a conceptual site model (CSM). The CSM has been developed from the known site history and soil and groundwater data collected at the Property to date. A discussion of the source and type of contamination, contaminant migration, extent of impact, and a receptor exposure assessment are presented in the following sections.

Geology and Topography

The site is located within the Coast Ranges geomorphic province of California. The Coast Ranges are dominated by a series of northwest-trending mountain ranges that have been folded and faulted in a tectonic regime that involves both translational and compressional deformation. The site is located in the southwest portion of the Livermore Valley, which is underlain by a thick sequence of alluvial deposits. The soil deposits in this area are mapped as Pleistocene alluvial fan and fluvial deposits (Helley & Graymer, 1997). According to published USGS topographic maps, the Property slopes gently westward at an elevation of approximately 525 to 530 feet above mean sea level. The earthen slope of the flood control channel bordering the site along the eastern portion of the northern property line is approximately 8 feet in height.

Subsurface Stratigraphy

Based on the findings of ENGEO's past field explorations at the Property, the site soils consist of fill over interbedded silty clay, sandy clay, clayey sand and silty sand with various amounts of gravel. Fill found in a boring drilled at the eastern portion of the site is approximately 2 feet thick and consists of silty clay. The sandy deposits were found to be loose to medium dense in consistency. According to previous CPT soundings, the sandy layers range from very thin to up to approximately 10 feet in thickness. The clayey soils were found to be very stiff (ENGEO, 2010). The borings completed during this workplan confirmed these findings, as interbedded layers and lenses of clayey, sandy, and gravelly soils were encountered. Boring logs are attached in Appendix E.

Groundwater

Groundwater has been encountered at approximate depths ranging between 8 and 15 feet below the ground surface during past geotechnical explorations, environmental investigations, and monitoring well sampling events. During this workplan, groundwater was encountered at a depth of approximately 8 to 9 feet below the ground surface. Although a groundwater direction and gradient could not be determined during this study, the groundwater gradient and flow was determined to be directed in a west-northwest to northwesterly direction during past explorations (Krazan, 2009b).

Sensitive Receptor Survey

A Sensitive Receptor Survey (SRS) was previously performed for the site vicinity. One supply well, 2S/2E 35L2, was discovered within a 2,000-foot radius at a listed addresses of 1151 Central Avenue. The approximate location for the previously mentioned well is depicted in Figure 7. As discussed, the two wells at this nearby parcel were recently sampled and have not been affected by the releases that have occurred at the Property.

Nature and Source of Contamination

Petroleum hydrocarbons (TPH-d and TPH-g) have been identified as the constituents of concern (COC) in soil and groundwater at the Property. The soil and groundwater impacts are associated with three of the four former UST locations and two of the three former dispenser locations; all located within the northeast portion of the Site.

The most notable soil impacts are attributed to releases of TPH-d, which appear to have occurred from the dispenser lines, as well as the USTs, since identified soil impacts have been detected at depths ranging from as shallow as 3 feet below the ground surface to as deep as 10 feet below the ground surface (Figure 4). Detections of TPH-mo are collocated in some areas that exhibited TPH-d impacts, which is likely due to weathering of the TPH-d fraction. TPH-g impacts to soil appear to be less extensive compared to TPH-d, and there have been no significant detections of BTEX in soil.

We suspect that much of the TPH-d impact likely occurred before the installation of the new double-wall UST and product lines in 1994. At the time of UST removal in 1994, some impacted soil was removed, although impacted soil remained in-place, potentially acting as source for the limited groundwater impact that has been detected. Given this, we would expect the groundwater impacts to have attenuated to some extent following the 1994 removal, followed by subsequent conditions of equilibrium. This is supported by historical groundwater data, which shows that the maximum TPH-d concentration detected during our 2011 investigation (890 μ g/l) is slightly less than the maximum TPH-d concentration detected in MW-1 in 1995 (910 μ g/l). Following remedial activity (described below), target analyte concentrations in MW-1 subsequently decreased to non-detectable concentrations, last confirmed in 2006. TPH-g was detected in one grab groundwater sample at a concentration slightly above the respective ESL (Figure 3). Neither benzene nor MTBE was detected in any of the monitoring wells or soil boring samples. Based on the relatively limited groundwater impacts, we would expect RWQCB to categorize this Site as low risk.

Elevated concentrations of TPH-g and associated VOCs have been detected in shallow soil vapor samples collected at multiple locations at the Property (Figure 5). This is expected since numerous dispensers and shallow product lines were recently removed from the Property and residual fresh product may have come in contact with shallow soil. Despite the elevated TPH-g concentrations, only low-level concentrations of BTEX compounds (all below respective ESLs) and other hydrocarbon analytes typically associated with gasoline were detected. Further, the analytical laboratory has indicated that the detected TPH-g within soil vapor does not follow a typical pattern and is constituted on heavier-phase hydrocarbon chains, further substantiating our

opinion that it is emanating from the identified TPH-d soil impact. It is expected that these concentrations will dissipate with time. Removal of the impacted soil from the former UST and dispenser locations will accelerate the rate of dissipation.

Several of the TPH-g concentrations detected in the May 2011 sampling exceeded the respective soil vapor ESL of $10,000~\mu\text{g/m}^3$ considering a residential land use scenario. However, these elevated TPH concentrations may have been the result of matrix and/or laboratory interference and are not considered indicative of subsurface conditions. Subsequent soil vapor sampling only identified detectable TPH-g and TPH-d concentrations in two wells adjacent to confirmed areas of soil impact that will be remediated. Further, these wells are located in an area that will be developed into a park in the future. Therefore, the detected TPH soil vapor concentrations are expected to attenuate following remediation and are not considered indicative of a threat to future residential land users.

Relatively low concentrations of PCE and TCE have been detected in groundwater and soil vapor in various sample locations at the Property. Given that the highest concentration of TCE was exhibited in the southernmost groundwater sample (GW10) and there have been no documented releases or suspected use of chlorinated solvents at the Property, the impacts appear to represent a "background" condition, which likely originated from an upgradient source south of the Property. Although one soil vapor sample (SG4) collected in May 2011 exhibited a PCE concentration (450 μ g/m³) in excess of its respective ESL, this concentration is not considered indicative of the overall PCE concentrations present in soil vapor at the Property. Subsequent soil vapor sampling in July 2011 found chlorinated solvents at non-detectable or trace concentrations below respective screening levels. Therefore, the presence of chlorinated solvents at the Property are considered a de minimus condition and are not expected to affect future residential use of the Property.

Contaminant Migration and Extent of Impact

Based on the data collected during the previous and recent field investigations, TPH-d impacts to soil are present in the lower sidewalls and bases of the UST/dispenser basin excavations and within the basin backfill. Soil remediation appears to be warranted for these four "areas of concern" (Figure 4) to prevent potential impact to groundwater and to expedite attenuation of the residual groundwater impacts. The specific locations of the remaining soil impacts and reported concentrations are summarized as follows:

- Shallow soil impacts are present at a depth of 3 feet below the ground surface beneath the three northern diesel dispensers that were removed in 2011. Detected concentrations of TPH-d range from 1,400 to 3,200 mg/kg (PL3-S10 through PL3-S12) at this depth. Beneath the northernmost dispenser, the soil impacts extend to a depth of 10 feet below the ground surface; a TPH-d concentration of 860 mg/kg was detected in GP10. Samples collected from a depth of 12 feet below the ground surface did not exhibit detected concentrations of petroleum hydrocarbons.
- Soil impacts are present at depths of 9 to 10 feet below the ground surface within the approximate limits of the diesel UST basin that was excavated in 1994. At the time of the UST removal in 1994, a limited over-excavation was performed which partially removed the

soil impacts. Additionally, an enhanced bioremediation product was placed in groundwater that was present in the open excavation prior to backfilling. The attenuation of TPH-d impacts that were initially detected in MW-1 is attributed to this remedial activity. Recent sampling in this area has confirmed the presence of some remaining TPH-d impact; TPH-d was detected within the approximate sidewalls and base of the former excavation at concentrations ranging from 270 to 2,200 mg/kg (GP9 and 3-P1; collected in 2011 and 2006, respectively). Sample GP9-12', collected from a depth of 12 feet below the ground surface, did not exhibit detected concentrations of petroleum hydrocarbons.

- Impacts within backfill were identified at a depth of 4 feet below the ground surface within the eastern portion of the diesel UST basin that was excavated in 2011. TPH-d was detected in sample GP4 at a concentration of 110 mg/kg, which exceeds its respective ESL. TPH-mo was detected in the same sample at a concentration of 1,000 mg/kg, also exceeding its ESL. Deeper soil boring data from this area and the confirmation samples collected during the UST removal did not identify detectable petroleum hydrocarbon concentrations.
- Hydrocarbon impact was also detected within backfill soils within the southeast portion of
 the gasoline UST basin that was excavated in 2011. TPH-mo was detected (880 mg/kg) at a
 depth of 4 feet below the ground surface, which is possibly a result of soil from the diesel
 UST excavation being placed as backfill in the gasoline UST excavation. Deeper soil boring
 data from this area and the confirmation samples collected during the UST removal did not
 exhibit detectable concentrations.

Groundwater data has been collected from three monitoring wells and numerous grab samples. Of particular importance is MW-1, which is located at the downgradient edge of the diesel UST basin that was excavated in 1994 (Figure 3). Our findings regarding the groundwater impacts are summarized as follows:

- Five quarterly monitoring events have been completed for MW-1 since the well was installed in 1995. Detections in MW-1 have been limited to TPH-d at concentrations of 910 μg/l in 1995 and 228 μg/l in 1996. During the four quarterly monitoring events completed for MW-2 and MW-3 in 1995 and 1996, no detections above laboratory reporting limits were reported. MW-1 and MW-3 was sampled by ENGEO in 2006; neither well exhibited detectable TPH or BTEX concentrations. MW-3 was sampled in 2009 and again during the recent field activity. No TPH or BTEX analytes were detected during either sampling event. TCE was detected during the recent sampling event at a concentration of 1.2 μg/l, which appears to be associated with an offsite source.
- Grab groundwater samples were collected in January 2011 during UST removal and excavation activities. Significantly elevated concentrations of TPH-d, TPH-g, and benzene were detected in these samples; maximum concentrations of 540,000 µg/l, 4,400 µg/l, and 91 µg/l were detected for TPH-d, TPH-g, and benzene, respectively. We understand these samples were collected from groundwater that had infiltrated into the excavation shortly after tank removal. We further understand that no purging of the infiltrating groundwater occurred, and that the samples were collected from an area that may have been locally and briefly impacted by remnant free product released from equipment and adjacent soil during removal. Further, the highest detected concentrations within samples collected during UST removal were within samples collected from the diesel UST excavation. Groundwater samples subsequently collected from this area (GP4 and GP6) did not exhibit detectable

concentrations of any petroleum hydrocarbons or other target analytes. Therefore, the elevated concentrations in samples collected at the time of UST removal have been attributed to transient, localized impact that occurred during equipment and adjacent soil removal, and are not considered representative of groundwater conditions.

- Grab groundwater samples were collected from nine soil borings in 2011. GP1, located approximately 50 feet southeast of MW-1, exhibited TPH-d and TPH-g concentrations of 890 and 55 µg/l. GP11, located approximately 50 feet southwest of MW-1, exhibited a TPH-g concentration of 110 µg/l. The remaining seven grab sample locations did not exhibit detectable target analyte concentrations above laboratory reporting limits.
- The recently completed sampling of an off-site well did not identify the presence of COCs associated with the Property. Based on this sampling event, off-site sensitive receptors do not appear to have been impacted by the leaking underground tanks at the Property.

Based on a review of the extensive groundwater data collected at the Property since 1994 (Figure 3), groundwater impacts appear to be present in a localized area to the south of MW-1, near the former diesel dispensers (represented by samples collected at GP1 and GP11). As in the case of groundwater impacts previously observed at MW-1 that subsequently decreased to non-detectable conditions, this limited area of low-level groundwater impact is expected to attenuate following the removal of the identified areas of soil impact.

CONCLUSIONS AND RECOMMENDATIONS

As described in this report, petroleum hydrocarbon impact (consisting primarily of diesel-range hydrocarbons) is present near the former gasoline and diesel USTs and diesel dispenser lines. This lateral and vertical extent of impact has been well defined within this area during studies dating to the mid-1990s. Figure 4 depicts the footprint of soil impact demonstrating the lateral distribution of the impact.

Additionally, the isolated groundwater impacts present at the Property are limited in magnitude and in extent. Only two grab groundwater samples exhibited concentrations in excess of respective ESLs. Groundwater sampling dating to the 1990s has identified low-level, intermittent concentrations that were below respective ESLs in most cases. Elevated TPH concentrations detected at the time of UST removal in early 2011 do not appear to be representative of groundwater conditions and have been attributed to cross-contamination or other transient conditions at the time of sampling.

Elevated gasoline-range hydrocarbons were detected in several soil vapor samples collected during the May 2011 sampling event. However, these elevated TPH concentrations were confirmed to consist of hydrocarbon ranges associated with advanced weathered gasoline or heavier fuel ranges and may have been the result of matrix and/or laboratory interference and are not considered indicative of subsurface conditions. Subsequent soil vapor sampling completed in July 2011 did not identify TPH-g or TPH-d in areas outside of the confirmed areas of soil impact.

Although numerous remedial strategies may be considered, given the conditions at the Property, including the limited and well-defined soil impact, the low-level groundwater impact resulting from past UST releases, and the physical properties of the contamination present, an excavation program has been identified as the best remediation option. A remedial program consisting of excavation is currently underway at the Property and is expected to be completed in August 2011. Because soil vapor impacts and previously identified groundwater impacts are limited to the immediate vicinity of the confirmed soil impact, these impacts are expected to quickly attenuate following remediation of impacted soil. Additionally, the excavation operations are expected to adversely impact some of these wells. We recommend that the wells at the Property be properly destroyed.

If you have any questions regarding this document, please call and we will be glad to discuss them with you.

No. 69633 Exp. 6/30/2012

Sincerely,

ENGEO Incorporated

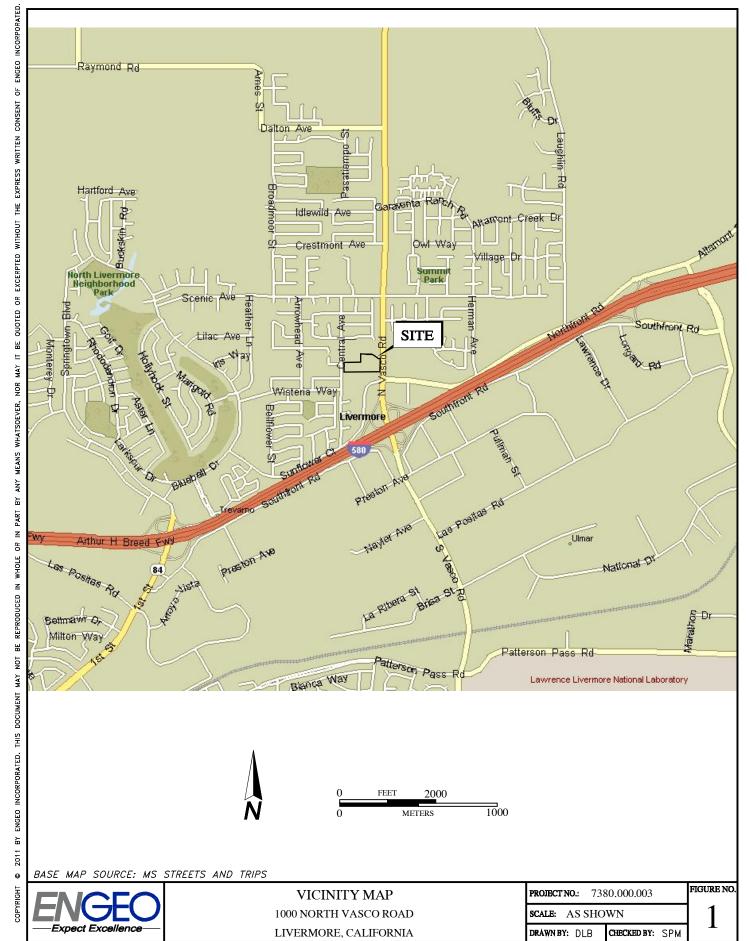
Shawn Munger, CHG, REAII

Attachments: Selected References

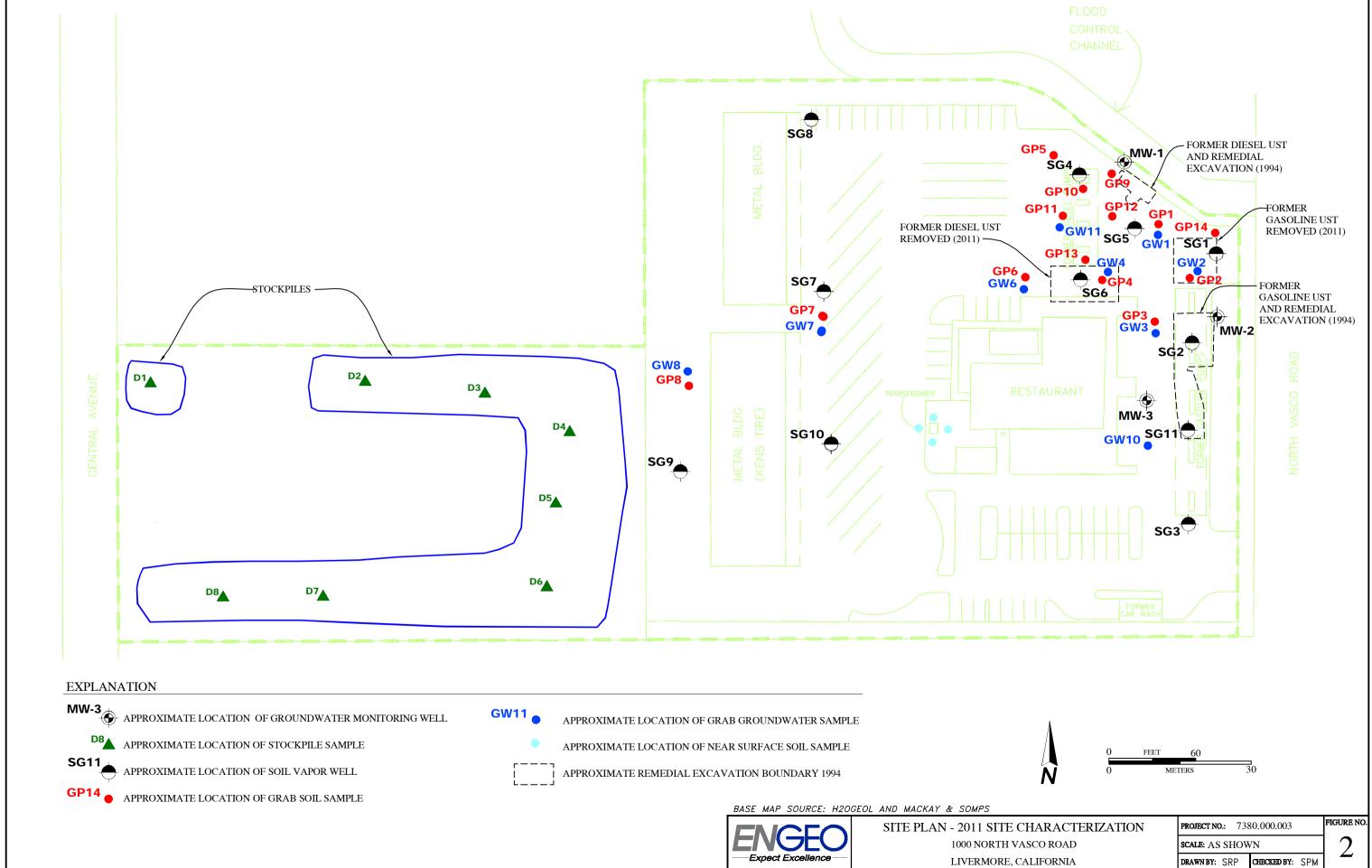
Jeffrey A. Adams, PhD, PE, REA I

Figures 1-7Tables 1-4Appendices A-E

c: 1 - Mr. Scott Menard, Arbor Development Group, LLC

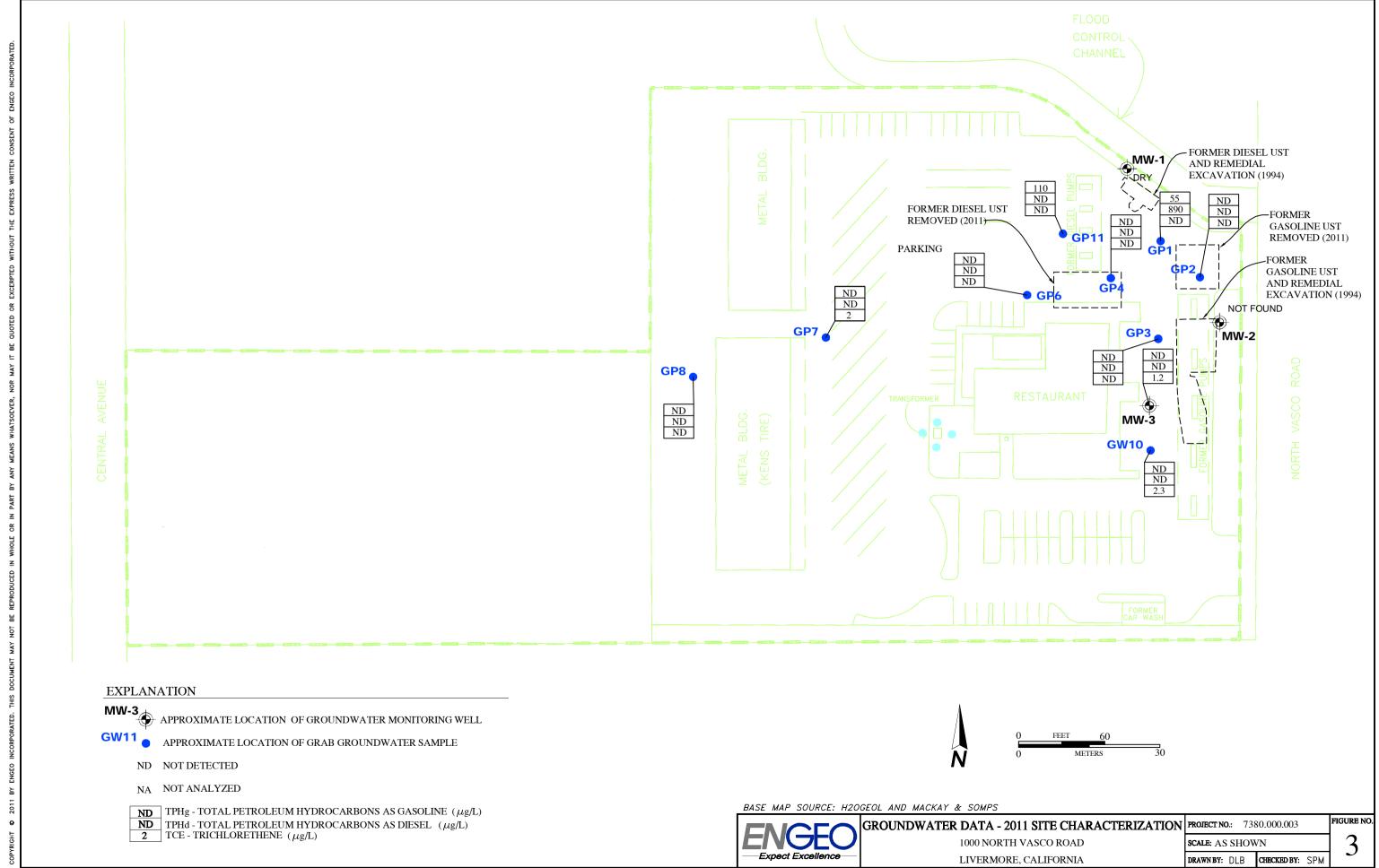

SELECTED REFERENCES

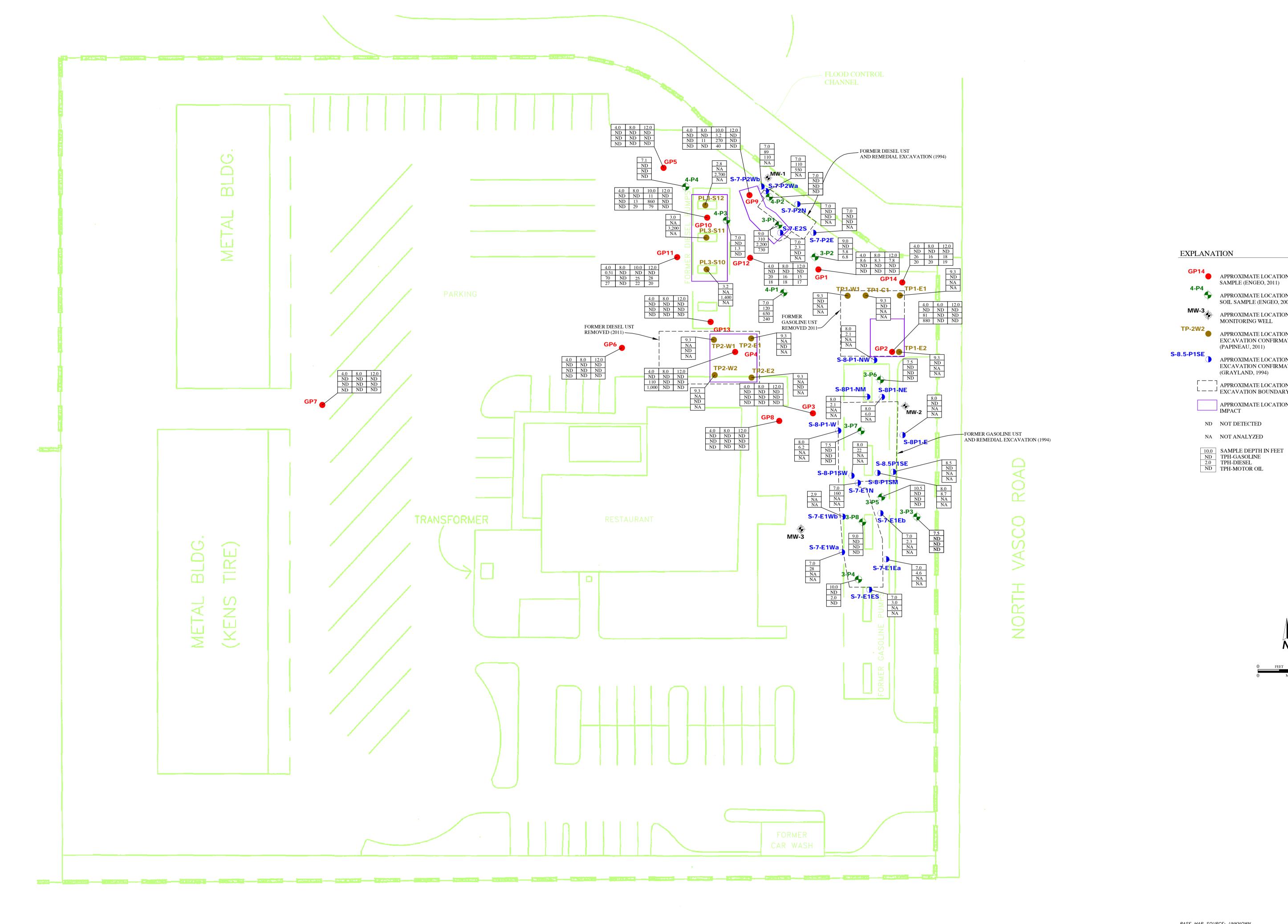
- Alameda County Environmental Health Services; Conditional Work Plan Approval for Fuel Leak Case No. RO0003073 and GeoTracker Global ID T10000002919, Geno Country Store, 1000 North Vasco Road, Livermore, CA 94551, April 4, 2011.
- ENGEO; Modified Phase One Environmental Site Assessment, 1000 North Vasco Road, Livermore, California; October 27, 2006, Project No. 7380.1.001.02.
- ENGEO; Supplemental Environmental Services, Shell Gas Station, 1000 North Vasco Road, Livermore, California; June 20, 2007, Project No. 7380.1.002.04.
- ENGEO; Geotechnical Exploration, Macedo Property, 1000 North Vasco Road, Livermore, California; October 21, 2011, Project No. 7380.000.000.
- ENGEO; Phase I Environmental Site Assessment Update, Macedo Property, 1000 North Vasco Road, Livermore, California; March 18, 2011, Project No. 7380.000.002.
- ENGEO; Workplan for Site Characterization, 1000 North Vasco Road, Livermore, California; April 1, 2011, Project No. 7380.000.003.
- ENGEO; Site Characterization Report, 1000 North Vasco Road, Livermore, California; June 17, 2011, Project No. 7380.000.003.
- ENGEO; Interim Removal Action Workplan, 1000 North Vasco Road, Livermore, California; July 12, 2011, Project No. 7380.000.003.
- Helley, E. J and Graymer, R.W., 1997, Quaternary Geology of Alameda County and Parts of Contra Costa, Santa Clara, San Mateo, San Francisco, Stanislaus, and San Joaquin Counties, California; USGS, Open File Report OF-97-97.
- Krazan and Associates, Phase I Environmental Site Assessment, BOTW No. 09-510-02, Geno's Country Store, 1000 North Vasco Road, Livermore, California; April 3, 2009; Project No. 013-09074.
- Krazan and Associates, Phase II Environmental Site Assessment, BOTW No. 09-510-02, Geno's Country Store, 1000 North Vasco Road, Livermore, California; September 28, 2009; Project No. 013-09074.
- Marc Papineau, Tank and Pipeline Removal Narrative, 1000 N. Vasco Road Livermore, California, January 21, 2011 and January 27, 2011.

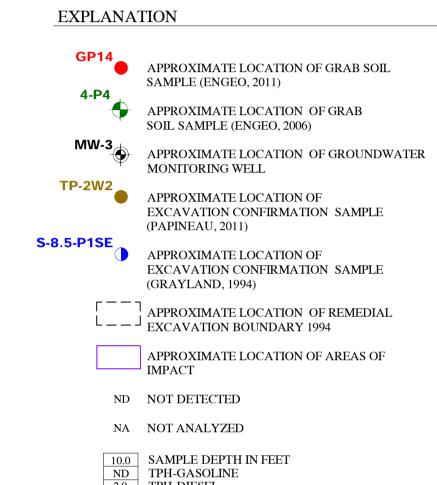


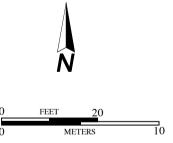
FIGURES

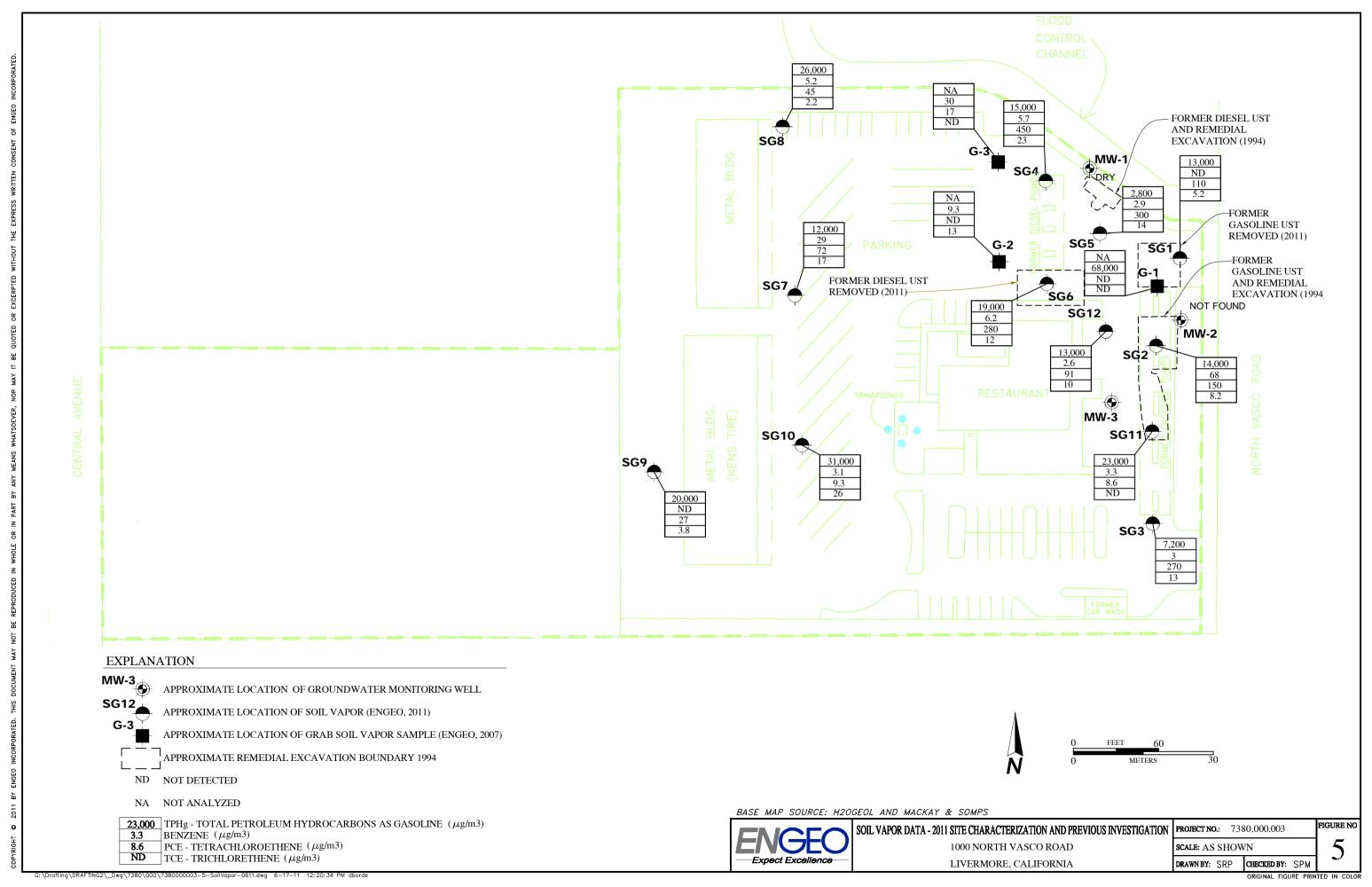
Figure 1 – Vicinity Map
Figure 2 – Site Plan – 2011 Site Characterization
Figure 3 – Groundwater Data – 2011 Site Characterization
Figure 4 – Soil Data – 2011 Site Characterization and Previous Investigations
Figure 5 – Soil Vapor Data – 2011 Site Characterization and Previous Investigation
Figure 6 – Soil Vapor Well Construction Diagram
Figure 7 – Water Supply Wells Within 2,000 Feet of 1000 North Vasco Road

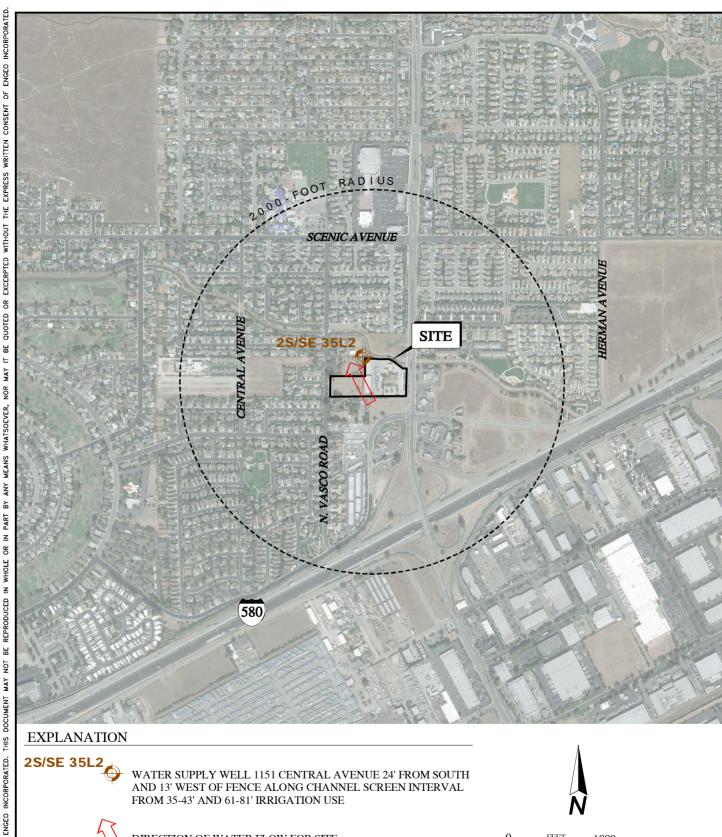



ORIGINAL FIGURE PRINTED IN C




\Urafting\URAF IING2_Dwg\/380\000\/380000003=2SitePlan=0611.dwg 6=17=11 11:10:06 AM dbo


GINAL FIGURE PRINTED IN COLOR



1000 NORTH VASCO ROAD

LIVERMORE, CALIFORNIA

DRAWN BY: DLB CHECKED BY: SPM

BASE MAP SOURCE: GOOGLE EARTH, 2003

DIRECTION OF WATER FLOW FOR SITE

500

В 2011

WATER SUPPLY WELLS WITHIN 2000 FEET OF 1000 NORTH VASCO ROAD PROJECT NO.: 7380.000.003

1000 NORTH VASCO ROAD LIVERMORE, CALIFORNIA SCALE: AS SHOWN DRÁWNBY: SRP

CHECKED BY: SM

ORIGINAL FIGURE PRINTED IN COLOR

FIGURE NO.

Expect Excellence

Tables 1-4

Summary of Laboratory Analyses

TABLE 1 SOIL SAMPLING

SOIL SAMPLING - SUBSURFACE BORINGS																			
SAMPLE	DATE	DEPTH (ft)	TPH-GASOLINE	TPH-DIESEL.	TPH-MO	BENZENE (µg/kg)	TOLUENE (#g/kg)	ETHYLBENZENE (mg/kg)	XYLENE(S) (µg/kg)	MTBE	n-BUTYLBENZENE	sec-BUTYLBENZENE	tert-BUTYLBENZENE	NAPHTHALENE	1,2,3-TRICHLOROBENZENE (#a%g)	1,2,4-TRICHLOROBENZENE (yag/kg)	1,1,2,2-TETRACHLOROETHANE (µq/kq)	n-PROPYLBENZENE (MO/kg)	OTHER VOCs
		(-1)	(mg/kg)	(mg/kg)	(mg/kg)					(µg/kg)	(µg/kg)	(pq/kg)	(pg/kg)	(jug/kg)					(# g/kg)
GP1@4'	4/19/2011	ESL (Table A-1)	83 8.6	83 ND<10	370 ND<10	44 ND<5	2900 ND<5	2300 ND<5	2300 ND<5	23 ND<20	N/A ND<5	N/A ND<5	N/A ND<5	1300 ND<5	N/A ND<5	1500 ND<5	18 ND<5	N/A ND<5	N/A ND
GP1@8'	4/19/2011	8	8.3	ND<10	ND<10	ND<5	ND<5	ND<5	ND<5	ND<20	ND<5	ND<5	ND<5	ND<5	ND<5	ND<5	ND<5	ND<5	ND
GP1@12' GP2@4'	4/19/2011 4/19/2011	12	7.8 ND<0.5	ND<10	ND<10 880	ND<5	ND<5	ND<5	ND<5	ND<20 ND<20	ND<5	ND<5	ND<5	ND<5	ND<5	ND<5	ND<5 ND<5	ND<5 ND<5	ND ND
GP2@6'	4/19/2011	6	ND<0.5	ND<10	ND<10	ND<5	ND<5	ND<5	ND<5	ND<20	ND<5	ND<5	ND⊲5	ND<5	ND<5	ND<5	ND<5	ND<5	ND
GP2@12' GP3@4'	4/19/2011 4/20/2011	12	ND<0.5 ND<0.5	ND<10	ND<10 ND<10	ND<5	ND<5	ND<5 ND<5	ND<5	ND<20 ND<20	ND<5	ND<5 ND<5	ND⊲5 ND⊲5	ND<5	ND<5	ND<5 ND<5	ND<5 ND<5	ND<5 ND<5	ND ND
GP3@8'	4/20/2011	8	ND<0.5	ND<10	ND<10	ND<5	ND<5	ND<5	ND<5	ND<20	ND<5	ND<5	NDc5	ND<5	ND<5	ND<5	ND<5	ND<5	ND
GP3@12' GP4@4'	4/20/2011 4/19/2011	12	ND<0.5	ND<10 110	ND<10 1,000	ND<5	ND<5	ND<5	ND<5	ND<20 ND<20	ND<5	ND<5 ND<5	ND<5	ND<5 ND<5	ND<5 ND<5	ND<5 ND<5	ND<5 ND<5	ND<5 ND<5	ND ND
GP4@8'	4/19/2011	8	ND<0.5	ND<10	ND<10	ND<5	ND<5	ND<5	ND<5	ND<20	ND<5	ND<5	ND<5	ND<5	ND<5	ND<5	ND<5	ND<5	ND
GP4@12' GP5@4'	4/19/2011 4/19/2011	12	ND<0.5 ND<0.5	ND<10 ND<10	ND<10 ND<10	ND<5	ND<5	ND<5	ND<5 ND<5	ND<20 ND<20	ND<5 ND<5	ND<5 ND<5	ND<5	ND<5	ND<5 ND<5	ND<5 ND<5	ND<5	ND<5 ND<5	ND ND
GP5@8'	4/19/2011	8	ND<0.5	ND<10	ND<10	ND<5	ND<5	ND<5	ND<5	ND<20	ND<5	ND<5	ND<5	ND<5	ND<5	ND<5	ND<5	ND<5	ND
GP5@12' GP6@4'	4/19/2011 4/19/2011	12	ND<0.5	ND<10	ND<10 ND<10	ND<5	ND<5	ND<5	ND<5	ND<20 ND<20	ND<5	ND<5 ND<5	ND<5	ND<5	ND<5	ND<5 ND<5	ND<5 ND<5	ND<5 ND<5	ND ND
GP6@8'	4/19/2011	8	ND<0.5	ND<10	ND<10	ND<5	ND<5	ND<5	ND<5	ND<20	ND<5	ND<5	ND-5	ND<5	ND<5	ND<5	ND<5	ND<5	ND
GP6@12' GP7@4'	4/19/2011 4/20/2011	12	ND<0.5	ND<10	ND<10 ND<10	ND<5	ND<5	ND<5 ND<5	ND<5	ND<20 ND<20	ND<5	ND<5 ND<5	ND<5	ND<5	ND<5	ND<5 ND<5	ND<5 ND<5	ND<5 ND<5	ND ND
GP7@8'	4/20/2011	8	ND<0.5	ND<10	ND<10	ND<5	ND<5	ND<5	ND⊲5	ND<20	ND<5	ND<5	ND<5	ND<5	ND<5	ND<5	ND⊲5 ND⊲5	ND<5	ND
GP7@12' GP8@4'	4/20/2011 4/20/2011	12	ND<0.5 ND<0.5	ND<10 ND<10	ND<10 ND<10	ND<5	ND<5 ND<5	ND<5	ND<5	ND<20 ND<20	ND<5	ND<5 ND<5	ND<5	ND<5 ND<5	ND<5 ND<5	ND<5 ND<5	ND<5 ND<5	ND<5	ND ND
GP8@8'	4/20/2011	8	ND<0.5	ND<10	ND<10 ND<10	ND<5	ND<5	ND<5	ND<5	ND<20 ND<20	ND<5	ND<5	ND<5	ND<5	ND<5	ND<5	ND<5 ND≥5	ND<5	ND
GP8@12' GP9@4'	4/20/2011 4/19/2011	12	ND<0.5 ND<0.5	ND<10	ND<10 ND<10	ND<5	ND<5	ND<5	ND<5	ND<20 ND<20	ND<5	ND<5	ND<5	ND<5	ND<5 ND<5	ND<5 ND<5	ND<5 ND<5	ND<5 ND<5	ND ND
GP9@8'	4/19/2011	8	ND<0.5	11	ND<10	ND<5	ND<5	ND<5	ND<5	ND<20	ND<5	ND<5	ND<5	ND<5	ND<5	ND<5	ND<5	ND<5	ND
GP9@10' GP9@12'	4/19/2011 4/19/2011	10	3.2 ND<0.5	270 ND<10	40 ND<10	ND<5	ND<5	ND<5 ND<5	ND<5	ND<20 ND<20	10 ND<5	15 ND<5	ND<5	ND<5 ND<5	ND<5 ND<5	ND<5 ND<5	ND<5 ND<5	5.2 ND<5	ND ND
GP10@4'	4/19/2011	4	ND<0.5	ND<10	ND<10	ND<5	ND<5	ND<5	ND<5	ND<20	ND<5	ND<5	ND<5	ND<5	ND<5	ND<5	ND<5	ND<5	ND
GP10@8' GP10@10'	4/19/2011 4/19/2011	10	ND<0.5	13 860	29 79	ND<5	ND<5	ND<5	ND<5	ND<20 ND<20	ND<5 35	ND<5 37	ND<5 6.8	ND<5 40	ND<5 28	ND≼5 7.4	ND<5	ND<5 9.6	ND ND
GP10@12'	4/19/2011	12	ND<0.5	ND<10	ND<10	ND<5	ND<5	ND<5	ND<5	ND<20	ND<5	ND<5	ND<5	ND<5	ND<5	ND<5	ND<5	ND<5	ND
GP11@4' GP11@8'	4/19/2011 4/19/2011	4 8	0.51 ND<0.5	70 ND<10	27 ND<10	ND<5	ND<5	ND<5 ND<5	ND<5	ND<20 ND<20	ND<5 ND<5	ND<5 ND<5	ND<5	ND<5	ND<5 ND<5	ND<5 ND<5	ND<5 ND<5	ND<5 ND<5	ND ND
GP11@10'	4/19/2011	10	ND<0.5	25	22	ND<5	ND<5	ND<5	ND<5	ND<20	ND<5	ND<5	ND-5 ND-5	ND-d5 ND-d5	ND<5 ND<5	ND<5 ND<5	ND<5 ND<5	ND<5	ND ND
GP11@12' GP12@4'	4/19/2011 4/19/2011	12	ND<0.5	28 20	20 18	ND<5	ND<5	ND<5	ND<5	ND<20 ND<20	ND<5	ND<5	ND<5	ND<5	ND<5	ND<5	ND<5	ND<5 ND<5	ND ND
GP12@8' GP12@12'	4/19/2011 4/19/2011	12	ND<0.5	16 15	18	ND<5	ND<5 ND<5	ND<5	ND≼5 ND≼5	ND<20 ND<20	ND<5	ND<5 ND<5	ND⊲5 ND⊲5	ND<5	ND<5 ND<5	ND<5 ND<5	ND<5 ND<5	ND<5	ND ND
GP12@12 GP13@4'	4/19/2011	4	ND<0.5	ND<10	ND<10	ND<5	ND<5	ND<5	ND<5	ND<20	ND<5	ND<5	ND<5	ND<5	ND<5	ND<5	ND<5	ND<5	ND ND
GP13@8' GP13@12'	4/19/2011 4/19/2011	8	ND<0.5 ND<0.5	ND<10 ND<10	ND<10 ND<10	ND<5	ND<5	ND<5	ND<5	ND<20 ND<20	ND<5	ND<5	ND<5	ND<5	ND<5 ND<5	ND<5 ND<5	ND<5 ND<5	ND<5	ND ND
GP14@4'	4/19/2011	4	ND<0.5	26	20	ND<5	ND<5	ND<5	ND<5	ND<20	ND<5	ND<5	ND<5	ND<5	ND<5	ND<5	ND<5	ND<5	ND ND
GP14@6' GP14@12'	4/19/2011 4/19/2011	6 12	ND<0.5	16 18	20 19	ND<5	ND<5	ND<5	ND≼5 ND≼5	ND<20 ND<20	ND<5	ND<5 ND<5	ND<5	ND<5 ND<5	ND<5 ND<5	ND<5	ND<5 ND<5	ND<5	ND ND
3-P1-9	8/15/2006	9	310	2,200	730	ND<100	ND<100	ND<100	ND<100	ND<1000	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	ND ND
3-P2-9 3-P3-7 1/2	8/15/2006	9 75	ND<1	5.8	6.8 ND≼5	ND<5	ND<5	ND<5	ND<5	ND<50	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	ND ND
3-P4-10	8/15/2006	10	ND<1	ND<1 2	ND<5	ND<5	ND<5	ND<5	ND<5	ND<50	N/A	N/A	N/A N/A	N/A N/A	N/A N/A	N/A	N/A N/A	N/A	ND ND
3-P5-10 1/2 3-P6-7 1/2	8/15/2006 8/15/2006	10.5 7.5	ND<1	ND<1	ND<5	ND<5	ND<5	ND<5	ND≼5 ND≼5	ND<50 ND<50	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	ND ND
3-P7-7 1/2	8/15/2006	7.5	ND<1	ND<1	ND<5	ND<5	ND<5	ND<5	ND<5	ND<50	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	ND
3-P8-9 4-P1-7	8/15/2006 8/15/2006	9	ND<1 120	ND<1 650	ND<5 240	ND<5 ND<50	ND<5	ND<5 ND<50	ND<5 ND<50	ND<50 ND<500	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	ND ND
4-P2-7	8/15/2006	7	ND<1	ND<1	ND<5	ND<5	ND<5	ND<5	ND<5	ND<50	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	ND
4-P3-7 4-P4-7.1	8/15/2006 8/15/2006	7.1	ND<1	1.3 ND<1	ND≼5	ND<5	ND<5	ND<5 ND<5	ND<5	ND<50 ND<50	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	ND ND
B1@10	9/2/2009	10	ND	11	N/A	ND	ND	ND	ND	ND	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
B1@15 B2@10	9/2/2009	15 10	ND ND	6.3 ND	N/A N/A	ND ND	ND ND	ND ND	ND ND	ND ND	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A
B2@15	9/2/2009	15	ND	ND	N/A	ND	ND	ND	ND	ND ND	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
B3@15 B3@20	9/2/2009	15	ND ND	ND ND	N/A N/A	ND ND	ND ND	ND ND	ND ND	ND ND	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A
B4@15	9/2/2009	15	ND	ND	N/A	ND	ND	ND	ND	ND	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
B4@20 B5@10	9/2/2009	20	ND ND	ND ND	N/A N/A	ND ND	ND ND	ND ND	ND ND	ND ND	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A
B5@15	9/2/2009	15	ND	ND	N/A	ND	ND	ND ND	ND	ND	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
B6@15 B6@20	9/2/2009	15 20	ND ND	ND ND	N/A N/A	ND ND	ND ND	ND ND	ND ND	ND ND	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A
B11@15	9/2/2009	15	ND	ND	N/A	ND	ND	ND	ND	ND	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
B11@20 B12@10	9/2/2009	20	ND ND	ND ND	N/A N/A	ND ND	ND ND	ND ND	ND ND	ND ND	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A
B12@15	9/2/2009	15	ND ND	ND	N/A	ND ND	ND ND	ND ND	ND	ND	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
B13@10 B13@15	9/2/2009	10	ND ND	ND ND	N/A N/A	ND ND	ND ND	ND ND	ND ND	ND ND	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A
B14@10	9/2/2009	10	ND	ND	N/A	ND	ND	ND	ND	ND	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
B14@15 B15@10	9/2/2009	15 10	ND ND	ND 9	N/A N/A	ND ND	ND ND	ND ND	ND ND	ND ND	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A
B15@15	9/2/2009	15	ND ND	ND	N/A	ND	ND	ND ND	ND	ND	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

TABLE 2 SURFACE SOIL SAMPLING

	SOIL SAMPLING - SURFACE SAMPLES																											
SAMPLE	LOCATION	DATE	TPH-GASOLINE	TPH-DIESEL	TPH-MO	PCBs	BENZENE	TOLUENE	ETHYLBENZENE	XYLENE(S)	FUEL OXYGENATES	ANTIMONY	SILVER	ARSENIC	BARIUM	BERYLLIUM	CADMIUM	CHROMIUM	COBALT	COPPER	LEAD	MOLYBDENUM	NICKEL	SELENIUM	THALLIUM	VANADIUM	ZINC	MERCURY
		SAMPLED	po /kg	mg/kg	mg/kg	д д/kg	д д/kg	pg/kg	p g/kg	µg/kg	щgkg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
D1	STOCKPILE	4/20/2011	ND<500	N/A	N/A	N/A	ND<5	ND-65	ND<5	ND<5	ND	ND-3	ND<2	ND<5	270	ND<1	ND<2	33	- 11	20	ND<3	ND<1	33	ND<5	ND-2	57	47	ND<0.1
D2	STOCKPILE	4/20/2011	ND<500	N/A	N/A	N/A	ND<5	ND-65	ND<5	ND<5	ND	ND-3	ND<2	ND<5	290	ND<1	ND<2	35	13	21	4.9	ND<1	35	ND<5	ND-2	60	50	ND<0.1
D3	STOCKPILE	4/20/2011	ND<500	N/A	N/A	N/A	ND<5	ND-6	ND<5	ND<5	ND	ND<3	ND<2	ND<5	210	ND<1	ND<2	34	11	18	ND<3	ND<1	36	ND<5	ND-2	50	44	ND<0.1
D4	STOCKPILE	4/20/2011	ND<500	N/A	N/A	N/A	ND<5	ND-65	ND<5	ND<5	ND	ND-3	ND<2	ND<5	250	ND<1	ND<2	35	12	20	ND<3	ND<1	36	ND<5	ND-2	59	49	ND<0.1
D5	STOCKPILE	4/20/2011	ND<500	N/A	N/A	N/A	ND<5	ND-6	ND<5	ND<5	ND	ND-3	ND<2	ND<5	250	ND<1	ND<2	32	- 11	17	ND<3	ND<1	30	ND<5	ND<2	53	43	ND<0.1
D6	STOCKPILE	4/20/2011	ND<500	N/A	N/A	N/A	ND<5	ND-6	ND<5	ND<5	ND	ND-3	ND<2	ND<5	260	ND<1	ND<2	32	12	20	ND<3	ND<1	35	ND<5	ND-2	56	48	ND<0.1
D7	STOCKPILE	4/20/2011	ND<500	N/A	N/A	N/A	ND<5	ND-6	ND<5	ND<5	ND	ND-3	ND<2	ND<5	270	ND<1	ND<2	33	12	19	6	ND<1	34	ND<5	ND<2	59	48	ND<0.1
D8	STOCKPILE	4/20/2011	ND<500	N/A	N/A	N/A	ND<5	ND-6	ND<5	ND<5	ND	ND-3	ND<2	ND<5	370	ND<1	ND<2	31	12	21	4.1	ND<1	36	ND<5	ND-2	63	47	ND<0.1
SP1-A/B/C/D	STOCKPILE	8/7/2006	ND<1,000	ND<1	ND«5	N/A	ND<5	ND<5	ND<5	ND<5	ND<50 (MTBE)	ND<0.5	ND<0.5	6.3	250	0.52	ND<0.25	35	- 11	63	8.4	0.64	43	ND<0.5	ND<0.5	48	72	0.083
SP2-A/B/C/D	STOCKPILE	8/7/2006	ND,1,000	ND<1	ND«5	N/A	ND<5	ND-65	ND<5	ND<5	ND<50 (MTBE)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
SP3-A/B/C/D	STOCKPILE	8/7/2006	ND<1,000	ND<1	ND«5	N/A	ND<5	ND-65	ND<5	ND<5	ND<50 (MTBE)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
COMPOSITE	PAD-MOUNTED TRANSFORMER	4/20/2011	ND<500	34	39	ND<10	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

TABLE 3
GROUNDWATER SAMPLING

	GROUNDWATER SAMPLING												
SAMPLE	SAMPLE	TPH-GASOLINE	TPH-DIESEL	TPH-MO	BENZENE	TOLUENE	ETHYLBENZENE	XYLENE(S)	MTBE	TRICHLOROETHYLENE	OTHER VOCs		
	DATE	μg/L	μg/L	mg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L		
	ESL (Table F-1A)	100	100	100	1	40	30	20	5	5	N/A		
GP1-GW	4/19/2011	55	890	ND<100	ND<0.5	ND<0.5	ND<0.5	2.6	ND<1	ND<1	ND		
GP2-GW	4/19/2011	ND<50	ND<50	ND<100	ND<0.5	ND<0.5	ND<0.5	ND<1	ND<1	ND<1	ND		
GP3-GW	4/20/2011	ND<50	ND<50	ND<100	ND<0.5	ND<0.5	ND<0.5	ND<1	ND<1	ND<1	ND		
GP4-GW	4/19/2011	ND<50	ND<50	ND<100	ND<0.5	ND<0.5	ND<0.5	ND<1	ND<1	ND<1	ND		
GP6-GW	4/19/2011	ND<50	ND<50	ND<100	ND<0.5	ND<0.5	ND<0.5	ND<1	ND<1	ND<1	ND		
GP7-GW	4/19/2011	ND<50	ND<50	ND<100	ND<0.5	ND<0.5	ND<0.5	ND<1	ND<1	2	ND		
GP8-GW	4/19/2011	ND<50	ND<50	ND<100	ND<0.5	ND<0.5	ND<0.5	ND<1	ND<1	ND<1	ND		
GP11-GW	4/19/2011	110	ND<50	ND<100	ND<0.5	ND<0.5	ND<0.5	ND<1	ND<1	ND<1	ND		
MW-3	4/20/2011	ND<50	ND<50	ND<100	ND<0.5	ND<0.5	ND<0.5	ND<1	ND<1	1.2	ND		
GW-10	4/20/2011	ND<50	ND<50	ND<100	ND<0.5	ND<0.5	ND<0.5	ND<1	ND<1	2.3	ND		
MW-3	9/2/2009	ND	ND	N/A	ND	ND	ND	ND	2.2	ND	ND		
MW-1	8/22/2006	ND<50	ND<50	ND<250	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5	N/A	N/A		
MW-3	8/22/2006	ND<50	ND<50	ND<250	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<5	N/A	N/A		
DEEP (Off-Site Well)	7/13/2011	ND<50	ND<52	N/A	ND<0.5	ND<0.5	ND<0.5	ND<1	ND<0.5	ND<0.5	ND		
SHALLOW (Off-Site Well)	7/13/2011	ND<50	ND<60	N/A	ND<0.5	ND<0.5	ND<0.5	ND<1	3.6	ND<0.5	ND		

TABLE 4 SOIL VAPOR SAMPLING

						so	IL VAPOR SA	MPLING						
	SAMPLE	SG1	SG2	SG3	SG4	SG5	SG6	SG7	SG8	SG9	SG10	SG11	SG12	ESL (µg/m³)
	DATE	5/13/2011	5/13/2011	5/13/2011	5/13/2011	5/13/2011	5/13/2011	5/13/2011	5/13/2011	5/13/2011	5/13/2011	5/13/2011	5/13/2011	ESL (µg/III)
ANALYTE	UNIT (µg/m²)	13.000	14.000		15,000	2.800	19,000	12,000	26,000	20,000	31.000	23,000	13.000	
TPH-GASOLINE ACETONE	(µg/m²)	13,000 380	14,000 170	7,200 330	15,000	2,800 120	19,000 400	12,000 ND<0.25	26,000 570	20,000 880	31,000 630	23,000 520	13,000 620	10,000 660,000
CARBON DISULFIDE	(μg/m²)	2.8	38	3.2	ND<0.16	ND<0.16	15	120	4.2	57	3.1	1.3	190	660,000 N/A
ISOPROPYL ALCOHOL	(µg/m²)	5	3.3	ND<0.21	1.8	17	2.6	ND<0.21	2.2	3.3	0.98	1.3	4.7	N/A
CHLOROETHANE	(µg/m²)	ND<0.29	1.2	ND<0.29	ND<0.29	ND<0.29	ND<0.29	ND<0.29	ND<0.29	ND<0.29	ND<0.29	ND<0.29	ND<0.29	21,000
CHLOROFORM	(µg/m²)	ND<0.38	4.4	ND<0.38	ND<0.38	ND<0.38	ND<0.38	ND<0.38	ND<0.38	10	ND<0.38	ND<0.38	ND<0.38	460
CYCLOHEXANE	(µg/m²)	ND<0.17	74	ND<0.17	2.3	ND<0.17	62	1,100	26	320	4.2	5.2	25	N/A
HEPTANE	(μg/m²)	ND<0.21	33	ND<0.21	ND<0.21	ND<0.21	ND<0.21	12	5.4	ND<0.21	5.7	ND<0.21	ND<0.21	N/A
HEXANE	(µg/m³)	ND<1	75	ND<1	ND<1	ND<1	8.8	42	11	4.8	1.5	ND<1	ND<1	N/A
DICHLORODIFLUOROMETHANE	(μg/m³)	ND<0.23	5.3	2.4	3	3.1	ND<0.23	ND<0.23	2.7	5.7	2.5	2.6	ND<0.33	N/A
CIS-1,2-DICHLOROETHENE	(μg/m³)	3.7	4.2	8.5	15	9.8	7.7	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	2.8	7,300
TRANS-1,2-DICHLOROETHENE	(µg/m²)	ND<0.25	ND<0.25	ND<0.25	1.8	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	ND<0.25	15,000
STYRENE	(µg/m²)	ND<0.12	4.1	ND<0.12	ND<0.12	ND<0.12	ND<0.12	ND<0.12	ND<0.12	ND<0.12	ND<0.12	ND<0.12	ND<0.12	190,000
TETRACHLOROETHENE	(µg/m²) (µg/m²)	110 ND-0 54	150 4.4	270 NDc0 54	450 ND<0.54	300 ND<0.54	280 ND<0.54	72 ND-0.54	45 ND<0.54	27 ND<0.54	9.3 NDc0 54	8.6 ND-0.54	91 ND<0.54	410 46.000
1,1,1-TRICHLOROETHANE TRICHLOROETHENE	(μg/m ²)	ND<0.54 5.2	4.4 8.2	ND<0.54	ND<0.54 23	ND<0.54	ND<0.54 12	ND<0.54	ND<0.54 2.2	ND<0.54 3.8	ND<0.54 26	ND<0.54 ND<0.14	ND<0.54 10	46,000 1,200
TRICHLOROFLUOROMETHANE	(µg/m²)	ND<0.48	120	2.2	ND<0.48	ND<0.48	4	ND<0.48	ND<0.48	4.4	20	ND<0.14	2.6	N/A
1,3,5-TRIMETHYLBENZENE	(µg/m³)	6.4	17	3	2.2	2.7	9	18	7	4.8	2.4	2.3	2.5	N/A
1,2,4-TRIMETHYLBENZENE	(μg/m²)	19	25	4.4	4.5	3.9	8.8	25	13	7.0	4	3.5	4.4	N/A
2-BUTANONE	(µg/m²)	4.7	2.9	3.3	1.2	2.9	4.4	ND<0.62	7	10	3.8	5.7	9.6	1,000,000
BENZENE	(µg/m²)	ND<0.14	68	3	5.7	2.9	6.2	29	5.2	ND<0.14	3.1	3.3	2.6	84
TOLUENE	(µg/m²)	8.7	120	7	7.9	5.7	8	72	23	13	35	6.8	5.5	63,000
ETHYLBENZENE	(μg/m²)	ND<0.14	70	3.5	3.4	3.2	7.5	36	9.3	7	3.8	3.4	3	980
XYLENE(S)	(μg/m²)	19.6	270	12.7	11.8	10.3	26.2	108	30.9	22	13.6	11.4	9.6	21,000
1,1-DFA (LEAK COMPOUND)	(μg/m³)	2,600	2,800	4,900	7,800	5,000	ND<27	ND<27	ND<27	ND<27	ND<27	ND<27	ND<27	N/A (10,000 ALLOWABLE)
OTHER VOCs	(μg/m²)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	N/A
	SAMPLE	SG1	SG2	SG3	SG4	SG5	SG6	SG7	SG8	SG9	SG10	SG11	SG12	
	DATE	5/13/2011	5/13/2011	5/13/2011	5/13/2011	5/13/2011	5/13/2011	5/13/2011	5/13/2011	5/13/2011	5/13/2011	5/13/2011	5/13/2011	ESL (µg/m³)
	DAIL	3/13/2011	3/13/2011	3/13/2011	3/13/2011	3/13/2011	3/13/2011	3/13/2011	3/13/2011	3/13/2011	3/13/2011	3/13/2011	3/13/2011	
ANALYTE	UNIT													
TPH-GASOLINE (TO-17)	(µg/m²)	21,000	ND<5.000	ND<5.000	ND<5.000	ND<5.000	170.000	ND<5.000	ND<5.000	ND<5.000	ND<5.000	ND<5.000		
TPH-DIESEL (TO-17)	(μg/m²)	5,400	ND<5,000										ND<5.000	10.000
ETHANOL	(µg/m²)	ND<9.8		ND<5,000	ND<5,000	ND<5,000	26,000	ND<5,000	ND<5,000 ND<5,000	ND<5,000	ND<5,000	ND<5,000 ND<5,000	ND<5,000 ND<5,000	10,000 10,000
BROMOMETHANE	(μg/m²)		ND<9.7	ND<5,000 ND<21	ND<5,000 ND<30	ND<5,000 ND<36								
		ND<5	ND<9.7 6.4				26,000	ND<5,000	ND<5,000	ND<5,000	ND<5,000	ND<5,000	ND<5,000	10,000
FREON 11	(µg/m²)	100	6.4 ND<7.2	ND<21 ND<11 ND<15	ND<30 ND<16 ND<23	ND<36 ND<19 ND<27	26,000 ND<37 ND<19 ND<28	ND<5,000 ND<9.3 ND<4.8 ND<6.9	ND<5,000 30 ND<5.2 ND<7.5	ND<5,000 ND<8.3 ND<4.3 ND<6.2	ND<5,000 120 55 ND<41	ND<5,000 ND<18 ND<9.2 ND<13	ND<5,000 15 ND<5 ND<7.2	10,000 N/A 1,000 N/A
ACETONE	(µg/m³)	100 29	6.4 ND<7.2 16	ND<21 ND<11 ND<15 30	ND<30 ND<16 ND<23 ND<38	ND<36 ND<19 ND<27 ND<46	26,000 ND<37 ND<19 ND<28 ND<47	ND<5,000 ND<9.3 ND<4.8 ND<6.9 ND<12	ND<5,000 30 ND<5.2 ND<7.5	ND<5,000 ND<8.3 ND<4.3 ND<6.2 ND<10	ND<5,000 120 55 ND<41 ND<69	ND<5,000 ND<18 ND<9.2 ND<13 ND<22	ND<5,000 15 ND<5 ND<7.2 ND<12	10,000 N/A 1,000 N/A 660,000
ACETONE CARBON DISULFIDE	(µg/m²)	100 29 ND<16	6.4 ND<7.2 16 320	ND<21 ND<11 ND<15 30 1300	ND<30 ND<16 ND<23 ND<38 1200	ND<36 ND<19 ND<27 ND<46 140	26,000 ND<37 ND<19 ND<28 ND<47 ND<62	ND<5,000 ND<9.3 ND<4.8 ND<6.9 ND<12	ND<5,000 30 ND<5.2 ND<7.5 16	ND<5,000 ND<8.3 ND<4.3 ND<6.2 ND<10 28	ND<5,000 120 55 ND<41 ND<69 600	ND<5,000 ND<18 ND<9.2 ND<13 ND<22 550	ND<5,000 15 ND<5 ND<7.2 ND<12 ND<16	10,000 N/A 1,000 N/A 660,000 N/A
ACETONE CARBON DISULFIDE CHLOROFORM	(µg/m²) (µg/m²)	100 29 ND<16 ND<6.3	6.4 ND<7.2 16 320 ND<6.3	ND<21 ND<11 ND<15 30 1300 ND<13	ND<30 ND<16 ND<23 ND<38 1200 ND<20	ND<36 ND<19 ND<27 ND<46 140 ND<24	26,000 ND<37 ND<19 ND<28 ND<47 ND<62 ND<24	ND<5,000 ND<9.3 ND<4.8 ND<6.9 ND<12 19	ND<5,000 30 ND<5.2 ND<7.5 16 160 ND<6.5	ND<5,000 ND<8.3 ND<4.3 ND<6.2 ND<10 28 ND<5.4	ND<5,000 120 55 ND<41 ND<69 600 ND<35	ND<5,000 ND<18 ND<9.2 ND<13 ND<22 550 ND<12	ND<5,000 15 ND<5 ND<7.2 ND<12 ND<16 ND<6.2	10,000 N/A 1,000 N/A 680,000 N/A 460
ACETONE CARBON DISULFIDE CHLOROFORM CYCLOHEXANE	(µg/m²) (µg/m²) (µg/m²)	100 29 ND<16 ND<6.3 38	6.4 ND<7.2 16 320 ND<6.3	ND<21 ND<11 ND<15 30 1300 ND<13	ND<30 ND<16 ND<23 ND<38 1200 ND<20 4200	ND<36 ND<19 ND<27 ND<46 140 ND<24 3800	26,000 ND<37 ND<19 ND<28 ND<47 ND<62 ND<62 ND<24	ND<5,000 ND<9.3 ND<4.8 ND<6.9 ND<12 19 14	ND<5,000 30 ND<5.2 ND<7.5 16 160 ND<6.5 200	ND<5,000 ND<8.3 ND<4.3 ND<6.2 ND<10 28 ND<5.4 30	ND<5,000 120 55 ND<41 ND<69 600 ND<35 6400	ND<5,000 ND<18 ND<18 ND<9.2 ND<13 ND<22 550 ND<12 2000	ND<5,000 15 ND<5 ND<7.2 ND<12 ND<16 ND<6.2	10,000 N/A 1,000 N/A 660,000 N/A 460 N/A
ACETONE CARBON DISULFIDE CHLOROFORM CYCLOHEXANE HEPTANE	(µg/m²) (µg/m²) (µg/m²)	100 29 ND<16 ND<6.3 38 8.6	6.4 ND<7.2 16 320 ND<6.3 360 ND<5.3	ND<21 ND<11 ND<15 30 1300 ND<13 190 ND<11	ND<30 ND<16 ND<23 ND<38 1200 ND<20 4200 27	ND<36 ND<19 ND<27 ND<46 140 ND<24 3800 ND<20	26,000 ND<37 ND<19 ND<28 ND<47 ND<62 ND<24 31 ND<20	ND<5,000 ND<9.3 ND<4.8 ND<6.9 ND<12 19 14 140 ND<5	ND<5,000 30 ND<5.2 ND<7.5 16 160 ND<6.5 200 ND<5.4	ND<5,000 ND<8.3 ND<8.3 ND<4.3 ND<6.2 ND<10 28 ND<5.4 30 ND<5.4	ND<5,000 120 55 ND<41 ND<69 600 ND<35 6400 ND<30	ND<5,000 ND<18 ND<9.2 ND<13 ND<22 S50 ND<12 2000 ND<57	ND<5,000 15 ND<6 ND<7.2 ND<12 ND<16 ND<8.2 11 ND<5.2	10,000 N/A 1,000 N/A 660,000 N/A 460 N/A N/A N/A
ACETONE CARBON DISULFIDE CHLOROFORM CYCLOHEXANE HEPTANE HEXANE	(M3/m ₂) (M3/m ₂) (M3/m ₂) (M3/m ₂)	100 29 ND-16 ND-6.3 38 8.6 25	6.4 ND<7.2 16 320 ND<6.3 360 ND<5.3 ND<4.5	ND<21 ND<11 ND<15 30 1300 ND<13 190 ND<11 ND<9.7	ND<30 ND<16 ND<23 ND<38 1200 ND<20 4200 27 70	ND-36 ND-19 ND-27 ND-46 140 ND-24 3800 ND-20 78	26,000 ND<37 ND<19 ND<28 ND<47 ND<62 ND<24 31 ND<20 ND<17	ND+5,000 ND+9.3 ND+4.8 ND+6.9 ND+12 19 14 140 ND+5 ND+4.3	ND<5,000 30 ND<5.2 ND<7.5 16 160 ND<6.5 200 ND<5.4 ND<4.7	ND<5,000 ND<8.3 ND<4.3 ND<6.2 ND<10 28 ND<5.4 30 ND<4.5 ND<3.9	ND<5,000 120 55 ND<41 ND<69 600 ND<35 6400 ND<30 ND<26	ND<5,000 ND<18 ND<8 ND=92 ND=13 ND<22 550 ND=12 2000 ND<8,7 ND<8,4	ND<5,000 15 ND<6 ND<7.2 ND<12 ND<12 ND<6 ND<6.2 11 ND<6.2 11 ND<6.2 ND<6.4 ND<6.4	10,000 N/A 1,000 N/A 660,000 N/A 460 N/A N/A N/A N/A
ACETONE CARBON DISULFIDE CHLOROFORM CYCLOHEXANE HEPTANE	(µg/m²) (µg/m²) (µg/m²)	100 29 ND<16 ND<6.3 38 8.6	6.4 ND 16 320 ND 18 360 ND 19 ND 10 ND 10 ND 10 ND 11 ND 12 ND 13 ND 14 ND 15 ND 16 ND 17	ND<21 ND<11 ND<15 30 1300 ND<13 190 ND<11	ND<30 ND<16 ND<23 ND<38 1200 ND<20 4200 27	ND<36 ND<19 ND<27 ND<46 140 ND<24 3800 ND<20	26,000 ND<37 ND<19 ND<28 ND<47 ND<62 ND<24 31 ND<20	ND<5,000 ND<9.3 ND<4.8 ND<6.9 ND<12 19 14 140 ND<5	ND<5,000 30 ND<5.2 ND<7.5 16 160 ND<6.5 200 ND<5.4	ND<5,000 ND<8.3 ND<8.3 ND<4.3 ND<6.2 ND<10 28 ND<5.4 30 ND<5.4	ND<5,000 120 55 ND<41 ND<69 600 ND<35 6400 ND<30	ND<5,000 ND<18 ND<9.2 ND<13 ND<22 S50 ND<12 2000 ND<57	ND<5,000 15 ND<6 ND<7.2 ND<12 ND<16 ND<8.2 11 ND<5.2	10,000 NIA 1,000 NIA 1,000 NIA 660,000 NIA 460 NIA 480 NIA NIA NIA 1410
ACETONE CARBON DISULFIDE CHLOROFORM CYCLOHEXANE HEPTANE HEPTANE TETRACHLOROETHENE	(m8/m²) (m8/m²) (m8/m²) (m8/m²) (m8/m²) (m8/m²)	100 29 ND<16 ND<6.3 38 8.6 25 ND<8.8	6.4 ND<7.2 16 320 ND<6.3 360 ND<5.3 ND<4.5	ND<21 ND<11 ND<15 30 1300 ND<13 190 ND<11 190 ND<11 ND<97	ND<30 ND<16 ND<23 ND<38 1200 ND<20 4200 27 70 ND<27	ND<36 ND<19 ND<27 ND<46 140 ND<24 3800 ND<20 78 ND<33	26,000 ND<37 ND<19 ND<28 ND<47 ND<62 ND<24 31 ND<20 ND<17 ND<34	ND<5,000 ND<5,300 ND<4.8 ND<6.9 ND<12 19 14 140 ND<5 ND<4.3 12 12	ND<5,000 30 ND<5.2 ND<7.5 16 160 ND<6.5 200 ND<6.5 4 ND<4.7 ND<9	ND<5,000 ND<8.3 ND<4.3 ND<6.2 ND<10 28 ND<5.4 30 ND<5.4 30 ND<4.5 ND<3.9	ND<5,000 120 55 ND<41 ND<69 600 ND<35 6400 ND<35 0400 ND<36 ND<66 ND<49	ND<5,000 ND<18 ND<9.2 ND<13 ND<22 S50 ND<12 2000 ND<8.7 ND<8.4 ND<16	ND<5.000 15 ND<5 ND<5 ND<7.2 ND<12 ND<16 ND<6.2 11 ND<6.2 11 ND<6.2 11 ND<6.2 11 ND<6.5 ND<6.5 ND<6.5 ND<6.5 ND<6.6 ND 6.6 ND 6.	10,000 N/A 1,000 N/A 660,000 N/A 460 N/A N/A N/A N/A N/A
ACETONE CARBON DISULFIDE CHLOROFORM CYCLOHEXANE HEPTANE HEXANE TETRACHUROCETHENE TRICHLOROCETHENE	(#8/m²) (#8/m²) (#8/m²) (#8/m²) (#8/m²)	100 29 ND<16 ND-6.3 38 8.6 25 ND-8.8 ND<7	6.4 ND<7.2 16 320 ND<6.3 360 ND<5.3 ND<4.5 ND<8.7 22	ND<21 ND<11 ND<15 30 1300 ND<13 190 ND<11 ND<9.7 ND<9.7	ND<30 ND<16 ND<16 ND<23 ND<38 1200 ND<20 4200 27 70 ND<27 ND<27 ND<27	ND<36 ND<19 ND<27 ND<46 140 ND<24 3800 ND<20 78 ND<33 ND<26	26,000 ND<37 ND<37 ND<19 ND<28 ND<47 ND<62 ND<47 ND<62 ND<24 31 ND<20 ND<17 ND<17 ND<17 ND<17 ND<21	ND<5,000 ND<9.3 ND<4.8 ND<6.9 ND<12 19 14 140 ND<5 ND<5 ND<4.3 12 130	ND<5,000 30 ND<5.2 ND<7.5 16 160 ND<6.5 200 ND<6.4 ND<4.7 ND<9.17	ND<5,000 ND<8.3 ND<4.3 ND<4.3 ND<6.2 ND<10 28 ND<5.4 30 ND<5.4 30 ND<4.5 ND<3.9 18 ND<5.9	ND<5,000 120 155 ND<41 ND<69 600 ND<35 6400 ND<30 ND<30 ND<30 ND<30 ND<30 ND<30 ND<30 ND<39	ND-5.000 ND-18 ND-9.2 ND-18 ND-9.2 ND-13 ND-22 550 ND-12 2000 ND-9.7 ND-8.4 ND-16 24	ND-65.000 15 ND-65 ND-72 ND-12 ND-16 ND-66 ND-66 ND-65	10,000 NA 1,000 NA 1,000 NA 600,000 NA 600,000 NA 400 NA 1,000 NA
ACETONE CARBON DISULFIDE CHLOROFORM CYCLOHEXANE MEPTANE HEXANE TETRACHLOROETHENE TRICHLOROETHENE 1,3,5-TRMETHYLBENZENE	(m8/m²) (m8/m²) (m8/m²) (m8/m²) (m8/m²) (m8/m²) (m8/m²)	100 29 ND<16 ND<6.3 38 8.6 25 ND<8.8 ND<7	6.4 ND-7.2 16 320 ND-6.3 360 ND-5.3 ND-4.5 ND-4.5 ND-8.7 22 ND-6.3	ND-21 ND-41 ND-45 30 1300 ND-43 190 ND-41 ND-9,7 ND-19 100 ND-14	ND<30 ND<16 ND<16 ND<23 ND<38 1200 ND<20 A200 27 70 ND<27 ND<22 ND<22 ND<20	ND<36 ND<19 ND<19 ND<27 ND<46 140 ND<24 3800 ND<20 78 ND<33 ND<26 ND<26 ND<24	26,000 ND<37 ND<419 ND<419 ND<428 ND<47 ND<62 ND<47 ND<62 ND<62 ND<24 31 ND<20 ND<17 ND<30 ND<17 ND<30 ND<27 ND<27 ND<24	ND<5,000 ND<9.3 ND<9.3 ND<4.8 ND<6.9 ND<12 19 14 140 ND<5 ND<5 ND<4.3 12 130 ND<6	ND<5,000 30 ND<5.2 ND<7.5 16 16 160 ND<6.5 200 ND<6.5 100 ND<6.5 100 ND<6.5 100 ND<6.6 100 ND<6.6 100 ND<6.6 100 ND<6.6	ND<5,000 ND<8.3 ND<4.3 ND<6.2 ND<6.2 ND<10 28 ND<5.4 30 ND<4.5 ND<3.9 18 ND<5.9 ND<5.4	ND-45,000 120 55 ND-41 ND-69 600 ND-35 6400 ND-36 ND-26 ND-26 ND-39 ND-36	ND-5,000 ND-18 ND-92 ND-13 ND-92 ND-13 ND-22 550 ND-12 2000 ND-9.7 ND-84 ND-16 24 ND-16	NDe5,000 15 NDe5 NDe7,2 NDe12 NDe16 NDe6,2 11 NDe5,2 NDe4,5	10,000 NA 1,000 NA 1,000 NA 60,000 NA 400 NA 410 1,200 NA
ACETOME CARGON DISULFIDE CHLOROFORM CYCLOHEXAME HEPTANE HEXAME HEXAME TETRACHOROTHENE TRICHLOROTHENE 1.3.5-TRIMETHYLBENZENE 1.2.4-TRIMETHYLBENZENE	(µg/m²)	100 29 ND<16 ND<6.3 38 8.6 25 ND<8.8 ND<7 26 27	6.4 ND<7.2 16 320 ND-6.3 360 ND-5.3 ND-6.3 ND-6.3 ND-6.3 ND-6.3 ND-6.3 ND-6.3 ND-6.3	ND-21 ND-11 ND-15 30 1300 ND-13 190 ND-11 ND-43 190 ND-11 ND-9 100 ND-14 ND-14 ND-14 ND-14 ND-14 ND-14	ND-30 ND-16 ND-16 ND-23 ND-38 1200 ND-20 4200 27 70 ND-27 ND-27 ND-22 ND-20 ND	ND<36 ND<19 ND<27 ND<46 140 ND<24 3800 ND<22 78 ND<33 ND<33 ND<26 ND<24 ND<24	28,000 MD-37 ND-37 ND-39 ND-39 ND-28 ND-62 ND-24 ND-24 ND-27 ND-34 ND-27 ND-24 ND-28 ND-18 ND-18	ND=5,000 ND=9.3 ND=6.9 ND=6.9 ND=6.9 ND=6.9 ND=6.9 14 140 ND=5 ND=6.3 12 130 ND=6 ND=6 ND=6 ND=6 ND=6 ND=6 ND=6 ND=6	ND-5 000 30 ND-5.2 ND-7.5 16 16 10 ND-6.5 200 ND-5.4 ND-6.5 17 ND-6.5 ND-6.5 ND-6.5 ND-6.5 ND-6.5 ND-6.5	ND-5,000 ND-8,3 ND-8,3 ND-8,3 ND-6,2 ND-6,2 ND-6,2 ND-6,2 ND-6,2 ND-5,4 ND-5,4 ND-4,5 ND-4,5 ND-5,9 ND-5,4 ND-5,4 ND-5,4 ND-5,4 ND-5,4 ND-5,4 ND-5,4 ND-5,4 ND-5,5	ND-5,000 120 55 ND-41 ND-69 600 ND-35 6400 ND-36 ND-36 ND-39 ND-36	ND-6 000 ND-18 ND-92 ND-18 ND-92 ND-13 ND-13 ND-12 550 ND-12 2000 ND-87 ND-84 ND-16 24 ND-16 12 ND-12 ND-12 ND-11 11	ND-65 000 15 ND-65 ND-65 ND-72 ND-16 ND-86 ND-86 11 ND-85 ND-86 12 ND-85 ND-86 25 ND-86 25 ND-86 7-4 92	10,000 NA 1,000 NA 1,000 NA 60,000 NA 60,000 NA 60 NA 40 NA
ACETONE CARRON DISULTIDE CHLOROFORM CYCLOHEANE MEPTANE HEZANE HEZANE TETRACHIONOCTHENE TROCHIONOCTHENE TROCHIONOCTHENE TASTRIMETTIVENERE 1.2.4-TRIMETTIVI EPRIZENE 2.2.4-TRIMETTIVI EPRIZENE	(up/m²)	100 29 ND-16 ND-6.3 38 8.6 25 ND-8.8 ND-7 26 27 ND-6	6.4 MD 6.4 MD 7.2 MD 16 320 MD 320 MD 320 MD 360	ND-21 ND-11 ND-15 30 1300 ND-13 190 ND-13 190 ND-11 ND-67 ND-19 100 ND-14 ND-14 ND-14 ND-13	ND<30 ND<30 ND<30 ND<30 ND<33 ND<38 1200 ND<20 4200 A200 27 70 ND<27 ND<27 ND<22 ND<20 ND<20 ND<20 ND<20 ND<20 ND<20 ND<20 ND<30 ND<419	ND-36 ND-19 ND-27 ND-46 140 ND-24 3800 ND-26 78 ND-26 ND-26 ND-26 ND-24 14000 20	26,000 ND-37 ND-19 ND-28 ND-47 ND-62 ND-24 31 ND-24 ND-17 ND-34 ND-34 ND-24 ND-24 ND-24	ND-5,000 ND-9.3 ND-6.8 ND-6.8 ND-6.9 ND-12 19 14 140 ND-5 ND-6.3 12 130 ND-6 ND-6 ND-6 ND-6 ND-6 ND-6 ND-6 ND-6	ND<5.000 30 ND<5.2 ND<5.2 ND<7.5 16 16 10 ND<6.5 200 ND<6.5 100 ND<6.5 100 ND<6.5 100 ND<6.5	ND-65,000 ND-63.3 ND-64.3 ND-64.3 ND-65.2 ND-61.0 28 ND-55.4 30 ND-63.9 18 ND-65.9 ND-65.4 ND-65.4 ND-65.4 ND-65.4 ND-65.4 ND-65.4 ND-65.4 ND-65.5	ND-5,000 120 155 ND-41 ND-69 600 ND-35 6400 ND-36 ND-26 ND-39 ND-39 ND-39 ND-36 ND-34 440 440 ND-23	ND-5,000 ND-18 ND-92 ND-13 ND-22 550 ND-12 2000 ND-97 ND-84 ND-16 24 ND-12 ND-12 ND-12 ND-10 ND-11	ND-65.000 15 ND-65 ND-7.2 ND-12 ND-16 ND-65 ND-65 ND-65 ND-65 ND-65 ND-85	10,000 NA 1,000 NA 1,000 NA 60,000 NA 440 NA
ACETONE CARBON DISULFIDE CHLOROFORM CYCLOHEXANE HEPTANE HERVANE HERVANE TERRACANE THICKLOROFTHENE 1.3.5-TRIMITH'LIBENZENE 1.2.4-TRIMETH'LIBENZENE 2.2.4-TRIMETH'LIBENZENE BENZENE TOLUENE	(up/m²)	100 29 ND-16 ND-6.3 38 8.6 25 ND-8.8 ND-7 26 27 ND-8 ND-6 ND-6 ND-6 ND-6 45 45	6.4 ND<7.2 16 320 ND<6.3 360 ND<6.3 360 ND<5.5 ND<4.5 ND<4.5 ND<4.6 3 ND<6.3	ND-21 ND-11 ND-15 30 ND-13 190 ND-13 190 ND-17 ND-19 100 ND-14 ND-19 100 ND-14 ND-14 ND-14 ND-14 ND-15 220 ND-8 ND-8 ND-10 ND-18 ND-10	ND:30 ND:16 ND:23 ND:38 1200 ND:20 27 70 ND:27 ND:27 ND:27 ND:22 ND:20 ND:20 SD:20 ND:19 330 22	ND-38 ND-19 ND-27 ND-46 140 ND-27 ND-66 140 ND-20 78 ND-20 ND-20 ND-20 ND-22 ND-23 ND-24 ND-26 ND-18	28,000 ND-637 ND-637 ND-619 ND-628 ND-647 ND-62 ND-64	ND-6 500 ND-633 ND-64.8 ND-64.8 ND-659 ND-612 19 14 140 ND-65 ND-63 ND-65 ND-63 ND-65	ND-6 200 ND-62 20 ND-62 2 ND-7 5 16 160 ND-65 5 200 ND-64 7 ND-65	ND-5 000 ND-6 300 ND-63 ND-63 ND-63 ND-63 ND-62 ND-610 28 ND-610 ND-64 ND-64 ND-64 ND-65 ND-65 ND-64 ND-65 ND-64	ND-5,000 120 150 150 ND-41 ND-69 600 ND-35 6400 ND-35 6400 ND-26 ND-26 ND-26 ND-26 ND-36 ND-37 ND-38	ND-6 000 ND-18 ND-9.2 ND-18 ND-9.2 ND-13 ND-9.2 S50 ND-12 2000 ND-9.7 ND-9.7 ND-8.4 ND-16 24 ND-12 ND-12 ND-11 11 ND-7.6 9.8	ND-65 000 15 ND-65 ND-65 ND-67-2 ND-12 ND-16 ND-66-2 11 ND-62 11 ND-62 ND-63 ND-64	10,000 N/A 1,000 N/A 1,000 N/A 1,000 N/A 660,000 N/A 460 N/A
ACETOME CARBON DISULFIDE CHLOROFORM CYCLOHEXANE HEPTANE HEXANE HEXANE HEXANE TETRACHLOROETHENE TARGOLOROETHENE 13,5-TRIMETHYLEBEXENE 12,2-4-TRIMETHYLEBEXENE 22,4-TRIMETHYLEBEXENE TOLURNE TOLURNE TOLURNE TOLURNE TOLURNE	(µg/m²)	100 29 ND<16 ND<6.3 38 8.6 25 ND<8.8 ND<7 26 ND<8.8 ND<7 46 ND<4.7 53 45 40	6.4 MD<7.2 16 320 ND<6.3 380 ND<6.3 ND<4.5 MD<8.7 22 ND<6.3 ND<6.3 ND<6.5 ND<6.5 ND<6.3 ND<6.5	ND-21 ND-11 ND-15 ND-15 ND-15 ND-15 ND-13 ND-13 ND-13 ND-11 ND-9.7 ND-19 ND-10 ND-14 ND-14 ND-14 ND-13 Z20 ND-8.8 ND-10 ND-13 ND-10 ND-13 ND-10	ND-30 ND-16 ND-16 ND-23 ND-38 1200 ND-20 4200 27 70 ND-22 ND-22 ND-22 ND-22 ND-22 ND-20 ND	ND-36 ND-19 ND-19 ND-27 ND-46 140 ND-24 3800 ND-20 78 ND-25 ND-26 ND-24	28,890 ND-37 ND-37 ND-37 ND-37 ND-419 ND-28 ND-47 ND-62 ND-24 31 ND-24 ND-27 ND-24 ND-27 ND-24 ND-27 ND-24 ND-24 ND-24 ND-24 ND-416 ND-416 ND-419 ND-418 ND-419 ND-	ND-6 000 ND-6 000 ND-9.3 ND-6.8 ND-6.8 ND-6.9 ND-12 19 14 140 140 140 150-6 ND-6.3 12 130 ND-6 ND-6.8	ND-65 000 ND-62 ND-75 16 100 ND-65 200 ND-65 200 ND-65 ND-67 ND-67 ND-65	ND-5.000 ND-8.3 ND-8.3 ND-8.3 ND-8.3 ND-8.2 ND-10 28 ND-5.4 30 ND-4.5 ND-8.3 ND-8.3 ND-8.3 ND-8.3 ND-8.3 ND-8.3 ND-8.4 ND-8.5 ND	ND-5,000 120 150 ND-51 ND-69 600 ND-35 6400 ND-30 ND-26 ND-39 ND-39 ND-39 ND-39 ND-36 ND-39 ND-36 ND-34 A40 ND-23 ND-23 ND-23 ND-24 ND-27	ND-5.000 ND-18 ND-9.2 ND-13 ND-9.2 ND-13 ND-9.2 550 ND-12 2000 ND-9.7 ND-8.4 ND-16 24 ND-16 12 ND-11 ND-12 ND-11 ND-12 ND-11 ND-15 ND-12 ND-11 ND-15 ND-11 ND-15 ND-11 ND-17 ND-17 ND-18 ND-10 ND-17 ND-17 ND-18 ND-18 ND-10 N	ND-65.000 15 ND-65 ND-72 ND-12 ND-16 ND-66 ND-66.2 11 ND-6.5 ND-6.3 ND-6.5 ND-6.4 ND-6.5	10,000 NA 1,000 NA 1,000 NA 60,000 NA 460 NA NA NA NA NA NA NA NA 410 1,200 NA NA NA S,400 B4 63,000 B90
ACETONE CARBON DISULFIDE CHLOROFORM CYCLOHEXANE HEPTANE HEXANE HEXANE HEXANE HEXANE TETRACHOROFHENE 13,5-TRIMETHYLBENZENE 12,4-TRIMETHYLBENZENE 2,4-TRIMETHYLPENZENE EDAZENE TOLUNE ETHYLBENZENE TYLENE ETHYLBENZENE XYLENE	(wam') (w	100 29 NDc18 NDc63 38 8.6 25 NDc8.8 NDc7 27 NDc8.9 NDc47 37 NDc6 NDc47 45 NDc44 45 NDc47	6.4 ND-c7.2 115 320 ND-6.3 360 ND-6.3 ND-6.5 ND-6.5 ND-6.8 1 ND-6.8 ND-6.8 ND-6.8 ND-6.3 ND-6.3 ND-6.3 ND-6.3 ND-6.4 ND-6.6 ND-6.6 ND-6.6 ND-6.6 ND-6.6	ND-21 ND-11 ND-15 30 ND-13 190 ND-13 190 ND-13 190 ND-11 ND-9.7 ND-19 100 ND-14 ND-14 ND-14 ND-14 ND-14 ND-13 220 ND-8 ND-8 ND-8 ND-10	ND-30 ND-16 ND-15 ND-23 ND-38 1200 ND-22 4200 27 70 ND-27 ND-27 ND-22 ND-20 ND	ND-38 ND-19 ND-19 ND-27 ND-46 140 ND-22 ND-20 ND-20 ND-20 ND-26 ND-26 ND-24 ND-24 ND-24 ND-24 ND-24 ND-24 ND-24 ND-24 ND-24 ND-24 ND-24 ND-24 ND-25 ND-26 ND-26 ND-26 ND-26 ND-26 ND-26 ND-26 ND-27 ND-26 ND	26,000 ND-27 ND-28 ND-28 ND-28 ND-28 ND-28 ND-62 ND-64 ND-66	ND-6 500 ND-93 ND-63 ND-648 ND-68 ND-69 ND-612 19 14 140 ND-65 ND-63 ND-64 12 130 ND-68	ND-6 200 30 ND-62 2 ND-7 5 160 ND-65 2 ND-65 2 ND-65 3 ND-65 3 ND-65 3 ND-65 5 ND-65 5 ND-65 5 ND-65 5 ND-65 8	ND-5 000 ND-63 ND-63 ND-63 ND-63 ND-62 ND-61 28 ND-610 28 ND-610 30 ND-63 ND-63 ND-63 ND-63 ND-64 ND-64 ND-64 ND-65 ND-66	ND-5,000 120 150 150 ND-41 ND-69 600 ND-35 6400 ND-35 6400 ND-26 ND-30 ND-26 ND-30 ND-26 ND-30 ND-31 ND-31	ND-5 000 ND-18 ND-9.2 ND-18 ND-9.2 ND-13 ND-12 550 ND-12 2000 ND-9.7 ND-9.7 ND-8.4 ND-16 24 ND-12 ND-12 ND-11 111 ND-7.6 9.8 ND-10	ND-65 000 15 ND-65 ND-72 ND-72 ND-16 ND-72 ND-16 ND-16 ND-65 11 ND-52 ND-4.5 ND-4.5 ND-8.3 ND-8.5 ND-8.5 ND-8.5 ND-8.5 ND-8.5 ND-8.5 ND-8.5	10,000 N/A 1,000 N/A 1,000 N/A 1,000 N/A 660,000 N/A 460 N/A
ACETONE CARBON DISULFIDE CHLOROFORM CYCLOHEXANE HEPTANE HEXANE HEXANE TETRACHOROCTHENE TRICHLOROCTHENE 1,3,5-TRIMETHYLERVENE 2,2,4-TRIMETHYLERVENE 2,2,4-TRIMETHYLERVENE EDENZENE TOLUENE ETHYLBENZENE XYLENE(S) PROPVILENZENE	(wpm') (w	100 29 ND=16 ND=63 38 8.6 8.6 25 ND=8 ND>67 26 27 NO=6 ND>67 26 45 45 40 154 8.8	6.4 ND<7.2 16 320 ND<6.3 360 ND<6.5 ND<6.5 ND<6.5 ND<6.7 22 ND<6.3 ND<6.5 ND<6.6	ND-21 ND-21 ND-15 ND-15 30 1300 ND-13 190 ND-13 190 ND-11 ND-97 ND-19 100 ND-14 ND-14 ND-14 ND-15 ND-15 ND-10 ND-14 ND-15 ND-10 ND-14 ND-15 ND-10 ND-14 ND-15 ND-10 ND-10 ND-10 ND-10 ND-10 ND-10 ND-10 ND-10 ND-11 ND-12 ND-14 ND-14 ND-12 ND-14	ND-30 ND-16 ND-16 ND-23 ND-23 ND-23 ND-20 27 70 ND-27 ND-27 ND-22 ND-20	ND-38 ND-19 ND-19 ND-27 ND-26 140 ND-27 ND-26 140 ND-24 3800 ND-20 ND-23 ND-23 ND-23 ND-24 14000 18 ND-24 14000 18 ND-18 ND-18 ND-18 ND-21 ND-21 ND-21 ND-21	28,000 ND-37 ND-37 ND-37 ND-39 ND-28 ND-82 ND-82 ND-82 ND-82 ND-82 ND-34 ND-34 ND-34 ND-24 ND-27 ND-24 120 ND-16 ND-16 ND-16 ND-16 ND-16 ND-19 ND-22 ND-22 ND-24 ND-24 ND-24 ND-24 ND-24 ND-25 ND-16 ND-19 ND-22 ND-22 ND-22 ND-22 ND-22 ND-22 ND-22 ND-22 ND-24	ND-6.000 ND-6.500 ND-6.93 ND-6.85 ND-6.89 ND-6.91 14 140 140 ND-6.5 ND-6.5 ND-6.5 ND-6.6 ND-6.5 ND-6	ND-6.500 ND-6.2 ND-6.2 ND-6.2 ND-7.5 16 100 ND-6.5 200 ND-6.5 ND-6.7 ND-6 17 ND-6.5	ND-6.500 ND-6.3 ND-6.3 ND-6.3 ND-6.3 ND-6.2 ND-6.1 ND-6.5	ND-45,000 120 120 155 ND-41 ND-69 600 ND-35 6400 ND-26 ND-39 ND-39 ND-39 ND-39 ND-39 ND-39 ND-39 ND-36 ND-31 ND-34 440 ND-27 ND-21 ND-31 ND-31 ND-31	ND-5 000 ND-18 ND-92 ND-18 ND-92 ND-13 ND-92 ND-13 ND-22 550 ND-12 2000 ND-97 ND-84 ND-16 24 ND-16 ND-12 ND-11 11 ND-76 9.8 ND-10	ND-65 000 15 ND-65 ND-65 ND-72 ND-12 ND-16 ND-66 ND-62 11 ND-65 ND-65 ND-63 ND-63 ND-63 ND-63 ND-63 ND-64 ND-64 ND-65	10,000 NA 1,000 NA 1,000 NA 600,000 NA 440 NA NA NA NA NA NA 410 1,200 NA
ACETONE CARRON DISULPIDE CHLOROFORM CYCLOHEXANE HEYANE HEXANE HEXANE HEXANE TERRACHOROFHENE 13,5-178METHULENZENE 12,4-178METHULENZENE 12,4-178METHULENZENE 12,4-178METHULENZENE TOLUENE ETHYLENZENE TOLUENE ETHYLENZENE XYLENE(5) PROPYLENZENE XYLENE(5) PROPYLENZENE 4-ETHYLOLUENE	(wg/m²) (wg/m²	100 29 ND-16 ND-63 38 8.6 8.6 25 NO-88 ND-67 26 27 ND-67 46 154 46 8.8	6.4 ND-cf 2 15 15 15 15 15 15 15 15 15 15 15 15 15	ND-21 ND-11 ND-15 30 1300 ND-13 190 ND-13 190 ND-11 ND-17 ND-19 100 ND-14 ND-14 ND-14 ND-14 ND-13 200 ND-15 ND-10 ND-12 ND-12 ND-12 ND-12 ND-12 ND-14	ND-30 ND-16 ND-16 ND-23 ND-38 1200 ND-20 4200 27 70 ND-22 ND-22 ND-22 ND-20 ND-20 ND-20 ND-20 ND-19 330 22 2 18 ND-20 ND	ND-38 ND-19 ND-19 ND-19 ND-27 ND-46 140 ND-27 ND-46 140 ND-24 3800 ND-20 78 ND-23 ND-23 ND-24 ND-24 ND-24 ND-24 ND-24 ND-21 ND-21 ND-21 ND-21 ND-21 ND-24 ND-22	26,000 ND-27 ND-27 ND-28 ND-28 ND-28 ND-28 ND-28 ND-62 ND-66	ND-6 000 ND-93 ND-630 ND-63 ND-648 ND-69 ND-612 19 14 140 ND-65 ND-65 ND-65 ND-65 ND-66 ND-65 ND-66	ND-6 500 ND-6 500 ND-6 52 ND-7 5 166 ND-6 5 200 ND-6 5 200 ND-6 7 ND-6 7 ND-6 7 ND-6 5	ND-5 000 ND-6 30 ND-6 3 ND-6 3 ND-6 3 ND-6 2 ND-6 1 ND-6 2 ND-6 1 ND-6 3 ND-6 3 ND-6 4 ND-6 3 ND-6 3 ND-6 3 ND-6 4 ND-6 5 ND-6 5 ND-6 5 ND-6 5 ND-6 6	ND-5,000 120 120 155 155 160 160 160 160 160 160 160 160 160 160	ND-5 000 ND-18 ND-18 ND-18 ND-9.2 ND-18 ND-9.2 ND-13 ND-12 S50 ND-12 2000 ND-9.7 ND-8.4 ND-16 24 ND-16 24 ND-16 11 11 ND-7 ND-12 ND-11 11 ND-7 ND-10 ND-10 ND-10 ND-10 ND-10 ND-10 ND-10 ND-10 ND-11	ND-65 000 15 ND-65 ND-72 ND-72 ND-16 ND-65 ND-63 ND-65 ND-65 ND-63 ND-65	10,000 NNA 1,000 NNA 1,000 NNA 1,000 NNA 1,000 NNA 1,000 NNA 1,000 NNA NNA NNA NNA NNA NNA NNA NNA NNA
ACETONE CARBON DISULFIDE CHLOROFORM CYCLOHEXANE HEPTANE HEXANE HEXANE TETRACHOROCTHENE TRICHLOROCTHENE 1,3,5-TRIMETHYLERVENE 2,2,4-TRIMETHYLERVENE 2,2,4-TRIMETHYLERVENE EDENZENE TOLUENE ETHYLBENZENE XYLENE(S) PROPVILENZENE	(wpm') (w	100 29 ND=16 ND=63 38 8.6 8.6 25 ND=8 ND>67 26 27 NO=6 ND>67 26 45 45 40 154 8.8	6.4 ND<7.2 16 320 ND<6.3 360 ND<6.5 ND<6.5 ND<6.5 ND<6.7 22 ND<6.3 ND<6.5 ND<6.6	ND-21 ND-21 ND-15 ND-15 30 1300 ND-13 190 ND-13 190 ND-11 ND-97 ND-19 100 ND-14 ND-14 ND-14 ND-15 ND-15 ND-10 ND-14 ND-15 ND-10 ND-14 ND-15 ND-10 ND-14 ND-15 ND-10 ND-10 ND-10 ND-10 ND-10 ND-10 ND-10 ND-10 ND-11 ND-12 ND-14 ND-14 ND-12 ND-14	ND-30 ND-16 ND-16 ND-23 ND-23 ND-23 ND-20 27 70 ND-27 ND-27 ND-22 ND-20	ND-38 ND-19 ND-19 ND-27 ND-26 140 ND-27 ND-26 140 ND-24 3800 ND-20 ND-23 ND-23 ND-23 ND-24 14000 18 ND-24 14000 18 ND-18 ND-18 ND-18 ND-21 ND-21 ND-21 ND-21	28,000 ND-37 ND-37 ND-37 ND-39 ND-28 ND-82 ND-82 ND-82 ND-82 ND-82 ND-34 ND-34 ND-34 ND-24 ND-27 ND-24 120 ND-16 ND-16 ND-16 ND-16 ND-16 ND-19 ND-22 ND-22 ND-24 ND-24 ND-24 ND-24 ND-24 ND-25 ND-16 ND-19 ND-22 ND-22 ND-22 ND-22 ND-22 ND-22 ND-22 ND-22 ND-24	ND-6.000 ND-6.500 ND-6.93 ND-6.85 ND-6.89 ND-6.91 14 140 140 ND-6.5 ND-6.5 ND-6.5 ND-6.6 ND-6.5 ND-6	ND-6.500 ND-6.2 ND-6.2 ND-6.2 ND-7.5 16 100 ND-6.5 200 ND-6.5 ND-6.7 ND-6 17 ND-6.5	ND-6.500 ND-6.3 ND-6.3 ND-6.3 ND-6.3 ND-6.2 ND-6.1 ND-6.5	ND-45,000 120 120 155 ND-41 ND-69 600 ND-35 6400 ND-26 ND-39 ND-39 ND-39 ND-39 ND-39 ND-39 ND-39 ND-36 ND-31 ND-34 440 ND-27 ND-21 ND-31 ND-31 ND-31	ND-5 000 ND-18 ND-92 ND-18 ND-92 ND-13 ND-92 ND-13 ND-22 550 ND-12 2000 ND-97 ND-84 ND-16 24 ND-16 ND-12 ND-11 11 ND-76 9.8 ND-10	ND-65 000 15 ND-65 ND-65 ND-72 ND-12 ND-16 ND-66 ND-62 11 ND-65 ND-65 ND-63 ND-63 ND-63 ND-63 ND-63 ND-64 ND-64 ND-65	10,000 NA 1,000 NA 1,000 NA 1,000 NA 60,000 NA 640 NA NA 1,000 NA NA NA NA 1,000 NA 1,200 NA NA NA NA NA 1,200 NA

Appendix A

SunStar Laboratories April 2011 Laboratory Report

29 April 2011

Morgan Johnson Engeo 2213 Plaza Dr. Rocklin, CA 95765

RE: 1000 N. Vasco Rd.

Enclosed are the results of analyses for samples received by the laboratory on 04/21/11 11:40. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Daniel Chavez For John Shepler

Saniel & Chivy

Laboratory Director

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
GP1@4'	T110485-01	Soil	04/19/11 16:15	04/21/11 11:40
GP1@8'	T110485-02	Soil	04/19/11 16:15	04/21/11 11:40
GP1@12'	T110485-03	Soil	04/19/11 16:15	04/21/11 11:40
GP2@4'	T110485-04	Soil	04/19/11 12:15	04/21/11 11:40
GP2@6'	T110485-05	Soil	04/19/11 12:15	04/21/11 11:40
GP2@12'	T110485-06	Soil	04/19/11 12:15	04/21/11 11:40
GP3@4'	T110485-07	Soil	04/20/11 12:15	04/21/11 11:40
GP3@8'	T110485-08	Soil	04/20/11 12:15	04/21/11 11:40
GP3@12'	T110485-09	Soil	04/20/11 12:15	04/21/11 11:40
GP4@12'	T110485-10	Soil	04/19/11 11:40	04/21/11 11:40
GP4@4'	T110485-11	Soil	04/19/11 11:40	04/21/11 11:40
GP4@8'	T110485-12	Soil	04/19/11 11:40	04/21/11 11:40
GP5@4'	T110485-13	Soil	04/19/11 15:00	04/21/11 11:40
GP5@8'	T110485-14	Soil	04/19/11 15:00	04/21/11 11:40
GP5@12'	T110485-15	Soil	04/19/11 15:00	04/21/11 11:40
GP6@4'	T110485-16	Soil	04/19/11 13:15	04/21/11 11:40
GP6@8'	T110485-17	Soil	04/19/11 13:15	04/21/11 11:40
GP6@12'	T110485-18	Soil	04/19/11 13:15	04/21/11 11:40
GP7@4'	T110485-19	Soil	04/20/11 16:15	04/21/11 11:40
GP7@8'	T110485-20	Soil	04/20/11 16:15	04/21/11 11:40
GP7@12'	T110485-21	Soil	04/20/11 16:15	04/21/11 11:40
GP8@4'	T110485-22	Soil	04/20/11 16:30	04/21/11 11:40
GP8@8'	T110485-23	Soil	04/20/11 16:30	04/21/11 11:40
GP8@12'	T110485-24	Soil	04/20/11 16:30	04/21/11 11:40
GP9@4'	T110485-25	Soil	04/19/11 10:15	04/21/11 11:40
GP9@8'	T110485-26	Soil	04/19/11 10:15	04/21/11 11:40

SunStar Laboratories, Inc.

Saviel of Chivy

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
GP9@12'	T110485-27	Soil	04/19/11 10:15	04/21/11 11:40
GP10@4'	T110485-28	Soil	04/19/11 09:15	04/21/11 11:40
GP10@8'	T110485-29	Soil	04/19/11 09:15	04/21/11 11:40
GP10@12'	T110485-30	Soil	04/19/11 09:20	04/21/11 11:40
GP10@10'	T110485-31	Soil	04/19/11 09:20	04/21/11 11:40
GP13@4'	T110485-32	Soil	04/19/11 10:45	04/21/11 11:40
GP13@8'	T110485-33	Soil	04/19/11 10:45	04/21/11 11:40
GP13@12'	T110485-34	Soil	04/19/11 10:45	04/21/11 11:40
GP9@10'	T110485-35	Soil	04/19/11 10:15	04/21/11 11:40
GP4-GW	T110485-36	Water	04/19/11 11:45	04/21/11 11:40
GP2-GW	T110485-37	Water	04/19/11 12:25	04/21/11 11:40
GP6-GW	T110485-38	Water	04/19/11 13:25	04/21/11 11:40
GP1-GW	T110485-40	Water	04/19/11 16:20	04/21/11 11:40
GP7-GW	T110485-41	Water	04/19/11 16:00	04/21/11 11:40
GP8-GW	T110485-42	Water	04/19/11 16:30	04/21/11 11:40
GP11@4'	T110485-47	Soil	04/19/11 15:15	04/21/11 11:40
GP11@8'	T110485-48	Soil	04/19/11 15:15	04/21/11 11:40
GP11@12'	T110485-49	Soil	04/19/11 15:15	04/21/11 11:40
GP11@10'	T110485-50	Soil	04/19/11 15:15	04/21/11 11:40
GP12@4'	T110485-51	Soil	04/19/11 15:40	04/21/11 11:40
GP12@8'	T110485-52	Soil	04/19/11 15:40	04/21/11 11:40
GP12@12'	T110485-53	Soil	04/19/11 15:40	04/21/11 11:40
GW-10	T110485-54	Water	04/20/11 15:00	04/21/11 11:40
GP3-GW	T110485-55	Water	04/20/11 14:15	04/21/11 11:40
D1	T110485-56	Soil	04/20/11 10:00	04/21/11 11:40
D2	T110485-57	Soil	04/20/11 10:04	04/21/11 11:40

SunStar Laboratories, Inc.

Saviel of Chivy

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
D3	T110485-58	Soil	04/20/11 10:18	04/21/11 11:40
D4	T110485-59	Soil	04/20/11 10:15	04/21/11 11:40
D5	T110485-60	Soil	04/20/11 10:11	04/21/11 11:40
D6	T110485-61	Soil	04/20/11 10:08	04/21/11 11:40
D7	T110485-62	Soil	04/20/11 10:25	04/21/11 11:40
D8	T110485-63	Soil	04/20/11 10:06	04/21/11 11:40
GP14@4'	T110485-64	Soil	04/19/11 16:50	04/21/11 11:40
GP14@6'	T110485-65	Soil	04/19/11 16:50	04/21/11 11:40
GP14@12'	T110485-66	Soil	04/19/11 16:50	04/21/11 11:40
MW-3	T110485-67	Water	04/20/11 11:30	04/21/11 11:40
GP11-GW	T110485-68	Water	04/19/11 00:00	04/21/11 11:40
COMPOSITE	T110485-69	Soil	04/20/11 00:00	04/21/11 11:40

SunStar Laboratories, Inc.

Saviel of Chivy

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rocklin CA, 95765

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

Reported:

Engeo Project: 1000 N. Vasco Rd.
2213 Plaza Dr. Project Number: 7380.000.003

Project Manager: Morgan Johnson 04/29/11 11:23

GP1@4' T110485-01 (Soil)

Reporting

Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aborator	ries, Inc.					
Purgeable Petroleum Hydrocarbo	ons by EPA 8015C								
C6-C12 (GRO)	8600	500	ug/kg	1	1042126	04/21/11	04/26/11	EPA 8015C	
Surrogate: 4-Bromofluorobenzene		88.3 %	72.6	-146	"	"	"	"	
Extractable Petroleum Hydrocark	oons by 8015C								
C13-C28 (DRO)	ND	10	mg/kg	1	1042125	04/21/11	04/27/11	EPA 8015C	
C29-C40 (MORO)	ND	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		101 %	65-	135	"	"	"	"	
Volatile Organic Compounds by I	EPA Method 8260	В							
Bromobenzene	ND	5.0	ug/kg	1	1042121	04/21/11	04/21/11	EPA 8260B	
Bromochloromethane	ND	5.0	"	"	"	"	"	"	
Bromodichloromethane	ND	5.0	"	"	"	"	"	"	
Bromoform	ND	5.0	"	"	"	"	"	"	
Bromomethane	ND	5.0	"	"	"	"	"	"	
n-Butylbenzene	ND	5.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	5.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	5.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	5.0	"	"	"	"	"	"	
Chlorobenzene	ND	5.0	"	"	"	"	"	"	
Chloroethane	ND	5.0	"	"	"	"	"	"	
Chloroform	ND	5.0	"	"	"	"	"	"	
Chloromethane	ND	5.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
Dibromochloromethane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	5.0	"	"	"	"	"	"	
Dibromomethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	5.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Saviel of Chivy

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

GP1@4' T110485-01 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Sunstar Laboratories, Inc.											
Volatile Organic Compounds by EPA N	Method 8260B								_		
1,1-Dichloroethane	ND	5.0	ug/kg	1	1042121	04/21/11	04/21/11	EPA 8260B			
1,2-Dichloroethane	ND	5.0	"	"	"	"	"	II .			
1,1-Dichloroethene	ND	5.0	"	"	"	"	"	II .			
cis-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"			
trans-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"			
1,2-Dichloropropane	ND	5.0	"	"	"	"	"	"			
1,3-Dichloropropane	ND	5.0	"	"	"	"	"	"			
2,2-Dichloropropane	ND	5.0	"	"	"	"	"	"			
1,1-Dichloropropene	ND	5.0	"	"	"	"	"	"			
cis-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"			
trans-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"			
Hexachlorobutadiene	ND	5.0	"	"	"	"	"	"			
Isopropylbenzene	ND	5.0	"	"	"	"	"	"			
p-Isopropyltoluene	ND	5.0	"	"	"	"	"	"			
Methylene chloride	ND	5.0	"	"	"	"	"	n .			
Naphthalene	ND	5.0	"	"	"	"	"	"			
n-Propylbenzene	ND	5.0	"	"	"	"	"	II .			
Styrene	ND	5.0	"	"	"	"	"	"			
1,1,2,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"			
1,1,1,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"			
Tetrachloroethene	ND	5.0	"	"	"	"	"	"			
1,2,3-Trichlorobenzene	ND	5.0	"	"	"	"	"	"			
1,2,4-Trichlorobenzene	ND	5.0	"	"	"	"	"	"			
1,1,2-Trichloroethane	ND	5.0	"	"	"	"	"	"			
1,1,1-Trichloroethane	ND	5.0	"	"	"	"	"	"			
Trichloroethene	ND	5.0	"	"	"	"	"	"			
Trichlorofluoromethane	ND	5.0	"	"	"	"	"	"			
1,2,3-Trichloropropane	ND	5.0	"	"	"	"	"	"			
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"			
1,2,4-Trimethylbenzene	ND	5.0	"	"	"	"	"	"			
Vinyl chloride	ND	5.0	"	"	"	"	"	"			
Benzene	ND	5.0	"	"	"	"	"	"			

SunStar Laboratories, Inc.

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

GP1@4' T110485-01 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

	İ	SunStar L	aboratori	es, Inc.									
Volatile Organic Compounds by E	Volatile Organic Compounds by EPA Method 8260B												
Toluene	ND	5.0	ug/kg	1	1042121	04/21/11	04/21/11	EPA 8260B					
Ethylbenzene	ND	5.0	"	"	"	"	"	"					
m,p-Xylene	ND	5.0	"	"	"	"	"	"					
o-Xylene	ND	5.0	"	"	"	"	"	"					
Tert-amyl methyl ether	ND	20	"	"	"	"	"	"					
Tert-butyl alcohol	ND	50	"	"	"	"	"	"					
Di-isopropyl ether	ND	20	"	"	"	"	"	"					
Ethyl tert-butyl ether	ND	20	"	"	"	"	"	"					
Methyl tert-butyl ether	ND	20	"	"	"	"	"	"					
Surrogate: Toluene-d8		97.4 %	85.5-	116	"	"	"	"					
Surrogate: 4-Bromofluorobenzene		106 %	75.1-	121	"	"	"	"					
Surrogate: Dibromofluoromethane		105 %	90-1.	35	"	"	"	"					

SunStar Laboratories, Inc.

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

Reporting

GP1@8' T110485-02 (Soil)

Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aborato	ries, Inc.					
Purgeable Petroleum Hydrocarbo	ons by EPA 8015C								
C6-C12 (GRO)	8300	500	ug/kg	1	1042126	04/21/11	04/26/11	EPA 8015C	
Surrogate: 4-Bromofluorobenzene		92.2 %	72.6	-146	"	"	"	n	
Extractable Petroleum Hydrocarl	bons by 8015C								
C13-C28 (DRO)	ND	10	mg/kg	1	1042125	04/21/11	04/27/11	EPA 8015C	
C29-C40 (MORO)	ND	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		134 %	65-	135	"	"	"	"	
Volatile Organic Compounds by I	EPA Method 8260	В							
Bromobenzene	ND	5.0	ug/kg	1	1042121	04/21/11	04/21/11	EPA 8260B	
Bromochloromethane	ND	5.0	"	"	"	"	"	"	
Bromodichloromethane	ND	5.0	"	"	"	"	"	"	
Bromoform	ND	5.0	"	"	"	"	"	"	
Bromomethane	ND	5.0	"	"	"	"	"	"	
n-Butylbenzene	ND	5.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	5.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	5.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	5.0	"	"	"	"	"	"	
Chlorobenzene	ND	5.0	"	"	"	"	"	"	
Chloroethane	ND	5.0	"	"	"	"	"	"	
Chloroform	ND	5.0	"	"	"	"	"	"	
Chloromethane	ND	5.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
Dibromochloromethane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	5.0	"	"	"	"	"	"	
Dibromomethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	5.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

GP1@8' T110485-02 (Soil)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

SunStar Laboratories, Inc.											
Volatile Organic Compounds by	y EPA Method 8260B										
1,2-Dichloroethane	ND	5.0	ug/kg	1	1042121	04/21/11	04/21/11	EPA 8260B			
1,1-Dichloroethene	ND	5.0	"	"	"	"	"	"			
cis-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"			
trans-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"			
1,2-Dichloropropane	ND	5.0	"	"	"	"	"	"			
1,3-Dichloropropane	ND	5.0	"	"	"	"	"	"			
2,2-Dichloropropane	ND	5.0	"	"	"	"	"	"			
1,1-Dichloropropene	ND	5.0	"	"	"	"	"	"			
cis-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"			
trans-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"			
Hexachlorobutadiene	ND	5.0	"	"	"	"	"	"			
Isopropylbenzene	ND	5.0	"	"	"	"	"	"			
p-Isopropyltoluene	ND	5.0	"	"	"	"	"	"			
Methylene chloride	ND	5.0	"	"	"	"	"	"			
Naphthalene	ND	5.0	"	"	"	"	"	"			
n-Propylbenzene	ND	5.0	"	"	"	"	"	"			
Styrene	ND	5.0	"	"	"	"	"	"			
1,1,2,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"			
1,1,1,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"			
Tetrachloroethene	ND	5.0	"	"	"	"	"	"			
1,2,3-Trichlorobenzene	ND	5.0	"	"	"	"	"	"			
1,2,4-Trichlorobenzene	ND	5.0	"	"	"	"	"	"			
1,1,2-Trichloroethane	ND	5.0	"	"	"	"	"	"			
1,1,1-Trichloroethane	ND	5.0	"	"	"	"	"	"			
Trichloroethene	ND	5.0	"	"	"	"	"	"			
Trichlorofluoromethane	ND	5.0	"	"	"	"	"	"			
1,2,3-Trichloropropane	ND	5.0	"	"	"	"	"	"			
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"			
1,2,4-Trimethylbenzene	ND	5.0	"	"	"	"	"	"			
Vinyl chloride	ND	5.0	"	"	"	"	"	"			
Benzene	ND	5.0	"	"	"	"	"	"			
Toluene	ND	5.0	"	"	"	"	"	"			

SunStar Laboratories, Inc.

Saviel & Chivy

Engeo Project: 1000 N. Vasco Rd.

 2213 Plaza Dr.
 Project Number: 7380.000.003
 Reported:

 Rocklin CA, 95765
 Project Manager: Morgan Johnson
 04/29/11 11:23

GP1@8' T110485-02 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by EPA Method 8260B										
Ethylbenzene	ND	5.0	ug/kg	1	1042121	04/21/11	04/21/11	EPA 8260B		
m,p-Xylene	ND	5.0	"	"	"	"	"	"		
o-Xylene	ND	5.0	"	"	"	"	"	"		
Tert-amyl methyl ether	ND	20	"	"	"	"	"	"		
Tert-butyl alcohol	ND	50	"	"	"	"	"	"		
Di-isopropyl ether	ND	20	"	"	"	"	"	"		
Ethyl tert-butyl ether	ND	20	"	"	"	"	"	"		
Methyl tert-butyl ether	ND	20	"	"	"	"	"	"		
Surrogate: Toluene-d8		99.5 %	85.5-1	116	"	"	"	"		

75.1-121

90-135

104 %

108 %

SunStar Laboratories, Inc.

Surrogate: 4-Bromofluorobenzene

Surrogate: Dibromofluoromethane

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

Reporting

GP1@12' T110485-03 (Soil)

Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aborato	ries, Inc.					
Purgeable Petroleum Hydrocarbo	ons by EPA 8015C	l •							
C6-C12 (GRO)	7800	500	ug/kg	1	1042126	04/21/11	04/26/11	EPA 8015C	
Surrogate: 4-Bromofluorobenzene		90.4 %	72.6	-146	"	"	"	"	
Extractable Petroleum Hydrocarl	bons by 8015C								
C13-C28 (DRO)	ND	10	mg/kg	1	1042125	04/21/11	04/28/11	EPA 8015C	
C29-C40 (MORO)	ND	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		126 %	65-	135	"	"	"	"	
Volatile Organic Compounds by I	EPA Method 8260	В							
Bromobenzene	ND	5.0	ug/kg	1	1042121	04/21/11	04/21/11	EPA 8260B	
Bromochloromethane	ND	5.0	"	"	"	"	"	"	
Bromodichloromethane	ND	5.0	"	"	"	"	"	"	
Bromoform	ND	5.0	"	"	"	"	"	"	
Bromomethane	ND	5.0	"	"	"	"	"	"	
n-Butylbenzene	ND	5.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	5.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	5.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	5.0	"	"	"	"	"	"	
Chlorobenzene	ND	5.0	"	"	"	"	"	"	
Chloroethane	ND	5.0	"	"	"	"	"	"	
Chloroform	ND	5.0	"	"	"	"	"	"	
Chloromethane	ND	5.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
Dibromochloromethane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	5.0	"	"	"	"	"	"	
Dibromomethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	5.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

GP1@12' T110485-03 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

	Su	nStar L	aboratori	es, Inc.					
Volatile Organic Compounds by	y EPA Method 8260B								
1,2-Dichloroethane	ND	5.0	ug/kg	1	1042121	04/21/11	04/21/11	EPA 8260B	
1,1-Dichloroethene	ND	5.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,3-Dichloropropane	ND	5.0	"	"	"	"	"	"	
2,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	5.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"	
Hexachlorobutadiene	ND	5.0	"	"	"	"	"	"	
Isopropylbenzene	ND	5.0	"	"	"	"	"	"	
p-Isopropyltoluene	ND	5.0	"	"	"	"	"	"	
Methylene chloride	ND	5.0	"	"	"	"	"	"	
Naphthalene	ND	5.0	"	"	"	"	"	"	
n-Propylbenzene	ND	5.0	"	"	"	"	"	"	
Styrene	ND	5.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"	
Tetrachloroethene	ND	5.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	5.0	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	5.0	"	"	"	"	"	"	
Trichloroethene	ND	5.0	"	"	"	"	"	"	
Trichlorofluoromethane	ND	5.0	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
Vinyl chloride	ND	5.0	"	"	"	"	"	"	
Benzene	ND	5.0	"	"	"	"	"	"	
Toluene	ND	5.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Saviel of Chivy

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

GP1@12' T110485-03 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

		Sunstai La	abol atol i	es, me.									
Volatile Organic Compounds by EPA Method 8260B													
Ethylbenzene	ND	5.0	ug/kg	1	1042121	04/21/11	04/21/11	EPA 8260B					
m,p-Xylene	ND	5.0	"	"	"	"	"	"					
o-Xylene	ND	5.0	"	"	"	"	"	"					
Tert-amyl methyl ether	ND	20	"	"	"	"	"	"					
Tert-butyl alcohol	ND	50	"	"	"	"	"	"					
Di-isopropyl ether	ND	20	"	"	"	"	"	"					
Ethyl tert-butyl ether	ND	20	"	"	"	"	"	"					
Methyl tert-butyl ether	ND	20	"	"	"	"	"	n .					
Surrogate: Toluene-d8		98.8 %	85.5-1	116	"	"	"	"					
Surrogate: 4-Bromofluorobenzene		105 %	75.1-1	121	"	"	"	"					
Surrogate: Dibromofluoromethane		106 %	90-1.	35	"	"	"	"					

SunStar Laboratories, Inc.

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

GP2@4' T110485-04 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aborator	ries, Inc.					
Purgeable Petroleum Hydrocarbo	ons by EPA 8015C	,							
C6-C12 (GRO)	ND	500	ug/kg	1	1042126	04/21/11	04/26/11	EPA 8015C	
Surrogate: 4-Bromofluorobenzene		91.2 %	72.6	-146	"	"	"	"	
Extractable Petroleum Hydrocark	oons by 8015C								
C13-C28 (DRO)	81	10	mg/kg	1	1042125	04/21/11	04/28/11	EPA 8015C	
C29-C40 (MORO)	880	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		138 %	65-	135	"	"	"	"	S-04
Volatile Organic Compounds by I	EPA Method 8260	В							
Bromobenzene	ND	5.0	ug/kg	1	1042121	04/21/11	04/21/11	EPA 8260B	
Bromochloromethane	ND	5.0	"	"	"	"	"	"	
Bromodichloromethane	ND	5.0	"	"	"	"	"	"	
Bromoform	ND	5.0	"	"	"	"	"	"	
Bromomethane	ND	5.0	"	"	"	"	"	"	
n-Butylbenzene	ND	5.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	5.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	5.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	5.0	"	"	"	"	"	"	
Chlorobenzene	ND	5.0	"	"	"	"	"	"	
Chloroethane	ND	5.0	"	"	"	"	"	"	
Chloroform	ND	5.0	"	"	"	"	"	"	
Chloromethane	ND	5.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
Dibromochloromethane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	5.0	"	"	"	"	"	"	
Dibromomethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	5.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Saviel & Chivy

Engeo Project: 1000 N. Vasco Rd.

 2213 Plaza Dr.
 Project Number: 7380.000.003
 Reported:

 Rocklin CA, 95765
 Project Manager: Morgan Johnson
 04/29/11 11:23

GP2@4' T110485-04 (Soil)

	Reporting							
Analyte Resi	lt Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

	Sui	nStar L	aboratorio	es, Inc.					
Volatile Organic Compounds by	EPA Method 8260B								
1,2-Dichloroethane	ND	5.0	ug/kg	1	1042121	04/21/11	04/21/11	EPA 8260B	
1,1-Dichloroethene	ND	5.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	m .	
trans-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,3-Dichloropropane	ND	5.0	"	"	"	"	"	"	
2,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	5.0	"	"	"	"	"	m .	
cis-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"	
Hexachlorobutadiene	ND	5.0	"	"	"	"	"	"	
Isopropylbenzene	ND	5.0	"	"	"	"	"	"	
p-Isopropyltoluene	ND	5.0	"	"	"	"	"	"	
Methylene chloride	ND	5.0	"	"	"	"	"	"	
Naphthalene	ND	5.0	"	"	"	"	"	"	
n-Propylbenzene	ND	5.0	"	"	"	"	"	"	
Styrene	ND	5.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"	
Tetrachloroethene	ND	5.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	5.0	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	5.0	"	"	"	"	"	"	
Trichloroethene	ND	5.0	"	"	"	"	"	"	
Trichlorofluoromethane	ND	5.0	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
Vinyl chloride	ND	5.0	"	"	"	"	"	"	
Benzene	ND	5.0	"	"	"	"	"	"	
Toluene	ND	5.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Saviel of Chivy

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

GP2@4' T110485-04 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Ethylbenzene	ND	5.0	ug/kg	1	1042121	04/21/11	04/21/11	EPA 8260E
m,p-Xylene	ND	5.0	"	"	"	"	"	"
o-Xylene	ND	5.0	"	"	"	"	"	"
Tert-amyl methyl ether	ND	20	"	"	"	"	"	"
Tert-butyl alcohol	ND	50	"	"	"	"	"	"
Di-isopropyl ether	ND	20	"	"	"	"	"	"
Ethyl tert-butyl ether	ND	20	"	"	"	"	"	"
Methyl tert-butyl ether	ND	20	"	"	"	"	"	"
Surrogate: Toluene-d8		98.1 %	85.5-1	16	"	"	"	"
Surrogate: 4-Bromofluorobenzene		101 %	75.1-1	21	"	"	"	"

90-135

92.1 %

SunStar Laboratories, Inc.

Saviel of Chivy

Surrogate: Dibromofluoromethane

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

GP2@6' T110485-05 (Soil)

Surrogate: 4-Promofiburobenzene S5.5 % 72.6-146 " " " " " Extractable Petroleum Hydrocarbons by 8015C	Method Note	l	Analyzed	Prepared	Batch	Dilution	Units	Reporting Limit	Result	Analyte
ND S00 ug/kg 1 104216 04/21/11 04/26/11 EPA Surrogate: 4-Bromofluorobenzene 85.5 % 72.6-146 " " " " " " To varrogate: 4-Bromofluorobenzene 85.5 % 72.6-146 " " " " " To varrogate: 4-Bromofluorobenzene 85.5 % 72.6-146 " " " " To varrogate: 4-Bromofluorobenzene ND ND 10 mg/kg 1 1042125 04/21/11 04/28/11 EPA					es, Inc.	aboratori	SunStar La			
Surrogate: 4-Bromofluorobenzene S5.5 % 72.6-146								,	EPA 8015C	Purgeable Petroleum Hydrocarbons by
Extractable Petroleum Hydrocarbons by 8015C C13-C28 (DRO) ND 10 mg/kg 1 1042125 04/21/11 04/28/11 EPA C29-C40 (MORO) ND 10 " " " " " " " " "	EPA 8015C	J	04/26/11	04/21/11	1042126	1	ug/kg	500	ND	C6-C12 (GRO)
C13-C28 (DRO)	n .		"	"	"	146	72.6-	85.5 %		Surrogate: 4-Bromofluorobenzene
C29-C40 (MORO) ND 10									oy 8015C	Extractable Petroleum Hydrocarbons
Surrogate: p-Terphenyl 134 % 65-135 " " " "	EPA 8015C		04/28/11	04/21/11	1042125	1	mg/kg	10	ND	C13-C28 (DRO)
No	"		"	"	"	"	"	10	ND	C29-C40 (MORO)
Bromobenzene ND 5.0 ug/kg 1 1042121 04/21/11 04/21/11 EPA	"		"	"	"	35	65-1	134 %		Surrogate: p-Terphenyl
Bromobenzene ND 5.0 ug/kg 1 1042121 04/21/11 04/21/11 EPA								В	Method 8260	Volatile Organic Compounds by EPA
Stock Stoc	EPA 8260B	J	04/21/11	04/21/11	1042121	1	ug/kg	5.0	ND	Bromobenzene
Bromoform ND 5.0 " <t< td=""><td>II .</td><td></td><td>"</td><td>"</td><td>"</td><td>"</td><td>"</td><td>5.0</td><td>ND</td><td>Bromochloromethane</td></t<>	II .		"	"	"	"	"	5.0	ND	Bromochloromethane
Bromomethane ND 5.0 " " " " " " " " " " " " " " " " " " "	II .		"	"	"	"	"	5.0	ND	Bromodichloromethane
n-Butylbenzene ND 5.0 " " " " " " " " " " " " " tert-Butylbenzene ND 5.0 " " " " " " " " " " " " " " " " " " "	"		"	"	"	"	"	5.0	ND	Bromoform
sec-Butylbenzene ND 5.0 "	"		"	"	"	"	"	5.0	ND	Bromomethane
tert-Butylbenzene ND 5.0 "	"		"	"	"	"	"	5.0	ND	n-Butylbenzene
Carbon tetrachloride ND 5.0 "	"		"	"	"	"	"	5.0	ND	sec-Butylbenzene
Chlorobenzene ND 5.0 "	"		"	"	"	"	"	5.0	ND	tert-Butylbenzene
Chloroethane ND 5.0 "	"		"	"	"	"	"	5.0	ND	Carbon tetrachloride
Chloroform ND 5.0 " <	"		"	"	"	"	"	5.0	ND	Chlorobenzene
Chloromethane ND 5.0 "	"		"	"	"	"	"	5.0	ND	Chloroethane
2-Chlorotoluene ND 5.0 "	"		"	"	"	"	"	5.0	ND	Chloroform
4-Chlorotoluene ND 5.0 "	"		"	"	"	"	"	5.0	ND	Chloromethane
Dibromochloromethane	"		"	"	"	"	"	5.0	ND	2-Chlorotoluene
Dibromochloromethane ND 5.0 " <td>"</td> <td></td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>5.0</td> <td>ND</td> <td>4-Chlorotoluene</td>	"		"	"	"	"	"	5.0	ND	4-Chlorotoluene
1,2-Dibromoethane (EDB) ND 5.0 "	"		"	"	"	"	"	5.0	ND	Dibromochloromethane
Dibromomethane ND 5.0 "	"		"	"	"	"	"	5.0	ND	1,2-Dibromo-3-chloropropane
Dibromomethane ND 5.0 "	"		"	"	"	"	"	5.0	ND	1,2-Dibromoethane (EDB)
1,3-Dichlorobenzene ND 5.0 " " " " " 1,4-Dichlorobenzene ND 5.0 " " " " "	"		"	"	"	"	"	5.0	ND	Dibromomethane
1,4-Dichlorobenzene ND 5.0 " " " " "	"		"	"	"	"	"	5.0	ND	1,2-Dichlorobenzene
1,4-Dictionouelizette ND 5.0	"		"	"	"	"	"	5.0	ND	1,3-Dichlorobenzene
Dichlorodifluoromethane ND 5.0 " " " " "	"		"	"	"	"	"	5.0	ND	1,4-Dichlorobenzene
	"		"	"	"	"	"	5.0	ND	Dichlorodifluoromethane
1,1-Dichloroethane ND 5.0 " " " " "	"		"	"	"	"	"	5.0	ND	1,1-Dichloroethane

SunStar Laboratories, Inc.

Saviel of Chivy

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

GP2@6' T110485-05 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Sunsi	ar La	boratorie	s, inc.				
od 8260B							
ND	5.0	ug/kg	1	1042121	04/21/11	04/21/11	EPA 8260B
ND	5.0	"	"	"	"	"	"
ND	5.0	"	"	"	"	"	"
ND	5.0	"	"	"	"	"	"
ND	5.0	"	"	"	"	"	"
ND	5.0	"	"	"	"	"	"
ND	5.0	"	"	"	"	"	"
ND	5.0	"	"	"	"	"	"
ND	5.0	"	"	"	"	"	"
ND	5.0	"	"	"	"	"	"
ND	5.0	"	"	"	"	"	"
ND	5.0	"	"	"	"	"	"
ND	5.0	"	"	"	"	"	"
ND	5.0	"	"	"	"	"	"
ND	5.0	"	"	"	"	"	"
ND	5.0	"	"	"	"	"	"
ND	5.0	"	"	"	"	"	"
ND	5.0	"	"	"	"	"	"
ND	5.0	"	"	"	"	"	"
ND	5.0	"	"	"	"	"	"
ND	5.0	"	"	"	"	"	"
ND	5.0	"	"	"	"	"	"
ND	5.0	"	"	"	"	"	"
ND	5.0	"	"	"	"	"	"
ND	5.0	"	"	"	"	"	"
ND	5.0	"	"	"	"	"	"
ND	5.0	"	"	"	"	"	"
ND	5.0	"	"	"	"	"	"
ND	5.0	"	"	"	"	"	"
ND	5.0	"	"	"	"	"	"
ND	5.0	"	"	"	"	"	"
ND	5.0	"	"	"	"	"	"
	ND N	ND 5.0 ND 5.0	ND 5.0 ug/kg ND 5.0 "	ND 5.0 ug/kg 1 ND 5.0 " " ND 5.0	ND 5.0 ug/kg 1 1042121 ND 5.0 " " " " " " " "	ND	ND 5.0 ug/kg 1 1042121 04/21/11 04/21/11 ND 5.0 " " " " " " " ND 5.0 " " " " " " " " ND 5.0 " " " " " " " " ND 5.0 " " " " " " " " " ND 5.0 " " " " " " " " " ND 5.0 " " " " " " " " " " ND 5.0 " " " " " " " " " " ND 5.0 " " " " " " " " " " " " " " " " " " "

SunStar Laboratories, Inc.

Saviel of Chivy

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

GP2@6' T110485-05 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by E.	PA Method 8260B								
Ethylbenzene	ND	5.0	ug/kg	1	1042121	04/21/11	04/21/11	EPA 8260B	
m,p-Xylene	ND	5.0	"	"	"	"	"	"	
o-Xylene	ND	5.0	"	"	"	"	"	"	
Tert-amyl methyl ether	ND	20	"	"	"	"	"	"	
Tert-butyl alcohol	ND	50	"	"	"	"	"	"	
Di-isopropyl ether	ND	20	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	20	"	"	"	"	"	"	
36 4 1	N.T.D.	20							

 Methyl tert-butyl ether
 ND
 20
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "</t

SunStar Laboratories, Inc.

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

GP2@12' T110485-06 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aborator	ries, Inc.					
Purgeable Petroleum Hydrocarbo	ons by EPA 80150	C							
C6-C12 (GRO)	ND	500	ug/kg	1	1042126	04/21/11	04/26/11	EPA 8015C	
Surrogate: 4-Bromofluorobenzene		88.6 %	72.6	-146	"	"	"	"	
Extractable Petroleum Hydrocark	oons by 8015C								
C13-C28 (DRO)	ND	10	mg/kg	1	1042125	04/21/11	04/28/11	EPA 8015C	
C29-C40 (MORO)	ND	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		71.2 %	65-	135	"	"	"	"	
Volatile Organic Compounds by I	EPA Method 8260	0B							
Bromobenzene	ND	5.0	ug/kg	1	1042121	04/21/11	04/21/11	EPA 8260B	
Bromochloromethane	ND	5.0	"	"	"	"	"	"	
Bromodichloromethane	ND	5.0	"	"	"	"	"	"	
Bromoform	ND	5.0	"	"	"	"	"	"	
Bromomethane	ND	5.0	"	"	"	"	"	"	
n-Butylbenzene	ND	5.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	5.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	5.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	5.0	"	"	"	"	"	"	
Chlorobenzene	ND	5.0	"	"	"	"	"	"	
Chloroethane	ND	5.0	"	"	"	"	"	"	
Chloroform	ND	5.0	"	"	"	"	"	"	
Chloromethane	ND	5.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
Dibromochloromethane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	5.0	"	"	"	"	"	"	
Dibromomethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	5.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Saviel & Chivy

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

GP2@12' T110485-06 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

	51	unstai L	aboi atoi i	es, me.					
Volatile Organic Compounds by	EPA Method 8260B								
1,2-Dichloroethane	ND	5.0	ug/kg	1	1042121	04/21/11	04/21/11	EPA 8260B	
1,1-Dichloroethene	ND	5.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,3-Dichloropropane	ND	5.0	"	"	"	"	"	"	
2,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	5.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"	
Hexachlorobutadiene	ND	5.0	"	"	"	"	"	"	
Isopropylbenzene	ND	5.0	"	"	"	"	"	"	
p-Isopropyltoluene	ND	5.0	"	"	"	"	"	"	
Methylene chloride	ND	5.0	"	"	"	"	"	"	
Naphthalene	ND	5.0	"	"	"	"	"	"	
n-Propylbenzene	ND	5.0	"	"	"	"	"	"	
Styrene	ND	5.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"	
Tetrachloroethene	ND	5.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	5.0	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	5.0	"	"	"	"	"	"	
Trichloroethene	ND	5.0	"	"	"	"	"	"	
Trichlorofluoromethane	ND	5.0	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
Vinyl chloride	ND	5.0	"	"	"	"	"	"	
Benzene	ND	5.0	"	"	"	"	"	n .	
Toluene	ND	5.0	"	"	"	"	"	n .	

SunStar Laboratories, Inc.

Saviel of Chivy

Engeo Project: 1000 N. Vasco Rd.

 2213 Plaza Dr.
 Project Number: 7380.000.003
 Reported:

 Rocklin CA, 95765
 Project Manager: Morgan Johnson
 04/29/11 11:23

GP2@12' T110485-06 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

	;	SunStar L	aboratori	es, Inc.					
Volatile Organic Compounds by E	PA Method 82601	В							
Ethylbenzene	ND	5.0	ug/kg	1	1042121	04/21/11	04/21/11	EPA 8260B	
m,p-Xylene	ND	5.0	"	"	"	"	"	n n	
o-Xylene	ND	5.0	"	"	"	"	"	n n	
Tert-amyl methyl ether	ND	20	"	"	"	"	"	n .	
Tert-butyl alcohol	ND	50	"	"	"	"	"	n n	
Di-isopropyl ether	ND	20	"	"	"	"	"	n n	
Ethyl tert-butyl ether	ND	20	"	"	"	"	"	n n	
Methyl tert-butyl ether	ND	20	"	"	"	"	"	"	
Surrogate: Toluene-d8		97.5 %	85.5-	116	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		106 %	75.1-	121	"	"	"	"	
Surrogate: Dibromofluoromethane		104 %	90-1.	35	"	"	"	"	

SunStar Laboratories, Inc.

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

GP3@4' T110485-07 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aborator	ries, Inc.					
Purgeable Petroleum Hydrocarbo	ons by EPA 80150								
C6-C12 (GRO)	ND	500	ug/kg	1	1042126	04/21/11	04/26/11	EPA 8015C	
Surrogate: 4-Bromofluorobenzene		87.0 %	72.6	-146	"	"	"	"	
Extractable Petroleum Hydrocark	oons by 8015C								
C13-C28 (DRO)	ND	10	mg/kg	1	1042125	04/21/11	04/28/11	EPA 8015C	
C29-C40 (MORO)	ND	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		129 %	65-	135	"	"	"	"	
Volatile Organic Compounds by I	EPA Method 826	0B							
Bromobenzene	ND	5.0	ug/kg	1	1042121	04/21/11	04/21/11	EPA 8260B	
Bromochloromethane	ND	5.0	"	"	"	"	"	"	
Bromodichloromethane	ND	5.0	"	"	"	"	"	"	
Bromoform	ND	5.0	"	"	"	"	"	"	
Bromomethane	ND	5.0	"	"	"	"	"	"	
n-Butylbenzene	ND	5.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	5.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	5.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	5.0	"	"	"	"	"	"	
Chlorobenzene	ND	5.0	"	"	"	"	"	"	
Chloroethane	ND	5.0	"	"	"	"	"	"	
Chloroform	ND	5.0	"	"	"	"	"	"	
Chloromethane	ND	5.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
Dibromochloromethane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	5.0	"	"	"	"	"	"	
Dibromomethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	5.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Saviel & Chivy

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

GP3@4' T110485-07 (Soil)

	Reporting							
Analyte Resi	lt Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

	51	unstai L	aboi atoi i	es, me.					
Volatile Organic Compounds by	EPA Method 8260B								
1,2-Dichloroethane	ND	5.0	ug/kg	1	1042121	04/21/11	04/21/11	EPA 8260B	
1,1-Dichloroethene	ND	5.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,3-Dichloropropane	ND	5.0	"	"	"	"	"	"	
2,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	5.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"	
Hexachlorobutadiene	ND	5.0	"	"	"	"	"	"	
Isopropylbenzene	ND	5.0	"	"	"	"	"	"	
p-Isopropyltoluene	ND	5.0	"	"	"	"	"	"	
Methylene chloride	ND	5.0	"	"	"	"	"	"	
Naphthalene	ND	5.0	"	"	"	"	"	"	
n-Propylbenzene	ND	5.0	"	"	"	"	"	"	
Styrene	ND	5.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"	
Tetrachloroethene	ND	5.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	5.0	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	5.0	"	"	"	"	"	"	
Trichloroethene	ND	5.0	"	"	"	"	"	"	
Trichlorofluoromethane	ND	5.0	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
Vinyl chloride	ND	5.0	"	"	"	"	"	"	
Benzene	ND	5.0	"	"	"	"	"	n .	
Toluene	ND	5.0	"	"	"	"	"	n .	

SunStar Laboratories, Inc.

Saviel of Chivy

Engeo Project: 1000 N. Vasco Rd.

 2213 Plaza Dr.
 Project Number: 7380.000.003
 Reported:

 Rocklin CA, 95765
 Project Manager: Morgan Johnson
 04/29/11 11:23

GP3@4' T110485-07 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

	S	unStar La	aboratori	es, Inc.					
Volatile Organic Compounds by E	PA Method 8260B								
Ethylbenzene	ND	5.0	ug/kg	1	1042121	04/21/11	04/21/11	EPA 8260B	
m,p-Xylene	ND	5.0	"	"	"	"	"	"	
o-Xylene	ND	5.0	"	"	"	"	"	n	
Tert-amyl methyl ether	ND	20	"	"	"	"	"	n	
Tert-butyl alcohol	ND	50	"	"	"	"	"	n .	
Di-isopropyl ether	ND	20	"	"	"	"	"	n	
Ethyl tert-butyl ether	ND	20	"	"	"	"	"	n	
Methyl tert-butyl ether	ND	20	"	"	"	"	"	"	
Surrogate: Toluene-d8		98.2 %	85.5-1	116	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		106 %	75.1-1	121	"	"	"	"	
Surrogate: Dibromofluoromethane		108 %	90-1.	35	"	"	"	"	

SunStar Laboratories, Inc.

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

Reporting

GP3@8' T110485-08 (Soil)

Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aborator	ries, Inc.					
Purgeable Petroleum Hydrocarbon	ns by EPA 8015C	1							
C6-C12 (GRO)	ND	500	ug/kg	1	1042126	04/21/11	04/26/11	EPA 8015C	
Surrogate: 4-Bromofluorobenzene		85.4 %	72.6	-146	"	"	"	"	
Extractable Petroleum Hydrocarb	ons by 8015C								
C13-C28 (DRO)	ND	10	mg/kg	1	1042125	04/21/11	04/28/11	EPA 8015C	
C29-C40 (MORO)	ND	10	"	"	"	"	"	m .	
Surrogate: p-Terphenyl		126 %	65-	135	"	"	"	"	
Volatile Organic Compounds by E	PA Method 8260	В							
Bromobenzene	ND	5.0	ug/kg	1	1042121	04/21/11	04/21/11	EPA 8260B	
Bromochloromethane	ND	5.0	"	"	"	"	"	"	
Bromodichloromethane	ND	5.0	"	"	"	"	"	"	
Bromoform	ND	5.0	"	"	"	"	"	"	
Bromomethane	ND	5.0	"	"	"	"	"	"	
n-Butylbenzene	ND	5.0	"	"	"	"	"	m .	
sec-Butylbenzene	ND	5.0	"	"	"	"	"	m .	
tert-Butylbenzene	ND	5.0	"	"	"	"	"	m .	
Carbon tetrachloride	ND	5.0	"	"	"	"	"	m .	
Chlorobenzene	ND	5.0	"	"	"	"	"	m .	
Chloroethane	ND	5.0	"	"	"	"	"	m .	
Chloroform	ND	5.0	"	"	"	"	"	m .	
Chloromethane	ND	5.0	"	"	"	"	"	m .	
2-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
Dibromochloromethane	ND	5.0	"	"	"	"	"	m .	
1,2-Dibromo-3-chloropropane	ND	5.0	"	"	"	"	"	m .	
1,2-Dibromoethane (EDB)	ND	5.0	"	"	"	"	"	m .	
Dibromomethane	ND	5.0	"	"	"	"	"	m .	
1,2-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	5.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Saviel & Chivy

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

GP3@8' T110485-08 (Soil)

	Reporting							
Analyte Resul	t Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

	Su	nStar L	aboratori	es, Inc.					
Volatile Organic Compounds by	y EPA Method 8260B								
1,2-Dichloroethane	ND	5.0	ug/kg	1	1042121	04/21/11	04/21/11	EPA 8260B	
1,1-Dichloroethene	ND	5.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,3-Dichloropropane	ND	5.0	"	"	"	"	"	"	
2,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	5.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"	
Hexachlorobutadiene	ND	5.0	"	"	"	"	"	"	
Isopropylbenzene	ND	5.0	"	"	"	"	"	"	
p-Isopropyltoluene	ND	5.0	"	"	"	"	"	"	
Methylene chloride	ND	5.0	"	"	"	"	"	"	
Naphthalene	ND	5.0	"	"	"	"	"	"	
n-Propylbenzene	ND	5.0	"	"	"	"	"	"	
Styrene	ND	5.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"	
Tetrachloroethene	ND	5.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	5.0	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	5.0	"	"	"	"	"	"	
Trichloroethene	ND	5.0	"	"	"	"	"	"	
Trichlorofluoromethane	ND	5.0	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
Vinyl chloride	ND	5.0	"	"	"	"	"	"	
Benzene	ND	5.0	"	"	"	"	"	"	
Toluene	ND	5.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Saviel of Chivy

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

GP3@8' T110485-08 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Sunstar Laboratories, inc.													
Volatile Organic Compounds by EPA Method 8260B													
Ethylbenzene	ND	5.0	ug/kg	1	1042121	04/21/11	04/21/11	EPA 8260B					
m,p-Xylene	ND	5.0	"	"	"	"	"	"					
o-Xylene	ND	5.0	"	"	"	"	"	"					
Tert-amyl methyl ether	ND	20	"	"	"	"	"	"					
Tert-butyl alcohol	ND	50	"	"	"	"	"	"					
Di-isopropyl ether	ND	20	"	"	"	"	"	"					
Ethyl tert-butyl ether	ND	20	"	"	"	"	"	"					
Methyl tert-butyl ether	ND	20	"	"	"	"	"	n .					
Surrogate: Toluene-d8		98.6 %	85.5-1	116	"	"	"	"					
Surrogate: 4-Bromofluorobenzene		105 %	75.1-1	121	"	"	"	"					
Surrogate: Dibromofluoromethane		107 %	90-1.	35	"	"	"	"					

SunStar Laboratories, Inc.

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

GP3@12' T110485-09 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aborator	ies, Inc.					
Purgeable Petroleum Hydrocarbo	ns by EPA 80150								
C6-C12 (GRO)	ND	500	ug/kg	1	1042126	04/21/11	04/26/11	EPA 8015C	
Surrogate: 4-Bromofluorobenzene		88.2 %	72.6	-146	"	"	"	"	
Extractable Petroleum Hydrocark	oons by 8015C								
C13-C28 (DRO)	ND	10	mg/kg	1	1042125	04/21/11	04/28/11	EPA 8015C	
C29-C40 (MORO)	ND	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		116 %	65-	135	"	"	"	"	
Volatile Organic Compounds by F	EPA Method 826	0B							
Bromobenzene	ND	5.0	ug/kg	1	1042121	04/21/11	04/21/11	EPA 8260B	-
Bromochloromethane	ND	5.0	"	"	"	"	"	"	
Bromodichloromethane	ND	5.0	"	"	"	"	"	"	
Bromoform	ND	5.0	"	"	"	"	"	"	
Bromomethane	ND	5.0	"	"	"	"	"	"	
n-Butylbenzene	ND	5.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	5.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	5.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	5.0	"	"	"	"	"	"	
Chlorobenzene	ND	5.0	"	"	"	"	"	"	
Chloroethane	ND	5.0	"	"	"	"	"	"	
Chloroform	ND	5.0	"	"	"	"	"	"	
Chloromethane	ND	5.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
Dibromochloromethane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	5.0	"	"	"	"	"	"	
Dibromomethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	5.0	"		"		"	"	

SunStar Laboratories, Inc.

Saviel of Chivy

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

GP3@12' T110485-09 (Soil)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

	S	unStar La	aboratori	es, Inc.						
Volatile Organic Compounds by EPA Method 8260B										
1,2-Dichloroethane	ND	5.0	ug/kg	1	1042121	04/21/11	04/21/11	EPA 8260B		
1,1-Dichloroethene	ND	5.0	"	"	"	"	"	"		
cis-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"		
trans-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"		
1,2-Dichloropropane	ND	5.0	"	"	"	"	"	"		
1,3-Dichloropropane	ND	5.0	"	"	"	"	"	"		
2,2-Dichloropropane	ND	5.0	"	"	"	"	"	"		
1,1-Dichloropropene	ND	5.0	"	"	"	"	"	"		
cis-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"		
trans-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"		
Hexachlorobutadiene	ND	5.0	"	"	"	"	"	"		
Isopropylbenzene	ND	5.0	"	"	"	"	"	"		
p-Isopropyltoluene	ND	5.0	"	"	"	"	"	"		
Methylene chloride	ND	5.0	"	"	"	"	"	"		
Naphthalene	ND	5.0	"	"	"	"	"	"		
n-Propylbenzene	ND	5.0	"	"	"	"	"	"		
Styrene	ND	5.0	"	"	"	"	"	"		
1,1,2,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"		
1,1,1,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"		
Tetrachloroethene	ND	5.0	"	"	"	"	"	"		
1,2,3-Trichlorobenzene	ND	5.0	"	"	"	"	"	"		
1,2,4-Trichlorobenzene	ND	5.0	"	"	"	"	"	"		
1,1,2-Trichloroethane	ND	5.0	"	"	"	"	"	"		
1,1,1-Trichloroethane	ND	5.0	"	"	"	"	"	"		
Trichloroethene	ND	5.0	"	"	"	"	"	"		
Trichlorofluoromethane	ND	5.0	"	"	"	"	"	"		
1,2,3-Trichloropropane	ND	5.0	"	"	"	"	"	"		
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"		
1,2,4-Trimethylbenzene	ND	5.0	"	"	"	"	"	"		
Vinyl chloride	ND	5.0	"	"	"	"	"	"		
Benzene	ND	5.0	"	"	"	"	"	"		
Toluene	ND	5.0	"	"	"	"	"	"		

SunStar Laboratories, Inc.

Saviel of Chivy

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

GP3@12' T110485-09 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Sunstar Laboratories, inc.													
Volatile Organic Compounds by EPA Method 8260B													
Ethylbenzene	ND	5.0	ug/kg	1	1042121	04/21/11	04/21/11	EPA 8260B					
m,p-Xylene	ND	5.0	"	"	"	"	"	"					
o-Xylene	ND	5.0	"	"	"	"	"	"					
Tert-amyl methyl ether	ND	20	"	"	"	"	"	"					
Tert-butyl alcohol	ND	50	"	"	"	"	"	"					
Di-isopropyl ether	ND	20	"	"	"	"	"	"					
Ethyl tert-butyl ether	ND	20	"	"	"	"	"	"					
Methyl tert-butyl ether	ND	20	"	"	"	"	"	"					
Surrogate: Toluene-d8		96.2 %	85.5-1	116	"	"	"	"					
Surrogate: 4-Bromofluorobenzene		103 %	75.1-1	121	"	"	"	"					
Surrogate: Dibromofluoromethane		106 %	90-1.	35	"	"	"	"					

SunStar Laboratories, Inc.

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

GP4@12' T110485-10 (Soil)

Surrogate: 4-Bromofluorobenzene 108 % 72.6-146 " " " " " " " " " "	Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
C6-C12 (GRO) ND 500 ug/kg 1 104216 04/21/11 04/26/11 EPA 8015C			SunStar L	aborator	ries, Inc.					
No. Purgeable Petroleum Hydrocarbo	ons by EPA 80150	C								
Stractable Petroleum Hydrocarbons by 8015C C13-C28 (DRO)	C6-C12 (GRO)	ND	500	ug/kg	1	1042126	04/21/11	04/26/11	EPA 8015C	
C13-C28 (DRO)	Surrogate: 4-Bromofluorobenzene		108 %	72.6	-146	"	"	"	"	
ND 10	Extractable Petroleum Hydrocark	oons by 8015C								
No. C13-C28 (DRO)	ND	10	mg/kg	1	1042125	04/21/11	04/28/11	EPA 8015C		
No	C29-C40 (MORO)	ND	10	"	"	"	"	"	"	
Bromobenzene ND 5.0	Surrogate: p-Terphenyl		69.5 %	65	135	"	"	"	"	
Bromobenzene ND 5.0	Volatile Organic Compounds by I	EPA Method 826	0B							
Bromodichloromethane ND	Bromobenzene	ND	5.0	ug/kg	1	1042121	04/21/11	04/22/11	EPA 8260B	
Stomoform ND S.0 "	Bromochloromethane	ND	5.0	"	"	"	"	"	"	
Bromomethane ND 5.0 " " " " " " " " " " " " " " " " " " "	Bromodichloromethane	ND	5.0	"	"	"	"	"	"	
ND Solution Solu	Bromoform	ND	5.0	"	"	"	"	"	"	
ND S.0	Bromomethane	ND	5.0	"	"	"	"	"	"	
tert-Butylbenzene ND 5.0 " " " " " " " " " " " " " " " " " " "	n-Butylbenzene	ND	5.0	"	"	"	"	"	"	
Carbon tetrachloride ND 5.0 "	sec-Butylbenzene	ND	5.0	"	"	"	"	"	"	
Chlorobenzene ND 5.0 "	tert-Butylbenzene	ND	5.0	"	"	"	"	"	"	
Chloroethane ND 5.0 "	Carbon tetrachloride	ND	5.0	"	"	"	"	"	"	
Chloroform ND 5.0 " <	Chlorobenzene	ND	5.0	"	"	"	"	"	"	
Chloromethane ND 5.0 " " " " " " " " " " " " " " " " " " "	Chloroethane	ND	5.0	"	"	"	"	"	"	
2-Chlorotoluene ND 5.0 " " " " " " " " " " 4-Chlorotoluene ND 5.0 " " " " " " " " " " " " " " " " " " "	Chloroform	ND	5.0	"	"	"	"	"	"	
4-Chlorotoluene ND 5.0 "	Chloromethane	ND	5.0	"	"	"	"	"	"	
Dibromochloromethane	2-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane ND S.0 """""""""""""""""""""""""""""""""	4-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB) ND 5.0 " " " " " " " " " " " " " " " " " " "	Dibromochloromethane	ND	5.0	"	"	"	"	"	"	
Dibromomethane ND 5.0 "	1,2-Dibromo-3-chloropropane	ND	5.0	"	"	"	"	"	"	
1,2-Dichlorobenzene ND 5.0 " " " " " " " " " 1,3-Dichlorobenzene ND 5.0 " " " " " " " " " " " " " " " " " " "	1,2-Dibromoethane (EDB)	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene ND 5.0 " " " " " " " " 1,4-Dichlorobenzene ND 5.0 " " " " " " " " " " " " " " " " " " "	Dibromomethane	ND	5.0	"	"	"	"	"	"	
1,4-Dichlorobenzene ND 5.0 " <td>1,2-Dichlorobenzene</td> <td>ND</td> <td>5.0</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td></td>	1,2-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
Dichlorodifluoromethane ND 5.0 " " " " " " "	1,3-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
	1,4-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethane ND 5.0 " " " " " "	Dichlorodifluoromethane	ND	5.0	"	"	"	"	"	"	
	1,1-Dichloroethane	ND	5.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Saviel of Chivy

Engeo Project: 1000 N. Vasco Rd.

 2213 Plaza Dr.
 Project Number: 7380.000.003
 Reported:

 Rocklin CA, 95765
 Project Manager: Morgan Johnson
 04/29/11 11:23

GP4@12' T110485-10 (Soil)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

	Sui	nStar L	aboratori	es, Inc.					
Volatile Organic Compounds by	y EPA Method 8260B								
1,2-Dichloroethane	ND	5.0	ug/kg	1	1042121	04/21/11	04/22/11	EPA 8260B	
1,1-Dichloroethene	ND	5.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,3-Dichloropropane	ND	5.0	"	"	"	"	"	"	
2,2-Dichloropropane	ND	5.0	"	"	"	"	"	u u	
1,1-Dichloropropene	ND	5.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	u u	
Hexachlorobutadiene	ND	5.0	"	"	"	"	"	u u	
Isopropylbenzene	ND	5.0	"	"	"	"	"	u u	
p-Isopropyltoluene	ND	5.0	"	"	"	"	"	u u	
Methylene chloride	ND	5.0	"	"	"	"	"	"	
Naphthalene	ND	5.0	"	"	"	"	"	"	
n-Propylbenzene	ND	5.0	"	"	"	"	"	"	
Styrene	ND	5.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"	
Tetrachloroethene	ND	5.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	5.0	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	5.0	"	"	"	"	"	"	
Trichloroethene	ND	5.0	"	"	"	"	"	"	
Trichlorofluoromethane	ND	5.0	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
Vinyl chloride	ND	5.0	"	"	"	"	"	"	
Benzene	ND	5.0	"	"	"	"	"	"	
Toluene	ND	5.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Saviel of Chivy

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

GP4@12' T110485-10 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

	Sı	ınStar La	aboratorio	es, Inc.					
Volatile Organic Compounds by EP	A Method 8260B								
Ethylbenzene	ND	5.0	ug/kg	1	1042121	04/21/11	04/22/11	EPA 8260B	
m,p-Xylene	ND	5.0	"	"	"	"	"	"	
o-Xylene	ND	5.0	"	"	"	"	"	"	
Tert-amyl methyl ether	ND	20	"	"	"	"	"	"	
Tert-butyl alcohol	ND	50	"	"	"	"	"	"	
Di-isopropyl ether	ND	20	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	20	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	20	"	"	"	"	"	"	
Surrogate: Toluene-d8		106 %	85.5-1	16	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		105 %	75.1-1	21	"	"	"	"	
Surrogate: Dibromofluoromethane		109 %	90-13	35	"	"	"	"	

SunStar Laboratories, Inc.

Saviel of Chivy

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

GP4@4' T110485-11 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aborator	ies, Inc.					
Purgeable Petroleum Hydrocarbon	ns by EPA 80150	2							
C6-C12 (GRO)	ND	500	ug/kg	1	1042126	04/21/11	04/26/11	EPA 8015C	
Surrogate: 4-Bromofluorobenzene		112 %	72.6-	146	"	"	"	"	
Extractable Petroleum Hydrocarb	ons by 8015C								
C13-C28 (DRO)	110	10	mg/kg	1	1042125	04/21/11	04/28/11	EPA 8015C	
C29-C40 (MORO)	1000	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		160 %	65-	135	"	"	"	"	S-04
Volatile Organic Compounds by E	PA Method 8260)B							
Bromobenzene	ND	5.0	ug/kg	1	1042121	04/21/11	04/22/11	EPA 8260B	
Bromochloromethane	ND	5.0	"	"	"	"	"	"	
Bromodichloromethane	ND	5.0	"	"	"	"	"	"	
Bromoform	ND	5.0	"	"	"	"	"	"	
Bromomethane	ND	5.0	"	"	"	"	"	"	
n-Butylbenzene	ND	5.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	5.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	5.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	5.0	"	"	"	"	"	"	
Chlorobenzene	ND	5.0	"	"	"	"	"	"	
Chloroethane	ND	5.0	"	"	"	"	"	"	
Chloroform	ND	5.0	"	"	"	"	"	"	
Chloromethane	ND	5.0	"	"	"	"	"	m .	
2-Chlorotoluene	ND	5.0	"	"	"	"	"	m .	
4-Chlorotoluene	ND	5.0	"	"	"	"	"	m .	
Dibromochloromethane	ND	5.0	"	"	"	"	"	m .	
1,2-Dibromo-3-chloropropane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	5.0	"	"	"	"	"	"	
Dibromomethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	5.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Saviel of Chivy

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

GP4@4' T110485-11 (Soil)

	Reporting							
Analyte Resi	lt Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

	51	unstai L	aboi atoi i	es, mc.					
Volatile Organic Compounds by	EPA Method 8260B								
1,2-Dichloroethane	ND	5.0	ug/kg	1	1042121	04/21/11	04/22/11	EPA 8260B	
1,1-Dichloroethene	ND	5.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,3-Dichloropropane	ND	5.0	"	"	"	"	"	"	
2,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	5.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"	
Hexachlorobutadiene	ND	5.0	"	"	"	"	"	"	
Isopropylbenzene	ND	5.0	"	"	"	"	"	"	
p-Isopropyltoluene	ND	5.0	"	"	"	"	"	"	
Methylene chloride	ND	5.0	"	"	"	"	"	"	
Naphthalene	ND	5.0	"	"	"	"	"	"	
n-Propylbenzene	ND	5.0	"	"	"	"	"	"	
Styrene	ND	5.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"	
Tetrachloroethene	ND	5.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	5.0	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	5.0	"	"	"	"	"	"	
Trichloroethene	ND	5.0	"	"	"	"	"	"	
Trichlorofluoromethane	ND	5.0	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
Vinyl chloride	ND	5.0	"	"	"	"	"	"	
Benzene	ND	5.0	"	"	"	"	"	"	
Toluene	ND	5.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Saviel of Chivy

Project: 1000 N. Vasco Rd. Engeo

2213 Plaza Dr. Project Number: 7380.000.003 Reported: Rocklin CA, 95765 Project Manager: Morgan Johnson 04/29/11 11:23

GP4@4' T110485-11 (Soil)

	Reporting							
Analyte Resi	lt Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

		SunStar L	aboratori	es, Inc.					
Volatile Organic Compounds by E	PA Method 8260	В							
Ethylbenzene	ND	5.0	ug/kg	1	1042121	04/21/11	04/22/11	EPA 8260B	
m,p-Xylene	11	5.0	"	"	"	"	"	"	
o-Xylene	6.2	5.0	"	"	"	"	"	"	
Tert-amyl methyl ether	ND	20	"	"	"	"	"	"	
Tert-butyl alcohol	ND	50	"	"	"	"	"	"	
Di-isopropyl ether	ND	20	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	20	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	20	"	"	"	"	"	"	
Surrogate: Toluene-d8		99.5 %	85.5-	116	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		104 %	75.1-	121	"	"	"	"	
Surrogate: Dibromofluoromethane		94.4 %	90-1.	35	"	"	"	"	

SunStar Laboratories, Inc.

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

GP4@8' T110485-12 (Soil)

Purgeable Petroleum Hydrocarbons by EPA 8015C Col 2 (GRO) ND S00 ug/kg 1 1042126 0421/11 0426/11 EPA 8015C Surrogate: 4 Bromofluorobenzene 113 % 72.6-14	Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
C-C12 (GRO)			SunStar L	aborator	ries, Inc.					
Surrogate: 4-Bromofluorobenzene	Purgeable Petroleum Hydrocarbo	ons by EPA 80150	C							
Caractable Petroleum Hydrocarbons by 8015C Capacita (DRO) ND 10 mg/kg 1 1042125 0421/11 0428/11 EPA 8015C Capacita (DRO) ND 10 mg/kg 1 1042125 0421/11 0428/11 EPA 8015C Capacita (DRO) ND 10 mg/kg 1 1042125 0421/11 0428/11 EPA 8015C Capacita (Dramic Compounds by EPA Method 8260B Bromochloromethane ND 5.0 ug/kg 1 1042121 0421/11 0422/11 EPA 8260B Bromochloromethane ND 5.0 ug/kg 1 1042121 0421/11 0422/11 EPA 8260B Bromochloromethane ND 5.0 mg/kg 1 1042121 0421/11 0422/11 EPA 8260B Bromochloromethane ND 5.0 mg/kg 1 1042121 0421/11 0422/11 EPA 8260B Bromochloromethane ND 5.0 mg/kg 1 1042121 0421/11 0422/11 EPA 8260B Bromochloromethane ND 5.0 mg/kg 1 1042121 0421/11 0422/11 EPA 8260B Bromochloromethane ND 5.0 mg/kg 1 1042121 0421/11 0422/11 EPA 8260B Bromochloromethane ND 5.0 mg/kg 1 1042121 0421/11 0422/11 EPA 8260B Bromochloromethane ND 5.0 mg/kg 1 1042121 0421/11 0422/11 EPA 8260B Bromochloromethane ND 5.0 mg/kg 1 1042121 0421/11 0422/11 0422/11 EPA 8260B Bromochloromethane ND 5.0 mg/kg 1 1042121 0421/11 0422/11	C6-C12 (GRO)	ND	500	ug/kg	1	1042126	04/21/11	04/26/11	EPA 8015C	
C13-C28 (DRO)	Surrogate: 4-Bromofluorobenzene		113 %	72.6	-146	"	"	"	"	
C29-C40 (MORO) ND 10 "	Extractable Petroleum Hydrocark	oons by 8015C								
No. C13-C28 (DRO)	ND	10	mg/kg	1	1042125	04/21/11	04/28/11	EPA 8015C		
Volatile Organic Compounds by EPA Method 8260B Bromobenzene ND 5.0 ug/kg 1 1042121 04/21/11 04/22/11 EPA 8260B Bromobenzene ND 5.0 "	C29-C40 (MORO)	ND	10	"	"	"	"	"	"	
Bromobenzene ND 5.0 ug/kg 1 1042121 0421/11 04/22/11 EPA 8260B Bromochloromethane ND 5.0 "	Surrogate: p-Terphenyl		70.9 %	65-	135	"	"	"	"	
Bromobenzene ND 5.0 ug/kg 1 1042121 0421/11 04/22/11 EPA 8260B Bromochloromethane ND 5.0 "	Volatile Organic Compounds by I	EPA Method 8260	0B							
State Stat	Bromobenzene	ND	5.0	ug/kg	1	1042121	04/21/11	04/22/11	EPA 8260B	
State Stat	Bromochloromethane	ND	5.0	"	"	"	"	"	"	
Bromomethane ND S.0 " " " " " " " " " " " " " " " " " "	Bromodichloromethane	ND	5.0	"	"	"	"	"	"	
n-Butylbenzene n-Butylbenzene ND ND S.0 " " " " " " " " " " " " " " " " " "	Bromoform	ND	5.0	"	"	"	"	"	"	
sec-Butylbenzene ND 5.0 "	Bromomethane	ND	5.0	"	"	"	"	"	"	
tert-Butylbenzene ND 5.0 "	n-Butylbenzene	ND	5.0	"	"	"	"	"	"	
Carbon tetrachloride ND 5.0 "	sec-Butylbenzene	ND	5.0	"	"	"	"	"	"	
Chlorobenzene ND 5.0 "	tert-Butylbenzene	ND	5.0	"	"	"	"	"	"	
Chloroethane ND 5.0 "	Carbon tetrachloride	ND	5.0	"	"	"	"	"	"	
Chloroform ND 5.0 " <	Chlorobenzene	ND	5.0	"	"	"	"	"	"	
Chloromethane ND 5.0 "	Chloroethane	ND	5.0	"	"	"	"	"	"	
2-Chlorotoluene ND 5.0 "	Chloroform	ND	5.0	"	"	"	"	"	"	
4-Chlorotoluene ND 5.0 "	Chloromethane	ND	5.0	"	"	"	"	"	"	
Dibromochloromethane ND 5.0 " " " " " " " " " " " " " " " " 1,2-Dibromo-3-chloropropane ND 5.0 " " " " " " " " " " " " " " " " " " "	2-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
Dibromochloromethane ND 5.0 "	4-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB) ND 5.0 "	Dibromochloromethane	ND	5.0	"	"	"	"	"	"	
Dibromomethane ND 5.0 "	1,2-Dibromo-3-chloropropane	ND	5.0	"	"	"	"	"	"	
Diction of the final control of the problem of the	1,2-Dibromoethane (EDB)	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene ND 5.0 " <td>Dibromomethane</td> <td>ND</td> <td>5.0</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td></td>	Dibromomethane	ND	5.0	"	"	"	"	"	"	
1,4-Dichlorobenzene ND 5.0 " " " " " " " " " " Dichlorodifluoromethane ND 5.0 " " " " " " " " " " " " " " " " " " "	1,2-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
Dichlorodifluoromethane ND 5.0 " " " " " " "	1,3-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
	1,4-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1.1-Dichloroethane ND 5.0 " " " " "	Dichlorodifluoromethane	ND	5.0	"	"	"	"	"	"	
1,1 2,1011/1/2011/101	1,1-Dichloroethane	ND	5.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Saviel of Chivy

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

GP4@8' T110485-12 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

	D	unstar E	uborutori	co, 111c.				
Volatile Organic Compounds by	EPA Method 8260B							
1,2-Dichloroethane	ND	5.0	ug/kg	1	1042121	04/21/11	04/22/11	EPA 8260B
1,1-Dichloroethene	ND	5.0	"	"	"	"	"	"
cis-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"
trans-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"
1,2-Dichloropropane	ND	5.0	"	"	"	"	"	"
1,3-Dichloropropane	ND	5.0	"	"	"	"	"	"
2,2-Dichloropropane	ND	5.0	"	"	"	"	"	"
1,1-Dichloropropene	ND	5.0	"	"	"	"	"	"
cis-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"
trans-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"
Hexachlorobutadiene	ND	5.0	"	"	"	"	"	"
Isopropylbenzene	ND	5.0	"	"	"	"	"	"
p-Isopropyltoluene	ND	5.0	"	"	"	"	"	"
Methylene chloride	ND	5.0	"	"	"	"	"	"
Naphthalene	ND	5.0	"	"	"	"	"	"
n-Propylbenzene	ND	5.0	"	"	"	"	"	"
Styrene	ND	5.0	"	"	"	"	"	"
1,1,2,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"
1,1,1,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"
Tetrachloroethene	ND	5.0	"	"	"	"	"	"
1,2,3-Trichlorobenzene	ND	5.0	"	"	"	"	"	"
1,2,4-Trichlorobenzene	ND	5.0	"	"	"	"	"	"
1,1,2-Trichloroethane	ND	5.0	"	"	"	"	"	"
1,1,1-Trichloroethane	ND	5.0	"	"	"	"	"	"
Trichloroethene	ND	5.0	"	"	"	"	"	"
Trichlorofluoromethane	ND	5.0	"	"	"	"	"	"
1,2,3-Trichloropropane	ND	5.0	"	"	"	"	"	"
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"
1,2,4-Trimethylbenzene	ND	5.0	"	"	"	"	"	"
Vinyl chloride	ND	5.0	"	"	"	"	"	"
Benzene	ND	5.0	"	"	"	"	"	"
Toluene	ND	5.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

Saviel of Chivy

Engeo Project: 1000 N. Vasco Rd.

 2213 Plaza Dr.
 Project Number: 7380.000.003
 Reported:

 Rocklin CA, 95765
 Project Manager: Morgan Johnson
 04/29/11 11:23

GP4@8' T110485-12 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Sunstai Laboratories, inc.										
Volatile Organic Compounds by E	PA Method 8260	В								
Ethylbenzene	ND	5.0	ug/kg	1	1042121	04/21/11	04/22/11	EPA 8260B		
m,p-Xylene	ND	5.0	"	"	"	"	"	"		
o-Xylene	ND	5.0	"	"	"	"	"	"		
Tert-amyl methyl ether	ND	20	"	"	"	"	"	"		
Tert-butyl alcohol	ND	50	"	"	"	"	"	"		
Di-isopropyl ether	ND	20	"	"	"	"	"	"		
Ethyl tert-butyl ether	ND	20	"	"	"	"	"	"		
Methyl tert-butyl ether	ND	20	"	"	"	"	"	"		
Surrogate: Toluene-d8		98.5 %	85.5-1	116	"	"	"	"		
Surrogate: 4-Bromofluorobenzene		104 %	75.1-1	121	"	"	"	"		
Surrogate: Dibromofluoromethane		108 %	90-1.	35	"	"	"	"		

SunStar Laboratories, Inc.

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

GP5@4' T110485-13 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aborator	ries, Inc.					
Purgeable Petroleum Hydrocarbo	ons by EPA 80150	C							
C6-C12 (GRO)	ND	500	ug/kg	1	1042126	04/21/11	04/26/11	EPA 8015C	
Surrogate: 4-Bromofluorobenzene		114 %	72.6	-146	"	"	"	"	
Extractable Petroleum Hydrocarl	bons by 8015C								
C13-C28 (DRO)	ND	10	mg/kg	1	1042125	04/21/11	04/28/11	EPA 8015C	
C29-C40 (MORO)	ND	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		76.1 %	65-	135	"	"	"	"	
Volatile Organic Compounds by 1	EPA Method 826	0B							
Bromobenzene	ND	5.0	ug/kg	1	1042121	04/21/11	04/22/11	EPA 8260B	
Bromochloromethane	ND	5.0	"	"	"	"	"	"	
Bromodichloromethane	ND	5.0	"	"	"	"	"	"	
Bromoform	ND	5.0	"	"	"	"	"	"	
Bromomethane	ND	5.0	"	"	"	"	"	"	
n-Butylbenzene	ND	5.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	5.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	5.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	5.0	"	"	"	"	"	"	
Chlorobenzene	ND	5.0	"	"	"	"	"	"	
Chloroethane	ND	5.0	"	"	"	"	"	"	
Chloroform	ND	5.0	"	"	"	"	"	"	
Chloromethane	ND	5.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
Dibromochloromethane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	5.0	"	"	"	"	"	"	
Dibromomethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	5.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Saviel of Chivy

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

GP5@4' T110485-13 (Soil)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

SunStar Laboratories, Inc.											
Volatile Organic Compounds by	y EPA Method 8260B										
1,2-Dichloroethane	ND	5.0	ug/kg	1	1042121	04/21/11	04/22/11	EPA 8260B			
1,1-Dichloroethene	ND	5.0	"	"	"	"	"	"			
cis-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"			
trans-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"			
1,2-Dichloropropane	ND	5.0	"	"	"	"	"	"			
1,3-Dichloropropane	ND	5.0	"	"	"	"	"	"			
2,2-Dichloropropane	ND	5.0	"	"	"	"	"	u u			
1,1-Dichloropropene	ND	5.0	"	"	"	"	"	"			
cis-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"			
trans-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	u u			
Hexachlorobutadiene	ND	5.0	"	"	"	"	"	u u			
Isopropylbenzene	ND	5.0	"	"	"	"	"	u u			
p-Isopropyltoluene	ND	5.0	"	"	"	"	"	u u			
Methylene chloride	ND	5.0	"	"	"	"	"	"			
Naphthalene	ND	5.0	"	"	"	"	"	"			
n-Propylbenzene	ND	5.0	"	"	"	"	"	"			
Styrene	ND	5.0	"	"	"	"	"	"			
1,1,2,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"			
1,1,1,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"			
Tetrachloroethene	ND	5.0	"	"	"	"	"	"			
1,2,3-Trichlorobenzene	ND	5.0	"	"	"	"	"	"			
1,2,4-Trichlorobenzene	ND	5.0	"	"	"	"	"	"			
1,1,2-Trichloroethane	ND	5.0	"	"	"	"	"	"			
1,1,1-Trichloroethane	ND	5.0	"	"	"	"	"	"			
Trichloroethene	ND	5.0	"	"	"	"	"	"			
Trichlorofluoromethane	ND	5.0	"	"	"	"	"	"			
1,2,3-Trichloropropane	ND	5.0	"	"	"	"	"	"			
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"			
1,2,4-Trimethylbenzene	ND	5.0	"	"	"	"	"	"			
Vinyl chloride	ND	5.0	"	"	"	"	"	"			
Benzene	ND	5.0	"	"	"	"	"	"			
Toluene	ND	5.0	"	"	"	"	"	"			

SunStar Laboratories, Inc.

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

GP5@4' T110485-13 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

	1	Sunstai L	aboi atoi i	es, me.	'							
Volatile Organic Compounds by EPA Method 8260B												
Ethylbenzene	ND	5.0	ug/kg	1	1042121	04/21/11	04/22/11	EPA 8260B				
m,p-Xylene	ND	5.0	"	"	"	"	"	"				
o-Xylene	ND	5.0	"	"	"	"	"	"				
Tert-amyl methyl ether	ND	20	"	"	"	"	"	"				
Tert-butyl alcohol	ND	50	"	"	"	"	"	"				
Di-isopropyl ether	ND	20	"	"	"	"	"	"				
Ethyl tert-butyl ether	ND	20	"	"	"	"	"	"				
Methyl tert-butyl ether	ND	20	"	"	"	"	"	n .				
Surrogate: Toluene-d8		97.2 %	85.5-	116	"	"	"	"				
Surrogate: 4-Bromofluorobenzene		104 %	75.1-	121	"	"	"	"				
Surrogate: Dibromofluoromethane		116 %	90-1.	35	"	"	"	"				

SunStar Laboratories, Inc.

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

GP5@8' T110485-14 (Soil)

Analyte R	esult	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	\$	SunStar L	aborator	ies, Inc.					
Purgeable Petroleum Hydrocarbons by EPA	8015C								
C6-C12 (GRO)	ND	500	ug/kg	1	1042126	04/21/11	04/26/11	EPA 8015C	
Surrogate: 4-Bromofluorobenzene		117 %	72.6	-146	"	"	"	"	
Extractable Petroleum Hydrocarbons by 80	15C								
C13-C28 (DRO)	ND	10	mg/kg	1	1042125	04/21/11	04/28/11	EPA 8015C	
C29-C40 (MORO)	ND	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		135 %	65	135	"	"	"	"	
Volatile Organic Compounds by EPA Meth	od 8260E	3							
Bromobenzene	ND	5.0	ug/kg	1	1042121	04/21/11	04/22/11	EPA 8260B	
Bromochloromethane	ND	5.0	"	"	"	"	"	"	
Bromodichloromethane	ND	5.0	"	"	"	"	"	"	
Bromoform	ND	5.0	"	"	"	"	"	"	
Bromomethane	ND	5.0	"	"	"	"	"	"	
n-Butylbenzene	ND	5.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	5.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	5.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	5.0	"	"	"	"	"	"	
Chlorobenzene	ND	5.0	"	"	"	"	"	"	
Chloroethane	ND	5.0	"	"	"	"	"	"	
Chloroform	ND	5.0	"	"	"	"	"	"	
Chloromethane	ND	5.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
Dibromochloromethane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	5.0	"	"	"	"	"	"	
Dibromomethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	5.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Saviel of Chivy

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

GP5@8' T110485-14 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

	SunStar Laboratories, Inc.										
Volatile Organic Compounds by I	EPA Method 8260B										
1,2-Dichloroethane	ND	5.0	ug/kg	1	1042121	04/21/11	04/22/11	EPA 8260B			
1,1-Dichloroethene	ND	5.0	"	"	"	"	"	"			
cis-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"			
trans-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"			
1,2-Dichloropropane	ND	5.0	"	"	"	"	"	"			
1,3-Dichloropropane	ND	5.0	"	"	"	"	"	"			
2,2-Dichloropropane	ND	5.0	"	"	"	"	"	"			
1,1-Dichloropropene	ND	5.0	"	"	"	"	"	"			
cis-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"			
trans-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"			
Hexachlorobutadiene	ND	5.0	"	"	"	"	"	"			
Isopropylbenzene	ND	5.0	"	"	"	"	"	"			
p-Isopropyltoluene	ND	5.0	"	"	"	"	"	"			
Methylene chloride	ND	5.0	"	"	"	"	"	"			
Naphthalene	ND	5.0	"	"	"	"	"	"			
n-Propylbenzene	ND	5.0	"	"	"	"	"	"			
Styrene	ND	5.0	"	"	"	"	"	"			
1,1,2,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"			
1,1,1,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"			
Tetrachloroethene	ND	5.0	"	"	"	"	"	"			
1,2,3-Trichlorobenzene	ND	5.0	"	"	"	"	"	"			
1,2,4-Trichlorobenzene	ND	5.0	"	"	"	"	"	"			
1,1,2-Trichloroethane	ND	5.0	"	"	"	"	"	"			
1,1,1-Trichloroethane	ND	5.0	"	"	"	"	"	"			
Trichloroethene	ND	5.0	"	"	"	"	"	"			
Trichlorofluoromethane	ND	5.0	"	"	"	"	"	"			
1,2,3-Trichloropropane	ND	5.0	"	"	"	"	"	"			
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"			
1,2,4-Trimethylbenzene	ND	5.0	"	"	"	"	"	"			
Vinyl chloride	ND	5.0	"	"	"	"	"	"			
Benzene	ND	5.0	"	"	"	"	"	"			
Toluene	ND	5.0	"	"	"	"	"	"			

SunStar Laboratories, Inc.

Saviel of Chivy

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

GP5@8' T110485-14 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

	;	SunStar L	aboratori	es, Inc.					
Volatile Organic Compounds by E	PA Method 82601	В							
Ethylbenzene	ND	5.0	ug/kg	1	1042121	04/21/11	04/22/11	EPA 8260B	
m,p-Xylene	ND	5.0	"	"	"	"	"	n .	
o-Xylene	ND	5.0	"	"	"	"	"	n .	
Tert-amyl methyl ether	ND	20	"	"	"	"	"	"	
Tert-butyl alcohol	ND	50	"	"	"	"	"	"	
Di-isopropyl ether	ND	20	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	20	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	20	"	"	"	"	"	"	
Surrogate: Toluene-d8		97.4 %	85.5-	116	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		100 %	75.1-	121	"	"	"	"	
Surrogate: Dibromofluoromethane		114 %	90-1.	35	"	"	"	"	

SunStar Laboratories, Inc.

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

GP5@12' T110485-15 (Soil)

	Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
C6-C12 (GRO)			SunStar L	aborator	ries, Inc.					
113 % 72.6-146	Purgeable Petroleum Hydrocarbo	ons by EPA 80150	C							
C13-C28 (DRO)	C6-C12 (GRO)	ND	500	ug/kg	1	1042126	04/21/11	04/26/11	EPA 8015C	
C13-C28 (DRO)	Surrogate: 4-Bromofluorobenzene		113 %	72.6	-146	"	"	"	"	
ND 10	Extractable Petroleum Hydrocark	oons by 8015C								
No. C13-C28 (DRO)	ND	10	mg/kg	1	1042125	04/21/11	04/28/11	EPA 8015C		
No	C29-C40 (MORO)	ND	10	"	"	"	"	"	"	
Bromobenzene ND 5.0 ug/kg 1 1042121 04/21/11 04/22/11 EPA 8260B	Surrogate: p-Terphenyl		76.6 %	65-	135	"	"	"	"	
Bromobenzene ND 5.0 ug/kg 1 1042121 04/21/11 04/22/11 EPA 8260B	Volatile Organic Compounds by I	EPA Method 8260	0B							
Bromodichloromethane ND	Bromobenzene			ug/kg	1	1042121	04/21/11	04/22/11	EPA 8260B	
Stomoform ND S.0	Bromochloromethane	ND	5.0	"	"	"	"	"	"	
Stock Stoc	Bromodichloromethane	ND	5.0	"	"	"	"	"	"	
ND So So So So So So So	Bromoform	ND	5.0	"	"	"	"	"	"	
sec-Butylbenzene ND 5.0 " " " " " " " " " " " " " " " " " " "	Bromomethane	ND	5.0	"	"	"	"	"	"	
tert-Butylbenzene ND 5.0 " " " " " " " " " " " " " " " " " " "	n-Butylbenzene	ND	5.0	"	"	"	"	"	"	
Carbon tetrachloride ND 5.0 "	sec-Butylbenzene	ND	5.0	"	"	"	"	"	"	
Chlorobenzene ND 5.0 "	tert-Butylbenzene	ND	5.0	"	"	"	"	"	"	
Chloroethane ND 5.0 "	Carbon tetrachloride	ND	5.0	"	"	"	"	"	"	
Chloroform ND 5.0 " <	Chlorobenzene	ND	5.0	"	"	"	"	"	"	
Chloromethane ND 5.0 "	Chloroethane	ND	5.0	"	"	"	"	"	"	
2-Chlorotoluene ND 5.0 " " " " " " " " " " 4-Chlorotoluene ND 5.0 " " " " " " " " " " " " " " " " " " "	Chloroform	ND	5.0	"	"	"	"	"	"	
4-Chlorotoluene ND 5.0 " " " " " " " " " " " " " " " " " " "	Chloromethane	ND	5.0	"	"	"	"	"	"	
Dibromochloromethane	2-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane ND 5.0 " " " " " " " " " " " " " " " " " " "	4-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB) ND 5.0 " " " " " " " " " " " " " " " " " "	Dibromochloromethane	ND	5.0	"	"	"	"	"	"	
Dibromomethane ND 5.0 "	1,2-Dibromo-3-chloropropane	ND	5.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	1,2-Dibromoethane (EDB)	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene ND 5.0 " " " " " " " " " 1,4-Dichlorobenzene ND 5.0 " " " " " " " " " " " " " " " " " " "	Dibromomethane	ND	5.0	"	"	"	"	"	"	
1,4-Dichlorobenzene ND 5.0 " <td>1,2-Dichlorobenzene</td> <td>ND</td> <td>5.0</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td></td>	1,2-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
Dichlorodifluoromethane ND 5.0 " " " " " "	1,3-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
	1,4-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethane ND 5.0 " " " " " "	Dichlorodifluoromethane	ND	5.0	"	"	"	"	"	"	
	1,1-Dichloroethane	ND	5.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Saviel of Chivy

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

GP5@12' T110485-15 (Soil)

ı									
		Reporting							
	Analyte Res	ult Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

	SunStar Laboratories, Inc.											
Volatile Organic Compounds by I	EPA Method 8260B											
1,2-Dichloroethane	ND	5.0	ug/kg	1	1042121	04/21/11	04/22/11	EPA 8260B				
1,1-Dichloroethene	ND	5.0	"	"	"	"	"	"				
cis-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"				
trans-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"				
1,2-Dichloropropane	ND	5.0	"	"	"	"	"	"				
1,3-Dichloropropane	ND	5.0	"	"	"	"	"	"				
2,2-Dichloropropane	ND	5.0	"	"	"	"	"	"				
1,1-Dichloropropene	ND	5.0	"	"	"	"	"	"				
cis-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"				
trans-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"				
Hexachlorobutadiene	ND	5.0	"	"	"	"	"	"				
Isopropylbenzene	ND	5.0	"	"	"	"	"	"				
p-Isopropyltoluene	ND	5.0	"	"	"	"	"	"				
Methylene chloride	ND	5.0	"	"	"	"	"	"				
Naphthalene	ND	5.0	"	"	"	"	"	"				
n-Propylbenzene	ND	5.0	"	"	"	"	"	"				
Styrene	ND	5.0	"	"	"	"	"	"				
1,1,2,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"				
1,1,1,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"				
Tetrachloroethene	ND	5.0	"	"	"	"	"	"				
1,2,3-Trichlorobenzene	ND	5.0	"	"	"	"	"	"				
1,2,4-Trichlorobenzene	ND	5.0	"	"	"	"	"	"				
1,1,2-Trichloroethane	ND	5.0	"	"	"	"	"	"				
1,1,1-Trichloroethane	ND	5.0	"	"	"	"	"	"				
Trichloroethene	ND	5.0	"	"	"	"	"	"				
Trichlorofluoromethane	ND	5.0	"	"	"	"	"	"				
1,2,3-Trichloropropane	ND	5.0	"	"	"	"	"	"				
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"				
1,2,4-Trimethylbenzene	ND	5.0	"	"	"	"	"	"				
Vinyl chloride	ND	5.0	"	"	"	"	"	"				
Benzene	ND	5.0	"	"	"	"	"	"				
Toluene	ND	5.0	"	"	"	"	"	"				

SunStar Laboratories, Inc.

Saviel of Chivy

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

GP5@12' T110485-15 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Sunstar Laboratories, Inc.													
Volatile Organic Compounds by E	Volatile Organic Compounds by EPA Method 8260B												
Ethylbenzene	ND	5.0	ug/kg	1	1042121	04/21/11	04/22/11	EPA 8260B					
m,p-Xylene	ND	5.0	"	"	"	"	"	"					
o-Xylene	ND	5.0	"	"	"	"	"	"					
Tert-amyl methyl ether	ND	20	"	"	"	"	"	"					
Tert-butyl alcohol	ND	50	"	"	"	"	"	"					
Di-isopropyl ether	ND	20	"	"	"	"	"	"					
Ethyl tert-butyl ether	ND	20	"	"	"	"	"	"					
Methyl tert-butyl ether	ND	20	"	"	"	"	"	"					
Surrogate: Toluene-d8		99.9 %	85.5-1	116	"	"	"	"					
Surrogate: 4-Bromofluorobenzene		111 %	75.1-1	121	"	"	"	"					
Surrogate: Dibromofluoromethane		112 %	90-1.	35	"	"	"	"					

SunStar Laboratories, Inc.

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

GP6@4' T110485-16 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aborator	ries, Inc.					
Purgeable Petroleum Hydrocarbo	ns by EPA 80150								
C6-C12 (GRO)	ND	500	ug/kg	1	1042126	04/21/11	04/26/11	EPA 8015C	
Surrogate: 4-Bromofluorobenzene		114 %	72.6	-146	"	"	"	"	
Extractable Petroleum Hydrocark	oons by 8015C								
C13-C28 (DRO)	ND	10	mg/kg	1	1042125	04/21/11	04/28/11	EPA 8015C	
C29-C40 (MORO)	ND	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		135 %	65	135	"	"	"	"	
Volatile Organic Compounds by F	EPA Method 8260)B							
Bromobenzene	ND	5.0	ug/kg	1	1042121	04/21/11	04/22/11	EPA 8260B	
Bromochloromethane	ND	5.0	"	"	"	"	"	"	
Bromodichloromethane	ND	5.0	"	"	"	"	"	"	
Bromoform	ND	5.0	"	"	"	"	"	"	
Bromomethane	ND	5.0	"	"	"	"	"	"	
n-Butylbenzene	ND	5.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	5.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	5.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	5.0	"	"	"	"	"	"	
Chlorobenzene	ND	5.0	"	"	"	"	"	"	
Chloroethane	ND	5.0	"	"	"	"	"	"	
Chloroform	ND	5.0	"	"	"	"	"	"	
Chloromethane	ND	5.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
Dibromochloromethane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	5.0	"	"	"	"	"	"	
Dibromomethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	5.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Saviel of Chivy

Engeo Project: 1000 N. Vasco Rd.

 2213 Plaza Dr.
 Project Number: 7380.000.003
 Reported:

 Rocklin CA, 95765
 Project Manager: Morgan Johnson
 04/29/11 11:23

GP6@4' T110485-16 (Soil)

	Reporting							
Analyte Resi	lt Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

	Sunstar Laboratories, Inc.											
Volatile Organic Compounds by EPA	Method 8260B								_			
1,2-Dichloroethane	ND	5.0	ug/kg	1	1042121	04/21/11	04/22/11	EPA 8260B				
1,1-Dichloroethene	ND	5.0	"	"	"	"	"	"				
cis-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"				
trans-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"				
1,2-Dichloropropane	ND	5.0	"	"	"	"	"	"				
1,3-Dichloropropane	ND	5.0	"	"	"	"	"	"				
2,2-Dichloropropane	ND	5.0	"	"	"	"	"	"				
1,1-Dichloropropene	ND	5.0	"	"	"	"	"	"				
cis-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"				
trans-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"				
Hexachlorobutadiene	ND	5.0	"	"	"	"	"	n .				
Isopropylbenzene	ND	5.0	"	"	"	"	"	"				
p-Isopropyltoluene	ND	5.0	"	"	"	"	"	"				
Methylene chloride	ND	5.0	"	"	"	"	"	"				
Naphthalene	ND	5.0	"	"	"	"	"	"				
n-Propylbenzene	ND	5.0	"	"	"	"	"	"				
Styrene	ND	5.0	"	"	"	"	"	"				
1,1,2,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	II .				
1,1,1,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"				
Tetrachloroethene	ND	5.0	"	"	"	"	"	II .				
1,2,3-Trichlorobenzene	ND	5.0	"	"	"	"	"	II .				
1,2,4-Trichlorobenzene	ND	5.0	"	"	"	"	"	II .				
1,1,2-Trichloroethane	ND	5.0	"	"	"	"	"	II .				
1,1,1-Trichloroethane	ND	5.0	"	"	"	"	"	"				
Trichloroethene	ND	5.0	"	"	"	"	"	II .				
Trichlorofluoromethane	ND	5.0	"	"	"	"	"	"				
1,2,3-Trichloropropane	ND	5.0	"	"	"	"	"	"				
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"				
1,2,4-Trimethylbenzene	ND	5.0	"	"	"	"	"	"				
Vinyl chloride	ND	5.0	"	"	"	"	"	"				
Benzene	ND	5.0	"	"	"	"	"	"				
Toluene	ND	5.0	"	"	"	"	"	"				

SunStar Laboratories, Inc.

Saviel of Chivy

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

GP6@4' T110485-16 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

	Sunstar Laboratories, inc.												
Volatile Organic Compounds by E	PA Method 8260B												
Ethylbenzene	ND	5.0	ug/kg	1	1042121	04/21/11	04/22/11	EPA 8260B					
m,p-Xylene	ND	5.0	"	"	"	"	"	"					
o-Xylene	ND	5.0	"	"	"	"	"	"					
Tert-amyl methyl ether	ND	20	"	"	"	"	"	"					
Tert-butyl alcohol	ND	50	"	"	"	"	"	"					
Di-isopropyl ether	ND	20	"	"	"	"	"	"					
Ethyl tert-butyl ether	ND	20	"	"	"	"	"	"					
Methyl tert-butyl ether	ND	20	"	"	"	"	"	"					
Surrogate: Toluene-d8		103 %	85.5-1	116	"	"	"	"					
Surrogate: 4-Bromofluorobenzene		109 %	75.1-1	121	"	"	"	"					
Surrogate: Dibromofluoromethane		110 %	90-1.	35	"	"	"	"					

SunStar Laboratories, Inc.

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

GP6@8' T110485-17 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aborator	ries, Inc.					
Purgeable Petroleum Hydrocarbo	ons by EPA 80150	C							
C6-C12 (GRO)	ND	500	ug/kg	1	1042126	04/21/11	04/26/11	EPA 8015C	
Surrogate: 4-Bromofluorobenzene		113 %	72.6	-146	"	"	"	"	
Extractable Petroleum Hydrocarl	bons by 8015C								
C13-C28 (DRO)	ND	10	mg/kg	1	1042125	04/21/11	04/28/11	EPA 8015C	
C29-C40 (MORO)	ND	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		76.2 %	65-	135	"	"	"	"	
Volatile Organic Compounds by I	EPA Method 826	0B							
Bromobenzene	ND	5.0	ug/kg	1	1042121	04/21/11	04/22/11	EPA 8260B	
Bromochloromethane	ND	5.0	"	"	"	"	"	"	
Bromodichloromethane	ND	5.0	"	"	"	"	"	"	
Bromoform	ND	5.0	"	"	"	"	"	"	
Bromomethane	ND	5.0	"	"	"	"	"	"	
n-Butylbenzene	ND	5.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	5.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	5.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	5.0	"	"	"	"	"	"	
Chlorobenzene	ND	5.0	"	"	"	"	"	"	
Chloroethane	ND	5.0	"	"	"	"	"	"	
Chloroform	ND	5.0	"	"	"	"	"	"	
Chloromethane	ND	5.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
Dibromochloromethane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	5.0	"	"	"	"	"	"	
Dibromomethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	5.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Saviel of Chivy

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

GP6@8' T110485-17 (Soil)

	Reporti	ng						
Analyte Res	ılt Liı	nit Un	its Dilutio	n Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Sunstai Laboratories, nic.											
Volatile Organic Compounds by	EPA Method 8260B										
1,2-Dichloroethane	ND	5.0	ug/kg	1	1042121	04/21/11	04/22/11	EPA 8260B			
1,1-Dichloroethene	ND	5.0	"	"	"	"	"	"			
cis-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"			
trans-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"			
1,2-Dichloropropane	ND	5.0	"	"	"	"	"	"			
1,3-Dichloropropane	ND	5.0	"	"	"	"	"	"			
2,2-Dichloropropane	ND	5.0	"	"	"	"	"	"			
1,1-Dichloropropene	ND	5.0	"	"	"	"	"	"			
cis-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"			
trans-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"			
Hexachlorobutadiene	ND	5.0	"	"	"	"	"	"			
Isopropylbenzene	ND	5.0	"	"	"	"	"	"			
p-Isopropyltoluene	ND	5.0	"	"	"	"	"	"			
Methylene chloride	ND	5.0	"	"	"	"	"	"			
Naphthalene	ND	5.0	"	"	"	"	"	"			
n-Propylbenzene	ND	5.0	"	"	"	"	"	"			
Styrene	ND	5.0	"	"	"	"	"	"			
1,1,2,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"			
1,1,1,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"			
Tetrachloroethene	ND	5.0	"	"	"	"	"	"			
1,2,3-Trichlorobenzene	ND	5.0	"	"	"	"	"	"			
1,2,4-Trichlorobenzene	ND	5.0	"	"	"	"	"	"			
1,1,2-Trichloroethane	ND	5.0	"	"	"	"	"	"			
1,1,1-Trichloroethane	ND	5.0	"	"	"	"	"	"			
Trichloroethene	ND	5.0	"	"	"	"	"	"			
Trichlorofluoromethane	ND	5.0	"	"	"	"	"	"			
1,2,3-Trichloropropane	ND	5.0	"	"	"	"	"	"			
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"			
1,2,4-Trimethylbenzene	ND	5.0	"	"	"	"	"	"			
Vinyl chloride	ND	5.0	"	"	"	"	"	"			
Benzene	ND	5.0	"	"	"	"	"	"			
Toluene	ND	5.0	"	"	"	"	"	"			

SunStar Laboratories, Inc.

Saviel of Chivy

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

GP6@8' T110485-17 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Sunstar Laboratories, Inc.											
Volatile Organic Compounds by E	PA Method 8260I	3									
Ethylbenzene	ND	5.0	ug/kg	1	1042121	04/21/11	04/22/11	EPA 8260B			
m,p-Xylene	ND	5.0	"	"	"	"	"	"			
o-Xylene	ND	5.0	"	"	"	"	"	"			
Tert-amyl methyl ether	ND	20	"	"	"	"	"	"			
Tert-butyl alcohol	ND	50	"	"	"	"	"	"			
Di-isopropyl ether	ND	20	"	"	"	"	"	"			
Ethyl tert-butyl ether	ND	20	"	"	"	"	"	"			
Methyl tert-butyl ether	ND	20	"	"	"	"	"	"			
Surrogate: Toluene-d8		99.0 %	85.5-1	116	"	"	"	"			
Surrogate: 4-Bromofluorobenzene		107 %	75.1-1	121	"	"	"	"			
Surrogate: Dibromofluoromethane		111 %	90-1.	35	"	"	"	"			

SunStar Laboratories, Inc.

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

GP6@12' T110485-18 (Soil)

Surrogate: 4-Bromofluorobenzene 116 % 72.6-146 " " " " " Extractable Petroleum Hydrocarbons by 8015C	Result	Analyte	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
C6-C12 (GRO) ND 500 ug/kg 1 1042126 04/21/11 04/26/11 EP. Surrogate: 4-Bromofluorobenzene 116 % 72.6-146 " " " " " " EXTractable Petroleum Hydrocarbons by 8015C C13-C28 (DRO) ND 10 mg/kg 1 1042125 04/21/11 04/28/11 EP. C29-C40 (MORO) ND 10 " " " " " " " " " " " " " " " "	Sur		SunStar L	aborator	ries, Inc.					
Surrogate: 4-Bromofluorobenzene 116 % 72.6-146 " " " " " Extractable Petroleum Hydrocarbons by 8015C	PA 8015C	Purgeable Petroleum Hydrocarbons by EF								
Extractable Petroleum Hydrocarbons by 8015C	ND	C6-C12 (GRO)	500	ug/kg	1	1042126	04/21/11	04/26/11	EPA 8015C	
C13-C28 (DRO)		Surrogate: 4-Bromofluorobenzene	116 %	72.6-	-146	"	"	"	"	
C29-C40 (MORO) ND 10	8015C	Extractable Petroleum Hydrocarbons by 8								
Surrogate: p-Terphenyl 125 % 65-135 " " " " " Volatile Organic Compounds by EPA Method 8260B Stromochloromethane ND 5.0 ug/kg 1 1042121 04/21/11 04/22/11 EPA Bromochloromethane ND 5.0 " " " " " " " " "	ND	C13-C28 (DRO)	10	mg/kg	1	1042125	04/21/11	04/28/11	EPA 8015C	
Volatile Organic Compounds by EPA Method 8260B S.0 ug/kg 1 1042121 04/21/11 04/22/11 EPA Bromochloromethane ND S.0 " " " " " " " " " " " " " " " " " "	ND	C29-C40 (MORO)	10	"	"	"	"	"	"	
Bromobenzene ND 5.0 ug/kg 1 1042121 04/21/11 04/22/11 EPA Bromochloromethane ND 5.0 " " " " " " " " " " " " " " " " " " "		Surrogate: p-Terphenyl	125 %	65-	135	"	"	"	"	
Bromobenzene ND 5.0 ug/kg 1 1042121 04/21/11 04/22/11 EPA Bromochloromethane ND 5.0 " " " " " " " " " " " " " " " " " " "	ethod 8260B	Volatile Organic Compounds by EPA Met	В							
State Stat	ND	Bromobenzene	5.0	ug/kg	1	1042121	04/21/11	04/22/11	EPA 8260B	
Bromoform ND 5.0 " <t< td=""><td>ND</td><td>Bromochloromethane</td><td>5.0</td><td>"</td><td>"</td><td>"</td><td>"</td><td>"</td><td>"</td><td></td></t<>	ND	Bromochloromethane	5.0	"	"	"	"	"	"	
Bromomethane ND S.0 """""""""""""""""""""""""""""""""	ND	Bromodichloromethane	5.0	"	"	"	"	"	"	
n-Butylbenzene ND 5.0 " " " " " " " " " " " " " tert-Butylbenzene ND 5.0 " " " " " " " " " " " " " " " " " " "	ND	Bromoform	5.0	"	"	"	"	"	"	
sec-Butylbenzene ND 5.0 "	ND	Bromomethane	5.0	"	"	"	"	"	"	
tert-Butylbenzene ND 5.0 "	ND	n-Butylbenzene	5.0	"	"	"	"	"	"	
Carbon tetrachloride ND 5.0 "	ND	sec-Butylbenzene	5.0	"	"	"	"	"	"	
Chlorobenzene ND 5.0 "	ND	tert-Butylbenzene	5.0	"	"	"	"	"	"	
Chloroethane ND 5.0 "	ND	Carbon tetrachloride	5.0	"	"	"	"	"	"	
Chloroform ND 5.0 " <	ND	Chlorobenzene	5.0	"	"	"	"	"	"	
Chloromethane ND 5.0 "	ND	Chloroethane	5.0	"	"	"	"	"	"	
2-Chlorotoluene ND 5.0 "	ND	Chloroform	5.0	"	"	"	"	"	"	
4-Chlorotoluene ND 5.0 "	ND	Chloromethane	5.0	"	"	"	"	"	"	
Dibromochloromethane	ND	2-Chlorotoluene	5.0	"	"	"	"	"	"	
Dibromochloromethane ND 5.0 " <td>ND</td> <td>4-Chlorotoluene</td> <td>5.0</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td></td>	ND	4-Chlorotoluene	5.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB) ND 5.0 "	ND	Dibromochloromethane	5.0	"	"	"	"	"	"	
Dibromomethane ND 5.0 "	ND	1,2-Dibromo-3-chloropropane	5.0	"	"	"	"	"	"	
Diotomormentatie ND 5.0 "	ND	1,2-Dibromoethane (EDB)	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene ND 5.0 " " " " " " 1,4-Dichlorobenzene ND 5.0 " " " " " "	ND	Dibromomethane	5.0	"	"	"	"	"	"	
1,4-Dichlorobenzene ND 5.0 " " " " "	ND	1,2-Dichlorobenzene	5.0	"	"	"	"	"	"	
1,4-Dichiorocelizene ND 5.0	ND	1,3-Dichlorobenzene	5.0	"	"	"	"	"	"	
Dishlard difference where	ND	1,4-Dichlorobenzene	5.0	"	"	"	"	"	"	
Dichlorodiffuoromethane ND 5.0	ND	Dichlorodifluoromethane	5.0	"	"	"	"	"	"	
1,1-Dichloroethane ND 5.0 " " " " "	ND	1,1-Dichloroethane	5.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Saviel of Chivy

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

GP6@12' T110485-18 (Soil)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

	S	unStar La	aboratorio	es, Inc.				
Volatile Organic Compounds by								
1,2-Dichloroethane	ND	5.0	ug/kg	1	1042121	04/21/11	04/22/11	EPA 8260B
1,1-Dichloroethene	ND	5.0	"	"	"	"	"	"
cis-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"
rans-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"
1,2-Dichloropropane	ND	5.0	"	"	"	"	"	"
,3-Dichloropropane	ND	5.0	"	"	"	"	"	"
2,2-Dichloropropane	ND	5.0	"	"	"	"	"	"
1,1-Dichloropropene	ND	5.0	"	"	"	"	"	"
cis-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"
trans-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"
Hexachlorobutadiene	ND	5.0	"	"	"	"	"	"
Isopropylbenzene	ND	5.0	"	"	"	"	"	"
p-Isopropyltoluene	ND	5.0	"	"	"	"	"	"
Methylene chloride	ND	5.0	"	"	"	"	"	"
Naphthalene	ND	5.0	"	"	"	"	"	"
n-Propylbenzene	ND	5.0	"	"	"	"	"	"
Styrene	ND	5.0	"	"	"	"	"	"
1,1,2,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"
1,1,1,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"
Гetrachloroethene	ND	5.0	"	"	"	"	"	"
1,2,3-Trichlorobenzene	ND	5.0	"	"	"	"	"	"
1,2,4-Trichlorobenzene	ND	5.0	"	"	"	"	"	"
1,1,2-Trichloroethane	ND	5.0	"	"	"	"	"	"
1,1,1-Trichloroethane	ND	5.0	"	"	"	"	"	"
Trichloroethene	ND	5.0	"	"	"	"	"	"
Trichlorofluoromethane	ND	5.0	"	"	"	"	"	"
1,2,3-Trichloropropane	ND	5.0	"	"	"	"	"	"
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"
1,2,4-Trimethylbenzene	ND	5.0	"	"	"	"	"	"
Vinyl chloride	ND	5.0	"	"	"	"	"	"
Benzene	ND	5.0	"	"	"	"	"	"
Toluene	ND	5.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

Saviel of Chivy

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

GP6@12' T110485-18 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by E	PA Method 8260B								
Ethylbenzene	ND	5.0	ug/kg	1	1042121	04/21/11	04/22/11	EPA 8260B	
m,p-Xylene	ND	5.0	"	"	"	"	"	"	
o-Xylene	ND	5.0	"	"	"	"	"	"	
Tert-amyl methyl ether	ND	20	"	"	"	"	"	"	
Tert-butyl alcohol	ND	50	"	"	"	"	"	"	
Di-isopropyl ether	ND	20	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	20	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	20	"	"	"	"	"	"	

85.5-116

75.1-121

90-135

101 %

103 %

111 %

SunStar Laboratories, Inc.

Surrogate: Toluene-d8

Surrogate: 4-Bromofluorobenzene

Surrogate: Dibromofluoromethane

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

Reporting

GP7@4' T110485-19 (Soil)

Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	;	SunStar L	aborator	ries, Inc.					
Purgeable Petroleum Hydrocarbo	ns by EPA 8015C								
C6-C12 (GRO)	ND	500	ug/kg	1	1042126	04/21/11	04/26/11	EPA 8015C	
Surrogate: 4-Bromofluorobenzene		117 %	72.6	-146	"	"	"	"	
Extractable Petroleum Hydrocarb	oons by 8015C								
C13-C28 (DRO)	ND	10	mg/kg	1	1042125	04/21/11	04/28/11	EPA 8015C	
C29-C40 (MORO)	ND	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		123 %	65-	135	"	"	"	"	
Volatile Organic Compounds by E	EPA Method 82601	В							
Bromobenzene	ND	5.0	ug/kg	1	1042121	04/21/11	04/22/11	EPA 8260B	
Bromochloromethane	ND	5.0	"	"	"	"	"	"	
Bromodichloromethane	ND	5.0	"	"	"	"	"	"	
Bromoform	ND	5.0	"	"	"	"	"	"	
Bromomethane	ND	5.0	"	"	"	"	"	"	
n-Butylbenzene	ND	5.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	5.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	5.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	5.0	"	"	"	"	"	"	
Chlorobenzene	ND	5.0	"	"	"	"	"	"	
Chloroethane	ND	5.0	"	"	"	"	"	"	
Chloroform	ND	5.0	"	"	"	"	"	"	
Chloromethane	ND	5.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
Dibromochloromethane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	5.0	"	"	"	"	"	"	
Dibromomethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	5.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Saviel of Chivy

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

GP7@4' T110485-19 (Soil)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

,2-Dichloroethane	ND	5.0	ug/kg	1	1042121	04/21/11	04/22/11	EPA 8260E
,1-Dichloroethene	ND	5.0	"	"	"	"	"	"
is-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"
rans-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"
,2-Dichloropropane	ND	5.0	"	"	"	"	"	"
,3-Dichloropropane	ND	5.0	"	"	"	"	"	"
,2-Dichloropropane	ND	5.0	"	"	"	"	"	"
,1-Dichloropropene	ND	5.0	"	"	"	"	"	"
is-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"
rans-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"
Iexachlorobutadiene	ND	5.0	"	"	"	"	"	"
sopropylbenzene	ND	5.0	"	"	"	"	"	"
-Isopropyltoluene	ND	5.0	"	"	"	"	"	"
Methylene chloride	ND	5.0	"	"	"	"	"	"
Naphthalene	ND	5.0	"	"	"	"	"	"
-Propylbenzene	ND	5.0	"	"	"	"	"	"
tyrene	ND	5.0	"	"	"	"	"	"
,1,2,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"
,1,1,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"
etrachloroethene	ND	5.0	"	"	"	"	"	"
,2,3-Trichlorobenzene	ND	5.0	"	"	"	"	"	"
,2,4-Trichlorobenzene	ND	5.0	"	"	"	"	"	"
,1,2-Trichloroethane	ND	5.0	"	"	"	"	"	"
,1,1-Trichloroethane	ND	5.0	"	"	"	"	"	"
richloroethene	ND	5.0	"	"	"	"	"	"
richlorofluoromethane	ND	5.0	"	"	"	"	"	"
,2,3-Trichloropropane	ND	5.0	"	"	"	"	"	"
,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"
,2,4-Trimethylbenzene	ND	5.0	"	"	"	"	"	"
inyl chloride	ND	5.0	"	"	"	"	"	"
Benzene	ND	5.0	"	"	"	"	"	"
oluene	ND	5.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

Saviel of Chivy

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

GP7@4' T110485-19 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

SunStar Laboratories, Inc.											
Volatile Organic Compounds by E	PA Method 8260B										
Ethylbenzene	ND	5.0	ug/kg	1	1042121	04/21/11	04/22/11	EPA 8260B			
m,p-Xylene	ND	5.0	"	"	"	"	"	"			
o-Xylene	ND	5.0	"	"	"	"	"	"			
Tert-amyl methyl ether	ND	20	"	"	"	"	"	"			
Tert-butyl alcohol	ND	50	"	"	"	"	"	"			
Di-isopropyl ether	ND	20	"	"	"	"	"	"			
Ethyl tert-butyl ether	ND	20	"	"	"	"	"	"			
Methyl tert-butyl ether	ND	20	"	"	"	"	"	"			
Surrogate: Toluene-d8		99.8 %	85.5-	116	"	"	"	"			
Surrogate: 4-Bromofluorobenzene		106 %	75.1-	121	"	"	"	"			
Surrogate: Dibromofluoromethane		113 %	90-1.	35	"	"	"	"			

SunStar Laboratories, Inc.

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

GP7@8' T110485-20 (Soil)

Purgeable Petroleum Hydrocarbons by C6-C12 (GRO) Surrogate: 4-Bromofluorobenzene Extractable Petroleum Hydrocarbons 1 C13-C28 (DRO) C29-C40 (MORO)	ND by 8015C ND ND	500 119 % 10 10 123 %	ug/kg 72.6-	1 146	1042126	04/21/11 " 04/21/11 "	04/26/11 " 04/28/11	EPA 8015C " EPA 8015C	
C6-C12 (GRO) Surrogate: 4-Bromofluorobenzene Extractable Petroleum Hydrocarbons C13-C28 (DRO)	ND by 8015C ND ND	500 119 % 10 10 123 %	72.6- mg/kg	146	1042125	04/21/11	"	"	
Surrogate: 4-Bromofluorobenzene Extractable Petroleum Hydrocarbons C13-C28 (DRO)	by 8015C ND ND	119 % 10 10 123 %	72.6- mg/kg	146	1042125	04/21/11	"	"	
Extractable Petroleum Hydrocarbons C13-C28 (DRO)	ND ND	10 10 123 %	mg/kg	1	1042125	04/21/11			
C13-C28 (DRO)	ND ND	10 123 %	"	"			04/28/11	EDA 9015C	
	ND	10 123 %	"	"			04/28/11	EDA 9015C	
C29-C40 (MORO)		123 %	65-1		"	.,		EPA OUISC	
C25 C40 (MORO)	Method 8260		65-1	35			"	"	
Surrogate: p-Terphenyl	Method 8260	D			"	"	"	"	
Volatile Organic Compounds by EPA		В							
Bromobenzene	ND	5.0	ug/kg	1	1042121	04/21/11	04/22/11	EPA 8260B	
Bromochloromethane	ND	5.0	"	"	"	"	"	"	
Bromodichloromethane	ND	5.0	"	"	"	"	"	"	
Bromoform	ND	5.0	"	"	"	"	"	"	
Bromomethane	ND	5.0	"	"	"	"	"	"	
n-Butylbenzene	ND	5.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	5.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	5.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	5.0	"	"	"	"	"	"	
Chlorobenzene	ND	5.0	"	"	"	"	"	"	
Chloroethane	ND	5.0	"	"	"	"	"	"	
Chloroform	ND	5.0	"	"	"	"	"	"	
Chloromethane	ND	5.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
Dibromochloromethane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	5.0	"	"	"	"	"	"	
Dibromomethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	5.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Saviel of Chivy

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

GP7@8' T110485-20 (Soil)

	Reporting							
Analyte Resi	lt Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

,2-Dichloroethane	ND	5.0	ug/kg	1	1042121	04/21/11	04/22/11	EPA 8260E
,1-Dichloroethene	ND	5.0	"	"	"	"	"	"
is-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"
rans-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"
,2-Dichloropropane	ND	5.0	"	"	"	"	"	"
,3-Dichloropropane	ND	5.0	"	"	"	"	"	"
,2-Dichloropropane	ND	5.0	"	"	"	"	"	"
,1-Dichloropropene	ND	5.0	"	"	"	"	"	"
is-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"
rans-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"
Iexachlorobutadiene	ND	5.0	"	"	"	"	"	"
sopropylbenzene	ND	5.0	"	"	"	"	"	"
-Isopropyltoluene	ND	5.0	"	"	"	"	"	"
Methylene chloride	ND	5.0	"	"	"	"	"	"
Naphthalene	ND	5.0	"	"	"	"	"	"
-Propylbenzene	ND	5.0	"	"	"	"	"	"
tyrene	ND	5.0	"	"	"	"	"	"
,1,2,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"
,1,1,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"
etrachloroethene	ND	5.0	"	"	"	"	"	"
,2,3-Trichlorobenzene	ND	5.0	"	"	"	"	"	"
,2,4-Trichlorobenzene	ND	5.0	"	"	"	"	"	"
,1,2-Trichloroethane	ND	5.0	"	"	"	"	"	"
,1,1-Trichloroethane	ND	5.0	"	"	"	"	"	"
richloroethene	ND	5.0	"	"	"	"	"	"
richlorofluoromethane	ND	5.0	"	"	"	"	"	"
,2,3-Trichloropropane	ND	5.0	"	"	"	"	"	"
,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"
,2,4-Trimethylbenzene	ND	5.0	"	"	"	"	"	"
inyl chloride	ND	5.0	"	"	"	"	"	"
Benzene	ND	5.0	"	"	"	"	"	"
oluene	ND	5.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

Saviel of Chivy

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

GP7@8' T110485-20 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

	•	Sunstar La	aboratori	es, mc.					
Volatile Organic Compounds by EPA	Method 8260 1	В							
Ethylbenzene	ND	5.0	ug/kg	1	1042121	04/21/11	04/22/11	EPA 8260B	
m,p-Xylene	ND	5.0	"	"	"	"	"	"	
o-Xylene	ND	5.0	"	"	"	"	"	"	
Tert-amyl methyl ether	ND	20	"	"	"	"	"	"	
Tert-butyl alcohol	ND	50	"	"	"	"	"	"	
Di-isopropyl ether	ND	20	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	20	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	20	"	"	"	"	"	"	
Surrogate: Toluene-d8		98.6 %	85.5-1	116	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		107 %	75.1-1	121	"	"	"	"	
Surrogate: Dibromofluoromethane		111 %	90-1.	35	"	"	"	"	

SunStar Laboratories, Inc.

Saviel of Chivy

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

GP7@12' T110485-21 (Soil)

Purgeable Petroleum Hydrocarbons b C6-C12 (GRO) Surrogate: 4-Bromofluorobenzene Extractable Petroleum Hydrocarbons C13-C28 (DRO)	ND	500 107 %	ug/kg 72.6-	1	1042224	04/22/11	04/27/11	EPA 8015C	
C6-C12 (GRO) Surrogate: 4-Bromofluorobenzene Extractable Petroleum Hydrocarbons	ND by 8015C ND	500 107 %	72.6-						
Surrogate: 4-Bromofluorobenzene Extractable Petroleum Hydrocarbons	by 8015C ND	107 % 10	72.6-						
Extractable Petroleum Hydrocarbons	ND	10		-146	"	"	"		
	ND		mg/kg					"	
C13-C28 (DRO)			mg/kg						
C13-C20 (DRO)	ND	10		1	1042212	04/22/11	04/28/11	EPA 8015C	
C29-C40 (MORO)			"	"	"	"	"	"	
Surrogate: p-Terphenyl		114 %	65-	135	"	"	"	"	
Volatile Organic Compounds by EPA	Method 8260	В							
Bromobenzene	ND	5.0	ug/kg	1	1042217	04/22/11	04/26/11	EPA 8260B	
Bromochloromethane	ND	5.0	"	"	"	"	"	"	
Bromodichloromethane	ND	5.0	"	"	"	"	"	"	
Bromoform	ND	5.0	"	"	"	"	"	"	
Bromomethane	ND	5.0	"	"	"	"	"	"	
n-Butylbenzene	ND	5.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	5.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	5.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	5.0	"	"	"	"	"	"	
Chlorobenzene	ND	5.0	"	"	"	"	"	"	
Chloroethane	ND	5.0	"	"	"	"	"	"	
Chloroform	ND	5.0	"	"	"	"	"	"	
Chloromethane	ND	5.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
Dibromochloromethane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	5.0	"	"	"	"	"	"	
Dibromomethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	5.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Saviel of Chivy

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

GP7@12' T110485-21 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Suistar Euroratories, mei										
Volatile Organic Compounds by	EPA Method 8260B									
1,2-Dichloroethane	ND	5.0	ug/kg	1	1042217	04/22/11	04/26/11	EPA 8260B		
1,1-Dichloroethene	ND	5.0	"	"	"	"	"	"		
cis-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"		
trans-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"		
1,2-Dichloropropane	ND	5.0	"	"	"	"	"	"		
1,3-Dichloropropane	ND	5.0	"	"	"	"	"	"		
2,2-Dichloropropane	ND	5.0	"	"	"	"	"	"		
1,1-Dichloropropene	ND	5.0	"	"	"	"	"	"		
cis-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"		
trans-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"		
Hexachlorobutadiene	ND	5.0	"	"	"	"	"	m .		
Isopropylbenzene	ND	5.0	"	"	"	"	"	"		
p-Isopropyltoluene	ND	5.0	"	"	"	"	"	"		
Methylene chloride	ND	5.0	"	"	"	"	"	"		
Naphthalene	ND	5.0	"	"	"	"	"	"		
n-Propylbenzene	ND	5.0	"	"	"	"	"	"		
Styrene	ND	5.0	"	"	"	"	"	"		
1,1,2,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	m .		
1,1,1,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	m .		
Tetrachloroethene	ND	5.0	"	"	"	"	"	m .		
1,2,3-Trichlorobenzene	ND	5.0	"	"	"	"	"	m .		
1,2,4-Trichlorobenzene	ND	5.0	"	"	"	"	"	m .		
1,1,2-Trichloroethane	ND	5.0	"	"	"	"	"	"		
1,1,1-Trichloroethane	ND	5.0	"	"	"	"	"	m .		
Trichloroethene	ND	5.0	"	"	"	"	"	"		
Trichlorofluoromethane	ND	5.0	"	"	"	"	"	"		
1,2,3-Trichloropropane	ND	5.0	"	"	"	"	"	"		
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"		
1,2,4-Trimethylbenzene	ND	5.0	"	"	"	"	"	"		
Vinyl chloride	ND	5.0	"	"	"	"	"	"		
Benzene	ND	5.0	"	"	"	"	"	"		
Toluene	ND	5.0	"	"	"	"	"	"		

SunStar Laboratories, Inc.

Saviel of Chivy

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

GP7@12' T110485-21 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

	'	Julistai L	aboratori	co, 111c.					
Volatile Organic Compounds by E	PA Method 82601	В							
Ethylbenzene	ND	5.0	ug/kg	1	1042217	04/22/11	04/26/11	EPA 8260B	
m,p-Xylene	ND	5.0	"	"	"	"	"	"	
o-Xylene	ND	5.0	"	"	"	"	"	"	
Tert-amyl methyl ether	ND	20	"	"	"	"	"	"	
Tert-butyl alcohol	ND	50	"	"	"	"	"	"	
Di-isopropyl ether	ND	20	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	20	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	20	"	"	"	"	"	"	
Surrogate: Toluene-d8		100 %	85.5-1	116	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		92.2 %	75.1-1	121	"	"	"	"	
Surrogate: Dibromofluoromethane		111 %	90-1.	35	"	"	"	"	

SunStar Laboratories, Inc.

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

GP8@4' T110485-22 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aborator	ies, Inc.					
Purgeable Petroleum Hydrocarbo	ns by EPA 80150								
C6-C12 (GRO)	ND	500	ug/kg	1	1042224	04/22/11	04/27/11	EPA 8015C	
Surrogate: 4-Bromofluorobenzene		118 %	72.6	-146	"	"	"	"	
Extractable Petroleum Hydrocark	oons by 8015C								
C13-C28 (DRO)	ND	10	mg/kg	1	1042212	04/22/11	04/28/11	EPA 8015C	
C29-C40 (MORO)	ND	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		125 %	65-	135	"	"	"	"	
Volatile Organic Compounds by I	EPA Method 826)B							
Bromobenzene	ND	5.0	ug/kg	1	1042217	04/22/11	04/26/11	EPA 8260B	
Bromochloromethane	ND	5.0	"	"	"	"	"	"	
Bromodichloromethane	ND	5.0	"	"	"	"	"	"	
Bromoform	ND	5.0	"	"	"	"	"	"	
Bromomethane	ND	5.0	"	"	"	"	"	"	
n-Butylbenzene	ND	5.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	5.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	5.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	5.0	"	"	"	"	"	"	
Chlorobenzene	ND	5.0	"	"	"	"	"	"	
Chloroethane	ND	5.0	"	"	"	"	"	"	
Chloroform	ND	5.0	"	"	"	"	"	"	
Chloromethane	ND	5.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
Dibromochloromethane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	5.0	"	"	"	"	"	"	
Dibromomethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	5.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Saviel of Chivy

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

GP8@4' T110485-22 (Soil)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

,2-Dichloroethane	ND	5.0	ug/kg	1	1042217	04/22/11	04/26/11	EPA 8260E
,1-Dichloroethene	ND	5.0	"	"	"	"	"	"
is-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"
ans-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"
,2-Dichloropropane	ND	5.0	"	"	"	"	"	"
,3-Dichloropropane	ND	5.0	"	"	"	"	"	"
,2-Dichloropropane	ND	5.0	"	"	"	"	"	"
,1-Dichloropropene	ND	5.0	"	"	"	"	"	"
is-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"
ans-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"
Iexachlorobutadiene	ND	5.0	"	"	"	"	"	"
sopropylbenzene	ND	5.0	"	"	"	"	"	"
-Isopropyltoluene	ND	5.0	"	"	"	"	"	"
Methylene chloride	ND	5.0	"	"	"	"	"	"
Taphthalene	ND	5.0	"	"	"	"	"	"
-Propylbenzene	ND	5.0	"	"	"	"	"	"
tyrene	ND	5.0	"	"	"	"	"	"
,1,2,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"
,1,1,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"
etrachloroethene	ND	5.0	"	"	"	"	"	"
,2,3-Trichlorobenzene	ND	5.0	"	"	"	"	"	"
,2,4-Trichlorobenzene	ND	5.0	"	"	"	"	"	"
,1,2-Trichloroethane	ND	5.0	"	"	"	"	"	"
,1,1-Trichloroethane	ND	5.0	"	"	"	"	"	"
richloroethene	ND	5.0	"	"	"	"	"	"
richlorofluoromethane	ND	5.0	"	"	"	"	"	"
,2,3-Trichloropropane	ND	5.0	"	"	"	"	"	"
,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"
,2,4-Trimethylbenzene	ND	5.0	"	"	"	"	"	"
inyl chloride	ND	5.0	"	"	"	"	"	"
enzene	ND	5.0	"	"	"	"	"	"
oluene	ND	5.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

Saviel of Chivy

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

GP8@4' T110485-22 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

	St	ınStar L	aboratori	es, Inc.					
Volatile Organic Compounds by E	PA Method 8260B								
Ethylbenzene	ND	5.0	ug/kg	1	1042217	04/22/11	04/26/11	EPA 8260B	
m,p-Xylene	ND	5.0	"	"	"	"	"	"	
o-Xylene	ND	5.0	"	"	"	"	"	"	
Tert-amyl methyl ether	ND	20	"	"	"	"	"	"	
Tert-butyl alcohol	ND	50	"	"	"	"	"	"	
Di-isopropyl ether	ND	20	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	20	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	20	"	"	"	"	"	"	
Surrogate: Toluene-d8		101 %	85.5-1	116	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		97.5 %	75.1-1	121	"	"	"	"	
Surrogate: Dibromofluoromethane		116 %	90-1.	35	"	"	"	"	

SunStar Laboratories, Inc.

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

GP8@8' T110485-23 (Soil)

Analyte R	esult	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Sı	ınStar L	aborator	ies, Inc.					
Purgeable Petroleum Hydrocarbons by EPA	8015C								
C6-C12 (GRO)	ND	500	ug/kg	1	1042224	04/22/11	04/27/11	EPA 8015C	
Surrogate: 4-Bromofluorobenzene		115 %	72.6	-146	"	"	"	"	
Extractable Petroleum Hydrocarbons by 80	15C								
C13-C28 (DRO)	ND	10	mg/kg	1	1042212	04/22/11	04/28/11	EPA 8015C	
C29-C40 (MORO)	ND	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		74.2 %	65-	135	"	"	"	"	
Volatile Organic Compounds by EPA Metho	od 8260B								
Bromobenzene	ND	5.0	ug/kg	1	1042217	04/22/11	04/26/11	EPA 8260B	
Bromochloromethane	ND	5.0	"	"	"	"	"	"	
Bromodichloromethane	ND	5.0	"	"	"	"	"	"	
Bromoform	ND	5.0	"	"	"	"	"	"	
Bromomethane	ND	5.0	"	"	"	"	"	"	
n-Butylbenzene	ND	5.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	5.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	5.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	5.0	"	"	"	"	"	"	
Chlorobenzene	ND	5.0	"	"	"	"	"	"	
Chloroethane	ND	5.0	"	"	"	"	"	"	
Chloroform	ND	5.0	"	"	"	"	"	"	
Chloromethane	ND	5.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
Dibromochloromethane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	5.0	"	"	"	"	"	"	
Dibromomethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	5.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Saviel of Chivy

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

GP8@8' T110485-23 (Soil)

	Reporting							
Analyte Resi	lt Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

	Sui	nStar L	aboratori	es, Inc.					
Volatile Organic Compounds by	y EPA Method 8260B								
1,2-Dichloroethane	ND	5.0	ug/kg	1	1042217	04/22/11	04/26/11	EPA 8260B	
1,1-Dichloroethene	ND	5.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,3-Dichloropropane	ND	5.0	"	"	"	"	"	"	
2,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	5.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"	
Hexachlorobutadiene	ND	5.0	"	"	"	"	"	"	
Isopropylbenzene	ND	5.0	"	"	"	"	"	"	
p-Isopropyltoluene	ND	5.0	"	"	"	"	"	"	
Methylene chloride	ND	5.0	"	"	"	"	"	"	
Naphthalene	ND	5.0	"	"	"	"	"	"	
n-Propylbenzene	ND	5.0	"	"	"	"	"	"	
Styrene	ND	5.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"	
Tetrachloroethene	ND	5.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	5.0	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	5.0	"	"	"	"	"	"	
Trichloroethene	ND	5.0	"	"	"	"	"	"	
Trichlorofluoromethane	ND	5.0	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
Vinyl chloride	ND	5.0	"	"	"	"	"	"	
Benzene	ND	5.0	"	"	"	"	"	"	
Toluene	ND	5.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Saviel of Chivy

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

GP8@8' T110485-23 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

A Method 8260	В						
ND	5.0	ug/kg	1	1042217	04/22/11	04/26/11	EPA 8260B
ND	5.0	"	"	"	"	"	"
ND	5.0	"	"	"	"	"	"
ND	20	"	"	"	"	"	"
ND	50	"	"	"	"	"	"
ND	20	"	"	"	"	"	"
ND	20	"	"	"	"	"	"
ND	20	"	"	"	"	"	"
	122 %	85.5-	116	"	"	"	"
	93.9 %	75.1-	121	"	"	"	"
	122 %	90-1.	35	"	"	"	"
	ND ND ND ND ND ND	ND 5.0 ND 5.0 ND 20 ND 50 ND 20 ND 20 ND 20 ND 20 122 % 93.9 %	ND 5.0 ug/kg ND 5.0 " ND 5.0 " ND 5.0 " ND 20 " ND 50 " ND 20 " ND 20 " ND 20 " ND 20 " 122 % 85.5-1	ND 5.0 ug/kg 1 ND 5.0 " " ND 5.0 " " ND 5.0 " " ND 20 " " ND 50 " " ND 20 " " ND 30 9% 85.5-116 93.9 % 75.1-121	ND 5.0 ug/kg 1 1042217 ND 5.0 " " " ND 5.0 " " " ND 20 " " " ND 50 " " " ND 20 " " " " ND 20 " " " "	ND 5.0 ug/kg 1 1042217 04/22/11 ND 5.0 " " " " ND 5.0 " " " " ND 5.0 " " " " " ND 20 " " " " " " ND 20 " " " " " " ND 20 " " " " " " "	ND 5.0 ug/kg 1 1042217 04/22/11 04/26/11 ND 5.0 " " " " " " " ND 5.0 " " " " " " " " ND 20 " " " " " " " " ND 20 " " " " " " " " ND 20 " " " " " " " " ND 20 " " " " " " " " " ND 20 " " " " " " " " " " 11 ND 20 " " " " " " " " " 11 ND 20 " " " " " " " " " " 11 ND 20 " " " " " " " " " " " 11 ND 20 " " " " " " " " " " " " " 11 ND 20 " " " " " " " " " " " " " " 11 ND 20 " " " " " " " " " " " " " " " " " "

SunStar Laboratories, Inc.

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

GP8@12' T110485-24 (Soil)

Analyte Res	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	SunStar L	aborator	ies, Inc.					
Purgeable Petroleum Hydrocarbons by EPA	8015C							
C6-C12 (GRO)	ID 500	ug/kg	1	1042224	04/22/11	04/27/11	EPA 8015C	
Surrogate: 4-Bromofluorobenzene	75.2 %	72.6	-146	"	"	"	"	
Extractable Petroleum Hydrocarbons by 8015	5C							
C13-C28 (DRO)	ID 10	mg/kg	1	1042212	04/22/11	04/28/11	EPA 8015C	
C29-C40 (MORO)	ID 10	"	"	"	"	"	"	
Surrogate: p-Terphenyl	114 %	65-	135	"	"	"	"	
Volatile Organic Compounds by EPA Method	l 8260B							
Bromobenzene N	ID 5.0	ug/kg	1	1042217	04/22/11	04/26/11	EPA 8260B	
Bromochloromethane	ID 5.0	"	"	"	"	"	"	
Bromodichloromethane	ID 5.0	"	"	"	"	"	"	
Bromoform	ID 5.0	"	"	"	"	"	"	
Bromomethane	ID 5.0	"	"	"	"	"	"	
n-Butylbenzene N	ID 5.0	"	"	"	"	"	"	
sec-Butylbenzene N	ID 5.0	"	"	"	"	"	"	
tert-Butylbenzene N	ID 5.0	"	"	"	"	"	"	
Carbon tetrachloride N	ID 5.0	"	"	"	"	"	"	
Chlorobenzene	ID 5.0	"	"	"	"	"	"	
Chloroethane	ID 5.0	"	"	"	"	"	"	
Chloroform	ID 5.0	"	"	"	"	"	"	
Chloromethane	ID 5.0	"	"	"	"	"	"	
2-Chlorotoluene N	ID 5.0	"	"	"	"	"	"	
4-Chlorotoluene N	ID 5.0	"	"	"	"	"	"	
Dibromochloromethane N	ID 5.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ID 5.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ID 5.0	"	"	"	"	"	"	
Dibromomethane N	ID 5.0	"	"	"	"	"	"	
1,2-Dichlorobenzene N	ID 5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene N	ID 5.0	"	"	"	"	"	"	
1,4-Dichlorobenzene N	ID 5.0	"	"	"	"	"	"	
Dichlorodifluoromethane N	ID 5.0	"	"	"	"	"	"	
1,1-Dichloroethane	ID 5.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Saviel of Chivy

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

GP8@12' T110485-24 (Soil)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

	Sui	nStar L	aboratori	es, Inc.					
Volatile Organic Compounds by	y EPA Method 8260B								
1,2-Dichloroethane	ND	5.0	ug/kg	1	1042217	04/22/11	04/26/11	EPA 8260B	
1,1-Dichloroethene	ND	5.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,3-Dichloropropane	ND	5.0	"	"	"	"	"	"	
2,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	5.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"	
Hexachlorobutadiene	ND	5.0	"	"	"	"	"	"	
Isopropylbenzene	ND	5.0	"	"	"	"	"	"	
p-Isopropyltoluene	ND	5.0	"	"	"	"	"	"	
Methylene chloride	ND	5.0	"	"	"	"	"	"	
Naphthalene	ND	5.0	"	"	"	"	"	"	
n-Propylbenzene	ND	5.0	"	"	"	"	"	"	
Styrene	ND	5.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"	
Tetrachloroethene	ND	5.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	5.0	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	5.0	"	"	"	"	"	"	
Trichloroethene	ND	5.0	"	"	"	"	"	"	
Trichlorofluoromethane	ND	5.0	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
Vinyl chloride	ND	5.0	"	"	"	"	"	"	
Benzene	ND	5.0	"	"	"	"	"	"	
Toluene	ND	5.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Saviel of Chivy

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

GP8@12' T110485-24 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

	ĸ.	ounstar L	aboi atoi i	es, me.					
Volatile Organic Compounds by E	PA Method 8260I	3							
Ethylbenzene	ND	5.0	ug/kg	1	1042217	04/22/11	04/26/11	EPA 8260B	
m,p-Xylene	ND	5.0	"	"	"	"	"	"	
o-Xylene	ND	5.0	"	"	"	"	"	"	
Tert-amyl methyl ether	ND	20	"	"	"	"	"	"	
Tert-butyl alcohol	ND	50	"	"	"	"	"	"	
Di-isopropyl ether	ND	20	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	20	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	20	"	"	"	"	"	n .	
Surrogate: Toluene-d8		101 %	85.5-	116	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		94.1 %	75.1-	121	"	"	"	"	
Surrogate: Dibromofluoromethane		119 %	90-1.	35	"	"	"	"	

SunStar Laboratories, Inc.

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

GP9@4' T110485-25 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aborator	ries, Inc.					
Purgeable Petroleum Hydrocarbo	ns by EPA 80150								
C6-C12 (GRO)	ND	500	ug/kg	1	1042224	04/22/11	04/27/11	EPA 8015C	
Surrogate: 4-Bromofluorobenzene		116 %	72.6	-146	"	"	"	"	
Extractable Petroleum Hydrocarb	oons by 8015C								
C13-C28 (DRO)	ND	10	mg/kg	1	1042212	04/22/11	04/28/11	EPA 8015C	
C29-C40 (MORO)	ND	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		69.9 %	65-	135	"	"	"	II	
Volatile Organic Compounds by F	EPA Method 8260)B							
Bromobenzene	ND	5.0	ug/kg	1	1042217	04/22/11	04/26/11	EPA 8260B	
Bromochloromethane	ND	5.0	"	"	"	"	"	"	
Bromodichloromethane	ND	5.0	"	"	"	"	"	"	
Bromoform	ND	5.0	"	"	"	"	"	"	
Bromomethane	ND	5.0	"	"	"	"	"	"	
n-Butylbenzene	ND	5.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	5.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	5.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	5.0	"	"	"	"	"	"	
Chlorobenzene	ND	5.0	"	"	"	"	"	"	
Chloroethane	ND	5.0	"	"	"	"	"	"	
Chloroform	ND	5.0	"	"	"	"	"	"	
Chloromethane	ND	5.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
Dibromochloromethane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	5.0	"	"	"	"	"	"	
Dibromomethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	5.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Saviel of Chivy

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

GP9@4' T110485-25 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

	Sun	Star L	aboratorio	es, inc.				
Volatile Organic Compounds by EPA Me	thod 8260B							
1,2-Dichloroethane	ND	5.0	ug/kg	1	1042217	04/22/11	04/26/11	EPA 8260B
1,1-Dichloroethene	ND	5.0	"	"	"	"	"	"
cis-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"
trans-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"
1,2-Dichloropropane	ND	5.0	"	"	"	"	"	"
1,3-Dichloropropane	ND	5.0	"	"	"	"	"	"
2,2-Dichloropropane	ND	5.0	"	"	"	"	"	"
1,1-Dichloropropene	ND	5.0	"	"	"	"	"	"
cis-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"
trans-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"
Hexachlorobutadiene	ND	5.0	"	"	"	"	"	"
Isopropylbenzene	ND	5.0	"	"	"	"	"	"
p-Isopropyltoluene	ND	5.0	"	"	"	"	"	"
Methylene chloride	ND	5.0	"	"	"	"	"	"
Naphthalene	ND	5.0	"	"	"	"	"	"
n-Propylbenzene	ND	5.0	"	"	"	"	"	"
Styrene	ND	5.0	"	"	"	"	"	"
1,1,2,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"
1,1,1,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"
Tetrachloroethene	ND	5.0	"	"	"	"	"	"
1,2,3-Trichlorobenzene	ND	5.0	"	"	"	"	"	"
1,2,4-Trichlorobenzene	ND	5.0	"	"	"	"	"	"
1,1,2-Trichloroethane	ND	5.0	"	"	"	"	"	"
1,1,1-Trichloroethane	ND	5.0	"	"	"	"	"	"
Trichloroethene	ND	5.0	"	"	"	"	"	"
Trichlorofluoromethane	ND	5.0	"	"	"	"	"	"
1,2,3-Trichloropropane	ND	5.0	"	"	"	"	"	"
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"
1,2,4-Trimethylbenzene	ND	5.0	"	"	"	"	"	"
Vinyl chloride	ND	5.0	"	"	"	"	"	"
Benzene	ND	5.0	"	"	"	"	"	"
Toluene	ND	5.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

Saviel of Chivy

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

GP9@4' T110485-25 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

				,					
Volatile Organic Compounds by E	PA Method 8260	В							
Ethylbenzene	ND	5.0	ug/kg	1	1042217	04/22/11	04/26/11	EPA 8260B	
m,p-Xylene	ND	5.0	"	"	"	"	"	"	
o-Xylene	ND	5.0	"	"	"	"	"	"	
Tert-amyl methyl ether	ND	20	"	"	"	"	"	"	
Tert-butyl alcohol	ND	50	"	"	"	"	"	"	
Di-isopropyl ether	ND	20	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	20	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	20	"	"	"	"	"	"	
Surrogate: Toluene-d8		98.9 %	85.5-1	116	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		93.0 %	75.1-1	121	"	"	"	"	
Surrogate: Dibromofluoromethane		121 %	90-1.	35	"	"	"	"	

SunStar Laboratories, Inc.

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

GP9@8' T110485-26 (Soil)

Purgeable Petroleum Hydrocarbons by EPA 801 C6-C12 (GRO) ND Surrogate: 4-Bromofluorobenzene Extractable Petroleum Hydrocarbons by 8015C C13-C28 (DRO) 11 C29-C40 (MORO) ND Surrogate: p-Terphenyl Volatile Organic Compounds by EPA Method 82 Bromobenzene ND Bromochloromethane ND Bromodichloromethane ND Bromoform ND Bromomethane ND Callet Statistical ND Sec-Butylbenzene ND	500 114 %	ug/kg 72.6	1	1042224	04/22/11	04/27/11	EPA 8015C	
C6-C12 (GRO) ND Surrogate: 4-Bromofluorobenzene Extractable Petroleum Hydrocarbons by 8015C C13-C28 (DRO) 11 C29-C40 (MORO) ND Surrogate: p-Terphenyl Volatile Organic Compounds by EPA Method 8: Bromobenzene ND Bromochloromethane ND Bromodichloromethane ND Bromoform ND Bromomethane ND Bromomethane ND Bromomethane ND Bromomethane ND Bromomethane ND Bromomethane ND Bromosethane ND Bromomethane ND	500 114 %				04/22/11	04/27/11	EPA 8015C	
Extractable Petroleum Hydrocarbons by 8015C C13-C28 (DRO) 11 C29-C40 (MORO) Surrogate: p-Terphenyl Volatile Organic Compounds by EPA Method 8 Bromobenzene Bromochloromethane ND Bromodichloromethane ND Bromoform ND Bromomethane ND Bromomethane ND Bromomethane ND Bromomethane ND Bromoser ND Bromomethane ND Bromoser ND Bromomethane ND Bromomethane ND Bromomethane ND ND Bromomethane ND ND Bromomethane ND ND ND Bromomethane ND ND ND ND ND Sec-Butylbenzene ND	114 %				04/22/11	04/27/11	EPA 8015C	
Extractable Petroleum Hydrocarbons by 8015C C13-C28 (DRO) 11 C29-C40 (MORO) ND Surrogate: p-Terphenyl Volatile Organic Compounds by EPA Method 82 Bromobenzene ND Bromochloromethane ND Bromodichloromethane ND Bromoform ND Bromomethane ND Bromomethane ND Bromomethane ND Bromomethane ND Bromoserbane ND Bromomethane ND		72.6	-146					
C13-C28 (DRO) C29-C40 (MORO) Surrogate: p-Terphenyl Volatile Organic Compounds by EPA Method 82 Bromobenzene ND Bromochloromethane ND Bromodichloromethane ND Bromoform ND Bromomethane ND Bromomethane ND bromomethane ND colored N	10			"	"	"	"	
C29-C40 (MORO) Surrogate: p-Terphenyl Volatile Organic Compounds by EPA Method 82 Bromobenzene Bromochloromethane ND Bromodichloromethane ND Bromoform ND Bromomethane ND Bromomethane ND bromomethane ND compounds by EPA Method 82 Bromobenzene ND Bromochloromethane ND Bromoform ND Bromoform ND Bromomethane ND n-Butylbenzene ND sec-Butylbenzene ND tert-Butylbenzene	10							
Surrogate: p-Terphenyl Volatile Organic Compounds by EPA Method 82 Bromobenzene ND Bromochloromethane ND Bromodichloromethane ND Bromoform ND Bromomethane ND n-Butylbenzene ND sec-Butylbenzene ND tert-Butylbenzene ND	10	mg/kg	1	1042212	04/22/11	04/28/11	EPA 8015C	
Volatile Organic Compounds by EPA Method 8BromobenzeneNDBromochloromethaneNDBromodichloromethaneNDBromoformNDBromomethaneNDn-ButylbenzeneNDsec-ButylbenzeneNDtert-ButylbenzeneND	10	"	"	"	"	"	"	
Bromobenzene ND Bromochloromethane ND Bromodichloromethane ND Bromoform ND Bromomethane ND n-Butylbenzene ND sec-Butylbenzene ND tert-Butylbenzene ND	73.1 %	65-	135	"	"	"	"	
Bromochloromethane ND Bromodichloromethane ND Bromoform ND Bromomethane ND n-Butylbenzene ND sec-Butylbenzene ND tert-Butylbenzene ND	260B							
Bromodichloromethane ND Bromoform ND Bromomethane ND n-Butylbenzene ND sec-Butylbenzene ND tert-Butylbenzene ND	5.0	ug/kg	1	1042217	04/22/11	04/26/11	EPA 8260B	
Bromoform ND Bromomethane ND n-Butylbenzene ND sec-Butylbenzene ND tert-Butylbenzene ND	5.0	"	"	"	"	"	"	
Bromomethane ND n-Butylbenzene ND sec-Butylbenzene ND tert-Butylbenzene ND	5.0	"	"	"	"	"	"	
n-Butylbenzene ND sec-Butylbenzene ND tert-Butylbenzene ND	5.0	"	"	"	"	"	"	
sec-Butylbenzene ND tert-Butylbenzene ND	5.0	"	"	"	"	"	"	
tert-Butylbenzene ND	5.0	"	"	"	"	"	"	
-	5.0	"	"	"	"	"	"	
	5.0	"	"	"	"	"	n	
Carbon tetrachloride ND	5.0	"	"	"	"	"	"	
Chlorobenzene ND	5.0	"	"	"	"	"	"	
Chloroethane ND	5.0	"	"	"	"	"	"	
Chloroform ND	5.0	"	"	"	"	"	"	
Chloromethane ND	5.0	"	"	"	"	"	"	
2-Chlorotoluene ND	5.0	"	"	"	"	"	"	
4-Chlorotoluene ND	5.0	"	"	"	"	"	"	
Dibromochloromethane ND	5.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane ND	5.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB) ND	5.0	"	"	"	"	"	"	
Dibromomethane ND	5.0	"	"	"	"	"	"	
1,2-Dichlorobenzene ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene ND	5.0	"	"	"	"	"	"	
1,4-Dichlorobenzene ND	5.0	"	"	"	"	"	"	
Dichlorodifluoromethane ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethane ND	5.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Saviel of Chivy

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

GP9@8' T110485-26 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

	S	unStar L	aboratori	es, Inc.				
Volatile Organic Compounds by								
1,2-Dichloroethane	ND	5.0	ug/kg	1	1042217	04/22/11	04/26/11	EPA 8260B
1,1-Dichloroethene	ND	5.0	"	"	"	"	"	"
cis-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"
rans-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"
1,2-Dichloropropane	ND	5.0	"	"	"	"	"	"
1,3-Dichloropropane	ND	5.0	"	"	"	"	"	"
2,2-Dichloropropane	ND	5.0	"	"	"	"	"	"
1,1-Dichloropropene	ND	5.0	"	"	"	"	"	"
cis-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"
trans-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"
Hexachlorobutadiene	ND	5.0	"	"	"	"	"	"
Isopropylbenzene	ND	5.0	"	"	"	"	"	"
p-Isopropyltoluene	ND	5.0	"	"	"	"	"	"
Methylene chloride	ND	5.0	"	"	"	"	"	"
Naphthalene	ND	5.0	"	"	"	"	"	"
n-Propylbenzene	ND	5.0	"	"	"	"	"	"
Styrene	ND	5.0	"	"	"	"	"	"
,1,2,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"
1,1,1,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"
Гetrachloroethene	ND	5.0	"	"	"	"	"	"
,2,3-Trichlorobenzene	ND	5.0	"	"	"	"	"	"
,2,4-Trichlorobenzene	ND	5.0	"	"	"	"	"	"
,1,2-Trichloroethane	ND	5.0	"	"	"	"	"	"
,1,1-Trichloroethane	ND	5.0	"	"	"	"	"	"
Γrichloroethene	ND	5.0	"	"	"	"	"	"
Γrichlorofluoromethane	ND	5.0	"	"	"	"	"	"
1,2,3-Trichloropropane	ND	5.0	"	"	"	"	"	"
,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"
,2,4-Trimethylbenzene	ND	5.0	"	"	"	"	"	"
Vinyl chloride	ND	5.0	"	"	"	"	"	"
Benzene	ND	5.0	"	"	"	"	"	"
Toluene	ND	5.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

Saviel of Chivy

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

GP9@8' T110485-26 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

volatile Organic Compounds by EPA Me	11100 8200D								
Ethylbenzene	ND	5.0	ug/kg	1	1042217	04/22/11	04/26/11	EPA 8260B	
m,p-Xylene	ND	5.0	"	"	"	"	"	"	
o-Xylene	ND	5.0	"	"	"	"	"	"	
Tert-amyl methyl ether	ND	20	"	"	"	"	"	"	
Tert-butyl alcohol	ND	50	"	"	"	"	"	"	
Di-isopropyl ether	ND	20	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	20	"	"	"	"	"	"	

 Methyl tert-butyl ether
 ND
 20
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "
 "</t

SunStar Laboratories, Inc.

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

GP9@12' T110485-27 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aborator	ies, Inc.					
Purgeable Petroleum Hydrocarbo	ns by EPA 80150								
C6-C12 (GRO)	ND	500	ug/kg	1	1042224	04/22/11	04/27/11	EPA 8015C	
Surrogate: 4-Bromofluorobenzene		114 %	72.6	-146	"	"	"	"	
Extractable Petroleum Hydrocarb	oons by 8015C								
C13-C28 (DRO)	ND	10	mg/kg	1	1042212	04/22/11	04/28/11	EPA 8015C	
C29-C40 (MORO)	ND	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		121 %	65-	135	"	"	"	"	
Volatile Organic Compounds by F	EPA Method 8260)B							
Bromobenzene	ND	5.0	ug/kg	1	1042217	04/22/11	04/26/11	EPA 8260B	
Bromochloromethane	ND	5.0	"	"	"	"	"	"	
Bromodichloromethane	ND	5.0	"	"	"	"	"	"	
Bromoform	ND	5.0	"	"	"	"	"	"	
Bromomethane	ND	5.0	"	"	"	"	"	"	
n-Butylbenzene	ND	5.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	5.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	5.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	5.0	"	"	"	"	"	"	
Chlorobenzene	ND	5.0	"	"	"	"	"	"	
Chloroethane	ND	5.0	"	"	"	"	"	"	
Chloroform	ND	5.0	"	"	"	"	"	"	
Chloromethane	ND	5.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
Dibromochloromethane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	5.0	"	"	"	"	"	"	
Dibromomethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	5.0	"		"		"	"	

SunStar Laboratories, Inc.

Saviel of Chivy

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

GP9@12' T110485-27 (Soil)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

SunStar Laboratories, Inc.												
Volatile Organic Compounds by												
1,2-Dichloroethane	ND	5.0	ug/kg	1	1042217	04/22/11	04/26/11	EPA 8260B				
1,1-Dichloroethene	ND	5.0	"	"	"	"	"	"				
cis-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"				
rans-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"				
1,2-Dichloropropane	ND	5.0	"	"	"	"	"	"				
1,3-Dichloropropane	ND	5.0	"	"	"	"	"	"				
2,2-Dichloropropane	ND	5.0	"	"	"	"	"	"				
1,1-Dichloropropene	ND	5.0	"	"	"	"	"	"				
cis-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"				
trans-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"				
Hexachlorobutadiene	ND	5.0	"	"	"	"	"	"				
Isopropylbenzene	ND	5.0	"	"	"	"	"	"				
p-Isopropyltoluene	ND	5.0	"	"	"	"	"	"				
Methylene chloride	ND	5.0	"	"	"	"	"	"				
Naphthalene	ND	5.0	"	"	"	"	"	"				
n-Propylbenzene	ND	5.0	"	"	"	"	"	"				
Styrene	ND	5.0	"	"	"	"	"	"				
,1,2,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"				
1,1,1,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"				
Гetrachloroethene	ND	5.0	"	"	"	"	"	"				
,2,3-Trichlorobenzene	ND	5.0	"	"	"	"	"	"				
,2,4-Trichlorobenzene	ND	5.0	"	"	"	"	"	"				
,1,2-Trichloroethane	ND	5.0	"	"	"	"	"	"				
,1,1-Trichloroethane	ND	5.0	"	"	"	"	"	"				
Γrichloroethene	ND	5.0	"	"	"	"	"	"				
Γrichlorofluoromethane	ND	5.0	"	"	"	"	"	"				
1,2,3-Trichloropropane	ND	5.0	"	"	"	"	"	"				
,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"				
,2,4-Trimethylbenzene	ND	5.0	"	"	"	"	"	"				
Vinyl chloride	ND	5.0	"	"	"	"	"	"				
Benzene	ND	5.0	"	"	"	"	"	"				
Toluene	ND	5.0	"	"	"	"	"	"				

SunStar Laboratories, Inc.

Saviel of Chivy

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

GP9@12' T110485-27 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc

SunStar Laboratories, Inc.														
Volatile Organic Compounds by EI	Volatile Organic Compounds by EPA Method 8260B													
Ethylbenzene	ND	5.0	ug/kg	1	1042217	04/22/11	04/26/11	EPA 8260B						
m,p-Xylene	ND	5.0	"	"	"	"	"	"						
o-Xylene	ND	5.0	"	"	"	"	"	"						
Tert-amyl methyl ether	ND	20	"	"	"	"	"	"						
Tert-butyl alcohol	ND	50	"	"	"	"	"	"						
Di-isopropyl ether	ND	20	"	"	"	"	"	"						
Ethyl tert-butyl ether	ND	20	"	"	"	"	"	"						
Methyl tert-butyl ether	ND	20	"	"	"	"	"	"						
Surrogate: Toluene-d8		99.9 %	85.5-1	116	"	"	"	"						
Surrogate: 4-Bromofluorobenzene		94.1 %	75.1-1	121	"	"	"	"						
Surrogate: Dibromofluoromethane		113 %	90-1.	35	"	"	"	"						

SunStar Laboratories, Inc.

Saviel of Chivy

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

GP10@4' T110485-28 (Soil)

Purgeable Petroleum Hydrocarbons b C6-C12 (GRO)	o y EPA 8015(ND		aborator	ies, Inc.					
C6-C12 (GRO)	ND	500							
		500	ug/kg	1	1042224	04/22/11	04/27/11	EPA 8015C	
Surrogate: 4-Bromofluorobenzene		114 %	72.6-	-146	"	"	"	"	
Extractable Petroleum Hydrocarbons	by 8015C								
C13-C28 (DRO)	ND	10	mg/kg	1	1042212	04/22/11	04/28/11	EPA 8015C	
C29-C40 (MORO)	ND	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		119 %	65-	135	"	"	"	"	
Volatile Organic Compounds by EPA	Method 8260	В							
Bromobenzene	ND	5.0	ug/kg	1	1042217	04/22/11	04/26/11	EPA 8260B	
Bromochloromethane	ND	5.0	"	"	"	"	"	"	
Bromodichloromethane	ND	5.0	"	"	"	"	"	"	
Bromoform	ND	5.0	"	"	"	"	"	"	
Bromomethane	ND	5.0	"	"	"	"	"	"	
n-Butylbenzene	ND	5.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	5.0	"	"	"	"	"	"	
ert-Butylbenzene	ND	5.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	5.0	"	"	"	"	"	"	
Chlorobenzene	ND	5.0	"	"	"	"	"	"	
Chloroethane	ND	5.0	"	"	"	"	"	"	
Chloroform	ND	5.0	"	"	"	"	"	"	
Chloromethane	ND	5.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
Dibromochloromethane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	5.0	"	"	"	"	"	"	
Dibromomethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	5.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Saviel of Chivy

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

GP10@4' T110485-28 (Soil)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

,2-Dichloroethane	ND	5.0	ug/kg	1	1042217	04/22/11	04/26/11	EPA 8260E
,1-Dichloroethene	ND	5.0	"	"	"	"	"	"
is-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"
ans-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"
,2-Dichloropropane	ND	5.0	"	"	"	"	"	"
,3-Dichloropropane	ND	5.0	"	"	"	"	"	"
,2-Dichloropropane	ND	5.0	"	"	"	"	"	"
,1-Dichloropropene	ND	5.0	"	"	"	"	"	"
is-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"
ans-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"
Iexachlorobutadiene	ND	5.0	"	"	"	"	"	"
sopropylbenzene	ND	5.0	"	"	"	"	"	"
-Isopropyltoluene	ND	5.0	"	"	"	"	"	"
Methylene chloride	ND	5.0	"	"	"	"	"	"
Taphthalene	ND	5.0	"	"	"	"	"	"
-Propylbenzene	ND	5.0	"	"	"	"	"	"
tyrene	ND	5.0	"	"	"	"	"	"
,1,2,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"
,1,1,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"
etrachloroethene	ND	5.0	"	"	"	"	"	"
,2,3-Trichlorobenzene	ND	5.0	"	"	"	"	"	"
,2,4-Trichlorobenzene	ND	5.0	"	"	"	"	"	"
,1,2-Trichloroethane	ND	5.0	"	"	"	"	"	"
,1,1-Trichloroethane	ND	5.0	"	"	"	"	"	"
richloroethene	ND	5.0	"	"	"	"	"	"
richlorofluoromethane	ND	5.0	"	"	"	"	"	"
,2,3-Trichloropropane	ND	5.0	"	"	"	"	"	"
,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"
,2,4-Trimethylbenzene	ND	5.0	"	"	"	"	"	"
inyl chloride	ND	5.0	"	"	"	"	"	"
enzene	ND	5.0	"	"	"	"	"	"
oluene	ND	5.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

Saviel of Chivy

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

GP10@4' T110485-28 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

~ ·~ ···· — ··· ~ · · · · · · · · · · · · ·														
Volatile Organic Compounds by E	olatile Organic Compounds by EPA Method 8260B													
Ethylbenzene	ND	5.0	ug/kg	1	1042217	04/22/11	04/26/11	EPA 8260B						
m,p-Xylene	ND	5.0	"	"	"	"	"	"						
o-Xylene	ND	5.0	"	"	"	"	"	"						
Tert-amyl methyl ether	ND	20	"	"	"	"	"	"						
Tert-butyl alcohol	ND	50	"	"	"	"	"	"						
Di-isopropyl ether	ND	20	"	"	"	"	"	"						
Ethyl tert-butyl ether	ND	20	"	"	"	"	"	"						
Methyl tert-butyl ether	ND	20	"	"	"	"	"	"						
Surrogate: Toluene-d8		96.5 %	85.5-1	116	"	"	"	"						
Surrogate: 4-Bromofluorobenzene		94.8 %	75.1-1	121	"	"	"	"						
Surrogate: Dibromofluoromethane		120 %	90-1.	35	"	"	"	"						

SunStar Laboratories, Inc.

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

GP10@8' T110485-29 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aborator	ries, Inc.					
Purgeable Petroleum Hydrocarbo	ons by EPA 8015C								
C6-C12 (GRO)	ND	500	ug/kg	1	1042224	04/22/11	04/27/11	EPA 8015C	
Surrogate: 4-Bromofluorobenzene		117 %	72.6	-146	"	"	"	"	
Extractable Petroleum Hydrocarl	oons by 8015C								
C13-C28 (DRO)	13	10	mg/kg	1	1042212	04/22/11	04/28/11	EPA 8015C	
C29-C40 (MORO)	29	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		132 %	65-	135	"	"	"	"	
Volatile Organic Compounds by I	EPA Method 8260	В							
Bromobenzene	ND	5.0	ug/kg	1	1042217	04/22/11	04/26/11	EPA 8260B	
Bromochloromethane	ND	5.0	"	"	"	"	"	"	
Bromodichloromethane	ND	5.0	"	"	"	"	"	"	
Bromoform	ND	5.0	"	"	"	"	"	"	
Bromomethane	ND	5.0	"	"	"	"	"	"	
n-Butylbenzene	ND	5.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	5.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	5.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	5.0	"	"	"	"	"	"	
Chlorobenzene	ND	5.0	"	"	"	"	"	"	
Chloroethane	ND	5.0	"	"	"	"	"	"	
Chloroform	ND	5.0	"	"	"	"	"	"	
Chloromethane	ND	5.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
Dibromochloromethane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	5.0	"	"	"	"	"	"	
Dibromomethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	5.0	"	"	.,	"	"	"	
,	•								

SunStar Laboratories, Inc.

Saviel of Chivy

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

GP10@8' T110485-29 (Soil)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

	SunStar Laboratories, Inc.												
Volatile Organic Compounds by I	EPA Method 8260B												
1,2-Dichloroethane	ND	5.0	ug/kg	1	1042217	04/22/11	04/26/11	EPA 8260B					
1,1-Dichloroethene	ND	5.0	"	"	"	"	"	"					
cis-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"					
trans-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	m .					
1,2-Dichloropropane	ND	5.0	"	"	"	"	"	m .					
1,3-Dichloropropane	ND	5.0	"	"	"	"	"	m .					
2,2-Dichloropropane	ND	5.0	"	"	"	"	"	"					
1,1-Dichloropropene	ND	5.0	"	"	"	"	"	"					
cis-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"					
trans-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"					
Hexachlorobutadiene	ND	5.0	"	"	"	"	"	"					
Isopropylbenzene	ND	5.0	"	"	"	"	"	"					
p-Isopropyltoluene	ND	5.0	"	"	"	"	"	"					
Methylene chloride	ND	5.0	"	"	"	"	"	"					
Naphthalene	ND	5.0	"	"	"	"	"	"					
n-Propylbenzene	ND	5.0	"	"	"	"	"	"					
Styrene	ND	5.0	"	"	"	"	"	"					
1,1,2,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"					
1,1,1,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"					
Tetrachloroethene	ND	5.0	"	"	"	"	"	"					
1,2,3-Trichlorobenzene	ND	5.0	"	"	"	"	"	"					
1,2,4-Trichlorobenzene	ND	5.0	"	"	"	"	"	"					
1,1,2-Trichloroethane	ND	5.0	"	"	"	"	"	"					
1,1,1-Trichloroethane	ND	5.0	"	"	"	"	"	"					
Trichloroethene	ND	5.0	"	"	"	"	"	"					
Trichlorofluoromethane	ND	5.0	"	"	"	"	"	"					
1,2,3-Trichloropropane	ND	5.0	"	"	"	"	"	"					
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"					
1,2,4-Trimethylbenzene	ND	5.0	"	"	"	"	"	"					
Vinyl chloride	ND	5.0	"	"	"	"	"	"					
Benzene	ND	5.0	"	"	"	"	"	"					
Toluene	ND	5.0	"	"	"	"	"	"					

SunStar Laboratories, Inc.

Saviel of Chivy

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

GP10@8' T110485-29 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

	St	motar L	aboratori	es, mc.					
Volatile Organic Compounds by E	PA Method 8260B								
Ethylbenzene	ND	5.0	ug/kg	1	1042217	04/22/11	04/26/11	EPA 8260B	
m,p-Xylene	ND	5.0	"	"	"	"	"	"	
o-Xylene	ND	5.0	"	"	"	"	"	"	
Tert-amyl methyl ether	ND	20	"	"	"	"	"	"	
Tert-butyl alcohol	ND	50	"	"	"	"	"	"	
Di-isopropyl ether	ND	20	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	20	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	20	"	"	"	"	"	"	
Surrogate: Toluene-d8		110 %	85.5-1	116	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		96.6 %	75.1-1	121	"	"	"	"	
Surrogate: Dibromofluoromethane		131 %	90-1.	35	"	"	"	"	

SunStar Laboratories, Inc.

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

GP10@12' T110485-30 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aborator	ies, Inc.					
Purgeable Petroleum Hydrocarbons	s by EPA 80150	<u> </u>							
C6-C12 (GRO)	ND	500	ug/kg	1	1042224	04/22/11	04/27/11	EPA 8015C	
Surrogate: 4-Bromofluorobenzene		115 %	72.6	-146	"	"	"	ii .	
Extractable Petroleum Hydrocarbo	ns by 8015C								
C13-C28 (DRO)	ND	10	mg/kg	1	1042212	04/22/11	04/28/11	EPA 8015C	
C29-C40 (MORO)	ND	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		68.7 %	65	135	"	"	"	"	
Volatile Organic Compounds by EP	A Method 8260)B							
Bromobenzene	ND	5.0	ug/kg	1	1042217	04/22/11	04/26/11	EPA 8260B	
Bromochloromethane	ND	5.0	"	"	"	"	"	"	
Bromodichloromethane	ND	5.0	"	"	"	"	"	"	
Bromoform	ND	5.0	"	"	"	"	"	"	
Bromomethane	ND	5.0	"	"	"	"	"	"	
n-Butylbenzene	ND	5.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	5.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	5.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	5.0	"	"	"	"	"	"	
Chlorobenzene	ND	5.0	"	"	"	"	"	"	
Chloroethane	ND	5.0	"	"	"	"	"	"	
Chloroform	ND	5.0	"	"	"	"	"	"	
Chloromethane	ND	5.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
Dibromochloromethane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	5.0	"	"	"	"	"	"	
Dibromomethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	5.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Saviel of Chivy

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

GP10@12' T110485-30 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

	51	unotai L	abul atul i	es, me.					
Volatile Organic Compounds by	EPA Method 8260B								
1,2-Dichloroethane	ND	5.0	ug/kg	1	1042217	04/22/11	04/26/11	EPA 8260B	
1,1-Dichloroethene	ND	5.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,3-Dichloropropane	ND	5.0	"	"	"	"	"	"	
2,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	5.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	n .	
Hexachlorobutadiene	ND	5.0	"	"	"	"	"	n .	
Isopropylbenzene	ND	5.0	"	"	"	"	"	n .	
p-Isopropyltoluene	ND	5.0	"	"	"	"	"	n .	
Methylene chloride	ND	5.0	"	"	"	"	"	n .	
Naphthalene	ND	5.0	"	"	"	"	"	n .	
n-Propylbenzene	ND	5.0	"	"	"	"	"	n .	
Styrene	ND	5.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	n .	
1,1,1,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	n .	
Tetrachloroethene	ND	5.0	"	"	"	"	"	n .	
1,2,3-Trichlorobenzene	ND	5.0	"	"	"	"	"	n .	
1,2,4-Trichlorobenzene	ND	5.0	"	"	"	"	"	n .	
1,1,2-Trichloroethane	ND	5.0	"	"	"	"	"	m .	
1,1,1-Trichloroethane	ND	5.0	"	"	"	"	"	"	
Trichloroethene	ND	5.0	"	"	"	"	"	n .	
Trichlorofluoromethane	ND	5.0	"	"	"	"	"	n .	
1,2,3-Trichloropropane	ND	5.0	"	"	"	"	"	m .	
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	m .	
1,2,4-Trimethylbenzene	ND	5.0	"	"	"	"	"	m .	
Vinyl chloride	ND	5.0	"	"	"	"	"	"	
Benzene	ND	5.0	"	"	"	"	"	"	
Toluene	ND	5.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Saviel of Chivy

Engeo Project: 1000 N. Vasco Rd.

 2213 Plaza Dr.
 Project Number: 7380.000.003
 Reported:

 Rocklin CA, 95765
 Project Manager: Morgan Johnson
 04/29/11 11:23

GP10@12' T110485-30 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

	Sunstar Laboratories, Inc.										
Volatile Organic Compounds by E	PA Method 8260B										
Ethylbenzene	ND	5.0	ug/kg	1	1042217	04/22/11	04/26/11	EPA 8260B			
m,p-Xylene	ND	5.0	"	"	"	"	"	"			
o-Xylene	ND	5.0	"	"	"	"	"	"			
Tert-amyl methyl ether	ND	20	"	"	"	"	"	n .			
Tert-butyl alcohol	ND	50	"	"	"	"	"	n .			
Di-isopropyl ether	ND	20	"	"	"	"	"	n .			
Ethyl tert-butyl ether	ND	20	"	"	"	"	"	n .			
Methyl tert-butyl ether	ND	20	"	"	"	"	"	"			
Surrogate: Toluene-d8		98.5 %	85.5-1	116	"	"	"	"			
Surrogate: 4-Bromofluorobenzene		91.4 %	75.1-1	121	"	"	"	"			
Surrogate: Dibromofluoromethane		116 %	90-1.	35	"	"	"	"			

SunStar Laboratories, Inc.

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

GP10@10' T110485-31 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		SunStar L	aborator	ries, Inc.					
Purgeable Petroleum Hydrocarbo									
<u>C6-C12 (GRO)</u>	11000	1000	ug/kg	2	1042224	04/22/11	04/27/11	EPA 8015C	
Surrogate: 4-Bromofluorobenzene		104 %	72.6	-146	"	"	"	"	
Extractable Petroleum Hydrocarb	ons by 8015C								
C13-C28 (DRO)	860	10	mg/kg	1	1042212	04/22/11	04/28/11	EPA 8015C	
C29-C40 (MORO)	79	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		70.2 %	65-	135	"	"	"	"	
Volatile Organic Compounds by E	EPA Method 8260	В							
Bromobenzene	ND	5.0	ug/kg	1	1042217	04/22/11	04/26/11	EPA 8260B	
Bromochloromethane	ND	5.0	"	"	"	"	"	"	
Bromodichloromethane	ND	5.0	"	"	"	"	"	"	
Bromoform	ND	5.0	"	"	"	"	"	"	
Bromomethane	ND	5.0	"	"	"	"	"	"	
n-Butylbenzene	35	5.0	"	"	"	"	"	"	
sec-Butylbenzene	37	5.0	"	"	"	"	"	"	
tert-Butylbenzene	6.8	5.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	5.0	"	"	"	"	"	"	
Chlorobenzene	ND	5.0	"	"	"	"	"	"	
Chloroethane	ND	5.0	"	"	"	"	"	"	
Chloroform	ND	5.0	"	"	"	"	"	"	
Chloromethane	ND	5.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
Dibromochloromethane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	5.0	"	"	"	"	"	"	
Dibromomethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	5.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Saviel of Chivy

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

GP10@10' T110485-31 (Soil)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

	Su	instar La	aboratori	es, Inc.					
Volatile Organic Compounds by	EPA Method 8260B								
1,2-Dichloroethane	ND	5.0	ug/kg	1	1042217	04/22/11	04/26/11	EPA 8260B	
1,1-Dichloroethene	ND	5.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,3-Dichloropropane	ND	5.0	"	"	"	"	"	"	
2,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	5.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"	
Hexachlorobutadiene	ND	5.0	"	"	"	"	"	"	
Isopropylbenzene	ND	5.0	"	"	"	"	"	"	
p-Isopropyltoluene	ND	5.0	"	"	"	"	"	"	
Methylene chloride	ND	5.0	"	"	"	"	"	"	
Naphthalene	40	5.0	"	"	"	"	"	"	
n-Propylbenzene	9.6	5.0	"	"	"	"	"	"	
Styrene	ND	5.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	15	5.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"	
Tetrachloroethene	ND	5.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	28	5.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	7.4	5.0	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	5.0	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	5.0	"	"	"	"	"	"	
Trichloroethene	ND	5.0	"	"	"	"	"	"	
Trichlorofluoromethane	ND	5.0	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
Vinyl chloride	ND	5.0	"	"	"	"	"	"	
Benzene	ND	5.0	"	"	"	"	"	"	
Toluene	ND	5.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Saviel of Chivy

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

GP10@10' T110485-31 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

	S	unStar L	aboratori	es, Inc.					
Volatile Organic Compounds by E	PA Method 8260B								
Ethylbenzene	ND	5.0	ug/kg	1	1042217	04/22/11	04/26/11	EPA 8260B	
m,p-Xylene	ND	5.0	"	"	"	"	"	"	
o-Xylene	ND	5.0	"	"	"	"	"	"	
Tert-amyl methyl ether	ND	20	"	"	"	"	"	n	
Tert-butyl alcohol	ND	50	"	"	"	"	"	n n	
Di-isopropyl ether	ND	20	"	"	"	"	"	n n	
Ethyl tert-butyl ether	ND	20	"	"	"	"	"	n n	
Methyl tert-butyl ether	ND	20	"	"	"	"	"	"	
Surrogate: Toluene-d8		107 %	85.5-	116	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		166 %	75.1-	121	"	"	"	"	S-GC
Surrogate: Dibromofluoromethane		148 %	90-1	35	"	"	"	"	S-GC

SunStar Laboratories, Inc.

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

GP13@4' T110485-32 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aborator	ies, Inc.					
Purgeable Petroleum Hydrocarbons	by EPA 80150	7							
C6-C12 (GRO)	ND	500	ug/kg	1	1042224	04/22/11	04/27/11	EPA 8015C	
Surrogate: 4-Bromofluorobenzene		115 %	72.6	-146	"	"	"	"	
Extractable Petroleum Hydrocarbon	s by 8015C								
C13-C28 (DRO)	ND	10	mg/kg	1	1042212	04/22/11	04/28/11	EPA 8015C	
C29-C40 (MORO)	ND	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		134 %	65	135	"	"	"	"	
Volatile Organic Compounds by EPA	A Method 8260)B							
Bromobenzene	ND	5.0	ug/kg	1	1042217	04/22/11	04/26/11	EPA 8260B	
Bromochloromethane	ND	5.0	"	"	"	"	"	"	
Bromodichloromethane	ND	5.0	"	"	"	"	"	"	
Bromoform	ND	5.0	"	"	"	"	"	"	
Bromomethane	ND	5.0	"	"	"	"	"	"	
n-Butylbenzene	ND	5.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	5.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	5.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	5.0	"	"	"	"	"	"	
Chlorobenzene	ND	5.0	"	"	"	"	"	"	
Chloroethane	ND	5.0	"	"	"	"	"	"	
Chloroform	ND	5.0	"	"	"	"	"	"	
Chloromethane	ND	5.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
Dibromochloromethane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	5.0	"	"	"	"	"	"	
Dibromomethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	5.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Saviel of Chivy

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

GP13@4' T110485-32 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

	Sui	es, Inc.							
Volatile Organic Compounds by I	EPA Method 8260B								
1,2-Dichloroethane	ND	5.0	ug/kg	1	1042217	04/22/11	04/26/11	EPA 8260B	
1,1-Dichloroethene	ND	5.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	m .	
1,2-Dichloropropane	ND	5.0	"	"	"	"	"	m .	
1,3-Dichloropropane	ND	5.0	"	"	"	"	"	m .	
2,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	5.0	"	"	"	"	"	n .	
cis-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"	
Hexachlorobutadiene	ND	5.0	"	"	"	"	"	"	
Isopropylbenzene	ND	5.0	"	"	"	"	"	"	
p-Isopropyltoluene	ND	5.0	"	"	"	"	"	"	
Methylene chloride	ND	5.0	"	"	"	"	"	"	
Naphthalene	ND	5.0	"	"	"	"	"	"	
n-Propylbenzene	ND	5.0	"	"	"	"	"	"	
Styrene	ND	5.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"	
Tetrachloroethene	ND	5.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	5.0	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	5.0	"	"	"	"	"	"	
Trichloroethene	ND	5.0	"	"	"	"	"	"	
Trichlorofluoromethane	ND	5.0	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
Vinyl chloride	ND	5.0	"	"	"	"	"	"	
Benzene	ND	5.0	"	"	"	"	"	"	
Toluene	ND	5.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Saviel of Chivy

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

GP13@4' T110485-32 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

	Si	ınStar L	aboratori	es, Inc.					
Volatile Organic Compounds by El	PA Method 8260B								
Ethylbenzene	ND	5.0	ug/kg	1	1042217	04/22/11	04/26/11	EPA 8260B	
m,p-Xylene	ND	5.0	"	"	"	"	"	"	
o-Xylene	ND	5.0	"	"	"	"	"	"	
Tert-amyl methyl ether	ND	20	"	"	"	"	"	"	
Tert-butyl alcohol	ND	50	"	"	"	"	"	"	
Di-isopropyl ether	ND	20	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	20	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	20	"	"	"	"	"	"	
Surrogate: Toluene-d8		100 %	85.5-1	116	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		98.2 %	75.1-1	121	"	"	"	"	
Surrogate: Dibromofluoromethane		118 %	90-1.	35	"	"	"	"	

SunStar Laboratories, Inc.

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

GP13@8' T110485-33 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aborator	ries, Inc.					
Purgeable Petroleum Hydrocarbo	ns by EPA 8015	С							
C6-C12 (GRO)	ND	500	ug/kg	1	1042224	04/22/11	04/27/11	EPA 8015C	
Surrogate: 4-Bromofluorobenzene		116 %	72.6	-146	"	"	"	"	
Extractable Petroleum Hydrocarb	ons by 8015C								
C13-C28 (DRO)	ND	10	mg/kg	1	1042212	04/22/11	04/28/11	EPA 8015C	
C29-C40 (MORO)	ND	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		108 %	65-	135	"	"	"	"	
Volatile Organic Compounds by F	EPA Method 826	0B							
Bromobenzene	ND	5.0	ug/kg	1	1042217	04/22/11	04/26/11	EPA 8260B	
Bromochloromethane	ND	5.0	"	"	"	"	"	"	
Bromodichloromethane	ND	5.0	"	"	"	"	"	"	
Bromoform	ND	5.0	"	"	"	"	"	"	
Bromomethane	ND	5.0	"	"	"	"	"	"	
n-Butylbenzene	ND	5.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	5.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	5.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	5.0	"	"	"	"	"	"	
Chlorobenzene	ND	5.0	"	"	"	"	"	"	
Chloroethane	ND	5.0	"	"	"	"	"	"	
Chloroform	ND	5.0	"	"	"	"	"	"	
Chloromethane	ND	5.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
Dibromochloromethane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	5.0	"	"	"	"	"	"	
Dibromomethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	5.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Saviel of Chivy

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

GP13@8' T110485-33 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

	D	unstar E	uborutori	cs, mc.				
Volatile Organic Compounds by	EPA Method 8260B							
1,2-Dichloroethane	ND	5.0	ug/kg	1	1042217	04/22/11	04/26/11	EPA 8260B
1,1-Dichloroethene	ND	5.0	"	"	"	"	"	"
cis-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"
trans-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"
1,2-Dichloropropane	ND	5.0	"	"	"	"	"	"
1,3-Dichloropropane	ND	5.0	"	"	"	"	"	"
2,2-Dichloropropane	ND	5.0	"	"	"	"	"	"
1,1-Dichloropropene	ND	5.0	"	"	"	"	"	"
cis-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"
trans-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"
Hexachlorobutadiene	ND	5.0	"	"	"	"	"	m .
Isopropylbenzene	ND	5.0	"	"	"	"	"	"
p-Isopropyltoluene	ND	5.0	"	"	"	"	"	"
Methylene chloride	ND	5.0	"	"	"	"	"	"
Naphthalene	ND	5.0	"	"	"	"	"	"
n-Propylbenzene	ND	5.0	"	"	"	"	"	"
Styrene	ND	5.0	"	"	"	"	"	"
1,1,2,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	m .
1,1,1,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	m .
Tetrachloroethene	ND	5.0	"	"	"	"	"	m .
1,2,3-Trichlorobenzene	ND	5.0	"	"	"	"	"	m .
1,2,4-Trichlorobenzene	ND	5.0	"	"	"	"	"	m .
1,1,2-Trichloroethane	ND	5.0	"	"	"	"	"	"
1,1,1-Trichloroethane	ND	5.0	"	"	"	"	"	m .
Trichloroethene	ND	5.0	"	"	"	"	"	"
Trichlorofluoromethane	ND	5.0	"	"	"	"	"	"
1,2,3-Trichloropropane	ND	5.0	"	"	"	"	"	"
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"
1,2,4-Trimethylbenzene	ND	5.0	"	"	"	"	"	"
Vinyl chloride	ND	5.0	"	"	"	"	"	"
Benzene	ND	5.0	"	"	"	"	"	"
Toluene	ND	5.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

Saviel of Chivy

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

GP13@8' T110485-33 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

	Su	ınStar L	aboratori	es, Inc.					
Volatile Organic Compounds by E	PA Method 8260B								
Ethylbenzene	ND	5.0	ug/kg	1	1042217	04/22/11	04/26/11	EPA 8260B	
m,p-Xylene	ND	5.0	"	"	"	"	"	n .	
o-Xylene	ND	5.0	"	"	"	"	"	n .	
Tert-amyl methyl ether	ND	20	"	"	"	"	"	"	
Tert-butyl alcohol	ND	50	"	"	"	"	"	"	
Di-isopropyl ether	ND	20	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	20	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	20	"	"	"	"	"	"	
Surrogate: Toluene-d8		100 %	85.5-	116	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		104 %	75.1-	121	"	"	"	"	
Surrogate: Dibromofluoromethane		118 %	90-1.	35	"	"	"	"	

SunStar Laboratories, Inc.

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

GP13@12' T110485-34 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aborator	ies, Inc.					
Purgeable Petroleum Hydrocarbons	by EPA 80150	C							
C6-C12 (GRO)	ND	500	ug/kg	1	1042224	04/22/11	04/27/11	EPA 8015C	
Surrogate: 4-Bromofluorobenzene		115 %	72.6	-146	"	"	"	"	
Extractable Petroleum Hydrocarbon	s by 8015C								
C13-C28 (DRO)	ND	10	mg/kg	1	1042212	04/22/11	04/28/11	EPA 8015C	
C29-C40 (MORO)	ND	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		127 %	65	135	"	"	"	"	
Volatile Organic Compounds by EP	A Method 8260)B							
Bromobenzene	ND	5.0	ug/kg	1	1042217	04/22/11	04/26/11	EPA 8260B	
Bromochloromethane	ND	5.0	"	"	"	"	"	"	
Bromodichloromethane	ND	5.0	"	"	"	"	"	"	
Bromoform	ND	5.0	"	"	"	"	"	"	
Bromomethane	ND	5.0	"	"	"	"	"	"	
n-Butylbenzene	ND	5.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	5.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	5.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	5.0	"	"	"	"	"	"	
Chlorobenzene	ND	5.0	"	"	"	"	"	"	
Chloroethane	ND	5.0	"	"	"	"	"	"	
Chloroform	ND	5.0	"	"	"	"	"	"	
Chloromethane	ND	5.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
Dibromochloromethane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	5.0	"	"	"	"	"	"	
Dibromomethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	5.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Saviel of Chivy

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

GP13@12' T110485-34 (Soil)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

	51	unotai L	abul atul i	es, me.					
Volatile Organic Compounds by	EPA Method 8260B								
1,2-Dichloroethane	ND	5.0	ug/kg	1	1042217	04/22/11	04/26/11	EPA 8260B	
1,1-Dichloroethene	ND	5.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,3-Dichloropropane	ND	5.0	"	"	"	"	"	"	
2,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	5.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	n .	
Hexachlorobutadiene	ND	5.0	"	"	"	"	"	n .	
Isopropylbenzene	ND	5.0	"	"	"	"	"	n .	
p-Isopropyltoluene	ND	5.0	"	"	"	"	"	n .	
Methylene chloride	ND	5.0	"	"	"	"	"	n .	
Naphthalene	ND	5.0	"	"	"	"	"	n .	
n-Propylbenzene	ND	5.0	"	"	"	"	"	n .	
Styrene	ND	5.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	n .	
1,1,1,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	n .	
Tetrachloroethene	ND	5.0	"	"	"	"	"	n .	
1,2,3-Trichlorobenzene	ND	5.0	"	"	"	"	"	n .	
1,2,4-Trichlorobenzene	ND	5.0	"	"	"	"	"	n .	
1,1,2-Trichloroethane	ND	5.0	"	"	"	"	"	m .	
1,1,1-Trichloroethane	ND	5.0	"	"	"	"	"	"	
Trichloroethene	ND	5.0	"	"	"	"	"	n .	
Trichlorofluoromethane	ND	5.0	"	"	"	"	"	n .	
1,2,3-Trichloropropane	ND	5.0	"	"	"	"	"	m .	
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	m .	
1,2,4-Trimethylbenzene	ND	5.0	"	"	"	"	"	m .	
Vinyl chloride	ND	5.0	"	"	"	"	"	"	
Benzene	ND	5.0	"	"	"	"	"	"	
Toluene	ND	5.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Saviel of Chivy

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

GP13@12' T110485-34 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Sunstai Laboratories, inc.									
Volatile Organic Compounds by EPA	Method 8260	В							
Ethylbenzene	ND	5.0	ug/kg	1	1042217	04/22/11	04/26/11	EPA 8260B	
m,p-Xylene	ND	5.0	"	"	"	"	"	"	
o-Xylene	ND	5.0	"	"	"	"	"	"	
Tert-amyl methyl ether	ND	20	"	"	"	"	"	"	
Tert-butyl alcohol	ND	50	"	"	"	"	"	"	
Di-isopropyl ether	ND	20	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	20	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	20	"	"	"	"	"	"	
Surrogate: Toluene-d8		98.9 %	85.5-1	16	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		98.1 %	75.1-1	21	"	"	"	"	
Surrogate: Dibromofluoromethane		119 %	90-1.	35	"	"	"	"	

SunStar Laboratories, Inc.

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

GP9@10' T110485-35 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aborator	ries, Inc.					
Purgeable Petroleum Hydrocarbons b									
C6-C12 (GRO)	3200	1000	ug/kg	2	1042224	04/22/11	04/27/11	EPA 8015C	
Surrogate: 4-Bromofluorobenzene		90.6 %	72.6	-146	"	"	"	"	
Extractable Petroleum Hydrocarbons	by 8015C								
C13-C28 (DRO)	270	10	mg/kg	1	1042212	04/22/11	04/28/11	EPA 8015C	
C29-C40 (MORO)	40	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		119 %	65-	135	"	"	"	"	
Volatile Organic Compounds by EPA	Method 826	0B							
Bromobenzene	ND	5.0	ug/kg	1	1042217	04/22/11	04/26/11	EPA 8260B	
Bromochloromethane	ND	5.0	"	"	"	"	"	"	
Bromodichloromethane	ND	5.0	"	"	"	"	"	"	
Bromoform	ND	5.0	"	"	"	"	"	"	
Bromomethane	ND	5.0	"	"	"	"	"	"	
n-Butylbenzene	10	5.0	"	"	"	"	"	"	
sec-Butylbenzene	15	5.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	5.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	5.0	"	"	"	"	"	"	
Chlorobenzene	ND	5.0	"	"	"	"	"	"	
Chloroethane	ND	5.0	"	"	"	"	"	"	
Chloroform	ND	5.0	"	"	"	"	"	"	
Chloromethane	ND	5.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
Dibromochloromethane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	5.0	"	"	"	"	"	"	
Dibromomethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	5.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Saviel of Chivy

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

GP9@10' T110485-35 (Soil)

	Reporting							
Analyte Resi	lt Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

	D	unstar L	uborutori	co, 111c.				
Volatile Organic Compounds by	EPA Method 8260B							
1,2-Dichloroethane	ND	5.0	ug/kg	1	1042217	04/22/11	04/26/11	EPA 8260B
1,1-Dichloroethene	ND	5.0	"	"	"	"	"	"
cis-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"
trans-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"
1,2-Dichloropropane	ND	5.0	"	"	"	"	"	"
1,3-Dichloropropane	ND	5.0	"	"	"	"	"	"
2,2-Dichloropropane	ND	5.0	"	"	"	"	"	"
1,1-Dichloropropene	ND	5.0	"	"	"	"	"	"
cis-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"
trans-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"
Hexachlorobutadiene	ND	5.0	"	"	"	"	"	"
Isopropylbenzene	ND	5.0	"	"	"	"	"	"
p-Isopropyltoluene	ND	5.0	"	"	"	"	"	"
Methylene chloride	ND	5.0	"	"	"	"	"	"
Naphthalene	ND	5.0	"	"	"	"	"	"
n-Propylbenzene	5.2	5.0	"	"	"	"	"	"
Styrene	ND	5.0	"	"	"	"	"	"
1,1,2,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"
1,1,1,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"
Tetrachloroethene	ND	5.0	"	"	"	"	"	"
1,2,3-Trichlorobenzene	ND	5.0	"	"	"	"	"	"
1,2,4-Trichlorobenzene	ND	5.0	"	"	"	"	"	"
1,1,2-Trichloroethane	ND	5.0	"	"	"	"	"	"
1,1,1-Trichloroethane	ND	5.0	"	"	"	"	"	"
Trichloroethene	ND	5.0	"	"	"	"	"	"
Trichlorofluoromethane	ND	5.0	"	"	"	"	"	"
1,2,3-Trichloropropane	ND	5.0	"	"	"	"	"	"
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"
1,2,4-Trimethylbenzene	ND	5.0	"	"	"	"	"	"
Vinyl chloride	ND	5.0	"	"	"	"	"	"
Benzene	ND	5.0	"	"	"	"	"	"
Toluene	ND	5.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

Saviel of Chivy

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

GP9@10' T110485-35 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by E									
Ethylbenzene	ND	5.0	ug/kg	1	1042217	04/22/11	04/26/11	EPA 8260B	
m,p-Xylene	ND	5.0	"	"	"	"	"	"	
o-Xylene	ND	5.0	"	"	"	"	"	"	
Tert-amyl methyl ether	ND	20	"	"	"	"	"	"	
Tert-butyl alcohol	ND	50	"	"	"	"	"	"	
Di-isopropyl ether	ND	20	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	20	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	20	"	"	"	"	"	"	
Surrogate: Toluene-d8		95.6 %	85.5-	116	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		138 %	75.1-	121	"	"	"	"	S-GC

90-135

121 %

SunStar Laboratories, Inc.

Surrogate: Dibromofluoromethane

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

GP4-GW T110485-36 (Water)

Surrogate: 4-Bromofluorobenzene 105 % 72.6-146 " " " "	nalyzed	Method	Notes
C6-C12 (GRO) ND 50 ug/l 1 1042130 04/21/11 04/25 04/21/11 04/25 04/21/11 04/25 04/21/11 04/25 04/21/11 04/25 04/21/11 04/25 04/21/11 04/25 04/21/11 04/25 04/21/11 04/25 04/21/11 04/25 04/21/11 04/25 04/21/11 04/25 04/21/11 04/25 04/21/11 04/25 04/21			
Surrogate: 4-Bromofluorobenzene 105 % 72.6-146 " " "			
Extractable Petroleum Hydrocarbons by 8015C C13-C28 (DRO) ND 0.050 mg/l 1 1042129 04/21/11 04/229-C40 (MORO) ND 0.10 " " " " " " " " "	1/26/11	EPA 8015C	
C13-C28 (DRO)	"	"	
C29-C40 (MORO) ND 0.10 " " " " " " "			
No. 1/27/11	EPA 8015C		
Volatile Organic Compounds by EPA Method 8260B	"	"	
Bromobenzene ND 1.0 ug/l 1 1042128 04/21/11 04/21/21 04/21/11 04/21 04/21/11 04/21/21 04/21/11 04/21/21 04/21/11 04/21/21 04/21/11 04/21/21 04/	"	"	
Bromobenzene ND 1.0 ug/l 1 1042128 04/21/11 04/21/21 04/21/11 04/21 04/21/11 04/21/21 04/21/11 04/21/21 04/21/11 04/21/21 04/21/11 04/21/21 04/			
Bromodichloromethane ND 1.0 "	1/22/11	EPA 8260B	
Bromoform ND 1.0 " <t< td=""><td>"</td><td>"</td><td></td></t<>	"	"	
Bromomethane ND 1.0 """""""""""""""""""""""""""""""""	"	"	
n-Butylbenzene ND 1.0 """""""""""""""""""""""""""""""""	"	"	
sec-Butylbenzene ND 1.0 "	"	"	
tert-Butylbenzene ND 1.0 "	"	"	
Carbon tetrachloride ND 0.50 " <td>"</td> <td>"</td> <td></td>	"	"	
Chlorobenzene ND 1.0 "	"	"	
Chloroethane ND 1.0 "	"	"	
Chloroform ND 1.0 " <	"	"	
Chloromethane ND 1.0 " " " " 2-Chlorotoluene ND 1.0 " " " " 4-Chlorotoluene ND 1.0 " " " " Dibromochloromethane ND 1.0 " " " " 1,2-Dibromo-3-chloropropane ND 1.0 " " " " 1,2-Dibromoethane (EDB) ND 1.0 " " " "	"	"	
2-Chlorotoluene ND 1.0 "	"	"	
4-Chlorotoluene ND 1.0 "	"	"	
A-Chlorotoldene	"	"	
1,2-Dibromoethane (EDB) ND 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.	"	"	
1,2-Dibromoethane (EDB) ND 1.0 """" """ """ """ """ "" """ """ """ """ """ """ """ """ """ """ """ """ "" """ """ """ """ """ """ """ """ """ """ """ """ "" """ """ """ """ """ """ """ """ """ """ """ """ "" """ """ """ """ """ """ """ """ """ """ """ """ "" """ """ """ """ """ """ """ """ """ """ """ """ "" """ """ """ """ """ """ """ """ """ """ """ """ "" """ """ """ """ """ """ """ """ """ """ """ """ "" """ """ """ """ """ """ """ """ """ """ """ """ "" """ """ """ """ """ """ """ """ """ """ """ """ "" """ """ """ """ """ """ """ """ """ """ """ """ "" """ """ """ """ """ """ """ """ """ """ """ """ "" """ """ ""	"	"	
	"	"	
	"	"	
Dibromomethane ND 1.0 " " " "	"	"	
1,2-Dichlorobenzene ND 1.0 " " "	"	"	
1,3-Dichlorobenzene ND 1.0 " " "	"	"	
1,4-Dichlorobenzene ND 1.0 " " "	"	"	
Dichlorodifluoromethane ND 0.50 " " " "	"	"	
1,1-Dichloroethane ND 1.0 " " "	"	"	

SunStar Laboratories, Inc.

Saviel & Chivy

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

GP4-GW T110485-36 (Water)

ı									
		Reporting							
	Analyte Res	ult Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

,2-Dichloroethane	ND	0.50	ug/l	1	1042128	04/21/11	04/22/11	EPA 8260E
,1-Dichloroethene	ND	1.0	"	"	"	"	"	"
is-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
ans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
,3-Dichloropropane	ND	1.0	"	"	"	"	"	"
,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
,1-Dichloropropene	ND	1.0	"	"	"	"	"	"
is-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
rans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
Iexachlorobutadiene	ND	1.0	"	"	"	"	"	"
sopropylbenzene	ND	1.0	"	"	"	"	"	"
-Isopropyltoluene	ND	1.0	"	"	"	"	"	"
Methylene chloride	ND	1.0	"	"	"	"	"	"
Taphthalene	ND	1.0	"	"	"	"	"	"
-Propylbenzene	ND	1.0	"	"	"	"	"	"
tyrene	ND	1.0	"	"	"	"	"	"
,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
etrachloroethene	ND	1.0	"	"	"	"	"	"
,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
richloroethene	ND	1.0	"	"	"	"	"	"
richlorofluoromethane	ND	1.0	"	"	"	"	"	"
,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
,3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
,2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
inyl chloride	ND	1.0	"	"	"	"	"	"
enzene	ND	0.50	"	"	"	"	"	"
oluene	ND	0.50	"	"	"	"	"	"

SunStar Laboratories, Inc.

Saviel of Chivy

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

GP4-GW T110485-36 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc

SunStar Laboratories, Inc.									
Volatile Organic Compounds by EP	A Method 8260	В							
Ethylbenzene	ND	0.50	ug/l	1	1042128	04/21/11	04/22/11	EPA 8260B	
m,p-Xylene	ND	1.0	"	"	"	"	"	"	
o-Xylene	ND	0.50	"	"	"	"	"	"	
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"	
Tert-butyl alcohol	ND	10	"	"	"	"	"	"	
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"	
Surrogate: Toluene-d8		99.1 %	84.7-	109	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		102 %	83.5-	119	"	"	"	"	
Surrogate: Dibromofluoromethane		94.4 %	81.1-	136	"	"	"	"	

SunStar Laboratories, Inc.

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

GP2-GW T110485-37 (Water)

Purgeable Petroleum Hydrocarbons by EPC6-C12 (GRO) Surrogate: 4-Bromofluorobenzene Extractable Petroleum Hydrocarbons by 8 C13-C28 (DRO) C29-C40 (MORO) Surrogate: p-Terphenyl Volatile Organic Compounds by EPA Met	**ND **ND **O15C **ND **ND **ND **ND **ND **ND **ND **O15C **ND **ND **O15C **O	50 103 % 0.050 0.10 109 %	ug/l 72.6	1 -146	1042130	04/21/11	04/26/11	EPA 8015C	
C6-C12 (GRO) Surrogate: 4-Bromofluorobenzene Extractable Petroleum Hydrocarbons by 8 C13-C28 (DRO) C29-C40 (MORO) Surrogate: p-Terphenyl Volatile Organic Compounds by EPA Met	ND 015C ND ND	0.050 0.10	72.6	-146					
Surrogate: 4-Bromofluorobenzene Extractable Petroleum Hydrocarbons by 8 C13-C28 (DRO) C29-C40 (MORO) Surrogate: p-Terphenyl Volatile Organic Compounds by EPA Met	015C ND ND	0.050 0.10	72.6	-146					
Extractable Petroleum Hydrocarbons by 8 C13-C28 (DRO) C29-C40 (MORO) Surrogate: p-Terphenyl Volatile Organic Compounds by EPA Met	ND ND	0.050 0.10	mg/l		"	"	"	,,	
C13-C28 (DRO) C29-C40 (MORO) Surrogate: p-Terphenyl Volatile Organic Compounds by EPA Met Bromobenzene	ND ND	0.10							
C29-C40 (MORO) Surrogate: p-Terphenyl Volatile Organic Compounds by EPA Met Bromobenzene	ND	0.10							
Surrogate: p-Terphenyl Volatile Organic Compounds by EPA Met Bromobenzene			"	1	1042129	04/21/11	04/27/11	EPA 8015C	
Volatile Organic Compounds by EPA Met	hod 8260	109 %		"	"	"	"	"	
Bromobenzene	hod 8260		65-	135	"	"	"	ii .	
Bromobenzene		В							
Bromochloromethane	ND	1.0	ug/l	1	1042128	04/21/11	04/22/11	EPA 8260B	
	ND	1.0	"	"	"	"	"	"	
Bromodichloromethane	ND	1.0	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"	"	"	
Bromomethane	ND	1.0	"	"	"	"	"	"	
n-Butylbenzene	ND	1.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	1.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"	
Chlorobenzene	ND	1.0	"	"	"	"	"	"	
Chloroethane	ND	1.0	"	"	"	"	"	"	
Chloroform	ND	1.0	"	"	"	"	"	"	
Chloromethane	ND	1.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
Dibromochloromethane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"	
Dibromomethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethane	1112								

SunStar Laboratories, Inc.

Saviel of Chivy

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

GP2-GW T110485-37 (Water)

	Reporting							
Analyte Resi	lt Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

,2-Dichloroethane	ND	0.50	ug/l	1	1042128	04/21/11	04/22/11	EPA 8260B
,1-Dichloroethene	ND	1.0	"	"	"	"	"	"
ris-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
rans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
,3-Dichloropropane	ND	1.0	"	"	"	"	"	"
2,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
,1-Dichloropropene	ND	1.0	"	"	"	"	"	"
ris-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
rans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
Hexachlorobutadiene	ND	1.0	"	"	"	"	"	"
sopropylbenzene	ND	1.0	"	"	"	"	"	"
-Isopropyltoluene	ND	1.0	"	"	"	"	"	"
Methylene chloride	ND	1.0	"	"	"	"	"	"
Naphthalene	ND	1.0	"	"	"	"	"	"
-Propylbenzene	ND	1.0	"	"	"	"	"	"
Styrene	ND	1.0	"	"	"	"	"	"
,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
Tetrachloroethene	ND	1.0	"	"	"	"	"	"
,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
Trichloroethene	ND	1.0	"	"	"	"	"	"
Trichlorofluoromethane	ND	1.0	"	"	"	"	"	"
,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
,3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
,2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
Vinyl chloride	ND	1.0	"	"	"	"	"	"
Benzene	ND	0.50	"	"	"	"	"	"
Toluene	ND	0.50	"	"	"	"	"	"

SunStar Laboratories, Inc.

Saviel of Chivy

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

GP2-GW T110485-37 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

		builbear Le	iboi atoi i	cs, IIIc.					
Volatile Organic Compounds by E	PA Method 8260	В							
Ethylbenzene	ND	0.50	ug/l	1	1042128	04/21/11	04/22/11	EPA 8260B	
m,p-Xylene	ND	1.0	"	"	"	"	"	"	
o-Xylene	ND	0.50	"	"	"	"	"	"	
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"	
Tert-butyl alcohol	ND	10	"	"	"	"	"	"	
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"	
Surrogate: Toluene-d8		98.9 %	84.7-	109	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		101 %	83.5-	119	"	"	"	"	
Surrogate: Dibromofluoromethane		97.6 %	81.1-	136	"	"	"	"	

SunStar Laboratories, Inc.

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

Reporting

GP6-GW T110485-38 (Water)

Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aborato	ries, Inc.					
Purgeable Petroleum Hydrocarbo	ns by EPA 8015C								
C6-C12 (GRO)	ND	50	ug/l	1	1042130	04/21/11	04/26/11	EPA 8015C	
Surrogate: 4-Bromofluorobenzene		105 %	72.6	5-146	"	"	"	"	
Extractable Petroleum Hydrocarb	oons by 8015C								
C13-C28 (DRO)	ND	0.050	mg/l	1	1042129	04/21/11	04/27/11	EPA 8015C	_
C29-C40 (MORO)	ND	0.10	"	"	"	"	"	m .	
Surrogate: p-Terphenyl		122 %	65-	135	"	"	"	"	
Volatile Organic Compounds by F	EPA Method 8260	В							
Bromobenzene	ND	1.0	ug/l	1	1042128	04/21/11	04/22/11	EPA 8260B	
Bromochloromethane	ND	1.0	"	"	"	"	"	"	
Bromodichloromethane	ND	1.0	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"	"	"	
Bromomethane	ND	1.0	"	"	"	"	"	"	
n-Butylbenzene	ND	1.0	"	"	"	"	"	m .	
sec-Butylbenzene	ND	1.0	"	"	"	"	"	m .	
tert-Butylbenzene	ND	1.0	"	"	"	"	"	m .	
Carbon tetrachloride	ND	0.50	"	"	"	"	"	m .	
Chlorobenzene	ND	1.0	"	"	"	"	"	m .	
Chloroethane	ND	1.0	"	"	"	"	"	m .	
Chloroform	ND	1.0	"	"	"	"	"	"	
Chloromethane	ND	1.0	"	"	"	"	"	m .	
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	1.0	"	"	"	"	"	m .	
Dibromochloromethane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"	
Dibromomethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Saviel & Chivy

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

GP6-GW T110485-38 (Water)

ı									
		Reporting							
	Analyte Res	ult Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

,2-Dichloroethane	ND	0.50	ug/l	1	1042128	04/21/11	04/22/11	EPA 8260E
,1-Dichloroethene	ND	1.0	"	"	"	"	"	"
is-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
ans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
,3-Dichloropropane	ND	1.0	"	"	"	"	"	"
,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
,1-Dichloropropene	ND	1.0	"	"	"	"	"	"
is-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
rans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
Iexachlorobutadiene	ND	1.0	"	"	"	"	"	"
sopropylbenzene	ND	1.0	"	"	"	"	"	"
-Isopropyltoluene	ND	1.0	"	"	"	"	"	"
Methylene chloride	ND	1.0	"	"	"	"	"	"
Taphthalene	ND	1.0	"	"	"	"	"	"
-Propylbenzene	ND	1.0	"	"	"	"	"	"
tyrene	ND	1.0	"	"	"	"	"	"
,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
etrachloroethene	ND	1.0	"	"	"	"	"	"
,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
richloroethene	ND	1.0	"	"	"	"	"	"
richlorofluoromethane	ND	1.0	"	"	"	"	"	"
,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
,3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
,2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
inyl chloride	ND	1.0	"	"	"	"	"	"
enzene	ND	0.50	"	"	"	"	"	"
oluene	ND	0.50	"	"	"	"	"	"

SunStar Laboratories, Inc.

Saviel of Chivy

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

GP6-GW T110485-38 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

		Sunstar La	iboratori	es, inc.					
Volatile Organic Compounds by E	PA Method 8260	В							
Ethylbenzene	ND	0.50	ug/l	1	1042128	04/21/11	04/22/11	EPA 8260B	
m,p-Xylene	ND	1.0	"	"	"	"	"	"	
o-Xylene	ND	0.50	"	"	"	"	"	"	
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"	
Tert-butyl alcohol	ND	10	"	"	"	"	"	"	
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"	
Surrogate: Toluene-d8		95.6 %	84.7-	109	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		102 %	83.5-	119	"	"	"	"	
Surrogate: Dibromofluoromethane		98.5 %	81.1-	136	"	"	"	"	

SunStar Laboratories, Inc.

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

GP1-GW T110485-40 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aboratoi	ries, Inc.					
Purgeable Petroleum Hydrocarbo	ons by EPA 80150	C							
C6-C12 (GRO)	55	50	ug/l	1	1042130	04/21/11	04/26/11	EPA 8015C	
Surrogate: 4-Bromofluorobenzene		92.4 %	72.6	-146	"	"	"	"	
Extractable Petroleum Hydrocarl	bons by 8015C								
C13-C28 (DRO)	0.89	0.050	mg/l	1	1042129	04/21/11	04/27/11	EPA 8015C	
C29-C40 (MORO)	ND	0.10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		99.2 %	65-	135	"	"	"	"	
Volatile Organic Compounds by I	EPA Method 826	0B							
Bromobenzene	ND	1.0	ug/l	1	1042128	04/21/11	04/22/11	EPA 8260B	
Bromochloromethane	ND	1.0	"	"	"	"	"	"	
Bromodichloromethane	ND	1.0	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"	"	"	
Bromomethane	ND	1.0	"	"	"	"	"	"	
n-Butylbenzene	ND	1.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	1.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"	
Chlorobenzene	ND	1.0	"	"	"	"	"	"	
Chloroethane	ND	1.0	"	"	"	"	"	"	
Chloroform	ND	1.0	"	"	"	"	"	"	
Chloromethane	ND	1.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
Dibromochloromethane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"	
Dibromomethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Saviel of Chivy

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

GP1-GW T110485-40 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

,2-Dichloroethane	ND	0.50	ug/l	1	1042128	04/21/11	04/22/11	EPA 8260E
,1-Dichloroethene	ND	1.0	"	"	"	"	"	"
is-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
ans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
,3-Dichloropropane	ND	1.0	"	"	"	"	"	"
,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
,1-Dichloropropene	ND	1.0	"	"	"	"	"	"
is-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
rans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
Iexachlorobutadiene	ND	1.0	"	"	"	"	"	"
sopropylbenzene	ND	1.0	"	"	"	"	"	"
-Isopropyltoluene	ND	1.0	"	"	"	"	"	"
Methylene chloride	ND	1.0	"	"	"	"	"	"
Taphthalene	ND	1.0	"	"	"	"	"	"
-Propylbenzene	ND	1.0	"	"	"	"	"	"
tyrene	ND	1.0	"	"	"	"	"	"
,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
etrachloroethene	ND	1.0	"	"	"	"	"	"
,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
richloroethene	ND	1.0	"	"	"	"	"	"
richlorofluoromethane	ND	1.0	"	"	"	"	"	"
,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
,3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
,2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
inyl chloride	ND	1.0	"	"	"	"	"	"
enzene	ND	0.50	"	"	"	"	"	"
oluene	ND	0.50	"	"	"	"	"	"

SunStar Laboratories, Inc.

Saviel of Chivy

Engeo Project: 1000 N. Vasco Rd.

 2213 Plaza Dr.
 Project Number: 7380.000.003
 Reported:

 Rocklin CA, 95765
 Project Manager: Morgan Johnson
 04/29/11 11:23

GP1-GW T110485-40 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Suilstai Laboratories, inc.											
Volatile Organic Compounds by EPA Method 8260B											
Ethylbenzene	ND	0.50	ug/l	1	1042128	04/21/11	04/22/11	EPA 8260B			
m,p-Xylene	ND	1.0	"	"	"	"	"	"			
o-Xylene	2.6	0.50	"	"	"	"	"	"			
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"			
Tert-butyl alcohol	ND	10	"	"	"	"	"	"			
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"			
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"			
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"			
Surrogate: Toluene-d8		101 %	84.7-	109	"	"	"	"			
Surrogate: 4-Bromofluorobenzene		103 %	83.5-	119	"	"	"	"			
Surrogate: Dibromofluoromethane		102 %	81.1-	136	"	"	"	"			

SunStar Laboratories, Inc.

Saviel of Chivy

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

Reporting

GP7-GW T110485-41 (Water)

Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aborato	ries, Inc.					
Purgeable Petroleum Hydrocarbon	ns by EPA 8015C	l ·							
C6-C12 (GRO)	ND	50	ug/l	1	1042130	04/21/11	04/26/11	EPA 8015C	
Surrogate: 4-Bromofluorobenzene		105 %	72.6	-146	"	"	"	"	
Extractable Petroleum Hydrocarb	ons by 8015C								
C13-C28 (DRO)	ND	0.050	mg/l	1	1042129	04/21/11	04/27/11	EPA 8015C	_
C29-C40 (MORO)	ND	0.10	"	"	"	"	"	m .	
Surrogate: p-Terphenyl		129 %	65-	135	"	"	"	"	
Volatile Organic Compounds by E	PA Method 8260	В							
Bromobenzene	ND	1.0	ug/l	1	1042128	04/21/11	04/22/11	EPA 8260B	
Bromochloromethane	ND	1.0	"	"	"	"	"	"	
Bromodichloromethane	ND	1.0	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"	"	"	
Bromomethane	ND	1.0	"	"	"	"	"	"	
n-Butylbenzene	ND	1.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	1.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"	
Chlorobenzene	ND	1.0	"	"	"	"	"	"	
Chloroethane	ND	1.0	"	"	"	"	"	"	
Chloroform	ND	1.0	"	"	"	"	"	"	
Chloromethane	ND	1.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
Dibromochloromethane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"	
Dibromomethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Saviel & Chivy

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

GP7-GW T110485-41 (Water)

	Reporting							
Analyte Resi	lt Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Sunstai Laboratories, inc.											
Volatile Organic Compounds by	EPA Method 8260B	}									
1,2-Dichloroethane	ND	0.50	ug/l	1	1042128	04/21/11	04/22/11	EPA 8260B			
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"			
cis-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"			
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"			
1,2-Dichloropropane	ND	1.0	"	"	"	"	"	"			
1,3-Dichloropropane	ND	1.0	"	"	"	"	"	"			
2,2-Dichloropropane	ND	1.0	"	"	"	"	"	"			
1,1-Dichloropropene	ND	1.0	"	"	"	"	"	"			
cis-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"			
trans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"			
Hexachlorobutadiene	ND	1.0	"	"	"	"	"	"			
Isopropylbenzene	ND	1.0	"	"	"	"	"	"			
p-Isopropyltoluene	ND	1.0	"	"	"	"	"	"			
Methylene chloride	ND	1.0	"	"	"	"	"	"			
Naphthalene	ND	1.0	"	"	"	"	"	"			
n-Propylbenzene	ND	1.0	"	"	"	"	"	"			
Styrene	ND	1.0	"	"	"	"	"	"			
1,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"			
1,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"			
Tetrachloroethene	ND	1.0	"	"	"	"	"	"			
1,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"			
1,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"			
1,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"			
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"			
Trichloroethene	2.0	1.0	"	"	"	"	"	"			
Trichlorofluoromethane	ND	1.0	"	"	"	"	"	"			
1,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"			
1,3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"			
1,2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"			
Vinyl chloride	ND	1.0	"	"	"	"	"	"			
Benzene	ND	0.50	"	"	"	"	"	"			
Toluene	ND	0.50	"	"	"	"	"	"			

SunStar Laboratories, Inc.

Saviel of Chivy

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

GP7-GW T110485-41 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

		Sunstar La	iboratori	es, inc.								
Volatile Organic Compounds by EPA Method 8260B												
Ethylbenzene	ND	0.50	ug/l	1	1042128	04/21/11	04/22/11	EPA 8260B				
m,p-Xylene	ND	1.0	"	"	"	"	"	"				
o-Xylene	ND	0.50	"	"	"	"	"	"				
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"				
Tert-butyl alcohol	ND	10	"	"	"	"	"	"				
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"				
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"				
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"				
Surrogate: Toluene-d8		96.8 %	84.7-	109	"	"	"	"				
Surrogate: 4-Bromofluorobenzene		102 %	83.5-	119	"	"	"	"				
Surrogate: Dibromofluoromethane		100 %	81.1-	136	"	"	"	"				

SunStar Laboratories, Inc.

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

GP8-GW T110485-42 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aboratoi	ries, Inc.					
Purgeable Petroleum Hydrocarbon	ns by EPA 80150	C							
C6-C12 (GRO)	ND	50	ug/l	1	1042130	04/21/11	04/26/11	EPA 8015C	
Surrogate: 4-Bromofluorobenzene		95.0 %	72.6	-146	"	"	"	"	
Extractable Petroleum Hydrocarbo	ons by 8015C								
C13-C28 (DRO)	ND	0.050	mg/l	1	1042129	04/21/11	04/27/11	EPA 8015C	
C29-C40 (MORO)	ND	0.10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		112 %	65-	135	"	"	"	"	
Volatile Organic Compounds by El	PA Method 826	0B							
Bromobenzene	ND	1.0	ug/l	1	1042128	04/21/11	04/22/11	EPA 8260B	
Bromochloromethane	ND	1.0	"	"	"	"	"	"	
Bromodichloromethane	ND	1.0	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"	"	"	
Bromomethane	ND	1.0	"	"	"	"	"	"	
n-Butylbenzene	ND	1.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	1.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"	
Chlorobenzene	ND	1.0	"	"	"	"	"	"	
Chloroethane	ND	1.0	"	"	"	"	"	"	
Chloroform	ND	1.0	"	"	"	"	"	"	
Chloromethane	ND	1.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
Dibromochloromethane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"	
Dibromomethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Saviel of Chivy

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

GP8-GW T110485-42 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

,2-Dichloroethane	ND	0.50	ug/l	1	1042128	04/21/11	04/22/11	EPA 8260E
,1-Dichloroethene	ND	1.0	"	"	"	"	"	"
is-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
ans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
,3-Dichloropropane	ND	1.0	"	"	"	"	"	"
,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
,1-Dichloropropene	ND	1.0	"	"	"	"	"	"
is-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
rans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
Iexachlorobutadiene	ND	1.0	"	"	"	"	"	"
sopropylbenzene	ND	1.0	"	"	"	"	"	"
-Isopropyltoluene	ND	1.0	"	"	"	"	"	"
Methylene chloride	ND	1.0	"	"	"	"	"	"
Taphthalene	ND	1.0	"	"	"	"	"	"
-Propylbenzene	ND	1.0	"	"	"	"	"	"
tyrene	ND	1.0	"	"	"	"	"	"
,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
etrachloroethene	ND	1.0	"	"	"	"	"	"
,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
richloroethene	ND	1.0	"	"	"	"	"	"
richlorofluoromethane	ND	1.0	"	"	"	"	"	"
,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
,3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
,2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
inyl chloride	ND	1.0	"	"	"	"	"	"
enzene	ND	0.50	"	"	"	"	"	"
oluene	ND	0.50	"	"	"	"	"	"

SunStar Laboratories, Inc.

Saviel of Chivy

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

GP8-GW T110485-42 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

		Sunstar La	iboratori	es, mc.					
Volatile Organic Compounds by E	PA Method 8260	В							
Ethylbenzene	ND	0.50	ug/l	1	1042128	04/21/11	04/22/11	EPA 8260B	
m,p-Xylene	ND	1.0	"	"	"	"	"	"	
o-Xylene	ND	0.50	"	"	"	"	"	"	
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"	
Tert-butyl alcohol	ND	10	"	"	"	"	"	"	
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"	
Surrogate: Toluene-d8		98.2 %	84.7-	109	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		102 %	83.5-	119	"	"	"	"	
Surrogate: Dibromofluoromethane		98.0 %	81.1-	136	"	"	"	"	

SunStar Laboratories, Inc.

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

GP11@4' T110485-47 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		SunStar L	aborator	ries, Inc.					
Purgeable Petroleum Hydrocarbon									
<u>C6-C12 (GRO)</u>	510	500	ug/kg	1	1042224	04/22/11	04/27/11	EPA 8015C	
Surrogate: 4-Bromofluorobenzene		115 %	72.6	-146	"	"	"	"	
Extractable Petroleum Hydrocarb	ons by 8015C								
C13-C28 (DRO)	70	10	mg/kg	1	1042212	04/22/11	04/28/11	EPA 8015C	
C29-C40 (MORO)	27	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		69.3 %	65-	135	"	"	"	"	
Volatile Organic Compounds by E	PA Method 8260	В							
Bromobenzene	ND	5.0	ug/kg	1	1042217	04/22/11	04/26/11	EPA 8260B	
Bromochloromethane	ND	5.0	"	"	"	"	"	"	
Bromodichloromethane	ND	5.0	"	"	"	"	"	"	
Bromoform	ND	5.0	"	"	"	"	"	"	
Bromomethane	ND	5.0	"	"	"	"	"	"	
n-Butylbenzene	ND	5.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	5.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	5.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	5.0	"	"	"	"	"	"	
Chlorobenzene	ND	5.0	"	"	"	"	"	"	
Chloroethane	ND	5.0	"	"	"	"	"	"	
Chloroform	ND	5.0	"	"	"	"	"	"	
Chloromethane	ND	5.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
Dibromochloromethane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	5.0	"	"	"	"	"	"	
Dibromomethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	5.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Saviel of Chivy

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

GP11@4' T110485-47 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

	D	unstar E	uborutori	cs, mc.				
Volatile Organic Compounds by	EPA Method 8260B							
1,2-Dichloroethane	ND	5.0	ug/kg	1	1042217	04/22/11	04/26/11	EPA 8260B
1,1-Dichloroethene	ND	5.0	"	"	"	"	"	"
cis-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"
trans-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"
1,2-Dichloropropane	ND	5.0	"	"	"	"	"	"
1,3-Dichloropropane	ND	5.0	"	"	"	"	"	"
2,2-Dichloropropane	ND	5.0	"	"	"	"	"	"
1,1-Dichloropropene	ND	5.0	"	"	"	"	"	"
cis-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"
trans-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"
Hexachlorobutadiene	ND	5.0	"	"	"	"	"	m .
Isopropylbenzene	ND	5.0	"	"	"	"	"	"
p-Isopropyltoluene	ND	5.0	"	"	"	"	"	"
Methylene chloride	ND	5.0	"	"	"	"	"	"
Naphthalene	ND	5.0	"	"	"	"	"	"
n-Propylbenzene	ND	5.0	"	"	"	"	"	"
Styrene	ND	5.0	"	"	"	"	"	"
1,1,2,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	m .
1,1,1,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	m .
Tetrachloroethene	ND	5.0	"	"	"	"	"	m .
1,2,3-Trichlorobenzene	ND	5.0	"	"	"	"	"	m .
1,2,4-Trichlorobenzene	ND	5.0	"	"	"	"	"	m .
1,1,2-Trichloroethane	ND	5.0	"	"	"	"	"	"
1,1,1-Trichloroethane	ND	5.0	"	"	"	"	"	m .
Trichloroethene	ND	5.0	"	"	"	"	"	"
Trichlorofluoromethane	ND	5.0	"	"	"	"	"	"
1,2,3-Trichloropropane	ND	5.0	"	"	"	"	"	"
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"
1,2,4-Trimethylbenzene	ND	5.0	"	"	"	"	"	"
Vinyl chloride	ND	5.0	"	"	"	"	"	"
Benzene	ND	5.0	"	"	"	"	"	"
Toluene	ND	5.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

Saviel of Chivy

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

GP11@4' T110485-47 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

		Sunsui Luborutores, me.								
Volatile Organic Compounds by E	PA Method 82601	В								
Ethylbenzene	ND	5.0	ug/kg	1	1042217	04/22/11	04/26/11	EPA 8260B		
m,p-Xylene	ND	5.0	"	"	"	"	"	"		
o-Xylene	ND	5.0	"	"	"	"	"	"		
Tert-amyl methyl ether	ND	20	"	"	"	"	"	"		
Tert-butyl alcohol	ND	50	"	"	"	"	"	"		
Di-isopropyl ether	ND	20	"	"	"	"	"	"		
Ethyl tert-butyl ether	ND	20	"	"	"	"	"	"		
Methyl tert-butyl ether	ND	20	"	"	"	"	"	n .		
Surrogate: Toluene-d8		100 %	85.5-1	116	"	"	"	"		
Surrogate: 4-Bromofluorobenzene		102 %	75.1-1	121	"	"	"	"		
Surrogate: Dibromofluoromethane		120 %	90-1.	35	"	"	"	"		

SunStar Laboratories, Inc.

Saviel & Chivy

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

GP11@8' T110485-48 (Soil)

Extractable Petroleum Hydrocarbons by 8015C C13-C28 (DRO) ND 10 mg/k C29-C40 (MORO) ND 10 "	g 1 2.6-146	1042224	04/22/11	04/27/11	EPA 8015C	
C6-C12 (GRO) ND 500 ug/kg Surrogate: 4-Bromofluorobenzene 116 % 7 Extractable Petroleum Hydrocarbons by 8015C C13-C28 (DRO) ND 10 mg/kg C29-C40 (MORO) ND 10 " Surrogate: p-Terphenyl 116 % 6 Volatile Organic Compounds by EPA Method 8260B Second	2.6-146 rg 1	1042212	"			
Surrogate: 4-Bromofluorobenzene 116 % 7 Extractable Petroleum Hydrocarbons by 8015C C13-C28 (DRO) ND 10 mg/k C29-C40 (MORO) ND 10 " Surrogate: p-Terphenyl 116 % 0 Volatile Organic Compounds by EPA Method 8260B Bromobenzene ND 5.0 ug/k Bromochloromethane ND 5.0 " Bromodichloromethane ND 5.0 " Bromomethane ND 5.0 " Bromomethane ND 5.0 " n-Butylbenzene ND 5.0 " sec-Butylbenzene ND 5.0 " tert-Butylbenzene ND 5.0 " Carbon tetrachloride ND 5.0 "	2.6-146 rg 1	1042212	"			
Extractable Petroleum Hydrocarbons by 8015C C13-C28 (DRO) ND 10 mg/k C29-C40 (MORO) ND 10 " Surrogate: p-Terphenyl 116 % 6 Volatile Organic Compounds by EPA Method 8260B Bromobenzene ND 5.0 ug/k; Bromochloromethane ND 5.0 " Bromodichloromethane ND 5.0 " Bromoform ND 5.0 " Bromomethane ND 5.0 " n-Butylbenzene ND 5.0 " sec-Butylbenzene ND 5.0 " tert-Butylbenzene ND 5.0 " Carbon tetrachloride ND 5.0 "	g 1	1042212		"	"	
C13-C28 (DRO) ND 10 mg/k C29-C40 (MORO) ND 10 " Surrogate: p-Terphenyl 116 % c Volatile Organic Compounds by EPA Method 8260B Bromobenzene ND 5.0 ug/k; Bromochloromethane ND 5.0 " Bromodichloromethane ND 5.0 " Bromoform ND 5.0 " Bromomethane ND 5.0 " n-Butylbenzene ND 5.0 " sec-Butylbenzene ND 5.0 " tert-Butylbenzene ND 5.0 " Carbon tetrachloride ND 5.0 "	"		0.1/00/11			
C29-C40 (MORO) ND 10 " Surrogate: p-Terphenyl 116 % C Volatile Organic Compounds by EPA Method 8260B Volatile Organic Compounds by EPA Method 8260B Bromobenzene ND 5.0 ug/kg Bromochloromethane ND 5.0 " Bromodichloromethane ND 5.0 " Bromoform ND 5.0 " Bromomethane ND 5.0 " n-Butylbenzene ND 5.0 " sec-Butylbenzene ND 5.0 " tert-Butylbenzene ND 5.0 " Carbon tetrachloride ND 5.0 "	"		0.4/00/11			
Surrogate: p-Terphenyl 116 % Compounds by EPA Method 8260B Bromobenzene ND 5.0 ug/kg Bromochloromethane ND 5.0 " Bromodichloromethane ND 5.0 " Bromoform ND 5.0 " Bromomethane ND 5.0 " n-Butylbenzene ND 5.0 " sec-Butylbenzene ND 5.0 " tert-Butylbenzene ND 5.0 " Carbon tetrachloride ND 5.0 "		"	04/22/11	04/28/11	EPA 8015C	
Volatile Organic Compounds by EPA Method 8260B Bromobenzene ND 5.0 ug/kg Bromochloromethane ND 5.0 " Bromodichloromethane ND 5.0 " Bromoform ND 5.0 " Bromomethane ND 5.0 " n-Butylbenzene ND 5.0 " sec-Butylbenzene ND 5.0 " tert-Butylbenzene ND 5.0 " Carbon tetrachloride ND 5.0 "	65-135		"	"	"	
Bromobenzene ND 5.0 ug/kg Bromochloromethane ND 5.0 " Bromodichloromethane ND 5.0 " Bromoform ND 5.0 " Bromomethane ND 5.0 " n-Butylbenzene ND 5.0 " sec-Butylbenzene ND 5.0 " tert-Butylbenzene ND 5.0 " Carbon tetrachloride ND 5.0 "		"	"	"	"	
Bromobenzene ND 5.0 ug/kg Bromochloromethane ND 5.0 " Bromodichloromethane ND 5.0 " Bromoform ND 5.0 " Bromomethane ND 5.0 " n-Butylbenzene ND 5.0 " sec-Butylbenzene ND 5.0 " tert-Butylbenzene ND 5.0 " Carbon tetrachloride ND 5.0 "						
Bromodichloromethane ND 5.0 " Bromoform ND 5.0 " Bromomethane ND 5.0 " n-Butylbenzene ND 5.0 " sec-Butylbenzene ND 5.0 " tert-Butylbenzene ND 5.0 " Carbon tetrachloride ND 5.0 "	g 1	1042220	04/22/11	04/23/11	EPA 8260B	
Bromoform ND 5.0 " Bromomethane ND 5.0 " n-Butylbenzene ND 5.0 " sec-Butylbenzene ND 5.0 " tert-Butylbenzene ND 5.0 " Carbon tetrachloride ND 5.0 "	"	"	"	"	"	
Bromomethane ND 5.0 " n-Butylbenzene ND 5.0 " sec-Butylbenzene ND 5.0 " tert-Butylbenzene ND 5.0 " Carbon tetrachloride ND 5.0 "	"	"	"	"	"	
n-Butylbenzene ND 5.0 " sec-Butylbenzene ND 5.0 " tert-Butylbenzene ND 5.0 " Carbon tetrachloride ND 5.0 "	"	"	"	"	"	
sec-ButylbenzeneND5.0"tert-ButylbenzeneND5.0"Carbon tetrachlorideND5.0"	"	"	"	"	"	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	"	"	"	"	"	
Carbon tetrachloride ND 5.0 "	"	"	"	"	"	
	"	"	"	"	"	
Chlorobenzene ND 5.0 "	"	"	"	"	"	
	"	"	"	"	"	
Chloroethane ND 5.0 "	"	"	"	"	"	
Chloroform ND 5.0 "	"	"	"	"	"	
Chloromethane ND 5.0 "	"	"	"	"	"	
2-Chlorotoluene ND 5.0 "	"	"	"	"	"	
4-Chlorotoluene ND 5.0 "	"	"	"	"	"	
Dibromochloromethane ND 5.0 "	"	"	"	"	"	
1,2-Dibromo-3-chloropropane ND 5.0 "	"	"	"	"	"	
1,2-Dibromoethane (EDB) ND 5.0 "	"	"	"	"	"	
Dibromomethane ND 5.0 "	"	"	"	"	"	
1,2-Dichlorobenzene ND 5.0 "	"	"	"	"	"	
1,3-Dichlorobenzene ND 5.0 "	"	"	"	"	"	
1,4-Dichlorobenzene ND 5.0 "	"	"	"	"	"	
Dichlorodifluoromethane ND 5.0 "	"	"	"	"	"	
1,1-Dichloroethane ND 5.0 "	"	"	"	"	"	

SunStar Laboratories, Inc.

Saviel of Chivy

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

GP11@8' T110485-48 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

	51	unstai L	aboi atoi i	es, mc.					
Volatile Organic Compounds by	EPA Method 8260B								
1,2-Dichloroethane	ND	5.0	ug/kg	1	1042220	04/22/11	04/23/11	EPA 8260B	
1,1-Dichloroethene	ND	5.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,3-Dichloropropane	ND	5.0	"	"	"	"	"	"	
2,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	5.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"	
Hexachlorobutadiene	ND	5.0	"	"	"	"	"	"	
Isopropylbenzene	ND	5.0	"	"	"	"	"	"	
p-Isopropyltoluene	ND	5.0	"	"	"	"	"	"	
Methylene chloride	ND	5.0	"	"	"	"	"	"	
Naphthalene	ND	5.0	"	"	"	"	"	"	
n-Propylbenzene	ND	5.0	"	"	"	"	"	"	
Styrene	ND	5.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"	
Tetrachloroethene	ND	5.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	5.0	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	5.0	"	"	"	"	"	"	
Trichloroethene	ND	5.0	"	"	"	"	"	"	
Trichlorofluoromethane	ND	5.0	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
Vinyl chloride	ND	5.0	"	"	"	"	"	"	
Benzene	ND	5.0	"	"	"	"	"	"	
Toluene	ND	5.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Saviel of Chivy

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

GP11@8' T110485-48 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

	,	Sunstai L	ו וטטו מנטו וי	cs, IIIc.					
Volatile Organic Compounds by El	PA Method 82601	В							
Ethylbenzene	ND	5.0	ug/kg	1	1042220	04/22/11	04/23/11	EPA 8260B	
m,p-Xylene	ND	5.0	"	"	"	"	"	"	
o-Xylene	ND	5.0	"	"	"	"	"	"	
Tert-amyl methyl ether	ND	20	"	"	"	"	"	"	
Tert-butyl alcohol	ND	50	"	"	"	"	"	"	
Di-isopropyl ether	ND	20	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	20	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	20	"	"	"	"	"	"	
Surrogate: Toluene-d8		97.0 %	85.5-1	116	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		104 %	75.1-1	121	"	"	"	"	
Surrogate: Dibromofluoromethane		108 %	90-1.	35	"	"	"	"	

SunStar Laboratories, Inc.

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

GP11@12' T110485-49 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aborator	ries, Inc.		_			
Purgeable Petroleum Hydrocarbo	ons by EPA 8015C								
C6-C12 (GRO)	ND	500	ug/kg	1	1042225	04/22/11	04/23/11	EPA 8015C	
Surrogate: 4-Bromofluorobenzene		101 %	72.6	-146	"	"	"	"	
Extractable Petroleum Hydrocark	oons by 8015C								
C13-C28 (DRO)	28	10	mg/kg	1	1042214	04/22/11	04/29/11	EPA 8015C	
C29-C40 (MORO)	20	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		77.5 %	65-	135	"	"	"	"	
Volatile Organic Compounds by I	EPA Method 8260	В							
Bromobenzene	ND	5.0	ug/kg	1	1042220	04/22/11	04/23/11	EPA 8260B	
Bromochloromethane	ND	5.0	"	"	"	"	"	"	
Bromodichloromethane	ND	5.0	"	"	"	"	"	"	
Bromoform	ND	5.0	"	"	"	"	"	"	
Bromomethane	ND	5.0	"	"	"	"	"	"	
n-Butylbenzene	ND	5.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	5.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	5.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	5.0	"	"	"	"	"	"	
Chlorobenzene	ND	5.0	"	"	"	"	"	"	
Chloroethane	ND	5.0	"	"	"	"	"	"	
Chloroform	ND	5.0	"	"	"	"	"	"	
Chloromethane	ND	5.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
Dibromochloromethane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	5.0	"	"	"	"	"	"	
Dibromomethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	5.0	"	"	"	"	"	"	
,	•								

SunStar Laboratories, Inc.

Saviel & Chivy

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

GP11@12' T110485-49 (Soil)

ı									
		Reporting							
	Analyte Res	ult Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Substitution States and States an											
Volatile Organic Compounds by	EPA Method 8260B										
1,2-Dichloroethane	ND	5.0	ug/kg	1	1042220	04/22/11	04/23/11	EPA 8260B			
1,1-Dichloroethene	ND	5.0	"	"	"	"	"	"			
cis-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"			
trans-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"			
1,2-Dichloropropane	ND	5.0	"	"	"	"	"	"			
1,3-Dichloropropane	ND	5.0	"	"	"	"	"	"			
2,2-Dichloropropane	ND	5.0	"	"	"	"	"	"			
1,1-Dichloropropene	ND	5.0	"	"	"	"	"	"			
cis-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"			
trans-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"			
Hexachlorobutadiene	ND	5.0	"	"	"	"	"	"			
Isopropylbenzene	ND	5.0	"	"	"	"	"	"			
p-Isopropyltoluene	ND	5.0	"	"	"	"	"	"			
Methylene chloride	ND	5.0	"	"	"	"	"	"			
Naphthalene	ND	5.0	"	"	"	"	"	"			
n-Propylbenzene	ND	5.0	"	"	"	"	"	"			
Styrene	ND	5.0	"	"	"	"	"	"			
1,1,2,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"			
1,1,1,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"			
Tetrachloroethene	ND	5.0	"	"	"	"	"	"			
1,2,3-Trichlorobenzene	ND	5.0	"	"	"	"	"	"			
1,2,4-Trichlorobenzene	ND	5.0	"	"	"	"	"	"			
1,1,2-Trichloroethane	ND	5.0	"	"	"	"	"	"			
1,1,1-Trichloroethane	ND	5.0	"	"	"	"	"	"			
Trichloroethene	ND	5.0	"	"	"	"	"	"			
Trichlorofluoromethane	ND	5.0	"	"	"	"	"	"			
1,2,3-Trichloropropane	ND	5.0	"	"	"	"	"	"			
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"			
1,2,4-Trimethylbenzene	ND	5.0	"	"	"	"	"	"			
Vinyl chloride	ND	5.0	"	"	"	"	"	"			
Benzene	ND	5.0	"	"	"	"	"	"			
Toluene	ND	5.0	"	"	"	"	"	"			

SunStar Laboratories, Inc.

Saviel of Chivy

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

GP11@12' T110485-49 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Sunstar Laboratories, Inc.												
Volatile Organic Compounds by EPA	Method 8260B											
Ethylbenzene	ND	5.0	ug/kg	1	1042220	04/22/11	04/23/11	EPA 8260B				
m,p-Xylene	ND	5.0	"	"	"	"	"	"				
o-Xylene	ND	5.0	"	"	"	"	"	"				
Tert-amyl methyl ether	ND	20	"	"	"	"	"	"				
Tert-butyl alcohol	ND	50	"	"	"	"	"	"				
Di-isopropyl ether	ND	20	"	"	"	"	"	"				
Ethyl tert-butyl ether	ND	20	"	"	"	"	"	"				
Methyl tert-butyl ether	ND	20	"	"	"	"	"	"				
Surrogate: Toluene-d8		99.6 %	85.5-1	116	"	"	"	"				
Surrogate: 4-Bromofluorobenzene		106 %	75.1-1	121	"	"	"	"				
Surrogate: Dibromofluoromethane		118 %	90-1.	35	"	"	"	"				

SunStar Laboratories, Inc.

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

GP11@10' T110485-50 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aborator	ries, Inc.					
Purgeable Petroleum Hydrocarbo	ons by EPA 8015C	;							
C6-C12 (GRO)	ND	500	ug/kg	1	1042225	04/22/11	04/23/11	EPA 8015C	
Surrogate: 4-Bromofluorobenzene		103 %	72.6	-146	"	"	"	"	
Extractable Petroleum Hydrocark	oons by 8015C								
C13-C28 (DRO)	25	10	mg/kg	1	1042214	04/22/11	04/29/11	EPA 8015C	
C29-C40 (MORO)	22	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		131 %	65-	135	"	"	"	"	
Volatile Organic Compounds by I	EPA Method 8260	В							
Bromobenzene	ND	5.0	ug/kg	1	1042220	04/22/11	04/23/11	EPA 8260B	
Bromochloromethane	ND	5.0	"	"	"	"	"	"	
Bromodichloromethane	ND	5.0	"	"	"	"	"	"	
Bromoform	ND	5.0	"	"	"	"	"	"	
Bromomethane	ND	5.0	"	"	"	"	"	"	
n-Butylbenzene	ND	5.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	5.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	5.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	5.0	"	"	"	"	"	"	
Chlorobenzene	ND	5.0	"	"	"	"	"	"	
Chloroethane	ND	5.0	"	"	"	"	"	"	
Chloroform	ND	5.0	"	"	"	"	"	"	
Chloromethane	ND	5.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
Dibromochloromethane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	5.0	"	"	"	"	"	"	
Dibromomethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	5.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Saviel & Chivy

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

GP11@10' T110485-50 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Sunstai Laboratories, inc.											
Volatile Organic Compounds by	EPA Method 8260B										
1,2-Dichloroethane	ND	5.0	ug/kg	1	1042220	04/22/11	04/23/11	EPA 8260B			
1,1-Dichloroethene	ND	5.0	"	"	"	"	"	"			
cis-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"			
trans-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"			
1,2-Dichloropropane	ND	5.0	"	"	"	"	"	"			
1,3-Dichloropropane	ND	5.0	"	"	"	"	"	"			
2,2-Dichloropropane	ND	5.0	"	"	"	"	"	"			
1,1-Dichloropropene	ND	5.0	"	"	"	"	"	"			
cis-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"			
trans-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"			
Hexachlorobutadiene	ND	5.0	"	"	"	"	"	"			
Isopropylbenzene	ND	5.0	"	"	"	"	"	"			
p-Isopropyltoluene	ND	5.0	"	"	"	"	"	"			
Methylene chloride	ND	5.0	"	"	"	"	"	"			
Naphthalene	ND	5.0	"	"	"	"	"	"			
n-Propylbenzene	ND	5.0	"	"	"	"	"	"			
Styrene	ND	5.0	"	"	"	"	"	"			
1,1,2,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"			
1,1,1,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"			
Tetrachloroethene	ND	5.0	"	"	"	"	"	"			
1,2,3-Trichlorobenzene	ND	5.0	"	"	"	"	"	"			
1,2,4-Trichlorobenzene	ND	5.0	"	"	"	"	"	"			
1,1,2-Trichloroethane	ND	5.0	"	"	"	"	"	"			
1,1,1-Trichloroethane	ND	5.0	"	"	"	"	"	"			
Trichloroethene	ND	5.0	"	"	"	"	"	"			
Trichlorofluoromethane	ND	5.0	"	"	"	"	"	"			
1,2,3-Trichloropropane	ND	5.0	"	"	"	"	"	"			
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"			
1,2,4-Trimethylbenzene	ND	5.0	"	"	"	"	"	"			
Vinyl chloride	ND	5.0	"	"	"	"	"	"			
Benzene	ND	5.0	"	"	"	"	"	"			
Toluene	ND	5.0	"	"	"	"	"	"			

SunStar Laboratories, Inc.

Saviel of Chivy

Engeo Project: 1000 N. Vasco Rd.

 2213 Plaza Dr.
 Project Number: 7380.000.003
 Reported:

 Rocklin CA, 95765
 Project Manager: Morgan Johnson
 04/29/11 11:23

GP11@10' T110485-50 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by E	PA Method 8260B								
Ethylbenzene	ND	5.0	ug/kg	1	1042220	04/22/11	04/23/11	EPA 8260B	
m,p-Xylene	ND	5.0	"	"	"	"	"	"	
o-Xylene	ND	5.0	"	"	"	"	"	"	
Tert-amyl methyl ether	ND	20	"	"	"	"	"	"	
Tert-butyl alcohol	ND	50	"	"	"	"	"	"	
Di-isopropyl ether	ND	20	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	20	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	20	"	"	"	"	"	"	

85.5-116

75.1-121

90-135

98.8 %

105 %

108 %

SunStar Laboratories, Inc.

Saviel of Chivy

Surrogate: Toluene-d8

Surrogate: 4-Bromofluorobenzene

Surrogate: Dibromofluoromethane

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

GP12@4' T110485-51 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aborator	ries, Inc.					
Purgeable Petroleum Hydrocarbo	ons by EPA 8015C								
C6-C12 (GRO)	ND	500	ug/kg	1	1042225	04/22/11	04/23/11	EPA 8015C	
Surrogate: 4-Bromofluorobenzene		104 %	72.6	-146	"	"	"	"	
Extractable Petroleum Hydrocark	ons by 8015C								
C13-C28 (DRO)	20	10	mg/kg	1	1042214	04/22/11	04/29/11	EPA 8015C	
C29-C40 (MORO)	18	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		134 %	65-	135	"	"	"	"	
Volatile Organic Compounds by I	EPA Method 8260	В							
Bromobenzene	ND	5.0	ug/kg	1	1042220	04/22/11	04/23/11	EPA 8260B	
Bromochloromethane	ND	5.0	"	"	"	"	"	"	
Bromodichloromethane	ND	5.0	"	"	"	"	"	"	
Bromoform	ND	5.0	"	"	"	"	"	"	
Bromomethane	ND	5.0	"	"	"	"	"	"	
n-Butylbenzene	ND	5.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	5.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	5.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	5.0	"	"	"	"	"	"	
Chlorobenzene	ND	5.0	"	"	"	"	"	"	
Chloroethane	ND	5.0	"	"	"	"	"	"	
Chloroform	ND	5.0	"	"	"	"	"	"	
Chloromethane	ND	5.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
Dibromochloromethane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	5.0	"	"	"	"	"	"	
Dibromomethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	5.0	"	"	"	"	"	"	
,	•								

SunStar Laboratories, Inc.

Saviel & Chivy

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

GP12@4' T110485-51 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

,2-Dichloroethane	ND	5.0	ug/kg	1	1042220	04/22/11	04/23/11	EPA 8260E
,1-Dichloroethene	ND	5.0	"	"	"	"	"	"
is-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"
ans-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"
,2-Dichloropropane	ND	5.0	"	"	"	"	"	"
,3-Dichloropropane	ND	5.0	"	"	"	"	"	"
,2-Dichloropropane	ND	5.0	"	"	"	"	"	"
,1-Dichloropropene	ND	5.0	"	"	"	"	"	"
is-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"
ans-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"
Iexachlorobutadiene	ND	5.0	"	"	"	"	"	"
sopropylbenzene	ND	5.0	"	"	"	"	"	"
-Isopropyltoluene	ND	5.0	"	"	"	"	"	"
lethylene chloride	ND	5.0	"	"	"	"	"	"
Taphthalene	ND	5.0	"	"	"	"	"	"
-Propylbenzene	ND	5.0	"	"	"	"	"	"
tyrene	ND	5.0	"	"	"	"	"	"
,1,2,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"
,1,1,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"
etrachloroethene	ND	5.0	"	"	"	"	"	"
,2,3-Trichlorobenzene	ND	5.0	"	"	"	"	"	"
,2,4-Trichlorobenzene	ND	5.0	"	"	"	"	"	"
,1,2-Trichloroethane	ND	5.0	"	"	"	"	"	"
,1,1-Trichloroethane	ND	5.0	"	"	"	"	"	"
richloroethene	ND	5.0	"	"	"	"	"	"
richlorofluoromethane	ND	5.0	"	"	"	"	"	"
,2,3-Trichloropropane	ND	5.0	"	"	"	"	"	"
,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"
,2,4-Trimethylbenzene	ND	5.0	"	"	"	"	"	"
inyl chloride	ND	5.0	"	"	"	"	"	"
enzene	ND	5.0	"	"	"	"	"	"
oluene	ND	5.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

Saviel of Chivy

Project: 1000 N. Vasco Rd. Engeo

2213 Plaza Dr. Project Number: 7380.000.003 Reported: Rocklin CA, 95765 Project Manager: Morgan Johnson 04/29/11 11:23

GP12@4' T110485-51 (Soil)

	A 1.	D 1	Reporting	TT 1/2	Dil di	D . 1	D 1	A 1 1	M 4 1	NT 4
L	Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

		SunStar La	aboratori	es, Inc.					
Volatile Organic Compounds by E	PA Method 8260	В							
Ethylbenzene	ND	5.0	ug/kg	1	1042220	04/22/11	04/23/11	EPA 8260B	
m,p-Xylene	ND	5.0	"	"	"	"	"	n	
o-Xylene	ND	5.0	"	"	"	"	"	n	
Tert-amyl methyl ether	ND	20	"	"	"	"	"	n	
Tert-butyl alcohol	ND	50	"	"	"	"	"	"	
Di-isopropyl ether	ND	20	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	20	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	20	"	"	"	"	"	"	
Surrogate: Toluene-d8		94.5 %	85.5-	116	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		106 %	75.1-	121	"	"	"	"	
Surrogate: Dibromofluoromethane		111 %	90-1	35	"	"	"	"	

SunStar Laboratories, Inc.

Saviel & Chivy

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

GP12@8' T110485-52 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aborator	ries, Inc.					
Purgeable Petroleum Hydrocarbo	ons by EPA 8015C	,							
C6-C12 (GRO)	ND	500	ug/kg	1	1042225	04/22/11	04/23/11	EPA 8015C	
Surrogate: 4-Bromofluorobenzene		100 %	72.6	-146	"	"	"	"	
Extractable Petroleum Hydrocark	oons by 8015C								
C13-C28 (DRO)	16	10	mg/kg	1	1042214	04/22/11	04/29/11	EPA 8015C	
C29-C40 (MORO)	18	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		129 %	65-	135	"	"	"	"	
Volatile Organic Compounds by I	EPA Method 8260	В							
Bromobenzene	ND	5.0	ug/kg	1	1042220	04/22/11	04/23/11	EPA 8260B	
Bromochloromethane	ND	5.0	"	"	"	"	"	"	
Bromodichloromethane	ND	5.0	"	"	"	"	"	"	
Bromoform	ND	5.0	"	"	"	"	"	"	
Bromomethane	ND	5.0	"	"	"	"	"	"	
n-Butylbenzene	ND	5.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	5.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	5.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	5.0	"	"	"	"	"	"	
Chlorobenzene	ND	5.0	"	"	"	"	"	"	
Chloroethane	ND	5.0	"	"	"	"	"	"	
Chloroform	ND	5.0	"	"	"	"	"	"	
Chloromethane	ND	5.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
Dibromochloromethane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	5.0	"	"	"	"	"	"	
Dibromomethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	5.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Saviel & Chivy

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

GP12@8' T110485-52 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

	D	unotai D	uborutori	cs, mc.				
Volatile Organic Compounds by	EPA Method 8260B							
1,2-Dichloroethane	ND	5.0	ug/kg	1	1042220	04/22/11	04/23/11	EPA 8260B
1,1-Dichloroethene	ND	5.0	"	"	"	"	"	"
cis-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"
trans-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"
1,2-Dichloropropane	ND	5.0	"	"	"	"	"	"
1,3-Dichloropropane	ND	5.0	"	"	"	"	"	"
2,2-Dichloropropane	ND	5.0	"	"	"	"	"	"
1,1-Dichloropropene	ND	5.0	"	"	"	"	"	"
cis-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"
trans-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"
Hexachlorobutadiene	ND	5.0	"	"	"	"	"	"
Isopropylbenzene	ND	5.0	"	"	"	"	"	"
p-Isopropyltoluene	ND	5.0	"	"	"	"	"	"
Methylene chloride	ND	5.0	"	"	"	"	"	"
Naphthalene	ND	5.0	"	"	"	"	"	"
n-Propylbenzene	ND	5.0	"	"	"	"	"	"
Styrene	ND	5.0	"	"	"	"	"	"
1,1,2,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"
1,1,1,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"
Tetrachloroethene	ND	5.0	"	"	"	"	"	"
1,2,3-Trichlorobenzene	ND	5.0	"	"	"	"	"	"
1,2,4-Trichlorobenzene	ND	5.0	"	"	"	"	"	"
1,1,2-Trichloroethane	ND	5.0	"	"	"	"	"	"
1,1,1-Trichloroethane	ND	5.0	"	"	"	"	"	"
Trichloroethene	ND	5.0	"	"	"	"	"	"
Trichlorofluoromethane	ND	5.0	"	"	"	"	"	"
1,2,3-Trichloropropane	ND	5.0	"	"	"	"	"	"
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"
1,2,4-Trimethylbenzene	ND	5.0	"	"	"	"	"	"
Vinyl chloride	ND	5.0	"	"	"	"	"	"
Benzene	ND	5.0	"	"	"	"	"	"
Toluene	ND	5.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

Saviel of Chivy

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

GP12@8' T110485-52 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

	St	mstar L	aboratori	es, mc.					
Volatile Organic Compounds by E	PA Method 8260B								
Ethylbenzene	ND	5.0	ug/kg	1	1042220	04/22/11	04/23/11	EPA 8260B	
m,p-Xylene	ND	5.0	"	"	"	"	"	"	
o-Xylene	ND	5.0	"	"	"	"	"	"	
Tert-amyl methyl ether	ND	20	"	"	"	"	"	"	
Tert-butyl alcohol	ND	50	"	"	"	"	"	"	
Di-isopropyl ether	ND	20	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	20	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	20	"	"	"	"	"	"	
Surrogate: Toluene-d8		101 %	85.5-1	116	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		104 %	75.1-1	121	"	"	"	"	
Surrogate: Dibromofluoromethane		109 %	90-1.	35	"	"	"	"	

SunStar Laboratories, Inc.

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

GP12@12' T110485-53 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aborator	ries, Inc.					
Purgeable Petroleum Hydrocarbo	ons by EPA 8015C								
C6-C12 (GRO)	ND	500	ug/kg	1	1042225	04/22/11	04/23/11	EPA 8015C	
Surrogate: 4-Bromofluorobenzene		95.2 %	72.6	-146	"	"	"	"	
Extractable Petroleum Hydrocark	oons by 8015C								
C13-C28 (DRO)	15	10	mg/kg	1	1042214	04/22/11	04/29/11	EPA 8015C	
C29-C40 (MORO)	17	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		130 %	65-	135	"	"	"	"	
Volatile Organic Compounds by I	EPA Method 8260	В							
Bromobenzene	ND	5.0	ug/kg	1	1042220	04/22/11	04/23/11	EPA 8260B	
Bromochloromethane	ND	5.0	"	"	"	"	"	"	
Bromodichloromethane	ND	5.0	"	"	"	"	"	"	
Bromoform	ND	5.0	"	"	"	"	"	"	
Bromomethane	ND	5.0	"	"	"	"	"	"	
n-Butylbenzene	ND	5.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	5.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	5.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	5.0	"	"	"	"	"	"	
Chlorobenzene	ND	5.0	"	"	"	"	"	"	
Chloroethane	ND	5.0	"	"	"	"	"	"	
Chloroform	ND	5.0	"	"	"	"	"	"	
Chloromethane	ND	5.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
Dibromochloromethane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	5.0	"	"	"	"	"	"	
Dibromomethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	5.0	"	"	"	"	"	u u	
1,4-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	5.0	"	"	"	"	"	"	
,		- **							

SunStar Laboratories, Inc.

Saviel & Chivy

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

GP12@12' T110485-53 (Soil)

	Reporting							
Analyte Resi	lt Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

	Su	nStar La	aboratorio	es, Inc.					
Volatile Organic Compounds by EPA	A Method 8260B								
1,2-Dichloroethane	ND	5.0	ug/kg	1	1042220	04/22/11	04/23/11	EPA 8260B	
1,1-Dichloroethene	ND	5.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	5.0	"	"	"	"	"	n .	
1,3-Dichloropropane	ND	5.0	"	"	"	"	"	"	
2,2-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	5.0	"	"	"	"	"	n .	
cis-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"	
Hexachlorobutadiene	ND	5.0	"	"	"	"	"	"	
Isopropylbenzene	ND	5.0	"	"	"	"	"	"	
p-Isopropyltoluene	ND	5.0	"	"	"	"	"	"	
Methylene chloride	ND	5.0	"	"	"	"	"	"	
Naphthalene	ND	5.0	"	"	"	"	"	"	
n-Propylbenzene	ND	5.0	"	"	"	"	"	"	
Styrene	ND	5.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"	
Tetrachloroethene	ND	5.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	5.0	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	5.0	"	"	"	"	"	"	
Trichloroethene	ND	5.0	"	"	"	"	"	"	
Trichlorofluoromethane	ND	5.0	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	5.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	5.0	"	"	"	"	"	"	
Vinyl chloride	ND	5.0	"	"	"	"	"	"	
Benzene	ND	5.0	"	"	"	"	"	"	
Toluene	ND	5.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Saviel of Chivy

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

GP12@12' T110485-53 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

SunStar Laboratories, Inc.										
Volatile Organic Compounds by El	PA Method 8260B									
Ethylbenzene	ND	5.0	ug/kg	1	1042220	04/22/11	04/23/11	EPA 8260B		
m,p-Xylene	ND	5.0	"	"	"	"	"	"		
o-Xylene	ND	5.0	"	"	"	"	"	"		
Tert-amyl methyl ether	ND	20	"	"	"	"	"	"		
Tert-butyl alcohol	ND	50	"	"	"	"	"	"		
Di-isopropyl ether	ND	20	"	"	"	"	"	"		
Ethyl tert-butyl ether	ND	20	"	"	"	"	"	"		
Methyl tert-butyl ether	ND	20	"	"	"	"	"	"		
Surrogate: Toluene-d8		97.1 %	85.5-1	16	"	"	"	"		
Surrogate: 4-Bromofluorobenzene		80.9 %	75.1-1	21	"	"	"	"		
Surrogate: Dibromofluoromethane		111 %	90-1.	35	"	"	"	"		

SunStar Laboratories, Inc.

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

GW-10 T110485-54 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		SunStar La	aboratoi	ries, Inc.					
Purgeable Petroleum Hydrocarbo	ns by EPA 80150								
C6-C12 (GRO)	ND	50	ug/l	1	1042130	04/21/11	04/26/11	EPA 8015C	
Surrogate: 4-Bromofluorobenzene		109 %	72.6	-146	"	"	"	"	
Extractable Petroleum Hydrocarb	ons by 8015C								
C13-C28 (DRO)	ND	0.050	mg/l	1	1042129	04/21/11	04/27/11	EPA 8015C	
C29-C40 (MORO)	ND	0.10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		112 %	65-	135	"	"	"	"	
Volatile Organic Compounds by E	PA Method 8260)B							
Bromobenzene	ND	1.0	ug/l	1	1042128	04/21/11	04/22/11	EPA 8260B	
Bromochloromethane	ND	1.0	"	"	"	"	"	"	
Bromodichloromethane	ND	1.0	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"	"	"	
Bromomethane	ND	1.0	"	"	"	"	"	"	
n-Butylbenzene	ND	1.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	1.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"	
Chlorobenzene	ND	1.0	"	"	"	"	"	"	
Chloroethane	ND	1.0	"	"	"	"	"	"	
Chloroform	ND	1.0	"	"	"	"	"	"	
Chloromethane	ND	1.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
Dibromochloromethane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"	
Dibromomethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Saviel of Chivy

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

GW-10 T110485-54 (Water)

	Reporting							
Analyte Resi	lt Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by								
1,2-Dichloroethane	ND	0.50	ug/l	1	1042128	04/21/11	04/22/11	EPA 8260B
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"
cis-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"
1,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
1,3-Dichloropropane	ND	1.0	"	"	"	"	"	"
2,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
1,1-Dichloropropene	ND	1.0	"	"	"	"	"	"
cis-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
trans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
Hexachlorobutadiene	ND	1.0	"	"	"	"	"	"
Isopropylbenzene	ND	1.0	"	"	"	"	"	"
p-Isopropyltoluene	ND	1.0	"	"	"	"	"	"
Methylene chloride	ND	1.0	"	"	"	"	"	"
Naphthalene	ND	1.0	"	"	"	"	"	"
n-Propylbenzene	ND	1.0	"	"	"	"	"	"
Styrene	ND	1.0	"	"	"	"	"	"
1,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
1,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
Tetrachloroethene	ND	1.0	"	"	"	"	"	"
1,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
1,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
1,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
Trichloroethene	2.3	1.0	"	"	"	"	"	"
Trichlorofluoromethane	ND	1.0	"	"	"	"	"	"
1,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
1,3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
1,2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
Vinyl chloride	ND	1.0	"	"	"	"	"	"
Benzene	ND	0.50	"	"	"	"	"	"
Toluene	ND	0.50	"	,,	"	,,	"	"

SunStar Laboratories, Inc.

Saviel of Chivy

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

GW-10 T110485-54 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Sunstai Lubstatories, mei											
Volatile Organic Compounds by E	PA Method 8260	В									
Ethylbenzene	ND	0.50	ug/l	1	1042128	04/21/11	04/22/11	EPA 8260B			
m,p-Xylene	ND	1.0	"	"	"	"	"	"			
o-Xylene	ND	0.50	"	"	"	"	"	"			
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"			
Tert-butyl alcohol	ND	10	"	"	"	"	"	"			
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"			
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"			
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"			
Surrogate: Toluene-d8		99.9 %	84.7-	109	"	"	"	"			
Surrogate: 4-Bromofluorobenzene		99.8 %	83.5-	119	"	"	"	"			
Surrogate: Dibromofluoromethane		102 %	81.1-	136	"	"	"	"			

SunStar Laboratories, Inc.

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

Reporting

GP3-GW T110485-55 (Water)

Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aborato	ries, Inc.					
Purgeable Petroleum Hydrocarbons	s by EPA 8015C	l :							
C6-C12 (GRO)	ND	50	ug/l	1	1042130	04/21/11	04/26/11	EPA 8015C	
Surrogate: 4-Bromofluorobenzene		103 %	72.6	-146	"	"	"	"	
Extractable Petroleum Hydrocarbo	ns by 8015C								
C13-C28 (DRO)	ND	0.050	mg/l	1	1042129	04/21/11	04/27/11	EPA 8015C	_
C29-C40 (MORO)	ND	0.10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		113 %	65-	135	"	"	"	"	
Volatile Organic Compounds by EF	A Method 8260	В							
Bromobenzene	ND	1.0	ug/l	1	1042128	04/21/11	04/22/11	EPA 8260B	
Bromochloromethane	ND	1.0	"	"	"	"	"	"	
Bromodichloromethane	ND	1.0	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"	"	"	
Bromomethane	ND	1.0	"	"	"	"	"	"	
n-Butylbenzene	ND	1.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	1.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"	
Chlorobenzene	ND	1.0	"	"	"	"	"	"	
Chloroethane	ND	1.0	"	"	"	"	"	"	
Chloroform	ND	1.0	"	"	"	"	"	"	
Chloromethane	ND	1.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
Dibromochloromethane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"	
Dibromomethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Saviel & Chivy

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

GP3-GW T110485-55 (Water)

ı									
		Reporting							
	Analyte Res	ult Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Sunstal Laboratories, Inc.											
Volatile Organic Compounds by	EPA Method 8260B										
1,2-Dichloroethane	ND	0.50	ug/l	1	1042128	04/21/11	04/22/11	EPA 8260B			
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"			
cis-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"			
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"			
1,2-Dichloropropane	ND	1.0	"	"	"	"	"	"			
1,3-Dichloropropane	ND	1.0	"	"	"	"	"	"			
2,2-Dichloropropane	ND	1.0	"	"	"	"	"	"			
1,1-Dichloropropene	ND	1.0	"	"	"	"	"	"			
cis-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"			
trans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"			
Hexachlorobutadiene	ND	1.0	"	"	"	"	"	"			
Isopropylbenzene	ND	1.0	"	"	"	"	"	"			
p-Isopropyltoluene	ND	1.0	"	"	"	"	"	"			
Methylene chloride	ND	1.0	"	"	"	"	"	"			
Naphthalene	ND	1.0	"	"	"	"	"	"			
n-Propylbenzene	ND	1.0	"	"	"	"	"	"			
Styrene	ND	1.0	"	"	"	"	"	"			
1,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"			
1,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"			
Tetrachloroethene	ND	1.0	"	"	"	"	"	"			
1,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"			
1,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"			
1,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"			
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"			
Trichloroethene	ND	1.0	"	"	"	"	"	"			
Trichlorofluoromethane	ND	1.0	"	"	"	"	"	"			
1,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"			
1,3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"			
1,2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"			
Vinyl chloride	ND	1.0	"	"	"	"	"	m .			
Benzene	ND	0.50	"	"	"	"	"	"			
Toluene	ND	0.50	"	"	"	"	"	п			

SunStar Laboratories, Inc.

Saviel of Chivy

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

GP3-GW T110485-55 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

		Sunstai La	1001 atol 1	es, mc.									
Volatile Organic Compounds by EPA Method 8260B													
Ethylbenzene	ND	0.50	ug/l	1	1042128	04/21/11	04/22/11	EPA 8260B					
m,p-Xylene	ND	1.0	"	"	"	"	"	"					
o-Xylene	ND	0.50	"	"	"	"	"	"					
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"					
Tert-butyl alcohol	ND	10	"	"	"	"	"	"					
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"					
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"					
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"					
Surrogate: Toluene-d8		101 %	84.7-	109	"	"	"	"					
Surrogate: 4-Bromofluorobenzene		107 %	83.5-	119	"	"	"	"					
Surrogate: Dibromofluoromethane		98.9 %	81.1-	136	"	"	"	"					

SunStar Laboratories, Inc.

Mathad

Engeo Project: 1000 N. Vasco Rd.

Dogult

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

Reporting

D1 T110485-56 (Soil)

Linita

Dilution

Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aborator	ries, Inc.					
Purgeable Petroleum Hydrocarbor	ns by EPA 8015C	•							
C6-C12 (GRO)	ND	500	ug/kg	1	1042225	04/22/11	04/23/11	EPA 8015C	
Surrogate: 4-Bromofluorobenzene		99.2 %	72.6	-146	"	"	"	"	
Metals by EPA 6010B									
Antimony	ND	3.0	mg/kg	1	1042202	04/22/11	04/26/11	EPA 6010B	
Silver	ND	2.0	"	"	"	"	"	"	
Arsenic	ND	5.0	"	"	"	"	"	"	
Barium	270	1.0	"	"	"	"	"	"	
Beryllium	ND	1.0	"	"	"	"	"	"	
Cadmium	ND	2.0	"	"	"	"	"	"	
Chromium	33	2.0	"	"	"	"	"	"	
Cobalt	11	2.0	"	"	"	"	"	"	
Copper	20	1.0	"	"	"	"	"	"	
Lead	ND	3.0	"	"	"	"	"	"	
Molybdenum	ND	1.0	"	"	"	"	"	"	
Nickel	33	2.0	"	"	"	"	"	"	
Selenium	ND	5.0	"	"	"	"	"	"	
Thallium	ND	2.0	"	"	"	"	"	"	
Vanadium	57	5.0	"	"	"	"	"	"	
Zinc	47	1.0	"	"	"	"	"	"	
Cold Vapor Extraction EPA 7470/	7471								
Mercury	ND	0.10	mg/kg	1	1050601	04/26/11	04/26/11	EPA 7471A Soil	
Volatile Organic Compounds by E	PA Method 8260	В							
Benzene	ND	5.0	ug/kg	1	1042220	04/22/11	04/23/11	EPA 8260B	
Toluene	ND	5.0	"	"	"	"	"	"	
Ethylbenzene	ND	5.0	"	"	"	"	"	"	
m,p-Xylene	ND	5.0	"	"	"	"	"	"	
o-Xylene	ND	5.0	"	"	"	"	"	"	
Tert-amyl methyl ether	ND	20	"	"	"	"	"	"	
Tert-butyl alcohol	ND	50	"	"	"	"	"	"	
Di-isopropyl ether	ND	20	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

D1 T110485-56 (Soil)

	Reporting							
Analyte Resul	t Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by EPA Method 8260B

Ethyl tert-butyl ether	ND	20	ug/kg	1	1042220	04/22/11	04/23/11	EPA 8260B
Methyl tert-butyl ether	ND	20	"	"	"	"	"	"
Surrogate: Toluene-d8		99.9 %	85.5-1	16	"	"	"	"
Surrogate: 4-Bromofluorobenzene		106 %	75.1-12	21	"	"	"	"
Surrogate: Dibromofluoromethane		106 %	90-13	5	"	"	"	"

SunStar Laboratories, Inc.

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

Reporting

D2 T110485-57 (Soil)

Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aborator	ries, Inc.					
Purgeable Petroleum Hydrocarb	ons by EPA 8015C								
C6-C12 (GRO)	ND	500	ug/kg	1	1042225	04/22/11	04/23/11	EPA 8015C	
Surrogate: 4-Bromofluorobenzene		102 %	72.6	-146	"	"	"	"	
Metals by EPA 6010B									
Antimony	ND	3.0	mg/kg	1	1042202	04/22/11	04/26/11	EPA 6010B	
Silver	ND	2.0	"	"	"	"	"	"	
Arsenic	ND	5.0	"	"	"	"	"	"	
Barium	290	1.0	"	"	"	"	"	"	
Beryllium	ND	1.0	"	"	"	"	"	"	
Cadmium	ND	2.0	"	"	"	"	"	"	
Chromium	35	2.0	"	"	"	"	"	"	
Cobalt	13	2.0	"	"	"	"	"	"	
Copper	21	1.0	"	"	"	"	"	"	
Lead	4.9	3.0	"	"	"	"	"	"	
Molybdenum	ND	1.0	"	"	"	"	"	"	
Nickel	35	2.0	"	"	"	"	"	"	
Selenium	ND	5.0	"	"	"	"	"	"	
Thallium	ND	2.0	"	"	"	"	"	"	
Vanadium	60	5.0	"	"	"	"	"	"	
Zinc	50	1.0	"	"	"	"	"	"	
Cold Vapor Extraction EPA 747	0/7471								
Mercury	ND	0.10	mg/kg	1	1050601	04/26/11	04/26/11	EPA 7471A Soil	
Volatile Organic Compounds by	EPA Method 8260	В							
Benzene	ND	5.0	ug/kg	1	1042220	04/22/11	04/23/11	EPA 8260B	
Toluene	ND	5.0	"	"	"	"	"	"	
Ethylbenzene	ND	5.0	"	"	"	"	"	"	
m,p-Xylene	ND	5.0	"	"	"	"	"	"	
o-Xylene	ND	5.0	"	"	"	"	"	"	
Tert-amyl methyl ether	ND	20	"	"	"	"	"	"	
Tert-butyl alcohol	ND	50	"	"	"	"	"	"	
Di-isopropyl ether	ND	20	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Saviel of Chivy

Engeo Project: 1000 N. Vasco Rd.

 2213 Plaza Dr.
 Project Number: 7380.000.003
 Reported:

 Rocklin CA, 95765
 Project Manager: Morgan Johnson
 04/29/11 11:23

D2 T110485-57 (Soil)

	Reporting							
Analyte Resi	lt Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by EPA Method 8260B

Ethyl tert-butyl ether	ND	20	ug/kg	1	1042220	04/22/11	04/23/11	EPA 8260B
Methyl tert-butyl ether	ND	20	"	"	"	"	"	"
Surrogate: Toluene-d8		98.1 %	85.5-1	16	"	"	"	"
Surrogate: 4-Bromofluorobenzene		106 %	75.1-1	21	"	"	"	"
Surrogate: Dibromofluoromethane		112 %	90-13	5	"	"	"	"

SunStar Laboratories, Inc.

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

D3 T110485-58 (Soil)

Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
1	SunStar L	aborator	ies, Inc.					
s by EPA 8015C								
ND	500	ug/kg	1	1042225	04/22/11	04/23/11	EPA 8015C	
	106 %	72.6	-146	"	"	"	"	
ND	3.0	mg/kg	1	1042202	04/22/11	04/26/11	EPA 6010B	
ND	2.0	"	"	"	"	"	"	
ND	5.0	"	"	"	"	"	"	
210	1.0	"	"	"	"	"	"	
ND	1.0	"	"	"	"	"	"	
ND	2.0	"	"	"	"	"	"	
34	2.0	"	"	"	"	"	"	
11	2.0	"	"	"	"	"	"	
18	1.0	"	"	"	"	"	"	
ND	3.0	"	"	"	"	"	"	
ND	1.0	"	"	"	"	"	"	
36	2.0	"	"	"	"	"	"	
ND	5.0	"	"	"	"	"	"	
ND	2.0	"	"	"	"	"	"	
50	5.0	"	"	"	"	"	"	
44	1.0	"	"	"	"	"	"	
471								
ND	0.10	mg/kg	1	1050601	04/26/11	04/26/11	EPA 7471A Soil	
PA Method 8260	В							
ND	5.0	ug/kg	1	1042220	04/22/11	04/23/11	EPA 8260B	-
ND	5.0	"	"	"	"	"	"	
ND	5.0	"	"	"	"	"	"	
ND	5.0	"	"	"	"	"	"	
ND	5.0	"	"	"	"	"	"	
ND	20	"	"	"	"	"	"	
		"	"	"	"	"	"	
ND	20	"	"	"	"	"	"	
	ND N	ND SunStar Land	ND SunStar Laborator SunStar Laborator	Result Limit Units Dilution	ND Sun Sun	Result	ND Sun Sun	Result

SunStar Laboratories, Inc.

Saviel of Chivy

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

D3 T110485-58 (Soil)

	Reporting							
Analyte Resi	lt Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by EPA Method 8260B

Ethyl tert-butyl ether	ND	20	ug/kg	1	1042220	04/22/11	04/23/11	EPA 8260B
Methyl tert-butyl ether	ND	20	"	"	"	"	"	"
Surrogate: Toluene-d8		101 %	85.5-1	16	"	"	"	"
Surrogate: 4-Bromofluorobenzene		103 %	75.1-1	21	"	"	"	"
Surrogate: Dibromofluoromethane		108 %	90-13	5	"	"	"	"

SunStar Laboratories, Inc.

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

D4 T110485-59 (Soil)

Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
	SunStar L	aborator	ies, Inc.					
s by EPA 8015C	,							
ND	500	ug/kg	1	1042225	04/22/11	04/23/11	EPA 8015C	
	107 %	72.6	-146	"	"	"	"	
ND	3.0	mg/kg	1	1042202	04/22/11	04/26/11	EPA 6010B	
ND	2.0	"	"	"	"	"	"	
ND	5.0	"	"	"	"	"	"	
250	1.0	"	"	"	"	"	"	
ND	1.0	"	"	"	"	"	"	
ND	2.0	"	"	"	"	"	"	
35	2.0	"	"	"	"	"	"	
12	2.0	"	"	"	"	"	"	
20	1.0	"	"	"	"	"	"	
ND	3.0	"	"	"	"	"	m .	
ND	1.0	"	"	"	"	"	"	
36	2.0	"	"	"	"	"	"	
ND	5.0	"	"	"	"	"	"	
ND	2.0	"	"	"	"	"	"	
59	5.0	"	"	"	"	"	"	
49	1.0	"	"	"	"	"	"	
471								
ND	0.10	mg/kg	1	1050601	04/26/11	04/26/11	EPA 7471A Soil	
A Method 8260	В							
ND	5.0	ug/kg	1	1042220	04/22/11	04/23/11	EPA 8260B	
ND	5.0	"	"	"	"	"	"	
ND	5.0	"	"	"	"	"	"	
ND	5.0	"	"	"	"	"	"	
ND	5.0	"	"	"	"	"	"	
ND	20	"	"	"	"	"	"	
ND		"		"	"	"	"	
ND	20	"	"	"	"	"	"	
	ND N	ND Son Son	ND SumStar Laborator SumStar Laborator	Result Limit Units Dilution	ND Sun Sun	Result Limit Units Dilution Batch Prepared	ND Sunstant Suns	Result

SunStar Laboratories, Inc.

Saviel of Chivy

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

D4 T110485-59 (Soil)

	Reporting							
Analyte Resu	t Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by EPA Method 8260B

Ethyl tert-butyl ether	ND	20	ug/kg	1	1042220	04/22/11	04/23/11	EPA 8260B
Methyl tert-butyl ether	ND	20	"	"	"	"	"	"
Surrogate: Toluene-d8		97.9 %	85.5-1	16	"	"	"	"
Surrogate: 4-Bromofluorobenzene		106 %	75.1-1	21	"	"	"	"
Surrogate: Dibromofluoromethane		110 %	90-13	5	"	"	"	"

SunStar Laboratories, Inc.

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

D5 T110485-60 (Soil)

Reporting

Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	1	SunStar L	aborator	ries, Inc.					
Purgeable Petroleum Hydrocarbo	ons by EPA 8015C								
C6-C12 (GRO)	ND	500	ug/kg	1	1042225	04/22/11	04/23/11	EPA 8015C	
Surrogate: 4-Bromofluorobenzene		104 %	72.6	-146	"	"	"	"	
Metals by EPA 6010B									
Antimony	ND	3.0	mg/kg	1	1042202	04/22/11	04/26/11	EPA 6010B	
Silver	ND	2.0	"	"	"	"	"	"	
Arsenic	ND	5.0	"	"	"	"	"	"	
Barium	250	1.0	"	"	"	"	"	"	
Beryllium	ND	1.0	"	"	"	"	"	"	
Cadmium	ND	2.0	"	"	"	"	"	"	
Chromium	32	2.0	"	"	"	"	"	"	
Cobalt	11	2.0	"	"	"	"	"	"	
Copper	17	1.0	"	"	"	"	"	"	
Lead	ND	3.0	"	"	"	"	"	"	
Molybdenum	ND	1.0	"	"	"	"	"	"	
Nickel	30	2.0	"	"	"	"	"	"	
Selenium	ND	5.0	"	"	"	"	"	"	
Thallium	ND	2.0	"	"	"	"	"	"	
Vanadium	53	5.0	"	"	"	"	"	"	
Zinc	43	1.0	"	"	"	"	"	"	
Cold Vapor Extraction EPA 7470	/7471								
Mercury	ND	0.10	mg/kg	1	1050601	04/26/11	04/26/11	EPA 7471A Soil	
Volatile Organic Compounds by I	EPA Method 8260	В							
Benzene	ND	5.0	ug/kg	1	1042220	04/22/11	04/23/11	EPA 8260B	_
Toluene	ND	5.0	"	"	"	"	"	"	
Ethylbenzene	ND	5.0	"	"	"	"	"	"	
m,p-Xylene	ND	5.0	"	"	"	"	"	"	
o-Xylene	ND	5.0	"	"	"	"	"	"	
Tert-amyl methyl ether	ND	20	"	"	"	"	"	"	
Tert-butyl alcohol	ND	50	"	"	"	"	"	"	
Di-isopropyl ether	ND	20	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Saviel of Chivy

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

D5 T110485-60 (Soil)

	Reporting							
Analyte Resi	lt Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by EPA Method 8260B

Ethyl tert-butyl ether	ND	20	ug/kg	1	1042220	04/22/11	04/23/11	EPA 8260B
Methyl tert-butyl ether	ND	20	"	"	"	"	"	"
Surrogate: Toluene-d8		98.5 %	85.5-1	16	"	"	"	"
Surrogate: 4-Bromofluorobenzene		105 %	75.1-1	21	"	"	"	"
Surrogate: Dibromofluoromethane		110 %	90-13	5	"	"	"	"

SunStar Laboratories, Inc.

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

Reporting

D6 T110485-61 (Soil)

Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	1	SunStar L	aborator	ries, Inc.					
Purgeable Petroleum Hydrocarbo	ns by EPA 8015C								
C6-C12 (GRO)	ND	500	ug/kg	1	1042225	04/22/11	04/23/11	EPA 8015C	
Surrogate: 4-Bromofluorobenzene		102 %	72.6	-146	"	"	"	"	
Metals by EPA 6010B									
Antimony	ND	3.0	mg/kg	1	1042202	04/22/11	04/26/11	EPA 6010B	
Silver	ND	2.0	"	"	"	"	"	"	
Arsenic	ND	5.0	"	"	"	"	"	"	
Barium	260	1.0	"	"	"	"	"	"	
Beryllium	ND	1.0	"	"	"	"	"	"	
Cadmium	ND	2.0	"	"	"	"	"	"	
Chromium	32	2.0	"	"	"	"	"	"	
Cobalt	12	2.0	"	"	"	"	"	"	
Copper	20	1.0	"	"	"	"	"	"	
Lead	ND	3.0	"	"	"	"	"	"	
Molybdenum	ND	1.0	"	"	"	"	"	"	
Nickel	35	2.0	"	"	"	"	"	n .	
Selenium	ND	5.0	"	"	"	"	"	"	
Thallium	ND	2.0	"	"	"	"	"	"	
Vanadium	56	5.0	"	"	"	"	"	"	
Zinc	48	1.0	"	"	"	"	"	"	
Cold Vapor Extraction EPA 7470	/7471								
Mercury	ND	0.10	mg/kg	1	1050601	04/26/11	04/26/11	EPA 7471A Soil	
Volatile Organic Compounds by E	EPA Method 8260	В							
Benzene	ND	5.0	ug/kg	1	1042220	04/22/11	04/23/11	EPA 8260B	
Toluene	ND	5.0	"	"	"	"	"	"	
Ethylbenzene	ND	5.0	"	"	"	"	"	"	
m,p-Xylene	ND	5.0	"	"	"	"	"	"	
o-Xylene	ND	5.0	"	"	"	"	"	"	
Tert-amyl methyl ether	ND	20	"	"	"	"	"	"	
Tert-butyl alcohol	ND	50	"	"	"	"	"	"	
Di-isopropyl ether	ND	20	"	"	"	"	"	"	

Daniel Chavez For John Shepler, Laboratory Director

SunStar Laboratories, Inc.

Saviel of Chivy

The results in this report apply to the samples analyzed in accordance with the chain of

custody document. This analytical report must be reproduced in its entirety.

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

D6 T110485-61 (Soil)

ı									
		Reporting							
	Analyte Res	ult Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by EPA Method 8260B

Ethyl tert-butyl ether	ND	20	ug/kg	1	1042220	04/22/11	04/23/11	EPA 8260B
Methyl tert-butyl ether	ND	20	"	"	"	"	"	"
Surrogate: Toluene-d8		101 %	85.5-1	16	"	"	"	"
Surrogate: 4-Bromofluorobenzene		108 %	75.1-1.	21	"	"	"	"
Surrogate: Dibromofluoromethane		115 %	90-13	5	"	"	"	"

SunStar Laboratories, Inc.

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

Reporting

D7 T110485-62 (Soil)

Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aborator	ries, Inc.					
Purgeable Petroleum Hydrocarb	ons by EPA 8015C								
C6-C12 (GRO)	ND	500	ug/kg	1	1042225	04/22/11	04/23/11	EPA 8015C	
Surrogate: 4-Bromofluorobenzene		107 %	72.6	-146	"	"	"	"	
Metals by EPA 6010B									
Antimony	ND	3.0	mg/kg	1	1042202	04/22/11	04/26/11	EPA 6010B	
Silver	ND	2.0	"	"	"	"	"	"	
Arsenic	ND	5.0	"	"	"	"	"	"	
Barium	270	1.0	"	"	"	"	"	"	
Beryllium	ND	1.0	"	"	"	"	04/26/11	"	
Cadmium	ND	2.0	"	"	"	"	04/26/11	"	
Chromium	33	2.0	"	"	"	"	"	"	
Cobalt	12	2.0	"	"	"	"	"	"	
Copper	19	1.0	"	"	"	"	"	"	
Lead	6.0	3.0	"	"	"	"	"	"	
Molybdenum	ND	1.0	"	"	"	"	"	"	
Nickel	34	2.0	"	"	"	"	"	"	
Selenium	ND	5.0	"	"	"	"	"	"	
Thallium	ND	2.0	"	"	"	"	"	"	
Vanadium	59	5.0	"	"	"	"	"	"	
Zinc	48	1.0	"	"	"	"	"	"	
Cold Vapor Extraction EPA 747	0/7471								
Mercury	ND	0.10	mg/kg	1	1050601	04/26/11	04/26/11	EPA 7471A Soil	
Volatile Organic Compounds by	EPA Method 8260	В							
Benzene	ND	5.0	ug/kg	1	1042220	04/22/11	04/23/11	EPA 8260B	
Toluene	ND	5.0	"	"	"	"	"	"	
Ethylbenzene	ND	5.0	"	"	"	"	"	"	
m,p-Xylene	ND	5.0	"	"	"	"	"	"	
o-Xylene	ND	5.0	"	"	"	"	"	"	
Tert-amyl methyl ether	ND	20	"	"	"	"	"	"	
Tert-butyl alcohol	ND	50	"	"	"	"	"	"	
Di-isopropyl ether	ND	20	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Saviel of Chivy

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

D7 T110485-62 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by EPA Method 8260B

Ethyl tert-butyl ether	ND	20	ug/kg	1	1042220	04/22/11	04/23/11	EPA 8260B
Methyl tert-butyl ether	ND	20	"	"	"	"	"	"
Surrogate: Toluene-d8		97.4 %	85.5-1	16	"	"	"	"
Surrogate: 4-Bromofluorobenzene		106 %	75.1-1	21	"	"	"	"
Surrogate: Dibromofluoromethane		113 %	90-13	5	"	"	"	"

SunStar Laboratories, Inc.

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

D8 T110485-63 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aborator	ies, Inc.					
Purgeable Petroleum Hydrocarbons	by EPA 8015C								
C6-C12 (GRO)	ND	500	ug/kg	1	1042225	04/22/11	04/23/11	EPA 8015C	
Surrogate: 4-Bromofluorobenzene		103 %	72.6	-146	"	"	"	"	
Metals by EPA 6010B									
Antimony	ND	3.0	mg/kg	1	1042202	04/22/11	04/26/11	EPA 6010B	
Silver	ND	2.0	"	"	"	"	"	"	
Arsenic	ND	5.0	"	"	"	"	"	"	
Barium	370	1.0	"	"	"	"	"	"	
Beryllium	ND	1.0	"	"	"	"	04/26/11	"	
Cadmium	ND	2.0	"	"	"	"	04/26/11	"	
Chromium	31	2.0	"	"	"	"	"	"	
Cobalt	12	2.0	"	"	"	"	"	"	
Copper	21	1.0	"	"	"	"	"	"	
Lead	4.1	3.0	"	"	"	"	"	"	
Molybdenum	ND	1.0	"	"	"	"	"	"	
Nickel	36	2.0	"	"	"	"	"	"	
Selenium	ND	5.0	"	"	"	"	"	"	
Thallium	ND	2.0	"	"	"	"	"	"	
Vanadium	63	5.0	"	"	"	"	"	"	
Zinc	47	1.0	"	"	"	"	"	"	
Cold Vapor Extraction EPA 7470/74	! 71								
Mercury	ND	0.10	mg/kg	1	1050601	04/26/11	04/26/11	EPA 7471A Soil	
Volatile Organic Compounds by EP	A Method 8260	В							
Benzene	ND	5.0	ug/kg	1	1042220	04/22/11	04/23/11	EPA 8260B	
Toluene	ND	5.0	"	"	"	"	"	"	
Ethylbenzene	ND	5.0	"	"	"	"	"	"	
m,p-Xylene	ND	5.0	"	"	"	"	"	"	
o-Xylene	ND	5.0	"	"	"	"	"	"	
Tert-amyl methyl ether	ND	20	"	"	"	"	"	"	
Tert-butyl alcohol	ND	50	"	"	"	"	"	"	
Di-isopropyl ether	ND	20	"	"	"	"	"	"	

Daniel Chavez For John Shepler, Laboratory Director

SunStar Laboratories, Inc.

Saviel of Chivy

The results in this report apply to the samples analyzed in accordance with the chain of

custody document. This analytical report must be reproduced in its entirety.

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

D8 T110485-63 (Soil)

	Reporting							
Analyte Resi	lt Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by EPA Method 8260B

Ethyl tert-butyl ether	ND	20	ug/kg	1	1042220	04/22/11	04/23/11	EPA 8260B
Methyl tert-butyl ether	ND	20	"	"	"	"	"	"
Surrogate: Toluene-d8		99.6 %	85.5-1	16	"	"	"	"
Surrogate: 4-Bromofluorobenzene		105 %	75.1-1	21	"	"	"	"
Surrogate: Dibromofluoromethane		111 %	90-13	5	"	"	"	"

SunStar Laboratories, Inc.

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

GP14@4' T110485-64 (Soil)

Analyte Resul	Reporting t Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	SunStar L	aborato	ries, Inc.					
Purgeable Petroleum Hydrocarbons by EPA 80	015C							
C6-C12 (GRO)	500	ug/kg	1	1042225	04/22/11	04/23/11	EPA 8015C	
Surrogate: 4-Bromofluorobenzene	106 %	72.6	-146	"	"	"	"	
Extractable Petroleum Hydrocarbons by 80150	\mathbf{C}							
C13-C28 (DRO) 20		mg/kg	1	1042214	04/22/11	04/29/11	EPA 8015C	
C29-C40 (MORO)	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl	124 %	65-	135	"	"	"	"	
Volatile Organic Compounds by EPA Method	8260B							
Bromobenzene NE	5.0	ug/kg	1	1042220	04/22/11	04/23/11	EPA 8260B	
Bromochloromethane NE	5.0	"	"	"	"	"	"	
Bromodichloromethane NE	5.0	"	"	"	"	"	"	
Bromoform NI	5.0	"	"	"	"	"	"	
Bromomethane	5.0	"	"	"	"	"	"	
n-Butylbenzene NI	5.0	"	"	"	"	"	"	
sec-Butylbenzene NI	5.0	"	"	"	"	"	"	
tert-Butylbenzene NE	5.0	"	"	"	"	"	"	
Carbon tetrachloride NE	5.0	"	"	"	"	"	"	
Chlorobenzene NE	5.0	"	"	"	"	"	"	
Chloroethane NE	5.0	"	"	"	"	"	"	
Chloroform NI	5.0	"	"	"	"	"	"	
Chloromethane NI	5.0	"	"	"	"	"	"	
2-Chlorotoluene NI	5.0	"	"	"	"	"	"	
4-Chlorotoluene NI	5.0	"	"	"	"	"	"	
Dibromochloromethane NI	5.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane NI	5.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB) NE		"	"	"	"	"	"	
Dibromomethane NI	5.0	"	"	"	"	"	"	
1,2-Dichlorobenzene NE		"	"	"	"	"	"	
1,3-Dichlorobenzene NE	5.0	"	"	"	"	"	"	
1,4-Dichlorobenzene NI	5.0	"	"	"	"	"	"	
Dichlorodifluoromethane NE		"	"	"	"	"	"	
1,1-Dichloroethane NE		"	"	"	"	"	"	

SunStar Laboratories, Inc.

Saviel & Chivy

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

GP14@4' T110485-64 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

	D	unotai D	uborutori	cs, mc.				
Volatile Organic Compounds by	EPA Method 8260B							
1,2-Dichloroethane	ND	5.0	ug/kg	1	1042220	04/22/11	04/23/11	EPA 8260B
1,1-Dichloroethene	ND	5.0	"	"	"	"	"	"
cis-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"
trans-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"
1,2-Dichloropropane	ND	5.0	"	"	"	"	"	"
1,3-Dichloropropane	ND	5.0	"	"	"	"	"	"
2,2-Dichloropropane	ND	5.0	"	"	"	"	"	"
1,1-Dichloropropene	ND	5.0	"	"	"	"	"	"
cis-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"
trans-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"
Hexachlorobutadiene	ND	5.0	"	"	"	"	"	"
Isopropylbenzene	ND	5.0	"	"	"	"	"	"
p-Isopropyltoluene	ND	5.0	"	"	"	"	"	"
Methylene chloride	ND	5.0	"	"	"	"	"	"
Naphthalene	ND	5.0	"	"	"	"	"	"
n-Propylbenzene	ND	5.0	"	"	"	"	"	"
Styrene	ND	5.0	"	"	"	"	"	"
1,1,2,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"
1,1,1,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"
Tetrachloroethene	ND	5.0	"	"	"	"	"	"
1,2,3-Trichlorobenzene	ND	5.0	"	"	"	"	"	"
1,2,4-Trichlorobenzene	ND	5.0	"	"	"	"	"	"
1,1,2-Trichloroethane	ND	5.0	"	"	"	"	"	"
1,1,1-Trichloroethane	ND	5.0	"	"	"	"	"	"
Trichloroethene	ND	5.0	"	"	"	"	"	"
Trichlorofluoromethane	ND	5.0	"	"	"	"	"	"
1,2,3-Trichloropropane	ND	5.0	"	"	"	"	"	"
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"
1,2,4-Trimethylbenzene	ND	5.0	"	"	"	"	"	"
Vinyl chloride	ND	5.0	"	"	"	"	"	"
Benzene	ND	5.0	"	"	"	"	"	"
Toluene	ND	5.0	"	"	"	"	"	"

SunStar Laboratories, Inc.

Saviel of Chivy

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

GP14@4' T110485-64 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

		Sunstar La	aboratori	es, mc.							
Volatile Organic Compounds by EPA Method 8260B											
Ethylbenzene	ND	5.0	ug/kg	1	1042220	04/22/11	04/23/11	EPA 8260B			
m,p-Xylene	ND	5.0	"	"	"	"	"	"			
o-Xylene	ND	5.0	"	"	"	"	"	"			
Tert-amyl methyl ether	ND	20	"	"	"	"	"	"			
Tert-butyl alcohol	ND	50	"	"	"	"	"	"			
Di-isopropyl ether	ND	20	"	"	"	"	"	"			
Ethyl tert-butyl ether	ND	20	"	"	"	"	"	"			
Methyl tert-butyl ether	ND	20	"	"	"	"	"	"			
Surrogate: Toluene-d8		99.4 %	85.5-	16	"	"	"	"			
Surrogate: 4-Bromofluorobenzene		105 %	75.1-	21	"	"	"	"			
Surrogate: Dibromofluoromethane		115 %	90-1.	35	"	"	"	"			

SunStar Laboratories, Inc.

Saviel of Chivy

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

GP14@6' T110485-65 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L				· F · · · · ·			
Purgeable Petroleum Hydrocarbo				105, 1110					
C6-C12 (GRO)	ND	500	ug/kg	1	1042225	04/22/11	04/23/11	EPA 8015C	
Surrogate: 4-Bromofluorobenzene		104 %	72.6	-146	"	"	"	n .	
Extractable Petroleum Hydrocark	oons by 8015C								
C13-C28 (DRO)	16	10	mg/kg	1	1042214	04/22/11	04/29/11	EPA 8015C	
C29-C40 (MORO)	20	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		112 %	65-	135	"	"	"	"	
Volatile Organic Compounds by I	EPA Method 8260	В							
Bromobenzene	ND	5.0	ug/kg	1	1042220	04/22/11	04/23/11	EPA 8260B	
Bromochloromethane	ND	5.0	"	"	"	"	"	"	
Bromodichloromethane	ND	5.0	"	"	"	"	"	"	
Bromoform	ND	5.0	"	"	"	"	"	"	
Bromomethane	ND	5.0	"	"	"	"	"	"	
n-Butylbenzene	ND	5.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	5.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	5.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	5.0	"	"	"	"	"	"	
Chlorobenzene	ND	5.0	"	"	"	"	"	"	
Chloroethane	ND	5.0	"	"	"	"	"	"	
Chloroform	ND	5.0	"	"	"	"	"	"	
Chloromethane	ND	5.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
Dibromochloromethane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	5.0	"	"	"	"	"	"	
Dibromomethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	5.0	"	"		"	"	"	
1,3-Dichlorobenzene	ND	5.0	"	"		"	"	"	
1,4-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	5.0	"	"	"	"	"	,,	
1,1 Diemoroculane	110	5.0							

SunStar Laboratories, Inc.

Saviel & Chivy

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

GP14@6' T110485-65 (Soil)

ı									
		Reporting							
	Analyte Res	ult Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

SunStar Laboratories, Inc.											
Volatile Organic Compounds by EPA Method 8260B											
1,2-Dichloroethane	ND	5.0	ug/kg	1	1042220	04/22/11	04/23/11	EPA 8260B			
1,1-Dichloroethene	ND	5.0	"	"	"	"	"	"			
cis-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"			
trans-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"			
1,2-Dichloropropane	ND	5.0	"	"	"	"	"	n .			
1,3-Dichloropropane	ND	5.0	"	"	"	"	"	"			
2,2-Dichloropropane	ND	5.0	"	"	"	"	"	"			
1,1-Dichloropropene	ND	5.0	"	"	"	"	"	n .			
cis-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"			
trans-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"			
Hexachlorobutadiene	ND	5.0	"	"	"	"	"	"			
Isopropylbenzene	ND	5.0	"	"	"	"	"	"			
p-Isopropyltoluene	ND	5.0	"	"	"	"	"	"			
Methylene chloride	ND	5.0	"	"	"	"	"	"			
Naphthalene	ND	5.0	"	"	"	"	"	"			
n-Propylbenzene	ND	5.0	"	"	"	"	"	"			
Styrene	ND	5.0	"	"	"	"	"	"			
1,1,2,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"			
1,1,1,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"			
Tetrachloroethene	ND	5.0	"	"	"	"	"	"			
1,2,3-Trichlorobenzene	ND	5.0	"	"	"	"	"	"			
1,2,4-Trichlorobenzene	ND	5.0	"	"	"	"	"	"			
1,1,2-Trichloroethane	ND	5.0	"	"	"	"	"	"			
1,1,1-Trichloroethane	ND	5.0	"	"	"	"	"	"			
Trichloroethene	ND	5.0	"	"	"	"	"	"			
Trichlorofluoromethane	ND	5.0	"	"	"	"	"	"			
1,2,3-Trichloropropane	ND	5.0	"	"	"	"	"	"			
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"			
1,2,4-Trimethylbenzene	ND	5.0	"	"	"	"	"	"			
Vinyl chloride	ND	5.0	"	"	"	"	"	"			
Benzene	ND	5.0	"	"	"	"	"	"			
Toluene	ND	5.0	"	"	"	"	"	"			

SunStar Laboratories, Inc.

Saviel of Chivy

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

GP14@6' T110485-65 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

	30	unstar L	aboratori	es, mc.							
Volatile Organic Compounds by EPA Method 8260B											
Ethylbenzene	ND	5.0	ug/kg	1	1042220	04/22/11	04/23/11	EPA 8260B			
m,p-Xylene	ND	5.0	"	"	"	"	"	"			
o-Xylene	ND	5.0	"	"	"	"	"	"			
Tert-amyl methyl ether	ND	20	"	"	"	"	"	"			
Tert-butyl alcohol	ND	50	"	"	"	"	"	"			
Di-isopropyl ether	ND	20	"	"	"	"	"	"			
Ethyl tert-butyl ether	ND	20	"	"	"	"	"	"			
Methyl tert-butyl ether	ND	20	"	"	"	"	"	n .			
Surrogate: Toluene-d8		100 %	85.5-1	116	"	"	"	"			
Surrogate: 4-Bromofluorobenzene		105 %	75.1-1	121	"	"	"	"			
Surrogate: Dibromofluoromethane		83.8 %	90-1.	35	"	"	"	"			

SunStar Laboratories, Inc.

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

GP14@12' T110485-66 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aborator	ies, Inc.					
Purgeable Petroleum Hydrocarbo	ns by EPA 80150								
C6-C12 (GRO)	ND	500	ug/kg	1	1042225	04/22/11	04/23/11	EPA 8015C	
Surrogate: 4-Bromofluorobenzene		97.3 %	72.6	-146	"	"	"	"	
Extractable Petroleum Hydrocarb	ons by 8015C								
C13-C28 (DRO)	18	10	mg/kg	1	1042214	04/22/11	04/29/11	EPA 8015C	
C29-C40 (MORO)	19	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		128 %	65-	135	"	"	"	"	
Volatile Organic Compounds by E	EPA Method 8260)B							
Bromobenzene	ND	5.0	ug/kg	1	1042220	04/22/11	04/23/11	EPA 8260B	
Bromochloromethane	ND	5.0	"	"	"	"	"	"	
Bromodichloromethane	ND	5.0	"	"	"	"	"	"	
Bromoform	ND	5.0	"	"	"	"	"	"	
Bromomethane	ND	5.0	"	"	"	"	"	"	
n-Butylbenzene	ND	5.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	5.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	5.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	5.0	"	"	"	"	"	"	
Chlorobenzene	ND	5.0	"	"	"	"	"	"	
Chloroethane	ND	5.0	"	"	"	"	"	"	
Chloroform	ND	5.0	"	"	"	"	"	"	
Chloromethane	ND	5.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
Dibromochloromethane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	5.0	"	"	"	"	"	"	
Dibromomethane	ND	5.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	5.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	5.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Saviel of Chivy

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

GP14@12' T110485-66 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

SunStar Laboratories, Inc.											
Volatile Organic Compounds by EPA Method 8260B											
1,2-Dichloroethane	ND	5.0	ug/kg	1	1042220	04/22/11	04/23/11	EPA 8260B			
1,1-Dichloroethene	ND	5.0	"	"	"	"	"	"			
cis-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"			
trans-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"			
1,2-Dichloropropane	ND	5.0	"	"	"	"	"	n .			
1,3-Dichloropropane	ND	5.0	"	"	"	"	"	"			
2,2-Dichloropropane	ND	5.0	"	"	"	"	"	"			
1,1-Dichloropropene	ND	5.0	"	"	"	"	"	n .			
cis-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"			
trans-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"			
Hexachlorobutadiene	ND	5.0	"	"	"	"	"	"			
Isopropylbenzene	ND	5.0	"	"	"	"	"	"			
p-Isopropyltoluene	ND	5.0	"	"	"	"	"	"			
Methylene chloride	ND	5.0	"	"	"	"	"	"			
Naphthalene	ND	5.0	"	"	"	"	"	"			
n-Propylbenzene	ND	5.0	"	"	"	"	"	"			
Styrene	ND	5.0	"	"	"	"	"	"			
1,1,2,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"			
1,1,1,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"			
Tetrachloroethene	ND	5.0	"	"	"	"	"	"			
1,2,3-Trichlorobenzene	ND	5.0	"	"	"	"	"	"			
1,2,4-Trichlorobenzene	ND	5.0	"	"	"	"	"	"			
1,1,2-Trichloroethane	ND	5.0	"	"	"	"	"	"			
1,1,1-Trichloroethane	ND	5.0	"	"	"	"	"	"			
Trichloroethene	ND	5.0	"	"	"	"	"	"			
Trichlorofluoromethane	ND	5.0	"	"	"	"	"	"			
1,2,3-Trichloropropane	ND	5.0	"	"	"	"	"	"			
1,3,5-Trimethylbenzene	ND	5.0	"	"	"	"	"	"			
1,2,4-Trimethylbenzene	ND	5.0	"	"	"	"	"	"			
Vinyl chloride	ND	5.0	"	"	"	"	"	"			
Benzene	ND	5.0	"	"	"	"	"	"			
Toluene	ND	5.0	"	"	"	"	"	"			

SunStar Laboratories, Inc.

Saviel of Chivy

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

GP14@12' T110485-66 (Soil)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

	51	unStar L	aboratori	es, Inc.					
Volatile Organic Compounds by El	PA Method 8260B								
Ethylbenzene	ND	5.0	ug/kg	1	1042220	04/22/11	04/23/11	EPA 8260B	
m,p-Xylene	ND	5.0	"	"	"	"	"	"	
o-Xylene	ND	5.0	"	"	"	"	"	"	
Tert-amyl methyl ether	ND	20	"	"	"	"	"	"	
Tert-butyl alcohol	ND	50	"	"	"	"	"	"	
Di-isopropyl ether	ND	20	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	20	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	20	"	"	"	"	"	"	
Surrogate: Toluene-d8		98.8 %	85.5-	116	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		105 %	75.1-	121	"	"	"	"	
Surrogate: Dibromofluoromethane		111 %	90-1.	35	"	"	"	"	

SunStar Laboratories, Inc.

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

MW-3 T110485-67 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aborator	ries, Inc.					
Purgeable Petroleum Hydrocarbo	ons by EPA 8015	C							
C6-C12 (GRO)	ND	50	ug/l	1	1042130	04/21/11	04/26/11	EPA 8015C	
Surrogate: 4-Bromofluorobenzene		104 %	72.6	-146	"	"	"	"	
Extractable Petroleum Hydrocarl	bons by 8015C								
C13-C28 (DRO)	ND	0.050	mg/l	1	1042129	04/21/11	04/27/11	EPA 8015C	
C29-C40 (MORO)	ND	0.10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		109 %	65-	135	"	"	"	"	
Volatile Organic Compounds by 1	EPA Method 826	0B							
Bromobenzene	ND	1.0	ug/l	1	1042128	04/21/11	04/22/11	EPA 8260B	
Bromochloromethane	ND	1.0	"	"	"	"	"	"	
Bromodichloromethane	ND	1.0	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"	"	"	
Bromomethane	ND	1.0	"	"	"	"	"	"	
n-Butylbenzene	ND	1.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	1.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"	
Chlorobenzene	ND	1.0	"	"	"	"	"	"	
Chloroethane	ND	1.0	"	"	"	"	"	"	
Chloroform	ND	1.0	"	"	"	"	"	"	
Chloromethane	ND	1.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
Dibromochloromethane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"	
Dibromomethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Saviel of Chivy

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

MW-3 T110485-67 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Volatile Organic Compounds by 1,2-Dichloroethane	ND	0.50	ug/l	1	1042128	04/21/11	04/22/11	EPA 8260B
1,1-Dichloroethene	ND ND	1.0	ug/1	1 "	1042128	U4/21/11 "	U4/22/11 "	EPA 8200D
cis-1,2-Dichloroethene	ND ND	1.0	"	"	,,	,,	"	"
rans-1,2-Dichloroethene	ND ND	1.0	"	,,	,,	,,	"	,,
1,2-Dichloropropane	ND	1.0	"	,,	,,	,,	"	"
1,3-Dichloropropane	ND	1.0	"	"	,,	,,	"	"
2,2-Dichloropropane	ND	1.0	"	"	"	"	"	"
1,1-Dichloropropene	ND	1.0	"	"	,,	,,	"	"
cis-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"
rans-1,3-Dichloropropene	ND	0.50	"	"	"	,,	"	"
Hexachlorobutadiene	ND	1.0	"	"	"	,,	"	"
sopropylbenzene	ND	1.0	"	"	"	"	"	"
o-Isopropyltoluene	ND	1.0	"	"	"	"	"	,,
Methylene chloride	ND	1.0	"	"	"	"	"	"
Naphthalene	ND	1.0	"	"	"	"	"	"
n-Propylbenzene	ND	1.0	"	"	"	"	"	"
Styrene	ND	1.0	"	"	"	"	"	"
1,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
1,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"
Tetrachloroethene	ND	1.0	"	"	"	"	"	"
1,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
1,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"
1,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"
Frichloroethene	1.2	1.0	"	"	"	"	"	"
Trichlorofluoromethane	ND	1.0	"	"	"	"	"	"
1,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"
1,3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
1,2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"
Vinyl chloride	ND	1.0	"	"	"	"	"	"
Benzene	ND	0.50	"	"	"	"	"	"
Γoluene	ND	0.50	"	"	"	"	"	"

SunStar Laboratories, Inc.

Saviel of Chivy

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

MW-3 T110485-67 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

		builbear Le	abol atol i	cs, 111c.					
Volatile Organic Compounds by E	PA Method 8260	В							
Ethylbenzene	ND	0.50	ug/l	1	1042128	04/21/11	04/22/11	EPA 8260B	
m,p-Xylene	ND	1.0	"	"	"	"	"	"	
o-Xylene	ND	0.50	"	"	"	"	"	"	
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"	
Tert-butyl alcohol	ND	10	"	"	"	"	"	"	
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"	
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"	
Surrogate: Toluene-d8		98.9 %	84.7-109		"	"	"	"	
Surrogate: 4-Bromofluorobenzene		102 %	83.5-	119	"	"	"	"	
Surrogate: Dibromofluoromethane		104 %	81.1-	136	"	"	"	"	

SunStar Laboratories, Inc.

Project: 1000 N. Vasco Rd. Engeo

2213 Plaza Dr. Project Number: 7380.000.003 Reported: Rocklin CA, 95765 Project Manager: Morgan Johnson 04/29/11 11:23

Reporting

GP11-GW T110485-68 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		SunStar La	aboratoi	ries, Inc.					
Purgeable Petroleum Hydrocarbons	by EPA 8015C								
C6-C12 (GRO)	110	50	ug/l	1	1042130	04/21/11	04/26/11	EPA 8015C	
Surrogate: 4-Bromofluorobenzene		113 %	72.6	-146	"	"	"	"	
Extractable Petroleum Hydrocarbon	ns by 8015C								
C13-C28 (DRO)	ND	0.050	mg/l	1	1042129	04/21/11	04/27/11	EPA 8015C	
C29-C40 (MORO)	ND	0.10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		132 %	65-	135	"	"	"	"	
Volatile Organic Compounds by EP	A Method 8260	В							
Bromobenzene	ND	1.0	ug/l	1	1042128	04/21/11	04/22/11	EPA 8260B	
Bromochloromethane	ND	1.0	"	"	"	"	"	"	
Bromodichloromethane	ND	1.0	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"	"	"	
Bromomethane	ND	1.0	"	"	"	"	"	"	
n-Butylbenzene	ND	1.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	1.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.50	"	"	"	"	"	"	
Chlorobenzene	ND	1.0	"	"	"	"	"	"	
Chloroethane	ND	1.0	"	"	"	"	"	"	
Chloroform	ND	1.0	"	"	"	"	"	"	
Chloromethane	ND	1.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
Dibromochloromethane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"	
Dibromomethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	0.50	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

GP11-GW T110485-68 (Water)

	Reporting							
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

	S	unstai La	idoi atoi i	es, IIIc.					
Volatile Organic Compounds by	EPA Method 8260B								
1,2-Dichloroethane	ND	0.50	ug/l	1	1042128	04/21/11	04/22/11	EPA 8260B	
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	1.0	"	"	"	"	"	"	
1,3-Dichloropropane	ND	1.0	"	"	"	"	"	"	
2,2-Dichloropropane	ND	1.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	1.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.50	"	"	"	"	"	"	
Hexachlorobutadiene	ND	1.0	"	"	"	"	"	"	
Isopropylbenzene	ND	1.0	"	"	"	"	"	"	
p-Isopropyltoluene	ND	1.0	"	"	"	"	"	"	
Methylene chloride	ND	1.0	"	"	"	"	"	"	
Naphthalene	ND	1.0	"	"	"	"	"	"	
n-Propylbenzene	ND	1.0	"	"	"	"	"	"	
Styrene	ND	1.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"	
Tetrachloroethene	ND	1.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"	
Trichloroethene	ND	1.0	"	"	"	"	"	"	
Trichlorofluoromethane	ND	1.0	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"	
Vinyl chloride	ND	1.0	"	"	"	"	"	"	
Benzene	ND	0.50	"	"	"	"	"	"	
Toluene	ND	0.50	"	"	"	"	"	u .	

SunStar Laboratories, Inc.

Saviel of Chivy

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

GP11-GW T110485-68 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

SunStar Laboratories, Inc.

Sunstai Laboratories, inc.														
Volatile Organic Compounds by EPA Method 8260B														
Ethylbenzene	ND	0.50	ug/l	1	1042128	04/21/11	04/22/11	EPA 8260B						
m,p-Xylene	ND	1.0	"	"	"	"	"	"						
o-Xylene	ND	0.50	"	"	"	"	"	"						
Tert-amyl methyl ether	ND	2.0	"	"	"	"	"	"						
Tert-butyl alcohol	ND	10	"	"	"	"	"	"						
Di-isopropyl ether	ND	2.0	"	"	"	"	"	"						
Ethyl tert-butyl ether	ND	2.0	"	"	"	"	"	"						
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"						
Surrogate: Toluene-d8		97.6 %	84.7-	109	"	"	"	"						
Surrogate: 4-Bromofluorobenzene		102 %	83.5-	119	"	"	"	"						
Surrogate: Dibromofluoromethane		104 %	81.1-	136	"	"	"	"						

SunStar Laboratories, Inc.

Engeo Project: 1000 N. Vasco Rd.
2213 Plaza Dr. Project Number: 7380.000.003

Rocklin CA, 95765 Project Manager: Morgan Johnson

Reported: 04/29/11 11:23

COMPOSITE T110485-69 (Soil)

1110485-09 (8011)													
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note				
		SunStar L	aborator	ries, Inc.									
Purgeable Petroleum Hydrocarbons	s by EPA 8015C	l ·											
C6-C12 (GRO)	ND	500	ug/kg	1	1042225	04/22/11	04/23/11	EPA 8015C					
Surrogate: 4-Bromofluorobenzene		92.2 %	72.6	-146	"	"	"	n .					
Extractable Petroleum Hydrocarbo	ns by 8015C												
C13-C28 (DRO)	34	10	mg/kg	1	1042214	04/22/11	04/29/11	EPA 8015C					
C29-C40 (MORO)	39	10	"	"	"	"	"	"					
Surrogate: p-Terphenyl		116 %	65-	135	"	"	"	"					
Polychlorinated Biphenyls by EPA	Method 8082												
PCB-1016	ND	10	ug/kg	1	1042504	04/25/11	04/28/11	EPA 8082					
PCB-1221	ND	10	"	"	"	"	"	"					
PCB-1232	ND	10	"	"	"	"	"	"					
PCB-1242	ND	10	"	"	"	"	"	"					
PCB-1248	ND	10	"	"	"	"	"	"					
PCB-1254	ND	10	"	"	"	"	"	"					
PCB-1260	ND	10	"	"	"	"	"	"					
Surrogate: Tetrachloro-meta-xylene		112 %	35-	140	"	"	"	"					

SunStar Laboratories, Inc.

Saviel of Chivy

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

Purgeable Petroleum Hydrocarbons by EPA 8015C - Quality Control SunStar Laboratories, Inc.

A 1.	D 1:	Reporting	TT 14	Spike	Source	0/ DEC	%REC	DDD	RPD	N
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1042126 - EPA 5030 GC										
Blank (1042126-BLK1)				Prepared:	04/21/11	Analyzed	d: 04/26/11			
C6-C12 (GRO)	ND	500	ug/kg							
Surrogate: 4-Bromofluorobenzene	443		"	500		88.6	72.6-146			
LCS (1042126-BS1)				Prepared:	04/21/11	Analyzed	d: 04/26/11			
C6-C12 (GRO)	13700	500	ug/kg	13800		99.8	75-125			
Surrogate: 4-Bromofluorobenzene	444		"	500		88.9	72.6-146			
Matrix Spike (1042126-MS1)	So	urce: T11048	35-20	Prepared:	04/21/11	Analyzed	d: 04/26/11			
C6-C12 (GRO)	13500	500	ug/kg	13800	58.4	97.9	65-135			
Surrogate: 4-Bromofluorobenzene	441		"	500		88.3	72.6-146			
Matrix Spike Dup (1042126-MSD1)	So	urce: T11048	35-20	Prepared:	04/21/11	Analyzed	d: 04/26/11			
C6-C12 (GRO)	12100	500	ug/kg	13800	58.4	87.3	65-135	11.4	20	
Surrogate: 4-Bromofluorobenzene	449		"	500		89.9	72.6-146			
Batch 1042130 - EPA 5030 GC										
Blank (1042130-BLK1)				Prepared:	04/21/11	Analyzed	d: 04/26/11			
C6-C12 (GRO)	ND	50	ug/l							
Surrogate: 4-Bromofluorobenzene	95.3		"	100		95.3	72.6-146			
LCS (1042130-BS1)				Prepared:	04/21/11	Analyzed	d: 04/26/11			
C6-C12 (GRO)	5440	50	ug/l	5500		99.0	75-125			
Surrogate: 4-Bromofluorobenzene	88.0		"	100		88.0	72.6-146			
LCS Dup (1042130-BSD1)				Prepared:	04/21/11	Analyzed	d: 04/26/11			
C6-C12 (GRO)	5710	50	ug/l	5500		104	75-125	4.71	20	
Surrogate: 4-Bromofluorobenzene	107		"	100		107	72.6-146			

SunStar Laboratories, Inc.

Saviel of Chivy

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

Purgeable Petroleum Hydrocarbons by EPA 8015C - Quality Control SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1042224 - EPA 5030 GC										
Blank (1042224-BLK1)				Prepared:	04/22/11	Analyze	d: 04/27/11			
C6-C12 (GRO)	ND	500	ug/kg							
Surrogate: 4-Bromofluorobenzene	543		"	500		109	72.6-146			
LCS (1042224-BS1)				Prepared:	04/22/11	Analyze	d: 04/27/11			
C6-C12 (GRO)	14300	500	ug/kg	13800		104	75-125			
Surrogate: 4-Bromofluorobenzene	571		"	500		114	72.6-146			
LCS Dup (1042224-BSD1)				Prepared:	04/22/11	Analyze	d: 04/27/11			
C6-C12 (GRO)	14300	500	ug/kg	13800		104	75-125	0.242	20	
Surrogate: 4-Bromofluorobenzene	567		"	500		113	72.6-146			
Batch 1042225 - EPA 5030 GC										
Blank (1042225-BLK1)				Prepared:	04/22/11	Analyze	d: 04/23/11			
C6-C12 (GRO)	ND	500	ug/kg							
Surrogate: 4-Bromofluorobenzene	236		"	250		94.4	72.6-146			
LCS (1042225-BS1)				Prepared:	04/22/11	Analyze	d: 04/23/11			
C6-C12 (GRO)	12600	500	ug/kg	13800		91.5	75-125			
Surrogate: 4-Bromofluorobenzene	240		"	250		96.0	72.6-146			
LCS Dup (1042225-BSD1)				Prepared:	04/22/11	Analyze	d: 04/23/11			
C6-C12 (GRO)	12200	500	ug/kg	13800		88.8	75-125	3.06	20	
Surrogate: 4-Bromofluorobenzene	228		"	250		91.3	72.6-146			

SunStar Laboratories, Inc.

Saviel of Chivy

Engeo Project: 1000 N. Vasco Rd.

 2213 Plaza Dr.
 Project Number: 7380.000.003
 Reported:

 Rocklin CA, 95765
 Project Manager: Morgan Johnson
 04/29/11 11:23

Extractable Petroleum Hydrocarbons by 8015C - Quality Control SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1042125 - EPA 3550B GC									<u> </u>	
Blank (1042125-BLK1)				Prepared:	04/21/11	Analyzed	d: 04/27/11			
C13-C28 (DRO)	ND	10	mg/kg							
C29-C40 (MORO)	ND	10	"							
Surrogate: p-Terphenyl	125		"	100		125	65-135			
LCS (1042125-BS1)				Prepared:	04/21/11	Analyzed	d: 04/27/11			
C13-C28 (DRO)	490	10	mg/kg	500		97.3	75-125			
Surrogate: p-Terphenyl	121		"	100		121	65-135			
Matrix Spike (1042125-MS1)	Sour	rce: T11048	35-20	Prepared:	04/21/11	Analyzed	d: 04/28/11			
C13-C28 (DRO)	490	10	mg/kg	500	ND	97.7	75-125			
Surrogate: p-Terphenyl	119		"	100		119	65-135			
Matrix Spike Dup (1042125-MSD1)	Sour	rce: T11048	35-20	Prepared:	04/21/11	Analyzed	d: 04/28/11			
C13-C28 (DRO)	470	10	mg/kg	500	ND	94.1	75-125	3.83	20	
Surrogate: p-Terphenyl	117		"	100		117	65-135			
Batch 1042129 - EPA 3510C GC										
Blank (1042129-BLK1)				Prepared:	04/21/11	Analyzed	d: 04/28/11			
C13-C28 (DRO)	ND	0.050	mg/l	•		-				
C29-C40 (MORO)	ND	0.10	"							
Surrogate: p-Terphenyl	4.68		"	4.00		117	65-135			
LCS (1042129-BS1)				Prepared:	04/21/11	Analyzed	d: 04/27/11			
C13-C28 (DRO)	16.9	0.050	mg/l	20.0		84.5	75-125			
Surrogate: p-Terphenyl	4.24		"	4.00		106	65-135			

SunStar Laboratories, Inc.

Saviel of Chivy

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

Extractable Petroleum Hydrocarbons by 8015C - Quality Control SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1042129 - EPA 3510C GC										
LCS Dup (1042129-BSD1)				Prepared:	04/21/11	Analyzed	1: 04/27/11			
C13-C28 (DRO)	23.1	0.050	mg/l	20.0		115	75-125	30.8	20	QR-02
Surrogate: p-Terphenyl	4.50		"	4.00		112	65-135			
Batch 1042212 - EPA 3550B GC										
Blank (1042212-BLK1)				Prepared:	04/22/11	Analyzed	1: 04/28/11			
C13-C28 (DRO)	ND	10	mg/kg							
C29-C40 (MORO)	ND	10	"							
Surrogate: p-Terphenyl	135		"	100		135	65-135			
LCS (1042212-BS1)				Prepared:	04/22/11	Analyzed	1: 04/28/11			
C13-C28 (DRO)	500	10	mg/kg	500		99.1	75-125			
Surrogate: p-Terphenyl	122		"	100		122	65-135			
LCS Dup (1042212-BSD1)				Prepared:	04/22/11	Analyzed	1: 04/28/11			
C13-C28 (DRO)	490	10	mg/kg	500		98.5	75-125	0.580	20	
Surrogate: p-Terphenyl	125		"	100		125	65-135			
Batch 1042214 - EPA 3550B GC										
Blank (1042214-BLK1)				Prepared:	04/22/11	Analyzed	1: 04/28/11			
C13-C28 (DRO)	ND	10	mg/kg							
C29-C40 (MORO)	ND	10	"							
Surrogate: p-Terphenyl	101		"	100		101	65-135			
LCS (1042214-BS1)				Prepared:	04/22/11	Analyzed	d: 04/29/11			
C13-C28 (DRO)	510	10	mg/kg	500		102	75-125			
Surrogate: p-Terphenyl	107		"	100		107	65-135			

SunStar Laboratories, Inc.

Saniel & Chivy

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

Extractable Petroleum Hydrocarbons by 8015C - Quality Control SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1042214 - EPA 3550B GC										
LCS Dup (1042214-BSD1)				Prepared:	04/22/11	Analyzed	1: 04/29/11			
C13-C28 (DRO)	500	10	mg/kg	500		99.8	75-125	2.52	20	
Surrogate: p-Terphenyl	110		"	100		110	65-135			

SunStar Laboratories, Inc.

Saviel of Chivy

RPD

%REC

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr. Project Number: 7380.000.003 Reported: Rocklin CA, 95765 Project Manager: Morgan Johnson 04/29/11 11:23

Metals by EPA 6010B - Quality Control

SunStar Laboratories, Inc.

Reporting

Spike

Source

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1042202 - EPA 3051										
Blank (1042202-BLK1)				Prepared:	04/22/11	Analyzed	: 04/26/11			
Antimony	ND	3.0	mg/kg							
Silver	ND	2.0	"							
Arsenic	ND	5.0	"							
Barium	ND	1.0	"							
Beryllium	ND	1.0	"							
Cadmium	ND	2.0	"							
Chromium	ND	2.0	"							
Cobalt	ND	2.0	"							
Copper	ND	1.0	"							
Lead	ND	3.0	"							
Molybdenum	ND	1.0	"							
Nickel	ND	2.0	"							
Selenium	ND	5.0	"							
Гhallium	ND	2.0	"							
Vanadium	ND	5.0	"							
Zinc	ND	1.0	"							
LCS (1042202-BS1)				Prepared:	04/22/11	Analyzed	: 04/26/11			
Arsenic	102	5.0	mg/kg	100		102	75-125			
Barium	101	1.0	"	100		101	75-125			
Cadmium	101	2.0	"	100		101	75-125			
Chromium	100	2.0	"	100		100	75-125			
Lead	103	3.0	"	100		103	75-125			
LCS Dup (1042202-BSD1)				Prepared:	04/22/11	Analyzed	: 04/26/11			
Arsenic	108	5.0	mg/kg	100		108	75-125	5.60	20	
Barium	108	1.0	"	100		108	75-125	6.19	20	
Cadmium	107	2.0	"	100		107	75-125	6.03	20	
Chromium	106	2.0	"	100		106	75-125	6.09	20	
Lead	108	3.0	"	100		108	75-125	3.98	20	

SunStar Laboratories, Inc.

Saviel of Chivy

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

Cold Vapor Extraction EPA 7470/7471 - Quality Control SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1050601 - EPA 7471A Soil										
Blank (1050601-BLK1)				Prepared	& Analyz	ed: 04/26/	11			
Mercury	ND	0.10	mg/kg							
LCS (1050601-BS1)				Prepared	& Analyz	ed: 04/26/	11			
Mercury	0.404	0.10	mg/kg	0.417		97.0	80-120			
LCS Dup (1050601-BSD1)				Prepared	& Analyz	ed: 04/26/	11			
Mercury	0.380	0.10	mg/kg	0.417		91.1	80-120	6.22	20	

SunStar Laboratories, Inc.

Saviel of Chivy

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

Polychlorinated Biphenyls by EPA Method 8082 - Quality Control SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1042504 - EPA 3550 ECD/0	GCMS									
Blank (1042504-BLK1)				Prepared:	04/25/11	Analyzed	1: 04/28/11			
PCB-1016	ND	10	ug/kg							
PCB-1221	ND	10	"							
PCB-1232	ND	10	"							
PCB-1242	ND	10	"							
PCB-1248	ND	10	"							
PCB-1254	ND	10	"							
PCB-1260	ND	10	"							
Surrogate: Tetrachloro-meta-xylene	7.90		"	10.0		79.0	35-140			
LCS (1042504-BS1)				Prepared:	04/25/11	Analyzed	1: 04/28/11			
PCB-1016	105	10	ug/kg	100		105	40-130			
PCB-1260	70.0	10	"	100		70.0	40-130			
Surrogate: Tetrachloro-meta-xylene	9.07		"	10.0		90.7	35-140			
LCS Dup (1042504-BSD1)				Prepared:	04/25/11	Analyzed	1: 04/28/11			
PCB-1016	48.8	10	ug/kg	100		48.8	40-130	73.1	30	QR-0
PCB-1260	46.1	10	"	100		46.1	40-130	41.2	30	QR-0
Surrogate: Tetrachloro-meta-xylene	4.23		"	10.0		42.3	35-140			

SunStar Laboratories, Inc.

Saviel & Chivy

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
										•

Batch 1042121 - EPA 5030 GCMS

Blank (1042121-BLK1)			Prepared & Analyzed: 04/21/11
Bromobenzene	ND	5.0	ug/kg
Bromochloromethane	ND	5.0	n
Bromodichloromethane	ND	5.0	n
Bromoform	ND	5.0	n
Bromomethane	ND	5.0	n
n-Butylbenzene	ND	5.0	n
sec-Butylbenzene	ND	5.0	n
tert-Butylbenzene	ND	5.0	n
Carbon tetrachloride	ND	5.0	11
Chlorobenzene	ND	5.0	11
Chloroethane	ND	5.0	11
Chloroform	ND	5.0	11
Chloromethane	ND	5.0	11
2-Chlorotoluene	ND	5.0	11
4-Chlorotoluene	ND	5.0	"
Dibromochloromethane	ND	5.0	"
1,2-Dibromo-3-chloropropane	ND	5.0	"
1,2-Dibromoethane (EDB)	ND	5.0	"
Dibromomethane	ND	5.0	"
1,2-Dichlorobenzene	ND	5.0	11
1,3-Dichlorobenzene	ND	5.0	"
1,4-Dichlorobenzene	ND	5.0	"
Dichlorodifluoromethane	ND	5.0	"
1,1-Dichloroethane	ND	5.0	"
1,2-Dichloroethane	ND	5.0	"
1,1-Dichloroethene	ND	5.0	"
cis-1,2-Dichloroethene	ND	5.0	"
trans-1,2-Dichloroethene	ND	5.0	"
1,2-Dichloropropane	ND	5.0	11
1,3-Dichloropropane	ND	5.0	"
2,2-Dichloropropane	ND	5.0	"
1,1-Dichloropropene	ND	5.0	"
cis-1,3-Dichloropropene	ND	5.0	"
trans-1,3-Dichloropropene	ND	5.0	"
Hexachlorobutadiene	ND	5.0	"
Isopropylbenzene	ND	5.0	11

SunStar Laboratories, Inc.

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 1042121 - EPA 5030 GCM

Blank (1042121-BLK1)				Prepared & An	alyzed: 04/21	/11	
p-Isopropyltoluene	ND	5.0	ug/kg				
Methylene chloride	ND	5.0	"				
Naphthalene	ND	5.0	"				
n-Propylbenzene	ND	5.0	"				
Styrene	ND	5.0	"				
1,1,2,2-Tetrachloroethane	ND	5.0	"				
1,1,1,2-Tetrachloroethane	ND	5.0	"				
Tetrachloroethene	ND	5.0	"				
1,2,3-Trichlorobenzene	ND	5.0	"				
1,2,4-Trichlorobenzene	ND	5.0	"				
1,1,2-Trichloroethane	ND	5.0	"				
1,1,1-Trichloroethane	ND	5.0	"				
Trichloroethene	ND	5.0	"				
Trichlorofluoromethane	ND	5.0	"				
1,2,3-Trichloropropane	ND	5.0	"				
1,3,5-Trimethylbenzene	ND	5.0	"				
1,2,4-Trimethylbenzene	ND	5.0	"				
Vinyl chloride	ND	5.0	"				
Benzene	ND	5.0	"				
Toluene	ND	5.0	"				
Ethylbenzene	ND	5.0	"				
m,p-Xylene	ND	5.0	"				
o-Xylene	ND	5.0	"				
Tert-amyl methyl ether	ND	20	"				
Tert-butyl alcohol	ND	50	"				
Di-isopropyl ether	ND	20	"				
Ethyl tert-butyl ether	ND	20	"				
Methyl tert-butyl ether	ND	20	"				
Surrogate: Toluene-d8	38.0		"	40.0	95.0	85.5-116	
Surrogate: 4-Bromofluorobenzene	41.9		"	40.0	105	75.1-121	
Surrogate: Dibromofluoromethane	41.8		"	40.0	104	90-135	

SunStar Laboratories, Inc.

Saviel of Chivy

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1042121 - EPA 5030 GCMS										
LCS (1042121-BS1)				Prepared	& Analyz	ed: 04/21/	11			
Chlorobenzene	102	5.0	ug/kg	100		102	75-125			
1,1-Dichloroethene	86.4	5.0	"	100		86.4	75-125			
Trichloroethene	93.3	5.0	"	100		93.3	75-125			
Benzene	95.9	5.0	"	100		95.9	75-125			
Toluene	96.6	5.0	"	100		96.6	75-125			
Surrogate: Toluene-d8	38.8		"	40.0		97.0	85.5-116			
Surrogate: 4-Bromofluorobenzene	38.6		"	40.0		96.5	75.1-121			
Surrogate: Dibromofluoromethane	38.1		"	40.0		95.2	90-135			
Matrix Spike (1042121-MS1)	So	urce: T11048	Prepared	& Analyze	ed: 04/21/	11				
Chlorobenzene	98.8	5.0	ug/kg	100	ND	98.8	75-125			
1,1-Dichloroethene	94.0	5.0	"	100	ND	94.0	75-125			
Trichloroethene	105	5.0	"	100	ND	105	75-125			
Benzene	96.8	5.0	"	100	ND	96.8	75-125			
Toluene	95.1	5.0	"	100	ND	95.1	75-125			
Surrogate: Toluene-d8	38.6		"	40.0		96.5	85.5-116			
Surrogate: 4-Bromofluorobenzene	39.2		"	40.0		98.0	75.1-121			
Surrogate: Dibromofluoromethane	39.2		"	40.0		98.1	90-135			
Matrix Spike Dup (1042121-MSD1)	So	urce: T11048	35-04	Prepared	& Analyze	ed: 04/21/	11			
Chlorobenzene	103	5.0	ug/kg	100	ND	103	75-125	3.97	20	
1,1-Dichloroethene	92.8	5.0	"	100	ND	92.8	75-125	1.39	20	
Trichloroethene	93.4	5.0	"	100	ND	93.4	75-125	12.1	20	
Benzene	97.4	5.0	"	100	ND	97.4	75-125	0.618	20	
Toluene	94.3	5.0	"	100	ND	94.3	75-125	0.845	20	
Surrogate: Toluene-d8	39.1		"	40.0		97.8	85.5-116			
Surrogate: 4-Bromofluorobenzene	40.0		"	40.0		100	75.1-121			
Surrogate: Dibromofluoromethane	38.8		"	40.0		97.0	90-135			

SunStar Laboratories, Inc.

Saviel & Chivy

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
•										

Blank (1042128-BLK1)				Prepared: 04/21/11 Analyzed: 04/22/11
Bromobenzene	ND	1.0	ug/l	
Bromochloromethane	ND	1.0	"	
Bromodichloromethane	ND	1.0	"	
Bromoform	ND	1.0	"	
Bromomethane	ND	1.0	"	
n-Butylbenzene	ND	1.0	"	
sec-Butylbenzene	ND	1.0	"	
tert-Butylbenzene	ND	1.0	"	
Carbon tetrachloride	ND	0.50	"	
Chlorobenzene	ND	1.0	"	
Chloroethane	ND	1.0	"	
Chloroform	ND	1.0	"	
Chloromethane	ND	1.0	"	
2-Chlorotoluene	ND	1.0	"	
4-Chlorotoluene	ND	1.0	"	
Dibromochloromethane	ND	1.0	"	
1,2-Dibromo-3-chloropropane	ND	1.0	"	
1,2-Dibromoethane (EDB)	ND	1.0	"	
Dibromomethane	ND	1.0	"	
1,2-Dichlorobenzene	ND	1.0	"	
1,3-Dichlorobenzene	ND	1.0	"	
1,4-Dichlorobenzene	ND	1.0	"	
Dichlorodifluoromethane	ND	0.50	"	
1,1-Dichloroethane	ND	1.0	"	
1,2-Dichloroethane	ND	0.50	"	
1,1-Dichloroethene	ND	1.0	"	
cis-1,2-Dichloroethene	ND	1.0	"	
trans-1,2-Dichloroethene	ND	1.0	"	
1,2-Dichloropropane	ND	1.0	"	
1,3-Dichloropropane	ND	1.0	"	
2,2-Dichloropropane	ND	1.0	"	
1,1-Dichloropropene	ND	1.0	"	
cis-1,3-Dichloropropene	ND	0.50	"	
trans-1,3-Dichloropropene	ND	0.50	"	
Hexachlorobutadiene	ND	1.0	"	
Isopropylbenzene	ND	1.0	"	

SunStar Laboratories, Inc.

Saviel of Chivy

Analyte

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

RPD

Limit

Notes

%REC

Limits

RPD

Engeo Project: 1000 N. Vasco Rd.

Result

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

Reporting

Limit

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

Units

Spike

Level

Source

Result

%REC

Blank (1042128-BLK1)				Prepared: 04/2	1/11 Analyze	d: 04/22/11
-Isopropyltoluene	ND	1.0	ug/l			
lethylene chloride	ND	1.0	"			
aphthalene	ND	1.0	"			
Propylbenzene	ND	1.0	"			
rene	ND	1.0	"			
2,2-Tetrachloroethane	ND	1.0	"			
1,2-Tetrachloroethane	ND	1.0	"			
rachloroethene	ND	1.0	"			
,3-Trichlorobenzene	ND	1.0	"			
,4-Trichlorobenzene	ND	1.0	"			
2-Trichloroethane	ND	1.0	"			
1-Trichloroethane	ND	1.0	"			
hloroethene	ND	1.0	"			
chlorofluoromethane	ND	1.0	"			
3-Trichloropropane	ND	1.0	"			
5-Trimethylbenzene	ND	1.0	"			
4-Trimethylbenzene	ND	1.0	"			
l chloride	ND	1.0	"			
zene	ND	0.50	"			
ene	ND	0.50	"			
rlbenzene	ND	0.50	"			
Xylene	ND	1.0	"			
ylene	ND	0.50	"			
-amyl methyl ether	ND	2.0	"			
butyl alcohol	ND	10	"			
sopropyl ether	ND	2.0	"			
l tert-butyl ether	ND	2.0	"			
hyl tert-butyl ether	ND	1.0	"			
ogate: Toluene-d8	7.81		"	8.00	97.6	84.7-109
rogate: 4-Bromofluorobenzene	8.25		"	8.00	103	83.5-119
rogate: Dibromofluoromethane	7.96		"	8.00	99.5	81.1-136

SunStar Laboratories, Inc.

Saniel & Chivy

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1042128 - EPA 5030 GCMS										
LCS (1042128-BS1)				Prepared:	04/21/11	Analyzed	1: 04/22/11			
Chlorobenzene	21.8	1.0	ug/l	20.0		109	75-125			
1,1-Dichloroethene	18.3	1.0	"	20.0		91.7	75-125			
Trichloroethene	20.1	1.0	"	20.0		100	75-125			
Benzene	19.8	0.50	"	20.0		98.8	75-125			
Toluene	19.7	0.50	"	20.0		98.4	75-125			
Surrogate: Toluene-d8	7.69		"	8.00		96.1	84.7-109			
Surrogate: 4-Bromofluorobenzene	7.54		"	8.00		94.2	83.5-119			
Surrogate: Dibromofluoromethane	5.75		"	8.00		71.9	81.1-136			S-G
LCS Dup (1042128-BSD1)				Prepared:	04/21/11	Analyzed	d: 04/22/11			
Chlorobenzene	18.8	1.0	ug/l	20.0		93.8	75-125	15.0	20	
1,1-Dichloroethene	15.5	1.0	"	20.0		77.4	75-125	16.8	20	
Trichloroethene	18.2	1.0	"	20.0		90.9	75-125	10.0	20	
Benzene	18.5	0.50	"	20.0		92.6	75-125	6.37	20	
Toluene	18.1	0.50	"	20.0		90.6	75-125	8.30	20	
Surrogate: Toluene-d8	7.78		"	8.00		97.2	84.7-109			
Surrogate: 4-Bromofluorobenzene	7.87		"	8.00		98.4	83.5-119			
Surrogate: Dibromofluoromethane	7.69		"	8.00		96.1	81.1-136			
Batch 1042217 - EPA 5030 GCMS										
Blank (1042217-BLK1)				Prepared:	04/22/11	Analyzed	1: 04/26/11			
Bromobenzene	ND	5.0	ug/kg	•		•				
Bromochloromethane	ND	5.0	"							
Bromodichloromethane	ND	5.0	"							
Bromoform	ND	5.0	"							
Bromomethane	ND	5.0	"							
n-Butylbenzene	ND	5.0	"							
sec-Butylbenzene	ND	5.0	"							
tert-Butylbenzene	ND	5.0	"							
Carbon tetrachloride	ND	5.0	"							
Chlorobenzene	ND	5.0	"							
Chloroethane	ND	5.0	"							
Chloroform	ND	5.0	"							
Chloromethane	ND	5.0	"							

SunStar Laboratories, Inc.

Saviel of Chivy

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
•										

Batch 1042217 - EPA 5030 GCMS

Blank (1042217-BLK1)				Prepared: 04/22/11 Analyzed: 04/26/11
4-Chlorotoluene	ND	5.0	ug/kg	
Dibromochloromethane	ND	5.0	"	
1,2-Dibromo-3-chloropropane	ND	5.0	"	
1,2-Dibromoethane (EDB)	ND	5.0	"	
Dibromomethane	ND	5.0	"	
1,2-Dichlorobenzene	ND	5.0	"	
1,3-Dichlorobenzene	ND	5.0	"	
1,4-Dichlorobenzene	ND	5.0	"	
Dichlorodifluoromethane	ND	5.0	"	
1,1-Dichloroethane	ND	5.0	"	
1,2-Dichloroethane	ND	5.0	"	
1,1-Dichloroethene	ND	5.0	"	
cis-1,2-Dichloroethene	ND	5.0	"	
trans-1,2-Dichloroethene	ND	5.0	"	
1,2-Dichloropropane	ND	5.0	"	
1,3-Dichloropropane	ND	5.0	"	
2,2-Dichloropropane	ND	5.0	"	
1,1-Dichloropropene	ND	5.0	"	
cis-1,3-Dichloropropene	ND	5.0	"	
trans-1,3-Dichloropropene	ND	5.0	"	
Hexachlorobutadiene	ND	5.0	"	
Isopropylbenzene	ND	5.0	"	
p-Isopropyltoluene	ND	5.0	"	
Methylene chloride	ND	5.0	"	
Naphthalene	ND	5.0	"	
n-Propylbenzene	ND	5.0	"	
Styrene	ND	5.0	"	
1,1,2,2-Tetrachloroethane	ND	5.0	"	
1,1,1,2-Tetrachloroethane	ND	5.0	"	
Tetrachloroethene	ND	5.0	"	
1,2,3-Trichlorobenzene	ND	5.0	"	
1,2,4-Trichlorobenzene	ND	5.0	"	
1,1,2-Trichloroethane	ND	5.0	"	
1,1,1-Trichloroethane	ND	5.0	"	
Trichloroethene	ND	5.0	"	
Trichlorofluoromethane	ND	5.0	"	

SunStar Laboratories, Inc.

Analyte

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

RPD

Limit

Notes

%REC

Limits

RPD

Engeo Project: 1000 N. Vasco Rd.

Result

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

Reporting

Limit

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

Units

Spike

Level

Source

Result

%REC

Allaryte	Result	Lillit	Omis	Level	Result	70 KEC	Limits	ΝD	Lillit	Notes
Batch 1042217 - EPA 5030 GCMS	S									
Blank (1042217-BLK1)				Prepared:	04/22/11	Analyze	d: 04/26/11			
1,2,3-Trichloropropane	ND	5.0	ug/kg							
1,3,5-Trimethylbenzene	ND	5.0	"							
1,2,4-Trimethylbenzene	ND	5.0	"							
Vinyl chloride	ND	5.0	"							
Benzene	ND	5.0	"							
Toluene	ND	5.0	"							
Ethylbenzene	ND	5.0	"							
m,p-Xylene	ND	5.0	"							
o-Xylene	ND	5.0	"							
Tert-amyl methyl ether	ND	20	"							
Tert-butyl alcohol	ND	50	"							
Di-isopropyl ether	ND	20	"							
Ethyl tert-butyl ether	ND	20	"							
Methyl tert-butyl ether	ND	20	"							
Surrogate: Toluene-d8	39.8		"	40.0		99.4	85.5-116			
Surrogate: 4-Bromofluorobenzene	37.8		"	40.0		94.4	75.1-121			
Surrogate: Dibromofluoromethane	46.2		"	40.0		116	90-135			
LCS (1042217-BS1)				Prepared:	04/22/11	Analyze	d: 04/26/11			
Chlorobenzene	96.2	5.0	ug/kg	100		96.2	75-125			
1,1-Dichloroethene	99.4	5.0	"	100		99.4	75-125			
Trichloroethene	101	5.0	"	100		101	75-125			
Benzene	90.0	5.0	"	100		90.0	75-125			
Toluene	89.7	5.0	"	100		89.7	75-125			
Surrogate: Toluene-d8	38.4		"	40.0		96.0	85.5-116			
Surrogate: 4-Bromofluorobenzene	38.2		"	40.0		95.6	75.1-121			
Surrogate: Dibromofluoromethane	48.6		"	40.0		122	90-135			

SunStar Laboratories, Inc.

Saniel & Chivy

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1042217 - EPA 5030 GCMS										
LCS Dup (1042217-BSD1)				Prepared:	04/22/11	Analyze	d: 04/27/11			
Chlorobenzene	92.3	5.0	ug/kg	100		92.3	75-125	4.09	20	
1,1-Dichloroethene	108	5.0	"	100		108	75-125	8.30	20	
Trichloroethene	95.6	5.0	"	100		95.6	75-125	5.64	20	
Benzene	96.5	5.0	"	100		96.5	75-125	7.03	20	
Toluene	97.6	5.0	"	100		97.6	75-125	8.44	20	
Surrogate: Toluene-d8	41.4		"	40.0		104	85.5-116			
Surrogate: 4-Bromofluorobenzene	38.2		"	40.0		95.6	75.1-121			
Surrogate: Dibromofluoromethane	47.3		"	40.0		118	90-135			
Batch 1042220 - EPA 5030 GCMS										
Blank (1042220-BLK1)				Prepared:	04/22/11	Analyze	d: 04/23/11			
Bromobenzene	ND	5.0	ug/kg							
Bromochloromethane	ND	5.0	"							
Bromodichloromethane	ND	5.0	"							
Bromoform	ND	5.0	"							
Bromomethane	ND	5.0	"							
n-Butylbenzene	ND	5.0	"							
sec-Butylbenzene	ND	5.0	"							
tert-Butylbenzene	ND	5.0	"							
Carbon tetrachloride	ND	5.0	"							
Chlorobenzene	ND	5.0	"							
Chloroethane	ND	5.0	"							
Chloroform	ND	5.0	"							
Chloromethane	ND	5.0	"							
2-Chlorotoluene	ND	5.0	"							
4-Chlorotoluene	ND	5.0	"							
Dibromochloromethane	ND	5.0	"							
1,2-Dibromo-3-chloropropane	ND	5.0	"							
1,2-Dibromoethane (EDB)	ND	5.0	"							
Dibromomethane	ND	5.0	"							
1,2-Dichlorobenzene	ND	5.0	"							
1,3-Dichlorobenzene	ND	5.0	"							
1,4-Dichlorobenzene	ND	5.0	"							
Dichlorodifluoromethane	ND	5.0	"							
1,1-Dichloroethane	ND	5.0	"							

SunStar Laboratories, Inc.

Saviel of Chivy

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1042220 - EPA 5030 GCMS										

Blank (1042220-BLK1)				Prepared: 04/22/11 Analyzed: 04/23/11
1,2-Dichloroethane	ND	5.0	ug/kg	
1,1-Dichloroethene	ND	5.0	"	
cis-1,2-Dichloroethene	ND	5.0	"	
trans-1,2-Dichloroethene	ND	5.0	"	
1,2-Dichloropropane	ND	5.0	"	
1,3-Dichloropropane	ND	5.0	"	
2,2-Dichloropropane	ND	5.0	"	
1,1-Dichloropropene	ND	5.0	"	
cis-1,3-Dichloropropene	ND	5.0	"	
trans-1,3-Dichloropropene	ND	5.0	"	
Hexachlorobutadiene	ND	5.0	"	
Isopropylbenzene	ND	5.0	"	
p-Isopropyltoluene	ND	5.0	"	
Methylene chloride	ND	5.0	"	
Naphthalene	ND	5.0	"	
n-Propylbenzene	ND	5.0	"	
Styrene	ND	5.0	"	
1,1,2,2-Tetrachloroethane	ND	5.0	"	
1,1,1,2-Tetrachloroethane	ND	5.0	"	
Tetrachloroethene	ND	5.0	"	
1,2,3-Trichlorobenzene	ND	5.0	"	
1,2,4-Trichlorobenzene	ND	5.0	"	
1,1,2-Trichloroethane	ND	5.0	"	
1,1,1-Trichloroethane	ND	5.0	"	
Trichloroethene	ND	5.0	"	
Trichlorofluoromethane	ND	5.0	"	
1,2,3-Trichloropropane	ND	5.0	"	
1,3,5-Trimethylbenzene	ND	5.0	"	
1,2,4-Trimethylbenzene	ND	5.0	"	
Vinyl chloride	ND	5.0	"	
Benzene	ND	5.0	"	
Toluene	ND	5.0	"	
Ethylbenzene	ND	5.0	"	
m,p-Xylene	ND	5.0	"	
o-Xylene	ND	5.0	"	
Tert-amyl methyl ether	ND	20	"	

SunStar Laboratories, Inc.

Saviel of Chivy

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

Volatile Organic Compounds by EPA Method 8260B - Quality Control SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1042220 - EPA 5030 GCMS										
Blank (1042220-BLK1)				Prepared:	04/22/11	Analyzed	d: 04/23/11			
Tert-butyl alcohol	ND	50	ug/kg							
Di-isopropyl ether	ND	20	"							
Ethyl tert-butyl ether	ND	20	"							
Methyl tert-butyl ether	ND	20	"							
Surrogate: Toluene-d8	39.7		"	40.0		99.2	85.5-116			
Surrogate: 4-Bromofluorobenzene	41.6		"	40.0		104	75.1-121			
Surrogate: Dibromofluoromethane	42.2		"	40.0		105	90-135			
LCS (1042220-BS1)				Prepared:	04/22/11	Analyzed	d: 04/23/11			
Chlorobenzene	84.0	5.0	ug/kg	100		84.0	75-125			
1,1-Dichloroethene	84.4	5.0	"	100		84.4	75-125			
Trichloroethene	89.2	5.0	"	100		89.2	75-125			
Benzene	90.0	5.0	"	100		90.0	75-125			
Toluene	83.2	5.0	"	100		83.2	75-125			
Surrogate: Toluene-d8	39.2		"	40.0		97.9	85.5-116			
Surrogate: 4-Bromofluorobenzene	41.0		"	40.0		102	75.1-121			
Surrogate: Dibromofluoromethane	43.6		"	40.0		109	90-135			
LCS Dup (1042220-BSD1)				Prepared:	04/22/11	Analyzed	d: 04/23/11			
Chlorobenzene	77.6	5.0	ug/kg	100		77.6	75-125	7.98	20	
1,1-Dichloroethene	80.0	5.0	"	100		80.0	75-125	5.35	20	
Trichloroethene	83.5	5.0	"	100		83.5	75-125	6.66	20	
Benzene	87.4	5.0	"	100		87.4	75-125	2.99	20	
Toluene	76.7	5.0	"	100		76.7	75-125	8.13	20	
Surrogate: Toluene-d8	39.8		"	40.0		99.5	85.5-116			
Surrogate: 4-Bromofluorobenzene	41.0		"	40.0		102	75.1-121			
Surrogate: Dibromofluoromethane	43.4		"	40.0		108	90-135			

SunStar Laboratories, Inc.

Saviel of Chivy

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Morgan Johnson04/29/11 11:23

Notes and Definitions

S-GC Surrogate recovery outside of established control limits. The data was accepted based on valid recovery of the remaining surrogate(s).

S-04 The surrogate recovery for this sample is outside of established control limits due to a sample matrix effect.

QR-02 The RPD result exceeded the QC control limits; however, both percent recoveries were acceptable. Sample results for the QC batch

were accepted based on percent recoveries and completeness of QC data.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

SunStar Laboratories, Inc.

Saviel of Chivy

Refinquished by: (signature) Relinquished by: (signature) Resimple disposal Instructions: Disp	2000 Sample ID Sample ID	Client: ENGEO Address: 580 N. Phone: 209 321 2 Project Manager: MOCO
Date / Time Date / Time /// /// /// Date / Time /// /// // /// Date / Time	Date Sampled Time 4.4-11 16:15 4-14-11 12:15 4-20-11 17:15 4-20-11 17:15 4-14-11 17:15 4-14-11 17:15 4-14-11 17:00	Johnson
Received by: (signature) Received by: (signature) Return to client	Sample Container Type Type Type Type Type Type Type Type Type	Ste A
Date / Time Date / Time Date / Time Date / Time Pickup Pickup	8260 8260 + OXY 8260 BTEX, OXY only 8270 8021 BTEX 8015M (gasoline)	Date:{Project I' Collecto Batch#:
Chain of Custody seals Y/N/NA Seals intact? Y/N/NA Received good condition/cold Turn around time:	8015M (diesel) 8015M Ext./Carbon Ch 6010/7000 Title 22 Me	nain Olm
iners /25 N/NA / N/NA / N/NOId 5.2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Page:
STD. TAT	Comments/Preservative 7167 7167 7167 7167 7167 7168 7	of S

		nd time:	Turn around time:	10120	4/21/11	Kaus	Potturn to client		21/11 /8/20 Disposal @ \$2 00 each	Dienosal @	Sample disposal Instructions	Samp
9/21/11				Time	Date /	The e	Received by: (signature)	Rec	Date / Time	\ \ 	Relinquished by: (signature)	Kelino
	1d 5.2	Received good condition/cold	Receive									:
STD. TAT	¥	Seals intact? Y/N/NA		Time	Date /	rure)	Received by: (signature)	Rec	Date / Time	_D	Relinquished by:/(signature)	X OII N
	IA Y	Chain of Custody seals Y/N/NA	Chain of C	(P)	42		/ Mary		1.01	1-00-1	1 Case	
Notes	_	Total # of containers		Time 2	Date / Time	Te e	Received by: (signature		ate / lime	֝֞֞֞֞֝֞֞֞֝֞֞֞֝֞֞֝֞֞֝֞֞֝֞֝֞֞֝֞֞֞֝֞֞֝֞֝֞֞֝֞֞֝֞֡֞֞֝֞֡֞֝֞֡֞֝֞֡֡֞	Relinquisped by: (signature)	Zelli
1) -uel uxy	30				\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				-	4-19-11	2	6
	29		7				\sim	┼-	F	1-1-		4
(600/2X) 12011	28		Z		7		`	-	_	1-19-11	C1004,	,
	7.7		Z				1 00	7		4-14-	4 0 2'	4
	2,5		7		7		25	10:15 50		1-19-11	2 8 8	4
Cleanup	32		1		/	_		0:15 56		4-19-1	(9 0 4)	F)
64	2 8				1	7	رة: ر	30 00	20-(1	4-2	58% D	
	7.7		7		>	1		ر د د	7/ 11-02	4-2	18 6 8	
J NO 2	77		1	-	/	-		برج م	_	4-2		6
	4 6				7	<u> </u>	7	ડ .=	20-1	4-2	-676D	5
6 00	70				\	-	9 0 1		11 11-02	4·2	18 0 t. J.	ر د
A PARTIES	/9		\		7		35 T	0.1.9	11 11-02-	4	J. O. t. O.	6
10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	/%		7	-	\		1175 477		-19-11 17	4	20000	
lot toll	í		/		\		C 4-2 (c.)	2 11 6			SCOOK,	
7	3)		Z		<u> </u>		\sim	نی د	76	4	7001	
• Comments/Preservative	_aboratory ID #	6010/7000 Title 22 Metals	8015M (diesel) 8015M Ext./Carbon Chain	8270 8021 BTEX 8015M (gasoline)	8260 + OXY 8260 BTEX, OXY only Mr8 <i>E</i>	8260	Sample Container	Time		Date Samplec	Sample ID	
**	EDF#:	110485	7110	Batch#:				20	Johnson	locgon	Project Manager: / / 10	Proj
Client Project #: 7 3 80,000,000	Client	Sandulb		Collector:	0			, a	Fax		ne:	Phone:
		00 \Jasco	 C	Project Name	_					;	Address:	Add
	Page	<i>=</i>	4-20-	Date:	_					l ₁ ,	UN CENORED	Client:
į			-									

1 \	Relinquished by: (signature)	Refinquished by (signature)	1/dal No	Relinquished by: (signature)	NS-802	NIS-4-01-0	JW Y	006~GW	GP2-GW	0.00	(SACANAMA)	6 17	15013 O X	15.05 P.	- MONTH WAS TO STATE OF THE STA	ACTIVE CONSTR	(FP10 0 10)	Sample ID	Phone: Project Manager: MOI	Client ENGEO
sposal	Date / Time	Date / Time	4-20-11 10:4	Time ,	100	07:01	1,48	1321 14.50	1225	10:12	WOVEN'S	10:91	10:46	J.P.; 0.7	S. C. CON.	Wino/	4-19-11 9:20	Date Sampled Time	Aurgon Johnson	C
	Received by: (signature)	Received by: (signature)	No		_	water V U	Water VIOA	· •	Water VIDA	9x6	WOW AND	<u> </u>	501 (C	(). C	marer 1	S	17			
	Date / Time	Date / Time	1027	Date / Time				V			***				3	**		8260 8260 + OXY 8260 BTEX, OXY only 8270 8021 BTEX 8015M (gasoline)	Collector:Batch#:	Date: Project Name
Turn around time:	Received good candition/cold		Chain of Custody seals Y/N/NA	Total # of containers					\	\	VVVA				\$	\$ \$		8015M (diesel) 8015M Ext./Carbon Chain 6010/7000 Title 22 Metals	10485	1-20-11 Parc
	1/cold 5.2 4/2//	~	× STJ	A >0)	7	40	35 1 50	× 8	\$ C.	35 (00)		34 D/MO	33 ///	<u>র</u>		7		Laboratory ID # Comments	Client Project #: EDF #:	Page:
	28/	AT]		Notes	TABLE CX G	0000	4	4					****	DTCX / ACTOC 17		Z to		Comments/Preservative	7780.00,003	of ~

SunStar Laboratories, Inc. 25712 Commercentre Dr Lake Forest, CA 92630 949-297-5020

Chain of Custody Record

Sample disposal Instructions: Die	Relinquished by: (signature)		Relifquished by: (Signature)	12.6/1	Relinquished by: (signature)	(303-CW	0W-10	COCONDIVENTAL AND	C 912 @ 13'	CO1208	C0300	MANN SON	(50110 10'	(5/11012)	SPHOX	Charles	C 2 2 C	5000	CS110	CS 1 A	Sample ID	Project Manager 11.00	3	
Disposal @ \$2.00 each	Date / Time /2//// 10:20</td <td></td> <td>Date / Time</td> <td>(107.1 to)</td> <td>Date / Time & 40</td> <td>JI'h 1 11-02-h</td> <td>1-20-11 (15.00</td> <td>5</td> <td>15,40</td> <td>1 8:40</td> <td>1 ∫ 1, γο</td> <td>MINISTAN</td> <td>15:15</td> <td>15:15</td> <td>-7:17</td> <td>31:51</td> <td></td> <td></td> <td></td> <td>4-19-11 14:30</td> <td>Date Sampled Time</td> <td>organ Johnon</td> <td>Fax:</td> <td>CN GEO</td>		Date / Time	(107.1 to)	Date / Time & 40	JI'h 1 11-02-h	1-20-11 (15.00	5	15,40	1 8:40	1 ∫ 1, γο	MINISTAN	15:15	15:15	-7:17	31:51				4-19-11 14:30	Date Sampled Time	organ Johnon	Fax:	CN GEO
Return to client	Received by: (signature)	1 72	Received by: (signature)	イダノベー	Received by: (s)gnature)	MON VOA	Water VOA	STALL TO THE STALL THE STA	Soil CC	3) (100	57 1 1eg	MOAN MARK	Jail 8x 6	Soul (CC, 1	So. CC	5=1) CC				226	Sample Container 60			
Pickup	Date / Time 4/11/11 /0120	1.1	Date / Time	177/10	Date / Time			WAR	\ <u>'</u>			Z.	`	\	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\	***	7	Pag.	4_	8260 + OXY 8260 BTEX, OXY only 8270 8021 BTEX 8015M (gasoline)	Batch #:	Collector:	Date:
	Turn around time:		Seals intact? Y/N/NA	Chain of C	U3\ Total # of containers			W. C.	7			3				7	MA	4	\ \ \	_	8015M (diesel) 8015M Ext./Carbon Chain 6010/7000 Title 22 Metals CAM-) 7 (60109/74) PCB: 8082	7/10483	100 Vax.	2 /2
OFF THE STATE OF T	STD. TAT	5, 2	Composite CSIEGO	~	_	55 1	59 11	- land	√ C 1 C C 1 C C 1 C C 1 C C C C C C C C C C	52 11:00 97:600	9/		Clean IND	10/,00	48 / 1 / W C:13/2	47	30 W X3191 3")	4" FUI PH-9	3	Laboratory ID # Comments/Preservative	_EDF#:	Client Project #: 7380.000	Page: 4 of 5
	28		<u>(</u>) スクスク	2	ŀ	<u>-</u>	Ó	<u> </u>			-	È		<u> </u>	1	-	-				Total # of containers		5	

COC 90686

Sample ID Sample ID Sample ID Relinquished by: (signature) Relinquished by: (signature) Relinquished by: (signature)	Address: Phone: Project Manager: Murgon	Client: ENGEC
Date Sampled Time 4-20-11 10:00 10:	gon Johnson	O
Sample Type So: Received by: Received by: Return to		
8260 8260 + OXY		
See	# tor:	Date: 4
F C 2.	0 1	11-05-11
▗▗▗▗▗▗▗▗▗▗▗▗ ▗ ▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗▗	ave. R	П
STD. TAT STD. T	lient Project #:	2 2 2

SAMPLE RECEIVING REVIEW SHEET

BATCH #			
	roject: <u>1000 N.</u>		
Received by: Brunn Da	ate/Time Received:	4/21/11	10:20
Delivered by: Client SunStar Courier GSO	FedEx Othe	r	
Total number of coolers received/ Temp crit	teria = 6°C > 0°C (no	frozen co	ntainers)
Temperature: cooler #1 $\underline{5.4}$ °C +/- the CF (- 0.2°C) = $\underline{5.2}$	°C corrected tempera	iture	
cooler #2°C +/- the CF (- 0.2°C) =	°C corrected tempera	iture	
cooler #3°C +/- the CF (- 0.2°C) =	°C corrected tempera	iture	
Samples outside temp. but received on ice, w/in 6 hours of final	sampling. 📈 Yes	□No*	□N/A
Custody Seals Intact on Cooler/Sample	Yes	□No*	□N/A
Sample Containers Intact	Yes	□No*	
Sample labels match COC ID's	Yes	□No*	
Total number of containers received match COC	Yes	□No*	
Proper containers received for analyses requested on COC		□No*	
Proper preservative indicated on COC/containers for analyses rec	quested Yes	□No*	□N/A
Complete shipment received in good condition with correct temp preservatives and within method specified holding times.		labels, volu	mes
* Complete Non-Conformance Receiving Sheet if checked Coole	er/Sample Review - Init	ials and date	BC 4/21/11
Comments:			, ,
<u> </u>			

Appendix B

SunStar Laboratories May 2011 Laboratory Report

26 May 2011

Jeff Adams Engeo

2213 Plaza Dr.

Rocklin, CA 95765

RE: 1000 N. Vasco Rd.

Enclosed are the results of analyses for samples received by the laboratory on 05/14/11 10:50. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Daniel Chavez For John Shepler

Saniel of Chivey

Laboratory Director

Rocklin CA, 95765

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

Engeo Project: 1000 N. Vasco Rd. 2213 Plaza Dr. Project Number: 7380.000.003

Project Manager: Jeff Adams

Reported: 05/26/11 13:20

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
SG1	T110627-01	Air	05/13/11 10:05	05/14/11 10:50
SG2	T110627-02	Air	05/13/11 12:52	05/14/11 10:50
SG3	T110627-03	Air	05/13/11 12:38	05/14/11 10:50
SG4	T110627-04	Air	05/13/11 09:15	05/14/11 10:50
SG5	T110627-05	Air	05/13/11 09:32	05/14/11 10:50
SG6	T110627-06	Air	05/13/11 13:52	05/14/11 10:50
SG7	T110627-07	Air	05/13/11 10:55	05/14/11 10:50
SG8	T110627-08	Air	05/13/11 11:18	05/14/11 10:50
SG9	T110627-09	Air	05/13/11 11:51	05/14/11 10:50
SG10	T110627-10	Air	05/13/11 11:02	05/14/11 10:50
SG11	T110627-11	Air	05/13/11 13:03	05/14/11 10:50
SG12	T110627-12	Air	05/13/11 13:47	05/14/11 10:50

SunStar Laboratories, Inc.

Saviel of Chivey

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Jeff Adams05/26/11 13:20

SG1 T110627-01(Air)

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
			SunStar I	_aboratori	es, Inc.					
TO-15										
Acetone	380	0.25	12	ug/m³ Air	3.38	1051610	05/16/11	05/19/11	TO-15	
1,3-Butadiene	ND	0.17	4.5	"	"	"	"	"	"	
Carbon disulfide	2.8	0.16	3.2	"	"	"	"	"	"	
1,1,2-trichloro-1,2,2-trifluoroetha ne (CFC 113)	ND	0.50	7.7	"	"	"	"	"	"	
Isopropyl alcohol	5.0	0.21	13	"	"	"	"	"	"	
Bromodichloromethane	ND	0.26	6.8	"	"	"	"	"	"	
Bromoform	ND	0.18	11	"	"	"	"	"	"	
Bromomethane	ND	0.37	4.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.56	6.4	"	"	"	"	"	"	
Chlorobenzene	ND	0.12	4.7	"	"	"	"	"	"	
Chloroethane	ND	0.29	2.7	"	"	"	"	"	"	
Chloroform	ND	0.38	5.0	"	"	"	"	"	"	
Chloromethane	ND	0.17	11	"	"	"	"	"	"	
Cyclohexane	ND	0.17	3.5	"	"	"	"	"	"	
Heptane	ND	0.21	4.2	"	"	"	"	"	"	
Hexane	ND	1.0	3.6	"	"	"	"	"	"	
Dibromochloromethane	ND	0.23	8.7	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	0.18	7.8	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.21	6.1	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.19	6.1	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.24	6.1	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	0.33	5.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	0.25	4.1	"	"	"	"	"	"	
1,2-Dichloroethane	ND	0.32	4.1	"	"	"	"	"	"	
1,1-Dichloroethene	ND	0.25	4.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	3.7	0.25	4.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	0.25	4.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	0.22	4.7	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	0.15	4.6	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.21	4.6	"	"	"	"	"	"	
4-Ethyltoluene	ND	0.10	5.0	"	"	"	"	"	"	
Methylene chloride	ND	0.19	3.5	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Saviel of Chivey

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Jeff Adams05/26/11 13:20

SG1 T110627-01(Air)

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
			SunStar I	_aboratori	es, Inc.					
TO-15										
Styrene	ND	0.12	4.3	ug/m³ Air	3.38	1051610	05/16/11	05/19/11	TO-15	
1,1,2,2-Tetrachloroethane	ND	0.11	7.0	"	"	"	"	"	"	
Tetrahydrofuran	ND	0.26	3.0	"	"	"	"	"	"	
Tetrachloroethene	110	0.20	6.9	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	0.21	5.6	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	0.54	5.6	"	"	"	"	"	"	
Trichloroethene	5.2	0.14	5.5	"	"	"	"	"	"	
Trichlorofluoromethane	ND	0.48	5.7	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	6.4	0.13	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	19	0.23	5.0	"	"	"	"	"	"	
Vinyl acetate	ND	0.44	3.6	"	"	"	"	"	"	
Vinyl chloride	ND	0.10	2.6	"	"	"	"	"	"	
1,4-Dioxane	ND	0.14	18	"	"	"	"	"	"	
2-Butanone (MEK)	4.7	0.62	15	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	ND	0.14	42	"	"	"	"	"	"	
Benzene	ND	0.14	3.3	"	"	"	"	"	"	
Toluene	8.7	0.15	3.8	"	"	"	"	"	"	
Ethylbenzene	ND	0.14	4.4	"	"	"	"	"	"	
m,p-Xylene	13	0.49	8.8	"	"	"	"	"	"	
o-Xylene	6.6	0.19	4.4	"	"	"	"	"	"	
C6-C12 (GRO)	13000	1800	7200	"	1.69	"	"	"	"	
1,1-Difluoroethane (Freon 152)	2600		27	"	3.38	"	"	"	"	
Surrogate: 4-Bromofluorobenzene			101 %	40-1	60	"	"	"	"	

SunStar Laboratories, Inc.

Engeo Project: 1000 N. Vasco Rd.

 2213 Plaza Dr.
 Project Number: 7380.000.003
 Reported:

 Rocklin CA, 95765
 Project Manager: Jeff Adams
 05/26/11 13:20

SG2 T110627-02(Air)

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
			SunStar I	_aboratori	es, Inc.					
TO-15										
Acetone	170	0.25	12	ug/m³ Air	1.72	1051610	05/16/11	05/19/11	TO-15	
1,3-Butadiene	ND	0.17	4.5	"	"	"	"	"	"	
Carbon disulfide	38	0.16	3.2	"	"	"	"	"	"	
1,1,2-trichloro-1,2,2-trifluoroetha ne (CFC 113)	ND	0.50	7.7	"	"	"	"	"	"	
Isopropyl alcohol	3.3	0.21	13	"	"	"	"	"	"	
Bromodichloromethane	ND	0.26	6.8	"	"	"	"	"	"	
Bromoform	ND	0.18	11	"	"	"	"	"	"	
Bromomethane	ND	0.37	4.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.56	6.4	"	"	"	"	"	"	
Chlorobenzene	ND	0.12	4.7	"	"	"	"	"	"	
Chloroethane	1.2	0.29	2.7	"	"	"	"	"	"	
Chloroform	4.4	0.38	5.0	"	"	"	"	"	"	
Chloromethane	ND	0.17	11	"	"	"	"	"	"	
Cyclohexane	74	0.17	3.5	"	"	"	"	"	"	
Heptane	33	0.21	4.2	"	"	"	"	"	"	
Hexane	75	1.0	3.6	"	"	"	"	"	"	
Dibromochloromethane	ND	0.23	8.7	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	0.18	7.8	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.21	6.1	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.19	6.1	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.24	6.1	"	"	"	"	"	"	
Dichlorodifluoromethane	5.3	0.33	5.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	0.25	4.1	"	"	"	"	"	"	
1,2-Dichloroethane	ND	0.32	4.1	"	"	"	"	"	"	
1,1-Dichloroethene	ND	0.25	4.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	4.2	0.25	4.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	0.25	4.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	0.22	4.7	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	0.15	4.6	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.21	4.6	"	"	"	"	"	"	
4-Ethyltoluene	ND	0.10	5.0	"	"	"	"	"	"	
Methylene chloride	ND	0.19	3.5	"	"	"	"	"	"	
Styrene	4.1	0.12	4.3	"	"	"	"		"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Saviel of Chivey

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Jeff Adams05/26/11 13:20

SG2 T110627-02(Air)

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		<u>.</u>	SunStar I	_aboratori	es, Inc.					
TO-15										
1,1,2,2-Tetrachloroethane	ND	0.11	7.0	ug/m³ Air	1.72	1051610	05/16/11	05/19/11	TO-15	
Tetrahydrofuran	ND	0.26	3.0	"	"	"	"	"	"	
Tetrachloroethene	150	0.20	6.9	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	0.21	5.6	"	"	"	"	"	"	
1,1,1-Trichloroethane	4.4	0.54	5.6	"	"	"	"	"	"	J
Trichloroethene	8.2	0.14	5.5	"	"	"	"	"	"	
Trichlorofluoromethane	120	0.48	5.7	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	17	0.13	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	25	0.23	5.0	"	"	"	"	"	"	
Vinyl acetate	ND	0.44	3.6	"	"	"	"	"	"	
Vinyl chloride	ND	0.10	2.6	"	"	"	"	"	"	
1,4-Dioxane	ND	0.14	18	"	"	"	"	"	"	
2-Butanone (MEK)	2.9	0.62	15	"	"	"	"	"	"	J
4-Methyl-2-pentanone (MIBK)	ND	0.14	42	"	"	"	"	"	"	
Benzene	68	0.14	3.3	"	"	"	"		"	
Toluene	120	0.15	3.8	"	"	"	"	"	"	
Ethylbenzene	70	0.14	4.4	"	"	"	"	"	"	
m,p-Xylene	170	0.49	8.8	"	"	"	"	"	"	
o-Xylene	110	0.19	4.4	"	"	"	"	"	"	
C6-C12 (GRO)	14000	1800	7200	"	"	"	"	"	"	
1,1-Difluoroethane (Freon 152)	2800		27	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene			103 %	40-1	60	"	"	"	"	

SunStar Laboratories, Inc.

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Jeff Adams05/26/11 13:20

SG3 T110627-03(Air)

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		<u> </u>	SunStar I	Laboratorio	es, Inc.					
TO-15										
Acetone	330	0.25	12	ug/m³ Air	1.8	1051610	05/16/11	05/19/11	TO-15]
1,3-Butadiene	ND	0.17	4.5	"	"	"	"	"	"	
Carbon disulfide	3.2	0.16	3.2	"	"	"	"	"	"	
1,1,2-trichloro-1,2,2-trifluoroetha ne (CFC 113)	ND	0.50	7.7	"	"	"	"	"	"	
Isopropyl alcohol	ND	0.21	13	"	"	"	"	"	"	
Bromodichloromethane	ND	0.26	6.8	"	"	"	"	"	"	
Bromoform	ND	0.18	11	"	"	"	"	"	"	
Bromomethane	ND	0.37	4.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.56	6.4	"	"	"	"	"	"	
Chlorobenzene	ND	0.12	4.7	"	"	"	"	"	"	
Chloroethane	ND	0.29	2.7	"	"	"	"	"	"	
Chloroform	ND	0.38	5.0	"	"	"	"	"	"	
Chloromethane	ND	0.17	11	"	"	"	"	"	"	
Cyclohexane	1.9	0.17	3.5	"	"	"	"	"	"	
Heptane	ND	0.21	4.2	"	"	"	"	"	"	
Hexane	ND	1.0	3.6	"	"	"	"	"	"	
Dibromochloromethane	ND	0.23	8.7	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	0.18	7.8	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.21	6.1	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.19	6.1	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.24	6.1	"	"	"	"	"	"	
Dichlorodifluoromethane	2.4	0.33	5.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	0.25	4.1	"	"	"	"	"	"	
1,2-Dichloroethane	ND	0.32	4.1	"	"	"	"	"	"	
1,1-Dichloroethene	ND	0.25	4.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	8.5	0.25	4.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	0.25	4.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	0.22	4.7	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	0.15	4.6	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.21	4.6	"	"	"	"	"	"	
4-Ethyltoluene	ND	0.10	5.0	"	"	"	"	"	"	
Methylene chloride	ND	0.19	3.5	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Saviel & Chivey

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Jeff Adams05/26/11 13:20

SG3 T110627-03(Air)

Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar I	_aboratori	es, Inc.					
ND	0.12	4.3	ug/m³ Air	1.8	1051610	05/16/11	05/19/11	TO-15	
ND	0.11	7.0	"	"	"	"	"	"	
ND	0.26	3.0	"	"	"	"	"	"	
270	0.20	6.9	"	"	"	"	"	"	
ND	0.21	5.6	"	"	"	"	"	"	
ND	0.54	5.6	"	"	"	"	"	"	
13	0.14	5.5	"	"	"	"	"	"	
2.2	0.48	5.7	"	"	"	"	"	"	J
3.0	0.13	5.0	"	"	"	"	"	"	J
4.4	0.23	5.0	"	"	"	"	"	"	J
ND	0.44	3.6	"	"	"	"	"	"	
ND	0.10	2.6	"	"	"	"	"	"	
ND	0.14	18	"	"	"	"	"	"	
3.3	0.62	15	"	"	"	"	"	"	J
ND	0.14	42	"	"	"	"	"	"	
3.0	0.14	3.3	"	"	"	"	"	"	J
7.0	0.15	3.8	"	"	"	"	"	"	
3.5	0.14	4.4	"	"	"	"	"	"	J
8.7	0.49	8.8	"	"	"	"	"	"	J
4.0	0.19	4.4	"	"	"	"	"	"	J
7200	1800	7200	"	"	"	"	"	"	
4900		27	"	"	"	"	"	"	
	ND ND ND 270 ND ND 13 2.2 3.0 4.4 ND ND ND ND 3.3 ND 3.0 7.0 3.5 8.7 4.0 7200	ND 0.12 ND 0.11 ND 0.26 270 0.20 ND 0.54 13 0.14 2.2 0.48 3.0 0.13 4.4 0.23 ND 0.44 ND 0.10 ND 0.14 3.3 0.62 ND 0.14 3.0 0.14 3.0 0.14 3.0 0.14 3.0 0.14 3.0 0.14 3.0 0.19 7200 1800	Result MDL Limit SunStar I ND 0.12 4.3 ND 0.11 7.0 ND 0.26 3.0 270 0.20 6.9 ND 0.21 5.6 ND 0.54 5.6 13 0.14 5.5 2.2 0.48 5.7 3.0 0.13 5.0 ND 0.44 3.6 ND 0.14 18 3.3 0.62 15 ND 0.14 18 3.3 0.62 15 ND 0.14 3.3 7.0 0.15 3.8 3.5 0.14 4.4 8.7 0.49 8.8 4.0 0.19 4.4 7200 1800 7200	ND	ND	ND	ND	ND	ND

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Engeo Project: 1000 N. Vasco Rd.

 2213 Plaza Dr.
 Project Number: 7380.000.003
 Reported:

 Rocklin CA, 95765
 Project Manager: Jeff Adams
 05/26/11 13:20

SG4 T110627-04(Air)

Analyte	Result	I MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		<u>S</u>	SunStar I	_aboratori	es, Inc.					
TO-15										
Acetone	69	0.25	12	ug/m³ Air	1.75	1051610	05/16/11	05/19/11	TO-15	
1,3-Butadiene	ND	0.17	4.5	"	"	"	"	"	"	
Carbon disulfide	ND	0.16	3.2	"	"	"	"	"	"	
1,1,2-trichloro-1,2,2-trifluoroetha ne (CFC 113)	ND	0.50	7.7	"	"	"	"	"	"	
Isopropyl alcohol	1.8	0.21	13	"	"	"	"	"	"	
Bromodichloromethane	ND	0.26	6.8	"	"	"	"	"	"	
Bromoform	ND	0.18	11	"	"	"	"	"	"	
Bromomethane	ND	0.37	4.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.56	6.4	"	"	"	"	"	"	
Chlorobenzene	ND	0.12	4.7	"	"	"	"	"	"	
Chloroethane	ND	0.29	2.7	"	"	"	"	"	"	
Chloroform	ND	0.38	5.0	"	"	"	"	"	"	
Chloromethane	ND	0.17	11	"	"	"	"	"	"	
Cyclohexane	2.3	0.17	3.5	"	"	"	"	"	"	
Heptane	ND	0.21	4.2	"	"	"	"	"	"	
Hexane	ND	1.0	3.6	"	"	"	"	"	"	
Dibromochloromethane	ND	0.23	8.7	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	0.18	7.8	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.21	6.1	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.19	6.1	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.24	6.1	"	"	"	"	"	"	
Dichlorodifluoromethane	3.0	0.33	5.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	0.25	4.1	"	"	"	"	"	"	
1,2-Dichloroethane	ND	0.32	4.1	"	"	"	"	"	"	
1,1-Dichloroethene	ND	0.25	4.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	15	0.25	4.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	1.8	0.25	4.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	0.22	4.7	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	0.15	4.6	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.21	4.6	"	"	"	"	"	"	
4-Ethyltoluene	ND	0.10	5.0	"	"	"	"	"	"	
Methylene chloride	ND	0.19	3.5	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Jeff Adams05/26/11 13:20

SG4 T110627-04(Air)

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
			SunStar I	_aboratori	es, Inc.					
TO-15										
Styrene	ND	0.12	4.3	ug/m³ Air	1.75	1051610	05/16/11	05/19/11	TO-15	
1,1,2,2-Tetrachloroethane	ND	0.11	7.0	"	"	"	"	"	"	
Tetrahydrofuran	ND	0.26	3.0	"	"	"	"	"	"	
Tetrachloroethene	450	0.20	6.9	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	0.21	5.6	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	0.54	5.6	"	"	"	"	"	"	
Trichloroethene	23	0.14	5.5	"	"	"	"	"	"	
Trichlorofluoromethane	ND	0.48	5.7	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	2.2	0.13	5.0	"	"	"	"	"	"	J
1,2,4-Trimethylbenzene	4.5	0.23	5.0	"	"	"	"	"	"	J
Vinyl acetate	ND	0.44	3.6	"	"	"	"	"	"	
Vinyl chloride	ND	0.10	2.6	"	"	"	"	"	"	
1,4-Dioxane	ND	0.14	18	"	"	"	"	"	"	
2-Butanone (MEK)	1.2	0.62	15	"	"	"	"	"	"	J
4-Methyl-2-pentanone (MIBK)	ND	0.14	42	"	"	"	"	"	"	
Benzene	5.7	0.14	3.3	"	"	"	"	"	"	
Toluene	7.9	0.15	3.8	"	"	"	"	"	"	
Ethylbenzene	3.4	0.14	4.4	"	"	"	"	"	"	J
m,p-Xylene	8.2	0.49	8.8	"	"	"	"	"	"	J
o-Xylene	3.6	0.19	4.4	"	"	"	"	"	"	J
C6-C12 (GRO)	15000	1800	7200	"	"	"	"	"	"	
1,1-Difluoroethane (Freon 152)	7800		27	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene			97.0 %	40-1	60	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Saviel of Chivy

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Jeff Adams05/26/11 13:20

SG5 T110627-05(Air)

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
			SunStar I	_aboratori	es, Inc.					
TO-15										
Acetone	120	0.25	12	ug/m³ Air	1.82	1051610	05/16/11	05/19/11	TO-15	
1,3-Butadiene	ND	0.17	4.5	"	"	"	"	"	"	
Carbon disulfide	ND	0.16	3.2	"	"	"	"	"	"	
1,1,2-trichloro-1,2,2-trifluoroetha ne (CFC 113)	ND	0.50	7.7	"	"	"	"	"	"	
Isopropyl alcohol	1.7	0.21	13	"	"	"	"	"	"	
Bromodichloromethane	ND	0.26	6.8	"	"	"	"	"	"	
Bromoform	ND	0.18	11	"	"	"	"	"	"	
Bromomethane	ND	0.37	4.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.56	6.4	"	"	"	"	"	"	
Chlorobenzene	ND	0.12	4.7	"	"	"	"	"	"	
Chloroethane	ND	0.29	2.7	"	"	"	"	"	"	
Chloroform	ND	0.38	5.0	"	"	"	"	"	"	
Chloromethane	ND	0.17	11	"	"	"	"	"	"	
Cyclohexane	ND	0.17	3.5	"	"	"	"	"	"	
Heptane	ND	0.21	4.2	"	"	"	"	"	"	
Hexane	ND	1.0	3.6	"	"	"	"	"	"	
Dibromochloromethane	ND	0.23	8.7	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	0.18	7.8	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.21	6.1	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.19	6.1	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.24	6.1	"	"	"	"	"	"	
Dichlorodifluoromethane	3.1	0.33	5.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	0.25	4.1	"	"	"	"	"	"	
1,2-Dichloroethane	ND	0.32	4.1	"	"	"	"	"	"	
1,1-Dichloroethene	ND	0.25	4.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	9.8	0.25	4.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	0.25	4.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	0.22	4.7	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	0.15	4.6	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.21	4.6	"	"	"	"	"	"	
4-Ethyltoluene	ND	0.10	5.0	"	"	"	"	"	"	
Methylene chloride	ND	0.19	3.5	"	"	"	"	"		

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Jeff Adams05/26/11 13:20

SG5 T110627-05(Air)

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
			SunStar I	_aboratori	es, Inc.					
TO-15										
Styrene	ND	0.12	4.3	ug/m³ Air	1.82	1051610	05/16/11	05/19/11	TO-15	
1,1,2,2-Tetrachloroethane	ND	0.11	7.0	"	"	"	"	"	"	
Tetrahydrofuran	ND	0.26	3.0	"	"	"	"	"	"	
Tetrachloroethene	300	0.20	6.9	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	0.21	5.6	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	0.54	5.6	"	"	"	"	"	"	
Trichloroethene	14	0.14	5.5	"	"	"	"	"	"	
Trichlorofluoromethane	ND	0.48	5.7	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	2.7	0.13	5.0	"	"	"	"	"	"	J
1,2,4-Trimethylbenzene	3.9	0.23	5.0	"	"	"	"	"	"	J
Vinyl acetate	ND	0.44	3.6	"	"	"	"	"	"	
Vinyl chloride	ND	0.10	2.6	"	"	"	"	"	"	
1,4-Dioxane	ND	0.14	18	"	"	"	"	"	"	
2-Butanone (MEK)	2.9	0.62	15	"	"	"	"	"	"	J
4-Methyl-2-pentanone (MIBK)	ND	0.14	42	"	"	"	"	"	"	
Benzene	2.9	0.14	3.3	"	"	"	"	"	"	J
Toluene	5.7	0.15	3.8	"	"	"	"	"	"	
Ethylbenzene	3.2	0.14	4.4	"	"	"	"	"	"	J
m,p-Xylene	7.2	0.49	8.8	"	"	"	"	"	"	J
o-Xylene	3.1	0.19	4.4	"	"	"	"	"	"	J
C6-C12 (GRO)	2800	1800	7200	"	"	"	"	"	"	J
1,1-Difluoroethane (Freon 152)	5000		27	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene			98.1 %	40-1	60	"	"	"	"	

SunStar Laboratories, Inc.

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Jeff Adams05/26/11 13:20

SG6 T110627-06(Air)

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
			SunStar I	_aboratori	es, Inc.					
TO-15										
Acetone	400	0.25	12	ug/m³ Air	3.52	1051610	05/16/11	05/19/11	TO-15	
1,3-Butadiene	ND	0.17	4.5	"	"	"	"	"	"	
Carbon disulfide	15	0.16	3.2	"	"	"	"	"	"	
1,1,2-trichloro-1,2,2-trifluoroetha ne (CFC 113)	ND	0.50	7.7	"	"	"	"	"	"	
Isopropyl alcohol	2.6	0.21	13	"	"	"	"	"	"	
Bromodichloromethane	ND	0.26	6.8	"	"	"	"	"	"	
Bromoform	ND	0.18	11	"	"	"	"	"	"	
Bromomethane	ND	0.37	4.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.56	6.4	"	"	"	"	"	"	
Chlorobenzene	ND	0.12	4.7	"	"	"	"	"	"	
Chloroethane	ND	0.29	2.7	"	"	"	"	"	"	
Chloroform	ND	0.38	5.0	"	"	"	"	"	"	
Chloromethane	ND	0.17	11	"	"	"	"	"	"	
Cyclohexane	62	0.17	3.5	"	"	"	"	"	"	
Heptane	ND	0.21	4.2	"	"	"	"	"	"	
Hexane	8.8	1.0	3.6	"	"	"	"	"	"	
Dibromochloromethane	ND	0.23	8.7	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	0.18	7.8	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.21	6.1	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.19	6.1	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.24	6.1	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	0.33	5.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	0.25	4.1	"	"	"	"	"	"	
1,2-Dichloroethane	ND	0.32	4.1	"	"	"	"	"	"	
1,1-Dichloroethene	ND	0.25	4.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	7.7	0.25	4.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	0.25	4.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	0.22	4.7	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	0.15	4.6	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.21	4.6	"	"	"	"	"	"	
4-Ethyltoluene	ND	0.10	5.0	"	"	"	"	"	"	
Methylene chloride	ND	0.19	3.5	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Jeff Adams05/26/11 13:20

SG6 T110627-06(Air)

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
			SunStar I	_aboratori	es. Inc.					
TO-15			<u> </u>	340 014011						
	ND	0.12	1.2	/ 2 4 *	2.52	1051610	05/16/11	05/10/11	TO 15	
Styrene	ND	0.12	4.3	ug/m³ Air	3.52	1051610	05/16/11	05/19/11	TO-15	
1,1,2,2-Tetrachloroethane	ND	0.11	7.0	"						
Tetrahydrofuran	ND	0.26	3.0	"	"	"	"	"	"	
Tetrachloroethene	280	0.20	6.9	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	0.21	5.6	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	0.54	5.6	"	"	"	"	"	"	
Trichloroethene	12	0.14	5.5	"	"	"	"	"	"	
Trichlorofluoromethane	4.0	0.48	5.7	"	"	"	"	"	"	J
1,3,5-Trimethylbenzene	9.0	0.13	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	8.8	0.23	5.0	"	"	"	"	"	"	
Vinyl acetate	ND	0.44	3.6	"	"	"	"	"	"	
Vinyl chloride	ND	0.10	2.6	"	"	"	"	"	"	
1,4-Dioxane	ND	0.14	18	"	"	"	"	"	"	
2-Butanone (MEK)	4.4	0.62	15	"	"	"	"	"	"	j
4-Methyl-2-pentanone (MIBK)	ND	0.14	42	"	"	"	"	"	"	
Benzene	6.2	0.14	3.3	"	"	"	"		"	
Toluene	8.0	0.15	3.8	"	"	"	"	"	"	
Ethylbenzene	7.5	0.14	4.4	"	"	"	"	"	"	
m,p-Xylene	18	0.49	8.8	"	"	"	"	"	"	
o-Xylene	8.2	0.19	4.4	"	"	"	"	"	"	
C6-C12 (GRO)	19000	1800	7200	"	1.76	"	"	"	"	
1,1-Difluoroethane (Freon 152)	ND		27	"	3.52	"	"	"	"	
Surrogate: 4-Bromofluorobenzene			130 %	40-1	60	"	"	"	"	

SunStar Laboratories, Inc.

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Jeff Adams05/26/11 13:20

SG7 T110627-07(Air)

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
			SunStar I	_aboratori	es, Inc.					
ГО-15										
Acetone	ND	0.25	12	ug/m³ Air	12.6	1051610	05/16/11	05/19/11	TO-15	
1,3-Butadiene	ND	0.17	4.5	"	"	"	"	"	"	
Carbon disulfide	120	0.16	3.2	"	"	"	"	"	"	
1,1,2-trichloro-1,2,2-trifluoroetha ne (CFC 113)	ND	0.50	7.7	"	"	"	"	"	"	
Isopropyl alcohol	ND	0.21	13	"	"	"	"	"	"	
Bromodichloromethane	ND	0.26	6.8	"	"	"	"	"	"	
Bromoform	ND	0.18	11	"	"	"	"	"	"	
Bromomethane	ND	0.37	4.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.56	6.4	"	"	"	"	"	"	
Chlorobenzene	ND	0.12	4.7	"	"	"	"	"	"	
Chloroethane	ND	0.29	2.7	"	"	"	"	"	"	
Chloroform	ND	0.38	5.0	"	"	"	"	"	"	
Chloromethane	ND	0.17	11	"	"	"	"	"	"	
Cyclohexane	1100	0.17	3.5	"	"	"	"	"	"	
Heptane	12	0.21	4.2	"	"	"	"	"	"	
Hexane	42	1.0	3.6	"	"	"	"	"	"	
Dibromochloromethane	ND	0.23	8.7	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	0.18	7.8	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.21	6.1	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.19	6.1	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.24	6.1	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	0.33	5.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	0.25	4.1	"	"	"	"	"	"	
1,2-Dichloroethane	ND	0.32	4.1	"	"	"	"	"	"	
1,1-Dichloroethene	ND	0.25	4.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	0.25	4.0	"	"	"	"	"	"	
rans-1,2-Dichloroethene	ND	0.25	4.0	"	"	"	"	"	"	
,2-Dichloropropane	ND	0.22	4.7	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	0.15	4.6	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.21	4.6	"	"	"	"	"	"	
4-Ethyltoluene	ND	0.10	5.0	"	"	"	"	"	"	
Methylene chloride	ND	0.19	3.5	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Jeff Adams05/26/11 13:20

SG7 T110627-07(Air)

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
			SunStar L	_aboratorie	es, Inc.					
TO-15										
Styrene	ND	0.12	4.3	ug/m³ Air	12.6	1051610	05/16/11	05/19/11	TO-15	
1,1,2,2-Tetrachloroethane	ND	0.11	7.0	"	"	"	"	"	"	
Tetrahydrofuran	ND	0.26	3.0	"	"	"	"	"	"	
Tetrachloroethene	72	0.20	6.9	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	0.21	5.6	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	0.54	5.6	"	"	"	"	"	"	
Trichloroethene	17	0.14	5.5	"	"	"	"	"	"	
Trichlorofluoromethane	ND	0.48	5.7	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	18	0.13	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	25	0.23	5.0	"	"	"	"	"	"	
Vinyl acetate	ND	0.44	3.6	"	"	"	"	"	"	
Vinyl chloride	ND	0.10	2.6	"	"	"	"	"	"	
1,4-Dioxane	ND	0.14	18	"	"	"	"	"	"	
2-Butanone (MEK)	ND	0.62	15	"	"	"	"	"	"	
4-Methyl-2-pentanone (MIBK)	ND	0.14	42	"	"	"	"	"	"	
Benzene	29	0.14	3.3	"	"	"	"	"	"	
Toluene	72	0.15	3.8	"	"	"	"	"	"	
Ethylbenzene	36	0.14	4.4	"	"	"	"	"	"	
m,p-Xylene	69	0.49	8.8	"	"	"	"	"	"	
o-Xylene	39	0.19	4.4	"	"	"	"	"	"	
C6-C12 (GRO)	12000	1800	7200	"	1.7	"	"	"	"	
1,1-Difluoroethane (Freon 152)	ND		27	"	12.6	"	"	"	"	
Surrogate: 4-Bromofluorobenzene			98.9 %	40-1	60	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Jeff Adams05/26/11 13:20

SG8 T110627-08(Air)

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
			SunStar I	Laboratori	es, Inc.					
TO-15										
Acetone	570	0.25	12	ug/m³ Air	1.76	1051610	05/16/11	05/19/11	TO-15	I
1,3-Butadiene	ND	0.17	4.5	"	"	"	"	"	"	
Carbon disulfide	4.2	0.16	3.2	"	"	"	"	"	"	
1,1,2-trichloro-1,2,2-trifluoroetha ne (CFC 113)	ND	0.50	7.7	"	"	"	"	"	"	
Isopropyl alcohol	2.2	0.21	13	"	"	"	"	"	"	
Bromodichloromethane	ND	0.26	6.8	"	"	"	"	"	"	
Bromoform	ND	0.18	11	"	"	"	"	"	"	
Bromomethane	ND	0.37	4.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.56	6.4	"	"	"	"	"	"	
Chlorobenzene	ND	0.12	4.7	"	"	"	"	"	"	
Chloroethane	ND	0.29	2.7	"	"	"	"	"	"	
Chloroform	ND	0.38	5.0	"	"	"	"	"	"	
Chloromethane	ND	0.17	11	"	"	"	"	"	"	
Cyclohexane	26	0.17	3.5	"	"	"	"	"	"	
Heptane	5.4	0.21	4.2	"	"	"	"	"	"	
Hexane	11	1.0	3.6	"	"	"	"	"	"	
Dibromochloromethane	ND	0.23	8.7	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	0.18	7.8	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.21	6.1	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.19	6.1	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.24	6.1	"	"	"	"	"	"	
Dichlorodifluoromethane	2.7	0.33	5.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	0.25	4.1	"	"	"	"	"	"	
1,2-Dichloroethane	ND	0.32	4.1	"	"	"	"	"	"	
1,1-Dichloroethene	ND	0.25	4.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	0.25	4.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	0.25	4.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	0.22	4.7	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	0.15	4.6	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.21	4.6	"	"	"	"	"	"	
4-Ethyltoluene	ND	0.10	5.0	"	"	"	"	"	"	
Methylene chloride	ND	0.19	3.5	"	"	"	"	"	"	
Styrene	ND	0.12	4.3	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Jeff Adams05/26/11 13:20

SG8 T110627-08(Air)

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
			SunStar I	_aboratori	es, Inc.					
TO-15										
1,1,2,2-Tetrachloroethane	ND	0.11	7.0	ug/m³ Air	1.76	1051610	05/16/11	05/19/11	TO-15	
Tetrahydrofuran	ND	0.26	3.0	"	"	"	"	"	"	
Tetrachloroethene	45	0.20	6.9	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	0.21	5.6	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	0.54	5.6	"	"	"	"	"	"	
Trichloroethene	2.2	0.14	5.5	"	"	"	"	"	"	J
Trichlorofluoromethane	ND	0.48	5.7	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	7.0	0.13	5.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	13	0.23	5.0	"	"	"	"	"	"	
Vinyl acetate	ND	0.44	3.6	"	"	"	"	"	"	
Vinyl chloride	ND	0.10	2.6	"	"	"	"	"	"	
1,4-Dioxane	ND	0.14	18	"	"	"	"	"	"	
2-Butanone (MEK)	7.0	0.62	15	"	"	"	"	"	"	J
4-Methyl-2-pentanone (MIBK)	ND	0.14	42	"	"	"	"	"	"	
Benzene	5.2	0.14	3.3	"	"	"	"	"	"	
Toluene	23	0.15	3.8	"	"	"	"	"	"	
Ethylbenzene	9.3	0.14	4.4	"	"	"	"	"	"	
m,p-Xylene	23	0.49	8.8	"	"	"	"	"	"	
o-Xylene	7.9	0.19	4.4	"	"	"	"	"	"	
C6-C12 (GRO)	26000	1800	7200	"	"	"	"	"	"	
1,1-Difluoroethane (Freon 152)	ND		27	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene			92.5 %	40-1	60	"	"	"	"	

SunStar Laboratories, Inc.

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Jeff Adams05/26/11 13:20

SG9 T110627-09(Air)

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
			SunStar I	Laboratori	es, Inc.					
TO-15										
Acetone	880	0.25	12	ug/m³ Air	3.52	1051610	05/16/11	05/20/11	TO-15]
1,3-Butadiene	ND	0.17	4.5	"	"	"	"	"	"	
Carbon disulfide	57	0.16	3.2	"	"	"	"	"	"	
1,1,2-trichloro-1,2,2-trifluoroetha ne (CFC 113)	ND	0.50	7.7	"	"	"	"	"	"	
Isopropyl alcohol	3.3	0.21	13	"	"	"	"	"	"	
Bromodichloromethane	ND	0.26	6.8	"	"	"	"	"	"	
Bromoform	ND	0.18	11	"	"	"	"	"	"	
Bromomethane	ND	0.37	4.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.56	6.4	"	"	"	"	"	"	
Chlorobenzene	ND	0.12	4.7	"	"	"	"	"	"	
Chloroethane	ND	0.29	2.7	"	"	"	"	"	"	
Chloroform	10	0.38	5.0	"	"	"	"	"	"	
Chloromethane	ND	0.17	11	"	"	"	"	"	"	
Cyclohexane	320	0.17	3.5	"	"	"	"	"	"	
Heptane	ND	0.21	4.2	"	"	"	"	"	"	
Hexane	4.8	1.0	3.6	"	"	"	"	"	"	
Dibromochloromethane	ND	0.23	8.7	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	0.18	7.8	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.21	6.1	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.19	6.1	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.24	6.1	"	"	"	"	"	"	
Dichlorodifluoromethane	5.7	0.33	5.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	0.25	4.1	"	"	"	"	"	"	
1,2-Dichloroethane	ND	0.32	4.1	"	"	"	"	"	"	
1,1-Dichloroethene	ND	0.25	4.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	0.25	4.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	0.25	4.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	0.22	4.7	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	0.15	4.6	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.21	4.6	"	"	"	"	"	"	
4-Ethyltoluene	ND	0.10	5.0	"	"	"	"	"	"	
Methylene chloride	ND	0.19	3.5	"	"	"	"	"	"	
Styrene	ND	0.12	4.3	"	"	"	"		"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr. Project Number: 7380.000.003 Reported: Rocklin CA, 95765 Project Manager: Jeff Adams 05/26/11 13:20

SG9 T110627-09(Air)

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
			SunStar I	_aboratori	es. Inc.					
			Sunstai L	<u>Zuo or utorr</u>	<u>05, 1110.</u>					
TO-15										
1,1,2,2-Tetrachloroethane	ND	0.11	7.0	ug/m³ Air	3.52	1051610	05/16/11	05/20/11	TO-15	
Tetrahydrofuran	ND	0.26	3.0	"	"	"	"	"	"	
Tetrachloroethene	27	0.20	6.9	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	0.21	5.6	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	0.54	5.6	"	"	"	"	"	"	
Trichloroethene	3.8	0.14	5.5	"	"	"	"	"	"	J
Trichlorofluoromethane	4.4	0.48	5.7	"	"	"	"	"	"	J
1,3,5-Trimethylbenzene	4.8	0.13	5.0	"	"	"	"	"	"	J
1,2,4-Trimethylbenzene	7.0	0.23	5.0	"	"	"	"	"	"	
Vinyl acetate	ND	0.44	3.6	"	"	"	"	"	"	
Vinyl chloride	ND	0.10	2.6	"	"	"	"	"	"	
1,4-Dioxane	ND	0.14	18	"	"	"	"	"	"	
2-Butanone (MEK)	10	0.62	15	"	"	"	"	"	"	J
4-Methyl-2-pentanone (MIBK)	ND	0.14	42	"	"	"	"	"	"	
Benzene	ND	0.14	3.3	"	"	"	"	"	"	
Toluene	13	0.15	3.8	"	"	"	"	"	"	
Ethylbenzene	7.0	0.14	4.4	"	"	"	"	"	"	
m,p-Xylene	15	0.49	8.8	"	"	"	"	"	"	
o-Xylene	7.0	0.19	4.4	"	"	"	"	"	"	
C6-C12 (GRO)	20000	1800	7200	"	1.76	"	"	"	"	
1,1-Difluoroethane (Freon 152)	ND		27	"	3.52	"	"	"	"	
Surrogate: 4-Bromofluorobenzene			91.5 %	40-1	60	"	"	"	"	

SunStar Laboratories, Inc.

Engeo Project: 1000 N. Vasco Rd.

 2213 Plaza Dr.
 Project Number: 7380.000.003
 Reported:

 Rocklin CA, 95765
 Project Manager: Jeff Adams
 05/26/11 13:20

SG10 T110627-10(Air)

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
			SunStar I	Laboratori	es, Inc.					
TO-15										
Acetone	630	0.25	12	ug/m³ Air	1.57	1051610	05/16/11	05/20/11	TO-15]
1,3-Butadiene	ND	0.17	4.5	"	"	"	"	"	"	
Carbon disulfide	3.1	0.16	3.2	"	"	"	"	"	"	
1,1,2-trichloro-1,2,2-trifluoroetha ne (CFC 113)	ND	0.50	7.7	"	"	"	"	"	"	
Isopropyl alcohol	0.98	0.21	13	"	"	"	"	"	"	
Bromodichloromethane	ND	0.26	6.8	"	"	"	"	"	"	
Bromoform	ND	0.18	11	"	"	"	"	"	"	
Bromomethane	ND	0.37	4.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.56	6.4	"	"	"	"	"	"	
Chlorobenzene	ND	0.12	4.7	"	"	"	"	"	"	
Chloroethane	ND	0.29	2.7	"	"	"	"	"	"	
Chloroform	ND	0.38	5.0	"	"	"	"	"	"	
Chloromethane	ND	0.17	11	"	"	"	"	"	"	
Cyclohexane	4.2	0.17	3.5	"	"	"	"	"	"	
Heptane	5.7	0.21	4.2	"	"	"	"	"	"	
Hexane	1.5	1.0	3.6	"	"	"	"	"	"	
Dibromochloromethane	ND	0.23	8.7	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	0.18	7.8	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.21	6.1	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.19	6.1	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.24	6.1	"	"	"	"	"	"	
Dichlorodifluoromethane	2.5	0.33	5.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	0.25	4.1	"	"	"	"	"	"	
1,2-Dichloroethane	ND	0.32	4.1	"	"	"	"	"	"	
1,1-Dichloroethene	ND	0.25	4.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	0.25	4.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	0.25	4.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	0.22	4.7	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	0.15	4.6	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.21	4.6	"	"	"	"	"	"	
4-Ethyltoluene	ND	0.10	5.0	"	"	"	"	"	"	
Methylene chloride	ND	0.19	3.5	"	"	"	"	"	"	
Styrene	ND	0.12	4.3	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Engeo Project: 1000 N. Vasco Rd.

 2213 Plaza Dr.
 Project Number: 7380.000.003
 Reported:

 Rocklin CA, 95765
 Project Manager: Jeff Adams
 05/26/11 13:20

SG10 T110627-10(Air)

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
			SunStar I	_aboratori	es, Inc.					
TO-15										
1,1,2,2-Tetrachloroethane	ND	0.11	7.0	ug/m³ Air	1.57	1051610	05/16/11	05/20/11	TO-15	
Tetrahydrofuran	ND	0.26	3.0	"	"	"	"	"	"	
Tetrachloroethene	9.3	0.20	6.9	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	0.21	5.6	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	0.54	5.6	"	"	"	"	"	"	
Trichloroethene	26	0.14	5.5	"	"	"	"	"	"	
Trichlorofluoromethane	2.0	0.48	5.7	"	"	"	"	"	"	J
1,3,5-Trimethylbenzene	2.4	0.13	5.0	"	"	"	"	"	"	j
1,2,4-Trimethylbenzene	4.0	0.23	5.0	"	"	"	"	"	"	J
Vinyl acetate	ND	0.44	3.6	"	"	"	"	"	"	
Vinyl chloride	ND	0.10	2.6	"	"	"	"	"	"	
1,4-Dioxane	ND	0.14	18	"	"	"	"	"	"	
2-Butanone (MEK)	3.8	0.62	15	"	"	"	"	"	"	J
4-Methyl-2-pentanone (MIBK)	ND	0.14	42	"	"	"	"	"	"	
Benzene	3.1	0.14	3.3	"	"	"	"	"	"	J
Toluene	35	0.15	3.8	"	"	"	"	"	"	
Ethylbenzene	3.8	0.14	4.4	"	"	"	"	"	"	J
m,p-Xylene	9.6	0.49	8.8	"	"	"	"	"	"	
o-Xylene	4.0	0.19	4.4	"	"	"	"	"	"	J
C6-C12 (GRO)	31000	1800	7200	"	"	"	"	"	"	
1,1-Difluoroethane (Freon 152)	ND		27	"	"	"	"	"	"	
Surrogate: 4-Bromofluorobenzene			96.6 %	40-1	60	"	"	"	"	

SunStar Laboratories, Inc.

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Jeff Adams05/26/11 13:20

SG11 T110627-11(Air)

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
			SunStar L	_aboratori	es, Inc.					
TO-15										
Acetone	520	0.25	12	ug/m³ Air	1.8	1051610	05/16/11	05/20/11	TO-15	Е
1,3-Butadiene	ND	0.17	4.5	"	"	"	"	"	"	
Carbon disulfide	1.3	0.16	3.2	"	"	"	"	"	"	J
1,1,2-trichloro-1,2,2-trifluoroetha ne (CFC 113)	ND	0.50	7.7	"	"	"	"	"	"	
Isopropyl alcohol	1.0	0.21	13	"	"	"	"	"	"	J
Bromodichloromethane	ND	0.26	6.8	"	"	"	"	"	"	
Bromoform	ND	0.18	11	"	"	"	"	"	"	
Bromomethane	ND	0.37	4.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.56	6.4	"	"	"	"	"	"	
Chlorobenzene	ND	0.12	4.7	"	"	"	"	"	"	
Chloroethane	ND	0.29	2.7	"	"	"	"	"	"	
Chloroform	ND	0.38	5.0	"	"	"	"	"	"	
Chloromethane	ND	0.17	11	"	"	"	"	"	"	
Cyclohexane	5.2	0.17	3.5	"	"	"	"	"	"	
Heptane	ND	0.21	4.2	"	"	"	"	"	"	
Hexane	ND	1.0	3.6	"	"	"	"	"	"	
Dibromochloromethane	ND	0.23	8.7	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	0.18	7.8	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.21	6.1	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.19	6.1	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.24	6.1	"	"	"	"	"	"	
Dichlorodifluoromethane	2.6	0.33	5.0	"	"	"	"	"	"	J
1,1-Dichloroethane	ND	0.25	4.1	"	"	"	"	"	"	
1,2-Dichloroethane	ND	0.32	4.1	"	"	"	"	"	"	
1,1-Dichloroethene	ND	0.25	4.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	0.25	4.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	0.25	4.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	0.22	4.7	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	0.15	4.6	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.21	4.6	"	"	"	"	"	"	
4-Ethyltoluene	ND	0.10	5.0	"	"	"	"	"	"	
Methylene chloride	ND	0.19	3.5	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Jeff Adams05/26/11 13:20

SG11 T110627-11(Air)

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
			SunStar I	_aboratori	es, Inc.					
TO-15										
Styrene	ND	0.12	4.3	ug/m³ Air	1.8	1051610	05/16/11	05/20/11	TO-15	
1,1,2,2-Tetrachloroethane	ND	0.11	7.0	"	"	"	"	"	"	
Tetrahydrofuran	ND	0.26	3.0	"	"	"	"	"	"	
Tetrachloroethene	8.6	0.20	6.9	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	0.21	5.6	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	0.54	5.6	"	"	"	"	"	"	
Trichloroethene	ND	0.14	5.5	"	"	"	"	"	"	
Trichlorofluoromethane	ND	0.48	5.7	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	2.3	0.13	5.0	"	"	"	"	"	"	j
1,2,4-Trimethylbenzene	3.5	0.23	5.0	"	"	"	"	"	"	J
Vinyl acetate	ND	0.44	3.6	"	"	"	"	"	"	
Vinyl chloride	ND	0.10	2.6	"	"	"	"	"	"	
1,4-Dioxane	ND	0.14	18	"	"	"	"	"	"	
2-Butanone (MEK)	5.7	0.62	15	"	"	"	"	"	"	J
4-Methyl-2-pentanone (MIBK)	ND	0.14	42	"	"	"	"	"	"	
Benzene	3.3	0.14	3.3	"	"	"	"	"	"	
Toluene	6.8	0.15	3.8	"	"	"	"	"	"	
Ethylbenzene	3.4	0.14	4.4	"	"	"	"	"	"	j
m,p-Xylene	8.0	0.49	8.8	"	"	"	"	"	"	J
o-Xylene	3.4	0.19	4.4	"	"	"	"	"	"	J
C6-C12 (GRO)	23000	1800	7200	"	"	"	"	"	"	
1,1-Difluoroethane (Freon 152)	ND		27	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Jeff Adams05/26/11 13:20

SG12 T110627-12(Air)

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		<u> </u>	SunStar I	Laboratori	es, Inc.					
TO-15										
Acetone	620	0.25	12	ug/m³ Air	1.68	1051610	05/16/11	05/20/11	TO-15	I
1,3-Butadiene	ND	0.17	4.5	"	"	"	"	"	"	
Carbon disulfide	190	0.16	3.2	"	"	"	"	"	"	
1,1,2-trichloro-1,2,2-trifluoroetha ne (CFC 113)	ND	0.50	7.7	"	"	"	"	"	"	
Isopropyl alcohol	4.7	0.21	13	"	"	"	"	"	"	
Bromodichloromethane	ND	0.26	6.8	"	"	"	"	"	"	
Bromoform	ND	0.18	11	"	"	"	"	"	"	
Bromomethane	ND	0.37	4.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	0.56	6.4	"	"	"	"	"	"	
Chlorobenzene	ND	0.12	4.7	"	"	"	"	"	"	
Chloroethane	ND	0.29	2.7	"	"	"	"	"	"	
Chloroform	ND	0.38	5.0	"	"	"	"	"	"	
Chloromethane	ND	0.17	11	"	"	"	"	"	"	
Cyclohexane	25	0.17	3.5	"	"	"	"	"	"	
Heptane	ND	0.21	4.2	"	"	"	"	"	"	
Hexane	ND	1.0	3.6	"	"	"	"	"	"	
Dibromochloromethane	ND	0.23	8.7	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	0.18	7.8	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	0.21	6.1	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	0.19	6.1	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	0.24	6.1	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	0.33	5.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	0.25	4.1	"	"	"	"	"	"	
1,2-Dichloroethane	ND	0.32	4.1	"	"	"	"	"	"	
1,1-Dichloroethene	ND	0.25	4.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	2.8	0.25	4.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	0.25	4.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	0.22	4.7	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	0.15	4.6	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	0.21	4.6	"	"	"	"	"	"	
4-Ethyltoluene	ND	0.10	5.0	"	"	"	"	"	"	
Methylene chloride	ND	0.19	3.5	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Jeff Adams05/26/11 13:20

SG12 T110627-12(Air)

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
			SunStar I	aboratori	es, Inc.					
TO-15										
Styrene	ND	0.12	4.3	ug/m³ Air	1.68	1051610	05/16/11	05/20/11	TO-15	
1,1,2,2-Tetrachloroethane	ND	0.11	7.0	"	"	"	"	"	"	
Tetrahydrofuran	ND	0.26	3.0	"	"	"	"	"	"	
Tetrachloroethene	91	0.20	6.9	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	0.21	5.6	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	0.54	5.6	"	"	"	"	"	"	
Trichloroethene	10	0.14	5.5	"	"	"	"	"	"	
Trichlorofluoromethane	2.6	0.48	5.7	"	"	"	"	"	"	J
1,3,5-Trimethylbenzene	2.5	0.13	5.0	"	"	"	"	"	"	J
1,2,4-Trimethylbenzene	4.4	0.23	5.0	"	"	"	"	"	"	J
Vinyl acetate	ND	0.44	3.6	"	"	"	"	"	"	
Vinyl chloride	ND	0.10	2.6	"	"	"	"	"	"	
1,4-Dioxane	ND	0.14	18	"	"	"	"	"	"	
2-Butanone (MEK)	9.6	0.62	15	"	"	"	"	"	"	J
4-Methyl-2-pentanone (MIBK)	ND	0.14	42	"	"	"	"	"	"	
Benzene	2.6	0.14	3.3	"	"	"	"	"	"	J
Toluene	5.5	0.15	3.8	"	"	"	"	"	"	
Ethylbenzene	3.0	0.14	4.4	"	"	"	"	"	"	J
m,p-Xylene	6.6	0.49	8.8	"	"	"	"	"	"	J
o-Xylene	3.0	0.19	4.4	"	"	"	"	"	"	J
C6-C12 (GRO)	13000	1800	7200	"	"	"	"	"	"	
1,1-Difluoroethane (Freon 152)	ND		27	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Jeff Adams05/26/11 13:20

TO-15 - Quality Control SunStar Laboratories, Inc.

			Reporting		Spike	Source		%REC		RPD	
Analyte	Result	MDL	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 1051610 - General Prep VOC-MS

Blank (1051610-BLK1)				Prepared: 05/1	6/11 Analyzed	d: 05/19/11	
Surrogate: 4-Bromofluorobenzene	43.3		ug/m³ A	ir 45.3	95.7	40-160	
Acetone	ND	0.25	12 "				
1,3-Butadiene	ND	0.17	4.5 "				
Carbon disulfide	ND	0.16	3.2 "				
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	0.50	7.7 "				
Isopropyl alcohol	ND	0.21	13 "				
Bromodichloromethane	ND	0.26	6.8 "				
Bromoform	ND	0.18	11 "				
Bromomethane	ND	0.37	4.0 "				
Carbon tetrachloride	ND	0.56	6.4 "				
Chlorobenzene	ND	0.12	4.7 "				
Chloroethane	ND	0.29	2.7 "				
Chloroform	ND	0.38	5.0 "				
Chloromethane	ND	0.17	11 "				
Cyclohexane	ND	0.17	3.5 "				
Heptane	ND	0.21	4.2 "				
Hexane	ND	1.0	3.6 "				
Dibromochloromethane	ND	0.23	8.7 "				
1,2-Dibromoethane (EDB)	ND	0.18	7.8 "				
1,2-Dichlorobenzene	ND	0.21	6.1 "				
1,3-Dichlorobenzene	ND	0.19	6.1 "				
1,4-Dichlorobenzene	ND	0.24	6.1 "				
Dichlorodifluoromethane	ND	0.33	5.0 "				
1,1-Dichloroethane	ND	0.25	4.1 "				
1,2-Dichloroethane	ND	0.32	4.1 "				
1,1-Dichloroethene	ND	0.25	4.0 "				

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Engeo Project: 1000 N. Vasco Rd.

 2213 Plaza Dr.
 Project Number: 7380.000.003
 Reported:

 Rocklin CA, 95765
 Project Manager: Jeff Adams
 05/26/11 13:20

TO-15 - Quality Control SunStar Laboratories, Inc.

			Reporting		Spike	Source		%REC		RPD	
Analyte	Result	MDL	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 1051610 - General Prep VOC-MS

Blank (1051610-BLK1)			Prepared: 05/16/11 Analyzed: 05/19/11
cis-1,2-Dichloroethene	ND	0.25	4.0 ug/m³ Air
trans-1,2-Dichloroethene	ND	0.25	4.0 "
1,2-Dichloropropane	ND	0.22	4.7 "
cis-1,3-Dichloropropene	ND	0.15	4.6 "
trans-1,3-Dichloropropene	ND	0.21	4.6 "
4-Ethyltoluene	ND	0.10	5.0 "
Methylene chloride	ND	0.19	3.5 "
Styrene	ND	0.12	4.3 "
1,1,2,2-Tetrachloroethane	ND	0.11	7.0 "
Tetrahydrofuran	ND	0.26	3.0 "
Tetrachloroethene	ND	0.20	6.9 "
1,1,2-Trichloroethane	ND	0.21	5.6 "
1,1,1-Trichloroethane	ND	0.54	5.6 "
Trichloroethene	ND	0.14	5.5 "
Trichlorofluoromethane	ND	0.48	5.7 "
1,3,5-Trimethylbenzene	ND	0.13	5.0 "
1,2,4-Trimethylbenzene	ND	0.23	5.0 "
Vinyl acetate	ND	0.44	3.6 "
Vinyl chloride	ND	0.10	2.6 "
1,4-Dioxane	ND	0.14	18 "
2-Butanone (MEK)	ND	0.62	15 "
4-Methyl-2-pentanone (MIBK)	ND	0.14	42 "
Benzene	ND	0.14	3.3 "
Toluene	ND	0.15	3.8 "
Ethylbenzene	ND	0.14	4.4 "
m,p-Xylene	ND	0.49	8.8 "
o-Xylene	ND	0.19	4.4 "

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rocklin CA, 95765

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

Engeo Project: 1000 N. Vasco Rd.
2213 Plaza Dr. Project Number: 7380.000.003

Project Number: 7380.000.003

Reported:

Project Manager: Jeff Adams

05/26/11 13:20

TO-15 - Quality Control SunStar Laboratories, Inc.

Analyte Result MDL Limit Units Level Result %REC Limits RPD Limit Notes			Reporting		Spike	Source		%REC		RPD	
	Analyte	Result	Lımıt	Units	Level		%REC	Limits	RPD	Limit	Notes

Batch 1051610 - General Prep VOC-MS	Batch	1051610	- General Pren	VOC-MS
-------------------------------------	--------------	---------	----------------	--------

Blank (1051610-BLK1)				Prepared: 05/16/1	1 Analyzed	1: 05/19/11			
C6-C12 (GRO)	ND	1800	7200 ug/m³		· · · · · ·				
1,1-Difluoroethane (Freon 152)	ND		27 "						
Duplicate (1051610-DUP1)		Source:	Г110627-01	Prepared: 05/16/1	1 Analyzed	d: 05/19/11			
Surrogate: 4-Bromofluorobenzene	43.9		ug/m³	Air 45.3	97.0	40-160			
Acetone	390	0.25	12 "	376			3.47	30	
1,3-Butadiene	1.82	0.17	4.5 "	ND				30	J
Carbon disulfide	2.99	0.16	3.2 "	2.78			7.41	30	J
1,1,2-trichloro-1,2,2-trifluoroethane (CFC 113)	ND	0.50	7.7 "	ND				30	
Isopropyl alcohol	4.90	0.21	13 "	4.99			1.71	30	J
Bromodichloromethane	ND	0.26	6.8 "	ND				30	
Bromoform	ND	0.18	11 "	ND				30	
Bromomethane	ND	0.37	4.0 "	ND				30	
Carbon tetrachloride	ND	0.56	6.4 "	ND				30	
Chlorobenzene	ND	0.12	4.7 "	ND				30	
Chloroethane	ND	0.29	2.7 "	ND				30	
Chloroform	ND	0.38	5.0 "	ND				30	
Chloromethane	ND	0.17	11 "	ND				30	
Cyclohexane	ND	0.17	3.5 "	ND				30	
Heptane	ND	0.21	4.2 "	ND				30	
Hexane	ND	1.0	3.6 "	ND				30	
Dibromochloromethane	ND	0.23	8.7 "	ND				30	
1,2-Dibromoethane (EDB)	ND	0.18	7.8 "	ND				30	
1,2-Dichlorobenzene	ND	0.21	6.1 "	ND				30	
1,3-Dichlorobenzene	ND	0.19	6.1 "	ND				30	
1,4-Dichlorobenzene	ND	0.24	6.1 "	ND				30	
Dichlorodifluoromethane	ND	0.33	5.0 "	ND				30	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rocklin CA, 95765

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

Engeo Project: 1000 N. Vasco Rd. 2213 Plaza Dr. Project Number: 7380.000.003

Project Number: 7380.000.003

Reported:
Project Manager: Jeff Adams

05/26/11 13:20

TO-15 - Quality Control SunStar Laboratories, Inc.

			Reporting		Spike	Source		%REC		RPD	
Analyte	Result	MDL	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 1051610 - General Prep VOC-MS

Duplicate (1051610-DUP1)		Source: T	110627-01	Prepared: 05/16/11 Analyz	zed: 05/19/11		
1,1-Dichloroethane	ND	0.25	4.1 ug/m³			30	
1,2-Dichloroethane	ND	0.32	4.1 "	ND		30	
1,1-Dichloroethene	ND	0.25	4.0 "	ND		30	
cis-1,2-Dichloroethene	ND	0.25	4.0 "	3.68		30	
trans-1,2-Dichloroethene	ND	0.25	4.0 "	ND		30	
1,2-Dichloropropane	ND	0.22	4.7 "	ND		30	
cis-1,3-Dichloropropene	ND	0.15	4.6 "	ND		30	
trans-1,3-Dichloropropene	ND	0.21	4.6 "	ND		30	
4-Ethyltoluene	ND	0.10	5.0 "	ND		30	
Methylene chloride	ND	0.19	3.5 "	ND		30	
Styrene	ND	0.12	4.3 "	ND		30	
1,1,2,2-Tetrachloroethane	ND	0.11	7.0 "	ND		30	
Tetrahydrofuran	ND	0.26	3.0 "	ND		30	
Tetrachloroethene	ND	0.20	6.9 "	109		30	
1,1,2-Trichloroethane	ND	0.21	5.6 "	ND		30	
1,1,1-Trichloroethane	ND	0.54	5.6 "	ND		30	
Trichloroethene	ND	0.14	5.5 "	5.18		30	
Trichlorofluoromethane	ND	0.48	5.7 "	ND		30	
1,3,5-Trimethylbenzene	7.44	0.13	5.0 "	6.42	14.6	30	
1,2,4-Trimethylbenzene	18.6	0.23	5.0 "	18.9	1.80	30	
Vinyl acetate	ND	0.44	3.6 "	ND		30	
Vinyl chloride	ND	0.10	2.6 "	ND		30	
1,4-Dioxane	ND	0.14	18 "	ND		30	
2-Butanone (MEK)	5.06	0.62	15 "	4.66	8.33	30	J
4-Methyl-2-pentanone (MIBK)	ND	0.14	42 "	ND		30	
Benzene	ND	0.14	3.3 "	ND		30	
Toluene	8.42	0.15	3.8 "	8.68	3.03	30	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Rocklin CA, 95765

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

Engeo Project: 1000 N. Vasco Rd.
2213 Plaza Dr. Project Number: 7380.000.003

Project Number: 7380.000.003

Reported:
Project Manager: Jeff Adams

05/26/11 13:20

TO-15 - Quality Control SunStar Laboratories, Inc.

]	Reporting		Spike	Source		%REC		RPD	
Analyte	Result	MDL	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 1051610 - General Prep VOC-MS

Duplicate (1051610-DUP1)		Source:	T110627-01	Prepared: 05/16/11 Analyzed	: 05/19/11		
Ethylbenzene	ND	0.14	4.4 ug/m³ Ai	r ND		30	
m,p-Xylene	12.8	0.49	8.8 "	13.3	3.43	30	
o-Xylene	6.42	0.19	4.4 "	6.57	2.30	30	
C6-C12 (GRO)	6000	1800	7200 "	12500	70.6	30	J
1,1-Difluoroethane (Freon 152)	ND		27 "	2590		200	

SunStar Laboratories, Inc.

Saviel of Chivey

Engeo Project: 1000 N. Vasco Rd.

2213 Plaza Dr.Project Number: 7380.000.003Reported:Rocklin CA, 95765Project Manager: Jeff Adams05/26/11 13:20

Notes and Definitions

J Detected but below the Standard Reporting Limit; therefore, result is an estimated concentration (CLP J-Flag).

E The concentration indicated for this analyte is above the calibration range of the instrument. This value should be considered as an

estimate as the actual value may be higher.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

SunStar Laboratories, Inc. 25712 Commercentre Dr Lake Forest, CA 92630 949-297-5020

Chain of Custody Record

								_														
Sample disposal instructions:		Relinquished by: (signature)		Relinquished by: (Signature)	MARK CHANK	Relinquished by: (signature)				21.93	11 298	56-10	569	8 45	567	366	565	56-4	563	245	261	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Disposal @ \$2.00 each		Date / Time		Date / Time	30:8 /11/21/5	Date / Time)					1	1			0	1		5/13/11 10	Adam Adam
					50	ı				1: HZ	20.1	11:02	15:11	11:18	10155	1:57	22.2	21:0	238	25.2	50:01	
Return		Received by		Received by	N. D.	Received by	_ \		é									_		- '	VAPO	\$88 - 27 \$88 - 27 Sample Type
Return to client		Received by: (signature)		Received by: (signature)		Received by/Jsignature)	.		•	-								_			CAMISTER	Ramon (A 279-2418 pe Container pe Type
					1	ı					_											8260
Pickup				П			Ц	L	Ļ			_				_	L			L	_	8260 + OXY
- du		Date / Time		Date / Time	,	Date / Time	Ľ	\vdash	-	\vdash	<u> </u>	\vdash		_		_				L	ļ.,	8260 BTEX, OXY only 8270
		m I		Ħ	4	Tim		1	-	-		<u> </u>	ļ			-	\vdash			H	┝	8021 BTEX 8015M (gasoline) 8015M (diesel)
		Ф		æ	1	O		-	\vdash	-		<u> </u>	_	<u> </u>		_	-			H	-	8015M (gasoline) # 05 M
	7				Ω	49	-	\vdash		<u> </u>	-	 		-		-	H					8015M (diesel)
	Turn a		Recei		nain (16	-		╁	H						 	-	H	_	H	┢	8015M Ext./Carbon Chain
	roun		ved	တ	ξ.	_		Ħ	T							-				┢		8015M Ext./Carbon Chain 6010/7000 Title 22 Metals
	round time:		ived good condition/cold	Seals intact? Y/N/NA	Chain of Custody seals Y/N/NA	Total # of containers		1	×	×	7	×.	×	×	X	<	<	×	×	×	K	1-mile 10/10/16 1 1 1 1
	<u>е</u>		conc	ntact	seal	# of c	\Box			Ĺ				,		L						10-15 W1 11 Hobas
			lition	?Y\\	s≾≱	ontai	Ц		L	<u> </u>	L		_	_		_	L			L	L	
				Ž	¥	ners	.	\														
						w		\setminus	14	13.	n	Ø	20	80	07	20	es	40	03	20	0	Laboratory ID # EDF #:
	(attendant)	· E-may from	Sec . Proon	1	-Results by	Notes																e:
	Bill H.	1 TOP AS	11/02/15	·	4 3pm	Š																
		*						1	<u></u>		<u>L</u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>				L.			Total # of centainers
																						∠ ~ ~ ~

SAMPLE RECEIVING REVIEW SHEET

BATCH #				
Client Name: ENGEO	Project:	1000 No.	итн Ил	CO ROND
Received by:	Date/Time Re	ceived: <u> </u> ۶	114/11 10	50
Delivered by: Client SunStar Courier GSO	FedEx	Other		
Total number of coolers received Temp of	eriteria = 6°C	> 0°C (no <u>i</u>	frozen con	tainers)
Temperature: cooler #1 $\underline{zo. \iota}$ °C +/- the CF (-0.2°C) = \underline{z}	vo °C correc	eted temperatu	ire	
cooler #2°C +/- the CF (- 0.2°C) =	°С согтес	cted temperate	are	
cooler #3°C +/- the CF (- 0.2°C) =	°C correc	eted temperatu	ıre	
Samples outside temp. but received on ice, w/in 6 hours of fir	nal sampling.	∐Yes	□No*	☑N/A
Custody Seals Intact on Cooler/Sample		∐Yes	□No*	₩N/A
Sample Containers Intact		Yes	□No*	
Sample labels match COC ID's		∀Yes	□No*	
Total number of containers received match COC		∐ Yes	□No*	
Proper containers received for analyses requested on COC		∬Yes	□No*	
Proper preservative indicated on COC/containers for analyses	requested	∐Yes	□No*	⊠N/A
Complete shipment received in good condition with correct te preservatives and within method specified holding times.			ibels, volu	mes
* Complete Non-Conformance Receiving Sheet if checked C	Cooler/Sample Re	eview - Initia	als and date	BC 5/14/11
Comments:				

Effective Date: 02/10/05

PLEASE DO NOT WRITE ON OR PLACE LABELS ON SUMMA CANS

PROVIDING QUALITY ANALYTICAL SERVICES NATIONWIDE

Canister Data Sheet

ENGEO_SCOTT JOHNS_5/12/2011_19

Client:		ENGE	O_SCOTT JOHN	ENGEO_SCOTT JOHNS_5/12/2011_19					
Shipping Inf	Information			Sampling Information					
		CHECK	Pressure	Sample	Sample	Initial	Final	Sample	Sampre
Canister Serial	rial #	Date	(-30 +/- 2 psia)	ij	Date	Pressure	Pressure	Start Time Finish Time	Finish Time
SSAT-	0031 e	5/12/2011	-30						
SSAT-	0409	5/12/2011	-30	(95	5/13/1	30	7	10:05	10:13
I I A C C	0439	5/12/2011	-30	11815	11/61/5	30	Š	1.03	[: 10
C C P I	0/160	5/12/2011	- 30			, 			
TANN TANN	0612	5/12/2011	-30	875	<i>\$/13/11</i>	29	ΛΊ	11:18	52:11
CCATI	0613	5/12/2011	-30	4-15	5/13/11	24	7	31.12	9:19
C C A TT I	0.61.6	5/12/2011	-30	545	5/13/11	82	5	9:52	4.54
I LA S S	0660	5/12/2011	-30	2010	5/13/1	30	73	11:02	11:11
SS A TI	0675	5/12/2011	-30	567	11/0/1	For	ه	\$5.00	10:07
S S A TI	0677	5/12/2011	-30	D 25	11/8115	29	4	11:51	11:59
CCATI	0685	5/12/2011	-30	7 75	1/3/1/	28	4	1257	204
SSATI	0688	5/12/2011	130		5/13/11	28	4	12:38	12145
SSAT-	0689	5/12/2011	-30	21.95	5/13/11	B	2	1: 47	1:52
SSAT-	0710	5/12/2011	-30	36 2	5/12/11	30	٧	12/8/2	1000
ССЪП.	0711	5/12/2011	130		,				
SSAT-	6003	5/12/2011	-30	PURGE CAN					

	· 			 T	—т	 		·		Т		<u> </u>	Т	-т	 	Т	-	<u> </u>	\Box
									;								SSAT-	SSAT-	SSAT-
		·.															0716	0618	0211
																	-5/12/2011 	5/12/2011	5/12/2011
																:	30 PSI	30 PST	30 PSI
																	NITROGEN FILLED	NITROGEN FILLED	NITROGEN FILLED
							į												
•																			
			'																

Effective Date: 02/10/05

PLEASE DO NOT WRITE ON OR PLACE LABELS ON SUMMA CANS

PROVIDING QUALITY ANALYTICAL SERVICES NATIONWIDE

Canister Data Sheet

Sott Silves

The Case	ζ', '		Callisiel Dala Sheet	, D1166			1	
Client: 110 5	n				\ \ \	2017	SIMIS	
Shipping Information			Sampling Information					
	CHECK	Pressure	Sample	Sample	Initial	Final	eŢdwes	Sample
Canister Serial #	Date	(-30 +/- 2 psia)	Œ	Date	Pressure	Pressure	Start Time	Start Time Finish Time
SSAT- 2023		Soil Um	Da MANIF	1/2°				
SSAT-		9	,					
SSAT- 3016		1), , , , , , , , , , , , , , , , , , ,	14				
SSAT-	-							
SSAT- 20/8		1))) (
SSAT-								
SSAT-								
SSAT-								E.
SSAT-	<u> </u>							
SSAT-								
SSAT-								
SSAT-						,		
SSAT-								
SSAT-								
SSAT-						·		
SSAT-								

Jeff Adams

Bill Hannell [bill@sunstarlabs.com] From:

Thursday, May 12, 2011 4:57 PM

Sent:

To: Jeff Adams

Subject: Credit for Air Project at Livermore

Hi Jeff

As per our conversation today, when we receive the 12 summa cans to be analyzed for TO 15, I am only going to charge you \$ 500 for the whole project. If you would print this out and attach it to the COC, with also a note on the COC that refers to this email, I would appreciate it.

Thanks for your business, and I look forward to working with you in the future.

Best regards

Bill Hannell* Vice President of Operations

SunStar Laboratories, Inc. 25712 Commercentre Drive Lake Forest, CA 92630 530-304-5525 Office 530-756-5698 FAX bill@sunstarlabs.com

ELAP# 2250 Small Business Certification: # 31511

Appendix C

TestAmerica Laboratories, Inc. July 2011 Laboratory Report

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica San Francisco 1220 Quarry Lane Pleasanton, CA 94566 Tel: (925)484-1919

TestAmerica Job ID: 720-36241-1

Client Project/Site: Macedo Remediation

For:

Engeo, Inc. 580 N Wilma Avenue Suite A Ripon, California 95366-9502

Attn: Mr. Richard Gandolfo

Authorized for release by: 07/20/2011 04:41:37 PM

Afsaneh Salimpour
Project Manager I
afsaneh.salimpour@testamericainc.com

Review your project results through

----- LINKS -----

Total Access

Have a Question?

Visit us at: www.testamericainc.com This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Page 1 of 27 07/20/2011

Client: Engeo, Inc. Project/Site: Macedo Remediation TestAmerica Job ID: 720-36241-1

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
QC Sample Results	11
QC Association Summary	21
Lab Chronicle	22
Certification Summary	23
Method Summary	24
Sample Summary	25
Chain of Custody	26
Receipt Checklists	27

Definitions/Glossary

Client: Engeo, Inc.

TestAmerica Job ID: 720-36241-1

Project/Site: Macedo Remediation

Qualifiers

GC/MS VOA

Qualifier	Qualifier Description
-----------	-----------------------

F MS or MSD exceeds the control limits

F RPD of the MS and MSD exceeds the control limits

Glossary

Listed under the "D" column to designate that the result is reported on a dry weight basis.

EPA United States Environmental Protection Agency
ND Not Detected above the reporting level.

MDL Method Detection Limit RL Reporting Limit

RE, RE1 (etc.) Indicates a Re-extraction or Reanalysis of the sample.

%R Percent Recovery

RPD Relative Percent Difference, a measure of the relative difference between two points.

1

3

4

E

4.0

4 4

12

13

Case Narrative

Client: Engeo, Inc.

TestAmerica Job ID: 720-36241-1

Project/Site: Macedo Remediation

Job ID: 720-36241-1

Laboratory: TestAmerica San Francisco

Narrative

Job Narrative 720-36241-1

Comments

No additional comments.

Receipt

All samples were received in good condition within temperature requirements.

GC/MS VOA

No analytical or quality issues were noted.

GC Semi VOA

No analytical or quality issues were noted.

Organic Prep

No analytical or quality issues were noted.

4

5

Q

9

10

11

13

114

Detection Summary

Client: Engeo, Inc.

Project/Site: Macedo Remediation

TestAmerica Job ID: 720-36241-1

Client Sample ID: DEEP

Lab Sample ID: 720-36241-1

No Detections.

Client Sample ID: SHALLOW Lab Sample ID: 720-36241-2

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac I	Method	Prep Type
Methyl tert-butyl ether	3.6	0.50	ug/L	1	8260B/CA_LUFTM	Total/NA

Client: Engeo, Inc.

TestAmerica Job ID: 720-36241-1

Project/Site: Macedo Remediation

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS

Client Sample ID: DEEP
Date Collected: 07/13/11 00:00

Lab Sample ID: 720-36241-1

Matrix: Water

Date	Collected:	07/13/11	00:00
Date	Received:	07/13/11	17:20

Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fa
Methyl tert-butyl ether	ND	0.50	ug/L		07/15/11 13:03	
Acetone	ND	50	ug/L		07/15/11 13:03	
Benzene	ND	0.50	ug/L		07/15/11 13:03	
Dichlorobromomethane	ND	0.50	ug/L		07/15/11 13:03	
Bromobenzene	ND	1.0	ug/L		07/15/11 13:03	
Chlorobromomethane	ND	1.0	ug/L		07/15/11 13:03	
Bromoform	ND	1.0	ug/L		07/15/11 13:03	
Bromomethane	ND	1.0	ug/L		07/15/11 13:03	
2-Butanone (MEK)	ND	50	ug/L		07/15/11 13:03	
n-Butylbenzene	ND	1.0	ug/L		07/15/11 13:03	
sec-Butylbenzene	ND	1.0	ug/L		07/15/11 13:03	
tert-Butylbenzene	ND	1.0	ug/L		07/15/11 13:03	
Carbon disulfide	ND	5.0	ug/L		07/15/11 13:03	
Carbon tetrachloride	ND	0.50	ug/L		07/15/11 13:03	
Chlorobenzene	ND	0.50	ug/L		07/15/11 13:03	
Chloroethane	ND	1.0	ug/L		07/15/11 13:03	
Chloroform	ND	1.0	ug/L		07/15/11 13:03	
Chloromethane	ND	1.0	ug/L		07/15/11 13:03	
2-Chlorotoluene	ND	0.50	ug/L ug/L		07/15/11 13:03	
4-Chlorotoluene	ND	0.50	ug/L		07/15/11 13:03	
Chlorodibromomethane	ND ND	0.50	-		07/15/11 13:03	
			ug/L			
1,2-Dichlorobenzene	ND	0.50	ug/L		07/15/11 13:03	
1,3-Dichlorobenzene	ND	0.50	ug/L		07/15/11 13:03	
1,4-Dichlorobenzene	ND	0.50	ug/L		07/15/11 13:03	
1,3-Dichloropropane	ND	1.0	ug/L		07/15/11 13:03	
1,1-Dichloropropene	ND	0.50	ug/L		07/15/11 13:03	
1,2-Dibromo-3-Chloropropane	ND	1.0	ug/L		07/15/11 13:03	
Ethylene Dibromide	ND	0.50	ug/L		07/15/11 13:03	
Dibromomethane	ND	0.50	ug/L		07/15/11 13:03	
Dichlorodifluoromethane	ND	0.50	ug/L		07/15/11 13:03	
1,1-Dichloroethane	ND	0.50	ug/L		07/15/11 13:03	
1,2-Dichloroethane	ND	0.50	ug/L		07/15/11 13:03	
1,1-Dichloroethene	ND	0.50	ug/L		07/15/11 13:03	
cis-1,2-Dichloroethene	ND	0.50	ug/L		07/15/11 13:03	
rans-1,2-Dichloroethene	ND	0.50	ug/L		07/15/11 13:03	
1,2-Dichloropropane	ND	0.50	ug/L		07/15/11 13:03	
cis-1,3-Dichloropropene	ND	0.50	ug/L		07/15/11 13:03	
rans-1,3-Dichloropropene	ND	0.50	ug/L		07/15/11 13:03	
Ethylbenzene	ND	0.50	ug/L		07/15/11 13:03	
Hexachlorobutadiene	ND	1.0	ug/L		07/15/11 13:03	
2-Hexanone	ND	50	ug/L		07/15/11 13:03	
sopropylbenzene	ND	0.50	ug/L		07/15/11 13:03	
I-Isopropyltoluene	ND	1.0	ug/L		07/15/11 13:03	
Methylene Chloride	ND	5.0	ug/L		07/15/11 13:03	
I-Methyl-2-pentanone (MIBK)	ND	50	ug/L		07/15/11 13:03	
Naphthalene	ND	1.0	ug/L		07/15/11 13:03	
N-Propylbenzene	ND	1.0	ug/L		07/15/11 13:03	
Styrene	ND	0.50	ug/L		07/15/11 13:03	
1,1,1,2-Tetrachloroethane	ND	0.50	ug/L		07/15/11 13:03	

5

6

8

46

11

13

TestAmerica Job ID: 720-36241-1 Client: Engeo, Inc.

Project/Site: Macedo Remediation

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Client Sample ID: DEEP Lab Sample ID: 720-36241-1

Date Collected: 07/13/11 00:00 **Matrix: Water** Date Received: 07/13/11 17:20

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,2,2-Tetrachloroethane	ND		0.50		ug/L			07/15/11 13:03	1
Tetrachloroethene	ND		0.50		ug/L			07/15/11 13:03	1
Toluene	ND		0.50		ug/L			07/15/11 13:03	1
1,2,3-Trichlorobenzene	ND		1.0		ug/L			07/15/11 13:03	1
1,2,4-Trichlorobenzene	ND		1.0		ug/L			07/15/11 13:03	1
1,1,1-Trichloroethane	ND		0.50		ug/L			07/15/11 13:03	1
1,1,2-Trichloroethane	ND		0.50		ug/L			07/15/11 13:03	1
Trichloroethene	ND		0.50		ug/L			07/15/11 13:03	1
Trichlorofluoromethane	ND		1.0		ug/L			07/15/11 13:03	1
1,2,3-Trichloropropane	ND		0.50		ug/L			07/15/11 13:03	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50		ug/L			07/15/11 13:03	1
1,2,4-Trimethylbenzene	ND		0.50		ug/L			07/15/11 13:03	1
1,3,5-Trimethylbenzene	ND		0.50		ug/L			07/15/11 13:03	1
Vinyl acetate	ND		10		ug/L			07/15/11 13:03	1
Vinyl chloride	ND		0.50		ug/L			07/15/11 13:03	1
Xylenes, Total	ND		1.0		ug/L			07/15/11 13:03	1
2,2-Dichloropropane	ND		0.50		ug/L			07/15/11 13:03	1
Gasoline Range Organics (GRO) -C5-C12	ND		50		ug/L			07/15/11 13:03	1

Surrogate	% Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	97		67 - 130		07/15/11 13:03	1
1,2-Dichloroethane-d4 (Surr)	94		67 - 130		07/15/11 13:03	1
Toluene-d8 (Surr)	97		70 - 130		07/15/11 13:03	1

Client Sample ID: SHALLOW Lab Sample ID: 720-36241-2 Date Collected: 07/13/11 00:00 **Matrix: Water**

Date Received: 07/13/11 17:20

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	3.6		0.50		ug/L			07/15/11 15:27	1
Acetone	ND		50		ug/L			07/15/11 15:27	1
Benzene	ND		0.50		ug/L			07/15/11 15:27	1
Dichlorobromomethane	ND		0.50		ug/L			07/15/11 15:27	1
Bromobenzene	ND		1.0		ug/L			07/15/11 15:27	1
Chlorobromomethane	ND		1.0		ug/L			07/15/11 15:27	1
Bromoform	ND		1.0		ug/L			07/15/11 15:27	1
Bromomethane	ND		1.0		ug/L			07/15/11 15:27	1
2-Butanone (MEK)	ND		50		ug/L			07/15/11 15:27	1
n-Butylbenzene	ND		1.0		ug/L			07/15/11 15:27	1
sec-Butylbenzene	ND		1.0		ug/L			07/15/11 15:27	1
tert-Butylbenzene	ND		1.0		ug/L			07/15/11 15:27	1
Carbon disulfide	ND		5.0		ug/L			07/15/11 15:27	1
Carbon tetrachloride	ND		0.50		ug/L			07/15/11 15:27	1
Chlorobenzene	ND		0.50		ug/L			07/15/11 15:27	1
Chloroethane	ND		1.0		ug/L			07/15/11 15:27	1
Chloroform	ND		1.0		ug/L			07/15/11 15:27	1
Chloromethane	ND		1.0		ug/L			07/15/11 15:27	1
2-Chlorotoluene	ND		0.50		ug/L			07/15/11 15:27	1
4-Chlorotoluene	ND		0.50		ug/L			07/15/11 15:27	1

07/20/2011

Page 7 of 27

Client: Engeo, Inc.

TestAmerica Job ID: 720-36241-1

Project/Site: Macedo Remediation

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Client Sample ID: SHALLOW
Date Collected: 07/13/11 00:00
Date Received: 07/13/11 17:20

Lab Sample ID: 720-36241-2

Matrix: Water

Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fa
Chlorodibromomethane	ND ND	0.50	ug/L		07/15/11 15:27	
1,2-Dichlorobenzene	ND	0.50	ug/L		07/15/11 15:27	
1,3-Dichlorobenzene	ND	0.50	ug/L		07/15/11 15:27	
1,4-Dichlorobenzene	ND	0.50	ug/L		07/15/11 15:27	
1,3-Dichloropropane	ND	1.0	ug/L		07/15/11 15:27	
1,1-Dichloropropene	ND	0.50	ug/L		07/15/11 15:27	
1,2-Dibromo-3-Chloropropane	ND	1.0	ug/L		07/15/11 15:27	
Ethylene Dibromide	ND	0.50	ug/L		07/15/11 15:27	
Dibromomethane	ND	0.50	ug/L		07/15/11 15:27	
Dichlorodifluoromethane	ND	0.50	ug/L		07/15/11 15:27	
1,1-Dichloroethane	ND	0.50	ug/L		07/15/11 15:27	
1,2-Dichloroethane	ND	0.50	ug/L		07/15/11 15:27	
1,1-Dichloroethene	ND	0.50	ug/L		07/15/11 15:27	
cis-1,2-Dichloroethene	ND	0.50	ug/L		07/15/11 15:27	
trans-1,2-Dichloroethene	ND	0.50	ug/L		07/15/11 15:27	
1,2-Dichloropropane	ND	0.50	ug/L		07/15/11 15:27	
cis-1,3-Dichloropropene	ND	0.50	ug/L		07/15/11 15:27	
trans-1,3-Dichloropropene	ND	0.50	ug/L		07/15/11 15:27	
Ethylbenzene	ND	0.50	ug/L		07/15/11 15:27	
Hexachlorobutadiene	ND	1.0	ug/L		07/15/11 15:27	
2-Hexanone	ND	50	ug/L		07/15/11 15:27	
Isopropylbenzene	ND	0.50	ug/L		07/15/11 15:27	
4-Isopropyltoluene	ND	1.0	ug/L		07/15/11 15:27	
Methylene Chloride	ND	5.0	ug/L		07/15/11 15:27	
4-Methyl-2-pentanone (MIBK)	ND	50	ug/L		07/15/11 15:27	
Naphthalene	ND	1.0	ug/L		07/15/11 15:27	
N-Propylbenzene	ND	1.0	ug/L		07/15/11 15:27	
Styrene	ND	0.50	ug/L		07/15/11 15:27	
1,1,1,2-Tetrachloroethane	ND	0.50	ug/L		07/15/11 15:27	
1,1,2,2-Tetrachloroethane	ND	0.50	ug/L		07/15/11 15:27	
Tetrachloroethene	ND	0.50	ug/L		07/15/11 15:27	
Toluene	ND	0.50	ug/L		07/15/11 15:27	
1,2,3-Trichlorobenzene	ND	1.0	ug/L		07/15/11 15:27	
1,2,4-Trichlorobenzene	ND	1.0	ug/L		07/15/11 15:27	
1,1,1-Trichloroethane	ND	0.50	ug/L		07/15/11 15:27	
1,1,2-Trichloroethane	ND	0.50	ug/L		07/15/11 15:27	
Trichloroethene	ND	0.50	ug/L		07/15/11 15:27	
Trichlorofluoromethane	ND	1.0	ug/L		07/15/11 15:27	
1,2,3-Trichloropropane	ND	0.50	ug/L		07/15/11 15:27	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	0.50	ug/L		07/15/11 15:27	
1,2,4-Trimethylbenzene	ND	0.50	ug/L		07/15/11 15:27	
1,3,5-Trimethylbenzene	ND	0.50	ug/L		07/15/11 15:27	
Vinyl acetate	ND	10	ug/L		07/15/11 15:27	
Vinyl chloride	ND	0.50	ug/L		07/15/11 15:27	
Xylenes, Total	ND	1.0	ug/L		07/15/11 15:27	
2,2-Dichloropropane	ND	0.50	ug/L		07/15/11 15:27	
Gasoline Range Organics (GRO)	ND	50	ug/L		07/15/11 15:27	

3

Ē

6

Ω

9

11

12

Client: Engeo, Inc.

TestAmerica Job ID: 720-36241-1

Project/Site: Macedo Remediation

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Surrogate	% Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	97	67 - 130		07/15/11 15:27	1
1,2-Dichloroethane-d4 (Surr)	97	67 - 130		07/15/11 15:27	1
Toluene-d8 (Surr)	97	70 - 130		07/15/11 15:27	1

1

3

4

5

6

8

4.0

11

13

TestAmerica Job ID: 720-36241-1 Client: Engeo, Inc.

Project/Site: Macedo Remediation

Method: 8015B - Diesel Range Organics (DRO) (GC) - Silica Gel Cleanup

Client Sample ID: DEEP Lab Sample ID: 720-36241-1

Date Collected: 07/13/11 00:00 **Matrix: Water**

Date Received: 07/13/11 17:20

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	ND		52		ug/L		07/19/11 11:56	07/20/11 10:26	1
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Surrogate Capric Acid (Surr)	% Recovery 0	Qualifier	0 - 5				Prepared 07/19/11 11:56	Analyzed 07/20/11 10:26	Dil Fac

Client Sample ID: SHALLOW Lab Sample ID: 720-36241-2

Date Collected: 07/13/11 00:00 **Matrix: Water**

Date Received: 07/13/11 17:20

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	ND		60		ug/L		07/19/11 11:56	07/20/11 10:50	1
Surrogate	% Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Capric Acid (Surr)	0.03		0 - 5				07/19/11 11:56	07/20/11 10:50	1
p-Terphenyl	81		31 - 150				07/19/11 11:56	07/20/11 10:50	1

TestAmerica Job ID: 720-36241-1 Client: Engeo, Inc.

Project/Site: Macedo Remediation

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS

Lab Sample ID: MB 720-95238/4

Matrix: Water

Analysis Batch: 95238

Client Sample ID: Method Blank

Prep Type: Total/NA

Analyto	D	Qualifier RL	MDI 1114	D	1 Amal:	DU F
Analyte	Result (MDL Unit	D Prepared		Dil Fac
Methyl tert-butyl ether Acetone	ND ND	0.50 50	ug/L		07/15/11 09:46 07/15/11 09:46	1
	ND ND		ug/L			
Benzene		0.50	ug/L		07/15/11 09:46	1
Dichlorobromomethane	ND	0.50	ug/L		07/15/11 09:46	1
Bromobenzene	ND	1.0	ug/L		07/15/11 09:46	1
Chlorobromomethane	ND	1.0	ug/L		07/15/11 09:46	1
Bromoform	ND	1.0	ug/L		07/15/11 09:46	1
Bromomethane	ND	1.0	ug/L		07/15/11 09:46	1
2-Butanone (MEK)	ND	50	ug/L		07/15/11 09:46	1
n-Butylbenzene	ND	1.0	ug/L		07/15/11 09:46	1
sec-Butylbenzene	ND	1.0	ug/L		07/15/11 09:46	1
tert-Butylbenzene	ND	1.0	ug/L		07/15/11 09:46	1
Carbon disulfide	ND	5.0	ug/L		07/15/11 09:46	1
Carbon tetrachloride	ND	0.50	ug/L		07/15/11 09:46	1
Chlorobenzene	ND	0.50	ug/L		07/15/11 09:46	1
Chloroethane	ND	1.0	ug/L		07/15/11 09:46	1
Chloroform	ND	1.0	ug/L		07/15/11 09:46	1
Chloromethane	ND	1.0	ug/L		07/15/11 09:46	1
2-Chlorotoluene	ND	0.50	ug/L		07/15/11 09:46	1
4-Chlorotoluene	ND	0.50	ug/L		07/15/11 09:46	1
Chlorodibromomethane	ND	0.50	ug/L		07/15/11 09:46	1
1,2-Dichlorobenzene	ND	0.50	ug/L		07/15/11 09:46	1
1,3-Dichlorobenzene	ND	0.50	ug/L		07/15/11 09:46	1
1,4-Dichlorobenzene	ND	0.50	ug/L		07/15/11 09:46	1
1,3-Dichloropropane	ND	1.0	ug/L		07/15/11 09:46	1
1,1-Dichloropropene	ND	0.50	ug/L		07/15/11 09:46	1
1,2-Dibromo-3-Chloropropane	ND	1.0	ug/L		07/15/11 09:46	1
Ethylene Dibromide	ND	0.50	ug/L		07/15/11 09:46	1
Dibromomethane	ND	0.50	ug/L		07/15/11 09:46	1
Dichlorodifluoromethane	ND	0.50	ug/L		07/15/11 09:46	1
1,1-Dichloroethane	ND	0.50	ug/L		07/15/11 09:46	1
1,2-Dichloroethane	ND	0.50	ug/L		07/15/11 09:46	1
1,1-Dichloroethene	ND	0.50	ug/L		07/15/11 09:46	1
cis-1,2-Dichloroethene	ND	0.50	ug/L		07/15/11 09:46	1
trans-1,2-Dichloroethene	ND	0.50	ug/L		07/15/11 09:46	1
1,2-Dichloropropane	ND	0.50	ug/L		07/15/11 09:46	1
cis-1,3-Dichloropropene	ND	0.50	ug/L		07/15/11 09:46	1
trans-1,3-Dichloropropene	ND	0.50	ug/L		07/15/11 09:46	1
Ethylbenzene	ND	0.50	ug/L		07/15/11 09:46	1
Hexachlorobutadiene	ND	1.0	ug/L		07/15/11 09:46	<u>.</u> 1
2-Hexanone	ND	50	ug/L		07/15/11 09:46	1
Isopropylbenzene	ND	0.50	ug/L		07/15/11 09:46	1
4-Isopropyltoluene	ND	1.0	ug/L		07/15/11 09:46	· · · · · · · · · · · · · · · · · · ·
Methylene Chloride	ND ND	5.0	ug/L		07/15/11 09:46	1
4-Methyl-2-pentanone (MIBK)	ND ND	50	ug/L		07/15/11 09:46	1
Naphthalene	ND	1.0	.		07/15/11 09:46	· · · · · · · · · · · · · · · · · · ·
N-Propylbenzene	ND ND	1.0	ug/L		07/15/11 09:46	
Styrene	ND ND	0.50	ug/L ug/L		07/15/11 09:46	1

Client: Engeo, Inc.

Project/Site: Macedo Remediation

TestAmerica Job ID: 720-36241-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: MB 720-95238/4

Matrix: Water

Analysis Batch: 95238

Client Sample ID: Method Blank

Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,2,2-Tetrachloroethane	ND		0.50		ug/L			07/15/11 09:46	1
Tetrachloroethene	ND		0.50		ug/L			07/15/11 09:46	1
Toluene	ND		0.50		ug/L			07/15/11 09:46	1
1,2,3-Trichlorobenzene	ND		1.0		ug/L			07/15/11 09:46	1
1,2,4-Trichlorobenzene	ND		1.0		ug/L			07/15/11 09:46	1
1,1,1-Trichloroethane	ND		0.50		ug/L			07/15/11 09:46	1
1,1,2-Trichloroethane	ND		0.50		ug/L			07/15/11 09:46	1
Trichloroethene	ND		0.50		ug/L			07/15/11 09:46	1
Trichlorofluoromethane	ND		1.0		ug/L			07/15/11 09:46	1
1,2,3-Trichloropropane	ND		0.50		ug/L			07/15/11 09:46	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50		ug/L			07/15/11 09:46	1
1,2,4-Trimethylbenzene	ND		0.50		ug/L			07/15/11 09:46	1
1,3,5-Trimethylbenzene	ND		0.50		ug/L			07/15/11 09:46	1
Vinyl acetate	ND		10		ug/L			07/15/11 09:46	1
Vinyl chloride	ND		0.50		ug/L			07/15/11 09:46	1
m-Xylene & p-Xylene	ND		1.0		ug/L			07/15/11 09:46	1
o-Xylene	ND		0.50		ug/L			07/15/11 09:46	1
Xylenes, Total	ND		1.0		ug/L			07/15/11 09:46	1
2,2-Dichloropropane	ND		0.50		ug/L			07/15/11 09:46	1
Gasoline Range Organics (GRO) -C5-C12	ND		50		ug/L			07/15/11 09:46	1

MB MB

Surrogate	% Recovery	Qualifier	Limits	Pı	repared	Analyzed	Dil Fac	
4-Bromofluorobenzene	96		67 - 130			07/15/11 09:46	1	
1,2-Dichloroethane-d4 (Surr)	94		67 - 130			07/15/11 09:46	1	
Toluene-d8 (Surr)	98		70 - 130			07/15/11 09:46	1	

Lab Sample ID: LCS 720-95238/5

Matrix: Water

Analysis Batch: 95238

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Analysis Batch: 95236							
	Spike	LCS	LCS				% Rec.
Analyte	Added	Result	Qualifier	Unit	D	% Rec	Limits
Methyl tert-butyl ether	25.0	25.1		ug/L		100	62 - 130
Acetone	125	107		ug/L		85	26 - 180
Benzene	25.0	25.7		ug/L		103	82 - 127
Dichlorobromomethane	25.0	25.5		ug/L		102	70 - 130
Bromobenzene	25.0	25.7		ug/L		103	79 _ 127
Chlorobromomethane	25.0	26.5		ug/L		106	70 _ 130
Bromoform	25.0	25.8		ug/L		103	68 - 136
Bromomethane	25.0	26.4		ug/L		106	43 _ 151
2-Butanone (MEK)	125	120		ug/L		96	66 - 149
n-Butylbenzene	25.0	26.4		ug/L		106	79 - 142
sec-Butylbenzene	25.0	25.0		ug/L		100	81 - 134
tert-Butylbenzene	25.0	24.7		ug/L		99	82 _ 135
Carbon disulfide	25.0	23.7		ug/L		95	58 - 124
Carbon tetrachloride	25.0	24.7		ug/L		99	77 _ 146
Chlorobenzene	25.0	25.4		ug/L		102	70 - 130
Chloroethane	25.0	24.4		ug/L		98	62 - 138
Chloroform	25.0	23.8		ug/L		95	70 - 130
Chloromethane	25.0	22.3		ug/L		89	52 ₋ 175

Page 12 of 27

TestAmerica Job ID: 720-36241-1 Client: Engeo, Inc.

Project/Site: Macedo Remediation

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: LCS 720-95238/5

Matrix: Water

Analysis Batch: 95238

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

	Spike	LCS	LCS		% Rec.
Analyte	Added	Result	Qualifier Unit	D % Rec	Limits
2-Chlorotoluene	25.0	24.5	ug/L	98	70 - 130
4-Chlorotoluene	25.0	24.3	ug/L	97	70 ₋ 130
Chlorodibromomethane	25.0	27.5	ug/L	110	78 ₋ 145
1,2-Dichlorobenzene	25.0	25.0	ug/L	100	70 - 130
1,3-Dichlorobenzene	25.0	25.7	ug/L	103	70 - 130
1,4-Dichlorobenzene	25.0	25.3	ug/L	101	87 - 118
1,3-Dichloropropane	25.0	26.5	ug/L	106	82 - 128
1,1-Dichloropropene	25.0	25.2	ug/L	101	70 - 130
1,2-Dibromo-3-Chloropropane	25.0	24.8	ug/L	99	72 - 136
Ethylene Dibromide	25.0	27.6	ug/L	110	70 - 130
Dibromomethane	25.0	25.9	ug/L	104	70 ₋ 130
Dichlorodifluoromethane	25.0	21.0	ug/L	84	33 _ 125
1,1-Dichloroethane	25.0	23.7	ug/L	95	70 - 130
1,2-Dichloroethane	25.0	22.5	ug/L	90	70 - 126
1,1-Dichloroethene	25.0	22.7	ug/L	91	64 - 128
cis-1,2-Dichloroethene	25.0	27.7	ug/L	111	70 - 130
trans-1,2-Dichloroethene	25.0	20.1	ug/L	80	68 - 118
1,2-Dichloropropane	25.0	25.4	ug/L	102	70 - 130
cis-1,3-Dichloropropene	25.0	26.1	ug/L	104	88 - 137
trans-1,3-Dichloropropene	25.0	26.9	ug/L	108	83 - 140
Ethylbenzene	25.0	25.3	ug/L	101	86 ₋ 135
Hexachlorobutadiene	25.0	25.7	ug/L	103	70 - 130
2-Hexanone	125	115	ug/L	92	60 ₋ 164
Isopropylbenzene	25.0	25.6	ug/L	102	70 - 130
4-Isopropyltoluene	25.0	25.6	ug/L	102	70 - 130
· · · ·	25.0	22.9	_	92	70 - 130 73 - 147
Methylene Chloride 4-Methyl-2-pentanone (MIBK)	125	118	ug/L ug/L	94	63 ₋ 165
Naphthalene	25.0	28.2	.	113	78 - 135
·	25.0		ug/L	96	70 - 130
N-Propylbenzene Styropo	25.0	23.9 26.6	ug/L	106	70 - 130 70 - 130
Styrene			ug/L		70 - 130
1,1,1,2-Tetrachloroethane	25.0	25.4	ug/L	102	
1,1,2,2-Tetrachloroethane	25.0	24.4	ug/L	98	70 ₋ 130
Tetrachloroethene	25.0	25.9	ug/L	104	70 - 130
Toluene	25.0	25.6	ug/L	102	83 - 129
1,2,3-Trichlorobenzene	25.0	27.8	ug/L 	111	70 - 130
1,2,4-Trichlorobenzene	25.0	26.9	ug/L	108	70 - 130
1,1,1-Trichloroethane	25.0	23.8	ug/L	95	70 - 130
1,1,2-Trichloroethane	25.0	26.6	ug/L	106	82 - 128
Trichloroethene	25.0	26.0	ug/L	104	70 - 130
Trichlorofluoromethane	25.0	24.0	ug/L	96	72 ₋ 135
1,2,3-Trichloropropane	25.0	25.1	ug/L	100	70 - 130
1,1,2-Trichloro-1,2,2-trifluoroetha	25.0	24.5	ug/L	98	42 - 162
ne 1.2.4 Trimothylbonzono	OF O	24.0		00	70 132
1,2,4-Trimethylbenzene	25.0	24.6	ug/L	98	70 ₋ 132
1,3,5-Trimethylbenzene	25.0	25.1	ug/L	100	70 - 130
Vinyl acetate	25.0	23.1	ug/L	92	43 - 163
Vinyl chloride	25.0	21.7	ug/L	87	65 - 156
m-Xylene & p-Xylene	50.0	49.5	ug/L	99	70 - 142
o-Xylene	25.0	24.9	ug/L	100	89 - 136
2,2-Dichloropropane	25.0	24.3	ug/L	97	70 - 140

TestAmerica San Francisco 07/20/2011

Client: Engeo, Inc. TestAmerica Job ID: 720-36241-1

Project/Site: Macedo Remediation

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: LCS 720-95238/5 **Matrix: Water**

Analysis Batch: 95238

Client Sample ID: Lab Control Sample **Prep Type: Total/NA**

LCS LCS

Surrogate	% Recovery	Qualifier	Limits
4-Bromofluorobenzene	96		67 - 130
1,2-Dichloroethane-d4 (Surr)	86		67 - 130
Toluene-d8 (Surr)	99		70 - 130

Lab Sample ID: LCS 720-95238/7

Matrix: Water

Analysis Batch: 95238

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Spike LCS LCS % Rec. Analyte Added Result Qualifier Unit D % Rec Limits 500 439 ug/L 88 62 _ 117 Gasoline Range Organics (GRO)

-C5-C12

LCS LCS

% Recovery	Qualifier	Limits
97		67 - 130
92		67 - 130
98		70 - 130
	97	92

Lab Sample ID: LCSD 720-95238/6

Matrix: Water

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Analysis Batch: 95238	Spike	LCSD	LCSD				% Rec.		RPD
Analyte	Added		Qualifier	Unit	D	% Rec	Limits	RPD	Limit
Methyl tert-butyl ether	25.0	25.7		ug/L		103	62 _ 130	2	20
Acetone	125	90.8		ug/L		73	26 - 180	16	30
Benzene	25.0	25.4		ug/L		102	82 - 127	1	20
Dichlorobromomethane	25.0	25.4		ug/L		102	70 - 130	0	20
Bromobenzene	25.0	25.3		ug/L		101	79 - 127	2	20
Chlorobromomethane	25.0	26.4		ug/L		106	70 - 130	0	20
Bromoform	25.0	26.4		ug/L		106	68 - 136	2	20
Bromomethane	25.0	25.8		ug/L		103	43 - 151	2	20
2-Butanone (MEK)	125	113		ug/L		90	66 - 149	6	20
n-Butylbenzene	25.0	25.9		ug/L		104	79 - 142	2	20
sec-Butylbenzene	25.0	24.4		ug/L		98	81 - 134	2	20
tert-Butylbenzene	25.0	24.1		ug/L		96	82 _ 135	2	20
Carbon disulfide	25.0	23.2		ug/L		93	58 - 124	2	20
Carbon tetrachloride	25.0	24.6		ug/L		98	77 - 146	0	20
Chlorobenzene	25.0	25.1		ug/L		100	70 - 130	1	20
Chloroethane	25.0	23.9		ug/L		96	62 _ 138	2	20
Chloroform	25.0	23.5		ug/L		94	70 - 130	1	20
Chloromethane	25.0	22.2		ug/L		89	52 - 175	0	20
2-Chlorotoluene	25.0	24.0		ug/L		96	70 - 130	2	20
4-Chlorotoluene	25.0	23.8		ug/L		95	70 - 130	2	20
Chlorodibromomethane	25.0	27.6		ug/L		110	78 - 145	0	20
1,2-Dichlorobenzene	25.0	25.2		ug/L		101	70 - 130	1	20
1,3-Dichlorobenzene	25.0	25.3		ug/L		101	70 - 130	2	20
1,4-Dichlorobenzene	25.0	25.4		ug/L		102	87 _ 118	0	20
1,3-Dichloropropane	25.0	26.8		ug/L		107	82 - 128	1	20
1,1-Dichloropropene	25.0	24.9		ug/L		100	70 - 130	1	20
1,2-Dibromo-3-Chloropropane	25.0	26.4		ug/L		106	72 - 136	6	20

TestAmerica San Francisco 07/20/2011

Page 14 of 27

TestAmerica Job ID: 720-36241-1 Client: Engeo, Inc.

Project/Site: Macedo Remediation

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: LCSD 720-95238/6

Matrix: Water

Analysis Batch: 95238

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

	Spike	LCSD	LCSD		% Rec.		RPD
Analyte	Added	Result	Qualifier Unit	D % Re	c Limits	RPD	Limit
Ethylene Dibromide	25.0	28.0	ug/L		2 70 - 130	1	20
Dibromomethane	25.0	26.1	ug/L	10	4 70 - 130	1	20
Dichlorodifluoromethane	25.0	21.1	ug/L	8	4 33 - 125	0	20
1,1-Dichloroethane	25.0	23.4	ug/L	9	4 70 - 130	1	20
1,2-Dichloroethane	25.0	22.6	ug/L	9	0 70 - 126	0	20
1,1-Dichloroethene	25.0	22.4	ug/L	9	0 64 - 128	1	20
cis-1,2-Dichloroethene	25.0	27.3	ug/L	10	9 70 - 130	1	20
trans-1,2-Dichloroethene	25.0	19.7	ug/L	7	9 68 - 118	2	20
1,2-Dichloropropane	25.0	25.1	ug/L	10	0 70 - 130	1	20
cis-1,3-Dichloropropene	25.0	25.9	ug/L	10	4 88 - 137	1	20
trans-1,3-Dichloropropene	25.0	27.2	ug/L	10	9 83 - 140	1	20
Ethylbenzene	25.0	25.0	ug/L	10	0 86 - 135	1	20
Hexachlorobutadiene	25.0	25.7	ug/L	10	3 70 - 130	0	20
2-Hexanone	125	110	ug/L	8	8 60 - 164	4	20
Isopropylbenzene	25.0	25.2	ug/L	10	1 70 - 130	2	20
4-Isopropyltoluene	25.0	25.2	ug/L	10	1 70 - 130	2	20
Methylene Chloride	25.0	22.7	ug/L	9	1 73 - 147	1	20
4-Methyl-2-pentanone (MIBK)	125	120	ug/L	9	6 63 - 165	2	20
Naphthalene	25.0	30.1	ug/L	12	0 78 - 135	7	20
N-Propylbenzene	25.0	23.2	ug/L	9	3 70 - 130	3	20
Styrene	25.0	26.3	ug/L	10	5 70 - 130	1	20
1,1,1,2-Tetrachloroethane	25.0	25.3	ug/L	10	1 70 - 130	0	20
1,1,2,2-Tetrachloroethane	25.0	25.0	ug/L	10	0 70 - 130	2	20
Tetrachloroethene	25.0	25.5	ug/L	10	2 70 - 130	2	20
Toluene	25.0	25.1	ug/L	10	0 83 - 129	2	20
1,2,3-Trichlorobenzene	25.0	29.3	ug/L	11	7 70 - 130	5	20
1,2,4-Trichlorobenzene	25.0	27.8	ug/L	11	1 70 - 130	3	20
1,1,1-Trichloroethane	25.0	23.4	ug/L	9	4 70 - 130	2	20
1,1,2-Trichloroethane	25.0	26.9	ug/L	10	8 82 - 128	1	20
Trichloroethene	25.0	25.6	ug/L	10	2 70 - 130	2	20
Trichlorofluoromethane	25.0	23.3	ug/L	9	3 72 - 135	3	20
1,2,3-Trichloropropane	25.0	25.5	ug/L	10	2 70 - 130	2	20
1,1,2-Trichloro-1,2,2-trifluoroetha	25.0	23.9	ug/L	9	6 42 - 162	2	20
ne							
1,2,4-Trimethylbenzene	25.0	24.2	ug/L	9		2	20
1,3,5-Trimethylbenzene	25.0	24.7	ug/L	9		2	20
Vinyl acetate	25.0	24.5	ug/L	9		6	20
Vinyl chloride	25.0	21.2	ug/L		5 65 - 156	2	20
m-Xylene & p-Xylene	50.0	48.8	ug/L	9		1	20
o-Xylene	25.0	24.5	ug/L	9	8 89 - 136	2	20
2,2-Dichloropropane	25.0	23.9	ug/L	9	6 70 - 140	2	20

LCSD LCSD

Surrogate	% Recovery Qualifier	Limits
4-Bromofluorobenzene	96	67 - 130
1,2-Dichloroethane-d4 (Surr)	87	67 - 130
Toluene-d8 (Surr)	99	70 - 130

TestAmerica San Francisco 07/20/2011

Client: Engeo, Inc. TestAmerica Job ID: 720-36241-1

Project/Site: Macedo Remediation

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: LCSD 720-95238/8

Matrix: Water

Analysis Batch: 95238

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

% Rec. RPD Limit

Analyte Added Result Qualifier Unit % Rec Limits RPD 500 446 ug/L 89 62 - 117 2 20 Gasoline Range Organics (GRO) -C5-C12

Spike

LCSD LCSD

LCSD LCSD

Surrogate	% Recovery	Qualifier	Limits
4-Bromofluorobenzene	99		67 - 130
1,2-Dichloroethane-d4 (Surr)	88		67 - 130
Toluene-d8 (Surr)	97		70 - 130

Lab Sample ID: 720-36241-1 MS **Client Sample ID: DEEP Matrix: Water** Prep Type: Total/NA

trans-1,2-Dichloroethene

1,2-Dichloropropane

Analysis Batch: 95238										
_	Sample	Sample	Spike	MS	MS				% Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	% Rec	Limits	
Methyl tert-butyl ether	ND		25.0	21.7		ug/L		87	60 - 138	
Acetone	ND		125	66.9	F	ug/L		54	60 - 140	
Benzene	ND		25.0	24.8		ug/L		99	60 - 140	
Dichlorobromomethane	ND		25.0	23.7		ug/L		95	60 - 140	
Bromobenzene	ND		25.0	25.3		ug/L		101	60 - 140	
Chlorobromomethane	ND		25.0	23.9		ug/L		96	60 - 140	
Bromoform	ND		25.0	23.0		ug/L		92	56 - 140	

Bromomethane ND 25.0 25.5 102 23 - 140 ug/L 2-Butanone (MEK) ND 125 95.2 ug/L 76 60 - 140 n-Butylbenzene ND 25.0 26.9 108 60 - 140 ug/L ND sec-Butylbenzene 25.0 26.5 106 60 - 140 ug/L tert-Butylbenzene ND 25.0 26.1 ug/L 104 60 - 140 ND 25.0 23.6 ug/L Carbon disulfide 94 38 _ 140 Carbon tetrachloride ND 25.0 24.7 ug/L 99 60 - 140 Chlorobenzene ND 25.0 ug/L 99 60 - 140 24.7 Chloroethane ND 25.0 24.2 ug/L 97 51 - 140 Chloroform ND 25.0 22.9 ug/L 92 60 - 140 52 - 140 Chloromethane ND 25.0 22.2 ug/L 89 2-Chlorotoluene ND 25.0 25.2 ug/L 101 60 - 140 4-Chlorotoluene ND 25.0 24.6 ug/L 98 60 - 140Chlorodibromomethane ND 25.0 24.0 ug/L 96 60 - 140 1,2-Dichlorobenzene ND 25.0 24.6 ug/L 98 60 - 140 1,3-Dichlorobenzene ND 25.0 25.4 ug/L 102 60 - 140 ND 25.0 25.0 1,4-Dichlorobenzene ug/L 100 60 - 140

1,3-Dichloropropane ND 25.0 23.3 ug/L 93 60 - 140 25.0 ND 24 8 99 60 - 140 1,1-Dichloropropene ug/L 1,2-Dibromo-3-Chloropropane ND 25.0 24.4 ug/L 98 60 - 140 Ethylene Dibromide ND 25.0 23.8 ug/L 95 60 - 140 Dibromomethane ND 25.0 22.6 ug/L 90 60 - 140 Dichlorodifluoromethane ND 25.0 21.5 ug/L 86 38 - 140 1,1-Dichloroethane ND 25.0 23.0 ug/L 92 60 - 140 1,2-Dichloroethane ND 25.0 20.0 ug/L 80 60 - 140 ND 1,1-Dichloroethene 25.0 22.9 ug/L 92 60 - 140 ND 60 - 140 cis-1,2-Dichloroethene 25.0 26.4 ug/L 106

25.0

25.0

Page 16 of 27

19.6

23.6

ug/L

ug/L

ND

ND

TestAmerica San Francisco 07/20/2011

60 - 140

60 - 140

Client: Engeo, Inc.

TestAmerica Job ID: 720-36241-1

Project/Site: Macedo Remediation

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: 720-36241-1 MS

Matrix: Water

Analysis Batch: 95238

Client Sample ID: DEEP Prep Type: Total/NA

	Sample	Sample	Spike	MS	MS		% Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier Unit	D % Rec	Limits
cis-1,3-Dichloropropene	ND		25.0	23.3	ug/L	93	60 - 140
trans-1,3-Dichloropropene	ND		25.0	23.6	ug/L	94	60 - 140
Ethylbenzene	ND		25.0	25.3	ug/L	101	60 - 140
Hexachlorobutadiene	ND		25.0	26.4	ug/L	106	60 - 140
2-Hexanone	ND		125	90.8	ug/L	73	60 _ 140
Isopropylbenzene	ND		25.0	25.6	ug/L	102	60 - 140
4-Isopropyltoluene	ND		25.0	26.5	ug/L	106	60 - 140
Methylene Chloride	ND		25.0	21.3	ug/L	85	40 - 140
4-Methyl-2-pentanone (MIBK)	ND		125	102	ug/L	82	60 - 140
Naphthalene	ND		25.0	26.7	ug/L	107	56 ₋ 140
N-Propylbenzene	ND		25.0	25.1	ug/L	100	60 _ 140
Styrene	ND		25.0	21.5	ug/L	86	60 _ 140
1,1,1,2-Tetrachloroethane	ND		25.0	24.2	ug/L	97	60 - 140
1,1,2,2-Tetrachloroethane	ND		25.0	23.2	ug/L	93	60 - 140
Tetrachloroethene	ND		25.0	24.9	ug/L	100	60 - 140
Toluene	ND		25.0	25.6	ug/L	101	60 - 140
1,2,3-Trichlorobenzene	ND		25.0	26.3	ug/L	105	60 - 140
1,2,4-Trichlorobenzene	ND		25.0	25.6	ug/L	102	60 - 140
1,1,1-Trichloroethane	ND		25.0	23.6	ug/L	94	60 - 140
1,1,2-Trichloroethane	ND		25.0	23.2	ug/L	93	60 - 140
Trichloroethene	ND		25.0	25.2	ug/L	101	60 _ 140
Trichlorofluoromethane	ND		25.0	24.2	ug/L	97	60 - 140
1,2,3-Trichloropropane	ND		25.0	23.9	ug/L	96	60 _ 140
1,1,2-Trichloro-1,2,2-trifluoroetha	ND		25.0	24.1	ug/L	96	60 - 140
ne							
1,2,4-Trimethylbenzene	ND		25.0	25.0	ug/L	100	60 - 140
1,3,5-Trimethylbenzene	ND		25.0	26.1	ug/L	104	60 - 140
Vinyl acetate	ND		25.0	18.3	ug/L	73	40 - 140
Vinyl chloride	ND		25.0	21.9	ug/L	88	58 ₋ 140
m-Xylene & p-Xylene	ND		50.0	48.9	ug/L	98	60 - 140
o-Xylene	ND		25.0	24.4	ug/L	98	60 - 140
2,2-Dichloropropane	ND		25.0	23.4	ug/L	94	60 - 140

MS MS

Surrogate	% Recovery	Qualifier	Limits
4-Bromofluorobenzene	92		67 - 130
1,2-Dichloroethane-d4 (Surr)	78		67 - 130
Toluene-d8 (Surr)	97		70 - 130

Lab Sample ID: 720-36241-1 MSD

Matrix: Water

Analysis Batch: 95238

	Sample	Sample	Spike	MSD	MSD				% Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	% Rec	Limits	RPD	Limit
Methyl tert-butyl ether	ND		25.0	27.1	F	ug/L		108	60 - 138	22	20
Acetone	ND		125	75.0		ug/L		60	60 - 140	11	20
Benzene	ND		25.0	25.7		ug/L		103	60 - 140	4	20
Dichlorobromomethane	ND		25.0	26.6		ug/L		106	60 - 140	12	20
Bromobenzene	ND		25.0	26.1		ug/L		104	60 - 140	3	20
Chlorobromomethane	ND		25.0	27.6		ug/L		110	60 - 140	14	20
Bromoform	ND		25.0	27.5		ug/L		110	56 - 140	18	20

TestAmerica San Francisco 07/20/2011

Client Sample ID: DEEP

Prep Type: Total/NA

Page 17 of 27

6

6

4

5

7

9

10

12

Client: Engeo, Inc.

TestAmerica Job ID: 720-36241-1

Project/Site: Macedo Remediation

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: 720-36241-1 MSD

Matrix: Water

Analysis Batch: 95238

Client Sample ID: DEEP Prep Type: Total/NA

	Sample Sample	Spike	MSD MS	D		% Rec.		RPD
Analyte	Result Qualifier	Added	Result Qua	alifier Unit	D % Rec	Limits	RPD	Limit
Bromomethane	ND	25.0	25.8	ug/L	103	23 - 140	1	20
2-Butanone (MEK)	ND	125	109	ug/L	87	60 - 140	13	20
n-Butylbenzene	ND	25.0	25.1	ug/L	100	60 - 140	7	20
sec-Butylbenzene	ND	25.0	24.4	ug/L	98	60 - 140	8	20
tert-Butylbenzene	ND	25.0	24.4	ug/L	98	60 - 140	7	20
Carbon disulfide	ND	25.0	23.1	ug/L	92	38 - 140	2	20
Carbon tetrachloride	ND	25.0	24.3	ug/L	97	60 - 140	2	20
Chlorobenzene	ND	25.0	25.2	ug/L	101	60 - 140	2	20
Chloroethane	ND	25.0	23.9	ug/L	96	51 - 140	1	20
Chloroform	ND	25.0	24.2	ug/L	97	60 - 140	6	20
Chloromethane	ND	25.0	22.2	ug/L	89	52 - 140	0	20
2-Chlorotoluene	ND	25.0	24.4	ug/L	98	60 - 140	3	20
4-Chlorotoluene	ND	25.0	23.8	ug/L	95	60 - 140	3	20
Chlorodibromomethane	ND	25.0	29.1	ug/L	116	60 - 140	19	20
1,2-Dichlorobenzene	ND	25.0	25.7	ug/L	103	60 - 140	4	20
1,3-Dichlorobenzene	ND	25.0	25.5	ug/L	102	60 - 140	0	20
1,4-Dichlorobenzene	ND	25.0	25.4	ug/L	102	60 - 140	2	20
1,3-Dichloropropane	ND	25.0	28.2	ug/L	113	60 - 140	19	20
1,1-Dichloropropene	ND	25.0	24.5	ug/L	98	60 - 140	1	20
1,2-Dibromo-3-Chloropropane	ND	25.0	27.5	ug/L	110	60 - 140	12	20
Ethylene Dibromide	ND	25.0	29.5 F	ug/L	118	60 - 140	21	20
Dibromomethane	ND	25.0	27.3	ug/L	109	60 - 140	19	20
Dichlorodifluoromethane	ND	25.0	20.8	ug/L	83	38 _ 140	3	20
1,1-Dichloroethane	ND	25.0	23.7	ug/L	95	60 - 140	3	20
1,2-Dichloroethane	ND	25.0	23.7	ug/L	95	60 - 140	17	20
1,1-Dichloroethene	ND	25.0	22.0	ug/L	88	60 - 140	4	20
cis-1,2-Dichloroethene	ND	25.0	27.8	ug/L	111	60 - 140	5	20
trans-1,2-Dichloroethene	ND	25.0	19.6	ug/L	78	60 - 140	0	20
1,2-Dichloropropane	ND	25.0	25.9	ug/L	104	60 - 140	9	20
cis-1,3-Dichloropropene	ND	25.0	26.7	ug/L	107	60 - 140	14	20
trans-1,3-Dichloropropene	ND	25.0	28.2	ug/L	113	60 - 140	18	20
Ethylbenzene	ND	25.0	24.7	ug/L	99	60 - 140	2	20
Hexachlorobutadiene	ND	25.0	24.6	ug/L	98	60 - 140	7	20
2-Hexanone	ND	125	112 F	ug/L	90	60 - 140	21	20
Isopropylbenzene	ND	25.0	24.9	ug/L	100	60 - 140	3	20
4-Isopropyltoluene	ND	25.0	24.7	ug/L	99	60 - 140	7	20
Methylene Chloride	ND	25.0	23.3	ug/L	93	40 - 140	9	20
4-Methyl-2-pentanone (MIBK)	ND	125	126 F	ug/L	101	60 - 140	21	20
Naphthalene	ND	25.0	31.0	ug/L	124	56 - 140	15	20
N-Propylbenzene	ND	25.0	23.1	ug/L	92	60 - 140	8	20
Styrene	ND	25.0	22.9	ug/L	92	60 - 140	6	20
1,1,1,2-Tetrachloroethane	ND	25.0	25.9	ug/L	104	60 - 140	7	20
1,1,2,2-Tetrachloroethane	ND	25.0	26.6	ug/L	106	60 - 140	14	20
Tetrachloroethene	ND	25.0	24.8	ug/L ug/L	99	60 - 140	0	20
Toluene	ND ND	25.0	25.0	ug/L ug/L	99	60 - 140	2	20
1,2,3-Trichlorobenzene	ND ND	25.0	29.1	ug/L ug/L	116	60 ₋ 140	10	20
1,2,4-Trichlorobenzene	ND ND	25.0	29.1		108	60 ₋ 140	6	20
				ug/L				
1,1,1-Trichloroethane	ND ND	25.0	23.5	ug/L	94	60 ₋ 140	0	20
1,1,2-Trichloroethane	ND	25.0	28.5 F	ug/L	114	60 - 140	21	20
Trichloroethene	ND	25.0	25.4	ug/L	102	60 - 140	1	20

TestAmerica San Francisco 07/20/2011

Client: Engeo, Inc. TestAmerica Job ID: 720-36241-1

Project/Site: Macedo Remediation

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: 720-36241-1 MSD

Matrix: Water

Analysis Batch: 95238

Client Sample ID: DEEP Prep Type: Total/NA

Spike MSD MSD % Rec. RPD Sample Sample Result Qualifier % Rec RPD Added Result Qualifier Limits Limit Unit D 25.0 5 Trichlorofluoromethane ND 23.1 92 60 - 140 20 ug/L ND 27.0 1,2,3-Trichloropropane 25.0 ug/L 108 60 - 140 12 20 ND 25.0 23.5 60 - 140 1,1,2-Trichloro-1,2,2-trifluoroetha ug/L 94 3 20 1,2,4-Trimethylbenzene ND 25.0 24.2 97 3 60 - 14020 ug/L 1,3,5-Trimethylbenzene ND 25.0 24.6 ug/L 98 60 - 140 6 20 Vinyl acetate ND 25.0 22.3 ug/L 89 40 - 140 20 20 Vinyl chloride ND 4 25.0 21.0 ug/L 84 58 - 14020 m-Xylene & p-Xylene ND 50.0 48.2 ug/L 96 60 - 140 1 20 25.0 o-Xylene ND 24.7 ug/L 99 60 - 140 1 20 2,2-Dichloropropane ND 25.0 22.8 ug/L 60 - 140 20

MSD MSD

мв мв

Surrogate	% Recovery	Qualifier	Limits
4-Bromofluorobenzene	96		67 - 130
1,2-Dichloroethane-d4 (Surr)	89		67 - 130
Toluene-d8 (Surr)	99		70 - 130

Method: 8015B - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 720-95476/1-A

Matrix: Water

Analysis Batch: 95548

Client Sample ID: Method Blank Prep Type: Silica Gel Cleanup Prep Batch: 95476

Prep Batch: 95476

Analyte RL MDL Unit Result Qualifier Prepared Analyzed Dil Fac 50 Diesel Range Organics [C10-C28] ND ug/L 07/19/11 11:56 07/20/11 09:16

MB MB

Surrogate	% Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Capric Acid (Surr)	0.06		0 - 5	07/19/11 11:56	07/20/11 09:16	1
p-Terphenyl	92		31 - 150	07/19/11 11:56	07/20/11 09:16	1

Lab Sample ID: LCS 720-95476/2-A Client Sample ID: Lab Control Sample **Matrix: Water** Prep Type: Silica Gel Cleanup

Analysis Batch: 95548

LCS LCS Spike % Rec. Analyte Added Result Qualifier Unit % Rec Limits 2500 1980 ug/L 32 - 119 Diesel Range Organics

[C10-C28]

LCS LCS

% Recovery Surrogate Qualifier Limits 31 - 150 p-Terphenyl 102

Lab Sample ID: LCSD 720-95476/3-A

Prep Batch: 95476 **Analysis Batch: 95548** LCSD LCSD Spike % Rec. RPD Added Result Qualifier % Rec Limits RPD Limit Unit D 2500 1940 ug/L 32 _ 119 Diesel Range Organics

Page 19 of 27

[C10-C28]

Matrix: Water

TestAmerica San Francisco 07/20/2011

Prep Type: Silica Gel Cleanup

Client Sample ID: Lab Control Sample Dup

TestAmerica Job ID: 720-36241-1 Client: Engeo, Inc.

Project/Site: Macedo Remediation

Method: 8015B - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: LCSD 720-95476/3-A

Matrix: Water

Analysis Batch: 95548

Client Sample ID: Lab Control Sample Dup **Prep Type: Silica Gel Cleanup**

Prep Batch: 95476

LCSD LCSD

Surrogate % Recovery Qualifier p-Terphenyl 92 31 - 150

Limits

QC Association Summary

Client: Engeo, Inc.

TestAmerica Job ID: 720-36241-1

Project/Site: Macedo Remediation

GC/MS VOA

Analysis Batch: 95238

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch		
MB 720-95238/4	Method Blank	Total/NA	Water	8260B/CA_LUFT			
				MS			
LCS 720-95238/5	Lab Control Sample	Total/NA	Water	8260B/CA_LUFT			
				MS			
LCSD 720-95238/6	Lab Control Sample Dup	Total/NA	Water	8260B/CA_LUFT			
				MS			
LCS 720-95238/7	Lab Control Sample	Total/NA	Water	8260B/CA_LUFT			
				MS			
LCSD 720-95238/8	Lab Control Sample Dup	Total/NA	Water	8260B/CA_LUFT			
				MS			
720-36241-1	DEEP	Total/NA	Water	8260B/CA_LUFT			
				MS			
720-36241-1 MS	DEEP	Total/NA	Water	8260B/CA_LUFT			
				MS			
720-36241-1 MSD	DEEP	Total/NA	Water	8260B/CA_LUFT			
				MS			
720-36241-2	SHALLOW	Total/NA	Water	8260B/CA_LUFT			
				MS			

GC Semi VOA

Prep Batch: 95476

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 720-95476/1-A	Method Blank	Silica Gel Cleanup	Water	3510C SGC	
LCS 720-95476/2-A	Lab Control Sample	Silica Gel Cleanup	Water	3510C SGC	
LCSD 720-95476/3-A	Lab Control Sample Dup	Silica Gel Cleanup	Water	3510C SGC	
720-36241-1	DEEP	Silica Gel Cleanup	Water	3510C SGC	
720-36241-2	SHALLOW	Silica Gel Cleanup	Water	3510C SGC	

Analysis Batch: 95548

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 720-95476/1-A	Method Blank	Silica Gel Cleanup	Water	8015B	95476
LCS 720-95476/2-A	Lab Control Sample	Silica Gel Cleanup	Water	8015B	95476
LCSD 720-95476/3-A	Lab Control Sample Dup	Silica Gel Cleanup	Water	8015B	95476
720-36241-1	DEEP	Silica Gel Cleanup	Water	8015B	95476
720-36241-2	SHALLOW	Silica Gel Cleanup	Water	8015B	95476

1

O

9

10

12

13

Lab Chronicle

Client: Engeo, Inc.

Project/Site: Macedo Remediation

Lab Sample ID: 720-36241-1

TestAmerica Job ID: 720-36241-1

Matrix: Water

Matrix: Water

Client Sample ID: DEEP Date Collected: 07/13/11 00:00

Date Received: 07/13/11 17:20

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	Or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B/CA_LUFTMS		1	95238	07/15/11 13:03	LL	TAL SF
Silica Gel Cleanup	Prep	3510C SGC			95476	07/19/11 11:56	RU	TAL SF
Silica Gel Cleanup	Analysis	8015B		1	95548	07/20/11 10:26	DH	TAL SF

Client Sample ID: SHALLOW Lab Sample ID: 720-36241-2

Date Collected: 07/13/11 00:00

Date Received: 07/13/11 17:20

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	Or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B/CA_LUFTMS	_	1	95238	07/15/11 15:27	LL	TAL SF
Silica Gel Cleanup	Prep	3510C SGC			95476	07/19/11 11:56	RU	TAL SF
Silica Gel Cleanup	Analysis	8015B		1	95548	07/20/11 10:50	DH	TAL SF

Laboratory References:

TAL SF = TestAmerica San Francisco, 1220 Quarry Lane, Pleasanton, CA 94566, TEL (925)484-1919

Certification Summary

Client: Engeo, Inc.

TestAmerica Job ID: 720-36241-1

Project/Site: Macedo Remediation

Laboratory	Authority	Program	EPA Region	Certification ID
TestAmerica San Francisco	California	State Program	9	2496

Accreditation may not be offered or required for all methods and analytes reported in this package. Please contact your project manager for the laboratory's current list of certified methods and analytes.

3

4

5

b

8

10

13

Method Summary

Client: Engeo, Inc.

TestAmerica Job ID: 720-36241-1

Project/Site: Macedo Remediation

Method	Method Description	Protocol	Laboratory
8260B/CA_LUFTM	8260B / CA LUFT MS	SW846	TAL SF
S			
8015B	Diesel Range Organics (DRO) (GC)	SW846	TAL SF

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL SF = TestAmerica San Francisco, 1220 Quarry Lane, Pleasanton, CA 94566, TEL (925)484-1919

1

3

4

5

6

Я

9

11

4.0

13

Sample Summary

Client: Engeo, Inc.

Project/Site: Macedo Remediation

 Lab Sample ID
 Client Sample ID
 Matrix
 Collected
 Received

 720-36241-1
 DEEP
 Water
 07/13/11 00:00
 07/13/11 17:20

 720-36241-2
 SHALLOW
 Water
 07/13/11 00:00
 07/13/11 17:20

TestAmerica Job ID: 720-36241-1

3

4

5

6

8

9

10

12

13

has Terms and Conditions on raversa TestAmerica SF reports 8015M from C_0 - C_{24} (industry norm). Default for 8015B is C_{10} - C_{24}	Sas (BHE)		Gay Day Day Day Other:	CONTROLLE (CITOLIC)	oo#: Temp: 2 8 6	7380,000,003							S Mallow 713/1 W 14/150	1)ecp (1)/1 (M 1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/	/;	THE LEADER IN ENVIRONMENTAL TESTING Attn: CICHARN SONDENTAL TESTING Address: Sampled By: Phone: P
Company	Printed Name Date	Tim	1) Required by: 1) Required by: 1) The state of the sta	Company	Printed Name Date	IN SON	1) Refinguished by: 17:20								1 2 3 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	Gas W ☐ BTEX ☐ MTBE TEPH EPA 8015M*
Company	Printed Name Date	Signature Time	2) Received by:	Company	Printed Name Date	Signature Time	2) Relinquished by:								F C C C C C C C C C	(EPA 6010/7470/7471) Metals: □ Lead □ LUFT □ RCRA □ Other: Low Level Metals by EPA 200.8/6020 (ICP-MS): □ W.E.T (STLC) □ TCLP □ Hexavalent Chromium □ pH (24h hold time for H ₂ O)
Company	Printed Name D	Signature Time	3) Received by:	Company	Printed Name D	Signature Time	3) Relinquished by:	100			TO THE PARTY OF TH					Spec. Cond. Alkalinity TSS TDS Anions: CI SO ₄ NO ₃ F Br NO ₂ PO ₄ Dag Pag Pag Pag Pag Pag Pag Pag
	Date	ne			Date	ne							S)	ζ.	N	dumber of Containers

Login Sample Receipt Checklist

Client: Engeo, Inc.

Job Number: 720-36241-1

Login Number: 36241 List Source: TestAmerica San Francisco

List Number: 1 Creator: Mullen, Joan

Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	N/A	
The cooler's custody seal, if present, is intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	True	

Appendix D

Air Toxics, Ltd. July 2011 Laboratory Report

7/27/2011 Mr. Morgan Johnson Engeo Inc. 2213 Plaza Dr.

Rocklin CA 95765

Project Name: 1000 N Vasco Rd

Project #: 7380000003 Workorder #: 1107239A

Dear Mr. Morgan Johnson

The following report includes the data for the above referenced project for sample(s) received on 7/15/2011 at Air Toxics Ltd.

The data and associated QC analyzed by Modified TO-15 are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Air Toxics Ltd. for your air analysis needs. Air Toxics Ltd. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Kelly Buettner at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Kelly Buettner

Project Manager

Kelly Butte

WORK ORDER #: 1107239A

Work Order Summary

CLIENT: Mr. Morgan Johnson BILL TO: Mr. Morgan Johnson

Engeo Inc. Engeo Inc.
2213 Plaza Dr.
2213 Plaza Dr.
Rocklin, CA 95765 Rocklin, CA 95765

PHONE: 916-786-8883 **P.O.** # 7380000003

FAX: 916-786-7891 PROJECT # 7380000003 1000 N Vasco Rd

DATE RECEIVED: 07/15/2011 **CONTACT:** Kelly Buettner **DATE COMPLETED:** 07/27/2011

			RECEIPT	FINAL
FRACTION #	<u>NAME</u>	<u>TEST</u>	VAC./PRES.	PRESSURE
01A	SG-12	Modified TO-15	6.2 "Hg	15 psi
02A	SG-1	Modified TO-15	6.6 "Hg	15 psi
03A	SG-2	Modified TO-15	6.4 "Hg	15 psi
04A	SG-11	Modified TO-15	13.0 "Hg	15 psi
05A	SG-3	Modified TO-15	19.0 "Hg	15 psi
06A	SG-8	Modified TO-15	7.2 "Hg	15 psi
07A	SG-7	Modified TO-15	5.4 "Hg	15 psi
08A	SG-10	Modified TO-15	22.4 "Hg	15 psi
09A	SG-9	Modified TO-15	2.4 "Hg	15 psi
10A	SG-4	Modified TO-15	15.0 "Hg	15 psi
11A	SG-5	Modified TO-15	20.4 "Hg	15 psi
12A	SG-6	Modified TO-15	5.6 "Hg	15 psi
13A	Lab Blank	Modified TO-15	NA	NA
14A	CCV	Modified TO-15	NA	NA
15A	LCS	Modified TO-15	NA	NA
15AA	LCSD	Modified TO-15	NA	NA

CERTIFIED BY:

Sinda d. Fruman

DATE: 07/27/11

Laboratory Director

Certfication numbers: CA NELAP - 02110CA, LA NELAP/LELAP - AI 30763, NY NELAP - 11291, UT NELAP - 9166389892, AZ Licensure AZ0719

Name of Accrediting Agency: NELAP/Florida Department of Health, Scope of Application: Clean Air Act,

Accreditation number: E87680, Effective date: 07/01/09, Expiration date: 06/30/11

Air Toxics Ltd. certifies that the test results contained in this report meet all requirements of the NELAC standards

This report shall not be reproduced, except in full, without the written approval of Air Toxics Ltd.

180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 95630 (916) 985-1000 . (800) 985-5955 . FAX (916) 985-1020

LABORATORY NARRATIVE EPA Method TO-15 Engeo Inc. Workorder# 1107239A

Twelve 1 Liter Summa Canister samples were received on July 15, 2011. The laboratory performed analysis via EPA Method TO-15 using GC/MS in the full scan mode.

This workorder was independently validated prior to submittal using 'USEPA National Functional Guidelines' as generally applied to the analysis of volatile organic compounds in air. A rules-based, logic driven, independent validation engine was employed to assess completeness, evaluate pass/fail of relevant project quality control requirements and verification of all quantified amounts.

Receiving Notes

Samples SG-3, SG-10, and SG-5 were received with significant vacuum remaining in the canister. The residual canister vacuum resulted in elevated reporting limits.

Analytical Notes

The reported CCV for each daily batch may be derived from more than one analytical file due to the client's request for non-standard compounds.

Non-standard compounds may have different acceptance criteria than the standard TO-14A/TO-15 compound list as per contract or verbal agreement.

Dilution was performed on samples SG-11, SG-10, SG-4, and SG-5 due to the presence of high level target species.

Dilution was performed on sample SG-6 due to the presence of high level non-target species.

All Quality Control Limit exceedences and affected sample results are noted by flags. Each flag is defined at the bottom of this Case Narrative and on each Sample Result Summary page.

Definition of Data Qualifying Flags

Eight qualifiers may have been used on the data analysis sheets and indicates as follows:

- B Compound present in laboratory blank greater than reporting limit (background subtraction not performed).
 - J Estimated value.
 - E Exceeds instrument calibration range.
 - S Saturated peak.
 - O Exceeds quality control limits.
 - U Compound analyzed for but not detected above the reporting limit.
 - UJ- Non-detected compound associated with low bias in the CCV and/or LCS.
 - N The identification is based on presumptive evidence.

File extensions may have been used on the data analysis sheets and indicates

as follows:
a-File was requantified
b-File was quantified by a second column and detector
r1-File was requantified for the purpose of reissue

Client Sample ID: SG-12 Lab ID#: 1107239A-01A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Ethanol	5.1	8.1	9.6	15
Methyl tert-butyl ether	1.3	25	4.6	92
Cyclohexane	1.3	3.2	4.4	11
2,2,4-Trimethylpentane	1.3	1.6	6.0	7.4
Trichloroethene	1.3	4.7	6.8	25
1,1-Difluoroethane	5.1	290	14	790

Client Sample ID: SG-1 Lab ID#: 1107239A-02A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 11	1.3	18	7.3	100
Acetone	5.2	12	12	29
Hexane	1.3	7.2	4.6	25
Cyclohexane	1.3	11	4.4	38
Benzene	1.3	16	4.1	53
Heptane	1.3	2.1	5.3	8.6
Toluene	1.3	12	4.9	45
Ethyl Benzene	1.3	9.3	5.6	40
m,p-Xylene	1.3	12	5.6	54
o-Xylene	1.3	23	5.6	100
Propylbenzene	1.3	1.8	6.4	8.8
4-Ethyltoluene	1.3	5.3	6.4	26
1,3,5-Trimethylbenzene	1.3	5.4	6.4	26
1,2,4-Trimethylbenzene	1.3	5.5	6.4	27

Client Sample ID: SG-2

Lab ID#: 1107239A-03A

	Rpt. Limit	Amount	Rpt. Limit	Amount	
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)	
Bromomethane	1.3	1.6	5.0	6.4	

Client Sample ID: SG-2

Lab ID#: 1107239A-03A

Acetone	5.1	6.6	12	16
Carbon Disulfide	5.1	100	16	320
Methyl tert-butyl ether	1.3	18	4.6	65
Cyclohexane	1.3	100	4.4	360
2,2,4-Trimethylpentane	1.3	19	6.0	91
Trichloroethene	1.3	4.1	6.9	22

Client Sample ID: SG-11

Lab ID#: 1107239A-04A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Carbon Disulfide	9.5	180	30	550
Methyl tert-butyl ether	2.4	3.1	8.6	11
Cyclohexane	2.4	590	8.2	2000
Trichloroethene	2.4	4.5	13	24
Toluene	2.4	2.6	8.9	9.8

Client Sample ID: SG-3

Lab ID#: 1107239A-05A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Acetone	11	13	26	30
Carbon Disulfide	11	410	34	1300
Methyl tert-butyl ether	2.8	60	9.9	220
Cyclohexane	2.8	55	9.5	190
Trichloroethene	2.8	19	15	100

Client Sample ID: SG-8

Lab ID#: 1107239A-06A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Ethanol	5.3	16	10	30
Acetone	5.3	6.8	13	16

Client Sample ID: SG-8

Carbon Disulfide	5.3	50	16	160
Methyl tert-butyl ether	1.3	4.4	4.8	16
Cyclohexane	1.3	58	4.6	200
Trichloroethene	1.3	3.2	7.1	17
Toluene	1.3	1.4	5.0	5.5
1,1-Difluoroethane	5.3	570 E	14	1600 E

Client Sample ID: SG-7

Lab ID#: 1107239A-07A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Carbon Disulfide	4.9	6.1	15	19
Methyl tert-butyl ether	1.2	1.3	4.4	4.8
Chloroform	1.2	2.9	6.0	14
Cyclohexane	1.2	40	4.2	140
Trichloroethene	1.2	24	6.6	130
Tetrachloroethene	1.2	1.8	8.3	12

Client Sample ID: SG-10

Lab ID#: 1107239A-08A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Bromomethane	7.2	14	28	55
Ethanol	29	64	55	120
Carbon Disulfide	29	190	90	600
Methyl tert-butyl ether	7.2	120	26	440
Cyclohexane	7.2	1900	25	6400
1,1-Difluoroethane		130	78	350

Client Sample ID: SG-9

Lab ID#: 1107239A-09A

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)

Client Sample ID: SG-9 Lab ID#: 1107239A-09A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Carbon Disulfide	4.4	8.8	14	28
Cyclohexane	1.1	8.6	3.8	30
Tetrachloroethene	1.1	2.7	7.5	18

Client Sample ID: SG-4 Lab ID#: 1107239A-10A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Carbon Disulfide	16	370	50	1200
Methyl tert-butyl ether	4.0	93	14	330
Hexane	4.0	20	14	70
Cyclohexane	4.0	1200	14	4200
Benzene	4.0	6.9	13	22
Heptane	4.0	6.6	16	27
Toluene	4.0	4.7	15	18
m,p-Xylene	4.0	9.3	18	40

Client Sample ID: SG-5 Lab ID#: 1107239A-11A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Carbon Disulfide	19	45	60	140
Methyl tert-butyl ether	4.8	5.5	18	20
Hexane	4.8	22	17	78
Cyclohexane	4.8	1100	17	3800
2,2,4-Trimethylpentane	4.8	3000 E	23	14000 E
Benzene	4.8	5.8	16	18

Client Sample ID: SG-6 Lab ID#: 1107239A-12A

Client Sample ID: SG-6 Lab ID#: 1107239A-12A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Cyclohexane	5.0	9.0	17	31
2,2,4-Trimethylpentane	5.0	26	23	120

Client Sample ID: SG-12 Lab ID#: 1107239A-01A

EPA METHOD TO-15 GC/MS FULL SCAN

 File Name:
 p072108
 Date of Collection: 7/13/11 2:03:00 PM

 Dil. Factor:
 2.55
 Date of Analysis: 7/21/11 10:36 AM

DII. Factor:	2.55 Date of Analysis: 7/21/11 10:36			/11 10:36 AW
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	1.3	Not Detected	6.3	Not Detected
Freon 114	1.3	Not Detected	8.9	Not Detected
Chloromethane	5.1	Not Detected	10	Not Detected
Vinyl Chloride	1.3	Not Detected	3.2	Not Detected
1,3-Butadiene	1.3	Not Detected	2.8	Not Detected
Bromomethane	1.3	Not Detected	5.0	Not Detected
Chloroethane	5.1	Not Detected	13	Not Detected
Freon 11	1.3	Not Detected	7.2	Not Detected
Ethanol	5.1	8.1	9.6	15
Freon 113	1.3	Not Detected	9.8	Not Detected
1,1-Dichloroethene	1.3	Not Detected	5.0	Not Detected
Acetone	5.1	Not Detected	12	Not Detected
2-Propanol	5.1	Not Detected	12	Not Detected
Carbon Disulfide	5.1	Not Detected	16	Not Detected
3-Chloropropene	5.1	Not Detected	16	Not Detected
Methylene Chloride	1.3	Not Detected	4.4	Not Detected
Methyl tert-butyl ether	1.3	25	4.6	92
trans-1,2-Dichloroethene	1.3	Not Detected	5.0	Not Detected
Hexane	1.3	Not Detected	4.5	Not Detected
1,1-Dichloroethane	1.3	Not Detected	5.2	Not Detected
2-Butanone (Methyl Ethyl Ketone)	5.1	Not Detected	15	Not Detected
cis-1,2-Dichloroethene	1.3	Not Detected	5.0	Not Detected
Tetrahydrofuran	1.3	Not Detected	3.8	Not Detected
Chloroform	1.3	Not Detected	6.2	Not Detected
1,1,1-Trichloroethane	1.3	Not Detected	7.0	Not Detected
Cyclohexane	1.3	3.2	4.4	11
Carbon Tetrachloride	1.3	Not Detected	8.0	Not Detected
2,2,4-Trimethylpentane	1.3	1.6	6.0	7.4
Benzene	1.3	Not Detected	4.1	Not Detected
1,2-Dichloroethane	1.3	Not Detected	5.2	Not Detected
Heptane	1.3	Not Detected	5.2	Not Detected
Trichloroethene	1.3	4.7	6.8	25
1,2-Dichloropropane	1.3	Not Detected	5.9	Not Detected
1,4-Dioxane	5.1	Not Detected	18	Not Detected
Bromodichloromethane	1.3	Not Detected	8.5	Not Detected
cis-1,3-Dichloropropene	1.3	Not Detected	5.8	Not Detected
4-Methyl-2-pentanone	1.3	Not Detected	5.2	Not Detected
Toluene	1.3	Not Detected	4.8	Not Detected
trans-1,3-Dichloropropene	1.3	Not Detected	5.8	Not Detected
1,1,2-Trichloroethane	1.3	Not Detected	7.0	Not Detected
Tetrachloroethene	1.3	Not Detected	8.6	Not Detected

Client Sample ID: SG-12 Lab ID#: 1107239A-01A

EPA METHOD TO-15 GC/MS FULL SCAN

 File Name:
 p072108
 Date of Collection: 7/13/11 2:03:00 PM

 Dil. Factor:
 2.55
 Date of Analysis: 7/21/11 10:36 AM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
2-Hexanone	5.1	Not Detected	21	Not Detected
Dibromochloromethane	1.3	Not Detected	11	Not Detected
1,2-Dibromoethane (EDB)	1.3	Not Detected	9.8	Not Detected
Chlorobenzene	1.3	Not Detected	5.9	Not Detected
Ethyl Benzene	1.3	Not Detected	5.5	Not Detected
m,p-Xylene	1.3	Not Detected	5.5	Not Detected
o-Xylene	1.3	Not Detected	5.5	Not Detected
Styrene	1.3	Not Detected	5.4	Not Detected
Bromoform	1.3	Not Detected	13	Not Detected
Cumene	1.3	Not Detected	6.3	Not Detected
1,1,2,2-Tetrachloroethane	1.3	Not Detected	8.8	Not Detected
Propylbenzene	1.3	Not Detected	6.3	Not Detected
4-Ethyltoluene	1.3	Not Detected	6.3	Not Detected
1,3,5-Trimethylbenzene	1.3	Not Detected	6.3	Not Detected
1,2,4-Trimethylbenzene	1.3	Not Detected	6.3	Not Detected
1,3-Dichlorobenzene	1.3	Not Detected	7.7	Not Detected
1,4-Dichlorobenzene	1.3	Not Detected	7.7	Not Detected
alpha-Chlorotoluene	1.3	Not Detected	6.6	Not Detected
1,2-Dichlorobenzene	1.3	Not Detected	7.7	Not Detected
1,2,4-Trichlorobenzene	5.1	Not Detected	38	Not Detected
Hexachlorobutadiene	5.1	Not Detected	54	Not Detected
1,1-Difluoroethane	5.1	290	14	790

Container Type: 1 Liter Summa Canister

		Method	
Surrogates	%Recovery	Limits	
Toluene-d8	97	70-130	
1,2-Dichloroethane-d4	98	70-130	
4-Bromofluorobenzene	100	70-130	

Client Sample ID: SG-1 Lab ID#: 1107239A-02A

EPA METHOD TO-15 GC/MS FULL SCAN

 File Name:
 p072109
 Date of Collection: 7/13/11 2:32:00 PM

 Dil. Factor:
 2.59
 Date of Analysis: 7/21/11 11:04 AM

DII. Factor:	2.59 Date of Analysis: 7/21/11 11:04 AM			
	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Freon 12	1.3	Not Detected	6.4	Not Detected
Freon 114	1.3	Not Detected	9.0	Not Detected
Chloromethane	5.2	Not Detected	11	Not Detected
Vinyl Chloride	1.3	Not Detected	3.3	Not Detected
1,3-Butadiene	1.3	Not Detected	2.9	Not Detected
Bromomethane	1.3	Not Detected	5.0	Not Detected
Chloroethane	5.2	Not Detected	14	Not Detected
Freon 11	1.3	18	7.3	100
Ethanol	5.2	Not Detected	9.8	Not Detected
Freon 113	1.3	Not Detected	9.9	Not Detected
1,1-Dichloroethene	1.3	Not Detected	5.1	Not Detected
Acetone	5.2	12	12	29
2-Propanol	5.2	Not Detected	13	Not Detected
Carbon Disulfide	5.2	Not Detected	16	Not Detected
3-Chloropropene	5.2	Not Detected	16	Not Detected
Methylene Chloride	1.3	Not Detected	4.5	Not Detected
Methyl tert-butyl ether	1.3	Not Detected	4.7	Not Detected
trans-1,2-Dichloroethene	1.3	Not Detected	5.1	Not Detected
Hexane	1.3	7.2	4.6	25
1,1-Dichloroethane	1.3	Not Detected	5.2	Not Detected
2-Butanone (Methyl Ethyl Ketone)	5.2	Not Detected	15	Not Detected
cis-1,2-Dichloroethene	1.3	Not Detected	5.1	Not Detected
Tetrahydrofuran	1.3	Not Detected	3.8	Not Detected
Chloroform	1.3	Not Detected	6.3	Not Detected
1,1,1-Trichloroethane	1.3	Not Detected	7.1	Not Detected
Cyclohexane	1.3	11	4.4	38
Carbon Tetrachloride	1.3	Not Detected	8.1	Not Detected
2,2,4-Trimethylpentane	1.3	Not Detected	6.0	Not Detected
Benzene	1.3	16	4.1	53
1,2-Dichloroethane	1.3	Not Detected	5.2	Not Detected
Heptane	1.3	2.1	5.3	8.6
Trichloroethene	1.3	Not Detected	7.0	Not Detected
1,2-Dichloropropane	1.3	Not Detected	6.0	Not Detected
1,4-Dioxane	5.2	Not Detected	19	Not Detected
Bromodichloromethane	1.3	Not Detected	8.7	Not Detected
cis-1,3-Dichloropropene	1.3	Not Detected	5.9	Not Detected
4-Methyl-2-pentanone	1.3	Not Detected	5.3	Not Detected
Toluene	1.3	12	4.9	45
trans-1,3-Dichloropropene	1.3	Not Detected	5.9	Not Detected
1,1,2-Trichloroethane	1.3	Not Detected	7.1	Not Detected
Tetrachloroethene	1.3	Not Detected	8.8	Not Detected

Client Sample ID: SG-1 Lab ID#: 1107239A-02A

EPA METHOD TO-15 GC/MS FULL SCAN

 File Name:
 p072109
 Date of Collection: 7/13/11 2:32:00 PM

 Dil. Factor:
 2.59
 Date of Analysis: 7/21/11 11:04 AM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
2-Hexanone	5.2	Not Detected	21	Not Detected
Dibromochloromethane	1.3	Not Detected	11	Not Detected
	1.3	Not Detected	10	Not Detected
1,2-Dibromoethane (EDB)				
Chlorobenzene	1.3	Not Detected	6.0	Not Detected
Ethyl Benzene	1.3	9.3	5.6	40
m,p-Xylene	1.3	12	5.6	54
o-Xylene	1.3	23	5.6	100
Styrene	1.3	Not Detected	5.5	Not Detected
Bromoform	1.3	Not Detected	13	Not Detected
Cumene	1.3	Not Detected	6.4	Not Detected
1,1,2,2-Tetrachloroethane	1.3	Not Detected	8.9	Not Detected
Propylbenzene	1.3	1.8	6.4	8.8
4-Ethyltoluene	1.3	5.3	6.4	26
1,3,5-Trimethylbenzene	1.3	5.4	6.4	26
1,2,4-Trimethylbenzene	1.3	5.5	6.4	27
1,3-Dichlorobenzene	1.3	Not Detected	7.8	Not Detected
1,4-Dichlorobenzene	1.3	Not Detected	7.8	Not Detected
alpha-Chlorotoluene	1.3	Not Detected	6.7	Not Detected
1,2-Dichlorobenzene	1.3	Not Detected	7.8	Not Detected
1,2,4-Trichlorobenzene	5.2	Not Detected	38	Not Detected
Hexachlorobutadiene	5.2	Not Detected	55	Not Detected
1,1-Difluoroethane	5.2	Not Detected	14	Not Detected

74.		Method
Surrogates	%Recovery	Limits
Toluene-d8	102	70-130
1,2-Dichloroethane-d4	97	70-130
4-Bromofluorobenzene	105	70-130

Client Sample ID: SG-2 Lab ID#: 1107239A-03A

EPA METHOD TO-15 GC/MS FULL SCAN

 File Name:
 p072110
 Date of Collection: 7/13/11 3:45:00 PM

 Dil. Factor:
 2.57
 Date of Analysis: 7/21/11 11:36 AM

DII. Factor:	2.57	Date of Analysis: 7/21/11 11:36 AM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	1.3	Not Detected	6.4	Not Detected
Freon 114	1.3	Not Detected	9.0	Not Detected
Chloromethane	5.1	Not Detected	11	Not Detected
Vinyl Chloride	1.3	Not Detected	3.3	Not Detected
1,3-Butadiene	1.3	Not Detected	2.8	Not Detected
Bromomethane	1.3	1.6	5.0	6.4
Chloroethane	5.1	Not Detected	14	Not Detected
Freon 11	1.3	Not Detected	7.2	Not Detected
Ethanol	5.1	Not Detected	9.7	Not Detected
Freon 113	1.3	Not Detected	9.8	Not Detected
1,1-Dichloroethene	1.3	Not Detected	5.1	Not Detected
Acetone	5.1	6.6	12	16
2-Propanol	5.1	Not Detected	13	Not Detected
Carbon Disulfide	5.1	100	16	320
3-Chloropropene	5.1	Not Detected	16	Not Detected
Methylene Chloride	1.3	Not Detected	4.5	Not Detected
Methyl tert-butyl ether	1.3	18	4.6	65
trans-1,2-Dichloroethene	1.3	Not Detected	5.1	Not Detected
Hexane	1.3	Not Detected	4.5	Not Detected
1,1-Dichloroethane	1.3	Not Detected	5.2	Not Detected
2-Butanone (Methyl Ethyl Ketone)	5.1	Not Detected	15	Not Detected
cis-1,2-Dichloroethene	1.3	Not Detected	5.1	Not Detected
Tetrahydrofuran	1.3	Not Detected	3.8	Not Detected
Chloroform	1.3	Not Detected	6.3	Not Detected
1,1,1-Trichloroethane	1.3	Not Detected	7.0	Not Detected
Cyclohexane	1.3	100	4.4	360
Carbon Tetrachloride	1.3	Not Detected	8.1	Not Detected
2,2,4-Trimethylpentane	1.3	19	6.0	91
Benzene	1.3	Not Detected	4.1	Not Detected
1,2-Dichloroethane	1.3	Not Detected	5.2	Not Detected
Heptane	1.3	Not Detected	5.3	Not Detected
Trichloroethene	1.3	4.1	6.9	22
1,2-Dichloropropane	1.3	Not Detected	5.9	Not Detected
1,4-Dioxane	5.1	Not Detected	18	Not Detected
Bromodichloromethane	1.3	Not Detected	8.6	Not Detected
cis-1,3-Dichloropropene	1.3	Not Detected	5.8	Not Detected
4-Methyl-2-pentanone	1.3	Not Detected	5.3	Not Detected
Toluene	1.3	Not Detected	4.8	Not Detected
trans-1,3-Dichloropropene	1.3	Not Detected	5.8	Not Detected
1,1,2-Trichloroethane	1.3	Not Detected	7.0	Not Detected
Tetrachloroethene	1.3	Not Detected	8.7	Not Detected

Client Sample ID: SG-2 Lab ID#: 1107239A-03A

EPA METHOD TO-15 GC/MS FULL SCAN

 File Name:
 p072110
 Date of Collection: 7/13/11 3:45:00 PM

 Dil. Factor:
 2.57
 Date of Analysis: 7/21/11 11:36 AM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
2-Hexanone	5.1	Not Detected	21	Not Detected
Dibromochloromethane	1.3	Not Detected	11	Not Detected
	1.3	Not Detected	9.9	Not Detected
1,2-Dibromoethane (EDB)				
Chlorobenzene	1.3	Not Detected	5.9	Not Detected
Ethyl Benzene	1.3	Not Detected	5.6	Not Detected
m,p-Xylene	1.3	Not Detected	5.6	Not Detected
o-Xylene	1.3	Not Detected	5.6	Not Detected
Styrene	1.3	Not Detected	5.5	Not Detected
Bromoform	1.3	Not Detected	13	Not Detected
Cumene	1.3	Not Detected	6.3	Not Detected
1,1,2,2-Tetrachloroethane	1.3	Not Detected	8.8	Not Detected
Propylbenzene	1.3	Not Detected	6.3	Not Detected
4-Ethyltoluene	1.3	Not Detected	6.3	Not Detected
1,3,5-Trimethylbenzene	1.3	Not Detected	6.3	Not Detected
1,2,4-Trimethylbenzene	1.3	Not Detected	6.3	Not Detected
1,3-Dichlorobenzene	1.3	Not Detected	7.7	Not Detected
1,4-Dichlorobenzene	1.3	Not Detected	7.7	Not Detected
alpha-Chlorotoluene	1.3	Not Detected	6.6	Not Detected
1,2-Dichlorobenzene	1.3	Not Detected	7.7	Not Detected
1,2,4-Trichlorobenzene	5.1	Not Detected	38	Not Detected
Hexachlorobutadiene	5.1	Not Detected	55	Not Detected
1,1-Difluoroethane	5.1	Not Detected	14	Not Detected

•		Method
Surrogates	%Recovery	Limits
Toluene-d8	96	70-130
1,2-Dichloroethane-d4	98	70-130
4-Bromofluorobenzene	102	70-130

Client Sample ID: SG-11 Lab ID#: 1107239A-04A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: p072111 Date of Collection: 7/13/11 5:00:00 PM
Dil. Factor: 4.75 Date of Analysis: 7/21/11 12:15 PM

DII. Factor:	4.75	4.75 Date of Analysis: 7/21/11 12:15 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	2.4	Not Detected	12	Not Detected
Freon 114	2.4	Not Detected	17	Not Detected
Chloromethane	9.5	Not Detected	20	Not Detected
Vinyl Chloride	2.4	Not Detected	6.1	Not Detected
1,3-Butadiene	2.4	Not Detected	5.2	Not Detected
Bromomethane	2.4	Not Detected	9.2	Not Detected
Chloroethane	9.5	Not Detected	25	Not Detected
Freon 11	2.4	Not Detected	13	Not Detected
Ethanol	9.5	Not Detected	18	Not Detected
Freon 113	2.4	Not Detected	18	Not Detected
1,1-Dichloroethene	2.4	Not Detected	9.4	Not Detected
Acetone	9.5	Not Detected	22	Not Detected
2-Propanol	9.5	Not Detected	23	Not Detected
Carbon Disulfide	9.5	180	30	550
3-Chloropropene	9.5	Not Detected	30	Not Detected
Methylene Chloride	2.4	Not Detected	8.2	Not Detected
Methyl tert-butyl ether	2.4	3.1	8.6	11
trans-1,2-Dichloroethene	2.4	Not Detected	9.4	Not Detected
Hexane	2.4	Not Detected	8.4	Not Detected
1,1-Dichloroethane	2.4	Not Detected	9.6	Not Detected
2-Butanone (Methyl Ethyl Ketone)	9.5	Not Detected	28	Not Detected
cis-1,2-Dichloroethene	2.4	Not Detected	9.4	Not Detected
Tetrahydrofuran	2.4	Not Detected	7.0	Not Detected
Chloroform	2.4	Not Detected	12	Not Detected
1,1,1-Trichloroethane	2.4	Not Detected	13	Not Detected
Cyclohexane	2.4	590	8.2	2000
Carbon Tetrachloride	2.4	Not Detected	15	Not Detected
2,2,4-Trimethylpentane	2.4	Not Detected	11	Not Detected
Benzene	2.4	Not Detected	7.6	Not Detected
1,2-Dichloroethane	2.4	Not Detected	9.6	Not Detected
Heptane	2.4	Not Detected	9.7	Not Detected
Trichloroethene	2.4	4.5	13	24
1,2-Dichloropropane	2.4	Not Detected	11	Not Detected
1,4-Dioxane	9.5	Not Detected	34	Not Detected
Bromodichloromethane	2.4	Not Detected	16	Not Detected
cis-1,3-Dichloropropene	2.4	Not Detected	11	Not Detected
4-Methyl-2-pentanone	2.4	Not Detected	9.7	Not Detected
Toluene	2.4	2.6	8.9	9.8
trans-1,3-Dichloropropene	2.4	Not Detected	11	Not Detected
1,1,2-Trichloroethane	2.4	Not Detected	13	Not Detected
Tetrachloroethene	2.4	Not Detected	16	Not Detected

Client Sample ID: SG-11 Lab ID#: 1107239A-04A

EPA METHOD TO-15 GC/MS FULL SCAN

 File Name:
 p072111
 Date of Collection: 7/13/11 5:00:00 PM

 Dil. Factor:
 4.75
 Date of Analysis: 7/21/11 12:15 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
2-Hexanone	9.5	Not Detected	39	Not Detected
Dibromochloromethane	2.4	Not Detected	20	Not Detected
1,2-Dibromoethane (EDB)	2.4	Not Detected	18	Not Detected
Chlorobenzene	2.4	Not Detected	11	Not Detected
Ethyl Benzene	2.4	Not Detected	10	Not Detected
m,p-Xylene	2.4	Not Detected	10	Not Detected
o-Xylene	2.4	Not Detected	10	Not Detected
Styrene	2.4	Not Detected	10	Not Detected
Bromoform	2.4	Not Detected	24	Not Detected
Cumene	2.4	Not Detected	12	Not Detected
1,1,2,2-Tetrachloroethane	2.4	Not Detected	16	Not Detected
Propylbenzene	2.4	Not Detected	12	Not Detected
4-Ethyltoluene	2.4	Not Detected	12	Not Detected
1,3,5-Trimethylbenzene	2.4	Not Detected	12	Not Detected
1,2,4-Trimethylbenzene	2.4	Not Detected	12	Not Detected
1,3-Dichlorobenzene	2.4	Not Detected	14	Not Detected
1,4-Dichlorobenzene	2.4	Not Detected	14	Not Detected
alpha-Chlorotoluene	2.4	Not Detected	12	Not Detected
1,2-Dichlorobenzene	2.4	Not Detected	14	Not Detected
1,2,4-Trichlorobenzene	9.5	Not Detected	70	Not Detected
Hexachlorobutadiene	9.5	Not Detected	100	Not Detected
1,1-Difluoroethane	9.5	Not Detected	26	Not Detected

		Method
Surrogates	%Recovery	Limits
Toluene-d8	97	70-130
1,2-Dichloroethane-d4	96	70-130
4-Bromofluorobenzene	102	70-130

Client Sample ID: SG-3 Lab ID#: 1107239A-05A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: p072112 Date of Collection: 7/13/11 5:45:00 PM
Dil. Factor: 5.51 Date of Analysis: 7/21/11 12:50 PM

DII. Factor:	5.51	Date of Analysis: 7/21/11 12:50 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	2.8	Not Detected	14	Not Detected
Freon 114	2.8	Not Detected	19	Not Detected
Chloromethane	11	Not Detected	23	Not Detected
Vinyl Chloride	2.8	Not Detected	7.0	Not Detected
1,3-Butadiene	2.8	Not Detected	6.1	Not Detected
Bromomethane	2.8	Not Detected	11	Not Detected
Chloroethane	11	Not Detected	29	Not Detected
Freon 11	2.8	Not Detected	15	Not Detected
Ethanol	11	Not Detected	21	Not Detected
Freon 113	2.8	Not Detected	21	Not Detected
1,1-Dichloroethene	2.8	Not Detected	11	Not Detected
Acetone	11	13	26	30
2-Propanol	11	Not Detected	27	Not Detected
Carbon Disulfide	11	410	34	1300
3-Chloropropene	11	Not Detected	34	Not Detected
Methylene Chloride	2.8	Not Detected	9.6	Not Detected
Methyl tert-butyl ether	2.8	60	9.9	220
trans-1,2-Dichloroethene	2.8	Not Detected	11	Not Detected
Hexane	2.8	Not Detected	9.7	Not Detected
1,1-Dichloroethane	2.8	Not Detected	11	Not Detected
2-Butanone (Methyl Ethyl Ketone)	11	Not Detected	32	Not Detected
cis-1,2-Dichloroethene	2.8	Not Detected	11	Not Detected
Tetrahydrofuran	2.8	Not Detected	8.1	Not Detected
Chloroform	2.8	Not Detected	13	Not Detected
1,1,1-Trichloroethane	2.8	Not Detected	15	Not Detected
Cyclohexane	2.8	55	9.5	190
Carbon Tetrachloride	2.8	Not Detected	17	Not Detected
2,2,4-Trimethylpentane	2.8	Not Detected	13	Not Detected
Benzene	2.8	Not Detected	8.8	Not Detected
1,2-Dichloroethane	2.8	Not Detected	11	Not Detected
Heptane	2.8	Not Detected	11	Not Detected
Trichloroethene	2.8	19	15	100
1,2-Dichloropropane	2.8	Not Detected	13	Not Detected
1,4-Dioxane	11	Not Detected	40	Not Detected
Bromodichloromethane	2.8	Not Detected	18	Not Detected
cis-1,3-Dichloropropene	2.8	Not Detected	12	Not Detected
4-Methyl-2-pentanone	2.8	Not Detected	11	Not Detected
Toluene	2.8	Not Detected	10	Not Detected
trans-1,3-Dichloropropene	2.8	Not Detected	12	Not Detected
1,1,2-Trichloroethane	2.8	Not Detected	15	Not Detected
Tetrachloroethene	2.8	Not Detected	19	Not Detected

Client Sample ID: SG-3 Lab ID#: 1107239A-05A

EPA METHOD TO-15 GC/MS FULL SCAN

 File Name:
 p072112
 Date of Collection: 7/13/11 5:45:00 PM

 Dil. Factor:
 5.51
 Date of Analysis: 7/21/11 12:50 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
<u> </u>				
2-Hexanone	11	Not Detected	45	Not Detected
Dibromochloromethane	2.8	Not Detected	23	Not Detected
1,2-Dibromoethane (EDB)	2.8	Not Detected	21	Not Detected
Chlorobenzene	2.8	Not Detected	13	Not Detected
Ethyl Benzene	2.8	Not Detected	12	Not Detected
m,p-Xylene	2.8	Not Detected	12	Not Detected
o-Xylene	2.8	Not Detected	12	Not Detected
Styrene	2.8	Not Detected	12	Not Detected
Bromoform	2.8	Not Detected	28	Not Detected
Cumene	2.8	Not Detected	14	Not Detected
1,1,2,2-Tetrachloroethane	2.8	Not Detected	19	Not Detected
Propylbenzene	2.8	Not Detected	14	Not Detected
4-Ethyltoluene	2.8	Not Detected	14	Not Detected
1,3,5-Trimethylbenzene	2.8	Not Detected	14	Not Detected
1,2,4-Trimethylbenzene	2.8	Not Detected	14	Not Detected
1,3-Dichlorobenzene	2.8	Not Detected	16	Not Detected
1,4-Dichlorobenzene	2.8	Not Detected	16	Not Detected
alpha-Chlorotoluene	2.8	Not Detected	14	Not Detected
1,2-Dichlorobenzene	2.8	Not Detected	16	Not Detected
1,2,4-Trichlorobenzene	11	Not Detected	82	Not Detected
Hexachlorobutadiene	11	Not Detected	120	Not Detected
1,1-Difluoroethane	11	Not Detected	30	Not Detected

71.		Method
Surrogates	%Recovery	Limits
Toluene-d8	92	70-130
1,2-Dichloroethane-d4	101	70-130
4-Bromofluorobenzene	103	70-130

Client Sample ID: SG-8 Lab ID#: 1107239A-06A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: p072113 Date of Collection: 7/14/11 10:15:00 AM
Dil. Factor: 2.66 Date of Analysis: 7/21/11 01:39 PM

DII. Factor:	2.66			
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	1.3	Not Detected	6.6	Not Detected
Freon 114	1.3	Not Detected	9.3	Not Detected
Chloromethane	5.3	Not Detected	11	Not Detected
Vinyl Chloride	1.3	Not Detected	3.4	Not Detected
1,3-Butadiene	1.3	Not Detected	2.9	Not Detected
Bromomethane	1.3	Not Detected	5.2	Not Detected
Chloroethane	5.3	Not Detected	14	Not Detected
Freon 11	1.3	Not Detected	7.5	Not Detected
Ethanol	5.3	16	10	30
Freon 113	1.3	Not Detected	10	Not Detected
1,1-Dichloroethene	1.3	Not Detected	5.3	Not Detected
Acetone	5.3	6.8	13	16
2-Propanol	5.3	Not Detected	13	Not Detected
Carbon Disulfide	5.3	50	16	160
3-Chloropropene	5.3	Not Detected	17	Not Detected
	1.3	Not Detected	4.6	Not Detected
Methyl text but dether	1.3	4.4	4.8	16
Methyl tert-butyl ether	1.3	Not Detected	5.3	Not Detected
trans-1,2-Dichloroethene Hexane	1.3	Not Detected	4.7	Not Detected
1,1-Dichloroethane	1.3	Not Detected	5.4	Not Detected
2-Butanone (Methyl Ethyl Ketone)	5.3 1.3	Not Detected	16 5.3	Not Detected
cis-1,2-Dichloroethene	1.3	Not Detected		Not Detected
Tetrahydrofuran		Not Detected	3.9	Not Detected
Chloroform	1.3 1.3	Not Detected Not Detected	6.5 7.2	Not Detected Not Detected
1,1,1-Trichloroethane				
Cyclohexane	1.3	58	4.6	200
Carbon Tetrachloride	1.3	Not Detected	8.4	Not Detected
2,2,4-Trimethylpentane	1.3	Not Detected	6.2	Not Detected
Benzene	1.3	Not Detected	4.2	Not Detected
1,2-Dichloroethane	1.3	Not Detected	5.4	Not Detected
Heptane	1.3	Not Detected	5.4	Not Detected
Trichloroethene	1.3	3.2	7.1	17
1,2-Dichloropropane	1.3	Not Detected	6.1	Not Detected
1,4-Dioxane	5.3	Not Detected	19	Not Detected
Bromodichloromethane	1.3	Not Detected	8.9	Not Detected
cis-1,3-Dichloropropene	1.3	Not Detected	6.0	Not Detected
4-Methyl-2-pentanone	1.3	Not Detected	5.4	Not Detected
Toluene	1.3	1.4	5.0	5.5
trans-1,3-Dichloropropene	1.3	Not Detected	6.0	Not Detected
1,1,2-Trichloroethane	1.3	Not Detected	7.2	Not Detected
Tetrachloroethene	1.3	Not Detected	9.0	Not Detected

Client Sample ID: SG-8 Lab ID#: 1107239A-06A

EPA METHOD TO-15 GC/MS FULL SCAN

 File Name:
 p072113
 Date of Collection: 7/14/11 10:15:00 AM

 Dil. Factor:
 2.66
 Date of Analysis: 7/21/11 01:39 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
2-Hexanone	5.3	Not Detected	22	Not Detected
Dibromochloromethane	1.3	Not Detected	11	Not Detected
1,2-Dibromoethane (EDB)	1.3	Not Detected	10	Not Detected
Chlorobenzene	1.3	Not Detected	6.1	Not Detected
Ethyl Benzene	1.3	Not Detected	5.8	Not Detected
m,p-Xylene	1.3	Not Detected	5.8	Not Detected
o-Xylene	1.3	Not Detected	5.8	Not Detected
Styrene	1.3	Not Detected	5.7	Not Detected
Bromoform	1.3	Not Detected	14	Not Detected
Cumene	1.3	Not Detected	6.5	Not Detected
1,1,2,2-Tetrachloroethane	1.3	Not Detected	9.1	Not Detected
Propylbenzene	1.3	Not Detected	6.5	Not Detected
4-Ethyltoluene	1.3	Not Detected	6.5	Not Detected
1,3,5-Trimethylbenzene	1.3	Not Detected	6.5	Not Detected
1,2,4-Trimethylbenzene	1.3	Not Detected	6.5	Not Detected
1,3-Dichlorobenzene	1.3	Not Detected	8.0	Not Detected
1,4-Dichlorobenzene	1.3	Not Detected	8.0	Not Detected
alpha-Chlorotoluene	1.3	Not Detected	6.9	Not Detected
1,2-Dichlorobenzene	1.3	Not Detected	8.0	Not Detected
1,2,4-Trichlorobenzene	5.3	Not Detected	39	Not Detected
Hexachlorobutadiene	5.3	Not Detected	57	Not Detected
1,1-Difluoroethane	5.3	570 E	14	1600 E

E = Exceeds instrument calibration range.

7,		Method
Surrogates	%Recovery	Limits
Toluene-d8	96	70-130
1,2-Dichloroethane-d4	99	70-130
4-Bromofluorobenzene	102	70-130

Client Sample ID: SG-7 Lab ID#: 1107239A-07A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: p072114 Date of Collection: 7/14/11 11:00:00 AM
Dil. Factor: 2.46 Date of Analysis: 7/21/11 02:20 PM

DII. Factor:	2.46 Date of Analysis: 7/21/11 02:20 PM			/11 U2:20 PW
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	1.2	Not Detected	6.1	Not Detected
Freon 114	1.2	Not Detected	8.6	Not Detected
Chloromethane	4.9	Not Detected	10	Not Detected
Vinyl Chloride	1.2	Not Detected	3.1	Not Detected
1,3-Butadiene	1.2	Not Detected	2.7	Not Detected
Bromomethane	1.2	Not Detected	4.8	Not Detected
Chloroethane	4.9	Not Detected	13	Not Detected
Freon 11	1.2	Not Detected	6.9	Not Detected
Ethanol	4.9	Not Detected	9.3	Not Detected
Freon 113	1.2	Not Detected	9.4	Not Detected
1,1-Dichloroethene	1.2	Not Detected	4.9	Not Detected
Acetone	4.9	Not Detected	12	Not Detected
2-Propanol	4.9	Not Detected	12	Not Detected
Carbon Disulfide	4.9	6.1	15	19
3-Chloropropene	4.9	Not Detected	15	Not Detected
Methylene Chloride	1.2	Not Detected	4.3	Not Detected
Methyl tert-butyl ether	1.2	1.3	4.4	4.8
trans-1,2-Dichloroethene	1.2	Not Detected	4.9	Not Detected
Hexane	1.2	Not Detected	4.3	Not Detected
1,1-Dichloroethane	1.2	Not Detected	5.0	Not Detected
2-Butanone (Methyl Ethyl Ketone)	4.9	Not Detected	14	Not Detected
cis-1,2-Dichloroethene	1.2	Not Detected	4.9	Not Detected
Tetrahydrofuran	1.2	Not Detected	3.6	Not Detected
Chloroform	1.2	2.9	6.0	14
1,1,1-Trichloroethane	1.2	Not Detected	6.7	Not Detected
Cyclohexane	1.2	40	4.2	140
Carbon Tetrachloride	1.2	Not Detected	7.7	Not Detected
2,2,4-Trimethylpentane	1.2	Not Detected	5.7	Not Detected
Benzene	1.2	Not Detected	3.9	Not Detected
1,2-Dichloroethane	1.2	Not Detected	5.0	Not Detected
Heptane	1.2	Not Detected	5.0	Not Detected
Trichloroethene	1.2	24	6.6	130
1,2-Dichloropropane	1.2	Not Detected	5.7	Not Detected
1,4-Dioxane	4.9	Not Detected	18	Not Detected
Bromodichloromethane	1.2	Not Detected	8.2	Not Detected
cis-1,3-Dichloropropene	1.2	Not Detected	5.6	Not Detected
4-Methyl-2-pentanone	1.2	Not Detected	5.0	Not Detected
Toluene	1.2	Not Detected	4.6	Not Detected
trans-1,3-Dichloropropene	1.2	Not Detected	5.6	Not Detected
1,1,2-Trichloroethane	1.2	Not Detected	6.7	Not Detected
Tetrachloroethene	1.2	1.8	8.3	12

Client Sample ID: SG-7 Lab ID#: 1107239A-07A

EPA METHOD TO-15 GC/MS FULL SCAN

 File Name:
 p072114
 Date of Collection: 7/14/11 11:00:00 AM

 Dil. Factor:
 2.46
 Date of Analysis: 7/21/11 02:20 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
2-Hexanone	4.9	Not Detected	20	Not Detected
Dibromochloromethane	1.2	Not Detected	10	Not Detected
1,2-Dibromoethane (EDB)	1.2	Not Detected	9.4	Not Detected
Chlorobenzene	1.2	Not Detected	5.7	Not Detected
Ethyl Benzene	1.2	Not Detected	5.3	Not Detected
m,p-Xylene	1.2	Not Detected	5.3	Not Detected
o-Xylene	1.2	Not Detected	5.3	Not Detected
Styrene	1.2	Not Detected	5.2	Not Detected
Bromoform	1.2	Not Detected	13	Not Detected
Cumene	1.2	Not Detected	6.0	Not Detected
1,1,2,2-Tetrachloroethane	1.2	Not Detected	8.4	Not Detected
Propylbenzene	1.2	Not Detected	6.0	Not Detected
4-Ethyltoluene	1.2	Not Detected	6.0	Not Detected
1,3,5-Trimethylbenzene	1.2	Not Detected	6.0	Not Detected
1,2,4-Trimethylbenzene	1.2	Not Detected	6.0	Not Detected
1,3-Dichlorobenzene	1.2	Not Detected	7.4	Not Detected
1,4-Dichlorobenzene	1.2	Not Detected	7.4	Not Detected
alpha-Chlorotoluene	1.2	Not Detected	6.4	Not Detected
1,2-Dichlorobenzene	1.2	Not Detected	7.4	Not Detected
1,2,4-Trichlorobenzene	4.9	Not Detected	36	Not Detected
Hexachlorobutadiene	4.9	Not Detected	52	Not Detected
1,1-Difluoroethane	4.9	Not Detected	13	Not Detected

		Method
Surrogates	%Recovery	Limits
Toluene-d8	100	70-130
1,2-Dichloroethane-d4	105	70-130
4-Bromofluorobenzene	104	70-130

Client Sample ID: SG-10 Lab ID#: 1107239A-08A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: p072115 Date of Collection: 7/14/11 12:30:00 PM Dil. Factor: 14.5 Date of Analysis: 7/21/11 02:52 PM

DII. Factor:	14.5	14.5 Date of Analysis: 7/21/11 02:52 Pi		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	7.2	Not Detected	36	Not Detected
Freon 114	7.2	Not Detected	51	Not Detected
Chloromethane	29	Not Detected	60	Not Detected
Vinyl Chloride	7.2	Not Detected	18	Not Detected
1,3-Butadiene	7.2	Not Detected	16	Not Detected
Bromomethane	7.2	14	28	55
Chloroethane	29	Not Detected	76	Not Detected
Freon 11	7.2	Not Detected	41	Not Detected
Ethanol	29	64	55	120
Freon 113	7.2	Not Detected	56	Not Detected
1,1-Dichloroethene	7.2	Not Detected	29	Not Detected
Acetone	29	Not Detected	69	Not Detected
2-Propanol	29	Not Detected	71	Not Detected
Carbon Disulfide	29	190	90	600
3-Chloropropene	29	Not Detected	91	Not Detected
Methylene Chloride	7.2	Not Detected	25	Not Detected
Methyl tert-butyl ether	7.2	120	26	440
trans-1,2-Dichloroethene	7.2	Not Detected	29	Not Detected
Hexane	7.2	Not Detected	26	Not Detected
1,1-Dichloroethane	7.2	Not Detected	29	Not Detected
2-Butanone (Methyl Ethyl Ketone)	29	Not Detected	86	Not Detected
cis-1,2-Dichloroethene	7.2	Not Detected	29	Not Detected
Tetrahydrofuran	7.2	Not Detected	21	Not Detected
Chloroform	7.2	Not Detected	35	Not Detected
1,1,1-Trichloroethane	7.2	Not Detected	40	Not Detected
Cyclohexane	7.2	1900	25	6400
Carbon Tetrachloride	7.2	Not Detected	46	Not Detected
2,2,4-Trimethylpentane	7.2	Not Detected	34	Not Detected
Benzene	7.2	Not Detected	23	Not Detected
1,2-Dichloroethane	7.2	Not Detected	29	Not Detected
Heptane	7.2	Not Detected	30	Not Detected
Trichloroethene	7.2	Not Detected	39	Not Detected
1,2-Dichloropropane	7.2	Not Detected	34	Not Detected
1,4-Dioxane	29	Not Detected	100	Not Detected
Bromodichloromethane	7.2	Not Detected	48	Not Detected
cis-1,3-Dichloropropene	7.2	Not Detected	33	Not Detected
4-Methyl-2-pentanone	7.2	Not Detected	30	Not Detected
Toluene	7.2	Not Detected	27	Not Detected
trans-1,3-Dichloropropene	7.2	Not Detected	33	Not Detected
1,1,2-Trichloroethane	7.2	Not Detected	40	Not Detected
Tetrachloroethene	7.2	Not Detected	49	Not Detected

Client Sample ID: SG-10 Lab ID#: 1107239A-08A

EPA METHOD TO-15 GC/MS FULL SCAN

 File Name:
 p072115
 Date of Collection: 7/14/11 12:30:00 PM

 Dil. Factor:
 14.5
 Date of Analysis: 7/21/11 02:52 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
2-Hexanone	29	Not Detected	120	Not Detected
Dibromochloromethane	7.2	Not Detected	62	Not Detected
1,2-Dibromoethane (EDB)	7.2	Not Detected	56	Not Detected
Chlorobenzene	7.2	Not Detected	33	Not Detected
Ethyl Benzene	7.2	Not Detected	31	Not Detected
m,p-Xylene	7.2	Not Detected	31	Not Detected
o-Xylene	7.2	Not Detected	31	Not Detected
Styrene	7.2	Not Detected	31	Not Detected
Bromoform	7.2	Not Detected	75	Not Detected
Cumene	7.2	Not Detected	36	Not Detected
1,1,2,2-Tetrachloroethane	7.2	Not Detected	50	Not Detected
Propylbenzene	7.2	Not Detected	36	Not Detected
4-Ethyltoluene	7.2	Not Detected	36	Not Detected
1,3,5-Trimethylbenzene	7.2	Not Detected	36	Not Detected
1,2,4-Trimethylbenzene	7.2	Not Detected	36	Not Detected
1,3-Dichlorobenzene	7.2	Not Detected	44	Not Detected
1,4-Dichlorobenzene	7.2	Not Detected	44	Not Detected
alpha-Chlorotoluene	7.2	Not Detected	38	Not Detected
1,2-Dichlorobenzene	7.2	Not Detected	44	Not Detected
1,2,4-Trichlorobenzene	29	Not Detected	220	Not Detected
Hexachlorobutadiene	29	Not Detected	310	Not Detected
1,1-Difluoroethane	29	130	78	350

••		Method	
Surrogates	%Recovery	Limits	
Toluene-d8	97	70-130	
1,2-Dichloroethane-d4	101	70-130	
4-Bromofluorobenzene	103	70-130	

Client Sample ID: SG-9 Lab ID#: 1107239A-09A

EPA METHOD TO-15 GC/MS FULL SCAN

 File Name:
 p072116
 Date of Collection: 7/14/11 1:05:00 PM

 Dil. Factor:
 2.20
 Date of Analysis: 7/21/11 03:46 PM

DII. Factor:	2.20 Date of Analysis: 7/21/11 03:46 PM			/11 U3:46 PW
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	1.1	Not Detected	5.4	Not Detected
Freon 114	1.1	Not Detected	7.7	Not Detected
Chloromethane	4.4	Not Detected	9.1	Not Detected
Vinyl Chloride	1.1	Not Detected	2.8	Not Detected
1,3-Butadiene	1.1	Not Detected	2.4	Not Detected
Bromomethane	1.1	Not Detected	4.3	Not Detected
Chloroethane	4.4	Not Detected	12	Not Detected
Freon 11	1.1	Not Detected	6.2	Not Detected
Ethanol	4.4	Not Detected	8.3	Not Detected
Freon 113	1.1	Not Detected	8.4	Not Detected
1,1-Dichloroethene	1.1	Not Detected	4.4	Not Detected
Acetone	4.4	Not Detected	10	Not Detected
2-Propanol	4.4	Not Detected	11	Not Detected
Carbon Disulfide	4.4	8.8	14	28
3-Chloropropene	4.4	Not Detected	14	Not Detected
Methylene Chloride	1.1	Not Detected	3.8	Not Detected
Methyl tert-butyl ether	1.1	Not Detected	4.0	Not Detected
trans-1,2-Dichloroethene	1.1	Not Detected	4.4	Not Detected
Hexane	1.1	Not Detected	3.9	Not Detected
1,1-Dichloroethane	1.1	Not Detected	4.4	Not Detected
2-Butanone (Methyl Ethyl Ketone)	4.4	Not Detected	13	Not Detected
cis-1,2-Dichloroethene	1.1	Not Detected	4.4	Not Detected
Tetrahydrofuran	1.1	Not Detected	3.2	Not Detected
Chloroform	1.1	Not Detected	5.4	Not Detected
1,1,1-Trichloroethane	1.1	Not Detected	6.0	Not Detected
Cyclohexane	1.1	8.6	3.8	30
Carbon Tetrachloride	1.1	Not Detected	6.9	Not Detected
2,2,4-Trimethylpentane	1.1	Not Detected	5.1	Not Detected
Benzene	1.1	Not Detected	3.5	Not Detected
1,2-Dichloroethane	1.1	Not Detected	4.4	Not Detected
Heptane	1.1	Not Detected	4.5	Not Detected
Trichloroethene	1.1	Not Detected	5.9	Not Detected
1,2-Dichloropropane	1.1	Not Detected	5.1	Not Detected
1,4-Dioxane	4.4	Not Detected	16	Not Detected
Bromodichloromethane	1.1	Not Detected	7.4	Not Detected
cis-1,3-Dichloropropene	1.1	Not Detected	5.0	Not Detected
4-Methyl-2-pentanone	1.1	Not Detected	4.5	Not Detected
Toluene	1.1	Not Detected	4.1	Not Detected
trans-1,3-Dichloropropene	1.1	Not Detected	5.0	Not Detected
1,1,2-Trichloroethane	1.1	Not Detected	6.0	Not Detected
Tetrachloroethene	1.1	2.7	7.5	18

Client Sample ID: SG-9 Lab ID#: 1107239A-09A

EPA METHOD TO-15 GC/MS FULL SCAN

 File Name:
 p072116
 Date of Collection: 7/14/11 1:05:00 PM

 Dil. Factor:
 2.20
 Date of Analysis: 7/21/11 03:46 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
2-Hexanone	4.4	Not Detected	18	Not Detected
Dibromochloromethane	1.1	Not Detected	9.4	Not Detected
1,2-Dibromoethane (EDB)	1.1	Not Detected	8.4	Not Detected
Chlorobenzene	1.1	Not Detected	5.1	Not Detected
Ethyl Benzene	1.1	Not Detected	4.8	Not Detected
m,p-Xylene	1.1	Not Detected	4.8	Not Detected
o-Xylene	1.1	Not Detected	4.8	Not Detected
Styrene	1.1	Not Detected	4.7	Not Detected
Bromoform	1.1	Not Detected	11	Not Detected
Cumene	1.1	Not Detected	5.4	Not Detected
1,1,2,2-Tetrachloroethane	1.1	Not Detected	7.6	Not Detected
Propylbenzene	1.1	Not Detected	5.4	Not Detected
4-Ethyltoluene	1.1	Not Detected	5.4	Not Detected
1,3,5-Trimethylbenzene	1.1	Not Detected	5.4	Not Detected
1,2,4-Trimethylbenzene	1.1	Not Detected	5.4	Not Detected
1,3-Dichlorobenzene	1.1	Not Detected	6.6	Not Detected
1,4-Dichlorobenzene	1.1	Not Detected	6.6	Not Detected
alpha-Chlorotoluene	1.1	Not Detected	5.7	Not Detected
1,2-Dichlorobenzene	1.1	Not Detected	6.6	Not Detected
1,2,4-Trichlorobenzene	4.4	Not Detected	33	Not Detected
Hexachlorobutadiene	4.4	Not Detected	47	Not Detected
1,1-Difluoroethane	4.4	Not Detected	12	Not Detected

71.		Method	
Surrogates	%Recovery	Limits	
Toluene-d8	99	70-130	
1,2-Dichloroethane-d4	100	70-130	
4-Bromofluorobenzene	100	70-130	

Client Sample ID: SG-4 Lab ID#: 1107239A-10A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: p072117 Date of Collection: 7/14/11 2:35:00 PM
Dil. Factor: 8.08 Date of Analysis: 7/21/11 04:26 PM

Dil. Factor:	8.08	8.08 Date of Analysis: 7/21/11 04:26 PM			
	Rpt. Limit	Amount	Rpt. Limit	Amount	
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)	
Freon 12	4.0	Not Detected	20	Not Detected	
Freon 114	4.0	Not Detected	28	Not Detected	
Chloromethane	16	Not Detected	33	Not Detected	
Vinyl Chloride	4.0	Not Detected	10	Not Detected	
1,3-Butadiene	4.0	Not Detected	8.9	Not Detected	
Bromomethane	4.0	Not Detected	16	Not Detected	
Chloroethane	16	Not Detected	43	Not Detected	
Freon 11	4.0	Not Detected	23	Not Detected	
Ethanol	16	Not Detected	30	Not Detected	
Freon 113	4.0	Not Detected	31	Not Detected	
1,1-Dichloroethene	4.0	Not Detected	16	Not Detected	
Acetone	16	Not Detected	38	Not Detected	
2-Propanol	16	Not Detected	40	Not Detected	
Carbon Disulfide	16	370	50	1200	
3-Chloropropene	16	Not Detected	50	Not Detected	
Methylene Chloride	4.0	Not Detected	14	Not Detected	
Methyl tert-butyl ether	4.0	93	14	330	
trans-1,2-Dichloroethene	4.0	Not Detected	16	Not Detected	
Hexane	4.0	20	14	70	
1,1-Dichloroethane	4.0	Not Detected	16	Not Detected	
2-Butanone (Methyl Ethyl Ketone)	16	Not Detected	48	Not Detected	
cis-1,2-Dichloroethene	4.0	Not Detected	16	Not Detected	
Tetrahydrofuran	4.0	Not Detected	12	Not Detected	
Chloroform	4.0	Not Detected	20	Not Detected	
1,1,1-Trichloroethane	4.0	Not Detected	22	Not Detected	
Cyclohexane	4.0	1200	14	4200	
Carbon Tetrachloride	4.0	Not Detected	25	Not Detected	
2,2,4-Trimethylpentane	4.0	Not Detected	19	Not Detected	
Benzene	4.0	6.9	13	22	
1,2-Dichloroethane	4.0	Not Detected	16	Not Detected	
Heptane	4.0	6.6	16	27	
Trichloroethene	4.0	Not Detected	22	Not Detected	
1,2-Dichloropropane	4.0	Not Detected	19	Not Detected	
1,4-Dioxane	16	Not Detected	58	Not Detected	
Bromodichloromethane	4.0	Not Detected	27	Not Detected	
cis-1,3-Dichloropropene	4.0	Not Detected	18	Not Detected	
4-Methyl-2-pentanone	4.0	Not Detected	16	Not Detected	
Toluene	4.0	4.7	15	18	
trans-1,3-Dichloropropene	4.0	Not Detected	18	Not Detected	
1,1,2-Trichloroethane	4.0	Not Detected	22	Not Detected	
Tetrachloroethene	4.0	Not Detected	27	Not Detected	

Client Sample ID: SG-4 Lab ID#: 1107239A-10A

EPA METHOD TO-15 GC/MS FULL SCAN

 File Name:
 p072117
 Date of Collection: 7/14/11 2:35:00 PM

 Dil. Factor:
 8.08
 Date of Analysis: 7/21/11 04:26 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
2-Hexanone	16	Not Detected	66	Not Detected
Dibromochloromethane	4.0	Not Detected	34	Not Detected
1,2-Dibromoethane (EDB)	4.0	Not Detected	31	Not Detected
Chlorobenzene	4.0	Not Detected	18	Not Detected
Ethyl Benzene	4.0	Not Detected	18	Not Detected
m,p-Xylene	4.0	9.3	18	40
o-Xylene	4.0	Not Detected	18	Not Detected
Styrene	4.0	Not Detected	17	Not Detected
Bromoform	4.0	Not Detected	42	Not Detected
Cumene	4.0	Not Detected	20	Not Detected
1,1,2,2-Tetrachloroethane	4.0	Not Detected	28	Not Detected
Propylbenzene	4.0	Not Detected	20	Not Detected
4-Ethyltoluene	4.0	Not Detected	20	Not Detected
1,3,5-Trimethylbenzene	4.0	Not Detected	20	Not Detected
1,2,4-Trimethylbenzene	4.0	Not Detected	20	Not Detected
1,3-Dichlorobenzene	4.0	Not Detected	24	Not Detected
1,4-Dichlorobenzene	4.0	Not Detected	24	Not Detected
alpha-Chlorotoluene	4.0	Not Detected	21	Not Detected
1,2-Dichlorobenzene	4.0	Not Detected	24	Not Detected
1,2,4-Trichlorobenzene	16	Not Detected	120	Not Detected
Hexachlorobutadiene	16	Not Detected	170	Not Detected
1,1-Difluoroethane	16	Not Detected	44	Not Detected

		Method
Surrogates	%Recovery	Limits
Toluene-d8	100	70-130
1,2-Dichloroethane-d4	102	70-130
4-Bromofluorobenzene	106	70-130

Client Sample ID: SG-5 Lab ID#: 1107239A-11A

EPA METHOD TO-15 GC/MS FULL SCAN

 File Name:
 p072118
 Date of Collection: 7/14/11 2:45:00 PM

 Dil. Factor:
 9.71
 Date of Analysis: 7/21/11 05:00 PM

DII. Factor:	9.71 Date of Analysis: 7/21/11 05:00			/11 U5:UU PIVI
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	4.8	Not Detected	24	Not Detected
Freon 114	4.8	Not Detected	34	Not Detected
Chloromethane	19	Not Detected	40	Not Detected
Vinyl Chloride	4.8	Not Detected	12	Not Detected
1,3-Butadiene	4.8	Not Detected	11	Not Detected
Bromomethane	4.8	Not Detected	19	Not Detected
Chloroethane	19	Not Detected	51	Not Detected
Freon 11	4.8	Not Detected	27	Not Detected
Ethanol	19	Not Detected	36	Not Detected
Freon 113	4.8	Not Detected	37	Not Detected
1,1-Dichloroethene	4.8	Not Detected	19	Not Detected
Acetone	19	Not Detected	46	Not Detected
2-Propanol	19	Not Detected	48	Not Detected
Carbon Disulfide	19	45	60	140
3-Chloropropene	19	Not Detected	61	Not Detected
Methylene Chloride	4.8	Not Detected	17	Not Detected
Methyl tert-butyl ether	4.8	5.5	18	20
trans-1,2-Dichloroethene	4.8	Not Detected	19	Not Detected
Hexane	4.8	22	17	78
1,1-Dichloroethane	4.8	Not Detected	20	Not Detected
2-Butanone (Methyl Ethyl Ketone)	19	Not Detected	57	Not Detected
cis-1,2-Dichloroethene	4.8	Not Detected	19	Not Detected
Tetrahydrofuran	4.8	Not Detected	14	Not Detected
Chloroform	4.8	Not Detected	24	Not Detected
1,1,1-Trichloroethane	4.8	Not Detected	26	Not Detected
Cyclohexane	4.8	1100	17	3800
Carbon Tetrachloride	4.8	Not Detected	30	Not Detected
2,2,4-Trimethylpentane	4.8	3000 E	23	14000 E
Benzene	4.8	5.8	16	18
1,2-Dichloroethane	4.8	Not Detected	20	Not Detected
Heptane	4.8	Not Detected	20	Not Detected
Trichloroethene	4.8	Not Detected	26	Not Detected
1,2-Dichloropropane	4.8	Not Detected	22	Not Detected
1,4-Dioxane	19	Not Detected	70	Not Detected
Bromodichloromethane	4.8	Not Detected	32	Not Detected
cis-1,3-Dichloropropene	4.8	Not Detected	22	Not Detected
4-Methyl-2-pentanone	4.8	Not Detected	20	Not Detected
Toluene	4.8	Not Detected	18	Not Detected
trans-1,3-Dichloropropene	4.8	Not Detected	22	Not Detected
1,1,2-Trichloroethane	4.8	Not Detected	26	Not Detected
Tetrachloroethene	4.8	Not Detected	33	Not Detected

Client Sample ID: SG-5 Lab ID#: 1107239A-11A

EPA METHOD TO-15 GC/MS FULL SCAN

 File Name:
 p072118
 Date of Collection: 7/14/11 2:45:00 PM

 Dil. Factor:
 9.71
 Date of Analysis: 7/21/11 05:00 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
2-Hexanone	19	Not Detected	80	Not Detected
Dibromochloromethane	4.8	Not Detected	41	Not Detected
1,2-Dibromoethane (EDB)	4.8	Not Detected	37	Not Detected
Chlorobenzene	4.8	Not Detected	22	Not Detected
Ethyl Benzene	4.8	Not Detected	21	Not Detected
m,p-Xylene	4.8	Not Detected	21	Not Detected
o-Xylene	4.8	Not Detected	21	Not Detected
Styrene	4.8	Not Detected	21	Not Detected
Bromoform	4.8	Not Detected	50	Not Detected
Cumene	4.8	Not Detected	24	Not Detected
1,1,2,2-Tetrachloroethane	4.8	Not Detected	33	Not Detected
Propylbenzene	4.8	Not Detected	24	Not Detected
4-Ethyltoluene	4.8	Not Detected	24	Not Detected
1,3,5-Trimethylbenzene	4.8	Not Detected	24	Not Detected
1,2,4-Trimethylbenzene	4.8	Not Detected	24	Not Detected
1,3-Dichlorobenzene	4.8	Not Detected	29	Not Detected
1,4-Dichlorobenzene	4.8	Not Detected	29	Not Detected
alpha-Chlorotoluene	4.8	Not Detected	25	Not Detected
1,2-Dichlorobenzene	4.8	Not Detected	29	Not Detected
1,2,4-Trichlorobenzene	19	Not Detected	140	Not Detected
Hexachlorobutadiene	19	Not Detected	210	Not Detected
1,1-Difluoroethane	19	Not Detected	52	Not Detected

E = Exceeds instrument calibration range.

		Method	
Surrogates	%Recovery	Limits	
Toluene-d8	95	70-130	
1,2-Dichloroethane-d4	120	70-130	
4-Bromofluorobenzene	102	70-130	

Client Sample ID: SG-6 Lab ID#: 1107239A-12A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: p072119 Date of Collection: 7/14/11 2:25:00 PM
Dil. Factor: 9.92 Date of Analysis: 7/21/11 05:52 PM

DII. Factor:	9.92 Date of Analysis: 7/21/11 05:52 PN			/11 U5:52 PW
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	5.0	Not Detected	24	Not Detected
Freon 114	5.0	Not Detected	35	Not Detected
Chloromethane	20	Not Detected	41	Not Detected
Vinyl Chloride	5.0	Not Detected	13	Not Detected
1,3-Butadiene	5.0	Not Detected	11	Not Detected
Bromomethane	5.0	Not Detected	19	Not Detected
Chloroethane	20	Not Detected	52	Not Detected
Freon 11	5.0	Not Detected	28	Not Detected
Ethanol	20	Not Detected	37	Not Detected
Freon 113	5.0	Not Detected	38	Not Detected
1,1-Dichloroethene	5.0	Not Detected	20	Not Detected
Acetone	20	Not Detected	47	Not Detected
2-Propanol	20	Not Detected	49	Not Detected
Carbon Disulfide	20	Not Detected	62	Not Detected
3-Chloropropene	20	Not Detected	62	Not Detected
Methylene Chloride	5.0	Not Detected	17	Not Detected
Methyl tert-butyl ether	5.0	Not Detected	18	Not Detected
trans-1,2-Dichloroethene	5.0	Not Detected	20	Not Detected
Hexane	5.0	Not Detected	17	Not Detected
1,1-Dichloroethane	5.0	Not Detected	20	Not Detected
2-Butanone (Methyl Ethyl Ketone)	20	Not Detected	58	Not Detected
cis-1,2-Dichloroethene	5.0	Not Detected	20	Not Detected
Tetrahydrofuran	5.0	Not Detected	15	Not Detected
Chloroform	5.0	Not Detected	24	Not Detected
1,1,1-Trichloroethane	5.0	Not Detected	27	Not Detected
Cyclohexane	5.0	9.0	17	31
Carbon Tetrachloride	5.0	Not Detected	31	Not Detected
2,2,4-Trimethylpentane	5.0	26	23	120
Benzene	5.0	Not Detected	16	Not Detected
1,2-Dichloroethane	5.0	Not Detected	20	Not Detected
Heptane	5.0	Not Detected	20	Not Detected
Trichloroethene	5.0	Not Detected	27	Not Detected
1,2-Dichloropropane	5.0	Not Detected	23	Not Detected
1,4-Dioxane	20	Not Detected	71	Not Detected
Bromodichloromethane	5.0	Not Detected	33	Not Detected
cis-1,3-Dichloropropene	5.0	Not Detected	22	Not Detected
4-Methyl-2-pentanone	5.0	Not Detected	20	Not Detected
Toluene	5.0	Not Detected	19	Not Detected
trans-1,3-Dichloropropene	5.0	Not Detected	22	Not Detected
1,1,2-Trichloroethane	5.0	Not Detected	27	Not Detected
Tetrachloroethene	5.0	Not Detected	34	Not Detected

Client Sample ID: SG-6 Lab ID#: 1107239A-12A

EPA METHOD TO-15 GC/MS FULL SCAN

 File Name:
 p072119
 Date of Collection: 7/14/11 2:25:00 PM

 Dil. Factor:
 9.92
 Date of Analysis: 7/21/11 05:52 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
2-Hexanone	20	Not Detected	81	Not Detected
Dibromochloromethane	5.0	Not Detected	42	Not Detected
1,2-Dibromoethane (EDB)	5.0	Not Detected	38	Not Detected
Chlorobenzene	5.0	Not Detected	23	Not Detected
Ethyl Benzene	5.0	Not Detected	22	Not Detected
m,p-Xylene	5.0	Not Detected	22	Not Detected
o-Xylene	5.0	Not Detected	22	Not Detected
Styrene	5.0	Not Detected	21	Not Detected
Bromoform	5.0	Not Detected	51	Not Detected
Cumene	5.0	Not Detected	24	Not Detected
1,1,2,2-Tetrachloroethane	5.0	Not Detected	34	Not Detected
Propylbenzene	5.0	Not Detected	24	Not Detected
4-Ethyltoluene	5.0	Not Detected	24	Not Detected
1,3,5-Trimethylbenzene	5.0	Not Detected	24	Not Detected
1,2,4-Trimethylbenzene	5.0	Not Detected	24	Not Detected
1,3-Dichlorobenzene	5.0	Not Detected	30	Not Detected
1,4-Dichlorobenzene	5.0	Not Detected	30	Not Detected
alpha-Chlorotoluene	5.0	Not Detected	26	Not Detected
1,2-Dichlorobenzene	5.0	Not Detected	30	Not Detected
1,2,4-Trichlorobenzene	20	Not Detected	150	Not Detected
Hexachlorobutadiene	20	Not Detected	210	Not Detected
1,1-Difluoroethane	20	Not Detected	54	Not Detected

•		Method
Surrogates	%Recovery	Limits
Toluene-d8	108	70-130
1,2-Dichloroethane-d4	100	70-130
4-Bromofluorobenzene	107	70-130

Client Sample ID: Lab Blank Lab ID#: 1107239A-13A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: p072107a Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 7/21/11 09:55 AM

Dil. Factor:	1.00	Date of Analysis: 7/21/11 09:5		/11 09:55 AM
	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Freon 12	0.50	Not Detected	2.5	Not Detected
Freon 114	0.50	Not Detected	3.5	Not Detected
Chloromethane	2.0	Not Detected	4.1	Not Detected
Vinyl Chloride	0.50	Not Detected	1.3	Not Detected
1,3-Butadiene	0.50	Not Detected	1.1	Not Detected
Bromomethane	0.50	Not Detected	1.9	Not Detected
Chloroethane	2.0	Not Detected	5.3	Not Detected
Freon 11	0.50	Not Detected	2.8	Not Detected
Ethanol	2.0	Not Detected	3.8	Not Detected
Freon 113	0.50	Not Detected	3.8	Not Detected
1,1-Dichloroethene	0.50	Not Detected	2.0	Not Detected
Acetone	2.0	Not Detected	4.8	Not Detected
2-Propanol	2.0	Not Detected	4.9	Not Detected
Carbon Disulfide	2.0	Not Detected	6.2	Not Detected
3-Chloropropene	2.0	Not Detected	6.3	Not Detected
Methylene Chloride	0.50	Not Detected	1.7	Not Detected
Methyl tert-butyl ether	0.50	Not Detected	1.8	Not Detected
trans-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected
Hexane	0.50	Not Detected	1.8	Not Detected
1,1-Dichloroethane	0.50	Not Detected	2.0	Not Detected
2-Butanone (Methyl Ethyl Ketone)	2.0	Not Detected	5.9	Not Detected
cis-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected
Tetrahydrofuran	0.50	Not Detected	1.5	Not Detected
Chloroform	0.50	Not Detected	2.4	Not Detected
1,1,1-Trichloroethane	0.50	Not Detected	2.7	Not Detected
Cyclohexane	0.50	Not Detected	1.7	Not Detected
Carbon Tetrachloride	0.50	Not Detected	3.1	Not Detected
2,2,4-Trimethylpentane	0.50	Not Detected	2.3	Not Detected
Benzene	0.50	Not Detected	1.6	Not Detected
1,2-Dichloroethane	0.50	Not Detected	2.0	Not Detected
Heptane	0.50	Not Detected	2.0	Not Detected
Trichloroethene	0.50	Not Detected	2.7	Not Detected
1,2-Dichloropropane	0.50	Not Detected	2.3	Not Detected
1,4-Dioxane	2.0	Not Detected	7.2	Not Detected
Bromodichloromethane	0.50	Not Detected	3.4	Not Detected
cis-1,3-Dichloropropene	0.50	Not Detected	2.3	Not Detected
4-Methyl-2-pentanone	0.50	Not Detected	2.0	Not Detected
Toluene	0.50	Not Detected	1.9	Not Detected
trans-1,3-Dichloropropene	0.50	Not Detected	2.3	Not Detected
1,1,2-Trichloroethane	0.50	Not Detected	2.7	Not Detected
Tetrachloroethene	0.50	Not Detected	3.4	Not Detected

Client Sample ID: Lab Blank Lab ID#: 1107239A-13A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: p072107a Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 7/21/11 09:55 AM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
2-Hexanone	2.0	Not Detected	8.2	Not Detected
		Not Detected	-	Not Detected
Dibromochloromethane	0.50		4.2	
1,2-Dibromoethane (EDB)	0.50	Not Detected	3.8	Not Detected
Chlorobenzene	0.50	Not Detected	2.3	Not Detected
Ethyl Benzene	0.50	Not Detected	2.2	Not Detected
m,p-Xylene	0.50	Not Detected	2.2	Not Detected
o-Xylene	0.50	Not Detected	2.2	Not Detected
Styrene	0.50	Not Detected	2.1	Not Detected
Bromoform	0.50	Not Detected	5.2	Not Detected
Cumene	0.50	Not Detected	2.4	Not Detected
1,1,2,2-Tetrachloroethane	0.50	Not Detected	3.4	Not Detected
Propylbenzene	0.50	Not Detected	2.4	Not Detected
4-Ethyltoluene	0.50	Not Detected	2.4	Not Detected
1,3,5-Trimethylbenzene	0.50	Not Detected	2.4	Not Detected
1,2,4-Trimethylbenzene	0.50	Not Detected	2.4	Not Detected
1,3-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
1,4-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
alpha-Chlorotoluene	0.50	Not Detected	2.6	Not Detected
1,2-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
1,2,4-Trichlorobenzene	2.0	Not Detected	15	Not Detected
Hexachlorobutadiene	2.0	Not Detected	21	Not Detected
1,1-Difluoroethane	2.0	Not Detected	5.4	Not Detected

Container Type: NA - Not Applicable

		Method	
Surrogates	%Recovery	Limits	
Toluene-d8	98	70-130	
1,2-Dichloroethane-d4	94	70-130	
4-Bromofluorobenzene	102	70-130	

Client Sample ID: CCV Lab ID#: 1107239A-14A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: p072102 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 7/21/11 06:57 AM

Compound	%Recovery
Freon 12	97
Freon 114	92
Chloromethane	84
Vinyl Chloride	85
1,3-Butadiene	82
Bromomethane	93
Chloroethane	83
Freon 11	99
Ethanol	85
Freon 113	91
1,1-Dichloroethene	90
Acetone	83
2-Propanol	84
Carbon Disulfide	83
3-Chloropropene	87
Methylene Chloride	85
Methyl tert-butyl ether	88
rans-1,2-Dichloroethene	90
Hexane	85
1,1-Dichloroethane	87
2-Butanone (Methyl Ethyl Ketone)	89
cis-1,2-Dichloroethene	86
Tetrahydrofuran	81
Chloroform	93
1,1,1-Trichloroethane	102
Cyclohexane	91
Carbon Tetrachloride	101
2,2,4-Trimethylpentane	88
Benzene	94
1,2-Dichloroethane	102
Heptane	96
Trichloroethene	96
1,2-Dichloropropane	91
1,4-Dioxane	96
Bromodichloromethane	102
cis-1,3-Dichloropropene	96
1-Methyl-2-pentanone	94
Toluene	97
rans-1,3-Dichloropropene	100
I,1,2-Trichloroethane	98
Tetrachloroethene	97

Client Sample ID: CCV Lab ID#: 1107239A-14A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: p072102 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 7/21/11 06:57 AM

Compound	%Recovery
2-Hexanone	93
Dibromochloromethane	104
1,2-Dibromoethane (EDB)	99
Chlorobenzene	97
Ethyl Benzene	100
m,p-Xylene	103
o-Xylene	103
Styrene	104
Bromoform	108
Cumene	108
1,1,2,2-Tetrachloroethane	96
Propylbenzene	107
4-Ethyltoluene	104
1,3,5-Trimethylbenzene	105
1,2,4-Trimethylbenzene	109
1,3-Dichlorobenzene	97
1,4-Dichlorobenzene	98
alpha-Chlorotoluene	111
1,2-Dichlorobenzene	98
1,2,4-Trichlorobenzene	95
Hexachlorobutadiene	102
1,1-Difluoroethane	72

Container Type: NA - Not Applicable

		Wethod	
Surrogates	%Recovery	Limits	
Toluene-d8	103	70-130	
1,2-Dichloroethane-d4	101	70-130	
4-Bromofluorobenzene	108	70-130	

Client Sample ID: LCS Lab ID#: 1107239A-15A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: p072103 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 7/21/11 07:45 AM

Compound	%Recovery
reon 12	88
Freon 114	84
Chloromethane	87
/inyl Chloride	80
,3-Butadiene	78
Bromomethane	87
Chloroethane	80
Freon 11	89
Ethanol	80
Freon 113	83
,1-Dichloroethene	90
Acetone	76
2-Propanol	77
Carbon Disulfide	94
3-Chloropropene	93
Methylene Chloride	76
Methyl tert-butyl ether	84
rans-1,2-Dichloroethene	92
Hexane	79
,1-Dichloroethane	79
2-Butanone (Methyl Ethyl Ketone)	84
sis-1,2-Dichloroethene	80
- Tetrahydrofuran	72
Chloroform	84
,1,1-Trichloroethane	91
Cyclohexane	85
Carbon Tetrachloride	90
2,2,4-Trimethylpentane	79
Benzene	88
,2-Dichloroethane	91
Heptane	85
richloroethene	108
,2-Dichloropropane	84
,4-Dioxane	84
Bromodichloromethane	92
sis-1,3-Dichloropropene	88
I-Methyl-2-pentanone	85
oluene	87
rans-1,3-Dichloropropene	94
,1,2-Trichloroethane	92
etrachloroethene	90

Client Sample ID: LCS Lab ID#: 1107239A-15A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: p072103 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 7/21/11 07:45 AM

Compound	%Recovery
2-Hexanone	88
Dibromochloromethane	94
1,2-Dibromoethane (EDB)	92
Chlorobenzene	93
Ethyl Benzene	94
m,p-Xylene	97
o-Xylene	98
Styrene	98
Bromoform	96
Cumene	101
1,1,2,2-Tetrachloroethane	71
Propylbenzene	100
4-Ethyltoluene	96
1,3,5-Trimethylbenzene	98
1,2,4-Trimethylbenzene	100
1,3-Dichlorobenzene	93
1,4-Dichlorobenzene	92
alpha-Chlorotoluene	98
1,2-Dichlorobenzene	94
1,2,4-Trichlorobenzene	96
Hexachlorobutadiene	96
1,1-Difluoroethane	Not Spiked

Container Type: NA - Not Applicable

No. of the control of		Method
Surrogates	%Recovery	Limits
Toluene-d8	100	70-130
1,2-Dichloroethane-d4	97	70-130
4-Bromofluorobenzene	107	70-130

Client Sample ID: LCSD Lab ID#: 1107239A-15AA

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: p072104 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 7/21/11 08:20 AM

Compound	%Recovery
Freon 12	87
Freon 114	85
Chloromethane	86
Vinyl Chloride	81
1,3-Butadiene	77
Bromomethane	88
Chloroethane	81
Freon 11	88
Ethanol	72
Freon 113	84
1,1-Dichloroethene	89
Acetone	75
2-Propanol	77
Carbon Disulfide	95
3-Chloropropene	94
Methylene Chloride	76
Methyl tert-butyl ether	84
rans-1,2-Dichloroethene	93
Hexane	78
1,1-Dichloroethane	79
2-Butanone (Methyl Ethyl Ketone)	83
cis-1,2-Dichloroethene	81
Tetrahydrofuran	72
Chloroform	85
1,1,1-Trichloroethane	92
Cyclohexane	84
Carbon Tetrachloride	89
2,2,4-Trimethylpentane	80
Benzene	85
1,2-Dichloroethane	89
Heptane	86
Trichloroethene	107
1,2-Dichloropropane	83
1,4-Dioxane	84
Bromodichloromethane	89
cis-1,3-Dichloropropene	86
4-Methyl-2-pentanone	85
Toluene	86
rans-1,3-Dichloropropene	91
1,1,2-Trichloroethane	89
Tetrachloroethene	88

Client Sample ID: LCSD Lab ID#: 1107239A-15AA

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: p072104 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 7/21/11 08:20 AM

Compound	%Recovery
2-Hexanone	85
Dibromochloromethane	91
1,2-Dibromoethane (EDB)	91
Chlorobenzene	89
Ethyl Benzene	91
m,p-Xylene	95
o-Xylene	94
Styrene	95
Bromoform	93
Cumene	99
1,1,2,2-Tetrachloroethane	69 Q
Propylbenzene	97
4-Ethyltoluene	92
1,3,5-Trimethylbenzene	96
1,2,4-Trimethylbenzene	98
1,3-Dichlorobenzene	91
1,4-Dichlorobenzene	89
alpha-Chlorotoluene	95
1,2-Dichlorobenzene	92
1,2,4-Trichlorobenzene	93
Hexachlorobutadiene	94
1,1-Difluoroethane	Not Spiked

Q = Exceeds Quality Control limits.

Container Type: NA - Not Applicable

		Method	
Surrogates	%Recovery	Limits	
Toluene-d8	100	70-130	
1,2-Dichloroethane-d4	96	70-130	
4-Bromofluorobenzene	108	70-130	

7/28/2011 Mr. Morgan Johnson Engeo Inc. 2213 Plaza Dr.

Rocklin CA 95765

Project Name: 1000 N Vasco Rd

Project #: 7380000003 Workorder #: 1107239B

Dear Mr. Morgan Johnson

The following report includes the data for the above referenced project for sample(s) received on 7/15/2011 at Air Toxics Ltd.

The data and associated QC analyzed by Modified TO-17 VI are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Air Toxics Ltd. for your air analysis needs. Air Toxics Ltd. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Kelly Buettner at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Kelly Buettner

Project Manager

Kelly Butte

WORK ORDER #: 1107239B

Work Order Summary

CLIENT: Mr. Morgan Johnson BILL TO: Mr. Morgan Johnson

Engeo Inc. Engeo Inc.
2213 Plaza Dr.
2213 Plaza Dr.
Rocklin, CA 95765 Rocklin, CA 95765

PHONE: 916-786-8883 **P.O.** # 7380000003

FAX: 916-786-7891 PROJECT # 7380000003 1000 N Vasco Rd

DATE RECEIVED: 07/15/2011 **CONTACT:** Kelly Buettner **DATE COMPLETED:** 07/28/2011

FRACTION #	NAME	<u>TEST</u>
13A	SG-12	Modified TO-17 VI
14A	SG-1	Modified TO-17 VI
15A	SG-3 (GO143001)	Modified TO-17 VI
16A	SG-11	Modified TO-17 VI
17A	SG-3 (GO143572)	Modified TO-17 VI
18A	SG-8	Modified TO-17 VI
19A	SG-7	Modified TO-17 VI
20A	SG-10	Modified TO-17 VI
21A	SG-9	Modified TO-17 VI
22A	SG-4	Modified TO-17 VI
23A	SG-5	Modified TO-17 VI
24A	SG-6	Modified TO-17 VI
25A	Lab Blank	Modified TO-17 VI
26A	CCV	Modified TO-17 VI
27A	LCS	Modified TO-17 VI

CERTIFIED BY:

Sinda d. Fruman

DATE: $\frac{07/28/11}{}$

Laboratory Director

Certfication numbers: CA NELAP - 02110CA, LA NELAP/LELAP - AI 30763, NY NELAP - 11291, UT NELAP - 9166389892, AZ Licensure AZ0719

Name of Accrediting Agency: NELAP/Florida Department of Health, Scope of Application: Clean Air Act,

Accreditation number: E87680, Effective date: 07/01/09, Expiration date: 06/30/11

Accreditation number. E8/080, Effective date. 07/01/09, Expiration date. 00/30/11

Air Toxics Ltd. certifies that the test results contained in this report meet all requirements of the NELAC standards

This report shall not be reproduced, except in full, without the written approval of Air Toxics Ltd.

180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 95630 (916) 985-1000 . (800) 985-5955 . FAX (916) 985-1020

LABORATORY NARRATIVE EPA Method TO-17 Engeo Inc. Workorder# 1107239B

Twelve TO-17 VI Tube samples were received on July 15, 2011. The laboratory performed the analysis via EPA Method TO-17 using GC/MS in the full scan mode. TO-17 sorbent tubes are thermally desorbed onto a secondary trap. The trap is thermally desorbed to elute the components into the GC/MS system for further separation.

Receiving Notes

Sample identifications SG-3 (GO143001) and SG-3 (GO143572) on the Chain of Custody (COC) were not unique. Air Toxics Ltd. Sample Acceptance Policy, which is derived from NELAC Section 5.11.2 (b), requires proper sample labeling to ensure unique identification. The client was informed of this violation of policy and instructions were given to continue analysis. Samples were given unique laboratory identification numbers, but the end user will not be able to determine from which of two identically identified containers the reported results were derived.

Analytical Notes

The reported CCV and LCS for each daily batch may be derived from more than one analytical file.

A sampling volume of 0.200 L was used to convert ng to ug/m3 for the associated Lab Blank.

The TPH pattern in sample SG-1 and SG-6 did not resemble that of either diesel fuel nor gasoline. The hydrocarbons were distributed in the heavier carbon range of gasoline and the lighter range of diesel.

Definition of Data Qualifying Flags

Eight qualifiers may have been used on the data analysis sheets and indicates as follows:

- B Compound present in laboratory blank greater than reporting limit (background subtraction not performed).
 - J Estimated value.
 - E Exceeds instrument calibration range.
 - S Saturated peak.
 - Q Exceeds quality control limits.
 - U Compound analyzed for but not detected above the reporting limit.
 - UJ- Non-detected compound associated with low bias in the CCV and/or LCS.
 - N The identification is based on presumptive evidence.

File extensions may have been used on the data analysis sheets and indicates as follows:

a-File was requantified

b-File was quantified by a second column and detector

r1-File was requantified for the purpose of reissue

Summary of Detected Compounds EPA METHOD TO-17

Client Sample ID: SG-12

Lab ID#: 1107239B-13A

No Detections Were Found.

Client Sample ID: SG-1 Lab ID#: 1107239B-14A

Compound	Rpt. Limit (ng)	Rpt. Limit (ug/m3)	Amount (ng)	Amount (ug/m3)	
TPH (Gasoline Range)	1000	5000	4100	21000	
TPH (Diesel Range)	1000	5000	1100	5400	

Client Sample ID: SG-3 (GO143001)

Lab ID#: 1107239B-15A

No Detections Were Found.

Client Sample ID: SG-11

Lab ID#: 1107239B-16A

No Detections Were Found.

Client Sample ID: SG-3 (GO143572)

Lab ID#: 1107239B-17A

No Detections Were Found.

Client Sample ID: SG-8

Lab ID#: 1107239B-18A

No Detections Were Found.

Client Sample ID: SG-7

Lab ID#: 1107239B-19A

No Detections Were Found.

Client Sample ID: SG-10 Lab ID#: 1107239B-20A

Summary of Detected Compounds EPA METHOD TO-17

Client Sample ID: SG-10

Lab ID#: 1107239B-20A

No Detections Were Found.

Client Sample ID: SG-9

Lab ID#: 1107239B-21A

No Detections Were Found.

Client Sample ID: SG-4

Lab ID#: 1107239B-22A

No Detections Were Found.

Client Sample ID: SG-5

Lab ID#: 1107239B-23A

No Detections Were Found.

Client Sample ID: SG-6 Lab ID#: 1107239B-24A

	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ng)	(ug/m3)	(ng)	(ug/m3)
TPH (Gasoline Range)	1000	5000	34000	170000
TPH (Diesel Range)	1000	5000	5200	26000

Client Sample ID: SG-12 Lab ID#: 1107239B-13A EPA METHOD TO-17

File Name:	f071814fs	Date of Extraction: NADate of Collection: 7/13/11 2:03:00 PM
Dil. Factor:	1.00	Date of Analysis: 7/18/11 06:59 PM

	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ng)	(ug/m3)	(ng)	(ug/m3)
TPH (Gasoline Range)	1000	5000	Not Detected	Not Detected
TPH (Diesel Range)	1000	5000	Not Detected	Not Detected

Air Sample Volume(L): 0.200 Container Type: TO-17 VI Tube

		wethod	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	101	50-150	
Toluene-d8	102	50-150	
Naphthalene-d8	108	50-150	

Client Sample ID: SG-1 Lab ID#: 1107239B-14A EPA METHOD TO-17

File Name:	f071815fs	Date of Extraction: NADate of Collection: 7/13/11 2:32:00 PM
Dil. Factor:	1.00	Date of Analysis: 7/18/11 07:39 PM

	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ng)	(ug/m3)	(ng)	(ug/m3)
TPH (Gasoline Range)	1000	5000	4100	21000
TPH (Diesel Range)	1000	5000	1100	5400

Air Sample Volume(L): 0.200 Container Type: TO-17 VI Tube

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	106	50-150	
Toluene-d8	100	50-150	
Naphthalene-d8	104	50-150	

Client Sample ID: SG-3 (GO143001)

Lab ID#: 1107239B-15A

EPA METHOD TO-17

File Name:	f071816fs	Date of Extraction: NADate of Collection: 7/13/11 3:45:00 PM
Dil. Factor:	1.00	Date of Analysis: 7/18/11 08:20 PM

	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ng)	(ug/m3)	(ng)	(ug/m3)
TPH (Gasoline Range)	1000	5000	Not Detected	Not Detected
TPH (Diesel Range)	1000	5000	Not Detected	Not Detected

		Wethod
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	92	50-150
Toluene-d8	92	50-150
Naphthalene-d8	95	50-150

Client Sample ID: SG-11 Lab ID#: 1107239B-16A EPA METHOD TO-17

File Name:	f071817fs	Date of Extraction: NADate of Collection: 7/13/11 5:00:00 PM
Dil. Factor:	1.00	Date of Analysis: 7/18/11 09:00 PM

	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ng)	(ug/m3)	(ng)	(ug/m3)
TPH (Gasoline Range)	1000	5000	Not Detected	Not Detected
TPH (Diesel Range)	1000	5000	Not Detected	Not Detected

		wethod	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	101	50-150	
Toluene-d8	99	50-150	
Naphthalene-d8	104	50-150	

Client Sample ID: SG-3 (GO143572)

Lab ID#: 1107239B-17A EPA METHOD TO-17

File Name:	f071818fs	Date of Extraction: NADate of Collection: 7/13/11 5:45:00 PM
Dil. Factor:	1.00	Date of Analysis: 7/18/11 09:41 PM

	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ng)	(ug/m3)	(ng)	(ug/m3)
TPH (Gasoline Range)	1000	5000	Not Detected	Not Detected
TPH (Diesel Range)	1000	5000	Not Detected	Not Detected

•		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	110	50-150
Toluene-d8	114	50-150
Naphthalene-d8	98	50-150

Client Sample ID: SG-8 Lab ID#: 1107239B-18A EPA METHOD TO-17

File Name:	f071819fs	Date of Extraction: NaDate of Collection: 7/14/11 10:15:00 AM
Dil. Factor:	1.00	Date of Analysis: 7/18/11 10:21 PM

O	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ng)	(ug/m3)	(ng)	(ug/m3)
TPH (Gasoline Range)	1000	5000	Not Detected	Not Detected
TPH (Diesel Range)	1000	5000	Not Detected	Not Detected

Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	114	50-150
Toluene-d8	118	50-150
Naphthalene-d8	106	50-150

Client Sample ID: SG-7 Lab ID#: 1107239B-19A EPA METHOD TO-17

File Name:	f071820fs	Date of Extraction: NaDate of Collection: 7/14/11 11:00:00 AM
Dil. Factor:	1.00	Date of Analysis: 7/18/11 11:01 PM

	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ng)	(ug/m3)	(ng)	(ug/m3)
TPH (Gasoline Range)	1000	5000	Not Detected	Not Detected
TPH (Diesel Range)	1000	5000	Not Detected	Not Detected

		Wethod	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	101	50-150	
Toluene-d8	97	50-150	
Naphthalene-d8	104	50-150	

Client Sample ID: SG-10 Lab ID#: 1107239B-20A EPA METHOD TO-17

File Name:	f071821fs	Date of Extraction: NADate of Collection: 7/14/11 12:30:00 PM
Dil. Factor:	1.00	Date of Analysis: 7/18/11 11:42 PM

	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ng)	(ug/m3)	(ng)	(ug/m3)
TPH (Gasoline Range)	1000	5000	Not Detected	Not Detected
TPH (Diesel Range)	1000	5000	Not Detected	Not Detected

0	0/8	Wethod
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	110	50-150
Toluene-d8	108	50-150
Naphthalene-d8	111	50-150

Client Sample ID: SG-9 Lab ID#: 1107239B-21A EPA METHOD TO-17

File Name:	f071822fs	Date of Extraction: NADate of Collection: 7/14/11 1:05:00 PM
Dil. Factor:	1.00	Date of Analysis: 7/19/11 12:23 AM

	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ng)	(ug/m3)	(ng)	(ug/m3)
TPH (Gasoline Range)	1000	5000	Not Detected	Not Detected
TPH (Diesel Range)	1000	5000	Not Detected	Not Detected

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	95	50-150	
Toluene-d8	94	50-150	
Naphthalene-d8	104	50-150	

Client Sample ID: SG-4 Lab ID#: 1107239B-22A EPA METHOD TO-17

File Name:	f071827fs	Date of Extraction: NADate of Collection: 7/14/11 2:35:00 PM
Dil. Factor:	1.00	Date of Analysis: 7/19/11 07:22 AM

	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ng)	(ug/m3)	(ng)	(ug/m3)
TPH (Gasoline Range)	1000	5000	Not Detected	Not Detected
TPH (Diesel Range)	1000	5000	Not Detected	Not Detected

Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	106	50-150
Toluene-d8	103	50-150
Naphthalene-d8	106	50-150

Client Sample ID: SG-5 Lab ID#: 1107239B-23A EPA METHOD TO-17

File Name:	f071824fs	Date of Extraction: NADate of Collection: 7/14/11 2:45:00 PM
Dil. Factor:	1.00	Date of Analysis: 7/19/11 01:42 AM

	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ng)	(ug/m3)	(ng)	(ug/m3)
TPH (Gasoline Range)	1000	5000	Not Detected	Not Detected
TPH (Diesel Range)	1000	5000	Not Detected	Not Detected

Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	112	50-150
Toluene-d8	112	50-150
Naphthalene-d8	102	50-150

Client Sample ID: SG-6 Lab ID#: 1107239B-24A EPA METHOD TO-17

File Name:	f071828fs	Date of Extraction: NADate of Collection: 7/14/11 2:25:00 PM
Dil. Factor:	1.00	Date of Analysis: 7/19/11 08:03 AM

	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ng)	(ug/m3)	(ng)	(ug/m3)
TPH (Gasoline Range)	1000	5000	34000	170000
TPH (Diesel Range)	1000	5000	5200	26000

Surrogates	%Recovery	Method Limits
Surrogates	/olvecovery	Lillits
1,2-Dichloroethane-d4	115	50-150
Toluene-d8	120	50-150
Naphthalene-d8	100	50-150

Client Sample ID: Lab Blank Lab ID#: 1107239B-25A EPA METHOD TO-17

f071809 Date of Extraction: NADate of Collection: NA

Dil. Factor: 1.00 Date of Analysis: 7/18/11 02:28 PM

	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ng)	(ug/m3)	(ng)	(ug/m3)
TPH (Gasoline Range)	1000	5000	Not Detected	Not Detected
TPH (Diesel Range)	1000	5000	Not Detected	Not Detected

Air Sample Volume(L): 0.200

File Name:

Container Type: NA - Not Applicable

		wethod	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	90	50-150	
Toluene-d8	90	50-150	
Naphthalene-d8	95	50-150	

Client Sample ID: CCV Lab ID#: 1107239B-26A EPA METHOD TO-17

File Name:	f071803	Date of Extraction: NADate of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 7/18/11 10:03 AM

Compound	%Recovery
TPH (Gasoline Range)	71
TPH (Diesel Range)	88

Air Sample Volume(L): 1.00

Container Type: NA - Not Applicable

		Wethod
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	92	50-150
Toluene-d8	92	50-150
Naphthalene-d8	94	70-130

Client Sample ID: LCS Lab ID#: 1107239B-27A EPA METHOD TO-17

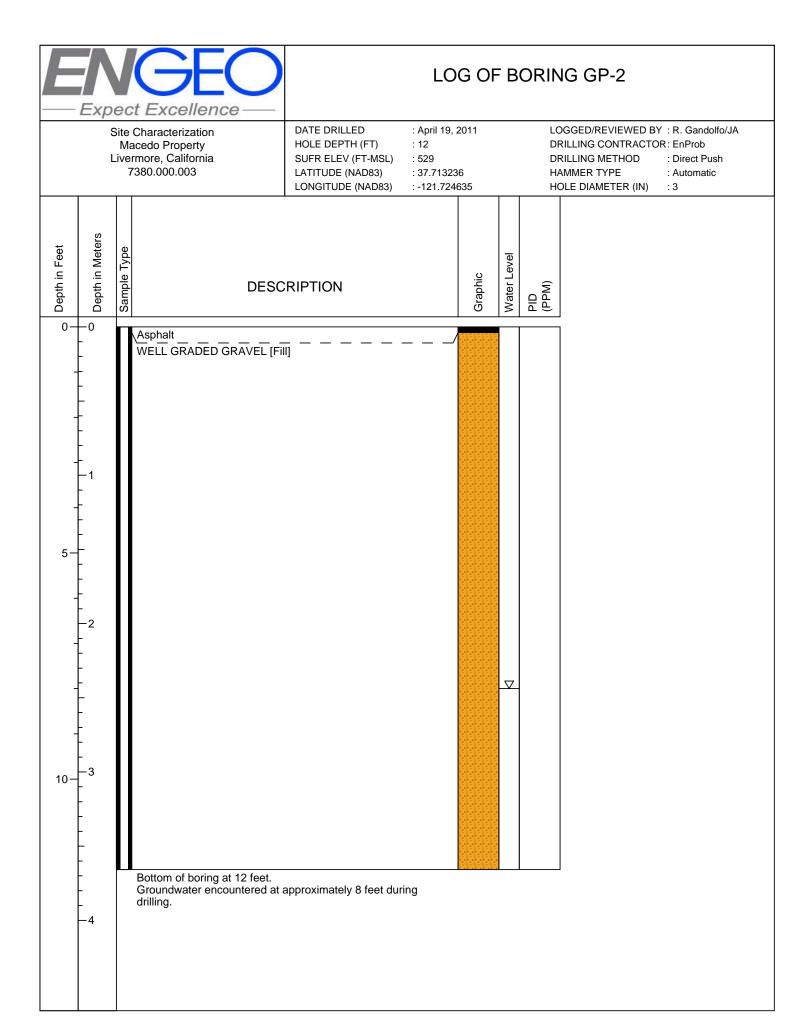
File Name: f071804 Date of Extraction: NADate of Collection: NA

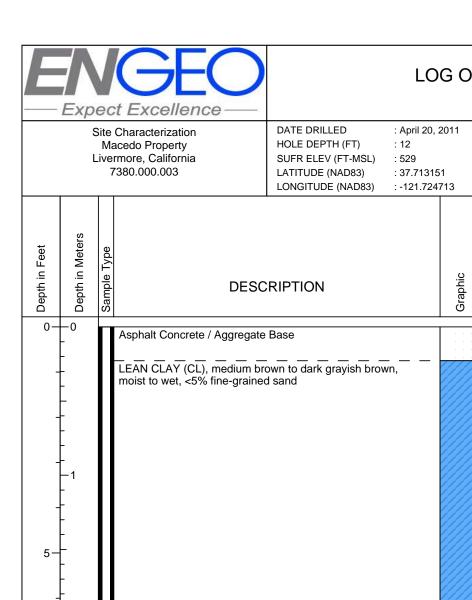
Dil. Factor: 1.00 Date of Analysis: 7/18/11 10:43 AM

Compound%RecoveryTPH (Gasoline Range)Not SpikedTPH (Diesel Range)84

Air Sample Volume(L): 1.00

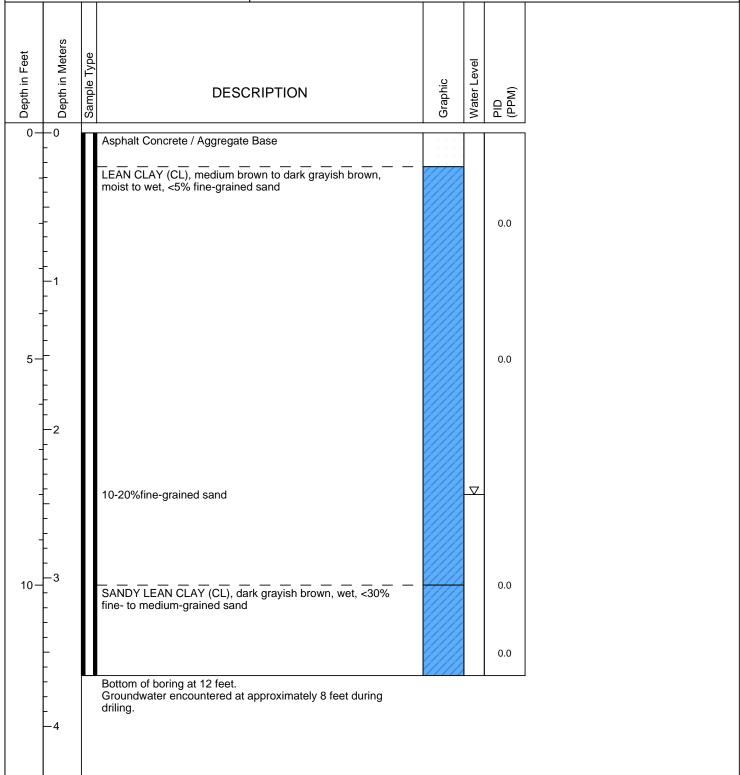
Container Type: NA - Not Applicable

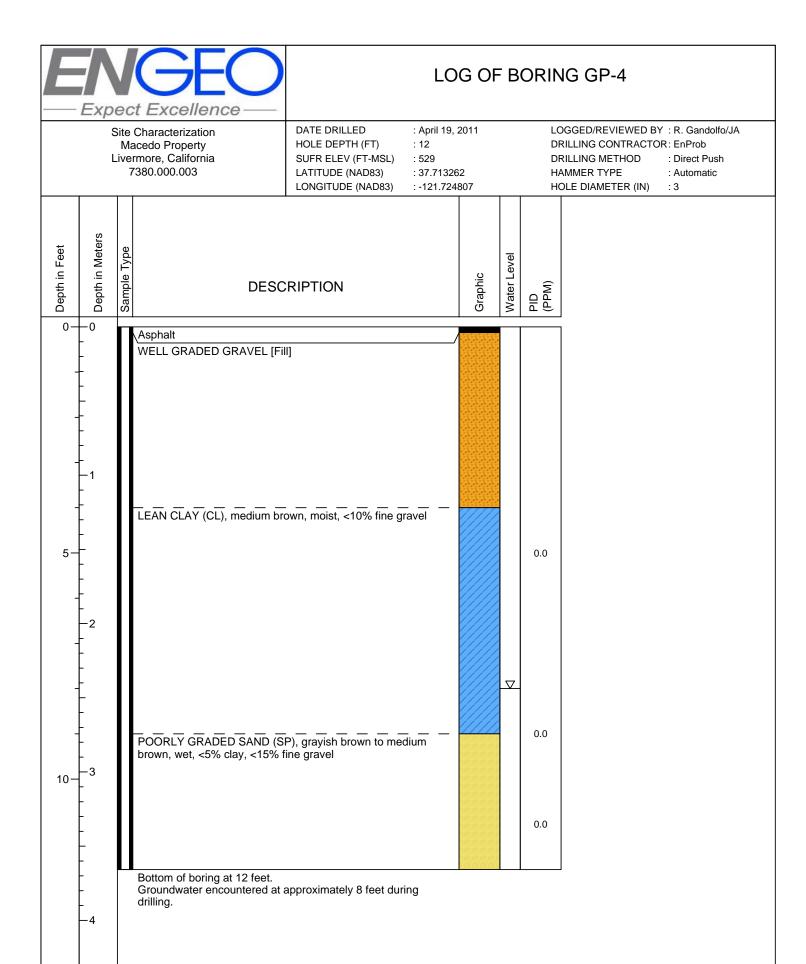

Surrogates	%Recovery	Limits
	·	
1,2-Dichloroethane-d4	94	50-150
Toluene-d8	86	50-150
Naphthalene-d8	96	50-150

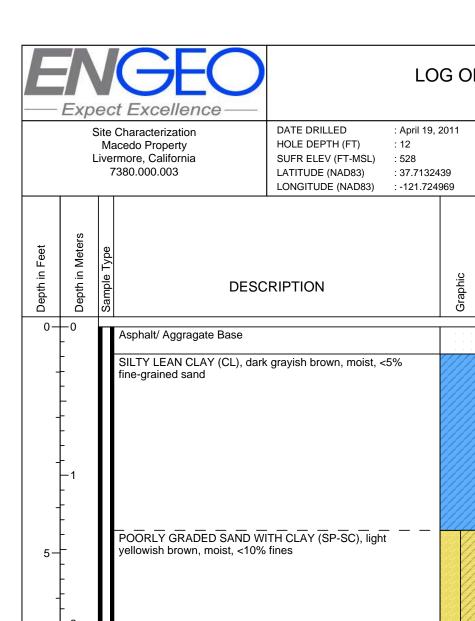


Appendix E

Boring Logs

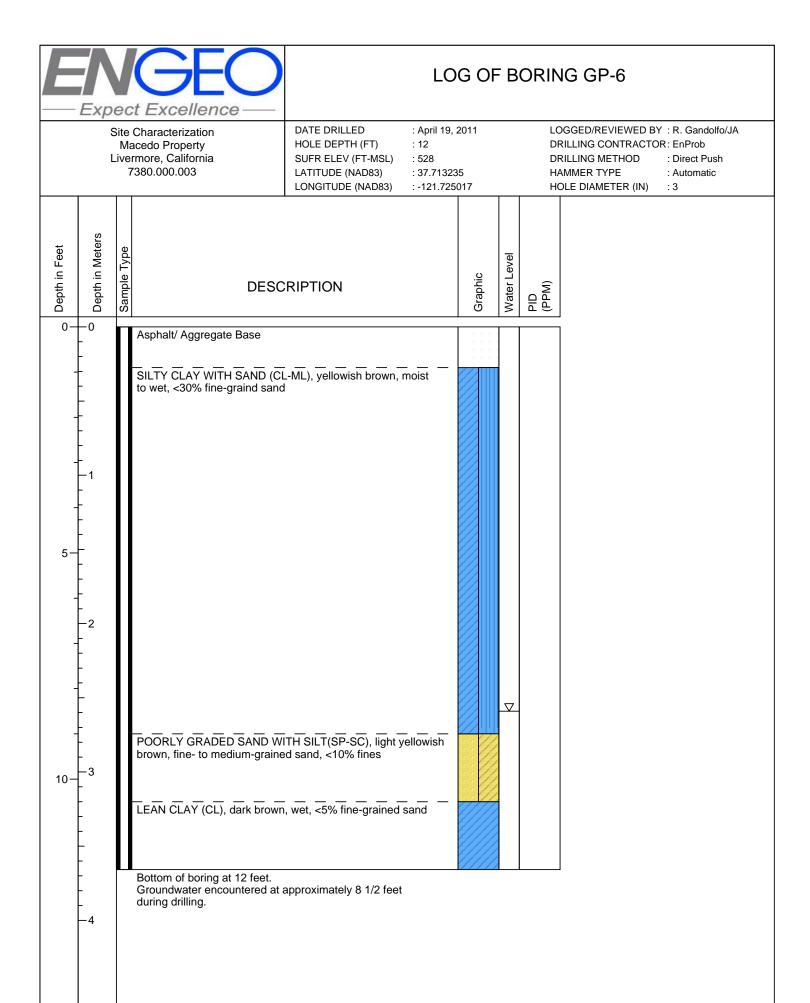


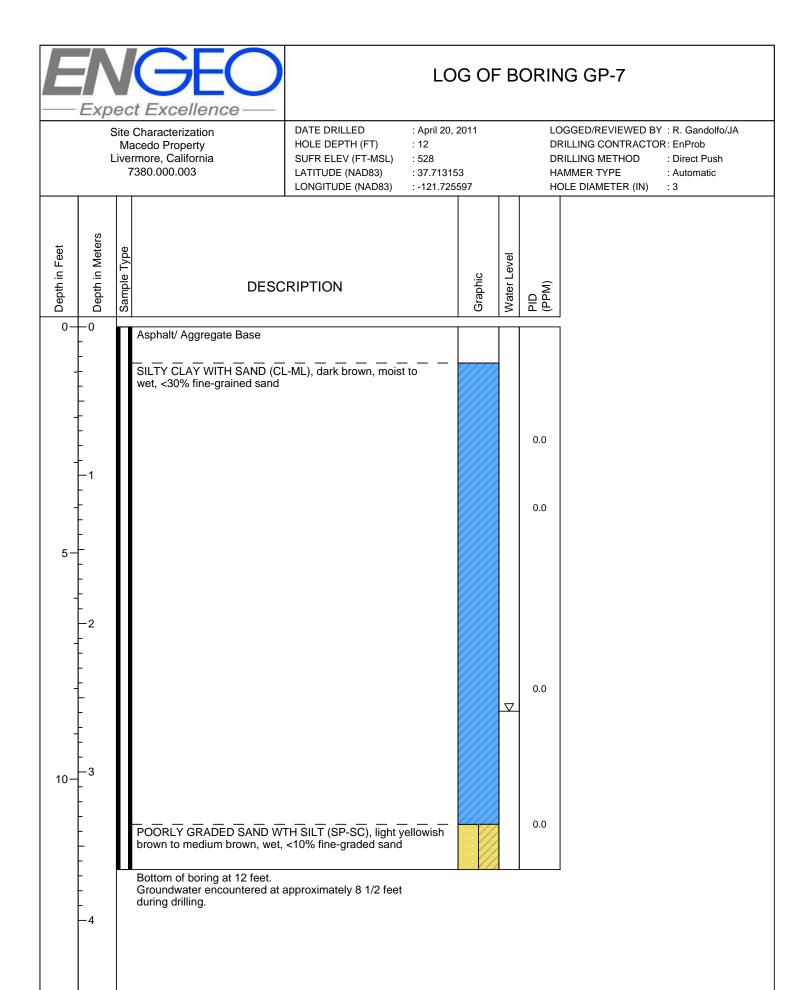


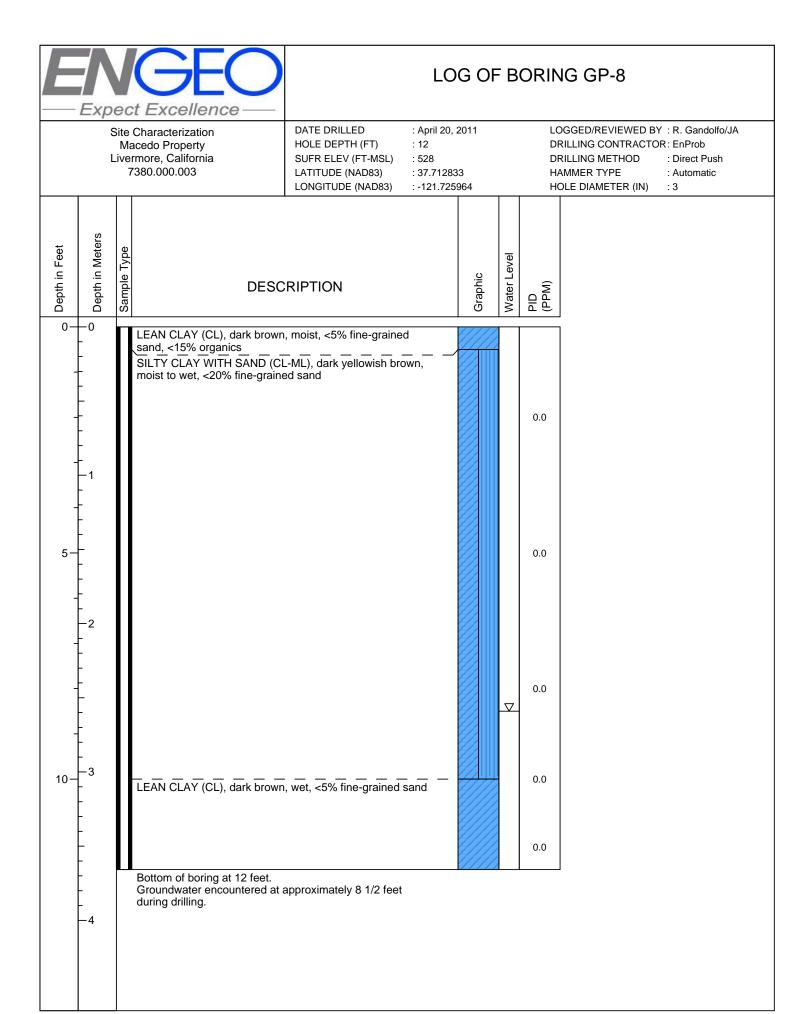

LOG OF BORING GP-3

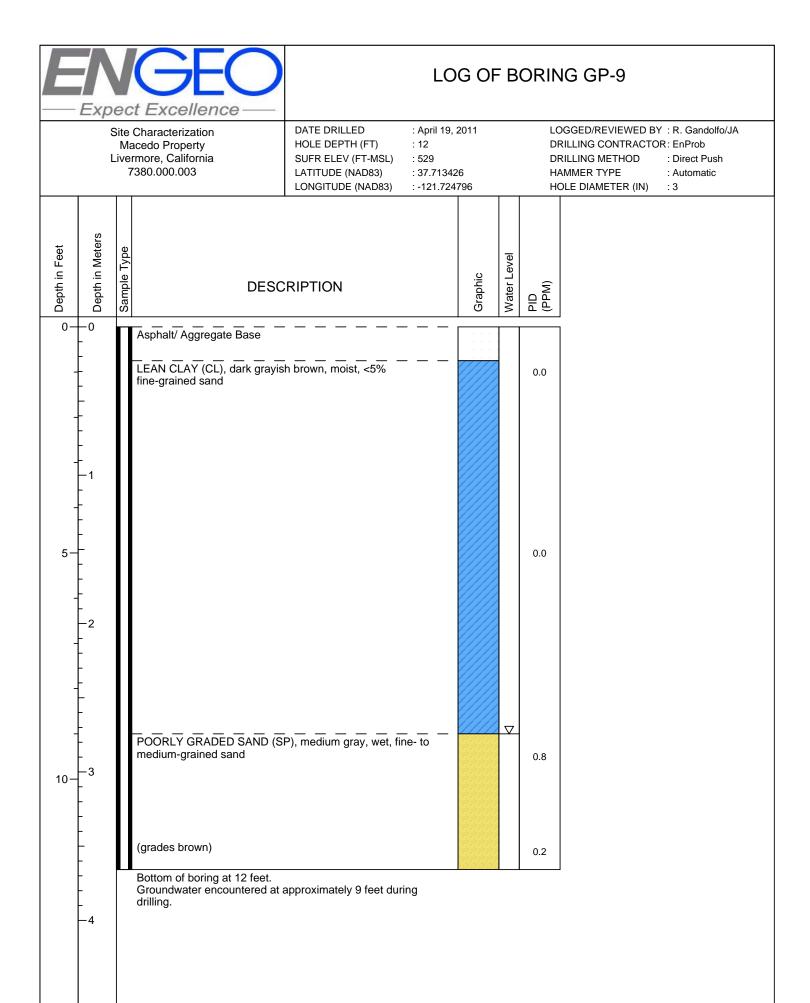
LOGGED/REVIEWED BY: R. Gandolfo/JA DRILLING CONTRACTOR: EnProb DRILLING METHOD : Direct Push HAMMER TYPE : Automatic

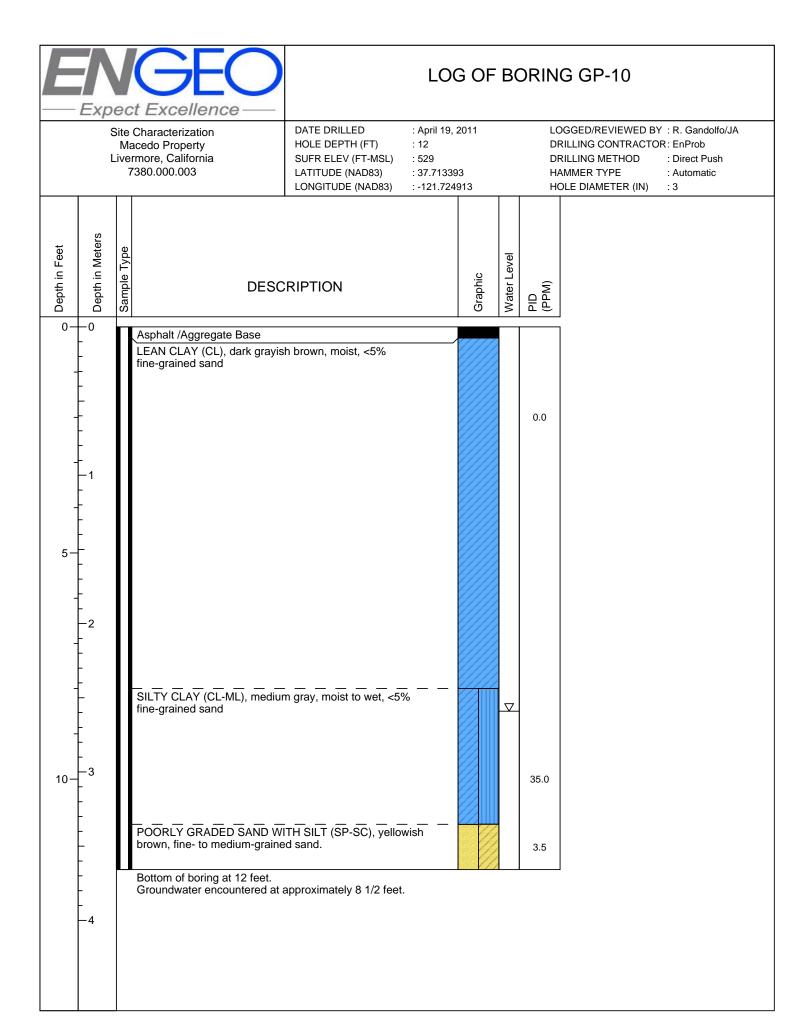
HOLE DIAMETER (IN)

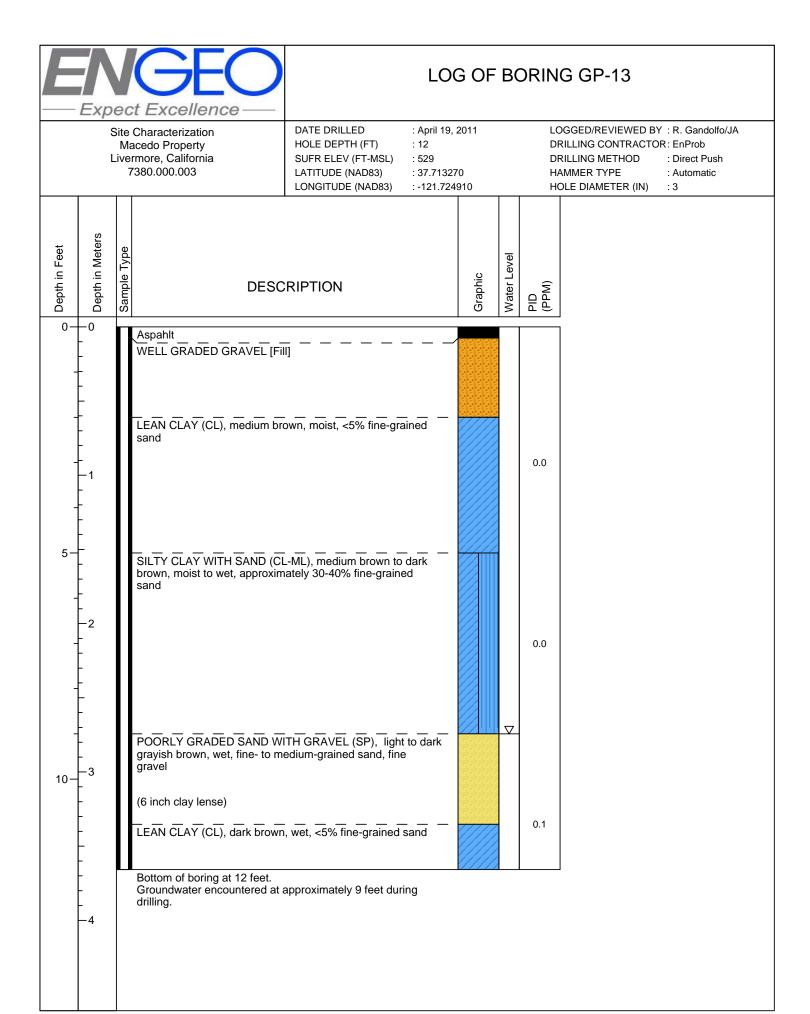


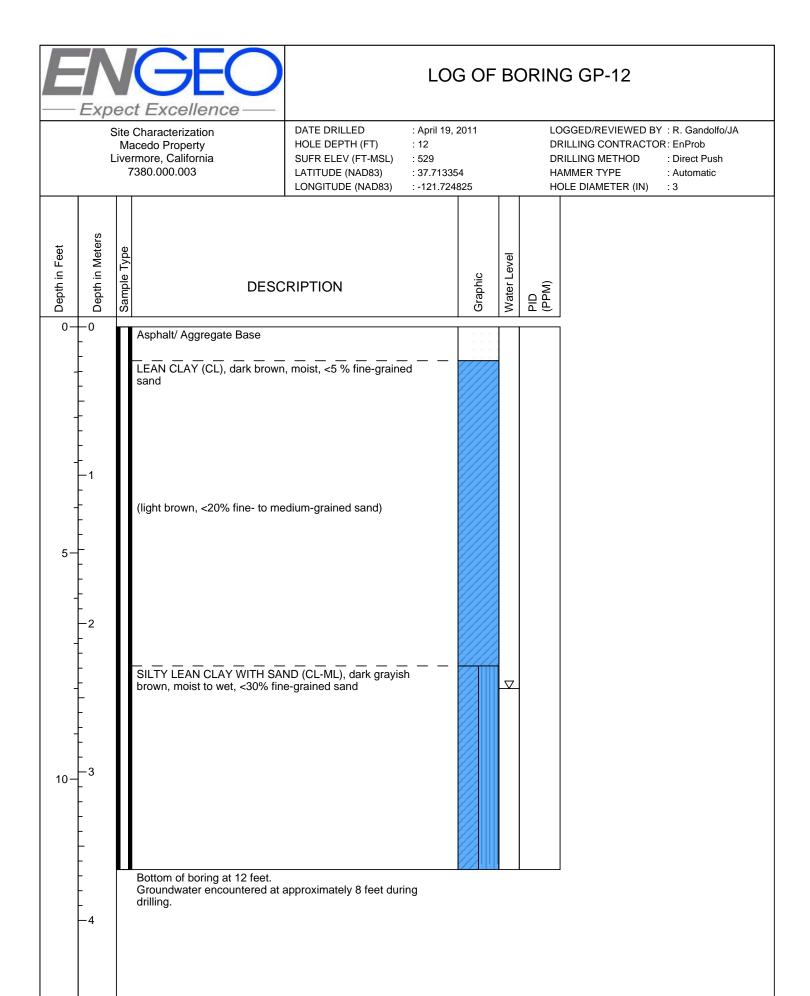

LOG OF BORING GP-5

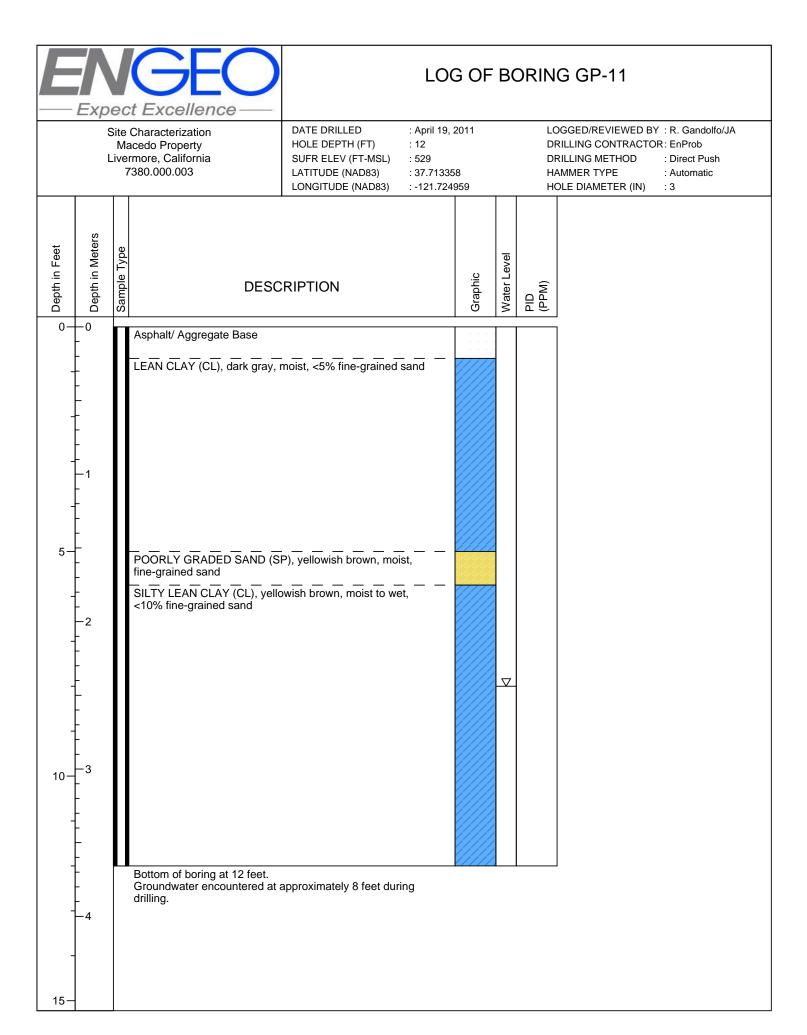

LOGGED/REVIEWED BY: R. Gandolfo/JA DRILLING CONTRACTOR: EnProb DRILLING METHOD : Direct Push HAMMER TYPE : Automatic

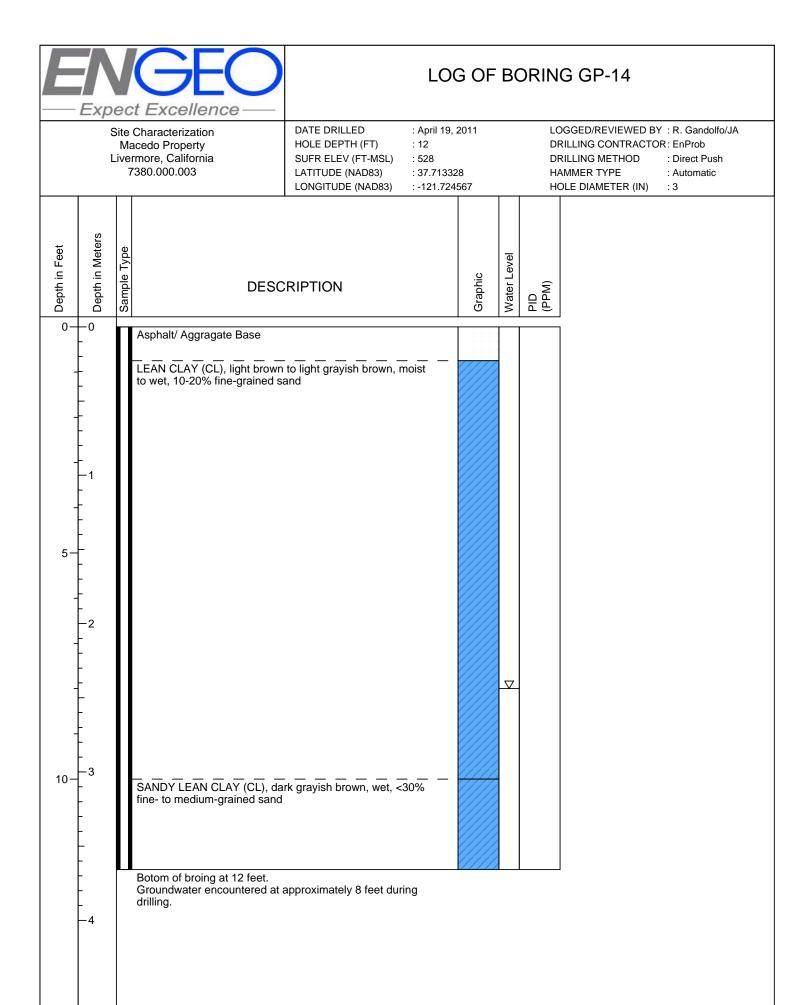

HOLE DIAMETER (IN)


Water Level PID (PPM) 0.0 0.0 -3 10-Bottom of boring at 12 feet. Groundwater not encountered during drilling. -4









Date: 8/15/1)

Subject:

1000 N. Vasco Road, Livermore California

Fuel Leak Case No. RO0003073

PERJURY STATEMENT

"I declare that to the best of my knowledge at the present time, the information and/or recommendations contained in the attached report are true and correct."

Submitted by Responsible Party:

Scott Menard Arbor Development Group 3650 Mt. Diablo Blvd. Suite 200 Lafayette, CA 94549

On behalf of: Eugene and Shirley Macedo Trust c/o Matt Macedo 2995 Taylor Way Byron, CA 94514