

By Alameda County Environmental Health at 3:36 pm, Dec 23, 2013

December 18, 2013

Ms. Karel Detterman Alameda County Health Care Services Agency 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577

Subject: Site Location: 6501 Shattuck Avenue, Oakland, CA

Fuel Leak Case No. RO0003066

Dear Ms. Detterman:

SOMA's "Fourth Quarter 2013 Groundwater Monitoring Report" for the subject site has been uploaded to the State's GeoTracker database and Alameda County's FTP site for your review.

Thank you for your time in reviewing our report. Please do not hesitate to call me at (925) 734-6400, if you have questions or comments.

Sincerely

Mansour Sepehr, Ph.D.,PE Principal Hydrogeologist

cc: Mr. Athan Magganas w/report enclosure

Fourth Quarter 2013 Groundwater Monitoring Report

6501 Shattuck Avenue Oakland, California

December 18, 2013

Project 5031

Prepared for

Bruder LLC 2550 Appian Way,Suite 201 Pinole, California, 94564

PERJURY STATEMENT

Site Location: 6501 Shattuck Avenue, Oakland, California

"I declare under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge".

Athan Magganas

2550 Appian Way, Suite 201

Pinole, California 94564

Q4 2013 Moviforing Report
Dec 18, 2013

CERTIFICATION

SOMA Environmental Engineering, Inc. has prepared this document for Bruder LLC, at the request of Bruder LLC property owner Mr. Athan Magganas, for the property located at 6501 Shattuck Avenue in Oakland, California to comply with requirements of the Alameda County Environmental Health Department (ACEHD) for the Fourth Quarter 2013 groundwater monitoring event.

Mansour Sepehr, PhD, PE Principal Hydrogeologist

TABLE OF CONTENTS

CERTIFICATION	
TABLE OF CONTENTS	ii
LIST OF FIGURES	iii
LIST OF TABLES	iii
LIST OF APPENDICES	iii
INTRODUCTION 1.1 Previous Activities	1 1
1.2 Summary of Field Activities and Laboratory Analysis	2
1.2.2 Laboratory Analysis	2
2. RESULTS	2
2.1 Field Measurements	2
2.2 Laboratory Analysis	
3. CONCLUSIONS AND RECOMMENDATIONS	3
4. REPORT LIMITATIONS	4

LIST OF FIGURES

Figure 1	Site vicinity map
Figure 2	Site map showing excavation extent, locations of former USTs, soil borings, and groundwater monitoring wells
Figure 3	Groundwater elevation contour map in feet, December 4, 2013
Figure 4	Map showing 1,2-DCA concentrations in groundwater, December 4, 2013

LIST OF TABLES

Table 1 Groundwater Analytical Results

LIST OF APPENDICES

Appendix A	Standard Operating Procedures for Conducting Groundwater Monitoring Activities
Appendix B	Tables of Elevations and Coordinates on Wells, Field Measurements of Physical and Chemical Parameters of the Groundwater Samples and Groundwater Gradient Calculations
Appendix C	Laboratory Report and Chain of Custody Form

1. INTRODUCTION

SOMA Environmental Engineering, Inc. (SOMA) has prepared this report on behalf of Bruder LLC property owner, Mr. Athan Magganas, for the site located at 6501 Shattuck Ave., Oakland, California. The site is located at the northwest quadrant of the intersection of Shattuck Avenue and 65th Street near the common municipal limits of Oakland and Berkeley, approximately 3.25 miles north-northeast of the downtown Oakland commercial district. Former underground storage tank (UST) locations and site features are shown in Figure 2.

This report summarizes results of the Fourth Quarter 2013 groundwater monitoring event conducted at the site on December 4, 2013. It includes physical and chemical properties and biodegradation parameters measured in the field for each groundwater sample and laboratory analytical results for groundwater samples.

1.1 Previous Activities

According to the Phase I Environmental Site Assessment Report dated January 26, 2007, prepared for the site by RGA Environmental, the site was redeveloped from a single-family residential property to a service station in 1933. The total period of operation of the service station could not be precisely determined from available historical sources, but based on the City Directory Abstract, the service station appears to have been converted to a repair shop and used car sales facility during the mid-1980s. The facility has operated as East Bay Smog Center and Auto Repair since 2000.

In September 2009, Controlled Environmental Services (CES) obtained permits for removal of six steel USTs located at the subject site. According to the report prepared by CES, dated October 23, 2009, two 1,000-gallon gasoline USTs, three 2,000-gallon gasoline USTs, and one 500-gallon waste oil UST were removed.

In June 2011, SOMA advanced six soil borings, B-4 through B-9, and collected soil and groundwater samples for analysis of TPHs and VOCs. Based on results of soil and groundwater investigation conducted in the vicinity of the former USTs, it was determined that petroleum-hydrocarbon contamination still exists in soil and groundwater beneath the site.

In October 2011, remedial excavation was conducted at the site. A total of 770 tons of PHC-impacted soils were excavated and disposed of off-site at Potrero Hills Landfill. The excavated area was backfilled and compacted with pre-tested clayey backfill material. Confirmation soil sampling indicated that all shallow

residual PHC soil contamination has been removed from the area in the vicinity of former USTs.

1.2 Summary of Field Activities and Laboratory Analysis

1.2.1 Field Activities

On December 4, 2013, three monitoring wells (MW-1, MW-2, and MW-3) were measured for depth to groundwater. Additional field measurements and groundwater samples were collected from all three wells. Properties measured in the field were Dissolved oxygen (DO), pH, temperature, electrical conductivity (EC), turbidity, and oxidation and reduction potential (ORP). This monitoring event was conducted in accordance with procedures and guidelines of Alameda County Environmental Health Department (ACEHD).

To evaluate the state of biodegradation processes in the subsurface, biodegradation parameters such as dissolved oxygen (DO), turbidity, and oxidation reduction potential (ORP) were measured.

Figure 2 shows well locations. Appendix A details groundwater monitoring procedures followed during this event.

Purged groundwater was temporarily stored on-site in a 55-gallon drum.

1.2.2 Laboratory Analysis

Curtis and Tompkins Laboratories, a California state-certified laboratory, analyzed groundwater samples for the following: TPH-g, TPH as diesel (TPH-d), and TPH as motor Oil (TPH-mo); Full list of VOCs by EPA Method 8260 (including BTEX (benzene, toluene, ethylbenzene, and total xylenes), and MtBE). TPH-g, TPH-d, and TPH-mo were analyzed using EPA Method 8015B.

2. RESULTS

Results of field measurements and laboratory analyses for the groundwater monitoring event conducted on December 4, 2013 follow below.

2.1 Field Measurements

Monitoring wells MW-1 through MW-3 were measured for depth to groundwater (Table 1). Depths ranged from 5.79 feet in MW-1 to 6.95 feet in MW-2. Groundwater elevations ranged from 122.91 feet in MW-1 to 125.11 feet in MW-3.

Figure 3 displays the groundwater elevation contour map. The groundwater flow direction is southwesterly at a gradient of approximately 0.025 feet/feet. Since the previous monitoring event (Third Quarter 2013), groundwater flow direction has remained southwesterly and the gradient has increased slightly. Appendix B shows field measurements, biodegradation parameter measurements and gradient calculations.

The more positive the redox potential of an electron acceptor, the more energetically favorable is the reaction utilizing that electron acceptor. The most energetically preferred electron acceptor for redox reactions is DO. Negative redox potentials indicate that contaminants in the groundwater are conducive to anaerobic biodegradation. Positive redox potentials are more energetically favorable in utilizing electron acceptors during chemical reactions. This promotes the removal of organic mass from the contaminated groundwater by indigenous bacteria in the subsurface during the release of the transfer of electrons. Evaluating the distribution of electron acceptors can provide evidence of where, and to what extent, hydrocarbon biodegradation is occurring.

Once stabilization of the existing aquifer was achieved, upon terminating the purge cycle at each well, DO and ORP readings were as follows: DO ranged from 1.36 mg/L in MW-1 to 1.86 mg/L in MW-3. ORP showed positive redox potentials in MW-1, MW-2 and MW-3.

2.2 Laboratory Analysis

Groundwater analytical data for this monitoring event is shown in Table 1. Appendix C includes the laboratory report and chain of custody form.

TPH-g, TPH-d, TPH-mo, and all VOCs were below laboratory reporting-limit in MW-1, MW-2, and MW-3, except for 1,2-DCA which was detected in MW-1 at a low level of 0.8 μ g/L. Figure 4 shows a map of 1,2-DCA concentrations in groundwater. Since the previous monitoring event (Third Quarter 2013), 1,2-DCA has remained the same in MW-1 and all other contaminants have remained below laboratory-reporting limits.

3. CONCLUSIONS AND RECOMMENDATIONS

Conclusions and recommendations based on results of Fourth Quarter 2013 groundwater monitoring are summarized below.

- In general, the groundwater flow direction is southwesterly at a gradient of 0.025 feet/feet.
- All contaminant concentrations were below laboratory reporting-limits in all monitoring wells except MW-1, where 1,2-DCA was detected at a low

- level of 0.8 μg/L. Since the previous monitoring event (Third Quarter 2013), 1,2-DCA has remained the same in MW-1.
- SOMA has completed four quarterly groundwater monitoring events at the site as previously recommended in the Remedial excavation report dated January 9, 2012. Based on the low to no-detect contaminant concentrations SOMA recommends adoption of no further action status for the site.

Based on the ACEHD directive, SOMA is currently preparing to install one soil boring at the site, adjacent to the former waste oil UST location. A report of findings will be submitted upon completion of field activities.

4. REPORT LIMITATIONS

This report is the summary of work done by SOMA, including observations and descriptions of site conditions. It includes analytical results produced by Curtis and Tompkins, Laboratories for the current groundwater monitoring event. Quantities and locations of wells were selected to provide the required information, but may not be completely representative of entire site conditions. All conclusions and recommendations are based on results of laboratory analysis. Conclusions beyond those specifically stated in this document should not be inferred from this report.

SOMA warrants that services were provided in accordance with generally accepted environmental engineering and consulting practices at the time of this sampling.

Figures

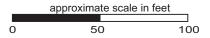
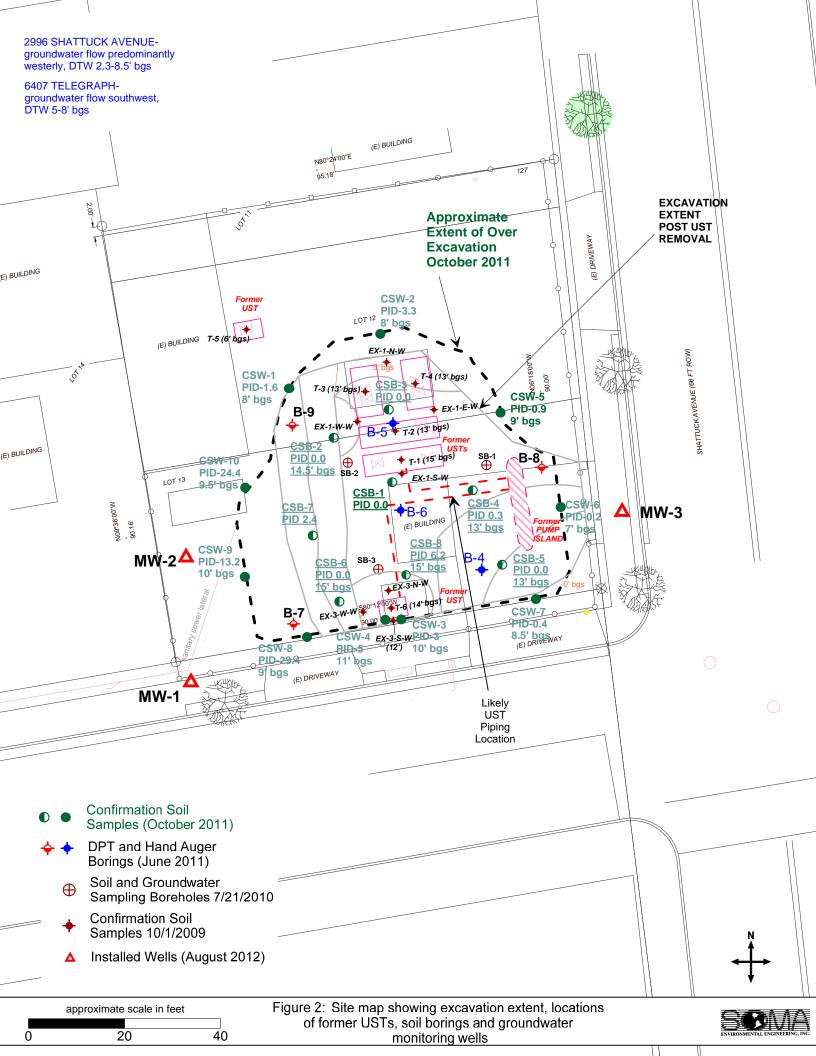
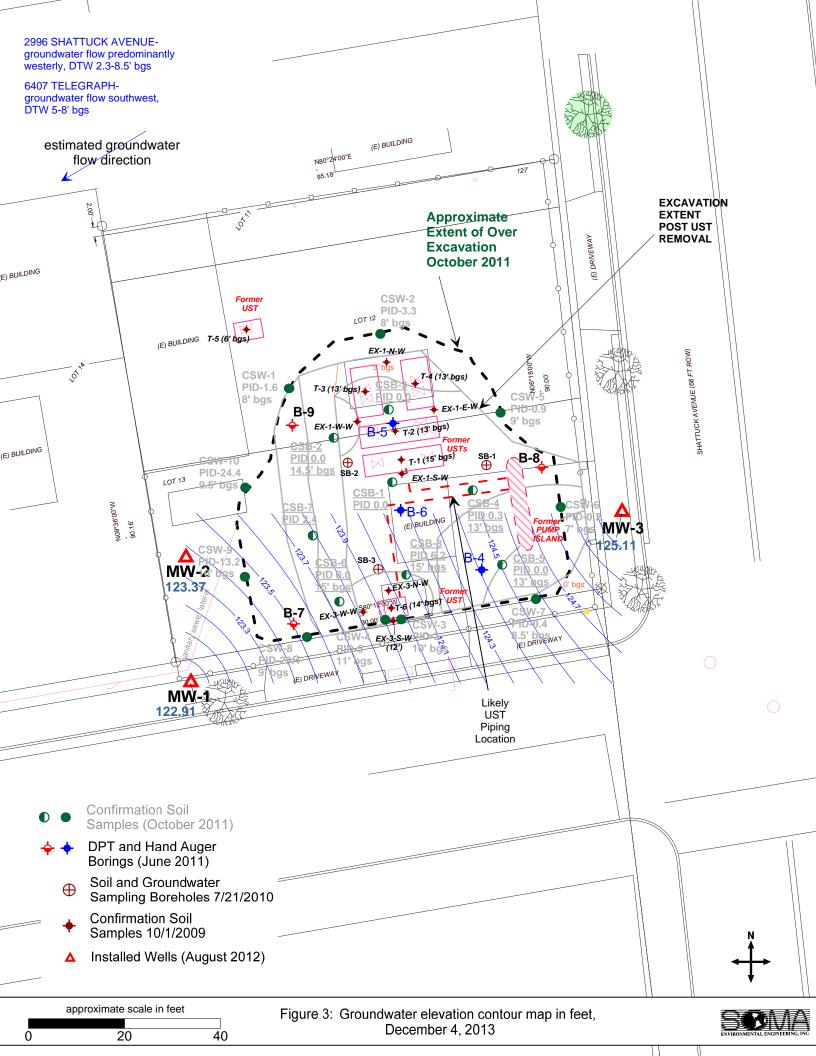
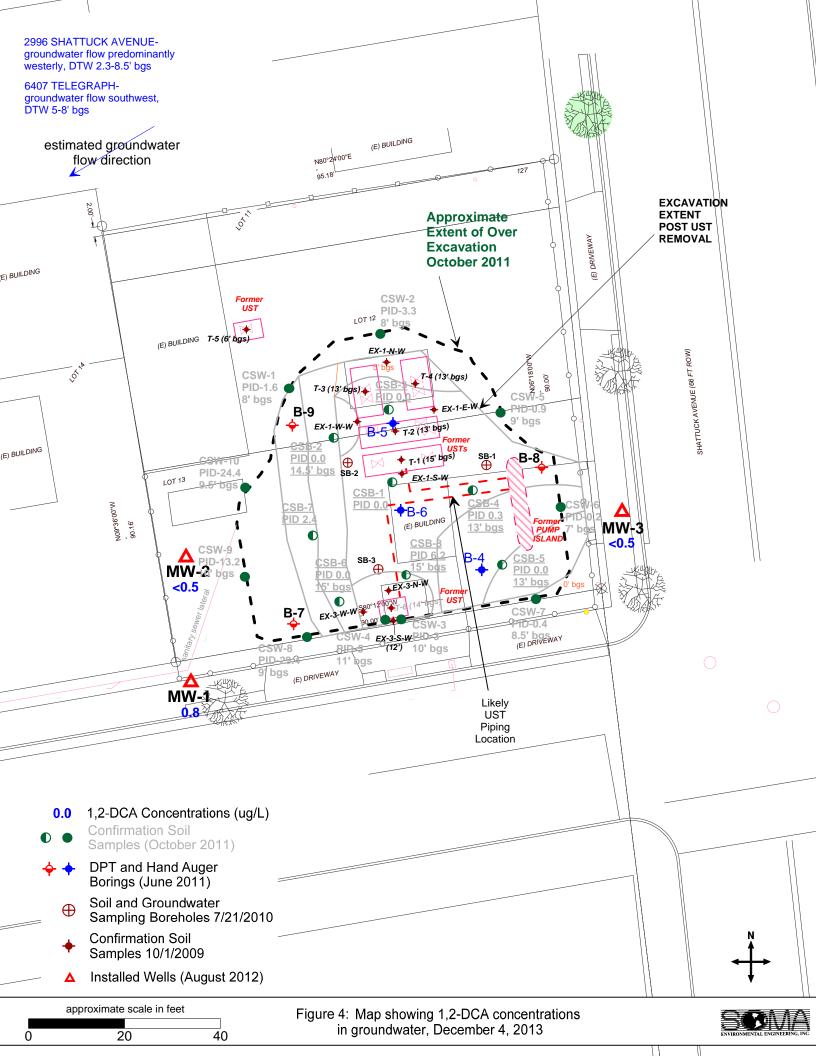





Figure 1: Site vicinity map.

Tables

Table 1 Groundwater Analytical Results 6501 Shattuck Ave, Oakland, CA

		Top of	_											
		Casing	Depth to					_						
		Elevation	Groundwater	Groundwater	TPH-g	TPH-d	TPH-mo	Benzene	Toluene	Ethylbenz	Xylenes	MtBE	1,2-DCA	ll
Monitoring Well	Date	(Ft.)	(Ft.)	Elevation	μg/L	μg/L	μg/L	μg/L	μg/L	ene μg/L	μg/L	μg/L	μg/L	EDB μg/L
MW-1	9/11/2012	128.70	6.14	122.56	<50	<52	<310	<0.5	<0.5	<0.5	<0.5	<0.5	1.30	<0.5
	12/20/2012	128.70	2.94	125.76	<50	<51	<310	<0.5	<0.5	<0.5	<0.5	<0.5	0.90	<0.5
	3/25/2013	128.70	4.48	124.22	<50	<56	<330	<0.5	<0.5	<0.5	<0.5	<0.5	1.00	<0.5
	6/12/2013	128.70	5.35	123.35	<50	<50	<300	<0.5	<0.5	<0.5	<0.5	<0.5	1.00	<0.5
	9/5/2013	128.70	6.31	122.39	<50	<50	<300	<0.5	<0.5	<0.5	<0.5	<0.5	0.80	<0.5
	12/4/2013	128.70	5.79	122.91	<50	<52	<310	<0.5	<0.5	<0.5	<0.5	<0.5	0.80	<0.5
MW-2	9/11/2012	130.32	7.81	122.51	<50	<50	<300	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	12/20/2012	130.32	6.61	123.71	76 ^Y	<51	<310	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	3/25/2013	130.32	7.65	122.67	<50	<57	<340	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	6/12/2013	130.32	8.60	121.72	<50	<50	<300	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	9/5/2013	130.32	7.62	122.70	<50	<50	<300	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	12/4/2013	130.32	6.95	123.37	<50	<52	<310	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
MW-3	9/11/2012	131.34	7.89	123.45	<50	<53	<320	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	12/20/2012	131.34	4.55	126.79	<50	<51	<310	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	3/25/2013	131.34	4.99	126.35	<50	<58	<350	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	6/12/2013	131.34	5.95	125.39	<50	<50	<300	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	9/5/2013	131.34	6.70	124.64	<50	<50	<300	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	12/4/2013	131.34	6.23	125.11	<50	<50	<300	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5

Note:

All other VOCs were below laboratory-reporting limits in groundwater samples

< : Below Laboratory Reporting Limit (Method Detection Limit)

Appendix A

Standard Operating Procedures for Conducting Groundwater Monitoring Activities

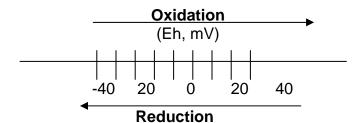
Standard Operating Procedures for Conducting Groundwater Monitoring Activities

Water Level Measurements

Prior to measurement of groundwater depth at each well, equalization with the surrounding aquifer must be achieved. Initially, the well cap is removed and the pressure is allowed to dissipate, creating a more stable water table level within the well. After about 10-15 minutes, once the water level in the well stabilizes, the depth to groundwater is measured from the top of the casing to the nearest 0.01 foot using an electric sounder.

Purging and Field Measurements

Prior to sample collection, each well is purged using a battery-operated, 2-inch-diameter pump (Model ES-60 DC). During purging, groundwater is measured for parameters such as dissolved oxygen (DO), pH, temperature, electrical conductivity (EC), and oxygen-reduction potential (ORP) using a Hanna HI-9828 multi-parameter instrument. Turbidity is measured using a Hanna HI-98703 portable turbidimeter. The equipment is calibrated at the Site using standard solutions and procedures provided by the manufacturer.


The pH of groundwater has an effect on the activity of microbial populations in the groundwater. The groundwater temperature affects the metabolic activity of bacteria. The groundwater EC is directly related to the concentration of total dissolved solids (TDS) in solution.

There is a strong correlation between the turbidity level and the biological oxygen demand of natural water bodies. The main purpose for checking the turbidity level is to provide a general overview of the extent of the suspended solids in the groundwater.

ORP is the measure of the potential for an oxidation or reduction process to occur. In the oxidation process, a molecule or ion loses one or several electrons. In the reduction process, a molecule or ion gains one or several electrons. The unit of the redox potential is the volt or millivolt. The most important redox reaction in petroleum-contaminated groundwater is the oxidation of petroleum hydrocarbons in the presence of bacteria and free molecular oxygen. Because the solubility of O_2 in water is low (9 mg/L at 25 °C and 11 mg/L at 5 °C), and because the rate of O_2 replenishment in subsurface environments is limited, DO can be entirely consumed when the oxidation of only a small amount of petroleum hydrocarbons occurs.

Oxidation of petroleum hydrocarbons can still occur when all the dissolved O₂ in the groundwater is consumed; however, the oxidizing agents (i.e., the constituents that undergo reduction) now become NO₃, MnO₂, Fe (OH)₃, SO₄²⁻

and others (Freeze and Cherry, 1979). As these oxidizing agents are consumed, the groundwater environment becomes more and more reduced. If the process advances far enough, the environment may become so strongly reduced that the petroleum hydrocarbons undergo anaerobic degradation, resulting in the production of methane and carbon dioxide. The concept of oxidation and reduction in terms of changes in oxidation states is illustrated below.

Purging of wells continues until the parameters for DO, pH, temperature, EC, turbidity, and redox stabilize, or three casing volumes are purged.

Once stabilization occurs, the groundwater samples are also tested on-site for ferrous iron (Fe⁺²), nitrate (NO₃ $^{-1}$), and sulfate (SO₄ $^{-2}$) concentrations.

 ${\rm Fe}^{+2}$, ${\rm NO_3}^-$, and ${\rm SO_4}^{-2}$ are measured colorimetrically using the Hach Colorimeter Model 890, a microprocessor-controlled photometer suitable for colorimetric testing in the laboratory or the field. The required reagents for each specific test are provided in AccuVac ampuls.

Sampling

For sampling purposes, after purging a disposable polyethylene bailer is used to collect sufficient samples from each monitoring well for laboratory analyses. Groundwater samples are transferred into 40-mL VOA vials and preserved with hydrochloric acid. The vials are sealed to prevent air bubbles from developing within the headspace. For TPH-d analysis, groundwater samples are collected using 1-L or 500-mL, amber, nonpreserved glass containers. Samples are placed in an ice-filled cooler and maintained at 4°C. A chain of custody form for all samples is prepared to accompany the samples, which are promptly delivered to a California state-certified analytical laboratory.

Appendix B

Tables of elevations and coordinates on wells, Field
Measurements of Physical, Chemical and Biodegradation
Parameters of the Groundwater Samples and Groundwater
Gradient Calculations

DATE: 9/04/2012 JOB#

TABLE OF ELEVATIONS & COORDINATES ON MONITORING WELLS

SOMA ENVIRONMENTAL ENGINEERING 6501 SHATTUCK AVENUE OAKLAND, CA 94609

WELL ID #	NORTHING (FT.) / LATITUDE (D.DEG.)	EASTING (FT.) / LONGITUDE (D.DEG.)	ELEVATION (FT.)	DESCRIPTION
MVV-1	2136901.934	6051727.243	128.70	2"PVC NOTCH NORTH SIDE
	N37.850339023	W122.266261635	129.19	SET PUNCH NORTH SIDE RIM
	100 1 000 100 100 100 100 100 100 100 1		129.22	CONC NORTH SIDE
MW-2	2136927.936	6051726.241	130.32	2" PVC NOTCH NORTH SIDE
	N37.850410368	W122.266266804	130.79	SET PUNCH NORTH SIDE RIM
			130.58	GRND NORTH SIDE
MW-3	2136937.443	6051817.078	131.34	2" PVC NOTCH NORTH SIDE
	N37.85044118	W122.26595287	131.72	SET PUNCH NORTH SIDE RIM
			131.73	CONC NORTH SIDE

			-	
		and the second s	CONTRACTOR OF STATES	
				-
				,

HORIZONTAL AND VERTICAL CONTROL:

COORDINATE VALUES ARE BASED ON THE CALIFORNIA COORDINATE SYSTEM, ZONE 3, NAD83. ELEVATIONS ARE NAVD 88 DATUM.

BASE STATIONS USED:

HT2918 BERKELEY H J HEINZ CO TOWER NORTHING 2,138,045.28, EASTING 6,045,147.46 GPS BASE200 MW-3 PUNCH NORTH SIDE NORTHING 2,136,937.769, EASTING 6,051,817.025, ELEVATION=131.724

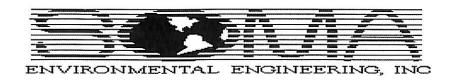
BENCH MARK USED: CITY OF OAKLAND BM

MONUMENT 32 FEET AT THE NORTHWEST CORNER OF THE INTERSECTION OF SHATTUCK AVENUE AND ALCATRAZ AVENUE. ELEVATION=125.685'

EQUIPMENT USED: TRIMBLE GPS-R8 & TS S6, TOPCON AT-G2 LEVEL

Edgis Land Surveying

Land Surveying and Mapping 1374 Garland Avenue, Clovis, CA 93612 Phone (559) 803-2679 Fax (559) 222-2580 email: edgis@aol.com



Well No.:	MI	<u>N-</u> 1		P	roject No.: 5031
Casing Diameter:	_2	inch			Address: 6501 Shattuck Avenue
Depth of Well:	24.	29 ft			Oakland, CA
Top of Casing Elevation:		.70 ft			Date: December 4 , 2013
Depth to Groundwater:		79 ft			Sampler: Lizzie Hightower
Groundwater Elevation:	122	9 <u>1</u> ft			
Water Column Height:	18.5	50 ft			
Purged Volume:		gallons			
Purging Method:	Baile	r 🗆			Pump & heutech
Sampling Method:	Baile	r 🗆			Pump of Gooted
Color:	No		Yes		Describe
Sheen:	No		Yes		Describe
Odor:	No	5	Yes		Describe

Field Measurements:

Time	Volume	D.O.	pН	Temp	E.C.	Turb.	ORP
	(gallons)	mg/L		°C	(μS/cm)	NTU	
12:26	Stava	ed o	wanin	& wel	R		
12:32		3.78	7,47	18.4	527	16.3	H118.3
12:38	2	243	7.30	19,4	561	づ、し	+117.5
12:44	3	2.13	7.30	19,6	584	(0.78	+118.8
12:56	5	1,60	7.30	19.5	566	15.3	4121.6
13:02	6	1,36	7.29	19.3	554	15.8	+122.4
13.07	Sarry	led					

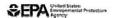
Notes:

Well No.:	MV	V-2		P	roject No.: 5031
Casing Diameter:	_2			Address: 6501 Shattuck Avenue	
Depth of Well:	24:	<u>29</u> ft			Oakland, CA
Top of Casing Elevation:		32 ft			Date: December ☐ , 2013
Depth to Groundwater:	-	15 ft			Sampler: Lizzie Hightower
Groundwater Elevation:	_	.37 ft			
Water Column Height:	17.3	4 ft			
Purged Volume:	_6	gallons			
Purging Method:	Baile	r 🗆			Pump & Geotech
Sampling Method:	Baile	r 🗆			Pump Geotech Pump Geotech
Color:	No		Yes		Describe
Sheen:	No		Yes		Describe
Odor:	No		Yes		Describe

Field Measurements:

Time	Volume	D.O.	pН	Temp	E.C.	Turb.	ORP
	(gallons)	mg/L		°C	(μS/cm)	NTU	
13:30	Start	& pu	rapires	well			
13:36	-	3,55	7.64	18.4	513	18.8	+125,6
13:42	2	2.20	7.53	18.7	531	10.9	+117.8
13748	3	1.94	7.47	18.6	554	19.1	+115,4
14:00	5	1.45	7.49	18.6	545	11.7	+112.2
14',06	6	1.56	7.51	(8.4	537	12.4	+113.3
14:11	Sam	bled					

Notes:



Well No.:	MV	v-3		Project No.: 5031
Casing Diameter:	_2	inch		Address: 6501 Shattuck Avenue
Depth of Well:	24.	30 ft		Oakland, CA
Top of Casing Elevation:	-	34 ft		Date: December 4 , 2013
Depth to Groundwater:	_b.	<u>23</u> ft		Sampler: Lizzie Hightower
Groundwater Elevation:	125	5.1 ft		
Water Column Height:	18.5	57ft		
Purged Volume:	<u>6</u>	gallons		
Purging Method:	Baile	r 🗆		Pump of Geotech
Sampling Method:	Baile	r 🗆		Pump of Geotech
Color:	No		Yes	Describe Cloudy
Sheen:	No		Yes	☐ Describe
Odor:	No		Yes	□ Describe

Field Measurements:

Time	Volume	D.O.	pН	Temp	E.C.	Turb.	ORP
	(gallons)	mg/L		°C	(μS/cm)	NTU	
10:55	Start	ed pu	MILY	well			
[1:0]		2.47	7.41	19.2	400	40.7	+109.4
11:33	2	3.03	7.78	(8.0	471	26.6	+120.2
11:39	3	2.38	7.64	186	479	25.6	+121.3
11:51	5	1.90	7.65	18.3	438	26.9	+119.6
11:57	6	1.86	7.67	18.2	454	31.0	+119.8
12.02	Sam	pled					

Notes: Flow cell was leaking, had to stop pumping of try to fix between 1+2 gallons

http://www.epa.gov/athens/learn2model/part-two/onsite/gradient3ns.html

EPA On-line Tools for Site Assessment Calculation

Module Home Objectives Table of Contents Previous < Next > Hydraulic Gradient Gradient Calculation from fitting a plane to three points a x1 + b y1 + c = h1 $a x_2 + b y_2 + c = h_2$ $a x_3 + b y_3 + c = h_3$ where (x_i,y_i) are the coordinates of the well and h, is the head i = 1.2.3The gradient is calculated from the square root of (a2 + b2) and the angle from the arctangent of a/b or b/a depending on the quadrant Example Data Set 1 Calculate Clear Save Data Recall Data Go Back Site Name 6501 Shattuck Ave., Oak Date December 4, 2013 Current Date Calculation basis Head 100 Coordinates ft x-coordinate y-coordinate head ft 4740.653962 6775.300744 122.91 6774.282756 4766.867171 123.37 4776.029069 6865.138245 125,11 Gradient Magnitude (i) 0.02514 Degrees from North (+ y axis) 223.5 Previous Top ^ Next Home | Giossary | Notation | Links | References | Calculators

WCMS

Last updated on Thursday, January 10, 2013

Appendix C

Laboratory Report and Chain of Custody Form

Curtis & Tompkins, Ltd., Analytical Laboratories, Since 1878

2323 Fifth Street, Berkeley, CA 94710, Phone (510) 486-0900

Laboratory Job Number 251363 ANALYTICAL REPORT

SOMA Environmental Engineering Inc. Project : 5031

6620 Owens Dr. Location: 6501 Shattuck Ave., Oakland

Pleasanton, CA 94588 Level : II

<u>Sample ID</u>	<u>Lab ID</u>
MW-1	251363-001
MW-2	251363-002
MW-3	251363-003

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis. This report may be reproduced only in its entirety.

Signature:

Tracy Babjar
Project Manager
tracy.babjar@ctberk.com
(510) 204-2226

NELAP # 01107CA

Date: <u>12/12/2013</u>

CASE NARRATIVE

Laboratory number: 251363

Client: SOMA Environmental Engineering Inc.

Project: 5031

Location: 6501 Shattuck Ave., Oakland

Request Date: 12/05/13 Samples Received: 12/05/13

This data package contains sample and QC results for three water samples, requested for the above referenced project on 12/05/13. The samples were received cold and intact.

TPH-Purgeables and/or BTXE by GC (EPA 8015B):

No analytical problems were encountered.

TPH-Extractables by GC (EPA 8015B):

High surrogate recovery was observed for o-terphenyl in MW-1 (lab # 251363-001); no target analytes were detected in the sample. No other analytical problems were encountered.

Volatile Organics by GC/MS (EPA 8260B):

No analytical problems were encountered.

Curtis & Tompkins, Ltd.

Analytical Laboratory Since 1878 2323 Fifth Street Berkeley, CA 94710 (510)486-0900 Phone (510)486-0532 Fax Sampler:

Project No: 5031

Project Name: 6501 Shattuck Ave., Oakland

Turnaround Time: Standard

Report To:

Company: SOMA Environmental

Telephone: 925-734-6400

Fax:

925-734-6401

Joyce Bobek

			Matrix			X		F	res	erv	rvative	
Lab No.	Sample ID.	Sampling Date Time		Water	Waste			HCL	H ₂ SO ₄	HNO3	ICE	
1	MW-1	124/13 13:07		*			4 VOAS, 2.4 500 ^{ral} Amber	*			*	-
a	MW-2	14:11		*			4 VOAS, 14 Sandamber	*			*	
3	MW-3	12:02		*			4 VOAS, 2- 6 00 MAmber	*			*	
												_

Notes: EDF OUTPUT REQUIRED
Silica-gel clean-up required

RELINQUISHED BY:

E. High

12/5/13 09/18 DATE/TIME

15/13 /690 DATE/TIME

July L

RECEIVED BY:

12/5/13 1111 DATE/TIME

DATE/TIME

DATE/TIME

DATE/TIME

TPH-g, TPH-d, TPH-mo 8015

VOCs (Full List) 8260

3 of 18

COOLER RECEIPT CHECKLIST

Login # 251363 Date Received 12/5/13 Number of coolers 1
Client COMA Project 6501 SHATTUCK AVE., OAKLAND (5031)
Date Opened 12/5/13 By (print) (sign) TwaRawaw Date Logged in By (print) (sign) TwaRawaw
1. Did cooler come with a shipping slip (airbill, etc)YES NO
2A. Were custody seals present? \(\superset \text{YES} \) (circle) on cooler on samples \(\superset \text{NO} \) NO How many \(\superset \text{NO} \) Name \(\superset \text{Date} \) 2B. Were custody seals intact upon arrival? \(\text{YES} \) NO \(\text{NO} \)
2B. Were custody seals intact upon arrival?
☐ Bubble Wrap Foam blocks ☐ Bags ☐ None ☐ Cloth material ☐ Cardboard ☐ Styrofoam ☐ Paper towels 7. Temperature documentation: * Notify PM if temperature exceeds 6°C
Type of ice used: ☑ Wet ☐ Blue/Gel ☐ None Temp(°C) Ø. 7
☐ Samples Received on ice & cold without a temperature blank; temp. taken with IR gun
Samples received on ice directly from the field. Cooling process had begun
8. Were Method 5035 sampling containers present? If YES, what time were they transferred to freezer? 9. Did all bottles arrive unbroken/unopened? 10. Are there any missing / extra samples? 11. Are samples in the appropriate containers for indicated tests? 12. Are sample labels present, in good condition and complete? 13. Do the sample labels agree with custody papers? 14. Was sufficient amount of sample sent for tests requested? 15. Are the samples appropriately preserved? 16. Did you check preservatives for all bottles for each sample? 17. Did you document your preservative check? 18. Did you change the hold time in LIMS for unpreserved VOAs? 19. Did you change the hold time in LIMS for preserved terracores? 20. Are bubbles > 6mm absent in VOA samples? 21. Was the client contacted concerning this sample delivery? 22. If YES, Who was called? 18. Date:
COMMENTS

Total Volatile Hydrocarbons Lab #: 251363 Location: 6501 Shattuck Ave., Oakland EPA 5030B Client: SOMA Environmental Engineering Inc. Prep: Project#: 5031 Analysis: EPA 8015B 12/04/13 Matrix: Water Sampled: 12/05/13 Units: ug/L Received: Diln Fac: 1.000 Analyzed: 12/07/13 Batch#: 205869

Field ID: MW-1 Lab ID: 251363-001

Type: SAMPLE

Analyte Result RL
Gasoline C7-C12 ND 50

Surrogate %REC Limits
Bromofluorobenzene (FID) 100 77-128

Field ID: MW-2 Lab ID: 251363-002

Type: SAMPLE

Analyte Result RL
Gasoline C7-C12 ND 50

Surrogate %REC Limits
Bromofluorobenzene (FID) 99 77-128

Field ID: MW-3 Lab ID: 251363-003

Type: SAMPLE

Analyte Result RL
Gasoline C7-C12 ND 50

Surrogate %REC Limits
Bromofluorobenzene (FID) 98 77-128

Type: BLANK Lab ID: QC719315

Analyte Result RL
Gasoline C7-C12 ND 50

Surrogate %REC Limits
Bromofluorobenzene (FID) 98 77-128

ND= Not Detected RL= Reporting Limit Page 1 of 1

	Total Volatil	e Hydrocarbons	
Lab #:	251363	Location:	6501 Shattuck Ave., Oakland
Client:	SOMA Environmental Engineering Inc.	Prep:	EPA 5030B
Project#:	5031	Analysis:	EPA 8015B
Type:	LCS	Diln Fac:	1.000
Lab ID:	QC719314	Batch#:	205869
Matrix:	Water	Analyzed:	12/07/13
Units:	ug/L		

Analyte	Spiked	Result	%REC	Limits
Gasoline C7-C12	1,000	1,076	108	80-120

Surrogate	%REC	Limits
Bromofluorobenzene (FID)	99	77-128

Page 1 of 1

Total Volatile Hydrocarbons						
Lab #: 251363	3	Location:	6501 Shattuck Ave., Oakland			
Client: SOMA	Environmental Engineering Inc.	Prep:	EPA 5030B			
Project#: 5031		Analysis:	EPA 8015B			
Field ID:	ZZZZZZZZZ	Batch#:	205869			
MSS Lab ID:	251374-010	Sampled:	12/05/13			
Matrix:	Water	Received:	12/05/13			
Units:	ug/L	Analyzed:	12/08/13			
Diln Fac:	1.000					

Type: MS

Lab ID: QC719316

Analyte	MSS Result	Spiked	Result	%REC	Limits
Gasoline C7-C12	<10.56	2,000	1,750	88	74-120

Surrogate	%REC	Limits
Bromofluorobenzene (FID)	100	77-128

Type: MSD Lab ID: QC719317

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Gasoline C7-C12	2,000	1,728	86	74-120	1	27

Total Extractable Hydrocarbons Lab #: 251363 6501 Shattuck Ave., Oakland Location: EPA 3520C Client: SOMA Environmental Engineering Inc. Prep: Project#: 5031 Analysis: EPA 8015B Sampled: Matrix: Water 12/04/13 12/05/13 Units: ug/L Received: Diln Fac: 1.000 12/08/13 Prepared: Batch#: 205878

Field ID: MW-1 Analyzed: 12/10/13 Type: SAMPLE Cleanup Method: EPA 3630C Lab ID: 251363-001

 Analyte
 Result
 RL

 Diesel C10-C24
 ND
 52

 Motor Oil C24-C36
 ND
 310

Surrogate %REC Limits
o-Terphenyl 134 * 66-129

Field ID: MW-2 Analyzed: 12/10/13
Type: SAMPLE Cleanup Method: EPA 3630C

Lab ID: 251363-002

 Analyte
 Result
 RL

 Diesel C10-C24
 ND
 52

 Motor Oil C24-C36
 ND
 310

Surrogate %REC Limits
o-Terphenyl 94 66-129

Field ID: MW-3 Analyzed: 12/10/13 Type: SAMPLE Cleanup Method: EPA 3630C

Lab ID: 251363-003

 Analyte
 Result
 RL

 Diesel C10-C24
 ND
 50

 Motor Oil C24-C36
 ND
 300

Surrogate %REC Limits
o-Terphenyl 128 66-129

Type: BLANK Analyzed: 12/09/13 Lab ID: QC719347 Cleanup Method: EPA 3630C

 Analyte
 Result
 RL

 Diesel C10-C24
 ND
 50

 Motor Oil C24-C36
 ND
 300

Surrogate %REC Limits
o-Terphenyl 118 66-129

*= Value outside of QC limits; see narrative

ND= Not Detected

RL= Reporting Limit

Page 1 of 1

Total Extractable Hydrocarbons						
Lab #:	251363		Location:	6501 Shattuck Ave., Oakland		
Client:	SOMA Environmental	Engineering Inc.	Prep:	EPA 3520C		
Project#:	5031		Analysis:	EPA 8015B		
Matrix:	Water		Batch#:	205878		
Units:	ug/L		Prepared:	12/08/13		
Diln Fac:	1.000		Analyzed:	12/09/13		

Type: BS Cleanup Method: EPA 3630C

Lab ID: QC719348

Analyte	Spiked	Result	%REC	Limits
Diesel C10-C24	2,500	1,967	79	61-120

Surrogate	%REC	Limits	
o-Terphenyl	110	66-129	

Type: BSD Cleanup Method: EPA 3630C

Lab ID: QC719349

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Diesel C10-C24	2,500	2,193	88	61-120	11	45

Surrogate	%REC	Limits
o-Terphenyl	124	66-129

Purgeable Organics by GC/MS						
Lab #:	251363		Location:	6501 Shattuck Ave., Oakland		
Client:	SOMA Environmental	Engineering Inc.	Prep:	EPA 5030B		
Project#:	5031		Analysis:	EPA 8260B		
Field ID:	MW-1		Batch#:	205933		
Lab ID:	251363-001		Sampled:	12/04/13		
Matrix:	Water		Received:	12/05/13		
Units:	ug/L		Analyzed:	12/10/13		
Diln Fac:	1.000					

Analyte	Result	RL	
Freon 12	ND ND	1.0	
Chloromethane	ND	1.0	
Vinyl Chloride	ND	0.5	
Bromomethane	ND	1.0	
Chloroethane	ND	1.0	
Trichlorofluoromethane	ND	1.0	
Acetone	ND	10	
Freon 113	ND	2.0	
1,1-Dichloroethene	ND	0.5	
Methylene Chloride	ND ND	10	
Carbon Disulfide	ND	0.5	
MTBE	ND ND	0.5	
trans-1,2-Dichloroethene	ND ND	0.5	
Vinyl Acetate	ND	10	
1,1-Dichloroethane	ND	0.5	
2-Butanone	ND	10	
cis-1,2-Dichloroethene	ND	0.5	
2,2-Dichloropropane	ND ND	0.5	
Chloroform		0.5	
Bromochloromethane	ND ND	0.5	
1,1,1-Trichloroethane		0.5	
	ND	0.5	
1,1-Dichloropropene Carbon Tetrachloride	ND	0.5	
1,2-Dichloroethane	ND 0.8	0.5	
-			
Benzene Trichloroethene	ND	0.5 0.5	
	ND	0.5	
1,2-Dichloropropane Bromodichloromethane	ND	0.5	
	ND		
Dibromomethane	ND	0.5	
4-Methyl-2-Pentanone	ND	10	
cis-1,3-Dichloropropene	ND	0.5	
Toluene	ND	0.5	
trans-1,3-Dichloropropene	ND	0.5	
1,1,2-Trichloroethane	ND	0.5	
2-Hexanone	ND	10	
1,3-Dichloropropane	ND	0.5	
Tetrachloroethene	ND	0.5	

RL= Reporting Limit

Page 1 of 2

Purgeable Organics by GC/MS						
Lab #:	251363	Location:	6501 Shattuck Ave., Oakland			
Client:	SOMA Environmental Engineering Ir	nc. Prep:	EPA 5030B			
Project#:	5031	Analysis:	EPA 8260B			
Field ID:	MW-1	Batch#:	205933			
Lab ID:	251363-001	Sampled:	12/04/13			
Matrix:	Water	Received:	12/05/13			
Units:	ug/L	Analyzed:	12/10/13			
Diln Fac:	1.000					

Analyte	Result	RL	
Dibromochloromethane	ND	0.5	
1,2-Dibromoethane	ND	0.5	
Chlorobenzene	ND	0.5	
1,1,1,2-Tetrachloroethane	ND	0.5	
Ethylbenzene	ND	0.5	
m,p-Xylenes	ND	0.5	
o-Xylene	ND	0.5	
Styrene	ND	0.5	
Bromoform	ND	1.0	
Isopropylbenzene	ND	0.5	
1,1,2,2-Tetrachloroethane	ND	0.5	
1,2,3-Trichloropropane	ND	0.5	
Propylbenzene	ND	0.5	
Bromobenzene	ND	0.5	
1,3,5-Trimethylbenzene	ND	0.5	
2-Chlorotoluene	ND	0.5	
4-Chlorotoluene	ND	0.5	
tert-Butylbenzene	ND	0.5	
1,2,4-Trimethylbenzene	ND	0.5	
sec-Butylbenzene	ND	0.5	
para-Isopropyl Toluene	ND	0.5	
1,3-Dichlorobenzene	ND	0.5	
1,4-Dichlorobenzene	ND	0.5	
n-Butylbenzene	ND	0.5	
1,2-Dichlorobenzene	ND	0.5	
1,2-Dibromo-3-Chloropropane	ND	2.0	
1,2,4-Trichlorobenzene	ND	0.5	
Hexachlorobutadiene	ND	2.0	
Naphthalene	ND	2.0	
1,2,3-Trichlorobenzene	ND	0.5	

Surrogate	%REC	Limits	
Dibromofluoromethane	105	77-136	
1,2-Dichloroethane-d4	114	75-139	
Toluene-d8	101	80-120	
Bromofluorobenzene	103	80-120	

RL= Reporting Limit

Page 2 of 2

5.0

Purgeable Organics by GC/MS						
Lab #:	251363		Location:	6501 Shattuck Ave., Oakland		
Client:	SOMA Environmental	Engineering Inc.	Prep:	EPA 5030B		
Project#:	5031		Analysis:	EPA 8260B		
Field ID:	MW-2		Batch#:	205933		
Lab ID:	251363-002		Sampled:	12/04/13		
Matrix:	Water		Received:	12/05/13		
Units:	ug/L		Analyzed:	12/10/13		
Diln Fac:	1.000					

Analyte	Result	RL	
Freon 12	ND	1.0	
Chloromethane	ND	1.0	
Vinyl Chloride	ND	0.5	
Bromomethane	ND	1.0	
Chloroethane	ND	1.0	
Trichlorofluoromethane	ND	1.0	
Acetone	ND	10	
Freon 113	ND	2.0	
1,1-Dichloroethene	ND	0.5	
Methylene Chloride	ND	10	
Carbon Disulfide	ND	0.5	
MTBE	ND	0.5	
trans-1,2-Dichloroethene	ND	0.5	
Vinyl Acetate	ND	10	
1,1-Dichloroethane	ND	0.5	
2-Butanone	ND	10	
cis-1,2-Dichloroethene	ND	0.5	
2,2-Dichloropropane	ND	0.5	
Chloroform	ND	0.5	
Bromochloromethane	ND	0.5	
1,1,1-Trichloroethane	ND	0.5	
1,1-Dichloropropene	ND	0.5	
Carbon Tetrachloride	ND	0.5	
1,2-Dichloroethane	ND	0.5	
Benzene	ND	0.5	
Trichloroethene	ND	0.5	
1,2-Dichloropropane	ND	0.5	
Bromodichloromethane	ND	0.5	
Dibromomethane	ND	0.5	
4-Methyl-2-Pentanone	ND	10	
cis-1,3-Dichloropropene	ND	0.5	
Toluene	ND	0.5	
trans-1,3-Dichloropropene	ND ND	0.5	
1,1,2-Trichloroethane	ND	0.5	
2-Hexanone	ND	10	
1,3-Dichloropropane	ND	0.5	
Tetrachloroethene	ND	0.5	
retrachioroethene	ДИ	0.5	

ND= Not Detected RL= Reporting Limit

Page 1 of 2 6.0

Purgeable Organics by GC/MS						
Lab #:	251363	Location:	6501 Shattuck Ave., Oakland			
Client:	SOMA Environmental Eng	ineering Inc. Prep:	EPA 5030B			
Project#:	5031	Analysis:	EPA 8260B			
Field ID:	MW-2	Batch#:	205933			
Lab ID:	251363-002	Sampled:	12/04/13			
Matrix:	Water	Received:	12/05/13			
Units:	ug/L	Analyzed:	12/10/13			
Diln Fac:	1.000					

Analyte	Result	RL	
Dibromochloromethane	ND	0.5	
1,2-Dibromoethane	ND	0.5	
Chlorobenzene	ND	0.5	
1,1,1,2-Tetrachloroethane	ND	0.5	
Ethylbenzene	ND	0.5	
m,p-Xylenes	ND	0.5	
o-Xylene	ND	0.5	
Styrene	ND	0.5	
Bromoform	ND	1.0	
Isopropylbenzene	ND	0.5	
1,1,2,2-Tetrachloroethane	ND	0.5	
1,2,3-Trichloropropane	ND	0.5	
Propylbenzene	ND	0.5	
Bromobenzene	ND	0.5	
1,3,5-Trimethylbenzene	ND	0.5	
2-Chlorotoluene	ND	0.5	
4-Chlorotoluene	ND	0.5	
tert-Butylbenzene	ND	0.5	
1,2,4-Trimethylbenzene	ND	0.5	
sec-Butylbenzene	ND	0.5	
para-Isopropyl Toluene	ND	0.5	
1,3-Dichlorobenzene	ND	0.5	
1,4-Dichlorobenzene	ND	0.5	
n-Butylbenzene	ND	0.5	
1,2-Dichlorobenzene	ND	0.5	
1,2-Dibromo-3-Chloropropane	ND	2.0	
1,2,4-Trichlorobenzene	ND	0.5	
Hexachlorobutadiene	ND	2.0	
Naphthalene	ND	2.0	
1,2,3-Trichlorobenzene	ND	0.5	

Surrogate	%REC	Limits	
Dibromofluoromethane	104	77-136	
1,2-Dichloroethane-d4	116	75-139	
Toluene-d8	102	80-120	
Bromofluorobenzene	103	80-120	

RL= Reporting Limit

Page 2 of 2

6.0

Purgeable Organics by GC/MS								
Lab #:	251363		Location:	6501 Shattuck Ave., Oakland				
Client:	SOMA Environmental	Engineering Inc.	Prep:	EPA 5030B				
Project#:	5031		Analysis:	EPA 8260B				
Field ID:	MW-3		Batch#:	205933				
Lab ID:	251363-003		Sampled:	12/04/13				
Matrix:	Water		Received:	12/05/13				
Units:	ug/L		Analyzed:	12/10/13				
Diln Fac:	1.000							

Analyte	Result	RL	
Freon 12	ND	1.0	
Chloromethane	ND	1.0	
Vinyl Chloride	ND	0.5	
Bromomethane	ND	1.0	
Chloroethane	ND	1.0	
Trichlorofluoromethane	ND	1.0	
Acetone	ND	10	
Freon 113	ND	2.0	
1,1-Dichloroethene	ND	0.5	
Methylene Chloride	ND	10	
Carbon Disulfide	ND	0.5	
MTBE	ND	0.5	
trans-1,2-Dichloroethene	ND	0.5	
Vinyl Acetate	ND	10	
1,1-Dichloroethane	ND	0.5	
2-Butanone	ND	10	
cis-1,2-Dichloroethene	ND	0.5	
2,2-Dichloropropane	ND	0.5	
Chloroform	ND	0.5	
Bromochloromethane	ND	0.5	
1,1,1-Trichloroethane	ND	0.5	
1,1-Dichloropropene	ND	0.5	
Carbon Tetrachloride	ND	0.5	
1,2-Dichloroethane	ND	0.5	
Benzene	ND	0.5	
Trichloroethene	ND	0.5	
1,2-Dichloropropane	ND	0.5	
Bromodichloromethane	ND	0.5	
Dibromomethane	ND	0.5	
4-Methyl-2-Pentanone	ND	10	
cis-1,3-Dichloropropene	ND	0.5	
Toluene	ND	0.5	
trans-1,3-Dichloropropene	ND	0.5	
1,1,2-Trichloroethane	ND	0.5	
2-Hexanone	ND	10	
1,3-Dichloropropane	ND	0.5	
Tetrachloroethene	ND	0.5	

RL= Reporting Limit

Page 1 of 2

Purgeable Organics by GC/MS							
Lab #:	251363	Location:	6501 Shattuck Ave., Oakland				
Client:	SOMA Environmental Engineering In	nc. Prep:	EPA 5030B				
Project#:	5031	Analysis:	EPA 8260B				
Field ID:	MW-3	Batch#:	205933				
Lab ID:	251363-003	Sampled:	12/04/13				
Matrix:	Water	Received:	12/05/13				
Units:	ug/L	Analyzed:	12/10/13				
Diln Fac:	1.000						

Analyte	Result	RL	
Dibromochloromethane	ND	0.5	
1,2-Dibromoethane	ND	0.5	
Chlorobenzene	ND	0.5	
1,1,1,2-Tetrachloroethane	ND	0.5	
Ethylbenzene	ND	0.5	
m,p-Xylenes	ND	0.5	
o-Xylene	ND	0.5	
Styrene	ND	0.5	
Bromoform	ND	1.0	
Isopropylbenzene	ND	0.5	
1,1,2,2-Tetrachloroethane	ND	0.5	
1,2,3-Trichloropropane	ND	0.5	
Propylbenzene	ND	0.5	
Bromobenzene	ND	0.5	
1,3,5-Trimethylbenzene	ND	0.5	
2-Chlorotoluene	ND	0.5	
4-Chlorotoluene	ND	0.5	
tert-Butylbenzene	ND	0.5	
1,2,4-Trimethylbenzene	ND	0.5	
sec-Butylbenzene	ND	0.5	
para-Isopropyl Toluene	ND	0.5	
1,3-Dichlorobenzene	ND	0.5	
1,4-Dichlorobenzene	ND	0.5	
n-Butylbenzene	ND	0.5	
1,2-Dichlorobenzene	ND	0.5	
1,2-Dibromo-3-Chloropropane	ND	2.0	
1,2,4-Trichlorobenzene	ND	0.5	
Hexachlorobutadiene	ND	2.0	
Naphthalene	ND	2.0	
1,2,3-Trichlorobenzene	ND	0.5	

Surrogate	%REC	Limits	
Dibromofluoromethane	105	77-136	
1,2-Dichloroethane-d4	115	75-139	
Toluene-d8	102	80-120	
Bromofluorobenzene	103	80-120	

RL= Reporting Limit

Page 2 of 2

7.0

	Purgeable Organics by GC/MS							
Lab #:	251363	Location:	6501 Shattuck Ave., Oakland					
Client:	SOMA Environmental Engineering Inc.	Prep:	EPA 5030B					
Project#:	5031	Analysis:	EPA 8260B					
Matrix:	Water	Batch#:	205933					
Units:	ug/L	Analyzed:	12/10/13					
Diln Fac:	1.000							

Type: BS Lab ID: QC719596

Analyte	Spiked	Result	%REC	Limits
1,1-Dichloroethene	12.50	11.20	90	65-134
Benzene	12.50	13.11	105	80-124
Trichloroethene	12.50	12.98	104	80-120
Toluene	12.50	13.26	106	80-122
Chlorobenzene	12.50	13.18	105	80-120

Surrogate	%REC	Limits
Dibromofluoromethane	105	77-136
1,2-Dichloroethane-d4	106	75-139
Toluene-d8	101	80-120
Bromofluorobenzene	102	80-120

Type: BSD Lab ID: QC719597

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
1,1-Dichloroethene	12.50	11.11	89	65-134	1	20
Benzene	12.50	13.22	106	80-124	1	20
Trichloroethene	12.50	13.13	105	80-120	1	20
Toluene	12.50	13.07	105	80-122	1	20
Chlorobenzene	12.50	13.34	107	80-120	1	20

Surrogate	%REC	Limits
Dibromofluoromethane	104	77-136
1,2-Dichloroethane-d4	107	75-139
Toluene-d8	100	80-120
Bromofluorobenzene	100	80-120

	Purgeable Organics by GC/MS							
Lab #:	251363	Location:	6501 Shattuck Ave., Oakland					
Client:	SOMA Environmental Engineering Inc.	Prep:	EPA 5030B					
Project#:	5031	Analysis:	EPA 8260B					
Type:	BLANK	Diln Fac:	1.000					
Lab ID:	QC719598	Batch#:	205933					
Matrix:	Water	Analyzed:	12/10/13					
Units:	ug/L							

Analyte	Result	RL	
Freon 12	ND	1.0	
Chloromethane	ND	1.0	
Vinyl Chloride	ND	0.5	
Bromomethane	ND	1.0	
Chloroethane	ND	1.0	
Trichlorofluoromethane	ND	1.0	
Acetone	ND	10	
Freon 113	ND	2.0	
1,1-Dichloroethene	ND	0.5	
Methylene Chloride	ND	10	
Carbon Disulfide	ND	0.5	
MTBE	ND	0.5	
trans-1,2-Dichloroethene	ND	0.5	
Vinyl Acetate	ND	10	
1,1-Dichloroethane	ND	0.5	
2-Butanone	ND	10	
cis-1,2-Dichloroethene	ND	0.5	
2,2-Dichloropropane	ND	0.5	
Chloroform	ND	0.5	
Bromochloromethane	ND	0.5	
1,1,1-Trichloroethane	ND	0.5	
1,1-Dichloropropene	ND	0.5	
Carbon Tetrachloride	ND	0.5	
1,2-Dichloroethane	ND	0.5	
Benzene	ND	0.5	
Trichloroethene	ND	0.5	
1,2-Dichloropropane	ND	0.5	
Bromodichloromethane	ND	0.5	
Dibromomethane	ND	0.5	
4-Methyl-2-Pentanone	ND	10	
cis-1,3-Dichloropropene	ND	0.5	
Toluene	ND	0.5	
trans-1,3-Dichloropropene	ND	0.5	
1,1,2-Trichloroethane	ND	0.5	
2-Hexanone	ND	10	
1,3-Dichloropropane	ND	0.5	
Tetrachloroethene	ND	0.5	

ND= Not Detected

RL= Reporting Limit

Page 1 of 2

Purgeable Organics by GC/MS					
Lab #:	251363	Location:	6501 Shattuck Ave., Oakland		
Client:	SOMA Environmental Engineering Inc	. Prep:	EPA 5030B		
Project#:	5031	Analysis:	EPA 8260B		
Type:	BLANK	Diln Fac:	1.000		
Lab ID:	QC719598	Batch#:	205933		
Matrix:	Water	Analyzed:	12/10/13		
Units:	ug/L				

Analyte	Result	RL	
Dibromochloromethane	ND	0.5	
1,2-Dibromoethane	ND	0.5	
Chlorobenzene	ND	0.5	
1,1,1,2-Tetrachloroethane	ND	0.5	
Ethylbenzene	ND	0.5	
m,p-Xylenes	ND	0.5	
o-Xylene	ND	0.5	
Styrene	ND	0.5	
Bromoform	ND	1.0	
Isopropylbenzene	ND	0.5	
1,1,2,2-Tetrachloroethane	ND	0.5	
1,2,3-Trichloropropane	ND	0.5	
Propylbenzene	ND	0.5	
Bromobenzene	ND	0.5	
1,3,5-Trimethylbenzene	ND	0.5	
2-Chlorotoluene	ND	0.5	
4-Chlorotoluene	ND	0.5	
tert-Butylbenzene	ND	0.5	
1,2,4-Trimethylbenzene	ND	0.5	
sec-Butylbenzene	ND	0.5	
para-Isopropyl Toluene	ND	0.5	
1,3-Dichlorobenzene	ND	0.5	
1,4-Dichlorobenzene	ND	0.5	
n-Butylbenzene	ND	0.5	
1,2-Dichlorobenzene	ND	0.5	
1,2-Dibromo-3-Chloropropane	ND	2.0	
1,2,4-Trichlorobenzene	ND	0.5	
Hexachlorobutadiene	ND	2.0	
Naphthalene	ND	2.0	
1,2,3-Trichlorobenzene	ND	0.5	

Surrogate	%REC	Limits	
Dibromofluoromethane	102	77-136	
1,2-Dichloroethane-d4	108	75-139	
Toluene-d8	100	80-120	
Bromofluorobenzene	102	80-120	

ND= Not Detected

RL= Reporting Limit

Page 2 of 2

9.0