RECEIVED

By Alameda County Environmental Health at 11:08 am, Jan 17, 2013

January 16, 2013

Ms. Karel Detterman Alameda County Health Care Services Agency 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577

Subject: Site Location: 6501 Shattuck Avenue, Oakland, CA

Fuel Leak Case No. RO0003066

Dear Ms. Detterman:

SOMA's "Fourth Quarter 2012 Groundwater Monitoring Report" for the subject site has been uploaded to the State's GeoTracker database and Alameda County's FTP site for your review.

Thank you for your time in reviewing our report. Please do not hesitate to call me at (925) 734-6400, if you have questions or comments.

Sincerely,

Mansour Sepehr, Ph.D.,PE Principal Hydrogeologist

cc: Mr. Athan Magganas w/report enclosure

Fourth Quarter 2012 Groundwater Monitoring Report

6501 Shattuck Avenue Oakland, California

January 16, 2013

Project 5031

Prepared for

Bruder LLC 2550 Appian Way,Suite 201 Pinole, California, 94564

PERJURY STATEMENT

Site Location: 6501 Shattuck Avenue, Oakland, California

Fourth Quarter 2012 Groundwater Monitoring Report

"I declare under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge".

Bruder LLC

Athan Magganas, Property Manager

2550 Appian Way, Suite 201 Pinole, California 94564

CERTIFICATION

SOMA Environmental Engineering, Inc. has prepared this document for Bruder LLC, at the request of Bruder LLC property owner Mr. Athan Magganas, for the property located at 6501 Shattuck Avenue in Oakland, California to comply with requirements of the Alameda County Environmental Health Department (ACEH) for the Fourth Quarter 2012 groundwater monitoring event.

Mansour Sepehr, PhD, PE Principal Hydrogeologist

TABLE OF CONTENTS

CERTIFICATION	i
TABLE OF CONTENTS	ii
LIST OF FIGURES	
LIST OF TABLES	iii
LIST OF APPENDICES	iii
1. INTRODUCTION	1
1.1 Previous Activities1.2 Summary of Field Activities and Laboratory Analysis	2
1.2.1 Field Activities	2 2
2. RESULTS	
Field Measurements	
3. CONCLUSIONS AND RECOMMENDATIONS	4
4. REPORT LIMITATIONS	4

LIST OF FIGURES

Figure 1	Site Vicinity Map
Figure 2	Site Map Showing Excavation Extent, Locations of Former USTs, Soil Borings, and Groundwater Monitoring Wells
Figure 3	Groundwater Elevation Contour Map in Feet, December 20, 2012
Figure 4	Map Showing TPH-g and 1,2-DCA Concentrations in Groundwater December 20, 2012

LIST OF TABLES

Table 1 Historical Groundwater Analytical Results

LIST OF APPENDICES

- Appendix A Standard Operating Procedures for Conducting Groundwater Monitoring Activities
- Appendix B Tables of Elevations and Coordinates on Wells, Field
 Measurements of Physical and Chemical Parameters of the
 Groundwater Samples and Groundwater Gradient Calculations
- Appendix C Laboratory Report and Chain of Custody Form

1. INTRODUCTION

SOMA Environmental Engineering, Inc. (SOMA) has prepared this report on behalf of Bruder LLC property owner, Mr. Athan Magganas, for the site located at 6501 Shattuck Ave., Oakland, California. The site is located at the northwest quadrant of the intersection of Shattuck Avenue and 65th Street near the common municipal limits of Oakland and Berkeley, approximately 3.25 miles north-northeast of the downtown Oakland commercial district. Former underground storage tank (UST) locations and site features are shown in Figure 2.

This report summarizes results of the Fourth Quarter 2012 groundwater monitoring event conducted at the site on December 20, 2012. It includes physical and chemical properties and biodegradation parameters measured in the field for each groundwater sample and laboratory analytical results for groundwater samples.

1.1 Previous Activities

According to the Phase I Environmental Site Assessment Report dated January 26, 2007, prepared for the site by RGA Environmental, the site was redeveloped from a single-family residential property to a service station in 1933. The total period of operation of the service station could not be precisely determined from available historical sources, but based on the City Directory Abstract, the service station appears to have been converted to a repair shop and used car sales facility during the mid-1980s. The facility has operated as East Bay Smog Center and Auto Repair since 2000.

In September 2009, Controlled Environmental Services (CES) obtained permits for removal of six steel USTs located at the subject site. According to the report prepared by CES, dated October 23, 2009, two 1,000-gallon gasoline USTs, three 2,000-gallon gasoline USTs, and one 500-gallon waste oil UST were removed.

In June 2011, SOMA advanced six soil borings, B-4 through B-9, and collected soil and groundwater samples for analysis of TPHs and VOCs. Based on results of soil and groundwater investigation conducted in the vicinity of the former USTs, it was determined that petroleum-hydrocarbon contamination still exists in soil and groundwater beneath the site.

In October 2011, remedial excavation was conducted at the site. A total of 770 tons of PHC-impacted soils were excavated and disposed of off-site at Potrero Hills Landfill. The excavated area was backfilled and compacted with pre-tested clayey backfill material. Confirmation soil sampling indicated that all shallow

residual PHC soil contamination has been removed from the area in the vicinity of former USTs.

1.2 Summary of Field Activities and Laboratory Analysis

1.2.1 Field Activities

On December 20, 2012, three monitoring wells (MW-1, MW-2, and MW-3) were measured for depth to groundwater. Additional field measurements and groundwater samples were collected from all three wells. Properties measured in the field were Dissolved oxygen (DO), pH, temperature, electrical conductivity (EC), turbidity, and oxidation and reduction potential (ORP). This monitoring event was conducted in accordance with procedures and guidelines of Alameda County Environmental Health Department (ACEHD).

To evaluate the state of biodegradation processes in the subsurface, biodegradation parameters such as dissolved oxygen (DO), turbidity, and oxidation reduction potential (ORP) were measured.

Figure 2 shows well locations. Appendix A details groundwater monitoring procedures followed during this event.

Purged groundwater was temporarily stored on-site in a 55-gallon drum.

1.2.2 Laboratory Analysis

Curtis and Tompkins Laboratories, a California state-certified laboratory, analyzed groundwater samples for the following: TPH-g, TPH as diesel (TPH-d), and TPH as motor Oil (TPH-mo); Full list of VOCs by EPA Method 8260 (including BTEX (benzene, toluene, ethylbenzene, and total xylenes), and MtBE). TPH-g, TPH-d, and TPH-mo were analyzed using EPA Method 8015B.

2. RESULTS

Results of field measurements and laboratory analyses for the groundwater monitoring event conducted on December 20, 2012 follow below.

2.1 Field Measurements

Monitoring wells MW-1 through MW-3 were measured for depth to groundwater (Table 1). Depths ranged from 2.94 feet in MW-1 to 6.61 feet in MW-2. Groundwater elevations ranged from 123.71 feet in MW-2 to 126.79 feet in MW-3.

Figure 3 displays the groundwater elevation contour map. The groundwater flow direction is northwesterly at a gradient of approximately 0.087 feet/feet. Since the previous monitoring event (September 2012), Groundwater flow direction has shifted from westerly to northwesterly and the gradient has increased. Appendix B shows field measurements, biodegradation parameter measurements and gradient calculations.

The more positive the redox potential of an electron acceptor, the more energetically favorable is the reaction utilizing that electron acceptor. The most energetically preferred electron acceptor for redox reactions is DO. Negative redox potentials indicate that contaminants in the groundwater are conducive to anaerobic biodegradation. Positive redox potentials are more energetically favorable in utilizing electron acceptors during chemical reactions. This promotes the removal of organic mass from the contaminated groundwater by indigenous bacteria in the subsurface during the release of the transfer of electrons. Evaluating the distribution of electron acceptors can provide evidence of where, and to what extent, hydrocarbon biodegradation is occurring.

Once stabilization of the existing aquifer was achieved, upon terminating the purge cycle at each well, DO and ORP readings were as follows: DO ranged from 0.42 mg/L in MW-2 to 0.66 mg/L in MW-1. ORP showed positive redox potentials in MW-1 and MW-3 and negative redox potential in MW-2.

2.2 Laboratory Analysis

Groundwater analytical data for this monitoring event is shown in Table 1. Appendix C includes the laboratory report and chain of custody form.

TPH-g was detected in MW-2 at 76 μ g/L and was below laboratory-reporting limits in MW-1 and MW-3. Figure 4 shows a map of TPH-g concentrations in groundwater. Since the previous monitoring event (September 2012), TPH-g has increased from below laboratory-reporting limit to 76 μ g/L.

During analytical testing of TPH-g, groundwater sample from MW-2 exhibited chromatographic pattern that did not resemble standard. Refer to the laboratory report in Appendix C for further clarification of gasoline testing and results.

1,2-DCA was detected in MW-1 at a low level of 0.9 μ g/L and was below laboratory-reporting limits in MW-2 and MW-3. Figure 4 shows a map of 1,2-DCA concentrations in groundwater. Since the previous monitoring event (September 2012), 1,2-DCA has decreased from 1.3 μ g/L to 0.9 μ g/L.

TPH-d, TPH-mo, and all other VOCs were below laboratory reporting-limit in MW-1, MW-2, and MW-3, similar to the previous monitoring event (September 2012).

3. CONCLUSIONS AND RECOMMENDATIONS

Conclusions and recommendations based on results of Fourth Quarter 2012 groundwater monitoring are summarized below.

- In general, the groundwater flow direction is northwesterly at a gradient of 0.087 feet/feet.
- TPH-g has increased in MW-2 from below laboratory-reporting limit to 76 μg/L and 1,2-DCA has decreased in MW-1 from 1.3 μg/L to 0.9 μg/L, since the previous monitoring event (September 2012).
- Other contaminant concentrations were below laboratory reporting-limits in all monitoring wells.
- SOMA recommends conducting two more rounds of groundwater monitoring in order to complete four quarterly groundwater monitoring events at the site as previously recommended in the Remedial excavation report dated January 9, 2012.

4. REPORT LIMITATIONS

This report is the summary of work done by SOMA, including observations and descriptions of site conditions. It includes analytical results produced by Curtis and Tompkins, Laboratories for the current groundwater monitoring event. Quantities and locations of wells were selected to provide the required information, but may not be completely representative of entire site conditions. All conclusions and recommendations are based on results of laboratory analysis. Conclusions beyond those specifically stated in this document should not be inferred from this report.

SOMA warrants that services were provided in accordance with generally accepted environmental engineering and consulting practices at the time of this sampling.

Figures

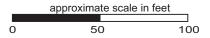
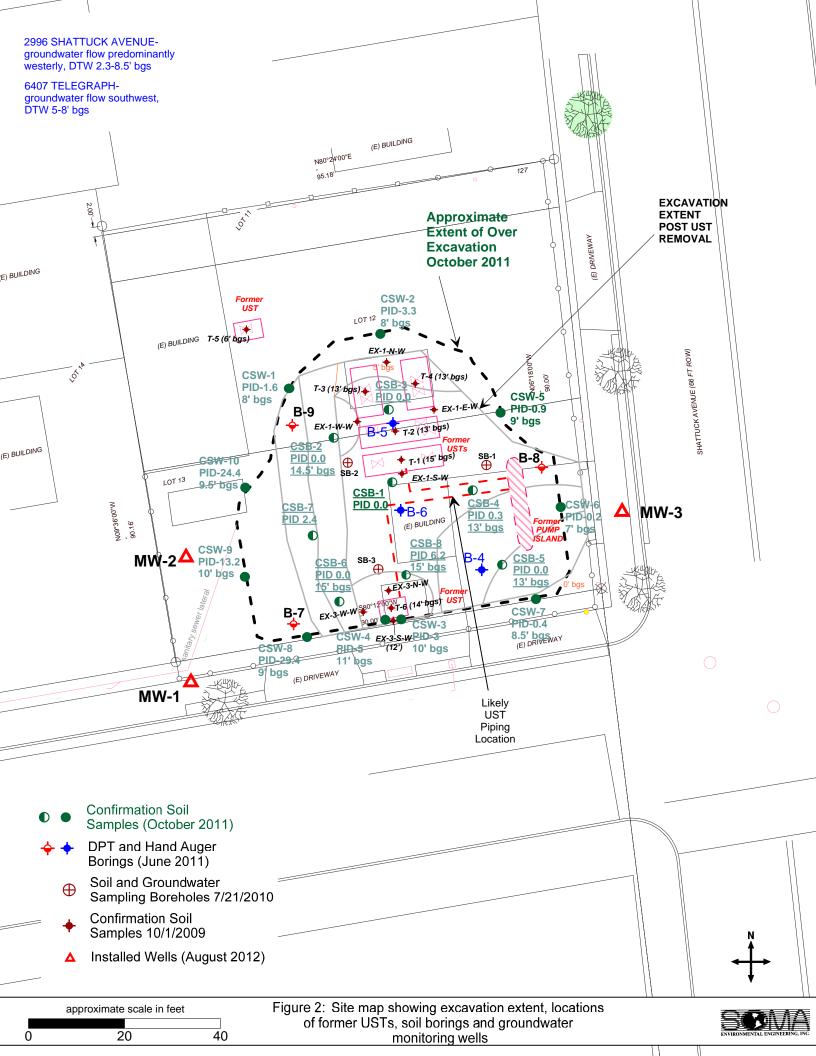
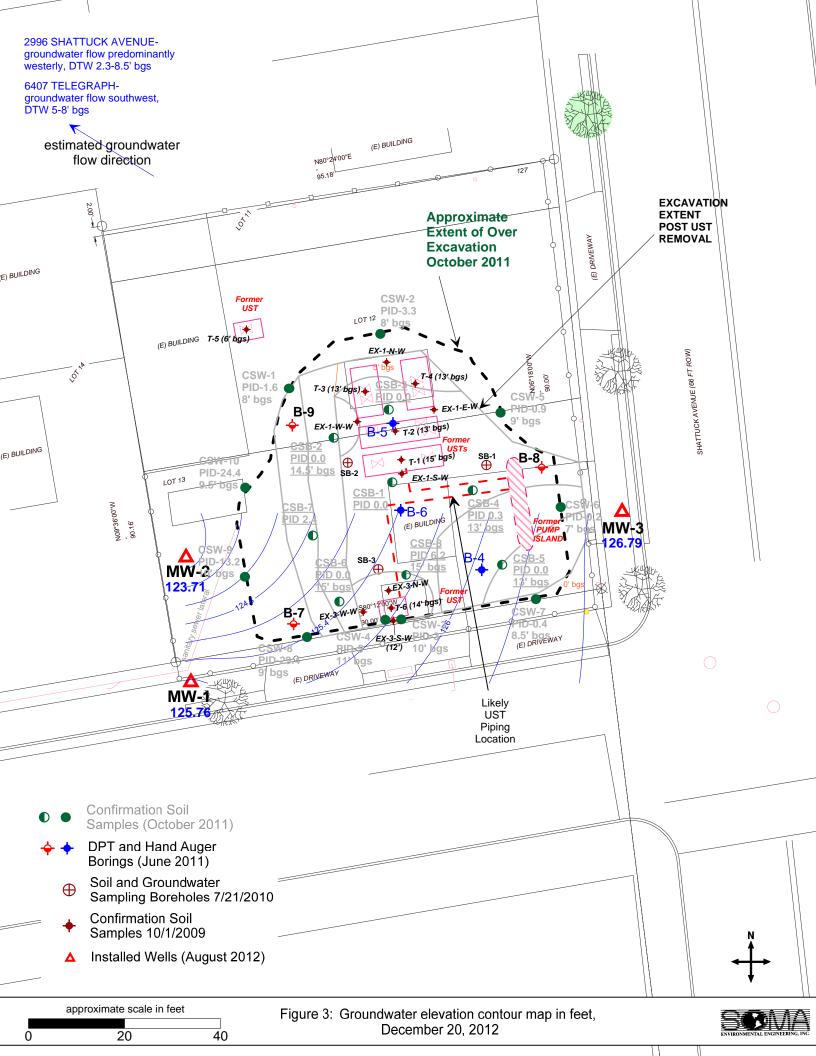
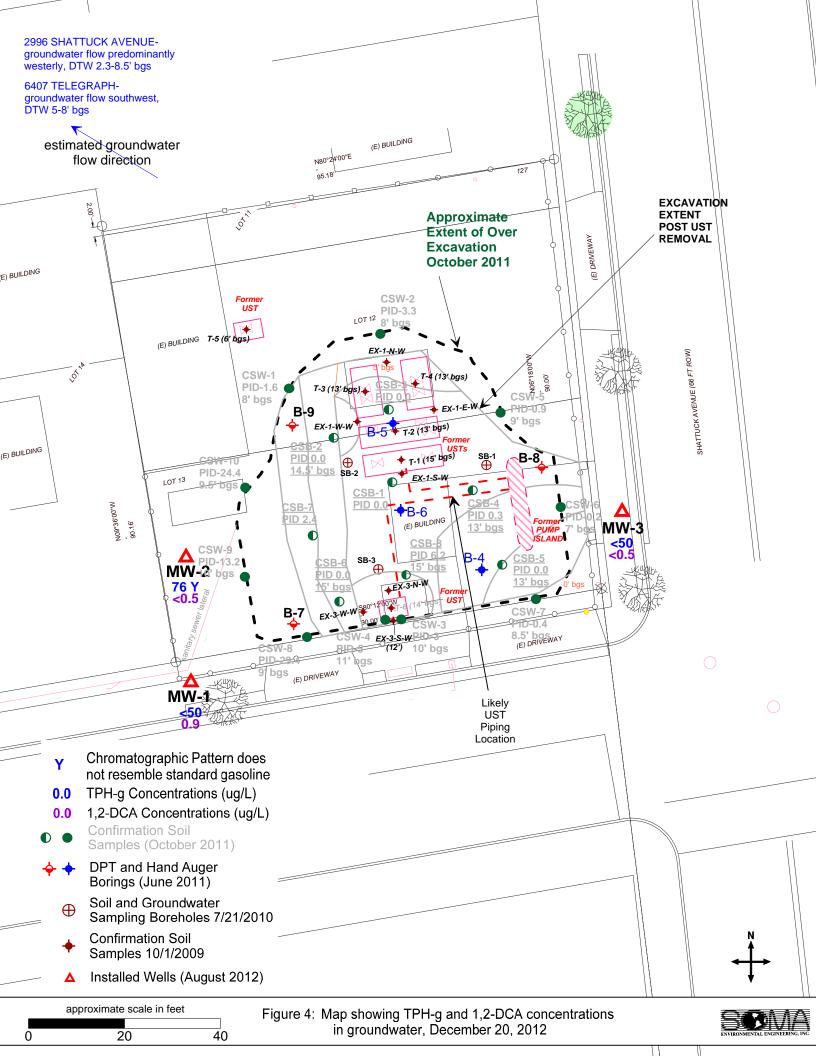





Figure 1: Site vicinity map.

Tables

Table 1 Groundwater Analytical Results 6501 Shattuck Ave, Oakland, CA

		Top of Casing Elevation	Depth to Groundwater	Groundwater	TPH-g	TPH-d	TPH-mo	Benzene	Toluene	Ethylbenz	Xylenes	MtBE	1,2-DCA	
Monitoring Well	Date	(Ft.)	(Ft.)	Elevation	μg/L	μg/L	μg/L	μg/L	μg/L	ene μg/L	μg/L	μg/L	μg/L	EDB μg/L
MW-1	9/11/2012	128.70	6.14	122.56	<50	<52	<310	<0.5	<0.5	<0.5	<0.5	<0.5	1.30	<0.5
	12/20/2012	128.70	2.94	125.76	<50	<51	<310	<0.5	<0.5	<0.5	<0.5	<0.5	0.90	<0.5
MW-2	9/11/2012	130.32	7.81	122.51	<50	<50	<300	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	12/20/2012	130.32	6.61	123.71	76 ^Y	<51	<310	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
							-							
MW-3	9/11/2012	131.34	7.89	123.45	<50	<53	<320	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	12/20/2012	131.34	4.55	126.79	<50	<51	<310	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5

Note:

< : Below Laboratory Reporting Limit (Method Detection Limit)

All other VOCs were below laboratory-reporting limits in groundwater samples

Appendix A

Standard Operating Procedures for Conducting Groundwater Monitoring Activities

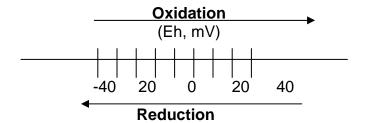
Standard Operating Procedures for Conducting Groundwater Monitoring Activities

Water Level Measurements

Prior to measurement of groundwater depth at each well, equalization with the surrounding aquifer must be achieved. Initially, the well cap is removed and the pressure is allowed to dissipate, creating a more stable water table level within the well. After about 10-15 minutes, once the water level in the well stabilizes, the depth to groundwater is measured from the top of the casing to the nearest 0.01 foot using an electric sounder.

Purging and Field Measurements

Prior to sample collection, each well is purged using a battery-operated, 2-inch-diameter pump (Model ES-60 DC). During purging, groundwater is measured for parameters such as dissolved oxygen (DO), pH, temperature, electrical conductivity (EC), and oxygen-reduction potential (ORP) using a Hanna HI-9828 multi-parameter instrument. Turbidity is measured using a Hanna HI-98703 portable turbidimeter. The equipment is calibrated at the Site using standard solutions and procedures provided by the manufacturer.


The pH of groundwater has an effect on the activity of microbial populations in the groundwater. The groundwater temperature affects the metabolic activity of bacteria. The groundwater EC is directly related to the concentration of total dissolved solids (TDS) in solution.

There is a strong correlation between the turbidity level and the biological oxygen demand of natural water bodies. The main purpose for checking the turbidity level is to provide a general overview of the extent of the suspended solids in the groundwater.

ORP is the measure of the potential for an oxidation or reduction process to occur. In the oxidation process, a molecule or ion loses one or several electrons. In the reduction process, a molecule or ion gains one or several electrons. The unit of the redox potential is the volt or millivolt. The most important redox reaction in petroleum-contaminated groundwater is the oxidation of petroleum hydrocarbons in the presence of bacteria and free molecular oxygen. Because the solubility of O_2 in water is low (9 mg/L at 25 °C and 11 mg/L at 5 °C), and because the rate of O_2 replenishment in subsurface environments is limited, DO can be entirely consumed when the oxidation of only a small amount of petroleum hydrocarbons occurs.

Oxidation of petroleum hydrocarbons can still occur when all the dissolved O₂ in the groundwater is consumed; however, the oxidizing agents (i.e., the constituents that undergo reduction) now become NO₃, MnO₂, Fe (OH)₃, SO₄²⁻

and others (Freeze and Cherry, 1979). As these oxidizing agents are consumed, the groundwater environment becomes more and more reduced. If the process advances far enough, the environment may become so strongly reduced that the petroleum hydrocarbons undergo anaerobic degradation, resulting in the production of methane and carbon dioxide. The concept of oxidation and reduction in terms of changes in oxidation states is illustrated below.

Purging of wells continues until the parameters for DO, pH, temperature, EC, turbidity, and redox stabilize, or three casing volumes are purged.

Once stabilization occurs, the groundwater samples are also tested on-site for ferrous iron (Fe⁺²), nitrate (NO₃ $^{-1}$), and sulfate (SO₄ $^{-2}$) concentrations.

 ${\rm Fe^{+2}}$, ${\rm NO_3}^-$, and ${\rm SO_4}^{-2}$ are measured colorimetrically using the Hach Colorimeter Model 890, a microprocessor-controlled photometer suitable for colorimetric testing in the laboratory or the field. The required reagents for each specific test are provided in AccuVac ampuls.

Sampling

For sampling purposes, after purging a disposable polyethylene bailer is used to collect sufficient samples from each monitoring well for laboratory analyses. Groundwater samples are transferred into 40-mL VOA vials and preserved with hydrochloric acid. The vials are sealed to prevent air bubbles from developing within the headspace. For TPH-d analysis, groundwater samples are collected using 1-L or 500-mL, amber, nonpreserved glass containers. Samples are placed in an ice-filled cooler and maintained at 4°C. A chain of custody form for all samples is prepared to accompany the samples, which are promptly delivered to a California state-certified analytical laboratory.

Appendix B

Tables of elevations and coordinates on wells, Field
Measurements of Physical, Chemical and Biodegradation
Parameters of the Groundwater Samples and Groundwater
Gradient Calculations

DATE: 9/04/2012 JOB#

TABLE OF ELEVATIONS & COORDINATES ON MONITORING WELLS

SOMA ENVIRONMENTAL ENGINEERING 6501 SHATTUCK AVENUE OAKLAND, CA 94609

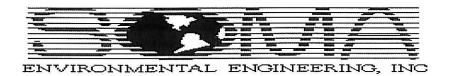
WELL ID #	NORTHING (FT.) / LATITUDE (D.DEG.)	EASTING (FT.) / LONGITUDE (D.DEG.)	ELEVATION (FT.)	DESCRIPTION
MW-1	2136901.934	6051727.243	128.70	2"PVC NOTCH NORTH SIDE
	N37.850339023	W122.266261635	129.19	SET PUNCH NORTH SIDE RIM
	200 MARIO - 10 cm 10 To X - 100 TO		129.22	CONC NORTH SIDE
MW-2	2136927.936	6051726.241	130.32	2" PVC NOTCH NORTH SIDE
	N37.850410368	W122.266266804	130.79	SET PUNCH NORTH SIDE RIM
			130.58	GRND NORTH SIDE
MW-3	2136937.443	6051817.078	131.34	2" PVC NOTCH NORTH SIDE
11111	N37.85044118	W122.26595287	131.72	SET PUNCH NORTH SIDE RIM
		***************************************	131.73	CONC NORTH SIDE
	TO SAME THE SAME TO SAME THE S			
				,

HORIZONTAL AND VERTICAL CONTROL:

COORDINATE VALUES ARE BASED ON THE CALIFORNIA COORDINATE SYSTEM, ZONE 3, NAD83. ELEVATIONS ARE NAVD 88 DATUM.

BASE STATIONS USED:

HT2918 BERKELEY H J HEINZ CO TOWER NORTHING 2,138,045.28, EASTING 6,045,147.46 GPS BASE200 MW-3 PUNCH NORTH SIDE NORTHING 2,136,937.769, EASTING 6,051,817.025, ELEVATION=131.724


BENCH MARK USED: CITY OF OAKLAND BM

MONUMENT 32 FEET AT THE NORTHWEST CORNER OF THE INTERSECTION OF SHATTUCK AVENUE AND ALCATRAZ AVENUE. ELEVATION=125.685'

EQUIPMENT USED: TRIMBLE GPS-R8 & TS S6, TOPCON AT-G2 LEVEL

Edgis Land Surveying

Land Surveying and Mapping 1374 Garland Avenue, Clovis, CA 93612 Phone (559) 803-2679 Fax (559) 222-2580 email: edgis@aol.com

No

No

No

Well No.:	MM-1	Project No.: 5031
Casing Diameter:	inch	Address: 6501 Shattuck Avenue
Depth of Well:	24.29 ft	Oakland, CA
Top of Casing Elevation:	128.70 ft	Date: December 20,2012
Depth to Groundwater:	2.94ft	Sampler: Lizzie Hightower
Groundwater Elevation:	125.76 ft	
Water Column Height:	21.35 ft	
Purged Volume:	gallons	
		101
Purging Method:	Bailer □	Pump & Geotech
Sampling Method:	Bailer □	Pump Geotech

Yes

Yes

□ Describe

□ Describe

□ Describe

Field Measurements:

Color:

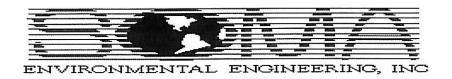
Sheen:

Odor:

Time	Volume	D.O.	pН	Temp	E.C.	Turb.	ORP
	(gallons)	mg/L		°C	(μS/cm)	NTU	
12:33	Start	rd Di	Waine	well	_		
12:39	1	2.78	6.890	18.37	726	13.5	+398.2
12,45	3	1.42	6.87	18.14	717	9.29	4456.3
12:51	5	0.96	6.93	18.28	790	10.1	4445.0
(2),57	7	0.78	6.95	18.32	867	11.1	4412.9
13:03	9	0.66	6.97	1838	864	11.0	+392.8
13,00	Same	sect					

Notes:

Casing Diameter:	2	inch		Address: 6501 Shattuck Avenue
Depth of Well:	24.	64 ft		Oakland, CA
Top of Casing Elevation:	130	<u>,32</u> ft		Date: December 20,2012
Depth to Groundwater:	_6.	61 ft		Sampler: Lizzie Hightower
Groundwater Elevation:	123	<u>171</u> ft		
Water Column Height:	18.	03_ft		
Purged Volume:	\Box	gallons		
Purging Method:	Baile	r 🗆		Pump & Geotch
Compline Mathada	Doile	I		Pump & Geotch
Sampling Method:	Baile	r u		Pullip 11 des 20
Color:	No		Yes	Describe Cloudy
Sheen:	No	TG/	Yes	□ Describe
Sileeli.	NO		162	Describe
Odor:	No	प्र	Yes	□ Describe


Project No.: 5031

Field Measurements:

Well No.:

Time	Volume	D.O.	рН	Temp	E.C.	Turb.	ORP
	(gallons)	mg/L		°C	(μS/cm)	NTU	
11:38	Starte	d pu	ming	vell			
11:44	1	0.97	7.17	17.28	855	46.4	-10.4
11:50	3	0.55	7.15	17.79	856	34.2	-25.6
11:56	5	0.46	7.15	17.33	853	17:78	-31.9
12:02	7	0.42	7.15	17.35	349	20.8	-30,5
12:07	Sam	pled					

Notes:

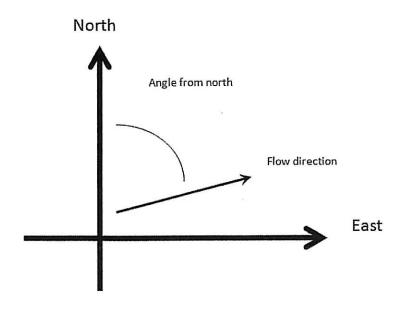
	100			
Well No.:	WN	1-3		Project No.: 5031
Casing Diameter:	_2	inch		Address: 6501 Shattuck Avenue
Depth of Well:	24.8	<u>10</u> ft		Oakland, CA
Top of Casing Elevation:	131.	34 ft		Date: December 20,2012
Depth to Groundwater:	4.5	55 _{ft}		Sampler: Lizzie Hightower
Groundwater Elevation:	126:	79_ft		
Water Column Height:	20.2	. 5 ft		
Purged Volume:	6	gallons		
Purging Method:	Baile	r 🗆		Pump of Geotech
				a Gental
Sampling Method:	Baile	r⊔		Pump M Clear Feb.
Color:	No		Yes	Describe Cloudy
01		rts/	V	U U
Sheen:	No	۳ /	Yes	□ Describe
Odor:	No		Yes	□ Describe

Field Measurements:

Time	Volume	D.O.	pН	Temp	E.C.	Turb.	ORP
	(gallons)	mg/L		°C	(μS/cm)	NTU	
10:15	Stava	ed p	ursiv	I well			
10'.21		2.24	7.88	18.62	634	261	+192.4
10:27	2	1.55	7.01	18.62	580	47.2	+1813
10:33	3	0.81	6.90	18.63	561	40.7	+174.2
10.3%	4	0.67	6.98	(8.63	583	66.3	+172.2
10:45	5	0.57	7.00	13.63	588	153	4174.3
10:51	6	0.52	6.99	18.62	565	272	f(753
Notes:	San	rpled					

EPA On-line Tools for Site Assessment Calculation

Hydraulic Gradient -- Magnitude and Direction


Gradient Calculation from fitting a plane to as many as thirty points

$$a x_1 + b y_1 + c = h_1$$

 $a x_2 + b y_2 + c = h_2$
 $a x_3 + b y_3 + c = h_3$
...
 $a x_{30} + b y_{30} + c = h_{30}$

where $(\boldsymbol{x}_i,\boldsymbol{y}_i)$ are the coordinates of the well and \boldsymbol{h}_i is the head

The coefficients a, b, and c are calculated by a least-squares fitting of the the data to a plane

The gradient is calculated from the square root of $(a^2 + b^2)$ and the angle from the arctangent of a/b or b/a depending on the quadrant

Inputs	
Example Data Set 1 Save Data	Example Data Set 2 Calculate Clear Recall Data Go Back
Site Name	6501 Shattuck Ave, Oak
Date	December 20, 2012 Current Date
Calculation basis	Head
Coordinates ft	
I.D.	x-coordinate y-coordinate head ft
1) MW-1	6775.300744 4740.653962 125.76
2) MW-2	6774.282756 4766.867171 123.71
3) MW-3	6865.138245 4776.029069 126.79
4)	
5)	
6)	
7)	
8)	
9)	
10)	
11)	
12)	
13)	
14)	

15)		
16)		
17)		
18)		
19)		
20)		
21)		
22)		
23)		
24)		
25)		
26)		
27)		
28)		
29)		
30)		

Results

Number of Points Used in Calculation

Max. Difference Between Head Values

Gradient Magnitude (i)

Flow direction as degrees from North (positive y axis)

Coefficient of Determination (R²)

3

1.00

WICHS

Last updated on 1/10/2013

Appendix C

Laboratory Report and Chain of Custody Form

Curtis & Tompkins, Ltd., Analytical Laboratories, Since 1878

2323 Fifth Street, Berkeley, CA 94710, Phone (510) 486-0900

Laboratory Job Number 242117 ANALYTICAL REPORT

SOMA Environmental Engineering Inc. Project : 5031

6620 Owens Dr. Location: 6501 Shattuck Ave., Oakland

Pleasanton, CA 94588 Level : II

Sample ID	<u>Lab ID</u>
MW-1	242117-001
MW-2	242117-002
MW-3	242117-003

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis. This report may be reproduced only in its entirety.

Signature:

Desiree N. Tetrault Project Manager (510) 486-0900

Deine 7. Tetralt

Date: 01/02/2013

NELAP # 01107CA

CASE NARRATIVE

Laboratory number: 242117

Client: SOMA Environmental Engineering Inc.

Project: 5031

Location: 6501 Shattuck Ave., Oakland

Request Date: 12/21/12 Samples Received: 12/21/12

This data package contains sample and QC results for three water samples, requested for the above referenced project on 12/21/12. The samples were received cold and intact.

TPH-Purgeables and/or BTXE by GC (EPA 8015B):

No analytical problems were encountered.

TPH-Extractables by GC (EPA 8015B):

No analytical problems were encountered.

Volatile Organics by GC/MS (EPA 8260B):

No analytical problems were encountered.

Curtis & Tompkins, Ltd.

Analytical Laboratory Since 1878 2323 Fifth Street Berkeley, CA 94710 (510)486-0900 Phone (510)486-0532 Fax

C&T LOGIN#__242117

Sampler: Lizzie Hightower

Project No: 5031

Project Name: 6501 Shattuck Ave., Oakland

Report To: Joyce Bobek

Company: **SOMA Environmental** 4-mo 8015

	The state of the s	i, outilatia	Comp	ully	•	OOW	FIIVIIO	1111110	IIIai			1 2	i	ľ				1 1		1	i
Turna	round Time: Standard		Telep	hon	e:	925-73	4-6400	.			_	뀨	8260								
			Fax:			925-73	4-6401					Ġ,							ŀ		
	T			M	atri			Pre	serv	ative		급									
Lab No.	Sample ID.	Sampling Time	Date	Soil	Waste	# c		H2SO,	HNO3	ICE		TPH-g, TPH-d, TPH-mo	VOCs (Full List)	:							
	MW-1	12/20/12	13:08	,	•	4 VOAS, mL An	2- 500 nber	*		*	1	*	*						T		П
	MW-2		12:07	,		4 VOAS, mL An	2- 500 , nber	*		*		*	*								П
	MW-3		(0:5b	,		4 VOAS, mL An	2- 500 , ber	*		*		*	*								П
											1										
											1										
											1		_			1					П
											1										
											1						1				П
Notes:	EDF OUTPUT REQUIRE	D		REL	INC	UISHED	BY:		<u> </u>		_	REC	EIV	ED B	└──└ Y:		i	i_			\dashv
	Silica-gel clean-up required			2	#	7,40			7704	2 211 DATE/	TIME	1	al	~ L	المحق	en	١	2/2	1/12 DA	- 9 TE/TI	1:10 IME
				fu-	Q'	Just	<u>. </u>	121	21	DATE/	۱ ۲ TIME	h	N	7/	1	_		R	to bla	ر 15/11	195 IME
				10		1/2	2	17	7	ZAS' DATE/		- // 	X		1-		1	i	2/21 DA	2 2 TE/TI	SHO IME
			//	/	/										w	1/11	Jy.	0/		P2 (

COOLER RECEIPT CHECKLIST

Login #	242117	Date	Received _	/2/1	1/12	Number o	of cooler	s	
		,				501)4540	160	
Date Opened 1/2 Date Logged in_	lasti.	Dry (mmimt)	12/1	/	(n! n)				.//
Date Opened	2/2//	Dy (ргии)_	- F		_(sign)_	4	ere.		/
Date Logged in_	12/2012	By (print)_	86		_ (sign)	l. X1	///	7	
1. Did cooler cor Shipping		shipping sli	p (airbill, etc	c)			YES	< No	}
2A. Were custod How man	ly seals pre	esent?	☐ YES (ci	rcle)	on cooler	on san Date	nples	E] NO
2B. Were custod	ly seals inta	ect unon ar	rival?				YES	NO	- MA
3. Were custody	naners dry	and intact	when receiv	ed?			-AES		
4. Were custody	napers fill	ed out prop	erly (ink sid	rned et	c)2				
5. Is the project	identifiable	e from ouet	edy nonora?	Ziieu, et Zif ao f	11 out ton	of forms)		NO	
5. Is the project					m out top	or 10tm)_	_ YES	NU	,
6. Indicate the pa	acking in co	ooier: (11 o	tner, describ	e)					
☐ Bubble	: Wrap	Foam	blocks	Ba	gs		None		
☐ Cloth n	naterial	☐ Cardb	oard	☐ Sty	rofoam		Paper to	wels	
7. Temperature d	locumentat	ion: *	Notify PM	if temp	erature ex	ceeds 6°C	}		
			☐ Blue/Gel			Temp(°C			
☐ Sampl	les Receive	d on ice &	cold withou	t a tem	perature bl	lank: temr	n taken	with	IR gun
			ectly from th						ire guii
Q Wara Mathad	1 5025 game	nlina aanta		40				TEG	XIO)
8. Were Method					<u> </u>			YES	NO
II IEO, V	vnat ume w	ere they tra	ansferred to	ireezer	·			(F)	7.70
9. Did all bottles	arrive unb	roken/unop	ened?					ÆS)	
10. Are there any								YES	(IO)
11. Are samples	in the appro	opriate con	tainers for in	ndicated	tests?		{	ES	NO
12. Are sample la	abels prese	nt, in good	condition ar	id comp	olete?			Œ8	NO
13. Do the sampl								ES .	NO
14. Was sufficier	at amount o	of sample s	ent for tests:	request	ed?			_	NO
15. Are the samp	les appropi	riately pres	erved?				_YES)		
16. Did you chec				each sar	nple?		_YES		
17. Did you docu	ıment your	preservativ	e check? _			·	_YES	NO	MATA)
18. Did you chan	ige the hold	l time in LI	MS for unpr	eserve	l VOAs? _		_YES	NO	M
19. Did you chan	ige the hold	l time in LI	MS for prese	erved te	erracores?		_YES	NO (N7A)
20. Are bubbles >	> 6mm abse	ent in VOA	samples? _				_YE}	NO Ì	N/A
Was the clien	nt contacted	l concernin	g this sample	e delive	ery?		\mathcal{L}_{Y}	ES	NO)
If YES, V	Vho was ca	lled?		By			Date:		
COMMENTS	,								

							·		

Total Volatile Hydrocarbons Lab #: 242117 6501 Shattuck Ave., Oakland Location: EPA 5030B Client: Prep: SOMA Environmental Engineering Inc. Project#: 5031 Analysis: EPA 8015B 194141 Matrix: Water Batch#: 12/20/12 Units: ug/L Sampled: Diln Fac: 1.000 Received: 12/21/12

Field ID: MW-1 Lab ID: 242117-001 Type: SAMPLE Analyzed: 12/27/12

Analyte Result RL
Gasoline C7-C12 ND 50

Surrogate %REC Limits
Bromofluorobenzene (FID) 95 75-124

Field ID: MW-2 Lab ID: 242117-002 Type: SAMPLE Analyzed: 12/27/12

 Analyte
 Result
 RL

 Gasoline C7-C12
 76 Y
 50

Surrogate%RECLimitsBromofluorobenzene (FID)10075-124

Field ID: MW-3 Lab ID: 242117-003 Type: SAMPLE Analyzed: 12/27/12

Analyte Result RL
Gasoline C7-C12 ND 50

Surrogate%RECLimitsBromofluorobenzene (FID)10075-124

Type: BLANK Analyzed: 12/26/12

Lab ID: QC671310

Analyte Result RL
Gasoline C7-C12 ND 50

Surrogate %REC Limits
Bromofluorobenzene (FID) 101 75-124

Y= Sample exhibits chromatographic pattern which does not resemble standard

ND= Not Detected

RL= Reporting Limit

Page 1 of 1

Batch QC Report

	Total Volatil	e Hydrocarbons	
Lab #:	242117	Location:	6501 Shattuck Ave., Oakland
Client:	SOMA Environmental Engineering Inc.	Prep:	EPA 5030B
Project#:	5031	Analysis:	EPA 8015B
Type:	LCS	Diln Fac:	1.000
Lab ID:	QC671309	Batch#:	194141
Matrix:	Water	Analyzed:	12/26/12
Units:	ug/L		

Analyte	Spiked	Result	%REC	Limits
Gasoline C7-C12	1,000	905.3	91	80-120

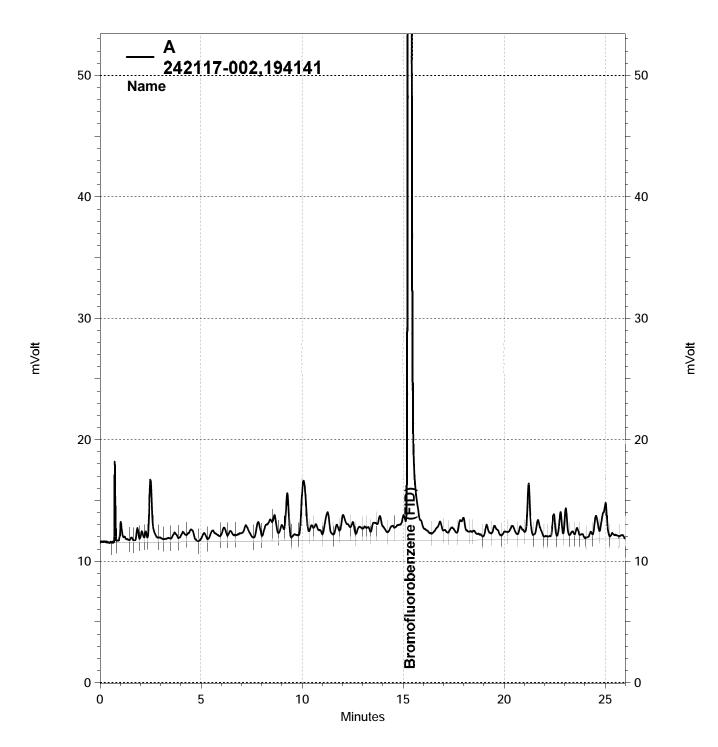
Surrogate	%REC	Limits
Bromofluorobenzene (FID)	103	75-124

Page 1 of 1 4.0

Batch QC Report

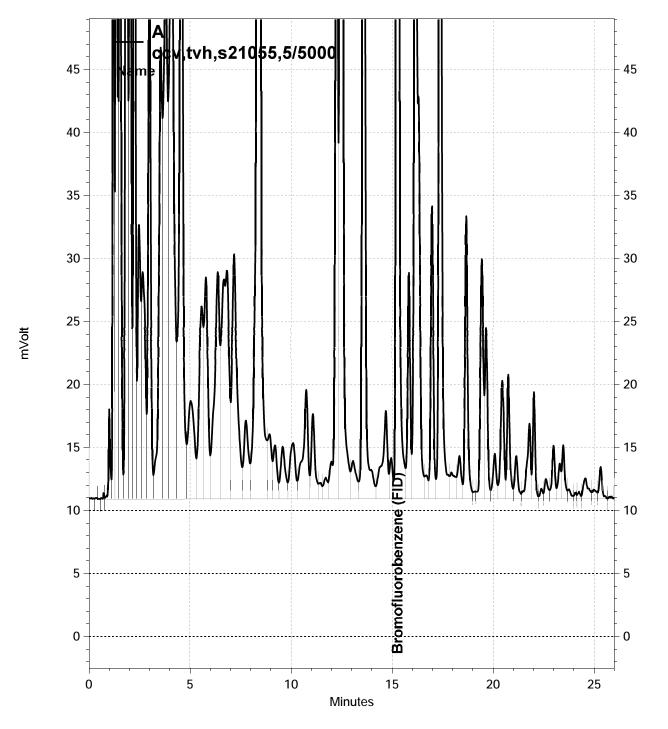
Total Volatile Hydrocarbons									
Lab #: 242117	7	Location:	6501 Shattuck Ave., Oakland						
Client: SOMA E	Environmental Engineering Inc.	Prep:	EPA 5030B						
Project#: 5031		Analysis:	EPA 8015B						
Field ID:	ZZZZZZZZZ	Batch#:	194141						
MSS Lab ID:	242102-002	Sampled:	12/20/12						
Matrix:	Water	Received:	12/21/12						
Units:	ug/L	Analyzed:	12/26/12						
Diln Fac:	1.000								

Type: MS


Lab ID: QC671311

Analyte	MSS Result	Spiked	Result	%REC	Limits
Gasoline C7-C12	35.09	2,000	1,980	97	71-120

Surrogate	%REC	Limits	
Bromofluorobenzene (FID)	103	75-124	


Type: MSD Lab ID: QC671312

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Gasoline C7-C12	2,000	1,977	97	71-120	0	22

\Lims\gdrive\ezchrom\Projects\GC07\Data\361-030, A

\\Lims\gdrive\ezchrom\Projects\GC07\Data\361-006, A

Total Extractable Hydrocarbons 6501 Shattuck Ave., Oakland EPA 3520C Lab #: 242117 Location: Client: SOMA Environmental Engineering Inc. Prep: Project#: 5031 EPA 8015B Analysis: 12/20/12 Matrix: Water Sampled: 12/21/12 Units: ug/L Received: Diln Fac: 1.000 12/26/12 Prepared: Batch#: 194140 12/27/12 Analyzed:

Field ID: MW-1 Lab ID: 242117-001 Type: SAMPLE Cleanup Method: EPA 3630C

Analyte	Result	RL	
Diesel C10-C24	ND	51	
Motor Oil C24-C36	ND	310	

Surrogate	%REC	Limits
o-Terphenyl	85	61-134

Field ID: MW-2 Lab ID: 242117-002 Type: SAMPLE Cleanup Method: EPA 3630C

Analyte	Result	RL	
Diesel C10-C24	ND	51	
Motor Oil C24-C36	ND	310	

Surrogate	%REC	Limits
o-Terphenyl	107	61-134

Field ID: MW-3 Lab ID: 242117-003 Type: SAMPLE Cleanup Method: EPA 3630C

Analyte	Result	RL	
Diesel C10-C24	ND	51	
Motor Oil C24-C36	ND	310	

Surrogate	%REC	Limits
o-Terphenyl	91	61-134

Type: BLANK Cleanup Method: EPA 3630C Lab ID: QC671304

 Analyte
 Result
 RL

 Diesel C10-C24
 ND
 50

 Motor Oil C24-C36
 ND
 300

Surrogate	%REC	Limits
o-Terphenyl	103	61-134

ND= Not Detected RL= Reporting Limit Page 1 of 1

		Total Extracta	ble Hydrocarb	ons
Lab #:	242117		Location:	6501 Shattuck Ave., Oakland
Client:	SOMA Environmental	Engineering Inc.	Prep:	EPA 3520C
Project#:	5031		Analysis:	EPA 8015B
Matrix:	Water		Batch#:	194140
Units:	ug/L		Prepared:	12/26/12
Diln Fac:	1.000		Analyzed:	12/27/12

Type: BS Cleanup Method: EPA 3630C

Lab ID: QC671305

Analyte	Spiked	Result	%REC	Limits
Diesel C10-C24	2,500	2,264	91	60-120

Surrogate	%REC	Limits
o-Terphenyl	112	61-134

Type: BSD Cleanup Method: EPA 3630C

Lab ID: QC671306

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Diesel C10-C24	2,500	2,173	87	60-120	4	35

Surrogate	%REC	Limits	
o-Terphenyl	107	61-134	

Purgeable Organics by GC/MS							
Lab #:	242117		Location:	6501 Shattuck Ave., Oakland			
Client:	SOMA Environmental	Engineering Inc.	Prep:	EPA 5030B			
Project#:	5031		Analysis:	EPA 8260B			
Field ID:	MW-1		Batch#:	194189			
Lab ID:	242117-001		Sampled:	12/20/12			
Matrix:	Water		Received:	12/21/12			
Units:	ug/L		Analyzed:	12/28/12			
Diln Fac:	1.000						

Analyte	Result	RL	
Freon 12	ND ND	1.0	
Chloromethane	ND	1.0	
Vinyl Chloride	ND ND	0.5	
Bromomethane	ND	1.0	
Chloroethane	ND	1.0	
Trichlorofluoromethane	ND	1.0	
Acetone	ND ND	10	
Freon 113	ND	2.0	
1,1-Dichloroethene	ND	0.5	
Methylene Chloride	ND ND	10	
Carbon Disulfide		0.5	
MTBE	ND	0.5	
	ND		
trans-1,2-Dichloroethene	ND	0.5	
Vinyl Acetate	ND	10	
1,1-Dichloroethane	ND	0.5	
2-Butanone	ND	10	
cis-1,2-Dichloroethene	ND	0.5	
2,2-Dichloropropane	ND	0.5	
Chloroform	ND	0.5	
Bromochloromethane	ND	0.5	
1,1,1-Trichloroethane	ND	0.5	
1,1-Dichloropropene	ND	0.5	
Carbon Tetrachloride	ND	0.5	
1,2-Dichloroethane	0.9	0.5	
Benzene	ND	0.5	
Trichloroethene	ND	0.5	
1,2-Dichloropropane	ND	0.5	
Bromodichloromethane	ND	0.5	
Dibromomethane	ND	0.5	
4-Methyl-2-Pentanone	ND	10	
cis-1,3-Dichloropropene	ND	0.5	
Toluene	ND	0.5	
trans-1,3-Dichloropropene	ND	0.5	
1,1,2-Trichloroethane	ND	0.5	
2-Hexanone	ND	10	
1,3-Dichloropropane	ND	0.5	
Tetrachloroethene	ND	0.5	

ND= Not Detected RL= Reporting Limit

Page 1 of 2

Purgeable Organics by GC/MS							
Lab #:	242117		Location:	6501 Shattuck Ave., Oakland			
Client:	SOMA Environmental	Engineering Inc.	Prep:	EPA 5030B			
Project#:	5031		Analysis:	EPA 8260B			
Field ID:	MW-1		Batch#:	194189			
Lab ID:	242117-001		Sampled:	12/20/12			
Matrix:	Water		Received:	12/21/12			
Units:	ug/L		Analyzed:	12/28/12			
Diln Fac:	1.000						

Analyte	Result	RL	
Dibromochloromethane	ND	0.5	
1,2-Dibromoethane	ND	0.5	
Chlorobenzene	ND	0.5	
1,1,1,2-Tetrachloroethane	ND	0.5	
Ethylbenzene	ND	0.5	
m,p-Xylenes	ND	0.5	
o-Xylene	ND	0.5	
Styrene	ND	0.5	
Bromoform	ND	1.0	
Isopropylbenzene	ND	0.5	
1,1,2,2-Tetrachloroethane	ND	0.5	
1,2,3-Trichloropropane	ND	0.5	
Propylbenzene	ND	0.5	
Bromobenzene	ND	0.5	
1,3,5-Trimethylbenzene	ND	0.5	
2-Chlorotoluene	ND	0.5	
4-Chlorotoluene	ND	0.5	
tert-Butylbenzene	ND	0.5	
1,2,4-Trimethylbenzene	ND	0.5	
sec-Butylbenzene	ND	0.5	
para-Isopropyl Toluene	ND	0.5	
1,3-Dichlorobenzene	ND	0.5	
1,4-Dichlorobenzene	ND	0.5	
n-Butylbenzene	ND	0.5	
1,2-Dichlorobenzene	ND	0.5	
1,2-Dibromo-3-Chloropropane	ND	2.0	
1,2,4-Trichlorobenzene	ND	0.5	
Hexachlorobutadiene	ND	2.0	
Naphthalene	ND	2.0	
1,2,3-Trichlorobenzene	ND	0.5	

Surrogate	%REC	Limits	
Dibromofluoromethane	107	80-127	
1,2-Dichloroethane-d4	106	69-148	
Toluene-d8	101	80-120	
Bromofluorobenzene	104	80-121	

RL= Reporting Limit

Page 2 of 2

Purgeable Organics by GC/MS							
Lab #:	242117		Location:	6501 Shattuck Ave., Oakland			
Client:	SOMA Environmental	Engineering Inc.	Prep:	EPA 5030B			
Project#:	5031		Analysis:	EPA 8260B			
Field ID:	MW-2		Batch#:	194189			
Lab ID:	242117-002		Sampled:	12/20/12			
Matrix:	Water		Received:	12/21/12			
Units:	ug/L		Analyzed:	12/28/12			
Diln Fac:	1.000						

Analyte	Result	RL	
Freon 12	ND	1.0	
Chloromethane	ND	1.0	
Vinyl Chloride	ND	0.5	
Bromomethane	ND	1.0	
Chloroethane	ND	1.0	
Trichlorofluoromethane	ND	1.0	
Acetone	ND	10	
Freon 113	ND	2.0	
1,1-Dichloroethene	ND	0.5	
Methylene Chloride	ND	10	
Carbon Disulfide	ND	0.5	
MTBE	ND	0.5	
trans-1,2-Dichloroethene	ND	0.5	
Vinyl Acetate	ND	10	
1,1-Dichloroethane	ND	0.5	
2-Butanone	ND	10	
cis-1,2-Dichloroethene	ND	0.5	
2,2-Dichloropropane	ND	0.5	
Chloroform	ND	0.5	
Bromochloromethane	ND	0.5	
1,1,1-Trichloroethane	ND	0.5	
1,1-Dichloropropene	ND	0.5	
Carbon Tetrachloride	ND	0.5	
1,2-Dichloroethane	ND	0.5	
Benzene	ND	0.5	
Trichloroethene	ND	0.5	
1,2-Dichloropropane	ND	0.5	
Bromodichloromethane	ND	0.5	
Dibromomethane	ND	0.5	
4-Methyl-2-Pentanone	ND	10	
cis-1,3-Dichloropropene	ND	0.5	
Toluene	ND	0.5	
trans-1,3-Dichloropropene	ND ND	0.5	
1,1,2-Trichloroethane	ND	0.5	
2-Hexanone	ND	10	
1,3-Dichloropropane	ND	0.5	
Tetrachloroethene	ND	0.5	
retrachioroethene	ДИ	0.5	

RL= Reporting Limit

Page 1 of 2

Purgeable Organics by GC/MS							
Lab #:	242117		Location:	6501 Shattuck Ave., Oakland			
Client:	SOMA Environmental	Engineering Inc.	Prep:	EPA 5030B			
Project#:	5031		Analysis:	EPA 8260B			
Field ID:	MW-2		Batch#:	194189			
Lab ID:	242117-002		Sampled:	12/20/12			
Matrix:	Water		Received:	12/21/12			
Units:	ug/L		Analyzed:	12/28/12			
Diln Fac:	1.000						

Analyte	Result	RL	
Dibromochloromethane	ND	0.5	
1,2-Dibromoethane	ND	0.5	
Chlorobenzene	ND	0.5	
1,1,1,2-Tetrachloroethane	ND	0.5	
Ethylbenzene	ND	0.5	
m,p-Xylenes	ND	0.5	
o-Xylene	ND	0.5	
Styrene	ND	0.5	
Bromoform	ND	1.0	
Isopropylbenzene	ND	0.5	
1,1,2,2-Tetrachloroethane	ND	0.5	
1,2,3-Trichloropropane	ND	0.5	
Propylbenzene	ND	0.5	
Bromobenzene	ND	0.5	
1,3,5-Trimethylbenzene	ND	0.5	
2-Chlorotoluene	ND	0.5	
4-Chlorotoluene	ND	0.5	
tert-Butylbenzene	ND	0.5	
1,2,4-Trimethylbenzene	ND	0.5	
sec-Butylbenzene	ND	0.5	
para-Isopropyl Toluene	ND	0.5	
1,3-Dichlorobenzene	ND	0.5	
1,4-Dichlorobenzene	ND	0.5	
n-Butylbenzene	ND	0.5	
1,2-Dichlorobenzene	ND	0.5	
1,2-Dibromo-3-Chloropropane	ND	2.0	
1,2,4-Trichlorobenzene	ND	0.5	
Hexachlorobutadiene	ND	2.0	
Naphthalene	ND	2.0	
1,2,3-Trichlorobenzene	ND	0.5	

Surrogate	%REC	Limits	
Dibromofluoromethane	108	80-127	
1,2-Dichloroethane-d4	107	69-148	
Toluene-d8	100	80-120	
Bromofluorobenzene	104	80-121	

RL= Reporting Limit

Page 2 of 2

Purgeable Organics by GC/MS							
Lab #:	242117		Location:	6501 Shattuck Ave., Oakland			
Client:	SOMA Environmental	Engineering Inc.	Prep:	EPA 5030B			
Project#:	5031		Analysis:	EPA 8260B			
Field ID:	MW-3		Batch#:	194189			
Lab ID:	242117-003		Sampled:	12/20/12			
Matrix:	Water		Received:	12/21/12			
Units:	ug/L		Analyzed:	12/28/12			
Diln Fac:	1.000						

Analyte	Result	RL	
Freon 12	ND	1.0	
Chloromethane	ND	1.0	
Vinyl Chloride	ND	0.5	
Bromomethane	ND	1.0	
Chloroethane	ND	1.0	
Trichlorofluoromethane	ND	1.0	
Acetone	ND	10	
Freon 113	ND	2.0	
1,1-Dichloroethene	ND	0.5	
Methylene Chloride	ND	10	
Carbon Disulfide	ND	0.5	
MTBE	ND	0.5	
trans-1,2-Dichloroethene	ND	0.5	
Vinyl Acetate	ND	10	
1,1-Dichloroethane	ND	0.5	
2-Butanone	ND	10	
cis-1,2-Dichloroethene	ND	0.5	
2,2-Dichloropropane	ND	0.5	
Chloroform	ND	0.5	
Bromochloromethane	ND	0.5	
1,1,1-Trichloroethane	ND	0.5	
1,1-Dichloropropene	ND	0.5	
Carbon Tetrachloride	ND	0.5	
1,2-Dichloroethane	ND	0.5	
Benzene	ND	0.5	
Trichloroethene	ND	0.5	
1,2-Dichloropropane	ND	0.5	
Bromodichloromethane	ND	0.5	
Dibromomethane	ND	0.5	
4-Methyl-2-Pentanone	ND	10	
cis-1,3-Dichloropropene	ND	0.5	
Toluene	ND	0.5	
trans-1,3-Dichloropropene	ND ND	0.5	
1,1,2-Trichloroethane	ND	0.5	
2-Hexanone	ND	10	
1,3-Dichloropropane	ND	0.5	
Tetrachloroethene	ND	0.5	
retrachioroethene	ДИ	0.5	

ND= Not Detected RL= Reporting Limit

Page 1 of 2

Purgeable Organics by GC/MS						
Lab #:	242117		Location:	6501 Shattuck Ave., Oakland		
Client:	SOMA Environmenta	Engineering Inc.	Prep:	EPA 5030B		
Project#:	5031		Analysis:	EPA 8260B		
Field ID:	MW-3		Batch#:	194189		
Lab ID:	242117-003		Sampled:	12/20/12		
Matrix:	Water		Received:	12/21/12		
Units:	ug/L		Analyzed:	12/28/12		
Diln Fac:	1.000					

Analyte	Result	RL	
Dibromochloromethane	ND	0.5	
1,2-Dibromoethane	ND	0.5	
Chlorobenzene	ND	0.5	
1,1,1,2-Tetrachloroethane	ND	0.5	
Ethylbenzene	ND	0.5	
m,p-Xylenes	ND	0.5	
o-Xylene	ND	0.5	
Styrene	ND	0.5	
Bromoform	ND	1.0	
Isopropylbenzene	ND	0.5	
1,1,2,2-Tetrachloroethane	ND	0.5	
1,2,3-Trichloropropane	ND	0.5	
Propylbenzene	ND	0.5	
Bromobenzene	ND	0.5	
1,3,5-Trimethylbenzene	ND	0.5	
2-Chlorotoluene	ND	0.5	
4-Chlorotoluene	ND	0.5	
tert-Butylbenzene	ND	0.5	
1,2,4-Trimethylbenzene	ND	0.5	
sec-Butylbenzene	ND	0.5	
para-Isopropyl Toluene	ND	0.5	
1,3-Dichlorobenzene	ND	0.5	
1,4-Dichlorobenzene	ND	0.5	
n-Butylbenzene	ND	0.5	
1,2-Dichlorobenzene	ND	0.5	
1,2-Dibromo-3-Chloropropane	ND	2.0	
1,2,4-Trichlorobenzene	ND	0.5	
Hexachlorobutadiene	ND	2.0	
Naphthalene	ND	2.0	
1,2,3-Trichlorobenzene	ND	0.5	

Surrogate	%REC	Limits	
Dibromofluoromethane	108	80-127	
1,2-Dichloroethane-d4	107	69-148	
Toluene-d8	102	80-120	
Bromofluorobenzene	103	80-121	

RL= Reporting Limit

Page 2 of 2

	Purgeable Organics by GC/MS						
Lab #:	242117	Location:	6501 Shattuck Ave., Oakland				
Client:	SOMA Environmental Engineering Inc.	Prep:	EPA 5030B				
Project#:	5031	Analysis:	EPA 8260B				
Matrix:	Water	Batch#:	194189				
Units:	ug/L	Analyzed:	12/28/12				
Diln Fac:	1.000						

Type: BS Lab ID: QC671493

Analyte	Spiked	Result	%REC	Limits
1,1-Dichloroethene	12.50	13.64	109	65-130
Benzene	12.50	14.69	117	80-123
Trichloroethene	12.50	13.32	107	76-121
Toluene	12.50	13.99	112	80-120
Chlorobenzene	12.50	13.72	110	80-120

Surrogate	%REC	Limits	
Dibromofluoromethane	105	80-127	
1,2-Dichloroethane-d4	104	69-148	
Toluene-d8	101	80-120	
Bromofluorobenzene	100	80-121	

Type: BSD Lab ID: QC671494

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
1,1-Dichloroethene	12.50	13.64	109	65-130	0	22
Benzene	12.50	14.52	116	80-123	1	20
Trichloroethene	12.50	13.36	107	76-121	0	20
Toluene	12.50	13.96	112	80-120	0	20
Chlorobenzene	12.50	13.58	109	80-120	1	20

Surrogate	%REC	Limits
Dibromofluoromethane	104	80-127
1,2-Dichloroethane-d4	104	69-148
Toluene-d8	101	80-120
Bromofluorobenzene	99	80-121

Purgeable Organics by GC/MS					
Lab #:	242117		Location:	6501 Shattuck Ave., Oakland	
Client:	SOMA Environmental	Engineering Inc.	Prep:	EPA 5030B	
Project#:	5031		Analysis:	EPA 8260B	
Type:	BLANK		Diln Fac:	1.000	
Lab ID:	QC671495		Batch#:	194189	
Matrix:	Water		Analyzed:	12/28/12	
Units:	ug/L				

Analyte	Result	RL	
Freon 12	ND	1.0	
Chloromethane	ND	1.0	
Vinyl Chloride	ND	0.5	
Bromomethane	ND	1.0	
Chloroethane	ND	1.0	
Trichlorofluoromethane	ND	1.0	
Acetone	ND	10	
Freon 113	ND	2.0	
1,1-Dichloroethene	ND	0.5	
Methylene Chloride	ND	10	
Carbon Disulfide	ND	0.5	
MTBE	ND	0.5	
trans-1,2-Dichloroethene	ND	0.5	
Vinyl Acetate	ND	10	
1,1-Dichloroethane	ND	0.5	
2-Butanone	ND	10	
cis-1,2-Dichloroethene	ND	0.5	
2,2-Dichloropropane	ND	0.5	
Chloroform	ND	0.5	
Bromochloromethane	ND	0.5	
1,1,1-Trichloroethane	ND	0.5	
1,1-Dichloropropene	ND	0.5	
Carbon Tetrachloride	ND	0.5	
1,2-Dichloroethane	ND	0.5	
Benzene	ND	0.5	
Trichloroethene	ND	0.5	
1,2-Dichloropropane	ND	0.5	
Bromodichloromethane	ND	0.5	
Dibromomethane	ND	0.5	
4-Methyl-2-Pentanone	ND	10	
cis-1,3-Dichloropropene	ND	0.5	
Toluene	ND	0.5	
trans-1,3-Dichloropropene	ND	0.5	
1,1,2-Trichloroethane	ND	0.5	
2-Hexanone	ND	10	
1,3-Dichloropropane	ND	0.5	
Tetrachloroethene	ND	0.5	

ND= Not Detected

RL= Reporting Limit

Page 1 of 2

	Purgeable Organics by GC/MS					
Lab #:	242117	Location:	6501 Shattuck Ave., Oakland			
Client:	SOMA Environmental Engineering Inc.	Prep:	EPA 5030B			
Project#:	5031	Analysis:	EPA 8260B			
Type:	BLANK	Diln Fac:	1.000			
Lab ID:	QC671495	Batch#:	194189			
Matrix:	Water	Analyzed:	12/28/12			
Units:	ug/L					

Analyte	Result	RL	
Dibromochloromethane	ND	0.5	
1,2-Dibromoethane	ND	0.5	
Chlorobenzene	ND	0.5	
1,1,1,2-Tetrachloroethane	ND	0.5	
Ethylbenzene	ND	0.5	
m,p-Xylenes	ND	0.5	
o-Xylene	ND	0.5	
Styrene	ND	0.5	
Bromoform	ND	1.0	
Isopropylbenzene	ND	0.5	
1,1,2,2-Tetrachloroethane	ND	0.5	
1,2,3-Trichloropropane	ND	0.5	
Propylbenzene	ND	0.5	
Bromobenzene	ND	0.5	
1,3,5-Trimethylbenzene	ND	0.5	
2-Chlorotoluene	ND	0.5	
4-Chlorotoluene	ND	0.5	
tert-Butylbenzene	ND	0.5	
1,2,4-Trimethylbenzene	ND	0.5	
sec-Butylbenzene	ND	0.5	
para-Isopropyl Toluene	ND	0.5	
1,3-Dichlorobenzene	ND	0.5	
1,4-Dichlorobenzene	ND	0.5	
n-Butylbenzene	ND	0.5	
1,2-Dichlorobenzene	ND	0.5	
1,2-Dibromo-3-Chloropropane	ND	2.0	
1,2,4-Trichlorobenzene	ND	0.5	
Hexachlorobutadiene	ND	2.0	
Naphthalene	ND	2.0	
1,2,3-Trichlorobenzene	ND	0.5	

Surrogate	%REC	Limits	
Dibromofluoromethane	106	80-127	
1,2-Dichloroethane-d4	105	69-148	
Toluene-d8	101	80-120	
Bromofluorobenzene	103	80-121	

ND= Not Detected

RL= Reporting Limit

Page 2 of 2