RECEIVED

November 16, 2010

Mr. Paresh Khatri Hazardous Materials Specialist Alameda County Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94501-6577 3:28 pm, Nov 19, 2010

Alameda County
Environmental Health

Subject:

Soil and Groundwater Investigation Report

Crown Chevrolet Cadillac Isuzu

7544 Dublin Boulevard and 6707 Golden Gate Drive

Dublin, California

Fuel Leak Case No. RO0003014

Dear Mr. Khatri:

Enclosed please find the *Soil and Groundwater Investigation Report* for the Crown Chevrolet Cadillac Isuzu site at 7544 Dublin Boulevard and 6707 Golden Gate Drive in Dublin, California (Fuel Leak Case No. RO0003014, GeoTracker Global ID T10000001616). This report summarizes soil and groundwater investigation activities conducted by AMEC Geomatrix, Inc. (AMEC), on behalf of Crown Chevrolet Cadillac Isuzu, in September 2010.

I declare under penalty of perjury that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge.

Please contact me at (925) 556-3201 or Avery Patton of AMEC at 510-663-4154 if you have any questions regarding this report.

Sincerely yours,

Patrick Costello

Owner

Crown Chevrolet Cadillac Isuzu

Attachment:

Soil and Groundwater Investigation Report

cc:

Greggory Brandt, Wendel, Rosen, Black & Dean LLP John Mullan, Zurich North American Insurance

Thomas L. Vormbrock, Rimkus Consulting Group, Inc.

Ed Conti, AMEC Geomatrix, Inc.

SOIL AND GROUNDWATER INVESTIGATION REPORT

Crown Chevrolet Cadillac Isuzu
7544 Dublin Boulevard and 6707 Golden Gate Drive
Dublin, California
Fuel Leak Case No. RO0003014

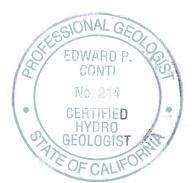
Prepared for:
Crown Chevrolet Cadillac Isuzu

Prepared by:

AMEC Geomatrix, Inc.,

November 16, 2010

Project OD10160070



SOIL AND GROUNDWATER INVESTIGATION REPORT

Crown Chevrolet Cadillac Isuzu 7544 Dublin Boulevard and 6707 Golden Gate Drive Dublin, California Fuel Leak Case No. RO0003014

November 16, 2010 Project OD10160070

This report was prepared by AMEC Geomatrix, Inc. under the professional supervision of Edward P. Conti. The findings, recommendations, specifications and/or professional opinions presented in this report were prepared in accordance with generally accepted professional geologic practice, and within the scope of the project. There is no other warranty, either express or implied.

Edward P. Conti, C.E.G., C.HG.

Principal Geologist

TABLE OF CONTENTS

			Page
1.0	OBJE	CTIVES	1
2.0	BACK	GROUND	1
3.0	FIELD 3.1 3.2 3.3 3.4	AND LABORATORY METHODS FIELD METHODS LABORATORY ANALYTICAL METHODS DATA QUALITY REVIEW INVESTIGATION-DERIVED WASTE	2 3 4
4.0	RESU 4.1 4.2	FIELD OBSERVATIONS SOIL ANALYTICAL RESULTS 4.2.1 Total Petroleum Hydrocarbons 4.2.2 Polynuclear Aromatic Hydrocarbons	5 5 5
	4.3	4.2.3 Volatile Organic Compounds	6 6 7
5.0	CONC 5.1 5.2 5.3	CLUSIONS AND RECOMMENDATIONSSOILGROUNDWATERRECOMMENDATIONS	8 9
6.0	REFE	RENCES	10
		TABLES	
Table Table Table Table Table	2 3 4	Sample and Analytical Matrix Summary of Total Petroleum Hydrocarbons and Polynuclear Aromatic Hydrocarbons in Soil Summary of Volatile Organic Compounds in Soil Summary of Total Petroleum Hydrocarbons and Polynuclear Aromatic Hydrocarbons in Groundwater Summary of Volatile Organic Compounds and Chromium in Groundwater	
		FIGURES	
Figure Figure Figure Figure Figure Figure	2 3 4 5 6	Site Location Map Site Plan and Boring Locations Total Petroleum Hydrocarbons in Soil Volatile Organic Compounds in Soil Total Petroleum Hydrocarbons in Groundwater Volatile Organic Compounds in Groundwater Chromium in Soil and Dissolved Chromium in Groundwater	
		APPENDICES	
Appen Appen Appen Appen	dix B	Drilling Permit Soil Boring Logs Data Quality Review Copies of Laboratory Analytical Reports	

SOIL AND GROUNDWATER INVESTIGATION REPORT

Crown Chevrolet Cadillac Isuzu
7544 Dublin Boulevard and 6707 Golden Gate Drive
Dublin, California

AMEC Geomatrix, Inc. (AMEC), has prepared this report on behalf of Crown Chevrolet Cadillac Isuzu for the property located at 7544 Dublin Boulevard and 6707 Golden Gate Drive in Dublin, California (the site; Figure 1). This report presents the results of soil and groundwater sampling conducted by AMEC at the site from September 27 through 29, 2010.

1.0 OBJECTIVES

The objectives of the soil and groundwater sampling were to attempt to identify potential contamination source areas and delineate the extent of impacts associated with such source areas at the site.

2.0 BACKGROUND

The site is located on the relatively flat floor of a valley that extends to the north-northwest, toward San Ramon and Danville. The closest water body is a creek that flows through a culvert; the creek flows from a gully west of the site, enters a culvert north of the site, and then bends to the south, passing approximately 1,000 feet east of the site. Groundwater has been encountered at both the Montgomery Ward (Environmental Audit, Inc., 1996) property across Dublin Boulevard to the north of the site and at Quest Laboratory (Bureau Veritas, 2009), immediately south of the site, at depths of ranging from approximately 8 to 16 feet below ground surface (bgs). Groundwater flows to the east-southeast in the vicinity of the site, based on data from monitoring associated with the Montgomery Ward property. A recent investigation at Quest Laboratory identified groundwater flow to the north, toward the site. Later measurements at Quest Laboratory indicated groundwater flow to the southeast.

In October 2008, Basics Environmental, Inc. (Basics), performed a Phase I environmental site assessment, which summarized the site's history and use (Basics, 2008). Another Phase I environmental site assessment was performed by AEI Consultants, and submitted in the same month (AEI, 2008). Based on the Phase I reports, which documented similar information, Basics performed a limited soil and groundwater investigation in February 2009, advancing 10 borings for the collection of soil and grab groundwater samples near potential sources of contamination. The results were documented in a report titled *Limited Phase II Environmental Sampling Report* (Phase II report, Basics, 2009).

In March 2010, ACEH requested a work plan for additional soil and groundwater investigation (ACEH, 2010a). A *Work Plan for Soil and Groundwater Investigation* (work plan) was prepared

by AMEC and submitted to Alameda County Environmental Health Department (ACEH) in June 2010 (AMEC, 2010), and approved by ACEH on August 20, 2010 (ACEH, 2010b).

3.0 FIELD AND LABORATORY METHODS

Activities performed during the September 2010 soil and groundwater investigation included collection and analysis of soil and grab groundwater samples from twelve locations at the site (Figure 2). A sampling matrix (Table 1) summarizes samples collected and analyses performed.

Prior to conducting the field work, AMEC obtained a drilling permit from Zone 7 Water Agency (Appendix A). Additionally, AMEC marked the proposed boring locations with white paint, contacted Underground Service Alert, in accordance with state law, and contracted with a private utility locator to check boring locations for underground utilities.

3.1 FIELD METHODS

Twelve soil borings were advanced under the supervision of an AMEC field geologist using dual-tube, direct-push technology, from September 27 through 29, 2010. The borings were advanced to total depths ranging from 15 to 20 feet below ground surface (bgs) by PeneCore Drilling, of Woodland, California, a California C57-licensed contractor.

The recovered soil core from each soil boring location was described by an AMEC field geologist, under the supervision of an AMEC California Professional Geologist, using the visual-manual procedures of the ASTM International Standard D 2488 for guidance, which is based on the Unified Soil Classification System (USCS). Recovered soils were generally screened for the presence of volatile organic compounds (VOCs) using a photoionization detector (PID). The recorded PID readings are shown on the lithologic logs prepared for each boring (Appendix B).

Soil samples were collected based on field observations of potential contamination (e.g., staining, odor, or PID reading), or, in the absence of observations of potential contamination, samples were collected from 3.0 feet bgs and/or from near the top of the zone of saturation, in accordance with the work plan. In some cases where samples were collected based on observations of potential contamination, additional samples were collected above and below the potentially contaminated sample to help vertically delineate possible impacts to soil.

Soil samples for analysis of volatile compounds (i.e., VOCs and total petroleum hydrocarbons as gasoline [TPHg]) were collected into laboratory-supplied volatile organic analysis (VOA) containers, equipped with preservatives appropriate for the desired analyses, using a new, clean plastic plunger for each sample. Soil samples for other analyses were collected into laboratory-supplied jars.

Once each soil boring had been advanced to total depth, at locations where the work plan called for a grab groundwater sample to be collected (i.e., all locations except SB-09), temporary

polyvinyl chloride (PVC) casing with a 0.01-inch slotted screen was installed in the boring, and the outer casing was retracted to allow groundwater to enter the boring. Prior to collection of each groundwater sample, the casing was purged using a peristaltic pump and new, disposable tubing. Purging continued until the water was relatively clear (up to approximately 0.4 gallons of water was purged from each boring). Following purging, a grab groundwater sample was collected into laboratory-provided containers equipped with preservatives appropriate for the desired analyses, using the same methodology as was used to purge the boring.

The soil and groundwater samples were immediately labeled with unique identifiers and placed into zip-closure plastic bags. Samples were stored in ice-chilled coolers pending transport under AMEC chain-of-custody procedures to TestAmerica Laboratories, Inc., of Pleasanton, California, a California Department of Public Health-certified analytical laboratory.

Following completion of sampling, the borings were backfilled using a tremie pipe from total depth to ground surface with neat cement grout.

3.2 LABORATORY ANALYTICAL METHODS

The soil and grab groundwater samples were analyzed for one or more of the following analyses:

- VOCs, including benzene, toluene, ethylbenzene, and xylenes (BTEX, collectively), and methyl tert-butyl ether (MTBE), using U.S. Environmental Protection Agency (U.S. EPA) Method 8260B; or for BTEX and MTBE only.
- TPHg using U.S. EPA Method 8260B.
- Total petroleum hydrocarbons quantified as diesel (TPHd) and motor oil (TPHmo) using U.S. EPA Method 8015B, following a silica gel preparation procedure in accordance with U.S. EPA Method 3630C. In addition, from each boring where a groundwater sample was collected for TPHd and TPHmo analyses, a duplicate grab groundwater sample was collected and filtered by the laboratory using a 0.7-micron glass-fiber filter prior to analysis, in order to provide an analysis that limits representation of TPH in the extractible range that may be adsorbed onto sediment present in the grab groundwater samples.
- Polynuclear aromatic hydrocarbons (PAHs) using U.S. EPA Method 8270C with selective ion monitoring (SIM).
- Total chromium using U.S. EPA Method 6020. The work plan specified that samples
 would be analyzed for dissolved total chromium; however, the laboratory initially
 performed the analyses with unfiltered samples. After this error was noted, the
 analytical laboratory used some remaining sample volume (from a different,
 unpreserved container) to filter and perform a dissolved total chromium analysis. All
 laboratory results (filtered and unfiltered) are presented in this report.
- Dissolved hexavalent chromium using U.S. EPA Method 7199.

3.3 DATA QUALITY REVIEW

AMEC evaluated the analytical data using guidelines set forth in the U.S. Environmental Protection Agency's (EPA's) USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review (U.S. EPA, 2008), and the USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review (U.S. EPA, 2010).

Quality assurance procedures for soil samples included the collection and analysis of one matrix spike/matrix spike duplicate (MS/MSD) sample; laboratory analysis of method blank samples, surrogate spikes, and laboratory control samples/laboratory control sample duplicates (LCS/LCSDs); and evaluation of the analytical results.

Quality assurance procedures for groundwater samples included the collection and analysis of one blind field duplicate sample and two MS/MSD samples; laboratory analysis of method blank samples, surrogate spikes, and LCS/LCSDs; and evaluation of the analytical results.

Based on an evaluation of data quality, some data were qualified as positively identified, and the associated numerical value is the approximate concentration of the analyte in the sample (qualified with "J"); some data were qualified as estimated quantities that may be biased low (qualified with "J-"); and some data were qualified as not detected at a level greater than or equal to the laboratory reporting limit, but the laboratory reporting limit is approximate and may be inaccurate or imprecise (qualified with "UJ"). Overall, the results of the data quality review indicate that the analytical results are valid and useable. The data, as qualified, are acceptable and can be used for decision-making purposes; however, the limitations identified by the applied qualifiers should be considered when using the data. The complete data quality review is included in Appendix C.

3.4 INVESTIGATION-DERIVED WASTE

Monitoring well purge water, equipment decontamination water, and soil cuttings were generated during the drilling and sampling activities performed at the site in September 2010. The purge water and equipment decontamination water were combined and placed in one Department of Transportation (DOT)—approved, 55-gallon drum. The soil cuttings were placed in a second DOT-approved 55-gallon drum. The drums are stored at the site pending disposal by a licensed contractor. One soil sample (IDW-1) and one water sample (IDW-2) were collected from the drums for waste characterization purposes. Copies of the laboratory analytical reports and sample chain-of-custody records are included in Appendix D.

4.0 RESULTS

The field observations and laboratory analytical results for the soil and grab groundwater sampling performed in September 2010 are summarized below. The laboratory analytical results are presented in Tables 2 through 5 and on Figures 3 through 7. Table 1 provides a

matrix of samples and analyses. Copies of the laboratory analytical reports and sample chainof-custody records are included in Appendix D.

The laboratory analytical results are compared to Environmental Screening Levels (ESLs) published by the California Regional Water Quality Control Board, San Francisco Bay Region (Regional Water Board), based on a residential land use scenario, and assuming that groundwater is a drinking water resource (Regional Water Board, 2007). The ESLs are conservative screening levels that correspond to an acceptable risk level; concentrations of the constituents below their respective ESLs can be considered to pose no significant risk. Concentrations of constituents above their respective ESLs do not necessarily indicate a risk is present, but rather suggest that additional scrutiny is warranted.

4.1 FIELD OBSERVATIONS

Soil encountered during this investigation consisted of lean clay with varying amounts of sand, to the total explored depth of 20 feet bgs, with the exception of thin (up to 0.6-foot-thick) lenses of clayey sand in borings SB-06, SB-07, and SB-08, at depths ranging from 6.5 to 13.5 feet bgs. Additionally, clayey sand with gravel (likely fill material) was present from beneath the concrete slab at the ground surface to approximately 4.7 feet bgs in boring SB-04, and from approximately 1.5 to 4.5 feet bgs in boring SB-10.

Saturated soil was not observed, likely due to the clay content of the soil. However, groundwater was measured prior to sampling at depths ranging from 9.2 to 15.5 feet bgs in the borings (the depth to groundwater was not measured in borings SB-04, SB-09, and SB-12).

Discoloration and/or elevated PID readings were encountered in several of the borings. PID readings up to 26 parts per million (ppm) were recorded from approximately 11 to 13 feet bgs in boring SB-02, and from approximately 5.5 to 8.5 feet bgs in boring SB-10. PID readings up to 5,800 ppm were recorded from approximately 3.0 feet bgs in boring SB-03, where VOCs were part of the analytical suite (Section 4.2.3); however, equipment malfunction prevented collection of PID readings from deeper soil in boring SB-03, as well as from boring SB-05. Greenish-colored soil, which may indicate the presence or former presence of petroleum hydrocarbons, was encountered in borings SB-01 through SB-05, and SB-09, at varying depths (see Appendix B).

4.2 SOIL ANALYTICAL RESULTS

Analytical results for soil samples collected during the September 2010 investigation are discussed in the following sections.

4.2.1 Total Petroleum Hydrocarbons

Results for TPH in soil are presented in Table 2 and on Figure 3, which also presents the results from Basics' investigation in 2009. TPHg was detected in three soil samples from three borings

(SB-01, SB-02, and SB-03). TPHg was detected at 1,200 mg/kg in the 3.2-foot sample from boring SB-03, exceeding the ESL of 83 mg/kg. However, the chromatogram for this sample did not resemble the gasoline standard; the TPHg value reported is likely due to the presence of non-gasoline VOCs in the sample (Section 4.2.3). No other TPHg results exceeded the ESL.

TPHd was detected in five soil samples from five borings, and TPHmo was detected in one soil sample; no TPHd or TPHmo results exceeded their respective ESLs.

4.2.2 Polynuclear Aromatic Hydrocarbons

Results for PAHs in soil are presented in Table 2 With the exception of low levels of naphthalene (detected at concentrations up to an estimated 9.4 mg/kg, well below the ESL of 1,300 mg/kg) detected in four soil samples from three borings (SB-06, SB-08, and SB-09), PAHs were not detected in any soil samples.

4.2.3 Volatile Organic Compounds

Results for VOCs in soil are presented in Table 3 and on Figure 4, which also presents the results from Basics' investigation in 2009. Results for chlorobenzene (detected at concentrations up to 90,000 μ g/kg), 1,2-dichlorobenzene (detected at concentrations up to 30,000 μ g/kg), and/or 1,4-dichlorobenzene (detected at concentrations up to 5,400 μ g/kg) in soil were greater than their respective ESLs for samples collected from four depths (i.e., from approximately 2.8 to 11.5 feet bgs) from boring SB-03, adjacent to a sump in the area known as Service Area 2 of Building B at the site.

4.3 GRAB GROUNDWATER ANALYTICAL RESULTS

Analytical results for grab groundwater samples collected during the September 2010 investigation are discussed in the following sections.

4.3.1 Total Petroleum Hydrocarbons

Results for TPH in groundwater are presented in Table 4 and on Figure 5, which also presents the results from Basics' investigation in 2009. TPHg was detected in groundwater from one boring (SB-02). Where analyzed, TPHd was detected in unfiltered groundwater samples from two borings (SB-07 and SB-12), and TPHmo was not detected in the filtered or unfiltered groundwater samples from any boring. No TPHg, TPHd, or TPHmo results for groundwater exceeded their respective ESLs. It should be noted that the laboratory reporting limits for all TPHmo analyses (i.e., from 300 to 320 μ g/L) exceed the ESL of 100 μ g/L. However, the method detection limit for unfiltered TPHmo analyses is 130 μ g/L (and is up to 140 μ g/L for filtered TPHmo analyses); TPHmo was not detected at or above the method detection limit in any sample.

The groundwater results presented above contrast with the findings of the Basics investigation in 2009, where the results for TPH in groundwater exceeded ESLs for all samples collected.

Potential reasons for this distinction include analytical methodology and sampling methodology, as discussed further below.

Regarding analytical methodology, AMEC requested that the laboratory perform a silica gel preparation procedure prior to analysis of samples for TPHd and TPHmo analyses. The purpose of the silica gel preparation is to remove polar compounds which can bias total petroleum hydrocarbon analyses using EPA Method 8015. Petroleum hydrocarbons are non-polar compounds, but many naturally occurring hydrocarbons, such as those found in organic material from plants, are polar. A silica gel preparation procedure was not performed prior to analysis for TPHd and TPHmo on the samples collected by Basics in 2009. It is therefore likely that non-petroleum hydrocarbons contributed to the quantitation of TPH in the 2009 investigation.

Regarding sampling methodology, AMEC used a dual-tube sampling system to advance the soil borings, which allows the soil core to be removed from the boring without removing the outer casing. Basics used a sampling system in which the sampling barrel is completely removed from the borehole every five feet in order to retrieve a sample. Using such a technique, it is possible for shallower soil or materials from the ground surface to enter the boring before a sample is collected.

Furthermore, copies of the laboratory analytical reports included in Basics' Phase II report indicated that each groundwater sample contained at least 1% sediment. It is therefore possible that the results of the 2009 investigation overestimate the concentrations of TPH dissolved in groundwater due to quantification of hydrocarbons that may have been adsorbed onto sediment particles rather than dissolved in the groundwater.

4.3.2 Polynuclear Aromatic Hydrocarbons

Results for PAHs in groundwater are presented in Table 4. PAHs were not detected in any groundwater samples.

4.3.3 Volatile Organic Compounds

Results for VOCs in groundwater are presented in Table 5 and on Figure 6, which also presents the results from Basics' investigation in 2009. Results for benzene (detected at $1.5 \,\mu g/L$), chlorobenzene (detected at $84 \,\mu g/L$), and 1,2-dichlorobenzene (detected at $42 \,\mu g/L$) in groundwater were greater than their respective ESLs for the samples collected from boring SB-03, adjacent to the sump in the area known as Service Area 2 of Building B at the site. Tetrachoroethene, trichloroethene, cis-1,2-dichloroethene, and 1,4-dichlorobenzene, were also detected in the groundwater sample from boring SB-03; however, these concentrations were below their respective ESLs. VOCs were not detected in any of the other groundwater samples analyzed for VOCs.

4.4 CHROMIUM

Four grab groundwater samples (i.e., SB-05, SB-06, SB-07, and SB-08) were analyzed for total and hexavalent chromium; results are presented in Table 5 and on Figure 7, which also presents the results from Basics' investigation in 2009. The September 2010 investigation results are discussed below.

- Dissolved hexavalent chromium was detected in all samples analyzed; no results exceeded the ESL.
- Total chromium (unfiltered) was detected in all samples analyzed; the result for sample SB-06 (250 μg/L) exceeded the ESL for total chromium (50 μg/L).
- Dissolved total chromium was detected in all samples analyzed. The results ranged from 2.3 to 3.3 μ g/L, well below the ESL for total chromium (50 μ g/L); however, the results are estimated quantities, and may be biased low, as discussed below.

The work plan specified that the samples would be analyzed for dissolved total chromium; however, the laboratory initially performed the analyses with unfiltered samples. Therefore, the resultant total chromium values likely overestimate the concentration of chromium that is dissolved in groundwater. After this error was noted, AMEC requested that samples SB-05, SB-06, SB-07, and SB-08 be reanalyzed by the analytical laboratory, which filtered some remaining sample volume (from a different, unpreserved container) and then performed dissolved total chromium analysis on each sample. However, since the unfiltered samples were stored in unpreserved glass containers, rather than being filtered and then stored in preserved plastic containers as required by the analytical method, the dissolved total chromium results were qualified as estimated and may be biased low. The data qualification is discussed further in the data quality review (Appendix C).

5.0 CONCLUSIONS AND RECOMMENDATIONS

Conclusions and recommendations based on evaluation of the results of the soil and groundwater sampling conducted in September 2010 and reported herein and the results of Basics' investigation in 2009 are presented below.

5.1 SOIL

No source of TPH in soil has been identified. The TPHg detection in boring SB-03 is likely due to the presence of non-gasoline VOCs, as discussed in Section 4.2.1.

Based on the results of our September 2010 investigation and Basics' 2009 investigation, the source of the VOCs detected in soil is the sump adjacent to the hot parts washer in the area known as Service Area 2 of Building B (Basics, 2008). It is our understanding that the hot parts washer is no longer used. The horizontal and vertical extents of VOCs in soil greater than ESLs have not been fully delineated.

5.2 **GROUNDWATER**

Basics' investigation in 2009 indicated the presence of TPH in groundwater beneath the site at concentrations that exceeded ESLs. However, our September 2010 investigation found no source of TPH in groundwater, and did not identify TPH in groundwater that exceeded ESLs. Possible reasons for the discrepancy between the results of the two investigations are discussed above, in Section 4.3.1.

Based on the results of this investigation and the Basics investigation in 2009, the source of the VOCs detected in groundwater is the sump adjacent to the hot parts washer in Service Area 2 of Building B (Basics, 2008). Concentrations of VOCs in groundwater did not exceed ESLs in the sample from Basics' boring B10, approximately 60 feet east-southeast of the sump, indicating that VOC concentrations in groundwater rapidly attenuate in the presumed hydraulically downgradient direction from the sump (i.e., east-southeast). Based on this information, VOCs have been adequately delineated in groundwater at the site.

No source of chromium in groundwater has been identified. Basics' investigation in 2009 indicated that dissolved total chromium was present in groundwater above the ESL at one location in Auto Body Shop 2 of Building C. AMEC's initial analysis of total chromium was performed on unfiltered samples, and one result at the eastern property boundary exceeded the ESL. However, subsequent analysis of dissolved total chromium indicated that concentrations of dissolved total chromium in groundwater do not exceed the ESL. Although the results are estimated and may be biased low, the results are well below the ESL.

5.3 RECOMMENDATIONS

AMEC recommends that Crown Chevrolet address the VOC impacts in the vicinity of the existing sump in the area known as Service Area 2 of Building B.

Results from AMEC's investigation indicate the presence of some VOCs in soil above their respective ESLs from approximately 3.0 feet bgs to the maximum depth sampled in boring SB-03 of 11.5 feet bgs. TPHg was also detected above its ESL at 3.2 feet bgs; however, the reported TPHg concentration is likely due to quantification of non-gasoline VOCs present in the sample. Our results also indicate the presence of VOCs in groundwater above ESLs in the vicinity of the sump.

AMEC recommends a limited excavation be performed in the area of the sump in order to remove accessible soil containing VOCs, and dewatering in conjunction with the excavation to reduce the mass of VOCs in groundwater. Confirmation soil sampling from the walls and floor of the excavation should be performed to assess the presence of remaining soil containing VOCs, if any. VOCs remaining in groundwater, following excavation to remove the source material and dewatering, would be expected to naturally attenuate. Groundwater monitoring should be

performed following excavation and dewatering to verify natural attenuation of the VOCs in groundwater.

No further action is recommended relative to chromium, PAHs, and TPH.

6.0 REFERENCES

- AEI Consultants (AEI), 2008, Phase I Environmental Site Assessment, 7544 Dublin Boulevard & 6707 Golden Gate Drive, Dublin, California, October 29.
- Alameda County Environmental Health Department (ACEH), 2010a, Site Investigation for Fuel Leak Case No. RO000314 and GeoTracker Global ID T10000001616, Crown Chevrolet Cadillac Isuzu, 7544 Dublin Boulevard, Dublin, CA, 94568, March 24.
- ACEH, 2010b, Site Investigation for Fuel Leak Case No. RO0003014 and GeoTracker Global ID, T10000001616, Crown Chevrolet Cadillac Isuzu, 7544 Dublin Boulevard, Dublin, CA, 94568, August 20.
- AMEC Geomatrix, Inc. (AMEC), 2010, Soil and Groundwater Investigation Work Plan, Crown Chevrolet Cadillac Isuzu, 7544 Dublin Boulevard and 6707 Golden Gate Drive, Dublin, California, Fuel Leak Case No. RO0003014, June 15.
- Bureau Veritas, 2009, Additional Soil and Groundwater Investigation (Fuel Leak Case No. RO0002860), Former Quest Laboratory, 6511 Golden Gate Drive, Dublin, California, March 13.
- Basics Environmental, Inc. (Basics), 2008, Phase I Environmental Site Assessment, 7544
 Dublin Boulevard and 6707 Golden Gate Drive, Dublin, California, October 14.
- Basics, 2009, Limited Phase II Environmental Site Sampling Report, 7544 Dublin Boulevard & 6707 Golden Gate Drive, Dublin, California, March 16.
- California Regional Water Quality Control Board, San Francisco Region (Regional Water Board), 2007, Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater, November, revised May 2008.
- Environmental Audit, Inc., 1996, Ground Water Monitoring Report, Fourth Quarter 1996, Montgomery Ward Auto Service Center, 7575 Dublin Boulevard, Dublin, California, December 12.
- U.S. Environmental Protection Agency (U.S. EPA), 2008, USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review, EPA-540-R-08-01, June.
- U.S. EPA, 2010, USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review, OSWER 9240.1-51. EPA 540-R-10-011, January.

SAMPLE AND ANALYTICAL MATRIX¹

Crown Chevrolet Cadillac Isuzu 7544 Dublin Boulevard and 6707 Golden Gate Drive Dublin, California

			1		DEEN			1
	Total Depth of				BTEX,			
	Boring	Sample Depth	Sample	VOCs,	MTBE,	TPHd/		_
Location	(feet bgs)	(feet bgs)	ID	TPHg ²	TPHg ²	TPHmo ³	PAHs 4	Chromium ⁵
SB-01	20.0	11.7	SB-01-11.7		X	-		
		13.8	SB-01-13.8		X			
		GW	SB-01		X			
SB-02	17.5	9.1	SB-02-9.1		X			
		11.5	SB-02-11.5		X	-		
		GW	SB-02		X			
SB-03	16.0	1.3	SB-03-1.3	X		-		
		2.8	SB-03-2.8	Χ		-		
		3.2	SB-03-3.2	Χ		-		
		6.5	SB-03-6.5	Х		-		
		11.5	SB-03-11.5	Χ				
		GW	SB-03	Χ		-		
SB-04	16.0	3.0	SB-04-3.0		X	Χ	Х	
		7.0	SB-04-7.0		X	X		
		8.5	SB-04-8.5		X	Х		
		12.0	SB-04-12		X	Х	Х	
		GW	SB-04 ⁶		X (DUP)	X (DUP)	X (DUP)	
SB-05	15.0	0.7	SB-05-0.7			X	Х	
		2.0	SB-05-2			Х		
		11.5	SB-05-11.5			Х	Х	
		GW	SB-05			Х	Х	Х
SB-06	15.0	3.0	SB-06-3.0			Х	Х	
		11.0	SB-06-11.0			Х	Х	
		GW	SB-06			Х	Х	Х
SB-07	17.0	13.2	SB-07-13.2			Х	Х	
		GW	SB-07			Х	Х	Х
SB-08	20.0	15.7	SB-08-15.7		Х	Х	Х	
		GW	SB-08		Х	Х	Х	Х
SB-09	15.0	3.0	SB-09-3.0			Х		
		4.9	SB-09-4.9			Х	Х	
		6.0	SB-09-6.0			Х		
		12.0	SB-09-12.0			Х	Х	
SB-10	16.5	4.0	SB-10-4.0			Х		
		9.0	SB-10-9.0			Х		
		10.5	SB-10-10.5			Х		
		11.5	SB-10-11.5			Х	Х	
		GW	SB-10			Х	Х	
SB-11	18.0	12.8	SB-11-12.8			X	Х	
		GW	SB-11			Х	Х	
SB-12	17.0	12.0	SB-12-12			X	Х	
		GW	SB-12			Х	Х	

SAMPLE AND ANALYTICAL MATRIX¹

Crown Chevrolet Cadillac Isuzu 7544 Dublin Boulevard and 6707 Golden Gate Drive Dublin, California

Notes

- 1. Samples were collected by AMEC Geomatrix, Inc., and analyzed by TestAmerica Laboratories, Inc., of Pleasanton, California.
- 2. Samples were analyzed for VOCs (including BTEX) and TPHg using U.S. EPA Method 8260B.
- 3. Samples were analyzed for TPHd and TPHmo using U.S. EPA Method 8015B, following a silica gel preparation in accordance with U.S. EPA Method 3630C.
- 4. Samples were analyzed for PAHs using U.S. EPA Method 8270C with selective ion monitoring (SIM).
- Samples were analyzed using U.S. EPA Method 7199 for dissolved hexavalent chromium and U.S. EPA Method 6020 for total and dissolved total chromium.
- 6. A blind field duplicate sample was collected from boring SB-04, and was labeled as SB-40.

Abbreviations

-- = analysis not performed

bgs = below ground surface

BTEX = benzene, toluene, ethylbenzene, and xylenes, collectively

DUP = a duplicate sample was also collected and analyzed

GW = a groundwater sample was collected

MTBE - methyl tert-butyl ether

PAHs = polynuclear aromatic hydrocarbons

TPHd = total petroleum hydrocarbons quantified as diesel

TPHg = total petroleum hydrocarbons quantified as gasoline

TPHmo = total petroleum hydrocarbons quantified as motor oil

VOCs = volatile organic compounds

X = sample analyzed

SUMMARY OF TOTAL PETROLEUM HYDROCARBONS AND POLYNUCLEAR AROMATIC HYDROCARBONS IN SOIL¹

Crown Chevrolet Cadillac Isuzu
7544 Dublin Boulevard and 6707 Golden Gate Drive
Dublin, California

Concentrations reported in miligrams per kilogram (mg/kg)

Concentrations reported in miligrams per kilogram (mg/kg) TPH PAHs								
Sample		Depth		1 1			PAI	All other
Sample ID	Location	(feet bgs)	Date	TPHg	TPHd	TPHmo	Naphthalene	PAHs
							-	
SB-01-11.7	SB-01	11.7	9/27/2010	< 0.18	NA	NA	NA	NA
SB-01-13.8		13.8	9/27/2010	13 J	NA	NA	NA	NA
SB-02-9.1	SB-02	9.1	9/27/2010	< 0.19	NA	NA	NA	NA
SB-02-11.5		11.5	9/27/2010	1.4	NA	NA	NA	NA
SB-03-1.3	SB-03	1.3	9/28/2010	< 0.19	NA	NA	NA	NA
SB-03-2.8		2.8	9/28/2010	< 22	NA	NA	NA	NA
SB-03-3.2		3.2	9/28/2010	1,200 ^{2,3}	NA	NA	NA	NA
SB-03-6.5		6.5	9/28/2010	< 20	NA	NA	NA	NA
SB-03-11.5		11.5	9/28/2010	< 22	NA	NA	NA	NA
SB-04-3.0	SB-04	3.0	9/27/2010	< 0.16	2.6	< 50	< 5.0	ND
SB-04-7.0		7.0	9/27/2010	< 0.20	< 0.99	< 50	NA	NA
SB-04-8.5		8.5	9/27/2010	< 0.19	< 0.99	< 49	NA	NA
SB-04-12.0		12.0	9/27/2010	< 0.20	< 1.0	< 50	< 5.0	ND
SB-05-0.7	SB-05	0.7	9/28/2010	NA	20	58	< 10 UJ	ND
SB-05-2.0		2.0	9/28/2010	NA	< 0.99	< 50	NA	NA
SB-05-11.5		11.5	9/28/2010	NA	< 1.0	< 50	< 5.0 UJ	ND
SB-06-3.0	SB-06	3.0	9/28/2010	NA	< 0.99	< 50	9.4 J	ND
SB-06-11.0		11	9/28/2010	NA	< 1.0	< 50	< 5.0 UJ	ND
SB-07-13.2	SB-07	13.2	9/29/2010	NA	< 1.0	< 50	< 5.0 UJ	ND
SB-08-15.7	SB-08	15.7	9/29/2010	< 0.24	1.1	< 49	5.6 J	ND
SB-09-3.0	SB-09	3.0	9/28/2010	NA	< 0.99	< 50	NA	NA
SB-09-4.9		4.9	9/28/2010	NA	1.4	< 50	5.0 J	ND
SB-09-6.0		6.0	9/28/2010	NA	< 0.99	< 50	NA	NA
SB-09-11.8		11.8	9/28/2010	NA	< 1.0	< 50	5.1 J	ND
SB-10-4.0	SB-10	4.0	9/28/2010	NA	1.1	< 50	NA	NA
SB-10-9.0		9.0	9/28/2010	NA	< 0.99	< 50	NA	NA
SB-10-10.5		10.5	9/28/2010	NA	< 0.99	< 49	NA	NA
SB-10-11.5		11.5	9/28/2010	NA	< 1.0	< 50	< 5.0 UJ	ND
SB-11-12.8	SB-11	12.8	9/27/2010	NA	< 0.99	< 50	< 5.0	ND
SB-12-12.0	SB-12	12.0	9/28/2010	NA	< 0.98	< 49	< 4.9 UJ	ND
Environmental S	creening Lev	el		83	83	370	1,300	
(residential land	use) 4							

SUMMARY OF TOTAL PETROLEUM HYDROCARBONS AND POLYNUCLEAR AROMATIC HYDROCARBONS IN SOIL 1

Crown Chevrolet Cadillac Isuzu
7544 Dublin Boulevard and 6707 Golden Gate Drive
Dublin, California

Notes

- Samples were collected by AMEC Geomatrix, Inc., and analyzed by TestAmerica Laboratories, Inc., of Pleasanton, California. Samples were analyzed for TPHg using U.S. EPA Method 8260B; for TPHd and TPHmo using U.S. EPA Method 8015B, following a silica gel preparation procedure in accordance with U.S. EPA Method 3630C; and for PAHs using U.S. EPA Method 8270C with selective ion monitoring (SIM). Only detected constituents are shown on this table; see associated laboratory analytical reports for individual analytes and reporting limits.
- 2. Results shown in **bold** exceed their respective Environmental Screening Levels.
- 3. The laboratory indicated that the spectra for sample SB-03-3.2 does not resemble the pattern for the laboratory's fresh gasoline standard. The TPHg value reported is likely due to the presence of non-gasoline VOCs in the sample.
- 4. California Regional Water Quality Control Board, San Francisco Region, 2007, Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater, Table A-1. Shallow Soil Screening Level (≤3m bgs), Residential Land Use (groundwater is a current or potential drinking water resource), November, revised May 2008.

Abbreviations

- -- = not applicable
- < = constituent was not detected at or above the laboratory reporting limit shown

bgs = below ground surface

J = the analyte was positively identified, and the associated numerical value is the approximate concentration of the analyte in the sample

NA = not analyzed

ND = not detected at or above the respective laboratory reporting limits

PAHs = polynuclear aromatic hydrocarbons

TPH = total petroleum hydrocarbons

TPHg = total petroleum hydrocarbons quantified as gasoline

TPHd = total petroleum hydrocarbons quantified as diesel

TPHmo = total petroleum hydrocarbons quantified as motor oil

UJ = the analyte was not detected at a level greater than or equal to the laboratory reporting limit; however, the laboratory reporting limit is approximate and may be inaccurate or imprecise

U.S. EPA = U.S. Environmental Protection Agency

SUMMARY OF VOLATILE ORGANIC COMPOUNDS IN SOIL 1

Crown Chevrolet Cadillac Isuzu
7544 Dublin Boulevard and 6707 Golden Gate Drive
Dublin, California

Concentrations reported in micrograms per kilogram (µg/kg)

Sample ID	Location	Depth (feet bgs)	Date	Chloro- benzene	1,2- Dichloro- benzene	1,4- Dichloro- benzene	втех	All Other VOCs
SB-01-11.7	SB-01	11.7	9/27/2010	NA	NA	NA	ND	NA
SB-01-13.8		13.8	9/27/2010	NA	NA	NA	ND	NA
SB-02-9.1	SB-02	9.1	9/27/2010	NA	NA	NA	ND	NA
SB-02-11.5		11.5	9/27/2010	NA	NA	NA	ND	NA
SB-03-1.3	SB-03	1.3	9/28/2010	< 3.8	< 3.8	< 3.8	NA	ND
SB-03-2.8		2.8	9/28/2010	2,600 ²	< 440	< 440	NA	ND
SB-03-3.2	1	3.2	9/28/2010	90,000	< 5,200	5,400	NA	ND
SB-03-6.5		6.5	9/28/2010	26,000	30,000	1,700	NA	ND
SB-03-11.5		11.5	9/28/2010	6,500	15,000	< 440	NA	ND
SB-04-3.0	SB-04	3.0	9/27/2010	NA	NA	NA	ND	NA
SB-04-7.0		7.0	9/27/2010	NA	NA	NA	ND	NA
SB-04-8.5		8.5	9/27/2010	NA	NA	NA	ND	NA
SB-04-12.0		12.0	9/27/2010	NA	NA	NA	ND	NA
SB-08-15.7	SB-08	15.7	9/29/2010	NA	NA	NA	ND	NA
Environmental So	creening Lev	el (residential	land use) 3	1,500	1,100	590	-	

Notes

- 1. Samples were collected by AMEC Geomatrix, Inc., and analyzed by TestAmerica Laboratories, Inc., of Pleasanton, California, using U.S. EPA Method 8260B for VOC analysis. Only detected constituents are shown on this table; see associated laboratory analytical reports for individual analytes and reporting limits.
- 2. Results shown in **bold** exceed their respective Environmental Screening Levels.
- 3. California Regional Water Quality Control Board, San Francisco Region, 2007, Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater, Table A-1. Shallow Soil Screening Level (≤3m bgs), Residential Land Use (groundwater is a current or potential drinking water resource), November, revised May 2008.

Abbreviations

- -- = not applicable
- < = constituent was not detected at or above the laboratory reporting limit shown

bgs = below ground surface

NA = not analyzed

ND = not detected at or above the respective laboratory reporting limits

U.S. EPA = U.S. Environmental Protection Agency

VOCs = volatile organic compounds

SUMMARY OF TOTAL PETROLEUM HYDROCARBONS AND POLYNUCLEAR AROMATIC HYDROCARBONS IN GROUNDWATER

Crown Chevrolet Cadillac Isuzu
7544 Dublin Boulevard and 6707 Golden Gate Drive
Dublin, California

Concentrations reported in micrograms per liter (ug/L)

			ncentrations re	Total Petroleum Hydrocarbons							
Sample ID	Location	Date	TPHg	TPHd (unfiltered)	TPHd (filtered) ²	TPHmo (unfiltered)	TPHmo (filtered) ²	PAHs			
SB-01	SB-01	9/27/2010	< 50	NA	NA	NA	NA	NA			
SB-02	SB-02	9/27/2010	63	NA	NA	NA	NA	NA			
SB-03	SB-03	9/28/2010	< 50	NA	NA	NA	NA	NA			
SB-04	SB-04	9/27/2010	< 50	< 51	< 52	< 300 ³	< 310 ³	ND			
SB-40 ⁴		9/27/2010	< 50	< 52	< 53	< 310 ³	< 320 ³	ND			
SB-05	SB-05	9/28/2010	NA	< 51	< 52	< 310 ³	< 310 ³	ND			
SB-06	SB-06	9/28/2010	NA	< 51	< 53	< 310 ³	< 320 ³	ND			
SB-07	SB-07	9/29/2010	NA	10 J	< 52	< 310 ³	< 310 ³	ND			
SB-08	SB-08	9/29/2010	< 50	< 51	< 52	< 310 ³	< 310 ³	ND			
SB-10	SB-10	9/28/2010	NA	< 51	< 53	< 300 ³	< 320 ³	ND			
SB-11	SB-11	9/27/2010	NA	< 51	< 52	< 300 ³	< 310 ³	ND			
SB-12	SB-12	9/28/2010	NA	11 J	< 52	< 310 ³	< 310 ³	ND			
Environment (groundwate drinking wate	r is a potent	ial or current	100	100	100	100	100				

Notes

- Samples were collected by AMEC Geomatrix, Inc., and analyzed by TestAmerica Laboratories, Inc., of Pleasanton, California. Samples were analyzed for TPHg using U.S. EPA Method 8260B; for TPHd and TPHmo using U.S. EPA Method 8015B, following a silica gel preparation procedure in accordance with U.S. EPA Method 3630C; and for PAHs using U.S. EPA Method 8270C with selective ion monitoring (SIM). Only detected constituents are shown on this table; see associated laboratory analytical reports for individual analytes and reporting limits.
- 2. Extra sample volume for samples for TPHd and TPHmo analyses was filtered at the laboratory prior to analysis using a 0.7-micron glass fiber filter.
- 3. The laboratory reporting limits for all TPHmo analyses (i.e., from 300 to 320 μg/L) exceed the ESL of 100 μg/L. However, the method detection limit for unfiltered TPHmo analyses is130 μg/L (and is up to 140 μg/L for filtered TPHmo analyses); TPHmo was not detected at or above the method detection limit in any sample.
- 4. Sample SB-40 is a blind field duplicate sample of sample SB-04.
- California Regional Water Quality Control Board, San Francisco Region, 2007, Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater, Table F-1a, Groundwater Screening Levels (groundwater is a current or potential drinking water source), November, revised May 2008.

Abbreviations

- -- = not applicable
- < = constituent was not detected at or above the laboratory reporting limit shown
- J = the analyte was positively identified, and the associated numerical value is the approximate concentration of the analyte in the sample

NA = not analyzed

ND = not detected at or above the respective laboratory reporting limits

PAHs = polynuclear aromatic hydrocarbons

TPHg = total petroleum hydrocarbons quantified as gasoline

TPHd = total petroleum hydrocarbons quantified as diesel

TPHmo = total petroleum hydrocarbons quantified as motor oil

U.S. EPA = U.S. Environmental Protection Agency

SUMMARY OF VOLATILE ORGANIC COMPOUNDS AND CHROMIUM IN GROUNDWATER

Crown Chevrolet Cadillac Isuzu
7544 Dublin Boulevard and 6707 Golden Gate Drive
Dublin, California

Concentrations reported in micrograms per liter (µg/L)

				Volatile Organic Compounds							Chromium		
Sample ID	Location	Date	Benzene	Chloro- benzene	1,2- Dichloro- benzene	1,4- Dichloro- benzene	cis-1,2- DCE	PCE	TCE	All Other VOCs Analyzed	Dissolved Hexavalent Chromium	Total Chromium ²	Dissolved Total Chromium ³
SB-01	SB-01	9/27/2010	< 0.50	NA	NA	NA	NA	NA	NA	ND	NA	NA	NA
SB-02	SB-02	9/27/2010	< 0.50	NA	NA	NA	NA	NA	NA	ND	NA	NA	NA
SB-03	SB-03	9/28/2010	1.5 ⁴	85	42	1.3	1.3	3.2	0.96	ND	NA	NA	NA
SB-04	SB-04	9/27/2010	< 0.50	NA	NA	NA	NA	NA	NA	ND	NA	NA	NA
SB-40 ⁵		9/27/2010	< 0.50	NA	NA	NA	NA	NA	NA	ND	NA	NA	NA
SB-05	SB-05	9/28/2010	NA	NA	NA	NA	NA	NA	NA	NA	1.1	20	2.5 J-
SB-06	SB-06	9/28/2010	NA	NA	NA	NA	NA	NA	NA	NA	0.94	250	2.3 J-
SB-07	SB-07	9/29/2010	NA	NA	NA	NA	NA	NA	NA	NA	1.7	44	2.8 J-
SB-08	SB-08	9/29/2010	< 0.50	NA	NA	NA	NA	NA	NA	ND	1.1	23	3.3 J-
Environmental Screening Level (groundwater is a potential or current drinking water resource) 6			1.0	25	10	5.0	6.0	5.0	5.0		11	50	50

Notes

- Samples collected by AMEC Geomatrix, Inc., and analyzed by TestAmerica Laboratories, Inc., of Pleasanton, California. Samples were analyzed for VOCs using U.S. EPA Method 8260B, for hexavalent chromium using U.S. EPA Method 7199, and for total chromium and dissolved total chromium using U.S. EPA Method 6020. Only detected constituents are shown on this table; see associated laboratory analytical reports for individual analytes and reporting limits.
- 2. The work plan specified that the samples would be analyzed for dissolved total chromium; however, the laboratory initially performed the analyses with unfiltered samples. Therefore, the resultant total chromium values likely overestimate the concentration of chromium that is dissolved in groundwater.
- 3. The work plan specified that the samples would be analyzed for dissolved total chromium; however, the laboratory initially performed the analyses with unfiltered samples. After this error was noted, AMEC requested that the analytical laboratory filter some remaining sample volume (from a different, unpreserved container) and perform a dissolved total chromium analysis on each sample. However, since the unfiltered samples were stored in unpreserved glass containers, rather than being filtered and then stored in preserved plastic containers as required by the analytical method, the dissolved total chromium results were qualified as estimated and may be biased low.
- 4. Results shown in **bold** exceed their respective screening levels.
- 5. Sample SB-40 is a blind field duplicate sample of sample SB-04.
- California Regional Water Quality Control Board, San Francisco Region, 2007, Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater, Table F-1a, Groundwater Screening Levels (groundwater is a current or potential drinking water source), November, revised May 2008.

<u>Abbreviations</u>

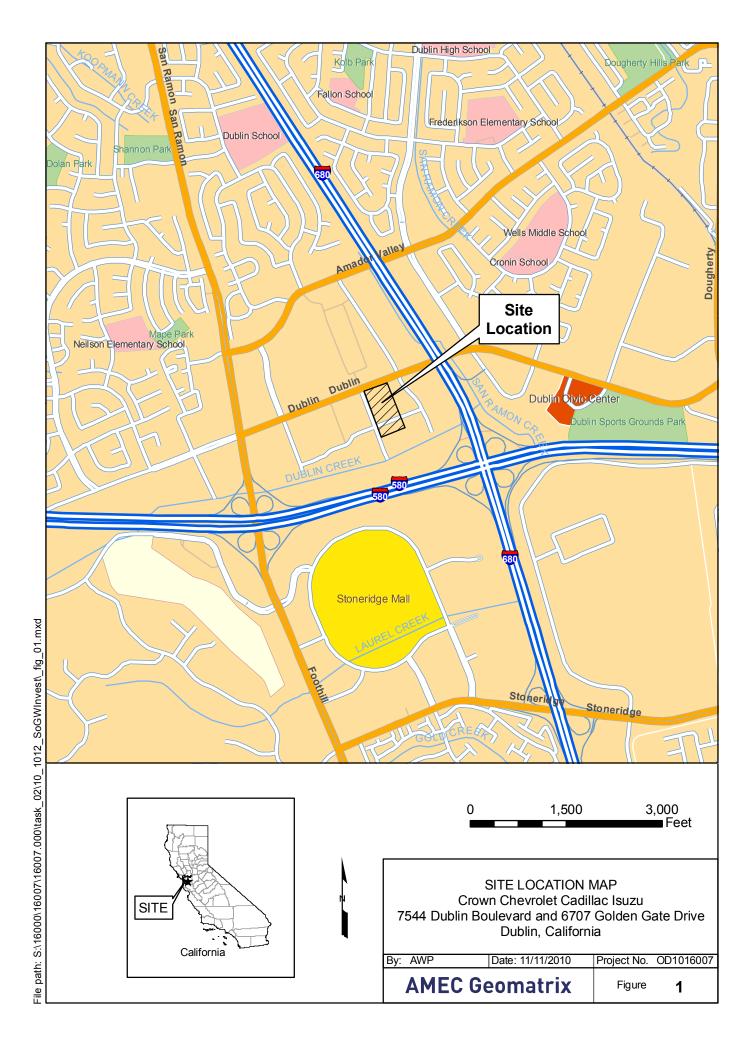
-- = not applicable

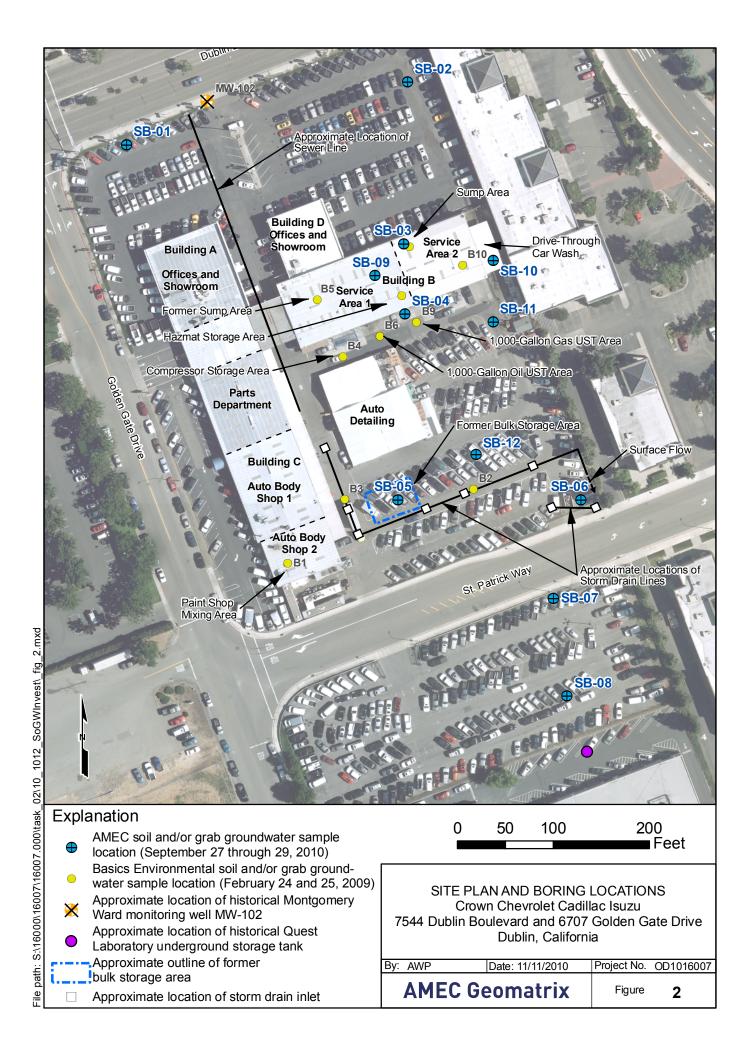
cis-1,2-DCE = cis-1,2 dichloroethene

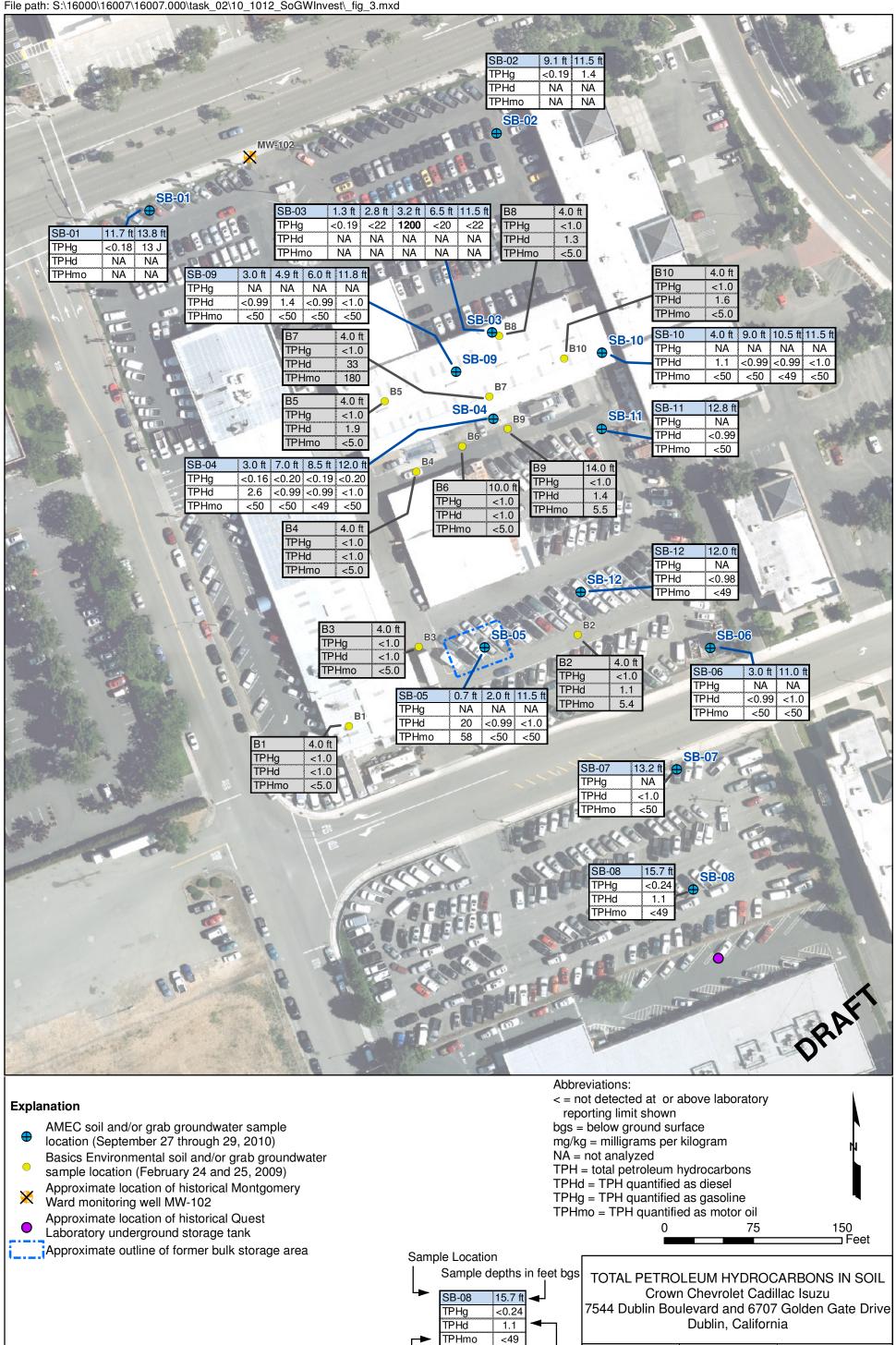
NA = not analyzed

J-= the result is an estimated quantity, but the result may be biased low

ND = not detected at or above the respective laboratory reporting limits


PCE = tetrachloroethene


TCE = trichloroethene


U.S. EPA = U.S. Environmental Protection Agency

FIGURES

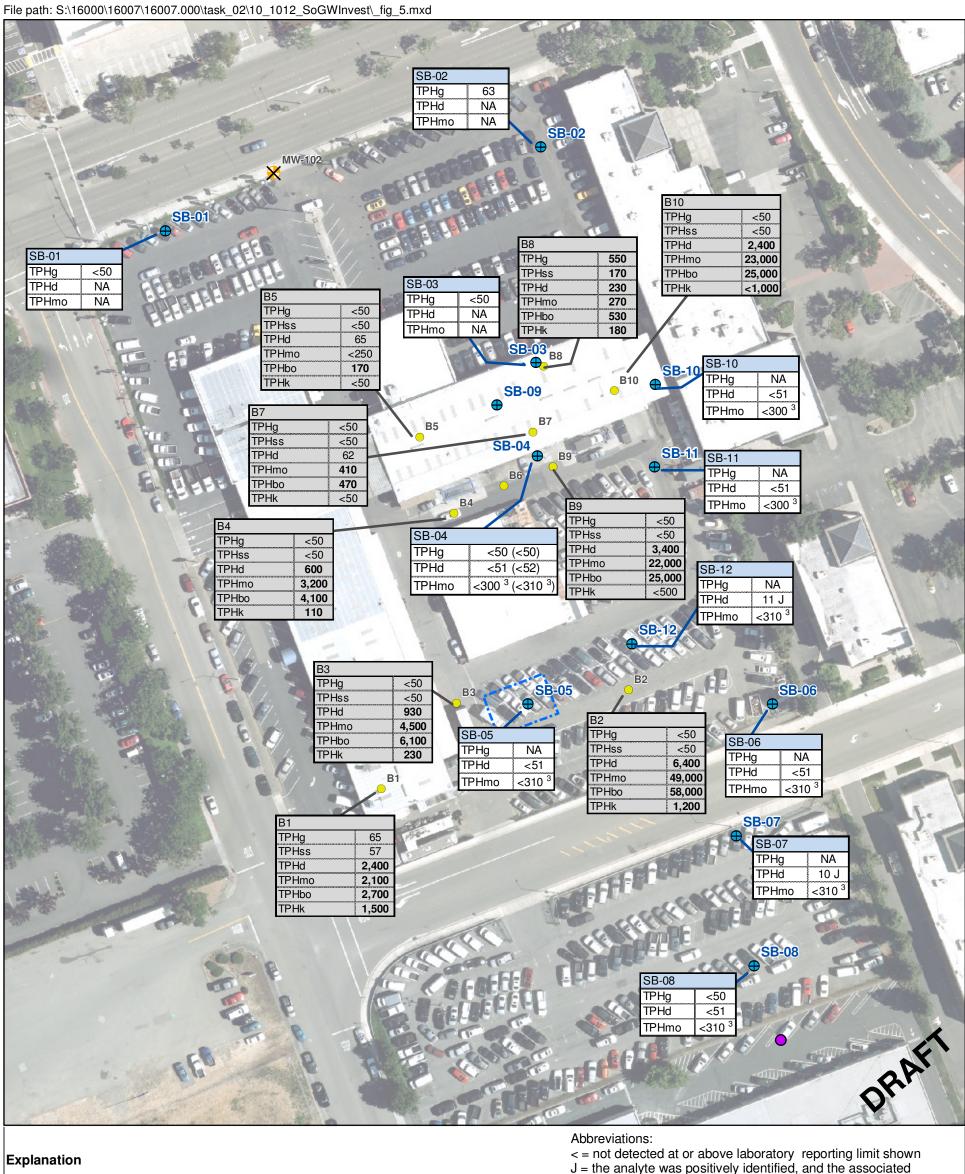
<49

Concentrations in mg/kg

Analytes

By: GFS

Date: 11/11/2010


AMEC Geomatrix

Project No. OD10160070

Figure

3

4.0 ft Crown Chevrolet Cadillac Isuzu Chlorobenzene <5 7544 Dublin Boulevard and 6707 Golden Gate Drive 1,2-DCB <5 Dublin, California 1,4-DCB <5 Date: 11/11/2010 | Project No. OD10160070 By: GFS Analytes Concentrations in µg/kg **AMEC Geomatrix** Figure 4

- AMEC soil and/or grab groundwater sample location (September 27 through 29, 2010)
- Basics Environmental soil and/or grab groundwater
- sample location (February 24 and 25, 2009)
- Approximate location of historical Montgomery Ward monitoring well MW-102
- Approximate location of historical Quest Laboratory underground storage tank
 - Approximate outline of former bulk storage area

Notes:

- 1. Results shown in bold exceed their respective screening levels.
- 2. Only results for unfiltered TPHd and TPHmo samples are shown. See Table 4 for additional information.
- 3. The laboratory reporting limits for TPHmo analyses exceed the ESL of 100 μg/L. However, the method detection limit for TPHmo analyses is 130 µg/L; TPHmo was not detected above the method detection limit in any sample.
- 4. Duplicate sample results for SB-04 are shown in parentheses.

numerical value is the approximate concentration of the analyte in the sample

NA = not analyzed TPH = total petroleum hydrocarbons TPHbo = TPH quantified as bunker oil TPHd = TPH quantified as diesel

TPHg = TPH quantified as gasoline TPHk = TPH quantified as kerosene

TPHmo = TPH quantified as motor oil TPHss = TPH quantified as stoddard solvent

μg/L = micrograms per liter

Sample location SB-08 TPHg <50 TPHd <51 TPHmo <310 Analytes Concentrations in µg/L

TOTAL PETROLEUM HYDROCARBONS IN GROUNDWATER

75

Crown Chevrolet Cadillac Isuzu 7544 Dublin Boulevard and 6707 Golden Gate Drive Dublin, California

By: GFS Date: 11/11/2010 Project No. OD10160070

AMEC Geomatrix

Figure 5

150 ı Feet

Chlorobenzene

1,2-DCB

Analytes

NA

NA

Concentrations in µg/L

By: GFS

7544 Dublin Boulevard and 6707 Golden Gate Drive

Dublin, California

Project No. OD10160070

6

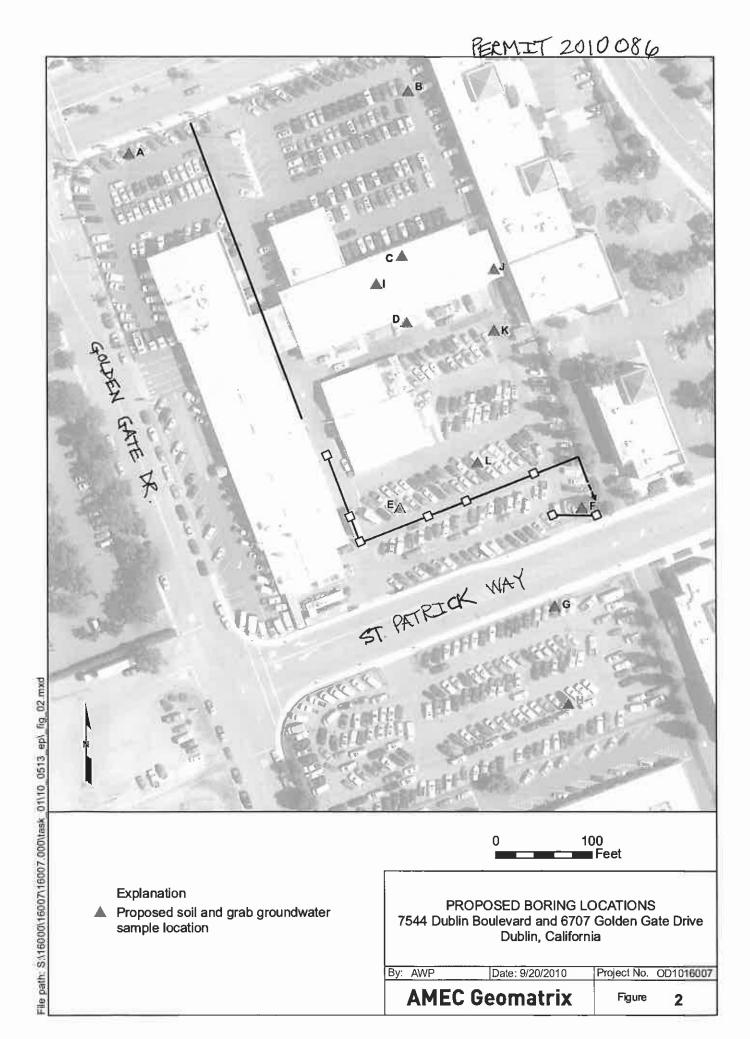
Figure

Date: 11/11/2010

AMEC Geomatrix

APPENDIX A

Drilling Permit


ZONE 7 WATER AGENCY

100 NORTH CANYONS PARKWAY, LIVERMORE, CALIFORNIA 94551 VOICE (925) 454-5000 FAX (925) 245-9306 E-MAIL whonq@zone7water.com

DRILLING PERMIT APPLICATION

FOR APPLICANT TO COMPLETE	. FOR OFFICE USE
LOCATION OF PROJECT FURMER Cheurolet	PERMIT NUMBER
7544 Dublin Blud, Dublin, California	APN 941-1500-015-09
Coordinates Source ft. Accuracy∀ ft. LAT: 37 · 70368 £LONG: - 121 · 72838 € APN 941 - 1500 - 15 - 9	PERMIT CONDITIONS (Circled Permit Requirements Apply)
CLIENT Name Patrick Costello Address Po Box 2010 Phone City Dublin ZIP 94568 APPLICANT Name AMEC Geometrix (Greg Stemler) Email greg. Stemler AMEC. comFax(510)663 4191 Address 2101 Webster St., 12th FloorPhone (510)663 4191 City CAKLAND CA ZIP 99612	A. GENERAL 1. A permit application should be submitted so as to arrive at the Zone 7 office five days prior to your proposed starting date. 2. Submit to Zone 7 within 60 days after completion of permitted work the original Department of Water Resources Water Well Drillers Report (DWR Form 188), signed by the driller. 3. Permit is void if project not begun within 90 days of approval date. 4. Notify Zone 7 at least 24 hours before the start of work. B. WATER SUPPLY WELLS
TYPE OF PROJECT: Well Construction	 Minimum surface seal diameter is four inches greater than the well casing diameter. Minimum seal depth is 50 feet for municipal and industrial wells or 20 feet for domestic and irrigation wells unless a lesser depth is specially approved. Grout placed by tremie. An access port at least 0.5 inches in diameter is required on the wellhead for water level measurements. A sample port is required on the discharge pipe near the
Dewatering Other DRILLING METHOD: Mud Rotary Air Rotary Hollow Stem Auger Cable Tool Direct Push Other DRILLING COMPANY Core Drilling DRILLER'S LICENSE NO 57 906899	wellhead. C. GROUNDWATER MONITORING WELLS INCLUDING PIEZOMETERS 1. Minimum surface seal diameter is four Inches greater than the well or piezometer casing diameter. 2. Minimum seal depth for monitoring wells is the maximum depth practicable or 20 feet. 3. Grout placed by tremie.
WELL SPECIFICATIONS: IN Maximum Casing Diameter in. Depth ft. Surface Seal Depth ft.	D. GEOTECHNICAL. Backfill bore hole with compacted cuttings or heavy bentonite and upper two feet with compacted material. In areas of known or suspected contamination, tremied cement grout shall be used in place of compacted cuttings.
SOIL BORINGS: Number of Borings 12 Maximum Hole Diameter 3.5 in. Depth 20 ft.	E. CATHODIC. Fill hole above anode zone with concrete placed by tremie.
ESTIMATED STARTING DATE 9/27/2010 ESTIMATED COMPLETION DATE 9/30/2010	F. WELL DESTRUCTION. See attached. G. SPECIAL CONDITIONS. Submit to Zone 7 within 60 days after completion of permitted under the until beat-like second
I hereby agree to comply with all requirements of this permit and Alameda County Ordinance No. 73-68.	completion of permitted work the well installation report including all soil and water laboratory analysis results.
APPLICANT'S SIGNATURE ONE STEEL Dale 5/20/200	Approved Wyman Hong Date 9/25/10
ATTACH SITE PLAN OR SKETCH	//

Revised: January 4, 2010

APPENDIX B

Soil Boring Logs

PROJEC				UBLIN BO		RD		Boring Lo	g Expla	nation
BORING							ELEVAT	ION AND DATUM	1:	
DRILLING	G CC	NTI	RAC	TOR:			DATE ST	TARTED:	DATE FII	NISHED:
DRILLING	З МЕ	TH	OD:				TOTAL D	DEPTH (ft.):	MEASUR	RING POINT:
DRILLING	G EQ	UIP	MEN	IT:			DEPTH	TO WATER (ft.)	FIRST	COMPL.
SAMPLIN	IG M	ETH	HOD:				LOGGE	D BY:	I	
HAMMER	R WE	IGH	IT:			DROP:	RESPON	SIBLE PROFES	SIONAL:	REG. NO.
_	No.		Blows/ S Foot	OVM READING (ppm)	NAI	DESCRIPTION ME (USCS): color, moist, % by wt., plast. dense cementation, react. w/HCl, geo. inter	sity, struct	ure,	F	REMARKS
- 0)	o i	_	<u> </u>		Surface Elevation:				
1- 2- 3- 4- 5- 6- 7- 8-					3. D bo gu 4. S sa 5. O m 6. O sp	oil described using visual-manual procedure ociety of Testing and Materials (ASTM) Staruidance; a Standard based on the Unified System. oil color described according to Munsell Colorashed lines separating soil strata represent oundaries between sampled intervals that manual transitions. olid lines represent approximate boundaries ample intervals. OVM = organic vapor meter, reading in voluntiallion (ppm). odor, if noted is subjective and not necessari pecific compounds or concentrations.	oil Classif or Chart. inferred nay be about	488 for fication		
9-					Inter	val of recovered soil collected with a continu	ious core	sampler.	- - -	
11-	7.5	X			Inter	val of no recovery.		-	- - -	
12 - 3	SB-01-12					ple collected for chemical analysis and sam	ple identif			KEYFORM (REV. 6/2008)
		٩М	EC (Geomatr	ix			Project No. OD10	0160070	Page 1 of 1

PROJE		_		UBLIN B Californi	OULEVARD a 94568		Log of Bo	ring No.	SB-01
BORIN					D' N of NW corner of site		LEVATION AND DATUM		ourfoos
					eCore Drilling	D	ot surveyed; datum ATE STARTED: /27/10	DATE FII 9/27/10	NISHED:
DRILL	ING M	ETH	IOD:	Direct	push		OTAL DEPTH (ft.): 0.0	Ground	NING POINT: surface
DRILL	ING E	QUII	PMEN	IT: Geopr	obe 7822 DT	DI	EPTH TO WATER (ft.)	FIRST NA	COMPL.
SAMPI	LING N	ИΕТ	HOD:	Geoprob	e DT21 dual-tube sampling system [5' x 1.25"]	G	DGGED BY: 5. Stemler		·
HAMM	ER W	EIG	HT:	NA	DROP: NA		ESPONSIBLE PROFES: . Patton	SIONAL:	REG. NO. PG 8541
DEPTH (feet)	Sample S No.	_	Blows/ G Foot	OVM READING (ppm)	DESCRIPTION NAME (USCS): color, moist, % by wt., plas cementation, react. w/HCl, ged	. inter.		F	REMARKS
	S	S	Ш	<u> </u>	Surface Elevation: N ASPHALTIC CONCRETE : (5 inches thick)	lot surve	yed	_	
1- - 2-					LEAN CLAY with SAND (CL): dark grayish 80% fines, 20% fine to medium sand, medi	brown (Hand aug	ered to 5 feet
3- - 4-							-	calibrated	iniRAE 2000 PID with 100 ppm ne standard.
5- 6-				0 0 0	LEAN CLAY (CL): dark grayish brown (2.5 10% fine sand, medium plasticity, firm	·	noist, 90% fines,	- - - -	
7- - 8- - 9-				0 0 0 0	olive brown (2.5Y 4/4), medium plasticity, fi	rm	-	- - -	
- 10- - 11-			-	0 0 0.1	√ soft		-	- - -	
11- 12-	SB-01-11.7			0.3 0.6 0.5	↓ firm		-	- - -	
13 - - 14 -	SB-01-13.8			2.3 1.2 0.6	very dark greenish gray (10Y 3/1)		-	- - -	
_				0.4	olive brown (2.5Y 4/4)		-	-	
15-	<u> </u>	ഥ					l		OAKBOREV (REV. 6/2008)
	AM	EC	Geo	matrix			Project No. OD10	0160070	Page 1 of 2

Log of Boring No. SB-01 (cont'd)

	SAN			_ ⁰			REMARKS
DEPTH (feet)	Sample No.	Sample	Blows/ Foot	OVM READING (ppm)	DESCRIPTION NAME (USCS): color, moist, % by wt., plast. density, structure, cementation, react. w/HCl, geo. inter.		NLIMIANAS
				0.1	LEAN CLAY (CL): cont'd		0
- 16-				0.1	sand fraction fine to medium		Grab groundwater sample SB-01 collected through 5
-				0.3			feet of 1-inch OD Sch. 40 PVC screen (0.010-inch
17-				0.1		_	slot size) placed in borehole from 15 to 20
_				0.1		-	feet bgs. Drive casing retracted from bottom of
18-				0.2		-	boring to 13 feet bgs to maintain surface seal.
_				0.1		-	Depth to water measured
19-				0.4		_	prior to sampling using an electronic water level
-				0.1 0.1		-	meter at 1100 on September 27, 2010:
20-			_	0.1	Bottom of boring at 20.0 feet		11.6 feet bgs.
21-							
						_	
22-						_	Borehole destroyed using Type I-II neat cement
_						-	grout placed from total depth to ground surface
23-						-	with a tremie pipe.
_						-	
24-						-	
_							
25-							
26-							
						_	
27-						-	
_						-	
28-						-	
_						_	
29-						-	
30-							
JU =							
31-						_	
_						-	
32-						-	
-						-	
33-			1	<u> </u>			OAKBOREV (REV. 6/2008)
	ΑМ	EC	Geo	matrix	Project I	No. OD101	60070 Page 2 of 2

PROJI				UBLIN B Californi	OULEVARD a 94568				Log of Bo	ri	ng No. S	SB-02
BORIN					NE corner o	f site			ON AND DATU veyed; datun		ground si	urface
DRILL	ING C	ONT	RAC	TOR: Per	eCore Drillir	ıg		DATE ST 9/27/10	ARTED:		DATE FINI 9/27/10	SHED:
DRILL	ING M	ETH	OD:	Direct	push	·-		TOTAL D	EPTH (ft.):		MEASURII	NG POINT:
DRILL	ING F	OUIF	PMFN		obe 7822 DT			17.5	O WATER (ft.)		Ground s	COMPL.
				•		ube sampling system [5	' v 1 25"]	LOGGED	, ,		NA	NA
							X 1.25]	G. Sten	n <mark>ler</mark> ISIBLE PROFES	SSI	ONAL:	REG. NO.
HAMN		MPLE		NA	DR	OP: NA	TION	A. Patto	on	П		PG 8541
DEPTH (feet)	Sample S		Blows/ c	OVM READING (ppm)	NAME	DESCRIP (USCS): color, moist, % by cementation, react. w	y wt., plast. den	ısity, structı r.	ıre,		RI	EMARKS
	Se	Se	ॼ "	<u> </u>	AODUAL	Surface Elevat		ırveyed				
1- 2- 3- 3- 4- 5- 6- 7- 8- 9- 10- 11- 12- 13- 14-	SB-02-11.5 SB-02-9.1			0 0 0 0 0 0 0 0.8 7.5 22 9.2 4.9	10% fine	LEAN CLAY (CL): dark grayish bito medium sand, medium sand, medium sand, medium sand, medium (10YR 6/6) and (CL): dark grayish sand, medium plasticity, medium plasticity,	n plasticity, firm	 	 noist,		over the second logged. OVM = Min calibrated visobutylened isobutylened isobutylen	adwater sample ected through 5 ch OD Sch. 40 n (0.010-inch laced in om 12.5 to 17.5 drive casing om bottom of 2.5 feet bgs to urface seal. ater measured appling using an water level 130 on 127, 2010:
-		$\ \cdot\ $								-		
15-			_					T				DAKBOREV (REV. 6/2008)
	ΑM	EC	Geo	matrix					Project No. OD1	1016	0/00/0	Page 1 of 2

Log of Boring No. SB-02 (cont'd)

						_09 00	J9	•	D 02 (0011t a)
DEPTH (feet)	Sample No.		Blows/ C Foot	OVM READING (ppm)	DESCRI NAME (USCS): color, moist, % cementation, react.	PTION by wt., plast. density, stru w/HCl, geo. inter.	icture,		REMARKS
					dark grayish brown (2.5Y 4/2)				
40					LEAN CLAY (CL): cont'd		-	-	
16-					SANDY LEAN CLAY (CL): dark gra	ayish brown (2.5Y 4/2) n	nottled		
17-					with dark greenish gray (10Y 4/1)		_	_	
-								_	
18-					Bottom of boring at 17.5 feet			_	Borehole destroyed using Type I-II neat cement
_							-		grout placed from total depth to ground surface
19-							-	-	with a tremie pipe.
-							-	-	
20-	-						-	-	
-							-	-	
21-							-	-	
-							-	-	
22-									
23-									
								_	
24-	-						-	_	
_							-	_	
25-							-	-	
-							-	-	
26-							-	-	
-							-	-	
27-							-	-	
28-							-	_	
20-									
29-								_	
							-	_	
30-							-	-	
-	-						-	-	
31-							-	-	
-	1						-	-	
32-							-	-	
-							-	-	
33-	'								OAKBOREV (REV. 6/2008)
	AM	EC	Geo	matrix			Project No. OD10	0160	0070 Page 2 of 2

rkoje	ECT:			UBLIN B Californi				Log of E	3or	ing No.	SB-03
BORIN	IG L O					Area 2 sump		EVATION AND DA			
				0 112 01	0011100	. Alea 2 Samp		t surveyed; date	um i	s ground s DATE FIN	surface
DRILLI	NG C	ГИО	RAC	TOR: Per	neCore [Drilling		16 STARTED: 29/10		9/29/10	IISHED.
DRILLI	NG M	IFTL	IUD.	Direct	nuch		ТО	TAL DEPTH (ft.):		MEASUR	ING POINT:
DIVILLI	140 10			Direct	pusii		16	.0		Ground FIRST	surface COMPL.
DRILLI	NG E	QUII	PMEN	NT: Geopr	obe 7822	2 DT	DE	PTH TO WATER (ft	.)	NA	NA
SAMPL	ING	MET	HOD	: Geoprob	e DT21	dual-tube sampling system [5' x 1.25"]		GGED BY: Stemler			•
HAMM	ER W	/EIG	HT:	NA		DROP: NA	RE	SPONSIBLE PROF	ESS	IONAL:	REG. NC
	SA	MPL	ES	(1)		DESCRIPTION	A.	ration			PG 6541
DEPTH (feet)	Sample No.	Sample	Blows/ Foot	OVM READING (ppm)	N	AME (USCS): color, moist, % by wt., plast. of cementation, react. w/HCl, geo. ii	density, nter.	structure,		F	REMARKS
<u> </u>	Sar	Sar	음 오	RE.		Surface Elevation: No	t survey	ed			
					AS	PHALTIC CONCRETE : (4 inches thick)					
-	1.3				AG	GREGATE BASE : (3 inches thick)		/	\dashv	Hand aug	ered to 5 feet
1-	SB-03-1.3			0	mo	NDY LEAN CLAY with GRAVEL (CL): olivist, 60% fines, 25% fine to coarse sand, 15			_	bgs.	
2-	- 80				gra	vel, medium plasticity, firm			_		
_	SB-03-2.										
3-	SB					AVELLY LEAN CLAY with SAND (CL): da SY 4/1), moist, 55% fines, 25% fine gravel,				PID equip	ment not ue to dead
3-	-3.2			5800		nd, medium plasticity, firm	2U /0 III	IE IO COISE		battery. O	VM reading not
_	SB-03-3										rom 4 feet bgs
4-	SE									to total de	ptn.
5-											
_						AN CLAY (CL): black (2.5Y 2.5/1), moist, sid, medium plasticity, hard	90% fin	es, 10% fine	-		
6-	-6.5								-		
_	SB-03-6								-		
7-	S								_		
_									_		ndwater sampl lected through
8-					√ dar	k gray (2.5Y 4/1)				feet of 1-ir	nch OD Sch. 40
0										PVC scree	en (0.010-inch
_											from 11 to 16
9-	-	\vdash	,								Drive casing
_		X							-		from bottom of 11 feet bgs to
10-		\mathbb{A}	1						_	maintain s	urface seal.
_											vater measured mpling using a
4.4	ιςi										water level
11-	SB-03-11.									meter at 1	
_	3B-0;								-	14.4 feet b	er 28, 2010: ogs.
12-	97				├─ SA	NDY LEAN CLAY (CL)			-		-
_						k grayish brown (2.5Y 4/2)			-		
13-					·				-		
_									-		
14-		\coprod	,		▼ sof	t			-		
_		X							-		
15-		<u>/ \</u>	J							1	OAKBOREV (REV. 6/200
	ΔM	1EC	Geo	matrix				Project No. C	D101	160070	Page 1 of 2

Log of Boring No. SB-03 (cont'd)

_	SAN	IPLE	ES	Ō				
DEPTH (feet)	Sample No.	Sample	Blows/ Foot	OVM READING (ppm)	DESCRIPTION NAME (USCS): color, moist, % by wt., plast. density, struc cementation, react. w/HCl, geo. inter.	eture,	F	EMARKS
					SANDY LEAN CLAY with GRAVEL (CL)			
16-					LEAN CLAY (CL): cont'd			
17-					Bottom of boring at 16.0 feet	<u> </u>	Type I-II n grout place depth to g	destroyed using eat cement ed from total round surface
						_	with a tren	пе ріре.
18-								
19-						_		
_						_		
20-						_		
						-		
21-								
22-								
						_		
23-						_		
-						_		
24-						-		
25 –								
25						_		
26-						_		
_						-		
27-						-		
20								
28-								
29-						_		
-						_		
30-						-		
						-		
31-						_		
32-						_		
_						-		
33						L		OAKBOREV (REV. 6/2008)
			_	matrix		Project No. OD101		Page 2 of 2

PROJE				UBLIN B California					Log of Bo	ri	ng No.	SB-04
BORIN						SE corner of Bldg. B			ON AND DATU		e around a	curface
				-				DATE ST	veyed; datun ARTED:	1 18	DATE FIN	NISHED:
JKILLI	ING C	UNT	KAC	TOR: Per	ieCore L	חוווזע		9/27/10			9/27/10	
ORILLI	ING M	IETH	IOD:	Direct	push			16.0	EPTH (ft.):		Ground	ING POINT: surface
ORILLI	ING E	QUIF	PMEN	NT: Geopr	obe 7822	2 DT		DEPTH T	O WATER (ft.)		FIRST NA	COMPL.
SAMPL	LING I	MET	HOD:	: Geoprob	e DT21	dual-tube sampling system [5' x 1.25	"]	LOGGED G. Sten				•
HAMM	ER W	'EIGI	HT:	NA		DROP: NA			SIBLE PROFES	SSI	ONAL:	REG. NO PG 8541
		MPL	ES	9		DESCRIPTION						
DEPTH (feet)	Sample No.	Sample	Blows/ Foot	OVM READING (ppm)	N	AME (USCS): color, moist, % by wt., pla cementation, react. w/HCl, ge	ast. dens eo. inter	sity, structu -	ıre,		, F	REMARKS
	Sa	Sa	ā L	RE	00	Surface Elevation:	Not su	rveyed				
_						NCRETE: (4 inches thick) AYEY SAND with GRAVEL (SC): light	divo b	yrown (2.5)	V 5/4)	-		
1-				0.4	moi	ist, 50% fine to coarse sand, 30% med to coarse gravel [FILL]				_	Hand aug	ered to 5 feet
2-				0.6								
_	SB-04-3.0			0.5						-	-	niRAE 2000 PI
3-	SB									_		with 100 ppm e standard.
4-				0.4								
_										_		
5-				0.4		AN CLAY (CL): black (2.5Y 2.5/1), mo	ist, 90%	% fines, 10	% fine	-		
_	-			0.5	san	nd, medium plasticity, hard				-		
6-	-7.0			0.9						-		
_	SB-04-7.0			0.4						-		
7-	3,			0.6	⊢ GR	AVELLY LEAN CLAY (CL): light olive	brown ((2.5Y 5/4)		-		
_	8.5			0.5		y dark greenish gray (10Y 3/1)	·	. ,		_		
8-	SB-04-8.			0.4						_		
0 -	S			0.4								
9-		\bigvee										
10-	-	\bigwedge								_		
_				0.4						_		
11-	12			0.4	_ 	NDVI FAN OLAV (OLA 100) 6				-	Grah grou	ındwater sampl
_	SB-04-12			0.4		NDY LEAN CLAY (CL): 40% fine sand				-	SB-04 col	lected through
12-	ß			0.4	— SAI	NDY LEAN CLAY (CL): 40% fine sand	, sott			-	PVC scree	nch OD Sch. 40 en (0.010-inch
-				0.3		k olive brown (2.5Y 3/3)				-		rom 11 to 16
13-		7									retracted f	Drive casing from bottom of
14-		V								_		11 feet bgs to surface seal.
- 15-		$/ \setminus$								_		
10-	A 1-4	IEC	Gas	matrix					Project No. OD:	104	60070	OAKBOREV (REV. 6/2008
	ΑM	IEU	Geo	matrix					Project No. OD1	ıU1	01010	Page 1 of 2

Log of Boring No. SB-04 (cont'd)

	SAN	1PLE	S	(D				
DEPTH (feet)			Blows/	OVM READING (ppm)	DESCRIPTION NAME (USCS): color, moist, % by wt., plast. density, structocementation, react. w/HCl, geo. inter.	ure,	F	REMARKS
		П		0.4	LEAN CLAY (CL): cont'd			
16-				0.3	SANDY LEAN CLAY (CL)			
17-	_				Bottom of boring at 16.0 feet	_	Type I-II n	destroyed using eat cement ed from total round surface
_	-					_	with a trer	nie pipe.
18-						-		
_	-					_		
19-						_		
_	_					_		
20-						-		
_	1					-		
21-	†					-		
_								
22-								
23-								
24-						_		
						_		
25-	-					_		
_	-					_		
26-	-					-		
_	_					-		
27-						_		
-						_		
28-						-		
_	†					-		
29-	1							
20]							
30-								
31-								
						_		
32-						_		
_						-		
33-								OAKBODEL (TEXT TO TEXT
	A 1.4	E0	Geo	matrice	T ₀	Project No. OD404	60070	OAKBOREV (REV. 6/2008)
Ĺ	AM	こし	uec	matrix	P	Project No. OD101	00070	Page 2 of 2

PROJE	ECT:		UBLIN B				Log of Bo	ori	ing No.	SB-05
BORIN	IG LO				f SE corner of N site parcel		ON AND DATU			
					•	Not sur	veyed; datur ARTED:	n is	s ground s DATE FIN	
DRILL	ING C	ONTRAC	TOR: Pen	eCore	Drilling	9/28/10	1		9/28/10	
DRILL	ING M	IETHOD:	Direct	push		15.0	DEPTH (ft.):		Ground	
DRILL	ING E	QUIPME	NT: Geopr	obe 782	2 DT		O WATER (ft.)		FIRST NA	NA
SAMP	LING	METHOD	: Geoprob	e DT21	dual-tube sampling system [5' x 1.25"]	LOGGED G. Sten	nler			
HAMM	IER W	/EIGHT:	NA		DROP: NA	RESPON A. Patto	ISIBLE PROFES On	SSI	IONAL:	REG. NO. PG 8541
DEPTH (feet)	Sample No.	Sample Blows/ Sample Foot	OVM READING (ppm)	٨	DESCRIPTION IAME (USCS): color, moist, % by wt., plast. d cementation, react. w/HCl, geo. in	lensity, structu	ure,		R	EMARKS
	Sar	Sar	RE (Surface Elevation: Not	surveyed				
				AS	PHALTIC CONCRETE : (1 inch thick)	-				
-	0.7			AG	GGREGATE BASE : (3 inches thick)			7	Hand auge	ered to 5 feet
1-	SB-05-0.7			gre	AN CLAY (CL): black (2.5Y 2.5/1) trace mo eenish gray (10Y 3/1), moist, 90% fines, 10% esticity, firm			_	bgs.	
2-	5-2.0				•			-		
_	SB-05-2.0							L		
3-								L		
_								L		
4-	1									
-	1			T ali	ve brown (2.5Y 4/3)			-		
5-				V	7e blowii (2.51 4/3)			-		
_								-		
6-	_							-		
_										
7										ndwater sample
7-										ected through 5 ich OD Sch. 40
-								F	PVC scree	en (0.010-inch
8-								-	slot size) p	placed in rom 10 to 15
_	_							L		Orive casing
9-		Ш								rom bottom of
_		\mathbb{N}								0 feet bgs to urface seal.
										ater measured
10-	1	П							electronic	mpling using an water level
_	r¿.							-	meter at 14	400 on
11-	SB-05-11							-	September 11.2 feet b	
-	SB-				NDY LEAN CLAY (CL): olive brown (2.5Y	4/3) moist 6	35%	+		<u> </u>
12-	1				es, 35% fine sand, medium plasticity, firm	-1,0 ₁ , 1110131, C	, o , o	-		
_								-		
13-								L		
13		H		↓ LE	AN CLAY (CL): black (2.5Y 2.5/1)					destroyed using
_	1	$ \rangle / $								eat cement ed from total
14-	1							-	depth to gr	round surface
-	1	$ / \setminus $		Ro	ttom of boring at 15.0 feet			-	with a trem	nie pipe.
15-		<u>/ \</u>		ьо	ttom of borning at 10.0 leet					OAKBOREV (REV. 6/2008)
	ΔΝ	IFC Ger	omatrix				Project No. OD	101		Page 1 of 1
	Al'	56	ATTIGUE IX				. 10,000 140. OD			. 490 1 01 1

BORING LOCATION. SE corner of northern site parcel, near storm drain DRILLING CONTRACTOR: PeneCore Drilling DRILLING METHOD: Direct push DRILLING METHOD: Geoprobe 7822 DT DRILLING METHOD: Geoprobe 7822 DT DRILLING METHOD: Geoprobe DT21 dual-tube sampling system [5" x 1.25"] SAMPLING METHOD: Geoprobe DT21 dual-tube sampling system [5" x 1.25"] DRILLING METHOD: Geoprobe DT21 dual-tube sampling system [5" x 1.25"] DRILLING METHOD: Geoprobe DT21 dual-tube sampling system [5" x 1.25"] DRILLING METHOD: Geoprobe DT21 dual-tube sampling system [5" x 1.25"] DRILLING METHOD: Geoprobe DT21 dual-tube sampling system [5" x 1.25"] DRILLING METHOD: Geoprobe DT21 dual-tube sampling system [5" x 1.25"] DRILLING METHOD: Geoprobe DT21 dual-tube sampling system [5" x 1.25"] DRILLING METHOD: Geoprobe DT21 dual-tube sampling system [5" x 1.25"] DRILLING METHOD: Geoprobe DT21 dual-tube sampling system [5" x 1.25"] DRILLING METHOD: Geoprobe DT21 dual-tube sampling system [5" x 1.25"] DRILLING METHOD: Geoprobe DT21 dual-tube sampling system [5" x 1.25"] DRILLING METHOD: Geoprobe DT21 dual-tube sampling system [5" x 1.25"] DRILLING METHOD: Geoprobe DT21 dual-tube sampling system [5" x 1.25"] DRILLING METHOD: Geoprobe DT21 dual-tube sampling system [5" x 1.25"] DRILLING METHOD: Geoprobe DT21 dual-tube sampling system [5" x 1.25"] DRILLING METHOD: Geoprobe DT21 dual-tube sampling system [5" x 1.25"] DRILLING METHOD: Geoprobe DT21 dual-tube sampling system [5" x 1.25"] DRILLING METHOD: Geoprobe DT21 dual-tube sampling system [5" x 1.25"] DRILLING METHOD: Geoprobe DT21 dual-tube sampling system [5" x 1.25"] DRILLING METHOD: Geoprobe DT21 dual-tube sampling system [5" x 1.25"] DRILLING METHOD: Geoprobe DT21 dual-tube sampling system [5" x 1.25"] DRILLING METHOD: Geoprobe DT21 dual-tube sampling system [5" x 1.25"] DRILLING METHOD: Geoprobe DT21 dual-tube sampling system [5" x 1.25"] DRILLING MET	PROJECT:			UBLIN B Californi		AKD		Log of Bo	ri	ng No.	SB-06
DRILLING CONTRACTOR: PeneCore Drilling SPISA10	BORING LO					thern site parcel, near storm drain		-		around s	urface
RILLING METHOD: Direct push TOTAL DEPTH (ft.): MEASURINE POINT	DII LING		rrac	TOP: Por	naCoro F	Orilling	DATE ST	TARTED:	1 13	DATE FIN	IISHED:
RILLING EQUIPMENT: Geoprobe 7822 DT Commission Commi	'NILLING	CONT	KAU	TOR. PEI	iecole L	inning					INC DOINT:
AMPLING METHOD: Geoprobe DT21 dual-tube sampling system [5' x 1.25'] AMMPLING METHOD: Geoprobe DT21 dual-tube sampling system [5' x 1.25'] AMMER WEIGHT: NA DROP: NA DROP: NA RESPONSIBLE PROFESSIONAL: PG 8: SAMPLES SAMPLES SAMPLES SAMPLES SAMPLES SUBJECT OF STATE (USCS): color, moist. % by wt., plast. density, structure, cementation, react. wHCl, geo. inter: Surface Elevation: Not surveyed ASPHALTIC CONCRETE: (1 inch thick) CONCRETE: (18 inches thick) LEAN CLAY (CL): black (2.5Y 2.5f1), moist. 90% fines. 10% fine and, medium plasticity, firm OVM = MiniRAE 2000 callibrated with 100 ppr isobutylene standard. Grab groundwater sam set of the standard of the standard of the standard of the standard. Grab groundwater sam set of the standard of the	RILLING	METH	HOD:	Direct	push			νΕΡΙΗ (π.):		Ground	
AMMER WEIGHT: NA DROP: NA DROP: NA DESCRIPTION A Patton A Patton REMARKS R	RILLING	EQUII	PMEN	NT: Geopr	obe 7822	PDT	DEPTH T	O WATER (ft.)			
AMMER WEIGHT: NA DROP: NA RESPONSIBLE PROFESSIONAL: REG I A. Patton Patton ASMPLES DESCRIPTION NAME (USCS): color, moist, % by wt. plast, density, structure, cementation, react, wHCl, geo. inter. Surface Elevation: Not surveyed ASPHALTIC CONCRETE: (1 inch thick) CONCRETE: (18 inches thick) LEAN CLAY (CL): black (2.5Y 2.5t1), moist, 90% fines, 10% fine sand, medium plasticity, firm OVM = MiniRAE 2000. calibrated with 100 ppr isobutylene standard. OVM = MiniRAE 2000. calibrated with 100 ppr isobutylene standard. OVM = MiniRAE 2000. calibrated with 100 ppr isobutylene standard. OVM = MiniRAE 2000. calibrated with 100 ppr isobutylene standard. OVM = MiniRAE 2000. calibrated with 100 ppr isobutylene standard. OVM = MiniRAE 2000. calibrated with 100 ppr isobutylene standard. OVM = MiniRAE 2000. calibrated with 100 ppr isobutylene standard. OVM = MiniRAE 2000. calibrated with 100 ppr isobutylene standard. OVM = MiniRAE 2000. calibrated with 100 ppr isobutylene standard. OVM = MiniRAE 2000. calibrated with 100 ppr isobutylene standard. OVM = MiniRAE 2000. calibrated with 100 ppr isobutylene standard. OVM = MiniRAE 2000. calibrated with 100 ppr isobutylene standard. OVM = MiniRAE 2000. calibrated with 100 ppr isobutylene standard. OVM = MiniRAE 2000. calibrated with 100 ppr isobutylene standard. OVM = MiniRAE 2000. calibrated with 100 ppr isobutylene standard. OVM = MiniRAE 2000. calibrated with 100 ppr isobutylene standard. OVM = MiniRAE 2000. calibrated with 100 ppr isobutylene standard. OVM = MiniRAE 2000. calibrated with 100 ppr isobutylene standard. OVM = MiniRAE 2000. calibrated with 100 ppr isobutylene standard. OVM = MiniRAE 2000. calibrated with 100 ppr isobutylene standard. OVM = MiniRAE 2000. calibrated with 100 ppr isobutylene standard. OVM = MiniRAE 2000. calibrated with 100 ppr isobutylene standard. OVM = MiniRAE 2000. calibrated with 100 ppr isobutylene standard. OVM = MiniRAE 2000. calibrated with 100 ppr isobutylene standard.	AMPLING	MET	HOD	: Geoprob	e DT21 o	lual-tube sampling system [5' x 1.25"]					
DESCRIPTION NAME (USCS): color, moist, 5 by wt, plast, density, structure, cementation, react, wHoLi, geo, inter. Surface Elevation: Not surveyed ASPHALTIC CONCRETE: (1 inch thick) CONCRETE: (18 inches thick) CONCRETE: (18 inches thick) LEAN CLAY (CL): black (2.5Y 2.5f1), moist, 90% fines, 10% fine sand, medium plasticity, firm OVM = MiniRAE 2000 calibrated with 100 ppr isobutylene standard. OVM = MiniRAE 2000 calibrated with 100 ppr isobutylene standard. OVM = MiniRAE 2000 calibrated with 100 ppr isobutylene standard. OVM = MiniRAE 2000 calibrated with 100 ppr isobutylene standard. OVM = MiniRAE 2000 calibrated with 100 ppr isobutylene standard. OVM = MiniRAE 2000 calibrated with 100 ppr isobutylene standard. OVM = MiniRAE 2000 calibrated with 100 ppr isobutylene standard. OVM = MiniRAE 2000 calibrated with 100 ppr isobutylene standard. OVM = MiniRAE 2000 calibrated with 100 ppr isobutylene standard. OVM = MiniRAE 2000 calibrated with 100 ppr isobutylene standard. OVM = MiniRAE 2000 calibrated with 100 ppr isobutylene standard. OVM = MiniRAE 2000 calibrated with 100 ppr isobutylene standard. OVM = MiniRAE 2000 calibrated with 100 ppr isobutylene standard. OVM = MiniRAE 2000 calibrated with 100 ppr isobutylene standard. OVM = MiniRAE 2000 calibrated with 100 ppr isobutylene standard. OVM = MiniRAE 2000 calibrated with 100 ppr isobutylene standard. OVM = MiniRAE 2000 calibrated with 100 ppr isobutylene standard. OVM = MiniRAE 2000 calibrated with 100 ppr isobutylene standard. OVM = MiniRAE 2000 calibrated with 100 ppr isobutylene standard. OVM = MiniRAE 2000 calibrated with 100 ppr isobutylene standard. OVM = MiniRAE 2000 calibrated with 100 ppr isobutylene standard. OVM = MiniRAE 2000 calibrated with 100 ppr isobutylene standard. OVM = MiniRAE 2000 calibrated with 100 ppr isobutylene standard. OVM = MiniRAE 2000 calibrated with 100 ppr isobutylene standard. OVM = MiniRAE 2000 calibrated with 100 ppr isobutylene standard. OVM = MiniRAE 2000 calibrated with 100 ppr isobutylene stand	HAMMER \	NEIG	HT:	NA		DROP: NA	RESPON	ISIBLE PROFES	SSIC	ONAL:	REG. NO
ASPHALTIC CONCRETE: (1 inch thick) CONCRETE: (18 inches thick) LEAN CLAY (CL): black (2.5Y 2.5/1), moist, 90% fines, 10% fine sand, medium plasticity, firm OVM = MiniRAE 2000 calibrated with 100 ppr isobutylene standard. OVM = MiniRAE 2000 calibrated with 100 ppr isobutylene standard. OVM = MiniRAE 2000 calibrated with 100 ppr isobutylene standard. Grab groundwater sam SB-06 collected through of the collected from the col	т ├	$\overline{}$		NG (c	N					R	
ASPHALTIC CONCRETE: (1 inch thick) CONCRETE: (18 inches thick) LEAN CLAY (CL): black (2.5Y 2.5/1), moist, 90% fines, 10% fine sand, medium plasticity, firm OVM = MiniRAE 2000 calibrated with 100 ppr isobutylene standard. or contains trace gravel olive brown (2.5Y 3/3) contains trace gravel olive brown (2.5Y 4/3) or contains trace gravel olive brown (2.5Y 4/3) Contains trace gravel olive brown (2.5Y 6/3), wet, 55% fine to medium sand, 45% medium plasticity fines LEAN CLAY (CL): light olive brown (2.5Y 5/3), wet, 55% fine to medium sand, 45% medium plasticity fines LEAN CLAY (CL): light olive brown (2.5Y 5/3) mottled with yellowish brown (10/8 5/6), moist, 90% fines, 10% fine sand, medium black (2.5Y 2.5/1) Borehole destroyed us Type I-Il neat cement to gravel adepth to ground surface with a tremie pipe.	(feet	ample	lows/ -oot	OVN EADI (ppm	110	cementation, react. w/HCl, geo. in	iter.				
CONCRETE: (18 inches thick) LEAN CLAY (CL): black (2.5Y 2.5/1), moist, 90% fines, 10% fine sand, medium plasticity, firm OVM = MiniRAE 2000 calibrated with 100 ppr isobutylene standard. Grab groundwater sam SB-06 collected throug feet of 1-inch OD Sch. PVC screen (0.101-inc slot size) placed in borehole from 10 to 15 store) to sampling using retracted from bottom. Config to 10 feet bys to maintain surface seal. Depth to water level meter at 1105 on September 28, 2010: 10.8 feet bgs. CLAYEY SAND (SC): light olive brown (2.5Y 5/3), wet, 55% fine to medium sand, 45% medium plasticity fines LEAN CLAY (CL): black (2.5Y 2.5/1) CLAYEY SAND (SC): light olive brown (2.5Y 5/3), wet, 55% fine to medium sand, 45% medium plasticity fines LEAN CLAY (CL): black (2.5Y 2.5/1) Borehole destroyed us Type I-II neat cement to ground surface with a tremie pipe.	- S	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	B -	α.	100		surveyed		\square		
LEAN CLAY (CL): black (2.5Y 2.5/1), moist, 90% fines, 10% fine sand, medium plasticity, firm OVM = MiniRAE 2000 calibrated with 100 ppr isobutylene standard. OVM = MiniRAE 2000 calibrated with 100 ppr isobutylene standard. Grab groundwater sam SB-06 collected through feet of 1-inch OD Sch. PVC screen (0.010-inc slot size) placed in borehole from 10 to 15 feet bgs. Drive casing retracted from 10 to 16 feet bgs. Drive casing prior to sampling using electronic water level meter at 1105 on medium sand, 45% medium plasticity fines 12- 0					_	· · · · · · · · · · · · · · · · · · ·					
dark olive brown (2.5Y 3/3) contains trace gravel olive brown (2.5Y 4/3) contains trace gravel olive brown (2.5Y 4/3) Crab groundwater san SB-06 collected through feet of 1-inch OD Sch. PVC screen (0.010-inc slot size) placed in bornehole from 10 to 15 feet bgs. Drive casing tractact from bottom boring to 10 feet bgs to maintain surface seal. Depth to water measure prior to sampling using electronic water level meter at 1105 on September 28, 2010: 10.8 feet bgs. CLAYEY SAND (SC): light olive brown (2.5Y 5/3), wet, 55% fine to medium sand, 45% medium plasticity fines where the sample of the sand, 45% medium plasticity fines and, 45% fines a	2-						00% fines, 10	0% fine	- - -		
Depth to water measur prior to sampling using electronic water level meter at 1105 on September 28, 2010: 10.8 feet bgs. CLAYEY SAND (SC): light olive brown (2.5Y 5/3), wet, 55% fine to medium sand, 45% medium plasticity fines LEAN CLAY (CL): light olive brown (2.5Y 5/3) mottled with yellowish brown (10YR 5/6), moist, 90% fines, 10% fine sand, medium plasticity, firm black (2.5Y 2.5/1) Borehole destroyed us Type I-II neat cement grout placed from total depth to ground surface with a tremie pipe.	4- 4- 5- 6- 7- 8-			0 0 0	con	tains trace gravel				Grab grou SB-06 coll feet of 1-ir PVC scree slot size) p borehole f feet bgs. retracted f boring to 1 maintain s	ndwater sample ected through sich OD Sch. 40 en (0.010-inch placed in rom 10 to 15 Drive casing rom bottom of 10 feet bgs to urface seal.
Bottom of boring at 15.0 feet	11 - 88 12 - 13 13 13 13 13 13 13 - 14 - 15 - 14 - 15 - 15 - 15 - 15 - 15			0 0 0	LEA brown plas	dium sand, 45% medium plasticity fines AN CLAY (CL): light olive brown (2.5Y 5/3) wn (10YR 5/6), moist, 90% fines, 10% fine sticity, firm	mottled with	yellowish		prior to sa electronic meter at 1 Septembe 10.8 feet b Borehole o Type I-II n grout place depth to g	mpling using ar water level 105 on r 28, 2010: ogs. destroyed using eat cement ed from total round surface
OAKROREV (REV 6	15	/ \			Bot	tom of boring at 15.0 feet					
AMEC Geomatrix Project No. OD10160070 Page 1 of 1											OAKBOREV (REV. 6/2008

BORING LOCATION: 70' W, 35' S of NE corner of southern site parcel DRILLING CONTRACTOR: PeneCore Drilling DRILLING METHOD: Direct push DRILLING EQUIPMENT: Geoprobe 7822 DT SAMPLING METHOD: Geoprobe DT21 dual-tube sampling system [5' x 1.25'] SAMPLING METHOD: Geoprobe DT21 dual-tube sampling system [5' x 1.25'] SAMPLING METHOD: Geoprobe DT21 dual-tube sampling system [5' x 1.25'] SAMPLING METHOD: Geoprobe DT21 dual-tube sampling system [5' x 1.25'] SAMPLING METHOD: Geoprobe DT21 dual-tube sampling system [5' x 1.25'] SAMPLING METHOD: Geoprobe DT21 dual-tube sampling system [5' x 1.25'] SAMPLING METHOD: Geoprobe DT21 dual-tube sampling system [5' x 1.25'] SAMPLING METHOD: Geoprobe DT21 dual-tube sampling system [5' x 1.25'] SAMPLING METHOD: Geoprobe DT21 dual-tube sampling system [5' x 1.25'] SAMPLING METHOD: Geoprobe DT21 dual-tube sampling system [5' x 1.25'] SAMPLING METHOD: Geoprobe DT21 dual-tube sampling system [5' x 1.25'] SAMPLING METHOD: Geoprobe DT21 dual-tube sampling system [5' x 1.25'] SAMPLING METHOD: Geoprobe DT21 dual-tube sampling system [5' x 1.25'] SAMPLING METHOD: Geoprobe DT21 dual-tube sampling system [5' x 1.25'] SAMPLING METHOD: Geoprobe DT21 dual-tube sampling system [5' x 1.25'] SAMPLING METHOD: Geoprobe DT21 dual-tube sampling system [5' x 1.25'] SAMPLING METHOD: Geoprobe DT21 dual-tube sampling system [5' x 1.25'] SAMPLING METHOD: Geoprobe DT21 dual-tube sampling system [5' x 1.25'] SAMPLING METHOD: Geoprobe DT21 dual-tube sampling system [5' x 1.25'] SAMPLING METHOD: Geoprobe DT21 dual-tube sampling system [5' x 1.25'] SAMPLING METHOD: Geoprobe DT21 dual-tube sampling system [5' x 1.25'] SAMPLING METHOD: Geoprobe DT21 dual-tube sampling system [5' x 1.25'] SAMPLING METHOD: Geoprobe DT21 dual-tube sampling system [5' x 1.25'] SAMPLING METHOD: Geoprobe DT21 dual-tube sampling system [5' x 1.25'] SAMPLING METHOD: Geoprobe DT21 dual-tube sampling system [5'	PROJE					OULEV a 94568			Log of Bo	ori	ing No.	SB-07
DRILLING CONTRACTOR: PeneCore Drilling DRILLING METHOD: Direct push DRILLING METHOD: Direct push DRILLING METHOD: Direct push DRILLING METHOD: Geoprobe 7822 DT DEPTH TO WATER (th.) 13.2 NA SAMPLING METHOD: Geoprobe DT21 dual-tube sampling system [5' x 1.25'] G. Stemher HAMMER WEIGHT: NA DROP: NA DESCRIPTION DESCRIPTION RESPONSIBLE PROFESSIONAL: REG. N. REMARKS SAMPLES	BORIN										- arc.ul -	urfooc
DRILLING METHOD: Direct push TOTAL DEPTH (ft.): Ground surface							<u> </u>	DATE S	TARTED:	11 15	DATE FIN	IISHED:
DRILLING ME IHOD: Direct push Triangle Goulpment: Geoprobe 7822 DT DRILLING GOUNDENT: Geoprobe 7822 DT DEPTH TO WATER (ft.) FIRST COMPL. 13.2 NA SAMPLING METHOD: Geoprobe DT21 dual-tube sampling system [5' x 1.25'] G. Stemler HAMMER WEIGHT: NA DROP:	DKILLI	NG C	UNIF	KACTO	r: Pen	ecore	gniiing				9/29/10	
DRILLING ECUIPMENT: Geoprobe 7822 DT SAMPLING METHOD: Geoprobe DT21 dual-tube sampling system [5 x 1.25"] HAMMER WEIGHT: NA DROP: NA DROP: NA DESCRIPTION A. Patton PG 854 SAMPLES SAMP	DRILLI	NG M	ETHC	OD:	Direct	push			DEPTH (ft.):		Ground	surface
HAMMER WEIGHT: NA DROP: NA A. Patton RESPONSIBLE PROFESSIONAL: REG. NI R. P. R. R. R. P. R. R. P. R. R. R. R. P. R. R. R. R. P. R.	DRILLI	NG E	QUIPI	MENT:	Geopr	obe 782	2 DT		` '			
DROP: NA DROP: NA DROP: NA A. Patton PG 854 DROP: NA DESCRIPTION NAME (USCS): color, moist, \$9 wt, plast, density, structure. comenation, react withCl, geo. to comenation, react with Clay with SAND (CL): black (2.5Y 2.5/1), moist, 50% fine sand, medium plasticity, firm Trace gravel DVM = MiniRAE 2000 P. calibrated with 100 ppm isobutylene standard. DVM = MiniRAE 2000 P. calibrated with 100 ppm isobutylene standard. DVM = MiniRAE 2000 P. calibrated with 100 ppm isobutylene standard. DVM = MiniRAE 2000 P. calibrated with 100 ppm isobutylene standard. DVM = MiniRAE 2000 P. calibrated with 100 ppm isobutylene standard. DVM = MiniRAE 2000 P. calibrated with 100 ppm isobutylene standard. DVM = MiniRAE 2000 P. calibrated with 100 ppm isobutylene standard. DVM = MiniRAE 2000 P. calibrated with 100 ppm isobutylene standard. DVM = MiniRAE 2000 P. calibrated with 100 ppm isobutylene standard. DVM = MiniRAE 2000 P. calibrated with 100 ppm isobutylene standard. DVM = MiniRAE 2000 P. calibrated with 100 ppm isobutylene standard. DVM = MiniRAE 2000 P. calibrated with 100 ppm isobutylene standard. DVM = MiniRAE 2000 P. calibrated with 100 ppm isobutylene standard. DVM = MiniRAE 2000 P. calibrated with 100 ppm isobutylene standard. DVM = MiniRAE 2000 P. calibrated with 100 ppm isobutylene standard. DVM = MiniRAE 2000 P. calibrated with 100 ppm isobutylene standard. DVM = MiniRAE 2000 P. calibrated with 100 ppm isobutylene standard. DV	SAMPI	ING N	METH	IOD: G	Geoprob	e DT21	dual-tube sampling system [5' x 1.25"]	G. Ste	mler			
NAME (USCS): color, moist, % by wit, plast density, structure, cementation, read, wHcl, geo, inter. NAME (USCS): color, moist, % by wit, plast density, structure, cementation, read, wHcl, geo, inter.	HAMM	ER W	EIGH	IT: N	IA.		DROP: NA			SSI	ONAL:	REG. NO. PG 8541
ASPHALTIC CONCRETE: (2 inches thick) AGGREGATE BASE: (8 inches thick) GRAVELITY LEAN CLAY with SAND (CL): black (2.5Y 2.5/1), moist, 65% fines, 20% fine gravel, 15% fine to coarse sand, medium plasticity, firm Thank augered to 5 feet bgs. OVM = MiniRAE 2000 P calibrated with 100 ppm isobutylene standard. OVM = MiniRAE 2000 P calibrated with 100 ppm isobutylene standard. Grab groundwater samp SB-07 collected through feet of 1-inch 0D Sch, 4 fines and, medium plasticity, firm trace gravel Trace gravel O SANDY LEAN CLAY with GRAVEL (CL): soft O SANDY LEAN CLAY with GRAVEL (CL): soft O CLAYEY SAND (SC): wet	EPTH (feet)			Soot Si	ADING (ppm)	Ν	IAME (USCS): color, moist, % by wt., plast. d		ture,		R	REMARKS
AGGREGATE BASE : (8 inches thick) GRAVELLY LEAN CLAY with SAND (CL): black (2.5Y 2.5/1), moist, 65% fines, 20% fine gravel, 15% fine to coarse sand, medium plasticity, firm hard LEAN CLAY (CL): olive brown (2.5Y 4/3), moist, 90% fines, 10% LEAN CLAY (CL): olive brown (2.5Y 4/3), moist, 90% fines, 10% LEAN CLAY (CL): olive brown (2.5Y 4/3), moist, 90% fines, 10% LEAN CLAY (CL): olive brown (2.5Y 4/3), moist, 90% fines, 10% Tine sand, medium plasticity, firm trace gravel LEAN CLAY (CL): olive brown (2.5Y 4/3), moist, 90% fines, 10% Sand place of 1-inch OD Sch. 4 PVC screen (0.010-inch slot) size placed in borehole from 12 to 17 feet bgs. Drive casing on maintain surface seal. Depth to water measure unitation brown to 12 feet bgs to brown to 12 feet bgs to 12 feet bgs to 12 feet bgs to 12 feet bgs to 12 feet bgs. Drive casing unitation surface seal. Depth to water measure meter at 94 feet bgs. CARBORREVIEL (CL): soft 0 September 29, 2010: 13.8 feet bgs.		Sa	Sa	ă <u> </u>	RE (Surface Elevation: Not	surveyed				
GRAVELLY LEAN CLAY with SAND (CL): black (2.5Y 2.5/1), moist, 65% fines, 20% fine gravel, 15% fine to coarse sand, medium plasticity, firm Thand LEAN CLAY (CL): olive brown (2.5Y 4/3), moist, 90% fines, 10% fines sand, medium plasticity, firm LEAN CLAY (CL): olive brown (2.5Y 4/3), moist, 90% fines, 10% fines sand, medium plasticity, firm Trace gravel Grab groundwater samp SB-07 collected through feet of 1-inch OD SAN form 12 to 17 feet bgs. Drive casing retracted from bottom of borning to 12 feet bgs to maintain surface seal. Depth to water measure prior to sampling using a electronic water level meter at 945 on September 29, 2010: 13.8 feet bgs. CLAYEY SAND (SC): wet						AS	PHALTIC CONCRETE : (2 inches thick)			Π		
GRAVELLY LEAN CLAY with SAND (CL): black (2.5Y 2.5/1), moist, 65% fines, 20% fine gravel, 15% fine to coarse sand, medium plasticity, firm Thand GRAVELLY LEAN CLAY (CL): olive brown (2.5Y 4/3), moist, 90% fines, 10% fines and, medium plasticity, firm trace gravel Grab groundwater samp SB-07 collected through fine sand, medium plasticity, firm trace gravel Grab groundwater samp SB-07 collected through fine sand, medium plasticity, firm trace gravel Grab groundwater samp SB-07 collected through fine sand, medium plasticity, firm trace gravel Grab groundwater samp SB-07 collected through fine sand, medium plasticity, firm trace gravel Grab groundwater samp SB-07 collected through fine sand, medium plasticity, firm trace gravel Grab groundwater samp SB-07 collected through fine sand, medium plasticity, firm trace gravel Grab groundwater samp SB-07 collected through fine sand, medium plasticity, firm trace gravel Grab groundwater samp SB-07 collected through fine sand, medium plasticity, firm trace gravel Grab groundwater samp SB-07 collected through fine sand, medium plasticity, firm trace gravel Grab groundwater samp SB-07 collected through fine sand, medium plasticity, firm trace gravel Grab groundwater samp SB-07 collected through fine sand, medium plasticity, firm trace gravel Grab groundwater samp SB-07 collected through fine sand, medium plasticity, firm trace gravel Grab groundwater samp SB-07 collected through fine sand, medium plasticity, firm trace gravel Grab groundwater samp SB-07 collected through fine sand, medium plasticity, firm trace gravel Grab groundwater samp SB-07 collected through fine sand, medium plasticity, firm trace gravel Grab groundwater samp SB-07 collected through fine sand, medium plasticity, firm trace gravel Grab groundwater samp SB-07 collected through fine sand, medium plasticity, firm trace gravel fine sand, medium pla	-					AG	GREGATE BASE : (8 inches thick)				Hand auge	ered to 5 feet
albitrated with 100 ppm isobutylene standard. Carab groundwater samp SB-07 collected through fine sand, medium plasticity, firm trace gravel Carab groundwater samp SB-07 collected through feet of 1-inch OD Sch. 4 PVC screen (0.010-inch Slot size) placed in borehole from 12 to 17 feet bgs. Drive casing retracted from bottom of boring to 12 feet bgs. Drive casing retracted from bottom of boring to 12 feet bgs. Drive casing retracted from bottom of boring to 12 feet bgs. Drive casing retracted from bottom of some prior to sampling using a electronic water level melter at 945 on September 29, 2010: 13.8 feet bgs. CLAYEY SAND (SC): wet CLAYEY SAND (SC): wet CAYEY SAND (SC):	_					mo	ist, 65% fines, 20% fine gravel, 15% fine to				_	
SB-07 collected through feet of 1-inch OD Sch. 4 PVC screen (0.010-inch slot size) placed in borehole from 12 to 17 feet bgs. Drive casing retracted from bottom of boring to 12 feet bgs to maintain surface seal. Depth to water neasure prior to sampling using a electronic water level meter at 945 on September 29, 2010: 13.8 feet bgs. OCLAYEY SAND (SC): wet	_					T hos	ral			- - - -	calibrated	with 100 ppm
LEAN CLAY (CL): olive brown (2.5Y 4/3), moist, 90% fines, 10% fine sand, medium plasticity, firm SB-07 collected through feet of 1-inch OD Sch. 4! PVC screen (0.010-inch slot size) placed in borehole from 12 to 17 feet bgs. Drive casing retracted from bottom of boring to 12 feet bgs to maintain surface seal. Depth to water measure- prior to sampling using a electronic water level meter at 945 on September 29, 2010: 13-07-08-08-08-08-08-08-08-08-08-08-08-08-08-	6-				0	Y Hai	u			_		
SANDY LEAN CLAY with GRAVEL (CL): soft 12 - 0	8- 8- 9-					fine	e sand, medium plasticity, firm	ist, 90% fine	es, 10%	_ _ _ _	SB-07 coll feet of 1-ir PVC scree slot size) p borehole f feet bgs. I retracted f boring to 1 maintain s	lected through 5 inch OD Sch. 40 en (0.010-inch blaced in rom 12 to 17 Drive casing from bottom of 12 feet bgs to jurface seal.
CLAYEY SAND (SC): wet	_	SB-07-12.5			0	□ [_] SA	NDY LEAN CLAY with GRAVEL (CL): soft			 - - -	electronic meter at 9 Septembe	water level 45 on r 29, 2010:
OAKBOREV (REV. 6/20	14-	SB-07-13.2				□– cl	AYEY SAND (SC): wet			_		
AMEC Geomatrix Project No. OD10160070 Page 1 of 2	15-	l	r V								1	OAKBOREV (REV. 6/2008)
		AM	EC (Geom	natrix				Project No. OD	101	60070	Page 1 of 2

Log of Boring No. SB-07 (cont'd)

DAMPI 50							,
DEPTH (feet)		Sample 17	Blows/ (5) Foot	OVM READING (ppm)	DESCRIPTION NAME (USCS): color, moist, % by wt., plast. density, structure, cementation, react. w/HCl, geo. inter.		REMARKS
16-	-				soft LEAN CLAY (CL): cont'd	_	
- 17- -					black (2.5Y 2.5/1) Bottom of boring at 17.0 feet		Borehole destroyed using Type I-II neat cement
18- -						_	grout placed from total depth to ground surface with a tremie pipe.
19 – 20 –	-					_	
21 – -	-					_	
22- - 23-						_	
23-	-					_	
25 – –	-					_	
26 – – 27 –	-					_	
28-						_	
29-							
30-	-					_	
32- -	-					_	
33-						L	OAKBOREV (REV. 6/2008)
	AM	EC (Geo	matrix	Project No. OD	101	
					1 *		

PROJECT: 7544 DUBLIN E Dublin, Californ		Log of Bo	oring No. S	SB-08
BORING LOCATION: 135' S,	60' W of NE corner of southern site parcel	ELEVATION AND DATU		urfoos
DRILLING CONTRACTOR: Per	neCore Drilling	Not surveyed; datum DATE STARTED: 9/29/10	DATE FIN 9/29/10	ISHED:
DRILLING METHOD: Direct	t push	TOTAL DEPTH (ft.): 20.0	MEASURII Ground	NG POINT: surface
DRILLING EQUIPMENT: Geop	robe 7822 DT	DEPTH TO WATER (ft.)	FIRST 15.3	COMPL.
SAMPLING METHOD: Geoprol	be DT21 dual-tube sampling system [5' x 1.25"]	LOGGED BY: G. Stemler		
HAMMER WEIGHT: NA	DROP: NA	RESPONSIBLE PROFES A. Patton	SSIONAL:	REG. NO. PG 8541
DEPTH (feet) Sample No. Sample Blows/ Foot OVM READING (ppm)	DESCRIPTION NAME (USCS): color, moist, % by wt., plast. d cementation, react. w/HCl, geo. ir	ensity, structure, tter.	RI	EMARKS
N		surveyed		
	AGGREGATE BASE : (7 inches thick)			
1 2-	GRAVELLY LEAN CLAY (CL): black (2.5Y 2. fines, 20% fine gravel, 15% fine to coarse san firm		Hand auge	ered to 5 feet
3-				niRAE 2000 PID with 100 ppm e standard.
5-				
6- - 7-	— CLAYEY SAND with GRAVEL (SC): olive brown with yellowish red (5YR 5/6) — CLAYEY SAND with GRAVEL (SC)	wn (2.5Y 4/3) mottled	_ _ _	
-				
8-	CLAYEY SAND with GRAVEL (SC)			
9-				
- //				
10 0	LEAN CLAY with SAND (CL): olive brown (2. fines, 20% fine to coarse sand, medium plastitrace coarse gravel		1- -	
	firm			
12- 0				
40				
13-			<u> </u>	
13-			_	
$ \bigvee $		ROJECT\OD10160070 10000_LOGS GINTDF		DAKBOREV (REV. 6/2008)

Log of Boring No. SB-08 (cont'd)

I	SAN			_ g _	DECODIDATION		-	REMARKS
DEPTH (feet)	Sample No.	Sample	Blows/ Foot	OVM READING (ppm)	DESCRIPTION NAME (USCS): color, moist, % by wt., plast. density, structure, cementation, react. w/HCl, geo. inter.			
	15.7			0	LEAN CLAY with SAND (CL): cont'd			
_	SB-08-15.7			0	55% fines, 45% fine sand	-	Grab grou	indwater sample
16-	SE			· ·		-	SB-08 col	lected through 5
_				0		-		nch OD Sch. 40 en (0.010-inch
17-						-	slot size)	olaced in from 15 to 20
_				0	LEAN CLAY (CL) black (2.5Y 2.5/1)	_	feet bgs.	Drive casing
18-		\ /			₩ DIACK (2.5 ¥ 2.5/1)	_		from bottom of 15 feet bgs to
_		$ \rangle /$				_	maintain s	surface seal.
19-		X				_		vater measured mpling using an
_		/				L	electronic	water level
20-		$/ \setminus$	V				meter at 8 Septembe	s50 on er 29, 2010: 15.2
20-					Bottom of boring at 20.0 feet		feet bgs.	
-								
21-								
_						-		destroyed using eat cement
22-						_	grout place	ed from total
_							with a tren	round surface nie pipe.
23-						-		- 1-1-1
_						-		
24-						_		
_						_		
25-						-		
_						-		
26-						-		
_						-		
27-						_		
_						-		
28-						-		
-						-		
29-						_		
_						_		
30-						_		
_						_		
31-								
32-								
_								
33-								
					I:\PROJECT\\OD10160070\10000_LOGS\GIN	IT\DRAWI	NGS\SB-08.GDW	OAKBOREV (REV. 6/2008)
	AM	EC	Geo	matrix	Project No. 0	DD101	60070	Page 2 of 2

ROJE				UBLIN B Californi	OULEVARD a 94568	Log of B	or	ing No. S	SB-09
ORIN					of SE corner of Bldg. B	ELEVATION AND DAT			
				120 11	or of blag. b	Not surveyed; datu	m i	S ground SU DATE FINI	
RILLII	NG C	TNC	RAC	TOR: Per	eCore Drilling	9/28/10		9/28/10	
RILLII	NG M	ETH	OD:	Direct	push	TOTAL DEPTH (ft.): 15.0			NG POINT:
RILLI	NG E	QUIF	PMEN	NT: Geopr	obe 7822 DT	DEPTH TO WATER (ft.))	FIRST NA	COMPL.
AMPL	ING N	/ETI	HOD:	Geoprob	e DT21 dual-tube sampling system [5' x 1.25"]	LOGGED BY:		INA	INA
AMME				NA	DROP: NA	G. Stemler RESPONSIBLE PROFE	ESS	IONAL:	REG. NO.
£ 🚓	SAN				DESCRIPTION NAME (USCS): color, moist, % by wt., plast. o	A. Patton		RI	<u> PG 8541</u> EMARKS
(feet)	Sample No.	Sample	Blows/ Foot	OVM READING (ppm)	cementation, react. w/HCl, geo. in	nter.	_		
	(V)	S	1			surveyed	+		
					CONCRETE : (4 inches thick)		-		
				0	AGGREGATE BASE : (3 inches thick)		\dashv	Hand auge	red to 5 feet
1-					SANDY LEAN CLAY with GRAVEL (CL): oliv		-	bgs.	
_				_	moist, 60% fines, 20% fine to coarse sand, 20)% fine to coarse	_		
				0	gravel, medium plasticity, firm [FILL]				
2-	_								
-	SB-09-3.0			0			-	O\/\\\ - \\\\:	niRAE 2000 PID
3-	B-0(U	CLAYEY SAND (SC)			_	with 100 ppm
	Ś				LEAN CLAY with SAND (CL): olive brown (2.			isobutylene	
\dashv				0	fines, 20% fine to coarse sand, medium plast	icity, firm	-		
4-	6.4			0			_		
	SB-09-4								
7	SB-			0	dark greenish gray (5GY 4/1)		-		
5-					<u> </u>	10/ finan 400/ fin	+		
					LEAN CLAY (CL): black (2.5Y 5/1), moist, 90 sand, medium plasticity, firm	1% tines, 10% fine			
٦	0.0			0	sanu, medium piasticity, iifm				
6-	SB-09-6.0						-		
	SB-						_		
	-			0					
7-							-		
_							_		
8-				0			-		
4				U	contains trace gravel		-		
9-					grayish brown (2.5Y 5/2)				
3		H			, ,				
+		X					-		
10-		$\langle \lambda \rangle$					_		
\dashv				6					
11-	<u>~</u>						-		
	SB-09-11.8			^					
٦	98-0			0					
12-	S				SANDY LEAN CLAY (CL)		-		
					- SAINDT LEAIN CLAT (CL)		_		
.					→ soft				estroyed using
13-					•		-	Type I-II ne	
4							-		ed from total ound surface
,								with a trem	
14-							-	with a ticili	io pipe.
4					Bottom of boring at 15.0 feet		-		
15		Ш			Dottom of borning at 10.0 leet				DAKBOREV (REV. 6/2008)
			_	matrix		Project No. OI			Page 1 of 1

PROJEC				UBLIN B Californi	OULEVARD a 94568		Log of Bo	orin	g No.	SB-10
BORING					nd of car wash		TION AND DATU			
							rveyed; datum	n IS g ⊤	<u>Iround s</u> DATE FIN	IISHED:
RILLIN	IG C	ONT	RAC	TOR: Per	eCore Drilling	9/28/1		(9/28/10	
RILLIN	IC M	FTH	OD.	Direct	nush	TOTAL	DEPTH (ft.):	1	MEASUR	ING POINT:
- 1 VILLIIV	. 🔾 171		JD.	Direct		16.5			Ground IRST	surface ! COMPL.
RILLIN	IG E	QUIF	PMEN	NT: Geopr	obe 7822 DT	DEPTH	TO WATER (ft.)		VA	NA
SAMPLI	ING I	МЕТ	HOD:	Geoprob	e DT21 dual-tube sampling system [5' x 1.25"]	LOGGE G. Ste		'		
HAMME	R W	EIGI	HT:	NA	DROP: NA	RESPO	NSIBLE PROFES	SSION	IAL:	REG. NO
	SAI	MPLI	ES	<u></u> ტ	DESCRIPTION	A. Pat	<u>tori</u>			j PG 8541
DEPTH (feet)	Sample No.	Sample	Blows/ Foot	OVM READING (ppm)	NAME (USCS): color, moist, % by wt., plast. cementation, react. w/HCl, geo.	density, struc inter.	ture,		R	REMARKS
	San	San	B F	REA (F)		t surveyed				
					CONCRETE : (4 inches thick)					
1-					LEAN CLAY with SAND (CL): black (2.5Y 2. 20% fine to coarse sand, medium plasticity, f		30% fines,	1 1	land aug gs.	ered to 5 feet
2-					CLAYEY SAND with GRAVEL (SC): light ye 6/4), moist, 50% fine to coarse sand, 25% fin			<u>-</u>		
\dashv					25% medium plasticity fines			-)\/M = Mi	niRAE 2000 PI
3-								- c	alibrated	with 100 ppm
4	4.0							_ is	sobutylen	e standard.
4-	SB-10-4.0									
	Ś									
٦					LEAN CLAY (CL): black (2.5Y 2.5/1), moist,	90% fines, 1	0% fine			
5-				13.2	sand, medium plasticity, firm					
7								-		
6-				5.3				-		
4				5.3 0				-		
7-				U						
				3.1	contains trace gravel dark grayish brown (2.5Y 4/2)					
				4.7	T uair giayisii biowii (2.31 4/2)					
8-	9.0			26.2						
7	SB-10-9.0			20.2						
		/						-	Grah ara	undwater samp
4	-10.5	X						- :	SB-10 cc	llected through
10-	SB-10-10			•				L 1	feet of 1-	inch OD Sch. 4 een (0.010-inch
	S			0				1 1		placed in
11-				0					borehole	from 11.5 to 16
	1.5			•	SANDY LEAN CLAY (CL): dark grayish brov		, moist,			Drive casing from bottom of
7	SB-10-11			0	65% fines, 35% fine sand, medium plasticity, LEAN CLAY CL (CL)	9011			boring to	11.5 feet bgs to
12-	SB			13	LEAN GLAT GL (GL)					surface seal. water measure
-		Щ		0				-	prior to s	ampling using a
13-		1 /							electronion meter at	c water level 840 on
_		$ \cdot $						- :	Septemb	er 28, 2010:
14-		$ \chi $							15.5 feet	bgs.
+										
15		<i>!</i> \			E	PROJECT\\OD1016	0070\10000_LOGS\GINT\DR	RAWINGS	\SB-10.GDW	OAKBOREV (REV. 6/2008
	AM	IEC	Geo	matrix			Project No. OD1	101600	070	Page 1 of 2

Log of Boring No. SB-10 (cont'd)

					99			.,
DEPTH (feet)	Sample No.		_	OVM READING (ppm)	DESCRIPTION NAME (USCS): color, moist, % by wt., plast. density, structure, cementation, react. w/HCl, geo. inter.		F	REMARKS
				0	SANDY LEAN CLAY (CL): cont'd			
16-	-			0	LEAN CLAY (CL): dark olive brown (2.5Y 3/3), moist, 90% fines, 10% fine sand, low plasticity, firm			
17- -				J	Bottom of boring at 16.5 feet	_	Type I-II r	destroyed using leat cement led from total
18-	_					_	with a tren	round surface nie pipe.
19-						_		
20-	-					_		
21-	-					_		
- 22-						_		
-	_					_		
23 – –						_		
24 – –	-					_		
25 – –	_					_		
26-						_		
27-						_		
28-	_					_		
29-						_		
30-	-					_		
- 31-	-					_		
32-						_		
_						_		
33-	1			I	 :\PROJECT\\OD10160070\10000_LOGS\	GINT\DRAW	INGS\SB-10.GDW	OAKBOREV (REV. 6/2008)
	AM	EC	Ged	matrix	Project No	. OD101	60070	Page 2 of 2

PROJ				JBLIN B	OULEVARD a 94568		Log of B	ori	ing No.	SB-11
BORIN					h of car wash		ELEVATION AND DAT	-		urface
DRILL	ING C	ONT	RAC	TOR: Pen	eCore Drilling		DATE STARTED:	4111 1	DATE FIN	
					-		9/27/10 TOTAL DEPTH (ft.):		9/27/10 MEASURI	NG POINT:
DRILL	ING M	ETH	OD:	Direct	push		18.0		Ground	
DRILL	ING E	QUIF	PMEN	IT: Geopr	obe 7822 DT		DEPTH TO WATER (ft.)	FIRST NA	COMPL.
SAMP	LING N	ИΕΤΗ	HOD:	Geoprob	e DT21 dual-tube sampling system [5'	x 1.25"]	LOGGED BY: G. Stemler			
HAMM	IER W	EIGH	HT:	NA	DROP: NA		RESPONSIBLE PROF	ESSI	IONAL:	REG. NO. PG 8541
DEPTH (feet)	Sample No.	Sample 17	Blows/ 55 Foot	OVM READING (ppm)	DESCRIP* NAME (USCS): color, moist, % by cementation, react. w	wt., plast. den	sity, structure,		R	EMARKS
	Sar	Sar	음도	RE.	Surface Elevati	on: Not su	rveyed		<u>L</u>	
					ASPHALTIC CONCRETE: (6 inch					
2- 3- 3- 4- 5- 6- 7- 8- 9-				0.6 0.6 1.1 0.3 0.9 0.6 0.2	dark grayish brown (2.5Y 4/2), con LEAN CLAY (CL): dark grayish br 10% fine sand, medium plasticity,	own (2.5Y 4/2			Grab grour SB-11 colle feet of 1-in PVC scree slot size) p borehole fr feet bgs. I retracted fr boring to 1	ndwater sample ected through 5 ch OD Sch. 40 n (0.010-inch
10 - 11- 12- 13- 14- 15- 15-	SB-11-12.8			0.9 1.8 1.3 0.6 1.4 0.4	very dark grayish brown (2.5Y 3/2) SANDY LEAN CLAY (CL): light olidark yellowish brown (10YR 4/6), remedium sand, medium plasticity, sometium sand, wellow plasticity, sometimes, 10% fine sand, medium plasticity.	ve brown (2.5' noist, 65% find oft sh brown (10Y	es, 35% fine to	- - - - -	Depth to w prior to sar electronic v meter at 13 September 12.0 feet b	ater measured npling using an water level 855 on • 27, 2010:
	A 14	EC	Gaa	matrix			Project No. O	D101		Page 1 of 2
<u> </u>	AIM	LU	960	ıııatı ix			r roject No. Of	וטוס	50070	rage ruiz

Log of Boring No. SB-11 (cont'd)

				_og o: _o:g ::o:	- (
DEPTH (feet)	Sample No. Sample Blows/	OVM READING (ppm)	DESCR NAME (USCS): color, moist, % cementation, react.	IPTION by wt., plast. density, structure, w/HCl, geo. inter.		REMARKS
			LEAN CLAY (CL): cont'd		_	
16-			dark grayish brown (2.5Y 4/2)		_	
- 17-					_	
-			SANDY LEAN CLAY (CL)		_	
18-			Bottom of boring at 18.0 feet		Borehole	destroyed using
19-					grout place	neat cement ced from total ground surface
-					_ with a tre	mie pipe.
20 -					- -	
21-					_	
22-					- -	
-					_	
23-					_	
24-					_	
- 25-					_	
_					_	
26-					_	
27-					_	
-					_	
28 – –					_	
29-					_	
30-					_	
_					_	
31 -					- -	
32-					_	
33-						
				T		OAKBOREV (REV. 6/2008)
	AMEC G	eomatrix		Project No. OD1	0160070	Page 2 of 2

PKOJE(OBLIN B	OULEVARD a 94568		Log of Bo	oring N	lo. S	SB-12
BORING					30' S of SE corner of Bldg. B		TON AND DATU			,
							rveyed; datum TARTED:			urtace SHED:
DRILLIN	IG C	ONTE	RAC	TOR: Pen	eCore Drilling	9/28/10)	9/28	/10	
DRILLIN	IG MI	ETHO	OD:	Direct	push		DEPTH (ft.):			NG POINT:
						17.0		FIRS		surface COMPL.
DRILLIN	IG E	QUIP	MEN	IT: Geopre	obe 7822 DT		TO WATER (ft.)	NA		NA
SAMPLI	ING N	/ETH	HOD:	Geoprob	e DT21 dual-tube sampling system [5' x 1.25"]	G. Ste				
HAMME	R WI	FIGH	IT·	NA	DROP: NA	RESPO	NSIBLE PROFES	SSIONAL:		REG. NO
I I/AIVIIVIL						A. Patt	on			PG 8541
Fæl		Δ Δ		OVM READING (ppm)	DESCRIPTION NAME (USCS): color, moist, % by wt., plast.	density, struc	ture,		RE	EMARKS
(feet)	Sample No.	Sample	Blows/ Foot	OV (ppr	cementation, react. w/HCl, geo.	inter.				
	ιχ	Š	<u> </u>	<u>~</u>		ot surveyed				
					ASPHALTIC CONCRETE : (2 inches thick)			1_1		
4					AGGREGATE BASE : (5 inches thick)	00% finan 4	00/. fino		auge	red to 5 feet
1-					LEAN CLAY (CL): black (2.5Y 2.5/1), moist, sand, medium plasticity, firm	ษ∪% กกes, 1	∪% IIII E	bgs.		
7										
2-										
7								_		iRAE 2000 PII
3-										vith 100 ppm standard.
+									Lyiciic	standard.
4-								<u> - </u>		
-					LEAN CLAY (CL): olive brown (2.5Y 4/3), m fine sand, medium plasticity, firm	oist, 85% fine	es, 15%	-		
5-		\mathbf{H}			ilile salid, medidiri piasticity, ililii			-		
_				0				-		
6-				0						
7-				0						
′ 7				0						
_ 7										
8-				0						
7				0						
9-										
-				0				-		
10-		\mathbb{H}								
4				0				_		
11-				0				-		. di de
	SB-12-12.0			0						idwater sample ected through &
12-	3B-12			·				feet o	f 1-ind	ch OD Sch. 40
١- ا	(y)			0	SANDY LEAN CLAY (CL): olive brown (2.5\ fines, 45\% fine sand, medium plasticity, firm	7 4/3), moist,	55%			n (0.010-inch laced in
12				Ĭ	inico, 40% inic sand, medium plasticity, iiiii			boreh	ole fr	om 12 to 17
13-				0						orive casing om bottom of
7				0	LEAN CLAY (CL)			boring	to 12	2 feet bgs to irface seal.
14-		\forall			black (2.5Y 2.5/1)			maint	aiii Sl	inace seal.
+		X								
15		/ V								DAKBOREV (REV. 6/2008
										,

Log of Boring No. SB-12 (cont'd)

	SAN			<u>0</u>			_	
DEPTH (feet)	Sample No.	Sample	Blows/ Foot	OVM READING (ppm)	DESCRIPTION NAME (USCS): color, moist, % by wt., plast. density, structure, cementation, react. w/HCl, geo. inter.		R	EMARKS
				0	SANDY LEAN CLAY (CL): cont'd			
16				0	brown (10YR 4/3)			
16-				0 0				
17-				v				
-					Bottom of boring at 17.0 feet	_	Type I-II ne	estroyed using eat cement
18-						_	grout place	ed from total ound surface
_						-	with a trem	ie pipe.
19-						-		
-						-		
20-	1					-		
-	1					-		
21-								
22-								
						_		
23-						_		
_	_					-		
24-	_					_		
_						-		
25-						-		
26-								
20-								
27-						_		
						_		
28-	-					-		
_	-					-		
29-	-					-		
_	1					-		
30-	1					-		
31-								
JI- -								
32-						_		
_						-		
33-								DAKBOREV (REV. 6/2008)
	٨м	E۲	Ger	matrix	Project No	OD101		Page 2 of 2
	AM		Jec	יווומנו וג	Frojectivo	ا ۱۱ ا ص	100010	1 ago 2 01 2

APPENDIX C

Data Quality Review

APPENDIX C DATA QUALITY REVIEW

Crown Chevrolet Cadillac Isuzu
7544 Dublin Boulevard and 6707 Golden Gate Drive
Dublin, California

AMEC evaluated the analytical data using guidelines set forth in the U.S. Environmental Protection Agency's (EPA's) *USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review* (U.S. EPA, 2008), and the *USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review* (U.S. EPA, 2010).

Quality assurance procedures for soil samples included the collection and analysis of one matrix spike/matrix spike duplicate (MS/MSD) sample; laboratory analysis of method blank samples, surrogate spikes, and laboratory control samples/laboratory control sample duplicates (LCS/LCSDs); and evaluation of the analytical results.

Quality assurance procedures for groundwater samples included the collection and analysis of one blind field duplicate sample and two MS/MSD samples; laboratory analysis of method blank samples, surrogate spikes, and LCS/LCSDs; and evaluation of the analytical results.

The blind duplicate groundwater sample was collected from soil boring SB-04 and labeled SB-40. The groundwater MS/MSD samples were collected from borings SB-04 and SB-07 and the soil MS/MSD sample was collected from boring SB-07.

The data quality review also included a data completeness check of the data packages, a transcription check of sample results, and a review of all laboratory reporting forms. Qualified data are included in the data summary tables in the main body of this report, and data qualifiers are hand-written onto the laboratory analytical reports in Appendix D.

SOIL DATA QUALITY REVIEW

A review of soil data quality is provided in the following sections.

DATA ACCURACY

Data accuracy was assessed by the analysis of LCS, LCSD, MS samples, and MSD samples and evaluation of the recovery of spiked compounds, and is expressed as a percentage of the true or known concentrations. Surrogate recoveries and blank results also were used to assess accuracy.

Spike Compounds

No soil results were qualified due to MS, MSD, LCS or LCSD recoveries.

Surrogate Recoveries

All surrogate recoveries were within their respective quality control criteria.

Method Blanks

There were no detections in the method blank samples.

Other Factors

Other factors influenced data accuracy of soil sample results as reported by the analytical laboratory.

Calibration Range Exceedances

The analytical laboratory noted that one result exceeded the calibration range (i.e., total petroleum hydrocarbons quantified as gasoline (TPHg) in sample SB-01-13.8). The affected result was qualified with "J" to indicate that the analyte was positively identified, and the associated numerical value is the approximate concentration of the analyte in the sample.

Chromatographic Analysis

The analytical laboratory noted that one sample result exhibited a chromatographic pattern that did not match the laboratory standard for the target analyte, TPHg. Volatile organic compounds present in sample SB-03-3.2 were detected in the carbon range used by the laboratory to quantify TPHg; however, the laboratory indicated that the spectra for sample SB-03-3.2 does not resemble the pattern for the laboratory's fresh gasoline standard.

DATA PRECISION

Data precision is evaluated by comparing analytical results from duplicate sample pairs and evaluating the calculated relative percent difference (RPD) between the data sets. Results for LCS/LCSD and MS/MSD samples were evaluated to assess the precision of the analytical methods for the soil sample data.

The RPDs between the MS and the MSD results were greater than acceptable limits for the polynuclear aromatic hydrocarbons (PAH) compounds acenaphthene, acenaphthylene, fluorene, naphthalene, and phenanthrene. The associated project sample results (i.e., soil samples SB-05-0.7, SB-05-11.5, SB-06-3.0, SB-06-11.0, SB-07-13.2, SB-08-15.7, SB-09-4.9, SB-09-11.8, SB-10-11.5, SB-12-12) were qualified with "J" for detected results to indicate that the analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample. Non-detect results were qualified with "UJ" to indicate that the analyte was not detected at a level greater than or equal to the laboratory reporting limit; however, the laboratory reporting limit is approximate and may be inaccurate or imprecise.

The RPDs for the all LCS/LCSD analyses were within criteria.

DATA COMPLETENESS

Completeness is the ratio of the number of valid sample results to the total number of samples analyzed with a specific matrix and/or analysis. The percent complete is calculated by the following equation:

The percent complete for soil sample data collected during the September 2010 sampling event is 100 percent.

SUMMARY OF SOIL DATA QUALITY REVIEW

Based on an evaluation of data quality, some data were qualified as estimated (qualified with "J"). Some data were qualified as not detected at or above the laboratory reporting limit; however, the laboratory reporting limit is approximate and may be inaccurate or imprecise (qualified with "UJ"). Overall, the results of the data quality review indicate that the analytical results are valid and useable. The data, as qualified, are acceptable and can be used for decision-making purposes; however, the limitations identified by the applied qualifiers should be considered when using the data.

GROUNDWATER DATA QUALITY REVIEW

A review of groundwater data quality is provided in the following sections.

DATA ACCURACY

Data accuracy was assessed by the analysis of LCS, LCSD, MS samples, and MSD samples and evaluation of the recovery of spiked compounds, and is expressed as a percentage of the true or known concentrations. Surrogate recoveries and blank results also were used to assess accuracy.

Spike Compounds

Results for several analytes were qualified due to MS and MSD recoveries that were outside acceptable laboratory control limits. MS and MSD recoveries were below the laboratory control limits for the PAH compounds benzo(g,h,i)perylene, indeno(1,2,3-cd)pyrene, and dibenz(a,h)anthracene. All associated project sample results (i.e., groundwater samples SB-05, SB-06, SB-07, SB-08, SB-10, SB-12) were non-detect and were qualified with "UJ" to indicate that the analyte was not detected at a level greater than or equal to the laboratory reporting limit; however, the laboratory reporting limit is approximate and may be inaccurate or imprecise.

No results were qualified due to LCS or LCSD recoveries.

Surrogate Recoveries

All surrogate recoveries were within their respective quality control criteria.

Method Blanks

There were no detections in associated method blank samples.

Other Factors

Other factors influenced data accuracy as reported by the analytical laboratory.

Reporting Trace Compounds

At AMEC's request, the analytical laboratory reported the results for total petroleum hydrocarbons quantified as diesel (TPHd) and total petroleum hydrocarbons quantified as motor oil (TPHmo) that were positively identified between their respective method detection limits (MDLs) and the RLs. The TPHd results for groundwater samples SB-07 and SB-12 were qualified with "J" to indicate that the analyte was positively identified, and the associated numerical value is the approximate concentration of the analyte in the sample.

Sample Preparation and Preservation

The work plan specified that the samples SB-05, SB-06, SB-07, and SB-08 would be analyzed for dissolved total chromium; however, the laboratory initially performed the analyses with unfiltered samples. After this error was noted, AMEC requested that samples be reanalyzed by the analytical laboratory using excess groundwater from other sample containers collected from these borings. The sample volume used for the reanalysis was unfiltered and unpreserved between sampling (on September 28 and 29, 2010) and sample extraction (on October 4, 2010), and was stored in a glass container. The laboratory filtered the samples and performed dissolved total chromium analysis. However, since the unfiltered samples were stored in unpreserved glass containers, rather than being filtered and then stored in preserved plastic containers as required by the analytical method, the dissolved total chromium results for samples SB-05, SB-06, SB-07 and SB-08 were qualified with "J-" for detections, to indicate that the result is an estimated quantity, but the result may be biased low.

DATA PRECISION

Data precision is evaluated by comparing analytical results from duplicate sample pairs and evaluating the calculated relative percent difference (RPD) between the data sets. Results for LCS/LCSD and MS/MSD samples and one field duplicate sample were evaluated to assess the precision of the analytical methods. The RPDs for the all LCS/LCSD and MS/MSD analyses were within criteria. There were no detections in the primary sample SB-04 and its field duplicate sample, SB-40.

DATA COMPLETENESS

Completeness is the ratio of the number of valid sample results to the total number of samples analyzed with a specific matrix and/or analysis. The percent complete is calculated by the following equation:

The percent complete for groundwater sample data collected during the September 2010 sampling event is 100 percent.

SUMMARY OF GROUNDWATER DATA QUALITY REVIEW

Based on an evaluation of data quality, some data were qualified as positively identified, and the associated numerical value is the approximate concentration of the analyte in the sample (qualified with "J"); some data were qualified as estimated quantities that may be biased low (qualified with "J-"); and some data were qualified as not detected at a level greater than or equal to the laboratory reporting limit, but the laboratory reporting limit is approximate and may be inaccurate or imprecise (qualified with "UJ"). Overall, the results of the data quality review indicate that the analytical results are valid and useable. The data, as qualified, are acceptable and can be used for decision-making purposes; however, the limitations identified by the applied qualifiers should be considered when using the data.

APPENDIX D

Copies of Laboratory Analytical Reports

ANALYTICAL REPORT

Job Number: 720-30799-1

Job Description: Crown Chevrolet

For: AMEC Geomatrix Inc. 2101 Webster Street, 12th Floor Oakland, CA 94612 Attention: Avery Patton

AkenofSal

Approved for release Afsmeh Salimpour Project Manager £ 11/4/2010 5:03 PM

Afsaneh Salimpour Project Manager I afsaneh.salimpour@testamericainc.com 11/04/2010 Revision: 2

CA ELAP Certification # 2496

The Chain(s) of Custody are included and are an integral part of this report.

The report shall not be reproduced except in full, without the written approval of the laboratory. The client, by accepting this report, also agrees not to alter any reports whether in the hard copy or electronic format and to use reasonable efforts to preserve the reports in the form and substance originally provided by TestAmerica.

A trip blank is required to be provided for volatile analyses. If trip blank results are not included in the report, either the trip blank was not submitted or requested to be analyzed.

TestAmerica Laboratories, Inc.
TestAmerica San Francisco 1220 Quarry Lane, Pleasanton, CA 94566
Tel (925) 484-1919 Fax (925) 600-3002 www.testamericainc.com

Job Narrative 720-30799-1

Comments

No additional comments.

Receipt

Received 3 vials (soil) and 1 soil jar for SB-04-3.0 which is not listed on COC. Logged in as HOLD.

Did not receive enough sample to do MS/MSD for diesel and PAH.

All other samples were received in good condition within temperature requirements.

GC/MS VOA

Method(s) 8260B: The amount of GRO was estimated and high level Meoh Ext. was ND.

Method(s) 8260B: Surrogate recovery for the following sample(s) was outside control limits: SB-01-13.8 (720-30799-1). Evidence of matrix interference is present; therefore, re-analysis was not performed.

No other analytical or quality issues were noted.

GC/MS Semi VOA

No other analytical or quality issues were noted.

GC Semi VOA:

Samples for dissolved TPH(Diesel and Motor oil) were filtered at the lab using 0.7 micron glass fiber filter.

All samples for TPH(Diesel and Motor oil) were analysed with Silica Gel clean up using Method 3630C.

No analytical or quality issues were noted.

Metals

No analytical or quality issues were noted.

Organic Prep

No analytical or quality issues were noted.

EXECUTIVE SUMMARY - Detections

Client: AMEC Geomatrix Inc.

Job Number: 720-30799-1

Lab Sample ID Analyte	Client Sample ID	Result / Qualifier	Reporting Limit	Units	Method
720-30799-1 Gasoline Range Orga	SB-01-13.8 anics (GRO)-C5-C12	13000 J E	180	ug/Kg	8260B/CA_LUFTMS
720-30799-3 Gasoline Range Orga	SB-02-11.5 anics (GRO)-C5-C12	1400	180	ug/Kg	8260B/CA_LUFTMS
720-30799-5 Gasoline Range Orga	SB-02 anics (GRO)-C5‡C12	63	50	ug/L	8260B/CA_LUFTMS
720-30799-8 Dissolved Diesel Range Organi	SB-11 cs [C10-C28]	x2452 JB	52	ug/L	8015B
720-30799-12 Dissolved Diesel Range Organi	SB-04 cs [C10-C28]	V < 52 JB	52	ug/L	8015B
720-30799-14 Silica Gel Cleanup Diesel Range Organi	SB-04-3.0 cs [C10-C28]	2.6	1.0	mg/Kg	8015B

METHOD SUMMARY

Client: AMEC Geomatrix Inc.

Job Number: 720-30799-1

Description	Lab Location	Method Preparation Method
Matrix: Solid		
8260B / CA LUFT MS	TAL SF	SW846 8260B/CA_LUFTMS
Closed System Purge and Trap	TAL SF	SW846 5035
Semivolatile Organic Compounds (GC/MS SIM)	TAL SF	SW846 8270C SIM
Ultrasonic Extraction	TAL SF	SW846 3550B
Diesel Range Organics (DRO) (GC)	TAL SF	SW846 8015B
Ultrasonic Extraction	TAL SF	SW846 3550B
Matrix: Water		
8260B / CA LUFT MS	TAL SF	SW846 8260B/CA_LUFTMS
Purge and Trap	TAL SF	SW846 5030B
Semivolatile Organic Compounds (GC/MS SIM)	TAL SF	SW846 8270C SIM
Liquid-Liquid Extraction (Separatory Funnel)	TAL SF	SW846 3510C
Diesel Range Organics (DRO) (GC)	TAL SF	SW846 8015B
Sample Filtration	TAL SF	FILTRATION
Liquid-Liquid Extraction (Separatory Funnel)	TAL SF	SW846 3510C SGC

Lab References:

TAL SF = TestAmerica San Francisco

Method References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TestAmerica San Francisco

Page 3 of 54

11/04/2010

TestAmerica San Francisco

Page 4 of 54

11/04/2010

METHOD / ANALYST SUMMARY

Client: AMEC Geomatrix Inc.

Job Number: 720-30799-1

Method	Analyst	Analyst ID
SW846 8260B/CA_LUFTMS SW846 8260B/CA_LUFTMS	Chen, Amy Le, Lien	AC LL
SW846 8270C SIM ;	Lee, Michael	ML
SW846 8015B	Hayashi, Derek	DH

SAMPLE SUMMARY

Client: AMEC Geomatrix Inc.

Job Number: 720-30799-1

Lab Sample ID	Client Sample ID	Client Matrix	Date/Time Sampled	Date/Time Received
720-30799-1	SB-01-13.8	Solid	09/27/2010 0850	09/27/2010 1920
720-30799-3	SB-02-11.5	Solid	09/27/2010 1000	09/27/2010 1920
720-30799-5	SB-02	Water	09/27/2010 1050	09/27/2010 1920
720-30799-6	SB-01	Water	09/27/2010 1115	09/27/2010 1920
720-30799-7	SB-11-12.8	Solid	09/27/2010 1330	09/27/2010 1920
720-30799-8	SB-11	Water	09/27/2010 1400	09/27/2010 1920
720-30799-9	SB-04-12.0	Solid	09/27/2010 1645	09/27/2010 1920
720-30799-12	SB-04	Water	09/27/2010 1700	09/27/2010 1920
720-30799-12MS	SB-04	Water	09/27/2010 1700	09/27/2010 1920
720-30799-12MSD	SB-04	Water	09/27/2010 1700	09/27/2010 1920
720-30799-13	SB-40	Water	09/27/2010 1755	09/27/2010 1920
720-30799-14	SB-04-3.0	Solid	09/27/2010 1515	09/27/2010 1920

TestAmerica San Francisco

Page 5 of 54

11/04/2010

TestAmerica San Francisco

Page 6 of 54

11/04/2010

Client: AMEC Geomatrix Inc.

Job Number: 720-30799-1

Client Sample ID: SB-01-13.8

Client Matrix:

Method:

Dilution:

Preparation:

Lab Sample ID: 720-30799-1 Solid

Date Sampled: 09/27/2010 0850 Date Received: 09/27/2010 1920

RL

3.6

180

3.6

3.6

3.6

7.2

8260B/CA_LUFTMS 8260B / CA LUFT MS

5035 1.0

8260B/CA_LUFTMS Analysis Batch: 720-78924

Prep Batch: 720-79064

Instrument ID: HP12 Lab File ID:

Qualifier

Е

09291009.D

Date Analyzed: 09/29/2010 1201

09/29/2010 0700 Date Prepared:

Initial Weight/Volume: 6.916 g

Final Weight/Volume: 10 mL

Analyte DryWt Corrected: N Result (ug/Kg) Benzene 13000 5 Gasoline Range Organics (GRO)-C5-C12

Ethylbenzene ND ND

MTBE Toluene ND Xylenes, Total ND

%Rec Surrogate Qualifier Acceptance Limits 4-Bromofluorobenzene 145 65 - 117 1,2-Dichloroethane-d4 (Surr) 100 73 - 140 Toluene-d8 (Surr) 109 72 - 113

Analytical Data

Client: AMEC Geomatrix Inc.

Job Number: 720-30799-1

Client Sample ID: SB-02-11.5

Lab Sample ID: Client Matrix:

Method:

Dilution:

Preparation:

Solid

720-30799-3

Date Sampled: 09/27/2010 1000 Date Received: 09/27/2010 1920

8260B/CA_LUFTMS 8260B / CA LUFT MS

8260B/CA_LUFTMS 5035

Analysis Batch: 720-78924

Prep Batch: 720-79064

Instrument ID: Lab File ID:

HP12 09291012.D Initial Weight/Volume: 6.902 g

09/29/2010 1351 Date Analyzed: 09/29/2010 0700 Date Prepared:

1.0

Final Weight/Volume: 10 mL

DryWt Corrected: N Analyte Result (ug/Kg) Qualifier Benzene ND 3.6 Gasoline Range Organics (GRO)-C5-C12 1400 180 Ethylbenzene ND 3.6 MTBE ND 3.6 Toluene ND 3.6 Xylenes, Total ND 7.2

Surrogate	%Rec	Qualifier	Acceptance Limits
4-Bromofluorobenzene	107		65 - 117
1,2-Dichloroethane-d4 (Surr)	97		73 - 140
Toluene-d8 (Surr)	99		72 - 113

Client: AMEC Geomatrix Inc.

Job Number: 720-30799-1

Client Sample ID: SB-02

Client Matrix:

Method:

Dilution:

Preparation:

Lab Sample ID:

Water

720-30799-5

Date Sampled: 09/27/2010 1050 Date Received: 09/27/2010 1920

8260B/CA_LUFTMS 8260B / CA LUFT MS

8260B/CA_LUFTMS 5030B

1.0

Date Analyzed: Date Prepared:

09/30/2010 0038 09/30/2010 0038 Instrument ID: HP12 Lab File ID: 09291034.D Initial Weight/Volume: 10 mL Final Weight/Volume: 10 mL

Analyte	Result (ug/L)	Qualifier	RL
Methyl tert-butyl ether	ND		0.50
Benzene	ND		0.50
Ethylbenzene	ND		0.50
Toluene	ND		0.50
Xylenes, Total	ND		1.0
Gasoline Range Organics (GRO)-C5-C12	63		50

Analysis Batch: 720-79007

Surrogate	%Rec	Qualifier	Acceptance Limits
4-Bromofluorobenzene	100		67 - 130
1,2-Dichloroethane-d4 (Surr)	96		67 - 130
Toluene-d8 (Surr)	97		70 - 130

Analytical Data

Client: AMEC Geomatrix Inc.

Job Number: 720-30799-1

Client Sample ID: SB-01

Lab Sample ID: Client Matrix:

Method:

Dilution:

Preparation:

720-30799-6 Water

Date Sampled: 09/27/2010 1115 Date Received: 09/27/2010 1920

8260B/CA_LUFTMS 8260B / CA LUFT MS

8260B/CA LUFTMS Analysis Batch: 720-79007 5030B 1.0

Instrument ID: HP12 Lab File ID: 09291035.D Initial Weight/Volume: 10 mL

Date Analyzed: 09/30/2010 0108

Date Prepared: 09/30/2010 0108 Final Weight/Volume: 10 mL

Analyte Result (ug/L) Qualifier RL Methyl tert-butyl ether ND 0.50 Benzene ND 0.50 Ethylbenzene ND 0.50 0.50 1.0 Toluene ND Xylenes, Total ND Gasoline Range Organics (GRO)-C5-C12 ND

Surrogate	%Rec	Qualifier	Acceptance Limits
4-Bromofluorobenzene	97		67 - 130
1,2-Dichloroethane-d4 (Surr)	95		67 - 130
Toluene-d8 (Surr)	95		70 - 130

Client: AMEC Geomatrix Inc.

Job Number: 720-30799-1

Client Sample ID: SB-04-12.0

Lab Sample ID: 720-30799-9 Client Matrix:

Solid

09/29/2010 1301

Date Sampled: 09/27/2010 1645 Date Received: 09/27/2010 1920

09291011.D

HP12

8260B/CA_LUFTMS 8260B / CA LUFT MS

Method: 8260B/CA_LUFTMS Preparation: Dilution: 1.0

Date Analyzed:

Analysis Batch: 720-78924

Prep Batch: 720-79064

Instrument ID: Lab File ID:

Initial Weight/Volume: 6.329 g Final Weight/Volume: 10 mL

Date Prepared: 09/29/2010 0700

Analyte	DryWt Corrected: N	Result (ug/Kg)	Qualifier	RL
Benzene		ND		4.0
Gasoline Range Orga	nics (GRO)-C5-C12	ND		200
Ethylbenzene		ND		4.0
MTBE		ND		4.0
Toluene		ND		4.0
Xylenes, Total		ND		7.9

Surrogate	%Rec	Qualifier	Acceptance Limits
4-Bromofluorobenzene	97		65 - 117
1,2-Dichloroethane-d4 (Surr)	96		73 - 140
Toluene-d8 (Surr)	96		72 - 113

Analytical Data

Client: AMEC Geomatrix Inc.

Job Number: 720-30799-1

Client Sample ID: SB-04

Lab Sample ID:

Water

Client Matrix:

720-30799-12

Date Sampled: 09/27/2010 1700 Date Received: 09/27/2010 1920

8260B/CA_LUFTMS 8260B / CA LUFT MS

Method: 8260B/CA_LUFTMS 5030B Preparation: Dilution:

1.0 Date Analyzed: 09/30/2010 0137 Analysis Batch: 720-79007

Instrument ID: HP12 Lab File ID: 09291036.D

Initial Weight/Volume: 10 mL Final Weight/Volume: 10 mL

Date Prepared: 09/30/2010 0137

Analyte Result (ug/L) Qualifier RL Methyl tert-butyl ether ND 0.50 Benzene ND 0.50 Ethylbenzene ND 0.50 Toluene ND 0.50 Xylenes, Total ND 1.0 Gasoline Range Organics (GRO)-C5-C12 ND 50

Surrogate	%Rec	Qualifier	Acceptance Limits
4-Bromofluorobenzene	96		67 - 130
1,2-Dichloroethane-d4 (Surr)	96		67 - 130
Toluene-d8 (Surr)	95		70 - 130

Client: AMEC Geomatrix Inc.

Job Number: 720-30799-1

Client Sample ID: SB-40

Lab Sample ID: 720-30799-13

Client Matrix: Water

Method:

Dilution:

Analyte

Benzene

Surrogate

Ethylbenzene

Methyl tert-butyl ether

4-Bromofluorobenzene

Toluene-d8 (Surr)

1,2-Dichloroethane-d4 (Surr)

Preparation:

Date Sampled: 09/27/2010 1755 Date Received: 09/27/2010 1920

1.0

50

8260B/CA_LUFTMS 8260B / CA LUFT MS

8260B/CA_LUFTMS Analysis Batch: 720-79007

Instrument ID: HP12 Lab File ID: 09291039.D

5030B 1.0 Date Analyzed: 09/30/2010 0306

Initial Weight/Volume: 10 mL Final Weight/Volume: 10 mL

Date Prepared: 09/30/2010 0306

Result (ug/L) Qualifier RL 0.50 ND 0.50 ND 0.50 ND 0.50

Toluene Xylenes, Total ND Gasoline Range Organics (GRO)-C5-C12

ND %Rec Qualifier Acceptance Limits 97 94 67 - 130

67 - 130 70 - 130 **Analytical Data**

Client: AMEC Geomatrix Inc.

Job Number: 720-30799-1

Client Sample ID: SB-04-3.0

Lab Sample ID: Client Matrix:

Method:

Dilution:

Preparation:

720-30799-14

Solid

Date Sampled: 09/27/2010 1515 Date Received: 09/27/2010 1920

8260B/CA_LUFTMS 8260B / CA LUFT MS

8260B/CA_LUFTMS

5035 1.0

Analysis Batch: 720-78924 Prep Batch: 720-79064

Instrument ID: HP12 Lab File ID: 09291020.D Initial Weight/Volume: 7.68 g

Date Analyzed: 09/29/2010 1751 Date Prepared: 09/29/2010 0700

Final Weight/Volume: 10 mL

Analyte	DryWt Corrected: N	Result (ug/Kg)	Qualifier	RL
Benzene	***************************************	ND		3.3
Gasoline Range Or	ganics (GRO)-C5-C12	ND		160
Ethylbenzene		ND		3.3
MTBE		ND		3.3
Toluene		ND		3.3
Xylenes, Total		ND		6.5

Surrogate	%Rec	Qualifier	Acceptance Limits
4-Bromofluorobenzene	93		65 - 117
1,2-Dichloroethane-d4 (Surr)	94		73 - 140
Toluene-d8 (Surr)	94		72 - 113

TestAmerica San Francisco

Page 13 of 54

11/04/2010

TestAmerica San Francisco

Page 14 of 54

11/04/2010

Client: AMEC Geomatrix Inc.

Job Number: 720-30799-1

Client Sample ID: SB-11-12.8

Lab Sample ID: 720-30799-7 Client Matrix: Solid

Date Sampled: 09/27/2010 1330

Date Received: 09/27/2010 1920

	8270C S	IM Semivolatile Organic Com	oounds (GC/MS SIM)	
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8270C SIM 3550B 1.0 09/30/2010 1226 09/29/2010 1138	Analysis Batch: 720-79035 Prep Batch: 720-78948	Instrument ID: Lab File ID: Initial Weight/∖ Final Weight/∨ Injection Volun	olume: 1 mL
Analyte	DryWt Correcte	ed: N Result (ug/Kg)	Qualifier	RL
Naphthalene		ND		5.0
Acenaphthene		ND		5.0
Acenaphthylene		ND		5.0
Fluorene		ND		5.0
Phenanthrene		ND		5.0
Anthracene		ND		5.0
Benzo[a]anthrace	ene	ND		5.0
Chrysene		ND		5.0
Benzo[a]pyrene		ND		5.0
Benzo[b]fluoranth	nene	ND		5.0
Benzo[k]fluoranth		ND		5.0
Benzo[g,h,i]peryle	ene	ND		5.0
Indeno[1,2,3-cd]p	yrene	ND		5.0
Fluoranthene		ND		5.0
Pyrene		ND		5.0
Dibenz(a,h)anthra	acene	ND		5.0
Surrogate		%Rec	Qualifier A	cceptance Limits
2-Fluorobiphenyl		77	3	3 - 120
Terphenyl-d14		98	3	5 - 146

Analytical Data

Client: AMEC Geomatrix Inc.

Job Number: 720-30799-1

Client Sample ID: SB-11

Lab Sample ID: Client Matrix:

720-30799-8 Water

Date Sampled: 09/27/2010 1400

Date Received: 09/27/2010 1920

Method:	8270C SIM	Analysis Batch: 720-79122		nstrument ID:	SVOA HP 4
Preparation:	3510C	Prep Batch: 720-79056		ab File ID:	10011023.D
Dilution:	1.0			nitial Weight/Volume:	970 mL
Date Analyzed:	10/01/2010 19			inal Weight/Volume:	1 mL
Date Prepared:	09/30/2010 14	03	li	njection Volume:	1 uL
Analyte		Result (ug/L)	Qualifier		RL
Naphthalene		ND			1.0
Acenaphthene		ND			0.10
Acenaphthylene		ND			0.10
Fluorene		ND			0.10
Phenanthrene		ND			0.10
Anthracene		ND			0.10
Benzo[a]anthrace	ene	ND			0.10
Chrysene		ND			0.10
Benzo[a]pyrene		ND			0.10
Benzo[b]fluoranth	nene	ND			0.10
Benzo[k]fluoranth		ND			0.10
Benzo(g,h,i)peryl		ND			0.10
Indeno[1,2,3-cd]p	yrene	ND			0.10
Fluoranthene		ND			0.10
Pyrene		ND			0.10
Dibenz(a,h)anthr	acene	ND			0.10
Surrogate		%Rec	Qualifier	Acceptar	ice Limits
2-Fluorobiphenyl		67		29 - 120	
Terphenyl-d14		89		45 - 120	

TestAmerica San Francisco Page 15 of 54 11/04/2010 TestAmerica San Francisco Page 16 of 54 11/04/2010

Client: AMEC Geomatrix Inc.

Job Number: 720-30799-1

Client Sample ID: SB-04-12.0

Lab Sample ID: 720-30799-9 Client Matrix: Solid

Date Sampled: 09/27/2010 1645 Date Received: 09/27/2010 1920

8270C SIM Semivolatile Organic Compounds (GC/MS SIM)				
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8270C SIM 3550B 1.0 09/30/2010 1250 09/29/2010 1138	Analysis Batch: 720-79035 Prep Batch: 720-78948	Instrument II Lab File tD: Initial Weigh Final Weight Injection Vol	09301006.D t/Volume: 30.20 g /Volume: 1 mL
Analyte	DryWt Correct	ed: N Result (ug/Kg)	Qualifier	RL
Naphthalene		ND		5.0
Acenaphthene		ND		5.0
Acenaphthylene		ND		5.0
Fluorene		ND		5.0
Phenanthrene		ND		5.0
Anthracene		ND		5.0
Benzo[a]anthracea	ne	ND		5.0
Chrysene		ND		5.0
Benzo[a]pyrene		ND		5.0
Benzo[b]fluoranthe		ND	<i>t</i>	5.0
Benzo[k]fluoranthe		ND		5.0
Benzo(g,h,i)peryle		ND		5.0
Indeno[1,2,3-cd]py	rene	ND		5.0
Fluoranthene		ND		5.0
Pyrene		ND		5.0
Dibenz(a,h)anthra	cene	ND		5.0
Surrogate		%Rec	Qualifier	Acceptance Limits
2-Fluorobiphenyl		84		33 - 120
Terphenyl-d14		97		35 - 146

Analytical Data

Job Number: 720-30799-1

Client Sample ID: SB-04

Lab Sample ID:

TestAmerica San Francisco

Client: AMEC Geomatrix Inc.

Client Matrix:

720-30799-12

Date Sampled: 09/27/2010 1700 Date Received: 09/27/2010 1920

			,	ate (10001100), 05/21/2010 15
8270C SIM Semivolatile Organic Compounds (GC/MS SIM)				
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8270C SIM 3510C 1.0 10/06/2010 09/30/2010		Instrument ID: Lab File ID: Initial Weight/V Final Weight/Vo Injection Volum	olume: 1 mL
Analyte		Result (ug/L)	Qualifier	RL
Naphthalene		ND		1.0
Acenaphthene		ND		0.10
Acenaphthylene		ND		0.10
luorene		ND		0.10
Phenanthrene		ND		0.10
Anthracene		ND		0.10
Benzo[a]anthracene		ND	0.10	
Chrysene		ND		0.10
Benzo[a]pyrene		ND	0.10	
Benzo[b]fluoranthene		ND	0.10	
Benzo[k]fluoranthene		ND	0.10	
Benzo[g,h,i]perylene		ND	0.10	
Indeno[1,2,3-cd]pyrene		ND	0.10	
luoranthene		ND ND		0.10
Pyrene Dibaac(a h)		ND	0.10	
Dibenz(a,h)anthra	сепе	ND		0.10
Surrogate		%Rec	Qualifier A	cceptance Limits
2-Fluorobiphenyl		63	29 - 120	
Terphenyl-d14		90	45 - 120	

Client: AMEC Geomatrix Inc.

Job Number: 720-30799-1

Client Sample ID: SB-40

Client Matrix:

Lab Sample ID:

720-30799-13

Water

Date Sampled: 09/27/2010 1755

Date Received: 09/27/2010 1920

	8270C	SIM Semivolatile Organic Comp	ounds (GC/MS S	SIM)
Method: Preparation: Dilution: Date Analyzed: Date Prepared;	8270C SIM 3510C 1.0 10/05/2010 1621 09/30/2010 1403	Analysis Batch: 720-79373 Prep Batch: 720-79056	Final We	
Analyte		Result (ug/L)	Qualifier	ŘL
Naphthalene		ND	***************************************	1.0
Acenaphthene		ND		0.10
Acenaphthylene		ND		0.10
Fluorene		ND		0.10
Phenanthrene		ND		0.10
Anthracene		ND		0.10
Benzo[a]anthrace	ene	ND		0.10
Chrysene		ND		0.10
Benzo[a]pyrene		ND		0.10
Benzo[b]fluoranth		ND		0.10
Benzo[k]fluoranth		ND		0.10
Benzo[g,h,i]peryle		ND		0.10
Indeno[1,2,3-cd]p	yrene	ND		0.10
Fluoranthene		ND		0.10
Pyrene		ND		0.10
Dibenz(a,h)anthra	acene	ND		0.10
Surrogate		%Rec	Qualifier	Acceptance Limits
2-Fluorobiphenyl		61		29 - 120
Terphenyi-d14		88		45 - 120

Analytical Data

Client: AMEC Geomatrix Inc.

Job Number: 720-30799-1

Client Sample ID: SB-04-3.0

Lab Sample ID: Client Matrix:

Solid

720-30799-14

Date Sampled: 09/27/2010 1515 Date Received: 09/27/2010 1920

	8270C S	IM Semivolatite Organic Com	pounds (GC/M	S SIM)	
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8270C SIM 3550B 1.0 09/30/2010 1314 09/29/2010 1138	Analysis Batch: 720-79035 Prep Batch: 720-78948	Lab I Initia Final	ument ID: File ID: I Weight/Volume: I Weight/Volume: tion Volume:	SVOA HP 4 09301007.D 30.13 g 1 mL 1 uL
Analyte	DryWt Correcte	d: N Result (ug/Kg)	Qualifier »		RL
Naphthalene		ND			5.0
Acenaphthene		ND			5.0
Acenaphthylene		ND			5.0
Fluorene		ND			5.0
Phenanthrene		ND			5.0
Anthracene		ND			5.0
Benzo[a]anthrace	ene	ND			5.0
Chrysene		ND			5.0
Benzo[a]pyrene		ND			5.0
Benzo[b]fluoranth	ene	ND			5.0
Benzo[k]fluoranth		ND			5.0
Benzo[g,h,i]peryle	ene	ND			5.0
Indeno[1,2,3-cd]p	yrene	ND			5.0
Fluoranthene		ND			5.0
Pyrene		ND			5.0
Dibenz(a,h)anthra	acene	ND			5.0
Surrogate		%Rec	Qualifier	Acceptar	nce Limits
2-Fluorobiphenyl		70		33 - 120	
Terphenyl-d14		93		35 - 146	

TestAmerica San Francisco

Page 19 of 54

11/04/2010

TestAmerica San Francisco

Page 20 of 54

Client: AMEC Geomatrix Inc.

Job Number: 720-30799-1

Client Sample ID: SB-11-12.8

Lab Sample ID: 720-30799-7 Client Matrix:

Solid

Date Sampled: 09/27/2010 1330 Date Received: 09/27/2010 1920

RL

50

0.99

8015B Diesel Range Organics (DRO) (GC)-Silica Gel Cleanup

Method: 8015B Preparation: 3550B Dilution: 1.0

Date Analyzed;

Surrogate

p-Terphenyl

Capric Acid (Surr)

Analysis Batch: 720-79101

Prep Batch: 720-79041

Instrument ID: CHDRO6 Initial Weight/Volume: 30.19 g Final Weight/Volume: 2 mL Injection Volume: 1 uL Result Type: PRIMARY

Date Prepared: 09/30/2010 1126

Motor Oil Range Organics [C24-C36]

Analyte DryWt Corrected: N Diesel Range Organics [C10-C28]

10/01/2010 1546

Result (mg/Kg) ND ND

Qualifier

%Rec Qualifier 0.2 85

Acceptance Limits 0 - 5 46 - 115

Client: AMEC Geomatrix Inc.

Analytical Data

Job Number: 720-30799-1

Client Sample ID: SB-11

Lab Sample ID: Client Matrix:

Method:

Dilution:

Surrogate

p-Terphenyl

Capric Acid (Surr)

Date Prepared:

Water

1.0

Date Analyzed: 10/05/2010 2351

720-30799-8

Date Sampled: 09/27/2010 1400 Date Received: 09/27/2010 1920

8015B Diesel Range Organics (DRO) (GC)-Silica Gel Cleanup

Preparation:

8015B 3510C SGC

Analysis Batch: 720-79290 Prep Batch: 720-79293

instrument ID: CHDRO5 Initial Weight/Volume: 980 mL Final Weight/Volume: 2 mL

Injection Volume: Result Type:

Qualifier

Qualifier

1 uL PRIMARY

Analyte Diesel Range Organics [C10-C28] Motor Oil Range Organics [C24-C36]

10/05/2010 0934

Result (ug/L) ND ND

%Rec

0.2

91

MDL 10 130

RL 300

Acceptance Limits

0-5 31 - 150

TestAmerica San Francisco

Page 21 of 54

11/04/2010

TestAmerica San Francisco

Page 22 of 54

Client: AMEC Geomatrix Inc.

Job Number: 720-30799-1

Client Sample ID: SB-11

Method:

Dilution:

Preparation:

Lab Sample ID: 720-30799-8 Client Matrix: Water

Date Sampled: 09/27/2010 1400

Date Received: 09/27/2010 1920

CHDRO5

RL

8015B Diesel Range Organics (DRO) (GC)-Dissolved

8015B 3510C SGC

1.0

09/29/2010 1948 Date Analyzed: 09/28/2010 1829 Date Prepared:

Analysis Batch: 720-78937 Prep Batch: 720-78897

Instrument ID: Initial Weight/Volume: 960 mL Final Weight/Volume: 2 mL

Injection Volume: 1 uL Result Type: PRIMARY

Analyte Diesel Range Organics [C10-C28] Motor Oil Range Organics [C24-C36]

Result (ug/L) Qualifier 24<52 ND JΒ

MDL 11 130

52 310

Surrogate Qualifier %Rec Acceptance Limits Capric Acid (Surr) 0.2 0 - 5 p-Terphenyl 93 31 - 150

Analytical Data

Client: AMEC Geomatrix Inc.

Job Number: 720-30799-1

Client Sample ID: SB-04-12.0

Lab Sample ID:

720-30799-9 Client Matrix:

Solid

Date Prepared: 09/30/2010 1126

8015B

Date Sampled: 09/27/2010 1645 Date Received: 09/27/2010 1920

8015B Diesel Range Organics (DRO) (GC)-Silica Gel Cleanup

Method: Preparation: Dilution: Date Analyzed:

3550B 1.0 10/01/2010 1608 Analysis Batch: 720-79101 Prep Batch: 720-79041

Instrument ID: Initial Weight/Volume: 30.15 g

CHDRO6

Final Weight/Volume: 2 mL Injection Valume: 1 uL Result Type: PRIMARY

Analyte DryWt Corrected; N Result (mg/Kg) Qualifier RL Diesel Range Organics [C10-C28] ND 1.0 Motor Oil Range Organics [C24-C36] ND 50

Surrogate	%Rec	Qualifier	Acceptance Limits
Capric Acid (Surr)	0.3		0 - 5
p-Terphenyl	88		46 - 115

Client: AMEC Geomatrix Inc.

Job Number: 720-30799-1

Client Sample ID:

720-30799-12

Client Matrix: Water

Lab Sample ID:

Method:

Dilution:

Analyte

Surrogate

p-Terphenyl

Capric Acid (Surr)

Preparation:

Date Analyzed:

Date Prepared:

Date Sampled: 09/27/2010 1700

Date Received: 09/27/2010 1920

RL

51

300

8015B Diesel Range Organics (DRO) (GC)-Silica Gel Cleanup

8015B

3510C SGC

1.0

10/06/2010 0014 10/05/2010 0934

Analysis Batch: 720-79290 Prep Batch: 720-79293

CHDRO5 Initial Weight/Volume: 980 mL Final Weight/Volume: 2 mL 1 uL PRIMARY

Result Type:

Qualifier

Injection Volume:

Diesel Range Organics [C10-C28] Motor Oil Range Organics [C24-C36] Result (ug/L) ND ND

%Rec

0.3

93

MDL

Instrument ID:

10 130

Qualifier

Acceptance Limits 0 - 5 31 - 150

Analytical Data

Client: AMEC Geomatrix Inc.

Job Number: 720-30799-1

Client Sample ID:

SB-04

Lab Sample ID: Client Matrix:

Method:

Dilution:

Analyte

Surrogate

p-Terphenyl

Date Prepared:

720-30799-12 Water

Date Sampled: 09/27/2010 1700 Date Received: 09/27/2010 1920

8015B Diesel Range Organics (DRO) (GC)-Dissolved

8015B Date Analyzed: 09/29/2010 2011

Preparation: 3510C SGC 1.0

Analysis Batch: 720-78937 Prep Batch: 720-78897

Instrument ID: CHDRO5 Initial Weight/Volume: 950 mL Final Weight/Volume: 2 mL

Injection Volume: 1 uL Result Type:

Qualifier

PRIMARY

Diesel Range Organics [C10-C28] Motor Oil Range Organics [C24-C36]

09/28/2010 1829

Result (ug/L) JY 452 MDL 11 130

RL 310

Acceptance Limits

%Rec Qualifier Capric Acid (Surr) 0.6 89

0-5 31 - 150

TestAmerica San Francisco

Page 25 of 54

11/04/2010

TestAmerica San Francisco

Page 26 of 54

Client: AMEC Geomatrix Inc.

Job Number: 720-30799-1

Client Sample ID: SB-40

Lab Sample ID:

Client Matrix:

Method:

Dilution:

Analyte

Surrogate

p-Terphenyl

Capric Acid (Surr)

Preparation:

Date Analyzed:

Date Prepared:

720-30799-13

Water

Date Sampled: 09/27/2010 1755 Date Received: 09/27/2010 1920

CHDRO5

PRIMARY

RL

52

310

1 uL

8015B Diesel Range Organics (DRO) (GC)-Silica Gel Cleanup

Analysis Batch: 720-79290

Prep Batch: 720-79293

8015B 3510C SGC

Diesel Range Organics [C10-C28]

Motor Oil Range Organics [C24-C36]

1.0

10/06/2010 0037

10/05/2010 0934

Result (ug/L) ND

ND

0.2

90

%Rec

Qualifier

11 130 Acceptance Limits

Result Type:

Instrument ID:

Injection Volume:

MDL

Initial Weight/Volume: 960 mL

Final Weight/Volume: 2 mL

Qualifier

0 - 5 31 - 150 **Analytical Data**

Client: AMEC Geomatrix Inc.

Job Number: 720-30799-1

Client Sample ID:

SB-40

Lab Sample ID: Client Matrix:

Method:

Dilution:

Preparation:

Date Analyzed:

Date Prepared:

720-30799-13 Water

09/29/2010 2035

09/28/2010 1829

Date Sampled: 09/27/2010 1755 Date Received: 09/27/2010 1920

8015B Diesel Range Organics (DRO) (GC)-Dissolved

8015B 3510C SGC 1.0

Analysis Batch: 720-78937 Prep Batch: 720-78897

Instrument ID: CHDRO5 Initial Weight/Volume: 940 mL Final Weight/Volume: 2 mL Injection Volume:

Result Type: PRIMARY

Analyte Diesel Range Organics [C10-C28] Motor Oil Range Organics [C24-C36]

Result (ug/L) ND ND

MDL RL 11 53

130 320 Qualifier Acceptance Limits

Qualifier

Surrogate %Rec Capric Acid (Surr) 0.2 p-Terphenyl 92

0-5 31 - 150

TestAmerica San Francisco Page 27 of 54 11/04/2010 11/04/2010 TestAmerica San Francisco Page 28 of 54

Client: AMEC Geomatrix Inc.

Job Number: 720-30799-1

Client Sample ID: SB-04-3.0

Lab Sample ID:

Client Matrix:

OD-04-0.0

720-30799-14

720-30799-14 Solid Date Sampled: 09/27/2010 1515 Date Received: 09/27/2010 1920

8015B Diesel Range Organics (DRO) (GC)-Silica Gel Cleanup

Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8015B 3550B 1.0 10/01/2010 1631 09/30/2010 1126	Analysis Batch: 720-79101 Prep Batch: 720-79041	Instrument ID: Initial Weight/\ Final Weight/\ Injection Volur Result Type:	/olume: 30.12 g folume: 2 mL
Analyte	DryWt Corrected	i: N Result (mg/Kg)	Qualifier	RL
Diesel Range Org		2.6		1.0
Motor Oil Range	Organics [C24-C36]	ND		50
Surrogate		%Rec	Qualifier A	Acceptance Limits
Capric Acid (Surr)	0.2		1-5
p-Terphenyl		95	4	6 - 115

DATA REPORTING QUALIFIERS

Client: AMEC Geomatrix Inc.

Job Number: 720-30799-1

Lab Section	Qualifier	Description
GC/MS VOA		
	E	Result exceeded calibration range.
	X	Surrogate is outside control limits
GC Semi VOA	•	
	В	Compound was found in the blank and sample.
	J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Client: AMEC Geomatrix Inc.

Job Number: 720-30799-1

QC Association Summary

Lab Sample ID	Client Sample ID	Report Basis	Client Matrix	Method	Prep Batch
GC/MS VOA					
Analysis Batch:720-78	924				
LCS 720-79064/2-A	Lab Control Sample	Т	Solid	8260B/CA_LUFT	720-79064
LCS 720-79064/4-A	Lab Control Sample	Т	Solid	8260B/CA LUFT	720-79064
LCSD 720-79064/3-A	Lab Control Sample Duplicate	Т	Solid	8260B/CA LUFT	720-79064
LCSD 720-79064/5-A	Lab Control Sample Duplicate	Т	Solid	8260B/CA LUFT	720-79064
MB 720-79064/1-A	Method Blank	T	Solid	8260B/CA LUFT	720-79064
720-30799-1	SB-01-13.8	Т	Solid	8260B/CA LUFT	720-79064
720-30799-3	SB-02-11.5	Т	Solid	8260B/CA LUFT	720-79064
720-30799-9	SB-04-12.0	Т	Solid	8260B/CA LUFT	720-79064
720-30799-14	SB-04-3.0	Т	Solid	8260B/CA_LUFT	720-79064
Analysis Batch:720-79	007				
LCS 720-79007/5	Lab Control Sample	T	Water	8260B/CA_LUFT	
_CS 720-79007/7	Lab Control Sample	Т	Water	8260B/CA_LUFT	
_CSD 720-79007/6	Lab Control Sample Duplicate	Т	Water	8260B/CA_LUFT	
_CSD 720-79007/8	Lab Control Sample Duplicate	T	Water	8260B/CA LUFT	
MB 720-79007/4	Method Blank	Ŧ	Water	8260B/CA LUFT	
720-30799-5	SB-02	Ŧ	Water	8260B/CA LUFT	
720-30799-6	SB-01	Т	Water	8260B/CA LUFT	
720-30799-12	SB-04	Т	Water	8260B/CA LUFT	
720-30799-12MS	Matrix Spike	Т	Water	8260B/CA LUFT	
720-30799-12MSD	Matrix Spike Duplicate	Т	Water	8260B/CA LUFT	
720-30799-13	SB-40	Т	Water	8260B/CA_LUFT	
Prep Batch: 720-79064	L Comment				
_CS 720-79064/2-A	Lab Control Sample	Т	Solid	5035	
_CS 720-79064/4-A	Lab Control Sample	Т	Solid	5035	
_CSD 720-79064/3-A	Lab Control Sample Duplicate	Т	Solid	5035	
_CSD 720-79064/5-A	Lab Control Sample Duplicate	Т	Solid	5035	
MB 720-79064/1-A	Method Blank	T	Solid	5035	
720-30799-1	SB-01-13.8	Т	Solid	5035	
720-30799-3	SB-02-11.5	Т	Solid	5035	
720-30799-9	SB-04-12.0	T	Solid	5035	
720-30799-14	SB-04-3.0	т	Solid	5035	

Report Basis T = Total

TestAmerica San Francisco

Quality Control Results

Client: AMEC Geomatrix Inc.

Job Number: 720-30799-1

QC Association Summary

Lab Sample ID	Client Sample ID	Report Basis	Client Matrix	Method	Prep Batch
GC/MS Semi VOA					
Prep Batch: 720-78948	}				
LCS 720-78948/2-A	Lab Control Sample	T	Solid	3550B	
LCSD 720-78948/3-A	Lab Control Sample Duplicate	Т	Solid	3550B	
MB 720-78948/1-A	Method Blank	Ŧ	Solid	3550B	
720-30799-7	SB-11-12.8	T	Solid	3550B	
720-30799-9	SB-04-12.0	Т	Solid	3550B	
720-30799-14	SB-04-3.0	Т	Solid	3550B	
720-30799-14MS	Matrix Spike	Т	Solid	3550B	
720-30799-14MSD	Matrix Spike Duplicate	Ť	Solid	3550B	
Analysis Batch:720-79	035				
LCS 720-78948/2-A	Lab Control Sample	Т	Solid	8270C SIM	720-78948
CSD 720-78948/3-A	Lab Control Sample Duplicate	Т	Solid	8270C SIM	720-78948
MB 720-78948/1-A	Method Blank	Т	Solid	8270C SIM	720-78948
720-30799-7	SB-11-12.8	Т	Solid	8270C SIM	720-78948
720-30799-9	SB-04-12.0	Т	Solid	8270C SIM	720-78948
720-30799-14	SB-04-3.0	Ť	Solid	8270C SIM	720-78948
720-30799-14MS	Matrix Spike	Т	Solid	8270C SIM	720-78948
720-30799-14MSD	Matrix Spike Duplicate	Ť	Solid	8270C SIM	720-78948
Prep Batch: 720-79056	3				
LCS 720-79056/2-A	Lab Control Sample	т	Water	3510C	
_CSD 720-79056/3-A	Lab Control Sample Duplicate	Т	Water	3510C	
MB 720-79056/1-A	Method Blank	T	Water	3510C	
720-30799-8	SB-11	т	Water	3510C	
720-30799-12	SB-04	Т	Water	3510C	
720-30799-13	SB-40	Т	Water	3510C	
Analysis Batch:720-79	122				
CS 720-79056/2-A	Lab Control Sample	Т	Water	8270C SIM	720-79056
CSD 720-79056/3-A	Lab Control Sample Duplicate	Т	Water	8270C SIM	720-79056
MB 720-79056/1-A	Method Blank	T	Water	8270C SIM	720-79056
720-30799-8	SB-11	Т	Water	8270C SIM	720-79056
Analysis Batch:720-79	373				•
720-30799-12	SB-04	Т	Water	8270C SIM	720-79056
720-30799-13	SB-40	T	Water	8270C SIM	720-79056

Report Basis T = Total

Client: AMEC Geomatrix Inc.

Job Number: 720-30799-1

QC Association Summary

		Report			
Lab Sample ID	Client Sample ID	Basis	Client Matrix	Method	Prep Batch
GC Semi VOA					
Prep Batch: 720-78897					
LCS 720-78890/2-B	Lab Control Sample	D	Water	3510C SGC	
LCSD 720-78890/3-B	Lab Control Sample Duplicate	D	Water	3510C SGC	
MB 720-78890/1-B	Method Blank	Ď	Water	3510C SGC	
720-30799-8	SB-11	D	Water	3510C SGC	
720-30799-12	SB-04	Ď	Water	3510C SGC	
720-30799-13	SB-40	D	Water	3510C SGC	
Analysis Batch:720-78937					
LCS 720-78890/2-B	Lab Control Sample	D	Water -	8015B	720-78897
LCSD 720-78890/3-B	Lab Control Sample Duplicate	D	Water	8015B	720-78897
MB 720-78890/1-B	Method Blank	D	Water	8015B	720-78897
720-30799-8	SB-11	D	Water	8015B	720-78897
720-30799-12	SB-04	D	Water	8015B	720-78897
720-30799-13	SB-40	D	Water	8015B	720-78897
Prep Batch: 720-79041					
LCS 720-79041/2-A	Lab Control Sample	Α	Solid	3550B	
LCSD 720-79041/3-A	Lab Control Sample Duplicate	Ä	Solid	3550B	
MB 720-79041/1-A	Method Blank	Ä	Solid	3550B	
720-30799-7	SB-11-12.8	Ä	Solid	3550B	
720-30799-9	SB-04-12.0	Ä	Solid	3550B	
720-30799-14	SB-04-3.0	Â	Solid	3550B	
720-30837-A-6-B MS	Matrix Spike	Â	Solid	3550B	
720-30837-A-6-C MSD	Matrix Spike Duplicate	A	Solid	3550B	
Analysis Batch:720-79101					
LCS 720-79041/2-A	Lab Control Sample	Α	Solid	8015B	720-79041
LCSD 720-79041/3-A	Lab Control Sample Duplicate	Α	Solid	8015B	720-79041
MB 720-79041/1-A	Method Blank	Α	Solid	8015B	720-79041
720-30799-7	SB-11-12.8	Α	Solid	8015B	720-79041
720-30799-9	SB-04-12.0	Α	Solid	8015B	720-79041
720-30799-14	SB-04-3.0	Α	Solid	8015B	720-79041
Analysis Batch:720-79102	•				
720-30837-A-6-B MS	Matrix Spike	Α	Solid	8015B	720-79041
720-30837-A-6-C MSD	Matrix Spike Duplicate	A	Solid	8015B	720-79041
720-30037-A-0-C NIGD	Matrix Spike Duplicate	^	Soliu	00136	720-79041
Analysis Batch:720-79290					
LCS 720-79293/2-A	Lab Control Sample	Α	Water	8015B	720-79293
LCSD 720-79293/3-A	Lab Control Sample Duplicate	Α	Water	8015B	720-79293
720-30799-8	SB-11	Α	Water	8015B	720-79293
720-30799-12	SB-04	Α	Water	8015B	720-79293
720-30799-13	SB-40	Α	Water	8015B	720-79293

TestAmerica San Francisco

Quality Control Results

Client: AMEC Geomatrix Inc.

Job Number: 720-30799-1

QC Association Summary

Lab Sample ID	Client Sample ID	Report Basis	Client Matrix	Method	Prep Batch
GC Semi VOA					
Prep Batch: 720-79293			* * *		
LCS 720-79293/2-A	Lab Control Sample	Α	Water	3510C SGC	
LCSD 720-79293/3-A	Lab Control Sample Duplicate	Α	Water	3510C SGC	
MB 720-79293/1-A	Method Blank	Α	Water	3510C SGC	
720-30799-8	SB-11	Α	Water	3510C SGC	
720-30799-12	SB-04	Α	Water	3510C SGC	
720-30799-13	SB-40	Α	Water	3510C SGC	
Analysis Batch:720-793	53				
MB 720-79293/1-A	Method Blank	Α	Water	8015B	720-79293

Report Basis
D = Dissolved
A = Silica Gel Cleanup

Client: AMEC Geomatrix Inc.

Job Number: 720-30799-1

Method Blank - Batch: 720-79007

Method: 8260B/CA_LUFTMS Preparation: 5030B

Lab Sample ID: MB 720-79007/4 Client Matrix: Water Dilution: 1.0

Analysis Batch: 720-79007 Prep Batch: N/A Units: ug/L

Instrument ID: HP12 Lab File ID: 09291033.D Initial Weight/Volume: 10 mL Final Weight/Volume: 10 mL

Date Analyzed: 09/30/2010 0008

Date Prepared: 09/30/2010 0008

Analyte	Result	Qual	RL
Benzene	ND	The state of the s	0.50
Ethylbenzene	ND		0.50
Methyl tert-butyl ether	ND		0.50
m-Xylene & p-Xylene	ND		1.0
o-Xylene	ND		0.50
Toluene	ND		0.50
Xylenes, Total	ND		1.0
Gasoline Range Organics (GRO)-C5-C12	ND		50
Surrogate	% Rec	Acceptance Lim	its
4-Bromofluorobenzene	97	67 - 130	
1,2-Dichloroethane-d4 (Surr)	95	67 - 130	
Toluene-d8 (Surr)	96	70 - 130	

Quality Control Results

Client: AMEC Geomatrix Inc.

Job Number: 720-30799-1

Lab Control Sample/

Lab Control Sample Duplicate Recovery Report - Batch: 720-79007

Method: 8260B/CA_LUFTMS Preparation: 5030B

LCS Lab Sample ID: LCS 720-79007/5

Client Matrix: Dilution:

Water

1.0

Analysis Batch: 720-79007 Prep Batch: N/A

Units: ug/L

Instrument ID: HP12 «Lab File ID: 09291029.D Initial Weight/Volume: 10 mL Final Weight/Volume: 10 mL

Date Analyzed: 09/29/2010 2209 Date Prepared: 09/29/2010 2209

LCSD Lab Sample ID: LCSD 720-79007/6 Client Matrix: Water

Dilution: 1.0

TestAmerica San Francisco

Date Analyzed: 09/29/2010 2239 Date Prepared: 09/29/2010 2239 Analysis Batch: 720-79007

Prep Batch: N/A Units: ug/L

Lab File ID: 09291030.D Initial Weight/Volume: 10 mL Final Weight/Volume: 10 mL

Instrument ID: HP12

	9	6 Rec.					
Analyte	LCS	LCSD	Limit	RPD	RPD Limit	LCS Qual	LCSD Qual
Benzene	94	92	82 - 127	3	20		
Ethylbenzene	97	96	86 - 135	1	20		
Methyl tert-butyl ether	106	98	62 - 130	8	20		
m-Xylene & p-Xylene	98	97	70 - 142	1	20		
o-Xylene	100	97	89 - 136	2	20		
Toluene	96	94	83 - 129	2	20		
Surrogate	L	CS % Rec	LCSD %	Rec		otance Limits	i
4-Bromofluorobenzene		00	97			7 - 130	
1,2-Dichloroethane-d4 (Surr)	8	7	85		e	7 - 130	
Toluene-d8 (Surr)	9	8	98		7	0 - 130	

Client: AMEC Geomatrix Inc.

Job Number: 720-30799-1

Lab Control Sample/ Lab Control Sample Duplicate Recovery Report - Batch: 720-79007 Method: 8260B/CA_LUFTMS Preparation: 5030B

LCS Lab Sample ID: LCS 720-79007/7 Client Matrix: Water Dilution: 1.0 Date Analyzed: 09/29/2010 2308

Analysis Batch: 720-79007 Prep Batch: N/A Units: ug/L

Instrument ID: HP12 Lab File ID: 09291031.D Initial Weight/Volume: 10 mL Final Weight/Volume: 10 mL

Date Prepared: 09/29/2010 2308

LCSD Lab Sample ID: LCSD 720-79007/8 Client Matrix: Water Dilution:

1.0

09/29/2010 2338 Date Analyzed: Date Prepared: 09/29/2010 2338

Analysis Batch: 720-79007 Prep Batch: N/A

Lab File ID: 09291032.D Units: ug/L

Initial Weight/Volume: 10 mL Final Weight/Volume: 10 mL

Instrument ID: HP12

	9	6 Rec.					
Analyte	LCS	LCSD	Limit	RPD	RPD Limit	LCS Qual	LCSD Qual
Gasoline Range Organics (GRO)-C5-C12	80	81	62 - 117	1	20		
0				_			
Surrogate	L	CS % Rec	LCSD %			otance Limits	
4-Bromofluorobenzene	9		101				
	-	9			6		

Quality Control Results

Job Number: 720-30799-1

Client: AMEC Geomatrix Inc.

Matrix Spike/

Matrix Spike Duplicate Recovery Report - Batch: 720-79007

Method: 8260B/CA_LUFTMS Preparation: 5030B

MS Lab Sample ID: 720-30799-12 Analysis Batch: 720-79007

Client Matrix: Water Prep Batch: N/A Dilution:

Date Analyzed: 09/30/2010 0207 Date Prepared: 09/30/2010 0207

Instrument ID: HP12 Lab File ID: 09291037.D Initial Weight/Volume: 10 mL Final Weight/Volume: 10 mL

MSD Lab Sample ID: 720-30799-12 Client Matrix: Water

Dilution: Date Analyzed:

Date Prepared:

09/30/2010 0237 09/30/2010 0237

Analysis Batch: 720-79007 Instrument ID: HP12 Prep Batch: N/A

Lab File ID: 09291038.D Initial Weight/Volume: 10 mL Final Weight/Volume: 10 mL

	%	Rec.					
Analyte	MS	MSD	Limit	RPD	RPD Limit	MS Qual	MSD Qua
Methyl tert-butyl ether	105	102	60 - 138	3	20		
Benzene	91	92	60 - 140	1	20		
Ethylbenzene	95	94	60 - 140	1	20		
Toluene	92	92	60 - 140	0	20		
m-Xylene & p-Xylene	96	95	60 - 140	1	20		
o-Xylene	98	98	60 - 140	1	20		
Surrogate		MS % Rec	MSD ^o			eptance Lim	
4-Bromofluorobenzene	,	99	98			37 - 130	
1,2-Dichloroethane-d4 (Surr)		97	94		€	67 - 130	
Toluene-d8 (Surr)		99	99		. 7	0 - 130	

Client: AMEC Geomatrix Inc.

Job Number: 720-30799-1

Method Blank - Batch: 720-79064

Method: 8260B/CA_LUFTMS

Preparation: 5035

Lab Sample ID: MB 720-79064/1-A Client Matrix: Solid

Analysis Batch: 720-78924 Prep Batch: 720-79064 Units: ug/Kg

Instrument ID: HP12 Lab File ID: 09291004.D

Dilution: 1.0 Date Analyzed: 09/29/2010 0921 Initial Weight/Volume: 5 g Final Weight/Volume: 10 mL

Date Prepared: 09/29/2010 0700

Analyte	Result	Qual	RL
Benzene	ND		5.0
Ethylbenzene	ND		5.0
MTBE	ND		5.0
m-Xylene & p-Xylene	ND		5.0
Toluene	ND		5.0
Xylenes, Total	ND		10
Gasoline Range Organics (GRO)-C5-C12	ND		250
Surrogate	% Rec	Acceptance Limits	
4-Bromofluorobenzene	96	65 - 117	
1,2-Dichloroethane-d4 (Surr)	100	73 - 140	
Toluene-d8 (Surr)	95	72 - 113	

Quality Control Results

Client: AMEC Geomatrix Inc.

Job Number: 720-30799-1

Lab Control Sample/

Lab Control Sample Duplicate Recovery Report - Batch: 720-79064

Method: 8260B/CA_LUFTMS

Preparation: 5035

LCS Lab Sample ID: LCS 720-79064/2-A

Client Matrix: Dilution:

Solid 1.0

Prep Batch: 720-79064

Units: ug/Kg

Instrument ID: HP12 Lab File ID: 09291005.D Initial Weight/Volume: 5 g Final Weight/Volume: 10 mL

Date Analyzed: 09/29/2010 0951 Date Prepared: 09/29/2010 0700

LCSD Lab Sample ID: LCSD 720-79064/3-A Client Matrix:

Solid

Dilution: 1.0

Date Analyzed: 09/29/2010 1021 Date Prepared: 09/29/2010 0700 Analysis Batch: 720-78924 Prep Batch: 720-79064

Analysis Batch: 720-78924

Units: ug/Kg

Instrument ID: HP12 Lab File ID: 09291006.D Initial Weight/Volume: 5 g

Final Weight/Volume: 10 mL

	9	6 Rec.					
Analyte	LCS	LCSD	Limit	RPD	RPD Limit	LCS Qual	LCSD Qual
Benzene	99	101	82 - 124	2	20		
Ethylbenzene	99	101	80 - 137	2	20		
MTBE	112	115	71 - 144	3	20		
m-Xylene & p-Xylene	101	103	79 - 146	2	20		
Toluene	96	99	83 - 128	3	20		
Surrogate		CS % Rec	LCSD %			otance Limits	
4-Bromofluorobenzene		01	102		6	5 - 117	
1,2-Dichloroethane-d4 (Surr)	1	00	97		7	3 - 140	
Toluene-d8 (Surr)	1	00	100		7	2 - 113	

Client: AMEC Geomatrix Inc.

Job Number: 720-30799-1

Lab Control Sample/ Lab Control Sample Duplicate Recovery Report - Batch: 720-79064 Method: 8260B/CA_LUFTMS

Preparation: 5035

Instrument ID: HP12

LCS Lab Sample ID: LCS 720-79064/4-A

Solid

Client Matrix: Dilution: Date Analyzed:

1.0 09/29/2010 1051 09/29/2010 0700

Analysis Batch: 720-78924 Prep Batch: 720-79064 Units: ug/Kg

Lab File ID: 09291007.D Initial Weight/Volume: 5 g

Final Weight/Volume: 10 mL

LCSD Lab Sample ID: LCSD 720-79064/5-A

Client Matrix: Dilution:

Date Prepared:

Date Prepared:

Solid

Date Analyzed:

09/29/2010 1121 09/29/2010 0700

Analysis Batch: 720-78924 Prep Batch: 720-79064

Units: ug/Kg

Lab File ID: 09291008.D Initial Weight/Volume: 5 g

Instrument ID: HP12

Final Weight/Volume: 10 mL

Analyte	LCS	<u>6 Rec.</u> LCSD	Limit	RPD	RPD Limit	LCS Qual	LCSD Qual
Gasoline Range Organics (GRO)-C5-C12	89	86	68 - 115	3	20		
Surrogate		CS % Rec	LCSD %			tance Limits	
4-Bromofluorobenzene 1,2-Dichloroethane-d4 (Surr) Toluene-d8 (Surr)	1	02 03	102 102 96		7	5 - 117 3 - 140 2 - 113	

Quality Control Results

Client: AMEC Geomatrix Inc.

Job Number: 720-30799-1

Method Blank - Batch: 720-78948

Method: 8270C SIM Preparation: 3550B

Lab Sample ID: MB 720-78948/1-A Client Matrix: Solid

Dilution: 1.0

Date Analyzed: 09/30/2010 1203 Date Prepared: 09/29/2010 1138

Analysis Batch: 720-79035 Prep Batch: 720-78948

Units: ug/Kg

Instrument ID: SVOA HP 4 Lab File ID: 09301004.D Initial Weight/Volume: 30.06 g Final Weight/Volume: 1 mL Injection Volume: 1 uL

Analyte	Result	Qual	RL
Naphthalene	ND	W. 1884	5.0
Acenaphthene	ND		5.0
Acenaphthylene	ND		5.0
Fluorene	ND		5.0
Phenanthrene	ND		5.0
Anthracene	ND		5.0
Benzo[a]anthracene	ND		5.0
Chrysene	ND		5.0
Benzo[a]pyrene	ND		5.0
Benzo[b]fluoranthene	ND		5.0
Benzo[k]fluoranthene	ND		5.0
Benzo[g,h,i]perylene	ND		5.0
Indeno[1,2,3-cd]pyrene	ND		5.0
Fluoranthene	ND		5.0
Pyrene	ND		5.0
Dibenz(a,h)anthracene	ND		5.0
Surrogate	% Rec	Acceptance Limit	s
2-Fluorobiphenyl	82	33 - 120	
Terphenyl-d14	92	35 - 146	

1

Client: AMEC Geomatrix Inc.

Job Number: 720-30799-1

Lab Control Sample/ Lab Control Sample Duplicate Recovery Report - Batch: 720-78948 Method: 8270C SIM Preparation: 3550B

Instrument ID: SVOA HP 4

Lab File ID: 09301002.D

LCS Lab Sample ID: LCS 720-78948/2-A
Client Matrix: Solid
Dilution: 1.0

Dilution: 1.0

Date Analyzed: 09/30/2010 1115

Date Prepared: 09/29/2010 1138

09/29/2010 1138

Unit

Analysis Batch: 720-79035 Prep Batch: 720-78948 Units: ug/Kg

Initial Weight/Volume: 30.37 g
Final Weight/Volume: 1 mL
Injection Volume: 1 uL

 LCSD Lab Sample ID: LCSD 720-78948/3-A

 Client Matrix:
 Solid

 Dilution:
 1.0

 Date Analyzed:
 09/30/2010 1139

Date Prepared:

Analysis Batch: 720-79035 Prep Batch: 720-78948 Units: ug/Kg

Lab File ID: 09301003.D Initial Weight/Volume: 30.17 g
Final Weight/Volume: 1 mL
Injection Volume: 1 uL

Instrument ID: SVOA HP 4

		% Rec.					
Analyte	LCS	LCSD	Limit	RPD	RPD Limit	LCS Qual	LCSD Qual
Naphthalene	78	76	46 - 120	2	20		
Acenaphthene	85	83	49 - 120	1	20		
Acenaphthylene	79	78	52 - 120	1	20		
Fluorene	98	98	52 - 120	0	20		
Phenanthrene	89	84	48 - 120	6	20		
Anthracene	81	75	52 - 120	7	20		
Benzo[a]anthracene	86	83	52 - 120	3	20		
Chrysene	94	92	54 - 120	1	20		
Benzo[a]pyrene	88	87	54 - 120	0	20		
Benzo(b)fluoranthene	100	98	51 - 120	2	20		
Benzo(k)fluoranthene	86	85	56 - 120	0	20		
Benzo[g,h,i]perylene	91	90	48 - 120	1	20		
Indeno[1,2,3-cd]pyrene	95	93	48 - 120	1	20		
Fluoranthene	91	86	57 - 120	5	20		
Pyrene	90	86	53 - 120	4	20		
Dibenz(a,h)anthracene	94	92	50 - 120	2	20		
Surrogate		LCS % Rec	LCSD %	Rec	Accep	tance Limits	
2-Fluorobiphenyl		82	80		3	3 - 120	
Terphenyl-d14		94	91		3	5 - 146	

Quality Control Results

Job Number: 720-30799-1

Client: AMEC Geomatrix Inc.

Matrix Spike/ Method: 8270C SIM
Matrix Spike Duplicate Recovery Report - Batch: 720-78948 Preparation: 3550B

MS Lab Sample ID: 720-30799-14
Client Matrix: Solid
Dilution: 1.0

Dilution: 1.0

Date Analyzed: 09/30/2010 1338

Date Prepared: 09/29/2010 1138

Prep Batch: 720-78948

Analysis Batch: 720-79035

Prep Batch: 720-78948

Date Prepared: 09/29/2010 1138

MSD Lab Sample ID: 720-30799-14 Analysis Batch: 720-79035

 Client Matrix:
 Solid

 Dilution:
 1.0

 Date Analyzed:
 09/30/2010 1402

 Date Prepared:
 09/29/2010 1138

720-78948 Lab File ID: 09301008.D Initial WeightVolume: 30.23 g Final WeightVolume: 1 mL Injection Volume: 1 uL

> Instrument ID: SVOA HP 4 Lab File ID: 09301009.D Initial Weight/Volume: 30.13 g Final Weight/Volume: 1 mL Injection Volume: 1 uL

Instrument ID: SVOA HP 4

	%	Rec.					
Analyte	MS	MSD	Limit	RPD	RPD Limit	MS Qual	MSD Qua
Naphthalene	57	59	32 - 120	4	20		
Acenaphthene	63	66	33 - 120	5	20		
Acenaphthylene	59	62	28 - 120	5	20		
Fluorene	78	82	35 - 120	6	20		
Phenanthrene	77	76	28 - 120	2	20		
Anthracene	71	69	36 - 120	2	20		
Benzo[a]anthracene	80	79	29 - 120	2	20		
Chrysene	89	88	29 - 120	0	20		
Benzo[a]pyrene	83	81	24 - 120	2	20		
Benzo[b]fluoranthene	87	87	17 - 132	0	20		
Benzo[k]fluoranthene	83	82	35 - 120	1	20		
Benzo[g,h,i]perylene	84	83	21 - 120	2	20		
Indeno[1,2,3-cd]pyrene	88	86	20 - 126	1	20		
Fluoranthene	84	81	24 - 120	2	20		
Pyrene	82	81	24 - 123	1	20		
Dibenz(a,h)anthracene	88	86	36 - 120	1	20		
Surrogate		MS % Rec	MSD 9	% Rec	Acc	eptance Lim	its
2-Fluorobiphenyl		59	61		3	3 - 120	
Terphenyl-d14		85	83		3	5 - 146	

Client: AMEC Geomatrix Inc.

Job Number: 720-30799-1

Method Blank - Batch: 720-79056

Method: 8270C SIM Preparation: 3510C

Lab Sample ID: MB 720-79056/1-A Client Matrix: Water Dilution: 1.0 Date Analyzed: 10/01/2010 1206 Date Prepared: 09/30/2010 1403

Analysis Batch: 720-79122 Prep Batch: 720-79056

Units: ug/L

Instrument ID; SVOA HP 4 Lab File ID: 10011004.D Initial Weight/Volume: 1000 mL Final Weight/Volume: 1 mL Injection Volume: 1 uL

Analyte	Result	Qual	RL
Naphthalene	ND		1.0
Acenaphthene	ND		0.10
Acenaphthylene	ND		0.10
Fluorene	ND		0.10
Phenanthrene	ND		0.10
Anthracene	ND		0.10
Benzo[a]anthracene	ND		0.10
Chrysene	ND		0.10
Benzo[a]pyrene	ND		0.10
Benzo[b]fluoranthene	ND		0.10
Benzo[k]fluoranthene	ND		0.10
Benzo[g,h,i]perylene	ND		0.10
Indeno[1,2,3-cd]pyrene	ND		0.10
Fluoranthene	ND		0.10
Pyrene	ND		0.10
Dibenz(a,h)anthracene	ND		0.10
Surrogate	% Rec	Acceptance Lin	nits
2-Fluorobiphenyl	83	29 - 120	***************************************
Terphenyl-d14	96	45 - 120	

Quality Control Results Job Number: 720-30799-1

Client: AMEC Geomatrix Inc.

Lab Control Sample/ Lab Control Sample Duplicate Recovery Report - Batch: 720-79056 Method: 8270C SIM Preparation: 3510C

LCS Lab Sample ID: LCS 720-79056/2-A Client Matrix: Water

Dilution:

Date Prepared:

Date Analyzed:

10/01/2010 1118 09/30/2010 1403

Analysis Batch: 720-79122 Prep Batch: 720-79056

Units: ug/L

Instrument ID: SVOA HP 4 Lab File ID: 10011002.D Initial Weight/Volume: 1000 mL Final Weight/Volume: 1 mL Injection Volume: 1 uL

LCSD Lab Sample ID: LCSD 720-79056/3-A Client Matrix: Water Dilution: 1.0

Date Analyzed: 10/01/2010 1142 Date Prepared: 09/30/2010 1403

Analysis Batch: 720-79122 Prep Batch: 720-79056 Units: ug/L

Instrument ID: SVOA HP 4 Lab File ID: 10011003.D Initial Weight/Volume: 1000 mL Final Weight/Volume: 1 mL

Injection Volume: 1 uL

	9	<u> 6 Rec.</u>					
Analyte	LCS	LCSD	Limit .	RPD	RPD Limit	LCS Qual	LCSD Qua
Naphthalene	89	66	33 - 120	30	35		
Acenaphthene	82	62	37 - 120	28	35		
Acenaphthylene	78	59	36 - 120	29	35		
Fluorene	97	77	39 - 120	24	35		
Phenanthrene	83	71	44 - 120	16	35		
Anthracene	79	72	45 - 120	9	35		
Benzo[a]anthracene	85	83	48 - 120	3	35		
Chrysene	94	91	52 - 120	3	35		
Benzo[a]pyrene	91	88	50 - 120	4	35		
Benzo[b]fluoranthene	97	98	48 - 120	1 r	'35		
Benzo[k]fluoranthene	88	86	50 - 120	3	35		
Benzo[g,h,i]perylene	82	81	49 - 120	2	35		
Indeno[1,2,3-cd]pyrene	86	84	48 - 120	2	35		
Fluoranthene	87	82	46 - 120	6	35		
Pyrene	88	82	50 - 120	6	35		
Dibenz(a,h)anthracene	85	83	48 - 101	2	35		
Surrogate	L	CS % Rec	LCSD %	Rec	Accep	tance Limits	
2-Fluorobiphenyl	8	2	60		2	9 - 120	
Terphenyl-d14	9	1	89		4	5 - 120	

TestAmerica San Francisco

Page 45 of 54

11/04/2010

TestAmerica San Francisco

Page 46 of 54

Client: AMEC Geomatrix Inc.

Job Number: 720-30799-1

Method Blank - Batch: 720-78897

Method: 8015B Preparation: 3510C SGC Dissolved Instrument ID: CHDRO5

Lab Sample ID: MB 720-78890/1-B Client Matrix: Water Date Analyzed: 09/29/2010 2145

Date Prepared: 09/28/2010 1753

Dilution:

Analysis Batch: 720-78937 Prep Batch: 720-78897

Units: ug/L

Lab File ID: 0929105a 037.d Initial Weight/Volume: 1000 mL Final Weight/Volume: 2 mL

Injection Volume: 1 uL Column ID: PRIMARY

Analyte Result Qual MDI RL Diesel Range Organics [C10-C28] 13.7 10 50 Motor Oil Range Organics [C24-C36] ND 130 300 Surrogate % Rec Acceptance Limits Capric Acid (Surr) 0.2 0 - 5 p-Terphenyl 31 - 150

Lab Control Sample/ Lab Control Sample Duplicate Recovery Report - Batch: 720-78897 Method: 8015B Preparation: 3510C SGC Dissolved

Instrument ID: CHDRO5

0929105a 035.d

PRIMARY

Lab File ID:

LCS Lab Sample ID: LCS 720-78890/2-B Client Matrix: Water Dilution: 1.0 Date Analyzed: 09/29/2010 2058 09/28/2010 1753 Date Prepared:

Analysis Batch: 720-78937 Prep Batch: 720-78897 Units: ug/L

Initial Weight/Volume: 1000 mL Final Weight/Volume: 2 mL Injection Volume: Column ID:

LCSD Lab Sample ID: LCSD 720-78890/3-B Client Matrix: Water Dilution; 1.0 Date Analyzed: 09/29/2010 2122 Date Prepared: 09/28/2010 1753

Analysis Batch: 720-78937 Prep Batch: 720-78897 Units: ua/L

Instrument ID: CHDRO5 Lab File ID: 0929105a 036.d Initial Weight/Volume: 1000 mL Final Weight/Volume: 2 mL Injection Volume: 1 ut Column ID: PRIMARY

% Rec. Analyte LCSD Limit RPD RPD Limit LCS Qual LCSD Qual Diesel Range Organics (C10-C28) 52 32 - 119 12 Surrogate LCS % Rec LCSD % Rec Acceptance Limits p-Terphenyl 86 31 - 150 115

Quality Control Results Job Number: 720-30799-1

Client: AMEC Geomatrix Inc.

Method Blank - Batch: 720-79041

Method: 8015B Preparation: 3550B Silica Gel Cleanup

Lab Sample ID: MB 720-79041/1-A Client Matrix: Solid

Dilution: Date Analyzed: 10/01/2010 1431 Analysis Batch: 720-79101 Prep Batch: 720-79041 Units: mg/Kg

Instrument ID: CHDRO6 Lab File ID: FID1000020,D Initial Weight/Volume: 30.20 g Final Weight/Volume: 2 mL Injection Volume: 1 uL Column ID: PRIMARY

Date Prepared: 09/30/2010 1126

Analyte Result RL Diesel Range Organics [C10-C28] ND 0.99 Motor Oil Range Organics [C24-C36] ND Surrogate % Rec Acceptance Limits Capric Acid (Surr) 0 0 - 5 p-Terphenyl 86 46 - 115

Lab Control Sample/ Lab Control Sample Duplicate Recovery Report - Batch: 720-79041

Method: 8015B Preparation: 3550B Silica Gel Cleanup

LCS Lab Sample ID: LCS 720-79041/2-A Client Matrix: Solid Dilution: 1.0 Date Analyzed: 10/01/2010 1503 Date Prepared: 09/30/2010 1126

Analysis Batch: 720-79101 Prep Batch: 720-79041 Units: mg/Kg

Instrument ID: CHDRO6 Lab File ID: FID1000021.D Initial Weight/Volume: 30,22 g Final Weight/Volume: 2 mL Injection Volume: 1 uL Column ID: PRIMARY

LCSD Lab Sample ID: LCSD 720-79041/3-A Client Matrix: Solid Dilution 1.0 Date Analyzed: 10/01/2010 1524

09/30/2010 1126

Date Prepared:

Analysis Batch: 720-79101 Prep Batch: 720-79041 Units: mg/Kg

Instrument ID: CHDRO6 Lab File ID: FID1000022.D Initial Weight/Volume: 30,24 a Final Weight/Volume: 2 mL Injection Volume: 1 uL

Column ID:

PRIMARY

% Rec. Analyte LCS LCSD Limit RPD RPD Limit LCS Qual LCSD Qual Diesel Range Organics [C10-C28] 90 86 45 - 115 Surrogate LCS % Rec LCSD % Rec Acceptance Limits p-Terphenyl 103 98 46 - 115

Client: AMEC Geomatrix Inc.

Job Number: 720-30799-1

PRIMARY

Matrix Spike/ Matrix Spike Duplicate Recovery Report - Batch: 720-79041 Method: 8015B Preparation: 3550B Silica Gel Cleanup

Column ID:

Instrument ID: CHDRO6

Lab File ID: FID2000028.D

Final Weight/Volume: 2 mL

Injection Volume: 1 uL

Instrument ID: CHDRO6

Initial Weight/Volume: 30.16 g

MS Lab Sample ID: 720-30837-A-6-B MS Analysis Batch: 720-79102 Client Matrix: Solid

Prep Batch; 720-79041

Dilution: 1.0 Date Analyzed: 10/01/2010 1737 Date Prepared: 09/30/2010 1126

MSD Lab Sample ID: 720-30837-A-6-C MSD Analysis Batch: 720-79102 Client Matrix: Solid Prep Batch: 720-79041

Dilution: 1.0

Date Analyzed: 10/01/2010 1759 Date Prepared: 09/30/2010 1126

Lab File ID: FID2000029.D Initial Weight/Volume: 30,18 g Final Weight/Volume: 2 mL Injection Volume: 1 uL PRIMARY Column ID:

% Rec. Analyte MSD Limit RPD Limit MS Qual MSD Qual Diesel Range Organics [C10-C28] 57 58 50 - 130 30 Surrogate MS % Rec MSD % Rec Acceptance Limits p-Terphenyl 93 97 46 - 115

Quality Control Results Job Number: 720-30799-1

Client: AMEC Geomatrix Inc.

Method Blank - Batch: 720-79293

Method: 8015B Preparation: 3510C SGC Silica Gel Cleanup

Lab Sample ID: MB 720-79293/1-A Client Matrix: Water Dilution:

Prep Batch: 720-79293 Units: ug/L

Analysis Batch: 720-79353

Date Analyzed: 10/06/2010 0958 Date Prepared: 10/05/2010 0934

Instrument ID: CHDRO6 Lab File ID: FID1000009.D Initial Weight/Volume: 1000 mL Final Weight/Volume: 2 mL Injection Volume: 1 uL PRIMARY

Column ID:

Analyte	Result	Qual	MDL	RL	
Diesel Range Organics [C10-C28]	ND		10	50	
Motor Oil Range Organics [C24-C36]	ND		130	300	
Surrogate	% Rec		Acceptance Limits		
Capric Acid (Surr)	0.3		0 - 5		
p-Terphenyl	91		31 - 150		

Lab Control Sample/ Lab Control Sample Duplicate Recovery Report - Batch: 720-79293

Method: 8015B Preparation: 3510C SGC Silica Gel Cleanup

LCS Lab Sample ID: LCS 720-79293/2-A Client Matrix: Water Dilution: 1.0 Date Analyzed: 10/06/2010 0211 10/05/2010 0934 Date Prepared:

Analysis Batch: 720-79290 Prep Batch: 720-79293 Units: ug/L

Instrument ID: CHDRO5 Lab File ID: 1005105b 043.d Initial Weight/Volume: 1000 mL Final Weight/Volume: 2 mL

Column ID:

Injection Volume: 1 uL PRIMARY

PRIMARY

LCSD Lab Sample ID: LCSD 720-79293/3-A Client Matrix: Water Dilution: 1.0 Date Analyzed: 10/06/2010 0234 Date Prepared: 10/05/2010 0934

Analysis Batch: 720-79290 Prep Batch: 720-79293 Units: ua/L

Instrument ID: CHDRO5 Lab File ID: 1005105b_044.d Initial Weight/Volume: 1000 mL Final Weight/Volume: 2 mL Injection Volume: 1 uL

Column ID:

% Rec. Analyte LCS RPD RPD Limit LCS Qual LCSD Qual Diesel Range Organics [C10-C28] 32 - 119 Surrogate LCS % Rec LCSD % Rec Acceptance Limits p-Terphenyl 102 98 31 - 150

TestAmerica San Francisco

Page 49 of 54

11/04/2010

TestAmerica San Francisco

Page 50 of 54

	PROJEC	T NAME:	Couri	Chev	relat							•						DATE: 9	1/29	1201	S	PAG	3E	2	205 ^{[2/1} of 3
	PROJECT NU					1	PRATORY					CLIENT	INFORM	ATION	l:		5.457	REPORTING F	EQUIRE	MENTS	- 41	31.5			
	RESULTS TO					LABO	RATORY	ADDRE	SS:									100000		2.3					
	TURNAROUN			,	See	Pag	e .	14	:3								·						14.00		- 100 A 100 A
	SAMPLE SHIP	MENT METHOD	:			1000	RATORY	CONTAC	T:									GEOTRACKE	REOU	en.			ν.	ES	NO
	1					LABO	RATORY	PHONE	NUMBER	÷		-						SITE SPECIFI	1 5 11 10				133		
	SAMP	LERS (SIGNA	ATURE)·	123				ANA	ALY	SES	;					70012012011	1						
	>	9			,.	JEZZW,					T	П			T				<u> 6</u>					1	200 (100 (100 (100 (100 (100 (100 (100 (
		64								-					١.				(w),		B.			2	
	4	/(/	. نـــــــ			TOH,	14	11	- [0.0	1 1	Preservative Type		MS/MSD	3	
				SAMPLE		版	70	<u> </u>									CON	TAINER	5.5	ø	erval	8	OSI C	3	ADDITIONAL
	-DATE	TIME		NUMBER		12	TPH offers		_									AND SIZE		Filte	Pres	Cooled	MS/MSD	ğ	COMMENTS
Ì	9/27/2	1645	58-04	-12.0		Ш	1	_		\perp					\Box		90 m	VOA	5	N	DI AZO	4	N 2	2	
	<u> </u>	$\perp \perp$		1		$ \Delta $			_						L			L	5	+	McKied	4	V	1	
		V	ļ	₩			X X	\Box	\perp	\perp	1			1_			802 9	Ls, jar VOA	5	N	me	7	N,	1	
)	\vdash	1650	513-04	1-8.5		M			_	4	\perp		\perp	1_			YouL	VOA	Ш	\Box	DIKO		Y 2	2	HOLD
	\vdash	+				Μ	\perp	11	\perp	\perp	\perp		\perp	_	Ш		1 1		Ш		Method		1	ं	1
		10	<u> </u>	_t			YA				\perp	\perp		<u> </u>			802 91	lass jar 10,4			wone	Ш	1		
		1657	SB-09	7-7-0		X		\perp						_			40-L	101	Ш		DIGO	Ш	2	2	
		$\perp \perp$				Y		$\perp \perp$		4				_					Ш		Hotel	Ш	11	L	in marini
		14					XX	44	_	4			\perp	<u> </u>			802 9/0	45 10	V		None			<u> </u>	\checkmark
2		1700	SB-0	24		X		\perp		\perp	Ш					_	70mLV	CA	W		HCI	\rightarrow			45/MSD.
			<u> </u>				X	\perp		1			_	_	Ш		3202 A	mbar Jan			HCL	+	N 2		U.
							X.	4	\perp	_				<u> </u>	Ш				Ш		Vme_	Ш	1/2		AB FIXE
		12275	4	,			_ \lambda	41	-		\vdash	_		<u> </u>		_	_\\V		$\perp \perp$	-	the	Ш	V		rs/ws
•		1755	513-4	0		X	1.0	\perp		1				_		_	your .		-11		44		N 3		<u> </u>
		1 4	<u> </u>		Т		<i>X</i> '			1	Щ	, L	4	L,		L		and or Sa	- 1		HCI	4	NZ		罗
	SIGNATURE	UISHED E	3Y:	DATE	TIME	24.55	CEIV	ED B	<u>(:</u>	-7		DAT	ET	ME	L		MBER OF CONT	AINERS:					٠ ك	8	
			,	127/16	1854	ERIN	LTED N	WE:	120	ť_	4	P	10	ות	SAM	PLING	COMMENTS:								
	COMPANY:	en Stral		⊣ "∙	,			Ma	tine	<u> </u>	<u>. </u>	1 h	10	5>7	<u> </u>		Sec	Prze	29	43					
	COMPANY:	<u> </u>		- 37 :	ļ .,	Siden	ATURE	N.	li			1/	0		ļ			· <i>v</i>	r						
	PRINTED	Met	rest 3	1/27/10	Man (TED NA	THE VI	-	1		1/27	/1	920	lacksquare										
	COMPANY	TATE		- ´ ¯	1190		PANY:	12	M	II.		16/	lol 1º	140											
	SIGNATURE	(147)-		_			ATURE		18E			1	-		_										
-	PRINTED NA			4			TED NA										Webster St				Name of the last o	DEGREE P	_		
-	COMPANY:			4			PANY:	ME.				1					and, Califorr 663.4100					No.	G	ec	matrix

PROJECT NAME: Crown Chevrole	£	720-3	DATE: 9/27/2010 PAGE 1 OF 3 3
PROJECT NUMBER: DIOS 1600 7	LABORATORY NAME:	CLIENT INFORMATION:	REPORTING REQUIREMENTS:
A P. Holi.	LABORATORY ADDRESS:	AMEC Geometis	
TORRIGOUND TIME: Standard			
SAMPLE SHIPMENT METHOD:	LABORATORY CONTACT: Ad S CA LABORATORY PHONE NUMBER:		GEOTRACKER REQUIRED YES NO
	LABORATORY PHONE NUMBER:		SITE SPECIFIC GLOBAL ID NO.
SAMPLERS (SIGNATURE):) <u>u</u> ANALY	SES	
	7 E *		[0
15/	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Other lers
9/9			ntain lain
DATE TIME NUMBER	1917 BIEX 1714 d 1947 d 1947 d		AINER SIZE SO
	18 18 18 18 18 18 18 18 18 18 18 18 18 1		
7/27/2010/0850 58-01-13.8	 	40LL VE	
1 50 1			S N Method Y N I
0900 88-01-11-7	 - V - - -		SNDIKOYNZ HOLD
1000 58-02-11.5			nethood 1 10 1
1600 36-02-11.3			S N D/ 1/20 Y N/ 2
1005 58-02-9.1			- Plong I
1009 33 -22 101	 X - - - - - - - 		5 N P1450 Y N Z 140LD
1050 58-02			1 1111111111111111111111111111111111111
M15 SB-01	X		WN HG YN3
1330 58-11-12.8	C X X	Boz ghs	
1400 CB-H	T X N	32 or Ame	
		The state of the s	w N Mare Y N Z Filto @ lab
	x		V N Nove Y N Z
	BLANK LIN		
	RECEIVED BY:	DATE TIME TOTAL NUMBER OF CONTA	INERS: 2.1
	SIGNATURE AMOUNT	M SAMPLING COMMENTS:	
RINTED NAME:	PRINTED NAME OF 1902	127 1854 * Silica Gel cleany	0
ANGE	COMPANY	VOC. TPHE BIEX by	# 8260B & hope 100
GNATURE A Cartiner of	SIGNATURE	1 1 TOULT I would	7 whose marked follow using Unit and siller
tallarinos) 127/0 1930		9/27/ 1920 PAILS by 8270C	
1455	COMPANY;	Chromun = total &	
	SIGNATURE:	2101 Webster Stre	eet, 12th Floor
	PRINTED NAME: COMPANY:	Oakland, Californi	

RELINQUISHED BY: SAMPLERS PROJECT NAME: Cour Charded LAGORION NAME DATE (SIGNATURE): Sec 9/27/ 18:54 CABORATORY PHONE NUMBER x TPHd/m ANALYSES 1/2/854 DATE なる 2101 Webster Street, 12th Floor Oakland, California 94612-3066 Tel 510.663.4100 Fax 510.663.4141 SAMPLING COMMENTS: DATE: 9/27/2010 GEOTRACKER REQUIRED E Soil (S), Water (W), Vapor (V), or Other (O) W V Filtered OAK 13206 DSMISM 5 5 Geomatrix (~ い No. of Containers LAB FILTER ADDITIONAL COMMENTS 7. Page 53 of 54 11/04/2010

Login Sample Receipt Check List

Client: AMEC Geomatrix Inc.

Job Number: 720-30799-1

Login Number: 30799 Creator: Hoang, Julie List Number: 1 List Source: TestAmerica San Francisco

Question	T / F/ NA	Comment
Radioactivity either was not measured or, if measured, is at or below background	N/A	
The cooler's custody seal, if present, is intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	False	SEE NCM
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	,
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	P
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	

TestAmerica San Francisco

Page 54 of 54

ANALYTICAL REPORT

Job Number: 720-30799-2

Job Description: Crown Chevrolet

For: AMEC Geomatrix Inc. 2101 Webster Street, 12th Floor Oakland, CA 94612 Attention: Avery Patton

Akenef Sal 3

Approved for releas Afsanen Salimpour Project Manager I 11/4/2010 5:10 PM

Afsaneh Salimpour Project Manager I afsaneh.salimpour@testamericainc.com 11/04/2010 Revision: 1

CA ELAP Certification # 2496

The Chain(s) of Custody are included and are an integral part of this report.

The report shall not be reproduced except in full, without the written approval of the laboratory. The client, by accepting this report, also agrees not to alter any reports whether in the hard copy or electronic format and to use reasonable efforts to preserve the reports in the form and substance originally provided by TestAmerica.

A trip blank is required to be provided for volatile analyses. If trip blank results are not included in the report, either the trip blank was not submitted or requested to be analyzed.

TestAmerica Laboratories, Inc.
TestAmerica San Francisco 1220 Quarry Lane, Pleasanton, CA 94566
Tel (925) 484-1919 Fax (925) 600-3002 www.testamericainc.com

Job Narrative 720-30799-2

Comments

No additional comments

Receipt

Received 3 vials (soil) and 1 soil jar for SB-04-3.0 which is not listed on COC. Logged in as HOLD.

Did not receive enough sample to do MS/MSD for diesel and PAH.

All other samples were received in good condition within temperature requirements.

GC/MS VOA

No analytical or quality issues were noted.

GC Semi VOA

No analytical or quality issues were noted.

3C Semi VOA:

All samples for TPH(Diesel and Motor oil) were analysed with Silica Gel clean up using Method 3630C.

Organic Prep

No analytical or quality issues were noted.

EXECUTIVE SUMMARY - Detections

Client: AMEC Geomatrix Inc.

Job Number: 720-30799-2

Lab Sample ID Client Sample ID
Analyte Result / Qualifier

Reporting Limit

Units Method

No Detections

METHOD SUMMARY

Client: AMEC Geomatrix Inc.

Job Number: 720-30799-2

Description	Lab Location	Method	Preparation Method
Matrix: Solid			
8260B / CA LUFT MS	TAL SF	SW846 8260	B/CA LUFTMS
Closed System Purge and Trap	TAL SF		SW846 5035
Diesel Range Organics (DRO) (GC)	TAL SF	SW846 8015	5B
Ultrasonic Extraction	TAL SF		SW846 3550B

Lab References:

TAL SF = TestAmerica San Francisco

Method References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TestAmerica San Francisco

Page 3 of 24

11/04/2010

TestAmerica San Francisco

Page 4 of 24

METHOD / ANALYST SUMMARY

Client: AMEC Geomatrix Inc.

Job Number: 720-30799-2

Method		Analyst	Analyst ID
SW846 8	260B/CA_LUFTMS	Chen, Amy	AC
SW846 8	015B	Hayashi, Derek	DH

SAMPLE SUMMARY

Client: AMEC Geomatrix Inc.

Job Number: 720-30799-2

Lab Sample ID	Client Sample ID	Client Matrix	Date/Time Sampled	Date/Time Received	
720-30799-2	SB-01-11.7	Solid	09/27/2010 0900	09/27/2010 1920	
720-30799-4	SB-02-9.1	Solid	09/27/2010 1005	09/27/2010 1920	
720-30799-10	SB-04-8.5	Solid	09/27/2010 1650	09/27/2010 1920	
720-30799-11	SB-04-7.0	Solid	09/27/2010 1655	09/27/2010 1920	

TestAmerica San Francisco

Page 5 of 24

11/04/2010

TestAmerica San Francisco

Page 6 of 24

Client: AMEC Geomatrix Inc.

Job Number: 720-30799-2

Client Sample ID: SB-01-11.7

Lab Samole ID: 720-30799-2 Client Matrix: Solid

Date Sampled: 09/27/2010 0900

Date Received: 09/27/2010 1920

8260B/CA_LUFTMS 8260B / CA LUFT MS

Method: 8260B/CA_LUFTMS Preparation: 5035 Dilution: 1.0

Analysis Batch: 720-79201

Prep Batch: 720-79321 Lab File ID:

HP7 instrument ID:

10041009.D Initial Weight/Volume: 6.774 g Final Weight/Volume: 10 mL

Date Analyzed: 10/04/2010 1340 Date Prepared: 10/04/2010 0800

Analyte DryWt Corrected: N Result (ug/Kg) Qualifier RL Benzene ND 3.7 Gasoline Range Organics (GRO)-C5-C12 ND 180 Ethylbenzene ND 3.7 MTBE ND 3.7 Toluene ND 3.7 Xylenes, Total ND 7.4

Surrogate %Rec Qualifier Acceptance Limits 4-Bromofluorobenzene 65 - 117 1,2-Dichloroethane-d4 (Surr) 73 - 140 96 Toluene-d8 (Surr) 96 72 - 113

Analytical Data

Client: AMEC Geomatrix Inc.

Job Number: 720-30799-2

Client Sample ID: SB-02-9.1

Lab Sample ID: Client Matrix:

Method:

Dilution:

Preparation:

Solid

720-30799-4

Date Sampled: 09/27/2010 1005 Date Received: 09/27/2010 1920

8260B/CA_LUFTMS 8260B / CA LUFT MS

8260B/CA_LUFTMS 5035

Analysis Batch: 720-79201

Prep Batch: 720-79321

Instrument ID: Lab File ID:

HP7 10041010.D Initial Weight/Volume: 6.583 g

1.0 Date Analyzed: 10/04/2010 1414

Date Prepared:

10/04/2010 0800

Qualifier RL

Final Weight/Volume: 10 mL

Analyte	DryWt Corrected: N	Result (ug/Kg)	Qualifier	RL
Benzene		ND		3.8
Gasoline Range Org	anics (GRO)-C5-C12	ND		190
Ethylbenzene		ND		3.8
MTBE		ND		3.8
Toluene		ND		3.8
Xylenes, Total		ND		7.6

Surrogate	%Rec	Qualifier	Acceptance Limits
4-Bromofluorobenzene	96		65 - 117
1,2-Dichloroethane-d4 (Surr)	100		73 - 140
Toluene-d8 (Surr)	96		72 - 113
			,

TestAmerica San Francisco Page 7 of 24 11/04/2010 TestAmerica San Francisco Page 8 of 24 11/04/2010

Client: AMEC Geomatrix Inc.

Job Number: 720-30799-2

Client Sample ID: SB-04-8.5

Client Matrix:

Lab Sample ID:

720-30799-10

Solid

Date Sampled: 09/27/2010 1650 Date Received: 09/27/2010 1920

8260B/CA_LUFTMS 8260B / CA LUFT MS

Method: 8260B/CA_LUFTMS Analysis Batch: 720-79201 Preparation: 5035 Prep Batch: 720-79321 Dilution: 1.0 Date Analyzed: 10/04/2010 1448

Instrument ID: HP7 Lab File ID: 10041011.D Initial Weight/Volume: 6.436 g Final Weight/Volume: 10 mL

65 - 117

72 - 113

Date Prepared: 10/04/2010 0800

4-Bromofluorobenzene

Toluene-d8 (Surr)

Analyte	DryWt Corrected: N	Result (ug/Kg)	Qualifier	RL.
Benzene		ND		3.9
Gasoline Range Org	ganics (GRO)-C5-C12	ND		190
Ethylbenzene		ND		3.9
MTBE		ND		3.9
Toluene		ND		3.9
Xylenes, Total		ND		7.8
Surrogate		%Rec	Qualifier	Acceptance Limits
1,2-Dichloroethane-	d4 (Surr)	99		73 - 140

94

98

Analytical Data

Client: AMEC Geomatrix Inc.

Job Number: 720-30799-2

Client Sample ID: SB-04-7.0

Lab Sample ID:

Method:

Dilution:

Preparation:

Client Matrix:

720-30799-11 Solid

Date Sampled: 09/27/2010 1655 Date Received: 09/27/2010 1920

8260B/CA_LUFTMS 8260B / CA LUFT MS

8260B/CA_LUFTMS Analysis Batch: 720-79201 5035 Prep Batch: 720-79321

Instrument ID: Lab File ID: 10041012.D Initial Weight/Volume: 6.315 g Final Weight/Volume: 10 mL

1.0 Date Analyzed: 10/04/2010 1522 10/04/2010 0800 Date Prepared:

Analyte DryWt Corrected; N Result (ug/Kg) Qualifier RL Benzene ND 4.0 Gasoline Range Organics (GRO)-C5-C12 Ethylbenzene NĐ 200 ND 4.0 MTBE ND 4.0 Toluene ND 4.0 7.9 Xylenes, Total ND

Surrogate	%Rec	Qualifier	Acceptance Limits
1,2-Dichloroethane-d4 (Surr)	105		73 - 140
4-Bromofluorobenzene	90		65 - 117
Toluene-d8 (Surr)	93		72 - 113

Client: AMEC Geomatrix Inc.

Job Number: 720-30799-2

Client Sample ID: SB-04-8.5

Lab Sample ID: 720-30799-10 Client Matrix: Solid

Date Sampled: 09/27/2010 1650

Date Received: 09/27/2010 1920

8015B Diesel Range Organics (DRO) (GC)-Silica Gel Cleanup

8015B 3550B

Analysis Batch: 720-79276 Prep Batch: 720-79235

Instrument ID: CHDRO6 Initial Weight/Volume: 30.45 g

Preparation: Dilution: 1.0

Final Weight/Volume: 2 mL

10/05/2010 1807 Date Analyzed:

Injection Volume: 1 uL PRIMARY

10/04/2010 1427 Date Prepared:

Result Type:

DryWt Corrected: N Analyte Diesel Range Organics [C10-C28]

Result (mg/Kg) ND

RL

Motor Oil Range Organics [C24-C36]

Qualifier 0.99 49

Surrogate Capric Acid (Surr) p-Terphenyl

Method:

%Rec 0.04 90

ND

Qualifier

Acceptance Limits 0 - 5

46 - 115

Analytical Data

Client: AMEC Geomatrix Inc.

Job Number: 720-30799-2

Client Sample ID: SB-04-7.0

Lab Sample ID: 720-30799-11

Client Matrix:

Method:

Dilution:

Surrogate

Preparation:

Date Analyzed:

Date Prepared:

Solid

10/05/2010 1829

10/04/2010 1427

Date Sampled: 09/27/2010 1655 Date Received: 09/27/2010 1920

8015B Diesel Range Organics (DRO) (GC)-Silica Gel Cleanup

8015B

3550B 1.0

Analysis Batch: 720-79276 Prep Batch: 720-79235

Instrument ID: CHDRO6 Initial Weight/Volume: 30.22 g

Final Weight/Volume: 2 mL Injection Volume:

Result Type: PRIMARY

Analyte DryWt Corrected: N Diesel Range Organics [C10-C28]

Result (mg/Kg) ND

Qualifier RL 0.99

Motor Oil Range Organics [C24-C36] ND

Qualifier

50 Acceptance Limits

Capric Acid (Surr) 0.2 0 - 5 p-Terphenyl 83 46 - 115

%Rec

TestAmerica San Francisco Page 11 of 24 11/04/2010 TestAmerica San Francisco Page 12 of 24 11/04/2010

DATA REPORTING QUALIFIERS

Lab Section Qualifier Description

Quality Control Results

Client: AMEC Geomatrix Inc.

Job Number: 720-30799-2

QC Association Summary

Lab Sample ID	Client Sample ID	Report Basis	Client Matrix	Method	Prep Batch
GC/MS VOA					
Analysis Batch:720-79	201				
LCS 720-79321/2-A	Lab Control Sample	T	Solid	8260B/CA LUFT	720-79321
LCS 720-79321/4-A	Lab Control Sample	T	Solid	8260B/CA LUFT	720-79321
LCSD 720-79321/3-A	Lab Control Sample Duplicate	T	Solid	8260B/CA LUFT	720-79321
LCSD 720-79321/5-A	Lab Control Sample Duplicate	Т	Solid	8260B/CA LUFT	720-79321
MB 720-79321/1-A	Method Blank	T	Solid	8260B/CA LUFT	720-79321
720-30799-2	SB-01-11,7	T	Solid	8260B/CA LUFT	720-79321
720-30799-4	SB-02-9.1	T	Solid	8260B/CA LUFT	720-79321
720-30799-10	SB-04-8.5	т	Solid	8260B/CA LUFT	720-79321
720-30799-11	SB-04-7.0	T	Solid	8260B/CA_LUFT	720-79321
Prep Batch: 720-79321					
LCS 720-79321/2-A	Lab Control Sample	Т	Solid	5035	
LCS 720-79321/4-A	Lab Control Sample	Т	Solid	5035	
LCSD 720-79321/3-A	Lab Control Sample Duplicate	Т	Solid	5035	
LCSD 720-79321/5-A	Lab Control Sample Duplicate	T	Solid	5035	
MB 720-79321/1-A	Method Blank	Т	Solid	5035	
720-30799-2	SB-01-11.7	Т	Solid	5035	
720-30799-4	SB-02-9.1	Т	Solid	5035	
720-30799-10	SB-04-8.5	Т	Solid	5035	
720-30799-11	SB-04-7.0	Т	Solid	5035	

Report Basis T = Total

Client: AMEC Geomatrix Inc.

Job Number: 720-30799-2

QC Association Summary

Lab Sample ID	Client Sample ID	Report Basis	Client Matrix	Method	Prep Batch
GC Semi VOA					
Analysis Batch:720-79	206				
LCS 720-79235/2-A	Lab Control Sample	Α	Solid	8015B	720-79235
LCSD 720-79235/3-A	Lab Control Sample Duplicate	Α	Solid	8015B	720-79235
MB 720-79235/1-A	Method Blank	Α	Solid	8015B	720-79235
Prep Batch: 720-79235	1				
LCS 720-79235/2-A	Lab Control Sample	Α	Solid	3550B	
LCSD 720-79235/3-A	Lab Control Sample Duplicate	Α	Solid	3550B	
MB 720-79235/1-A	Method Blank	Α	Solid	3550B	
720-30799-10	SB-04-8.5	Α	Solid	3550B	
720-30799-11	SB-04-7.0	Α	Solid	3550B	
720-30865-A-3-D MS	Matrix Spike	Α	Solid	3550B	
720-30865-A-3-E MSD	Matrix Spike Duplicate	Α	Solid	3550B	
Analysis Batch:720-79	276				
720-30799-10	SB-04-8.5	Α	Solid	8015B	720-79235
720-30799-11	SB-04-7.0	Α	Solid	8015B	720-79235
720-30865-A-3-D MS	Matrix Spike	Α	Solid	8015B	720-79235
720-30865-A-3-E MSD	Matrix Spike Duplicate	Α	Solid	8015B	720-79235

Page 15 of 24

Report Basis
A = Silica Gel Cleanup

TestAmerica San Francisco

Quality Control Results

Client: AMEC Geomatrix Inc.

Job Number: 720-30799-2

Method Blank - Batch: 720-79321

Method: 8260B/CA_LUFTMS

Preparation: 5035

Lab Sample ID: MB 720-79321/1-A Client Matrix: Solid Dilution: 1.0

Analysis Batch: 720-79201 Prep Batch: 720-79321 Units: ug/Kg

Instrument ID: HP7 Lab File ID: 10041004.D Initial Weight/Volume: 5 g Final Weight/Volume: 10 mL

Date Analyzed: 10/04/2010 1042 Date Prepared: 10/04/2010 0800

Analyte	Result	Qual	RL
Benzene	ND		5.0
Gasoline Range Organics (GRO)-C5-C12	ND		250
Ethylbenzene	ND		5.0
m-Xylene & p-Xylene	ND		5.0
MTBE	ND		5.0
Toluene	ND		5.0
Xylenes, Total	ND		10
Surrogate	% Rec	Acceptano	ce Limits
1,2-Dichloroethane-d4 (Surr)	95	73 - 1	
4-Bromofluorobenzene	98	65 - 1	17
Toluene-d8 (Surr)	96	72 - 1	113

11/04/2010 TestAmerica San Francisco Page 16 of 24 11/04/2010

Client: AMEC Geomatrix Inc.

Job Number: 720-30799-2

Lab Control Sample/ Lab Control Sample Duplicate Recovery Report - Batch: 720-79321 Method: 8260B/CA_LUFTMS Preparation: 5035

LCS Lab Sample ID: LCS 720-79321/2-A Client Matrix: Solid Dilution:

Analysis Batch: 720-79201 Prep Batch: 720-79321 1.0 Units: ug/Kg 10/04/2010 1116

Instrument ID: HP7 Lab File ID: 10041005.D Initial Weight/Volume; 5 g Final Weight/Volume: 10 mL

Date Prepared: 10/04/2010 0800

Date Analyzed:

Date Prepared:

LCSD Lab Sample ID: LCSD 720-79321/3-A Client Matrix: Solid Dilution: 1.0 Date Analyzed: 10/04/2010 1150

10/04/2010 0800

Analysis Batch: 720-79201 Prep Batch: 720-79321 Units: ug/Kg

Instrument ID: HP7 Lab File ID: 10041006.D Initial Weight/Volume: 5 g Final Weight/Volume: 10 mL

	9	% Rec.					
Analyte	LCS	LCSD	Limit	RPD	RPD Limit	LCS Qual	LCSD Qual
Benzene	93	93	82 - 124	0	20		
Ethylbenzene	100	101	80 - 137	1	20		
m-Xylene & p-Xylene	101	103	79 - 146	2	20		
MTBE	94	96	71 - 144	2	20		
Toluene	96	99	83 - 128	2	20		
Surrogate	L	.CS % Rec	LCSD %			otance Limits	
1,2-Dichloroethane-d4 (Surr)	1	101	103		7	3 - 140	
4-Bromofluorobenzene	g	9	100		6	5 - 117	
Toluene-d8 (Surr)	c	18	97		7	2 113	

Quality Control Results Job Number: 720-30799-2

Client: AMEC Geomatrix Inc.

Lab Control Sample/

10/04/2010 1224

10/04/2010 0800

Lab Control Sample Duplicate Recovery Report - Batch: 720-79321

Method: 8260B/CA_LUFTMS Preparation: 5035

LCS Lab Sample ID: LCS 720-79321/4-A Solid

Client Matrix: Dilution: Date Analyzed:

Date Prepared:

Analysis Batch: 720-79201 Prep Batch: 720-79321

Units: ug/Kg

Instrument ID: HP7 Lab File ID: 10041007.D Initial Weight/Volume: 5 g Final Weight/Volume: 10 mL

LCSD Lab Sample ID: LCSD 720-79321/5-A Client Matrix: Solid 1.0

1.0

Dilution:

Date Analyzed: 10/04/2010 1258 Date Prepared: 10/04/2010 0800 Analysis Batch: 720-79201 Prep Batch: 720-79321 Units: ug/Kg

Instrument ID: HP7 Lab File ID: 10041008.D Initial Weight/Volume: 5 g Final Weight/Volume: 10 mL

Analyte	LCS	<u>% Rec.</u> LCSD	Limit	RPD	RPD Limit	LCS Qual	LCSD Qual
Gasoline Range Organics (GRO)-C5-C12	83	84	68 - 115	1	20		
Surrogate	L	.CS % Rec	LCSD %			tance Limits	
1,2-Dichloroethane-d4 (Surr)	1	00	104	***************************************		3 - 140	
4-Bromofluorobenzene	9	9	103		6	5 - 117	
Toluene-d8 (Surr)	g	94	98		7.	2 - 113	

TestAmerica San Francisco

Page 17 of 24

11/04/2010

TestAmerica San Francisco

Page 18 of 24

Client: AMEC Geomatrix Inc.

Job Number: 720-30799-2

Method Blank - Batch: 720-79235

Method: 8015B Preparation: 3550B Silica Gel Cleanup

Lab Sample ID: MB 720-79235/1-A Client Matrix: Solid 1.0

Dilution:

Date Analyzed: 10/05/2010 0706 Date Prepared: 10/04/2010 1427 Analysis Batch: 720-79206 Prep Batch: 720-79235

Units: mg/Kg

Instrument ID: CHDRO5 Lab File ID: 1004105b 061.d Initial Weight/Volume: 30.12 g Final Weight/Volume: 2 mL Injection Volume: 1 uL Column ID: PRIMARY

Analyte Result RL Diesel Range Organics [C10-C28] ND 1.0 Motor Oil Range Organics [C24-C36] ND 50 Surrogate % Rec Acceptance Limits Capric Acid (Surr) 0.2 0 - 5 p-Terphenyl 93 46 - 115

Lab Control Sample/

Date Analyzed:

Date Prepared:

Date Analyzed:

Date Prepared:

Lab Control Sample Duplicate Recovery Report - Batch: 720-79235

Method: 8015B Preparation: 3550B Silica Gel Cleanup

LCS Lab Sample ID: LCS 720-79235/2-A Client Matrix: Solid Dilution: 1.0

Analysis Batch: 720-79206 Prep Batch: 720-79235 Units: mg/Kg

Instrument ID: CHDRO5 Lab File ID: 1004105b 059.d Initial Weight/Volume: 30.21 g Final Weight/Volume: 2 mL Injection Volume: 1 uL Column ID: PRIMARY

LCSD Lab Sample ID: LCSD 720-79235/3-A Client Matrix: Solid Dilution: 1.0

10/05/2010 0619

10/04/2010 1427

10/05/2010 0642

10/04/2010 1427

Analysis Batch: 720-79206 Prep Batch: 720-79235 Units: mg/Kg

Instrument ID: CHDRO5 Lab File ID: 1004105b_060.d Initial Weight/Volume: 30.43 a Final Weight/Volume: 2 mL Injection Volume: 1 uL Column ID: PRIMARY

% Rec. Analyte LCSD RPD Limit LCS Qual LCSD Qual Diesel Range Organics [C10-C28] 85 45 - 115 Surrogate LCS % Rec LCSD % Rec Acceptance Limits p-Terphenyl 103 100 46 - 115

Quality Control Results

Client: AMEC Geomatrix Inc.

Job Number: 720-30799-2

Matrix Spike/

Matrix Spike Duplicate Recovery Report - Batch: 720-79235

Method: 8015B Preparation: 3550B Silica Gel Cleanup Instrument ID: CHDRO6

Lab File ID: FID1000012.D

Initial Weight/Volume: 30.42 g

MS Lab Sample ID: 720-30865-A-3-D MS Client Matrix: Dilution:

Client Matrix:

Solid 1.0

Analysis Batch: 720-79276

Prep Batch: 720-79235

Date Analyzed: 10/05/2010 1125 Date Prepared: 10/04/2010 1427

MSD Lab Sample ID: 720-30865-A-3-E MSD Analysis Batch: 720-79276 Solid Prep Batch: 720-79235

Dilution: 1.0 10/05/2010 1147 Date Analyzed: Date Prepared: 10/04/2010 1427

Final Weight/Volume: 2 mL Injection Volume: 1 uL Column ID: PRIMARY Instrument ID: CHDRO6

Lab File ID: FID1000013.D Initial Weight/Volume: 30.30 g Final Weight/Volume: 2 mL Injection Volume: 1 uL PRIMARY Column ID:

	%	Rec.					
Analyte	MS	MSD	Limit	RPD	RPD Limit	MS Qual	MSD Qual
Diesel Range Organics [C10-C28]	55	73	50 - 130	28	30		
Surrogate		MS % Rec	MSD 9			eptance Lim	
p-Terphenyl		93	93		4	6 - 115	

PROJECT NAME	Crown	Cher	rolat	_					•						507	D/	TE G	7/29	-/20		P	AGE	2	205 ^{/∠} _o⊧ 3	
PROJECT NUMBER:				LAB	ORATOR	Y NAME				CLIENT	NFOR	MATION	:		.40	REA	PORTING						oni dia ca	(N. 1947)	
RESULTS TO:				1		Y ADDRI											0000	9.55							
TURNAROUND YIME:			See	Par	-	19	/.3					***************************************					1.1%	10070	1.0				W.S		
SAMPLE SHIPMENT METH	OD:			1												GE	OTRACKE	R REQU	IRED	.45.454.5		100	YES	NO	
				LAB	ORATOR	Y PHON	E NUMBE	R:									E SPECIF			NO	1940	1	W		
SAMPLERS	(SIGNA	TURE):	122				AN	ALY	SES						1011			T			750			
DATE TIME 1/27/200 1:45	E N	AMPLE IUMBER -12.0	R	X PEN JUNE, AND	- Tell office	##.									CON TYPE	**	SIZE	Soll Si, Vater (W).	Vap (V) or Other	Preservative Type	1	N	No. of Containers	ADDITION COMMEN	
1	-	1		1	X)	ë 🗕	\vdash		+	+	+	+-	H	+	802	<u>*</u>	jar			+	-	N		VIIIA VOIN LI HONO BERBACIO VIII I	
1650	58-04	·- S. 5	=	1/	1	+-	\vdash	+	+		+	+	H	+	40 m			- 2	10	DIKO	- 1:	17	2	HOLD	<u>lines d</u> Galler
-	1000	1		Χ	\vdash	+		+	1-1	-	+	+	H	+	10 00	00.	^†	\dashv	+	Metto	#	H	1	1000	25 - 25 (5) - 1
1 1 6		1		1	Υ,	+	++		+		+-	+	\vdash	+	8	.1		$\dashv \dagger$	+	Kons	4	╫	1		<u>land</u> The st
1657	5B-04	-7.0		V	1	+	\vdash	+	1	_	+	+	\vdash	+	802 g	1000	Arc		+	DIE	+	╁┼	2	January S. Carago	
1 1	1 "			Ž	$\vdash \vdash$	+			++	+	+-	+-		-+	70:1	00,0		-11	+	hote	- 11	+	1	and the second	200
					XX				\Box	_	+		Н	十	802 9	tere	*	1	,	None	~ -	1	1		
1700	SB-0	4		X		_		+	\Box		+	1	Н	十	40 mL	VOA-		h	_	HCI		Y	5	MS/MSD	200
	1	1		-	X			1	\vdash	_	Ť	1			3202 A				+	HCL		N		J. J.	7
		72.1.			X				\Box		T			\top	102 10	1	4 4	$\exists \exists$	+	Ame	††	IV.	-	LAB File	<u>~</u>
)	1			\Box		1	1	П	\top	./			\dashv	1	rine	$\dagger \dagger$	V	12	MS/WD	
175	5 5B-40	3		х		T						Ì		1	yount	201	4	-11	1	44	\forall	N		3	7.7.
<u> </u>					X				П						3202	Ant	200	- W		HCI	1	N		\$	1
RELINQUISHED	BY:	DATE	TIME	RJE	CEIV					DAT	ET	IME	тот	AL NU	MBER OF CON	TAINE	RS:						28		
SIGNATURE		127/10	1854		YATUR	5: 1/1	10	£	/	ay		_	SAM	PLING	COMMENTS:									M	
PRINTED NAME:	lar	10		erii L	STED I	ME	Am.	سہ	5	hi	/	XSY			Sur	. /	Priger	1	d	3					
PRINTED NAME:			٤ ـ ا	PPN	PANY	l)Xi	F			1 /1	0	854				·	1)	-	/					•	
PRINTED NAME: COMPANY: TWO F	ruen,	1/27/10	rigo (PHA	TED N	AMEN	lie	#.		9/27	/	92°													
SIGNATURE:		+		SIGN	ATURI	- · · · · · · · · · · · · · · · · · · ·	100			– '	+		_	40.											
PRINTED NAME:		\exists		PRIN	ITED N	AME:				1					Webster S and, Califor							3 /	-		·
COMPANY:		-		COM	PANY:					1					and, Callio 663.4100					1	<u> </u>	= (Jе	omatr	łΧ

PROJE	CT NAME:	Crown	CL	revole	£									•			- 3		DATE: 9	102	1/2			PAG	~	3204
PROJECT	NUMBER	1016000		100100		ORATO	PLNA	IE:			CLIEN	T INF	ORMATI	ON:				,	REPORTING				٠.,	7.0		
	1 12 11				LAE	ORAIG	RY ADD	RESS:	_		A	ME	C	<u></u>	الله مد	٠,٠									-	
TURNARO	UND TIME: STA	dere			Τ					•	1															
SAMPLE S	HIPMENT METHOD	D:			TA	PRATO	RY CON	TACY:			1								GEOTRACKE	R REOU	IREO					s no
					ŁAB	ORATO	RY PHO	NE NUM	BER:		1								SITE SPECIFI						ند	110
SAM	PLERS	(SIGNA	TURF):	T-	123			Α	NAL	YSE	s					1		STE SPECIFI	1	L ID.	1	T	Т	Т	
				,.	HIBE	MIB	*	T			ΤĪ			T	Ī	Τ	1			5	2		1		ļ	
	4/						1 2	7								'				(W),	131	ad.			2	2
4	/	<u> </u>			VOC TPIL	\$	Ima	17 Parion			-	Ì								as a	5	Preservative Type			of Containers	
			AMPLE		15	BTEX	17/4 d	5 1					-						AINER	Soil (S), W	- Pa	erval	1	Dallon O	G S	ADDITIO
DATE			JMBER		13	18	10	です		_ _	44			\perp			TYF	E A	ND SIZE			Pres	Paled	3 3	2	COMMEN
7/27/	10100850	58-01-			1	X	\perp	1		_	11			\perp		\perp	You	12	14	5		Di Hz				-
			ψ		1	ĮΝ								_ _	\perp	<u> </u>	ļ			S	N	Meth	47	_	- '	
	0900	58-01-1				М		\perp	_		\Box			\perp	1			<u> </u>		5	N	DIK	0 4	1		HOLD
		 	<u> </u>		╄	$ \Delta $		\perp	_		$\perp \perp$	_			_			_		5	N	Hetho	-14			ı
-	1000	58-02-	- 11.5		<u> </u>	X		+	_	_	4-1		_	\perp	<u> </u>	<u> </u>	ļ	<u> </u>		5	N	DI 142		n		<u> </u>
		4			↓	<u>/)</u>	-	1-	_		11	_	_		_	<u> </u>	<u> </u>	<u> </u>		5	N	Method	- 1:	A	÷	<u> </u>
	1005	513-02.			├	X		4-4			11		-	_	╄	\vdash	ļ	<u> </u>		5	N	DI42		10		17000
	1050	(7)			-	싓	-	+	-+		+	-		_	-	<u> </u>	ļ	 		5	N	Metho	5 X			1
-	1050	58-02			-	X	-	1-	-		+	-		+	\perp		 	ļ		h		HU	ĮΥ	À	-	
-+	1330	5B-01			6	X	XX	-	\dashv	+	+	\dashv		+	+	├	0	<u> </u>		h	+	MU	-+-	N	+-	
	1400	SB-11-12	2.8		-	-		+	-		+	+	-		+-	├	802			5	N	None	- 1	N	<u> </u>	
-+	11100	1 213 -11			\vdash		χ	+-	\dashv		++	4		+	+	├-	32 22	Am6	er tur	W	-	HCL		שנ	ᆤ	
						-	^ x	+	-+		+-+	\dashv		+	+	\vdash	-	-		1 ~	1	None	' '	-	+-	Filto-01a
<u>v</u>		_ W				Rd	10	VE		-100	1,-	\dashv	=	+	_			V		\perp	N	None	17	10	14	1000 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
RELING	QUISHED (1 3Y:	DATE	TIME						-2120	1-	TE	TIME	- TO	DTAL 1	NUME	BER OF C	ONTA	NERS:	Щ.	Щ.	L			25	-
SIGNATU	38:		9/24/	1854		VATUE			ort	5 -	01	, _	·				OMMENT								سے ا	n i na marata da 1966. Na marata da 1966 a 1966.
KINTED	NAMETER	<u> </u>	124/10	1 1	PRI	ALED.	YAM	M.		-	1/2		1851	1 ×	G:1: -		sel de								- 54. 2	
COMPANY.	der .		1 "		90%	TRAN)		#	70.0		Η΄,	to	,0,	۰,				~ 14	, P	62.	C 43 27		in.	21-		
SIGNATO	01. las	fires	50	—	SIGI	NA UF	酬	7	Α.		1	7		.7			131EX 15480	- D				narted.	hi			sing Ortano
RINTED	Mortino	7-	127/0	1900	PRII	11EP	桝	1	∜-		11/2		192				827			- 120	- /-	mi ice	, 4	117		(II) UTIANO
OMPAN	TANE		10		COM	PANY	: 000				٦.	10								64	68	2.0		-		
IGNATUR	E:				SIG	NATUR	Œ:				+	\dashv		1					et, 12th I	4	-		in the	7) 18	, 17.5 , 1.5	
RINTED	NAME:		1 1		PRIN	ITED I	NAME:				7								et, 12tm a 94612-3					10	٠.	om
OMPANY	:		1		COM	PANY	:					Į		Te					ax 510.66			72	_	. `	ت د	

SAMPLERS CHAIN-OF-CUSTODY RECORD PROJECT NAME: Crun Charded PROJECT NUMBER: DATE RELINQUISHED BY TIME (SIGNATURE): 18:54 LABORATORY PHONE NUMBER TPHd/m 158 2101 Webster Street, 12th Floor Oakland, California 94612-3066 Tel 510.663.4100 Fax 510.663.4141 SITE SPECIFIC GLOBAL ₹ ₹ Fillered Cooled CSM\SM 5 5 Geomatrix 2 (No. of Containers 32U6 AB FILTER Page 23 of 24 11/04/2010

Login Sample Receipt Check List

Client: AMEC Geomatrix Inc.

Job Number: 720-30799-2

Login Number: 30799 Creator: Hoang, Julie List Number: 1 List Source: TestAmerica San Francisco

Question	T / F/ NA	Comment
Radioactivity either was not measured or, if measured, is at or below background	N/A	
The cooler's custody seal, if present, is intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	False	SEE NCM
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
/OA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
f necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	

TestAmerica San Francisco

Page 24 of 24

ANALYTICAL REPORT

Job Number: 720-30837-1 Job Description: Crown Chevrolet

For:
AMEC Geomatrix Inc.
2101 Webster Street, 12th Floor
Oakland, CA 94612
Attention: Avery Patton

Approved for release. Afsaneh Salimpour Project Manager I

Afsaneh Salimpour Project Manager I afsaneh.salimpour@testamericainc.com 11/12/2010 Revision: 4

Akaref Sal

CA ELAP Certification # 2496

The Chain(s) of Custody are included and are an integral part of this report.

The report shall not be reproduced except in full, without the written approval of the laboratory. The client, by accepting this report, also agrees not to alter any reports whether in the hard copy or electronic format and to use reasonable efforts to preserve the reports in the form and substance originally provided by TestAmerica.

A trip blank is required to be provided for volatile analyses. If trip blank results are not included in the report, either the trip blank was not submitted or requested to be analyzed.

TestAmerica Laboratorles, Inc.
TestAmerica San Francisco 1220 Quarry Lane, Pleasanton, CA 94566
Tel (925) 484-1919 Fax (925) 600-3002 www.testamericainc.com

Job Narrative 720-30837-1

Comments

No additional comments.

Receipt

All samples were received in good condition within temperature requirements.

GC/MS VOA

The spectra for sample SB-03-3.2 does not resemble the pattern for our fresh gasoline standard. Reviewing the spectra reveals that the sample does not have the appearance of the majority of the characteristic aromatic compounds found in fresh or weathered gasoline product.

No analytical or quality issues were noted.

GC/MS Semi VOA

Method(s) 8270C SIM: The matrix spike / matrix spike duplicate (MS/MSD) precision for batch #79044 was outside control limits. Non-homogeneity of the sample matrix is suspected. The associated laboratory control sample / laboratory control sample duplicate (LCS/LCSD) precision met acceptance criteria.

Method(s) 8270C SIM: The following sample(s) was diluted due to the abundance of non-target analytes: SB-05-0.7 (720-30837-15). Elevated reporting limits (RLs) are provided.

Method(s) 8270C SIM: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for batch #79141 were outside control limits. The associated laboratory control sample (LCS) recovery met acceptance criteria.

No other analytical or quality issues were noted.

GC Semi VOA

Samples for dissolved TPH(Diesel and Motor oil) were filtered at the lab using 0.7 micron glass fiber filter.

All samples for TPH(Diesel and Motor oil) were analysed with Silica Gel clean up using Method 3630C.

No analytical or quality issues were noted.

Metals

No analytical or quality issues were noted.

General Chemistry

No analytical or quality issues were noted.

Organic Prep

No analytical or quality issues were noted.

EXECUTIVE SUMMARY - Detections

Client: AMEC Geomatrix Inc.

Job Number: 720-30837-1

Lab Sample ID Analyte	Client Sample ID	Result / Qualifier	Reporting Limit	Units	Method
720-30837-5	SB-10				
Dissolved Diesel Range Organ	nics [C10-C28]	<i>18</i> < 53 ЈВ	53	ug/L	8015B
720-30837-6	SB-06-3,0	_			
Naphthalene		9.4 丁	4.9	ug/Kg	8270C SIM
720-30837-8	SB-06				
Cr (VI)		0.94	0.50	ug/L	7199
Dissolved Diesel Range Organ	nics [C10-C28]	22/253 JB	53	ug/L	8015B
720-30837-11	SB-12				
Silica Gel Cleanup Diesel Range Organ		11 J J	51	ug/L	8015B
Dissolved Diesel Range Organ	nics [C10-C28]	18 < 52 JB	52	ug/L	8015B
720-30837-13	SB-09-4.9				
Naphthalene		5.0 丁	5.0	ug/Kg	8270C SIM
Silica Gel Cleanup Diesel Range Organ		1.4	0.99	mg/Kg	8015B
720-30837-14	SB-05				
Cr (VI)		1.1	0.50	ug/L	7199
Dissolved Diesel Range Organ	nics [C10-C28]	18 < 52 JB	52	ug/L	8015B
720-30837-15	SB-05-0.7				
Silica Gel Cleanup Diesel Range Organ Motor Oil Range Organ	nics [C10-C28]	20 58	1.0	mg/Kg mg/Kg	8015B 8015B

TestAmerica San Francisco

Page 3 of 94

11/12/2010

EXECUTIVE SUMMARY - Detections

Client: AMEC Geomatrix Inc.

Job Number: 720-30837-1

Lab Sample ID Analyte	Client Sample ID	Result / Qualifier	Reporting Limit	Units	Method
720-30837-17 Naphthalene	SB-09-11.8	5.1 丁	5.0	ug/Kg	8270C SIM
720-30837-20 Chlorobenzene	SB-03-2.8	2600	440	ug/Kg	8260B/CA_LUFTMS
720-30837-21	SB-03-3.2				
Chlorobenzene 1,4-Dichlorobenzen Gasoline Range Org	e ganics (GRO)-C5-C12	90000 5400 1200000	5200 5200 260000	ug/Kg ug/Kg ug/Kg	8260B/CA_LUFTMS 8260B/CA_LUFTMS 8260B/CA_LUFTMS
720-30837-22	SB-03-11.5				
Chlorobenzene 1,2-Dichlorobenzen	e	6500 15000	440 440	ug/Kg ug/Kg	8260B/CA_LUFTMS 8260B/CA_LUFTMS
720-30837-23	SB-03-6.5				
Chlorobenzene 1,2-Dichlorobenzen 1,4-Dichlorobenzen		26000 30000 1700	400 400 400	ug/Kg ug/Kg ug/Kg	8260B/CA_LUFTMS 8260B/CA_LUFTMS 8260B/CA_LUFTMS

TestAmerica San Francisco

Page 4 of 94

11/12/2010

METHOD SUMMARY

Client: AMEC Geomatrix Inc.

Job Number: 720-30837-1

Description	Lab Location	Method	Preparation Method
Matrix: Solid			
8260B / CA LUFT MS Closed System Purge and Trap	TAL SF TAL SF	SW846 8260E	B/CA_LUFTMS SW846 5035
Semivolatile Organic Compounds (GC/MS SIM) Ultrasonic Extraction	TAL SF TAL SF	SW846 82700	SIM SW846 3550B
Diesel Range Organics (DRO) (GC) Ultrasonic Extraction	TAL SF TAL SF	SW846 8015E	SW846 3550B
Matrix: Water			
Semivolatile Organic Compounds (GC/MS SIM) Liquid-Liquid Extraction (Separatory Funnel)	TAL SF TAL SF	SW846 82700	SIM SW846 3510C
Diesel Range Organics (DRO) (GC) Sample Filtration Liquid-Liquid Extraction (Separatory Funnel)	TAL SF TAL SF TAL SF	SW846 8015E	FILTRATION SW846 3510C SGC
Chromium, Hexavalent (IC)	TAL SF	SW846 7199	
General Sub Contract Method	TAL IRV	Subcontract	

Lab References:

TAL IRV = TestAmerica Irvine

TAL SF = TestAmerica San Francisco

Method References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

METHOD / ANALYST SUMMARY

Client: AMEC Geomatrix Inc.

Job Number: 720-30837-1

Method	Analyst	Analyst ID
SW846 8260B/CA_LUFTMS SW846 8260B/CA_LUFTMS	Chen, Amy Nguyen, Thuy M	AC TMN
SW846 8270C SIM	Lee, Michael	ML
SW846 8015B	Hayashi, Derek	DH
SW846 7199	Kojiro, Mariko J	MJK

TestAmerica San Francisco

Page 5 of 94

11/12/2010

TestAmerica San Francisco

Page 6 of 94

11/12/2010

SAMPLE SUMMARY

Client: AMEC Geomatrix Inc.

Job Number: 720-30837-1

Lab Sample ID	Client Sample ID	Client Matrix	Date/Time Sampled	Date/Time Received
720-30837-1	SB-10-11.5	Solid	09/28/2010 0730	09/28/2010 1800
720-30837-5	SB-10	Water	09/28/2010 0848	09/28/2010 1800
720-30837-6	SB-06-3.0	Solid	09/28/2010 1005	09/28/2010 1800
720-30837-7	SB-06-11.0	Solid	09/28/2010 1025	09/28/2010 1800
720-30837-8	SB-06	Water	09/28/2010 1105	09/28/2010 1800
720-30837-9	SB-12-12	Solid	09/28/2010 1155	09/28/2010 1800
720-30837-10	SB-05-11.5	Solid	09/28/2010 1205	09/28/2010 1800
720-30837-11	SB-12	Water	09/28/2010 1340	09/28/2010 1800
720-30837-13	SB-09-4.9	Solid	09/28/2010 1405	09/28/2010 1800
720-30837-14	SB-05	Water	09/28/2010 1420	09/28/2010 1800
720-30837-15	SB-05-0.7	Solid	09/28/2010 1130	09/28/2010 1800
720-30837-17	SB-09-11.8	Solid	09/28/2010 1528	09/28/2010 1800
720-30837-20	SB-03-2.8	Solid	09/28/2010 1558	09/28/2010 1800
720-30837-21	SB-03-3.2	Solid	09/28/2010 1610	09/28/2010 1800
720-30837-22	SB-03-11.5	Solid	09/28/2010 1640	09/28/2010 1800
720-30837-23	SB-03-6.5	Solid	09/28/2010 1655	09/28/2010 1800

TestAmerica San Francisco

Page 7 of 94 11/12/2010

Analytical Data

Client: AMEC Geomatrix Inc.

Job Number: 720-30837-1

Client Sample ID: SB-03-2.8

Method:

Dilution:

Preparation:

Naphthalene

Lab Sample ID: Client Matrix:

720-30837-20 Solid

Date Sampled: 09/28/2010 1558 Date Received: 09/28/2010 1800

8260B/CA_LUFTMS 8260B / CA LUFT MS

8260B/CA_LUFTMS 5035

Prep Batch: 720-79297

Analysis Batch: 720-79265 Instrument ID: Lab File ID:

HP5 100410023.D Initial Weight/Volume: 5.633 g

100 10/04/2010 2113 Date Analyzed:

10/04/2010 1700 Date Prepared:

Final Weight/Volume: 10 mL

Analyte DryWt Corrected: N Result (ug/Kg) Qualifier Methyl tert-butyl ether ND 440 Acetone ND 4400 Benzene ND 440 Dichlorobromomethane ND 440 ND 440 Bromobenzene Chlorobromomethane ND 1800 Bromoform ND 440 890 Bromomethane ND 4400 2-Butanone (MEK) ND n-Butylbenzene ND 440 sec-Butylbenzene ND 440 tert-Butylbenzene ND 440 ND 440 Carbon disulfide Carbon tetrachloride ND 440 440 Chlorobenzene 2600 Chloroethane ND 890 Chloroform ND 440 Chloromethane ND 890 ND 2-Chlorotoluene 440 4-Chlorotoluene ND 440 ND 440 Chlorodibromomethane ND 1,2-Dichlorobenzene 440 1,3-Dichlorobenzene ND 440 1,4-Dichlorobenzene ND 440 1,3-Dichloropropane ND 440 1,1-Dichloropropene ND 440 ND 1,2-Dibromo-3-Chloropropane 4400 Ethylene Dibromide ND 440 Dibromomethane ND 890 Dichlorodifluoromethane ND 890 ND 1,1-Dichloroethane 440 1,2-Dichloroethane ND 440 1,1-Dichloroethene ND 440 cis-1,2-Dichloroethene ND 440 trans-1,2-Dichloroethene ND 440 1,2-Dichloropropane ND 440 cis-1,3-Dichloropropene ND 440 trans-1,3-Dichloropropene ND 440 ND Ethylbenzene 440 Hexachlorobutadiene ND 440 ND 2-Hexanone 4400 Isopropylbenzene ND 440 ND 440 4-Isopropyltoluene Methylene Chloride ND 890 4-Methyl-2-pentanone (MIBK) ND 4400

Page 8 of 94 11/12/2010 TestAmerica San Francisco

ND

Client: AMEC Geomatrix Inc.

Job Number: 720-30837-1

Client Sample ID: SB-03-2.8

720-30837-20

Client Matrix: Solid

Lab Sample ID:

Date Sampled: 09/28/2010 1558 Date Received: 09/28/2010 1800

3260B/CA LUFTMS 8260B / CA LUFT

Method: 8260B/CA_LUFTMS Analysis Batch: 720-79265 Instrument ID: HP5 Preparation: Prep Batch: 720-79297 Lab File ID; 100410023.D Dilution: 100 Initial Weight/Volume: 5.633 g 10/04/2010 2113 Date Analyzed: Final Weight/Volume: 10 mL 10/04/2010 1700 Date Prepared:

Analyte	DryWt Corrected: N	Result (ug/Kg)	Qualifier	RL
N-Propylbenzene		ND		440
Styrene		ND		440
1,1,1,2-Tetrachloroe	ethane	ND		440
1,1,2,2-Tetrachloroe	ethane	' ND		440
Tetrachloroethene		ND		440
Toluene		' ND		440
1,2,3-Trichlorobenze	ene	ND		440
1,2,4-Trichlorobenzo	ene	ND		440
1,1,1-Trichloroethar	ne .	ND		440
1,1,2-Trichloroethan	ne	ND		440
Trichloroethene		ND		440
Trichlorofluorometha	ane	ND		440
1,2,3-Trichloropropa	ane	ND		440
1,1,2-Trichloro-1,2,2	2-trifluoroethane	ND		440
1,2,4-Trimethylbenz	ene	ND		440
1,3,5-Trimethylbenz	ene	ND		440
Vinyl acetate		ND		4400
Vinyl chloride		ND		440
Xylenes, Total		ND		890
2,2-Dichloropropane	e	ND		440
Gasoline Range Ord	anics (GRO)-C5-C12	ND		22000

Surrogate	%Rec	Qualifier	Acceptance Limits
4-Bromofluorobenzene	102		66 - 148
1,2-Dichloroethane-d4 (Surr)	102		62 - 137
Toluene-d8 (Surr)	99		65 - 1/11

Analytical Data

Client: AMEC Geomatrix Inc.

Job Number: 720-30837-1

Client Sample ID: SB-03-3.2

Lab Sample ID:

Client Matrix:

720-30837-21 Solid

Date Sampled: 09/28/2010 1610 Date Received: 09/28/2010 1800

8260B/CA_LUFTMS 8260B / CA LUFT MS	

Method: 8260B/CA_LUFTMS Analysis Batch: 720-79105 Instrument ID: HP5 Preparation: 5035 Prep Batch: 720-79069 Lab File ID: 100110012.D Dilution: 1000 Initial Weight/Volume: 4.806 g Date Analyzed: 10/01/2010 1420 Final Weight/Volume: 10 mL

09/29/2010 1542 Date Prepared:

Analyte	DryWt Corrected: N	Result (ug/Kg)	Qualifier	RL
Methyl tert-butyl ether		ND		5200
Acetone		ND	•	52000
Benzene		ND		5200
Dichlorobromomethane		ND		5200
Bromobenzene		ND		5200
Chlorobromomethane		ND		21000
Bromoform		ND		5200
Bromomethane		ND		10000
2-Butanone (MEK)		ND		52000
n-Butylbenzene		ND		5200
sec-Butylbenzene		ND		5200
tert-Butylbenzene		ND		5200
Carbon disulfide		ND	,,	5200
Carbon tetrachloride		ND		5200
Chlorobenzene ·		90000		5200
Chloroethane		ND		10000
Chloroform		ND .		5200
Chloromethane		ND		10000
2-Chlorotoluene		ND		5200
4-Chlorotoluene		ND		5200
Chlorodibromomethane		ND		5200
1,2-Dichlorobenzene		ND		5200
1,3-Dichlorobenzene		ND		5200
1,4-Dichlorobenzene		5400		5200
1,3-Dichloropropane		ND		5200
1,1-Dichloropropene		ND		5200
1,2-Dibromo-3-Chloropropar	ne	ND		52000
Ethylene Dibromide		ND		5200
Dibromomethane		ND		10000
Dichlorodifluoromethane		ND		10000
1.1-Dichloroethane		ND		5200
1.2-Dichloroethane		ND		5200
1.1-Dichloroethene		ND		5200
cis-1,2-Dichloroethene		ND		5200
trans-1,2-Dichloroethene		ND		5200
1,2-Dichloropropane		ND .		5200
cis-1,3-Dichloropropene		ND		5200
trans-1,3-Dichloropropene		ND		5200
Ethylbenzene		ND		5200
Hexachlorobutadiene		ND		5200
2-Hexanone		ND		52000
Isopropylbenzene		ND		5200
4-Isopropyltoluene		ND		5200
Methylene Chloride		ND		10000
4-Methyl-2-pentanone (MIBI	()	ND		52000
Naphthalene	*	ND		10000

Client: AMEC Geomatrix Inc.

Job Number: 720-30837-1

Client Sample ID: SB-03-3.2

Lab Sample ID: 720-30837-21 Client Matrix: Solid

Gasoline Range Organics (GRO)-C5-C12

Date Sampled: 09/28/2010 1610

260000

Date Received: 09/28/2010 1800

Method:	8260B/CA_LUFTMS	Analysis Batch: 720-79105	Instrument ID:	HP5	
Preparation:	5035	Prep Batch: 720-79069	Lab File ID:	100110012.D	
Dilution;	1000		Initial Weight/Volume:	4.806 g	
Date Analyzed:	10/01/2010 1420		Final Weight/Volume:	10 mL	
Date Prepared:	09/29/2010 1542		-		
Analyte	DryWt Corrected: N	N Result (ug/Kg)	Qualifier	RL	
N-Propylbenzene		ND		5200	
Styrene		ND.		5200	
4440		N. T.		***	

8260B/CA_LUFTMS 8260B / CA LUFT MS

N-Propylbenzene	ND	5200
Styrene	ND_	5200
1,1,1,2-Tetrachloroethane	ND	5200
1,1,2,2-Tetrachloroethane	ND	5200
Tetrachloroethene	ND	5200
Toluene	ND	5200
1,2,3-Trichlorobenzene	ND	5200
1,2,4-Trichlorobenzene	ND	5200
1,1,1-Trichloroethane	ND	5200
1,1,2-Trichloroethane	ND	5200
Trichloroethene	ND	5200
Trichlorofluoromethane	ND	5200
1,2,3-Trichloropropane	ND	5200
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	5200
1,2,4-Trimethylbenzene	ND	5200
1,3,5-Trimethylbenzene	ND	5200
Vinyl acetate	ND	52000
Vinyl chloride	ND	5200
Xylenes, Total	ND	10000
2,2-Dichloropropane	ND	5200

Surrogate	%Rec	Qualifier	Acceptance Limits
4-Bromofluorobenzene	101		66 - 148
1,2-Dichloroethane-d4 (Surr)	92		62 - 137
Toluene-d8 (Surr)	95		65 - 141

1200000

Analytical Data

Client: AMEC Geomatrix Inc.

Job Number: 720-30837-1

Client Sample ID: SB-03-11.5

Lab Sample ID: Client Matrix:

Solid

Date Prepared: 09/29/2010 1542

720-30837-22

Date Sampled: 09/28/2010 1640 Date Received: 09/28/2010 1800

	8260B/CA	LUFTMS	8260B / C	CALUFT MS
--	----------	--------	-----------	-----------

Method:	8260B/CA_LUFTMS	Analysis Batch: 720-79105	Instrument ID:	HP5
Preparation:	5035	Prep Batch: 720-79069	Lab File ID:	100110011.D
Dilution:	100		Initial Weight/Volume:	5.704 g
Date Analyzed:	10/01/2010 1348	•	Final Weight/Volume:	10 mL

Analyte	DryWt Corrected: N	Result (ug/Kg)	Qualifier	RL
Methyl tert-butyl ether		ND		440
Acetone		ND		4400
Benzene		ND		440
Dichlorobromomethane		ND		440
Bromobenzene		ND		440
Chlorobromomethane		ND		1800
Bromoform		ND		440
Bromomethane		ND		880
2-Butanone (MEK)		ND		4400
n-Butylbenzene		ND		440
sec-Butylbenzene		ND		440
tert-Butylbenzene		ND		440
Carbon disulfide		ND		440
Carbon tetrachloride		ND		440
Chlorobenzene		6500		440
Chloroethane		ND		880
Chloroform		ND		440
Chloromethane		ND		880
2-Chlorotoluene		ND		440
4-Chlorotoluene		ND		440
Chlorodibromomethane		ND		440
1,2-Dichlorobenzene		15000		440
1,3-Dichlorobenzene		ND		440
1,4-Dichlorobenzene		ND		440
1,3-Dichloropropane		ND		440
1,1-Dichloropropene		ND		440
1,2-Dibromo-3-Chloropropa	ano.	ND		4400
Ethylene Dibromide	iiic	ND		440
Dibromomethane		ND	_	880
Dichlorodifluoromethane		ND		880
1.1-Dichloroethane		ND		440
1.2-Dichloroethane		ND		440
1,1-Dichloroethene		ND		440
cis-1,2-Dichloroethene		ND		440
trans-1,2-Dichloroethene		ND		440
1,2-Dichloropropane		ND		440
cis-1,3-Dichloropropene				
		ND ND		440 440
trans-1,3-Dichloropropene				
Ethylbenzene		ND		440
Hexachlorobutadiene		ND		440
2-Hexanone		ND		4400
Isopropylbenzene		ND		440
4-Isopropyltoluene		ND		440
Methylene Chloride		ND		880
4-Methyl-2-pentanone (MIE	iK)	ND		4400
Naphthalene		ND		880

TestAmerica San Francisco Page 12 of 94 11/12/2010

Client: AMEC Geomatrix Inc.

Job Number: 720-30837-1

Client Sample ID: SB-03-11.5

Lab Sample ID: 720-30837-22

Date Sampled: 09/28/2010 1640 Client Matrix: Solid Date Received: 09/28/2010 1800

Acceptance Limits

66 - 148

62 - 137

65 - 141

8260B/CA	LUETMS	8260R	CA	LUET	MIS

Method: Preparation:	8260B/CA_LUFTMS 5035	Analysis Batch: 720-79105 Prep Batch: 720-79069	Instrument ID: Lab File ID:	HP5 100110011.D
Dilution:	100	•	Initial Weight/Volume:	5.704 g
Date Analyzed:	10/01/2010 13/48		Einal Maight Maluma	10 ml

09/29/2010 1542 Date Prepared:

Analyte DryWt Correct	ed: N Result (ug/Kg)	Qualifier RL
N-Propylbenzene	ND	440
Styrene	ND	440
1,1,1,2-Tetrachloroethane	ND	440
1,1,2,2-Tetrachloroethane	ND	440
Tetrachloroethene .	ND	440
Toluene	ND	440
1,2,3-Trichlorobenzene	ND	440
1,2,4-Trichlorobenzene	ND	440
1,1,1-Trichloroethane	ND	440
1,1,2-Trichloroethane	ND	440
Trichloroethene	ND	440
Trichlorofluoromethane	ND	440
1,2,3-Trichloropropane	ND	440
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	440
1,2,4-Trimethylbenzene	ND	440
1,3,5-Trimethylbenzene	ND	440
Vinyl acetate	ND	4400
Vinyl chloride	ND	440
Xylenes, Total	ND	880
2,2-Dichloropropane	ND	440
Gasoline Range Organics (GRO)-C5-C12	ND	22000

%Rec

97

91

96

Qualifier

Analytical Data

Client: AMEC Geomatrix Inc.

Job Number: 720-30837-1

Client Sample ID: SB-03-6.5

Lab Sample ID: 720-30837-23

Client Matrix: Solid

Analyte

2-Hexanone

Naphthalene

Isopropylbenzene

4-Isopropyltoluene

Methylene Chloride

4-Methyl-2-pentanone (MIBK)

Date Sampled: 09/28/2010 1655 Date Received: 09/28/2010 1800

RL

4000

400

400

800

4000

8260B/CA LUFTMS 8260B / CA LUFT MS

Qualifier

8260B/CA_LUFTMS Method: Analysis Batch: 720-79265 Instrument ID: HP5 Preparation: 5035 Prep Batch: 720-79297 Lab File ID: 100410024.D Initial Weight/Volume: 6.234 g Dilution: 100 Final Weight/Volume: 10 mL

Result (ug/Kg)

10/04/2010 2145 Date Analyzed: Date Prepared: 10/04/2010 1700

DryWt Corrected: N

Methyl tert-butyl ether ND 400 Acetone ND 4000 Benzene ND 400 Dichlorobromomethane ND 400 Bromobenzene ND 400 Chlorobromomethane ND 1600 Bromoform ND 400 Bromomethane ND 800 2-Butanone (MEK) ND 4000 n-Butylbenzene ND 400 sec-Butylbenzene ND 400 tert-Butylbenzene ND 400 Carbon disulfide ND 400 Carbon tetrachloride ND 400 Chlorobenzene 26000 400 Chloroethane ND 800 Chloroform ND 400 Chloromethane ND 800 2-Chlorotoluene ND 400 4-Chlorotoluene ND 400 Chlorodibromomethane ND 400 1.2-Dichlorobenzene 30000 400 1.3-Dichlorobenzene ND 400 1,4-Dichlorobenzene 1700 400 1,3-Dichloropropane ND 400 1,1-Dichloropropene ND 400 1.2-Dibromo-3-Chloropropane ND 4000 Ethylene Dibromide ND 400 Dibromomethane ND 800 Dichlorodifluoromethane ND 800 1.1-Dichloroethane ND 400 1.2-Dichloroethane ND 400 1,1-Dichloroethene ND 400 cis-1.2-Dichloroethene ND 400 trans-1,2-Dichloroethene ND 400 1,2-Dichloropropane ND 400 cis-1,3-Dichloropropene ND 400 trans-1,3-Dichloropropene ND 400 Ethylbenzene ND 400 Hexachlorobutadiene ND 400

TestAmerica San Francisco Page 14 of 94 11/12/2010

ND

ND

ND

ND

ND

ND

Surrogate

4-Bromofluorobenzene

Toluene-d8 (Surr)

1,2-Dichloroethane-d4 (Surr)

Client: AMEC Geomatrix Inc.

Job Number: 720-30837-1

Client Sample ID: SB-03-6.5

Lab Sample ID: 720-30837-23 Client Matrix:

Solid

Date Sampled: 09/28/2010 1655

Date Received: 09/28/2010 1800

62 - 137

65 - 141

8260B/CA_LUFTMS 8260B / CA LUFT MS

Method: 8260B/CA_LUFTMS Analysis Batch: 720-79265 Instrument ID: HP5 Preparation: 5035 Prep Batch: 720-79297 Lab File ID: 100410024.D Dilution: 100 Initial Weight/Volume: 6.234 g Date Analyzed: 10/04/2010 2145 Final Weight/Volume: 10 mL

1,2-Dichloroethane-d4 (Surr)

Toluene-d8 (Surr)

Analyte	DryWt Corrected: N	Result (ug/Kg)	Qualifier	RL
N-Propylbenzene		ND		400
Styrene		ND		400
1,1,1,2-Tetrachloro	ethane	ND		400
1,1,2,2-Tetrachlord	ethane	ND		400
Tetrachloroethene		ND		400
Toluene		ND		400
1,2,3-Trichlorobenz	zene	ND		400
1,2,4-Trichlorobena	zene	ND		400
1,1,1-Trichloroetha	ne	ND		400
1,1,2-Trichloroetha	ne	ND		400
Trichloroethene		ND		400
Trichlorofluorometh	nane	ND		400
1,2,3-Trichloroprop	ane	ND		400
1,1,2-Trichloro-1,2,	2-trifluoroethane	ND		400
1,2,4-Trimethylben	zene	ND		400
1,3,5-Trimethylben	zene	ND		400
Vinyl acetate		ND		4000
Vinyl chloride		ND		400
Xylenes, Total		ND		800
2,2-Dichloropropar	ie	ND		400
Gasoline Range O	rganics (GRO)-C5-C12	ND		20000
Surrogate		%Rec	Qualifier	Acceptance Limits
4-Bromofluorobenz	ene	108		66 - 148
4.0.04.44	11.10			

106

Analytical Data

Client: AMEC Geomatrix Inc.

Job Number: 720-30837-1

Client Sample ID: SB-10-11.5

Lab Sample ID: Client Matrix;

720-30837-1 Solid

Date Sampled: 09/28/2010 0730 Date Received: 09/28/2010 1800

8270C SIM Semivolatile	Organic (Compounds ((GC/MS SIM)
------------------------	-----------	-------------	-------------

Method:	8270C SIM	Analysis Batch: 720-79121	Instrument ID:	HP # 3
Preparation:	3550B	Prep Batch: 720-79044	Lab File ID:	100110019.D
Dilution:	1.0		Initial Weight/Volume:	30.21 g
Date Analyzed:	10/01/2010 1748		Final Weight/Volume:	1 mL
Date Prepared:	09/30/2010 1137		Injection Volume:	1 uL

Analyte	DryWt Corrected: N	Result (ug/Kg)	Qualifier	RL
Naphthalene		NDUJ		5.0
Acenaphthene		NDUJ		5.0
Acenaphthylene		NDUJ		5.0
Fluorene		NDUJ		5.0
Phenanthrene		ND UJ		5.0
Anthracene		ND		5.0
Benzo[a]anthracene		ND		5.0
Chrysene		ND		5.0
Benzo[a]pyrene		ND		5.0
Benzo[b]fluoranthene		ND		5.0
Benzo[k]fluoranthene		ND		5.0
Benzo[g,h,i]perylene		ND		5,0
Indeno[1,2,3-cd]pyrene		ND		5.0
Fluoranthene		ND		5.0
Pyrene		ND		5.0
Dibenz(a,h)anthracene		ND		5.0
Surrogate		%Rec	Qualifier	Acceptance Limits

Surrogate	%Rec	Qualifier	Acceptance Limits	
2-Fluorobiphenyl	82		33 - 120	
Terphenyl-d14	105		35 - 146	

TestAmerica San Francisco Page 15 of 94 11/12/2010 Page 16 of 94 11/12/2010 TestAmerica San Francisco

Client: AMEC Geomatrix Inc.

Job Number: 720-30837-1

Client Sample ID: SB-10

Lab Sample ID:

Client Matrix:

720-30837-5 Water

Date Sampled: 09/28/2010 0848 Date Received: 09/28/2010 1800

Method:			8270C SIM Semivolatile	Organic Compounds	(GC/MS SIM)	
Naphthalene ND 1.0 Acenaphthene ND 0.10 Acenaphthylene ND 0.10 Fluorene ND 0.10 Phenanthrene ND 0.10 Anthracene ND 0.10 Benzo[a]anthracene ND 0.10 Benzo[a]pyrene ND 0.10 Benzo[a]pyrene ND 0.10 Benzo[b]fluoranthene ND 0.10 Benzo[a]k[fluoranthene ND 0.10 Benzo[a], i]perylene ND UT 0.10 Indeno[1,2,3-cd]pyrene ND UT 0.	Preparation: Dilution; Date Analyzed:	3510C 1.0 10/04/2010 1	Prep Batch: 7		Lab File ID: Initial Weight/Volume: Final Weight/Volume:	10041012.D 980 mL 1 mL
Acenaphthene	Analyte		Resul	lt (ug/L) Qua	lifier	RL
Acenaphthylene ND 0.10 Fluorene ND 0.10 Phenanthrene ND 0.10 Anthracene ND 0.10 Benzo[a]anthracene ND 0.10 Chrysene ND 0.10 Benzo[a]pyrene ND 0.10 Benzo[b]fluoranthene ND 0.10 Benzo[b]fluoranthene ND 0.10 Benzo[b]fluoranthene ND 0.10 Indeno[1,2,3-cd]pyrene ND UT 0.10 Fluoranthene ND 0.10 Pyrene ND 0.10 Dibenz(a,h)anthracene ND UT 0.10 Surrogate %Rec Qualifier Acceptance Limits 2-Fluorobiphenyl 48 29 - 120	Naphthalene		ND			1.0
Fluorene	Acenaphthene		ND			0.10
Phenanthrene			ND			0.10
Anthracene ND 0.10 Benzo[a]anthracene ND 0.10 Chrysene ND 0.10 Benzo[a]pyrene ND 0.10 Benzo[a]pyrene ND 0.10 Benzo[b]fluoranthene ND 0.10 Benzo[b]fluoranthene ND 0.10 Benzo[b, n]perylene ND 0.10 Indeno[1,2,3-cd]pyrene ND 0.10 Indeno[1,2,3-cd]pyrene ND 0.10 Fluoranthene ND 0.10 Fluoranthene ND 0.10 Surrogate ND 0.10 Surrogate %Rec Qualifier Acceptance Limits 2-Fluorobiphenyl 48 29 - 120			ND			0.10
Benzo[a]anthracene			ND			0.10
Chryssene ND 0.10 Benzo[a]pyrene ND 0.10 Benzo[b]fluoranthene ND 0.10 Benzo[b]fluoranthene ND 0.10 Benzo[g,h.i]perylene ND UT 0.10 Indeno[1,2,3-cd]pyrene ND 0.10 0.10 Fluoranthene ND 0.10 0.10 Pyrene ND 0.10 0.10 Dibenz(a,h)anthracene ND UT 0.10 Surrogate %Rec Qualifier Acceptance Limits 2-Fluorobiphenyl 48 29 - 120						0.10
Benzo[a]pyrene ND 0.10 Benzo[b]fluoranthene ND 0,10 Benzo[s]h(i)perylene ND 0.10 Benzo[g,h,i]perylene ND WT 0.10 Indeno[1,2,3-cd]pyrene ND WT 0.10 Fluoranthene ND 0.10 Pyrene ND 0.10 Dibenz(a,h)anthracene ND WT 0.10 Surrogate %Rec Qualifier Acceptance Limits 2-Fluorobiphenyl 48 29 - 120		ene				0.10
Benzo[b]fluoranthene ND 0.10 Benzo[k]fluoranthene ND 0.10 Benzo[a], hijperylene ND LT 0.10 Benzo[a], hijperylene ND LT 0.10 Fluoranthene ND 0.10 Pyrene ND 0.10 Pyrene ND LT 0.10 Dibenz(a,h)anthracene ND LT 0.10 Surrogate %Rec Qualifier Acceptance Limits 2-Fluorobiphenyl 48 29 - 120						0.10
Benzo[k]fluoranthene ND 0.10 Benzo[s,h.]perylene ND LT 0.10 Indeno[1,2,3-cd]pyrene ND 0.10 Fluoranthene ND 0.10 Pyrene ND 0.10 Dibenz(a,h)anthracene ND LT 0.10 Surrogate %Rec Qualifier Acceptance Limits 2-Fluorobiphenyl 48 29 - 120						
Benzo[g,h,i]perylene ND LLT 0.10 Indeno[1,2,3-cd]pyrene ND LLT 0.10 Fluoranthene ND 0.10 Pyrene ND 0.10 Dibenz(a,h)anthracene ND LLT 0.10 Surrogate %Rec Qualifier Acceptance Limits 2-Fluorobiphenyl 48 29 - 120						
Indeno(1,2,3-cd)pyrene ND #F 0,10 Fluoranthene ND 0,10 Pyrene ND 0,10 Dibenz(a,h)anthracene ND #F 0,10 Surrogate %Rec Qualifier Acceptance Limits 2-Fluorobiphenyl 48 29 - 120						
Fluoranthene ND 0.10 Pyrene ND 0.10 Dibenz(a,h)anthracene ND LT 0.10 Surrogate %Rec Qualifier Acceptance Limits 2-Fluorobiphenyl 48 29 - 120						
Pyrene ND 0.10 Dibenz(a,h)anthracene ND L.J 0.10 Surrogate %Rec Qualifier Acceptance Limits 2-Fluorobiphenyl 48 29 - 120		yrene		3		
Dibenz(a,h)anthracene ND & \$ \$ \$ \$ 0.10\$ Surrogate %Rec Qualifier Acceptance Limits 2-Fluorobiphenyl 48 29 - 120						
Surrogate %Rec Qualifier Acceptance Limits 2-Fluorobiphenyl 48 29 - 120				_		
2-Fluorobiphenyl 48 29 - 120	Dibenz(a,n)anthra	acene	ND K	-3		0.10
	Surrogate		%Red	Qua	lifier Accepta	nce Limits
Terphenyl-d14 97 45 - 120	2-Fluorobiphenyl		48		29 - 120	
	Terphenyl-d14		97		45 - 120	

Analytical Data

Client: AMEC Geomatrix Inc.

Job Number: 720-30837-1

Client Sample ID: SB-06-3.0

Lab Sample ID: 720-30837-6

Client Matrix;

Solid

Date Sampled: 09/28/2010 1005 Date Received: 09/28/2010 1800

	8270C 5	SIM Semivolatile Organic Com	pounds (GC/MS SIM)	
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8270C SIM 3550B 1.0 10/01/2010 1811 09/30/2010 1137	Analysis Batch: 720-79121 Prep Batch: 720-79044	Instrument IC Lab File ID: Initial Weight Final Weight Injection Voli	100110020.D Volume: 30.32 g Volume: 1 mL
Analyte	DryWt Correct	ed: N Result (ug/Kg)	Qualifier	RL
Vaphthalene		9.4 5	***************************************	4.9
Acenaphthene		ND W J		4.9
Acenaphthylene		ND KJ		4.9
luorene		ND UJ		4.9
Phenanthrene		NDUJ		4.9
Anthracene		ND		4.9
Benzo(a)anthrace	ine	ND		4.9
Chrysene		ND		4.9
Benzo(a)pyrene		ND		4.9
Benzo[b]fluoranth		ND	,	4.9
Benzo(k)fluoranth		ND	e ·	4.9
3enzo[g.h,i]peryle		ND		4.9
ndeno[1,2,3-cd]p	yrene	ND		4.9
luoranthene		ND		4.9
Pyrene		ND		4.9
Dibenz(a,h)anthra	acene	ND		4.9
Surrogate		%Rec	Qualifier	Acceptance Limits
2-Fluorobiphenyl		81		33 - 120
Ferphenyl-d14		106		35 - 146

Client: AMEC Geomatrix Inc.

Job Number: 720-30837-1

Client Sample ID: SB-06-11.0

Lab Sample ID: 720-30837-7 Client Matrix:

Solid

Date Sampled: 09/28/2010 1025 Date Received: 09/28/2010 1800

8270C SIM Semivolatile Organic Compounds (GC/MS SIM)

Method:	8270C SIM	Analysis Batch: 720-79121	Instrument ID:	HP # 3
Preparation:	3550B	Prep Batch: 720-79044	Lab File ID:	100110021.D
Dilution:	1.0		Initial Weight/Volume:	30.13 g
Date Analyzed:	10/01/2010 1834		Final Weight/Volume:	1 mL
Date Prepared:	09/30/2010 1137		Injection Volume:	1 of

Analyte	DryWt Corrected: N	Result (ug/Kg)	Qualifier	RL
Naphthalene	***** ** 1 - ****** · · · · · · · · · · · · · · ·	ND W.J		5.0
Acenaphthene		ND UJ		, 5.0
Acenaphthylene		ND UJ		5.0
Fluorene		ND UT		5.0
Phenanthrene		ND WJ		5.0
Anthracene		ND		5.0
Benzo[a]anthracene		ND		5.0
Chrysene		ND		5.0
Benzo[a]pyrene		ND		5.0
Benzo[b]fluoranthene		ND		5.0
Benzo(k)fluoranthene		ND		5.0
Benzo[g,h,i]perylene		ND		5.0
Indeno[1,2,3-cd]pyrene		ND		5.0
Fluoranthene		ND		5.0
Pyrene		ND		5.0
Dibenz(a,h)anthracene		ND		5.0
Surrogate		%Rec	Qualifier	Acceptance Limits
2-Fluorobiphenyl		58		33 - 120
Terphenyl-d14		96		35 - 146

Analytical Data

Client: AMEC Geomatrix Inc.

Job Number: 720-30837-1

Client Sample ID: SB-06

Lab Sample ID:

Client Matrix:

720-30837-8 Water

Date Sampled: 09/28/2010 1105 Date Received: 09/28/2010 1800

8270C SIM Semivolatile Organic Compounds (GC/MS SIM)	8270C SIM	Semivolatile	Organic	Compounds	(GC/MS SIM)
--	-----------	--------------	---------	-----------	-------------

		8270C S	IM Semivolatile Organic Comp	ounds (GC	C/MS SIM)	
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8270C SIM 3510C 1.0 10/04/2010 10/01/2010		Analysis Batch: 720-79226 Prep Batch: 720-79141	L: Ir F	strument ID: ab File ID: iitial Weight/Volume: inal Weight/Volume: ijection Volume:	SVOA HP 4 10041013.D 970 mL 1 mL 1 uL
Analyte			Result (ug/L)	Qualifier		RL
Naphthalene	. 14 1 - 4 - 1 - 4 - 1 - 1 - 1 - 1 - 1 -		ND			0.10
Acenaphthene			ND			0.10
Acenaphthylene			ND			0.10
Fluorene			ND			0.10
Phenanthrene			ND			0.10
Anthracene			ND			0.10
Benzo[a]anthrace	ne		ND			0.10
Chrysene			ND			0.10
Benzo[a]pyrene			ND			0.10
Benzo[b]fluoranth			ND			0.10
Benzo[k]fluoranth			ND			0.10
Benzo[g,h,i]peryle			NDUT			0.10
Indeno[1,2,3-cd]p	yrene		NDUJ			0.10
Fluoranthene			ND			0.10
Pyrene			ND			0.10
Dibenz(a,h)anthra	cene		ND UJ			0.10
Surrogate			%Rec	Qualifier	Acceptan	ce Limits
2-Fluorobiphenyl			60		29 - 120	
Terphenyl-d14			85		45 - 120	

Client: AMEC Geomatrix Inc.

Job Number: 720-30837-1

Client Sample ID: SB-12-12

Method:

Dilution:

Preparation:

Date Analyzed:

Date Prepared: Analyte

Naphthalene Acenaphthene Acenaphthylene Fluorene Phenanthrene Anthracene Benzo[a]anthracene Chrysene Benzo[a]pyrene Benzo[b]fluoranthene Benzo[k]fluoranthene Benzo[g,h,i]perylene Indeno[1,2,3-cd]pyrene

Fluoranthene

Dibenz(a,h)anthracene

Pyrene

Lab Sample ID: 720-30837-9

Client Matrix: Solid Date Sampled: 09/28/2010 1155 Date Received: 09/28/2010 1800

4.9

4.9 4.9 4.9

35 1.0 10	70C SIM 50B 0 0 0/01/2010 1857 //30/2010 1137	Analysis Batch: 720-79121 Prep Batch: 720-79044	Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume:	HP#3 100110022.D 30.38 g 1 mL 1 uL	
	DryWt Corrected: N	N Result (ug/Kg)	Qualifier	RL	
		NDUJ		4.9	
		NDUJ		4.9	
		ND U T		4.9	
		ND U J		4.9	
		ND UT		4.9	
		ND		4.9	
ene		ND		4.9	
		ND		4.9	
		ND		4.9	
nene		ND		4.9	
ene		ND		4.9	
ene		ND		4.9	

8270C SIM Semivolatile Organic Compounds (GC/MS SIM)

Surrogate	%Rec	Qualifier	Acceptance Limits
2-Fluorobiphenyl	93		33 - 120
Terphenyl-d14	102		35 - 146

ND

ND

ND

ND

Analytical Data

Client: AMEC Geomatrix Inc.

Job Number: 720-30837-1

Client Sample ID: SB-05-11.5

Lab Sample ID: 720-30837-10

Client Matrix; Solid Date Sampled: 09/28/2010 1205 Date Received: 09/28/2010 1800

8270C SIM Semivolatile Organic Compounds (GC/MS SIM)

Method:	8270C SIM	Analysis Batch: 720-79121	Instrument ID:	HP#3
Preparation:	3550B	Prep Batch: 720-79044	Lab File ID:	100110023.D
Dilution:	1.0		Initial Weight/Volume:	30.28 g
Date Analyzed:	10/01/2010 1920		Final Weight/Volume:	1 mL
Date Prepared:	09/30/2010 1137		Injection Volume:	1 uL

Analyte	DryWt Corrected: N	Result (ug/Kg)	Qualifier	RL
Naphthalene		NDUJ	••••••••••••••••	5.0
Acenaphthene		ND WJ		5.0
Acenaphthylene		ND UJ		5.0
Fluorene		ND UJ		5.0
Phenanthrene		ND LJ		5.0
Anthracene		ND		5.0
Benzo[a]anthracene		ND		5.0
Chrysene		ND		5.0
Benzo[a]pyrene		ND		5.0
Benzo[b]fluoranthene		NĎ		5.0
Benzo[k]fluoranthene		ND	•	, 5.0
Benzo[g,h,i]perylene		ND		5.0
Indeno[1,2,3-cd]pyrene		ND		5.0
Fluoranthene		ND		5.0
Pyrene		ND		5.0
Dibenz(a,h)anthracene		ND		5.0
Surrogate		%Rec	Qualifier	Acceptance Limits
2-Fluorobiphenyl		89		33 - 120

Surrogate	%Rec	Qualifier	Acceptance Limits
2-Fluorobiphenyl	89		33 - 120
Terphenyl-d14	101		35 - 146

Client: AMEC Geomatrix Inc.

Job Number: 720-30837-1

Client Sample ID: SB-12

720-30837-11 Lab Sample ID: Client Matrix:

Water

Date Sampled: 09/28/2010 1340

Date Received: 09/28/2010 1800

		8270C SIM	l Semivolatile Organic Com	pounds (GC/MS SIM)	_
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8270C SIM 3510C 1.0 10/04/2010 10/01/2010		Analysis Batch: 720-79226 Prep Batch: 720-79141		Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume:	SVOA HP 4 10041014.D 990 mL 1 mL 1 uL
Analyte Naphthalene Acenaphthene Acenaphthylene Fluorene Phenanthrene Anthracene Benzo[a]anthracenc Chrysene Benzo[a]pyrene Benzo[k]fluoranthe Benzo[k]fluoranthe Benzo[k], i)peryle Indeno[1,2,3-cd]py Fluoranthene Pyrene Dibenz(a,h)anthra	ene ene ne vrene		Result (ug/L) ND	Qualifi	er	RL 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.1
Surrogate 2-Fluorobiphenyl Terphenyl-d14		·	%Rec 61 96	Qualifi	er Accepta 29 - 120 45 - 120	

Analytical Data

Client: AMEC Geomatrix Inc.

Job Number: 720-30837-1

Client Sample ID: SB-09-4.9

Lab Sample ID: Client Matrix:

Method:

Dilution:

Preparation:

720-30837-13

Solid

Date Sampled: 09/28/2010 1405 Date Received: 09/28/2010 1800

8270C SIM Semivolatile Organic Compounds (GC/MS SIM)

8270C SIM Analysis Batch: 720-79121 3550B Prep Batch: 720-79044 1.0

HP#3 Instrument ID: 100110024.D Lab File ID: Initial Weight/Volume: 30.02 g Final Weight/Volume: 1 mL

Date Analyzed: 10/01/2010 1943 Date Prepared: 09/30/2010 1137 Injection Volume:

Analyte	DryWt Corrected; N	Result (ug/Kg)	Qualifier	RL
Naphthalene	······································	5.0 J		5.0
Acenaphthene		ND WJ		5.0
Acenaphthylene		ND UJ		5.0
Fluorene		ND W		5.0
Phenanthrene		ND UJ		5.0
Anthracene		ND		5.0
Benzo[a]anthracene		ND		5.0
Chrysene		ND		5.0
Benzo[a]pyrene		ND		5.0
Benzo[b]fluoranthene		ND		5.0
Benzo[k]fluoranthene		ND		5.0
Benzo[g,h,i]perylene		ND		5,0
Indeno[1,2,3-cd]pyrene		ND		5.0
Fluoranthene		ND		5.0
Pyrene		ND		5.0
Dibenz(a,h)anthracene		ND		5.0

Surrogate	%Rec	Qualifier	Acceptance Limits	
2-Fluorobiphenyi	81		33 - 120	
Terphenyl-d14	102		35 - 146	

TestAmerica San Francisco

Page 23 of 94

11/12/2010

TestAmerica San Francisco

Page 24 of 94

Client: AMEC Geomatrix Inc.

Job Number: 720-30837-1

Client Sample ID: SB-05

Lab Sample ID: Client Matrix: Water

720-30837-14

Date Sampled: 09/28/2010 1420 Date Received: 09/28/2010 1800

		8270C SIM	Semivolatile O	rganic Compo	ounds (0	GC/MS SIM)	
Method: Preparation: Dilution; Date Analyzed: Date Prepared:	8270C SIM 3510C 1.0 10/04/2010 10/01/2010		Analysis Batch Prep Batch: 72			Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume: Injection Volume:	
Analyte Naphthalene Acenaphthene Acenaphthylene Fluorene Phenanthrene Anthracene Benzo(a)anthracer Chrysene Benzo(a)fluoranthe Benzo(b)fluoranthe Benzo(g,h,i)peryler Indeno(1,2,3-cd)py Fluoranthene	ene ene ne		Result ND	3	Qualifie	er	RL 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.1
Pyrene Dibenz(a,h)anthrac Surrogate	cene		ND ND 44 %Rec	r	Qualifie	er Accenta	0.10 0.10 nce Limits
2-Fluorobiphenyl Terphenyl-d14			51 96		- Marine	29 - 120 45 - 120	

Analytical Data

Client: AMEC Geomatrix Inc.

Job Number: 720-30837-1

Client Sample ID: SB-05-0.7

Lab Sample ID: 720-30837-15

Client Matrix:

Solid

Date Sampled: 09/28/2010 1130 Date Received: 09/28/2010 1800

	00				Date 110	001100.0072072010
		8270C SIM Ser	nivolatile Organic Comp	ounds (GC/MS	S SIM)	
Method:	8270C SIN	// An	alysis Batch: 720-79121	Instru	ment ID:	HP#3
Preparation:	3550B	Pre	ep Batch: 720-79044	Lab F	ile ID;	100110030.D
Dilution:	2.0		•	Initial	Weight/Volume:	30.11 q
Date Analyzed:	10/01/2010	2200			Weight/Volume:	1 mL
Date Prepared:	09/30/2010	1137			ion Volume:	1 uL
Analyte	D	ryWt Corrected: N	Result (ug/Kg)	Qualifier		RL
Naphthalene			NDUJ			10
Acenaphthene			ND ULT			10
Acenaphthylene			ND WJ			10
Fluorene			ND U.J.			10
Phenanthrene			NDUT			10
Anthracene			ND			10
Benzo[a]anthrace	ene		ND			10
Chrysene			ND			10
Benzo(a)pyrene			ND	r	•	10
Benzo[b]fluoranth			ND			10
Benzo[k]fluoranth			ND			10
Benzo[g,h,i]peryle			ND			10
Indeno[1,2,3-cd]p	yrene		ND			10
Fluoranthene			ND			10
Pyrene			ND			10
Dibenz(a,h)anthra	acene		ND			10
Surrogate			%Rec	Qualifier	Acceptar	nce Limits
2-Fluorobiphenyl			75		33 - 120	
Terphenyl-d14			94		35 - 146	

Client: AMEC Geomatrix Inc.

Job Number: 720-30837-1

Client Sample ID: SB-09-11,8

Method:

Dilution:

Analyte

Naphthalene

2-Fluorobiphenyl

Terphenyl-d14

Preparation:

Date Analyzed:

Date Prepared:

Lab Sample ID: 720-30837-17 Client Matrix:

Solid

8270C SIM

3550B

1.0

Date Sampled: 09/28/2010 1528 Date Received: 09/28/2010 1800

33 - 120

35 - 146

8270C SIM Semivolatile Organic Compounds (GC/MS SIM) Analysis Batch: 720-79121 Instrument ID: HP#3 Prep Batch: 720-79044 Lab File ID: 100110029.D Initial Weight/Volume: 30.06 g 10/01/2010 2137 Final Weight/Volume: 1 mL 09/30/2010 1137 Injection Volume: 1 uL DryWt Corrected: N Result (ug/Kg) 5.1 **J** Qualifier 5.0

Acenaphthene	NDUJ		5.0
Acenaphthylene	NDUT		5.0
Fluorene	ND WJ		5.0
Phenanthrene	ND UJ		5.0
Anthracene	ND		5.0
Benzo[a]anthracene	ND		5.0
Chrysene	ND		5.0
Benzo[a]pyrene	ND		5.0
Benzo[b]fluoranthene	ND		5.0
Benzo[k]fluoranthene	ND		5.0
Benzo[g,h,i]perylene	ND		5.0
Indeno[1,2,3-cd]pyrene	ND		5.0
Fluoranthene	ND		5.0
Pyrene	ND		5.0
Dibenz(a,h)anthracene	ND		5.0
Surrogate	%Rec	Qualifier	Acceptance Limits

93

105

Analytical Data

Client: AMEC Geomatrix Inc.

Job Number: 720-30837-1

Client Sample ID: SB-10-11.5

Lab Sample ID: 720-30837-1

Client Matrix:

Solid

Date Sampled: 09/28/2010 0730 Date Received: 09/28/2010 1800

8015B Di	esel Rang	e Organics (DRO) (G	C)-Silica	Gel Cleanup	
8015B				Instrument ID:	CHDRO6
	Prep E	Batch: 720-79041		0	
				Final Weight/Volume:	2 mL
10/01/2010 1653				Injection Volume:	1 uL
09/30/2010 1126				Result Type:	PRIMARY
DryWt Correcte	ed: N	Result (mg/Kg)	Qualifi	er	RL
anics [C10-C28]	***************************************	ND			1.0
Organics [C24-C36]		ND			50
		%Rec	Qualifi	er Acceptar	nce Limits
		0		0 - 5	
		97		46 - 115	
	8015B 3550B 1.0 1.0/01/2010 1653 09/30/2010 1126 DryWt Correct anics [C10-C28] Organics [C24-C36]	8015B Analys 3550B Prep E 1.0 1.0/01/2010 1853 09/30/2010 1126 DryWt Corrected: N anics [C10-C28] Organics [C24-C36]	8015B Analysis Batch: 720-79102 3550B Prep Batch: 720-79041 1.0 10/01/2010 1653 09/30/2010 1126 DryWt Corrected: N Result (mg/Kg) anics [C10-C28] ND Organics [C24-C36] ND %Rec 0	8015B Analysis Batch: 720-79102 3550B Prep Batch: 720-79041 1.0 10/01/2010 1653 09/30/2010 1126 DryWt Corrected: N Result (mg/Kg) Qualifications [C10-C28] ND Organics [C24-C36] ND Where Qualifications (C24-C36) ND Where Qualifications (C24-C36) ND	3550B

Client: AMEC Geomatrix Inc.

Job Number: 720-30837-1

Client Sample ID: SB-10

Method:

Preparation:

Lab Sample ID: 720-30837-5

Client Matrix: Water Date Sampled: 09/28/2010 0848

Instrument ID:

Result Type:

Date Received: 09/28/2010 1800

CHDRO6

RL

51

300

8015B Diesel Range Organics (DRO) (GC)-Silica Gel Cleanup

8015B 3510C SGC

Dilution: 1.0 10/07/2010 1151

Date Analyzed: Date Prepared:

10/06/2010 0810

Analyte Diesel Range Organics [C10-C28]

Motor Oil Range Organics [C24-C36]

Surrogate Capric Acid (Surr) p-Terphenyl

ND

ND

0

97

%Rec

Analysis Batch: 720-79440 Prep Batch: 720-79363

Result (ug/L)

Qualifier

Qualifier

Initial Weight/Volume: 980 mL Final Weight/Volume: 2 mL Injection Volume: 1 uL PRIMARY

MDL 10 130

> Acceptance Limits 0 - 5 31 - 150

Analytical Data

Client: AMEC Geomatrix Inc.

Job Number: 720-30837-1

Client Sample ID: SB-10

Lab Sample ID: Client Matrix:

720-30837-5 Water

Date Sampled: 09/28/2010 0848

Date Received: 09/28/2010 1800

8015B Diesel Range Organics (DRO) (GC)-Dissolved

Preparation:

8015B 3510C SGC

10/04/2010 1019

10/01/2010 1004

1.0

Motor Oil Range Organics [C24-C36]

Analysis Batch: 720-79205

Prep Batch: 720-79118

Instrument ID: CHDRO5 Initial Weight/Volume: 930 mL Final Weight/Volume: 2 mL Injection Volume: 1 uL

0 - 5

31 - 150

Result Type:

PRIMARY

Date Prepared: Analyte Diesel Range Organics [C10-C28]

Surrogate

p-Terphenyl

Capric Acid (Surr)

Date Analyzed:

Method:

Dilution:

Result (ug/L) 18 < 53 ND

Qualifier MDL JB 11

RL 53 140 320

Acceptance Limits

%Rec Qualifier 0.5 95

Page 29 of 94 TestAmerica San Francisco 11/12/2010 TestAmerica San Francisco

Page 30 of 94 11/12/2010

Client: AMEC Geomatrix Inc.

Job Number: 720-30837-1

Client Sample ID: SB-06-3.0

Method:

Dilution:

Preparation:

720-30837-6 Lab Sample ID: Client Matrix: Solid

Date Sampled: 09/28/2010 1005 Date Received: 09/28/2010 1800

PRIMARY

0.99

50

8015B Diesel Range Organics (DRO) (GC)-Silica Gel Cleanup

8015B Analysis Batch: 720-79102 3550B Prep Batch: 720-79041

Instrument ID: CHDRO6 Initial Weight/Volume: 30.26 g Final Weight/Volume: 2 mL Injection Volume: 1 uL

1.0 Date Analyzed: 10/01/2010 1715 Date Prepared: 09/30/2010 1126

Result Type:

Analyte DryWt Corrected: N Result (mg/Kg) Qualifier Diesel Range Organics [C10-C28] ND Motor Oil Range Organics [C24-C36]

Surrogate %Rec Qualifier Acceptance Limits Capric Acid (Surr) 0 0 - 5

ND

p-Terphenyl 100 46 - 115 **Analytical Data**

Client: AMEC Geomatrix Inc.

Job Number: 720-30837-1

Client Sample ID: SB-06-11.0

Lab Sample ID: 720-30837-7

Client Matrix:

Method:

Dilution:

Preparation:

Solid

Date Sampled: 09/28/2010 1025 Date Received: 09/28/2010 1800

8015B Diesel Range Organics (DRO) (GC)-Silica Gel Cleanup

8015B 3550B

Analysis Batch: 720-79102 Prep Batch: 720-79041

Instrument ID: CHDRO6 Initial Weight/Volume: 30.07 g Final Weight/Volume: 2 mL

Injection Volume: 1 uL PRIMARY

1.0 Date Analyzed: 10/01/2010 1821 Date Prepared: 09/30/2010 1126

Result Type:

DrvWt Corrected: N Analyte Result (mg/Kg) Qualifier RL Diesel Range Organics [C10-C28] ND 1.0 Motor Oil Range Organics [C24-C36] ND 50

Surrogate %Rec Qualifier Acceptance Limits Capric Acid (Surr) 0 0-5 p-Terphenyl 46 - 115 92

TestAmerica San Francisco

Page 31 of 94

11/12/2010

TestAmerica San Francisco

Page 32 of 94

Client: AMEC Geomatrix Inc.

Job Number: 720-30837-1

Client Sample ID: SB-06

Lab Sample ID:

Client Matrix:

720-30837-8

Water

Date Sampled: 09/28/2010 1105

Date Received: 09/28/2010 1800

8015B Diesel Range Organics (DRO) (GC)-Silica Gel Cleanup

Method: 8015B Analysis Batch: 720-79440 3510C SGC Prep Batch: 720-79386 Preparation: Dilution: 1.0 10/07/2010 1030 Date Analyzed: Date Prepared: 10/06/2010 1311

CHDRO6 Instrument ID: Initial Weight/Volume: 970 ml. Final Weight/Volume: 2 mL Injection Volume: Result Type: PRIMARY

Analyte Result (ug/L) Qualifier MDL RL Diesel Range Organics [C10-C28] 51 ND 10 Motor Oil Range Organics [C24-C36] ND 130 310

Surrogate %Rec Qualifier Acceptance Limits Capric Acid (Surr) 0 - 5 p-Terphenyl 93 31 - 150

Analytical Data

Client: AMEC Geomatrix Inc.

Job Number: 720-30837-1

Client Sample ID: SB-06

Lab Sample ID: Client Matrix:

720-30837-8 Water

10/04/2010 1216

Date Sampled: 09/28/2010 1105

JΒ

Qualifier

Date Received: 09/28/2010 1800

8015B Diesel Range Organics (DRO) (GC)-Dissolved

Method: 8015B Preparation: 3510C SGC Dilution: 1.0

Date Analyzed:

Analyte

Analysis Batch: 720-79205 Prep Batch: 720-79118

CHDRO5 Instrument ID: Initial Weight/Volume: 930 mL Final Weight/Volume: 2 mL

Injection Volume: Result Type: PRIMARY

Date Prepared: 10/01/2010 1258 Diesel Range Organics (C10-C28)

Motor Oil Range Organics [C24-C36]

Result (ug/L) 25 < 5 3 ND

Qualifier MDL 11 140

RL 53 320

Surrogate Capric Acid (Surr) p-Terphenyl

%Rec 0.2 94

Acceptance Limits 0 - 5

31 - 150

TestAmerica San Francisco

Page 33 of 94

11/12/2010

TestAmerica San Francisco

Page 34 of 94

Client: AMEC Geomatrix Inc.

Job Number: 720-30837-1

Client Sample ID:

Method:

Dilution:

Preparation:

Date Analyzed:

Date Prepared:

SB-12-12

Lab Sample ID: Client Matrix: Solid

720-30837-9

10/01/2010 1842

09/30/2010 1126

Date Sampled: 09/28/2010 1155 Date Received: 09/28/2010 1800

CHDRO6

8015B Diesel Range Organics (DRO) (GC)-Silica Gel Cleanup

8015B 3550B

1.0

Analysis Batch: 720-79102 Prep Batch: 720-79041

Instrument ID: Initial Weight/Volume: 30.46 g Injection Volume:

Final Weight/Volume: 2 mL 1 UL Result Type: PRIMARY

Analyte DryWt Corrected: N Diesel Range Organics (C10-C28) Motor Oil Range Organics [C24-C36]

Result (mg/Kg) ND ND

Qualifier

0.98 49

Surrogate Capric Acid (Surr) p-Terphenyl

%Rec 99

Acceptance Limits Qualifier 0 - 5 46 - 115

Analytical Data

Client: AMEC Geomatrix Inc.

Job Number: 720-30837-1

Client Sample ID: SB-05-11.5

Method:

Dilution:

Preparation:

Date Analyzed:

Date Prepared:

Capric Acid (Surr)

p-Terphenyl

Lab Sample ID:

Client Matrix: Solid

720-30837-10

Date Sampled: 09/28/2010 1205 Date Received: 09/28/2010 1800

8015B Diesel Range Organics (DRO) (GC)-Silica Gel Cleanup

8015B 3550B 1.0

Analysis Batch: 720-79102 Prep Batch: 720-79041

Instrument ID:

CHDRO6 Initial Weight/Volume: 30.15 g Final Weight/Volume: 2 mL

Injection Volume: Result Type:

Qualifier

1 uL PRIMARY

09/30/2010 1126 Analyte DrvWt Corrected: N Diesel Range Organics [C10-C28]

10/01/2010 1904

Result (mg/Kg) ND ND

Qualifier 1.0 50

Motor Oil Range Organics [C24-C36] Surrogate

%Rec 0 104

Acceptance Limits 0-5 46 - 115

11/12/2010 TestAmerica San Francisco Page 35 of 94 11/12/2010 TestAmerica San Francisco Page 36 of 94

Client: AMEC Geomatrix Inc.

Job Number: 720-30837-1

Client Sample ID: SB-12

Client Matrix:

Method:

Dilution:

Analyte

p-Terphenyl

Lab Sample ID:

720-30837-11

Date Sampled: 09/28/2010 1340 Water

Date Received: 09/28/2010 1800

CHDRO6

1 uL

8015B Diesel Range Organics (DRO) (GC)-Silica Gel Cleanup

8015B Preparation:

3510C SGC

1.0 10/07/2010 1052

Date Analyzed: 10/06/2010 1311 Date Prepared:

Analysis Batch: 720-79440 Prep Batch: 720-79386

Result (ug/L)

Instrument ID: Initial Weight/Volume: 970 mL Final Weight/Volume: 2 mL Injection Volume: Result Type:

PRIMARY MDL RL 10 51 310 130

Diesel Range Organics [C10-C28] Motor Oil Range Organics [C24-C36] Surrogate Capric Acid (Surr)

ND %Rec 105

Qualifier

Qualifier

Acceptance Limits 0 - 5 31 - 150

Analytical Data

Client: AMEC Geomatrix Inc.

Job Number: 720-30837-1

Client Sample ID: SB-12

Lab Sample ID:

Client Matrix:

720-30837-11 Water

Date Sampled: 09/28/2010 1340 Date Received: 09/28/2010 1800

8015B Diesel Range Organics (DRO) (GC)-Dissolved

Method: Preparation: Dilution:

8015B 3510C SGC 1.0 Date Analyzed:

10/04/2010 1042 Date Prepared: 10/01/2010 1004 Analysis Batch: 720-79205 Prep Batch: 720-79118

Instrument ID: CHDRO5 Initial Weight/Volume: 960 mL Final Weight/Volume: 2 mL Injection Volume:

1 uL Result Type: PRIMARY

Analyte Result (ug/L) Qualifier MDL RL Diesel Range Organics [C10-C28] 18 < 52 52 JΒ 11 Motor Oil Range Organics [C24-C36] 130 310 ND

Surrogate Qualifier %Rec Acceptance Limits Capric Acid (Surr) 0.3 0 - 5 p-Terphenyl 96 31 - 150

Page 37 of 94 11/12/2010 TestAmerica San Francisco TestAmerica San Francisco Page 38 of 94 11/12/2010

Client: AMEC Geomatrix Inc.

Job Number: 720-30837-1

Client Sample ID: SB-09-4.9

Date Prepared:

Surrogate

p-Terphenyl

Capric Acid (Surr)

Lab Sample ID: 720-30837-13 Client Matrix:

Solid

09/30/2010 1126

Date Sampled: 09/28/2010 1405 Date Received: 09/28/2010 1800

8015B Diesel Range Organics (DRO) (GC)-Silica Gel Cleanup

Method: 8015B Preparation: 3550B Dilution: 1.0 Date Analyzed: 10/01/2010 1926 Analysis Batch: 720-79102 Prep Batch: 720-79041

CHDRO6 Initial Weight/Volume: 30.23 g

PRIMARY

RL

0.99

50

1 uL

Final Weight/Volume: 2 mL Injection Volume: Result Type:

Instrument ID:

Analyte DrvWt Corrected: N Diesel Range Organics [C10-C28] Motor Oil Range Organics [C24-C36]

Result (mg/Kg) 1.4 ND

Qualifier

Qualifier

%Rec Acceptance Limits 0-5 111 46 - 115

Analytical Data

Client: AMEC Geomatrix Inc.

Job Number: 720-30837-1

Client Sample ID: SB-05

Lab Sample ID:

720-30837-14

10/07/2010 1113

10/06/2010 1311

Date Sampled: 09/28/2010 1420 Date Received: 09/28/2010 1800

8015B Diesel Range Organics (DRO) (GC)-Silica Gel Cleanup

Method: Preparation: Dilution: Date Analyzed:

Date Prepared:

Client Matrix:

8015B 3510C SGC 1.0

Analysis Batch: 720-79440 Prep Batch: 720-79386

Instrument ID:

CHDRO6 Initial Weight/Volume: 980 mL Final Weight/Volume: 2 mL

Injection Volume: PRIMARY

Result Type:

Analyte Result (ug/L) Qualifier MDL RL Diesel Range Organics [C10-C28] ND 10 51 Motor Oil Range Organics [C24-C36] ND 130 300

Surrogate %Rec Qualifier Acceptance Limits Capric Acid (Surr) 0 0 - 5 p-Terphenyl 102 31 - 150

Client: AMEC Geomatrix Inc.

Job Number: 720-30837-1

Client Sample ID: SB-05

Lab Sample ID:

Analyte

720-30837-14

Client Matrix: Water Date Sampled: 09/28/2010 1420 Date Received: 09/28/2010 1800

CHDRO5

1 uL

8015B Diesel Range Organics (DRO) (GC)-Dissolved

Method: 8015B Preparation: 3510C SGC Dilution:

Diesel Range Organics [C10-C28]

Motor Oil Range Organics [C24-C36]

1.0

Date Analyzed: 10/04/2010 1106 Date Prepared: 10/01/2010 1004

Analysis Batch: 720-79205 Prep Batch: 720-79118

Instrument ID: Initial Weight/Volume: 960 mL Final Weight/Volume: 2 mL Injection Volume: Result Type:

Qualifier

Qualifier

JB

PRIMARY MDL RL 11 52 130 310

Surrogate Capric Acid (Surr) p-Terphenyl

%Rec 0.1 91

16452

Acceptance Limits 0 - 5 31 - 150

Analytical Data

Client: AMEC Geomatrix Inc.

Job Number: 720-30837-1

Date Sampled: 09/28/2010 1130

Date Received: 09/28/2010 1800

1.0

50

Client Sample ID: SB-05-0.7

Lab Sample ID:

Client Matrix:

Method:

Dilution:

Analyte

Preparation:

Date Analyzed:

Date Prepared:

720-30837-15 Solid

10/01/2010 1503

8015B

3550B

1.0

Motor Oil Range Organics [C24-C36]

8015B Diesel Range Organics (DRO) (GC)-Silica Gel Cleanup

Analysis Batch: 720-79102

Prep Batch: 720-79041

Instrument ID:

CHDRO6 Initial Weight/Volume: 30.00 g

Final Weight/Volume: 2 mL Injection Volume: 1 uL

09/30/2010 1126 Result Type: PRIMARY DryWt Corrected: N Result (mg/Kg) Qualifier RL Diesel Range Organics [C10-C28]

Surrogate %Rec Qualifier Acceptance Limits Capric Acid (Surr) 0 - 5 46 - 115 p-Terphenyl 85

20

58

Client: AMEC Geomatrix Inc.

Job Number: 720-30837-1

Client Sample ID: SB-09-11.8

Lab Sample ID: 720-30837-17 Client Matrix:

Date Prepared:

Solid

10/04/2010 1427

Date Sampled: 09/28/2010 1528 Date Received: 09/28/2010 1800

RL

1.0

50

8015B Diesel Range Organics (DRO) (GC)-Silica Gel Cleanup

Method: 8015B Analysis Batch: 720-79277 Preparation: 3550B Prep Batch: 720-79235 Dilution: 1.0 Date Analyzed: 10/05/2010 1851

Instrument ID: CHDRO6 Initial Weight/Volume: 30.02 g Final Weight/Volume: 2 mL Injection Volume: Result Type: PRIMARY

DryWt Corrected: N Analyte Result (mg/Kg) Qualifier Diesel Range Organics [C10-C28] ND Motor Oil Range Organics [C24-C36] ND

Surrogate %Rec Qualifier Acceptance Limits Capric Acid (Surr) p-Terphenyl Ö 0 - 5 46 - 115 96

Analytical Data

Client: AMEC Geomatrix Inc.

Job Number: 720-30837-1

General Chemistry

Client Sample ID: SB-06

Lab Sample ID: Client Matrix:

720-30837-8 Water

Date Sampled: 09/28/2010 1105 Date Received: 09/28/2010 1800

Analyte Cr (VI)

Result 0.94

Qual Units ug/L

RL Dil Method 1.0 7199 0.50

Analysis Batch: 720-79232 Date Analyzed: 09/28/2010 2130

TestAmerica San Francisco Page 43 of 94 11/12/2010 11/12/2010 TestAmerica San Francisco Page 44 of 94

Client: AMEC Geomatrix Inc.

Job Number: 720-30837-1

General Chemistry

Client Sample ID: SB-05

Analyte

Cr (VI)

Lab Sample ID: 720-30837-14 Client Matrix:

Water

Date Sampled: 09/28/2010 1420 Date Received: 09/28/2010 1800

1.1

Result

Qual Units ug/L

RL 0.50 Dil Method 1.0 7199

Analysis Batch: 720-79232 Date Analyzed: 09/28/2010 2140

DATA REPORTING QUALIFIERS

Client: AMEC Geomatrix Inc.

Job Number: 720-30837-1

Lab Section	Qualifier	Description
GC/MS Semi VOA		
	F	MS or MSD exceeds the control limits
	F	RPD of the MS and MSD exceeds the control limits
GC Semi VOA		
	В	Compound was found in the blank and sample.
	J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

QUALITY CONTROL RESULTS

Quality Control Results

Client: AMEC Geomatrix Inc.

Job Number: 720-30837-1

QC Association Summary

Lab Sample ID	Client Sample ID	Report Basis	Client Matrix	Method	Prep Batch
GC/MS VOA					
Analysis Batch:720-789					
LCS 720-79069/4-A	Lab Control Sample	T	Solid	8260B/CA_LUFT	720-79069
LCSD 720-79069/5-A	Lab Control Sample Duplicate	Т	Solid	8260B/CA_LUFT	720-79069
Prep Batch: 720-79069					
LCS 720-79069/4-A	Lab Control Sample	T	Solid	5035	
LCSD 720-79069/5-A	Lab Control Sample Duplicate	Т	Solid	5035	
720-30837-21	SB-03-3.2	T	Solid	5035	
720-30837-22	SB-03-11.5	T	Solid	5035	
Analysis Batch:720-79	105				
720-30837-21	\$B-03-3.2	T	Solid	8260B/CA LUFT	720-79069
720-30837-22	SB-03-11.5	Т	Solid	8260B/CA_LUFT	720-79069
Analysis Batch:720-792	265				
LCS 720-79297/2-A	Lab Control Sample	T	Solid	8260B/CA LUFT	720-79297
LCS 720-79297/4-A	Lab Control Sample	T	Solid	8260B/CA LUFT	720-79297
LCSD 720-79297/3-A	Lab Control Sample Duplicate	Ŧ	Solid	8260B/CA_LUFT	720-79297
LCSD 720-79297/5-A	Lab Control Sample Duplicate	T	Solid	8260B/CA_LUFT	720-79297
MB 720-79297/1-A	Method Blank	т	Solid	8260B/CA_LUFT	720-79297
720-30837-20	SB-03-2.8	τ	Solid	8260B/CA_LUFT	720-79297
720-30837-23	SB-03-6.5	т	Solid	8260B/CA_LUFT	720-79297
Prep Batch: 720-79297					
LCS 720-79297/2-A	Lab Control Sample	T	Solid	5035	
LCS 720-79297/4-A	Lab Control Sample	Т	Solid	5035	
LCSD 720-79297/3-A	Lab Control Sample Duplicate	Ŧ	Solid	5035	
LCSD 720-79297/5-A	Lab Control Sample Duplicate	Т	Solid	5035	
MB 720-79297/1-A	Method Blank	T	Solid	5035	
720-30837-20	SB-03-2.8	Ŧ	Solid	5035	
720-30837-23	SB-03-6.5	Т	Solid	5035	

Report Basis T = Total

Client: AMEC Geomatrix Inc.

Job Number: 720-30837-1

QC Association Summary

Lab Sample ID	Client Sample ID	Report Basis	Client Matrix	Method	Prep Batch
GC/MS Semi VOA			Ollotte Matrix	metrou	Trop Buton
Prep Batch: 720-79044					
CS 720-79044/2-A	Lab Control Sample	Т	Solid	3550B	
LCSD 720-79044/3-A	Lab Control Sample Duplicate	÷	Solid	3550B	
MB 720-79044/1-A	Method Blank	Ť	Solid	3550B	
720-30837-1	SB-10-11.5	Ť	Solid	3550B	
720-30837-6	SB-06-3.0	Ť	Solid	3550B	
720-30837-7	SB-06-11.0	Ť	Solid	3550B	
720-30837-9	SB-12-12	Ť	Solid	3550B	
720-30837-10	SB-05-11.5	Ť	Solid	3550B	
720-30837-13	SB-09-4.9	Ť	Solid	3550B	
720-30837-15	SB-05-0.7	Ť	Solid	3550B	
720-30837-17	SB-09-11.8	Ť	Solid	3550B	
720-30865-A-3-B MS	Matrix Spike	Ť	Solid	3550B	
720-30865-A-3-C MSD	Matrix Spike Duplicate	Ť	Solid	3550B	
Analysis Batch:720-79	121				
LCS 720-79044/2-A	Lab Control Sample	Т	Solid	8270C SIM	720-79044
LCSD 720-79044/3-A	Lab Control Sample Duplicate	т	Solid	8270C SIM	720-79044
MB 720-79044/1-A	Method Blank	Ť	Solid	8270C SIM	720-79044
720-30837-1	SB-10-11.5	T	Solid	8270C SIM	720-79044
720-30837-6	SB-06-3.0	Ť	Solid	8270C SIM	720-79044
720-30837-7	SB-06-11.0	Ť	Solid	8270C SIM	720-79044
720-30837-9	SB-12-12	Т	Solid	8270C SIM	720-79044
720-30837-10	SB-05-11.5	Ť	Solid	8270C SIM	720-79044
720-30837-13	SB-09-4.9	Ť	Solid	8270C SIM	720-79044
720-30837-15	SB-05-0.7	Ť	Solid	8270C SIM	720-79044
720-30837-17	SB-09-11.8	Ť	Solid	8270C SIM	720-79044
720-30865-A-3-B MS	Matrix Spike	T	Solid	8270C SIM	720-79044
720-30865-A-3-C MSD	Matrix Spike Duplicate	Ť	Solid	8270C SIM	720-79044
Prep Batch: 720-79141					
LCS 720-79141/2-A	Lab Control Sample	Т	Water	3510C	
CSD 720-79141/3-A	Lab Control Sample Duplicate	T	Water	3510C	
MB 720-79141/1-A	Method Blank	т	Water	3510C	
720-30837-5	SB-10	T	Water	3510C	
720-30837-8	SB-06	Т	Water	3510C	
20-30837-11	SB-12	Т	Water	3510C	
20-30837-14	SB-05	Ť	Water	3510C	
'20-30865-B-4-A MS	Matrix Spike	Т	Water	3510C	
720-30865-B-4-B MSD	Matrix Spike Duplicate	Ť	Water	3510C	

TestAmerica San Francisco

Quality Control Results

Client: AMEC Geomatrix Inc.

Job Number: 720-30837-1

QC Association Summary

Lab Sample ID	Client Sample ID	Report Basis	Client Matrix	Method	Prep Batch
GC/MS Semi VOA					
Analysis Batch:720-79	226				
LCS 720-79141/2-A	Lab Control Sample	т	Water	8270C SIM	720-79141
LCSD 720-79141/3-A	Lab Control Sample Duplicate	T	Water	8270C SIM	720-79141
MB 720-79141/1-A	Method Blank	Т	Water	8270C SIM	720-79141
720-30837-5	SB-10	Т	Water	8270C SIM	720-79141
720-30837-8	SB-06	Т	Water	8270C SIM	720-79141
720-30837-11	SB-12	Т	Water	8270C SIM	720-79141
720-30837-14	SB-05	Т	Water	8270C SIM	720-79141
720-30865-B-4-A MS	Matrix Spike	Т	Water "	8270C SIM	720-79141
720-30865-B-4-B MSD	Matrix Spike Duplicate	Т	Water	8270C SIM	720-79141

Report Basis T = Total

Client: AMEC Geomatrix Inc.

Job Number: 720-30837-1

QC Association Summary

Lab Sample ID	Client Sample ID	Report Basis	Client Matrix	Method	Prep Batch
GC Semi VOA					
Prep Batch: 720-79041					
LCS 720-79041/2-A	Lab Control Sample	Α	Solid	3550B	
LCSD 720-79041/3-A	Lab Control Sample Duplicate	Α	Solid	3550B	
MB 720-79041/1-A	Method Blank	Α	Solid	3550B	
720-30837-1	SB-10-11.5	Α	Solid	3550B	
720-30837-6	SB-06-3.0	Α	Solid	3550B	
720-30837-6MS	Matrix Spike	Α	Solid	3550B	
720-30837-6MSD	Matrix Spike Duplicate	Α	Solid	3550B	
720-30837-7	SB-06-11.0	Α	Solid	3550B	
720-30837-9	SB-12-12	Α	Solid	3550B	
720-30837-10	SB-05-11.5	Α	Solid	3550B	
720-30837-13	SB-09-4.9	Α	Solid	3550B	
720-30837-15	SB-05-0.7	Α	Solid	3550B	
Analysis Batch:720-791	101				
LCS 720-79041/2-A	Lab Control Sample	Α	Solid	8015B	720-79041
LCSD 720-79041/3-A	Lab Control Sample Duplicate	Α	Solid	8015B	720-79041
MB 720-79041/1-A	Method Blank	Α	Solid	8015B	720-79041
Analysis Batch:720-791	102				
720-30837-1	SB-10-11.5	Α	Solid	8015B	720-79041
720-30837-6	SB-06-3.0	Α	Solid	8015B	720-79041
720-30837-6MS	Matrix Spike	Α	Solid	8015B	720-79041
720-30837-6MSD	Matrix Spike Duplicate	Α	Solid	8015B	720-79041
720-30837-7	SB-06-11.0	Α	Solid	8015B	720-79041
720-30837-9	SB-12-12	Α	Solid	8015B	720-79041
720-30837-10	SB-05-11.5	Α	Solid	8015B	720-79041
720-30837-13	SB-09-4.9	Α	Solid	8015B	720-79041
720-30837-15	SB-05-0.7	Α	Solid	8015B	720-79041
Prep Batch: 720-79118					
LCS 720-79115/2-C	Lab Control Sample	D	Water	3510C SGC	
LCSD 720-79115/3-C	Lab Control Sample Duplicate	D	Water	3510C SGC	
MB 720-79115/1-C	Method Blank	D	Water	3510C SGC	
720-30837-5	SB-10	D	Water	3510C SGC	
720-30837-8	SB-06	D	Water	3510C SGC	
720-30837-11	SB-12	D	Water	3510C SGC	
720-30837-14	SB-05	D	Water	3510C SGC	

TestAmerica San Francisco

11/12/2010

Quality Control Results

Client: AMEC Geomatrix Inc.

Job Number: 720-30837-1

QC Association Summary

Lab Sample ID	Client Sample ID	Report Basis	t Client Matrix	Method	Prep Batch
GC Semi VOA					
Analysis Batch:720-7	9205				
LCS 720-79115/2-C	Lab Control Sample	D	Water	8015B	720-79118
LCSD 720-79115/3-C	Lab Control Sample Duplicate	D	Water	8015B	720-79118
MB 720-79115/1-C	Method Blank	Ď	Water	8015B	720-79118
720-30837-5	SB-10	Ď	Water	8015B	720-79118
720-30837-8	SB-06	Ď	Water	8015B	720-79118
720-30837-11	SB-12	Ď	Water	8015B	720-79118
720-30837-14	SB-05	Ď	Water	8015B	720-79118
Analysis Batch:720-7	9206				
LCS 720-79235/2-A	Lab Control Sample	Α	Solid	8015B	720-79235
LCSD 720-79235/3-A	Lab Control Sample Duplicate	Α	Solid	8015B	720-79235
MB 720-79235/1-A	Method Blank	Α	Solid	8015B	720-79235
Prep Batch: 720-7923	35				
LCS 720-79235/2-A	Lab Control Sample	Α	Solid	3550B	
LCSD 720-79235/3-A	Lab Control Sample Duplicate	Α	Solid	3550B	
MB 720-79235/1-A	Method Blank	Α	Solid	3550B	
720-30837-17	SB-09-11.8	Α	Solid	3550B	
720-30865-A-3-D MS	Matrix Spike	Α	Solid	3550B	
720-30865-A-3-E MSD	Matrix Spike Duplicate	Α	Solid	3550B	
Analysis Batch:720-7					
720-30865-A-3-D MS	Matrix Spike	Α	Solid	8015B	720-79235
720-30865-A-3-E MSD	Matrix Spike Duplicate	Α	Solid	8015B	720-79235
Analysis Batch:720-7					
720-30837-17	SB-09-11.8	Α	Solid	8015B	720-79235
Prep Batch: 720-7936					
LCS 720-79363/2-A	Lab Control Sample	A	Water	3510C SGC	
LCSD 720-79363/3-A	Lab Control Sample Duplicate	A	Water	3510C SGC	
MB 720-79363/1-A	Method Blank	Α	Water	3510C SGC	
720-30837-5	SB-10	Α	Water	3510C SGC	
Prep Batch: 720-7938					
LCS 720-79386/2-A	Lab Control Sample	A	Water	3510C SGC	
LCSD 720-79386/3-A	Lab Control Sample Duplicate	Α	Water	3510C SGC	
MB 720-79386/1-A	Method Blank	A	Water	3510C SGC	
720-30837-8	SB-06	Α	Water	3510C SGC	
720-30837-11	SB-12	Α	Water	3510C SGC	
720-30837-14	\$B-05	Α	Water	3510C SGC	

Client: AMEC Geomatrix Inc.

Job Number: 720-30837-1

QC Association Summary

		Report			
Lab Sample ID	Client Sample ID	Basis	Client Matrix	Method	Prep Batch
GC Semi VOA					
Analysis Batch:720-79	9440				
720-30837-5	SB-10	Α	Water	8015B	720-79363
720-30837-8	SB-06	Α	Water	8015B	720-79386
720-30837-11	SB-12	Α	Water	8015B	720-79386
20-30837-14	SB-05	Α	Water	8015B	720-79386
Analysis Batch:720-79	9456				
.CS 720-79363/2-A	Lab Control Sample	Α	Water	8015B	720-79363
.CSD 720-79363/3-A	Lab Control Sample Duplicate	Α	Water	8015B	720-79363
иВ 720-79363/1-A	Method Blank	Α	Water	8015B	720-79363
.CS 720-79386/2-A	Lab Control Sample	Α	Water	8015B	720-79386
.CSD 720-79386/3-A	Lab Control Sample Duplicate	Α	Water	8015B	720-79386
/IB 720-79386/1-A	Method Blank	Α	Water	8015B	720-79386
Report Basis D = Dissolved A = Silica Gel Cleanup					
General Chemistry					
Analysis Batch:720-79	1222				
CS 720-79232/3	Lab Control Sample	т	Water	7199	
CSD 720-79232/4	Lab Control Sample Duplicate	÷	Water	7199	
MB 720-79232/2	Method Blank	Ť	Water	7199	
720-30814-A-3 MS	Matrix Spike	÷	Water	7199	
	Matrix Spike Dunticate	т	\Mater	7100	
720-30814-A-3 MSD 720-30837-8	Matrix Spike Duplicate SB-06	T T	Water Water	7199 7199	

Report Basis T = Total

TestAmerica San Francisco

Page 53 of 94

11/12/2010

Quality Control Results

Job Number: 720-30837-1

Client: AMEC Geomatrix Inc.

Surrogate Recovery Report

8260B/CA LUFTMS 8260B / CA LUFT MS

Client Matrix: Solid

Lab Sample ID	Client Sample ID	BFB %Rec	DCA %Rec	TOL %Rec
720-30837-20	SB-03-2.8	102	102	99
720-30837-21	SB-03-3.2	101	92	95
720-30837-22	SB-03-11.5	97	91	96
720-30837-23	SB-03-6.5	108	106	98
MB 720-79297/1-A		97	105	98
LCS 720-79069/4-A		100	89	96
LCS 720-79297/2-A		102	100	101
LCS 720-79297/4-A		105	107	100
LCSD 720-79069/5-A		101	91	96
LCSD 720-79297/3-A		100	98	99
LCSD 720-79297/5-A		101	91	99

Surrogate	Acceptance Limits
BFB = 4-Bromofluorobenzene	66-148
DCA = 1,2-Dichloroethane-d4 (Surr)	62-137
TOL = Toluene-d8 (Surr)	65-141

TestAmerica San Francisco

Page 54 of 94

Job Number: 720-30837-1

Surrogate Recovery Report

Client: AMEC Geomatrix Inc.

8270C SIM Semivolatile Organic Compounds (GC/MS SIM)

Client Matrix: Solid

		FBP	TPI
Lab Sample ID	Client Sample ID	%Rec	%Re
720-30837-1	SB-10-11.5	82	105
720-30837-6	SB-06-3.0	81	106
720-30837-7	SB-06-11.0	58	96
720-30837-9	SB-12-12	93	102
720-30837-10	SB-05-11.5	89	101
720-30837-13	SB-09-4.9	81	102
720-30837-15	SB-05-0.7	75	94
720-30837-17	SB-09-11.8	93	105
MB 720-79044/1-A		90	106
LCS 720-79044/2-A		94	103
LCSD 720-79044/3-A		91	101
720-30865-A-3-B MS		56	85
720-30865-A-3-C MSD		81	97

Surrogate	Acceptance Limits
FBP = 2-Fluorobiphenyl	33-120
TPH = Terphenyl-d14	35-146

TestAmerica San Francisco

Page 55 of 94 11/12/2010

Quality Control Results

Job Number: 720-30837-1

Client: AMEC Geomatrix Inc.

Surrogate Recovery Report

8270C SIM, Semivolatile Organic Compounds (GC/MS SIM)

Client Matrix: Water

		FBP	TPH
Lab Sample ID	Client Sample ID	%Rec	%Rec
720-30837-5	SB-10	48	97
720-30837-8	SB-06	60	85
720-30837-11	SB-12	61	96
720-30837-14	SB-05	51	96
MB 720-79141/1-A		75	101
LCS 720-79141/2-A		76	98
LCSD 720-79141/3-/	4	60	96
720-30865-B-4-A MS	3	63	87
720-30865-B-4-B MSD		63	80

Surrogate	Acceptance Limits
FBP = 2-Fluorobiphenyl	29-120
TPH = Terphenyl-d14	45-120

TestAmerica San Francisco

Page 56 of 94

Job Number: 720-30837-1

Surrogate Recovery Report

Client: AMEC Geomatrix Inc.

8015B Diesel Range Organics (DRO) (GC)

Client Matrix: Solid Silica Gel Cleanup

	NDA1	TPH1
Client Sample ID	%Rec	%Rec
SB-10-11.5	0	97
SB-06-3.0	0	100
SB-06-11.0	0	92
SB-12-12	0	99
SB-05-11.5	0	104
SB-09-4.9	0	111
SB-05-0.7	0	85
SB-09-11.8	0	96
	0	86
	0.2	93
	SB-10-11.5 SB-06-3.0 SB-06-11.0 SB-12-12 SB-05-11.5 SB-09-4.9 SB-05-0.7	Client Sample ID %Rec SB-10-11.5 0 SB-06-3.0 0 SB-06-11.0 0 SB-12-12 0 SB-05-11.5 0 SB-09-4.9 0 SB-05-0.7 0 SB-09-11.8 0

4

Surrogate	Acceptance Limits
NDA = Capric Acid (Surr)	0-5
TPH = p-Terphenyl	46-115

TestAmerica San Francisco

Page 57 of 94

11/12/2010

Quality Control Results

Job Number: 720-30837-1

Client: AMEC Geomatrix Inc. Surrogate Recovery Report

8015B Diesel Range Organics (DRO) (GC)

Client Matrix: Solid Silica Gel Cleanup

Lab Sample ID	Client Sample ID	TPH1 %Rec
LCS 720-79041/2-A		103
LCS 720-79235/2-A		103
LCSD 720-79041/3-	A	98
LCSD 720-79235/3-	A	100
720-30837-6 MS	SB-06-3.0 MS	93
720-30865-A-3-D M	S ,	93
720-30837-6 MSD	SB-06-3.0 MSD	97
720-30865-А-3-Е MSD		93

 Surrogate
 Acceptance Limits

 TPH = p-Terphenyl
 46-115

TestAmerica San Francisco

Page 58 of 94

Job Number: 720-30837-1

Surrogate Recovery Report

Client: AMEC Geomatrix Inc.

8015B Diesel Range Organics (DRO) (GC)

Client Matrix: Water Dissolved

Lab Sample ID	Client Sample ID	NDA1 %Rec	TPH1 %Rec
720-30837-5	SB-10	0.5	95
720-30837-8	SB-06	0.2	94
720-30837-11	SB-12	0.3	96
720-30837-14	SB-05	0.1	91
MB 720-79115/1-C	•	0.1	94

Surrogate	Acceptance Limits
NDA = Capric Acid (Surr)	0-5
TPH = p-Terphenyl	31-150

TestAmerica San Francisco

Page 59 of 94

11/12/2010

Quality Control Results

Job Number: 720-30837-1

Client: AMEC Geomatrix Inc.

Surrogate Recovery Report

8015B Diesel Range Organics (DRO) (GC)

Client Matrix: Water Dissolved

		TPH1
Lab Sample ID	Client Sample ID	%Rec
LCS 720-79115/2-	С	91
LCSD 720-79115/3	3-C	88

 Surrogate
 Acceptance Limits

 TPH = p-Terphenyl
 31-150

TestAmerica San Francisco

Page 60 of 94 11/12/2010

Job Number: 720-30837-1

Surrogate Recovery Report

Client: AMEC Geomatrix Inc.

8015B Diesel Range Organics (DRO) (GC)

Client Matrix: Water Silica Gel Cleanup

Lab Sample ID	Client Sample ID	%Rec	%Red
720-30837-5	SB-10	0	97
720-30837-8	SB-06	0	93
720-30837-11	SB-12	0	105
720-30837-14	SB-05	0	102
MB 720-79363/1-A	\	0.2	94
MB 720-79386/1-A	١	0.2	99

Surrogate	Acceptance Limits
NDA = Capric Acid (Surr)	0-5
TPH = p-Terphenyl	31-150

Page 61 of 94

TestAmerica San Francisco

11/12/2010

Quality Control Results

Job Number: 720-30837-1

Client: AMEC Geomatrix Inc.

Surrogate Recovery Report

8015B Diesel Range Organics (DRO) (GC)

Client Matrix: Water Silica Gel Cleanup

Lab Sample ID	Client Sample ID	TPH1 %Rec
LCS 720-79363/2-A		102
LCS 720-79386/2-A		99
LCSD 720-79363/3-A		116
LCSD 720-79386/3-A		104

 Surrogate
 Acceptance Limits

 TPH = p-Terphenyl
 31-150

TestAmerica San Francisco

Page 62 of 94

Client: AMEC Geomatrix Inc.

Job Number: 720-30837-1

Lab Control Sample/ Lab Control Sample Duplicate Recovery Report - Batch: 720-79069

Method: 8260B/CA LUFTMS Preparation: 5035

LCS Lab Sample ID: LCS 720-79069/4-A Client Matrix: Solid

100

09/29/2010 1521

Dilution:

Date Analyzed:

Analysis Batch: 720-78924 Prep Batch: 720-79069

Units: ug/Kg

Lab File ID: 09291015.D Initial Weight/Volume: 5 g Final Weight/Volume: 10 mL

Instrument ID: HP12

Date Prepared: 09/29/2010 1400

LCSD Lab Sample ID: LCSD 720-79069/5-A Client Matrix: Solid Dilution: 100

Date Analyzed: 09/29/2010 1551 Analysis Batch: 720-78924 Prep Batch: 720-79069 Units: ug/Kg

Instrument ID: HP12 Lab File ID: 09291016.D Initial Weight/Volume: 5 g Final Weight/Volume: 10 mL

Date Prepared: 09/29/2010 1400

2	<u>6 Rec.</u>					
LCS	LCSD	Limit	RPD	RPD Limit	LCS Qual	LCSD Qual
80	80	70 - 130	0	20		
LCS % Rec		LCSD % Rec		Acceptance Limits		
100		101		66 - 148		
8	9	91		6	2 - 137	
9	6	96		6	5 - 141	
	ECS 80 L	LCS LCSD 80 80 LCS % Rec	LCS LCSD Limit 80 80 70 - 130 LCS % Rec LCSD % 100 101 89 91	LCS LCSD Limit RPD 80 80 70 - 130 0 LCS Rec LCSD % Rec 100 101 101 89 91 91	80 80 70 - 130 0 20 LCS % Rec LCSD % Rec Accept 100 101 6 89 91 6	LCS LCSD Limit RPD RPD Limit LCS Qual 80 80 70 - 130 0 20 LCS % Rec LCSD % Rec Acceptance Limits 100 101 66 - 148 89 91 62 - 137

Quality Control Results

Client: AMEC Geomatrix Inc.

Job Number: 720-30837-1

Method Blank - Batch: 720-79297

Method: 8260B/CA_LUFTMS Preparation: 5035

Lab Sample ID: MB 720-79297/1-A Client Matrix: Solid

Date Prepared: 10/04/2010 1700

Dilution:

Date Analyzed: 10/05/2010 0206

Analysis Batch: 720-79265 Prep Batch: 720-79297 Units: ug/Kg

Instrument ID: HP5 Lab File ID: 100410032.D Initial Weight/Volume: 5 g Final Weight/Volume: 10 mL

Analyte Result Qual RL Methyl tert-butyl ether 500 ND Acetone ND 5000 Benzene ND 500 Dichlorobromomethane ND 500 Bromobenzene ND 500 Chlorobromomethane ND 2000 ND Bromoform 500 Bromomethane ND 1000 2-Butanone (MEK) ND 5000 n-Butvlbenzene ND 500 ND sec-Butylbenzene 500 tert-Butylbenzene ND 500 Carbon disulfide ND 500 Carbon tetrachloride ND 500 Chlorobenzene ND 500 Chloroethane ND 1000 Chloroform ND 500 Chloromethane ND 1000 ND ND 2-Chlorotoluene 500 4-Chlorotoluene 500 Chlorodibromomethane ND 500 1,2-Dichlorobenzene ND 500 ND 500 1.3-Dichlorobenzene ND 1,4-Dichlorobenzene 500 1,3-Dichloropropane ND 500 1,1-Dichloropropene ND 500 1,2-Dibromo-3-Chloropropane ND 5000 ND Ethylene Dibromide 500 ND Dibromomethane 1000 Dichlorodifluoromethane ND 1000 1,1-Dichloroethane ND 500 1.2-Dichloroethane ND 500 ND 1.1-Dichloroethene 500 cis-1,2-Dichloroethene ND 500 trans-1,2-Dichloroethene ND 500 1,2-Dichloropropane ND 500 ND 500 cis-1,3-Dichloropropene ND trans-1,3-Dichloropropene 500 Ethylbenzene ND 500 Hexachlorobutadiene ND 500 2-Hexanone ND 5000 ND Isopropylbenzene 500 4-Isopropyltoluene ND 500

TestAmerica San Francisco

Page 64 of 94

Client: AMEC Geomatrix Inc.

Job Number: 720-30837-1

Method Blank - Batch: 720-79297

Method: 8260B/CA LUFTMS

Preparation: 5035

Lab Sample ID: MB 720-79297/1-A

Client Matrix: Solid Dilution: 100

1,2-Dichloroethane-d4 (Surr)

TestAmerica San Francisco

Toluene-d8 (Surr)

Analysis Batch: 720-79265 Prep Batch: 720-79297

Units: ug/Kg

Instrument ID: HP5 Lab File ID: 100410032.D

Date Analyzed: 10/05/2010 0206 Date Prepared: 10/04/2010 1700 Initial Weight/Volume: 5 g Final Weight/Volume: 10 mL

Analyte	Result	Qual	RL
Methylene Chloride	ND		1000
4-Methyl-2-pentanone (MIBK)	NĎ		5000
Naphthalene	ND		1000
N-Propylbenzene	ND		500
Styrene	ND		500
1,1,1,2-Tetrachioroethane	ND		500
1,1,2,2-Tetrachloroethane	ND		500
Tetrachloroethene	ND		500
Toluene	ND		500
1,2,3-Trichlorobenzene	ND		500
1,2,4-Trichlorobenzene	ND		500
1,1,1-Trichloroethane	ND		500
1,1,2-Trichloroethane	ND		500
Trichloroethene	ND		500
Trichlorofluoromethane	ND		500
1,2,3-Trichloropropane	ND		500
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		500
1,2,4-Trimethylbenzene	ND		500
1,3,5-Trimethylbenzene	ND		500
Vinyl acetate	ND		5000
Vinyl chloride	ND		500
m-Xylene & p-Xylene	ND		500
o-Xylene	ND		500
Xylenes, Total	ND		1000
2,2-Dichloropropane	ND		500
Gasoline Range Organics (GRO)-C5-C12	ND		25000
Surrogate	% Rec	Accept	ance Limits
4-Bromofluorobenzene	97	66	- 148

62 - 137

65 - 141

Page 65 of 94

11/12/2010

Quality Control Results Job Number: 720-30837-1

Client: AMEC Geomatrix Inc.

Lab Control Sample/

Lab Control Sample Duplicate Recovery Report - Batch: 720-79297

Method: 8260B/CA_LUFTMS

Preparation: 5035

LCS Lab Sample ID: LCS 720-79297/2-A Solid

Client Matrix: Dilution: Date Prepared:

100 Date Analyzed: 10/04/2010 2355

10/04/2010 1700

Analysis Batch: 720-79265 Prep Batch: 720-79297

Units: ug/Kg

Instrument ID: HP5 Lab File ID: 100410028.D Initial Weight/Volume: 5 g Final Weight/Volume: 10 mL

LCSD Lab Sample ID: LCSD 720-79297/3-A Client Matrix: Solid

Dilution:

100

Date Analyzed: 10/05/2010 0028 Date Prepared: 10/04/2010 1700 Analysis Batch: 720-79265 Prep Batch: 720-79297

Units: ug/Kg

Lab File ID: 100410029.D

Initial Weight/Volume: 5 g

Final Weight/Volume: 10 mL

Instrument ID: HP5

	2	% Rec.							
Analyte	LCS	LCSD	Limit	RPD			LCSD Qual		
Methyl tert-butyl ether	106	102	71 - 146	3	20				
Acetone	84	78	12 - 234	8	20				
Benzene	99	99	76 - 122	0	20				
Dichlorobromomethane	100	102	80 - 131	2	20				
Bromobenzene	106	106	77 - 125	0	20				
Chlorobromomethane	105	104	74 - 134	1	20				
Bromoform	84	83	54 - 149	2	20				
Bromomethane	82	94	14 - 175	14	20				
2-Butanone (MEK)	96	90	58 - 159	7	20				
n-Butylbenzene	112	113	57 - 164	0	20				
sec-Butylbenzene	110	111	62 - 153	0	20				
tert-Butylbenzene	113	112	72 - 136	1	20				
Carbon disulfide	99	100	13 - 151	1	20				
Carbon tetrachloride	107	106	72 - 136	1	20				
Chlorobenzene	98	97	81 - 128	1	20				
Chloroethane	87	101	54 - 128	14	20				
Chloroform	101	101	75 - 133	0	20				
Chloromethane	97	103	43 - 146	5	20				
2-Chlorotoluene	108	108	66 - 143	0	20				
4-Chlorotoluene	107	108	73 - 136	1	20				
Chlorodibromomethane	95	94	76 - 134	1	20				
1,2-Dichlorobenzene	105	103	77 - 140	1	20				
1,3-Dichlorobenzene	105	104	71 - 135	0	20				
1,4-Dichlorobenzene	101	101	76 - 130	0	20				
1,3-Dichloropropane	107	105	73 - 133	2	20				
1,1-Dichloropropene	105	105	81 - 134	0	20				
1,2-Dibromo-3-Chloropropane	81	77	52 - 156	4	20				
Ethylene Dibromide	106	103	80 - 138	2	20				
Dibromomethane	106	104	76 - 139	1	20				
Dichlorodifluoromethane	107	108	30 - 120	1	20				
1,1-Dichloroethane	100	100	79 - 125	1	20				
1,2-Dichloroethane	104	101	77 - 133	3	20				
1,1-Dichloroethene	97	96	74 - 122	1	20				

TestAmerica San Francisco Page 66 of 94 11/12/2010

Client: AMEC Geomatrix Inc.

Job Number: 720-30837-1

Lab Control Sample/ Lab Control Sample Duplicate Recovery Report - Batch: 720-79297

Method: 8260B/CA LUFTMS Preparation: 5035

LCS Lab Sample ID: LCS 720-79297/2-A Client Matrix:

Solid 100 10/04/2010 2355 Analysis Batch: 720-79265 Prep Batch: 720-79297

Units: ug/Kg

Instrument ID: HP5 Lab File ID: 100410028.D Initial Weight/Volume; 5 g Final Weight/Volume: 10 mL

Date Analyzed: Date Prepared: 10/04/2010 1700

Dilution:

LCSD Lab Sample ID: LCSD 720-79297/3-A Client Matrix: Solid Dilution: 100

Date Analyzed: Date Prepared:

10/05/2010 0028 10/04/2010 1700 Analysis Batch: 720-79265 Prep Batch: 720-79297 Units: ug/Kg

Instrument ID: HP5 Lab File ID: 100410029.D Initial Weight/Volume: 5 g Final Weight/Volume: 10 mL

	9	6 Rec.					
Analyte	LCS	LCSD	Limit	RPD	RPD Limit	LCS Qual	LCSD Qual
cis-1,2-Dichloroethene	109	109	77 - 132	0	20		
trans-1,2-Dichloroethene	102	102	74 - 128	0	20		
1,2-Dichloropropane	107	106	84 - 129	1	20		
cis-1,3-Dichloropropene	103	102	79 - 144	1	20		
trans-1,3-Dichloropropene	100	99	78 - 144	1	20		
Ethylbenzene	102	102	76 - 137	0	20		
Hexachlorobutadiene	103	105	63 - 150	2	20		
2-Hexanone	91	84	63 - 165	8	20		
Isopropylbenzene	107	106	65 - 128	1	20		
4-Isopropyltoluene	106	107	62 - 153	1	20		
Methylene Chloride	99	98	79 - 128	1	20		
4-Methyl-2-pentanone (MIBK)	94	88	66 - 150	6	20		
Naphthalene	97	97	62 - 151	0	20		
N-Propylbenzene	106	106	65 - 144	1	20		
Styrene	110	109	79 - 139	1	20		
1,1,1,2-Tetrachloroethane	116	113	72 - 129	2	20		
1,1,2,2-Tetrachloroethane	109	108	69 - 133	2	20		
Tetrachloroethene	96	95	79 - 130	1	20		
Toluene	95	95	77 - 120	0	20		
1,2,3-Trichlorobenzene	106	109	72 - 159	2	20		
1,2,4-Trichlorobenzene	105	105	71 - 163	0	20		
1,1,1-Trichloroethane	103	105	69 - 132	2	20		
1,1,2-Trichloroethane	111	108	80 - 140	2	20		
Trichloroethene	96	96	69 - 129	0	20		
Trichlorofluoromethane	112	114	49 - 140	2	20		
1,2,3-Trichtoropropane	108	104	74 - 135	4	20		
1,1,2-Trichloro-1,2,2-trifluoroethane	93	91	66 - 128	2	20		
1,2,4-Trimethylbenzene	116	117	62 - 155	0	20		
1,3,5-Trimethylbenzene	113	114	69 - 142	1	20		
Vinyl acetate	94	94	56 - 200	0	20		
Vinyl chloride	19	20	10 - 118	4	20		
m-Xylene & p-Xylene	104	104	71 - 142	0	20		
o-Xylene	107	106	71 - 142	1	20		

TestAmerica San Francisco

Page 67 of 94

11/12/2010

Quality Control Results

Client: AMEC Geomatrix Inc.

Job Number: 720-30837-1

Lab Control Sample/

Lab Control Sample Duplicate Recovery Report - Batch: 720-79297

Method: 8260B/CA_LUFTMS Preparation: 5035

Instrument ID: HP5

LCS Lab Sample ID: LCS 720-79297/2-A

Client Matrix: Solid Dilution:

100

Date Analyzed: 10/04/2010 2355 10/04/2010 1700 Date Prepared:

Analysis Batch: 720-79265 Prep Batch: 720-79297

Units: ug/Kg

Lab File ID: 100410028.D

Initial Weight/Volume: 5 g Final Weight/Volume: 10 mL

LCSD Lab Sample ID: LCSD 720-79297/3-A

Client Matrix: Dilution:

Solid 100

Date Analyzed: 10/05/2010 0028 Date Prepared: 10/04/2010 1700 Analysis Batch: 720-79265 Prep Batch: 720-79297

Units: ug/Kg

Instrument ID: HP5 Lab File ID: 100410029.D Initial Weight/Volume: 5 g Final Weight/Volume: 10 mL

% Rec. Analyte LCS LCSD Limit RPD Limit LCS Qual LCSD Qual 2,2-Dichloropropane 100 104 67 - 146 4 20 LCS % Rec Surrogate LCSD % Rec Acceptance Limits 4-Bromofluorobenzene 66 - 148 102 100 1,2-Dichloroethane-d4 (Surr) 62 - 137 100 98 Toluene-d8 (Surr) 101 99 65 - 141

TestAmerica San Francisco Page 68 of 94 11/12/2010

Client: AMEC Geomatrix Inc.

Job Number: 720-30837-1

Lab Control Sample/
Lab Control Sample Duplicate Recovery Report - Batch: 720-79297

Method: 8260B/CA_LUFTMS Preparation: 5035

LCS Lab Sample ID: LCS 720-79297/4-A Client Matrix: Solid Dilution: 100 Analysis Batch: 720-79265 Prep Batch: 720-79297 Units: ug/Kg

Date Analyzed: 10/05/2010 0101
Date Prepared: 10/04/2010 1700

 LCSD Lab Sample ID:LCSD 720-79297/5-A

 Client Matrix:
 Solid

 Ditution:
 100

 Date Analyzed:
 10/05/2010 0133

 Date Prepared:
 10/04/2010 1700

Analysis Batch: 720-79265 Prep Batch: 720-79297 Units: ug/Kg Instrument ID: HP5
Lab File ID: 100410031.D
Initial Weight/Volume: 5 g
Final Weight/Volume: 10 mL

	2	6 Rec.					
Analyte	LCS	LCSD	Limit	RPD	RPD Limit	LCS Qual	LCSD Qual
Gasoline Range Organics (GRO)-C5-C12	79	86	70 - 130	8	20		
Surrogate	LCS % Rec		LCSD % Rec		Acceptance Limits		
4-Bromofluorobenzene		05	101			6 - 148	
1,2-Dichloroethane-d4 (Surr)	1	07	91		6	2 - 137	
Toluene-d8 (Surr)	1	00	00		c	E 111	

Quality Control Results

Client: AMEC Geomatrix Inc.

Job Number: 720-30837-1

Method Blank - Batch: 720-79044

Method: 8270C SIM Preparation: 3550B

Lab Sample ID: MB 720-79044/1-A Client Matrix: Solid Dilution: 1.0 Analysis Batch: 720-79121 Prep Batch: 720-79044 Units: ug/Kg Instrument ID: HP # 3 Lab File ID: 100110018.D Initial Weight/Volume: 30.04 g Final Weight/Volume: 1 mL Injection Volume: 1 uL

Date Analyzed: 10/01/2010 1725 Date Prepared: 09/30/2010 1137

Analyte	Result	Qual	RL
Naphthalene	ND		5.0
Acenaphthene	ND		5.0
Acenaphthylene	ND		5.0
Fluorene	ND		5.0
Phenanthrene	ND		5.0
Anthracene	ND		5.0
Benzo[a]anthracene	ND		5.0
Chrysene	ND		5.0
Benzo[a]pyrene	ND		5.0
Benzo[b]fluoranthene	ND		5.0
Benzo[k]fluoranthene	ND		5.0
Benzo[g,h,i]perylene	ND		5.0
Indeno[1,2,3-cd]pyrene	ND		5.0
Fluoranthene	ND		5.0
Pyrene	ND		5.0
Dibenz(a,h)anthracene	ND		5.0
Surrogate	% Rec	Acceptance Limits	
2-Fluorobiphenyl	90	33 - 120	
Terphenyl-d14	106	35 - 146	

TestAmerica San Francisco

Page 69 of 94

11/12/2010

TestAmerica San Francisco

Page 70 of 94

Client: AMEC Geomatrix Inc.

Job Number: 720-30837-1

Lab Control Sample/ Lab Control Sample Duplicate Recovery Report - Batch: 720-79044

Method: 8270C SIM Preparation: 3550B

Instrument ID: HP # 3

Instrument ID: HP # 3

LCS Lab Sample ID: LCS 720-79044/2-A Client Matrix: Solid Dilution:

1.0 Date Analyzed: 10/01/2010 1639 Date Prepared: 09/30/2010 1137 Analysis Batch: 720-79121 Prep Batch: 720-79044

Units: ug/Kg

Lab File ID: 100110016.D Initial Weight/Volume: 30.18 g Final Weight/Volume: 1 mL Injection Volume: 1 uL

LCSD Lab Sample ID: LCSD 720-79044/3-A Client Matrix: Solid Dilution:

1.0 Date Analyzed:

Date Prepared:

2-Fluorobiphenyl

Terphenyl-d14

10/01/2010 1702 09/30/2010 1137 Analysis Batch: 720-79121 Prep Batch: 720-79044

Units: ug/Kg

Lab File ID: 100110017.D Initial Weight/Volume: 30.06 q Final Weight/Volume: 1 mL Injection Volume: 1 uL

33 - 120

35 - 146

% Rec. Analyte LCS LCSD Limit RPD RPD Limit LCS Qual LCSD Qual Naphthalene 85 46 - 120 Acenaphthene 80 86 49 - 120 20 Acenaphthylene 89 88 52 - 120 20 Fluorene 112 110 52 - 120 20 Phenanthrene 48 - 120 20 Anthracene 95 94 52 - 120 20 Benzo[a]anthracene 86 83 52 - 120 20 Chrysene 101 100 54 - 120 20 Benzo[a]pyrene 99 54 - 120 20 Benzo[b]fluoranthene 89 51 - 120 20 Benzo[k]fluoranthene 110 104 56 - 120 20 Benzo[g,h,i]perylene 92 93 48 - 120 20 Indeno[1,2,3-cd]pyrene 98 48 - 120 20 Fluoranthene 105 103 57 - 120 20 93 Pyrene 91 53 - 120 20 Dibenz(a,h)anthracene 50 - 120 Surrogate LCS % Rec LCSD % Rec Acceptance Limits

101

103

Quality Control Results

Client: AMEC Geomatrix Inc.

Job Number: 720-30837-1

Matrix Spike/

Dilution:

Date Prepared:

Client Matrix:

Matrix Spike Duplicate Recovery Report - Batch: 720-79044

Analysis Batch: 720-79121 Prep Batch: 720-79044

Prep Batch: 720-79044

MS Lab Sample ID: 720-30865-A-3-B MS Client Matrix: Solid 1.0 Date Analyzed:

10/01/2010 2051 09/30/2010 1137

MSD Lab Sample ID: 720-30865-A-3-C MSD Analysis Batch: 720-79121 Solid

Dilution: 1.0 Date Analyzed: 10/01/2010 2114 09/30/2010 1137 Date Prepared:

Method: 8270C SIM Preparation: 3550B

Instrument ID: HP # 3 Lab File ID: 100110027.D Initial Weight/Volume: 30.06 g Final Weight/Volume: 1 mL Injection Volume: 1 uL

Instrument ID: HP # 3 Lab File ID: 100110028.D Initial Weight/Volume: 30.09 g Final Weight/Volume: 1 mL Injection Volume: 1 uL

	<u>%</u>	Rec.					
Analyte	MS	MSD	Limit	RPD	RPD Limit	MS Qual	MSD Qua
Naphthalene	60	74	32 - 120	21	20		F
Acenaphthene	58	78	33 - 120	29	20		F
Acenaphthylene	59	86	28 - 120	37	20		F
Fluorene	78	107	35 - 120	32	20		F
Phenanthrene	67	86	28 - 120	25	20		F
Anthracene	73	87	36 - 120	18	20		
Benzo[a]anthracene	70	81	29 - 120	15	20		
Chrysene	82	93	29 - 120	12	20		
Benzo[a]pyrene	81	91	24 - 120	11	20		
Benzo[b]fluoranthene	76	85	17 - 132	11	20		
Benzo[k]fluoranthene	83	96	35 - 120	14	20		
Benzo[g,h,i]perylene	82	92	21 - 120	12	20		
Indeno[1,2,3-cd]pyrene	87	98	20 - 126	12	20		
Fluoranthene	86	96	24 - 120	12	20		
Pyrene	76	87	24 - 123	14	20		
Dibenz(a,h)anthracene	86	98	36 - 120	12	20		
Surrogate		MS % Rec	MSD 9	% Rec	Acc	eptance Lim	its
2-Fluorobiphenyl		56	81		3	3 - 120	
Terphenyl-d14		85	97		3	5 - 146	

Client: AMEC Geomatrix Inc.

Job Number: 720-30837-1

Method Blank - Batch: 720-79141

Method: 8270C SIM Preparation: 3510C

Lab Sample ID: MB 720-79141/1-A Client Matrix: Water Dilution: Date Analyzed: 10/04/2010 1408 Date Prepared: 10/01/2010 1436

Analysis Batch: 720-79226 Prep Batch: 720-79141

Units: ug/L

Instrument ID: SVOA HP 4 Lab File ID: 10041007.D Initial Weight/Volume: 1000 mL Final Weight/Volume: 1 mL Injection Volume; 1 uL

Analyte	Result	Qual	RL
Naphthalene	ND		1.0
Acenaphthene	ND		0.10
Acenaphthylene	ND		0.10
Fluorene	ND		0.10
Phenanthrene	ND		0.10
Anthracene	ND		0.10
Benzo[a]anthracene	ND		0.10
Chrysene	ND		0.10
Benzo[a]pyrene	ND		0.10
Benzo[b]fluoranthene	ND		0,10
Benzo[k]fluoranthene	ND		0.10
Benzo[g,h,i]perylene	ND		0.10
Indeno[1,2,3-cd]pyrene	ND		0.10
Fluoranthene	ND		0.10
Pyrene	ND		0.10
Dibenz(a,h)anthracene	ND		0.10
Surrogate	% Rec	Acceptanc	e Limits
2-Fluorobiphenyl	75	29 - 1:	20
Terphenyl-d14	101	45 - 1:	20

Quality Control Results

Client: AMEC Geomatrix Inc.

Job Number: 720-30837-1

Lab Control Sample/ Lab Control Sample Duplicate Recovery Report - Batch: 720-79141

Method: 8270C SIM Preparation: 3510C

LCS Lab Sample ID: LCS 720-79141/2-A Client Matrix: Water Dilution: 1.0

Date Analyzed: 10/04/2010 1320

Client Matrix:

Date Analyzed:

Date Prepared:

Terphenyl-d14

Dilution:

Prep Batch: 720-79141 Units: ug/L

Instrument ID: SVOA HP 4 Lab File ID: 10041005.D Initial Weight/Volume: 1000 mL Final Weight/Volume: 1 mL Injection Volume: 1 uL

Date Prepared: 10/01/2010 1436 LCSD Lab Sample ID: LCSD 720-79141/3-A

Water

10/04/2010 1344

10/01/2010 1436

Analysis Batch: 720-79226 Prep Batch: 720-79141

Analysis Batch: 720-79226

Units: ug/L

Instrument ID: SVOA HP 4 Lab File ID: 10041006.D Initial Weight/Volume: 1000 mL Final Weight/Volume: 1 mL Injection Volume: 1 uL

45 - 120

% Rec. Analyte LCS LCSD Limit RPD RPD Limit LCS Qual LCSD Qual Naphthalene 70 57 33 - 120 Acenaphthene 75 37 - 120 35 59 25 Acenaphthylene 72 56 36 - 120 25 35 71 Fluorene 91 39 - 120 25 35 Phenanthrene 86 66 44 - 120 26 35 Anthracene 85 70 45 - 120 19 35 Benzo[a]anthracene 93 93 48 - 120 35 Chrysene 105 52 - 120 35 Benzo[a]pyrene 103 101 50 - 120 35 Benzo[b]fluoranthene 107 110 48 - 120 35 Benzo[k]fluoranthene 101 50 - 120 Benzo[g,h,i]perylene 92 90 49 - 120 35 Indeno[1,2,3-cd]pyrene 96 48 - 120 94 2 35 Fluoranthene 95 46 - 120 35 Pyrene 95 87 50 - 120 9 35 Dibenz(a,h)anthracene 48 - 101 2 95 93 35 Surrogate LCS % Rec LCSD % Rec Acceptance Limits 2-Fluorobiphenyl 60 29 - 120

TestAmerica San Francisco

Page 73 of 94

11/12/2010

TestAmerica San Francisco

Page 74 of 94

Client: AMEC Geomatrix Inc.

Job Number: 720-30837-1

Matrix Spike/ Matrix Spike Duplicate Recovery Report - Batch: 720-79141 Method: 8270C SIM Preparation: 3510C

MS Lab Sample ID: 720-30865-B-4-A MS Analysis Batch: 720-79226 Client Matrix: Water

Prep Batch: 720-79141

Instrument ID: SVOA HP 4 Lab File ID: 10041008.D Initial Weight/Volume: 970 mL

Dilution: 10/04/2010 1431 Date Analyzed: Date Prepared: 10/01/2010 1436

Final Weight/Volume: 1 mL Injection Volume: 1 uL

Client Matrix: Dilution:

MSD Lab Sample ID: 720-30865-B-4-B MSD Analysis Batch: 720-79226 Water Prep Batch: 720-79141 1.0

Instrument ID: SVOA HP 4 Lab File ID: 10041009 D Initial Weight/Volume: 970 mL

Date Analyzed:

10/04/2010 1455 10/01/2010 1436 Date Prepared:

Final Weight/Volume: 1 mL Injection Volume: 1 uL

	<u>%</u>	<u>% Rec.</u>						
Analyte	MS	MSD	Limit	RPD	RPD Limit	MS Qual	MSD Qual	
Naphthalene	58	59	36 - 120	0	35			
Acenaphthene	62	61	40 - 120	2	35			
Acenaphthylene	59	59	39 - 120	1	35			
Fluorene	71	71	44 - 120	0	35			
Phenanthrene	62	62	44 - 120	0	35			
Anthracene	67	66	48 - 120	2	35			
Benzo[a]anthracene	86	84	48 - 120	3	35			
Chrysene	99	93	52 - 120	6	35			
Benzo[a]pyrene	72	60	50 - 120	18	35			
Benzo[b]fluoranthene	78	74	48 - 120	6	35			
Benzo[k]fluoranthene	71	58	50 - 120	21	35			
Benzo[g,h,i]perylene	36	31	49 - 120	16	35	F	F	
Indeno[1,2,3-cd]pyrene	40	34	48 - 120	16	35	F	F	
Fluoranthene	81	81	52 - 120	0	35			
Pyrene	81	81	50 - 120	0	35			
Dibenz(a,h)anthracene	33	28	48 - 120	14	35	F	F	
Surrogate		MS % Rec	MSD 1	% Rec	Acc	eptance Lim	its	
2-Fluorobiphenyl		63	63			9 - 120		
Terphenyl-d14		87	80		4	5 - 120		

Quality Control Results

Client: AMEC Geomatrix Inc.

Job Number: 720-30837-1

Method Blank - Batch: 720-79041

Method: 8015B Preparation: 3550B Silica Gel Cleanup

Lab Sample ID: MB 720-79041/1-A Client Matrix: Solid Dilution; 1.0

Analysis Batch: 720-79101 Prep Batch: 720-79041 Units: ma/Ka

Instrument ID: CHDRO6 Lab File ID: FID1000020.D Initial Weight/Volume: 30.20 g Final Weight/Volume: 2 mL

Date Analyzed: 10/01/2010 1431 Date Prepared: 09/30/2010 1126

p-Terphenyl

Date Prepared:

Date Prepared:

Injection Valume: 1 uL Column ID: PRIMARY

Analyte Result Qual RL Diesel Range Organics [C10-C28] ND 0.99 Motor Oil Range Organics [C24-C36] ND 50 Surrogate % Rec Acceptance Limits Capric Acid (Surr) 0 - 5

Ω

86

Lab Control Sample/ Lab Control Sample Duplicate Recovery Report - Batch: 720-79041

Method: 8015B Preparation: 3550B Silica Gel Cleanup

46 - 115

LCS Lab Sample ID: LCS 720-79041/2-A Analysis Batch: 720-79101 Client Matrix: Solid Prep Batch: 720-79041 Dilution: 1.0 Units: mg/Kg Date Analyzed: 10/01/2010 1503 09/30/2010 1126

Instrument ID: CHDRO6 Lab File ID: FID1000021.D Initial Weight/Volume: 30.22 g Final Weight/Volume: 2 mL Injection Volume: 1 ul Column ID: PRIMARY

LCSD Lab Sample ID: LCSD 720-79041/3-A Client Matrix: Solid Dilution: 1.0 Date Analyzed: 10/01/2010 1524

09/30/2010 1126

Analysis Batch: 720-79101 Prep Batch: 720-79041 Units: mg/Kg

Instrument ID: CHDRO6 Lab File ID: FID1000022.D Initial Weight/Volume: 30.24 g Final Weight/Volume: 2 mL 'Injection Volume: 1 uL

PRIMARY

Column ID:

% Rec. Analyte LCS LCSD Limit RPD RPD Limit LCS Qual LCSD Qual Diesel Range Organics [C10-C28] 86 45 - 115 4 LCSD % Rec Surrogate LCS % Rec Acceptance Limits 103 p-Terphenyl 98 46 - 115

TestAmerica San Francisco Page 75 of 94 11/12/2010 TestAmerica San Francisco Page 76 of 94 11/12/2010

Client: AMEC Geomatrix Inc.

Job Number: 720-30837-1

Matrix Spike/ Matrix Spike Duplicate Recovery Report - Batch: 720-79041

09/30/2010 1126

Method: 8015B Preparation: 3550B Silica Gel Cleanup

MS Lab Sample ID: 720-30837-6 Analysis Batch: 720-79102 Client Matrix: Solid Prep Batch: 720-79041 Dilution: 10 Date Analyzed: 10/01/2010 1737 09/30/2010 1126 Date Prepared:

Instrument ID: CHDRO6 Lab File ID: FID2000028.D Initial Weight/Volume: 30.16 g Final Weight/Volume; 2 mL Injection Volume: 1 uL Column ID: PRIMARY

MSD Lab Sample ID: 720-30837-6 Client Matrix: Solid Dilution: 1.0 Date Analyzed: 10/01/2010 1759

Date Prepared:

Analysis Batch: 720-79102 Prep Batch: 720-79041

Instrument ID: CHDRO6 Lab File ID: FID2000029.D Initial Weight/Volume: 30.18 g Final Weight/Volume: 2 mL Injection Volume: 1 uL Column ID: PRIMARY

% Rec. Analyte MS MSD Limit RPD Limit MS Qual MSD Qual Diesel Range Organics [C10-C28] 57 58 50 - 130 Surrogate MS % Rec MSD % Rec Acceptance Limits p-Terphenyl 93 46 - 115

Quality Control Results Job Number: 720-30837-1

Client: AMEC Geomatrix Inc.

Method Blank - Batch: 720-79118

Method: 8015B Preparation: 3510C SGC Dissolved

Lab Sample ID: MB 720-79115/1-C Client Matrix: Water Dilution: Date Analyzed: 10/04/2010 0955 Date Prepared: 10/01/2010 1004

Analysis Batch: 720-79205 Prep Batch: 720-79118 Units: ug/L

Instrument ID: CHDRO5 Lab File ID: 1004105a_009.d Initial Weight/Volume: 1000 mL Final Weight/Volume: 2 mL

Injection Volume: 1 ul. Column ID: PRIMARY

Analyte	Result	Qual	MDL	RL
Diesel Range Organics [C10-C28]	18.6	J	10	50
Motor Oil Range Organics [C24-C36]	ND		130	300
Surrogate	% Rec		Acceptance Limits	•
Capric Acid (Surr)	0.1		0 - 5	
p-Terphenyl	94		31 - 150	

Lab Control Sample/ Lab Control Sample Duplicate Recovery Report - Batch: 720-79118

Method: 8015B Preparation: 3510C SGC Dissolved

LCS Lab Sample ID: LCS 720-79115/2-C Client Matrix: Water Dilution: 1.0 Date Analyzed: 10/04/2010 0909 Date Prepared: 10/01/2010 1004

Analysis Batch: 720-79205 Prep Batch: 720-79118 Units: ug/L

Instrument ID: CHDRO5 Lab File ID: 1004105a 007.d Initial Weight/Volume: 1000 mL Final Weight/Volume: 2 mL Injection Volume: 1 uL Column ID: PRIMARY

LCSD Lab Sample ID: LCSD 720-79115/3-C Client Matrix: Water Ditution: 1.0

10/04/2010 0932

10/01/2010 1004

Date Analyzed:

Date Prepared:

Analysis Batch: 720-79205 Prep Batch: 720-79118 Units: ug/L

Instrument ID: CHDRO5 Lab File ID: 1004105a 008.d Initial Weight/Volume: 1000 mL Final Weight/Volume: 2 mL Injection Volume: 1 uL PRIMARY Column ID:

% Rec. Analyte LCS LCSD Limit RPD RPD Limit LCS Qual LCSD Qual Diesel Range Organics [C10-C28] 66 58 32 - 119 12 35 Surrogate LCS % Rec LCSD % Rec Acceptance Limits p-Terphenyl 91 88 31 - 150

TestAmerica San Francisco

Page 77 of 94

11/12/2010

TestAmerica San Francisco

Page 78 of 94

RL

1.0

50

Client: AMEC Geomatrix Inc. Job Number: 720-30837-1

Method Blank - Batch: 720-79235

Method: 8015B Preparation: 3550B Silica Gel Cleanup

Lab Sample ID: MB 720-79235/1-A Client Matrix: Solid Dilution: 10 Date Analyzed: 10/05/2010 0706

Analysis Batch: 720-79206 Prep Batch: 720-79235

Result

Units: mg/Kg

Instrument ID: CHDRO5 Lab File ID: 1004105b_061.d Initial Weight/Volume: 30.12 g Final Weight/Volume: 2 ml. Injection Volume: 1 uL

Date Prepared: 10/04/2010 1427

Column ID: PRIMARY

Diesel Range Organics [C10-C28] Motor Oil Range Organics [C24-C36] Surrogate

ND ND % Rec Acceptance Limits

Qual

Capric Acid (Surr) p-Terphenyl

Analyte

0 - 5 46 - 115

Lab Control Sample/ Lab Control Sample Duplicate Recovery Report - Batch: 720-79235

Method: 8015B Preparation: 3550B Silica Gel Cleanup

LCS Lab Sample ID: LCS 720-79235/2-A Client Matrix: Solid Dilution: 1.0

Analysis Batch: 720-79206 Prep Batch: 720-79235 Units: mg/Kg

0.2

Instrument ID: CHDRO5 Lab File ID: 1004105b 059.d 1 uL

Date Analyzed: 10/05/2010 0619 10/04/2010 1427 Date Prepared:

Initial Weight/Volume: 30.21 g Final Weight/Volume: 2 mL Injection Volume: Column ID: PRIMARY

LCSD Lab Sample ID: LCSD 720-79235/3-A Client Matrix: Solid Dilution: 1.0 Date Analyzed: 10/05/2010 0642 Date Prepared: 10/04/2010 1427

Diesel Range Organics [C10-C28]

Surrogate

p-Terphenyl

Analysis Batch: 720-79206 Prep Batch: 720-79235 Units: mg/Kg

Instrument ID: CHDRO5 Lab File ID: 1004105b_060.d Initial Weight/Volume: 30,43 g Final Weight/Volume: 2 mL Injection Volume: 1 uL Column ID: PRIMARY

Analyte LCS

% Rec. LCSD Limit RPD Limit LCS Qual LCSD Qual 85 45 - 115 LCS % Rec LCSD % Rec Acceptance Limits 103 100 46 - 115

Quality Control Results

1 uL

PRIMARY

Job Number: 720-30837-1

Client: AMEC Geomatrix Inc.

Matrix Spike/

Matrix Spike Duplicate Recovery Report - Batch: 720-79235

Preparation: 3550B Silica Gel Cleanup

Method: 8015B

Injection Volume:

Column ID:

MS Lab Sample ID: 720-30865-A-3-D MS Analysis Batch: 720-79276 Client Matrix:

Solid 1.0

Prep Batch: 720-79235

Dilution: Date Analyzed: Date Prepared:

Client Matrix:

Analyte

10/05/2010 1125 10/04/2010 1427

MSD Lab Sample ID: 720-30865-A-3-E MSD Analysis Batch: 720-79276 Prep Batch: 720-79235

% Rec.

MSD

MS

Dilution: 1.0 Date Analyzed: 10/05/2010 1147 Date Prepared: 10/04/2010 1427

Solid

Instrument ID: CHDRO6 Lab File ID: FID1000013.D

Initial Weight/Volume: 30.30 g Final Weight/Volume: 2 mL Injection Volume: 1 uL PRIMARY

Instrument ID: CHDRO6

Lab File ID: FID1000012.D Initial Weight/Volume: 30.42 g

Final Weight/Volume: 2 mL

Column ID:

RPD Limit MS Qual MSD Qual

Diesel Range Organics [C10-C28] NaN 50 - 130 28 NaN Surrogate MS % Rec MSD % Rec Acceptance Limits p-Terphenyl 93 93 46 - 115

Limit

TestAmerica San Francisco Page 79 of 94 11/12/2010 TestAmerica San Francisco Page 80 of 94 11/12/2010

Client: AMEC Geomatrix Inc.

Job Number: 720-30837-1

Method Blank - Batch: 720-79363

Method: 8015B Preparation: 3510C SGC Silica Gel Cleanup

Lab Sample ID: MB 720-79363/1-A Client Matrix: Water

Date Prepared: 10/06/2010 0810

Dilution: 1.0 Date Analyzed: 10/07/2010 1047 Analysis Batch: 720-79456 Prep Batch: 720-79363

Units: ua/L

Instrument ID: CHDRO5 Lab File ID: 1007105b 010.d Initial Weight/Volume: 1000 mL Final Weight/Volume: 2 mL Injection Volume: 1 uL Column ID: PRIMARY

Analyte Result Qual RL Diesel Range Organics [C10-C28] ND 50 Motor Oil Range Organics [C24-C36] ND 300 Surrogate % Rec Acceptance Limits Capric Acid (Surr) 0.2 0 - 5 p-Terphenyl 31 - 150

Lab Control Sample/ Lab Control Sample Duplicate Recovery Report - Batch: 720-79363

Method: 8015B Preparation: 3510C SGC Silica Gel Cleanup

Instrument ID: CHDRO5

LCS Lab Sample ID: LCS 720-79363/2-A Client Matrix: Water Dilution: 1.0 10/07/2010 1110 Date Analyzed:

Date Prepared:

Date Prepared:

Analysis Batch: 720-79456 Prep Batch: 720-79363 Units: ug/L

Lab File ID: 1007105b 011.d Initial Weight/Volume: 1000 mL Final Weight/Volume: 2 mL Injection Volume: Column ID: PRIMARY

LCSD Lab Sample ID: LCSD 720-79363/3-A Client Matrix: Water Dilution: 1.0 Date Analyzed: 10/07/2010 1134

10/06/2010 0810

10/06/2010 0810

Analysis Batch: 720-79456 Prep Batch: 720-79363 Units: ug/L

Instrument ID: CHDRO5 Lab File ID: 1007105b_012,d Initial Weight/Volume: 1000 mL Final Weight/Volume: 2 mL Injection Volume: 1 ut Column ID: PRIMARY

% Rec Analyte LCS LCSD RPD Limit LCS Qual LCSD Qual Diesel Range Organics [C10-C28] 64 32 - 119 Surrogate LCS % Rec LCSD % Rec Acceptance Limits p-Terphenyl 102 116 31 - 150

Quality Control Results Job Number: 720-30837-1

Client: AMEC Geomatrix Inc.

Method Blank - Batch: 720-79386

Method: 8015B Preparation: 3510C SGC Silica Gel Cleanup

Lab Sample ID: MB 720-79386/1-A Client Matrix: Water

Dilution:

Date Analyzed: 10/07/2010 0934 Date Prepared: 10/06/2010 1311 Analysis Batch: 720-79456 Prep Batch: 720-79386 Units: ug/L

Instrument ID: CHDRO5 Lab File ID: 1007105b_007.d Initial Weight/Volume: 1000 mL Final Weight/Volume: 2 mL Injection Volume: 1 uL

Column ID: PRIMARY

Analyte Result RL Diesel Range Organics [C10-C28] ND 50 Motor Oil Range Organics [C24-C36] ND 300 Surrogate % Rec Acceptance Limits Capric Acid (Surr) 0.2 0-5 31 - 150 p-Terphenyl 99

Lab Control Sample/ Lab Control Sample Duplicate Recovery Report - Batch: 720-79386 Method: 8015B Preparation: 3510C SGC Silica Gel Cleanup

LCS Lab Sample ID: LCS 720-79386/2-A Client Matrix: Water Dilution: Units: ua/L Date Analyzed: 10/07/2010 1000 Date Prepared: 10/06/2010 1311

10/06/2010 1311

Analysis Batch: 720-79456 Instrument ID: CHDRO5 Prep Batch: 720-79386 Lab File ID: 1007105b_008.d Initial Weight/Volume: 1000 mL Final Weight/Volume: 2 mL Injection Volume:

Column ID:

1 uL PRIMARY

LCSD Lab Sample ID: LCSD 720-79386/3-A Client Matrix: Water Dilution: 1.0 Date Analyzed: 10/07/2010 1024

Date Prepared:

Analysis Batch: 720-79456 Prep Batch: 720-79386 Units: ug/L

Instrument ID: CHDRO5 Lab File ID: 1007105b 009.d Initial Weight/Volume: 1000 mL Final Weight/Volume: 2 mL Injection Volume: 1 uL Column ID: PRIMARY

% Rec. Analyte LCS LCSD RPD RPD Limit LCS Qual LCSD Qual Limit Diesel Range Organics (C10-C28) 56 64 32 - 119 13 Surrogate LCS % Rec LCSD % Rec Acceptance Limits p-Terphenyl 99 104 31 - 150

TestAmerica San Francisco

Page 81 of 94

11/12/2010

TestAmerica San Francisco

Page 82 of 94

Client: AMEC Geomatrix Inc.

Job Number: 720-30837-1

Method Blank - Batch: 720-79232

Method: 7199 Preparation: N/A

Lab Sample ID: MB 720-79232/2 Client Matrix: Water

Analysis Batch: 720-79232 Prep Batch: N/A Units: ua/L

Instrument ID: IC3

Dilution: 1.0 Date Analyzed: 09/28/2010 1606 Lab File ID: 092810.csv Initial Weight/Volume: 1.0 mL Final Weight/Volume: 10 mL

Date Prepared: N/A

Analyte

Cr (VI)

Result ND

RL 0.50

Lab Control Sample/

Lab Control Sample Duplicate Recovery Report - Batch: 720-79232

Method: 7199 Preparation: N/A

LCS Lab Sample ID: LCS 720-79232/3

Client Matrix; Water Dilution: 1.0

Analysis Batch: 720-79232 Prep Batch: N/A

Date Analyzed: 09/28/2010 1616 Date Prepared: N/A

Units: ug/L

Instrument ID: IC3

Lab File ID: 092810.csv

Initial Weight/Volume: 1.0 mL

Final Weight/Volume: 10 mL

LCSD Lab Sample ID: LCSD 720-79232/4

Client Matrix:

Analyte

Cr (VI)

Water

Dilution: 1.0 09/28/2010 1626

Date Analyzed: Date Prepared:

N/A

Analysis Batch: 720-79232

Prep Batch: N/A Units: ua/L

Instrument ID: IC3 Lab File ID: 092810.csv Initial Weight/Volume: 1.0 mL Final Weight/Volume: 10 mL

% Rec.

LCSD Limit 101 85 - 115

RPD Limit LCS Qual LCSD Qual

Client: AMEC Geomatrix Inc.

Matrix Spike/ Matrix Spike Duplicate Recovery Report - Batch: 720-79232

MS Lab Sample ID: 720-30814-A-3 MS Analysis Batch: 720-79232 Prep Batch: N/A Water

1.0

Date Analyzed: 09/28/2010 1936 Date Prepared:

Client Matrix:

Client Matrix:

Date Analyzed:

Date Prepared:

Dilution:

Dilution:

N/A

MSD Lab Sample ID: 720-30814-A-3 MSD

Water

1.0 09/28/2010 1947

Quality Control Results

Job Number: 720-30837-1

Method: 7199 Preparation: N/A

Instrument ID: IC3 Lab File ID: 092810.csv

Initial Weight/Volume: 1.0 mL Final Weight/Volume: 10 mL

Instrument ID: IC3

Lab File ID: 092810.csv Initial Weight/Volume: 1.0 mL

Final Weight/Volume: 10 mL

Analyte	MS	MSD	Limit	RPD	RPD Limit	MS Qual	MSD Qual	
Cr (VI)	97	100	80 - 120	3	20			

Analysis Batch: 720-79232

Prep Batch: N/A

TestAmerica San Francisco

Page 83 of 94

11/12/2010

TestAmerica San Francisco

Page 84 of 94

17461 Derian Avenue, Suite 100, Irvine, CA 92614 (949) 261-1022 Fax(949) 260-3297

LABORATORY REPORT

Prepared For: TestAmerica San Francisco

Project: 720-30837

1220 Quarry Lane

Pleasanton, CA 94566

Attention: Dimple Sharma

Sampled: 09/28/10 Received: 09/30/10

Issued: 10/05/10 18:27

NELAP #01108CA California ELAP#2706 CSDLAC #10256 AZ #AZ0671 NV #CA01531

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight hasis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of TestAmerica and its client. This report shall not be reproduced, except in full, without written permission from TestAmerica. The Chain of Custody. I page, is included and is an integral port of this report.

This entire report was reviewed and approved for release.

SAMPLE CROSS REFERENCE

Page 85 of 94

LABORATORY ID	CLIENT ID	MATRIX
ITI2549-01	SB-06	Water
IT12549-02	SB-05	Water

Reviewed By:

TestAmerica Irvine Steven Garcia

Project Manager

ITI2549 <Par/12/2010

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue, Suite 100, Tryine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

TestAmerica San Francisco 1220 Quarry Lane

Sample ID: ITI2549-01 (SB-06 - Water) Reporting Units: ug/l

Sample ID: ITI2549-02 (SB-05 - Water)

Reporting Units: ug/l

Project ID: 720-30837 Report Number: 1TI2549

Sampled: 09/28/10 Received: 09/30/10

10/2/2010 10/2/2010

1220 Quarry Lane
Pleasanton, CA 94566
Attention: Dimple Sharma

Analyte

Chromium

.......

1010140

2.0

Method

EPA 6020

EPA 6020

METALS

Reporting Sample Dilution Date Date Data
Batch Limit Result Factor Extracted Analyzed Qualifiers

10J0140 10 250 5 10/2/2010 10/3/2010

TestAmerica Irvine

Steven Garcia Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without perfect permitteen of TestAmerica.

ITI2549 < Page 2 45/52010

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue, Suite 100, Trvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

TestAmerica San Francisco 1220 Quarry Lane Pleasanton, CA 94566 Attention: Dimple Sharma Project ID: 720-30837

Sampled: 09/28/10

Report Number: 1TI2549

Received: 09/30/10

METHOD BLANK/QC DATA

METALS

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 10J0140 Extracted: 10/02/10										
Blank Analyzed: 10/02/2010 (10J0140-B	LKI)									
Chromium	ND	2.0	ug/l							
LCS Analyzed: 10/02/2010 (10J0140-BS	I)									
Chromium	81.0	2.0	ug/l	80.0		101	80-120			
Matrix Spike Analyzed: 10/02/2010 (10J	0140-MS1)				Source: I	TJ0043-0	2			
Chromium	117	2.0	ug/l	80.0	43.9	91	75-125			
Matrix Spike Dup Analyzed: 10/02/2010	(10J0140-M	ISD1)			Source: I	TJ0043-0	2			
Chromium	HI	2.0	ug/l	0.08	43.9	83	75-125	6	20	

TestAmerica Irvine

Steven Garcia Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, with my test prints from from TestAmerica.

IT12549 <Pagy 12/2010

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue, Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

TestAmerica San Francisco 1220 Quarry Lane Project ID: 720-30837

Sampled: 09/28/10

Pleasanton, CA 94566 Attention: Dimple Sharma

ND

Report Number: IT12549

Received: 09/30/10

DATA QUALIFIERS AND DEFINITIONS

Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.

RPD Relative Percent Difference

TestAmerica Irvine Steven Garcia Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without residence of TestAmerica.

ITI2549 < Page 12/2010

17461 Derian Avenue, Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

TestAmerica San Francisco 1220 Quarry Lane Project ID: 720-30837

Report Number: 1T12549

Sampled: 09/28/10 Received: 09/30/10

Pleasanton, CA 94566 Attention: Dimple Sharma

Certification Summary

TestAmerica Irvine Method EPA 6020

Matrix Water

Nelue

California X

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for TestAmerica may be obtained by contacting the laboratory or visiting our website at www.testamericainc.com

TestAmerica Irvine

Steven Garcia Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, with weak to pertise only an TestAmerica.

1T12549	<p#912 2010<="" th=""></p#912>

TestAmerica San Francisco																				
1220 Quarry Lane				Chain d		٠		٠	ъ.										TestA	merica
Pleasanton, CA 94566			1	Snain c	,, (·us	Sto	aу	Κŧ	co	ra				_					
Phonia (925) 484-1919 Fax (925) 600-3002										τ	+	T	25	'4	4				THE FLADER SHIP	WANDHMENTAL TESTING
Client Information (Sub Contract Lab)	Sampler,				mpour, Afseneh						Carger Tracking No(s).				720-10115.1					
Shipping/Receiving	Phono			E-Ma afsa		alim	_ Bruoq	test:	lamer	icaino	.ccm								Page 1 of 1	
Company: TestAmerica Laboratories, Inc.					Г		-	,		naly				-		_			Job #. 720-30837+1	
Address.	Due Date Reques	ited:			롼			_	T^	Taly	515	Xeq.	108	eu.		$\overline{}$	_	E	Preservation Co	dos.
01/	10/4/2010 TAT Requested for	dayak:			8			1				-)	- [1		A-HCL	W - Hexane
Irvine State, Zio	<u> </u>							1	1	П		- 1		- 1			1		B - NaOH C - Zn Accisio	N - None O - AsNaO2
CA, 92614-5817	l				3			1		H			- [ļ	1	ł	100	D - Nims Acc E - NaHSO4	P - Ne2O43 O - Ne2SO3
Phone. 949-261-1022(Tel) 949-261-1228(Fax)	PO#:				CHOROGODO (1.	100	F - MoOH G - America	R - Na252503 S - H2504
Email .	WO#;				or No.	H.	,			H	Ì			ļ				i.	H - Ascertic Acid	T - TSP Codecatrydrate U - Acezone
Project Name: Crown Chevrolet	Project #;			-	T .	5	3	1	1			- {						ě	J - DI Water K - SOTA L - EDA	V - MCAA W - ph 4-5
Site:	72006900 550w				2	1 3	3	ľ		П		- 1	1				1	T C	Other:	Z - other (specify)
			,		ž.	1			1	П	- 1				1			20	Usiter:	
		Sample	Sample Type (C=comp,	Matrix (mouse, e-sec,	Field Filtered Sample (Yes or N.	SURGONTRACT												Total Number of Containers		
Sample Identification - Client ID (Lab ID)	Sample Date		Gegrab)	Drussides, BTrfissor, ArAv)						H								Total D	Special in	structions/Note;
(0.00)	\sim	><	Preserv	illon Code	XD	₫	100		30				<i>-</i>	30		1	郷		0.50	250
SB-06 (720-30837-6)	9/28/10	11.05 Pacific		Water		×	4						1		I	Ī		43		
SB-05 (720-30837-14)	9/28/10	14:20 Pacific		Water	4	×	4	L	_	Ш		\perp	_	1	┸	L	L	á		
			<u> </u>		┸	L		L	L			\perp	1							
					┸		L	L	<u>. </u>		[-					1	Г		
	1				\perp	Į									Т	I				
	1							L.			T	Т	1			Τ	Т			0 //0
					Т	Τ			Г			T	T	Т	T	Т	1			3/3
					Т	Т			Г	П	\neg	T	T		Т		1			4,
					7	Т					_	1	1	T	_	T	T	Ť		
					1	1	Т	1	1	Ħ	\dashv	1	+	7	_	t	1	160		
		T			+	+					-+	+	+	†	+	t	1	٠.		
Possible Hazard Identification				I	5	amp	lo Dis	0053	I/A	fee n	nay t	e na.	:035	ed if	samp	los a	re re	taln	ed longer than	month)
Oeliverable Requested: I, II, III, IV, Other (specify)	ison B Unk	nown 🗀	Rediologica	ol	S	pecia	Retur	1 To uctio	Clien	C Rec	uirei	Di:	pos	el By	Lab			Arci	nive For	Months
Emply Kit Relinquished by:		Date:			Time	-							Tu.	alhod	of Ship	mani				
Relinquished by:	Date Grane:	70 (700	COUNTY !		Ros	Cerves	y:	P			,			TOsh	Vier.	-	7-		Company
Reinquished by.	Cole/Time:	10 1	,	Company		Res	Cerved E	1	150	w		1_			Case	4	φ	0	1/2/5	Company TAI
Reinquened by:	Date/Tone:	~		Compuny		Rei	cerved b)F			_		_		Date	√Time				Company
Custody Seals Intact: Custody Seal No.:						Cos	ole: Ten	npsrat	hure(s)	*C and	Othe	Rem	17	-2	1	-Q				20100

TURNAROUND TIME STANDARD LABORAT SAMPLE SHIPMENT METHOD. LABORAT LABORAT SAMPLE SHIPMENT METHOD. LABORAT	TOPY PHONE MUNDER: ANALY ANALY ANALY ANALY ANALY ANALY ANALY	AMEL GE	eama frix	REPORTING REQUIREMENTS: GEOTRACKER REQUIRED	(YES) NO
SAMPLE SKIPMENT METHOD: SAMPLE SKIPMENT METHOD: LABORAT LABORAT	ANALY		CEMMA THE	GEOTRACKER REQUIRED	VES) NO
SAMPLE SHIPMENT METHOD. LABORAT LABORAT SAMPLE SHIPMENT METHOD. SAMPLE SHIPMENT METHOD.	ANALY	'SES		GEOTRACKER REQUIRED	(YES) NO
SAMPLERS (SIGNATURE):	ANALY	SES		GEOTRACKER REQUIRED	
SAMPLERS (SIGNATURE):	ANALY	SES			
Did F				SITE SPECIFIC GLOBAL ID NO. A	TITT
THE STATE OF THE S	5]			9	
	प्रयाश्वा			المتا	2
	PAIT			ON NO N	Osoled Wishing Cooled ADDITIONAL COMMENTS COMMENTS
SAMPLE 3	PATE CARACTER CARACTE		CONT	AINER (S), Water (V). Preservet	B S S ADDITIONAL
DATE TIME NUMBER	불투합의		TYPE A	ND SIZE	PROPERTY ADDITIONAL COMMENTS
9/28 11:05 513-06		L	Poly 2	50 ML WN HNO3	3 4 N 1
11:05 57-06			Poly 2		YNI
11:55 813-12-12	XXL		802914		YNI
12:05 33-05-11.5	XX		85₹ 910	SS Jar SN None	- Y N 1
13:40 88-12	X			Amberjan W N HCL	Y N2
				W &U None	YN2 filler@ lab
			4	w or More	T N 2
14:00 SB-09-3.0	XX		Boz glass		Y N I HOLD
14:05 513-09-4.9	X X		1 1 1	5 N none	2 N 1
14:20 SB-05	X			MNHU	Y N2
14:20	\times			WN None	1 Na Filter plab
14:20				WN None	
IN:90				W N 1400	
14:79				W N None	erWil
	SCHNIKI 41/2	T , I			+
RELINQUISHED BY: DATE TIME RECE	ETVED BY:	DITTE THE	TOTAL NUMBER OF CONTA	INERS:	20
alou in sign	Viartires	17/	SAMPLING COMMENTS:		· ·
RINTED NAME: Grenskin 9/29/17:04 PRINTE	all lost-	1/28/ 1722	Seep	cyc 1.43	
Anael Geometrix	TOSE	1/01/	,	0	
STATOTAL POLICE	TURE: Muller	10/			
RINTED NAME: Trans 100 1860 PRINTE COMPANY	ED NAME: (Ley	1841			
OMPANY: COMPA	ANY:	124/10 1800			
IGNATORE: I SIGNAT		_	2101 Webster Str		
PRINTE PRINTE	ED NAME:	_	Oakland, Californ Tel 510.663.4100 F	a 94612-3066	Geomatrix

PROJECT	NAME: CRO	MN CHEUROLE	•	-) - 3	OB.	5				DATE: O			PAGE	1	OF 3
PROJECT NUMB	SER: 018 101 6		LABORAT	TORY NA	ME: TA	SF	CLIENT INF	ORMATION:			REPORTING	REQUIREMEN	TS.			
RESULTS TO:	A. PATTO		LABORAT	TORY AD	DRESS:		Ance	Ge	omatri.	×						
TURNAROUND T	Standar		1				1		<u> </u>	· · · · · · · · · · · · · · · · · · ·						
SAMPLE SHIPME	ENT METHOD:	0/	LABORA	TORY CO	NTACT:			-			GEOTRACKE	o occuper.			(YES)	NO
			LABORAT	TORY PH	NTACT: ONE NUMBI	R:	<u> </u>								100	
			-			A NIA I N	VCEC.		*		I SITE SPECIFI	C GLOBAL ID	NO	Т	TT	
SAMPL	ERS (SIGN	IATURE):	- T9	er i		ANAL'	ISES									
7)	Con Cylin	HE.	TPHA, MTBE	18	H,M							Water (W). /), or Other (O)	Proservative Type		of Containers	
DATE	TIME	SAMPLE NUMBER	VOC, TRHS,	TPHA /ma	8 AH Chromium						ITAINER AND SIZE	Soil (S), W Vapor (V), Filtered	Proservi	Cooled MS/MSD	No. of C	ADDITIONAL COMMENTS
1/28/2010	730 SB-1	0-11.5		X	X					807	glass jar	SN	None	YN		
1		10-9.0		X			1				1	SW	None	YN	TI	Hold
	 	10-10.5	1	×								3 N	None	YV		Itold
		10-40		\searrow	X							SA	Mabac	N	Til	17010
	8:48 SB-		1	×						37.07	Amber Jan		+	YN	1,1	
	8:48 SUB	1	 	X			+		11	72.00	1	WN		1/1/		-
-	B: A3.	 	-	X	\dashv	++			\vdash		1	WN	11 /	1 1		Filtera lub
	8:42		+	X	$\dashv \dashv$	-			1-1-			WN	—	1 1/4		Filter@ lab
-	78:48	 	++		x		+		\vdash		 	WN	_	YN	+	ricia (a)
	8:48			+	\ominus			\vdash			-	1 1	+	1 //	+++	
	1 - 1	<u> </u>		\downarrow	A		++	\vdash		10-	**	WN	1-0-1-	1 1'	\rightarrow	
	10:06 SB-1		4-4	+>	A - C	++	1 -				glass jar	5 ~		YN	-+	
	10:25 313-				$^{\lambda \downarrow \downarrow}$		++	<u> </u>			glass jar	S W	None	YN	1 '	
	11:05 SB-		4-4-			\dashv	+	<u> </u>	 	52. oz	Amber Jar			7 1		en
	11:05 SB-			$\perp \times$				Щ			ļ	WW	None			filter@lab
4	11:05 SB	-06		للسل	<u> </u>		1,1_	Ļ	<u> </u>	1	Ť	WN	None	N N	2	
	JISHED BY:	DATE TIME	REC	EIVE	D BY:			TIME	<u> </u>	IUMBER OF COI	NTAINERS:				118	
SIGNATURE	165	01	SIGNA	EN C	Cort	wes	9/28/		SAMPLI	NG COMMENTS:		d	20001	_ =	=5	ラ
PRINTED NA	ME: Greenstein	7/28/17:06	PRINTE	- NAY	7 artu	225)		1777	* Si,	tca Gel	Prom G	- TP	Holling	,		
COMPANY:	Geomatrix	9/27/10/7:06	COMPA	ANY:	200		_ //	1		BK, MIE, TPK			7			
SIGNATURE	Magazia	9/	SIGNA	TURE:	I A	یا کرر			Thud	al Th	H 1/10	L. Gra	15	5	40	5.72 3.33
PRINTEDNA	ortinos)	9/2 1/2 1800	PRINTE	NAM.	1E: / 2	۸.	9/28/	10.	P4#		70C 51H	7 00.				
COMPANY:	Orthon)	— '¨	COMPA	ANY	<u> </u>	<u> </u>	- 1º	186	Chosa		3020					
SIGNATURE:	3 . 1		SIGNA		. () (0			1	1	1 Webster		Floor	1			
PRINTED NA	ME:	-	PRINTE	ED NAM	IE:		_		1	kland, Califo			1		٦۵,	omatrix
COMPANY:			COMPA	0 B13/1			\dashv	ł	1	0.663.4100			1224			JIIIaci IA

Login Sample Receipt Check List

Client: AMEC Geomatrix Inc.

Job Number: 720-30837-1

Login Number: 30837 Creator: Mullen, Joan List Number: 1 List Source: TestAmerica San Francisco

Comment

Question	T / F/ NA
Radioactivity either was not measured or, if measured, is at or below background	N/A
The cooler's custody seal, if present, is intact.	N/A
The cooler or samples do not appear to have been compromised or tampered with. Samples were received on ice.	True True
Cooler Temperature is acceptable.	True
Cooler Temperature is acceptable. Cooler Temperature is recorded.	
COC is present.	True True
·	
COC is filled out in ink and legible.	True
COC is filled out with all pertinent information.	True
Is the Field Sampler's name present on COC?	True
There are no discrepancies between the sample IDs on the containers and the COC.	True
Samples are received within Holding Time.	True
Sample containers have legible labels.	True
Containers are not broken or leaking.	True
Sample collection date/times are provided.	True
Appropriate sample containers are used.	True
Sample bottles are completely filled.	True
Sample Preservation Verified	True
There is sufficient vol. for all requested analyses, inct, any requested MS/MSDs	True
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True
If necessary, staff have been informed of any short hold time or quick TAT needs	True
Multiphasic samples are not present.	True
Samples do not require splitting or compositing.	True

TestAmerica San Francisco

Page 94 of 94

11/12/2010

ANALYTICAL REPORT

Job Number: 720-30837-2 Job Description: Crown Chevrolet

For: AMEC Geomatrix Inc. 2101 Webster Street, 12th Floor Oakland, CA 94612 Attention: Avery Patton

Afsaneh Salimpour Project Manager I afsaneh.salimpour@testamericainc.com 11/05/2010 Revision: 1

CA ELAP Certification # 2496

The Chain(s) of Custody are included and are an integral part of this report.

The report shall not be reproduced except in full, without the written approval of the laboratory. The client, by accepting this report, also agrees not to alter any reports whether in the hard copy or electronic format and to use reasonable efforts to preserve the reports in the form and substance originally provided by TestAmerica.

A trip blank is required to be provided for volatile analyses. If trip blank results are not included in the report, either the trip blank was not submitted or requested to be analyzed.

TestAmerica Laboratories, Inc.
TestAmerica San Francisco 1220 Quarry Lane, Pleasanton, CA 94566
Tel (925) 484-1919 Fax (925) 600-3002 www.testamericainc.com

Job Narrative 720-30837-2

Comments

No additional comments.

Receipt

All samples were received in good condition within temperature requirements.

GC/MS VOA

No analytical or quality issues were noted.

GC Semi VOA

All samples for TPH(Diesel and Motor oil) were analysed with Silica Gel clean up using Method 3630C. No analytical or quality issues were noted.

Organic Prep

No analytical or quality issues were noted.

11/05/2010

Page 2 of 29

EXECUTIVE SUMMARY - Detections

Client: AMEC Geomatrix Inc.

Job Number: 720-30837-2

Lab Sample ID Analyte	Client Sample ID	Result / Qualifier	Reporting Limit	Units	Method	
720-30837-4	SB-10-4.0					
Silica Gel Cleanup Diesel Range Orga		1.1	1.0	mg/Kg	8015B	

METHOD SUMMARY

Client: AMEC Geomatrix Inc.

Job Number: 720-30837-2

Description	Lab Location	Method	Preparation Method
Matrix Solid			
8260B / CA LUFT MS	TAL SF	SW846 8260	B/CA_LUFTMS
Closed System Purge and Trap	TAL SF		SW846 5035
Diesel Range Organics (DRO) (GC)	TAL SF	SW846 8015	В
Ultrasonic Extraction	TAL SF		SW846 3550B

Lab References:

TAL SF = TestAmerica San Francisco

Method References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TestAmerica San Francisco

Page 3 of 29

11/05/2010

TestAmerica San Francisco

Page 4 of 29

METHOD / ANALYST SUMMARY

Client: AMEC Geomatrix Inc.

Job Number: 720-30837-2

Method	Analyst	Analyst ID
SW846 8260B/CA_LUFTMS	Chen, Amy	AC
SW846 8015B	Hayashi, Derek	DH

SAMPLE SUMMARY

Client: AMEC Geomatrix Inc.

Job Number: 720-30837-2

Lab Sample ID	Client Sample ID	Client Matrix	Date/Time Sampled	Date/Time Received
720-30837-2	SB-10-9.0	Solid	09/28/2010 0747	09/28/2010 1800
720-30837-3	SB-10-10.5	Solid	09/28/2010 0748	09/28/2010 1800
720-30837-4	SB-10-4.0	Solid	09/28/2010 0751	09/28/2010 1800
720-30837-12	SB-09-3.0	Solid	09/28/2010 1400	09/28/2010 1800
720-30837-16	SB-05-2.0	Solid	09/28/2010 1135	09/28/2010 1800
720-30837-18	SB-09-6,0	Solid	09/28/2010 1530	09/28/2010 1800
720-30837-19	SB-03-1 3	Solid	09/28/2010 1601	09/28/2010 1800

TestAmerica San Francisco

Page 5 of 29

11/05/2010

TestAmerica San Francisco

Page 6 of 29

Client: AMEC Geomatrix Inc.

Job Number: 720-30837-2

Client Sample ID:

Method:

Dilution:

Preparation:

SB-03-1.3

Lab Sample ID: 720-30837-19 Client Matrix:

Solid

Date Sampled: 09/28/2010 1601 Date Received: 09/28/2010 1800

10041013.D

6.60 g

10 mL

HP7

8260B/CA_LUFTMS 8260B / CA LUFT MS

8260B/CA_LUFTMS Analysis Batch: 720-79201 5035 Prep Batch: 720-79321

Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume:

1.0 10/04/2010 1556 Date Analyzed:

10/04/2010 0800 Date Prepared:

Analyte	DryWt Corrected: N	Result (ug/Kg)	Qualifier	RL
Methyl tert-butyl ether		ND		3.8
Acetone		ND		38
Benzene		ND		3.8
Dichlorobromomethane		· ND		3.8
Bromobenzene		ND		3.8
Chlorobromomethane		ND		15
Bromoform		ND		3.8
Bromomethane		ND		7.6
2-Butanone (MEK)		ND		38
n-Butylbenzene		ND		3.8
sec-Butylbenzene		ND		3.8
tert-Butylbenzene		ND		3.8
Carbon disulfide		ND		3.8
Carbon tetrachloride		ND		3.8
Chlorobenzene		ND		3.8
Chloroethane		ND		7.6
Chloroform		ND		3.8
Chloromethane		ND		7.6
2-Chlorotoluene		ND		3.8
4-Chlorotoluene		ND		3.8
Chlorodibromomethane		ND		3.8
1,2-Dichlorobenzene		ND		3.8
1,3-Dichlorobenzene		ND		3,8
1,4-Dichlorobenzene		ND		3.8
1,3-Dichloropropane		ND		3.8
1,1-Dichloropropene		ND		3.8
1,2-Dibromo-3-Chloropropai	ne	ND		3.8
Ethylene Dibromide		ND		3,8
Dibromomethane		ND		7.6
Dichlorodifluoromethane		ND		7.6
1,1-Dichloroethane		ND		3.8
1,2-Dichloroethane		ND		3.8
1,1-Dichloroethene		ND		3,8
cis-1,2-Dichloroethene		ND		3.8
trans-1,2-Dichloroethene		ND		3.8
1,2-Dichloropropane		ND		3.8
cis-1,3-Dichloropropene		ND		3.8
trans-1,3-Dichloropropene		ND		3.8
Ethylbenzene		ND		3.8
Hexachlorobutadiene		ND		3.8
2-Hexanone		ND		38
Isopropyibenzene		ND		3.8
4-Isopropyltoluene		ND		3.8
Methylene Chloride		ND		7.6
4-Methyl-2-pentanone (MIBI	O	ND		38
Naphthalene	"/	ND		7.6

Page 7 of 29 11/05/2010 TestAmerica San Francisco

Analytical Data

Client: AMEC Geomatrix Inc.

Job Number: 720-30837-2

Client Sample ID:

SB-03-1.3

Lab Sample ID: Client Matrix:

Method:

Dilution:

Preparation:

Date Analyzed:

Solid

720-30837-19

10/04/2010 1556

Date Sampled: 09/28/2010 1601 Date Received: 09/28/2010 1800

8260B/CA_LUFTMS 8260B / CA LUFT MS

Analysis Batch: 720-79201 8260B/CA_LUFTMS 5035

Prep Batch: 720-79321

Lab File ID: 10041013.D Initial Weight/Volume: 6.60 g

73 - 140

72 - 113

Instrument ID:

Final Weight/Volume: 10 mL

HP7

10/04/2010 0800 Date Prepared:

1,2-Dichloroethane-d4 (Surr)

Toluene-d8 (Surr)

1.0

Analyte	DryWt Corrected: N	Result (ug/Kg)	Qualifier	RL
N-Propylbenzene		ND		3.8
Styrene		ND		3.8
1,1,1,2-Tetrachloroethane		ND		3.8
1,1,2,2-Tetrachloroethane		ND		3.8
Tetrachloroethene		ND		3.8
Toluene		ND		3.8
1,2,3-Trichlorobenzene		ND		3.8
1,2,4-Trichlorobenzene		ND		3.8
1,1,1-Trichloroethane		ND		3.8
1,1,2-Trichloroethane		ND		3.8
Trichloroethene		ND		3.8
Trichlorofluoromethane		ND		3.8
1,2,3-Trichloropropane		ND		3.8
1,1,2-Trichloro-1,2,2-trifluoroeth	ane	ND		3.8
1,2,4-Trimethylbenzene		ND		3.8
1,3,5-Trimethylbenzene		ND		3.8
Vinyl acetate		ND		38
Vinyl chloride		ND		3.8
Xylenes, Total		NĎ		7.6
2,2-Dichloropropane		ND		3.8
Gasoline Range Organics (GRO)-C5-C12	ND		190
Surrogate		%Rec	Qualifier	Acceptance Limits
4-Bromofluorobenzene	1.1.1.1.1	95		65 - 117

97

Page 8 of 29 11/05/2010 TestAmerica San Francisco

Client: AMEC Geomatrix Inc.

Job Number: 720-30837-2

Client Sample ID: SB-10-9.0

Lab Sample ID:

Client Matrix:

Method:

Dilution:

Analyte

Surrogate

p-Terphenyl

Capric Acid (Surr)

Preparation:

Date Analyzed:

Date Prepared:

720-30837-2 Solid

Date Sampled: 09/28/2010 0747 Date Received: 09/28/2010 1800

CHDRO6

30.16 g

2 mL

8015B Diesel Range Organics (DRO) (GC)-Silica Gel Cleanup

3550B 1.0

8015B

Analysis Batch: 720-79276

Prep Batch: 720-79235

Instrument ID: Initial Weight/Volume: Final Weight/Volume:

10/05/2010 1913

10/04/2010 1427

DryWt Corrected: N Result (mg/Kg) ND

Diesel Range Organics [C10-C28]

Motor Oil Range Organics (C24-C36)

ND %Rec

90

Qualifier

Qualifier

Injection Volume: Result Type: PRIMARY

RL 0.99

50 Acceptance Limits

0 - 5 46 - 115 **Analytical Data**

Client: AMEC Geomatrix Inc.

Job Number: 720-30837-2

Client Sample ID:

SB-10-10.5

Lab Sample ID: Client Matrix:

Dilution:

Surrogate

Date Analyzed:

Date Prepared:

720-30837-3 Solid

10/05/2010 1935

10/04/2010 1427

Date Sampled: 09/28/2010 0748 Date Received: 09/28/2010 1800

RL

0.99

8015B Diesel Range Organics (DRO) (GC)-Silica Gel Cleanup

8015B Method: Preparation: 3550B

1.0

Analysis Batch: 720-79276 Prep Batch: 720-79235

Instrument ID: CHDRO6 Initial Weight/Volume: 30.45 g Final Weight/Volume: Injection Volume:

2 mL 1 uL Result Type: PRIMARY

Analyte DryWt Corrected: N Result (mg/Kg) Diesel Range Organics [C10-C28] ND Motor Oil Range Organics [C24-C36] ND

Qualifier

%Rec Qualifier Acceptance Limits Capric Acid (Surr) 0 - 5 p-Terphenyl 81 46 - 115

TestAmerica San Francisco Page 9 of 29 11/05/2010 Page 10 of 29 11/05/2010 TestAmerica San Francisco

Client: AMEC Geomatrix Inc.

Job Number: 720-30837-2

SB-10-4.0 Client Sample ID: Lab Sample ID:

Client Matrix:

720-30837-4 Date Sampled: 09/28/2010 0751 Solid Date Received: 09/28/2010 1800

8015B Diesel Range Organics (DRO) (GC)-Silica Gel Cleanup

Method: 80158 Analysis Batch: 720-79276 Instrument ID: CHDRO6 30.12 g Preparation: 3550B Prep Batch: 720-79235 Initial Weight/Volume: Dilution: 1.0 Final Weight/Volume: 2 mL 10/05/2010 1957 Date Analyzed: Injection Volume: 1 uL 10/04/2010 1427 Date Prepared: Result Type: PRIMARY

DryWt Corrected: N Analyte Result (mg/Kg) Qualifier RL Diesel Range Organics [C10-C28] 1.0 Motor Oil Range Organics [C24-C36] ND 50

Surrogate %Rec Qualifier Acceptance Limits Capric Acid (Surr) 0.2 0 - 5 p-Terphenyl 88 46 - 115

Analytical Data

Client: AMEC Geomatrix Inc.

Job Number: 720-30837-2

Client Sample ID:

Date Prepared:

Lab Sample ID:

Client Matrix:

720-30837-12 Solid

SB-09-3.0

Date Sampled: 09/28/2010 1400 Date Received: 09/28/2010 1800

PRIMARY

8015B Diesel Range Organics (DRO) (GC)-Silica Gel Cleanup

Result Type:

Analysis Batch: 720-79277 Method: 8015B Instrument ID: CHDRO6 Preparation: 3550B Prep Batch: 720-79235 Initial Weight/Volume: 30.23 g Dilution: 1.0 Final Weight/Volume: 2 mL 10/05/2010 1807 Date Analyzed: Injection Volume: 1 uL 10/04/2010 1427

DryWt Corrected: N Analyte Result (mg/Kg) Qualifier RL Diesel Range Organics [C10-C28] ND 0.99 Motor Oil Range Organics [C24-C36] ND 50

Surrogate %Rec Qualifier Acceptance Limits Capric Acid (Surr) 0 - 5 p-Terphenyi 96 46 - 115

TestAmerica San Francisco Page 11 of 29 11/05/2010 Page 12 of 29 11/05/2010 TestAmerica San Francisco

Client: AMEC Geomatrix Inc.

Job Number: 720-30837-2

Client Sample ID: SB-05-2.0

Lab Sample ID: 720-30837-16

Client Matrix: Solid Date Sampled: 09/28/2010 1135 Date Received: 09/28/2010 1800

8015B Diesei Range Organics (DRO) (GC)-Silica Gel Cleanup

CHDRO6
ne: 30.18 g
ie: 2 mL
1 uL
PRIMARY

Analyte	DryWt Corrected: N	Result (mg/Kg)	Qualifier	RL
Diesel Range Organics (C10-C	28]	ND		0.99
Motor Oil Range Organics [C2	4-C36]	ND		50

Surrogate	%Rec	Qualifier	Acceptance Limits
Capric Acid (Surr)	0		0 - 5
p-Terphenyl	93		46 - 115

Analytical Data

Client: AMEC Geomatrix Inc.

Job Number: 720-30837-2

Client Sample ID:

SB-09-6.0

Lab Sample ID: Client Matrix:

720-30837-18 Solid

Date Sampled: 09/28/2010 1530 Date Received: 09/28/2010 1800

8015B Diesel Range Organics (DRO) (GC)-Silica Gel Cleanup

Method:	8015B	Analysis Batch: 720-79277	Instrument ID:	CHDRO6
Preparation:	3550B	Prep Batch: 720-79235	Initial Weight/Volume:	30.26 g
Dilution:	1.0		Final Weight/Volume:	2 mL
Date Analyzed:	10/05/2010 1913		Injection Volume:	1 uL
Date Prepared:	10/04/2010 1427		Result Type:	PRIMARY

Analyte	DryWt Corrected: N	Result (mg/Kg)	Qualifier	RL
Diesel Range Organics (C	C10-C28]	ND		0.99
Motor Oil Range Organic	s [C24-C36]	ND		50

Surrogate	%Rec	Qualifier	Acceptance Limits
Capric Acid (Surr)	0		0-5
p-Terphenyl	85		46 - 115

DATA REPORTING QUALIFIERS

Lab Section	Qualifier	Description	

Quality Control Results

Client: AMEC Geomatrix Inc.

Job Number: 720-30837-2

QC Association Summary

		report			
Lab Sample ID	Client Sample ID	Basis	Client Matrix	Method	Prep Batch
GC/MS VOA					
Analysis Batch:720-7920	1				
LCS 720-79321/2-A	Lab Control Sample	Т	Solid	82608/CA_LUFT	720-79321
LCS 720-79321/4-A	Lab Control Sample	Т	Solid	8260B/CA_LUFT	720-79321
LCSD 720-79321/3-A	Lab Control Sample Duplicate	Т	Solid	8260B/CA_LUFT	720-79321
LCSD 720-79321/5-A	Lab Control Sample Duplicate	Т	Solid	8260B/CA_LUFT	720-79321
MB 720-79321/1-A	Method Blank	T	Solid	8260B/CA_LUFT	720-79321
720-30837-19	SB-03-1.3	т	Solid	8260B/CA_LUFT	720-79321
Prep Batch: 720-79321					
LCS 720-79321/2-A	Lab Control Sample	Т	Solid	5035	
LCS 720-79321/4-A	Lab Control Sample	T	Solid	5035	
LCSD 720-79321/3-A	Lab Control Sample Duplicate	T	Solid	5035	
LCSD 720-79321/5-A	Lab Control Sample Duplicate	T	Solid	5035	
MB 720-79321/1-A	Method Blank	т	Solid	5035	
720-30837-19	SB-03-1.3	T	Solid	5035	

Report Basis T = Total

TestAmerica San Francisco

Client: AMEC Geomatrix Inc.

Job Number: 720-30837-2

QC Association Summary

CSD 720-79235/3-A Method Blank A Solid 80158 720-792 MB 720-79235/1-A Method Blank A Solid 8015B 720-792 MB 720-79235/1-A Method Blank A Solid 8015B 720-792 Prep Batch: 720-79235/2-A Lab Control Sample A Solid 3550B SESD 720-79235/3-A Lab Control Sample Duplicate A Solid 3550B MB 720-79235/1-A Method Blank A Solid 3550B MB 720-79235/1-A Method Blank A Solid 3550B 720-30837-2 SB-10-9.0 A Solid 3550B 720-30837-2 SB-10-9.0 A Solid 3550B 720-30837-4 SB-10-4.0 A Solid 3550B 720-30837-12 SB-09-3.0 A Solid 3550B 720-30837-12 SB-09-3.0 A Solid 3550B 720-30837-16 SB-05-2.0 A Solid 3550B 720-30837-18 SB-09-6.0 A Solid 3550B 720-30865-A-3-E MSD Matrix Spike Duplicate A Solid 3550B 720-30865-A-3-E MSD Matrix Spike Duplicate A Solid 8015B 720-792 720-30837-3 SB-10-10.5 A Solid 8015B 720-792 720-30837-3 SB-10-4.0 A Solid 8015B 720-792 720-30837-3 EMSD Matrix Spike Duplicate A Solid 8015B 720-792 720-30837-3 SB-10-4.0 A Solid 8015B 720-792 720-30836-A-3-E MSD Matrix Spike Duplicate A Solid 8015B 720-792 720-30836-A-3-E MSD Matrix Spike Duplicate A Solid 8015B 720-792 720-30836-A-3-E MSD Matrix Spike Duplicate A Solid 8015B 720-792 720-30836-A-3-E MSD Matrix Spike Duplicate A Solid 8015B 720-792	Lab Sample ID	Client Sample ID	Report Basis	Client Matrix	Method	Prep Batch
CS 720-79235/2-A Lab Control Sample A Solid 8015B 720-792 CSD 720-79235/3-A Lab Control Sample Duplicate A Solid 8015B 720-792 Method Blank A Solid 8015B 720-792 Method Blank A Solid 8015B 720-792 Prep Batch: 720-79235 CS 720-79235/2-A Lab Control Sample Duplicate A Solid 3550B CS 720-79235/3-A Lab Control Sample Duplicate A Solid 3550B MB 720-79235/3-A Method Blank A Solid 3550B MB 720-79235/1-A Method Blank A Solid 3550B MB 720-30837-2 SB-10-9.0 A Solid 3550B C20-30837-3 SB-10-10.5 A Solid 3550B C20-30837-12 SB-09-9.0 A Solid 3550B C20-30837-12 SB-09-9.0 A Solid 3550B C20-30837-16 SB-05-2.0 A Solid 3550B C20-30837-18 SB-09-6.0 A Solid 3550B C20-30857-18 SB-09-6.0 A Solid 3550B C20-3085-A-3-D MS Matrix Spike Duplicate A Solid 3550B C20-3085-A-3-E MSD Matrix Spike Duplicate A Solid 3550B Analysis Batch:720-79276 C20-30837-3 SB-10-10.5 A Solid 8015B 720-792	GC Semi VOA					
CSD 720-79235/3-A Lab Control Sample Duplicate A Solid 8015B 720-792 Method Blank A Solid 8015B 720-792 Prep Batch: 720-79235 CS 720-79235/3-A Lab Control Sample A Solid 3550B CSD 720-79235/3-A Lab Control Sample A Solid 3550B CSD 720-79235/3-A Lab Control Sample Duplicate A Solid 3550B MB 720-79235/1-A Method Blank A Solid 3550B 270-30837-2 SB-10-9.0 A Solid 3550B 270-30837-3 SB-10-10.5 A Solid 3550B 270-30837-4 SB-10-4.0 A Solid 3550B 270-30837-12 SB-09-9.0 A Solid 3550B 270-30837-16 SB-09-9.0 A Solid 3550B 270-30837-16 SB-09-0.0 A Solid 3550B 270-30837-16 SB-09-0.0 A Solid 3550B 270-30837-18 SB-09-0.0 A Solid 3550B 270-30837-18 SB-09-0.0 A Solid 3550B 270-30855-A-3-D MS Matrix Spike Duplicate A Solid 3550B 270-30865-A-3-E MSD Matrix Spike Duplicate A Solid 8015B 720-792 270-30837-3 SB-10-10.5 A Solid 8015B 720-792 270-3085-A-3-D MS Matrix Spike Duplicate A Solid 8015B 720-792 270-30865-A-3-D MS Matrix Spike Duplicate A Solid 8015B 720-792 270-30865-A-3-D MS Matrix Spike Duplicate A Solid 8015B 720-792 270-30865-A-3-D MS Matrix Spike Duplicate A Solid 8015B 720-792 270-30865-A-3-D MS Matrix Spike Duplicate A Solid 8015B 720-792	Analysis Batch:720-7920	6				
MB 720-79235/1-A Method Blank A Solid 8015B 720-792 Prep Batch: 720-79235 LCSD 720-79235/2-A Lab Control Sample A Solid 3550B A Solid 3550B MB 720-79235/3-A Lab Control Sample Duplicate A Solid 3550B MB 720-79235/3-A Lab Control Sample Duplicate A Solid 3550B MB 720-79235/3-A Method Blank A Solid 3550B 720-30837-2 SB-10-9.0 A Solid 3550B 720-30837-3 SB-10-10.5 A Solid 3550B 720-30837-4 SB-10-4.0 A Solid 3550B 720-30837-4 SB-10-4.0 A Solid 3550B 720-30837-12 SB-09-3.0 A Solid 3550B 720-30837-16 SB-05-2.0 A Solid 3550B 720-30837-16 SB-05-2.0 A Solid 3550B 720-30837-18 SB-09-6.0 A Solid 3550B 720-30865-A-3-D MS Matrix Spike A Solid 3550B 720-30865-A-3-E MSD Matrix Spike Duplicate A Solid 3550B 720-30865-A-3-E MSD Matrix Spike Duplicate A Solid 8015B 720-792 720-30837-3 SB-10-10.5 A Solid 8015B 720-792 720-30837-3 SB-10-10.5 A Solid 8015B 720-792 720-30837-3 SB-10-10.5 A Solid 8015B 720-792 720-30837-4 SB-10-4.0 A Solid 8015B 720-792 720-30837-4 SB-10-4.0 A Solid 8015B 720-792 720-30865-A-3-D MS Matrix Spike Duplicate A Solid 8015B 720-792 720-30865-A-3-D MS Matrix Spike Duplicate A Solid 8015B 720-792 720-30865-A-3-D MS Matrix Spike Duplicate A Solid 8015B 720-792 720-30865-A-3-D MS Matrix Spike Duplicate A Solid 8015B 720-792 720-30865-A-3-D MS Matrix Spike Duplicate A Solid 8015B 720-792	.CS 720-79235/2-A	Lab Control Sample	Α	Solid	8015B	720-79235
Prep Batch: 720-79235 .CS 720-79235/2-A	CSD 720-79235/3-A	Lab Control Sample Duplicate	Α	Solid	8015B	720-79235
.CS 720-79235/2-A Lab Control Sample A Solid 3550B .CSD 720-79235/3-A Lab Control Sample Duplicate A Solid 3550B Method Blank A Solid 3550B Method Blank A Solid 3550B .20-30837-2 SB-10-9.0 A Solid 3550B .20-30837-3 SB-10-10.5 A Solid 3550B .20-30837-4 SB-10-10.5 A Solid 3550B .20-30837-16 SB-05-2.0 A Solid 3550B .20-30837-16 SB-05-2.0 A Solid 3550B .20-30837-16 SB-05-2.0 A Solid 3550B .20-30837-18 SB-09-6.0 A Solid 3550B .20-30865-A-3-D MS Matrix Spike A Solid 3550B .20-30865-A-3-E MSD Matrix Spike Duplicate A Solid 3550B .20-30865-A-3-B SD-09-6.0 A Solid 3550B .20-30865-A-3-B MSD Matrix Spike Duplicate A Solid 8015B 720-792 .20-30837-2 SB-10-10.5 A Solid 8015B 720-792 .20-30837-3 SB-10-10.5 A Solid 8015B 720-792 .20-30865-A-3-D MS Matrix Spike Duplicate A Solid 8015B 720-792 .20-30865-A-3-B MSD Matrix Spike Duplicate A Solid 8015B 720-792 .20-30865-A-3-B MSD Matrix Spike Duplicate A Solid 8015B 720-792	/IB 720-79235/1-A	Method Blank	Α	Solid	8015B	720-79235
CSD 720-79235/3-A Lab Control Sample Duplicate A Solid 3550B MB 720-79235/1-A Method Blank A Solid 3550B S50B 720-30837-2 SB-10-9.0 A Solid 3550B 720-30837-3 SB-10-10.5 A Solid 3550B 720-30837-12 SB-09-3.0 A Solid 3550B 720-30837-12 SB-09-3.0 A Solid 3550B 720-30837-12 SB-09-3.0 A Solid 3550B 720-30837-16 SB-05-2.0 A Solid 3550B 720-30837-16 SB-05-2.0 A Solid 3550B 720-30837-18 SB-09-6.0 A Solid 3550B 720-30837-18 SB-09-6.0 A Solid 3550B 720-30865-A-3-D MS Matrix Spike Duplicate A Solid 3550B 720-30865-A-3-E MSD Matrix Spike Duplicate A Solid 3550B 720-30837-2 SB-10-9.0 A Solid 8015B 720-792 720-30837-3 SB-10-10.5 A Solid 8015B 720-792 720-30837-3 SB-10-10.5 A Solid 8015B 720-792 720-30837-4 SB-10-0 A Solid 8015B 720-792 720-30837-3 A Solid 8015B 720-792 720-30865-A-3-D MS Matrix Spike Duplicate A Solid 8015B 720-792 720-30865-A-3-D MS Matrix Spike Duplicate A Solid 8015B 720-792 720-30865-A-3-D MS Matrix Spike Duplicate A Solid 8015B 720-792	Prep Batch: 720-79235					
MB 720-79235/1-A Method Blank A Solid 3550B 20-30337-2 SB-10-9.0 A Solid 3550B 20-30837-3 SB-10-10.5 A Solid 3550B 220-30837-3 SB-10-10.5 A Solid 3550B 220-30837-4 SB-10-4.0 A Solid 3550B 220-30837-12 SB-09-3.0 A Solid 3550B 220-30837-16 SB-05-2.0 A Solid 3550B 220-30837-16 SB-05-2.0 A Solid 3550B 220-30837-16 SB-09-6.0 A Solid 3550B 220-30837-18 SB-09-6.0 A Solid 3550B 220-30857-3 Matrix Spike Duplicate A Solid 3550B 220-30855-A-3-D MS Matrix Spike Duplicate A Solid 3550B 35	.CS 720-79235/2-A	Lab Control Sample	Α	Solid	3550B	
720-30837-2 SB-10-9.0 A Solid 3550B 720-30837-3 SB-10-10.5 A Solid 3550B 720-30837-3 SB-10-10.5 A Solid 3550B 720-30837-4 SB-10-4.0 A Solid 3550B 720-30837-12 SB-09-3.0 A Solid 3550B 720-30837-16 SB-05-2.0 A Solid 3550B 720-30837-16 SB-09-6.0 A Solid 3550B 720-30865-A-3-D MS Matrix Spike A Solid 3550B 720-30865-A-3-E MSD Matrix Spike Duplicate A Solid 8015B 720-792 720-30837-2 SB-10-10.5 A Solid 8015B 720-792 720-30837-4 SB-10-4.0 A Solid 8015B 720-792 720-30865-A-3-D MS Matrix Spike Duplicate A Solid 8015B 720-792 720-30865-A-3-E MSD Matrix Spike Duplicate A Solid 8015B 720-792	CSD 720-79235/3-A	Lab Control Sample Duplicate	Α	Solid	3550B	
720-30837-3 SB-10-10.5 A Solid 3550B 720-30837-4 SB-10-4.0 A Solid 3550B 720-30837-12 SB-09-3.0 A Solid 3550B 720-30837-12 SB-09-3.0 A Solid 3550B 720-30837-16 SB-09-6.0 A Solid 3550B 720-30837-18 SB-09-6.0 A Solid 3550B 720-30837-18 SB-09-6.0 A Solid 3550B 720-30865-A-3-D MS Matrix Spike Duplicate A Solid 3550B 720-30865-A-3-E MSD Matrix Spike Duplicate A Solid 3550B 720-30837-2 SB-10-9.0 A Solid 8015B 720-792 720-30837-3 SB-10-10.5 A Solid 8015B 720-792 720-30837-4 SB-10-4.0 A Solid 8015B 720-792 720-30837-4 SB-10-4.0 A Solid 8015B 720-792 720-30836-A-3-D MS Matrix Spike Duplicate A Solid 8015B 720-792 720-30865-A-3-D MS Matrix Spike Duplicate A Solid 8015B 720-792	MB 720-79235/1-A	Method Blank	Α	Solid	3550B	
720-30837-4 SB-10-4.0 A Solid 3550B 720-30837-12 SB-09-3.0 A Solid 3550B 720-30837-16 SB-09-3.0 A Solid 3550B 720-30837-16 SB-09-2.0 A Solid 3550B 720-30837-16 SB-09-6.0 A Solid 3550B 720-30865-A-3-D MS Matrix Spike A Solid 3550B 720-30865-A-3-E MSD Matrix Spike Duplicate A Solid 3550B 720-30865-A-3-E MSD Matrix Spike Duplicate A Solid 3550B 720-30837-2 SB-10-9.0 A Solid 8015B 720-792 720-30837-3 SB-10-10.5 A Solid 8015B 720-792 720-30837-4 SB-10-4.0 A Solid 8015B 720-792 720-30837-4 SB-10-4.0 A Solid 8015B 720-792 720-308365-A-3-D MS Matrix Spike Duplicate A Solid 8015B 720-792 720-30865-A-3-E MSD Matrix Spike Duplicate A Solid 8015B 720-792	20-30837-2	SB-10-9.0	Α	Solid	3550B	
720-30837-12 SB-09-3.0 A Solid 3550B 720-30837-16 SB-05-2.0 A Solid 3550B 720-30837-16 SB-05-2.0 A Solid 3550B 720-30837-16 SB-09-6.0 A Solid 3550B 720-30865-A-3-D MS Matrix Spike A Solid 3550B 720-30865-A-3-E MSD Matrix Spike Duplicate A Solid 3550B 720-30865-A-3-E MSD Matrix Spike Duplicate A Solid 3550B 720-30865-A-3-E MSD A Solid 8015B 720-792 720-30837-2 SB-10-10.5 A Solid 8015B 720-792 720-30837-3 SB-10-10.5 A Solid 8015B 720-792 720-30837-4 SB-10-4.0 A Solid 8015B 720-792 720-30865-A-3-D MS Matrix Spike A Solid 8015B 720-792 720-30865-A-3-E MSD Matrix Spike Duplicate A Solid 8015B 720-792		SB-10-10.5	Α	Solid	3550B	
720-30837-16 SB-05-2.0 A Solid 3550B SC20-30837-18 SB-09-6.0 A Solid 3550B SC20-30837-18 SB-09-6.0 A Solid 3550B SC20-30865-A-3-D MS Matrix Spike Duplicate A Solid 3550B SC20-30865-A-3-E MSD Matrix Spike Duplicate A Solid 3550B SC20-30865-A-3-E MSD Matrix Spike Duplicate A Solid 3550B SC20-30865-A-3-E MSD SB-10-9.0 A Solid 8015B 720-792 SB-10-10.5 A Solid 8015B 720-792 SC20-30837-4 SB-10-4.0 A Solid 8015B 720-792 SC20-30837-4 SB-10-4.0 A Solid 8015B 720-792 SC20-30835-A-3-D MS Matrix Spike A Solid 8015B 720-792 SC20-30865-A-3-E MSD Matrix Spike Duplicate A Solid 8015B 720-792	'20-30837-4	SB-10-4.0	Α	Solid	3550B	
20-30837-18	'20-30837-12	SB-09-3.0	Α	Solid	3550B	
20-30865-A-3-D MS	'20-30837-16	SB-05-2.0	Α	Solid	3550B	
720-30865-A-3-E MSD Matrix Spike Duplicate A Solid 3550B Analysis Batch:720-79276 720-30837-2 SB-10-9.0 A Solid 8015B 720-792 720-30837-3 SB-10-10.5 A Solid 8015B 720-792 720-30837-4 SB-10-4.0 A Solid 8015B 720-792 720-30865-A-3-D MS Matrix Spike A Solid 8015B 720-792 720-30865-A-3-E MSD Matrix Spike Duplicate A Solid 8015B 720-792	20-30837-18	SB-09-6.0	Α	Solid	3550B	
Analysis Batch:720-79276 720-30837-2 SB-10-9.0 A Solid 8015B 720-792 720-30837-3 SB-10-10.5 A Solid 8015B 720-792 720-30837-4 SB-10-4.0 A Solid 8015B 720-792 720-30865-A-3-D MS Matrix Spike A Solid 8015B 720-792 720-30865-A-3-E MSD Matrix Spike Duplicate A Solid 8015B 720-792	'20-30865-A-3-D MS	Matrix Spike	Α	Solid	3550B	
720-30837-2 SB-10-9.0 A Solid 8015B 720-792 720-30837-3 SB-10-10.5 A Solid 8015B 720-792 720-30837-4 SB-10-4.0 A Solid 8015B 720-792 720-30865-A-3-D MS Matrix Spike A Solid 8015B 720-792 720-30865-A-3-E MSD Matrix Spike Duplicate A Solid 8015B 720-792	'20-30865-A-3-E MSD	Matrix Spike Duplicate	Α	Solid	3550B	
720-30837-3 SB-10-10.5 A Solid 8015B 720-792 720-30837-4 SB-10-4.0 A Solid 8015B 720-792 720-308365-A-3-D MS Matrix Spike A Solid 8015B 720-792 720-30865-A-3-E MSD Matrix Spike Duplicate A Solid 8015B 720-792	Analysis Batch:720-7927	6				
720-30837-4 SB-10-4.0 A Solid 8015B 720-792 720-30835-A-3-D MS Matrix Spike A Solid 8015B 720-792 720-30865-A-3-E MSD Matrix Spike Duplicate A Solid 8015B 720-792	'20-30837-2	S8-10-9.0	Α	Solid	8015B	720-79235
20-30865-A-3-D MS	20-30837-3	SB-10-10.5	Α	Solid	8015B	720-79235
20-30865-A-3-E MSD Matrix Spike Duplicate A Solid 8015B 720-792	20-30837-4	SB-10-4.0	Α	Solid	8015B	720-79235
	'20-30865-A-3-D MS	Matrix Spike	Α	Solid	8015B	720-79235
Analysis Ratch:720-79277	'20-30865-A-3-E MSD	Matrix Spike Duplicate	Α	Solid	8015B	720-79235
ratary 515 Daton: FEG-15E17	Analysis Batch:720-7927	7				
720-30837-12 SB-09-3.0 A Solid 8015B 720-792	20-30837-12	SB-09-3.0	Α	Solid	8015B	720-79235
720-30837-16 SB-05-2.0 A Solid 8015B 720-792	20-30837-16	SB-05-2.0	Α	Solid	8015B	720-79235
720-30837-18 SB-09-6.0 A Solid 8015B 720-792	20-30837-18	SB-09-6.0	Α	Solid	8015B	720-79235

Page 17 of 29

Report Basis

A = Silica Gel Cleanup

TestAmerica San Francisco

11/05/2010

Quality Control Results

Client: AMEC Geomatrix Inc.

Job Number: 720-30837-2

Method Blank - Batch: 720-79321

Date Analyzed: 10/04/2010 1042

Date Prepared: 10/04/2010 0800

Method: 8260B/CA_LUFTMS

Preparation: 5035

Lab Sample ID: MB 720-79321/1-A Client Matrix: Solid Dilution: 1.0

Analysis Batch: 720-79201

Prep Batch: 720-79321

Units: ug/Kg

Instrument ID: HP7 Lab File ID: 10041004.D Initial Weight/Volume: 5 g Final Weight/Volume: 10 mL

Analyte Result RL Methyl tert-butyl ether ND 5.0 Acetone ND 50 5.0 Benzene ND Dichlorobromomethane ND 5.0 Bromohenzene ND 5.0 Chlorobromomethane ΝĎ 20 Bromoform ND 5.0 Bromomethane ΝD 10 2-Butanone (MEK) ND 50 n-Butylbenzene ND 5.0 sec-Butylbenzene ND 5.0 tert-Butylbenzene ND 5.0 Carbon disulfide ND 5.0 Carbon tetrachloride ND 5.0 Chlorobenzene 5.0 Chloroethane ND 10 Chloroform ND 5.0 Chloromethane ND 10 2-Chlorotoluene ND 5.0 4-Chlorotoluene ND 5.0 Chlorodibromomethane ND 5.0 1,2-Dichlorobenzene ND 5.0 1,3-Dichlorobenzene ND 5.0 1,4-Dichlorobenzene ND 5.0 1,3-Dichloropropane ND 5.0 1.1-Dichloropropene ND 5.0 1,2-Dibromo-3-Chloropropane ND 5.0 Ethylene Dibromide ND 5.0 Dibromomethane ND 10 Dichlorodifluoromethane ND 10 1.1-Dichloroethane ND 5.0 1,2-Dichloroethane ND 5.0 1,1-Dichloroethene 5.0 cis-1,2-Dichloroethene ND 5.0 trans-1,2-Dichloroethene ND 5.0 1,2-Dichloropropane ND 5.0 cis-1,3-Dichloropropene ND 5.0 trans-1,3-Dichloropropene ND 5.0 Ethylbenzene ND 5.0 Hexachlorobutadiene ND 5.0 2-Hexanone ND Isopropylbenzene ND 5.0 4-Isopropyltoluene ND

TestAmerica San Francisco Page 18 of 29 11/05/2010

Client: AMEC Geomatrix Inc.

Job Number: 720-30837-2

Method Blank - Batch: 720-79321

Method: 8260B/CA_LUFTMS Preparation: 5035

Lab Sample ID: MB 720-79321/1-A Client Matrix: Solid Dilution: 1.0 Date Analyzed: 10/04/2010 1042 Date Prepared: 10/04/2010 0800

Analysis Batch: 720-79201 Prep Batch: 720-79321 Units: ug/Kg

Instrument ID: HP7 Lab File ID: 10041004.D Initial Weight/Volume: 5 g Final Weight/Volume: 10 mt.

Analyte	Result	Qual RL	
Methylene Chloride	ND	10	
4-Methyl-2-pentanone (MIBK)	ND	50	
Naphthalene	ND	10	
N-Propylbenzene	ND	5.0	
Styrene	ND	5.0	
1,1,1,2-Tetrachloroethane	ND	5.0	
1,1,2,2-Tetrachloroethane	ND	5.0	
Tetrachloroethene	ND	5.0	
Toluene	ND	5.0	
1,2,3-Trichlorobenzene	ND	5.0	
1,2,4-Trichlorobenzene	ND	5.0	
1,1,1-Trichloroethane	ND	5.0	
1,1,2-Trichloroethane	ND	5.0	
Trichloroethene	ND	5.0	
Trichlorofluoromethane	ND	5.0	
1,2,3-Trichloropropane	ND	5.0	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND '	5.0	
1,2,4-Trimethylbenzene	ND	5.0	
1,3,5-Trimethylbenzene	ND	5.0	
Vinyl acetate	ND	50	
Vinyl chloride	ND	5.0	
m-Xylene & p-Xylene	ND	5.0	
o-Xylene	ND	5.0	
Xylenes, Total	ND	10	
2,2-Dichloropropane	ND	5.0	
Gasoline Range Organics (GRO)-C5-C12	ND	250)
Surrogate	% Rec	Acceptance Limits	
4-Bromofluorobenzene	98	65 - 117	
1,2-Dichloroethane-d4 (Surr)	95	73 - 140	
Toluene-d8 (Surr)	96	72 - 113	

Quality Control Results Job Number: 720-30837-2

Client: AMEC Geomatrix Inc.

Lab Control Sample/ Lab Control Sample Duplicate Recovery Report - Batch: 720-79321 Method: 8260B/CA_LUFTMS Preparation: 5035

LCS Lab Sample ID: LCS 720-79321/2-A Client Matrix: Dilution:

Solid 1.0

Analysis Batch: 720-79201 Prep Batch: 720-79321 Units: ug/Kg

Instrument ID: HP7 Lab File ID: 10041005.D Initial Weight/Volume: 5 g Final Weight/Volume: 10 mL

Date Analyzed: Date Prepared:

Client Matrix: Dilution:

10/04/2010 1116 10/04/2010 0800

> Analysis Batch: 720-79201 Prep Batch: 720-79321 Units: ug/Kg

> > % Rec.

Instrument ID: HP7 Lab File ID: 10041006.D Initial Weight/Volume: 5 g

1.0 10/04/2010 1150 Date Analyzed: Date Prepared: 10/04/2010 0800

LCSD Lab Sample ID: LCSD 720-79321/3-A

Solid

Final Weight/Volume: 10 mL

Analyte	LCS	LCSD	Limit	RPD	, RPD Limit	LCS Qual	LCSD Qual
Methyl tert-butyl ether	94	96	71 - 144	2	20		
Acetone	73	73	45 - 154	0	30		
Benzene ·	93	93	82 - 124	0	20		
Dichlorobromomethane	106	107	89 - 131	1	20		
Bromobenzene	100	104	86 - 112	3	20		
Chlorobromomethane	100	98	82 - 115	2	20		
Bromoform	105	109	59 - 158	4	20		
Bromomethane	105	109	71 - 136	4	20		
2-Butanone (MEK)	81	82	61 - 150	2	20		
n-Butylbenzene	110	113	80 - 142	3	20		
sec-Butylbenzene	106	108	85 - 136	2	20		
tert-Butylbenzene	102	104	74 - 134	2	20		
Carbon disulfide	97	95	60 - 136	2	20		
Carbon tetrachloride	108	106	81 - 138	2	20		
Chlorobenzene	98	99	85 - 108	1	20		
Chloroethane	104	110	69 - 141	5	20		
Chloroform	101	103	77 - 127	1	20		
Chloromethane	110	112	60 - 149	2	20		
2-Chlorotoluene	101	105	80 - 138	4	20		
4-Chlorotoluene	100	105	79 - 136	4	20		
Chlorodibromomethane	105	106	75 - 146	1	20		
1,2-Dichlorobenzene	100	104	84 - 130	4	20		
1,3-Dichlorobenzene	102	104	84 - 131	2	20		
1,4-Dichlorobenzene	102	103	85 - 125	1	20		
1,3-Dichloropropane	95	99	79 - 140	4	20		
1,1-Dichloropropene	105	104	70 - 130	1	20		
1,2-Dibromo-3-Chloropropane	101	103	68 - 148	2	20		
Ethylene Dibromide	100	102	79 - 140	2	20		
Dibromomethane	100	100	80 - 139	0	20		
Dichlorodifluoromethane	121	126	37 - 158	4	20		
1,1-Dichloroethane	96	98	86 - 111	2	20		
1,2-Dichloroethane	101	104	78 - 140	3	20		
1.1-Dichloroethene	96	96	77 - 120	0	20		

Page 20 of 29 11/05/2010 TestAmerica San Francisco

Client: AMEC Geomatrix Inc.

Job Number: 720-30837-2

Lab Control Sample Duplicate Recovery Report - Batch: 720-79321

Method: 8260B/CA LUFTMS

Preparation: 5035

Instrument ID: HP7

LCS Lab Sample ID: 'LCS 720-79321/2-A Client Matrix: Solid

Dilution:

Lab Control Sample/

10/04/2010 1116

Analysis Batch: 720-79201 Prep Batch: 720-79321 Units: ug/Kg

Lab File ID: 10041005.D Initial Weight/Volume: 5 g Final Weight/Volume:

Date Analyzed: Date Prepared: 10/04/2010 0800

LCSD Lab Sample ID: LCSD 720-79321/3-A Solid

Client Matrix: Dilution: Date Analyzed:

1.0

10/04/2010 1150

Analysis Batch: 720-79201 Prep Batch: 720-79321 Units: ug/Kg

Lab File ID: 10041006.D Initial Weight/Volume: 5 g Final Weight/Volume: 10 mL

Instrument ID: HP7

10/04/2010 0800 Date Prepared:

		% Rec.					
Analyte	LCS	LCSD	Limit	RPD	RPD Limit	LCS Qual	LCSD Qual
cis-1,2-Dichloroethene	101	103	91 - 133	2	20		
trans-1,2-Dichloroethene	99	96	73 - 117	3	20		
1,2-Dichloropropane	93	96	81 - 124	3	20		
cis-1,3-Dichloropropene	103	105	68 - 147	1	20		
trans-1,3-Dichloropropene	106	108	84 - 136	2	20		
Ethylbenzene	100	101	80 - 137	1	20		
Hexachlorobutadiene	113	114	72 - 132	1	20		
2-Hexanone	90	93	60 - 161	4	20		
Isopropylbenzene	107	108	83 - 121	1	20		
4-Isopropyltoluene	107	110	85 - 133	2	20		
Methylene Chloride	93	92	68 - 126	1	20		
4-Methyl-2-pentanone (MIBK)	90	95	69 - 160	5	20		
Naphthalene	105	108	70 - 147	4	20		
N-Propylbenzene	96	100	72 - 125	3	20		
Styrene	102	103	87 - 128	2	20		
1,1,1,2-Tetrachloroethane	107	107	90 - 130	0	20		
1,1,2,2-Tetrachloroethane	95	102	82 - 146	7	20		
Tetrachioroethene	109	102	78 - 132	7	20		
Toluene	96	99	83 - 128	2	20		
1,2,3-Trichlorobenzene	107	108	74 - 136	0	20		
1,2,4-Trichlorobenzene	106	107	70 - 131	1	20		
1,1,1-Trichloroethane	105	103	85 - 133	2	20		
1,1,2-Trichloroethane	93	95	82 - 125	2	20		
Trichloroethene	105	102	81 - 133	3	20		
Trichlorofluoromethane	118	120	71 - 139	2	20		
1,2,3-Trichloropropane	98	103	76 - 146	5	20		
1,1,2-Trichloro-1,2,2-trifluoroethane	110	104	70 - 130	6	20		
1,2,4-Trimethylbenzene	105	109	84 - 131	4	20		
1,3,5-Trimethylbenzene	105	108	86 - 134	3	20		
Vinyl acetate	91	95	38 - 176	4	20		
Vinyl chloride	103	107	63 - 140	4	20		
m-Xylene & p-Xylene	101	103	79 - 146	2	20		
o-Xylene	96	99	84 - 140	3	20		

TestAmerica San Francisco Page 21 of 29 11/05/2010

Quality Control Results

Client: AMEC Geomatrix Inc.

Job Number: 720-30837-2

Lab Control Sample/

Lab Control Sample Duplicate Recovery Report - Batch: 720-79321

10/04/2010 1116

10/04/2010 0800

Method: 8260B/CA_LUFTMS Preparation: 5035

LCS Lab Sample ID: LCS 720-79321/2-A Client Matrix:

Dilution:

Analyte

2,2-Dichloropropane

Date Analyzed:

Date Prepared:

Solid 1.0

Prep Batch: 720-79321

LCS

107

Units: ug/Kg

Analysis Batch: 720-79201

Instrument ID: HP7 Lab File ID: 10041005.D Initial Weight/Volume: Final Weight/Volume:

5 g 10 mL

RPD Limit LCS Qual LCSD Qual

LCSD Lab Sample ID: LCSD 720-79321/3-A Client Matrix:

Solid

1.0

Dilution: 10/04/2010 1150 Date Analyzed: Date Prepared: 10/04/2010 0800

Prep Batch: 720-79321 Units: ug/Kg

Analysis Batch: 720-79201 Instrument ID: HP7

Lab File ID: 10041006.D Initial Weight/Volume: 5 g 10 mL

Final Weight/Volume:

% Rec. LCSD 1 imit 102

73 - 162 20 5 LCSD % Rec Acceptance Limits

RPD

Surrogate LCS % Rec 4-Bromofluorobenzene 99 100 65 - 117 1,2-Dichloroethane-d4 (Surr) 101 103 73 - 140 Toluene-d8 (Surr) 97 72 - 113

Page 22 of 29 11/05/2010 TestAmerica San Francisco

Client: AMEC Geomatrix Inc.

Date Prepared:

Date Prepared:

Job Number: 720-30837-2

Lab Control Sample/ Lab Control Sample Duplicate Recovery Report - Batch: 720-79321 Method: 8260B/CA LUFTMS Preparation: 5035

LCS Lab Sample ID: LCS 720-79321/4-A Client Matrix: Solid Dilution: 1.0 Date Analyzed: 10/04/2010 1224

Analysis Batch: 720-79201 Prep Batch: 720-79321 Units: ug/Kg

Instrument ID: HP7 Lab File ID: 10041007.D Initial Weight/Volume: 5 g Final Weight/Volume: 10 mL

LCSD Lab Sample ID: LCSD 720-79321/5-A Client Matrix; Solid Dilution 10 10/04/2010 1258 Date Analyzed:

10/04/2010 0800

10/04/2010 0800

Analysis Batch: 720-79201 Prep Batch: 720-79321 Units: ua/Ka

Instrument ID: HP7 Lab File ID: 10041008,D Initial Weight/Volume: 5 g Final Weight/Volume: 10 mL

% Rec. Analyte LCS LCSD RPD Limit RPD Limit 1 CS Qual 1 CSD Qual Gasoline Range Organics (GRO)-C5-C12 84 68 - 115 20 Surrogate LCS % Rec LCSD % Rec Acceptance Limits 4-Bromofluorobenzene 99 103 65 - 117 1,2-Dichloroethane-d4 (Surr) 100 104 73 - 140 Toluene-d8 (Surr) 72 - 113 98

Quality Control Results

1 uL

30.21 a

2 mL

1 uL

PRIMARY

Job Number: 720-30837-2

Client: AMEC Geomatrix Inc.

Method Blank - Batch: 720-79235

Method: 8015B Preparation: 3550B Silica Gel Cleanup Instrument ID: CHDRO5

Lab File ID: 1004105b_061.d

Lab Sample ID: MB 720-79235/1-A Client Matrix: Solid Dilution: 1.0 Date Analyzed: 10/05/2010 0706 Date Prepared: 10/04/2010 1427

Analysis Batch: 720-79206 Prep Batch: 720-79235 Units: ma/Ka

Initial Weight/Volume: 30.12 g Final Weight/Volume: 2 mt.

Column ID:

Injection Volume: PRIMARY

Analyte Result Qual RL Diesel Range Organics [C10-C28] 1 0 ND Motor Oil Range Organics [C24-C36] ND 50 Surrogate % Rec Acceptance Limits Capric Acid (Surr) 0.2

p-Terphenyl 93 Lab Control Sample/

Lab Control Sample Duplicate Recovery Report - Batch: 720-79235

Method: 8015B Preparation: 3550B Silica Gel Cleanup

46 - 115

LCS Lab Sample ID: LCS 720-79235/2-A Client Matrix: Solid Dilution: 1.0 10/05/2010 0619 Date Analyzed: Date Prepared: 10/04/2010 1427

LCSD Lab Sample ID: LCSD 720-79235/3-A

Solid

10/05/2010 0642

10/04/2010 1427

1 0

Client Matrix:

Date Analyzed:

Date Prepared:

TestAmerica San Francisco

Dilution

Analyte

Analysis Batch: 720-79206 Instrument ID: CHDRO5 Prep Batch: 720-79235 1004105b 059.d Lab File ID: Units: mg/Kg Initial Weight/Volume: Final Weight/Volume: Injection Volume: Column ID: PRIMARY

Analysis Batch: 720-79206 Prep Batch: 720-79235 Units: mg/Kg

Instrument ID: CHDRO5 Lab File ID: 1004105b_060.d Initial Weight/Volume: 30.43 g Final Weight/Volume: 2 mL 1 uL

Injection Volume: Column ID:

% Rec. LCS LCSD Limit RPD RPD Limit LCS Qual LCSD Qual Diesel Range Organics [C10-C28] 83 85 45 - 115 1 Surrogate LCS % Rec LCSD % Rec Acceptance Limits p-Terphenyl 103 100 46 - 115

Client: AMEC Geomatrix Inc.

Job Number: 720-30837-2

Matrix Spike/ Matrix Spike Duplicate Recovery Report - Batch: 720-79235 Method: 8015B Preparation: 3550B Silica Gel Cleanup

Instrument ID: CHDRO6

Lab File ID: FID1000012.D

Final Weight/Volume: 2 mL

Injection Volume: 1 uL

Initial Weight/Volume: 30.42 g

PRIMARY

MS Lab Sample ID: Client Matrix: Dilution: 1.0

Date Analyzed:

Date Prepared:

Date Prepared:

720-30865-A-3-D MS Solid

Analysis Batch: 720-79276

Prep Batch: 720-79235

10/05/2010 1125 10/04/2010 1427

MSD Lab Sample ID: 720-30865-A-3-E MSD Client Matrix: Solid Dilution: Date Analyzed:

10/04/2010 1427

10/05/2010 1147

Analysis Batch: 720-79276 Prep Batch: 720-79235

Instrument ID: CHDRO6 Lab File ID: FID1000013.D Initial Weight/Volume: 30.30 g Final Weight/Volume: 2 mL Injection Volume: 1 uŁ Column ID: PRIMARY

Column ID:

	% F	Rec.					
Analyte	MS	MSD	Limit	RPD	RPD Limit	MS Qual	MSD Qual
Diesel Range Organics [C10-C28]	55	73	50 - 130	28	30		
Surrogate		MS % Rec	MSD % Re			stance Limits	
p-Terphenyl		93	93			- 115	

SIGNATURE: SIGNATURE. PRINTED NAME: PRINTED NAME: COMPANY: COMPANY:	ME 1-710 1800	SIGNATURE: SIGNATURE: SIGNATURE:	, /10	10.T /4x/	21	IQUISHED BY: DATE TIME	\$ 11:25 SR-76	50.11		6 10:06 SB-06-3.0	\$ 8h:8	3.48	37.8		3 45	8:48 SB-10	1 513-10- 4.0	THIS SE-10-10.5	Z 7417 SP-10-9,0 "	1 9/28/2010 730 SB-10-11.5		Trity Mission Trity Mission Mi		LABORATU		andard	RESULTS TO: A. PATTON LABORATORY ADDRESS:		PROJECT NAME: CROWN CHEUROLET
	Men 128 180 PAH; by Pi	Mulay 7 Thuffely -	Not said "Joh	Take Co	the die	RECENSED BY: DATE TIME TOTAL NUMBER OF CONTAINERS	X	X	X	20 S	×	×	×	X	X	X 33 05		X	×	\$\$	TPHA PAN Chror	no *	ANALYSES	AT PHOME NUMBER:	LABORJORY CONTACT: HEADERTORY SHANISHINGER:		Amu Geomatia	CLIENT INFORMATION:	C C C C
2101 Webster Street, 12th Floor Oakland, California 94612-3066 Tel 510.663.4100 Fax 510.663.4141	Rizol SIH	toller	Pu 8260	7	42		\$ WN Name Y N 2	5	32 PRAMBER DE WN HCL T N 2	 aless jar SN	the 1 states to M	۲ N	2	W N None Y N 1 Filter D las	m N 1-1-CT 4 N 1	Amba Jan W 2 Har 8 0 1	IS NAME IN IN 1901d	SN wave y w, 1 Hold	SN None YN 1 Hold	of alass jar SN None YN 1	Fillered Preserva Cooled MS/MSD	Water (W), or Other (C) stive Type)	SITE SPECIFIC GLOBAL ID NO.	GEOTRACKER REQUIRED (YES) NO			REPORTING REQUIREMENTS:	DATE: 01/28/20 PAGE 1 OF 3

TestAmerica San Francisco

Page 25 of 29

11/05/2010

PROJECT NAME: CROWN CHEUR PROJECT NUMBER: OB 10160070	LABORATORY NAME: TARE	CLIENT INFORMATION:	DATE: 9/28/2010 PA	AGE 3 OF 3
RESULTS TO: A - PATTON	LABORATORY ADDRESS:	Ance Geometrix		
TURNAROUND TIME: Standard		THE GENERAL		
SAMPLE SHIPMENT METHOD	LABORATORY CONTACY: Af Sanch LABORATORY PHONE NUMBER:		GEOTRACKER REQUIRED	(YES) NO
	LABORATORY PHONE NUMBER:		SITE SPECIFIC GLOBAL ID NO.	
SAMPLERS (SIGNATURE):	ANAI	YSES		
DX 6/	Va. Teh, MBE Stex Teh, MBE Tehl Moot PAH Chromium	CON	AND SOI (S), Water (W) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A	MSWASD We of Companiers COMMENTS COMMENTS
DATE TIME NUMBER	PATT Chro		Soil (S) W	OS O ADDITIONAL COMMENTS
9/28/10 71:30 SB-05-0.7	- XX	8 ठर व		NI
11:35 58-05-7.0	XX		SN None Y	N 1 Hold
15:28 SR-09-11.8	$\times \times$		S N None Y	WI
15:30 58-09-60	XX			NI HOLD
16:01 513-03-1.3	X	40 m1	van SNDIWATEY	N & HOLD
16:01 58-03-1.3	X		S N Methon Y	NU
15:58 53-03-2.8	<u> X </u>		S N DIWGEY	W 2
15:58 50-63-2.8	\mathbb{X}		S ~ Methunol T	WIL
16:10 SB-03-3.2			S N DIWHEY	N 2
16:10 50-03-3.2		1 1 1 1 1 1	S M Metranol Y	NI
1640 SB-03-H.5		40 - 11		N 2
16:40 SB-03-11.5		 	, 19, 1, M	1 1
16:55 513 -03-6.5		 	S P DI Water 4	1-1-1-1-0-
16:55 83-03-6.5	BY AUX OJ		S Melhanal T	N 1 1-64D
RELINQUISHED BY: DATE TO	E RECEIVED BY:	DATE TIME TOTAL NUMBER OF CON	TAINEDS:	10
SIGNATURE	SIGNOTURES //	OII SAMPLING COMMENTS:	77112101	19
PRINTED NAME: Greenskin 9/28/10 DOMPARY: Adaec Geomatrix	COMPANY VEL	10 1722 Se	ix page 1 of 3	
SIGNATURE WOTTON OF 18	SIGNATURE: PRINTED NAME: COMPANY: FAMILIA COMPANY: FAMILIA COMPANY: FAMILIA FAMILIA	1/24/10 (800		
SIGNATURE:	SIGNATURE:	2101 Webster S	Street, 12th Floor	
PRINTED NAME:	PRINTED NAME:		rnia 94612-3066	Geomatrix

PROJECT NAME: CROWN CHEUROLD		- 30837	DATE: 9/28 (2510 PAC	3E 2 OF 3
PROJECT NUMBER: 00 101 600 70	LABORATORY NAME: TASF	CLIENT INFORMATION:	REPORTING REQUIREMENTS:	
RESULTS TO. A. Patton TURNAROUND TIME: 81	LABORATORY ADDRESS:	AMER Germatrix		
SAMPLE SHIPMENT METHOD:	LABORATORY CONTACT.			
OVER LE SHIP HELL INC.	LABORATORY CONTACT:		GEOTRACKER REQUIRED	VES NO
			SITE SPECIFIC GLOBAL ID NO.	
SAMPLERS (SIGNATURE):	ANAL	YSES		
SAMPLE	VOCTIH, MISS STEX TH, MISS TRHA/MO PAH Chroeniun	CONT	NOW NO	We define the containers and contain
DATE TIME NUMBER	Chart Total		AINER (S) Sol	ADDITIONAL COMMENTS
9/28 11:05 SB-06		Poly 2		N 1
11:05 53-06		1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		v i
11:55 813-12-12		807-910	70 1 1 1 1 1 1	w 1
12:05 813-05-11.5				VI
13:40 SB-12				N2
3:40 36 2		1 1 1 1 1 1 32 52	77.1061 1	
			00 7000 11	1 1112.6 (42)
14:00 SB-09-3:0	X X	+++++-		
	XXX	Boz glass		N 1 HOLD
14:05 SB-09-4.9		++++++		
14:20 SB-05			1 113 - 113	M 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
(4:29				N2 filterplab
ا مرءبارا				N 2
14:90			70 1 1	N)
14:20			WN None TO	V (
	125 JULY 41h	4		
	RECEIVED BY:	DATE TIME TOTAL NUMBER OF CONT.	AINERS:	20
SIGNATURE: DX G_C Qlass 4	Signature,	9/ SAMPLING COMMENTS:		
PRINTED NAME Greenskin 9/29/18/19/	PRINTED NAME:	128/ 1722 See 0	ca 2 1 d 3	
COMPANY: GEOMATRIX	COMPANY:	7 //01	10ga 193	
	SIGNATURE: Muller			
SIGNATURES / 10 1860 COMPANY:	PRINTED NAME: COMPANY: SIGNATURE:	24/0 1800	A1000	
SIGNATURE: PRINTED NAME:	SIGNATURE: PRINTED NAME:	2101 Webster Str Oakland, Californ	reet, 12th Floor nia 94612-3066	Geomatrix

Login Sample Receipt Check List

Client: AMEC Geomatrix Inc.

Job Number: 720-30837-2

Login Number: 30837 Creator: Mullen, Joan List Number: 1 List Source: TestAmerica San Francisco

Question	T / F/ NA Comment
Radioactivity either was not measured or, if measured, is at or below background	N/A
The cooler's custody seal, if present, is intact.	N/A
The cooler or samples do not appear to have been compromised or tampered with.	True
Samples were received on ice.	True
Cooler Temperature is acceptable.	True
Cooler Temperature is recorded.	True
COC is present.	True
COC is filled out in ink and legible.	True
COC is filled out with all pertinent information.	True
Is the Field Sampier's name present on COC?	True
There are no discrepancies between the sample IDs on the containers and the COC.	True
Samples are received within Holding Time.	True
Sample containers have legible labels.	True
Containers are not broken or leaking.	True
Sample collection date/times are provided.	True
Appropriate sample containers are used.	True
Sample bottles are completely filled.	True
Sample Preservation Verified	True
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True
If necessary, staff have been informed of any short hold time or quick TAT needs	True
Multiphasic samples are not present.	True

TestAmerica San Francisco

Samples do not require splitting or compositing.

Page 29 of 29

True

ANALYTICAL REPORT

Job Number: 720-30837-3

Job Description: Crown Chevrolet

For:
AMEC Geomatrix Inc.
2101 Webster Street, 12th Floor
Oakland, CA 94612
Attention: Avery Patton

Afsaneh Salimpour Project Manager I afsaneh.salimpour@testamericainc.com 11/12/2010 Revision: 1

CA ELAP Certification # 2496

The Chain(s) of Custody are included and are an integral part of this report.

The report shall not be reproduced except in full, without the written approval of the laboratory. The client, by accepting this report, also agrees not to alter any reports whether in the hard copy or electronic format and to use reasonable efforts to preserve the reports in the form and substance originally provided by TestAmerica.

A trip blank is required to be provided for volatile analyses. If trip blank results are not included in the report, either the trip blank was not submitted or requested to be analyzed.

TestAmerica Laboratories, Inc.
TestAmerica San Francisco 1220 Quarry Lane, Pleasanton, CA 94566
Tel (925) 484-1919 Fax (925) 600-3002 www.testamericainc.com

Job Narrative 720-30837-3

Comments

No additional comments.

Receipt

Per Client request amber glass bottle was filtered on 11/3/10 and then preserved with nitric acid and shipped to our Irvine lab to perform Dissolved Chromium by method 6020.

No other analytical or quality issues were noted.

17461 Derian Avenue, Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

LABORATORY REPORT

Prepared For: TestAmerica San Francisco

Project: 720-30837

1220 Quarry Lane

Pleasanton, CA 94566

Attention: Afsaneh Salimpour Sampled: 09/28/10

Received: 11/04/10

Issued: 11/05/10 16:50

NELAP #01108CA California ELAP#2706 CSDLAC #10256 AZ #AZ0671 NV #CA01531

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a vew weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sale use of TestAmerica and its client. This report shall not be reproduced, except in full, without written permission from TestAmerica. The Chain of Custody, I page, is included and is an integral part of this report.

This entire report was reviewed and approved for release.

SAMPLE CROSS REFERENCE

LABORATORY ID	CLIENT ID	MATRIX
ITK0500-01	SB-06	Water
ITK0500-02	SB-05	Water

Reviewed By:

TestAmerica Irvine Steven Garcia Project Manager

Page 3 of 9

ITK0500 < PAT 12/2010

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue, Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

TestAmerica San Francisco 1220 Quarry Lane Project ID: 720-30837

Sampled: 09/28/10

Pleasanton, CA 94566 Attention: Afsaneh Salimpour

Report Number: ITK0500

Received: 11/04/10

DISSOLVED METALS

Analyte	Method	Batch	Reporting Limit	Sample Dilution Result Factor		Date Analyzed	Data Qualifiers
Sample ID: 1TK0500-01 (SB-06 - Water) Reporting Units: ug/l Chromium	EPA 6020-Diss	10K0590	2.0	2.3 J-1	11/4/2010	11/5/2010	
Sample ID: ITK0500-02 (SB-05 - Water) Reporting Units: ug/l Chromium	EPA 6020-Diss	10K0590	2.0	2.5) - 1	11/4/2010	11/5/2010	

TestAmerica Irvine

Steven Garcia Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without region of an TestAmerica.

ITK0500 < Page 2 2/2010

17461 Derian Avenue, Suite 300, Tryine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

TestAmerica San Francisco 1220 Quarry Lane Project ID: 720-30837

Report Number: ITK0500

Sampled: 09/28/10 Received: 11/04/10

Pleasanton, CA 94566 Attention: Afsaneh Salimpour

METHOD BLANK/QC DATA

DISSOLVED METALS

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 10K0590 Extracted: 11/04/10										
Blank Analyzed: 11/05/2010 (10K0590-B	LKI)									
Chromium	ND	2.0	ug/l							
LCS Analyzed: 11/05/2010 (10K0590-BS	1)									
Chromium	74.4	2.0	ug/l	80.0		93	80-120			
Matrix Spike Analyzed: 11/05/2010 (10K	0590-MS1)				Source: I'	ГК0514-0	1			
Chromium	78.1	2.0	ug/l	80.0	3,32	94	75-125			
Matrix Spike Dup Analyzed: 11/05/2010	(10K0590-MS	SD1)			Source: I'	TK0514-0	1			
Chromium	80.6	2.0	ug/l	80.0	3.32	97	75-125	3	20	

TestAmerica Irvine

Steven Garcia Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without segigen permission of restAmerica.

ITK0500 <PAY912/2010

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue, Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

TestAmerica San Francisco

Project ID: 720-30837

Sampled: 09/28/10

1220 Quarry Lane Pleasanton, CA 94566 Attention: Afsaneh Salimpour

Report Number: ITK0500

Received: 11/04/10

DATA QUALIFIERS AND DEFINITIONS

ND . Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.

RPD Relative Percent Difference

TestAmerica Irvine

Steven Garcia Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without seeing in projection from TestAmerica.

ITK0500 < Page 12/2010

17461 Derian Avenue, Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

TestAmerica San Francisco 1220 Quarry Lane Project ID: 720-30837

Report Number: ITK0500

Sampled: 09/28/10 Received: 11/04/10

Pleasanton, CA 94566 Attention: Afsaneh Salimpour

Certification Summary

TestAmerica Irvine

Method Matrix

4

Nelac

California

EPA 6020-Diss Water

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for TestAmerica may be obtained by contacting the laboratory or visiting our website at www.testamericainc.com

TestAmerica Irvine

Steven Garcia Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without using myringsfung om TestAmerica.

ITK0500 < Page 12/2010

TestAmerica San Francisco 1220 Quary Lane PleaSanton, CA 94566 Phone (925) 484-1919 Fex (925) 600-3002			C	Chain	of C	us	stoc	ły I	Re	coı	rd									TestA	mer	icc	
	Sampler:				PM: impou	· Ate	anah					(Carrier Tracking No(s):							COC No 720-10467.1			
Cierry Contest	Phore:			157	193				_	_		┪							ţ	Pago			
Shipping/Receiving Company	alsaneh.se≆mpour@testemericainc.com											Page 1 of 1											
TestAmerica Laboratones, Inc									Ar	nalys	sis f	₹eqι	est	ed				_	- 1	720-30837-3			
Address 17451 Denan Ave. Suite 100.	Due Date Request	ed:			1							T		-1					2	Preservation Con A - HCt B - NaCH C - Zn Acetate	dos: M - Hexane		
C ty.	TAT Requested (d.	hys):			T I	20 5	:lx							- 1					劚	B-NICH	N - None O - AsNaO2		
Irvine State, Zo.	-					1	10				ļ			- 1	ļ								
CA, 92614-5817						9	Ŕ	ì		Н	- 1	- 1			- }	- 1				E - NaHSO4 F - NeOH	Q - Na2503 R - Na2525	03	
Phone 349-261-1022(Tei) 949-261-1228(Fax)	PO #:				4		==			Ш		- 1	-			-			2	G - Amenior H - Ascerbic Acid	5 - H2504 T - TSP Dod	iocahydraka	
Çmail	1103				၂체	9	سَهَا تَا						- 1	ļ		1			20	I - ICB J - CI Water	U - Acetone V - MCAA		
Protect Name	Protect #:				1818		L							- 1				- 1	220	K - EDTA	W-p14-5		
Crown Chevrolet	72006900				_[위	Ĭ	600							- 1					휌	L-EDA	Z - citer (sp	esty)	
Ste.	SSO/W.				T E		i i					- {	-					-	of con	Other:			
		Sample	Sample Type (Cocomp.	Matrix (resease s-sets, o-messant	Eleid Fifthind Sample (Yes or No) 7-1-20	CONTRA	field filtered												Total Number				
Sample Identification - Client ID (Lab ID)	Sample Date	Time	G=grab)	\$1+Ture And			ā												ō	Special In	structions	/Note:	
PROPERTY.	E C	> <	Preserv	ation Code:	W	XI.	1000	140	4	XX	11	b.		1		2		\$ 1	X	in the same	111777		
SB-05 (720-30837-8)	9/28/10	11:05 Pacific		Water	П	1	ĸ												1				
SB-05 (720-30637-14)	9/28/10	14:20 Pacific		Water	Ш	,	×	1											·				
,					П	I	L												ì				
					Ш																		
		1			Ш			<u> </u>					_										
					Ш			L	L				-5	J	'n	U	L	À	ű			1_	
								L	_			[
	L			<u> </u>	_ _	_ _	_ _	_	_			_	_	1		_	\perp			-/ · -A	2-14		
					11	\top	†		Г			\neg	7	\neg	_				Ţ.,	1 63	700	7	
					77	十	+	T				一	7	1			\neg		34	\uparrow	//	/	
			-		++	+	_	T		Н	П	7	T	1		_			7		//		
Possible Hazard Identification				٠		Samp	le Di	pos	I (A	/re	may.	be as	ses:	sed.	if se	mpl	os er	e re	ain	ed longer than ive For	1 month)		
Non-Hazard Flammable Skin Imitant Point Deliverable Requested: I. II. IV. Other (specify)	ton B <u>Unk</u>	nown L	Redictogic	a)	٠,	Foori	Retur	n To	Cher	rt C Pa	L	D	(\$001	tal B	yŁa	b			Arch	rve For	Month	š	
						_	OI HIS	iociic	N137 C	i ne	quire							_					
Empty Kit Retinquished by:		Date:			Ŧim									Metro	X1 0 1 5								
Rowinguestad by Arm Muller	11-03-2	010	1630	Compline	-	181	Devices	by.								Cate	Time.				Company		
Reloquished by	Date/Time:			Company		Pi	PONVPO	by									Work.		Т		Company		
Reinquished by	Date/Time			Company		A	bayiese	by:	Lυ	0		0,	1			Cale	4/	/,,	_	0:25	Company		
Custody Soals Intact. Custody Soal No.:			P	age 8	of s	, c	color Te	moeis	OUTO(S				arts	_							11/12/	/2010	
					~	1	- 12	-	- '														

720.30837-3 120-30865-2

Page I of 4

Salimpour, Afsaneh

From: Stemler, Greg [Greg.Stemler@amec.com] Wednesday, November 03, 2010 3:46 PM Sent:

To: Salimpour, Afsaneh Patton, Avery

Subject: RE: EPA 7199

Afsaneh, Please do send the following samples to trvine: SB-05 (720-30837#14) SB-06 (720-30865#4) SB-03 (720-30865#2)

We would like these samples run for total dissolved Chromium, however we want to confirm the analyses later tonight or tomorrow morning. We may request both filtered and unfiltered analysis.

For now, please send all the remaining unfiltered, unpreserved sample to Irvine.

Greg Stemler [Project Geologist] AMEC Geomatrix, Inc

The materials transmitted by this electronic mail are confidential, .

Page 9 of 9

11/12/2010

ANALYTICAL REPORT

Job Number: 720-30865-1

Job Description: Crown Chevrolet

For:
AMEC Geomatrix Inc.
2101 Webster Street, 12th Floor
Oakland, CA 94612
Attention: Avery Patton

Akanaf Sal J

Approved for release Afsaneh Salimpour Project Manager I 11/5/2010 6:52 AM

Afsaneh Salimpour Project Manager I afsaneh.salimpour@testamericainc.com 11/05/2010 Revision: 3

CA ELAP Certification # 2496

The Chain(s) of Custody are included and are an integral part of this report.

The report shall not be reproduced except in full, without the written approval of the laboratory. The client, by accepting this report, also agrees not to alter any reports whether in the hard copy or electronic format and to use reasonable efforts to preserve the reports in the form and substance originally provided by TestAmerica.

A trip blank is required to be provided for volatile analyses. If trip blank results are not included in the report, either the trip blank was not submitted or requested to be analyzed.

TestAmerica Laboratories, Inc.
TestAmerica San Francisco 1220 Quarry Lane, Pleasanton, CA 94566
Tel (925) 484-1919 Fax (925) 600-3002 www.testamericainc.com

Comments

No additional comments

Receipt

Method(s) 7199: Client complaint received. Details are as follows:

All other samples were received in good condition within temperature requirements.

GC/MS VOA

No analytical or quality issues were noted.

GC/MS Semi VOA

Method(s) 8270C SIM: The matrix spike / matrix spike duplicate (MS/MSD) precision for batch #79044 was outside control limits. Non-homogeneity of the sample matrix is suspected. The associated laboratory control sample / laboratory control sample duplicate (LCS/LCSD) precision met acceptance criteria.

Job Narrative 720-30865-1

Method(s) 8270C SIM: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for batch #79141 were outside control limits. The associated laboratory control sample (LCS) recovery met acceptance criteria.

No other analytical or quality issues were noted.

GC Semi VOA

Samples for dissolved TPH(Diesel and Motor oil) were filtered at the lab using 0.7 micron glass fiber filter.

All samples for TPH(Diesel and Motor oil) were analysed with Silica Gel clean up using Method 3630C.

No analytical or quality issues were noted.

Metals

No analytical or quality issues were noted.

General Chemistry

No analytical or quality issues were noted.

Organic Prep

No analytical or quality issues were noted.

EXECUTIVE SUMMARY - Detections

Client: AMEC Geomatrix Inc.

Job Number: 720-30865-1

Lab Sample ID Analyte	Client Sample ID	Result / Qualifier	Reporting Limit	Units	Method
720-30865-1	SB-08-15.7				
Naphthalene		5.6 T	5.0	ug/Kg	8270C SIM
Silica Gel Cleanup Diesel Range Orga		1.1	0.99	mg/Kg	8015B
720-30865-2	SB-08				
Cr (VI)		1.1	0.50	ug/L	7199
Dissolved Diesel Range Orga	nics [C10-C28]	4252 JB	52	ug/L	8015B
720-30865-4	SB-07				
Cr (VI)		1.7	0.50	ug/L	7199
Silica Gel Cleanup Diesel Range Orga		10 J	51	ug/L	8015B
Dissolved Diesel Range Orga	nics [C10-C28]	28452 ЈВ	52	ug/L	8015B
720-30865-5	SB-03				
Benzene Chlorobenzene 1,2-Dichlorobenzer 1,4-Dichlorobenzer cis-1,2-Dichloroethene Tetrachloroethene Trichloroethene	ne	1.5 85 42 1.3 1.3 3.2 0.96	0.50 0.50 0.50 0.50 0.50 0.50 0.50	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	8260B/CA_LUFTMS 8260B/CA_LUFTMS 8260B/CA_LUFTMS 8260B/CA_LUFTMS 8260B/CA_LUFTMS 8260B/CA_LUFTMS 8260B/CA_LUFTMS

TestAmerica San Francisco

Page 3 of 65

11/05/2010

METHOD SUMMARY

Client: AMEC Geomatrix Inc.

Job Number: 720-30865-1

Description	Lab Location	Method Preparation Method
Matrix: Solid		
8260B / CA LUFT MS	TAL SF	SW846 8260B/CA_LUFTMS
Closed System Purge and Trap	TAL SF	SW846 5035
Semivolatile Organic Compounds (GC/MS SIM)	TAL SF	SW846 8270C SIM
Ultrasonic Extraction	TAL SF	SW846 3550B
Diesel Range Organics (DRO) (GC)	TAL SF	SW846 8015B
Ultrasonic Extraction	TAL SF	SW846 3550B
Matrix: Water		
8260B / CA LUFT MS	TAL SF	SW846 8260B/CA_LUFTMS
Purge and Trap	TAL SF	SW846 5030B
Semivolatile Organic Compounds (GC/MS SIM)	TAL SF	SW846 8270C SIM
Liquid-Liquid Extraction (Separatory Funnel)	TAL SF	SW846 3510C
Diesel Range Organics (DRO) (GC)	TAL SF	SW846 8015B
Sample Filtration	TAL SF	FILTRATION
Liquid-Liquid Extraction (Separatory Funnel)	TAL SF	SW846 3510C SGC
Chromium, Hexavalent (IC)	TAL SF	SW846 7199
General Sub Contract Method	TAL IRV	Subcontract

Lab References:

TAL IRV = TestAmerica Irvine

TAL SF = TestAmerica San Francisco

Method References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TestAmerica San Francisco

Page 4 of 65

METHOD / ANALYST SUMMARY

Client: AMEC Geomatrix Inc.

Job Number: 720-30865-1

Method	Analyst	Analyst ID
SW846 8260B/CA_LUFTMS SW846 8260B/CA_LUFTMS	Chen, Amy Nguyen, Thuy M	AC TMN
SW846 8270C SIM	Lee, Michael	ML
SW846 8015B	Hayashi, Derek	DH
SW846 7199	Kojiro, Mariko J	MJK

SAMPLE SUMMARY

Client: AMEC Geomatrix Inc.

Job Number: 720-30865-1

Lab Sample ID	Client Sample ID	Client Matrix	Date/Time Sampled	Date/Time Received
720-30865-1	SB-08-15,7	Solid	09/29/2010 0815	09/29/2010 1120
720-30865-2	SB-08	Water	09/29/2010 0900	09/29/2010 1120
720-30865-3	SB-07-13.2	Solid	09/29/2010 0930	09/29/2010 1120
720-30865-3MS	SB-07-13.2	Solid	09/29/2010 0930	09/29/2010 1120
720-30865-3MSD	SB-07-13.2	Solid	09/29/2010 0930	09/29/2010 1120
720-30865-4	SB-07	Water	09/29/2010 1000	09/29/2010 1120
720-30865-4MS	SB-07	Water	09/29/2010 1000	09/29/2010 1120
720-30865-4MSD	SB-07	Water	09/29/2010 1000	09/29/2010 1120
720-30865-5	SB-03	Water	1 09/28/2010 1728	09/29/2010 1120

TestAmerica San Francisco

Page 5 of 65

11/05/2010

TestAmerica San Francisco

Page 6 of 65

Client: AMEC Geomatrix Inc.

Job Number: 720-30865-1

65 - 117

73 - 140

72 - 113

Client Sample ID:

4-Bromofluorobenzene

Toluene-d8 (Surr)

1,2-Dichloroethane-d4 (Surr)

SB-08-15.7

Lab Sample ID: 720-30865-1 Client Matrix: Solid

Date Sampled: 09/29/2010 0815 Date Received: 09/29/2010 1120

8260B/CA	LUFTMS	8260B	CAL	HET	MS

Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8260B/CA_LUFTMS 5035 1.0 09/30/2010 1455 09/30/2010 0800	Analysis Batch: 720-79012 Prep Batch: 720-79131	Instrument ID: Lab File ID: Initial Weight/Volun Final Weight/Volum	•
Analyte	DryWt Corrected	l: N Result (ug/Kg)	Qualifier	RL
Benzene		ND		4.8
Gasoline Range	Organics (GRO)-C5-C12	ND		240
Ethylbenzene		ND		4.8
MTBE		ND		4.8
Toluene		ND		4.8
Xylenes, Total		ND		9.6
Surrogate		%Rec	Qualifier Accer	ntance Limits

100 87

Analytical Data

Client: AMEC Geomatrix Inc.

Job Number: 720-30865-1

Client Sample ID: SB-08

Method:

Dilution:

Preparation:

Date Analyzed:

Lab Sample ID; 720-30865-2 Client Matrix: Water

Date Sampled: 09/29/2010 0900 Date Received: 09/29/2010 1120

8260B/CA_LUFTMS 8260B / CA LUFT MS

8260B/CA_LUFTMS Analysis Batch: 720-79119 Instrument ID: SAT 3900A Lab File ID: 30852A2 10-1-2010

Initial Weight/Volume: 10 mL

Final Weight/Volume: 10 mL

1.0 10/01/2010 2146 Date Prepared:

5030B

10/01/2010 2146

Result (ug/L) Qualifier RL Analyte Methyl tert-butyl ether 0.50 ND Benzene ND 0.50 Ethylbenzene ND 0.50 0.50 Toluene ND Xylenes, Total 1.0 ND Gasoline Range Organics (GRO)-C5-C12 ND

Surrogate	%Rec	Qualifier	Acceptance Limits
4-Bromofluorobenzene	98		67 - 130
1,2-Dichloroethane-d4 (Surr)	82		67 - 130
Toluene-d8 (Surr)	89		70 - 130

TestAmerica San Francisco Page 7 of 65 11/05/2010 Page 8 of 65 11/05/2010 TestAmerica San Francisco

Client: AMEC Geomatrix Inc.

Job Number: 720-30865-1

Client Sample ID: SB-03

Lab Sample ID: 720-30865-5 Client Matrix:

Water

Date Sampled: 09/28/2010 1728 Date Received: 09/29/2010 1120

		8260B/CA_LUFTMS 8260B / CA L	UFT MS	
Method: Preparation: Dilution:	8260B/CA_LUFTMS 5030B 1.0	Analysis Batch: 720-79361	Instrument ID; Lab File ID; Initial Weight/Volume;	HP5 100610009.D 10 mL
Date Analyzed:	10/06/2010 1412		Final Weight/Volume:	10 mL
Date Prepared:	10/06/2010 1412		· ···a·· · · · · · · · · · · · · · · ·	
\nalyte		Result (ug/L) Q	ualifier	RL
Methyl tert-butyl e	ther	ND		0.50
Acetone		ND		50
Benzene		1.5		0.50
Dichlorobromome	thane	ND		0.50
Bromobenzene		ND		1.0
Chlorobromometh	iane	ND		1.0
Bromoform		ND		1.0
Bromomethane		ND		1.0
2-Butanone (MEK	.)	ND		50
n-Butylbenzene		ND		1.0
sec-Butylbenzene		ND		1.0
ert-Butylbenzene		ND		1.0
Carbon disulfide		ND		5.0
Carbon tetrachlori	ide	ND		0.50
Chlorobenzene		85		0.50
Chloroethane		ND		1.0
Chloroform		ND		1.0
Chloromethane		ND		1.0
2-Chlorotoluene		ND		0.50
4-Chlorotoluene		ND		0.50
Chlorodibromome		ND		0.50
1,2-Dichlorobenze		42		0.50
1,3-Dichlorobenze		ND		0.50
1,4-Dichlorobenze		1.3		0.50
1,3-Dichloropropa		ND		1.0
1,1-Dichloroprope		ND		0.50
1,2-Dibromo-3-Ch		ND		1.0
Ethylene Dibromic	ie	ND		0.50
Dibromomethane		ND		0.50
Dichlorodifluorom		ND		0.50
1,1-Dichloroethan		ND		0.50
1,2-Dichloroethan		ND		0.50
1,1-Dichloroethen		ND		0.50
cis-1,2-Dichloroet rans-1,2-Dichloro		1.3		0.50
rans-1,2-Dichloro 1,2-Dichloropropa		ND ND		0.50
i,2-Dichloropropa is-1,3-Dichloropr		ND ND		0.50
rans-1,3-Dichloro		ND ND		0.50 0.50
Ethylbenzene	higheria	ND ND		0.50
-mytoenzene -lexachlorobutadi	ene	ND		1.0
2-Hexanone	0.1.0	ND		50
sopropylbenzene		ND		0.50
4-Isopropyltoluene		ND		1.0
Methylene Chlorid		ND		5.0
4-Methyl-2-pentar		ND		50
Naphthalene	····· (mory)	ND		1.0
	r Francisco	Page 9 of 65		11/05/20

Analytical Data

Client: AMEC Geomatrix Inc.

Job Number: 720-30865-1

Client Sample ID: SB-03

Lab Sample ID: Client Matrix:

720-30865-5 Water

Date Sampled: 09/28/2010 1728
Date Received: 09/29/2010 1120

Client Matrix:	vvater		Date Re	ceived: 09/29/2010 11:
		8260B/CA_LUFTMS 8260B / C	A LUFT MS	
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8260B/CA_LUFTMS 5030B 1.0 10/06/2010 1412 10/06/2010 1412	Analysis Batch: 720-79361	Instrument ID: Lab File ID: Initial Weight/Volume: Final Weight/Volume:	
Analyte		Result (ug/L)	Qualifier	RL
N-Propylbenzene		ND		1.0
Styrene		ND		0.50
1,1,1,2-Tetrachlor	roethane	ND		0.50
1,1,2,2-Tetrachlor	roethane	ND		0.50
Tetrachloroethene	e	3.2		0.50
Foluene		ND		0.50
,2,3-Trichlorobei	nzene	ND		1.0
,2,4-Trichlorobei	nzene	ND		1.0
,1,1-Trichloroeth	nane	ND		0.50
1,1,2-Trichloroeth	nane	ND		0.50
richloroethene		0.96		0.50
richlorofluorome	thane	ND		1.0
,2,3-Trichloropro		ND		0.50
	2,2-trifluoroethane	ND		0.50
,2,4-Trimethylbe	enzene	ND		0.50
,3,5-Trimethylbe	enzene	ND		0.50
/inyl acetate		ND		10
/inyl chloride		ND		0.50
(ylenes, Total		ND		1.0
2,2-Dichloropropa		ND		0.50
Gasoline Range (Organics (GRO)-C5-C12	ND		50
Surrogate		%Rec	Qualifier Accepta	nce Limits
I-Bromofluorober		100	67 - 130	
1,2-Dichloroethan		104	67 - 130	
Toluene-d8 (Surr))	95	70 - 130	

TestAmerica San Francisco

Page 10 of 65

Client: AMEC Geomatrix Inc.

Job Number: 720-30865-1

33 - 120

35 - 146

Client Sample ID: SB-08-15.7 Lab Sample ID: 720-30865-1

Client Matrix:

2-Fluorobiphenyl

Terphenyl-d14

Date Sampled: 09/29/2010 0815 Solid Date Received: 09/29/2010 1120

8270C SIM Semivolatile Organic Compounds (GC/MS SIM)

	OZ700 GIN	dennivolatile Organic Comp	Journa's (GC/M3 SIM)	
Method:	8270C SIM	Analysis Batch: 720-79121	Instrument ID:	HP#3
Preparation:	3550B	Prep Batch: 720-79044	Lab File ID;	100110025.D
Dilution:	1.0		Initial Weight/Volume:	30.25 g
Date Analyzed:	10/01/2010 2006		Final Weight/Volume:	1 mL
Date Prepared:	09/30/2010 1137		Injection Volume:	1 uL
Analyte	DrvWt Corrected: I	N Result (ua/Ka)	Qualifier	RI

Analyte	DryWt Corrected: N	Result (ug/Kg)	Qualifier	RL
Naphthalene		5.6 3		5.0
Acenaphthene		ND CLT		5.0
Acenaphthylene		ND NJ		5.0
Fluorene		ND UT		5.0
Phenanthrene		ND WS		5.0
Anthracene		ND		5.0
Benzo[a]anthracene		ND		5.0
Chrysene		ND		5.0
Benzo[a]pyrene		ND		5.0
Benzo[b]fluoranthene		ND		5.0
Benzo[k]fluoranthene		ND		5.0
Benzo[g,h,i]perylene		ND		5.0
Indeno[1,2,3-cd]pyrene		ND		5.0
Fluoranthene		ND		5.0
Pyrene		ND		5.0
Dibenz(a,h)anthracene		ND		5.0
Surrogate		%Rec	Qualifier	Acceptance Limits

92 108

Analytical Data

Client: AMEC Geomatrix Inc.

Job Number: 720-30865-1

Client Sample ID: SB-08

Lab Sample ID: 720-30865-2

Client Matrix: Water Date Sampled: 09/29/2010 0900 Date Received: 09/29/2010 1120

		8270C SIM Semivolatile Organic Compo	unds (GC/MS S	IM)
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8270C SIM 3510C 1.0 10/05/2010 1 10/01/2010 1			ID: 10051007.D eight/Volume: 970 mL ight/Volume: 1 mL
Analyte		Result (ug/L)	Qualifier	RL
Naphthalene		ND		1.0
Acenaphthene		ND		0.10
Acenaphthylene		ND		0.10
Fluorene		ND		0.10
Phenanthrene		ND		0.10
Anthracene		ND		0.10
Benzo[a]anthrace	ne	ND		0.10
Chrysene		ND		0.10
Benzo[a]pyrene		ND		0.10
Benzo[b]fluoranth		ND		0.10
Benzo(k)fluoranth		ND		0.10
Benzo[g,h,i]peryle		NDUT		0.10
Indeno[1,2,3-cd]p	yrene	ND ca-3		0.10
Fluoranthene		ND		0.10
Pyrene		ND		0.10
Dibenz(a,h)anthra	acene	ND W3		0.10
Surrogate		%Rec	Qualifier	Acceptance Limits
2-Fluorobiphenyl		63		29 - 120
Terphenyl-d14		99		45 - 120
i erphenyl-d14		99		45 - 120

TestAmerica San Francisco Page 11 of 65 11/05/2010 TestAmerica San Francisco Page 12 of 65 11/05/2010

Client: AMEC Geomatrix Inc.

Job Number: 720-30865-1

Client Sample ID: SB-07-13.2

Lab Sample ID: 720-30865-3 Client Matrix:

Date Sampled: 09/29/2010 0930

Date Received: 09/29/2010 1120

8270C SIM	Semivolatile	Organic	Compounds	(GC/MS	SIM

Method:	8270C SIM	Analysis Batch: 720-79121	Instrument ID:	HP#3
Preparation:	3550B	Prep Batch: 720-79044	Lab File ID:	100110026.0
Dilution:	1.0		Initial Weight/Volume:	30.16 a
Date Analyzed:	10/01/2010 2029		Final Weight/Volume:	1 mL
Date Prepared:	09/30/2010 1137		Injection Volume:	1 uL

Analyte	DryWt Corrected: N	Result (ug/Kg)	Qualifier	RL.
Naphthalene		ND U J		5.0
Acenaphthene		NDUT		5.0
Acenaphthylene		ND UJ		5.0
Fluorene		ND UJ		5.0
Phenanthrene		ND UT		5.0
Anthracene		ND		5.0
Benzo[a]anthracene		ND		5.0
Chrysene		ND		5.0
Benzo[a]pyrene		ND		5.0
Benzo[b]fluoranthene		ND		5.0
Benzo[k]fluoranthene		ND		5.0
Benzo[g,h,i]perylene		ND		5.0
Indeno[1,2,3-cd]pyrene		ND		5.0
Fluoranthene		ND		5.0
Pyrene		ND		5.0
Dibenz(a,h)anthracene		ND		5.0
Surrogate		%Rec	Qualifier	Acceptance Limits

Dibenz(a,h)anthracene	ND		5.0
Diberiz(a,rr)ammacene	ND		5.0
Surrogate	%Rec	Qualifier	Acceptance Limits
2-Fluorobiphenyl	91		33 - 120
Terohenyl d14	104		25 440

Analytical Data

Client: AMEC Geomatrix Inc.

Job Number: 720-30865-1

Client Sample ID: SB-07

Lab Sample ID:

Client Matrix:

720-30865-4 Water

Date Sampled: 09/29/2010 1000

Date Received: 09/29/2010 1120

	8:	70C SIM Semivolatile Organic Comp	ounds (GC/MS	SIM)
Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8270C SIM 3510C 1.0 10/05/2010 1253 10/01/2010 1436	Analysis Batch: 720-79296 Prep Batch: 720-79141	Lab Fil Initial V Final V	nent ID: SVOA HP 4 le ID: 10051008.D Weight/Volume: 990 mL Veight/Volume: 1 mL on Volume: 1 uL
Analyte		Result (ug/L)	Qualifier	RL
Naphthalene		ND		1.0
Acenaphthene		ND	-	0.10
Acenaphthylene		ND		0.10
Fluorene		ND		0.10
Phenanthrene		ND		0.10
Anthracene		ND		0.10
Benzo[a]anthrace	ne	ND		0.10
Chrysene		ND		0.10
Benzo[a]pyrene		ND		0.10
Benzo(b)fluoranth	iene	ND		0.10
Benzo[k]fluoranth	ene	ND		0.10
Benzo[g,h,i]peryle		NDUS		. 0.10
Indeno[1,2,3-cd]p	yrene	ND UJ	r	0.10
Fluoranthene		ND		0.10
Pyrene		ND		0.10
Dibenz(a,h)anthra	acene	ND ULJ		0.10
Surrogate		%Rec ···	Qualifier	Acceptance Limits
2-Fluorobiphenyl		65		29 - 120
Terphenyl-d14		101		45 - 120

Client: AMEC Geomatrix Inc.

Job Number: 720-30865-1

Client Sample ID: SB-08-15.7 Lab Sample ID:

Client Matrix:

720-30865-1 Solid

Date Sampled: 09/29/2010 0815 Date Received: 09/29/2010 1120

8015B Diesel Range Organics (DRO) (GC)-Silica Gel Cleanup

Method: 8015B Analysis Batch: 720-79276 Instrument ID: CHDRO6 Preparation: 3550B Prep Batch: 720-79235 Initial Weight/Volume: 30.31 g Dilution: 1.0 Final Weight/Volume: 2 mL Date Analyzed: 10/05/2010 1851 Injection Volume: 1 uL Date Prepared: 10/04/2010 1427 PRIMARY Result Type: Analyte DryWt Corrected: N Result (mg/Kg) Qualifier RL Diesel Range Organics [C10-C28] 1.1 0.99

Motor Oil Range Organics [C24-C36] ND 49 Surrogate %Rec Qualifier Acceptance Limits Capric Acid (Surr) 0.1 0 - 5 p-Terphenyl 46 - 115

Analytical Data

Client: AMEC Geomatrix Inc.

Job Number: 720-30865-1

Client Sample ID: SB-08

Lab Sample ID:

Client Matrix:

Method:

720-30865-2 Water

8015B

Date Sampled: 09/29/2010 0900 Date Received: 09/29/2010 1120

CHDRO5

8015B Diesel Range Organics (DRO) (GC)-Silica Gel Cleanup

Analysis Batch: 720-79523

Preparation: 3510C SGC Prep Batch: 720-79462 Dilution: 1.0 Date Analyzed: 10/08/2010 1041 Date Prepared: 10/07/2010 1014

Instrument ID: Initial Weight/Volume: 970 mL Final Weight/Volume: 2 mL Injection Volume: 1 uL Result Type: PRIMARY

Analyte Result (ug/L) Qualifier MDL RL Diesel Range Organics [C10-C28] 10 51 Motor Oil Range Organics [C24-C36] ND 130 310 Surrogate %Rec Qualifier Acceptance Limits Capric Acid (Surr) 0.07 0-5 p-Terphenyl 93 31 - 150

Client: AMEC Geomatrix Inc.

Job Number: 720-30865-1

Client Sample ID: SB-08

Lab Sample ID:

Method:

Dilution:

Preparation:

720-30865-2

Client Matrix: Water Date Sampled: 09/29/2010 0900 Date Received: 09/29/2010 1120

CHDRO5

8015B Diesel Range Organics (DRO) (GC)-Dissolved

8015B

3510C SGC 1.0

Date Analyzed: 10/04/2010 1129 Date Prepared: 10/01/2010 1004 Prep Batch: 720-79118

Instrument ID: Initial Weight/Volume: 960 mL Final Weight/Volume: 2 mL

Injection Volume: 1 uL Result Type: PRIMARY

Analyte Diesel Range Organics [C10-C28] Motor Oil Range Organics [C24-C36]

Result (ug/L) 127152

Analysis Batch: 720-79205

Qualifier MDL JΒ 11 130

Qualifier

RL 52 310

Surrogate %Rec Capric Acid (Surr) 0.3 p-Terphenyl 87

Acceptance Limits 0 - 5 31 - 150

Analytical Data

Client: AMEC Geomatrix Inc.

Job Number: 720-30865-1

Client Sample ID: SB-07-13.2

Lab Sample ID: Client Matrix:

Dilution:

Date Analyzed:

p-Terphenyl

720-30865-3

Solid

Date Sampled: 09/29/2010 0930 Date Received: 09/29/2010 1120

8015B Diesel Range Organics (DRO) (GC)-Silica Gel Cleanup

Method: 8015B 3550B Preparation:

Analysis Batch: 720-79276 Prep Batch: 720-79235

Instrument ID: CHDRO6 Initial Weight/Volume: 30.12 g

Final Weight/Volume: 2 mL Injection Volume: Result Type: PRIMARY

Qualifier

Qualifier

Date Prepared: 10/04/2010 1427 Analyte DryWt Corrected: N Diesel Range Organics [C10-C28]

1.0

Result (mg/Kg) ND ND

82

RL 1.0

46 - 115

Motor Oil Range Organics [C24-C36] Surrogate Capric Acid (Surr)

10/05/2010 1209

%Rec 0.03

Acceptance Limits 0 - 5

50

TestAmerica San Francisco

Page 17 of 65

11/05/2010

TestAmerica San Francisco

Page 18 of 65

Client: AMEC Geomatrix Inc.

Job Number: 720-30865-1

Client Sample ID: SB-07

Client Matrix:

Surrogate

p-Terphenyl

Capric Acid (Surr)

Lab Sample ID: 720-30865-4

Water

Date Sampled: 09/29/2010 1000

Acceptance Limits

0 - 5

31 - 150

Date Received: 09/29/2010 1120

8015B Diesel Range Organics (DRO) (GC)-Silica Gel Cleanup

Method: Preparation: Dilution: Date Analyzed: Date Prepared:	8015B 3510C SGC 1.0 10/08/2010 1105 10/07/2010 1014	Analysis Batch: 720-79523 Prep Batch: 720-79462	Initi Fin Inje	trument ID: all Weight/Volume: all Weight/Volume: oction Volume: sult Type:		
Analyte		Result (ug/L)	Qualifier	MDL	RL	
	ganics [C10-C28]	10 🥇	J	10	51	
Motor Oil Range Organics [C24-C36]		ND		130	310	

Qualifier

%Rec

0.2

100

Analytical Data

Client: AMEC Geomatrix Inc.

Job Number: 720-30865-1

Client Sample ID: SB-07

Analyte

Lab Sample ID: 720-30865-4

Diesel Range Organics [C10-C28]

Motor Oil Range Organics [C24-C36]

Client Matrix: Water

Date Sampled: 09/29/2010 1000 Date Received: 09/29/2010 1120

8015B Diesel Range Organics (DRO) (GC)-Dissolved

 Method:
 8015B
 Analysis Batch: 720-79205

 Preparation:
 3510C SGC
 Prep Batch: 720-79118

 Dilution:
 1.0

 Date Analyzed:
 10/04/2010 1152

Instrument ID: CHDRO5 Initial WeightVolume: 950 mL Final WeightVolume: 2 mL Injection Volume: 1 uL Result Type: PRIMARY

Date Prepared: 10/01/2010 1004

Result (ug/L) Qualifier MDL RL
18 52 JB 11 52
ND 130 310

Surrogate	%Rec	Qualifier	Acceptance Limits
Capric Acid (Surr)	1		0 - 5
p-Terphenyl	97		31 - 150

TestAmerica San Francisco Page 19 of 65 11/05/2010 TestAmerica San Francisco Page 20 of 65 11/05/2010

Client: AMEC Geomatrix Inc.

Job Number: 720-30865-1

General Chemistry

Client Sample ID: SB-08

Client Matrix:

Analyte

Cr (VI)

Lab Sample ID: 720-30865-2

Water

Date Sampled: 09/29/2010 0900 Date Received: 09/29/2010 1120

Result

Qual Units ug/L

0.50

Dil Method 1.0 7199

1.1 Analysis Batch: 720-79060 Date Analyzed: 09/29/2010 1623 **Analytical Data**

Client: AMEC Geomatrix Inc.

Job Number: 720-30865-1

General Chemistry

Client Sample ID: SB-07

Lab Sample ID: Client Matrix:

Analyte

Cr (VI)

720-30865-4

Date Sampled: 09/29/2010 1000 Date Received: 09/29/2010 1120

ug/L

Dil Method 0.50 1.0 7199

Analysis Batch: 720-79060 Date Analyzed: 09/29/2010 1633

1.7

TestAmerica San Francisco

Page 21 of 65

11/05/2010

TestAmerica San Francisco

Page 22 of 65

DATA REPORTING QUALIFIERS

Client: AMEC Geomatrix Inc.

Job Number: 720-30865-1

Lab Section	Qualifier	Description
GC/MS Semi VOA		
	F	MS or MSD exceeds the control limits
	F	RPD of the MS and MSD exceeds the control limits
GC Semi VOA		
	В	Compound was found in the blank and sample.
	J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

TestAmerica San Francisco

Page 23 of 65

11/05/2010

Quality Control Results

Client: AMEC Geomatrix Inc.

Job Number: 720-30865-1

QC Association Summary

Lab Sample ID	Client Sample ID	Report Basis	Client Matrix	Method	Prep Batch
GC/MS VOA					
Analysis Batch:720-790)12				
LCS 720-79131/2-A	Lab Control Sample	Т	Solid	8260B/CA_LUFT	720-79131
LCS 720-79131/4-A	Lab Control Sample	T	Solid	8260B/CA_LUFT	720-79131
LCSD 720-79:131/3-A	Lab Control Sample Duplicate	Т	Solid	8260B/CA_LUFT	720-79131
LCSD 720-79131/5-A	Lab Control Sample Duplicate	Т	Solid	8260B/CA_LUFT	720-79131
MB 720-79131/1-A	Method Blank	Т	Solid	8260B/CA_LUFT	720-79131
720-30865-1	SB-08-15.7	Т	Solid	8260B/CA_LUFT	720-79131
Analysis Batch:720-791	119				
LCS 720-79119/7	Lab Control Sample	Т	Water	8260B/CA LUFT	
LCS 720-79119/9	Lab Control Sample	T	Water	8260B/CA LUFT	
LCSD 720-79119/10	Lab Control Sample Duplicate	Ŧ	Water	8260B/CA_LUFT	
LCSD 720-79119/8	Lab Control Sample Duplicate	T	Water	8260B/CA LUFT	
MB 720-79119/6	Method Blank	T	Water	8260B/CA_LUFT	
720-30852-A-14 MS	Matrix Spike	T	Water	8260B/CA_LUFT	
720-30852-A-14 MSD	Matrix Spike Duplicate	T	Water	8260B/CA_LUFT	
720-30865-2	SB-08	T	Water	8260B/CA_LUFT	
Prep Batch: 720-79131					
LCS 720-79131/2-A	Lab Control Sample	Т	Solid	5035	
LCS 720-79131/4-A	Lab Control Sample	· T	Solid	5035	
LCSD 720-79131/3-A	Lab Control Sample Duplicate	Т	Solid	5035	
LCSD 720-79131/5-A	Lab Control Sample Duplicate	Т	Solid	5035	
MB 720-79131/1-A	Method Blank	Т	Solid	5035	
720-30865-1	SB-08-15.7	Т	Solid	5035	
Analysis Batch:720-793	861				
LCS 720-79361/5	Lab Control Sample	Т	Water	8260B/CA LUFT	
LCS 720-79361/7	Lab Control Sample	Т	Water	8260B/CA LUFT	
LCSD 720-79361/6	Lab Control Sample Duplicate	Т	Water	8260B/CA LUFT	
LCSD 720-79361/8	Lab Control Sample Duplicate	Т	Water	8260B/CA_LUFT	
MB 720-79361/4	Method Blank	Т	· Water	8260B/CA_LUFT	
720-30865-5	SB-03	Т	Water	8260B/CA_LUFT	
720-30913-B-15 MS					
	Matrix Spike	T	Water	8260B/CA_LUFT	

Report Basis T = Total

TestAmerica San Francisco

Page 24 of 65

11/05/2010

Client: AMEC Geomatrix Inc.

Job Number: 720-30865-1

QC Association Summary

Lab Sample ID	Client Sample ID	Report Basis	Client Matrix	Method	Prep Batch
GC/MS Semi VOA					
Prep Batch: 720-79044					
.CS 720-79044/2-A	Lab Control Sample	Т	Solid	3550B	
.CSD 720-79044/3-A	Lab Control Sample Duplicate	Ŧ	Solid	3550B	
MB 720-79044/1-A	Method Blank	T	Solid	3550B	
20-30865-1	SB-08-15.7	Т	Solid	3550B	
20-30865-3	SB-07-13.2	т	Solid	3550B	
20-30865-3MS	Matrix Spike	T	Solid	3550B	
20-30865-3MSD	Matrix Spike Duplicate	Т	Solid	3550B	
Analysis Batch:720-791	21				
CS 720-79044/2-A	Lab Control Sample	Т	Solid	8270C SIM	720-79044
CSD 720-79044/3-A	Lab Control Sample Duplicate	T	Solid	8270C SIM	720-79044
1B 720-79044/1-A	Method Blank	Т	Solid ·	8270C SIM	720-79044
20-30865-1	SB-08-15.7	Т	Solid	8270C SIM	720-79044
20-30865-3	SB-07-13.2	Т	Solid	8270C SIM	720-79044
20-30865-3MS	Matrix Spike	Т	Solid	8270C SIM	720-79044
20-30865-3MSD	Matrix Spike Duplicate	Т	Solid	8270C SIM	720-79044
Prep Batch: 720-79141					
CS 720-79141/2-A	Lab Control Sample	Т	Water	3510C	
CSD 720-79141/3-A	Lab Control Sample Duplicate	T	Water	3510C	
/IB 720-79141/1-A	Method Blank	T	Water	3510C	
20-30865-2	SB-08	Ŧ	Water	3510C	
20-30865-4	SB-07	Т	Water	3510C	
20-30865-4MS	Matrix Spike	T	Water	3510C	
20-30865-4MSD	Matrix Spike Duplicate	Т	Water	3510C	
Analysis Batch:720-792	26				
CS 720-79141/2-A	Lab Control Sample	Т	Water	8270C SIM	720-79141
CSD 720-79141/3-A	Lab Control Sample Duplicate	Т	Water	8270C SIM	720-79141
1B 720-79141/1-A	Method Blank	Т	Water	8270C SIM	720-79141
20-30865-4MS	Matrix Spike	Т	Water	8270C SIM	720-79141
20-30865-4MSD	Matrix Spike Duplicate	Т	Water	8270C SIM	720-79141
Analysis Batch:720-792	96				
20-30865-2	SB-08	Т	Water	8270C SIM	720-79141
		Ť			

Report Basis T = Total

TestAmerica San Francisco

Quality Control Results

Job Number: 720-30865-1

Client: AMEC Geomatrix Inc.

QC Association Summary

Lab Sample ID	Client Sample ID	Report Basis	Client Matrix	Method	Prep Batch
GC Semi VOA					
Prep Batch: 720-79118			***************************************		
LCS 720-79115/2-C	Lab Control Sample	D	Water	3510C SGC	
LCSD 720-79115/3-C	Lab Control Sample Duplicate	D	Water	3510C SGC	
MB 720-79115/1-C	Method Blank	D	Water	3510C SGC	
720-30865-2	SB-08	D	Water	3510C SGC	
720-30865-4	SB-07	D	Water	3510C SGC	
Analysis Batch:720-79	205				
LCS 720-79115/2-C	Lab Control Sample	D	Water	8015B	720-79118
LCSD 720-79115/3-C	Lab Control Sample Duplicate	D	Water	8015B	720-79118
MB 720-79115/1-C	Method Blank	D	Water	8015B	720-79118
720-30865-2	SB-08	D	Water	8015B	720-79118
720-30865-4	SB-07	D	Water	8015B	720-79118
Analysis Batch:720-79	206				
LCS 720-79235/2-A	Lab Control Sample	Α	Solid	8015B	720-79235
LCSD 720-79235/3-A	Lab Control Sample Duplicate	Α	Solid	8015B	720-79235
MB 720-79235/1-A	Method Blank	Α	Solid	8015B	720-79235
Prep Batch: 720-79235					
LCS 720-79235/2-A	Lab Control Sample	Α	Solid	3550B	
LCSD 720-79235/3-A	Lab Control Sample Duplicate	Α	Solid	3550B	
MB 720-79235/1-A	Method Blank	Α	Solid	3550B	
720-30865-1	SB-08-15.7	Α	Solid	3550B	
720-30865-3	SB-07-13.2	Α	Solid	3550B	
720-30865-3MS	Matrix Spike	Α	Solid	3550B	
720-30865-3MSD	Matrix Spike Duplicate	Α	Solid	3550B	
Analysis Batch:720-79	276				
720-30865-1	SB-08-15.7	Α	Solid	8015B	720-79235
720-30865-3	SB-07-13.2	Α	Solid	8015B	720-79235
720-30865-3MS	Matrix Spike	Α	Solid	8015B	720-79235
720-30865-3MSD	Matrix Spike Duplicate	Α	Solid	8015B	720-79235
Prep Batch: 720-79462					
LCS 720-79462/2-A	Lab Control Sample	Α	Water	3510C SGC	
LCSD 720-79462/3-A	Lab Control Sample Duplicate	Α	Water	3510C SGC	
MB 720-79462/1-A	Method Blank	Α	Water	3510C SGC	
720-30865 - 2	SB-08	Α	Water	3510C SGC	
720-30865-4	SB-07	Α	Water	3510C SGC	
720-30865-4MS	Matrix Spike	Α	Water	3510C SGC	
720-30865-4MSD	Matrix Spike Duplicate	Α	Water	3510C SGC	

TestAmerica San Francisco

Client: AMEC Geomatrix Inc.

Job Number: 720-30865-1

QC Association Summary

Lab Sample ID	Client Sample ID	Report Basis		88 - 42	December 1
Lau Sample ID	Client Sample ID	Dasis	Client Matrix	Method	Prep Batch
GC Semi VOA					
Analysis Batch:720-795	23				
720-30865-2	SB-08	Α	Water	8015B	720-79462
720-30865-4	SB-07	Α	Water	8015B	720-79462
720-30865-4MS	Matrix Spike	Α	Water	8015B	720-79462
720-30865-4MSD	Matrix Spike Duplicate	Α	Water	8015B	720-79462
Analysis Batch:720-795	24				
LCS 720-79462/2-A	Lab Control Sample	Α	Water	8015B	720-79462
LCSD 720-79462/3-A	Lab Control Sample Duplicate	Α	Water	8015B	720-79462
MB 720-79462/1-A	Method Blank	Α	Water	8015B	720-79462
Report Basis D = Dissolved A = Silica Gel Cleanup					
General Chemistry					
Analysis Batch:720-790 LCS 720-79060/3 LCSD 720-79060/4 MB 720-79060/2 720-30859-A-1 MS 720-30859-A-1 MSD 720-30865-2 720-30865-4	Lab Control Sample Lab Control Sample Duplicate Method Blank Matrix Spike Matrix Spike Duplicate SB-08 SB-07	T T T T T T	Water Water Water Water Water Water Water	7199 7199 7199 7199 7199 7199 7199	

Report Basis T = Total

TestAmerica San Francisco

Client: AMEÇ Geomatrix Inc.

Lab Sample ID: MB 720-79119/6

1.0

Date Analyzed: 10/01/2010 1237

Date Prepared: 10/01/2010 1237

Client Matrix: Water

Dilution:

Method Blank - Batch: 720-79119

Quality Control Results

Job Number: 720-30865-1

Method: 8260B/CA_LUFTMS Preparation: 5030B

Instrument ID: SAT 3900A

Lab File ID: MB 10-1-2010 12;37;45 PN Initial Weight/Volume: 10 mL

Final Weight/Volume: 10 mL

Analyte	Result	Qual	RL
Benzene	ND		0.50
Methyl tert-butyl ether	ND		0.50
Ethylbenzene	ND		0.50
Toluene	ND		0.50
m-Xylene & p-Xylene	ND		1.0
o-Xylene	ND		0.50
Xylenes, Total	ND		1.0
Gasoline Range Organics (GRO)-C5-C12	ND		50
Surrogate	% Rec		nce Limits
4-Bromofluorobenzene	100	67 -	
1,2-Dichloroethane-d4 (Surr)	88	67 -	130
Toluene-d8 (Surr)	89	70 -	130

Analysis Batch: 720-79119

Prep Batch: N/A

Units: ug/L

Client: AMEC Geomatrix Inc.

Job Number: 720-30865-1

Lab Control Sample/ Lab Control Sample Duplicate Recovery Report - Batch: 720-79119 Method: 8260B/CA_LUFTMS Preparation: 5030B

Initial Weight/Volume: 10 mL

Final Weight/Volume: 10 mL

Lab File ID: LCS 10-1-2010 1;03;14 PN

Instrument ID: SAT 3900A

LCS Lab Sample ID: LCS 720-79119/7 Client Matrix: Water

Dilution:

1.0

Date Analyzed: Date Prepared: Analysis Batch: 720-79119 Prep Batch: N/A

Units: ug/L

10/01/2010 1303 10/01/2010 1303

LCSD Lab Sample ID: LCSD 720-79119/8 Water

Client Matrix: Dilution:

10 Date Analyzed:

10/01/2010 1328 10/01/2010 1328 Date Prepared:

Units: ug/L

Analysis Batch: 720-79119 Prep Batch: N/A

Lab File ID: LCSD 10-1-2010 1;28;41 PN Initial Weight/Volume: 10 mL

Final Weight/Volume: 10 mL

Instrument ID: SAT 3900A

	<u>9</u>	6 Rec.					
Analyte	LCS	LCSD	Limit	RPD	RPD Limit	LCS Qual	LCSD Qual
Benzene	96	93	82 - 127	4	20		***************************************
Methyl tert-butyl ether	101	95	62 - 130	6	20		
Ethylbenzene	99	97	86 - 135	2	20		
Toluene	92	93	83 - 129	2	20		
m-Xylene & p-Xylene	97	98	70 - 142	1	20		
o-Xylene	102	102	89 - 136	0	20		
Surrogate	LCS % Rec		LCSD %		Accep	otance Limits	
4-Bromofluorobenzene	9		91			7 - 130	
1,2-Dichloroethane-d4 (Surr)	8	8	84		6	7 - 130	
Toluene-d8 (Surr)	9	4	91		7	0 - 130	

Quality Control Results Job Number: 720-30865-1

Client: AMEC Geomatrix Inc.

Lab Control Sample/ Lab Control Sample Duplicate Recovery Report - Batch: 720-79119 Method: 8260B/CA LUFTMS Preparation: 5030B

LCS Lab Sample ID: LCS 720-79119/9

Client Matrix: Dilution:

Water 10

Date Analyzed:

Date Prepared:

Client Matrix:

Date Analyzed:

Date Prepared:

Dilution:

10/01/2010 1354

LCSD Lab Sample ID: LCSD 720-79119/10

Water

1.0

Prep Batch: N/A

Prep Batch: N/A

Units: ug/L

10/01/2010 1354

10/01/2010 1419

10/01/2010 1419

Analysis Batch: 720-79119

Analysis Batch: 720-79119

Units: ug/L

Lab File ID: LCS G 10-1-2010 1;54;05 I Initial Weight/Volume: 10 mL Final Weight/Volume: 10 mL

Instrument ID: SAT 3900A

Instrument ID: SAT 3900A

Lab File ID: LCSD G 10-1-2010 2:19:31 I Initial Weight/Volume: 10 mL

Final Weight/Volume: 10 mL

Analyte	LCS	<u>6 Rec.</u> LCSD	Limit	RPD"	RPD Limit	LCS Qual	LCSD Qual
Gasoline Range Organics (GRO)-C5-C12	94	91	62 - 117	4	20		
Surrogate		.CS % Rec	LCSD %			tance Limits	
4-Bromofluorobenzene		5	100			7 - 130	
1,2-Dichloroethane-d4 (Surr)	8	7	89		6	7 - 130	
Toluene-d8 (Surr)	9	7	90		7	0 - 130	

Client: AMEC Geomatrix Inc.

Job Number: 720-30865-1

Matrix Spike/ Matrix Spike Duplicate Recovery Report - Batch: 720-79119 Method: 8260B/CA LUFTMS Preparation: 5030B

Prep Batch: N/A

Prep Batch: N/A

Analysis Batch: 720-79119 Instrument ID: SAT 3900A

MS Lab Sample ID: 720-30852-A-14 MS Client Matrix: Water Dilution: 1.0

Lab File ID: 30852A14MS 10-1-2010

Date Analyzed: 10/01/2010 1749 Date Prepared: 10/01/2010 1749 Initial Weight/Volume: 10 mL Final Weight/Volume: 10 mL

MSD Lab Sample ID: 720-30852-A-14 MSD Analysis Batch: 720-79119

Client Matrix: Water Dilution: 1.0

Instrument ID: SAT 3900A Lab File ID: 30852A14MSD 10-1-2010

Date Analyzed: 10/01/2010 1814 Initial Weight/Volume; 10 mL

Date Prepared:

10/01/2010 1814

Final Weight/Volume: 10 mL

	<u>%</u>	Rec.					
Analyte	MS	MSD	Limit	RPD	RPD Limit	MS Qual	MSD Qual
Benzene	91	88	60 - 140	3	20		
Methyl tert-butyl ether	98	94	60 - 138	4	20		
Ethylbenzene	96	96	60 - 140	0	20		
Toluene	88	91	60 - 140	3	20		
m-Xylene & p-Xylene	94	100	60 - 140	7	20		
o-Xylene	96	96	60 - 140	1	20		
Surrogate		MS % Rec		% Rec		eptance Lim	
4-Bromofluorobenzene		90	90			7 - 130	
1,2-Dichloroethane-d4 (Surr)		84	87		6	7 - 130	
Toluene-d8 (Surr)		90	92		7	0 - 130	

Quality Control Results

Client: AMEC Geomatrix Inc.

Job Number: 720-30865-1

Method Blank - Batch: 720-79131

Method: 8260B/CA LUFTMS Preparation: 5035

Lab Sample ID: MB 720-79131/1-A

Analysis Batch: 720-79012 Prep Batch: 720-79131

Instrument ID: CHMSV2

Client Matrix: Solid Dilution:

Date Analyzed: 09/30/2010 1010 Date Prepared: 09/30/2010 0800

Units: ug/Kg

Lab File ID: 09301004.D Initial Weight/Volume: 5 g Final Weight/Volume: 10 mL

Analyte	Result	Qual	RL
Benzene	ND		5.0
MTBE	ND		5.0
Ethylbenzene	ND		5.0
Toluene	ND		5.0
m-Xylene & p-Xylene	ND		5.0
Xylenes, Total	ND		10
Gasoline Range Organics (GRO)-C5-C12	ND		250
Surrogate	% Rec	Acceptance Limit	s
4-Bromofluorobenzene	90	65 - 117	
1,2-Dichloroethane-d4 (Surr)	101	73 - 140	
Toluene-d8 (Surr)	89	72 - 113	

TestAmerica San Francisco

Page 31 of 65

11/05/2010

TestAmerica San Francisco

Page 32 of 65

11/05/2010

Client: AMEC Geomatrix Inc.

Job Number: 720-30865-1

Lab Control Sample/ Lab Control Sample Duplicate Recovery Report - Batch: 720-79131 Method: 8260B/CA_LUFTMS Preparation: 5035

LCS Lab Sample ID: LCS 720-79131/2-A Client Matrix: Solid Dilution: 1.0

Analysis Batch: 720-79012 Prep Batch: 720-79131 Units: ug/Kg

Instrument ID: CHMSV2 Lab File ID: 09301005.D Initial Weight/Volume: 5 g Final Weight/Volume: 10 mL

09/30/2010 0800

Date Analyzed: 09/30/2010 1041

Date Prepared:

LCSD Lab Sample ID: LCSD 720-79131/3-A Client Matrix: Solid

Dilution: Date Analyzed: 09/30/2010 1112 09/30/2010 0800 Date Prepared:

Analysis Batch: 720-79012 Prep Batch: 720-79131 Units: ug/Kg

Instrument ID: CHMSV2 Lab File ID: 09301006,D Initial Weight/Volume: 5 g Final Weight/Volume: 10 mL

	2	6 Rec.					
Analyte	LCS	LCSD	Limit	RPD	RPD Limit	LCS Qual	LCSD Qual
Benzene	86	87	82 - 124	1	20		
MTBE	92	94	71 - 144	2	20		
Ethylbenzene	96	98	80 - 137	2	20		
Toluene	91	92	83 - 128	1	20		
m-Xylene & p-Xylene	93	94	79 - 146	1	20		
Surrogate	LCS % Rec		LCSD %	Rec		tance Limits	i
4-Bromofluorobenzene		5	95			5 - 117	
1,2-Dichloroethane-d4 (Surr)	9	16	97		7	3 - 140	
Toluene-d8 (Surr)	9	1	91		7	2 - 113	

Quality Control Results

Client: AMEC Geomatrix Inc.

Job Number: 720-30865-1

Lab Control Sample/

Lab Control Sample Duplicate Recovery Report - Batch: 720-79131

Method: 8260B/CA_LUFTMS Preparation: 5035

LCS Lab Sample ID: LCS 720-79131/4-A Solid 1.0

Client Matrix: Dilution: Date Analyzed: Date Prepared: Analysis Batch: 720-79012 Prep Batch: 720-79131

Units: ug/Kg

Instrument ID: CHMSV2 Lab File ID: 09301007.D Initial Weight/Volume: 5 g Final Weight/Volume: 10 mL

LCSD Lab Sample ID: LCSD 720-79131/5-A Solid

09/30/2010 1144

09/30/2010 0800

Client Matrix: Dilution:

1.0

Date Analyzed: Date Prepared:

09/30/2010 1215 09/30/2010 0800

Analysis Batch: 720-79012 Prep Batch: 720-79131

Units: ug/Kg

Instrument ID: CHMSV2 Lab File ID: 09301008.D Initial Weight/Volume: 5 g Final Weight/Volume: 10 mL

% Rec. Analyte LCS LCSD RPD Limit LCS Qual LCSD Qual Limit Gasoline Range Organics (GRO)-C5-C12 92 90 68 - 115 2 20 Surrogate LCS % Rec LCSD % Rec Acceptance Limits 4-Bromofluorobenzene 96 97 65 - 117 1,2-Dichloroethane-d4 (Surr) 73 - 140 102 103 72 - 113 Toluene-d8 (Surr) 92 92

TestAmerica San Francisco Page 33 of 65 11/05/2010 11/05/2010 TestAmerica San Francisco Page 34 of 65

Client: AMEC Geomatrix Inc.

Job Number: 720-30865-1

Method Blank - Batch: 720-79361

Method: 8260B/CA LUFTMS

Preparation: 5030B

Lab Sample ID: MB 720-79361/4 Client Matrix: Water

Analysis Batch: 720-79361 Prep Batch: N/A

Units: ug/L

Instrument ID: HP5

Dilution:

Lab File ID: 100610004.D

Date Analyzed: 10/06/2010 1118

Date Prepared: 10/06/2010 1118

Initial Weight/Volume: 10 mL Final Weight/Volume: 10 mL

Analyte	Result	Qual	RL
Acetone	ND		50
Benzene	ND		0.50
Dichlorobromomethane	ND		0.50
Bromobenzene	ND		1.0
Methyl tert-butyl ether	ND		0.50
Chlorobromomethane	ND		1.0
Bromoform	ND		1.0
Bromomethane	ND		1.0
2-Butanone (MEK)	ND		50
n-Butylbenzene	ND		1.0
sec-Butylbenzene	ND		1.0
tert-Butylbenzene	ND		1.0
Carbon disulfide	ND		5.0
Carbon tetrachloride	ND		0.50
Chlorobenzene	ND		0.50
Chloroethane	ND		1.0
Chloroform	ND		1.0
Chloromethane	ND		1.0
2-Chlorotoluene	ND		0.50
4-Chlorotoluene	ND		0.50
Chlorodibromomethane	ND		0.50
1,2-Dichlorobenzene	ND		0.50
1,3-Dichlorobenzene	ND		0.50
1,4-Dichlorobenzene	ND		0.50
1,3-Dichloropropane	ND		1.0
1,1-Dichloropropene	ND		0.50
1,2-Dibromo-3-Chloropropane	ND		1.0
Ethylene Dibromide	ND		0.50
Dibromomethane	ND		0.50
Dichlorodifluoromethane	ND		0.50
1,1-Dichloroethane	ND		0.50
1,2-Dichloroethane	ND		0.50
1,1-Dichloroethene	ND		0.50
cis-1,2-Dichloroethene	ND		0.50
trans-1,2-Dichloroethene	ND		0.50
1,2-Dichloropropane	NĐ		0.50
cis-1,3-Dichloropropene	NĎ		0.50
trans-1,3-Dichloropropene	ND		0.50
Ethylbenzene	ND		0.50
Hexachlorobutadiene	ND		1.0
2-Hexanone	ND		50
Isopropylbenzene	ND		0.50
4-Isopropyltoluene	ND		1.0

TestAmerica San Francisco Page 35 of 65 11/05/2010 **Quality Control Results**

Client: AMEC Geomatrix Inc.

Job Number: 720-30865-1

Method Blank - Batch: 720-79361

Method: 8260B/CA_LUFTMS

Preparation: 5030B

Lab Sample ID: MB 720-79361/4 Client Matrix: Water

Analysis Batch: 720-79361 Prep Batch: N/A

Instrument ID: HP5 Lab File ID: 100610004.D

Dilution: 1,0 Units: ug/L

Initial Weight/Volume: 10 mL

Date Analyzed: 10/06/2010 1118

Date Prepared: 10/06/2010 1118

Final Weight/Volume: 10 mL

Analyte	Result	Qual	RL
Methylene Chloride	ND		5.0
4-Methyl-2-pentanone (MIBK)	ND		50
Naphthalene	ND		1.0
N-Propylbenzene	ND		1.0
Styrene	ND		0.50
1,1,1,2-Tetrachloroethane	ND		0.50
1,1,2,2-Tetrachloroethane	ND		0.50
Tetrachloroethene	ND		0.50
Toluene	ND		0.50
1,2,3-Trichlorobenzene	ND		1.0
1,2,4-Trichlorobenzene	ND		1.0
1,1,1-Trichloroethane	ND		0.50
1,1,2-Trichloroethane	ND		0.50
Trichloroethene	ND		0.50
Trichlorofluoromethane	ND		1.0
1,2,3-Trichloropropane	ND		0.50
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50
1,2,4-Trimethylbenzene	ND		0.50
1,3,5-Trimethylbenzene	ND		0.50
Vinyl acetate	ND		10
Vinyl chloride	ND		0.50
m-Xylene & p-Xylene	ND		1.0
o-Xylene	ND		0.50
Xylenes, Total	ND		1.0
2,2-Dichloropropane	ND		0.50
Gasoline Range Organics (GRO)-C5-C12	ND		50
Surrogate	% Rec	Acceptance Limits	
4-Bromofluorobenzene	97	67 - 130	
1,2-Dichloroethane-d4 (Surr)	108	67 - 130	
Toluene-d8 (Surr)	96	70 - 130	

TestAmerica San Francisco Page 36 of 65 11/05/2010

Client: AMEC Geomatrix Inc.

Job Number: 720-30865-1

Lab Control Sample/ Lab Control Sample Duplicate Recovery Report - Batch: 720-79361 Method: 8260B/CA_LUFTMS Preparation: 5030B

Lab File ID: 100610005.D

Initial Weight/Volume: 10 mL

Final Weight/Volume: 10 mL

Instrument ID: HP5

LCS Lab Sample ID: LCS 720-79361/5 Client Matrix:

Water

1.0

Dilution: Date Analyzed: 10/06/2010 1151 Date Prepared: 10/06/2010 1151 Analysis Batch: 720-79361 Prep Batch: N/A Units: ug/L

LCSD Lab Sample ID: LCSD 720-79361/6 Client Matrix; Water

Dilution: Date Analyzed:

10/06/2010 1223 Date Prepared: 10/06/2010 1223 Prep Batch: N/A

Units: ug/L

Analysis Batch: 720-79361 Instrument ID: HP5 Lab File ID: 100610006.D Initial Weight/Volume: 10 mL Final Weight/Volume: 10 mL

	<u>9</u>	<u>6 Rec.</u>					
Analyte	LCS	LCSD	Limit	RPD	RPD Limit	LCS Qual	LCSD Qual
Acetone	93	99	50 - 147	6	30		
Benzene	99	100	82 - 127	2	20		
Dichlorobromomethane	108	110	70 - 130	2	20		
Bromobenzene	107	108	79 - 127	1	20		
Methyl tert-butyl ether	109	113	62 - 130	3	20		
Chlorobromomethane	108	111	70 - 130	2	20		
Bromoform	94	99	68 - 136	6	20		
Bromomethane	98	104	43 - 151	5	20		
2-Butanone (MEK)	104	110	56 - 135	5	20		
n-Butylbenzene	113	115	70 - 130	1	20		
sec-Butylbenzene	109	111	70 - 130	1	20		
tert-Butylbenzene	110	111	70 - 130	1	20		
Carbon disulfide	104	107	78 - 126	3	20		
Carbon tetrachloride	111	113	77 - 146	2	20		
Chlorobenzene	98	103	70 - 130	5	20		
Chloroethane	103	109	62 - 138	6	20		
Chloroform	104	106	70 - 130	2	20		
Chloromethane	98	104	52 - 175	6	20		
2-Chlorotoluene	107	110	70 - 130	2	20		
4-Chlorotoluene	108	109	70 - 130	0	20		
Chlorodibromomethane	104	106	78 - 145	2	20		
1,2-Dichlorobenzene	105	105	70 - 130	1	20		
1,3-Dichlorobenzene	105	106	70 - 130	1	20		
1,4-Dichlorobenzene	101	102	82 - 113	1	20		
1,3-Dichloropropane	113	116	86 - 135	3	20		
1,1-Dichloropropene	106	108	70 - 130	2	20		
1,2-Dibromo-3-Chloropropane	88	91	61 - 132	3	20		
Ethylene Dibromide	112	115	70 - 130	2	20		
Dibromomethane	113	116	70 - 130	2	20		
Dichlorodifluoromethane	92	97	33 - 125	5	20		
1,1-Dichloroethane	101	104	70 - 130	2	20		
1,2-Dichloroethane	109	111	70 - 126	2	20		
1,1-Dichloroethene	97	100	64 - 128	3	20		

Page 37 of 65 TestAmerica San Francisco

11/05/2010

Quality Control Results Job Number: 720-30865-1

Client: AMEC Geomatrix Inc.

Lab Control Sample/

Lab Control Sample Duplicate Recovery Report - Batch: 720-79361

LCS Lab Sample ID: LCS 720-79361/5

Client Matrix: Water Dilution: 1.0 10/06/2010 1151

Date Analyzed: 10/06/2010 1151

Date Prepared:

LCSD Lab Sample ID: LCSD 720-79361/6

Client Matrix: Water Dilution: 1.0

Date Analyzed: 10/06/2010 1223 Date Prepared: 10/06/2010 1223

Analysis Batch: 720-79361 Prep Batch: N/A

Units: ug/L

Analysis Batch: 720-79361 Prep Batch: N/A

Units: ug/L

Instrument ID: HP5 Lab File ID: 100610006.D

Preparation: 5030B

Lab File ID: 100610005.D

Initial Weight/Volume: 10 mL

Final Weight/Volume: 10 mL

Instrument ID: HP5

Initial Weight/Volume: 10 mL Final Weight/Volume: 10 mL

Method: 8260B/CA LUFTMS

	% Rec.			e · · ·			
Analyte	LCS	LCSD	Limit	RPD	RPD Limit	LCS Qual	LCSD Qual
cis-1,2-Dichloroethene	111	112	70 - 130	2	20		
trans-1,2-Dichloroethene	101	103	75 - 131	2	20		
1,2-Dichloropropane	108	110	70 - 130	2	20		
cis-1,3-Dichloropropene	105	107	70 - 130	2	20		
trans-1,3-Dichloropropene	105	107	70 - 130	2	20		
Ethylbenzene	102	107	86 - 135	5	20		
Hexachlorobutadiene	99	101	70 - 130	2	20		
2-Hexanone	101	106	60 - 164	4	20		
Isopropylbenzene	106	111	70 - 130	5	20		
4-Isopropyltoluene	106	107	70 - 130	1	20		
Methylene Chloride	103	106	73 - 147	3	20		
4-Methyl-2-pentanone (MIBK)	106	110	63 - 165	4	20		
Naphthalene	101	104	78 - 122	3	20		
N-Propylbenzene	106	107	70 - 130	1	20		
Styrene	109	115	70 - 130	5	20		
1,1,1,2-Tetrachloroethane	117	123	70 - 130	5	20		
1,1,2,2-Tetrachloroethane	120	122	70 - 130	1	20		
Tetrachloroethene	98	99	70 - 130	2	20		
Toluene	93	97	83 - 129	5	20		
1,2,3-Trichlorobenzene	107	109	70 - 130	2	20		
1,2,4-Trichlorobenzene	103	105	70 - 130	2	20		
1.1.1-Trichloroethane	108	111	70 - 130	2	20		
1.1.2-Trichloroethane	117	120	86 - 135	2	20		
Trichloroethene	97	99	70 - 130	2	20		
Trichlorofluoromethane	111	114	74 - 146	3	20		
1,2,3-Trichloropropane	116	118	70 - 130	2	20		
1,1,2-Trichloro-1,2,2-trifluoroethane	95	97	42 - 162	2	20		
1,2,4-Trimethylbenzene	115	117	70 - 132	1	20		
1,3,5-Trimethylbenzene	113	114	70 - 130	1	20		
Vinyl acetate	102	103	37 - 134	0	20		
Vinyl chloride	92	97	65 - 156	5	20		
m-Xylene & p-Xylene	104	109	70 - 142	5	20		
o-Xylene	106	111	89 - 136	5	20		

11/05/2010 TestAmerica San Francisco Page 38 of 65

Client: AMEC Geomatrix Inc.

Job Number: 720-30865-1

Lab Control Sample/ Lab Control Sample Duplicate Recovery Report - Batch: 720-79361

Method: 8260B/CA LUFTMS Preparation: 5030B

LCS Lab Sample ID: LCS 720-79361/5 Client Matrix: Water Dilution: 1.0 Date Analyzed: 10/06/2010 1151

10/06/2010 1151

Date Prepared:

Analysis Batch: 720-79361 Prep Batch: N/A Units: ug/L

Instrument ID: HP5 Lab File ID: 100610005.D Initial Weight/Volume: 10 mL Final Weight/Volume: 10 mL

LCSD Lab Sample ID: LCSD 720-79361/6 Client Matrix: Water Dilution: 1.0 Date Analyzed: 10/06/2010 1223 Date Prepared: 10/06/2010 1223

Analysis Batch: 720-79361 Prep Batch: N/A Units: ua/L

Instrument ID: HP5 Lab File ID: 100610006.D Initial Weight/Volume: 10 mL Final Weight/Volume: 10 mL

	9	6 Rec.					
Analyte	LCS	LCSD	Limit	RPD			LCSD Qual
2,2-Dichloropropane	109	112	70 - 140	3	20		
Surrogate		CS % Rec	LCSD %			tance Limits	
4-Bromofluorobenzene		01	106			7 - 130	
1,2-Dichloroethane-d4 (Surr)	1	04	106		6	7 - 130	
Toluene-d8 (Surr)	9	9	99		7	0 - 130	

Quality Control Results

Client: AMEC Geomatrix Inc.

Job Number: 720-30865-1

Lab Control Sample/ Lab Control Sample Duplicate Recovery Report - Batch: 720-79361 Method: 8260B/CA_LUFTMS Preparation: 5030B

LCS Lab Sample ID: LCS 720-79361/7 Client Matrix: Water Dilution:

Date Prepared:

Date Prepared:

1.0 Units: ua/L 10/06/2010 1256 Date Analyzed: 10/06/2010 1256

10/06/2010 1328

Analysis Batch: 720-79361 Instrument ID: HP5 Prep Batch: N/A Lab File ID: 100610007.D Initial Weight/Volume: 10 mL Final Weight/Volume: 10 mL

LCSD Lab Sample ID: LCSD 720-79361/8 Client Matrix: Water Dilution: 1.0 Date Analyzed: 10/06/2010 1328

Analysis Batch: 720-79361 Prep Batch: N/A Units: ug/L

Instrument ID: HP5 Lab File ID: 100610008.D Initial Weight/Volume: 10 mL Final Weight/Volume: 10 mL

	9	6 Rec.					
Analyte	LCS	LCSD	Limit	RPD	RPD Limit	LCS Qual	LCSD Qual
Gasoline Range Organics (GRO)-C5-C12	93	91	62 - 117	2	20		P
Surrogate		CS % Rec	LCSD %		Accep	tance Limits	
4-Bromofluorobenzene		04	107			7 - 130	
1,2-Dichloroethane-d4 (Surr)	1	80	111		6	7 - 130	
Toluene-d8 (Surr)	1	00	99		7	0 - 130	

TestAmerica San Francisco Page 39 of 65 11/05/2010 TestAmerica San Francisco Page 40 of 65 11/05/2010

Client: AMEC Geomatrix Inc.

Job Number: 720-30865-1

Matrix Spike/

Client Matrix:

Date Analyzed:

Date Prepared:

Client Matrix:

Date Prepared:

Dilution:

Dilution:

Matrix Spike Duplicate Recovery Report - Batch: 720-79361

Method: 8260B/CA LUFTMS Preparation: 5030B

Water

MS Lab Sample ID: 720-30913-B-15 MS Analysis Batch: 720-79361

Prep Batch: N/A

Lab File ID: 100610017.D Initial Weight/Volume: 10 mL

Final Weight/Volume: 10 mL

10/06/2010 1832

10/06/2010 1832

MSD Lab Sample ID: 720-30913-B-15 MSD Analysis Batch: 720-79361

Water

1.0

1.0

Date Analyzed:

Prep Batch: N/A

Lab File ID: 100610018.D

Instrument ID: HP5

Instrument ID: HP5

Initial Weight/Volume: 10 mL Final Weight/Volume: 10 mL

10/06/2010 1905 10/06/2010 1905

% Rec. Analyto DDD DDD Limit MO O.-- I MOD O.--

Analyte	MS	MSD	Limit	RPD	RPD Limit	MS Qual	MSD Qual
Acetone	67	67	60 - 140	1	20		
Benzene	98	99	60 - 140	1	20		
Dichlorobromomethane	108	109	60 - 140	1	20		
Bromobenzene	107	107	60 - 140	0	20		
Methyl tert-butyl ether	112	113	60 - 138	0	20		
Chlorobromomethane	109	110	60 - 140	0	20		
Bromoform	98	96	56 - 140	2	20		
Bromomethane	96	96	23 - 140	1	20		
2-Butanone (MEK)	93	92	60 - 140	1	20		
n-Butylbenzene	110	112	60 - 140	2	20		
sec-Butylbenzene	107	108	60 - 140	1	20		
tert-Butylbenzene	108	109	60 - 140	1	20		
Carbon disulfide	101	103	38 - 140	2	20		
Carbon tetrachloride	107	110	60 - 140	3	20		
Chlorobenzene	101	99	60 - 140	2	20		
Chloroethane	104	104	51 - 140	0	20		
Chloroform	104	105	60 - 140	1	20		
Chloromethane	98	97	52 - 140	1	20		
2-Chlorotaluene	107	107	60 - 140	0	20		
4-Chlorotoluene	107	107	60 - 140	0	20		
Chlorodibromomethane	104	106	60 - 140	2	20		
1,2-Dichlorobenzene	105	106	60 - 140	1	20		
1,3-Dichlorobenzene	104	105	60 - 140	1	20		
1,4-Dichlorobenzene	101	102	60 - 140	1	20		
1,3-Dichloropropane	115	115	60 - 140	0	20		
1,1-Dichloropropene	104	105	60 - 140	2	20		
1,2-Dibromo-3-Chloropropane	88	89	60 - 140	1	20		
Ethylene Dibromide	114	115	60 - 140	1	20		
Dibromomethane	114	115	60 - 140	0	20		
Dichlorodifluoromethane	98	97	38 - 140	1	20		

TestAmerica San Francisco

Page 41 of 65

11/05/2010

Quality Control Results Job Number: 720-30865-1

Client: AMEC Geomatrix Inc.

Matrix Spike/

Matrix Spike Duplicate Recovery Report - Batch: 720-79361

MS Lab Sample ID: 720-30913-B-15 MS Analysis Batch: 720-79361

Client Matrix: Dilution: Date Analyzed: Date Prepared:

Date Analyzed:

Date Prepared:

Water 1.0

10/06/2010 1832

10/06/2010 1832

MSD Lab Sample ID: 720-30913-B-15 MSD

Client Matrix: Water Dilution: 1.0

10/06/2010 1905 10/06/2010 1905 Prep Batch: N/A

Analysis Batch: 720-79361

Prep Batch: N/A

Lab File ID: 100610018.D Initial Weight/Volume: 10 mL Final Weight/Volume: 10 mL

Method: 8260B/CA_LUFTMS

Lab File ID: 100610017.D

Initial Weight/Volume: 10 mL

Final Weight/Volume: 10 mL

Preparation: 5030B

Instrument ID: HP5

Instrument ID: HP5

	<u>%</u>	% Rec.					
Analyte	MS	MSD	Limit	RPD	RPD Limit	MS Qual	MSD Qua
1,1-Dichloroethane	101	102	60 - 140	1	20		
1,2-Dichloroethane	110	110	60 - 140	0	20		
1,1-Dichloroethene	94	96	60 - 140	3	20		
cis-1,2-Dichloroethene	111	111	60 - 140	0	20		
trans-1,2-Dichloroethene	100	101	60 - 140	1	20		
1,2-Dichloropropane	109	110	60 - 140	1	20		
cis-1,3-Dichloropropene	105	106	60 - 140	1	20		
trans-1,3-Dichloropropene	106	105	60 - 140	Ō	20		
Ethylbenzene	104	103	60 - 140	2	20		
Hexachlorobutadiene	96	99	60 - 140	3	20		
2-Hexanone	96	96	60 - 140	0	20		
isopropylbenzene	108	106	60 - 140	2	20		
4-isopropyitoluene	104	105	60 - 140	1	20		
Methylene Chloride	101	103	40 - 140	2	20		
4-Methyl-2-pentanone (MIBK)	110	109	60 - 140	1	20		
Naphthalene	103	105	56 - 140	2	20		
N-Propylbenzene	104	105	60 - 140	1	20		
Styrene	108	92	60 - 140	17	20		
1,1,1,2-Tetrachloroethane	121	118	60 - 140	2	20		
1,1,2,2-Tetrachloroethane	123	122	60 - 140	1	20		
Tetrachloroethene	95	96	60 - 140	1	20		
Toluene	96	93	60 - 140	3	20		
1,2,3-Trichlorobenzene	107	111	60 - 140	4	20		
1,2,4-Trichlorobenzene	102	107	60 - 140	3	20		
1,1,1-Trichloroethane	108	109	60 - 140	1	20		
1,1,2-Trichloroethane	119	119	60 - 140	0	20		
Trichloroethene	94	94	60 - 140	0	20		
Trichlorofluoromethane	109	109	60 - 140	0	20		
1,2,3-Trichloropropane	119	117	60 - 140	1	20		
1,1,2-Trichloro-1,2,2-trifluoroethane	91	93	60 - 140	2	20		

TestAmerica San Francisco

Page 42 of 65

11/05/2010

Client: AMEC Geomatrix Inc.

Job Number: 720-30865-1

Matrix Spike/ Matrix Spike Duplicate Recovery Report - Batch: 720-79361 Method: 8260B/CA_LUFTMS Preparation: 5030B

MS Lab Sample ID: 720-30913-B-15 MS Client Matrix:

Water 10/06/2010 1832

10/06/2010 1832

Analysis Batch: 720-79361 Prep Batch: N/A

Instrument ID: HP5 Lab File ID: 100610017.D Initial Weight/Volume: 10 mL Final Weight/Volume: 10 mL

MSD Lab Sample ID: 720-30913-B-15 MSD Analysis Batch: 720-79361

Dilution:

Date Analyzed:

Date Prepared:

Client Matrix: Water Dilution:

1.0 Date Analyzed: 10/06/2010 1905 10/06/2010 1905 Date Prepared:

Prep Batch: N/A

Instrument ID: HP5 Lab File ID: 100610018.D Initial Weight/Volume: 10 mL Final Weight/Volume: 10 mL

	<u>%</u>	Rec.					
Analyte	MS	MSD	Limit	RPD	RPD Limit	MS Qual	MSD Qual
1,2,4-Trimethylbenzene	113	113	60 - 140	0	20		
1,3,5-Trimethylbenzene	111	112	60 - 140	1	20		
Vinyl acetate	98	96	40 - 140	1	20		
Vinyl chloride	93	93	58 - 140	0	20		
m-Xylene & p-Xylene	107	105	60 - 140	2	20		
o-Xylene	110	107	60 - 140	3	20		
2,2-Dichloropropane	106	104	60 - 140	2	20		
Surrogate		MS % Rec	MSD 9	% Rec	Acc	eptance Lim	its
4-Bromofluorobenzene		106	102		6	37 - 130	
1,2-Dichloroethane-d4 (Surr)		106	106		ē	7 - 130	
Toluene-d8 (Surr)		99	99		7	0 - 130	

Quality Control Results

Client: AMEC Geomatrix Inc.

Job Number: 720-30865-1

Method Blank - Batch: 720-79044

Method: 8270C SIM Preparation: 3550B

Lab Sample ID: MB 720-79044/1-A Client Matrix: Solid

Date Prepared: 09/30/2010 1137

Dilution: 1.0 Date Analyzed: 10/01/2010 1725 Analysis Batch: 720-79121 Prep Batch: 720-79044

Units: ug/Kg

Instrument ID: HP # 3 Lab File ID: 100110018.D Initial Weight/Volume: 30.04 g Final Weight/Volume: 1 mL

Injection Volume: 1 uL

Analyte	Result	Qual	RL
Naphthalene	ND		5.0
Acenaphthene	ND		5.0
Acenaphthylene	ND		5.0
Fluorene	ND		5.0
Phenanthrene	ND		5,0
Anthracene	ND		5.0
Benzo[a]anthracene	ND		5.0
Chrysene	ND		5.0
Benzo[a]pyrene	ND		5.0
Benzo[b]fluoranthene	ND		5.0
Benzo[k]fluoranthene	ND		5.0
Benzo[g,h,i]perylene	ND		5.0
Indeno[1,2,3-cd]pyrene	ND		5.0
Fluoranthene	ND		5.0
Pyrene	ND		5.0
Dibenz(a,h)anthracene	ND		5.0
Surrogate	% Rec		ptance Limits
2-Fluorobiphenyl	90		33 - 120
Terphenyl-d14	106		35 - 146

TestAmerica San Francisco Page 43 of 65 11/05/2010 TestAmerica San Francisco Page 44 of 65 11/05/2010

Client: AMEC Geomatrix Inc.

Job Number: 720-30865-1

Lab Control Sample/ Lab Control Sample Duplicate Recovery Report - Batch: 720-79044 Method: 8270C SIM Preparation: 3550B

LCS Lab Sample ID: LCS 720-79044/2-A Client Matrix: Solid Dilution: 1.0

Analysis Batch: 720-79121 Prep Batch: 720-79044 Units: ug/Kg

Instrument ID: HP#3 Lab File ID: 100110016.D Initial Weight/Volume: 30.18 g

Date Analyzed: 10/01/2010 1639 Date Prepared: 09/30/2010 1137 Final Weight/Volume: 1 mL Injection Volume: 1 uL

LCSD Lab Sample ID: LCSD 720-79044/3-A

Client Matrix: Solid Dilution: 1.0 Date Analyzed: 10/01/2010 1702

Date Prepared:

Analysis Batch: 720-79121 Prep Batch: 720-79044

Units: ug/Kg

Lab File ID: 100110017.D Initial Weight/Volume: 30.06 g Final Weight/Volume: 1 mL Injection Volume;

Instrument ID: HP # 3

09/30/2010 1137

	9	<u>% Rec.</u>						
Analyte	LCS	LCSD	Limit	RPD	RPD Limit	LCS Qual	LCSD Qual	
Naphthalene	88	85	46 - 120	3	20	41.4		
Acenaphthene	80	86	49 - 120	7	20			
Acenaphthylene	89	88	52 - 120	0	. 20			
Fluorene	112	110	52 - 120	2	20			
Phenanthrene	94	92	48 - 120	1	20			
Anthracene	95	94	52 - 120	1	20			
Benzo[a]anthracene	86	83	52 - 120	4	20			
Chrysene	101	100	54 - 120	1	20			
Benzo[a]pyrene	99	98 -	54 - 120	1	20			
Benzo[b]fluoranthene	89	88	51 - 120	1	20			
Benzo[k]fluoranthene	110	104	56 - 120	5	20			
Benzo[g,h,i]perylene	92	93	48 - 120	1	20			
Indeno[1,2,3-cd]pyrene	98	99	48 - 120	1	20			
Fluoranthene	105	103	57 - 120	2	20			
Pyrene	93	91	53 - 120	2	20			
Dibenz(a,h)anthracene	97	98	50 - 120	1	20			
Surrogate	L	CS % Rec	LCSD %	Rec	Accep	tance Limits		
2-Fluorobiphenyl	9	4	91		3:	3 - 120		
Terphenyl-d14	1	03	101			5 - 146		

Quality Control Results

Client: AMEC Geomatrix Inc.

Job Number: 720-30865-1

Matrix Spike/

Matrix Spike Duplicate Recovery Report - Batch: 720-79044

Method: 8270C SIM Preparation: 3550B

MS Lab Sample ID: 720-30865-3 Client Matrix:

Solid

Solid

1.0

Analysis Batch: 720-79121

Instrument ID: HP # 3

Dilution: Date Analyzed:

10/01/2010 2051

MSD Lab Sample ID: 720-30865-3

Prep Batch: 720-79044

Lab File ID: 100110027.D Initial Weight/Volume: 30.06 g Final Weight/Volume: 1 mL Injection Volume: 1 uL

Date Prepared:

Client Matrix:

Date Analyzed:

Date Prepared:

Dilution:

Surrogate

2-Fluorobiphenyl

Terphenyl-d14

09/30/2010 1137

10/01/2010 2114

09/30/2010 1137

Analysis Batch: 720-79121 Prep Batch: 720-79044

Instrument ID: HP # 3 Lab File ID: 100110028.D

Initial Weight/Volume: 30.09 g Final Weight/Volume: 1 mL

Acceptance Limits

33 - 120

35 - 146

Injection Volume: 1 uL

% Rec. Analyte MS MSD Limit RPD RPD Limit MS Qual MSD Qual Naphthalene 60 74 32 - 120 21 20 Acenaphthene 58 78 33 - 120 29 20 F Acenaphthylene 59 86 28 - 120 37 20 F Fluorene 78 107 35 - 120 32 20 F Phenanthrene 67 86 28 - 120 25 20 F Anthracene 73 87 36 - 120 18 20 Benzo[a]anthracene 70 81 29 - 120 15 20 Chrysene 82 29 - 120 12 20 Benzo[a]pyrene 81 24 - 120 11 Benzo[b]fluoranthene 76 85 17 - 132 11 20 Benzo[k]fluoranthene 83 35 - 120 14 20 Benzo[g,h,i]perylene 82 92 21 - 120 12 20 Indeno[1,2,3-cd]pyrene 87 98 20 - 126 12 20 Fluoranthene 86 24 - 120 12 20 Pyrene 76 24 - 123 20 14 Dibenz(a,h)anthracene 36 - 120 12

MS % Rec

56

MSD % Rec

81

Client: AMEC Geomatrix Inc.

Job Number: 720-30865-1

Method Blank - Batch: 720-79141

Method: 8270C SIM Preparation: 3510C

Lab Sample ID: MB 720-79141/1-A Client Matrix: Water Dilution: 1.0 Date Analyzed: 10/04/2010 1408

Date Prepared: 10/01/2010 1436

Analysis Batch: 720-79226 Prep Batch: 720-79141

Units: ug/L

Instrument ID: SVOA HP 4 Lab File ID: 10041007,D Initial Weight/Volume: 1000 mL -Final Weight/Volume: 1 mL Injection Volume: 1 uL

Analyte	Result	Qual	RL
Naphthalene	ND ,		1.0
Acenaphthene	ND		0.10
Acenaphthylene	ND		0.10
Fluorene	ND		0.10
Phenanthrene	ND		0.10
Anthracene	ND		0.10
Benzo[a]anthracene	ND		0.10
Chrysene	ND		0.10
Benzo[a]pyrene	ND		0.10
Benzo[b]fluoranthene	ND		0.10
Benzo[k]fluoranthene	ND .		0.10
Benzo[g,h,i]perylene	ND		0.10
Indeno[1,2,3-cd]pyrene	ND		0.10
Fluoranthene	ND		0.10
Pyrene	ND		0.10
Dibenz(a,h)anthracene	ND		0.10
Surrogate	% Rec	Acceptance Limits	5
2-Fluorobiphenyl	75	29 - 120	
Terphenyl-d14	101	45 - 120	

Quality Control Results

Client: AMEC Geomatrix Inc.

Job Number: 720-30865-1

Lab Control Sample/ Lab Control Sample Duplicate Recovery Report - Batch: 720-79141 Method: 8270C SIM Preparation: 3510C

LCS Lab Sample ID: LCS 720-79141/2-A Client Matrix: Water

Dilution:

Prep Batch: 720-79141 1.0 Units: ug/L 10/04/2010 1320

Instrument ID: SVOA HP 4 Lab File ID: 10041005.D

Date Analyzed: Date Prepared:

Date Prepared:

10/01/2010 1436

10/01/2010 1436

Initial Weight/Volume: 1000 mL Final Weight/Volume: 1 mL Injection Volume: 1 uL

LCSD Lab Sample ID: LCSD 720-79141/3-A Client Matrix: Water Dilution: 1.0 Date Analyzed: 10/04/2010 1344

Analysis Batch: 720-79226 Prep Batch: 720-79141 Units: ug/L

Instrument ID: SVOA HP 4 Lab File ID: 10041006.D Initial Weight/Volume: 1000 mL Final Weight/Volume: 1 mL

Analysis Batch: 720-79226

Injection Volume: 1 uL

	9	6 Rec.					
Analyte	LCS	LCSD	Limit	RPD	RPD Limit	LCS Qual	LCSD Qua
Naphthalene	70	57	33 - 120	21	35		
Acenaphthene	75	59	37 - 120	25	35		
Acenaphthylene	72	56	36 - 120	25	35		
Fluorene	91	71	39 - 120	25	35		
Phenanthrene	86	66	44 - 120	26	35		
Anthracene	85	70	45 - 120	19	35		
Benzo[a]anthracene	93	93	48 - 120	1	35		
Chrysene	. 105	101	52 - 120	4	35		
Benzo[a]pyrene	103	101	50 - 120	2	35		
Benzo[b]fluoranthene	107	110	48 - 120	2	35		
Benzo[k]fluoranthene	101	94	50 - 120	7	35		
Benzo[g,h,i]perylene	92	90	49 - 120	1	35		
Indeno[1,2,3-cd]pyrene	96	94	48 - 120	2	35		
Fluoranthene	95	86	46 - 120	10	35		
Pyrene	95	87	50 - 120	9	35		
Dibenz(a,h)anthracene	95	93	48 - 101	2	35		
Surrogate	" L	CS % Rec	LCSD %	Rec	Accep	tance Limits	
2-Fluorobiphenyl	7	6	60		2!	9 - 120	
Terphenyl-d14	9	8	96		4!	5 - 120	

Client: AMEC Geomatrix Inc.

Job Number: 720-30865-1

Matrix Spike/

Client Matrix:

Date Analyzed:

Date Prepared:

Dilution:

Matrix Spike Duplicate Recovery Report - Batch: 720-79141

Method: 8270C SIM

Instrument ID: SVOA HP 4

Lab File ID: 10041008.D

Initial Weight/Volume: 970 mL

Final Weight/Volume: 1 mL

Injection Volume: 1 uL

Preparation: 3510C

MS Lab Sample ID: 720-30865-4

Water

Analysis Batch: 720-79226 Prep Batch: 720-79141

1.0

10/04/2010 1431

10/01/2010 1436

Date Prepared:

MSD Lab Sample ID: 720-30865-4 Water

Client Matrix:

Dilution: 1.0 Date Analyzed:

10/04/2010 1455 10/01/2010 1436 Analysis Batch: 720-79226

Prep Batch: 720-79141

Instrument ID: SVOA HP 4 Lab File ID: 10041009.D Initial Weight/Volume: 970 mL Final Weight/Volume: 1 mL Injection Volume: 1 uL

	%	Rec.					
Analyte	MS	MSD	Limit	RPD	RPD Limit	MS Qual	MSD Qual
Naphthalene	58	59	36 - 120	0	35		
Acenaphthene	62	61	40 - 120	2	35		
Acenaphthylene	59	59	39 - 120	1	35		
Fluorene	71	71	44 - 120	0	35		
Phenanthrene	62	62	44 - 120	0	35		
Anthracene	67	66	48 - 120	2	35		
Benzo[a]anthracene	86	84	48 - 120	3	35		
Chrysene	99	93	52 - 120	6	35		
Benzo[a]pyrene	72	60	50 - 120	18	35		
Benzo[b]fluoranthene	78	74	48 - 120	6	35		
Benzo(k)fluoranthene	71	58	50 - 120	21	35		
Benzo(g,h,i)perylene	36	31	49 - 120	16	35	F	F
Indeno[1,2,3-cd]pyrene	40	34	48 - 120	16	35	F	F
Fluoranthene	81	81	52 - 120	0	35		
Pyrene	81	81	50 - 120	0	35		
Dibenz(a,h)anthracene	33	28	48 - 120	14	35	F	F
Surrogate		MS % Rec	MSD 1	% Rec	· Acc	eptance Lim	its
2-Fluorobiphenyl		63	63			9 - 120	
Terphenyl-d14		87	80		4	5 - 120	

Quality Control Results

Client: AMEC Geomatrix Inc.

Job Number: 720-30865-1

Method Blank - Batch: 720-79118

Method: 8015B Preparation: 3510C SGC

Dissolved

Lab Sample ID: MB 720-79115/1-C

Client Matrix: Water

Dilution:

Date Analyzed: 10/04/2010 0955 Date Prepared: 10/01/2010 1004

Units: ug/L

Analysis Batch: 720-79205 Prep Batch: 720-79118

Instrument ID: CHDRO5 Lab File ID: 1004105a_009.d Initial Weight/Volume: 1000 mL Final Weight/Volume: 2 mL Injection Volume: 1 uL

Column ID:

PRIMARY

Analyte	Result	Qual	MDL	RL	
Diesel Range Organics [C10-C28]	18.6	J	10	50	
Motor Oil Range Organics [C24-C36]	ND		130	300	
Surrogate	% Rec	Acceptance Limits			
Capric Acid (Surr)	0.1	0 - 5			
p-Terphenyl	94	31 - 150			

Lab Control Sample/ Lab Control Sample Duplicate Recovery Report - Batch: 720-79118

Method: 8015B Preparation: 3510C SGC Dissolved

Lab File ID: 1004105a 007.d Initial Weight/Volume: 1000 mL

Instrument ID: CHDRO5

Analysis Batch: 720-79205 LCS Lab Sample ID: LCS 720-79115/2-C Client Matrix: Water Prep Batch: 720-79118 Dilution: 1.0 Units: ug/L Date Analyzed: 10/04/2010 0909 Date Prepared: 10/01/2010 1004

LCSD Lab Sample ID: LCSD 720-79115/3-C

Water

10/04/2010 0932

10/01/2010 1004

Client Matrix:

Date Analyzed:

Date Prepared:

Dilution:

Analysis Batch: 720-79205

Prep Batch: 720-79118 Units: ug/L

Final Weight/Volume: 2 mL Injection Volume: 1 uL PRIMARY Column ID: Instrument ID: CHDRO5

Lab File ID: 1004105a_008.d Initial Weight/Volume: 1000 mL Final Weight/Volume: 2 mL Injection Volume: 1 uL Column ID: PRIMARY

	2	& Rec.					
Analyte	LCS	LCSD	Limit	RPD	RPD Limit	LCS Qual	LCSD Qual
Diesel Range Organics [C10-C28]	66	58	32 - 119	12	35		
Surrogate	LCS % Rec		LCSD % Rec		Acceptance Limits		
p-Terphenyl	9	1	88		3	1 - 150	

Client: AMEC Geomatrix Inc.

Job Number: 720-30865-1

Method Blank - Batch: 720-79235

Method: 8015B Preparation: 3550B Silica Gel Cleanup

Lab Sample ID: MB 720-79235/1-A Client Matrix: Solid Dilution: 1.0

Analysis Batch: 720-79206 Prep Batch: 720-79235 Units: mg/Kg

Date Analyzed: 10/05/2010 0706 Date Prepared: 10/04/2010 1427 Instrument ID: CHDRO5 Lab File ID: 1004105b 061.d Initial Weight/Volume: 30.12 g Final Weight/Volume: 2 mL Injection Volume: 1 uL Column ID: PRIMARY

Analyte Result Diesel Range Organics [C10-C28] ND 1.0 Motor Oil Range Organics [C24-C36] ND % Rec Surrogate Acceptance Limits Capric Acid (Surr) 0.2 0 - 5 p-Terphenyl 46 - 115 93

Lab Control Sample/ Lab Control Sample Duplicate Recovery Report - Batch: 720-79235 Method: 8015B Preparation: 3550B Silica Gel Cleanup

LCS Lab Sample ID: LCS 720-79235/2-A Client Matrix: Solid Dilution: 1.0 Date Analyzed: 10/05/2010 0619 Date Prepared: 10/04/2010 1427

Analysis Batch: 720-79206 Prep Batch: 720-79235 Units: ma/Ka

Instrument ID: CHDRO5 Lab File ID: 1004105b_059.d Initial Weight/Volume: 30.21 a Final Weight/Volume: 2 mL Injection Volume: 1 uL Column ID: PRIMARY

LCSD Lab Sample ID: LCSD 720-79235/3-A Client Matrix: Solid Dilution: 1.0 Date Analyzed: 10/05/2010 0642 Date Prepared: 10/04/2010 1427

Analysis Batch: 720-79206 Prep Batch: 720-79235 Units: mg/Kg

Instrument ID: CHDRO5 Lab File ID: 1004105b 060.d Initial Weight/Volume: 30.43 g Final Weight/Volume: 2 mL Injection Volume: 1 uL Column ID: PRIMARY

Analyte	LCS	Rec. LCSD	Limit	RPD	RPD Limit	LCS Qual	LCSD Qual
Diesel Range Organics [C10-C28]	83	85	45 - 115	1	35		
Surrogate	LCS % Rec		LCSD % Rec		Acceptance Limits		
p-Terphenyl	103	3	100			3 - 115	

Quality Control Results Job Number: 720-30865-1

Client: AMEC Geomatrix Inc.

Matrix Spike/

Matrix Spike Duplicate Recovery Report - Batch: 720-79235

Method: 8015B Preparation: 3550B Silica Gel Cleanup

Instrument ID: CHDRO6

MS Lab Sample ID: 720-30865-3 Client Matrix: Dilution:

Solid 1.0

Prep Batch: 720-79235

Prep Batch: 720-79235

Analysis Batch: 720-79276

Date Analyzed: 10/05/2010 1125 Date Prepared: 10/04/2010 1427

MSD Lab Sample ID: 720-30865-3 Analysis Batch: 720-79276

Client Matrix: Solid Dilution: 1.0 Date Analyzed: 10/05/2010 1147 10/04/2010 1427 Date Prepared:

Lab File ID: FID1000012.D Initial Weight/Volume: 30.42 g Final Weight/Volume: 2 mL

Injection Volume: 1 uL PRIMARY Column ID:

Instrument ID: CHDRO6 Lab File ID: FID1000013.D Initial Weight/Volume: 30.30 g Final Weight/Volume: 2 mL Injection Volume: 1 uL PRIMARY Column ID:

	%	Rec.					
Analyte	MS	MSD	Limit	RPD	RPD Limit	MS Qual	MSD Qual
Diesel Range Organics [C10-C28]	55	73	50 - 130	28	30		9,11,130-303-303-00-1-1-1-1-1
Surrogate		MS % Rec	MSD	% Rec	Acc	eptance Lim	its
p-Terphenyl		93	93		4	6 - 115	

TestAmerica San Francisco

Page 51 of 65

11/05/2010

TestAmerica San Francisco

Page 52 of 65

11/05/2010

Client: AMEC Geomatrix Inc.

Job Number: 720-30865-1

Method Blank - Batch: 720-79462

Method: 8015B Preparation: 3510C SGC Silica Gel Cleanup

Lab Sample ID: MB 720-79462/1-A Client Matrix: Water

Dilution: 1.0 Date Analyzed: 10/08/2010 0932 Date Prepared: 10/07/2010 1014 Analysis Batch: 720-79524 Prep Batch: 720-79462

Units: ug/L

Instrument ID: CHDRO5 Lab File ID: 1008105b_007.d Initial Weight/Volume: 1000 mL Final Weight/Volume: 2 mL Injection Volume: 1 uL Column ID: PRIMARY

Analyte	Result	Qual	RL
Diesel Range Organics [C10-C28]	ND		50
Motor Oil Range Organics [C24-C36]	ND		300
Surrogate	% Rec	Acceptance Limits	
Capric Acid (Surr)	0.3	0-5	
p-Terphenyl	95	31 - 150	

Lab Control Sample/ Lab Control Sample Duplicate Recovery Report - Batch: 720-79462

Method: 8015B Preparation: 3510C SGC Silica Gel Cleanup

Lab File ID: 1008105b 008.d

Final Weight/Volume: 2 mL

Initial Weight/Volume: 1000 mL

1 uL

PRIMARY

Instrument ID: CHDRO5

Injection Volume:

Column ID:

LCS Lab Sample ID: LCS 720-79462/2-A Client Matrix: Water Dilution: 1.0 Date Analyzed:

Date Prepared:

Analysis Batch: 720-79524 Prep Batch: 720-79462 Units: ug/L 10/08/2010 0955

10/07/2010 1014

LCSD Lab Sample ID: LCSD 720-79462/3-A Client Matrix: Water Dilution: 1.0 Units: ug/L Date Analyzed: 10/08/2010 1018 Date Prepared: 10/07/2010 1014

Analysis Batch: 720-79524 Prep Batch: 720-79462

Instrument ID: CHDRO5 Lab File ID: 1008105b 009.d Initial Weight/Volume: 1000 mL Final Weight/Volume: 2 mL Injection Volume; 1 uL PRIMARY Column ID:

Analyte	LCS	<u>6 Rec.</u> LCSD	Limit	RPD	RPD Limit	LCS Qual	LCSD Qual
Diesel Range Organics [C10-C28]	49	44	32 - 119	9	35		***************************************
Surrogate	LCS % Rec		LCSD % Rec		Acceptance Limits		
p-Terphenyl		05	117			1 - 150	

Quality Control Results

Client: AMEC Geomatrix Inc.

Job Number: 720-30865-1

Matrix Spike/

Date Analyzed:

Date Prepared:

Matrix Spike Duplicate Recovery Report - Batch: 720-79462

MS Lab Sample ID: 720-30865-4 Client Matrix: Dilution:

Water 10

10/08/2010 1128 10/07/2010 1014

MSD Lab Sample ID: 720-30865-4 Water

Client Matrix: Dilution: 1 0 Date Analyzed: 10/08/2010 1152 Date Prepared: 10/07/2010 1014 Analysis Batch: 720-79523 .

Prep Batch: 720-79462

Analysis Batch: 720-79523 Prep Batch: 720-79462

Method: 8015B Preparation: 3510C SGC Silica Gel Cleanup

Instrument ID: CHDRO5 Lab File ID: 1008105a 012.d Initial Weight/Volume: 990 mL Final Weight/Volume: 2 mL Injection Volume: 1 uL PRIMARY Column ID:

Instrument ID: CHDRO5 Lab File ID: 1008105a 013.d Initial Weight/Volume: 980 mL Final Weight/Volume: 2 mL Injection Volume: 1 uL Column ID: PRIMARY

	%	Rec.						
Analyte	MS	MSD	Limit	RPD	RPD Limit	MS Qual	MSD Qual	
Diesel Range Organics [C10-C28]	55	56	32 - 119	2	30	******	171-7harr-samman	
Surrogate		MS % Rec		MSD % Rec		Acceptance Limits		
p-Terphenyl		95	92			1 - 150		

Client: AMEC Geomatrix Inc.

Job Number: 720-30865-1

Method Blank - Batch: 720-79060

Method: 7199 Preparation: N/A

Lab Sample ID: MB 720-79060/2 Client Matrix: Water

Analysis Batch: 720-79060 Prep Batch: N/A

Dilution: 1.0

Date Analyzed: 09/29/2010 1521 Date Prepared: N/A

Units: ug/L

Instrument ID: IC3 Lab File ID: 092910.csv Initial Weight/Volume: 1.0 mL Final Weight/Volume: 10 mL

Analyte Result Qual Cr (VI) ND

RL 0.50

Lab Control Sample/

Lab Control Sample Duplicate Recovery Report - Batch: 720-79060

Method: 7199 Preparation: N/A

LCS Lab Sample ID: LCS 720-79060/3 Client Matrix:

Water 1.0

Analysis Batch: 720-79060 Prep Batch: N/A

Units: ug/L

Instrument ID: IC3 Lab File ID: 092910.csv Initial Weight/Volume: 1.0 mL Final Weight/Volume: 10 mL

09/29/2010 1531

Date Analyzed:

Date Prepared: N/A

Dilution:

LCSD Lab Sample ID: LCSD 720-79060/4 Client Matrix: Water

Dilution: 1.0 Date Analyzed: 09/29/2010 1541 Analysis Batch: 720-79060

Prep Batch: N/A Units: ug/L

Instrument ID: IC3 Lab File ID: 092910.csv Initial Weight/Volume: 1.0 mL Final Weight/Volume: 10 mL

Date Prepared:

% Rec. Analyte LCS LCSD Limit RPD RPD Limit LCS Qual LCSD Qual Cr (VI) 85 - 115 101 98 3 20

Quality Control Results

Client: AMEC Geomatrix Inc.

Job Number: 720-30865-1

Matrix Spike/

Dilution:

Dilution:

Date Analyzed:

Date Prepared:

Date Analyzed:

Date Prepared:

Matrix Spike Duplicate Recovery Report - Batch: 720-79060

09/29/2010 1643

Method: 7199 Preparation: N/A

MS Lab Sample ID: 720-30859-A-1 MS Client Matrix:

Water 1.0 N/A

Analysis Batch: 720-79060

Prep Batch: N/A

Instrument ID: IC3

Lab File ID: 092910.csv Initial Weight/Volume: 1.0 mL Final Weight/Volume: 10 mL

MSD Lab Sample ID: 720-30859-A-1 MSD Client Matrix;

Water 1.0

Analysis Batch: 720-79060 Prep Batch: N/A

Instrument ID: IC3

Lab File ID: 092910.csv Initial Weight/Volume: 1.0 mL

Final Weight/Volume: 10 mL

N/A

09/29/2010 1653

% Rec. Analyte Limit MS RPD Limit MS Qual MSD Qual MSD Cr (VI) 111 100 80 - 120 10 20

TestAmerica San Francisco

Page 55 of 65

11/05/2010

TestAmerica San Francisco

Page 56 of 65

11/05/2010

17461 Derian Avenue, Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

720-30865

LABORATORY REPORT

Prepared For: TestAmerica San Francisco

Project: N/A-Misc.

1220 Quarry Lane

Pleasanton, CA 94566

Attention: Afsanch Salimpour

Sampled: 09/29/10 Received: 10/01/10

Issued: 10/08/10 16:20

NELAP #01108CA California ELAP#2706 CSDLAC #10256 AZ #AZ0671 NV #CA01531

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of TestAmerica and its client. This report shall not be reproduced, except in full, without written permission from TestAmerica. The Chain of Custody, I page, is included and is an integral part of this report.

This entire report was reviewed and approved for release.

SAMPLE CROSS REFERENCE

Page 57 of 65

LABORATORY ID ITJ0043-01 ITJ0043-02

CLIENT ID SB-08 SB-07

MATRIX Water

Water

Reviewed By:

TestAmerica Irvine

Kathleen A. Robb For Steven Garcia

Project Manager

ITJ0043 <P##965/2010

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue, Suite 100, Tryine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

TestAmerica San Francisco 1220 Quarry Lane

Project ID: N/A-Misc. 720-30865

Sampled: 09/29/10 Received: 10/01/10

Pleasanton, CA 94566 Attention: Afsaneh Salimpour Report Number: ITJ0043

I	VĮ	E	T	A	L	.S	

		ME.	IALS					
Analyte	Method		eporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: 1TJ0043-01 (SB-08 - Water) Reporting Units: ug/l Chromium	EPA 6020	10J0140	2.0	23	1	10/2/2010	10/2/2010	
Sample ID: 1TJ0043-02 (SB-07 - Water) Reporting Units: ug/l Chromium	EPA 6020	10J0140	2.0	44	ı	10/2/2010	10/2/2010	
Reporting Units: ug/l	EPA 6020	10J0140	2.0	44	1	,	10/2/2010	10/2/2010 10/2/2010

TestAmerica Irvine

Kathleen A. Robb For Steven Garcia Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without gitten germis giongin TestAmerica.

1TJ0043 <Page 3 gf/\$2010

17461 Derian Avenue, Suite 100, Trvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

TestAmerica San Francisco 1220 Quarry Lane Pleasanton, CA 94566 Attention: Afsaneh Salimpour Project ID: N/A-Misc.

720-30865

Sampled: 09/29/10 Received: 10/01/10

Report Number: ITJ0043

О Р

METHOD BLANK/QC DATA

METALS

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 10J0140 Extracted: 10/02/10										
Blank Analyzed: 10/02/2010 (10J0140-E	LKI)									
Chromium	ND	2.0	ug/l							
LCS Analyzed: 10/02/2010 (10J0140-BS	i1)									
Chromium	81.0	2.0	ug/l	80.0		101	80-120			
Matrix Spike Analyzed: 10/02/2010 (10.	10140-MS1)				Source: I	TJ0043-02	!			
Chromium	117	2.0	ug/I	80,0	43.9	91	75-125			
Matrix Spike Dup Analyzed: 10/02/2011) (10J0140-N	ASD1)			Source: I	TJ0043-02	2			
Chromium	111	2.0	ug/l	80.0	43.9	83	75-125	6	20	

TestAmerica Irvine

Kathleen A. Robb For Steven Garcia Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, with my grighten groups fong to TestAmerica.

ITJ0043 <Pare 3 9/12010

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue, Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

TestAmerica San Francisco

1220 Quarry Lane

Project ID: N/A-Misc. 720-30865

Sampled: 09/29/10

Pleasanton, CA 94566 Attention: Afsaneh Salimpour Report Number: ITJ0043

Received: 10/01/10

DATA QUALIFIERS AND DEFINITIONS

ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.

RPD Relative Percent Difference

TestAmerica Irvine

Kathleen A. Robb For Steven Garcia Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without exited providing from TestAmerica.

ITJ0043 <Page 85/2010

17461 Derian Avenue, Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

TestAmerica San Francisco 1220 Quarry Lane Project ID: N/A-Misc.

Report Number: 1TJ0043

720-30865

Sampled: 09/29/10

Pleasanton, CA 94566

Received: 10/01/10

Attention: Afsaneh Salimpour

Certification Summary

TestAmerica Irvine

Method Matrix Neluc California
EPA 6020 Water X X

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for TestAmerica may be obtained by contacting the laboratory or visiting our website at www.testamericainc.com

TestAmerica Irvine

Kathleen A. Robb For Steven Garcia

Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, will puggifted permission from Testelmerica.

ITJ0043	<p449 5="" 52016<="" th=""></p449>
---------	------------------------------------

TestAmerica San Francisco								•											
1220 Quarry Lane				.					_									TestA	merice
Pleasanton, CA 94566			,	Chain c)T (Ju:	sto	ay ı	Red	cor	ď		_	<u>.</u>	4		vi	2 100017	
Phone (925) 484-1919 Fax (925) 600-3002												-		٠)	_	$o\iota$	14.	7 THE LEADER IN	FRYRONUENTA; 1931
Client Information (Sub Contract Lab)	Samoler,				mpou	ır, Af	sanah					Co	rder Tr	ching	No(a):			COC No 720-10138 1	
Cient Centact Shipping/Receiving	Phone:			E-Ma								7						Page.	
Сотрату				8158	nea.	58 III	pour@	210518	menc	anc.	com	٠.						Page 1 of 1	
TestAmerica Laboratories, Inc									An	alys	is R	eque	ster	f				720-30865-1	
Address 1746* Derian Ave, Suite 100,	Due Date Reques 10/5/2010	ted:			10	81	Т	T					Т	1 7		-		Preservation Co	ides:
City Color	TAT Requested (davet				2			Į			1		ļΙ			- 6	A · HCL	M - Hoxane
Irving >						8	Ţ			-				ÌΙ			130	B - NeOH C - Zn Acetela	N - N016 O - AsNeO2
Sane, 20 CA, 92614-5817					П	ž		1 1		1			Į					C D - Ntric Aski	P - Na204S Q - Na2503
Phone:	PO#				3	á		1 1		- 1	t:	-	1		Į		- 1	E-NIHSO4 F-MIOH	R - N#252503
949-261-1022(Tel) 949-261-1228(Fax)	I_				8		1	1 1		- [- 1	- 1	1		i		Že	G - Amonior H - Ascorbic Add	S - H2SO4 T - TSP Dodecahyera
Email	WO#.				Elekt Filtered, Sample (Yes or No) 👈	.		Н						1		-		I - Ica	U - Acetone V - MCAA
Project Name:	Project #				ll i	욃		iΙ		- 1				il			15	K-EDTA	W - ph 4-5
Crown Chevrolel	72006900				8		2	1 1						ļ ļ	ı		Containe	L-EDA	Z - other (specify)
Site.	SSOW:				ŝ.	롊	2	11	1	- 1						- 1	3	Other:	
				T 54	S	TOWN WEIGHT	₹	11	1	- 1			ì	ΙĮ	- 1	- 1	20		
		l	Sample	Matrix (w	9	3 1	ž I	11	ı			i		! 1	- 1		Total Number		
	1	Sample	Type (Cocomp,	Secold,	E	翻 8	3	11	.		- 1			1 1			18	l l	
Sample Identification - Client ID (Lab ID)	Sample Date	Time		Courselvel, Elethium, coar	ĕ	副 8	51	łΙ		- Į	- 1			1			13		
Alternative and a second second		38		ConiCode:			经额	281		170	70 20	9 44	400	3211	.50	201	- 12	Special II	structions/Note:
S8-08 (720-30865-2)	9/29/10	09:00 Pacific		Water	ſΥ	~	×		7	+	+	1 200	5	102.1	-	+			
SB-07 (720-30885-4)	9/29/10	10:00		Water	H	7,	<u>.</u>	\vdash	\dashv	+	+	+	+	-	-+	+	-	<u> </u>	
		Pacific			н	+	+	1-	+	+	+	+-	╁	H	-	-+	:"!	ms/ms	5D
		-			Н		+	+	-	+	+	+-	+-	Н	-	-	-	ļ	
			-		4	4	-		_	_	_		┺	Ш			'n		-
					Ш	1].	ı	1				- [/
					Н			П	П		Т	Т				T	10	/	,
					П	Т		П		7		T			1	T	1		197, 18
					П	7	1		7	_	7	_	1		\neg	十	183	1	Ollilai
					+	+	+-	H	\dashv	+	+	+-	┰	H	+	+	- 137		-10/1/10
	 				-+-	+	+	1-1	+	+	- -	+-	+	+	+	+	155	1	
					Ц.	4		Ш	_				ļ		_	\perp			
						£		IJ	-	Ì		-	1		Т	T	611		
Possible Hazard Identification					s	amp	la Dis	posal	(A f	ee m	y be	asse	ssed	if sar	nple.	s are	retair	ed longer than	f month)
Non-Hazard Flammable Skin Imilani P	oison 8 🖳 Unkr	1011/1	Rediologica	1	1		Return	ToC	liont			Disp	osal É	y Let	,		Arc	ned longer than hive For	Months
Deliverable Requested: I, II, III, IV, Other (specify)					s	pecia	al Instr	uction	s/QC	Requ	arem	ents:				_			
Emply Kit Relinquished by	1 1	Date:			Time	»:			_		_	_	Math	od of S	hiprae	rt:			
Reinquished by: TYKU H.	100730 1	0-162	<u>۱</u>	COT \$7 57	_	Re	ceived t	y: /	2		-	_	٠	- 10	Napper .	ine/	7		Сотрату
Reinquished by:	Date(Free:)	5-10:	<i>1</i> U	Company	_	10-	CONVOCA	4.1	2	in	4				/e		<u>// C</u>	1/:30	COTTOSTY
<u> </u>	T					^*	-wied E	7.						ľ	ater:	nuor			Company
Royaquished by:	Date/Time:			Company		Re	cenec b	n:						c	ateff	ime	_		Company
Custody Seals Intact: Custody Seal No.:					_	Co	oler Tem	noezatu	re(#) *0	Capro	Dinar I	Remark	1/	ᆛ	_	۸ ۵	_		1- (1.56
Δ Yes Δ No			P.	cre 62 d	nf.	45					-	-	10	3)	4	Ĺ۷			57 /de/15/6

LABORATORY ADDRESS: CLENT INFORMATION: REPORTING REQUIREMENTS:	24,25,825,000
LAHORATORY ADDRESS:	
~ 27	
27 4466 4	
THOO. LABORATORY CONTACT: LABORATORY PHONE NUMBER LABORATORY PHONE NUMBER GEOTRACKER REQUIRED YES	> No \
SITE SPECIFIC GLOBAL ID NO.	1 2 3
S (SIGNATURE): ANALYSES	
Water (VV), or Obbert (VV), and Type an	
	1
ME NUMBER Type Solid Misher M SANS D Not of Conteiners Misher M M M M M M M M M M M M M M M M M M M	ADDITIONAL COMMENTS
	COMMENTS
28 SB-03 X HC1 Y 3	
ED BY: DATE TIME RECEIVED BY: DATE TIME TOTAL NUMBER OF CONTAINERS: 1/21/10 SIGNATURES SAMPLING COMMENTS: PRINTED NAME: PRINTED NAM	
SAMPLING COMMENTS: PHILY TO NAME P	
PRINTED NAME California 1990 1100m VOC, APH, by 8260B	
APT.	
Contracts Vay 1820 Francis Agree 1929/1/20 5.50/4.0	
COMPANY Amis 1/20 5.50/4.0	الا
COMPANY AMILE (27)	
2101 Webster Street, 12th Floor	
Oakland, California 94612-3066 COMPANY: Tel 510.663,4100 Fax 510.663,4141	

PROJECT	NAME:	Crown	Cho.	out A		_			-1	7	0-	- 3	C	386	O	5	DATE: 9	1201	1,		Tp	AGE	7	15813 OF 2
ROJECT NUM	BER:				LABO	DRATO	RY NAI A J / RY ADI	些		_	CLIENT IN	FORMATIO	ON:		_		REPORTING R	EQUIR	EMENT	S:	1.		+	
ESULTS TO:		~			LABO	DRATO	RY ADI	PRESS:													12719			
URNAROUND	I'ME AL	2	Jandar	1	1								-			10-41								3.54
AMPLE SHIPM	ENTMETHOD	-	rica de a pr	<u> </u>	LAB	PRATO	RY CO	NTACT:							_									
					LABO	DRATO	RY PHO	ONE NUM	BER:				_		_		GEOTRACKER	REQU	IRED				YES	ON (
PANADI.	EDC .	/CIONIA	rupe:	\.	+				Δ Ν Ι	A 1 3/	SES				_		SITE SPECIFIC	GLOB	AL ID N	10.	,			
SAIVIPL	ERS ((SIGNA	IUKE):		П			AN	ALY	SES			ТТ	_			_ ا						
// <u>/</u>	√ √	Τ			HAZE STAL	he		. {										Water (W),		Preservative Type			No. of Containers	
DATE	TIME	N	AMPLE UMBER		BIECX JULIES,	11401	#2	Otomic					-			CONTA TYPE A		Soil (S), V	Filtered	reserva	Cooled	MS/MSD	to. of Cc	ADDITIONAL COMMENTS
1/29/2010	0815	SB-08	-15.7		V			1				\Box	T	\top		YOUL VO	1	5	7	Pissike	1	N	2	
			I		X								寸	1	\neg	YOUL VO		5	N	moderni	Y	N	i	
						X	X			Т			寸	$\dashv \dashv$				5	N	neno	1	N	1	
	0900	513-08			X		T			П			7	11	_	802 glas 40LL VO	1	اما	1	HCI	1	T	3	
						X	\top						7	$\pm \pm$	7	32 or Am		h	+	1401	11	H	2	
					П	Χ							T		7	1	9-4	W	1	Now.C.	H	††	2	F14-10/26
					\Box		Х			Ì			T	1-1	┪				1	None	H	H	2	1714-219 1 25
						\neg		X					1			2.50 -1	Peli	-	A)	None	li-	+-	ī	
			,				7	X					1		7	250 mL			Λ.	HAVO 2	忕	+	i	
	0930	58-07	-13.2	-		Х	Хĺ						1			Soc glass	سيندآ.	5		nous	4	V	2	MS/ASD
	1000	513-07				Х							1			3202 And		+-	_	HCI	Ý	1	4	145/1950
						Х	T						7		1	1.		1	17.	none	Y	N	Z	Tilter @ las
							ΧĪ						T					12	W	more	Ÿ	y'	4	MSMISD
								x					T		٦	250 mL	1201	in	iv	nor.	Y	Y	li	nslnsp
			-			I							T		7	4		w	W	111-10 8	Ý	r	i	12/210
ELINQU	ISHED E	3Y:	DATE	TIME	RE	CEL	∕5D	BY;			DATE	TIME	=	TOTAL NU	MBI	ER OF CONTAIN	NERS:					1.4.	29	7-7:012
IGNATURE:	17/8		Thing 110	100	SIGN	ATO		16,	tin	00	97		7	SAMPLING	3 CC	OMMENTS;							Е.Д	
RINTEDMAN	AE: Steh	ره ار-	1 110	00	PRIN	TEO	NAME	ash	007-	1	129/	11:00		Brex. M	777	E, TPHy 5	616	n						
OMPANY:	4		1	1					_	\mathcal{I}	lic	ï	ŀ	TPILIT		1 8015	- 14	<u>р</u>	/.					
GNATURE	11/2	Tires	eV.		SIGN	ATUF	E:	n M	AO.	J	2.6		†	anı	4	by 8015	2411		نه <i>۱۰</i>	921	معانا	Jan		
SINTED NAM	ME: 1		12/10	11:30-	PRIN	TED	MAME	/1	01.	~	1/29/	1,		1.112	711	ex Chani								·····
OMPANY:		77] ′ .		COM	PANY	: a	A	ne.		1/1/2	1/2	7	APPLY CL	14	W. Ladwin	- by 6	VL	_			_	.5	0/5100
GNATURE:					SIGN	ATUF	Œ:			~.			$^{+}$	21	Ω1	Webster S	troot 12	L [_	2	'.>	2/4.02
RINTED NAM	Æ:		1		PRIN	TED	NAME				1		ļ			and, Califo								
OMPANY:			1		COM	PANY	:		-		4	1	1			.663.4100				4	ě			

Login Sample Receipt Check List

Client: AMEC Geomatrix Inc.

Job Number: 720-30865-1

Login Number: 30865 Creator: Mullen, Joan List Number: 1

List Source: TestAmerica San Francisco

Question	T / F/ NA	Comment
Radioactivity either was not measured or, if measured, is at or below background	N/A	
The cooler's custody seal, if present, is intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	

TestAmerica San Francisco Page 65 of 65 11/05/2010

ANALYTICAL REPORT

Job Number: 720-30865-2 Job Description: Crown Chevrolet

For: AMEC Geomatrix Inc. 2101 Webster Street, 12th Floor Oakland, CA 94612 Attention: Avery Patton

Akanof Sal J

Approved for release Afsaneh Salimpour Project Manager I 11/12/2010 2:05 PM

Afsaneh Salimpour Project Manager I afsaneh.salimpour@testamericainc.com 11/12/2010 Revision: 1

CA ELAP Certification # 2496

The Chain(s) of Custody are included and are an integral part of this report.

The report shall not be reproduced except in full, without the written approval of the laboratory. The client, by accepting this report, also agrees not to alter any reports whether in the hard copy or electronic format and to use reasonable efforts to preserve the reports in the form and substance originally provided by TestAmerica.

A trip blank is required to be provided for volatile analyses. If trip blank results are not included in the report, either the trip blank was not submitted or requested to be analyzed.

TestAmerica Laboratories, Inc.
TestAmerica San Francisco 1220 Quarry Lane, Pleasanton, CA 94566
Tel (925) 484-1919 Fax (925) 600-3002 www.testamericainc.com

Job Narrative 720-30865-2

Comments

No additional comments.

Receipt

Per Client request amber glass bottle was filtered on 11/3/10 and then preserved with nitric acid and shipped to our Irvine lab to perform Dissolved Chromium by method 6020.

No analytical or quality issues were noted.

17461 Derian Avenue, Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

LABORATORY REPORT

Prepared For: TestAmerica San Francisco

Project: N/A-Misc.

1220 Quarry Lane

720-30865

Pleasanton, CA 94566

Attention: Afsaneh Salimpour

Sampled: 09/29/10 Received: 11/04/10

Issued: 11/05/10 16:52

NELAP #01108CA California ELAP#2706 CSDLAC #10256 AZ #AZ0671 NV #CA01531

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of TestAmerica and its client. This $report\ shall\ not\ be\ reproduced,\ except\ in\ fidl,\ without\ written\ permission\ from\ Test America.\ The\ Chain\ of\ Custody,\ 1\ page,\ is\ included\ and$ is an integral part of this report.

This entire report was reviewed and approved for release.

SAMPLE CROSS REFERENCE

LABORATORY ID	CLIENT ID	MATRIX
ITK0514-01	SB-08	Water
ITK0514-02	SB-07	Water

Reviewed By:

TestAmerica Irvine Steven Garcia

Project Manager

Page 3 of 9

ITK0514 < Page 12/2010

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue, Suite 100, Tryine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

TestAmerica San Francisco 1220 Quarry Lane

Project ID: N/A-Misc. 720-30865

Pleasanton, CA 94566 Attention: Afsaneh Salimpour Report Number: ITK0514

Sampled: 09/29/10 Received: 11/04/10

DISSOLVED METALS

Analyte	Method	Batch	Reporting Limit	Sample Dilution Result Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: ITK0514-01 (SB-08 - Water) Reporting Units: ug/l Chromium	EPA 6020-Diss	10K0590	2.0	3.3 🕽 – 1	11/4/2010	11/5/2010	
Sample ID: 1TK0514-02 (SB-07 - Water) Reporting Units: ug/l Chromium	EPA 6020-Diss	10K0590	2.0	2.8 J - 1	11/4/2010	11/5/2010	

TestAmerica Irvine

Steven Garcia Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without griften permissions from TestAmerica.

ITK0514 < Page 2 of \$2010

17461 Derian Avenue, Suite 100, Tryine, CA 92614 (949) 261-1022. Fax:(949) 260-3297

%REC

Result %REC Limits RPD

93 80-120

TestAmerica San Francisco 1220 Quarry Lane Pleasanton, CA 94566 Attention: Afsaneh Salimpour

Analyte

Chromium

Chromium

Project ID: N/A-Misc. 720-30865

METHOD BLANK/QC DATA

DISSOLVED METALS

Sampled: 09/29/10 Received: 11/04/10

Report Number: ITK0514

Pleasanton, CA 94566 Attention: Afsaneh Salimpour

ND

Project ID: N/A-Misc.

17461 Derian Avenue, Suite 100, Tryine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

720-30865 Report Number: ITK0514

Sampled: 09/29/10 Received: 11/04/10

DATA QUALIFIERS AND DEFINITIONS

Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.

RPD Relative Percent Difference

TestAmerica San Francisco

1220 Quarry Lane

LCS Analyzed: 11/05/2010 (10K0590-BS1)

Chromium

Matrix Spike Dup Analyzed: 11/05/2010 (10K0590-MSD1)

Batch: 10K0590 Extracted: 11/04/10 Blank Analyzed: 11/05/2010 (10K0590-BLK1)

2.0 Matrix Spike Analyzed: 11/05/2010 (10K0590-MS1)

Result

2.0

2,0

Reporting

ug/l

ug/l

Source: ITK0514-01 3.32

Spike Source

Level

94 75-125 Source: ITK0514-01 3.32 97 75-125

RPD

Limit

Qualifiers

TestAmerica Irvine

Steven Garcia Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced. except in full, without series granistion of am TestAmerica.

ITK0514 < Pare 12/2010

TestAmerica Irvine Steven Garcia Project Manager

The results pertoin only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without zeiten gernistenafrom TestAmerica.

ITK0514 < Page 42/52010

17461 Derian Avenue, Suite 100, Trvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

TestAmerica San Francisco 1220 Quarry Lane

Project ID: N/A-Misc. Report Number: ITK0514

720-30865

Sampled: 09/29/10

Pleasanton, CA 94566 Attention: Afsaneh Salimpour Received: 11/04/10

Certification Summary

TestAmerica Irvine Method

Matrix

California

EPA 6020-Diss

Nelac

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for TestAmerica may be obtained by contacting the laboratory or visiting our website at www.testamericainc.com

TestAmerica Irvine

Steven Garcia Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, within a giften perngefinn from TestAmerica.

ITK0514 < Page 5 25/52010

TestAmerica San Francisco																			- 15	4.6	5,214
1220 Quarry Lane			(hain	of C	usto	dy	Re	СО	rd									IESTA	<u>,me</u>	rico
Pleasat#06 CA 94566 Phone (925) 484-1919 Fax (925) 600-3002																			THE CEASES IN	ENV PORVEN	ITAL IANIAS
Client Information (Sub Contract Lab)	Sampler				impour.	Afsane	th					Carne	rTrac	king N	40(5).			- 13	OC No: 720-10467 1		
Clori Contact Shipping/Receiving	Phona			E-M afs		Ilmpoul	@tes	tameri	icaine	.com									Page 1 of 1		
Company. TesiAmerica Laboratories, Inc.		-			T		~		naly			1165	ted					-	106 A 720-30865-2		
Address	Due Data Request	es:			18	a T	T	7	T.,	0.0	-	Ť	1		-	T	1		reservation Co	odes:	
17461 Derian Ave. Suite 100, Cer.	11/5/2010 TAT Requested Id	aye):			No.	g							i	- 1				- 1	A - HCL B - NaOH	M - Hexan N - None	
Invine State, Zip.	-					130	ğΙ	1						ŀ		-		: : 1	C - Zn Aselste D - Nishe Acid	O - A1N0C P - N02O4	45
CA, 92614-5817						ê i								- 1					E - NaHSO4 F - MeOH	Q - Na250 R - Na252	
Phone: 949-251-1022(Tei) 949-251-1228(Fax)	FO #						۲							ŀ		- 1		٠.	G - Amohior H - Ascorbic Acid	5 - H2SO4	M Sodecehyorete
Erruki	WO E.				Field Filtered Sample (Yes or No)	SUBCONTRACT! Dissolved CR by method 6020	5				}		-			i	1		i - Ice J - Di Water	U - Aceton V - NCAA	ne .
Picjeti Nacia:	Project #:				1816	d N	₽.	1				-	ı		-			ig.	K - EDTA	Wigh 4-5 2 - other fr	5
Crown Chevrolet	72006900 550W				-	1 2	1					Ì	- [ı			- !	ĦI	Other:		
		,				Βá	F۱					1					- 1	ě			
		l	Sample	Matrix (wester.	ξ	Ĕ					П		Į		-		k	fotal Number of			
		Sample	Type (C=comp,	E-sald. Comminue.		8					lí	- [- 1				- 1	ž			
Sample Identification - Client ID (Lab ID)	Sample Date	Time	G=grab)	97+141m. A-A		3						_	_							Instruction	s/Note:
Time to the second seco		09:00	Preserv	tion Code:	SKA			4:	-	-	26	100	an l	***	نند	1953			Section 1		1,749
SB-08 (720-30865-2)	9/29/10	Pacific 10:00	<u> </u>	Water	44	×	4	_	<u> </u>		Ш		_	_				j.			
SB-07 (720-30865-4)	9/29/10	Pacific		Water	11	×		4	<u> </u>	_	Ш	_						Ï			
		<u> </u>	L		Ш		\perp	┸	L				_								
																		14			
		l	l					1					j					-		_	
					П	H		Τ	3	*	R		6	1	1		}	KP.			
					П		T	Т	Γ	1	"			-	W			:	7		/
																			7		
	1	1			11					1	П	$\overline{}$			_	\neg		37	C ¹	120	T
		T .			11	\Box	\top		1	T	П							ী	1	11	$\overline{}$
		-	1		++	++	+	-	\vdash	H								29		-/-	-/
Possible Hazard Identification	1		ł	<u></u>	1 5	imple l	Dispo	sal (A	4 foe	may	be a	5505	sed	if sa	mpl	es an	e ret	sing	d longer that	month)	
Non-Hazard Flammable Skin Irrilant P	oison B 🗀 Unk	пожл 📖	Radiologic	e/						(7	ispo	sal B	y Lo	b.	C	<i>ر</i> د	rch	ve For	Mont	ths
Deliverable Requested: I, II, III, IV, Other (specify)					s	pecial In	istruc	tions/0	C Re	equir	emen	16:									
Empty Kit Relinquished by.		Date.			Time								Metro								
Reinquished by:	11-03-7	2.010	1630	compagit		Recov	ed by.								Otto	T.me:				Company	
Retriquished by	Disto/Time:	,0	1520	Company		Roce.v	ed by					_	_	_	Date	Time:				Cempany	/
Reinquished by	Cate/Time			Company		Recen	ed by:	4.1			_			7	Cote	Trans.			:25	Company	,
1	1			ŀ		1		rΥ\Λ.). D		2	a			//	141	11	10	115	L	
Custody Spals Intect: Custody Spal No.:		5		аде 8	-4 0	Cooler	Temo	racure(11/10	2/2010

720.30837-3 120-30865-2

Page 1 of 4

Salimpour, Afsaneh

From: Steinler, Greg [Greg.Stemler@amec.com] Wednesday, November 03, 2010 3:46 PM Sent:

Salimpour, Afsaneh To: Patton, Avery Subject: RE: EPA 7199

Afsaneh,

Anomient, Please do send the following samples to Irvine: SB-05 (720-30837#14) SB-06 (720-30837#18) SB-07 (720-30865#4)

SB-08 (720-30865#2)

We would like these samples run for total dissolved Chromium, however we want to confirm the analyses later tonight or tomorrow morning. We may request both filtered and unfiltered analysis.

For now, please send all the remaining unfiltered, unpreserved sample to Irvine.

Greg Stemler | Project Geologist | AMEC Geomatrix, Inc The materials transmitted by this electronic mail are confidential, ...

Page 9 of 9

11/12/2010

ANALYTICAL REPORT

Job Number: 720-30879-1

Job Description: Crown Chevrolet

For: AMEC Geomatrix Inc. 2101 Webster Street, 12th Floor Oakland, CA 94612 Attention: Avery Patton

> Approved for rete Afsaneh Salimpo Project Manager

Afsaneh Salimpour Project Manager I afsaneh.salimpour@testamericainc.com 10/11/2010

CA ELAP Certification # 2496

The Chain(s) of Custody are included and are an integral part of this report.

The report shall not be reproduced except in full, without the written approval of the laboratory. The client, by accepting this report, also agrees not to alter any reports whether in the hard copy or electronic format and to use reasonable efforts to preserve the reports in the form and substance originally provided by TestAmerica.

A trip blank is required to be provided for volatile analyses. If trip blank results are not included in the report, either the trip blank was not submitted or requested to be analyzed.

TestAmerica Laboratories, Inc.
TestAmerica San Francisco 1220 Quarry Lane, Pleasanton, CA 94566
Tel (925) 484-1919 Fax (925) 600-3002 www.testamericainc.com

Job Narrative 720-30879-1

Comments

No additional comments.

Receipt

All samples were received in good condition within temperature requirements.

17461 Derian Avenue, Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

LABORATORY REPORT

Prepared For: TestAmerica San Francisco

1220 Quarry Lane

Pleasanton, CA 94566

Attention: Afsaneh Salimpour

Project: N/A-Misc. 720-30879

Sampled: 09/29/10 Received: 10/01/10

Issued: 10/08/10 16:24

NELAP #01108CA California ELAP#2706 CSDLAC #10256 AZ #AZ0671 NV #CA01531

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight hasis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of TestAmerica and its client. This report shall not be reproduced, except in full, without written permission from TestAmerica. The Chain of Custody, I page, is included and is an integral part of this report.

This entire report was reviewed and approved for release.

SAMPLE CROSS REFERENCE

Page 3 of 14

LABORATORY ID	CLIENT ID	MATRIX
ITJ0049-01	IDW-1	Soil
ITJ0049-02	IDW-2	Water

Reviewed By:

TestAmerica Irvine

Kathleen A. Robb For Steven Garcia Project Manager

Augenice Style

1TJ0049 <P#89129/2010

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue, Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

TestAmerica San Francisco 1220 Quarry Lane Pleasanton, CA 94566

Attention: Afsaneh Salimpour

Project ID: N/A-Misc.

720-30879

Report Number: ITJ0049

Sampled: 09/29/10 Received: 10/01/10

		2,4	W X 7 X W O					
Analyte	Method	Batch	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
•	Wichiod	Daten	Eimit	Result	ractor	Extracted	Analyzeu	Quantiers
Sample ID: ITJ0049-01 (IDW-1 - Soil)								
Reporting Units: mg/kg								
Mercury	EPA 7471A	10J0305	0.020	0.042	1	10/4/2010	10/4/2010	
Antimony	EPA 6020	10J0275	0.99	ND	0.985	10/4/2010	10/6/2010	
Arsenic	EPA 6020	10J0275	0.49	6.1	0.985	10/4/2010	10/6/2010	
Barium	EPA 6020	10J0275	0.49	80	0.985	10/4/2010	10/6/2010	
Beryllium	EPA 6020	10J0275	0.30	0.54	0.985	10/4/2010	10/6/2010	
Cadmium	EPA 6020	10J0275	0.49	ND	0.985	10/4/2010	10/6/2010	
Chromium	EPA 6020	10J0275	0.99	33	0.985	10/4/2010	10/6/2010	
Cobalt	EPA 6020	10J0275	0.49	7.8	0.985	10/4/2010	10/6/2010	
Copper	EPA 6020	10J0275	0.99	18	0.985	10/4/2010	10/6/2010	
Lead	EPA 6020	10J0275	0.49	6.7	0.985	10/4/2010	10/6/2010	
Molybdenum	EPA 6020	1030275	0.99	ND	0.985	10/4/2010	10/6/2010	
Nickel	EPA 6020	10J0275	0.99	41	0.985	10/4/2010	10/7/2010	
Selenium	EPA 6020	10J0275	0.99	ND	0.985	10/4/2010	10/6/2010	
Silver	EPA 6020	10J0275	0.49	ND	0.985	10/4/2010	10/6/2010	
Thallium	EPA 6020	10J0275	0.49	ND	0.985	10/4/2010	10/6/2010	
Vanadium	EPA 6020	10J0275	0.99	26	0.985	10/4/2010	10/6/2010	
Zinc	EPA 6020	10J0275	9.9	42	0.985	10/4/2010	10/6/2010	
Samuel ID: 17 10040 02 (103) 2 Water								
Sample ID: ITJ0049-02 (IDW-2 - Water)								
Reporting Units: mg/l	UDA ZAZOA	1010450	0.00070			10/5/0010		
Mercury	EPA 7470A	10J0450	0.00020	ND	1	10/5/2010	10/5/2010	
Sample ID: 1TJ0049-02 (IDW-2 - Water)								
Reporting Units: ng/l								
Antimony	EPA 6020	10J0140	2.0	ND 6	IJ i	10/2/2010	10/2/2010	
Arsenic	EPA 6020	10J0140	1.0	14	1	10/2/2010	10/2/2010	
Barium	EPA 6020	10J0140	1.0	320	1	10/2/2010	10/2/2010	
Beryllium	EPA 6020	10J0140	0.50	0.67	1	10/2/2010	10/2/2010	
Cadmium	EPA 6020	10J0140	1.0	1.0	1	10/2/2010	10/2/2010	
Chromium	EPA 6020	1030140	2.0	85	1	10/2/2010	10/2/2010	
Cobalt	EPA 6020	1030140	1.0	30	1	10/2/2010	10/2/2010	
Copper	EPA 6020	10J0140	2.0	48	1	10/2/2010	10/2/2010	
Lead	EPA 6020	10J0140	1.0	12	1	10/2/2010	10/2/2010	
Molyhdenum	EPA 6020	1030140	2.0	20	1	10/2/2010	10/2/2010	
Nickel	EPA 6020	10J0140	2.0	52	i	10/2/2010	10/2/2010	
Selenium	EPA 6020	1030140	2.0	3.3	i	10/2/2010	10/2/2010	
Silver	EPA 6020	10J0140	1.0	1.0	i	10/2/2010	10/2/2010	
Thallium	EPA 6020	10J0140	1.0	ND	i	10/2/2010	10/2/2010	
Vanadium	EPA 6020	10J0140	2.0	72	1	10/2/2010	10/2/2010	
Zinc	EPA 6020	10J0140	20	190	i	10/2/2010	10/3/2010	
					,			

TestAmerica Irvine

Kathleen A. Robb For Steven Garcia

Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced. except in full, with pay பூழ்ப்பு முறார்கள் America.

ITJ0049 <Page 28/19/2010

17461 Derian Avenue, Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

TestAmerica San Francisco 1220 Quarry Lane Pleasanton, CA 94566 Project ID: N/A-Misc. 720-30879 Report Number: ITJ0049

Sampled: 09/29/10 Received: 10/01/10

Attention: Afsaneh Salimpour

METHOD BLANK/QC DATA

METALS

Part			Reporting		Spike	Source		%REC		RPD	Data
Mank Analyzed: 10/02/2016-10/03/2010 (10J0140-BLK1)	Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Ansimony ND 2.0 ug/l Beryllium ND 1.0 ug/l Beryllium ND 1.0 ug/l Cadmium ND 1.0 ug/l Crhomium ND 1.0 ug/l Crhomium ND 2.0 ug/l Cobalt ND 1.0 ug/l Copper ND 2.0 ug/l Lead ND 1.0 ug/l Nickel ND 2.0 ug/l Nickel ND 2.0 ug/l Silver ND 2.0 ug/l Silver ND 2.0 ug/l Silver ND 1.0 ug/l Silver ND 2.0 ug/l Silver ND 1.0 ug/l Silver ND 2.0 ug/l Silver ND 1.0 ug/l 80.0 102 80-120 Silver ND 1.0 ug/l 80.0 100 80-120 Silver ND 1.0 ug/l 80.0 100 80-120 Silver ND 1.0 ug/l 80.0 100 80-120 Silver ND 1.0 ug/l 80.0 101 80-120 Silver NB 1.0 ug/l 80.0 103 80-120 Silver NB 1.0 ug/l 80.0 104 80-120 Silver RB 1.0 ug/l 80.0 104 80-120	Batch: 10J0140 Extracted: 10/02/10										
Arsenic ND	Blank Analyzed: 10/02/2010-10/03/2010	(10J0140-B	LKI)								
Barium ND 1.0 ug/l Cadmium ND 0.50 ug/l Croamium ND 1.0 ug/l Cronomium ND 1.0 ug/l Croper ND 1.0 ug/l Cadmium ND 2.0 ug/l Cadmium ND 1.0 ug/l Cadmium ND 1.0 ug/l Croper ND 2.0 ug/l Cadmium ND 1.0 ug/l Cadmium ND 1.0 ug/l Cadmium ND 1.0 ug/l Cadmium ND 1.0 ug/l Camadium ND 1.0 ug/l Cadmium ND 1.0 ug/l Ca	Antimony	ND	2.0	ug/I							
Beryllium	Arsenic	ND	1.0	ug/l							
Cadmium ND 1.0 ug/l Chromium ND 2.0 ug/l Cobalt ND 1.0 ug/l Copper ND 1.0 ug/l Lead ND 1.0 ug/l Molybdenum ND 2.0 ug/l Nickel ND 2.0 ug/l Selenium ND 1.0 ug/l Silver ND 1.0 ug/l Vanadium ND 2.0 ug/l Arsenic 79.8 1.0 ug/l 80.0 10.2 Arsenic 79.8 1.0 ug/l 80.0 10.0 80-120 Barium 79.7 1.0 ug/l 80.0 10 80-120 Cadmium	Barium	ND	1.0	ug/l							
Chromium	Beryllium	ND	0.50	ug/l							
Cobah	Cadmium	ND	0.1	ug/L							
Copper	Chromium	ND	2.0	ug/l							
Canal	Cobalt	ND	1.0	ug/l							
Molybdenum ND 2.0 ug/l	Copper	ND	2.0	ug/l							
Nickel	Lead	ND	1.0	ug/l							
Schenium ND 2.0 ug/l Silver ND 1.0 ug/l Vanadium ND 1.0 ug/l Vanadium ND 2.0 ug/l Zinc ND 20 ug/l LCS Anilyzed: 10/02/2010-10/03/2010 (10/J-04/ESI) LCS Anilyzed: 10/02/2010-10/03/2010 (10/J-04/ESI) Arsenic 79.8 1.0 ug/l 80.0 102 80-120 Arsenic 79.7 1.0 ug/l 80.0 100 80-120 Barium 79.7 1.0 ug/l 80.0 100 80-120 Cadmium 79.5 1.0 ug/l 80.0 100 80-120 Cadmium 79.5 1.0 ug/l 80.0 99 80-120 Chomium 81.0 2.0 ug/l 80.0 99 80-120 Cobalt 78.3 1.0 ug/l 80.0 99 80-120 Copper 79.3 2.0	Molybdenum	ND	2.0	ug/l							
Silver ND 1.0 ug/l Thalliam ND 1.0 ug/l Vanadium ND 2.0 ug/l Zime ND 2.0 ug/l LCS Analyzed: 10/02/2010-10/03/2010 (10-U-U-US) U W/l 80.0 102 80-120 Arsenic 79.8 1.0 ug/l 80.0 100 80-120 Barium 79.7 1.0 ug/l 80.0 100 80-120 Beryllium 71.2 0.50 ug/l 80.0 100 80-120 Cadmium 79.5 1.0 ug/l 80.0 10 80-120 Cibromium 81.0 2.0 ug/l 80.0 10 80-120 Cobalt 78.3 1.0 ug/l 80.0 10 80-120 Copper 79.3 2.0 ug/l 80.0 10 80-120 Lead 78.5 1.0 ug/l 80.0 10 80-120 Moly	Nickel	ND	2.0	ug/l							
Thallium	Selenium	ND	2.0	ug/1							
Vanadium ND 2.0 ug/l Zine ND 2.0 ug/l LCS Analyzed: 10/02/2010-10/03/2010 (10/140-BS1) Ug/l 80.0 102 80-120 Arsenie 79.8 1.0 ug/l 80.0 100 80-120 Barium 79.7 1.0 ug/l 80.0 100 80-120 Baryllium 71.2 0.50 ug/l 80.0 190 80-120 Cadmium 79.5 1.0 ug/l 80.0 99 80-120 Cadmium 79.5 1.0 ug/l 80.0 99 80-120 Chromium 81.0 2.0 ug/l 80.0 99 80-120 Cobalt 78.3 1.0 ug/l 80.0 99 80-120 Copper 79.3 2.0 ug/l 80.0 98 80-120 Uead 78.5 1.0 ug/l 80.0 98 80-120 Molybdenum 82.4	Silver	ND	1.0	ug/l							
Zine ND 20 ug/l LCS Analyzed: 10/02/2010-10/03/2010 (10J0140-BS1) LCS Analyzed: 10/02/2010-10/03/2010 (10J0140-BS1) Antimony 81.5 2.0 ug/l 80.0 100 80-120 Arsenic 79.8 1.0 ug/l 80.0 100 80-120 Barium 79.7 1.0 ug/l 80.0 89 80-120 Beryllium 71.2 0.50 ug/l 80.0 89 80-120 Cadmium 79.5 1.0 ug/l 80.0 99 80-120 Chromium 81.0 2.0 ug/l 80.0 99 80-120 Cobalt 78.3 1.0 ug/l 80.0 99 80-120 Copper 79.3 2.0 ug/l 80.0 98 80-120 Lead 78.5 1.0 ug/l 80.0 98 80-120 Nickel 77.1 2.0 ug/l 80.0 99 80-120 <	Thallium	ND	1.0	ug/I							
CCS Analyzed: 10/02/2010-10/03/2010 (10J0140-BS1) Antimony 81.5 2.0 ug/l 80.0 162 80-120 Arsenic 79.8 1.0 ug/l 80.0 100 80-120 Barium 79.7 1.0 ug/l 80.0 100 80-120 Beryllium 71.2 0.50 ug/l 80.0 89 80-120 Cadmium 79.5 1.0 ug/l 80.0 99 80-120 Chromium 81.0 2.0 ug/l 80.0 101 80-120 Cobalt 78.3 1.0 ug/l 80.0 99 80-120 Copper 79.3 2.0 ug/l 80.0 99 80-120 Lead 78.5 1.0 ug/l 80.0 98 80-120 Uselenium 82.4 2.0 ug/l 80.0 98 80-120 Silver 38.5 1.0 ug/l 80.0 99 80-120	Vanadium	ND	2.0	ug/l							
Antimony 81.5 2.0 ug/l 80.0 102 80-120 Arsenic 79.8 1.0 ug/l 80.0 100 80-120 Barium 79.7 1.0 ug/l 80.0 100 80-120 Beryllium 71.2 0.50 ug/l 80.0 89 80-120 Cadmium 79.5 1.0 ug/l 80.0 101 80-120 Chromium 81.0 2.0 ug/l 80.0 101 80-120 Cobalt 78.3 1.0 ug/l 80.0 98 80-120 Copper 79.3 2.0 ug/l 80.0 98 80-120 Lead 78.5 1.0 ug/l 80.0 98 80-120 Melybdenum 82.4 2.0 ug/l 80.0 103 80-120 Nickel 77.1 2.0 ug/l 80.0 99 80-120 Silver 83.5 1.0 ug/l 80	Zinc	ND	20	ug/l							
Antimony 81.5 2.0 ug/l 80.0 102 80-120 Arsenic 79.8 1.0 ug/l 80.0 100 80-120 Barium 79.7 1.0 ug/l 80.0 100 80-120 Beryllium 71.2 0.50 ug/l 80.0 89 80-120 Cadmium 79.5 1.0 ug/l 80.0 101 80-120 Chromium 81.0 2.0 ug/l 80.0 101 80-120 Cobalt 78.3 1.0 ug/l 80.0 98 80-120 Copper 79.3 2.0 ug/l 80.0 98 80-120 Lead 78.5 1.0 ug/l 80.0 98 80-120 Melybdenum 82.4 2.0 ug/l 80.0 103 80-120 Nickel 77.1 2.0 ug/l 80.0 99 80-120 Silver 83.5 1.0 ug/l 80	LCS Analyzed: 10/02/2010-10/03/2010 (10J0140-BS	1)								
Arsenic 79.8 1.0 ugl 80.0 100 80-120 Bariun 79.7 1.0 ugl 80.0 100 80-120 Beryllium 71.2 0.50 ugl 80.0 89 80-120 Cadmium 79.5 1.0 ugl 80.0 99 80-120 Chromium 81.0 2.0 ugl 80.0 101 80-120 Cobalt 78.3 1.0 ugl 80.0 98 80-120 Copper 79.3 2.0 ugl 80.0 98 80-120 Lead 78.5 1.0 ugl 80.0 98 80-120 Molybderum 82.4 2.0 ugl 80.0 98 80-120 Silver 79.3 2.0 ugl 80.0 98 80-120 Selenium 79.1 2.0 ugl 80.0 98 80-120 Silver 83.5 1.0 ugl 80.0				ug/l	80,0		102	80-120			
Barium 79.7 1.0 ug/l 80.0 100 80-120 Beryllium 71.2 0.50 ug/l 80.0 89 80-120 Cadmium 79.5 1.0 ug/l 80.0 99 80-120 Chromium 81.0 2.0 ug/l 80.0 101 80-120 Cobalt 78.3 1.0 ug/l 80.0 99 80-120 Copper 79.3 2.0 ug/l 80.0 99 80-120 Lead 78.5 1.0 ug/l 80.0 99 80-120 Molybdenum 82.4 2.0 ug/l 80.0 103 80-120 Nickel 77.1 2.0 ug/l 80.0 99 80-120 Silver 83.5 1.0 ug/l 80.0 99 80-120 Silver 83.5 1.0 ug/l 80.0 99 80-120 Silver 83.5 1.0 ug/l 80.0 <td>Arsenic</td> <td></td>	Arsenic										
Beryllium 71.2 0.50 ug/l 80.0 89 80.120 Cadmium 79.5 1.0 ug/l 80.0 99 80-120 Chromium 81.0 2.0 ug/l 80.0 10 80-120 Cobalt 78.3 1.0 ug/l 80.0 98 80-120 Copper 79.3 2.0 ug/l 80.0 98 80-120 Lead 78.5 1.0 ug/l 80.0 98 80-120 Molybdenum 82.4 2.0 ug/l 80.0 10 80-120 Nickel 77.1 2.0 ug/l 80.0 98 80-120 Selenium 79.3 2.0 ug/l 80.0 10 80-120 Silver 83.5 1.0 ug/l 80.0 99 80-120 Silver 83.5 1.0 ug/l 80.0 104 80-120 Thallium - 76.4 1.0 ug/l 80.0	Barium										
Cadmium 79.5 1.0 ug/l 80.0 99 80.120 Chromium 81.0 2.0 ug/l 80.0 101 80-120 Cobalt 78.3 1.0 ug/l 80.0 98 80-120 Copper 79.3 2.0 ug/l 80.0 99 80-120 Lead 78.5 1.0 ug/l 80.0 98 80-120 Molybdenum 82.4 2.0 ug/l 80.0 103 80-120 Nickel 77.1 2.0 ug/l 80.0 96 80-120 Selenium 79.3 2.0 ug/l 80.0 99 80-120 Silver 83.5 1.0 ug/l 80.0 99 80-120 Thallium - 76.4 1.0 ug/l 80.0 104 80-120 Vanadium 80.7 2.0 ug/l 80.0 101 80-120	Beryllium	71.2		-							
Chromium 81.0 2.0 ug/l 80.0 101 80-120 Cobalt 78.3 1.0 ug/l 80.0 98 80-120 Copper 79.3 2.0 ug/l 80.0 99 80-120 Lead 78.5 1.0 ug/l 80.0 98 80-120 Molybdenum 82.4 2.0 ug/l 80.0 103 80-120 Nickel 77.1 2.0 ug/l 80.0 96 80-120 Selenium 79.3 2.0 ug/l 80.0 99 80-120 Silver 83.5 1.0 ug/l 80.0 99 80-120 Thallium - 76.4 1.0 ug/l 80.0 99 80-120 Vanadium 80.7 2.0 ug/l 80.0 99 80-120	Cadmium			-							
Cobalt 78.3 1.0 ug/l 80.0 98 80-120 Copper 79.3 2.0 ug/l 80.0 99 80-120 Lead 78.5 1.0 ug/l 80.0 98 80-120 Molybdenum 82.4 2.0 ug/l 80.0 103 80-120 Nickel 77.1 2.0 ug/l 80.0 96 80-120 Selenium 79.3 2.0 ug/l 80.0 99 80-120 Silver 83.5 1.0 ug/l 80.0 104 80-120 Thallium - 76.4 1.0 ug/l 80.0 99 80-120 Vanadium 80.7 2.0 ug/l 80.0 104 80-120	Chromium	81.0									
Copper 79.3 2.0 ug/l 80.0 99 80.120 Lead 78.5 1.0 ug/l 80.0 98 80.120 Melybdenum 82.4 2.0 ug/l 80.0 103 80.120 Nickel 77.1 2.0 ug/l 80.0 96 80-120 Selenium 79.3 2.0 ug/l 80.0 99 80-120 Silver 83.5 1.0 ug/l 80.0 104 80-120 Thallium - 76.4 1.0 ug/l 80.0 95 80-120 Vanadium 80.7 2.0 ug/l 80.0 101 80-120	Cobalt	78.3									
Lead 78.5 1,0 ug/l 80.0 98 80.120 Motybdenum 82.4 2,0 ug/l 80.0 103 80.120 Nickel 77.1 2,0 ug/l 80.0 196 80.120 Selenium 79.3 2,0 ug/l 80.0 99 80.120 Silver 83.5 1,0 ug/l 80.0 104 80.120 Tballium - 76.4 1,0 ug/l 80.0 95 80.120 Vanadium 80.7 2,0 ug/l 80.0 101 80.120	Copper	79.3		-							
Molybderum 82.4 2,0 ug/l 80.0 103 80.120 Nickel 77.1 2.0 ug/l 80.0 96 80.120 Selenium 79.3 2.0 ug/l 80.0 99 80.120 Silver 83.5 1.0 ug/l 80.0 104 80.120 Thallium - 76.4 1.0 ug/l 80.0 95 80.120 Vanadium 80.7 2.0 ug/l 80.0 101 80.120	••			-							
Nickel 77.1 2.0 ug/l 80.0 96 80.120 Selenium 79.3 2.0 ug/l 80.0 99 80.120 Silver 83.5 1.0 ug/l 80.0 104 80.120 Thallium - 76.4 1.0 ug/l 80.0 95 80.120 Vanadium 80.7 2.0 ug/l 80.0 101 80.120	Molybdenum			-							
Selenium 79.3 2.0 ug/l 80.0 99 80.120 Silver 83.5 1.0 ug/l 80.0 104 80.120 Tballium 76.4 1.0 ug/l 80.0 95 80.120 Vanadium 80.7 2.0 ug/l 80.0 101 80.120	Nickel			-							
Silver 83.5 1.0 ug/l 80.0 104 80.120 Thallium 76.4 1,0 ug/l 80.0 95 80.120 Vanadium 80.7 2.0 ug/l 80.0 101 80.120	Selenium	79.3									
Thallium 76.4 1.0 ug/l 80.0 95 80-120 Vanadium 80.7 2.0 ug/l 80.0 101 80-120	Silver			-							
Vanadium 80.7 2.0 ug/l 80.0 101 80-120				-							
•	Vanadium										
	Zinc										

TestAmerica Irvine

Kathleen A. Robb For Steven Garcia Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, with praying or rejector fund TestAmerica.

1T.10049 <P#8714/2010

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue, Suite 100, Tryine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

TestAmerica San Francisco 1220 Quarry Lane Pleasanton, CA 94566

Attention: Afsaneh Salimpour

Project ID: N/A-Misc. 720-30879

Report Number: ITJ0049

Sampled: 09/29/10

Received: 10/01/10

METHOD BLANK/QC DATA

METALS

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 10J0140 Extracted: 10/02/10										
Matrix Spike Analyzed: 10/02/2010-1	0/03/2010 (10J0	140-MS1)	į.		Source: I'	TJ0043-02				
Antimony	43.6	2.0	' ug/l	80.0	0.521	54	75-125			M2
Arsenic	92.8	1.0	ug/l	80.0	12.3	101	75-125			
Barium	352	1.0	ug/l	80.0	261	114	75-125			
Beryllium	73.8	0.50	ug/l	80,0	0.630	91	75-125			
Cadmium	0.08	1.0	ug/l	80.0	0.581	99	75-125			
Chromium	117	2,0	ug/l	80.0	43.9	91	75-125			
Cobalt	75.6	1.0	ug/l	80,0	10.0	82	75-125			
Copper	94.6	2.0	ug/l	80.0	27.2	84	75-125			
Lead	83.0	1.0	ug/l	80.0	5.91	96	75-125			
Molybdenum	69.0	2.0	ug/l	80.0	1.19	85	75-125			
Nickel	113	2.0	ug/l	80.0	42.4	88	75-125			
Selenium	76.7	2.0	ug/l	80,0	1.05	95	75-125			
Silver	82.9	1.0	ug/l	80.0	0.123	103	75-125			
Thallium	73.8	1.0	ug/l	80,0	0.314	92	75-125			
Vanadium	135	2.0	ug/l	80.0	60.2	93	75-125			
Zine	162	20	ug/l	80.0	72.7	112	75-125			
Matrix Spike Dup Analyzed: 10/02/20	10-10/03/2010	10J0140-MSD	1)		Source: I'	ГЈ0043-02				
Antimony	44.3	2.0	ug/l	80.0	0.521	55	75-125	2	20	M2
Arsenie	90.2	1.0	ug/l	80.0	12.3	97	75-125	3	20	
Barium	342	1.0	ug/l	80,0	261	102	75-125	3	20	
Beryllium	71.7	0.50	ug/l	80.0	0.630	89	75-125	3	20	
Cadmium	78.8	1.0	ug/l	80.0	0.581	98	75-125	ı	20	
Chromium	111	2.0	ug/i	80.0	43.9	83	75-125	6	20	
Cobalt	74,4	1.0	ug/i	80.0	10.0	80	75-125	2	20	
Copper	91.7	2.0	ug/l	80,0	27.2	81	75-125	3	20	
Lead	80.9	1.0	ug/l	80.0	5.91	94	75-125	3	20	
Molybdenum	69.9	2.0	ug/l	80.0	1.19	86	75-125	1	20	
Nickel	106	2.0	ug/l	80,0	42.4	80	75-125	6	20	
Sclenium	77.4	2.0	ug/l	80.0	1.05	95	75-125	0.8	20	
Silver	81.8	1.0	ug/l	80.0	0.123	102	75-125	- 1	20	
Thallium	71.9	1.0	ug/l	80.0	0.314	90	75-125	3	20	
Vanadium	127	2.0	ug/l	80.0	60.2	. 84	75-125	6	20	
Zine	151	20	ug/l	80.0	72.7	98	75-125	7	20	

TestAmerica Irvine

Kathleen A. Robb For Steven Garcia Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, with நூருயுறை சந்தர்வு (Ann TestAmerica.

1TJ0049 <Page 14/1010

17461 Derian Avenue, Suite 100, Tryine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

TestAmerica San Francisco 1220 Quarry Lane Pleasanton, CA 94566

Project ID: N/A-Misc. 720-30879 Report Number: ITJ0049

Sampled: 09/29/10 Received: 10/01/10

Attention: Afsaneh Salimpour

METHOD BLANK/QC DATA

METALS

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 10J0275 Extracted: 10/04/10										
Blank Analyzed: 10/06/2010-10/07/2010	. /10.10275 DI	121)								
Antimony	УD ND	1.0	mg/kg							
Arsenic	ND	0.50	mg/kg mg/kg							
Barium	ND	0.50	mg/kg mg/kg							
Beryllium	ND ND	0.30	mg/kg mg/kg							
Cadmium	ND	0.50	mg/kg mg/kg							
Chromium	ND	1.0								
Cobait	ND	0.50	mg/kg							
Copper	ND		mg/kg							
Lead		0.1	mg/kg							
Molybdenum	ND	0.50	mg/kg							
· ·	ND	1.0	mg/kg							
Nickel	ND	1,0	mg/kg							
Selenium	ND	1.0	mg/kg							
Silver	ND	0.50	mg/kg							
Thallium	ND	0.50	mg/kg							
Vanadium	ND	1.0	mg/kg							
Zinc	ND	10	mg/kg							
LCS Analyzed: 10/06/2010-10/07/2010 (10J0275-BS1)								
Antimony	49.8	0.99	mg/kg	49.3		101	80-120			
Arsenic	46,2	0.49	mg/kg	49.3		94	80-120			
Barium	50.0	0.49	mg/kg	49.3		101	80-120			
Beryllium	50.6	0.30	mg/kg	49.3		103	80-120			
Cadmium	48.9	0.49	mg/kg	49.3		99	80-120			
Chromium	45.6	0.99	mg/kg	49.3		92	80-120			
Cobalt	47.7	0.49	mg/kg	49,3		97	80-120			
Copper	46.9	0.99	mg/kg	49.3		95	80-120			
Lead	48.7	0.49	mg/kg	49.3		99	80-120			
Molyhdenum	48.5	0.99	mg/kg	49.3		98	80-120			
Nickel	46,0	0.99	mg/kg	49.3		93	80-120			
Selenium	43.6	0.99	mg/kg	49.3		89	80-120			
Silver	25.2	0.49	mg/kg	24,6		102	80-120			
Thallium	48.7	0.49	mg/kg	49.3		99	80-120			
Vanadium	44.0	0.99	mg/kg	49.3		89	80-120			
Zinc	43.8	9.9	mg/kg	49.3		89	80-120			

TestAmerica Irvine

Kathleen A. Robb For Steven Garcia

Project Manager

The results pertain only to the samples texted in the laboratory. This report shall not be reproduced, except in full, with progression from TestAmerica.

1TJ0049 <P48914/2010

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue. Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

TestAmerica San Francisco 1220 Quarry Lane Pleasanton, CA 94566 Attention: Afsaneh Salimpour Project ID: N/A-Misc. 720-30879

Report Number: ITJ0049

Sampled: 09/29/10

Received: 10/01/10

METHOD BLANK/QC DATA

METALS

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 10J0275 Extracted: 10/04/10						r	•			•
Duplicate Analyzed: 10/07/2010 (10J02	75-DUP1)				Source: I	T12504-01				
Antimony	ND	5.0	mg/kg		0.248	112504-01			200	
Arsenic	3.12	2.5	mg/kg		4.26			31	200	
Barium	99.2	2.5	mg/kg		95.9			3	200	
Beryllium	0.374	1.5	mg/kg		0.321			15	200	
Cadmium	ND	2.5	mg/kg		0.145				200	
Chromium	15.3	5.0	mg/kg		13.4			13	200	
Cobalt	7.41	2.5	mg/kg		7.03			5	200	
Copper	26.8	5.0	mg/kg		19.0			34	200	
Lead	7.32	2.5	mg/kg		6,96			5	200	
Molybdenum	ND	5.0	mg/kg		0.235			-	200	
Nickel	11.4	5.0	mg/kg		10.3			11	200	
Selenium	ND	5.0	mg/kg		ND				200	
Silver	ND	2.5	mg/kg		ND				200	
Thallium	ND	2.5	mg/kg		ND				200	
Vanadium	32.0	5.0	mg/kg		30.2			6	200	
Zinc	39.9	50	mg/kg		39.3			2	200	
Matrix Spike Analyzed: 10/06/2010-10/	/07/2010 (10J	0275-MS1)			Source: I	T12283-01				
Antimony	20.1	0.99	mg/kg	49.5	ND	41	75-125			M2
Arsenic	43.0	0.50	mg/kg	49.5	0.695	85	75-125			
Barium	113	0.50	mg/kg	49.5	63.7	100	75-125			
Beryllium	48.6	0.30	mg/kg	49.5	0.203	98	75-125			
Cadmium	45.8	0.50	mg/kg	49.5	ND	92	75-125			
Chromium	53.9	0.99	mg/kg	49.5	11.6	86	75-125			
Cobalt	47.4	0.50	mg/kg	49.5	4.29	87	75-125			
Copper	50.9	0.99	mg/kg	49.5	8.47	86	75-125			
Lead	45.8	0.50	mg/kg	49.5	2.00	89	75-125			
Molybdenum	44.7	0.99	mg/kg	49.5	0.395	89	75-125			
Nickel	46.2	0.99	mg/kg	49.5	4.75	84	75-125			
Selenium	40.6	0.99	mg/kg	49.5	ND	82	75-125			
Silver	22.8	0.50	mg/kg	24.8	ND	92	75-125			
Thallium	44.0	0.50	mg/kg	49.5	0.164	89	75-125			
Vanadium	62.6	0.99	mg/kg	49.5	20.2	86	75-125			
Zinc	69.4	9.9	mg/kg	49.5	24.3	91	75-125			

TestAmerica Irvine

Kathleen A. Robb For Steven Garcia Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, with practice operation of fund TestAmerica.

ITJ0049 < Page 6 4/12/010

17461 Derian Avenue, Suite 100, Irvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

TestAmerica San Francisco 1220 Quarry Lane

Project ID: N/A-Misc.

720-30879 Report Number: ITJ0049 1

Sampled: 09/29/10

Pleasanton, CA 94566 Attention: Afsaneh Salimpour Received: 10/01/10

METHOD BLANK/QC DATA

METALS

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 10J0275 Extracted: 10/04/10										
Matrix Spike Dup Analyzed: 10/06/2010	0-10/07/2010 (10J0275-MSI	D1)		Source: 1	TI2283-01				
Antimony	20.1	0.99	mg/kg	49.3	ND	41	75-125	0.2	20	M2
Arsenic	43.1	0.49	mg/kg	49.3	0.695	86	75-125	0.3	20	
Barium	114	0.49	mg/kg	49.3	63.7	101	75-125	0.5	20	
Beryllium	47.7	0.30	mg/kg	49.3	0.203	97	75-125	2	20	
Cadmium	45.7	0.49	mg/kg	49.3	ND	93	75-125	0.07	20	
Chromium	53.5	0.99	mg/kg	49.3	11.6	85	75-125	0.8	20	
Cobalt	47,2	0.49	mg/kg	49.3	4.29	87	75-125	0.3	20	
Copper	50.1	0.99	mg/kg	49.3	8.47	85	75-125	2	20	
Lead	45,4	0.49	mg/kg	49.3	2.00	88	75-125	1	20	
Molybdenum	44.5	0.99	mg/kg	49.3	0.395	90	75-125	0.4	20	
Nickel	47.1	0.99	mg/kg	49.3	4.75	86	75-125	2	20	
Selenium	40.2	0.99	mg/kg	49.3	ND	82	75-125	0.9	20	
Silver	22.7	0.49	mg/kg	24.6	ND	92	75-125	0.4	20	
Thallium	43.7	0,49	mg/kg	49.3	0.164	88	75-125	0.7	20	
Vanadium	62.7	0.99	mg/kg	49.3	20.2	86	75-125	0.08	20	
Zinc	68.9	9.9	mg/kg	49.3	24.3	91	75-125	0.7	20	
Batch: 10J0305 Extracted: 10/04/10										
Blank Analyzed: 10/04/2010 (10J0305-E	BLK1)									
Mercury	ND	0.020	mg/kg							
LCS Analyzed: 10/04/2010 (10J0305-BS	51)			·						
Mercury	0.862	0.020	mg/kg	0.800		108	80-120			
Matrix Spike Analyzed: 10/04/2010 (10.	J0305-MS1)				Source: I	TJ0039-01	ı			
Mercury	0.882	0.020	mg/kg	0.800	0.0247	107	70-130			

TestAmerica Irvine

Kathleen A. Robb For Steven Garcia Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced. except in full, with payor gray projector from TextAmerica.

1TJ0049 <P46914/2010

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue, Suite 100, Trvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

TestAmerica San Francisco 1220 Quarry Lane

Pleasanton, CA 94566 Attention: Afsaneh Salimpour

720-30879 Report Number: ITJ0049

Project ID: N/A-Misc.

Sampled: 09/29/10 Received: 10/01/10

METHOD BLANK/QC DATA

METALS

Analyte	Result	Reporting Limit ·	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 10J0305 Extracted: 10/04/	10									
Matrix Spike Dup Analyzed: 10/0	4/2010 (10J0305-M	ISD1)			Source: I	TJ0039-0	ı			
Mereury	0.869	0.020	mg/kg	0.800	0,0247	106	70-130	ı	20	
Batch: 10.J0450 Extracted: 10/05/	10									
Blank Analyzed: 10/05/2010 (10J0)450-BLK1)									
Mercury	ND	0.00020	mg/l							
LCS Analyzed: 10/05/2010 (10J04	50-BS1)									
Mercury	0,00800	0.00020	mg/l	0.00800		100	80-120			
Matrix Spike Analyzed: 10/05/201	0 (10J0450-MS1)				Source: I	TJ0131-0	l			
Mercury	0.00795	0.00020	mg/l	0.00800	NĐ	99	70-130			
Matrix Spike Dup Analyzed: 10/0:	5/2010 (10J0450-M	ISD1)			Source: I	TJ0131-01	ı			
Mercury	0.00811	0.00020	mg/l	0.00800	ND	101	70-130	2	20	

TestAmerica Irvine

Kathleen A. Robb For Steven Garcia Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without given from TestAmerica.

ITJ0049 <Page 11/2010

17461 Derian Avenue, Suite 100, Trvine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

TestAmerica San Francisco 1220 Quarry Lane

Project ID: N/A-Misc. Report Number: ITJ0049

720-30879

Sampled: 09/29/10

Pleasanton, CA 94566 Attention: Afsaneh Salimpour Received: 10/01/10

DATA QUALIFIERS AND DEFINITIONS

M2 The MS and/or MSD were below the acceptance limits due to sample matrix interference. See Blank Spike (LCS).

ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.

RPD Relative Percent Difference

TestAmerica Irvine

Kathleen A. Robb For Steven Garcia Project Manager

The results pertain only to the samples tested in the luboratory. This report shall not be reproduced, except in full, with pay gitter permission from Test America.

ITJ0049 <*Pase* 9 4/2010

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

17461 Derian Avenue, Suite 100, Tryine, CA 92614 (949) 261-1022 Fax:(949) 260-3297

TestAmerica San Francisco 1220 Quarry Lane

Project ID: N/A-Misc.

720-30879

Sampled: 09/29/10

Pleasanton, CA 94566 Attention: Afsaneh Salimpour

Report Number: ITJ0049

Received: 10/01/10

Certification Summary

TestAmerica Irvine

Method	Matrix	Netac	California
EPA 6020	Soil	x	X
EPA 6020	Water	X	x
EPA 7470A	Water	X	X
EPA 7471A	Soil	x	X

Nevada and NELAP provide analyte specific accreditations. Analyte specific information for TestAmerica may be obtained by contacting the laboratory or visiting our website at www.testamericainc.com

TestAmerica Irvine

Kathleen A. Robb For Steven Garcia Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without given perticipant TestAmerica.

ITJ0049 <Page 10 12 10 10

Pleasanton, CA 94566 Prone (925) 484-1919 Fax (925) 600-3002	<u>merica</u>				
Plessanton. CA 94566 7Pessanton. CA 94566 7Pessanton. CA 94566 7Pessanton. CA 94566					
	DATEGRATURES SERVING				
Cilent Information (Sub Contract Lab) Save P. Lab 94: Come Traccung (rass) COC 185 Splittmpour, Alsoneh 722-10141-1					
Crent Contact Phone: [E-Mail					
Shiqping/Receiving af seneth-sell-impour@testamencainc.com Page 1 of 1 Conserv Its # Loss #					
TestAmerica Laboratories, Iric Analysis Requested 720-30879-1					
Address Dee Date Requested: Preservation Co. 17/65 Denan Ave, Suite 100, 10/6/2010 AHCL	des: Miriexane				
TAT Requested (days):	N - None				
[Mine	0 - AsNa02 P - Na2045				
0.00 (1.00 (Q - NaZSO3 P - NaZSZSO3				
7904: 906: 906: 907: 907: 907: 907: 907: 907: 907: 907	S - H2SC4 T - TSP Dodecahyareto				
062-262-1022(Te) 949-281-1228(Fax) 100 1	U - Acezone V - MCAA				
Project Hame: Priject # \$1 \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	W - pt. 4.5 Z - other (specify)				
Payed Membe	C - Mar (specie)				
Topical	ŀ				
17/45 Depair Ave. Sota 100. 105/2010 C A Faccessed (64935) C A Fa					
	structions/Note:				
Preservation Code:	230 a				
IDW-1 (720-30879-1) 9/29/10 910 Sold X 11:30 (1:					
1DW-2 (720-30879-2) 9/29/10 11/45 Water X 1 1	_				
	17:36				
	io li lo				
Possible Hazard Identification Sample Disposal (A fee may be assessed if samples are retained longer then	1 month)				
Non-Hazard Flammable Skin Irritant Poison B Unknown Radiological Return To Cleant Disposal By Leb Archive For	Months				
Deliverable Requested: I. II, III, IV, Other (specify) Special Instructions/QC Requirements:					
Empty Kil Relinquished by: / Date: Time: Method of Strongeri					
Remarkabley TVALLO Deletitive Lo LLO Company DT Received by Deletitive LO	Company				
Reinquiring by Received by Deletime Congains Received by UNA 11-30	Company				
Reinzughed by Date/Time Company Received by Date/Time Date/Time	Company				
Custody Seals Inlact: Custody Seal No: Page 13 of 14 Coder Temperatura(1) and Other Remarks (CS) 4.3 to /4/1/4/10					

Login Sample Receipt Check List

Client: AMEC Geomatrix Inc.

Job Number: 720-30879-1

Login Number: 30879 Creator: Mullen, Joan List Number: 1 List Source: TestAmerica San Francisco

Question	T / F/ NA	Comment
Radioactivity either was not measured or, if measured, is at or below background	N/A	
The cooler's custody seal, if present, is intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking,	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	

TestAmerica San Francisco

Page 14 of 14

10/11/2010