April 21, 2015

RECEIVED

By Alameda County Environmental Health 12:33 pm, May 11, 201

Ms. Dilan Roe Hazardous Materials Specialist Alameda County Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94501-6577

Subject: Third and Fourth Quarter 2014 Groundwater Monitoring Report

Crown Chevrolet Cadillac Isuzu

7544 Dublin Boulevard Dublin, California

Site Cleanup Program Case No. RO0003014

Dear Ms. Roe:

Enclosed please find the *Third and Fourth Quarter 2014 Groundwater Monitoring Report* for the Crown Chevrolet Cadillac Isuzu site at 7544 Dublin Boulevard, Dublin, California (Fuel Leak Case No. RO0003014, GeoTracker Global ID T10000001616). This document was prepared by Amec Foster Wheeler Environment & Infrastructure, Inc. (Amec Foster Wheeler), on behalf of Crown Chevrolet Cadillac Isuzu.

I declare under penalty of perjury that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge.

Please contact me at (408) 680-4938 or Avery Whitmarsh of Amec Foster Wheeler at 510-663-4154 if you have any questions regarding this report.

Sincerely yours,

Sean P. Murphy

Dublin Apartment Properties LLC

BWD Dublin LLC

Attachment: Third and Fourth Quarter 2014 Groundwater Monitoring Report

cc: Tondria Hendrix, Zurich North American Insurance Thomas L. Vormbrock, Rimkus Consulting Group, Inc.

THIRD AND FOURTH QUARTER 2014 GROUNDWATER MONITORING REPORT

Crown Chevrolet Cadillac Isuzu 7544 Dublin Boulevard Dublin, California

Prepared for:

Crown Chevrolet Cadillac Isuzu

7544 Dublin Boulevard Dublin, California

Prepared by:

Amec Foster Wheeler Environment & Infrastructure, Inc.

180 Grand Avenue, Suite 1100 Oakland, California 94612

April 2015

Project No. OD10160070

THIRD AND FOURTH QUARTER 2014 **GROUNDWATER MONITORING REPORT**

Crown Chevrolet Cadillac Isuzu 7544 Dublin Boulevard Dublin, California

April 21, 2015 Project OD10160070

This report was prepared by the staff of Amec Foster Wheeler Environment & Infrastructure, Inc., under the supervision of the Geologist whose seal and signature appear hereon.

The findings, recommendations, specifications, or professional opinions are presented within the limits described by the client, in accordance with generally accepted professional engineering and geologic practice. No warranty is expressed or implied.

Avery Whitmarsh, PG #8541 Senior Geologist

AVERY WHITMADOLL OF

No. 8541

OF CALIFORNIA

TABLE OF CONTENTS

			Page
1.0	BACK	GROUND	1
2.0	GROU	NDWATER MONITORING ACTIVITIES	3
	2.1	GROUNDWATER ELEVATION GAUGING	3
	2.2	MONITORING WELL SAMPLING	
	2.3	LABORATORY ANALYTICAL METHODS	
	2.4	INVESTIGATION DERIVED WASTE MANAGEMENT	
	2.5	DATA QUALITY REVIEW	4
3.0		LTS	
	3.1	GROUNDWATER ELEVATIONS, FLOW DIRECTIONS, AND GRADIENTS	
	3.2	GROUNDWATER ANALYTICAL RESULTS	
		3.2.1 First Water-Bearing Zone	
		3.2.2 Second Water-Bearing Zone	
		<u> </u>	
4.0		IARY OF TRENDSGROUNDWATER ELEVATIONS	_
	4.1 4.2	FIRST WATER-BEARING ZONE	
	4.3	SECOND WATER-BEARING ZONE	
	4.4	THIRD WATER-BEARING ZONE	
5.0	NFXT	STEPS	
6.0		RENCES	_
		TABLES	
Table '	1	Well Construction Details	
Table 2		Groundwater Elevations	
Table 3	3	Volatile Organic Compounds in Groundwater from Monitoring Wells	
		FIGURES	
Figure Figure Figure Figure Figure Figure Figure Figure	2 3 4 5 6 7 8	Site Location Map Potentiometric Surface in the First Water-Bearing Zone, July 2014 Potentiometric Surface in the First Water-Bearing Zone, October 2014 Potentiometric Surface in the First Water-Bearing Zone, December 2014 Potentiometric Surface in the Third Water-Bearing Zone, July 2014 Potentiometric Surface in the Third Water-Bearing Zone, October 2014 Selected VOCs in the First Water-Bearing Zone, July and October 2014 Selected VOC Concentration Trends in the First Water-Bearing Zone Chlorobenzene and 1,2-DCB Concentration Trends in MW-03	
		APPENDICES	
Append Append Append	dix B	Well Sampling Field Records Laboratory Analytical Reports Data Qualify Review	

THIRD AND FOURTH QUARTER 2014 GROUNDWATER MONITORING REPORT

Crown Chevrolet Cadillac Isuzu 7544 Dublin Boulevard Dublin, California

Amec Foster Wheeler Environment & Infrastructure, Inc. (Amec Foster Wheeler), has prepared this *Third and Fourth Quarter 2014 Groundwater Monitoring Report* ("monitoring report") on behalf of the Betty J. Woolverton Trust and Crown Chevrolet Cadillac Isuzu (collectively, Crown) for the property located at 7544 Dublin Boulevard in Dublin, California (the site; Figure 1). The groundwater monitoring was performed at the request of Alameda County Department of Environmental Health (ACDEH).

On July 30 and October 6, 2014, Amec Foster Wheeler performed the quarterly groundwater elevation gauging and groundwater sampling for the monitoring wells installed at the site. Additional gauging was conducted on December 18, 2014. This report presents the results of the quarterly groundwater monitoring events and the additional gauging event.

1.0 BACKGROUND

A brief discussion of site background is presented below. A more complete discussion of background, including a site conceptual model, is presented in the *Final Feasibility Study and Corrective Action Plan* (FS/CAP; AMEC, 2014).

The site was developed in 1968 as Crown Chevrolet, a car dealership with auto body shops, on land that was likely previously used for agriculture. At that time, the three main site buildings (Buildings A, B, and C) were constructed. Building A was later expanded. Building D was reportedly constructed in 1994. Operations as a car dealership and auto body shop continued from 1968 through mid-2013. The property was sold to BWD Dublin LLC in the fall of 2014, and the site buildings were demolished in December 2014 in preparation for redevelopment.

The site consists of an approximately 4.97-acre parcel (ACDEH Case No. RO0003014). A separate 1.36-acre parcel is also present to the south at 6707 Golden Gate Drive and was decoupled from the ACDEH case for the 4.97-acre parcel in December 2013. Case No. RO0003130 was opened for the Crown Chevrolet South Parcel at that time. No groundwater impacts have been identified in the 1.36-acre parcel, and the case was closed on August 4, 2014.

Amec Foster Wheeler

¹ AMEC Environment & Infrastructure, Inc. (AMEC), became Amec Foster Wheeler Environment & Infrastructure, Inc., effective January 1, 2015.

Multiple investigations have been conducted at the site; these investigations have been performed to address regulatory concerns as well as in support of transactional and potential redevelopment activities. Based on the previous investigations, two areas of groundwater impacts were identified:

- Volatile organic compounds (VOCs), primarily tetrachloroethene (PCE) and trichloroethene (TCE), are present in shallow groundwater throughout the northern portion of the site (within the area shown on Figure 2). The PCE and TCE are attributed to an off-site source; the specific source has not been identified (AMEC, 2012b).
- Chlorobenzenes and related compounds (e.g., 1,2-dichlorobenzene and 1,4-dichlorobenzene) are present in groundwater and soil vapor at a former sump within Building B (Building B and the former sump are shown on Figure 2). Remediation was performed in October 2011 at the former sump and included removal of soil and VOC-affected water; however, some impacted soil remained beneath building walls (AMEC, 2011).

A summary of the results from the previous investigations is included in Amec Foster Wheeler's *Soil, Groundwater, and Soil Vapor Investigation Report* (AMEC, 2012b). Site redevelopment is planned, and the FS/CAP describes the corrective action objectives (CAOs) for the site and outlines plans to meet the CAOs and mitigate the impacts discussed above (AMEC, 2014). A *Vapor Mitigation and Permeable Reactive Barrier Basis of Design Report* is currently in preparation that will provide detailed information regarding the design of the corrective actions proposed in the FS/CAP. Additionally, after the site buildings were demolished in December 2014, more impacted soil was removed from around the former sump in February 2015; the soil removal activities will be documented in a forthcoming *Post-Demolition Investigation and Remediation Report*, which is expected to be submitted to ACDEH in May or June 2015, following completion of the demolition and remedial activities.

In order to monitor groundwater conditions at the site, seven monitoring wells (with a total of 15 well ports at varying depths) were installed at the site in September 2012. An initial round of sampling was conducted at that time, and the well installation activities and results were reported in the *Soil, Groundwater, and Soil Vapor Investigation Report* (AMEC, 2012b). Beginning in January 2013, the site wells were sampled once each quarter, and the results documented in monitoring reports prepared by Amec Foster Wheeler on a quarterly or semiannual basis. Three additional piezometers were installed in August 2014 as part of a investigation to support the design of the permeable reactive barrier. A summary of the piezometer installation, including field methods, will be included in the *Vapor Mitigation and Permeable Reactive Barrier Basis of Design Report*.

In the second half of 2014, in preparation for site redevelopment, the site monitoring wells were destroyed. Monitoring well MW-03 was destroyed in August 2014 prior to the demolition of Building B. The remaining monitoring wells and the three piezometers were destroyed in

December 2014. A summary of the well destruction activities, including field methods, will be included in the *Post-Demolition Investigation and Remediation Report*.

A summary of the field and laboratory methods and results for the third and fourth quarter 2014 monitoring events, conducted at the site on July 30, 2014 (when all monitoring wells were present), and October 6, 2014 (following the destruction of monitoring well MW-03), is presented in this monitoring report.

2.0 GROUNDWATER MONITORING ACTIVITIES

The following sections describe the work performed in association with the groundwater monitoring activities at the site. The sampling methodologies and analytical suite are consistent with the methods presented in the *Soil, Groundwater and Soil Vapor Investigation Work Plan* (AMEC, 2012a).

On July 30, 2014, groundwater samples were collected from 15 wells and well ports at the site. On October 6, 2014, groundwater samples were collected from 14 monitoring wells and well ports and water levels were measured in piezometers PZ-01, PZ-02, and PZ-03. During the July 2014 monitoring event, the monitoring well network at the site consisted of three shallow groundwater monitoring wells screened in the first water-bearing zone; and four continuous multichannel tubing (CMT) wells, each with three ports (in the first water-bearing zone and in two deeper zones). During the October 2014 monitoring event, the monitoring well network consisted of one less monitoring well screened in the shallow water-bearing zone (monitoring well MW-03 had been destroyed). The wells and piezometers were additionally gauged in December 2014, prior to destruction. Construction details for the monitoring wells, piezometers, and the CMT wells are presented in Table 1.

2.1 GROUNDWATER ELEVATION GAUGING

Prior to collecting depth-to-groundwater measurements, the well cap was first removed from each well and the water levels were allowed to equilibrate. Equilibration was considered complete when two depth-to-groundwater measurements collected within several minutes at a well were equivalent. The depth-to-groundwater measurements were made to an accuracy of 0.01 foot with an electric sounder. The depth to groundwater at each well was recorded on a water level monitoring record. Copies of the well level monitoring records from July, October, and December 2014 are included in Appendix A.

2.2 MONITORING WELL SAMPLING

Following the water level measurements and prior to sample collection, each well was purged using a low-flow technique at flow rates ranging from 30 to 200 milliliters per minute (mL/min). During purging, the following field measurements were recorded and documented on field records: dissolved oxygen, oxidation/reduction potential, temperature, pH, and specific conductance. Copies of the well sampling field records are included in Appendix A. Purging

was considered complete when these parameters had stabilized (three consecutive readings within the following limits: \pm 3 percent change in conductivity, \pm 0.2 pH units, \pm 0.2 mg/l for dissolved oxygen, \pm 20 mV for oxidation-reduction potential, and turbidity is \pm 10 percent or <10 NTU). However, due to slow recharge, several ports at monitoring wells MP-01 through MP-04, and MW-03 were purged dry and then sampled once they recharged with groundwater; the field parameters did not stabilize. During the third and fourth quarters, a sample was collected at port MP-03-2 prior to purging dry and before stabilization due to a history of slow recharge at that well. No sample was collected from MP-02-1 in October due the port being dry.

Following purging, groundwater samples were collected from each well into laboratory-provided volatile organic analysis (VOA) containers preserved with hydrochloric acid, using a peristaltic pump. Each sample was immediately labeled with a unique identifier and the sample collection time, and then stored in an ice-chilled cooler pending transport to the analytical laboratory under Amec Foster Wheeler chain-of-custody procedures. The purge water generated during the sampling activities was placed in a labeled Department of Transportation-approved container and temporarily stored at the site pending disposal (see Section 2.4).

One blind field duplicate groundwater sample was collected during each of the monitoring events from monitoring well MW-01. The duplicate samples were collected and stored in the same manner as the primary samples and submitted to the laboratory for analysis of the same suite of constituents. A discussion of data quality is included below, in Section 2.5.

2.3 LABORATORY ANALYTICAL METHODS

The groundwater samples were delivered to TestAmerica Laboratories, Inc. (TestAmerica), of Pleasanton, California, a California Department of Public Health–accredited laboratory (Certificate No. 2496). The groundwater samples were analyzed for VOCs (including total petroleum hydrocarbons quantified as gasoline [TPHg]) using U.S. EPA Method 8260B. Copies of the laboratory analytical reports are included in Appendix B.

2.4 INVESTIGATION DERIVED WASTE MANAGEMENT

The decontamination, rinse, and purge water generated during the groundwater monitoring events was stored at the site in an appropriately–labeled 55-gallon drum pending off-site disposal.

2.5 DATA QUALITY REVIEW

Amec Foster Wheeler evaluated the analytical data generated during the third and fourth quarter groundwater monitoring events using guidelines set forth in the U.S. Environmental Protection Agency's (EPA's) *USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review* (U.S. EPA, 2013). The complete data

quality review, which was reviewed and acknowledged by an Amec Foster Wheeler quality assurance/quality control (QA/QC) senior technical reviewer, is included in Appendix C, and is summarized below.

Quality assurance procedures for groundwater samples collected during the quarterly groundwater monitoring program included the collection and analysis of one blind field duplicate sample and one matrix spike/matrix spike duplicate (MS/MSD) sample per event; laboratory analysis of method blank samples, surrogate spikes, and of laboratory control spike/laboratory control spike duplicate (LCS/LCSD) samples; and evaluation of the analytical results.

Data accuracy was assessed by the analysis of LCS/LCSD samples, MS/MSD samples and evaluation of the recovery of spiked compounds, and is expressed as a percentage of the true or known concentrations. Surrogate recoveries and blank results also were used to assess accuracy. Data precision was evaluated by comparing analytical results from duplicate sample pairs and evaluating the calculated relative percent difference (RPD) between the data sets. The results for LCS/LCSD, MS/MSD, and field duplicate sample pairs (as available) were evaluated to assess the precision of the analytical methods for the water sample data.

All detectable concentrations of TPHg (reported by the analytical laboratory as gasoline range organics) in both sampling events were identified by the laboratory to be the result of discrete peaks (caused by one or more compounds including PCE, TCE, and cis-1,2-dichloroethene). Therefore, these TPHg results were qualified with "R" to indicate that they are rejected.

No other data quality deficiencies were identified during the data quality review. With the exception of the rejected data, all laboratory results are valid and usable.

3.0 RESULTS

The following section presents the results of the third and fourth quarter 2014 groundwater monitoring activities.

3.1 GROUNDWATER ELEVATIONS, FLOW DIRECTIONS, AND GRADIENTS

Depths to groundwater were measured on July 30, 2014, in monitoring wells MW-01 through MW-03, and MP-01 through MP-04. Depths to groundwater were measured on October 6 and December 18, 2014, in monitoring wells MW-01, MW-02, MP-01 through MP-04, and piezometers PZ-01 though PZ-03. The depths to groundwater and calculated groundwater surface elevations are presented in Table 2.

Amec Foster Wheeler has identified and collected groundwater samples from three water bearing zones at the site. Based on the observed lithology and water level elevations, the first and third water-bearing zones appear to represent generally well-connected water-bearing zones. Lithologic observations and water level elevations in second water-bearing zone indicate that it may not have the same degree of connectivity.

In the first water-bearing zone at the site, groundwater moves in an approximately easterly direction and the magnitude of the lateral hydraulic gradient was approximately 0.0020 feet per foot on July 30, 2014, and 0.0019 feet per foot on October 6, 2014. In the third water-bearing zone at the site, groundwater moves in an approximately northeasterly direction and the magnitude of the lateral hydraulic gradient was approximately 0.0056 feet per foot on July 30, 2014, and 0.0067 feet per foot on October 6, 2014. Note that the wells in the second and third water-bearing zones are located close to an east-west trending line, making it difficult to gauge the precise direction of groundwater movement. Lateral gradients were not evaluated for the second water-bearing zone, as the depth to water measured in the second deepest port of one well (MP-03-2) does not appear to be representative of the potentiometric surface and not enough additional data are available to evaluate the direction of groundwater movement. The potentiometric surface maps for first and third water-bearing zones during the third and fourth quarters of 2014 are presented on Figures 2 through 6. Rose diagrams also appear on Figures 2 through 6 to summarize the variation in the direction of the groundwater gradient observed since monitoring began in 2012.

Vertical hydraulic gradients were calculated for the intervals between the first and second water-bearing zones (i.e., from approximately 15 to 45 feet bgs) and between the second and third water-bearing zones (i.e., from approximately 45 to 60 feet bgs) in multi-port wells MP-01 through MP-04. For the approximately 15- to 45-foot interval, vertical gradients ranged from 0.014 to 0.047 feet per foot downward on July 30, 2014, and from 0.040 to 0.047 feet downward to on October 6, 2014 (excluding the gradient in MP-02, because MP-02-1 was dry). For the approximately 45- to 60-foot interval, vertical gradients ranged from 0.082 to 0.124 feet per foot downward on July 30, 2014, and from 0.081 to 0.123 feet downward on October 6, 2014. Vertical gradients were not calculated for monitoring well MP-03, as the depth to water measured in the second port (MP-03-2) does not appear to be representative of the potentiometric surface.

3.2 GROUNDWATER ANALYTICAL RESULTS

As discussed above, 15 groundwater samples were collected during the July quarterly monitoring event and 14 groundwater samples were collected during the October quarterly monitoring event. The groundwater samples were analyzed for VOCs, including TPHg. The analytical results are summarized in Table 3, and concentrations of selected VOCs in the first water-bearing zone are presented on Figure 7.

For discussion purposes, the groundwater analytical results from July and October 2014 monitoring were compared to water environmental screening levels (ESLs) for groundwater that is assumed to be a potential drinking water resource, published by the California Regional Amec Foster Wheeler

Water Quality Control Board, San Francisco Bay Region (Regional Water Board; Regional Water Board, 2013). Drinking water ESLs are not an established cleanup goal for the site; however, they provide a frame of reference for discussing analytical results.

A summary of the July and October 2014 monitoring results is presented in the following sections.

3.2.1 First Water-Bearing Zone

In July 2014, PCE and TCE were detected in groundwater samples collected from all monitoring wells screened within the first water-bearing zone. Additionally, cis-1,2-dichloroethene (cis-1,2-DCE) was detected in groundwater from five monitoring wells (MP-01-1, MP-02-1, MP-03-1, MP-04-1, and MW-02), and trans-1,2-dichloroethene (trans-1,2-DCE) was detected in groundwater from monitoring well MP-02-1. Chlorobenzene and 1,2-dichlorobenzene (1,2-DCB) were detected in groundwater from monitoring well MW-03, located near the former sump within Building B. No other VOCs were detected.

In October 2014, PCE and TCE were detected in groundwater samples collected from all monitoring wells screened within the first water-bearing zone (excluding MP-02-1 which was dry). Cis-1,2-DCE was detected in groundwater from monitoring wells MP-01-1, MP-03-1, MP-04-1, and MW-02. No other VOCs were detected.

Some concentrations of PCE and TCE were greater than their respective ESLs for drinking water. During the July 2014 monitoring event, PCE was detected in groundwater samples collected from five of the seven wells in the first water-bearing zone at concentrations greater than the ESL of 5 μ g/L (at a maximum concentration of 100 μ g/L in MW-01). During the October 2014 monitoring event, PCE was detected in groundwater samples collected from three of the six wells in the first water-bearing zone at concentrations greater than the ESL (at a maximum concentration of 90 μ g/L in MW-01). TCE was detected in groundwater samples from five of the seven wells in the first water-bearing zone in July 2014 and three of the six wells in October 2014 at concentrations greater than the ESL of 5 μ g/L (at a maximum concentration of 51 μ g/L in MP-02-1 in July 2014 and a maximum concentration of 17 μ g/L in MP-01-1 in October 2014). Only one other VOC was detected at a concentration greater than its respective ESL (cis-1,2-DCE detected at 7.2 μ g/L in MP-02-1 in July 2014).

3.2.2 Second Water-Bearing Zone

TCE was detected at concentrations less than the ESL in the groundwater sample collected from MP-02-2 in October 2014. In both July and October 2014, cis-1,2-DCE was detected in groundwater from monitoring wells MP-01-2 and MP-02-2 (at a maximum concentration in MP-02-2 of 72 μ g/L in July and 85 μ g/L in October); all of the detected concentrations were greater than the ESL of 6 μ g/L. Additionally, in October 2014 cis-1,2-DCE was detected in

groundwater from monitoring well MP-04 at a concentration less than the ESL. No other VOCs were detected in the second water-bearing zone.

3.2.3 Third Water-Bearing Zone

Cis-1,2-DCE was detected in groundwater samples collected from MP-01-3 and MP-02-3 in July 2014, at a maximum concentration in MP-01-3 of 7.4 μ g/L. Acetone was also detected in groundwater from monitoring well MP-02-3 in July 2014 (acetone is a common laboratory contaminant and is not a constituent of concern for the site). In October 2014, cis-1,2-DCE was detected in MP-01-3 and MP-02-3 with a maximum concentration of 29 μ g/L in MP-02-3. Trans-1,2-DCE was detected in groundwater from monitoring well MP-04-3 in October 2014. No other VOCs were detected in the third water-bearing zone.

4.0 SUMMARY OF TRENDS

Conclusions and a summary of VOC results for the third and fourth quarter 2014 groundwater monitoring are presented in the following sections.

4.1 GROUNDWATER ELEVATIONS

The measured depths to groundwater in the first water-bearing zone (Table 2) were an average of approximately 1.6 feet lower in July 2014 than in April 2014. The measured depths to groundwater were an average of 0.6 feet lower in October 2014 than in July 2014. The July and October 2014 groundwater elevations were at or near the lowest measured to date, likely resulting from lower-than-average rainfall during the 2013-2014 rainy season. The measured depths to groundwater in December 2014 were an average of 2.3 feet higher than in October 2014 following several significant rainfall events.

4.2 FIRST WATER-BEARING ZONE

As of October 2014, nine groundwater monitoring events had been conducted, allowing for assessment of concentration trends over a period of more than two years. PCE and TCE, the primary constituents of concern, have been consistently detected throughout the first water-bearing zone in the northern portion of the site, and their concentrations, in addition to cis-1,2-DCE, are plotted over time on Figure 8.

In general, PCE concentrations in the first water-bearing zone have decreased slightly. TCE concentrations have remained relatively stable, although two wells (MP-01-1 and MP-02-1) show an increasing trend in TCE concentrations. This trend may be indicative of degradation of PCE to TCE. Concentration trends for cis-1,2-DCE are generally similar to those for TCE.

Monitoring well MW-03 was located downgradient of the former sump in order to evaluate groundwater concentration trends associated with residual impacts in that area. The main constituents of concern associated with the former sump are chlorobenzene and related compounds. Concentration trends for chlorobenzene and 1,2-DCB at MW-03 are plotted over

time on Figure 9. Both chlorobenzene and 1,2-DCB have been consistently detected; the concentrations have remained relatively stable and are less than the ESLs. No other related constituents (including benzene) have been detected in MW-03.

4.3 SECOND WATER-BEARING ZONE

TCE and cis-1,2-DCE were both detected in the second water-bearing zone in the second half of 2014. With the exception of July 2014, TCE has been consistently detected at low concentrations (less than the ESL) in monitoring well MP-02-2. Cis-1,2-DCE has been detected at increasing concentrations in MP-01-2 and MP-02-2 since 2013, with recent concentrations greater than the ESL. Cis-1,2-DCE was detected in MP-04-2 for the first time in October 2014. Other VOCs previously detected in the second water-bearing zone were not detected in the second half of 2014.

4.4 THIRD WATER-BEARING ZONE

Concentrations of cis-1,2-DCE have been increasing in wells MP-01-3 and MP-02-3 since April 2014. Detected concentrations in July (MP-01-3) and October (both MP-01-3 and MP-02-3) are greater than the ESL. Trans-1,2-DCE was detected in the groundwater sample collected from monitoring well MP-04-3 for the first time in October 2014.

5.0 NEXT STEPS

As noted above, monitoring well MW-03 was destroyed in late August 2014 and the remaining monitoring wells and piezometers at the site were destroyed in December 2014. New monitoring wells to evaluate potential groundwater impacts are planned to be installed after site redevelopment is complete, currently estimated for 2016, and routine groundwater monitoring and reporting will resume at that time.

6.0 REFERENCES

- AMEC Environment & Infrastructure, Inc. (AMEC), 2011, Remediation Report, Crown Chevrolet Cadillac Isuzu, 7544 Dublin Boulevard and 6707 Golden Gate Drive, Dublin, California, Fuel Leak Case No. RO003014, December 21.
- AMEC, 2012a, Soil, Groundwater, and Soil Vapor Investigation Work Plan, Crown Chevrolet Cadillac Isuzu, 7544 Dublin Boulevard and 6707 Golden Gate Drive, Dublin, California, August 16.
- AMEC, 2012b, Soil, Groundwater, and Soil Vapor Investigation Report, Crown Chevrolet Cadillac Isuzu, 7544 Dublin Boulevard and 6707 Golden Gate Drive, Dublin, California, October 19.
- AMEC, 2014, Final Draft Feasibility Study and Corrective Action Plan, Crown Chevrolet Cadillac Isuzu, 7544 Dublin Boulevard and 6707 Golden Gate Drive, Dublin, California, May 1.
- California Regional Water Quality Control Board, San Francisco Region (Regional Water Board), 2013, Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater. Interim Final. December.
- U.S. Environmental Protection Agency, 2013, USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review, EPA-540-R-08-01, February.

WELL CONSTRUCTION DETAILS

Crown Chevrolet Cadillac Isuzu 7544 Dublin Boulevard Dublin, California

							Survey Dat	a				(Construction	Informatio	n¹	
Well Type	Monitoring Well ID	Port	Date Installed	Date Destroyed	Ground Surface Elevation (feet)	Top Of Casing Surveyed Elevation (feet)	Northing	Easting	Datum	Depth Drilled (feet bgs)	Top of Screen (feet bgs)	Bottom of Screen (feet bgs)	Well Depth (feet bgs)	Casing Diameter (inches)	Well Screen Slot Size (inches)	Filter Pack
Pre-pack	MW-01		8/30/2012	12/19/2014	344.58	344.24	2081925.24	6148339.55	NAD 83/NAVD 88	22	16.2	20.9	21.17	0.75	0.010	#20/40 and 2/12 sand
groundwater	MW-02		8/30/2012	12/18/2014	340.41	340.24	2082055.96		NAD 83/NAVD 88	20.2	15.2	19.9	19.92	0.75	0.010	#20/40 and 2/12 sand
well	MW-03		8/31/2012	8/26/2014	343.95	343.77	2081890.72	6148566.71	NAD 83/NAVD 88	20	14.4	19.1	19.35	0.75	0.010	#20/40 and 2/12 sand
	PZ-01		8/21/2014	12/19/2014	343.18	328.44	2081792.36	6148269.44	NAD 83/NAVD 88	20	15.3	19.7	20.29	2.00	0.010	#20/40 and 2/12 sand
Piezometer	PZ-02		8/22/2014	12/19/2014	342.93	328.54	2081986.53	6148237.08	NAD 83/NAVD 88	20	15.5	19.9	20.44	2.00	0.010	#20/40 and 2/12 sand
	PZ-03		8/22/2014	12/19/2014	342.10	328.38	2082005.33	6148289.18	NAD 83/NAVD 88	20	15.1	19.6	20.16	2.00	0.010	#20/40 and 2/12 sand
	MP-01	MP-01-1							NAD 83/NAVD 88		17.3	17.6		0.375	0.010	#2/12 sand
	MP-01	MP-01-2	8/29/2012	12/18/2014	343.37	343.20	2081915.18	6148233.76	NAD 83/NAVD 88	60	43.2	43.5	59.3	0.375	0.010	#2/12 sand
	MP-01	MP-01-3							NAD 83/NAVD 88		58.1	58.4		0.375	0.010	#2/12 sand
	MP-02	MP-02-1							NAD 83/NAVD 88		12.6	12.9		0.375	0.010	#2/12 sand
CMT multi-	MP-02	MP-02-2	8/30/2012	12/18/2014	341.32	341.15	2082008.13	6148472.05	NAD 83/NAVD 88	60	36.4	36.7	59.7	0.375	0.010	#2/12 sand
port	MP-02	MP-02-3							NAD 83/NAVD 88		57.5	57.8		0.375	0.010	#2/12 sand
groundwater	MP-03	MP-03-1							NAD 83/NAVD 88		14.3	14.6		0.375	0.010	#2/12 sand
well	MP-03	MP-03-2	8/30/2012	12/18/2014	342.31	342.21	2081948.36	6148500.44	NAD 83/NAVD 88	60	42.9	43.2	59.8	0.375	0.010	#2/12 sand
	MP-03	MP-03-3							NAD 83/NAVD 88		57.8	58.1		0.375	0.010	#2/12 sand
	MP-04	MP-04-1							NAD 83/NAVD 88		15.4	15.7		0.375	0.010	#2/12 sand
	MP-04	MP-04-2	8/31/2012	12/18/2014	341.48	341.22	2081993.43	6148600.32		60.5	41.4	41.7	60.5	0.375	0.010	#2/12 sand
	MP-04	MP-04-3							NAD 83/NAVD 88		58.3	58.6		0.375	0.010	#2/12 sand

<u>Note</u>

1. Pre-pack well casing materials are Schedule 40 PVC. The multi-port well casing materials are Solinst 3-channel CMT.

Abbreviations

--= not applicable feet bgs = below ground surface CMT = continuous multi-channel tubing NAD = North American Datum NAVD = North American Vertical Datum

GROUNDWATER ELEVATIONS

J.		Top-of-Casing	Depth to	Groundwater
	_	Elevation ¹	Groundwater	Elevation ¹
Sample Location	Date	(feet)	(feet BTOC)	(feet)
First Water-Bearing				
-	9/10/2012		13.33	329.87
-	1/29/2013		11.49	331.71
	5/29/2013		12.53	330.67
-	7/30/2013		13.09	330.11
MP-01-1	10/28/2013	343.20	14.03	329.17
	2/5/2014	0.10.20	14.09	329.11
_	4/16/2014		12.27	330.93
<u>_</u>	7/30/2014		14.02	329.18
<u>_</u>	10/6/2014		14.80	328.40
	12/18/2014		12.30	330.90
	9/10/2012		11.83	329.32
	1/29/2013		10.30	330.85
	5/29/2013		11.11	330.04
	7/30/2013		11.65	329.50
MP-02-1	10/28/2013	244.45	12.44	328.71
IVIP-02-1	2/5/2014	341.15	12.48	328.67
	4/16/2014		10.87	330.28
	7/30/2014		12.48	328.67
	10/6/2014		dry	
	12/18/2014		10.74	330.41
	9/10/2012		12.94	329.27
	1/29/2013		11.33	330.88
	5/29/2013		12.21	330.00
•	7/30/2013		12.74	329.47
NAD 00 4	10/28/2013	0.40.04	13.48	328.73
MP-03-1	2/5/2014	342.21	13.48	328.73
ľ	4/16/2014		11.99	330.22
ľ	7/30/2014		13.58	328.63
-	10/6/2014		14.20	328.01
-	12/18/2014		11.83	330.38
	9/10/2012		12.41	328.81
	1/29/2013		10.77	330.45
MP-04-1	5/29/2013		11.51	329.71
	7/30/2013		12.11	329.11
	10/28/2013		12.61	328.61
	2/5/2014	341.22	12.77	328.45
	4/16/2014		11.28	329.94
	7/30/2014		12.82	328.40
	10/6/2014		13.40	327.82
<u> </u>	12/18/2014		11.30	329.92

GROUNDWATER ELEVATIONS

		Top-of-Casing	Depth to	Groundwater
		Elevation ¹	Groundwater	Elevation 1
Sample Location	Date	(feet)	(feet BTOC)	(feet)
	9/10/2012		14.64	329.60
	1/29/2013		12.96	331.28
	5/29/2013		13.89	330.35
	7/30/2013		14.44	329.80
MW-01	10/28/2013	344.24	15.24	329.00
10100 01	2/5/2014	044. <u>2</u> 4	15.28	328.96
	4/16/2014		13.65	330.59
	7/30/2014		15.37	328.87
	10/6/2014		16.00	328.24
	12/18/2014		13.61	330.63
	9/10/2012		10.90	329.34
	1/29/2013		9.35	330.89
	5/29/2013		10.20	330.04
	7/30/2013		10.72	329.52
MW-02	10/28/2013	340.24	11.49	328.75
10100-02	2/5/2014	340.24	11.52	328.72
	4/16/2014		9.98	330.26
	7/30/2014		11.56	328.68
	10/6/2014		12.02	328.22
	12/18/2014		9.84	330.40
	9/10/2012		14.62	329.15
	1/29/2013		14.53	329.24
	5/29/2013		13.90	329.87
	7/30/2013		14.37	329.40
MW-03	10/28/2013	343.77	14.72	329.05
10100-03	2/5/2014	343.77	15.20	328.57
	4/16/2014		13.67	330.10
	7/30/2014		15.29	328.48
	10/6/2014 ²			
	12/18/2014			
PZ-01	10/6/2014	342.89	14.45	328.44
Γ Δ- UΙ	12/18/2014	J 4 ∠.0∀	12.01	330.88
PZ-02	10/6/2014	342.64	14.10	328.54
PZ-UZ	12/18/2014	342.04	11.74	330.90
PZ-03	10/6/2014	341.78	13.40	328.38
FZ - U3	12/18/2014	3 4 1./0	11.04	330.74

GROUNDWATER ELEVATIONS

		Top-of-Casing Elevation ¹	Depth to Groundwater	Groundwater Elevation ¹
Sample Location	Date	(feet)	(feet BTOC)	(feet)
Second Water-Bea	ring Zone			
	9/10/2012		14.38	328.82
	1/29/2013		12.59	330.61
	5/29/2013		13.67	329.53
	7/30/2013		14.26	328.94
MP-01-2	10/28/2013	343.20	15.08	328.12
IVII -01-2	2/5/2014	343.20	15.11	328.09
	4/16/2014		13.57	329.63
	7/30/2014		15.11	328.09
	10/6/2014		15.84	327.36
	12/18/2024		13.91	329.29
	9/10/2012		13.93	327.22
	1/29/2013		10.67	330.48
	5/29/2013		11.50	329.65
	7/30/2013		10.07	331.08
MP-02-2	10/28/2013	341.15	12.84	328.31
WIF -02-2	2/5/2014	341.13	12.87	328.28
	4/16/2014		11.26	329.89
	7/30/2014		12.82	328.33
	10/6/2014		13.53	327.62
	12/18/2024		11.30	329.85
	9/10/2012		39.76	302.45
	1/29/2013		15.00	327.21
	5/29/2013		15.93	326.28
	7/30/2013		22.15	320.06
MP-03-2	10/28/2013	342.21	19.03	323.18
WII -03-2	2/5/2014	J 4 2.21	16.92	325.29
	4/16/2014		17.21	325.00
	7/30/2014		15.51	326.70
	10/6/2014		17.01	325.20
	12/18/2024		16.26	325.95
	9/10/2012		13.83	327.39
	1/29/2013		11.95	329.27
	5/29/2013		12.77	328.45
MP-04-2	7/30/2013		13.31	327.91
	10/28/2013	341.22	13.94	327.28
	2/5/2014	U-11.22	13.91	327.31
	4/16/2014		12.60	328.62
	7/30/2014		14.05	327.17
	10/6/2014		14.63	326.59
	12/18/2024		13.03	328.19

GROUNDWATER ELEVATIONS

Sample Location	Date	Top-of-Casing Elevation ¹ (feet)	Depth to Groundwater (feet BTOC)	Groundwater Elevation ¹ (feet)
Third Water-Bearing		(ieet)	(leet BTOC)	(ICCI)
Tima Water Bearing	9/10/2012		15.63	327.57
	1/29/2013		14.19	329.01
	5/29/2013		15.08	328.12
	7/30/2013	ŀ	15.67	327.53
MD 04 0	10/28/2013	0.40.00	16.43	326.77
MP-01-3	2/5/2014	343.20	16.34	326.86
	4/16/2014		14.89	328.31
	7/30/2014		16.33	326.87
	10/6/2014		17.04	326.16
	12/18/2024		15.53	327.67
	9/10/2012		14.88	326.27
	1/29/2013		13.38	327.77
	1/29/2013		14.24	326.91
	7/30/2013		14.61	326.54
MP-02-3	10/28/2013	341.15	15.39	325.76
IVIF-02-3	2/5/2014	341.13	15.32	325.83
	4/16/2014		13.92	327.23
	7/30/2014		15.43	325.72
	10/6/2014		16.13	325.02
	12/18/2024		15.54	325.61
	9/10/2012	_	15.66	326.55
	1/29/2013		14.28	327.93
	5/29/2013		15.12	327.09
	7/30/2013		15.74	326.47
MP-03-3	10/28/2013	342.21	16.33	325.88
IVII -UU-U	2/5/2014	J72.21	16.21	326.00
	4/16/2014		14.80	327.41
	7/30/2014		16.30	325.91
	10/6/2014		16.88	325.33
	12/18/2024		15.47	326.74

GROUNDWATER ELEVATIONS

Crown Chevrolet Cadillac Isuzu 7544 Dublin Boulevard Dublin, California

Sample Location	Date	Top-of-Casing Elevation ¹ (feet)	Depth to Groundwater (feet BTOC)	Groundwater Elevation ¹ (feet)
	9/10/2012		15.12	326.10
	1/29/2013		13.78	327.44
	5/29/2013		14.65	326.57
	7/30/2013		15.25	325.97
MP-04-3	10/28/2013	341.22	15.83	325.39
IVIF -04-3	2/5/2014	341.22	15.73	325.49
	4/16/2014		14.50	326.72
	7/30/2014		15.92	325.30
	10/6/2014		16.54	324.68
	12/18/2024		15.13	326.09

Note

1. Elevation datum is NAVD 88.

Abbreviations

BTOC = below top of casing
NAVD 88 = North American Vertical Datum of 1988

VOLATILE ORGANIC COMPOUNDS IN GROUNDWATER FROM MONITORING WELLS

Crown Chevrolet Cadillac Isuzu 7544 Dublin Boulevard Dublin, California

ı		[1	ti atione i op	ortou III III	icrograms p	ι	<u>-, </u>			1			l .	
Location	Sample ID	Sample Type	Date	Acetone	Bromo- dichloro- methane	Chloro- benzene	Chloro- form	Dibromo- chloro- methane	1,2- Dichloro- benzene	1,1- Dichloro- ethene	cis-1,2- Dichloro- ethene	trans-1,2- Dichloro- ethene	2-Hex- anone	PCE	TCE	TPHg	All Other VOCs
First Water-Be	•	, , , , , , , , , , , , , , , , ,			<u> </u>				I.		ı						
	MP-01-1	Primary	9/10/2012	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<50	120	<0.50	110 R	ND
	MP-01-1	Primary	1/29/2013	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<50	160	0.80	150 R	ND
	MP-01-1	Primary	5/29/2013	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<50	190	1.6	120 R	ND
	MP-01-1	Primary	7/30/2013	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<50	150	1.8	140 R	ND
MP-01	MP-01-1	Primary	10/28/2013	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<50	140	5.1	120 R	ND
	MP-01-1	Primary	2/5/2014	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	1.1	<0.50	<50	100	8.6	86 R	ND
	MP-01-1	Primary	4/16/2014	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	1.6	<0.50	<50	140 J	13 J	140 R	ND
	MP-01-1	Primary	7/30/2014	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	3.0	<0.50	<50	77	15	91 R	ND
	MP-01-1	Primary	10/6/2014	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	4.4	<0.50	<50	58	17	64 R	ND
	MP-02-1	Primary	9/10/2012	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	1.1	<0.50	<50	1.2	15	<50	ND
	MP-02-10	Duplicate	9/10/2012	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	1.3	<0.50	<50	1.6	19	<50	ND
	MP-02-1	Primary	1/29/2013	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	4.4	0.80	<50	6.6	61	100 R	ND
	MP-02-1	Primary	5/29/2013	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	8.2	0.88	<50	1.0	43	94 R	ND
MP-02	MP-02-1	Primary	7/30/2013	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	4.8	0.65	<50	3.0	55	<50	ND
	MP-02-1	Primary	10/28/2013	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	5.9	0.92	<50	0.53	56	70 R	ND
	MP-02-1	Primary	2/5/2014	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	5.4	0.52	<50	2.8	49	<50	ND
	MP-02-1	Primary	4/16/2014	<50	<0.50	<0.50	<1.0	<0.50	<0.50	0.54	8.0	1.1	<50	4.9 J	78 J	85 R	ND
	MP-02-1	Primary	7/30/2014	<50	<0.50	<0.50	<1.0	<0.50	< 0.50	0.54	7.2	1.0	<50	0.86	51	64 R	ND
	MP-03-1	Primary	9/10/2012	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<50	120	6.4	140 R	ND
	MP-03-1	Primary	1/29/2013	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	0.63	<0.50	<50	150	11	230 R	ND
	MP-03-1	Primary	5/29/2013	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	0.55	<0.50	<50	170	13	140 R	ND
	MP-03-1	Primary	7/30/2013	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<50	160	10	170 R	ND
MP-03	MP-03-1	Primary	10/28/2013	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	0.64	<0.50	<50	120	12	150 R	ND
	MP-03-1	Primary	2/5/2014	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	0.62	<0.50	<50	120	11	140 R	ND
	MP-03-1	Primary	4/16/2014	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	0.63	<0.50	<50	98 J	8.3 J	110 R	ND
	MP-03-1	Primary	7/30/2014	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	0.74	<0.50	<50	94	9.5	110 R	ND
	MP-03-1	Primary	10/6/2014	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	0.63	<0.50	<50	22	4.0	<50	ND
	MP-04-1	Primary	9/10/2012	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<50	4.0	1.3	<50	ND
	MP-04-1	Primary	1/29/2013	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<50	20	8.4	<50	ND
	MP-04-1	Primary	5/29/2013	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	0.67	<0.50	<50	26	13	52 R	ND
	MP-04-1	Primary	7/30/2013	240	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	0.76	<0.50	<50	24	13	<50	ND
MP-04	MP-04-1	Primary	10/28/2013	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	1.3	<0.50	<50	31	24	65 R	ND
<u> </u>	MP-04-1	Primary	2/5/2014	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	1.0	<0.50	<50	3.4	13	<50	ND
<u> </u>	MP-04-1	Primary	4/16/2014	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	2.7	<0.50	<50	21 J	57 J	80 R	ND
	MP-04-1	Primary	7/30/2014	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	1.2	<0.50	<50	0.86	9.2	<50	ND
	MP-04-1	Primary	10/6/2014	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	2.2	<0.50	<50	0.76	12	<50	ND

VOLATILE ORGANIC COMPOUNDS IN GROUNDWATER FROM MONITORING WELLS

Crown Chevrolet Cadillac Isuzu 7544 Dublin Boulevard Dublin, California

					1			icrograms p	I (p.g.	_/	1	1	1				
					Bromo-			Dibromo-	1,2-	1,1-	cis-1,2-	trans-1,2-					
					dichloro-	Chloro-	Chloro-	chloro-	Dichloro-	Dichloro-	Dichloro-	Dichloro-	2-Hex-				All Other
Location	Sample ID	Sample Type	Date	Acetone	methane	benzene	form	methane	benzene	ethene	ethene	ethene	anone	PCE	TCE	TPHg	VOCs
	MW-01-(17-22)-GW ¹	Primary	8/30/2012	<50 UJ	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<50	150	1.1	150 R	ND
	MW-01	Primary	9/10/2012	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<50	150	1.2	120 R	ND
	MW-10	Duplicate	9/10/2012	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<50	160	1.3	140 R	ND
	MW-01	Primary	1/29/2013	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<50	160	1.1	160 R	ND
	MW-100	Duplicate	1/29/2013	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<50	160	1.1	160 R	ND
	MW-01	Primary	5/29/2013	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<50	170	1.1	100 R	ND
	MW-01	Primary	7/30/2013	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<50	160	1.5	120 R	ND
	MW-100	Duplicate	7/30/2013	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<50	210	1.6	140 R	ND
MW-01	MW-01	Primary	10/28/2013	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<50	150	1.9	150 R	ND
	MW-100	Duplicate	10/28/2013	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<50	150	1.8	160 R	ND
	MW-01	Primary	2/5/2014	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<50	120	1.5	93 R	ND
	MW-01	Primary	4/16/2014	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<50	120 J	1.2 J	110 R	ND
	MW-100	Duplicate	4/16/2014	<100	<1.0	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<100	190 J	1.7 J	170 R	ND
	MW-01	Primary	7/30/2014	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<50	100	0.89	100 R	ND
	MW-100	Duplicate	7/30/2014	<100	<1.0	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<100	100	<1.0	110 R	ND
	MW-01	Primary	10/6/2014	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<50	82	0.95	66 R	ND
	MW-100	Duplicate	10/6/2014	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<50	90	0.97	72 R	ND
	MW-02-(15-20)-GW ¹	Primary	8/30/2012	<50 UJ	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	0.6	<0.50	<50	18	9.2	<50	ND
	MW-02	Primary	9/10/2012	<50	< 0.50	<0.50	<1.0	< 0.50	< 0.50	<0.50	<0.50	<0.50	<50	16	6.9	<50	ND
	MW-02	Primary	1/29/2013	<50	<0.50	<0.50	<1.0	< 0.50	< 0.50	<0.50	1.6	0.54	<50	19	15	<50	ND
	MW-02	Primary	5/29/2013	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	2.0	<0.50	<50	20	26	51 R	ND
	MW-200	Duplicate	5/29/2013	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	2.0	<0.50	<50	15	23	<50	ND
MW-02	MW-02	Primary	7/30/2013	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	1.8	<0.50	<50	19	21	<50	ND
	MW-02	Primary	10/28/2013	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	0.58	<0.50	<50	10	6.6	<50	ND
	MW-02	Primary	2/5/2014	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	1.6	<0.50	<50	5.9	5.3	<50	ND
	MW-02	Primary	4/16/2014	<50	< 0.50	< 0.50	<1.0	<0.50	<0.50	<0.50	2.9	<0.50	<50	15 J	12 J	<50	ND
	MW-02	Primary	7/30/2014	<50	< 0.50	< 0.50	<1.0	<0.50	<0.50	<0.50	3.0	<0.50	<50	5.4	13	<50	ND
	MW-02	Primary	10/6/2014	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	2.8	<0.50	<50	4.7	9.1	<50	ND
	MW-03-(15-20)-GW ¹	Primary	8/31/2012	<50 UJ	<0.50	<0.50	<1.0	<0.50	1.1	<0.50	<0.50	<0.50	<50	9.3	0.59	<50	ND
	MW-03	Primary	9/10/2012	<50	1.4	<0.50	2.1	0.92	<0.50	<0.50	<0.50	<0.50	<50	3.2	<0.50	<50	ND
	MW-03	Primary	1/29/2013	<50	<0.50	4.8	<1.0	<0.50	1.7	<0.50	0.6	<0.50	<50	11	1.1	<50	ND
	MW-03	Primary	5/29/2013	<50	<0.50	<0.50	<1.0	<0.50	0.86	<0.50	<0.50	<0.50	<50	7.5	0.85	<50	ND
MW-03	MW-03	Primary	7/30/2013	<50	<0.50	<0.50	<1.0	<0.50	1.4	<0.50	0.62	<0.50	<50	11	1.1	<50	ND
10100-00	MW-03	Primary	10/28/2013	<50	<0.50	0.96	<1.0	<0.50	1.6	<0.50	<0.50	<0.50	<50	6.9	0.63	<50	ND
	MW-03	Primary	2/5/2014	<50	<0.50	1.5 J	<1.0	<0.50	5.0 J	<0.50	0.56	<0.50	<50	15 J	1.0 J	<50	ND
	MW-300	Duplicate	2/5/2014	<50	<0.50	0.86 J	<1.0	<0.50	2.7 J	<0.50	<0.50	<0.50	<50	9.0 J	0.67 J	<50	ND
	MW-03	Primary	4/16/2014	<50	<0.50	1.9	<1.0	<0.50	3.0	<0.50	1.8	<0.50	<50	30 J	17 J	<50	ND
	MW-03	Primary	7/30/2014	<50	<0.50	1.3	<1.0	<0.50	2.1	<0.50	<0.50	<0.50	<50	9.4	0.62	<50	ND

VOLATILE ORGANIC COMPOUNDS IN GROUNDWATER FROM MONITORING WELLS

Crown Chevrolet Cadillac Isuzu 7544 Dublin Boulevard Dublin, California

ī					COLICE	ili aliona rep	Joiled III III	icrograms p	rei iitei (µg/	L)							
Location	Sample ID	Sample Type	Date	Acetone	Bromo- dichloro- methane	Chloro- benzene	Chloro- form	Dibromo- chloro- methane	1 ′	1,1- Dichloro- ethene	cis-1,2- Dichloro- ethene	trans-1,2- Dichloro- ethene	2-Hex- anone	PCE	TCE	TPHg	All Other VOCs
Second Wate	r-Bearing Zone																
	MP-01-2	Primary	9/10/2012	130	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<50	<0.50	<0.50	<50	ND
	MP-01-2	Primary	1/29/2013	62	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	120	<0.50	<0.50	<50	ND
	MP-01-2	Primary	5/29/2013	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<50	<0.50	<0.50	<50	ND
	MP-01-2	Primary	7/30/2013	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<50	<0.50	<0.50	<50	ND
MP-01	MP-01-2	Primary	10/28/2013	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	14	<0.50	<50	<0.50	<0.50	<50	ND
	MP-01-2	Primary	2/5/2014	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	28	<0.50	<50	<0.50	<0.50	<50	ND
	MP-01-2	Primary	4/16/2014	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	65	<0.50	<50	<0.50	<0.50	56 R	ND
	MP-01-2	Primary	7/30/2014	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	49	<0.50	<50	<0.50	<0.50	<50	ND
	MP-01-2	Primary	10/6/2014	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	43	<0.50	<50	<0.50	<0.50	<50	ND
	MP-02-2	Primary	9/10/2012	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<50	<0.50	<0.50	<50	ND
	MP-02-2	Primary	1/29/2013	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	0.52	<0.50	<50	<0.50	1.2	<50	ND
	MP-02-2	Primary	5/29/2013	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<50	<0.50	0.77	<50	ND
	MP-02-2	Primary	7/30/2013	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<50	<0.50	1.3	<50	ND
MP-02	MP-02-2	Primary	10/28/2013	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	0.64	<0.50	<50	<0.50	1.9	<50	ND
	MP-02-2	Primary	2/5/2014	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	0.5	<0.50	<50	<0.50	2.8	<50	ND
	MP-02-2	Primary	4/16/2014	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	58	<0.50	<50	<0.50	2.3	52 R	ND
	MP-02-2	Primary	7/30/2014	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	72	<0.50	<50	<0.50	<0.50	<50	ND
	MP-02-2	Primary	10/6/2014	<50	<0.50	<0.50	<1.0	<0.50	<0.50	0.54	85	<0.50	<50	<50	0.61	53 R	ND
	MP-03-2	Primary	1/29/2013	68	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	58	<0.50	<0.50	<50	ND
	MP-03-2	Primary	7/30/2013	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<50	<0.50	<0.50	<50	ND
	MP-03-2	Primary	10/28/2013	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<50	<0.50	<0.50	<50	ND
MP-03	MP-03-2	Primary	2/5/2014	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<50	<0.50	<0.50	<50	ND
	MP-03-2	Primary	4/16/2014	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<50	<0.50	0.58	<50	ND
	MP-03-2	Primary	7/30/2014	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<50	<0.50	<0.50	<50	ND
	MP-03-2	Primary	10/6/2014	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<50	<0.50	<0.50	<50	ND

VOLATILE ORGANIC COMPOUNDS IN GROUNDWATER FROM MONITORING WELLS

Crown Chevrolet Cadillac Isuzu 7544 Dublin Boulevard Dublin, California

					Bromo-			Dibromo-	1,2-	1,1-	cis-1,2-	trans-1,2-					
					dichloro-	Chloro-	Chloro-		Dichloro-	•			2-Hex-				All Other
Location	Sample ID	Sample Type	Date	Acetone			form			ethene	ethene	ethene	anone	PCE	TCE	TPHg	VOCs
	MP-04-2	Primary	9/10/2012	100	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<50	<0.50	<0.50	<50	ND
	MP-04-2	Primary	1/29/2013	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	53	<0.50	<0.50	<50	ND
	MP-04-2	Primary	5/29/2013	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<50	<0.50	<0.50	<50	ND
	MP-04-2	Primary	7/30/2013	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<50	0.53	<0.50	<50	ND
MP-04	MP-04-2	Primary	10/28/2013	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<50	<0.50	<0.50	<50	ND
	MP-04-2	Primary	2/5/2014	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<50	<0.50	<0.50	<50	ND
	MP-04-2	Primary	4/16/2014	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<50	<0.50	<0.50	<50	ND
	MP-04-2	Primary	7/30/2014	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<50	<0.50	<0.50	<50	ND
	MP-04-2	Primary	10/6/2014	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	2.3	<0.50	<50	<0.50	<0.50	<50	ND
Third Water-E	Bearing Zone																
	MP-01-3	Primary	9/10/2012	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<50	<0.50	<0.50	<50	ND
	MP-01-3	Primary	1/29/2013	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	59	<0.50	<0.50	<50	ND
	MP-01-3	Primary	5/29/2013	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<50	<0.50	<0.50	<50	ND
	MP-01-3	Primary	7/30/2013	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<50	<0.50	<0.50	<50	ND
MP-01	MP-01-3	Primary	10/28/2013	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<50	<0.50	<0.50	<50	ND
	MP-01-3	Primary	2/5/2014	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<50	<0.50	<0.50	<50	ND
	MP-01-3	Primary	4/16/2014	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	2.1	<0.50	<50	<0.50	<0.50	<50	ND
	MP-01-3	Primary	7/30/2014	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	7.4	<0.50	<50	<0.50	<0.50	<50	ND
	MP-01-3	Primary	10/6/2014	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	8.8	<0.50	<50	<0.50	<0.50	<50	ND
	MP-02-3	Primary	9/10/2012	130	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<50	<0.50	<0.50	<50	ND
	MP-02-3	Primary	1/29/2013	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<50	<0.50	0.54	<50	ND
	MP-02-3	Primary	5/29/2013	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<50	<0.50	<0.50	<50	ND
	MP-02-3	Primary	7/30/2013	77	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<50	<0.50	<0.50	<50	ND
MP-02	MP-02-3	Primary	10/28/2013	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<50	<0.50	0.76	<50	ND
	MP-02-3	Primary	2/5/2014	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<50	<0.50	0.97	<50	ND
	MP-02-3	Primary	4/16/2014	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	1.7	<0.50	<50	<0.50	<0.50	<50	ND
	MP-02-3	Primary	7/30/2014	180	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	5.2	<0.50	<50	<0.50	<0.50	<50	ND
	MP-02-3	Primary	10/6/2014	<50	< 0.50	<0.50	<1.0	<0.50	<0.50	<0.50	29	<0.50	<50	<0.50	<0.50	<50	ND

VOLATILE ORGANIC COMPOUNDS IN GROUNDWATER FROM MONITORING WELLS

Crown Chevrolet Cadillac Isuzu 7544 Dublin Boulevard Dublin, California

Location	Samula ID	Sample Type	Data	Acetone	Bromo- dichloro- methane	Chloro-	Chloro- form	Dibromo- chloro- methane	Dichloro-	1,1- Dichloro- ethene	cis-1,2- Dichloro- ethene	trans-1,2- Dichloro- ethene	2-Hex- anone	PCE	TCE	TPHg	All Other VOCs
Location	Sample ID	Sample Type	Date														
	MP-03-3	Primary	9/10/2012	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<50	<0.50	<0.50	<50	ND
	MP-03-3	Primary	1/29/2013	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<50	<0.50	<0.50	<50	ND
	MP-03-3	Primary	5/29/2013	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<50	<0.50	<0.50	<50	ND
	MP-03-3	Primary	7/30/2013	<50	< 0.50	<0.50	<1.0	<0.50	<0.50	< 0.50	<0.50	<0.50	<50	<0.50	<0.50	<50	ND
MP-03	MP-03-3	Primary	10/28/2013	75	<0.50	<0.50	<1.0	<0.50	<0.50	< 0.50	<0.50	<0.50	<50	<0.50	<0.50	<50	ND
	MP-03-3	Primary	2/5/2014	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<50	<0.50	<0.50	<50	ND
	MP-03-3	Primary	4/16/2014	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<50	<0.50	<0.50	<50	ND
	MP-03-3	Primary	7/30/2014	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<50	<0.50	<0.50	<50	ND
	MP-03-3	Primary	10/6/2014	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<50	<0.50	<0.50	<50	ND
	MP-04-3	Primary	9/10/2012	150	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<50	<0.50	<0.50	86	ND
	MP-04-3	Primary	1/29/2013	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<50	<0.50	<0.50	<50	ND
	MP-04-3	Primary	5/29/2013	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<50	<0.50	<0.50	<50	ND
	MP-04-3	Primary	7/30/2013	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<50	<0.50	<0.50	<50	ND
MP-04	MP-04-3	Primary	10/28/2013	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<50	<0.50	<0.50	<50	ND
	MP-04-3	Primary	2/5/2014	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<50	<0.50	<0.50	<50	ND
	MP-04-3	Primary	4/16/2014	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<50	<0.50	<0.50	<50	ND
	MP-04-3	Primary	7/30/2014	<50	<0.50	<0.50	<1.0	< 0.50	<0.50	<0.50	<0.50	<0.50	<50	<0.50	<0.50	<50	ND
	MP-04-3 Primary 10/6/2014		<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	1.0	<50	<0.50	<0.50	<50	ND	
11	nvironmental Screening Level (groundwater is a potential or urrent drinking water resource) ²		1,500	100	25	70	80	10	6.0	6.0	10		5.0	5.0	100		

VOLATILE ORGANIC COMPOUNDS IN GROUNDWATER FROM MONITORING WELLS

Crown Chevrolet Cadillac Isuzu
7544 Dublin Boulevard
Dublin. California

Notes

- 1. Results are shown for grab groundwater samples collected from borings MW-01 through MW-03 before the pre-pack monitoring wells were installed.
- 2. California Regional Water Quality Control Board, San Francisco Region, 2013, Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater, Table F-1a, Groundwater Screening Levels (groundwater is a current or potential drinking water source), May. The selected screening value is the lowest of those among drinking water goals, aquatic habitat goals, taste and odor considerations, evaluation of potential vapor intrusion into buildings.

Results shown in **bold** indicate a detection.

Results shown in **bold** and in a shaded cell exceed their respective Environmental Screening Levels.

Abbreviations

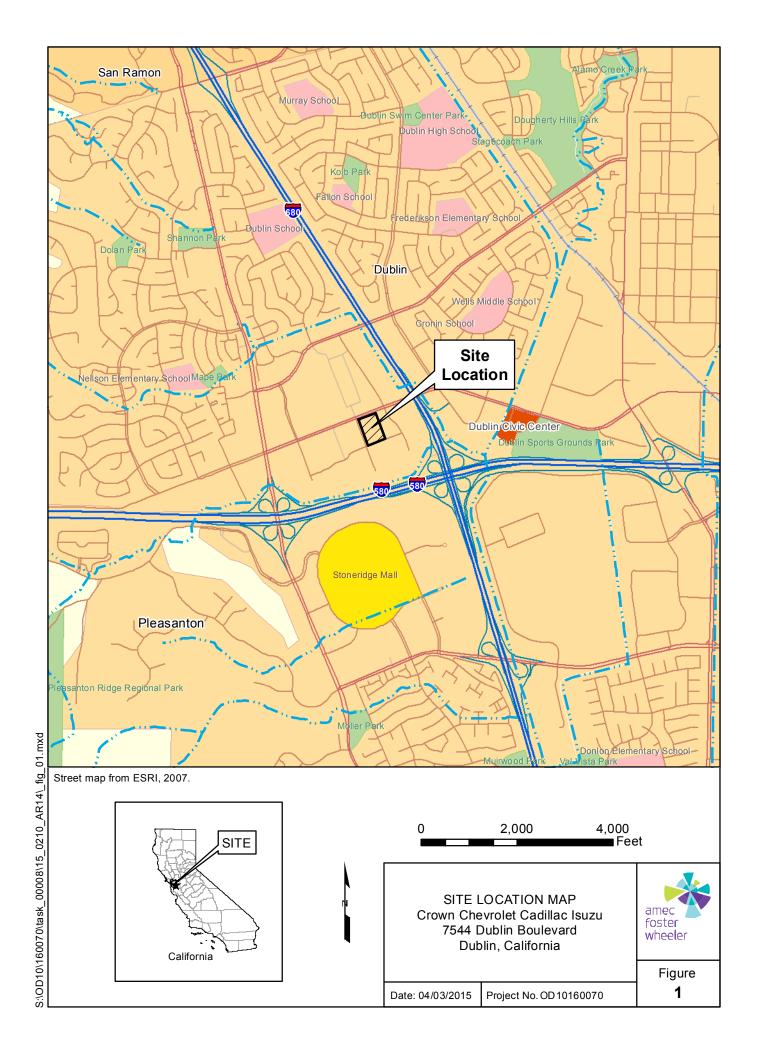
- < = not detected at or above the laboratory reporting limit shown</p>
- -- = not applicable
- J = the analyte was positively identified, and the associated numerical value is the approximate concentration of the analyte in the sample

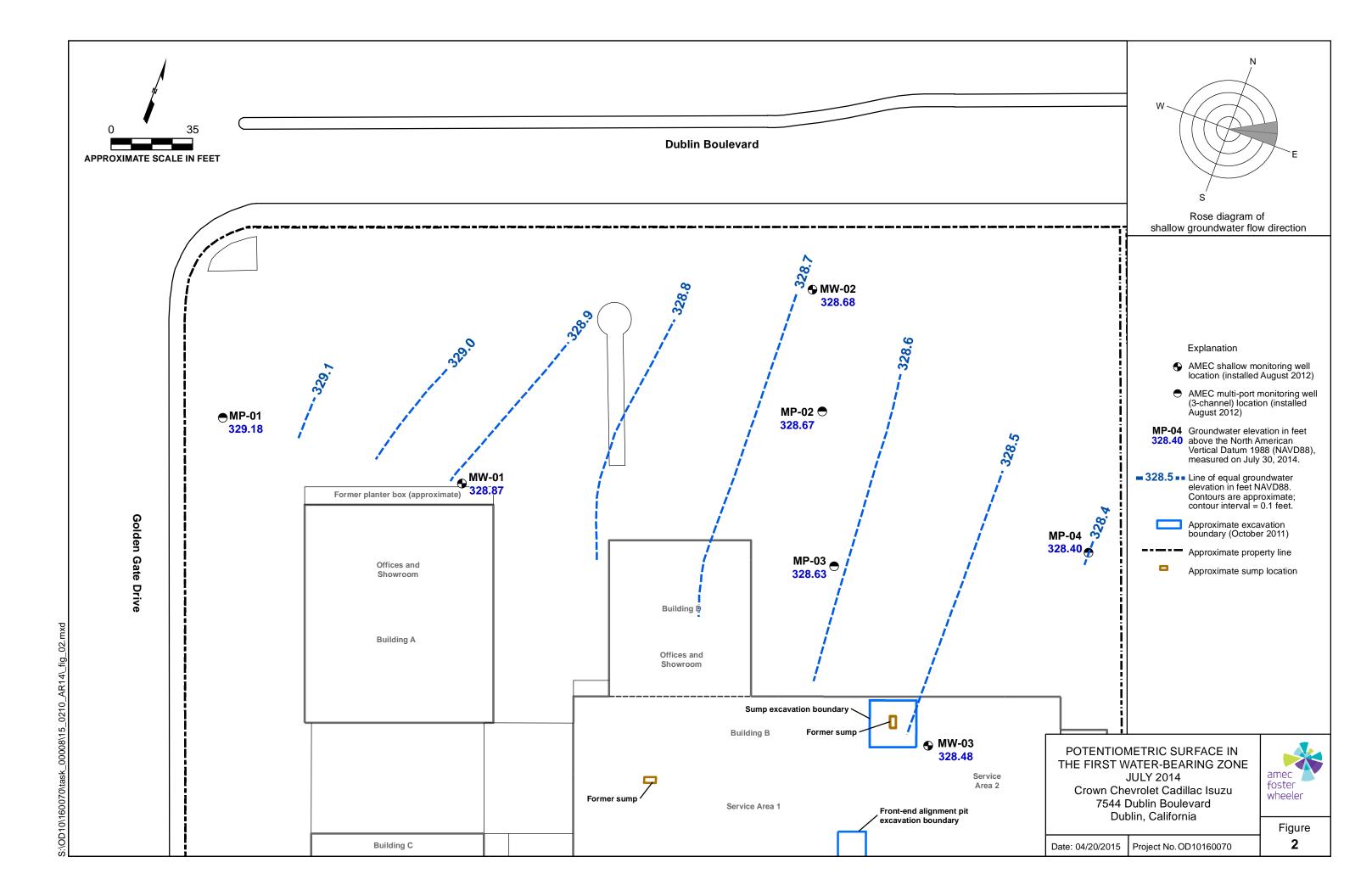
PCE = tetrachloroethene

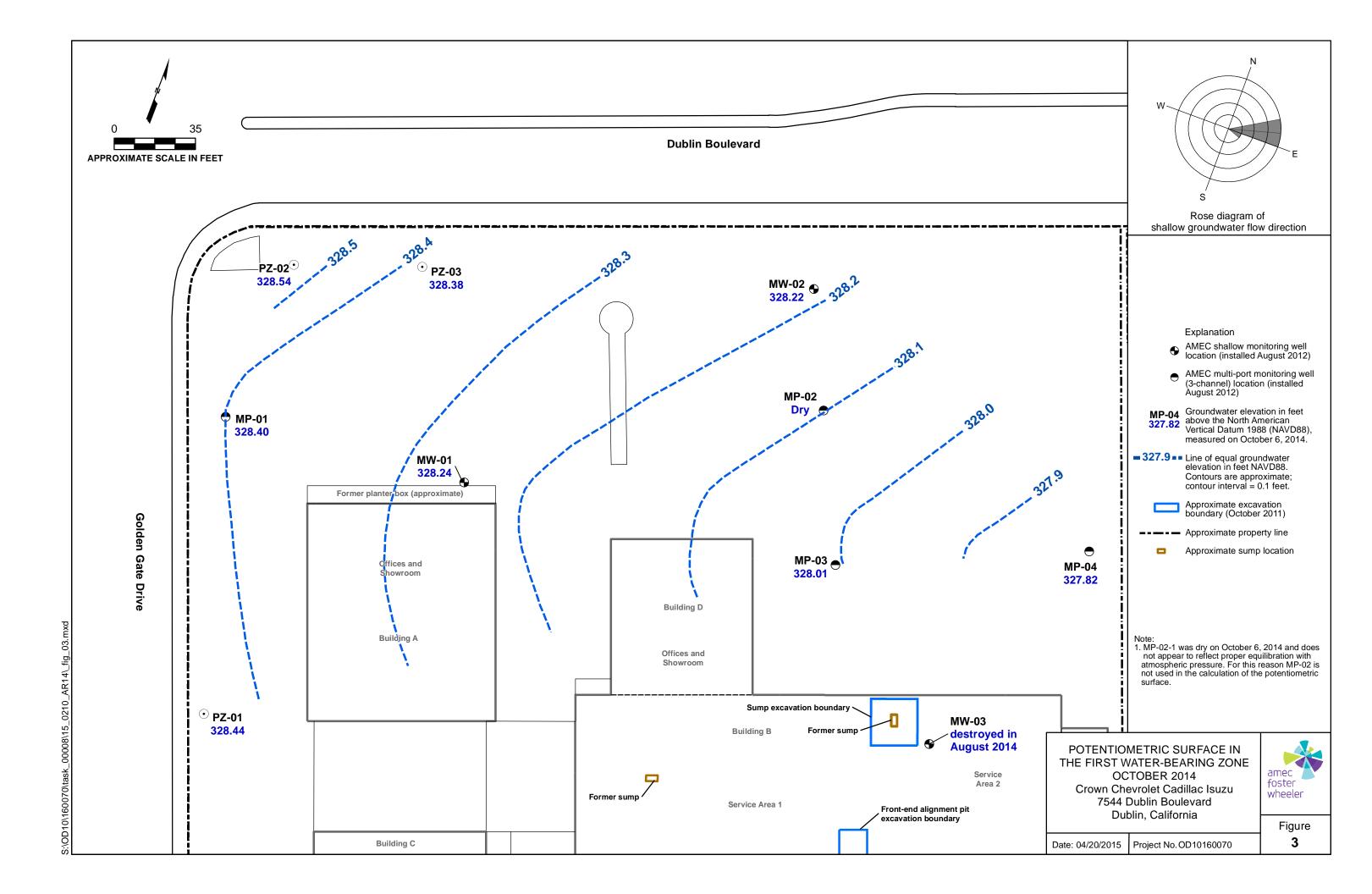
R = the sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria; the presence or absence of the analyte cannot be verified

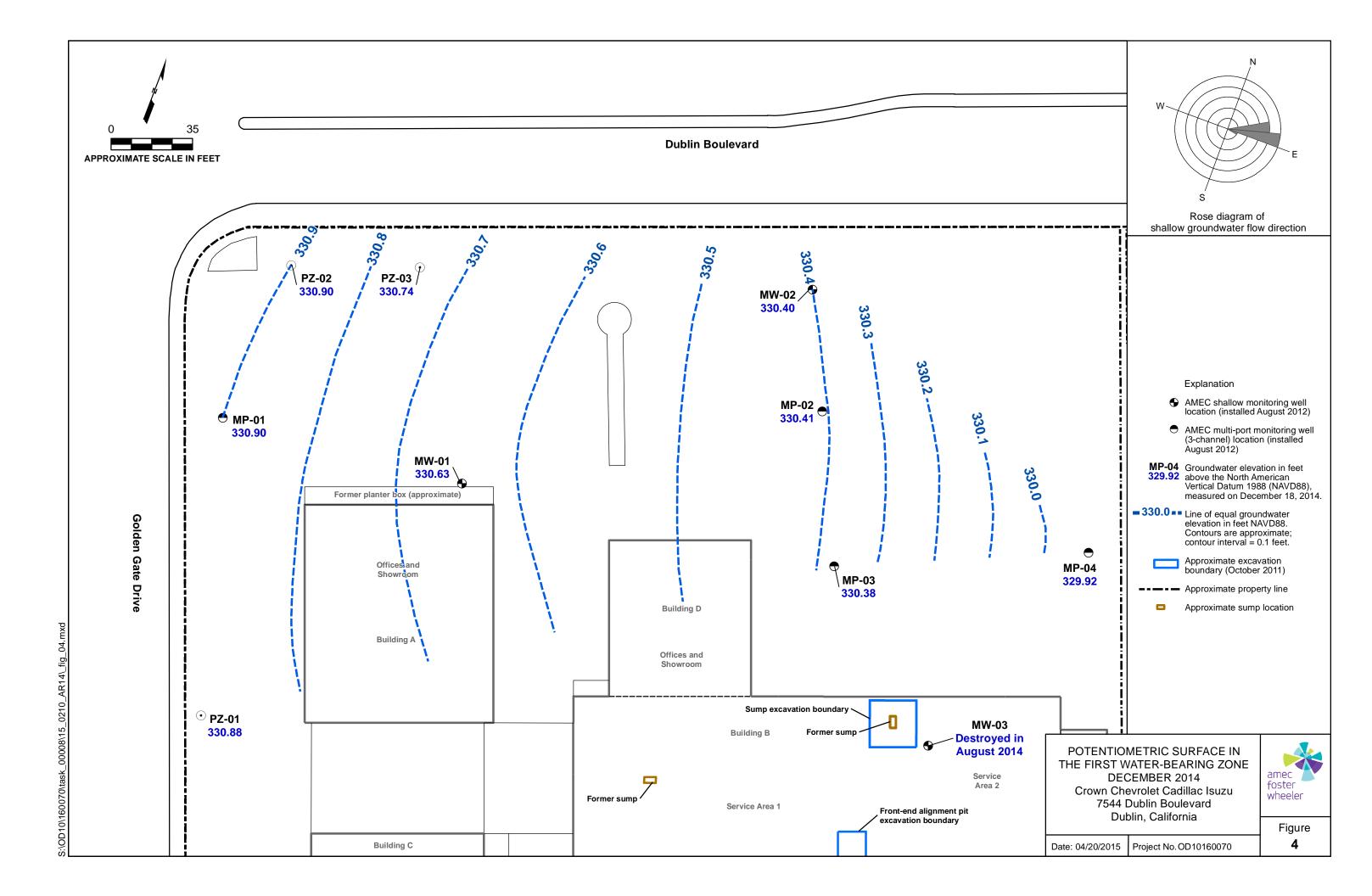
TCE = trichloroethene

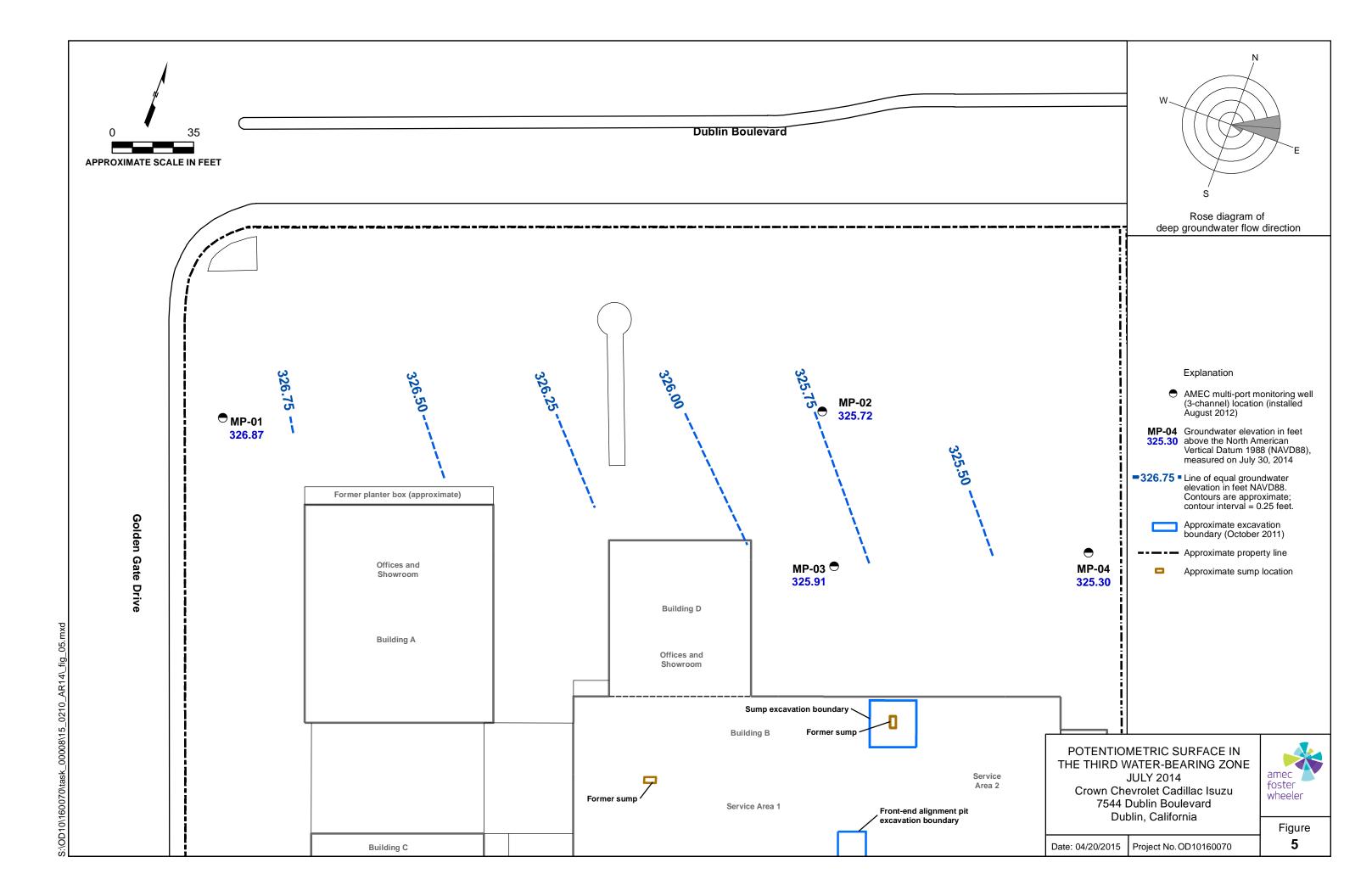
μg/L = micrograms per liter

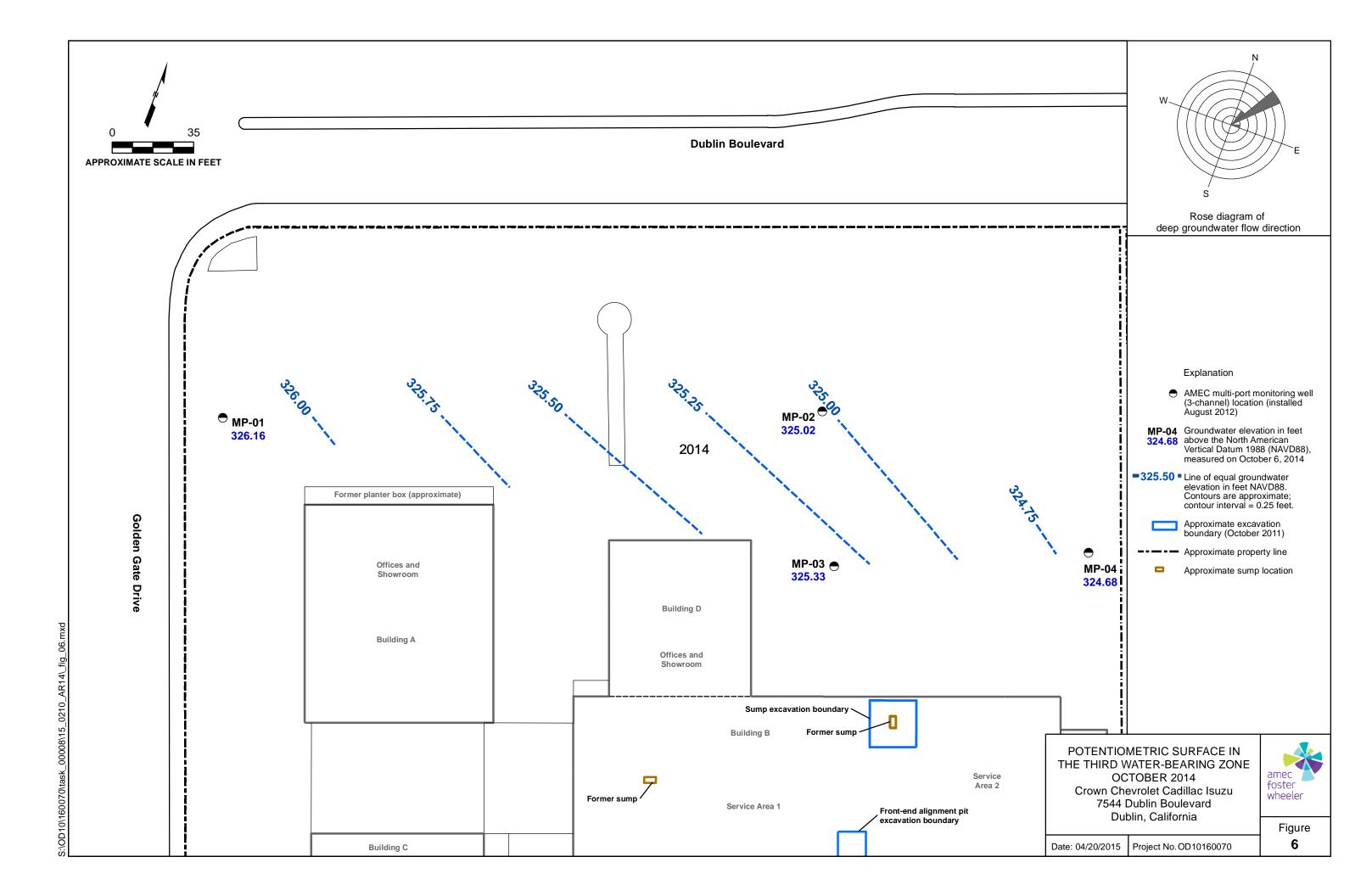

UJ = the analyte was not detected at a level greater than or equal to the quantitation limit shown; the quantitation limit is approximate and may be inaccurate or imprecise

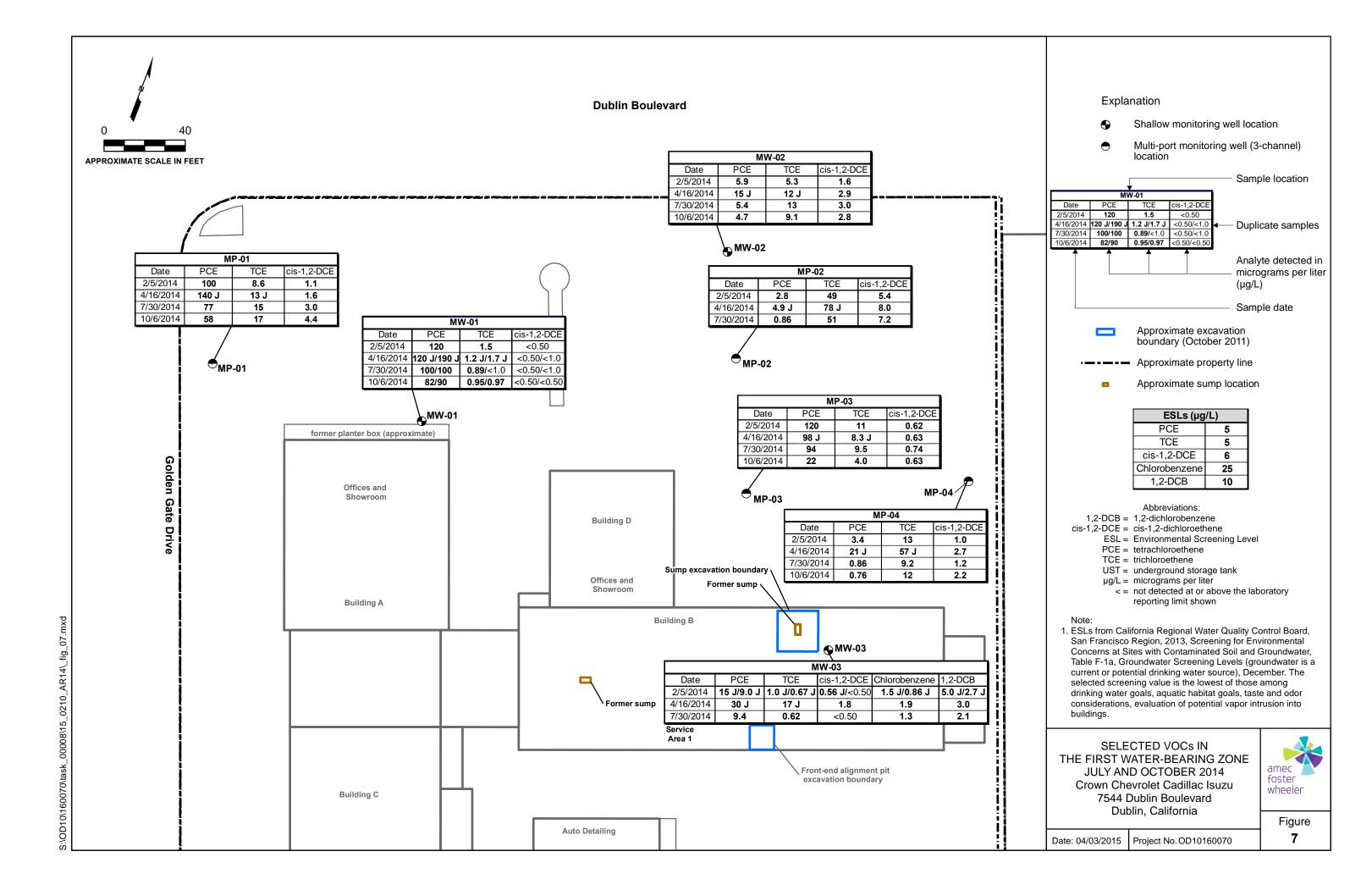

U.S. EPA = U.S. Environmental Protection Agency

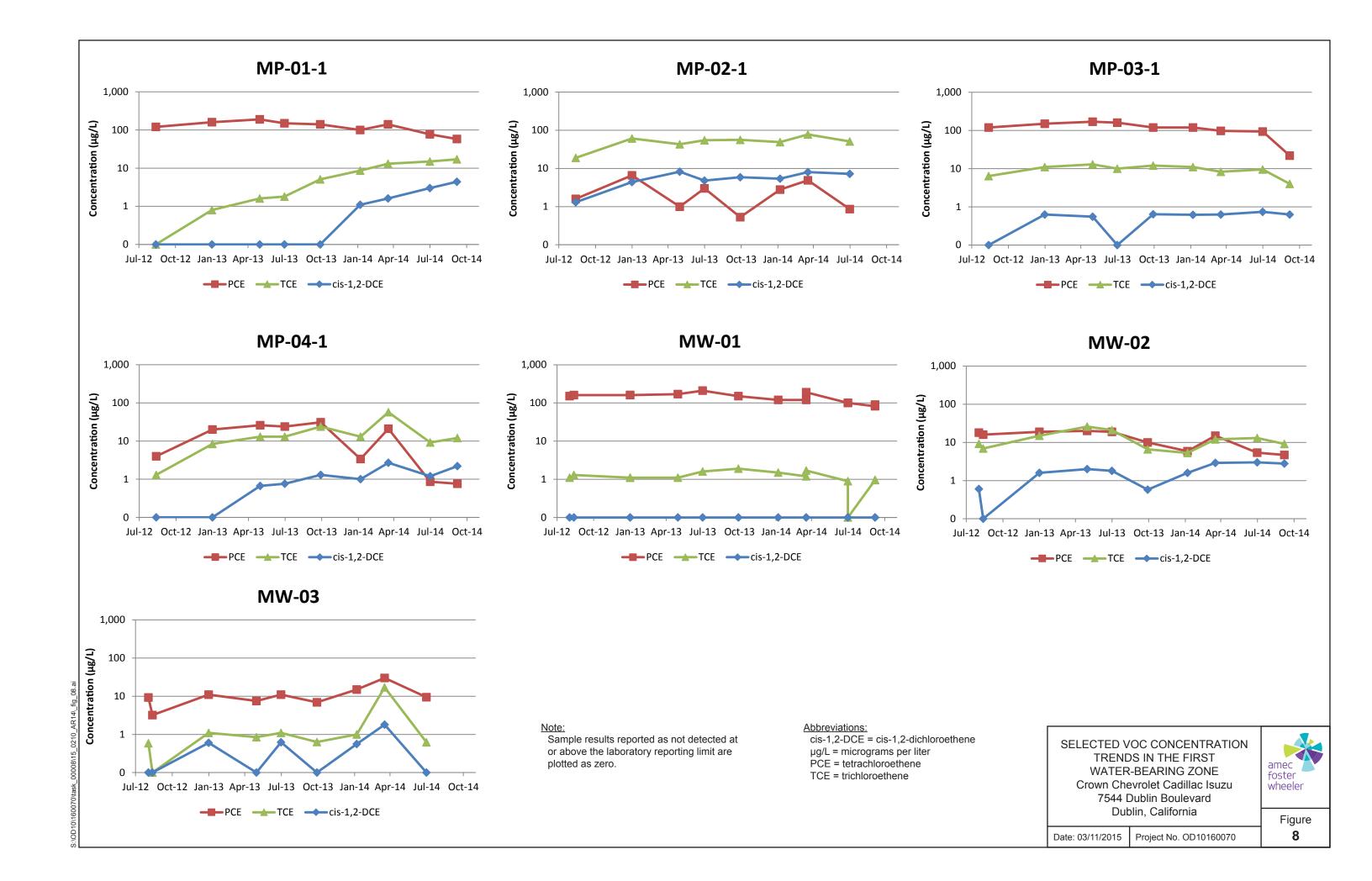

VOCs = volatile organic compounds

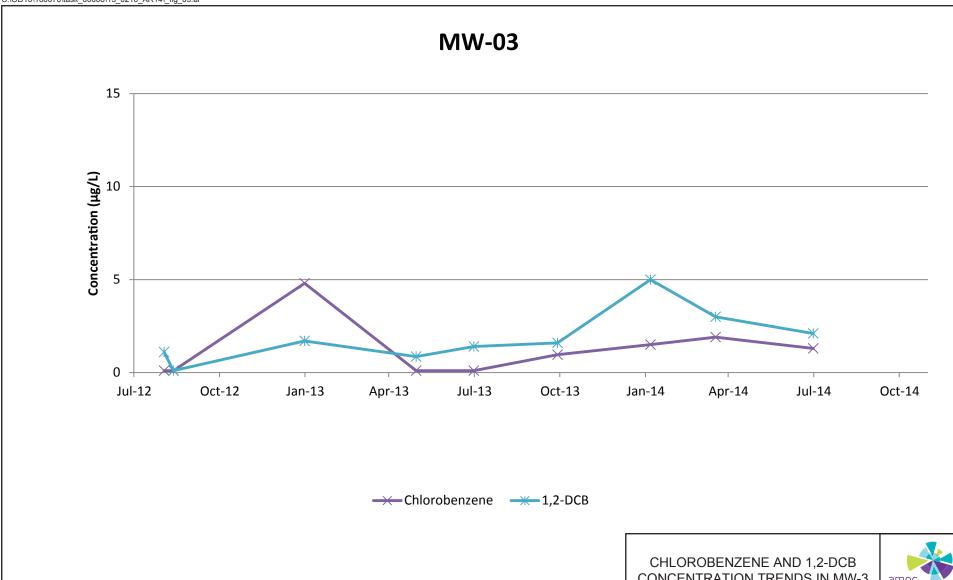



FIGURES









Note:

Sample results reported as not detected at or above the laboratory reporting limit are plotted as zero.

Abbreviations:

cis-1,2-DCE = cis-1,2-dichloroethene μg/L = micrograms per liter

CONCENTRATION TRENDS IN MW-3 Crown Chevrolet Cadillac Isuzu 7544 Dublin Boulevard Dublin, California

Figure 9

Date: 03/11/2015

Project No. OD10160070

APPENDIX A

Well Sampling Field Records

MONITORING WELL SAMPLE COLLECTION LOG

Project	Name:
Crown	Chaural

Crown Chevrolet

Project/Task #: OD10160070.00008A/B Sampled By:

SAMPLE COLLECTION LOG	i .	D. Allbut	1130/17
Well Number/ID:	Sample ID:	Duplicate ID:	
MW-01	MW-01	MW-100	
Method of Purging: Peri. pump + ded. tubing	Method of Sampling:	Intake Depth:	
Peri, pump + ded. tubing	see purge method	19	
	Field Equipment		

Equipment	Model		Serial #/Rental ID		tal ID	Date Received/Serviced	Date Calibrated			
Multi-Probe	YSI-55	56	12	61042	23	7-29-14	7-30-14			
Turbidimeter	N/A			N/A		N/A	N/A			
Casing Purge Volume Calculations										
A. Depth to Water = 15.37 ft.	Depth to Water = 15.37 ft. D. Water Column (B-A) = 5.8 ft.				ft.	Depth to Water After Sampling = 15.40 ft.				
B. Well Total Depth = $\frac{21.17}{}$ ft.	E. 1 W	E. 1 Well Volume $(C^2 \times 0.0408 \times D) = 0.13$ gal.				Actual Volume Purged (from below) = 850 gal ml.				
C. Well Diameter = 0.75 in.	F. 3 W	ell V	olumes (3 x E) =	= 0.39	gal.	(If applicable, see pumping sys	stem volume calculation below)			
Pump and Flow Cell Volume	V _p	=	N/A	ml		Pumping System Volume Calculation				
Tubing Inside Diameter	D	=	N/A	in.	Pumping System Volume (V _S)					
Tubing Length	L	=	N/A	in.	$V_S = V_P + \pi * D^2 / 4 * L * 16.39 \text{ ml/in}^3$					
Conversion from Inches ³ to ml	1 in ³	=	16.39	ml	$V_S = (_) + (3.1415 * _ ^2/4) * (_ ^) * 16.39$					

Purging Data												
Time (24 hr)	Purge Volume	Volume	Volume	Volume	Flow Rate	Temp (°C)	Specific Conductance (μS/cm)	Dissolved Oxygen (mg/L)	pН	Oxidation Reduction Potential (mV)	Turbidity (NTU)	Remarks (DTW, color,
,	□ gal fA-ml	Scml/min	Stabilization ⁽¹⁾ :	± 3%	± 0.2 mg/L	± 0.2	± 20 mV	±10% or <10 NTU	odor, etc)			
1123	Initial	100	22.2	1291	0.12	6.79	0.7	NA	clear			
1125	350		22.6	1290	0.16	6.77	-3,3					
1127	550		72-8	1291	0,32	6.77	-5.4					
1129	750		23.0	1290	0.59	6.76	-7-5					
1131	950		23.2	1289	0.29	6.74	-13.0					
1133	1150		22.9	1299	0.12	6.73	-14.0					
1135	1350		22,6	1292	0.09	6.72	-16.1					
								1				

Remarks:	1525	Sa Mal	Calledal	A -401	Man	Duplicate	time "	ในก
	1152	sample.	Consequa	G FCI	VURS.	Doplicate	1100 -	1170
				***************************************		,	••••••••••••••••••••••••••••••	
				***************************************	***************************************		***************************************	THE STATE OF THE S
(1) Based on E	PA low-flow sa	mpling guidelines.						
Signaturo:	0 - 1	001	L	Chack	red Rv			

MONITORING WELL SAMPLE COLLECTION LOG					Project/Task #: 9 OD10160070.00008A/B			pled By:	Dat	te: 7-30-14		
Well Number/ID: Samp					e ID:		1	Duplicate ID	-	-		
Method of	Furging:	P	***************************************		d of Sampling]	intake Depth	1: , 7.5			
1		•				uipment	•					
Equi	oment		Мо	odel	Serial #/Ren	tal ID R	Da Received/	te Serviced	Date	Calibrated		
Multi-Probe	!		YSI	-556	#6	7	7-30-1	4	7-30	0-14		
Turbidimete	er		N	/A	N/A		N/	Α		N/A		
				Cas	ing Purge Vo	lume Calcul	ations					
A. Depth to \	Water = 11.5	36 _{ft.}	D. V	Vater Column (B	-A) = 8.36	ft.	Depth to	Water After San	npling = 11.5	6 € ft.		
B. Well Total	Depth = 19.	92 ft.	E. 1	Well Volume (C	² x 0.0408 x D) =	=gal.	Actual Vo	ume Purged (fr	om below) =	2200 gal/ m		
	eter =•זי	***************************************	F. 3	Well Volumes (3	3 x E) =	gal.	(If applicab	le, see pumping s	system volume ca	alculation below)		
Pump and I	Flow Cell Volu	me	V_p	= N/A	ml		Pumping	System Vol	lume Calcul	ation		
Tubing Insi	de Diameter		D	= N/A	in.		Pur	nping System	Volume (V _S)			
Tubing Len	gth	***************************************	L	= N/A	in.	in. $V_S = V_P + \pi * D^2 / 4 * L * 16.39 \text{ ml/in}^3$						
Conversion	from Inches ³	to ml	1 in	$^{3} = 16.39$	mIV _S = () + $(3.1415 *^2/4) * () * 16.3$							
	Purging Data	1		Water Qu	ality Parameter	s (within ran	ge for 3 c	onsecutive rea	adings if low-	-flow sampling)		
Time (24 hr)	Volume ☐ gpr				n	Temp (°C)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	рН	Oxidation Reduction Potential (mV)	Turbidity (NTU)	Remarks (DTW, color, odor, etc)
	u gar u IIII	mı u mı/		Stabilization ⁽¹⁾ :	± 3%	± 0.2 mg/L	± 0.2	± 20 mV	±10% or <10 NTU			
0736	Initial	120		20.42	952	3.98	648	57.6	NIA	cleas		
0740		125)	20.96	1007	2.96	6.94	23.6	***************************************	//		
0743		.11		21.09	1049	2.70	7.09	7.4	7 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	17		
0746		71		21.05	1065	2.75	7.14	3.3		" .		
3749		11		21.03	1081	2.75	7.13	1.0	-	11		
0752	*	11		21.12	3106	2.74	7.13	2.9		1/		
0755		11		21.15	III)D	2.68	7.13	1.9		"		
0758		50V	ip	e		-						
			1				6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		***************************************			
Remarks:												

***************************************	***************************************	99+324 (C12+ menemenenenenenenenenenenenenen					***************************************					
(1) Based or	n EPA low-flow	sampling	guide	elines.								
Signature	:					Checked B	y:					

Project	Name:
Crown	Chevrole

Crown	Chevrolet	

Project/Task #:

Sampled By:

SAMPLE COLLECTION LOG					OD10160070.0	170.00008A/B D. Allbot 7/130/1				7130114	
Vell Number/ID: Sample ID:						a description of	Duplicate ID	:	,		
					MW-03	************************************		*** *********************************			
dethod of	Purging:	. tole .	na	1	d of Sampling			Intake Depth			
133	7700		.7	Se	e purge n			18	1.0 - 19.1	9	
				Andre	Field Eq	uipment	D.				
Equip	oment		Mod	lel	Serial #/Ren	tal ID		ate /Serviced	Date	Calibrated	
Iulti-Probe			YSI-	556	12G10422	23	7/2	2/14	713	0/14	
urbidimete	er		N/	Α	N/A	****	N	/A		N/A	
				Cas	sing Purge Vol	lume Calcu	lations				
. Depth to \	Water = <u>15.</u>	29 ft.	D. W	ater Column (B	-A) = 4.06	ft.	Depth to	Water After San	npling = <u>15.</u>	<u>65</u> ft.	
. Well Total	Depth = 19.	35 ft.	E. 1 \	Well Volume (C	² x 0.0408 x D) =	0.09gal.	Actual Vo	olume Purged (fr	om below) = $\frac{l}{l}$	200 galant	
. Well Diam	eter = <u>0.7</u>	≤_in.	F. 3 \	Well Volumes (3 x E) = <u>0 1</u>	₹gal.	(If applica	ble, see pumping s	ystem volume cal	culation below)	
ump and F	low Cell Volu	me	V _p	= N/A	ml		Pumpin	g System Vol	ume Calcula	tion	
ubing Insi	de Diameter		D	= N/A	in.		Pu	mping System	Volume (V _S)	***************************************	
ubing Len	gth	***************************************	L	= N/A	in.	$V_S = V_P + \pi * D^2 / 4 * L * 16.39 \text{ ml/in}^3$					
onversion	from Inches ³	to ml	1 in ³	= 16.39	ml		= () + (3.1415 * _	² /4)*	() * 16.39	
	Purging Data	<u>_</u>		Water Qu	ality Parameter	s (within rai	nge for 3 o	onsecutive rea	adings if low-f	low sampling)	
Time (24 hr)	Purge Volume	Flow R		Temp (°C)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	рH	Oxidation Reduction Potential (mV)	Turbidity (NTU)	Remarks (DTW, color,	
(21111)	□ gal 🗫 ml	□ ml/r		Stabilization ⁽¹⁾ :	± 3%	± 0.2 mg/L	± 0.2	± 20 mV	±10% or <10 NTU	odor, etc)	
1202	Initial	100)	22.6	1290	5.02	6.71	47.9	NIA	tan, cloudy	
1204	350			22-6	1293	5.39	6.73	49.7			
1206	550			22,4	1298	5177	6.74	52.9			
1208	750			22.0	1299	4.27	6.59	51.0			
1210	950			21.9	1301	3.39	6.63	49.6			
1212	1150		***************************************	23-7	1293	4.94	6.78	53.2			
1214	nco			Dewater	ed at	200 ml					
		1									
emarks:	1330	Sam	ped	· Col	ucked ?	3-HC(VOAs.			relifystyrania and a second a second and a second a second and a second a second and a second a second a second a second a	
	771333377447447437337444441111111111111	944441214212442888449466611	*****************	THE PERSON OF TH					The state of the s		
¹⁾ Based or	EPA low-flow	sampling	guideli	ines.	·						
ignature	gnature: 0 and Allel					Checked B	y:				

Project/Task #:	
OD10160070.00008	A/B

Sampled By:

MONITORING WELL SAMPLE COLLECTION LOG							RDP		7-30-14	
Well Num			Sample	e ID:	Duplicate ID:					
MP-01-1 MP-01.					- (***************************************				
Method o	f Purging: Dという	UMP		d of Sampling Deri pu		I	ntake Depth	17.4		
		1			uipment	1				
Equi	pment		Model	Serial #/Ren	tal ID R	Dat Received/		Date	Calibrated	
Multi-Probe	2)	/SI-556	#6			3-14	7-3	0-14	
Turbidimet	er		N/A	N/A		N/	A		N/A	
			Cas	sing Purge Vol	ume Calcul	ations				
A. Depth to	Water = 14.4	52 ft. [D. Water Column (B	-A) = 3.58	ft.	Depth to \	Water After San	npling = 14.0)2_ft.	
B. Well Tota	Depth = 17.4	o_ft. I	. 1 Well Volume (C	² x 0.0408 x D) =	gal.	Actual Vol	ume Purged (fr	om below) = 2	2350 gal/ml.	
C. Well Dian	neter = 0,375	_ in. F	. 3 Well Volumes (3	3 x E) =	gal.	(If applicab	le, see pumping s	ystem volume ca	lculation below)	
Pump and	Flow Cell Volu	me V	/ _p = N/A	ml		Pumping	System Vol	ume Calcul	ation	
Tubing Ins	ide Diameter	Г) = N/A	in.		Pun	nping System	Volume (V _S)		
Tubing Len	gth	L	= N/A	in.	$V_S = V_P + \pi * D^2 / 4 * L * 16.39 \text{ ml/in}^3$					
Conversion	from Inches ³	to ml 1	$in^3 = 16.39$	ml	V _S =	()	+ (3.1415 * _	² /4)*	() * 16.39	
	Purging Data		Water Qu	ality Parameter	s (within ran	ge for 3 co	nsecutive rea	dings if low-	flow sampling)	
Time (24 hr)	Purge Volume	Flow Rat	(°C)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	pН	Oxidation Reduction Potential (mV)	Turbidity (NTU)	Remarks (DTW, color, odor, etc)	
	L gai L IIII		Stabilization ⁽¹⁾ :	± 3%	± 0.2 mg/L	± 0.2	± 20 mV	±10% or <10 NTU	odor, etc)	
1131	Initial	150	24.10	1334	2.25	7.14	-81	N/A	cleby	
1134		((23.44	1324	2.13	694	-54		l I	
7511		125	23.03	1322	2.35	6.82	-44		17	
140		/1	22.96	1309	2.40	6.78	-37			
1143		11	23.02	1299	2.28	6.79	-36			
1146		11	23.11	1296	2.31	6.80	-35			
1149		11	23.11	1294	2.33	6.84	~35			
1153		80	ample	mondaggy rapaga gasab production by the supplication of the suppli				Andrew Congress of the state of the latter of the state o		
	44		1							
Remarks:		***************************************								

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,										
(1) Based or	n EPA low-flow	sampling g	uidelines.	3		······································			NOTICE TO SERVICE THE SERVICE	
Signature	:			***************************************	Checked By	y:				

Project	Name:
Crown	Chaurala

Project/Task #:

Sampled By:

MONITORING WELL OF SAMPLE COLLECTION LOG				OD10160070.00008A/B			RDP	1444	7-30-14	
Well Num			Samp	le ID:			Duplicate ID);		
IN.	P-01-2		M	1P-01-2		***************************************		~		
Method o	f Puṛging:			od of Sampling:			Intake Depth:			
P	eri pu	mp	}	DELL DOM	- 0			43.4		
		•		Field Eq	uipment			1		
Equi	pment	***	Model	Serial #/Ren		te /Serviced	Date	Date Calibrated		
Multi-Probe	ulti-Probe YSI-556			日の		7-30	5-14	7-30	5-X4	
Turbidimet	er	********	N/A	N/A		N,	/A		N/A	
			Ca	sing Purge Vo	lume Calcu	lations				
A. Depth to	Water = <u>/5.1</u>	<u>/</u> ft. D	. Water Column (B-A) = 28.39	ft.	Depth to	Water After Sar	mpling = <u>3</u> {	3.6] ft.	
B. Well Tota	1 Depth = <u>43</u>	, 5 ft. E	. 1 Well Volume ($C^2 \times 0.0408 \times D) =$	gal.	Actual Vo	lume Purged (fi	rom below) = _	750 gal/ml.	
C. Well Diam	neter = <u>0.37</u>	5 in. F	. 3 Well Volumes	(3 x E) =	gal.	(If applicat	ole, see pumping s	system volume ca	alculation below)	
Pump and I	Flow Cell Volu	ıme V	p = N/A	ml		Pumpin	g System Vo	lume Calcul	ation	
Tubing Insi	ide Diameter	D	= N/A	in.		Pui	mping System	Volume (V _S)		
Tubing Len	gth	L	= N/A	in.	in. $V_S = V_P + \pi * D^2 / 4 * L * 16.39 \text{ ml/in}^3$					
Conversion	from Inches ³	to ml 1	$in^3 = 16.39$	ml	V _S =	= () + (3.1415 * _	² /4)	* () * 16.39	
	Purging Data	1	Water Qu	uality Parameter	s (within rar	nge for 3 c	onsecutive re	adings if low	-flow sampling)	
Time (24 hr)	Purge Volume	Flow Rat	(°C)	Specific Conductance (μS/cm)	Dissolved Oxygen (mg/L)	рН	Oxidation Reduction Potential (mV)	Turbidity (NTU)	Remarks (DTW, color, odor, etc)	
	gai 🗆 iii	U 1111/111111	Stabilization ⁽¹⁾	± 3%	± 0.2 mg/L	± 0.2	± 20 mV	±10% or <10 NTU	odor, etc)	
1240	Initial	100	28.99	932	5.37	8.30	-65	NIV	Clean	
1212	<u></u>	100	28.86	1077	3,10	8.12	-224	A AMARAMA COLUMB PORTANTION DE LA PROPRIO DE LA COLUMB PORTANTION DE LA PROPRIO DE LA COLUMB PORTANTION DE LA COLUMB PORTANTIO	1/	
1214	### ### ### ### ### ### ### ### ### ##	100	28.29	1150	2.01	8.04	-232) (
1216		100	29.05	1172	1.70	8.02	-254		1)	
1218		100	29.82	1191	1.49	8.01	-262		demoter	
1220	**************************************	100	28.34	1206	1.66	7.90	-258			
1230		190	30.88	1228	1.69	7.90	-252	1		
251		500m7	ile							
	7	· ·				***************************************		***************************************		
Remarks:										

1,744,991,414,414,991,991,991,414,414,614,614,614,614,614,614,614,61	***************************************	***************************************	M*************************************							
(1) Based or	n EPA low-flow	sampling ou	idelines.							
Signature		pii.ig gu			Checked B	v:			taratira noigyyyynyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy	

Model

Equipment

Project	Name:
Crown !	Chaurala

Project/Task #: OD10160070.00008A/B

Serial #/Rental ID

Sampled By:

Date

Received/Serviced

Date: 2R-12L

Date Calibrated

SAMPLE COLLECTION LOG	OD10100070.00000A/B	RDP	7-30-14				
Well Number/ID:	Sample ID:	ID: Duplicate ID:					
MP-01-3	MP-01-3	_					
Method of Purging:	Method of Sampling:	Intake Depth:					
Dexi Domb	Deri Dump	58,3					
	Field Equipment						

Multi-Probe	YSI-5	556		#6	***************************************	7-30-14	7-30-14		
Turbidimeter	N/A		N/A			N/A	N/A		
			Casing	Purge Volum	e Calcu	lations			
A. Depth to Water = 6.33 ft.	D. Wa	ater C	olumn (B-A)	= <u>42.07</u> ft.		Depth to Water After Sam	pling = 43.01 ft.		
B. Well Total Depth = 5용.੫ ft.	E. 1 Well Volume (C ² x 0.0408 x D) =gal.				gal.	Actual Volume Purged (from below) = 640 gal/ml.			
C. Well Diameter = 8.375 in.	F. 3 V	Well V	olumes (3 x I	E) =	_ gal.	(If applicable, see pumping sy	ystem volume calculation below)		
Pump and Flow Cell Volume	V _p	=	N/A	ml	Pumping System Volume Calculation				
Tubing Inside Diameter	D	=	N/A	in.	Pumping System Volume (V _S)				
Tubing Length	L	=	N/A	in.	$V_S = V_P + \pi * D^2 / 4 * L * 16.39 \text{ ml/in}^3$				
Conversion from Inches ³ to ml $1 \text{ in}^3 = 16.39$			ml	$V_S = () + (3.1415 * ^2 / 4) * () * 16.39$					

	Purging Data		Water Qua	ality Parameters	(within rang	ge for 3 co	nsecutive rea	adings if low	flow sampling)
Time (24 hr)	Purge Volume	Flow Rate	Temp . (°C)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	рН	Oxidation Reduction Potential (mV)	Turbidity (NTU)	Remarks (DTW, color,
	□ gal □ ml	□ ml/min	Stabilization ⁽¹⁾ :	± 3%	± 0.2 mg/L	± 0.2	± 20 mV	±10% or <10 NTU	odor, etc)
1305	Initial	100	29.04	1136	2.21	7.72	-174	NIA	clarely
1308		100	31.35	1129	2.05	7.84	-176		11
1381		100	29.98	1112	1.68	7.81	-152		11
1313		100	27.10	1110	1.83	7.62	-143		17
1315		Ø	29.11	1109	1.74	7.39	-129		
1317		70	29.98	1107	1.78	7.44	-132		dewater
1350			sample					-	
	3		\				-		
					object the contract	877,000,000			

	Signature:		Checke	ed By:				
Remarks:	(1) Based on EPA low-flow sampling guidelines.	MANAGER 171 1			***************************************	***************************************		
Remarks:							***************************************	DHIII
	Remarks:					***************************************		
			111111111111111111111111111111111111111		5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 7 7			

Project	Na	m	e:	
Crown	Che	11/1	oli	

Pro	ject	:/Ta	ask	#:	
OD1	016	007	0.0	000	8A/B

_				OD10160070.00008A/B			RDR	1	7-30-)4	
Well Num			Samp	le ID: パヤ-0ユー			Ouplicate ID	:		
Method of	Purging:	>	Metho	od of Sampling:			Intake Depth: ,			
	. 1 - 1				uipment		10.			
Equip	oment	***************************************	Model	Serial #/Ren	dI let	Da Received/		Calibrated		
Multi-Probe		1	′SI-556	# 6		7-30-	124	7-30	2-14	
Turbidimete	er		N/A	N/A		N/	A		N/A	
-			Ca	sing Purge Vo	lume Calcul	ations				
A. Depth to \	Water = 12:	48 ft. [). Water Column (I	B-A) = 0.42	ft.	Depth to	Water After San	npling = 13.4	13 ft.	
3. Well Total	Depth = 12.	.9 ft. E	. 1 Well Volume ($C^2 \times 0.0408 \times D) =$	gal.	Actual Vol	ume Purged (fr	om below) = _	810 gal/ml.	
C. Well Diam	eter = 0.37	5 _in. F	. 3 Well Volumes ((3 x E) =	gal.	(If applicab	le, see pumping s	system volume ca	lculation below)	
Pump and F	low Cell Volu	ıme V	p = N/A	ml		Pumping	System Vol	ume Calcul	ation	
Fubing Insi	de Diameter	С	= N/A	in.	***************************************	Pur	nping System	Volume (V _S)		
Tubing Len	ubing Length L = N/A			in.	$V_S = V_P + \pi * D^2 / 4 * L * 16.39 \text{ ml/in}^3$					
Conversion	onversion from Inches ³ to ml $1 \text{ in}^3 = 16.39$ m				V _S =	· ()	+ (3.1415 * _	<u>-</u> 2/4)*	() * 16.39	
	Purging Data	3	Water Qu	ality Parameter	s (within ran	ige for 3 co	onsecutive rea	adings if low-	flow sampling)	
Time (24 hr)	Purge Volume	Flow Rat	(°C)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	рН	Oxidation Reduction Potential (mV)	Turbidity (NTU)	Remarks (DTW, color,	
	□ gal □ ml	☐ ml/mir	Stabilization ⁽¹⁾ :	± 3%	± 0.2 mg/L	± 0.2	± 20 mV	±10% or <10 NTU	odor, etc)	
1020	Initial	70	25.59	1349	293	7.15	-102	NA	cleras	
1023		100	25.80	1351	3.16	7.08	-70		demoder	
1026	***************************************	100	2600	1351	2.12	7.01	-67		()	
1028		100	25.99	1350	1.97	6.99	-68		1 (
1030	**************************************	100	25.66	1354	2.06	6.98	-64			
1032		100	25.59	1355	1.96	6.94	-63		15.	
1034		100	25.25	1351	2.05	694	-53			
1401		500	mple							
Remarks:		1								
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,									
(1) Based on Signature:	EPA low-flow	sampling gu	iidelines,		Checked B	v:	(81444)			
					-iiicanca b	1.				

Project	Name:	
C	Cl 1	

Crown Chevrolet

MONITORING WELL SAMPLE COLLECTION LOG			Project/Task #: OD10160070.00008A/B			pled By: RDP		Date: 7-30-14	
Well Num				ple ID:	e ID: Dupl			:	
1	18-02-	2	V	MP-02-2				_	
Method o	f Purging:		Meth	od of Sampling	od of Sampling:			1: /	
Deri Dunch				peri Du		***************************************		36.6	
				Field Ec	quipment				
Equi	Equipment Model		Serial #/Ren	ital ID R	Date Received/Serviced		Date Calibrated		
Multi-Probe	2	Y:	SI-556	#6		7-38	>-14	7-30	>-14
Turbidimet	er		N/A	N/A		N/	A		N/A
			C	asing Purge Vo	lume Calcul	ations			
A. Depth to	Water = j2. 9	<u>るみ</u> ft. D	. Water Column	(B-A) = 23.88	_ ft.	Depth to 1	Water After San	npling = 35 .	7 [_ft.
B. Well Tota	I Depth = <u>36</u>	.7 ft. E.	1 Well Volume	$(C^2 \times 0.0408 \times D) =$	gal.	Actual Vol	ume Purged (fr	om below) =	750 gal/ml.
C. Well Dian	neter = <u>0.31</u>	5 _in. F.	3 Well Volumes	s (3 x E) =	gal.	(If applicab	le, see pumping s	ystem volume ca	alculation below)
Pump and	Flow Cell Volu	ıme V _r	= N/A	ml		Pumping	System Vol	ume Calcul	ation
Tubing Ins	ide Diameter	D	= N/A	in.		Pur	nping System	Volume (V _S)	
Tubing Ler	ngth	L	= N/A	in.	$V_S = V_P + \pi * D^2 / 4 * L * 16.39 \text{ ml/in}^3$				
Conversion from Inches ³ to ml $1 \text{ in}^3 = 16.39$) ml	$V_S = (_) + (3.1415 * _ ^2/4) * (_) * 16.39$					
	Purging Data	1	Water 0	Quality Parameter	rs (within ran	ge for 3 co	onsecutive rea	adings if low	-flow sampling)
Time (24 hr)	Purge Volume	Flow Rate	Temn	Specific Conductance (μS/cm)	Dissolved Oxygen (mg/L)	рН	Oxidation Reduction Potential (mV)	Turbidity (NTU)	Remarks (DTW, color,
	□ gal □ ml	□ ml/min	Stabilization ⁽	± 3%	± 0.2 mg/L	± 0.2	± 20 mV	±10% or <10 NTU	odor, etc)
0925	Initial	150	24.86	874	6.20	8.44	-96	NIA	dematerc
क् र 30		100	25.16	1090	4.43	7.70	-213	I	15
0933		70	24.31	1208	3.40	7.54	- 230		2)
0936		70	24.85		2.80		-231		31
0939		70	24.68		2.81		- 233		
2442		900	24.86		2.79		-231		- Herring and the
0945	, L	70	24.76		2.35	7.22			1
0948		70	24.57		2.36		-228		
1001		Soms	ile						
Remarks:		1			·	,			
	201777777777777777777777777777777777777							***************************************	
		FF- El-2			h. No	***************************************		***************************************	
,									
(1) Based o	n EPA low-flow	sampling gu	delines.						
Signature	e:				Checked By	/ :			

Project	Name:
Crown	Chaural

Crown Chevrolet

MONITORING WELL SAMPLE COLLECTION LOG				Project/Task #: Sa OD10160070.00008A/B			pled By:	Dat	te: 7-30-14	
Well Number/ID: Sample ID: VNP-02-3							Duplicate ID	-		
	f Purging: Peri Pu	mp		od of Sampling			Intake Depth	57.7		
		1		Field Eq	uipment					
	pment		Model	Serial #/Ren	tal ID R	Da Received	te /Serviced	Date	Calibrated	
Multi-Probe	2		YSI-556	46		7-30 -	14	7-3	0-14	
Turbidimet	er		N/A	N/A		N,	A		N/A	
			Ca	sing Purge Vo	lume Calcul	ations				
A. Depth to	Water = 15,4	3_ft.	D. Water Column (i	B-A) = 42.37	ft.	Depth to	Water After San	npling = 49	1 1≥ft.	
B. Well Tota	l Depth = 57 .	8 ft.	E. 1 Well Volume (0	$C^2 \times 0.0408 \times D) =$	gal.	Actual Vo	lume Purged (fr	om below) = _	700 gal/@	
C. Well Dian	neter = <u>0.37</u>	5 _in.	F. 3 Well Volumes (3 x E) =	gal.	(If applicat	ole, see pumping s	ystem volume ca	ículation below)	
Pump and	Flow Cell Volu	ıme '	$V_p = N/A$	ml		Pumping	g System Vol	lume Calcul	ation	
Tubing Ins	ide Diameter	1	D = N/A	in.	Pumping System Volume (V _S)					
Tubing Ler	ngth	1	= N/A	in.	$V_S = V_P + \pi * D^2 / 4 * L * 16.39 \text{ ml/in}^3$					
Conversion	from Inches ³	to ml	$1 \text{ in}^3 = 16.39$	ml	V _S =	() + (3.1415 * _	² /4) *	() * 16.39	
	Purging Data	1	Water Qı	ality Parameter	s (within ran	ge for 3 c	onsecutive rea	adings if low-	flow sampling)	
Time (24 hr)	Purge Volume	Flow Ra	(°C)	Specific Conductance (μS/cm)	Dissolved Oxygen (mg/L)	рН	Oxidation Reduction Potential (mV)	Turbidity (NTU)	Remarks (DTW, color,	
	□ gal □ ml	□ ml/mi	Stabilization ⁽¹⁾ :	± 3%	± 0.2 mg/L	± 0.2	± 20 mV	±10% or <10 NTU	odor, etc)	
0848	Initial	120	22.98	1101	3.93	7.28	-181	NIV	Clear	
0851		200	22.58	1123	2.58	7.88	-195		deword	
0856		100	22.37	1133	2.39	7.97	-201		11	
0859		00	22.38	1141	2.37	7.90	-198		51	
0902		70	22.81	1151	2.32	7.79	-196) 1	
09060		70	23:35	1156	2.27	7.79	-193		, 1	
1336		sama	• 1							
	•									
Remarks:								5		

(1) Based of	n EPA low-flow	sampling g	uidelines.							
Signature):			_	Checked By	/ :				

					Project/Task		San	pled By:	21		
	SAMPLE COLLECTION LOG					0008A/B	0	Allbut	4	7130/14	
Well Num	Vell Number/ID: Sample ID:						***************************************	Duplicate ID:			
MP-	23-1		***************************************		-03-1					***************************************	
Method o	f Purging:			Metho	d of Sampling	n n		Intake Depth	: 7. G		
					Field Eq	uipment					
Equi	pment		Мо	odel	Serial #/Ren	tal ID R	Da Received	te /Serviced	Date	Calibrated	
Multi-Probe	2		YSI	-556	12810422	3	71	29/14	71	30/14	
Turbidimet	er		N	/A	N/A	***************************************	N,	'A		N/A	
				Cas	sing Purge Vol	ume Calcul	ations				
A. Depth to	Water = <u>13.5</u>	8_ft.	D. V	Vater Column (B	-A) = 1.02	ft.	Depth to	Water After Sam	npling = <u>/</u> /4 ·	12ft.	
B. Well Tota	Depth = 15/1	5 ft.	E. 1	Well Volume (C	² x 0.0408 x D) =	<u>0.006</u> gal.	Actual Vo	lume Purged (fr	om below) = _	/550 gal/mil	
C. Well Dian	neter = 0.33	15 in.	F. 3	Well Volumes (3	3 x E) =	<u>18</u> gal.	(If applical	ole, see pumping s	ystem volume ca	lculation below)	
Pump and	Flow Cell Volu	me	V _p	= N/A	ml		Pumping	System Vol	ume Calcul	ation	
Tubing Ins	ide Diameter	··········	D	= N/A	in.	Pumping System Volume (V _S)					
Tubing Ler	ng Length $L = N/A$ in. $V_S = V_P + \pi * D^2 / 4 * L * 16.39 ml/in^3$						l/in³				
Conversion	from Inches ³	to ml	1 in	$^{3} = 16.39$	ml	V _S =	() + (3.1415 *	² /4)*	() * 16.39	
	Purging Data		***************************************	Water Qu	ality Parameter	s (within ran	ge for 3 c	onsecutive rea	idings if low-	flow sampling)	
Time (24 hr)	Purge Volume	Flow I	n	Temp (°C)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	рН	Oxidation Reduction Potential (mV)	Turbidity (NTU)	Remarks (DTW, color,	
	□ gal 🗷 ml	12 101/		Stabilization ⁽¹⁾ :	± 3%	± 0.2 mg/L	± 0.2	± 20 mV	±10% or <10 NTU	odor, etc)	
1051	Initial	100	,	23.8	1341	0.97	6.74	-21.6	AJU.	cloudy	
1053	350			23.7	1356	0.57	6.70	- 33.3	7.7.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	clearing	
1055	550			23.8	1362	01138	6.65				
1057	750			23.7	1359	0.84	6.68	***************************************			
1059	950		***************************************	23.4	1359	0.36	6.65			Clear	
1101	1150			23.6	1354	0.13	6.67	~35.0	1		
1103	1350			23.7	1359	0.01	6.67	-35.9			
1105	1580			23-9	1350	0.01	6-68				
Remarks:	100	5	Sa	sped.	Collecte	d 3	- HCl	Veas	***************************************	hellesteles (16-16-16-16) et en	
				•				***************************************	***************************************	entare and the second control of the second	
	[FT112]					***************************************			***************************************	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
(1) Based o	n EPA low-flow	sampling	guide	elines.			***************************************	294b-85102010	***************************************		
Signature: 6 All I						Checked By	y:				

Project Name:	
Crown Chevrolet	

Broject/Tack #1

	ONITOD	TNC	AZELI	. [Project/Task		San	npled By:	Da	ite:	
MONITORING WELL SAMPLE COLLECTION LOG					OD10160070.00008A/B			D. Allbut 7/30/14			
Well Num	Well Number/ID: Sample ID:						***************************************	Duplicate ID	:		
MP-03					MP-03-Z			Comm.			
Method of	Purging:	. T. h.	2.41	Metho	d of Sampling	:		Intake Depth	1:		
reviredo	up + Dea	104	ing	Sea	e proge m	ethod	***************************************		43.1		
		,			Field Eq	uipment					
Equip	oment		Mod	iel	Serial #/Ren	tal ID		ate /Serviced	Date	e Calibrated	
Multi-Probe			YSI-5	556	1261042	23	7/29	114	713	30/14	
Turbidimete	er		N/	A	N/A		N	/A	12-3-14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	N/A	
				Ca	sing Purge Vol	ume Calcul	ations				
A. Depth to \	Water = <u>15.1</u>	<u>51</u> ft.	D. Wa	ater Column (E	B-A) = 27-69	ft.	Depth to	Water After San	npling = <u></u> 73	<i>∶//</i> _ ft.	
B. Well Total	Water = 150 Depth = 15	3+ R.A	E. 1 \	Well Volume (C	$C^2 \times 0.0408 \times D) =$	0.16 gal.	Actual Vo	olume Purged (fr	om below) =	200 gal/ml.	
C. Well Diam	eter = <u>437</u> 5	in.	F. 3 V	Well Volumes (3 x E) = 0.49	gal.	(If applica	ble, see pumping s	ystem volume c	alculation below)	
Pump and F	low Cell Volu	ıme	V_p	= N/A	ml		Pumpin	g System Vol	ume Calcu	lation	
Tubing Insi	de Diameter		D	= N/A	in.	Pumping System Volume (V _S)					
Tubing Length L = N/A					in.	in. $V_S = V_P + \pi * D^2 / 4 * L * 16.39 \text{ ml/in}^3$					
Conversion	from Inches ³	to ml	1 in ³	= 16.39	ml	V _S =	() + (3.1415 * _	2/4)	* () * 16.39	
	Purging Data	1		Water Qu	ality Parameter	s (within ran	ge for 3 d	onsecutive rea	adings if low	r-flow sampling)	
Time (24 hr)	Purge Volume	Flow R	1	Temp (°C)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	рН	Oxidation Reduction Potential (mV)	Turbidity (NTU)	Remarks (DTW, color,	
(=)	□ gal 🕦 ml	M ml/ı		itabilization ⁽¹⁾ :	± 3%	± 0.2 mg/L	± 0.2	± 20 mV	±10% or <10 NTU	odor, etc)	
0950	Initial	100		26-6	1737	3.11	8.12	-286-4	NIA	ckar; H2S	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	***************************************	***************************************								The state of the s	
		1									
	***************************************									***************************************	
				***************************************				<u></u>		Yes	
				***************************************	***************************************			20000	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
		1									
	·····	4		·		-				-	
		1000					1			1	
Remarks:	0,945	50	. 1/1/1	red. C	olected	3-1+c1	VOAC				
									100100000000000000000000000000000000000		
***************************************	***************************************	***************************************					***************************************		***************************************		
(1)								»»»«««««««««««««««««««««««««««««««««««	***************************************	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	EPA low-flow	sampling	guideli	nes.					***************************************		
Signature	: ()	1 (1	111	A	The state of the s	Checked B	y:				

MONITORING WELL

Project	: Name:
Crown	Chevrole

Crown	Chevrolet

Project/Task #: OD10160070.00008A/B

Sampled By: A MILL

Date: 7/30/14

SAMPLE COLLECTION LOG		D. ALGOP 7	130119
Well Number/ID:	Sample ID:	Duplicate ID:	
MP-03-3	MP-03-3	-	
Method of Purging: Peristaltic pump + ded.	Method of Sampling: see proje method	Intake Depth:	707
thing	bode to	57-7	

	7	Field Equipmen	t	
Equipment	Model	Serial #/Rental ID	Date Received/Serviced	Date Calibrated
Multi-Probe	YSI-556	126104223	7/29/14	7/36/14
Turbidimeter	N/A	N/A	N/A	N/A
		Casing Purge Volume Ca	lculations	
A. Depth to Water = 16-3	ft. D. Water Colur	mn (B-A) = <u>41.5</u> ft.	Depth to Water After Samp	oling = <u>30.93</u> ft.
	***************************************	_		

	1					
B. Well Total Depth = 57.8 ft.	E. 1 Well Volume ($C^2 \times 0.0408 \times D$) = <u>6.24</u> gal.				.24 gal.	Actual Volume Purged (from below) = 9.50 galmi.
C. Well Diameter = 0.375 in.	F. 3 W	/ell V	'olumes (3 x E) =	0.72	gal.	(If applicable, see pumping system volume calculation below)
Pump and Flow Cell Volume	V _p	=	N/A	ml		Pumping System Volume Calculation
Tubing Inside Diameter	D	=	N/A	in.		Pumping System Volume (V _S)
Tubing Length	L	=	N/A	in.		$V_S = V_P + \pi * D^2 / 4 * L * 16.39 \text{ ml/in}^3$
Conversion from Inches ³ to ml	1 in ³	=	16.39	ml _	V _S =	: () + (3.1415 * ²/4) * () * 16.39

Purging Data			Water Qu	ality Parameters	s (within ran	ge for 3 co	onsecutive rea	dings if low-	flow sampling)
Time (24 hr)	Purge Volume	Flow Rate	Temp (°C)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	рН	Oxidation Reduction Potential (mV)	Turbidity (NTU)	Remarks (DTW, color, odor, etc)
	□ gal 😼 ml	M ml/min	Stabilization ⁽¹⁾ :	± 3%	± 0.2 mg/L	± 0.2	± 20 mV	±10% or <10 NTU	
oair	Initial	100	21.7	1019	0.63	7.98	-253.8	NIA	gray, cloude
0916	350		22-0	1010	0.14	8.03	-257.8		
0918	550		23.2	1024	0.03	7.49	-254.2	патанитальнай.	
0920	750		24.(1026	0.01	7.43	-246.4		
0972	950		23.4	1032	0.01	7-34	- 239.8	1	
	, , , , , , , , , , , , , , , , , , ,				4				
PPARAMETER ST.									

Remarks:	0925	Sampled.	Collected	3-1101	VOAS		
1816-240(1117(1148)244)))))))							777744777
(1) Based on I	EPA low-flow sa	mpling guidelines.		21113411111pp3rp4cas13344444444111111111111111111111111111	777-1478-1484-1484-1484-1484-1484-1484-1	<u>1411-1418-1999</u>	
	•			Checked By		***************************************	***************************************

Project	Name:
Crown	Chevrole

Crown Chevrolet

MONITORING WELL SAMPLE COLLECTION LOG					Project/Task #: OD10160070.00008A/B			pled By: Allbut		7 (30/14	
Well Num	ber/ID:			Sample	le ID:			Duplicate ID:			
MP-0	4-1			1	MP-64-1			_			
Method of Pevishalh	F Purging:	- ded	. Whine	Method 5-e	od of Sampling: Intake De				pth: 5 · 6		
					Field Eq	uipment					
Equip	pment		Model		Serial #/Rental ID		Dat Received/		Date	Calibrated	
Multi-Probe			YSI-556		126104773		7/29	1,4	7/30/14		
Turbidimete	er		N/A		N/A N/A N/A						
		***************************************		Cas	sing Purge Vol	ume Calcul	ations		***************************************		
A. Depth to \	Water = 12-9	82 ft.	D. Water	Column (B	B-A) = 2,88	ft.	Depth to \	Water After San	npling = <u>15.</u>	59 ft.	
B. Well Total	Depth = <u>15</u>	<u>√7_ft.</u>	E. 1 Well	Volume (C	$C^2 \times 0.0408 \times D) =$	0-016 gal.	Actual Vol	ume Purged (fr	om below) = $\frac{4}{2}$	CC gal (m).	
C. Well Diam	neter = <u>0.3</u> 5	구 도 in.	F. 3 Well	Volumes (:	3 x E) = 0.04	<u>ಳೆ</u> gal.	(If applicab	le, see pumping s	ystem volume calo	culation below)	
Pump and F	Flow Cell Volu	me	V _p =	N/A	ml		Pumping	System Vol	ume Calcula	tion	
Tubing Insi	de Diameter		D =	N/A	in.	Pumping System Volume (V _S)					
Tubing Length L = N/				N/A	in.		$V_S = V_P$	$+ \pi * D^2 / 4 *$	L * 16.39 ml,	/in ³	
Conversion	from Inches ³	to ml	1 in³ =	16.39	ml	V _S =	()	+ (3.1415 * _	² /4)*	() * 16.39	
	Purging Data			Water Qu	ality Parameter	s (within ran	ge for 3 co	onsecutive rea	adings if low-f	low sampling)	
Time (24 hr)	Purge Volume	□ gpm	Flow Rate		Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	рН	Oxidation Reduction Potential (mV)	Turbidity (NTU)	Remarks (DTW, color,	
(□ gal 🗫 ml	⊠ *ml/r		lization ⁽¹⁾ :	± 3%	± 0.2 mg/L	± 0.2	± 20 mV	±10% or <10 NTU	odor, etc)	
0839	Initial	100	2	2.6	1342	0.79	6.81	-158.6	cloudy	MANUAL III II III II II II II II II II II II	
0841	350	1	2:	2-2	1357	3.70	6.91	-127.4			
0842	400	We	M Dec	salere							
>	-2 /-		-				4				
Remarks:	7315	Sam	pled.	Col	lected.	3-HC1:	VOAs				
(1) -				**************************************		Commission Difference and Consideration	chaquaga and think and the same of the sam	urranalainnaannulla,uulasjastitte			
Signature	n EPA low-flow	sampling	A l	1		Checked B	V:				

MONITORING WELL SAMPLE COLLECTION LOG

Project	Name:
Crown	Chevrole

CI	OVVII	CHEVIOLET	

Project/Task #: OD10160070.00008A/B

Sampled By:

Date:

ON LOG

D.AI

7/30/14

Well Number/ID:			Sampl	e ID:		Duplicate ID:					
	04-2				MP-04-2			- ONEs			
Method of Peristalt	of Purging:	ded.	hbir	Metho	Method of Sampling: see purge method			Intake Dept リ	h: 1.6	***************************************	
					Field Ec	quipment					
Equi	ipment		Мо	del	Serial #/Ren	ntal III :		ate /Serviced	Date Calibrated		
Multi-Prob	e		YSI-	556	1261042	23	7/29/14		71:	30/14	
Turbidimet	ter		N/	A	N/A N/A					N/A	
	~		*******************************	Cas	sing Purge Vo	lume Calcu	lations		39.98		
A. Depth to	Water = 14.0	5_ft.	D. W	ater Column (B	B-A) = 27-65	_ ft.	Depth to	Water After Sar	npling = 41.	<i>†o4</i> ft.	
B. Well Tota	al Depth = 버다	7_ft.	E. 1	Well Volume (C	² x 0.0408 x D) =	0.16 gal.	Actual Vo	olume Purged (fi	rom below) = $\underline{\mathcal{G}}$	gal/mD	
C. Well Diar	meter = <u>0.37</u>	-5_in.	F. 3	Well Volumes (3	3 x E) = 0.43	gal.	(If applical	ble, see pumping s	system volume ca	lculation below)	
Pump and	Flow Cell Volu	ıme	V _p	= N/A	ml		Pumpin	g System Vo	lume Calcul	ation	
Tubing Inside Diameter D			D	= N/A	in.	n. Pumping System Volume (V _S)				***************************************	
Tubing Length L			L	= N/A	in.	n. $V_S = V_P + \pi * D^2 / 4 * L * 16.39 \text{ ml/in}^3$					
Conversion from Inches ³ to ml 1 in ³ =				= 16.39	ml	$V_S = () + (3.1415 * ^2/4) * () * 16.39$					
************************************	Purging Data	3		Water Qua	ality Parameter	s (within ran	nge for 3 c	onsecutive rea	adings if low-	flow sampling)	
Time (24 hr)	Purge Volume	Flow F	n	Temp (°C)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	рН	Oxidation Reduction Potential (mV)	Turbidity (NTU)	Remarks (DTW, color,	
	□ gal 🕸 ml	™ ml/min		Stabilization ⁽¹⁾ :	± 3%	± 0.2 mg/L	± 0.2	± 20 mV	±10% or <10 NTU	odor, etc)	
0824	Initial	100		21.3	1235	0.15	7:68	-265.2	gray; cloudy	Hzs odor	
0826	350			21-1	1220	0.11	7.66	-264.2	Î		
0828	550	l		22.1	1204	0 07	7-65	-263.8			
0830	600	u	نولا	demale	sed						
***************************************	**************************************	AAA AAAA AAAA AAAA AAAA AAAA AAAA AAAA AAAA								(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	

······································				444-4411119-44-48498884-49-50-523-511-1	thus, provincemental and the second s						
					annandelelelelelelelelelelelelelelelelelelel					<u>}</u>	
Remarks:	1255	Sam	pled.	. Colle	cted 3-1	tci Voi	45.				
(1) Boord o	n EPA low-flow s			SOUTH IN THE RESIDENCE OF THE SOUTH OF THE S		8	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
ignature	/ ·			111170001388444111754000000000188444444411849111100		Checked By	V:	1103-703-303-313-713-713-713-713-713-713-713-713-71	344444441	**************************************	

CIOWII	CHEV	DIEL

Project/Task #:

Sampled By:

MONITORING WELL SAMPLE COLLECTION LOG					OD10160070.00008A/B			Allbut	7	7130/14		
Well Num	ber/ID:			Sample	ole ID:			Duplicate ID:				
MP-OU	1-3			1	MP-04-3			_				
Method of	f Purging: p + ded. h	bing)		see purge method Intake D			ntake Deptl	epth: ८४.५			
					Field Eq	uipment						
Equi	pment		Mod	el	Serial #/Rent	tal ID F	Da Received/		Date	Calibrated		
Multi-Probe	2	:	YSI-5	56	1261042	13	7	129/14	7	130/14		
Turbidimet	er		N/A		N/A		N/	A		N/A		
			-	Cas	ing Purge Vol	ume Calcul	ations					
A. Depth to	Water = 15.0	12 ft.	D. Wa	ter Column (B	-A) = <u>42.68</u>	ft.	Depth to	Water After Sar	mpling = 32.6	73_ft.		
B. Well Total Depth = 5%, 6 ft. E. 1 Well Volume					² x 0.0408 x D) =	0.25 gal.	Actual Vo	ume Purged (fi	rom below) = _	1000 gal 🚳		
C. Well Dian	neter = 0.379	in.	F. 3 W	/ell Volumes (3	3 x E) = 0.75	gal.	(If applicab	le, see pumping s	system volume ca	lculation below)		
Pump and Flow Cell Volume $V_p = N/A$					ml		Pumping	System Vo	lume Calcul	ation		
Tubing Inside Diameter D =				= N/A	in.		Pur	nping System	Volume (V _S)	and the state of t		
Tubing Length L = N/A					in.	$V_S = V_P + \pi * D^2 / 4 * L * 16.39 \text{ ml/in}^3$						
Conversion	from Inches ³	to ml	1 in ³	= 16.39	ml	V _S =	= (+ (3.1415 * _	2/4)*	() * 16.39		
	Purging Data	1		Water Qua	ality Parameter	s (within ran	ige for 3 co	onsecutive re	adings if low-	flow sampling)		
Time (24 hr)	Purge Volume	Flow Rate		Temp (°C)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	рН	Oxidation Reduction Potential (mV)	Turbidity (NTU)	Remarks (DTW, color,		
(= 1)	□ gal 🕦 ml			abilization ⁽¹⁾ :	± 3%	± 0.2 mg/L	± 0.2	± 20 mV	±10% or <10 NTU	odor, etc)		
0755	Initial	100		21.9	1013	1.08	7-72	-184.7	gray; abidy	clear: U.S odor		
0757	200		1	21.4	1009	0.45	7.64	-178.9				
0759	400			21.6	948	0.17	7.58	-173.8				
0801	600		***************************************	21.8	954	0.11	7.49	-165.0				
0803	800			21.6	957	0.01	7.39	- 151.0				
0805	1000			21.9	960	0.01	7.41	-156.6				
0807	1700 A			,								
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			······································		***************************************							
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		***************************************	***************************************							
Remarks:	805	Sam	pled	, Collect	ed 3-4,	LI VOAC						
(1)		1)						,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
Signature	n EPA low-flow	~	guidelir	((())) ->+(-diskin)) -((())		Checked B	y:		***************************************	versen er en en er e		

Project/Task #: OD10160070.00008A

Sampled By:

Date: 18/21

Well Numbe			N LO	G	6510100070.00000A			D. Albut 1816/14			
•	er/ID:			Sample	ID:		D	Duplicate ID:			
	-01				MW-01			1	1w-100		
Method of P	urging:			Method	Method of Sampling:			ntake Depth);		
Peri. pump	t ded. h	bing			see purq	e method		10	7'		
					Field Eq	uipment					
Equipm	nent		Мо	del	Serial #/Rent	tal ID R	Dat eceived/		Date	Calibrated	
Multi-Probe			YSI-	-556	125 10 169	8	10/3	14	101	6/14	
Turbidimeter			N,	/A	N/A N/A N/A						
				Cas	ing Purge Vol	ume Calcula	ations				
A. Depth to Wa	ter = 16.0	no ft.	D. W	Vater Column (B	-A) = 4-90	ft.	Depth to V	Vater After Sam	npling = /6 0) <u>2</u> ft.	
3. Well Total De			E. 1	Well Volume (C	² x 0.0408 x D) =	gal.	Actual Vol	ume Purged (fr	om below) =	1650 gal/m	
C. Well Diamete	er = <u>0.75</u>	in.	F. 3	Well Volumes (3	3 x E) =	gal.	(If applicabl	e, see pumping s	ystem volume cal	culation below)	
Pump and Flo	w Cell Volu	me	V_p	= N/A	ml		Pumping	System Vol	ume Calcula	tion	
Tubing Inside Diameter D =				= N/A	in.		Pumping System Volume (V _S)				
Tubing Length L =				= N/A	in.	$V_S = V_P + \pi * D^2 / 4 * L * 16.39 \text{ ml/in}^3$					
Conversion from Inches ³ to ml $1 \text{ in}^3 =$				³ = 16.39	ml	V _S =	()	+ (3.1415 *	² /4)*	() * 16.39	
Pu	ırging Data			Water Qua	ality Parameters	s (within rang	ge for 3 co	nsecutive rea	dings if low-f	flow sampling)	
Time (24 hr)	Purge Volume	Flow Rate		Temp (°C)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	рН	Oxidation Reduction Potential (mV)	Turbidity (NTU)	Remarks (DTW, color,	
(= ,)	□ gal 🗷 ml	⊯ ml/ı		Stabilization ⁽¹⁾ :	± 3%	± 0.2 mg/L	± 0.2	± 20 mV	±10% or <10 NTU	odor, etc)	
1204	Initial	65		22.3	1277	3.27	6.94	72.7	-	Clear	
1201	450	Ì		22:1	1270	1.72	6.88	74.0	-		
1210	650			22.9	1265	1.05	6.85	78.4			
1213	850			22.5	1264	0.78	6.83	79.5			
1216	1050			22.8	1262	0.57	6.80	·			
1219	1350			226	1262	0.47		79.9	-		
m	1650			22,7	1760	0.42	6.79	79.9			

	1225	Som	14. I	Coll	ruled 6-1	Uri NOA	s Ct	DUP) at	1230		

Project/Task #:	
OD10160070.00008A	

Sampled By:

MONITORING WELL SAMPLE COLLECTION LOG					OD10160070.00008A			RDP		10-6-14	
Well Num	ber/ID: かん・0	2		Sample	ple ID: ,MW-02			Duplicate ID:			
Method of		gm			d of Sampling: Intake Depth O()				18′		
	•				Field Eq	uipment					
Equip	oment		Mod	lel	Serial #/Ren	tal ID	_	ate /Serviced	Date	Calibrated	
Multi-Probe			YSI-5	556			10-	3-14	10-	6-14	
Turbidimete	er		N/	A	N/A		N	/A		N/A	
				Cas	sing Purge Vol	lume Calcu	lations				
A. Depth to \	Water = 12.	02 ft.	D. Wa	ater Column (B	-A) =	ft.	Depth to	Water After San	npling = 12.	0 5 ft.	
B. Well Total Depth = 1392ft. E. 1 Well Volume					² x 0.0408 x D) =	gal.	Actual V	olume Purged (fr	om below) = 🕻	36 00 gal/ml.	
C. Well Diameter = 0.75 in. F. 3 Well Volumes					3 x E) =	gal.	(If applica	ble, see pumping s	ystem volume cal	culation below)	
Pump and Flow Cell Volume $V_p = N/L$					ml		Pumpin	g System Vol	ume Calcula	ation	
Tubing Inside Diameter D =			= N/A	in.	. Pumping System Volume (V _S)						
Tubing Length L = N/A					in.		$V_S = V$	$_{P} + \pi * D^{2} / 4 *$	L * 16.39 ml	/in³	
Conversion	from Inches ³	to ml	1 in ³	= 16.39	ml	V _S	= () + (3.1415 * _	2/4)*	() * 16.39	
	Purging Data	1		Water Qua	ality Parameter	s (within ra	nge for 3	consecutive rea	adings if low-	flow sampling)	
Time (24 hr)	Purge Volume	Flow Rate		Temp (°C)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	nH	Oxidation Reduction Potential (mV)	Turbidity (NTU)	Remarks (DTW, color,	
(21111)	□ gal □ ml	▼ ml/r	/min Stabi	tabilization ⁽¹⁾ :	± 3%	± 0.2 mg/l	L ± 0.2	± 20 mV	±10% or <10 NTU	odor, etc)	
0820	Initial	175	5	21.5	1047	1.76	אהד	1.8		cleas	
0823	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	. (0		21.7	1089	201	7.6	1 -18			
0826	***************************************	11	***************************************	21.8	1099	1.80	7.6	-18	***************************************	17	
0829	33022444411111111199999998444611119555994448888888	11	441)11114481111111111111111111111111111	22.0	1108	1.90	7.40	1-15		7/	
0832	***************************************	11		21.8	1114	2.10	7.48	-13		1/	
0835	***************************************	10		21.9	1130	2.03	7.49	-10		7 (
2838)1		21.9	1123	2.05	7.48	3-8		7/	
0480		50	mt	ole_							
Remarks:	· · · · · · · · · · · · · · · · · · ·							*	***************************************		
Nemarks:		***************************************			DDD-261411110000-0000-0000-0000-0000-0000-000					**************************************	
SACTION AND ADMINISTRATION AND A		***************************************		0.00		***************************************			and the state of t		
	EPA low-flow	sampling	guideli	nes.				TOPHANIAEZ TORTOLI MANAMATITU HITTANIAN MANAMATINI	and the state of t		
Signature						Checked I	sy:				

Project	Na	me	2:
Croun	Cha	1100	.1

Crown Chevrolet

Project/Task #:

Sampled By:

	AMPLE COL				OD10160070.00008A			RDP	10	7-6-14		
Well Num ∤√	ber/ID:	-1		Sampl	e ID: NP-01-1	7P-01-1						
Method of	,			1	od of Sampling:			Intake Depth	7.5			
he	r pun	7		44	-				11.0			
				· .	·	uipment	Da	te				
Equip	oment		Мо	del	Serial #/Ren	tal ID	Received		<u> </u>	Calibrated		
Multi-Probe			YSI-	-556			10-3-	14	10-6.	-14		
Turbidimete	er		N	/A	N/A	***************************************	N/	A		N/A		
				Ca	sing Purge Vol	ume Calcu	lations					
A. Depth to Water = 4.80 ft. D. Water Column (B-A) =	ft.	Depth to	Water After San	1pling = 14.9	3 b ft.		
B. Well Total Depth = 53.3ft. E. 1 Well Volume ($C^2 \times 0.0408 \times D) =$	gal.	Actual Vo	lume Purged (fr	om below) = 2	900 gal		
C. Well Diameter = <u>0.375</u> in. F. 3 Well Volumes (3 x E) =	gal.	(If applicab	ele, see pumping s	ystem volume cal	culation below)		
Pump and Flow Cell Volume $V_p = N/A$					ml		Pumping	g System Vol	ume Calcula	ition		
Tubing Inside Diameter D =				= N/A	in.		Pur	nping System	Volume (V _S)			
Tubing Length L = N/A					in.		$V_S = V_P$	$+ \pi * D^2 / 4 *$	L * 16.39 ml,	/in ³		
Conversion from Inches ³ to ml $1 \text{ in}^3 = 16.39$					ml	V _S =	= ()) + (3.1415 * _	2/4)*	() * 16.39		
	Purging Data	1		Water Qu	ality Parameter	s (within ra	nge for 3 c	onsecutive rea	adings if low-f	flow sampling)		
Time Purge		Flow Rate		□ gpm □ ml/min		Temp (°C)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	рН	Oxidation Reduction Potential (mV)	Turbidity (NTU)	Remarks (DTW, color,
(= · · · ·)	□ gal □ ml	Stabilization ⁽¹⁾ :	± 3%			± 0.2 mg/L	± 0.2	± 20 mV	±10% or <10 NTU	odor, etc)		
1212	Initial	12	5	25.5	1373	2.76	7.59	-149		Clear		
1215		H		24.7	1375	1.91	7.54	-146		11		
1218		1	1.	24.5	1368	1.87	7.49	-142		1/		
ايدا		1	١	25.0	1353	1.73	7.49	-139		11		
1224	hadda 176 Celabahan der 177 babahan der 1740 babahan der 1860 babahan der 1860 babahan der 1860 babahan der 18	- 1	1	24.9	1333	1.79	1	-136		11		
227				24.8	1319	1.89		~133				
230	***************************************			24.8	1309	1.86	7.48	-132	N. Married State of the Control of t			
1235		2	504	mple				1				
Remarks:												
							,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
(1) Based on	EPA low-flow	sampling	guide	lines.								
Signature						Checked B	y:					

Project/Task #:	
OD10160070.00008A	١

Sampled By:

	SAMPLE COLLECTION LOG					OD10160070.00008A			10	5-6-14	
Well Num	ber/ID:			Sampl	e ID: 1P-01-2	2		Ouplicate ID:	i		
Method of	,		***************************************		od of Sampling:			Intake Depth:			
Pe	& Dum	P		P	eri pump 43.4						
	•	I		•	Field Eq	uipment					
Equip	oment		Model		Serial #/Rental ID Receiv			te Serviced	Calibrated		
Multi-Probe			YSI-556		18			1-14	10-6	-14	
Turbidimete	er		N/A		N/A		N/	A		N/A	
				Cas	sing Purge Vol	ume Calcul	ations				
A. Depth to V	Water = <u>15. 9</u>	<u>34</u> ft.	D. Water	Column (B	-A) =	ft.	Depth to	Water After San	npling = 39 .	6 ft.	
B. Well Total	Depth = <u>59</u>	.3 ft.	E. 1 Well	Volume (C	² x 0.0408 x D) =	gal.	Actual Vo	ume Purged (fr	om below) =	900 gal/m.	
C. Well Diam	eter = 0.37	5 in.	F. 3 Well	Volumes (3 x E) =	gal.	(If applicab	le, see pumping s	ystem volume cal	culation below)	
Pump and F	low Cell Volu	me \	V _p =	N/A	ml		Pumping	System Vol	ume Calcula	ation	
Tubing Insi	de Diameter		D =	N/A	in.		Pur	nping System	Volume (V _S)		
Tubing Len	gth		_ =	N/A	in.	in. $V_S = V_P + \pi * D^2 / 4 * L * 16.39 \text{ ml/in}^3$					
Conversion from Inches ³ to ml $1 \text{ in}^3 = 16.39$					ml	V _S =	()	+ (3.1415 * _	²/4)*	() * 16.39	
	Purging Data	<u> </u>	1	Water Qu	ality Parameter	s (within ran	ge for 3 co	onsecutive rea	adings if low-	flow sampling)	
Time (24 hg)	Purge Volume	Flow Ra	1	Temp (°C)	Specific Conductance (μS/cm)	Dissolved Oxygen (mg/L)	рН	Oxidation Reduction Potential (mV)	Turbidity (NTU)	Remarks (DTW, color,	
, ,	□ gal □ ml	□ ml/mi		ilization ⁽¹⁾ :	± 3 %	± 0.2 mg/L	± 0.2	± 20 mV	±10% or <10 NTU	odor, etc)	
1748	Initial	100) 2	7. 2-	999	3.95	8.02	-213		cloudy	
1251		160	_	24	1172	2.01	8.01	-267	1-2-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	11	
1254	3/	100		1.9	1231	1.75	8.08	-243		1/	
1257		.11	24	3.4	1246	1.68	8.11	-297		11	
1300		1:)	3	5,1	1252	1.55	8.06	-302		7	
1303		11		9.9	1257	1.66	8.03	-297		7)	
8061		11	31	8.	1270	1.45	7.97	-289		77	
1313	0	11	3	1.7	1289	1-29	7.93	-269			
132530 Somple					***************************************					-	
Remarks:				1		•					
***************************************	***************************************									MJJJJ (1777-1941) MJJJ (1874-1941) MJJJ (1874-1941) MJJJ (1874-1941) MJJ (1874-1941) MJJ (1874-1941) MJJ (1874	
**************************************	***************************************		***************************************					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
(1) Based or	EPA low-flow	sampling g	juidelines								
Signature	*					Checked B	y:				

Project	Na	ım	e:
Crown	cha		01

Crown Chevrolet

Project/Task #:

Sampled By:

	SAMPLE COLLECTION LOG					OD10160070.00008A			1	0-6-14	
	NP-01-	3		Sampl	e ID: MP-01-	-3	***************************************	Duplicate ID	•		
	f Purging:			1	d of Sampling			Intake Depth:			
P	10K1 P1	dun		P	exi pum	4		58	. 3		
					Field Eq	uipment					
Equi	pment	***************************************	Mo	del	Serial #/Rental ID Rece			te /Serviced	Date	Calibrated	
Multi-Probe	9		YSI-	556	10-3-14				10-6	5-14	
Turbidimet	er		N/	A	N/A		N,	'A		N/A	
				Cas	sing Purge Vol	ume Calcu	lations				
A. Depth to	Water = <u>17.</u>)4 ft.	D. W	ater Column (E	B-A) =	ft.	Depth to	Water After San	npling = 49.	.14 ft.	
B. Well Tota	Depth = <u>59</u>	∙3 _ft.	E. 1	Well Volume (C	² x 0.0408 x D) =	gal.	Actual Vo	lume Purged (fr	om below) = 🖺	850 gal/ml.	
C. Well Dian	neter = 0.3 7	5_ in.	F. 3	Well Volumes (3 x E) =	gal.	(If applicat	ole, see pumping s	ystem volume ca	lculation below)	
Pump and	Flow Cell Volu	me	V _p	= N/A	ml		Pumping	System Vol	ume Calcul	ation	
Tubing Insi	ide Diameter		D	= N/A	in.			nping System	***************************************		
Tubing Length L = N/				in.	1. $V_S = V_P + \pi * D^2 / 4 * L * 16.39 \text{ ml/in}^3$						
Conversion from Inches ³ to ml $1 \text{ in}^3 = 16.39$					ml	Ve =				· () * 16.39	
	Purging Data				ality Parameters						
Time (24 hr)	Purge Volume	Flow Ra	1	Temp (°C)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	***************************************	Oxidation Reduction Potential (mV)	Turbidity (NTU)	Remarks (DTW, color,	
(27111)	□ gal □ ml	□ ml/m		Stabilization ⁽¹⁾ :	± 3%	± 0.2 mg/L	± 0.2	± 20 mV	±10% or <10 NTU	odor, etc)	
1350	Initial	150		28.9	819	5-20	822	-192		clouchy	
1353		100		28.8	792	5.14		***************************************		1/	
1356		11		28.8	950	3.61	8.20			1'	
1359		1'	1	28.4	1110	2.41	8.14	-175		ì	
1402		11		28.5	1141	1.95	8.10	-182		17	
1405	***************************************	11	1	30.0	1145	1.87	8.07			1/	
1408		11		36.7	1151	1.80	8.04	-		(1	
1411		11		304	1149	1.81	g.01	-179		1/	
1420			1	sampl							
Remarks:							4				
							***************************************	***************************************	***************************************		
***************************************	***************************************	***************************************	····		1844cc (2022) 1822 1833 1834 (1846) 1844 (1846) 1844 (1846) 1844 (1846) 1844 (1846) 1844 (1846) 1844 (1846) 18		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	***************************************		-4/	
(1) Based or	n EPA low-flow :	samnling 4	പ്പടി	ines	PP444411111111111111111111111111111111		31111111111111111111111111111111111111			MATTER THE	
Signature	D*************************************	Jamping (guidel	II ICO.		Checked B	V		***************************************	***************************************	
orginatur C						CHECKEU D	7:		-		

	MONITOR SAMPLE COL		LL	Project/Task #: OD10160070.00008A			pled By:	Date \(C	5-6-14	
Well Num	ber/ID: P-02-	J	Sample	e ID: 7P-02-	1		Ouplicate ID:			
	f Purging:	***************************************	1	d of Sampling		1	Intake Depth	ויי ו		
Ŧ	ocki pi	nme	3	peri pump 12.8						
				Field Eq	uipment					
Equi	pment	Мс	odel	Serial #/Ren	tal ID		Serviced		Calibrated	
Multi-Probe	9	YSI	-556	10-			-124	10-6	-{4	
Turbidimet	er	N	/A	N/A N/A N/A					N/A	
	8	~	Cas	sing Purge Vol	lume Calcul	lations				
A. Depth to	Water = War		Vater Column (B	-A) =	ft.	Depth to	Water After Sam	npling =	ft.	
B. Well Tota	I Depth = <u>59</u>	.7_ft. E. 1	Well Volume (C	² x 0.0408 x D) =	gal.	Actual Vo	lume Purged (fr	om below) = _	gal/ml.	
C. Well Dian	neter = <u>0.35</u>	<u>5</u> in. F. 3	Well Volumes (3	3 x E) =	gal.	(If applicat	le, see pumping s	ystem volume cal	culation below)	
Pump and	Flow Cell Volu	me V _p	= N/A	ml		Pumping	System Vol	ume Calcula	tion	
Tubing Ins	ide Diameter	D	= N/A	in.		Pui	nping System	Volume (V _S)		
Tubing Ler	ngth	L	= N/A	in.		$V_S = V_P$	$+ \pi * D^2 / 4 *$	L * 16.39 ml,	′in³	
Conversion from Inches ³ to ml $1 \text{ in}^3 = 16.39$				ml	V _S =	= () + (3.1415 * _	2/4)*	() * 16.39	
	Purging Data		Water Qu	ality Parameter	s (within rar	nge for 3 c	onsecutive rea	adings if low-f	low sampling)	
Time (24 hr)	Purge Volume	Flow Rate	Temp (°C)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	рH	Oxidation Reduction Potential (mV)	Turbidity (NTU)	Remarks (DTW, color,	
(-,,,,	□ gal □ ml	□ ml/min	Stabilization ⁽¹⁾ :	± 3%	± 0.2 mg/L	± 0.2	± 20 mV	±10% or <10 NTU	odor, etc)	
	Initial					***************************************				
			vell is	Dry				Millian (Alliantes) de la companya (Antono de la companya (Antono de la companya (Antono de la companya (Antono		
	economical della personali della			sammanna ann marianna ann ann ann ann ann ann ann ann an		-			ac	
nellilarido e e e e e e e e e e e e e e e e e e e			2 VETT			***************************************				
desemble to me to the contract of the contract			111111111111111111111111111111111111111		<u>.</u>					
			Distribution	14441441444444111111111111111111111111						
	»									
111111111111111111111111111111111111111			****	######################################	***************************************		-11	ANTERPRING (TOTAL POPULATION AND AND AND AND AND AND AND AND AND AN		
Remarks:			**************************************							
				***************************************	***************************************			***************************************		
(1) Based o	n EPA low-flow	sampling guide	elines.	(ППППППППППППППППППППППППППППППППППППП	77,000,000,000,000,000,000,000,000,000,					
Signature	***************************************	***************************************	***************************************		Checked B	v:				

Project/Task #*

Sampled By:

	IONITOR	_		OD10160070.00008A			RDP	12	0-6-14	
Well Numl			Sampl	e ID:	-2		Duplicate ID:			
Method of	Purging:	Pum:	Metho	od of Sampling	•	I	Intake Depth: 36.6			
				Field Eq	uipment					
Equip	ment	М	odel	Serial #/Rental ID Rece			te Serviced	Calibrated		
Multi-Probe		YS	I-556			10-3	3-14	10-6	5-14	
Turbidimete	er		N/A	N/A	**	N/	A		N/A	
			Ca	sing Purge Vo	lume Calcu	lations				
A. Depth to V	Water = \13.5	3 ft. d.	Water Column (E	3-A) =	ft.	Depth to \	Water After San	npling = 36 .	3 _ft.	
B. Well Total	Depth = 59 .	7 _ft. E.	1 Well Volume (C	C ² x 0.0408 x D) =	gal.	Actual Vol	ume Purged (fr	om below) = L	gal m	
C. Well Diam	eter = 0.37	5 in. F.	3 Well Volumes (3 x E) =	gal.	(If applicab	le, see pumping s	ystem volume cal	culation below)	
Pump and F	low Cell Volu	me V _p	= N/A	ml		Pumping	System Vol	ume Calcula	ation	
Tubing Insid	de Diameter	D	= N/A	in.	Pumping System Volume (V _S)					
Tubing Leng	gth	L	= N/A	in.		$V_S = V_P \\$	$+ \pi * D^2 / 4 *$	L * 16.39 ml	/in³	
Conversion	from Inches ³	to ml 1 i	$n^3 = 16.39$	ml	V _S =	= ()	+ (3.1415 * _	2/4)*	() * 16.39	
	Purging Data		Water Qu	ality Parameter	s (within rar	nge for 3 co	onsecutive rea	dings if low-	flow sampling)	
Time (24 hr)	Purge Volume	Flow Rate	Temp (°C)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	рН	Oxidation Reduction Potential (mV)	Turbidity (NTU)	Remarks (DTW, color,	
	□ gal □ ml	M ml/ min	Stabilization ⁽¹⁾ :	± 3%	± 0.2 mg/L	± 0.2	± 20 mV	±10% or <10 NTU	odor, etc)	
0917	Initial	150	22.2	955	5.72	7.81	-195		doudy	
0920		150	22.6	1201	3.29	7:74	4		11	
0923		150	23.5	1251	2.79	7.74	-269		11	
0926		150	23.4	1270	2.59	7.70	-278		11	
0929		150	23.2	1274	2.21	7.67	-281		11	
0932		150	23.3	1278	2.24	7.64	-286			
0935	illaniaaadaadkadkaliillanii(jirooniji)	Sau	mple						1	
	нэээнналалаланнин нээнчин оо	444444444444444444444444444444444444444				11174 4433411111111111111111111111111111	O (e e e e e e e e e e e e e e e e e e	- 31334[H131]) 14444443334888444444334888411	33344237503778384441442333033444431111111111111111111111	
Remarks:	NAME OF THE OWNER, WHITE OF THE OWNER, WHITE OF THE OWNER, WHITE OWNER, WHITE OWNER, WHITE OWNER, WHITE OWNER,						1			
⁽¹⁾ Based on	EPA low-flow	sampling guid	delines.	миниканалинген иштерин каналинген иштерин каналинген иштерин каналинген иштерин каналинген иштерин каналинген и	gartatatatanni			ARMAAMAMITTII TII TII TAATAA		
Signature					Checked B	By:				

Project/Task #:

Sampled By:

	AMPLE COLI				OD10160070.00008A			RDY	1	5-6-14
Well Num アバ	ber/ID:	3		Sample	e ID: パア-02-	3		ouplicate ID:		
Method of	Purging:	vivy	0		d of Sampling		I	ntake Depth	57.	7
		,		1	Field Eq	uipment		•		
Equip	ment		Mode		Serial #/Ren	tal ID R	Dat eceived/	Serviced	Date	Calibrated
Multi-Probe			YSI-55	6		10-	3-14	10-	6-14	
Turbidimete	er		N/A		N/A N/A N					N/A
				Cas	sing Purge Vol	ume Calcul	ations			
A. Depth to \	Water = 16.1	3_ft.	D. Wat	er Column (B	-A) =	ft.	Depth to \	Water After Sam	pling = 51	.06ft.
B. Well Total	Depth = 59.	7 ft.	E. 1 W	ell Volume (C	² x 0.0408 x D) =	gal.	Actual Vol	ume Purged (fro	om below) =	100 gal
C. Well Diam	eter = 0.37	S _in.	F. 3 We	ell Volumes (3	3 x E) =	gal.	(If applicab	e, see pumping sy	/stem volume ca	culation below)
Pump and F	low Cell Volu	me	V _p :	= N/A	ml		Pumping	System Vol	ume Calcula	ation
Tubing Insi	de Diameter	***************************************	D :	= N/A	in.	waraun	Pun	nping System	Volume (V _S)	оны вышення выполнения выполнения выполнения выполнения выполнения выполнения выполнения выполнения выполнения
Tubing Len	gth		L	= N/A	in.	in. $V_S = V_P + \pi * D^2 / 4 * L * 16.39 \text{ ml/in}^3$				
Conversion from Inches ³ to ml $1 \text{ in}^3 = 16.39$					ml	V _S =	()	+ (3.1415 * _	2/4)*	() * 16.39
	Purging Data	<u></u>		Water Qu	ality Parameter	s (within ran	ge for 3 co	nsecutive rea	dings if low-	flow sampling)
Time (24 hr)	Purge Volume	Flow Ra		Temp (°C)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	рН	Oxidation Reduction Potential (mV)	Turbidity (NTU)	Remarks (DTW, color,
(=)	□ gal □ ml	□ ml/æ		bilization ⁽¹⁾ :	± 3%	± 0.2 mg/L	± 0.2	± 20 mV	±10% or <10 NTU	odor, etc)
0958	Initial	150		24.3	1170	3.39	7.68	-294		Cloudy
1001	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	100	1	13.7	1191	2.67	7.81	-296		Clear
1004		100	1	24.1	1168	2.55	7.98	-298		cloudy
1007		100	-	24.0	1157	2.08	8.13	-295		17
010		100	6	1.42	1161	2.05	8.22	-283	,,	11
めら		100	-	24.8	1175	2.00	8.22	-266		Ц
018		100	-	24.5	1193	1.87	8-13	-262		
1021		100	1	24.2	1210	1.85	803	-258		If
1026		100 24.7		24.7	1214	1.92	7.94	-247		
Remarks:										
		NUMBER OF THE RESERVE								
AND THE PROPERTY OF THE PROPER			155455-7-10000000000000000000000000000000000					111117777711777777777777777777777777777	ID IIIIIAA MARKININ ISAA (MIKANISA ISAA ISAA ISAA ISAA ISAA ISAA ISAA	nagarastan paramanan kanadakan dapan kanali baharatan kanada
(1) Based or	n EPA low-flow	sampling g	guidelin	es.		23443-4323333333111111111111111111111111		1985-) 1557-1658-1658-1658-1658-1658-1658-1658-1658	######################################	1555 <u>111571155555555555</u>
Signature						Checked By	y:			
_										

Purging/Sampling Date: 10-6-14

Well Number: MP-02-3

ADDITIONAL FIELD PARAMETER COLLECTION LOG (continued from front side)

	Purging Data	1	Water Qu	ality Parameters	(within rang	ge for 3 co	nsecutive rea	adings if low	-flow sampling)	
Time (24 hr)	Purge Volume ☐ gal ☐ ml	Flow Rate gpm m/min	Temp (°C)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	рН	Oxidation Reduction Potential (mV)	Turbidity (NTU)	Remarks (DTW, color, odor, etc)	
		-	Stabilization ⁽¹⁾ :				± 20 mV	±10% or <10 NTU		
1034		100	25.5	1227	1.80	7.85	-228		cloudy	
1044		100	26.0	1227	1.50	7.83	-210		(1)	
1105			26.0 SONN	ple						
			**************************************	1						
				(Milding)					372	
				mannanaem	errinandinandinandinandinandinandinandina					
				MANAGEMENT CONTROL OF THE CONTROL OF						
				TARAKATAN MATERIA TARAKATAN MATERIA TARAKATAN MATERIA TARAKATAN MATERIA TARAKATAN MATERIA TARAKATAN MATERIA TA		1				
						·iju				
						ii				
NAME OF THE PROPERTY OF THE PR									100000000000000000000000000000000000000	
	magan sares	-								
	14				***************************************	-				
				= 1910						
							-01			
			18						1.0	
			\$							
	¢		-							
									- 7	
			- service of the serv							
Remarks:										
				, , , , , , , , , , , , , , , , , , ,					anniminiminiminiminiminiminiminiminimini	
					serialnes		CHECKER COLOR COMPANION (COLOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CO	***************************************		
1) Based on	EPA low-flow s	amplina quidel	ines.	**************************************					, , , , , , , , , , , , , , , , , , ,	

Project/Task #: OD10160070.00008A

Sampled By: n MILL +

Date: 10/6/14

5	SAMPLE COL	LECTIO	N LO	G			D.	411601		, ,	
Well Nun	nber/ID:			Sampl	e ID:			Duplicate ID	:		
MP-0					MP-03-	- 1		-			
	f Purging:			Metho	d of Sampling			Intake Depti			
Peri-pin	p + ded.	ribino	1		see proj	e method	3		14.6		
					Field Eq	uipment					
Equi	pment		Мо	del	Serial #/Rental ID Rece			te 'Serviced	Date	Calibrated	
Multi-Probe	e		YSI-	556	1251016	98	10/3/1	4	10/6	114	
Turbidimet	ter		N/	/A	N/A						
				Cas	sing Purge Vol	lume Calcul	lations				
A. Depth to	Water = 14.2	O ft.	D. W	/ater Column (B	-A) = 0.40	ft.	Depth to	Water After San	npling =	ft.	
	al Depth = 14		<u> </u>		² x 0.0408 x D) =					gal/ml.	
	neter = <u>0-37</u>		<u> </u>		3 x E) =			le, see pumping s			
	Flow Cell Volu		V _p	= N/A	ml			System Vo			
	side Diameter		D	= N/A	in.	***************************************		nping System			
							/:m3				
					in.						
Conversion from Inches ³ to ml $1 \text{ in}^3 = 16.39$					ml	V _S =	= ()	+ (3.1415 * _	2/4)*	() * 16.39	
***************************************	Purging Data	1	1	Water Qu	ality Parameter	s (within ran	nge for 3 c	ya	adings if low-	flow sampling)	
Time (24 hr)	Purge Volume	Flow R	1	Temp (°C)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	рH	Oxidation Reduction Potential (mV)	Turbidity (NTU)	Remarks (DTW, color,	
,	□ gal 🗷 mi	M ml/r		Stabilization ⁽¹⁾ :	± 3%	± 0.2 mg/L	± 0.2	± 20 mV	±10% or <10 NTU	odor, etc)	
1021	Initial	35		27.1	1324	6.22	7.40	-0.2	_	clear	
1024	250			27-4	1272	670	7.65	77.6			
1027	350			27.5	1284	6.80	7.71	35.4	-		
1030	450			27.6	1267	6-81	7.81	46.1			
1030	450	de	wa	tered							
			***************************************		·	*					

***************************************			***************************************	***************************************	***************************************						
		1			<u>,</u> :						
Remarks:	1115	Sampl	ed	Collec	ted 3-1	tal vo	Ac	······	211121114444444444444444444444444444444		
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		***************************************	***************							19-30-19-20-20-20-20-20-20-20-20-20-20-20-20-20-	
			*************					••••••	***************************************		
⁽¹⁾ Based o	n EPA low-flow	sampling	guidel	lines.							
Signature	e: 2		C	lut		Checked B	у:				

MONITORING WELL SAMPLE COLLECTION LOG

Project	Name:
Crown	Chevrolet

Project/	Task	#:
OD101600	270.0	Δ 8000

Sampled By:

	SAMPLE COL	LECTIO	N LO	G			1	100	·MACH	10	ialia
Well Nun	mber/ID:			Sample	e ID:	Duplicate ID:					
MP-0				1	4 P-03-2	_			78a.		
Method o	of Purging:	* *	***************************************		thod of Sampling:				Intake Depth	t:	
peri pur	np + ded. tu	bing			see purge method				43.7	2	
					Field Ed	quipment	t				
Equi	ipment		Мос	del	SAPISI TI / DANTSI III				Date ed/Serviced Date Calibrated		
Multi-Prob	e		YSI-	556	125/0169	8	10	0/3	114	10	16/14
Turbidimet	ter		N/	Ά	N/A N/A N/A						
				Cas	sing Purge Vo	lume Cal	culation	ns			
A. Depth to	Water = 17-0	⊅ (_ft.	D. W	ater Column (B	-A) =	_ft.	Dep	th to	Water After Sam	npling = 43.2	Lo ft.
	al Depth = <u>43</u>				² x 0.0408 x D) =				***************************************		35 gal
C. Well Diar	meter = <u>0.37</u>	<u>~</u> 5_in.	F. 3 \	Well Volumes (3	3 x E) =	gal.			ble, see pumping sy		
Pump and	Flow Cell Volu	ıme	V _p	= N/A	ml		Pun	npin	g System Vol	ume Calcul	ation
Tubing Ins	Tubing Inside Diameter D = N/			= N/A	in.	***************************************	***************************************	Pu	mping System	Volume (V _S)	
Tubing Length $L = N/J$			= N/A	in.						l/in ³	
Conversion from Inches ³ to ml $1 \text{ in}^3 = 16.3$				= 16.39	ml		V _S = () + (3.1415 * _	² /4)*	() * 16.39
	Purging Data	1	1	Water Qua	ality Parameter	s (within	range fo	r 3 c	onsecutive rea	dings if low-	flow sampling)
Time (24 hr)	Time Purge Flow Rat		1	Temp (°C)	Specific Conductance (µS/cm)	Dissolv Oxyge (mg/L	en F	рН	Oxidation Reduction Potential (mV)	Turbidity (NTU)	Remarks (DTW, color,
	□ gal s ml	⊠ ml/n	1	Stabilization ⁽¹⁾ :	± 3%	± 0.2 mg	g/L ±	0.2	± 20 mV	±10% or <10 NTU	odor, etc)
0835	Initial	1-15	offi	cient u	rater for	paran	neder	rea	dina	4500	Hzs odor
						7			J		
								.44111.04110000000			
***************************************								.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		***************************************	
***************************************		•				***************************************		***************************************			
		•						***************************************			
		***************************************					***************************************	***************************************			
·····						***************************************	***************************************				
			······································	<u> </u>							

Remarks:											
			***************************************			***************************************	***************************************				49-44-13-13-13-13-13-13-13-13-13-13-13-13-13-
***************************************			4					***************************************	***************************************	***************************************	
(1) Perced or	- FDA Iou flour	lina		_				***************************************		>>>>	
	n EPA low-flow s	sampling	guideiii	nes.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				\$		
Signature	: 4 ~~	De	1			Checked	I By:				

Project	Name:
Crown	Chevrolet

Field Equipment Model Serial #/Rental ID Received/Serviced Date Calibin Received/Serviced Multi-Probe YSI-556 125101698 N/A N/A N/A N/A Casing Purge Volume Calculations A. Depth to Water = 16.83 ft. D. Water Column (B-A) = 11.22 ft. Depth to Water After Sampling = 10.83 ft. B. Well Total Depth = 10.83 ft. E. 1 Well Volume (10.83 ft. E. 1 Well Volumes (10.83 ft. Depth to Water After Sampling = 10.83 ft. E. 1 Well Volumes (10.83 ft. Depth to Water After Sampling = 10.83 ft. Pumping System Volume Calculation N/S = V_p + 10.83 ft. Pumping System Volume (V_S) V_S = V_p + 10.83 ft. N/S = V_p + 10.83 ft.	Model YSI-556 N/A 8 ft. D. Water ft. E. 1 Well in. F. 3 Well ne V _p = D = L =	Cas r Column (B- I Volume (C ² I Volumes (3	d of Sampling Field Eq Field Eq Serial #/Ren 12510160 N/A Sing Purge Vol -A) = 41,22 2 × 0.0408 × D) = 3 × E) =	uipment tal ID ass ume Calcul ftgal.	Date Received / I o 3 / N / N / N / N / N / N / N / N / N /	ntake Depth 58 te Serviced (4 A Water After Samume Purged (from the same pumping symmetry)	Date ///// //// pling = 28 om below) = rstem volume ca	1/4 N/A 18 ft.	gal/đ
Method of Purging:Method of Sampling:Intake Depth:Ceri. p comp + ded thangSee page wathod58 cField EquipmentEquipmentModelSerial #/Rental IDDate Received/ServicedDate CalibrationMulti-ProbeYSI-556 125101698 1018164 101816 101816 TurbidimeterN/AN/AN/AN/AN/ACasing Purge Volume CalculationsA. Depth to Water = 16.83 ft.D. Water Column (B-A) = 16.25 ft.Depth to Water After Sampling = 16.50 ft.Depth to Water After Sampling = 16.50 ft.B. Well Total Depth = 16.50 ft.E. 1 Well Volume (16.50 ft.Depth to Water After Sampling = 16.50 ft.Depth to Water After Sampling = 16.50 ft.C. Well Diameter = 16.50 ft.E. 1 Well Volume (16.50 ft.Depth to Water After Sampling = 16.50 ft.C. Well Diameter = 16.50 ft.E. 1 Well Volume (16.50 ft.Depth to Water After Sampling = 16.50 ft.Pump and Flow Cell VolumeVp = N/AmlPumping System Volume CalculationTubing Inside DiameterD = N/Ain.Pumping System Volume CalculationTubing LengthL = N/Ain.Pumping System Volume (Vs)Conversion from Inches of to ml1 in 16.39 mlVs = Vp + 16.39 ml/in 16.39 mlVs = Vp + 16.39 ml/in 16.39 mlPurging DataWater Quality Parameters (within range for 3 consecutive readings if low-flow seed (in NTU) (my)Stabilization (10) the Stabilization (10) the Stabilization (10) the Stabilization (10) the Stabilization (10) the Stabili	Model YSI-556 N/A 8 ft. D. Water ft. E. 1 Well in. F. 3 Well ne V _p = D = L =	Cas r Column (B- I Volume (Canonical Volumes (3) N/A N/A	Field Eq Field Eq Serial #/Ren 12510160 N/A sing Purge Vol -A) = 41,22 2 × 0.0408 × D) = 3 × E) = ml	uipment tal ID ass ume Calcul ftgal.	Date Received/ lol3/ N/ ations Depth to N Actual Vol	te Serviced (4 A Water After Samume Purged (from e, see pumping sy	Date 10(6) pling = 28 om below) = extern volume ca	1/4 N/A 18 ft.	gal/俞)
Field Equipment Equipment Model Serial #/Rental ID Received/Serviced Multi-Probe YSI-556 125101698 103144 N/A N/A N/A N/A N/A N/A Casing Purge Volume Calculations A. Depth to Water = $\frac{16.83}{5}$ ft. D. Water Column (B-A) = $\frac{41.22}{5}$ ft. B. Well Total Depth = $\frac{58.1}{5}$ ft. E. 1 Well Volume ($\frac{C^2}{5}$ x 0.0408 x D) = $\frac{1}{5}$ gal. C. Well Diameter = $\frac{2.345}{5}$ in. F. 3 Well Volumes ($\frac{3}{5}$ x E) = $\frac{1}{5}$ gal. C. Well Diameter = $\frac{1}{5}$ yes v _p + $\frac{1}{5}$ x volume Calculation Pump and Flow Cell Volume V _p = N/A Tubing Inside Diameter D = N/A in. Pumping System Volume Calculation Pumping System Volume (V _s) Tubing Length L = N/A in. Pumping System Volume Calculation V _s = V _p + $\frac{1}{5}$ x x 1 x 16.39 m/l in. Purging Data Water Quality Parameters (within range for 3 consecutive readings if low-flow services of the conductance (\(\frac{10}{5}\)\frac{100}{5} yygen (\(\frac{10}{5}\)\frac{100}{5} yzen Time Order of the conductance (\(\frac{10}{5}\)\frac{100}{5} yygen Gal B-ml Flow Rate Volume Flow Rate Volume Stabilization(0): \(\frac{1}{2}\) \(\frac{1}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}\) \(\frac{1}\) \(\f	Model YSI-556 N/A 8 ft. D. Water ft. E. 1 Well in. F. 3 Well ne V _p = D = L =	Cas r Column (B- I Volume (C ² I Volumes (3 N/A N/A	Field Eq Field Eq Serial #/Ren 12510160 N/A Sing Purge Vol -A) = 41,22 2 x 0.0408 x D) = 3 x E) =	uipment tal ID ass ume Calcul ftgal.	Date Received/ lol3/ N/ ations Depth to N Actual Vol	te Serviced (4 A Water After Samume Purged (from e, see pumping sy	Date 10(6) pling = 28 om below) = extern volume ca	1/4 N/A 18 ft.	gal/俞)
Field Equipment Equipment Model Serial #/Rental ID Received/Serviced Date Calibration Multi-Probe YSI-556 12510 (698 103 144 164 194 106/144	Model YSI-556 N/A 8 ft. D. Water ft. E. 1 Well in. F. 3 Well ne V _p = D = L =	Cas r Column (B- I Volume (C ² I Volumes (3 N/A N/A	Field Eq Serial #/Ren 125 10166 N/A sing Purge Vol -A) =	uipment tal ID R ume Calcul ft. gal.	Received/ I o 3 N/ lations Depth to \ Actual Vol	Nater After Samume Purged (fro	pling = 28° om below) = _ estem volume ca	1/4 N/A 18 ft.	gal/俞)
Field EquipmentEquipmentModelSerial #/Rental IDDate Received/ServicedDate CalibrationMulti-ProbeYSI-556 125101698 103164 106194 Casing Purge Volume CalculationsA. Depth to Water = 16783 ft.D. Water Column (B-A) = 11.22 ft.Depth to Water After Sampling = 123.18 ft.B. Well Total Depth = 123.14 ft.E. 1 Well Volume (122.14 ft.Depth to Water After Sampling = 123.18 ft.C. Well Diameter = 122.14 ft.E. 1 Well Volumes (122.14 ft.Depth to Water After Sampling = 123.18 ft.C. Well Diameter = 122.14 ft.E. 1 Well Volumes (122.14 ft.Depth to Water After Sampling = 122.18 ft.Pump and Flow Cell Volume V_p = N/A	Model YSI-556 N/A 8 ft. D. Water ft. E. 1 Well in. F. 3 Well ne V _p = D = L =	Cas r Column (B- I Volume (C ² I Volumes (3 N/A N/A	Serial #/Rens 125 10160 N/A sing Purge Vol -A) = 41,22 2 x 0.0408 x D) = 3 x E) =	tal ID R ume Calcul ft. gal.	Received/ I o 3 N/ lations Depth to \ Actual Vol	Serviced (~ A Vater After Samume Purged (from e, see pumping symmetry)	pling = 28° om below) = _ estem volume ca	1/4 N/A 18 ft.	gal/俞)
Received/Serviced Date Calibration Multi-Probe YSI-556 125101698 1018144 101619 101814 101619 101814 101619 101814 10181	YSI-556 N/A 9 ft. D. Water ft. E. 1 Well in. F. 3 Well 1e V _p = D = L =	Cas r Column (B- I Volume (C ² I Volumes (3 N/A N/A	N/A sing Purge Vol A) = 41,22 2 x 0.0408 x D) = B x E) =	tk.	Received/ I o 3 N/ lations Depth to \ Actual Vol	Serviced (~ A Vater After Samume Purged (from e, see pumping symmetry)	pling = 28° om below) = _ estem volume ca	1/4 N/A 18 ft.	gal/俞)
Turbidimeter N/A	N/A 9 ft. D. Water ft. E. 1 Well in. F. 3 Well ne V _p D = L =	Cas r Column (B- I Volume (C ² I Volumes (3 N/A N/A	N/A sing Purge Vol -A) = <u>41,22</u> 2 x 0.0408 x D) = 3 x E) =	tt.	N/ lations Depth to \ Actual Vol	Vater After Samume Purged (from e, see pumping sy	pling = om below) = _ ostem volume ca	N/A 18 ft.	
Casing Purge Volume Calculations A. Depth to Water = 16.83 ft. D. Water Column (B-A) = 11.22 ft. Depth to Water After Sampling = 23.98 ft. B. Well Total Depth = 53.1 ft. E. 1 Well Volume ($C^2 \times 0.0408 \times D$) =gal. C. Well Diameter = 0.3375 in. F. 3 Well Volumes ($3 \times E$) =gal. (If applicable, see pumping system volume calculation Pump and Flow Cell Volume V_p = N/A in. Pumping System Volume Calculation Tubing Inside Diameter D = N/A in. Pumping System Volume (V_s) Tubing Length L = N/A in. $V_s = V_p + \pi * D^2 / 4 * L * 16.39 \text{ ml/in}^3$ Conversion from Inches³ to ml 1 in³ = 16.39 ml $V_s = (_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{$	\$_ft. D. Waterft. E. 1 Wellin. F. 3 Well ne V _p = D = L =	r Column (B- I Volume (C ² I Volumes (3 N/A N/A	sing Purge Vol -A) = <u>41,22</u> ² x 0.0408 x D) = 3 x E) =	ft. gal.	Depth to \ Actual Vol	Vater After Samume Purged (fro	om below) = _	18 _{ft} .	
A. Depth to Water = 16.88 ft. D. Water Column (B-A) = $\frac{41.22}{11.22}$ ft. Depth to Water After Sampling = $\frac{23.98}{18}$ ft. B. Well Total Depth = $\frac{53.1}{10.90}$ ft. E. 1 Well Volume ($C^2 \times 0.0408 \times D$) = $\frac{10.90}{10.90}$ Actual Volume Purged (from below) = $\frac{10.90}{10.90}$ C. Well Diameter = $\frac{0.37.5}{10.90}$ in. F. 3 Well Volumes ($3 \times E$) = $\frac{10.90}{10.90}$ gal. (If applicable, see pumping system volume calculation Pumping Inside Diameter D = N/A in. Pumping System Volume Calculation Pumping Length L = N/A in. Pumping System Volume (V_S) Tubing Length L = N/A in. $V_S = V_P + \pi * D^2 / 4 * L * 16.39$ ml/in ³ Conversion from Inches ³ to ml 1 in ³ = 16.39 ml $V_S = (\frac{1}{10.90}) + (3.1415 * \frac{1}{10.90}) + (3.1415 * 1$	ft. E. 1 Well _in. F. 3 Well ne V _p = D = L =	r Column (B- I Volume (C ² I Volumes (3 N/A N/A	$A = \frac{41.22}{2 \times 0.0408 \times D} = \frac{3 \times E}{ml}$	ft. gal.	Depth to \ Actual Vol	ume Purged (fro	om below) = _	1650	
B. Well Total Depth = 58.1 ft. E. 1 Well Volume ($C^2 \times 0.0408 \times D$) =gal. Actual Volume Purged (from below) =LST_C. Well Diameter =	ft. E. 1 Well _in. F. 3 Well ne V _p = D = L =	I Volume (C ² I Volumes (3 N/A N/A	2 x 0.0408 x D) = 3 x E) =	gal.	Actual Vol	ume Purged (fro	om below) = _	1650	
C. Well Diameter = 0.375 in. F. 3 Well Volumes (3 x E) = gal. (If applicable, see pumping system volume calculation Pump and Flow Cell Volume $V_p = N/A$ ml Pumping System Volume Calculation Pumping Inside Diameter D = N/A in. Pumping System Volume (V_S) Tubing Length L = N/A in. $V_S = V_p + \pi * D^2 / 4 * L * 16.39 \text{ ml/in}^3$ Conversion from Inches ³ to ml 1 in ³ = 16.39 ml $V_S = () + (3.1415 *) / (2/4) * () $	in. F. 3 Well ne V _p = D = L =	N/A N/A	3 x E) =		(If applicabl	e, see pumping sy	stem volume ca		
Pump and Flow Cell Volume $V_p = N/A$ ml Pumping System Volume Calculation Tubing Inside Diameter $D = N/A$ in. Pumping System Volume $V_S = N/A$ in. Pumping System Volume $V_S = N/A$ in. $V_S = V_P + \pi * D^2 / 4 * L * 16.39 \text{ ml/in}^3$ Conversion from Inches³ to ml $V_S = N/A$ in. $V_S = V_P + \pi * D^2 / 4 * L * 16.39 \text{ ml/in}^3$ Conversion from Inches³ to ml $V_S = N/A$ in. $V_S = V_P + \pi * D^2 / 4 * L * 16.39 \text{ ml/in}^3$ $V_S = N/A$ in.	ne V _p = D = L =	N/A N/A	ml	gal.				alculation be	elow)
Tubing Inside Diameter $D = N/A$ in. Pumping System Volume (V_S) Tubing Length $L = N/A$ in. $V_S = V_P + \pi * D^2 / 4 * L * 16.39 \text{ ml/in}^3$ Conversion from Inches³ to ml $I \text{ in}^3 = 16.39$ ml $V_S = () + (3.1415 *) +$	D =	N/A			Pumping	System Volu	ume Calcul		
Tubing Length $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	L =		in.					lation	
Conversion from Inches³ to ml $1 \text{ in}^3 = 16.39$ ml $V_S = () + (3.1415 *) + (3.1$		BI / A			Pumping System Volume (V _S)				
Purging Data Water Quality Parameters (within range for 3 consecutive readings if low-flow sate properties) Time (24 hr) Purge Volume (24 hr) Flow Rate (°C) Temp (°C) Specific Conductance (µS/cm) Dissolved Oxygen (mg/L) pH Oxidation Reduction Potential (mV) Turbidity (NTU) R (D) 1 3 3 q Initial 65 23.5 1 02 9 1.57 7.88 1 4 5.9 - <t< td=""><td>4</td><td>N/A</td><td>in.</td><td></td><td colspan="5">$V_S = V_P + \pi * D^2 / 4 * L * 16.39 \text{ ml/in}^3$</td></t<>	4	N/A	in.		$V_S = V_P + \pi * D^2 / 4 * L * 16.39 \text{ ml/in}^3$				
Time (24 hr) Purge Volume (24 hr) Flow Rate (24 hr) Temp (°C) Specific Conductance (μS/cm) Dissolved Oxygen (mg/L) pH (mg/L) Oxidation Reduction Potential (mV) Turbidity (NTU) 1 039 Initial 65 23.5 1 029 1.57 7.88 145.9 - 1 042 450 23.7 1 028 0.79 7.88 195.4 -	$o ml 1 in^3 =$	16.39	· ml	V _S =	()	+ (3.1415 *	² /4) *	* () * 16.39
Time (24 hr) Purge Volume (24 hr) Flow Rate (24 hr) Temp (°C) Specific Conductance (μS/cm) Dissolved Oxygen (mg/L) pH Reduction Potential (mV) Turbidity (NTU) R (D) 1 039 Initial 65 23.5 1 029 1.57 7.88 145.9 - 1 042 450 23.7 1 028 0.79 7.88 195.9 -		Water Qua	ality Parameter	s (within ran	ige for 3 co	nsecutive rea	dings if low-	-flow san	npling)
Stabilization ⁽¹⁾ : $\pm 3\%$ $\pm 0.2 \text{ mg/L}$ $\pm 20 \text{ mV}$ $\pm 10\% \text{ or}$ $\pm 10\% $	Time Volume ☐ gpm ☐ Cor		Conductance	Oxygen	рН	Reduction Potential		(DTV	marks V, color, or, etc)
1042 450 23.7 1028 0.79 7.88 745.9 - 04		oilization ⁽¹⁾ :	± 3%	± 0.2 mg/L	± 0.2	± 20 mV		gray	1
	65 2	3.5	1029	1.57	7.88	-145.9		DA	, cloude
10 10 100 100 100 100 100 100 100 100 1	2	-3.7	1028	0.79	7.88	-195.4	-		
1045 650 24.7 1034 0.61 7.66 -227.5 -		24.7	1034	0.61	7-66	-227.5	_	clear	ring
1048 850 25.0 1638 0.53 7.36 -216.6 -		25.0	1638	0.53	7.36	-216.6	-		
1051 1050 24.9 1039 0,50 7.24 -201.0 -	2	4.9	1039	0,50	7.24	-201.0	######################################		
1054 1250 24.9 1039 0.50 -7.20 -165.0 -	2	4.9	1039	0.50	-7.20	-165.0	-		
1057 1450 25.0 1039 0.50 7.17 -159.7	2	-5.0	1039	0.50	7.17	-159.7	~		
100 1650 25.1 1038 0.46 7.15 -147.3	1 2	25.1	1038	0.46	7.15	~147.3			
Remarks: 1100 Sampred	Sampled								
(1) Based on EPA low-flow sampling guidelines. Signature: Checked By:	ampling guidelines	s.		Checked B	y:	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		***************************************	

roject Name:		
Crown Chevrolet		

Project/Task #:	Sampled By:	Date:
OD10160070.00008A	2.2	10/6/14
	DA	1010111

				OD10160070.00	A800C	1	A	1	0/6/14		
ell Number/ID: Duplicate ID:											
-04-1			<i>F</i>	18-04-1		N-					
f Purging:	111.		Method of Sampling:				Intake Depth:				
surpt de	d. Nai	no				15.7					
	T			Field Eq	uipment			444			
pment		Мо	del Serial #/Re		tal ID	Date Received/Serviced Date Calibrate					
be		YSI-	-556	12510169	8	10/3	10/3/14 10/6/14				
er		N/	/A	N/A		N,	/A		N/A		
			Ca	sing Purge Vol	ume Calcu	ations					
		D. W	/ater Column (B-A) = <u>2-3</u>	ft.	Depth to	Water After San	npling =	ft.		
Depth = 15.1	₹_ft.	E. 1	Well Volume ($C^2 \times 0.0408 \times D) =$	gal.	Actual Vo	lume Purged (fr	om below) = _	gal/ml.		
neter = 0.375	_in.	F. 3	Well Volumes	(3 x E) =	gal.	(If applicat	ole, see pumping s	ystem volume ca	alculation below)		
Flow Cell Volu	me	V _p	= N/A	ml		Pumping	g System Vol	lume Calcul	ation		
ide Diameter		D	= N/A	in.		Pur	mping System	Volume (V _S)			
ngth		L	= N/A	in.		$V_S = V_P + \pi * D^2 / 4 * L * 16.39 \text{ ml/in}^3$					
from Inches ³	to ml	1 in ³	= 16.39	ml	V _S =	() + (3.1415 * _	2/4) *	* () * 16.39		
Purging Data	1		Water Qu	iality Parameter	s (within rar	ige for 3 c	onsecutive rea	adings if low-	flow sampling)		
Purge Volume	☐ gpm	1	Temp (°C)	Temp (°C) Specific Conductance Cus/(mg/l) PH Oxida Reduction (mg/l) Poten			Oxidation Reduction Potential	Turbidity (NTU)	Remarks (DTW, color,		
⊔ gainysimi	js⊾mi/n		Stabilization ⁽¹⁾	± 3%	± 0.2 mg/L	± 0.2	± 20 mV	±10% or <10 NTU	odor, etc)		
Initial	35	1	21.1	1340	1.74	6.11	6.1	-	cloudy		
200	35	•	21.3	1364	7.93	6.86	-15.1	_			
well	den	aje	red at	200 ml							
<u> </u>											
			400000000000000000000000000000000000000								
		***************************************	hamana		**************************************						
			***************************************	***************************************							
-											
1	<u> </u>		1			1					
1240	Samy	160	1. Colle	used 2-40	IVOAS	4					
		*****			***************************************	***************************************					
n EPA low-flow s	sampling	guide	lines.		***************************************	1941BM					
	SAMPLE COLIDER/ID: -04 - (f Purging:	SAMPLE COLLECTION Sher/ID: -04 - (F Purging: Somp + ded has pment e er Water = 13.40 ft. I Depth = 15.7 ft. Theter = 0.375 in. Flow Cell Volume ide Diameter igth from Inches³ to ml Purging Data Purge Volume gal Mml Initial 35 200 35 Well Accusate Accu	SAMPLE COLLECTION LO Iber/ID: -04- f Purging:	pment Model YSI-556 er N/A Ca Water = 13.40 ft. D. Water Column (in the state of	## SAMPLE COLLECTION LOG Sample ID:	## SAMPLE COLLECTION LOG Sample ID:	Sample ID:	Sample ID: $-0.9 - l$ for Furging: $-0.9 + l$ for Purging: $-0.9 + l$ for Model Serial #/Rental ID $-0.9 + l$ for N/A Serial #/Rental ID Received/Serviced Purge Volume Serial #/Rental ID Received/Serviced 12.3 l	Sample ID: Duplicate ID: Duplicate ID: Duplicate ID: Duplica		

Project/Task #: OD10160070.00008A

Sampled By:

Date: intalia

Teri. pump + aca.					
Common Aller Books	see purge method	41.7			
Method of Purging: Peri. pump + ded. Wing	Method of Sampling:	Intake Depth:			
MP-04-2	MP-04-2	N, ame,			
Well Number/ID:	Sample ID:	Duplicate ID:			

		Received/ Serviced				
YSI-556	123101698	18/3/14	10/6/14			
N/A	N/A	N/A	N/A			
С	asing Purge Volume	Calculations				
D. Water Column	(B-A) = ft.	_ ft. Depth to Water After Sampling = 41.50 ft.				
E. 1 Well Volume	$(C^2 \times 0.0408 \times D) = $	= gal. Actual Volume Purged (from below) = gal/fit)				
F. 3 Well Volumes	(3 x E) =	gal. (If applicable, see pumping system volume calculation below)				
V _p = N/A	ml	Pumping System Volume Calculation				
D = N/A	in.	Pumping System Volume (V _S)				
L = N/A	in.	$V_S = V_P + \pi * D^2 / 4 * L * 16.39 \text{ ml/in}^3$				
$1 \text{ in}^3 = 16.39$	ml	$V_S = (_) + (3.1415 * _ ^ 2/4) * (_) * 16.3$				
	N/A C D. Water Column E. 1 Well Volume F. 3 Well Volumes V _p = N/A D = N/A L = N/A	N/A Casing Purge Volume D. Water Column (B-A) =ft. E. 1 Well Volume (C ² x 0.0408 x D) = F. 3 Well Volumes (3 x E) = V _p = N/A	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			

	Purging Data	1	Water Quality Parameters (within range for 3 consecutive readings if low-flow sampling)								
Time (24 hr)	Purge Volume	Flow Rate	Temp (°C)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	рН	Oxidation Reduction Potential (mV)	Turbidity (NTU)	Remarks (DTW, color,		
	☐ gal 🔀 ml	□ ml/min	Stabilization ⁽¹⁾ :	± 3%	± 0.2 mg/L	.± 0.2	± 20 mV	±10% or <10 NTU	odor, etc)		
0912	Initial	85	22.2	1186	1.24	7.50	-184.9		Hasodor,		
0915	250		22.1	1231	0.31	7-64	-289.1	-	group		
0918	450		22.9	1212	0-38	7-65	- 309.9		1		
0920	550	devia	fered.								
	•••					-					
119991A194A44444444111111AAA441AAA44444444					*************		***************************************				
Remarks:	1250	ana nod				·					

Remarks: 1250 Sampled.		
(1) Based on EPA low-flow sampling guidelines.		
Signature: Odd Ally f	Checked By:	

Project	Name:
Crown	Chevrole

Project/Task #:	
OD10160070.00008A	1

MONITORING WELL SAMPLE COLLECTION LOG					Project/Task #: OD10160070.00008A		Sam	pled By:	10/6/14		
Nell Number/ID: Samp					e ID:			Duplicate ID:			
MP-6	4-3			1	1P-04-3			Ne	_		
Method of Purging: Method of Sampling:								ntake Depth			
Peri.pun	up + ded. 1	rbino	3		see purge		thod 58.6				
		1			Field Ed	quipment					
Equi	pment		Мс	odel	Serial #/Ren	ntal ID F	Date Received/Serviced Date Calibrated				
1ulti-Probe	3		YSI	-556	1251016	-98	10/3/14 10/6/14				
urbidimet	er		N	/A	N/A		N/	A		N/A	
				Cas	sing Purge Vo	lume Calcul	ations				
. Depth to	Water = <u>16 · 3</u>	54_ft.	D. V	Vater Column (B	i-A) =	_ ft.	Depth to	Nater After Sam	pling = <u>21.</u>	56 ft.	
. Well Tota	Depth = <u>58.</u>	<u>⊌_</u> ft.	E. 1	Well Volume (C	² x 0.0408 x D) =	=gal.	Actual Vol	ume Purged (fro	om below) = _	850 gal/mi	
C. Well Diam	neter = <u>0.37</u>	<u>5</u> in.	F. 3	Well Volumes (3 x E) =	gal.	(If applicab	le, see pumping sy	stem volume ca	lculation below)	
ump and	Flow Cell Volu	ıme	V _p	= N/A	ml		Pumping	System Vol	ume Calcul	ation	
ubing Insi	ide Diameter		D	= N/A	in.		Pun	nping System	Volume (V _S)		
ubing Len	gth		L	= N/A	in.		$V_S = V_P + \pi * D^2 / 4 * L * 16.39 \text{ ml/in}^3$				
Conversion	from Inches ³	to ml	1 in	$^{3} = 16.39$	ml	V _S =	()	+ (3.1415 * _	² /4)	() * 16.39	
	Purging Data			Water Qu	ality Parameter	rs (within ran	ige for 3 co		dings if low	flow sampling)	
(24 br) Volume		Flow F	n	Temp (°C)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	рН	Oxidation Reduction Potential (mV)	Turbidity (NTU)	Remarks (DTW, color,	
	□ gal 🕦 ml	19⊒ ml/	111111	Stabilization ⁽¹⁾ :	± 3%	± 0.2 mg/L	± 0.2	± 20 mV	±10% or <10 NTU	odor, etc)	
0923	Initial	50)	21.6	992	2.10	7-81	-282.2		gray	
0926	300			21.2	1020	1.47	7.78	-294.0	-		
0929	450			21.5	1015	D.69	7-81	-309.6			
7932	650		***************************************	21.8	1025	0.57	7.69	-308.7			
9935	850	1	***************************************	22.1	1028	0.55	7.60	- 301.8			
			*****************			***************************************					

	4		***************************************								
Remarks:					***************************************						

		***************************************	********************************								
(1) Based or	n EPA low-flow	sampling	guide	elines.					***************************************		
ignature	: 0-	d A	P.	lit		Checked B	y:				

WATER LEVEL MONITORING RECORD

Project Name:	Crown Chevrolet	Proj	ect and Task Number:	OD10160070	0.00011.A					
Date: 12/18/14	Measured by:	AR	Instrume	ES						
Note: For your convenience, the following abbreviations may be used.										
I = Inaccessible		D =	Dedicated Pump	IP = Int	erface Probe					
ES = Electrical Sounder		WL =	Water Level							

Well No.	Time	TOC Elevation (feet)	DTW Measurement (feet)	Groundwater Elevation (feet)	Remarks
MW-01	1103	344.24	13.61		
MW-02	1100	340.24	9.84		
M W-03-		343,77			=
MP-01-1	0824	343.20	12.30		
MP-01-2	0825	343.20	13.91		
MP-01-3	286	343.20	15.53		
MP-02-1	0917	341.15	10,74		
MP-02-2	0918	341.15	11.30		
MP-02-3	0919	341.15	15.54		
MP-03-1	0437	342.21	11.83		
MP-03-2	0936	342.21	16.26		Measured 2x
MP-03-3	0935	342.21	15.47		Measured 2x measured 2x
MP-04-1	0959	341.22	11.30		
MP-04-2	0958	341.22	13.03		
MP-04-3	0956	341.22	15.13		
4-03	1110		11.04		
7-02	1112		11.74	-	
2-01	1115		12-01	*	
4					

APPENDIX B

Laboratory Analytical Reports

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Pleasanton 1220 Quarry Lane Pleasanton, CA 94566 Tel: (925)484-1919

TestAmerica Job ID: 720-58973-1

Client Project/Site: Crown Chevrolet Cadillac Isuzu

For:

AMEC Environment & Infrastructure, Inc. 180 Grand Avenue **Suite 1100** Oakland, California 94612

Attn: Avery Whitmarsh

Authorized for release by: 8/6/2014 2:54:32 PM

Afsaneh Salimpour, Senior Project Manager (925)484-1919 afsaneh.salimpour@testamericainc.com

..... LINKS

Review your project results through

Have a Question?

Visit us at: www.testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

2

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	
QC Sample Results	
QC Association Summary	24
Lab Chronicle	25
Certification Summary	26
Method Summary	27
Sample Summary	28
Chain of Custody	29
Receipt Checklists	30

Definitions/Glossary

Client: AMEC Environment & Infrastructure, Inc. Project/Site: Crown Chevrolet Cadillac Isuzu

TestAmerica Job ID: 720-58973-1

	3
- Ump	
	5
	6

Glossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
a	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative error ratio
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)

Case Narrative

Client: AMEC Environment & Infrastructure, Inc. Project/Site: Crown Chevrolet Cadillac Isuzu

TestAmerica Job ID: 720-58973-1

Job ID: 720-58973-1

Laboratory: TestAmerica Pleasanton

Narrative

Job Narrative 720-58973-1

Comments

No additional comments.

Receipt

The samples were received on 7/30/2014 3:55 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 4.6° C.

GC/MS VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Detection Summary

Client: AMEC Environment & Infrastructure, Inc. Project/Site: Crown Chevrolet Cadillac Isuzu

TestAmerica Job ID: 720-58973-1

Client Sample ID: MP-04-1				Lab Sample ID: 720-58973-1	
Analyte	Result	Qualifier	RL	MDL Unit	Dil Fac D Method Prep Type
cis-1,2-Dichloroethene	1.2		0.50	ug/L	1 8260B/CA_LUFT Total/NA MS
Tetrachloroethene	0.86		0.50	ug/L	1 8260B/CA_LUFT Total/NA MS
Trichloroethene	9.2		0.50	ug/L	1 8260B/CA_LUFT Total/NA MS
Client Sample ID: MP-04-2					Lab Sample ID: 720-58973-2
No Detections.				6	Author Assessed
Client Sample ID: MP-04-3					Lab Sample ID: 720-58973-
No Detections.					
Client Sample ID: TB073014-1					Lab Sample ID: 720-58973-4
No Detections.					
Client Sample ID: TB073014-2					Lab Sample ID: 720-58973-
No Detections.					

This Detection Summary does not include radiochemical test results.

Client: AMEC Environment & Infrastructure, Inc. Project/Site: Crown Chevrolet Cadillac Isuzu

TestAmerica Job ID: 720-58973-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS

Client Sample ID: MP-04-1 **Date Coll**

Lab Sample ID: 720-58973-1

Jampie ID. IIII -04-1	
ollected: 07/30/14 13:15	Matrix: Water
eceived: 07/30/14 15:55	

Date Received: 07/30/14 15:55	Result Qualifler	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND	0.50	ug/L		07/31/14 13:37	1
Acetone	ND	50	ug/L		07/31/14 13:37	1
Banzana	ND	0.50	ug/L		07/31/14 13:37	1
Dichlorobromomethane	ND	0.50	ug/L		07/31/14 13:37	1
Bromobenzene	ND	1.0	ug/L		07/31/14 13:37	1
Chlorobromomethane	ND	1.0	ug/L		07/31/14 13:37	. 1
Bromoform	ND	1.0	ug/L		07/31/14 13:37	1
Bromomethane	ND	1.0	ug/L		07/31/14 13:37	1
2-Butanone (MEK)	ND	50	ug/L		07/31/14 13:37	1
n-Butylbenzene	ND	1.0	ug/L		07/31/14 13:37	1
sec-Butylbenzene	ND	1.0	ug/L		07/31/14 13:37	1
tert-Butylbenzene	ND	1.0	ug/L		07/31/14 13:37	1
Carbon disulfide	ND	5.0	ug/L		07/31/14 13:37	1
Carbon tetrachloride	ND	0.50	ug/L		07/31/14 13:37	1
Chlorobenzene	ND	0.50	ug/L		07/31/14 13:37	1
Chloroethane	ND	1.0	ug/L		07/31/14 13:37	1
Chloroform	ND	1.0	ug/L		07/31/14 13:37	1
Chloromethane	ND .	1.0	ug/L		07/31/14 13:37	1
2-Chlorotoluene	ND	0.50	ug/L		07/31/14 13:37	1
4-Chlorotoluene	ND	0,50	ug/L		07/31/14 13:37	1
	ND	0.50	ug/L		07/31/14 13:37	1
Chlorodibromomethane	ND	0.50	ug/L		07/31/14 13:37	1
1,2-Dichlorobenzene	ND	0.50	ug/L		07/31/14 13:37	1
1,3-Dichlorobenzene	ND	0.50	ug/L		07/31/14 13:37	1
1,4-Dichlorobenzene	ND	1.0	ug/L		07/31/14 13:37	1
1,3-Dichloropropane	ND	0.50	ug/L		07/31/14 13:37	1
1,1=Dichleropropene	ND ND	1.0	ug/L		07/31/14 13:37	1
1,2-Dibreme-3-Chloropropane	ND ND	0.50	ug/L		07/31/14 13:37	1
Ethylene Dibromide			-		07/31/14 13:37	1
Dibromomethane	ND	0.50	ug/L		07/31/14 13:37	1
Dichlorodifluoromethane	ND	0.50	ug/L		07/31/14 13:37	4
1,1-Dichloroethane	ND	0.50	ug/L		07/31/14 13:37	1
1,2-Dichloroethane	ND	0.50	ug/L			4
1,1=Dichloroethene	ND	0.50	ug/L		07/31/14 13:37 07/31/14 13:37	4
cis-1,2-Dichloroethene	1.2	0.50	ug/L			4
trans-1,2-Dichloroethene	ND	0.50	ug/L		07/31/14 13:37	4
1,2-Dichloropropane	ND	0.50	ug/L		07/31/14 13:37	1
cis-1,3-Dichloropropene	ND	0.50	ug/L		07/31/14 13:37	1
trans-1,3-Dichloropropene	ND	0.50	ug/L		07/31/14 13:37	1
Ethylbenzene	ND	0.50	ug/L		07/31/14 13:37	1
Hexachlorobutadiene	ND	1.0	ug/L		07/31/14 13:37	1
2-Hexanone	ND	50	ug/L		07/31/14 13:37	1
Isopropylbenzene	ND	0.50	ug/L		07/31/14 13:37	1
4-isopropyltoluene	ND	1.0	ug/L		07/31/14 13:37	1
Methylene Chloride	ND	5.0	ug/L		07/31/14 13:37	1
4-Methyl-2-pentanone (MIBK)	ND	50	ug/L		07/31/14 13:37	1
Naphthalene	ND	1.0	ug/L		07/31/14 13:37	1
N-Propylbenzene	ND	1.0	ug/L		07/31/14 13:37	1
Styrene	ND	0.50	ug/L		07/31/14 13:37	1
1,1,1,2-Tetrachloroethane	ND	0.50	ug/L		07/31/14 13:37	1

TestAmerica Pleasanton

Client: AMEC Environment & Infrastructure, Inc. Project/Site: Crown Chevrolet Cadillac Isuzu

TestAmerica Job ID: 720-58973-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

ND

ND

ND

ND

Date Collected: 07/30/14 13:15 Date Received: 07/30/14 15:55

Client Sample ID: MP-04-1

Vinyl acetate

Vinyl chloride

Xylenes, Total

Lab Sample ID: 720-58973-1

08/01/14 15:16

07/31/14 13:37

07/31/14 13:37

07/31/14 13:37

Matrix: Water

88	3100	*93	0.00	(Aut
		P	9	
Ĺ	II.	2	٠.	
		Ġ	2	
81			400	Ċ.

MDL Unit Analyzed Dil Fac Result Qualifier RL Prepared Analyte ND 0.50 ug/L 07/31/14 13:37 1.1.2.2-Tetrachloroethane 07/31/14 13:37 0.50 Tetrachloroethene 0.86 ug/L ND 0.50 07/31/14 13:37 ug/L

Toluene 1,2,3-Trichlorobenzene ND 1.0 07/31/14 13:37 ua/L 07/31/14 13:37 ND 1.0 1,2,4-Trichlorobenzene ug/L 1,1,1-Trichloroethane ND 0.50 ug/L 07/31/14 13:37 07/31/14 13:37 1.1.2-Trichloroethane ND 0.50 ug/L 0.50 07/31/14 13:37 ug/L 9.2 **Trichloroethene** 07/31/14 13:37 Trichlorofiuoromethane ND 1.0 ug/L ND 0,50 ug/L 07/31/14 13:37 1,2,3-Trichloropropane ND 0,50 ug/L 07/31/14 13:37 1,1,2-Trichloro-1,2,2-trifluoroethane 07/31/14 13:37 ND 0.50 ug/L 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene ND 0.50 ug/L 07/31/14 13:37

10

0.50

1.0

0.50

ug/L

ug/L

ug/L

ND ug/L 2,2-Dichloropropane ug/L ND 50 07/31/14 13:37 Gasoline Range Organics (GRO) -C5-C12

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	101		67 - 130		07/31/14 13:37	1
4-Bromofluorobenzene	100		67 - 130		08/01/14 15:16	1
1,2-Dichloroethane-d4 (Surr)	105		72 - 130		07/31/14 13:37	1
1,2-Dichloroethane-d4 (Surr)	108		72 - 130		08/01/14 15:16	1
Toluene-d8 (Surr)	100		70 - 130		07/31/14 13:37	1
Toluene-d8 (Surr)	101		70 - 130		08/01/14 15:16	1

Lab Sample ID: 720-58973-2

Matrix: Water

Date Collected: 07/30/14 12:55 Date Received: 07/30/14 15:55

Client Sample ID: MP-04-2

Chloromethane

Dil Fac Result Qualifier RL MDL Unit D Prepared Analyzed Analyte 0.50 07/31/14 14:06 ND ug/L Methyl tert-butyl ether 50 ug/L 07/31/14 14:06 Acetone ND 0.50 ug/L 07/31/14 14:06 Benzene ND ND 0.50 ua/L 07/31/14 14:06 Dichloropromomethane 07/31/14 14:06 Bromobenzene ND 1.0 ug/L Chlorobromomethane ND 1.0 ug/L 07/31/14 14:06 Bromoform ND 1.0 ug/L 07/31/14 14:06 ND 1.0 ug/L 07/31/14 14:06 Bromomethane 2-Butanone (MEK) ND 50 ug/L 07/31/14 14:06 1.0 ug/L 07/31/14 14:06 n-Butylbenzene ND ND 1.0 ug/L 07/31/14 14:06 sec-Butylbenzene tert-Butylbenzene ND 1.0 ug/L 07/31/14 14:06 Carbon disulfide ND 5.0 ug/L 07/31/14 14:08 07/31/14 14:06 Carbon tetrachloride ND 0.50 ug/L 07/31/14 14:06 ND 0.50 ug/L Chlorobenzene Chloroethane ND 1.0 ug/L 07/31/14 14:06 Chloroform ND 1.0 ug/L 07/31/14 14:06 1.0 ug/L 07/31/14 14:06

Client: AMEC Environment & Infrastructure, Inc. Project/Site: Crown Chevrolet Cadillac Isuzu

TestAmerica Job ID: 720-58973-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Client Sample ID: MP-04-2 Date Collected: 07/30/14 12:55 Date Received: 07/30/14 15:55

-C5-C12

Lab Sample ID: 720-58973-2

Matrix: Water

Date Received: 07/30/14 15:55 Analyte	Result Qualif	ler RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
2-Chlorotoluene	ND	0.50	ug/L			07/31/14 14:06	1
4-Chlorotoluene	ND	0.50	ug/L			07/31/14 14:06	1
Chlorodibromomethane	ND	0.50	ug/L			07/31/14 14:06	1
1,2-Dichlorobenzene	ND	0.50	ug/L			07/31/14 14:06	1
1,3-Dichlorobenzene	ND	0.50	ug/L			07/31/14 14:06	1
1.4-Dichlorobenzene	ND	0.50	ug/L			07/31/14 14:06	1
1,3-Dichloropropane	ND	1.0	ug/L			07/31/14 14:06	1
1,1-Dichloropropene	ND	0.50	ug/L			07/31/14 14:06	1
1,2-Dibromo-3-Chloropropane	ND	1.0	ug/L			07/31/14 14:06	1
Ethylene Dibromide	ND	0.50	ug/L			07/31/14 14:06	1
Dibromomethane	ND	0.50	ug/L			07/31/14 14:06	1
Dichlorodifluoromethane	ND	0.50	ug/L			07/31/14 14:06	1
1,1-Dichloroethane	ND	0,50	ug/L			07/31/14 14:06	1
1.2-Dichloroethane	ND	0.50	ug/L			07/31/14 14:06	1
1,1-Dichloroethene	ND	0.50	ug/L			07/31/14 14:06	1
cis-1,2-Dichloroethene	ND	0.50	ug/L			07/31/14 14:06	1
trans-1,2-Dichloroethene	ND	0.50	ug/L			07/31/14 14:06	1
1,2-Dichloropropane	ND	0.50	ug/L			07/31/14 14:06	1
cis-1,3-Dichloropropene	ND	0.50	ug/L			07/31/14 14:06	1
trans-1,3-Dichloropropene	ND	0.50	ug/L			07/31/14 14:06	1
Ethylbenzene	ND	0.50	ug/L			07/31/14 14:06	1
Hexachlorobutadiene	ND	1.0	ug/L			07/31/14 14:06	1
2-Hexanone	ND	50	ug/L			07/31/14 14:06	1
Isopropylbenzene	ND	0.50	ug/L			07/31/14 14:06	1
4-Isopropyltoluene	ND	1.0	ug/L			07/31/14 14:06	1
Methylene Chloride	ND	5.0	ug/Ļ			07/31/14 14:06	1
4-Methyl-2-pentanone (MIBK)	ND	50	ug/L			07/31/14 14:06	1
Naphthalene	ND	1.0	ug/L			07/31/14 14:06	1
N-Propylbenzene	ND	1.0	ug/L			07/31/14 14:06	1
Styrene	ND	0.50	ug/L			07/31/14 14:06	1
1,1,1,2-Tetrachloroethane	ND	0.50	ug/L			07/31/14 14:06	1
1,1,2,2-Tetrachloroethane	ND	0.50	ug/L			07/31/14 14:06	1
Tetrachloroethene	ND	0.50	ug/L			07/31/14 14:06	1
Toluene	ND	0.50	ug/L			07/31/14 14:06	1
1,2,3-Trichlorobenzene	ND	1.0	ug/L			07/31/14 14:06	. 1
1,2,4-Trichlorobenzene	ND	1.0	ug/L			07/31/14 14:06	1
1,1,1-Trichloroethane	ND	0.50	ug/L			07/31/14 14:06	1
1,1,2-Trichloroethane	ND	0.50	ug/L			07/31/14 14:06	1
Trichloroethene	ND	0.50	ug/L			07/31/14 14:06	1
Trichlorofluoromethane	ND	1.0	ug/L			07/31/14 14:06	1
1,2,3-Trichloropropane	ND	0.50	ug/L			07/31/14 14:06	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	0.50	ug/L			07/31/14 14:06	1
1,2,4-Trimethylbenzene	ND	0.50	ug/L			07/31/14 14:06	1
1,3,5-Trimethylbenzene	ND	0.50	ug/L			07/31/14 14:06	1
Vinyl acetate	ND	10	ug/L			08/01/14 15:45	1
Vinyl chloride	ND	0.50	ug/L			07/31/14 14:06	1
Xylenés, Total	ND	1.0	ug/L			07/31/14 14:06	1
2,2-Dichloropropane	ND	0.50	ug/L			07/31/14 14:06	1
Gasoline Range Organics (GRO)	ND	50	ug/L			07/31/14 14:06	1
Gaseille Laufe Athaules (ALA)	148	30					

TestAmerica Pleasanton

8/6/2014

Page 8 of 30

Client: AMEC Environment & Infrastructure, Inc. Project/Site: Crown Chevrolet Cadillac Isuzu

TestAmerica Job ID: 720-58973-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	101		67 - 130		07/31/14 14:06	1
4-Bromofluorobenzene	101		67 = 130		08/01/14 15:45	1
1,2-Dichloroethane-d4 (Surr)	104		72 - 130		07/31/14 14:06	1
1,2-Dichloroethane-d4 (Surr)	109		72 = 130		08/01/14 15:45	1
Toluene-d8 (Surr)	100		70 - 130		07/31/14 14:06	1
Toluene-d8 (Surr)	101		70 = 130		08/01/14 15:45	1

Client Sample ID: MP-04-3

Lab Sample ID: 720-58973-3

Matrix Weter

Date Collected: 07/30/14 08:05 Matrix: Water

Date Received: 07/30/14 15:55 Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND		0.50	ug/L			07/31/14 14:35	1
Acetone	ND		50	ug/L			07/31/14 14:35	1
Benzene	ND		0.50	ug/L			07/31/14 14:35	1
Dichlorobromomethane	ND		0.50	ug/L			07/31/14 14:35	1
Bromobenzene	ND		1.0	ug/L			07/31/14 14:35	1
Chlorobromomethane	- ND		1.0	ug/L			07/31/14 14:35	1
Bromoform	ND		1.0	ug/L			07/31/14 14:35	1
Bromomethane	ND		1.0	ug/L			07/31/14 14:35	1
2-Butanone (MEK)	ND		50	ug/L			07/31/14 14:35	1
n-Butylbenzene	ND		1.0	ug/L			07/31/14 14:35	1
sec-Butylbenzene	ND		1.0	ug/L			07/31/14 14:35	1
tert-Butylbenzene	ND		1.0	ug/L			07/31/14 14:35	1
Carbon disulfide	ND		5.0	ug/L			07/31/14 14:35	1
Carbon tetrachloride	ND		0.50	ug/L			07/31/14 14:35	1
Chlorobenzene	ND		0.50	ug/L			07/31/14 14:35	1
Chloroethane	ND		1.0	ug/L			07/31/14 14:35	1
Chleroform	ND		1.0	ug/L			07/31/14 14:35	1
Chloromethane	ND		1.0	ug/L			07/31/14 14:35	1
2-Chlorotoluene	ND		0.50	ug/L			07/31/14 14:35	1
4-Chlorotoluene	ND		0.50	ug/L			07/31/14 14:35	1
Chlorodibromomethane	ND		0.50	ug/L			07/31/14 14:35	1
1,2-Dichlorobenzene	ND		0.60	ug/L			07/31/14 14:35	1
1,3-Dichlorobenzene	ND		0.50	ug/L			07/31/14 14:35	1
1,4-Dichlorobenzene	ND		0.50	ug/L			07/31/14 14:35	1
1,3-Dichloropropane	ND		1.0	ug/L			07/31/14 14:35	1
1,1-Dichloropropene	NĐ		0.50	ug/L			07/31/14 14:35	1
1,2-Dibromo-3-Chloropropane	ND		1.0	ug/L			07/31/14 14:35	1
Ethylene Dibromide	ND		0.50	ug/L			07/31/14 14:35	1
Dibromomethane	ND		0.50	ug/L			07/31/14 14:35	1
Dichlorodifluoromethane	ND		0.50	ug/L			07/31/14 14:35	1
1,1-Dichloroethane	ND		0.50	ug/L			07/31/14 14:35	1
1,2-Dichloroethane	ND		0.50	ug/L			07/31/14 14:35	1
1,1-Dichloroethene	ND		0.50	ug/L			07/31/14 14:35	1
cis=1,2-Dichloroethene	ND		0.50	ug/L			07/31/14 14:35	1
trans-1,2-Dichlereethene	ND		0.50	ug/L			07/31/14 14:35	1
1,2-Dichloropropane	ND		0.50	ug/L			07/31/14 14:35	1
cis=1,3-Dichloropropene	ND		0.50	ug/L			07/31/14 14:35	1
trans=1,3-Diehloropropene	ND		0.50	ug/L			07/31/14 14:35	1
Ethylbenzene	ND		0.50	ug/L			07/31/14 14:35	1
Hexachlorobutadiene	ND		1.0	ug/L			07/31/14 14:35	1
2-Hexanone	ND		50	ug/L			07/31/14 14:35	1

Page 9 of 30

TestAmerica Pleasanton

Client: AMEC Environment & Infrastructure, Inc. Project/Site: Crown Chevrolet Cadillac Isuzu

Client Sample ID: MP-04-3

Date Collected: 07/30/14 08:05

TestAmerica Job ID: 720-58973-1

Lab Sample ID: 720-58973-3

Matrix: Water

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

ND

ND

ND

Date Received: 07/30/14 15:55 Analyte	Result	Qualifier	RL	MDL Unit	. D	Prepared	Analyzed	Dil Fac
Isopropylbenzene	ND		0.50	ug/L	•		07/31/14 14:35	1
4-Isopropyltoluene	ND		1.0	ug/L			07/31/14 14:35	1
Methylene Chloride	ND		5.0	ug/L			07/31/14 14:35	1
4-Methyl-2-pentanone (MIBK)	ND		50	ug/L			07/31/14 14:35	1
Naphthalene	ND		1.0	ug/L			07/31/14 14:35	1
N-Propylbenzene	ND		1.0	ug/L			07/31/14 14:35	1
Styrene	ND		0.50	ug/L			07/31/14 14:35	1
1,1,1,2-Tetrachloroethane	ND		0.50	ug/L			07/31/14 14:35	1
1,1,2,2-Tetrachloroethane	ND		0.50	ug/L			07/31/14 14:35	1
Tetrachloroethene	ND		0.50	ug/L			07/31/14 14:35	1
Toluene	ND		0.50	ug/L			07/31/14 14:35	1
1,2,3-Trichlorobenzene	ND		1.0	ug/L			07/31/14 14:35	1
1,2,4-Trichlorobenzene	ND		1.0	ug/L			07/31/14 14:35	1
1,1,1-Trichloroethane	ND		0.50	ug/L			07/31/14 14:35	1
1,1,2-Trichloroethane	ND		0.50	ug/L			07/31/14 14:35	1
Trichloroethene	ND		0.50	ug/L			07/31/14 14:35	1
Trichlorofluoromethane	ND		1.0	ug/L			07/31/14 14:35	1
1,2,3-Trichloropropane	ND		0.50	ug/L			07/31/14 14:35	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50	ug/L			07/31/14 14:35	1
1,2,4-Trimethylbenzene	ND		0.50	ug/L			07/31/14 14:35	1
1,3,5-Trimethylbenzene	ND		0.50	ug/L			07/31/14 14:35	1
Vinyl acetate	ND		10	ug/L			08/01/14 16:14	1
Vinyl chloride	ND		0.50	ug/L			07/31/14 14:35	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	102		67 - 130	Marie Comment of the	07/31/14 14:35	1
4-Bromofluorobenzene	100		67 - 130		08/01/14 16:14	1
1,2-Dichloroethane-d4 (Surr)	105		72 - 130		07/31/14 14:35	1
1,2-Dichloroethane-d4 (Surr)	109		72 - 130		08/01/14 16:14	1
Toluene-d8 (Surr)	102		70 - 130		07/31/14 14:35	1
Toluene-d8 (Surr)	100		70 - 130		08/01/14 16:14	1

1.0

0.50

50

ug/L

ug/L

ug/L

Client Sample ID: TB073014-1
Date Collected: 07/30/14 07:30

Xylenes, Total

-C5-C12

2,2-Dichloropropane

Gasoline Range Organics (GRO)

Lab Sample ID: 720-58973-4 Matrix: Water

07/31/14 14:35

07/31/14 14:35

07/31/14 14:35

1

Date Received: 07/30/14 15:55 Analyte	Result	Qualifier	RL	MDL Unit	t D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND		0.50	ug/L	_		07/31/14 11:14	1
Acetone	ND		50	ug/L			07/31/14 11:14	1
Benzene	ND		0.50	ug/L			07/31/14 11:14	1
Dichlorobromomethane	ND		0.50	ug/L			07/31/14 11:14	1
Bromobenzene	ND		1.0	ug/L			07/31/14 11:14	1
Chlorobromomethane	ND		1.0	ug/L			07/31/14 11:14	1
Bromoform	ND		1.0	ug/L			07/31/14 11:14	1
Bromomethane	ND		1.0	ug/L			07/31/14 11:14	1
2-Butanone (MEK)	ND		50	ug/L			07/31/14 11:14	1
n-Butylbenzene	ND		1.0	ug/L			07/31/14 11:14	1

TestAmerica Pleasanton

Client: AMEC Environment & Infrastructure, Inc. Project/Site: Crown Chevrolet Cadillac Isuzu

TestAmerica Job ID: 720-58973-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Client Sample ID: TB073014-1 Date Collected: 07/30/14 07:30 Lab Sample ID: 720-58973-4

Matrix: Water

Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
sec-Butylbenzene	ND		1.0	ug/L			07/31/14 11:14	1
tert-Butylbenzene	ND		1.0	ug/L			07/31/14 11:14	1
Carbon disulfide	ND		5.0	ug/L			07/31/14 11:14	1
Carbon tetrachloride	ND		0.50	ug/L			07/31/14 11:14	1
Chlorobenzene	ND		0.50	ug/L			07/31/14 11:14	1
Chloroethane	ND		1.0	ug/L			07/31/14 11:14	1
Chloroform	ND		1.0	ug/L			07/31/14 11:14	1
Chloromethane	ND		1.0	ug/L			07/31/14 11:14	1
2-Chlorotoluene	ND		0.50	ug/L			07/31/14 11:14	1
4-Chlorotoluene	ND		0.50	ug/L			07/31/14 11:14	1
Chlorodibromomethane	ND		0.50	ug/L			07/31/14 11:14	1
1,2-Dichlorobenzene	ND		0.50	ug/L			07/31/14 11:14	1
1,3-Dichlorobenzene	ND		0.50	ug/L			07/31/14 11:14	1
1,4-Dichlorobenzene	ND		0.50	ug/L			07/31/14 11:14	1
1,3-Dichloropropane	ND		1.0	ug/L			07/31/14 11:14	1
1.1-Dichloropropene	ND		0.50	ug/L			07/31/14 11:14	1
1,2-Dibromo-3-Chloropropane	ND		1.0	ug/L			07/31/14 11:14	1
Ethylene Dibromide	ND		0.50	ug/L			07/31/14 11:14	1
Dibromomethane	ND		0.50	ug/L			07/31/14 11:14	1
Dichlorodifluoromethane	ND		0.50	ug/L			07/31/14 11:14	1
1.1-Dichloroethane	ND		0.50	ug/L			07/31/14 11:14	1
1.2-Dichloroethane	ND		0.50	ug/L			07/31/14 11:14	1
1,1-Dichloroethene	ND		0.50	ug/L			07/31/14 11:14	1
cis-1,2-Dichloroethene	ND		0,50	ug/L			07/31/14 11:14	1
trans-1,2-Dichloroethene	ND		0.50	ug/L			07/31/14 11:14	1
1,2-Dichloropropane	ND		0.50	ug/L			07/31/14 11:14	1
cis-1,3-Dichloropropene	ND		0.50	ug/L			07/31/14 11:14	1
trans-1,3-Dichloropropene	ND		0.50	ug/L			07/31/14 11:14	1
Ethylbenzene	ND		0.50	ug/L			07/31/14 11:14	1
Hexachlorobutadiene	ND		1.0	ug/L			07/31/14 11:14	1
2-Hexanone	ND		50	ug/L			07/31/14 11:14	1
Isopropylbenzene	ND		0.50	ug/L			07/31/14 11:14	1
4-Isopropyltoluene	ND		1.0	ug/L			07/31/14 11:14	- 1
Methylene Chloride	ND		5.0	ug/L			07/31/14 11:14	1
4-Methyl-2-pentanone (MIBK)	ND		50	ug/L			07/31/14 11:14	1
Naphthalene	ND		1.0	ug/L			07/31/14 11:14	1
N-Propylbenzene	ND		1.0	ug/L			07/31/14 11:14	1
Styrene	ND		0.50	ug/L			07/31/14 11:14	4
	ND		0.50	ug/L			07/31/14 11:14	4
1,1,1,2-Tetrachloroethane	ND		0.50	ug/L			07/31/14 11:14	1
1,1,2,2-Tetrachloroethane			0.50				07/31/14 11:14	-
Tetrachloroethene	ND			ug/L			07/31/14 11:14	1
Toluene	ND		0.50	ug/L			07/31/14 11:14	4
1,2,3-Trichlorobenzene	ND		1.0	ug/L			07/31/14 11:14	A
1,2,4-Trichlorobenzene	ND			ug/L				1
1,1,1=Trichloroethane	ND		0.50	ug/L			07/31/14 11:14	1
1,1,2-Trichloroethane	ND		0.50	ug/L			07/31/14 11:14	1
Trichloroethene	ND		0.50	ug/L			07/31/14 11:14	1
Trichlorofluoromethane	ND ND		1.0 0.50	ug/L ug/L			07/31/14 11:14 07/31/14 11:14	1

TestAmerica Pleasanton

Page 11 of 30

Client: AMEC Environment & Infrastructure, Inc. Project/Site: Crown Chevrolet Cadillac Isuzu

TestAmerica Job ID: 720-58973-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Client Sample ID: TB073014-1 Date Collected: 07/30/14 07:30 Lab Sample ID: 720-58973-4 **Matrix: Water**

Da	te conceted. or sor 14	01.00
Da	te Received: 07/30/14	15:55
Ana	alyte	
4.4	2 Triphlare 1 2 2 trifluoreethe	200

Analyte	Result	Qualifier	RL	MDL	Unit		D	Prepared	Analyzed	Dil Fac
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50		ug/L	9			07/31/14 11:14	1
1,2,4-Trimethylbenzene	ND		0.50		ug/L				07/31/14 11:14	1
1,3,5-Trimethylbenzene	ND		0.50		ug/L				07/31/14 11:14	1
Vinyl acetate	ND		10		ug/L				08/01/14 16:43	1
Vinyl chloride	ND		0.50		ug/L				07/31/14 11:14	1
Xylenes, Total	ND		1.0		ug/L				07/31/14 11:14	1
2,2-Dichloropropane	ND		0.50		ug/L				07/31/14 11:14	1
Gasoline Range Organics (GRO) -C5-C12	ND		50		ug/L				07/31/14 11:14	1

Surrogate	%Recovery Qualifier	Limits	Prepared Ana	alyzed D	Dil Fac
4-Bromofluorobenzene	101	67 - 130	07/31/	14 11:14	1
4-Bromofluorobenzene	99	67 - 130	08/01/	14 16:43	1
1,2-Dichloroethane-d4 (Surr)	102	72 - 130	07/31/	14 11:14	1
1,2-Dichloroethane-d4 (Surr)	107	72 - 130	08/01/	14 16:43	1
Toluene-d8 (Surr)	100	70 - 130	07/31/	14 11:14	1
Toluene-d8 (Surr)	100	70 - 130	08/01/	14 16:43	1

Client Sample ID: TB073014-2 Date Collected: 07/30/14 07:25 Lab Sample ID: 720-58973-5 **Matrix: Water**

Date Received: 07/30/14 15:55						
Analyte	Result Qualifier	RL	MDL Unit	D Prepare		Dil Fac
Methyl tert-butyl ether	ND	0.50	ug/L		07/31/14 11:43	1
Acetone	ND	50	ug/L		07/31/14 11:43	1
Benzene	ND	0.50	ug/L		07/31/14 11:43	1
Dichlorobromomethane	ND	0.50	ug/L		07/31/14 11:43	1
Bromobenzene	ND	1.0	ug/L		07/31/14 11:43	1
Chlorobromomethane	ND	1.0	ug/L		07/31/14 11:43	1
Bromoform	ND	1.0	ug/L		07/31/14 11:43	1
Bromomethane	ND	1.0	ug/L		07/31/14 11:43	1
2-Butanone (MEK)	ND	50	ug/L		07/31/14 11:43	1
n-Butylbenzene	ND	1.0	ug/L		07/31/14 11:43	1
sec-Butylbenzene	ND	1.0	ug/L		07/31/14 11:43	1
tert-Butylbenzene	ND	1.0	ug/L		07/31/14 11:43	1
Carbon disulfide	ND	5.0	ug/L		07/31/14 11:43	1
Carbon tetrachloride	ND	0.50	ug/L		07/31/14 11:43	1
Chlorobenzene	ND	0.50	ug/L		07/31/14 11:43	1
Chloroethane	ND	1.0	ug/L		07/31/14 11:43	1
Chloroform	ND	1.0	ug/L		07/31/14 11:43	1
Chloromethane	ND	1.0	ug/L		07/31/14 11:43	1
2-Chlorotoluene	ND	0.50	ug/L		07/31/14 11:43	1
4-Chlorotoluene	ND	0.50	ug/L		07/31/14 11:43	1
Chlorodibromomethane	ND	0.50	ug/L		07/31/14 11:43	1
1,2-Dichlorobenzene	ND	0.50	ug/L		07/31/14 11:43	1
1,3-Dichlorobenzene	ND	0.50	ug/L		07/31/14 11:43	1
1,4-Dichlorobenzene	ND	0.50	ug/L		07/31/14 11:43	1
1,3-Dichloropropane	ND	1.0	ug/L		07/31/14 11:43	1
1,1-Dichloropropene	ND	0.50	ug/L		07/31/14 11:43	1
1,2-Dibromo-3-Chloropropane	ND	1.0	ug/L		07/31/14 11:43	1
Ethylene Dibromide	ND	0.50	ug/L		07/31/14 11:43	1

TestAmerica Pleasanton

Client: AMEC Environment & Infrastructure, Inc. Project/Site: Crown Chevrolet Cadillac Isuzu

TestAmerica Job ID: 720-58973-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Client Sample ID: TB073014-2 Date Collected: 07/30/14 07:25 Date Received: 07/30/14 15:55

Lab Sample ID: 720-58973-5

М	a	tr	IX:	V	٧a

Analyte	Result	Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
Dibromomethane	ND		0.50	ug/L		07/31/14 11:43	1
Dichlorodifluoromethane	ND		0.50	ug/L		07/31/14 11:43	1
1,1-Dichloroethane	ND		0.50	ug/L		07/31/14 11:43	1
1,2-Dichloroethane	ND		0.50	ug/L		07/31/14 11:43	1
1,1-Dichloroethene	ND		0.50	ug/L		07/31/14 11:43	1
cis-1,2-Dichloroethene	ND		0.50	ug/L		07/31/14 11:43	1
trans-1,2-Dichloroethene	ND		0.50	ug/L		07/31/14 11:43	1
1,2-Dichloropropane	ND		0.50	ug/L		07/31/14 11:43	1
cis-1,3-Dichloropropene	ND		0.50	ug/L		07/31/14 11:43	1
trans-1,3-Dichloropropene	ND		0.50	ug/L		07/31/14 11:43	1
Ethylbenzene	ND		0.50	ug/L		07/31/14 11:43	1
Hexachlorobutadiene	ND		1.0	ug/L		07/31/14 11:43	1
2-Hexanone	ND		50	ug/L		07/31/14 11:43	1
Isopropylbenzene	ND		0.50	ug/L		07/31/14 11:43	1
4-Isopropyltoluene	ND		1.0	ug/L		07/31/14 11:43	1
Methylene Chloride	ND		5.0	ug/L		07/31/14 11:43	1
4-Methyl-2-pentanone (MIBK)	ND		50	ug/L		07/31/14 11:43	1
Naphthalene	ND		1.0	ug/L		07/31/14 11:43	1
N-Propylbenzene	ND		1.0	ug/L		07/31/14 11:43	1
Styrene	ND		0.50	ug/L		07/31/14 11:43	1
1,1,1,2-Tetrachloroethane	ND		0.50	ug/L		07/31/14 11:43	1
1,1,2,2-Tetrachloroethane	ND		0.50	ug/L		07/31/14 11:43	1
Tetrachloroethene	ND		0.50	ug/L		07/31/14 11:43	1
Toluene	ND		0.50	ug/L		07/31/14 11:43	1
1,2,3-Trichlorobenzene	ND		1.0	ug/L		07/31/14 11:43	1
1,2,4-Trichlorobenzene	ND		1.0	ug/L		07/31/14 11:43	1
1,1,1-Trichloroethane	ND		0.50	ug/L		07/31/14 11:43	1
1,1,2-Trichloroethane	ND		0.50	ug/L		07/31/14 11:43	1
Trichloroethene	ND		0.50	ug/L		07/31/14 11:43	1
Trichlorofluoromethane	ND		1.0	ug/L		07/31/14 11:43	1
1,2,3-Trichloropropane	ND		0.50	ug/L		07/31/14 11:43	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50	ug/L		07/31/14 11:43	1
1,2,4-Trimethylbenzene	ND		0.50	ug/L		07/31/14 11:43	1
1,3,5-Trimethylbenzene	ND		0.50	ug/L		07/31/14 11:43	1
Vinyl acetate	ND		10 %	ug/L		08/01/14 17:12	1
Vinyl chloride	ND		0.50	ug/L		07/31/14 11:43	1
Xylenes, Total	ND		1.0	ug/L		07/31/14 11:43	1
2,2-Dichloropropane	ND		0.50	ug/L		07/31/14 11:43	1
Gasoline Range Organics (GRO) -C5-C12	ND		50	ug/L		07/31/14 11:43	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	101		67 - 130		07/31/14 11:43	1
4-Bromofluorobenzene	100		67 - 130		08/01/14 17:12	1
1,2-Dichloroethane-d4 (Surr)	103		72 - 130		07/31/14 11:43	1
1,2-Dichloroethane-d4 (Surr)	106		72 - 130		08/01/14 17:12	1
Toluene-d8 (Surr)	101		70 - 130		07/31/14 11:43	1
Toluene-d8 (Surr)	100		70 - 130		08/01/14 17:12	1

TestAmerica Pleasanton

Page 13 of 30

QC Sample Results

Client: AMEC Environment & Infrastructure, Inc. Project/Site: Crown Chevrolet Cadillac Isuzu

TestAmerica Job ID: 720-58973-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS

MB MB

ND

Lab Sample ID: MB 720-164110/4

Matrix: Water

Chlorobenzene

Chloroethane

Chloromethane

2-Chlorotoluene

4-Chlorotoluene

Chlorodibromomethane

1,2-Dichlorobenzene

1,3-Dichlorobenzene

1.4-Dichlorobenzene

1,3-Dichloropropane

1,1-Dichloropropene

Ethylene Dibromide

1,1-Dichloroethane

1,2-Dichloroethane 1,1-Dichloroethene

cis-1,2-Dichloroethene

1,2-Dichloropropane

Ethylbenzene Hexachlorobutadiene

2-Hexanone

Naphthalene

Styrene

N-Propylbenzene

Isopropylbenzene

4-Isopropyltoluene

Methylene Chloride 4-Methyl-2-pentanone (MIBK)

trans-1,2-Dichloroethene

cis-1,3-Dichloropropene trans-1,3-Dichloropropene

Dichlorodifluoromethane

Dibromomethane

1,2-Dibromo-3-Chloropropane

Chloroform

Analysis Batch: 164110

Client Sample ID: Method Blank

Prep Type: Total/NA

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND		0.50		ug/L			07/31/14 08:51	1
Acetone	ND		50		ug/L			07/31/14 08:51	1
Benzene	ND		0.50		ug/L			07/31/14 08:51	1
Dichlorobromomethane	ND		0.50		ug/L			07/31/14 08:51	1
Bromobenzene	ND		1.0		ug/L			07/31/14 08:51	1
Chlorobromomethane	ND		1.0		ug/L			07/31/14 08:51	1
Bromoform	ND		1.0		ug/L			07/31/14 08:51	1
Bromomethane	ND		1.0		ug/L			07/31/14 08:51	1
2-Butanone (MEK)	ND		50		ug/L			07/31/14 08:51	1
n-Butylbenzene	ND		1.0		ug/L			07/31/14 08:51	1
sec-Butylbenzene	ND		1.0		ug/L			07/31/14 08:51	1
tert-Butylbenzene	ND		1.0		ug/L			07/31/14 08:51	1
Carbon disulfide	ND		5.0		ug/L			07/31/14 08:51	1
Carbon tetrachloride	ND		0.50		ug/L			07/31/14 08:51	1

07/31/14 08:51 0.50 ug/L 1.0 ug/L 07/31/14 08:51 07/31/14 08:51 1.0 ug/L ug/L 07/31/14 08:51 1.0 07/31/14 08:51 0.50 ug/L 07/31/14 08:51 0:50 ug/L 07/31/14 08:51 0.50 ug/L 07/31/14 08:51 0.50 ug/L 0.50 ug/L 07/31/14 08:51 0.50 ug/L 07/31/14 08:51 07/31/14 08:51 1.0 ug/L 0.50 ug/L 07/31/14 08:51 07/31/14 08:51 1.0 ug/L ug/L 07/31/14 08:51 0.50 07/31/14 08:51 0.50 ug/L 0.50 ug/L 07/31/14 08:51

ug/L

TestAmerica Pleasanton

07/31/14 08:51

07/31/14 08:51

07/31/14 08:51

07/31/14 08:51

07/31/14 08:51

07/31/14 08:51

07/31/14 08:51

07/31/14 08:51

07/31/14 08:51

07/31/14 08:51

07/31/14 08:51

07/31/14 08:51

07/31/14 08:51

07/31/14 08:51

07/31/14 08:51

07/31/14 08:51

07/31/14 08:51

07/31/14 08:51

8/6/2014

1

1

Page 14 of 30

0.50

0.50

0.50

0.50

0.50

0.50

0.50

0.50

0.50

1.0

50

0.50

1.0

5.0

50

10

1.0

0.50

QC Sample Results

Client: AMEC Environment & Infrastructure, Inc. Project/Site: Crown Chevrolet Cadillac Isuzu

TestAmerica Job ID: 720-58973-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: MB 720-164110/4

Matrix: Water

Analysis Batch: 164110

Client Sample ID: Method Blank

Prep Type: Total/NA

Analysis Batch. 104110	МВ	МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND		0.50		ug/L			07/31/14 08:51	1
1,1,2,2-Tetrachloroethane	ND		0.50		ug/L			07/31/14 08:51	1
Tetrachloroethene	ND		0.50		ug/L			07/31/14 08:51	1
Toluene	ND		0.50		ug/L			07/31/14 08:51	1
1,2,3-Trichlorobenzene	ND		1.0		ug/L			07/31/14 08:51	1
1,2,4-Trichlorobenzene	ND		1.0		ug/L			07/31/14 08:51	1
1,1,1-Trichloroethane	ND		0.50		ug/L			07/31/14 08:51	1
1,1,2-Trichloroethane	ND		0.50		ug/L			07/31/14 08:51	1
Trichloroethene	ND		0.50		ug/L			07/31/14 08:51	1
Trichlorofluoromethane	ND		1.0		ug/L			07/31/14 08:51	1
1,2,3-Trichloropropane	ND		0.50		ug/L			07/31/14 08:51	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50		ug/L			07/31/14 08:51	1
1,2,4-Trimethylbenzene	ND		0.50		ug/L			07/31/14 08:51	1
1,3,5-Trimethylbenzene	ND		0.50		ug/L			07/31/14 08:51	1
Vinyl chloride	ND		0.50		ug/L			07/31/14 08:51	1
Xylenes, Total	ND		1.0		ug/L			07/31/14 08:51	1
2,2-Dichloropropane	ND		0.50		ug/L			07/31/14 08:51	1
Gasoline Range Organics (GRO) -C5-C12	ND		50		ug/L			07/31/14 08:51	1

MB MB

Surrogate	%Recovery Qualifier	Limits	Prepared Analyzed	Dil Fac
4-Bromofluorobenzene	99	67 - 130	07/31/14 08:5	i1 1
1,2-Dichloroethane-d4 (Surr)	100	72 - 130	07/31/14 08:5	i1 1
Toluene-d8 (Surr)	100	70 - 130	07/31/14 08:5	51 1

Lab Sample ID: LCS 720-164110/5

Matrix: Water

Analysis Batch: 164110

Client Sample ID	: Lab Control Sample
	Prep Type: Total/NA

Analysis Batch: 164110							
	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Methyl tert-butyl ether	25.0	24.8		ug/L		99	62 - 130
Acetone	125	122		ug/L		98	26 - 180
Benzene	25.0	25.7		ug/L		103	79 - 130
Dichlorobromomethane	25.0	24.8		ug/L		99	70 - 130
Bromobenzene	25.0	24.6		ug/L		98	70 - 130
Chlorobromomethane	25.0	24.4		ug/L		98	70 - 130
Bromoform	25.0	25.7		ug/L		103	68 - 136
Bromomethane	25.0	21.8		ug/L		87	43 - 151
2-Butanone (MEK)	125	123		ug/L		99	54 - 130
n-Butylbenzene	25.0	28.2		ug/L		113	70 - 142
sec-Butylbenzene	25.0	27.4		ug/L		110	70 - 134
tert-Butylbenzene	25.0	26.7		ug/L		107	70 - 135
Carbon disulfide	25.0	25.8		ug/L		103	58 - 130
Carbon tetrachloride	25.0	25.0		ug/L		100	70 - 146
Chlorobenzene	25.0	25.2		ug/L		101	70 - 130
Chloroethane	25.0	21.9		ug/L		88	62 - 138
Chloroform	25.0	24.8		ug/L		99	70 - 130
Chloromethane	25.0	22.3		ug/L		89	52 - 175

TestAmerica Pleasanton

Page 15 of 30

Client: AMEC Environment & Infrastructure, Inc. Project/Site: Crown Chevrolet Cadillac Isuzu

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: LCS 720-164110/5

Matrix: Water

Analysis Batch: 164110

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS	LCS		%Rec.	
Analyte	Added	Result	Qualifier Unit	D %Rec	Limits	
2-Chlorotoluene	25.0	27.1	ug/L	109	70 - 130	
4-Chlorotoluene	25.0	27.2	ug/L	109	70 - 130	
Chlorodibromomethane	25.0	25.0	ug/L	100	70 _ 145	
1,2-Dichlorobenzene	25.0	24.8	ug/L	99	70 - 130	
1,3-Dichlorobenzene	25.0	25.3	ug/L	101	70 - 130	
1,4-Dichlorobenzene	25.0	25.2	ug/L	101	70 - 130	
1,3-Dichloropropane	25.0	25.3	ug/L	101	70 - 130	
1,1-Dichloropropene	25.0	27.7	ug/L	111	70 - 130	
1,2-Dibromo-3-Chloropropane	25.0	27.0	ug/L	108	70 _ 136	
Ethylene Dibromide	25.0	25.4	ug/L	102	70 - 130	
Dibromomethane	25.0	24.9	ug/L	100	70 - 130	
Dichlorodifluoromethane	25.0	21.0	ug/L	84	34 - 132	
1,1-Dichloroethane	25.0	25.9	ug/L	104	70 - 130	
1,2-Dichloroethane	25.0	24.6	ug/L	98	61 - 132	
1,1-Dichloroethene	25.0	22.1	ug/L	88	64 - 128	
cis-1,2-Dichloroethene	25.0	25.9	ug/L	104	70 - 130	
trans-1,2-Dichloroethene	25.0	24.7	ug/L	99	68 - 130	
1,2-Dichloropropane	25.0	26.1	ug/L	104	70 - 130	
cis-1,3-Dichloropropene	25.0	26.8	ug/L	107	70 - 130	
trans-1,3-Dichloropropene	25.0	28.9	ug/L	116	70 - 140	
Ethylbenzene	25.0	26.1	ug/L	104	80 - 120	
Hexachlorobutadiene	25.0	25.1	ug/L	100	70 - 130	
2-Hexanone	125	135	ug/L	108	60 _ 164	
Isopropylbenzene	25.0	26.4	ug/L	105	70 - 130	
4-Isopropyltoluene	25.0	26.5	ug/L	106	70 - 130	
Methylene Chloride	25.0	24.2	ug/L	97	70 - 147	
4-Methyl-2-pentanone (MIBK)	125	138	ug/L	110	58 - 130	
Naphthalene	25.0	27.4	ug/L	110	70 - 130	
N-Propylbenzene	25.0	28.0	ug/L	112	70 - 130	
Styrene	25.0	26.1	ug/L	104	70 - 130	
1,1,1,2-Tetrachioroethane	25.0	24.4	ug/L	97	70 - 130	
1,1,2,2-Tetrachloroethane	25.0	27.4	ug/L	110	70 - 130	
Tetrachloroethene	25.0	24.2	ug/L	97	70 - 130	
Toluene	25.0	25.7	ug/L	103	78 - 120	
1,2,3-Trichlorobenzene	25.0	24.6	ug/L	99	70 - 130	
1,2,4-Trichlorobenzene	25.0	25.4	ug/L	102	70 - 130	
1,1,1-Trichloroethane	25.0	26.4	ug/L	105	70 - 130	
1,1,2-Trichloroethane	25.0	25.5	ug/L	102	70 - 130	
Trichloroethene	25.0	24.3	ug/L	97	70 - 130	
Trichlorofluoromethane	25.0	26.1	ug/L	104	66 - 132	
	25.0	26.7		107	70 - 130	
1,2,3-Trichloropropane	25.0	22.9	ug/L	91	42 - 162	
1,1,2-Trichloro-1,2,2-trifluoroetha	25.0	22.9	ug/L	51	72 - 102	
ne 1,2,4-Trimethylbenzene	25.0	27.0	ug/L	108	70 - 132	
1,3,5-Trimethylbenzene	25.0	27.5	ug/L	110	70 - 130	
Vinyl chloride	25.0	21.4	ug/L	86	54 - 135	
m-Xylene & p-Xylene	25.0	26.4	ug/L	106	70 - 142	
o-Xylene	25.0	26.6	ug/L	106	70 - 130	

QC Sample Results

Client: AMEC Environment & Infrastructure, Inc. Project/Site: Crown Chevrolet Cadillac Isuzu

TestAmerica Job ID: 720-58973-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: LCS 720-164110/5	Client Sample ID: Lab Control Sample
Matrix: Water	Prep Type: Total/NA
Analysis Batch: 164110	

 Spike
 LCS
 LCS
 LCS
 %Rec.

 Analyte
 Added
 Result
 Qualifier
 Unit
 D
 %Rec
 Limits

 2,2-Dichloropropane
 25.0
 29.8
 ug/L
 119
 70 - 140

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	104		67 - 130
1,2-Dichloroethane-d4 (Surr)	95		72 - 130
Toluene-d8 (Surr)	101		70 - 130

Lab Sample ID: LCS 720-164110/7

Matrix: Water

Analysis Batch: 164110

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics (GRO)	500	556		ug/L		111	62 - 120	
CE C13								

 Surrogate
 %Recovery
 Qualifier
 Limits

 4-Bromofluorobenzene
 104
 67 - 130

 1,2-Dichloroethane-d4 (Surr)
 100
 72 - 130

 Toluene-d8 (Surr)
 101
 70 - 130

Lab Sample ID: LCSD 720-164110/6

Matrix: Water

Analysis Batch: 164110

Client Sample ID: Lab	Control Sample Dup
	Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Analysis Batch: 164110									-
	Spike		LCSD				%Rec.		RPD
Analyte	Added	10007-01100	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Methyl tert-butyl ether	25.0	23.3		ug/L		93	62 - 130	6	20
Acetone	125	110		ug/L		88	26 - 180	10	30
Benzene	25.0	25.6		ug/L		102	79 - 130	0	20
Dichlorobromomethane	25.0	24.4		ug/L		98	70 - 130	2	20
Bromobenzene	25.0	24.3		ug/L		97	70 - 130	1	20
Chlorobromomethane	25.0	23.8		ug/L		95	70 - 130	3	20
Bromoform	25.0	24.1		ug/L		97	68 - 136	6	20
Bromomethane	25.0	21.2		ug/L		85	43 - 151	3	20
2-Butanone (MEK)	125	111		ug/L		89	54 - 130	10	20
n-Butylbenzene	25.0	28.6		ug/L		114	70 - 142	1	20
sec-Butylbenzene	25.0	27.4		ug/L		109	70 - 134	0	20
tert-Butylbenzene	25.0	26.4		ug/L		106	70 - 135	1	20
Carbon disulfide	25.0	25.8		ug/L		103	58 - 130	0	20
Carbon tetrachloride	25.0	24.9		ug/L		99	70 - 146	0	20
Chlorobenzene	25.0	25.0		ug/L		100	70 - 130	1	20
Chloroethane	25.0	21.5		ug/L		86	62 - 138	2	20
Chloroform	25.0	24.7		ug/L		99	70 - 130	0	20
Chloromethane	25.0	22.1		ug/L		88	52 - 175	1	20
2-Chlorotoiuene	25.0	27.3		ug/L		109	70 - 130	1	20
4-Chlorotoiuene	25.0	27.4		ug/L		110	70 - 130	1	20
Chlorodibromomethane	25.0	24.0		ug/L		96	70 - 145	4	20
1,2-Dichlorobenzene	25.0	24.6		ug/L		98	70 - 130	1	20
1,3-Dichlorobenzene	25.0	25.3		ug/L		101	70 - 130	0	20

TestAmerica Pleasanton

Page 17 of 30

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: LCSD 720-164110/6

Matrix: Water

Analysis Batch: 164110

Client Sample ID: Lab Control Sample Dup

itt Garripio ina.s	outside outside out	
	Prep Type: Total/NA	

, many one Dates in the terms	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,4-Dichlorobenzene	25.0	25.1		ug/L		100	70 - 130	0	20
1,3-Dichloropropane	25.0	24.6		ug/L		98	70 - 130	3	20
1,1-Dichloropropene	25.0	27.5		ug/L		110	70 - 130	1	20
1,2-Dibromo-3-Chloropropane	25.0	24.3		ug/L		97	70 - 136	10	20
Ethylene Dibromide	25.0	24.2		ug/L		97	70 - 130	5	20
Dibromomethane	25.0	23.9		ug/L		96	70 - 130	4	20
Dichlorodifluoromethane	25.0	20.7		ug/L		83	34 - 132	1	20
1,1-Dichloroethane	25.0	25.9		ug/L		104	70 - 130	0	20
1,2-Dichloroethane	25.0	24.0		ug/L		96	61 - 132	2	20
1,1-Dichloroethene	25.0	21.9		ug/L		88	64 - 128	1	20
cis-1,2-Dichloroethene	25.0	25.5		ug/L		102	70 - 130	1	20
trans-1,2-Dichloroethene	25.0	24.8		ug/L		99	68 - 130	1	20
1,2-Dichloropropane	25.0	25.7		ug/L		103	70 - 130	1	20
cis-1,3-Dichloropropene	25.0	26.4		ug/L		105	70 - 130	2	20
trans-1,3-Dichloropropene	25.0	28.2		ug/L		113	70 - 140	3	20
Ethylbenzene	25.0	26.1		ug/L		105	80 - 120	0	20
Hexachlorobutadiene	25.0	25.9		ug/L		104	70 _ 130	3	20
2-Hexanone	125	115		ug/L		92	60 - 164	16	20
Isopropylbenzene	25.0	26.4		ug/L		106	70 - 130	0	20
4-Isopropyltoluene	25.0	26.6		ug/L		106	70 - 130	0	20
Methylene Chloride	25.0	23.9		ug/L		96	70 - 147	1	20
4-Methyl-2-pentanone (MIBK)	125	119		ug/L		95	58 - 130	15	20
Naphthalene	25.0	26.3		ug/L		105	70 _ 130	4	20
N-Propylbenzene	25.0	28.0		ug/L		112	70 - 130	0	20
Styrene	25.0	26.2		ug/L		105	70 - 130	0	20
1,1,1,2-Tetrachloroethane	25.0	24.0		ug/L		96	70 - 130	2	20
1,1,2,2-Tetrachloroethane	25.0	25.3		ug/L		101	70 - 130	8	20
Tetrachloroethene	25.0	24.1		ug/L		96	70 - 130	1	20
Toluene	25.0	25.9		ug/L		104	78 - 120	1	20
1,2,3-Trichlorobenzene	25.0	24.3		ug/L		97	70 - 130	1	20
1,2,4-Trichlorobenzene	25.0	26.0		ug/L		104	70 - 130	2	20
1,1,1-Trichloroethane	25.0	26.5		ug/L		106	70 - 130	0	20
1,1,2-Trichloroethane	25.0	24.4		ug/L		98	70 _ 130	5	20
Trichloroethene	25.0	24.2		ug/L		97	70 - 130	0	20
Trichlorofluoromethane	25.0	25.8		ug/L		103	66 - 132	_ 1	20
1,2,3-Trichloropropane	25.0	24.4		ug/L		98	70 - 130	9	20
1,1,2-Trichloro-1,2,2-trifluoroetha	25.0	22.3		ug/L		89	42 - 162	2	20
1,2,4-Trimethylbenzene	25.0	26.8		ug/L		107	70 - 132	0	20
1,3,5-Trimethylbenzene	25.0	27.5		ug/L		110	70 - 130	0	20
Vinyl chloride	25.0	21.1		ug/L		84	54 - 135	2	20
m-Xylene & p-Xylene	25.0	26.4		ug/L		106	70 - 142	0	20
o-Xylene	25.0	26.4		ug/L		106	70 - 130	1	20
2,2-Dichloropropane	25.0	30.6		ug/L		122	70 - 140	3	20

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	104		67 - 130
1.2-Dichloroethane-d4 (Surr)	95		72 - 130

QC Sample Results

Client: AMEC Environment & Infrastructure, Inc. Project/Site: Crown Chevrolet Cadillac Isuzu

TestAmerica Job ID: 720-58973-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: LCSD 720-164110/6

Lab Sample ID: LCSD 720-164110/8

Matrix: Water

Analysis Batch: 164110

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

LCSD LCSD

 Surrogate
 %Recovery
 Qualifier
 Limits

 Toluene-d8 (Surr)
 100
 70 - 130

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Matrix: Water

Analysis Batch: 164110

	Spike	LCSD	LCSD				%Rec.		RPD	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Gasoline Range Organics (GRO)	500	561		ug/L		112	62 - 120	1	20	

-C5-C12

 Surrogate
 %Recovery
 Qualifier
 Limits

 4-Bromofluorobenzene
 106
 67 - 130

 1,2-Dichloroethane-d4 (Surr)
 100
 72 - 130

 Toluene-d8 (Surr)
 101
 70 - 130

Lab Sample ID: 720-58974-A-3 MS

Matrix: Water

Analysis Batch: 164110

Client Sample	ID:	Matrix	Spike
Dron	T	me To	tal/NA

Prep Type: Total/NA

Analysis Batch: 104110	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Methyl tert-butyl ether	ND		25.0	26.6		ug/L		106	60 - 138	-
Acetone	ND		125	107		ug/L		86	60 - 140	
Benzene	ND		25.0	25.8		ug/L		103	60 - 140	
Dichlorobromomethane	ND		25.0	26.5		ug/L		106	60 - 140	
Bromobenzene	ND		25.0	24.6		ug/L		98	60 - 140	
Chlorobromomethane	ND		25.0	25.8		ug/L		103	60 - 140	
Bromoform	ND		25.0	25.4		ug/L		102	56 - 140	
Bromomethane	ND		25.0	20.2		ug/L		81	23 - 140	
2-Butanone (MEK)	ND		125	112		ug/L		90	60 - 140	
n-Butylbenzene	ND		25.0	26.1		ug/L		104	60 - 140	
sec-Butylbenzene	ND		25.0	25.3		ug/L		101	60 - 140	
tert-Butylbenzene	ND		25.0	24.7		ug/L		99	60 - 140	
Carbon disulfide	ND		25.0	24.1		ug/L		97	38 - 140	
Carbon tetrachloride	ND		25.0	23.7		ug/L		95	60 - 140	
Chlorobenzene	ND		25.0	25.0		ug/L		100	60 - 140	
Chloroethane	ND		25.0	20.5		ug/L		82	51 - 140	
Chloroform	ND		25.0	25.6		ug/L		102	60 - 140	
Chloromethane	ND		25.0	19.6		ug/L		79	52 - 140	
2-Chlorotoluene	ND		25.0	26.2		ug/L		105	60 - 140	
4-Chlorotoluene	ND		25.0	26.5		ug/L		106	60 - 140	
Chlorodibromomethane	ND		25.0	26.9		ug/L		108	60 - 140	
1,2-Dichlorobenzene	ND		25.0	25.1		ug/L		100	60 - 140	
1,3-Dichlorobenzene	ND		25.0	25.2		ug/L		101	60 - 140	
1,4-Dichlorobenzene	ND		25.0	25.3		ug/L		101	60 - 140	
1,3-Dichloropropane	ND		25.0	27.1		ug/L		108	60 - 140	
1,1-Dichloropropene	ND		25.0	26.1		ug/L		104	60 - 140	
1,2-Dibromo-3-Chloropropane	ND		25.0	24.6		ug/L		98	60 - 140	
Ethylene Dibromide	ND		25.0	26.6		ug/L		107	60 - 140	

TestAmerica Pleasanton

Page 19 of 30

QC Sample Results

Client: AMEC Environment & Infrastructure, Inc. Project/Site: Crown Chevrolet Cadillac Isuzu

TestAmerica Job ID: 720-58973-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: 720-58974-A-3 MS

Matrix: Water

1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene

2,2-Dichloropropane

Client Sample ID: Matrix Spike Prep Type: Total/NA

Analysis Batch: 164110									
	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added		Qualifier	Unit	D	%Rec	Limits
Dibromomethane	ND		25.0	25.9		ug/L		103	60 - 140
Dichlorodifluoromethane	ND		25.0	18.8		ug/L		75	38 - 140
1,1-Dichloroethane	ND		25.0	26.0		ug/L		104	60 - 140
1,2-Dichloroethane	ND		25.0	25.9		ug/L		103	60 - 140
1,1-Dichloroethene	ND		25.0	21.0		ug/L		84	60 - 140
cis-1,2-Dichloroethene	3.0		25.0	29.4		ug/L		105	60 - 140
trans-1,2-Dichloroethene	ND		25.0	24.4		ug/L		97	60 - 140
1,2-Dichloropropane	ND		25.0	27.6		ug/L		110	60 - 140
cis-1,3-Dichloropropene	ND		25.0	28.4		ug/L		114	60 - 140
trans-1,3-Dichloropropene	ND		25.0	30.9		ug/L		124	60 - 140
Ethylbenzene	ND		25.0	24.9		ug/L		100	60 - 140
Hexachlorobutadiene	ND		25.0	23.7		ug/L		95	60 - 140
2-Hexanone	ND		125	125		ug/L		100	60 - 140
Isopropylbenzene	ND		25.0	24.9		ug/L		100	60 - 140
4-isopropyltoluene	ND		25.0	24.8		ug/L		99	60 - 140
Methylene Chloride	ND		25.0	24.8		ug/L		99	40 - 140
4-Methyl-2-pentanone (MIBK)	ND		125	129		ug/L		103	58 - 130
Naphthalene	ND		25.0	26.8		ug/L		107	56 - 140
N-Propylbenzene	ND		25.0	25.9		ug/L		103	60 - 140
Styrene	ND		25.0	26.5		ug/L		106	60 - 140
1,1,1,2-Tetrachloroethane	ND		25.0	24.9		ug/L		100	60 _ 140
1,1,2,2-Tetrachloroethane	ND		25.0	26.0		ug/L		104	60 - 140
Tetrachloroethene	5.4		25.0	27.6		ug/L		89	60 - 140
Toluene	ND		25.0	24.8		ug/L		99	60 - 140

ug/L

ug/L

ug/L

102

105

107

60 - 140

60 - 140

60 - 140

1,1,1-Trichloroethane	ND	25.0	25.2	ug/L	101	60 - 140
1,1,2-Trichloroethane	ND	25.0	27.0	ug/L	108	60 - 140
Trichloroethene	13	25.0	35.3	ug/L	91	60 - 140
Trichlorofluoromethane	ND	25.0	23.6	ug/L	94	60 - 140
1,2,3-Trichloropropane	ND	25.0	25.1	ug/L	100	60 - 140
1,1,2-Trichloro-1,2,2-trifluoroetha	ND	25.0	21.1	ug/L	84	60 - 140
ne						
1,2,4-Trimethylbenzene	ND	25.0	26.3	ug/L	105	60 - 140
1,3,5-Trimethylbenzene	ND	25.0	26.2	ug/L	105	60 - 140
Vinyl chloride	ND	25.0	19.4	ug/L	78	58 - 140
m-Xylene & p-Xylene	ND	25.0	25.6	ug/L	102	60 - 140
o Vylene	ND	25.0	26.2	ug/l	105	60 - 140

25.0

25.0

25.0

25.4

26.3

26.9

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	106		67 - 130
1,2-Dichloroethane-d4 (Surr)	101		72 - 130
Toluene-d8 (Surr)	102		70 - 130

ND

ND

ND

TestAmerica Job ID: 720-58973-1

Client: AMEC Environment & Infrastructure, Inc. Project/Site: Crown Chevrolet Cadillac Isuzu

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: 720-58974-A-3 MSD

Matrix: Water

Analysis Batch: 164110

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA

7	

Analyta	Sample Sam Result Qua	•		MSD Qualifier	Unit	D	%Rec	%Rec. Limits	RPD	RPC Limit
Analyte	ND Result Qua	25.0	27.4	Qualifier	ug/L	-	110	60 ₋ 138	3	20
Methyl tert-butyl ether	ND	125	112		ug/L		90	60 - 140	5	20
Acetone	ND	25.0	26.1		ug/L		104	60 - 140	1	20
Benzene Dichlorobromomethane	ND	25.0	26.8		ug/L		107	60 - 140	1	20
	ND	25.0	24.6		ug/L		98	60 - 140	0	20
Bromobenzene Chlorobromomethane	ND	25.0	26.0		ug/L		104	60 - 140	1	20
Bromoform	ND	25.0	26.1		ug/L		104	56 - 140	2	20
Bromomethane	ND	25.0	20.1		ug/L		80	23 - 140	1	20
2-Butanone (MEK)	ND	125	116		ug/L		92	60 - 140	3	20
	ND	25.0	26.0		ug/L		104	60 - 140	1	20
n-Butylbenzene	ND	25.0	25.1		ug/L		100	60 - 140	1	20
sec-Butylbenzene	ND	25.0	24.8		ug/L		99	60 _ 140	0	20
tert-Butylbenzene Carbon disulfide	ND	25.0	24.5		ug/L		98	38 - 140	1	20
	ND	25.0	23.9		ug/L		96	60 - 140	1	20
Carbon tetrachloride	ND	25.0	25.9		ug/L		100	60 - 140	0	20
Chlorobenzene	ND	25.0	20.7				83	51 - 140	1	20
Chloroethane	ND	25.0	25.8		ug/L ug/L		103	60 - 140	1	20
Chloroform	ND	25.0	19.6		ug/L		78	52 - 140	0	20
Chloromethane	ND	25.0	25.8		ug/L		103	60 - 140	2	20
2-Chlorotoluene	ND	25.0	26.3		ug/L		105	60 - 140	1	20
4-Chlorotoluene	ND	25.0	27.2		ug/L ug/L		109	60 - 140	1	20
Chlorodibromomethane	ND	25.0	25.3		ug/L ug/L		101	60 - 140	1	20
1,2-Dichlorobenzene	ND	25.0	25.0		ug/L		100	60 - 140	1	20
1,3-Dichlorobenzene	ND	25.0	25.0		ug/L ug/L		100	60 - 140	1	20
1,4-Dichlorobenzene	ND	25.0	27.4		ug/L		110	60 - 140	1	20
1,3-Dichloropropane	ND	25.0	26.4		ug/L		106	60 - 140	1	20
1,1-Dichloropropene	ND	25.0	25.4		ug/L ug/L		102	60 - 140	3	20
1,2-Dibromo-3-Chloropropane	ND	25.0	27.2		ug/L		109	60 - 140	2	20
Ethylene Dibromide Dibromomethane	ND	25.0	26.2		ug/L		105	60 - 140	1	20
Dichlorodifluoromethane	ND	25.0	18.9		ug/L		75	38 - 140	0	20
	ND	25.0	26.2		ug/L		105	60 - 140	1	20
1,1-Dichloroethane	ND	25.0	26.2		ug/L		105	60 - 140	1	20
1,2-Dichloroethane	ND	25.0	21.2		ug/L		85	60 - 140	1	20
1,1-Dichloroethene cis-1,2-Dichloroethene	3.0	25.0	29.9		ug/L		107	60 - 140	2	20
	ND	25.0	24.7		ug/L		98	60 - 140	1	20
trans-1,2-Dichloroethene	ND	25.0	27.7		ug/L		111	60 - 140	1	20
1,2-Dichloropropane	ND	25.0	28.9		ug/L		115	60 - 140	2	20
cis-1,3-Dichloropropene	ND	25.0	31.6				126	60 - 140	2	20
trans-1,3-Dichloropropene	ND	25.0	24.8		ug/L ug/L		99	60 - 140	0	20
Ethylbenzene Hexachlorobutadiene	ND	25.0	24.2		ug/L		97	60 - 140	2	20
	ND	125	132		ug/L		105	60 - 140	5	20
2-Hexanone	ND	25.0	25.0		ug/L		100	60 - 140	0	20
Isopropylbenzene	ND	25.0	24.7		ug/L ug/L		99	60 - 140	0	20
4-Isopropyltoluene		25.0	25.1		ug/L ug/L		100	40 - 140	1	20
Methylene Chloride	ND		135		ug/L ug/L		108	58 - 130	4	20
4-Methyl-2-pentanone (MIBK)	ND	125						56 - 140	3	
Naphthalene	ND ND	25.0 25.0	27.6 25.8		ug/L ug/L		110 103	60 - 140	0	20
N-Propylbenzene	ND	25.0	26.3		ug/L ug/L		105	60 - 140	1	20

Spike

Client: AMEC Environment & Infrastructure, Inc. Project/Site: Crown Chevrolet Cadillac Isuzu

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Sample Sample

Lab Sample	ID: 720-58974-A-3	MSD
------------	-------------------	-----

Matrix: Water

Analysis Batch: 164110

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA

%Rec.

	Sample	Sample	Obine	MOD	MOD				/bitco.		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1,1,2-Tetrachioroethane	ND	AND AND VALUE OF THE PARTY OF T	25.0	24.7		ug/L		99	60 - 140	1	20
1,1,2,2-Tetrachloroethane	ND		25.0	26.5		ug/L		106	60 - 140	2	20
Tetrachloroethene	5.4		25.0	28.9		ug/L		94	60 - 140	5	20
Toluene	ND		25.0	24.7		ug/L		99	60 - 140	0	20
1,2,3-Trichlorobenzene	ND		25.0	26.0		ug/L		104	60 _ 140	2	20
1,2,4-Trichlorobenzene	ND		25.0	26.5		ug/L		106	60 - 140	1	20
1,1,1-Trichloroethane	ND		25.0	25.7		ug/L		103	60 - 140	2	20
1,1,2-Trichloroethane	ND		25.0	27.5		ug/L		110	60 - 140	2	20
Trichloroethene	13		25.0	36.9		ug/L		97	60 - 140	4	20
Trichlorofluoromethane	ND		25.0	23.9		ug/L		96	60 - 140	1	20
1,2,3-Trichloropropane	ND		25.0	25.6		ug/L		102	60 - 140	2	20
1,1,2-Trichloro-1,2,2-trifluoroetha	ND		25.0	21.4		ug/L		86	60 - 140	2	20
ne											
1,2,4-Trimethylbenzene	ND		25.0	26.0		ug/L		104	60 - 140	1	20
1,3,5-Trimethylbenzene	ND		25.0	26.1		ug/L		104	60 - 140	1	20
Vinyl chloride	ND		25.0	19.2		ug/L		77	58 - 140	1	20
m-Xylene & p-Xylene	ND		25.0	25.5		ug/L		102	60 - 140	0	20
o-Xylene	ND		25.0	26.2		ug/L		105	60 - 140	0	20
2,2-Dichloropropane	ND		25.0	26.9		ug/L		108	60 - 140	0	20

MSD MSD

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	107		67 - 130
1,2-Dichloroethane-d4 (Surr)	103		72 - 130
Toluene-d8 (Surr)	102		70 - 130

Lab Sample ID: MB 720-164180/4

Matrix: Water

Analysis Batch: 164180

Client	Sample	ID:	Method	Blank

Prep Type: Total/NA

1	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl acetate	ND		10		ug/L			08/01/14 09:03	1

	MB MB				
Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	104	67 - 130		08/01/14 09:03	1
1,2-Dichloroethane-d4 (Surr)	104	72 - 130		08/01/14 09:03	1
Toluene-d8 (Surr)	102	70 - 130		08/01/14 09:03	1

Lab Sample ID: LCS 720-164180/5

Matrix: Water

Analysis Batch: 164180

Client	Sample	ID: Lab	Control	Sample	
--------	--------	---------	---------	--------	--

Prep Type: Total/NA

LCS LCS %Rec. Spike Added Result Qualifier Limits Unit D %Rec Analyte 82 43 - 163 Vinyl acetate 25.0 20.5 ug/L

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	104		67 _ 130
1,2-Dichloroethane-d4 (Surr)	96		72 - 130

Limits

70 - 130

Spike

Added

I imits

67 - 130 72 - 130

70 - 130

Spike

Added

50000

Limits

67 - 130

72 - 130 70 - 130

Spike

Added

50000

Limits

67 - 130

72 - 130 70 - 130

25.0

LCSD LCSD

MS MS

MSD MSD

44900

Result Qualifier

46000

Result Qualifier

22.5

Result Qualifier

Lab Sample ID: LCS 720-164180/5

Lab Sample ID: LCSD 720-164180/6

Matrix: Water

Matrix: Water

Surrogate Toluene-d8 (Surr)

Analyte

Vinyl acetate

Surrogate

4-Bromofluorobenzene

Toluene-d8 (Surr)

Matrix: Water

Analyte

Vinyl acetate

Surrogate

4-Bromofluorobenzene

Toluene-d8 (Surr)

Matrix: Water

Analyte

Vinyl acetate

Surrogate

4-Bromofluorobenzene

Toluene-d8 (Surr)

1,2-Dichloroethane-d4 (Surr)

1,2-Dichloroethane-d4 (Surr)

Analysis Batch: 164180

1,2-Dichloroethane-d4 (Surr)

Analysis Batch: 164180

Lab Sample ID: 720-58896-B-2 MS

Lab Sample ID: 720-58896-B-2 MSD

Analysis Batch: 164180

Analysis Batch: 164180

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

LCS LCS %Recovery Qualifier

LCSD LCSD %Recovery Qualifier

106

97

102

Sample Sample

MS MS

Qualifier

ND

104

100

102

Sample Sample

MSD MSD

Qualifier

ND

104

98

101

%Recovery

Result Qualifier

%Recovery

Result Qualifier

102

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

D

Unit

ug/L

Unit

ug/L

Unit

ug/L

%Rec

%Rec

%Rec

90

90

%Rec.

Limits

43 - 163

Client Sample ID: Matrix Spike

%Rec.

Limits

40 - 140

Client Sample ID: Matrix Spike Duplicate

%Rec.

Limits

40 - 140

Prep Type: Total/NA

Prep Type: Total/NA

RPD

Prep Type: Total/NA

Prep Type: Total/NA

RPD

9

RPD

Limit

RPD

Limit

QC Association Summary

Client: AMEC Environment & Infrastructure, Inc. Project/Site: Crown Chevrolet Cadillac Isuzu

TestAmerica Job ID: 720-58973-1

GC/MS VOA

Analysis Batch: 164110

Client Sample ID	Prep Type	Matrix	Method Prep Bate
MP-04-1	Total/NA	Water	8260B/CA_LUFT
MP-04-2	Total/NA	Water	MS 8260B/CA_LUFT
			MS
MP-04-3	Total/NA	Water	8260B/CA_LUFT
	T	186.1	MS
TB073014-1	I otal/NA	vvater	8260B/CA_LUFT
TB073014-2	Total/NA	Water	MS 8260B/CA_LUFT
15073014-2	1000/14/	110101	MS
Matrix Spike	Total/NA	Water	8260B/CA_LUFT
			MS
Matrix Spike Duplicate	Total/NA	Water	8260B/CA_LUFT
	T	10/-1	MS
Lab Control Sample	l otal/NA	vvater	8260B/CA_LUFT MS
Lab Control Sample	Total/NA	Water	8260B/CA_LUFT
Edb Control Campio	1000117		MS
Lab Control Sample Dup	Total/NA	Water	8260B/CA_LUFT
			MS
Lab Control Sample Dup	Total/NA	Water	8260B/CA_LUFT
M. W 1 Bh - 1	T-4-1/01A	Mater	MS
Method Blank	l otal/NA	vvater	8260B/CA_LUFT MS
	MP-04-2 MP-04-3 TB073014-1 TB073014-2 Matrix Spike Matrix Spike Duplicate Lab Control Sample Lab Control Sample Lab Control Sample	MP-04-2 MP-04-3 Total/NA TB073014-1 Total/NA TB073014-2 Total/NA Matrix Spike Total/NA Matrix Spike Duplicate Total/NA Lab Control Sample Lab Control Sample Lab Control Sample Dup Total/NA Lab Control Sample Dup Total/NA Lab Control Sample Dup Total/NA	MP-04-2 MP-04-3 Total/NA Water TB073014-1 Total/NA Water TB073014-2 Total/NA Water Matrix Spike Total/NA Water Matrix Spike Duplicate Lab Control Sample Lab Control Sample Lab Control Sample Dup Total/NA Water Lab Control Sample Dup Total/NA Water Water Water Water Water Water Water Total/NA Water Water

Analysis Batch: 164180

Lab Sample ID	Client Sample ID		Prep Type	Matrix	Method	Prep Batch
720-58896-B-2 MS	Matrix Spike		Total/NA	Water	8260B/CA_LUFT	
					MS	
720-58896-B-2 MSD	Matrix Spike Duplicate		Total/NA	Water	8260B/CA_LUFT	
					MS	
720-58973-1	MP-04-1		Total/NA	Water	8260B/CA_LUFT	
					MS	
720-58973-2	MP-04-2		Total/NA	Water	8260B/CA_LUFT	
					MS	
720-58973-3	MP-04-3		Total/NA	Water	8260B/CA_LUFT	
					MS	
720-58973-4	TB073014-1	4	Total/NA	Water	8260B/CA_LUFT	
					MS	
720-58973-5	TB073014-2		Total/NA	Water	8260B/CA_LUFT	
					MS	
LCS 720-164180/5	Lab Control Sample		Total/NA	Water	8260B/CA_LUFT	
					MS	
LCSD 720-164180/6	Lab Control Sample Dup		Total/NA	Water	8260B/CA_LUFT	
					MS	
MB 720-164180/4	Method Blank		Total/NA	Water	8260B/CA_LUFT	
					MS	

Client: AMEC Environment & Infrastructure, Inc. Project/Site: Crown Chevrolet Cadillac Isuzu

TestAmerica Job ID: 720-58973-1

Client Sample ID: MP-04-1

Date Collected: 07/30/14 13:15 Date Received: 07/30/14 15:55 Lab Sample ID: 720-58973-1

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B/CA_LUFTMS		1	164110	07/31/14 13:37	ASC	TAL PLS
Total/NA	Analysis	8260B/CA_LUFTMS		1	164180	08/01/14 15:16	PDR	TAL PLS

Client Sample ID: MP-04-2

Date Collected: 07/30/14 12:55

Date Received: 07/30/14 15:55

Lab Sample ID: 720-58973-2

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	8260B/CA_LUFTMS	-11 000	1	164110	07/31/14 14:06	ASC	TAL PLS	
Total/NA	Analysis	8260B/CA_LUFTMS		1	164180	08/01/14 15:45	PDR	TAL PLS	

Client Sample ID: MP-04-3

Date Collected: 07/30/14 08:05

Date Received: 07/30/14 15:55

Lab Sample ID: 720-58973-3

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B/CA_LUFTMS		1	164110	07/31/14 14:35	ASC	TAL PLS
Total/NA	Analysis	8260B/CA_LUFTMS		1	164180	08/01/14 16:14	PDR	TAL PLS

Client Sample ID: TB073014-1

Date Collected: 07/30/14 07:30

Date Received: 07/30/14 15:55

I ah Can	anla ID	. 720	-58973-4
i an san	mme uz	1 / / 11	-2021/3-4

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B/CA_LUFTMS		1	164110	07/31/14 11:14	ASC	TAL PLS
Total/NA	Analysis	8260B/CA_LUFTMS		1	164180	08/01/14 16:43	PDR	TAL PLS

Client Sample ID: TB073014-2

Date Collected: 07/30/14 07:25

Date Received: 07/30/14 15:55

ah	Samn	la ID:	720-5897	72-5
_ab	Sallin	ie iv.	/ ZU-009/	3-3

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B/CA_LUFTMS		1	164110	07/31/14 11:43	ASC	TAL PLS
Total/NA	Analysis	8260B/CA_LUFTMS		1	164180	08/01/14 17:12	PDR	TAL PLS

Laboratory References:

TAL PLS = TestAmerica Pleasanton, 1220 Quarry Lane, Pleasanton, CA 94566, TEL (925)484-1919

Certification Summary

Client: AMEC Environment & Infrastructure, Inc. Project/Site: Crown Chevrolet Cadillac Isuzu

TestAmerica Job ID: 720-58973-1

Laboratory: TestAmerica Pleasanton

Unless otherwise noted, all analytes for this laboratory were covered under each certification below.

Authority	Program		EPA Region	Certification ID	Expiration Date
California	State Prog	gram	9	2496	01-31-16
Analysis Method	Prep Method	Matrix	Analyt	te	

Method Summary

Client: AMEC Environment & Infrastructure, Inc. Project/Site: Crown Chevrolet Cadillac Isuzu

TestAmerica Job ID: 720-58973-1

Method	Method Description	Protocol	Laboratory
8260B/CA_LUFTM	8260B / CA LUFT MS	SW846	TAL PLS

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL PLS = TestAmerica Pleasanton, 1220 Quarry Lane, Pleasanton, CA 94566, TEL (925)484-1919

TestAmerica Pleasanton

Page 27 of 30

Sample Summary

Client: AMEC Environment & Infrastructure, Inc. Project/Site: Crown Chevrolet Cadillac Isuzu

TestAmerica Job ID: 720-58973-1

Lab Sample ID	Client Sample ID	Matrix	Collected Re	eceived
720-58973-1	MP-04-1	Water	07/30/14 13:15 07/3	0/14 15:55
720-58973-2	MP-04-2	Water	07/30/14 12:55 07/3	0/14 15:55
720-58973-3	MP-04-3	Water	07/30/14 08:05 07/3	0/14 15:55
720-58973-4	TB073014-1	Water	07/30/14 07:30 07/3	0/14 15:55
720-58973-5	TB073014-2	Water	07/30/14 07:25 07/3	0/14 15:55

40

- 1	
	က
	7

COMPANY:

2345

COMPANY:

CHAIN-OF-CUSTODY RECORD PROJECT NAME: Crown chervolet Cadillac Isuzu DATE: 7/30/14 PROJECT NUMBER: DO 10 16 CO 70 . 0000 S. B LABORATORY NAME.

LABORATORY ADDRESS: CLIENT INFORMATION REPORTING REQUIREMENTS 15530 AMEC David Albut 510-847-8411 LABORATORY CONTACT YES GEOTRACKER REQUIRED NO Delivered to lab LABORATORY PHONE NUMBER. SITE SPECIFIC GLOBALID NO. SL 72064124 **ANALYSES** SAMPLERS (SIGNATURE): Onid Allef Vesstrenging of Containers MS/MSD SAMPLE CONTAINER ADDITIONAL DATE TIME NUMBER TYPE AND SIZE COMMENTS 713014 1315 x HEI MP-04-1 Hom VOA X MP-04-Z 1255 MP-04-3 4 0805 X TB073014-1 0730 78073014 - Z RELINQUISHED BY: DATE TIME RECEIVED BY: TOTAL NUMBER OF CONTAINERS: DATE TIME SIGNATURE: 7-130/14 SAMPLING COMMENTS: PO# C01220333 14/55 SIGNATURE: SIGNATURE: PRINTED NAME. PRINTED NAME: COMPANY. COMPANY: SIGNATURE: SIGNATURE: 2101 Webster Street, 12th Floor PRINTED NAME: PRINTED NAME

Oakland, California 94612-3066

Tel 510.663.4100 Fax 510.663.4141

Login Sample Receipt Checklist

Client: AMEC Environment & Infrastructure, Inc.

Job Number: 720-58973-1

Login Number: 58973 List Number: 1 List Source: TestAmerica Pleasanton

Creator: Bullock, Tracy

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	

True

True N/A

Multiphasic samples are not present.

Residual Chlorine Checked.

Samples do not require splitting or compositing.

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Pleasanton 1220 Quarry Lane Pleasanton, CA 94566 Tel: (925)484-1919

TestAmerica Job ID: 720-58974-1

Client Project/Site: Crown Chevrolet Cadillac Isuzu

For:

AMEC Environment & Infrastructure, Inc. 180 Grand Avenue **Suite 1100** Oakland, California 94612

Attn: Avery Whitmarsh

Authorized for release by: 8/6/2014 3:13:47 PM

Afsaneh Salimpour, Senior Project Manager (925)484-1919 afsaneh.salimpour@testamericainc.com

LINKS

Review your project results through Total Access

Have a Question?

Visit us at: www.testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	
QC Sample Results	28
QC Association Summary	47
Lab Chronicle	49
Certification Summary	52
Method Summary	53
Sample Summary	54
Chain of Custody	55
Paceint Chacklists	56

Definitions/Glossary

Client: AMEC Environment & Infrastructure, Inc. Project/Site: Crown Chevrolet Cadillac Isuzu

Reporting Limit or Requested Limit (Radiochemistry)

Toxicity Equivalent Factor (Dioxin)

Toxicity Equivalent Quotient (Dioxin)

Relative Percent Difference, a measure of the relative difference between two points

RL

RPD

TEF TEQ TestAmerica Job ID: 720-58974-1

Glossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative error ratio

Page 3 of 56

Case Narrative

Client: AMEC Environment & Infrastructure, Inc. Project/Site: Crown Chevrolet Cadillac Isuzu

TestAmerica Job ID: 720-58974-1

Job ID: 720-58974-1

Laboratory: TestAmerica Pleasanton

Narrative

Job Narrative 720-58974-1

Comments

No additional comments.

Receipt

The samples were received on 7/30/2014 3:55 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 4.6° C.

GC/MS VOA

Method(s) 8260B: The Gasoline Range Organics (GRO) concentration reported for the following samples is due to the presence of discrete peaks: MP-01-1 (720-58974-5), MW-01 (720-58974-1), MW-100 (720-58974-2). PCE

Method(s) 8260B: The Gasoline Range Organics (GRO) concentration reported for the following sample MP-02-1 (720-58974-8) is due to the presence of discrete peaks: TCE

Method(s) 8260B: The Gasoline Range Organics (GRO) concentration reported for the following sampleMP-03-1(720- 58974-11) is due to the presence of discrete peaks: PCE

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

4

-51

3

9

9

13

Detection Summary

Client: AMEC Environment & Infrastructure, Inc. Project/Site: Crown Chevrolet Cadillac Isuzu

TestAmerica Job ID: 720-58974-1

Client Sample ID: MW-01						Lo	413	Sample ID: 7	20-00014
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Tetrachloroethene	100		0.50		ug/L	1		8260B/CA_LUFT MS	Total/NA
Trichloroethene	0.89		0.50		ug/L	1		8260B/CA_LUFT MS	Total/NA
Gasoline Range Organics (GRO) -C5-C12	100	R	50		ug/L	1		8260B/CA_LUFT MS	Total/NA
Client Sample ID: MW-100						La	ab	Sample ID: 7	20-58974
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Tetrachloroethene	100		1.0		ug/L	2	_	8260B/CA_LUFT MS	Total/NA
Gasoline Range Organics (GRO) -C5-C12	110	R	100		ug/L	2		8260B/CA_LUFT MS	Total/NA
Client Sample ID: MW-02						Lá	ab	Sample ID: 7	20-58974
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
cis-1,2-Dichloroethene	3.0		0.50		ug/L	1	_	8260B/CA_LUFT MS	Total/NA
Tetrachloroethene	5.4		0.50		ug/L	1		8260B/CA_LUFT MS	Total/NA
Trichloroethene	13		0.50		ug/L	1		8260B/CA_LUFT MS	Total/NA
Client Sample ID: MW-03						La	b	Sample ID: 7	20-58974
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chlorobenzene	1.3		0.50		ug/L	1		8260B/CA_LUFT MS	Total/NA
1,2-Dichlorobenzene	2.1		0.50		ug/L	1		8260B/CA_LUFT MS	Total/NA
Tetrachloroethene	9.4		0.50		ug/L	1		8260B/CA_LUFT MS	Total/NA
Trichloroethene	0.62		0.50		ug/L	1		8260B/CA_LUFT MS	Total/NA
Client Sample ID: MP-01-1						La	ah	Sample ID: 7	20-58974
-									
Analyte		Qualifier	RL	MDL			D	Method	Prep Type
cis-1,2-Dichloroethene	3.0		0.50		ug/L	1		8260B/CA_LUFT MS	Total/NA
Tetrachioroethene	77		0.50		ug/L	1		8260B/CA_LUFT MS	Total/NA
Trichloroethene	15		0.50		ug/L	1		8260B/CA_LUFT MS	Total/NA
Gasoline Range Organics (GRO) -C5-C12	91	R	50		ug/L	1		8260B/CA_LUFT MS	Total/NA

This Detection Summary does not include radiochemical test results.

Client Sample ID: MP-01-2

Analyte

cis-1,2-Dichloroethene

TestAmerica Pleasanton

Lab Sample ID: 720-58974-6

8260B/CA_LUFT

Dil Fac D Method

RL

0.50

MDL Unit

ug/L

Result Qualifier

49

Prep Type

Total/NA

TestAmerica Job ID: 720-58974-1

Client Sample ID: MP-01-3						Li	aD	Sample ID: 7	20-589/4-
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
cis-1,2-Dichloroethene	7.4		0.50		ug/L	1		8260B/CA_LUFT	Total/NA
								MS	
Client Sample ID: MP-02-1					=======================================	L	ab	Sample ID: 7	20-58974-
_		***							
Analyte		Qualifier	RL	MDL		Dil Fac	D	Method	Prep Type Total/NA
cis-1,2-Dichloroethene	7.2		0.50		ug/L	1		8260B/CA_LUFT MS	I Otal/NA
trans-1,2-Dichloroethene	1.0		0.50		ug/L	1		8260B/CA_LUFT	Total/NA
					7.1.W			MS	T-4-1/01A
Tetrachloroethene	0.86		0.50		ug/L	1		8260B/CA_LUFT MS	Total/NA
Trichloroethene	51		0.50		ug/L	1		8260B/CA_LUFT	Total/NA
Caralina Barras Organica (CBO)	64	R	50		ug/L	1		MS 8260B/CA_LUFT	Total/NA
Gasoline Range Organics (GRO) -C5-C12	04	TX.	30		ug/ _			MS	
Client Sample ID: MP-02-2						La	ab	Sample ID: 7	20-58974-
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
cis-1,2-Dichloroethene	72		0.50		ug/L	1	10000	8260B/CA_LUFT	Total/NA
								MS	
Client Sample ID: MP-02-3						Lai	b S	sample ID: 72	0-58974-1
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Acetone	180		50		ug/L	1	_	8260B/CA_LUFT	Total/NA
cis-1,2-Dichloroethene	5.2		0.50		ug/L	1		MS 8260B/CA_LUFT	Total/NA
Cis-1,2-Dictrordenterie	0.2		0.00		ag, E		,	MS	
Client Sample ID: MP-03-1						Lal	b S	sample ID: 72	0-58974-1
Analyte	Result 0.74	Qualifier	RL 0.50	MDL	ug/L	Dil Fac	_	Method 8260B/CA_LUFT	Prep Type Total/NA
cis-1,2-Dichloroethene	0.74		0.50		ag/L			MS	10101/11/1
Tetrachloroethene	94		0.50		ug/L	1		8260B/CA_LUFT	Total/NA
Trichloroethene	9.5		0.50		ug/L	1		MS 8260B/CA_LUFT	Total/NA
,	0.0							MS	6350
Gasoline Range Organics (GRO)	110	R	50		ug/L	1		8260B/CA_LUFT	Total/NA
-C5-C12								MS	
Client Sample ID: MP-03-2						Lal	b S	sample ID: 72	0-58974-1
No Detections.									
Client Sample ID: MP-03-3							- 0	ample ID: 72	0 50074 4

This Detection Summary does not include radiochemical test results.

No Detections.

Client: AMEC Environment & Infrastructure, Inc. Project/Site: Crown Chevrolet Cadillac Isuzu

TestAmerica Job ID: 720-58974-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS

Client Sample ID: MW-01 Date Collected: 07/30/14 11:35 Date Received: 07/30/14 15:55

Lab Sample ID: 720-58974-1

Matrix: Water

Date Received: 07/30/14 15:55 Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND		0.50	ug/L			07/31/14 15:03	1
Acetone	ND		50	ug/L			07/31/14 15:03	1
Benzene	ND		0.50	ug/L			07/31/14 15:03	1
Dichlorobromomethane	- ND		0.50	ug/L			07/31/14 15:03	1
Bromobenzene	ND		1.0	ug/L			07/31/14 15:03	1
Chlorobromomethane	ND		1.0	ug/L			07/31/14 15:03	1
Bromoform	ND		1.0	ug/L			07/31/14 15:03	1
Bromomethane	ND		1.0	ug/L			07/31/14 15:03	1
2-Butanone (MEK)	ND		50	ug/L			07/31/14 15:03	1
n-Butylbenzene	ND		1.0	ug/L			07/31/14 15:03	1
sec-Butylbenzene	ND		1.0	ug/L			07/31/14 15:03	1
tert-Butylbenzene	ND		1.0	ug/L			07/31/14 15:03	1
Carbon disulfide	ND		5.0	ug/L			07/31/14 15:03	1
Carbon tetrachloride	ND		0.50	ug/L			07/31/14 15:03	1
Chlorobenzene	ND		0.50	ug/L			07/31/14 15:03	1
Chloroethane	ND		1.0	ug/L			07/31/14 15:03	1
Chloroform	ND		1.0	ug/L			07/31/14 15:03	1
Chloromethane	ND		1.0	ug/L			07/31/14 15:03	1
2-Chlorotoluene	ND		0.50	ug/L			07/31/14 15:03	1
4-Chlorotoluene	ND		0.50	ug/L			07/31/14 15:03	1
Chlorodibromomethane	ND		0.50	ug/L			07/31/14 15:03	1
1,2-Dichlorobenzene	ND		0.50	ug/L			07/31/14 15:03	1
1,3-Dichlorobenzene	ND		0.50	ug/L			07/31/14 15:03	1
1,4-Dichlorobenzene	ND		0.50	ug/L			07/31/14 15:03	1
1,3-Dichloropropane	ND		1.0	ug/L			07/31/14 15:03	1
1,1-Dichloropropene	ND		0.50	ug/L			07/31/14 15:03	1
1,2-Dibromo-3-Chloropropane	ND		1.0	ug/L			07/31/14 15:03	1
Ethylene Dibromide	ND		0.50	ug/L			07/31/14 15:03	1
Dibromomethane	ND		0.50	ug/L			07/31/14 15:03	1
Dichlorodifluoromethane	ND		0.50	ug/L			07/31/14 15:03	1
1,1-Dichloroethane	ND		0.50	ug/L			07/31/14 15:03	1
1,2-Dichloroethane	ND		0.50	ug/L			07/31/14 15:03	1
1,1-Dichloroethene	ND		0.50	ug/L			07/31/14 15:03	1
cis-1,2-Dichloroethene	ND		0.50	ug/L			07/31/14 15:03	1
trans-1,2-Dichloroethene	ND		0.50	ug/L			07/31/14 15:03	1
1,2-Dichloropropane	ND		0.50	ug/L			07/31/14 15:03	1
cis-1,3-Dichloropropene	ND		0.50	ug/L			07/31/14 15:03	1
trans-1,3-Dichloropropene	ND		0.50	ug/L			07/31/14 15:03	1
Ethylbenzene	ND		0.50	ug/L			07/31/14 15:03	1
Hexachlorobutadiene	ND		1.0	ug/L			07/31/14 15:03	1
2-Hexanone	ND		50	ug/L			07/31/14 15:03	1
Isopropylbenzene	ND		0.50	ug/L			07/31/14 15:03	1
4-Isopropyitoluene	ND		1.0	ug/L			07/31/14 15:03	1
Methylene Chloride	ND		5.0	ug/L			07/31/14 15:03	1
4-Methyl-2-pentanone (MIBK)	ND		50	ug/L			07/31/14 15:03	1
Naphthalene	ND		1.0	ug/L			07/31/14 15:03	1
N-Propylbenzene	ND		1.0	ug/L			07/31/14 15:03	1
Styrene	ND		0.50	ug/L			07/31/14 15:03	1
1,1,1,2-Tetrachloroethane	ND		0.50	ug/L			07/31/14 15:03	1

TestAmerica Pleasanton

Client: AMEC Environment & Infrastructure, Inc. Project/Site: Crown Chevrolet Cadillac Isuzu

TestAmerica Job ID: 720-58974-1

Lab Sample ID: 720-58974-1

Matrix: Water

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

	Client Sample ID: MW-01	
İ	Date Collected: 07/30/14 11:35	

Date Received: 07/30/14 15:55 Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
1,1,2,2-Tetrachloroethane	ND	0.50	ug/L		07/31/14 15:03	1
Tetrachloroethene	100	0.50	ug/L		07/31/14 15:03	1
Toluene	ND	0.50	ug/L		07/31/14 15:03	1
1,2,3-Trichlorobenzene	ND	1.0	ug/L		07/31/14 15:03	1
1,2,4-Trichlorobenzene	ND	1.0	ug/L		07/31/14 15:03	1
1,1,1-Trichloroethane	ND	0.50	ug/L		07/31/14 15:03	1
1,1,2-Trichloroethane	ND	0.50	ug/L		07/31/14 15:03	1
Trichloroethene	0.89	0.50	ug/L		07/31/14 15:03	1
Trichlorofluoromethane	ND	1.0	ug/L		07/31/14 15:03	1
1,2,3-Trichloropropane	ND	0.50	ug/L		07/31/14 15:03	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	0.50	ug/L		07/31/14 15:03	1
1,2,4-Trimethylbenzene	ND	0.50	ug/L		07/31/14 15:03	1
1,3,5-Trimethylbenzene	ND	0.50	ug/L		07/31/14 15:03	1
Vinyl acetate	ND	10	ug/L		08/04/14 15:12	1
Vinyl chloride	ND	0.50	ug/L		07/31/14 15:03	1
Xylenes, Total	ND	1.0	ug/L		07/31/14 15:03	1
2,2-Dichloropropane	ND	0.50	ug/L		07/31/14 15:03	1
Gasoline Range Organics (GRO) -C5-C12	100	50	ug/L		07/31/14 15:03	1

%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
99		67 - 130	-	07/31/14 15:03	1
101		67 - 130		08/04/14 15:12	1
105		72 - 130		07/31/14 15:03	1
118		72 - 130		08/04/14 15:12	1
101		70 - 130		07/31/14 15:03	1
99		70 - 130		08/04/14 15:12	1
	99 101 105 118 101	101 105 118 101	99 67 - 130 101 67 - 130 105 72 - 130 118 72 - 130 101 70 - 130	99 67 - 130 101 67 - 130 105 72 - 130 118 72 - 130 101 70 - 130	99 67 - 130 07/31/14 15:03 101 67 - 130 08/04/14 15:12 105 72 - 130 07/31/14 15:03 118 72 - 130 08/04/14 15:12 101 70 - 130 07/31/14 15:03

Client Sample ID: MW-100 Date Collected: 07/30/14 11:40 Date Received: 07/30/14 15:55 Lab Sample ID: 720-58974-2 Matrix: Water

Analyte	Result Qualifier	RL	MDL U	Unit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND	1.0	ī	ug/L			07/31/14 15:32	2
Acetone	ND	100	ι	ug/L			07/31/14 15:32	2
Benzene	ND	1.0	ι	ug/L			07/31/14 15:32	2
Dichlorobromomethane	ND	1.0	ι	ug/L			07/31/14 15:32	2
Bromobenzene	ND	2.0	l	ug/L			07/31/14 15:32	2
Chlorobromomethane	ND	2.0	L	ug/L			07/31/14 15:32	2
Bromoform	ND	2.0	ι	ug/L			07/31/14 15:32	2
Bromomethane	ND	2.0	ι	ug/L			07/31/14 15:32	2
2-Butanone (MEK)	ND	100	L	ug/L			07/31/14 15:32	2
n-Butylbenzene	ND	2.0	ι	ug/L			07/31/14 15:32	2
sec-Butylbenzene	ND	2.0	L	ug/L			07/31/14 15:32	2
tert-Butylbenzene	ND	2.0	L	ug/L			07/31/14 15:32	2
Carbon disulfide	ND	10	L	ug/L			07/31/14 15:32	2
Carbon tetrachloride	ND	1.0	L	ug/L			07/31/14 15:32	2
Chlorobenzene	ND	1.0	l.	ug/L			07/31/14 15:32	2
Chloroethane	ND	2.0	L	ug/L			07/31/14 15:32	2
Chloroform	ND	2.0	ι	ug/L			07/31/14 15:32	2
Chloromethane	ND	2.0	ı	ug/L			07/31/14 15:32	2

TestAmerica Pleasanton

Client: AMEC Environment & Infrastructure, Inc. Project/Site: Crown Chevrolet Cadillac Isuzu

TestAmerica Job ID: 720-58974-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Client Sample ID: MW-100 Da

-C5-C12

Lab Sample ID: 720-58974-2

Matrix: Water

ate Collected: 07/30/14 11:40		
ate Received: 07/30/14 15:55		

Date Received: 07/30/14 15:55	Result (Qualifier RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Analyte 2-Chlorotoluene	ND ND	1.0	ug/L		riepaieu	07/31/14 15:32	2
4-Chlorotoluene	ND	1.0	ug/L			07/31/14 15:32	2
Chlorodibromomethane	ND	1.0	ug/L			07/31/14 15:32	2
1.2-Dichlorobenzene	ND	1.0	ug/L			07/31/14 15:32	2
1,3-Dichlorobenzene	ND	1.0	ug/L			07/31/14 15:32	2
	ND	1.0	ug/L			07/31/14 15:32	2
1,4-Dichloropenzene	ND	2.0	ug/L			07/31/14 15:32	2
1,3-Dichloropropane	ND	1.0	ug/L			07/31/14 15:32	2
1,1-Dichloropropene	ND	2.0	ug/L			07/31/14 15:32	2
1,2-Dibromo-3-Chloropropane	ND	1.0	ug/L			07/31/14 15:32	2
Ethylene Dibromide	ND	1.0	ug/L			07/31/14 15:32	2
Dibromomethane		1.0	ug/L			07/31/14 15:32	2
Dichlorodifluoromethane	ND	1.0	ug/L			07/31/14 15:32	2
1,1-Dichloroethane	ND					07/31/14 15:32	2
1,2-Dichloroethane	ND	1.0	ug/L			07/31/14 15:32	2
1,1-Dichloroethene	ND	1.0	ug/L			07/31/14 15:32	2
cis-1,2-Dichloroethene	ND	1.0	ug/L				2
trans-1,2-Dichloroethene	ND	1.0	ug/L			07/31/14 15:32	2
1,2-Dichloropropane	ND	1.0	ug/L			07/31/14 15:32	
cis-1,3-Dichloropropene	ND	1.0	ug/L			07/31/14 15:32	2
trans-1,3-Dichloropropene	ND	1.0	ug/L			07/31/14 15:32	
Ethylbenzene	ND	1.0	ug/L			07/31/14 15:32	2
Hexachlorobutadiene	ND	2.0	ug/L			07/31/14 15:32	2
2-Hexanone	ND	100	ug/L			07/31/14 15:32	2
Isopropylbenzene	ND	1.0	ug/L			07/31/14 15:32	2
4-Isopropyltoluene	ND	2.0	ug/L			07/31/14 15:32	2
Methylene Chloride	ND	10	ug/L			07/31/14 15:32	2
4-Methyl-2-pentanone (MIBK)	ND	100	ug/L			07/31/14 15:32	2
Naphthalene	ND	2.0	ug/L			07/31/14 15:32	2
N-Propylbenzene	ND	2.0	ug/L			07/31/14 15:32	2
Styrene	ND	1.0	ug/L			07/31/14 15:32	2
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L			07/31/14 15:32	2
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L			07/31/14 15:32	2
Tetrachloroethene	100	1.0	ug/L			07/31/14 15:32	2
Toluene	ND	1.0	ug/L.			07/31/14 15:32	2
1,2,3-Trichlorobenzene	ND	2.0	ug/L			07/31/14 15:32	2
1,2,4-Trichlorobenzene	ND	2.0	ug/L			07/31/14 15:32	2
1,1,1-Trichloroethane	ND	1.0	ug/L			07/31/14 15:32	2
1,1,2-Trichloroethane	ND	1.0	ug/L			07/31/14 15:32	2
Trichloroethene	ND	1.0	ug/L			07/31/14 15:32	2
Trichlorofluoromethane	ND	2.0	ug/L			07/31/14 15:32	2
1,2,3-Trichloropropane	ND	1.0	ug/L			07/31/14 15:32	2
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.0	ug/L			07/31/14 15:32	2
1,2,4-Trimethylbenzene	ND	1.0	ug/L			07/31/14 15:32	2
1,3,5-Trimethylbenzene	ND	1.0	ug/L			07/31/14 15:32	2
Vinyl acetate	ND	20	ug/L			08/04/14 15:41	2
Vinyl chloride	ND	1.0	ug/L			07/31/14 15:32	2
Xylenes, Total	ND	2.0	ug/L			07/31/14 15:32	2
2,2-Dichloropropane	ND	1.0	ug/L			07/31/14 15:32	2
Gasoline Range Organics (GRO)	110	100	ug/L			07/31/14 15:32	2

TestAmerica Pleasanton

8/6/2014

Page 9 of 56

Client: AMEC Environment & Infrastructure, Inc. Project/Site: Crown Chevrolet Cadillac Isuzu

TestAmerica Job ID: 720-58974-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	99	67 - 130		07/31/14 15:32	2
4-Bromofluorobenzene	105	67 - 130		08/04/14 15:41	2
1,2-Dichloroethane-d4 (Surr)	106	72 - 130		07/31/14 15:32	2
1,2-Dichloroethane-d4 (Surr)	119	72 - 130		08/04/14 15:41	2
Toluene-d8 (Surr)	99	70 - 130		07/31/14 15:32	2
Toluene-d8 (Surr)	99	70 - 130		08/04/14 15:41	2

Client Sample ID: MW-02 Date Collected: 07/30/14 07:58 Lab Sample ID: 720-58974-3 Matrix: Water

Date Received: 07/30/14 15:55 Analyte	Result Qualifier	RL	MDL Unit D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND	0.50	ug/L		07/31/14 13:08	1
Acetone	ND	50	ug/L		07/31/14 13:08	1
Benzene	ND	0.50	ug/L		07/31/14 13:08	1
Dichlorobromomethane	ND	0.50	ug/L		07/31/14 13:08	1
Bromobenzene	ND	1.0	ug/L		07/31/14 13:08	1
Chlorobromomethane	ND	1.0	ug/L		07/31/14 13:08	1
Bromoform	ND	1.0	ug/L		07/31/14 13:08	1
Bromomethane	ND	1.0	ug/L		07/31/14 13:08	1
2-Butanone (MEK)	ND	50	ug/L		07/31/14 13:08	1
n-Butylbenzene	ND	1.0	ug/L		07/31/14 13:08	1
sec-Butylbenzene	ND	1.0	ug/L		07/31/14 13:08	1
tert-Butylbenzene	ND	1.0	ug/L		07/31/14 13:08	1
Carbon disulfide	ND	5.0	ug/L		07/31/14 13:08	1
Carbon tetrachloride	ND	0.50	ug/L		07/31/14 13:08	1
Chlorobenzene	ND	0.50	ug/L		07/31/14 13:08	1
Chloroethane	ND	1.0	ug/L		07/31/14 13:08	1
Chloroform	ND	1.0	ug/L		07/31/14 13:08	1
Chloromethane	ND	1.0	ug/L		07/31/14 13:08	1
2-Chlorotoluene	ND	0.50	ug/L		07/31/14 13:08	1
4-Chlorotoluene	ND	0.50	ug/L		07/31/14 13:08	1
Chlorodibromomethane	ND	0.50	ug/L		07/31/14 13:08	1
1,2-Dichlorobenzene	ND	0.50	ug/L		07/31/14 13:08	1
1,3-Dichlorobenzene	ND	0.50	ug/L		07/31/14 13:08	1
1,4-Dichlorobenzene	ND	0.50	ug/L		07/31/14 13:08	1
1,3-Dichloropropane	ND	1.0	ug/L		07/31/14 13:08	1
1,1-Dichloropropene	ND	0.50	ug/L		07/31/14 13:08	1
1,2-Dibromo-3-Chloropropane	ND	1.0	ug/L		07/31/14 13:08	1
Ethylene Dibromide	ND	0.50	ug/L		07/31/14 13:08	1
Dibromomethane	ND	0.50	ug/L		07/31/14 13:08	1
Dichlorodifluoromethane	ND	0.50	ug/L		07/31/14 13:08	1
1,1-Dichloroethane	ND	0.50	ug/L		07/31/14 13:08	1
1,2-Dichloroethane	ND	0.50	ug/L		07/31/14 13:08	1
1,1-Dichloroethene	ND	0.50	ug/L		07/31/14 13:08	1
cis-1,2-Dichloroethene	3.0	0.50	ug/L		07/31/14 13:08	1
trans-1,2-Dichloroethene	ND	0.50	ug/L		07/31/14 13:08	1
1,2-Dichloropropane	ND	0.50	ug/L		07/31/14 13:08	1
cis-1,3-Dichloropropene	ND	0.50	ug/L		07/31/14 13:08	1
trans-1,3-Dichloropropene	ND	0.50	ug/L		07/31/14 13:08	1
Ethylbenzene	ND	0.50	ug/L		07/31/14 13:08	1
Hexachlorobutadiene	ND	1.0	ug/L		07/31/14 13:08	1
2-Hexanone	ND	50	ug/L		07/31/14 13:08	1

TestAmerica Pleasanton

Page 10 of 56

Client: AMEC Environment & Infrastructure, Inc. Project/Site: Crown Chevrolet Cadillac Isuzu

TestAmerica Job ID: 720-58974-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Client Sample ID: MW-02

Date Collected: 07/30/14 07:58 Date Received: 07/30/14 15:55

Lab Sample ID: 720-58974-3

Matrix: Water

Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Isopropylbenzene	ND		0.50	ug/L			07/31/14 13:08	1.
4-Isopropyltoluene	ND		1.0	ug/L			07/31/14 13:08	1
Methylene Chloride	ND		5.0	ug/L			07/31/14 13:08	1
4-Methyl-2-pentanone (MIBK)	ND		50	ug/L			07/31/14 13:08	1
Naphthalene	- ND		1.0	ug/L			07/31/14 13:08	1
N-Propylbenzene	ND		1.0	ug/L	79		07/31/14 13:08	1
Styrene	ND		0.50	ug/L			07/31/14 13:08	1
1,1,1,2-Tetrachloroethane	ND		0.50	ug/L			07/31/14 13:08	1
1,1,2,2-Tetrachloroethane	ND		0.50	ug/L			07/31/14 13:08	1
Tetrachloroethene	5.4		0.50	ug/L			07/31/14 13:08	1
Toluene	ND		0.50	ug/L			07/31/14 13:08	1
1,2,3-Trichlorobenzene	ND		1.0	ug/L			07/31/14 13:08	1
1,2,4-Trichlorobenzene	ND		1.0	ug/L			07/31/14 13:08	1
1,1,1-Trichloroethane	ND		0.50	ug/L			07/31/14 13:08	1
1,1,2-Trichloroethane	ND		0.50	ug/L			07/31/14 13:08	1
Trichloroethene	13		0.50	ug/L			07/31/14 13:08	1
Trichlorofluoromethane	ND		1.0	ug/L			07/31/14 13:08	1
1,2,3-Trichloropropane	ND		0.50	ug/L			07/31/14 13:08	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50	ug/L			07/31/14 13:08	1
1,2,4-Trimethylbenzene	ND		0.50	ug/L			07/31/14 13:08	1
1,3,5-Trimethylbenzene	ND		0.50	ug/L			07/31/14 13:08	1
Vinyl acetate	ND		10	ug/L			08/04/14 14:14	1
Vinyl chloride	ND		0.50	ug/L			07/31/14 13:08	1
Xylenes, Total	ND		1.0	ug/L			07/31/14 13:08	1
2,2-Dichloropropane	ND		0.50	ug/L			07/31/14 13:08	1
Gasoline Range Organics (GRO)	ND		50	ug/L	w 9.		07/31/14 13:08	1

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	105	67 - 130		07/31/14 13:08	1
4-Bromofluorobenzene	101	67 - 130		08/04/14 14:14	. 1
1,2-Dichloroethane-d4 (Surr)	108	72 - 130		07/31/14 13:08	1
1,2-Dichloroethane-d4 (Surr)	115	72 - 130		08/04/14 14:14	1
Toluene-d8 (Surr)	103	70 - 130		07/31/14 13:08	1
Toluene-d8 (Surr)	99	70 - 130		08/04/14 14:14	1

Client Sample ID: MW-03 Date Collected: 07/30/14 13:30

-C5-C12

Lab Sample ID: 720-58974-4

Matrix: Water

Date Received: 07/30/14 15:55 Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND		0.50	ug/L	-		07/31/14 16:01	1
Acetone	ND		50	ug/L			07/31/14 16:01	1
Benzene	ND		0.50	ug/L			07/31/14 16:01	1
Dichlorobromomethane	ND		0.50	.ug/L			07/31/14 16:01	1
Bromobenzene	ND		1.0	ug/L			07/31/14 16:01	1
Chlorobromomethane	ND		1.0	ug/L			07/31/14 16:01	1
Bromoform	ND		1.0	ug/L			07/31/14 16:01	1
Bromomethane	ND		1.0	ug/L			07/31/14 16:01	1
2-Butanone (MEK)	ND		50	ug/L			07/31/14 16:01	1
n-Butylbenzene	ND		1.0	ug/L			07/31/14 16:01	1

TestAmerica Pleasanton

Client: AMEC Environment & Infrastructure, Inc. Project/Site: Crown Chevrolet Cadillac Isuzu

TestAmerica Job ID: 720-58974-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Client Sample ID: MW-03 Date Collected: 07/30/14 13:30 Date Received: 07/30/14 15:55 Lab Sample ID: 720-58974-4 Matrix: Water

Date Received: 07/30/14 15:55 Analyte	Result	Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
sec-Butylbenzene	ND		1.0	ug/L		07/31/14 16:01	1
tert-Butylbenzene	ND		1.0	ug/L		07/31/14 16:01	1
Carbon disulfide	ND		5.0	ug/L		07/31/14 16:01	1
Carbon tetrachloride	ND		0.50	ug/L		07/31/14 16:01	1
Chlorobenzene	1.3		0.50	ug/L		07/31/14 16:01	1
Chloroethane	ND		1.0	ug/L		07/31/14 16:01	1
Chloroform	ND		1.0	ug/L		07/31/14 16:01	1
Chloromethane	ND		1.0	ug/L		07/31/14 16:01	1
2-Chlorotoluene	ND		0.50	ug/L		07/31/14 16:01	1
4-Chlorotoluene	ND		0.50	ug/L		07/31/14 16:01	1
Chlorodibromomethane	ND		0.50	ug/L		07/31/14 16:01	1
1,2-Dichlorobenzene	2.1		0.50	ug/L		07/31/14 16:01	1
1,3-Dichlorobenzene	ND		0.50	ug/L		07/31/14 16:01	1
1,4-Dichlorobenzene	ND		0.50	ug/L		07/31/14 16:01	1
1,3-Dichloropropane	ND		1.0	ug/L		07/31/14 16:01	1
1,1-Dichloropropene	ND		0.50	ug/L		07/31/14 16:01	1
1,2-Dibromo-3-Chloropropane	ND		1.0	ug/L		07/31/14 16:01	1
Ethylene Dibromide	ND		0.50	ug/L		07/31/14 16:01	1
Dibromomethane	ND		0.50	ug/L		07/31/14 16:01	1
Dichlorodifluoromethane	ND		0.50	ug/L		07/31/14 16:01	1
1,1-Dichloroethane	ND		0.50	ug/L		07/31/14 16:01	1
1,2-Dichloroethane	ND		0.50	ug/L		07/31/14 16:01	1
1,1-Dichloroethene	ND		0.50	ug/L		07/31/14 16:01	1
cis-1,2-Dichloroethene	ND		0.50	ug/L		07/31/14 16:01	1
trans-1,2-Dichloroethene	ND		0.50	ug/L		07/31/14 16:01	1
1,2-Dichloropropane	ND		0.50	ug/L		07/31/14 16:01	1
cis-1,3-Dichloropropene	ND		0.50	ug/L		07/31/14 16:01	1
trans-1,3-Dichloropropene	ND		0.50	ug/L		07/31/14 16:01	1
Ethylbenzene	ND		0.50	ug/L		07/31/14 16:01	1
Hexachlorobutadiene	ND		1.0	ug/L		07/31/14 16:01	1
2-Hexanone	ND		50	ug/L		07/31/14 16:01	1
Isopropylbenzene	ND		0.50	ug/L		07/31/14 16:01	1
4-Isopropyltoluene	ND		1.0	ug/L		07/31/14 16:01	1
Methylene Chloride	ND		5.0	ug/L		07/31/14 16:01	1
4-Methyl-2-pentanone (MIBK)	ND		50	ug/L		07/31/14 16:01	1
Naphthalene	ND		1.0	ug/L		07/31/14 16:01	1
N-Propylbenzene	ND		1.0	ug/L		07/31/14 16:01	1
Styrene	ND		0.50	ug/L		07/31/14 16:01	1
1,1,1,2-Tetrachloroethane	ND		0.50	ug/L		07/31/14 16:01	1
1,1,2,2-Tetrachloroethane	ND		0.50	ug/L		07/31/14 16:01	1
Tetrachloroethene	9.4		0.50	ug/L		07/31/14 16:01	1
Toluene	ND		0.50	ug/L		07/31/14 16:01	1
1,2,3-Trichlorobenzene	ND		1.0	ug/L		07/31/14 16:01	1
1,2,4-Trichlorobenzene	ND		1.0	ug/L		07/31/14 16:01	1
1,1,1-Trichloroethane	ND		0.50	ug/L		07/31/14 16:01	1
1,1,2-Trichloroethane	ND		0.50	ug/L		07/31/14 16:01	1
Trichloroethene	0.62		0.50	ug/L		07/31/14 16:01	1
Trichlorofluoromethane	ND		1.0	ug/L		07/31/14 16:01	1
1,2,3-Trichloropropane	ND		0.50	ug/L		07/31/14 16:01	1

TestAmerica Pleasanton

Client: AMEC Environment & Infrastructure, Inc. Project/Site: Crown Chevrolet Cadillac Isuzu

TestAmerica Job ID: 720-58974-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Client Sample ID: MW-03 Date Collected: 07/30/14 13:30 Lab Sample ID: 720-58974-4

Matrix: Water

Date Received: 07/30/14 15:55

Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50	ug/L			07/31/14 16:01	1
1,2,4-Trimethylbenzene	ND		0.50	ug/L			07/31/14 16:01	1
1,3,5-Trimethylbenzene	ND		0.50	ug/L			07/31/14 16:01	1
Vinyl acetate	ND		10	ug/L			08/04/14 16:10	1
Vinyl chloride	ND		0.50	ug/L			07/31/14 16:01	1
Xylenes, Total	ND		1.0	ug/L			07/31/14 16:01	. 1
2,2-Dichloropropane	ND		0.50	ug/L			07/31/14 16:01	1
Gasoline Range Organics (GRO)	ND		50	ug/L			07/31/14 16:01	1

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	99	67 - 130		07/31/14 16:01	1
4-Bromofluorobenzene	102	67 - 130		08/04/14 16:10	1
1,2-Dichloroethane-d4 (Surr)	106	72 - 130		07/31/14 16:01	1
1,2-Dichloroethane-d4 (Surr)	121	72 - 130		08/04/14 16:10	1
Toluene-d8 (Surr)	100	70 - 130		07/31/14 16:01	1
Toluene-d8 (Surr)	99	70 - 130		08/04/14 16:10	1

Client Sample ID: MP-01-1

Date Collected: 07/30/14 11:53

Lab Sample ID: 720-58974-5	Lab	Sample	ID:	720-58974-5
----------------------------	-----	--------	-----	-------------

Matrix: Water

Date Received: 07/30/14 15:55								
Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND		0.50	ug/L			07/31/14 16:30	1
Acetone	ND		50	ug/L			07/31/14 16:30	1
Benzene	ND		0.50	ug/L			07/31/14 16:30	1
Dichlorobromomethane	ND		0.50	ug/L			07/31/14 16:30	1
Bromobenzene	ND		1.0	ug/L			07/31/14 16:30	1
Chlorobromomethane	ND		1.0	ug/L			07/31/14 16:30	1
Bromoform	ND		1.0	ug/L			07/31/14 16:30	1
Bromomethane	ND		1.0	ug/L			07/31/14 16:30	1
2-Butanone (MEK)	ND		50	ug/L			07/31/14 16:30	1
n-Butylbenzene	ND		1.0	ug/L			07/31/14 16:30	1
sec-Butylbenzene	ND		1.0	ug/L			07/31/14 16:30	1
tert-Butylbenzene	ND		1.0	ug/L			07/31/14 16:30	1
Carbon disulfide	ND		5.0	ug/L			07/31/14 16:30	1
Carbon tetrachloride	ND		0.50	ug/L			07/31/14 16:30	1
Chlorobenzene	ND		0.50	ug/L			07/31/14 16:30	1
Chloroethane	ND		1.0	ug/L			07/31/14 16:30	1
Chloroform	ND		1.0	ug/L			07/31/14 16:30	1
Chloromethane	ND		1.0	ug/L			07/31/14 16:30	1
2-Chlorotoluene	ND		0.50	ug/L			07/31/14 16:30	1
4-Chlorotoluene	ND		0.50	ug/L			07/31/14 16:30	1
Chlorodibromomethane	ND		0.50	ug/L			07/31/14 16:30	1
1,2-Dichlorobenzene	ND		0.50	ug/L			07/31/14 16:30	1
1,3-Dichlorobenzene	ND		0.50	ug/L			07/31/14 16:30	1
1,4-Dichlorobenzene	ND		0.50	ug/L			07/31/14 16:30	1
1,3-Dichloropropane	ND		1.0	ug/L			07/31/14 16:30	1
1,1-Dichloropropene	ND		0.50	ug/L			07/31/14 16:30	1
1,2-Dibromo-3-Chloropropane	ND		1.0	ug/L			07/31/14 16:30	1
Ethylene Dibromide	ND		0.50	ug/L			07/31/14 16:30	1

Client: AMEC Environment & Infrastructure, Inc. Project/Site: Crown Chevrolet Cadillac Isuzu

TestAmerica Job ID: 720-58974-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Client Sample ID: MP-01-1 Date Collected: 07/30/14 11:53 Date Received: 07/30/14 15:55

-C5-C12

Lab Sample ID: 720-58974-5 Matrix: Water

Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
Dibromomethane	ND	0.50	ug/L		07/31/14 16:30	1
Dichlorodifluoromethane	ND	0.50	ug/L		07/31/14 16:30	1
1,1-Dichloroethane	ND	0.50	ug/L		07/31/14 16:30	1
1,2-Dichloroethane	ND	0.50	ug/L		07/31/14 16:30	1
1,1-Dichloroethene	ND	0.50	ug/L		07/31/14 16:30	1
cis-1,2-Dichloroethene	3.0	0.50	ug/L		07/31/14 16:30	1
trans-1,2-Dichloroethene	ND	0.50	ug/L		07/31/14 16:30	1
1,2-Dichloropropane	ND	0.50	ug/L		07/31/14 16:30	1
cis-1,3-Dichloropropene	ND	0.50	ug/L		07/31/14 16:30	1
trans-1,3-Dichloropropene	ND	0.50	ug/L		07/31/14 16:30	1
Ethylbenzene	ND	0.50	ug/L		07/31/14 16:30	1
Hexachlorobutadiene	ND	1.0	ug/L		07/31/14 16:30	1
2-Hexanone	ND	50	ug/L		07/31/14 16:30	1
Isopropylbenzene	ND	0.50	ug/L		07/31/14 16:30	1
4-Isopropyltoluene	ND	1.0	ug/L		07/31/14 16:30	1
Methylene Chloride	ND	5.0	ug/L		07/31/14 16:30	1
4-Methyl-2-pentanone (MIBK)	ND	50	ug/L		07/31/14 16:30	1
Naphthalene	ND	1.0	ug/L		07/31/14 16:30	1
N-Propylbenzene	ND	1.0	ug/L		07/31/14 16:30	1
Styrene	ND	0.50	ug/L		07/31/14 16:30	1
1,1,1,2-Tetrachloroethane	ND	0.50	ug/L		07/31/14 16:30	1
1,1,2,2-Tetrachloroethane	ND	0.50	ug/L		07/31/14 16:30	1
Tetrachloroethene	77	0.50	ug/L		07/31/14 16:30	1
Toluene	ND	0.50	ug/L		07/31/14 16:30	1
1,2,3-Trichlorobenzene	ND	1.0	ug/L		07/31/14 16:30	1
1,2,4-Trichlorobenzene	ND	1.0	ug/L		07/31/14 16:30	1
1,1,1-Trichloroethane	ND	0.50	ug/L		07/31/14 16:30	1
1,1,2-Trichloroethane	ND	0.50	ug/L		07/31/14 16:30	1
Trichloroethene	15	0.50	ug/L		07/31/14 16:30	1
Trichlorofluoromethane	ND	1.0	ug/L		07/31/14 16:30	1
1,2,3-Trichloropropane	ND	0.50	ug/L		07/31/14 16:30	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	0.50	ug/L		07/31/14 16:30	1
1,2,4-Trimethylbenzene	ND	0.50	ug/L		07/31/14 16:30	1
1,3,5-Trimethylbenzene	ND	0.50	ug/L		07/31/14 16:30	1
Vinyl acetate	ND	10	ug/L		08/04/14 16:40	-1
Vinyl chloride	ND -	0.50	ug/L		07/31/14 16:30	1
Xylenes, Total	ND	1.0	ug/L		07/31/14 16:30	1
2,2-Dichloropropane	ND	0.50	ug/L		07/31/14 16:30	1
Gasoline Range Organics (GRO)	91	50	ug/L		07/31/14 16:30	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	99		67 - 130		07/31/14 16:30	1
4-Bromofluorobenzene	103		67 - 130		08/04/14 16:40	1
1,2-Dichloroethane-d4 (Surr)	103		72 - 130		07/31/14 16:30	1
1,2-Dichloroethane-d4 (Surr)	122		72 - 130		08/04/14 16:40	1
Toluene-d8 (Surr)	101		70 - 130		07/31/14 16:30	1
Toluene-d8 (Surr)	99		70 - 130		08/04/14 16:40	1

Client: AMEC Environment & Infrastructure, Inc. Project/Site: Crown Chevrolet Cadillac Isuzu

TestAmerica Job ID: 720-58974-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS

Client Sample ID: MP-01-2 Date Collected: 07/30/14 12:51 Lab Sample ID: 720-58974-6

Matrix: Water

Date Received: 07/30/14 15:55 Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND		0.50	ug/L		•	07/31/14 16:59	
Acetone	ND		50	ug/L			07/31/14 16:59	
Benzene	ND		0.50	ug/L			07/31/14 16:59	
Dichlorobromomethane	ND		0.50	ug/L			07/31/14 16:59	
Bromobenzene	ND		1.0	ug/L			07/31/14 16:59	
Chlorobromomethane	ND		1.0	ug/L			07/31/14 16:59	
Bromoform	. ND		1.0	ug/L			07/31/14 16:59	
Bromomethane	ND		1.0	ug/L			07/31/14 16:59	
2-Butanone (MEK)	ND		50	ug/L			07/31/14 16:59	
n-Butylbenzene	ND		1.0	ug/L			07/31/14 16:59	
sec-Butylbenzene	ND		1.0	ug/L			07/31/14 16:59	
	ND		1.0	ug/L			07/31/14 16:59	
tert-Butylbenzene	ND		5.0	ug/L			07/31/14 16:59	
Carbon disulfide			0.50				07/31/14 16:59	
Carbon tetrachloride	ND			ug/L			07/31/14 16:59	
Chlorobenzene	ND		0.50	ug/L				
Chloroethane	ND		1.0	ug/L			07/31/14 16:59	
Chloroform	ND		1.0	ug/L			07/31/14 16:59	
Chloromethane	ND		1.0	ug/L			07/31/14 16:59	
2-Chlorotoluene	ND		0.50	ug/L			07/31/14 16:59	
4-Chlorotoluene	ND		0.50	ug/L			07/31/14 16:59	
Chlorodibromomethane	ND		0.50	ug/L			07/31/14 16:59	
1,2-Dichlorobenzene	ND		0.50	ug/L			07/31/14 16:59	
1,3-Dichlorobenzene	ND		0.50	ug/L			07/31/14 16:59	
1,4-Dichlorobenzene	ND		0.50	ug/L			07/31/14 16:59	
1,3-Dichloropropane	ND		1.0	ug/L			07/31/14 16:59	
1,1-Dichloropropene	ND		0.50	ug/L		-	07/31/14 16:59	
1,2-Dibromo-3-Chloropropane	ND		1.0	ug/L		*1	07/31/14 16:59	
Ethylene Dibromide	ND		0.50	ug/L			07/31/14 16:59	
Dibromomethane	ND		0.50	ug/L			07/31/14 16:59	
Dichlorodifluoromethane	ND		0.50	ug/L			07/31/14 16:59	
1,1-Dichloroethane	ND		0.50	ug/L			07/31/14 16:59	
1,2-Dichloroethane	ND		0.50	ug/L			07/31/14 16:59	1
1,1-Dichloroethene	ND		0.50	ug/L			07/31/14 16:59	
cis-1,2-Dichloroethene	49		0.50	ug/L			07/31/14 16:59	-
trans-1,2-Dichloroethene	ND		0.50	ug/L			07/31/14 16:59	
1,2-Dichloropropane	ND		0.50	ug/L			07/31/14 16:59	
cis-1,3-Dichloropropene	ND		0.50	ug/L			07/31/14 16:59	
trans-1,3-Dichloropropene	ND		0.50	ug/L			07/31/14 16:59	
Ethylbenzene	ND		0.50	ug/L			07/31/14 16:59	-
Hexachlorobutadiene	ND		1.0	ug/L			07/31/14 16:59	
2-Hexanone	ND		50	ug/L			07/31/14 16:59	
sopropylbenzene	ND		0.50	ug/L			07/31/14 16:59	
4-Isopropyltoluene	ND		1.0	ug/L			07/31/14 16:59	
	ND		5.0	ug/L			07/31/14 16:59	
Methylene Chloride	ND		50	ug/L			07/31/14 16:59	
4-Methyl-2-pentanone (MIBK)							07/31/14 16:59	
Naphthalene	ND		1.0	ug/L				
N-Propylbenzene	ND		1.0	ug/L			07/31/14 16:59	1
Styrene	ND		0.50	ug/L			07/31/14 16:59	
1,1,1,2-Tetrachloroethane	ND		0.50	ug/L			07/31/14 16:59	1

TestAmerica Pleasanton

Client: AMEC Environment & Infrastructure, Inc. Project/Site: Crown Chevrolet Cadillac Isuzu

TestAmerica Job ID: 720-58974-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Client Sample ID: MP-01-2 Date Collected: 07/30/14 12:51 Date Received: 07/30/14 15:55 Lab Sample ID: 720-58974-6

Matrix: Water

Analys	Deputt 6	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte	Result	Quaimer		MIDL			Frepareu		Dil Fac
1,1,2,2-Tetrachloroethane	ND		0.50		ug/L			07/31/14 16:59	1
Tetrachloroethene	ND		0.50		ug/L			07/31/14 16:59	1
Toluene	ND		0.50		ug/L			07/31/14 16:59	1
1,2,3-Trichlorobenzene	ND		1.0		ug/L			07/31/14 16:59	1
1,2,4-Trichlorobenzene	ND		1.0		ug/L			07/31/14 16:59	1
1,1,1-Trichloroethane	ND		0.50		ug/L			07/31/14 16:59	1
1,1,2-Trichloroethane	ND		0.50		ug/L			07/31/14 16:59	1
Trichloroethene	ND		0.50		ug/L			07/31/14 16:59	1
Trichlorofluoromethane	ND		1.0		ug/L			07/31/14 16:59	1
1,2,3-Trichloropropane	ND		0.50		ug/L			07/31/14 16:59	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50		ug/L			07/31/14 16:59	1
1,2,4-Trimethylbenzene	ND		0.50		ug/L			07/31/14 16:59	1
1,3,5-Trimethylbenzene	ND		0.50		ug/L			07/31/14 16:59	1
Vinyl acetate	ND		10		ug/L			08/04/14 17:09	1
Vinyl chloride	ND		0.50		ug/L			07/31/14 16:59	1
Xylenes, Total	ND		1.0		ug/L			07/31/14 16:59	1
2,2-Dichloropropane	ND		0.50		ug/L			07/31/14 16:59	1
Gasoline Range Organics (GRO) -C5-C12	ND		50		ug/L			07/31/14 16:59	1

%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
100	67 - 130		07/31/14 16:59	1
102	67 - 130		08/04/14 17:09	1
105	72 - 130		07/31/14 16:59	1
121	72 - 130		08/04/14 17:09	1
100	70 - 130		07/31/14 16:59	1
100	70 - 130		08/04/14 17:09	1
	100 102 105 121 100	100 67 - 130 102 67 - 130 105 72 - 130 121 72 - 130 100 70 - 130	100 67 - 130 102 67 - 130 105 72 - 130 121 72 - 130 100 70 - 130	100 67 - 130 07/31/14 16:59 102 67 - 130 08/04/14 17:09 105 72 - 130 07/31/14 16:59 121 72 - 130 08/04/14 17:09 100 70 - 130 07/31/14 16:59

Client Sample ID: MP-01-3 Date Collected: 07/30/14 13:50 Lab Sample ID: 720-58974-7 **Matrix: Water**

Date Received: 07/30/14 15:55									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND		0.50		ug/L			07/31/14 17:28	1
Acetone	ND		50		ug/L			07/31/14 17:28	1
Benzene	ND		0.50		ug/L			07/31/14 17:28	1
Dichlorobromomethane	ND		0.50		ug/L			07/31/14 17:28	1
Bromobenzene	ND		1.0		ug/L			07/31/14 17:28	1
Chlorobromomethane	ND		1.0		ug/L			07/31/14 17:28	1
Bromoform	ND		1.0		ug/L			07/31/14 17:28	1
Bromomethane	ND		1.0		ug/L			07/31/14 17:28	1
2-Butanone (MEK)	ND		50		ug/L			07/31/14 17:28	1
n-Butylbenzene	ND		1.0		ug/L			07/31/14 17:28	1
sec-Butylbenzene	ND		1.0		ug/L			07/31/14 17:28	1
tert-Butylbenzene	ND		1.0		ug/L			07/31/14 17:28	1
Carbon disulfide	ND		5.0		ug/L			07/31/14 17:28	1
Carbon tetrachloride	ND		0.50		ug/L			07/31/14 17:28	1
Chlorobenzene	ND		0.50		ug/L			07/31/14 17:28	1
Chloroethane	ND		1.0		ug/L			07/31/14 17:28	1
Chloroform	ND		1.0		ug/L			07/31/14 17:28	1
Chloromethane	ND		1.0		ug/L			07/31/14 17:28	1

Client: AMEC Environment & Infrastructure, Inc. Project/Site: Crown Chevrolet Cadillac Isuzu

TestAmerica Job ID: 720-58974-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Client Sample ID: MP-01-3

-C5-C12

Lab Sample ID: 720-58974-7

Matrix: Water

Date Collected: 07/30/14 13:50 Date Received: 07/30/14 15:55

Analyte	Result C	Qualifier RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
2-Chlorotoluene	ND	0.50	ug/L	1,00		07/31/14 17:28	1
4-Chlorotoluene	ND	0.5Ò	ug/L			07/31/14 17:28	1
Chlorodibromomethane	ND	0.50	ug/L			07/31/14 17:28	1
1,2-Dichlorobenzene	ND	0.50	ug/L			07/31/14 17:28	1
1,3-Dichlorobenzene	ND	0.50	ug/L			07/31/14 17:28	1
1,4-Dichlorobenzene	ND	0.50	ug/L			07/31/14 17:28	1
1,3-Dichloropropane	ND	1.0	ug/L			07/31/14 17:28	1
1,1-Dichloropropene	ND	0.50	ug/L			07/31/14 17:28	1
1,2-Dibromo-3-Chloropropane	ND	1.0	ug/L			07/31/14 17:28	1
Ethylene Dibromide	ND	0.50	ug/L			07/31/14 17:28	1
Dibromomethane	ND	0.50	ug/L			07/31/14 17:28	1
Dichlorodifluoromethane	ND	0.50	ug/L			07/31/14 17:28	1
1,1-Dichloroethane	ND	0.50	ug/L			07/31/14 17:28	1
1,2-Dichloroethane	ND	0.50	ug/L			07/31/14 17:28	1
1,1-Dichloroethene	ND	0.50	ug/L			07/31/14 17:28	1
cis-1,2-Dichloroethene	7.4	0.50	ug/L			07/31/14 17:28	1
trans-1,2-Dichloroethene	ND	0.50	ug/L			07/31/14 17:28	1
1,2-Dichloropropane	ND	0.50	ug/L			07/31/14 17:28	1
cis-1,3-Dichloropropene	ND	0.50	ug/L			07/31/14 17:28	1
trans-1,3-Dichloropropene	ND	0.50	ug/L			07/31/14 17:28	1
Ethylbenzene	ND	0.50	ug/L			07/31/14 17:28	1
Hexachlorobutadiene	ND	1.0	ug/L			07/31/14 17:28	1
2-Hexanone	ND	50	ug/L			07/31/14 17:28	1
Isopropylbenzene	ND	0.50	ug/L			07/31/14 17:28	1
4-Isopropyltoluene	ND	1.0	ug/L			07/31/14 17:28	1
Methylene Chloride	ND	5.0	ug/L			07/31/14 17:28	1
4-Methyl-2-pentanone (MIBK)	ND	50	ug/L	- 2		07/31/14 17:28	1
Naphthalene	ND	1.0	ug/L			07/31/14 17:28	1
N-Propylbenzene	ND	1.0	ug/L			07/31/14 17:28	1
Styrene	ND	0.50	ug/L			07/31/14 17:28	1
1,1,1,2-Tetrachloroethane	ND	0.50	ug/L			07/31/14 17:28	1
1,1,2,2-Tetrachloroethane	ND	0.50	ug/L			07/31/14 17:28	1
Tetrachloroethene	ND	0.50	ug/L			07/31/14 17:28	1
Toluene	ND	0.50	ug/L			07/31/14 17:28	1
1,2,3-Trichlorobenzene	ND	1.0	ug/L			07/31/14 17:28	1
1,2,4-Trichlorobenzene	ND	1.0	ug/L			07/31/14 17:28	-1
1,1,1-Trichloroethane	ND	0.50	ug/L			07/31/14 17:28	1
1,1,2-Trichloroethane	ND	0.50	ug/L			07/31/14 17:28	1
Trichloroethene	ND	0.50	ug/L			07/31/14 17:28	1
Trichlorofluoromethane	ND	1.0	ug/L			07/31/14 17:28	1
1,2,3-Trichloropropane	ND	0.50	ug/L			07/31/14 17:28	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	0.50	ug/L			07/31/14 17:28	1
1,2,4-Trimethylbenzene	ND	0.50	ug/L			07/31/14 17:28	1
1,3,5-Trimethylbenzene	ND	0.50	ug/L			07/31/14 17:28	1
Vinyl acetate	ND	10	ug/L			08/01/14 22:21	1
Vinyl chloride	ND	0.50	ug/L			07/31/14 17:28	1
Xylenes, Total	ND	1.0	ug/L			07/31/14 17:28	1
2,2-Dichloropropane	ND	0.50	ug/L			07/31/14 17:28	1
Gasoline Range Organics (GRO)	ND	50	ug/L		88	07/31/14 17:28	1

TestAmerica Pleasanton

Client: AMEC Environment & Infrastructure, Inc. Project/Site: Crown Chevrolet Cadillac Isuzu

TestAmerica Job ID: 720-58974-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	100		67 - 130		07/31/14 17:28	1
4-Bromofluorobenzene	102		67 - 130		08/01/14 22:21	1
1,2-Dichloroethane-d4 (Surr)	103		72 - 130		07/31/14 17:28	1
1,2-Dichloroethane-d4 (Surr)	102		72 - 130		08/01/14 22:21	1
Toluene-d8 (Surr)	100		70 _ 130		07/31/14 17:28	1
Toluene-d8 (Surr)	101		70 - 130		08/01/14 22:21	1

Client Sample ID: MP-02-1 Lab Sample ID: 720-58974-8 Matrix: Water Date Collected: 07/30/14 10:41

Date Received: 07/30/14 15:55 Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND	0.50	ug/L		08/01/14 23:47	1
Acetone	ND	50	ug/L		08/01/14 23:47	1
Benzene	ND	0.50	ug/L		08/01/14 23:47	1
Dichlorobromomethane	ND	0.50	ug/L		08/01/14 23:47	1
Bromobenzene	ND	1.0	ug/L		08/01/14 23:47	1
Chlorobromomethane	ND	1.0	ug/L		08/01/14 23:47	1
Bromoform	ND	1.0	ug/L		08/01/14 23:47	1
Bromomethane	ND	1.0	ug/L		08/01/14 23:47	1
2-Butanone (MEK)	ND	50	ug/L		08/01/14 23:47	1
n-Butylbenzene	ND	1.0	ug/L		08/01/14 23:47	1
sec-Butylbenzene	ND	1.0	ug/L		08/01/14 23:47	1
tert-Butylbenzene	ND	1.0	ug/L		08/01/14 23:47	1
Carbon disulfide	ND	5.0	ug/L		08/01/14 23:47	1
Carbon tetrachloride	ND	0.50	ug/L		08/01/14 23:47	1
Chiorobenzene	ND	0.50	ug/L		08/01/14 23:47	1
Chloroethane	ND	1.0	ug/L		08/01/14 23:47	1
Chloroform	ND	1.0	ug/L		08/01/14 23:47	1
Chloromethane	ND	1.0	ug/L		08/01/14 23:47	1
2-Chlorotoluene	ND	0.50	ug/L		08/01/14 23:47	1
4-Chlorotoluene	ND	0.50	ug/L		08/01/14 23:47	1
Chlorodibromomethane	ND	0.50	ug/L		08/01/14 23:47	1
1,2-Dichlorobenzene	ND	0.50	ug/L		08/01/14 23:47	1
1,3-Dichlorobenzene	ND	0.50	ug/L		08/01/14 23:47	1
1,4-Dichlorobenzene	ND	0.50	ug/L		08/01/14 23:47	1
1,3-Dichloropropane	ND	1.0	ug/L		08/01/14 23:47	1
1,1-Dichloropropene	ND	0.50	ug/L		08/01/14 23:47	1
1,2-Dibromo-3-Chloropropane	ND	1.0	ug/L		08/01/14 23:47	1
Ethylene Dibromide	ND	0.50	ug/L		08/01/14 23:47	1
Dibromomethane	ND	0.50	ug/L		08/01/14 23:47	1
Dichlorodifluoromethane	ND	0.50	ug/L		08/01/14 23:47	1
1,1-Dichloroethane	ND	0.50	ug/L		08/01/14 23:47	1
1,2-Dichloroethane	ND	0.50	ug/L		08/01/14 23:47	1
1,1-Dichloroethene	ND	0.50	ug/L		08/01/14 23:47	1
cis-1,2-Dichloroethene	7.2	0.50	ug/L		08/01/14 23:47	1
trans-1,2-Dichloroethene	1.0	0.50	ug/L		08/01/14 23:47	1
1,2-Dichloropropane	ND	0.50	ug/L		08/01/14 23:47	1
cis-1,3-Dichloropropene	ND	0.50	ug/L		08/01/14 23:47	1
trans-1,3-Dichloropropene	ND	0.50	ug/L		08/01/14 23:47	1
Ethylbenzene	ND	0.50	·ug/L		08/01/14 23:47	1
Hexachlorobutadiene	ND	1.0	ug/L		08/01/14 23:47	1
2-Hexanone	ND	50	ug/L		08/01/14 23:47	1

TestAmerica Pleasanton

Client: AMEC Environment & Infrastructure, Inc. Project/Site: Crown Chevrolet Cadillac Isuzu

Client Sample ID: MP-02-1

TestAmerica Job ID: 720-58974-1

Lab Sample ID: 720-58974-8

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Date Collected: 07/30/14 10:41							Matrix	x: Water
Date Received: 07/30/14 15:55 Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Isopropylbenzene	ND		0.50	ug/L			08/01/14 23:47	1
4-Isopropyltoluene	ND		1.0	ug/L			08/01/14 23:47	1
Methylene Chloride	ND		5.0	ug/L			08/01/14 23:47	1
4-Methyl-2-pentanone (MIBK)	ND		50	ug/L			08/01/14 23:47	1
Naphthalene	ND		1.0	ug/L			08/01/14 23:47	1
N-Propylbenzene	ND		1.0	ug/L			08/01/14 23:47	1
Styrene	ND		0.50	ug/L			08/01/14 23:47	1
1,1,1,2-Tetrachloroethane	ND		0.50	ug/L			08/01/14 23:47	1
1,1,2,2-Tetrachloroethane	ND		0.50	ug/L			08/01/14 23:47	1
Tetrachloroethene	0.86		0.50	ug/L			08/01/14 23:47	1
Toluene	ND		0.50	ug/L			08/01/14 23:47	1
1,2,3-Trichlorobenzene	ND		1.0	ug/L			08/01/14 23:47	1
1,2,4-Trichlorobenzene	ND		1.0	ug/L			08/01/14 23:47	1
1,1,1-Trichloroethane	ND		0.50	ug/L			08/01/14 23:47	1
1,1,2-Trichloroethane	ND		0.50	ug/L			08/01/14 23:47	1
Trichloroethene	51		0.50	ug/L			08/01/14 23:47	1
Trichlorofluoromethane	ND		1.0	ug/L			08/01/14 23:47	1
1,2,3-Trichloropropane	ND		0.50	ug/L			08/01/14 23:47	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50	ug/L			08/01/14 23:47	1
1,2,4-Trimethylbenzene	ND		0.50	ug/L			08/01/14 23:47	1
1,3,5-Trimethylbenzene	ND		0.50	ug/L			08/01/14 23:47	1
Vinyl acetate	ND		10	ug/L			08/01/14 23:47	1
Vinyl chloride	ND		0.50	ug/L			08/01/14 23:47	1
Xylenes, Total	ND		1.0	ug/L			08/01/14 23:47	1

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	101	67 _ 130		08/01/14 23:47	1
1,2-Dichloroethane-d4 (Surr)	101	72 - 130		08/01/14 23:47	1
Toluene-d8 (Surr)	102	70 - 130		08/01/14 23:47	1

0.50

50

ug/L

ug/L

ND

Client Sample ID: MP-02-2 Date Collected: 07/30/14 10:01

Gasoline Range Organics (GRO)

2,2-Dichloropropane

-C5-C12

Lab Sample ID: 720-58974-9 Matrix: Water

08/01/14 23:47

08/01/14 23:47

Date Received: 07/30/14 15:55									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND		0.50		ug/L			08/02/14 00:15	1
Acetone	ND		50		ug/L			08/02/14 00:15	1
Benzene	ND		0.50		ug/L			08/02/14 00:15	1
Dichlorobromomethane	ND		0.50		ug/L			08/02/14 00:15	1
Bromobenzene	ND		1.0		ug/L			08/02/14 00:15	1
Chlorobromomethane	ND		1.0		ug/L			08/02/14 00:15	1
Bromoform	ND		1.0		ug/L			08/02/14 00:15	1
Bromomethane	ND		1.0		ug/L			08/02/14 00:15	1
2-Butanone (MEK)	ND		50		ug/L			08/02/14 00:15	1
n-Butylbenzene	ND		1.0		ug/L			08/02/14 00:15	1
sec-Butylbenzene	ND		1.0		ug/L			08/02/14 00:15	1
tert-Butylbenzene	ND		1.0		ug/L			08/02/14 00:15	1
Carbon disulfide	ND		5.0		ug/L			08/02/14 00:15	1

TestAmerica Pleasanton

Page 19 of 56

Client: AMEC Environment & Infrastructure, Inc. Project/Site: Crown Chevrolet Cadillac Isuzu

TestAmerica Job ID: 720-58974-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Client Sample ID: MP-02-2 Date Collected: 07/30/14 10:01 Lab Sample ID: 720-58974-9 Matrix: Water

Date Received: 07/30/14 15:55 Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Carbon tetrachloride	ND		0.50	ug/L	-		08/02/14 00:15	1
Chlorobenzene	ND		0.50	ug/L			08/02/14 00:15	1
Chloroethane	ND		1.0	ug/L			08/02/14 00:15	1
Chloroform	ND		1.0	ug/L			08/02/14 00:15	1
Chloromethane	ND		1.0	ug/L			08/02/14 00:15	1
2-Chlorotoluene	ND		0.50	ug/L			08/02/14 00:15	1
4-Chlorotoluene	ND		0.50	ug/L			08/02/14 00:15	1
Chlorodibromomethane	ND		0.50	ug/L			08/02/14 00:15	1
1,2-Dichlorobenzene	ND		0.50	ug/L			08/02/14 00:15	1
1,3-Dichlorobenzene	ND		0.50	ug/L			08/02/14 00:15	1
1,4-Dichlorobenzene	ND		0.50	ug/L			08/02/14 00:15	1
1,3-Dichloropropane	ND		1.0	ug/L			08/02/14 00:15	1
1,1-Dichloropropene	ND		0.50	ug/L			08/02/14 00:15	1
1,2-Dibromo-3-Chloropropane	ND		1.0	ug/L			08/02/14 00:15	1
Ethylene Dibromide	ND		0.50	ug/L			08/02/14 00:15	1
Dibromomethane	ND		0.50	ug/L			08/02/14 00:15	1
Dichlorodifluoromethane	ND		0.50	ug/L			08/02/14 00:15	1
1,1-Dichloroethane	ND		0.50	ug/L			08/02/14 00:15	1
1,2-Dichloroethane	ND		0.50	ug/L			08/02/14 00:15	1
1,1-Dichloroethene	ND		0.50	ug/L			08/02/14 00:15	1
cis-1,2-Dichloroethene	72		0.50	ug/L			08/02/14 00:15	1
trans-1,2-Dichloroethene	ND		0.50	ug/L			08/02/14 00:15	1
1,2-Dichloropropane	ND		0.50	ug/L			08/02/14 00:15	1
cis-1,3-Dichloropropene	ND		0.50	ug/L			08/02/14 00:15	1
trans-1,3-Dichloropropene	ND		0.50	ug/L			08/02/14 00:15	1
Ethylbenzene	ND		0.50	ug/L			08/02/14 00:15	1
Hexachlorobutadiene	ND		1.0	ug/L			08/02/14 00:15	1
2-Hexanone	ND		50	ug/L			08/02/14 00:15	1
Isopropylbenzene	ND		0.50	ug/L			08/02/14 00:15	1
4-Isopropyltoluene	ND		1.0	ug/L			08/02/14 00:15	1
Methylene Chloride	ND		5.0	ug/L			08/02/14 00:15	1
4-Methyl-2-pentanone (MIBK)	ND		50	ug/L			08/02/14 00:15	1
Naphthalene	ND		1.0	ug/L			08/02/14 00:15	1
N-Propylbenzene	ND		1.0	ug/L			08/02/14 00:15	1
	ND		0.50	ug/L			08/02/14 00:15	1
Styrene 1,1,1,2-Tetrachloroethane	ND		0.50	ug/L			08/02/14 00:15	1
1,1,2,2-Tetrachloroethane	ND		0.50	ug/L			08/02/14 00:15	1
	ND		0.50	ug/L			08/02/14 00:15	1
Tetrachloroethene	ND		0.50	ug/L			08/02/14 00:15	1
Toluene	ND		1.0	ug/L			08/02/14 00:15	1
1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene	ND		1.0	ug/L			08/02/14 00:15	1
	ND		0.50	ug/L			08/02/14 00:15	1
1,1,1-Trichloroethane	ND		0.50	ug/L			08/02/14 00:15	1
1,1,2-Trichloroethane Trichloroethene	ND		0.50	ug/L			08/02/14 00:15	
			1.0				08/02/14 00:15	1
Trichlorofluoromethane	ND		0.50	ug/L			08/02/14 00:15	1
1,2,3-Trichloropropane	ND			ug/L			08/02/14 00:15	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50	ug/L			08/02/14 00:15	
1,2,4-Trimethylbenzene	ND ND		0.50 0.50	ug/L ug/L			08/02/14 00:15	1

TestAmerica Pleasanton

Client: AMEC Environment & Infrastructure, Inc. Project/Site: Crown Chevrolet Cadillac Isuzu

TestAmerica Job ID: 720-58974-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Client Sample ID: MP-02-2 Date Collected: 07/30/14 10:01

Lab Sample ID: 720-58974-9 **Matrix: Water**

Date Received: 07/30/14 15:55 Dil Fac Result Qualifier RL MDL Unit Prepared Analyzed Analyte 10 08/02/14 00:15 ND ug/L Vinyl acetate 08/02/14 00:15 0.50 ug/L Vinyl chloride ND Xylenes, Total ND 1.0 ug/L 08/02/14 00:15 ND 0.50 ug/L 08/02/14 00:15 2,2-Dichloropropane ug/L 08/02/14 00:15 ND 50 Gasoline Range Organics (GRO) -C5-C12

Prepared Analyzed Dil Fac Limits %Recovery Qualifier Surrogate 67 - 130 08/02/14 00:15 102 4-Bromofluorobenzene 08/02/14 00:15 72 - 130 1,2-Dichloroethane-d4 (Surr) 104 08/02/14 00:15 101 70 - 130 Toluene-d8 (Surr)

Lab Sample ID: 720-58974-10 Client Sample ID: MP-02-3

Date Collected: 07/30/14 13:30 Date Received: 07/30/14 15:55								Matrix	x: Water
Analyte	Result	Qualifier	RL	MDL U	Init	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND		0.50	L	ıg/L			08/02/14 00:44	1
Acetone	180		50	ι	ıg/L			08/02/14 00:44	1
Benzene	ND		0.50	L	ıg/L			08/02/14 00:44	1
Dichlorobromomethane	ND		0.50	L	ıg/L			08/02/14 00:44	1
Bromobenzene	ND		1.0	L	ıg/L			08/02/14 00:44	1
Chlorobromomethane	ND		1.0	L	ıg/L			08/02/14 00:44	1
Bromoform	ND		1.0	L	ıg/L			08/02/14 00:44	1
Bromomethane	ND		1.0	ι	ıg/L			08/02/14 00:44	1
2-Butanone (MEK)	ND		50	L	ıg/L			08/02/14 00:44	1
n-Butylbenzene	ND		1.0	L	ıg/L			08/02/14 00:44	1
sec-Butylbenzene	ND		1.0	L	ıg/L			08/02/14 00:44	1
tert-Butylbenzene	ND		1.0	L	ıg/L			08/02/14 00:44	1
Carbon disulfide	ND		5.0	L	ıg/L			08/02/14 00:44	1
Carbon tetrachloride	ND		0.50	L	ıg/L			08/02/14 00:44	1
Chlorobenzene	ND		0.50	· L	ıg/L			08/02/14 00:44	1
Chloroethane	ND		1.0	i	ıg/L			08/02/14 00:44	1
Chloroform	ND		1.0	ı	ıg/L			08/02/14 00:44	1
Chloromethane	ND		1.0	ι	ıg/L			08/02/14 00:44	1
2-Chlorotoluene	ND		0.50	ι	ıg/L			08/02/14 00:44	1
4-Chlorotoluene	ND		0.50	ι	ıg/L			08/02/14 00:44	1
Chlorodibromomethane	ND		0.50	ι	ıg/L			08/02/14 00:44	1
1,2-Dichlorobenzene	ND		0.50	ι	ıg/L			08/02/14 00:44	1
1,3-Dichlorobenzene	ND		0.50	ι	ıg/L			08/02/14 00:44	1
1,4-Dichlorobenzene	ND		0.50	ι	ıg/L			08/02/14 00:44	1
1,3-Dichloropropane	. ND		1.0	ι	ıg/L			08/02/14 00:44	1
1,1-Dichloropropene	MD ND		0.50	ι	ıg/L			08/02/14 00:44	1
1,2-Dibromo-3-Chloropropane	ND		1.0	ι	ıg/L			08/02/14 00:44	1
Ethylene Dibromide	ND		0.50	L	ıg/L			08/02/14 00:44	1
Dibromomethane	ND		0.50	ι	ig/L			08/02/14 00:44	1
Dichlorodifluoromethane	ND		0.50	L	ıg/L			08/02/14 00:44	1
1,1-Dichloroethane	ND		0.50	L	ıg/L			08/02/14 00:44	1
1,2-Dichloroethane	ND		0.50	ι	ıg/L			08/02/14 00:44	1
1,1-Dichloroethene	ND		0.50	ι	ıg/L			08/02/14 00:44	1
cis-1,2-Dichloroethene	5.2		0.50	ι	ıg/L			08/02/14 00:44	1

Client: AMEC Environment & Infrastructure, Inc. Project/Site: Crown Chevrolet Cadillac Isuzu

TestAmerica Job ID: 720-58974-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Client Sample ID: MP-02-3

Lab Sample ID: 720-58974-10

Matrix: Water

Date Collected: 07/30/14 13:30	
Date Received: 07/30/14 15:55	
Analyte	

Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
trans-1,2-Dichloroethene	ND		0.50	ug/L			08/02/14 00:44	1
1,2-Dichloropropane	ND		0.50	ug/L			08/02/14 00:44	1
cis-1,3-Dichloropropene	ND		0.50	ug/L			08/02/14 00:44	1
trans-1,3-Dichloropropene	ND		0.50	ug/L			08/02/14 00:44	1
Ethylbenzene	ND		0.50	ug/L			08/02/14 00:44	1
Hexachlorobutadiene	ND		1.0	ug/L			08/02/14 00:44	1
2-Hexanone	ND		50	ug/L			08/02/14 00:44	1
Isopropylbenzene	ND		0.50	ug/L			08/02/14 00:44	1
4-Isopropyltoluene	ND		1.0	ug/L			08/02/14 00:44	1
Methylene Chloride	ND		5.0	ug/L			08/02/14 00:44	1
4-Methyl-2-pentanone (MIBK)	ND		50	ug/L			08/02/14 00:44	1
Naphthalene	ND		1.0	ug/L			08/02/14 00:44	1
N-Propylbenzene	ND		1.0	ug/L			08/02/14 00:44	1
Styrene	ND		0.50	ug/L			08/02/14 00:44	1
1,1,1,2-Tetrachloroethane	ND		0.50	ug/L			08/02/14 00:44	1
1,1,2,2-Tetrachloroethane	ND		0.50	ug/L			08/02/14 00:44	1
Tetrachloroethene	ND		0.50	ug/L			08/02/14 00:44	1
Toluene	ND		0.50	ug/L			08/02/14 00:44	1
1,2,3-Trichlorobenzene	ND		1.0	ug/L			08/02/14 00:44	1
1,2,4-Trichlorobenzene	ND		1.0	ug/L			08/02/14 00:44	1
1,1,1-Trichloroethane	ND		0.50	ug/L			08/02/14 00:44	1
1,1,2-Trichloroethane	ND		0.50	ug/L			08/02/14 00:44	1
Trichloroethene	ND		0.50	ug/L			08/02/14 00:44	1
Trichlorofluoromethane	ND		1.0	ug/L			08/02/14 00:44	1
1,2,3-Trichloropropane	ND		0.50	ug/L			08/02/14 00:44	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50	ug/L			08/02/14 00:44	1
1,2,4-Trimethylbenzene	ND		0.50	ug/L			08/02/14 00:44	1
1,3,5-Trimethylbenzene	ND		0.50	ug/L			08/02/14 00:44	1
Vinyl acetate	ND		10	ug/L			08/02/14 00:44	1
Vinyl chloride	ND		0.50	ug/L			08/02/14 00:44	1
Xylenes, Total	ND		1.0	ug/L			08/02/14 00:44	1
2,2-Dichloropropane	ND		0.50	ug/L			08/02/14 00:44	1
Gasoline Range Organics (GRO) -C5-C12	ND		50	ug/L			08/02/14 00:44	1

Surrogate	%Recovery Q	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	100		67 - 130		08/02/14 00:44	1
1,2-Dichloroethane-d4 (Surr)	100		72 - 130		08/02/14 00:44	1
Toluene-d8 (Surr)	101		70 - 130		08/02/14 00:44	1

Client Sample ID: MP-03-1 Date Collected: 07/30/14 11:05 Lab Sample ID: 720-58974-11 **Matrix: Water**

Result	Qualifier	RL	MDL 4	Unit	D	Prepared	Analyzed	Dil Fac
ND		0.50	ī	ug/L			08/02/14 01:12	1
ND		50	ι	ug/L			08/02/14 01:12	1
ND		0.50	ι	ug/L			08/02/14 01:12	1
ND		0.50	ι	ug/L			08/02/14 01:12	1
ND		1.0	ι	ug/L			08/02/14 01:12	1
ND		1.0	L	ug/L			08/02/14 01:12	1
	ND ND ND ND	ND ND ND ND	ND 0.50 ND 50 ND 0.50 ND 0.50 ND 1.0	ND 0.50 ND 50 ND 0.50 ND 0.50 ND 1.0	ND 0.50 ug/L ND 50 ug/L ND 0.50 ug/L ND 0.50 ug/L ND 1.0 ug/L	ND 0.50 ug/L ND 50 ug/L ND 0.50 ug/L ND 0.50 ug/L ND 1.0 ug/L	ND 0.50 ug/L ND 50 ug/L ND 0.50 ug/L ND 0.50 ug/L ND 1.0 ug/L	ND 0.50 ug/L 08/02/14 01:12 ND 50 ug/L 08/02/14 01:12 ND 0.50 ug/L 08/02/14 01:12 ND 0.50 ug/L 08/02/14 01:12 ND 1.0 ug/L 08/02/14 01:12 ND 1.0 ug/L 08/02/14 01:12

Client: AMEC Environment & Infrastructure, Inc. Project/Site: Crown Chevrolet Cadillac Isuzu

TestAmerica Job ID: 720-58974-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Client Sample ID: MP-03-1 Date Collected: 07/30/14 11:05 Lab Sample ID: 720-58974-11

Matrix: Water

Date Received: 07/30/14 15:55 Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
Bromoform	ND Qualifor	. 1.0	ug/L		3/02/14 01:12	1
Bromomethane	ND	1.0	ug/L		8/02/14 01:12	1
2-Butanone (MEK)	ND	50	ug/L		3/02/14 01:12	1
n-Butylbenzene	ND	1.0	ug/L		3/02/14 01:12	1
sec-Butylbenzene	ND	1.0	ug/L		3/02/14 01:12	1
tert-Butylbenzene	ND	1.0	ug/L		3/02/14 01:12	1
Carbon disulfide	ND	5.0	ug/L		3/02/14 01:12	1
Carbon tetrachloride	ND	0.50	ug/L		3/02/14 01:12	1
Chlorobenzene	ND	0.50	ug/L		3/02/14 01:12	1
Chloroethane	ND	1.0	ug/L		3/02/14 01:12	1
Chloroform	ND	1.0	ug/L		3/02/14 01:12	1
Chioromethane	ND	1.0	ug/L		3/02/14 01:12	1
2-Chlorotoluene	ND	0.50	ug/L		3/02/14 01:12	1
4-Chlorotoluene	ND	0.50	ug/L		3/02/14 01:12	1
Chlorodibromomethane	ND	0.50	ug/L		3/02/14 01:12	1
1,2-Dichlorobenzene	ND	0.50	ug/L		3/02/14 01:12	1
1,3-Dichlorobenzene	ND	0.50	ug/L		3/02/14 01:12	1
1,4-Dichlorobenzene	ND	0.50	ug/L		3/02/14 01:12	1
1,3-Dichloropropane	ND	1.0	ug/L		3/02/14 01:12	1
1,1-Dichloropropene	ND	0.50	ug/L		3/02/14 01:12	1
1,2-Dibromo-3-Chloropropane	ND	1.0	ug/L		3/02/14 01:12	1
Ethylene Dibromide	ND	0.50	ug/L		3/02/14 01:12	1
Dibromomethane	ND	0.50	ug/L		3/02/14 01:12	1
Dichlorodifluoromethane	ND	0.50	ug/L		3/02/14 01:12	1
1,1-Dichloroethane	ND	0.50	ug/L		3/02/14 01:12	1
1,2-Dichloroethane	ND	0.50	ug/L		3/02/14 01:12	1
1,1-Dichloroethene	ND	0.50	ug/L		3/02/14 01:12	1
	0.74	0.50	ug/L		8/02/14 01:12	1
cis-1,2-Dichloroethene trans-1,2-Dichloroethene	ND	0.50	ug/L		3/02/14 01:12	1
	ND	0.50	ug/L		3/02/14 01:12	1
1,2-Dichloropropane	ND	0.50	ug/L		3/02/14 01:12	1
cis-1,3-Dichloropropene	ND	0.50			3/02/14 01:12	1
trans-1,3-Dichloropropene	ND	0.50	ug/L		3/02/14 01:12	1
Ethylbenzene Hexachlorobutadiene	ND	1.0	ug/L		3/02/14 01:12	1
2-Hexanone	ND	50	ug/L		3/02/14 01:12	1
	ND	0.50	ug/L		8/02/14 01:12	1
Isopropylbenzene	ND	1.0	ug/L		8/02/14 01:12	1
4-Isopropyltoluene			ug/L			4
Methylene Chloride	ND	5.0	ug/L		3/02/14 01:12	1
4-Methyl-2-pentanone (MIBK)	ND	50	ug/L		3/02/14 01:12	1
Naphthalene	ND	1.0	ug/L		3/02/14 01:12	
N-Propylbenzene	ND	1.0	ug/L		3/02/14 01:12	1
Styrene	ND	0.50	ug/L		3/02/14 01:12	1
1,1,1,2-Tetrachloroethane	ND ND	0.50	ug/L		3/02/14 01:12	1
1,1,2,2-Tetrachloroethane	ND	0.50	ug/L		8/02/14 01:12	1
Tetrachloroethene	94	0.50	ug/L		3/02/14 01:12	1
Toluene	ND	0.50	ug/L		3/02/14 01:12	1
1,2,3-Trichlorobenzene	ND	1.0	ug/L		3/02/14 01:12	1
1,2,4-Trichlorobenzene	ND	1.0	ug/L	08	3/02/14 01:12	1

TestAmerica Pleasanton

Page 23 of 56

Client: AMEC Environment & Infrastructure, Inc. Project/Site: Crown Chevrolet Cadillac Isuzu

TestAmerica Job ID: 720-58974-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Client Sample ID: MP-03-1
Date Collected: 07/30/14 11:05

Lab Sample ID: 720-58974-11 Matrix: Water

Date Received: 07/30/14 15:55 Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
1,1,2-Trichloroethane	ND		0.50	ug/L			08/02/14 01:12	1
Trichloroethene	9.5		0.50	ug/L			08/02/14 01:12	1
Trichlorofluoromethane	ND		1.0	ug/L			08/02/14 01:12	1
1,2,3-Trichloropropane	ND		0.50	ug/L			08/02/14 01:12	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50	ug/L			08/02/14 01:12	1
1,2,4-Trimethylbenzene	ND		0.50	ug/L			08/02/14 01:12	1
1,3,5-Trimethylbenzene	ND		0.50	ug/L			08/02/14 01:12	1
Vinyl acetate	ND		10	ug/L			08/02/14 01:12	1
Vinyl chloride	ND		0.50	ug/L			08/02/14 01:12	1
Xylenes, Total	ND		1.0	ug/L			08/02/14 01:12	1
2,2-Dichloropropane	ND		0.50	ug/L			08/02/14 01:12	1
Gasoline Range Organics (GRO) -C5-C12	110		50	ug/L			08/02/14 01:12	1

Dil Fac Analyzed %Recovery Qualifier Limits Prepared Surrogate 08/02/14 01:12 4-Bromofluorobenzene 99 67 - 130 1,2-Dichloroethane-d4 (Surr) 100 72 - 130 08/02/14 01:12 70 - 130 08/02/14 01:12 Toluene-d8 (Surr) 101

Client Sample ID: MP-03-2
Date Collected: 07/30/14 09:45

Lab Sample ID: 720-58974-12

Matrix: Water

Date Received: 07/30/14 15:55 Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND -	0.50	ug/L		08/02/14 01:41	1
Acetone	ND	50	ug/L		08/02/14 01:41	1
Benzene	ND	0.50	ug/L		08/02/14 01:41	1
Dichlorobromomethane	ND	0.50	ug/L		08/02/14 01:41	1
Bromobenzene	ND	1.0	ug/L		08/02/14 01:41	1
Chlorobromomethane	ND	1.0	ug/L		08/02/14 01:41	1
Bromoform	ND	1.0	ug/L		08/02/14 01:41	1
Bromomethane	ND	1.0	ug/L		08/02/14 01:41	1
2-Butanone (MEK)	ND	50	ug/L		08/02/14 01:41	1
n-Butylbenzene	ND	1.0	ug/L		08/02/14 01:41	1
sec-Butylbenzene	ND	1.0	ug/L		08/02/14 01:41	1
tert-Butylbenzene	ND	1.0	ug/L		08/02/14 01:41	1
Carbon disulfide	ND	5.0	ug/L		08/02/14 01:41	1
Carbon tetrachloride	ND	0.50	ug/L		08/02/14 01:41	1
Chlorobenzene	ND	0.50	ug/L		08/02/14 01:41	1
Chloroethane	ND	1.0	ug/L		08/02/14 01:41	1
Chloroform	ND	1.0	ug/L		08/02/14 01:41	1
Chloromethane	ND	1.0	ug/L		08/02/14 01:41	1
2-Chlorotoluene	ND	0.50	ug/L		08/02/14 01:41	1
4-Chlorotoluene	ND	0.50	ug/L		08/02/14 01:41	1
Chlorodibromomethane	ND	0.50	ug/L		08/02/14 01:41	1
1,2-Dichlorobenzene	ND	0.50	ug/L		08/02/14 01:41	1
1,3-Dichlorobenzene	ND	0.50	ug/L		08/02/14 01:41	1
1,4-Dichlorobenzene	ND	0.50	ug/L		08/02/14 01:41	1
1,3-Dichloropropane	ND	1.0	ug/L		08/02/14 01:41	1
1,1-Dichloropropene	ND	0.50	ug/L		08/02/14 01:41	1
1,2-Dibromo-3-Chloropropane	ND	1.0	ug/L		08/02/14 01:41	1

TestAmerica Pleasanton

8/6/2014

Page 24 of 56

Client: AMEC Environment & Infrastructure, Inc. Project/Site: Crown Chevrolet Cadillac Isuzu

TestAmerica Job ID: 720-58974-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Client Sample ID: MP-03-2 Date Collected: 07/30/14 09:45 Date Received: 07/30/14 15:55

Lab Sample ID: 720-58974-12 Matrix: Water

Analyte	Result	Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
Ethylene Dibromide	ND		0.50	ug/L		08/02/14 01:41	
Dibromomethane	ND		0.50	ug/L		08/02/14 01:41	1
Dichlorodifluoromethane	ND		0.50	ug/L		08/02/14 01:41	1
1,1-Dichloroethane	ND		0.50	ug/L		08/02/14 01:41	1
1,2-Dichloroethane	ND		0.50	ug/L		08/02/14 01:41	1
1,1-Dichloroethene	ND		0.50	ug/L		08/02/14 01:41	_ 1
cis-1,2-Dichloroethene	ND		0.50	ug/L		08/02/14 01:41	1
trans-1,2-Dichloroethene	ND		0.50	ug/L		08/02/14 01:41	1
1,2-Dichloropropane	ND		0.50	ug/L		08/02/14 01:41	1
cis-1,3-Dichloropropene	ND		0.50	ug/L		08/02/14 01:41	1
trans-1,3-Dichloropropene	ND		0.50	ug/L		08/02/14 01:41	1
Ethylbenzene	ND		0.50	ug/L		08/02/14 01:41	1
Hexachlorobutadiene	ND		1.0	ug/L		08/02/14 01:41	1
2-Hexanone	ND		50	ug/L		08/02/14 01:41	1
Isopropylbenzene	ND		0.50	ug/L		08/02/14 01:41	1
4-Isopropyltoluene	ND		1.0	ug/L		08/02/14 01:41	1
Methylene Chloride	ND		5.0	ug/L		08/02/14 01:41	1
4-Methyl-2-pentanone (MIBK)	ND		50	ug/L		08/02/14 01:41	1
Naphthalene	ND		1.0	ug/L		08/02/14 01:41	1
N-Propylbenzene	ND		1.0	ug/L		08/02/14 01:41	1
Styrene	ND		0.50	ug/L		08/02/14 01:41	1
1,1,1,2-Tetrachloroethane	ND		0.50	ug/L		08/02/14 01:41	1
1,1,2,2-Tetrachloroethane	ND		0.50	ug/L		08/02/14 01:41	1
Tetrachloroethene	ND		0.50	ug/L		08/02/14 01:41	1
Toluene	ND		0.50	ug/L		08/02/14 01:41	. 1
1,2,3-Trichlorobenzene	ND		1.0	ug/L		08/02/14 01:41	1
1,2,4-Trichlorobenzene	ND		1.0	ug/L		08/02/14 01:41	1
1,1,1-Trichloroethane	ND		0.50	ug/L		08/02/14 01:41	1
1,1,2-Trichloroethane	ND		0.50	ug/L		08/02/14 01:41	1
Trichloroethene	ND		0.50	ug/L		08/02/14 01:41	1
Trichlorofluoromethane	ND		1.0	ug/L		08/02/14 01:41	1
1,2,3-Trichloropropane	ND		0.50	ug/L		08/02/14 01:41	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50	ug/L		08/02/14 01:41	1
1,2,4-Trimethylbenzene	ND		0.50	ug/L		08/02/14 01:41	1
1,3,5-Trimethylbenzene	ND		0.50	ug/L		08/02/14 01:41	1
Vinyl acetate	ND		10	ug/L		08/02/14 01:41	1
Vinyl chloride	ND		0.50	ug/L		08/02/14 01:41	1
Xylenes, Total	ND		1.0	ug/L		08/02/14 01:41	1
2,2-Dichloropropane	ND		0.50	ug/L		08/02/14 01:41	1
Gasoline Range Organics (GRO) -C5-C12	ND		50	ug/L		08/02/14 01:41	1

Limits Prepared Dil Fac Surrogate %Recovery Qualifier Analyzed 4-Bromofluorobenzene 67 - 130 100 08/02/14 01:41 1,2-Dichloroethane-d4 (Surr) 104 72 - 130 08/02/14 01:41 1 Toluene-d8 (Surr) 100 70 - 130 08/02/14 01:41

TestAmerica Job ID: 720-58974-1

Client: AMEC Environment & Infrastructure, Inc. Project/Site: Crown Chevrolet Cadillac Isuzu

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS

Client Sample ID: MP-03-3 Date Collected: 07/30/14 09:25 Lab Sample ID: 720-58974-13 Matrix: Water

Date Received: 07/30/14 15:55 Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND	0.50	ug/L		08/02/14 02:10	1
Acetone	ND	50	ug/L		08/02/14 02:10	1
Benzene	ND	0.50	ug/L		08/02/14 02:10	1
Dichlorobromomethane	ND	0.50	ug/L		08/02/14 02:10	1
Bromobenzene	ND	1.0	ug/L		08/02/14 02:10	1
Chlorobromomethane	ND	1.0	ug/L		08/02/14 02:10	1
Bromoform	ND	1.0	ug/L		08/02/14 02:10	1
Bromomethane	ND	1.0	ug/L		08/02/14 02:10	1
2-Butanone (MEK)	ND	50	ug/L		08/02/14 02:10	1
n-Butylbenzene	ND	1.0	ug/L		08/02/14 02:10	1
sec-Butylbenzene	ND	1.0	ug/L		08/02/14 02:10	1
tert-Butylbenzene	ND	1.0	ug/L		08/02/14 02:10	1
Carbon disulfide	ND	5.0	ug/L		08/02/14 02:10	1
Carbon tetrachloride	ND	0.50	ug/L		08/02/14 02:10	1
Chlorobenzene	ND	0.50	ug/L		08/02/14 02:10	1
Chloroethane	ND	1.0	ug/L		08/02/14 02:10	1
Chloroform	ND	1.0	ug/L		08/02/14 02:10	1
Chloromethane	ND	1.0	ug/L		08/02/14 02:10	1
2-Chlorotoluene	ND	0.50	ug/L		08/02/14 02:10	1
4-Chlorotoluene	ND	0.50	ug/L		08/02/14 02:10	1
Chlorodibromomethane	ND	0.50	ug/L		08/02/14 02:10	1
	ND	0.50			08/02/14 02:10	1
1,2-Dichlorobenzene			ug/L		08/02/14 02:10	1
1,3-Dichlorobenzene	ND	0.50 0.50	ug/L		08/02/14 02:10	1
1,4-Dichlorobenzene	ND		ug/L		08/02/14 02:10	1
1,3-Dichloropropane	ND	1.0	ug/L		08/02/14 02:10	1
1,1-Dichloropropene	ND	0.50	ug/L			1
1,2-Dibromo-3-Chloropropane	ND	1.0	ug/L		08/02/14 02:10	1
Ethylene Dibromide	ND	0.50	ug/L		08/02/14 02:10	
Dibromomethane	ND	0.50	ug/L		08/02/14 02:10	1
Dichlorodifluoromethane	ND	0.50	ug/L		08/02/14 02:10	1
1,1-Dichloroethane	ND	0.50	ug/L		08/02/14 02:10	1
1,2-Dichloroethane	ND	0.50	ug/L		08/02/14 02:10	1
1,1-Dichloroethene	ND	0.50	ug/L		08/02/14 02:10	1
cis-1,2-Dichloroethene	ND	0.50	ug/L		08/02/14 02:10	1
trans-1,2-Dichloroethene	ND	0.50	ug/L		08/02/14 02:10	1
1,2-Dichloropropane	ND	0.50	ug/L		08/02/14 02:10	1
cis-1,3-Dichloropropene	ND	0.50	ug/L		08/02/14 02:10	1
trans-1,3-Dichloropropene	ND	0.50	ug/L		08/02/14 02:10	1
Ethylbenzene	ND	0.50	ug/L		08/02/14 02:10	1
Hexachlorobutadiene	ND	1.0	ug/L		08/02/14 02:10	1
2-Hexanone	ND	50	ug/L		08/02/14 02:10	1
Isopropylbenzene	ND	0.50	ug/L		08/02/14 02:10	1
4-Isopropyltoluene	ND	1.0	ug/L		08/02/14 02:10	1
Methylene Chloride	ND	5.0	ug/L		08/02/14 02:10	1
4-Methyl-2-pentanone (MIBK)	ND	50	ug/L		08/02/14 02:10	1
Naphthalene	ND	1.0	ug/L		08/02/14 02:10	1
N-Propylbenzene	ND	1.0	ug/L		08/02/14 02:10	1
Styrene	ND	0.50	ug/L		08/02/14 02:10	1
1,1,1,2-Tetrachioroethane	ND	0.50	ug/L		08/02/14 02:10	1

TestAmerica Pleasanton

Client: AMEC Environment & Infrastructure, Inc. Project/Site: Crown Chevrolet Cadillac Isuzu

TestAmerica Job ID: 720-58974-1

estAmerica Job ID. 720-36974-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

ND

Client Sample ID: MP-03-3 Date Collected: 07/30/14 09:25 Date Received: 07/30/14 15:55

Gasoline Range Organics (GRO)

-C5-C12

Lab Sample ID: 720-58974-13

08/02/14 02:10

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,2,2-Tetrachloroethane	ND		0.50		ug/L			08/02/14 02:10	1
Tetrachloroethene	ND		0.50		ug/L			08/02/14 02:10	1
Toluene	ND		0.50		ug/L			08/02/14 02:10	1
1,2,3-Trichlorobenzene	ND		1.0		ug/L			08/02/14 02:10	1
1,2,4-Trichlorobenzene	ND		1.0		ug/L			08/02/14 02:10	1
1,1,1-Trichloroethane	ND		0.50		ug/L			08/02/14 02:10	1
1,1,2-Trichloroethane	ND		0.50		ug/L			08/02/14 02:10	1
Trichloroethene	ND		0.50		ug/L			08/02/14 02:10	1
Trichlorofluoromethane	ND		1.0		ug/L			08/02/14 02:10	1
1,2,3-Trichloropropane	ND		0.50		ug/L			08/02/14 02:10	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50		ug/L			08/02/14 02:10	1
1,2,4-Trimethylbenzene	ND		0.50		ug/L			08/02/14 02:10	1
1,3,5-Trimethylbenzene	ND		0.50		ug/L			08/02/14 02:10	1
Vinyl acetate	ND		10		ug/L			08/02/14 02:10	1
Vinyl chloride	ND		0.50		ug/L			08/02/14 02:10	1
Xylenes, Total	ND		1.0		ug/L			08/02/14 02:10	1
2,2-Dichloropropane	ND		0.50		ug/L			08/02/14 02:10	1

Surrogate	%Recovery	Qualifier	Limits	62	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	100		67 - 130			08/02/14 02:10	1
1,2-Dichloroethane-d4 (Surr)	100		72 - 130			08/02/14 02:10	1
Toluene-d8 (Surr)	100		70 - 130			08/02/14 02:10	1

50

ug/L

Client: AMEC Environment & Infrastructure, Inc. Project/Site: Crown Chevrolet Cadillac Isuzu

TestAmerica Job ID: 720-58974-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS

MB MB

Lab Sample ID: MB 720-164110/4

Matrix: Water

Analysis Batch: 164110

Client Sample ID: Method Blank

Prep Type: Total/NA

:51	1	
:51	1	OL.
:51	1	1
:51	1	

	Qualifier	RL MDL	Unit	D	Prepared		Dil Fac
ND	0.	50	ug/L	-		Analyzed 07/31/14 08:51	1
							1
							1
						07/31/14 08:51	1
			_			07/31/14 08:51	1
						07/31/14 08:51	1
						07/31/14 08:51	1
							1
						07/31/14 08:51	1
	4	.0				07/31/14 08:51	1
- ND						07/31/14 08:51	1
ND	4	.0				07/31/14 08:51	1
ND	ŧ	5.0				07/31/14 08:51	1
ND						07/31/14 08:51	1
ND	0.	50				07/31/14 08:51	1
ND							1
							1
							1
							1
							1
			-			07/31/14 08:51	1
						07/31/14 08:51	1
							1
							1
							1
							1
			-				1
							1
							1
			_				1
							1
			_				1
							1
							1
							1
							1
							1
							1
							1
							1
							1
							1
							1
							1
							1
							1
							1
							1
	ND	ND	ND	ND 50 ug/L ND 0.50 ug/L ND 0.50 ug/L ND 1.0 ug/L ND 0.50 ug/L ND 0.50 <t< td=""><td>ND 50</td><td> ND</td><td>ND 50 ug/L 07/31/14 08:51 ND 0.50 ug/L 07/31/14 08:51 ND 0.50 ug/L 07/31/14 08:51 ND 1.0 ug/L 07/31/14 08:51 ND 0.50 ug/L 07/31/14 08:51 ND 0.50 ug/L 07/31/14 08:51 ND 0.50 ug/L 07/31/14 08:51 ND 1.0 ug/L 07/31/14 08:51 ND 0.50 ug/L 07/31/14 08:51 ND 1.0 ug/L 07/31/14 08:51 ND 0.50 ug/L 07/31/14 08:51</td></t<>	ND 50	ND	ND 50 ug/L 07/31/14 08:51 ND 0.50 ug/L 07/31/14 08:51 ND 0.50 ug/L 07/31/14 08:51 ND 1.0 ug/L 07/31/14 08:51 ND 0.50 ug/L 07/31/14 08:51 ND 0.50 ug/L 07/31/14 08:51 ND 0.50 ug/L 07/31/14 08:51 ND 1.0 ug/L 07/31/14 08:51 ND 0.50 ug/L 07/31/14 08:51 ND 1.0 ug/L 07/31/14 08:51 ND 0.50 ug/L 07/31/14 08:51

TestAmerica Pleasanton

Page 28 of 56 8/6/2014

Client: AMEC Environment & Infrastructure, Inc. Project/Site: Crown Chevrolet Cadillac Isuzu

TestAmerica Job ID: 720-58974-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: MB 720-164110/4

Matrix: Water

Analysis Batch: 164110

Client Sample ID: Method Blank

Prep Type: Total/NA

	MR M	IB					
Analyte	Result Q	ualifier RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND	0.50	ug/L			07/31/14 08:51	1
1,1,2,2-Tetrachloroethane	ND	0.50	ug/L			07/31/14 08:51	1
Tetrachloroethene	ND	0.50	ug/L			07/31/14 08:51	1
Toluene	ND	0.50	ug/L			07/31/14 08:51	1
1,2,3-Trichlorobenzene	ND	1.0	ug/L			07/31/14 08:51	1
1,2,4-Trichlorobenzene	ND	1.0	ug/L			07/31/14 08:51	1
1,1,1-Trichloroethane	ND	0.50	ug/L			07/31/14 08:51	1
1,1,2-Trichloroethane	ND	0.50	ug/L			07/31/14 08:51	1
Trichloroethene	ND	0.50	ug/L			07/31/14 08:51	1
Trichlorofluoromethane	ND	1.0	ug/L			07/31/14 08:51	1
1,2,3-Trichloropropane	ND	0.50	ug/L			07/31/14 08:51	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	0.50	ug/L			07/31/14 08:51	1
1,2,4-Trimethylbenzene	ND	0.50	ug/L			07/31/14 08:51	1
1,3,5-Trimethylbenzene	ND	0.50	ug/L			07/31/14 08:51	1
Vinyl chloride	ND	0.50	ug/L			07/31/14 08:51	1
Xylenes, Total	ND	1.0	ug/L			07/31/14 08:51	1
2,2-Dichloropropane	ND	0.50	ug/L			07/31/14 08:51	1
Gasoline Range Organics (GRO) -C5-C12	ND	50	ug/L			07/31/14 08:51	1

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	99	67 - 130		07/31/14 08:51	1
1,2-Dichloroethane-d4 (Surr)	100	72 - 130		07/31/14 08:51	1
Toluene-d8 (Surr)	100	70 - 130		07/31/14 08:51	1

Lab Sample ID: LCS 720-164110/5

Matrix: Water

Analysis Batch: 164110

Client Sample	ID:	Lab	Contro	I Sample
		Prep	Type:	Total/NA

,	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Methyl tert-butyl ether	25.0	24.8		ug/L		99	62 - 130	
Acetone	125	122		ug/L		98	26 - 180	
Benzene	25.0	25.7		ug/L		103	79 _ 130	
Dichlorobromomethane	25.0	24.8		ug/L		99	70 - 130	
Bromobenzene	25.0	24.6		ug/L		98	70 _ 130	
Chlorobromomethane	25.0	24.4		ug/L		98	70 - 130	
Bromoform	25.0	25.7		ug/L		103	68 - 136	
Bromomethane	25.0	21.8		ug/L		87	43 - 151	
2-Butanone (MEK)	125	123		ug/L		99	54 - 130	
n-Butylbenzene	25.0	28.2		ug/L		113	70 - 142	
sec-Butylbenzene	25.0	27.4		ug/L		110	70 - 134	
tert-Butylbenzene	25.0	26.7		ug/L		107	70 - 135	
Carbon disulfide	25.0	25.8		ug/L		103	58 - 130	
Carbon tetrachloride	25.0	25.0		ug/L		100	70 - 146	
Chlorobenzene	25.0	25.2		ug/L		101	70 - 130	
Chloroethane	25.0	21.9		ug/L		88	62 - 138	
Chloroform	25.0	24.8		ug/L		99	70 - 130	
Chloromethane	25.0	22.3		ug/L		89	52 - 175	

TestAmerica Pleasanton

Page 29 of 56

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: LCS 720-164110/5

Matrix: Water

Analysis Batch: 164110

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Spike	LCS	LCS				%Rec.	
Added	Result	Qualifier	Unit		%Rec	Limits	
25.0	27.1		ug/L		109	70 - 130	
25.0	27.2		ug/L		109	70 - 130	
25.0	25.0		ug/L		100	70 - 145	
25.0	24.8		ug/L		99	70 - 130	
25.0	25.3		ug/L		101	70 - 130	
25.0	25.2		ug/L		101	70 - 130	
25.0	25.3		ug/L		101	70 - 130	
25.0	27.7		ug/L		111	70 - 130	
25.0	27.0		ug/L		108	70 - 136	
25.0	25.4				102	70 - 130	
25.0	24.9				100	70 _ 130	
25.0	21.0				84	34 - 132	
					104	70 - 130	
				100	98	61 - 132	
					88		
25.0	22.9		ug/L		91	42 - 162	
25.0	27.0		ug/1		108	70 132	
25.0	26.6		ug/L		106	70 - 130	
	Added 25.0	Added Result 25.0 27.1 25.0 25.0 25.0 25.0 25.0 25.3 25.0 25.3 25.0 25.3 25.0 27.7 25.0 27.0 25.0 25.4 25.0 25.4 25.0 25.9 25.0 24.6 25.0 25.9 25.0 24.7 25.0 26.1 25.0 26.1 25.0 26.1 25.0 26.1 25.0 26.1 25.0 26.1 25.0 26.1 25.0 26.1 25.0 26.1 25.0 26.1 25.0 26.2 25.0 26.3 25.0 26.4 25.0 26.5 25.0 26.4 25.0 27.4 25.0 25.7 25.0	Added Result Qualifier 25.0 27.1 25.0 27.2 25.0 25.0 25.0 25.3 25.0 25.3 25.0 25.3 25.0 25.3 25.0 27.0 25.0 27.0 25.0 27.0 25.0 25.4 25.0 24.9 25.0 24.9 25.0 24.9 25.0 24.9 25.0 24.9 25.0 24.6 25.0 25.9 25.0 24.6 25.0 22.1 25.0 25.9 25.0 26.1 25.0 26.1 25.0 26.1 25.0 26.1 25.0 26.4 25.0 26.5 25.0 26.4 25.0 26.1 25.0 27.4 25.0 26.1 <td>Added Result Qualifier Unit 25.0 27.1 ug/L 25.0 27.2 ug/L 25.0 25.0 ug/L 25.0 25.3 ug/L 25.0 27.0 ug/L 25.0 27.0 ug/L 25.0 25.4 ug/L 25.0 26.9 ug/L 25.0 26.9 ug/L 25.0 26.9 ug/L 25.0 26.1 ug/L 25.0 26.5 ug/L 25.0 26.4</td> <td>Added Result Qualifier Unit L 25.0 27.1 ug/L ug/L 25.0 27.2 ug/L 26.0 25.0 ug/L 25.0 24.8 ug/L 25.0 25.3 ug/L 25.0 25.3 ug/L 25.0 25.3 ug/L 25.0 27.7 ug/L 25.0 27.0 ug/L 25.0 25.4 ug/L 25.0 25.4 ug/L 25.0 25.4 ug/L 25.0 25.9 ug/L 25.0 24.9 ug/L 25.0 25.9 ug/L 25.0 25.9 ug/L 25.0 24.6 ug/L 25.0 24.7 ug/L 25.0 24.7 ug/L 25.0 26.1 ug/L 25.0 26.1 ug/L 25.0 26.1 ug/L <</td> <td>Added Result Qualifier Unit D %Rec 25.0 27.1 ug/L 109 25.0 27.2 ug/L 100 25.0 25.0 ug/L 100 25.0 25.3 ug/L 101 25.0 25.4 ug/L 102 25.0 27.7 ug/L 100 25.0 24.8 ug/L 100 25.0 24.9 ug/L 100 25.0 25.9 ug/L 100 25.0 25.9 ug/L 104 25.0 26.1 ug/L 104 25.0 26.1 ug/L 104 25.0 26.1 ug/L <td< td=""><td>Added Result Qualifier Unit D %Rec Limits 25.0 27.1 ug/L 109 70.130 25.0 22.2 ug/L 109 70.130 25.0 25.0 ug/L 99 70.130 25.0 25.3 ug/L 101 70.130 25.0 25.0 25.3 ug/L 101 70.130 25.0 27.7 ug/L 111 70.130 25.0 25.0 22.4 ug/L 102 70.130 25.0 24.9 ug/L 100 70.130 25.0 24.9 ug/L 104 70.130 25.0 25.0 24.9 ug/L 104 70.130 25.0 25.0 24.6 ug/L</td></td<></td>	Added Result Qualifier Unit 25.0 27.1 ug/L 25.0 27.2 ug/L 25.0 25.0 ug/L 25.0 25.3 ug/L 25.0 27.0 ug/L 25.0 27.0 ug/L 25.0 25.4 ug/L 25.0 26.9 ug/L 25.0 26.9 ug/L 25.0 26.9 ug/L 25.0 26.1 ug/L 25.0 26.5 ug/L 25.0 26.4	Added Result Qualifier Unit L 25.0 27.1 ug/L ug/L 25.0 27.2 ug/L 26.0 25.0 ug/L 25.0 24.8 ug/L 25.0 25.3 ug/L 25.0 25.3 ug/L 25.0 25.3 ug/L 25.0 27.7 ug/L 25.0 27.0 ug/L 25.0 25.4 ug/L 25.0 25.4 ug/L 25.0 25.4 ug/L 25.0 25.9 ug/L 25.0 24.9 ug/L 25.0 25.9 ug/L 25.0 25.9 ug/L 25.0 24.6 ug/L 25.0 24.7 ug/L 25.0 24.7 ug/L 25.0 26.1 ug/L 25.0 26.1 ug/L 25.0 26.1 ug/L <	Added Result Qualifier Unit D %Rec 25.0 27.1 ug/L 109 25.0 27.2 ug/L 100 25.0 25.0 ug/L 100 25.0 25.3 ug/L 101 25.0 25.4 ug/L 102 25.0 27.7 ug/L 100 25.0 24.8 ug/L 100 25.0 24.9 ug/L 100 25.0 25.9 ug/L 100 25.0 25.9 ug/L 104 25.0 26.1 ug/L 104 25.0 26.1 ug/L 104 25.0 26.1 ug/L <td< td=""><td>Added Result Qualifier Unit D %Rec Limits 25.0 27.1 ug/L 109 70.130 25.0 22.2 ug/L 109 70.130 25.0 25.0 ug/L 99 70.130 25.0 25.3 ug/L 101 70.130 25.0 25.0 25.3 ug/L 101 70.130 25.0 27.7 ug/L 111 70.130 25.0 25.0 22.4 ug/L 102 70.130 25.0 24.9 ug/L 100 70.130 25.0 24.9 ug/L 104 70.130 25.0 25.0 24.9 ug/L 104 70.130 25.0 25.0 24.6 ug/L</td></td<>	Added Result Qualifier Unit D %Rec Limits 25.0 27.1 ug/L 109 70.130 25.0 22.2 ug/L 109 70.130 25.0 25.0 ug/L 99 70.130 25.0 25.3 ug/L 101 70.130 25.0 25.0 25.3 ug/L 101 70.130 25.0 27.7 ug/L 111 70.130 25.0 25.0 22.4 ug/L 102 70.130 25.0 24.9 ug/L 100 70.130 25.0 24.9 ug/L 104 70.130 25.0 25.0 24.9 ug/L 104 70.130 25.0 25.0 24.6 ug/L

Client: AMEC Environment & Infrastructure, Inc. Project/Site: Crown Chevrolet Cadillac Isuzu

TestAmerica Job ID: 720-58974-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: LCS 720-164110/5

Matrix: Water

2,2-Dichloropropane

Analysis Batch: 164110

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Spike LCS LCS %Rec. Added Result Qualifier Unit %Rec Limits 25.0 29.8 ug/L 119 70 - 140

LCS LCS Limits Surrogate %Recovery Qualifier 4-Bromofluorobenzene 104 67 - 130 72 - 130 1,2-Dichloroethane-d4 (Surr) 95 70 - 130 101 Toluene-d8 (Surr)

Lab Sample ID: LCS 720-164110/7

Matrix: Water

Analysis Batch: 164110

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Spike LCS LCS %Rec. Limits Analyte Added Result Qualifier Unit %Rec 500 556 111 62 - 120 ug/L Gasoline Range Organics (GRO) -C5-C12

LCS LCS %Recovery Qualifier Limits Surrogate 67 - 130 4-Bromofluorobenzene 104 1,2-Dichloroethane-d4 (Surr) 100 72 - 130 70 - 130 Toluene-d8 (Surr) 101

Lab Sample ID: LCSD 720-164110/6

Matrix: Water

Analysis Batch: 164110

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Analysis Batch: 164110	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Methyl tert-butyl ether	25.0	23.3		ug/L	_	93	62 - 130	6	20
Acetone	125	110		ug/L		88	26 - 180	10	30
Benzene	25.0	25.6		ug/L		102	79 - 130	0	20
Dichlorobromomethane	25.0	24.4		ug/L		98	70 - 130	2	20
Bromobenzene	25.0	24.3		ug/L		97	70 - 130	1	20
Chlorobromomethane	25.0	23.8		ug/L		95	70 - 130	3	20
Bromoform	25.0	24.1		ug/L		97	68 - 136	6	20
Bromomethane	25.0	21.2		ug/L		85	43 - 151	3	20
2-Butanone (MEK)	125	111		ug/L		89	54 - 130	10	20
n-Butylbenzene	25.0	28.6		ug/L		114	70 - 142	1	20
sec-Butylbenzene	25.0	27.4		ug/L		109	70 - 134	0	20
tert-Butylbenzene	25.0	26.4		ug/L		106	70 - 135	1	20
Carbon disulfide	25.0	25.8		ug/L		103	58 - 130	0	20
Carbon tetrachloride	25.0	24.9		ug/L		99	70 - 146	0	20
Chlorobenzene	25.0	25.0		ug/L		100	70 - 130	1	20
Chloroethane	25.0	21.5		ug/L		86	62 - 138	2	20
Chloroform	25.0	24.7		ug/L		99	70 - 130	0	20
Chloromethane	25.0	22.1		ug/L		88	52 - 175	1	20
2-Chlorotoluene	25.0	27.3		ug/L		109	70 - 130	1	20
4-Chlorotoluene	25.0	27.4		ug/L		110	70 - 130	1	20
Chlorodibromomethane	25.0	24.0		ug/L		96	70 - 145	4	20
1,2-Dichlorobenzene	25.0	24.6		ug/L		98	70 - 130	1	20
1,3-Dichlorobenzene	25.0	25.3		ug/L		101	70 - 130	0	20

TestAmerica Pleasanton

Spike

LCSD LCSD

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: LCSD 720-164110/6

Matrix: Water

Analysis Batch: 164110

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

%Rec.

	Spike	LCSD	LUSD				Mec.		KILD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,4-Dichlorobenzene	25.0	25.1		ug/L		100	70 - 130	0	20
1,3-Dichloropropane	25.0	24.6		ug/L		98	70 - 130	3	20
1,1-Dichloropropene	25.0	27.5		ug/L		110	70 - 130	1	20
1,2-Dibromo-3-Chloropropane	25.0	24.3		ug/L		97	70 - 136	10	20
Ethylene Dibromide	25.0	24.2		ug/L		97	70 - 130	5	20
Dibromomethane	25.0	23.9		ug/L		96	70 - 130	4	20
Dichlorodifluoromethane	25.0	20.7		ug/L		83	34 - 132	1	20
1,1-Dichloroethane	25.0	25.9		ug/L		104	70 - 130	0	20
1,2-Dichloroethane	25.0	24.0		ug/L		96	61 - 132	2	20
1,1-Dichloroethene	25.0	21.9		ug/L		88	64 - 128	1	20
cis-1,2-Dichloroethene	25.0	25.5		ug/L		102	70 - 130	1	20
trans-1,2-Dichloroethene	25.0	24.8		ug/L		99	68 - 130	1	20
1,2-Dichloropropane	25.0	25.7		ug/L		103	70 - 130	1	20
cis-1,3-Dichloropropene	25.0	26.4		ug/L		105	70 - 130	2	20
trans-1,3-Dichloropropene	25.0	28.2		ug/L		113	70 - 140	3	20
Ethylbenzene	25.0	26.1		ug/L		105	80 - 120	0	20
Hexachlorobutadiene	25.0	25.9		ug/L		104	70 - 130	3	20
2-Hexanone	125	115		ug/L		92	60 - 164	16	20
Isopropylbenzene	25.0	26.4		ug/L		106	70 - 130	0	20
4-Isopropyltoluene	25.0	26.6		ug/L		106	70 - 130	0	20
Methylene Chloride	25.0	23.9		ug/L		96	70 - 147	1	20
4-Methyl-2-pentanone (MIBK)	125	119		ug/L		95	58 - 130	15	20
Naphthalene	25.0	26.3		ug/L		105	70 - 130	4	20
N-Propylbenzene	25.0	28.0		ug/L		112	70 - 130	0	20
Styrene	25.0	26.2		ug/L		105	70 - 130	0	20
1,1,1,2-Tetrachloroethane	25.0	24.0		ug/L		96	70 - 130	2	20
1,1,2,2-Tetrachloroethane	25.0	25.3		ug/L		101	70 - 130	8	20
Tetrachloroethene	25.0	24.1		ug/L		96	70 - 130	1	20
Toluene	25.0	25.9		ug/L		104	78 - 120	1	20
1,2,3-Trichlorobenzene	25.0	24.3		ug/L		97	70 - 130	1	20
1,2,4-Trichlorobenzene	25.0	26.0		ug/L		104	70 - 130	2	20
1,1,1-Trichloroethane	25.0	26.5		ug/L		106	70 - 130	0	20
1,1,2-Trichloroethane	25.0	24.4		ug/L		98	70 - 130	5	20
Trichloroethene	25.0	24.2		ug/L		97	70 - 130	0	20
Trichlorofluoromethane	25.0	25.8		ug/L		103	66 - 132	1	20
1,2,3-Trichloropropane	25.0	24.4		ug/L		98	70 - 130	9	20
1,1,2-Trichloro-1,2,2-trifluoroetha	25.0	22.3		ug/L		89	42 - 162	2	20
1,2,4-Trimethylbenzene	25.0	26.8		ug/L		107	70 - 132	0	20
1,3,5-Trimethylbenzene	25.0	27.5		ug/L		110	70 - 130	0	20
Vinyl chloride	25.0	21.1		ug/L		84	54 ₋ 135	2	20
m-Xylene & p-Xylene	25.0	26.4		ug/L		106	70 - 142	0	20
o-Xylene	25.0	26.4		ug/L		106	70 - 130	1	20
2,2-Dichloropropane	25.0	30.6		ug/L		122	70 - 140	3	20

LCSD LCSD Limits %Recovery Qualifier

Surrogate 104 67 - 130 4-Bromofluorobenzene 95 72 - 130 1,2-Dichloroethane-d4 (Surr)

Client: AMEC Environment & Infrastructure, Inc. Project/Site: Crown Chevrolet Cadillac Isuzu

TestAmerica Job ID: 720-58974-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: LCSD 720-164110/6

Matrix: Water

Analysis Batch: 164110

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

LCSD LCSD

%Recovery Qualifier Limits Surrogate 70 - 130 Toluene-d8 (Surr) 100

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Lab Sample ID: LCSD 720-164110/8 Matrix: Water

Analysis Batch: 164110

RPD LCSD LCSD %Rec. Spike RPD Limit Analyte Added Result Qualifier Unit D %Rec Limits 500 561 112 62 - 120 20 ug/L Gasoline Range Organics (GRO)

LCSD LCSD

Qualifier Limits Surrogate %Recovery 106 67 - 130 4-Bromofluorobenzene 72 - 130 100 1,2-Dichloroethane-d4 (Surr) Toluene-d8 (Surr) 101 70 - 130

Lab Sample ID: 720-58974-3 MS

Matrix: Water

-C5-C12

Analysis Batch: 164110

Client Sample ID: MW-02 Prep Type: Total/NA

Spike MS MS %Rec. Sample Sample Qualifier Unit D %Rec Limits Analyte Result Qualifier Added Result ND 25.0 26.6 ug/L 106 60 - 138 Methyl tert-butyl ether ND 125 107 ug/L 86 60 - 140 Acetone ND 25.0 25.8 ug/L 103 60 - 140 Benzene 60 - 140 Dichlorobromomethane ND 25 0 26.5 ug/L 106 25.0 24.6 98 60 - 140 Bromobenzene ND ug/L 25.0 25.8 ug/L 103 60 - 140 ND Chlorobromomethane ug/L 56 - 140 25.0 25 4 102 Bromoform ND ND 25.0 20.2 ug/L 81 23 - 140Bromomethane 60 - 140 ND 125 112 ug/L 2-Butanone (MEK) 26.1 ug/L 104 60 - 140 ND 25.0 n-Butylbenzene 60 - 140 sec-Butylbenzene ND 25.0 25.3 ug/L 101 25.0 24.7 99 60 - 140 tert-Butylbenzene ND ug/L 25.0 24.1 97 38 - 140 Carbon disulfide ND ua/L 60 - 140 Carbon tetrachloride ND 25 0 23.7 ug/L 95 ND 25.0 25.0 ug/L 100 60 - 140 Chlorobenzene ND 25.0 20.5 ug/L 82 51 - 140 Chloroethane 25.0 25 6 102 60 - 140 ND ua/L Chloroform ND 25.0 19.6 ug/L 79 52 - 140 Chloromethane 25.0 105 60 - 140 ND 26.2 ug/L 2-Chlorotoluene 25.0 26.5 ug/L 106 60 - 140 ND 4-Chlorotoluene ug/L 60 - 140 25.0 26.9 108 Chlorodibromomethane ND ND 25.0 25.1 ug/L 100 60 - 140 1,2-Dichlorobenzene ND 25.0 25.2 ug/L 101 60 - 140 1,3-Dichlorobenzene ND 25.3 ug/L 101 60 - 140 25.0 1,4-Dichlorobenzene ND 25.0 27.1 ug/L 108 60 - 140 1,3-Dichloropropane 104 60 - 140 ND 25.0 26.1 ug/L 1.1-Dichloropropene 98 60 - 140 25.0 24.6 ua/L 1,2-Dibromo-3-Chloropropane ND 60 - 140Ethylene Dibromide ND 25.0 26.6 ug/L 107

Client: AMEC Environment & Infrastructure, Inc. Project/Site: Crown Chevrolet Cadillac Isuzu

TestAmerica Job ID: 720-58974-1

%Rec.

103

107

105

101

58 - 130

56 - 140

60 - 140

60 - 140

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Sample Sample

ND

ND

ND

ND

Lab Sample ID: 720-58974-3 MS

Matrix: Water

Analysis Batch: 164110

4-Methyl-2-pentanone (MIBK)

1,2,4-Trichlorobenzene

1,1,1-Trichloroethane

Naphthalene

Client Sample ID: MW-02

Prep Type: Total/NA

									,	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Dibromomethane	ND		25.0	25.9		ug/L		103	60 - 140	
Dichlorodifluoromethane	ND		25.0	18.8		ug/L		75	38 - 140	
1,1-Dichloroethane	ND		25.0	26.0		ug/L		104	60 _ 140	
1,2-Dichloroethane	ND		25.0	25.9		ug/L		103	60 - 140	
1,1-Dichloroethene	ND		25.0	21.0		ug/L		84	60 - 140	
cis-1,2-Dichloroethene	3.0		25.0	29.4		ug/L		105	60 - 140	
trans-1,2-Dichloroethene	ND		25.0	24.4		ug/L		97	60 - 140	
1,2-Dichloropropane	ND		25.0	27.6		ug/L		110	60 - 140	
cis-1,3-Dichloropropene	ND		25.0	28.4		ug/L		114	60 - 140	
trans-1,3-Dichloropropene	ND		25.0	30.9		ug/L		124	60 - 140	
Ethylbenzene	ND		25.0	24.9		ug/L		100	60 - 140	
Hexachlorobutadiene	ND		25.0	23.7		ug/L		95	60 - 140	
2-Hexanone	ND		125	125		ug/L		100	60 - 140	
Isopropylbenzene	ND		25.0	24.9		ug/L		100	60 - 140	
4-isopropyltoluene	ND		25.0	24.8		ug/L		99	60 _ 140	
Methylene Chloride	ND		25.0	24.8		ug/L		99	40 - 140	

Spike

MS MS

129

26.8

26.3

25.2

ug/L

ug/L

ug/L

ug/L

60 - 140 25.9 103 N-Propylbenzene ND 25.0 ug/L ND 25.0 26.5 ug/L 106 60 - 140 Styrene 100 ND 25.0 24.9 ug/L 60 - 140 1,1,1,2-Tetrachloroethane ND 25.0 26.0 ug/L 104 60 - 140 1,1,2,2-Tetrachloroethane Tetrachloroethene 5.4 25.0 27.6 ug/L 89 60 - 140 Toluene ND 25.0 24.8 ug/L 99 60 - 140 102 60 - 140 ND 25.0 25.4 ug/L 1,2,3-Trichlorobenzene

25.0

25.0

125

25.0

60 - 140 25.0 27.0 ug/L 108 1.1.2-Trichloroethane ND 60 - 140 35.3 91 Trichloroethene 13 25.0 ug/L Trichlorofluoromethane ND 25.0 23.6 ug/L 94 60 - 140 25.0 25.1 ug/L 100 60 - 140 1,2,3-Trichloropropane ND 60 - 140 ND 25.0 21.1 ug/L 84 1,1,2-Trichloro-1,2,2-trifluoroetha 1,2,4-Trimethylbenzene ND 25.0 26.3 ug/L 105 60 - 140

1,3,5-Trimethylbenzene ND 25.0 26.2 ug/L 105 60 - 140 ND 25 0 19.4 78 58 - 140 ug/L Vinyl chloride 60 - 140 m-Xylene & p-Xylene ND 25.0 25.6 ug/L 102 ND 25.0 26.2 ug/L 105 60 - 140 o-Xylene 2,2-Dichloropropane ND 25.0 26.9 ug/L 107 60 - 140

MS MS %Recovery Qualifier Limits Surrogate 106 67 - 130 4-Bromofluorobenzene 101 72 - 130 1,2-Dichloroethane-d4 (Surr) Toluene-d8 (Surr) 102 70 - 130

Client: AMEC Environment & Infrastructure, Inc. Project/Site: Crown Chevrolet Cadillac Isuzu

TestAmerica Job ID: 720-58974-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: 720-58974-3 MSD

Matrix: Water

Client Sample	ID: MW-02
Prep Type	: Total/NA
%Rec.	RPD

	Sample	Sample	Spike	MSD	MSD					%Rec.		RPE
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit		D	%Rec	Limits	RPD	Limi
Methyl tert-butyl ether	ND		25.0	27.4		ug/L		_	110	60 - 138	3	20
Acetone	ND		125	112		ug/L	4		90	60 - 140	5	20
Benzene	ND		25.0	26.1		ug/L			104	60 - 140	1	20
Dichlorobromomethane	ND		25.0	26.8		ug/L			107	60 - 140	1	20
Bromobenzene	ND		25.0	24.6		ug/L			98	60 - 140	0	20
Chlorobromomethane	ND		25.0	26.0		ug/L			104	60 - 140	1	20
Bromoform	ND		25.0	26.1		ug/L			104	56 - 140	2	20
Bromomethane	ND		25.0	20.1		ug/L			80	23 - 140	1	20
2-Butanone (MEK)	ND		125	116		ug/L			92	60 - 140	3	20
n-Butylbenzene	ND		25.0	26.0		ug/L			104	60 - 140	1	20
sec-Butylbenzene	ND		25.0	25.1		ug/L			100	60 - 140	1	20
ert-Butylbenzene	ND		25.0	24.8		ug/L			99	60 - 140	0	20
Carbon disulfide	ND		25.0	24.5		ug/L			98	38 - 140	1	20
Carbon tetrachloride	ND		25.0	23.9		ug/L			96	60 - 140	1	20
Chlorobenzene	ND		25.0	25.0		ug/L			100	60 - 140	0	20
Chloroethane	ND		25.0	20.7		ug/L			83	51 - 140	1	20
Chloroform	ND		25.0	25.8		ug/L			103	60 - 140	1	20
Chloromethane	ND		25.0	19.6		ug/L			78	52 - 140	0	20
2-Chlorotoluene	ND		25.0	25.8		ug/L			103	60 - 140	2	20
1-Chlorotoluene	ND		25.0	26.3		ug/L			105	60 - 140	1	20
Chlorodibromomethane	ND		25.0	27.2		ug/L			109	60 - 140	1	20
,2-Dichlorobenzene	ND		25.0	25.3		ug/L			101	60 - 140	1	20
,3-Dichlorobenzene	ND		25.0	25.0		ug/L			100	60 - 140	1	20
,4-Dichlorobenzene	ND		25.0	25.1		ug/L			100	60 - 140	1	20
,3-Dichloropropane	ND		25.0	27.4		ug/L			110	60 - 140	1	20
,1-Dichloropropene	ND		25.0	26.4		ug/L			106	60 - 140	1	20
1,2-Dibromo-3-Chloropropane	ND		25.0	25.4		ug/L			102	60 - 140	3	20
Ethylene Dibromide	ND		25.0	27.2		ug/L			109	60 - 140	2	20
Dibromomethane	ND		25.0	26.2		ug/L			105	60 - 140	1	20
Dichlorodifluoromethane	ND		25.0	18.9		ug/L			75	38 - 140	0	20
1,1-Dichloroethane	ND		25.0	26.2		ug/L			105	60 - 140	1	20
,2-Dichloroethane	ND		25.0	26.2		ug/L			105	60 - 140	1	20
,1-Dichloroethene	ND		25.0	21.2		ug/L			85	60 - 140	1	20
cis-1,2-Dichloroethene	3.0		25.0	29.9		ug/L			107	60 - 140	2	20
rans-1,2-Dichloroethene	ND		25.0	24.7		ug/L			98	60 - 140	1	20
,2-Dichloropropane	ND		25.0	27.7		ug/L			111	60 - 140	1	20
sis-1,3-Dichloropropene	ND		25.0	28.9		ug/L			115	60 - 140	2	20
rans-1,3-Dichloropropene	ND		25.0	31.6		ug/L			126	60 - 140	2	20
Ethylbenzene	ND		25.0	24.8		ug/L			99	60 - 140	0	20
Hexachlorobutadiene	ND		25.0	24.2		ug/L			97	60 - 140	2	20
2-Hexanone	ND		125	132		ug/L			105	60 - 140	5	20
sopropylbenzene	ND		25.0	25.0		ug/L			100	60 _ 140	0	20
I-Isopropyltoluene	ND		25.0	24.7		ug/L			99	60 - 140	0	20
Methylene Chloride	ND		25.0	25.1		ug/L			100	40 - 140	1	20
	ND		125	135		ug/L			108	58 - 130	4	20
4-Methyl-2-pentanone (MIBK)			25.0	27.6					110	56 - 140	3	20
Naphthalene	ND					ug/L						
N-Propylbenzene	ND ND		25.0 25.0	25.8 26.3		ug/L			103	60 - 140	0	20

TestAmerica Pleasanton

Page 35 of 56

Client: AMEC Environment & Infrastructure, Inc. Project/Site: Crown Chevrolet Cadillac Isuzu

TestAmerica Job ID: 720-58974-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: 720-58974-3 MSD

Matrix: Water

Analysis Batch: 164110

Client Sample ID: MW-02

Prep Type: Total/NA

	%Rec.		RPD
lec	Limits	RPD	Limit
99	60 - 140	1	20

r.i.u., o.o _u.o.ii io i i i	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1,1,2-Tetrachloroethane	ND		25.0	24.7		ug/L	-	99	60 - 140	1	20
1,1,2,2-Tetrachloroethane	ND		25.0	26.5		ug/L		106	60 - 140	2	20
Tetrachloroethene	5.4		25.0	28.9		ug/L		94	60 - 140	5	20
Toluene	ND		25.0	24.7		ug/L		99	60 - 140	0	20
1,2,3-Trichlorobenzene	ND		25.0	26.0		ug/L		104	60 - 140	2	20
1,2,4-Trichlorobenzene	ND		25.0	26.5		ug/L		106	60 - 140	1	20
1,1,1-Trichloroethane	ND		25.0	25.7		ug/L		103	60 - 140	2	20
1,1,2-Trichloroethane	ND		25.0	27.5		ug/L		110	60 - 140	2	20
Trichloroethene	13		25.0	36.9		ug/L		97	60 - 140	4	20
Trichlorofluoromethane	ND		25.0	23.9		ug/L		96	60 - 140	1	20
1,2,3-Trichloropropane	ND		25.0	25.6		ug/L		102	60 - 140	2	20
1,1,2-Trichloro-1,2,2-trifluoroetha	ND		25.0	21.4		ug/L		86	60 - 140	2	20
ne											
1,2,4-Trimethylbenzene	ND		25.0	26.0		ug/L		104	60 - 140	1	20
1,3,5-Trimethylbenzene	ND		25.0	26.1		ug/L		104	60 - 140	1	20
Vinyl chloride	ND		25.0	19.2		ug/L		77	58 - 140	1	20
m-Xylene & p-Xylene	ND		25.0	25.5		ug/L		102	60 - 140	0	20
o-Xylene	ND		25.0	26.2		ug/L		105	60 - 140	0	20
2,2-Dichloropropane	ND		25.0	26.9		ug/L		108	60 - 140	0	20
2,2-Dichloropropane	ND		25.0	26.9		ug/L		108	60 -	140	140 0

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	107		67 - 130
1,2-Dichloroethane-d4 (Surr)	103		72 - 130
Toluene-d8 (Surr)	102		70 - 130

Lab Sample ID: MB 720-164220/4

Matrix: Water

Analysis Batch: 164220

Client Sample ID: Method Blank Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND		0.50		ug/L			08/01/14 19:58	1
Acetone	ND		50		ug/L			08/01/14 19:58	1
Benzene	ND		0.50		ug/L			08/01/14 19:58	1
Dichlorobromomethane	ND		0.50		ug/L			08/01/14 19:58	1
Bromobenzene	ND		1.0		ug/L			08/01/14 19:58	1
Chlorobromomethane	ND		1.0		ug/L			08/01/14 19:58	1
Bromoform	ND		1.0		ug/L			08/01/14 19:58	1
Bromomethane	ND		1.0		ug/L			08/01/14 19:58	1
2-Butanone (MEK)	ND		50		ug/L			08/01/14 19:58	1
n-Butylbenzene	ND		1.0		ug/L			08/01/14 19:58	1
sec-Butylbenzene	ND		1.0		ug/L			08/01/14 19:58	1
tert-Butylbenzene	ND		1.0		ug/L			08/01/14 19:58	1
Carbon disulfide	ND		5.0		ug/L			08/01/14 19:58	1
Carbon tetrachloride	ND		0.50		ug/L			08/01/14 19:58	1
Chlorobenzene	ND		0.50		ug/L			08/01/14 19:58	1
Chloroethane	ND		1.0		ug/L			08/01/14 19:58	1
Chloroform	ND		1.0		ug/L			08/01/14 19:58	1
Chloromethane	ND		1.0		ug/L			08/01/14 19:58	1

TestAmerica Pleasanton

Client: AMEC Environment & Infrastructure, Inc. Project/Site: Crown Chevrolet Cadillac Isuzu

TestAmerica Job ID: 720-58974-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

мв мв

Lab Sample ID: MB 720-164220/4

Matrix: Water

Analysis Batch: 164220

Client Sample	ID:	Method	Blank
D-		Funas Ta	401/ALA

Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
2-Chlorotoluene	ND	quanto	0.50	ug/L		oparoa	08/01/14 19:58	1
4-Chlorotoluene	ND		0.50	ug/L			08/01/14 19:58	1
	ND		0.50	ug/L			08/01/14 19:58	1
Chlorodibromomethane	ND		0.50				08/01/14 19:58	1
1,2-Dichlorobenzene	ND		0.50	ug/L			08/01/14 19:58	1
1,3-Dichlorobenzene				ug/L				1
1,4-Dichlorobenzene	ND		0.50	ug/L			08/01/14 19:58	
1,3-Dichloropropane	ND		1.0	ug/L			08/01/14 19:58	1
1,1-Dichloropropene	ND		0.50	ug/L			08/01/14 19:58	1
1,2-Dibromo-3-Chloropropane	ND		1.0	ug/L			08/01/14 19:58	1
Ethylene Dibromide	ND		0.50	ug/L			08/01/14 19:58	1
Dibromomethane	ND		0.50	ug/L			08/01/14 19:58	1
Dichlorodifluoromethane	ND		0.50	ug/L			08/01/14 19:58	1
1,1-Dichloroethane	, ND		0.50	ug/L			08/01/14 19:58	1
1,2-Dichloroethane	ND		0.50	ug/L			08/01/14 19:58	1
1,1-Dichloroethene	ND		0.50	ug/L			.08/01/14 19:58	1
cis-1,2-Dichloroethene	ND		0.50	ug/L			08/01/14 19:58	1
trans-1,2-Dichloroethene	ND		0.50	ug/L			08/01/14 19:58	1
1,2-Dichloropropane	ND		0.50	ug/L			08/01/14 19:58	1
cis-1,3-Dichloropropene	ND		0.50	ug/L			08/01/14 19:58	1
trans-1,3-Dichloropropene	ND		0.50	ug/L			08/01/14 19:58	1
Ethylbenzene	ND		0.50	ug/L			08/01/14 19:58	1
Hexachlorobutadiene	ND		1.0	ug/L			08/01/14 19:58	1
2-Hexanone	ND		50	ug/L			08/01/14 19:58	1
Isopropylbenzene	ND		0.50	ug/L			08/01/14 19:58	1
4-Isopropyltoluene	ND		1.0	ug/L			08/01/14 19:58	1
Methylene Chloride	ND		5.0	ug/L			08/01/14 19:58	1
4-Methyl-2-pentanone (MIBK)	ND		50	ug/L			08/01/14 19:58	1
Naphthalene	ND		1.0	ug/L			08/01/14 19:58	1
N-Propylbenzene	ND		1.0	ug/L			08/01/14 19:58	1
Styrene	ND		0.50	ug/L			08/01/14 19:58	1
1,1,1,2-Tetrachloroethane	ND		0.50	ug/L			08/01/14 19:58	1
1,1,2,2-Tetrachloroethane	ND		0.50	ug/L			08/01/14 19:58	1
Tetrachloroethene	ND		0.50	ug/L			08/01/14 19:58	1
Toluene	ND		0.50	ug/L			08/01/14 19:58	1
1,2,3-Trichlorobenzene	ND		1.0	ug/L			08/01/14 19:58	1
1,2,4-Trichlorobenzene	ND		1.0	ug/L			08/01/14 19:58	1
1,1,1-Trichloroethane	ND		0.50	ug/L			08/01/14 19:58	1
1,1,2-Trichloroethane	ND		0.50	ug/L			08/01/14 19:58	1
Trichloroethene	ND		0.50	ug/L			08/01/14 19:58	1
Trichlorofluoromethane	ND		1.0	ug/L			08/01/14 19:58	1
1,2,3-Trichloropropane	ND		0.50	ug/L			08/01/14 19:58	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50	ug/L			08/01/14 19:58	1
	ND		0.50	ug/L			08/01/14 19:58	1
1,2,4-Trimethylbenzene	ND		0.50	ug/L			08/01/14 19:58	1
1,3,5-Trimethylbenzene	ND		10				08/01/14 19:58	1
Vinyl ablasida				ug/L			08/01/14 19:58	
Vinyl chloride	ND		0.50	ug/L				1
Xylenes, Total	ND		1.0	ug/L			08/01/14 19:58	1
2,2-Dichloropropane	ND		0.50	ug/L			08/01/14 19:58	1

Client: AMEC Environment & Infrastructure, Inc. Project/Site: Crown Chevrolet Cadillac Isuzu

TestAmerica Job ID: 720-58974-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: MB 720-164220/4

Matrix: Water

Analysis Batch: 164220

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)	ND		50		ug/L			08/01/14 19:58	1
	ND		50		ug/L			08/01/14 1	9:58

-C5-C12

	MB MB				
Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	100	67 - 130		08/01/14 19:58	1
1,2-Dichloroethane-d4 (Surr)	105	72 - 130		08/01/14 19:58	. 1
Toluene-d8 (Surr)	100	70 - 130		08/01/14 19:58	1

Lab Sample ID: LCS 720-164220/5

Matrix: Water

Analysis Batch: 164220

Analysis Datell. 104220	Spike	1.00	LCS			%Rec.
Amaluta	Added		Qualifier Unit	D	%Rec	Limits
Analyte Methyl tert-butyl ether	25.0	25.4	ug/L		102	62 - 130
	125	121	ug/L		97	26 - 180
Acetone	25.0	25.5	ug/L		102	79 - 130
Benzene	25.0	25.3			101	79 - 130 70 - 130
Dichlorobromomethane		25.3	ug/L			70 ₋ 130
Bromobenzene	25.0		ug/L		101	
Chlorobromomethane	25.0	24.7	ug/L		99	70 - 130
Bromoform	25.0	23.6	ug/L		95	68 - 136
Bromomethane	25.0	21.2	ug/L		85	43 - 151
2-Butanone (MEK)	125	122	ug/L		98	54 - 130
n-Butylbenzene	25.0	26.7	ug/L		107	70 - 142
sec-Butylbenzene	25.0	26.6	ug/L		106	70 - 134
ert-Butylbenzene	25.0	26.2	ug/L		105	70 _ 135
Carbon disulfide	25.0	23.7	ug/L		95	58 - 130
Carbon tetrachloride	25.0	24.1	ug/L		96	70 _ 146
Chlorobenzene	25.0	25.1	ug/L		100	70 - 130
Chloroethane	25.0	20.9	ug/L		84	62 - 138
Chloroform	25.0	24.9	ug/L		100	70 - 130
Chloromethane	25.0	21.1	ug/L		85	52 - 175
2-Chlorotoluene	25.0	26.8	ug/L		107	70 - 130
1-Chlorotoluene	25.0	26.8	ug/L		107	70 - 130
Chlorodibromomethane	25.0	25.4	ug/L		102	70 - 145
1,2-Dichlorobenzene	25.0	25.6	ug/L		102	70 - 130
1,3-Dichlorobenzene	25.0	25.2	ug/L		101	70 - 130
1,4-Dichlorobenzene	25.0	25.0	ug/L		100	70 - 130
1,3-Dichloropropane	25.0	26.2	ug/L		105	70 - 130
1,1-Dichloropropene	25.0	26.4	ug/L		106	70 - 130
1,2-Dibromo-3-Chloropropane	25.0	26.6	ug/L		106	70 - 136
Ethylene Dibromide	25.0	26.0	ug/L		104	70 - 130
Dibromomethane	25.0	25.1	ug/L		100	70 - 130
Dichlorodifluoromethane	25.0	19.4	ug/L		78	34 - 132
1,1-Dichloroethane	25.0	25.7	ug/L		103	70 - 130
1,2-Dichloroethane	25.0	24.6	ug/L		98	61 - 132
1,1-Dichloroethene	25.0	21.3	ug/L		85	64 - 128
cis-1,2-Dichloroethene	25.0	25.6	ug/L		102	70 - 130
trans-1,2-Dichloroethene	25.0	24.1	ug/L		97	68 - 130

TestAmerica Pleasanton

Page 38 of 56

Spike

LCS LCS

Client: AMEC Environment & Infrastructure, Inc. Project/Site: Crown Chevrolet Cadillac Isuzu

TestAmerica Job ID: 720-58974-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: LCS 720-164220/5

Matrix: Water

Analysis Batch: 164220

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

%Rec.

Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,2-Dichloropropane	25.0	26.6		ug/L		106	70 - 130	
cis-1,3-Dichloropropene	25.0	26.7		ug/L		107	70 - 130	
trans-1,3-Dichloropropene	25.0	28.8		ug/L		115	70 _ 140	
Ethylbenzene	25.0	25.0		ug/L		100	80 - 120	
Hexachlorobutadiene	25.0	25.4		ug/L		102	70 _ 130	
2-Hexanone	125	132		ug/L		106	60 - 164	
Isopropylbenzene	25.0	25.4		ug/L		102	70 - 130	
4-Isopropyltoluene	25.0	25.7		ug/L		103	70 - 130	
Methylene Chloride	25.0	24.4		ug/L		98	70 - 147	
4-Methyl-2-pentanone (MIBK)	125	137		ug/L		109	58 - 130	
Naphthalene	25.0	28.6		ug/L		114	70 - 130	
N-Propylbenzene	25.0	26.8		ug/L		107	70 - 130	
Styrene	25.0	25.8		ug/L		103	70 - 130	
1,1,1,2-Tetrachloroethane	25.0	24.7		ug/L		99	70 - 130	
1,1,2,2-Tetrachloroethane	25.0	26.9		ug/L		108	70 _ 130	
Tetrachloroethene	25.0	23.2		ug/L		93	70 - 130	
Toluene	25.0	24.9		ug/L		99	78 - 120	
1,2,3-Trichlorobenzene	25.0	26.2		ug/L		105	70 - 130	
1,2,4-Trichlorobenzene	25.0	26.0		ug/L		104	70 - 130	
1,1,1-Trichloroethane	25.0	25.3		ug/L		101	70 - 130	
1,1,2-Trichloroethane	25.0	26.2		ug/L		105	70 - 130	
Trichloroethene	25.0	24.1		ug/L		96	70 - 130	
Trichlorofluoromethane	25.0	24.9		ug/L		100	66 - 132	
1,2,3-Trichloropropane	25.0	26.4		ug/L		106	70 - 130	
1,1,2-Trichloro-1,2,2-trifluoroetha	25.0	21.5		ug/L		86	42 - 162	
ne	05.0							
1,2,4-Trimethylbenzene	25.0	26.6		ug/L		106	70 - 132	
1,3,5-Trimethylbenzene	25.0	27.1		ug/L		109	70 - 130	
Vinyl acetate	25.0	21.5		ug/L		86	43 - 163	
Vinyl chloride	25.0	19.5		ug/L		78	54 - 135	
m-Xylene & p-Xylene	25.0	25.5		ug/L		102	70 - 142	
o-Xylene	25.0	26.2		ug/L		105	70 - 130	
2,2-Dichloropropane	25.0	26.1		ug/L		104	70 - 140	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	105		67 - 130
1,2-Dichloroethane-d4 (Surr)	97		72 _ 130
Toluene-d8 (Surr)	101		70 - 130

Lab Sample ID: LCS 720-164220/7

Matrix: Water

Analysis Batch: 164220

Analysis Baton, 194229	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Gasoline Range Organics (GRO)	500	535		ug/L		107	62 - 120

Client Sample ID: Lab Control Sample

TestAmerica Pleasanton

Prep Type: Total/NA

Client: AMEC Environment & Infrastructure, Inc. Project/Site: Crown Chevrolet Cadillac Isuzu

TestAmerica Job ID: 720-58974-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: LCS 720-164220/7

Lab Sample ID: LCSD 720-164220/6

Matrix: Water

Matrix: Water

Analysis Batch: 164220

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	106		67 - 130
1,2-Dichloroethane-d4 (Surr)	102		72 - 130
Toluene-d8 (Surr)	102		70 - 130

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Analysis Potob: 164220

Analysis Batch: 164220	Spike	1.080	LCSD				%Rec.		RPD
Analyte	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Methyl tert-butyl ether	25.0	26.3	Quantitei	ug/L	_ =	105	62 - 130	4	20
Acetone	125	121		ug/L		97	26 - 180	0	30
Benzene	25.0	25.3		ug/L		101	79 - 130	1	20
Dichlorobromomethane	25.0	25.5		ug/L		102	70 - 130	1	20
Bromobenzene	25.0	24.5		ug/L		98	70 - 130	3	20
Chlorobromomethane	25.0	24.9				99	70 - 130	1	20
Bromoform	25.0	24.9		ug/L ug/L		96	68 ₋ 136	1	20
Bromomethane	25.0	20.8		ug/L		83	43 - 151	2	20
	125	122		ug/L		98	54 - 130	0	20
2-Butanone (MEK)	25.0	25.7				103	70 - 142	4	20
n-Butylbenzene	25.0	26.0		ug/L		103	70 - 142	2	20
sec-Butylbenzene	25.0	25.4		ug/L				3	20
tert-Butylbenzene				ug/L		102	70 - 135	1	20
Carbon disulfide	25.0	23.4		ug/L		94	58 - 130		
Carbon tetrachloride	25.0	23.8		ug/L		95	70 - 146	1	20
Chlorobenzene	25.0	24.6		ug/L		98	70 - 130	2	20
Chloroethane	25.0	21.0		ug/L		84	62 _ 138	0	20
Chloroform	25.0	24.9		ug/L		100	70 - 130	0	20
Chloromethane	25.0	20.5		ug/L		82	52 - 175	3	20
2-Chlorotoluene	25.0	26.2		ug/L		105	70 - 130	2	20
4-Chlorotoluene	25.0	26.3		ug/L		105	70 - 130	2	20
Chlorodibromomethane	25.0	25.5		ug/L		102	70 - 145	1	20
1,2-Dichlorobenzene	25.0	24.9		ug/L		100	70 _ 130	3	20
1,3-Dichlorobenzene	25.0	24.8		ug/L		99	70 - 130	2	20
1,4-Dichlorobenzene	25.0	24.7		ug/L		99	70 - 130	1	20
1,3-Dichloropropane	25.0	26.4		ug/L		106	70 - 130	1	20
1,1-Dichloropropene	25.0	26.0		ug/L		104	70 - 130	2	20
1,2-Dibromo-3-Chloropropane	25.0	26.5		ug/L		106	70 - 136	0	20
Ethylene Dibromide	25.0	26.3		ug/L		105	70 _ 130	1	20
Dibromomethane	25.0	25.3		ug/L		101	70 - 130	1	20
Dichlorodifluoromethane	25.0	19.1		ug/L		77	34 - 132	1	20
1,1-Dichloroethane	25.0	25.6		ug/L		102	70 - 130	0	20
1,2-Dichloroethane	25.0	24.9		ug/L		99	61 - 132	1	20
1,1-Dichloroethene	25.0	21.0		ug/L		84	64 - 128	1	20
cis-1,2-Dichloroethene	25.0	25.5		ug/L		102	70 - 130	0	20
trans-1,2-Dichloroethene	25.0	23.9		ug/L		96	68 - 130	1	20
1,2-Dichloropropane	25.0	26.5		ug/L		106	70 - 130	0	20
cis-1,3-Dichloropropene	25.0	26.9		ug/L		108	70 - 130	1	20
trans-1,3-Dichloropropene	25.0	28.9		ug/L		116	70 - 140	1	20
Ethylbenzene	25.0	24.7		ug/L		99	80 - 120	1	20

TestAmerica Pleasanton

Page 40 of 56

Client: AMEC Environment & Infrastructure, Inc. Project/Site: Crown Chevrolet Cadillac Isuzu

TestAmerica Job ID: 720-58974-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: LCSD 720-164220/6

Matrix: Water

Analysis Batch: 164220

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Analysis Batch: 164220	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Hexachlorobutadiene	25.0	24.6		ug/L		98	70 - 130	3	20
2-Hexanone	125	140		ug/L		112	60 - 164	6	20
Isopropylbenzene	25.0	25.0		ug/L		100	70 - 130	2	20
4-Isopropyltoluene	25.0	25.0		ug/L		100	70 - 130	3	20
Methylene Chloride	25.0	24.4		ug/L		98	70 - 147	0	20
4-Methyl-2-pentanone (MIBK)	125	144		ug/L		115	58 - 130	5	20
Naphthalene	25.0	28.8		ug/L		115	70 - 130	1	20
N-Propylbenzene	25.0	26.2		ug/L		105	70 - 130	2	20
Styrene	25.0	25.8		ug/L		103	70 - 130	0	20
1,1,1,2-Tetrachloroethane	25.0	24.5		ug/L		98	70 - 130	1	20
1,1,2,2-Tetrachloroethane	25.0	26.8		ug/L		107	70 _ 130	0	20
Tetrachloroethene	25.0	23.0		ug/L		92	70 - 130	1	20
Toluene	25.0	24.4		ug/L		98	78 - 120	2	20
1,2,3-Trichlorobenzene	25.0	25.8		ug/L		103	70 - 130	2	20
1,2,4-Trichlorobenzene	25.0	25.6		ug/L		102	70 - 130	2	20
1,1,1-Trichloroethane	25.0	25.0		ug/L		100	70 - 130	1	20
1,1,2-Trichloroethane	25.0	26.5		ug/L		106	70 _ 130	1	20
Trichloroethene	25.0	23.8		ug/L		95	70 - 130	1	20
Trichlorofluoromethane	25.0	24.6		ug/L		98	66 - 132	1	20
1,2,3-Trichloropropane	25.0	26.4		ug/L		106	70 - 130	0	20
1,1,2-Trichloro-1,2,2-trifluoroetha	25.0	20.9		ug/L		84	42 - 162	3	20
ne									
1,2,4-Trimethylbenzene	25.0	26.2		ug/L		105	70 - 132	1	20
1,3,5-Trimethylbenzene	25.0	26.5		ug/L		106	70 - 130	2	20
Vinyl acetate	25.0	22.0		ug/L		88	43 - 163	2	20
Vinyl chloride	25.0	19.2		ug/L		77	54 _ 135	2	20
m-Xylene & p-Xylene	25.0	25.1		ug/L		100	70 - 142	2	20
o-Xylene	25.0	25.7		ug/L		103	70 - 130	2	20
2,2-Dichloropropane	25.0	24.7		ug/L		99	70 - 140	5	20

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	106		67 - 130
1, 2-Dichloroethane-d4 (Surr)	99		72 - 130
Toluene-d8 (Surr)	101		70 - 130

Lab Sample ID: LCSD 720-164220/8

Matrix: Water

Analysis Batch: 164220

Gasoline Range Organics (GRO)

Spike	LCSD	LCSD				%Rec.		RPD
Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
 500	500		/1		106	62 120	1	20

-C5-C12

Analyte

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	106		67 - 130
1,2-Dichloroethane-d4 (Surr)	104		72 - 130
Toluene-d8 (Surr)	102		70 - 130

TestAmerica Pleasanton

Prep Type: Total/NA

Client Sample ID: Lab Control Sample Dup

Client: AMEC Environment & Infrastructure, Inc. Project/Site: Crown Chevrolet Cadillac Isuzu

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: 720-58974-7 MS

Matrix: Water

Client Sam	ple	ID:	MP-01-	3
Pren	Tyr	10.	Total/N	Δ

Analysis Batch: 164220	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Methyl tert-butyl ether	ND		25.0	25.3		ug/L	_	101	60 - 138	
Acetone	ND		125	140		ug/L		85	60 - 140	
Benzene	ND		25.0	25.5		ug/L		102	60 - 140	
Dichlorobromomethane	ND		25.0	25.6		ug/L		102	60 - 140	
Bromobenzene	ND		25.0	24.3		ug/L		97	60 - 140	
Chlorobromomethane	ND		25.0	24.8		ug/L		99	60 - 140	
Bromoform	ND		25.0	24.1		ug/L		96	56 - 140	
Bromomethane	ND		25.0	19.2		ug/L		77	23 - 140	
2-Butanone (MEK)	ND		125	114		ug/L		91	60 - 140	
n-Butylbenzene	ND		25.0	26.1		ug/L		104	60 - 140	
sec-Butylbenzene	ND		25.0	25.3		ug/L		101	60 - 140	
tert-Butylbenzene	ND		25.0	25.0		ug/L		100	60 - 140	
Carbon disulfide	ND		25.0	24.4		ug/L		98	38 - 140	
Carbon tetrachloride	ND		25.0	23.3		ug/L		93	60 - 140	
Chlorobenzene	ND		25.0	24.9		ug/L		100	60 - 140	
Chloroethane	ND		25.0	20.2		ug/L		81	51 - 140	
Chloroform	ND		25.0	25.1		ug/L		100	60 - 140	
Chloromethane	ND		25.0	18.7		ug/L		75	52 - 140	
2-Chlorotoluene	ND		25.0	26.0		ug/L		104	60 - 140	
4-Chlorotoluene	ND		25.0	26.3		_		105	60 - 140	
Chlorodibromomethane	ND		25.0	25.5		ug/L			60 - 140	
	ND					ug/L		102		
1,2-Dichlorobenzene	ND		25.0	24.8		ug/L		99	60 - 140	
1,3-Dichlorobenzene	ND		25.0	24.6		ug/L		98	60 - 140	
1,4-Dichlorobenzene			25.0	24.9		ug/L		100	60 - 140	
1,3-Dichloropropane	ND		25.0	25.7		ug/L		103	60 - 140	
1,1-Dichloropropene	ND		25.0	26.0		ug/L		104	60 - 140	
1,2-Dibromo-3-Chloropropane	ND		25.0	23.3		ug/L		93	60 - 140	
Ethylene Dibromide	ND		25.0	25.4		ug/L		102	60 - 140	
Dibromomethane	ND		25.0	24:7		ug/L		99	60 - 140	
Dichlorodifluoromethane	ND		25.0	18.6		ug/L		74	38 - 140	
1,1-Dichloroethane	ND		25.0	25.7		ug/L		103	60 - 140	
1,2-Dichloroethane	ND		25.0	24.7		ug/L		99	60 - 140	
1,1-Dichloroethene	ND		25.0	20.6		ug/L		82	60 _ 140	
cis-1,2-Dichloroethene	5.1		25.0	30.9		ug/L		103	60 _ 140	
trans-1,2-Dichloroethene	ND		25.0	23.9		ug/L		96	60 _ 140	
1,2-Dichloropropane	ND		25.0	26.7		ug/L		107	60 - 140	
cis-1,3-Dichloropropene	ND		25.0	26.9		ug/L		108	60 - 140	
trans-1,3-Dichloropropene	ND		25.0	29.2		ug/L		117	60 - 140	
Ethylbenzene	ND		25.0	24.9		ug/L		99	60 - 140	
Hexachlorobutadiene	ND		25.0	24.7		ug/L		99	60 - 140	
2-Hexanone	ND		125	123		ug/L		98	60 - 140	
Isopropylbenzene	ND		25.0	25.0		ug/L		100	60 - 140	
4-Isopropyltoluene	ND		25.0	24.9		ug/L		100	60 - 140	
Methylene Chloride	ND		25.0	24.1		ug/L		96	40 - 140	
4-Methyl-2-pentanone (MIBK)	ND		125	127		ug/L		101	58 - 130	
Naphthalene	ND		25.0	26.7		ug/L		107	56 - 140	
N-Propylbenzene	ND		25.0	25.8		ug/L		103	60 - 140	
Styrene	ND		25.0	26.1		ug/L		104	60 _ 140	

TestAmerica Pleasanton

Page 42 of 56

Client: AMEC Environment & Infrastructure, Inc. Project/Site: Crown Chevrolet Cadillac Isuzu

TestAmerica Job ID: 720-58974-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: 720-58974-7 MS

Matrix: Water

Analysis Batch: 164220

Client Sample ID: MP-01-3

Prep Type: Total/NA

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1,2-Tetrachloroethane	ND	27.	25.0	24.5		ug/L	_	98	60 - 140	
1,1,2,2-Tetrachloroethane	ND		25.0	24.8		ug/L		99	60 - 140	
Tetrachloroethene	ND		25.0	23.1		ug/L		92	60 - 140	
Toluene	ND		25.0	24.8		ug/L		99	60 - 140	
1,2,3-Trichlorobenzene	ND		25.0	25.5		ug/L		102	60 - 140	
1,2,4-Trichlorobenzene	ND		25.0	26.2		ug/L		105	60 - 140	
1,1,1-Trichloroethane	ND		25.0	25.3		ug/L		101	60 - 140	
1,1,2-Trichloroethane	ND		25.0	26.1		ug/L		104	60 - 140	
Trichloroethene	ND		25.0	23.8		ug/L		95	60 _ 140	
Trichlorofluoromethane	ND		25.0	23.6		ug/L		94	60 - 140	
1,2,3-Trichloropropane	ND		25.0	23.9		ug/L		96	60 - 140	
1,1,2-Trichloro-1,2,2-trifluoroetha	ND		25.0	20.7		ug/L		83	60 - 140	
ne										
1,2,4-Trimethylbenzene	ND		25.0	26.0		ug/L		104	60 - 140	
1,3,5-Trimethylbenzene	ND		25.0	26.1		ug/L		105	60 - 140	
Vinyl acetate	ND		25.0	21.3		ug/L		85	40 - 140	
Vinyl chloride	ND		25.0	18.8		ug/L		75	58 - 140	
m-Xylene & p-Xylene	ND		25.0	25.4		ug/L		102	60 - 140	
n-Xvlene	ND		25.0	26.2		ua/L		105	60 - 140	

25.0

26.4

ug/L

ND

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	106		67 - 130
1,2-Dichloroethane-d4 (Surr)	97		72 - 130
Toluene-d8 (Surr)	102		70 _ 130

Lab Sample ID: 720-58974-7 MSD

Matrix: Water

2,2-Dichloropropane

Client Sample ID: MP-0	11-3
Prep Type: Total	NA

106

60 - 140

Analysis Batch: 164220 Analyte	Sample Result	0	0	MCD	MCD	Unit		%Rec	%Rec. Limits	RPD	RPD Limit
		Sample Qualifier	Spike Added	MSD Result			_				
							D				
Methyl tert-butyl ether	ND		25.0	26.2		ug/L		105	60 - 138	4	20
Acetone	ND		125	147		ug/L		90	60 - 140	5	20
Benzene	ND		25.0	25.6		ug/L		103	60 - 140	1	20
Dichlorobromomethane	ND		25.0	25.8		ug/L		103	60 - 140	1	20
Bromobenzene	ND		25.0	24.6		ug/L		98	60 - 140	1	20
Chlorobromomethane	ND		25.0	25.0		ug/L		100	60 _ 140	1	20
Bromoform	ND		25.0	24.2		ug/L		97	56 - 140	0	20
Bromomethane	ND		25.0	19.1		ug/L		76	23 - 140	1	20
2-Butanone (MEK)	ND		125	119		ug/L		95	60 - 140	4	20
n-Butylbenzene	ND		25.0	26.0		ug/L		104	60 - 140	0	20
sec-Butylbenzene	ND		25.0	25.5		ug/L		102	60 - 140	1	20
tert-Butylbenzene	ND		25.0	25.0		ug/L		100	60 _ 140	0	20
Carbon disulfide	ND		25.0	24.3		ug/L		97	38 - 140	0	20
Carbon tetrachloride	ND		25.0	23.3		ug/L		93	60 - 140	0	20
Chlorobenzene	ND		25.0	24.9		ug/L		100	60 - 140	0	20
Chloroethane	ND		25.0	20.3		ug/L		81	51 - 140	1	20
Chloroform	ND		25.0	25.2		ug/L		101	60 - 140	1	20

TestAmerica Pleasanton

Client Sample ID: MP-01-3 Prep Type: Total/NA

Client: AMEC Environment & Infrastructure, Inc. Project/Site: Crown Chevrolet Cadillac Isuzu

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: 720-58974-7 MSD

Matrix: Water

Analysis Batch: 164220

1,2,4-Trimethylbenzene

1,3,5-Trimethylbenzene

Vinyl acetate

Vinyl chloride

	•	Sample	Spike	MSD					%Rec.		RPD
Analyte		Qualifier	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloromethane	ND		25.0	18.8		ug/L		75	52 - 140	1	20
2-Chlorotoluene	ND		25.0	26.1		ug/L		105	60 - 140	0	20
4-Chlorotoluene	ND		25.0	26.2		ug/L		105	60 _ 140	0	20
Chlorodibromomethane	ND		25.0	25.8		ug/L		103	60 - 140	1	20
1,2-Dichlorobenzene	ND		25.0	25.0		ug/L		100	60 - 140	1	20
1,3-Dichlorobenzene	ND		25.0	24.7		ug/L		99	60 - 140	1	20
1,4-Dichlorobenzene	ND		25.0	25.0		ug/L		100	60 - 140	0	20
1,3-Dichloropropane	ND		25.0	26.2		ug/L		105	60 - 140	2	20
1,1-Dichloropropene	ND		25.0	26.0		ug/L		104	60 - 140	0	20
1,2-Dibromo-3-Chloropropane	ND		25.0	24.7		ug/L		99	60 - 140	6	20
Ethylene Dibromide	ND		25.0	25.8		ug/L		103	60 _ 140	2	20
Dibromomethane	ND		25.0	25.2		ug/L		101	60 - 140	2	20
Dichlorodifluoromethane	ND		25.0	18.5		ug/L		74	38 - 140	0	20
1,1-Dichloroethane	ND		25.0	25.7		ug/L		103	60 - 140	0	20
1,2-Dichloroethane	ND		25.0	25.2		ug/L		101	60 - 140	2	20
1,1-Dichloroethene	ND		25.0	20.7		ug/L		83	60 - 140	1	20
cis-1,2-Dichloroethene	5.1		25.0	31.0		ug/L		104	60 - 140	0	20
trans-1,2-Dichloroethene	ND		25.0	24.1		ug/L		97	60 - 140	1	20
1,2-Dichloropropane	ND		25.0	26.8		ug/L		107	60 - 140	0	20
cis-1,3-Dichloropropene	ND		25.0	27.5		ug/L		110	60 - 140	2	20
trans-1,3-Dichloropropene	ND		25.0	29.3		ug/L		117	60 - 140	1	20
Ethylbenzene	ND		25.0	24.6		ug/L		98	60 - 140	1	20
Hexachlorobutadiene	ND		25.0	24.7		ug/L		99	60 - 140	0	20
2-Hexanone	ND		125	129		ug/L		103	60 - 140	5	20
Isopropylbenzene	ND		25.0	24.9		ug/L	-	100	60 - 140	0	20
4-Isopropyltoluene	ND		25.0	24.9		ug/L		100	60 - 140	0	20
Methylene Chloride	ND		25.0	24.4		ug/L		98	40 - 140	1	20
4-Methyl-2-pentanone (MIBK)	ND		125	133		ug/L		107	58 - 130	5	20
Naphthalene	ND		25.0	27.4		ug/L		110	56 _ 140	3	20
N-Propylbenzene	ND		25.0	25.9		ug/L		104	60 - 140	0	20
Styrene	ND		25.0	25.8		ug/L		103	60 - 140	1	20
1,1,1,2-Tetrachloroethane	ND		25.0	24.6		ug/L		99	60 - 140	1	20
1,1,2,2-Tetrachloroethane	ND		25.0	25.6		ug/L		102	60 - 140	3	20
Tetrachloroethene	ND		25.0	22.9		ug/L		92	60 - 140	1	20
Toluene	ND		25.0	24.6		ug/L		99	60 - 140	1	20
1,2,3-Trichlorobenzene	ND		25.0	25.6		ug/L		102	60 - 140	0	20
1.2.4-Trichlorobenzene	ND		25.0	26.2		ug/L		105	60 - 140	0	20
1,1,1-Trichloroethane	ND		25.0	25.7		ug/L		103	60 - 140	1	20
1,1,2-Trichloroethane	ND		25.0	26.4		ug/L		106	60 - 140	1	20
Trichloroethene	ND		25.0	23.8		ug/L		95	60 - 140	0	20
Trichlorofluoromethane	ND		25.0	23.8		ug/L		95	60 - 140	1	20
1,2,3-Trichloropropane	ND		25.0	24.8		ug/L		99	60 - 140	4	20
1,1,2-Trichloro-1,2,2-trifluoroetha	ND		25.0	20.9		ug/L		83	60 - 140	1	20

TestAmerica Pleasanton

26.1

26.2

22.1

18.9

ug/L

ug/L

ug/L

ug/L

104

105

89

76

60 - 140

60 - 140

40 - 140

58 - 140

25.0

25.0

25.0

25.0

ND

ND

ND

ND

0

0

4

0

20

20

20

20

Client: AMEC Environment & Infrastructure, Inc. Project/Site: Crown Chevrolet Cadillac Isuzu

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample	ID:	720-5897	4-7	MSD	
------------	-----	----------	-----	-----	--

Matrix: Water

Analysis Batch: 164220

Client	Sample	ID:	MP-0	1-3
	Dron Tw	201 7	Cotol/I	ALA

Prep Type: Total/NA

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
m-Xylene & p-Xylene	ND		25.0	25.3		ug/L		101	60 - 140	0	20
o-Xylene	ND		25.0	26.0		ug/L		104	60 - 140	1	20
2,2-Dichloropropane	ND		25.0	27.5		ug/L		110	60 _ 140	4	20

70 - 130

MSD MSD %Recovery Qualifier Limits 67 - 130 105 72 - 130 99

117

101

102

Lab Sample ID: MB 720-164274/5

Matrix: Water

4-Bromofluorobenzene

1,2-Dichloroethane-d4 (Surr)

Toluene-d8 (Surr)

Surrogate

Analysis Batch: 164274

Client Sample ID: Method Blank

Prep Type: Total/NA

08/04/14 09:21

08/04/14 09:21

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl acetate	ND		10		ug/L			08/04/14 09:21	1
	MB	MB							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	105		67 _ 130					08/04/14 09:21	1

72 - 130

70 - 130

21.1

Spike

Added

25.0

Lab Sample ID: LCS 720-164274/6

Matrix: Water

Analyte

Vinyl acetate

Toluene-d8 (Surr)

Analysis Batch: 164274

1,2-Dichloroethane-d4 (Surr)

Client Sample	ID:	Lab Control Sample	
		Prep Type: Total/NA	

LCS LCS %Rec. Result Qualifier Unit %Rec Limits 43 - 163 ug/L

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	100		67 - 130
1,2-Dichloroethane-d4 (Surr)	114		72 - 130
Toluene-d8 (Surr)	102		70 - 130

Lab Sample ID: LCSD 720-164274/7

Matrix: Water

Analysis Batch: 164274

Client Sa	ample	ID:	Lab	Contr	ol	Samp	ole	Dup
				Dunn	Tyre	no. T	-+-	I/ALA

Prep Type: Total/NA

Analysis Batom 1942/4	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Vinyl acetate	25.0	20.4		ug/L		81	43 - 163	4	20

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	98	MINA CONTRACTOR	67 - 130
1,2-Dichloroethane-d4 (Surr)	114		72 - 130
Toluene-d8 (Surr)	102		70 - 130

QC Sample Results

Client: AMEC Environment & Infrastructure, Inc. Project/Site: Crown Chevrolet Cadillac Isuzu

TestAmerica Job ID: 720-58974-1

40 - 140

Client Sample ID: MW-02

Client Sample ID: MW-02

Prep Type: Total/NA

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Matrix: Water

Prep Type: Total/NA Analysis Batch: 164274 MS MS %Rec. Sample Sample Spike Result Qualifier Added Result Qualifier Unit D %Rec Limits

22.1

ug/L

Vinyl acetate ND 25.0 MS MS Surrogate %Recovery Qualifier Limits 4-Bromofluorobenzene 130 67 - 130 1,2-Dichloroethane-d4 (Surr) 120 72 - 130 Toluene-d8 (Surr) 70 - 130

104

Lab Sample ID: 720-58974-3 MSD

Matrix: Water

Analysis Batch: 164274

Sample Sample Spike %Rec. RPD Result Qualifier Analyte Result Qualifier Added %Rec Limits RPD Unit D Limit 25.0 Vinyl acetate ND 21.5 86 40 - 140 3 ug/L 20

MSD MSD Surrogate %Recovery Qualifier Limits 4-Bromofluorobenzene 100 67 - 130 1,2-Dichloroethane-d4 (Surr) 116 72 - 130 Toluene-d8 (Surr) 103 70 - 130

QC Association Summary

Client: AMEC Environment & Infrastructure, Inc. Project/Site: Crown Chevrolet Cadillac Isuzu

TestAmerica Job ID: 720-58974-1

GC/MS VOA

Analysis Batch: 164110

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-58974-1	MVV-01	Total/NA	Water	8260B/CA_LUFT	
				MS	
720-58974-2	MVV-100	Total/NA	Water	8260B/CA_LUFT	
				MS	
720-58974-3	MW-02	Total/NA	Water	8260B/CA_LUFT	
				MS	
720-58974-3 MS	MVV-02	Total/NA	Water	8260B/CA_LUFT	
				MS	
20-58974-3 MSD	MW-02	Total/NA	Water	8260B/CA_LUFT	
				MS	
20-58974-4	MVV-03	Total/NA	Water	8260B/CA_LUFT	
				MS	
20-58974-5	MP-01-1	Total/NA	Water	8260B/CA_LUFT	
				MS	
20-58974-6	MP-01-2	Total/NA	Water	8260B/CA_LUFT	
				MS	
20-58974-7	MP-01-3	Total/NA	Water	8260B/CA_LUFT	
				MS	
.CS 720-164110/5	Lab Control Sample	Total/NA	Water	8260B/CA_LUFT	
				MS	
CS 720-164110/7	Lab Control Sample	Total/NA	Water	8260B/CA_LUFT	
				MS	
CSD 720-164110/6	Lab Control Sample Dup	Total/NA	Water	8260B/CA_LUFT	
				MS	
CSD 720-164110/8	Lab Control Sample Dup	Total/NA	Water	8260B/CA_LUFT	
				MS	
MB 720-164110/4	Method Blank	Total/NA	Water	8260B/CA_LUFT	
				MS	

Analysis Batch: 164220

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
20-58974-7	MP-01-3	Total/NA	Water	8260B/CA_LUFT	
				MS	
20-58974-7 MS	MP-01-3	Total/NA	Water	8260B/CA_LUFT	
				MS	
20-58974-7 MSD	MP-01-3	Total/NA	Water	8260B/CA_LUFT	
				MS	
20-58974-8	MP-02-1	Total/NA	Water	8260B/CA_LUFT	
				MS	
20-58974-9	MP-02-2	Total/NA	Water	8260B/CA_LUFT	
				MS	
20-58974-10	MP-02-3	Total/NA	Water	8260B/CA_LUFT	
		T-1-1/11A	10/-1	MS	
20-58974-11	MP-03-1	Total/NA	Water	8260B/CA_LUFT	
		7	10//	MS	
20-58974-12	MP-03-2	Total/NA	Water	8260B/CA_LUFT	
		Tatalible	\A/=/	MS	
20-58974-13	MP-03-3	Total/NA	Water	8260B/CA_LUFT	
00 700 404000/5	Lab Cantal Canada	Tatal/NIA	Mater	MS	
.CS 720-164220/5	Lab Control Sample	Total/NA	Water	8260B/CA_LUFT	
00 700 4040007	Lab Castral Carrela	Total/NA	Water	MS	
CS 720-164220/7	Lab Control Sample	Total/NA	vvalei	8260B/CA_LUFT	
.CSD 720-164220/6	Lab Control Sample Dup	Total/NA	Water	MS	
.CSD /20-164220/6	Lab Control Sample Dup	IOIAINA	vvater	8260B/CA_LUFT MS	
CSD 720-164220/8	Lab Control Sample Dup	Total/NA	Water		
JOSD 720-104220/6	Lab Control Sample Dup	1 Otal/14A	vvalci	8260B/CA_LUFT	
				MS	

QC Association Summary

Client: AMEC Environment & Infrastructure, Inc. Project/Site: Crown Chevrolet Cadillac Isuzu

TestAmerica Job ID: 720-58974-1

GC/MS VOA (Continued)

Analysis	Batch: 164220	(Continued)
----------	---------------	-------------

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method Prep Batch		
MB 720-164220/4	Method Blank	Total/NA	Water	8260B/CA_LUFT		
				MS		

Analysis Batch: 164274

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method Prep B
720-58974-1	MVV-01	Total/NA	Water	8260B/CA_LUFT
				MS
720-58974-2	MVV-100	Total/NA	Water	8260B/CA_LUFT
				MS
720-58974-3	MW-02	Total/NA	Water	8260B/CA_LUFT
				MS
720-58974-3 MS	MW-02	Total/NA	Water	8260B/CA_LUFT
3				MS
720-58974-3 MSD	MW-02	Total/NA	Water	8260B/CA_LUFT
				MS
720-58974-4	MVV-03	Total/NA	Water	8260B/CA_LUFT
				MS
720-58974-5	MP-01-1	Total/NA	Water	8260B/CA_LUFT
				MS
720-58974-6	MP-01-2	Total/NA	Water	8260B/CA_LUFT
				MS
LCS 720-164274/6	Lab Control Sample	Total/NA	Water	8260B/CA_LUFT
				MS
LCSD 720-164274/7	Lab Control Sample Dup	Total/NA	Water	8260B/CA_LUFT
				MS
MB 720-164274/5	Method Blank	Total/NA	Water	8260B/CA_LUFT
				MS

Date Collected: 07/30/14 11:35 Date Received: 07/30/14 15:55

	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	8260B/CA_LUFTMS		1	164274	08/04/14 15:12	PDR	TAL PLS	
Total/NA	Analysis	8260B/CA_LUFTMS		1	164110	07/31/14 15:03	ASC	TAL PLS	

Client Sample ID: MW-100

Lab Sample ID: 720-58974-2

Matrix: Water

Date Collected: 07/30/14 11:40 Date Received: 07/30/14 15:55

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B/CA_LUFTMS		2	164274	08/04/14 15:41	PDR	TAL PLS
Total/NA	Analysis	8260B/CA_LUFTMS		2	164110	07/31/14 15:32	ASC	TAL PLS

Client Sample ID: MW-02

Lab Sample ID: 720-58974-3

Matrix: Water

Date Collected: 07/30/14 07:58 Date Received: 07/30/14 15:55

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B/CA_LUFTMS	74.0	1	164274	08/04/14 14:14	PDR	TAL PLS
Total/NA	Analysis	8260B/CA_LUFTMS		1	164110	07/31/14 13:08	ASC	TAL PLS

Client Sample ID: MW-03

Date Collected: 07/30/14 13:30

Date Received: 07/30/14 15:55

Lab Sample	e ID:	720-5	8974-4
------------	-------	-------	--------

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B/CA_LUFTMS		1	164274	08/04/14 16:10	PDR	TAL PLS
Total/NA	Analysis	8260B/CA_LUFTMS		1	164110	07/31/14 16:01	ASC	TAL PLS

Client Sample ID: MP-01-1

Date Collected: 07/30/14 11:53

Date Received: 07/30/14 15:55

Lab Sample	ID: 720-58974-5
------------	-----------------

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B/CA_LUFTMS		1	164274	08/04/14 16:40	PDR	TAL PLS
Total/NA	Analysis	8260B/CA_LUFTMS		1	164110	07/31/14 16:30	ASC	TAL PLS

Client Sample ID: MP-01-2

Lab Sample ID: 720-58974-6

Matrix: Water

Date Collected: 07/30/14 12:51 Date Received: 07/30/14 15:55

	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	8260B/CA LUFTMS	_	1	164274	08/04/14 17:09	PDR	TAL PLS	_

Date	IZECEIA	eu.	VII	JUI	14	10.5
				В	atcl	1

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B/CA_LUFTMS		1	164110	07/31/14 16:59	ASC	TAL PLS

Lab Sample ID: 720-58974-7

Matrix: Water

Client Sample ID: MP-01-3 Date Collected: 07/30/14 13:50 Date Received: 07/30/14 15:55

	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	8260B/CA_LUFTMS		1	164110	07/31/14 17:28	ASC	TAL PLS	
Total/NA	Analysis	8260B/CA_LUFTMS		1	164220	08/01/14 22:21	ASC	TAL PLS	

Client Sample ID: MP-02-1

Date Collected: 07/30/14 10:41

Date Received: 07/30/14 15:55

Lab Sample ID: 720-58974-8

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B/CA_LUFTMS		1	164220	08/01/14 23:47	ASC	TAL PLS

Client Sample ID: MP-02-2

Date Collected: 07/30/14 10:01

Date Received: 07/30/14 15:55

	-		
		10.7	20 500740
1 an 5a	mne	11 1 /	20-58974-9
Lub ou			EO OOOITO

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	8260B/CA_LUFTMS		1	164220	08/02/14 00:15	ASC	TAL PLS	_

Client Sample ID: MP-02-3

Date Collected: 07/30/14 13:30

Date Received: 07/30/14 15:55

.ab Samp	le ID:	720-58	974-10
----------	--------	--------	--------

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	8260B/CA_LUFTMS		1	164220	08/02/14 00:44	ASC	TAL PLS	Π

Client Sample ID: MP-03-1

Date Collected: 07/30/14 11:05

Date Received: 07/30/14 15:55

Lab Sample ID: 720-58974-11

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B/CA_LUFTMS		1	164220	08/02/14 01:12	ASC	TAL PLS

Lab Chronicle

Client: AMEC Environment & Infrastructure, Inc. Project/Site: Crown Chevrolet Cadillac Isuzu

TestAmerica Job ID: 720-58974-1

Client Sample ID: MP-03-2

Date Collected: 07/30/14 09:45

Date Received: 07/30/14 15:55

Lab Sample ID: 720-58974-12

Matrix: Water

Batch Batch Prep Type Type

Analysis

Dilution Factor Method Run 8260B/CA_LUFTMS

Batch Prepared Number or Analyzed 164220 08/02/14 01:41

Analyst ASC

TAL PLS

Client Sample ID: MP-03-3

Date Collected: 07/30/14 09:25 Date Received: 07/30/14 15:55

Lab Sample ID: 720-58974-13

Matrix: Water

Dilution Batch Batch Batch Method Factor Number Prep Type Type Run 164220 Total/NA Analysis 8260B/CA_LUFTMS

Prepared or Analyzed

Analyst 08/02/14 02:10 ASC

Lab

Lab

TAL PLS

Laboratory References:

Total/NA

TAL PLS = TestAmerica Pleasanton, 1220 Quarry Lane, Pleasanton, CA 94566, TEL (925)484-1919

Certification Summary

Client: AMEC Environment & Infrastructure, Inc. Project/Site: Crown Chevrolet Cadillac Isuzu

TestAmerica Job ID: 720-58974-1

Laboratory: TestAmerica Pleasanton

Unless otherwise noted, all analytes for this laboratory were covered under each certification below.

Authority	Program		EPA Region	Certification ID	Expiration Date
California	State Prog	ram	9	2496	01-31-16
Analysis Method	Prep Method	Matrix	Analyt	e	

Method Summary

Client: AMEC Environment & Infrastructure, Inc. Project/Site: Crown Chevrolet Cadillac Isuzu

TestAmerica Job ID: 720-58974-1

Method	Method Description	Protocol	Laboratory
8260B/CA LUFTM	8260B / CA LUFT MS	SW846	TAL PLS

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL PLS = TestAmerica Pleasanton, 1220 Quarry Lane, Pleasanton, CA 94566, TEL (925)484-1919

Sample Summary

Client: AMEC Environment & Infrastructure, Inc. Project/Site: Crown Chevrolet Cadillac Isuzu

TestAmerica Job ID: 720-58974-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
720-58974-1	MW-01	Water	07/30/14 11:35	07/30/14 15:55
720-58974-2	MVV-100	Water	07/30/14 11:40	07/30/14 15:55
720-58974-3	MW-02	Water	07/30/14 07:58	07/30/14 15:55
720-58974-4	MW-03	Water	07/30/14 13:30	07/30/14 15:55
720-58974-5	MP-01-1	Water	07/30/14 11:53	07/30/14 15:55
720-58974-6	MP-01-2	Water	07/30/14 12:51	07/30/14 15:55
720-58974-7	MP-01-3	Water	07/30/14 13:50	07/30/14 15:55
720-58974-8	MP-02-1	Water	07/30/14 10:41	07/30/14 15:55
720-58974-9	MP-02-2	Water	07/30/14 10:01	07/30/14 15:55
720-58974-10	MP-02-3	Water	07/30/14 13:30	07/30/14 15:55
720-58974-11	MP-03-1	Water	07/30/14 11:05	07/30/14 15:55
720-58974-12	MP-03-2	Water	07/30/14 09:45	07/30/14 15:55
720-58974-13	MP-03-3	Water	07/30/14 09:25	07/30/14 15:55

12

3
~

200	IECT		DDY RECORD	A 12	,	10	1	101	17	DATE:	10	1		D.	C.E.		17890
ROJE	OT NUMB	ER:	rown cherrolet	LABORATORY NAM	ac (507)	CLIENT INFO	RMATION	^-		DATE: 7/30/14 REPORTING REQUIREMENTS:				PA	GE	- {	OF 1
O D	IS TO O	exerte. wh	DEBUS.A itmorsheamec.com mec.com	LABORATORY ADD			AMEC										15530
URNA	ROUND T	I butea	mec.com				David Allbut										
		Stave	dard	LABORATORY CON	ITACT	510	- 84.	7-8411		-							
10	live	red to 1	lab	LABORATORY PHONE NUMBER						GEOTRACKER						(ES)	
		-				\(\(\sigma\)				SITE SPECIFIC	GLOBAL	L ID NO	56.	720	266	112	.4
SA	MPL	ERS (S	SIGNATURE):		ANAL	YSES											
0		j All		COBYS							Water (W),		Preservative Type		Q	of Containers	
DA	TE	TIME	SAMPLE NUMBER	VOC.5					TYPE A	AINER ND SIZE	Soil (S), W Vapor (V),	Filtered	Preserv	Cooled	MS/MSD	No, of C	ADDITIONAL COMMENTS
-130	114	1135	MW-01	×					40 n	1 HCI YOA			Hei	X		3	
		1140	MW-100	*												4	
		0758	MW-02	4	-										7	9	MS/MSD
		1330	MW-03	*												3	
		1153	MP-01-1	X									1			-	
		125)	MP-01-2	x													
	1	1350	MP-01-3	*									1				
		1041	MP-02-1	7													
		1001	MP-02-2	*													F.,
	-	1330	MP-02-3	4													1
		1105	MP-03-1	7													
		0945	MP-03-2	7													
	3	0925	MP-03-3	7					-	/	1		4	4		7	
								TOTAL NUMBER					-1				
		JISHED B		RECEIVED	_		TIME		BER OF CONTA	INERS:			DENDER (—		1 1	ornat and the Militia
		selvt	780/4 1503	PRINTED NAME	mlluel a	27/		SAMPLING O	COMMENTS'			_					
OM	PANY:	WELLOT	3.1.133	COMPAN SIGNATURE:	Ji lien	- 130/14	155	POH	CB12	20276	7	_	720-5	9974	Chair	of C	ustody
	TED NA			PRINTED NAME	Ē					4	.60	>-	, 20-0				
OMI	PANY:			COMPANY:	MPANY:					Į.	6.		-				
IGN	ATURE:	-		SIGNATURE:				240	11 Webster	Street 12	th El	oor					A
DIN	TED NA	ME		PRINTED NAME				2101 Webster Street, 12th Floor Oakland, California 94612-3066						ec			

Login Sample Receipt Checklist

Client: AMEC Environment & Infrastructure, Inc.

Samples do not require splitting or compositing.

Residual Chlorine Checked.

Job Number: 720-58974-1

Login Number: 58974 List Number: 1 List Source: TestAmerica Pleasanton

Creator: Bullock, Tracy

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	

True

N/A

14

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Pleasanton 1220 Quarry Lane Pleasanton, CA 94566 Tel: (925)484-1919

TestAmerica Job ID: 720-60396-1 Client Project/Site: Crown Chevrolet

For:

AMEC Environment & Infrastructure, Inc. 180 Grand Avenue Suite 1100 Oakland, California 94612

Attn: Avery Whitmarsh

Authorized for release by: 10/20/2014 4:15:54 PM

Afsaneh Salimpour, Senior Project Manager (925)484-1919 afsaneh.salimpour@testamericainc.com

..... LINKS

Review your project results through Total Access

Have a Question?

Visit us at: www.testamericainc.com This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

2

Table of Contents

Cover Page	1
	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	8
QC Sample Results	34
	52
Lab Chronicle	54
Certification Summary	57
Method Summary	58
Sample Summary	59
	60
Receipt Checklists	63

Definitions/Glossary

Client: AMEC Environment & Infrastructure, Inc.

Project/Sité: Crown Chevrolet

TestAmerica Job ID: 720-60396-1

Glossary		
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
CFL	Contains Free Liquid	
CNF	Contains no Free Liquid	
DER	Duplicate error ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of	the sample
DLC	Decision level concentration	
MDA	Minimum detectable activity	
EDL	Estimated Detection Limit	
MDC	Minimum detectable concentration	
MDL	Method Detection Limit	S C C C C C C C C C C C C C C C C C C C
ML	Minimum Level (Dioxin)	
NC	Not Calculated	
ND	Not detected at the reporting limit (or MDL or EDL if shown)	
PQL	Practical Quantitation Limit	
QC	Quality Control	
RER	Relative error ratio	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	
TEQ	Toxicity Equivalent Quotient (Dioxin)	

Case Narrative

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-60396-1

Job ID: 720-60396-1

Laboratory: TestAmerica Pleasanton

Narrative

Job Narrative 720-60396-1

Comments

No additional comments.

Receipt

The samples were received on 10/6/2014 5:40 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperatures of the 2 coolers at receipt time were 1.6° C and 3.2° C.

GC/MS VOA

Method(s) 8260B: The Gasoline Range Organics (GRO) concentration reported for the following sample(s) is due to the presence of discrete peaks: MW-01 (720-60396-1), MW-100 (720-60396-2). PCE

Method(s) 8260B: The Gasoline Range Organics (GRO) concentration reported for the following sample(s) is due to the presence of discrete peaks: MP-02-1 (720-60396-7). CIS-1,2-DCE

Method(s) 8260B: The Gasoline Range Organics (GRO) concentration reported for the following sample(s) is due to the presence of discrete peaks: MP-01-1 (720-60396-4). CIS-2,2DCE, TCE, PCE

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

4

5.4

72

8

9

in it

E

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-60396-1

Client Sample ID: MW-01						Le	ıD	Sample ID: 7	20-00390-
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Tetrachloroethene	82	- Carron	0.50		ug/L	3.	_	8260B/CA_LUFT MS	Total/NA
Trichloroethene	0.95		0.50		ug/L	1		8260B/CA_LUFT MS	Total/NA
Gasoline Range Organics (GRO) -C5-C12	66	R	50		ug/L	1		8260B/CA_LUFT MS	Total/NA
Client Sample ID: MW-100						Lá	ab	Sample ID: 7	20-60396-
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Tetrachloroethene	90		0.50		ug/L		_	8260B/CA_LUFT MS	Total/NA
Trichloroethene	0.97		0.50		ug/L	1		8260B/CA_LUFT MS	Total/NA
Gasoline Range Organics (GRO) -C5-C12	72	R	50		ug/L	1		8260B/CA_LUFT MS	Total/NA
Client Sample ID: MW-02						La	ab	Sample ID: 7	20-60396-
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
cis-1,2-Dichloroethene	2.8		0.50		ug/L	1	-	8260B/CA_LUFT MS	Total/NA
Tetrachloroethene	4.7		0.50		ug/L	1		8260B/CA_LUFT MS	Total/NA
Trichloroethene	9.1		0.50		ug/L	1		8260B/CA_LUFT MS	Total/NA
Client Sample ID: MP-01-1						La	abi	Sample ID: 7	20-60396
Analyte cis-1,2-Dichloroethene	Result 4.4	Qualifier	0.50	MDL	ug/L	Dil Fac	_	Method 8260B/CA_LUFT	Total/NA
Tetrachloroethene	58		0.50		ug/L	1		MS 8260B/CA_LUFT	Total/NA
Trichloroethene	17		0.50		ug/L	1		MS 8260B/CA_LUFT MS	Total/NA
Gasoline Range Organics (GRO) -C5-C12	64	R	50		ug/L	1		8260B/CA_LUFT MS	Total/NA
Client Sample ID: MP-01-2						La	ab	Sample ID: 7	20-60396-
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
cis-1,2-Dichloroethene	43	-	0.50		ug/L	1	_	8260B/CA_LUFT MS	Total/NA
Client Sample ID: MP-01-3						La	ab	Sample ID: 7	20-60396-
ment Sample ID. IIII -01-0									

This Detection Summary does not include radiochemical test results.

cis-1,2-Dichloroethene

Client Sample ID: MP-02-1

TestAmerica Pleasanton

0.50

ug/L

Total/NA

8260B/CA_LUFT

Lab Sample ID: 720-60396-7

Detection Summary

Client: AMEC Environment & Infrastructure, Inc. Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-60396-1

Client Sample ID: MP-02-1 (Conti	nued)				La	b Sample ID: 7	20-60396-
Analyte	Result	Qualifier	RL	MDL Unit	Dil Fac	D Method	Prep Type
cis-1,2-Dichloroethene	85		0.50	ug/L	1	8260B/CA_LUFT MS	Total/NA
Trichloroethene	0.61		0.50	ug/L	1	8260B/CA_LUFT MS	Total/NA
Gasoline Range Organics (GRO) -C5-C12	53	R	50	ug/L	1	8260B/CA_LUFT MS	Total/NA
lient Sample ID: MP-02-3				A. Variet	La	b Sample ID: 7	20-60396-
Analyte	Result	Qualifier	RL	MDL Unit	Dil Fac	D Method	Prep Type
cis-1,2-Dichloroethene	29		0.50	ug/L	1	8260B/CA_LUFT	Total/NA
						MS	
lient Sample ID: MP-03-1					La	b Sample ID: 7	20-60396-
Analyte	Result	Qualifier	RL	MDL Unit	Dil Fac	D Method	Prep Type
cis-1,2-Dichloroethene	0.63		0.50	ug/L	1	8260B/CA_LUFT	Total/NA
Tetrachloroethene	22		0.50	ug/L	1	8260B/CA_LUFT	Total/NA
Trichloroethene	4.0		0.50	ug/L	1	8260B/CA_LUFT MS	Total/NA
						IVIS	
Client Sample ID: MP-03-2					Lak	Sample ID: 72	0-60396-1
No Detections.							
Client Sample ID: MP-03-3					Lat	Sample ID: 72	0-60396-1
No Detections.						4	
Client Sample ID: MP-04-1					Lak	Sample ID: 72	0-60396-1
Analyte	Result	Qualifier	RL	MDL Unit	Dil Fac	D Method	Prep Type
cis-1,2-Dichloroethene	2.2		0.50	ug/L	1	8260B/CA_LUFT	Total/NA
Tetrachloroethene	0.76		0.50	ug/L	1	8260B/CA_LUFT	Total/NA
Trichloroethene	12		0.50	ug/L	1	8260B/CA_LUFT	Total/NA
ALL STATE OF THE SALES AND THE SALES						MS	
Client Sample ID: MP-04-2					Lat	Sample ID: 72	0-60396-1
Analyte	Result	Qualifier	RL	MDL Unit	Dil Fac	D Method	Prep Type
cis-1,2-Dichloroethene	2.3		0.50	ug/L	1	8260B/CA_LUFT MS	Total/NA
Client Sample ID: MP-04-3					Lak	Sample ID: 72	0-60396-1
Analyte	D #	Qualifier	RL	MDL Unit	Dil Foe	D Method	Prep Type

This Detection Summary does not include radiochemical test results.

cis-1,2-Dichloroethene

1.0

TestAmerica Pleasanton

8260B/CA_LUFT

MS

Total/NA

0.50

ug/L

Detection Summary

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

Client Sample ID: TB100614-1

TestAmerica Job ID: 720-60396-1

Lab Sample ID: 720-60396-15

No Detections.

Client Sample ID: TB100614-2 Lab Sample ID: 720-60396-16

No Detections.

-

9

Ò

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-60396-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS

Client Sample ID: MW-01 Date Collected: 10/06/14 12:25 Lab Sample ID: 720-60396-1

Matrix: Water

Date Received: 10/06/14 17:40 Analyte	Result	Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND		0.50	ug/L		10/15/14 13:14	1
Acetone	ND		50	ug/L		10/15/14 13:14	1
Benzene	ND		0.50	ug/L		10/15/14 13:14	1
Dichlorobromomethane	ND		0.50	ug/L		10/15/14 13:14	1
Bromobenzene	ND		1.0	ug/L		10/15/14 13:14	1
Chlorobromomethane	ND		1.0	ug/L		10/15/14 13:14	1
Bromoform	ND		1.0	ug/L		10/15/14 13:14	1
Bromomethane	ND		1.0	ug/L	and the same of th	10/15/14 13:14	1
2-Butanone (MEK)	ND		50	ug/L		10/15/14 13:14	1
n-Butylbenzene	ND		1.0	ug/L		10/15/14 13:14	1
sec-Butylbenzene	ND		1.0	ug/L		10/15/14 13:14	1
tert-Butylbenzene	ND		1.0	ug/L		10/15/14 13:14	1
Carbon disulfide	ND		5.0	ug/L		10/15/14 13:14	1
Carbon tetrachloride	ND		0.50	ug/L		10/15/14 13:14	1
	.ND		0.50	ug/L		10/15/14 13:14	1
Chlorobenzene			1.0			10/15/14 13:14	1
Chloroethane	ND			ug/L		10/15/14 13:14	1
Chloroform	ND		1.0	ug/L		10/15/14 13:14	1
Chloromethane	ND		1.0	ug/L		10/15/14 13:14	
2-Chlorotoluene	ND.		0.50	ug/L			1
4-Chlorotoluene	ND		0.50	ug/L		10/15/14 13:14	1
Chlorodibromomethane	ND		0.50	ug/L		10/15/14 13:14	1
1,2-Dichlorobenzene	ND		0.50	ug/L		10/15/14 13:14	1
1,3-Dichlorobenzene	ND		0.50	ug/L		10/15/14 13:14	1
1,4-Dichlorobenzene	ND		0.50	ug/L		10/15/14 13:14	1
1,3-Dichloropropane	ND		1.0	ug/L		10/15/14 13:14	1
1,1-Dichloropropene	ND		0.50	ug/L		10/15/14 13:14	1
1,2-Dibromo-3-Chloropropane	ND		1.0	ug/L		10/15/14 13:14	1
Ethylene Dibromide	ND		0.50	ug/L		10/15/14 13:14	1
Dibromomethane	ND		0.50	ug/L		10/15/14 13:14	1
Dichlorodifluoromethane	ND		0.50	ug/L		10/15/14 13:14	1
1,1-Dichloroethane	ND		0.50	ug/L		10/15/14 13:14	1
1,2-Dichloroethane	ND		0.50	ug/L		10/15/14 13:14	1
1,1-Dichloroethene	ND		0.50	ug/L		10/15/14 13:14	1
cis-1,2-Dichloroethene	ND		0.50	ug/L		10/15/14 13:14	1
trans-1,2-Dichloroethene	ND		0.50	ug/L		10/15/14 13:14	1
1,2-Dichloropropane	ND		0.50	ug/L		10/15/14 13:14	1
cis-1,3-Dichloropropene	ND		0.50	ug/L		10/15/14 13:14	1
trans-1,3-Dichloropropene	ND		0.50	ug/L		10/15/14 13:14	1
Ethylbenzene	ND		0.50	ug/L		10/15/14 13:14	1
Hexachlorobutadiene	ND		1.0	ug/L		10/15/14 13:14	1
2-Hexanone	ND		50	ug/L		10/15/14 13:14	1
Isopropylbenzene	ND		0.50	ug/L		10/15/14 13:14	1
4-Isopropyltoluene	ND		1.0	ug/L		10/15/14 13:14	1
Methylene Chloride	ND		5.0	ug/L		10/15/14 13:14	1
4-Methyl-2-pentanone (MIBK)	ND		50	ug/L		10/15/14 13:14	1
Naphthalene	ND		1.0	ug/L		10/15/14 13:14	1
•	ND		1.0	ug/L		10/15/14 13:14	1
N-Propylbenzene			0.50	ug/L		10/15/14 13:14	1
Styrene 1,1,1,2-Tetrachloroethane	ND ND		0.50	ug/L ug/L		10/15/14 13:14	1

TestAmerica Pleasanton

Client: AMEC Environment & Infrastructure, Inc.

TestAmerica Job ID: 720-60396-1

Project/Site: Crown Chevrolet

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Client Sample ID: MW-01 Date Collected: 10/06/14 12:25 Lab Sample ID: 720-60396-1

Matrix: Water

Date Received: 10/06/14 17:40

Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil	Fac
1,1,2,2-Tetrachloroethane	ND		0.50	ug/L			10/15/14 13:14		1
Tetrachloroethene	82		0.50	ug/L			10/15/14 13:14		1
Toluene	ND		0.50	ug/L			10/15/14 13:14		1
1,2,3-Trichlorobenzene	ND		1.0	ug/L			10/15/14 13:14		1
1,2,4-Trichlorobenzene	ND		1.0	ug/L			10/15/14 13:14		1
1,1,1-Trichloroethane	ND		0.50	ug/L			10/15/14 13:14		1
1,1,2-Trichloroethane	ND		0.50	ug/L			10/15/14 13:14		1
Trichloroethene	0.95		0.50	ug/L			10/15/14 13:14		1
Trichlorofluoromethane	ND		1.0	ug/L			10/15/14 13:14		1
1,2,3-Trichloropropane	ND		0.50	ug/L			10/15/14 13:14		1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50	ug/L			10/15/14 13:14		1
1,2,4-Trimethylbenzene	ND		0.50	ug/L			10/15/14 13:14		1
1,3,5-Trimethylbenzene	ND		0.50	ug/L			10/15/14 13:14		1
Vinyl acetate	ND		10	ug/L			10/15/14 13:14		1
Vinyl chloride	ND		0.50	ug/L			10/15/14 13:14		_ 1
Xylenes, Total	ND		1.0	ug/L			10/15/14 13:14		1
2,2-Dichloropropane	ND		0.50	ug/L			10/15/14 13:14		1
Gasoline Range Organics (GRO) -C5-C12	66	R	50	ug/L			10/15/14 13:14		1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	111		67 - 130		10/15/14 13:14	1
1,2-Dichloroethane-d4 (Surr)	97		72 - 130		10/15/14 13:14	1
Toluene-d8 (Surr)	93		70 - 130		10/15/14 13:14	1

Client Sample ID: MW-100

4-Chlorotoluene

Chlorodibromomethane

Date Collected: 10/06/14 12:30

Date Received: 10/06/14 17:40

Analyte	Result	Qualifier	RL	MDL Unit D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND		0.50	ug/L		10/15/14 13:43	1
Acetone	ND		50	ug/L		10/15/14 13:43	1
Benzene	ND		0.50	ug/L		10/15/14 13:43	1
Dichlorobromomethane	ND		0.50	ug/L		10/15/14 13:43	1
Bromobenzene	ND		1.0	ug/L		10/15/14 13:43	1
Chlorobromomethane	ND		1.0	ug/L		10/15/14 13:43	1
Bromoform	ND		1.0	ug/L		10/15/14 13:43	1
Bromomethane	ND		1.0	ug/L		10/15/14 13:43	1
2-Butanone (MEK)	ND		50	ug/L		10/15/14 13:43	1
n-Butylbenzene	ND		1.0	ug/L		10/15/14 13:43	1
sec-Butylbenzene	ND		1.0	ug/L		10/15/14 13:43	1
tert-Butylbenzene	ND		1.0	ug/L		10/15/14 13:43	1
Carbon disulfide	ND		5.0	ug/L		10/15/14 13:43	1
Carbon tetrachloride	ND		0.50	ug/L		10/15/14 13:43	1
Chlorobenzene	ND	v-	0.50	ug/L		10/15/14 13:43	1
Chloroethane	ND		1.0	ug/L		10/15/14 13:43	1
Chloroform	ND		1.0	ug/L		10/15/14 13:43	1
Chloromethane	ND		1.0	ug/L		10/15/14 13:43	1
2-Chlorotoluene	ND		0.50	ug/L		10/15/14 13:43	1

TestAmerica Pleasanton

10/15/14 13:43

10/15/14 13:43

Page 9 of 63

0.50

0.50

ug/L

ug/L

ND

ND

5

6

8

9

io

Lab Sample ID: 720-60396-2

Matrix: Water

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-60396-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Client Sample ID: MW-100 Date Collected: 10/06/14 12:30 Date Received: 10/06/14 17:40 Lab Sample ID: 720-60396-2 Matrix: Water

Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
1,2-Dichlorobenzene	ND	0.50	ug/L		10/15/14 13:43	1
1,3-Dichlorobenzene	ND	0.50	ug/L		10/15/14 13:43	1
1,4-Dichlorobenzene	ND	0.50	ug/L		10/15/14 13:43	1
1,3-Dichloropropane	ND	1.0	ug/L		10/15/14 13:43	1
1,1-Dichloropropene	ND	0.50	ug/L		10/15/14 13:43	1
1,2-Dibromo-3-Chloropropane	ND	1.0	ug/L		10/15/14 13:43	1
Ethylene Dibromide	ND	0.50	ug/L		10/15/14 13:43	1
Dibromomethane	ND	0.50	ug/L		10/15/14 13:43	1
Dichlorodifluoromethane	ND	0.50	ug/L		10/15/14 13:43	1
1,1-Dichloroethane	ND	0.50	ug/L		10/15/14 13:43	1
1,2-Dichloroethane	ND	0.50	ug/L		10/15/14 13:43	1
1,1-Dichloroethene	ND	0.50	ug/L		10/15/14 13:43	1
cis-1,2-Dichloroethene	ND	0.50	ug/L		10/15/14 13:43	1
trans-1,2-Dichloroethene	ND	0.50	ug/L		10/15/14 13:43	1
1,2-Dichloropropane	ND	0.50	ug/L		10/15/14 13:43	1
cis-1,3-Dichloropropene	ND	0.50	ug/L		10/15/14 13:43	1
trans-1,3-Dichloropropene	ND	0.50	ug/L		10/15/14 13:43	1
Ethylbenzene	ND	0.50	ug/L		10/15/14 13:43	1
Hexachlorobutadiene	ND	1.0	ug/L		10/15/14 13:43	1
2-Hexanone	ND	50	ug/L		10/15/14 13:43	1
Isopropylbenzene	ND	0.50	ug/L		10/15/14 13:43	1
4-Isopropyltoluene	ND	1.0	ug/L		10/15/14 13:43	1
Methylene Chloride	ND	5.0	ug/L		10/15/14 13:43	1
4-Methyl-2-pentanone (MIBK)	ND	50	ug/L		10/15/14 13:43	1
Naphthalene	ND	1.0	ug/L		10/15/14 13:43	. 1
N-Propylbenzene	ND	1.0	ug/L		10/15/14 13:43	1
Styrene	ND	0.50	ug/L		10/15/14 13:43	1
1,1,1,2-Tetrachloroethane	ND	0.50	ug/L		10/15/14 13:43	1
1,1,2,2-Tetrachloroethane	ND	0.50	ug/L		10/15/14 13:43	1
Tetrachloroethene	90	0.50	ug/L		10/15/14 13:43	1
Toluene	ND	0.50	ug/L		10/15/14 13:43	1
1,2,3-Trichlorobenzene	ND	1.0	ug/L		10/15/14 13:43	1
1,2,4-Trichlorobenzene	ND	1.0	ug/L		10/15/14 13:43	1
1,1,1-Trichloroethane	ND	0.50	ug/L		10/15/14 13:43	1
1,1,2-Trichloroethane	ND	0.50	ug/L		10/15/14 13:43	1
Trichloroethene	0.97	0.50	ug/L		10/15/14 13:43	1
Trichlorofluoromethane	ND	1.0	ug/L		10/15/14 13:43	1
1,2,3-Trichloropropane	ND	0.50	ug/L		10/15/14 13:43	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	0.50	ug/L		10/15/14 13:43	1
1,2,4-Trimethylbenzene	ND	0.50	ug/L		10/15/14 13:43	1
1,3,5-Trimethylbenzene	ND	0.50	ug/L		10/15/14 13:43	1
Vinyl acetate	ND	10	ug/L		10/15/14 13:43	1
Vinyl chloride	ND	0.50	ug/L		10/15/14 13:43	1
Xylenes, Total	ND	1.0	ug/L		10/15/14 13:43	1
2,2-Dichloropropane	ND	0.50	ug/L		10/15/14 13:43	1
Gasoline Range Organics (GRO)	72 R	50	ug/L		10/15/14 13:43	1
-C5-C12	12		-9/-			
Surrogate	%Recovery Qualifier	Limits		Prepared	Analyzed	Dil Fac

TestAmerica Pleasanton

10/15/14 13:43

67 _ 130

108

4-Bromofluorobenzene

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-60396-1

Lab Sample ID: 720-60396-2

Matrix: Water

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Client Sample ID: MW-100 Date Collected: 10/06/14 12:30

Date Received: 10/06/14 17:40

 Surrogate
 %Recovery
 Qualifier
 Limits
 Prepared
 Analyzed
 Dil Factoria

 1,2-Dichloroethane-d4 (Surr)
 99
 72 - 130
 10/15/14 13:43
 1

 Toluene-d8 (Surr)
 93
 70 - 130
 10/15/14 13:43
 1

Client Sample ID: MW-02 Lab Sample ID: 720-60396-3

Date Collected: 10/06/14 08:40 Matrix: Water

Date Received: 10/06/14 17:40 Dil Fac RL MDL Unit Prepared Analyzed Result Qualifier Analyte 0.50 ug/L 10/15/14 12:17 ND Methyl tert-butyl ether ug/L 10/15/14 12:17 ND 50 Acetone Benzene ND 0.50 ug/L 10/15/14 12:17 10/15/14 12:17 Dichlorobromomethane ND 0.50 ug/L 10/15/14 12:17 Bromobenzene ND 1.0 uq/L Chlorobromomethane ND 1.0 ug/L 10/15/14 12:17 Bromoform ND 1.0 ug/L 10/15/14 12:17 ND 1.0 ug/L 10/15/14 12:17 Bromomethane 10/15/14 12:17 2-Butanone (MEK) ND 50 ug/L n-Butylbenzene ND 1.0 ug/L 10/15/14 12:17 10/15/14 12:17 ND 1.0 ug/L sec-Butylbenzene 10/15/14 12:17 1.0 ug/L tert-Butylbenzene ND ND 5.0 ug/L 10/15/14 12:17 Carbon disulfide ND 0.50 ug/L 10/15/14 12:17 Carbon tetrachloride ug/L 0.50 10/15/14 12:17 ND Chlorobenzene 10/15/14 12:17 Chloroethane ND 1.0 ug/L 1.0 ug/L 10/15/14 12:17 ND Chloroform 1.0 ug/L 10/15/14 12:17 ND Chloromethane 10/15/14 12:17 2-Chlorotoluene ND 0.50 ug/L 0.50 ug/L 10/15/14 12:17 4-Chlorotoluene ND 10/15/14 12:17 0.50 ug/L Chlorodibromomethane ND ug/L 10/15/14 12:17 0.50 1,2-Dichlorobenzene ND ND 0.50 ug/L 10/15/14 12:17 1,3-Dichlorobenzene ND 0.50 ug/L 10/15/14 12:17 1.4-Dichlorobenzene 1.0 ug/L 10/15/14 12:17 ND 1,3-Dichloropropane 10/15/14 12:17 ND 0.50 ug/L 1,1-Dichloropropene 1.0 ug/L 10/15/14 12:17 1,2-Dibromo-3-Chloropropane ND 10/15/14 12:17 0.50 ug/L Ethylene Dibromide ND 10/15/14 12:17 0.50 ug/L Dibromomethane ND 10/15/14 12:17 ND 0.50 ug/L Dichlorodifluoromethane 0.50 10/15/14 12:17 ND ug/L 1.1-Dichloroethane ug/L 10/15/14 12:17 0.50 ND 1,2-Dichloroethane 10/15/14 12:17 1,1-Dichloroethene ND 0.50 ug/L 0.50 ug/L 10/15/14 12:17 cis-1.2-Dichloroethene 2.8 10/15/14 12:17 0.50 ug/L ND trans-1,2-Dichloroethene 10/15/14 12:17 ug/L 0.50 1,2-Dichloropropane ND 10/15/14 12:17 ND 0.50 ug/L cis-1,3-Dichloropropene 10/15/14 12:17 ND 0.50 ug/L trans-1.3-Dichloropropene 10/15/14 12:17 ND 0.50 ug/L Ethylbenzene ND 1.0 ug/L 10/15/14 12:17 Hexachlorobutadiene ug/L 10/15/14 12:17 ND 50 2-Hexanone 0.50 ug/L 10/15/14 12:17 ND Isopropylbenzene

TestAmerica Pleasanton

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-60396-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Client Sample ID: MW-02

Lab Sample ID: 720-60396-3

Matrix: Water

Date Collected: 10/06/14 08:40 Date Received: 10/06/14 17:40

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4-Isopropyltoluene	ND		1.0		ug/L			10/15/14 12:17	1
Methylene Chloride	ND		5.0		ug/L			10/15/14 12:17	1
4-Methyl-2-pentanone (MIBK)	ND		50		ug/L			10/15/14 12:17	1
Naphthalene	ND		1.0		ug/L			10/15/14 12:17	1
N-Propylbenzene	ND		1.0		ug/L			10/15/14 12:17	1
Styrene	ND		0.50		ug/L			10/15/14 12:17	1
1,1,1,2-Tetrachloroethane	ND		0.50		ug/L			10/15/14 12:17	1
1,1,2,2-Tetrachloroethane	ND		0.50		ug/L			10/15/14 12:17	1
Tetrachloroethene	4.7		0.50		ug/L			10/15/14 12:17	1
Toluene	ND		0.50		ug/L			10/15/14 12:17	1
1,2,3-Trichlorobenzene	ND		1.0		ug/L			10/15/14 12:17	1
1,2,4-Trichlorobenzene	ND		1.0		ug/L			10/15/14 12:17	1
1,1,1-Trichloroethane	ND		0.50		ug/L			10/15/14 12:17	1
1,1,2-Trichloroethane	ND		0.50		ug/L			10/15/14 12:17	1
Trichloroethene	9.1		0.50		ug/L			10/15/14 12:17	1
Trichlorofluoromethane	ND		1.0		ug/L			10/15/14 12:17	1
1,2,3-Trichloropropane	ND		0.50		ug/L			10/15/14 12:17	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50		ug/L			10/15/14 12:17	1
1,2,4-Trimethylbenzene	ND		0.50		ug/L			10/15/14 12:17	1
1,3,5-Trimethylbenzene	ND		0.50		ug/L			10/15/14 12:17	1
Vinyl acetate	ND		10		ug/L			10/15/14 12:17	1
Vinyl chloride	ND		0.50		ug/L			10/15/14 12:17	1
Xylenes, Total	ND		1.0		ug/L			10/15/14 12:17	1
2,2-Dichloropropane	ND		0.50		ug/L			10/15/14 12:17	1
Gasoline Range Organics (GRO) -C5-C12	ND		50		ug/L			10/15/14 12:17	1

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	111	67 - 130		10/15/14 12:17	1
1,2-Dichloroethane-d4 (Surr)	96	72 - 130		10/15/14 12:17	1
Toluene-d8 (Surr)	93	70 - 130		10/15/14 12:17	1

Client Sample ID: MP-01-1

Date Collected: 10/06/14 12:35

Lab	Sample	ID: 720-60396-4
		Matrix: Water

Date Received: 10/06/14 17:40						d Analyzed	Dil Eac
Analyte	Result	Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND		0.50	ug/L		10/15/14 14:11	1
Acetone	ND		50	ug/L		10/15/14 14:11	1
Benzene	ND		0.50	ug/L		10/15/14 14:11	1
Dichlorobromomethane	ND		0.50	ug/L		10/15/14 14:11	1
Bromobenzene	ND		1.0	ug/L		10/15/14 14:11	1
Chlorobromomethane	ND		1.0	ug/L		10/15/14 14:11	1
Bromoform	ND		1.0	ug/L		10/15/14 14:11	1
Bromomethane	ND		1.0	ug/L		10/15/14 14:11	1
2-Butanone (MEK)	ND		50	ug/L		10/15/14 14:11	1
n-Butylbenzene	ND		1.0	ug/L		10/15/14 14:11	1
sec-Butylbenzene	ND		1.0	ug/L		10/15/14 14:11	1
tert-Butylbenzene	ND		1.0	ug/L		10/15/14 14:11	1
Carbon disulfide	ND		5.0	ug/L		10/15/14 14:11	1
Carbon tetrachloride	ND		0.50	ug/L		10/15/14 14:11	1
Calbon tetracillonide	140		0.00	ug/ L		10/10/11/11/11	

TestAmerica Pleasanton

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-60396-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Client Sample ID: MP-01-1 Date Collected: 10/06/14 12:35 Lab Sample ID: 720-60396-4

Matrix: Water

Date Received: 10/06/14 17:40 Analyte	Result	Qualifier	RL	MDL U	Jnit	D	Prepared	Analyzed	Dil Fac
Chlorobenzene	ND		0.50	·	ıg/L			10/15/14 14:11	1
Chloroethane	ND		1.0	ι	ug/L			10/15/14 14:11	1
Chloroform	ND		1.0	Į.	ıg/L			10/15/14 14:11	1
Chloromethane	ND		1.0	L	ıg/L			10/15/14 14:11	1
2-Chlorotoluene	ND		0.50	L	ıg/L			10/15/14 14:11	1
4-Chlorotoluene	ND		0.50	ι	ıg/L			10/15/14 14:11	1
Chlorodibromomethane	ND		0.50	ι	ıg/L			10/15/14 14:11	1
1,2-Dichlorobenzene	ND		0.50		ıg/L `			10/15/14 14:11	1
1,3-Dichlorobenzene	ND		0.50	ι	ıg/L			10/15/14 14:11	1
1,4-Dichlorobenzene	ND		0.50	ι	ıg/L			10/15/14 14:11	1
1,3-Dichloropropane	ND		1.0	L	ıg/L			10/15/14 14:11	1
1,1-Dichloropropene	ND		0.50	L	ıg/L			10/15/14 14:11	1
1,2-Dibromo-3-Chloropropane	ND		1.0	ı	ıg/L			10/15/14 14:11	1
Ethylene Dibromide	ND		0.50		ıg/L			10/15/14 14:11	1
Dibromomethane	ND		0.50		ıg/L			10/15/14 14:11	1
Dichlorodifluoromethane	ND		0.50		ıg/L			10/15/14 14:11	1
1,1-Dichloroethane	ND		0.50		ıg/L			10/15/14 14:11	1
1,2-Dichloroethane	ND		0.50		ıg/L			10/15/14 14:11	1
1,1-Dichloroethene	ND		0.50		ıg/L			10/15/14 14:11	1
cis-1.2-Dichloroethene	4.4		0.50		ıg/L			10/15/14 14:11	1
trans-1,2-Dichloroethene	ND.		0.50		ıg/L			10/15/14 14:11	1
1,2-Dichloropropane	ND		0.50		ıg/L			10/15/14 14:11	1
cis-1,3-Dichloropropene	ND		0.50		ıg/L			10/15/14 14:11	1
trans-1,3-Dichloropropene	ND		0.50		ıg/L			10/15/14 14:11	1
Ethylbenzene	ND		0.50		ıg/L			10/15/14 14:11	1
Hexachlorobutadiene	ND		1.0		ıg/L			10/15/14 14:11	1
2-Hexanone	ND		50		ıg/L			10/15/14 14:11	1
Isopropylbenzene	ND		0.50		ig/L			10/15/14 14:11	1
	ND		1.0					10/15/14 14:11	1
4-Isopropyltoluene Methylene Chloride	ND		5.0		ig/L			10/15/14 14:11	1
	ND		50		ig/L			10/15/14 14:11	
4-Methyl-2-pentanone (MIBK)					ıg/L				1
Naphthalene	ND		1.0		ıg/L			10/15/14 14:11	1
N-Propylbenzene	ND		1.0		ıg/L			10/15/14 14:11	1
Styrene	ND		0.50		ıg/L			10/15/14 14:11	1
1,1,1,2-Tetrachioroethane	ND		0.50		ıg/L			10/15/14 14:11	1
1,1,2,2-Tetrachloroethane	ND		0.50		ıg/L			10/15/14 14:11	1
Tetrachloroethene	58		0.50		ıg/L			10/15/14 14:11	1
Toluene	ND		0.50		ıg/L			10/15/14 14:11	1
1,2,3-Trichlorobenzene	ND		1.0		ıg/L			10/15/14 14:11	1
1,2,4-Trichlorobenzene	ND		1.0		ıg/L			10/15/14 14:11	1
1,1,1-Trichloroethane	ND		0.50		ıg/L			10/15/14 14:11	1
1,1,2-Trichloroethane	ND		0.50	U	ıg/L			10/15/14 14:11	1
Trichloroethene	17		0.50		ıg/L			10/15/14 14:11	1
Trichlorofluoromethane	ND		1.0		ıg/L			10/15/14 14:11	1
1,2,3-Trichloropropane	ND		0.50	u	ıg/L			10/15/14 14:11	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50	U	ıg/L			10/15/14 14:11	1
1,2,4-Trimethylbenzene	ND		0.50	u	ıg/L			10/15/14 14:11	1
1,3,5-Trimethylbenzene	ND		0.50	U	ıg/L			10/15/14 14:11	1
Vinyl acetate	ND		10	u	ıg/L			10/15/14 14:11	1

TestAmerica Pleasanton

Page 13 of 63

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-60396-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Client Sample ID: MP-01-1 Date Collected: 10/06/14 12:35 Lab Sample ID: 720-60396-4 **Matrix: Water**

Date Received: 10/06/14 17:40

Client Sample ID: MP-01-2

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND		0.50		ug/L			10/15/14 14:11	1
Xylenes, Total	ND		1.0		ug/L			10/15/14 14:11	1
2,2-Dichloropropane	ND		0.50		ug/L			10/15/14 14:11	1
Gasoline Range Organics (GRO)	64	R	50		ug/L			10/15/14 14:11	1

-C5-C12

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	106	-	67 _ 130		10/15/14 14:11	1
1,2-Dichloroethane-d4 (Surr)	99		72 - 130		10/15/14 14:11	1
Toluene-d8 (Surr)	92		70 - 130		10/15/14 14:11	1

Lab Sample ID: 720-60396-5

Date Collected: 10/06/14 13:30							Matrix	x: Water
Date Received: 10/06/14 17:40 Analyte	Result	Qualifier	. RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND		0.50	ug/L			10/15/14 14:40	1
Acetone	ND		50	ug/L			10/15/14 14:40	1
Benzene	ND		0.50	ug/L			10/15/14 14:40	1
Dichlorobromomethane	ND		0.50	ug/L			10/15/14 14:40	1
Bromobenzene	ND		1.0	ug/L			10/15/14 14:40	1
Chlorobromomethane	ND		1.0	ug/L			10/15/14 14:40	1
Bromoform	ND		1.0	ug/L			10/15/14 14:40	1
Bromomethane	ND		1.0	ug/L			10/15/14 14:40	1
2-Butanone (MEK)	ND		50	ug/L			10/15/14 14:40	1
n-Butylbenzene	ND		1.0	ug/L			10/15/14 14:40	1
sec-Butylbenzene	ND		1.0	ug/L			10/15/14 14:40	1
tert-Butylbenzene	ND		1.0	ug/L			10/15/14 14:40	1
Carbon disulfide	ND		5.0	ug/L			10/15/14 14:40	1
Carbon tetrachloride	ND		0.50	ug/L			10/15/14 14:40	1
Chlorobenzene	ND		0.50	ug/L			10/15/14 14:40	1
Chloroethane	ND		1.0	ug/L			10/15/14 14:40	1
Chloroform	ND		1.0	ug/L			10/15/14 14:40	1
Chloromethane	ND		1.0	ug/L			10/15/14 14:40	1
2-Chlorotoluene	ND		0.50	ug/L			10/15/14 14:40	1
4-Chlorotoluene	ND		0.50	ug/L			10/15/14 14:40	1
Chlorodibromomethane	ND		0.50	ug/L			10/15/14 14:40	1
1,2-Dichlorobenzene	ND		0.50	ug/L			10/15/14 14:40	1
1,3-Dichlorobenzene	ND		0.50	ug/L			10/15/14 14:40	1
1,4-Dichlorobenzene	ND		0.50	ug/L			10/15/14 14:40	1
1,3-Dichloropropane	ND		1.0	ug/L			10/15/14 14:40	1
1,1-Dichloropropene	ND		0.50	ug/L	4		10/15/14 14:40	1
1,2-Dibromo-3-Chloropropane	ND		1.0	ug/L			10/15/14 14:40	1
Ethylene Dibromide	ND		0.50	ug/L			10/15/14 14:40	1
Dibromomethane	ND		0.50	ug/L			10/15/14 14:40	1
Dichlorodifluoromethane	ND		0.50	ug/L			10/15/14 14:40	1
1,1-Dichloroethane	ND		0.50	ug/L			10/15/14 14:40	1
1,2-Dichloroethane	ND		0.50	ug/L			10/15/14 14:40	1
1,1-Dichloroethene	ND		0.50	ug/L			10/15/14 14:40	1
cis-1,2-Dichloroethene	43		0.50	ug/L			10/15/14 14:40	1
trans-1,2-Dichloroethene	ND		0.50	ug/L			10/15/14 14:40	1

RL

MDL Unit

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-60396-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Result Qualifier

ND

ND

ND

Client Sample ID: MP-01-2

Analyte

Date Collected: 10/06/14 13:30 Date Received: 10/06/14 17:40 Lab Sample ID: 720-60396-5

Analyzed

Matrix: Water

Analyte	Result Qualifier	KL	MDL ONE . D	Prepared Analyzed	Dil Fac
1,2-Dichloropropane	ND	0.50	ug/L	10/15/14 14:40	1
cis-1,3-Dichloropropene	ND	0.50	ug/L	10/15/14 14:40	1
trans-1,3-Dichloropropene	ND	0.50	ug/L	10/15/14 14:40	1
Ethylbenzene	ND	0.50	ug/L	10/15/14 14:40	1
Hexachlorobutadiene	ND	1.0	ug/L	10/15/14 14:40	1
2-Hexanone	ND	50	ug/L	10/15/14 14:40	1
Isopropylbenzene	ND	0.50	ug/L	10/15/14 14:40	1
4-Isopropyltoluene	ND	1.0	ug/L	10/15/14 14:40	1
Methylene Chloride	ND	5.0	ug/L	10/15/14 14:40	1
4-Methyl-2-pentanone (MIBK)	ND	50	ug/L	10/15/14 14:40	1
Naphthalene	ND	1.0	ug/L	10/15/14 14:40	1
N-Propylbenzene	ND	1.0	ug/L	10/15/14 14:40	1
Styrene	ND	0.50	ug/L	10/15/14 14:40	1
1,1,1,2-Tetrachloroethane	ND	0.50	ug/L	10/15/14 14:40	1
1,1,2,2-Tetrachloroethane	ND	0.50	ug/L	10/15/14 14:40	1
Tetrachloroethene	ND	0.50	ug/L	10/15/14 14:40	1
Toluene	ND	0.50	ug/L	10/15/14 14:40	1
1,2,3-Trichlorobenzene	ND	1.0	ug/L	10/15/14 14:40	1
1,2,4-Trichlorobenzene	ND	1.0	ug/L	10/15/14 14:40	1
1,1,1-Trichloroethane	ND	0.50	ug/L	10/15/14 14:40	1
1,1,2-Trichloroethane	ND	0.50	ug/L	10/15/14 14:40	1
Trichloroethene	ND	0.50	ug/L	10/15/14 14:40	1
Trichlorofluoromethane	ND	1.0	ug/L	10/15/14 14:40	1
1,2,3-Trichloropropane	ND	0.50	ūg/L	10/15/14 14:40	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	0.50	ug/L	10/15/14 14:40	1
1,2,4-Trimethylbenzene	ND	0.50	ug/L	10/15/14 14:40	1
1,3,5-Trimethylbenzene	ND	0.50	ug/L	10/15/14 14:40	1
Vinyl acetate	ND	10	ug/L	10/15/14 14:40	1
Vinyl chloride	ND	0.50	ug/L	10/15/14 14:40	1

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	111	67 _ 130		10/15/14 14:40	1
1,2-Dichloroethane-d4 (Surr)	103	72 - 130		10/15/14 14:40	1
Toluene-d8 (Surr)	93	70 - 130		10/15/14 14:40	1

1.0

50

0.50

ug/L

ug/L

ug/L

Client Sample ID: MP-01-3

Gasoline Range Organics (GRO)

Xylenes, Total

-C5-C12

2,2-Dichloropropane

Date Collected: 10/06/14 14:20

Date Received: 10/06/14 17:40									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND		0.50		ug/L			10/15/14 15:08	1
Acetone	ND		50		ug/L			10/15/14 15:08	1
Benzene	ND		0.50		ug/L			10/15/14 15:08	1
Dichlorobromomethane	ND		0.50		ug/L			10/15/14 15:08	1
Bromobenzene	ND		1.0		ug/L			10/15/14 15:08	1
Chlorobromomethane	ND		1.0		ug/L			10/15/14 15:08	1
Bromoform	ND		1.0		ug/L			10/15/14 15:08	1

TestAmerica Pleasanton

10/15/14 14:40

10/15/14 14:40

10/15/14 14:40

Lab Sample ID: 720-60396-6

Matrix: Water

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-60396-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Client Sample ID: MP-01-3 Date Collected: 10/06/14 14:20 Lab Sample ID: 720-60396-6

Matrix: Water

Date Received: 10/06/14 17:40 Analyte	Result	Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
Bromomethane	ND		1.0	ug/L	-	10/15/14 15:08	1
2-Butanone (MEK)	ND		50	ug/L		10/15/14 15:08	1
n-Butylbenzene	ND		1.0	ug/L		10/15/14 15:08	1
sec-Butylbenzene	ND		1.0	ug/L		10/15/14 15:08	1
tert-Butylbenzene	ND		1.0	ug/L		10/15/14 15:08	1
Carbon disulfide	ND		5.0	ug/L		10/15/14 15:08	1
Carbon tetrachloride	ND		0.50	ug/L		10/15/14 15:08	1
Chlorobenzene	ND		0.50	ug/L		10/15/14 15:08	1
Chloroethane	ND		1.0	ug/L		10/15/14 15:08	1
Chloroform	ND		1.0	ug/L		10/15/14 15:08	1
Chloromethane	ND		1.0	ug/L		10/15/14 15:08	1
2-Chlorotoluene	ND		0.50	ug/L		10/15/14 15:08	1
4-Chlorotoluene	ND		0.50	ug/L		10/15/14 15:08	1
Chlorodibromomethane	ND		0.50	ug/L		10/15/14 15:08	1
1,2-Dichlorobenzene	ND		0.50	ug/L		10/15/14 15:08	1
1,3-Dichlorobenzene	ND		0.50	ug/L		10/15/14 15:08	1
1,4-Dichlorobenzene	ND		0.50	ug/L		10/15/14 15:08	1
1,3-Dichloropropane	ND		1.0	ug/L		10/15/14 15:08	1
1,1-Dichloropropene	ND		0.50	ug/L		10/15/14 15:08	1
1,2-Dibromo-3-Chloropropane	ND		1.0	ug/L		10/15/14 15:08	1
Ethylene Dibromide	ND		0.50	ug/L		10/15/14 15:08	1
Dibromomethane	ND		0.50	ug/L		10/15/14 15:08	1
Dichlorodifluoromethane	ND		0.50	ug/L		10/15/14 15:08	1
1,1-Dichloroethane	ND		0.50	ug/L		10/15/14 15:08	1
1,2-Dichloroethane	ND		0.50	ug/L		10/15/14 15:08	1
1,1-Dichloroethene	ND		0.50	ug/L		10/15/14 15:08	1
cis-1,2-Dichloroethene	8.8		0.50	ug/L		10/15/14 15:08	1
trans-1,2-Dichloroethene	ND		0.50	ug/L		10/15/14 15:08	1
1,2-Dichloropropane	ND		0.50	ug/L		10/15/14 15:08	1
cis-1,3-Dichloropropene	ND		0.50	ug/L		10/15/14 15:08	1
trans-1,3-Dichloropropene	ND		0.50	ug/L		10/15/14 15:08	1
Ethylbenzene	ND		0.50	ug/L		10/15/14 15:08	1
Hexachlorobutadiene	ND		1.0			10/15/14 15:08	1
2-Hexanone	ND.		50	ug/L		10/15/14 15:08	1
	ND		0.50	ug/L ug/L		10/15/14 15:08	1
Isopropylteluene	ND		1.0				
4-Isopropyltoluene				ug/L		10/15/14 15:08	1
Methylene Chloride	ND		5.0	ug/L		10/15/14 15:08	1
4-Methyl-2-pentanone (MIBK)	ND		50	ug/L		10/15/14 15:08	1
Naphthalene	ND		1.0	ug/L		10/15/14 15:08	1
N-Propylbenzene	ND		1.0	ug/L		10/15/14 15:08	
Styrene	ND		0.50	ug/L		10/15/14 15:08	1
1,1,1,2-Tetrachloroethane	ND		0.50	ug/L		10/15/14 15:08	endaha ¹
1,1,2,2-Tetrachloroethane	ND		0.50	ug/L		10/15/14 15:08	1
Tetrachloroethene	ND		0.50	ug/L		10/15/14 15:08	1
Toluene	ND		0.50	ug/L		10/15/14 15:08	1
1,2,3-Trichlorobenzene	ND		1.0	ug/L		10/15/14 15:08	1
1,2,4-Trichlorobenzene	ND		1.0	ug/L		10/15/14 15:08	1
1,1,1-Trichloroethane	ND		0.50	ug/L		10/15/14 15:08	1
1,1,2-Trichloroethane	ND		0.50	ug/L		10/15/14 15:08	1

TestAmerica Pleasanton

Page 16 of 63

Client: AMEC Environment & Infrastructure, Inc. Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-60396-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Client Sample ID: MP-01-3

Date Collected: 10/06/14 14:20 Date Received: 10/06/14 17:40

Lab	Sample	ID: 720-60396-6	
		Matrix: Water	

Analyte	Result Q	Qualifier RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Trichloroethene	ND	0.50	ug/L			10/15/14 15:08	1
Trichlorofluoromethane	ND	1.0	ug/L			10/15/14 15:08	1
1,2,3-Trichloropropane	ND	0.50	ug/L			10/15/14 15:08	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	0.50	ug/L			10/15/14 15:08	1
1,2,4-Trimethylbenzene	ND	0.50	ug/L			10/15/14 15:08	1
1,3,5-Trimethylbenzene	ND	0.50	ug/L			10/15/14 15:08	1
Vinyl acetate	ND	10	ug/L			10/15/14 15:08	1
Vinyl chloride	ND	0.50	ug/L			10/15/14 15:08	1
Xylenes, Total	ND	1.0	ug/L			10/15/14 15:08	1
2,2-Dichloropropane	ND	0.50	ug/L			10/15/14 15:08	1
Gasoline Range Organics (GRO) -C5-C12	ND	50	ug/L			.10/15/14 15:08	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	109		67 - 130		10/15/14 15:08	1
1,2-Dichloroethane-d4 (Surr)	98		72 - 130		10/15/14 15:08	1
Toluene-d8 (Surr)	93		70 - 130		10/15/14 15:08	1

Client Sample ID: MP-02-1 Date Collected: 10/06/14 09:35

Lab Sample ID: 720-60396-7 **Matrix: Water**

Date Received: 10/06/14 17:40							D.11 E
Analyte		Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND		0.50	ug/L		10/15/14 15:36	1
Acetone	ND		50	ug/L		10/15/14 15:36	1
Benzene	ND		0.50	ug/L		10/15/14 15:36	1
Dichlorobromomethane	ND		0.50	ug/L		10/15/14 15:36	1
Bromobenzene	ND		1.0	ug/L		10/15/14 15:36	1
Chlorobromomethane	ND		1.0	ug/L		10/15/14 15:36	1
Bromoform	ND		1.0	ug/L		10/15/14 15:36	1
Bromomethane	ND		1.0	ug/L		10/15/14 15:36	1
2-Butanone (MEK)	ND		50	ug/L		10/15/14 15:36	- 1
n-Butylbenzene	ND		1.0	ug/L		10/15/14 15:36	1
sec-Butylbenzene	ND		1.0	ug/L		10/15/14 15:36	1
tert-Butylbenzene	ND		1.0	ug/L		10/15/14 15:36	1
Carbon disulfide	ND		5.0	ug/L		10/15/14 15:36	1
Carbon tetrachloride	ND		0.50	ug/L		10/15/14 15:36	1
Chlorobenzene	ND		0.50	ug/L		10/15/14 15:36	1
Chloroethane	ND		1.0	ug/L		10/15/14 15:36	1
Chloroform	ND		1.0	ug/L		10/15/14 15:36	1
Chloromethane	ND		1.0	ug/L		10/15/14 15:36	1
2-Chlorotoluene	ND		0.50	ug/L		10/15/14 15:36	1
4-Chiorotoluene	ND		0.50	ug/L		10/15/14 15:36	1
Chlorodibromomethane	ND		0.50	ug/L		10/15/14 15:36	1
1,2-Dichlorobenzene	ND		0.50	ug/L		10/15/14 15:36	1
1,3-Dichlorobenzene	ND		0.50	ug/L		10/15/14 15:36	1
1,4-Dichlorobenzene	ND		0.50	ug/L		10/15/14 15:36	1
1,3-Dichloropropane	ND		1.0	ug/L		10/15/14 15:36	1
1,1-Dichloropropene	ND		0.50	ug/L		10/15/14 15:36	1
1,2-Dibromo-3-Chloropropane	ND		1.0	ug/L		10/15/14 15:36	1
Ethylene Dibromide	ND		0.50	ug/L		10/15/14 15:36	1

TestAmerica Pleasanton

Page 17 of 63

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

Surrogate

4-Bromofluorobenzene

Toluene-d8 (Surr)

1,2-Dichloroethane-d4 (Surr)

TestAmerica Job ID: 720-60396-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Client Sample ID: MP-02-1 Date Collected: 10/06/14 09:35 Date Received: 10/06/14 17:40

Lab Sample ID: 720-60396-7 **Matrix: Water**

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dibromomethane	ND		0.50		ug/L			10/15/14 15:36	1
Dichlorodifluoromethane	ND		0.50		ug/L			10/15/14 15:36	1
1,1-Dichloroethane	ND		0.50		ug/L			10/15/14 15:36	1
1,2-Dichloroethane	ND		0.50		ug/L			10/15/14 15:36	1
1,1-Dichloroethene	ND		0.50		ug/L			10/15/14 15:36	1
cis-1,2-Dichloroethene	85		0.50		ug/L			10/15/14 15:36	1
trans-1,2-Dichloroethene	ND		0.50		ug/L			10/15/14 15:36	1
1,2-Dichloropropane	ND		0.50		ug/L			10/15/14 15:36	1
cis-1,3-Dichloropropene	ND		0.50		ug/L			10/15/14 15:36	1
trans-1,3-Dichloropropene	ND		0.50		ug/L			10/15/14 15:36	1
Ethylbenzene	ND		0.50		ug/L			10/15/14 15:36	1
Hexachlorobutadiene	ND		1.0		ug/L			10/15/14 15:36	1
2-Hexanone	ND		50		ug/L			10/15/14 15:36	1
Isopropylbenzene	ND		0.50		ug/L			10/15/14 15:36	1
4-Isopropyltoluene	ND		1.0		ug/L			10/15/14 15:36	1
Methylene Chloride	ND		5.0		ug/L			10/15/14 15:36	1
4-Methyl-2-pentanone (MIBK)	ND		50		ug/L			10/15/14 15:36	1
Naphthalene	ND		1.0		ug/L			10/15/14 15:36	1
N-Propylbenzene	ND		1.0		ug/L			10/15/14 15:36	1
Styrene	ND		0.50		ug/L			10/15/14 15:36	1
1,1,1,2-Tetrachloroethane	ND		0.50		ug/L			10/15/14 15:36	1
1,1,2,2-Tetrachloroethane	ND		0.50		ug/L			10/15/14 15:36	1
Tetrachloroethene	ND		0.50		ug/L			10/15/14 15:36	1
Toluene	ND		0.50		ug/L			10/15/14 15:36	1
1,2,3-Trichlorobenzene	ND		1.0		ug/L			10/15/14 15:36	1
1,2,4-Trichlorobenzene	ND		1.0		ug/L			10/15/14 15:36	1
1,1,1-Trichloroethane	ND		0.50		ug/L			10/15/14 15:36	1
1,1,2-Trichloroethane	ND		0.50		ug/L			10/15/14 15:36	1
Trichloroethene	0.61		0.50		ug/L			10/15/14 15:36	1
Trichlorofluoromethane	ND		1.0		ug/L			10/15/14 15:36	1
1,2,3-Trichloropropane	ND		0.50		ug/L			10/15/14 15:36	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50		ug/L			10/15/14 15:36	1
1,2,4-Trimethylbenzene	ND		0.50		ug/L			10/15/14 15:36	1
1,3,5-Trimethylbenzene	ND		0.50		ug/L			10/15/14 15:36	1
Vinyl acetate	ND		10		ug/L			10/15/14 15:36	1
Vinyl chloride	ND		0.50		ug/L			10/15/14 15:36	1
Xylenes, Total	ND		1.0		ug/L			10/15/14 15:36	1
2,2-Dichloropropane	ND		0.50		ug/L			10/15/14 15:36	1
Gasoline Range Organics (GRO) -C5-C12	53	R	50		ug/L			10/15/14 15:36	1

TestAmerica Pleasanton

Analyzed

10/15/14 15:36

10/15/14 15:36

10/15/14 15:36

Dil Fac

Prepared

Limits

67 - 130

72 - 130

70 - 130

%Recovery Qualifier

108

106

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-60396-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS

Client Sample ID: MP-02-3 Date Collected: 10/06/14 11:05 Lab Sample ID: 720-60396-8

Matrix: Water

Analyte	Result Qualifier	RL	MDL Unit D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND	0.50	ug/L		10/15/14 16:05	1
Acetone	ND	50	ug/L		10/15/14 16:05	1
Benzene	ND	0.50	ug/L		10/15/14 16:05	1
Dichlorobromomethane	ND	0.50	ug/L		10/15/14 16:05	1
Bromobenzene	ND	1.0	ug/L		10/15/14 16:05	1
Chlorobromomethane	ND	1.0	ug/L		10/15/14 16:05	1
Bromoform	ND	1.0	ug/L		10/15/14 16:05	1
Bromomethane	ND	1.0	ug/L		10/15/14 16:05	1
2-Butanone (MEK)	ND	50	ug/L		10/15/14 16:05	1
n-Butylbenzene	ND	1.0	ug/L		10/15/14 16:05	1
sec-Butylbenzene	ND	1.0	ug/L		10/15/14 16:05	1
tert-Butylbenzene	ND	1.0	ug/L		10/15/14 16:05	1
Carbon disulfide	ND	5.0	ug/L		10/15/14 16:05	1
Carbon tetrachloride	ND	0.50	ug/L		10/15/14 16:05	1
Chlorobenzene	ND	0.50	ug/L		10/15/14 16:05	1
Chloroethane	ND	1.0	ug/L		10/15/14 16:05	1
Chloroform	ND	1.0	ug/L		10/15/14 16:05	1
Chloromethane	ND	1.0	ug/L		10/15/14 16:05	1
2-Chlorotoluene	ND	0.50	ug/L		10/15/14 16:05	1
4-Chlorotoluene	ND	0.50	ug/L		10/15/14 16:05	1
Chlorodibromomethane	ND	0.50	ug/L		10/15/14 16:05	1
1.2-Dichlorobenzene	ND	0.50	ug/L		10/15/14 16:05	1
1,3-Dichlorobenzene	ND	0.50	ug/L		10/15/14 16:05	1
1.4-Dichlorobenzene	ND	0.50	ug/L		10/15/14 16:05	1
•	ND	1.0	ug/L		10/15/14 16:05	1
1,3-Dichloropropane	ND	0.50	ug/L		10/15/14 16:05	1
1,1-Dichloropropene			-		10/15/14 16:05	1
1,2-Dibromo-3-Chloropropane	. ND	1.0	ug/L			1
Ethylene Dibromide	ND	0.50	ug/L		10/15/14 16:05	. 1
Dibromomethane	ND	0.50	ug/L		10/15/14 16:05	1
Dichlorodifluoromethane	ND	0.50	ug/L		10/15/14 16:05	1
1,1-Dichloroethane	ND	0.50	ug/L		10/15/14 16:05	1
1,2-Dichloroethane	ND	0.50	ug/L		10/15/14 16:05	1
1,1-Dichloroethene	ND	0.50	ug/L		10/15/14 16:05	1
cis-1,2-Dichloroethene	29	0.50	ug/L		10/15/14 16:05	1
trans-1,2-Dichloroethene	ND	0.50	ug/L		10/15/14 16:05	1
1,2-Dichloropropane	ND	0.50	ug/L		10/15/14 16:05	1
cis-1,3-Dichloropropene	ND	0.50	ug/L		10/15/14 16:05	1
trans-1,3-Dichloropropene	ND	0.50	ug/L		10/15/14 16:05	1
Ethylbenzene	ND	0.50	ug/L		10/15/14 16:05	1
Hexachlorobutadiene	ND	1.0	ug/L		10/15/14 16:05	1
2-Hexanone	ND	50	ug/L		10/15/14 16:05	1
Isopropylbenzene	ND	0.50	ug/L		10/15/14 16:05	1
4-Isopropyltoluene	ND	1.0	ug/L		10/15/14 16:05	1
Methylene Chloride	ND	5.0	ug/L		10/15/14 16:05	1
4-Methyl-2-pentanone (MIBK)	ND	50	ug/L		10/15/14 16:05	1
Naphthalene	ND	1.0	ug/L		10/15/14 16:05	1
N-Propylbenzene	ND	1.0	ug/L		10/15/14 16:05	1
Styrene	ND	0.50	ug/L		10/15/14 16:05	1
1,1,1,2-Tetrachioroethane	ND	0.50	ug/L		10/15/14 16:05	1

TestAmerica Pleasanton

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-60396-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Client Sample ID: MP-02-3 Date Collected: 10/06/14 11:05 Lab Sample ID: 720-60396-8

Matrix: Water

Date Received: 10/06/14 17:40 Analyte	Result (Qualifier	RL	MDL Unit		D	Prepared	Analyzed	Dil Fac
1,1,2,2-Tetrachloroethane	ND		0.50	ug/l				10/15/14 16:05	1
Tetrachloroethene	ND		0.50	ug/l				10/15/14 16:05	1
Toluene	ND		0.50	ug/l				10/15/14 16:05	1
1,2,3-Trichlorobenzene	ND		1.0	ug/l				10/15/14 16:05	1
1,2,4-Trichlorobenzene	ND		1.0	ug/l				10/15/14 16:05	1
1,1,1-Trichloroethane	ND		0.50	ug/l				10/15/14 16:05	1
1,1,2-Trichloroethane	ND		0.50	ug/l				10/15/14 16:05	1
Trichloroethene	ND		0.50	ug/l				10/15/14 16:05	1
Trichlorofluoromethane	ND		1.0	ug/l				10/15/14 16:05	1
1,2,3-Trichloropropane	ND		0.50	ug/l	-			10/15/14 16:05	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50	ug/l	_			10/15/14 16:05	1
1,2,4-Trimethylbenzene	ND		0.50	ug/l				10/15/14 16:05	1
1,3,5-Trimethylbenzene	ND		0.50	ug/l	_			10/15/14 16:05	1
Vinyl acetate	ND		10	ug/l				10/15/14 16:05	1
Vinyl chloride	ND		0.50	ug/l				10/15/14 16:05	1
Xylenes, Total	ND		1.0	ug/l	_			10/15/14 16:05	1
2,2-Dichloropropane	ND		0.50	ug/l				10/15/14 16:05	1
Gasoline Range Organics (GRO) -C5-C12	ND		50	ug/l				10/15/14 16:05	1

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	112	67 - 130		10/15/14 16:05	1
1,2-Dichloroethane-d4 (Surr)	105	72 - 130		10/15/14 16:05	1
Toluene-d8 (Surr)	91	70 - 130		10/15/14 16:05	1

Client Sample ID: MP-03-1 Date Collected: 10/06/14 11:15

Lab Sample ID: 720-60396-9 **Matrix: Water**

Date Received: 10/06/14 17:40 Analyte	Result	Qualifier	RL	MDL Unit	200	D	Prepared	Analyzed	Dii Fac
Methyl tert-butyl ether	ND	-	0.50	ug/L				10/15/14 16:34	1
Acetone	ND		50	ug/L				10/15/14 16:34	1
Benzene	ND		0.50	ug/L				10/15/14 16:34	1
Dichlorobromomethane	ND		0.50	ug/L				10/15/14 16:34	1
Bromobenzene	ND		1.0	ug/L				10/15/14 16:34	1
Chlorobromomethane	ND		1.0	ug/L				10/15/14 16:34	1
Bromoform	ND		1.0	ug/L				10/15/14 16:34	1
Bromomethane	ND		1.0	ug/L				10/15/14 16:34	1
2-Butanone (MEK)	ND		50	ug/L				10/15/14 16:34	1
n-Butylbenzene	ND		1.0	ug/L				10/15/14 16:34	1
sec-Butylbenzene	ND		1.0	ug/L				10/15/14 16:34	1
tert-Butylbenzene	ND		1.0	ug/L				10/15/14 16:34	1
Carbon disulfide	ND		5.0	ug/L				10/15/14 16:34	1
Carbon tetrachloride	ND		0.50	ug/L				10/15/14 16:34	1
Chlorobenzene	ND		0.50	ug/L				10/15/14 16:34	1
Chloroethane	ND		1.0	ug/L				10/15/14 16:34	1
Chloroform	ND		1.0	ug/L				10/15/14 16:34	1
Chloromethane	ND		1.0	ug/L				10/15/14 16:34	1
2-Chlorotoluene	ND		0.50	ug/L				10/15/14 16:34	1
4-Chlorotoluene	ND		0.50	ug/L				10/15/14 16:34	1
Chlorodibromomethane	ND		0.50	ug/L				10/15/14 16:34	1

TestAmerica Pleasanton

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-60396-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Client Sample ID: MP-03-1 Date Collected: 10/06/14 11:15

4-Bromofluorobenzene

Lab Sample ID: 720-60396-9

Matrix: Water

Surrogate	%Recovery Qualific	er Limits			Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO) -C5-C12	110		~g, -				
2,2-Dichloropropane	ND	50	ug/L			10/15/14 16:34	1
Xylenes, Total	ND	0.50	ug/L			10/15/14 16:34	1
Vinyl chloride	ND ND	0.50 1.0	ug/L ug/L			10/15/14 16:34	1
Vinyl ablasida	ND	10	ug/L			10/15/14 16:34 10/15/14 16:34	1
1,3,5-Trimethylbenzene	ND ND	0.50	ug/L			10/15/14 16:34	1
1,2,4-Trimethylbenzene	ND	0.50	ug/L			10/15/14 16:34	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	0.50	ug/L			10/15/14 16:34	1
1,2,3-Trichloropropane	ND	0.50	ug/L			10/15/14 16:34	1
Trichlorofluoromethane	ND ND	1.0	ug/L			10/15/14 16:34	1
Trichloroethene	4.0	0.50	ug/L			10/15/14 16:34	1
1,1,2-Trichloroethane	ND	0.50	ug/L			10/15/14 16:34	1
1,1,1-Trichloroethane	ND	0.50	ug/L			10/15/14 16:34	1
,2,4-Trichlorobenzene	ND	1.0	ug/L			10/15/14 16:34	1
1,2,3-Trichlorobenzene	ND	1.0	ug/L			10/15/14 16:34	1
Toluene	ND	0.50	ug/L			10/15/14 16:34	1
Tetrachloroethene	22	0.50	ug/L			10/15/14 16:34	1
1,1,2,2-Tetrachioroethane	ND	0.50	ug/L			10/15/14 16:34	1.
1,1,1,2-Tetrachloroethane	ND	0.50	ug/L			10/15/14 16:34	1
Styrene	ND	0:50	ug/L			10/15/14 16:34	1
N-Propylbenzene	ND	1,0	ug/L			10/15/14 16:34	1
laphthalene	ND	1.0	ug/L			10/15/14 16:34	1
-Methyl-2-pentanone (MIBK)	ND	50	ug/L			10/15/14 16:34	1
Methylene Chloride	ND	5.0	ug/L			10/15/14 16:34	1
-isopropyltoluene	ND	1.0	ug/L			10/15/14 16:34	1
sopropylbenzene	ND	0.50	ug/L			10/15/14 16:34	1
-Hexanone	ND	50	ug/L			10/15/14 16:34	
lexachlorobutadiene	ND	1.0	ug/L			10/15/14 16:34	1
thylbenzene	ND	0.50	ug/L			10/15/14 16:34	1
ans-1,3-Dichloropropene	ND	0.50	ug/L			10/15/14 16:34	1
is-1,3-Dichloropropene	ND	0.50	ug/L			10/15/14 16:34	1
,2-Dichloropropane	ND	0.50	ug/L			10/15/14 16:34	1
rans-1,2-Dichloroethene	ND	0.50	ug/L			10/15/14 16:34	1
is-1,2-Dichloroethene	0.63	0.50	ug/L			10/15/14 16:34	1
,1-Dichloroethene	ND	0.50	ug/L			10/15/14 16:34	1
,2-Dichloroethane	ND	0.50	ug/L			10/15/14 16:34	1
,1-Dichloroethane	ND	0.50	ug/L			10/15/14 16:34	1
pichlorodifluoromethane	ND	0.50	ug/L			10/15/14 16:34	1
Dibromomethane	ND	0.50	ug/L			10/15/14 16:34	1
thylene Dibromide	ND	0.50	ug/L			10/15/14 16:34	1
,2-Dibromo-3-Chloropropane	ND	1,0	ug/L			10/15/14 16:34	1
,1-Dichloropropene	ND	0.50	ug/L			10/15/14 16:34	1
,3-Dichloropropane	ND	1.0	ug/L			10/15/14 16:34	1
,4-Dichlorobenzene	ND	0.50	ug/L			10/15/14 16:34	1
,3-Dichlorobenzene	ND	0.50	ug/L			10/15/14 16:34	1
,2-Dichlorobenzene	ND	0.50	ug/L			10/15/14 16:34	1
Analyte	Result Qualific	er RL	MDL Unit	D	Prepared	Analyzed	Dil Fac

TestAmerica Pleasanton

10/15/14 16:34

67 - 130

109

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-60396-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Client Sample ID: MP-03-1 Date Collected: 10/06/14 11:15 Date Received: 10/06/14 17:40

Client Sample ID: MP-03-2

Date Collected: 10/06/14 08:35

Lab Sample ID: 720-60396-9 **Matrix: Water**

Dil Fac

Surrogate	%Recovery	Qualifier	Limits	Prepared
1,2-Dichloroethane-d4 (Surr)	102		72 - 130	
Toluene-d8 (Surr)	93		70 - 130	

10/15/14 16:34 10/15/14 16:34

Analyzed

Lab Sample ID: 720-60396-10

Matrix: Water

Date Received: 10/06/14 17:40								
Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND		0.50	ug/L			10/15/14 17:02	1
Acetone	ND		50	ug/L			10/15/14 17:02	1
Benzene	ND		0.50	ug/L			10/15/14 17:02	1
Dichlorobromomethane	ND		0.50	ug/L			10/15/14 17:02	1
Bromobenzene	ND		1.0	ug/L			10/15/14 17:02	1
Chlorobromomethane	ND		1.0	ug/L			10/15/14 17:02	1
Bromoform	ND		1.0	ug/L			10/15/14 17:02	1
Bromomethane	ND		1.0	ug/L			10/15/14 17:02	1
2-Butanone (MEK)	ND		50	ug/L			10/15/14 17:02	1
n-Butylbenzene	ND		1.0	ug/L			10/15/14 17:02	1
sec-Butylbenzene	ND		1.0	ug/L			10/15/14 17:02	1
tert-Butylbenzene	ND		1.0	ug/L			10/15/14 17:02	1
Carbon disulfide	ND		5.0	ug/L			10/15/14 17:02	1
Carbon tetrachloride	ND		0.50	ug/L			10/15/14 17:02	1
Chlorobenzene	ND		0.50	ug/L			10/15/14 17:02	1
Chloroethane	ND		1.0	ug/L			10/15/14 17:02	1
Chloroform	ND		1.0	ug/L			10/15/14 17:02	1
Chloromethane	ND		1.0	ug/L			10/15/14 17:02	1
2-Chlorotoluene	ND		0.50	ug/L			10/15/14 17:02	1
4-Chlorotoluene	ND		0.50	ug/L			10/15/14 17:02	1
Chlorodibromomethane	ND		0.50	ug/L			10/15/14 17:02	1
1,2-Dichlorobenzene	ND		0.50	ug/L			10/15/14 17:02	1
1,3-Dichlorobenzene	ND		0.50	ug/L			10/15/14 17:02	1
1,4-Dichlorobenzene	ND		0.50	ug/L			10/15/14 17:02	1
1,3-Dichloropropane	ND		1.0	ug/L			10/15/14 17:02	1
1,1-Dichloropropene	ND		0.50	ug/L			10/15/14 17:02	1
1,2-Dibromo-3-Chloropropane	ND		1.0	ug/L			10/15/14 17:02	1
Ethylene Dibromide	ND		0.50	ug/L			10/15/14 17:02	1
Dibromomethane	ND		0.50	ug/L			10/15/14 17:02	1
Dichlorodifluoromethane	ND		0.50	ug/L			10/15/14 17:02	1
1,1-Dichloroethane	ND		0.50	ug/L			10/15/14 17:02	1
1,2-Dichloroethane	ND		0.50	ug/L			10/15/14 17:02	1
1,1-Dichloroethene	ND		0.50	ug/L			10/15/14 17:02	1
cis-1,2-Dichloroethene	ND		0.50	ug/L			10/15/14 17:02	1
trans-1,2-Dichloroethene	ND		0.50	ug/L			10/15/14 17:02	1
1,2-Dichloropropane	ND		0.50	ug/L			10/15/14 17:02	1
cis-1,3-Dichloropropene	ND		0.50	ug/L			10/15/14 17:02	1
trans-1,3-Dichloropropene	ND		0.50	ug/L			10/15/14 17:02	1
Ethylbenzene	ND		0.50	ug/L			10/15/14 17:02	1
Hexachlorobutadiene	ND		1.0	ug/L			10/15/14 17:02	1
2-Hexanone	ND		50	ug/L			10/15/14 17:02	1
Isopropylbenzene	ND		0.50	ug/L			10/15/14 17:02	1

TestAmerica Pleasanton

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-60396-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Client Sample ID: MP-03-2 Date Collected: 10/06/14 08:35 Lab Sample ID: 720-60396-10

Matrix: Water

Date Received: 10/06/14 17:40 Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4-Isopropyltoluene	ND		1.0		ug/L	(80)		10/15/14 17:02	1
Methylene Chloride	ND		5.0		ug/L			10/15/14 17:02	1
4-Methyl-2-pentanone (MIBK)	ND		50		ug/L			10/15/14 17:02	1
Naphthalene	ND		1.0		ug/L			10/15/14 17:02	1
N-Propylbenzene	ND		1.0		ug/L			10/15/14 17:02	1
Styrene	ND		0.50		ug/L			10/15/14 17:02	1
1,1,1,2-Tetrachloroethane	ND		0.50		ug/L			10/15/14 17:02	1
1,1,2,2-Tetrachloroethane	ND		0.50		ug/L			10/15/14 17:02	1
Tetrachloroethene	ND		0.50		ug/L			10/15/14 17:02	1
Toluene	ND		0.50		ug/L			10/15/14 17:02	1
1,2,3-Trichlorobenzene	ND		1.0		ug/L			10/15/14 17:02	1
1,2,4-Trichlorobenzene	ND		1.0		ug/L			10/15/14 17:02	1
1,1,1-Trichloroethane	ND		0.50		ug/L			10/15/14 17:02	1
1,1,2-Trichloroethane	ND		0.50		ug/L			10/15/14 17:02	1
Trichloroethene	ND		0.50		ug/L			10/15/14 17:02	1
Trichlorofluoromethane	ND		1.0		ug/L			10/15/14 17:02	1
1,2,3-Trichloropropane	. ND		0.50		ug/L			10/15/14 17:02	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50		ug/L			10/15/14 17:02	1
1,2,4-Trimethylbenzene	ND		0.50		ug/L			10/15/14 17:02	1
1,3,5-Trimethylbenzene	ND		0.50		ug/L			10/15/14 17:02	1
Vinyl acetate	ND		10		ug/L			10/15/14 17:02	1
Vinyl chloride	ND		0.50		ug/L			10/15/14 17:02	1
Xylenes, Total	ND		1.0		ug/L			10/15/14 17:02	1
2,2-Dichloropropane	ND		0.50		ug/L			10/15/14 17:02	1
Gasoline Range Organics (GRO) -C5-C12	ND		50		ug/L			10/15/14 17:02	1

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	111	67 - 130		10/15/14 17:02	1
1,2-Dichloroethane-d4 (Surr)	107	72 - 130		10/15/14 17:02	1
Toluene-d8 (Surr)	93	70 - 130		10/15/14 17:02	1

Client Sample ID: MP-03-3

Date Collected: 10/06/14 11:00

Lab	Sample	ID:	720-60	396-11
			Matrix:	Water

Date Received: 10/06/14 17:40 Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dìl Fac
Methyl tert-butyl ether	ND		0.50	ug/L			10/15/14 17:31	1
Acetone	ND		50	ug/L			10/15/14 17:31	1
Benzene	ND		0.50	ug/L			10/15/14 17:31	1
Dichlorobromomethane	ND		0.50	ug/L			10/15/14 17:31	1
Bromobenzene	ND		1.0	ug/L			10/15/14 17:31	1
Chlorobromomethane	ND		1.0	ug/L			10/15/14 17:31	1
Bromoform	ND		1.0	ug/L			10/15/14 17:31	1
Bromomethane	ND		1.0	ug/L			10/15/14 17:31	1
2-Butanone (MEK)	ND		50	ug/L			10/15/14 17:31	1
n-Butylbenzene	ND		1.0	ug/L			10/15/14 17:31	1
sec-Butylbenzene	ND		1.0	ug/L			10/15/14 17:31	1
tert-Butylbenzene	ND		1.0	ug/L			10/15/14 17:31	1
Carbon disulfide	ND		5.0	ug/L			10/15/14 17:31	1
Carbon tetrachloride	ND	s,	0.50	ug/L			10/15/14 17:31	1

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-60396-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Client Sample ID: MP-03-3 Date Collected: 10/06/14 11:00 Lab Sample ID: 720-60396-11

Matrix: Water

Analyte	Result Qualifier	RL	MDL Unit D	Prepared Analyzed	Dil Fac
Chlorobenzene	ND	0.50	ug/L	10/15/14 17:31	
Chloroethane	ND	1.0	ug/L	10/15/14 17:31	•
Chloroform	ND	1.0	ug/L	10/15/14 17:31	
Chloromethane	ND	1.0	ug/L	10/15/14 17:31	50-37
2-Chlorotoluene	ND	0.50	ug/L	10/15/14 17:31	
4-Chlorotoluene	ND	0.50	ug/L	10/15/14 17:31	
Chlorodibromomethane	ND	0.50	ug/L	10/15/14 17:31	
1,2-Dichlorobenzene	ND	0.50	ug/L	10/15/14 17:31	
1,3-Dichlorobenzene	ND	0.50	ug/L	10/15/14 17:31	
1,4-Dichlorobenzene	ND	0.50	ug/L	10/15/14 17:31	
1,3-Dichloropropane	ND	1.0	ug/L	10/15/14 17:31	
1,1-Dichloropropene	ND	0.50	ug/L	10/15/14 17:31	
1,2-Dibromo-3-Chloropropane	ND	1.0	ug/L	10/15/14 17:31	
Ethylene Dibromide	ND	0.50	ug/L	10/15/14 17:31	
Dibromomethane	ND	0.50	ug/L	10/15/14 17:31	
Dichlorodifluoromethane	ND	0.50	ug/L	10/15/14 17:31	
1.1-Dichloroethane	ND	0.50	ug/L	10/15/14 17:31	
1,2-Dichloroethane	ND	0.50	ug/L	10/15/14 17:31	
1,1-Dichloroethene	ND	0.50	ug/L	10/15/14 17:31	
cis-1,2-Dichloroethene	ND	0.50	ug/L	10/15/14 17:31	
trans-1,2-Dichloroethene	ND	0.50	ug/L	10/15/14 17:31	
1,2-Dichloropropane	ND	0.50	ug/L	10/15/14 17:31	
cis-1,3-Dichloropropene	ND	0.50	ug/L	10/15/14 17:31	
trans-1,3-Dichloropropene	ND	0.50	ug/L	10/15/14 17:31	
Ethylbenzene	ND	0.50	ug/L	10/15/14 17:31	
Hexachlorobutadiene	ND	1.0	ug/L	10/15/14 17:31	
2-Hexanone	ND	50	ug/L	10/15/14 17:31	
	ND ND	0.50		10/15/14 17:31	
sopropylbenzene	ND	1.0	ug/L	10/15/14 17:31	
4-Isopropyltoluene	ND		ug/L		
Methylene Chloride		5.0	ug/L	10/15/14 17:31	
4-Methyl-2-pentanone (MIBK)	ND	50	ug/L	10/15/14 17:31	,
Naphthalene	ND	1.0	ug/L	10/15/14 17:31	
N-Propylbenzene	ND	1.0	ug/L	10/15/14 17:31	
Styrene	ND	0.50	ug/L	10/15/14 17:31	. 4
1,1,1,2-Tetrachloroethane	ND	0.50	ug/L	10/15/14 17:31	
1,1,2,2-Tetrachloroethane	ND	0.50	ug/L	10/15/14 17:31	
Tetrachloroethene	ND	0.50	ug/L	10/15/14 17:31	
Toluene	ND	0.50	ug/L	10/15/14 17:31	
1,2,3-Trichlorobenzene	ND	1.0	ug/L	10/15/14 17:31	1
1,2,4-Trichlorobenzene	ND	1.0	ug/L	10/15/14 17:31	1
1,1,1-Trichloroethane	NĎ	0.50	ug/L	10/15/14 17:31	1
1,1,2-Trichloroethane	ND	0.50	ug/L	10/15/14 17:31	1
Trichloroethene	ND	0.50	ug/L	10/15/14 17:31	1
Trichlorofluoromethane	ND	1.0	ug/L	10/15/14 17:31	1
1,2,3-Trichloropropane	ND	0.50	ug/L	10/15/14 17:31	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	0.50	ug/L	10/15/14 17:31	1
1,2,4-Trimethylbenzene	ND	0.50	ug/L	10/15/14 17:31	1
1,3,5-Trimethylbenzene	ND	0.50	ug/L	10/15/14 17:31	1
Vinyl acetate	ND	10	ug/L	10/15/14 17:31	1

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-60396-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

94

Client Sample ID: MP-03-3

Toluene-d8 (Surr)

Client Sample ID: MP-04-1

Date Collected: 10/06/14 11:00 Date Received: 10/06/14 17:40

Lab Sample ID: 720-60396-11

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND		0.50		ug/L			10/15/14 17:31	1
Xylenes, Total	ND		1.0		ug/L			10/15/14 17:31	1
2,2-Dichloropropane	ND		0.50		ug/L			10/15/14 17:31	1
Gasoline Range Organics (GRO) -C5-C12	ND		50		ug/L			10/15/14 17:31	1

Limits Analyzed Dil Fac Surrogate %Recovery Qualifier Prepared 10/15/14 17:31 67 - 130 4-Bromofluorobenzene 110 10/15/14 17:31 107 72 - 130 1,2-Dichloroethane-d4 (Surr)

70 - 130

Lab Sample ID: 720-60396-12

10/15/14 17:31

Date Collected: 10/06/14 12:40					Lab	Matrix	x: Water
Date Received: 10/06/14 17:40	Decuit	Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
Analyte Methyl tert-butyl ether	ND	Quanner	0.50	ug/L	D Flepareu	10/15/14 17:59	1
Acetone	ND		50	ug/L		10/15/14 17:59	1
Benzene	ND		0.50	ug/L		10/15/14 17:59	1
Dichlorobromomethane	ND		0.50	ug/L		10/15/14 17:59	1
Bromobenzene	ND		1.0	ug/L		10/15/14 17:59	1
Chlorobromomethane	ND		1.0	ug/L		10/15/14 17:59	1
Bromoform	ND		1.0	ug/L		10/15/14 17:59	1
Bromomethane	ND		1.0	ug/L		10/15/14 17:59	1
2-Butanone (MEK)	ND		50	ug/L		10/15/14 17:59	1
n-Butylbenzene	ND		1.0	ug/L		10/15/14 17:59	1
sec-Butylbenzene	ND		1.0	ug/L		10/15/14 17:59	1
tert-Butylbenzene	ND		1.0	ug/L		10/15/14 17:59	1
Carbon disulfide	ND		5.0	ug/L		10/15/14 17:59	1
Carbon tetrachloride	ND		0.50	ug/L		10/15/14 17:59	1
Chlorobenzene	ND		0.50	ug/L		10/15/14 17:59	1
Chloroethane	ND		1.0	ug/L		10/15/14 17:59	1
Chloroform	ND		1.0	ug/L		10/15/14 17:59	1
Chloromethane	ND		1.0	ug/L		10/15/14 17:59	1
2-Chlorotoluene	ND		0.50	ug/L		10/15/14 17:59	1
4-Chlorotoluene	ND		0.50	ug/L		10/15/14 17:59	1
Chlorodibromomethane	ND		0.50	ug/L		10/15/14 17:59	1
1,2-Dichlorobenzene	ND		0.50	ug/L		10/15/14 17:59	1
1,3-Dichlorobenzene	ND		0.50	ug/L		10/15/14 17:59	1
1,4-Dichlorobenzene	ND		0.50	ug/L		10/15/14 17:59	1
1,3-Dichloropropane	ND		1.0	ug/L		10/15/14 17:59	1
1,1-Dichloropropene	ND		0.50	ug/L		10/15/14 17:59	1
1,2-Dibromo-3-Chloropropane	ND		1.0	ug/L		10/15/14 17:59	1
Ethylene Dibromide	ND		0.50	ug/L		10/15/14 17:59	1
Dibromomethane	ND		0.50	ug/L		10/15/14 17:59	1
Dichlorodifluoromethane	ND		0.50	ug/L		10/15/14 17:59	1
1,1-Dichloroethane	ND		0.50	ug/L		10/15/14 17:59	1
1,2-Dichloroethane	ND		0.50	ug/L		10/15/14 17:59	1
1,1-Dichloroethene	ND		0.50	ug/L		10/15/14 17:59	1
cis-1,2-Dichloroethene	2.2		0.50	ug/L		10/15/14 17:59	1
trans-1,2-Dichloroethene	ND		0.50	ug/L		10/15/14 17:59	1

TestAmerica Pleasanton

Page 25 of 63

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-60396-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Client Sample ID: MP-04-1 Date Collected: 10/06/14 12:40 Lab Sample ID: 720-60396-12

Matrix: Water

Date Received: 10/06/14 17:40 Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dichloropropane	ND Qualifier	0.50	ug/L		Trepared	10/15/14 17:59	1
	ND	0.50	ug/L			10/15/14 17:59	1
cis-1,3-Dichloropropene	ND	0.50	ug/L			10/15/14 17:59	1
trans-1,3-Dichloropropene						10/15/14 17:59	1
Ethylbenzene	ND	0.50	ug/L				1
Hexachlorobutadiene	ND	1.0	ug/L			10/15/14 17:59	
2-Hexanone	ND	50	ug/L			10/15/14 17:59	1
Isopropylbenzene	ND	0.50	ug/L			10/15/14 17:59	1
4-Isopropyltoluene	ND	1.0	ug/L			10/15/14 17:59	1
Methylene Chloride	ND	5.0	ug/L			10/15/14 17:59	1
4-Methyl-2-pentanone (MIBK)	ND	50	ug/L			10/15/14 17:59	1
Naphthalene	ND	1.0	ug/L			10/15/14 17:59	1
N-Propylbenzene	ND	1.0	ug/L			10/15/14 17:59	1
Styrene	ND	0.50	ug/L			10/15/14 17:59	1
1,1,1,2-Tetrachloroethane	ND	0.50	ug/L			10/15/14 17:59	1
1,1,2,2-Tetrachloroethane	ND	0.50	ug/L			10/15/14 17:59	1
Tetrachloroethene	0.76	0.50	ug/L			10/15/14 17:59	1
Toluene	ND	0.50	ug/L			10/15/14 17:59	1
1,2,3-Trichlorobenzene	ND	1.0	ug/L			10/15/14 17:59	1
1,2,4-Trichlorobenzene	ND	1.0	ug/L			10/15/14 17:59	1
1,1,1-Trichloroethane	ND	0.50	ug/L			10/15/14 17:59	1
1,1,2-Trichloroethane	ND	0.50	ug/L			10/15/14 17:59	1
Trichloroethene	12	0.50	ug/L			10/15/14 17:59	1
Trichlorofluoromethane	ND	1.0	ug/L			10/15/14 17:59	1
1,2,3-Trichloropropane	ND	0.50	ug/L			10/15/14 17:59	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	0.50	ug/L			10/15/14 17:59	1
1,2,4-Trimethylbenzene	ND	0.50	ug/L			10/15/14 17:59	1
1,3,5-Trimethylbenzene	ND	0.50	ug/L			10/15/14 17:59	1
Vinyl acetate	ND	10	ug/L			10/15/14 17:59	1
Vinyl chloride	ND	0.50	ug/L			10/15/14 17:59	1
Xylenes, Total	ND	1.0	ug/L			10/15/14 17:59	1
2,2-Dichloropropane	ND	0.50	ug/L			10/15/14 17:59	1
Gasoline Range Organics (GRO)	ND	50	ug/L			10/15/14 17:59	1
-C5-C12							

Client Sample ID: MP-04-2 Date Collected: 10/06/14 12:50

Surrogate

4-Bromofluorobenzene

Toluene-d8 (Surr)

1,2-Dichloroethane-d4 (Surr)

Lab Sample ID: 720-60396-13

Analyzed

10/15/14 17:59

10/15/14 17:59

10/15/14 17:59

Prepared

Matrix: Water

Dil Fac

Date Received: 10/06/14 17:40

Date Received: 10/06/14 17:40 Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND		0.50		ug/L			10/15/14 16:50	1
Acetone	ND		50		ug/L			10/15/14 16:50	1
Benzene	ND		0.50		ug/L			10/15/14 16:50	1
Dichlorobromomethane	ND		0.50		ug/L			10/15/14 16:50	1
Bromobenzene	ND		1.0		ug/L			10/15/14 16:50	1
Chlorobromomethane	ND		1.0		ug/L			10/15/14 16:50	1
Bromoform	ND		1.0		ug/L			10/15/14 16:50	1

Limits

67 - 130

72 - 130

70 - 130

%Recovery Qualifier

109

105

93

TestAmerica Pleasanton

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-60396-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Client Sample ID: MP-04-2
Date Collected: 10/06/14 12:50
Date Received: 10/06/14 17:40

Lab Sample ID: 720-60396-13 Matrix: Water

Date Received: 10/06/14 17:40 Analyte	Result Qualif	ier RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Bromomethane	ND	1.0	ug/L			10/15/14 16:50	1
2-Butanone (MEK)	ND	50	ug/L			10/15/14 16:50	1
n-Butylbenzene	ND	1.0	ug/L			10/15/14 16:50	1
sec-Butylbenzene	ND	1.0	ug/L			10/15/14 16:50	1
tert-Butylbenzene	ND	1.0	ug/L			10/15/14 16:50	1
Carbon disulfide	ND	5.0	ug/L			10/15/14 16:50	1
Carbon tetrachloride	ND	0.50	ug/L			10/15/14 16:50	1
Chlorobenzene	ND	0.50	ug/L			10/15/14 16:50	1
Chloroethane	ND	1.0	ug/L			10/15/14 16:50	1
Chloroform	ND	1.0	ug/L			10/15/14 16:50	1
Chloromethane	ND	1.0	ug/L			10/15/14 16:50	1
2-Chlorotoluene	ND	0.50	ug/L			10/15/14 16:50	1
4-Chlorotoluene	ND	0.50	ug/L			10/15/14 16:50	1
Chlorodibromomethane	ND	0.50	ug/L			10/15/14 16:50	1
1,2-Dichlorobenzene	ND	0.50	ug/L			10/15/14 16:50	1
1,3-Dichlorobenzene	ND	0.50	ug/L			10/15/14 16:50	1
1.4-Dichlorobenzene	ND	0.50				10/15/14 16:50	1
			ug/L				1
1,3-Dichloropropane	ND	1.0	ug/L			10/15/14 16:50	
1,1-Dichloropropene	ND	0.50	ug/L			10/15/14 16:50	1
1,2-Dibromo-3-Chloropropane	ND	1.0	ug/L			10/15/14 16:50	1
Ethylene Dibromide	ND	0.50	ug/L			10/15/14 16:50	1
Dibromomethane	ND	0.50	ug/L			10/15/14 16:50	1
Dichlorodifluoromethane	ND	0.50	ug/L		19	10/15/14 16:50	1
1,1-Dichloroethane	ND	0.50	ug/L			10/15/14 16:50	1
1,2-Dichloroethane	ND	0.50	ug/L			10/15/14 16:50	1
1,1-Dichloroethene	ND	0.50	ug/L			10/15/14 16:50	1
cis-1,2-Dichloroethene	2.3	0.50	ug/L			10/15/14 16:50	1
trans-1,2-Dichloroethene	ND	0.50	ug/L			10/15/14 16:50	1
1,2-Dichloropropane	ND	0.50	ug/L			10/15/14 16:50	1
cis-1,3-Dichloropropene	ND	0.50	ug/L			10/15/14 16:50	1
trans-1,3-Dichloropropene	ND	0.50	ug/L			10/15/14 16:50	1
Ethylbenzene	ND	0.50	ug/L			10/15/14 16:50	1
Hexachlorobutadiene	ND	1.0	ug/L			10/15/14 16:50	1
2-Hexanone	ND	50	ug/L			10/15/14 16:50	1
Isopropylbenzene	ND	0.50	ug/L			10/15/14 16:50	1
4-Isopropyltoluene	ND	1.0	ug/L			10/15/14 16:50	1
Methylene Chloride	ND	5.0	ug/L			10/15/14 16:50	1
4-Methyl-2-pentanone (MIBK)	ND	50	ug/L			10/15/14 16:50	1
Naphthalene	ND	1.0	ug/L			10/15/14 16:50	1
N-Propylbenzene	ND	1.0	ug/L			10/15/14 16:50	1
Styrene	ND	0.50	ug/L			10/15/14 16:50	1
1,1,1,2-Tetrachloroethane	ND	0.50	ug/L			10/15/14 16:50	1
1,1,2,2-Tetrachloroethane	ND	0.50	ug/L			10/15/14 16:50	1
Tetrachloroethene	ND	0.50	ug/L			10/15/14 16:50	1
Toluene	ND	0.50	ug/L		-	10/15/14 16:50	1
	ND	1.0				10/15/14 16:50	1
1,2,3-Trichlorobenzene			ug/L				
1,2,4-Trichlorobenzene	ND	1.0	ug/L			10/15/14 16:50	1
1,1,1-Trichloroethane	ND ND	0.50	ug/L			10/15/14 16:50	1

TestAmerica Pleasanton

Page 27 of 63

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-60396-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Client Sample ID: MP-04-2 Date Collected: 10/06/14 12:50 Date Received: 10/06/14 17:40 Lab Sample ID: 720-60396-13

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Trichloroethene	ND		0.50		ug/L			10/15/14 16:50	1
Trichlorofluoromethane	ND		1.0		ug/L			10/15/14 16:50	1
1,2,3-Trichloropropane	ND		0.50		ug/L			10/15/14 16:50	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50		ug/L			10/15/14 16:50	1
1,2,4-Trimethylbenzene	ND		0.50		ug/L			10/15/14 16:50	1
1,3,5-Trimethylbenzene	ND		0.50		ug/L			10/15/14 16:50	1
Vinyl acetate	ND		10		ug/L			10/15/14 16:50	1
Vinyl chloride	ND		0.50		ug/L			10/15/14 16:50	1
Xylenes, Total	ND		1.0		ug/L			10/15/14 16:50	1
2,2-Dichloropropane	ND		0.50		ug/L			10/15/14 16:50	1
Gasoline Range Organics (GRO)	ND		50		ug/L			10/15/14 16:50	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	91		67 - 130		10/15/14 16:50	1
1,2-Dichloroethane-d4 (Surr)	87		72 - 130		10/15/14 16:50	1
Toluene-d8 (Surr)	93		70 - 130		10/15/14 16:50	1

Client Sample ID: MP-04-3 Date Collected: 10/06/14 09:35 Date Received: 10/06/14 17:40

-C5-C12

Lab Sample ID: 720-60396-14

Matrix: Water

Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND ND	0.50	ug/L		10/15/14 17:20	1
Acetone	ND	50	ug/L		10/15/14 17:20	1
Benzene	ND	0.50	ug/L		10/15/14 17:20	1
Dichlorobromomethane	ND	0.50	ug/L		10/15/14 17:20	1
Bromobenzene	ND	1.0	ug/L		10/15/14 17:20	1
Chlorobromomethane	ND	1.0	ug/L		10/15/14 17:20	1
Bromoform	ND	1.0	ug/L		10/15/14 17:20	1
Bromomethane	ND	1.0	ug/L		10/15/14 17:20	1
2-Butanone (MEK)	ND	50	ug/L		10/15/14 17:20	1
n-Butylbenzene	ND	1.0	ug/L		10/15/14 17:20	1
sec-Butylbenzene	ND	1.0	ug/L		10/15/14 17:20	1
tert-Butylbenzene	ND	1.0	ug/L		10/15/14 17:20	1
Carbon disulfide	ND	5.0	ug/L		10/15/14 17:20	1
Carbon tetrachloride	ND	0.50	ug/L		10/15/14 17:20	1
Chlorobenzene	ND	0.50	ug/L		10/15/14 17:20	1
Chloroethane	ND	1.0	ug/L		10/15/14 17:20	1
Chloroform	ND	1.0	ug/L		10/15/14 17:20	1
Chloromethane	ND	1.0	ug/L		10/15/14 17:20	1
2-Chlorotoluene	ND	0.50	ug/L		10/15/14 17:20	1
4-Chlorotoluene	ND	0.50	ug/L		10/15/14 17:20	1
Chlorodibromomethane	ND	0.50	ug/L		10/15/14 17:20	1
1,2-Dichlorobenzene	ND	0.50	ug/L		10/15/14 17:20	1
1,3-Dichlorobenzene	ND	0.50	ug/L		10/15/14 17:20	1
1,4-Dichlorobenzene	ND	0.50	ug/L		10/15/14 17:20	1
1,3-Dichloropropane	ND	1.0	ug/L		10/15/14 17:20	1
1,1-Dichloropropene	ND	0.50	ug/L		10/15/14 17:20	1
1,2-Dibromo-3-Chloropropane	ND	1.0	ug/L		10/15/14 17:20	1
Ethylene Dibromide	ND	0.50	ug/L		10/15/14 17:20	1

TestAmerica Pleasanton

10/20/2014

Page 28 of 63

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-60396-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Client Sample ID: MP-04-3 Date Collected: 10/06/14 09:35 Lab Sample ID: 720-60396-14

Matrix: Water

Date Received: 10/06/14 17:40 Analyte	Result Qualifier	RL	MDL Unit D	Prepared Analyzed Dil Fa	ıc
Dibromomethane	ND	0.50	ug/L	10/15/14 17:20	1
Dichlorodifluoromethane	ND	0.50	ug/L	10/15/14 17:20	1
1,1-Dichloroethane	ND	0.50	ug/L	10/15/14 17:20	1
1,2-Dichloroethane	ND	0.50	ug/L	10/15/14 17:20	1
1,1-Dichloroethene	ND	0.50	ug/L	10/15/14 17:20	1
cis-1,2-Dichloroethene	1.0	0.50	ug/L	10/15/14 17:20	1
trans-1,2-Dichloroethene	ND	0.50	ug/L	10/15/14 17:20	1
1,2-Dichloropropane	ND	0.50	ug/L	10/15/14 17:20	1
cis-1,3-Dichloropropene	ND	0.50	ug/L	10/15/14 17:20	1
trans-1,3-Dichloropropene	ND	0.50	ug/L	10/15/14 17:20	1
Ethylbenzene	ND	0.50	ug/L	10/15/14 17:20	1
Hexachlorobutadiene	ND	1.0	ug/L	10/15/14 17:20	1
2-Hexanone	ND	50	ug/L	10/15/14 17:20	1
Isopropylbenzene	ND	0.50	ug/L	10/15/14 17:20	1
4-Isopropyltoluene	ND	1.0	ug/L	10/15/14 17:20	1
Methylene Chloride	ND	5.0	ug/L	10/15/14 17:20	1
4-Methyl-2-pentanone (MIBK)	ND	50	ug/L	10/15/14 17:20	1
Naphthalene	ND	1.0	ug/L	10/15/14 17:20	1
N-Propylbenzene	ND	1.0	ug/L	10/15/14 17:20	1
Styrene	ND	0.50	ug/L	10/15/14 17:20	1
1,1,1,2-Tetrachloroethane	ND	0.50	ug/L	10/15/14 17:20	1
1,1,2,2-Tetrachloroethane	ND	0.50	ug/L	10/15/14 17:20	1
Tetrachloroethene	ND	0.50	ug/L	10/15/14 17:20	1
Toluene	ND	0.50	ug/L	10/15/14 17:20	1
1,2,3-Trichlorobenzene	ND	1.0	ug/L	10/15/14 17:20	1
1,2,4-Trichlorobenzene	ND	1.0	ug/L	10/15/14 17:20	1
1,1,1-Trichloroethane	ND	0.50	ug/L	10/15/14 17:20	1
1,1,2-Trichloroethane	ND	0.50	ug/L	10/15/14 17:20	1
Trichloroethene	ND	0.50	ug/L	10/15/14 17:20	1
Trichtorofluoromethane	ND	1.0	ug/L	10/15/14 17:20	1
1,2,3-Trichloropropane	ND	0.50	ug/L	10/15/14 17:20	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	0.50	ug/L	10/15/14 17:20	1
1,2,4-Trimethylbenzene	ND	0.50	ug/L	10/15/14 17:20	1
1,3,5-Trimethylbenzene	ND	0.50	ug/L	10/15/14 17:20	1
Vinyl acetate	ND	10	ug/L	10/15/14 17:20	1
Vinyl chloride	ND	0.50	ug/L	10/15/14 17:20	1
				10/15/14 17:20	1
Xvlenes, Total	ND	1.0	ug/L	10/15/14 17:20	
Xylenes, Total 2.2-Dichloropropane	ND ND	0.50	•	10/15/14 17:20	1
Xylenes, Total 2,2-Dichloropropane Gasoline Range Organics (GRO)			ug/L ug/L ug/L	10/15/14 17:20	

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	94		67 - 130		10/15/14 17:20	1
1,2-Dichloroethane-d4 (Surr)	90		72 - 130		10/15/14 17:20	1
Toluene-d8 (Surr)	91		70 _ 130		10/15/14 17:20	1

TestAmerica Pleasanton

 ${\bf Client: AMEC\ Environment\ \&\ Infrastructure,\ Inc.}$

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-60396-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS

Client Sample ID: TB100614-1 Date Collected: 10/06/14 08:00 Lab Sample ID: 720-60396-15

Matrix: Water

Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fa
Methyl tert-butyl ether	ND		0.50	ug/L			10/15/14 12:46	-
Acetone	ND		50	ug/L			10/15/14 12:46	-
Benzene	ND		0.50	ug/L			10/15/14 12:46	
Dichlorobromomethane	ND		0.50	ug/L			10/15/14 12:46	
Bromobenzene	ND		1.0	ug/L			10/15/14 12:46	
Chlorobromomethane	ND		1.0	ug/L			10/15/14 12:46	
Bromoform	ND		1.0	ug/L			10/15/14 12:46	
Bromomethane	ND		1.0	ug/L			10/15/14 12:46	
2-Butanone (MEK)	ND		50	ug/L			10/15/14 12:46	
n-Butylbenzene	ND		1.0	ug/L			10/15/14 12:46	
sec-Butylbenzene	ND		1.0	ug/L			10/15/14 12:46	
tert-Butylbenzene	ND		1.0	ug/L			10/15/14 12:46	
Carbon disulfide	ND		5.0	ug/L			10/15/14 12:46	
Carbon tetrachloride	ND		0.50	ug/L			10/15/14 12:46	
Chlorobenzene	ND		0.50	ug/L			10/15/14 12:46	
Chloroethane	ND		1.0	ug/L			10/15/14 12:46	
Chloroform	ND		1.0	ug/L			10/15/14 12:46	
	ND		1.0	ug/L			10/15/14 12:46	
Chloromethane	ND		0.50				10/15/14 12:46	
2-Chlorotoluene				ug/L			10/15/14 12:46	
4-Chlorotoluene	ND		0.50	ug/L			10/15/14 12:46	
Chlorodibromomethane	ND		0.50	ug/L				
1,2-Dichlorobenzene	ND		0.50	ug/L			10/15/14 12:46	
1,3-Dichlorobenzene	ND		0.50	ug/L			10/15/14 12:46	
1,4-Dichlorobenzene	ND		0.50	ug/L			10/15/14 12:46	
1,3-Dichloropropane	ND		1.0	ug/L			10/15/14 12:46	
1,1-Dichloropropene	ND		0.50	ug/L			10/15/14 12:46	
1,2-Dibromo-3-Chloropropane	ND		1.0	ug/L			10/15/14 12:46	
Ethylene Dibromide	ND		0.50	ug/L			10/15/14 12:46	
Dibromomethane	ND		0.50	ug/L			10/15/14 12:46	
Dichlorodifluoromethane	ND		0.50	ug/L			10/15/14 12:46	
1,1-Dichloroethane	ND		0.50	ug/L			10/15/14 12:46	
1,2-Dichloroethane	ND		0.50	ug/L			10/15/14 12:46	
1,1-Dichloroethene	ND		0.50	ug/L			10/15/14 12:46	
cis-1,2-Dichloroethene	ND		0.50	ug/L			10/15/14 12:46	
trans-1,2-Dichloroethene	ND		0.50	ug/L			10/15/14 12:46	
1,2-Dichloropropane	ND		0.50	ug/L			10/15/14 12:46	
cis-1,3-Dichloropropene	ND		0.50	ug/L			10/15/14 12:46	
trans-1,3-Dichloropropene	ND		0.50	ug/L			10/15/14 12:46	
Ethylbenzene	ND		0.50	ug/L			10/15/14 12:46	
Hexachlorobutadiene	ND		1.0	ug/L			10/15/14 12:46	
2-Hexanone	ND		50	ug/L			10/15/14 12:46	
Isopropylbenzene	ND		0.50	ug/L			10/15/14 12:46	
4-Isopropyltoluene	ND		1.0	ug/L			10/15/14 12:46	
Methylene Chloride	ND		5.0	ug/L			10/15/14 12:46	
4-Methyl-2-pentanone (MIBK)	ND		50	ug/L			10/15/14 12:46	
Naphthalene	ND		1.0	ug/L			10/15/14 12:46	
N-Propylbenzene	ND		1.0	ug/L			10/15/14 12:46	
Styrene	ND		0.50	ug/L			10/15/14 12:46	
1,1,1,2-Tetrachloroethane	ND		0.50	ug/L			10/15/14 12:46	

TestAmerica Pleasanton

RL

MDL Unit

Client: AMEC Environment & Infrastructure, Inc.

Method: 8260B/CA LUFTMS - 8260B / CA LUFT MS (Continued)

Result Qualifier

Project/Site: Crown Chevrolet

Client Sample ID: TB100614-1

Date Collected: 10/06/14 08:00 Date Received: 10/06/14 17:40

Analyte

TestAmerica Job ID: 720-60396-1

Matrix: Water

Lab Sample ID: 720-60396-15

Prepared	Analyzed	Dil Fac
	10/15/14 12:46	1
	10/15/14 12:46	1
	10/15/14 12:46	1
	10/15/14 12:46	1
	10/15/14 12:46	1
	10/15/14 12:46	1
	10/15/14 12:46	1
	10/15/14 12:46	1
	10/15/14 12:46	1
	10/15/14 12:46	1

1	Ē
1	
1	
1	
1	
1	
1	
1	
1	
1	

1,1,2,2-Tetrachloroethane	ND	0.50	ug/L	10/15/14 12:46	1
Tetrachloroethene	ND	0.50	ug/L	10/15/14 12:46	1
Toluene	ND	0.50	ug/L	10/15/14 12:46	1
1,2,3-Trichlorobenzene	ND	1.0	ug/L	10/15/14 12:46	1
1,2,4-Trichlorobenzene	ND	1.0	ug/L	10/15/14 12:46	1
1,1,1-Trichloroethane	ND	0.50	ug/L	10/15/14 12:46	1
1,1,2-Trichloroethane	ND	0.50	ug/L	10/15/14 12:46	1
Trichloroethene	ND	0.50	ug/L	10/15/14 12:46	1
Trichlorofluoromethane	ND	1.0	ug/L	10/15/14 12:46	1
1,2,3-Trichloropropane	ND	0.50	ug/L	10/15/14 12:46	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	0.50	ug/L	10/15/14 12:46	1
1,2,4-Trimethylbenzene	ND	0.50	ug/L	10/15/14 12:46	1
1,3,5-Trimethylbenzene	ND	0.50	ug/L	10/15/14 12:46	1
Vinyl acetate	ND	10	ug/L	10/15/14 12:46	1
Vinyl chloride	ND	0.50	ug/L	10/15/14 12:46	1
Xylenes, Total	ND	1.0	ug/L	10/15/14 12:46	1
2,2-Dichloropropane	ND	0.50	ug/L	10/15/14 12:46	1
Gasoline Range Organics (GRO)	ND	50	ug/L	10/15/14 12:46	1
-C5-C12					

Surrogate	%Recovery Qualifie	r Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	108	67 - 130		10/15/14 12:46	1
1,2-Dichloroethane-d4 (Surr)	96	72 - 130		10/15/14 12:46	1
Toluene-d8 (Surr)	94	70 - 130		10/15/14 12:46	1

Lab Sample ID: 720-60396-16 Matrix: Water

Client Sample ID: TB100614-2 Date Collected: 10/06/14 08:02

Date Received: 10/06/14 17:40								
Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND		0.50	ug/L			10/15/14 12:42	1
Acetone	ND		50	ug/L			10/15/14 12:42	1
Benzene	ND		0.50	ug/L			10/15/14 12:42	1
Dichlorobromomethane	ND		0.50	ug/L			10/15/14 12:42	1
Bromobenzene	ND		1.0	ug/L			10/15/14 12:42	1
Chlorobromomethane	ND		1.0	ug/L			10/15/14 12:42	1
Bromoform	ND		1.0	ug/L			10/15/14 12:42	1
Bromomethane	ND		1.0	ug/L			10/15/14 12:42	1
2-Butanone (MEK)	ND		50	ug/L			10/15/14 12:42	1
n-Butylbenzene	ND		1.0	ug/L			10/15/14 12:42	1
sec-Butylbenzene	ND		1.0	ug/L			10/15/14 12:42	1
tert-Butylbenzene	ND		1.0	ug/L			10/15/14 12:42	1
Carbon disulfide	ND		5.0	ug/L			10/15/14 12:42	1
Carbon tetrachloride	ND		0.50	ug/L			10/15/14 12:42	1
Chlorobenzene	ND		0.50	ug/L			10/15/14 12:42	1
Chloroethane	ND		1.0	ug/L			10/15/14 12:42	1
Chloroform	ND		1.0	ug/L			10/15/14 12:42	1
Chloromethane	ND		1.0	ug/L			10/15/14 12:42	1
2-Chlorotoluene	ND		0.50	ug/L			10/15/14 12:42	1
4-Chlorotoluene	ND		0.50	ug/L			10/15/14 12:42	1
Chlorodibromomethane	ND		0.50	ug/L			10/15/14 12:42	1

TestAmerica Pleasanton

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-60396-1

Lab Sample ID: 720-60396-16 Matrix: Water

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Client Sample ID: 1B100614-2	
Date Collected: 10/06/14 08:02	
Date Received: 10/06/14 17:40	

Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dichlorobenzene	ND		0.50	ug/L		***	10/15/14 12:42	1
1,3-Dichlorobenzene	ND		0.50	ug/L			10/15/14 12:42	
1,4-Dichlorobenzene	ND		0.50	ug/L			10/15/14 12:42	1
1,3-Dichloropropane	ND		1.0	ug/L			10/15/14 12:42	1
1,1-Dichloropropene	ND		0.50	ug/L			10/15/14 12:42	1
1,2-Dibromo-3-Chloropropane	ND		1.0	ug/L			10/15/14 12:42	1
Ethylene Dibromide	ND		0.50	ug/L			10/15/14 12:42	1
Dibromomethane	ND		0.50	ug/L			10/15/14 12:42	1
Dichlorodifluoromethane	ND		0.50	ug/L			10/15/14 12:42	1
1,1-Dichloroethane	ND		0.50	ug/L			10/15/14 12:42	1
1,2-Dichloroethane	ND		0.50	ug/L			10/15/14 12:42	
1,1-Dichloroethene	ND		0.50	ug/L			10/15/14 12:42	1
cis-1,2-Dichloroethene	ND		0.50	ug/L			10/15/14 12:42	
trans-1,2-Dichloroethene	ND		0.50	ug/L			10/15/14 12:42	1
1,2-Dichloropropane	ND		0.50	ug/L			10/15/14 12:42	1
cis-1,3-Dichloropropene	ND		0.50	ug/L			10/15/14 12:42	1
trans-1,3-Dichloropropene	ND		0.50	ug/L			10/15/14 12:42	
Ethylbenzene	ND		0.50	ug/L			10/15/14 12:42	
Hexachlorobutadiene	ND		1.0	ug/L			10/15/14 12:42	
2-Hexanone	ND		50	ug/L			10/15/14 12:42	
Isopropylbenzene	ND		0.50	ug/L			10/15/14 12:42	
4-Isopropyltoluene	ND		1.0	ug/L			10/15/14 12:42	
Methylene Chloride	ND		5.0	ug/L			10/15/14 12:42	
4-Methyl-2-pentanone (MIBK)	ND		50	ug/L			10/15/14 12:42	
Naphthalene	ND		1.0	ug/L			10/15/14 12:42	1
N-Propylbenzene	ND		1.0	ug/L			10/15/14 12:42	1
Styrene	ND		0.50	ug/L			10/15/14 12:42	
1,1,2-Tetrachloroethane	ND		0.50	ug/L			10/15/14 12:42	
1,1,2,2-Tetrachloroethane	ND		0.50	ug/L			10/15/14 12:42	
Tetrachloroethene	ND		0.50	ug/L			10/15/14 12:42	
Toluene	ND		0.50	ug/L			10/15/14 12:42	
1,2,3-Trichlorobenzene	ND		1.0	ug/L			10/15/14 12:42	
1,2,4-Trichlorobenzene	ND		1.0	ug/L			10/15/14 12:42	
1,1,1-Trichloroethane	ND		0.50	ug/L			10/15/14 12:42	
1,1,2-Trichloroethane	ND		0.50	ug/L			10/15/14 12:42	
Trichloroethene	ND		0.50	ug/L			10/15/14 12:42	
Trichlorofluoromethane	ND		1.0	ug/L			10/15/14 12:42	
1,2,3-Trichloropropane	ND		0.50	ug/L			10/15/14 12:42	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50	ug/L			10/15/14 12:42	
1,2,4-Trimethylbenzene	ND		0.50	ug/L			10/15/14 12:42	1
1,3,5-Trimethylbenzene	ND		0.50	ug/L			10/15/14 12:42	1
Vinyl acetate	ND		10	ug/L			10/15/14 12:42	1
Vinyl chloride	ND		0.50	ug/L			10/15/14 12:42	1
Xylenes, Total	ND		1.0	ug/L			10/15/14 12:42	1
2,2-Dichloropropane	ND		0.50	ug/L			10/15/14 12:42	
Gasoline Range Organics (GRO) -C5-C12	ND		50	ug/L			10/15/14 12:42	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac

TestAmerica Pleasanton

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-60396-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Client Sample ID: TB100614-2

Lab Sample ID: 720-60396-16

Matrix: Water

Date	Collected:	10/06/14	08:02
Date	Received:	10/06/14	17:40

Surrogate	%Recovery Q	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	84		72 - 130		10/15/14 12:42	1
Toluene-d8 (Surr)	93		70 - 130		10/15/14 12:42	1

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-60396-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS

Lab Sample ID: MB 720-168839/4

Matrix: Water

Analysis Batch: 168839

Client Sample ID: Method Blank

Prep Type: Total/NA

	MB MB		MADE 11 fr			D'' =
Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND	0.50	ug/L		10/15/14 08:59	1
Acetone	ND	50	ug/L		10/15/14 08:59	1
Benzene	ND	0.50	ug/L		10/15/14 08:59	1
Dichlorobromomethane	ND	0.50	ug/L		10/15/14 08:59	1
Bromobenzene	ND	1.0	ug/L		10/15/14 08:59	1
Chlorobromomethane	ND	1.0	ug/L		10/15/14 08:59	1
Bromoform	ND	1.0	ug/L		10/15/14 08:59	1
Bromomethane	ND	1.0	ug/L		10/15/14 08:59	1
2-Butanone (MEK)	ND	50	ug/L		10/15/14 08:59	1
n-Butylbenzene	ND	1.0	ug/L		10/15/14 08:59	1
sec-Butylbenzene	ND	1.0	ug/L		10/15/14 08:59	1
tert-Butylbenzene	ND	1.0	ug/L		10/15/14 08:59	1
Carbon disulfide	ND	5.0	ug/L		10/15/14 08:59	1
Carbon tetrachloride	ND	0.50	ug/L		10/15/14 08:59	1
Chlorobenzene	ND	0.50	ug/L		10/15/14 08:59	1
Chloroethane	ND	1.0	ug/L		10/15/14 08:59	1
Chloroform	ND	1.0	ug/L		10/15/14 08:59	1
Chloromethane	ND	1.0	ug/L		10/15/14 08:59	1
2-Chlorotoluene	ND	0.50	ug/L		10/15/14 08:59	
4-Chlorotoluene	ND	0.50	ug/L		10/15/14 08:59	1
Chlorodibromomethane	ND	0.50	ug/L		10/15/14 08:59	1
1,2-Dichlorobenzene	ND	0.50	ug/L		10/15/14 08:59	1
1,3-Dichlorobenzene	ND	0.50	ug/L		10/15/14 08:59	1
1,4-Dichlorobenzene	ND	0.50	ug/L		10/15/14 08:59	1
1,3-Dichloropropane	ND	1.0	ug/L		10/15/14 08:59	1
1,1-Dichloropropene	ND	0.50	ug/L		10/15/14 08:59	1
1,2-Dibromo-3-Chloropropane	ND	1.0	ug/L		10/15/14 08:59	1
Ethylene Dibromide	ND	0.50	ug/L		10/15/14 08:59	1
Dibromomethane	ND	0.50	ug/L		10/15/14 08:59	1
Dichlorodifluoromethane	ND	0.50	ug/L		10/15/14 08:59	1
1,1-Dichloroethane	ND	0.50	ug/L		10/15/14 08:59	1
1,2-Dichloroethane	ND	0.50	ug/L		10/15/14 08:59	1
1,1-Dichloroethene	ND	0.50	ug/L		10/15/14 08:59	1
cis-1,2-Dichloroethene	ND	0.50	ug/L		10/15/14 08:59	1
trans-1,2-Dichloroethene	ND	0.50	ug/L		10/15/14 08:59	1
1,2-Dichloropropane	ND	0.50	ug/L		10/15/14 08:59	1
cis-1,3-Dichloropropene	ND	0.50	ug/L		10/15/14 08:59	1
trans-1,3-Dichloropropene	ND	0.50	ug/L		10/15/14 08:59	1
Ethylbenzene	ND	0.50	ug/L		10/15/14 08:59	1
Hexachlorobutadiene	ND	1.0	ug/L		10/15/14 08:59	1
2-Hexanone	ND	50	ug/L		10/15/14 08:59	1
Isopropylbenzene	ND	0.50	ug/L		10/15/14 08:59	1
4-Isopropyltoluene	ND	1.0	ug/L		10/15/14 08:59	1
Methylene Chloride	ND	5.0	ug/L		10/15/14 08:59	1
4-Methyl-2-pentanone (MIBK)	ND	50	ug/L		10/15/14 08:59	1
Naphthalene	ND	1.0	ug/L		10/15/14 08:59	1
N-Propylbenzene	ND	1.0	ug/L		10/15/14 08:59	1
Styrene	ND	0.50	ug/L		10/15/14 08:59	1

TestAmerica Pleasanton

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-60396-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: MB 720-168839/4

Matrix: Water

Analysis Batch: 168839

Client Sample ID: Method Blank

Prep Type: Total/NA

M	в мв					
Analyte Resu	It Qualifier RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane N	0.50	ug/L			10/15/14 08:59	1
1,1,2,2-Tetrachloroethane N	0.50	ug/L			10/15/14 08:59	1
Tetrachloroethene	0.50	ug/L			10/15/14 08:59	1
Toluene	0.50	ug/L			10/15/14 08:59	1
1,2,3-Trichlorobenzene N	1.0	ug/L			10/15/14 08:59	1
1,2,4-Trichlorobenzene N	1.0	ug/L			10/15/14 08:59	1
1,1,1-Trichloroethane N	0.50	ug/L			10/15/14 08:59	1
1,1,2-Trichloroethane N	0.50	ug/L			10/15/14 08:59	1
Trichloroethene N	0.50	ug/L			10/15/14 08:59	1
Trichlorofluoromethane	1.0	ug/L			10/15/14 08:59	1
1,2,3-Trichloropropane N	0.50	ug/L			10/15/14 08:59	1
1,1,2-Trichloro-1,2,2-trifluoroethane N	0.50	ug/L			10/15/14 08:59	1
1,2,4-Trimethylbenzene N	0.50	ug/L			10/15/14 08:59	1
1,3,5-Trimethylbenzene N	0.50	ug/L			10/15/14 08:59	1
Vinyl acetate N	10	ug/L			10/15/14 08:59	1
Vinyl chloride N	0.50	ug/L			10/15/14 08:59	1
Xylenes, Total N	1.0	ug/L			10/15/14 08:59	1
2,2-Dichloropropane N	0.50	ug/L			10/15/14 08:59	1
Gasoline Range Organics (GRO) N -C5-C12	50	ug/L			10/15/14 08:59	1

	1110 1110				
Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	107	67 - 130		10/15/14 08:59	1
1,2-Dichloroethane-d4 (Surr)	91	72 - 130		10/15/14 08:59	1
Toluene-d8 (Surr)	93	70 - 130		10/15/14 08:59	1

Lab Sample ID: LCS 720-168839/5

Matrix: Water

Analysis Batch: 168839

Client	Sample	ID:	Lab	Control	Sample	
			D	T 7	-4-1/NIA	

Prep Type: Total/NA

Allalysis Batch. 100039	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Methyl tert-butyl ether	25.0	24.7		ug/L		99	62 - 130	
Acetone	125	110		ug/L		88	26 - 180	
Benzene	25.0	25.4		ug/L		102	79 - 130	
Dichlorobromomethane	25.0	26.1		ug/L		104	70 - 130	
Bromobenzene	25.0	24.3		ug/L		97	70 - 130	
Chlorobromomethane	25.0	21.1		ug/L		85	70 - 130	
Bromoform	25.0	25.0		ug/L		100	68 - 136	
Bromomethane	25.0	24.3		ug/L		97	43 - 151	
2-Butanone (MEK)	125	106		ug/L		85	54 - 130	
n-Butylbenzene	25.0	28.6		ug/L		114	70 - 142	
sec-Butylbenzene	25.0	25.9		ug/L		104	70 - 134	
tert-Butylbenzene	25.0	24.7		ug/L		99	70 - 135	
Carbon disulfide	25.0	23.1		ug/L		93	58 - 130	
Carbon tetrachloride	25.0	23.2		ug/L		93.	70 - 146	
Chlorobenzene	25.0	24.6		ug/L		98	70 - 130	
Chloroethane	25.0	26.1		ug/L		104	62 - 138	
Chloroform	25.0	25.7		ug/L		103	70 - 130	

TestAmerica Pleasanton

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-60396-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: LCS 720-168839/5

Matrix: Water

Analysis Batch: 168839

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Analysis Batch: 168839	Spike	LCS	LCS		%Rec.	
Analyte	Added		Qualifier Unit	D %Rec	Limits	
Chloromethane	25.0	26.6	ug/L		52 - 175	
2-Chlorotoluene	25.0	27.6	ug/L		70 - 130	
4-Chlorotoluene	25.0	27.9	ug/L			
Chlorodibromomethane	25.0	23.7	ug/L			
1,2-Dichlorobenzene	25.0	24.4	ug/L			
1,3-Dichlorobenzene	25.0	25.3	ug/L		70 - 130	
1,4-Dichlorobenzene	25.0	24.9	ug/L		70 - 130	
1,3-Dichloropropane	25.0	24.3	ug/L			
1,1-Dichloropropene	25.0	27.2	ug/L		70 - 130	
1,2-Dibromo-3-Chloropropane	25.0	22.8	ug/L		70 - 136	
Ethylene Dibromide	25.0	21.6	ug/L			
Dibromomethane	25.0	23.7	ug/L			
Dichlorodifluoromethane	25.0	23.0	ug/L			
1,1-Dichloroethane	25.0	26.4	ug/L			
1,2-Dichloroethane	25.0	23.9	ug/L			
1,1-Dichloroethene	25.0	21.3	ug/L			
cis-1,2-Dichloroethene	25.0	25.3	ug/L		70 - 130	
trans-1,2-Dichloroethene	25.0	24.0	ug/L			
1,2-Dichloropropane	25.0	26.0	ug/L		70 - 130	
cis-1,3-Dichloropropene	25.0	27.0	ug/L		70 - 130	
trans-1,3-Dichloropropene	25.0	27.7	ug/L			
Ethylbenzene	25.0	25.6	ug/L			
Hexachlorobutadiene	25.0	29.7	ug/L			
2-Hexanone	125	97.6	ug/L			
Isopropylbenzene	25.0	24.5	ug/L			
4-Isopropyltoluene	25.0	24.7	ug/L			
Methylene Chloride	25.0	24.4	ug/L			
	125	103	ug/L			
4-Methyl-2-pentanone (MIBK) Naphthalene	25.0	22.7	ug/L		70 - 130	
N-Propylbenzene	25.0	28.1	ug/L			
	25.0	24.1	ug/L			
Styrene 1,1,1,2-Tetrachloroethane	25.0	24.2	ug/L			
1,1,2,2-Tetrachloroethane	25.0	27.6	ug/L			
Tetrachloroethene	25.0	22.9	ug/L			
Toluene	25.0	25.7	ug/L			
	25.0	26.1	ug/L		70 - 130	
1,2,3-Trichlorobenzene	25.0	27.6	ug/L		70 - 130	
1,2,4-Trichlorobenzene	25.0	23.9	ug/L			
1,1,1-Trichloroethane	25.0	25.0	ug/L			
1,1,2-Trichloroethane Trichloroethene	25.0	22.1	ug/L			
Trichlorofluoromethane	25.0	26.3	ug/L			
	25.0	23.8	ug/L			
1,2,3-Trichloropropane	25.0	20.1				
1,1,2-Trichloro-1,2,2-trifluoroetha	25.0	20.1	ug/L	80	72 - 102	
ne 1,2,4-Trimethylbenzene	25.0	26.4	ug/L	106	70 - 132	
1,3,5-Trimethylbenzene	25.0	26.9	ug/L			
Vinyl acetate	25.0	26.4	ug/L			
Vinyl chloride	25.0	24.8	ug/L			

TestAmerica Pleasanton

Page 36 of 63

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-60396-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: LCS 720-168839/5

Matrix: Water Analysis Batch: 168839 Client Sample ID: Lab Control Sample

Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
m-Xylene & p-Xylene	25.0	25.6		ug/L		102	70 - 142	
o-Xylene	25.0	25.4		ug/L		102	70 - 130	
2,2-Dichloropropane	25.0	24.9		ug/L		100	70 - 140	

LCS LCS Surrogate %Recovery Qualifier Limits 4-Bromofluorobenzene 102 67 - 130 1,2-Dichloroethane-d4 (Surr) 87 72 - 130 Toluene-d8 (Surr) 70 - 130 93

Lab Sample ID: LCS 720-168839/7

Matrix: Water

Analyte

Analysis Batch: 168839

Gasoline Range Organics (GRO)

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Spike	LCS	LCS				%Rec.	
Added	Result	Qualifier	Unit	D	%Rec	Limits	
500	511		ug/L		102	62 - 120	_

-C5-C12 Surrogate

LCS LCS %Recovery Qualifier Limits 67 - 130 4-Bromofluorobenzene 111 1,2-Dichloroethane-d4 (Surr) 98 72 - 130 Toluene-d8 (Surr) 93 70 - 130

Lab Sample ID: LCSD 720-168839/6

Matrix: Water

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Analysis Batch: 168839									
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Methyl tert-butyl ether	25.0	24.9		ug/L		100	62 - 130	1	20
Acetone	125	118		ug/L		94	26 - 180	7	30
Benzene	25.0	25.3		ug/L		101	79 - 130	1	20
Dichlorobromomethane	25.0	25.9		ug/L		104	70 - 130	1	20
Bromobenzene	25.0	24.3		ug/L		97	70 - 130	0	20
Chlorobromomethane	25.0	21.2		ug/L		85	70 - 130	0	20
Bromoform	25.0	27.3		ug/L		109	68 - 136	9	20
Bromomethane	25.0	24.3		ug/L		97	43 - 151	0	20
2-Butanone (MEK)	125	115		ug/L		92	54 - 130	8	20
n-Butylbenzene	25.0	28.6		ug/L		114	70 - 142	0	20
sec-Butylbenzene	25.0	26.1		ug/L		104	70 - 134	1	20
tert-Butylbenzene	25.0	25.0		ug/L		100	70 - 135	2	20
Carbon disulfide	25.0	23.0		ug/L		92	58 - 130	0	20
Carbon tetrachloride	25.0	23.6		ug/L		94	70 - 146	2	20
Chlorobenzene	25.0	26.4		ug/L		106	70 - 130	7	20
Chloroethane	25.0	26.3		ug/L		105	62 - 138	1	20
Chloroform	25.0	25.4		ug/L		102	70 - 130	1	20
Chloromethane	25.0	26.9		ug/L		108	52 - 175	1	20
2-Chlorotoluene	25.0	27.7		ug/L		111	70 - 130	0	20
4-Chlorotoluene	25.0	27.8		ug/L		111	70 - 130	0	20
Chlorodibromomethane	25.0	24.4		ug/L		97	70 - 145	3	20

TestAmerica Pleasanton

Page 37 of 63

TestAmerica Job ID: 720-60396-1

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: LCSD 720-168839/6

Matrix: Water

Analysis Batch: 168839

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Analysis Batch: 100039	Spike	LCSD	LCSD			%Rec.		RPD
Analyte	Added			Jnit D	%Rec	Limits	RPD	Limit
1,2-Dichlorobenzene	25.0	24.3		ıg/L	97	70 - 130	0	20
1,3-Dichlorobenzene	25.0	24.9		ıg/L	100	70 - 130	2	20
1,4-Dichlorobenzene	25.0	24.8		ıg/L	99	70 _ 130	0	20
1,3-Dichloropropane	25.0	24.5		ıg/L	98	70 - 130	1	20
1,1-Dichloropropene	25.0	27.2		ıg/L	109	70 - 130	0	20
1,2-Dibromo-3-Chloropropane	25.0	23.7		ıg/L	95	70 - 136	4	20
Ethylene Dibromide	25.0	22.3		ıg/L	89	70 - 130	3	20
Dibromomethane	25.0	23.3		ıg/L	93	70 - 130	2	20
Dichlorodifluoromethane	25.0	23.6		ıg/L	94	34 - 132	2	20
	25.0	26.0		ıg/L	104	70 - 130	1	20
1,1-Dichloroethane	25.0	24.2			97	61 - 132	1	20
1,2-Dichloroethane				ıg/L	87		3	20
1,1-Dichloroethene	25.0	21.8		ıg/L		64 - 128		
cis-1,2-Dichloroethene	25.0	25.2		ıg/L	101	70 - 130	1	20
trans-1,2-Dichloroethene	25.0	24.2		ıg/L	97	68 - 130	1	20
1,2-Dichloropropane	25.0	25.2		ıg/L	101	70 - 130	3	20
cis-1,3-Dichloropropene	25.0	26.9		ug/L	108	70 - 130	0	20
trans-1,3-Dichloropropene	25.0	28.5		ıg/L	114	70 - 140	3	20
Ethylbenzene	25.0	27.6		ıg/L	111	80 - 120	7	20
Hexachlorobutadiene	25.0	29.7	ι	ıg/L	119	70 - 130	0	20
2-Hexanone	125	105	ι	ug/L	84	60 - 164	7	20
Isopropylbenzene	25.0	26.5	L	ug/L	106	70 _ 130	8	20
4-Isopropyltoluene	25.0	24.6	L	ug/L	98	70 - 130	0	20
Methylene Chloride	25.0	24.5	ι	ug/L	98	70 - 147	1	20
4-Methyl-2-pentanone (MIBK)	125	111	ι	ug/L	89	58 - 130	7	20
Naphthalene	25.0	23.8	L	ug/L	95	70 - 130	5	20
N-Propylbenzene	25.0	28.2	ι	ug/L	113	70 - 130	0	20
Styrene	25.0	26.1	L	ug/L	104	70 - 130	8	20
1,1,1,2-Tetrachloroethane	25.0	25.8	L	ug/L	103	70 - 130	7	20
1,1,2,2-Tetrachloroethane	25.0	28.6	L	ug/L	114	70 - 130	3	20
Tetrachloroethene	25.0	22.8	L	ug/L	91	70 - 130	0	20
Toluene	25.0	27.8	ι	ug/L	111	78 - 120	8	20
1,2,3-Trichlorobenzene	25.0	25.9	L	ug/L	104	70 - 130	1	20
1,2,4-Trichlorobenzene	25.0	26.9	ι	ıg/L	108	70 - 130	3	20
1,1,1-Trichloroethane	25.0	24.0	L	ug/L	96	70 - 130	1	20
1,1,2-Trichloroethane	25.0	25.1		ug/L	101	70 - 130	1	20
Trichloroethene	25.0	22.0		ug/L	88	70 - 130	0	20
Trichlorofluoromethane	25.0	27.0		ug/L	108	66 - 132	3	20
1,2,3-Trichloropropane	25.0	25.7		ıg/L	103	70 - 130	8	20
1,1,2-Trichloro-1,2,2-trifluoroetha	25.0	20.2		ug/L	81	42 _ 162	1	20
ne 1 2 4 Trimethylhenzene	25.0	26.5		ıg/L	106	70 - 132	0	20
1,2,4-Trimethylbenzene	25.0	26.8		ıg/L	107	70 - 132	0	20
1,3,5-Trimethylbenzene		27.9		ug/L	112	43 - 163	5	20
Vinyl acetate	25.0							
Vinyl chloride	25.0	25.0		ug/L	100	54 ₋ 135	1	20
m-Xylene & p-Xylene	25.0	27.5		ug/L	110	70 - 142	7	20
o-Xylene	25.0	27.1		ug/L	108	70 - 130	6	20
2,2-Dichloropropane	25.0	24.5	L	ug/L	98	70 - 140	2	20

TestAmerica Pleasanton

Spike

Added 500 LCSD LCSD

510

Result Qualifier

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-60396-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: LCSD 720-168839/6

Matrix: Water

Analysis Batch: 168839

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

	LUSD	LUSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	111		67 - 130
1,2-Dichloroethane-d4 (Surr)	90		72 - 130
Toluene-d8 (Surr)	94		70 - 130

Lab Sample ID: LCSD 720-168839/8

Matrix: Water

Analysis Batch: 168839

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

			%Rec.		RPD
Unit	D	%Rec	Limits	RPD	Limit
ug/L	_	102	62 - 120	0	20

Gasoline Range Organics (GRO) -C5-C12

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	111		67 - 130
1,2-Dichloroethane-d4 (Surr)	94		72 - 130
Toluene-d8 (Surr)	93		70 - 130

Lab Sample ID: 720-60396-3 MS

Matrix: Water

Analysis Batch: 168839

Client Sample ID: MW-02 Prep Type: Total/NA

Analysis Batch: 168839	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Methyl tert-butyl ether	ND		25.0	26.4		ug/L		106	60 _ 138	
Acetone	ND		125	108		ug/L		87	60 - 140	
Benzene	ND		25.0	25.5		ug/L		102	60 - 140	
Dichlorobromomethane	ND		25.0	27.1		ug/L		108	60 - 140	
Bromobenzene	ND		25.0	24.1		ug/L		96	60 _ 140	
Chlorobromomethane	ND		25.0	21.7		ug/L		87	60 - 140	
Bromoform	ND		25.0	27.3		ug/L		109	56 - 140	
Bromomethane	ND		25.0	23.5		ug/L		94	23 - 140	
2-Butanone (MEK)	ND		125	112		ug/L		90	60 - 140	
n-Butylbenzene	ND		25.0	28.4		ug/L		114	60 - 140	
sec-Butylbenzene	ND		25.0	25.1		ug/L		100	60 - 140	
tert-Butylbenzene	ND		25.0	24.0		ug/L		96	60 - 140	
Carbon disulfide	ND		25.0	22.8		ug/L		91	38 _ 140	
Carbon tetrachloride	ND		25.0	23.4		ug/L		94	60 - 140	
Chlorobenzene	ND		25.0	26.2		ug/L		105	60 - 140	
Chloroethane	ND		25.0	25.6		ug/L		102	51 - 140	
Chloroform	ND		25.0	26.0		ug/L		104	60 _ 140	
Chloromethane	ND		25.0	24.4		ug/L		97	52 - 140	
2-Chlorotoluene	ND		25.0	26.8		ug/L		107	60 - 140	
4-Chlorotoluene	ND		25.0	27.5		ug/L		110	60 - 140	
Chlorodibromomethane	ND		25.0	25.3		ug/L		101	60 - 140	+
1,2-Dichlorobenzene	ND		25.0	24.2		ug/L		97	60 - 140	
1,3-Dichlorobenzene	ND		25.0	24.7		ug/L		99	60 - 140	
1,4-Dichlorobenzene	ND		25.0	24.8		ug/L		99	60 - 140	
1,3-Dichloropropane	ND		25.0	26.0		ug/L		104	60 _ 140	
1,1-Dichloropropene	ND		25.0	27.3		ug/L		109	60 - 140	

TestAmerica Pleasanton

Spike

MS MS

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-60396-1

%Rec.

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Sample Sample

113

95

94

Lab Sample ID: 720-60396-3 MS

Matrix: Water

4-Bromofluorobenzene

Toluene-d8 (Surr)

1,2-Dichloroethane-d4 (Surr)

Analysis Batch: 168839

Client Sample ID: MW-02

Prep Type: Total/NA

	Janipie	Janipie	Opine	1110	MIO.		/bittee.	
Analyte	Result	Qualifier	Added	Result	Qualifier Unit	D %Rec	Limits	
1,2-Dibromo-3-Chloropropane	ND		25.0	24.0	ug/L	96	60 - 140	
Ethylene Dibromide	ND		25.0	23.0	ug/L	92	60 - 140	
Dibromomethane	ND		25.0	24.6	ug/L	99	60 _ 140	
Dichlorodifluoromethane	ND		25.0	21.0	ug/L	84	38 - 140	
1,1-Dichloroethane	ND		25.0	26.5	ug/L	106	60 - 140	
1,2-Dichloroethane	ND		25.0	25.0	ug/L	100	60 - 140	
1,1-Dichloroethene	ND		25.0	21.2	ug/L	85	60 - 140	
cis-1,2-Dichloroethene	2.8		25.0	28.4	ug/L	103	60 - 140	
trans-1,2-Dichloroethene	ND		25.0	24.5	ug/L	96	60 - 140	
1,2-Dichloropropane	ND		25.0	26.4	ug/L	105	60 - 140	
cis-1,3-Dichloropropene	ND		25.0	27.5	ug/L	110	60 _ 140	
trans-1,3-Dichloropropene	ND		25.0	29.5	ug/L	118	60 - 140	
Ethylbenzene	ND		25.0	27.1	ug/L	109	60 - 140	
Hexachlorobutadiene	ND		25.0	29.2	ug/L	117	60 - 140	
2-Hexanone	ND		125	107	ug/L	86	60 _ 140	
Isopropylbenzene	ND		25.0	26.0	ug/L	104	60 - 140	
4-Isopropyltoluene	ND		25.0	24.0	ug/L	96	60 - 140	
Methylene Chloride	ND		25.0	24.5	ug/L	98	40 - 140	
4-Methyl-2-pentanone (MIBK)	ND		125	114	ug/L	91	58 - 130	
Naphthalene	ND		25.0	23.9	ug/L	96	56 - 140	
N-Propylbenzene	ND		25.0	27.3	ug/L	109	60 - 140	
Styrene	ND		25.0	26.3	ug/L	105	60 - 140	
1,1,1,2-Tetrachloroethane	ND		25.0	26.4	ug/L	106	60 - 140	
1,1,2,2-Tetrachloroethane	ND		25.0	27.8	ug/L	111	60 - 140	
Tetrachloroethene	4.7		25.0	28.2	ug/L	94	60 - 140	
Toluene	ND		25.0	27.2	ug/L	109	60 - 140	
1,2,3-Trichlorobenzene	ND		25.0	26.3	ug/L	105	60 - 140	
1,2,4-Trichlorobenzene	ND		25.0	27.9	ug/L	112	60 - 140	
1,1,1-Trichloroethane	ND		25.0	23.7	ug/L	95	60 - 140	
1,1,2-Trichloroethane	ND		25.0	26.0	ug/L	104	60 - 140	
Trichloroethene	9.1		25.0	31.6	ug/L	90	60 - 140	
Trichlorofluoromethane	ND		25.0	25.7	ug/L	103	60 - 140	
1,2,3-Trichloropropane	ND		25.0	24.7	ug/L	99	60 - 140	
1,1,2-Trichloro-1,2,2-trifluoroetha	ND		25.0	19.7	ug/L	79	60 - 140	
ne								
1,2,4-Trimethylbenzene	ND		25.0	26.1	ug/L	104	60 - 140	
1,3,5-Trimethylbenzene	ND		25.0	26.2	ug/L	105	60 - 140	
Vinyl acetate	ND		25.0	27.8	ug/L	111	40 - 140	
Vinyl chloride	ND		25.0	23.4	ug/L	93	58 - 140	
m-Xylene & p-Xylene	ND		25.0	27.5	ug/L	110	60 - 140	
o-Xylene	ND		25.0	27.3	ug/L	109	60 - 140	
2,2-Dichloropropane	ND		25.0	24.8	ug/L	99	60 - 140	
	MS	MS						
Surrogate	%Recovery		Limits					

TestAmerica Pleasanton

67 - 130

72 - 130

70 - 130

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-60396-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: 720-60396-3 MSD

Matrix: Water

Client Sample ID: MW-	02
Prep Type: Total/!	A

Cilei	it Sai	ubie i	D: INIAA-05	
	Prep	Type:	Total/NA	

Analysis Batch: 168839	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Methyl tert-butyl ether	ND		25.0	25.5		ug/L	-	102	60 - 138	3	20
Acetone	ND		125	106		ug/L		85	60 - 140	3	20
Benzene	ND		25.0	25.5		ug/L		102	60 - 140	0	20
Dichlorobromomethane	ND		25.0	27.1		ug/L		108	60 - 140	0	20
Bromobenzene	ND		25.0	24.7		ug/L		99	60 - 140	2	20
Chlorobromomethane	ND		25.0	22.0		ug/L		88	60 - 140	1	20
Bromoform	ND		25.0	27.2		ug/L		109	56 - 140	1	20
Bromomethane	ND		25.0	24.0		ug/L		96	23 - 140	2	20
2-Butanone (MEK)	ND		125	107		ug/L		85	60 - 140	5	20
n-Butylbenzene	ND		25.0	29.6		ug/L		118	60 - 140	4	20
sec-Butylbenzene	ND		25.0	26.4		ug/L		105	60 - 140	5	20
tert-Butylbenzene	ND		25.0	25.1		ug/L		100	60 - 140	4	20
Carbon disulfide	ND		25.0	23.7		ug/L		95	38 - 140	4	20
Carbon tetrachloride	ND		25.0	23.7		ug/L		95	60 - 140	1	20
Chlorobenzene	ND		25.0	26.8		ug/L		107	60 - 140	2	20
Chloroethane	ND		25.0	25.9		ug/L		104	51 - 140	1	20
Chloroform	ND		25.0	26.4		ug/L		106	60 - 140	2	20
Chloromethane	ND		25.0	25.8		ug/L		103	52 - 140	6	20
2-Chlorotoluene	ND		25.0	27.9		ug/L		112	60 - 140	4	20
4-Chlorotoluene	ND		25.0	28.4		ug/L		114	60 - 140	3	20
Chlorodibromomethane	ND		25.0	25.1		ug/L		100	60 - 140	1	20
1,2-Dichlorobenzene	ND		25.0	24.6		ug/L		99	60 - 140	2	20
1,3-Dichlorobenzene	ND		25.0	25.5		ug/L		102	60 - 140	3	20
1,4-Dichlorobenzene	ND		25.0	25.3		ug/L		101	60 - 140	2	20
1,3-Dichloropropane	ND		25.0	25.4		ug/L		102	60 - 140	2	20
1,1-Dichloropropene	ND		25.0	27.7		ug/L		111	60 - 140	1	20
1,2-Dibromo-3-Chloropropane	ND		25.0	23.6		ug/L		94	60 - 140	2	20
Ethylene Dibromide	ND		25.0	22.7		ug/L		91	60 - 140	2	20
Dibromomethane	ND		25.0	24.7		ug/L		99	60 - 140	0	20
Dichlorodifluoromethane	ND		25.0	22.6		ug/L		90	38 - 140	7	20
1,1-Dichloroethane	ND		25.0	26.8		ug/L		107	60 - 140	1	20
1,2-Dichloroethane	ND		25.0	24.7		ug/L		99	60 - 140	1	20
	ND		25.0	21.7		ug/L		87	60 - 140	3	20
1,1-Dichloroethene	2.8		25.0	29.1		ug/L		105	60 - 140	2	20
cis-1,2-Dichloroethene	ND		25.0	24.9		ug/L		98	60 - 140	2	20
trans-1,2-Dichloroethene	ND		25.0	25.8		ug/L		103	60 - 140	2	20
1,2-Dichloropropane	ND		25.0	27.6		ug/L		110	60 - 140	0	20
cis-1,3-Dichloropropene			25.0			ug/L		116	60 - 140	1	20
trans-1,3-Dichloropropene	ND		25.0	29.1 27.9				111	60 - 140	3	20
Ethylbenzene	ND					ug/L		123	60 - 140	5	20
Hexachlorobutadiene	ND		25.0	30.7		ug/L					
2-Hexanone	ND		125	101		ug/L		80 106	60 ₋ 140	7	20
Isopropylbenzene	ND		25.0	26.6		ug/L		106	60 - 140	4	
4-Isopropyltoluene	ND		25.0	25.0		ug/L		100	60 - 140		20
Methylene Chloride	ND		25.0	24.6		ug/L		99	40 - 140	0	20
4-Methyl-2-pentanone (MIBK)	ND		125	109		ug/L		87	58 - 130	5	20
Naphthalene	ND		25.0	23.9		ug/L		96	56 - 140	0	20
N-Propylbenzene	ND ND		25.0 25.0	28.5 26.7		ug/L ug/L		114 107	60 ₋ 140 60 ₋ 140	4	20 20

TestAmerica Pleasanton

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-60396-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: 720-60396-3 MSD

Matrix: Water

Analysis Batch: 168839

Client Sample ID: MW-02

Prep Type: Total/NA

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1,1,2-Tetrachloroethane	ND		25.0	26.7	-	ug/L		107	60 - 140	1	20
1,1,2,2-Tetrachloroethane	ND		25.0	28.0		ug/L		112	60 - 140	1	20
Tetrachloroethene	4.7		25.0	28.5		ug/L		95	60 - 140	1	20
Toluene	ND		25.0	28.0		ug/L		112	60 - 140	3	20
1,2,3-Trichlorobenzene	ND		25.0	26.7		ug/L		107	60 - 140	2	20
1,2,4-Trichlorobenzene	ND		25.0	28.3		ug/L		113	60 - 140	1	20
1,1,1-Trichloroethane	ND		25.0	24.5		ug/L		98	60 - 140	3	20
1,1,2-Trichloroethane	ND		25.0	25.5		ug/L		102	60 - 140	2	20
Trichloroethene	9.1		25.0	32.4		ug/L		93	60 - 140	3	20
Trichlorofluoromethane	ND		25.0	27.0		ug/L		108	60 - 140	5	20
1,2,3-Trichloropropane	ND		25.0	25.1		ug/L		100	60 - 140	2	20
1,1,2-Trichloro-1,2,2-trifluoroetha	ND		25.0	20.5		ug/L		82	60 - 140	4	20
ne											
1,2,4-Trimethylbenzene	ND		25.0	27.0		ug/L		108	60 _ 140	4	20
1,3,5-Trimethylbenzene	ND		25.0	27.4		ug/L		110	60 - 140	5	20
Vinyl acetate	ND		25.0	27.3		ug/L		109	40 - 140	2	20
Vinyl chloride	ND		25.0	24.8		ug/L		99	58 - 140	6	20
m-Xylene & p-Xylene	ND		25.0	27.9		ug/L		111	60 - 140	1	20
o-Xylene	ND		25.0	27.6		ug/L		110	60 - 140	1	20
2,2-Dichloropropane	ND		25.0	25.2		ug/L		101	60 - 140	2	20

MSD MS	SD
--------	----

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	111		67 - 130
1,2-Dichloroethane-d4 (Surr)	92		72 - 130
Toluene-d8 (Surr)	94		70 - 130

Lab Sample ID: MB 720-168840/4

Matrix: Water

Analysis Batch: 168840

Client Sample ID: Method Blank

Prep Type: Total/NA

Analysis Batch. 100040	МВ	МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND		0.50		ug/L			10/15/14 09:07	1
Acetone	ND		50		ug/L			10/15/14 09:07	1
Benzene	ND		0.50		ug/L			10/15/14 09:07	1
Dichlorobromomethane	ND		0.50		ug/L			10/15/14 09:07	1
Bromobenzene	ND		1.0		ug/L			10/15/14 09:07	1
Chlorobromomethane	ND		1.0		ug/L			10/15/14 09:07	1
Bromoform	ND		1.0		ug/L			10/15/14 09:07	1
Bromomethane	ND		1.0		ug/L			10/15/14 09:07	1
2-Butanone (MEK)	ND		50		ug/L			10/15/14 09:07	1
n-Butylbenzene	ND		1.0		ug/L			10/15/14 09:07	1
sec-Butylbenzene	ND		1.0		ug/L			10/15/14 09:07	1
tert-Butylbenzene	ND		1.0		ug/L			10/15/14 09:07	1
Carbon disulfide	ND		5.0		ug/L			10/15/14 09:07	1
Carbon tetrachloride	ND		0.50		ug/L			10/15/14 09:07	1
Chlorobenzene	ND		0.50		ug/L			10/15/14 09:07	1
Chloroethane	ND		1.0		ug/L			10/15/14 09:07	1
Chloroform	ND		1.0		ug/L			10/15/14 09:07	1

TestAmerica Pleasanton

RL

1.0

0.50

MDL Unit

ug/L

ug/L

D

Prepared

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-60396-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

MB MB

ND

ND

Result Qualifier

Lab Sample ID: MB 720-168840/4

Matrix: Water

Chloromethane

2-Chlorotoluene

Analysis Batch: 168840

Client Sample ID: Method Blank Prep Type: Total/NA

Analyzed

10/15/14 09:07

10/15/14 09:07

e: Total/NA

Dil Fac	714	
1		
1	-	

7

8

10

2 Official action					
4-Chlorotoluene	ND	0.50	ug/L	10/15/14 09:07	1
Chlorodibromomethane	ND	0.50	ug/L	10/15/14 09:07	1
1,2-Dichlorobenzene	ND	0.50	ug/L	10/15/14 09:07	1
1,3-Dichlorobenzene	ND	0.50	ug/L	10/15/14 09:07	1
1,4-Dichlorobenzene	ND	0.50	ug/L	10/15/14 09:07	1
1,3-Dichloropropane	ND	1.0	ug/L	10/15/14 09:07	1
1,1-Dichloropropene	ND	0.50	ug/L	10/15/14 09:07	1
1,2-Dibromo-3-Chloropropane	ND	1.0	ug/L	10/15/14 09:07	1
Ethylene Dibromide	ND	0.50	ug/L	10/15/14 09:07	1
Dibromomethane	ND	0.50	ug/L	10/15/14 09:07	1
Dichlorodifluoromethane	ND	0.50	ug/L	10/15/14 09:07	1
1,1-Dichloroethane	ND	0.50	ug/L	10/15/14 09:07	1
1,2-Dichloroethane	ND	0.50	ug/L	10/15/14 09:07	1
1,1-Dichloroethene	ND	0.50	ug/L	10/15/14 09:07	1
cis-1,2-Dichloroethene	ND	0.50	ug/L	10/15/14 09:07	1
trans-1,2-Dichloroethene	ND	0.50	ug/L	10/15/14 09:07	1
1,2-Dichloropropane	ND	0.50	ug/L	10/15/14 09:07	1
cis-1,3-Dichloropropene	ND	0.50	ug/L	10/15/14 09:07	1
trans-1,3-Dichloropropene	ND	0.50	ug/L	10/15/14 09:07	1
Ethylbenzene	ND	0.50	ug/L	10/15/14 09:07	1
Hexachlorobutadiene	ND	1.0	ug/L	10/15/14 09:07	1
2-Hexanone	ND	50	ug/L	10/15/14 09:07	1
Isopropylbenzene	ND	0.50	ug/L	10/15/14 09:07	1
4-isopropyltoluene	ND	1.0	ug/L	10/15/14 09:07	1
Methylene Chloride	ND	5.0	ug/L	10/15/14 09:07	1
4-Methyl-2-pentanone (MiBK)	ND	50	ug/L	10/15/14 09:07	1
Naphthalene	ND	1.0	ug/L	10/15/14 09:07	1
N-Propylbenzene	ND	1.0	ug/L	10/15/14 09:07	1
Styrene	ND	0.50	ug/L	10/15/14 09:07	1
1,1,1,2-Tetrachloroethane	ND	0.50	ug/L	10/15/14 09:07	_ 1
1,1,2,2-Tetrachloroethane	ND	0.50	ug/L	10/15/14 09:07	1
Tetrachloroethene	ND	0.50	ug/L	10/15/14 09:07	1
Toluene	ND	0.50	ug/L	10/15/14 09:07	1
1,2,3-Trichlorobenzene	ND	1.0	ug/L	10/15/14 09:07	1
1,2,4-Trichlorobenzene	ND	1.0	ug/L	10/15/14 09:07	1
1,1,1-Trichloroethane	ND	0.50	ug/L	10/15/14 09:07	1
1,1,2-Trichloroethane	ND	0.50	ug/L	10/15/14 09:07	1
Trichloroethene	ND	0.50	ug/L	10/15/14 09:07	1
Trichlorofluoromethane	ND	1.0	ug/L	10/15/14 09:07	1
1,2,3-Trichloropropane	ND	0.50	ug/L	10/15/14 09:07	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	0.50	ug/L	10/15/14 09:07	1
1,2,4-Trimethylbenzene	ND	0.50	ug/L	10/15/14 09:07	1
1,3,5-Trimethylbenzene	ND	0.50	ug/L	10/15/14 09:07	1
Vinyl acetate	ND	10	ug/L	10/15/14 09:07	1
Vinyl chloride	ND	0.50	ug/L	10/15/14 09:07	1
Xylenes, Total	ND	1.0	ug/L	10/15/14 09:07	1

TestAmerica Pleasanton

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-60396-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: MB 720-168840/4

Matrix: Water

Analysis Batch: 168840

Client Sample ID: Method Blank

Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,2-Dichloropropane	ND		0.50		ug/L			10/15/14 09:07	1
Gasoline Range Organics (GRO) -C5-C12	ND		50		ug/L			10/15/14 09:07	1

	MB	MB				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	92	-	67 - 130		10/15/14 09:07	1
1,2-Dichloroethane-d4 (Surr)	86		72 - 130		10/15/14 09:07	1
Toluene-d8 (Surr)	91		70 - 130		10/15/14 09:07	1

Lab Sample ID: LCS 720-168840/5

Matrix: Water

Analysis Batch: 168840

Client Sample	ID: Lab Control Sample
	Prep Type: Total/NA

Analysis Batch. 100040	Spike	LCS	LCS				%Rec.
Analyte	Added		Qualifier	Unit	D	%Rec	Limits
Methyl tert-butyl ether	25.0	21.9		ug/L	_ =	88	62 - 130
Acetone	125	115		ug/L		92	26 - 180
Benzene	25.0	23.0		ug/L		92	79 - 130
Dichlorobromomethane	25.0	23.0		ug/L		92	70 - 130
Bromobenzene	25.0	23.7		ug/L		95	70 - 130
Chlorobromomethane	25.0	22.6		ug/L		90	70 - 130
Bromoform	25.0	25.1		ug/L		100	68 - 136
Bromomethane	25.0	22.7		ug/L		91	43 - 151
2-Butanone (MEK)	125	119		ug/L		95	54 - 130
n-Butylbenzene	25.0	24.4		ug/L		98	70 - 142
sec-Butylbenzene	25.0	24.1		ug/L		96	70 - 134
ert-Butylbenzene	25.0	23.7		ug/L		95	70 - 135
Carbon disulfide	25.0	18.9		ug/L		76	58 - 130
Carbon tetrachloride	25.0	23.9		ug/L		96	70 - 146
Chlorobenzene	25.0	24.2		ug/L		97	70 - 130
Chloroethane	25.0	22.2		ug/L		89	62 - 138
Chloroform	25.0	23.2		ug/L		93	70 - 130
Chloromethane	25.0	20.8		ug/L		83	52 - 175
2-Chlorotoluene	25.0	23.3		ug/L		93	70 - 130
1-Chlorotoluene	25.0	23.4		ug/L	-	94	70 - 130
Chlorodibromomethane	25.0	24.6		ug/L		98	70 - 145
1,2-Dichlorobenzene	25.0	23.5		ug/L		94	70 - 130
1,3-Dichlorobenzene	25.0	24.1		ug/L		96	70 _ 130
1,4-Dichlorobenzene	25.0	23.8		ug/L		95	70 - 130
1,3-Dichloropropane	25.0	22.8		ug/L		91	70 - 130
1,1-Dichloropropene	25.0	25.2		ug/L		101	70 - 130
1,2-Dibromo-3-Chloropropane	25.0	25.0		ug/L		100	70 - 136
Ethylene Dibromide	25.0	24.2		ug/L		97	70 - 130
Dibromomethane	25.0	23.4		ug/L		94	70 - 130
Dichlorodifluoromethane	25.0	20.6		ug/L		83	34 - 132
1,1-Dichloroethane	25.0	22.6		ug/L		90	70 - 130
1,2-Dichloroethane	25.0	22.1		ug/L		88	61 - 132
1,1-Dichloroethene	25.0	20.4		ug/L		82	64 - 128
cis-1,2-Dichloroethene	25.0	22.7		ug/L		91	70 - 130

TestAmerica Pleasanton

Page 44 of 63

LCS LCS

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-60396-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: LCS 720-168840/5

Matrix: Water

Analysis Batch: 168840

Client Sample ID: Lab Control Sample

%Rec.

70 - 130

Client Sample ID: Lab Control Sample

98

Prep Type: Total/NA

Analyte	Added	Result (Qualifier l	Jnit	D	%Rec	Limits	
trans-1,2-Dichloroethene	25.0	22.8	ī	ıg/L		91	68 - 130	
1,2-Dichloropropane	25.0	22.8	ı	ug/L		91	70 - 130	
cis-1,3-Dichloropropene	25.0	24.9	ı	ug/L		99	70 - 130	
trans-1,3-Dichloropropene	25.0	27.0	l	ug/L		108	70 - 140	
Ethylbenzene	25.0	23.9	l	ug/L		96	80 - 120	
Hexachlorobutadiene	25.0	24.3	ι	ıg/L		97	70 - 130	
2-Hexanone	125	103	, L	ug/L		82	60 - 164	
Isopropylbenzene	25.0	24.7	ı	ug/L		99	70 - 130	
4-Isopropyltoluene	25.0	23.8	ι	ug/L		95	70 _ 130	
Methylene Chloride	25.0	21.7	ι	ug/L		87	70 - 147	
4-Methyl-2-pentanone (MIBK)	125	106	ι	ıg/L		85	58 - 130	
Naphthalene	25.0	23.9	ı	ug/L		96	70 - 130	
N-Propylbenzene	25.0	24.1	ι	ıg/L		96	70 - 130	
Styrene	25.0	24.4	ı	ıg/L		98	70 - 130	

Spike

70 - 130 25.0 24.5 ug/L 98 1,1,1,2-Tetrachloroethane 70 - 130 25.0 23.3 ug/L 93 1,1,2,2-Tetrachloroethane 25.0 24.9 ug/L 100 70 - 130 Tetrachloroethene 78 - 120 25.0 23.8 ug/L 95 Toluene 70 - 130 25.0 24.2 97 ug/L 1,2,3-Trichlorobenzene 70 - 130 25.0 25.6 ug/L 102 1,2,4-Trichlorobenzene 1,1,1-Trichloroethane 25.0 23.5 94 70 - 130 ug/L 97 70 - 130 25.0 24.1 ug/L 1,1,2-Trichloroethane

25.0

24.4

ug/L

66 - 132 25.0 23.5 ug/L 94 Trichlorofluoromethane 25.0 23.9 96 70 - 130 ua/L 1,2,3-Trichloropropane 42 - 162 25.0 21.3 85 1,1,2-Trichloro-1,2,2-trifluoroetha ug/L ne 25.0 23.5 ug/L 94 70 - 132 1,2,4-Trimethylbenzene 25.0 24.0 ug/L 96 70 - 130 1,3,5-Trimethylbenzene

19.8 79 43 - 163 Vinyl acetate 25.0 ug/L 25.0 22.0 ug/L 88 54 - 135 Vinyl chloride 25.0 23.9 ug/L 96 70 - 142 m-Xylene & p-Xylene 25.0 23.9 ug/L 96 70 - 130 o-Xylene 25.0 24.3 ug/L 97 70 - 140 2,2-Dichloropropane

LCS LCS Limits Surrogate %Recovery Qualifier 93 67 - 130 4-Bromofluorobenzene 72 - 130 86 1,2-Dichloroethane-d4 (Surr) 70 - 130 Toluene-d8 (Surr) 94

Lab Sample ID: LCS 720-168840/7

Matrix: Water

Trichloroethene

Analysis Batch: 168840

Spike LCS LCS %Rec. Added Result Qualifier Unit %Rec Limits 500 478 ug/L 62 - 120 Gasoline Range Organics (GRO) -C5-C12

TestAmerica Pleasanton

Prep Type: Total/NA

Page 45 of 63

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-60396-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: LCS 720-168840/7

Matrix: Water

Analysis Batch: 168840

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	93		67 - 130
1,2-Dichloroethane-d4 (Surr)	88		72 - 130
Toluene-d8 (Surr)	93		70 - 130

Lab Sample ID: LCSD 720-168840/6

Matrix: Water

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Analysis Batch: 168840									
	Spike		LCSD				%Rec.		RPD
Analyte	Added		Qualifier	Unit	_ D	%Rec	Limits	RPD	Limit
Methyl tert-butyl ether	25.0	22.3		ug/L		89	62 - 130	2	20
Acetone	125	116		ug/L		92	26 - 180	1	30
Benzene	25.0	23.1		ug/L		92	79 - 130	0	20
Dichlorobromomethane	25.0	23.2		ug/L		93	70 _ 130	1	20
Bromobenzene	25.0	24.0		ug/L		96	70 - 130	1	20
Chlorobromomethane	25.0	23.1		ug/L		93	70 - 130	2	20
Bromoform	25.0	25.3		ug/L		101	68 - 136	1	20
Bromomethane	25.0	22.8		ug/L		91	43 - 151	0	20
2-Butanone (MEK)	125	118		ug/L		95	54 - 130	1	20
n-Butylbenzene	25.0	24.3		ug/L		97	70 - 142	1	20
sec-Butylbenzene	25.0	24.1		ug/L		96	70 - 134	0	20
tert-Butylbenzene	25.0	23.8		ug/L		95	70 - 135	0	20
Carbon disulfide	25.0	19.1		ug/L		76	58 - 130	1	20
Carbon tetrachloride	25.0	24.1		ug/L		96	70 - 146	1	20
Chlorobenzene	25.0	24.4		ug/L		98	70 - 130	1	20
Chloroethane	25.0	22.4		ug/L		90	62 - 138	1	20
Chloroform	25.0	23.2		ug/L		93	70 - 130	0	20
Chloromethane	25.0	21.5		ug/L		86	52 - 175	3	20
2-Chlorotoluene	25.0	23.4		ug/L		94	70 - 130	0	20
4-Chlorotoluene	25.0	23.9		ug/L		96	70 - 130	2	20
Chlorodibromomethane	25.0	24.5		ug/L		98	70 - 145	0	20
1,2-Dichlorobenzene	25.0	23.9		ug/L		96	70 - 130	2	20
1,3-Dichlorobenzene	25.0	24.2		ug/L		97	70 - 130	0	20
1,4-Dichlorobenzene	25.0	24.1		ug/L		96	70 - 130	1	20
1,3-Dichloropropane	25.0	23.0		ug/L		92	70 - 130	1	20
1,1-Dichloropropene	25.0	25.1		ug/L		100	70 - 130	0	20
1,2-Dibromo-3-Chloropropane	25.0	24.6		ug/L		98	70 - 136	2	20
Ethylene Dibromide	25.0	24.3		ug/L		97	70 - 130	1	20
Dibromomethane	25.0	23.4		ug/L		94	70 - 130	0	20
Dichlorodifluoromethane	25.0	20.8		ug/L		83	34 - 132	1	20
1,1-Dichloroethane	25.0	23.0		ug/L		92	70 - 130	2	20
1,2-Dichloroethane	25.0	22.4		ug/L		90	61 - 132	- 1	20
1,1-Dichloroethene	25.0	20.6		ug/L		82	64 - 128	1	20
cis-1,2-Dichloroethene	25.0	22.8		ug/L		91	70 - 130	0	20
trans-1,2-Dichloroethene	25.0	23.1		ug/L		92	68 - 130	1	20
1,2-Dichloropropane	25.0	22.8		ug/L		91	70 - 130	0	20
cis-1,3-Dichloropropene	25.0	24.8		ug/L		99	70 - 130	0	20
trans-1,3-Dichloropropene	25.0	27.1		ug/L		108	70 - 140	0	20
Ethylbenzene	25.0	24.2		ug/L		97	80 - 120	1	20

TestAmerica Pleasanton

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-60396-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: LCSD 720-168840/6

Matrix: Water Analysis Batch: 168840 Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Analysis Batch: 168840	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Hexachlorobutadiene	25.0	24.3		ug/L		97	70 - 130	0	20
2-Hexanone	125	102		ug/L		82	60 - 164	1	20
Isopropylbenzene	25.0	25.0		ug/L		100	70 _ 130	1	20
4-Isopropyltoluene	25.0	23.9		ug/L		95	70 - 130	0	20
Methylene Chloride	25.0	22.0		ug/L		88	70 - 147	1	20
4-Methyl-2-pentanone (MIBK)	125	104		ug/L		83	58 - 130	2	20
Naphthalene	25.0	24.1		ug/L		96	70 - 130	1	20
N-Propylbenzene	25.0	24.1		ug/L		96	70 - 130	0	20
Styrene	25.0	24.7		ug/L		99	70 - 130	1	20
1,1,1,2-Tetrachloroethane	25.0	24.7		ug/L		99	70 - 130	0	20
1,1,2,2-Tetrachloroethane	25.0	23.3		ug/L		93	70 - 130	0	20
Tetrachloroethene	25.0	25.1		ug/L		100	70 - 130	0	20
Toluene	25.0	23.9		ug/L		96	78 - 120	1	20
1,2,3-Trichlorobenzene	25.0	24.6		ug/L		98	70 - 130	2	20
1,2,4-Trichlorobenzene	25.0	25.6		ug/L		102	70 _ 130	0	20
1,1,1-Trichloroethane	25.0	23.3		ug/L		93	70 - 130	1	20
1,1,2-Trichloroethane	25.0	23.8		ug/L		95	70 - 130	1	20
Trichloroethene	25.0	24.4		ug/L		97	70 - 130	0	20
Trichlorofluoromethane	25.0	20.6		ug/L		82	66 - 132	13	20
1,2,3-Trichloropropane	25.0	23.6		ug/L		95	70 - 130	1	20
1,1,2-Trichloro-1,2,2-trifluoroetha	25.0	21.4		ug/L		86	42 - 162	0	20
1,2,4-Trimethylbenzene	25.0	23.7		ug/L		95	70 - 132	1	20
1,3,5-Trimethylbenzene	25.0	24.1		ug/L		97	70 - 130	1	20
Vinyl acetate	25.0	20.0		ug/L		80	43 - 163	1	20
Vinyl chloride	25.0	22.3		ug/L		89	54 - 135	1	20
m-Xylene & p-Xylene	25.0	24.0		ug/L		96	70 - 142	0	20
o-Xylene	25.0	24.2		ug/L		97	70 - 130	1	20
2,2-Dichloropropane	25.0	24.5		ug/L		98	70 - 140	1	20

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	95		67 - 130
1,2-Dichloroethane-d4 (Surr)	85		72 - 130
Toluene-d8 (Surr)	94		70 - 130

Lab Sample ID: LCSD 720-168840/8

Matrix: Water

-C5-C12

Analysis Batch: 168840

Gasoline Range Organics (GRO)

Client Sample	ID: La	ib Con	trol Sar	nple Dup
		Prep	Type:	Total/NA

LCSD LCSD %Rec. **RPD** Result Qualifier %Rec Limits RPD Limit Unit 62 - 120 97 ug/L

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	94		67 - 130
1,2-Dichloroethane-d4 (Surr)	88		72 - 130
Toluene-d8 (Surr)	94		70 - 130

TestAmerica Pleasanton

Spike

Added

500

484

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-60396-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: 720-60457-A-1 MS

Matrix: Water

Analysis Batch: 168840

Client	Sample	ID:	Matrix	Spike
	Dun	. T.	mar Ta	40 I/NIA

Client	Sample	ID: W	natrix	Spike
	Prep	Тур	e: To	tal/NA

Allalysis Datell: 100040	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Methyl tert-butyl ether	ND		25.0	23.5		ug/L	_	94	60 - 138
Acetone	ND		125	104		ug/L		83	60 - 140
Benzene	ND		25.0	23.1		ug/L		92	60 - 140
Dichlorobromomethane	ND		25.0	23.7		ug/L		95	60 - 140
Bromobenzene	ND		25.0	23.5		ug/L		94	60 - 140
Chlorobromomethane	ND		25.0	23.2		ug/L		93	60 - 140
Bromoform	ND		25.0	25.6		ug/L		103	56 - 140
Bromomethane	ND		25.0	22.2		ug/L		89	23 - 140
2-Butanone (MEK)	ND		125	117		ug/L		94	60 - 140
n-Butylbenzene	ND		25.0	23.8		ug/L		95	60 - 140
sec-Butylbenzene	ND		25.0	23.2		ug/L		93	60 - 140
tert-Butylbenzene	ND		25.0	22.9		ug/L		91	60 - 140
Carbon disulfide	ND		25.0	18.6		ug/L		74	38 - 140
Carbon tetrachloride	ND		25.0	23.4		ug/L		94	60 - 140
Chlorobenzene	ND		25.0	24.0		ug/L		96	60 - 140
Chloroethane	ND		25.0	21.9		ug/L		88	51 - 140
Chloroform	ND		25.0	23.3		ug/L		93	60 - 140
Chloromethane	ND		25.0	21.0		ug/L		84	52 - 140
2-Chlorotoluene	ND		25.0	22.7		ug/L		91	60 - 140
4-Chlorotoluene	ND		25.0	23.0		ug/L		92	60 - 140
Chlorodibromomethane	ND		25.0	25.3		ug/L		101	60 - 140
1,2-Dichlorobenzene	ND		25.0	23.6		ug/L		94	60 - 140
1,3-Dichlorobenzene	ND		25.0	23.8		ug/L		95	60 - 140
1,4-Dichlorobenzene	ND		25.0	23.9		ug/L		96	60 - 140
1,3-Dichloropropane	ND		25.0	24.0		ug/L		96	60 - 140
1,1-Dichloropropene	ND		25.0	24.6		ug/L		99	60 - 140
1,2-Dibromo-3-Chloropropane	ND		25.0	26.9		ug/L		108	60 - 140
Ethylene Dibromide	ND		25.0	25.1		ug/L		100	60 - 140
Dibromomethane	ND		25.0	23.9		ug/L		96	60 - 140
Dichlorodifluoromethane	ND		25.0	20.4		ug/L		82	38 - 140
1,1-Dichloroethane	ND		25.0	22.7		ug/L		91	60 - 140
1,2-Dichloroethane	ND		25.0	22.7		ug/L		91	60 - 140
1,1-Dichloroethene	ND		25.0	20.0		ug/L		80	60 - 140
cis-1,2-Dichloroethene	ND		25.0	22.9		ug/L		92	60 - 140
trans-1,2-Dichloroethene	ND		25.0	22.9		ug/L		91	60 - 140
1,2-Dichloropropane	ND		25.0	23.6		ug/L		93	60 - 140
cis-1,3-Dichloropropene	ND		25.0	25.7		ug/L		103	60 - 140
trans-1,3-Dichloropropene	ND		25.0	28.1		ug/L		112	60 - 140
Ethylbenzene	ND		25.0	23.4		ug/L		94	60 - 140
Hexachlorobutadiene	ND		25.0	23.6		ug/L		95	60 - 140
2-Hexanone	ND		125	111		ug/L		88	60 - 140
Isopropylbenzene	ND		25.0	24.1		ug/L		96	60 - 140
4-Isopropyltoluene	ND		25.0	23.0		ug/L		92	60 - 140
Methylene Chloride	ND		25.0	21.8		ug/L		87	40 _ 140
4-Methyl-2-pentanone (MIBK)	ND		125	113		ug/L		90	58 - 130
Naphthalene	ND		25.0	24.9		ug/L		99	56 - 140
N-Propylbenzene	ND		25.0	23.3		ug/L		93	60 - 140
Styrene	ND		25.0	24.3		ug/L		97	60 _ 140

TestAmerica Pleasanton

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-60396-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Sample Sample

Lab Sample ID: 720-60457-A-1 MS

Matrix: Water

Analysis Batch: 168840

Client Sample ID: Matrix Spike

Prep Type: Total/NA

%Rec.			

Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1,2-Tetrachloroethane	ND		25.0	24.2		ug/L	_	97	60 - 140	
1,1,2,2-Tetrachloroethane	ND		25.0	24.1		ug/L		96	60 - 140	
Tetrachloroethene	ND		25.0	24.7		ug/L		99	60 _ 140	
Toluene	ND		25.0	23.5		ug/L		94	60 - 140	
1,2,3-Trichlorobenzene	ND		25.0	24.6		ug/L		99	60 _ 140	
1,2,4-Trichlorobenzene	ND		25.0	26.1		ug/L		105	60 - 140	
1,1,1-Trichloroethane	ND		25.0	22.6		ug/L		91	60 - 140	
1,1,2-Trichloroethane	ND		25.0	24.7		ug/L		99	60 - 140	
Trichloroethene	ND		25.0	24.6		ug/L		97	60 - 140	
Trichlorofluoromethane	ND		25.0	22.8		ug/L		91	60 - 140	
1,2,3-Trichloropropane	1.2		25.0	25.8		ug/L		98	60 - 140	
1,1,2-Trichloro-1,2,2-trifluoroetha	ND		25.0	20.7		ug/L		83	60 - 140	
ne										
1,2,4-Trimethylbenzene	ND		25.0	23.2		ug/L		93	60 - 140	
1,3,5-Trimethylbenzene	ND		25.0	23.2		ug/L		93	60 - 140	
Vinyl acetate	ND		25.0	21.6		ug/L		86	40 - 140	
Vinyl chloride	ND		25.0	21.6		ug/L		86	58 _ 140	
m-Xylene & p-Xylene	ND		25.0	23.6		ug/L		94	60 - 140	
o-Xylene	ND		25.0	23.6		ug/L		94	60 - 140	
2,2-Dichloropropane	ND		25.0	23.2		ug/L		93	60 - 140	

MS MS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	95		67 - 130
1,2-Dichloroethane-d4 (Surr)	87		72 - 130
Toluene-d8 (Surr)	94		70 _ 130

Lab Sample ID: 720-60457-A-1 MSD

Matrix: Water

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA

Analysis Batch: 168840	01-	Commis	Cailea	MCD	MSD				%Rec.		RPD
A 1.4-	•	Sample	Spike		Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Analyte		Qualifier	Added		Quantier						
Methyl tert-butyl ether	ND		25.0	22.4		ug/L		90	60 - 138	5	20
Acetone	ND		125	101		ug/L		81	60 - 140	2	20
Benzene	ND		25.0	23.6		ug/L		94	60 - 140	2	20
Dichlorobromomethane	ND		25.0	23.0		ug/L		92	60 - 140	3	20
Bromobenzene	ND		25.0	24.1		ug/L		96	60 - 140	2	20
Chlorobromomethane	ND		25.0	22.8		ug/L		91	60 _ 140	2	20
Bromoform	ND		25.0	24.6		ug/L		98	56 - 140	4	20
Bromomethane	ND		25.0	23.6		ug/L		94	23 - 140	6	20
2-Butanone (MEK)	ND		125	114		ug/L		91	60 - 140	2	20
n-Butylbenzene	ND		25.0	25.0		ug/L		100	60 - 140	5	20
sec-Butylbenzene	ND		25.0	24.3		ug/L		97	60 - 140	5	20
tert-Butylbenzene	ND		25.0	23.9		ug/L		95	60 - 140	4	20
Carbon disulfide	ND		25.0	19.3		ug/L		77	38 - 140	4	20
Carbon tetrachloride	ND		25.0	24.3		ug/L		97	60 - 140	4	20
Chlorobenzene	ND		25.0	24.5		ug/L		98	60 - 140	2	20
Chloroethane	ND		25.0	22.9		ug/L		92	51 - 140	5	20
Chloroform	ND		25.0	23.6		ug/L		94	60 - 140	1	20

TestAmerica Pleasanton

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-60396-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: 720-60457-A-1 MSD

Matrix: Water

Analysis Batch: 168840

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA

THE STREET	7
Ī	

Analysis Batch: 100040	Sample :	Sample Spike	MSD	MSD			%Rec.		RPD
Analyte	Result (Qualifier Added	Result	Qualifier	Unit	D %Rec	Limits	RPD	Limit
Chloromethane	ND	25.0	21.4		ug/L	85	52 - 140	2	20
2-Chlorotoluene	ND	25.0	23.6		ug/L	94	60 - 140	4	20
4-Chlorotoluene	ND	25.0	24.0		ug/L	96	60 - 140	4	20
Chlorodibromomethane	ND	25.0	24.7		ug/L	99	60 - 140	2	20
1,2-Dichlorobenzene	ND	25.0	24.0		ug/L	96	60 - 140	2	20
1,3-Dichlorobenzene	ND	25.0	24.3		ug/L	97	60 - 140	2	20
1,4-Dichlorobenzene	ND	25.0	24.2		ug/L	97	60 - 140	1	20
1,3-Dichloropropane	ND	25.0	23.1		ug/L	92	60 - 140	4	20
1,1-Dichloropropene	ND	25.0	25.5		ug/L	102	60 - 140	3	20
1,2-Dibromo-3-Chloropropane	ND	25.0	24.3		ug/L	97	60 - 140	10	20
Ethylene Dibromide	ND	25.0	24.3		ug/L	97	60 - 140	3	20
Dibromomethane	ND	25.0	23.4		ug/L	94	60 - 140	2	20
Dichlorodifluoromethane	ND	25.0	21.5		ug/L	86	38 - 140	5	20
1,1-Dichloroethane	ND	25.0	23.1		ug/L	92	60 - 140	2	20
1,2-Dichloroethane	ND	25.0	22.1		ug/L	89	60 - 140	3	20
1,1-Dichloroethene	ND	25.0	20.7		ug/L	83	60 - 140	4	20
cis-1,2-Dichloroethene	ND	25.0	23.0		ug/L	92	60 - 140	0	20
trans-1,2-Dichloroethene	ND	25.0	23.6		ug/L	94	60 - 140	3	20
1,2-Dichloropropane	ND	25.0	23.4		ug/L	92	60 - 140	1	20
cis-1,3-Dichloropropene	ND	25.0	25.4		ug/L	102	60 - 140	1	20
trans-1,3-Dichloropropene	ND	25.0	27.3		ug/L	109	60 - 140	3	20
Ethylbenzene	ND	25.0	24.1		ug/L	96	60 - 140	3	20
Hexachlorobutadiene	ND	25.0	25.0		ug/L	100	60 - 140	6	20
2-Hexanone	ND	125	102		ug/L	81	60 - 140	8	20
Isopropylbenzene	ND	25.0	25.0		ug/L	100	60 - 140	4	20
4-Isopropyltoluene	ND	25.0	24.3		ug/L	97	60 - 140	5	20
Methylene Chloride	ND	25.0	21.6		ug/L	86	40 - 140	1	20
4-Methyl-2-pentanone (MIBK)	ND	125	108		ug/L	86	58 - 130	5	20
Naphthalene	ND	25.0	23.9		ug/L	96	56 - 140	4	20
N-Propylbenzene	ND	25.0	24.4		ug/L	98	60 - 140	5	20
Styrene	ND	25.0	24.3		ug/L	97	60 - 140	0	20
1,1,1,2-Tetrachloroethane	ND	25.0	24.3		ug/L	97	60 - 140	0	20
1,1,2,2-Tetrachloroethane	ND	25.0	23.1		ug/L	93	60 - 140	4	20
Tetrachloroethene	ND	25.0	25.3		ug/L	101	60 - 140	3	20
Toluene	ND	25.0	23.9		ug/L	96	60 - 140	2	20
1,2,3-Trichlorobenzene	ND	25.0	24.9		ug/L	100	60 - 140	1	20
1,2,4-Trichlorobenzene	ND	25.0	26.1		ug/L	104	60 - 140	0	20
1,1,1-Trichloroethane	ND	25.0	23.2		ug/L	93	60 - 140	2	20
1,1,2-Trichloroethane	ND	25.0	23.9		ug/L	96	60 - 140	3	20
Trichloroethene	ND	25.0	25.0		ug/L	98	60 - 140	2	20
Trichlorofluoromethane	ND	25.0	24.6		ug/L	98	60 - 140	7	20
1,2,3-Trichloropropane	1.2	25.0	24.6		ug/L	93	60 - 140	5	20
1,1,2-Trichloro-1,2,2-trifluoroetha	ND	25.0	21.8		ug/L	87	60 - 140	5	20
ne 1,2,4-Trimethylbenzene	ND	25.0	23.9		ug/L	95	60 - 140	3	20
1,3,5-Trimethylbenzene	ND	25.0	24.1		ug/L	96	60 - 140	4	20
Vinyl acetate	ND	25.0	21.0		ug/L	84	40 - 140	3	20
Vinyl chloride	ND	25.0	23.1		ug/L	92	58 - 140	7	20

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-60396-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: 720-60457-A-1 MSD

Matrix: Water

Surrogate

4-Bromofluorobenzene

Toluene-d8 (Surr)

1,2-Dichloroethane-d4 (Surr)

Analysis Batch: 168840

Client Sample	ID:	Matrix	Spike	Duplicate
		-		

Prep Type: Total/NA

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
m-Xylene & p-Xylene	ND		25.0	24.1		ug/L	4	96	60 - 140	2	20
o-Xylene	ND		25.0	24.0		ug/L		96	60 - 140	2	20
2,2-Dichloropropane	ND		25.0	24.3		ug/L		97	60 - 140	4	20

MSD MSD %Recovery Qualifier Limits 67 - 130 94 84 72 - 130 70 - 130 96

QC Association Summary

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-60396-1

GC/MS VOA

Analysis Batch: 168839

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-60396-1	MW-01	Total/NA	Water	8260B/CA_LUFT	
				MS	
20-60396-2	MVV-100	Total/NA	Water	8260B/CA_LUFT	
				MS	
20-60396-3	MW-02	Total/NA	Water	8260B/CA_LUFT	
				MS	
20-60396-3 MS	MVV-02	Total/NA	Water	8260B/CA_LUFT	
				MS	
20-60396-3 MSD	MW-02	Total/NA	Water	8260B/CA_LUFT	
				MS	
20-60396-4	MP-01-1	Total/NA	Water	8260B/CA_LUFT	
				MS	
20-60396-5	MP-01-2	Total/NA	Water	8260B/CA_LUFT	
				MS	
20-60396-6	MP-01-3	Total/NA	Water	8260B/CA_LUFT	
				MS	
20-60396-7	MP-02-1	Total/NA	Water	8260B/CA_LUFT	
				MS	
20-60396-8	MP-02-3	Total/NA	Water	8260B/CA_LUFT	
20 00000 0	10.	10001111	770.01	MS	
20-60396-9	MP-03-1	Total/NA	Water	8260B/CA_LUFT	
20-00030-3	WII -03-1	1 Otal/14/A	vvalei	_	
20-60396-10	MP-03-2	Total/NA	Water	MS	
20-00390-10	WIF-03-2	TOTALINA	vvalei	8260B/CA_LUFT	
20 60206 44	MP-03-3	Total/NA	Motor	MS	
20-60396-11	MP-03-3	Total/NA	Water	8260B/CA_LUFT	
00.0000.40	MD 04.4	T + 1014	107.1	MS	
20-60396-12	MP-04-1	Total/NA	Water	8260B/CA_LUFT	
				MS	
20-60396-15	TB100614-1	Total/NA	Water	8260B/CA_LUFT	
				MS	
CS 720-168839/5	Lab Control Sample	Total/NA	Water	8260B/CA_LUFT	
				MS	
CS 720-168839/7	Lab Control Sample	Total/NA	Water	8260B/CA_LUFT	
				MS	
CSD 720-168839/6	Lab Control Sample Dup	Total/NA	Water	8260B/CA_LUFT	
				MS	
CSD 720-168839/8	Lab Control Sample Dup	Total/NA	Water	8260B/CA_LUFT	
				MS	
MB 720-168839/4	Method Blank	Total/NA	Water	8260B/CA_LUFT	
				MS	

Analysis Batch: 168840

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-60396-13	MP-04-2	Total/NA	Water	8260B/CA_LUFT	
				MS	
720-60396-14	MP-04-3	Total/NA	Water	8260B/CA_LUFT	
				MS	
720-60396-16	TB100614-2	Total/NA	Water	8260B/CA_LUFT	
				MS	
720-60457-A-1 MS	Matrix Spike	Total/NA	Water	8260B/CA_LUFT	
				MS	
720-60457-A-1 MSD	Matrix Spike Duplicate	Total/NA	Water	8260B/CA_LUFT	
				MS	
LCS 720-168840/5	Lab Control Sample	Total/NA	Water	8260B/CA_LUFT	
				MS	
LCS 720-168840/7	Lab Control Sample	Total/NA	Water	8260B/CA_LUFT	
				MS	

TestAmerica Pleasanton

Page 52 of 63

QC Association Summary

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-60396-1

GC/MS VOA (Continued)

Analysis Batch: 168840 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCSD 720-168840/6	Lab Control Sample Dup	Total/NA	Water	8260B/CA_LUFT	
				MS	
LCSD 720-168840/8	Lab Control Sample Dup	Total/NA	Water	8260B/CA_LUFT	
				MS	
MB 720-168840/4	Method Blank	Total/NA	Water	8260B/CA_LUFT	
				MS	

TestAmerica Pleasanton

Lab Sample ID: 720-60396-2

Matrix: Water

	Batch
Prep Type	Туре

Total/NA

Prep Type

Total/NA

Batch	
Туре	
Analysis	5

TAL PLS

Lab

Date Collected: 10/06/14 12:30 Date Received: 10

/06/14	17:40

Batch Method 8260B/CA_LUFTMS

Run

Dilution Factor

Batch Number 168839

Prepared or Analyzed 10/15/14 13:43

Analyst ASC

TAL PLS

Lab Sample ID: 720-60396-3 Matrix: Water

Client Sample ID: MW-02

Date Collected: 10/06/14 08:40 Date Received: 10/06/14 17:40

Prep Type
Total/NA

Batch Туре Analysis Batch Method 8260B/CA_LUFTMS

Run

Dilution Batch Factor Number 168839

Prepared or Analyzed 10/15/14 12:17

Analyst ASC

TAL PLS

Client Sample ID: MP-01-1

Date Collected: 10/06/14 12:35 Date Received: 10/06/14 17:40

Prep Type	
Total/NA	

Batch Туре Analysis

Method 8260B/CA_LUFTMS

Dilution Run

Factor Number 168839

Batch Prepared

or Analyzed Analyst 10/15/14 14:11 ASC

Lab TAL PLS

Client Sample ID: MP-01-2

Date Collected: 10/06/14 13:30 Date Received: 10/06/14 17:40

Prep Type Total/NA

Prep Type

Total/NA

Batch Type Analysis Batch Method 8260B/CA_LUFTMS

Run

Run

Dilution Factor

Batch Number 168839

Prepared or Analyzed 10/15/14 14:40

Analyst ASC

Lab TAL PLS

Client Sample ID: MP-01-3

Date Collected: 10/06/14 14:20 Date Received: 10/06/14 17:40

> Batch Type Analysis

Batch Method

8260B/CA_LUFTMS

Dilution Factor

Batch Number 168839

Prepared or Analyzed 10/15/14 15:08

Analyst ASC

Lab TAL PLS

Client Sample ID: MP-02-1

Date Collected: 10/06/14 09:35 Date Received: 10/06/14 17:40

Lab Sample ID: 720-60396-7

Matrix: Water

-		Batch	Batch		Dilution	Batch	Prepared		
	Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	nalyzed Analyst Lab	
	Total/NA	Analysis	8260B/CA_LUFTMS		1	168839	10/15/14 15:36	ASC TAL F	PLS

Client Sample ID: MP-02-3

Date Collected: 10/06/14 11:05 Date Received: 10/06/14 17:40

Lab Sample ID: 720-60396-8

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	8260B/CA_LUFTMS		1	168839	10/15/14 16:05	ASC	TAL PLS	

Client Sample ID: MP-03-1

Date Collected: 10/06/14 11:15 Date Received: 10/06/14 17:40

Lab Sample ID: 720-60396-9

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	8260B/CA_LUFTMS		1	168839	10/15/14 16:34	ASC	TAL PLS	

Client Sample ID: MP-03-2

Date Collected: 10/06/14 08:35

Date Received: 10/06/14 17:40

Lab Sample ID: 720-60396-10

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B/CA_LUFTMS		1	168839	10/15/14 17:02	ASC	TAL PLS

Client Sample ID: MP-03-3

Date Collected: 10/06/14 11:00

Date Received: 10/06/14 17:40

Lab Sample ID: 720-60396-11

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B/CA_LUFTMS		1	168839	10/15/14 17:31	ASC	TAL PLS

Client Sample ID: MP-04-1

Date Collected: 10/06/14 12:40

Date Received: 10/06/14 17:40

Lab Sample ID: 720-60396-12

Matrix: Water

Dilution Batch Batch Prepared Batch Factor Number Prep Type Туре Method Run or Analyzed Analyst Lab 8260B/CA_LUFTMS TAL PLS Total/NA Analysis 168839 10/15/14 17:59 ASC

Lab Chronicle

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-60396-1

Client Sample ID: MP-04-2

Date Collected: 10/06/14 12:50

Lab Sample ID: 720-60396-13

Matrix: Water

Date Received: 10/06/14 17:40

Prep Type

Total/NA

Batch Туре Analysis

Batch Method 8260B/CA LUFTMS Dilution Factor

Factor

Batch Number 168840

Prepared or Analyzed 10/15/14 16:50

Analyst ASC

Lab TAL PLS

Client Sample ID: MP-04-3

Date Collected: 10/06/14 09:35

Date Received: 10/06/14 17:40

Lab Sample ID: 720-60396-14

Matrix: Water

Prep Type Total/NA

Prep Type

Total/NA

Batch Туре Analysis

Batch

Туре

Analysis

Batch Method 8260B/CA_LUFTMS

Method

8260B/CA_LUFTMS

Dilution Run Factor

Run

Batch Number 168840

Prepared or Analyzed 10/15/14 17:20

Analyst ASC

TAL PLS

Lab Sample ID: 720-60396-15 Matrix: Water

Client Sample ID: TB100614-1

Date Collected: 10/06/14 08:00

Date Received: 10/06/14 17:40

Dilution Batch

Run

Batch Number

168839

Prepared or Analyzed 10/15/14 12:46 ASC

Analyst TAL PLS

Client Sample ID: TB100614-2

Date Collected: 10/06/14 08:02

Date Received: 10/06/14 17:40

Lab Sample ID: 720-60396-16

Matrix: Water

Batch Dilution Batch Prepared Batch Method Run Factor Number or Analyzed Analyst Lab Type **Prep Type** 168840 10/15/14 12:42 ASC TAL PLS 8260B/CA_LUFTMS Total/NA Analysis

Laboratory References:

TAL PLS = TestAmerica Pleasanton, 1220 Quarry Lane, Pleasanton, CA 94566, TEL (925)484-1919

Certification Summary

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-60396-1

Laboratory: TestAmerica Pleasanton

Unless otherwise noted, all analytes for this laboratory were covered under each certification below.

Authority	Program		EPA Region	Certification ID	Expiration Date
California	State Prog	ram	9	2496	01-31-16
Analysis Method	Prep Method	Matrix	Analyt	re	

TestAmerica Pleasanton

Method Summary

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-60396-1

Method **Method Description** Protocol Laboratory 8260B/CA_LUFTM 8260B / CA LUFT MS SW846 TAL PLS S

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL PLS = TestAmerica Pleasanton, 1220 Quarry Lane, Pleasanton, CA 94566, TEL (925)484-1919

TestAmerica Pleasanton

Page 58 of 63

Sample Summary

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-60396-1

Collected	Received
10/06/14 12:25	10/06/14 17:40
10/06/14 12:30	10/06/14 17:40
10/06/14 08:40	10/06/14 17:40
10/06/14 12:35	10/06/14 17:40
10/06/14 13:30	10/06/14 17:40

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
720-60396-1	MW-01	Water	10/06/14 12:25	10/06/14 17:40
720-60396-2	MW-100	Water	10/06/14 12:30	10/06/14 17:40
720-60396-3	MW-02	Water	10/06/14 08:40	10/06/14 17:40
720-60396-4	MP-01-1	Water	10/06/14 12:35	10/06/14 17:40
720-60396-5	MP-01-2	Water	10/06/14 13:30	10/06/14 17:40
720-60396-6	MP-01-3	Water	10/06/14 14:20	10/06/14 17:40
720-60396-7	MP-02-1	Water	10/06/14 09:35	10/06/14 17:40
720-60396-8	MP-02-3	Water	10/06/14 11:05	10/06/14 17:40
720-60396-9	MP-03-1	Water	10/06/14 11:15	10/06/14 17:40
720-60396-10	MP-03-2	Water	10/06/14 08:35	10/06/14 17:40
720-60396-11	MP-03-3	Water	10/06/14 11:00	10/06/14 17:40
720-60396-12	MP-04-1	Water	10/06/14 12:40	10/06/14 17:40
720-60396-13	MP-04-2	Water	10/06/14 12:50	10/06/14 17:40
720-60396-14	MP-04-3	Water	10/06/14 09:35	10/06/14 17:40
720-60396-15	TB100614-1	Water	10/06/14 08:00	10/06/14 17:40
720-60396-16	TB100614-2	Water	10/06/14 08:02	10/06/14 17:40

Seq. No.	1248	1465 North McDowe	ell Blvd.	CHAIN	OF CUSTO	DY F	FORM	Pa	age Al	10+	673	10
	TA	Petaluma, CA 9495 (707) 793-3800	-	Samplers:	D. AUG. +	 , ,			di		E	
Job Numbe	er: OD1011	00000.00008.A		6	276						- n	
Name/Loca	ation: Crown	cherrolet Cadillac	tsuzu			-	AN	ALYSIS	REQI	JEST	ED	
Project Ma	nager: Ave	my Whitmash		Recorder: ((Signature Required)	-	22 METALS . 62608 t TPH					
Water Soil Air	#HCSO4 HCSO4 HCSO4 HCL HCL HCL			DATE	STATION DESCRIPTION DEP	H1	8270 TITLE 22 MET VP CS 8260					
. Air		SAMPLE NUMBER	YR MO	061225		80 8	% F ≯ ×		++-	++	++	+++
		W-1 00	1410	061230			1 1			+	++	111
		1111-02	1410	060840			*					
		UP-01-1	1410	061235		$-\parallel\perp$	-<				\perp	
		1P-01-2		061330		$\dashv \vdash \vdash$	(-	+	+ + +
		1P-01-3	1410	061420		$\dashv \vdash \vdash$	4	+++	++-	₩	++	+++-
	-1 	<u> </u>	1410	000935		$\dashv \vdash \vdash$	K		++	++	++	+++
		1P-02-3	1410	061105		$-\parallel + \parallel$	X	111		++	++-	
	2 6	VP-03-2		065835		$-\parallel$	TX I	111		++	++	
K-1-1-1	/	ADDITIONAL INFORMATION		0 10 10 10 10		CHAIN	OF CUST	ODY RE	COR	0	-	
REPORT		marging and com			0-1 sent	۵.	and Alls		TEC	11	16/	14/174
1					Relinquished By (Sign	ature) (Print Name)		прапу)		(Date	Tinhe) h
	012205652				Jounts	ul 0	ill	ullen			ne	10-6-14
	Standard				Received By (Signatu	re): ((Print Name)	(Con	npany)			e/Time)
	: Field Filtered	Y/N										
EDF W		10: T1000000161	6		Relinquished By (Sign	ature) ((Print Name)	(Con	прапу)		(Date	e/Time)
				-	Received By (Signatu	re): ((Print Name)	(Con	прапу)		(Date	e/Time)
_					Relinquished By (Sigr	nature)	(Print Name)	(Cor.	npany)		(Date	e/Time)
720-	60396 Chain of Custody	HITTOTO BUILDING	9 4 7	1110	Received By (Signatu	ге):	(Print Name)	(Cor	npany)		(Date	e/Time)
1			3.22	11.60	Method of Shipment:							

Seq. No. 12 Lab: TA Job Number:	1465 North McDowell Suite 200 Petaluma, CA 94954 (707) 793-3800		S	ampl	ers:	D	F CUSTOD	Y F	FORM	/ 1	a	m	20fi 1567 160	20	10/20/2014	
Name/Location:	Crown chow	volet Cadillac	Soza	٥						А	NALY	SIS REC	QUES	TED		
Project Manager:	Aleny W	himany4		R	ecor	der: 🔻		ARCLY (Signature Required)		STATE						
MATRIX # CONTAIN	NERS			DATE	=			STATION DESCRIPTION		22 METALS \$UCOBY TOWN						
Water Soil Air Unpres. H2SO4 HNO3	SA	MPLE NUMBER	YR MO	DAY	Т	IME		DEPTH	8260	Vocs						
X		03-3	1 4 1 t			10 C	-1 5			<u>\</u>						1
		2 4 - 2		06		50				1			-			ار ار
	3 MP-1	04-3	1410	06	09					X						of 63
	1 1 2 7 6	0614-1	1 410	06		0 2			\vdash	×	++			+		- 22
			1				1			K	++				1	Page
																<u> </u>
			+++	-			- -		\vdash	+	-		\dashv			1
	ADDITIO	ONAL INFORMATION					╢╴	. CH	AIN	OF CUS	TOD	Y RECO	RD			-
REPORT TO: 000	my unitma	rshpamer con						2-JACUt	- (DuridAU	150+	AMEC		1016li	1 174	4
PO#: (01220		amec.com			-	_		Relinquished By (Signatur	(F	Print Name)	11	(Company)		(Date/		
TAT: standar								Received By (Signature):	<u>,00</u>	Print Name)	المك	(Company)		(Date/		
Comments: Field F								received by (olginature).	(,	mic ivame,		(Company)	,	(Date)	#116 <i>)</i>	
EDF requir	red. Site 17	D' 110000001616	3					Relinquished By (Signatur	e) (F	Print Name)	i	(Company)) = 1	(Date/	Time)	
								Received By (Signature):	(F	Print Name)		(Company)	(Date/	Time)	
								Relinquished By (Signatur	e) (F	Print Name)		(Company))	(Date/	Tîme)	
								Received By (Signature):	(F	Print Name)		(Company)	(Date/	Time)	

Method of Shipment:

Salimpour, Afsaneh

Whitmarsh, Avery [avery.whitmarsh@amec.com] From:

Friday, October 10, 2014 10:58 AM Sent:

To: Salimpour, Afsaneh

Allbut, David; Stemler, Greg Cc: Subject: Crown - sample analysis

Hı Afsaneh -

We'd like to release all the samples from hold that we had submitted on Monday for Crown Chevrolet.

That is for the following job numbers:

- 720-60396
- 720-60404

Please let me know if you have any questions.

Thanks Avery

Avery Whitmarsh, PG Senior Geologist AMEC

on mala attached e Goral Avenue, Suite 1100, Oakland, CA 94612 USA 10.46.24.100 (b. 4.616-363-4141) 110.63.47134 mobile/cell 415-378-3912

avory.whitmarsh@amec.com amec com

The man word was the elevate suctended only for the individual or entity to whom it is addressed to the individual or entity to whom it is addressed to the individual or privileged information to the individual or privileged information to the individual or privileged information.

The program error, please notify the songer by reply e-mail and delete and destroy the message

Login Sample Receipt Checklist

Client: AMEC Environment & Infrastructure, Inc.

Job Number: 720-60396-1

Login Number: 60396

List Number: 1

Creator: Bullock, Tracy

List Source: TestAmerica Pleasanton

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or campered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
s the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is https://example.com/	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

APPENDIX C

Data Quality Review

DATA QUALITY REVIEW

Crown Chevrolet Cadillac Isuzu 7544 Dublin Boulevard Dublin, California Site Cleanup Program Case No. RO0003014

April 21, 2015 Project OD10160070

This Data Quality Review appendix was prepared by the staff of Amec Foster Wheeler under the supervision of the project Data Quality Manager whose signature appears hereon.

The findings, recommendations, specifications, or professional opinions are presented within the limits described by the client, in accordance with generally accepted professional engineering and geologic practice. No warranty is expressed or implied.

Jake Torrens

Associate Scientist

Amec Foster Wheeler Environment & Infrastructure, Inc.

TABLE OF CONTENTS

		Page
1.0	INTRODUCTION	C-1
2.0	THIRD QUARTER 2014 GROUNDWATER MONITORING	C-1
	2.1 DATA ACCURACY	C-1
	2.1.1 Spiked Compounds	
	2.1.2 Surrogate Recoveries	
	2.1.3 Method Blanks	
	2.1.4 Trip Blanks	C-2
	2.1.5 Other Factors	C-2
	2.2 DATA PRECISION	C-2
	2.3 DATA COMPLETENESS	C-2
3.0	FOURTH QUARTER 2014 GROUNDWATER MONITORING	C-3
0.0	3.1 DATA ACCURACY	
	3.1.1 Spiked Compounds	
	3.1.2 Surrogate Recoveries	C-3
	3.1.3 Method Blanks	
	3.1.4 Trip Blanks	C-3
	3.1.5 Other Factors	C-3
	3.2 DATA PRECISION	C-4
	3.3 DATA COMPLETENESS	C-4
4.0	SUMMARY OF GROUNDWATER DATA QUALITY REVIEW	C-4
5.0	REFERENCES	C-4

TABLE

Table C-1 Summary of Precision Data for Analysis of Groundwater Field Duplicate Sample

APPENDIX C DATA QUALITY REVIEW

Crown Chevrolet Cadillac Isuzu
7544 Dublin Boulevard
Dublin, California

1.0 INTRODUCTION

Amec Foster Wheeler Environment & Infrastructure, Inc. ("Amec Foster Wheeler"), evaluated the analytical data from the third and fourth quarter 2014 groundwater monitoring events using guidelines set forth in the U.S. Environmental Protection Agency's (EPA's) *USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review* (National Functional Guidelines; U.S. EPA, 2008).

The data quality review also included a data completeness check of the data packages, a transcription check of sample results, and a review of all laboratory reporting forms. Qualified data are included in the data summary tables in the main body of this report (with the exception of analytes that have not been detected at the site, which are not tabulated). Data qualifiers for the third and fourth quarter 2014 groundwater monitoring events are included on the laboratory analytical reports, copies of which are included in Appendix B.

2.0 THIRD QUARTER 2014 GROUNDWATER MONITORING

Quality assurance procedures for groundwater samples collected during the third quarter 2014 groundwater monitoring event included the collection and analysis of one blind field duplicate sample and one matrix spike/matrix spike duplicate (MS/MSD) sample; laboratory analysis of method blank samples, surrogate spikes, and laboratory control spike/laboratory control spike duplicates (LCS/LCSDs); and evaluation of the analytical results.

The blind field duplicate groundwater sample was collected from monitoring well MW-01 and labeled as MW-100. The groundwater MS/MSD sample was collected from monitoring well MW-02.

A review of groundwater data quality is provided in the following sections.

2.1 DATA ACCURACY

Data accuracy was assessed by the analysis of LCS, LCSD, MS, and MSD samples and evaluation of the recovery of spiked compounds, and is expressed as a percentage of the true or known concentrations. Surrogate recoveries and blank results also were used to assess accuracy.

2.1.1 Spiked Compounds

No results were qualified due to LCS/LCSD or MS/MSD recoveries.

2.1.2 Surrogate Recoveries

No groundwater data were qualified due to surrogate recoveries.

2.1.3 Method Blanks

There were no detections in the method blank samples.

2.1.4 Trip Blanks

Two trip blanks were submitted for volatile organic compound (VOC) analysis. There were no detections in the trip blank samples.

2.1.5 Other Factors

Total petroleum hydrocarbons quantified as gasoline (TPHg; reported by the analytical laboratory as gasoline range organics) were reported at a concentration similar to trichloroethene (TCE) in groundwater sample MP-02-1 and to tetrachloroethene (PCE) in groundwater samples MW-01, MW-100, MP-01-1, and MP-03-1. The analytical laboratory indicated in the case narratives for these samples that the reported TPHg results were due to presence of discrete peaks (PCE or TCE) and not the presence of gasoline range organics. As a result, Amec Foster Wheeler qualified these TPHg results with "R" to indicate that they are rejected.

2.2 DATA PRECISION

Data precision is evaluated by comparing analytical results from the duplicate sample pair and evaluating the calculated relative percent difference (RPD) between the data sets. Results for LCS/LCSD, MS/MSD, and the field duplicate sample pair were evaluated to assess the precision of the analytical methods. A summary of sample results from the field duplicate sample pair is shown in Table C-1.

The RPDs for the MS/MSD, LCS/LCSD, and field duplicate pairs were within acceptance limits.

2.3 DATA COMPLETENESS

Completeness is the ratio of the number of valid sample results to the total number of samples analyzed with a specific matrix and/or analysis. The percent complete is calculated by the following equation:

The percent complete for groundwater sample data collected during the third quarter 2014 groundwater monitoring event is 100 percent, with the exception of TPHg results, where the percent complete is 61.5 percent.

3.0 FOURTH QUARTER 2014 GROUNDWATER MONITORING

Quality assurance procedures for groundwater samples collected during Amec Foster Wheeler's fourth quarter 2014 groundwater monitoring event included the collection and analysis of one blind field duplicate sample and one MS/MSD sample; laboratory analysis of method blank samples, surrogate spikes, and LCS/LCSDs; and evaluation of the analytical results.

The blind field duplicate groundwater sample was collected from monitoring well MW-01 and labeled as MW-100. The groundwater MS/MSD sample was collected from monitoring well MW-02.

A review of groundwater data quality is provided in the following sections.

3.1 DATA ACCURACY

Data accuracy was assessed by the analysis of LCS, LCSD, MS, and MSD samples and evaluation of the recovery of spiked compounds, and is expressed as a percentage of the true or known concentrations. Surrogate recoveries and blank results also were used to assess accuracy.

3.1.1 Spiked Compounds

No results were qualified due to LCS/LCSD or MS/MSD recoveries.

3.1.2 Surrogate Recoveries

No groundwater data were qualified due to surrogate recoveries.

3.1.3 Method Blanks

There were no detections in the method blank samples.

3.1.4 Trip Blanks

Two trip blank samples were submitted for VOC analysis. There were no detections in the trip blank samples.

3.1.5 Other Factors

TPHg were reported at concentrations similar to one or more compounds including PCE, TCE, and/or cis-1,2-dichloroethene (cis-1,2-DCE) in groundwater samples MW-01, MW-100, MP-01-1, and MP-02-1. The analytical laboratory indicated in the case narratives for these samples that the TPHg results were due to presence of discrete peaks (PCE, TCE, or,

cis-1,2-DCE) and not the presence of gasoline range organics. As a result, Amec Foster Wheeler qualified these TPHg results with "R" to indicate that they are rejected.

3.2 DATA PRECISION

Data precision is evaluated by comparing analytical results from duplicate sample pairs and evaluating the calculated RPD between the data sets. Results for the LCS/LCSD, MS/MSD, and the field duplicate sample pairs were evaluated to assess the precision of the analytical methods. A summary of sample results from the field duplicate sample pair is shown in Table C-1.

The RPDs for the MS/MSD, LCS/LCSD, and the field duplicate pairs were within acceptance limits.

3.3 DATA COMPLETENESS

Completeness is the ratio of the number of valid sample results to the total number of samples analyzed with a specific matrix and/or analysis. The percent complete is calculated by the following equation:

The percent complete for groundwater sample data collected during the second quarter 2014 groundwater monitoring event is 100 percent, with the exception of the TPHg results, where the percent complete is 75 percent.

4.0 SUMMARY OF GROUNDWATER DATA QUALITY REVIEW

Based on an evaluation of data quality for samples collected during the third and fourth quarter 2014 groundwater monitoring events, all the analytical results are valid and useable, with the exception of the rejected results. The data are acceptable and can be used for decision-making purposes; however, the limitations identified by the applied qualifiers should be considered when using the data.

5.0 REFERENCES

U.S. Environmental Protection Agency, 2008, USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review, EPA-540-R-08-01, June.

TABLE C-1

SUMMARY OF PRECISION DATA FOR ANALYSIS OF GROUNDWATER FIELD DUPLICATE SAMPLES

Crown Chevrolet Cadillac Isuzu 7544 Dublin Boulevard Dublin, California

All concentrations reported in µg/L

Primary Sample ID	Duplicate Sample ID	Collection Date	Compound ¹	Reporting Limit	Primary Sample Result	Duplicate Sample Result	RPD ²	Absolute Difference Between Sample Results ³
MW-01	1 MW-100	7/30/2014	Tetrachloroethene	0.50/1.0	100	100	0%	NA
10100-01			Trichloroethene	0.50/1.0	0.89	<1.0	NA	0.11
MW-01	MW-100	10/6/2014	Tetrachloroethene	0.50	82	90	9%	NA
			Trichchloroethene	0.50	0.95	0.97	NA	0.02

Notes

- 1. Only compounds detected in at least one of the field primary or field duplicate samples are shown.
- 2. Relative Percent Difference (RPD) is calculated by:

$$RPD \% = \left| \frac{2(S_1 - S_2)}{S_1 + S_2} \right| \times 100$$

Where S_1 , is the sample concentration and S_2 is the blind duplicate sample concentration.

3. The RPD is not applicable when the sample results are less than two times the reporting limit. In those cases, duplicate results are acceptable when the absolute difference between the results is less than the reporting limit. When a compound was detected in one duplicate sample, but was not detected at or above the laboratory reporting limit in the other sample, then the results are acceptable when the absolute difference between the detected result and the reporting limit is less than the reporting limit.

Abbreviations

 μ g/L = micrograms per liter NA = not applicable