RECEIVED

By Alameda County Environmental Health at 2:25 pm, Feb 19, 2014

February 18, 2014

Ms. Dilan Roe Hazardous Materials Specialist Alameda County Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94501-6577

Subject: Third and Fourth Quarter 2013 Groundwater Monitoring Report and

Annual Summary

Crown Chevrolet Cadillac Isuzu 7544 Dublin Boulevard

Dublin, California

Fuel Leak Case No. RO0003014

Dear Ms. Roe:

Enclosed please find the *Third and Fourth Quarter 2013 Groundwater Monitoring Report and Annual Summary* for the Crown Chevrolet Cadillac Isuzu site at 7544 Dublin Boulevard and 6707 Golden Gate Drive, in Dublin, California (Fuel Leak Case No. RO0003014, GeoTracker Global ID T10000001616). This document was prepared by AMEC Environment & Infrastructure, Inc. (AMEC), on behalf of Crown Chevrolet Cadillac Isuzu.

I declare under penalty of perjury that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge.

Please contact me at (925) 984-1426 or Avery Patton of AMEC at 510-663-4154 if you have any questions regarding this Work Plan.

Sincerely yours,

Betty J. Woolverton Trust

Attachment: Third and Fourth Quarter 2013 Groundwater Monitoring Report and

Annual Summary

cc: Tondria Hendrix, Zurich North American Insurance

Thomas L. Vormbrock, Rimkus Consulting Group, Inc.

Susan Gallardo, AMEC Environment & Infrastructure, Inc.

THIRD AND FOURTH QUARTER 2013 GROUNDWATER MONITORING REPORT AND ANNUAL SUMMARY

Crown Chevrolet Cadillac Isuzu 7544 Dublin Boulevard and 6707 Golden Gate Drive Dublin, California

Prepared for:

Crown Chevrolet

Dublin, California

Prepared by:

AMEC Environment & Infrastructure, Inc.

2101 Webster Street, 12th Floor Oakland, California 94612

February 2014

Project No. OD10160070

THIRD AND FOURTH QUARTER 2013 GROUNDWATER MONITORING REPORT AND ANNUAL SUMMARY

Crown Chevrolet Cadillac Isuzu 7544 Dublin Boulevard Dublin, California

February 18, 2014 Project OD10160070

This report was prepared by the staff of AMEC Environment & Infrastructure, Inc., under the supervision of the Geologist whose seal and signature appear hereon.

The findings, recommendations, specifications, or professional opinions are presented within the limits described by the client, in accordance with generally accepted professional engineering and geologic practice. No warranty is expressed or implied.

ery Patton, PG #8541

Senior Geologist

PATTON No. 8541

TABLE OF CONTENTS

		Pa	age				
1.0	BACK	GROUND	1				
2.0	2.1	NDWATER MONITORING ACTIVITIES	2				
	2.22.32.4	MONITORING WELL SAMPLING	3				
3.0	RESULTS 3.1 GROUNDWATER ELEVATIONS, FLOW DIRECTIONS, AND GRADIENTS						
4.0	CONC 4.1 4.2 4.3 4.4	LUSIONS AND ANNUAL SUMMARY GROUNDWATER ELEVATIONS FIRST WATER-BEARING ZONE SECOND WATER-BEARING ZONE THIRD WATER-BEARING ZONE	7 7 8				
5.0 REFERENCES							
Table 1		TABLES Well Construction Details					
Table 2		Groundwater Elevations Volatile Organic Compounds in Groundwater from Monitoring Wells					
		FIGURES					
Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8		Site Location Map Potentiometric Surface in the First Water-Bearing Zone, July 2013 Potentiometric Surface in the First Water-Bearing Zone, October 2013 Potentiometric Surface in the Third Water-Bearing Zone, July 2013 Potentiometric Surface in the Third Water-Bearing Zone, October 2013 Selected VOCs in the First Water-Bearing Zone, October 2013 Selected VOC Concentration Trends in the First Water-Bearing Zone Chlorobenzene and 1,2-DCB Concentration Trends in MW-03					
		APPENDICES					
Append Append Append	dix B	Well Sampling Field Records Laboratory Analytical Reports Data Qualify Review					

THIRD AND FOURTH QUARTER 2013 GROUNDWATER MONITORING REPORT AND ANNUAL SUMMARY

Crown Chevrolet Cadillac Isuzu 7544 Dublin Boulevard Dublin, California

AMEC Environment & Infrastructure, Inc. (AMEC), has prepared this *Third and Fourth Quarter 2013 Groundwater Monitoring Report and Annual Summary* (monitoring report) on behalf of the Betty J. Woolverton Trust and Crown Chevrolet Cadillac Isuzu (collectively, Crown) for the property located at 7544 Dublin Boulevard in Dublin, California (the site; Figure 1). The groundwater monitoring was performed at the request of Alameda County Environmental Health (ACEH).

On July 30 and October 28 2013, AMEC performed the quarterly groundwater elevation gauging and groundwater sampling for the monitoring wells installed at the site. This report presents the results of the quarterly groundwater monitoring events and also includes a summary of the monitoring conducted in 2013.

1.0 BACKGROUND

A brief discussion of site background is presented below. A more complete discussion of background, including a site conceptual model, is presented in the *Revised Draft Feasibility Study and Corrective Action Plan* (FS/CAP; AMEC, 2013b).

The site was developed in 1968 as Crown Chevrolet, a car dealership with auto body shops, on land that was likely previously used for agriculture. At that time, the three main site buildings (Buildings A, B, and C) were constructed. Building A was later expanded. Building D was reportedly constructed in 1994. Operations as a car dealership and auto body shop continued from 1968 through mid-2013; the site is now inactive. The site consists of an approximately 4.97-acre parcel. A separate 1.36-acre parcel is also present to the south at 6707 Golden Gate Drive and was recently decoupled from the ACEH case for the 4.97-acre parcel. A new case has been opened for the Crown Chevrolet South Parcel. No groundwater impacts have been identified in the 1.36-acre parcel, and the case is currently proposed to be closed.

Multiple investigations have been conducted at the site; these investigations have been performed to address regulatory concerns as well as in support of transactional and potential redevelopment activities. Based on the previous investigations, two areas of groundwater impacts were identified:

- Volatile organic compounds (VOCs), primarily tetrachloroethene (PCE) and trichloroethene (TCE), are present in shallow groundwater throughout the northern portion of the site (within the area shown on Figure 2). The PCE and TCE are attributed to an off-site source of PCE; the specific source has not been identified.
- Chlorobenzenes and related compounds (e.g., 1,2-dichlorobenzene and 1,4-dichlorobenzene) are present in groundwater, and soil vapor at a former sump within Building B (Figure 2). Remediation was performed in October 2011 at the former sump and included removal of soil and VOC-affected water; however, some impacted soil remains beneath building walls (AMEC, 2011).

A summary of the results from the previous investigations is included in AMEC's *Soil*, *Groundwater*, *and Soil Vapor Investigation Report* (AMEC, 2012b). At this time, site redevelopment is tentatively planned, and the FS/CAP includes additional detail regarding plans to mitigate the impacts discussed above (AMEC, 2013b).

In September 2012, seven monitoring wells (with 15 well ports) were installed at the site. An initial round of sampling was conducted at that time, and the well installation activities and results were reported in AMEC's *Soil, Groundwater, and Soil Vapor Investigation Report* (AMEC, 2012b). Beginning in January 2013, the site wells were sampled once each quarter. The third and fourth quarter monitoring events, conducted July 30 and October 28, 2013, are reported herein.

2.0 GROUNDWATER MONITORING ACTIVITIES

The following sections describe the work performed in association with the groundwater monitoring activities at the site. The sampling methodologies and analytical suite are consistent with the methods presented in the *Soil, Groundwater and Soil Vapor Investigation Work Plan* (AMEC, 2012a).

On July 30 and October 28, 2013, groundwater samples were collected from the 15 wells and well ports at the site. The monitoring well network at the site consists of three shallow monitoring wells screened in the first water-bearing zone; and four continuous multichannel tubing (CMT) wells, each with three ports (in the first water-bearing zone and in two deeper zones). Construction details for the monitoring wells and the CMT wells are presented in Table 1.

2.1 GROUNDWATER ELEVATION GAUGING

Prior to collecting depth-to-groundwater measurements, the well cap was first removed from each well and the water levels were allowed to equilibrate. Equilibration was considered complete when two depth-to-groundwater measurements collected within several minutes at a well were equivalent. The depth-to-groundwater measurements were made to an accuracy of 0.01 foot with an electric sounder. The depth to groundwater at each well was recorded on well sampling field record. Copies of the well sampling records from July and October 2013 are included in Appendix A.

2.2 MONITORING WELL SAMPLING

Following gauging and prior to sample collection, each well was purged using a low-flow technique at flow rates ranging from of 20 to 200 milliliters per minute (mL/min). During purging, the following field measurements were recorded and documented on field records: dissolved oxygen, oxidation/reduction potential, temperature, pH, and specific conductance. Copies of the well sampling field records are included in Appendix A. Purging was considered complete when these parameters had stabilized (three consecutive readings within the following limits: \pm 3 percent change in conductivity, \pm 0.2 pH units, \pm 0.2 mg/l for dissolved oxygen, \pm 20 mV for oxidation-reduction potential, and turbidity is \pm 10 percent or < 10 NTU). However, due to slow recharge, several ports at monitoring wells MP-01 through MP-04 were purged dry and then sampled; field parameters did not stabilize. During the third and fourth quarters, a sample was collected at port MP-03-2 prior to purging dry and before stabilization due to a history of slow recharge at that well.

Following purging, groundwater samples were collected from each well into laboratory-provided volatile organic analysis (VOA) containers preserved with hydrochloric acid, using a peristaltic pump. Each sample was immediately labeled with a unique identifier and the sample collection time, and then stored in an ice-chilled cooler pending transport to the analytical laboratory under AMEC chain-of-custody procedures. Purge water generated during sampling activities was placed in a 55 gallon drum. The drum is labeled and stored on-site pending off-site disposal.

One blind field duplicate groundwater sample was collected during each event from monitoring well MW-01. The duplicate sample was collected and stored in the same manner as the primary samples and submitted to the laboratory for analysis of the same suite of constituents. A discussion of data quality is included below, in Section 2.4.

2.3 LABORATORY ANALYTICAL METHODS

The groundwater samples were delivered to TestAmerica Laboratories, Inc. (TestAmerica), of Pleasanton, California, a California Department of Public Health–accredited laboratory (Certificate No. 2496). The groundwater samples were analyzed for VOCs (including total petroleum hydrocarbons quantified as gasoline [TPHg]) using U.S. EPA Method 8260B. Copies of the laboratory analytical reports are included in Appendix B.

2.4 DATA QUALITY REVIEW

AMEC evaluated the analytical data generated during the third and fourth quarter groundwater monitoring events using guidelines set forth in the U.S. Environmental Protection Agency's (EPA's) *USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review* (U.S. EPA, 2013). The complete data quality review, which was

reviewed and acknowledged by an AMEC quality assurance/quality control (QA/QC) senior technical reviewer, is included in Appendix C, and is summarized below.

Quality assurance procedures for groundwater samples collected during the quarterly groundwater monitoring event included the collection and analysis of one blind field duplicate sample and one MS/MSD sample; laboratory analysis of method blank samples, surrogate spikes, and LCS/LCSDs; and evaluation of the analytical results.

Data accuracy was assessed by the analysis of laboratory control spike/laboratory control spike duplicate (LCS/LCSD) samples, matrix spike/matrix spike duplicate (MS/MSD) samples and evaluation of the recovery of spiked compounds, and is expressed as a percentage of the true or known concentrations. Surrogate recoveries and blank results also were used to assess accuracy.

Data precision is evaluated by comparing analytical results from duplicate sample pairs and evaluating the calculated relative percent difference (RPD) between the data sets. Results for LCS/LCSD, MS/MSD, and field duplicate sample pairs (as available) were evaluated to assess the precision of the analytical methods for the water sample data.

All detectable concentrations of TPHg from the groundwater monitoring samples were identified by the laboratory to be the result of discrete peaks (caused by PCE and/or TCE). AMEC qualified these gasoline range organics results with "R" to indicate that they are rejected. No other data quality deficiencies were identified during the data quality review. With the exception of the rejected data, all laboratory results are valid and usable.

3.0 RESULTS

The following section presents the results of the third and fourth quarter 2013 groundwater monitoring activities.

3.1 GROUNDWATER ELEVATIONS, FLOW DIRECTIONS, AND GRADIENTS

Depths to groundwater in the site monitoring wells (MW-01 through MW-03, and MP-01 through MP-04) were measured on July 30 and October 28, 2013. The depths to groundwater and calculated groundwater surface elevations are shown in Table 2.

AMEC has identified and collected groundwater samples from three water bearing zones at the site. Based on observed lithology and water level elevations, the first and third water-bearing zones appear to represent generally well-connected water-bearing zones. Lithologic observations and water level elevations in second water-bearing zone indicate that it may not have the same degree of connectivity.

In the first water-bearing zone at the site, groundwater moves in an approximately easterly direction and the magnitude of the lateral hydraulic gradient was approximately 0.0025 feet per foot on July 30, 2013 and 0.0016 feet per foot on October 28, 2013. In the third water-bearing

zone at the site, groundwater moves in an approximately northeasterly direction and the magnitude of the lateral hydraulic gradient was approximately 0.0041 feet per foot on July 30, 2013 and 0.0045 feet per foot on October 28, 2013. Note that the wells in the second and third water-bearing zones are located close to an east-west trending line, making it difficult to gauge the precise direction of groundwater movement. Lateral gradients were not evaluated for the second water-bearing zone, as the depth to water measured in the second deepest port of one well (MP-03-2) does not appear to be representative of the potentiometric surface and not enough additional data are available to evaluate the direction of groundwater movement. Additionally, the water level measured in MW-03 in October 2013 did not appear to be representative of the potentiometric surface and was not included in calculations of hydraulic gradient or potentiometric surface maps for the fourth quarter. The potentiometric surface maps for first and third water-bearing zones during the third and fourth quarters of 2013 are presented on Figures 2 through 5.

Vertical hydraulic gradients were calculated for the intervals between the first and second water-bearing zones (i.e., from approximately 15 to 45 feet bgs) and between the second and third water-bearing zones (i.e., from approximately 45 to 60 feet bgs) in multi-port wells MP-01 through MP-04. For the approximately 15- to 45-foot interval, vertical gradients ranged from 0.066 feet per foot upward to 0.046 feet per foot downward on July 30, 2013, and from 0.017 to 0.051 feet per foot downward on October 28, 2013. For the approximately 45- to 60-foot interval, vertical gradients ranged from 0.095 to 0.22 feet per foot downward on July 30, 2013, and from 0.091 to 0.12 feet per foot downward on October 28, 2013. Vertical gradients were not calculated for monitoring well MP-03, as the depth to water measured in the second port (MP-03-2) does not appear to be representative of the potentiometric surface.

3.2 GROUNDWATER ANALYTICAL RESULTS

As discussed above, during each quarterly monitoring event 15 groundwater samples were collected from three water-bearing zones at the site (from monitoring wells MW-01 through MW-03 and MP-01 through MP-04) and analyzed for VOCs, including TPHg. The analytical results are summarized in Table 3, and PCE and TCE concentrations in the first water-bearing zone are presented on Figure 4.

For discussion purposes, groundwater analytical results from the July and October 2013 monitoring events were compared to drinking water environmental screening levels (ESLs), published by the California Regional Water Quality Control Board, San Francisco Bay Region (Regional Water Board; Regional Water Board, 2013). Drinking water ESLs are not a cleanup goal for the site; however, they provide a frame of reference for discussing analytical results.

A summary of the July and October 2013 monitoring results is presented in the following sections.

3.2.1 First Water-Bearing Zone

In July 2013, PCE and TCE were detected in groundwater samples collected from all monitoring wells screened within the first water-bearing zone. Additionally, cis-1,2-dichloroethene (cis-1,2-DCE) and/or trans-1,2-dichloroethene (trans-1,2-DCE) were detected in groundwater from four monitoring wells (cis-1,2-DCE at MP-04-1, MW-02, and MW-03; and both cis-1,2-DCE and trans-1,2-DCE at MP-02-1). 1,2-Dichlorobenzene (1,2-DCB) was detected in groundwater from monitoring well MW-03, located near the former sump within Building B, and acetone was detected in groundwater from monitoring well MP-04-1 (acetone is a common laboratory contaminant and is not a constituent of concern for the site). No other VOCs were detected.

In October 2013, PCE and TCE were also detected in groundwater samples collected from all monitoring wells screened within the first water-bearing zone. Cis-1,2-DCE and/or trans-1,2-DCE were detected in groundwater from four monitoring wells (cis-1,2-DCE at MP-03-1, MP-04-1, and MW-02; and both cis-1,2-DCE and trans-1,2-DCE at MP-02-1). 1,2-DCB and chlorobenzene were detected in groundwater from monitoring well MW-03. No other VOCs were detected.

Some concentrations of PCE and TCE were greater than their respective ESLs for groundwater that is assumed to be a potential drinking water resource. During the July and October 2013 monitoring events, PCE was detected in groundwater samples collected from six of the seven wells in the first water-bearing zone at concentrations greater than the ESL of 5 μ g/L (at a maximum concentration of 210 μ g/L in MW-01 in July 2013). TCE was detected in groundwater samples from four of the seven wells in the first water-bearing zone in July 2013 and five of those wells in October 2013 at concentrations greater than the ESL of 5 μ g/L (at a maximum concentration of 56 μ g/L in MP-02-1 in October 2013). None of the detected concentrations of cis-1,2-DCE, trans-1,2-DCE or 1,2-DCB were greater than their respective ESLs.

3.2.2 Second Water-Bearing Zone

PCE was detected in the groundwater sample collected from MP-04-2 in July, and TCE was detected in the groundwater samples collected from MP-02-2 in both July and October. The PCE and TCE concentrations were less than their respective ESLs. In October 2013, cis-1,2-DCE was detected in groundwater from monitoring wells MP-01-2 and MP-02-2; the concentration of cis-1,2-DCE in monitoring wells MP-01-2 was greater than the ESL. No other VOCs were detected in the second water-bearing zone.

3.2.3 Third Water-Bearing Zone

TCE was detected in the October 2013 groundwater sample collected from MP-02-3 at a concentration less than the ESL. Acetone was also detected in groundwater samples collected

from MP-02-3 in July and MP-03-3 in October. The detected concentrations of acetone were less than the ESL. As noted above, acetone is a common laboratory contaminant and is not a constituent of concern for the site.

4.0 CONCLUSIONS AND ANNUAL SUMMARY

Conclusions and a summary of VOC results following over one year of monitoring are presented in the following sections.

4.1 GROUNDWATER ELEVATIONS

The measured depths to groundwater (Table 2) were an average of approximately 0.40 feet lower in July 2013 than in May 2013 (excluding MP-03-2, which decreased by more than 6 feet and does not appear to be representative of the potentiometric surface). The measured depths to groundwater were an average of 0.84 feet lower in October 2013 than in July 2013 (excluding MP-03-2, which increased by more than 3 feet and does not appear to be representative of the potentiometric surface). During both quarters, the potentiometric surface elevations decreased by a comparable amount in each water-bearing zone. The October 2013 groundwater elevations were the lowest measured to date for all wells/ports, with the exception of MP-02-2 and MP-03-2, likely resulting from lower-than-average rainfall in 2013.

4.2 FIRST WATER-BEARING ZONE

As of October 2013, five groundwater monitoring events have been conducted, allowing for assessment of concentration trends over a period of more than one year. PCE and TCE, the primary constituents of concern, have been consistently detected throughout the first water-bearing zone in northern portion of the site, and their concentrations, in addition to cis-1,2-DCE, are plotted over time on Figure 7.

In general, PCE concentrations in the first water-bearing zone have remained stable. PCE concentrations increased slightly in most wells until spring/summer 2013 and then decreased in October. This variation is likely seasonal, but future groundwater monitoring will provide more information regarding the seasonality of the concentration trends. The exception to this trend is at monitoring well MP-04-1, where PCE concentrations are relatively low, but the highest concentration to date was detected in October 2013.

TCE concentrations have also remained relatively stable, although two wells (MP-01-1 and MP-04-1) show an increasing trend. This trend may be indicative of increased degradation of PCE to TCE. Concentration trends for cis-1,2-DCE are generally similar to those for TCE.

Monitoring well MW-03 is located downgradient of the former sump in order to evaluate groundwater concentration trends associated with residual impacts at the former sump. The main constituents of concern in that area are chlorobenzene and related compounds. Concentration trends for chlorobenzene and 1,2-dichlorobenzene at MW-03 are plotted over

time on Figure 8. Chlorobenzene has been sporadically detected. 1,2-Dichlorobenzene has been consistently detected; concentrations have remained stable. No other related constituents (including benzene) have been detected in MW-03.

4.3 SECOND WATER-BEARING ZONE

Several VOCs (PCE, TCE, cis-1,2-DCE, acetone, and 2-hexanone) have been detected in the second water-bearing zone. Most detections have been sporadic, with the exception that TCE was regularly detected at very low concentrations in monitoring well MP-02-2 in 2013.

4.4 THIRD WATER-BEARING ZONE

Several VOCs (TCE, TPHg, acetone, and 2-hexanone) have been sporadically detected in the third water-bearing zone.

5.0 REFERENCES

- AMEC Environment & Infrastructure, Inc. (AMEC), 2011, Remediation Report, Crown Chevrolet Cadillac Isuzu, 7544 Dublin Boulevard and 6707 Golden Gate Drive, Dublin, California, Fuel Leak Case No. RO003014, December 21.
- AMEC, 2012a, Soil, Groundwater, and Soil Vapor Investigation Work Plan, Crown Chevrolet Cadillac Isuzu, 7544 Dublin Boulevard and 6707 Golden Gate Drive, Dublin, California, August 16.
- AMEC, 2012b, Soil, Groundwater, and Soil Vapor Investigation Report, Crown Chevrolet Cadillac Isuzu, 7544 Dublin Boulevard and 6707 Golden Gate Drive, Dublin, California, October 19.
- AMEC, 2013a, First Quarterly Groundwater Monitoring Report, Crown Chevrolet Cadillac Isuzu, 7544 Dublin Boulevard and 6707 Golden Gate Drive, Dublin, California, March 25.
- AMEC, 2013b, Revised Draft Feasibility Study and Corrective Action Plan, Crown Chevrolet Cadillac Isuzu, 7544 Dublin Boulevard and 6707 Golden Gate Drive, Dublin, California, March 25.
- AMEC, 2013c, Second Quarter 2013 Groundwater Monitoring Report, Crown Chevrolet Cadillac Isuzu, 7544 Dublin Boulevard and 6707 Golden Gate Drive, Dublin, California, August 12.
- California Regional Water Quality Control Board, San Francisco Region (Regional Water Board), 2013, Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater, May.
- U.S. Environmental Protection Agency, 2013, USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review, EPA-540-R-08-01, February.

WELL CONSTRUCTION DETAILS

Crown Chevrolet Cadillac Isuzu 7544 Dublin Boulevard Dublin, California

						Survey Da	ta				(Construction	Information	1	
Well Type	Monitoring Well ID	Port	Date Installed	Ground Surface Elevation (feet)	Top Of Casing Surveyed Elevation (feet)	Northing	Easting	Datum	Depth Drilled (feet bgs)	Top of Screen (feet bgs)	Bottom of Screen (feet bgs)	Well Depth (feet bgs)	Casing Diameter (inches)	Well Screen Slot Size (inches)	Filter Pack
Pre-pack	MW-01		8/30/2012	344.58	344.24	2081925.24	6148339.55	NAD 83/NGVD 88	22	16.2	20.9	21.17	0.75	0.010	#20/40 and 2/12 sand
groundwater	MW-02		8/30/2012	340.41	340.24	2082055.96	6148450.40	NAD 83/NGVD 88	20.2	15.2	19.9	19.92	0.75	0.010	#20/40 and 2/12 sand
well	MW-03		8/31/2012	343.95	343.77	2081890.72	6148566.71	NAD 83/NGVD 88	20	14.4	19.1	19.35	0.75	0.010	#20/40 and 2/12 sand
	MP-01	MP-01-1						NAD 83/NGVD 88		17.3	17.6		0.375	0.010	#2/12 sand
	MP-01	MP-01-2	8/29/2012	343.37	343.20	2081915.18	6148233.76	NAD 83/NGVD 88	60	43.2	43.5	59.3	0.375	0.010	#2/12 sand
	MP-01	MP-01-3						NAD 83/NGVD 88		58.1	58.4		0.375	0.010	#2/12 sand
	MP-02	MP-02-1						NAD 83/NGVD 88		12.6	12.9		0.375	0.010	#2/12 sand
CMT multi-	MP-02	MP-02-2	8/30/2012	341.32	341.15	2082008.13	6148472.05	NAD 83/NGVD 88	60	36.4	36.7	59.7	0.375	0.010	#2/12 sand
port	MP-02	MP-02-3						NAD 83/NGVD 88		57.5	57.8		0.375	0.010	#2/12 sand
groundwater	MP-03	MP-03-1						NAD 83/NGVD 88		14.3	14.6		0.375	0.010	#2/12 sand
well	MP-03	MP-03-2	8/30/2012	342.31	342.21	2081948.36	6148500.44	NAD 83/NGVD 88	60	42.9	43.2	59.8	0.375	0.010	#2/12 sand
	MP-03	MP-03-3						NAD 83/NGVD 88		57.8	58.1		0.375	0.010	#2/12 sand
	MP-04	MP-04-1						NAD 83/NGVD 88		15.4	15.7		0.375	0.010	#2/12 sand
	MP-04	MP-04-2	8/31/2012	341.48	341.22	2081993.43	6148600.32	NAD 83/NGVD 88	60.5	41.4	41.7	60.5	0.375	0.010	#2/12 sand
	MP-04	MP-04-3						NAD 83/NGVD 88		58.3	58.6		0.375	0.010	#2/12 sand

<u>Notes</u>

1. Pre-pack well casing materials are Schedule 40 PVC. The multi-port well casing materials are Solinst 3-channel CMT.

Abbreviations

-- = not applicable

bgs = below ground surface

CMT = continuous multi-channel tubing

NAD = North American Datum

NGVD = National Geodetic Vertical Datum

GROUNDWATER ELEVATIONS

Crown Chevrolet Cadillac Isuzu 7544 Dublin Boulevard Dublin, California

		Top-of-Casing Elevation	Depth to Groundwater	Groundwater Elevation ¹
Sample Location	Date	(feet MSL)	(feet BTOC)	(feet MSL)
First Water-Bearing	g Zone			
	9/10/2012		13.33	329.87
	1/29/2013		11.49	331.71
MP-01-1	5/29/2013	343.20	12.53	330.67
	7/30/2013		13.09	330.11
	10/28/2013		14.03	329.17
	9/10/2012		11.83	329.32
	1/29/2013		10.30	330.85
MP-02-1	5/29/2013	341.15	11.11	330.04
	7/30/2013		11.65	329.50
	10/28/2013		12.44	328.71
	9/10/2012		12.94	329.27
	1/29/2013		11.33	330.88
MP-03-1	5/29/2013	342.21	12.21	330.00
	7/30/2013		12.74	329.47
	10/28/2013		13.48	328.73
	9/10/2012		12.41	328.81
	1/29/2013		10.77	330.45
MP-04-1	5/29/2013	341.22	11.51	329.71
	7/30/2013		12.11	329.11
	10/28/2013		12.61	328.61
	9/10/2012		14.64	329.60
	1/29/2013		12.96	331.28
MW-01	5/29/2013	344.24	13.89	330.35
	7/30/2013		14.44	329.80
	10/28/2013		15.24	329.00
	9/10/2012		10.90	329.34
	1/29/2013		9.35	330.89
MW-02	5/29/2013	340.24	10.20	330.04
	7/30/2013	[10.72	329.52
	10/28/2013		11.49	328.75
	9/10/2012		14.62	329.15
	1/29/2013		14.53	329.24
MW-03	5/29/2013	343.77	13.90	329.87
	7/30/2013		14.37	329.40
	10/28/2013		14.72	329.05

GROUNDWATER ELEVATIONS

Crown Chevrolet Cadillac Isuzu 7544 Dublin Boulevard Dublin, California

		Top-of-Casing	Depth to	Groundwater
		Elevation	Groundwater	Elevation ¹
Sample Location	Date	(feet MSL)	(feet BTOC)	(feet MSL)
Second Water-Bea	ring Zone			
	9/10/2012	<u>_</u>	14.38	328.82
	1/29/2013	<u>_</u>	12.59	330.61
MP-01-2	5/29/2013	343.20	13.67	329.53
	7/30/2013	<u> </u>	14.26	328.94
	10/28/2013		15.08	328.12
	9/10/2012		13.93	327.22
	1/29/2013		10.67	330.48
MP-02-2	5/29/2013	341.15	11.50	329.65
	7/30/2013		10.07	331.08
	10/28/2013		12.84	328.31
	9/10/2012		39.76	302.45
	1/29/2013		15.00	327.21
MP-03-2	5/29/2013	342.21	15.93	326.28
	7/30/2013		22.15	320.06
	10/28/2013		19.03	323.18
	9/10/2012		13.83	327.39
	1/29/2013		11.95	329.27
MP-04-2	5/29/2013	341.22	12.77	328.45
	7/30/2013		13.31	327.91
	10/28/2013		13.94	327.28
Third Water-Bearing	ng Zone			
	9/10/2012		15.63	327.57
	1/29/2013		14.19	329.01
MP-01-3	5/29/2013	343.20	15.08	328.12
	7/30/2013		15.67	327.53
	10/28/2013		16.43	326.77
	9/10/2012		14.88	326.27
	1/29/2013	<u> </u>	13.38	327.77
MP-02-3	1/29/2013	341.15	14.24	326.91
	7/30/2013	Ţ	14.61	326.54
	10/28/2013		15.39	325.76
	9/10/2012		15.66	326.55
	1/29/2013	[14.28	327.93
MP-03-3	5/29/2013	342.21	15.12	327.09
	7/30/2013	[15.74	326.47
	10/28/2013		16.33	325.88

GROUNDWATER ELEVATIONS

Crown Chevrolet Cadillac Isuzu 7544 Dublin Boulevard Dublin, California

Sample Location	Date	Top-of-Casing Elevation (feet MSL)	Depth to Groundwater (feet BTOC)	Groundwater Elevation ¹ (feet MSL)
	9/10/2012		15.12	326.10
	1/29/2013		13.78	327.44
MP-04-3	5/29/2013	341.22	14.65	326.57
	7/30/2013		15.25	325.97
	10/28/2013		15.83	325.39

Note

1. Elevation datum is NGVD88.

Abbreviations

BTOC = below top of casing feet MSL = feet above mean sea level NGVD = National Geodetic Vertical Datum

VOLATILE ORGANIC COMPOUNDS IN GROUNDWATER FROM MONITORING WELLS

Crown Chevrolet Cadillac Isuzu 7544 Dublin Boulevard Dublin, California

Concentrations reported in micrograms per liter (µg/L)

											1					
		Sample			Bromo- dichloro-	Chloro-	Chloro-	Dibromo- chloro-	1,2-	1.1-Dichloro-	trans-1,2- Dichloro-	2-Hex-				All Other
	Commis ID	Type	Dete	Acetone	methane		form	methane		ethene	ethene	anone	PCE	TCE	TPHg	VOCs
Location	Sample ID	Type	Date	Acetone	memane	benzene	101111	memane	Denzene	ethene	ethene	anone	FUE	ICE	IFHY	VOCS
First Water-Bearing Zone																
	MP-01-1	Primary	9/10/2012	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<50	120	<0.50	110 R	ND
	MP-01-1	Primary	1/29/2013	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<50	160	0.80	150 R	ND
MP-01	MP-01-1	Primary	5/29/2013	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<50	190	1.6	120 R	ND
	MP-01-1	Primary	7/30/2013	<50	<0.50	<0.50	<1.0	<0.50	<0.50	< 0.50	<0.50	<50	150	1.8	140 R	ND
	MP-01-1	Primary	10/28/2013	<50	< 0.50	< 0.50	<1.0	< 0.50	< 0.50	< 0.50	< 0.50	<50	140	5.1	120 R	ND
	MP-02-1	Primary	9/10/2012	<50	<0.50	<0.50	<1.0	<0.50	<0.50	< 0.50	< 0.50	<50	1.2	15	<50	ND
	MP-02-10	Duplicate	9/10/2012	<50	<0.50	< 0.50	<1.0	<0.50	< 0.50	< 0.50	<0.50	<50	1.6	19	<50	ND
MP-02	MP-02-1	Primary	1/29/2013	<50	<0.50	< 0.50	<1.0	<0.50	< 0.50	< 0.50	0.80	<50	6.6	61	100 R	ND
IVIF-UZ	MP-02-1	Primary	5/29/2013	<50	<0.50	<0.50	<1.0	<0.50	<0.50		0.88	<50	1.0	43	94 R	ND
	MP-02-1	Primary	7/30/2013	<50	<0.50	<0.50	<1.0	<0.50	<0.50		0.65	<50	3.0	55	<50	ND
	MP-02-1	Primary	10/28/2013	<50	<0.50	<0.50	<1.0	<0.50	< 0.50		0.92	<50	0.53	56	70 R	ND
	MP-03-1	Primary	9/10/2012	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<50	120	6.4	140 R	ND
	MP-03-1	Primary	1/29/2013	<50	<0.50	<0.50	<1.0	<0.50	< 0.50	<0.50	<0.50	<50	150	11	230 R	ND
MP-03	MP-03-1	Primary	5/29/2013	<50	<0.50	<0.50	<1.0	<0.50	<0.50		<0.50	<50	170	13	140 R	ND
	MP-03-1	Primary	7/30/2013	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<50	160	10	170 R	ND
	MP-03-1	Primary	10/28/2013	<50	<0.50	<0.50	<1.0	<0.50	<0.50		<0.50	<50	120	12	150 R	ND
	MP-04-1	Primary	9/10/2012	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<50	4.0	1.3	<50	ND
	MP-04-1	Primary	1/29/2013	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<50	20	8.4	<50	ND
MP-04	MP-04-1	Primary	5/29/2013	<50	<0.50	<0.50	<1.0	<0.50	<0.50		<0.50	<50	26	13	52 R	ND
	MP-04-1	Primary	7/30/2013	240	<0.50	<0.50	<1.0	<0.50	<0.50		<0.50	<50	24	13	<50	ND
	MP-04-1	Primary	10/28/2013	<50	<0.50	<0.50	<1.0	<0.50	<0.50		<0.50	<50	31	24	65 R	ND
1	MW-01-(17-22)-GW ¹	Primary	8/30/2012	<50 UJ	<0.50	<0.50	<1.0	< 0.50	< 0.50	<0.50	< 0.50	<50	150	1.1	150 R	ND
	MW-01	Primary	9/10/2012	<50	<0.50	<0.50	<1.0	< 0.50	< 0.50	< 0.50	<0.50	<50	150	1.2	120 R	ND
	MW-10	Duplicate	9/10/2012	<50	<0.50	<0.50	<1.0	< 0.50	< 0.50	< 0.50	<0.50	<50	160	1.3	140 R	ND
	MW-01	Primary	1/29/2013	<50	<0.50	<0.50	<1.0	< 0.50	< 0.50	< 0.50	<0.50	<50	160	1.1	160 R	ND
MW-01	MW-100	Duplicate	1/29/2013	<50	<0.50	<0.50	<1.0	< 0.50	< 0.50	< 0.50	<0.50	<50	160	1.1	160 R	ND
IVIVV-U I	MW-01	Primary	5/29/2013	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<50	170	1.1	100 R	ND
	MW-01	Primary	7/30/2013	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<50	160	1.5	120 R	ND
	MW-100	Duplicate	7/30/2013	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<50	210	1.6	140 R	ND
	MW-01	Primary	10/28/2013	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<50	150	1.9	150 R	ND
	MW-100	Duplicate	10/28/2013	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<50	150	1.8	160 R	ND

VOLATILE ORGANIC COMPOUNDS IN GROUNDWATER FROM MONITORING WELLS

Crown Chevrolet Cadillac Isuzu 7544 Dublin Boulevard Dublin, California

Concentrations reported in micrograms per liter (µg/L)

					1		po.tou	licrograms	Telestrian	j· = /					ı	T
					Bromo-		61.1	Dibromo-	1,2-		trans-1,2-					
		Sample	. .	A 1	dichloro-	Chloro-	Chloro-	chloro-	Dichloro-	,	Dichloro-	2-Hex-	DOE	TOF	TDU	All Other
Location	Sample ID	Type	Date	Acetone	methane	benzene	form	methane	benzene	ethene	ethene	anone	PCE	TCE	TPHg	VOCs
	MW-02-(15-20)-GW ¹	Primary	8/30/2012	<50 UJ	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<50	18	9.2	<50	ND
	MW-02	Primary	9/10/2012	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<50	16	6.9	<50	ND
	MW-02	Primary	1/29/2013	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	0.54	<50	19	15	<50	ND
MW-02	MW-02	Primary	5/29/2013	<50	<0.50	<0.50	<1.0	<0.50	<0.50		<0.50	<50	20	26	51 R	ND
	MW-200	Duplicate	5/29/2013	<50	<0.50	< 0.50	<1.0	<0.50	<0.50		< 0.50	<50	15	23	<50	ND
	MW-02	Primary	7/30/2013	<50	<0.50	< 0.50	<1.0	<0.50	<0.50		< 0.50	<50	19	21	<50	ND
	MW-02	Primary	10/28/2013	<50	<0.50	< 0.50	<1.0	<0.50	<0.50		< 0.50	<50	10	6.6	<50	ND
	MW-03-(15-20)-GW ¹	Primary	8/31/2012	<50 UJ	<0.50	<0.50	<1.0	<0.50	1.1	<0.50	<0.50	<50	9.3	0.59	<50	ND
	MW-03	Primary	9/10/2012	<50	1.4	< 0.50	2.1	0.92	<0.50	< 0.50	< 0.50	<50	3.2	<0.50	<50	ND
MW-03	MW-03	Primary	1/29/2013	<50	< 0.50	4.8	<1.0	<0.50	1.7	<0.50	<0.50	<50	11	1.1	<50	ND
10100-03	MW-03	Primary	5/29/2013	<50	< 0.50	< 0.50	<1.0	< 0.50	0.86		<0.50	<50	7.5	0.85	<50	ND
	MW-03	Primary	7/30/2013	<50	<0.50	< 0.50	<1.0	<0.50	1.4		< 0.50	<50	11	1.1	<50	ND
	MW-03	Primary	10/28/2013	<50	<0.50	0.96	<1.0	<0.50	1.6		<0.50	<50	6.9	0.63	<50	ND
Second W	ater-Bearing Zone	-			•			•	•						•	•
	MP-01-2	Primary	9/10/2012	130	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<50	<0.50	<0.50	<50	ND
	MP-01-2	Primary	1/29/2013	62	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	120	<0.50	<0.50	<50	ND
MP-01	MP-01-2	Primary	5/29/2013	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<50	<0.50	<0.50	<50	ND
	MP-01-2	Primary	7/30/2013	<50	<0.50	< 0.50	<1.0	<0.50	<0.50	< 0.50	< 0.50	<50	<0.50	<0.50	<50	ND
	MP-01-2	Primary	10/28/2013	<50	<0.50	< 0.50	<1.0	<0.50	<0.50		< 0.50	<50	<0.50	<0.50	<50	ND
	MP-02-2	Primary	9/10/2012	<50	<0.50	<0.50	<1.0	<0.50	<0.50	< 0.50	< 0.50	<50	<0.50	<0.50	<50	ND
	MP-02-2	Primary	1/29/2013	<50	<0.50	< 0.50	<1.0	< 0.50	<0.50	<0.50	<0.50	<50	<0.50	1.2	<50	ND
MP-02	MP-02-2	Primary	5/29/2013	<50	< 0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<50	<0.50	0.77	<50	ND
	MP-02-2	Primary	7/30/2013	<50	< 0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<50	<0.50	1.3	<50	ND
	MP-02-2	Primary	10/28/2013	<50	< 0.50	<0.50	<1.0	<0.50	<0.50		<0.50	<50	<0.50	1.9	<50	ND
	MP-03-2	Primary	1/29/2013	68	<0.50	< 0.50	<1.0	<0.50	<0.50	<0.50	<0.50	58	<0.50	<0.50	<50	ND
MP-03	MP-03-2	Primary	7/30/2013	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<50	<0.50	<0.50	<50	ND
	MP-03-2	Primary	10/28/2013	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<50	<0.50	<0.50	<50	ND
	MP-04-2	Primary	9/10/2012	100	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<50	<0.50	<0.50	<50	ND
	MP-04-2	Primary	1/29/2013	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	53	<0.50	< 0.50	<50	ND
MP-04	MP-04-2	Primary	5/29/2013	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<50	<0.50	< 0.50	<50	ND
	MP-04-2	Primary	7/30/2013	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<50	0.53	< 0.50	<50	ND
	MP-04-2	Primary	10/28/2013	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<50	<0.50	< 0.50	<50	ND

VOLATILE ORGANIC COMPOUNDS IN GROUNDWATER FROM MONITORING WELLS

Crown Chevrolet Cadillac Isuzu 7544 Dublin Boulevard Dublin, California

Concentrations reported in micrograms per liter (ug/L)

Concentrations reported in micrograms per liter (µg/L)																
Location	Sample ID	Sample Type	Date	Acetone	Bromo- dichloro- methane	Chloro- benzene	Chloro- form	Dibromo- chloro- methane	Dichloro-	1,1-Dichloro- ethene	trans-1,2- Dichloro- ethene	2-Hex- anone	PCE	TCE	TPHg	All Other VOCs
Third Wate	Third Water-Bearing Zone															
	MP-01-3	Primary	9/10/2012	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<50	<0.50	<0.50	<50	ND
	MP-01-3	Primary	1/29/2013	<50	<0.50	< 0.50	<1.0	<0.50	< 0.50	<0.50	<0.50	59	<0.50	<0.50	<50	ND
MP-01	MP-01-3	Primary	5/29/2013	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	< 0.50	<50	<0.50	<0.50	<50	ND
	MP-01-3	Primary	7/30/2013	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	< 0.50	<50	<0.50	<0.50	<50	ND
	MP-01-3	Primary	10/28/2013	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<50	<0.50	<0.50	<50	ND
	MP-02-3	Primary	9/10/2012	130	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	< 0.50	<50	<0.50	<0.50	<50	ND
	MP-02-3	Primary	1/29/2013	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<50	<0.50	0.54	<50	ND
MP-02	MP-02-3	Primary	5/29/2013	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<50	<0.50	<0.50	<50	ND
	MP-02-3	Primary	7/30/2013	77	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<50	<0.50	<0.50	<50	ND
	MP-02-3	Primary	10/28/2013	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<50	<0.50	0.76	<50	ND
	MP-03-3	Primary	9/10/2012	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	< 0.50	<50	<0.50	<0.50	<50	ND
	MP-03-3	Primary	1/29/2013	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<50	<0.50	<0.50	<50	ND
MP-03	MP-03-3	Primary	5/29/2013	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<50	<0.50	<0.50	<50	ND
	MP-03-3	Primary	7/30/2013	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<50	<0.50	<0.50	<50	ND
	MP-03-3	Primary	10/28/2013	75	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<50	<0.50	<0.50	<50	ND
	MP-04-3	Primary	9/10/2012	150	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<50	<0.50	<0.50	86	ND
	MP-04-3	Primary	1/29/2013	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<50	<0.50	<0.50	<50	ND
MP-04	MP-04-3	Primary	5/29/2013	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<50	<0.50	<0.50	<50	ND
	MP-04-3	Primary	7/30/2013	<50	<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<50	<0.50	<0.50	<50	ND
	MP-04-3 Primary 10/28/2013				<0.50	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<50	<0.50	<0.50	<50	ND
	ntal Screening Level current drinking wa	1500	100	25	70	80	10	6	10		5	5	100			

VOLATILE ORGANIC COMPOUNDS IN GROUNDWATER FROM MONITORING WELLS

Crown Chevrolet Cadillac Isuzu 7544 Dublin Boulevard Dublin, California

Notes:

- 1. Results are shown for grab groundwater samples collected from borings MW-01 through MW-03 before the pre-pack monitoring wells were installed.
- 2. California Regional Water Quality Control Board, San Francisco Region, 2013, Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater, Table F-1a, Groundwater Screening Levels (groundwater is a current or potential drinking water source), December. The selected screening value is the lowest of those among drinking water goals, aquatic habitat goals, taste and odor considerations, evaluation of potential vapor intrusion into buildings.

Results shown in **bold** indicate a detection.

Results shown in **bold** and in a shaded cell exceed their respective Environmental Screening Levels

Abbreviations:

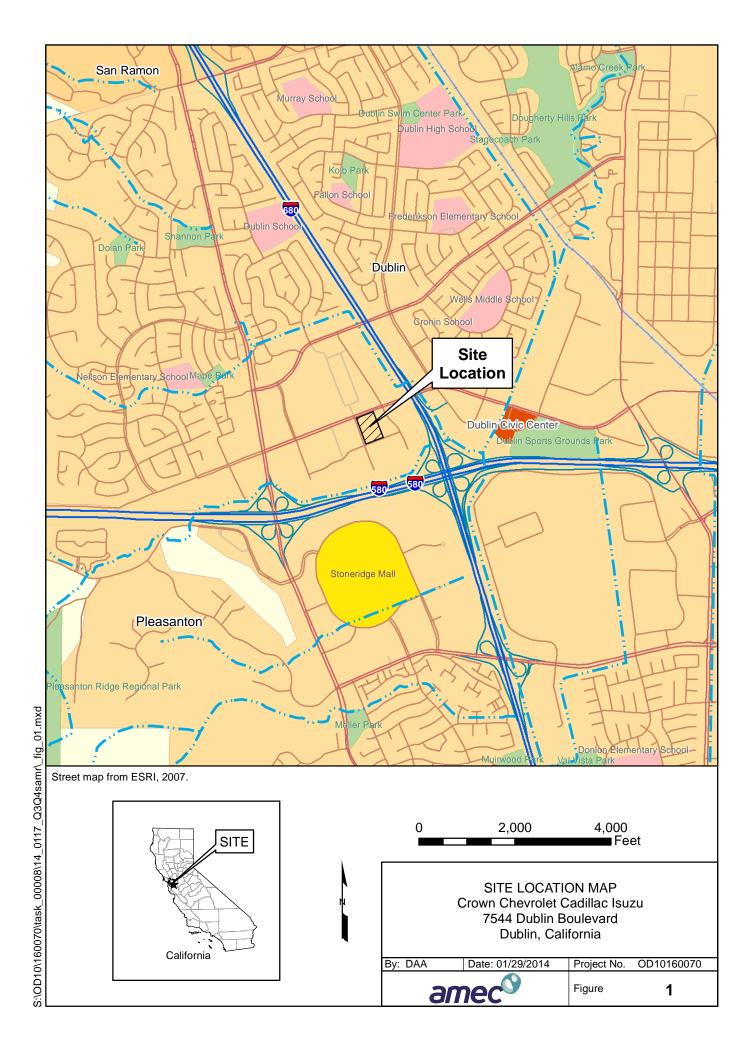
- < = not detected at or above the laboratory reporting limit shown
- -- = not applicable
- J = the analyte was positively identified, and the associated numerical value is the approximate concentration of the analyte in the sample

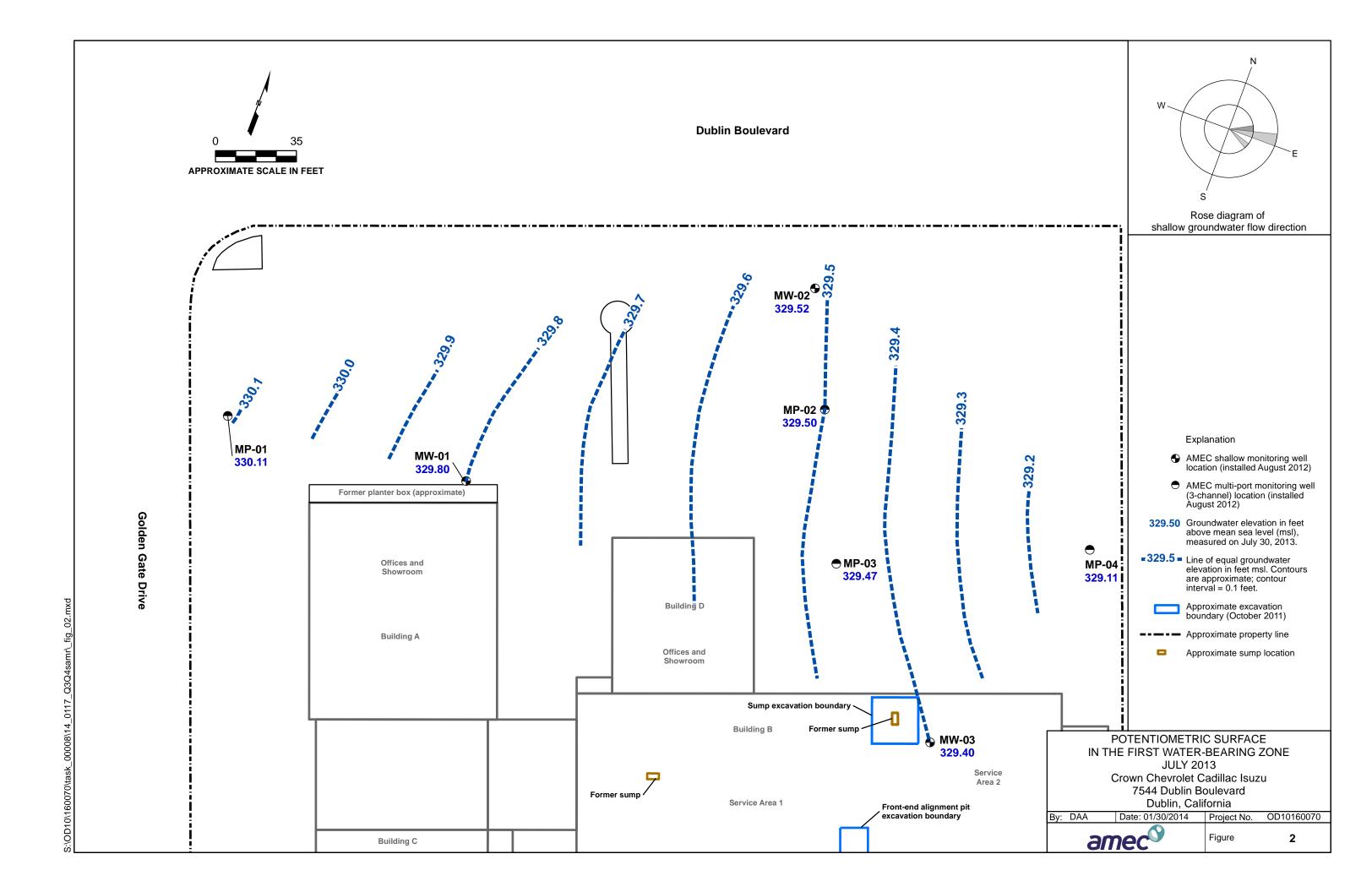
PCE = tetrachloroethene

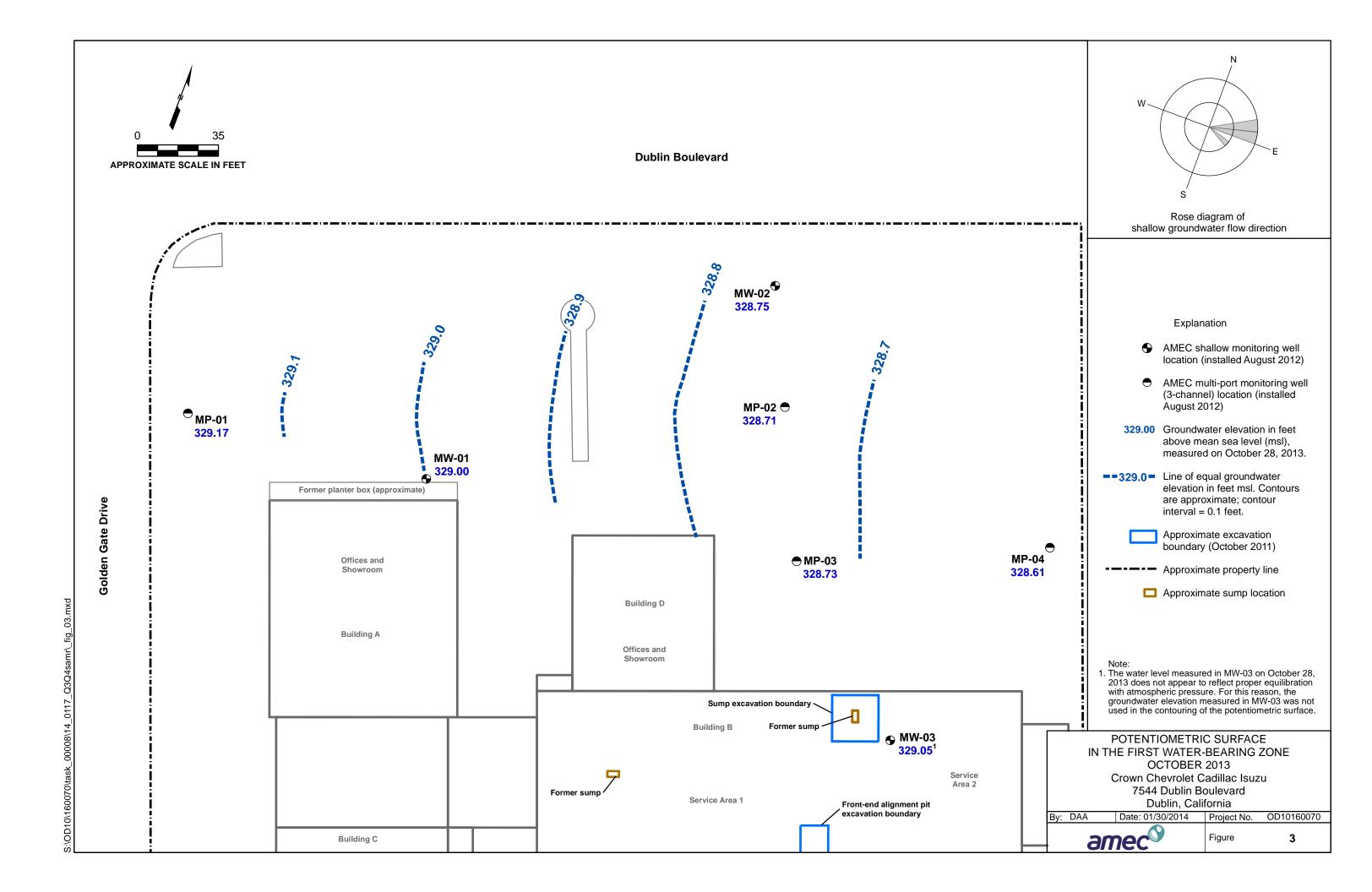
R = The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.

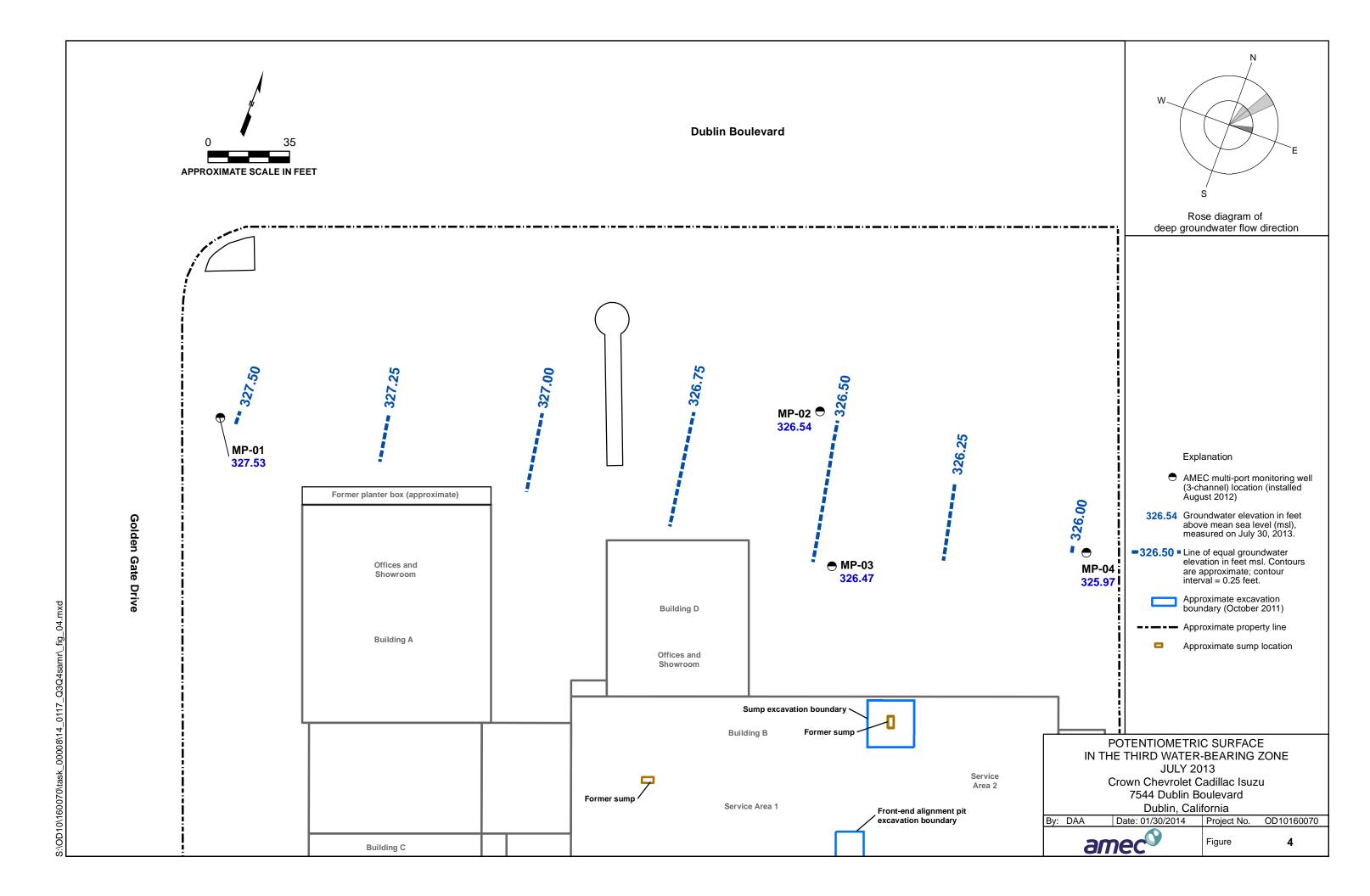
TCE = trichloroethene

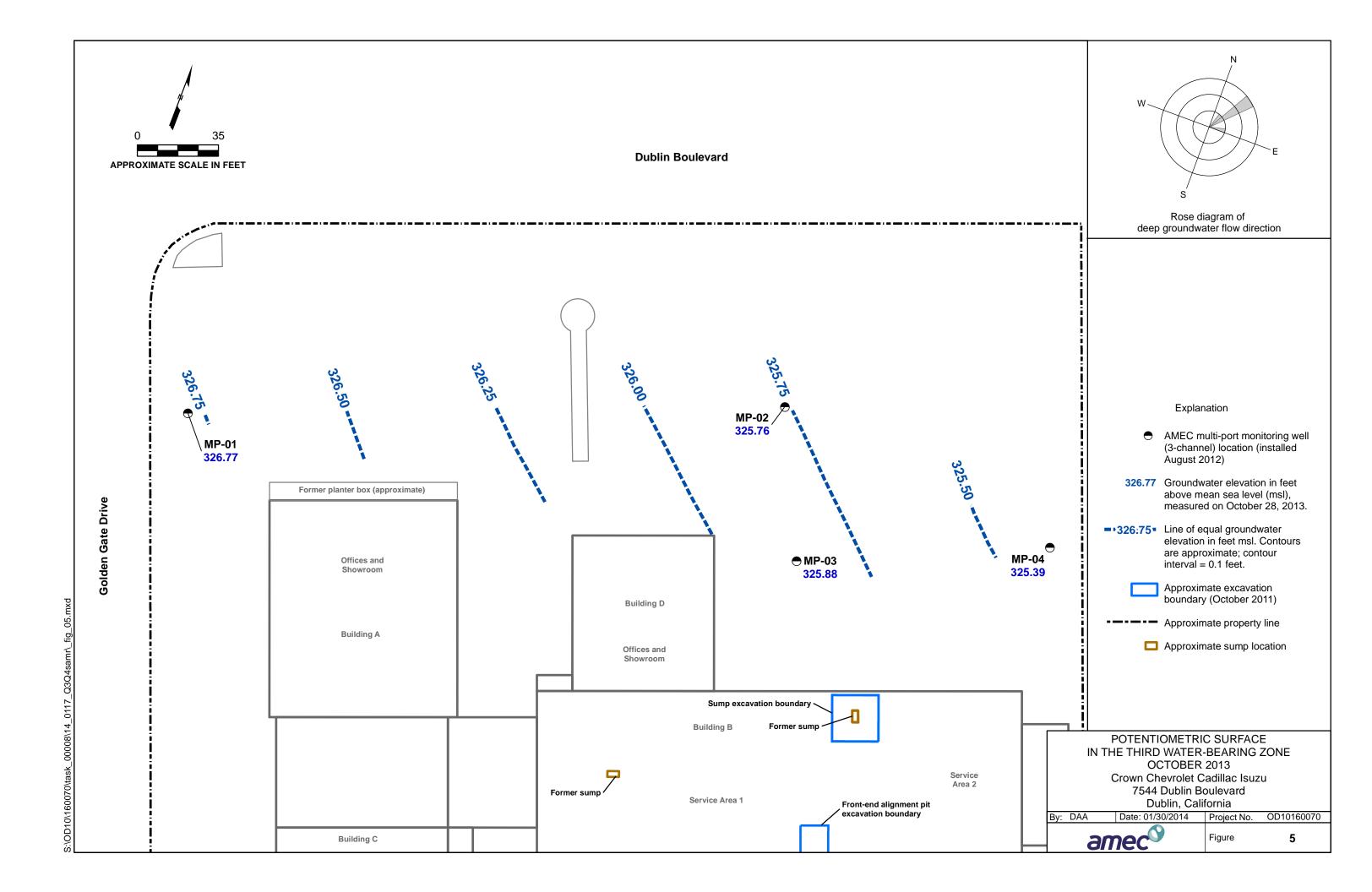
μg/L = micrograms per liter

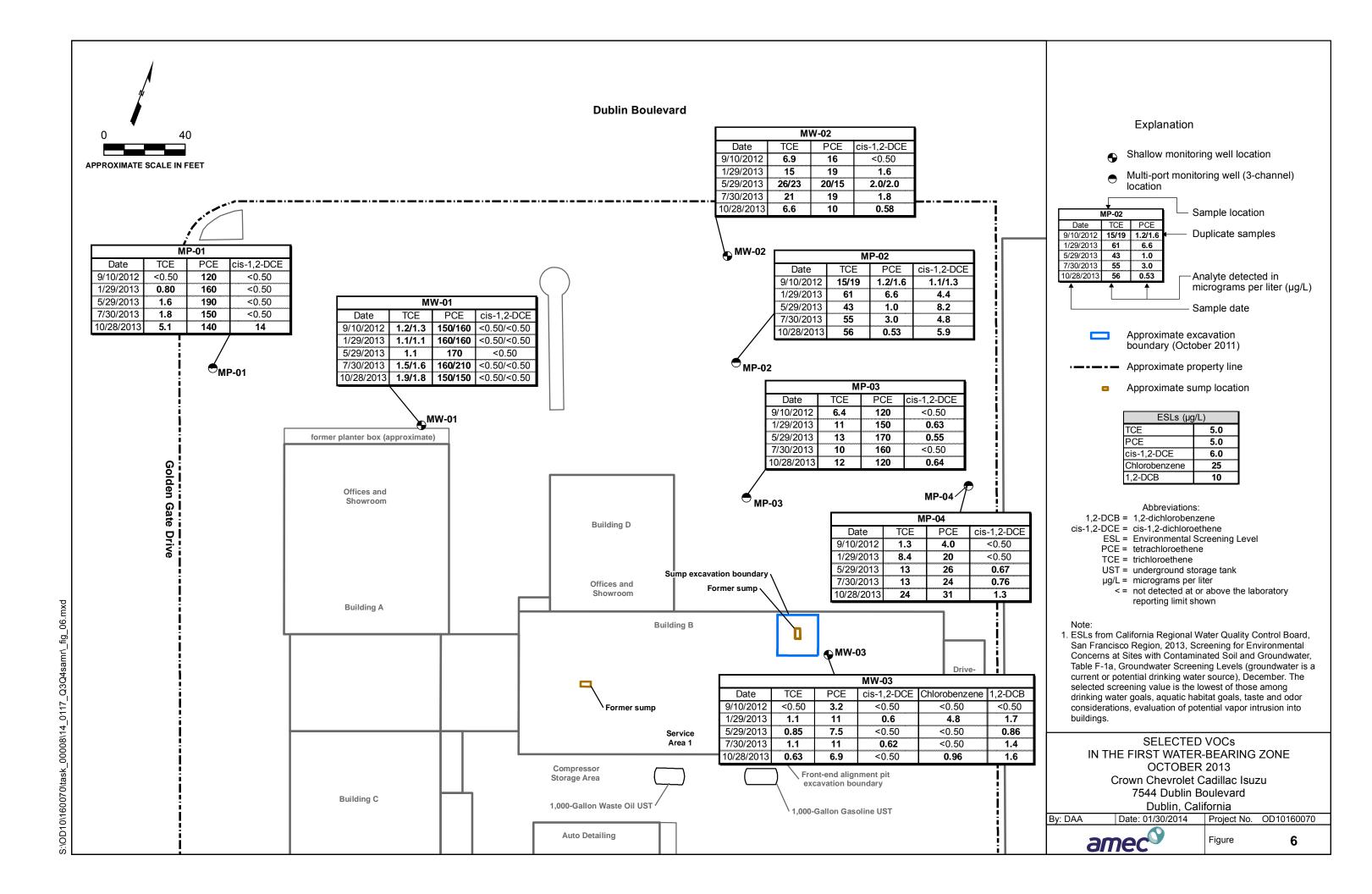

UJ = the analyte was not detected at a level greater than or equal to the quantitation limit shown; the quantitation limit is approximate and may be inaccurate or imprecise.

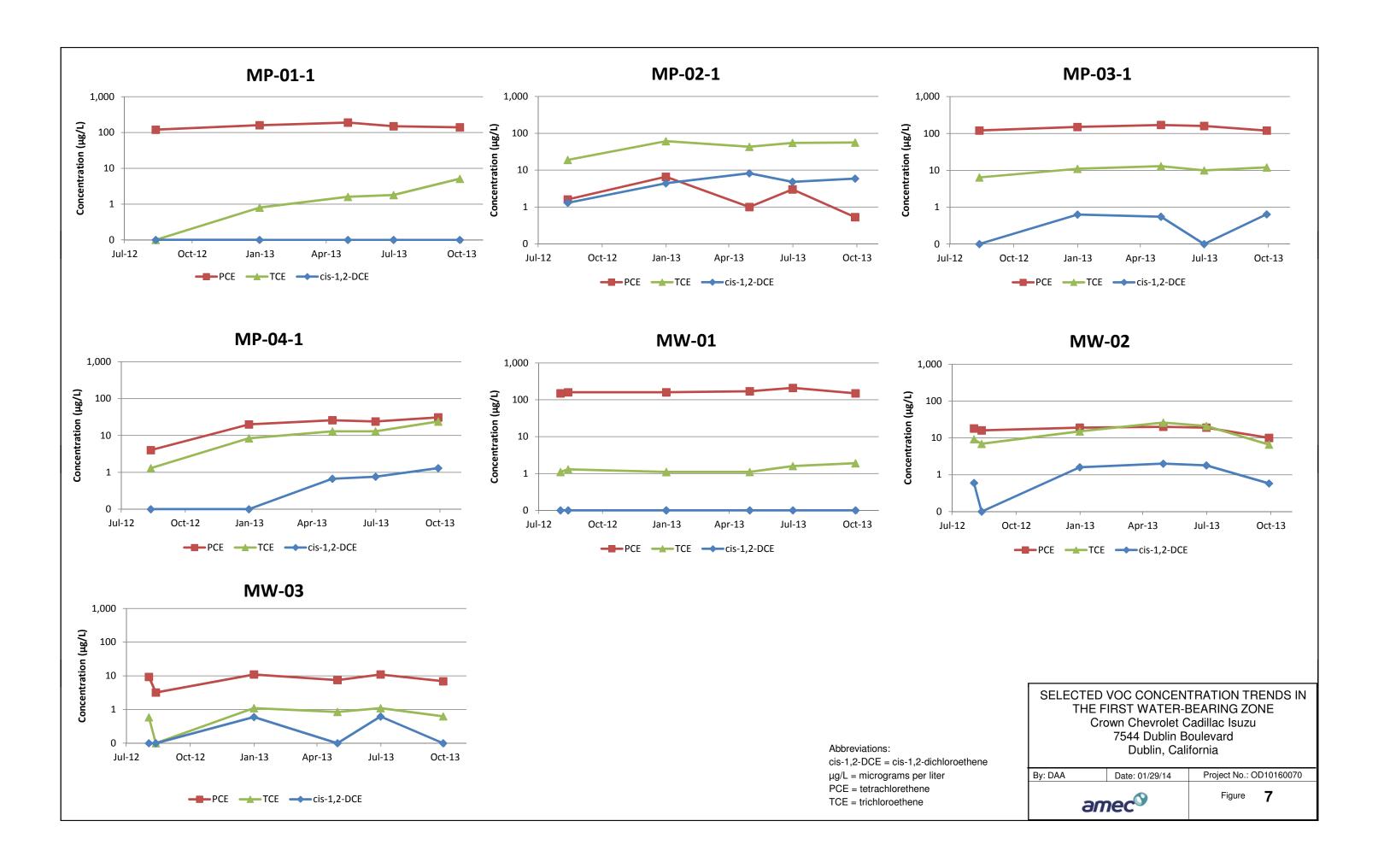

U.S. EPA = U.S. Environmental Protection Agency

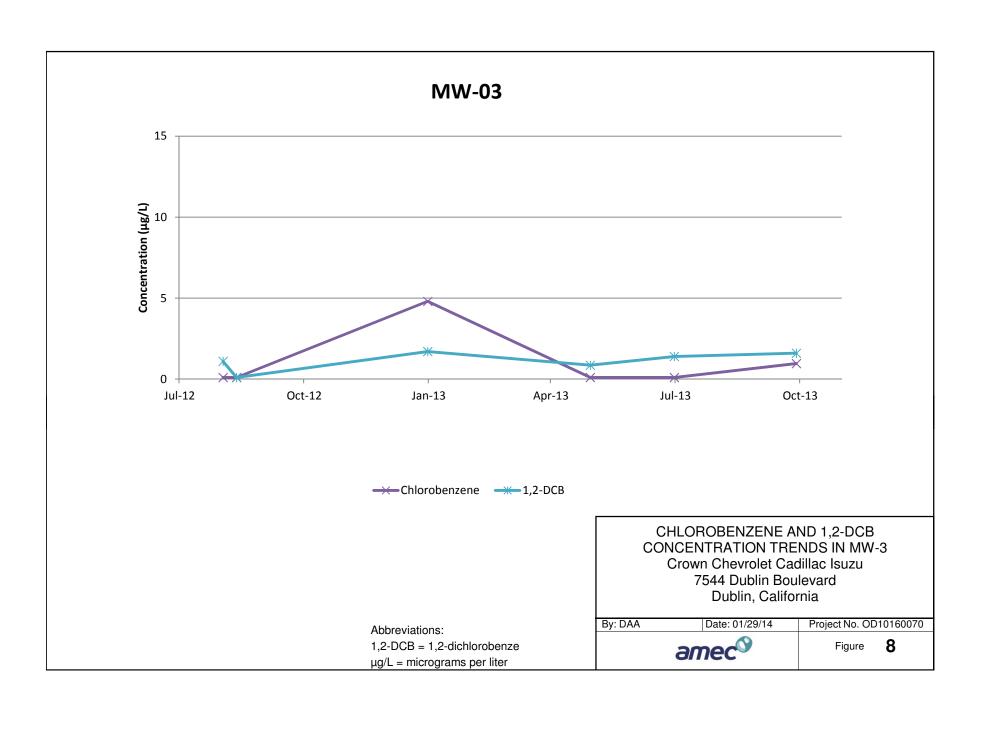

VOCs = volatile organic compounds




FIGURES







APPENDIX A

Well Sampling Field Records

WATER LEVEL MONITORING RECORD

Project Name: Crown Che	vrolet Project ar	Project and Task Number: OD10160070.00008							
Date: Meas	sured by: <u>H.Young/D. Pearso</u>	n Instrument(s)	Used:						
Note: For your	convenience, the following abbr	eviations may be used							
I = Inaccessible	D =	Dedicated	IP = Interface Probe						

Pump
ES = Electrical Sounder

WL = Water Level

Well No.	Time	TOC Elevation (feet)	DTW Measurement #1 (feet)	Groundwater Elevation (feet)	Remarks
MW-01	1317	344.24	14.44	329.80	
MW-02	0730	340.24	10.72	329.52	
MW-03	0945	343.77	14.37	329.40	
MP-01-1	1200	343.20	13.09	330.11	
MP-01-2	1317	343.20	14.26	328.94	
MP-01-3	1408	343.20	15.67	327.53	
MP-02-1	HH-16508	10 341.15	11.65	329.50	
MP-02-2	0940	341.15	10.07	331.08	
MP-02-3	1051	341.15	14.61	326.54	
MP-03-1	0735	342.21	12.74	329.47	
MP-03-2	0736	342.21	22.15	320.04	
MP-03-3	0737	342.21	15.74	324.47	
MP-04-1	1043	341.22	12.11	329.11	
MP-04-2	1045	341.22	13.31	377.91	
MP-04-3	1046	341.22	15.25	325.97	
				-	

Project Name: Crown Chevrolet

Project/Task #:

Sampled By:

Date:

	IONITOR			OD10160070.00		R	PP	7-	30-13		
Well Num			Sample		1	D	uplicate ID:				
MP	2-1-1			P-1-1			N	/A			
Method of	4		-	d of Sampling	# 	I	ntake Depth	e Depth:			
per	i pum	P	Per	DUMB			17				
				Field Eq	uipment						
	oment		odel	Serial #/Ren	Dat leceived/		Date	Calibrated			
Multi-Probe			I-556								
Turbidimete	er	N	I/A	N/A	444	N/	Α		N/A		
	***************************************			sing Purge Vol		ations					
A. Depth to V	Water = 13.	09ft. D.	Water Column (B	-A) = 4.00e	ft.	Depth to V	Vater After Sam	npling = 13.6	12 ft.		
B. Well Total	Depth = <u>17.</u>	15 _{ft.} E.	1 Well Volume (C	² x 0.0408 x D) =	0.02 _{gal} .	Actual Vol	ume Purged (fr	om below) =	950 gal(ml.)		
C. Well Diam	eter = <u>3/8</u>	in. F. 3	3 Well Volumes (3 x E) = 0.01	子 gal.	(If applicabl	e, see pumping s	ystem volume cal	culation below)		
Pump and F	low Cell Volu	me V _p	= N/A	ml		Pumping	System Vol	ume Calcula	ation		
Tubing Insi	de Diameter	D	= N/A	in.	N/A		nping System				
Tubing Leng	gth	L	= N/A	in.	$V_S = V_P + \pi * D^2 / 4 * L * 16.39 \text{ ml/in}^3$						
Conversion from Inches ³ to ml $1 \text{ in}^3 = 16.39$ ml $V_S = () + (3.1415 *^274) * () * 16.39$											
	Purging Data		Water Qu	ality Parameter	s (within ran	ge for 3 co	nsecutive rea	dings if low-	flow sampling)		
Time (24 hr)	Purge Volume	Flow Rate	Temp (°C)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	рН	Oxidation Reduction Potential (mV)	Turbidity (NTU)	Remarks (DTW, color,		
,	□ gal 💢 ml	Mml/min	Stabilization ⁽¹⁾ :	± 3%	± 0.2 mg/L	± 0.2	± 20 mV	±10% or <10 NTU	odor, etc)		
1200	iang .	140	24.68	1415	2.50	711	-100	N/A	c/ovd>		
1211	500	601	23.23	1409	1.76	705	-67		cleaning		
1216	400	80	23.90	1394	1.67	704	-43		clear		
1221	400	୫୦	24.01	1384	1.60	7.01	-38		11		
1226	400	୫୪	23.97	1376	1.62	7.02	-36	\checkmark	17		
1230	San	rple									
		V									
								••••••	,		
Remarks:			*								
				1936dd 1340dd 1340d		***************************************					
(1) Based or	EPA low-flow	sampling guid	lelines.								
Signature	# #	714600			Checked By:						

Project	Name:
Crown	Chaural

MONITORING WELL SAMPLE COLLECTION LOG					Project/Task #: OD10160070.00008A/B					Date: 7-30-13		
mP-1-2					ple ID: \mathcal{N} \mathcal{P} - 1 - 2 nod of Sampling:			Duplicate ID: N/A Intake Depth:				
	pun:	P		Pe	ori pump			43				
					Field E	quipment				46		
Equipment Mo			odel	Serial #/Rental ID		Date Received/Serviced		Date Calibrated				
				-556	N/A				- Parasas	31/4		
Turbidimete	er		IN,	/A	N/A	N/A			N/A			
	***************************************		1		sing Purge Vo				25			
	Water = 14.7		<u> </u>		(B-A) = 28.82							
	Depth =43		<u> </u>					Actual Volume Purged (from below) = 400 gal ml				
C. Well Diam	neter = <u>3/8</u>	in.	F. 3	Well Volumes ($(3 \times E) = 0.5$	gal. (If applicable, see pumping system volume calculation belo				culation below)		
Pump and F	Flow Cell Volu	ıme	V_{p}	= N/A	ml		Pumping	System Vo	lume Calcula	ation		
Tubing Insi	de Diameter		D	= N/A	in.	N/A	Pumping System Volume (V _S)					
Tubing Len	gth		L	= N/A	in.	Pumping System Volume (V _S) $V_S = V_P + \pi * D^2 / 4 * L * 16.39 \text{ m}$			/in ³			
Conversion	from Inches ³	to ml	1 in ³	³ = 16.39	ml	mlV _S = () + (3.1415 * ² / ₄) * () *						
	Purging Data	1		Water Qu	ality Paramete	rs (within ra	nge for 3 co	onsecutive rea	adings if low-	flow sampling)		
Time (24 hr)	Purge Volume □ gal 🕱 ml	Flow Rate		Temp (°C)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	pH	Oxidation Reduction Potential (mV)	Turbidity (NTU)	Remarks (DTW, color,		
		130111/1		Stabilization ⁽¹⁾ :	± 3%	± 0.2 mg/l	± 0.2	± 20 mV	±10% or <10 NTU	odor, etc)		
1322	I B. G.	-		29.17	1343	1.77	7.63	-146	N/A	clear		
1327	80			29.76	1322	2.24	7.81	-145		cloudy		
1332	80	-		30.98	13:11	2.03	7.87	-141		cloudy		
1337	80			31.09	1302	1.93	7.93	-140	1	11		
1342				dry		1		*	-			
1350	o sar		J.P	12						. 11		
			•	***************************************					7	· ·		
				***************************************		1		•				
				haanaan maa (1			÷				
Remarks:						\$			Į.	1		
		***************************************	***************************************						**************************************);;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;		

(1) Based on	EPA low-flow	sampling	nuide	lines								
Signature:						Checked E	Bv:	,				

Project	Name:
Crown	Chevrole

MONITORING WELL SAMPLE COLLECTION LOG					Project/Task #: OD10160070.00008A/B			Sampled By:		Date: 7-30-13		
Well Number/ID: Sam					le ID: \P-1-3	797		Duplicate ID:				
Method of	f Purging:	fat 1	alip	Metho	od of Sampling	-			h:			
Heri	purp -	100 A	@VC	+1	ost value							
				***************************************		Equipment Date Date						
Equip		Model		Serial #/Rental ID		Received/Serviced		Date	Calibrated			
Multi-Probe	})	YSI-556	5			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
Turbidimete	er		N/A		N/A		N	N/A		N/A		
		γ			sing Purge Vol		ulations					
A. Depth to \	Water = 15.	6]ft. 1	D. Wate	r Column (E	B-A) = 41.88	ft. Depth to Water After Sampling = 39.71 ft.						
B. Well Total	Depth = <u>57</u>	.55ft. I	E. 1 We	I Volume (C	$C^2 \times 0.0408 \times D) =$	a Ctual Volume Purged (from below) = 750 gal/						
C. Well Diam	neter = 3/8	in. F	F. 3 Wel	I Volumes ($(3 \times E) = 0.73$	2 gal.	gal. (If applicable, see pumping system volume calculation below)					
Pump and F	Flow Cell Volu	me V	V _p =	N/A	ml		Pumping System Volume Calculation					
Tubing Insi	ide Diameter	E	D =	N/A	in.	N/A	Pi	Pumping System Volume (V _S) $V_S = V_P + \pi * D^2 / 4 * L * 16.39 \text{ ml/in}^3$				
Tubing Leng	gth	L	_ =	N/A	in.	/ / ·	-A2=7					
Conversion	from Inches ³	to ml 1	1 in ³ =	= 16.39 mlV _S = () + (3.1415 * ² /4) * (()* 16.39			
	Purging Data			Water Qu	ality Parameters	s (within ra	ange for 3	consecutive re	adings if low-	flow sampling)		
Time (24 hr)	Purge Volume □ gal 🗖 ml	Flow Rat	1	Temp (°C)	Specific Conductance (µS/cm)	Dissolve Oxygen (mg/L)	т рн	Oxidation Reduction Potential (mV)	Turbidity (NTU)	Remarks (DTW, color,		
	Li yai bi ini	M ml/mir		oilization ⁽¹⁾ :	± 3%	± 0.2 mg/	/L ± 0.2	± 20 mV	±10% or <10 NTU	odor, etc)		
1412	Intial		2	9.81	1307	2.30	7.6	2 - 95	N/A	cloudy		
1417	80		3	0.86	1305	2.01	7.73	2 -94		ч (
1422	80		3	1.60	1298	1.94	7.7	7 - 84		l(
1425	80		3	1.59	1264	1.417	7.85	5-92		11		
1430	80		3	2.79	1246	0.98	7.81	-84		11		
			dry	7		103	7.3	5-92				
1435	100	-		2.60	1246	1.03	7.35			11		
140	200		2	5:70	1225	1.08	41.67	2-129	J	11		
1450		sam	SIGN	4					1	Į (
Remarks:			10									
(1) Based on	n EPA low-flow s	sampling gı	uidelines	5.				(130/1139)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
Signature:						Checked	Ву:	300000000000000000000000000000000000000	***************************************	5		

Project Name: Crown Chevrolet

	IONITOR AMPLE COL				Project/Task #: OD10160070.00008A/B			pled By: RDヤ		Date: 7-30-13		
Well Num				Sampl	e ID:			Duplicate ID				
V	MP. 2-	1		r	NP-2-1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		N/A			
					od of Sampling:			Intake Depth:				
\$	seri F	nuc	>	P	ari pun			12.7				
					Field Eq	uipment						
Equipment Mode			Model		Serial #/Rental ID		Date Received/Serviced		Date Calibrated			
Multi-Probe		1	YSI-556	-556					111111111111111111111111111111111111111			
Turbidimete	er		N/A		N/A		N,	/A	N/A			
					sing Purge Vol	ume Calcul	ations					
A. Depth to V	Water = 11.4	5 ft.	D. Water	Column (E	(B-A) = 1.35 ft. Dep			Depth to Water After Sampling = <u>lt.65</u> ft.				
B. Well Total	Depth = 13.	00 ft.	E. 1 Well	Vell Volume ($C^2 \times 0.0408 \times D$) = $\frac{.008}{.008}$ gal. Actu				tual Volume Purged (from below) = 3150 gal/yri.				
C. Well Diam	eter = 3/8	in.	F. 3 Well	Volumes (3 x E) = <u></u> の・じ	2_ gal.	(If applical	ole, see pumping s	e pumping system volume calculation below)			
Pump and F	low Cell Volu	me \	/ _p =	N/A	ml		Pumping	g System Vol	ume Calcula	tion		
Tubing Insi	de Diameter]) =	N/A	in.	NA	Pu	Pumping System Volume (V _S)				
Tubing Leng	gth	l	_ =	N/A	in.	$V_5 = V_P + \pi * D^2 / 4 * L * 16.39 \text{ ml/in}^3$				/in ³		
Conversion	from Inches ³	to ml	L in ³ =	16.39	ml	V _S =	: () + (3.1415 * _	2/4)*	16.39		
	Purging Data			Water Qu	ality Parameter	s (within ran	ige for 3 c	onsecutive rea	adings if low-f	low sampling)		
Time (24 hr)	Purge Volume	Flow Rate		Temp (°C)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	рН	Oxidation Reduction Potential (mV)	Turbidity (NTU)	Remarks (DTW, color,		
(21111)	□ gal Lyomi	₩ ml/mi		oilization ⁽¹⁾ :	± 3%	± 0.2 mg/L	± 0.2	± 20 mV	±10% or <10 NTU	odor, etc)		
0845	458	90	2	2.90	1560	3:19	7.11	-111	N/A	Clear		
0850	450	* 9	0 2	3.01	1587	0.63	7.08	-115		clear		
0855	450	90	27	3.14	1586	0.42	7.08	-104		Clear		
0900	450	90	2:	3.07	1588	0.28	7.07	-95		71		
0905	450	90	23	3.15	1584	0.20	7.07	-61		11		
0910	450	90	2.	3.18	1582	0.18	7.07	-55		11		
0915	450	90	2	3.16	1582	0.19	7.07	-54	V	1[
0920	sam:	ple			,							
Remarks:						I.						
⁽¹⁾ Based on	EPA low-flow	sampling g	uidelines									
Signature						Checked B	y:					

Project	Name:
Crown	Chaural

Crown Chevrolet

	MONITOR SAMPLE COL			Project/Task OD10160070.0		1	PDP	Da	te: 7-30-13
Well Num	nber/ID: nP-2-	2	Samp	le ID: ハア- ス・コ		1	Ouplicate ID	J/A	
	f Purging: Pexi P	Uwif	1	od of Sampling	en pump 37				
				Field Ed	uipment				
	pment		Model	Serial #/Rental ID Receiv			te Serviced	Date	Calibrated
Multi-Probe		\\	/SI-556						
Turbidimet	er		N/A	N/A		N/	Α	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	N/A
			Ca	sing Purge Vo	lume Calcul			36	53
A. Depth to	Water = 10.0	27 ft. ا	D. Water Column (I	3-A) = 26.93	_ ft.	Depth to \	Water After San	npling = 32	40 ft.
B. Well Tota	I Depth = 3	7 _ft. 1	E. 1 Well Volume (0	$C^2 \times 0.0408 \times D) =$	6.15 gal.	Actual Vol	ume Purged (fr	om below) = _	750 gal ml.
C. Well Diam	neter = 3/8	in. f	. 3 Well Volumes ((3 x E) = <u>0,4(</u>	🥒 gal.	(If applicab	le, see pumping s	system volume ca	lculation below)
Pump and	Flow Cell Volu	me V	$v_p = N/A$	ml		Pumping	System Vol	lume Calcul	ation
Tubing Insi	ide Diameter	С) = N/A	in.	NA	A Pumping System Volume (V _S)			
Tubing Length $L = N/A$ in. $V_S = V_P + \pi * D^2/4$						$+\pi*D^2/4*$	* L * 16.39 ml/in ³		
Conversion	from Inches ³	to ml 1	$in^3 = 16.39$	ml	V _S =	()	+ (3.1415 * _	²/4)³	()+16.39
	Purging Data		Water Qu	iality Parameter	rs (within ran	ge for 3 co	onsecutive rea	adings if low	flow sampling)
Time (24 hr)	Purge Volume	Flow Rat	(°C)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	рН	Oxidation Reduction Potential (mV)	Turbidity (NTU)	Remarks (DTW, color,
	_ gar tal IIII		Stabilization ⁽¹⁾ :	± 3%	± 0.2 mg/L	± 0.2	± 20 mV	±10% or <10 NTU	odor, etc)
0945	TAFAP	30	24.43	1331	2.08	7.29	.च्येष	N/A	choudly
0950	150	30	24.26	1318	0-10	7.23	-273		11
0952									purge dry
0000	358	೩ರಿ	24.65	1324	0.85	7.24	-249		185 clouds
1008	50		25.50	1326	0.77	7.29	-246	Ą	17
1941		le	twell,	echarge	2				
4450		500m	10/10						

	-								
Remarks:									
N. Warrania and A. Carlon, and A. Ca						***************************************			
		454333333344444444444444444444444444444		ACCULATION AND ADDRESS OF THE ACCULA		***************************************			ana ang ang ang ang ang ang ang ang ang
(1) Based or	EPA low-flow	sampling gu	uidelines.					A THE STREET OF	***************************************
Signature	:				Checked By	y:			

Project Name:

Crown Che	evrole	et
-----------	--------	----

_	MONITORING WELL SAMPLE COLLECTION LOG Project/Task #: Sampled By: Date:							re: 7-30-13			
Well Num		5			pple ID: Duplicate ID:						
Method o			M		d of Sampling						
Po	11 DAM	rP		f	Peri Pun	NP	ρ 57'				
		· -			Field Eq	uipment					
Equi	pment	М	odel		Serial #/Ren	tal ID R	Da Received	te /Serviced	Date	Calibrated	
Multi-Probe	2	YS	SI-556								
Turbidimet	urbidimeter N/A						N	'A		N/A	
				Cas	ing Purge Vol	ume Calcul	ations				
A. Depth to	Water = <u>[4].4</u>	<u>61</u> ft. D.	Water Colur	nn (B	-A) = 42.64	ft.	Depth to	Water After San	npling = 35	FOR.	
B. Well Tota	Depth = 57			-	² x 0.0408 x D) =	1 -	Actual Vo	lume Purged (fr	om below) =	7000 gal (m)	
C. Well Diam	neter = <u>3/8</u>	in. F.	3 Well Volur	nes (3	3 x E) =	3 gal.	(If applical	ole, see pumping s	ystem volume ca	Iculation below)	
Pump and	Flow Cell Volu	me V _p	= N/	A	ml		Pumpin	g System Vol	ume Calcul	ation	
Tubing Insi	ide Diameter	D	= N/	A	in.	NA	Pumping System Volume (V _S)				
Tubing Len	gth	L	= N,	A	in.	. //	$V_S = V_P + \pi * D^2 / 4 * L * 16.39 \text{ ml/in}^3$				
Conversion	from Inches ³	to ml 1 i	$n^3 = 16$.39	ml	V _S =	: () + (3.1415 * _	² /4)*	() * 16.39	
	Purging Data	· · ·	Wate	r Qu	ality Parameter	s (within ran	ge for 3 c	onsecutive rea	adings if low-	flow sampling)	
Time (24 hr)	Purge Volume	Flow Rate	Tem (°C)	- ;	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	рН	Oxidation Reduction Potential (mV)	Turbidity (NTU)	Remarks (DTW, color, odor, etc)	
	U gai U IIII		Stabilizati	on ⁽¹⁾ :	± 3%	± 0.2 mg/L	± 0.2	± 20 mV	±10% or <10 NTU	odor, etc)	
1056	ス世紀	30	26.8	56	144	296	7.22	-173	N/A	doub	
1101	80	95	3.146	32	1151	2.61		-199		12	
1106	80	<u> </u>	26.1	8	1152	1.92	7.86	213		running de	
1116	80	-	264	16	1157	1.69	7.77	-209		41	
1116	80		27.4	6	1164	1.56	7.69	-201		cloudy	
1121	80		27.7		1172	1.52	7.62	-188		11	
1126	80		27.5		1177	1.51	7.59	-184	V	U	
11385	and	e								dry	
1450	***************************************	Saure	ple				111111111111111111111111111111111111111				
Remarks:				5.7						3(
(1) Based or	n EPA low-flow	sampling guid	delines.								
Cianatura		.,,,,.				Chacked B	V:	THE PROPERTY OF THE PROPERTY O		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	

MONITORING WELL SAMPLE COLLECTION LOG

Project Name:

Crown Chevrolet

Proj	ect/	Task	#:	
OD1	0160	070.0	00008	A/B

Sampled By:

Date:

SAMPLE COLLECTION LOG		Hypung	20/1/2
Vell Number/ID:	Sample ID:	Duplicate ID:	5
mp-02-1	mp-03-1	A1 /A	

Method of Purging: Peri-pump MP-03-

Method of Sampling: Intake Depth:

Field Equipment									
Equipment	Model	Serial #/Rental ID	Date Received/Serviced	Date Calibrated					
Multi-Probe	YSI-556	02 D0577 AH	7/29/13	7/30/13					
Turbidimeter	N/A	N/A	N/A	N/A					

Casing Purge Volume Calculations								
A. Depth to Water = 12.74 ft.	D. W	D. Water Column (B-A) = 1.86 ft.			_ ft.	Depth to Water After Sampling = 12.85 ft.		
B. Well Total Depth = 14.0 ft.	E. 1	Well	Volume (C ² x	$(C^2 \times 0.0408 \times D) = 0.0$ gal. Actual Volume Purged (from below) = 2300 gal/m)				
C. Well Diameter = <u>6.375</u> in.	F. 3	Well	Volumes (3 x	(E) = _ O . C	gal. (If applicable, see pumping system volume calculation below)			
Pump and Flow Cell Volume	V _p	==	N/A	ml		Pumping System Volume Calculation		
Tubing Inside Diameter	D	=	N/A	in.	N/A	Pumping System Volume (V _S)		
Tubing Length	L	=	N/A	în.	,	$V_S = V_P + \pi * D^2 / 4 * L * 16.39 \text{ ml/in}^3$		
Conversion from Inches ³ to ml	1 in ³	=	16.39	ml	V _S :	= () + (3.1415 * ²/4) * () * 16.39		
	20 11							

	Purging Data	1	Water Quality Parameters (within range for 3 consecutive					adings if low-	flow sampling)
Time (24 hr)	Purge Volume gal mi	Flow Rate	Temp (°C)	Specific Conductance (μS/cm)	Dissolved Oxygen (mg/L)	рН	Oxidation Reduction Potential (mV)	Turbidity (NTU)	Remarks (DTW, color,
		7	Stabilization ⁽¹⁾ :	± 3%	± 0.2 mg/L	± 0.2	± 20 mV	±10% or <10 NTU	odor, etc)
0813	Initial	200	21.04	1321	0.52	48.0	-26.6	N/A	water is
0826	1100		2089	1322	0.39	6.90	-15.7		char,
0829	1700		20.91	1322	0.31	6.90	-9.6		slight odor
0832	2300	V	20.91	1320	0.28	6.89	-7.5	٧	
								1	
		· ·							
							_		

Remarks:	Sumpled	00835 for	8260B	(ms/msD)	
***************************************			·		
1) Based on El	PA low flow sampling gu	idelines.			
Signature:	MILLO		Checked	D	

	am		0		Project Name Crown Chevrol						
	ONITOR AMPLE COLI	ING		1.7 (1)	Project/Task OD10160070.00				npled By:	Dat	e: 30 13
Well Num	ber/ID:			Samp	e ID:				Duplicate ID:		
	p-03-2		************************		mp-03-					N/A	
Method of	Purging: Pe Check-Vo	n-pu	mp	Metho San	e as purg				Intake Depth	42.	9'
3					Field Eq	uipment					
Equi	oment	date to a role arranged and the second	Мо	del	Serial #/Ren	tal ID	Red		ate /Serviced		Calibrated
Multi-Probe			YSI-	-556	0200577	AH	7	29	13	7/3	è 13
Turbidimete	er		N	/A	N/A			N	/A		N/A
R				Ca	sing Purge Vol	ume Cal	culat	ions			
A. Depth to \	Water = 22.1	5 _{ft.}	D. V	Vater Column (I	3-A) = 20.75	ft.	C	epth to	Water After Sam	pling = 42	. <u>61</u> ft.
B. Well Total	Well Total Depth = $\frac{42.90}{1}$ ft. E. 1 Well Volume ($C^2 \times 0.0408 \times D$) = $\frac{0.12}{2}$ gal. Actual Volume Purged (from below) = $\frac{300}{2}$ gal.							300 gal(ml.)			
C. Well Diam	eter = <u>0.37</u>	<u>5</u> in.	F. 3	Well Volumes (nes $(3 \times E) = 0.34$ gal. (If applicable, see pumping system volume calculation below)						lculation below)
Pump and I	Flow Cell Volu	me	V_p	= N/A ml Pumping System Volume Calculation						ation	
Tubing Insi	de Diameter	***************************************	D	= N/A	in.	NA		Pu	mping System	Volume (V _S)	
Tubing Len	gth		L	= N/A	in.	-		$V_S = V$	$p + \pi * D^2 / 4 *$	L * 16.39 ml	I/in ³
Conversion	from Inches ³	to ml	1 in	3 = 16.39	ml	V	/ _S = (.) + (3.1415 *	2/4)*	() * 16.39
	Purging Data	·		Water Qเ	ality Parameter	s (within	range	for 3		dings if low-	flow sampling)
Time (24 hr)	Purge Volume	Flow F	n	Temp (°C)	Specific Conductance (μS/cm)	Dissolv Oxyge (mg/L	n	рН	Oxidation Reduction Potential (mV)	Turbidity (NTU)	Remarks (DTW, color, odor, etc)
	□ gai na ini			Stabilization ⁽¹⁾ :	± 3%	± 0.2 mg	ı/L	± 0.2	± 20 mV	±10% or <10 NTU	
0745	Initial			20.68	2025	2.41		8.17	44.0	N/A	Suifur oder
0753	200	20	Offi	19.90	1962	2.03	•	8.24	1	NA	
0756	300		6	19.48	1984	1,97		83		N/A	
-	- Sam	plea	d 1	pefore	well	llwa	te	red			
								,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
						1.5					

Remarks: Sampled @ 0800	for 8260B	
(1) Based on EPA low-flow sampling guidelines.		
Signature:	Checked By:	

SAN Well Numbe	NITOR	ING	WEI		***************************************					
MP-Method of P			MONITORING WELL SAMPLE COLLECTION LOG				Project/Task #: Sampled By: OD10160070.00008A/B H. Uovrq			te: 7/30/13
Method of P	03-3			Sampl				Duplicate ID:		
^			***************************************		MP-03-1			Intake Depth	V/A	
Pevi-pur				_		•		тпаке рери	58/	
	rys			revi	Field Eq	uipment				
Equipm	nent		Мо	odel	Serial #/Ren	tal ID	_	ate /Serviced	Date	Calibrated
Multi-Probe			YSI	-556	0200577A	H	7/29	13	7/30) 13
Turbidimeter		1	N	/A	N/A		, N	/A		N/A
				Cas	sing Purge Vol	lume Calcu	lations			
A. Depth to Wa	ter = 15.7	<u>4</u> n.	D. V	Vater Column (B	-A) = 423Le	ft.	Depth to	Water After Sam	pling = 22 .	17 ft.
B. Well Total De	epth = <u>58</u> .	ft.	E. 1	Well Volume (C	² x 0.0408 x D) =	0.24 gal.	Actual V	olume Purged (fro	om below) = (2800 gal(ml)
C. Well Diamete	er = <u>0.731</u>	5 in.	F. 3	Well Volumes (3	3 x E) =	13_gal.	(If applica	ble, see pumping sy	ystem volume ca	alculation below)
Pump and Flo	w Cell Volu	me	V _p	= N/A	ml		Pumpin	g System Vol	ume Calcul	ation
Tubing Inside	Diameter		D	= N/A	in.	N/A	Pu	mping System	Volume (V _S)	
Tubing Length	1		L	= N/A	in.	,		+π*D ² /4*	L * 16.39 m	l/in³
Conversion fro	om Inches ³	to ml	1 in	$^{3} = 16.39$	ml	V _S =) * 16.39
Pu	ırging Data			Water Qu	ality Parameter					flow sampling)
Time (24 hr)	Purge Volume	Flow F	n	Temp (°C)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	рН	Oxidation Reduction Potential (mV)	Turbidity (NTU)	Remarks (DTW, color,
(=)	□ gal 💢 ml	₩ ml/		Stabilization ⁽¹⁾ :	± 3%	± 0.2 mg/L	± 0.2	± 20 mV	±10% or <10 NTU	odor, etc)
0856	Initial	150)	20.46	1044	0.99	7.87	-175.5	NA	color, no och
_	1000	ì	***************************************	20.40	1043	0.05	8.00	-203.7	1	
	450			2047	1041	0.64	7.94	-207.2		
	900			20.41	1036	19.0	7.79	-205.0		
	2350			20.40	1033	0.52	7.72	-199.1		
	2800	V	********************	20.38	1029	0,55	7.65	1	V	

			***************************************	D.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					***************************************	
Remarks:	Samo	000	0 (1915 A	r 8260	B				<u></u>
	Carp	ou '			0200		***************************************			
						,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	- - - - - - - - - - - - - - - - - - -			
(1) Based on El	PA low-flow	sampling	ı guide	elines.	, 110),, 1 ₀ ,).hheadtictit (***********************************			
Signature:	1		33.30			Checked B	v:			
g.iacate.	Car.	11	1			JJoilea D	,-			

MONITORING WELL SAMPLE COLLECTION LOG				Project/Task		-	mpled By:	Dat	te: 7/30/13
Well Nun				ple ID:			Duplicate ID		
	P-04-1			MP-04				N/A	
	of Purging:			od of Sampling		4.	Intake Depti		
tens	taltic f	ann		eri-pump		771111111		15.7	
					quipment	. D	ate	E)	
Equi	ipment		Model	Serial #/Rer	ntal ID	_	ate I/Serviced	Date	Calibrated
Multi-Prob	е	Y	/SI-556	0200577	AH	7/29	13	7/3	0/13
Turbidimet	er	1	N/A	N/A	İ		/A		N/A
			C	asing Purge Vo	lume Calcul	lations			
A. Depth to	Water = 12.1	II ft. C). Water Column	(B-A) = 3.59	ft.	Depth to	Water After San	npling = 15	7 _ft.
B. Well Tota	Depth = 15			(C ² x 0.0408 x D) =		ļ			300 gal(ml.)
	neter = <u>0.31</u>			(3 x E) = 0.0			able, see pumping s		
Pump and	Flow Cell Volu	ume V	_p = N/A	ml		Pumpin	g System Vol	ume Calcula	ation
Tubing Ins	ide Diameter	D	= N/A	in.	NA	Pu	ımping System	Volume (V _S)	
Tubing Ler	igth	L	= N/A	in.		V _S = V	$p + \pi * D^2 / 4 *$	L * 16.39 m	l/in ³
Conversion	from Inches ³	to ml 1	$in^3 = 16.39$	ml	V _S =) + (3.1415 * _		
	Purging Data	<u> </u>	Water Q	uality Parameter	rs (within ran	ge for 3 (consecutive rea	adings if low-	flow sampling)
Time (24 hr)	Purge Volume	Flow Rate	(°C)	Specific Conductance (μS/cm)	Dissolved Oxygen (mg/L)	рН	Oxidation Reduction Potential (mV)	Turbidity (NTU)	Remarks (DTW, color,
	u gai je iii.	A 118/118	Stabilization ⁽¹⁾): ± 3%	± 0.2 mg/L	± 0.2	± 20 mV	±10% or <10 NTU	odor, etc)
1153	Initial	85	24.53	1301	0.92	7.20	-193.6	NA	water is clear,
1155	175	77	28,94	1345	0,92	7.17	-147.6		noodor
1157	360	J,	24.39	1358	3.00		-106.1	1	
	Ĺ	Dewat	ered e	300m1					
	1	The second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a section in the second section in the section is a section in the second section in the section is a section in the section in the section is a section in the section in the section in the section is a section in the section in the section in the section is a section in the section in the section in the section is a section in the section in the section in the section in the section is a section in the							
	5								
	<u> </u>			######################################		***************************************		·	
***************************************			1						
	<u> </u>							***************************************	
Remarks:	Samo	olode	> 1705 f	br 82100	72		A 1		
			de			•••••••••••••••••••••••••••••••••••••••			
***************************************			·	***************************************				***************************************	
(1) Baced or	EPA low-flow s	campling gui	Idalinas			***************************************))))))		
Signature			delines.		Checked By				
Jiuliatuic		A U GA CA	1 1		CHECKED DY				

MONITORING WELL SAMPLE COLLECTION LOG

Project	Name
Crown (Chevrol

Crown	Chevro	let

Proj	ject/	rask	#:	
OD1	0160	070.0	0008	A/B

		ed			
-	 Ρ.	Cu	_	7	•

Date:

Well	Number/1D:	
	mp-011-7	

Sample ID:

MP-04-2
Method of Purging: Inertial lift/ Method of Sampling:

Intake Depth:

checkvalve

Peristaltic Pump

Field	Equipment

reid Equipment						
Equipment	Model	Serial #/Rental ID	Date Received/Serviced	Date Calibrated		
Multi-Probe	YSI-556	0200577 AH	7/29/13	7/30/13		
Turbidimeter	N/A	N/A	N/A	N/A		

Casing Purge Volume Calculations

A. Depth to Water = 1331 ft.	D. Water Column (B-A) = $\frac{29.39}{}$ ft.	Depth to Water After Sampling = 37.82 ft.
B. Well Total Depth = 41.7 ft.	E. 1 Well Volume ($C^2 \times 0.0408 \times D$) = $O \cdot V_{Q}$ gal.	Actual Volume Purged (from below) = 400 gal
C. Well Diameter = 0.315 in.	F. 3 Well Volumes (3 x E) = 0.49 gal.	(If applicable, see pumping system volume calculation below)

Pump and Flow Cell Volume	V_p	=	N/A	ml
Tubing Inside Diameter	D	=	N/A	in.
Tubing Length	L	=	N/A	in.
Conversion from Inches ³ to ml	1 in ³	=	16.39	ml

Pumping System Volume Calculation

Pumping System Volume (V_S) $V_s = V_p + \pi * D^2 / 4 * L * 16.39 \text{ ml/in}^3$

 $V_S = (___) + (3.1415 * ___ ^2 / 4) * (__) * 16.39$

N/A

Purging Data			Water Quality Parameters (within range for 3 consecutive readings if low-flow sampling)							
Time (24 hr)	Purge Volume ☐ gal Xml	Volume	Flow Rate gpm mild mild mild mild mild mild mild mild	Temp (°C)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	рН	Oxidation Reduction Potential (mV)	Turbidity (NTU)	Remarks (DTW, color,
	a gai ya iiii	7	Stabilization ⁽¹⁾ :	± 3%	± 0.2 mg/L	± 0.2	± 20 mV	±10% or <10 NTU	odor, etc)	
1130	Initial	100	25.14	1259	1.43	7.99	-199.5	N/A	Lt gray	
1132	200	50	23.56	1303	1.32	808	-228.3	a	Shang Hz	
1134	300		2314	1275	1.22	8.12	-233.0		reacr.	
1136	400	<u> </u>	23.57	1278	1.20	7,97	-230.3	V		
	**************************************							,		
			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		***************************************					

-				
Remarks:	Sampled @ 1140	For 8260B		
				**
⁽¹⁾ Based on I	EPA low-flow sampling guidelines.			
Signature:	M. Oulla	Checked By:	The state of the s	

					Project Name Crown Chevro						
	MONITOR SAMPLE COL	ING			Project/Task OD10160070.0			npled By: H.Young	Da	te: 1/30/12	
Well Num				Samp	le ID:	411		Duplicate ID		130/13	
	p-04-	3			MP-04	-3		N/	A		
Method o	f Purging:				od of Sampling			Intake Depti		1	
Peri-	pump			4	en-pur		4777748888888	*	58.	9	
		1			Field E	quipment		4.0			
Equi	pment		Мо	odel	Serial #/Ren	ntal ID		ate /Serviced	Date	Calibrated	
Multi-Probe	2	YSI-556			0200577 A	tt	7/29/	13	7/3	0/13	
Turbidimet	er		N	/A	N/A			/A	***************************************	N/A	
				Ca	sing Purge Vo	lume Calcu	lations			***	
A. Depth to	A. Depth to Water = 15.25 ft. D. Water Column (B-A) = 43.35						Depth to	Water After Sam	npling = 2°	1.11 ft.	
B. Well Tota	Depth = 58	<u>U</u> ft.	E. 1	Well Volume (C ² x 0.0408 x D) =	= <u>0·25</u> gal.	Actual Vo	olume Purged (fr	om below) = _	2.500 gal(ml)	
C. Well Diam	neter = 0,37	5_in.	F. 3	Well Volumes	(3 x E) =	75 _{gal.}	(If applica	ble, see pumping s	ystem volume ca	Ilculation below)	
Pump and	Flow Cell Volu	ıme	$V_{\rm p}$	= N/A	ml		Pumping System Volume Calculation				
Tubing Insi	ide Diameter	P	D	= N/A	in.	N/A	Pumping System $V_S = V_P + \pi * D^2 / 4$		Volume (V _S)	THE PERSON NAMED AND ASSESSED	
Tubing Length L = N/A					in.	I A	$V_S = V_I$	$+ \pi * D^2 / 4 *$	L * 16.39 m	l/in ³	
Conversion	from Inches ³	to ml	1 in	$^{3} = 16.39$	mĺ	V _S =	= () + (3.1415 * _	274)	() * 16.39	
	Purging Data	1		Water Qu	iality Paramete				20 10	(A-2)	
Time (24 hr)	Purge Volume	□ gpm			Specific Conductance (μS/cm)	Dissolved Oxygen (mg/L)	рН	Oxidation Reduction Potential (mV)	Turbidity (NTU)	Remarks (DTW, color,	
	□ gal 🎾 ml	St.ml/i	11111	Stabilization ⁽¹⁾	± 3%	± 0.2 mg/L	± 0.2	± 20 mV	±10% or <10 NTU	odor, etc)	
1055	Initial	100) .	23.28	1021	1.57	7.89	-161.7	N/A	Dankgray color, Strong Sulfurodor	
1100	10000	1		22.33	_	7.14	8,02	-203.0	Ĺ	Sulfurodok	
1105	1500			22.48	1026	0.82	8,02	-210.7	ľ		
1110	2000			22.71	1029	0.79	8.00	-216.5			
1115	2500	1	/	22.85	1030	0.78		-218.2	V	b	

								,			
Remarks:	Sai	mple	d	@1115	for 821	608			Table 1 Mary 1 M		
							,		·····		

(1) Based or	EPA low flow	sampling	guide	elines.					•		
Signature	- / / Now /	ens	2			Checked B	y:				

	am	100	0		Project Name Crown Chevro						
_	ONITOR AMPLE COL	ING	WEL		OD10160070 00008A/B			mpled By:	Dat	te: 30 13	
Well Num				Sampl	e ID:			Duplicate ID			
N	10-01				mw-ol Mw					0	
Method of	f Purging:			Metho	d of Sampling	•		Intake Depth			
Peri-pump					eri-num	P			20.	5	
		4				uipment		•			
Equi	Equipment Model			odel	Serial #/Ren	tal ID	_	ate d/Serviced	Date	Calibrated	
Multi-Probe	2		YSI	-556	0200577	AH	7/2	9/13	71	30/13	
Turbidimet	er		N	/A	N/A		r	V/A		N/A	
				Cas	sing Purge Vol	ume Calcul	lations				
A. Depth to	Water = 14.0	44 ft.	D. V	Vater Column (B	(-A) = (6.73	ft.	Depth t	o Water After San	npling = 14.	16 ft.	
					$(C^2 \times 0.0408 \times D) = 0.15$ gal. Actual			ual Volume Purged (from below) = 2300 gal			
C. Well Diameter = 0.75 in. F. 3 Well Volumes								able, see pumping s	***************************************		
Pump and Flow Cell Volume $V_p = N/A$					ml		Pumpi	ng System Vol	ume Calcul	ation	
Tubing Insi	de Diameter		D	= N/A	in.	N/A		umping System			
Tubing Len	gth		L	= N/A	in. $V_S = V_P + \pi * D^2 / 4 * L * 16.39 \text{ ml/}$				l/in ³		
Conversion	from Inches ³	to ml	1 in	3 = 16.39							
	Purging Data			Water Qu	Quality Parameters (within range for 3 consecutive readings if low-flow sampling)						
Time (24 hr)	Purge Volume	Flow	m	Temp (°C)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	рН	Oxidation Reduction Potential (mV)	Turbidity (NTU)	Remarks (DTW, color,	
(=)	□ gal 🂢 ml	[X ml]		Stabilization ⁽¹⁾ :	± 3%	± 0.2 mg/L	± 0.2	± 20 mV	±10% or <10 NTU	odor, etc)	
1320	Initial	20	0	23.59	1396	0.49	7.21	0 24.4	N/A	water's	
1323	1100			23.26	1395	0.40	7.2	24.0		Clear, NO	
1326	1700		***************************************	22.77	1394	0.31	1	26.5		DW=14.48	
1329	2300	4	/	2257	1394	0.24	705		V	DJW=14.481	
			······								
					Carlos and				***************************************		
			***************************************					1	***************************************		

Remarks: Samueld @1330	for 8240B	
DUP (MW-100)	e 1350	·
(1) Based on EPA low-flow sampling guidelines.		
Signature:	Checked By:	

MONITORING WELL SAMPLE COLLECTION LOG Well Number/ID: Samp					Project/Task OD10160070.0		Sam	ampled By:		Date: 7-30-13		
Well Num	ber/ID:			Sample	e ID:			Duplicate ID	1			
	mu.	2			mw-2		****	P/A				
_	f Rurging:			Metho	od of Sampling:			Intake Depth	1:			
PR	u bm	rP		Pe	eri pump			14				
					Field Ed	uipment	÷					
Equi	pment		Mode	el	Serial #/Ren	ital ID	Da Received	te /Serviced	Date	Calibrated		
Multi-Probe	Multi-Probe YSI-556			56								
Turbidimet	urbidimeter N/A			4	N/A		N,	Ά .		N/A		
		•		Cas	sing Purge Vo	lume Calcul	lations					
A. Depth to	Water = 10. 7	12_ft.	D. Wa	ter Column (B	-A) = <u>8,95</u>	_ft.	Depth to	Water After San	npling = 10.	75_ft.		
B. Well Tota	l Depth = 19.	67 _{ft.}	E. 1 W	/ell Volume (C	² x 0.0408 x D) =	0.7 gal.	Actual Vo	lume Purged (fr	om below) 3	500 gal/	m)	
C. Well Diameter = $3/4$ in. F. 3 Well Volumes					3 x E) = _ 0.4	22_ gal.	(If applicat	ole, see pumping s	ystem volume ca	alculation below)		
Pump and Flow Cell Volume $V_p = N/A$					ml		Pumping	System Vol	ume Calcul	ation		
Tubing Inside Diameter D = N/A					in.	N/A	Pur	mping System	Volume (V _s)			
Tubing Length L = N			= N/A	in.		$V_S = V_P$	+ = * D ² / 4 *	L * 16.39 m	l/in³			
Conversion	from Inches ³	to ml	1 in³	= 16.39	ml	V _S =	- ()) + (3.1415 * _	2/4)	*()*	16.39	
	Purging Data			Water Qua	ality Parameter	s (within ran	ge for 3 c	onsecutive rea	dings if low	flow samplii	ng)	
Time (24 hr)	Purge Volume	Flow R □ gpm Mind mind mind mind mind mind mind mind m		Temp (°C)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	рН	Oxidation Reduction Potential (mV)	Turbidity (NTU)	Remar (DTW, co odor, el	olor,	
		74 1111/11		abilization ⁽¹⁾ :	± 3%	± 0.2 mg/L	± 0.2	± 20 mV	±10% or <10 NTU	0001, 6	ic)	
8735	Initial	100		19.34	1022	2.23	7.07	223	N/A	clear	10.	
0745	500	100)	19.59	1034	0.84	7.07	211	1	clesy	10.9	
0750	500	100		19.93	1035	0.60	7.06	206		11	11	
0755	500	100	-	20.05	1034	0.39	7.06	204		11	ч	
0800	500	100	7	20.15	1031	0.32	7.06	199		11	11	
2805	500	100		20.39	1021	0.28	7.06	198		1,	Ų	
0810	500	100	> [20.53	1018	0.31	7.06	198	J	Ic	11	
0815	5	mp	le								*******	
	4	,						***************************************				
Remarks:												
(1) Based or	n EPA low-flow	sampling	quidelin	ies.								
Signature			30100111			Checked B	y:					

amec			Project Name: Crown Chevrolet							
N	ONITOR		WE	LL	Project/Task OD10160070.0		Sa	mpled By:	Da	1 - 1 -
S	AMPLE COL			OG	***			Hyoung		130/13
Well Num	ber/ID:			-	ple ID:			Duplicate ID		
Method of Purging: Meth					MW-05 od of Sampling	l:	***************************************	Intake Dept	N/A h:	
	stalti	CPC	In	- 1	n-pum				190) (
		,			-	quipment		41		
Equi	quipment Model			odel	Serial #/Ren	ital ID		Date d/Serviced	Date	Calibrated
Multi-Probe	2		YSI	-556	0200577	AH	7/20	13	7/3	30 (3
Turbidimet	er		N	/A	N/A			N/A		N/A
				Ca	sing Purge Vo	lume Cald	culations			
A. Depth to	Water = <u>14.3</u>	7_ft.	D. \	Vater Column (I	B-A) = 4,98	_ ft.	Depth	to Water After Sar	mpling = 14	40 ft.
B. Well Total	Depth = $\frac{19}{}$	3 <u>5</u> ft.	E. 1	Well Volume ($C^2 \times 0.0408 \times D) =$	= <u>0-11</u> gal	. Actual	Volume Purged (fi	rom below) = (2350 gal/ml.)
C. Well Diameter =in. F. 3 Well Volumes				Well Volumes ((3 x E) = <u>07</u> 3	$3 \times E$) = 0.31 gal. (If applicable, see pumping system volume calculation b				alculation below)
Pump and Flow Cell Volume $V_p = N/A$				= N/A	ml	ml Pumping System Volume Calculation				
Tubing Inside Diameter D = N/A				in.	N/A		umping System	,		
Tubing Length L = N,				= N/A	in.	_	V ₃ =	$V_p + \pi * D^2 / 4$	* L * 1 6.39 m	ll/in ³
Conversion	from Inches ³	to ml	¹1 in	$^{3} = 16.39$	ml					16.39
	Purging Data			Water Qเ	ıality Parameteı	s (within r	ange for 3	consecutive re	adings if low	flow sampling)
Time (24 hr)	Purge Volume □ gai 🏚 mi	Flow F	n	Temp (°C)	Specific Conductance (μS/cm)	Dissolve Oxygei (mg/L)	n PH	Oxidation Reduction Potential (mV)	Turbidity (NTU)	Remarks (DTW, color, odor, etc)
	□ gar parilii	X 1111/		Stabilization ⁽¹⁾ :	± 3%	± 0.2 mg	/L ± 0.2	± 20 mV	±10% or <10 NTU	,
0953	Initial	150)	19.59	1287	0.83	> 6.7	1 34.0	N/A	water is tan/silty, a no odor, Diw=1492
0956	1000		***************************************	19.55	1289	0.66	0 6.74	32.2	1	no odor.
0959	1450			19.53	1291	0.54	6.71	0 30.5		Dru= 14.92'
1002	1900			19.59	1294	0.59	6.7	7 30.8		
1005	2350	V	/	19.61	1297	0.51	6.74	+ 31.4	V	\
			***************************************						,	
								,		

									4444	
Remarks:	Sam	plea	20	21005 -	for 821	ocb	***************************************	444444444444444444444444444444444444444	***************************************	
						***************************************	***************************************		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
				***************************************					MIII	
(1) Raced on	FDA low-flow	ampling	quide	lines						

Checked By:

Signature:

WATER LEVEL MONITORING RECORD

Project I	Name: <u>Crow</u>	n Chevrolet	Project and	Task Number: _	OD101600	70.00008	
Date: _	10/28/13	Measured by: _	D. Allbut/D. Pearson	_ Instrument	t(s) Used:	ES	

Note: For your convenience, the following abbreviations may be used.

I = Inaccessible

D =

Dedicated

IP = Interface Probe

Pump

ES = Electrical Sounder

WL = Water Level

Well No.	Time	TOC Elevation (feet)	DTW Measurement (feet)	Groundwater Elevation (feet)	Remarks
MW-01	1305	344.24	15.24	329.00	
MW-02	1100	340.24	11.49	328.75	
MW-03	1155	343.77	14.72	329.05	Inside building B, key needed.
MP-01-1	0755	343.20	14,03	329.17	
MP-01-2	0757	343.20	15.08	328.12	
MP-01-3	0759	343.20	16.43	326.77	
MP-02-1	1215	341.15	12.44	328.71	
MP-02-2	1217	341.15	12.84	328.31	
MP-02-3	1219	341.15	15,39	325,76	
MP-03-1	1036	342.21	13.48	328.73	
MP-03-2	1038	342.21	19.03	323.18	
MP-03-3	1040	342.21	16.33	325.88	
MP-04-1	0855	341.22	12.61	328.61	
MP-04-2	0857	341.22	13.94	327.28	
MP-04-3	0859	341.22	15.83	325.39	

Project	Name:
Crown	Chevrole

Pro:	jec	t/1	Γask	#	:	
OD1	010	500	70.0	00	084	/B

MONITORING WELL SAMPLE COLLECTION LOG				OD10160070 000084/B			THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN C		e: 0/28/13		
Well Num				Sampl	e ID:			Duplicate ID			
	MW-01				MW-01			Mu-	100		
	f Purging:			1	d of Sampling:		1111	Intake Depth			
perist	altie pur	mp .			same as pr	same as purge 20.5					
					Field Eq	uipment					
Equi	pment		Mod	lel	Serial #/Rent	tal ID l	Da Received	te 'Serviced	Date	Calibrated	
Multi-Probe)		YSI-5	556	0200577		10/2	5/13	10/2	8/13	
Turbidimete	urbidimeter N/A			Α .	N/A		N/	Α		N/A	
				Ca	sing Purge Vol	ume Calcu	lations				
A. Depth to Water = 15.24 ft. D. Water Column (B-					B-A) = 5.93	ft.	Depth to	Water After San	npling = <u>l5</u> .	25 ft.	
B. Well Total	Depth = 2-1-	ιł ft.	E. 1 V	Vell Volume (C	$C^2 \times 0.0408 \times D) =$	0.14 gal.	Actual Vo	lume Purged (fr	om below) = $\frac{3}{2}$	\$700 gal(m)	
C. Well Diameter = 0.75 in. F. 3 Well Volumes					3 x E) =	gal.	(If applicat	le, see pumping s	ystem volume cal	culation below)	
Pump and I	Pump and Flow Cell Volume $V_p = N/A$						Pumping	3 System Vol	ume Calcula	ation	
Tubing Insi	Tubing Inside Diameter D = N/A				in.	Ala	Pur	mping System	Volume (V _S)		
Tubing Length L = N/A				· in.		$V_S = V_P$	$+\pi*D^2/4*$	L * 16.39 ml	/in ³		
Conversion from Inches ³ to ml $1 \text{ in}^3 = 16.39$					ml	V _S =	= () + (3.1415 * _	2/4)*	()*16.39_	
	Purging Data	L.		Water Qu	ality Parameters	s (within rar	nge for 3 c	onsecutive rea	dings if low-	flow sampling)	
Time (24 hr)	Purge Volume	Flow I	n	Temp (°C)	Specific Conductance (μS/cm)	Dissolved Oxygen (mg/L)	рН	Oxidation Reduction Potential (mV)	Turbidity (NTU)	Remarks (DTW, color,	
	□ gal □ ml	□ ml/	1	tabilization ⁽¹⁾ :	± 3%	± 0.2 mg/L	± 0.2	± 20 mV	±10% or <10 NTU	odor, etc)	
1310	Initial	200		19.98	1286	2.90	7-12	4500	NIA	cloudy	
1313	1160			19.83	1293	2.59	7-03	43.5	1	clearing	
1316	1700			19.83	1295	2.14	7-04	42.0		1	
1319	2300			19.75	1297	1.80	6.96	42.0			
1322	2900			19,70	1298	1.72	6.92	42.8			
1325	3500	\		12.93	1296	1.64	6-87	44.2			
					7			·····			
Remarks:	1325	Sau	noted	for	8760B+TP	Ha:	Duplice	te Mw	-100 fo.	same	
Desta			1			1)				@ 1336	
				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		***************************************					
	EPA low-flow	sampling				MINISTER STATE OF THE STATE OF					
Signature	: D-	ol	M	lut_		Checked B	у:				

Project	Name:
Cuntim	Charmal

Crown Chevrolet

Project/Task #:

Sampled By:

	MONITOR: SAMPLE COLL				OD10160070.00	0008A/B	A/B PDP 10-28			1-28-13			
Well Num		ECITOR		ample	e ID:			Duplicate ID:					
1	mw.	2	100	UV	2W-2								
Method of	f Purging:				d of Sampling]	ntake Depth					
	peri	per	mt	P	ert pu	mos		19	.67				
					Field Eq	uipment							
Equi	pment	l	Model		Serial #/Ren	tal ID	Da Received/		Date	Calibrated			
Multi-Probe	2	Υ	SI-556			10-25-13 10-25-13			5-13				
Turbidimet	er		N/A		N/A				N/A				
				Cas	sing Purge Vol	lume Calcu	lations						
A. Depth to	Water = 11.4	19 ft. D	. Water Colu	ımn (B	-A) = 9.18	ft.	Depth to	Water After San	npling = <u>H.</u>	54 ft.			
B. Well Total Depth = 19.67 ft. E. 1 Well Volume (² x 0.0408 x D) =	0.25 gal.	Actual Vo	lume Purged (fr	m below) = $\frac{4600}{\text{gal/ml}}$.				
C. Well Diameter = 3/4 in. F. 3 Well Volumes					3 x E) = _0.75	5 gal.	(If applicab	le, see pumping s	ystem volume ca	olume calculation below) Calculation ne (V _S)			
Pump and Flow Cell Volume $V_p = N/A$					ml		Pumping	System Vol	ume Calcul	ation			
Tubing Insi	ide Diameter	D	= N	/A	in.	NIA	Pur	mping System	Volume (V _S)				
Tubing Len	igth	L	= N	/A	in.	$V_S = V_P + \pi * D^2 / 4 * L * 16.39 \text{ ml/in}^3$							
Conversion	from Inches ³	to ml 1	in ³ = 10	5.39	ml	V _S	= ()) + (3.1415 * _	²/4)*	()* 16.39			
	Purging Data	-	Wat	er Qu	ality Parameter	s (within ra	nge for 3 c	onsecutive rea	adings if low-	flow sampling)			
Time (24 hr)	Purge Volume	Flow Rat	(°C		Specific Conductance (µS/cm)	Dissolve Oxygen (mg/L)	nH	Oxidation Reduction Potential (mV)	Turbidity (NTU)	Remarks (DTW, color,			
N.St			Stabilizat	ion ⁽¹⁾ :	± 3%	± 0.2 mg/	L ± 0.2	± 20 mV	±10% or <10 NTU	odor, etc)			
1105	Inifial	120	21.	17	. 934	0.84	7.12	-122		5) 13141XY			
1110		120	21,5	12	୧୫୦	0.58	7.10	-153		clear			
1125		11	21.3	30	855	0,52	7.10	-164		11			
1120		ŀŧ	عا.د	tl	844	0.53	7.09	-167		11			
1125		11	21.5	57	823	0.51	7.10	-177		11			
1130		11	21.5	9	815	0.50	7.11	-201	7				
(135		11	21.6	Ď.	813	0.51	7.10	-181					
1K+0		Saw	pla										
Remarks:													
***************************************	[[] [] [] [] [] [] [] [] [] [] [] [] []	**************************************				7400000 P4000000							
(1) Based or	n EPA low-flow	sampling gu	idelines.			N.			1.//midrite.				
Signature					***************************************	Checked	Rv.						

MONITORING WELL SAMPLE COLLECTION LOG

Project Name: Crown Chevrolet

	·	
Project,	Task	#:

OD10160070.00008A/B

Sampled By:

Date:

[0/28/13

Well	Nu	m	ber/	ID:
				63

MW-03

Sample ID:

MW-03

Duplicate ID:

D. Allbut

Method of Purging:

peristaltic pump

Method of Sampling:

sama as purge

Intake Depth:

19.0

Field Equipment									
Equipment	Model	Serial #/Rental ID	Date Received/Serviced	Date Calibrated					
Multi-Probe	YSI-556	0200577	10/25/13						
Turbidimeter	N/A	N/A	N/A	N/A					

N/A		N/A		N/A	N/A			
	Casing	Purge Volu	me Calculatio	ns				
er = $\underline{14.72}$ ft. D. Water Column (B-A) = $\underline{4.63}$ ft.					Depth to Water After Sampling = 14,65 ft.			
E. 1 Well	Volume (C ² x 0	gal. Act	Actual Volume Purged (from below) = 700 gal mp					
F. 3 Well	Volumes (3 x E	E) =	3 gal, (If a	applicable, see pumping sy	stem volume calculation below)			
V _p =	N/A	ml	Pur	nping System Vol	ume Calculation			
D =	N/A	in.	AIN	Pumping System	Volume (V _S)			
L =	N/A	in.	20 U LANGINO SOCIAL P.					
Conversion from Inches ³ to ml $1 \text{ in}^3 = 16.39$ mlV _S = () + (3.1415 *^2/4) * (
	D. Water E. 1 Well F. 3 Well V _p = D = L =	Casing D. Water Column (B-A) E. 1 Well Volume ($C^2 \times C$) F. 3 Well Volumes (3 x I) $V_p = N/A$ $D = N/A$ $L = N/A$	Casing Purge Volume D. Water Column (B-A) = $\frac{M \cdot V}{M}$ ft E. 1 Well Volume ($C^2 \times 0.0408 \times D$) = $\frac{M}{M}$ F. 3 Well Volumes ($3 \times E$) = $\frac{M}{M}$ $V_p = N/A$ ml D = N/A in. L = N/A in.	Casing Purge Volume Calculation D. Water Column (B-A) = $\frac{M \cdot V^2}{1}$ ft. Deprive the property of the prop	E. 1 Well Volume ($C^2 \times 0.0408 \times D$) = $\frac{O \cdot 11}{G}$ gal. Actual Volume Purged (from F. 3 Well Volumes ($3 \times E$) = $\frac{O \cdot 12}{G}$ gal. (If applicable, see pumping system Volume D = N/A in. Pumping System Volume D = N/A in. $V_S = V_P + \pi * D^2 / 4 * O = V_S = V_P + T * D^2 / 4 * O = V_S = V_P + T * D^2 / 4 * O = V_S = V_P + T * D^2 / 4 * O = V_S = V_P + T * D^2$			

	Purging Data			ality Parameters	(within rang	ge for 3 co	nsecutive rea	dings if low-	Remarks (DTW, color, odor, etc)					
Time (24 hr)	Purge Volume	Flow Rate gpm ml/min	Temp (°C)	Specific Conductance (μS/cm) ± 3%	Dissolved Oxygen (mg/L)	рН	Oxidation Reduction Potential (mV)	Turbidity (NTU)	(DTW, color,					
	gar e iiii	= 1111/1111111	Stabilization ⁽¹⁾ :		± 0.2 mg/L	± 0.2	± 20 mV	±10% or <10 NTU	ouor, etc)					
1200	Initial	200	19:62	1242	3,33	7.06	33.2	NIA	tan' cloudy					
1205	well	dewat	eved at	700ml										
1450	700		19.79	1245	1.37	609	35.5	NA	clear					
٠ . ٤	_													

Remarks:	1450	Sampled	Gor 826	OR + TPH	CMS/MSD)	9-HCL VOAS	-
	•		301				
	·	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	***************************************		-		************************
(1) Based on	EDA low-flow s	sampling guidelines					

Signature:

Project Name: Crown Chevrolet

Sampled By:

Date:

	ONITOR			L (OD10160070.00			RPP 10-28-13				
Well Numb			1 200	Sample	P01-1		D	Duplicate ID:				
Method of	Purging: で1 りい~	rP_		Method	d of Sampling:		I	ntake Depth				
					Field Equ	uipment						
Equip	oment		Mod	let	Serial #/Rent	tal ID	Dat Received/	-	Date	Calibrated		
Multi-Probe	The state of the s		YSI-5	556			10-25-1	3	10-25-13			
Turbidimete	rbidimeter N,			Α	N/A		N/	Α		N/A		
				Cas	sing Purge Vol	ume Calcu	lations					
A. Depth to V	Water = 14:0	13 ft.	D. W	ater Column (B	-A) = 3.57							
	Depth = 17.		E. 1 '	Well Volume (C	² x 0.0408 x D) =	<u>0.02</u> gal.	Actual Vol	ume Purged (fr	om below) = 2	<u>ජරට</u> gal/ml.		
C. Well Diam	eter = 0.37	5 in.	F. 3 \	Well Volumes (3	3 x E) =0.0(७ gal.	(If applicabl	le, see pumping s	ystem volume cal	culation below)		
Pump and F	Flow Cell Volu	me	V _p	= N/A	ml		Pumping	System Vol	ume Calcula	ation		
Tubing Insid	de Diameter		D	= N/A	in.	440	Pun	nping System	Volume (V _S)			
Tubing Leng	gth		L	= N/A	in.	9421	$V_S = V_P$	$+\pi * D^2/4 *$	L * 16.39 ml	/in ³		
Conversion	from Inches ³	to ml	1 in ³	= 16.39	ml	Vs	= ()	+ (3.1415 * _	2/4)*	()*16.39		
	Purging Data	1		Water Qu	ality Parameters	s (within ra	nge for 3 co	onsecutive rea	adings if low-	flow sampling)		
Time (24 hr)	Purge Volume	Flow R	n	Temp (°C)	Specific Conductance (μS/cm)	Dissolved Oxygen (mg/L)	DH	Oxidation Reduction Potential (mV)	Turbidity (NTU)	Remarks (DTW, color, odor, etc)		
***************************************	□ yai zıııı	70	9	Stabilization ⁽¹⁾ :	± 3%	± 0.2 mg/l	L ± 0.2	± 20 mV	±10% or <10 NTU	000., 010,		
0944	Initial	18.2		18.81	1358	1.84	7.14	-249		Cloudy		
0949		70		18.94	1366	1.87	7.12	-183		Georino		
0454		70		18.96	1358	2.04	7.09	457		Clear		
0959		70		18.92	1341	2.16	7.09			1;		
10.04		70		19.34	1333	1.77	7.03	-153		11		
10.09		70		19.32	1326	1.78	7.03	-142				
1014		70		19.34	1326	1.77	7.03	-140				
1019		Sau	no	le_								
Remarks:		1	19	nali					J.			
		817775-100(2)2)2076-428-448-448-448								AANSI TUU TUU TUU TUU TUU TUU TUU TUU TUU TU		
(1) Based or	n EPA low-flow	sampling	, guide	lines.								

Checked By:

MONITORING WELL SAMPLE COLLECTION LOG

Project	Name:
Crown (Chevrole

Project/Task #	t:
0010160070 000	MOA /P

Sampled By:

SAMPLE COLLECTION LOG							D	SP 4) (7-80 13	
Well Num งา	ber/ID: P-01-	2		Sam _l	ole ID: MP-01-3	2.		Duplicate ID:			
	f Purging:	000	y		od of Samplin	g: up	J	ntake Depti 43.5	ÿ		
					Field E	quipment					
Equi	pment		Мо	del	Serial #/Re	ntal ID	Dar Received/		ed Date Calibrated		
Multi-Probe	2		YSI-	-556			16-25	5-13	10-25-13		
Turbidimete	er		N,	/A	N/A		N/	A	N/A		
				. С	asing Purge Vo	olume Calcul	ations				
A. Depth to	Water = 15.	⊘ 8ft.	D. V	Vater Column	(B-A) = 28,42	ft.	Depth to \	Water After Sar	npling = <u>40</u>	.17 ft.	
B. Well Total	Depth = 43	.5 ft.	E. 1	Well Volume	(C ² x 0.0408 x D)	= <u>0.16</u> gal.	Actual Vol	ume Purged (fr	om below) = _	850 gal/ml.	
C. Well Diam	neter = 0.37	5 in.	F. 3	Well Volumes	(3 x E) = 0 :4	<u>შ</u> gal.	(If applicab	le, see pumping s	system volume ca	lculation below)	
Pump and Flow Cell Volume $V_p = N/A$					ml		Pumping	System Vo	lume Calcula	ation	
Tubing Inside Diameter D =				= N/A	in.			nping System			
Tubing Length				= N/A	in.	NIA	$V_S = V_P + * D^2 / 4 * L * 16.39 \text{ ml/in}^3$				
Conversion from Inches ³ to ml $1 \text{ in}^3 = 16$.						V _C =			_	() * 16.39	
	Purging Data				uality Paramete						
Time (24 hr)		Purge Flow I Volume		Temp (°C)	Specific Conductance (µS/cm)	Dissolved	рН	Oxidation Reduction Potential (mV)	Turbidity (NTU)	Remarks (DTW, color,	
(,	□ gal □ ml	I gal □ ml □ ml/m		Stabilization ⁽¹): ±3%	± 0.2 mg/L	± 0.2	± 20 mV	±10% or <10 NTU	odor, etc)	
0855	Initial	100)	16.26	1035	7.62	8.63	-130	1201010	Cloudy	
859		100	-	18.0	1189	2.97	8.11	-361		11	
2090		50								*	
0912		2007	٢	13.29	1249	3.24	7.88	-282		clearing	
0923		1		nple							
							- 1				

	######################################	1									
Remarks:							***************************************		* goin	ه طری	
	-1177772		***************************************				***************************************				
	EPA low-flow	sampling	guide	lines.			***************************************				
Signature						Checked By	/ :				

Project/Task #:

Sampled By:

MONITORING WELL SAMPLE COLLECTION LOG					OD10160070.00008A/B			10-28-13				
Well Num				Sampl	ple ID: MP-01-3 Duplicate ID:							
Method of	Purging:	vu	p		od of Sampling							
					Field Eq	uipment						
Equip	oment		Мо	del	Serial #/Ren	tal ID	tal ID Date Received/Serviced Date Cal			Calibrated		
Multi-Probe			YSI-	-556		10-25	-13	10-25	543			
Turbidimete	er		N,	/A	N/A		N,	'A		N/A		
		64		Ca	sing Purge Vo	lume Cald	culations					
A. Depth to \	Water = 16 -	43 _{ft.}	D. V	Vater Column (E	3-A) = 41-97	ft. Depth to Water After Sampling = 27.98 ft.						
B. Well Total Depth = 58.4 ft. E. 1 Well Volume					$C^2 \times 0.0408 \times D) =$	0.24 gal	. Actual Vo	lume Purged (fr	om below) = 700 gal/m			
C. Well Diameter = 5.375 in. F. 3 Well Volume					3 x E) = 0 . 72	<u>2</u> gal.	(If applical	le, see pumping s	ystem volume ca	lculation below)		
Pump and F	Pump and Flow Cell Volume $V_p = N/A$						Pumping	g System Vol	ume Calcul	ation		
Tubing Inside Diameter D =			= N/A	in.	Alu	Pui	mping System	Volume (V _S)				
Tubing Length L = N/					in.		$V_S = V_P$	+ π * D ² /4 *	L * 16.39 m	l/in ³		
Conversion	from Inches ³	to ml	1 in	$^{3} = 16.39$	ml	v	's = () + (3.1415 * _	²/4)	()* 16.39		
	Purging Data	1		Water Qu	ality Parameter	s (within r	range for 3 c	onsecutive rea	adings if low-	flow sampling)		
Time (24 hr)	Purge Volume ☐ gal ☐ ml	Flow I	n	Temp (°C)	Specific Conductance (µS/cm)	Dissolve Oxyge (mg/L)	n PH	Oxidation Reduction Potential (mV)	Turbidity (NTU)	Remarks (DTW, color,		
	□ gai □ IIII	JA:1111/	ml/min Stabiliza	Stabilization ⁽¹⁾ :	± 3%	± 0.2 mg		± 20 mV	±10% or <10 NTU	odor, etc)		
8080	Initial	100)	17.14	1123	3.61	2 7.65	5-42.0		010000		
0813		LOC	570	16.61	1157	32	7.79	-262		Cloudy *		
0823		160	50	12.51	1167	2.6	2 7.78	-252		11		
0832	Sa	gon	2	,		5			41			
					·							

			P					•				
							_		,	1		
Remarks:			***************************************				* YUNY	muna de	y			
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	***************************************	***************************************		***************************************), Bastleman			
(1) Based on	EPA low-flow	sampling	guide	lines.					***************************************			
Signature:						Checked	Ву:					

Project/Task #:

Sampled By:

	AMPLE COL				OD10160070.00008A/B			AP	10	10-28-13	
Well Num	ber/ID: マーロスー	į.		Sampl	e ID: mP-02 -	ı	-	Duplicate ID			
Method of		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			d of Sampling			Intake Depth			
Pag	G pur	7		1	xxi pu		***************************************	12	9'		
		1			Field Eq	uipment					
Equip	pment		Mod	del	Serial #/Rental ID Receiv			te /Serviced	Date	Calibrated	
Multi-Probe	3		YSI-	556			10-25	5-13	10-2	8-13	
Turbidimete	er		N/	/A	N/A	***************************************	N/	A	ri-	N/A	
				Cas	sing Purge Vol	ume Calcu	ılations				
A. Depth to	Water = 12.4	+ 4 ft.	D. W	/ater Column (B	3-A) = 0,46	ft	Depth to	Water After San	npling = 124	7 _ft.	
B. Well Total	l Depth = 🛵 🗘	9 _ft.	E. 1	Well Volume (C	$C^2 \times 0.0408 \times D) =$	0.063 gal.	Actual Vo	lume Purged (fr	om below) = 1	500 gal/ml.	
C. Well Diam	neter = 0.3 7	5 in.	F. 3	Well Volumes (3 x E) = 0.000	9 gal.	(If applicat	ole, see pumping s	ystem volume cal	culation below)	
Pump and F	Flow Cell Volu	me	V _p	= N/A	ml		Pumping	g System Vol	ume Calcula	ation	
Tubing Insi	ide Diameter		D	= N/A	in.		Pur	mping System	Volume (V _S)		
Tubing Len	gth		L	= N/A	in.	NN	$V_S = V_P$	L * 16.39 ml	/in ³		
Conversion	from Inches ³	to ml	1 in ³	3 = 16.39	ml	Vs	= () + (3.1415 * _	2/4)*	()* 16.39	
	Purging Data	1		Water Qu	ality Parameters	s (within ra	nge for 3 c	onsecutive rea	adings if low-	flow sampling)	
Time (24 hr)	Purge Volume □ gal ≱ml	Flow F	n	Temp (°C)	Specific Conductance (μS/cm)	Dissolved Oxygen (mg/L)	: DH	Oxidation Reduction Potential (mV)	Turbidity (NTU)	Remarks (DTW, color,	
	27.	J		Stabilization ⁽¹⁾ :	± 3%	± 0.2 mg/l	L ± 0.2	± 20 mV	±10% or <10 NTU	odor, etc)	
1225	Initial			20.99	1514	2.71		-195		cleas	
1228	125			20.63	1500	2.56		-176	491)	7)	
1231	125	-	-	20.32	1502	2.21	7.04	-167			
235	l l	1		20.03	1515	2.28	7.07	-164			
1238	.47			21.98	1511	1.96	7.08	-168			
1241	£/		į	21.98	1496	1.95	7.08	-170		NV.	
1244				21.71	1494	1.81	7.07	-166			
1250		50.	mp								
Remarks:											
***************************************		***************************************		***************************************	The state of the s	www.communications.com	***************************************				
(1) Based or	n EPA low-flow	sampling	guide	lines.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	***************************************		***************************************		**************************************	
Signature	1			······································		Checked F	Rv-				

Project/Tack #1

	ONITOR:		Project/Task OD10160070.0				pled By:		Date: 0-28-13				
Well Numi	ber/ID: でそのえ	-2		Sampl	e ID: 1P-02-3	2		D	uplicate ID:				
Method of			P	1	od of Sampling: Intake Depth: 36.24								
					Field Eq	quipmen	t						
Equip	ment		Model		Serial #/Ren	ital ID	R	Dat eceived/		Da	te Calibrated		
Multi-Probe		YSI-556 10-25-13 10-25-13						25-13					
Turbidimete	er	2	N/A		N/A			N/A N/A					
				Ca	sing Purge Vo	lume Ca	Icula	ations					
A. Depth to V	Vater = 12.1	84 ft.	D. Wate	r Column (E	3-A) = 23.56	_ ft.		Depth to \	Water After San	npling = 3	6,21 ft.		
B. Well Total	Depth = 36	4 ft.	E. 1 Wel	l Volume (C	c ² x 0.0408 x D) =	= 0 · 14 g	al.	Actual Vol	ume Purged (fr	om below)	= 80 gal/ ®		
C. Well Diameter = <u>3.375</u> in. F. 3 Well Volume					3 x E) = <u>0.4</u> 2	2 gal.	***************************************	(If applicabl	e, see pumping s	ystem volume	e calculation below)		
Pump and F	low Cell Volu	N/A	ml			Pumping	System Vol	ume Calc	culation				
Tubing Inside Diameter D = N/A					in. Pumping					g System Volume (V _S)			
Tubing Length L = N/A					in.	pir		$V_S = V_P$	+ π * D ² /4 *	L * 16.39	ml/in ³		
Conversion	from Inches ³	to ml	L in ³ =	16.39	ml		V _S =	()	+ (3.1415 * _	2/4	1) * () * 16.39		
	Purging Data			Water Qu	ality Paramete	rs (within	rang	ge for 3 co	nsecutive rea	adings if lo	w-flow sampling)		
Time (24 hr)	Purge Volume	Flow Ra	1	Temp (°C)	Specific Conductance (µS/cm)	Dissol Oxyg (mg/	en	рН	Oxidation Reduction Potential (mV)	Turbidit (NTU)	(DTW, color,		
	□ gal □ ml	M ml/mi		oilization ⁽¹⁾ :	± 3%	± 0.2 mg/	ıg/L	. ± 0.2	± 20 mV	±10% or <10 NTU	\$		
1348	1999al	100	2	0.47	1278	1.4	8	7.36	_298		clear		
1352	400	160	2	81.0	1279	1.7	4	7.27	-294	,	11 *		
1402	160		1	9.96	1280	2.2	4	7.22	- 286		ų.		
1412	100		14	7.77	1269	2.19	9	7.28	-279		(1)		
1436	50	mple			3			***************************************					

	,						***************************************						
				THE STREET STREET									
Damada										-			
Remarks:								(4))((1)	À	E YUN	ning alry		
***************************************	Tagggetting (1997)						***************************************						
⁽¹⁾ Based or	EPA low-flow	sampling g	uideline	S,		***************************************		***************************************			T-		
Signature	:	·				Checke	ed By	/ :					

	ONITOR:	ING WE	LL	Project/Task #: OD10160070.00008A/B			pled By: ひみ		Date: 16-28-13		
Well Numb			Sample	e ID: MP-62-3	3		Duplicate ID:				
Method of	Purging:			nod of Sampling:			ntake Depth	1			
per	Dunne	P		peri pump 57.8							
				Field Equipment							
Equip	ment	M	odel	Serial #/Ren	tal ID	Da ⁻ Received			Calibrated		
Multi-Probe		YS:	I-556			10-25	-13	10-25	-13		
Turbidimete	er	N	I/A	N/A		N/	A		N/A		
-			Cas	sing Purge Vol	ume Calcu	lations					
A. Depth to V	Vater = 15.	39 ft. D.	Water Column (B	-A) = 42.41	ft.	Depth to	Water After Sam	npling = <u>47.</u>	19 _{ft.}		
B. Well Total	Depth = 37	· ර් ft. E.	1 Well Volume (C	² x 0.0408 x D) =	0.24 gal.	Actual Vol	ume Purged (fr	om below) = <u>4</u>	gal/ml.		
C. Well Diame	eter = <u>0.37</u>	5 in. F. :	3 Well Volumes (3 x E) =	gal.	(If applicab	le, see pumping s	ystem volume calc	culation below)		
Pump and F	low Cell Volu	me V _p	= N/A	ml		Pumping	System Vol	ume Calcula	tion		
Tubing Insid	de Diameter	. D	= N/A	in.	Alu	Pur	Pumping System Volume (V _S)				
Tubing Leng	gth	L	= N/A				$+ \pi * D^2 / 4 *$	1 * 16.39 ml/	/in ³		
Conversion	from Inches ³	to ml 1 ii	$n^3 = 16.39$	ml	V _S =	= ()	+ (3.1415 * _	²/4) *	* 16.39		
	Purging Data	· I	Water Qu	ality Parameter	s (within rai	nge for 3 c	onsecutive rea	adings if low-f	low sampling)		
		Flow Rate	Temp (°C)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	рН	Oxidation Reduction Potential (mV)	Turbidity (NTU)	Remarks (DTW, color,		
	□ gal □ ml	□ ml/min	Stabilization ⁽¹⁾ :	± 3%	± 0.2 mg/L	. ± 0.2	± 20 mV	±10% or <10 NTU	odor, etc)		
1455	100 Initial	80	20.55	1145	1.50	7.50	-269		dovoby		
X457	200	40					,		*		
1500			19.63	1129	2.36	7.97	-273		la		
1503	100		20.57	1119	1.99	7.88	-272		11		
1519	120	-	19.50	1158	2.31	7.78	-248		12		
1532		50	ample						4884444		
				_	10.00	and a second sec					

Remarks:			The state of the s			, j	k rown	nos april			
(1) Based or	EPA low-flow	sampling guid	delines.								
Signature					Checked E	Зу:					

Project	Name:
Crown	Chevrole

7.7	ONITOR	WEI		Project/Task #: S OD10160070.00008A/B			mpled By: S. Al(b wt	Dat 10	e: 0/28/13				
Well Num	ber/ID:			Sampl	e ID:	ii		Duplicate ID:					
	MP-03-1		******************************		MP-03-1			-					
Method of				Metho	hod of Sampling: Intake				ke Depth:				
Peri	staltic i	mp			see proging 14.6								
			-		Field Eq	uipment			•				
Equi	pment		Mo	odel	Serial #/Ren		ate I/Serviced	Date	Calibrated				
Multi-Probe)		YSI	-556	020057	7			1	***************************************			
Turbidimete	er		N	/A	N/A	ANNERSANDE	ı	I/A		N/A			
				Ca	sing Purge Vol	lume Calcı	ulations						
A. Depth to	Water = <u>13</u>	48 ft.	D. V	Vater Column (E	B-A) = 1.12	ft.	Depth to	Water After San	npling = <u>/3.4</u>	18_ ft.			
B. Well Total	Depth = 14-0	<u>₂</u> ft.	E. 1	Well Volume (C	c² x 0.0408 x D) =	0,0 (gal.	Actual V	olume Purged (fr	om below) = 2	<u>26<i>0</i>0</u> gal/ml.			
C. Well Diam	neter = 0.375	in.	F. 3	Well Volumes (3 x E) =	3 gal.	(If applic	able, see pumping s	system volume ca	lculation below)			
Pump and I	Flow Cell Volu	me	V _p	= N/A	ml	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Pumpii	ng System Vo	lume Calcula	lation			
Tubing Inside Diameter D = N/A					in.	WIA	P	umping System	mping System Volume (V _S)				
Tubing Length L = N/A					in. V			$V_{p} + \pi * D^{2}/4$	L * 16.39 m	l/in³			
Conversion	from Inches ³	to ml	1 in	$^{3} = 16.39$	ml	Vs	= () + (3.1415 * _	²/4)*	()*16.39			
	Purging Data	1		Water Qu	ality Parameter	s (within ra	inge for 3	consecutive rea	adings if low-	flow sampling)			
Time (24 hr)	Purge Volume	Flow Rate ☐ gpm ☐ ml/min		Temp (°C)	Specific Conductance (µS/cm)	Dissolve Oxygen (mg/L)	: nH	Oxidation Reduction Potential (mV)	Turbidity (NTU)	Remarks (DTW, color,			
	yai 🗷 iiii			Stabilization ⁽¹⁾ :	± 3%	± 0.2 mg/	L ± 0.2	± 20 mV	±10% or <10 NTU	odor, etc)			
1046	Initial	20	00	21.59	1282	1.31	7.18	715.5	NIA	tanj cloudy			
1049	1100		***************************************	21.32	1294	0.64	7.13	-107.8					
1052	1700	L		21.31	1297	0.27	7.00	1 -97.4					
1055	2300	.\		21.84	1296	0.32	7.00	-90.0	\				
1054	2600	1		21.14	1298	0.29	7-01	-82.5					
1400	WL=	13.4	В						1				
***************************************	,			0	111111111111111111111111111111111111111								
							T T						
Remarks:	1100	San	nple	d for s	1260B + T	PH3 C	3-H	CL VOAS)					
		••••••••••••••••••••••••••••••				***************************************							
(1) Based or Signature	EPA low-flow	sampling	guide	elines.		Chackad	Pag.						
Signature	. 11~	0 "	9			Checked	by:						

MONITORING WELL

Project	: Name:
Crown	Chevrole

Project/Task #: OD10160070.00008A/B

Sampled By:

SAMPLE COLLECTION LOG	05101000701000007475	DA116ut 10/28/13	
Well Number/ID:	Sample ID:	Duplicate ID:	
MP-03-2	MP-03-2	Noneman .	
Method of Purging: per pump;	Method of Sampling:	Intake Depth:	
4	Same as warp	42 a	

MP-03-2					MP-U3-2				O Samuel				
Method o	f Purging: μ	مط يه	mp) M	Method of Sampling:				Intake Depth:				
	3			Field Equipment									
Equi	pment		Mo	del	Serial #/Rental II		al ID	Date Received/Serviced		Date Calibrated			
Multi-Prob	Multi-Probe YSI-5			-556		0200577		10	125/13	101	28/13		
Turbidimet	Turbidimeter N,			/A.		N/A			N/A		N/A		
					Cas	sing Purge Vol	ume Calcı	ılations					
A. Depth to Water = 19.03 ft. D. Water				Vater Colu	r Column (B-A) = <u>23 ·87</u> ft.				Depth to Water After Sampling = $\frac{31.21}{}$ ft.				
B. Well Total Depth = 42.40 ft. E. 1 W				Well Volu	me (C	² x 0.0408 x D) =	0.14 gal.	Actual \	Actual Volume Purged (from below) = 250 gal(mi)				
C. Well Diar	meter = <u>0.37</u> 5	in.	F. 3	Well Volu	mes (3 x E) = 0.4	2_ gal.	(If applic	able, see pumping s	system volume ca	culation below)		
Pump and	Flow Cell Volu	me	V _p	= N	N/A ml Pumping System Volume Calculation					ation			
Tubing Ins	ide Diameter		D	= N	N/A in. الم			Pumping System Volume (V _S)					
Tubing Ler	ngth		L	= N	N/A in.				$V_S = V_P + \pi * D^2 / 4 * L * 16.39 \text{ ml/in}^3$				
Conversion	n from Inches ³	to ml	1 in	³ = 16	5.39	ml	V _S	= (_)+(3.1415*_	*74)*	() * 16.39		
	Purging Data	1		Wate	er Qu	ality Parameters	s (within ra	nge for 3	consecutive re	adings if low-	flow sampling)		
Time (24 hr)	Purge Volume	Flow R	1	Tem (°C		Specific Conductance (µS/cm)	Dissolve Oxygen (mg/L)	nH	Oxidation Reduction Potential (mV)	Turbidity (NTU)	Remarks (DTW, color,		
	□ gal ☑ ml	Ø ml/r	HIT	Stabilization ⁽¹⁾		± 3%	± 0.2 mg/	L ± 0.2	0.2 ± 20 mV ±10% or <10 NTU		odor, etc)		
0827	Initial	50)	17-9	7	1801	1.97	8.32	-195.8	NIA	Hzs odor;		

	Purging Data	1	water Quality Parameters (within range for 3 consecutive readings if low-flow sampling)							
Time (24 hr)	Purge Volume □ gal 2 ml	Flow Rate	Temp (°C)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	рН	Oxidation Reduction Potential (mV)	Turbidity (NTU)	Remarks (DTW, color,	
		☑ ml/min	Stabilization ⁽¹⁾ :	± 3%	± 0.2 mg/L	± 0.2	± 20 mV	±10% or <10 NTU	odor, etc)	
0827	Initial	50	17-97	1801	1,97	8.32	-195.8	NIA	Has odor;	
0830	150 200	-	18.21	1791	1.59	8.46	- 200.8		gran, cludy,	
0833	250		18.42	1768	2.04	8.66	-214.5	Ţ	71	
		Sampl	ed hefore		denafer	red du	ie to pi	revious		
		hi	story of	dow	rechau	ge.	. *			

Remarks: Sampled at 0835 f	or 8260B C3 HCL VOA	(2)
(1) Based on EPA low-flow sampling guidelines.		
Signature: D d All d	Checked By:	

_	ONITOR AMPLE COL	ING	NEL		Project/Task #: OD10160070.00008A/B			npled By: Allynt	Dat	te:			
Well Num				Sampl	e ID: MP-03-3			Duplicate ID:					
Method of	F Purging:	mp	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Metho	nod of Sampling:			Intake Depth:					
					Field Eq	uipment							
Equi	pment		Мо	del	Sorial #/Pontal ID			ate I/Serviced	Date	Date Calibrated			
Multi-Probe	2		YSI-	556	020057	7	10/2	5/13	10/2	8/13			
Turbidimet	er		N/	Ά	N/A		N/A						
				Ca	sing Purge Vol	ume Calcu	lations						
	Water = <u>lb</u>		D. W	ater Column (E	3-A) = 41.77	ft.	Depth to	Water After Sam	The spling = 28.8	<u>'4</u> ft.			
	Depth = 58		E. 1	Well Volume (C	$C^2 \times 0.0408 \times D) =$	0.24 gal.	Actual V	olume Purged (fr	om below) =/_	306 gal/ml.			
C. Well Diam	neter = 0.37	in.	F. 3	Well Volumes (3 x E) = 0.72	gal.	(If applica	able, see pumping s	ystem volume ca	Iculation below)			
Pump and I	Flow Cell Volu	ıme	V_p	= N/A	ml		Pumpir	g System Vol	ume Calcul	ation			
Tubing Inside Diameter D = N/A					in.			Pumping System Volume (V _S)					
Tubing Length L = N/A					in.	NIA	$V_S = V_P + \pi * D^2 / 4 * L * 16.39 \text{ ml/in}^3$						
Conversion	from Inches ³	to ml	1 in ³	= 16.39	ml	V _S =	= () + (3.1415 * _	²/4)*	*()*16.39			
	Purging Data	a		Water Qu	ality Parameters	s (within rar	nge for 3	consecutive rea	dings if low-	flow sampling)			
Time (24 hr)	Purge Volume	Flow Rate		Temp (°C)	Specific Conductance (μS/cm)	Dissolved Oxygen (mg/L)	рН	Oxidation Reduction Potential (mV)	Turbidity (NTU)	Remarks (DTW, color,			
	yai E iin	El UII/		Stabilization ⁽¹⁾ :	± 3%	± 0.2 mg/l	L ± 0.2	± 20 mV	±10% or <10 NTU	odor, etc)			
1350	Initial	100	١	20.22	1001	0.84	8.11	-250.5	NIA	cloudy, tan			
1355	1000	1		20.44	990	0.45	7.91	- 250,0		,			
1358	1300	1		20.39	990	0.37	7.70	- 237.8					
1400	well	deno	eter	ed at	1300 m								
1520		_		19.36	989	1.54	6.65	-55.1	NIA	Clear			
***************************************	**************************************		1000										
			-										
Remarks:	1520	Sam	per	d Col	lected 3	-Hec	VOAS	for 826	OB TTP	Ha			
***************************************		***************************************											
,			***************************************					,		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
(1) Based or	n EPA low-flow	sampling	guidel	lines.									
Signature	: ()_	1	10	1,1		Checked B	v:						

roject Name:			
Crown Chevrolet			

MONITORING WELL					OD10160070 000084/B			mpled By:		ate:				
SAMPLE COLLECTION LOG					ODT01000/0'0	0008A/b	D	Allbut	16	28/13				
				Sample				Duplicate ID:						
	0-04-1		пинининици пааг		(P-04-1									
	of Purging:			Metho	d of Sampling			Intake Depth	1: '. 7 '					
peri pur	np	-		***************************************	peripum	-		13	. 1					
	=	Ĭ.				quipment		ate						
Equipment Model				Serial #/Ren	tal ID		l/Serviced	Date	Calibrated					
Multi-Probe			YSI-5		0200577			5/13	[0]	28/13				
Turbidimet	er		N/A	A	N/A		N	I/A		N/A				
					sing Purge Vo		lations							
	Water =12-(D. Wa	ater Column (B	3-A) = 3.09	_ ft.	Depth to	o Water After Sam	npling = 15.	7_ft.				
B. Well Total Depth = 15,7 ft. E. 1 Well Volum					C ² x 0.0408 x D) =	= 0.018gal.	Actual V	olume Purged (fr	om below) = 3	gal/ml.				
C. Well Diam	meter = 0.37	5_in.	F. 3 V	Vell Volumes (3 x E) = <u>0.05</u>	प्रुal.	(If applic	able, see pumping s	ystem volume ca	lculation below)				
Pump and	Flow Cell Volu	ıme	V _p	= N/A	ml		Pumpir	ng System Vol	ume Calcul	ation				
Tubing Ins	side Diameter		D	= N/A	in.	NIA	P	Pumping System Volume (V _S)						
Tubing Len	igth		L	= N/A			$V_S = V$	$I_{P} + \pi * D^{2} / 4 *$	L * 16.39 m	l/in³				
Conversion	n from Inches³	to ml	1 in ³	= 16.39	ml	V _S =	= (_) + (3.1415 * _	2/4)) * 16.39				
	Purging Data	1		Water Qu	ality Parameter	rs (within ran	nge for 3	consecutive rea	dings if low-	·flow sampling)				
Time (24 hr)	Purge Volume □ gal □ ml	Flow R	n	Temp (°C)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	рН	Oxidation Reduction Potential (mV)	Turbidity (NTU)	Remarks (DTW, color,				
	Li gai Li iiii	□ ml/ı		stabilization ⁽¹⁾ :	± 3%	± 0.2 mg/L	L ± 0.2	± 20 mV	±10% or <10 NTU	odor, etc)				
0909	Initial	50	2	16.36	1300	1.33	7.14	-194-0	~IA	Clouder, slight				
00(13	150			16.85	1290	1.69	7.10	767.6						
0916	250			17-21	1267	1.08	709	-147.3						
0919	3,50	<u> </u>		17-88	1282	0.94	7.06	-123.5						
	:	De	<i>nati</i>	ered at	350 ml	•								
	100 C C C C C C C C C C C C C C C C C C													
			19	-			*****							

Remarks:	1415	Sam	pled	for 821	6DB4 TPH	g C3	-HCL	VOAc)	7					
		,												
(1) Based or	n EPA low-flow	sampling	guideli	nes.		**************************************	***************************************							
Signature	lin a ::	A	O lu	t		Checked B	y:		***************************************					

MONITORING WELL SAMPLE COLLECTION LOG

Project	Name:	
Crown	Chaural	,

Crown Chevrolet

Project/	Task #:	
OD101600	70.0000)8A/B

Sampled By: D. Allbut Date:

10/28/13

Well	Number/ID:	

Signature:

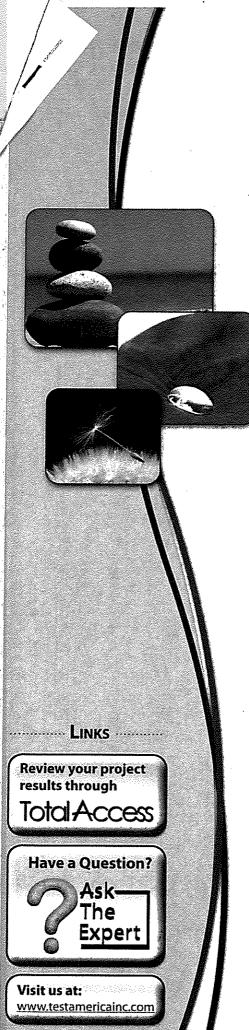
Sample ID:

Duplicate ID:

	04-2		***********************		MP-04-2			Tutaka Dariti						
Method of	Purging:	gula	heck	Metho	Method of Sampling: same as prope				Intake Depth:					
			vacu			uipment								
Equi	oment		Mod	el	Serial #/Rent	tal ID F		ite /Serviced	Date	Calibrated				
Multi-Probe			YSI-5	56	0200577		10/25	/13	10/28/13					
Turbidimeter N/			N/A	1	N/A		N,	/A		N/A				
				Cas	sing Purge Vol	ume Calcul	ations							
A. Depth to \	Water = <u>13.4</u>	14_ft.	D. Wa	ter Column (B	-A) = 27-76	ft.	Depth to	Water After San	npling = 400	Ο¥_ ft.				
B. Well Total	Depth = 41.	7_ _{ft} .	E. 1 W	/ell Volume (C	² x 0.0408 x D) =	0.16 gal.	Actual Vo	olume Purged (fr	om below) = _	100 gal/mD				
C. Well Diam	eter = <u>0 : 37</u>	√ in.	F. 3 W	/ell Volumes (3	3 x E) =0.49	<u>8</u> gal.	(If applica	ole, see pumping s	ystem volume ca	lculation below)				
Pump and f	low Cell Volu	me	V _p	= N/A	ml		Pumpin	g System Vol	ume Calcul	ation				
Tubing Insi	de Diameter		D .	= N/A	in.	WIA	Pu	mping System	Volume (V _S)					
Tubing Len	gth		L	= N/A	in.		$V_S = V_F$	$+\pi * D^2/4*$	L * 16.39 m	l/in ³				
Conversion from Inches ³ to ml 1 in ³				= 16.39	ml	V _S = () + (3.1415 * ² /4) () *								
	Purging Data			Water Qu	ality Parameters	s (within ran	ige for 3 c	onsecutive rea	dings if low-	flow sampling)				
Time (24 hr)	Purge Volume	Flow Rate		Temp (°C)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	рН	Oxidation Reduction Potential (mV)	Turbidity (NTU)	Remarks (DTW, color,				
(21111)	□ gal 🗷 ml	⊠ ml/		abilization ⁽¹⁾ :	± 3%	± 0.2 mg/L	± 0.2	± 20 mV	±10% or <10 NTU	odor, etc)				
0942	Initial	50		18.53	1216	1.63	8.15	-250.5	NIA	eloudy, Its odoc				
0945	200			17-57	1253	0.96	8.18	-263.9	l'					
0948	300			17-94	1245	1.21	8.21	-265.4						
0951	400	1		18.11	1237	t.59	8.29	-270.9						
	Den	ater	red	at 4	00 ml									
244.4444.3-4888.8888.8888.8888.4844.4848.8888.888														
		·							<i>j</i>	-				

Remarks:	1429	5 5	ampl	ed for	8260B	+ TPHa	C3	- HeL V	(zAO)					
			,			J								
		***************************************	***************************************	***************************************	The state of the s	***************************************		***************************************	***************************************					

Checked By:


Project/Task #:
OD10160070.00008A/B

	MONITOR SAMPLE COLI				OD10160070 00008A/B			Albut	1	10 28 13			
Well Num				Sampl	ole ID:			Duplicate ID:					
MP-1	04-3			М	P-04-3		ī	NA					
Method of	f Purging:	. /		Metho	od of Sampling	 	•••••••••••••••••••••••••••••••••••••••	Intake Depth	1:				
ben bru	ip t inerti	al lit	t thou	7)	see purge			58	3.6				
					Field Eq	uipment							
Equipment Model		al [Serial #/Ren	13 11		ate /Serviced	Date	e Calibrated					
Multi-Probe	<u>)</u>		YSI-55	56	020057	ra	10/2	5 13	10/28	3/13			
Turbidimet	er		N/A		N/A		N	/A		N/A			
	150	83		Cas	sing Purge Vol	lume Calcu	lations						
A. Depth to	Water = / डे व		D. Wat	er Column (E	B-A) = 42.77	_ft.	Depth to	Water After Sam	npling = $\frac{29}{}$	55 ft.			
B. Well Total	Depth = 58.	6 ft.	E. 1 W	ell Volume (C	$C^2 \times 0.0408 \times D) =$. <u>0 . 25</u> gal.	Actual V	olume Purged (fr	om below) = _	1500 gal/m			
					3 x E) = 0.75	gal.		ble, see pumping s					
Pump and I	Flow Cell Volu	me	V _p =	= N/A	ml		Pumpin	g System Vol	ume Calcul	ation			
Tubing Insi	ide Diameter	***************************************	D =	= N/A	in.	- 48 4	Pu	mping System	Volume (V _S)				
Tubing Len	gth		L =	= N/A	in.	MA	$V_S = V_1$	$V_S = V_P + \pi * D^2 / 4 * L * 16.39 \text{ ml/in}^3$					
Conversion	from Inches ³	to ml	1 in ³ :	= 16.39	ml	V _S =				* () * 16.39			
	Purging Data)		Water Qu	ality Parameters								
Time (24 hr)	Purge Volume	e □ gpm		Temp (°C)	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)		Oxidation Reduction Potential (mV)	Turbidity (NTU)	Remarks (DTW, color,			
	□ gal 🗗 ml	□-ml/i		abilization ⁽¹⁾ :	± 3%	± 0.2 mg/L	. ± 0.2	± 20 mV	±10% or <10 NTU	odor, etc)			
1010	Initial	(0	0	18.02	979	2.15	8.18	-265.2	MIA	Hos odor			
1015	1000			18.01	982	212	8,03	-247-6					
1020	1500	1		17-91	982	4.44	7.93	- 239.6					
	100	we	11 2	ewater	red (a) 15	00 ml			The state of the s				
1440			į	23.09	1023	0.72	7.78	-118.3					
							A.L						
	<u></u>			***************************************									
								117					
Remarks:	1440	Sa	mple	8 60 c	82608	+TPHg.	. Col	leded	3-1401				
			***************************************						**************************************	·			
(1) Based or	n EPA low-flow	sampling	guideline	25.	***************************************	***************************************	***************************************	41177	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
Signature	: 0 ~	-d	al	le	•	Checked B	y:						

APPENDIX B

Laboratory Analytical Reports

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc. TestAmerica Pleasanton 1220 Quarry Lane Pleasanton, CA 94566 Tel: (925)484-1919

TestAmerica Job ID: 720-51298-1 Client Project/Site: Crown Chevrolet

For:

AMEC Environment & Infrastructure, Inc. 2101 Webster Street, 12th Floor Oakland, California 94612

Attn: Avery Patton

Alanf Set

Authorized for release by: 8/6/2013 4:32:36 PM

Afsaneh Salimpour, Project Manager I afsaneh.salimpour@testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

Table of Contents

Cover Page	1
Table of Contents	
Definitions/Glossary	
Case Narrative	4
Detection Summary	5
Client Sample Results	7
	23
	48
Lab Chromole	50
Certification Summary	52
Method Summary	53
Sample Summary	54
Chain of Custody	55
Receipt Checklists	56

Definitions/Glossary

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-51298-1

Qualifiers

GC/MS VOA

Qualifier	Qualifier Description
•	RPD of the LCS and LCSD exceeds the control limits
•	LCS or LCSD exceeds the control limits
x	Surrogate is outside control limits

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.		`	
a	Listed under the "D" column to designate that the result is reported on a dry weight basis			
%R	Percent Recovery		-	
CNF	Contains no Free Liquid			
DER	Duplicate error ratio (normalized absolute difference)			4 4
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample			
DLC	Decision level concentration			
MDA	Minimum detectable activity			
EDL	Estimated Detection Limit			
MDC	Minimum detectable concentration	ŧ		
MDL	Method Detection Limit			
ML	Minimum Level (Dioxin)		·	
NC	Not Calculated			
ND	Not detected at the reporting limit (or MDL or EDL if shown)			
PQL	Practical Quantitation Limit			
QC	Quality Control			
RER	Relative error ratio			•
RL	Reporting Limit or Requested Limit (Radiochemistry)			
RPD	Relative Percent Difference, a measure of the relative difference between two points			
TEF	Toxicity Equivalent Factor (Dioxin)		•	
TEQ	Toxicity Equivalent Quotient (Dioxin)			

Case Narrative

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-51298-1

Job ID: 720-51298-1

Laboratory: TestAmerica Pleasanton

Narrative

Job Narrative 720-51298-1

Comments

No additional comments.

Receipt

The samples were received on 7/30/2013 5:53 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 2.4° C.

GC/MS VOA

Method(s) 8260B: The Gasoline Range Organics (GRO) concentration reported for the following sample 720-51298-3 is due to the presence of discrete peaks: PCE.

Method(s) 8260B: The %RPD of the laboratory control sample (LCS) and laboratory control standard duplicate (LCSD) for preparation batch recovered outside control limits for the following analytes:2,2Dichloropropane, Carbon disulfate.

Method(s) 8260B: The Gasoline Range Organics (GRO) concentration reported for the following samples 720-51298-8 and 720-51298-9 is due to the presence of discrete peaks: PCE.

Method(s) 8260B: The laboratory control sample (LCS) and / or laboratory control sample duplicate (LCSD) for batch 141443 recovered outside control limits for the following analyte: 1,3-dichloropropane. This analyte was biased high in the LCS and were not detected in the associated samples; therefore, the data have been reported.

No other analytical or quality issues were noted.

Detection Summary

TestAmerica Job ID: 720-51298-1 Client: AMEC Environment & Infrastructure, Inc. Project/Site: Crown Chevrolet Lab Sample ID: 720-51298-1 Client Sample ID: MP-03-2 No Detections. Client Sample ID: TB073013 Lab Sample ID: 720-51298-2 No Detections. Client Sample ID: MP-03-1 Lab Sample ID: 720-51298-3 Analyte Result Qualifier RL MDL Unit Dil Fac D Method Prep Type Tetrachloroethene 160 0.50 ug/L 8260B/CA LUFT Total/NA Trichloroethene 10 0.50 ug/L 8260B/CA_LUFT Total/NA 170 R 50 Gasoline Range Organics (GRO) ug/L 8260B/CA LUFT Total/NA -C5-C12 Client Sample ID: MP-03-3 Lab Sample ID: 720-51298-4 No Detections Client Sample ID: MW-03 Lab Sample ID: 720-51298-5 Analyte Result Qualifier RL MDL Unit Dil Fac D Method Prep Type 1,2-Dichlorobenzene 1.4 0.50 ug/L 8260B/CA LUFT Total/NA cis-1,2-Dichloroethene 0.62 0.50 ug/L 8260B/CA LUFT Total/NA Tetrachloroethene 11 0.50 ug/L 8260B/CA_LUFT Total/NA Total/NA Trichloroethene 0.50 1.1 ug/L 1 8260B/CA LUFT Client Sample ID: MP-04-3 Lab Sample ID: 720-51298-6 No Detections. Lab Sample ID: 720-51298-7 Client Sample ID: MP-04-2 Result Qualifier MDL Unit Dil Fac D Method Analyte RL Prep Type 0.50 Trichloroethene 0.53 ug/L 8260B/CA LUFT Total/NA Client Sample ID: MW-01 Lab Sample ID: 720-51298-8 Result Qualifier Analyte RL MDL Unit Dil Fac D Method Ргер Туре 160 2.5 Total/NA ug/L Tetrachloroethene 8260B/CA LUFT Trichloroethene 1.5 0.50 ug/L Total/NA 8260B/CA_LUFT MS R 120 50 ug/L 8260B/CA LUFT Total/NA Gasoline Range Organics (GRO)

This Detection Summary does not include radiochemical test results.

-C5-C12

Client Sample ID: MW-100

TestAmerica Pleasanton

Lab Sample ID: 720-51298-9

MS

Detection Summary

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-51298-1

Client Sample ID: MW-100 (Continued)								Lab Sample ID: 720-51298-9						
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	Q	Method	Prep Type					
Tetrachioroethene	210		2.5	***************************************	ug/L	5		8260B/CA_LUFT MS	Total/NA					
Trichloroethene	1.6		0.50		ug/L	1		8260B/CA_LUFT MS	Total/NA					
Gasoline Range Organics (GRO) C5-C12	140	R	50		ug/L	1		8260B/CA_LUFT MS	Total/NA					
Client Sample ID: MP-02-2						Lat	S	ample ID: 72	0-51298-10					
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type					
Trichloroethene	1.3		0.50		ug/L	1	****	8260B/CA_LUFT MS	Total/NA					

Client Sample Results

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-51298-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS

Client Sample ID: MP-03-2

Lab Sample ID: 720-51298-1

Matrix: Water

Date Collected: 07/30/13 08:00 Date Received: 07/30/13 17:53

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND	0.50	ug/L			08/01/13 21:03	1
Acetone	ND	50	ug/L			08/01/13 21:03	1
Benzene	ND	0,50	ug/L			08/01/13 21:03	1
Dichlorobromomethane	ND	0.50	ug/L			08/01/13 21:03	1
Bromobenzene	ND	1.0	ug/L			08/01/13 21:03	1
Chlorobromomethane	ND	1.0	ug/L			08/01/13 21:03	1
Bromoform	ND	1.0	ug/L			08/01/13 21:03	1
Bromomethane	ND	1.0	ug/L			08/01/13 21:03	1
2-Butanone (MEK)	ND	50	ug/L			08/01/13 21:03	1
n-Butylbenzene	ND	1.0	ug/L			08/01/13 21:03	1
sec-Butylbenzene	ND	1.0	ug/L			08/01/13 21:03	1
tert-Butylbenzene	ND	1.0	ug/L			08/01/13 21:03	1
Carbon disulfide	ND *	5.0	ug/L			08/01/13 21:03	1
Carbon tetrachloride	ND ·	0.50	ug/L			08/01/13 21:03	1
Chlorobenzene	ND	0,50	ug/L			08/01/13 21:03	1
Chloroethane	ND	1.0	ug/L			08/01/13 21:03	1
Chloroform	ND	1.0	ug/L			08/01/13 21:03	1
Chloromethane	ND	1.0	ug/L			08/01/13 21:03	. 1
2-Chlorotoluene	ND	0.50	ug/L			08/01/13 21:03	1
4-Chlorotoluene	ND	0.50	ug/L			08/01/13 21:03	1
Chlorodibromomethane	ND	0.50	ug/L			08/01/13 21:03	1
1,2-Dichlorobenzene	ND	0.50	ug/L			08/01/13 21:03	1
1,3-Dichlorobenzene	ND	0.50	ug/L			08/01/13 21:03	1
1,4-Dichlorobenzene	ND	0.50	ug/L			08/01/13 21:03	1
1,3-Dichloropropane	ND .	1.0	ug/L		•	- 08/01/13 21:03	1
1,1-Dichloroprepene	ND	0.50	ug/L			08/01/13 21:03	1
1,2-Dibromo-3-Chloropropane	ND	1.0	ug/L			08/01/13 21:03	1
Ethylene Dibromide	ND	0.50	ug/L		-	08/01/13 21:03	1
Dibromomethane	ND	0.50	ug/L			08/01/13 21:03	1
Dichlorodifluoromethane	ND	0.50	ug/L			08/01/13 21:03	1
1,1-Dichloroethane	ND	0.50	ug/L	•		08/01/13 21:03	1
1,2-Dichloroethane	ND	0.50	ug/L			08/01/13 21:03	1
1,1-Dichloroethene	ND	0.50	ug/L			08/01/13 21:03	1
cis-1,2-Dichloroethene	ND	0.50	ug/L			08/01/13 21:03	1
trans-1,2-Dichloroethene	ND	0.50	ug/L			08/01/13 21:03	1
1,2-Dichloropropane	ND	0.50	ug/L			08/01/13 21:03	1
cis-1,3-Dichloropropene	ND	0,50	ug/L			08/01/13 21:03	1
trans-1,3-Dichloropropene	ND	0.50	ug/L			08/01/13 21:03	1
Ethylbenzene	ND	0.50	ug/L			08/01/13 21:03	1
Hexachlorobutadiene	ND	1.0	ug/L			08/01/13 21:03	1
2-Hexanone	ND	50	ug/L			08/01/13 21:03	1
Isopropylbenzene	ND	0.50	ug/L			08/01/13 21:03	1
4-Isopropyitoluene	ND	1.0	ug/L	٠		08/01/13 21:03	1
Methylene Chloride	ND	5.0	ug/L			08/01/13 21:03	1
4-Methyl-2-pentanone (MIBK)	ND	50	ug/L			08/01/13 21:03	1
Naphthalene	ND	1.0	ug/L			08/01/13 21:03	1
N-Propylbenzene	ND	1.0	ug/L			08/01/13 21:03	1
Styrene	ND	0.50	ug/L			08/01/13 21:03	1
1,1,1,2-Tetrachioroethane	ND	0.50	ug/L		•	08/01/13 21:03	1

TestAmerica Pleasanton

Client Sample Results

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-51298-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Client Sample ID: MP-03-2 Lab Sample ID: 720-51298-1 Date Collected: 07/30/13 08:00 Matrix: Water Date Received: 07/30/13 17:53

Analyte	Result	Qualifier	RL.	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,2,2-Tetrachloroethane	ND		0.50		ug/L			08/01/13 21:03	1
Tetrachloroethene	ND		0.50		ug/L			08/01/13 21:03	1
Toluene	ND		0.50		ug/L			08/01/13 21:03	1
1,2,3-Trichlorobenzene	ND		1.0		ug/L			08/01/13 21:03	1
1,2,4-Trichlorobenzene	ND		1.0		ug/L			08/01/13 21:03	1
1,1,1-Trichloroethane	ND		0.50		ug/L			08/01/13 21:03	1
1,1,2-Trichloroethane	ND		0.50		ug/L			08/01/13 21:03	1
Trichloroethene	ND		0.50		ug/L			08/01/13 21:03	. 1
Trichlorofluoromethane	ND		1.0		ug/L			08/01/13 21:03	1
1,2,3-Trichloropropane	ND		0.50		ug/L			08/01/13 21:03	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50		ug/L			08/01/13 21:03	1
1,2,4-Trimethylbenzene	ND		0.50		ug/L			08/01/13 21:03	1
1,3,5-Trimethylbenzene	ND		0.50		ug/L			08/01/13 21:03	1
Vinyl acetate	ND		10		ug/L			08/01/13 21:03	1
Vinyl chloride	ND		0.50		ug/L			08/01/13 21:03	1
Xylenes, Total	ND		1.0		ug/L			08/01/13 21:03	1
2,2-Dichloropropane	ND	•	0.50		ug/L		*	08/01/13 21:03	1
Gasoline Range Organics (GRO) -C5-C12	ND		50		ug/L	•		08/01/13 21:03	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	95		67 - 130	AMBIELLA SER SPORT OF CONTRACT	08/01/13 21:03	1
1,2-Dichloroethane-d4 (Surr)	93		75 ₋ 138		08/01/13 21:03	1
Toluene-d8 (Surr)	90		70 - 130		08/01/13 21:03	1

Client Sample ID: TB073013 Lab Sample ID: 720-51298-2 Date Collected: 07/30/13 08:10

Matrix: Water

Date Received: 07/30/13 17:53			•				
Analyte	Result C	Qualifier RL	MDL Unit	Ð	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND	0.50	ug/L			08/02/13 16:13	1
Acetone	ND	50	ug/L			08/02/13 16:13	1
Benzene	ND	0.50	ug/L			08/02/13 16:13	1
Dichlorobromomethane	ND	0.50	ug/L			08/02/13 16:13	1
Bromobenzene	ND	1.0	ug/L			08/02/13 16:13	1
Chlorobromomethane	ND	1.0	ug/L			08/02/13 16:13	1
Bromoform	ND	1.0	ug/L			08/02/13 16:13	1
Bromomethane	ND	1.0	ug/L			08/02/13 16:13	1
2-Butanone (MEK)	ND	50	ug/L			08/02/13 16:13	1
n-Butylbenzene	ND	1.0	ug/L			08/02/13 16:13	1
sec-Butylbenzene	ND	1.0	ug/L			08/02/13 16:13	1
tert-Bulylbenzene	ND	1.0	ug/L			08/02/13 16:13	1
Carbon disulfide	ND	5.0	ug/L			08/02/13 16:13	1
Carbon tetrachloride	· ND	0.50	ug/L			08/02/13 16:13	1
Chlorobenzene	ND	0.50	ug/L			08/02/13 16:13	1
Chloroethane	ND	1.0	ug/L	•		08/02/13 16:13	1
Chloroform	ND	1.0	ug/L			08/02/13 16:13	1
Chloromethane	ND	1.0	ug/L			08/02/13 16:13	1
2-Chlorotoluene	ND	0.50	ug/L			08/02/13 16:13	1
4-Chlorotoluene	ND	0.50	ug/L			08/02/13 16:13	1
Chlorodibromomethane	ND	0.50	ug/L			08/02/13 16:13	1

TestAmerica Pleasanton

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-51298-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Client Sample ID: TB073013

4-Bromofluorobenzene

Lab Sample ID: 720-51298-2

Matrix: Water

Date Collected: 07/30/13 08:10 Date Received: 07/30/13 17:53

Surrogate	%Recovery (Justifie-	Limits			Prepared	Analyzed	Dil Fa
C5-C12								
Gasoline Range Organics (GRO)	ND		50	ug/L			08/02/13 16:13	
2,2-Dichloropropane	ND.		0.50	ug/L			08/02/13 16:13	
(ylenes, Total	ND		1.0	ug/L			08/02/13 16:13	
/inyl chloride	ND		0.50	ug/L			08/02/13 16:13	:
/inyl acetate	ND		10	ug/L			08/02/13 16:13	
i,3,5-Trimethylbenzene	ND		0.50	ug/L			08/02/13 16:13	
,2,4-Trimethylbenzene	ND		0.50	ug/L			08/02/13 16:13	1
,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50	ug/L			08/02/13 16:13	
,2,3-Trichloropropane	ND		0.50	ug/L			08/02/13 16:13	
richlorofluoromethane	ND		1.0	ug/L			08/02/13 16:13	
richloroethene	ND		0.50	ug/L			08/02/13 16:13	
1,2-Trichloroethane	ND		0.50	ug/L			08/02/13 16:13	
1,1-Trichloroethane	ND		0.50	ug/L			08/02/13 16:13	
,2,4-Trichlorobenzene	ND		1.0	ug/L			08/02/13 16:13	
,2,3-Trichlorobenzene	ND		1.0	ug/L			08/02/13 16:13	
oluene	ND		0.50	ug/L	e .		08/02/13 16:13	
etrachloroethene	ND		0.50	ug/L	٠		08/02/13 16:13	
1,2,2-Tetrachloroethane	ND		0.50	ug/L			08/02/13 16:13	
1,1,2-Tetrachloroethane	ND	•	0.50	ug/L			08/02/13 16:13	
yrene	ND		0.50	ug/L			08/02/13 16:13	
- Propylbenzene	ND		1.0	ug/L			08/02/13 16:13	
aphthalene	ND		1.0	ug/L			08/02/13 16:13	
Methyl-2-pentanone (MIBK)	ND		50	ug/L			08/02/13 16:13	
ethylene Chloride	ND		5.0	ug/L			08/02/13 16:13	
Isopropyltoluene	ND		1.0	ug/L			08/02/13 16:13	
opropylbenzene	ND		0.50	ug/L			08/02/13 16:13	
Hexanone	ND		50	ug/L			08/02/13 16:13	
exachlorobutadiene	ND		1.0	ug/L			08/02/13 16:13	
thylbenzene	ND		0.50	ug/L			08/02/13 16:13	
ans-1,3-Dichloropropene	ND		0.50	ug/L			08/02/13 16:13	
s-1,3-Dichloropropene	ND		0.50	ug/L			08/02/13 16:13	
2-Dichloropropane	ND		0.50	ug/L			08/02/13 16:13	
ans-1,2-Dichloroethene	ND		0.50	ug/L			08/02/13 16:13	
s-1,2-Dichloroethene	ND		0.50	ug/L	,		08/02/13 16:13	
,1-Dichloroethene	ND		0.50	ug/L			08/02/13 16;13	-
,2-Dichloroethane	ND		0.50	ug/L			08/02/13 16:13	
,1-Dichloroethane	ND		0.50	ug/L			08/02/13 16:13	
Dichlorodifluoromethane	ND		0.50	ug/L			08/02/13 16:13	
Dibromomethane	ND		0.50	ug/L	•		08/02/13 16:13	
thylene Dibromide	ND		0.50	ug/L			08/02/13 16:13	
,2-Dibromo-3-Chloropropane	ND		1.0	ug/L			08/02/13 16:13	-
,1-Dichloropropene	ND		0.50	ug/L			08/02/13 16:13	
,3-Dichloropropane	ND '	•	1.0	ug/L			08/02/13 16:13	
,4-Dichlorobenzene	ND		0.50	ug/L			08/02/13 16:13	
,3-Dichlorobenzene	ND .		0.50	ug/L		•	08/02/13 16:13	•
,2-Dichlorobenzene	ND		0.50	ug/L			08/02/13 16:13	

TestAmerica Pleasanton

08/02/13 16:13

67 - 130

93

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-51298-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Client Sample ID: TB073013 Date Collected: 07/30/13 08:10

Date Received: 07/30/13 17:53

Lab Sample ID: 720-51298-2

Matrix: Water

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	89		75 - 138	***************************************	08/02/13 16:13	1
 Toluene-d8 (Surr)	99		70 - 130		08/02/13 16:13	1

Client Sample ID: MP-03-1

Date Collected: 07/30/13 08:35

Lab Sample ID: 720-51298-3

Matrix: Water

Date Received: 07/30/13 17:53 Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND	euaiiici	0.50	ug/L		ı.ı chai en	08/01/13 03:58	Dil Fac
Acetone	ND		50	ug/L ug/L			08/01/13 03:58	. 1
Benzene	ND		0.50	ug/L ug/L			08/01/13 03:58	1
Dichlorobromomethane	ND		0.50	ug/L			08/01/13 03:58	1
Bromobenzene	ND		1.0	ug/L			08/01/13 03:58	1
Chlorobromomethane	ND		1.0				08/01/13 03:58	1
Bromoform	ND		1.0	ug/L			08/01/13 03:58	
Bromomethane	ND		1.0	ug/L			08/01/13 03:58	1
2-Butanone (MEK)	ND.		50	ug/L			08/01/13 03:58	
n-Butylbenzene				ug/L				1
•	, ND		, 1.0 1.0		and the second second		08/01/13 03:58	
sec-Butylbenzene	ND			ug/L			08/01/13 03:58	1
tert-Butylbenzene	ND		1.0	ug/L			08/01/13 03:58	_ 1
Carbon disulfide	ND		5.0	ug/L			08/01/13 03:58	1
Carbon tetrachloride	ND		0.50	ug/L			08/01/13 03:58	1
Chlorobenzene	ND		0.50	ug/L			08/01/13 03:58	1
Chloroethane	ND		1.0	ug/L			08/01/13 03:58	1
Chloroform	ND		1.0	ug/L			08/01/13 03:58	1
Chloromethane	ND		1.0	ug/L			08/01/13 03:58	1
2-Chlorotoluene	ND	*	0.50	. ug/L			08/01/13 03:58	1
4-Chlorotoluene	ND		0.50	ug/L	÷		08/01/13 03:58	1
Chlorodibromomethane	ND		0.50	ug/L			08/01/13 03:58	1
1,2-Dichlorobenzene	ND		0.50	ug/L			08/01/13 03:58	1
1,3-Dichlorobenzene	ND		0.50	ug/L			08/01/13 03:58	1
1,4-Dichlorobenzene	ND		0.50	ug/L			08/01/13 03:58	1
1,3-Dichloropropane	ND		1.0	ug/L			08/01/13 03:58	1
1,1-Dichloropropene	ND		0.50	ug/L			08/01/13 03:58	1
1,2-Dibromo-3-Chloropropane	ND		1.0	ug/L			08/01/13 03:58	1
Ethylene Dibromide	ND		0.50	ug/L			08/01/13 03:58	1
Dibromomethane	ND		0.50	ug/L			08/01/13 03:58	1
Dichlorodifluoromethane	ND		0.50	ug/L			08/01/13 03:58	. 1
1,1-Dichloroethane	ND		0.50	ug/L			08/01/13 03:58	1
1,2-Dichloroethane	ND		0.50	ug/L			08/01/13 03:58	1
1,1-Dichloroethene	ND		0.50	ug/L			08/01/13 03:58	1
cis-1,2-Dichloroethene	ND		0.50	ug/L			08/01/13 03:58	1
trans-1,2-Dichloroethene	ND		0.50	ug/L			08/01/13 03:58	1
1,2-Dichloropropane	ND		0.50	ug/L			08/01/13 03:58	1
cis-1,3-Dichloropropene	ND		0.50	ug/L		-	08/01/13 03:58	1
trans-1,3-Dichloropropene	ND		0.50	ug/L			08/01/13 03:58	1
Ethylbenzene	ND		0.50	ug/L			08/01/13 03:58	1
Hexachlorobutadiene	ND		1.0	ug/L			08/01/13 03:58	1
2-Hexanone	ND		50	ug/L			08/01/13 03:58	1
Isopropylbenzene	ND		0.50	ug/L			08/01/13 03:58	1

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

Client Sample ID: MP-03-1

TestAmerica Job ID: 720-51298-1

Lab Sample ID: 720-51298-3

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

ND

ND

ND

ND

170

Date Collected: 07/30/13 08:35								Matrix	k: Water
Date Received: 07/30/13 17:53 Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4-Isopropyltoluene	ND		1.0		ug/L		***************************************	08/01/13 03:58	1
Methylene Chloride	ND		5.0		ug/L			08/01/13 03:58	1
4-Methyl-2-pentanone (MIBK)	ND		50		ug/L			08/01/13 03:58	1
Naphthalene	ND		1.0		ug/L			08/01/13 03:58	1
N-Propylbenzene	ND		1.0		ug/L			08/01/13 03:58	1
Styrene	ND		0.50		ug/L			08/01/13 03:58	1
1,1,1,2-Tetrachloroethane	ND		0.50		ug/L			08/01/13 03:58	1
1,1,2,2-Tetrachloroethane	ND		0.50		ug/L			08/01/13 03:58	1
Tetrachloroethene	160		0.50		ug/L			08/01/13 03:58	1
Toluene	ND		0.50		ug/L			08/01/13 03:58	1
1,2,3-Trichlorobenzene	ND		1.0		ug/L			08/01/13 03:58	1
1,2,4-Trichlorobenzene	ND		1.0		ug/L			08/01/13 03:58	1
1,1,1-Trichloroethane	ND		0.50		ug/L			08/01/13 03:58	1
1,1,2-Trichloroethane	ND		0.50		ug/L			08/01/13 03:58	1
Trichloroethene	10		0.50		ug/L			08/01/13 03:58	1
Trichlorofluoromethane	ND		1.0		ug/L			08/01/13 03:58	1
1,2,3-Trichloropropane	ND		0.50		ug/L			08/01/13 03:58	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50		ug/L			08/01/13 03:58	1
1,2,4-Trimethylbenzene	ND		0.50		ug/L			08/01/13 03:58	1
1,3,5-Trimethylbenzene	ND		0.50		ug/L			08/01/13 03:58	1

Gasoline Range Organics (GRO) -C5-C12

Vinyl acetate Vinyl chloride

Xylenes, Total

2,2-Dichloropropane

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	100		67 - 130		08/01/13 03:58	1
1,2-Dichloroethane-d4 (Surr)	103		75 - 138		08/01/13 03:58	1
Toluene-dB (Surr)	102		70 - 130		08/01/13 03:58	1

10

0.50

1.0

0.50

50

ug/L

ug/L

ug/L

ug/L

ug/L

Client Sample ID: MP-03-3
Date Collected: 07/30/13 09:15

Lab Sample ID: 720-51298-4 Matrix: Water

08/01/13 03:58

08/01/13 03:58

08/01/13 03:58

08/01/13 03:58

08/01/13 03:58

Result	Qualifier RL	MDL	Unit	ם	Prepared	Analyzed	Dil Fac
ND	0.50		ug/L			08/02/13 16:44	1
ND	50		ug/L			08/02/13 16:44	1
ND	0.50		ug/L			08/02/13 16:44	1
ND	0.50		ug/L			08/02/13 16:44	1
ND	1.0		ug/L			08/02/13 16:44	1
. ND	1.0		ug/L			08/02/13 16:44	1
ND	1.0		ug/L			08/02/13 16:44	1
ND	1.0		ug/L			08/02/13 16:44	1
ND	50		ug/L			08/02/13 16:44	1
ND	1.0		ug/L			08/02/13 16:44	["] 1
ND	1.0		ug/L			08/02/13 16:44	1
ND	1.0		ug/L			08/02/13 16:44	1
ND	5.0		ug/L			08/02/13 16:44	1
ND	0.50		ug/L		*	08/02/13 16:44	1
	ND ND ND ND ND ND ND ND	ND 0.50 ND 50 ND 0.50 ND 0.50 ND 1.0 ND 50 ND 1.0 ND 1.0	ND 0.50 ND 50 ND 0.50 ND 1.0 ND 1.0 ND 1.0 ND 1.0 ND 50 ND 1.0 ND 1.0 ND 1.0 ND 1.0 ND 1.0 ND 1.0 ND 5.0	ND 0.50 ug/L ND 50 ug/L ND 0.50 ug/L ND 0.50 ug/L ND 1.0 ug/L ND 1.0 ug/L ND 1.0 ug/L ND 50 ug/L ND 1.0 ug/L ND 1.0 ug/L ND 1.0 ug/L ND 1.0 ug/L ND 5.0 ug/L	ND 0.50 ug/L ND 50 ug/L ND 0.50 ug/L ND 1.0 ug/L ND 1.0 ug/L ND 1.0 ug/L ND 1.0 ug/L ND 50 ug/L ND 1.0 ug/L ND 1.0 ug/L ND 1.0 ug/L ND 1.0 ug/L ND 5.0 ug/L	ND 0.50 ug/L ND 50 ug/L ND 0.50 ug/L ND 1.0 ug/L ND 1.0 ug/L ND 1.0 ug/L ND 1.0 ug/L ND 50 ug/L ND 1.0 ug/L ND 5.0 ug/L	ND 0.50 ug/L 08/02/13 16:44 ND 50 ug/L 08/02/13 16:44 ND 0.50 ug/L 08/02/13 16:44 ND 0.50 ug/L 08/02/13 16:44 ND 1.0 ug/L 08/02/13 16:44 ND 5.0 ug/L 08/02/13 16:44 ND 5.0 ug/L 08/02/13 16:44

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-51298-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Client Sample ID: MP-03-3 Date Collected: 07/30/13 09:15 Lab Sample ID: 720-51298-4

Matrix: Water

Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Chlorobenzene	ND		0.50	ug/L			08/02/13 16:44	1
Chloroethane	ND		1.0	ug/L			08/02/13 16:44	1
Chloroform	ND		1.0	ug/L			08/02/13 16:44	1
Chloromethane	ND		1.0	ug/L			08/02/13 16:44	1
2-Chlorotoluene	ND		0.50	ug/L			08/02/13 16:44	1
4-Chlorotoluene	ND		0.50	ug/L			08/02/13 16:44	1
Chlorodibromomethane	ND		0.50	ug/L			08/02/13 16:44	1
1,2-Dichlorobenzene	ND		0.50	ug/L			08/02/13 16:44	1
1,3-Dichlorobenzene	ND		0.50	ug/L			08/02/13 16:44	1
1,4-Dichlorobenzene	ND		0.50	ug/L			08/02/13 16:44	1
1,3-Dichloropropane	ND	•	1.0	ug/L			08/02/13 16:44	1
1,1-Dichloropropene	ND		0.50	ug/L			08/02/13 16:44	1
1,2-Dibromo-3-Chloropropane	ND		1.0	ug/L			08/02/13 16:44	1
Ethylene Dibromide	ND		0.50	ug/L			08/02/13 16:44	1
Dibromomethane	ND		0.50	ug/L			08/02/13 16:44	. 1
Dichlorodifluoromethane	ND		0.50	ug/L			08/02/13 16:44	1
1,1-Dichloroethane	ND		0.50	ug/L			08/02/13 16:44	1
1,2-Dichloroethane	ND		0.50	ug/L		1 m w	08/02/13 16:44	' 1
1,1-Dichloroethene	ND		0.50	ug/L			08/02/13 16:44	1
cls-1,2-Dichloroethene	ND		0.50	ug/L			08/02/13 16:44	1
trans-1,2-Dichloroethene	ND		0.50	ug/L			08/02/13 16:44	1
1,2-Dichloropropane	ND		0.50	ug/L			08/02/13 16:44	1
cis-1,3-Dichloropropene	ND		0.50	ug/L			08/02/13 16:44	1
trans-1,3-Dichloropropene	ND		0.50	_			08/02/13 16:44	1
• •	ND		0.50	ug/L			·	
Ethylbenzene Hexachlorobutadiene	ND		1.0	ug/L			08/02/13 16:44	1
	ND	•	50	ug/L		4	08/02/13 16:44	1
2-Hexanone	ND			ug/L			08/02/13 16:44	1
Isopropylbenzene			0.50	ug/L			08/02/13 16:44	. 1
4-Isopropyltoluene	ND		1.0	ug/L			08/02/13 16:44	1
Methylene Chloride	ND		5.0	ug/L			08/02/13 16:44	1
4-Methyl-2-pentanone (MIBK)	ND		50	ug/L			08/02/13 16:44	1
Naphthalene	ND		1.0	ug/L			08/02/13 16:44	1
N-Propylbenzene	ND		1.0	ug/L			08/02/13 16:44	1
Styrene	ND		0.50	ug/L			08/02/13 16:44	. 1
1,1,1,2-Tetrachloroethane	ND		0.50	ug/L			08/02/13 16:44	1
1,1,2,2-Tetrachloroethane	ND		0.50	ug/L			08/02/13 16:44	1
Tetrachloroethene	ND .		0.50	ug/L			08/02/13 16:44	1
Toluene	ND		0.50	ug/L			08/02/13 16:44	1
1,2,3-Trichlorobenzene	ND		1.0	ug/L			08/02/13 16:44	1
1,2,4-Trichlorobenzene	ND	•	1.0	ug/L			08/02/13 16:44	1
1,1,1-Trichloroethane	ND	1	0.50	ug/L			08/02/13 16:44	1
1,1,2-Trichloroethane	ND		0.50	ug/L			08/02/13 16:44	1
Trichloroethene	ND		0.50	ug/L			08/02/13 16:44	1
Trichlorofluoromethane	ND		1.0	ug/L			08/02/13 16:44	¨
1,2,3-Trichloropropane	ND		0.50	ug/L			08/02/13 16:44	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50	ug/L			08/02/13 16:44	1
1,2,4-Trimethylbenzene	ND		0.50	ug/L			08/02/13 16:44	1
1,3,5-Trimethylbenzene	ND		0.50	ug/L			08/02/13 16:44	1
Vinyl acetate	ND		10	ug/L			08/02/13 16:44	1

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-51298-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Client Sample ID: MP-03-3

Lab Sample ID: 720-51298-4

Matrix: Water

Date Collected: 07/30/13 09:15 Date Received: 07/30/13 17:53

Analyte Result Qualifier RL **MDL** Unit D Prepared Analyzed Dil Fac 0.50 ND 08/02/13 16:44 Vinyl chloride ug/L Xylenes, Total ND 1.0 ug/L 08/02/13 16:44 ug/L 2,2-Dichloropropane ND 0.50 08/02/13 16:44 ND 50 ug/L 08/02/13 16:44 Gasoline Range Organics (GRO) -C5-C12

Dil Fac Surrogate %Recovery Qualifier Limits Prepared Analyzed 67 - 130 4-Bromofluorobenzene 93 08/02/13 16:44 1,2-Dichloroethane-d4 (Surr) 89 75 - 138 08/02/13 16:44 99 70 - 130 08/02/13 16:44 Toluene-d8 (Surr)

Client Sample ID: MW-03

Lab Sample ID: 720-51298-5

Date Collected: 07/30/13 10:05

Matrix: Water

Date Received: 07/30/13 17:53									
Analyte		Qualifier	RL _	MDL	Unit		Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND		0.50		ug/L			08/02/13 17:15	1.
Acetone	ND		50		ug/L			08/02/13 17:15	1
Benzene	ND		0.50		ug/L			08/02/13 17:15	1
Dichlorobromomethane	ND		0.50		ug/L	-		08/02/13 17:15	1
Bromobenzene	ND	•	1.0		ug/L			08/02/13 17:15	1
Chlorobromomethane	ND		1.0		ug/L			08/02/13 17:15	1
Bromoform	ND		1.0		ug/L			08/02/13 17:15	· 1
Bromomethane	ND		1.0		ug/L			08/02/13 17:15	1
2-Butanone (MEK)	ND		50		ug/L			08/02/13 17:15	1
n-Butylbenzene	ND		1.0		ug/L			08/02/13 17:15	1
sec-Butylbenzene	ND		1.0		ug/L			08/02/13 17:15	1
tert-Butylbenzene	ND		1.0		ug/L			08/02/13 17:15	1
Carbon disulfide	ND		5.0		ug/L			08/02/13 17:15	. 1
Carbon tetrachloride	ND		0.50		ug/L			08/02/13 17:15	1
Chlorobenzene	ND		0.50		ug/L			08/02/13 17:15	1
Chloroethane	ND		1.0	-	ug/L			08/02/13 17:15	["] 1
Chloroform	ND		1.0		ug/L			08/02/13 17:15	1
Chloromethane	ND		1.0		ug/L			08/02/13 17:15	1
2-Chlorotoluene	ИD		0.50		ug/L			08/02/13 17:15	1
4-Chlorotoluene	ND		0.50		ug/L			08/02/13 17:15	1
Chlorodibromomethane	ND		0.50		ug/L			08/02/13 17:15	1
1,2-Dichlorobenzene	1.4		0.50		ug/L			08/02/13 17:15	1
1,3-Dichlorobenzene	ND		0.50		ug/L			08/02/13 17:15	1
1,4-Dichlorobenzene	ND		0.50		ug/L			08/02/13 17:15	1
1,3-Dichloropropane	ND	*	1.0		ug/L			08/02/13 17:15	1
1,1-Dichloropropene	ND		0.50		ug/L			08/02/13 17:15	1
1,2-Dibromo-3-Chloropropane	ND		1.0		ug/L			08/02/13 17:15	1
Ethylene Dibromide	ND		0.50		ug/L			08/02/13 17:15	1
Dibromomethane	ND		0.50		ug/L			08/02/13 17:15	1
Dichlorodifluoromethane	ND		0.50		ug/L			08/02/13 17:15	1
1,1-Dichloroethane	ND		0.50		ug/L			08/02/13 17:15	1
1,2-Dichloroethane	ND		0.50		ug/L			08/02/13 17:15	1
1,1-Dichloroethene	ND		0.50		ug/L			08/02/13 17:15	1
cis-1,2-Dichloroethene	0.62		0.50		ug/L			08/02/13 17:15	1
trans-1,2-Dichloroethene	ND		0.50		ug/L			08/02/13 17:15	1

TestAmerica Job ID: 720-51298-1

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Client Sample ID: MW-03 Lab Sample ID: 720-51298-5 Date Collected: 07/30/13 10:05 Matrix: Water

Date Meceived. 01/30/13 11:33								
Analyte	Result	Qualifier	RL	MDL Unit	a	Prepared	Analyzed	Dil Fac
1,2-Dichloropropane	ND	***************************************	0.50	ug/L			08/02/13 17:15	1
cis-1,3-Dichloropropene	ND		0.50	ug/L			08/02/13 17:15	1
trans-1,3-Dichloropropene	ND	•	0.50	ug/L			08/02/13 17:15	. 1
Ethylbenzene	ND		0.50	ug/L			08/02/13 17:15	1
Hexachlorobutadiene	ND		1.0	ug/L			08/02/13 17:15	1
2-Hexanone	, ND		50	ug/L			08/02/13 17:15	1
Isopropylbenzene	ND		0.50	ug/L			08/02/13 17:15	1
4-Isopropyltoluene	ND	•	1.0	ug/L			08/02/13 17:15	1
Methylene Chloride	ND		5.0	ug/L			08/02/13 17:15	1
4-Methyl-2-pentanone (MIBK)	ND		50	ug/L			08/02/13 17:15	1
Naphthalene	ND		1.0	ug/L		-	08/02/13 17:15	1
N-Propylbenzene	ND		1.0	ug/L			08/02/13 17:15	1
Styrene	ND		0.50	ug/L			08/02/13 17:15	1
1,1,1,2-Tetrachloroethane	ND		0.50	ug/L			08/02/13 17:15	1
1,1,2,2-Tetrachloroethane	ND		0.50	ug/L		-	08/02/13 17:15	1
Tetrachloroethene	11		0.50	ug/L			08/02/13 17:15	1
Toluene	ND		0.50	ug/L			08/02/13 17:15	1
1,2,3-Trichlorobenzene	ND		1.0	ug/L			08/02/13 17:15	1
1,2,4-Trichlorobenzene	ND		1.0	ug/L			08/02/13 17:15	1
1,1,1-Trichloroethane	ND		0.50	ug/L			08/02/13 17:15	1
1,1,2-Trichloroethane	ND		0.50	ug/L			08/02/13 17:15	1
Trichloroethene	1.1		0.50	ug/L		-	08/02/13 17:15	1
Trichlorofluoromethane	ND		1.0	ug/L			08/02/13 17:15	1
1,2,3-Trichloropropane	ND		0.50	ug/L			08/02/13 17:15	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50	ug/L			08/02/13 17:15	1
1,2,4-Trimethylbenzene	ND		0.50	ug/L			08/02/13 17:15	1
1,3,5-Trimethylbenzene	ND		0.50	ug/L			08/02/13 17:15	1
Vinyl acetate	ND		10	ug/L			08/02/13 17:15	1
Vinyl chloride	ND		0.50	ug/L			08/02/13 17:15	1
Xylenes, Total	ND		1.0	ug/L			08/02/13 17:15	1
2,2-Dichloropropane	ND		0.50	ug/L			08/02/13 17:15	1
Gasoline Range Organics (GRO) -C5-C12	ND		50	ug/L			08/02/13 17:15	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac

Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	93		67 - 130	_		08/02/13 17:15	
1,2-Dichloroethane-d4 (Surr)	89		75 - 138			08/02/13 17:15	1
Toluene-d8 (Surr)	96		70 - 130			08/02/13 17:15	1

Client Sample ID: MP-04-3 Lab Sample ID: 720-51298-6 Date Collected: 07/30/13 11:15 Matrix: Water

Date Received: 07/30/13 17:53									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND		0.50		ug/L			08/02/13 17:45	1
Acetone	ND		50		ug/L			08/02/13 17:45	1
Benzene	ND		0.50		ug/L			08/02/13 17:45	1
Dichlorobromomethane	ND		0.50		ug/L			08/02/13 17:45	1
Bromobenzene	ND		1.0		ug/L			08/02/13 17:45	1
Chlorobromomethane	ND		1.0		ug/L			08/02/13 17:45	1
Bromoform	ND		1.0		ug/L			08/02/13 17:45	1

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-51298-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Client Sample ID: MP-04-3

Lab Sample ID: 720-51298-6

Matrix: Water

Date Collected: 07/30/13 11:15 Date Received: 07/30/13 17:53

Date Received: 07/30/13 17:53	•							
Analyte		Qualifier	RL	MDL Unit	<u>D</u>	Prepared	Analyzed	Dil Fac
Bromomethane	ND		1.0	ug/L			08/02/13 17:45	1
2-Butanone (MEK)	ND		50	ug/L			08/02/13 17:45	1
n-Butylbenzene	ND		1.0	ug/L			08/02/13 17:45	· 1
sec-Butylbenzene	ND		1.0	ug/L			08/02/13 17:45	1
tert-Butylbenzene	ND		1.0	ug/L			08/02/13 17:45	1
Carbon disulfide	ND		5.0	ug/L			08/02/13 17:45	1
Carbon tetrachloride	ND		0.50	ug/L			08/02/13 17:45	1
Chlorobenzene	ND		0.50	ug/L			08/02/13 17:45	1
Chloroethane	ND		1.0	ug/L			08/02/13 17:45	1
Chloroform	ND		1.0	ug/L			08/02/13 17:45	1
Chloromethane	ND		1.0	ug/L			08/02/13 17:45	. 1
2-Chlorotoluene	ND		0.50	ug/L		•	08/02/13 17:45	1
4-Chlorotoluene	ND		0.50	ug/L			08/02/13 17:45	1
Chlorodibromomethane	ND		0.50	ug/L			08/02/13 17:45	1
1,2-Dichlorobenzene	ND		0.50	ug/L	•		08/02/13 17:45	1
1,3-Dichlorobenzene	ND		0.50	ug/L			08/02/13 17:45	1
1,4-Dichlorobenzene	ND		0.50	ug/L			08/02/13 17:45	1
1,3-Dichloropropane	ND	•	1.0	ug/L			08/02/13 17:45	1
1,1-Dichloropropene	ND		0.50	ug/L			08/02/13 17:45	1
1,2-Dibromo-3-Chloropropane	ND		1.0	ug/L			08/02/13 17:45	1
Ethylene Dibromide	ND		0.50	ug/L			08/02/13 17:45	
Dibromomethane	ND	•	0.50	ug/L			08/02/13 17:45	1
Dichlorodifluoromethane	ND		0.50	ug/L			08/02/13 17:45	1
1,1-Dichloroethane	ND		0.50	ug/L			08/02/13 17:45	1
1,2-Dichloroethane	ND.		0.50	ug/L			08/02/13 17:45	1
1,1-Dichloroethene	ND		0.50	ug/L			08/02/13 17:45	1
cis-1,2-Dichloroethene	ND		0.50	ug/L			08/02/13 17:45	1
trans-1,2-Dichloroethene	ND		0.50	ug/L			08/02/13 17:45	1
1,2-Dichloropropane	ND		0.50	ug/L			08/02/13 17:45	1
cís-1,3-Dichloropropene	ND		0.50	ug/L			08/02/13 17:45	1
trans-1,3-Dichloropropene	ND		0.50				08/02/13 17:45	1
Ethylbenzene	ND		0.50	ug/L			08/02/13 17:45	1
Hexachlorobutadiene	ND		1.0	ug/L			08/02/13 17:45	1
	ND		50	ug/L			08/02/13 17:45	1
2-Hexanone	ND		0.50	ug/L				1
Isopropylbenzene				ug/L			08/02/13 17:45	
4-Isopropyltoluene	ND		1.0	ug/L			08/02/13 17:45	1
Methylene Chloride	ND		5.0	ug/L			08/02/13 17:45	1
4-Methyl-2-pentanone (MIBK)	ND		50	ug/L			08/02/13 17:45	1
Naphthalene	ND		1.0	ug/L			08/02/13 17:45	1
N-Propylbenzene	ND		1.0	ug/L			08/02/13 17:45	1
Styrene	ND		0.50	ug/L			08/02/13 17:45	1
1,1,1,2-Tetrachloroethane	ND		0.50	ug/L			08/02/13 17:45	1
1,1,2,2-Tetrachloroethane	ND		0.50	ug/L 			08/02/13 17:45	1
Tetrachioroethene	ND		0.50	ug/L			08/02/13 17:45	1
Toluene	ND		0.50	ug/L			08/02/13 17:45	1
1,2,3-Trichlorobenzene	ND		1.0	ug/L			08/02/13 17:45	1
1,2,4-Trichlorobenzene	ND		1.0	ug/L			08/02/13 17:45	1
1,1,1-Trichloroethane	ND		0.50	ug/L			08/02/13 17:45	1
1,1,2-Trichloroethane	ND		0.50	ug/L			08/02/13 17:45	1

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-51298-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Client Sample ID: MP-04-3 Date Collected: 07/30/13 11:15 Date Received: 07/30/13 17:53 Lab Sample ID: 720-51298-6

Matrix: Water

Analyte	Result Qualifier	RL	MDL Unit	, D	Prepared	Analyzed	Dil Fac
Trichloroethene	ND	0.50	ug/L			08/02/13 17:45	1
Trichlorofluoromethane	ND	1.0	ug/L			08/02/13 17:45	1
1,2,3-Trichloropropane	ND	0.50	ug/L			08/02/13 17:45	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	0.50	ug/L			08/02/13 17:45	1
1,2,4-Trimethylbenzene	ND	0.50	ug/L			08/02/13 17:45	1
1,3,5-Trimethylbenzene	ND	0.50	ug/L			08/02/13 17:45	1
Vinyl acetate	ND	10	ug/L			08/02/13 17:45	1
Vinyl chloride	ND	0.50	ug/L			08/02/13 17:45	1
Xylenes, Total	ND	1.0	ug/L			08/02/13 17:45	. 1
2,2-Dichloropropane	ND	0.50	ug/L			08/02/13 17:45	1
Gasoline Range Organics (GRO)	ND	50	ug/L			08/02/13 17:45	1

	Surrogate	%Recovery	Qualifier	Limits	F	Prepared	Analyzed	Dil Fac
	4-Bromofluorobenzene	93		67 - 130			08/02/13 17:45	1
-	1,2-Dichloroethane-d4 (Surr)	90		75 - 138			08/02/13 17:45	1
San	Toluene-d8 (Surr)	97		70 - 130			08/02/13 17:45	1

Client Sample ID: MP-04-2 Date Collected: 07/30/13 11:40

Ethylene Dibromide

-C5-C12

Lab Sample ID: 720-51298-7

Matrix: Water

Date Collected. 07/30/10 11.40		-				matrix. Water		
Date Received: 07/30/13 17:53 Analyte	Result Q	ualifier RL	MDL Unit	D	Prepared	Analyzed	Dil Fac	
Methyl tert-butyl ether		0.50	ug/L			08/02/13 18:16	1	
Acetone	ND	50	· ug/L			08/02/13 18:16	1	
Benzene	ND	0.50	ug/L			08/02/13 18:16	1	
Dichlorobromomethane	ND	0.50	ug/L			08/02/13 18:16	1	
Bromobenzene	ND	1.0	ug/L	*		08/02/13 18:16	1	
Chlorobromomethane	ND	1.0	ug/L			08/02/13 18:16	1	
Bromoform	ND	1.0	ug/L			08/02/13 18:16	1	
Bromomethane	ND	1.0	ug/L			08/02/13 18:16	1	
2-Butanone (MEK)	ND	50	ug/L			08/02/13 18:16	1	
n-Butylbenzene	ND	1.0	ug/L			08/02/13 18:16	. 1	
sec-Butylbenzene	ND	1.0	ug/L			08/02/13 18:16	1	
tert-Butylbenzene	ND	1.0	ug/L			08/02/13 18:16	1	
Carbon disulfide	ND	5.0	ug/L			08/02/13 18:16	1	
Carbon tetrachloride	ND	0.50	ug/L			08/02/13 18:16	1	
Chlorobenzene	ND	0.50	ug/L			08/02/13 18:16	1	
Chloroethane	ND	1.0	∪g/ L			08/02/13 18:16	1	
Chloroform	ND	1.0	ug/L			08/02/13 18:16	1	
Chloromethane	ND	1.0	ug/L			08/02/13 18:16	1	
2-Chlorotoluene	ND	0.50	ug/L			08/02/13 18:16	1	
4-Chlorotoluene	ND	0.50	ug/L			08/02/13 18:16	1	
Chlorodibromomethane	ND	0.50	ug/L			08/02/13 18:16	1	
1,2-Dichlorobenzene	ND	0.50	ug/L			08/02/13 18:16	1	
1,3-Dichlorobenzene	ND	0.50	ug/L		•	08/02/13 18:16	1	
1,4-Dichlorobenzene	ND	0.50	ug/L			08/02/13 18:16	1	
1,3-Dichloropropane	ND *	1.0	ug/L			08/02/13 18:16	. 1	
1,1-Dichloropropene	ND	0.50	ug/L			08/02/13 18:16	1	
1,2-Dibromo-3-Chloropropane	ND	1.0	ug/L			08/02/13 18:16	1	

TestAmerica Pleasanton

08/02/13 18:16

0.50

ND

MDL Unit

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-51298-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Result Qualifier

Client Sample ID: MP-04-2

Date Collected: 07/30/13 11:40

Lab Sample ID: 720-51298-7

Analyzed

Prepared

Matrix: Water

Dil Fac

Date Received:	07/30/13	17:53
Analyte		

Analyte	Result Qualifier	RL.	MDL UNIT	n Liebsied	Analyzeu	DIIFAC
Dibromomethane	ND ND	0.50	ug/L		08/02/13 18:16	1
Dichlorodifluoromethane	ND	0.50	ug/L		08/02/13 18:16	1
1,1-Dichloroethane	ND	0.50	ug/L		08/02/13 18:16	1
1,2-Dichloroethane	ND	0.50	ug/L		08/02/13 18:16	1
1,1-Dichloroethene	ND	0.50	ug/L		08/02/13 18:16	1
cis-1,2-Dichloroethene	D	0.50	ug/L	•	08/02/13 18:16	1
trans-1,2-Dichloroethene	ND	0.50	ug/L		08/02/13 18:16	1
1,2-Dichloropropane	ND	0.50	ug/L		08/02/13 18:16	. 1
cis-1,3-Dichloropropene	ND	0.50	ug/L		08/02/13 18:16	1
trans-1,3-Dichloropropene	ND	0.50	ug/L		08/02/13 18:16	1
Ethylbenzene	ND	0.50	ug/L		08/02/13 18:16	1
Hexachlorobutadiene	ND	1.0	ug/L		08/02/13 18:16	1
2-Hexanone	ND	50	ug/L		08/02/13 18:16	1
Isopropylbenzene	ND	0.50	ug/L		08/02/13 18:16	1
4-Isopropyltoluene	ND	1.0	ug/L		08/02/13 18:16	1
Methylene Chloride	ND	5.0	ug/L		08/02/13 18:16	1
4-Methyl-2-pentanone (MIBK)	ND	50	ug/L		08/02/13 18:16	1
Naphthalene	ND	1.0	ug/L		08/02/13 18:16	1
N-Propylbenzene	ND	1.0	ug/L		08/02/13 18:16	1
Styrene	ND	0.50	ug/L		08/02/13 18:16	. 1
1,1,1,2-Tetrachloroethane	ND	0.50	ug/L		08/02/13 18:16	. 1
1,1,2,2-Tetrachloroethane	ND	0.50	ug/L		08/02/13 18:16	1
Tetrachloroethene	ND	0.50	ug/L		08/02/13 18:16	1
Toluene	ND	0.50	ug/L		08/02/13 18:16	1
1,2,3-Trichlorobenzene	ND	1.0	ug/L		08/02/13 18:16	1
1,2,4-Trichlorobenzene	ND	1.0	ug/L		08/02/13 18:16	1
1,1,1-Trichloroethane	ND	0.50	ug/L	•	08/02/13 18:16	1
1,1,2-Trichloroethane	ND	0.50	ug/L		08/02/13 18:16	1
Trichloroethene	0.53	0.50	ug/L		08/02/13 18:16	1
Trichlorofluoromethane	ND	1.0	ug/L		08/02/13 18:16	1
1,2,3-Trichloropropane	ND	0.50	ug/L		08/02/13 18:16	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	0.50	ug/L	•	08/02/13 18:16	1
1,2,4-Trimethylbenzene	ND	0.50	ug/L		08/02/13 18:16	1
1,3,5-Trimethylbenzene	ND	0,50	ug/L		08/02/13 18:16	1
Vinyl acetate	ND	10	ug/L		08/02/13 18:16	1
Vinyl chloride	ND	0.50	ug/L		08/02/13 18:16	1
Xylenes, Total	ND	1.0	ug/L		08/02/13 18:16	1
2,2-Dichloropropane	ND	0.50	ug/L		08/02/13 18:16	1
Gasoline Range Organics (GRO) -C5-C12	ND	50	ug/L		08/02/13 18:16	1
Surrogate	%Recovery Qualifier	Limits		Prepared	Analyzed	Dil Fac

Surrogate	%Recovery	Qualifier Lin	nits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	95	67	- 130		08/02/13 18:16	1
1,2-Dichloroethane-d4 (Surr)	91	75	- 138		08/02/13 18:16	1
Toluene-d8 (Surr)	95	70	- 130		08/02/13 18:16	1

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-51298-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS

Client Sample ID: MW-01 Date Collected: 07/30/13 13:30 Lab Sample ID: 720-51298-8

Matrix: Water

Analyte		Qualifier	RL	MDL Unit		Prepared	Analyzed	Dil Fa
Methyl tert-butyl ether	ND		0.50	ug/L			08/02/13 18:46	
Acetone	ND		50	ug/L			08/02/13 18:46	
Benzene	ND		0.50	ug/L			08/02/13 18:46	
Dichlorobromomethane	ND		0.50	ug/L			08/02/13 18:46	-
Bromobenzene	ND	at .	1.0	ug/L			08/02/13 18:46	
Chlorobromomethane	, ND		1.0	ug/L			08/02/13 18:46	
Bromoform	ND		1.0	ug/L	- 7		08/02/13 18:46	
Bromomethane	ND		1.0	ug/L			08/02/13 18:46	
2-Butanone (MEK)	ND		50	ug/L			08/02/13 18:46	
n-Butylbenzene	ND		1.0	ug/L			08/02/13 18:46	
sec-Butylbenzene	ND		1.0	ug/L			08/02/13 18:46	
lert-Butylbenzene	ND		1.0	ug/L			08/02/13 18:46	
Carbon disulfide	ND		5.0	ug/L		-	08/02/13 18:46	
Carbon tetrachloride	ND		0.50	ug/L			08/02/13 18:46	
Chlorobenzene	ND		0.50	ug/L			08/02/13 18:46	
Chloroethane	ND		1.0	ug/L			08/02/13 18:46	
Chloroform	ND		1.0	ug/L			08/02/13 18:46	
Chloromethane	ND		1.0	ug/L			08/02/13 18:46	
2-Chlorotoluene	ND.		0.50	ug/L			08/02/13 18:46	
4-Chlorotoluene	ND		0.50	ug/L			08/02/13 18:46	
Chlorodibromomethane	ND.		0.50	ug/L			08/02/13 18:46	
1,2-Dichlorobenzene	ND		0.50	ug/L			08/02/13 18:46	٠.
1,3-Dichlorobenzene	ND		0.50	ug/L			08/02/13 18:46	
1,4-Dichlorobenzene	ND		0.50	ug/L			08/02/13 18:46	
1,3-Dichloropropane	ND	*	1.0	ug/L			08/02/13 18:46	
1,1-Dichloropropene	ND		0.50	ug/L			08/02/13 18:46	
1,2-Dibromo-3-Chloropropane	ND		1.0	ug/L			08/02/13 18:46	
Ethylene Dibromide	ND		0.50	ug/L			08/02/13 18:46	
Dibromomethane	ND		0.50	ug/L			08/02/13 18:46	
Dichlorodifluoromethane	ND		0.50	ug/L			08/02/13 18:46	
1.1-Dichloroethane	ND		0.50	ug/L			08/02/13 18:46	
1,1-Dichloroethane	ND		0.50	ug/L			08/02/13 18:46	
·	ND		0.50	_			08/02/13 18:46	
1,1-Dichloroethene	ND		0.50	ug/L			08/02/13 18:46	
cis-1,2-Dichloroethene	ND		0.50	ug/L			08/02/13 18:46	
trans-1,2-Dichloroethene			0.50	ug/L				
1,2-Dichloropropane	ND			ug/L			08/02/13 18:46	
cis-1,3-Dichloropropene	ND		0.50	ug/L			08/02/13 18:46	
trans-1,3-Dichloropropene	ND		0.50	ug/L			08/02/13 18:46	
Ethylbenzene	ND		0.50	ug/L			08/02/13 18:46	
Hexachlorobutadiene	ND		1.0	ug/L			08/02/13 18:46	
2-Hexanone	ND		50	ug/L			08/02/13 18:46	
sopropylbenzene	ND		0.50	ug/L			08/02/13 18:46	
4-isopropyltoluene	ND		1.0	ug/L			08/02/13 18:46	
Methylene Chloride	ND		5.0	ug/L			08/02/13 18:46	•
4-Methyl-2-pentanone (MIBK)	ND		50	ug/L			08/02/13 18:46	
Naphthalene	ND		1.0	ug/L			08/02/13 18:46	
N-Propylbenzene	ND		1.0	ug/L			08/02/13 18:46	•
Styrene	ND		0.50	ug/L			08/02/13 18:46	•

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-51298-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Client Sample ID: MW-01	Lab Sample ID: 720-51298-8
Date Collected: 07/30/13 13:30	Matrix: Water
Date Received: 07/30/13 17:53	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,2,2-Tetrachloroethane	ND	***************************************	0.50	***************************************	ug/L			08/02/13 18:46	1
Tetrachloroethene	160		2.5		ug/L			08/06/13 13:01	5
Toluene	ND		0.50		ug/L			08/02/13 18:46	. 1
1,2,3-Trichlorobenzene	ND		1.0		ug/L			08/02/13 18:46	1
1,2,4-Trichlorobenzene	ND		1.0		ug/L			08/02/13 18:46	1
1,1,1-Trichloroethane	ND		0.50		ug/L			08/02/13 18:46	. 1
1,1,2-Trichloroethane	ND		0.50		ug/L			08/02/13 18:46	1
Trichloroethene	1.5		0.50		ug/L			08/02/13 18:46	1
Trichlorofluoromethane	ND		1.0		ug/L			08/02/13 18:46	1
1,2,3-Trichloropropane	ND.		0.50		ug/L			08/02/13 18:46	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50		ug/L			08/02/13 18:46	1
1,2,4-Trimethylbenzene	ND		0.50		ug/L			08/02/13 18:46	1
1,3,5-Trimethylbenzene	ND		0.50		ug/L			08/02/13 18:46	1
Vinyl acetate	ND		10		ug/L			08/02/13 18:46	1
Vinyl chloride	ND		0.50		ug/L			08/02/13 18:46	1
Xylenes, Total	ND		1.0		ug/L			08/02/13 18:46	1
2,2-Dichloropropane	ND		0.50		ug/L			08/02/13 18:46	1
Gasoline Range Organics (GRO) -C5-C12	120	R	50		ug/L			08/02/13 18:46	1

Surrogate	%Recovery Qualifier	Limits	Prepared Analyzed	Dil Fac
4-Bromofluorobenzene	93	67 - 130	08/02/13 18	46 1
4-Bromofluorobenzene	99	67 - 130	08/06/13 13	01 5
1,2-Dichloroethane-d4 (Surr)	91	75 - 138	08/02/13 18	46 1
1,2-Dichloroethane-d4 (Surr)	87	75 - 138	08/06/13 13	01 5
Toluene-dB (Surr)	93	70 ₋ 130	08/02/13 18	46 1
Toluene-d8 (Surr)	96	70 - 130	08/06/13 13	01 5

Client Sample ID: MW-100 Lab Sample ID: 720-51298-9
Date Collected: 07/30/13 13:50 Matrix: Water

Date Received: 07/30/13 17:53 Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac Analyte Methyl tert-butyl ether ND 0.50 ug/L 08/02/13 19:17 ND 50 ug/L 08/02/13 19:17 Acetone Benzene ND 0.50 ug/L 08/02/13 19:17 ND Dichlorobromomethane 0.50 ug/L 08/02/13 19:17

	Bromobenzene	ND	1.0	ug/L	08/02/13 19:17	1
	Chlorobromomethane	ND	1.0	. ug/L	08/02/13 19:17	1
	Bromoform	ND	1.0	ug/L	08/02/13 19:17	1
-	Bromomethane	ND	1.0	ug/L	08/02/13 19:17	1
Townson.	2-Butanone (MEK)	ND	50	ug/L	08/02/13 19:17	1
CONTRACTOR DESCRIPTION OF THE PERSON OF THE	n-Butylbenzene	ND	1.0	ug/L	08/02/13 19:17	1
THE PERSON NAMED IN	sec-Butylbenzene	ND	1.0	ug/L	08/02/13 19:17	1
NAME AND ADDRESS OF	tert-Butylbenzene	ND	1.0	ug/L	08/02/13 19:17	1
THE PARTY OF THE P	Carbon disulfide	ND	5.0	ug/L	08/02/13 19:17	1
**********	Carbon tetrachloride	ND	0.50	ug/L	08/02/13.19:17	1
	Chlorobenzene	ND	0.50	ug/L	08/02/13 19:17	1
Market Market	Chloroethane	ND	1.0	ug/L	08/02/13 19:17	1
	Chloroform	ND	1.0	ug/L.	08/02/13 19:17	1
	Chloromethane	ND	1.0	· ug/L	08/02/13 19:17	1

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-51298-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Client Sample ID: MW-100 Date Collected: 07/30/13 13:50 Lab Sample ID: 720-51298-9

Matrix: Water

Analyte				Unit	<u>D</u> .	Prepared	Analyzed	Dil Fac
2-Chlorotoluene	ND	0.	50	ug/L			08/02/13 19:17	1
4-Chlorotoluene	ND	0.	50	ug/L			08/02/13 19:17	1
Chlorodibromomethane	ND	0.	50	ug/L			08/02/13 19:17	1
1,2-Dichlorobenzene	ND	0.	50	ug/L			08/02/13 19:17	1
1,3-Dichlorobenzene	ND	0.	50	ug/L			08/02/13 19:17	1
1,4-Dichlorobenzene	ND	0.	50	ug/L			08/02/13 19:17	1
1,3-Dichloropropane	ND	*	.0	ug/L			08/02/13 19:17	1
1,1-Dichioropropene	ND	0.	50	ug/L			08/02/13 19:17	1
1,2-Dibromo-3-Chloropropane	ND	•	.0	ug/L			08/02/13 19:17	1
Ethylene Dibromide	ND	0.	50	ug/L			08/02/13 19:17	1
Dibromomethane	ND	0.	50	ug/L			08/02/13 19:17	1
Dichlorodifluoromethane	ND	0.	50	ug/L			08/02/13 19:17	1
1,1-Dichloroethane	ND	0.	50	ug/L			08/02/13 19:17	1
1,2-Dichloroethane	ND	0.	50	ug/L			08/02/13 19:17	1
1,1-Dichloroethene	ND	Q,		ug/L			08/02/13 19:17	1
cis-1.2-Dichloroethene	ND	0.		ug/L			08/02/13 19:17	1
trans-1,2-Dichloroethene	ND	0.		ug/L			08/02/13 19:17	1
1,2-Dichloropropane	ND.	O.		ug/L			08/02/13 19:17	1
cis-1,3-Dichloropropene	ND	Q.		ug/L			08/02/13 19:17	. 1
trans-1,3-Dichloropropene	ND	0.		ug/L			08/02/13 19:17	. 1
Ethylbenzene	ND	0.		ug/L			08/02/13 19:17	1
Hexachlorobutadiene	ND		.0	ug/L			08/02/13 19:17	1
2-Hexanone	ND		50	ug/L			08/02/13 19:17	1
Isopropyibenzene	ND	0.		ug/L			08/02/13 19:17	1
4-Isopropyltoluene	ND		.0	ug/L		-	08/02/13 19:17	_ 1
Methylene Chloride	, ND		.0	ug/L			08/02/13 19:17	1
4-Methyl-2-pentanone (MIBK)	, ND		50	ug/L			08/02/13 19:17	1
Naphthalene	ND		.0				08/02/13 19:17	1
				ug/L				
N-Propylbenzene	ND ND	0.	.0	ug/L			08/02/13 19:17	1
Styrene	ND	0.		ug/L			08/02/13 19:17	1
1,1,1,2-Tetrachloroethane	ND			ug/L			08/02/13 19:17	· 1
1,1,2,2-Tetrachloroethane		0.		ug/L			08/02/13 19:17	1
Tetrachloroethene	210		.5	ug/L			08/06/13 13:28	5
Toluene	ND	0.		ug/L			08/02/13 19:17	1
1,2,3-Trichlorobenzene	ND		.0	ug/L			08/02/13 19:17	1
1,2,4-Trichlorobenzene	ND		.0	ug/L			08/02/13 19:17	1
1,1,1-Trichloroethane	ND	0.		ug/L			08/02/13 19:17	1
1,1,2-Trichloroethane	ND	0.		ug/L			08/02/13 19:17	1
Trichloroethene	1.6	0.		ug/L			08/02/13 19:17	. 1
Trichlorofluoromethane	ND		.0	ug/L			08/02/13 19:17	1
1,2,3-Trichloropropane	ND	0.		ug/L			08/02/13 19:17	1
1,1,2-Trichloro-1,2,2-triffuoroethane	ND	0.		ug/L			08/02/13 19:17	1
1,2,4-Trimethylbenzene	ND	0.		ug/L			08/02/13 19:17	1
1,3,5-Trimethylbenzene	ND	0.		ug/L			08/02/13 19:17	1
Vinyl acetate	ND		10	ug/L			08/02/13 19:17	1
Vinyl chloride	ND	O.	50	ug/L			08/02/13 19:17	1
Xylenes, Total	. ND	1	.D	ug/L			08/02/13 19:17	1
2,2-Dichloropropane	ND	0.	50	ug/L			08/02/13 19:17	1
Gasoline Range Organics (GRO)	140	2	50	ug/L		•	08/02/13 19:17	1

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-51298-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Surrogate	%Recovery	Qualifier	Limits	Prepared	i Analyzed	Dil Fac
4-Bromofluorobenzene	93		67 - 130		08/02/13 19:17	
4-Bromofluorobenzene	97		67 - 130		08/06/13 13:28	5
1,2-Dichloroethane-d4 (Surr)	89		75 ₋ 138		08/02/13 19:17	1
1,2-Dichloroethane-d4 (Surr)	87		75 - 138		08/06/13 13:28	5
Toluene-d8 (Surr)	90	-	70 - 130	,	08/02/13 19:17	1
Toluene-d8 (Surr)	96		70 - 130		08/06/13 13:28	5

Client Sample ID: MP-02-2

Date Collected: 07/30/13 16:15

Lab Sample ID: 720-51298-10

Matrix: Water

Analyse	Date Received: 07/30/13 17:53							
Acetone	Analyte	Result Qu		MDL Unit	D	Prepared	Analyzed	Dil Fac
Benzene	Methyl tert-butyl ether	ND	0.50	ug/L			08/02/13 19:48	1
Dichlorobromomethane ND 0.50 Ug/L 08/02/13 19:48 1	Acetone	ND	50	ug/L			08/02/13 19:48	1
Bromobenzeme	Benzene	ND	0.50	ug/L			08/02/13 19:48	1
Chiorobromomentane	Dichlorobromomethane	ND	0.50	ug/L			08/02/13 19:48	1
Bromsferm	Bromobenzene	ND	1.0	ug/L			08/02/13 19:48	[*] 1
Bromomethane	Chlorobromomethane	ND	1.0	ug/L			08/02/13 19:48	1
2-Butanone (MEK) ND 50 ug/L 08/02/13 19:48 1 n-Butylbenzene ND 1.0 ug/L 08/02/13 19:48 1 ter-Butylbenzene ND 5.0 ug/L 08/02/13 19:48 1 Carbon disulfide ND 5.0 ug/L 08/02/13 19:48 1 Carbon disulfide ND 0.50 ug/L 08/02/13 19:48 1 Chlorobetzene ND 0.50 ug/L 08/02/13 19:48 1 Chlorobetzene ND 0.50 ug/L 08/02/13 19:48 1 Chlorobethane ND 1.0 ug/L 08/02/13 19:48 1 Chlorobethane ND 1.0 ug/L 08/02/13 19:48 1 Chlorobethane ND 1.0 ug/L 08/02/13 19:48 1 Chlorotoluene ND 0.50 ug/L 08/02/13 19:48 1 C-Chlorotoluene ND 0.50 ug/L 08/02/13 19:48 1 4-Chlorotoluene ND 0.50 ug/L 08/02/13 19:48 1 4-Dichlorobenzene ND 0.50 ug/L 08/02/13 19:48 1 4-Dichlorobene ND 0.50 ug/L 08/02/13 19:48 1 4-Dichloropene ND 0.50 ug/L 08/02/13 19:48 1 4-Dichlorobene ND 0.50 ug/L	Bromoform	ND	1.0	ug/L			08/02/13 19:48	1
n-Butylbenzene ND 1.0 ug/L 08/02/13 19:48 1 see-Butylbenzene ND 1.0 ug/L 08/02/13 19:48 1 Carbon disulfide ND 5.0 ug/L 08/02/13 19:48 1 Carbon disulfide ND 0.50 ug/L 08/02/13 19:48 1 Carbon letrachloride ND 0.50 ug/L 08/02/13 19:48 1 Carbon letrachloride ND 0.50 ug/L 08/02/13 19:48 1 Chlorochane ND 0.50 ug/L 08/02/13 19:48 1 Chlorochane ND 1.0 ug/L 08/02/13 19:48 1 2-Chlorotoluene ND 1.0 ug/L 08/02/13 19:48 1 2-Chlorotoluene ND 0.50 ug/L 08/02/13 19:48 1 2-Chlorotoluene ND 0.50 ug/L 08/02/13 19:48 1 1,2-Dichlorobenzene ND 0.50 ug/L 08/02/13 19:48 1 1,2-Dichlorobenzene ND 0.50 ug/L 08/02/13 19:48 1 1,3-Dichlorobenzene ND 0.50 ug/L 08/02/13 19:48 1 1,3-Dichloropenzene ND 0.50 ug/L 08/02/13 19:48 1 1,1-Dichloropenzene ND 0.50 ug/L 08/02/13 19:48 1 1,1-Dichlorochene ND 0.50 ug/L 08/02/13 19	Bromomethane	ND	1.0	ug/L			08/02/13 19:48	1
sec-Butylbenzene ND 1.0 ug/L 08/02/13 19:48 1 Let-Butylbenzene ND 1.0 ug/L 08/02/13 19:48 1 Carbon disulfide ND 5.0 ug/L 08/02/13 19:48 1 Chlorobenzene ND 0.50 ug/L 08/02/13 19:48 1 Chlorobenzene ND 1.0 ug/L 08/02/13 19:48 1 Chlorotelhane ND 1.0 ug/L 08/02/13 19:48 1 Chlorotelhane ND 1.0 ug/L 08/02/13 19:48 1 Chlorotoluene ND 1.0 ug/L 08/02/13 19:48 1 4-Chlorotoluene ND 0.50 ug/L 08/02/13 19:48 1 4-Chlorotoluene ND 0.50 ug/L 08/02/13 19:48 1 1.2-Dichlorobenzene ND 0.50 ug/L 08/02/13 19:48 1 1.2-Dichlorobenzene ND 0.50 ug/L 08/02/13 19:48 1 1.2-Dichlorobenzene	2-Butanone (MEK)	ND	50	ug/L			08/02/13 19:48	1
Lert-Bulylbenzene	n-Butylbenzene	ND	1.0	ug/L			08/02/13 19:48	1
Carbon disulfide ND 5.0 ug/L 08/02/13 1948 1 Carbon letrachloride ND 0.50 ug/L 08/02/13 1948 1 Chlorobenzene ND 0.50 ug/L 08/02/13 1948 1 Chloroform ND 1.0 ug/L 08/02/13 1948 1 Chloroform ND 1.0 ug/L 08/02/13 1948 1 Chlorofoluene ND 0.50 ug/L 08/02/13 1948 1 4-Chlorotoluene ND 0.50 ug/L 08/02/13 1948 1 4-Chlorotolizmomorethane ND 0.50 ug/L 08/02/13 1948 1 4-Chlorotolizmomorethane ND 0.50 ug/L 08/02/13 1948 1 1,2-Dichlorobenzzene ND 0.50 ug/L 08/02/13 1948 1 1,3-Dichlorobenzzene ND 0.50 ug/L 08/02/13 1948 1 1,4-Dichlorobenzzene ND 0.50 ug/L 08/02/13 1948 1 1,5-Dichl	sec-Butylbenzene	ND	1.0	. ug/L			08/02/13 19:48	1
Carbon tetrachloride ND 0.50 ug/L 08/02/13 19:48 1 Chlorobenzene ND 0.50 ug/L 08/02/13 19:48 1 Chlorobelnane ND 1.0 ug/L 08/02/13 19:48 1 Chloroform ND 1.0 ug/L 08/02/13 19:48 1 Chlorobluene ND 0.50 ug/L 08/02/13 19:48 1 4-Chlorobluene ND 0.50 ug/L 08/02/13 19:48 1 4-Chlorobluene ND 0.50 ug/L 08/02/13 19:48 1 4-Chloroblorene ND 0.50 ug/L 08/02/13 19:48 1 1,2-Dichlorobenzene ND 0.50 ug/L 08/02/13 19:48 1 1,2-Dichlorobenzene ND 0.50 ug/L 08/02/13 19:48 1 1,3-Dichloropropeane ND 0.50 ug/L 08/02/13 19:48 1 1,3-Dichloropropeane ND 0.50 ug/L 08/02/13 19:48 1 1,1-Dichloro	tert-Butylbenzene	ND	1.0	ug/L			08/02/13 19:48	1
Chlorobenzene	Carbon disulfide	ND	5.0	ug/L			08/02/13 19:48	1
Chloroethane	Carbon tetrachloride	ND	0,50	ug/L			08/02/13 19:48	1
Chloraform	Chlorobenzene	ND	0.50	ug/L			08/02/13 19:48	1
Chloromethane	Chloroethane	ND	1.0	ug/L			08/02/13 19:48	1
2-Chlorotoluene ND 0.50 ug/L 08/02/13 19:48 1 4-Chlorotoluene ND 0.50 ug/L 08/02/13 19:48 1 Chlorodibromomethane ND 0.50 ug/L 08/02/13 19:48 1 1,2-Dichlorobenzene ND 0.50 ug/L 08/02/13 19:48 1 1,3-Dichlorobenzene ND 0.50 ug/L 08/02/13 19:48 1 1,4-Dichloropropene ND 0.50 ug/L 08/02/13 19:48 1 1,3-Dichloropropene ND 0.50 ug/L 08/02/13 19:48 1 1,1-Dichloropropene ND 0.50 ug/L 08/02/13 19:48 1 1,2-Dibromo-3-Chloropropane ND 0.50 ug/L 08/02/13 19:48 1 1,2-Dichropropane ND 0.50 ug/L 08/02/13 19:48 1 Dibromomethane ND 0.50 ug/L 08/02/13 19:48 1 1,2-Dichloroethane ND 0.50 ug/L 08/02/13 19:48 1	Chloroform	ND	1.0	ug/L			08/02/13 19:48	1
4-Chlorotoluene ND 0.50 ug/L 08/02/13 19:48 1 Chlorodibromomethane ND 0.50 ug/L 08/02/13 19:48 1 1,2-Dichlorobenzene ND 0.50 ug/L 08/02/13 19:48 1 1,4-Dichlorobenzene ND 0.50 ug/L 08/02/13 19:48 1 1,4-Dichlorobenzene ND 0.50 ug/L 08/02/13 19:48 1 1,3-Dichloropropane ND 1.0 ug/L 08/02/13 19:48 1 1,1-Dichloropropane ND 0.50 ug/L 08/02/13 19:48 1 1,2-Dibromo-3-Chloropropane ND 1.0 ug/L 08/02/13 19:48 1 1,2-Dibromo-3-Chloropropane ND 0.50 ug/L 08/02/13 19:48 1 1,2-Dichloropropane ND 0.50 ug/L 08/02/13 19:48 1 Dibromo-3-Chloropropane ND 0.50 ug/L 08/02/13 19:48 1 Elhylene Dibromide ND 0.50 ug/L 08/02/13 19:48	Chloromethane	ND	1.0	ug/L			08/02/13 19:48	1
Chlorodibromomethane ND 0.50 ug/L 08/02/13 19:48 1 1,2-Dichlorobenzene ND 0.50 ug/L 08/02/13 19:48 1 1,3-Dichlorobenzene ND 0.50 ug/L 08/02/13 19:48 1 1,4-Dichlorobenzene ND 0.50 ug/L 08/02/13 19:48 1 1,3-Dichloropropane ND 1.0 ug/L 08/02/13 19:48 1 1,1-Dichloropropane ND 0.50 ug/L 08/02/13 19:48 1 1,2-Dibromo-3-Chloropropane ND 0.50 ug/L 08/02/13 19:48 1 1,2-Dibromo-3-Chloropropane ND 0.50 ug/L 08/02/13 19:48 1 1,2-Dichloropropane ND 0.50 ug/L 08/02/13 19:48 1 Dibriomomethane ND 0.50 ug/L 08/02/13 19:48 1 Dichlorodifluoromethane ND 0.50 ug/L 08/02/13 19:48 1 1,2-Dichloroethane ND 0.50 ug/L 08/02/13 19:48	2-Chlorotoluene	ND	0.50	ug/L			08/02/13 19:48	1
1,2-Dichlorobenzene ND 0.50 ug/L 08/02/13 19:48 1 1,3-Dichlorobenzene ND 0.50 ug/L 08/02/13 19:48 1 1,4-Dichlorobenzene ND 0.50 ug/L 08/02/13 19:48 1 1,3-Dichloropropane ND 1.0 ug/L 08/02/13 19:48 1 1,1-Dichloropropane ND 0.50 ug/L 08/02/13 19:48 1 1,2-Dibromo-3-Chloropropane ND 0.50 ug/L 08/02/13 19:48 1 1,2-Dibromo-3-Chloropropane ND 0.50 ug/L 08/02/13 19:48 1 1,2-Dibromo-3-Chloropropane ND 0.50 ug/L 08/02/13 19:48 1 Ethylene Dibromoide ND 0.50 ug/L 08/02/13 19:48 1 Dibromoethane ND 0.50 ug/L 08/02/13 19:48 1 1,1-Dichloroethane ND 0.50 ug/L 08/02/13 19:48 1 1,2-Dichloroethane ND 0.50 ug/L 08/02/13 19:48	4-Chlorotoluene	ND	0.50	ug/L			08/02/13 19:48	. 1
1,3-Dichlorobenzene ND 0.50 ug/L 08/02/13 19:48 1 1,4-Dichlorobenzene ND 0.50 ug/L 08/02/13 19:48 1 1,3-Dichloropropane ND 1.0 ug/L 08/02/13 19:48 1 1,1-Dichloropropane ND 0.50 ug/L 08/02/13 19:48 1 1,2-Dibromo-3-Chloropropane ND 1.0 ug/L 08/02/13 19:48 1 Ethylene Dibromide ND 0.50 ug/L 08/02/13 19:48 1 Dibromomethane ND 0.50 ug/L 08/02/13 19:48 1 Dichlorodifluoromethane ND 0.50 ug/L 08/02/13 19:48 1 1,1-Dichloroethane ND 0.50 ug/L 08/02/13 19:48 1 1,2-Dichloroethane ND 0.50 ug/L 08/02/13 19:48 1 1,1-Dichloroethene ND 0.50 ug/L 08/02/13 19:48 1 1,2-Dichloroethene ND 0.50 ug/L 08/02/13 19:48 1	Chlorodibromomethane	ND	0,50	ug/L			08/02/13 19:48	1
1,4-Dichlorobenzene ND 0.50 ug/L 08/02/13 19:48 1 1,3-Dichloropropane ND 1.0 ug/L 08/02/13 19:48 1 1,1-Dichloropropane ND 0.50 ug/L 08/02/13 19:48 1 1,2-Dibromo-3-Chloropropane ND 1.0 ug/L 08/02/13 19:48 1 Ethylene Dibromide ND 0.50 ug/L 08/02/13 19:48 1 Dibromomethane ND 0.50 ug/L 08/02/13 19:48 1 Dichlorodifluoromethane ND 0.50 ug/L 08/02/13 19:48 1 1,1-Dichloroethane ND 0.50 ug/L 08/02/13 19:48 1 1,2-Dichloroethane ND 0.50 ug/L 08/02/13 19:48 1 1,1-Dichloroethene ND 0.50 ug/L 08/02/13 19:48 1 1,1-Dichloroethene ND 0.50 ug/L 08/02/13 19:48 1 1,2-Dichloroethene ND 0.50 ug/L 08/02/13 19:48 1	1,2-Dichlorobenzene	ND	0.50	ug/L			08/02/13 19:48	1
1,3-Dichloropropane ND 1.0 ug/L 08/02/13 19:48 1 1,1-Dichloropropene ND 0.50 ug/L 08/02/13 19:48 1 1,2-Dibromo-3-Chloropropane ND 1.0 ug/L 08/02/13 19:48 1 Ethylene Dibromide ND 0.50 ug/L 08/02/13 19:48 1 Dibromomethane ND 0.50 ug/L 08/02/13 19:48 1 Dichlorodifluoromethane ND 0.50 ug/L 08/02/13 19:48 1 1,1-Dichloroethane ND 0.50 ug/L 08/02/13 19:48 1 1,2-Dichloroethane ND 0.50 ug/L 08/02/13 19:48 1 1,1-Dichloroethene ND 0.50 ug/L 08/02/13 19:48 1 1,1-Dichloroethene ND 0.50 ug/L 08/02/13 19:48 1 trans-1,2-Dichloroethene ND 0.50 ug/L 08/02/13 19:48 1 1,2-Dichloropropene ND 0.50 ug/L 08/02/13 19:48 1 <td>1,3-Dichlorobenzene</td> <td>ND</td> <td>0.50</td> <td>ug/L</td> <td></td> <td></td> <td>08/02/13 19:48</td> <td>1</td>	1,3-Dichlorobenzene	ND	0.50	ug/L			08/02/13 19:48	1
1,1-Dichloropropene ND 0.50 ug/L 08/02/13 19:48 1 1,2-Dibromo-3-Chloropropane ND 1.0 ug/L 08/02/13 19:48 1 Ethylene Dibromide ND 0.50 ug/L 08/02/13 19:48 1 Dibromomethane ND 0.50 ug/L 08/02/13 19:48 1 Dichlorodifluoromethane ND 0.50 ug/L 08/02/13 19:48 1 1,1-Dichloroethane ND 0.50 ug/L 08/02/13 19:48 1 1,2-Dichloroethane ND 0.50 ug/L 08/02/13 19:48 1 1,1-Dichloroethane ND 0.50 ug/L 08/02/13 19:48 1 1,1-Dichloroethane ND 0.50 ug/L 08/02/13 19:48 1 1,1-Dichloroethane ND 0.50 ug/L 08/02/13 19:48 1 cis-1,2-Dichloroethane ND 0.50 ug/L 08/02/13 19:48 1 trans-1,2-Dichloroptopane ND 0.50 ug/L 08/02/13 19:48	1,4-Dichlorobenzene	ND	0.50	ug/L			08/02/13 19:48	1
1,2-Dibromo-3-Chloropropane ND 1.0 ug/L 08/02/13 19:48 1 Ethylene Dibromide ND 0.50 ug/L 08/02/13 19:48 1 Dibromomethane ND 0.50 ug/L 08/02/13 19:48 1 Dichlorodifluoromethane ND 0.50 ug/L 08/02/13 19:48 1 1,1-Dichloroethane ND 0.50 ug/L 08/02/13 19:48 1 1,2-Dichloroethane ND 0.50 ug/L 08/02/13 19:48 1 1,1-Dichloroethene ND 0.50 ug/L 08/02/13 19:48 1 1,2-Dichloroethene ND 0.50 ug/L 08/02/13 19:48 1 trans-1,2-Dichloroethene ND 0.50 ug/L 08/02/13 19:48 1 1,2-Dichloropropane ND 0.50 ug/L 08/02/13 19:48 1 cis-1,3-Dichloropropene ND 0.50 ug/L 08/02/13 19:48 1 cis-1,3-Dichloropropene ND 0.50 ug/L 08/02/13 19:48 1 Ethylbenzene ND 0.50 ug/L 08/02/1	1,3-Dichloropropane	ND *	1.0	ug/L			08/02/13 19:48	1
Ethylene Dibromide ND 0.50 ug/L 08/02/13 19:48 1 Dibromomethane ND 0.50 ug/L 08/02/13 19:48 1 Dichlorodifluoromethane ND 0.50 ug/L 08/02/13 19:48 1 1,1-Dichloroethane ND 0.50 ug/L 08/02/13 19:48 1 1,2-Dichloroethane ND 0.50 ug/L 08/02/13 19:48 1 1,1-Dichloroethane ND 0.50 ug/L 08/02/13 19:48 1 cis-1,2-Dichloroethane ND 0.50 ug/L 08/02/13 19:48 1 cis-1,2-Dichloroethane ND 0.50 ug/L 08/02/13 19:48 1 trans-1,2-Dichloroethane ND 0.50 ug/L 08/02/13 19:48 1 1,2-Dichloroptopane ND 0.50 ug/L 08/02/13 19:48 1 1,2-Dichloroptopane ND 0.50 ug/L 08/02/13 19:48 1 cis-1,3-Dichloroptopane ND 0.50 ug/L 08/02/13 19:48 <td< td=""><td>1,1-Dichloropropene</td><td>ND</td><td>0.50</td><td>ug/L</td><td></td><td></td><td>08/02/13 19:48</td><td>. 1</td></td<>	1,1-Dichloropropene	ND	0.50	ug/L			08/02/13 19:48	. 1
Dibromomethane ND 0.50 ug/L 08/02/13 19:48 1 Dichlorodifluoromethane ND 0.50 ug/L 08/02/13 19:48 1 1,1-Dichloroethane ND 0.50 ug/L 08/02/13 19:48 1 1,2-Dichloroethane ND 0.50 ug/L 08/02/13 19:48 1 1,1-Dichloroethane ND 0.50 ug/L 08/02/13 19:48 1 cis-1,2-Dichloroethane ND 0.50 ug/L 08/02/13 19:48 1 trans-1,2-Dichloroethane ND 0.50 ug/L 08/02/13 19:48 1 trans-1,2-Dichloroethane ND 0.50 ug/L 08/02/13 19:48 1 1,2-Dichloropropane ND 0.50 ug/L 08/02/13 19:48 1 1,2-Dichloropropane ND 0.50 ug/L 08/02/13 19:48 1 cis-1,3-Dichloropropane ND 0.50 ug/L 08/02/13 19:48 1 trans-1,3-Dichloropropane ND 0.50 ug/L 08/02/13 19:48	1,2-Dibromo-3-Chloropropane	, ND	1.0	ug/L			08/02/13 19:48	1
Dichlorodifluoromethane ND 0.50 ug/L 08/02/13 19:48 1 1,1-Dichloroethane ND 0.50 ug/L 08/02/13 19:48 1 1,2-Dichloroethane ND 0.50 ug/L 08/02/13 19:48 1 1,1-Dichloroethene ND 0.50 ug/L 08/02/13 19:48 1 cis-1,2-Dichloroethene ND 0.50 ug/L 08/02/13 19:48 1 1,2-Dichloroptopane ND 0.50 ug/L 08/02/13 19:48 1 1,2-Dichloropropene ND 0.50 ug/L 08/02/13 19:48 1 cis-1,3-Dichloropropene ND 0.50 ug/L 08/02/13 19:48 1 trans-1,3-Dichloropropene ND 0.50 ug/L 08/02/13 19:48 1 Ethylbenzene ND 0.50 ug/L 08/02/13 19:48 1 Hexachlorobutadiene ND 1.0 ug/L 08/02/13 19:48 1	Ethylene Dibromide	ND	0.50	ug/L			08/02/13 19:48	1
1,1-Dichloroethane ND 0.50 ug/L 08/02/13 19:48 1 1,2-Dichloroethane ND 0.50 ug/L 08/02/13 19:48 1 1,1-Dichloroethene ND 0.50 ug/L 08/02/13 19:48 1 cis-1,2-Dichloroethene ND 0.50 ug/L 08/02/13 19:48 1 trans-1,2-Dichloropthene ND 0.50 ug/L 08/02/13 19:48 1 1,2-Dichloroptopane ND 0.50 ug/L 08/02/13 19:48 1 cis-1,3-Dichloroptopene ND 0.50 ug/L 08/02/13 19:48 1 trans-1,3-Dichloroptopene ND 0.50 ug/L 08/02/13 19:48 1 Ethylbenzene ND 0.50 ug/L 08/02/13 19:48 1 Hexachlorobutadiene ND 1.0 ug/L 08/02/13 19:48 1	Dibromomethane	ND	0.50	ug/L			08/02/13 19:48	1
1,2-Dichloroethane ND 0.50 ug/L 08/02/13 19:48 1 1,1-Dichloroethene ND 0.50 ug/L 08/02/13 19:48 1 cis-1,2-Dichloroethene ND 0.50 ug/L 08/02/13 19:48 1 trans-1,2-Dichloropropane ND 0.50 ug/L 08/02/13 19:48 1 1,2-Dichloropropane ND 0.50 ug/L 08/02/13 19:48 1 cis-1,3-Dichloropropene ND 0.50 ug/L 08/02/13 19:48 1 trans-1,3-Dichloropropene ND 0.50 ug/L 08/02/13 19:48 1 Ethylbenzene ND 0.50 ug/L 08/02/13 19:48 1 Hexachlorobutadiene ND 1.0 ug/L 08/02/13 19:48 1	Dichlorodifluoromethane	ND	0.50	ug/L			08/02/13 19:48	1
1,1-Dichloroethene ND 0.50 ug/L 08/02/13 19:48 1 cis-1,2-Dichloroethene ND 0.50 ug/L 08/02/13 19:48 1 trans-1,2-Dichloroethene ND 0.50 ug/L 08/02/13 19:48 1 1,2-Dichloropropane ND 0.50 ug/L 08/02/13 19:48 1 cis-1,3-Dichloropropene ND 0.50 ug/L 08/02/13 19:48 1 trans-1,3-Dichloropropene ND 0.50 ug/L 08/02/13 19:48 1 Ethylbenzene ND 0.50 ug/L 08/02/13 19:48 1 Hexachlorobutadiene ND 1.0 ug/L 08/02/13 19:48 1	1,1-Dichloroethane	ND	. 0.50	ug/L			08/02/13 19:48	1
cis-1,2-Dichloroethene ND 0.50 ug/L 08/02/13 19:48 1 trans-1,2-Dichloroethene ND 0.50 ug/L 08/02/13 19:48 1 1,2-Dichloropropane ND 0.50 ug/L 08/02/13 19:48 1 cis-1,3-Dichloropropene ND 0.50 ug/L 08/02/13 19:48 1 trans-1,3-Dichloropropene ND 0.50 ug/L 08/02/13 19:48 1 Ethylbenzene ND 0.50 ug/L 08/02/13 19:48 1 Hexachlorobutadiene ND 1.0 ug/L 08/02/13 19:48 1	1,2-Dichloroethane	· ND	0.50	ug/L			08/02/13 19:48	1
trans-1,2-Dichloroethene ND 0.50 ug/L 08/02/13 19:48 1 1,2-Dichloropropane ND 0.50 ug/L 08/02/13 19:48 1 cis-1,3-Dichloropropene ND 0.50 ug/L 08/02/13 19:48 1 trans-1,3-Dichloropropene ND 0.50 ug/L 08/02/13 19:48 1 Ethylbenzene ND 0.50 ug/L 08/02/13 19:48 1 Hexachlorobutadiene ND 1.0 ug/L 08/02/13 19:48 1	1,1-Dichloroethene	, ND	0.50	ug/L			08/02/13 19:48	1
1,2-Dichloropropane ND 0.50 ug/L 08/02/13 19:48 1 cis-1,3-Dichloropropene ND 0.50 ug/L 08/02/13 19:48 1 trans-1,3-Dichloropropene ND 0.50 ug/L 08/02/13 19:48 1 Ethylbenzene ND 0.50 ug/L 08/02/13 19:48 1 Hexachlorobutadiene ND 1.0 ug/L 08/02/13 19:48 1	cis-1,2-Dichloroethene	ND	0.50	ug/L			08/02/13 19:48	1
cis-1,3-Dichloropropene ND 0.50 ug/L 08/02/13 19:48 1 trans-1,3-Dichloropropene ND 0.50 ug/L 08/02/13 19:48 1 Ethylbenzene ND 0.50 ug/L 08/02/13 19:48 1 Hexachlorobutadiene ND 1.0 ug/L 08/02/13 19:48 1	trans-1,2-Dichloroethene	ND	0.50	ug/L			08/02/13 19:48	1
trans-1,3-Dichloropropene ND 0.50 ug/L 08/02/13 19:48 1 Ethylbenzene ND 0.50 ug/L 08/02/13 19:48 1 Hexachlorobutadiene ND 1.0 ug/L 08/02/13 19:48 1	1,2-Dichloropropane	ND	0.50	ug/L			08/02/13 19:48	1
Ethylbenzene ND 0.50 ug/L 08/02/13 19:48 1 Hexachlorobutadiene ND 1.0 ug/L 08/02/13 19:48 1	cis-1,3-Dichloropropene	ND	0.50	ug/L		***	08/02/13 19:48	້ 1
Hexachlorobutadiene ND 1.0 ug/L 08/02/13 19:48 1	trans-1,3-Dichloropropene	ND	0.50	ug/L			08/02/13 19:48	1
•	Ethylbenzene	ND	0.50	ug/L			08/02/13 19:48	1
2-Hexanone ND 50 ug/L 08/02/13 19:48 1	Hexachlorobutadiene	ND	1.0	ug/L			08/02/13 19:48	1
	2-Hexanone	ND	50	ug/L			08/02/13 19:48	1

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-51298-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Client Sample ID: MP-02-2
Date Collected: 07/30/13 16:15
Date Received: 07/30/13 17:53

Lab Sample ID: 720-51298-10

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Isopropylbenzene	ND		0.50	,	ug/L			08/02/13 19:48	1
4-Isopropyltoluene	ND		1.0		ug/L			08/02/13 19:48	1
Methylene Chloride	ND		5.0		ug/L			08/02/13 19:48	1
4-Methyl-2-pentanone (MIBK)	ND		50		ug/L			08/02/13 19:48	1
Naphthalene	ND		1.0		ug/L			08/02/13 19:48	1
N-Propylbenzene	ND		1.0		ug/L			08/02/13 19:48	1
Styrene	ND		0.50		ug/L			08/02/13 19:48	1
1,1,1,2-Tetrachloroethane	ND		0.50		ug/L			08/02/13 19:48	1
1,1,2,2-Tetrachloroethane	ND		0.50		ug/L	-		08/02/13 19:48	1
Tetrachloroethene	ND		0.50		ug/L			08/06/13 13:56	1
Toluene	ND		0.50		ug/L			08/02/13 19:48	1
1,2,3-Trichlorobenzene	ND		1.0		ug/L			08/02/13 19:48	1
1,2,4-Trichlorobenzene	ND		1.0		ug/L			08/02/13 19:48	1
1,1,1-Trichloroethane	ND		0.50		ug/L	•		08/02/13 19:48	1
1,1,2-Trichloroethane	ND		0.50		ug/L			08/02/13 19:48	1
Trichloroethene	1.3		0.50		ug/L			08/02/13 19:48	1
Trichlorofluoromethane	ND	en andre and an analysis of the second	1.0		ug/L			08/02/13 19:48	. 1
1,2,3-Trichloropropane	ND		0.50		ug/L			08/02/13 19:48	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50		ug/L			08/02/13 19:48	1
1,2,4-Trimethylbenzene	ND		D.50		ug/L			08/02/13 19:48	.1
1,3,5-Trimethylbenzene	ND		0.50		ug/L			08/02/13 19:48	1
Vinyl acetate	ND		10		ug/L			08/02/13 19:48	1
Vinyl chloride	ND		0.50		ug/L			08/02/13 19:48	1
Xylenes, Total	ND		1.0		ug/L			08/02/13 19:48	1
2,2-Dichloropropane	ND		0.50		ug/L		*	08/02/13 19:48	1
Gasoline Range Organics (GRO) -C5-C12	ND		50		ug/L			08/02/13 19:48	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	94		67 - 130		08/02/13 19:48	1
4-Bromofluorobenzene	96		67 - 130		08/06/13 13:56	1
1,2-Dichloroethane-d4 (Surr)	91		75 - 1 38		08/02/13 19:48	1
1,2-Dichloroethane-d4 (Surr)	80		75 - 138		08/06/13 13:56	1
Toluene-d8 (Surr)	94		70 - 130		08/02/13 19:48	1
Toluene-d8 (Surr)	96		70 - 130	,	08/06/13 13:56	1

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-51298-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS

Lab Sample ID: MB 720-141297/4

Matrix: Water

Client Sample ID: Method Blank

Prep Type: Total/NA

Analysis Batch: 141297	440	MB							
Analista		MB Qualifier	RL	MDI	Unit	D	Danman	Amalumad	DU E
Analyte Methyl tert-butyl ether	ND	Qualifier	0.50	MUL		- -	Prepared	Analyzed 07/31/13 20:37	Dil Fac
Acetone	ND		50		ug/L ug/L			07/31/13 20:37	1
Benzene	ND		0.50		-			07/31/13 20:37	
Dichlorobromomethane	ND		0.50		ug/L			07/31/13 20:37	1
Bromobenzene	ND		1.0		ug/L	•		07/31/13 20:37	1
Chlorobromomethane	ND		1.0		ug/L			07/31/13 20:37	
	ND				ug/L				. 1
Bromoform			1.0		ug/L			07/31/13 20:37	1
Bromomethane	ND		1.0		ug/L			07/31/13 20:37	1
2-Butanone (MEK)	ND		50		ug/L			07/31/13 20:37	1
n-Butylbenzene	ND		1.0		ug/L			07/31/13 20:37	1
sec-Butylbenzene	ND		1.0		ug/L			07/31/13 20:37	1
tert-Butylbenzene	ND		1.0		ug/L		-	07/31/13 20:37	1
Carbon disulfide	ND		5.0		ug/L			07/31/13 20:37	1
Carbon tetrachloride	ND		0.50		ug/L			07/31/13 20:37	1
Chlorobenzene	ND		0.50		ug/L			07/31/13 20:37	. 1
Chloroethane	ND		1.0		ug/L			07/31/13 20:37	1
Chloroform	ND		1.0		ug/L			07/31/13 20:37	1
Chloromethane	ND		1.0		ug/L			07/31/13 20:37	. 1
2-Chlorotoluene	ND		0.50		ug/L			07/31/13 20:37	1
4-Chlorotoluene	ND		0.50		ug/L			07/31/13 20:37	1
Chlorodibromomethane	ND		0.50		ug/L			07/31/13 20:37	1
1,2-Dichlorobenzene	ND		0.50		ug/L			07/31/13 20:37	1
1,3-Dichlorobenzene	ND		0.50		ug/L			07/31/13 20:37	1
1,4-Dichlorobenzene	ND		0.50		ug/L			07/31/13 20:37	1
1,3-Dichloropropane	ND		1.0		ug/L			07/31/13 20:37	1
1,1-Dichloropropene	ND		0.50		ug/L			07/31/13 20:37	1
1,2-Dibromo-3-Chloropropane	ND		1.0		ug/L			07/31/13 20:37	1
Ethylene Dibromide	ND		0.50		ug/L			07/31/13 20:37	1
Dibromomethane	ND		0.50		ug/L			07/31/13 20:37	1
Dichlorodifluoromethane	ND		0.50		ug/L			07/31/13 20:37	1
1,1-Dichloroethane	ND		0.50		ug/L			07/31/13 20:37	1
1,2-Dichloroethane	ND		0.50		ug/L			07/31/13 20:37	1
1,1-Dichloroethene	ND		0.50		ug/L			07/31/13 20:37	1
cis-1,2-Dichloroethene	ND		0.50		ug/L			07/31/13 20:37	1
trans-1,2-Dichloroethene	ND		0.50		ug/L		•	07/31/13 20:37	1
1,2-Dichloropropane	ND		0.50		ug/L			07/31/13 20:37	1
cis-1,3-Dichloropropene	ND		0.50		ug/L			07/31/13 20:37	1
trans-1,3-Dichloropropene	ND		0.50		ug/L			07/31/13 20:37	1
Ethylbenzene	ND	•	0.50		ug/L			07/31/13 20:37	1
Hexachlorobutadiene	ND		1.0		ug/L			07/31/13 20:37	1
2-Hexanone	ND		50		ug/L			07/31/13 20:37	1
Isopropylbenzene	ND		0.50		ug/L			07/31/13 20:37	1
4-Isopropyltoluene	ND		1.0		ug/L			07/31/13 20:37	1
Methylene Chloride	ND		5.0		ug/L			07/31/13 20:37	1
4-Methyl-2-pentanone (MIBK)	ND		50		ug/L			07/31/13 20:37	1
Naphthalene	ND		1.0		ug/L			07/31/13 20:37	1
N-Propylbenzene	ND		1.0		ug/L			07/31/13 20:37	1
Styrene	ND		0.50		ug/L			07/31/13 20:37	1
, 			T-#-						•

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-51298-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: MB 720-141297/4

Matrix: Water

Analysis Batch: 141297

Client Sample ID: Method Blank Prep Type: Total/NA

	MB	MB						
Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND		0.50	ug/L			07/31/13 20:37	1
1,1,2,2-Tetrachloroethane	ND		0.50	ug/L			07/31/13 20:37	1
Tetrachloroethene	ND		0.50	ug/L			07/31/13 20:37	1
Toluene	ND		0.50	ug/L			07/31/13 20:37	1
1,2,3-Trichlorobenzene	ND		1.0	ug/L			07/31/13 20:37	1
1,2,4-Trichlorobenzene	ND		1.0	ug/L			07/31/13 20:37	1
1,1,1-Trichloroethane	ND	•	0.50	ug/L			07/31/13 20:37	1
1,1,2-Trichloroethane	ND		0.50	ug/L			07/31/13 20:37	1
Trichloroethene	ND		0.50	ug/L			07/31/13 20:37	1
Trichloroffuoromethane	ND		1.0	ug/L			07/31/13 20:37	1
1,2,3-Trichloropropane	ND		0.50	ug/L			07/31/13 20:37	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50	ug/L			07/31/13 20:37	1
1,2,4-Trimethylbenzene	ND		0.50	ug/L			07/31/13 20:37	1
1,3,5-Trimethylbenzene	ND		0.50	ug/L			07/31/13 20:37	1
Vinyl acetate	ND		10	úg/L			07/31/13 20:37	1
Vinyl chloride			0.50	ug/L			07/31/13 20:37	
Xylenes, Total	ND		1.0	ug/L		•	07/31/13 20:37	1
2,2-Dichloropropane	ND		0.50	ug/L			07/31/13 20:37	1
Gasoline Range Organics (GRO) -C5-C12	ND		50	ug/L			07/31/13 20:37	1

мв мв

· ·							
Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	98		67 - 130	_		07/31/13 20:37	1
1,2-Dichloroethane-d4 (Surr)	98		75 - 138			07/31/13 20:37	1
Toluene-d8 (Surr)	100		70 ₋ 130			07/31/13 20:37	1

Lab Sample ID: LCS 720-141297/5

Matrix: Water

Analysis Batch: 141297

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Methyl tert-butyl ether	25.0	25.0		ug/L		100	62 - 130
Acetone	125	95.0		ug/L		76	26 - 180
Benzene	25.0	23.2		ug/L		· 93	79 - 130
Dichlorobromomethane	25.0	25.3		ug/L		101	70 - 130
Bromobenzene	25.0	26.5		ug/L		106	70 - 130
Chlorobromomethane	25.0	25.4		ug/L		102	70 - 130
Bromoform	25.0	28.6		ug/L		114	68 - 136
Bromomethane	25.0	22.4		ug/L		90	43 - 151
2-Butanone (MEK)	125	102		ug/L		82	54 - 130
n-Butylbenzene	25.0	26.9		ug/L		108	70 - 142
sec-Butylbenzene	25.0	25.4		ug/L		102	70 - 134
tert-Butylbenzene	25.0	26.2		ug/L		105	70 - 135
Carbon disulfide	25.0	18.0		ug/L		72	58 - 130
Carbon tetrachloride	25.0	25.9		ug/L		103	70 - 146
Chlorobenzene	25.0	26.8		ug/L		107	70 - 130
Chloroethane	25.0	20.7		ug/L		83	62 - 138
Chloroform	25.0	24.7		ug/L		99	70 - 130

Project/Site: Crown Chevrolet

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: LCS 720-141297/5

Matrix: Water

Analysis Batch: 141297

Client Sample ID: Lab Control Sample

Prep Type: Total/NA	

Analysis Batch: 141297	C-Ur-	1.00	100		8/ Dan
Analyte	Spike Added		LCS Qualifier Unit	D %Rec	%Rec. Limits
Chloromethane	25.0	18.5	ug/L		52 - 175
2-Chlorotoluene	25.0	27.1	ug/L	108	70 - 130
4-Chlorotoluene	25.0	26.4	ug/L	106	70 - 130
Chlorodibromomethane	25.0	27.2	ug/L	109	70 - 135 70 - 145
1,2-Dichlorobenzene	25.0	26.5	ug/L	105	70 - 149 70 - 130
1,3-Dichlorobenzene	25.0	28.2	ug/L	113	70 - 130
	25.0	27.3	ug/L	109	70 - 130 70 - 130
1,4-Dichlorobenzene	25.0	24.8		99	
1,3-Dichloropropane	25.0		ug/L		70 ₋ 130
1,1-Dichloropropene		25.7	ug/L	103	70 - 130
1,2-Dibromo-3-Chloropropane	25.0	22.3	ug/L	89	70 - 136
Ethylene Dibromide	25.0	26.5	ug/L	106	70 - 130
Dibromomethane	25.0	24.5	ug/L	98	70 - 130
Dichlorodifluoromethane	25.0	22.7	ug/L	91	34 - 132
1,1-Dichloroethane	25.0	22.1	ug/L	89	70 - 130
1,2-Dichloroethane	25.0	25.0	ug/L	100	61 - 132
1,1-Dichloroethene	25.0	21.3	ug/L	85	64 - 128
cis-1,2-Dichloroethene	25.0	23.6	ug/L	94	70 - 130
trans-1,2-Dichloroethene	25.0	23.2	ug/L	93	68 - 130
1,2-Dichloropropane	25.0	23.2	ug/L	93	70 - 130
cis-1,3-Dichloropropene	25.0	26.6	ug/L	106	70 - 130
trans-1,3-Dichloropropene	25.0	25.6	ug/L	103	70 - 140
Ethylbenzene	25.0	25.8	ug/L	103	80 - 120
Hexachlorobutadiene	25.0	25.1	ug/L	101	70 - 130
2-Hexanone	125	90.5	ug/L	72	60 - 164
Isopropylbenzene	25.0	27.4	ug/L	109	70 - 130
4-isopropyitoluene	25.0	27.1	ug/L	108	70 - 130
Methylene Chloride	25.0	23.3	ug/L	93	70 - 147
4-Methyl-2-pentanone (MIBK)	125	94.6	ug/L	7 6	58 - 130
Naphthalene	25.0	24.1	ug/L	96	70 - 130
N-Propylbenzene	25.0	25.3	ug/L	101	70 - 130
Styrene	25.0	26.7	ug/L	107	70 - 130
1,1,1,2-Tetrachloroethane	25.0	27.5	ug/L	110	70 - 130
1,1,2,2-Tetrachloroethane	25.0	23.4	ug/L	94	70 - 130
Tetrachloroethene	25.0	26.5	ug/L	106	70 - 130
Toluene	25.0	25.0	ug/L	100	78 - 120
1,2,3-Trichlorobenzene	25.0	25.6	ug/L	102	70 - 130
1,2,4-Trichlorobenzene	25.0	26.0	ug/L	104	70 - 130
1,1,1-Trichloroethane	25.0	25.4	ug/L	102	70 - 130
1,1,2-Trichloroethane	25.0	25.6	ug/L	103	70 - 130
Trichloroethene	25.0	26.5	ug/L	106	70 - 130
Trichlorofluoromethane	25.0	24.2	ug/L	97	66 - 132
1,2,3-Trichloropropane	25.0	25.4	ug/L	102	70 - 130
1,1,2-Trichloro-1,2,2-trifluoroetha	25.0	24.7	ug/L	99	42 - 162
ne			_		
1,2,4-Trimethylbenzene	25.0	26.3	ug/L	105	70 - 132
1,3,5-Trimethylbenzene	25.0	25.9	ug/L	103	70 - 130
Vinyl acetate	25.0	24.3	ug/L	97	43 - 163
Vinyl chloride	25.0	19.2	ug/L	77	54 - 135

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-51298-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: LCS 720-141297/5

Matrix: Water

Analysis Batch: 141297

Client Sample ID: Lab Control Sample Prep Type: Total/NA

		Spike	LCS	LCS				%Rec.	
	Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
	m-Xylene & p-Xylene	50.0	56.4		ug/L		113	70 - 142	
	o-Xylene	25.0	27.9		ug/L		112	70 - 130	
	2,2-Dichloropropane	25.0	25.5		ug/L		102	70 - 140	
- 8									

LCS LCS Limits Surrogate %Recovery Qualifier 67 - 130 114 4-Bromofluorobenzene 1,2-Dichloroethane-d4 (Surr) 92 75 - 138 103 70 - 130 Toluene-d8 (Surr)

Lab Sample ID: LCS 720-141297/7

Matrix: Water

Analysis Batch: 141297

Client Sample ID: Lab Control Sample Prep Type: Total/NA

			Spike	L.CS	LCS				%Rec.		
-	Analyte		Added		Qualifier	Unit	D	%Rec	Limits		
-	Gasoline Range Organics (GRO)	***************************************	500	530		ug/L		106	62 - 120		
	-C5-C12	•								4 "	

LCS LCS

Surrogate	%Recovery		Limits
4-Bromofluorobenzene	111		67 - 130
1,2-Dichloroethane-d4 (Surr)	100		75 - 13 8
Toluene-d8 (Surr)	105	•	70 - 130

Lab Sample ID: LCSD 720-141297/6

Matrix: Water

Analysis Ratch: 141297

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Spike	LCSD	LCSD				%Rec.		RPD
Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
25.0	26.2		ug/L		105	62 - 130	4	20
125	98.9		ug/L		79	26 - 180	4	30
25.0	23.3		ug/L		93	79 - 130	1	20
25.0	25.8		ug/L		103	70 - 130	2	20
25.0	27.7		ug/L		111	70 - 130	4	20
25.0	26.2		ug/L		105	70 - 130	3	20
25.0	28.5		ug/L		114	68 - 136	0	20
25.0	21.7		ug/L		87	43 - 151	3	20
125	99.2		ug/L		79	54 - 130	3	20
25.0	26.4		ug/L		106	70 - 142	2	20
25.0	25.3		ug/L		101	70 - 134	0	20
25.0	26.4		ug/L		106	70 - 135	1	20
25.0	17.3		ug/L		69	58 - 130	4	20
25.0	25.6		ug/L		102	70 - 146	1	20
25.0	26.4		ug/L		105	70 - 130	2	20
25.0	20.3		ug/L		81	62 - 138	2	20
25.0	24.9		ug/L		100	70 - 130	1	20
25.0	18.3		ug/L		73	52 - 175	1	20
25.0	27.6		ug/L		111	70 - 130	2	20
25.0	26.7		ug/L		107	70 - 130	1	20
25.0	28.1		ug/L		113	70 - 145	3	20
	Added 25.0 125 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25	Added Result 25.0 26.2 125 98.9 25.0 23.3 25.0 25.8 25.0 27.7 25.0 26.2 25.0 28.5 25.0 21.7 125 99.2 25.0 26.4 25.0 26.4 25.0 25.0 25.0 25.6 25.0 26.4 25.0 26.4 25.0 26.4 25.0 26.4 25.0 26.4 25.0 26.4 25.0 26.4 25.0 26.4 25.0 26.4 25.0 27.6 25.0 27.6 25.0 27.6 25.0 26.7	Added Result Qualifier 25.0 26.2 125 98.9 25.0 23.3 25.0 25.8 25.0 27.7 25.0 26.2 25.0 28.5 25.0 21.7 125 99.2 25.0 26.4 25.0 25.3 25.0 26.4 25.0 25.6 25.0 26.4 25.0 26.4 25.0 26.4 25.0 26.4 25.0 26.4 25.0 26.4 25.0 26.4 25.0 26.4 25.0 26.4 25.0 26.4 25.0 26.4 25.0 26.4 25.0 27.6 25.0 27.6 25.0 26.7	Added Result Qualifier Unit 25.0 26.2 ug/L 125 98.9 ug/L 25.0 23.3 ug/L 25.0 25.8 ug/L 25.0 27.7 ug/L 25.0 26.2 ug/L 25.0 28.5 ug/L 25.0 21.7 ug/L 25.0 26.4 ug/L 25.0 25.3 ug/L 25.0 26.4 ug/L 25.0 26.4 ug/L 25.0 25.6 ug/L 25.0 26.4 ug/L 25.0 27.6 ug/L 25.0 27.6 ug/L 25.0 27.6 ug/L 25.0 27.6 ug/L 25.0 27.6	Added Result Qualifier Unit D 25.0 26.2 ug/L ug/L 25.0 23.3 ug/L ug/L 25.0 25.8 ug/L ug/L 25.0 27.7 ug/L ug/L 25.0 26.2 ug/L ug/L 25.0 28.5 ug/L ug/L 25.0 21.7 ug/L ug/L 25.0 26.4 ug/L ug/L 25.0 26.4 ug/L ug/L 25.0 26.4 ug/L ug/L 25.0 25.6 ug/L ug/L 25.0 26.4 ug/L ug/L 25.0 26.4 ug/L ug/L 25.0 26.4 ug/L ug/L 25.0 26.4 ug/L ug/L 25.0 27.6 ug/L ug/L 25.0 27.6 ug/L ug/L 25.0 27.6 ug/L <t< td=""><td>Added Result Qualifier Unit D %Rec 25.0 26.2 ug/L 105 125 98.9 ug/L 79 25.0 23.3 ug/L 93 25.0 25.8 ug/L 103 25.0 26.2 ug/L 111 25.0 26.2 ug/L 105 25.0 28.5 ug/L 114 25.0 21.7 ug/L 87 125 99.2 ug/L 79 25.0 26.4 ug/L 106 25.0 25.3 ug/L 101 25.0 25.3 ug/L 101 25.0 26.4 ug/L 106 25.0 25.6 ug/L 102 25.0 25.6 ug/L 102 25.0 26.4 ug/L 105 25.0 26.4 ug/L 105 25.0 26.4 ug/L 105<!--</td--><td>Added Result Qualifier Unit D %Rec Limits 25.0 26.2 ug/L 105 62 - 130 125 98.9 ug/L 79 26 - 180 25.0 23.3 ug/L 93 79 - 130 25.0 25.8 ug/L 103 70 - 130 25.0 27.7 ug/L 111 70 - 130 25.0 26.2 ug/L 105 70 - 130 25.0 28.5 ug/L 114 68 - 136 25.0 28.5 ug/L 87 43 - 151 125 99.2 ug/L 79 54 - 130 25.0 26.4 ug/L 106 70 - 142 25.0 25.3 ug/L 101 70 - 134 25.0 26.4 ug/L 106 70 - 135 25.0 26.4 ug/L 106 70 - 130 25.0 25.6 ug/L 102 70 - 146 2</td><td>Added Result Qualifier Unit D %Rec Limits RPD 25.0 26.2 ug/L 105 62 - 130 4 125 98.9 ug/L 79 26 - 180 4 25.0 23.3 ug/L 93 79 - 130 1 25.0 25.8 ug/L 103 70 - 130 2 25.0 27.7 ug/L 111 70 - 130 3 25.0 26.2 ug/L 105 70 - 130 3 25.0 28.5 ug/L 114 68 - 136 0 25.0 28.5 ug/L 87 43 - 151 3 125 99.2 ug/L 79 54 - 130 3 25.0 26.4 ug/L 106 70 - 142 2 25.0 25.3 ug/L 101 70 - 134 0 25.0 26.4 ug/L 106 70 - 135 1 25.0</td></td></t<>	Added Result Qualifier Unit D %Rec 25.0 26.2 ug/L 105 125 98.9 ug/L 79 25.0 23.3 ug/L 93 25.0 25.8 ug/L 103 25.0 26.2 ug/L 111 25.0 26.2 ug/L 105 25.0 28.5 ug/L 114 25.0 21.7 ug/L 87 125 99.2 ug/L 79 25.0 26.4 ug/L 106 25.0 25.3 ug/L 101 25.0 25.3 ug/L 101 25.0 26.4 ug/L 106 25.0 25.6 ug/L 102 25.0 25.6 ug/L 102 25.0 26.4 ug/L 105 25.0 26.4 ug/L 105 25.0 26.4 ug/L 105 </td <td>Added Result Qualifier Unit D %Rec Limits 25.0 26.2 ug/L 105 62 - 130 125 98.9 ug/L 79 26 - 180 25.0 23.3 ug/L 93 79 - 130 25.0 25.8 ug/L 103 70 - 130 25.0 27.7 ug/L 111 70 - 130 25.0 26.2 ug/L 105 70 - 130 25.0 28.5 ug/L 114 68 - 136 25.0 28.5 ug/L 87 43 - 151 125 99.2 ug/L 79 54 - 130 25.0 26.4 ug/L 106 70 - 142 25.0 25.3 ug/L 101 70 - 134 25.0 26.4 ug/L 106 70 - 135 25.0 26.4 ug/L 106 70 - 130 25.0 25.6 ug/L 102 70 - 146 2</td> <td>Added Result Qualifier Unit D %Rec Limits RPD 25.0 26.2 ug/L 105 62 - 130 4 125 98.9 ug/L 79 26 - 180 4 25.0 23.3 ug/L 93 79 - 130 1 25.0 25.8 ug/L 103 70 - 130 2 25.0 27.7 ug/L 111 70 - 130 3 25.0 26.2 ug/L 105 70 - 130 3 25.0 28.5 ug/L 114 68 - 136 0 25.0 28.5 ug/L 87 43 - 151 3 125 99.2 ug/L 79 54 - 130 3 25.0 26.4 ug/L 106 70 - 142 2 25.0 25.3 ug/L 101 70 - 134 0 25.0 26.4 ug/L 106 70 - 135 1 25.0</td>	Added Result Qualifier Unit D %Rec Limits 25.0 26.2 ug/L 105 62 - 130 125 98.9 ug/L 79 26 - 180 25.0 23.3 ug/L 93 79 - 130 25.0 25.8 ug/L 103 70 - 130 25.0 27.7 ug/L 111 70 - 130 25.0 26.2 ug/L 105 70 - 130 25.0 28.5 ug/L 114 68 - 136 25.0 28.5 ug/L 87 43 - 151 125 99.2 ug/L 79 54 - 130 25.0 26.4 ug/L 106 70 - 142 25.0 25.3 ug/L 101 70 - 134 25.0 26.4 ug/L 106 70 - 135 25.0 26.4 ug/L 106 70 - 130 25.0 25.6 ug/L 102 70 - 146 2	Added Result Qualifier Unit D %Rec Limits RPD 25.0 26.2 ug/L 105 62 - 130 4 125 98.9 ug/L 79 26 - 180 4 25.0 23.3 ug/L 93 79 - 130 1 25.0 25.8 ug/L 103 70 - 130 2 25.0 27.7 ug/L 111 70 - 130 3 25.0 26.2 ug/L 105 70 - 130 3 25.0 28.5 ug/L 114 68 - 136 0 25.0 28.5 ug/L 87 43 - 151 3 125 99.2 ug/L 79 54 - 130 3 25.0 26.4 ug/L 106 70 - 142 2 25.0 25.3 ug/L 101 70 - 134 0 25.0 26.4 ug/L 106 70 - 135 1 25.0

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-51298-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: LCSD 720-141297/6

Matrix: Water

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Analysis Batch: 141297	Entles	LCCD	LCCD				f/Dee		222
Augustusta	Spike		LCSD	1 (ta	_	N/Des	%Rec.	D00	RPD
Analyte 1,2-Dichlorobenzene	Added25.0	27.0	Qualifier	Unit	<u>D</u>	*Rec 108	70 - 130	RPD	Limit
	25.0 25.0			ug/L				2	20
1,3-Dichlorobenzene		28.3		ug/L		113	70 - 130	0	20
1,4-Dichlorobenzene	25.0	27.2		ug/L		109	70 - 130	. 0	20
1,3-Dichloropropane	25.0	25.2		ug/L		101	70 - 130	2	20
1,1-Dichloropropene	25.0	25.3		ug/L		101	70 - 130	2	20
1,2-Dibromo-3-Chloropropane	25.0	22.4		ug/L		90	70 - 136	1	20
Ethylene Dibromide	25.0	27.6		ug/L		110	70 - 130	4	20
Dibromomethane	25.0	25.1		ug/L		100	70 - 130	2	20
Dichlorodifluoromethane	25.0	22.0		ug/L		88	34 - 132	3	20
1,1-Dichloroethane	25.0	22.0		ug/L		88	70 - 130	1	20
1,2-Dichloroethane	25.0	25.1		ug/L		100	61 - 132	0	20
1,1-Dichloroethene	25.0	21.2		ug/L		85	64 - 128	1	20
cis-1,2-Dichloroethene	25.0	23.6		ug/L		94	70 - 130	0	20
trans-1,2-Dichloroethene	25.0	22.8		ug/L		91	68 - 130	1	20
1,2-Dichloropropane	25.0	23.3		ug/L		93	70 - 130	1	20
cis-1,3-Dichloropropene	25.0	27.4		ug/L		110	70 - 130	3	20
trans-1,3-Dichloropropene	25.0	26.9		ug/L		108	70 - 140	5	20
Ethylbenzene	25.0	25.2		ug/L		101	80 - 120	2	20
Hexachlorobutadiene	25.0	24.4		ug/L		98	70 - 130	3	20
2-Hexanone	125	94.2		ug/L		75	60 - 164	4	20
Isopropylbenzene	25.0	26.5		ug/L		106	70 - 130	3	20
4-Isopropyltoluene	25.0	26.6		ug/L		106	70 - 130	2	20
Methylene Chloride	25.0	23.3		ug/L		93	70 - 147	0	20
4-Methyl-2-pentanone (MIBK)	125	98.2		ug/L		79	58 - 130	4	20
Naphthalene	25.0	24.6		ug/L		98	70 - 130	2	20
N-Propylbenzene	25.0	25.6		ug/L		103	70 - 130	1	20
Styrene	25.0	26.4		ug/L		106	70 - 130	1.	20
1,1,1,2-Tetrachloroethane	25.0	27.7		ug/L		111	70 - 130	1	20
1,1,2,2-Tetrachloroethane	25.0	23.9		ug/L		96	70 - 130	2	20
Tetrachloroethene	25.0	26.6		ug/L		107	70 - 130	1	20
Toluene	25.0	24.5		ug/L		98	78 - 120	2	20
1,2,3-Trichlorobenzene	25.0	25.7		ug/L		103	70 - 130	1	20
1,2,4-Trichlorobenzene	25.0	26.2		ug/L		105	70 - 130	1	20
1,1,1-Trichloroethane	25.0	25.3		ug/L		101	70 - 130	Ò	20
1,1,2-Trichloroethane	25.0	26.4		ug/L		106	70 - 130	3	20
Trichloroethene		26.4		_				0	
Trichlorofluoromethane	25.0 25.0	23.3		ug/L ug/L		106 93	70 - 130 66 - 132	4	20 20
1,2,3-Trichloropropane	25.0	26.4		_		106	70 - 130	4	20
	25.0	24.1		ug/L				2	20
1,1,2-Trichloro-1,2,2-trifluoroetha ne	23.0	24.1		ug/L		96	42 - 162	2	20
1,2,4-Trimethylbenzene	25.0	26.4		ug/L		106	70 - 132	ò	20
1,3,5-Trimethylbenzene	25.0	26.2		ug/L		105	70 - 130	1	20
Vinyl acetate	25.0	24.6		ug/L		99	43 - 163	2	20
Vinyl chloride	25.0	18.7		ug/L		75	54 - 135	3	20
m-Xylene & p-Xylene	50.0	55.0		ug/L		110	70 - 142	3	20
	25.0	27.4							
o-Xylene				ug/L		110	70 - 130	2	20
2,2-Dichloropropane	25.0	26.0		ug/L		104	70 - 140	2	20

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-51298-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: LCSD 720-141297/6

Matrix: Water

Analysis Batch: 141297

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

LCSD LCSD

Surrogate	•		Limits
4-Bromofluorobenzene	110	***************************************	67 - 130
1,2-Dichloroethane-d4 (Surr)	94		75 ₋ 138
Toluene-d8 (Surr)	104		70 - 130

Lab Sample ID: LCSD 720-141297/8

Matrix: Water

Analysis Batch: 141297

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

riep Type. Totalina

Spike LCSD LCSD %Rec. RPD Added Result Qualifier Unit D %Rec Limits RPD Analyte Limit 500 516 103 62 - 120 ug/L 3 20 Gasoline Range Organics (GRO) -C5-C12

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	110		67 - 130
1,2-Dichloroethane-d4 (Surr)	97		75 - 138
Toluene-d8 (Surr)	104		70 ₋ 130

Lab Sample ID: 720-51298-3 MS

Matrix: Water

Analysis Batch: 141297

Client Sample ID: MP-03-1 Prep Type: Total/NA

Sample Sample Spike MS MS %Rec. Result Qualifier Added Result Qualifier Unit D %Rec Limits Analyte ND 26.8 Methyl tert-butyl ether 25.0 107 60 - 138 ug/L ND 125 86.1 69 60 - 140 Acetone ug/L ND Renzene 25.0 23.5 ug/L QA 60 - 140Dichlorobromomethane ND 25.0 26.2 ug/L 105 60 - 140 ND 25.0 28.2 ug/L 113 60 - 140Bromobenzene Chlorobromomethane ND 25.0 26.5 ug/L 106 60 - 140 ND 25.0 28.7 ug/L 115 56 - 140 Bromoform ND 20.5 Bromomethane 25.0 ug/L 82 23 - 140 2-Butanone (MEK) ND 125 105 ug/L 84 60 - 140 n-Butylbenzene ND 25.0 25.3 ug/L 101 60 - 140 sec-Butylbenzene ND 25.0 24.9 ug/L 100 60 - 140 ND 25.0 26.2 105 60 - 140 tert-Butylbenzene ug/L Carbon disulfide ND 25.0 17.5 70 38 - 140 ug/L Carbon tetrachloride 25.0 ND 25.0 ug/L 100 60 - 140 Chlorobenzene ND 25.0 26.5 ug/L 106 60 - 140 Chloroethane ND 25.0 20.1 80 51 - 140 ug/L Chloroform ND 25.0 25.4 ug/L 102 60 - 140 Chloromethane ND 25.0 17.8 ug/L 71 52 - 140 ND 25.0 27.5 ug/L 2-Chlorotoluene 110 60 - 140 ND 4-Chlorotoluene 25.0 26.7 ug/L 107 60 - 140 NĐ 25.0 28.3 Chlorodibromomethane ug/L 113 60 - 140 ND 25.0 27.0 108 60 - 140 1,2-Dichlorobenzene ug/L 28.2 ND 25.0 113 1,3-Dichlorobenzene ug/L 60 - 1401,4-Dichlorobenzene ND 25.0 27.0 ug/L 108 60 - 140 1.3-Dichloropropane ND 25.0 26.0 ug/L 104 60 - 140 1.1-Dichloropropene ND 25.0 24.6 ug/L 98 60 - 140

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-51298-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: 720-51298-3 MS	Lab	Sample	e ID:	720-5	1298-3	MS
-------------------------------	-----	--------	-------	-------	--------	----

Matrix: Water

Analysis Batch: 141297

1,2-Dichloroethane-d4 (Surr)

Toluene-d8 (Surr)

Client Sample ID: MP-03-1

Prep Type: Total/NA

		Sample	Sample	Spike	MS	MS				%Rec.	
	Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
	1,2-Dibromo-3-Chloropropane	ND	•	25.0	23.5	***************************************	ug/L		94	60 - 140	
	Ethylene Dibromide	ND		25.0	27.4		ug/L		110	60 - 140	• •
	Dibromomethane	ND		25.0	25.7		ug/L		103	60 - 140	
	Dichlorodifluoromethane	ND		25.0	20.9		ug/L		84	38 - 140	
	1,1-Dichloroethane	ND		25.0	22.6		ug/L		90	60 - 140	
	1,2-Dichloroethane	ND		25.0	25.7		ug/L		103	60 - 140	
	1,1-Dichloroethene	ND		25.0	20.0		ug/L		80	60 - 140	
	cis-1,2-Dichloroethene	ND		25.0	24.6		ug/L		97	60 - 140	
	trans-1,2-Dichloroethene	ND		25.0	22.3		ug/L		88	60 - 140	
	1,2-Dichloropropane	ND		25.0	24.1		ug/L		96	60 - 140	
	cis-1,3-Dichloropropene	ND		25.0	27.0		ug/L		108	60 - 140	
	trans-1,3-Dichloropropene	ND		25.0	26.2		ug/L		105	60 - 140	
	Ethylbenzene	ND		25.0	25.3		ug/L		101	60 - 140	
	Hexachlorobutadiene	ND	•	25.0	23.3		ug/L		93	60 - 140	
	2-Hexanone	ND		125	96.1		ug/L		77	60 - 140	
	Isopropylbenzene	ND		25.0	26.0		ug/L		104	60 - 140	
	4-Isopropyltoluene	ND		25.0	26.1		ug/L		104	60 - 140	
	Methylene Chloride	ND		25.0	23.1		ug/L		92	40 - 140	
047000000000000000000000000000000000000	4-Methyl-2-pentanone (MIBK)	ND		125	102		ug/L		81	58 - 130	•
***************************************	Naphthalene	ND		25.0	24.5		ug/L		98	56 ₋ 140	
-	N-Propylbenzene	. ND		25.0	25.5		ug/L		102	60 - 140	
CO ROLL SOLD	Styrene	ND		25.0	26.1		ug/L		104	60 - 140	
-	1,1,1,2-Tetrachloroethane	ND		25.0	28.2		ug/L		113	60 - 140	
	1,1,2,2-Tetrachloroethane	ND		25.0	25.4		ug/L		102	60 - 140	
	Tetrachloroethene	160		25.0	173		ug/L		72	60 - 140	
-	Toluene	ND		25.0	24.7		ug/L		99	60 - 140	
-	1,2,3-Trichlorobenzene	ND		25.0	25.4		ug/L		101	60 - 140	
-	1,2,4-Trichlorobenzene	ND		25.0	25.6		ug/L		102	60 - 140	
Persona Posterio	1,1,1-Trichloroethane	ND		25.0	25.5		ug/L		102	60 - 140	**
**********	1,1,2-Trichloroethane	ND		25.0	27.1		ug/L		108	60 - 140	
-	Trichloroethene	10		25.0	37.0		ug/L		108	60 - 140	
	Trichlorofluoromethane	ND		25.0	22.9		ug/L		92	60 - 140	
	1,2,3-Trichloropropane	ND		25.0	27.4		ug/L		110	60 - 140	
-	1,1,2-Trichloro-1,2,2-trifluoroetha	ND		25.0	22.4		ug/L		90	60 - 140	
- Common Popular	ne										
-	1,2,4-Trimethylbenzene	ND		25.0	26.1		ug/L		105	60 - 140	
-	1,3,5-Trimethylbenzene	ND		25.0	25.7		ug/L		103	60 - 140	
-	Vinyl acetate	ND		25.0	23.5		ug/L		94	40 - 140	
-	Vinyl chloride	ND		25.0	18.2	-	ug/L		73	58 - 140	
	m-Xylene & p-Xylene	ND		50.0	54.1		ug/L		108	60 - 140	
-	o-Xylene	ND		25.0	27.6		ug/L	•	110	60 - 140	
***************************************	2,2-Dichloropropane	ND		25.0	24.5		ug/L		98	60 - 140	•
ARRONNAMINAMINA		MS	MS								
-	Surrogate	%Recovery		Limits							
*************	4-Bromofluorobenzene	110		67 - 130							
	4			75 400							

TestAmerica Pleasanton

75 - 138

70 - 130

103

Project/Site: Crown Chevrolet

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: 720-51298-3 MSD

Matrix: Water

Client Sample ID: MP-03-1 Prep Type: Total/NA

Analysis Batch: 141297	Sample Sample	Spike	MSD	MSD		%Rec.		RPD
Analyte	Result Qualifier	Added	Result		D %Rec	Limits	RPD	Limit
Methyl tert-butyl ether	ND TOOLS	25.0	27.3	ug/L	109	60 - 138		20
Acetone	ND	125	86.2	ug/L	69	60 - 140	0	20
Benzene	ND	25.0	23.5	ug/L	94	60 - 140	0	20
Dichlorobromomethane	ND	25.0	25.6	ug/L	103	60 - 140	ž	20
Bromobenzene	ND	25.0	28.0	ug/L	112	60 - 140	1	20
Chlorobromomethane	ND	25.0	26.4	ug/L	106	60 - 140	Ó	20
Bromoform	ND '	25.0	29.3	ug/L	117	56 - 140	2	20
Bromomethane	ND	25.0	20.8	ug/L	83	23 - 140	1	20
2-Butanone (MEK)	ND	125	105	ug/L	84	60 - 140	1	20
n-Butylbenzene	ND	25.0	25.9	ug/L	103	60 - 140	ź	20
sec-Butylbenzene	ND	25.0	25.1	ug/L	100	60 - 140	1	20
tert-Butylbenzene	ND	25.0	26.7	ug/L	107	60 - 140	2	20
Carbon disulfide	ND	25.0	17.2	ug/L	69	38 - 140	2	20
Carbon tetrachioride	ND	25.0	24.8	ug/L	99	60 - 140	1	20
Chlorobenzene	ND	25.0	26.8	ug/L	107	60 - 140	1	20
Chloroethane	· · · · ND· · / · · · ·	25.0	20.1	ug/L	80	51 - 140	0	- ~20 ~
Chloroform	ND	25.0	25.2	ug/L	101	50 - 140	1	20
Chloromethane	ND	25.0	17.5		70	52 - 140	2	20
2-Chlorotoluene	ND ND	- 25.0 - 25.0	27.9	ug/L	111	60 - 140	1	20
_		25.0 25.0	27.9	ug/L		60 - 140	1	20
4-Chlorotoluene	ND	25.0 25.0	28.6	ug/L	108		1	20
Chlorodibromomethane	ND		27.7	ug/L	115	60 - 140		
1,2-Dichlorobenzene	ND	25.0		ug/L	111	60 - 140	2	20
1,3-Dichlorobenzene	ND	25.0	28.5	ug/L	114	60 - 140	1	20
1,4-Dichlorobenzene	ND	25.0	26.9	ug/L	107	60 - 140	1	20
1,3-Dichloropropane	ND	25.0	26.1	ug/L	104	60 - 140	0	20
1,1-Dichloropropene	ND	25.0	24.7	ug/L	99	60 - 140	0	20
1,2-Dibromo-3-Chloropropane	ND	25.0	24.7	ug/L	99	60 - 140	5	20
Ethylene Dibromide	ND	25.0	27.8	ug/L	111	60 - 140	1	20
Dibromomethane	ND	25.0	25.9	ug/L	103	60 - 140	1	20
Dichlorodifluoromethane	ND	25.0	20.7	ug/L	83	38 - 140	1	20
1,1-Dichloroethane	ND	25.0	22.5	ug/L	90	60 - 140	1	20
1,2-Dichloroethane	ND	25.0	25.8	ug/L	103	60 - 140	0	20
1,1-Dichloroethene	ND	25.0	20.2	ug/L	81	60 - 140	1	20
cis-1,2-Dichloroethene	ND.	25.0	24.5	ug/L	96	60 - 140	0	20
trans-1,2-Dichloroethene	ND	25.0	22.0	ug/L	87	60 _ 140	1	20
1,2-Dichloropropane	ND	25.0	24.3	ug/L	97	60 - 140	1	20
cis-1,3-Dichloropropene	ND	25,0	26.8	ug/L	107	60 - 140	1	20
trans-1,3-Dichloropropene	ND	25.0	27.4	ug/L	109	60 - 140	4	20
Ethylbenzene	ND	25.0	25.5	ug/L	102	60 - 140	. 1	20
Hexachlorobutadiene	ND	25.0	25.5	ug/L	102	60 - 140	9	20
2-Hexanone	ND	125	98.5	ug/L	79	60 - 140	2	20
Isopropylbenzene	ND	25.0	26.4	ug/L	106	60 - 140	2	20
4-Isopropyltoluene	ND	25.0	26.5	ug/L	106	60 - 140	2	20
Methylene Chloride	ND	25.0	22.9	ug/L	92	40 - 140	1	20
4-Methyl-2-pentanone (MIBK)	ND	125	102	ug/L	81	58 - 130	0	20
Naphthalene	ND	25.0	26.3	ug/L	105	56 - 140	7	20
N-Propylbenzene	ND	25.0	25.5	ug/L	102	60 - 140	0	20
Styrene	ND	25.0	26.6	ug/L	106	60 - 140	2	20

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-51298-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: 720-51298-3 MSD

Matrix: Water

Analysis Batch: 141297

Client Sample ID: MP-03-1

Prep Type: Total/NA

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1,1,2-Tetrachloroethane	ND		25.0	28.6		ug/L		114	60 - 140	1	20
1,1,2,2-Tetrachloroethane	ND		25.0	25.6		ug/L		102	60 - 140	1	20
Tetrachloroethene	160		25.0	176		ug/L		83	60 - 140	2	20
Toluene	ND		25.0	24.9		ug/L		100	60 - 140	1	20
1,2,3-Trichlorobenzene	ND		25.0	27.2		ug/L		109	60 - 140	. 7	20
1,2,4-Trichlorobenzene	ND		25.0	26.8		ug/L		107	60 - 140	5	20
1,1,1-Trichloroethane	ND	•	25.0	25.5		ug/L	-	102	60 - 140	0	20
1,1,2-Trichloroethane	ND		25.0	27.3		ug/L		109	60 - 140	1	20
Trichloroethene	10		25.0	36.4		ug/L		106	60 - 140	2	20
Trichlorofluoromethane	ND		25.0	22.6		ug/L		90	60 - 140	1	20
1,2,3-Trichloropropane	ND		25.0	27.2		ug/L		109	60 - 140	1.1	20
1,1,2-Trichloro-1,2,2-trifluoroetha	ND		25.0	22.0		ug/L		88	60 - 140	2	20
ne											
1,2,4-Trimethylbenzene	ND		25.0	26.5		ug/L		106	60 - 140	1	20
1,3,5-Trimethylbenzene	ND		25.0	26.0		ug/L		104	60 - 140	1	20
Vinyl acetate	ND		25.0	23.3		ug/L		93	40 - 140	1	20
Vinyl chloride	ND		25.0	18.2		ug/L		73	58 ₋ 140	0	20
m-Xylene & p-Xylene	ND		50.0	54.8		ug/L		110	60 - 140	1	20
o-Xylene	ND		25.0	27.6		ug/L		111	60 - 140	0	20
2,2-Dichloropropane	ND		25.0	24.3		ug/L		97	60 - 140	1	20

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	110	· · · · · · · · · · · · · · · · · · ·	67 - 130
1,2-Dichloroethane-d4 (Surr)	96		75 ₋ 138
Toluene-d8 (Surr)	104		70 ₋ 130

Lab Sample ID: MB 720-141332/4

Matrix: Water

Analysis Batch: 141332

Client Sample ID: Method Blank

Prep Type: Total/NA

-	Analysis Batch: 141332									
		MB	MB							
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Methyl tert-butyl ether	ND		0.50		ug/L	-		08/01/13 10:44	1
-	Acetone	ND		50		ug/L			08/01/13 10:44	1
Section of the last of the las	Benzene	ND		0.50		ug/L			08/01/13 10:44	1
THE PROPERTY.	Dichlorobromomethane	ND		0.50		ug/L			08/01/13 10:44	1
CONTRACTOR OF THE PERSON	Bromobenzene	ND		1.0		ug/L			08/01/13 10:44	1
O	Chlorobromomethane	ND		1.0		ug/L			08/01/13 10:44	1
of the Party of the con-	Bromoform	ND		1.0		ug/L			08/01/13 10:44	1
A I PANIS A PARTY AND A PARTY	Bromomethane	ND		1.0		ug/L			08/01/13 10:44	1
ARTHUR PROPERTY.	2-Butanone (MEK)	ND		50		ug/L	•		08/01/13 10:44	1
The same of the same	n-Butylbenzene	ND		1.0		ug/L			08/01/13 10:44	1
A COMMON	sec-Butylbenzene	ND		1.0		ug/L			08/01/13 10:44	1
Ì	tert-Butylbenzene	ND		1.0		ug/L			08/01/13 10:44	1
-	Carbon disulfide	NĐ		5.0		ug/L			08/01/13 10:44	1
~	Carbon tetrachloride	ND		0.50		ug/L			08/01/13 10:44	1
***************************************	Chlorobenzene	ND		0.50		ug/L			08/01/13 10:44	1
	Chloroethane	ND		1.0		ug/L		•	08/01/13 10:44	1
į	Chloroform	ND		1.0		ug/L			08/01/13 10:44	1

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-51298-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: MB 720-141332/4

Matrix: Water

Analysis Batch: 141332

Client Sample ID: Method Blank

Prep Type: Total/NA

	MB	MB								
Analyte	Result	Qualifier	RL	MDL	Unit		Đ	Prepared	Analyzed	Dil Fa
Chloromethane	ND		1.0		ug/L				08/01/13 10:44	***************************************
2-Chlorotoluene	ND		0.50	= = =	ug/L		-		08/01/13 10:44	•
4-Chlorotoluene	ND		0.50		ug/L				08/01/13 10:44	
Chlorodibromomethane	ND		0.50		ug/L				08/01/13 10:44	
1,2-Dichlorobenzene	ND		0.50		ug/L			-	08/01/13 10:44	
1,3-Dichlorobenzene	ND		0.50		ug/L				08/01/13 10:44	
1,4-Dichlorobenzene	ND		0.50		ug/L				08/01/13 10:44	
1,3-Dichloropropane	ND		1.0	* *	ug/L				08/01/13 10:44	
1,1-Dichloropropene	ND		0.50		ug/L				08/01/13 10:44	
1,2-Dibromo-3-Chloropropane	ND		1.0		ug/L				08/01/13 10:44	
Ethylene Dibromide	ND		0.50	-	ug/L	•			08/01/13 10:44	
Dibromomethane	ND		0.50		ug/L				08/01/13 10:44	
Dichlorodifluoromethane	ND		0.50		ug/L				08/01/13 10:44	
1,1-Dichloroethane	ND	•	0.50		ug/L		•	•	08/01/13 10:44	
1,2-Dichloroethane	ND		0.50		ug/L				08/01/13 10:44	
1,1-Dichloroethene	ND		0.50		ug/L				08/01/13 10:44	
cis-1,2-Dichloroethene	ND	•	0.50		ug/L	•			08/01/13 10:44	
trans-1,2-Dichloroethene	ND		0.50		ug/L			•	08/01/13 10:44	
1,2-Dichloropropane	ND		0.50		ug/L				08/01/13 10:44	
cis-1,3-Dichloropropene	ND		0.50		ug/L				08/01/13 10:44	
trans-1,3-Dichloropropene	ND		0.50		ug/L				08/01/13 10:44	
Ethylbenzene	ND		0.50		ug/L				08/01/13 10:44	
Hexachlorobutadiene	ND		1.0		ug/L				08/01/13 10:44	
2-Hexanone	ND		50		ug/L				08/01/13 10:44	
Isopropylbenzene	ND		0.50		ug/L				08/01/13 10:44	
4-Isopropyltoluene	ND	•	1,0		ug/L				08/01/13 10:44	
Methylene Chloride	ND		5.0		ug/L				08/01/13 10:44	
4-Methyl-2-pentanone (MIBK)	ND		50		ug/L				08/01/13 10:44	
Naphthalene	ND		1.0		ug/L				08/01/13 10:44	
N-Propylbenzene	ND		1.0		ug/L				08/01/13 10:44	
Styrene	ND		0.50		ug/L				08/01/13 10:44	
1,1,1,2-Tetrachloroethane	ЙD	-	0.50		ug/L				08/01/13 10:44	
1,1,2,2-Tetrachloroethane	ND		0.50		ug/L				08/01/13 10:44	
Tetrachloroethene	ND		- 0.50		ug/L ·				08/01/13 10:44	
Toluene	ND		0.50		ug/L				08/01/13 10:44	
1,2,3-Trichlorobenzene	ND		1.0		ug/L				08/01/13 10:44	
1,2,4-Trichlorobenzene	ND		1.0		ug/L				08/01/13 10:44	
1,1,1-Trichloroethane	ND		0.50		ug/L				08/01/13 10:44	
1,1,2-Trichloroethane	ND		0.50		ug/L				08/01/13 10:44	
Trichloroethene	ND		0.50		ug/L				08/01/13 10:44	
Trichlorofluoromethane	ND		1.0		ug/L				08/01/13 10:44	
1,2,3-Trichloropropane	ND		0.50		ug/L				08/01/13 10:44	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND.		0.50		ug/L				08/01/13 10:44	
1,2,4-Trimethylbenzene	ND	•	0.50		ug/L	٠			08/01/13 10:44	
1,3,5-Trimethylbenzene	ND		0.50		ug/L				08/01/13 10:44	
Vinyl acetate	ND		10		ug/L				08/01/13 10:44	
Vinyl chloride	ND		0.50		ug/L				08/01/13 10:44	
Xylenes, Total	ND		1.0		ug/L				08/01/13 10:44	

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-51298-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: MB 720-141332/4

Matrix: Water

Analysis Batch: 141332

Client Sample ID: Method Blank

Prep Type: Total/NA

1		1417	1110							
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	2,2-Dichloropropane	ND		0.50		ug/L	 		08/01/13 10:44	1
	Gasoline Range Organics (GRO)	ND	,	50		ug/L			08/01/13 10:44	1
	-C5-C12									

	MB	MB				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	95		67 - 130		08/01/13 10:44	1
1,2-Dichloroethane-d4 (Surr)	92		75 - 138		08/01/13 10:44	1
Toluene-d8 (Surr)	96		70 - 130		08/01/13 10:44	1

Lab Sample ID: LCS 720-141332/5

Matrix: Water

Analysis Batch: 141332

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Alialysis buton. 141002	Spike	LCS	LCS		%Rec.
Analyte	Added	Result	Qualifier Unit	D %Rec	Limits
Methyl tert-butyl ether	25.0	28.6	ug/L	114	62 - 130
Acetone	125	112	ug/L	89	26 - 180
Benzene	25.0	26.3	ug/L	105	79 - 130
Dichlorobromomethane	25.0	26.6	ug/L	106	70 - 130
Bromobenzene	25.0	27.7	ug/L	111	70 - 130
Chlorobromomethane	25.0	26.0	ug/L	104	70 - 130
Bromoform	25.0	27.4	ug/L	110	68 - 136
Bromomethane	25.0	27.4	ug/L	110	43 _ 151
2-Butanone (MEK)	125	137	ug/L	110	54 - 130
n-Butylbenzene	25.0	28.3	ug/L	113	70 - 142
sec-Butylbenzene	25.0	29.1	ug/L	116	70 - 134
tert-Butylbenzene	25.0	30.5	ug/L	122	70 - 135
Carbon disulfide	25.0	23.3	ug/L	93	58 - 130
Carbon tetrachloride	25.0	28.5	· ug/L	114	70 - 146
Chlorobenzene	25.0	27.4	ug/L	110	70 - 130
Chloroethane	25.0	28.4	ug/L	114	62 - 138
Chloroform	25.0	26.9	ug/L	108	70 - 130
Chloromethane	25.0	28.9	ug/L	115	52 - 175
2-Chlorotoluene	25.0	29.3	ug/L	117	70 - 130
4-Chlorotoluene	25.0	28.2	ug/L	113	70 _ 130
Chlorodibromomethane	25.0	26.5	ug/L	106	70 ₋ 145
1,2-Dichlorobenzene	25.0	27.2	ug/L	109	70 - 130
1,3-Dichlorobenzene	25.0	28.1	ug/L	112	70 - 130
1,4-Dichlorobenzene	25.0	27.8	ug/L	111	70 - 130
1,3-Dichloropropane	25.0	27.1	ug/L	108	70 - 130
1,1-Dichloropropene	25.0	29.0	ug/L	116	70 - 130
1,2-Dibromo-3-Chloropropane	25.0	26.3	ug/L	, 105	70 - 136
Ethylene Dibromide	25.0	26.4	ug/L	106	70 - 130
Dibromomethane	25.0	26.1	ug/L	104	70 - 130
Dichlorodifluoromethane	25.0	29.1	ug/L	117	34 - 132
1,1-Dichloroethane	25.0	26.3	ug/L	105	70 - 130
1,2-Dichloroethane	25.0	26.1	ug/L	104	61 - 132
1,1-Dichloroethene	25.0	24.9	ug/L	100	64 - 128
cis-1,2-Dichloroethene	25.0	26.9	ug/L	107	70 - 130

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-51298-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Matrix: Water Analysis Batch: 141332

Lab Sample ID: LCS 720-141332/5

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

		Spike	LCS	LCS				%Rec.	
Analyte		Added	Result	Qualifier	Unit	D	%Rec	Limits	
trans-1,2-Dichloroethene		25.0	26.4		ug/L		106	68 - 130	
1,2-Dichloropropane		25.0	28.2		ug/L		113	70 - 130	
cis-1,3-Dichloropropene		25.Ö	27.3		ug/L		109	70 - 130	
trans-1,3-Dichloropropene		25.0	26.9		ug/L		108	70 - 140	
Ethylbenzene		25.0	27.2		ug/L		109	80 - 120	
Hexachlorobutadiene		25.0	22.6		ug/L		90	70 - 130	
2-Hexanone		125	128		ug/L		103	60 - 164	
Isopropylbenzene		25.0	28.9		ug/L		116	70 - 130	
4-isopropyitoluene		25.0	28.9		ug/L		116	70 - 130	
Methylene Chloride		25.0	24.4		ug/L		98	70 - 147	
4-Methyl-2-pentanone (MIBK)		125	132		ug/L		105	58 - 130	
Naphthalene		25.0	23.6		ug/L		95	70 - 130	
N-Propylbenzene		25.0	30.2		ug/L		121	70 - 130	
Styrene		25.0	27.6	,	ug/L		111	70 - 130	
1,1,1,2-Tetrachloroethane		25.0	29.0		ug/L		116	70 - 130	
1,1,2,2-Tetrachloroethane		25.0	29.4		ug/L .		118	70 - 130	,
Tetrachloroethene		25.0	27.3		ug/L		109	70 - 130	
Toluene		25.0	27.5		ug/L		110	78 - 120	
1,2,3-Trichlorobenzene		25.0	20.6		ug/L		82	70 - 130	
1,2,4-Trichlorobenzene	•	25.0	23.2		ug/L		93	70 - 130	
1,1,1-Trichloroethane		25.0	28.9		ug/L		116	70 - 130	
1,1,2-Trichloroethane		25.0	27.3		ug/L		109	70 - 130	
Trichloroethene		25.0	27.9		ug/L		112	70 - 130	
Trichlorofluoromethane		25.0	2 6 .1		ug/L		104	66 - 132	
1,2,3-Trichloropropane		25.0	28.1		ug/L		113	70 - 130	
1,1,2-Trichloro-1,2,2-trifluoroetha		25.0	25.0		ug/L		100	42 - 162	
ne 1,2,4-Trimethylbenzene		25.0	30.1		ug/L		120	70 - 132	
1,3,5-Trimethylbenzene		25.0	30.2		ug/L		121	70 - 130	
Vinyl acetate		25.0	35.6		υg/L		143	43 - 163	
Vinyl chloride		25.0	31.8		ug/L		127	54 - 135	
m-Xylene & p-Xylene		50.0	56.4		ug/L		113	70 - 142	
o-Xylene		25.0	28.2		ug/L		113	70 - 130	
2,2-Dichloropropane		25.0	33.7		ug/L		135	70 - 140	
LC	S LCS								
Surrogate %Recover	y Qualifier	Limits							
4-Bromofluorobenzene	5	67 _ 130							
1,2-Dichloroethane-d4 (Surr)	9	75 - 138							

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	95		67 _ 130
1,2-Dichloroethane-d4 (Surr)	89		75 - 13B
Toluene-d8 (Surr)	98		70 - 130

Lab Sample ID: LCS 720-141332/7

Matrix: Water

Analysis Batch: 141332

Gasoline Range Organics (GRO)

Client Sample ID: Lab Control Sample Prep Type: Total/NA

LCS	LCS				%Rec.	
Result	Qualifier	Unit	D	%Rec	Limits	
408	***************************************	ugi		100	62 120	

-C5-C12

Analyte

TestAmerica Pleasanton

498

Spike

Added

500

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-51298-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: LCS 720-141332/7

Matrix: Water

Analysis Batch: 141332

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	95	4	67 - 130
1,2-Dichloroethane-d4 (Surr)	90		75 ₋ 138
Toluene-d8 (Surr)	103		70 ₋ 130

Lab Sample ID: LCSD 720-141332/6

Matrix: Water

Analysis Batch: 141332

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Analyse		Spike	LCSD	LCSD				%Rec.		RPD
Acatone	Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	Methyl tert-butyl ether	25.0	25.5		ug/L		102	62 - 130	11	20
Dichlorobromomethane	Acetone	125	103		ug/L		83	26 - 180	8	30
Bromobenzene 25.0 29.8 ug/L 119 70 , 130 7 20 Chlorobromomethane 25.0 23.6 ug/L 94 70 , 130 10 20 Bromoform 25.0 27.5 ug/L 94 70 , 130 10 20 Bromoform 25.0 27.5 ug/L 94 43 , 151 15 20 Bromofeme 25.0 23.5 ug/L 94 43 , 151 15 20 20 Emomethane 25.0 23.5 ug/L 94 43 , 151 15 20 20 Emomethane 25.0 27.0 ug/L 108 70 , 142 5 20 20 20 20 20 20 20	Benzene	25.0	25.1		ug/L		100	79 - 130	4	- 20
Chlorobromomethane 25.0 23.6 ug/L 94 70.130 10 20 20 20 27.5 ug/L 110 68.136 0 20 20 20 20 20 20 20	Dichlorobromomethane	25.0	27.1		ug/L		108	70 - 130	2	20
Bromoform 25.0 27.5 ug/L 110 68.136 0 20 Bromomethane 25.0 23.5 ug/L 94 43.151 15 20 2-Butannon (MEK) 125 114 ug/L 115 54.130 5 20 n-Butlylbenzene 25.0 27.0 ug/L 118 70.142 5 20 ses-Butlylbenzene 25.0 28.2 ug/L 113 70.134 3 20 tett-Butlybenzene 25.0 30.1 ug/L 120 70.135 1 20 Carbon disulfide 25.0 18.8 ug/L 75 58.130 21 20 Carbon disulfide 25.0 25.7 ug/L 103 70.146 10 20 Carbon tetrachloride 25.0 25.7 ug/L 103 70.146 10 20 Chlorobenzene 25.0 27.3 ug/L 198 70.130 1 20 Chlorobenzene 25.0 24.0 ug/L 96 62.138 17 20 Chlorothane 25.0 24.0 ug/L 96 62.138 17 20 Chlorothane 25.0 24.0 ug/L 96 70.130 12 20 Chlorothane 25.0 29.5 ug/L 118 70.130 1 20 4-Chlorothuene 25.0 29.6 ug/L 118 70.130 1 20 4-Chlorothuene 25.0 29.6 ug/L 118 70.130 1 20 4-Chlorotherzene 25.0 28.6 ug/L 118 70.130 3 20 1,3-Dichlorobenzene 25.0 27.8 ug/L 114 70.145 8 20 1,3-Dichlorobenzene 25.0 27.8 ug/L 117 70.130 1 20 1,4-Dichloropropane 25.0 27.8 ug/L 117 70.130 1 20 1,1-Dichloropropane 25.0 26.8 ug/L 107 70.130 1 20 1,1-Dichlorotherme 25.0 26.2 ug/L 105 70.130 10 20 1,1-Dichlorotherme 25.0 23.1 ug/L 24 70.130 13 20 1,1-Dichlorotherme 25.0 23.6 ug/L 105 70.130 10 20 1,1-Dichlorotherme 25.0 23.6 ug/L 105 70.130 10 20 1,1-Dichlorotherme 25.0 23.6 ug/L 105 70.130 10 20 1,1-Dichlorotherme 25.0 23.6 ug/L 105 70.130 13 20 1,1-Dichlorotherme 25.0 23.6 ug/L 105 70.130 10 20 1,1-Dichlorotherme 25.0 23.6 ug/L 107 70.130 13 20 1,1-	Bromobenzene	25.0	29.8		ug/L		119	70 - 130	7	20
Bromomethane 25.0 23.5 ug/l. 94 43.151 15 20 2-Butanone (MEK) 125 144 ug/l. 115 64.130 5 20 1-Butylbenzene 25.0 27.0 ug/l. 108 70.142 5 20 1-Butylbenzene 25.0 28.2 ug/l. 113 70.134 3 20 1-Butylbenzene 25.0 30.1 ug/l. 120 70.135 1 20 1-Butylbenzene 25.0 30.1 ug/l. 120 70.135 1 20 1-Butylbenzene 25.0 25.7 ug/l. 103 70.146 10 20 1-Butylbenzene 25.0 25.7 ug/l. 103 70.146 10 20 1-Butylbenzene 25.0 25.7 ug/l. 103 70.146 10 20 1-Butylbenzene 25.0 27.3 ug/l. 198 70.130 1 20 1-Butylbenzene 25.0 24.0 ug/l. 96 62.138 17 20 1-Butylbenzene 25.0 24.0 ug/l. 96 62.138 17 20 1-Butylbenzene 25.0 24.0 ug/l. 96 70.130 12 20 1-Butylbenzene 25.0 29.5 ug/l. 118 70.130 1 20 1-Butylbenzene 25.0 29.5 ug/l. 118 70.130 1 20 1-Butylbenzene 25.0 29.6 ug/l. 118 70.130 5 20 1-Butylbenzene 25.0 28.6 ug/l. 118 70.130 5 20 1-Butylbenzene 25.0 27.8 ug/l. 118 70.130 1 20 1-Butylbenzene 25.0 27.8 ug/l. 112 70.130 1 20 1-Butylbenzene 25.0 27.8 ug/l. 112 70.130 1 20 1-Butylbenzene 25.0 27.8 ug/l. 117 70.130 3 20 1-Butylbenzene 25.0 26.8 ug/l. 117 70.130 8 20 1-Butylbenzene 25.0 26.8 ug/l. 117 70.130 8 20 1-Butylbenzene 25.0 26.8 ug/l. 117 70.130 3 20 1-Butylbenzene 25.0 26.8 ug/l. 117 70.130 3 20 1-Butylbenzene 25.0 26.8 ug/l. 117 70.130 3 20 1-Butylbenzene 25.0 26.8 ug/l. 105 70.130 1 20 1-Butylbenzene 25.0 26.	Chlorobromomethane	25.0	23.6		ug/L		94	70 - 130	10	20
2-Butanone (MEK) 125 144 Ug/L 115 54 130 5 20 1 1-Butylbenzene 25.0 27.0 Ug/L 108 70 142 5 20 20 20 20 20 20 20	Bromoform	25.0	27.5		ug/L		110	68 - 136	0	20
n-Butylbenzene 25.0 27.0 ug/L 108 70 - 142 5 20 see-Butylbenzene 25.0 28.2 ug/L 113 70 - 142 5 20 see-Butylbenzene 25.0 30.1 ug/L 120 70 - 135 1 20 Carbon disufide 25.0 18.8 "ug/L 75 58. 130 21 20 Carbon disufide 25.0 25.7 ug/L 103 70 - 146 10 20 Chlorobenzene 25.0 25.7 ug/L 109 70 - 130 1 20 Chlorobenzene 25.0 25.0 27.3 ug/L 109 70 - 130 1 20 Chlorobenzene 25.0 24.0 ug/L 96 62 188 17 20 Chloromethane 25.0 24.0 ug/L 96 70 - 130 12 20 Chloromethane 25.0 24.0 ug/L 96 70 - 130 12 20 Chloromethane 25.0 25.0 28.6 ug/L 118 70 - 130 12 20 Chlorodbrame 25.0 29.5 ug/L 118 70 - 130 1 20 Chlorodbrame 25.0 29.5 ug/L 118 70 - 130 1 20 Chlorodbrame 25.0 29.6 ug/L 118 70 - 130 1 20 Chlorodbrame 25.0 29.6 ug/L 118 70 - 130 1 20 Chlorobbrane 25.0 29.6 ug/L 118 70 - 130 1 20 Chlorobbrane 25.0 29.6 ug/L 118 70 - 130 1 20 Chlorobbrane 25.0 28.6 ug/L 114 70 - 145 8 20 L,2-Dichlorobenzene 25.0 28.6 ug/L 114 70 - 145 8 20 L,2-Dichlorobenzene 25.0 27.9 ug/L 104 70 - 130 4 20 L,2-Dichlorobenzene 25.0 27.9 ug/L 117 70 - 130 1 20 L,2-Dichlorobenzene 25.0 27.8 ug/L 111 70 - 130 1 20 L,2-Dichloropenae 25.0 27.8 ug/L 111 70 - 130 1 20 L,2-Dichloropenae 25.0 27.8 ug/L 111 70 - 130 1 20 L,2-Dichloropenae 25.0 27.8 ug/L 107 70 - 130 1 20 L,2-Dichloropenae 25.0 27.8 ug/L 107 70 - 130 1 20 L,2-Dichloropenae 25.0 24.7 ug/L 99 70 - 136 6 20 L,2-Dichloropenae 25.0 24.7 ug/L 99 70 - 136 6 20 L,2-Dichloropenae 25.0 24.7 ug/L 99 70 - 130 13 20 Dichlorodichoromethane 25.0 23.8 ug/L 95 34 - 132 20 20 L,1-Dichloroethane 25.0 23.8 ug/L 95 34 - 132 20 20 1,1-Dichloroethane 25.0 23.8 ug/L 95 34 - 132 20 20 20 1,1-Dichloroethane 25.0 25.7 ug/L 103 61 - 132 1 20 L,2-Dichloromethane 25.0 23.8 ug/L 95 34 - 132 20 20 20 1,1-Dichloroethane 25.0 23.8 ug/L 95 34 - 132 20 20 20 1,1-Dichloroethane 25.0 23.8 ug/L 95 34 - 132 20 20 20 1,1-Dichloroethane 25.0 23.8 ug/L 95 34 - 132 20 20 20 1,1-Dichloroethane 25.0 23.8 ug/L 95 34 - 132 20 20 20 20 20 20 20 20 20 20 20 20 20	Bromomethane	25.0	23.5		ug/L		94	43 - 151	15	20
sec-Butylbenzene 25.0 28.2 ug/L 113 70 - 134 3 20 tent-Butylbenzene 25.0 30.1 ug/L 120 70 - 135 1 20 Carbon disulfide 25.0 18.8 ug/L 75 58 - 130 21 20 Chlorobenzene 25.0 25.7 ug/L 103 70 - 146 10 20 Chlorobenzene 25.0 27.3 ug/L 109 70 - 130 1 20 Chlorobenzene 25.0 24.0 ug/L 96 62 - 138 17 20 Chlorodilorom 25.0 24.0 ug/L 96 62 - 138 17 20 Chlorodiloromethane 25.0 23.9 ug/L 118 70 - 130 12 20 Chlorodiloromethane 25.0 29.5 ug/L 118 70 - 130 1 20 4-Chlorotoluene 25.0 29.6 ug/L 114 70 - 130 1 20 <td>2-Butanone (MEK)</td> <td>125</td> <td>144</td> <td></td> <td>ug/L</td> <td></td> <td>115</td> <td>54 - 130</td> <td>5</td> <td>20</td>	2-Butanone (MEK)	125	144		ug/L		115	54 - 130	5	20
tert-Butylbenzene 25.0 30.1 ug/L 120 70 - 135 1 20 Carbon disulfide 25.0 18.8 ug/L 75 58.130 21 20 Carbon tetrachloride 25.0 25.7 ug/L 103 70 - 146 10 20 Chloroethane 25.0 24.0 ug/L 96 62 - 138 17 20 Chloroethane 25.0 24.0 ug/L 96 62 - 138 17 20 Chloroethane 25.0 24.0 ug/L 96 62 - 138 17 20 Chlorodiume 25.0 23.9 ug/L 95 52 - 175 19 20 Chlorodiume 25.0 28.6 ug/L 118 70 - 130 1 20 Chlorodibromomethane 25.0 28.6 ug/L 114 70 - 145 8 20 1,3-Dichlorobenzene 25.0 28.6 ug/L 114 70 - 130 1 20 <	n-Butylbenzene	25.0	27.0		ug/L		108	70 - 142	5	20
Carbon disulfide 25.0 18.8 ug/L 75 58.130 21 20 Carbon tetrachloride 25.0 25.7 ug/L 103 70.148 10 20 Chlorobenzene 25.0 27.3 ug/L 109 70.130 1 20 Chloroform 25.0 24.0 ug/L 96 62.138 17 20 Chloroform 25.0 24.0 ug/L 96 70.130 12 20 Chloroform 25.0 24.0 ug/L 96 70.130 12 20 Chlorodiloromethane 25.0 29.5 ug/L 118 70.130 1 20 4-Chlorodibromomethane 25.0 29.6 ug/L 118 70.130 1 20 4-Chlorodibromomethane 25.0 28.6 ug/L 114 70.145 8 20 1,2-Dichlorobenzene 25.0 28.6 ug/L 104 70.130 1 20	sec-Butylbenzene	25.0	28.2		ug/L		113	70 - 134	3	20
Carbon tetrachloride 25.0 25.7 ug/L 103 70 - 146 10 20 Chlorobenzene 25.0 27.3 ug/L 109 70 - 130 1 20 Chloroethane 25.0 24.0 ug/L 96 62 - 138 17 20 Chloroform 25.0 24.0 ug/L 96 67 - 130 12 20 Chloromethane 25.0 23.9 ug/L 118 70 - 130 1 20 2-Chlorotoluene 25.0 29.5 ug/L 118 70 - 130 1 20 4-Chlorotoluene 25.0 29.6 ug/L 118 70 - 130 1 20 Chlorodibromomethane 25.0 28.6 ug/L 114 70 - 145 8 20 1,2-Dichlorobenzene 25.0 28.0 ug/L 104 70 - 130 4 20 1,3-Dichlorobenzene 25.0 27.9 ug/L 111 70 - 130 4 20 <td>tert-Butylbenzene</td> <td>25.0</td> <td>30.1</td> <td></td> <td>ug/L</td> <td></td> <td>120</td> <td>70 - 135</td> <td>1</td> <td>20</td>	tert-Butylbenzene	25.0	30.1		ug/L		120	70 - 135	1	20
Chlorobenzene 25.0 27.3 ug/L 109 70 - 130 1 20 Chloroethane 25.0 24.0 ug/L 96 62 - 138 17 20 20 20 20 20 20 20 2	Carbon disulfide	25.0	18.8	•	ug/L		75	58 - 130	21	20
Chloroethane 25.0 24.0 ug/L 96 62.138 17 20 20 20 20 20 20 20 2	Carbon tetrachloride	25.0	25.7		ug/L		103	70 - 146	10	20
Chloroform 25.0 24.0 ug/L 96 70.130 12 20 Chloromethane 25.0 23.9 ug/L 95 52.175 19 20 2-Chloromethane 25.0 29.5 ug/L 118 70.130 1 20 4-Chlorofoluene 25.0 29.5 ug/L 118 70.130 1 20 4-Chlorofoluene 25.0 29.6 ug/L 118 70.130 1 20 4-Chlorofoluene 25.0 28.6 ug/L 114 70.130 5 20 1,2-Dichlorobenzene 25.0 28.6 ug/L 114 70.130 4 20 1,2-Dichlorobenzene 25.0 28.6 ug/L 114 70.130 4 20 1,3-Dichlorobenzene 25.0 27.9 ug/L 112 70.130 1 20 1,4-Dichlorobenzene 25.0 27.8 ug/L 111 70.130 0 20 1,3-Dichloropenzene 25.0 27.8 ug/L 111 70.130 0 20 1,3-Dichloropenzene 25.0 26.8 ug/L 111 70.130 1 20 1,1-Dichloropenzene 25.0 26.8 ug/L 107 70.130 14 20 1,2-Dichloropenzene 25.0 26.8 ug/L 107 70.130 14 20 1,2-Dichloropenzene 25.0 26.8 ug/L 107 70.130 13 20 1,2-Dichloropenzene 25.0 26.8 ug/L 107 70.130 13 20 1,2-Dichloropenzene 25.0 26.2 ug/L 105 70.130 13 20 1,2-Dichloromethane 25.0 25.0 26.2 ug/L 105 70.130 0 20 1,1-Dichloromethane 25.0 23.8 ug/L 92 70.130 13 20 1,1-Dichloroethane 25.0 23.8 ug/L 92 70.130 13 20 1,2-Dichloroethane 25.0 25.7 ug/L 92 70.130 13 20 1,2-Dichloroethane 25.0 23.1 ug/L 92 70.130 13 20 1,2-Dichloroethane 25.0 23.6 ug/L 94 70.130 13 20 1,2-Dichloroethane 25.0 23.6 ug/L 94 70.130 13 20 1,2-Dichloroethane 25.0 23.6 ug/L 94 70.130 13 20 1,2-Dichloroethane 25.0 28.9 ug/L 91 66.130 15 20 1,2-Dichloroethane 25.0 28.9 ug/L 91 66.130 15 20 1,2-Dichloropenpene 25.0 28.9 ug/L 115 70.130 2 20 20 1,3-Dichloropenpene 25.0 28.9 ug/L 115 70.130 10 20 12 1,2-Dichloropenpene 25.0 30.1 ug/L 120 70.130 10 20 12 1,2-Dichloropenpene 25.0 30.1 ug/L 120 70.130 10 20 12 1,2-Dichloropenpene 25.0 30.1 ug/L 120 70.130 10 20 12 1,2-Dichloropenpene 25.0 30.1 ug/L 120 70.130 10 20 12 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0	Chlorobenzene	25.0	27.3		ug/L		109	70 - 130	1	20
Chloromethane 25.0 23.9 ug/L 95 52 - 175 19 20 20 20 20 20 20 20 2	Chloroethane	25.0	24.0		ug/L		96	62 - 138	17	20
2-Chlorotoluene	Chloroform	25.0	24.0		ug/L		96	70 - 130	12	20
4-Chlorotoluene 25.0 29.6 ug/L 118 70 - 130 5 20 Chlorodibromomethane 25.0 28.6 ug/L 114 70 - 145 8 20 1,2-Dichlorobenzene 25.0 26.0 ug/L 104 70 - 130 4 20 1,3-Dichlorobenzene 25.0 27.9 ug/L 111 70 - 130 1 20 1,4-Dichlorobenzene 25.0 27.8 ug/L 111 70 - 130 0 20 1,3-Dichloropropane 25.0 31.1 ug/L 124 70 - 130 14 20 1,1-Dichloropropane 25.0 26.8 ug/L 107 70 - 130 14 20 1,2-Dibromo-3-Chloropropane 25.0 24.7 ug/L 99 70 - 130 8 20 Ethylene Dibromide 25.0 30.1 ug/L 121 70 - 130 13 20 Dibromomethane 25.0 26.2 ug/L 105 70 - 130 13 20 1,1-Dichloroethane 25.0 23.1 ug/L <td< td=""><td>Chloromethane</td><td>25.0</td><td>23.9</td><td></td><td>ug/L</td><td></td><td>95</td><td>52 - 175</td><td>19</td><td>20</td></td<>	Chloromethane	25.0	23.9		ug/L		95	52 - 175	19	20
Chlorodibromomethane 25.0 28.6 ug/L 114 70 - 145 8 20 1,2-Dichlorobenzene 25.0 26.0 ug/L 104 70 - 130 4 20 1,3-Dichlorobenzene 25.0 27.9 ug/L 112 70 - 130 1 20 1,4-Dichloropropane 25.0 27.8 ug/L 111 70 - 130 0 20 1,3-Dichloropropane 25.0 31.1 ug/L 124 70 - 130 14 20 1,1-Dichloropropane 25.0 26.8 ug/L 107 70 - 130 8 20 1,2-Dibromo-3-Chloropropane 25.0 24.7 ug/L 99 70 - 136 6 20 Ethylene Dibromide 25.0 30.1 ug/L 121 70 - 130 13 20 Dibromomethane 25.0 26.2 ug/L 105 70 - 130 0 20 Dichlorodifluoromethane 25.0 23.8 ug/L 95 34 - 132 20 20 1,2-Dichloroethane 25.0 25.7 ug/L	2-Chlorotoluene	25.0	29.5		ug/L		118	70 - 130	1	20
1,2-Dichlorobenzene 25.0 26.0 ug/L 104 70 - 130 4 20 1,3-Dichlorobenzene 25.0 27.9 ug/L 112 70 - 130 1 20 1,4-Dichlorobenzene 25.0 27.8 ug/L 111 70 - 130 0 20 1,3-Dichloropropane 25.0 31.1 ug/L 124 70 - 130 14 20 1,1-Dichloropropane 25.0 26.8 ug/L 107 70 - 130 8 20 1,2-Dibromo-3-Chloropropane 25.0 24.7 ug/L 99 70 - 136 6 20 Ethylene Dibromide 25.0 30.1 ug/L 121 70 - 130 13 20 Dibromomethane 25.0 26.2 ug/L 105 70 - 130 0 20 Dichlorodifluoromethane 25.0 26.2 ug/L 95 34 - 132 20 20 1,1-Dichloroethane 25.0 23.1 ug/L 95 34 - 132 20 20 1,2-Dichloroethane 25.0 25.7 ug/L	4-Chlorotoluene	25.0	29.6		ug/L		118	70 - 130	5	20
1,3-Dichlorobenzene 25.0 27.9 ug/L 112 70 - 130 1 20 1,4-Dichlorobenzene 25.0 27.8 ug/L 111 70 - 130 0 20 1,3-Dichloropropane 25.0 31.1 ug/L 124 70 - 130 14 20 1,1-Dichloropropane 25.0 26.8 ug/L 107 70 - 130 8 20 1,2-Dibromo-3-Chloropropane 25.0 24.7 ug/L 99 70 - 130 8 20 1,2-Dibromo-3-Chloropropane 25.0 24.7 ug/L 99 70 - 130 8 20 1,2-Dibromomethane 25.0 26.2 ug/L 105 70 - 130 13 20 Dibromomethane 25.0 26.2 ug/L 105 70 - 130 0 20 Dichlorodifluoromethane 25.0 23.8 ug/L 95 34 - 132 20 20 1,2-Dichloroethane 25.0 25.7 ug/L 103 61 - 132 1 20 1,2-Dichloroethene 25.0 25.0 21.3 <td>Chlorodibromomethane</td> <td>25.0</td> <td>28.6</td> <td></td> <td>ug/L</td> <td></td> <td>114</td> <td>70 - 145</td> <td>8</td> <td>20</td>	Chlorodibromomethane	25.0	28.6		ug/L		114	70 - 145	8	20
1,4-Dichlorobenzene 25.0 27.8 ug/L 111 70 - 130 0 20 1,3-Dichloropropane 25.0 31.1 ug/L 124 70 - 130 14 20 1,1-Dichloropropene 25.0 26.8 ug/L 107 70 - 130 8 20 1,2-Dibromo-3-Chloropropane 25.0 24.7 ug/L 99 70 - 136 6 20 Ethylene Dibromide 25.0 30.1 ug/L 121 70 - 130 13 20 Dibromomethane 25.0 26.2 ug/L 105 70 - 130 0 20 Dichlorodifluoromethane 25.0 23.8 ug/L 95 34 - 132 20 20 1,1-Dichloroethane 25.0 23.1 ug/L 92 70 - 130 13 20 1,2-Dichloroethane 25.0 25.7 ug/L 103 61 - 132 1 20 1,1-Dichloroethene 25.0 23.6 ug/L 85 64 - 128 16 20 cis-1,2-Dichloroethene 25.0 23.6 ug/L	1,2-Dichlorobenzene	25.0	26.0		ug/L		104	70 - 130	4	20
1,3-Dichloropropane 25.0 31.1 ug/L 124 70 - 130 14 20 1,1-Dichloropropane 25.0 26.8 ug/L 107 70 - 130 8 20 1,2-Dibromo-3-Chloropropane 25.0 24.7 ug/L 99 70 - 136 6 20 Ethylene Dibromide 25.0 30.1 ug/L 121 70 - 130 13 20 Dibromomethane 25.0 26.2 ug/L 105 70 - 130 0 20 Dichlorodifluoromethane 25.0 23.8 ug/L 95 34 - 132 20 20 1,1-Dichloroethane 25.0 23.1 ug/L 92 70 - 130 13 20 1,2-Dichloroethane 25.0 25.7 ug/L 103 61 - 132 1 20 1,1-Dichloroethene 25.0 21.3 ug/L 85 64 - 128 16 20 cis-1,2-Dichloroethene 25.0 23.6 ug/L 94 70 - 130 13 20 trans-1,2-Dichloroptopane 25.0 28.9 ug/L <td>1,3-Dichlorobenzene</td> <td>25.0</td> <td>27.9</td> <td></td> <td>ug/L</td> <td></td> <td>112</td> <td>70 - 130</td> <td>1</td> <td>20</td>	1,3-Dichlorobenzene	25.0	27.9		ug/L		112	70 - 130	1	20
1,1-Dichloropropene 25.0 26.8 ug/L 107 70 - 130 8 20 1,2-Dibromo-3-Chloropropane 25.0 24.7 ug/L 99 70 - 136 6 20 Ethylene Dibromide 25.0 30.1 ug/L 121 70 - 130 13 20 Dibromomethane 25.0 26.2 ug/L 105 70 - 130 0 20 Dichlorodifluoromethane 25.0 23.8 ug/L 95 34 - 132 20 20 1,1-Dichloroethane 25.0 23.1 ug/L 92 70 - 130 13 20 1,2-Dichloroethane 25.0 25.7 ug/L 103 61 - 132 1 20 1,1-Dichloroethane 25.0 21.3 ug/L 85 64 - 128 16 20 cis-1,2-Dichloroethane 25.0 23.6 ug/L 94 70 - 130 13 20 trans-1,2-Dichloroethane 25.0 22.8 ug/L 94 70 - 130 15 20 trans-1,2-Dichloropropane 25.0 28.9 ug/	1,4-Dichlorobenzene	25.0	27.8		ug/L		111	70 - 130	0	20
1,2-Dibromo-3-Chloropropane 25.0 24.7 ug/L 99 70 - 136 6 20 Ethylene Dibromide 25.0 30.1 ug/L 121 70 - 130 13 20 Dibromomethane 25.0 26.2 ug/L 105 70 - 130 0 20 Dichlorodifluoromethane 25.0 23.8 ug/L 95 34 - 132 20 20 1,1-Dichloroethane 25.0 23.1 ug/L 92 70 - 130 13 20 1,2-Dichloroethane 25.0 25.7 ug/L 103 61 - 132 1 20 1,1-Dichloroethene 25.0 21.3 ug/L 85 64 - 128 16 20 cls-1,2-Dichloroethene 25.0 23.6 ug/L 94 70 - 130 13 20 trans-1,2-Dichloroptopane 25.0 28.9 ug/L 91 68 - 130 15 20 cis-1,3-Dichloropropene 25.0 30.1 ug/L 120 70 - 130 10 20 trans-1,3-Dichloropropene 25.0 31.1 <	1,3-Dichloropropane	25.0	31.1		ug/L		124	70 - 130	14	20
Ethylene Dibromide 25.0 30.1 ug/L 121 70 - 130 13 20 Dibromomethane 25.0 26.2 ug/L 105 70 - 130 0 20 Dichlorodifluoromethane 25.0 23.8 ug/L 95 34 - 132 20 20 1,1-Dichloroethane 25.0 23.1 ug/L 92 70 - 130 13 20 1,2-Dichloroethane 25.0 25.7 ug/L 103 61 - 132 1 20 1,1-Dichloroethene 25.0 21.3 ug/L 85 64 - 128 16 20 cis-1,2-Dichloroethene 25.0 23.6 ug/L 94 70 - 130 13 20 trans-1,2-Dichloroethene 25.0 22.8 ug/L 91 68 - 130 15 20 1,2-Dichloropropane 25.0 28.9 ug/L 115 70 - 130 2 20 cis-1,3-Dichloropropene 25.0 30.1 ug/L 124 70 - 140	1,1-Dichloropropene	25.0	26.8		ug/L		107	70 - 130	8	20
Dibromomethane 25.0 26.2 ug/L 105 70 - 130 0 20 Dichlorodifluoromethane 25.0 23.8 ug/L 95 34 - 132 20 20 1,1-Dichloroethane 25.0 23.1 ug/L 92 70 - 130 13 20 1,2-Dichloroethane 25.0 25.7 ug/L 103 61 - 132 1 20 1,1-Dichloroethene 25.0 21.3 ug/L 85 64 - 128 16 20 cis-1,2-Dichloroethene 25.0 23.6 ug/L 94 70 - 130 13 20 trans-1,2-Dichloroethene 25.0 22.8 ug/L 91 68 - 130 15 20 1,2-Dichloropropane 25.0 28.9 ug/L 115 70 - 130 2 20 cis-1,3-Dichloropropene 25.0 30.1 ug/L 124 70 - 140 14 20	1,2-Dibromo-3-Chloropropane	25.0	24.7		ug/L		99	70 - 136	6	20
Dichlorodifluoromethane 25.0 23.8 ug/L 95 34 - 132 20 20 1,1-Dichloroethane 25.0 23.1 ug/L 92 70 - 130 13 20 1,2-Dichloroethane 25.0 25.7 ug/L 103 61 - 132 1 20 1,1-Dichloroethene 25.0 21.3 ug/L 85 64 - 128 16 20 cis-1,2-Dichloroethene 25.0 23.6 ug/L 94 70 - 130 13 20 trans-1,2-Dichloroethene 25.0 22.8 ug/L 91 68 - 130 15 20 1,2-Dichloropropane 25.0 28.9 ug/L 115 70 - 130 2 20 cis-1,3-Dichloropropene 25.0 30.1 ug/L 120 70 - 130 10 20 trans-1,3-Dichloropropene 25.0 31.1 ug/L 124 70 - 140 14 20	Ethylene Dibromide	25.0	30.1		ug/L		121	70 - 130	13	20
1,1-Dichloroethane 25.0 23.1 ug/L 92 70 - 130 13 20 1,2-Dichloroethane 25.0 25.7 ug/L 103 61 - 132 1 20 1,1-Dichloroethane 25.0 21.3 ug/L 85 64 - 128 16 20 cls-1,2-Dichloroethane 25.0 23.6 ug/L 94 70 - 130 13 20 trans-1,2-Dichloroethane 25.0 22.8 ug/L 91 68 - 130 15 20 1,2-Dichloropropane 25.0 28.9 ug/L 115 70 - 130 2 20 cis-1,3-Dichloropropane 25.0 30.1 ug/L 120 70 - 130 10 20 trans-1,3-Dichloropropene 25.0 31.1 ug/L 124 70 - 140 14 20	Dibromomethane	25.0	26.2		ug/L		105	70 - 130	0	20
1,2-Dichloroethane 25.0 25.7 ug/L 103 61 - 132 1 20 1,1-Dichloroethene 25.0 21.3 ug/L 85 64 - 128 16 20 cis-1,2-Dichloroethene 25.0 23.6 ug/L 94 70 - 130 13 20 trans-1,2-Dichloroethene 25.0 22.8 ug/L 91 68 - 130 15 20 1,2-Dichloropropane 25.0 28.9 ug/L 115 70 - 130 2 20 cis-1,3-Dichloropropene 25.0 30.1 ug/L 120 70 - 130 10 20 trans-1,3-Dichloropropene 25.0 31.1 ug/L 124 70 - 140 14 20	Dichlorodifluoromethane	25.0	23.8		ug/L		95	34 - 132	20	20
1,1-Dichloroethene 25.0 21.3 ug/L 85 64 - 128 16 20 cis-1,2-Dichloroethene 25.0 23.6 ug/L 94 70 - 130 13 20 trans-1,2-Dichloroethene 25.0 22.8 ug/L 91 68 - 130 15 20 1,2-Dichloropropane 25.0 28.9 ug/L 115 70 - 130 2 20 cis-1,3-Dichloropropene 25.0 30.1 ug/L 120 70 - 130 10 20 trans-1,3-Dichloropropene 25.0 31.1 ug/L 124 70 - 140 14 20	1,1-Dichloroethane	25.0	23.1		ug/L		92	70 - 130	13	20
cis-1,2-Dichloroethene 25.0 23.6 ug/L 94 70 - 130 13 20 trans-1,2-Dichloroethene 25.0 22.8 ug/L 91 68 - 130 15 20 1,2-Dichloropropane 25.0 28.9 ug/L 115 70 - 130 2 20 cis-1,3-Dichloropropene 25.0 30.1 ug/L 120 70 - 130 10 20 trans-1,3-Dichloropropene 25.0 31.1 ug/L 124 70 - 140 14 20	1,2-Dichloroethane	25.0	25.7	•	ug/L		103	61 - 132	1	20
trans-1,2-Dichloroethene 25.0 22.8 ug/L 91 68 - 130 15 20 1,2-Dichloropropane 25.0 28.9 ug/L 115 70 - 130 2 20 cis-1,3-Dichloropropene 25.0 30.1 ug/L 120 70 - 130 10 20 trans-1,3-Dichloropropene 25.0 31.1 ug/L 124 70 - 140 14 20	1,1-Dichloroethene	25.0	21.3		ug/L		85	64 - 128	16	20
1,2-Dichloropropane 25.0 28.9 ug/L 115 70 - 130 2 20 cis-1,3-Dichloropropene 25.0 30.1 ug/L 120 70 - 130 10 20 trans-1,3-Dichloropropene 25.0 31.1 ug/L 124 70 - 140 14 20	cis-1,2-Dichloroethene	25.0	23.6		ug/L		94	70 - 130	13	20
cis-1,3-Dichloropropene 25.0 30.1 ug/L 120 70 - 130 10 20 trans-1,3-Dichloropropene 25.0 31.1 ug/L 124 70 - 140 14 20	trans-1,2-Dichloroethene	25.0	22.8		ug/L		91	68 - 130	15	20
trans-1,3-Dichloropropene 25.0 31.1 ug/L 124 70 - 140 14 20	1,2-Dichloropropane	25.0	28.9		ug/L		115	70 - 130	2	20
· ·	cis-1,3-Dichloropropene	25.0	30.1		ug/L	•	120	70 - 130	10	20
Ethylbenzene 25.0 25.7 ug/L 103 80 - 120 5 20	trans-1,3-Dichloropropene	25.0	31.1		ug/L		124	70 - 140	14	20
	Ethylbenzene	25.0	25.7		ug/L		103	80 - 120	5	20

Project/Site: Crown Chevrolet

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: LCSD 720-141332/6

Client: AMEC Environment & Infrastructure, Inc.

Matrix: Water

Analysis Batch: 141332

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

TestAmerica Job ID: 720-51298-1

Analysis Datoli. 141332	Spike Added -		LCSD Qualifier	Unit		%Rec	%Rec. Limits	RPD	RPD Limit
Analyte	25.0	20.7	Qualitier		<u>D</u>	%Rec 83	70 - 130		20
Hexachlorobutadiene				ug/L				8	
2-Hexanone	125	150		ug/L		120	60 - 164	16	20
Isopropylbenzene	25.0	25.6		ug/L		103	70 - 130	12	20
4-Isopropyltoluene	25.0	27.8		ug/L		111	70 - 130	4	20
Methylene Chloride	25.0	20.8		ug/L		83	70 - 147	16	20
4-Methyl-2-pentanone (MIBK)	125	135		ug/L		108	58 - 130	2	20
Naphthalene	25.0	22.0		ug/L		88	70 - 130	7	20
N-Propylbenzene	25.0	30.5		ug/L		122	70 - 130	1	20
Styrene	25.0	27.1		ug/L		109	70 - 130	2	20
1,1,1,2-Tetrachloroethane	25.0	25.9		ug/L		104	70 - 130	11	20
1,1,2,2-Tetrachloroethane	25.0	30.0		ug/L		120	70 - 130	2	20
Tetrachloroethene	25.0	28.3		ug/L		113	70 - 130	4	20
Toluene	25.0	26.6		ug/L		107	78 - 120	3	20
1,2,3-Trichlorobenzene	25.0	19.2		ug/L		77	70 - 130	7	20
1,2,4-Trichlorobenzene	25.0	21.7		ug/L		87	70 - 130	7	20
1,1,1-Trichloroethane	25.0	25.6		ug/L		102	70 - 130	12	20
1,1,2-Trichloroethane	25.0	30.5		ug/L		122	70 - 130	11	20
Trichloroethene	25.0	26.8		ug/L		107	70 - 130	4	20
Trichlorofluoromethane	25.0	21.3		ug/L		85	66 - 132	20	20
1,2,3-Trichloropropane	25.0	29.5		ug/L		118	70 - 130	5	20
1,1,2-Trichloro-1,2,2-trifluoroetha	25.0	21.7		ug/L		87	42 - 162	14	20
ne									
1,2,4-Trimethylbenzene	25.0	29.4		ug/L		118	70 - 132	2	20
1,3,5-Trimethylbenzene	25.0	29.8		ug/L		119	70 - 130	1	20
Vinyl acetate	25.0	36.6		ug/L		146	43 - 163	3	20
Vinyl chloride	25.0	25.9		ug/L		104	54 - 135	20	20
m-Xylene & p-Xylene	50.0	53,3		ug/L		107	70 - 142	6	20
o-Xylene	25.0	25.5		ug/L		102	70 - 130	10	20
2,2-Dichloropropane	25.0	27.3	•	ug/L		109	70 - 140	21	20

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	94		67 - 130
1,2-Dichloroethane-d4 (Surr)	88		75 ₋ 138
Toluene-d8 (Surr)	104		70 - 130

Lab Sample ID: LCSD 720-141332/8

Matrix: Water

Analysis Batch: 141332

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

1		Spike	LCSD	LCSD				%Rec.		RPD
1	Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
9000	Gasoline Range Organics (GRO)	500	484		ug/L		97	62 - 120	3	20
and of the same	-C5-C12									

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	95		67 - 130
1,2-Dichloroethane-d4 (Surr)	93		75 - 138
Toluene-d8 (Surr)	100		70 - 130

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-51298-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: MB 720-141443/4

Matrix: Water

Analysis Batch: 141443

Client Sample ID: Method Blank

Prep Type: Total/NA

Analysis Baton. 141440	МВ	МВ					
Analyte	Result	Qualifier RL	MDL Unit	D	Prepared	Analyzed	Dit Fac
Methyl tert-butyl ether	ND	0.50	ug/L			08/02/13 10:49	1
Acetone	ND	50	ug/L			08/02/13 10:49	1
Benzene	ND	0.50	ug/L			08/02/13 10:49	1
Dichlorobromomethane	ND	0.50	ug/L			08/02/13 10:49	1
Bromobenzene	ND	1.0	ug/L			08/02/13 10:49	1
Chlorobromomethane	ND	1.0	ug/L			08/02/13 10:49	1
Bromoform	ND	1.0	ug/L			08/02/13 10:49	1
Bromomethane	ND	1.0	ug/L			08/02/13 10:49	1
2-Butanone (MEK)	ND	50	ug/L			08/02/13 10:49	1
n-Butylbenzene	ND	1.0	ug/L			08/02/13 10:49	1
sec-Butylbenzene	ND	1.0	ug/L			08/02/13 10:49	1
tert-Butylbenzene	ND	1.0	ug/L			08/02/13 10:49	1
Carbon disulfide	ND	5.0	ug/L			08/02/13 10:49	1
Carbon tetrachloride	ND	0.50	ug/L			08/02/13 10:49	1
Chlorobenzene	ND	0.50	ug/L			08/02/13 10:49	1
Chloroethane	ND	1.0	ug/L		•	08/02/13 10:49	1
Chloroform	ND	1.0	ug/L			08/02/13 10:49	1
Chloromethane	ND	1.0	ug/L			08/02/13 10:49	1
2-Chlorotoluene	ND	0.50	ug/L			08/02/13 10:49	1
4-Chiarotoluene	ND	0.50	ug/L			08/02/13 10:49	1
Chlorodibromomethane	ND	0.50	ug/L			08/02/13 10:49	1
1,2-Dichlorobenzene	ND	0.50	ug/L			08/02/13 10:49	1
1,3-Dichlorobenzene	ND	0.50	ug/L			08/02/13 10:49	1
1,4-Dichlorobenzene	ND	0.50	ug/L			08/02/13 10:49	1
1,3-Dichloropropane	ND	1.0	ug/L			08/02/13 10:49	1
1,1-Dichloropropene	ND	0.50	ug/L			08/02/13 10:49	1
1,2-Dibromo-3-Chloropropane	ND	1.0	ug/L			08/02/13 10:49	1
Ethylene Dibromide	ND	0.50	ug/L			08/02/13 10:49	1
Dibromomethane	ND	0.50	ug/L			08/02/13 10:49	1
Dichlorodifluoromethane	ND	0.50	ug/L			08/02/13 10:49	1
1,1-Dichloroethane	ND	0.50	ug/L			08/02/13 10:49	1
1,2-Dichloroethane	ND	0.50	ug/L			08/02/13 10:49	1
1,1-Dichloroethene	ND	0.50	ug/L			08/02/13 10:49	1
cis-1,2-Dichloroethene	ND	0.50	ug/L			08/02/13 10:49	1
trans-1,2-Dichloroethene	ND	0.50	ug/L			08/02/13 10:49	1
1,2-Dichloropropane	ND	0.50	ug/L			08/02/13 10:49	1
cis-1,3-Dichloropropene	ИD	0.50	ug/L			08/02/13 10:49	1
trans-1,3-Dichloropropene	ND	0.50	ug/L			08/02/13 10:49	1
Ethylbenzene	ND	0.50	ug/L			08/02/13 10:49	1
Hexachlorobutadiene	ND	1.0	ug/L			08/02/13 10:49	1
2-Hexanone	ND	50	ug/L			08/02/13 10:49	1
Isopropylbenzene	ND	0.50	ug/L			08/02/13 10:49	. 1
4-isopropyltaluene	ND	1.0	ug/L			08/02/13 10:49	1
Methylene Chloride	ND	5.0	ug/L "			08/02/13 10:49	1
4-Methyl-2-pentanone (MIBK)	ND	50	ug/L .:		4	08/02/13 10:49	1
Naphthalene	ND	1.0	ug/L			08/02/13 10:49	1
N-Propylbenzene	ND	1.0	ug/L			08/02/13 10:49	1
Styrene	ND	0.50	ug/L			08/02/13 10:49	1

Project/Site: Crown Chevrolet

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: MB 720-141443/4

Matrix: Water

Analysis Batch: 141443

Client Sample ID: Method Blank Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachioroethane	ND		0.50		ug/L			08/02/13 10:49	1
1,1,2,2-Tetrachioroethane	ND	-	0.50		ug/L		-	08/02/13 10:49	1
Tetrachloroethene	ND		0.50		ug/L			08/02/13 10:49	1
Toluene	ND		0.50		ug/L			08/02/13 10:49	1
1,2,3-Trichlorobenzene	ND:		1.0		ug/L			08/02/13 10:49	1
1,2,4-Trichlorobenzene	ND		1.0		ug/L			08/02/13 10:49	1
1.1,1-Trichloroethane	ND		0.50		ug/L			08/02/13 10:49	1
1,1,2-Trichloroethane	ND		0.50		ug/L			08/02/13 10:49	1
Trichloroethene	ND		0.50		ug/L			08/02/13 10:49	1
Trichlorofluoromethane	ND		1.0		ug/L			08/02/13 10:49	1
1,2,3-Trichloropropane	ND		0.50		ug/L			08/02/13 10:49	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	,	0.50		ug/L			08/02/13 10:49	1
1,2,4-Trimethylbenzene	ND		0.50		ug/L		-	08/02/13 10:49	1
1,3,5-Trimethylbenzene	ND		0.50		ug/L			08/02/13 10:49	1
Vinyl acetate	ND		10		ug/L			08/02/13 10:49	1
Vinyl chloride	ND		0.50		ug/L			08/02/13 10:49	. 1
Xylenes, Total	ND		1.0		ug/L			08/02/13 10:49	1
2,2-Dichloropropane	ND		0.50		ug/L			08/02/13 10:49	1
Gasoline Range Organics (GRO) -C5-C12	ND	•	50		ug/L			08/02/13 10:49	1

MB	MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	93		67 - 130		08/02/13 10:49	
1,2-Dichloroethane-d4 (Surr)	91		75 - 138	•	08/02/13 10:49	1
Toluene-d8 (Surr)	100		70 - 130		08/02/13 10:49	1

Lab Sample ID: LCS 720-141443/12

Matrix: Water

Analysis Batch: 141443

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

· ·		Spike	LCS	LCS				%Rec.	
-	Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
and seems	Gasoline Range Organics (GRO)	500	520		ug/L	_	104	62 - 120	
	-C5-C12								

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	95		67 - 130
1,2-Dichloroethane-d4 (Surr)	90		75 - 138
Toluene-d8 (Surr)	. 100		70 - 130

Lab Sample ID: LCS 720-141443/5

Matrix: Water

Analysis Batch: 141443

Client Sample ID: Lab Control Sample Prep Type: Total/NA

,,	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	Đ	%Rec	Limits	
Methyl tert-butyl ether	25.0	26.8		ug/L	_	107	62 - 130	
Acetone	125	112		ug/L		90	26 - 180	
Benzene	25.0	26.6		ug/L		106	79 - 130	
Dichlorobromomethane	25.0	28.8		ug/L		115	70 - 130	

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-51298-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: LCS 720-141443/5

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Analysis	Batch:	141443
----------	--------	--------

Matrix: Water

Analysis Batch: 141443	Spike	LCS	LCS			%Rec.
Analyte	Added		Qualifier Unit	D	%Rec	Limits
Bromobenzene	25.0	30.7	ug/L		123	70 - 130
Chlorobromomethane	25.0	24.6	ug/L		98	70 - 130
Bromoform	25.0	28.1	ug/L		112	68 - 136
Bromomethane	25.0	23.4	ug/L		93	43 - 151
2-Butanone (MEK)	125	147	ug/L		118	54 - 130
n-Butylbenzene	25.0	28.3	ug/L		113	70 - 142
sec-Butylbenzene	25.0	29.4	ug/L		117	70 - 134
tert-Butylbenzene	25.0	31.3	ug/L		125	70 - 135
Carbon disulfide .	25.0	18.4	ug/L		74	58 ₋ 130
Carbon tetrachloride	25.0	27.5	ug/L		110	70 - 146
Chlarobenzene	25.0	28.3	ug/L		113	70 - 130
Chloroethane	25.0	23.8	ug/L	**	95	62 - 138
Chloroform	25.0	25.5	ug/L		102	70 - 130
Chloromethane	25.0	23,8	ug/L		95	52 - 175
2-Chlorotoluene	25.0	30.5	ug/L		122	70 - 130
4-Chlorotoluene	25.0	30.3	ug/L		121	70 - 130
Chlorodibromomethane	25.0	29.9	ug/L		120	70 - 145
1,2-Dichlorobenzene	25.0	26.8	ug/L	•	107	70 - 130
1,3-Dichlorobenzene	25.0	, 28.6	ug/L		115	70 - 130
1,4-Dichlorobenzene	25.0	28.3	ug/L		113	70 - 130
1,3-Dichloropropane	25.0	33.1	* ug/L		132	70 - 130
1,1-Dichloropropene	25.0	28.5	ug/L		114	70 - 130
1,2-Dibromo-3-Chloropropane	25.0	25.9	ug/L		104	70 - 136
Ethylene Dibromide	25.0	32.1	ug/L		128	70 - 130
Dibromomethane	25.0	27.8	ug/L		111	70 - 130
Dichlorodifluoromethane	25.0	24.8	ug/L		99	34 - 132
1,1-Dichloroethane	25.0	24.5	ug/L		98	70 - 130
1,2-Dichloroethane	25.0	27.5	ug/L		110	61 - 132
1,1-Dichloroethene	25.0	22.9	ug/L		91	64 - 128
cis-1,2-Dichloroethene	25.0	24.7	ug/L		99	70 - 130
trans-1,2-Dichloroethene	25.0	24.3	ug/L		97	68 - 130
1,2-Dichloropropane	25.0	30.5	ug/L		122	70 - 130
cis-1,3-Dichloropropene	. 25.0	31.4	ug/L		125	70 - 130
trans-1,3-Dichloropropene	25.0	32.4	ug/L		129	70 - 140
Ethylbenzene	25.0	26.9	ug/L		108	80 - 120
Hexachlorobutadiene	25.0	21.9	ug/L		88	70 - 130
2-Hexanone	125	156	ug/L		124	60 - 164
Isopropyibenzene	25.0	26.7	ug/L		107	70 - 130
4-Isopropyltoluene	25.0	29.0	ug/L		116	70 - 130
Methylene Chloride	25.0	22.4	ug/L		90	70 - 147
4-Methyl-2-pentanone (MIBK)	125	137	ug/L		110	58 - 130
Naphthalene	25.0	23.2	ug/L		93	70 - 130
N-Propylbenzene	25.0	31.7	ug/L		127	70 - 130
Styrene	25.0	27.8	ug/L		111	70 - 130
1,1,1,2-Tetrachioroethane	25.0	26.8	ug/L		107	70 _ 130
1,1,2,2-Tetrachloroethane	25.0	31.0	ug/L		124	70 - 130
Tetrachloroethene	25.0	30.1	ug/L		120	70 - 130
Toluene	25.0	27.6	ug/L		111	78 - 120

TestAmerica Job ID: 720-51298-1

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: LCS 720-141443/5

Matrix: Water

Analysis Batch: 141443

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Analysis Batch: 141445	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,2,3-Trichlorobenzene	25.0	20.5		ug/L		82	70 - 130	
1,2,4-Trichlorobenzene	25.0	22.9		ug/L		91	70 - 130	
1,1,1-Trichloroethane	25.0	27.4		ug/L		110	70 - 130	
1,1,2-Trichloroethane	25.0	32.1		ug/L		128	70 - 130	
Trichloroethene	25.0	28.4		ug/L		114	70 - 130	
Trichlorofluoromethane	25.0	21.5		ug/L		86	66 - 132	44
1,2,3-Trichloropropane	25.0	30.7		ug/L		123	70 - 130	1
1,1,2-Trichloro-1,2,2-trifluoroetha	25.0	22.9	•	ug/L		92	42 - 162	-
ne ,			,					
1,2,4-Trimethylbenzene	25.0	30.3		ug/L		121	70 - 132	
1,3,5-Trimethylbenzene	25.0	30.9		ug/L		124	70 - 130	
Vinyl acetate	25.0	37.4		ug/L		149	43 - 163	
Vinyl chloride	25.0	25.2		ug/L		101	54 ₋ 135	
m-Xylene & p-Xylene	50.0	55.0		ug/L		110	70 - 142	
o-Xylene	25.0	26.4		ug/L		106	70 - 130	
2,2-Dichioropropane	25.0	28.1		ug/L		112	70 - 140	

•	LCS	LCS	-
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	95		67 - 130
1,2-Dichloroethane-d4 (Surr)	89		75 - 138
Toluene-d8 (Surr)	105		70 - 130

Lab Sample ID: LCSD 720-141443/13

Matrix: Water

-C5-C12

Analysis Batch: 141443

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics (GRO)	500	535		ug/L		107	62 - 120	3	20

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	96		67 - 130
1,2-Dichloroethane-d4 (Surr)	90		75 ₋ 138
Toluene-d8 (Surr)	100		70 - 130

Lab Sample ID: LCSD 720-141443/6

Matrix: Water

Analysis Ratch: 141443

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Allalysis Datell: 141440							
•	Spike	LCSD LCSD			%Rec.		RPD
Analyte	Added	Result . Qualifier	Unit	D %Rec	Limits	RPD	Limit
Methyl tert-butyl ether	25.0	26.9	ug/L	108	62 - 130	O	20
Acetone	125	116	ug/L	93	26 - 180	3	30
Benzene	25.0	27.3	ug/L	109	79 - 130	3	20
Dichlorobromomethane	25.0	29.0	ug/L	116	70 - 130	1	20
Bromobenzene	.25.0	30.8	ug/L	123	70 - 130	0	20
Chlorobromomethane	25.0	25.2	ug/L	101	70 - 130	2	20
Bromoform	25.0	28.1	ug/L	113	68 - 136	Ö	20
Bromomethane	25.0	25.0	ug/L	100	43 - 151	7	20

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-51298-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: LCSD 720-141443/6

Matrix: Water

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Analysis Batch: 141443	•							3 po. 10	••••
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
2-Butanone (MEK)	125	146		ug/L		117	54 - 130	1	20
n-Butylbenzene	25.0	28.7		ug/L		115	70 - 142	2	20
sec-Butylbenzene	25.0	30.1		ug/L		120	70 - 134	2	20
tert-Butylbenzene	25.0	32.1		ug/L		128	70 - 135	3	20
Carbon disulfide	25.0	19.5		ug/L		78	58 - 130	6	20
Carbon tetrachloride	25.0	28.3		ug/L		113	70 - 146	3	20
Chlorobenzene	25.0	28.9		ug/L		116	70 - 130	2	20
Chloroethane	25.0	25.3		ug/L		101	62 - 138	6	20
Chloroform	25.0	26.1		ug/L		104	70 - 130	2	20
Chloromethane	25.0	25.9		ug/L		103	52 - 175	. 8	20
2-Chlorotoluene	25.0	31.0		ug/L		124	70 - 130	2	20
4-Chiorotoluene	25.0	31.0		ug/L		124	70 - 130	2	20
Chlorodibromomethane	25.0	29.8		ug/L		119	70 - 145	0	20
1,2-Dichlorobenzene	25.0	27.2		ug/L		109	70 - 130	2	20
1,3-Dichlorobenzene	25.0	29.2		ug/L		117	70 - 130	2	20
1.4-Dichlorobenzene	25.0	28.8		ug/L		115	70 - 130	2	20
1,3-Dichloropropane	25.0	32.6		ug/L		130	70 - 130	- 1	20
1,1-Dichloropropene	25.0	29.3		ug/L		117	70 - 130	2	20
1,2-Dibromo-3-Chloropropane	25.0	25.4		ug/L		102	70 - 136	2	20
Ethylene Dibromide	25.0	31.5		ug/L		126	70 - 130	2	20
Dibromomethane	25.0	27.9		ug/L		111	70 - 130	0	20
Dichlorodifluoromethane	25.0	26.4		ug/L		106	34 - 132	6	20
1,1-Dichloroethane	25.0	25.1		ug/L		100	70 - 130	3	20
1,2-Dichloroethane	25.0	27.5		ug/L		110	61 - 132	0	20
1,1-Dichloroethene	25.0	23.5		ug/L		94	64 - 128	3	20
cis-1,2-Dichloroethene	25.0	25.4		ug/L		102	70 - 130	3	20
trans-1,2-Dichloroethene	25.0	25.1		ug/L		100	68 - 130	3	20
1,2-Dichloropropane	25.0	30.8		ug/L		123	70 - 130	1	20
cis-1,3-Dichloropropene	25.0	31.4		ug/L		126	70 - 130	Ö	20
trans-1,3-Dichloropropene	25.0	32.4		ug/L		130	70 - 140	0	20
Ethylbenzene	25.0	27.7		ug/L		111	80 - 120	3	20
Hexachlorobutadiene	25.0	22.1		ug/L		88	70 - 130	1	20
2-Hexanone	125	150		ug/L		120	60 - 164	4	20
Isopropylbenzene	25.0	27.4		ug/L		110	70 - 130	3	20
4-isopropyltoluene	25.0	29.7		ug/L		119	70 - 130	2	20
Methylene Chloride	25.0	23.1		ug/L		93	70 - 147	3	20
4-Methyl-2-pentanone (MIBK)	125	134		ug/L		107	58 - 130	2	20
Naphthalene	25.0	23.2		ug/L		93	70 - 130	0	20
N-Propyibenzene	25.0	32.2		ug/L		129	70 - 130	- 2	20
Styrene	25.0	28.6		ug/L		114	70 - 130	3	20
1,1,1,2-Tetrachioroethane	25.0	27.4		ug/L		110	70 - 130	2	20
1,1,2,2-Tetrachioroethane	25.0	30.6		ug/L		122	70 - 130	1	20
Tetrachloroethene	25.0	30.8		ug/L		123	70 - 130	2	20
Toluene	25.0	28.7		ug/L		115	78 - 120	4	20
1,2,3-Trichlorobenzene	25.0	20.5		ug/L		82	70 - 120	0	20
1.2.4-Trichlorobenzene	25.0	23.2		ug/L		93	70 - 130	1	20
1,1,1-Trichloroethane	25.0	28.3		ug/L		113	70 - 130 70 - 130	3	20
1,1,2-Trichloroethane	25.0	31.8		ug/L		127	70 - 130 70 - 130	1	20
1, 1, £-11101101010110	2J.U	31.0		uyıc		121	10-130	ı	20

TestAmerica Job ID: 720-51298-1

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: LCSD 720-141443/6

Matrix: Water

Analysis Batch: 141443

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Analysis Batch: 141440	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Trichloroethene	25.0	29.2		ug/L		117	70 - 130	3	20
Trichlorofluoromethane	25.0	22.3		ug/L	•	89	66 - 132	4	20
1,2,3-Trichloropropane	25.0	30.2		ug/L		121	70 - 130	2	20
1,1,2-Trichloro-1,2,2-trifluoroetha	25.0	23.5		ug/L		94	42 - 162	3 .	20
ne									
1,2,4-Trimethylbenzene	25.0	30.9		ug/L		123	70 - 132	2	20
1,3,5-Trimethylbenzene	25.0	31.4		ug/L		126	70 - 130	2	20
Vinyl acetate	25.0	37.1		ug/L		148	43 - 163	1	20
Vinyl chloride	25.0	27.9		ug/L		112	54 - 135	10	20
m-Xylene & p-Xylene	50.0	56.6		ug/L		113	70 - 142	3	20
o-Xylene	25.0	27.2		ug/L		109	70 - 130	3	20
2,2-Dichloropropane	25.0	30.2	**	ug/L		121	70 - 140	7	20

LCSD LCSD

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene	95	67 - 130
1,2-Dichloroethane-d4 (Surr)		~ 75÷138
Toluene-d8 (Surr)	104	70 - 130

Lab Sample ID: MB 720-141619/4

Matrix: Water

Analysis Batch: 141619

Client Sample ID: Method Blank

Prep Type: Total/NA

•	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND		0.50		ug/L			08/06/13 08:52	1
Acetone	. ND		50		ug/L	•		08/06/13 08:52	1
Benzene	ND		0.50		ug/L			08/06/13 08:52	1
Dichlorobromomethane	ND		0.50		ug/L			08/06/13 08:52	1
Bromobenzene	ND		1.0		ug/L			08/06/13 08:52	1
Chlorobromomethane	ND		1.0		ug/L			08/06/13 08:52	1
Bromoform	ND		1.0		ug/L			08/06/13 08:52	1
Bromomethane	ND		1.0		ug/L			08/06/13 08:52	1
2-Butanone (MEK)	ND		50		ug/L			08/06/13 08:52	1
n-Butylbenzene	ND		1.0		ug/L			08/06/13 08:52	1
sec-Butylbenzene	ND		1.0		ug/L			08/06/13 08:52	1
tert-Butylbenzene	ND		1,0		ug/L			08/06/13 08:52	1
Carbon disulfide	ND		5.0		ug/L			08/06/13 08:52	1
Carbon tetrachloride	ND		0.50		ug/L			08/06/13 08:52	1
Chlorobenzene	ND		0.50		ug/L			08/06/13 08:52	1
Chloroethane	ND		1.0		ug/L			08/06/13 08:52	1
Chloroform	ND		1.0		ug/L			08/06/13 08:52	1
Chloromethane	ND		1.0		ug/L			08/06/13 08:52	1
2-Chlorotoluene	ND	•	0.50	-	ug/L			08/06/13 08:52	1
4-Chiorotoluene	ND		0.50		ug/L			08/06/13 08:52	1
Chlorodibromomethane	ND		0.50		ug/L			08/06/13 08:52	.1
1,2-Dichlorobenzene	ND		0.50		ug/L			08/06/13 08:52	1
1,3-Dichlorobenzene	ND		0.50		ug/L			08/06/13 08:52	1
1,4-Dichlorobenzene	ND		0.50		ug/L			08/06/13 08:52	1
1,3-Dichloropropane	ND		1.0		ug/L	,		08/06/13 08:52	1

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-51298-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: MB 720-141619/4

Matrix: Water

Surrogate

4-Bromofluorobenzene

Toluene-d8 (Surr)

1,2-Dichloroethane-d4 (Surr)

Analysis Batch: 141619

Client Sample ID: Method Blank

Prep Type: Total/NA

A L	MB M		68751 11-14	_	D	A	S
Analyte	Result Q		MDL Unit	<u>D</u>	Prepared	Analyzed	Dil Fa
1,1-Dichloropropene	ND	0.50	ug/L			08/06/13 08:52	•
1,2-Dibromo-3-Chloropropane	ND	1.0	ug/L			08/06/13 08:52	•
Ethylene Dibromide	ND	0.50	ug/L		-	08/06/13 08:52	1
Dibromomethane	ND	0.50	ug/L			08/06/13 08:52	1
Dichlorodifluoromethane	ND	0.50	ug/L			08/06/13 08:52	. 1
1,1-Dichloroethane	ND	0.50	ug/L			08/06/13 08:52	1
1,2-Dichloroethane	ND	0.50	ug/L		•	08/06/13 08:52	1
1,1-Dichloroethene	ND	0.50	ug/L			08/06/13 08:52	. 1
cis-1,2-Dichloroethene	ND	0.50	ug/L			08/06/13 08:52	1
rans-1,2-Dichloroethene	ND	0.50	ug/L			08/06/13 08:52	1
1,2-Dichloropropane	ND	0.50	ug/L			08/06/13 08:52	1
cis-1,3-Dichloropropene	ND	0.50	ug/L			08/06/13 08:52	1
rans-1,3-Dichloropropene	ND	0.50	ug/L			08/06/13 08:52	1
Ethylbenzene	ND	0.50	ug/L			08/06/13 08:52	1
lexachlorobutadiene	ND	1.0	ug/L		-	08/06/13 08:52	1
2-Hexanone	ND	50	ug/L			08/06/13 08:52	. 1
sopropylbenzene	ND	0.50	ug/L			08/06/13 08:52	. 1
-Isopropyltoluene	ND	1.0	ug/L		-	08/06/13 08:52	1
fethylene Chloride	ND	5.0	ug/L			08/06/13 08:52	1
-Methyl-2-pentanone (MIBK)	ND	50	ug/L			08/06/13 08:52	1
laphthalene	ND	1.0	ug/L			08/06/13 08:52	1
I-Propylbenzene	ND	1.0	ug/L			08/06/13 08:52	1
Styrene	ND	0.50	ug/L		•	08/06/13 08:52	1
,1,1,2-Tetrachloroethane	ND	0.50	ug/L		•	08/06/13 08:52	1
,1,2,2-Tetrachloroethane	ND	. 0.50	ug/L			08/06/13 08:52	1
etrachloroethene	ND	0.50	ug/L			08/06/13 08:52	1
foluene.	ND	0.50	ug/L			08/06/13 08:52	1
,2,3-Trichlorobenzene	ND	1.0	ug/L			08/06/13 08:52	1
,2,4-Trichlorobenzene	ND	1.0	ug/L			08/06/13 08:52	1
,1,1-Trichloroethane	ND	0.50	ug/L		-	08/06/13 08:52	1
,1,2-Trichloroethane	ND	0.50	ug/L			08/06/13 08:52	1
richloroethene	ND	0.50	ug/L			08/06/13 08:52	. 1
richlorofluoromethane	ND	1.0	ug/L			08/06/13 08:52	1
,2,3-Trichloropropane	ND	0.50	ug/L		•	08/06/13 08:52	1
,1,2-Trichloro-1,2,2-trifluoroethane	ND	0.50	ug/L			08/06/13 08:52	1
,2,4-Trimethylbenzene	ND	0.50	ug/L		-	08/06/13 08:52	
,3,5-Trimethylbenzene	ND	0.50	ug/L			08/06/13 08:52	1
inyi acetate	ND	10	ug/L			08/06/13 08:52	1
inyl chloride	ND	0.50	ug/L			08/06/13 08:52	1
Vylenes, Total	ND	1.0	ug/L			08/06/13 08:52	1
2,2-Dichloropropane	ND	0.50	ug/L			08/06/13 08:52	1
Sasoline Range Organics (GRO)	ND	50	ug/L		-	08/06/13 08:52	1
C5-C12	146		ug: E			30,00, 10 00.0L	•

08/06/13 08:52 1 08/06/13 08:52 1

Analyzed

08/06/13 08:52

Prepared

TestAmerica Pleasanton

Limits

67 - 130

75 - 138

70 - 130

MB MB

100

78

95

Qualifier

%Recovery

DII Fac

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-51298-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: LCS 720-141619/5

Matrix: Water

Analysis Batch: 141619

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS	LCS					%Rec.
Analyte	Added	Result	Qualifier	Unit		D	%Rec	Limits
Methyl tert-butyl ether	25.0	24.1		ug/L		_	96	62 - 130
Acetone	125	106		ug/L			85	26 - 180
Benzene	25.0	24.3		ug/L			97	79 - 130
Dichlorobromomethane	25.0	23.0	•	ug/L			92	70 - 130
Bromobenzene	25.0	25.9		ug/L			104	70 - 130
Chlorobromomethane	25.0	26.1		ug/L			104	70 - 130
Bromoform	2 5.0	26.6		ug/L			106	68 - 136
Bromomethane	25.0	23.4		ug/L			94	43 - 151
2-Butanone (MEK)	125	116		ug/L			93	54 - 130
n-Butylbenzene	25.0	25.4		ug/L			102	70 - 142
sec-Butylbenzene	25.0	25.9		ug/L			104	70 - 134
tert-Butylbenzene	25.0	25.8		ug/L			103	70 - 135
Carbon disulfide	25.0	19.6		ug/L			7 <u>9</u>	58 - 130
Carbon tetrachloride	25.0	20.7		ug/L			83	70 - 146
Chlorobenzene	25.0	26.8		ug/L			107	70 - 130
Chloroethane	25.0	24.1		ug/L			97	62 - 138
Chloroform	25.0	22.7		ug/L			91	70 - 130
Chloromethane	25.0	20.8		ug/L			83	52 - 175
2-Chlorotoluene	25.0	24.8		ug/L			99	70 - 130
4-Chlorotoluene	25.0	24.0		ug/L			96	70 - 130
Chlorodibromomethane	25.0	25.4		ug/L			101	70 - 145
1,2-Dichlorobenzene	25.0	27.0		ug/L			108	70 - 130
1,3-Dichlorobenzene	25.0	27.7		ug/L			111	70 - 130
1.4-Dichlorobenzene	25.0	27.3		ug/L			109	70 - 130
1,3-Dichloropropane	25.0	25.5		ug/L			102	70 - 130
1,1-Dichloropropene	25.0	24.2		ug/L	•		97	70 - 130
1,2-Dibromo-3-Chloropropane	25.0	26.2		ug/L			105	70 - 136
Ethylene Dibromide	25,0	26.3		ug/L			105	70 - 130
Dibromomethane	25.0	23.9		ug/L			96	70 - 130
Dichlorodiffuoromethane	25.0	23.9		ug/L			95	34 - 132
1,1-Dichloroethane	25.0	22.3		ug/L			89	70 - 130
1,2-Dichloroethane	25.0	20.6	•	ug/L			82	61 - 132
1,1-Dichloroethene	25.0	22.1	•	ug/L			89	64 - 128
cis-1,2-Dichloroethene	25.0 25.0	22.1		ug/L			89	70 - 130
trans-1,2-Dichloroethene	25.0	24.3					97	68 - 130
				ug/L				
1,2-Dichloropropane cis-1,3-Dichloropropane	25.0 25.0	25.3 26.3		ug/L			101 105	70 - 130 70 - 130
trans-1,3-Dichloropropene	25.0	24.4		ug/L			98	70 - 140
				ug/L				
Ethylbenzene	25.0	24.4		ug/L			98	80 - 120
Hexachlorobutadiene	25.0	24.6		ug/L			98	70 - 130
2-Hexanone	125	94.2		ug/L			75	60 - 164
sopropylbenzene	25.0	26.1		ug/L			105	70 - 130
4-isopropyltoluene	25.0	26.0		ug/L			104	70 - 130
Methylene Chloride	25.0	23.6		ug/L			94	70 - 147
4-Methyl-2-pentanone (MIBK)	125	97.9		ug/L			78	58 - 130
Naphthalene	25.0	27.7		ug/L			111	70 - 130
N-Propylbenzene	25.0	25.5		ug/L			102	70 - 130
Styrene	25.0	28.1		ug/L			112	70 - 130

QC Sample Results

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-51298-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample	ID: L	.CS 72	0-1416	19/5
------------	-------	--------	--------	------

Matrix: Water

Analysis Batch: 141619

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

•	Spike	LCS	LCS			%Rec.
Analyte	Added	Result	Qualifier Unit	D	%Rec	Limits
1,1,1,2-Tetrachloroethane	25.0	25.4	ug/L		102	70 - 130
1,1,2,2-Tetrachloroethane	25.0	26.6	ug/L		107	70 - 130
Tetrachloroethene	25.0	25.4	ug/L		102	70 - 130
Toluene	25.0	25.5	ug/L	-	102	78 ₋ 120
1,2,3-Trichlorobenzene	25.0	26.7	ug/L		107	70 - 130
1,2,4-Trichlorobenzene	25.0	27.4	ug/L		110	70 - 130
1,1,1-Trichloroethane	25.0	20.7	ug/L		83	70 - 130
1,1,2-Trichloroethane	25.0	27.3	ug/L		109	70 - 130
Trichloroethene	25.0	26.3	ug/L		105	70 - 130
Trichlorofluoromethane	25.0	20.9	ug/L		84	66 - 132
1,2,3-Trichloropropane	25.0	24.3	ug/L		97	70 - 130
1,1,2-Trichloro-1,2,2-trifluoroetha	25,0	23.3	ug/L		93	42 - 162
18	05.0		0		404	
1,2,4-Trimethylbenzene	25.0	25.9	ug/L		104	70 - 132
1,3,5-Trimethylbenzene	25.0	25.8	ug/L		103	70 - 130
Vinyl acetate	25.0	23.9	ug/L		95	43 - 163
Vinyl chloride	25.0	23.3	ug/L		93	54 - 135
n-Xylene & p-Xylene	50.0	48.7	ug/L		97	70 - 142
o-Xylene	25.0	25.0	ug/L		100	70 - 130
2,2-Dichloropropane	25.0	22.1	ug/L		88	70 - 140

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	99		67 - 130
1,2-Dichloroethane-d4 (Surr)	75		75 - 138
Toluene-d8 (Surr)	98		70 - 130

Lab Sample ID: LCS 720-141619/7

Matrix: Water

Analysis Batch: 141619

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

-	Spłke	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics (GRO)	500	417		ug/L	_	83	62 - 120	
-C5-C12								

LCS LCS %Recovery Qualifier Limits Surrogate 4-Bromofluorobenzene 98 67 - 130 75 - 138 1,2-Dichloroethane-d4 (Surr) 74 X Toluene-d8 (Surr) 95 70 - 130

Lab Sample ID: LCSD 720-141619/6

Matrix: Water

Analysis Batch: 141619

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Methyl tert-butyl ether	25.0	24.5		ug/L		98	62 - 130	2	20
Acetone	125	104		ug/L		83	26 - 180	2	30
Benzene	25.0	24.0		ug/L		96	79 - 130	1	20
Dichlorobromomethane	25.0	22.7	-	ug/L		91	70 - 130	1	20

Project/Site: Crown Chevrolet

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: LCSD 720-141619/6

Matrix: Water

Analysis Batch: 141619

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

	Spike	LCSD	LCSD				%Rec.		RPC
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD.	Limi
Bromobenzene	25.0	27.1	***************************************	ug/L		109	70 - 130	5	20
Chlorobromomethane	25.0	26.4		ug/L		106	70 - 130	1	20
Bromoform	25.0	26.8		ug/L		107	68 - 136	1	20
3romomethane ·	25.0	23.1		ug/L		93	43 - 151	1	20
-Butanone (MEK)	125	127		ug/L		102	54 - 130	9	20
-Butylbenzene	25.0	25.6		ug/L		102	70 - 142	0	20
ec-Butylbenzene	25.0	26.6		ug/L		106	70 - 134	2	20
ert-Butylbenzene	25.0	26.5		ug/L		106	70 - 135	3	20
Carbon disulfide	25.0	20.0		ug/L		80	58 - 130	ż	20
Carbon tetrachloride	25.0	20.6		ug/L		83	70 - 146	0	20
hlorobenzene	25.0	26.5		ug/L		106	70 - 130	1	20
Chloroethane	25.0	23,5		ug/L		94	62 - 138	3	20
Chloroform	25.0	22.6		ug/L		90	70 - 130	0	20
Chloromethane	25.0	20.0		ug/L		80	52 - 175	4	20
-Chlorotoluene	25.0	25.7		ug/L		103	70 - 130	3	20
-Chlorotoluene	25.0	24.8		ug/L		99	70 - 130	3	. 20
Chlorodibromomethane	25.0	25.2	4 - A - A - A - A - A - A - A - A - A -	ug/L		101	70 - 145		2
,2-Dichlorobenzene	25.0	28.1		ug/L		112	70 - 130	4	20
,3-Dichlorobenzene	25.0	28.2		ug/L		113	70 - 130	. 7	20
,4-Dichlorobenzene	25.0 25.0	27.6		ug/L ug/L		111	70 - 130	1	20
,3-Dichloropropane	25.0	25.4				101	70 - 130	Ö	20
• •	25.0	24.1		ug/L		96	70 - 130	0	20
,1-Dichloropropene	25.0	27.8		ug/L			70 - 136 70 - 136	6	20
,2-Dibromo-3-Chioropropane	25.0 25.0	26.7		ug/L		111	70 - 130	. 2	20
thylene Dibromide				ug/L	•	107			
ibromomethane	25.0	24.7		ug/L		99	70 - 130	3	20
ichlorodifluoromethane	25.0	22.9		ug/L		92	34 - 132	4	20
1-Dichloroethane	25.0	22.2	**	ug/L		89	70 - 130	0	20
,2-Dichloroethane	25.0	20.9		ug/L		84	61 - 132	2	20
1-Dichloroethene	25.0	22,3		ug/L		89	64 - 128	1	20
is-1,2-Dichloroethene	25.0	22.1		ug/L		88	70 - 130	1	20
ans-1,2-Dichloroethene	25.0	24.3		ug/L		97	68 - 130	0	20
,2-Dichloropropane	25.0	25.4		ug/L		102	70 - 130	. 1	. 20
is-1,3-Dichloropropene	25.0	26.4		ug/L		106	70 - 130	0	20
ans-1,3-Dichloropropene	25.0	25.1		ug/L		100	70 - 140	3	21
thylbenzene	25.0	24.1		ug/L		96	80 - 120	1	. 21
exachlorobutadiene	25.0	24.2		ug/L		97	70 - 130	2	2
-Hexanone	125	97.1		ug/L		78	60 - 164	3	2
opropylbenzene	25.0	25.5		ug/L		102	70 - 130	3	21
Isopropyltoluene	25.0	26.1		ug/L		105	70 - 130	1	2
ethylene Chloride	25.0	23.4		ug/L		94	70 - 147	1	2
Methyl-2-pentanone (MIBK)	125	101		ug/L		81	58 - 130	3	20
aphthalene	25.0	28.7		ug/Ľ		115	70 ₋ 130	4	20
-Propylbenzene	25.0	26.5		ug/L		106	70 - 130	4	20
tyrene	25.0	27.9		ug/L		112	70 - 130	1	20
1,1,2-Tetrachloroethane	25.D	25.3		ug/L		101	70 - 130	0	20
1,2,2-Tetrachloroethane	25.0	28.9		ug/L		115	70 - 130	8	20
etrachloroethene	25.0	25.0		ug/L		100	70 - 130	2	20
Foluene	25.0	25.3		ug/L		101	78 - 120	- 1	20

QC Sample Results

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-51298-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: LCSD 720-141619/6

Matrix: Water

Analysis Batch: 141619

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

-	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,2,3-Trichlorobenzene	25.0	27.4		ug/L		110	70 - 130	3	20
1,2,4-Trichlorobenzene	25.0	27.8		ug/L		111	70 - 130	1	20
1,1,1-Trichloroethane	25.0	20.7		ug/L		83	70 - 130	Ó	20
1,1,2-Trichloroethane	25.0	27.3		ug/L		109	70 - 130	0	20
Trichloroethene	25.0	25.9		ug/L		103	70 - 130	2	20
Trichlorofluoromethane	25.0	20.5		ug/L		82	66 - 132	2	20
1,2,3-Trichloropropane	25.0	25.9		ug/L		104	70 - 130	7.	20
1,1,2-Trichloro-1,2,2-trifluoroetha	25.0	23.2		ug/L		93	42 - 162	0	20
ne									
1,2,4-Trimethylbenzene	25.0	26.2		ug/L		105	70 - 132	1	20
1,3,5-Trimethylbenzene	25.0	26.5		ug/L		106	70 - 130	2	20
Vinyl acetate	25.0	24.6		ug/L		98	43 - 163	3	20
Vinyl chloride	25.0	22.7		ug/L		91	54 ₋ 135	3	20
m-Xylene & p-Xylene	50.0	48.4		ug/L		97	70 - 142	0	20
o-Xylene	25.0	24.8		ug/L		99	70 - 130	1	20
2,2-Dichloropropane	25.0	23.3		ug/L		93	70 - 140	5	20

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	97		67 - 130
1,2-Dichloroethane-d4 (Surr)	79		75 ₋ 138
Toluene-d8 (Surr)	97		70 - 130

Lab Sample ID: LCSD 720-141619/8

Matrix: Water

Analysis Batch: 141619

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

-		Spike	LCSD	LCSD				%Rec.		RPD
	Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
	Gasoline Range Organics (GRO)	500	429	***************************************	ug/L		86	62 - 120	3	20
	-C5-C12									

LCSD LCSD %Recovery Qualifier Surrogate Limits 4-Bromofluorobenzene 101 67 - 130 1,2-Dichloroethane-d4 (Surr) 78 75 - 138 Toluene-d8 (Surr) 97 70 - 130

QC Association Summary

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-51298-1

GC/MS VOA

Anal	vsis	Batch:	141297
------	------	--------	--------

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
720-51298-3	MP-03-1	Total/NA	Water	8260B/CA_LUFT	
				MS	
720-51298-3 MS	MP-03-1	Total/NA	Water	8260B/CA_LUFT	
				MS	•
720-51298-3 MSD	MP-03-1	Total/NA	Water	8260B/CA_LUFT	
				MS	
LCS 720-141297/5	Lab Control Sample	Total/NA	Water	8260B/CA_LUFT	
				MS	
LCS 720-141297/7	Lab Control Sample	Total/NA	Water	8260B/CA_LUFT	
				MS	
LCSD 720-141297/6	Lab Control Sample Dup	Total/NA	Water	8260B/CA_LUFT	
				MS	•
LCSD 720-141297/8	Lab Control Sample Dup	Total/NA	Water	8260B/CA_LUFT	
				MS	
MB 720-141297/4	Method Blank	Total/NA	Water	8260B/CA_LUFT	
				MS	

Analysis Batch: 141332

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-51298-1	MP-03-2	Total/NA	Water	8260B/CA_LUFT	
			•	MS	
LCS 720-141332/5	Lab Control Sample	. Total/NA	Water	8260B/CA_LUFT	
				MS	
LCS 720-141332/7	Lab Control Sample	Total/NA	Water	8260B/CA_LUFT	
				MS	
LCSD 720-141332/6	Lab Control Sample Dup	Total/NA	Water	8260B/CA_LUFT	
				MS	
LCSD 720-141332/8	Lab Control Sample Dup	Total/NA	Water	8260B/CA_LUFT	
				MS	
MB 720-141332/4	Method Blank	Total/NA	Water	8260B/CA_LUFT	
				MS	

Analysis Batch: 141443

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batci
720-51298-2	TB073013	Total/NA	Water	8260B/CA_LUFT	
	•			MS	
720-51298-4	MP-03-3	Total/NA	Water	8260B/CA_LUFT	
				MS	
720-51298-5	MW-03	Total/NA	Water	8260B/CA_LUFT	
				MS	
720-51298-6	MP-04-3	Total/NA	Water	8260B/CA_LUFT	
				MS	
720-51298-7	MP-04-2	Total/NA	Water	8260B/CA_LUFT	
				MS	
720-51298 - 8	MW-01	Total/NA	Water	8260B/CA_LUFT	
				MS	
20-51298-9	MW-100	Total/NA	Water	8260B/CA_LUFT	
				MS	
720-51298-10	MP-02-2	Total/NA	Water	8260B/CA_LUFT	
				MS	
LCS 720-141443/12	Lab Control Sample	Total/NA	Water	8260B/CA_LUFT	
				MS	
CS 720-141443/5	Lab Control Sample	Total/NA	Water	8260B/CA_LUFT	
				MS	
LCSD 720-141443/13	Lab Control Sample Dup	Total/NA	Water	8260B/CA_LUFT	
				MS	

QC Association Summary

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-51298-1

GC/MS VOA (C	ontinued)
--------------	-----------

Analysis	Batch:	141443 ((Continued)
----------	--------	----------	------------	---

	Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
	LCSD 720-141443/6	Lab Control Sample Dup	Total/NA	Water	8260B/CA_LUFT	
					MS	_
	MB 720-141443/4	Method Blank	Total/NA	Water	8260B/CA_LUFT	
The same of	Andrews	·			MS	

Analysis Batch: 141619

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
720-51298-8	MW-01	Total/NA	Water	8260B/CA_LUFT	***************************************
				MS	
720-51298-9	MW-100	Total/NA	Water	8260B/CA_LUFT	
				MS	
720-51298-10	MP-02-2	Total/NA	Water	8260B/CA_LUFT	
				MS	
LCS 720-141619/5	Lab Control Sample	Total/NA	Water	8260B/CA_LUFT	
	•			MS	
LCS 720-141619/7	Lab Control Sample	Total/NA	Water	8260B/CA_LUFT	
				MS	
LCSD 720-141619/6	Lab Control Sample Dup	Total/NA	Water	8260B/CA_LUFT	
				MS	
LCSD 720-141619/8	Lab Control Sample Dup	Total/NA	Water	8260B/CA_LUFT	
				MS	
MB 720-141619/4	Method Blank	Total/NA	Water	8260B/CA_LUFT	
_				MS	

Lab Chronicle

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-51298-1

Client Sample ID: MP-03-2

Date Collected: 07/30/13 08:00 Date Received: 07/30/13 17:53 Lab Sample ID: 720-51298-1

Matrix: Water

Batch Batch Dilution Batch Prepared Number or Analyzed Ргер Туре Type Method Run Factor Analyst Total/NA 8260B/CA_LUFTMS 141332 08/01/13 21:03 YYB TAL PLS Analysis

Client Sample ID: TB073013

Date Collected: 07/30/13 08:10

Matrix: Water

Lab Sample ID: 720-51298-2

Date Received: 07/30/13 17:53

Batch Batch Dilution Batch Prepared Prep Type Type Method Run Factor Number or Analyzed Analyst Lab 8260B/CA_LUFTMS TAL PLS Total/NA 141443 08/02/13 16:13 YYB Analysis

Client Sample ID: MP-03-1

Lab Sample ID: 720-51298-3

Matrix: Water

Date Collected: 07/30/13 08:35 Date Received: 07/30/13 17:53

Batch Dilution Batch Prepared Batch Prep Type Туре Method Run Factor Number or Analyzed Analyst Total/NA 8260B/CA LUFTMS 141297 08/01/13 03:58 LPL TAL PLS Analysis

Client Sample ID: MP-03-3

Lab Sample ID: 720-51298-4

Matrix: Water

Date Collected: 07/30/13 09:15 Date Received: 07/30/13 17:53

Batch Batch Dilution Batch Prepared Method Number or Analyzed Type Factor Analyst Prep Type Ron Lab TAL PLS 8260B/CA_LUFTMS 141443 08/02/13 16:44 YYB Total/NA Analysis

Client Sample ID: MW-03

Lab Sample ID: 720-51298-5

Matrix: Water

Date Collected: 07/30/13 10:05 Date Received: 07/30/13 17:53

Batch Batch Dilution Batch

8260B/CA_LUFTMS

Prepared Prep Type Туре Method Run Factor Number or Analyzed Analyst 8260B/CA LUFTMS 141443 08/02/13 17:15 YYB TAL PLS Total/NA Analysis

Client Sample ID: MP-04-3

Lab Sample ID: 720-51298-6

Matrix: Water

Date Collected: 07/30/13 11:15 Date Received: 07/30/13 17:53

Analysis

Total/NA

Batch Batch Dilution Batch Prepared Type Method Factor Number or Analyzed Analyst Prep Type Run Lab

141443

08/02/13 17:45

YYB

TAL PLS

Lab Chronicle

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-51298-1

Client Sample ID: MP-04-2

Lab Sample ID: 720-51298-7

Matrix: Water

Date Collected: 07/30/13 11:40 Date Received: 07/30/13 17:53

-		Batch	Batch		Dilution	Batch	Prepared			
	Ргер Туре	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
	Total/NA	Analysis	8260B/CA_LUFTMS		1	141443	08/02/13 18:16	YYB	TAL PLS	

Client Sample ID: MW-01

Lab Sample ID: 720-51298-8

Date Collected: 07/30/13 13:30 Date Received: 07/30/13 17:53

Matrix: Water

		Batch	Batch		Dilution	Batch	Prepared		
-	Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
	Total/NA	Analysis	8260B/CA_LUFTMS		1	141443	08/02/13 18:46	YYB	TAL PLS
***************************************	Total/NA	Analysis	8260B/CA_LUFTMS		5	141619	08/06/13 13:01	PDR	TAL PLS

Client Sample ID: MW-100

Lab Sample ID: 720-51298-9

Matrix: Water

Date Collected: 07/30/13 13:50 Date Received: 07/30/13 17:53

dioceston and a second		Batch	Batch		Dilution	Batch	Prepared		
Annewson	Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
	Total/NA	Analysis	8260B/CA_LUFTMS		1	141443	08/02/13 19:17	YYB	TAL PLS
	Total/NA	Analysis	8260B/CA_LUFTMS		5	141619	08/06/13 13:28	PDR	TAL PLS

Client Sample ID: MP-02-2

Lab Sample ID: 720-51298-10

Matrix: Water

Date Collected: 07/30/13 16:15 Date Received: 07/30/13 17:53

,	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	8260B/CA_LUFTMS	***************************************	1	141443	08/02/13 19:48	YYB	TAL PLS	
Total/NA	Analysis	8260B/CA_LUFTMS		1	141619	08/06/13 13:56	PDR	TAL PLS	

Laboratory References:

TAL PLS = TestAmerica Pleasanton, 1220 Quarry Lane, Pleasanton, CA 94566, TEL (925)484-1919

Certification Summary

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-51298-1

Laboratory: TestAmerica Pleasanton

All certifications held by this laboratory are fisted. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
California	State Program	9	2496	01-31-14

Method Summary

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-51298-1

Method	Method Description	Protocol	Laboratory
8260B/CA_LUFTM	8260B / CA LUFT MS	SW846	TAL PLS

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL PLS = TestAmerica Pleasanton, 1220 Quarry Lane, Pleasanton, CA 94566, TEL (925)484-1919

Sample Summary

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-51298-1

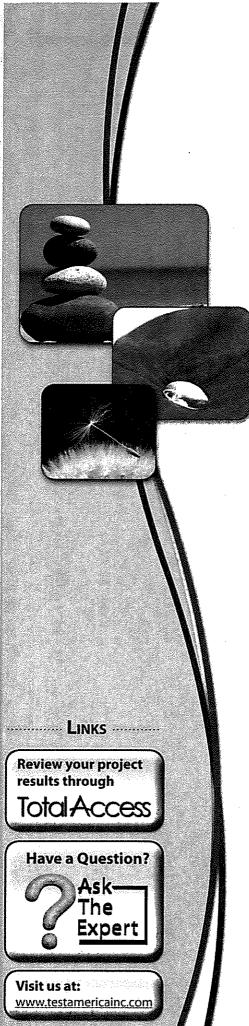
Lab Sample ID	Client Sample ID	Matrix	Collected	Received
720-51298-1	MP-03-2	Water	07/30/13 08:00	07/30/13 17:53
720-51298-2	TB073013	Water	07/30/13 08:10	07/30/13 17:53
720-51298-3	MP-03-1	Water	07/30/13 08:35	07/30/13 17:53
720-51298-4	MP-03-3	Water	07/30/13 09:15	07/30/13 17:53
720-51298-5	MW-03	Water	07/30/13 10:05	07/30/13 17:53
720-51298-6	MP-04-3	Water	07/30/13 11:15	07/30/13 17:53
720-51298-7	MP-04-2	Water	07/30/13 11:40	07/30/13 17:53
720-51298-8	MW-01	Water	07/30/13 13:30	07/30/13 17:53
720-51298-9	MW-100	Water	07/30/13 13:50	07/30/13 17:53
720-51298-10	MP-02-2	Water	07/30/13 16:15	07/30/13 17:53

Name/Location: CYDUS Chevrolet, Diblin CA Project Manager: Avery Putton Recorder: Avery Recorder:	Seq.	2389 Test America	1330 Broadway Suite 1702 Oakland, CA 94612 (510) 451-1001		OF CUSTOD		an	nec®
Project Manager: AVENUE PATTON Recorder: Signifur Manager: DATE STATION DESCRIPTION T20-51298 Chain of Custody T20-51298 Chain of Cust	Job Nu	mber: ODIOIU07	0. <i>0</i> 0008	120-51248		4		147582
Project Manager: AVENUE PATTON Recorder: Signifur Manager: DATE STATION DESCRIPTION T20-51298 Chain of Custody T20-51298 Chain of Cust	Name/L	ocation: Chun Ch	reviolet, Du	blin CA		ANA	LYSIS REQUE	STED
SAMPLE NUMBER YR MO DAY TIME DEPTH S S S S S S S S S S S S S S S S S S S	Project					STA ALS		
2°P.6	REPOR PO#: (TAT: Comme	CONTAINERS SE TOS TO THE SE TO THE	03-2 73013 03-1 03-3 04-2 01-3 04-2 01 100 02-3 0NAL INFORMATION Seames com as	YR MO DAY TIME 1307300800 1307300810 1307300835 1307300915 1307301115 1307301330 1307301350 1307301615	DESCRIPTION DEPTH DEPTH Characteristics Relinquished By (Signature): Received By (Signature): Relinquished By (Signature): Relinquished By (Signature):	AAIN OF CUSTO Has beginned to the control of the c	DY RECORD Company) (Company) (Company) (Company)	7/2c/[3 e 175 (Date/Time) 13) [3 150 (Date/Time) (Date/Time)
Yellow - Project Office Copy Pink - Field or Office Copy F1008-			Vhite - Laboratory Copy	Valley Desirat Off (2.400	

Login Sample Receipt Checklist

Client: AMEC Environment & Infrastructure, Inc.

Job Number: 720-51298-1


Login Number: 51298

List Source: TestAmerica Pleasanton

List Number: 1

Creator: Gonzales, Justinn

Question	Апѕwег	Comment	-
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td>*</td> <td></td>	N/A	*	
The cooler's custody seal, if present, is intact.	N/A		
Sample custody seals, if present, are intact.	N/A .		
The cooler or samples do not appear to have been compromised or tampered with.	True		
Samples were received on ice.	True		
Cooler Temperature is acceptable.	True	n.	
Cooler Temperature is recorded.	True		
COC is present.	True	•	•
COC is filled out in ink and legible.	True		
COC is filled out with all pertinent information.	True		
Is the Field Sampler's name present on COC?	True		
There are no discrepancies between the containers received and the COC.	True	en e	and the second of the second o
Samples are received within Holding Time.	True		
Sample containers have legible labels.	True		
Containers are not broken or leaking.	True		
Sample collection date/times are provided.	True		
Appropriate sample containers are used.	True		
Sample bottles are completely filled.	True		
Sample Preservation Verified.	N/A		
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True		
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	·.	
Multiphasic samples are not present.	True		
Samples do not require splitting or compositing.	True		
Residual Chlorine Checked.	N/A		9

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc. TestAmerica Pleasanton 1220 Quarry Lane Pleasanton, CA 94566 Tel: (925)484-1919

TestAmerica Job ID: 720-51300-1 Client Project/Site: Crown Chevrolet

For:

AMEC Environment & Infrastructure, Inc. 2101 Webster Street, 12th Floor Oakland, California 94612

Attn: Avery Patton

Hempsel)

Authorized for release by: 8/6/2013 4:37:34 PM

Afsaneh Salimpour, Project Manager I afsaneh.salimpour@testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
	2
Definitions/Glossary	3
	4
Detection Summary	5
Client Sample Results	6
QC Sample Results	17
QC Association Summary	31
Lab Chronicle	32
Certification Summary	34
Wichiod Cultillary	35
Sample Summary	36
Chain of Custody	37
Receipt Checklists	38

Definitions/Glossary

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-51300-1

Qualifiers

GC/MS VOA

Qualifier	
-----------	--

RER

RPD

TEF

TEQ

Qualifier Description

Relative error ratio

Toxicity Equivalent Factor (Dioxin)

Toxicity Equivalent Quotient (Dioxin)

Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points

LCS or LCSD exceeds the control limits

Glossary		
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
L	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
CNF -	Contains no Free Liquid	
DER	Duplicate error ratio (normalized absolute difference)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision level concentration	
MDA	Minimum detectable activity	
EDL	Estimated Detection Limit	
MDC	Minimum detectable concentration	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
NC	Not Calculated	
ND	Not detected at the reporting limit (or MDL or EDL if shown)	
PQL	Practical Quantitation Limit	
QC	Quality Control	

Case Narrative

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-51300-1

Job ID: 720-51300-1

Laboratory: TestAmerica Pleasanton

Narrative

Job Narrative 720-51300-1

Comments

No additional comments.

Receipt

The samples were received on 7/30/2013 5:53 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 2.4° C.

GC/MS VOA

Method(s) 8260B: The Gasoline Range Organics (GRO) concentration reported for the following sample 51300-3 is due to the presence of discrete peaks. <<PCE>>

Method(s) 8260B: The laboratory control sample (LCS) and / or laboratory control sample duplicate (LCSD) for batch 141443 recovered outside control limits for the following analyte: 1,3-dichloropropane. This analyte was biased high in the LCS and were not detected in the associated samples; therefore, the data have been reported.

No other analytical or quality issues were noted.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-51300-1

Client Sample ID: MW-02						<u>L</u> á	ab	Sample ID: 7	20-51300
Analyte	Result	Qualifier	RL	MDL.	Unit	Dil Fac	D	Method	Prep Type
cis-1,2-Dichloroethene	1.8		0.50		ug/L	1	_	8260B/CA_LUFT MS	Total/NA
Tetrachioroethene	19		0.50		ug/L	1		8260B/CA_LUFT MS	Total/NA
Trichloroethene	21		0.50		ug/L	1		8260B/CA_LUFT MS	Total/NA
Client Sample ID: MP-02-1								Sample ID: 7	20 54200
-							(D	Sample ID: 7	20-31300
Analyte		Qualifier	RL	MDL	Unit		D	Method	Prep Type
cis-1,2-Dichloroethene	4.8		0.50		ug/L	1		8260B/CA_LUFT MS	Total/NA
trans-1,2-Dichloroethene	0.65		0,50		ug/L	1		8260B/CA_LUFT MS	Total/NA
Tetrachloroethene	3.0		0.50		ug/L	1		8260B/CA_LUFT MS	Total/NA
Trichloroethene	55	-	0.50		ug/L	1		8260B/CA_LUFT MS	Total/NA
Client Sample ID: MP-01-1	-			······································		La	b	Sample ID: 7	20-51300·
_ Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	n	Method	Prep Type
Tetrachloroethene	150	-	0.50		ug/L	1		8260B/CA_LUFT	Total/NA
Trichloroethene	1.6		0.50		ug/L	1		MS 8260B/CA_LUFT	Total/NA
Gasoline Range Organics (GRO) -C5-C12	140	R	50		ug/L	. 1		MS 8260B/CA_LUFT MS	Total/NA
Client Sample ID: MP-01-2						La	b :	Sample ID: 7	20-51300-
No Detections.									
Client Sample ID: MP-02-3						La	b :	Sample ID: 7	20-51300
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Ргер Туре
Acetone	77		50	***************************************	ug/L	<u></u>		8260B/CA_LUFT	Total/NA
-			·			•		MS	
Client Sample ID: MP-01-3						La	b :	Sample ID: 7:	20-51300-
No Detections.									
Client Sample ID: MP-04-1						La	b s	Sample ID: 72	20-51300-
Analyte	Result	Qualifier	RL	MDL.	Unit	Dil Fac	D	Method	Prep Type
Acetone	240		50		ug/L	1		8260B/CA_LUFT	Total/NA
cis-1,2-Dichloroethene	0.76		0.50		ug/L	1		MS 8260B/CA_LUFT	Total/NA
Tetrachioroethene	24		0.50		ug/L	1		MS B260B/CA_LUFT MS	Total/NA
Trichloroethene	13		0.50	•	ug/L	1		8260B/CA_LUFT MS	Total/NA

This Detection Summary does not include radiochemical test results.

Client Sample Results

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-51300-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS

Client Sample ID: MW-02

Date Collected: 07/30/13 08:15

Lab Sample ID: 720-51300-1

Matrix: Water

Respit	Qualifier	RL	MDL	O.III.	D	Prepared	Analyzed	Dil Fac
ND		0.50		ug/L			08/02/13 20:19	1
ND		50	(ug/L			08/02/13 20:19	1
ND		0.50	(ug/L			08/02/13 20:19	1
ND		0.50	ı	ug/L			08/02/13 20:19	` 1
ND		1.0		ug/L			08/02/13 20:19	1
ND		1.0		ug/L			08/02/13 20:19	1
ND		1.0	- (ug/L			08/02/13 20:19	. 1
ND		1.0	(ug/L			08/02/13 20:19	1
ND		50		ug/L			08/02/13 20:19	1
ND		1.0	1	ug/L			08/02/13 20:19	1
ND		1.0	1	ug/L			08/02/13 20:19	. 1
ND		1.0		ug/L			08/02/13 20:19	1
ND		5.0	1	ug/L			08/02/13 20:19	1
ND		0.50	1	ug/L			08/02/13 20:19	1
ND		0.50	1	ug/L			08/02/13 20:19	1
ND		1.0	1	ug/L			08/02/13 20:19	1
ND		1.0	1	ug/L			08/02/13 20:19	1
ND		1.0	. 1	ug/L			08/02/13 20:19	1
ND		0.50					08/02/13 20:19	. 1
ND		0.50		-			08/02/13 20:19	1
				-			08/02/13 20:19	1
				_			08/02/13 20:19	1
				_				1
				-			08/02/13 20:19	1
	•			-			08/02/13 20:19	1
							08/02/13 20:19	1
				_				1
								1
								1
				-				1
								1
								1
								1
								1
				_				1
				_				1
								1
								1
								1
								1
							•	1
								1
								1
								1
								1

				_				1
				_				1
								1
	ND		ND	ND	ND	ND 0.50 ug/L ND 50 ug/L ND 0.50 ug/L ND 0.50 ug/L ND 1.0 ug/L ND 0.50 ug/L ND 1.0 ug/L ND 0.50 u	ND	ND

TestAmerica Job ID: 720-51300-1

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Client Sample ID: MW-02	·	Lab Sample ID: 720-51300-1
Date Collected: 07/30/13 08:15	•	Matrix: Water

Date Received: 07/30/13 17:53

Analyte	Result	Qualifier	'RL	MDL.	Unit	Ð	Prepared	Analyzed	Dil Fac
1,1,2,2-Tetrachloroethane	ND		0.50		ug/L			08/02/13 20:19	1
Tetrachloroethene	19		0.50		ug/L			08/02/13 20:19	1
Toluene	ND		0.50		ug/L	•		08/02/13 20:19	1
1,2,3-Trichlorobenzene	ND		1.0		ug/L			08/02/13 20:19	. 1
1,2,4-Trichlorobenzene	ND		1.0		ug/L			08/02/13 20:19	1
1,1,1-Trichloroethane	ND		0.50	-	ug/L			08/02/13 20:19	1
1,1,2-Trichloroethane	ND		0.50		ug/L			08/02/13 20:19	1
Trichloroethene	21		0.50		ug/L			08/02/13 20:19	1
Trichlorofluoromethane	ND		1.0	•	ug/L			08/02/13 20:19	1
1,2,3-Trichloropropane	ND		0.50		ug/L			08/02/13 20:19	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50		ug/L			08/02/13 20:19	1
1,2,4-Trimethylbenzene	ND.		0.50		ug/L			08/02/13 20:19	1
1,3,5-Trimethylbenzene	ND		0.50		ug/L			08/02/13 20:19	1
Vinyl acetate	ND		10		ug/L			08/02/13 20:19	1
Vinyl chloride	ND	•	0.50		ug/L			08/02/13 20:19	1
Xylenes, Total	ND		1.0		ug/L			08/02/13 20:19	1
2,2-Dichloropropane	ND		0.50		ug/L			08/02/13 20:19	1
Gasoline Range Organics (GRO)	ND		50	•	ug/L			08/02/13 20:19	1
-C5-C12									

ì						
	Surrogate	%Recovery	Qualifier Limits	Prepared	Analyzed	Dil Fac
	4-Bromofluorobenzene	95	67 - 130	Will find the state of the stat	08/02/13 20:19	1
	1,2-Dichloroethane-d4 (Surr)	92	75 - 138		08/02/13 20:19	1
-	Toluene-dR (Surr)	02	70 120		00/02/42 20:40	4

Client Sample ID: MP-02-1 Lab Sample ID: 720-51300-2 Date Collected: 07/30/13 09:20 Matrix: Water

Date Received: 07/30/13 17:53	,	4					
Analyte	Result Q	ualifier RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND	0.50	ug/L			08/02/13 20:49	1
Acetoņe	ND	50	ug/L			08/02/13 20:49	1
Benzene	ND	0.50	ug/L			08/02/13 20:49	1
Dichlorobromomethane	ND	0.50	ug/L			08/02/13 20:49	1
Bromobenzene	ND	1.0	ug/L			08/02/13 20:49	1
Chlorobromomethane	ND	1.0	ug/L			08/02/13 20:49	1 -
Bromoform	ND	1.0	ug/L			08/02/13 20:49	1
Bromomethane	ND	1.0	ug/L			08/02/13 20:49	1
2-Butanone (MEK)	МD	50	ug/L			08/02/13 20:49	1
n-Butylbenzene	ND	1.0	ug/L		•	08/02/13 20:49	1
sec-Butylbenzene	ND	1.0	ug/L			08/02/13 20:49	1
tert-Butylbenzene	ND	1.0	ug/L			08/02/13 20:49	1
Carbon disulfide	ND	5.0	ug/L			08/02/13 20:49	1
Carbon tetrachloride	, ND	0.50	ug/L			08/02/13 20:49	1
Chlorobenzene	ND	0.50	ug/L			08/02/13 20:49	1
Chloroethane	ND	1.0	ug/L			08/02/13 20:49	1
Chloroform	ND	1.0	ug/L			08/02/13 20:49	1
Chloromethane	ND	1.0	ug/L			08/02/13 20:49	1
2-Chlorotoluene	ND	0.50	ug/L		•	08/02/13 20:49	1
4-Chlorotoluene	ND	0.50	ug/L			08/02/13 20:49	1
Chlorodibromomethane	ND	0.50	ug/L		•	08/02/13 20:49	1

Project/Site: Crown Chevrolet

Client Sample ID: MP-02-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: 720-51300-2

TestAmerica Job ID: 720-51300-1

Date Received: 07/30/13 17:53	5	Ounliff ar	Po :	3101	E114		ь.	Draw	Amalonad	DH F-
Analyte		Qualifier	RL -	MDL		·	<u> </u>	Prepared	Analyzed	Dil Fac
1,2-Dichlorobenzene	ND		0.50		ug/L				08/02/13 20:49 08/02/13 20:49	
1,3-Dichlorobenzene	ND		0.50		ug/L				08/02/13 20:49	:
,4-Dichlorobenzene	ND ND	•	0.50		ug/L					-
,3-Dichloropropane		-	1.0		ug/L				08/02/13 20:49	
,1-Dichloropropene	ND		0.50		ug/L				08/02/13 20:49	
,2-Dibromo-3-Chloropropane	ND		1.0		ug/L		-		08/02/13 20:49	-
ithylene Dibromide	ND		0.50		ug/L				08/02/13 20:49	•
Dibromomethane	ND		0.50		ug/L				08/02/13 20:49	
Dichlorodifluoromethane	ND		0.50		ug/L				08/02/13 20:49	
I,1-Dichloroethane	ND		0.50		ug/L				08/02/13 20:49	
,2-Dichloroethane	ND		0,50		ug/L				08/02/13 20:49	•
,1-Dichloroethene	ND		0.50		ug/L				08/02/13 20:49	•
cis-1,2-Dichloroethene	4.8		0.50		ug/L				08/02/13 20:49	•
rans-1,2-Dichloroethene	0.65	• .	0.50		ug/L				08/02/13 20:49	•
,2-Dichloropropane	ND		0.50		ug/L				08/02/13 20:49	
ds-1,3-Dichloropropene	ND		0.50		ug/L				08/02/13 20:49	•
rans-1,3-Dichloropropene	ND		D.50		ug/L				08/02/13 20:49	
Ethylbenzene	ND		0.50		ug/L				08/02/13 20:49	•
-lexachlorobutadiene	ND		1.0		ug/L		-	· · · · ·	08/02/13 20:49	•
-Hexanone	ND		50		ug/L				08/02/13 20:49	
sopropylbenzene	ND		0.50		ug/L	:			08/02/13 20:49	•
-isopropyitoluene	ND		1.0	•	ug/L				08/02/13 20:49	•
Aethylene Chloride	ND		5.0		ug/L				08/02/13 20:49	•
-Methyl-2-pentanone (MIBK)	ND		50		ug/L				08/02/13 20:49	
laphthalene	ND	-	1.0		ug/L			-	08/02/13 20:49	
N-Propylbenzene	ND		1.0		ug/L				08/02/13 20:49	
Styrene	ND		0.50		ug/L				08/02/13 20:49	
,1,1,2-Tetrachioroethane	ND		0.50	-	ug/L				08/02/13 20:49	
.1.2.2-Tetrachioroethane	ND		0.50		ug/L				08/02/13 20:49	
Tetrachloroethene	3.0		0.50		ug/L				08/02/13 20:49	
foluene	ND		0.50		ug/L				08/02/13 20:49	-
,2,3-Trichlorobenzene	ND	-	1.0		ug/L				08/02/13 20:49	
,2,4-Trichlorobenzene	ND		. 1.0		ug/L				08/02/13 20:49	
,1,1-Trichloroethane	ND	*	0.50		ug/L				08/02/13 20:49	
,1,2-Trichloroethane	ND		0.50		ua/L				08/02/13 20:49	
Frichloroethene	55		0.50		ug/L				08/02/13 20:49	
Frichlorofluoromethane	ND		1.0		ug/L				08/02/13 20:49	
I,2,3-Trichloropropane	ND		0.50		ug/L				08/02/13 20:49	
	ND		0.50		_				08/02/13 20:49	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50		ug/L				08/02/13 20:49	
,2,4-Trimethylbenzene ,3,5-Trimethylbenzene	DN		0.50		ug/L				08/02/13 20:49	
•					ug/L					· .
inyl acetate	ND		10		ug/L				08/02/13 20:49	
/inyl chloride	ND		0.50		ug/L	-			08/02/13 20:49	
Kylenes, Total	ND		1.0		ug/L				08/02/13 20:49	
2,2-Dichloropropane	ND		0.50		ug/L	**			08/02/13 20:49	
Basoline Range Organics (GRO) C5-C12	ND		50		ug/L				08/02/13 20:49	,
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene	95	-1	67 - 130				-		08/02/13 20:49	

Client Sample Results

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-51300-1

Method: 8260B/CA LUFTMS - 8260B / CA LUFT MS (Continued)

Client Sample ID: MP-02-1

Date Collected: 07/30/13 09:20

Date Received: 07/30/13 17:53

Lab Sample ID: 720-51300-2

Matrix: Water

-	Surrogate	%Recovery	*	Limits	Prepared	Analyzed	DII Fac
	1,2-Dichloroethane-d4 (Surr)	92	:	75 - 138		08/02/13 20:49	1
	Toluene-d8 (Surr)	93		70 - 130		08/02/13 20:49	1

Client Sample ID: MP-01-1

Date Collected: 07/30/13 12:30

Lab Sample ID: 720-51300-3

Matrix: Water

Date Received: 07/30/13 17:53 Analyte Qualifier RL MDL Unit Dil Fac Result Prepared Analyzed Methyl tert-butyl ether ND 0.50 ug/L 08/03/13 00:10 Acetone ND 50 ug/L 08/03/13 00:10 Benzene ND 0.50 ug/L 08/03/13 00:10 Dichlorobromomethane ND 0.50 ug/L 08/03/13 00:10 Bromobenzene ND 1.0 ug/L 08/03/13 00:10 ND Chlorobromomethane 1.0 ug/L 08/03/13 00:10 Bromoform ND 1.0 ug/L 08/03/13 00:10 ND Bromomethane 1.0 ug/L 08/03/13 00:10 2-Butanone (MEK) ND 50 ug/L 08/03/13 00:10 ND n-Butylbenzene 1.0 ug/L 08/03/13 00:10 sec-Butylbenzene ND 1.0 ug/L 08/03/13 00:10 ND 1.0 08/03/13 00:10 tert-Butylbenzene ug/L Carbon disulfide ND 5.0 ug/L 08/03/13 00:10 ug/L Carbon tetrachloride ND 0.50 08/03/13 00:10 ΝĐ Chlorobenzene 0.50 ug/L 08/03/13 00:10 1 Chloroethane ND 1.0 ug/L 08/03/13 00:10 Chloroform ND 1.0 ug/L 08/03/13 00:10 1 Chloromethane ND 1.0 ug/L 08/03/13 00:10 ND 2-Chiorotoluene 0.50 ug/L 08/03/13 00:10 ND 0.50 08/03/13 00:10 4-Chlorotoluene ug/L ND 0.50 Chlorodibromomethane ug/L 08/03/13 00:10 ND 0.50 08/03/13 00:10 1,2-Dichlorobenzene ug/L ug/L ND 1,3-Dichlorobenzene 0.5008/03/13 00:10 1 1,4-Dichlorobenzene ND 0.50 ug/L 08/03/13 00:10 1,3-Dichloropropane ND 1.0 ug/L 08/03/13 00:10 1 1,1-Dichloropropene ND 0.50 ug/L 08/03/13 00:10 1,2-Dibromo-3-Chloropropane ND 1.0 ug/L 08/03/13 00:10 1 ND 0.50 Ethylene Dibromide ug/L 08/03/13 00:10 1 Dibromomethane ND 0.50 ug/L 08/03/13 00:10 ND Dichlorodifluoromethane 0.50 ug/L 08/03/13 00:10 1,1-Dichloroethane ND 0.50 ug/L 08/03/13 00:10 1 1,2-Dichloroethane ND 0.50 ug/L 08/03/13 00:10 1 1.1-Dichlaroethene ND 0.50ug/L 08/03/13 00:10 1 ND ug/L cis-1,2-Dichloroethene 0.5008/03/13 00:10 1 trans-1,2-Dichloroethene ND 0.50 ug/L 08/03/13 00:10 ug/L ND 0.50 1,2-Dichloropropane 08/03/13 00:10 1 cis-1,3-Dichloropropene ND 0.50 ug/L 08/03/13 00:10 1 trans-1,3-Dichloropropene ND 0.50 ug/L 08/03/13 00:10 1 ND 0.50 Ethylbenzene ug/L 08/03/13 00:10 Hexachlorobutadiene ND 1.0 ug/L 08/03/13 00:10 ND 2-Hexanone ug/L 50 08/03/13 00:10 1 ND Isopropylbenzene 0.50 ug/L 08/03/13 00:10

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-51300-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Client Sample ID: MP-01-1	Lab Sample ID: 720-51300-3
Date Collected: 07/30/13 12:30	Matrix: Water

Date Received: 07/30/13 17:53

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4-isopropyitoluene	ND		1.0		ug/L			08/03/13 00:10	1
Methylene Chloride	ND		5.0		ug/L			08/03/13 00:10	1
4-Methyl-2-pentanone (MIBK)	ND		50		ug/L			08/03/13 00:10	1
Naphthalene	ND		1.0	•	ug/L			08/03/13 00:10	1
N-Propylbenzene	ND		1.0		ug/L			08/93/13 00:10	1
Styrene	ND		0.50		ug/L			08/03/13 00:10	1
1,1,1,2-Tetrachloroethane	ND		0.50		ug/L			08/03/13 00:10	1
1,1,2,2-Tetrachloroethane	ND		0.50		ug/L			08/03/13 00:10	1
Tetrachloroethene	150		0.50		ug/L			08/03/13 00:10	1
Toluene	ND		0.50	-	ug/L			08/03/13 00:10	1
1,2,3-Trichlorobenzene	ND		1.0		ug/L			08/03/13 00:10	1
1,2,4-Trichlorobenzene	ND		1.0		ug/L			08/03/13 00:10	1
1,1,1-Trichloroethane	ŃD		0.50		ug/L			08/03/13 00:10	1
1,1,2-Trichloroethane	ND		0.50		ug/L			08/03/13 00:10	1
Trichloroethene	1.8		0.50	•	ug/L			08/03/13 00:10	1
Trichlorofluoromethane	ND		1.0		ug/L			08/03/13 00:10	1
1,2,3-Trichloropropane	ND		0.50		ug/L			08/03/13 00:10	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50		ug/L			08/03/13 00:10	1
1,2,4-Trimethylbenzene	ND		0.50		ug/L	•		08/03/13 00:10	1
1,3,5-Trimethylbenzene	ND		0.50		ug/L			08/03/13 00:10	1
Vinyl acetate	ND		10		ug/L			08/03/13 00:10	1
Vinyl chloride	· ND		0.50		ug/L		-	08/03/13 00:10	1
Xylenes, Total	ND		1.0		ug/L			08/03/13 00:10	1
2,2-Dichloropropane	ND		0.50		ug/L			08/03/13 00:10	1
Gasoline Range Organics (GRO) -C5-C12	140	R	50		ug/L		•	08/03/13 00:10	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
I-Bromofluorobenzene	. 94		67 - 130		08/03/13 00:10	1
1,2-Dichloroethane-d4 (Surr)	100		75 - 138		08/03/13 00:10	1
Toluene-d8 (Surr)	99		70 - 130		08/03/13 00:10	1
	-Bromofluorobenzene ,2-Dichloroethane-d4 (Surr)	-Bromofluorobenzene 94 ,2-Dichloroethane-d4 (Surr) 100	-Bromofluorobenzene 94 ,2-Dichloroethane-d4 (Surr) 100	-Bromofluorobenzene 94 67 - 130 ,2-Dichloroethane-d4 (Surr) 100 75 - 138	-Bromofluorobenzene 94 67 - 130 ,2-Dichloroethane-d4 (Surr) 100 75 - 138	-Bromofluorobenzene 94 57 - 130 08/03/13 00:10 ,2-Dichloroethane-d4 (Surr) 100 75 - 138 08/03/13 00:10

Client Sample ID: MP-01-2 Lab Sample ID: 720-51300-4 Date Collected: 07/30/13 13:50 Matrix: Water

Date Received: 07/30/13 17:53									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND		0.50		ug/L			08/03/13 00:38	1
Acetone	ND		50		ug/L			08/03/13 00:38	1
Benzene	ND		0.50		úg/L			08/03/13 00:38	1
Dichlorobromomethane	ND		0.50		ug/L			08/03/13 00:38	1
Bromobenzene	ND		1.0		ug/L			08/03/13 00:38	1
Chlorobromomethane	ND		1,0		ug/L			08/03/13 00:38	1
 Bromoform	ND		1.0		ug/L			08/03/13 00:38	1
 Bromomethane	ND		1.0		ug/L			08/03/13 00:38	1
2-Butanone (MEK)	ND		50		ug/L			08/03/13 00:38	1
 n-Butylbenzene	ND		1.0		ug/L			08/03/13 00:3B	1
sec-Butylbenzene	ND		1.0		ug/L			08/03/13 00:38	1
tert-Butylbenzene	ND		1.0		ug/L			08/03/13 00:38	1
Carbon disulfide	ND		5.0		ug/L			08/03/13 00:38	1
Carbon tetrachloride	ND		0.50		ug/L			08/03/13 00:38	1

Client Sample Results

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-51300-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Client Sample ID: MP-01-2

Date Collected: 07/30/13 13:50

Lab Sample ID: 720-51300-4

Matrix: Water

Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Chlorobenzene	ND		0.50	ug/L			08/03/13 00:38	1
Chloroethane	ND	•	1.0	ug/L			08/03/13 00:38	1
Chloroform	ND		1.0	ug/L			08/03/13 00:38	1
Chloromethane	ND		1.0	ug/L			08/03/13 00:38	1
2-Chlorotoluene	ND		0.50	ug/L			08/03/13 00:38	1
4-Chlorotoluene	ND		0.50	ug/L			08/03/13 00:38	1
Chlorodibromomethane	ND		0.50	ug/L		-	08/03/13 00:38	1
1,2-Dichlorobenzene	ND		0.50	ug/L			08/03/13 00:38	1
1,3-Dichlorobenzene	ND		0.50	ug/L			08/03/13 00:38	1
1,4-Dichlorobenzene	ND		0.50	ug/L			08/03/13 00:38	. 1
1,3-Dichloropropane	ND		1.0	ug/L			08/03/13 00:38	. 1
1,1-Dichloropropene	ND		0.50	ug/L		-	08/03/13 00:38	1
1,2-Dibromo-3-Chloropropane	ND		1.0	ug/L	•		08/03/13 00:38	1
Ethylene Dibromide	ND	•	0.50	ug/L			08/03/13 00:38	1
Dibromomethane	ND		0.50	ug/L			08/03/13 00:38	1
Dichlorodifluoromethane	ND		0.50	ug/L			08/03/13 00:38	1
1.1-Dichloroethane	ND		0.50	ug/L			08/03/13 00:38	4
1,2-Dichloroethane	ND		0.50	ug/L			08/03/13 00:38	1
1,1-Dichloroethene	ND		0.50	ug/L			08/03/13 00:38	1
cis-1,2-Dichloroethene	ND ND		0.50	ug/L			08/03/13 00:38	1
trans-1,2-Dichloroethene	ND	•	0.50	ug/L			08/03/13 00:38	1
·	ND		0.50	-			08/03/13 00:38	
1,2-Dichloropropane	ND		0.50	ug/L				1
cis-1,3-Dichloropropene	ND		0.50	ug/L			08/03/13 00:38	1
trans-1,3-Dichloropropene	ND		0.50	ug/L			08/03/13 00:38	1
Ethylbenzene				ug/L			08/03/13 00:38	1
Hexachlorobutadiene	. ND		1.0	ug/L			08/03/13 00:38	1
2-Hexanone	ND		50	ug/L			08/03/13 00:38	1
Isopropylbenzene	ND		0.50	ug/L			08/03/13 00:38	1
4-Isopropyltoluene	ND		1.0	ug/L			08/03/13 00:38	1
Methylene Chloride	ND		5.0	ug/L.			08/03/13 00:38	1
4-Methyl-2-pentanone (MIBK)	ND		50	ug/L	j.		08/03/13 00:38	1
Naphthalene	ND		1.0	ug/L			08/03/13 00:38	1
N-Propylbenzene	ND		1.0	ug/L			08/03/13 00:38	1
Styrene	ND		0.50	ug/L			08/03/13 00:38	- 1
1,1,1,2-Tetrachloroethane	ND		0.50	ug/L			08/03/13 00:38	1
1,1,2,2-Tetrachloroethane	ND		0.50	ug/L			08/03/13 00:38	1
Tetrachloroethene	ND		0.50	ug/L			08/03/13 00:38	1
Toluene	ND		0.50	ug/L			08/03/13 00:38	1
1,2,3-Trichlorobenzene	ND		1.0	ug/L			08/03/13 00:38	1
1,2,4-Trichlorobenzene	ND		1.0	ug/L			08/03/13 00:38	1
1,1,1-Trichloroethane	ND		0.50	ug/L			08/03/13 00:38	1
1,1,2-Trichloroethane	ND		0.50	ug/L			08/03/13 00:38	1
Trichloroethene	ND		0.50	ug/L			08/03/13 00:38	1
Trichlorofluoromethane	ND		1.0	ug/L			08/03/13 00:38	1
1,2,3-Trichloropropane	ND		0.50	ug/L			08/03/13 00:38	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50	ug/L			08/03/13 00:38	1
1,2,4-Trimethylbenzene	ND		0.50	ug/L			08/03/13 00:38	1
1,3,5-Trimethylbenzene	ND		0.50	ug/L			08/03/13 00:38	1
Vinyl acetate	ND		10	ug/L			08/03/13 00:38	1

Client Sample Results

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-51300-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)
--

Client Sample ID: MP-01-2							Lab	Sample ID: 720-	
Date Collected: 07/30/13 13:50								Matrix	c: Water
Date Received: 07/30/13 17:53									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND		0.50		ug/L			08/03/13 00:38	-1
Xylenes, Total	ND		1.0		ug/L			08/03/13 00:38	1
2,2-Dichloropropane	ND		0.50		ug/L			08/03/13 00:38	1
Gasoline Range Organics (GRO)	ND		50		ug/L			08/03/13 00:38	1
-C5-C12									
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	94		67 - 130			-		08/03/13 00:38	1
1,2-Dichloroethane-d4 (Surr)	99		75 ₋ 138					08/03/13 00:38	1
Toluene-d8 (Surr)	98		70 - 130					08/03/13 00:38	1

Client Sample ID: MP-02-3 Lab Sample ID: 720-51300-5
Date Collected: 07/30/13 14:50 Matrix: Water

Date Received: 07/30/13 17:53

Analyte	Result	Qualifier	RL	MDL	Unit		D	Prepared	Analyzed	Dii Fac
Methyl tert-butyl ether	ND		0.50		ug/L				08/03/13 01:05	1
Acetone	77		50		ug/L				08/03/13 01:05	1
Benzene	ND ND		0.50		ug/L				08/03/13 01:05	1
Dichlorobromomethane	ND		0.50		ug/L			•	08/03/13 01:05	[′] 1
Bromobenzene	ND		1.0		ug/L				08/03/13 01:05	1
Chlorobromomethane	ND		1.0		ug/L				08/03/13 01:05	1
Bromoform	ND	*	1.0	•	ug/L		•		08/03/13 01:05	1
Bromomethane	ND		1.0		ug/L				08/03/13 01:05	1
2-Butanone (MEK)	ND		50		ug/L			•	08/03/13 01:05	1
n-Butylbenzene	ND		1.0		ug/L				08/03/13 01:05	1
sec-Butylbenzene	ND		1.0		ug/L				E 08/03/13 01:05	1
tert-Bulylbenzene	ND		1.0		ug/L				08/03/13 01:05	1
Carbon disulfide	ND		5.0	•	ug/L				08/03/13 01:05	1
Carbon tetrachloride	ND		0.50		ug/L				08/03/13 01:05	1
Chiorobenzene	ND		0.50		ug/L				08/03/13 01:05	1
Chloroethane	ND	-	1.0	-	ug/L	•			08/03/13 01:05	1
Chloroform	ND		. 1.0		ug/L				08/03/13 01:05	1
Chloromethane	ND		1.0		ug/L				08/03/13 01:05	. 1
2-Chlorotoluene	ND	•	0.50	-	ug/L	•			08/03/13 01:05	1
4-Chlorotoluene	ND		0.50		ug/L				08/03/13 01:05	1
Chlorodibromomethane	ND		0.50		ug/L				08/03/13 01:05	1
1,2-Dichlorobenzene	ND		0.50		ug/L				08/03/13 01:05	1
1,3-Dichlorobenzene	ND		0.50	•	ug/L				08/03/13 01:05	1
1,4-Dichlorobenzene	ND		0.50		ug/L				08/03/13 01:05	1
1,3-Dichloropropane	ND	•	1.0		ug/L			4	08/03/13 01:05	1
1,1-Dichloropropene	ND		0.50		ug/L				08/03/13 01:05	1
1,2-Dibromo-3-Chloropropane	ND		1.0		ug/L				08/03/13 01:05	. 1
Ethylene Dibromide	ND		0.50		ug/L				08/03/13 01:05	1
Dibromomethane	. ND		0.50		ug/L				08/03/13 01:05	1
Dichlorodifluoromethane	. ND		0.50		ug/L				08/03/13 01:05	1
1,1-Dichloroethane	ND	•	0.50	-	ug/L				08/03/13 01:05	1
1,2-Dichloroethane	ND		0.50		ug/L				08/03/13 01:05	1
1,1-Dichloroethene	ND		0.50		ug/L				08/03/13 01:05	1
cis-1,2-Dichloroethene	ND		0.50		ug/L				08/03/13 01:05	1
trans-1,2-Dichloroethene	ND		0.50		ug/L				08/03/13 01:05	1

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-51300-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Client Sample ID: MP-02-3

Date Collected: 07/30/13 14:50

Lab Sample ID: 720-51300-5

Matrix: Water

Date Received: 07/30/13 17:53

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dii Fac
1,2-Dichloropropane	ND		0.50		ug/L			08/03/13 01:05	1
cis-1,3-Dichloropropene	ND		0.50		ug/L			08/03/13 01:05	1
trans-1,3-Dichloropropene	ND		0.50		ug/L			08/03/13 01:05	1
Ethylbenzene	ND		0.50		ug/L			08/03/13 01:05	1
Hexachlorobutadiene	ND		1.0		ug/L			08/03/13 01:05	1
2-Hexanone	ND		50		ug/L			08/03/13 01:05	1
Isopropylbenzene	ND		0.50		ug/L			08/03/13 01:05	1
4-Isopropyltoluene	ND		. 1.0		ug/L			08/03/13 01:05	1
Methylene Chloride	ND		5.0		ug/L			08/03/13 01:05	1
4-Methyl-2-pentanone (MIBK)	ND		50	!	ug/L			08/03/13 01:05	1
Naphthalene	ND		1.0	1	ug/L			08/03/13 01:05	1
N-Propylbenzene	ND		1.0	1	ug/L			08/03/13 01:05	1
Styrene	ND		0.50	ļ	ug/L		•	08/03/13 01:05	1
1,1,1,2-Tetrachloroethane	ND		0.50		ug/L			08/03/13 01:05	1
1,1,2,2-Tetrachloroethane	ND		0.50		ug/L			08/03/13 01:05	1
Tetrachloroethene	ND		0.50	(ug/L			08/03/13 01:05	1
Toluene	ND		0.50		ug/L			08/03/13 01:05	1
1,2,3-Trichlorobenzene	ND		1.0	ı	ug/L			08/03/13 01:05	1
1,2,4-Trichlorobenzene	ND		1.0	ı	ug/L			08/03/13 01:05	1
1,1,1-Trichloroethane	ND	•	0.50		ug/L		•	08/03/13 01:05	1
1,1,2-Trichloroethane	ND		0.50		ug/L			08/03/13 01:05	1
Trichloroethene	ND		0.50	ı	ug/L			08/03/13 01:05	1
Trichlorofluoromethane	ND		1.0	ı	ug/L			08/03/13 01:05	1
1,2,3-Trichloropropane	ND		0.50	ι	ug/L		·	08/03/13 01:05	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50	ι	ug/L			08/03/13 01:05	1
1,2,4-Trimethylbenzene	ND		0.50	ı	ug/L		•	08/03/13 01:05	1
1,3,5-Trimethylbenzene	ND		0.50	ı	ug/L			08/03/13 01:05	1
Vinyl acetate	ND		10	1	ug/L			08/03/13 01:05	1
Vinyl chloride	ND		0.50	ι	ug/L	•		08/03/13 01:05	1
Xylenes, Total	ND		1.0	ι	ug/L			08/03/13 01:05	1
2,2-Dichloropropane	ND		0.50	i	ug/L			08/03/13 01:05	1
Gasoline Range Organics (GRO) -C5-C12	ND		50	ι	ug/L			08/03/13 01:05	1

-	Surrogate	%Recovery	Qualifier	Limits	Prepared Analyzed	Dil Fac
Contract Parties	4-Bromofluorobenzene	94		67 _ 130	08/03/13 01:05	1
A POLICE STATE OF STA	1,2-Dichloroethane-d4 (Surr)	100		75 _~ 138	08/03/13 01:05	1
-	Toluene-d8 (Surr)	98		70 - 130	08/03/13 01:05	. 1

Client Sample ID: MP-01-3 Lab Sample ID: 720-51300-6
Date Collected: 07/30/13 14:50 Matrix: Water

Date Received: 07/30/13 17:53									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND		0.50		ug/L			08/03/13 01:33	1
Acetone	ND		50		ug/L			08/03/13 01:33	' 1
Benzene	ND		0.50		ug/L			08/03/13 01:33	1
Dichlorobromomethane	ND		0.50		ug/L			08/03/13 01:33	1
Bromobenzene	ND		1.0		ug/L			08/03/13 01:33	1
Chlorobromomethane	ND		1.0		ug/L			08/03/13 01:33	1
Bromoform	ND		1.0		ug/L			08/03/13 01:33	1

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-51300-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Client Sample ID: MP-01-3 Date Collected: 07/30/13 14:50 Lab Sample ID: 720-51300-6

Matrix: Water

Date Received: 07/30/13 17:53								
Analyte	Result	Qualifier F	RL MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bromomethane	ND	1	.0	ug/L			08/03/13 01:33	1
2-Butanone (MEK)	ND	;	50	ug/L			08/03/13 01:33	1
n-Butylbenzene	ND	1	.0	ug/L			08/03/13 01:33	1
sec-Butylbenzene	ND	1	.0	ug/L			08/03/13 01:33	. 1
tert-Butylbenzene	ND	1	.0	ug/L			08/03/13 01:33	1
Carbon disulfide	ND		.0	ug/L			08/03/13 01:33	1
Carbon tetrachloride	ND	0.8	50	ug/L			08/03/13 01:33	1
Chlorobenzene	ND	0.	50	ug/L			08/03/13 01:33	. 1
Chloroethane	ND		.0	ug/L			08/03/13 01:33	1 -
Chloroform	ND	1	.0	ug/L			08/03/13 01:33	1
Chloromethane	ND	1	.0	ug/L			08/03/13 01:33	1
2-Chlorotoluene	ND	0.9	50	ug/L	i i	•	08/03/13 01:33	1
4-Chlorotoluene	ND	0.1	50	ug/L			08/03/13 01:33	1
Chlorodibromomethane	ND	0.	50	ug/L			08/03/13 01:33	1
1,2-Dichlorobenzene	ND	0.	50	ug/L			08/03/13 01:33	· 1
1.3-Dichlorobenzene	ND	0.		ug/L			08/03/13 01:33	1
1.4-Dichlorobenzene	ND	0.		ug/L			08/03/13 01:33	1
1,3-Dichloropropane	ND	and the second second second	.0	ug/L			08/03/13 01:33	
1,1-Dichloropropene	ND	0,		ug/L			08/03/13 01:33	1
1,2-Dibromo-3-Chloropropane	ND		.0	ug/L			08/03/13 01:33	1
Ethylene Dibromide	ND	0.		ug/L			08/03/13 01:33	1
Dibromomethane	ND	0.		ug/L			08/03/13 01:33	1
Dichlorodifluoromethane	ND	0.		ug/L			08/03/13 01:33	1
1,1-Dichloroethane	ND	0.		ug/L			08/03/13 01:33	1
1,2-Dichloroethane	ND	0.4		· ug/L		•	08/03/13 01:33	1
1,1-Dichloroethene	ND	0.		ug/L			08/03/13 01:33	1
cis-1,2-Dichloroethene	ND	0.1		ug/L			08/03/13 01:33	1
trans-1,2-Dichloroethene	ND	0		ug/L			08/03/13 01:33	
1,2-Dichloropropane	ND	0.:		ug/L			08/03/13 01:33	1
cis-1,3-Dichloropropene	ND	0.		ug/L	÷		08/03/13 01:33	1
trans-1,3-Dichloropropene	ND	0.:		ug/L			08/03/13 01:33	1
Ethylbenzene	ND	. 0.:		ug/L			08/03/13 01:33	1
Hexachlorobutadiene	ND		.0	ug/L			08/03/13 01:33	1
2-Hexanone	ND		50	ug/L			08/03/13 01:33	1
Isopropylbenzene	ND	0.		ug/L			08/03/13 01:33	1
4-Isopropyltoluene	ND		.0	ug/L			08/03/13 01:33	1
Methylene Chloride	ND		.0	ug/L			08/03/13 01:33	1
4-Methyl-2-pentanone (MIBK)	ND		50	ug/L			08/03/13 01:33	1
Naphthalene	ND		.0	ug/L	i.		08/03/13 01:33	1
N-Propylbenzene	ND		.0	ug/L			08/03/13 01:33	1
Styrene	ND	0.		ug/L			08/03/13 01:33	1
1,1,1,2-Tetrachloroethane	ND	0.		ug/L			08/03/13 01:33	1
1,1,2,2-Tetrachloroethane	ND	0.:		ug/L			08/03/13 01:33	1
Tetrachloroethene	ND	0.:		ug/L		•	08/03/13 01:33	1
Toluene	ND	0.:		ug/L	1		08/03/13 01:33	1
1,2,3-Trichlorobenzene	ND		.0	ug/L			08/03/13 01:33	1
1,2,4-Trichlorobenzene	ND.	·	.0	ug/L			08/03/13 01:33	1
1,1,1-Trichloroethane	ND ND	0.		ug/L	•		08/03/13 01:33	'
1,1,2-Trichloroethane	ND	0.:		ug/L			08/03/13 01:33	1
a g a pair. A E taba tarbu pubba tara See	HU	Q.		~g/ =			55,55,10 01,00	

Client Sample Results

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-51300-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Client Sample ID: MP-01-3 Lab Sample ID: 720-51300-6
Date Collected: 07/30/13 14:50 Matrix: Water

Date Received: 07/30/13 17:53

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Trichloroethene	ND		0.50		ug/L			08/03/13 01:33	1
Trichloroffuoromethane	ND		1.0		ug/L			08/03/13 01:33	1
1,2,3-Trichloropropane	ND		0.50		ug/L			08/03/13 01:33	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50		ug/L			08/03/13 01:33	1
1,2,4-Trimethylbenzene	ND		0.50		ug/L			08/03/13 01:33	1
1,3,5-Trimethylbenzene	ND		0.50		ug/L			08/03/13 01:33	1
Vinyl acetate	ND		10		ug/L			08/03/13 01:33	1
Vinyl chloride	ND	•	0.50		ug/L			08/03/13 01:33	1
Xylenes, Total	ND		1.0		ug/L			08/03/13 01:33	1
2,2-Dichloropropane	ND		0.50		ug/L	-		08/03/13 01:33	1
Gasoline Range Organics (GRO) -C5-C12	ND		50		ug/L			08/03/13 01:33	1

Surrogate %Recovery Qualifier Prepared Analyzed Dil Fac 67 - 130 08/03/13 01:33 4-Bromofluorobenzene 94 1,2-Dichloroethane-d4 (Surr) 101 75 - 138 08/03/13 01:33 Toluene-d8 (Surr) 98 70 - 130 08/03/13 01:33

Client Sample ID: MP-04-1 Lab Sample ID: 720-51300-7

Date Collected: 07/30/13 17:05 Matrix: Water

Date Received: 07/30/13 17:53						777441	
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether		0.50	ug/L			08/03/13 02:01	1
Acetone	240	50	ug/L			08/03/13 02:01	1
Benzene	ND	0.50	ug/L			08/03/13 02:01	1
Dichlorobromomethane	ND	0.50	ug/L			08/03/13 02:01	1
Bromobenzene	ND	1.0	ug/L			08/03/13 02:01	1
Chlorobromomethane	ND	1.0	ug/L			08/03/13 02:01	1
Bromoform	ND	1.0	ug/L	-		08/03/13 02:01	1
Bromomethane	ND	1.0	ug/L			08/03/13 02:01	1
2-Butanone (MEK)	ND	50	ug/L			08/03/13 02:01	1.1
n-Butylbenzene	ND	1.0	ug/L			08/03/13 02:01	1
sec-Butylbenzene	ND	1.0	ug/L			08/03/13 02:01	1
tert-Butylbenzene	ND	1.0	ug/L			08/03/13 02:01	1
Carbon disulfide	ND	5.0	ug/L			08/03/13 02:01	1
Carbon tetrachloride	ND	0.50	ug/L			08/03/13 02:01	1
Chlorobenzene	ND	0.50	ug/L			08/03/13 02:01	1
Chloroethane	ND	1.0	ug/L			08/03/13 02:01	1
Chloroform	ND	1.0	ug/L			08/03/13 02:01	1
Chloromethane	ND	1.0	ug/L			08/03/13 02:01	1
2-Chlorotoluene	ND	0.50	ug/L			08/03/13 02:01	1
4-Chlorotoluene	ND	0.50	ug/L			08/03/13 02:01	1
Chlorodibromomethane	ND	0.50	ug/L			08/03/13 02:01	1
1,2-Dichlorobenzene	ND	0.50	ug/L	•		08/03/13 02:01	1
1,3-Dichlorobenzene	ND	0.50	ug/L			08/03/13 02:01	1
1,4-Dichlorobenzene	ND	0.50	ug/L			08/03/13 02:01	1
1,3-Dichloropropane	ND	1.0	ug/L			08/03/13 02:01	1
1,1-Dichloropropene	ND	0.50	ug/L			08/03/13 02:01	1
1,2-Dibromo-3-Chloropropane	ND	1.0	ug/L			08/03/13 02:01	1
Ethylene Dibromide	ND	0.50	ug/L			08/03/13 02:01	1

Client Sample Results

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-51300-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Client Sample ID: MP-04-1

1,2-Dichloroethane-d4 (Surr)

Toluene-d8 (Surr)

Date Collected: 07/30/13 17:05

Lab Sample ID: 720-51300-7

Matrix: Water

Date Collected: 07/30/13 17:03							iviatri)	x. warei
Date Received: 07/30/13 17:53	Panuli	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Analyte Dibromomethane	ND Result	<u>Qualifier</u>	0.50	ug/L		Fiebared	08/03/13 02:01	1
Dichlorodifluoromethane	ND		0.50	=			08/03/13 02:01	1
1.1-Dichloroethane	ND		0.50	ug/L			08/03/13 02:01	1
•••				ug/L			08/03/13 02:01	
1,2-Dichloroethane	ND		0.50	ug/L				1
1,1-Dichloroethene	ND		0.50	ug/L			08/03/13 02:01	1
cls-1,2-Dichloroethene	0.76		0.50	ug/L "			08/03/13 02:01	1
trans-1,2-Dichloroethene	ND		0.50	ug/L			08/03/13 02:01	1
1,2-Dichloropropane	ND		0.50	ug/L			08/03/13 02:01	1
cis-1,3-Dichloropropene	ND		0.50	ug/L			08/03/13 02:01	1
trans-1,3-Dichloropropene	ND		0.50	ug/L			08/03/13 02:01	1
Ethylbenzene	ND		0.50	ug/L			08/03/13 02:01	1
Hexachlorobutadiene	ND		1.0	ug/L			08/03/13 02:01	1
2-Hexanone	ND		50	ug/L			08/03/13 02:01	1
Isopropylbenzene	ND		0.50	ug/L			08/03/13 02:01	1
4-isopropyltoluene	ND		1.0	ug/L			08/03/13 02:01	1
Methylene Chloride	ND		5.0	ug/L			08/03/13 02:01	1
4-Methyl-2-pentanone (MIBK)	ND		50	ug/L			08/03/13 02:01	1
Naphthalene	ND		1.0	ug/L			08/03/13 02:01	1
N-Propylbenzene	ND		1.0	ug/L			08/03/13 02:01	1
Styrene	ND		0.50	ug/L			08/03/13 02:01	1
1,1,1,2-Tetrachloroethane	ND		0.50	ug/L			08/03/13 02:01	1
1,1,2,2-Tetrachloroethane	ND		0.50	ug/L			08/03/13 02:01	1
Tetrachloroethene	24		0.50	ug/L			08/03/13 02:01	1
Toluene	ND		0.50	ug/L			08/03/13 02:01	1
1,2,3-Trichlorobenzene	ND		1.0	ug/L			08/03/13 02:01	1
1,2,4-Trichlorobenzene	ND		1.0	ug/L			08/03/13 02:01	1
1,1,1-Trichloroethane	ND		0.50	ug/L			08/03/13 02:01	1
1,1,2-Trichloroethane	ND		0.50	ug/L			08/03/13 02:01	1
Trichloroethene	13		0.50	ug/L			08/03/13 02:01	1
Trichlorofluoromethane	ND		1.0	ug/L			08/03/13 02:01	1
1,2,3-Trichloropropane	ND		0.50	ug/L			08/03/13 02:01	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50	ug/L			08/03/13 02:01	1
1,2,4-Trimethylbenzene	ND		0.50	ug/L			08/03/13 02:01	1
1,3,5-Trimethylbenzene	ND		0.50	ug/L			08/03/13 02:01	1
Vinyl acetate	ND		10	ug/L			08/03/13 02:01	1
Vinyl chloride	ND		0.50	ug/L			08/03/13 02:01	1
Xylenes, Total	ND		1.0	ug/L			08/03/13 02:01	1
2,2-Dichloropropane	ND		0.50	ug/L			08/03/13 02:01	1
Gasoline Range Organics (GRO)	ND		50	ug/L			08/03/13 02:01	1
-C5-C12	,10			- 27, -			20,00,10 02,01	•
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	93		67 - 130				08/03/13 02:01	1

08/03/13 02:01

08/03/13 02:01

75 - 138

70 - 130

101

99

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-51300-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS

Lab Sample ID: MB 720-141443/4

Matrix: Water

Analysis Batch: 141443

Client Sample ID: Method Blank

Prep Type: Total/NA

	MB	MB					
Analyte	Result	Qualifier RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND	0.50	ug/L			08/02/13 10:49	1
Acetone	ND	50	ug/L			08/02/13 10:49	1
Benzene	ND	0.50	ug/L			08/02/13 10:49	1
Dichlorobromomethane	ND	0.50	ug/L			08/02/13 10:49	1
Bromobenzene	ND	1.0	ug/L			08/02/13 10:49	. 1
Chlorobromomethane	ND	1.0	ug/L			08/02/13 10:49	1
Bromoform	ND	1.0	ug/L			08/02/13 10:49	1
Bromomethane	ND	1.0	ug/L			08/02/13 10:49	1
2-Butanone (MEK)	ND	50	ug/L			08/02/13 10:49	1
n-Butylbenzene	ND	1.0	ug/L			08/02/13 10:49	1
sec-Butylbenzene	ND	1.0	ug/L			08/02/13 10:49	1
tert-Butylbenzene	ND	1.0	ug/L			08/02/13 10:49	1
Carbon disulfide	ND	5.0	ug/L			08/02/13 10:49	1
Carbon tetrachloride	ND	0.50	ug/L			08/02/13 10:49	1
Chlorobenzene	ND	0.50	ug/L			08/02/13 10:49	1
Chloroethane	ND	1.0	ug/L			08/02/13 10:49	1
Chloroform	ND	1.0	ug/L			08/02/13 10:49	1
Chloromethane	ND	1.0	ug/L			08/02/13 10:49	1
2-Chlorotoluene	ND	0.50	ug/L			08/02/13 10:49	· 1
4-Chlorotoluene	ND	0.50	ug/L			08/02/13 10:49	1
Chlorodibromomethane	ND	0.50	ug/L			08/02/13 10:49	1
1,2-Dichlorobenzene	ND	0.50	ug/L			08/02/13 10:49	1
1,3-Dichlorobenzene	ND	0.50	ug/L			08/02/13 10:49	1
1,4-Dichlorobenzene	ND	0.50	ug/L			08/02/13 10:49	1
1,3-Dichloropropane	ND	1.0	ug/L			08/02/13 10:49	. 1
1,1-Dichloropropene	ND	0.50	ug/L			08/02/13 10:49	1
1,2-Dibromo-3-Chloropropane	ND	1.0	ug/L			08/02/13 10:49	1
Ethylene Dibromide	ND	0.50	ug/L			08/02/13 10:49	1
Dibromomethane	ND	0.50	ug/L			08/02/13 10:49	1
Dichlorodifluoromethane	ND	0.50	ug/L			08/02/13 10:49	1
1.1-Dichloroethane	ND	0.50	ug/L			08/02/13 10:49	1
1,2-Dichloroethane	ND	0.50	ug/L			08/02/13 10:49	· 1
1.1-Dichloroethene	ND	0.50	ug/L			08/02/13 10:49	1
cis-1,2-Dichloroethene	ND	0.50	ug/L			08/02/13 10:49	1
trans-1,2-Dichloroethene	ND	0.50	ug/L			08/02/13 10:49	1
1,2-Dichloropropane	ND	0.50	ug/L			08/02/13 10:49	1
cis-1,3-Dichloropropene	ND	0.50	ug/L			08/02/13 10:49	1
trans-1,3-Dichloropropene	ND	0.50	ug/L			08/02/13 10:49	1
Ethylbenzene	ND	0.50	ug/L			08/02/13 10:49	1
Hexachlorobutadiene	ND	1.0	ug/L			08/02/13 10:49	1
2-Hexanone	ND	50	ug/L			08/02/13 10:49	1
Isopropylbenzene	ND	0.50				08/02/13 10:49	1
4-Isopropyltaluene	ND	1.0	ug/L				
	ND	1.0 5.0	ug/L			08/02/13 10:49	1
Methylene Chloride 4-Methyl-2-pentanone (MIBK)			ug/L			08/02/13 10:49	1
	ND ND	50	ug/L			08/02/13 10:49	1
Naphthalene	ND	1.0	ug/L			08/02/13 10:49	1
N-Propylbenzene	ND	1.0	ug/L			08/02/13 10:49	1
Styrene	ND	0.50	ug/L			08/02/13 10:49	1

TestAmerica Job ID: 720-51300-1

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: MB 720-141443/4

Matrix: Water

Analysis Batch: 141443

Client Sample ID: Method Blank Prep Type: Total/NA

	MB	MB						
Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND		0.50	ug/L			08/02/13 10:49	1
1,1,2,2-Tetrachloroethane	ND		0.50	ug/L			08/02/13 10:49	1
Tetrachloroethene	ND		0.50	ug/L			08/02/13 10:49	1
Toluene	ND		0.50	ug/L			08/02/13 10:49	1
1,2,3-Trichlorobenzene	ND		1.0	ug/L			08/02/13 10:49	1
1,2,4-Trichlorobenzene	ND		1.0	ug/L			08/02/13 10:49	. 1
1,1,1-Trichloroethane	ND		0.50	ug/L			08/02/13 10:49	1
1,1,2-Trichloroethane	ND		0.50	ug/L		•	08/02/13 10:49	1
Trichloroethene	ND		0.50	ug/L			08/02/13 10:49	1
Trichlorofluoromethane	ND		1.0	ug/L			08/02/13 10:49	1
1,2,3-Trichloropropane	ND		0.50	ug/L			08/02/13 10:49	1
1,1,2-Trichloro-1,2,2-trifluorpethane	ND		0.50	ug/L			08/02/13 10:49	1
1,2,4-Trimethylbenzene	ND		0.50	ug/L			08/02/13 10:49	1
1,3,5-Trimethylbenzene	ND		0.50	ug/L			08/02/13 10:49	1
Vinyl acetate	ND		10	ug/L			08/02/13 10:49	1
Vinyl chloride	ND	4 128 4	0.50	ug/L			08/02/13 10:49	1
Xylenes, Total	ND		1.0	ug/L			08/02/13 10:49	1
2,2-Dichloropropane	, ND		0.50	ug/L			08/02/13 10:49	1
Gasoline Range Organics (GRO) -C5-C12	ND		50	ug/L			08/02/13 10:49	1

Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fa	iC
4-Bromofluorobenzene	93	***************************************	67 - 130			08/02/13 10:49		1
1,2-Dichloroethane-d4 (Suπ)	91		75 - 138	٠		08/02/13 10:49		1
Toluene-d8 (Surr)	100		70 - 130			08/02/13 10:49		1

Lab Sample ID: LCS 720-141443/12

Matrix: Water

Analysis Batch: 141443

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.		
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	,	
Gasoline Range Organics (GRO)	500	520		ug/L		104	62 - 120		
-C5-C12						*			

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	95		67 - 130
1,2-Dichloroethane-d4 (Surr)	90		75 - 138
Toluene-d8 (Surr)	100	•	70 - 130

Lab Sample ID: LCS 720-141443/5

Matrix: Water Analysis Batch: 141443 Client Sample ID: Lab Control Sample Prep Type: Total/NA

> %Rec. Limits 62 - 130 107 90 26 - 180 79 - 130 106

Spike LCS LCS Added Result Qualifier Unit %Rec Analyte 25.0 26.8 Methyl tert-butyl ether ug/L Acetone 125 112 ug/L 25.0 26.6 ug/L Benzene Dichlorobromomethane 25.0 28.8 ug/L 115 70 - 130

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-51300-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: LCS 720-141443/5

Matrix: Water

Analysis Batch: 141443

Client Sample ID: Lab Control Sample
Prep Type: Total/NA

	Spike	LCS	LCS			%Rec.
Analyte	Added	Result	Qualifier U	nit	D %Rec	Limits
Bromobenzene	25.0	30.7	u	g/L	123	70 - 130
Chlorobromomethane	25.0	24.6	ug	g/L	98	70 - 130
Bromoform	25.0	28.1	uç	g/L	112	68 - 136
Bromomethane	25.0	23.4	uç	g/L	93	43 _ 151
2-Butanone (MEK)	125	147	uç	g/L	118	54 - 130
n-Butylbenzene	25.0	28.3	ប្ប	₃ /L	113	70 - 142
sec-Butylbenzene	25.0	29.4	ug	_I /L	117	70 - 134
tert-Butylbenzene	25.0	31.3	ug	Į/L	125	70 - 135
Carbon disulfide	25.0	18.4	ug	J/L	74	58 - 130
Carbon tetrachloride	25.0	27.5	นรู	J/L	110	70 - 146
Chlorobenzene	25.0	28.3	ug	J/L	113	70 - 130
Chloroethane	25.0	23.8	บรู	/L	95	62 - 138
Chloroform	25.0	25.5	ug	ı/L	102	70 - 130
Chloromethane	25.0	23.8	ug	ı/L	95	52 - 175
2-Chlorotoluene	25.0	30.5	ug	J/L	122	70 - 130
4-Chlorotoluene	25.0	30.3	ug	ı/L	121	70 - 130
Chlorodibromomethane	25.0	29.9	ប្ប	/L	120	70 - 145
1,2-Dichlorobenzene	25.0	26.8	ug	/L	107	70 - 130
1,3-Dichlorobenzene	25.0	28.6	ug	/L	115	70 - 130
1,4-Dichlorobenzene	25.0	28.3	ug	/L	113	70 ₋ 130
1,3-Dichloropropane	25.0	33.1	* ug	/L	132	70 - 130
1,1-Dichloropropene	25.0	28.5	บg	/L	114	70 - 130
1,2-Dibromo-3-Chloropropane	25.0	25.9	ug	/L	104	70 - 136
Ethylene Dibromide	25.0	32.1	ug	/L	128	70 - 130
Dibromomethane	25.0	27.8	ug	/L	111	70 - 130
Dichlorodifluoromethane	25.0	24.8	ид	/L	99	34 - 132
1,1-Dichloroethane	25.0	24.5	ug	/L	98	70 - 130
1,2-Dichloroethane	25.0	27.5	ug	/L	110	61 - 132
1,1-Dichloroethene	25.0	22.9	ug	<i>/</i> L	91	64 - 128
cis-1,2-Dichloroethene	25.0	24.7	ug	<i>I</i> L	99	70 - 130
trans-1,2-Dichloroethene	25.0	24.3	ug	<i>I</i> L	97	68 - 130
1,2-Dichloropropane	25.0	30.5	ug		122	70 - 130
cis-1,3-Dichloropropene	25.0	31.4	ug		125	70 - 130
trans-1,3-Dichloropropene	25.0	32.4	ug		129	70 - 140
Ethylbenzene	25.0	26.9	ug		108	80 - 120
Hexachlorobutadiene	25.0	21.9	ug		88	70 - 130
2-Hexanone	125	156	ug		124	60 - 164
Isopropylbenzene	25.0	26.7	ug		107	70 - 130
4-isopropyltoluene	25.0	29.0	ug		116	70 - 130
Methylene Chloride	25.0	22.4	ug		90	70 - 147
4-Methyl-2-pentanone (MIBK)	125	137	ug.		110	58 - 130
Naphthalene	25.0	23.2	ug		93	70 - 130
N-Propylbenzene	25.0	31.7	ug.		127	70 - 130
Styrene	25.0	27.8	ug		111	70 - 130
1,1,1,2-Tetrachloroethane	25.0	26.8	ug.		107	70 - 130
1,1,2,2-Tetrachloroethane	25.0	31.0	ug.		124	70 - 130
Tetrachloroethene	25.0	30.1	ug.		120	70 - 130

Client: AMEC Environment & Infrastructure, Inc. Project/Site: Crown Chevrolet

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample	ID: L	CS 720-	141443/5
------------	-------	---------	----------

Matrix: Water

Analysis Batch: 141443

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	Đ	%Rec	Limits	
1,2,3-Trichlorobenzene	25.0	20.5		ug/L		82	70 - 130	
1,2,4-Trichlorobenzene	25.0	22.9		ug/L		91	70 - 130	
1,1,1-Trichloroethane	25.0	27.4		ug/L		110	70 - 130	
1,1,2-Trichloroethane	25.0	32.1		ug/L		128	70 - 130	
Trichloroethene	25.0	28.4		ug/L		114	70 - 130	
Trichlorofluoromethane	25.0	21.5		ug/L		86	66 - 132	
1,2,3-Trichloropropane	25.0	30.7		ug/L		123	70 - 130	
1,1,2-Trichloro-1,2,2-trifluoroetha	25.0	22.9		ug/L		92	42 - 162	
10	•							
I,2,4-Trimethylbenzene	25.0	30.3		ug/L		121	70 - 132	
1,3,5-Trimethylbenzene	25.0	30.9		ug/L		124	70 - 130	
/inyl acetate	25.0	37.4		ug/L		149	43 - 163	
/inyl chloride	25.0	25.2		ug/L		101	54 ₋ 135	
n-Xylene & p-Xylene	50.0	55.0		ug/L		110	70 - 142	
o-Xylene	25.0	26.4		ug/L		106	70 - 130	
2,2-Dichloropropane	25.0	28.1		ug/L		112	70 - 140	

	LUS	TC2	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	95		67 - 130
1,2-Dichloroethane-d4 (Surr)	. 89		75 ₋ 138
Toluene-d8 (Surr)	105		70 - 130

Lab Sample ID: LCSD 720-141443/13

Matrix: Water

l	Analysis Batch: 141443									
	-	Spike	LCSD	LCSD				%Rec.	,	RPD
	Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
deall and lands	Gasoline Range Organics (GRO)	500	535		ug/L		107	62 - 120	3	20
	-C5-C12									

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	96		67 - 130
1,2-Dichloroethane-d4 (Surr)	90		75 - 138
Toluene-d8 (Surr)	100		70 - 130
	4-Bromofluorobenzene 1,2-Dichloroethane-d4 (Surr)	Surrogate %Recovery 4-Bromofluorobenzene 96 1,2-Dichloroethane-d4 (Surr) 90	4-Bromofluorobenzene 96 1,2-Dichloroethane-d4 (Suπ) 90

Lab Sample ID: LCSD 720-141443/6

Matrix: Water

Analysis Batch: 141443

Client Sample	ID:	Lab	Control	Sample	auG
onom campio			•••••	outp.o	c P-

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Type: Total/NA

Spike	LCSD	LCSD				%Rec.		RPD
Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
25.0	26.9		ug/L		108	62 - 130	0	20
125	116		ug/L		93	26 - 180	3	30
25.0	27.3		ug/L		109	79 - 130	3	20
25.0	29.0		ug/L		116	70 - 130	1	20
25.0	30.B		ug/L		123	70 - 130	0	20
25.0	25.2	•	ug/L		101	70 - 130	2	20
25.0	28.1		ug/L		113	68 - 136	0	20
25.0	25.0		ug/L		100	43 - 151	7	20
	25.0 125 25.0 25.0 25.0 25.0	Added Result 25.0 26.9 125 116 25.0 27.3 25.0 29.0 25.0 30.8 25.0 25.2 25.0 28.1	Added Result Qualifier 25.0 26.9 125 116 25.0 27.3 25.0 29.0 25.0 30.8 25.0 25.2 25.0 28.1	Added Result Qualifier Unit 25.0 26.9 ug/L 125 116 ug/L 25.0 27.3 ug/L 25.0 29.0 ug/L 25.0 30.8 ug/L 25.0 25.2 ug/L 25.0 28.1 ug/L	Added Result Qualifier Unit D 25.0 26.9 ug/L 125 116 ug/L 25.0 27.3 ug/L 25.0 29.0 ug/L 25.0 30.8 ug/L 25.0 25.2 ug/L 25.0 28.1 ug/L	Added Result Qualifier Unit D %Rec 25.0 26.9 ug/L 108 125 116 ug/L 93 25.0 27.3 ug/L 109 25.0 29.0 ug/L 116 25.0 30.8 ug/L 123 25.0 25.2 ug/L 101 25.0 28.1 ug/L 113	Added Result Qualifier Unit D %Rec Limits 25.0 26.9 ug/L 108 62 - 130 125 116 ug/L 93 26 - 180 25.0 27.3 ug/L 109 79 - 130 25.0 29.0 ug/L 116 70 - 130 25.0 30.8 ug/L 123 70 - 130 25.0 25.2 ug/L 101 70 - 130 25.0 28.1 ug/L 113 68 - 136	Added Result Qualifier Unit D %Rec Limits RPD 25.0 26.9 ug/L 108 62 - 130 0 125 116 ug/L 93 26 - 180 3 25.0 27.3 ug/L 109 79 - 130 3 25.0 29.0 ug/L 116 70 - 130 1 25.0 30.8 ug/L 123 70 - 130 0 25.0 25.2 ug/L 101 70 - 130 2 25.0 28.1 ug/L 113 68 - 136 0

Client: AMEC Environment & Infrastructure, Inc. Project/Site: Crown Chevrolet

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: LCSD 720-141443/6

Matrix: Water

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

TestAmerica Job ID: 720-51300-1

Analysis Batch: 141443									
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
2-Butanone (MEK)	125	146		ug/L		117	54 - 130	1	20
n-Butylbenzene	25.0	28.7		ug/L		115	70 - 142	2	20
sec-Butylbenzene	25.0	30.1		ug/L		120	70 - 134	2	20
tert-Butylbenzene	25.0	32.1		ug/L		128	70 - 135	3	20
Carbon disulfide	25.0	19.5		ug/L		78	58 - 130	6	20
Carbon tetrachloride	25.0	28.3		ug/L		113	70 - 146	3	20
Chlorobenzene	25.0	28.9		ug/L		116	70 ₋ 130	2	20
Chloroethane	25.0	25.3		ug/L		101	62 - 138	6	20
Chloroform	25.0	26.1		ug/L		104	70 - 130	2	20
Chloromethane	25.0	25.9		ug/L		103	52 - 175	8	20
2-Chlorotoluene	25.0	31.0		ug/L		124	70 - 130	2	20
4-Chiorotoluene	25.0	31.0		ug/L		124	70 - 130	2	20
Chlorodibromomethane	25.0	29.8		ug/L		119	70 - 145	a	20
1,2-Dichlorobenzene	25.0	27.2		ug/L		109	70 - 130	2	20
1,3-Dichlorobenzene	25.0	29.2		ug/L		117	70 - 130	2	20
1,4-Dichlorobenzene	25.0	28.8		ug/L		115	70 - 130	2	20
1,3-Dichloropropane	25.0	32.6		ug/L		130	70 - 130	1	20
1,1-Dichloropropene	25.0	29.3		ug/L		117	70 - 130	2	20
1,2-Dibromo-3-Chloropropane	25.0	25.4		ug/L		102	70 - 136	2	20
Ethylene Dibromide	25.0	31.5		ug/L		126	70 - 130	2	20
Dibromomethane	25.0	27.9		ug/L		111	70 - 130	0	20
Dichlorodifluoromethane	25.0	26.4		ug/L		106	34 - 132	6	20
1,1-Dichloroethane	25.0	25.1		ug/L		100	70 - 130	3	20
1,2-Dichloroethane	25.0	27.5		ug/L		110	61 - 132	0	20
1,1-Dichloroethene	25.0	23.5		ug/L		94	64 - 128	3	20
cis-1,2-Dichloroethene	25.0	25.4		ug/L		102	70 - 130	3	20
trans-1,2-Dichloroethene	25.0	25.1		ug/L		100	68 - 130	3	20
1,2-Dichloropropane	25.0	30.8		ug/L		123	70 - 130	. 1	20
cis-1,3-Dichloropropene	25.0	31.4		ug/L		126	70 ₋ 130	. 0	20
trans-1,3-Dichtoropropene	25.0	32.4		ug/L		130	70 - 140	0	20
Ethylbenzene	25.0	27.7		ug/L		111	80 - 120	3	20
Hexachlorobutadiene	25.0	22.1		ug/L		88	70 - 130	ï	20
2-Hexanone	125	150		ug/L		120	60 - 164	4	20
Isopropylbenzene	25.0	27.4		ug/L		110	70 - 130	3	20
4-Isopropyitoluene	25.0	29.7		ug/L		119	70 - 130	2	20
Methylene Chloride	25.0	23.1		ug/L		93	70 - 147	3	20
4-Methyl-2-pentanone (MIBK)	125	134		ug/L		107	58 - 130	. 2	20
Naphthalene	25.0	23.2		ug/L		93	70 - 130	Ö	20
N-Propylbenzene	25.0	32.2		ug/L		129	70 - 130	2	20
Styrene	25.0	28.6		ug/L		114	70 - 130	3	20
1,1,1,2-Tetrachloroethane	25.0	27.4		ug/L		110	70 - 130	2	20
1,1,2,2-Tetrachloroethane	25.0	30.6		ug/L		122	70 - 130	1	20
Tetrachloroethene	25.0	30.8		ug/L		123	70 - 130	2	20
Toluene	25.0	28.7	•	ug/L		115	78 - 120	4	20
1,2,3-Trichlorobenzene	25.0	20.5		ug/L	•	82	70 - 130	0	20
1,2,4-Trichlorobenzene	25.0	23.2		ug/L		93	70 - 130	1	20
1,1,1-Trichloroethane	25.0	28.3		ug/L		113	70 - 130	3	20
1,1,2-Trichloroethane	25.0	31.8		ug/L		127	70 - 130	1	20
				-					

TestAmerica Job ID: 720-51300-1

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: LCSD 720-141443/6

Matrix: Water

Analysis Batch: 141443

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Trichloroethene	25.0	29.2	***************************************	ug/L		117	70 - 130	3	20
Trichlorofluoromethane	25.0	22.3		ug/L		89	66 - 132	4	20
1,2,3-Trichloropropane	25.0	30.2		ug/L		121	70 - 130	2	20
1,1,2-Trichloro-1,2,2-trifluoroetha	25.0	23.5		ug/L		94	42 - 162	3	20
ne .									
1,2,4-Trimethylbenzene	25.0	30.9		ug/L		123	70 - 132	2	20
1,3,5-Trimethylbenzene	25.0	31.4		ug/L		126	70 - 130	2	20
Vinyl acetate	25.0	37.1		ug/L		148	43 - 163	1	20
Vinyl chloride	25.0	27.9		ug/L		112	54 - 135	10	20
m-Xylene & p-Xylene	50.0	56.6		ug/L		113	70 - 142	3	20
o-Xylene	25.0	27.2		ug/L		109	70 - 130	3	20
2,2-Dichloropropane	25.0	30.2		ug/L		121	70 - 140	7	20

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	95		67 - 130
1,2-Dichloroethane-d4 (Surr)	88		- 75 <u>-</u> 138
Toluene-d8 (Surr)	104		70 - 130

Lab Sample ID: MB 720-141494/4

Matrix: Water

Analysis Batch: 141494

Client Sample ID: Method Blank

Prep Type: Total/NA

	MB	MB						
Analyte	Result	Qualifier F	L MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND	0.5	0	ug/L			08/02/13 19:32	1
Acetone	ND		0	ug/L			08/02/13 19:32	1
Benzene	ND	0.8	0	ug/L			08/02/13 19:32	1
Dichlorobromomethane	ND	0.8	0	ug/L			08/02/13 19:32	¨ 1
Bromobenzene	ND	1	.0	ug/L			08/02/13 19:32	1
Chlorobromomethane	ND	1	.0	ug/L			08/02/13 19:32	1
Bromoform	ND	1	0	ug/L			08/02/13 19:32	1
Bromomethane	ND	1	.0	ug/L			08/02/13 19:32	1
2-Butanone (MEK)	ND		0	ug/L			08/02/13 19:32	1
n-Butylbenzene	ND	1	.0	ug/L			08/02/13 19:32	1
sec-Butylbenzene	ND	1	.0	ug/L			08/02/13 19:32	1
tert-Butylbenzene	ND	1	0	ug/L			08/02/13 19:32	1
Carbon disulfide	ND	5	.0	ug/L			08/02/13 19:32	1
Carbon tetrachloride	ND	0.8	0	ug/L			08/02/13 19:32	1
Chlorobenzene	ND	0.8	0	ug/L			08/02/13 19:32	1
Chloroethane	ND	1	0	ug/L			08/02/13 19:32	1
Chloroform	ND	1	0	ug/L			08/02/13 19:32	1
Chloromethane	ND	1	.0	ug/L			08/02/13 19:32	1
2-Chlorotoluene	ND	0.9	0	ug/L			08/02/13 19:32	1
4-Chlorotoluene	ND	0.8	0	ug/L			08/02/13 19:32	1
Chlorodibromomethane	ND	0.8	0	ug/L			08/02/13 19:32	1
1,2-Dichlorobenzene	ND	0.8	io "	ug/L			08/02/13 19:32	1
1,3-Dichlorobenzene	ND	0.9	io.	ug/L			08/02/13 19:32	1
1,4-Dichlorobenzene	ND	0.8	O	ug/L			08/02/13 19:32	1
1,3-Dichloropropane	ND		.0	ug/L			08/02/13 19:32	1

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-51300-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

MB MB

Lab Sample ID: MB 720-141494/4

Matrix: Water

Surrogate

4-Bromofluorobenzene

Toluene-d8 (Surr)

1,2-Dichloroethane-d4 (Surr)

Analysis Batch: 141494

Client Sample ID: Method Blank

Prep Type: Total/NA

	MB	MB						
Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloropropene	ND		0.50	ug/L			08/02/13 19:32	1
1,2-Dibromo-3-Chloropropane	ND		1.0	ug/L			08/02/13 19:32	1
Ethylene Dibromide	ND		0.50	ug/L			08/02/13 19:32	1
Dibromomethane	ND		0.50	ug/L			08/02/13 19:32	1
Dichlorodifluoromethane	ND		0.50	ug/L			08/02/13 19:32	1
1,1-Dichloroethane	ND		0.50	ug/L			08/02/13 19:32	1
1,2-Dichloroethane	ND		0.50	ug/L			08/02/13 19:32	1
1,1-Dichloroethene	ND		0.50	ug/L			08/02/13 19:32	1
cis-1,2-Dichloroethene	ND		0.50	ug/L			08/02/13 19:32	1
trans-1,2-Dichloroethene	ND		0.50	ug/L			08/02/13 19:32	1
1,2-Dichloropropane	ND		0.50	ug/L			08/02/13 19:32	1
cis-1,3-Dichloropropene	ND		0.50	ug/L	•		08/02/13 19:32	1
trans-1,3-Dichloropropene	ND		0.50	ug/L			08/02/13 19:32	1
Ethylbenzene	ND	•	0.50	ug/L			08/02/13 19:32	. 1
Hexachlorobutadiene	ND		1.0	ug/L			08/02/13 19:32	1
2-Hexanone	ND		50	ug/L			08/02/13 19:32	1
Isopropylbenzene	ND		0.50	ug/L			08/02/13 19:32	1
4-Isopropyitoluene	ND	•	1.0	ug/L			08/02/13 19:32	1
Methylene Chloride	ND		5.0	ug/L			08/02/13 19:32	1
4-Methyl-2-pentanone (MIBK)	ND		50	ug/L			08/02/13 19:32	1
Naphthalene	ND		1.0	ug/L			08/02/13 19:32	1
N-Propylbenzene	ND		1.0	ug/L			08/02/13 19:32	1
Styrene	ND		0.50	ug/L			08/02/13 19:32	` 1
1,1,1,2-Tetrachloroethane	ND		0.50	ug/L		•	08/02/13 19:32	1
1,1,2,2-Tetrachloroethane	ND		0.50	ug/L			08/02/13 19:32	. 1
Tetrachloroethene	ND		0.50	ug/L			08/02/13 19:32	1
Toluene	ND		0.50	ug/L			08/02/13 19:32	1
1,2,3-Trichlorobenzene	ND		1.0	ug/L			08/02/13 19:32	1
1,2,4-Trichlorobenzene	ND		1.0	ug/L			08/02/13 19:32	1
1,1,1-Trichloroethane	ND		0.50	ug/L			08/02/13 19:32	1
1,1,2-Trichloroethane	ND		0.50	ug/L			08/02/13 19:32	1
Trichloroethene	ND		0.50	ug/L			08/02/13 19:32	1
Trichlorofluoromethane	ND		1.0	ug/L			08/02/13 19:32	1
1,2,3-Trichloropropane	ND		0.50	ug/L			08/02/13 19:32	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50	ug/L			08/02/13 19:32	1
1,2,4-Trimethylbenzene	ND		0.50	ug/L			08/02/13 19:32	1
1,3,5-Trimethylbenzene	ND		0.50	ug/L			08/02/13 19:32	1
Vinyl acetate	ND		10	ug/L			08/02/13 19:32	1
Vinyl chloride	ND		0.50	ug/L			08/02/13 19:32	1
Xylenes, Total	ND		1.0	ug/L			08/02/13 19:32	1
2,2-Dichloropropane	ND		0.50	ug/L			08/02/13 19:32	1
Gasoline Range Organics (GRO)	ND		50	ug/L			08/02/13 19:32	1
-C5-C12								
	MB	MB						

TestAmerica Pleasanton

Analyzed

08/02/13 19:32

08/02/13 19:32

08/02/13 19:32

Prepared

Limits

67 - 130

75 - 138

70 - 130

%Recovery Qualifier

90

97

99

Dil Fac

1

Client: AMEC Environment & Infrastructure, Inc. Project/Site: Crown Chevrolet

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: LCS 720-141494/5

Matrix: Water

Analysis Batch: 141494

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS	LCS			%Rec.
Analyte	Added	Result	Qualifier Unit	D	%Rec	Limits
Methyl tert-butyl ether	25.0	24.7	ug/L		99	62 - 130
Acetone	125	134	ug/L		107	26 - 180
Benzene	25.0	22.7	ug/L		91	79 - 130
Dichlorobromomethane	25.0	23.1	ug/L		92	70 - 130
Bromobenzene	25.0	24.0	ug/L		96	70 - 130
Chlorobromomethane	25.0	23.8	ug/L		95	70 - 130
Bromoform	25.0	26.1	ug/L	•	104	68 - 136
Bromomethane	25.0	25.1	ug/L		100	43 - 151
2-Butanone (MEK)	125	140	ug/L		112	54 - 130
n-Butylbenzene	25.0	24.9	ug/L		100	70 - 142
sec-Butylbenzene	25.0	24.8	ug/L		99	70 - 134
tert-Butylbenzene	25.0	25.3	ug/L		101	70 - 135
Carbon disulfide	25.0	20.6	ug/L		83	58 - 130
Carbon letrachloride	25.0	22.8	ug/L		91	70 - 146
Chlorobenzene	25.0	24.4	ug/L		98	70 - 130
Chloroethane	25.0	25.1	ug/L		101	62 - 138
Chloroform	25.0	23.3	ug/L		93	70 - 130
Chloromethane	25.0 25.0	22.8	ug/L		91	52 - 175
2-Chlorotoluene	25.0	24.4			98	70 - 130
	25.0 25.0		ug/L		•	70 - 130 70 - 130
4-Chlorotoluene		23.8	ug/L		95	
Chlorodibromomethane	25.0	25.4	ug/L		102	70 - 145
1,2-Dichlorobenzene	25.0	25.6	ug/L		102	70 - 130
1,3-Dichlorobenzene	25.0	25.4	ug/L		102	70 - 130
1,4-Dichlorobenzene	25.0	25.4	ug/L		102	70 - 130
1,3-Dichloropropane	25.0	25.2	ug/L		101	70 - 130
1,1-Dichloropropene	25.0	24.0	ug/L		96	70 - 130
1,2-Dibromo-3-Chloropropane	25.0	28.3	ug/L		113	70 - 136
Ethylene Dibromide	25.0	26.3	ug/L		105	70 - 130
Dibromomethane	25.0	24.4	ug/L		97	70 - 130
Dichlorodifluoromethane	25.0	21.3	ug/L		85	34 - 132
1,1-Dichloroethane	25.0	22.3	ug/L		89	70 - 130
1,2-Dichloroethane	25.0	23.8	ug/L		95	61 _ 132
1,1-Dichloroethene	25.0	20.2	ug/L		81	64 - 128
cis-1,2-Dichloroethene	25.0	23.1	ug/L		93	70 - 130
trans-1,2-Dichloroethene	25.0	21.8	ug/L		87	68 - 130
1,2-Dichloropropane	25.0	24.7	ug/L		99	70 - 130
cis-1,3-Dichloropropene	25.0	24.3	ug/L		97	70 - 130
trans-1,3-Dichloropropene	25.0	23.8	ug/L		95	70 - 140
Ethylbenzene	25.0	23.3	ug/L		93	80 - 120
Hexachlorobutadiene	25.0	24.9	ug/L		99	70 - 130
2-Hexanone	125	144	ug/L		115	60 - 164
Isopropylbenzene	25.0	25.9	ug/L		104	70 - 130
4-Isopropyltoluene	25.0	25.1	ug/L		101	70 - 130
Methylene Chloride	25.0	22.1	ug/L		88	70 - 147
4-Methyl-2-pentanone (MIBK)	125	144	ug/L		115	58 - 130
Naphthalene	25.0	28.3	ug/L	-	113	70 - 130
N-Propylbenzene	25.0	24.6	ug/L		98	70 - 130
Styrene	25.0	24.1	ug/L		96	70 - 130

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-51300-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: LCS 720-141494/5

Matrix: Water

Analysis Batch: 141494

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

·	Spike	LCS	LCS			%Rec.	
Analyte	Added	Result	Qualifier Unit	D	%Rec	Limits	
1,1,1,2-Tetrachloroethane	25.0	24.1	ug/L		96	70 - 130	
1,1,2,2-Tetrachloroethane	25.0	27.1	ug/L		108	70 ₋ 130	
Tetrachloroethene	25.0	24.3	ug/L		97	70 - 130	
Toluene	25.0	23.1	ug/L	•	92	78 - 120	
1,2,3-Trichlorobenzene	25.0	26.1	ug/L		104	70 - 130	
1,2,4-Trichlorobenzene	25.0	25.8	ug/L		103	70 - 130	
1,1,1-Trichloroethane	25.0	23.9	ug/L	•	95	70 - 130	
1,1,2-Trichloroethane	25.0	26.3	ug/L		105	70 _ 130	
Trichloroethene	25.0	24.0	ug/L		96	70 - 130	
Trichlorofluoromethane	25.0	24.3	ug/L		97	66 - 132	
1,2,3-Trichloropropane	25.0	25.9	ug/L		104	70 - 130	
1,1,2-Trichloro-1,2,2-trifluoroetha	25.0	21.5	ug/L		86	42 - 162	
ne	_		•				
1,2,4-Trimethylbenzene	25.0	25.7	ug/L		103	70 - 132	
1,3,5-Trimethylbenzene	25.0	25.2	ug/L		101	70 - 130	
Vinyl acetate	25.0	33.4	ug/L		133	43 - 163	
Vinyl chloride	25.0	23.7	ug/L		95	54 - 135	
m-Xylene & p-Xylene	50.0	49.1	ug/L		98	70 - 142	
o-Xylene	25.0	25.3	ug/L		101	70 - 130	
2.2-Dichloropropane	25.0	25.4	ug/L		101	70 - 140	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	95		67 - 130
1,2-Dichloroethane-d4 (Surr)	96		75 - 138
Toluene-dR (Surr)	100		70 130

Lab Sample ID: LCS 720-141494/7

Matrix: Water

Analysis Batch: 141494

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

-	_	Spike	LCS	LCS -				%Rec.	,
	Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
	Gasoline Range Organics (GRO)	500	488		ug/L	_	98	62 - 120	
*****	-C5-C12								

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	96		67 - 130
1,2-Dichloroethane-d4 (Surr)	94		75 - 138
Toluene-d8 (Surr)	100		70 - 130

Lab Sample ID: LCSD 720-141494/6

Matrix: Water

Analysis Batch: 141494

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

•	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Methyl tert-butyl ether	25.0	23.5		ug/L		94	62 - 130	5	20
Acetone	125	120		ug/L		96	26 - 180	11	30
Benzene	25.0	22.5		ug/L		90	79 - 130	1	20
Dichlorobromomethane	25.0	22.8		ug/L	•	91	70 - 130	1	20

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: LCSD 720-141494/6

Matrix: Water

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Analysis Batch: 141494	Spike	LCSD	LCSD				%Rec.		RF
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Lin
Bromobenzene	25.0	23.8		ug/L		95	70 - 130	1	
Chlorobromomethane	25.0	23.3		ug/L		93	70 - 130	2	:
Sromoform .	25.0	24.5		ug/L		98	68 - 136	. 6	į
romomethane	25.0	25.0		ug/L		100	43 - 151	0	:
-Butanone (MEK)	125	120		ug/L		96	54 - 130	16	:
-Butylbenzene	25,0	24.8		ug/L		99	70 - 142	Ó	:
ec-Butylbenzene	25.0	24.8		ug/L		99	70 - 134	0	:
ert-Butylbenzene	25.0	25.5		ug/L		102	70 - 135	0	
arbon disulfide	25.0	20.8		ug/L		83	58 _~ 130	1	
arbon tetrachloride	25.0	22.9		ug/L		92	70 - 146	0	
hlorobenzene	25.0	24.1		ug/L		96	70 - 130	1	
hloroethane		25.1		ug/L		101	62 - 138	Ö	
hloroform	25.0	23.1		ug/L		92	70 130	1	
nioromethane	25.0	22.7		ug/L		91	52 - 175	0	
Chlorotoluene	25.0	24.5		ug/L		98	70 - 130	. 0	
Chiorotoluene	25.0	23.9		ug/L		95	70 - 130	0	
lorodibromomethane	25.0	24.7		ug/L		99	70 - 145	3	
2-Dichlorobenzene	25.0	25.1		ug/L		100	70 - 130	ž	
B-Dichlorobenzene	25.0	25.3		ug/L		101	70 - 130	1	
-Dichlorobenzene	25.0	25.2		ug/L		101	70 - 130	1	
-Dichloropropane	25.0	24.1		ug/L		96	70 - 130	5	
·	25.0	24.0		ug/L		96	70 - 130	0	
-Dichloropropene	25.0	25.0		ug/L		100	70 - 136	12	
?-Dibromo-3-Chloropropane	25.0	24.9		ug/L		100	70 - 130	6	
nylene Dibromide	25.0 25.0					92	70 - 130	5	
promomethane		23.1		ug/L .					
chlorodifluoromethane	25.0	21.0		ug/L		84 në	34 - 132	1	
I-Dichloroethane	25.0	22.1		ug/L		89	70 - 130	1	
2-Dichloroethane	25.0	23.0		ug/L		92	61 - 132	3	
l-Dichloroethene	25.0	19.9		ug/L		80	64 - 128	1	
-1,2-Dichloroethene	25.0	22.9		ug/L		92	70 - 130	1	
ns-1,2-Dichloroethene	25.0	21.B		ug/L		87	68 - 130	0	
2-Dichloropropane	25.0	24.3		ug/L		97	70 - 130	2	
-1,3-Dichloropropene	25.0	23.9		ug/L		96	70 - 130	2	
ns-1,3-Dichloropropene	25.0	23.0		ug/L		92	70 - 140	3	
nylbenzene	25.0	23.0		ug/L		92	80 - 120	1	
xachlorobutadiene	25.0	25.6		ug/L		103	70 - 130	3	
fexanone	125	122		ug/L		98	60 - 164	16	
propylbenzene	25.0	25.7		ug/L		103	70 - 130	. 1	
sopropyitaluene	25.0	25.1		ug/L		101	70 - 130	Ö	
ethylene Chloride	25.0	21.9		ug/L		88	70 - 147	1	
Methyl-2-pentanone (MIBK)	125	125		ug/L		100	58 - 130	14	
phthalene	25.0	26.6		ug/L		106	70 - 130	6	
Propylbenzene	25.0	24.7		ug/L	,	99	70 - 130	0	
yrene	25.0	23.8		ug/L		95	70 - 130	1	
,1,2-Tetrachloroethane	25.0	23.8		ug/L		95	70 - 130	1	
1,2,2-Tetrachloroethane	25.0	24.8		ug/L		99	70 - 130	9	
etrachloroethene	25.0	23.9		ug/L		96	70 - 130	2	
oluene	25.0	22.8		ug/L		91	78 - 120	1	

Client: AMEC Environment & Infrastructure, Inc. Project/Site: Crown Chevrolet

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: LCSD 720-141494/6

Matrix: Water

Analysis Batch: 141494

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

TestAmerica Job ID: 720-51300-1

Allalysis Datell. 141434									
	Spike	LCSD	LCSD		•		%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	ם	%Rec	Limits	RPD	Limit
1,2,3-Trichlorobenzene	25.0	26.1		ug/L		104	70 - 130	0	20
1,2,4-Trichlorobenzene	25.0	25.8		ug/L		103	70 - 130	0	20
1,1,1-Trichloroethane	25.0	24.0		ug/L		96	70 - 130	. 1	20
1,1,2-Trichloroethane	25.0	24.9		ug/L		100	70 - 130	5	20
Trichloroethene	25.0	24.0		ug/L	•	96	70 - 130	0	20
Trichlorofluoromethane	25.0	24.1	•	ug/L		96	66 - 132	1	20
1,2,3-Trichloropropane	25.0	24.0		ug/L		96	70 - 130	8	20
1,1,2-Trichloro-1,2,2-trifluoroetha	25.0	21.1		ug/L		84	42 - 162	2	20
ne									
1,2,4-Trimethylbenzene	25.0	25.8		ug/L		103	70 - 132	0	20
1,3,5-Trimethylbenzene	25.0	25.2		ug/L		101	70 - 130	0	20
Vinyl acetate	25.0	30.3		ug/L		121	43 - 163	10	20
Vinyl chloride	25.0	23.7		ug/L		95	54 - 135	0	20
m-Xylene & p-Xylene	50.0	48.6		ug/L		97	70 - 142	1	20
o-Xylene	25.0	25.1		ug/L		100	70 - 130	1	20
2,2-Dichloropropane	25.0	25.6		ug/L		103	70 - 140	1	20

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	95		67 - 130
1,2-Dichloroethane-d4 (Surr)	94		75 - 138
Taluene-d8 (Surr)	100		70 - 130

Lab Sample ID: LCSD 720-141494/8

Matrix: Water

Analysis Batch: 141494

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

	Spike	LCSD	LCSD				%Rec.		RPD	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit -	
Gasoline Range Organics (GRO)	500	496		ug/L	_	99	62 - 120	- 2	20	
-C5-C12										

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	96		67 - 130
1,2-Dichloroethane-d4 (Surr)	94		75 - 138
Toluene-d8 (Suπ)	100		70 - 130

Lab Sample ID: 720-51300-3 MS

Matrix: Water

Analysis Batch: 141494

Client Sample ID: MP-01-1 Prep Type: Total/NA

	Sample S	ample	Spike	MS	MS				%Rec.	
Analyte	Result Q	lualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Methyl tert-butyl ether	ND		25,0	26.9		ug/L	********	108	60 _ 138	
Acetone	ND		125	112		ug/L		90	60 - 140	
Benzene	ND		25.0	23.1		ug/L		93	60 - 140	
Dichlorobromomethane	ND		25.0	24.7		ug/L		99	60 - 140	
Bromobenzene	ND		25.0	25.1		ug/L		100	60 - 140	
Chlorobromomethane	ND		25.0	25.4		ug/L		102	60 - 140	
Bromoform	ND		25.0	27.8		ug/L		111	56 - 140	
Bromomethane	ND		25.0	22.6		ug/L		90	23 - 140	

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-51300-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: 720-51300-3 MS

Matrix: Water

Analysis Batch: 141494

Client Sample ID: MP-01-1 Prep Type: Total/NA

	Sample	Sample	Spike	MS	MS			%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier Unit	D	%Rec	Limits
2-Butanone (MEK)	ND		125	130	ug/L		104	60 - 140
n-Butylbenzene	ND		25.0	23.6	ug/L		95	60 - 140
sec-Butylbenzene	ND	.=	25.0	23.8	ug/L		95	60 - 140
tert-Butylbenzene	ND		25.0	25.1	ug/L		101	60 - 140
Carbon disulfide	ND		25.0	20.1	ug/L	-	80	38 - 140
Carbon tetrachloride	ND		25.0	23.4	ug/L		93	60 - 140
Chlorobenzene	ND		25.0	24.6	ug/L		98	60 - 140
Chloroethane	ND		25.0	24.1	ug/L		96	51 - 140
Chloroform	ND		25.0	24.1	ug/L		96	60 - 140
Chloromethane	ND		25.0	20.1	ug/L		80	52 - 140
2-Chlorotoluene	ND	•	25.0	24.6	ug/L		98	60 - 140
4-Chlorotoluene	ND		25.0	23.9	ug/L		96	60 - 140
Chlorodibromomethane	ND		25.0	28.2	ug/L		113	60 - 140
1,2-Dichlorobenzene	ND	_	25.0	26.3	ug/L	•	105	60 - 140
1,3-Dichlorobenzene	ND		25.0	25.8	ug/L		103	60 - 140
1,4-Dichlorobenzene	ND.		25.0	25.7	ug/L		103	60 - 140
1,3-Dichloropropane	ND		25.0	27.7	ug/L		111	60 - 140
1,1-Dichloropropene	ND		25.0	23.9	ug/L		96	60 - 140
1,2-Dibromo-3-Chloropropane	ND		25.0	27.8	ug/L		111	60 - 140
Ethylene Dibromide	ND		25.0	28.7	ug/L		115	60 - 140
Dibromomethane	ND		25.0	26.0	ug/L		104	60 - 140
Dichlorodifluoromethane	ND		25.0	19.9	ug/L		80	38 - 140
1,1-Dichloroethane	ND	-	25.0	22.5	ug/L		90	60 - 140
1,2-Dichloroethane	ND		25.0	25.2	ug/L		101	60 - 140
1,1-Dichloroethene	ND		25.0	19.2	ug/L		77	60 - 140
cis-1,2-Dichloroethene	ND	-	25.0	23.6	ug/L	•	94	60 - 140
trans-1,2-Dichloroethene	ND		25.0	21.7	ug/L		87	60 - 140
1,2-Dichloropropane	ND		25.0	26.3	ug/L		105	60 - 140
cis-1,3-Dichloropropene	ND	-	25.0	26.5	ug/L	÷	106	60 - 140
trans-1,3-Dichloropropene	ND		25.0	26.3	ug/L `		105	60 - 140
Ethylbenzene	ND		25.0	22.5	ug/L		90	60 - 140
Hexachlorobutadiene	ND		25.0	24.4	ug/L		98	60 - 140
2-Hexanone	ND		125	139	ug/L		111	60 - 140
Isopropylbenzene	ND		25.0	25.0	ug/L		100	60 - 140
4-Isopropyltoluene	ND		25.0	24.1	ug/L		96	60 - 140
Methylene Chloride	ND		25.0	22.5	ug/L		90	40 - 140
4-Methyl-2-pentanone (MIBK)	ND		125	145	ug/L		116	58 - 130
Naphthalene	ND		25.0	27.8	ug/Ľ		111	56 - 140
N-Propylbenzene	ND		25.0	23.9	ug/L		96	60 - 140
Styrene	ND		25.0	24.6	ug/L		98	60 - 140
1,1,1,2-Tetrachloroethane	ND		25.0	25.5	ug/L		102	60 - 140
1,1,2,2-Tetrachloroethane	ND		25.0	27.2	ug/L		109	60 - 140
Tetrachioroethene	150		25.0	164	ug/L		55	60 - 140
Toluene	ND		25.0	22.8	ug/L		91	60 - 140
1,2,3-Trichlorobenzene	ND		25.0	26.8	ug/L		107	60 - 140
1,2,4-Trichlorobenzene	ND		25.0	26.6	ug/L		106	60 - 140
1,1,1-Trichloroethane	ND		25.0	24.0	ug/L		96	60 - 140
1,1,2-Trichloroethane	ND		25.0	32.8	ug/L		131	60 - 140

Project/Site: Crown Chevrolet

Client: AMEC Environment & Infrastructure, Inc.

TestAmerica Job ID: 720-51300-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: 720-51300-3 MS

Matrix: Water

Analysis Batch: 141494

Client Sample ID: MP-01-1

Prep Type: Total/NA

	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Trichloroethene	1.8		25.0	26.2		ug/L		98	60 - 140
Trichlorofluoromethane	ND		25.0	21.9		ug/L		88	60 - 140
1,2,3-Trichloropropane	ND		25.0	26.9		ug/L		107	60 - 140
1,1,2-Trichloro-1,2,2-trifluoroetha	ND		25.0	20.9		ug/L		83	60 - 140
ne									
1,2,4-Trimethylbenzene	ND	•	25.0	25.7		ug/L		103	60 - 140
1,3,5-Trimethylbenzene	ND		25.0	25.0		ug/L		100	60 - 140
Vinyl acetate	ND		25.0	33.8		ug/L		135	40 - 140
Vinyl chloride	ND		25.0	21.5	•	ug/L		86	58 - 140
m-Xylene & p-Xylene	ND		50.0	47.5		ug/L		95	60 - 140
o-Xylene	ND		25.0	25.0		ug/L		100	60 - 140
2,2-Dichloropropane	ND		25.0	24.3		ug/L		97	60 - 140

MS MS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	101		67 - 130
1,2-Dichloroethane-d4 (Surr)	101		75 - 138
Toluene-d8 (Surr)	103		70 - 130

Lab Sample ID: 720-51300-3 MSD

Matrix: Water

Analysis Batch: 141494

Client Sample ID: MP-01-1

Prep Type: Total/NA

Analysis Batch: 141494											
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	_ D	%Rec	Limits	RPD	Limit
Methyl tert-butyl ether	ND		25.0	27.1		ug/L		108	60 - 138	0	20
Acetone	ND		125	112		ug/L		90	60 - 140	0	20
Benzene	ND		25.0	23.0		ug/L		92	60 - 140	0	20
Dichlorobromomethane	ND		25.0	25.0		ug/L		100	60 - 140	1	20
Bromobenzene	ND		25.0	24.9		ug/L		100	60 - 140	1	20
Chlorobromomethane	ND		25.0	25.2		ug/L		101	60 - 140	1	20
Bromoform	ND	•	25.0	26.8	,	ug/L		107	56 - 140	4	20
Bromomethane	ND		25.0	23.1		ug/L		92	23 - 140	2	20
2-Butanone (MEK)	ND		125	129		ug/L		103	60 - 140	, 1	20
n-Butylbenzene	ND		25.0	23.3		ug/L		93	60 - 140	1	20
sec-Butylbenzene	ND		25.0	23.7		ug/L		95	60 - 140	0	20
tert-Butylbenzene	ND		25.0	24.8		ug/L		99	60 - 140	1	20
Carbon disulfide	ND		25.0	20.4		ug/L		82	38 - 140	2	20
Carbon tetrachloride	ND		25.0	22.8		ug/L		91	60 - 140	2	20
Chlorobenzene	ND		25.0	24.7		ug/L		99	60 - 140	0	20
Chloroethane	ND		25.0	24.5		ug/L		98	51 - 140	2	20
Chloroform	ND		25.0	24.2		ug/L		97	60 - 140	1	20
Chloromethane	ND		25.0	21.6		ug/L		86	52 - 140	7	20
2-Chlorotoluene	ND		25.0	24.2		ug/L		97	60 - 140	2	20
4-Chlorotoluene	ND		25.0	23.7		ug/L		95	60 - 140	1	20
Chlorodibromomethane	ND		25.0	27.6		ug/L		110	60 - 140	2	20
1,2-Dichlorobenzene	ND	*	25.0	26.1		ug/L		105	60 - 140	1	20
1,3-Dichlorobenzene	ND		25.0	25.6		ug/L		102	60 - 140	1	20
1,4-Dichlorobenzene	ND		25.0	25.7		ug/L		103	60 - 140	0	20
1,3-Dichloropropane	ND		25.0	26.4		ug/L		106	60 - 140	5	20

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: 720-51300-3 MSD

Matrix: Water

Analysis Batch: 141494

Client Sample ID: MP-01-1 Prep Type: Total/NA

Analysis batch. 141494	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	•	Qualifier	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1-Dichloropropene	ND		25.0	23.7		ug/L		95	60 - 140	1	20
1,2-Dibromo-3-Chioropropane	ND		25.0	26.6		ug/L		106	60 - 140	5	20
Ethylene Dibromide	ND		25.0	27.5		ug/L		110	60 - 140	4	20
Dibromomethane	ND		25.0	25.4		ug/L		102	60 - 140	2	20
Dichlorodifluoromethane	ND		25.0	20.2		ug/L		81	38 - 140	1	20
1,1-Dichloroethane	ND		25.0	22.8		ug/L		91	60 - 140	1	20
1,2-Dichloroethane	ND		25.0	25.1		ug/L		101	60 - 140	0	20
1,1-Dichloroethene	ND		25.0	19.7		ug/L		79	60 - 140	2	20
cis-1,2-Dichloroethene	ND	•	25.0	23.8		ug/L		95	60 - 140	i	20
trans-1,2-Dichloroethene	ND		25.0	21.9		ug/L		88	60 - 140	1	20
1,2-Dichloropropane	ND		25.0	26.1		ug/L		104	60 - 140	1	20
cis-1,3-Dichloropropene	ND		25.0	26,0		ug/L		104	60 - 140	2	20
trans-1,3-Dichloropropene	ND		25.0	25.5		ug/L		102	60 - 140	3	20
Ethylbenzene	ND		25.0	22.7		ug/L		91	60 - 140	1	20
Hexachlorobutadiene	ND		25.0	24.3		ug/L		97	60 - 140	0	20
2-Hexanone	ND		125	132		ug/L		106	60 - 140	5	20
Isopropylbenzene	ND	•	25.0	25.1		ug/L		100	60 - 140	0	20
4-Isopropyltoluene	ND		25.0	24.0		ug/L		96	60 - 140	1	20
Methylene Chloride	ND		25.0	22.9		ug/L		92	40 - 140	2	20
4-Methyl-2-pentanone (MIBK)	ND		125	137		ug/L		110	58 - 130	6	20
Naphthalene	ND		25.0	27.3		ug/L		109	56 - 140	. 2	
N-Propylbenzene	ND		25.0	23.4		ug/L		94	6 0 - 140	2	20
Styrene	ND		25.0	22.6		ug/L		90	60 - 140	8	20
1,1,1,2-Tetrachioroethane	ND		25.0	25.4		ug/L		101	60 - 140	1	20
1,1,2,2-Tetrachloroethane	ND		25.0	26.3		ug/L		105	60 - 140	3	20
Tetrachloroethene	150		25.0	163		ug/L		53	60 - 140	. 0	20
Toluene	ND		25.0	22.6		ug/L		90	60 - 140	1	20
1,2,3-Trichlorobenzene	ND		25.0	26.8		ug/L		107	60 - 140	0	20
1,2,4-Trichlorobenzene	ND		25.0	26.5		ug/L		106	60 - 140	1	20
1,1,1-Trichloroethane	ND		25.0	24.3		ug/L	•	97	60 - 140	1	20
1,1,2-Trichloroethane	ND		25.0	27.4		ug/L		110	60 - 140	18	20
Trichloroethene	1.8		25.0	26.0		ug/L		97	60 - 140	1.	20
Trichlorofluoromethane	ND		25.0	23.9		ug/L		96	60 - 140	9	20
1,2,3-Trichloropropane	ND		25.0	25.4		ug/L		102	60 - 140	6	20
1,1,2-Trichloro-1,2,2-trifluoroetha	ND		25.0	21.3		ug/L		85	60 - 140	2	20
1,2,4-Trimethylbenzene	ND		25.0	24.4		ug/L	•	98	60 - 140	5	20
1,3,5-Trimethylbenzene	ND		25.0	24.2		ug/L		97	60 - 140	3	20
Vinyl acetate	· ND		25.0	33.1		ug/L		132	40 - 140	2	20
Vinyl chloride	ND		25.0	22.2		ug/L		89	58 - 140	3	20
m-Xylene & p-Xylene	ND		50.0	47.6		ug/L		95	60 - 140	0	20
o-Xylene	ND		25.0	25.1		ug/L		100	60 - 140	0	20
2,2-Dichloropropane	ND		25.0	24.2		ug/L	•	97	60 - 140	0	20
	MSD	MSD									

Surrogate %Recovery, Qualifier

Limits 4-Bromofluorobenzene 97 67 - 130 1,2-Dichloroethane-d4 (Surr) 101 75 - 138 Toluene-d8 (Surr) 101 70 - 130

QC Association Summary

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-51300-1

GC/MS VOA

Analysis Batch: 141443

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-51300-1	MW-02	Total/NA	Water	8260B/CA_LUFT	
				MS	
720-51300-2	MP-02-1	Total/NA	Water	8260B/CA_LUFT	
				MS	
LCS 720-141443/12	Lab Control Sample	Total/NA	Water	8260B/CA_LUFT	
		_		MS	
LCS 720-141443/5	Lab Control Sample	Total/NA	Water	8260B/CA_LUFT	
	•			MS	
LCSD 720-141443/13	Lab Control Sample Dup	Total/NA	Water	8260B/CA_LUFT	
	,			MS	
LCSD 720-141443/6	Lab Control Sample Dup	Total/NA	Water	8260B/CA_LUFT	
				MS	
MB 720-141443/4	Method Blank	Total/NA	Water	8260B/CA_LUFT	
				MS	

Analysis Batch: 141494

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method Prep B
720-51300-3	MP-01-1	Total/NA	Water	8260B/CA_LUFT
				MS
720-51300-3 MS	MP-01-1	Total/NA	Water	8260B/CA_LUFT
				MS
720-51300-3 MSD	MP-01-1	Total/NA	Water	8260B/CA_LUFT
=				MS
720-51300-4	MP-01-2	Total/NA	Water	8260B/CA_LUFT
				MS
720-51300-5	MP-02-3	Total/NA	Water	8260B/CA_LUFT
700 54000 0	11B 04 0			MS
720-51300-6	MP-01-3	Total/NA	Water	8260B/CA_LUFT
720-51300-7	MP-04-1	T-1-1/11A	14/mann	MS
120-51300-1	MF-04-1	Total/NA	Water	8260B/CA_LUFT
LCS 720-141494/5	Lab Control Sample	Total/NA	Water	MS
100 120-14140-70	cab control campio	roteina.	VI dici	8260B/CA_LUFT MS
LCS 720-141494/7	Lab Control Sample	Total/NA	Water	8260B/CA LUFT
200 120 11110 117	Lab condo campio	1 Duant ut	***************************************	MS
LCSD 720-141494/6	Lab Control Sample Dup	Total/NA	Water	8260B/CA_LUFT
	• •			MS
LCSD 720-141494/8	Lab Control Sample Dup	Total/NA	Water	8260B/CA_LUFT
				MS
MB 720-141494/4	Method Blank	Total/NA	Water	8260B/CA_LUFT
				MS

Lab Chronicle

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-51300-1

Client Sample ID: MW-02 Lab Sample ID: 720-51300-1

Date Collected: 07/30/13 08:15 Date Received: 07/30/13 17:53

Matrix: Water

Batch Batch Dilution Batch Prepared Prep Type Туре Method Run Factor Number or Analyzed Analyst

8260B/CA_LUFTMS 141443 08/02/13 20:19 YYB TAL PLS Total/NA Analysis

Client Sample ID: MP-02-1 Lab Sample ID: 720-51300-2

Date Collected: 07/30/13 09:20 Date Received: 07/30/13 17:53 Matrix: Water

Batch Batch Dilution Batch Prepared Type Method Run Factor Number or Analyzed Analyst Prep Type Lab 8260B/CA_LUFTMS TAL PLS 141443 08/02/13 20:49 YYB Total/NA Analysis

Client Sample ID: MP-01-1 Lab Sample ID: 720-51300-3

Date Collected: 07/30/13 12:30 Date Received: 07/30/13 17:53

Matrix: Water

Dilution Batch Batch Batch Prepared Prep Type Type Method Run Factor Number or Analyzed Analyst 8260B/CA LUFTMS 141494 08/03/13 00:10 ASC TAL PLS Total/NA Analysis

Client Sample ID: MP-01-2 Lab Sample ID: 720-51300-4 Date Collected: 07/30/13 13:50

Date Received: 07/30/13 17:53

Matrix: Water

Batch Batch Dilution Batch Prepared Method Run Factor Number or Analyzed Ргер Туре Type Analyst Lab TAL PLS Total/NA 8260B/CA_LUFTMS 08/03/13 00:38 ASC Analysis 141494

Lab Sample ID: 720-51300-5 Client Sample ID: MP-02-3

Date Collected: 07/30/13 14:50 Date Received: 07/30/13 17:53 Matrix: Water

Batch Batch Dilution Ratch Prepared Type Method Factor Number or Analyzed Ргер Туре Run Analyst Total/NA Analysis 8260B/CA_LUFTMS 141494 08/03/13 01:05 ASC TAL PLS

Client Sample ID: MP-01-3 Lab Sample ID: 720-51300-6

Date Received: 07/30/13 17:53

Date Collected: 07/30/13 14:50 Matrix: Water

Batch Batch Dilution Batch Prepared Ргер Туре Method Factor Number or Analyzed Type Run Analyst Lab 8260B/CA_LUFTMS 08/03/13 01:33 ASC TAL PLS Total/NA Analysis 141494

Lab Chronicle

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-51300-1

Client Sample ID: MP-04-1

Lab Sample ID: 720-51300-7

Matrix: Water

Date Collected: 07/30/13 17:05

Date Received: 07/30/13 17:53

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method '	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B/CA_LUFTMS		1	141494	08/03/13 02:01	ASC	TAL PLS

Laboratory References:

TAL PLS = TestAmerica Pleasanton, 1220 Quarry Lane, Pleasanton, CA 94566, TEL (925)484-1919

Certification Summary

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-51300-1

Laboratory: TestAmerica Pleasanton

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

 Authority	Program	EPA Region	Certification ID	Expiration Date
California	 State Program	9	2496	01-31-14

Method Summary

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-51300-1

Method	Method Description	Protocol	Laboratory
8260B/CA_LUFTM	8260B / CA LUFT MS	SW846	TAL PLS
C			

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL PLS = TestAmerica Pleasanton, 1220 Quarry Lane, Pleasanton, CA 94566, TEL (925)484-1919

Sample Summary

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-51300-1

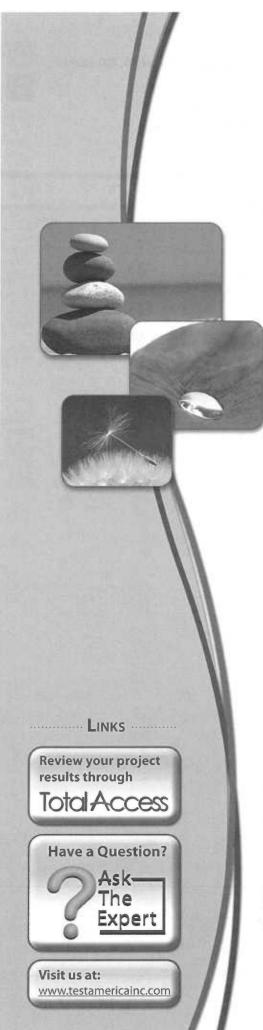
Lab Sample ID	Client Sample ID	Matrix	Collected	Received
720-51300-1	MW-02	Water	07/30/13 08:15	07/30/13 17:53
720-51300-2	MP-02-1	Water	07/30/13 09:20	07/30/13 17:53
720-51300-3	MP-01-1	Water	07/30/13 12:30	07/30/13 17:53
720-51300-4	MP-01-2	Water	07/30/13 13:50	07/30/13 17:53
720-51300-5	MP-02-3	Water	07/30/13 14:50	07/30/13 17:53
720-51300-6	MP-01-3	Water	07/30/13 14:50	07/30/13 17:53
720-51300-7	MP-04-1	Water	07/30/13 17:05	07/30/13 17:53

Seq. 2390 1330 Broadway Suite 1702 Oakland, CA 94612 (510) 451-1001 (510) 451-1001		OF CUSTOD			ec [©]
Name/Location: Chun Chevolet, DM Project Manager: Avery Patton	Recorder:	Aculty (Signature required)		LYSIS REQUES	
	VR MO DAY TIME 1307300915 1307300920 1307301230 1307301450 1307301450 1307301705	Relinquished By (Signature): Relinquished By (Signature): Relinquished By (Signature): Received By (Signature):	(Print Name) (Print Name) (Print Name) (Print Name)	AMEC 7/36 (Company) (Company) (Company) (Company) (Company) (Company)	
White - Laboratory Copy	Yellow - Project Office C	Method of Shipment: Copy Pink - Fiel	ld or Office Copy	2.4°C	F1008-

Login Sample Receipt Checklist

Client: AMEC Environment & Infrastructure, Inc.

Job Number: 720-51300-1


Login Number: 51300

List Number: 1

Creator: Gonzales, Justinn

List Source: TestAmerica Pleasanton

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</th <th>N/A</th> <th></th>	N/A	
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	Тпле	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	المحاجزة المنظم المورية المحاجزة المحاجزة المحاجزة الأراجية المحاجزة المحاجزة المحاجزة المحاجزة المحاجزة المحا المحاجزة المحاجزة ال
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	•
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	•

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc. TestAmerica Pleasanton 1220 Quarry Lane Pleasanton, CA 94566 Tel: (925)484-1919

TestAmerica Job ID: 720-53382-1 Client Project/Site: Crown Chevrolet Revision: 2

For:

AMEC Environment & Infrastructure, Inc. 2101 Webster Street, 12th Floor Oakland, California 94612

Attn: Avery Patton

AkanfSal

Authorized for release by: 12/6/2013 1:27:22 PM

Afsaneh Salimpour, Project Manager I (925)484-1919 afsaneh.salimpour@testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

Table of Contents

Cover Page	1
Table of Contents	
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	7
QC Sample Results	23
QC Association Summary	41
Lab Chronicle	42
Certification Summary	44
Method Summary	45
Sample Summary	46
Chain of Custody	47
Paccint Chacklists	48

Definitions/Glossary

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-53382-1

Qualifiers

GC/MS VOA

Qualifier

Qualifier Description

MS/MSD Recovery and/or RPD exceeds the control limits

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
n	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)

Dil Fac

Dilution Factor

DL, RA, RE, IN

Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

Decision level concentration MDA Minimum detectable activity **Estimated Detection Limit** FDL MDC Minimum detectable concentration

MDL Method Detection Limit Minimum Level (Dioxin) ML NC Not Calculated

Not detected at the reporting limit (or MDL or EDL if shown) ND

PQL Practical Quantitation Limit

Quality Control QC RER Relative error ratio

RL Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points **RPD**

TEF Toxicity Equivalent Factor (Dioxin) TEQ Toxicity Equivalent Quotient (Dioxin)

Case Narrative

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-53382-1

Job ID: 720-53382-1

Laboratory: TestAmerica Pleasanton

Narrative

Job Narrative 720-53382-1

Comments

No additional comments.

Receipt

The samples were received on 10/28/2013 5:12 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 2.6° C.

GC/MS VOA

Method(s) 8260B: The Gasoline Range Organics (GRO) concentration reported for the following sample 53382-5,9 is due to the presence of discrete peaks. <<PCE>>

Method(s) 8260B: The Gasoline Range Organics (GRO) concentration reported for the following sample 53383-8 is due to the presence of discrete peaks. <<TCE>>

Method(s) 8260B: The Gasoline Range Organics (GRO) concentration reported for the following sample 53382-6 is due to the presence of discrete peaks. <<PCE,TCE>>

No other analytical or quality issues were noted.

Detection Summary

		Detec	ction Sum	mary				
Client: AMEC Environment & Infrastructure Project/Site: Crown Chevrolet	cture, Inc.					Tes	tAmerica Job ID:	: 720-53382-1
Client Sample ID: TB-102813-1						Lab	Sample ID: 7	20-53382-1
No Detections.								
Client Sample ID: MP-01-3						Lab	Sample ID: 7	20-53382-2
No Detections.								
Client Sample ID: MP-03-2						Lab	Sample ID: 7	20-53382-3
No Detections.								
Client Sample ID: MP-01-2						Lab	Sample ID: 7	20-53382-4
Analyte	Result	Qualifier	RL	MDL.	Unit	Dil Fac D	Method	Prep Type
cis-1,2-Dichloroethene	14		0.50		ug/L	1	8260B/CA_LUFT	Total/NA
							MS	
Client Sample ID: MP-01-1						Lab	Sample ID: 7	20-53382-5
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
Tetrachloroethene	140		0.50		ug/L	1	8260B/CA_LUFT	Total/NA
Trichloroethene	5.1		0.50		ug/L	1	8260B/CA_LUFT MS	Total/NA
Gasoline Range Organics (GRO) -C5-C12	120	R	50		ug/L	1	8260B/CA_LUFT MS	Total/NA
Client Sample ID: MP-03-1						Lab	Sample ID: 7	20-53382-6
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
cis-1,2-Dichloroethene	0.64		0.50		ug/L	1	8260B/CA_LUFT MS	Total/NA
Tetrachloroethene	120		0.50		ug/L	1	8260B/CA_LUFT MS	Total/NA
Trichloroethene	12		0.50		ug/L	1	8260B/CA_LUFT MS	Total/NA
Gasoline Range Organics (GRO) -C5-C12	150	R	50		ug/L	1	8260B/CA_LUFT MS	Total/NA
Client Sample ID: MW-02						Lab	Sample ID: 7	20-53382-7
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
cis-1,2-Dichloroethene	0.58		0.50		ug/L	1	8260B/CA_LUFT MS	Total/NA
Tetrachloroethene	10		0.50		ug/L	1	8260B/CA_LUFT MS	Total/NA
Trichloroethene	6.6		0.50		ug/L	1	8260B/CA_LUFT MS	Total/NA
Client Sample ID: MP-02-1						Lab	Sample ID: 7	20-53382-8
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
cis-1,2-Dichloroethene	5.9		0.50		ug/L	1	8260B/CA_LUFT MS	Total/NA

This Detection Summary does not include radiochemical test results.

Lab Sample ID: 720-53382-8

Lab Sample ID: 720-53382-9

Lab Sample ID: 720-53382-10

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
Tetrachloroethene	0.53		0.50		ug/L	1	8260B/CA_LUFT MS	Total/NA
Trichloroethene	56		0.50		ug/L	1	8260B/CA_LUFT MS	Total/NA
Gasoline Range Organics (GRO) -C5-C12	70	R	50		ug/L	1	8260B/CA_LUFT MS	Total/NA

Client Sample ID: MW-01

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	Method	Prep Type
Tetrachloroethene	150		1.0		ug/L	2	8260B/CA_LUFT MS	Total/NA
Trichloroethene	1.9	•	1.0		ug/L	2	8260B/CA_LUFT MS	Total/NA
Gasoline Range Organics (GRO) -C5-C12	150	F	100		ug/L	2	8260B/CA_LUFT MS	Total/NA

Client Sample ID: MW-03

Analyte	Result Qua	alifier RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chlorobenzene	0.96	0.50		ug/L	1		8260B/CA_LUFT MS	Total/NA
1,2-Dichlorobenzene	1.6	0.50		ug/L	1		8260B/CA_LUFT MS	Total/NA
Tetrachloroethene	6.9	0.50		ug/L	1		8260B/CA_LUFT MS	Total/NA
Trichloroethene	0.63	0.50		ug/L	1		8260B/CA_LUFT MS	Total/NA

This Detection Summary does not include radiochemical test results.

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-53382-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS

Client Sample ID: TB-102813-1 Date Collected: 10/28/13 08:00 Lab Sample ID: 720-53382-1

Matrix: Water

Date Received: 10/28/13 17:12 Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND		0.50	ug/L			10/31/13 23:36	1
Acetone	ND		50	ug/L			10/31/13 23:36	1
Benzene	ND		0.50	ug/L			10/31/13 23:36	1
Dichlorobromomethane	ND		0.50	ug/L			10/31/13 23:36	1
Bromobenzene	ND		1.0	ug/L			10/31/13 23:36	1
Chlorobromomethane	ND		1.0	ug/L			10/31/13 23:36	1
Bromoform	ND		1.0	ug/L			10/31/13 23:36	1
Bromomethane	ND		1.0	ug/L			10/31/13 23:36	1
2-Butanone (MEK)	ND		50	ug/L			10/31/13 23:36	1
n-Butylbenzene	ND		1.0	ug/L			10/31/13 23:36	1
sec-Butylbenzene	ND		1.0	ug/L			10/31/13 23:36	1
tert-Butylbenzene	ND		1.0	ug/L			10/31/13 23:36	1
Carbon disulfide	ND		5.0	ug/L			10/31/13 23:36	1
Carbon tetrachloride	ND		0.50	ug/L			10/31/13 23:36	1
Chlorobenzene	ND		0.50	ug/L			10/31/13 23:36	1
Chloroethane	ND		1.0	ug/L			10/31/13 23:36	1
Chloroform	nD.		1.0	ug/L			10/31/13 23:36	1
Chloromethane	ND		1.0	ug/L			10/31/13 23:36	1
2-Chlorotoluene	ND		0.50	ug/L			10/31/13 23:36	1
4-Chlorotoluene	ND		0.50	ug/L			10/31/13 23:36	1
Chlorodibromomethane	ND		0.50	ug/L			10/31/13 23:36	- 1
1,2-Dichlorobenzene	ND		0.50	ug/L			10/31/13 23:36	1
1,3-Dichlorobenzene	ND		0.50	ug/L			10/31/13 23:36	1
1,4-Dichlorobenzene	ND		0.50	ug/L			10/31/13 23:36	1
1,3-Dichloropropane	ND		1.0	ug/L			10/31/13 23:36	1
1,1-Dichloropropene	ND		0.50	ug/L			10/31/13 23:36	1
1,2-Dibromo-3-Chloropropane	ND		1.0	ug/L			10/31/13 23:36	1
Ethylene Dibromide	ND		0.50	ug/L			10/31/13 23:36	1
Dibromomethane	ND		0.50	ug/L			10/31/13 23:36	1
Dichlorodifluoromethane	ND.		0.50	ug/L			10/31/13 23:36	1
1,1-Dichloroethane	ND		0.50	ug/L			10/31/13 23:36	1
1,2-Dichloroethane	ND		0.50	ug/L			10/31/13 23:36	1
1,1-Dichloroethene	ND		0.50	ug/L			10/31/13 23:36	1
cis-1,2-Dichloroethene	ND		0.50	ug/L			10/31/13 23:36	1
trans-1,2-Dichloroethene	ND		0.50	ug/L			10/31/13 23:36	1
1,2-Dichloropropane	ND		0.50	ug/L			10/31/13 23:36	1
cis-1,3-Dichloropropene	ND		0.50	ug/L			10/31/13 23:36	1
trans-1,3-Dichloropropene	ND		0.50	ug/L			10/31/13 23:36	1
Ethylbenzene	ND		0.50				10/31/13 23:36	1
Hexachlorobutadiene	ND		1.0	ug/L			10/31/13 23:36	
2-Hexanone	ND		50	ug/L				1
Isopropylbenzene	ND		0.50	ug/L ug/L			10/31/13 23:36	1
	ND						10/31/13 23:36	1
4-isopropyltoluene			1.0	ug/L			10/31/13 23:36	1
Methylene Chloride	ND		5.0	ug/L			10/31/13 23:36	1
4-Methyl-2-pentanone (MIBK)	ND		50	ug/L			10/31/13 23:36	1
Naphthalene	ND		1.0	ug/L			10/31/13 23:36	1
N-Propylbenzene	ND		1.0	ug/L			10/31/13 23:36	1
Styrene	ND		0.50	ug/L			10/31/13 23:36	1

TestAmerica Pleasanton

Page 7 of 48

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-53382-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Client Sample ID: TB-102813-1

Lab Sample ID: 720-53382-1

Matrix: Water

Date Col	lected:	10/28/13	08:00
Date Red	ceived:	10/28/13	17:12
Analyte			

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,2,2-Tetrachloroethane	ND		0.50		ug/L			10/31/13 23:36	1
Tetrachloroethene	ND		0.50		ug/L			10/31/13 23:36	1
Toluene	ND		0.50		ug/L			10/31/13 23:36	1
1,2,3-Trichlorobenzene	ND		1.0		ug/L			10/31/13 23:36	1
1,2,4-Trichlorobenzene	ND		1.0		ug/L			10/31/13 23:36	1
1,1,1-Trichloroethane	ND		0.50		ug/L			10/31/13 23:36	1
1,1,2-Trichloroethane	ND		0.50		ug/L			10/31/13 23:36	1
Trichloroethene	ND		0.50		ug/L			10/31/13 23:36	1
Trichlorofluoromethane	ND		1.0		ug/L			10/31/13 23:36	1
1,2,3-Trichloropropane	ND		0.50		ug/L			10/31/13 23:36	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50		ug/L			10/31/13 23:36	1
1,2,4-Trimethylbenzene	ND		0.50		ug/L			10/31/13 23:36	1
1,3,5-Trimethylbenzene	ND		0.50		ug/L			10/31/13 23:36	1
Vinyl acetate	ND		10		ug/L			10/31/13 23:36	1
Vinyl chloride	ND		0.50		ug/L			10/31/13 23:36	1
Xylenes, Total	ND		1.0		ug/L			10/31/13 23:36	1
2,2-Dichloropropane	ND		0.50		ug/L			10/31/13 23:36	1
Gasoline Range Organics (GRO) -C5-C12	ND		50		ug/L			10/31/13 23:36	1

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	95	67 - 130		10/31/13 23:36	1
1,2-Dichloroethane-d4 (Surr)	109	72 - 130		10/31/13 23:36	1
Toluene-d8 (Surr)	96	70 - 130		10/31/13 23:36	1

Client Sample ID: MP-01-3 Date Collected: 10/28/13 08:32 Lab Sample ID: 720-53382-2 Matrix: Water

Date Received: 10/28/13 17:12

Date Received: 10/28/13 17:12 Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND		0.50		ug/L			11/01/13 12:17	1
Acetone	ND		50		ug/L			11/01/13 12:17	1
Benzene	ND		0.50		ug/L			11/01/13 12:17	1
Dichlorobromomethane	ND		0.50		ug/L			11/01/13 12:17	1
Bromobenzene	ND		1.0		ug/L			11/01/13 12:17	1
Chlorobromomethane	ND		1.0		ug/L			11/01/13 12:17	1
Bromoform	ND		1.0		ug/L			11/01/13 12:17	1
Bromomethane	ND		1.0		ug/L			11/01/13 12:17	1
2-Butanone (MEK)	ND		50		ug/L			11/01/13 12:17	1
n-Butylbenzene	ND		1.0		ug/L			11/01/13 12:17	1
sec-Butylbenzene	ND		1.0		ug/L			11/01/13 12:17	1
tert-Butylbenzene	ND		1.0		ug/L			11/01/13 12:17	1
Carbon disulfide	ND		5.0		ug/L			11/01/13 12:17	1
Carbon tetrachloride	ND		0.50		ug/L			11/01/13 12:17	1
Chlorobenzene	ND		0.50		ug/L			11/01/13 12:17	1
Chloroethane	ND		1.0		ug/L			11/01/13 12:17	1
Chloroform	ND		1.0		ug/L			11/01/13 12:17	1
Chloromethane	ND		1.0		ug/L			11/01/13 12:17	1
2-Chlorotoluene	ND		0.50		ug/L			11/01/13 12:17	1
4-Chlorotoluene	ND		0.50		ug/L			11/01/13 12:17	1
Chlorodibromomethane	ND		0.50		ug/L			11/01/13 12:17	1

TestAmerica Pleasanton

Client: AMEC Environment & Infrastructure, Inc.

TestAmerica Job ID: 720-53382-1

Project/Site: Crown Chevrolet

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Client Sample ID: MP-01-3 Date Collected: 10/28/13 08:32 Date Received: 10/28/13 17:12

4-Bromofluorobenzene

Lab Sample ID: 720-53382-2

Matrix: Water

Analyte	Result	Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
1,2-Dichlorobenzene	ND		0.50	ug/L		11/01/13 12:17	1
1,3-Dichlorobenzene	ND		0.50	ug/L		11/01/13 12:17	1
1,4-Dichlorobenzene	ND		0.50	ug/L		11/01/13 12:17	1
1,3-Dichloropropane	ND		1.0	ug/L		11/01/13 12:17	1
1,1-Dichloropropene	ND		0.50	ug/L		11/01/13 12:17	1
1,2-Dibromo-3-Chloropropane	ND		1.0	ug/L		11/01/13 12:17	1
Ethylene Dibromide	ND		0.50	ug/L		11/01/13 12:17	1
Dibromomethane	ND		0.50	ug/L		11/01/13 12:17	1
Dichlorodifluoromethane	ND		0.50	ug/L		11/01/13 12:17	1
1,1-Dichloroethane	ND		0.50	ug/L		11/01/13 12:17	1
1,2-Dichloroethane	ND		0.50	ug/L		11/01/13 12:17	1
1,1-Dichloroethene	ND		0.50	ug/L		11/01/13 12:17	1
cis-1,2-Dichloroethene	ND		0.50	ug/L		11/01/13 12:17	1
trans-1,2-Dichloroethene	ND		0.50	ug/L		11/01/13 12:17	1
1,2-Dichloropropane	ND		0.50	ug/L		11/01/13 12:17	1
cis-1,3-Dichloropropene	ND		0.50	ug/L		11/01/13 12:17	1
trans-1,3-Dichloropropene	ND		0.50	ug/L		11/01/13 12:17	1
Ethylbenzene	ND		0.50	ug/L		11/01/13 12:17	1
Hexachlorobutadiene	ND		1.0	ug/L		11/01/13 12:17	1
2-Hexanone	ND		50	ug/L		11/01/13 12:17	1
Isopropylbenzene	ND		0.50	ug/L		11/01/13 12:17	1
4-Isopropyltoluene	ND		1.0	ug/L		11/01/13 12:17	1
Methylene Chloride	ND		5.0	ug/L		11/01/13 12:17	1
4-Methyl-2-pentanone (MIBK)	ND		50	ug/L		11/01/13 12:17	1
Naphthalene	ND		1.0	ug/L		11/01/13 12:17	1
N-Propylbenzene	ND		1.0	ug/L		11/01/13 12:17	1
Styrene	ND		0.50	ug/L		11/01/13 12:17	1
1,1,1,2-Tetrachloroethane	ND		0.50	ug/L		11/01/13 12:17	1
1,1,2,2-Tetrachloroethane	ND		0.50	ug/L		11/01/13 12:17	1
Tetrachloroethene	ND		0.50	ug/L		11/01/13 12:17	1
Toluene	ND		0.50	ug/L		11/01/13 12:17	1
1,2,3-Trichlorobenzene	ND		1.0	ug/L		11/01/13 12:17	1
1,2,4-Trichlorobenzene	ND		1.0	ug/L		11/01/13 12:17	1
1,1,1-Trichloroethane	ND		0.50	ug/L		11/01/13 12:17	1
1,1,2-Trichloroethane	ND		0.50	ug/L		11/01/13 12:17	1
Trichloroethene	ND		0.50	ug/L		11/01/13 12:17	1
Trichlorofluoromethane	ND		1.0	uġ/L		11/01/13 12:17	1
1,2,3-Trichloropropane	ND		0.50	ug/L		11/01/13 12:17	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50	ug/L		11/01/13 12:17	1
1,2,4-Trimethylbenzene	ND		0.50	ug/L		11/01/13 12:17	1
1,3,5-Trimethylbenzene	ND		0.50	ug/L		11/01/13 12:17	1
Vinyl acetate	ND		10	ug/L		11/01/13 12:17	1
Vinyl chloride	ND		0.50	ug/L		11/01/13 12:17	1
Xylenes, Total	ND		1.0	ug/L		11/01/13 12:17	1
2,2-Dichloropropane	ND		0.50	ug/L		11/01/13 12:17	1
Gasoline Range Organics (GRO) -C5-C12	ND		50	ug/L		11/01/13 12:17	1
Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
4.0	0.5		00 400				

TestAmerica Pleasanton

11/01/13 12:17

67 - 130

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-53382-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Client Sample ID: MP-01-3

Date Collected: 10/28/13 08:32 Date Received: 10/28/13 17:12 Lab Sample ID: 720-53382-2

Matrix: Water

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	108		72 - 130
Toluene-d8 (Surr)	96		70 - 130

Prepared	Analyzed	Dil Fac
	11/01/13 12:17	1
	11/01/13 12:17	1

Client Sample ID: MP-03-2

Date Collected: 10/28/13 08:35

Lab	Sample	ID: 720-53382-3	
		Matrix: Water	

Date Collected: 10/28/13 08:35							watri	c: Water
Date Received: 10/28/13 17:12 Analyte	Posult	Qualifier	RL	MDL Uni	t D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND	Qualifier	0.50	ug/l		Topulcu	11/01/13 12:43	1
Acetone	ND		50	ug/l			11/01/13 12:43	1
Benzene	ND		0.50	ug/t			11/01/13 12:43	1
Dichlorobromomethane	ND		0.50	ug/l			11/01/13 12:43	1
Bromobenzene	ND		1.0	ug/l			11/01/13 12:43	1
Chlorobromomethane	ND		1.0	ug/l			11/01/13 12:43	1
Bromoform	ND		1.0	ug/l			11/01/13 12:43	1
Bromomethane	ND		1.0	ug/l			11/01/13 12:43	1
2-Butanone (MEK)	ND		50	ug/l			11/01/13 12:43	1
, ,	ND		1.0	ug/l			11/01/13 12:43	1
n-Butylbenzene	ND		1.0	ug/l			11/01/13 12:43	1
sec-Butylbenzene	ND		1.0	ug/l			11/01/13 12:43	1
tert-Butylbenzene	ND		5.0	ug/l			11/01/13 12:43	1
Carbon disulfide	ND		0.50				11/01/13 12:43	1
Carbon tetrachloride				ug/l			11/01/13 12:43	1
Chlorobenzene	ND ND		0.50 1.0	ug/l			11/01/13 12:43	1
Chloroethane				ug/l			11/01/13 12:43	1
Chloroform	ND		1.0	ug/l	1.00			1
Chloromethane	ND		1.0	ug/l			11/01/13 12:43	1
2-Chlorotoluene	ND		0.50	ug/l			11/01/13 12:43	1
4-Chiorotoluene	ND		0.50	ug/l			11/01/13 12:43	
Chlorodibromomethane	ND		0.50	ug/l			11/01/13 12:43	1
1,2-Dichlorobenzene	ND		0.50	ug/l			11/01/13 12:43	1
1,3-Dichlorobenzene	ND		0.50	ug/l			11/01/13 12:43	1
1,4-Dichlorobenzene	ND		0.50	ug/l			11/01/13 12:43	1
1,3-Dichloropropane	ND		1.0	ug/l			11/01/13 12:43	1
1,1-Dichloropropene	ND		0.50	ug/l			11/01/13 12:43	1
1,2-Dibromo-3-Chloropropane	ND		1.0	ug/l			11/01/13 12:43	1
Ethylene Dibromide	ND		0.50	ug/l	-		11/01/13 12:43	1
Dibromomethane	ND		0.50	ug/l	-		11/01/13 12:43	1
Dichlorodifluoromethane	ND		0.50	ug/l			11/01/13 12:43	1
1,1-Dichloroethane	ND		0.50	ug/l	1		11/01/13 12:43	1
1,2-Dichloroethane	ND		0.50	ug/l	D'		11/01/13 12:43	1
1,1-Dichloroethene	ND		0.50	ug/i			11/01/13 12:43	1
cis-1,2-Dichloroethene	ND		0.50	ug/l	_		11/01/13 12:43	1
trans-1,2-Dichloroethene	ND		0.50	ug/l			11/01/13 12:43	1
1,2-Dichloropropane	ND		0.50	ug/l			11/01/13 12:43	1
cis-1,3-Dichloropropene	ND		0.50	ug/l	_		11/01/13 12:43	1
trans-1,3-Dichloropropene	ND		0.50	ug/l	-		11/01/13 12:43	1
Ethylbenzene	ND		0.50	ug/l			11/01/13 12:43	1
Hexachlorobutadiene	ND		1.0	ug/l			11/01/13 12:43	1
2-Hexanone	ND		50	ug/l			11/01/13 12:43	1
Isopropylbenzene	ND		0.50	ug/l			11/01/13 12:43	1

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-53382-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Client Sample ID: MP-03-2

Lab Sample ID: 720-53382-3

Matrix: Water

Date Collected: 10/28/13 08:35 Date Received: 10/28/13 17:12

Analyte	Result	Qualifier RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
4-Isopropyltoluene	ND	1.0	ug/L			11/01/13 12:43	1
Methylene Chloride	ND	5.0	ug/L			11/01/13 12:43	1
4-Methyl-2-pentanone (MIBK)	ND	50	ug/L			11/01/13 12:43	1
Naphthalene	ND	1.0	ug/L			11/01/13 12:43	1
N-Propylbenzene	ND	1.0	ug/L			11/01/13 12:43	1
Styrene	ND	0.50	ug/L			11/01/13 12:43	1
1,1,1,2-Tetrachloroethane	ND	0.50	ug/L			11/01/13 12:43	1
1,1,2,2-Tetrachloroethane	ND	0.50	ug/L			11/01/13 12:43	1
Tetrachloroethene	ND	0.50	ug/L			11/01/13 12:43	1
Toluene	ND	0.50	ug/L			11/01/13 12:43	1
1,2,3-Trichlorobenzene	ND	1.0	ug/L			11/01/13 12:43	1
1,2,4-Trichlorobenzene	ND	1.0	ug/L			11/01/13 12:43	1
1,1,1-Trichloroethane	ND	0.50	ug/L			11/01/13 12:43	1
1,1,2-Trichloroethane	ND	0.50	ug/L			11/01/13 12:43	1
Trichloroethene	ND	0.50	ug/L			11/01/13 12:43	1
Trichlorofluoromethane	ND	1.0	ug/L			11/01/13 12:43	1
1,2,3-Trichloropropane	ND	0.50	ug/L			11/01/13 12:43	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	0.50	ug/L			11/01/13 12:43	1
1,2,4-Trimethylbenzene	ND	0.50	ug/L			11/01/13 12:43	1
1,3,5-Trimethylbenzene	ND	0.50	ug/L			11/01/13 12:43	1
Vinyl acetate	ND	10	ug/L			11/01/13 12:43	1
Vinyl chloride	ND	0.50	ug/L			11/01/13 12:43	1
Xylenes, Total	ND	1.0	ug/L			11/01/13 12:43	1
2,2-Dichloropropane	ND	0.50	ug/L			11/01/13 12:43	1
Gasoline Range Organics (GRO)	ND	50	ug/L			11/01/13 12:43	1

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	93	67 - 130		11/01/13 12:43	1
1,2-Dichloroethane-d4 (Surr)	113	72 - 130		11/01/13 12:43	1
Toluene-d8 (Surr)	97	70 - 130		11/01/13 12:43	1

Client Sample ID: MP-01-2

-C5-C12

Date Collected: 10/28/13 09:23

Date Received: 10/28/13 17:12									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND		0.50		ug/L			11/01/13 13:09	1
Acetone	ND		50		ug/L			11/01/13 13:09	1
Benzene	ND		0.50		ug/L			11/01/13 13:09	1
Dichlorobromomethane	ND		0.50		ug/L			11/01/13 13:09	1
Bromobenzene	ND		1.0		ug/L			11/01/13 13:09	1
Chlorobromomethane	ND		1.0		ug/L			11/01/13 13:09	1
Bromoform	ND		1.0		ug/L			11/01/13 13:09	1
Bromomethane	ND		1.0		ug/L			11/01/13 13:09	1
2-Butanone (MEK)	ND		50		ug/L			11/01/13 13:09	1
n-Butylbenzene	ND		1.0		ug/L			11/01/13 13:09	1
sec-Butylbenzene	ND		1.0		ug/L			11/01/13 13:09	1
tert-Butylbenzene	ND		1.0		ug/L			11/01/13 13:09	1.
Carbon disulfide	ND		5.0		ug/L			11/01/13 13:09	1
Carbon tetrachloride	ND		0.50		ug/L			11/01/13 13:09	1

TestAmerica Pleasanton

Lab Sample ID: 720-53382-4

Matrix: Water

Page 11 of 48

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-53382-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Client Sample ID: MP-01-2

Lab Sample ID: 720-53382-4

Matrix: Water

Date	Collected:	10/28/13	09:23
Date	Received:	10/28/13	17:12

Analyte	Result	Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
Chlorobenzene	ND		0.50	ug/L		11/01/13 13:09	1
Chloroethane	ND		1.0	ug/L		11/01/13 13:09	1
Chloroform	ND		1.0	ug/L		11/01/13 13:09	1
Chloromethane	ND		1.0	ug/L		11/01/13 13:09	1
2-Chlorotoluene	ND		0.50	ug/L		11/01/13 13:09	1
4-Chlorotoluene	ND		0.50	ug/L		11/01/13 13:09	1
Chlorodibromomethane	ND		0.50	ug/L		11/01/13 13:09	1
1,2-Dichlorobenzene	ND		0.50	ug/L		11/01/13 13:09	1
1,3-Dichlorobenzene	ND		0.50	ug/L		11/01/13 13:09	1
1,4-Dichlorobenzene	ND		0.50	ug/L		11/01/13 13:09	1
1,3-Dichloropropane	ND		1.0	ug/L		11/01/13 13:09	1
1,1-Dichloropropene	ND		0.50	ug/L		11/01/13 13:09	1
1,2-Dibromo-3-Chloropropane	ND		1.0	ug/L		11/01/13 13:09	1
Ethylene Dibromide	ND		0.50	ug/L		11/01/13 13:09	1
Dibromomethane	ND		0.50	ug/L		11/01/13 13:09	1
Dichlorodifluoromethane	ND		0.50	ug/L		11/01/13 13:09	1
1,1-Dichloroethane	ND		0.50	ug/L		11/01/13 13:09	1
1,2-Dichloroethane	ND		0.50	ug/L		11/01/13 13:09	1
1,1-Dichloroethene	ND		0.50	ug/L		11/01/13 13:09	1
cis-1,2-Dichloroethene	14		0.50	ug/L		11/01/13 13:09	1
trans-1,2-Dichloroethene	ND		0.50	ug/L		11/01/13 13:09	1
1,2-Dichloropropane	ND		0.50	ug/L		11/01/13 13:09	1
cis-1,3-Dichloropropene	ND		0.50	ug/L		11/01/13 13:09	1
trans-1,3-Dichloropropene	ND		0.50	ug/L		11/01/13 13:09	1
Ethylbenzene	ND		0.50	ug/L		11/01/13 13:09	1
Hexachlorobutadiene	ND		1.0	ug/L		11/01/13 13:09	1
2-Hexanone	ND		50	ug/L		11/01/13 13:09	1
Isopropylbenzene	ND		0.50	ug/L		11/01/13 13:09	1
4-Isopropyltoluene	ND		1.0	ug/L		11/01/13 13:09	1
Methylene Chloride	ND		5.0	ug/L		11/01/13 13:09	1
4-Methyl-2-pentanone (MIBK)	ND		50	ug/L		11/01/13 13:09	1
Naphthalene	ND		1.0	ug/L		11/01/13 13:09	1
N-Propylbenzene	ND		1.0	ug/L		11/01/13 13:09	1
Styrene	ND		0.50	ug/L		11/01/13 13:09	1
1,1,1,2-Tetrachloroethane	ND		0.50	ug/L		11/01/13 13:09	1
1,1,2,2-Tetrachloroethane	ND		0.50	ug/L		11/01/13 13:09	1
Tetrachloroethene	ND		0.50	ug/L		11/01/13 13:09	1
Toluene	ND		0.50	ug/L		11/01/13 13:09	1
1,2,3-Trichlorobenzene	ND		1.0	ug/L		11/01/13 13:09	1
1,2,4-Trichlorobenzene	ND		1.0	ug/L		11/01/13 13:09	1
1,1,1-Trichloroethane	ND		0.50	ug/L		11/01/13 13:09	1
1,1,2-Trichloroethane	ND		0.50	ug/L		11/01/13 13:09	1
Trichloroethene	ND		0.50	ug/L		11/01/13 13:09	1
Trichlorofluoromethane	ND		1.0	ug/L		11/01/13 13:09	1
1,2,3-Trichloropropane	ND		0.50	ug/L		11/01/13 13:09	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50	ug/L		11/01/13 13:09	1
1,2,4-Trimethylbenzene	ND		0.50	ug/L		11/01/13 13:09	1
1,3,5-Trimethylbenzene	ND		0.50	ug/L		11/01/13 13:09	1
Vinyl acetate	ND		10	ug/L		11/01/13 13:09	1

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-53382-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Client Sample ID: MP-01-2 Date Collected: 10/28/13 09:23 Lab Sample ID: 720-53382-4

Matrix: Water

Date Received: 10/28/13 17:12

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND		0.50		ug/L			11/01/13 13:09	1
Xylenes, Total	ND		1.0		ug/L			11/01/13 13:09	1
2,2-Dichloropropane	ND		0.50		ug/L			11/01/13 13:09	1
Gasoline Range Organics (GRO)	ND		50		ug/L			11/01/13 13:09	1

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	96	67 - 130		11/01/13 13:09	1
1,2-Dichloroethane-d4 (Surr)	114	72 - 130		11/01/13 13:09	1
Toluene-d8 (Surr)	99	70 - 130		11/01/13 13:09	1

Client Sample ID: MP-01-1 Date Collected: 10/28/13 10:19 Lab Sample ID: 720-53382-5

Matrix: Water

Date Received: 10/28/13 17:12 Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND	0.50	ug/L	-	11/01/13 13:35	1
Acetone	ND	50	ug/L		11/01/13 13:35	1
Benzene	ND	0.50	ug/L		11/01/13 13:35	1
Dichlorobromomethane	ND	0.50	ug/L		11/01/13 13:35	1
Bromobenzene	ND	1.0	ug/L		11/01/13 13:35	1
Chlorobromomethane	ND	1.0	ug/L		11/01/13 13:35	1
Bromoform	ND	1.0	ug/L		11/01/13 13:35	1
Bromomethane	ND	1.0	ug/L		11/01/13 13:35	1
2-Butanone (MEK)	ND	50	ug/L		11/01/13 13:35	1
n-Butylbenzene	ND	1.0	ug/L		11/01/13 13:35	1
sec-Butylbenzene	ND	1.0	ug/L		11/01/13 13:35	1
tert-Butylbenzene	ND	1.0	ug/L		11/01/13 13:35	1
Carbon disulfide	ND	5.0	ug/L		11/01/13 13:35	1
Carbon tetrachloride	ND	0.50	ug/L		11/01/13 13:35	1
Chlorobenzene	ND	0.50	ug/L		11/01/13 13:35	1
Chloroethane	ND	1.0	ug/L		11/01/13 13:35	1
Chloroform	ND	1.0	ug/L		11/01/13 13:35	1
Chloromethane	ND	1.0	ug/L		11/01/13 13:35	1
2-Chlorotoluene	ND	0.50	ug/L		11/01/13 13:35	1
4-Chlorotoluene	ND	0.50	ug/L		11/01/13 13:35	1
Chlorodibromomethane	ND	0.50	ug/L		11/01/13 13:35	1
1,2-Dichlorobenzene	ND	0.50	ug/L		11/01/13 13:35	1
1,3-Dichlorobenzene	ND	0.50	ug/L		11/01/13 13:35	1
1,4-Dichlorobenzene	ND	0.50	ug/L		11/01/13 13:35	1
1,3-Dichloropropane	ND	1.0	ug/L		11/01/13 13:35	1
1,1-Dichloropropene	ND	0.50	ug/L		11/01/13 13:35	1
1,2-Dibromo-3-Chloropropane	ND	1.0	ug/L		11/01/13 13:35	1
Ethylene Dibromide	ND	0.50	ug/L		11/01/13 13:35	1
Dibromomethane	ND	0.50	ug/L		11/01/13 13:35	1
Dichlorodifluoromethane	ND	0.50	ug/L		11/01/13 13:35	1
1,1-Dichloroethane	ND	0.50	ug/L		11/01/13 13:35	1
1,2-Dichloroethane	ND	0.50	ug/L		11/01/13 13:35	1
1,1-Dichloroethene	ND	0.50	ug/L		11/01/13 13:35	1
cis-1,2-Dichloroethene	ND	0.50	ug/L		11/01/13 13:35	1
trans-1,2-Dichloroethene	ND	0.50	ug/L		11/01/13 13:35	1

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-53382-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Client Sample ID: MP-01-1 Date Collected: 10/28/13 10:19 Lab Sample ID: 720-53382-5

Matrix: Water

Date Collected: 10/28/13 10:19 Date Received: 10/28/13 17:12

Analyte	Result Quali	fier RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dichloropropane	ND	0.50	ug/L			11/01/13 13:35	1
cis-1,3-Dichloropropene	ND	0.50	ug/L			11/01/13 13:35	1
trans-1,3-Dichloropropene	ND	0.50	ug/L			11/01/13 13:35	1
Ethylbenzene	ND	0.50	ug/L			11/01/13 13:35	1
Hexachlorobutadiene	ND	1.0	ug/L			11/01/13 13:35	1
2-Hexanone	ND	50	ug/L			11/01/13 13:35	1
Isopropylbenzene	ND	0.50	ug/L			11/01/13 13:35	1
4-Isopropyltoluene	ND	1.0	ug/L			11/01/13 13:35	1
Methylene Chloride	ND	5.0	ug/L			11/01/13 13:35	1
4-Methyl-2-pentanone (MIBK)	ND	50	ug/L			11/01/13 13:35	1
Naphthalene	ND	1.0	ug/L			11/01/13 13:35	1
N-Propylbenzene	ND	1.0	ug/L			11/01/13 13:35	1
Styrene	ND	0.50	ug/L			11/01/13 13:35	1
1,1,1,2-Tetrachloroethane	ND	0.50	ug/L			11/01/13 13:35	1
1,1,2,2-Tetrachloroethane	ND	0.50	ug/L			11/01/13 13:35	1
Tetrachloroethene	140	0.50	ug/L			11/01/13 13:35	1
Toluene	ND	0.50	ug/L			11/01/13 13:35	1
1,2,3-Trichlorobenzene	ND	1.0	ug/L			11/01/13 13:35	1
1,2,4-Trichlorobenzene	ND	1.0	ug/L			11/01/13 13:35	1
1,1,1-Trichloroethane	ND	0.50	ug/L			11/01/13 13:35	1
1,1,2-Trichloroethane	ND	0.50	ug/L			11/01/13 13:35	1
Trichloroethene	5.1	0.50	ug/L			11/01/13 13:35	1
Trichlorofluoromethane	ND	1.0	ug/L			11/01/13 13:35	1
1,2,3-Trichloropropane	ND	0.50	ug/L			11/01/13 13:35	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	0.50	ug/L			11/01/13 13:35	1
1,2,4-Trimethylbenzene	ND	0.50	ug/L			11/01/13 13:35	1
1,3,5-Trimethylbenzene	ND	0.50	ug/L			11/01/13 13:35	1
Vinyl acetate	ND	10	ug/L			11/01/13 13:35	1
Vinyl chloride	ND	0.50	ug/L			11/01/13 13:35	1
Xylenes, Total	ND	1.0	ug/L			11/01/13 13:35	1
2,2-Dichloropropane	ND	0.50	ug/L			11/01/13 13:35	1
Gasoline Range Organics (GRO) -C5-C12	120 R	50	ug/L			11/01/13 13:35	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	94		67 - 130		11/01/13 13:35	1
1,2-Dichloroethane-d4 (Surr)	112		72 - 130		11/01/13 13:35	1
Toluene-d8 (Surr)	96		70 - 130		11/01/13 13:35	1

Client Sample ID: MP-03-1 Date Collected: 10/28/13 11:00 Date Received: 10/28/13 17:12 Lab Sample ID: 720-53382-6

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND		0.50	_	ug/L			11/01/13 14:01	1
Acetone	ND		50		ug/L			11/01/13 14:01	1
Benzene	ND		0.50		ug/L			11/01/13 14:01	1
Dichlorobromomethane	ND		0.50		ug/L			11/01/13 14:01	1
Bromobenzene	ND		1.0		ug/L			11/01/13 14:01	1
Chlorobromomethane	ND		1.0		ug/L			11/01/13 14:01	1
Bromoform	ND		1.0		ug/L			11/01/13 14:01	1

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-53382-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Client Sample ID: MP-03-1

Date Collected: 10/28/13 11:00

Lab Sample ID: 720-53382-6

Matrix: Water

Date Received: 10/28/13 17:12					Matri	x: vvater
Analyte	Result (Qualifier RL	MDL Unit	D Prepared	Analyzed	Dil Fac
Bromomethane	ND	1.0	ug/L		11/01/13 14:01	1
2-Butanone (MEK)	ND	50	ug/L		11/01/13 14:01	1
n-Butylbenzene	ND	1.0	ug/L		11/01/13 14:01	1
sec-Butylbenzene	ND	1.0	ug/L		11/01/13 14:01	1
tert-Butylbenzene	ND	1.0	ug/L		11/01/13 14:01	1
Carbon disulfide	ND	5.0	ug/L		11/01/13 14:01	1
Carbon tetrachloride	ND	0.50	ug/L		11/01/13 14:01	1
Chlorobenzene	ND	0.50	ug/L		11/01/13 14:01	1
Chloroethane	ND	1.0	ug/L		11/01/13 14:01	1
Chloroform	ND	1.0	ug/L		11/01/13 14:01	1
Chloromethane	ND	1.0	ug/L		11/01/13 14:01	1
2-Chlorotoluene	ND	0.50	ug/L		11/01/13 14:01	1
4-Chlorotoluene	ND	0.50	ug/L		11/01/13 14:01	1
Chlorodibromomethane	ND	0.50	ug/L		11/01/13 14:01	1
1,2-Dichlorobenzene	ND	0.50	ug/L		11/01/13 14:01	1
1.3-Dichlorobenzene	ND	0.50	ug/L		11/01/13 14:01	1
1,4-Dichlorobenzene	ND	0.50	ug/L		11/01/13 14:01	1
1,3-Dichloropropane	ND	1.0			11/01/13 14:01	1
	ND	0.50	ug/L			1
1,1-Dichloropropene			ug/L		11/01/13 14:01	
1,2-Dibromo-3-Chloropropane	ND	1.0	ug/L		11/01/13 14:01	1
Ethylene Dibromide	ND	0.50	ug/L		11/01/13 14:01	1
Dibromomethane	ND	0.50	ug/L		11/01/13 14:01	1
Dichlorodifluoromethane	ND	0.50	ug/L		11/01/13 14:01	1
1,1-Dichloroethane	ND	0.50	ug/L		11/01/13 14:01	1
1,2-Dichloroethane	ND	0.50	ug/L		11/01/13 14:01	1
1,1-Dichloroethene	ND	0.50	ug/L		11/01/13 14:01	1
cis-1,2-Dichloroethene	0.64	0.50	ug/L		11/01/13 14:01	1
trans-1,2-Dichloroethene	ND	0.50	ug/L		11/01/13 14:01	1
1,2-Dichloropropane	ND	0.50	ug/L		11/01/13 14:01	1
cis-1,3-Dichloropropene	ND	0.50	ug/L		11/01/13 14:01	1
trans-1,3-Dichloropropene	ND	0.50	ug/L		11/01/13 14:01	1
Ethylbenzene	ND	0.50	ug/L		11/01/13 14:01	1
Hexachlorobutadiene	ND	1.0	ug/L		11/01/13 14:01	1
2-Hexanone	ND	50	ug/L		11/01/13 14:01	1
Isopropylbenzene	ND	0.50	ug/L		11/01/13 14:01	1
4-Isopropyltoluene	ND	1.0	ug/L		11/01/13 14:01	1
Methylene Chloride	ND	5.0	ug/L		11/01/13 14:01	1
4-Methyl-2-pentanone (MIBK)	ND	50	ug/L		11/01/13 14:01	1
Naphthalene	ND	1.0	ug/L		11/01/13 14:01	1
N-Propylbenzene	ND	1.0	ug/L		11/01/13 14:01	1
Styrene	ND	0.50	ug/L		11/01/13 14:01	1
1,1,1,2-Tetrachloroethane	ND	0.50	ug/L		11/01/13 14:01	1
1,1,2,2-Tetrachloroethane	ND	0.50	ug/L		11/01/13 14:01	1
Tetrachloroethene	120	0.50	ug/L		11/01/13 14:01	1
Toluene	ND	0.50	ug/L		11/01/13 14:01	1
1,2,3-Trichlorobenzene	ND	1.0	ug/L		11/01/13 14:01	1
1,2,4-Trichlorobenzene	ND	1.0	ug/L		11/01/13 14:01	1
1,1,1-Trichloroethane	ND	0.50	ug/L		11/01/13 14:01	1
1,1,2-Trichloroethane	ND	0.50	ug/L		11/01/13 14:01	1

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-53382-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Client Sample ID: MP-03-1

Lab Sample ID: 720-53382-6

Matrix: Water

Date	Collected:	10/28/13	11:00
Date	Received:	10/28/13	17:12

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Trichloroethene	12		0.50		ug/L			11/01/13 14:01	1
Trichlorofluoromethane	ND		1.0		ug/L			11/01/13 14:01	1
1,2,3-Trichloropropane	ND		0.50		ug/L			11/01/13 14:01	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50		ug/L			11/01/13 14:01	1
1,2,4-Trimethylbenzene	ND		0.50		ug/L			11/01/13 14:01	1
1,3,5-Trimethylbenzene	ND		0.50		ug/L			11/01/13 14:01	1
Vinyl acetate	ND		10		ug/L			11/01/13 14:01	1
Vinyl chloride	ND		0.50		ug/L			11/01/13 14:01	1
Xylenes, Total	ND		1.0		ug/L			11/01/13 14:01	1
2,2-Dichloropropane	ND		0.50		ug/L			11/01/13 14:01	1
Gasoline Range Organics (GRO) -C5-C12	150	R	50		ug/L			11/01/13 14:01	1

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	94	67 - 130		11/01/13 14:01	1
1,2-Dichloroethane-d4 (Surr)	115	72 - 130		11/01/13 14:01	1
Toluene-d8 (Surr)	96	70 - 130		11/01/13 14:01	1

Client Sample ID: MW-02 Date Collected: 10/28/13 11:40 Lab Sample ID: 720-53382-7 Matrix: Water

Date Received: 10/28/13 17:12						
Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND	0.50	ug/L		11/01/13 14:27	1
Acetone	ND	50	ug/L		11/01/13 14:27	1
Benzene	ND	0.50	ug/L		11/01/13 14:27	1
Dichlorobromomethane	ND	0.50	ug/L		11/01/13 14:27	1
Bromobenzene	ND	1.0	ug/L		11/01/13 14:27	1
Chlorobromomethane	ND	1.0	ug/L		11/01/13 14:27	1
Bromoform	ND	1.0	ug/L		11/01/13 14:27	1
Bromomethane	ND	1.0	ug/L		11/01/13 14:27	1
2-Butanone (MEK)	ND	50	ug/L		11/01/13 14:27	1
n-Butylbenzene	ND	1.0	ug/L		11/01/13 14:27	1
sec-Butylbenzene	ND	1.0	ug/L		11/01/13 14:27	1
tert-Butylbenzene	ND	1.0	ug/L		11/01/13 14:27	1
Carbon disulfide	ND	5.0	ug/L		11/01/13 14:27	1
Carbon tetrachloride	ND	0.50	ug/L		11/01/13 14:27	1
Chlorobenzene	ND	0.50	ug/L		11/01/13 14:27	1
Chloroethane	ND	1.0	ug/L		11/01/13 14:27	1
Chloroform	ND	1.0	ug/L		11/01/13 14:27	1
Chloromethane	ND	1.0	ug/L		11/01/13 14:27	1
2-Chlorotoluene	ND	0.50	ug/L		11/01/13 14:27	1
4-Chlorotoluene	ND	0.50	ug/L		11/01/13 14:27	1
Chlorodibromomethane	ND	0.50	ug/L		11/01/13 14:27	1
1,2-Dichlorobenzene	ND	0.50	ug/L		11/01/13 14:27	1
1,3-Dichlorobenzene	ND	0.50	ug/L		11/01/13 14:27	1
1,4-Dichlorobenzene	ND	0.50	ug/L		11/01/13 14:27	1
1,3-Dichloropropane	ND	1.0	ug/L		11/01/13 14:27	1
1,1-Dichloropropene	ND	0.50	ug/L		11/01/13 14:27	1
1,2-Dibromo-3-Chloropropane	ND	1.0	ug/L		11/01/13 14:27	1
Ethylene Dibromide	ND	0.50	ug/L		11/01/13 14:27	1

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-53382-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Client Sample ID: MW-02

4-Bromofluorobenzene

Toluene-d8 (Surr)

1,2-Dichloroethane-d4 (Surr)

Lab Sample ID: 720-53382-7

Matrix: Water

Date Collected: 10/28/13 11:40 Date Received: 10/28/13 17:12

Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Dibromomethane	ND		0.50	ug/L			11/01/13 14:27	1
Dichlorodifluoromethane	ND		0.50	ug/L			11/01/13 14:27	1
1,1-Dichloroethane	ND		0.50	ug/L			11/01/13 14:27	1
1,2-Dichloroethane	, ND		0.50	ug/L			11/01/13 14:27	1
1,1-Dichloroethene	ND		0.50	ug/L			11/01/13 14:27	1
cis-1,2-Dichloroethene	0.58		0.50	ug/L			11/01/13 14:27	1
trans-1,2-Dichloroethene	ND		0.50	ug/L			11/01/13 14:27	1
1,2-Dichloropropane	ND		0.50	ug/L			11/01/13 14:27	1
cis-1,3-Dichloropropene	ND		0.50	ug/L			11/01/13 14:27	1
trans-1,3-Dichloropropene	ND		0.50	ug/L			11/01/13 14:27	1
Ethylbenzene	ND		0.50	ug/L			11/01/13 14:27	1
Hexachlorobutadiene	ND		1.0	ug/L			11/01/13 14:27	1
2-Hexanone	ND		50	ug/L			11/01/13 14:27	1
Isopropylbenzene	ND		0.50	ug/L			11/01/13 14:27	1
4-Isopropyltoluene	ND		1.0	ug/L			11/01/13 14:27	1
Methylene Chloride	ND		5.0	ug/L			11/01/13 14:27	1
4-Methyl-2-pentanone (MIBK)	ND		50	ug/L			11/01/13 14:27	1
Naphthalene	ND		1.0	ug/L			11/01/13 14:27	1
N-Propylbenzene	ND		1.0	ug/L			11/01/13 14:27	1
Styrene	ND		0.50	ug/L			11/01/13 14:27	1
1,1,1,2-Tetrachloroethane	ND		0.50	ug/L			11/01/13 14:27	1
1,1,2,2-Tetrachloroethane	ND		0.50	ug/L			11/01/13 14:27	1
Tetrachioroethene	10		0.50	ug/L			11/01/13 14:27	1
Toluene	ND		0.50	ug/L			11/01/13 14:27	1
1,2,3-Trichlorobenzene	ND		1.0	ug/L			11/01/13 14:27	1
1,2,4-Trichlorobenzene	ND		1.0	ug/L			11/01/13 14:27	1
1,1,1-Trichloroethane	ND		0.50	ug/L			11/01/13 14:27	1
1,1,2-Trichloroethane	ND		0.50	ug/L			11/01/13 14:27	1
Trichloroethene	6.6		0.50	ug/L			11/01/13 14:27	1
Trichlorofluoromethane	ND		1.0	ug/L			11/01/13 14:27	1
1,2,3-Trichloropropane	ND		0.50	ug/L			11/01/13 14:27	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50	ug/L			11/01/13 14:27	1
1,2,4-Trimethylbenzene	ND		0.50	ug/L			11/01/13 14:27	1
1,3,5-Trimethylbenzene	ND		0.50	ug/L			11/01/13 14:27	1
Vinyl acetate	ND		10	ug/L			11/01/13 14:27	1
Vinyl chloride	ND		0.50	ug/L			11/01/13 14:27	1
Xylenes, Total	ND		1.0	ug/L			11/01/13 14:27	1
2,2-Dichloropropane	ND		0.50	ug/L			11/01/13 14:27	1
Gasoline Range Organics (GRO) -C5-C12	ND		50	ug/L			11/01/13 14:27	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac

67 - 130

72 - 130

70 - 130

95

114

11/01/13 14:27

11/01/13 14:27

11/01/13 14:27

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-53382-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS

Client Sample ID: MP-02-1 Lab Sample ID: 720-53382-8 Date Collected: 10/28/13 12:50

Matrix: Water

Date Received: 10/28/13 17:12 Analyte	Result Qu	ualifier RL	MDL Unit	D Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND	0.50	ug/L		11/01/13 14:53	ĭ
Acetone	ND	50	ug/L		11/01/13 14:53	1
Benzene	ND	0.50	ug/L		11/01/13 14:53	1
Dichlorobromomethane	ND	0.50	ug/L		11/01/13 14:53	1
Bromobenzene	ND	1.0	ug/L		11/01/13 14:53	1
Chlorobromomethane	ND	1.0	ug/L		11/01/13 14:53	1
Bromoform	ND	1.0	ug/L		11/01/13 14:53	1
Bromomethane	ND	1.0	ug/L		11/01/13 14:53	1
2-Butanone (MEK)	ND	50	ug/L		11/01/13 14:53	1
n-Butylbenzene	ND	1.0	ug/L		11/01/13 14:53	1
sec-Butylbenzene	ND	1.0	ug/L		11/01/13 14:53	1
tert-Butylbenzene	ND	1.0	ug/L		11/01/13 14:53	1
Carbon disulfide	ND	5.0	ug/L		11/01/13 14:53	1
Carbon tetrachloride	ND	0.50	ug/L		11/01/13 14:53	1
Chlorobenzene	ND	0.50	ug/L		11/01/13 14:53	1
Chloroethane	ND	1.0	ug/L		11/01/13 14:53	1
Chloroform	ND	1.0	ug/L		11/01/13 14:53	1
Chloromethane	ND	1.0	ug/L		11/01/13 14:53	1
2-Chlorotoluene	ND	0.50	ug/L		11/01/13 14:53	1
4-Chlorotoluene	ND	0.50	ug/L		11/01/13 14:53	1
Chlorodibromomethane	ND	0.50	ug/L		11/01/13 14:53	1
1,2-Dichlorobenzene	ND	0.50	ug/L		11/01/13 14:53	1
1,3-Dichlorobenzene	ND	0.50	ug/L		11/01/13 14:53	1
1,4-Dichlorobenzene	ND	0.50	ug/L		11/01/13 14:53	1
1,3-Dichloropropane	ND	1.0	ug/L		11/01/13 14:53	1
1,1-Dichloropropene	ND	0.50	ug/L		11/01/13 14:53	1
1,2-Dibromo-3-Chloropropane	ND	1.0	ug/L		11/01/13 14:53	1
Ethylene Dibromide	ND	0.50	ug/L		11/01/13 14:53	1
Dibromomethane	ND	0.50	ug/L		11/01/13 14:53	1
Dichlorodifluoromethane	ND	0.50	ug/L		11/01/13 14:53	1
1,1-Dichloroethane	ND	0.50	ug/L		11/01/13 14:53	1
1,2-Dichloroethane	ND	0.50	ug/L		11/01/13 14:53	1
1,1-Dichloroethene	ND	0.50	ug/L		11/01/13 14:53	1
cis-1,2-Dichloroethene	5.9	0.50	ug/L		11/01/13 14:53	1
trans-1,2-Dichloroethene	0.92	0.50	ug/L		11/01/13 14:53	1
1,2-Dichloropropane	ND	0.50	ug/L		11/01/13 14:53	1
cis-1,3-Dichloropropene	ND	0.50	ug/L		11/01/13 14:53	1
trans-1,3-Dichloropropene	ND	0.50	ug/L		11/01/13 14:53	1
Ethylbenzene	ND	0.50	ug/L		11/01/13 14:53	1
Hexachlorobutadiene	ND	1.0	ug/L		11/01/13 14:53	1
2-Hexanone	ND	50	ug/L		11/01/13 14:53	1
İsopropyibenzene	ND	0.50	ug/L		11/01/13 14:53	1
4-Isopropyltoluene	ND	1.0	ug/L		11/01/13 14:53	1
Methylene Chloride	ND	5.0	ug/L		11/01/13 14:53	1
4-Methyl-2-pentanone (MIBK)	ND	50	ug/L		11/01/13 14:53	1
Naphthalene	ND	1.0	ug/L		11/01/13 14:53	1
N-Propylbenzene	ND	1.0	ug/L		11/01/13 14:53	1
Styrene	ND	0.50	ug/L		11/01/13 14:53	1
1,1,1,2-Tetrachloroethane	ND	0.50	ug/L		11/01/13 14:53	1

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-53382-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Client Sample ID: MP-02-1 Date Collected: 10/28/13 12:50 Date Received: 10/28/13 17:12 Lab Sample ID: 720-53382-8

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,2,2-Tetrachloroethane	ND		0.50		ug/L			11/01/13 14:53	1
Tetrachloroethene	0.53		0.50		ug/L			11/01/13 14:53	1
Toluene	ND		0.50		ug/L			11/01/13 14:53	1
1,2,3-Trichlorobenzene	ND		1.0		ug/L			11/01/13 14:53	1
1,2,4-Trichlorobenzene	ND		1.0		ug/L			11/01/13 14:53	1
1,1,1-Trichloroethane	ND		0.50		ug/L			11/01/13 14:53	1
1,1,2-Trichloroethane	ND		0.50		ug/L			11/01/13 14:53	1
Trichloroethene	56		0.50		ug/L			11/01/13 14:53	1
Trichlorofluoromethane	ND		1.0		ug/L			11/01/13 14:53	1
1,2,3-Trichloropropane	ND		0.50		ug/L			11/01/13 14:53	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50		ug/L			11/01/13 14:53	1
1,2,4-Trimethylbenzene	ND		0.50		ug/L			11/01/13 14:53	1
1,3,5-Trimethylbenzene	ND		0.50		ug/L			11/01/13 14:53	1
Vinyl acetate	ND		10		ug/L			11/01/13 14:53	1
Vinyl chloride	ND		0.50		ug/L			11/01/13 14:53	1
Xylenes, Total	ND		1.0		ug/L		4	11/01/13 14:53	1

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	97	67 - 130		11/01/13 14:53	1
1,2-Dichloroethane-d4 (Surr)	112	72 - 130		11/01/13 14:53	1
Toluene-d8 (Surr)	98	70 - 130		11/01/13 14:53	1

0.50

50

ug/L

ug/L

Client Sample ID: MW-01

Gasoline Range Organics (GRO)

2,2-Dichloropropane

-C5-C12

Date Collected: 10/28/13 13:25

Date Received: 10/28/13 17:12

Lab	Sample	ID:	720-5	3382-9
		N	latrix:	Water

11/01/13 14:53 11/01/13 14:53

Analyte	Result Qualif	Fier RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND	1.0	ug/L			11/01/13 15:18	2
Acetone	ND	100	ug/L			11/01/13 15:18	2
Benzene	ND	1.0	ug/L			11/01/13 15:18	2
Dichlorobromomethane	ND	1.0	ug/L			11/01/13 15:18	2
Bromobenzene	ND	2.0	ug/L			11/01/13 15:18	2
Chlorobromomethane	ND	2.0	ug/L			11/01/13 15:18	2
Bromoform	ND	2.0	ug/L			11/01/13 15:18	2
Bromomethane	ND	2.0	ug/L			11/01/13 15:18	2
2-Butanone (MEK)	ND	100	ug/L			11/01/13 15:18	2
n-Butylbenzene	ND	2.0	ug/L			11/01/13 15:18	2
sec-Butylbenzene	ND	2.0	ug/L			11/01/13 15:18	2
tert-Butylbenzene	ND	2.0	ug/L			11/01/13 15:18	2
Carbon disulfide	ND	10	ug/L			11/01/13 15:18	2
Carbon tetrachloride	ND	1.0	ug/L	17		11/01/13 15:18	2
Chlorobenzene	ND	1.0	ug/L			11/01/13 15:18	2
Chloroethane	ND	2.0	ug/L			11/01/13 15:18	2
Chloroform	ND	2.0	ug/L			11/01/13 15:18	2
Chloromethane	ND	2.0	ug/L			11/01/13 15:18	2
2-Chlorotoluene	ND	1.0	ug/L			11/01/13 15:18	2
4-Chlorotoluene	ND	1.0	ug/L			11/01/13 15:18	2
Chlorodibromomethane	ND	1.0	ug/L			11/01/13 15:18	2

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-53382-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Client Sample ID: MW-01 Date Collected: 10/28/13 13:25 Lab Sample ID: 720-53382-9

Matrix: Water

Date Received: 10/28/13 17:12 Analyte	Result	Qualifier	RL	MDL Unit	D Prepare	d Analyzed	Dil Fac
1,2-Dichlorobenzene	ND		1.0	ug/L		11/01/13 15:18	2
1,3-Dichlorobenzene	ND		1.0	ug/L		11/01/13 15:18	2
1,4-Dichlorobenzene	ND		1.0	ug/L		11/01/13 15:18	2
1,3-Dichloropropane	ND		2.0	ug/L		11/01/13 15:18	2
1,1-Dichloropropene	ND		1.0	ug/L		11/01/13 15:18	2
1,2-Dibromo-3-Chloropropane	ND		2.0	ug/L		11/01/13 15:18	2
Ethylene Dibromide	ND		1.0	ug/L		11/01/13 15:18	2
Dibromomethane	ND		1.0	ug/L		11/01/13 15:18	2
Dichlorodifluoromethane	ND		1.0	ug/L		11/01/13 15:18	2
1,1-Dichloroethane	ND		1.0	ug/L		11/01/13 15:18	2
1,2-Dichloroethane	ND		1.0	ug/L		11/01/13 15:18	2
1,1-Dichloroethene	ND		1.0	ug/L		11/01/13 15:18	2
cis-1,2-Dichloroethene	ND		1.0	ug/L		11/01/13 15:18	2
trans-1,2-Dichloroethene	ND		1.0	ug/L		11/01/13 15:18	2
1,2-Dichloropropane	ND		1.0	ug/L		11/01/13 15:18	2
cis-1,3-Dichloropropene	ND		1.0	ug/L		11/01/13 15:18	2
trans-1,3-Dichloropropene	ND		1.0	ug/L		11/01/13 15:18	2
Ethylbenzene	ND		1.0	ug/L		11/01/13 15:18	2
Hexachlorobutadiene	ND		2.0	ug/L		11/01/13 15:18	2
2-Hexanone	ND		100	ug/L		11/01/13 15:18	2
Isopropylbenzene	ND		1.0	ug/L		11/01/13 15:18	2
4-Isopropyltoluene	ND		2.0	ug/L		11/01/13 15:18	2
Methylene Chloride	ND		10	ug/L		11/01/13 15:18	2
4-Methyl-2-pentanone (MIBK)	ND		100	ug/L		11/01/13 15:18	2
Naphthalene	ND		2.0	ug/L		11/01/13 15:18	2
N-Propylbenzene	ND		2.0	ug/L		11/01/13 15:18	2
Styrene	ND		1.0	ug/L		11/01/13 15:18	2
1,1,1,2-Tetrachloroethane	ND		1.0	ug/L		11/01/13 15:18	2
1,1,2,2-Tetrachloroethane	ND		1.0	ug/L		11/01/13 15:18	2
Tetrachloroethene	150		1.0	ug/L		11/01/13 15:18	2
Toluene	ND		1.0	ug/L		11/01/13 15:18	2
1,2,3-Trichlorobenzene	ND		2.0	ug/L		11/01/13 15:18	2
1,2,4-Trichlorobenzene	ND		2.0	ug/L		11/01/13 15:18	2
1,1,1-Trichloroethane	ND		1.0	ug/L		11/01/13 15:18	2
1,1,2-Trichloroethane	ND		1.0	ug/L		11/01/13 15:18	2
Trichloroethene	1.9		1.0	ug/L		11/01/13 15:18	2
Trichlorofluoromethane	ND		2.0	ug/L		11/01/13 15:18	2
1,2,3-Trichloropropane	ND		1.0	ug/L		11/01/13 15:18	2
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0	ug/L		11/01/13 15:18	2
1,2,4-Trimethylbenzene	ND		1.0	ug/L		11/01/13 15:18	2
1,3,5-Trimethylbenzene	ND		1.0	ug/L		11/01/13 15:18	2
Vinyl acetate	ND		20	ug/L		11/01/13 15:18	2
Vinyl chloride	ND		1.0	ug/L		11/01/13 15:18	2
Xylenes, Total	ND		2.0	ug/L		11/01/13 15:18	2
2,2-Dichloropropane	ND		1.0	ug/L		11/01/13 15:18	2
Gasoline Range Organics (GRO) -C5-C12	150	R	100	ug/L		11/01/13 15:18	2
Surrogate	%Recovery	Qualifier	Limits		Prepare		Dil Fac
4-Bromofluorobenzene	97		67 - 130			11/01/13 15:18	2

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-53382-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Client Sample ID: MW-01

Date Collected: 10/28/13 13:25 Date Received: 10/28/13 17:12 Lab Sample ID: 720-53382-9

Matrix: Water

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	114		72 - 130
Toluene-d8 (Surr)	96		70 - 130

Prepared	Analyzed	Dil Fac	
	11/01/13 15:18	2	Ì
	11/01/13 15:18	2	I

Client Sample ID: MW-03
Date Collected: 10/28/13 14:50

Lab Sample ID: 720-53382-10 Matrix: Water

Date Received: 10/28/13 17:12 Analyte	Result	Qualifier	RL	MDL U	nit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND		0.50	u	g/L			10/31/13 23:10	1
Acetone	ND		50	ug	g/L			10/31/13 23:10	1
Benzene	ND		0.50	ug	g/L			10/31/13 23:10	1
Dichlorobromomethane	ND		0.50	· ug	g/L			10/31/13 23:10	1
Bromobenzene	ND		1.0	uç	g/L			10/31/13 23:10	1
Chlorobromomethane	ND	51	1.0		g/L			10/31/13 23:10	1
Bromoform	ND		1.0	uş	g/L			10/31/13 23:10	1
Bromomethane	ND		1.0	ug	g/L			10/31/13 23:10	1
2-Butanone (MEK)	ND		50	ug	g/L			10/31/13 23:10	1
n-Butylbenzene	ND		1.0	ug	g/L			10/31/13 23:10	1
sec-Butylbenzene	ND		1.0		g/L			10/31/13 23:10	1
tert-Butylbenzene	ND		1.0	uç	g/L			10/31/13 23:10	1
Carbon disulfide	ND		5.0	uç	g/L			10/31/13 23:10	1
Carbon tetrachloride	ND		0.50		g/L			10/31/13 23:10	1
Chlorobenzene	0.96		0.50		g/L			10/31/13 23:10	1
Chloroethane	ND		1.0		g/L			10/31/13 23:10	1
Chloroform	ND		1.0		g/L			10/31/13 23:10	1
Chloromethane	ND		1.0		g/L			10/31/13 23:10	1
2-Chlorotoluene	ND		0.50		g/L			10/31/13 23:10	1
4-Chlorotoluene	ND		0.50		g/L			10/31/13 23:10	1
Chlorodibromomethane	ND		0.50		g/L			10/31/13 23:10	1
1,2-Dichlorobenzene	1.6		0.50		g/L			10/31/13 23:10	1
1,3-Dichlorobenzene	ND		0.50		g/L			10/31/13 23:10	1
1,4-Dichlorobenzene	ND		0.50		g/L			10/31/13 23:10	1
1,3-Dichloropropane	ND		1.0		g/L			10/31/13 23:10	1
1,1-Dichloropropene	ND		0.50		g/L			10/31/13 23:10	1
1,2-Dibromo-3-Chloropropane	ND		1.0		g/L			10/31/13 23:10	1
Ethylene Dibromide	ND		0.50		g/L			10/31/13 23:10	1
Dibromomethane	ND		0.50		g/L			10/31/13 23:10	1
Dichlorodifluoromethane	ND		0.50		g/L			10/31/13 23:10	1
1,1-Dichloroethane	ND		0.50		g/L			10/31/13 23:10	1
1,2-Dichloroethane	ND		0.50		g/L			10/31/13 23:10	1
1,1-Dichloroethene	ND		0.50		g/L			10/31/13 23:10	1
cis-1,2-Dichloroethene	ND		0.50		g/L			10/31/13 23:10	1
trans-1,2-Dichloroethene	ND		0.50		g/L			10/31/13 23:10	1
1,2-Dichloropropane	ND		0.50		g/L			10/31/13 23:10	1
cis-1,3-Dichloropropene	ND		0.50		g/L			10/31/13 23:10	1
trans-1,3-Dichloropropene	ND		0.50		9/L			10/31/13 23:10	1
Ethylbenzene	ND		0.50		g/L			10/31/13 23:10	1
Hexachlorobutadiene	ND		1.0		g/L			10/31/13 23:10	1
2-Hexanone	ND		50		g/∟ g/L			10/31/13 23:10	1
Isopropylbenzene	ND		0.50		g/L g/L			10/31/13 23:10	1

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-53382-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Client Sample ID: MW-03

-C5-C12

Lab Sample ID: 720-53382-10

Matrix: Water

Date Collected: 10/28/13 14:50 Date Received: 10/28/13 17:12

Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
4-Isopropyltoluene	ND		1.0	ug/L			10/31/13 23:10	1
Methylene Chloride	ND		5.0	ug/L			10/31/13 23:10	1
4-Methyl-2-pentanone (MIBK)	ND		50	ug/L			10/31/13 23:10	1
Naphthalene	ND		1.0	ug/L			10/31/13 23:10	1
N-Propylbenzene	ND		1.0	ug/L			10/31/13 23:10	1
Styrene	ND		0.50	ug/L			10/31/13 23:10	1
1,1,1,2-Tetrachloroethane	ND		0.50	ug/L			10/31/13 23:10	1
1,1,2,2-Tetrachloroethane	ND		0.50	ug/L			10/31/13 23:10	1
Tetrachloroethene	6.9		0.50	ug/L			10/31/13 23:10	1
Toluene	ND		0.50	ug/L			10/31/13 23:10	1
1,2,3-Trichlorobenzene	ND		1.0	ug/L			10/31/13 23:10	1
1,2,4-Trichlorobenzene	ND		1.0	ug/L			10/31/13 23:10	1
1,1,1-Trichloroethane	ND		0.50	ug/L			10/31/13 23:10	1
1,1,2-Trichloroethane	ND		0.50	ug/L			10/31/13 23:10	1
Trichloroethene	0.63		0.50	ug/L			10/31/13 23:10	1
Trichlorofluoromethane	ND		1.0	ug/L			10/31/13 23:10	1
1,2,3-Trichloropropane	ND		0.50	ug/L			10/31/13 23:10	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50	ug/L			10/31/13 23:10	1
1,2,4-Trimethylbenzene	ND		0.50	ug/L			10/31/13 23:10	1
1,3,5-Trimethylbenzene	ND		0.50	ug/L			10/31/13 23:10	1
Vinyl acetate	ND		10	ug/L			10/31/13 23:10	1
Vinyl chloride	ND		0.50	ug/L			10/31/13 23:10	1
Xylenes, Total	ND		1.0	ug/L			10/31/13 23:10	1
2,2-Dichloropropane	ND		0.50	ug/L			10/31/13 23:10	1
Gasoline Range Organics (GRO)	ND		50	ug/L			10/31/13 23:10	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	98		67 - 130		10/31/13 23:10	1
1,2-Dichloroethane-d4 (Surr)	107		72 - 130		10/31/13 23:10	1
Toluene-d8 (Surr)	98		70 - 130		10/31/13 23:10	1

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-53382-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS

Lab Sample ID: MB 720-147489/4

Matrix: Water

Analysis Batch: 147489

Client Sample ID: Method Blank

Prep Type: Total/NA

	MB	MB				
Analyte	Result	Qualifier RL	MDL Unit	D Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND	0.50	ug/L		10/31/13 19:16	1
Acetone	ND	50	ug/L		10/31/13 19:16	1
Benzene	ND	0.50	ug/L		10/31/13 19:16	1
Dichlorobromomethane	ND	0.50	ug/L		10/31/13 19:16	1
Bromobenzene	ND	1.0	ug/L		10/31/13 19:16	1
Chlorobromomethane	ND	1.0	ug/L		10/31/13 19:16	1
Bromoform	ND	1.0	ug/L		10/31/13 19:16	1
Bromomethane	ND	1.0	ug/L		10/31/13 19:16	1
2-Butanone (MEK)	ND	50	ug/L		10/31/13 19:16	1
n-Butylbenzene	ND	1.0	ug/L		10/31/13 19:16	1
sec-Butylbenzene	ND	1.0	ug/L		10/31/13 19:16	1
tert-Butylbenzene	ND	1.0	ug/L		10/31/13 19:16	1
Carbon disulfide	ND	5.0	ug/L		10/31/13 19:16	1
Carbon tetrachloride	ND	0.50	ug/L		10/31/13 19:16	1
Chlorobenzene	ND	0.50	ug/L		10/31/13 19:16	1
Chloroethane	ND	1.0	ug/L		10/31/13 19:16	1
Chloroform	ND	1.0	ug/L		10/31/13 19:16	1
Chloromethane	ND	1.0	ug/L		10/31/13 19:16	1
2-Chlorotoluene	ND	0.50	ug/L		10/31/13 19:16	1
4-Chlorotoluene	ND	0.50	ug/L		10/31/13 19:16	1
Chlorodibromomethane	ND	0.50	ug/L		10/31/13 19:16	1
1,2-Dichlorobenzene	ND	0.50	ug/L		10/31/13 19:16	1
1,3-Dichlorobenzene	ND	0.50	ug/L		10/31/13 19:16	1
1,4-Dichlorobenzene	ND	0.50	ug/L		10/31/13 19:16	1
1,3-Dichloropropane	ND	1.0	ug/L		10/31/13 19:16	1
1,1-Dichloropropene	ND	0.50	ug/L		10/31/13 19:16	1
1,2-Dibromo-3-Chloropropane	ND	1.0	ug/L		10/31/13 19:16	1
Ethylene Dibromide	ND	0.50	ug/L		10/31/13 19:16	1
Dibromomethane	ND	0.50	ug/L		10/31/13 19:16	1
Dichlorodifluoromethane	ND	0.50	ug/L		10/31/13 19:16	1
1,1-Dichloroethane	ND	0.50	ug/L		10/31/13 19:16	1
1,2-Dichloroethane	ND	0.50	ug/L		10/31/13 19:16	1
1,1-Dichloroethene	ND	0.50	ug/L		10/31/13 19:16	1
cis-1,2-Dichloroethene	ND	0.50	ug/L		10/31/13 19:16	1
trans-1,2-Dichloroethene	ND	0.50	ug/L		10/31/13 19:16	1
1,2-Dichloropropane	ND	0.50	ug/L		10/31/13 19:16	1
cis-1,3-Dichloropropene	ND	0.50	ug/L		10/31/13 19:16	1
trans-1,3-Dichloropropene	ND	0.50	ug/L		10/31/13 19:16	1
Ethylbenzene	ND	0.50	ug/L		10/31/13 19:16	1
Hexachlorobutadiene	ND	1.0	ug/L		10/31/13 19:16	1
2-Hexanone	ND	50	ug/L		10/31/13 19:16	1
sopropylbenzene	ND	0.50	ug/L		10/31/13 19:16	1
4-Isopropyltoluene	ND	1.0	ug/L		10/31/13 19:16	1
Methylene Chloride	ND	5.0	ug/L		10/31/13 19:16	1
4-Methyl-2-pentanone (MIBK)	ND	50	ug/L		10/31/13 19:16	1
Naphthalene	ND	1.0	ug/L		10/31/13 19:16	1
N-Propylbenzene	ND	1.0	ug/L		10/31/13 19:16	1
Styrene	ND	0.50	ug/L		10/31/13 19:16	1

TestAmerica Pleasanton

Page 23 of 48

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-53382-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: MB 720-147489/4

Analysis Batch: 147489

Matrix: Water

Client Sample ID: Method Blank

Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND		0.50		ug/L			10/31/13 19:16	1
1,1,2,2-Tetrachloroethane	ND		0.50		ug/L			10/31/13 19:16	1
Tetrachloroethene	ND		0.50		ug/L			10/31/13 19:16	1
Toluene	ND		0.50		ug/L			10/31/13 19:16	1
1,2,3-Trichlorobenzene	ND		1.0		ug/L			10/31/13 19:16	1
1,2,4-Trichlorobenzene	ND		1.0		ug/L			10/31/13 19:16	1
1,1,1-Trichloroethane	ND		0.50		ug/L			10/31/13 19:16	1
1,1,2-Trichloroethane	ND		0.50		ug/L			10/31/13 19:16	1
Trichloroethene	ND		0.50		ug/L			10/31/13 19:16	1
Trichlorofluoromethane	ND		1.0		ug/L			10/31/13 19:16	1
1,2,3-Trichloropropane	ND		0.50		ug/L			10/31/13 19:16	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50		ug/L			10/31/13 19:16	1
1,2,4-Trimethylbenzene	ND		0.50		ug/L			10/31/13 19:16	1
1,3,5-Trimethylbenzene	ND		0.50		ug/L			10/31/13 19:16	1
Vinyl acetate	ND		10		ug/L			10/31/13 19:16	1
Vinyl chloride	ND		0.50		ug/L			10/31/13 19:16	1
Xylenes, Total	ND		1.0		ug/L			10/31/13 19:16	1
2,2-Dichloropropane	ND		0.50		ug/L			10/31/13 19:16	1
Gasoline Range Organics (GRO) -C5-C12	ND		50		ug/L			10/31/13 19:16	1

MB MB

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	94	67 - 130		10/31/13 19:16	1
1,2-Dichloroethane-d4 (Surr)	105	72 - 130		10/31/13 19:16	1
Toluene-d8 (Surr)	96	70 - 130		10/31/13 19:16	1

Lab Sample ID: LCS 720-147489/5

Matrix: Water

Analysis Batch: 147489

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Methyl tert-butyl ether	25.0	27.3		ug/L		109	62 - 130	
Acetone	125	114		ug/L		91	26 - 180	
Benzene	25.0	23.9		ug/L		96	79 - 130	
Dichlorobromomethane	25.0	26.6		ug/L		106	70 - 130	
Bromobenzene	25.0	24.6		ug/L		99	70 - 130	
Chlorobromomethane	25.0	26.0		ug/L		104	70 - 130	
Bromoform	25.0	28.9		ug/L		116	68 - 136	
Bromomethane	25.0	28.4		ug/L		113	43 - 151	
2-Butanone (MEK)	125	140		ug/L		112	54 - 130	
n-Butylbenzene	25.0	25.2		ug/L		101	70 - 142	
sec-Butylbenzene	25.0	25.0		ug/L		100	70 - 134	
tert-Butylbenzene	25.0	25.3		ug/L		101	70 - 135	
Carbon disulfide	25.0	27.6		ug/L		110	58 - 130	
Carbon tetrachloride	25.0	31.4		ug/L		126	70 - 146	
Chlorobenzene	25.0	24.9		ug/L		100	70 - 130	
Chloroethane	25.0	25.3		ug/L		101	62 - 138	
Chloroform	25.0	26.5		ug/L		106	70 - 130	

TestAmerica Pleasanton

Page 24 of 48

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-53382-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: LCS 720-147489/5

Matrix: Water

Analysis Batch: 147489

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Analysis Batch: 14/409								
Analyte	Spike Added		LCS Qualifier	Unit	D	%Rec	%Rec. Limits	
Chloromethane	25.0	22.8		ug/L		91	52 - 175	
2-Chlorotoluene	25.0	24.6		ug/L		98	70 - 130	
4-Chlorotoluene	25.0	24.1		ug/L		96	70 - 130	
Chlorodibromomethane	25.0	28.0		ug/L		112	70 - 145	
1,2-Dichlorobenzene	25.0	23.8		ug/L		95	70 - 130	
1,3-Dichlorobenzene	25.0	24.9		ug/L		100	70 - 130	
1,4-Dichlorobenzene	25.0	25.2		ug/L		101	70 - 130	
1,3-Dichloropropane	25.0	25.0		ug/L		100	70 - 130	
1,1-Dichloropropene	25.0	28.3		ug/L		113	70 - 130	
1,2-Dibromo-3-Chloropropane	25.0	27.0		ug/L		108	70 - 136	
Ethylene Dibromide	25.0	27.0		ug/L		108	70 - 130	
Dibromomethane	25.0	27.2		ug/L		109	70 - 130	
Dichlorodifluoromethane	25.0	24.4		ug/L		97	34 - 132	
1,1-Dichloroethane	25.0	25.2		ug/L		101	70 - 130	
1,2-Dichloroethane	25.0	27.1		ug/L		109	61 - 132	
1,1-Dichloroethene	25.0	25.2		ug/L		101	64 - 128	
cis-1,2-Dichloroethene	25.0	25.9		ug/L		103	70 - 130	
trans-1,2-Dichloroethene	25.0	24.6		ug/L		98	68 - 130	
1,2-Dichloropropane	25.0	22.6		ug/L		90	70 - 130	
cis-1,3-Dichloropropene	25.0	25.6		ug/L		102	70 - 130	
trans-1,3-Dichloropropene	25.0	27.5		ug/L		110	70 - 140	
Ethylbenzene	25.0	25.6		ug/L		102	80 - 120	
Hexachlorobutadiene	25.0	24.9		ug/L		99	70 - 130	
2-Hexanone	125	120		ug/L		96	60 - 164	
Isopropylbenzene	25.0	26.8		ug/L		107	70 - 130	
4-Isopropyltoluene	25.0	25.3		ug/L		101	70 - 130	
Methylene Chloride	25.0	23.6		ug/L		95	70 - 147	
4-Methyl-2-pentanone (MIBK)	125	120		ug/L		96	58 - 130	
Naphthalene	25.0	24.0		ug/L		96	70 - 130	
N-Propylbenzene	25.0	24.5		ug/L		98	70 - 130	
Styrene	25.0	25.9		ug/L		104	70 - 130	
1,1,1,2-Tetrachloroethane	25.0	26.2		ug/L		105	70 - 130	
1,1,2,2-Tetrachloroethane	25.0	23.2		ug/L		93	70 - 130	
Tetrachloroethene	25.0	28.1		ug/L		113	70 - 130	
Toluene	25.0	25.5		ug/L		102	78 - 120	
1,2,3-Trichlorobenzene	25.0	22.8		ug/L		91	70 - 130	
1,2,4-Trichlorobenzene	25.0	23.6		ug/L		94	70 - 130	
1,1,1-Trichloroethane	25.0	31.4		ug/L		125	70 ~ 130	
1,1,2-Trichloroethane	25.0	24.8		ug/L		99	70 - 130	
Trichloroethene	25.0	26.1		ug/L		104	70 - 130	
Trichlorofluoromethane	25.0	31.3		ug/L		125	66 - 132	
1,2,3-Trichloropropane	25.0	26.6		ug/L		107	70 - 130	
1,1,2-Trichloro-1,2,2-trifluoroetha	25.0	28.5		ug/L		114	42 - 162	
ne								
1,2,4-Trimethylbenzene	25.0	24.8		ug/L		99	70 - 132	
1,3,5-Trimethylbenzene	25.0	25.2		ug/L		101	70 - 130	
√inyl acetate	25.0	30.2		ug/L		121	43 - 163	
Vinyl chloride	25.0	24.7		ug/L		99	54 - 135	

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-53382-1

Method: 8260B/CA LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: LCS 720-147489/5

Matrix: Water

Analysis Batch: 147489

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
m-Xylene & p-Xylene	50.0	52.5		ug/L		105	70 - 142
o-Xylene	25.0	26.5		ug/L		106	70 - 130
2,2-Dichloropropane	25.0	30.2		ug/L		121	70 - 140

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	98		67 - 130
1,2-Dichloroethane-d4 (Surr)	100		72 - 130
Toluene-d8 (Surr)	94		70 - 130

Lab Sample ID: LCS 720-147489/7

Matrix: Water

Analysis Batch: 147489

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Gasoline Range Organics (GRO)	500	426		ug/L		85	62 - 120
-C5-C12							

70 - 130

LCS LCS %Recovery Qualifier Limits Surrogate 67 - 130 99 4-Bromofluorobenzene 72 - 130 106 1,2-Dichloroethane-d4 (Surr)

97

Lab Sample ID: LCSD 720-147489/6

Matrix: Water

Toluene-d8 (Surr)

Analysis Batch: 147489

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Allalysis Batcii. 147403	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Methyl tert-butyl ether	25.0	26.7		ug/L		107	62 - 130	2	20
Acetone	125	114		ug/L		91	26 - 180	0	30
Benzene	25.0	24.3		ug/L		97	79 - 130	1	20
Dichlorobromomethane	25.0	25.9		ug/L		103	70 - 130	3	20
Bromobenzene	25.0	25.0		ug/L		100	70 - 130	1	20
Chlorobromomethane	25.0	25.9		ug/L		104	70 - 130	0	20
Bromoform	25.0	29.1		ug/L		116	68 - 136	1	20
Bromomethane	25.0	29.3		ug/L		117	43 - 151	3	20
2-Butanone (MEK)	125	133		ug/L		106	54 - 130	5	20
n-Butylbenzene	25.0	25.2		ug/L		101	70 - 142	0	20
sec-Butylbenzene	25.0	25.4		ug/L		102	70 - 134	2	20
tert-Butylbenzene	25.0	25.9		ug/L		103	70 - 135	2	20
Carbon disulfide	25.0	28.5		ug/L		114	58 - 130	3	20
Carbon tetrachloride	25.0	31.6		ug/L		127	70 - 146	1	20
Chlorobenzene	25.0	25.1		ug/L		100	70 - 130	1	20
Chloroethane	25.0	26.0		ug/L		104	62 - 138	3	20
Chloroform	25.0	26.2		ug/L		105	70 - 130	1	20
Chloromethane	25.0	23.7		ug/L		95	52 - 175	4	20
2-Chlorotoluene	25.0	25.5		ug/L		102	70 - 130	4	20
4-Chlorotoluene	25.0	24.9		ug/L		100	70 - 130	3	20
Chlorodibromomethane	25.0	28.1		ug/L		112	70 - 145	1	20

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-53382-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: LCSD 720-147489/6 Matrix: Water

Analysis Batch: 147489

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,2-Dichlorobenzene	25.0	24.2		ug/L		97	70 - 130	2	20
1,3-Dichlorobenzene	25.0	24.8		ug/L		99	70 - 130	0	20
1,4-Dichlorobenzene	25.0	25.3		ug/L		101	70 - 130	0	20
1,3-Dichloropropane	25.0	25.1		ug/L		100	70 - 130	0	20
1,1-Dichloropropene	25.0	28.0		ug/L		112	70 - 130	1	20
1,2-Dibromo-3-Chloropropane	25.0	26.6		ug/L		106	70 - 136	1	20
Ethylene Dibromide	25.0	27.1		ug/L		108	70 - 130	0	20
Dibromomethane	25.0	27.1		ug/L		108	70 - 130	1	20
Dichlorodifluoromethane	25.0	25.2		ug/L		101	34 - 132	3	20
1,1-Dichloroethane	25.0	25.3		ug/L		101	70 - 130	1	20
1,2-Dichloroethane	25.0	27.0		ug/L		108	61 - 132	1	20
1,1-Dichloroethene	25.0	25.9		ug/L		104	64 - 128	3	20
cis-1,2-Dichloroethene	25.0	25.8		ug/L		103	70 - 130	0	20
trans-1,2-Dichloroethene	25.0	24.7		ug/L		99	68 - 130	0	20
1,2-Dichloropropane	25.0	22.5		ug/L		90	70 - 130	1	20
	25.0	25.8							
cis-1,3-Dichloropropene				ug/L		103	70 - 130	1	20
trans-1,3-Dichloropropene	25.0	27.4		ug/L		109	70 - 140	0	20
Ethylbenzene	25.0	26.0		ug/L		104	80 - 120	1	20
Hexachlorobutadiene	25.0	24.8		ug/L		99	70 - 130	0	20
2-Hexanone	125	115		ug/L		92	60 - 164	4	20
Isopropylbenzene	25.0	27.4		ug/L		110	70 - 130	2	20
4-Isopropyltoluene	25.0	25.5		ug/L		102	70 - 130	1	20
Methylene Chloride	25.0	24.4		ug/L		97	70 - 147	3	20
4-Methyl-2-pentanone (MIBK)	125	115		ug/L		92	58 - 130	4	20
Naphthalene	25.0	24.0		ug/L		96	70 - 130	0	20
N-Propylbenzene	25.0	25.2		ug/L		101	70 - 130	3	20
Styrene	25.0	26.4		ug/L		105	70 - 130	2	20
1,1,1,2-Tetrachloroethane	25.0	26.7		ug/L		107	70 - 130	2	20
1,1,2,2-Tetrachloroethane	25.0	23.4		ug/L		93	70 - 130	1	20
Tetrachloroethene	25.0	28.2		ug/L		113	70 - 130	0	20
Toluene	25.0	25.3		ug/L		101	78 - 120	1	20
1,2,3-Trichlorobenzene	25.0	22.9		ug/L		92	70 - 130	0	20
1,2,4-Trichlorobenzene	25.0	23.8		ug/L		95	70 - 130	1	20
1,1,1-Trichloroethane	25.0	31.5		ug/L		126	70 - 130	0	20
1,1,2-Trichloroethane	25.0	24.7		ug/L		99	70 - 130	1	20
Trichloroethene	25.0	25.9		ug/L		104	70 - 130	1	20
Trichlorofluoromethane	25.0	32.1		ug/L		128	66 - 132	2	20
1,2,3-Trichloropropane	25.0	26.8		ug/L		107	70 - 130	1	20
1,1,2-Trichloro-1,2,2-trifluoroetha	25.0	29.6		ug/L		118	42 - 162	4	20
ne									
1,2,4-Trimethylbenzene	25.0	25.3		ug/L		101	70 - 132	2	20
1,3,5-Trimethylbenzene	25.0	25.8		ug/L		103	70 - 130	2	20
Vinyl acetate	25.0	29.9		ug/L		120	43 - 163	1	20
Vinyl chloride	25.0	25.5		ug/L		102	54 - 135	3	20
m-Xylene & p-Xylene	50.0	52.6		ug/L		105	70 - 142	0	20
o-Xylene	25.0	27.0		ug/L		108	70 - 130	2	20
2,2-Dichloropropane	25.0	30.4		ug/L		122	70 - 140	1	20

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-53382-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: LCSD 720-147489/6

Matrix: Water

Analysis Batch: 147489

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	98		67 - 130
1,2-Dichloroethane-d4 (Surr)	100		72 - 130
Toluene-d8 (Surr)	98		70 - 130

Lab Sample ID: LCSD 720-147489/8

Matrix: Water

Analysis Batch: 147489

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics (GRO)	500	433		ug/L		87	62 - 120	2	20
-C5-C12									

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	96		67 - 130
1,2-Dichloroethane-d4 (Surr)	103		72 - 130
Toluene-d8 (Surr)	97		70 - 130

Lab Sample ID: 720-53382-10 MS

Matrix: Water

Analysis Batch: 147489

Client Sample ID: MW-03

Prep Type: Total/NA

•	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Methyl tert-butyl ether	ND		25.0	28.4		ug/L		114	60 - 138	
Acetone	ND		125	105		ug/L		84	60 - 140	
Benzene	ND		25.0	24.8		ug/L		99	60 - 140	
Dichlorobromomethane	ND		25.0	27.9		ug/L		112	60 - 140	
Bromobenzene	ND		25.0	24.5		ug/L		98	60 - 140	
Chlorobromomethane	ND		25.0	27.2		ug/L		109	60 - 140	
Bromoform	ND		25.0	28.7		ug/L		115	56 - 140	
Bromomethane	ND		25.0	27.9		ug/L		112	23 - 140	
2-Butanone (MEK)	ND		125	133		ug/L		107	60 - 140	
n-Butylbenzene	ND		25.0	24.7		ug/L		99	60 - 140	
sec-Butylbenzene	ND		25.0	23.9		ug/L		95	60 - 140	
tert-Butylbenzene	ND		25.0	24.1		ug/L		96	60 - 140	
Carbon disulfide	ND		25.0	29.1		ug/L		116	38 - 140	
Carbon tetrachloride	ND		25.0	31.2		ug/L		125	60 - 140	
Chlorobenzene	0.96		25.0	26.2		ug/L		101	60 - 140	
Chloroethane	ND		25.0	25.5		ug/L		102	51 - 140	
Chloroform	ND		25.0	27.6		ug/L		110	60 - 140	
Chloromethane	ND		25.0	22.4		ug/L		90	52 - 140	
2-Chlorotoluene	ND		25.0	24.4		ug/L		98	60 - 140	
4-Chlorotoluene	ND		25.0	24.3		ug/L		97	60 - 140	
Chlorodibromomethane	ND		25.0	29.5		ug/L		118	60 - 140	
1,2-Dichlorobenzene	1.6		25.0	26.0		ug/L		98	60 - 140	
1,3-Dichlorobenzene	ND		25.0	25.0		ug/L		100	60 - 140	
1,4-Dichlorobenzene	ND		25.0	25.5		ug/L		102	60 - 140	
1,3-Dichloropropane	ND		25.0	26.5		ug/L		106	60 - 140	55
1,1-Dichloropropene	ND		25.0	27.8		ug/L		111	60 - 140	

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-53382-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: 720-53382-10 MS

Matrix: Water

o-Xylene

2,2-Dichloropropane

Analysis Batch: 147489

Client Sample ID: MW-03 Prep Type: Total/NA

Analysis batch: 14/409	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,2-Dibromo-3-Chloropropane	ND		25.0	23.8		ug/L		95	60 - 140
Ethylene Dibromide	ND		25.0	27.9		ug/L		112	60 - 140
Dibromomethane	ND		25.0	28.2		ug/L		113	60 - 140
Dichlorodifluoromethane	ND		25.0	24.8		ug/L		99	38 - 140
1,1-Dichloroethane	ND		25.0	25.9		ug/L		104	60 - 140
1,2-Dichloroethane	ND		25.0	28.6		ug/L		114	60 - 140
1,1-Dichloroethene	ND		25.0	25.1		ug/L		100	60 - 140
cis-1,2-Dichloroethene	ND		25.0	27.4		ug/L		108	60 - 140
trans-1,2-Dichloroethene	ND		25.0	25.0		ug/L		100	60 - 140
1,2-Dichloropropane	ND		25.0	23.8		ug/L		95	60 - 140
cis-1,3-Dichloropropene	ND		25.0	27.2		ug/L		109	60 - 140
trans-1,3-Dichloropropene	ND		25.0	28.7		ug/L		115	60 - 140
Ethylbenzene	ND		25.0	25.5		ug/L		102	60 - 140
Hexachlorobutadiene	ND		25.0	23.9		ug/L		96	60 - 140
2-Hexanone	ND		125	111		ug/L		89	60 - 140
Isopropylbenzene	ND		25.0	26.5		ug/L		106	60 - 140
4-Isopropyltoluene	ND		25.0	24.6		ug/L		98	60 - 140
Methylene Chloride	ND		25.0	23.3		ug/L		93	40 - 140
4-Methyl-2-pentanone (MIBK)	ND		125	114		ug/L		91	58 - 130
Naphthalene	ND		25.0	22.8		ug/L		91	56 - 140
N-Propylbenzene	ND		25.0	23.9		ug/L		96	60 - 140
Styrene	ND		25.0	26.3		ug/L		105	60 - 140
1,1,1,2-Tetrachloroethane	ND		25.0	26.8		ug/L		107	60 - 140
1,1,2,2-Tetrachloroethane	ND		25.0	22.0		ug/L		88	60 - 140
Tetrachloroethene	6.9		25.0	35.7		ug/L		115	60 - 140
Toluene	ND		25.0	25.0		ug/L		100	60 - 140
1,2,3-Trichlorobenzene	· ND		25.0	22.8		ug/L		91	60 140
1,2,4-Trichlorobenzene	ND		25.0	24.4		ug/L		98	60 - 140
1,1,1-Trichloroethane	ND		25.0	31.5		ug/L		126	60 - 140
1,1,2-Trichloroethane	ND		25.0	26.0		ug/L		104	60 - 140
Trichloroethene	0.63		25.0	27.2		ug/L		106	60 - 140
Trichlorofluoromethane	ND		25.0	32.4		ug/L		130	60 - 140
1,2,3-Trichloropropane	ND		25.0	24.8		ug/L		99	60 - 140
1,1,2-Trichloro-1,2,2-trifluoroetha	ND		25.0	28.3		ug/L		113	60 - 140
ne									
1,2,4-Trimethylbenzene	ND		25.0	24.7		ug/L		99	60 - 140
1,3,5-Trimethylbenzene	ND		25.0	24.8		ug/L		99	60 - 140
Vinyl acetate	ND		25.0	32.8		ug/L		131	40 - 140
Vinyl chloride	ND		25.0	24.5		ug/L		98	58 - 140
m-Xylene & p-Xylene	ND		50.0	52.2		ug/L		104	60 - 140

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	100		67 _ 130
1,2-Dichloroethane-d4 (Surr)	103		72 - 130
Toluene-d8 (Surr)	97		70 - 130

ND

ND

TestAmerica Pleasanton

107

119

60 - 140

60 - 140

25.0

25.0

26.8

29.7

ug/L

ug/L

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-53382-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: 720-53382-10 MSD

Matrix: Water

Analysis Batch: 147489

Client Sample ID: MW-03

CHELLE	Samp	IC ID. IV	44-03
Pr	ер Ту	pe: Tot	al/NA

Analysis Batch: 147489	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result (Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Methyl tert-butyl ether	ND	- Control	25.0	28.4		ug/L		113	60 - 138	0	20
Acetone	ND		125	103		ug/L		83	60 - 140	2	20
Benzene	ND		25.0	24.8		ug/L		99	60 - 140	0	20
Dichlorobromomethane	ND		25.0	28.2		ug/L		113	60 - 140	1	20
Bromobenzene	ND		25.0	25.2		ug/L		101	60 - 140	3	20
Chlorobromomethane	ND		25.0	27.4		ug/L		110	60 - 140	1	20
Bromoform	ND		25.0	28.7		ug/L		115	56 - 140	0	20
Bromomethane	ND		25.0	27.1		ug/L		108	23 - 140	3	20
2-Butanone (MEK)	ND		125	128		ug/L		103	60 - 140	4	20
n-Butylbenzene	ND		25.0	24.7		ug/L		99	60 - 140	0	20
sec-Butylbenzene	ND		25.0	24.0		ug/L		96	60 - 140	1	20
tert-Butylbenzene	ND		25.0	24.6		ug/L		98	60 - 140	2	20
Carbon disulfide	ND		25.0	27.9		ug/L		112	38 - 140	4	20
Carbon tetrachloride	ND		25.0	31.3		ug/L		125	60 - 140	0	20
Chlorobenzene	0.96		25.0	26.1		ug/L		101	60 - 140	1	20
Chloroethane	ND		25.0	25.2		ug/L		101	51 - 140	1	20
Chloroform	ND		25.0	27.5		ug/L		110	60 - 140	1	20
Chloromethane	ND		25.0	21.4		ug/L		86	52 - 140	5	20
2-Chlorotoluene	ND		25.0	24.9		ug/L		100	60 - 140	2	20
4-Chlorotoluene	ND		25.0	24.8		ug/L		99	60 - 140	2	20
Chlorodibromomethane	ND		25.0	29.3		ug/L		117	60 - 140	0	20
1,2-Dichlorobenzene	1.6		25.0	25.7		ug/L		96	60 - 140	1	20
1,3-Dichlorobenzene	ND		25.0	25.5		ug/L		102	60 - 140	2	20
1,4-Dichlorobenzene	ND		25.0	25.9		ug/L		104	60 - 140	1	20
1,3-Dichloropropane	ND		25.0	26.2		ug/L		105	60 - 140	1	20
1,1-Dichloropropene	ND		25.0	28.0		ug/L		112	60 - 140	1	20
1,2-Dibromo-3-Chloropropane	ND		25.0	23.8		ug/L		95	60 - 140	0	20
Ethylene Dibromide	ND		25.0	28.4		ug/L		114	60 - 140	2	20
Dibromomethane	ND		25.0	28.1		ug/L		112	60 - 140	1	20
Dichlorodifluoromethane	ND		25.0	24.3		ug/L		97	38 - 140	2	20
1,1-Dichloroethane	ND		25.0	25.8		ug/L		103	60 - 140	0	20
1,2-Dichloroethane	ND		25.0	28.5		ug/L		114	60 - 140	0	20
1,1-Dichloroethene	ND		25.0	24.5		ug/L		98	60 - 140	2	20
cis-1,2-Dichloroethene	ND		25.0	27.2		ug/L		107	60 - 140	1	20
trans-1,2-Dichloroethene	ND		25.0	24.9		ug/L		100	60 - 140	0	20
1,2-Dichloropropane	ND		25.0	23.8		ug/L		95	60 - 140	0	20
cis-1,3-Dichloropropene	ND		25.0	27.2		ug/L		109	60 - 140	0	20
trans-1,3-Dichloropropene	ND		25.0	29.0		ug/L		116	60 - 140	1	20
Ethylbenzene	ND		25.0	25.4		ug/L		102	60 - 140	0	20
Hexachlorobutadiene	ND		25.0	23.5		ug/L		94	60 - 140	2	20
2-Hexanone	ND		125	107		ug/L		85	60 - 140	4	20
Isopropylbenzene	ND		25.0	26.5		ug/L		106	60 - 140	0	20
4-Isopropyltoluene	ND		25.0	24.7		ug/L		99	60 - 140	1	20
Methylene Chloride	ND		25.0	23.2		ug/L		93	40 - 140	0	20
4-Methyl-2-pentanone (MIBK)	ND		125	110		ug/L		88	58 - 130	3	20
Naphthalene	ND		25.0	22.8		ug/L		91	56 - 140	0	20
N-Propylbenzene	ND		25.0	24.2		ug/L		97	60 - 140	1	20
Styrene	ND		25.0	26.3		ug/L		105	60 - 140	0	20

TestAmerica Pleasanton

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-53382-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: 720-53382-10 MSD Matrix: Water

Analysis Batch: 147489

Client Sample ID: MW-03

Prep Type: Total/NA

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1,1,2-Tetrachloroethane	ND		25.0	26.9		ug/L		107	60 - 140	0	20
1,1,2,2-Tetrachloroethane	ND		25.0	22.4		ug/L		90	60 - 140	2	20
Tetrachloroethene	6.9		25.0	33.7		ug/L		107	60 - 140	6	20
Toluene	ND		25.0	25.2		ug/L		101	60 - 140	1	20
1,2,3-Trichlorobenzene	ND		25.0	22.8		ug/L		91	60 - 140	0	20
1,2,4-Trichlorobenzene	ND		25.0	24.4		ug/L		98	60 - 140	0	20
1,1,1-Trichloroethane	ND		25.0	31.4		ug/L		126	60 - 140	0	20
1,1,2-Trichloroethane	ND		25.0	26.4		ug/L		106	60 - 140	2	20
Trichloroethene	0.63		25.0	26.6		ug/L		104	60 - 140	2	20
Trichlorofluoromethane	ND		25.0	31.4		ug/L		126	60 - 140	. 3	20
1,2,3-Trichloropropane	ND		25.0	25.1		ug/L		100	60 - 140	1	20
1,1,2-Trichloro-1,2,2-trifluoroetha	ND		25.0	27.9		ug/L		112	60 - 140	1	20
ne											
1,2,4-Trimethylbenzene	ND		25.0	24.9		ug/L		100	60 - 140	1	20
1,3,5-Trimethylbenzene	ND		25.0	25.1		ug/L		100	60 - 140	1	20
Vinyl acetate	ND		25.0	32.7		ug/L		131	40 - 140	0	20
Vinyl chloride	ND		25.0	23.8		ug/L		95	58 - 140	3	20
m-Xylene & p-Xylene	ND		50.0	52.5		ug/L		105	60 - 140	0	20
o-Xylene	ND		25.0	26.9		ug/L		108	60 - 140	1	20
2,2-Dichloropropane	ND		25.0	30.0		ug/L		120	60 - 140	1	20

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	99		67 - 130
1,2-Dichloroethane-d4 (Surr)	102		72 - 130
Toluene-d8 (Surr)	96		70 - 130

Lab Sample ID: MB 720-147530/4

Matrix: Water

Analysis Batch: 147530

Client Sample ID: Method Blank

Prep Type: Total/NA

Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Methyl tert-butyl ether ND 0.50 ug/L 11/01/13 09:15 Acetone ND 50 ug/L 11/01/13 09:15 Benzene ND 0.50 ug/L 11/01/13 09:15 Dichlorobromomethane ND 0.50 ug/L 11/01/13 09:15 Bromobenzene ND 1.0 ug/L 11/01/13 09:15 Chlorobromomethane ND 1.0 ug/L 11/01/13 09:15 Bromoform ND 1.0 ug/L 11/01/13 09:15	
Acetone ND 50 ug/L 11/01/13 09:15 Benzene ND 0.50 ug/L 11/01/13 09:15 Dichlorobromomethane ND 0.50 ug/L 11/01/13 09:15 Bromobenzene ND 1.0 ug/L 11/01/13 09:15 Chlorobromomethane ND 1.0 ug/L 11/01/13 09:15	Dil Fac
Benzene ND 0.50 ug/L 11/01/13 09:15 Dichlorobromomethane ND 0.50 ug/L 11/01/13 09:15 Bromobenzene ND 1.0 ug/L 11/01/13 09:15 Chlorobromomethane ND 1.0 ug/L 11/01/13 09:15	1
Dichlorobromomethane ND 0.50 ug/L 11/01/13 09:15 Bromobenzene ND 1.0 ug/L 11/01/13 09:15 Chlorobromomethane ND 1.0 ug/L 11/01/13 09:15	1
Bromobenzene ND 1.0 ug/L 11/01/13 09:15 Chlorobromomethane ND 1.0 ug/L 11/01/13 09:15	1
Chlorobromomethane ND 1.0 ug/L 11/01/13 09:15	1
	1
Bromoform ND 1.0 µg/L 11/01/13 09:15	1
-9-	1
Bromomethane ND 1.0 ug/L 11/01/13 09:15	1
2-Butanone (MEK) ND 50 ug/L 11/01/13 09:15	1
n-Butylbenzene ND 1.0 ug/L 11/01/13 09:15	1
sec-Butylbenzene ND 1.0 ug/L 11/01/13 09:15	1
tert-Butylbenzene ND 1.0 ug/L 11/01/13 09:15	1
Carbon disulfide ND 5.0 ug/L 11/01/13 09:15	1
Carbon tetrachloride ND 0.50 ug/L 11/01/13 09:15	1
Chlorobenzene ND 0.50 ug/L 11/01/13 09:15	1
Chloroethane ND 1.0 ug/L 11/01/13 09:15	1
Chloroform ND 1.0 ug/L 11/01/13 09:15	1

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-53382-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: MB 720-147530/4

Matrix: Water

Analysis Batch: 147530

Client Sample ID: Method Blank

Prep Type: Total/NA

	MB	MB						
Analyte		Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Chloromethane	ND		1.0	ug/L			11/01/13 09:15	1
2-Chlorotoluene	ND		0.50	ug/L			11/01/13 09:15	1
4-Chlorotoluene	ND		0.50	ug/L			11/01/13 09:15	1
Chlorodibromomethane	ND		0.50	ug/L			11/01/13 09:15	1
1,2-Dichlorobenzene	ND		0.50	ug/L			11/01/13 09:15	1
1,3-Dichlorobenzene	ND		0.50	ug/L			11/01/13 09:15	1
1,4-Dichlorobenzene	ND		0.50	ug/L			11/01/13 09:15	1
1,3-Dichloropropane	ND		1.0	ug/L			11/01/13 09:15	1
1,1-Dichloropropene	ND		0.50	ug/L			11/01/13 09:15	1
1,2-Dibromo-3-Chloropropane	ND		1.0	ug/L			11/01/13 09:15	1
Ethylene Dibromide	ND		0.50	ug/L			11/01/13 09:15	1
Dibromomethane	ND		0.50	ug/L			11/01/13 09:15	1
Dichlorodifluoromethane	ND		0.50	ug/L			11/01/13 09:15	1
1,1-Dichloroethane	ND		0.50	ug/L			11/01/13 09:15	1
1,2-Dichloroethane	ND		0.50	ug/L			11/01/13 09:15	1
1,1-Dichloroethene	ND		0.50	ug/L			11/01/13 09:15	1
cis-1,2-Dichloroethene	ND		0.50	ug/L			11/01/13 09:15	1
trans-1,2-Dichloroethene	ND	ŷ.	0.50	ug/L			11/01/13 09:15	1
1,2-Dichloropropane	ND		0.50	ug/L			11/01/13 09:15	1
cis-1,3-Dichloropropene	ND		0.50	ug/L			11/01/13 09:15	1
trans-1,3-Dichloropropene	ND		0.50	ug/L			11/01/13 09:15	1
Ethylbenzene	ND		0.50	ug/L			11/01/13 09:15	1
Hexachlorobutadiene	ND		1.0	ug/L			11/01/13 09:15	1
2-Hexanone	ND		50	ug/L			11/01/13 09:15	1
Isopropylbenzene	ND		0.50	ug/L			11/01/13 09:15	1
4-Isopropyltoluene	ND		1.0	ug/L			11/01/13 09:15	1
Methylene Chloride	ND		5.0	ug/L			11/01/13 09:15	1
4-Methyl-2-pentanone (MIBK)	ND		50	ug/L			11/01/13 09:15	1
Naphthalene	ND		1.0	ug/L			11/01/13 09:15	1
N-Propylbenzene	ND		1.0	ug/L			11/01/13 09:15	1
Styrene	ND		0.50	ug/L			11/01/13 09:15	1
1,1,1,2-Tetrachloroethane	ND		0.50	ug/L			11/01/13 09:15	1
1,1,2,2-Tetrachloroethane	ND		0.50	ug/L			11/01/13 09:15	1
Tetrachloroethene	ND		0.50	ug/L			11/01/13 09:15	1
Toluene	ND		0.50	ug/L			11/01/13 09:15	1
1,2,3-Trichlorobenzene	ND		1.0	ug/L			11/01/13 09:15	1
1,2,4-Trichlorobenzene	ND		1.0	ug/L			11/01/13 09:15	1
1,1,1-Trichloroethane	ND		0.50	ug/L			11/01/13 09:15	1
1,1,2-Trichloroethane	ND		0.50	ug/L			11/01/13 09:15	1
Trichloroethene	ND		0.50	ug/L			11/01/13 09:15	1
Trichlorofluoromethane	ND		1.0	ug/L			11/01/13 09:15	1
1,2,3-Trichloropropane	ND		0.50	ug/L			11/01/13 09:15	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50	ug/L			11/01/13 09:15	1
1,2,4-Trimethylbenzene	ND		0.50	ug/L			11/01/13 09:15	1
1,3,5-Trimethylbenzene	ND		0.50	ug/L			11/01/13 09:15	1
Vinyl acetate	ND		10	ug/L			11/01/13 09:15	1
Vinyl decide Vinyl chloride	ND		0.50	ug/L			11/01/13 09:15	1
Xylenes, Total	ND		1.0	ug/L			11/01/13 09:15	1

TestAmerica Pleasanton

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-53382-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: MB 720-147530/4

Matrix: Water

Analysis Batch: 147530

Client Sample ID: Method Blank

Prep Type: Total/NA

	IND	IND							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,2-Dichloropropane	ND		0.50		ug/L			11/01/13 09:15	1
Gasoline Range Organics (GRO) -C5-C12	ND		50		ug/L			11/01/13 09:15	1

MB MB

MR MR

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	97	67 - 130		11/01/13 09:15	1
1,2-Dichloroethane-d4 (Surr)	102	72 - 130		11/01/13 09:15	1
Toluene-d8 (Surr)	96	70 - 130		11/01/13 09:15	1

Lab Sample ID: LCS 720-147530/5

Matrix: Water

Analysis Batch: 147530

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Methyl tert-butyl ether	25.0	26.8		ug/L		107	62 - 130	
Acetone	125	122		ug/L		98	26 - 180	
Benzene	25.0	24.2		ug/L		97	79 - 130	
Dichlorobromomethane	25.0	25.6		ug/L		102	70 - 130	
Bromobenzene	25.0	21.8		ug/L		87	70 - 130	
Chlorobromomethane	25.0	- 25.5		ug/L		102	70 - 130	
Bromoform	25.0	27.9		ug/L		111	68 - 136	
Bromomethane	25.0	28.2		ug/L		113	43 - 151	
2-Butanone (MEK)	125	144		ug/L	2.0	115	54 - 130	
n-Butylbenzene	25.0	22.9		ug/L		92	70 - 142	
sec-Butylbenzene	25.0	22.4		ug/L		90	70 - 134	
tert-Butylbenzene	25.0	22.4		ug/L		90	70 - 135	
Carbon disulfide	25.0	28.4		ug/L		114	58 - 130	
Carbon tetrachloride	25.0	32.0		ug/L		128	70 - 146	
Chlorobenzene	25.0	24.1		ug/L		96	70 - 130	
Chloroethane	25.0	24.9		ug/L		100	62 - 138	
Chloroform	25.0	26.6		ug/L		106	70 - 130	
Chloromethane	25.0	22.7		ug/L		91	52 - 175	
2-Chlorotoluene	25.0	22.1		ug/L		88	70 - 130	
4-Chlorotoluene	25.0	21.7		ug/L		87	70 - 130	
Chlorodibromomethane	25.0	27.5		ug/L		110	70 - 145	
1,2-Dichlorobenzene	25.0	21.2		ug/L		85	70 - 130	
1,3-Dichlorobenzene	25.0	22.1		ug/L		88	70 - 130	
1,4-Dichlorobenzene	25.0	22.5		ug/L		90	70 - 130	
1,3-Dichloropropane	25.0	24.5		ug/L		98	70 - 130	
1,1-Dichloropropene	25.0	29.1		ug/L		116	70 - 130	
1,2-Dibromo-3-Chloropropane	25.0	23.6		ug/L		95	70 - 136	
Ethylene Dibromide	25.0	27.3		ug/L		109	70 - 130	
Dibromomethane	25.0	26.6		ug/L		106	70 - 130	
Dichlorodifluoromethane	25.0	24.8		ug/L		99	34 - 132	
1,1-Dichloroethane	25.0	25.3		ug/L		101	70 - 130	
1,2-Dichloroethane	25.0	27.1		ug/L		108	61 - 132	
1,1-Dichloroethene	25.0	25.1		ug/L		100	64 - 128	
cis-1,2-Dichloroethene	25.0	26.0		ug/L		104	70 - 130	

TestAmerica Pleasanton

Page 33 of 48

LCS LCS

Snike

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-53382-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: LCS 720-147530/5

Matrix: Water

Analysis Batch: 147530

Client Sample ID: Lab Control Sample

%Rec

Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
trans-1,2-Dichloroethene	25.0	24.5		ug/L		98	68 - 130	
1,2-Dichloropropane	25.0	22.2		ug/L		89	70 - 130	
cis-1,3-Dichloropropene	25.0	25.6		ug/L		102	70 - 130	
trans-1,3-Dichloropropene	25.0	27.4		ug/L		110	70 - 140	
Ethylbenzene	25.0	25.1		ug/L		101	80 - 120	
Hexachlorobutadiene	25.0	22.1		ug/L		88	70 - 130	
2-Hexanone	125	117		ug/L		93	60 - 164	
Isopropylbenzene	25.0	25.9		ug/L		104	70 - 130	
4-Isopropyltoluene	25.0	22.8		ug/L		91	70 - 130	
Methylene Chloride	25.0	21.1		ug/L		85	70 - 147	
4-Methyl-2-pentanone (MIBK)	125	116		ug/L		93	58 - 130	
Naphthalene	25.0	21.1		ug/L		85	70 - 130	
N-Propylbenzene	25.0	22.3		ug/L		89	70 - 130	
Styrene	25.0	24.7		ug/L		99	70 - 130	
1,1,1,2-Tetrachloroethane	25.0	25.1		ug/L		100	70 - 130	
1,1,2,2-Tetrachloroethane	25.0	20.7		ug/L		83	70 - 130	
Tetrachloroethene	25.0	28.4		ug/L		114	70 - 130	
Toluene	25.0	24.8		ug/L		99	78 - 120	
1,2,3-Trichlorobenzene	25.0	19.8		ug/L		79	70 - 130	
1,2,4-Trichlorobenzene	25.0	21.0		ug/L		84	70 - 130	
1,1,1-Trichloroethane	25.0	31.4		ug/L		126	70 - 130	
1,1,2-Trichloroethane	25.0	25.0		ug/L		100	70 - 130	
Trichloroethene	25.0	26.0		ug/L		104	70 - 130	
Trichlorofluoromethane	25.0	31.8		ug/L		127	66 - 132	
1,2,3-Trichloropropane	25.0	23.6		ug/L		95	70 - 130	
1,1,2-Trichloro-1,2,2-trifluoroetha	25.0	28.8		ug/L		115	42 - 162	
ne								
1,2,4-Trimethylbenzene	25.0	22.2		ug/L		89	70 - 132	
1,3,5-Trimethylbenzene	25.0	22.6		ug/L		90	70 - 130	
Vinyl acetate	25.0	31.0		ug/L		124	43 - 163	
Vinyl chloride	25.0	24.8		ug/L		99	54 - 135	
m-Xylene & p-Xylene	50.0	51.1		ug/L		102	70 - 142	
o-Xylene	25.0	25.5		ug/L		102	70 - 130	
2,2-Dichloropropane	25.0	32.4		ug/L		129	70 - 140	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	101		67 - 130
1,2-Dichloroethane-d4 (Surr)	96		72 - 130
Toluene-d8 (Surr)	97		70 - 130

Lab Sample ID: LCS 720-147530/7

Matrix: Water

Analysis Batch: 147530

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics (GRO)	500	435		ug/L		87	62 - 120	
-C5-C12								

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-53382-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: LCS 720-147530/7

Matrix: Water

Analysis Batch: 147530

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	101		67 - 130
1,2-Dichloroethane-d4 (Surr)	103		72 - 130
Toluene-d8 (Surr)	97		70 - 130

Lab Sample ID: LCSD 720-147530/6

Matrix: Water

Analysis Batch: 147530

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

r.ma.ye.e Datem r.mees	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Methyl tert-butyl ether	25.0	26.7	-	ug/L		107	62 - 130	0	20
Acetone	125	121		ug/L		97	26 - 180	1	30
Benzene	25.0	24.2		ug/L		97	79 - 130	0	20
Dichlorobromomethane	25.0	26.6		ug/L		106	70 - 130	4	20
Bromobenzene	25.0	24.1		ug/L		97	70 - 130	10	20
Chlorobromomethane	25.0	25.8		ug/L		103	70 - 130	1	20
Bromoform	25.0	28.0		ug/L		112	68 - 136	0	20
Bromomethane	25.0	28.8		ug/L		115	43 - 151	2	20
2-Butanone (MEK)	125	146		ug/L		116	54 - 130	1	20
n-Butylbenzene	25.0	25.0		ug/L		100	70 - 142	9	20
sec-Butylbenzene	25.0	24.6		ug/L		99	70 - 134	10	20
tert-Butylbenzene	25.0	24.8		ug/L		99	70 - 135	10	20
Carbon disulfide	25.0	28.3		ug/L		113	58 - 130	0	20
Carbon tetrachloride	25.0	31.6		ug/L		126	70 - 146	1	20
Chlorobenzene	25.0	24.7		ug/L		99	70 - 130	2	20
Chloroethane	25.0	25.1		ug/L		100	62 - 138	1	20
Chloroform	25.0	26.4		ug/L		106	70 - 130	1	20
Chloromethane	25.0	23.2		ug/L		93	52 - 175	2	20
2-Chlorotoluene	25.0	24.6		ug/L		99	70 - 130	11	20
4-Chlorotoluene	25.0	24.0		ug/L		96	70 - 130	10	20
Chlorodibromomethane	25.0	27.9		ug/L		112	70 - 145	2	20
1,2-Dichlorobenzene	25.0	23.4		ug/L		93	70 - 130	10	20
1,3-Dichlorobenzene	25.0	24.3		ug/L		97	70 - 130	9	20
1,4-Dichlorobenzene	25.0	24.4		ug/L		98	70 - 130	8	20
1,3-Dichloropropane	25.0	25.6		ug/L		103	70 - 130	5	20
1,1-Dichloropropene	25.0	28.6		ug/L		115	70 - 130	1	20
1,2-Dibromo-3-Chloropropane	25.0	26.8		ug/L		107	70 - 136	13	20
Ethylene Dibromide	25.0	27.7		ug/L		111	70 - 130	2	20
Dibromomethane	25.0	27.3		ug/L		109	70 - 130	3	20
Dichlorodifluoromethane	25.0	24.0		ug/L		96	34 - 132	3	20
1,1-Dichloroethane	25.0	25.1		ug/L		100	70 - 130	1	20
1,2-Dichloroethane	25.0	27.1		ug/L		109	61 - 132	0	20
1,1-Dichloroethene	25.0	25.6		ug/L		102	64 - 128	2	20
cis-1,2-Dichloroethene	25.0	25.7		ug/L		103	70 - 130	1	20
trans-1,2-Dichloroethene	25.0	25.1		ug/L		100	68 - 130	2	20
1,2-Dichloropropane	25.0	22.4		ug/L		90	70 - 130	1	20
cis-1,3-Dichloropropene	25.0	25.7		ug/L		103	70 - 130	0	20
trans-1,3-Dichloropropene	25.0	27.5		ug/L		110	70 - 140	0	20
Ethylbenzene	25.0	25.5		ug/L		102	80 - 120	2	20

TestAmerica Pleasanton

Page 35 of 48

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

Analysis Batch: 147530

TestAmerica Job ID: 720-53382-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: LCSD 720-147530/6

Matrix: Water

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Hexachlorobutadiene	25.0	24.0		ug/L		96	70 - 130	8	20
2-Hexanone	125	118		ug/L		95	60 - 164	1	20
Isopropylbenzene	25.0	26.5		ug/L		106	70 - 130	2	20
4-Isopropyltoluene	25.0	25.0		ug/L		100	70 ~ 130	9	20
Methylene Chloride	25.0	20.9		ug/L		83	70 - 147	1	20
4-Methyl-2-pentanone (MIBK)	125	115		ug/L		92	58 - 130	1	20
Naphthalene	25.0	23.2		ug/L		93	70 - 130	9	20
N-Propylbenzene	25.0	24.7		ug/L		99	70 - 130	10	20
Styrene	25.0	25.3		ug/L		101	70 - 130	2	20
1,1,1,2-Tetrachloroethane	25.0	25.6		ug/L		102	70 - 130	2	20
1,1,2,2-Tetrachloroethane	25.0	22.9		ug/L		92	70 - 130	10	20
Tetrachloroethene	25.0	28.6		ug/L		114	70 - 130	0	20
Toluene	25.0	25.0		ug/L		100	78 - 120	1	20
1,2,3-Trichlorobenzene	25.0	21.8		ug/L		87	70 - 130	9	20
1,2,4-Trichlorobenzene	25.0	22.7		ug/L		91	70 - 130	8	20
1,1,1-Trichioroethane	25.0	31.5		ug/L		126	70 - 130	0	20
1,1,2-Trichloroethane	25.0	25.4		ug/L		102	70 - 130	2	20
Trichloroethene	25.0	25.9		ug/L		104	70 - 130	0	20
Trichlorofluoromethane	25.0	31.6		ug/L		126	66 - 132	1	20
1,2,3-Trichloropropane	25.0	26.5		ug/L		106	70 - 130	12	20
1,1,2-Trichloro-1,2,2-trifluoroetha	25.0	28.8		ug/L		115	42 - 162	0	20
ne									
1,2,4-Trimethylbenzene	25.0	24.3		ug/L		97	70 - 132	9	20
1,3,5-Trimethylbenzene	25.0	24.8		ug/L		99	70 - 130	9	20
Vinyl acetate	25.0	30.4		ug/L		122	43 - 163	2	20
Vinyl chloride	25.0	25.1		ug/L		100	54 - 135	1	20
m-Xylene & p-Xylene	50.0	52.1		ug/L		104	70 - 142	2	20
o-Xylene	25.0	26.0		ug/L		104	70 - 130	2	20
2,2-Dichloropropane	25.0	31.5		ug/L		126	70 - 140	3	20

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	96	4	67 - 130
1,2-Dichloroethane-d4 (Surr)	99		72 - 130
Toluene-d8 (Surr)	95		70 - 130

Lab Sample ID: LCSD 720-147530/8

Matrix: Water

Analysis Batch: 147530

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics (GRO)	500	434		ug/L		87	62 - 120	0	20
-C5-C12									

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	99		67 - 130
1,2-Dichloroethane-d4 (Surr)	105		72 - 130
Toluene-d8 (Surr)	98		70 - 130

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-53382-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: 720-53334-B-6 MS

Matrix: Water

Analysis Batch: 147530

Client Sample ID: Matrix Spike Prep Type: Total/NA

Analysis Batch: 147530	CI-	Samula.	C-:l	ме	МС				n/ Dan	
Analysis	*	Sample Qualifier	Spike Added		MS Qualifier	Unit	D	%Rec	%Rec. Limits	
Analyte Methyl tort butyl other	ND	Quaimer	25.0	32.6	Qualifier	ug/L		130	60 - 138	
Methyl tert-butyl ether Acetone	ND		125	130		ug/L		104	60 - 140	
Benzene	ND		25.0	26.7		ug/L		107	60 - 140	
Dichlorobromomethane	ND		25.0	31.8		ug/L		127	60 - 140	
Bromobenzene	ND		25.0	26.0		ug/L		104	60 - 140	
Chlorobromomethane	ND		25.0	30.6		ug/L		122	60 - 140	
Bromoform	ND		25.0	31.3		ug/L		125	56 - 140	
Bromomethane	ND		25.0	29.6		ug/L		118	23 - 140	
2-Butanone (MEK)	ND		125	148		ug/L		118	60 - 140	
n-Butylbenzene	ND		25.0	24.0		ug/L		96	60 - 140	
	ND		25.0	24.1		ug/L		96	60 - 140	
sec-Butylbenzene	ND		25.0	24.9				100	60 - 140	
tert-Butylbenzene	ND		25.0	31.3		ug/L		125	38 - 140	
Carbon disulfide						ug/L		139	60 - 140	
Carbon tetrachloride	ND		25.0	34.7		ug/L		107		
Chlorobenzene	ND		25.0	26.7		ug/L			60 - 140	
Chloroethane	ND		25.0	28.2		ug/L		113	51 - 140	
Chloroform	ND		25.0	31.0		ug/L		122	60 - 140	
Chloromethane	ND		25.0	24.1		ug/L		96	52 - 140	
2-Chlorotoluene	ND		25.0	25.0		ug/L		100	60 - 140	
4-Chlorotoluene	ND		25.0	24.6		ug/L		99	60 - 140	
Chlorodibromomethane	ND		25.0	33.2		ug/L		133	60 - 140	
1,2-Dichlorobenzene	ND		25.0	24.6		ug/L		98	60 - 140	
1,3-Dichlorobenzene	ND		25.0	25.1		ug/L		100	60 - 140	
1,4-Dichlorobenzene	ND		25.0	25.6		ug/L		102	60 - 140	
1,3-Dichloropropane	ND		25.0	30.4		ug/L		122	60 - 140	
1,1-Dichloropropene	ND		25.0	30.4		ug/L		122	60 - 140	
1,2-Dibromo-3-Chloropropane	ND		25.0	26.9		ug/L		108	60 - 140	
Ethylene Dibromide	ND		25.0	32.5		ug/L		130	60 - 140	
Dibromomethane	ND		25.0	32.4		ug/L		130	60 - 140	
Dichlorodifluoromethane	ND		25.0	27.0		ug/L		108	38 - 140	
1,1-Dichloroethane	ND		25.0	28.5		ug/L		113	60 - 140	
1,2-Dichloroethane	ND		25.0	32.9		ug/L		131	60 - 140	
1,1-Dichloroethene	0.76		25.0	27.6		ug/L		107	60 - 140	
cis-1,2-Dichloroethene	5.4		25.0	35.6		ug/L		121	60 - 140	
trans-1,2-Dichloroethene	ND		25.0	27.0		ug/L		108	60 - 140	
1,2-Dichloropropane	ND		25.0	26.0		ug/L		104	60 - 140	
cis-1,3-Dichloropropene	ND		25.0	29.8		ug/L		119	60 - 140	
trans-1,3-Dichloropropene	ND		25.0	32.0		ug/L		128	60 - 140	
Ethylbenzene	ND		25.0	26.5		ug/L		106	60 - 140	
Hexachlorobutadiene	ND		25.0	23.6		ug/L		94	60 - 140	
2-Hexanone	ND		125	137		ug/L		110	60 - 140	
Isopropylbenzene	ND		25.0	27.7		ug/L		111	60 - 140	
4-Isopropyltoluene	ND		25.0	24.6		ug/L		98	60 - 140	
Methylene Chloride	ND		25.0	24.8		ug/L		99	40 - 140	
4-Methyl-2-pentanone (MIBK)	ND		125	141		ug/L		113	58 - 130	
Naphthalene	ND		25.0	24.1		ug/L		97	56 - 140	
N-Propylbenzene	ND		25.0	24.3		ug/L		97	60 - 140	
Styrene	ND		25.0	26.8		ug/L		107	60 - 140	

TestAmerica Pleasanton

Page 37 of 48

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-53382-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: 720-53334-B-6 MS

Matrix: Water

Analysis Batch: 147530

Client Sample ID: Matrix Spike Prep Type: Total/NA

Analysis Batch: 14/530									
	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,1,1,2-Tetrachloroethane	ND		25.0	28.6		ug/L		115	60 - 140
1,1,2,2-Tetrachloroethane	ND		25.0	24.3		ug/L		97	60 - 140
Tetrachloroethene	ND		25.0	30.7		ug/L		123	60 - 140
Toluene	ND		25.0	26.3		ug/L		105	60 - 140
1,2,3-Trichlorobenzene	ND		25.0	22.9		ug/L		92	60 - 140
1,2,4-Trichlorobenzene	ND		25.0	23.5		ug/L		94	60 - 140
1,1,1-Trichloroethane	0.98		25.0	36.6	F	ug/L		142	60 - 140
1,1,2-Trichloroethane	ND		25.0	29.7		ug/L		119	60 - 140
Trichloroethene	44		25.0	77.4		ug/L		132	60 - 140
Trichlorofluoromethane	ND		25.0	35.3	F	ug/L		141	60 - 140
1,2,3-Trichloropropane	ND		25.0	27.5		ug/L		110	60 - 140
1,1,2-Trichloro-1,2,2-trifluoroetha	1.2		25.0	31.6		ug/L		121	60 - 140
ne									
1,2,4-Trimethylbenzene	ND		25.0	24.6		ug/L		98	60 - 140
1,3,5-Trimethylbenzene	ND		25.0	25.0		ug/L		100	60 - 140
Vinyl acetate	ND		25.0	36.2	F	ug/L		145	40 - 140
Vinyl chloride	ND		25.0	25.8		ug/L		103	58 - 140
m-Xylene & p-Xylene	ND		50.0	54.6		ug/L		109	60 - 140
o-Xylene	ND		25.0	28.2		ug/L		113	60 - 140
2,2-Dichloropropane	ND		25.0	33.9		ug/L		136	60 - 140

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	98		67 - 130
1,2-Dichloroethane-d4 (Surr)	110		72 - 130
Toluene-d8 (Surr)	101		70 - 130

Lab Sample ID: 720-53334-B-6 MSD

Matrix: Water

Analysis Batch: 147530

Client Sample ID: Matrix Spike Duplicate Prep Type: Total/NA

Analysis Baton. 147000	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result		Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Methyl tert-butyl ether	ND		25.0	31.6		ug/L		126	60 - 138	3	20
Acetone	ND		125	123		ug/L		99	60 - 140	6	20
Benzene	ND		25.0	26.4		ug/L		106	60 - 140	1	20
Dichlorobromomethane	ND		25.0	30.4		ug/L		122	60 - 140	4	20
Bromobenzene	ND		25.0	25.1		ug/L		101	60 - 140	3	20
Chlorobromomethane	ND		25.0	29.3		ug/L		117	60 - 140	4	20
Bromoform *	ND		25.0	31.4		ug/L		126	56 - 140	0	20
Bromomethane	ND		25.0	30.3		ug/L		121	23 - 140	2	20
2-Butanone (MEK)	ND		125	149		ug/L		120	60 - 140	1	20
n-Butylbenzene	ND		25.0	23.9		ug/L		96	60 - 140	0	20
sec-Butylbenzene	ND		25.0	24.0		ug/L		96	60 - 140	0	20
tert-Butylbenzene	ND		25.0	24.6		ug/L		99	60 - 140	1	20
Carbon disulfide	ND		25.0	31.0		ug/L		124	38 - 140	1	20
Carbon tetrachloride	ND		25.0	34.1		ug/L		136	60 - 140	2	20
Chlorobenzene	ND		25.0	26.4		ug/L		106	60 - 140	1	20
Chloroethane	ND		25.0	28.2		ug/L		113	51 - 140	0	20
Chloroform	ND		25.0	30.2		ug/L		119	60 - 140	3	20

TestAmerica Pleasanton

Page 38 of 48

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-53382-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: 720-53334-B-6 MSD

Matrix: Water

Analysis Batch: 147530

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA

Analysis Batch: 14/530	Sample S	ample Spike	MSD	MSD				%Rec.		RPD
Analyte	Result Q	ualifier Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloromethane	ND	25.0	24.3		ug/L		97	52 - 140	1	20
2-Chlorotoluene	ND	25.0	24.5		ug/L		98	60 - 140	2	20
4-Chlorotoluene	ND	25.0	24.2		ug/L		97	60 - 140	2	20
Chlorodibromomethane	ND	25.0	32.5		ug/L		130	60 - 140	2	20
1,2-Dichlorobenzene	ND	25.0	24.3		ug/L		97	60 - 140	1	20
1,3-Dichlorobenzene	ND	25.0	24.6		ug/L		98	60 - 140	2	20
1,4-Dichlorobenzene	ND	25.0	25.3		ug/L		101	60 - 140	1	20
1,3-Dichloropropane	ND ·	25.0	28.9		ug/L		116	60 - 140	5	20
1,1-Dichloropropene	ND	25.0	30.0		ug/L		120	60 - 140	1	20
1,2-Dibromo-3-Chloropropane	ND	25.0	26.4		ug/L		106	60 - 140	2	20
Ethylene Dibromide	ND	25.0	31.9		ug/L		128	60 - 140	2	20
Dibromomethane	ND	25.0	31.3		ug/L		125	60 - 140	3	20
Dichlorodifluoromethane	ND	25.0	27.1		ug/L		108	38 - 140	0	20
1,1-Dichloroethane	ND	25.0	28.0		ug/L		111	60 - 140	2	20
1,2-Dichloroethane	ND	25.0	31.6		ug/L		126	60 - 140	4	20
1,1-Dichloroethene	0.76	25.0	27.7		ug/L		108	60 - 140	1	20
cis-1,2-Dichloroethene	5.4	25.0	34.7		ug/L		117	60 - 140	3	20
trans-1,2-Dichloroethene	ND	25.0	26.5		ug/L		106	60 - 140	2	20
1,2-Dichloropropane	ND	25.0	25.5		ug/L		102	60 - 140	2	20
cis-1,3-Dichloropropene	ND	25.0	29.2		ug/L		117	60 - 140	2	20
trans-1,3-Dichloropropene	ND	25.0	31.5		ug/L		126	60 - 140	1	20
Ethylbenzene	ND	25.0	26.3		ug/L		105	60 - 140	1	20
Hexachlorobutadiene	ND	25.0	23.9		ug/L		95	60 - 140	1	20
2-Hexanone	ND	125	132		ug/L		106	60 - 140	4	20
Isopropylbenzene	ND	25.0	28.1		ug/L		112	60 - 140	1	20
4-Isopropyltoluene	ND	25.0	24.3		ug/L		97	60 - 140	1	20
Methylene Chloride	ND	25.0	25.2		ug/L		101	40 - 140	2	20
4-Methyl-2-pentanone (MIBK)	ND	125	133		ug/L		107	58 - 130	6	20
Naphthalene	ND	25.0	23.8		ug/L		95	56 - 140	1	20
N-Propylbenzene	ND	25.0	24.1		ug/L		96	60 - 140	1	20
Styrene	ND	25.0	27.0		ug/L		108	60 - 140	1	20
1,1,1,2-Tetrachloroethane	ND	25.0	28.3		ug/L		113	60 - 140	1	20
1,1,2,2-Tetrachloroethane	ND	25.0	23.4		ug/L		93	60 - 140	4	20
Tetrachloroethene	ND	25.0	30.4		ug/L		122	60 - 140	1	20
Toluene	ND	25.0	25.7		ug/L		103	60 - 140	2	20
1,2,3-Trichlorobenzene	ND	25.0	22.7		ug/L		91	60 - 140	1	20
1,2,4-Trichlorobenzene	ND	25.0	23.7		ug/L		95	60 - 140	1	20
1,1,1-Trichloroethane	0.98	25.0	35.8		ug/L		139	60 - 140	2	20
1,1,2-Trichloroethane	ND	25.0	28.4		ug/L		114	60 - 140	4	20
Trichloroethene	44	25.0	76.3		ug/L		127	60 - 140	1	20
Trichlorofluoromethane	ND	25.0	34.8		ug/L		139	60 - 140	2	20
1,2,3-Trichloropropane	ND	25.0	27.4		ug/L		110	60 - 140	0	20
1,1,2-Trichloro-1,2,2-trifluoroetha	1.2	25.0	32.5		ug/L		125	60 - 140	3	20
ne			52.0		-3				٠	20
1,2,4-Trimethylbenzene	ND	25.0	24.4		ug/L		98	60 - 140	1	20
1,3,5-Trimethylbenzene	ND	25.0	24.8		ug/L		99	60 - 140	1	20
Vinyl acetate	ND	25.0	33.8		ug/L		135	40 - 140	7	20
Vinyl chloride	ND	25.0	26.6		ug/L		106	58 - 140	3	20

TestAmerica Pleasanton

Page 39 of 48

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-53382-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: 720-53334-B-6 MSD

Matrix: Water

Analysis Batch: 147530

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA

•	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
m-Xylene & p-Xylene	ND		50.0	54.2		ug/L		108	60 - 140	1	20
o-Xylene	ND		25.0	28.1		ug/L		112	60 - 140	0	20
2,2-Dichloropropane	ND		25.0	31.9		ug/L		128	60 - 140	6	20

 MSD
 MSD

 Surrogate
 %Recovery
 Qualifier
 Limits

 4-Bromofluorobenzene
 104
 67 - 130

 1,2-Dichloroethane-d4 (Surr)
 114
 72 - 130

 Toluene-d8 (Surr)
 100
 70 - 130

7

QC Association Summary

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-53382-1

GC/MS VOA

Analysis Batch: 147489

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-53382-1	TB-102813-1	Total/NA	Water	8260B/CA_LUFT	
				MS	
720-53382-10	MW-03	Total/NA	Water	8260B/CA_LUFT	
				MS	
720-53382-10 MS	MW-03	Total/NA	Water	8260B/CA_LUFT	
				MS	
720-53382-10 MSD	MW-03	Total/NA	Water	8260B/CA_LUFT	
				MS	
LCS 720-147489/5	Lab Control Sample	Total/NA	Water	8260B/CA_LUFT	
Value of the second second				MS	
LCS 720-147489/7	Lab Control Sample	Total/NA	Water	8260B/CA_LUFT	
				MS	
LCSD 720-147489/6	Lab Control Sample Dup	Total/NA	Water	8260B/CA_LUFT	
VII best to C. Vanderau	19.000000000000000000000000000000000000			MS	
LCSD 720-147489/8	Lab Control Sample Dup	Total/NA	Water	8260B/CA_LUFT	
				MS	
MB 720-147489/4	Method Blank	Total/NA	Water	8260B/CA_LUFT	
				MS	

Analysis Batch: 147530

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-53334-B-6 MS	Matrix Spike	Total/NA	Water	8260B/CA_LUFT MS	
720-53334-B-6 MSD	Matrix Spike Duplicate	Total/NA	Water	8260B/CA_LUFT MS	
720-53382-2	MP-01-3	Total/NA	Water	8260B/CA_LUFT	
720-53382-3	MP-03-2	Total/NA	Water	MS 8260B/CA_LUFT	
720-53382-4	MP-01-2	Total/NA	Water	MS 8260B/CA_LUFT	
720-53382-5	MP-01-1	Total/NA	Water	MS 8260B/CA_LUFT	
720-53382-6	MP-03-1	Total/NA	Water	MS 8260B/CA_LUFT	
720-53382-7	MW-02	Total/NA	Water	MS 8260B/CA_LUFT	
720-53382-8	MP-02-1	Total/NA	Water	MS 8260B/CA_LUFT	
720-53382-9	MW-01	Total/NA	Water	MS 8260B/CA_LUFT	
LCS 720-147530/5	Lab Control Sample	Total/NA	Water	MS 8260B/CA_LUFT	
LCS 720-147530/7	Lab Control Sample	Total/NA	Water	MS 8260B/CA_LUFT	
LCSD 720-147530/6	Lab Control Sample Dup	Total/NA	Water	MS 8260B/CA_LUFT	
LCSD 720-147530/8	Lab Control Sample Dup	Total/NA	Water	MS 8260B/CA_LUFT	
MB 720-147530/4	Method Blank	Total/NA	Water	MS 8260B/CA_LUFT	
				MS	

Matrix: Water

Client Sample ID: TB-102813-1

Date Collected: 10/28/13 08:00 Date Received: 10/28/13 17:12

Batch

Type Analysis

Batch Method 8260B/CA LUFTMS Dilution Factor

Batch Number 147489

Prepared or Analyzed 10/31/13 23:36

Analyst PDR

Lab TAL PLS

Lab Sample ID: 720-53382-2

TestAmerica Job ID: 720-53382-1

Lab Sample ID: 720-53382-1

Matrix: Water

Client Sample ID: MP-01-3

Date Collected: 10/28/13 08:32 Date Received: 10/28/13 17:12

Prep Type Total/NA

Batch Type Analysis Batch Method 8260B/CA_LUFTMS

Run

Run

Dilution Factor

Batch Number 147530

Prepared or Analyzed 11/01/13 12:17

Analyst PDR

Lab TAL PLS

Lab Sample ID: 720-53382-3 Matrix: Water

Client Sample ID: MP-03-2

Date Collected: 10/28/13 08:35 Date Received: 10/28/13 17:12

Prep Type Total/NA

Prep Type

Total/NA

Batch Type Analysis Batch Method 8260B/CA_LUFTMS

Run

Dilution Factor

Batch Prepared Number or Analyzed 147530 11/01/13 12:43

Analyst PDR

Lab TAL PLS

Lab Sample ID: 720-53382-4

Client Sample ID: MP-01-2

Date Collected: 10/28/13 09:23 Date Received: 10/28/13 17:12

Prep Type Total/NA

Batch Type Analysis

Method 8260B/CA_LUFTMS

Batch

Dilution Run

Batch Factor Number 147530

or Analyzed 11/01/13 13:09

Prepared

Analyst PDR

Lab TAL PLS

Lab Sample ID: 720-53382-5

Matrix: Water

Matrix: Water

Date Collected: 10/28/13 10:19 Date Received: 10/28/13 17:12

Client Sample ID: MP-01-1

Prep Type Total/NA

Batch Type Analysis Batch Method 8260B/CA LUFTMS Run

Dilution Factor

Batch Prepared Number 147530

or Analyzed 11/01/13 13:35

Analyst TAL PLS

Lab Sample ID: 720-53382-6

Matrix: Water

Client Sample ID: MP-03-1 Date Collected: 10/28/13 11:00 Date Received: 10/28/13 17:12

Batch **Prep Type** Type Total/NA

Analysis

Method 8260B/CA_LUFTMS

Batch

Run

Dilution Factor

Number 147530

Batch

or Analyzed 11/01/13 14:01

Prepared

Analyst PDR

Lab TAL PLS

Lab Chronicle

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-53382-1

Client Sample ID: MW-02

Date Collected: 10/28/13 11:40

Lab Sample ID: 720-53382-7

Matrix: Water

Date Received: 10/28/13 17:12

Batch **Prep Type** Type Total/NA Analysis

Batch Method Run 8260B/CA_LUFTMS

Dilution Factor

Batch Number 147530

Prepared or Analyzed 11/01/13 14:27

Analyst PDR

Lab TAL PLS

Client Sample ID: MP-02-1

Date Collected: 10/28/13 12:50 Date Received: 10/28/13 17:12

Lab Sample ID: 720-53382-8

Matrix: Water

Prep Type Total/NA

Prep Type

Prep Type

Total/NA

Total/NA

Batch Type Analysis

Batch

Type

Analysis

Batch Method Run 8260B/CA_LUFTMS

Dilution Factor

Batch Number 147530

Prepared or Analyzed 11/01/13 14:53

Analyst PDR

Lab TAL PLS

Lab Sample ID: 720-53382-9 Matrix: Water

Matrix: Water

Client Sample ID: MW-01 Date Collected: 10/28/13 13:25

Date Received: 10/28/13 17:12

Batch

Method 8260B/CA_LUFTMS

Run

Run

Dilution Factor

Batch Number 147530

Prepared or Analyzed 11/01/13 15:18

Lah Analyst PDR TAL PLS

Analyst

PDR

Lab

TAL PLS

Lab Sample ID: 720-53382-10

Client Sample ID: MW-03

Date Collected: 10/28/13 14:50 Date Received: 10/28/13 17:12

Batch

Type

Analysis

Batch

Method 8260B/CA LUFTMS Dilution Factor

Batch Number 147489

Prepared or Analyzed 10/31/13 23:10

Laboratory References:

TAL PLS = TestAmerica Pleasanton, 1220 Quarry Lane, Pleasanton, CA 94566, TEL (925)484-1919

Certification Summary

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-53382-1

Laboratory: TestAmerica Pleasanton

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
California	State Program	9	2496	01-31-14

Method Summary

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-53382-1

Method **Method Description** Protocol Laboratory 8260B/CA_LUFTM 8260B / CA LUFT MS SW846 TAL PLS

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL PLS = TestAmerica Pleasanton, 1220 Quarry Lane, Pleasanton, CA 94566, TEL (925)484-1919

TestAmerica Pleasanton

Page 45 of 48

Sample Summary

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-53382-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
720-53382-1	TB-102813-1	Water	10/28/13 08:00	10/28/13 17:12
720-53382-2	MP-01-3	Water	10/28/13 08:32	10/28/13 17:12
720-53382-3	MP-03-2	Water	10/28/13 08:35	10/28/13 17:12
720-53382-4	MP-01-2	Water	10/28/13 09:23	10/28/13 17:12
720-53382-5	MP-01-1	Water	10/28/13 10:19	10/28/13 17:12
720-53382-6	MP-03-1	Water	10/28/13 11:00	10/28/13 17:12
720-53382-7	MW-02	Water	10/28/13 11:40	10/28/13 17:12
720-53382-8	MP-02-1	Water	10/28/13 12:50	10/28/13 17:12
720-53382-9	MW-01	Water	10/28/13 13:25	10/28/13 17:12
720-53382-10	MW-03	Water	10/28/13 14:50	10/28/13 17:12

Suite 200 Petaluma, CA 94954 (707) 793-3800

Samplers: D. Allbut D. Pearson

Job Number:

Project Manager:

OD10160070,00008.A

149669

Name/Location:

Recorder:

ANALYSIS REQUESTED

MATRIX	CONTAINERS		DATE	STATION # W DESCRIPTION + 8
Water Soil Air	Unpres H2SO4 HN03 HCL	SAMPLE NUMBER	YR MO DAY TIME	DEPTH 82500 HT93D
X		TB102813-1	1810230800	X
2. 8	3	MP - 01 - 3	1310250832	×
1. 4	3	MP-03-2	1310230835	
4. 1	3	MF-01-2	1310280923	
57 7	3	MP-01-1	1310281019	
6. X	3	MP-03-1	1310281100	
7. 4		Mu-02	1310281170	
3. X	3	MP-02-1	1310281250	X I I I I I I I I I I I I I I I I I I I
2. X		MW-101	1310281325	
0. 7	1 9	MW-03	1310231450	
		ADDITIONAL INFORMATION		CHAIN OF CUSTODY RECORD

Haely yound e amec, com REPORT TO: AVEINZ, Whitharsh e amec com PO#: CO12202707 Standard TAT: Comments: Field Filtered Y/N

Geotracker Required; Global Cite 10: SL720641214

WW-03 MSIMSP

1928/13 1712 Relinquished By (Signature) (Print Name) (Company) (Date/Time) Bullock Received by (Signature): (Print Name) (Company) (Date/Time) Relinquished By (Signature) (Print Name) (Company) (Date/Time) Received By (Signature) (Print Name) (Date/Time) (Company) Relinquished By (Signature) (Print Name) (Company) (Date/Time) Received By (Signature) (Print Name) (Company) (Date/Time) Method of Shipment:

White - Laboratory Copy

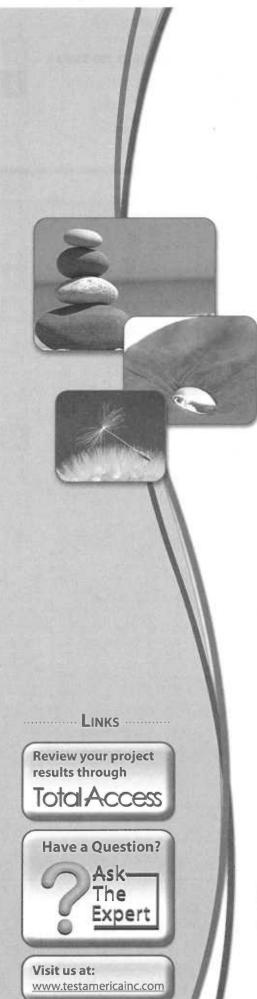
Yellow - Project Office Copy

Pink - Field or Office Copy

Login Sample Receipt Checklist

Client: AMEC Environment & Infrastructure, Inc.

Job Number: 720-53382-1


Login Number: 53382

List Number: 1

Creator: Bullock, Tracy

List Source: TestAmerica Pleasanton

Question	Answer	Comment		
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td> <td></td> <td></td>	N/A			
The cooler's custody seal, if present, is intact.	N/A			
Sample custody seals, if present, are intact.	N/A			
The cooler or samples do not appear to have been compromised or tampered with.	True			
Samples were received on ice.	True			
Cooler Temperature is acceptable.	True			
Cooler Temperature is recorded.	True			
COC is present.	True			
COC is filled out in ink and legible.	True			
COC is filled out with all pertinent information.	True			
Is the Field Sampler's name present on COC?	True			
There are no discrepancies between the containers received and the COC.	True			
Samples are received within Holding Time.	True			
Sample containers have legible labels.	True			
Containers are not broken or leaking.	True			
Sample collection date/times are provided.	True			
Appropriate sample containers are used.	True			
Sample bottles are completely filled.	True			
Sample Preservation Verified.	N/A			
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True			
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True			
Multiphasic samples are not present.	True			
Samples do not require splitting or compositing.	True			
Residual Chlorine Checked.	N/A			

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc. TestAmerica Pleasanton 1220 Quarry Lane Pleasanton, CA 94566 Tel: (925)484-1919

TestAmerica Job ID: 720-53383-1 Client Project/Site: Crown Chevrolet Revision: 1

For:

AMEC Environment & Infrastructure, Inc. 2101 Webster Street, 12th Floor Oakland, California 94612

Attn: Avery Patton

Akaraf Sal)

Authorized for release by: 11/6/2013 5:53:20 PM

Afsaneh Salimpour, Project Manager I (925)484-1919

afsaneh.salimpour@testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Project/Site: Crown Chevrolet

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
QC Sample Results	17
QC Association Summary	42
Lab Chronicle	44
Certification Summary	46
Method Summary	47
Sample Summary	48
Chain of Custody	49
Receipt Checklists	50

Definitions/Glossary

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-53383-1

Glossary		E
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	10"
CNF	Contains no Free Liquid	
DER	Duplicate error ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision level concentration	
MDA	Minimum detectable activity	
EDL	Estimated Detection Limit	
MDC	Minimum detectable concentration	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
NC	Not Calculated	
ND	Not detected at the reporting limit (or MDL or EDL if shown)	
PQL	Practical Quantitation Limit	
QC	Quality Control	
RER	Relative error ratio	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	
TEQ	Toxicity Equivalent Quotient (Dioxin)	

Case Narrative

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-53383-

Job ID: 720-53383-1

Laboratory: TestAmerica Pleasanton

Narrative

Job Narrative 720-53383-1

Comments

No additional comments.

Receipt

The samples were received on 10/28/2013 5:12 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 2.6° C.

GC/MS VOA

Method(s) 8260B: The continuing calibration verification (CCV) associated with batch #147621 recovered above the upper control limit for FREON-11. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The following samples are impacted: (CCVIS 720-147621/3).

Method(s) 8260B: The Gasoline Range Organics (GRO) concentration reported for the following sample 53383-2 is due to the presence of discrete peaks. <<PCE,TCE>>

Method(s) 8260B: The Gasoline Range Organics (GRO) concentration reported for the following sample 53383-1 is due to the presence of discrete peaks. <<PCE>>

No other analytical or quality issues were noted.

Ä

TestAmerica Job ID: 720-53383-1

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

Client Sample ID: MW-100						Lab	Sample ID: 7	20-53383-1
	-							
Analyte		Qualifier	RL	MDL	Unit	Dil Fac D		Prep Type
Tetrachloroethene	150		1.0		ug/L	2	8260B/CA_LUFT MS	Total/NA
Trichloroethene	1.8		1.0		ug/L	2	8260B/CA_LUFT MS	Total/NA
Gasoline Range Organics (GRO) -C5-C12	160	R	100		ug/L	2	8260B/CA_LUFT MS	Total/NA
Client Sample ID: MP-04-1						Lab	Sample ID: 7	20-53383-2
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
cis-1,2-Dichloroethene	1.3		0.50		ug/L	1	8260B/CA_LUFT MS	Total/NA
Tetrachloroethene	31		0.50		ug/L	1	8260B/CA_LUFT MS	Total/NA
Trichloroethene	24		0.50		ug/L	1	8260B/CA_LUFT MS	Total/NA
Gasoline Range Organics (GRO) -C5-C12	65	R	50		ug/L	1	8260B/CA_LUFT MS	Total/NA
Client Sample ID: MP-04-2						Lab	Sample ID: 7	20-53383-3
No Detections.								
Client Sample ID: MP-02-2						Lab	Sample ID: 7	20-53383-4
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
cis-1,2-Dichloroethene	0.64		0.50		ug/L	1	8260B/CA_LUFT MS	Total/NA
Trichloroethene	1.9		0.50		ug/L	1	8260B/CA_LUFT MS	Total/NA
Client Sample ID: MP-04-3						Lab	Sample ID: 7	20-53383-5
No Detections.								
Client Sample ID: MP-03-3						Lab	Sample ID: 7	20-53383-6
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
Acetone	75		50		ug/L	1	8260B/CA_LUFT MS	Total/NA
Client Sample ID: MP-02-3						Lab	Sample ID: 7	20-53383-7
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type

Trichloroethene

0.76

0.50

ug/L

Total/NA

8260B/CA_LUFT

MS

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-53383-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS

Client Sample ID: MW-100 Date Collected: 10/28/13 13:30 Lab Sample ID: 720-53383-1

Matrix: Water

Date Collected: 10/28/13 13:30 Date Received: 10/28/13 17:12							Midti	c: water
Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND		1.0	ug/L			11/01/13 11:17	2
Acetone	ND		100	ug/L			11/01/13 11:17	2
Benzene	ND		1.0	ug/L			11/01/13 11:17	2
Dichlorobromomethane	ND		1.0	ug/L			11/01/13 11:17	2
Bromobenzene	ND		2.0	ug/L			11/01/13 11:17	2
Chlorobromomethane	ND		2.0	ug/L			11/01/13 11:17	2
Bromoform	ND		2.0	ug/L			11/01/13 11:17	2
Bromomethane	ND		2.0	ug/L			11/01/13 11:17	2
2-Butanone (MEK)	ND		100	ug/L			11/01/13 11:17	2
n-Butylbenzene	ND		2.0	ug/L			11/01/13 11:17	2
sec-Butylbenzene	ND		2.0	ug/L			11/01/13 11:17	2
tert-Butylbenzene	ND		2.0	ug/L			11/01/13 11:17	2
Carbon disulfide	ND		10	ug/L			11/01/13 11:17	2
Carbon tetrachloride	ND		1.0	ug/L			11/01/13 11:17	2
Chlorobenzene	ND		1.0	ug/L			11/01/13 11:17	2
Chloroethane	ND		2.0	ug/L			11/01/13 11:17	2
Chloroform	ND		2.0	ug/L			11/01/13 11:17	2
Chloromethane	ND		2.0	ug/L			11/01/13 11:17	2
2-Chlorotoluene	ND		1.0	ug/L			11/01/13 11:17	2
4-Chlorotoluene	ND		1.0	ug/L			11/01/13 11:17	2
Chlorodibromomethane	ND		1.0	ug/L			11/01/13 11:17	2
	ND		1.0				11/01/13 11:17	2
I,2-Dichlorobenzene	ND		1.0	ug/L			11/01/13 11:17	2
1,3-Dichlorobenzene	ND		1.0	ug/L			11/01/13 11:17	2
1,4-Dichlorobenzene				ug/L			11/01/13 11:17	2
1,3-Dichloropropane	ND		2.0	ug/L				2
1,1-Dichloropropene	ND		1.0	ug/L			11/01/13 11:17 11/01/13 11:17	2
1,2-Dibromo-3-Chloropropane	ND		2.0	ug/L				2
Ethylene Dibromide	ND		1.0	ug/L			11/01/13 11:17	
Dibromomethane	ND		1.0	ug/L			11/01/13 11:17	2
Dichlorodifluoromethane	ND		1.0	ug/L			11/01/13 11:17	2
1,1-Dichloroethane	ND		1.0	ug/L			11/01/13 11:17	2
1,2-Dichloroethane	ND		1.0	ug/L			11/01/13 11:17	2
1,1-Dichloroethene	ND		1.0	ug/L			11/01/13 11:17	2
cis-1,2-Dichloroethene	ND		1.0	ug/L			11/01/13 11:17	2
rans-1,2-Dichloroethene	ND		1.0	ug/L			11/01/13 11:17	2
1,2-Dichloropropane	ND		1.0	ug/L			11/01/13 11:17	2
cis-1,3-Dichloropropene	ND		1.0	ug/L			11/01/13 11:17	2
rans-1,3-Dichloropropene	ND		1.0	ug/L			11/01/13 11:17	2
Ethylbenzene	ND		1.0	ug/L			11/01/13 11:17	2
Hexachlorobutadiene	ND		2.0	ug/L			11/01/13 11:17	2
2-Hexanone	ND		100	ug/L			11/01/13 11:17	2
sopropylbenzene	ND		1.0	ug/L			11/01/13 11:17	2
4-Isopropyltoluene	ND		2.0	ug/L			11/01/13 11:17	2
Methylene Chloride	ND		10	ug/L			11/01/13 11:17	2
4-Methyl-2-pentanone (MIBK)	ND		100	ug/L			11/01/13 11:17	2
Naphthalene	ND		2.0	ug/L			11/01/13 11:17	2
N-Propylbenzene	ND		2.0	ug/L			11/01/13 11:17	2
Styrene	ND		1.0	ug/L			11/01/13 11:17	2
1,1,1,2-Tetrachloroethane	ND		1.0	ug/L			11/01/13 11:17	2

TestAmerica Pleasanton

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-53383-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Client Sample ID: MW-100 Date Collected: 10/28/13 13:30 Lab Sample ID: 720-53383-1

Matrix: Water

Date Received: 10/28/13 17:12 Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L		11/01/13 11:17	2
Tetrachloroethene	150	1.0	ug/L		11/01/13 11:17	2
Toluene	ND	1.0	ug/L		11/01/13 11:17	2
1,2,3-Trichlorobenzene	ND	2.0	ug/L		11/01/13 11:17	2
1,2,4-Trichlorobenzene	ND	2.0	ug/L		11/01/13 11:17	2
1,1,1-Trichloroethane	ND	1.0	ug/L		11/01/13 11:17	2
1,1,2-Trichloroethane	ND	1.0	ug/L		11/01/13 11:17	2
Trichloroethene	1.8	1.0	ug/L		11/01/13 11:17	2
Trichlorofluoromethane	ND	2.0	ug/L		11/01/13 11:17	2
1,2,3-Trichloropropane	ND	1.0	ug/L		11/01/13 11:17	2
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.0	ug/L		11/01/13 11:17	2
1,2,4-Trimethylbenzene	ND	1.0	ug/L		11/01/13 11:17	2
1,3,5-Trimethylbenzene	ND	1.0	ug/L		11/01/13 11:17	2
Vinyl acetate	ND	20	ug/L		11/01/13 11:17	2
Vinyl chloride	ND	1.0	ug/L		11/01/13 11:17	2
Xylenes, Total	ND	2.0	ug/L		11/01/13 11:17	2
2,2-Dichloropropane	ND	1.0	ug/L		11/01/13 11:17	2
Gasoline Range Organics (GRO) -C5-C12	160	100	ug/L		11/01/13 11:17	2

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	88	67 - 130		11/01/13 11:17	2
1,2-Dichloroethane-d4 (Surr)	88	72 - 130		11/01/13 11:17	2
Toluene-d8 (Surr)	96	70 - 130		11/01/13 11:17	2

Client Sample ID: MP-04-1 Date Collected: 10/28/13 14:15 Lab Sample ID: 720-53383-2 Matrix: Water

Date Received: 10/28/13 17:12 Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND		0.50		ug/L			11/01/13 17:54	1
Acetone	ND		50		ug/L			11/01/13 17:54	1
Benzene	ND		0.50		ug/L			11/01/13 17:54	1
Dichlorobromomethane	ND		0.50		ug/L			11/01/13 17:54	1
Bromobenzene	ND		1.0		ug/L			11/01/13 17:54	1-
Chlorobromomethane	ND		1.0		ug/L			11/01/13 17:54	1
Bromoform	ND		1.0		ug/L			11/01/13 17:54	1.
Bromomethane	ND		1.0		ug/L			11/01/13 17:54	1
2-Butanone (MEK)	ND		50		ug/L			11/01/13 17:54	1
n-Butylbenzene	ND		1.0		ug/L			11/01/13 17:54	1
sec-Butylbenzene	ND		1.0		ug/L			11/01/13 17:54	1
tert-Butylbenzene	ND		1.0		ug/L			11/01/13 17:54	1
Carbon disulfide	ND		5.0		ug/L			11/01/13 17:54	1
Carbon tetrachloride	ND		0.50		ug/L			11/01/13 17:54	1
Chlorobenzene	ND		0.50		ug/L			11/01/13 17:54	1
Chloroethane	ND		1.0		ug/L			11/01/13 17:54	1
Chloroform	ND		1.0		ug/L			11/01/13 17:54	1
Chloromethane	ND		1.0		ug/L			11/01/13 17:54	1
2-Chlorotoluene	ND		0.50		ug/L			11/01/13 17:54	1
4-Chlorotoluene	ND		0.50		ug/L			11/01/13 17:54	1
Chlorodibromomethane	ND		0.50		ug/L			11/01/13 17:54	1

TestAmerica Pleasanton

Page 7 of 50

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-53383-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Client Sample ID: MP-04-1 Date Collected: 10/28/13 14:15

4-Bromofluorobenzene

Lab Sample ID: 720-53383-2

Matrix: Water

Analyte 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,3-Dichloropropane 1,1-Dichloropropene	ND ND ND	Qualifier	RL 0.50	MDL Unit ug/L	D	Prepared	Analyzed 11/01/13 17:54	Dil Fac
1,4-Dichlorobenzene 1,3-Dichloropropane 1,1-Dichloropropene								1
1,3-Dichloropropane 1,1-Dichloropropene	NID		0.50	ug/L			11/01/13 17:54	1
1,1-Dichloropropene	ND		0.50	ug/L			11/01/13 17:54	1
	ND		1.0	ug/L			11/01/13 17:54	1
	ND		0.50	ug/L			11/01/13 17:54	1
1,2-Dibromo-3-Chloropropane	ND		1.0	ug/L			11/01/13 17:54	1
Ethylene Dibromide	ND		0.50	ug/L			11/01/13 17:54	1
Dibromomethane	ND		0.50	ug/L			11/01/13 17:54	1
Dichlorodifluoromethane	ND		0.50	ug/L			11/01/13 17:54	1
1,1-Dichloroethane	ND		0.50	ug/L			11/01/13 17:54	1
1,2-Dichloroethane	ND		0.50	ug/L			11/01/13 17:54	1
1,1-Dichloroethene	ND		0.50	ug/L			11/01/13 17:54	1
cis-1,2-Dichloroethene	1.3		0.50	ug/L			11/01/13 17:54	1
trans-1,2-Dichloroethene	ND		0.50	ug/L			11/01/13 17:54	1
1,2-Dichloropropane	ND		0.50	ug/L			11/01/13 17:54	1
cis-1,3-Dichloropropene	ND		0.50	ug/L			11/01/13 17:54	1
trans-1,3-Dichloropropene	ND		0.50	ug/L			11/01/13 17:54	1
Ethylbenzene	ND		0.50	ug/L			11/01/13 17:54	1
Hexachlorobutadiene	ND		1.0	ug/L			11/01/13 17:54	1
2-Hexanone	ND		50	ug/L			11/01/13 17:54	1
Isopropylbenzene	ND		0.50	ug/L			11/01/13 17:54	1
4-Isopropyltoluene	ND		1.0	ug/L			11/01/13 17:54	1
Methylene Chloride	ND		5.0	ug/L			11/01/13 17:54	1
4-Methyl-2-pentanone (MIBK)	ND		50	ug/L			11/01/13 17:54	1
Naphthalene	ND		1.0	ug/L			11/01/13 17:54	1
N-Propylbenzene	ND		1.0	ug/L			11/01/13 17:54	1
Styrene	ND		0.50	ug/L			11/01/13 17:54	1
1,1,1,2-Tetrachloroethane	ND		0.50	ug/L			11/01/13 17:54	1
1,1,2,2-Tetrachloroethane	ND		0.50	ug/L			11/01/13 17:54	1
Tetrachloroethene	31		0.50	ug/L			11/01/13 17:54	1
Toluene	ND		0.50	ug/L			11/01/13 17:54	1
1,2,3-Trichlorobenzene	ND		1.0	ug/L			11/01/13 17:54	. 1
1,2,4-Trichlorobenzene	ND		1.0	ug/L			11/01/13 17:54	1
1,1,1-Trichloroethane	ND		0.50	ug/L			11/01/13 17:54	1
1,1,2-Trichloroethane	ND		0.50	ug/L			11/01/13 17:54	1
Trichloroethene	24		0.50	ug/L			11/01/13 17:54	1
Trichlorofluoromethane	ND		1.0	ug/L			11/01/13 17:54	1
1,2,3-Trichloropropane	ND		0.50	ug/L			11/01/13 17:54	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50	ug/L			11/01/13 17:54	1
1,2,4-Trimethylbenzene	ND		0.50	ug/L			11/01/13 17:54	1
1,3,5-Trimethylbenzene	ND		0.50	ug/L			11/01/13 17:54	1
Vinyl acetate	ND		10	ug/L			11/01/13 17:54	1
Vinyl chloride	ND		0.50	ug/L			11/01/13 17:54	1
Xylenes, Total	ND		1.0	ug/L			11/01/13 17:54	1
2,2-Dichloropropane	ND		0.50	ug/L			11/01/13 17:54	1
Gasoline Range Organics (GRO) -C5-C12	65	R	50	ug/L			11/01/13 17:54	1
	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac

TestAmerica Pleasanton

11/01/13 17:54

67 - 130

104

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-53383-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Client Sample ID: MP-04-1

Client Sample ID: MP-04-2

Date Collected: 10/28/13 14:25

Date Collected: 10/28/13 14:15 Date Received: 10/28/13 17:12 Lab Sample ID: 720-53383-2

Analyzed

Matrix: Water

Dil Fac

Surrogate	%Recovery Qualify	er Limits	Prepared
1,2-Dichloroethane-d4 (Surr)	116	72 - 130	
Toluene-d8 (Surr)	118	70 - 130	

11/01/13 17:54 1 11/01/13 17:54 1

Lab Sample ID: 720-53383-3

Matrix: Water

Date Received: 10/28/13 17:12							Watri	A. Water
Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND		0.50	ug/L			11/01/13 18:20	1
Acetone	ND		50	ug/L			11/01/13 18:20	1
Benzene	ND		0.50	ug/L			11/01/13 18:20	1
Dichlorobromomethane	ND		0.50	ug/L			11/01/13 18:20	1
Bromobenzene	ND		1.0	ug/L			11/01/13 18:20	1
Chlorobromomethane	ND		1.0	ug/L			11/01/13 18:20	1
Bromoform	ND		1.0	ug/L			11/01/13 18:20	1
Bromomethane	ND		1.0	ug/L			11/01/13 18:20	1
2-Butanone (MEK)	ND		50	ug/L			11/01/13 18:20	1
n-Butylbenzene	ND		1.0	ug/L			11/01/13 18:20	1
sec-Butylbenzene	ND		1.0	ug/L			.11/01/13 18:20	1
tert-Butylbenzene	ND		1.0	ug/L			11/01/13 18:20	1
Carbon disulfide	ND		5.0	ug/L			11/01/13 18:20	1
Carbon tetrachloride	ND		0.50	ug/L			11/01/13 18:20	1
Chlorobenzene	ND		0.50	ug/L			11/01/13 18:20	1
Chloroethane	ND		1.0	ug/L			11/01/13 18:20	1
Chloroform	ND		1.0	ug/L			11/01/13 18:20	1
Chloromethane	ND		1.0	ug/L			11/01/13 18:20	1
2-Chlorotoluene	ND		0.50	ug/L			11/01/13 18:20	1
4-Chlorotoluene	ND		0.50	ug/L			11/01/13 18:20	1
Chlorodibromomethane	ND		0.50	ug/L			11/01/13 18:20	1
1,2-Dichlorobenzene	ND		0.50	ug/L			11/01/13 18:20	1
1,3-Dichlorobenzene	ND		0.50	ug/L		22	11/01/13 18:20	1
1,4-Dichlorobenzene	ND		0.50	ug/L			11/01/13 18:20	1
1,3-Dichloropropane	ND		1.0	ug/L			11/01/13 18:20	1
1,1-Dichloropropene	ND		0.50	ug/L			11/01/13 18:20	1
1,2-Dibromo-3-Chloropropane	ND		1.0	ug/L			11/01/13 18:20	1
Ethylene Dibromide	ND		0.50	ug/L			11/01/13 18:20	1
Dibromomethane	ND		0.50	ug/L			11/01/13 18:20	1
Dichlorodifluoromethane	ND		0.50	ug/L			11/01/13 18:20	1
1,1-Dichloroethane	ND		0.50	ug/L			11/01/13 18:20	1
1,2-Dichloroethane	ND		0.50	ug/L			11/01/13 18:20	1
1,1-Dichloroethene	ND		0.50	ug/L			11/01/13 18:20	1
cis-1,2-Dichloroethene	ND		0.50	ug/L			11/01/13 18:20	1
trans-1,2-Dichloroethene	ND		0.50	ug/L			11/01/13 18:20	1
1,2-Dichloropropane	ND		0.50	ug/L			11/01/13 18:20	1
cis-1,3-Dichloropropene	ND		0.50	ug/L			11/01/13 18:20	1
trans-1,3-Dichloropropene	ND		0.50	ug/L			11/01/13 18:20	1
Ethylbenzene	ND		0.50	ug/L			11/01/13 18:20	1
Hexachlorobutadiene	ND		1.0	ug/L			11/01/13 18:20	1
2-Hexanone	ND		50	ug/L			11/01/13 18:20	1
Isopropylbenzene	ND		0.50	ug/L			11/01/13 18:20	1

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-53383-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Client Sample ID: MP-04-2

Lab Sample ID: 720-53383-3

Matrix: Water

Date	Collected:	10/28/13	14:25
Date	Received:	10/28/13	17:12

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4-isopropyltoluene	ND		1.0		ug/L			11/01/13 18:20	1
Methylene Chloride	ND		5.0		ug/L			11/01/13 18:20	1
4-Methyl-2-pentanone (MIBK)	ND		50		ug/L			11/01/13 18:20	1
Naphthalene	ND		1.0		ug/L			11/01/13 18:20	1
N-Propylbenzene	ND		1.0		ug/L			11/01/13 18:20	1
Styrene	ND		0.50		ug/L			11/01/13 18:20	1
1,1,1,2-Tetrachloroethane	ND		0.50		ug/L			11/01/13 18:20	1
1,1,2,2-Tetrachloroethane	ND		0.50		ug/L			11/01/13 18:20	1
Tetrachloroethene	ND		0.50		ug/L			11/01/13 18:20	1
Toluene	ND		0.50		ug/L			11/01/13 18:20	1
1,2,3-Trichlorobenzene	ND		1.0		ug/L			11/01/13 18:20	1
1,2,4-Trichlorobenzene	ND		1.0		ug/L			11/01/13 18:20	1
1,1,1-Trichloroethane	ND		0.50		ug/L			11/01/13 18:20	1
1,1,2-Trichloroethane	ND		0.50		ug/L			11/01/13 18:20	1
Trichloroethene	ND		0.50		ug/L			11/01/13 18:20	1
Trichlorofluoromethane	ND		1.0		ug/L			11/01/13 18:20	1
1,2,3-Trichloropropane	ND		0.50		ug/L			11/01/13 18:20	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50		ug/L			11/01/13 18:20	1
1,2,4-Trimethylbenzene	ND		0.50		ug/L			11/01/13 18:20	1
1,3,5-Trimethylbenzene	ND		0.50		ug/L			11/01/13 18:20	1
Vinyl acetate	ND		10		ug/L			11/01/13 18:20	1
Vinyl chloride	ND		0.50		ug/L			11/01/13 18:20	1
Xylenes, Total	ND		1.0		ug/L			11/01/13 18:20	1
2,2-Dichloropropane	ND		0.50		ug/L			11/01/13 18:20	1
Gasoline Range Organics (GRO)	ND		50		ug/L			11/01/13 18:20	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	102		67 - 130		11/01/13 18:20	1
1,2-Dichloroethane-d4 (Surr)	117		72 - 130		11/01/13 18:20	1
Toluene-d8 (Surr)	117	7.	70 - 130		11/01/13 18:20	1

Client Sample ID: MP-02-2 Date Collected: 10/28/13 14:36

-C5-C12

Lab Sample ID: 720-53383-4

Matrix: Water

Date Received: 10/28/13 17:12 Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND		0.50		ug/L			11/02/13 01:02	1
Acetone	ND		50		ug/L			11/02/13 01:02	1
Benzene	ND		0.50		ug/L			11/02/13 01:02	1
Dichlorobromomethane	ND		0.50		ug/L			11/02/13 01:02	1
Bromobenzene	ND		1.0		ug/L			11/02/13 01:02	1
Chlorobromomethane	ND		1.0		ug/L			11/02/13 01:02	1
Bromoform	ND		1.0		ug/L			11/02/13 01:02	1
Bromomethane	ND		1.0		ug/L			11/02/13 01:02	1
2-Butanone (MEK)	ND		50		ug/L			11/02/13 01:02	1
n-Butylbenzene	ND		1.0		ug/L			11/02/13 01:02	1
sec-Butylbenzene	ND		1.0		ug/L			11/02/13 01:02	1
tert-Butylbenzene	ND		1.0		ug/L			11/02/13 01:02	1
Carbon disulfide	ND		5.0		ug/L			11/02/13 01:02	1
Carbon tetrachloride	ND		0.50		ug/L			11/02/13 01:02	1

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-53383-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Client Sample ID: MP-02-2 Date Collected: 10/28/13 14:36 Lab Sample ID: 720-53383-4

Matrix: Water

Date Received: 10/28/13 17:12 Analyte	Result Qualifier	RL	MDL Unit	D Prepare	d Analyzed	Dil Fac
Chlorobenzene	ND	0.50	ug/L		11/02/13 01:02	1
Chloroethane	ND	1.0	ug/L		11/02/13 01:02	1
Chloroform	ND	1.0	ug/L		11/02/13 01:02	1
Chloromethane	ND	1.0	ug/L		11/02/13 01:02	1
2-Chlorotoluene	ND	0.50	ug/L		11/02/13 01:02	1
4-Chlorotoluene	ND	0.50	ug/L		11/02/13 01:02	1
Chlorodibromomethane	ND	0.50	ug/L		11/02/13 01:02	1
1,2-Dichlorobenzene	ND	0.50	ug/L		11/02/13 01:02	1
1.3-Dichlorobenzene	ND	0.50	ug/L		11/02/13 01:02	1
1,4-Dichlorobenzene	ND	0.50	ug/L		11/02/13 01:02	1
1,3-Dichloropropane	ND	1.0	ug/L		11/02/13 01:02	1
1,1-Dichloropropene	ND	0.50	ug/L		11/02/13 01:02	1
1,2-Dibromo-3-Chloropropane	ND	1.0	ug/L		11/02/13 01:02	1
Ethylene Dibromide	ND	0.50	ug/L		11/02/13 01:02	1
Dibromomethane	ND	0.50	ug/L		11/02/13 01:02	1
Dichlorodifluoromethane	ND	0.50	ug/L		11/02/13 01:02	1
1,1-Dichloroethane	ND	0.50	ug/L		11/02/13 01:02	1
1,2-Dichloroethane	ND	0.50	ug/L		11/02/13 01:02	1
1,1-Dichloroethene	ND	0.50	ug/L		11/02/13 01:02	1
cis-1,2-Dichloroethene	0.64	0.50	ug/L		11/02/13 01:02	1
trans-1,2-Dichloroethene	ND	0.50	ug/L		11/02/13 01:02	1
1,2-Dichloropropane	ND	0.50			11/02/13 01:02	1
	ND	0.50	ug/L		11/02/13 01:02	1
cis-1,3-Dichloropropene	ND	0.50	ug/L			
trans-1,3-Dichloropropene			ug/L		11/02/13 01:02	1
Ethylbenzene	ND	0.50	ug/L		11/02/13 01:02	1
Hexachlorobutadiene	ND	1.0	ug/L		11/02/13 01:02	1
2-Hexanone	ND	50	ug/L		11/02/13 01:02	1
Isopropylbenzene	ND	0.50	ug/L		11/02/13 01:02	1
4-Isopropyltoluene	ND	1.0	ug/L		11/02/13 01:02	1
Methylene Chloride	ND	5.0	ug/L		11/02/13 01:02	1
4-Methyl-2-pentanone (MIBK)	ND	50	ug/L		11/02/13 01:02	1
Naphthalene	ND	1.0	ug/L		11/02/13 01:02	1
N-Propylbenzene	ND	1.0	ug/L		11/02/13 01:02	1
Styrene	ND	0.50	ug/L		11/02/13 01:02	1
1,1,1,2-Tetrachloroethane	ND	0.50	ug/L		11/02/13 01:02	1
1,1,2,2-Tetrachloroethane	ND	0.50	ug/L		11/02/13 01:02	1
Tetrachloroethene	ND	0.50	ug/L		11/02/13 01:02	1
Toluene	ND	0.50	ug/L		11/02/13 01:02	1
1,2,3-Trichlorobenzene	ND	1.0	ug/L		11/02/13 01:02	1
1,2,4-Trichlorobenzene	ND	1.0	ug/L		11/02/13 01:02	1
1,1,1-Trichloroethane	ND	0.50	ug/L		11/02/13 01:02	1
1,1,2-Trichloroethane	ND	0.50	ug/L		11/02/13 01:02	1
Trichloroethene	1.9	0.50	ug/L		11/02/13 01:02	1
Trichlorofluoromethane	ND	1.0	ug/L		11/02/13 01:02	1
1,2,3-Trichloropropane	ND	0.50	ug/L		11/02/13 01:02	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	0.50	ug/L		11/02/13 01:02	1
1,2,4-Trimethylbenzene	ND	0.50	ug/L		11/02/13 01:02	1
1,3,5-Trimethylbenzene	ND	0.50	ug/L		11/02/13 01:02	1
Vinyl acetate	ND	10	ug/L		11/02/13 01:02	1

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-53383-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Client Sample ID: MP-02-2 Date Collected: 10/28/13 14:36 Lab Sample ID: 720-53383-4

Matrix: Water

Date Collected: 10/28/13 14:36 Date Received: 10/28/13 17:12

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND		0.50		ug/L			11/02/13 01:02	1
Xylenes, Total	ND		1.0		ug/L			11/02/13 01:02	1
2,2-Dichloropropane	ND		0.50		ug/L			11/02/13 01:02	1
Gasoline Range Organics (GRO)	ND		50		ug/L			11/02/13 01:02	1

-C5-C12

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	96		67 - 130		11/02/13 01:02	1
1,2-Dichloroethane-d4 (Surr)	113		72 - 130		11/02/13 01:02	1
Toluene-d8 (Surr)	95		70 - 130		11/02/13 01:02	1

Lab Sample ID: 720-53383-5

Matrix: Water

Date Collected: 10/28/13 14:40 Date Received: 10/28/13 17:12

Client Sample ID: MP-04-3

Date Received: 10/28/13 17:12 Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND	0.50	ug/L		11/02/13 01:28	1
Acetone	ND	50	ug/L		11/02/13 01:28	1
Benzene	ND	0.50	ug/L		11/02/13 01:28	.1
Dichlorobromomethane	ND	0.50	ug/L		11/02/13 01:28	1
Bromobenzene	ND	1.0	ug/L		11/02/13 01:28	1
Chlorobromomethane	ND	1.0	ug/L		11/02/13 01:28	1
Bromoform	ND	1.0	ug/L		11/02/13 01:28	1
Bromomethane	ND	1.0	ug/L		11/02/13 01:28	1
2-Butanone (MEK)	ND	50	ug/L		11/02/13 01:28	1
n-Butylbenzene	ND	1.0	ug/L		11/02/13 01:28	1
sec-Butylbenzene	ND	1.0	ug/L		11/02/13 01:28	1
tert-Butylbenzene	ND	1.0	ug/L		11/02/13 01:28	1
Carbon disulfide	ND	5.0	ug/L		11/02/13 01:28	1
Carbon tetrachloride	ND	0.50	ug/L		11/02/13 01:28	1
Chlorobenzene	ND	0.50	ug/L		11/02/13 01:28	1
Chloroethane	ND	1.0	ug/L		11/02/13 01:28	1
Chloroform	ND	1.0	ug/L		11/02/13 01:28	1
Chloromethane	ND	1.0	ug/L		11/02/13 01:28	1
2-Chlorotoluene	ND	0.50	ug/L		11/02/13 01:28	1
4-Chlorotoluene	ND	0.50	ug/L		11/02/13 01:28	1
Chlorodibromomethane	ND	0.50	ug/L		11/02/13 01:28	1
1,2-Dichlorobenzene	ND	0.50	ug/L		11/02/13 01:28	1
1,3-Dichlorobenzene	ND	0.50	ug/L		11/02/13 01:28	1
1,4-Dichlorobenzene	ND	0.50	ug/L		11/02/13 01:28	1
1,3-Dichloropropane	ND	1.0	ug/L		11/02/13 01:28	1
1,1-Dichloropropene	ND	0.50	ug/L		11/02/13 01:28	1
1,2-Dibromo-3-Chloropropane	ND	1.0	ug/L		11/02/13 01:28	1
Ethylene Dibromide	ND	0.50	ug/L		11/02/13 01:28	1
Dibromomethane	ND	0.50	ug/L		11/02/13 01:28	1
Dichlorodifluoromethane	ND	0.50	ug/L		11/02/13 01:28	1
1,1-Dichloroethane	ND	0.50	ug/L		11/02/13 01:28	1
1,2-Dichloroethane	ND	0.50	ug/L		11/02/13 01:28	1
1,1-Dichloroethene	ND	0.50	ug/L		11/02/13 01:28	1
cis-1,2-Dichloroethene	ND	0.50	ug/L		11/02/13 01:28	1
trans-1,2-Dichloroethene	ND	0.50	ug/L		11/02/13 01:28	1

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-53383-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Client Sample ID: MP-04-3 Date Collected: 10/28/13 14:40 Lab Sample ID: 720-53383-5

Matrix: Water

Date Received: 10/28/13 17:12					Watii	A. Walei
Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
1,2-Dichloropropane	ND	0.50	ug/L		11/02/13 01:28	1
cis-1,3-Dichloropropene	ND	0.50	ug/L		11/02/13 01:28	1
trans-1,3-Dichloropropene	ND	0.50	ug/L		11/02/13 01:28	1
Ethylbenzene	ND	0.50	ug/L		11/02/13 01:28	1
Hexachlorobutadiene	ND	1.0	ug/L		11/02/13 01:28	1
2-Hexanone	ND	50	ug/L		11/02/13 01:28	1
Isopropylbenzene	ND	0.50	ug/L		11/02/13 01:28	1
4-Isopropyltoluene	ND	1.0	ug/L		11/02/13 01:28	1
Methylene Chloride	ND	5.0	ug/L		11/02/13 01:28	1
4-Methyl-2-pentanone (MIBK)	ND	50	ug/L		11/02/13 01:28	1
Naphthalene	ND	1.0	ug/L		11/02/13 01:28	1
N-Propylbenzene	ND	1.0	ug/L		11/02/13 01:28	1
Styrene	ND	0.50	ug/L		11/02/13 01:28	1
1,1,1,2-Tetrachloroethane	ND	0.50	ug/L		11/02/13 01:28	1
1,1,2,2-Tetrachloroethane	ND	0.50	ug/L		11/02/13 01:28	1
Tetrachloroethene	ND	0.50	ug/L		11/02/13 01:28	1
Toluene	ND	0.50	ug/L		11/02/13 01:28	1
1,2,3-Trichlorobenzene	ND	1.0	ug/L		11/02/13 01:28	1
1,2,4-Trichlorobenzene	ND	1.0	ug/L		11/02/13 01:28	1
1,1,1-Trichloroethane	ND	0.50	ug/L		11/02/13 01:28	1
1,1,2-Trichloroethane	ND	0.50	ug/L		11/02/13 01:28	1
Trichloroethene	ND	0.50	ug/L		11/02/13 01:28	1
Trichlorofluoromethane	ND	1.0	ug/L		11/02/13 01:28	1
1,2,3-Trichloropropane	ND	0.50	ug/L		11/02/13 01:28	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	0.50	ug/L		11/02/13 01:28	1
1,2,4-Trimethylbenzene	ND	0.50	ug/L		11/02/13 01:28	1
1,3,5-Trimethylbenzene	ND	0.50	ug/L		11/02/13 01:28	1
Vinyl acetate	ND	10	ug/L		11/02/13 01:28	1
Vinyl chloride	ND	0.50	ug/L		11/02/13 01:28	1
Xylenes, Total	ND	1.0	ug/L		11/02/13 01:28	1
2,2-Dichloropropane	ND	0.50	ug/L		11/02/13 01:28	1
Gasoline Range Organics (GRO)	ND	50	ug/L		11/02/13 01:28	1
-C5-C12						

Surrogate	%Recovery	Qualifier	Limits	Prepared Analyzed	Dil Fac
4-Bromofluorobenzene	96		67 - 130	11/02/13 01:28	1
1,2-Dichloroethane-d4 (Surr)	110		72 - 130	11/02/13 01:28	1
Toluene-d8 (Surr)	96		70 - 130	11/02/13 01:28	1

Client Sample ID: MP-03-3 Date Collected: 10/28/13 15:20 Lab Sample ID: 720-53383-6

Matrix: Water

Date Received: 10/28/13 17:12								
Analyte	Result Quali	fier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND	0.50		ug/L			11/04/13 14:04	1
Acetone	75	50		ug/L			11/04/13 14:04	1
Benzene	ND	0.50		ug/L			11/04/13 14:04	1
Dichlorobromomethane	ND	0.50		ug/L			11/04/13 14:04	1
Bromobenzene	ND	1.0		ug/L			11/04/13 14:04	1
Chlorobromomethane	ND	1.0		ug/L			11/04/13 14:04	1
Bromoform	ND	1.0		ug/L			11/04/13 14:04	1

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-53383-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Client Sample ID: MP-03-3 Date Collected: 10/28/13 15:20 Lab Sample ID: 720-53383-6

Matrix: Water

Date Collected: 10/28/13 15:20					watro	c: Water
Date Received: 10/28/13 17:12 Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
Bromomethane	ND	1.0	ug/L	D Flepaleu	11/04/13 14:04	1
2-Butanone (MEK)	ND	50	ug/L		11/04/13 14:04	1
n-Butylbenzene	ND	1.0	ug/L		11/04/13 14:04	1
sec-Butylbenzene	ND	1.0	ug/L		11/04/13 14:04	1
tert-Butylbenzene	ND	1.0	ug/L		11/04/13 14:04	1
Carbon disulfide	ND	5.0	ug/L		11/04/13 14:04	1
Carbon tetrachloride	ND	0.50	ug/L		11/04/13 14:04	1
Chlorobenzene	ND	0.50	ug/L		11/04/13 14:04	1
Chloroethane	ND	1.0	ug/L		11/04/13 14:04	1
Chloroform	ND	1.0	ug/L		11/04/13 14:04	1
Chloromethane	ND	1.0	ug/L		11/04/13 14:04	1
2-Chlorotoluene	ND	0.50	ug/L		11/04/13 14:04	1
4-Chlorotoluene	ND	0.50	ug/L		11/04/13 14:04	1
Chlorodibromomethane	ND	0.50	ug/L		11/04/13 14:04	1
1,2-Dichlorobenzene	ND	0.50	ug/L		11/04/13 14:04	1
1,3-Dichlorobenzene	ND	0.50	ug/L		11/04/13 14:04	1
1,4-Dichlorobenzene	ND	0.50			11/04/13 14:04	1
	ND	1.0	ug/L		11/04/13 14:04	1
1,3-Dichloropropane	ND	0.50	ug/L		11/04/13 14:04	1
1,1-Dichloropropene			ug/L		11/04/13 14:04	1
1,2-Dibromo-3-Chloropropane	ND	1.0	ug/L			1
Ethylene Dibromide	ND	0.50	ug/L		11/04/13 14:04	
Dibromomethane	ND	0.50	ug/L		11/04/13 14:04	1
Dichlorodifluoromethane	ND	0.50	ug/L		11/04/13 14:04	1
1,1-Dichloroethane	ND	0.50	ug/L		11/04/13 14:04	1
1,2-Dichloroethane	ND	0.50	ug/L		11/04/13 14:04	1
1,1-Dichloroethene	ND	0.50	ug/L		11/04/13 14:04	1
cis-1,2-Dichloroethene	ND	0.50	ug/L		11/04/13 14:04	1
trans-1,2-Dichloroethene	ND	0.50	ug/L		11/04/13 14:04	1
1,2-Dichloropropane	ND	0.50	ug/L		11/04/13 14:04	1
cis-1,3-Dichloropropene	ND	0.50	ug/L		11/04/13 14:04	1
trans-1,3-Dichloropropene	ND	0.50	ug/L		11/04/13 14:04	1
Ethylbenzene	ND	0.50	ug/L		11/04/13 14:04	1
Hexachlorobutadiene	ND	1.0	ug/L		11/04/13 14:04	1
2-Hexanone	ND	50	ug/L		11/04/13 14:04	1
Isopropylbenzene	ND	0.50	ug/L		11/04/13 14:04	1
4-Isopropyltoluene	ND	1.0	ug/L		11/04/13 14:04	1
Methylene Chloride	ND	5.0	ug/L		11/04/13 14:04	1
4-Methyl-2-pentanone (MIBK)	ND	50	ug/L		11/04/13 14:04	1
Naphthalene	ND	1.0	ug/L		11/04/13 14:04	1
N-Propylbenzene	ND	1.0	ug/L		11/04/13 14:04	1
Styrene	ND	0.50	ug/L		11/04/13 14:04	1
1,1,1,2-Tetrachloroethane	ND	0.50	ug/L		11/04/13 14:04	1
1,1,2,2-Tetrachloroethane	ND	0.50	ug/L		11/04/13 14:04	1
Tetrachloroethene	ND	0.50	ug/L		11/04/13 14:04	1
Toluene	ND	0.50	ug/L		11/04/13 14:04	1
1,2,3-Trichlorobenzene	ND	1.0	ug/L		11/04/13 14:04	1
1,2,4-Trichlorobenzene	ND	1.0	ug/L		11/04/13 14:04	1
1,1,1-Trichloroethane	ND	0.50	ug/L		11/04/13 14:04	1
1,1,2-Trichloroethane	ND	0.50	ug/L		11/04/13 14:04	1

TestAmerica Pleasanton

Page 14 of 50

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-53383-1

Method: 8260B/CA_LUFTMS - 8260B / CA_LUFT MS (Continued)

Client Sample ID: MP-03-3

Lab Sample ID: 720-53383-6

Matrix: Water

Date	Collected:	10/28/13	15:20
Date	Deseived.	40/20/42	47.42

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Trichloroethene	ND		0.50		ug/L			11/04/13 14:04	1
Trichlorofluoromethane	ND		1.0		ug/L			11/04/13 14:04	1
1,2,3-Trichloropropane	ND		0.50		ug/L			11/04/13 14:04	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50		ug/L			11/04/13 14:04	1
1,2,4-Trimethylbenzene	ND		0.50		ug/L			11/04/13 14:04	1
1,3,5-Trimethylbenzene	ND		0.50		ug/L			11/04/13 14:04	1
Vinyl acetate	ND		10		ug/L			11/04/13 14:04	1
Vinyl chloride	ND		0.50		ug/L			11/04/13 14:04	1
Xylenes, Total	ND		1.0		ug/L			11/04/13 14:04	1
2,2-Dichloropropane	ND		0.50		ug/L			11/04/13 14:04	1
Gasoline Range Organics (GRO) -C5-C12	ND		50		ug/L			11/04/13 14:04	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	96		67 - 130		11/04/13 14:04	1
1,2-Dichloroethane-d4 (Surr)	107		72 - 130		11/04/13 14:04	1
Toluene-d8 (Surr)	96		70 - 130		11/04/13 14:04	1

Client Sample ID: MP-02-3

Lab Sample ID: 720-53383-7

Matrix: Water

Date Collected: 10/28/13 15:32

Date Received: 10/28/13 17:12 Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND ND	0.50	ug/L	D Flepared	11/04/13 14:44	Dii Fac
Acetone	ND	50	ug/L		11/04/13 14:44	1
Benzene	ND	0.50	ug/L		11/04/13 14:44	1
Dichlorobromomethane	ND	0.50	ug/L		11/04/13 14:44	1
Bromobenzene	ND	1.0	-		11/04/13 14:44	
Chlorobromomethane	ND	1.0	ug/L		11/04/13 14:44	
			ug/L			1
Bromoform	ND	1.0	ug/L		11/04/13 14:44	1
Bromomethane	ND	1.0	ug/L		11/04/13 14:44	1
2-Butanone (MEK)	ND	50	ug/L		11/04/13 14:44	1
n-Butylbenzene	ND	1.0	ug/L		11/04/13 14:44	1
sec-Butylbenzene	ND	1.0	ug/L		11/04/13 14:44	1
tert-Butylbenzene	ND	1.0	ug/L		11/04/13 14:44	1
Carbon disulfide	ND	5.0	ug/L		11/04/13 14:44	1
Carbon tetrachloride	ND	0.50	ug/L		11/04/13 14:44	1
Chlorobenzene	ND	0.50	ug/L		11/04/13 14:44	1
Chloroethane	ND	1.0	ug/L		11/04/13 14:44	1
Chloroform	ND	1.0	ug/L		11/04/13 14:44	1
Chloromethane	ND	1.0	ug/L		11/04/13 14:44	1
2-Chlorotoluene	ND	0.50	ug/L		11/04/13 14:44	1
4-Chlorotoluene	ND	0.50	ug/L		11/04/13 14:44	1
Chlorodibromomethane	ND	0.50	ug/L		11/04/13 14:44	1
1,2-Dichlorobenzene	ND	0.50	ug/L		11/04/13 14:44	1
1,3-Dichlorobenzene	ND	0.50	ug/L		11/04/13 14:44	1
1,4-Dichlorobenzene	ND	0.50	ug/L		11/04/13 14:44	1
1,3-Dichloropropane	ND	1.0	ug/L		11/04/13 14:44	1
1,1-Dichloropropene	ND	0.50	ug/L		11/04/13 14:44	1
1,2-Dibromo-3-Chloropropane	ND	1.0	ug/L		11/04/13 14:44	1
Ethylene Dibromide	ND	0.50	ug/L		11/04/13 14:44	1

TestAmerica Pleasanton

Page 15 of 50

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-53383-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Client Sample ID: MP-02-3 Date Collected: 10/28/13 15:32 Date Received: 10/28/13 17:12 Lab Sample ID: 720-53383-7

Matrix: Water

Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
Dibromomethane	ND	0.50	ug/L		11/04/13 14:44	1
Dichlorodifluoromethane	ND	0.50	ug/L		11/04/13 14:44	1
1,1-Dichloroethane	ND	0.50	ug/L		11/04/13 14:44	1
1,2-Dichloroethane	ND	0.50	ug/L		11/04/13 14:44	1
1,1-Dichloroethene	ND	0.50	ug/L		11/04/13 14:44	1
cis-1,2-Dichloroethene	ND	0.50	ug/L		11/04/13 14:44	1
trans-1,2-Dichloroethene	ND	0.50	ug/L		11/04/13 14:44	1
1,2-Dichloropropane	ND	0.50	ug/L		11/04/13 14:44	1
cis-1,3-Dichloropropene	ND	0.50	ug/L		11/04/13 14:44	1
trans-1,3-Dichloropropene	ND	0.50	ug/L		11/04/13 14:44	1
Ethylbenzene	ND	0.50	ug/L		11/04/13 14:44	1
Hexachlorobutadiene	ND	1.0	ug/L		11/04/13 14:44	1
2-Hexanone	ND	50	ug/L		11/04/13 14:44	1
Isopropylbenzene	ND	0.50	ug/L		11/04/13 14:44	1
4-Isopropyltoluene	ND	1.0	ug/L		11/04/13 14:44	1
Methylene Chloride	ND	5.0	ug/L		11/04/13 14:44	1
4-Methyl-2-pentanone (MIBK)	ND	50	ug/L		11/04/13 14:44	1
Naphthalene	ND	1.0	ug/L		11/04/13 14:44	1
N-Propylbenzene	ND	1.0	ug/L		11/04/13 14:44	1
Styrene	ND	0.50	ug/L		11/04/13 14:44	1
1,1,1,2-Tetrachloroethane	ND	0.50	ug/L		11/04/13 14:44	1
1,1,2,2-Tetrachloroethane	ND	0.50	ug/L		11/04/13 14:44	1
Tetrachloroethene	ND	0.50	ug/L		11/04/13 14:44	1
Toluene	ND	0.50	ug/L		11/04/13 14:44	1
1,2,3-Trichlorobenzene	ND	1.0	ug/L		11/04/13 14:44	1
1,2,4-Trichlorobenzene	ND	1.0	ug/L		11/04/13 14:44	1
1,1,1-Trichloroethane	ND	0.50	ug/L		11/04/13 14:44	1
1,1,2-Trichloroethane	ND	0.50	ug/L		11/04/13 14:44	1
Trichloroethene	0.76	0.50	ug/L		11/04/13 14:44	1
Trichlorofluoromethane	ND	1.0	ug/L		11/04/13 14:44	1
1,2,3-Trichloropropane	ND	0.50	ug/L		11/04/13 14:44	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	0.50	ug/L		11/04/13 14:44	1
1,2,4-Trimethylbenzene	ND	0.50	ug/L		11/04/13 14:44	1
1,3,5-Trimethylbenzene	ND	0.50	ug/L		11/04/13 14:44	1
Vinyl acetate	ND	10	ug/L		11/04/13 14:44	1
Vinyl chloride	ND	0.50	ug/L		11/04/13 14:44	1
Xylenes, Total	ND	1.0	ug/L		11/04/13 14:44	1
2,2-Dichloropropane	ND	0.50	ug/L		11/04/13 14:44	1
Gasoline Range Organics (GRO) -C5-C12	ND	50	ug/L		11/04/13 14:44	1

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	97	67 - 130		11/04/13 14:44	1
1,2-Dichloroethane-d4 (Surr)	112	72 - 130		11/04/13 14:44	1
Toluene-d8 (Surr)	95	70 - 130		11/04/13 14:44	1

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-53383-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS

Lab Sample ID: MB 720-147530/4

Matrix: Water

Analysis Batch: 147530

Client Sample ID: Method Blank

Prep Type: Total/NA

	MB	MB				
Analyte	Result	Qualifier RL	MDL Unit	D Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND	0.50	ug/L		11/01/13 09:15	1
Acetone	ND	50	ug/L		11/01/13 09:15	1
Benzene	ND	0.50	ug/L		11/01/13 09:15	1
Dichlorobromomethane	ND	0.50	ug/L		11/01/13 09:15	1
Bromobenzene	ND	1.0	ug/L		11/01/13 09:15	1
Chlorobromomethane	ND	1.0	ug/L		11/01/13 09:15	1
Bromoform	ND	1.0	ug/L		11/01/13 09:15	1
Bromomethane	ND	1.0	ug/L		11/01/13 09:15	1
2-Butanone (MEK)	ND	50	ug/L		11/01/13 09:15	1
n-Butylbenzene	ND	1.0	ug/L		11/01/13 09:15	1
sec-Butylbenzene	ND	1.0	ug/L		11/01/13 09:15	1
tert-Butylbenzene	ND	1.0	ug/L		11/01/13 09:15	1
Carbon disulfide	ND	5.0	ug/L		11/01/13 09:15	1
Carbon tetrachloride	ND	0.50	ug/L		11/01/13 09:15	1
Chlorobenzene	ND	0.50	ug/L		11/01/13 09:15	1
Chloroethane	ND	1.0	ug/L		11/01/13 09:15	1
Chloroform	ND	1.0	ug/L		11/01/13 09:15	1
Chloromethane	ND	1.0	ug/L		11/01/13 09:15	1
2-Chlorotoluene	ND	0.50	ug/L		11/01/13 09:15	1
4-Chlorotoluene	ND	0.50	ug/L		11/01/13 09:15	1
Chlorodibromomethane	ND	0.50	ug/L		11/01/13 09:15	1
1,2-Dichlorobenzene	ND	0.50	ug/L		11/01/13 09:15	1
1,3-Dichlorobenzene	ND	0.50	ug/L		11/01/13 09:15	1
1,4-Dichlorobenzene	ND	0.50	ug/L		11/01/13 09:15	1
1,3-Dichloropropane	ND	1.0	ug/L		11/01/13 09:15	1
1,1-Dichloropropene	ND	0.50	ug/L		11/01/13 09:15	1
1,2-Dibromo-3-Chloropropane	ND	1.0	ug/L		11/01/13 09:15	1
Ethylene Dibromide	ND	0.50	ug/L		11/01/13 09:15	1
Dibromomethane	ND	0.50	ug/L		11/01/13 09:15	1
Dichlorodifluoromethane	ND	0.50	ug/L		11/01/13 09:15	1
1,1-Dichloroethane	ND	0.50	ug/L		11/01/13 09:15	1
1,2-Dichloroethane	ND	0.50	ug/L		11/01/13 09:15	1
1,1-Dichloroethene	ND	0.50	ug/L		11/01/13 09:15	1
cis-1,2-Dichloroethene	ND	0.50	ug/L		11/01/13 09:15	1
trans-1,2-Dichloroethene	ND	0.50	ug/L		11/01/13 09:15	1
1,2-Dichloropropane	ND	0.50	ug/L		11/01/13 09:15	1
cis-1,3-Dichloropropene	ND	0.50	ug/L		11/01/13 09:15	1
trans-1,3-Dichloropropene	ND	0.50	ug/L		11/01/13 09:15	1
Ethylbenzene	ND	0.50	ug/L		11/01/13 09:15	1
Hexachlorobutadiene	ND	1.0	ug/L		11/01/13 09:15	1
2-Hexanone	ND	50	ug/L		11/01/13 09:15	1
Isopropylbenzene	ND	0.50	ug/L		11/01/13 09:15	1
4-isopropyitoluene	ND	1.0	ug/L		11/01/13 09:15	1
Methylene Chloride	ND	5.0	ug/L		11/01/13 09:15	1
4-Methyl-2-pentanone (MIBK)	ND	50	ug/L		11/01/13 09:15	1
Naphthalene	ND	1.0	ug/L		11/01/13 09:15	1
N-Propylbenzene	ND	1.0	ug/L		11/01/13 09:15	1
Styrene	ND	0.50	ug/L		11/01/13 09:15	1

TestAmerica Pleasanton

Page 17 of 50

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-53383-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: MB 720-147530/4

Matrix: Water Analysis Batch: 147530 Client Sample ID: Method Blank

Prep Type: Total/NA

	MB	MB						
Analyte	Result	Qualifier	RL	MDL Unit	ם	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND		0.50	ug/L			11/01/13 09:15	1
1,1,2,2-Tetrachloroethane	ND		0.50	ug/L			11/01/13 09:15	1
Tetrachloroethene	ND		0.50	ug/L			11/01/13 09:15	1
Toluene	ND		0.50	ug/L			11/01/13 09:15	1
1,2,3-Trichlorobenzene	ND		1.0	ug/L			11/01/13 09:15	1
1,2,4-Trichlorobenzene	ND		1.0	ug/L			11/01/13 09:15	1
1,1,1-Trichloroethane	ND		0.50	ug/L			11/01/13 09:15	1
1,1,2-Trichloroethane	ND		0.50	ug/L			11/01/13 09:15	1
Trichloroethene	ND		0.50	ug/L			11/01/13 09:15	1
Trichlorofluoromethane	ND		1.0	ug/L			11/01/13 09:15	1
1,2,3-Trichloropropane	ND		0.50	ug/L			11/01/13 09:15	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50	ug/L			11/01/13 09:15	1
1,2,4-Trimethylbenzene	ND		0.50	ug/L			11/01/13 09:15	1
1,3,5-Trimethylbenzene	ND		0.50	ug/L			11/01/13 09:15	1
Vinyl acetate	ND		10	ug/L			11/01/13 09:15	1
Vinyl chloride	ND		0.50	ug/L			11/01/13 09:15	1
Xylenes, Total	ND		1.0	ug/L			11/01/13 09:15	1
2,2-Dichloropropane	ND		0.50	ug/L			11/01/13 09:15	1
Gasoline Range Organics (GRO) -C5-C12	ND		50	ug/L			11/01/13 09:15	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	97		67 - 130		11/01/13 09:15	1
1,2-Dichloroethane-d4 (Surr)	102		72 - 130		11/01/13 09:15	1
Toluene-d8 (Surr)	96		70 - 130		11/01/13 09:15	1

Lab Sample ID: LCS 720-147530/5

Matrix: Water

Analysis Batch: 147530

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Analysis Batch: 147530	0-11-	1.00	1.00				0/ Dan	
2000	Spike		LCS	12.00		-1.2	%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Methyl tert-butyl ether	25.0	26.8		ug/L		107	62 - 130	
Acetone	125	122		ug/L		98	26 - 180	
Benzene	25.0	24.2		ug/L		97	79 - 130	
Dichlorobromomethane	25.0	25.6		ug/L		102	70 - 130	
Bromobenzene	25.0	21.8		ug/L		87	70 - 130	
Chlorobromomethane	25.0	25.5		ug/L		102	70 - 130	
Bromoform	25.0	27.9		ug/L		111	68 - 136	
Bromomethane	25.0	28.2		ug/L		113	43 - 151	
2-Butanone (MEK)	125	144		ug/L		115	54 - 130	
n-Butylbenzene	25.0	22.9		ug/L		92	70 - 142	
sec-Butylbenzene	25.0	22.4		ug/L		90	70 - 134	
tert-Butylbenzene	25.0	22.4		ug/L		90	70 - 135	
Carbon disulfide	25.0	28.4		ug/L		114	58 - 130	
Carbon tetrachloride	25.0	32.0		ug/L		128	70 - 146	
Chlorobenzene	25.0	24.1		ug/L		96	70 - 130	
Chloroethane	25.0	24.9		ug/L		100	62 - 138	
Chloroform	25.0	26.6		ug/L		106	70 - 130	

TestAmerica Pleasanton

Page 18 of 50

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-53383-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: LCS 720-147530/5

Matrix: Water

Analysis Batch: 147530

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloromethane	25.0	22.7		ug/L		91	52 - 175	
2-Chlorotoluene	25.0	22.1		ug/L		88	70 - 130	
4-Chlorotoluene	25.0	21.7		ug/L		87	70 - 130	
Chlorodibromomethane	25.0	27.5		ug/L		110	70 - 145	
1,2-Dichlorobenzene	25.0	21.2		ug/L		85	70 - 130	
1,3-Dichlorobenzene	25.0	22.1		ug/L		88	70 - 130	
1,4-Dichlorobenzene	25.0	22.5		ug/L		90	70 - 130	
1,3-Dichloropropane	25.0	24.5		ug/L		98	70 - 130	
1,1-Dichloropropene	25.0	29.1		ug/L		116	70 - 130	
1,2-Dibromo-3-Chloropropane	25.0	23.6		ug/L		95	70 - 136	
Ethylene Dibromide	25.0	27.3		ug/L		109	70 - 130	
Dibromomethane	25.0	26.6		ug/L		106	70 - 130	
Dichlorodifluoromethane	25.0	24.8		ug/L		99	34 - 132	
1,1-Dichloroethane	25.0	25.3		ug/L		101	70 - 130	
1,2-Dichloroethane	25.0	27.1		ug/L		108	61 - 132	
1,1-Dichloroethene	25.0	25.1		ug/L		100	64 - 128	
cis-1,2-Dichloroethene	25.0	26.0		ug/L		104	70 - 130	
trans-1,2-Dichloroethene	25.0	24.5		ug/L		98	68 _ 130	
1,2-Dichloropropane	25.0	22.2		ug/L		89	70 - 130	
cis-1,3-Dichloropropene	25.0	25.6		ug/L		102	70 - 130	
trans-1,3-Dichloropropene	25.0	27.4		ug/L		110	70 - 140	
Ethylbenzène	25.0	25.1		ug/L		101	80 - 120	
Hexachlorobutadiene	25.0	22.1		ug/L		88	70 - 130	
2-Hexanone	125	117		ug/L		93	60 - 164	
Isopropylbenzene	25.0	25.9		ug/L		104	70 - 130	
4-Isopropyltoluene	25.0	22.8		ug/L		91	70 - 130	
Methylene Chloride	25.0	21.1		ug/L		85	70 - 147	
4-Methyl-2-pentanone (MIBK)	125	116		ug/L		93	58 - 130	
Naphthalene	25.0	21.1		ug/L		85	70 - 130	
N-Propylbenzene	25.0	22.3		ug/L		89	70 - 130	
Styrene	25.0	24.7		ug/L		99	70 - 130	
1,1,1,2-Tetrachloroethane	25.0	25.1		ug/L	185	100	70 - 130	
1,1,2,2-Tetrachloroethane	25.0	20.7		ug/L		83	70 - 130	
Tetrachloroethene	25.0	28.4		ug/L		114	70 - 130	
Toluene	25.0	24.8		ug/L		99	78 - 120	
1,2,3-Trichlorobenzene	25.0	19.8		ug/L		79	70 - 130	
1,2,4-Trichlorobenzene	25.0	21.0		ug/L		84	70 - 130	
1,1,1-Trichloroethane	25.0	31.4		ug/L		126	70 - 130	
1,1,2-Trichloroethane	25.0	25.0		ug/L		100	70 - 130	
Trichloroethene	25.0	26.0		ug/L		104	70 - 130	
Trichlorofluoromethane	25.0	31.8		ug/L		127	66 - 132	
1,2,3-Trichloropropane	25.0	23.6		ug/L		95	70 - 130	
1,1,2-Trichloro-1,2,2-trifluoroetha	25.0	28.8		ug/L		115	42 - 162	
ne	135							
1,2,4-Trimethylbenzene	25.0	22.2		ug/L		89	70 - 132	
1,3,5-Trimethylbenzene	25.0	22.6		ug/L		90	70 - 130	
Vinyl acetate	25.0	31.0		ug/L		124	43 - 163	
Vinyl chloride	25.0	24.8		ug/L		99	54 - 135	

TestAmerica Pleasanton

Page 19 of 50

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-53383-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: LCS 720-147530/5

Analysis Batch: 147530

Matrix: Water

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
m-Xylene & p-Xylene	50.0	51.1		ug/L		102	70 - 142
o-Xylene	25.0	25.5		ug/L		102	70 - 130
2,2-Dichloropropane	25.0	32.4		ug/L		129	70 - 140

LCS LCS Surrogate %Recovery Qualifier Limits 4-Bromofluorobenzene 101 67 - 130 1,2-Dichloroethane-d4 (Surr) 96 72 - 130 Toluene-d8 (Surr) 97 70 - 130

Lab Sample ID: LCS 720-147530/7

Matrix: Water

Analysis Batch: 147530

Client Sample ID: Lab Control Sample Prep Type: Total/NA

%Rec. Limits

Spike LCS LCS Added Result Qualifier Analyte Unit %Rec 62 - 120 500 435 ug/L 87 Gasoline Range Organics (GRO) -C5-C12

LCS LCS Surrogate %Recovery Qualifier Limits 67 - 130 4-Bromofluorobenzene 101 1,2-Dichloroethane-d4 (Surr) 72 - 130 103 Toluene-d8 (Surr) 97 70 - 130

Lab Sample ID: LCSD 720-147530/6

Matrix: Water

Analysis Batch: 147530

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Analysis batch. 147550	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Methyl tert-butyl ether	25.0	26.7		ug/L		107	62 - 130	0	20
Acetone	125	121		ug/L		97	26 - 180	1	30
Benzene	25.0	24.2		ug/L		97	79 - 130	0	20
Dichlorobromomethane	25.0	26.6		ug/L		106	70 - 130	4	20
Bromobenzene	25.0	24.1		ug/L		97	70 - 130	10	20
Chlorobromomethane	25.0	25.8		ug/L		103	70 - 130	1	20
Bromoform	25.0	28.0		ug/L		112	68 - 136	0	20
Bromomethane	25.0	28.8		ug/L		115	43 - 151	2	20
2-Butanone (MEK)	125	146		ug/L		116	54 - 130	1	20
n-Butylbenzene	25.0	25.0		ug/L		100	70 - 142	9	20
sec-Butylbenzene	25.0	24.6		ug/L		99	70 - 134	10	20
tert-Butylbenzene	25.0	24.8		ug/L		99	70 - 135	10	20
Carbon disulfide	25.0	28.3		ug/L		113	58 - 130	0	20
Carbon tetrachloride	25.0	31.6		ug/L		126	70 - 146	1	20
Chlorobenzene	25.0	24.7		ug/L		99	70 - 130	2	20
Chloroethane	25.0	25.1		ug/L		100	62 - 138	1	20
Chloroform	25.0	26.4		ug/L		106	70 - 130	1	20
Chloromethane	25.0	23.2		ug/L		93	52 - 175	2	20
2-Chlorotoluene	25.0	24.6		ug/L		99	70 - 130	11	20
4-Chlorotoluene	25.0	24.0		ug/L		96	70 - 130	10	20
Chlorodibromomethane	25.0	27.9		ug/L		112	70 - 145	2	20

TestAmerica Pleasanton

Page 20 of 50

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-53383-

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: LCSD 720-147530/6

Matrix: Water

Analysis Batch: 147530

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Analysis Batch. 147550	Spike	LCSD	LCSD			%Rec.		RPD
Analyte	Added	Result	Qualifier Unit	D	%Rec	Limits	RPD	Limit
1,2-Dichlorobenzene	25.0	23.4	ug/L		93	70 - 130	10	20
1,3-Dichlorobenzene	25.0	24.3	ug/L		97	70 - 130	9	20
1,4-Dichlorobenzene	25.0	24.4	ug/L		98	70 - 130	8	20
1,3-Dichloropropane	25.0	25.6	ug/L		103	70 - 130	5	20
1,1-Dichloropropene	25.0	28.6	ug/L		115	70 - 130	1	20
1,2-Dibromo-3-Chloropropane	25.0	26.8	ug/L		107	70 - 136	13	20
Ethylene Dibromide	25.0	27.7	ug/L		111	70 - 130	2	20
Dibromomethane	25.0	27.3	ug/L		109	70 - 130	3	20
Dichlorodifluoromethane	25.0	24.0	ug/L		96	34 - 132	3	20
1,1-Dichloroethane	25.0	25.1	ug/L		100	70 - 130	1	20
1,2-Dichloroethane	25.0	27.1	ug/L		109	61 - 132	0	20
1,1-Dichloroethene	25.0	25.6	ug/L		102	64 - 128	2	20
cis-1,2-Dichloroethene	25.0	25.7	ug/L		103	70 - 130	1	20
trans-1,2-Dichloroethene	25.0	25.1	ug/L		100	68 - 130	2	20
1,2-Dichloropropane	25.0	22.4	ug/L		90	70 - 130	1	20
cis-1,3-Dichloropropene	25.0	25.7	ug/L		103	70 - 130	0	20
trans-1,3-Dichloropropene	25.0	27.5	ug/L		110	70 - 140	0	20
Ethylbenzene	25.0	25.5	ug/L		102	80 - 120	2	20
Hexachlorobutadiene	25.0	24.0	ug/L		96	70 - 130	8	20
2-Hexanone	125	118	ug/L		95	60 - 164	1	20
Isopropylbenzene	25.0	26.5	ug/L		106	70 - 130	2	20
4-Isopropyltoluene	25.0	25.0	ug/L		100	70 - 130	9	20
Methylene Chloride	25.0	20.9	ug/L		83	70 - 147	1	20
4-Methyl-2-pentanone (MIBK)	125	115	ug/L		92	58 - 130	1	20
Naphthalene	25.0	23.2	ug/L		93	70 - 130	9	20
N-Propylbenzene	25.0	24.7	ug/L		99	70 - 130	10	20
Styrene	25.0	25.3	ug/L		101	70 - 130	2	20
1,1,1,2-Tetrachloroethane	25.0	25.6	ug/L		102	70 - 130	2	20
1,1,2,2-Tetrachloroethane	25.0	22.9	ug/L		92	70 - 130	10	20
Tetrachloroethene	25.0	28.6	ug/L		114	70 - 130	0	20
Toluene	25.0	25.0	ug/L		100	78 - 120	1	20
1,2,3-Trichlorobenzene	25.0	21.8	ug/L		87	70 - 130	9	20
1,2,4-Trichlorobenzene	25.0	22.7	ug/L		91	70 - 130	8	20
1,1,1-Trichloroethane	25.0	31.5	ug/L		126	70 - 130	0	20
1,1,2-Trichloroethane	25.0	25.4	ug/L		102	70 - 130	2	20
Trichloroethene	25.0	25.9	ug/L		104	70 - 130	0	20
Trichlorofluoromethane	25.0	31.6	ug/L		126	66 - 132	1	20
1,2,3-Trichloropropane	25.0	26.5	ug/L		106	70 - 130	12	20
1,1,2-Trichloro-1,2,2-trifluoroetha	25.0	28.8	ug/L		115	42 - 162	0	20
ne	20.0	20.0	ug/ L		110	12 - 102	v	
1,2,4-Trimethylbenzene	25.0	24.3	ug/L		97	70 - 132	9	20
1,3,5-Trimethylbenzene	25.0	24.8	ug/L		99	70 - 130	9	20
Vinyl acetate	25.0	30.4	ug/L		122	43 - 163	2	20
Vinyl chloride	25.0	25.1	ug/L		100	54 - 135	1	20
m-Xylene & p-Xylene	50.0	52.1	ug/L		104	70 - 142	2	20
o-Xylene	25.0	26.0	ug/L		104	70 - 130	2	20
2,2-Dichloropropane	25.0	31.5	ug/L		126	70 - 140	3	20

TestAmerica Pleasanton

Page 21 of 50

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-53383-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: LCSD 720-147530/6

Matrix: Water

Analysis Batch: 147530

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	96		67 - 130
1,2-Dichloroethane-d4 (Surr)	99		72 - 130
Toluene-d8 (Surr)	95		70 - 130

Lab Sample ID: LCSD 720-147530/8

Matrix: Water

Analysis Batch: 147530

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

,,	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics (GRO)	500	434		ug/L		87	62 - 120	0	20
-C5-C12									

 Surrogate
 %Recovery
 Qualifier
 Limits

 4-Bromofluorobenzene
 99
 67 - 130

 1,2-Dichloroethane-d4 (Surr)
 105
 72 - 130

 Toluene-d8 (Surr)
 98
 70 - 130

Lab Sample ID: MB 720-147534/4

Matrix: Water

1,1-Dichloropropene

Analysis Batch: 147534

Client Sample ID: Method Blank

Prep Type: Total/NA

Analysis Batch: 147534								
Analyte	MB Result		MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND	0.50		ug/L			11/01/13 08:57	1
Acetone	ND	50	1.	ug/L			11/01/13 08:57	1
Benzene	ND	0.50		ug/L			11/01/13 08:57	1
Dichlorobromomethane	ND	0.50		ug/L			11/01/13 08:57	1
Bromobenzene	ND	1.0		ug/L			11/01/13 08:57	1
Chlorobromomethane	ND	1.0		ug/L			11/01/13 08:57	1
Bromoform	ND	1.0		ug/L			11/01/13 08:57	1
Bromomethane	ND	1.0		ug/L			11/01/13 08:57	1
2-Butanone (MEK)	ND	50		ug/L			11/01/13 08:57	1
n-Butylbenzene	ND	1.0		ug/L			11/01/13 08:57	1
sec-Butylbenzene	ND	1.0		ug/L			11/01/13 08:57	1
tert-Butylbenzene	ND	1.0		ug/L			11/01/13 08:57	1
Carbon disulfide	ND	5.0		ug/L			11/01/13 08:57	1
Carbon tetrachloride	ND	0.50		ug/L			11/01/13 08:57	1
Chlorobenzene	ND	0.50		ug/L			11/01/13 08:57	1
Chloroethane	ND	1.0		ug/L			11/01/13 08:57	1
Chloroform	ND	1.0		ug/L			11/01/13 08:57	1
Chloromethane	ND	1.0		ug/L			11/01/13 08:57	1
2-Chlorotoluene	ND	0.50		ug/L			11/01/13 08:57	1
4-Chlorotoluene	ND	0.50		ug/L			11/01/13 08:57	1
Chlorodibromomethane	ND	0.50		ug/L			11/01/13 08:57	1
1,2-Dichlorobenzene	ND	0.50		ug/L			11/01/13 08:57	1
1,3-Dichlorobenzene	ND	0.50		ug/L			11/01/13 08:57	1
1,4-Dichlorobenzene	ND	0.50		ug/L			11/01/13 08:57	1
1,3-Dichloropropane	ND	1.0		ug/L			11/01/13 08:57	1

TestAmerica Pleasanton

11/01/13 08:57

Page 22 of 50

0.50

ug/L

ND

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-53383-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: MB 720-147534/4

Matrix: Water

Surrogate

4-Bromofluorobenzene

Toluene-d8 (Surr)

1,2-Dichloroethane-d4 (Surr)

Analysis Batch: 147534

Client Sample ID: Method Blank

Prep Type: Total/NA

	MB						
	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromo-3-Chloropropane		1.0	ug/L			11/01/13 08:57	1
Ethylene Dibromide NE		0.50	ug/L			11/01/13 08:57	1
Dibromomethane		0.50	ug/L			11/01/13 08:57	1
Dichlorodifluoromethane NE		0.50	ug/L			11/01/13 08:57	1
1,1-Dichloroethane NE		0.50	ug/L			11/01/13 08:57	1
1,2-Dichloroethane NE		0.50	ug/L			11/01/13 08:57	1
1,1-Dichloroethene NE		0.50	ug/L			11/01/13 08:57	1
cis-1,2-Dichloroethene NE		0.50	ug/L			11/01/13 08:57	1
trans-1,2-Dichloroethene NE		0.50	ug/L			11/01/13 08:57	1
1,2-Dichloropropane ND		0.50	ug/L			11/01/13 08:57	1
cis-1,3-Dichloropropene NE		0.50	ug/L			11/01/13 08:57	1
trans-1,3-Dichloropropene NE		0.50	ug/L			11/01/13 08:57	1
Ethylbenzene		0.50	ug/L			11/01/13 08:57	1
Hexachlorobutadiene ND		1.0	ug/L			11/01/13 08:57	1
2-Hexanone NC		50	ug/L			11/01/13 08:57	1
Isopropylbenzene NE		0.50	ug/L			11/01/13 08:57	1
4-Isopropyltoluene NE		1.0	ug/L			11/01/13 08:57	1
Methylene Chloride NE		5.0	ug/L			11/01/13 08:57	1
4-Methyl-2-pentanone (MIBK)		50	ug/L			11/01/13 08:57	1
Naphthalene		1.0	ug/L			11/01/13 08:57	1
N-Propylbenzene NE		1.0	ug/L			11/01/13 08:57	1
Styrene		0.50	ug/L			11/01/13 08:57	1
1,1,1,2-Tetrachloroethane ND		0.50	ug/L			11/01/13 08:57	1
1,1,2,2-Tetrachloroethane		0.50	ug/L			11/01/13 08:57	1
Tetrachloroethene NC		0.50	ug/L			11/01/13 08:57	1
Toluene		0.50	ug/L			11/01/13 08:57	1
1,2,3-Trichlorobenzene ND		1.0	ug/L			11/01/13 08:57	1
1,2,4-Trichlorobenzene NC		1.0	ug/L			11/01/13 08:57	1
1,1,1-Trichloroethane		0.50	ug/L			11/01/13 08:57	1
1,1,2-Trichloroethane		0.50	ug/L			11/01/13 08:57	1
Trichloroethene ND		0.50	ug/L			11/01/13 08:57	1
Trichlorofluoromethane ND		1.0	ug/L			11/01/13 08:57	1
1,2,3-Trichloropropane ND		0.50	ug/L			11/01/13 08:57	1
1,1,2-Trichloro-1,2,2-trifluoroethane		0.50	ug/L			11/01/13 08:57	1
1,2,4-Trimethylbenzene ND		0.50	ug/L			11/01/13 08:57	1
1,3,5-Trimethylbenzene ND		0.50	ug/L			11/01/13 08:57	1
Vinyl acetate ND		10	ug/L			11/01/13 08:57	1
Vinyl chloride ND		0.50	ug/L			11/01/13 08:57	1
Kylenes, Total ND		1.0	ug/L			11/01/13 08:57	1
2,2-Dichloropropane ND		0.50	ug/L			11/01/13 08:57	1
Gasoline Range Organics (GRO) ND		50	ug/L			11/01/13 08:57	1

TestAmerica Pleasanton

Analyzed

11/01/13 08:57

11/01/13 08:57

11/01/13 08:57

Prepared

Limits

67 - 130

72 - 130

70 - 130

MB MB

%Recovery Qualifier

95

93

97

Dil Fac

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-53383-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: LCS 720-147534/5

Matrix: Water

Analysis Batch: 147534

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Allalysis batch. 147334	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Methyl tert-butyl ether	25.0	25.6		ug/L		103	62 - 130
Acetone	125	117		ug/L		93	26 - 180
Benzene	25.0	25.7		ug/L		103	79 - 130
Dichlorobromomethane	25.0	25.5		ug/L		102	70 - 130
Bromobenzene	25.0	24.6		ug/L		98	70 - 130
Chlorobromomethane	25.0	28.3		ug/L		113	70 - 130
Bromoform	25.0	27.9		ug/L		112	68 - 136
Bromomethane	25.0	23.5		ug/L		94	43 - 151
2-Butanone (MEK)	125	138		ug/L		110	54 - 130
n-Butylbenzene	25.0	24.2		ug/L		97	70 - 142
sec-Butylbenzene	25.0	24.3		ug/L		97	70 - 134
tert-Butylbenzene	25.0	24.9		ug/L		100	70 - 135
Carbon disulfide	25.0	26.2		ug/L		105	58 - 130
Carbon tetrachloride	25.0	28.4		ug/L		114	70 - 146
Chlorobenzene	25.0	25.0		ug/L		100	70 - 130
Chloroethane	25.0	22.3		ug/L		89	62 - 138
Chloroform	25.0	25.6		ug/L		102	70 - 130
Chloromethane	25.0	20.7		ug/L		83	52 - 175
2-Chlorotoluene	25.0	23.7		ug/L		95	70 - 130
4-Chlorotoluene	25.0	22.8		ug/L		91	70 - 130
Chlorodibromomethane	25.0	27.2		ug/L		109	70 - 145
1,2-Dichlorobenzene	25.0	24.3		ug/L		97	70 - 130
1,3-Dichlorobenzene	25.0	25.0		ug/L		100	70 - 130
1,4-Dichlorobenzene	25.0	24.8		ug/L		99	70 - 130
1,3-Dichloropropane	25.0	24.9		ug/L		100	70 - 130
1,1-Dichloropropene	25.0	27.5		ug/L		110	70 - 130
1,2-Dibromo-3-Chloropropane	25.0	23.9		ug/L		95	70 - 136
Ethylene Dibromide	25.0	26.5		ug/L		106	70 - 130
Dibromomethane	25.0	26.2		ug/L		105	70 - 130
Dichlorodifluoromethane	25.0	20.7		ug/L		83	34 - 132
1,1-Dichloroethane	25.0	25.1		ug/L		100	70 - 130
1,2-Dichloroethane	25.0	24.5		ug/L		98	61 - 132
1,1-Dichloroethene	25.0	26.8		ug/L		107	64 - 128
cis-1,2-Dichloroethene	25.0	24.9		ug/L		100	70 - 130
trans-1,2-Dichloroethene	25.0	26.2		ug/L		105	68 _ 130
1,2-Dichloropropane	25.0	23.9		ug/L		96	70 - 130
cis-1,3-Dichloropropene	25.0	27.5		ug/L		110	70 - 130
trans-1,3-Dichloropropene	25.0	28.7		ug/L		115	70 - 140
Ethylbenzene	25.0	24.2		ug/L		97	80 - 120
Hexachlorobutadiene	25.0	22.5		ug/L		90	70 - 130
2-Hexanone	125	119		ug/L		95	60 - 164
Isopropylbenzene	25.0	26.1		ug/L		104	70 - 130
4-Isopropyltoluene	25.0	24.8		ug/L		99	70 - 130
Methylene Chloride	25.0	25.7		ug/L		103	70 - 147
4-Methyl-2-pentanone (MIBK)	125	119		ug/L		95	58 - 130
Naphthalene	25.0	24.2		ug/L		97	70 - 130
N-Propylbenzene	25.0	23.6		ug/L		94	70 - 130
Styrene	25.0	26.2		ug/L		105	70 - 130

TestAmerica Pleasanton

Page 24 of 50

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-53383-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: LCS 720-147534/5

Matrix: Water

Analysis Batch: 147534

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

•	LCS				%Rec.	
Added	Result	Qualifier	Unit	D	%Rec	Limits
25.0	26.7		ug/L		107	70 - 130
25.0	22.5		ug/L		90	70 - 130
25.0	28.9		ug/L		116	70 - 130
25.0	24.6		ug/L		98	78 - 120
25.0	23.1		ug/L		92	70 - 130
25.0	24.9		ug/L		100	70 - 130
25.0	27.5		ug/L		110	70 - 130
25.0	26.3		ug/L		105	70 - 130
25.0	27.4		ug/L		110	70 - 130
25.0	23.7		ug/L		95	66 - 132
25.0	23.7		ug/L		95	70 - 130
25.0	27.7		ug/L		111	42 - 162
25.0	24.6		ug/L		98	70 - 132
25.0	24.9		ug/L		99	70 - 130
25.0	33.7		ug/L		135	43 - 163
25.0	22.3		ug/L		89	54 - 135
50.0	48.8		ug/L		98	70 - 142
25.0	24.8		ug/L		99	70 - 130
25.0	29.3		ug/L		117	70 - 140
	25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	Added Result 25.0 26.7 25.0 22.5 25.0 28.9 25.0 24.6 25.0 23.1 25.0 27.5 25.0 26.3 25.0 27.4 25.0 23.7 25.0 23.7 25.0 27.7 25.0 24.6 25.0 24.9 25.0 24.9 25.0 22.3 50.0 48.8 25.0 24.8	Added Result Qualifier 25.0 26.7 25.0 22.5 25.0 28.9 25.0 24.6 25.0 23.1 25.0 27.5 25.0 26.3 25.0 27.4 25.0 23.7 25.0 23.7 25.0 27.7 25.0 24.6 25.0 24.9 25.0 24.9 25.0 22.3 50.0 48.8 25.0 24.8	Added Result Qualifier Unit 25.0 26.7 ug/L 25.0 22.5 ug/L 25.0 28.9 ug/L 25.0 24.6 ug/L 25.0 23.1 ug/L 25.0 27.5 ug/L 25.0 27.5 ug/L 25.0 27.4 ug/L 25.0 23.7 ug/L 25.0 23.7 ug/L 25.0 27.7 ug/L 25.0 24.6 ug/L 25.0 24.6 ug/L 25.0 24.9 ug/L 25.0 24.9 ug/L 25.0 22.3 ug/L 25.0 22.3 ug/L 25.0 22.3 ug/L 25.0 24.8 ug/L	Added Result Qualifier Unit D 25.0 26.7 ug/L ug/L ug/L 25.0 22.5 ug/L ug/L ug/L 25.0 28.9 ug/L ug/	Added Result Qualifier Unit D %Rec 25.0 26.7 ug/L 107 25.0 22.5 ug/L 90 25.0 28.9 ug/L 116 25.0 24.6 ug/L 98 25.0 23.1 ug/L 92 25.0 24.9 ug/L 100 25.0 27.5 ug/L 110 25.0 26.3 ug/L 105 25.0 27.4 ug/L 95 25.0 23.7 ug/L 95 25.0 23.7 ug/L 95 25.0 27.7 ug/L 95 25.0 27.7 ug/L 98 25.0 24.6 ug/L 98 25.0 24.9 ug/L 99 25.0 24.9 ug/L 99 25.0 22.3 ug/L 99 25.0 22.3 ug/L 99

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	94		67 - 130
1,2-Dichloroethane-d4 (Surr)	89		72 - 130
Toluene-d8 (Surr)	99		70 - 130

Lab Sample ID: LCS 720-147534/7

Matrix: Water

Analysis Batch: 147534

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Gasoline Range Organics (GRO)	500	539		ug/L	_	108	62 - 120
-C5-C12							

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	97		67 - 130
1,2-Dichloroethane-d4 (Surr)	92		72 - 130
Toluene-d8 (Surr)	103		70 - 130

Lab Sample ID: LCSD 720-147534/6

Matrix: Water

Analysis Batch: 147534

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Analysis buton: 147004	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Methyl tert-butyl ether	25.0	27.1		ug/L		108	62 - 130	5	20
Acetone	125	131		ug/L		104	26 - 180	11	30
Benzene	25.0	25.6		ug/L		102	79 - 130	0	20
Dichlorobromomethane	25.0	25.6		ug/L		102	70 _ 130	0	20

TestAmerica Pleasanton

Page 25 of 50

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-53383-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: LCSD 720-147534/6

Matrix: Water

Analysis Batch: 147534

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Part Part		Spike	LCSD	LCSD				%Rec.		RPD
Enhancementhane 25.0 27.8 Ug/L 111 70.130 2 20 20 20 20 20 20 2	Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Bromomethane 25.0 22.4 Ug/L 114 68.136 2 2 2 2 2 2 2 2 2	Bromobenzene	25.0	24.3		ug/L		97	70 - 130	1	20
Bromenthame	Chlorobromomethane	25.0	27.8		ug/L		111	70 - 130	2	20
2-Buttonne (MEK) 125 137 ugil. 199 84-81-30 2 2 2 2 2 2 2 2 1 2	Bromoform	25.0	28.4		ug/L		114	68 - 136	2	20
Pathylthenzere 250 23.6 ugl. ugl. 34 70.142 23 20 20 20 20 20 20 2	Bromomethane	25.0	22.7		ug/L		91	43 - 151	3	20
Sec-Burylbenzame 250 23.8 ug/L 95 70.134 2 20 20 20 20 20 20 20	2-Butanone (MEK)	125	137		ug/L		109	54 - 130	1	20
tert-Bulythanzene	n-Butylbenzene	25.0	23.6		ug/L		94	70 - 142	3	20
Carbon disultide	sec-Butylbenzene	25.0	23.8		ug/L		95	70 - 134	2	20
Carbon tetrachloride	tert-Butylbenzene	25.0	24.2		ug/L		97	70 - 135	3	20
Chiorobenzene	Carbon disulfide	25.0	25.6		ug/L		103	58 - 130	2	20
Chlorothane	Carbon tetrachloride	25.0	27.5		ug/L		110	70 - 146	3	20
Chloroform	Chlorobenzene	25.0	25.0		ug/L		100	70 - 130	0	20
Chloromethane 25.0 20.4 vg/L 82 52.176 1 20 20 20 20 20 20 20	Chloroethane	25.0	22.3		ug/L		89	62 - 138	0	20
2-Chiorotoluene	Chloroform	25.0	25.0		ug/L		100	70 - 130	2	20
4-Chlorololuene 25.0 22.4 ug/l. 90 70.130 2 20 20 Chlorodibromemethane 25.0 27.2 ug/l. 108 70.145 0 20 20 1.2-Chlohrochenzene 25.0 23.9 ug/l. 96 70.130 2 20 1.2-Chlohrochenzene 25.0 24.4 ug/l. 98 70.130 2 20 1.3-Dichlorobenzene 25.0 24.4 ug/l. 97 70.130 2 20 1.3-Dichloropropene 25.0 24.3 ug/l. 101 70.130 2 20 1.3-Dichloropropene 25.0 25.4 ug/l. 101 70.130 2 20 1.3-Dichloropropene 25.0 26.8 ug/l. 107 70.130 3 20 1.3-Dichloropropene 25.0 26.8 ug/l. 107 70.130 3 20 1.3-Dichloropropene 25.0 25.7 ug/l. 103 70.130 7 20 20 20 20 20 20 20	Chloromethane	25.0	20.4		ug/L		82	52 - 175	1	20
Chiorodibromomethane 25.0 27.2 ug/L 109 70.145 0 20 1,2-Dichlorobenzene 25.0 23.9 ug/L 396 70.130 2 20 1,3-Dichlorobenzene 25.0 24.4 ug/L 398 70.130 2 20 1,3-Dichlorobenzene 25.0 24.3 ug/L 397 70.130 2 20 1,3-Dichloropropeane 25.0 25.4 ug/L 101 70.130 2 20 1,3-Dichloropropeane 25.0 25.8 ug/L 101 70.130 3 20 1,2-Dichloropropeane 25.0 25.8 ug/L 103 70.136 7 20 1,2-Dibromo-3-Chloropropeane 25.0 25.7 ug/L 103 70.136 7 20 20 1,2-Dibromo-3-Chloropropeane 25.0 25.7 ug/L 103 70.136 7 20 20 1,2-Dichloropropeane 25.0 26.5 ug/L 106 70.130 1 20 20 20 20 20 20 20	2-Chlorotoluene	25.0	23.3		ug/L		93	70 - 130	2	20
1,2-Dichlorobenzene 25.0 23.9 ug/L 98 70.130 2 20 20 20 20 20 20 2	4-Chlorotoluene	25.0	22.4		ug/L		90	70 - 130	2	20
1,3-Dichlorobenzene 25.0 24.4 ug/L 98 70 - 130 2 20 1,4-Dichlorobenzene 25.0 24.3 ug/L 101 70 - 130 2 20 1,3-Dichloropropane 25.0 25.4 ug/L 107 70 - 130 2 20 1,2-Dibromo-3-Chloropropane 25.0 25.7 ug/L 103 70 - 136 7 20 Ethylene Dibromide 25.0 25.7 ug/L 107 70 - 130 1 20 Dibromomethane 25.0 26.5 ug/L 106 70 - 130 1 20 Dibromomethane 25.0 28.6 ug/L 106 70 - 130 1 20 Dibromomethane 25.0 24.9 ug/L 100 70 - 130 1 20 1,1-Dichlorothane 25.0 24.9 ug/L 10 70 - 130 1 20 1,2-Dichlorothane 25.0 25.4 ug/L 10 64 - 128 5 <	Chlorodibromomethane	25.0	27.2		ug/L		109	70 - 145	0	20
1,4-Dichlorobenzene 25.0 24.3 ug/L 97 70 - 130 2 20 1,3-Dichloropropane 25.0 25.4 ug/L 107 70 - 130 2 20 1,1-Dichloropropane 25.0 28.8 ug/L 107 70 - 130 3 20 1,2-Dibromo-3-Chloropropane 25.0 25.7 ug/L 103 70 - 130 1 20 Ethylene Dibromide 25.0 28.7 ug/L 107 70 - 130 1 20 Dibromorethane 25.0 26.5 ug/L 100 70 - 130 1 20 1,1-Dichloroethane 25.0 26.9 ug/L 100 70 - 130 1 20 1,2-Dichloroethane 25.0 24.9 ug/L 100 70 - 130 1 20 1,2-Dichloroethane 25.0 24.6 ug/L 102 64 - 128 2 2 2 10 64 - 128 2 2 2 10 2 2	1,2-Dichlorobenzene	25.0	23.9		ug/L		96	70 - 130	2	20
1,3-Dichloropropane 25.0 25.4 ug/L 101 70 - 130 2 20 1,1-Dichloropropene 25.0 26.8 ug/L 107 70 - 130 3 20 20 20 20 20 20 2	1,3-Dichlorobenzene	25.0	24.4		ug/L		98	70 - 130	2	20
1,1-Dichloropropene 25.0 26.8 ug/L 107 70-130 3 20 1,2-Dichloromo-3-Chiloropropane 25.0 25.7 ug/L 103 70-136 7 20 Ethylene Dibromide 25.0 26.5 ug/L 107 70-130 1 20 Dichlorodifluoromethane 25.0 26.5 ug/L 100 70-130 1 20 1,1-Dichloroethane 25.0 24.9 ug/L 100 70-130 1 20 1,2-Dichloroethane 25.0 24.9 ug/L 100 70-130 1 20 1,2-Dichloroethane 25.0 24.9 ug/L 100 70-130 1 20 1,2-Dichloroethane 25.0 24.6 ug/L 18 61-132 1 20 1,2-Dichloroethane 25.0 25.8 ug/L 103 68-130 2 20 1,2-Dichloroethane 25.0 25.8 ug/L 103 68-130 2 20 1,2-Dichloroethane 25.0 25.8 ug/L 103	1,4-Dichlorobenzene	25.0	24.3		ug/L		97	70 - 130	2	20
1,2-Dibromo-3-Chloropropane 25.0 25.7 ug/L 103 70.136 7 20	1,3-Dichloropropane	25.0	25.4		ug/L		101	70 - 130	2	20
Ethylene Dibromide	1,1-Dichloropropene	25.0	26.8		ug/L		107	70 - 130	3	20
Dibromomethane 25.0 26.5 ug/L 106 70 - 130 1 20 11-0-10-10-10-10-10-10-10-10-10-10-10-10	1,2-Dibromo-3-Chloropropane	25.0	25.7		ug/L		103	70 - 136	7	20
Dichlorodifluoromethane 25.0 19.9 ug/L 79 34.132 4 20 1,1-Dichloroethane 25.0 24.9 ug/L 100 70.130 1 20 1,2-Dichloroethane 25.0 24.6 ug/L 102 64.128 5 20 1,1-Dichloroethane 25.0 24.6 ug/L 102 64.128 5 20 1,1-Dichloroethene 25.0 25.4 ug/L 103 68.130 2 20 1,2-Dichloroethene 25.0 25.8 ug/L 103 68.130 2 20 1,2-Dichloropthane 25.0 25.8 ug/L 103 68.130 2 20 1,2-Dichloropthane 25.0 25.8 ug/L 103 68.130 2 20 1,2-Dichloroptopane 25.0 24.0 ug/L 96 70.130 1 20 1,2-Dichloroptopane 25.0 27.9 ug/L 112 70.130 1 20 1,3-Dichloroptopane 25.0 28.7 ug/L 115 70.140 0 20 1,3-Dichloroptopane 25.0 23.7 ug/L 95 80.120 2 20 1,2-Dichloroptopane 25.0 23.7 ug/L 95 80.120 2 20 1,2-Dichloroptopane 25.0 25.0 25.1 ug/L 101 60.164 6 20 1,2-Dichloroptopane 25.0 25.4 ug/L 101 70.130 3 20 2-Hexanone 125 126 ug/L 101 70.130 3 20 2-Hexanone 25.0 25.4 ug/L 101 70.130 3 20 2-Hexanone 25.0 25.4 ug/L 101 70.130 3 20 2-Hexanone 25.0 25.0 25.7 ug/L 103 70.130 3 20 2-Hexanone 25.0 25.0 ug/L 103 70.130 3 20 2-Hexanone 25.0 25.0 ug/L 103 70.130 3 20 3-Portificatione 25.0 25.0 ug/L 100 70.130 3 20 3-Portificatione 25.0 25.9 ug/L 100 70.130 3 20 3-Portificatione 25.0 25.9 ug/L 107 70.130 1 20 3-Portificatione 25.0 25.9 ug/L 101 70.130 1 20 3-Portificatione 25.0 25.9 ug/L 101 70.1	Ethylene Dibromide	25.0	26.7		ug/L		107	70 - 130	1	20
1,1-Dichloroethane 25.0 24.9 ug/L 100 70 - 130 1 20 1,2-Dichloroethane 25.0 24.6 ug/L 98 61 - 132 1 20 1,1-Dichloroethene 25.0 25.4 ug/L 102 64 - 128 5 20 cis-1,2-Dichloroethene 25.0 24.2 ug/L 97 70 - 130 3 20 trans-1,2-Dichloroptoethene 25.0 25.8 ug/L 103 68 - 130 2 20 trans-1,2-Dichloropropane 25.0 25.0 24.0 ug/L 96 70 - 130 0 20 cis-1,3-Dichloropropene 25.0 27.9 ug/L 112 70 - 130 0 20 Ethylbenzene 25.0 28.7 ug/L 115 70 - 140 0 20 Ethylbenzene 25.0 23.7 ug/L 95 80 - 120 2 20 Hexachlorobutadiene 25.0 22.5 ug/L 90 70 - 130 0 20 2-Hexanone 25.0 25.0 25.4	Dibromomethane	25.0	26.5		ug/L		106	70 - 130	1	20
1,2-Dichloroethane 25.0 24.6 ug/L 98 61 - 132 1 20 1,1-Dichloroethene 25.0 25.4 ug/L 102 64 - 128 5 20 cis-1,2-Dichloroethene 25.0 24.2 ug/L 97 70 - 130 3 20 trans-1,2-Dichloropthene 25.0 25.8 ug/L 103 68 - 130 2 20 1,2-Dichloropropane 25.0 24.0 ug/L 96 70 - 130 0 20 cis-1,3-Dichloropropane 25.0 27.9 ug/L 112 70 - 130 0 20 trans-1,3-Dichloropropene 25.0 28.7 ug/L 115 70 - 140 0 20 Ethylbenzene 25.0 23.7 ug/L 95 80 - 120 2 20 Hexachlorobutadiene 25.0 22.5 ug/L 90 70 - 130 0 20 2-Hexanone 125 126 ug/L 101 60 - 164 6 20 Isopropylbenzene 25.0 25.4 ug/L 101	Dichlorodifluoromethane	25.0	19.9		ug/L		79	34 - 132	4	20
1,1-Dichloroethene 25.0 25.4 ug/L 102 64 - 128 5 20 cis-1,2-Dichloroethene 25.0 24.2 ug/L 97 70 - 130 3 20 trans-1,2-Dichloroethene 25.0 25.8 ug/L 103 68 - 130 2 20 1,2-Dichloropropane 25.0 24.0 ug/L 96 70 - 130 0 20 cis-1,3-Dichloropropene 25.0 27.9 ug/L 112 70 - 130 1 20 trans-1,3-Dichloropropene 25.0 28.7 ug/L 115 70 - 140 0 20 Ethylbenzene 25.0 28.7 ug/L 115 70 - 140 0 20 Ethylbenzene 25.0 23.7 ug/L 95 80 - 120 2 20 Hexachlorobutadiene 25.0 22.5 ug/L 90 70 - 130 0 20 2-Hexanone 125 126 ug/L 101 60 - 164 6 20 Isopropylbenzene 25.0 25.4 ug/L 101	1,1-Dichloroethane	25.0	24.9		ug/L		100	70 - 130	1	20
cis-1,2-Dichloroethene 25.0 24.2 ug/L 97 70 - 130 3 20 trans-1,2-Dichloroethene 25.0 25.8 ug/L 103 68 - 130 2 20 1,2-Dichloropropane 25.0 24.0 ug/L 96 70 - 130 0 20 cis-1,3-Dichloropropene 25.0 27.9 ug/L 112 70 - 140 0 20 trans-1,3-Dichloropropene 25.0 28.7 ug/L 115 70 - 140 0 20 Ethylbenzene 25.0 28.7 ug/L 195 80 - 120 2 20 Hexachlorobutadiene 25.0 22.5 ug/L 90 70 - 130 0 20 2-Hexanone 125 126 ug/L 101 60 - 164 6 20 Isopropylbenzene 25.0 25.4 ug/L 101 70 - 130 3 20 4-Isopropyltoluene 25.0 25.0 25.7 ug/L 103 70 - 130 <td>1,2-Dichloroethane</td> <td>25.0</td> <td>24.6</td> <td></td> <td></td> <td></td> <td>98</td> <td>61 - 132</td> <td>1</td> <td>20</td>	1,2-Dichloroethane	25.0	24.6				98	61 - 132	1	20
trans-1,2-Dichloroethene 25.0 25.8 ug/L 103 68 - 130 2 20 1,2-Dichloropropane 25.0 24.0 ug/L 96 70 - 130 0 20 cis-1,3-Dichloropropene 25.0 27.9 ug/L 112 70 - 130 1 20 trans-1,3-Dichloropropene 25.0 28.7 ug/L 115 70 - 140 0 20 Ethylbenzene 25.0 28.7 ug/L 95 80 - 120 2 20 Hexachlorobutadiene 25.0 22.5 ug/L 90 70 - 130 0 20 2-Hexanone 125 126 ug/L 101 60 - 164 6 20 Isopropylbenzene 25.0 25.4 ug/L 101 70 - 130 3 20 4-Isopropylbenzene 25.0 24.4 ug/L 101 70 - 130 2 20 Methylene Chloride 25.0 25.7 ug/L 103 70 - 130 3	1,1-Dichloroethene	25.0	25.4		ug/L		102	64 - 128	5	20
1,2-Dichloropropane 25.0 24.0 ug/L 96 70 - 130 0 20 cis-1,3-Dichloropropene 25.0 27.9 ug/L 112 70 - 130 1 20 trans-1,3-Dichloropropene 25.0 28.7 ug/L 115 70 - 140 0 20 Ethylbenzene 25.0 23.7 ug/L 95 80 - 120 2 20 Hexachlorobutadiene 25.0 22.5 ug/L 90 70 - 130 0 20 2-Hexanone 125 126 ug/L 101 60 - 164 6 20 Isopropylbenzene 25.0 25.4 ug/L 101 70 - 130 3 20 4-Isopropylbenzene 25.0 25.4 ug/L 101 70 - 130 3 20 Methylene Chloride 25.0 25.7 ug/L 103 70 - 147 0 20 4-Methyl-2-pentanone (MIBK) 125 127 ug/L 102 58 - 130 6 20 N-Propylbenzene 25.0 25.0 25.0 ug/L	cis-1,2-Dichloroethene	25.0	24.2		ug/L		97	70 - 130	3	20
cis-1,3-Dichloropropene 25.0 27.9 ug/L 112 70 - 130 1 20 trans-1,3-Dichloropropene 25.0 28.7 ug/L 115 70 - 140 0 20 Ethylbenzene 25.0 23.7 ug/L 95 80 - 120 2 20 Hexachlorobutadiene 25.0 22.5 ug/L 90 70 - 130 0 20 2-Hexanone 125 126 ug/L 101 60 - 164 6 20 Isopropylbenzene 25.0 25.4 ug/L 101 70 - 130 3 20 4-Isopropyltoluene 25.0 25.0 24.4 ug/L 98 70 - 130 2 20 Methylene Chloride 25.0 25.7 ug/L 103 70 - 147 0 20 4-Methyl-2-pentanone (MIBK) 125 127 ug/L 102 58 - 130 6 20 N-Propylbenzene 25.0 25.0 ug/L 100 70 - 130 3 20 Styrene 25.0 25.9 ug/L 104 <td>trans-1,2-Dichloroethene</td> <td>25.0</td> <td>25.8</td> <td></td> <td>ug/L</td> <td></td> <td>103</td> <td>68 - 130</td> <td>2</td> <td>20</td>	trans-1,2-Dichloroethene	25.0	25.8		ug/L		103	68 - 130	2	20
trans-1,3-Dichloropropene 25.0 28.7 ug/L 115 70 - 140 0 20 Ethylbenzene 25.0 23.7 ug/L 95 80 - 120 2 20 Hexachlorobutadiene 25.0 22.5 ug/L 90 70 - 130 0 20 2-Hexanone 125 126 ug/L 101 60 - 164 6 20 Isopropylbenzene 25.0 25.4 ug/L 101 70 - 130 3 20 4-Isopropyltoluene 25.0 25.7 ug/L 98 70 - 130 2 20 Methylene Chloride 25.0 25.7 ug/L 103 70 - 147 0 20 4-Methyl-2-pentanone (MIBK) 125 127 ug/L 102 58 - 130 6 20 Naphthalene 25.0 25.0 25.0 ug/L 100 70 - 130 3 20 Styrene 25.0 25.9 ug/L 104 70 - 130 1	1,2-Dichloropropane	25.0	24.0		ug/L		96	70 - 130	0	20
Ethylbenzene 25.0 23.7 ug/L 95 80 - 120 2 20 Hexachlorobutadiene 25.0 22.5 ug/L 90 70 - 130 0 20 2-Hexanone 125 126 ug/L 101 60 - 164 6 20 Isopropylbenzene 25.0 25.4 ug/L 101 70 - 130 3 20 4-Isopropyltoluene 25.0 25.7 ug/L 98 70 - 130 2 20 Methylene Chloride 25.0 25.7 ug/L 103 70 - 147 0 20 4-Methyl-2-pentanone (MIBK) 125 127 ug/L 102 58 - 130 6 20 Naphthalene 25.0 25.0 25.0 ug/L 100 70 - 130 3 20 N-Propylbenzene 25.0 25.9 ug/L 92 70 - 130 3 20 Styrene 25.0 25.9 ug/L 104 70 - 130 1 20 <td>cis-1,3-Dichloropropene</td> <td>25.0</td> <td>27.9</td> <td></td> <td>ug/L</td> <td></td> <td>112</td> <td>70 - 130</td> <td>1</td> <td>20</td>	cis-1,3-Dichloropropene	25.0	27.9		ug/L		112	70 - 130	1	20
Hexachlorobutadiene 25.0 22.5 ug/L 90 70 - 130 0 20 2-Hexanone 125 126 ug/L 101 60 - 164 6 20 Isopropylbenzene 25.0 25.4 ug/L 101 70 - 130 3 20 4-Isopropyltoluene 25.0 24.4 ug/L 98 70 - 130 2 20 Methylene Chloride 25.0 25.7 ug/L 103 70 - 147 0 20 4-Methyl-2-pentanone (MIBK) 125 127 ug/L 102 58 - 130 6 20 Naphthalene 25.0 25.0 ug/L 100 70 - 130 3 20 N-Propylbenzene 25.0 22.9 ug/L 92 70 - 130 3 20 Styrene 25.0 25.9 ug/L 104 70 - 130 1 20 1,1,2,2-Tetrachloroethane 25.0 23.7 ug/L 95 70 - 130 5 20 </td <td>trans-1,3-Dichloropropene</td> <td>25.0</td> <td>28.7</td> <td></td> <td>ug/L</td> <td></td> <td>115</td> <td>70 - 140</td> <td>0</td> <td>20</td>	trans-1,3-Dichloropropene	25.0	28.7		ug/L		115	70 - 140	0	20
2-Hexanone 125 126 ug/L 101 60 - 164 6 20 Isopropylbenzene 25.0 25.4 ug/L 101 70 - 130 3 20 4-Isopropyltoluene 25.0 24.4 ug/L 98 70 - 130 2 20 Methylene Chloride 25.0 25.7 ug/L 103 70 - 147 0 20 4-Methyl-2-pentanone (MIBK) 125 127 ug/L 102 58 - 130 6 20 Naphthalene 25.0 25.0 25.0 ug/L 100 70 - 130 3 20 N-Propylbenzene 25.0 22.9 ug/L 92 70 - 130 3 20 Styrene 25.0 25.9 ug/L 104 70 - 130 1 20 1,1,1,2-Tetrachloroethane 25.0 26.9 ug/L 107 70 - 130 1 20 Tetrachloroethane 25.0 28.3 ug/L 113 70 - 130 5 20	Ethylbenzene	25.0	23.7		ug/L		95	80 - 120	2	20
Sopropy benzene 25.0 25.4 ug/L 101 70 - 130 3 20	Hexachlorobutadiene	25.0	22.5		ug/L		90	70 - 130	0	20
4-Isopropyltoluene 25.0 24.4 ug/L 98 70 - 130 2 20 Methylene Chloride 25.0 25.7 ug/L 103 70 - 147 0 20 4-Methyl-2-pentanone (MIBK) 125 127 ug/L 102 58 - 130 6 20 Naphthalene 25.0 25.0 ug/L 100 70 - 130 3 20 N-Propylbenzene 25.0 22.9 ug/L 92 70 - 130 3 20 Styrene 25.0 25.9 ug/L 104 70 - 130 1 20 1,1,1,2-Tetrachloroethane 25.0 26.9 ug/L 107 70 - 130 1 20 1,1,2,2-Tetrachloroethane 25.0 23.7 ug/L 95 70 - 130 5 20 Tetrachloroethene 25.0 28.3 ug/L 113 70 - 130 2 20	2-Hexanone	125	126				101		6	20
Methylene Chloride 25.0 25.7 ug/L 103 70 - 147 0 20 4-Methyl-2-pentanone (MIBK) 125 127 ug/L 102 58 - 130 6 20 Naphthalene 25.0 25.0 ug/L 100 70 - 130 3 20 N-Propylbenzene 25.0 22.9 ug/L 92 70 - 130 3 20 Styrene 25.0 25.9 ug/L 104 70 - 130 1 20 1,1,1,2-Tetrachloroethane 25.0 26.9 ug/L 107 70 - 130 1 20 1,1,2,2-Tetrachloroethane 25.0 23.7 ug/L 95 70 - 130 5 20 Tetrachloroethane 25.0 28.3 ug/L 113 70 - 130 2 20	Isopropylbenzene	25.0	25.4		ug/L		101	70 - 130	3	20
4-Methyl-2-pentanone (MIBK) 125 127 ug/L 102 58 - 130 6 20 Naphthalene 25.0 25.0 ug/L 100 70 - 130 3 20 N-Propylbenzene 25.0 22.9 ug/L 92 70 - 130 3 20 Styrene 25.0 25.9 ug/L 104 70 - 130 1 20 1,1,1,2-Tetrachloroethane 25.0 26.9 ug/L 107 70 - 130 1 20 1,1,2,2-Tetrachloroethane 25.0 23.7 ug/L 95 70 - 130 5 20 Tetrachloroethene 25.0 28.3 ug/L 113 70 - 130 2 20	4-Isopropyltoluene		24.4		ug/L		98	70 - 130	2	20
Naphthalene 25.0 25.0 ug/L 100 70 - 130 3 20 N-Propylbenzene 25.0 22.9 ug/L 92 70 - 130 3 20 Styrene 25.0 25.9 ug/L 104 70 - 130 1 20 1,1,1,2-Tetrachloroethane 25.0 26.9 ug/L 107 70 - 130 1 20 1,1,2,2-Tetrachloroethane 25.0 23.7 ug/L 95 70 - 130 5 20 Tetrachloroethene 25.0 28.3 ug/L 113 70 - 130 2 20	Methylene Chloride	25.0	25.7		ug/L		103	70 - 147	0	20
N-Propylbenzene 25.0 22.9 ug/L 92 70 - 130 3 20 Styrene 25.0 25.9 ug/L 104 70 - 130 1 20 1,1,1,2-Tetrachloroethane 25.0 26.9 ug/L 107 70 - 130 1 20 1,1,2,2-Tetrachloroethane 25.0 23.7 ug/L 95 70 - 130 5 20 Tetrachloroethene 25.0 28.3 ug/L 113 70 - 130 2 20	4-Methyl-2-pentanone (MIBK)	125	127		ug/L		102	58 - 130	6	20
Styrene 25.0 25.9 ug/L 104 70 - 130 1 20 1,1,1,2-Tetrachloroethane 25.0 26.9 ug/L 107 70 - 130 1 20 1,1,2,2-Tetrachloroethane 25.0 23.7 ug/L 95 70 - 130 5 20 Tetrachloroethane 25.0 28.3 ug/L 113 70 - 130 2 20	Naphthalene	25.0	25.0		ug/L		100	70 - 130	3	20
1,1,1,2-Tetrachloroethane 25.0 26.9 ug/L 107 70 - 130 1 20 1,1,2,2-Tetrachloroethane 25.0 23.7 ug/L 95 70 - 130 5 20 Tetrachloroethane 25.0 28.3 ug/L 113 70 - 130 2 20	N-Propylbenzene	25.0	22.9		ug/L		92	70 - 130	3	20
1,1,2,2-Tetrachloroethane 25.0 23.7 ug/L 95 70 - 130 5 20 Tetrachloroethene 25.0 28.3 ug/L 113 70 - 130 2 20	Styrene				ug/L		104	70 - 130	1	20
Tetrachloroethene 25.0 28.3 ug/L 113 70 - 130 2 20	1,1,1,2-Tetrachloroethane	25.0	26.9		ug/L		107	70 - 130	1	20
	1,1,2,2-Tetrachloroethane		23.7				95	70 - 130	5	20
Toluene 25.0 24.1 ug/L 96 78 - 120 2 20	Tetrachloroethene				ug/L		113	70 - 130	2	20
	Toluene	25.0	24.1		ug/L		96	78 - 120	2	20

TestAmerica Pleasanton

Page 26 of 50

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

Analysis Batch: 147534

TestAmerica Job ID: 720-53383-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: LCSD 720-147534/6

Matrix: Water

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

	Spike	LCSD	LCSD	CSD			%Rec.		RPD	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
1,2,3-Trichlorobenzene	25.0	23.2		ug/L		93	70 - 130	0	20	
1,2,4-Trichlorobenzene	25.0	24.8		ug/L		99	70 - 130	1	20	
1,1,1-Trichloroethane	25.0	26.8		ug/L		107	70 - 130	2	20	
1,1,2-Trichloroethane	25.0	26.9		ug/L		108	70 - 130	2	20	
Trichloroethene	25.0	27.0		ug/L		108	70 - 130	1	20	
Trichlorofluoromethane	25.0	22.3		ug/L		89	66 - 132	6	20	
1,2,3-Trichloropropane	25.0	24.3		ug/L		97	70 - 130	3	20	
1,1,2-Trichloro-1,2,2-trifluoroetha	25.0	27.0		ug/L		108	42 - 162	3	20	
ne										
1,2,4-Trimethylbenzene	25.0	23.8		ug/L		95	70 - 132	3	20	
1,3,5-Trimethylbenzene	25.0	24.2		ug/L		97	70 - 130	3	20	
Vinyl acetate	25.0	34.6		ug/L		138	43 - 163	3	20	
Vinyl chloride	25.0	21.3		ug/L		85	54 - 135	5	20	
m-Xylene & p-Xylene	50.0	47.4		ug/L		95	70 - 142	3	20	
o-Xylene	25.0	24.2		ug/L		97	70 - 130	2	20	
2,2-Dichloropropane	25.0	28.6		ug/L		114	70 - 140	3	20	

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	93		67 - 130
1,2-Dichloroethane-d4 (Surr)	91		72 - 130
Toluene-d8 (Surr)	100		70 - 130

Lab Sample ID: LCSD 720-147534/8

Matrix: Water

Analyte

-C5-C12

Analysis Batch: 147534

Gasoline Range Organics (GRO)

Client Sample II	D: Lab	Control	Sample Dup	
		Prep Ty	pe: Total/NA	

 WRec.
 RPD

 Unit
 D
 %Rec
 Limits
 RPD
 Limit

 ug/L
 114
 62 - 120
 6
 20

 Surrogate
 %Recovery
 Qualifier
 Limits

 4-Bromofluorobenzene
 97
 67 - 130

 1,2-Dichloroethane-d4 (Surr)
 89
 72 - 130

 Toluene-d8 (Surr)
 100
 70 - 130

Lab Sample ID: MB 720-147584/10

Matrix: Water

Analysis Batch: 147584

Client Sample ID: Method Blank

Prep Type: Total/NA

мв мв RL MDL Unit Dil Fac Analyte Result Qualifier D Prepared Analyzed ND 0.50 11/01/13 22:37 Methyl tert-butyl ether ug/L Acetone ND 50 ug/L 11/01/13 22:37 ND 0.50 ug/L 11/01/13 22:37 Benzene ND 0.50 11/01/13 22:37 ug/L Dichlorobromomethane Bromobenzene ND 1.0 ug/L 11/01/13 22:37 ND 1.0 11/01/13 22:37 Chlorobromomethane ug/L ND 1.0 11/01/13 22:37 Bromoform ug/L Bromomethane ND 1.0 ug/L 11/01/13 22:37

Spike

Added

500

LCSD LCSD

572

Result Qualifier

TestAmerica Pleasanton

Page 27 of 50

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-53383-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: MB 720-147584/10

Matrix: Water

Analysis Batch: 147584

Client Sample ID: Method Blank

Prep Type: Total/NA

Analysis Datell. 147304	МВ	МВ						
Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
2-Butanone (MEK)	ND		50	ug/L			11/01/13 22:37	Ī
n-Butylbenzene	ND		1.0	ug/L			11/01/13 22:37	1
sec-Butylbenzene	ND		1.0	ug/L			11/01/13 22:37	1
tert-Butylbenzene	ND		1.0	ug/L			11/01/13 22:37	1
Carbon disulfide	ND		5.0	ug/L			11/01/13 22:37	1
Carbon tetrachloride	ND		0.50	ug/L			11/01/13 22:37	1
Chlorobenzene	ND		0.50	ug/L			11/01/13 22:37	1
Chloroethane	ND		1.0	ug/L			11/01/13 22:37	1
Chloroform	ND		1.0	ug/L			11/01/13 22:37	1
Chloromethane	ND		1.0	ug/L			11/01/13 22:37	1
2-Chlorotoluene	ND		0.50	ug/L			11/01/13 22:37	1
4-Chlorotoluene	ND		0.50	ug/L			11/01/13 22:37	1
Chlorodibromomethane	ND		0.50	ug/L			11/01/13 22:37	1
1,2-Dichlorobenzene	ND		0.50	ug/L			11/01/13 22:37	1
1,3-Dichlorobenzene	ND		0.50	ug/L			11/01/13 22:37	1
1,4-Dichlorobenzene	ND		0.50	ug/L			11/01/13 22:37	1
1,3-Dichloropropane	ND		1.0	ug/L			11/01/13 22:37	1
1,1-Dichloropropene	ND		0.50	ug/L			11/01/13 22:37	1
1,2-Dibromo-3-Chloropropane	ND		1.0	ug/L			11/01/13 22:37	1
Ethylene Dibromide	ND		0.50	ug/L			11/01/13 22:37	1
Dibromomethane	ND		0.50	ug/L			11/01/13 22:37	1
Dichlorodifluoromethane	ND		0.50	ug/L			11/01/13 22:37	1
1,1-Dichloroethane	ND		0.50	ug/L			11/01/13 22:37	1
1,2-Dichloroethane	ND		0.50	ug/L			11/01/13 22:37	1
1,1-Dichloroethene	ND		0.50	ug/L			11/01/13 22:37	1
cis-1,2-Dichloroethene	ND		0.50	ug/L			11/01/13 22:37	1
trans-1,2-Dichloroethene	ND		0.50	ug/L			11/01/13 22:37	1
1,2-Dichloropropane	ND		0.50	ug/L			11/01/13 22:37	1
cis-1,3-Dichloropropene	ND		0.50	ug/L			11/01/13 22:37	1
trans-1,3-Dichloropropene	ND		0.50	ug/L			11/01/13 22:37	1
Ethylbenzene	ND		0.50	ug/L			11/01/13 22:37	1
Hexachlorobutadiene	ND		1.0	ug/L			11/01/13 22:37	1
2-Hexanone	ND		50	ug/L			11/01/13 22:37	1
Isopropylbenzene	ND		0.50	ug/L			11/01/13 22:37	1
4-Isopropyltoluene	ND		1.0	ug/L			11/01/13 22:37	1
Methylene Chloride	ND		5.0	ug/L			11/01/13 22:37	1
4-Methyl-2-pentanone (MIBK)	ND		50	ug/L			11/01/13 22:37	1
Naphthalene	ND		1.0	ug/L			11/01/13 22:37	1
N-Propylbenzene	ND		1.0	ug/L			11/01/13 22:37	1
Styrene	ND		0.50	ug/L			11/01/13 22:37	1
1,1,1,2-Tetrachloroethane	ND		0.50	ug/L			11/01/13 22:37	1
1,1,2,2-Tetrachioroethane	ND		0.50	ug/L			11/01/13 22:37	1
Tetrachloroethene	ND		0.50	ug/L			11/01/13 22:37	1
Toluene	ND		0.50	ug/L			11/01/13 22:37	1
1,2,3-Trichlorobenzene	ND		1.0	ug/L			11/01/13 22:37	1
1,2,4-Trichlorobenzene	ND		1.0	ug/L			11/01/13 22:37	1
1,1,1-Trichloroethane	ND		0.50	ug/L			11/01/13 22:37	1
1,1,2-Trichloroethane	ND		0.50	ug/L			11/01/13 22:37	1

TestAmerica Pleasanton

Page 28 of 50

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-53383-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: MB 720-147584/10 Matrix: Water

Analysis Batch: 147584

Client Sample ID: Method Blank

Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Trichloroethene	ND		0.50		ug/L			11/01/13 22:37	1
Trichlorofluoromethane	ND		1.0		ug/L			11/01/13 22:37	1
1,2,3-Trichloropropane	ND		0.50		ug/L			11/01/13 22:37	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50		ug/L			11/01/13 22:37	1
1,2,4-Trimethylbenzene	ND		0.50		ug/L			11/01/13 22:37	1
1,3,5-Trimethylbenzene	ND		0.50		ug/L			11/01/13 22:37	1
Vinyl acetate	ND		10		ug/L			11/01/13 22:37	1
Vinyl chloride	ND		0.50		ug/L			11/01/13 22:37	1
Xylenes, Total	ND		1.0		ug/L			11/01/13 22:37	1
2,2-Dichloropropane	ND		0.50		ug/L			11/01/13 22:37	1
Gasoline Range Organics (GRO) -C5-C12	ND		50		ug/L			11/01/13 22:37	1

MB MB

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	97	67 - 130		11/01/13 22:37	1
1,2-Dichloroethane-d4 (Surr)	104	72 - 130		11/01/13 22:37	1
Toluene-d8 (Surr)	96	70 - 130		11/01/13 22:37	1

Lab Sample ID: LCS 720-147584/5

Matrix: Water

Analysis Batch: 147584

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Methyl tert-butyl ether	25.0	25.7		ug/L		103	62 - 130	
Acetone	125	110		ug/L		88	26 - 180	
Benzene	25.0	23.2		ug/L		93	79 - 130	
Dichlorobromomethane	25.0	25.2		ug/L		101	70 - 130	
Bromobenzene	25.0	23.7		ug/L		95	70 - 130	
Chlorobromomethane	25.0	24.9		ug/L		100	70 - 130	
Bromoform	25.0	27.3		ug/L		109	68 - 136	
Bromomethane	25.0	27.8		ug/L		111	43 - 151	
2-Butanone (MEK)	125	129		ug/L		103	54 - 130	
n-Butylbenzene	25.0	25.5		ug/L		102	70 - 142	
sec-Butylbenzene	25.0	24.3		ug/L		97	70 - 134	
tert-Butylbenzene	25.0	24.2		ug/L		97	70 - 135	
Carbon disulfide	25.0	27.1		ug/L		108	58 - 130	
Carbon tetrachloride	25.0	31.1		ug/L		124	70 - 146	
Chlorobenzene	25.0	24.3		ug/L		97	70 - 130	
Chloroethane	25.0	24.3		ug/L		97	62 - 138	
Chloroform	25.0	25.8		ug/L		103	70 - 130	
Chloromethane	25.0	22.3		ug/L		89	52 - 175	
2-Chlorotoluene	25.0	24.3		ug/L		97	70 - 130	
4-Chlorotoluene	25.0	23.8		ug/L		95	70 - 130	
Chlorodibromomethane	25.0	26.9		ug/L		108	70 - 145	
1,2-Dichlorobenzene	25.0	23.3		ug/L		93	70 - 130	
1,3-Dichlorobenzene	25.0	24.3		ug/L		97	70 - 130	
1,4-Dichlorobenzene	25.0	24.6		ug/L		99	70 - 130	
1,3-Dichloropropane	25.0	24.2		ug/L		97	70 - 130	

TestAmerica Pleasanton

Page 29 of 50

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-53383-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: LCS 720-147584/5

Matrix: Water

Analysis Batch: 147584

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Analysis Batch: 14/584	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,1-Dichloropropene	25.0	27.6		ug/L		111	70 - 130
1,2-Dibromo-3-Chloropropane	25.0	24.7		ug/L		99	70 - 136
Ethylene Dibromide	25.0	26.1		ug/L		105	70 - 130
Dibromomethane	25.0	26.1		ug/L		104	70 - 130
Dichlorodifluoromethane	25.0	23.0		ug/L		92	34 - 132
1,1-Dichloroethane	25.0	24.3		ug/L		97	70 - 130
1,2-Dichloroethane	25.0	26.4		ug/L		106	61 - 132
1,1-Dichloroethene	25.0	24.4		ug/L		98	64 - 128
cis-1,2-Dichloroethene	25.0	25.0		ug/L		100	70 - 130
trans-1,2-Dichloroethene	25.0	23.9		ug/L		96	68 - 130
1,2-Dichloropropane	25.0	21.5		ug/L		86	70 - 130
cis-1,3-Dichloropropene	25.0	24.9		ug/L		99	70 - 130
trans-1,3-Dichloropropene	25.0	26.8		ug/L		107	70 - 140
Ethylbenzene	25.0	25.1		ug/L		101	80 - 120
Hexachlorobutadiene	25.0	24.9		ug/L		100	70 - 130
2-Hexanone	125	111		ug/L		89	60 - 164
Isopropylbenzene	25.0	26.6		ug/L		106	70 - 130
4-Isopropyltoluene	25.0	24.9		ug/L		99	70 - 130
Methylene Chloride	25.0	20.8		ug/L		83	70 - 147
4-Methyl-2-pentanone (MIBK)	125	111		ug/L		89	58 - 130
Naphthalene	25.0	22.8		ug/L		91	70 - 130
N-Propylbenzene	25.0	24.3		ug/L		97	70 - 130
Styrene	25.0	25.1		ug/L		100	70 - 130
1,1,1,2-Tetrachloroethane	25.0	25.4		ug/L		102	70 - 130
1,1,2,2-Tetrachloroethane	25.0	21.5		ug/L		86	70 - 130
Tetrachloroethene	25.0	28.1		ug/L		113	70 - 130
Toluene	25.0	24.6		ug/L		98	78 - 120
1,2,3-Trichlorobenzene	25.0	22.2		ug/L		89	70 - 130
1,2,4-Trichlorobenzene	25.0	23.5		ug/L		94	70 - 130
1,1,1-Trichloroethane	25.0	31.0		ug/L		124	70 - 130
1,1,2-Trichloroethane	25.0	24.0		ug/L		96	70 - 130
Trichloroethene	25.0	25.2		ug/L		101	70 - 130
Trichlorofluoromethane	25.0	30.9		ug/L		124	66 - 132
1,2,3-Trichloropropane	25.0	24.8		ug/L		99	70 - 130
1,1,2-Trichloro-1,2,2-trifluoroetha	25.0	28.0		ug/L		112	42 - 162
ne							
1,2,4-Trimethylbenzene	25.0	24.4		ug/L		98	70 - 132
1,3,5-Trimethylbenzene	25.0	24.5		ug/L		98	70 - 130
Vinyl acetate	25.0	30.7		ug/L		123	43 - 163
Vinyl chloride	25.0	23.8		ug/L		95	54 - 135
m-Xylene & p-Xylene	50.0	51.7		ug/L		103	70 - 142
o-Xylene	25.0	26.0		ug/L		104	70 - 130
2,2-Dichloropropane	25.0	31.2		ug/L		125	70 - 140

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	97		67 - 130
1,2-Dichloroethane-d4 (Surr)	100		72 - 130
Toluene-d8 (Surr)	96		70 - 130

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-53383-1

Client Sample ID: Lab Control Sample

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: LCS 720-147584/7

Matrix: Water

Prep Type: Total/NA

Analysis Batch: 147584

Spike LCS LCS %Rec. Added Result Qualifier Unit %Rec Limits Analyte 62 - 120 500 406 ug/L 81 Gasoline Range Organics (GRO)

-C5-C12

LCS LCS Surrogate %Recovery Qualifier Limits 4-Bromofluorobenzene 99 67 - 130 1,2-Dichloroethane-d4 (Surr) 106 72 - 130 Toluene-d8 (Surr) 97 70 - 130

Lab Sample ID: LCSD 720-147584/6

Matrix: Water

Analysis Batch: 147584

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Analysis Batch: 14/564	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Methyl tert-butyl ether	25.0	26.4		ug/L		106	62 - 130	3	20
Acetone	125	106		ug/L		85	26 - 180	3	30
Benzene	25.0	23.2		ug/L		93	79 - 130	0	20
Dichlorobromomethane	25.0	26.0		ug/L		104	70 - 130	3	20
Bromobenzene	25.0	24.0		ug/L		96	70 - 130	1	20
Chlorobromomethane	25.0	25.6		ug/L		102	70 - 130	3	20
Bromoform	25.0	27.6		ug/L		110	68 - 136	1	20
Bromomethane	25.0	28.2		ug/L		113	43 - 151	1	20
2-Butanone (MEK)	125	123		ug/L		98	54 - 130	5	20
n-Butylbenzene	25.0	24.9		ug/L		100	70 - 142	2	20
sec-Butylbenzene	25.0	23.6		ug/L		95	70 - 134	3	20
tert-Butylbenzene	25.0	24.0		ug/L		96	70 - 135	1	20
Carbon disulfide	25.0	26.8		ug/L		107	58 - 130	1	20
Carbon tetrachloride	25.0	30.0		ug/L		120	70 - 146	4	20
Chlorobenzene	25.0	24.2		ug/L		97	70 - 130	0	20
Chloroethane	25.0	24.2		ug/L		97	62 - 138	0	20
Chloroform	25.0	25.9		ug/L		104	70 - 130	0	20
Chloromethane	25.0	22.0		ug/L		88	52 - 175	1	20
2-Chlorotoluene	25.0	24.2		ug/L		97	70 - 130	1	20
4-Chlorotoluene	25.0	23.7		ug/L		95	70 - 130	0	20
Chlorodibromomethane	25.0	27.3		ug/L		109	70 - 145	2	20
1,2-Dichlorobenzene	25.0	23.3		ug/L		93	70 - 130	0	20
1,3-Dichlorobenzene	25.0	24.3		ug/L		97	70 - 130	0	20
1,4-Dichlorobenzene	25.0	24.7		ug/L		99	70 - 130	0	20
1,3-Dichloropropane	25.0	24.6		ug/L		99	70 - 130	2	20
1,1-Dichloropropene	25.0	27.3		ug/L		109	70 - 130	1	20
1,2-Dibromo-3-Chloropropane	25.0	23.6		ug/L		94	70 - 136	4	20
Ethylene Dibromide	25.0	26.5		ug/L		106	70 - 130	1	20
Dibromomethane	25.0	26.4		ug/L		106	70 - 130	1	20
Dichlorodifluoromethane	25.0	22.7		ug/L		91	34 - 132	1	20
1,1-Dichloroethane	25.0	24.4		ug/L		98	70 - 130	0	20
1,2-Dichloroethane	25.0	26.8		ug/L		107	61 - 132	1	20
1,1-Dichloroethene	25.0	24.3		ug/L		97	64 - 128	1	20
cis-1,2-Dichloroethene	25.0	25.3		ug/L		101	70 - 130	1	20
trans-1,2-Dichloroethene	25.0	23.5		ug/L		94	68 - 130	2	20

TestAmerica Pleasanton

Page 31 of 50

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-53383-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: LCSD 720-147584/6

Matrix: Water Analysis Batch: 147584

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,2-Dichloropropane	25.0	21.6		ug/L		87	70 - 130	1	20
cis-1,3-Dichloropropene	25.0	25.3		ug/L		101	70 - 130	2	20
trans-1,3-Dichloropropene	25.0	27.1		ug/L		108	70 - 140	1	20
Ethylbenzene	25.0	24.7		ug/L		99	80 - 120	2	20
Hexachlorobutadiene	25.0	24.4		ug/L		98	70 - 130	2	20
2-Hexanone	125	111		ug/L		89	60 - 164	0	20
Isopropylbenzene	25.0	26.2		ug/L		105	70 - 130	1	20
4-Isopropyltoluene	25.0	24.6		ug/L		98	70 - 130	1	20
Methylene Chloride	25.0	21.2		ug/L		85	70 - 147	2	20
4-Methyl-2-pentanone (MIBK)	125	110		ug/L		88	58 - 130	1	20
Naphthalene	25.0	22.9		ug/L		91	70 - 130	0	20
N-Propylbenzene	25.0	23.8		ug/L		95	70 - 130	2	20
Styrene	25.0	25.0		ug/L		100	70 - 130	1	20
1,1,1,2-Tetrachloroethane	25.0	25.5		ug/L		102	70 - 130	0	20
1,1,2,2-Tetrachloroethane	25.0	21.3		ug/L		85	70 - 130	1	20
Tetrachloroethene	25.0	28.0		ug/L		112	70 - 130	1	20
Toluene	25.0	23.9		ug/L	61	96	78 - 120	3	20
1,2,3-Trichlorobenzene	25.0	22.5		ug/L		90	70 - 130	1	20
1,2,4-Trichlorobenzene	25.0	24.1		ug/L		97	70 - 130	3	20
1,1,1-Trichloroethane	25.0	30.2		ug/L		121	70 - 130	3	20
1,1,2-Trichloroethane	25.0	24.0		ug/L		96	70 - 130	0	20
Trichloroethene	25.0	24.8		ug/L		99	70 - 130	2	20
Trichlorofluoromethane	25.0	31.0		ug/L		124	66 - 132	0	20
1,2,3-Trichloropropane	25.0	24.1		ug/L		97	70 - 130	3	20
1,1,2-Trichloro-1,2,2-trifluoroetha	25.0	27.7		ug/L		111	42 - 162	1	20
ne									
1,2,4-Trimethylbenzene	25.0	24.1		ug/L		96	70 - 132	1	20
1,3,5-Trimethylbenzene	25.0	24.5		ug/L		98	70 - 130	0	20
Vinyl acetate	25.0	30.1		ug/L		120	43 - 163	2	20
Vinyl chloride	25.0	23.9		ug/L		96	54 - 135	1	20
m-Xylene & p-Xylene	50.0	51.1		ug/L		102	70 - 142	1	20
o-Xylene	25.0	26.2		ug/L		105	70 - 130	1	20
2,2-Dichloropropane	25.0	29.7		ug/L		119	70 - 140	5	20

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	97		67 - 130
1,2-Dichloroethane-d4 (Surr)	102		72 - 130
Toluene-d8 (Surr)	99		70 - 130

Lab Sample ID: LCSD 720-147584/8

Matrix: Water

Analysis Batch: 147584

,	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics (GRO)	500	404		ug/L		81	62 - 120	0	20

TestAmerica Pleasanton

Prep Type: Total/NA

Client Sample ID: Lab Control Sample Dup

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-53383-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: LCSD 720-147584/8

Matrix: Water

Analysis Batch: 147584

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	97		67 - 130
1,2-Dichloroethane-d4 (Surr)	104		72 - 130
Toluene-d8 (Surr)	95		70 - 130

Lab Sample ID: 720-53383-5 MS

Matrix: Water

Analysis Batch: 147584

Client Sample ID: MP-04-3 Prep Type: Total/NA

Analyte	•	Sample Qualifier	Spike Added		MS Qualifier	Unit	D	%Rec	%Rec.	
Methyl tert-butyl ether	ND		25.0	27.5		ug/L		110	60 - 138	
Acetone	ND		125	104		ug/L		77	60 - 140	
Benzene	ND		25.0	23.4		ug/L		94	60 - 140	
Dichlorobromomethane	ND		25.0	27.0		ug/L		108	60 - 140	
Bromobenzene	ND		25.0	24.7		ug/L		99	60 - 140	
Chlorobromomethane	ND		25.0	25.5		ug/L		102	60 - 140	
Bromoform	ND		25.0	27.4		ug/L		110	56 - 140	
Bromomethane	ND		25.0	22.8		ug/L		91	23 - 140	
2-Butanone (MEK)	ND		125	115		ug/L		92	60 - 140	
n-Butylbenzene	ND		25.0	23.1		ug/L		93	60 - 140	
sec-Butylbenzene	ND		25.0	23.2		ug/L		93	60 - 140	
tert-Butylbenzene	ND		25.0	23.9		ug/L		96	60 - 140	
Carbon disulfide	ND		25.0	26.1		ug/L		98	38 - 140	
Carbon tetrachloride	ND		25.0	29.3		ug/L		117	60 - 140	
Chlorobenzene	ND		25.0	24.4		ug/L		98	60 - 140	
Chloroethane	ND		25.0	22.8		ug/L		91	51 - 140	
Chloroform	ND		25.0	26.3		ug/L		105	60 - 140	
Chloromethane	ND		25.0	19.0		ug/L		76	52 - 140	
2-Chlorotoluene	ND		25.0	24.0		ug/L		96	60 - 140	
4-Chlorotoluene	ND		25.0	23.6		ug/L		94	60 - 140	
Chlorodibromomethane	ND		25.0	28.2		ug/L		113	60 - 140	
1,2-Dichlorobenzene	ND		25.0	23.9		ug/L		96	60 - 140	
1,3-Dichlorobenzene	ND		25.0	24.4		ug/L		98	60 - 140	
1,4-Dichlorobenzene	ND		25.0	24.7		ug/L		99	60 - 140	
1,3-Dichloropropane	ND		25.0	24.9		ug/L		100	60 - 140	
1,1-Dichloropropene	ND		25.0	26.2		ug/L		105	60 - 140	
1,2-Dibromo-3-Chloropropane	ND		25.0	23.8		ug/L		95	60 - 140	
Ethylene Dibromide	ND		25.0	27.5		ug/L		110	60 - 140	
Dibromomethane	ND		25.0	27.5		ug/L		110	60 - 140	
Dichlorodifluoromethane	ND		25.0	20.5		ug/L		82	38 - 140	
1,1-Dichloroethane	ND		25.0	24.3		ug/L		97	60 - 140	
1,2-Dichloroethane	ND		25.0	27.8		ug/L		111	60 - 140	
1,1-Dichloroethene	ND		25.0	23.3		ug/L		93	60 - 140	
cis-1,2-Dichloroethene	ND		25.0	25.3		ug/L		101	60 - 140	
trans-1,2-Dichloroethene	ND		25.0	23.1		ug/L		92	60 - 140	
1,2-Dichloropropane	ND		25.0	22.0		ug/L		88	60 - 140	
cis-1,3-Dichloropropene	ND		25.0	24.6		ug/L		98	60 - 140	
trans-1,3-Dichloropropene	ND		25.0	26.8		ug/L		107	60 - 140	
Ethylbenzene	ND		25.0	24.2		ug/L		97	60 - 140	

TestAmerica Pleasanton

Page 33 of 50

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-53383-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: 720-53383-5 MS

Matrix: Water

Analysis Batch: 147584

Client Sample ID: MP-04-3 Prep Type: Total/NA

Allalysis Batoli. 141004	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Hexachlorobutadiene	ND		25.0	22.7		ug/L		91	60 - 140
2-Hexanone	ND		125	113		ug/L		86	60 - 140
Isopropylbenzene	ND.		25.0	25.6		ug/L		102	60 - 140
4-Isopropyltoluene	ND		25.0	23.7		ug/L		95	60 - 140
Methylene Chloride	ND		25.0	21.2		ug/L		85	40 - 140
4-Methyl-2-pentanone (MIBK)	ND		125	106		ug/L		85	58 - 130
Naphthalene	ND		25.0	22.2		ug/L		89	56 - 140
N-Propylbenzene	ND		25.0	23.5		ug/L		94	60 - 140
Styrene	ND		25.0	24.1		ug/L		96	60 - 140
1,1,1,2-Tetrachloroethane	ND		25.0	26.1		ug/L		105	60 - 140
1,1,2,2-Tetrachloroethane	ND		25.0	22.2		ug/L		89	60 - 140
Tetrachloroethene	ND		25.0	26.9		ug/L		108	60 - 140
Toluene	ND		25.0	23.9		ug/L		96	60 - 140
1,2,3-Trichlorobenzene	ND		25.0	21.8		ug/L		87	60 - 140
1,2,4-Trichlorobenzene	ND		25.0	22.8		ug/L		91	60 - 140
1,1,1-Trichloroethane	ND		25.0	30.6		ug/L		122	60 - 140
1,1,2-Trichloroethane	ND		25.0	25.6		ug/L		102	60 - 140
Trichloroethene	ND		25.0	24.8		ug/L		99	60 - 140
Trichlorofluoromethane	ND		25.0	28.6		ug/L		114	60 - 140
1,2,3-Trichloropropane	ND		25.0	25.3		ug/L		101	60 - 140
1,1,2-Trichloro-1,2,2-trifluoroetha	ND		25.0	26.9		ug/L		108	60 - 140
ne									
1,2,4-Trimethylbenzene	ND		25.0	23.9		ug/L		95	60 - 140
1,3,5-Trimethylbenzene	ND		25.0	24.0		ug/L		96	60 - 140
Vinyl acetate	ND		25.0	28.3		ug/L		113	40 - 140
Vinyl chloride	ND		25.0	21.0		ug/L		84	58 - 140
m-Xylene & p-Xylene	ND		50.0	50.5		ug/L		101	60 - 140
o-Xylene	ND		25.0	26.1		ug/L		104	60 - 140
2,2-Dichloropropane	ND		25.0	28.3		ug/L		113	60 - 140

MS	MS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	98		67 - 130
1,2-Dichloroethane-d4 (Surr)	107		72 - 130
Toluene-d8 (Surr)	98		70 - 130

Lab Sample ID: 720-53383-5 MSD

Matrix: Water

Analysis Batch: 147584

Client Sample ID: MP-04-3 Prep Type: Total/NA

Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
ND		25.0	28.0		ug/L		112	60 - 138	2	20
ND		125	110		ug/L		81	60 - 140	5	20
ND		25.0	23.6		ug/L		94	60 - 140	1	20
ND		25.0	27.1		ug/L		108	60 - 140	0	20
ND		25.0	24.6		ug/L		98	60 - 140	1	20
ND		25.0	25.9		ug/L		104	60 - 140	2	20
ND		25.0	26.0		ug/L		104	56 - 140	6	20
ND		25.0	23.7		ug/L		95	23 - 140	4	20
	Result ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND	Result Qualifier Added ND 25.0 ND 125 ND 25.0 ND 25.0 ND 25.0 ND 25.0 ND 25.0 ND 25.0 ND 25.0	Result Qualifier Added Result ND 25.0 28.0 ND 125 110 ND 25.0 23.6 ND 25.0 27.1 ND 25.0 24.6 ND 25.0 25.9 ND 25.0 26.0	Result Qualifier Added Result Qualifier ND 25.0 28.0 ND 125 110 ND 25.0 23.6 ND 25.0 27.1 ND 25.0 24.6 ND 25.0 25.9 ND 25.0 26.0	Result Qualifier Added Result Qualifier Unit ND 25.0 28.0 ug/L ND 125 110 ug/L ND 25.0 23.6 ug/L ND 25.0 27.1 ug/L ND 25.0 24.6 ug/L ND 25.0 25.9 ug/L ND 25.0 26.0 ug/L	Result Qualifier Added Result Qualifier Unit D ND 25.0 28.0 ug/L ug/L ND 125 110 ug/L ug/L ND 25.0 23.6 ug/L ug/L ND 25.0 27.1 ug/L ug/L ND 25.0 24.6 ug/L ug/L ND 25.0 25.9 ug/L ND 25.0 26.0 ug/L	Result Qualifier Added Result Qualifier Unit D %Rec ND 25.0 28.0 ug/L 112 ND 125 110 ug/L 81 ND 25.0 23.6 ug/L 94 ND 25.0 27.1 ug/L 108 ND 25.0 24.6 ug/L 98 ND 25.0 25.9 ug/L 104 ND 25.0 26.0 ug/L 104	Result Qualifier Added Result Qualifier Unit D %Rec Limits ND 25.0 28.0 ug/L 112 60 - 138 ND 125 110 ug/L 81 60 - 140 ND 25.0 23.6 ug/L 94 60 - 140 ND 25.0 27.1 ug/L 108 60 - 140 ND 25.0 24.6 ug/L 98 60 - 140 ND 25.0 25.9 ug/L 104 60 - 140 ND 25.0 26.0 ug/L 104 56 - 140	Result Qualifier Added Result Qualifier Unit D %Rec Limits RPD ND 25.0 28.0 ug/L 112 60 - 138 2 ND 125 110 ug/L 81 60 - 140 5 ND 25.0 23.6 ug/L 94 60 - 140 1 ND 25.0 27.1 ug/L 108 60 - 140 0 ND 25.0 24.6 ug/L 98 60 - 140 1 ND 25.0 25.9 ug/L 104 60 - 140 2 ND 25.0 26.0 ug/L 104 56 - 140 6

TestAmerica Pleasanton

Page 34 of 50

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-53383-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: 720-53383-5 MSD

Matrix: Water

Analysis Batch: 147584

Client Sample ID: MP-04-3 Prep Type: Total/NA

Analysis Batch: 147584			- "								
		Sample	Spike		MSD				%Rec.		RPD
Analyte		Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
2-Butanone (MEK)	ND		125	116		ug/L		93	60 - 140	1	20
n-Butylbenzene	ND		25.0	23.5		ug/L		94	60 - 140	1	20
sec-Butylbenzene	ND		25.0	23.5		ug/L		94	60 - 140	1	20
tert-Butylbenzene	ND		25.0	24.0		ug/L		96	60 - 140	0	20
Carbon disulfide	ND		25.0	26.3		ug/L		99	38 - 140	1	20
Carbon tetrachloride	ND		25.0	29.3		ug/L		117	60 - 140	0	20
Chlorobenzene	ND		25.0	24.3		ug/L		97	60 - 140	1	20
Chloroethane	ND		25.0	23.2		ug/L		93	51 - 140	2	20
Chloroform	ND		25.0	27.0		ug/L		108	60 - 140	3	20
Chloromethane	ND		25.0	19.4		ug/L		78	52 - 140	2	20
2-Chiorotoluene	ND		25.0	24.2		ug/L		97	60 - 140	1	20
4-Chlorotoluene	ND		25.0	23.6		ug/L		94	60 - 140	0	20
Chlorodibromomethane	ND		25.0	27.8		ug/L		111	60 - 140	2	20
1,2-Dichlorobenzene	ND		25.0	24.0		ug/L		96	60 - 140	0	20
1,3-Dichlorobenzene	ND		25.0	24.5		ug/L		98	60 - 140	0	20
1,4-Dichlorobenzene	ND		25.0	25.1		ug/L		100	60 - 140	2	20
1,3-Dichloropropane	ND		25.0	25.3		ug/L		101	60 - 140	1	20
1,1-Dichloropropene	ND		25.0	26.4		ug/L		105	60 - 140	1	20
1,2-Dibromo-3-Chloropropane	ND		25.0	23.4		ug/L		94	60 - 140	2	20
Ethylene Dibromide	ND		25.0	26.8		ug/L		107	60 - 140	2	20
Dibromomethane	ND		25.0	27.7		ug/L		111	60 - 140	1	20
Dichlorodifluoromethane	ND		25.0	21.2		ug/L		85	38 - 140	3	20
1,1-Dichloroethane	ND		25.0	25.1		ug/L		100	60 - 140	3	20
1,2-Dichloroethane	ND		25.0	28.2		ug/L		113	60 - 140	1	20
1,1-Dichloroethene	ND		25.0	22.6		ug/L		90	60 - 140	3	20
cis-1,2-Dichloroethene	ND		25.0	26.0		ug/L		104	60 - 140	3	20
trans-1,2-Dichloroethene	ND		25.0	23.2		ug/L		93	60 - 140	0	20
1,2-Dichloropropane	ND		25.0	22.7		ug/L		91	60 - 140	3	20
cis-1,3-Dichloropropene	ND		25.0	24.6		ug/L		98	60 - 140	0	20
trans-1,3-Dichloropropene	ND		25.0	25.8		ug/L		103	60 - 140	3	20
Ethylbenzene	ND		25.0	24.4		ug/L		98	60 - 140	1	20
Hexachlorobutadiene	ND		25.0	22.8		ug/L		91	60 - 140	0	20
2-Hexanone	ND		125	112		ug/L		85	60 - 140	1	20
Isopropylbenzene	ND		25.0	25.3		ug/L		101	60 - 140	1	20
4-Isopropyltoluene	ND		25.0	23.8		ug/L		95	60 - 140	0	20
Methylene Chloride	ND		25.0	21.2		ug/L		85	40 - 140	0	20
4-Methyl-2-pentanone (MIBK)	ND		125	109		ug/L		87	58 - 130	3	20
Naphthalene	ND		25.0	22.1		ug/L		88	56 - 140	1	20
N-Propylbenzene	ND		25.0	23.6		ug/L		94	60 - 140	1	20
Styrene	ND		25.0	21.8		ug/L		87	60 - 140	10	20
1,1,1,2-Tetrachloroethane	ND		25.0	26.3		ug/L		105	60 - 140	1	20
1,1,2,2-Tetrachloroethane	ND		25.0	21.9		ug/L		88	60 - 140	1	20
Tetrachloroethene	ND		25.0	27.6		ug/L		110	60 - 140	2	20
Toluene	ND		25.0	24.3		ug/L		97	60 - 140	2	20
1,2,3-Trichlorobenzene	ND		25.0	21.5		ug/L		86	60 - 140	2	20
1,2,4-Trichlorobenzene	ND		25.0	22.8		ug/L		91	60 - 140	0	20
1,1,1-Trichloroethane	ND		25.0	30.9		ug/L ug/L		123	60 - 140	1	20
1,1,2-Trichloroethane	ND		25.0	25.6		_					
i, i,c-ilicilorocularie	ND		20.0	25.6		ug/L		103	60 - 140	0	20

TestAmerica Pleasanton

Page 35 of 50

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-53383-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: 720-53383-5 MSD

Matrix: Water

Analysis Batch: 147584

Client Sample ID: MP-04-3

Prep Type: Total/NA

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Trichloroethene	ND		25.0	25.2		ug/L		101	60 - 140	2	20
Trichlorofluoromethane	ND		25.0	29.4		ug/L		117	60 - 140	3	20
1,2,3-Trichloropropane	ND		25.0	24.8		ug/L		99	60 - 140	2	20
1,1,2-Trichloro-1,2,2-trifluoroetha	ND		25.0	26.5		ug/L		106	60 - 140	2	20
ne											
1,2,4-Trimethylbenzene	ND		25.0	23.9		ug/L		96	60 - 140	0	20
1,3,5-Trimethylbenzene	ND		25.0	24.0		ug/L		96	60 - 140	0	20
Vinyl acetate	ND		25.0	29.1		ug/L		116	40 - 140	3	20
Vinyl chloride	ND		25.0	21.6		ug/L		87	58 - 140	3	20
m-Xylene & p-Xylene	ND		50.0	50.1		ug/L		100	60 - 140	1	20
o-Xylene	ND		25.0	25.8		ug/L		103	60 - 140	1	20
2,2-Dichloropropane	ND		25.0	28.6		ug/L		114	60 - 140	1	20

MSD MSD

MR MR

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	95		67 - 130
1,2-Dichloroethane-d4 (Surr)	106		72 - 130
Toluene-d8 (Surr)	99		70 - 130

Lab Sample ID: MB 720-147621/5

Matrix: Water

Analysis Batch: 147621

Client Sample ID: Method Blank

Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND		0.50		ug/L			11/04/13 09:45	1
Acetone	ND		50		ug/L			11/04/13 09:45	1
Benzene	ND		0.50		ug/L			11/04/13 09:45	1
Dichlorobromomethane	ND		0.50		ug/L			11/04/13 09:45	1
Bromobenzene	ND		1.0		ug/L			11/04/13 09:45	1
Chlorobromomethane	ND		1.0		ug/L			11/04/13 09:45	1
Bromoform	ND		1.0		ug/L			11/04/13 09:45	1
Bromomethane	ND		1.0		ug/L			11/04/13 09:45	1
2-Butanone (MEK)	ND		50		ug/L			11/04/13 09:45	1
n-Butylbenzene	ND		1.0		ug/L			11/04/13 09:45	1
sec-Butylbenzene	ND		1.0		ug/L			11/04/13 09:45	1
tert-Butylbenzene	ND		1.0		ug/L			11/04/13 09:45	1
Carbon disulfide	ND		5.0		ug/L			11/04/13 09:45	1
Carbon tetrachloride	ND		0.50		ug/L			11/04/13 09:45	1
Chlorobenzene	ND		0.50		ug/L			11/04/13 09:45	1
Chloroethane	ND		1.0		ug/L			11/04/13 09:45	1
Chloroform	ND		1.0		ug/L			11/04/13 09:45	1
Chloromethane	ND		1.0		ug/L			11/04/13 09:45	1
2-Chlorotoluene	ND		0.50		ug/L			11/04/13 09:45	1
4-Chlorotoluene	ND		0.50		ug/L			11/04/13 09:45	1
Chlorodibromomethane	ND		0.50		ug/L			11/04/13 09:45	1
1,2-Dichlorobenzene	ND		0.50		ug/L			11/04/13 09:45	1
1,3-Dichlorobenzene	ND		0.50		ug/L			11/04/13 09:45	1
1,4-Dichlorobenzene	ND		0.50		ug/L			11/04/13 09:45	1
1,3-Dichloropropane	ND		1.0		ug/L			11/04/13 09:45	1

TestAmerica Pleasanton

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-53383-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

MB MB

Lab Sample ID: MB 720-147621/5

Matrix: Water Analysis Batch: 147621

Surrogate

4-Bromofluorobenzene

Toluene-d8 (Surr)

1,2-Dichloroethane-d4 (Surr)

Client Sample ID: Method Blank

Prep Type: Total/NA

	MB	MB					
Analyte	Result	Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
1,1-Dichloropropene	ND		0.50	ug/L		11/04/13 09:45	1
1,2-Dibromo-3-Chloropropane	ND		1.0	ug/L		11/04/13 09:45	1
Ethylene Dibromide	ND		0.50	ug/L		11/04/13 09:45	1
Dibromomethane	ND		0.50	ug/L		11/04/13 09:45	1
Dichlorodifluoromethane	ND		0.50	ug/L		11/04/13 09:45	1
1,1-Dichloroethane	ND		0.50	ug/L		11/04/13 09:45	1
1,2-Dichloroethane	ND		0.50	ug/L		11/04/13 09:45	1
1,1-Dichloroethene	ND		0.50	ug/L		11/04/13 09:45	1
cis-1,2-Dichloroethene	ND		0.50	ug/L		11/04/13 09:45	1
trans-1,2-Dichloroethene	ND		0.50	ug/L		11/04/13 09:45	1
1,2-Dichloropropane	ND		0.50	ug/L		11/04/13 09:45	1
cis-1,3-Dichloropropene	ND		0.50	ug/L		11/04/13 09:45	1
trans-1,3-Dichloropropene	ND		0.50	ug/L		11/04/13 09:45	1
Ethylbenzene	ND		0.50	ug/L		11/04/13 09:45	1
Hexachlorobutadiene	ND		1.0	ug/L		11/04/13 09:45	1
2-Hexanone	ND		50	ug/L		11/04/13 09:45	1
Isopropylbenzene	ND		0.50	ug/L		11/04/13 09:45	1
4-Isopropyltoluene	ND		1.0	ug/L		11/04/13 09:45	1
Methylene Chloride	ND		5.0	ug/L		11/04/13 09:45	1
4-Methyl-2-pentanone (MIBK)	ND		50	ug/L		11/04/13 09:45	1
Naphthalene	ND		1.0	ug/L		11/04/13 09:45	1
N-Propylbenzene	ND		1.0	ug/L		11/04/13 09:45	1
Styrene	ND		0.50	ug/L		11/04/13 09:45	1
1,1,1,2-Tetrachloroethane	ND		0.50	ug/L		11/04/13 09:45	1
1,1,2,2-Tetrachloroethane	ND		0.50	ug/L		11/04/13 09:45	1
Tetrachloroethene	ND		0.50	ug/L		11/04/13 09:45	1
Toluene	ND		0.50	ug/L		11/04/13 09:45	1
1,2,3-Trichlorobenzene	ND		1.0	ug/L		11/04/13 09:45	1
1,2,4-Trichlorobenzene	ND		1.0	ug/L		11/04/13 09:45	1
1,1,1-Trichloroethane	ND		0.50	ug/L		11/04/13 09:45	1
1,1,2-Trichloroethane	ND		0.50	ug/L		11/04/13 09:45	1
Trichloroethene	ND		0.50	ug/L		11/04/13 09:45	1
Trichlorofluoromethane	ND		1.0	ug/L		11/04/13 09:45	1
1,2,3-Trichloropropane	ND		0.50	ug/L		11/04/13 09:45	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50	ug/L		11/04/13 09:45	1
1,2,4-Trimethylbenzene	ND		0.50	ug/L		11/04/13 09:45	1
1,3,5-Trimethylbenzene	ND		0.50	ug/L		11/04/13 09:45	1
Vinyl acetate	ND		10	ug/L		11/04/13 09:45	1
Vinyl chloride	ND		0.50	ug/L		11/04/13 09:45	1
Xylenes, Total	ND		1.0	ug/L		11/04/13 09:45	1
2,2-Dichloropropane	ND		0.50	ug/L		11/04/13 09:45	1
Gasoline Range Organics (GRO) -C5-C12	ND		50	ug/L		11/04/13 09:45	1

TestAmerica Pleasanton

Analyzed

11/04/13 09:45

11/04/13 09:45

11/04/13 09:45

Prepared

Limits

67 - 130

72 - 130

70 - 130

MB MB

%Recovery Qualifier

93

105

96

Dil Fac

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-53383-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: LCS 720-147621/6

Matrix: Water

Analysis Batch: 147621

Client Sample ID: Lab Control Sample Prep Type: Total/NA

• • • • • • • • • • • • • • • • • • • •	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Methyl tert-butyl ether	25.0	26.7		ug/L		107	62 - 130
Acetone	125	122		ug/L		97	26 - 180
Benzene	25.0	23.8		ug/L		95	79 - 130
Dichlorobromomethane	25.0	26.4		ug/L		106	70 - 130
Bromobenzene	25.0	24.5		ug/L		98	70 - 130
Chlorobromomethane	25.0	25.2		ug/L		101	70 - 130
Bromoform	25.0	27.4		ug/L		109	68 - 136
Bromomethane	25.0	28.9		ug/L		116	43 - 151
2-Butanone (MEK)	125	143		ug/L		114	54 - 130
n-Butylbenzene	25.0	25.7		ug/L		103	70 - 142
sec-Butylbenzene	25.0	24.6		ug/L		99	70 - 134
tert-Butylbenzene	25.0	24.9		ug/L		100	70 - 135
Carbon disulfide	25.0	28.2		ug/L		113	58 - 130
Carbon tetrachloride	25.0	31.0		ug/L		124	70 - 146
Chlorobenzene	25.0	24.6		ug/L		98	70 - 130
Chloroethane	25.0	25.2		ug/L		101	62 - 138
Chloroform	25.0	26.3		ug/L		105	70 - 130
Chloromethane	25.0	22.9		ug/L		92	52 - 175
2-Chlorotoluene	25.0	24.9		ug/L		100	70 - 130
4-Chlorotoluene	25.0	24.6		ug/L		98	70 - 130
Chlorodibromomethane	25.0	27.4		ug/L		110	70 - 145
1,2-Dichlorobenzene	25.0	24.0		ug/L		96	70 - 130
1,3-Dichlorobenzene	25.0	24.7		ug/L		99	70 - 130
1,4-Dichlorobenzene	25.0	25.0		ug/L		100	70 - 130
1,3-Dichloropropane	25.0	24.0		ug/L		96	70 - 130
1,1-Dichloropropene	25.0	28.2		ug/L		113	70 - 130
1,2-Dibromo-3-Chloropropane	25.0	25.3		ug/L		101	70 - 136
Ethylene Dibromide	25.0	27.1		ug/L		108	70 - 130
Dibromomethane	25.0	26.9		ug/L		108	70 - 130
Dichlorodifluoromethane	25.0	22.9		ug/L		91	34 - 132
1,1-Dichloroethane	25.0	24.8		ug/L		99	70 - 130
1,2-Dichloroethane	25.0	27.1		ug/L		108	61 - 132
1,1-Dichloroethene	25.0	24.9		ug/L		100	64 - 128
cis-1,2-Dichloroethene	25.0	25.9		ug/L		104	70 - 130
trans-1,2-Dichloroethene	25.0	24.1		ug/L		96	68 - 130
1,2-Dichloropropane	25.0	22.3		ug/L		89	70 - 130
cis-1,3-Dichloropropene	25.0	25.4		ug/L		102	70 - 130
trans-1,3-Dichloropropene	25.0	27.0		ug/L		108	70 - 140
Ethylbenzene	25.0	25.2		ug/L		101	80 - 120
Hexachlorobutadiene	25.0	24.7		ug/L		99	70 - 130
2-Hexanone	125	118		ug/L		95	60 - 164
Isopropylbenzene	25.0	26.3		ug/L		105	70 - 130
4-Isopropyltoluene	25.0	25.3		ug/L		101	70 - 130
Methylene Chloride	25.0	21.2		ug/L		85	70 - 147
4-Methyl-2-pentanone (MIBK)	125	115		ug/L		92	58 - 130
Naphthalene	25.0	23.1		ug/L		92	70 - 130
N-Propylbenzene	25.0	25.0		ug/L		100	70 - 130
Styrene	25.0	25.5		ug/L		102	70 - 130

TestAmerica Pleasanton

Page 38 of 50

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-53383-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: LCS 720-147621/6

Matrix: Water Analysis Batch: 147621 Client Sample ID: Lab Control Sample

Prep Type: Total/NA

	Spike	LCS	LCS			%Rec.
Analyte	Added	Result	Qualifier Unit	D	%Rec	Limits
1,1,1,2-Tetrachloroethane	25.0	25.6	ug/L		102	70 - 130
1,1,2,2-Tetrachloroethane	25.0	22.5	ug/L		90	70 - 130
Tetrachloroethene	25.0	28.2	ug/L		113	70 - 130
Toluene	25.0	24.8	ug/L		99	78 - 120
1,2,3-Trichlorobenzene	25.0	22.2	ug/L		89	70 - 130
1,2,4-Trichlorobenzene	25.0	23.8	ug/L		95	70 - 130
1,1,1-Trichloroethane	25.0	31.3	ug/L		125	70 - 130
1,1,2-Trichloroethane	25.0	24.5	ug/L		98	70 - 130
Trichloroethene	25.0	25.5	ug/L		102	70 - 130
Trichlorofluoromethane	25.0	32.3	ug/L		129	66 - 132
1,2,3-Trichloropropane	25.0	25.7	ug/L		103	70 - 130
1,1,2-Trichloro-1,2,2-trifluoroetha	25.0	28.0	ug/L		112	42 - 162
ne						
1,2,4-Trimethylbenzene	25.0	24.7	ug/L		99	70 - 132
1,3,5-Trimethylbenzene	25.0	25.2	ug/L		101	70 - 130
Vinyl acetate	25.0	31.0	ug/L		124	43 - 163
Vinyl chloride	25.0	24.4	ug/L		98	54 - 135
m-Xylene & p-Xylene	50.0	51.6	ug/L		103	70 - 142
o-Xylene	25.0	26.0	ug/L		104	70 - 130
2,2-Dichloropropane	25.0	31.3	ug/L		125	70 - 140

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	94		67 - 130
1,2-Dichloroethane-d4 (Surr)	101		72 - 130
Toluene-d8 (Surr)	97		70 - 130

Lab Sample ID: LCS 720-147621/8

Matrix: Water

Analysis Batch: 147621

Client	Sample	ID:	Lab	Control	Sample
			D	-	4 17514

Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Gasoline Range Organics (GRO)	500	462		ug/L		92	62 - 120
-C5-C12							

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	98		67 - 130
1,2-Dichloroethane-d4 (Surr)	105		72 - 130
Toluene-d8 (Surr)	97		70 - 130

Lab Sample ID: LCSD 720-147621/7

Matrix: Water

Analysis Batch: 147621

Client Sample ID): Lab	Control	Sample Dup
		Dron Tu	no. Total/NA

Prep Type: Total/NA

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Methyl tert-butyl ether	25.0	26.0		ug/L		104	62 - 130	3	20
Acetone	125	117		ug/L		94	26 - 180	4	30
Benzene	25.0	23.8		ug/L		95	79 - 130	0	20
Dichlorobromomethane	25.0	26.1		ug/L		104	70 - 130	1	20

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-53383-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: LCSD 720-147621/7

Matrix: Water

Analysis Batch: 147621

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Bromobenzene	25.0	24.6		ug/L		98	70 - 130	0	20
Chlorobromomethane	25.0	25.1		ug/L		100	70 - 130	1	20
Bromoform	25.0	28.3		ug/L		113	68 - 136	3	20
Bromomethane	25.0	27.6		ug/L		110	43 - 151	5	20
2-Butanone (MEK)	125	134		ug/L		107	54 - 130	6	20
n-Butylbenzene	25.0	25.7		ug/L		103	70 - 142	0	20
sec-Butylbenzene	25.0	25.3		ug/L		101	70 - 134	2	20
tert-Butylbenzene	25.0	25.6		ug/L		103	70 - 135	3	20
Carbon disulfide	25.0	27.8		ug/L		111	58 - 130	1	20
Carbon tetrachloride	25.0	30.8		ug/L		123	70 - 146	1	20
Chlorobenzene	25.0	24.8		ug/L		99	70 - 130	1	20
Chloroethane	25.0	24.2		ug/L		97	62 - 138	4	20
Chloroform	25.0	26.0		ug/L		104	70 - 130	1	20
Chloromethane	25.0	21.5		ug/L		86	52 - 175	6	20
2-Chlorotoluene	25.0	25.1		ug/L		100	70 - 130	1	20
4-Chlorotoluene	25.0	24.8		ug/L		99	70 - 130	1	20
Chlorodibromomethane	25.0	27.2		ug/L		109	70 - 145	1	20
1,2-Dichlorobenzene	25.0	24.8		ug/L		99	70 - 130	3	20
1,3-Dichlorobenzene	25.0	25.6		ug/L		102	70 - 130	4	20
1,4-Dichlorobenzene	25.0	25.8		ug/L		103	70 - 130	3	20
1,3-Dichloropropane	25.0	25.0		ug/L		100	70 - 130	4	20
1,1-Dichloropropene	25.0	28.0		ug/L		112	70 - 130	1	20
1,2-Dibromo-3-Chloropropane	25.0	26.6		ug/L		106	70 - 136	5	20
Ethylene Dibromide	25.0	26.5		ug/L		106	70 - 130	2	20
Dibromomethane	25.0	26.2		ug/L		105	70 - 130	, 3	20
Dichlorodifluoromethane	25.0	22.0		ug/L		88	34 - 132	4	20
1,1-Dichloroethane	25.0	24.5		ug/L		98	70 - 130	1	20
1,2-Dichloroethane	25.0	26.7		ug/L		107	61 - 132	2	20
1,1-Dichloroethene	25.0	24.3		ug/L		97	64 - 128	2	20
cis-1,2-Dichloroethene	25.0	25.5		ug/L		102	70 - 130	1	20
trans-1,2-Dichloroethene	25.0	23.8		ug/L		95	68 - 130	1	20
1,2-Dichloropropane	25.0	21.7		ug/L		87	70 - 130	3	20
cis-1,3-Dichloropropene	25.0	25.4		ug/L		102	70 - 130	0	20
trans-1,3-Dichloropropene	25.0	26.9		ug/L		107	70 - 140	0	20
Ethylbenzene	25.0	25.5		ug/L		102	80 - 120	1	20
Hexachlorobutadiene	25.0	25.2		ug/L		101	70 - 130	2	20
2-Hexanone	125	112		ug/L		90	60 - 164	5	20
Isopropylbenzene	25.0	26.7		ug/L		107	70 - 130	2	20
4-Isopropyltoluene	25.0	25.9		ug/L		104	70 - 130	2	20
Methylene Chloride	25.0	21.3		ug/L		85	70 - 147	0	20
4-Methyl-2-pentanone (MIBK)	125	110		ug/L		88	58 - 130	5	20
Naphthalene	25.0	24.5		ug/L		98	70 - 130	6	20
N-Propylbenzene	25.0	24.8		ug/L		99	70 - 130	1	20
Styrene	25.0	25.9		ug/L		104	70 - 130	2	20
1,1,1,2-Tetrachloroethane	25.0	26.1		ug/L		104	70 - 130	2	20
1,1,2,2-Tetrachloroethane	25.0	23.5		ug/L		94	70 - 130	4	20
Tetrachloroethene	25.0	27.5		ug/L		110	70 - 130	2	20
Toluene	25.0	25.2		ug/L		101	78 - 120	2	20

TestAmerica Pleasanton

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-53383-1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: LCSD 720-147621/7 Matrix: Water

Analysis Batch: 147621

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,2,3-Trichlorobenzene	25.0	23.3		ug/L		93	70 - 130	5	20
1,2,4-Trichlorobenzene	25.0	24.3		ug/L		97	70 - 130	2	20
1,1,1-Trichloroethane	25.0	31.4		ug/L		126	70 - 130	0	20
1,1,2-Trichloroethane	25.0	24.3		ug/L		97	70 - 130	1	20
Trichloroethene	25.0	25.3		ug/L		101	70 - 130	1	20
Trichlorofluoromethane	25.0	31.4		ug/L		126	66 - 132	3	20
1,2,3-Trichloropropane	25.0	26.7		ug/L		107	70 - 130	4	20
1,1,2-Trichloro-1,2,2-trifluoroetha	25.0	27.3		ug/L		109	42 - 162	3	20
ne									
1,2,4-Trimethylbenzene	25.0	25.4		ug/L		102	70 - 132	3	20
1,3,5-Trimethylbenzene	25.0	25.5		ug/L		102	70 - 130	1	20
Vinyl acetate	25.0	30.5		ug/L		122	43 - 163	2	20
Vinyl chloride	25.0	23.8		ug/L		95	54 - 135	2	20
m-Xylene & p-Xylene	50.0	52.1		ug/L		104	70 - 142	1	20
o-Xylene	25.0	26.3		ug/L		105	70 - 130	1	20
2,2-Dichloropropane	25.0	30.8		ug/L		123	70 - 140	2	20

Spike

Added

500

LCSD LCSD

466

Result Qualifier

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	96		67 - 130
1,2-Dichloroethane-d4 (Surr)	100		72 - 130
Toluene-d8 (Surr)	98		70 - 130

Lab Sample ID: LCSD 720-147621/9

Matrix: Water

Analyte

-C5-C12

Analysis Batch: 147621

Gasoline Range Organics (GRO)

Client Sample	ID:	Lab	Control Sample Dup	
			Prep Type: Total/NA	

 WRec.
 RPD

 Unit
 D
 %Rec
 Limits
 RPD
 Limit

 ug/L
 93
 62 - 120
 1
 20

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	97		67 - 130
1,2-Dichloroethane-d4 (Surr)	100		72 - 130
Toluene-d8 (Surr)	96		70 - 130

QC Association Summary

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-53383-1

GC/MS VOA

Analysis	Batch:	147530
----------	--------	--------

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-53383-2	MP-04-1	Total/NA	Water	8260B/CA_LUFT MS	
720-53383-3	MP-04-2	Total/NA	Water	8260B/CA_LUFT	
CS 720-147530/5	Lab Control Sample	Total/NA	Water	MS 8260B/CA_LUFT	
.CS 720-147530/7	Lab Control Sample	Total/NA	Water	MS 8260B/CA_LUFT	
CSD 720-147530/6	Lab Control Sample Dup	Total/NA	Water	MS 8260B/CA_LUFT	
CSD 720-147530/8	Lab Control Sample Dup	Total/NA	Water	MS 8260B/CA_LUFT	
//B 720-147530/4	Method Blank	Total/NA	Water	MS 8260B/CA_LUFT MS	
nalysis Batch: 14753	4				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
20-53383-1	MW-100	Total/NA	Water	8260B/CA_LUFT	
.CS 720-147534/5	Lab Control Sample	Total/NA	Water	MS 8260B/CA_LUFT MS	
.CS 720-147534/7	Lab Control Sample	Total/NA	Water	8260B/CA_LUFT MS	
CSD 720-147534/6	Lab Control Sample Dup	Total/NA	Water	8260B/CA_LUFT MS	
CSD 720-147534/8	Lab Control Sample Dup	Total/NA	Water	8260B/CA_LUFT MS	
MB 720-147534/4	Method Blank	Total/NA	Water	8260B/CA_LUFT MS	
nalysis Batch: 14758	4				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
20-53383-4	MP-02-2	Total/NA	Water	8260B/CA_LUFT	
20-53383-5	MP-04-3	Total/NA	Water	MS 8260B/CA_LUFT	
20-53383-5 MS	MP-04-3	Total/NA	Water	MS 8260B/CA_LUFT MS	
20-53383-5 MSD	MP-04-3	Total/NA	Water	8260B/CA_LUFT MS	
CS 720-147584/5	Lab Control Sample	Total/NA	Water	8260B/CA_LUFT MS	
.CS 720-147584/7	Lab Control Sample	Total/NA	Water	8260B/CA_LUFT MS	
CSD 720-147584/6	Lab Control Sample Dup	Total/NA	Water	8260B/CA_LUFT MS	
CSD 720-147584/8	Lab Control Sample Dup	Total/NA	Water	8260B/CA_LUFT MS	
/IB 720-147584/10	Method Blank	Total/NA	Water	8260B/CA_LUFT MS	
nalysis Batch: 14762	1				
			Matrix	Method	Prep Batcl
	Client Sample ID	Prep Type	WIGHTIX	Metriod	
Lab Sample ID 720-53383-6	Client Sample ID MP-03-3	Prep Type Total/NA	Water	8260B/CA_LUFT MS	

QC Association Summary

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-53383-1

GC/MS VOA (Continued)

Analysis Batch: 147621 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCS 720-147621/6	Lab Control Sample	Total/NA	Water	8260B/CA_LUFT	
				MS	
LCS 720-147621/8	Lab Control Sample	Total/NA	Water	8260B/CA_LUFT	
				MS	
LCSD 720-147621/7	Lab Control Sample Dup	Total/NA	Water	8260B/CA_LUFT	
				MS	
LCSD 720-147621/9	Lab Control Sample Dup	Total/NA	Water	8260B/CA_LUFT	
				MS	
MB 720-147621/5	Method Blank	Total/NA	Water	8260B/CA_LUFT	
				MS	

8

Lab Chronicle

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-53383-1

Client Sample ID: MW-100

Date Collected: 10/28/13 13:30

Date Received: 10/28/13 17:12

Lab Sample ID: 720-53383-1

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B/CA_LUFTMS		2	147534	11/01/13 11:17	LPL	TAL PLS

Client Sample ID: MP-04-1

Date Collected: 10/28/13 14:15

Date Received: 10/28/13 17:12

Lab Sample ID: 720-53383-2

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B/CA_LUFTMS		1	147530	11/01/13 17:54	PDR	TAL PLS

Client Sample ID: MP-04-2

Date Collected: 10/28/13 14:25

Date Received: 10/28/13 17:12

Lab Sample ID: 720-53383-3

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B/CA_LUFTMS		1	147530	11/01/13 18:20	PDR	TAL PLS

Client Sample ID: MP-02-2

Date Collected: 10/28/13 14:36

Date Received: 10/28/13 17:12

Lab Sample ID: 720-53383-4

Matrix: Water

Dilution Batch Prepared Batch Batch Prep Type Method Run Factor Number or Analyzed Analyst Lab Type 8260B/CA_LUFTMS 11/02/13 01:02 PDR TAL PLS Total/NA Analysis

Client Sample ID: MP-04-3

Date Collected: 10/28/13 14:40

Date Received: 10/28/13 17:12

Lab Sample ID: 720-53383-5

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B/CA_LUFTMS		1	147584	11/02/13 01:28	PDR	TAL PLS

Client Sample ID: MP-03-3

Date Collected: 10/28/13 15:20

Date Received: 10/28/13 17:12

Lab Sample ID: 720-53383-6

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B/CA_LUFTMS		1	147621	11/04/13 14:04	PDR	TAL PLS

Lab Chronicle

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-53383-1

Client Sample ID: MP-02-3

Date Collected: 10/28/13 15:32 Date Received: 10/28/13 17:12 Lab Sample ID: 720-53383-7

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B/CA_LUFTMS		1	147621	11/04/13 14:44	PDR	TAL PLS

Laboratory References:

TAL PLS = TestAmerica Pleasanton, 1220 Quarry Lane, Pleasanton, CA 94566, TEL (925)484-1919

a

Certification Summary

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-53383-1

Laboratory: TestAmerica Pleasanton

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
California	State Program	9	2496	01-31-14

Method Summary

Client: AMEC Environment & Infrastructure, Inc. Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-53383-1

 Method
 Method Description
 Protocol
 Laboratory

 8260B/CA_LUFTM
 8260B / CA LUFT MS
 SW846
 TAL PLS

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL PLS = TestAmerica Pleasanton, 1220 Quarry Lane, Pleasanton, CA 94566, TEL (925)484-1919

TestAmerica Pleasanton

Page 47 of 50

Sample Summary

Client: AMEC Environment & Infrastructure, Inc.

Project/Site: Crown Chevrolet

TestAmerica Job ID: 720-53383-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
720-53383-1	MW-100	Water	10/28/13 13:30	10/28/13 17:12
720-53383-2	MP-04-1	Water	10/28/13 14:15	10/28/13 17:12
720-53383-3	MP-04-2	Water	10/28/13 14:25	10/28/13 17:12
720-53383-4	MP-02-2	Water	10/28/13 14:36	10/28/13 17:12
720-53383-5	MP-04-3	Water	10/28/13 14:40	10/28/13 17:12
720-53383-6	MP-03-3	Water	10/28/13 15:20	10/28/13 17:12
720-53383-7	MP-02-3	Water	10/28/13 15:32	10/28/13 17:12

APPENDIX C

Data Quality Review

DATA QUALITY REVIEW

Crown Chevrolet Cadillac Isuzu 7544 Dublin Boulevard Dublin, California Fuel Leak Case No. RO0003014

February 18, 2014 Project OD10160070

This Data Quality Review appendix was prepared by the staff of AMEC under the supervision of the project Data Quality Manager whose signature appears hereon.

The findings, recommendations, specifications, or professional opinions are presented within the limits described by the client, in accordance with generally accepted professional engineering and geologic practice. No warranty is expressed or implied.

Hui Li, PE

Senior Engineer

AMEC Environment & Infrastructure, Inc.

TABLE OF CONTENTS

		Page
1.0	INTRODUCTION	1
2.0	THIRD QUARTER 2013 GROUNDWATER MONITORING	
3.0	2.3 DATA COMPLETENESS	
4.0	SUMMARY OF GROUNDWATER DATA QUALITY REVIEW	4
5.0	REFERENCES	4

TABLE

Table C-1 Summary of Precision Data for Analysis of Groundwater Field Duplicate Sample

APPENDIX C DATA QUALITY REVIEW

Crown Chevrolet Cadillac Isuzu 7544 Dublin Boulevard Dublin, California

1.0 INTRODUCTION

AMEC Environment & Infrastructure, Inc. (AMEC), evaluated the analytical data from AMEC's third and fourth quarter 2013 groundwater monitoring events using guidelines set forth in the U.S. Environmental Protection Agency's (EPA's) *USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review* (National Functional Guidelines U.S. EPA, 2008).

The data quality review also included a data completeness check of the data packages, a transcription check of sample results, and a review of all laboratory reporting forms. Qualified data are included in the data summary tables in the main body of this report (with the exception of analytes that have not been detected at the site, which are not tabulated). Data qualifiers for AMEC's third and fourth quarter 2013 groundwater monitoring events are handwritten onto the laboratory analytical reports, copies of which are included in Appendix B.

2.0 THIRD QUARTER 2013 GROUNDWATER MONITORING

Quality assurance procedures for groundwater samples collected during AMEC's third quarter 2013 groundwater monitoring event included the collection and analysis of one blind field duplicate sample and one matrix spike/matrix spike duplicate (MS/MSD) sample; laboratory analysis of method blank samples, surrogate spikes, and laboratory control spike/laboratory control spike duplicates (LCS/LCSDs); and evaluation of the analytical results.

The blind field duplicate groundwater sample was collected from monitoring well MW-01 and labeled as MW-100. The groundwater MS/MSD sample was collected from monitoring well MP-03-1.

A review of groundwater data quality is provided in the following sections.

2.1 DATA ACCURACY

Data accuracy was assessed by the analysis of LCS, LCSD, MS samples, and MSD samples and evaluation of the recovery of spiked compounds, and is expressed as a percentage of the true or known concentrations. Surrogate recoveries and blank results also were used to assess accuracy.

2.1.1 Spiked Compounds

No results were qualified due to LCS/LCSD or MS/MSD recoveries.

2.1.2 Surrogate Recoveries

No groundwater data were qualified due to surrogate recoveries.

2.1.3 Method Blanks

There were no detections in the method blank samples.

2.1.4 Trip Blanks

One trip blank was submitted for volatile organic compound (VOC) analysis. There were no detections in the trip blank sample.

2.1.5 Other Factors

Gasoline range organics were reported at a concentration similar to tetrachloroethene (PCE) in groundwater samples MW-01, MW-100, MP-01-1, and MP-03-1. The analytical laboratory indicated in the case narratives for these samples that the reported gasoline range organics results were due to presence of discrete peaks (PCE) and not the presence of gasoline range organics. As a result, AMEC qualified these gasoline range organics results with "R" to indicate that they are rejected.

2.2 DATA PRECISION

Data precision is evaluated by comparing analytical results from the duplicate sample pair and evaluating the calculated relative percent difference (RPD) between the data sets. Results for LCS/LCSD, MS/MSD, and the field duplicate sample pair were evaluated to assess the precision of the analytical methods. A summary of sample results from the field duplicate sample pair is shown in Table C-1.

The RPDs for the field duplicate sample pair and the MS/MSD and LCS/LCSD analyses were within acceptance limits.

2.3 DATA COMPLETENESS

Completeness is the ratio of the number of valid sample results to the total number of samples analyzed with a specific matrix and/or analysis. The percent complete is calculated by the following equation:

The percent complete for groundwater sample data collected during the Third Quarter 2013 Groundwater Monitoring sampling event is 100 percent, with the exception of the gasoline range organics results, where the percent complete is 76.5 percent.

3.0 FOURTH QUARTER 2013 GROUNDWATER MONITORING

Quality assurance procedures for groundwater samples collected during AMEC's fourth quarter 2013 groundwater monitoring event included the collection and analysis of one blind field duplicate sample and one MS/MSD sample; laboratory analysis of method blank samples, surrogate spikes, and LCS/LCSDs; and evaluation of the analytical results.

The blind field duplicate groundwater sample was collected from monitoring well MW-01 and labeled as MW-100. The groundwater MS/MSD sample was collected from monitoring well MW-03.

A review of groundwater data quality is provided in the following sections.

3.1 DATA ACCURACY

Data accuracy was assessed by the analysis of LCS, LCSD, MS samples, and MSD samples and evaluation of the recovery of spiked compounds, and is expressed as a percentage of the true or known concentrations. Surrogate recoveries and blank results also were used to assess accuracy.

3.1.1 Spiked Compounds

No results were qualified due to LCS/LCSD or MS/MSD recoveries.

3.1.2 Surrogate Recoveries

No groundwater data were qualified due to surrogate recoveries.

3.1.3 Method Blanks

There were no detections in the method blank samples.

3.1.4 Trip Blanks

One trip blank was submitted for VOC analysis. There were no detections in the trip blank sample.

3.1.5 Other Factors

Gasoline range organics were reported at concentrations similar to PCE or TCE in groundwater samples MW-01, MW-100, MP-01-1, MP-02-1, MP-03-1, and MP-04-1. The analytical laboratory indicated in the case narratives for these samples that the reported gasoline range organics results were due to presence of discrete peaks (PCE or TCE) and not the presence of gasoline range organics. As a result, AMEC qualified these gasoline range organics results with "R" to indicate that they are rejected.

3.2 DATA PRECISION

Data precision is evaluated by comparing analytical results from the duplicate sample pair and evaluating the calculated RPD between the data sets. Results for LCS/LCSD, MS/MSD, and

the field duplicate sample pair were evaluated to assess the precision of the analytical methods. A summary of sample results from the field duplicate sample pair is shown in Table C-1.

The RPDs for the field duplicate sample pair and the MS/MSD and LCS/LCSD analyses were within acceptance limits.

3.3 DATA COMPLETENESS

Completeness is the ratio of the number of valid sample results to the total number of samples analyzed with a specific matrix and/or analysis. The percent complete is calculated by the following equation:

The percent complete for groundwater sample data collected during the Third Quarter 2013 Groundwater Monitoring sampling event is 100 percent, with the exception of the gasoline range organics results, where the percent complete is 64.7 percent.

4.0 SUMMARY OF GROUNDWATER DATA QUALITY REVIEW

Based on an evaluation of data quality for samples collected during the third and fourth quarter 2013 groundwater monitoring events, the majority of analytical results are valid and useable, with the exception of the rejected results. The data are acceptable and can be used for decision-making purposes; however, the limitations identified by the applied qualifiers should be considered when using the data.

5.0 REFERENCES

U.S. Environmental Protection Agency, 2008, USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review, EPA-540-R-08-01, June.

TABLE

TABLE C-1

SUMMARY OF PRECISION DATA FOR ANALYSIS OF GROUNDWATER FIELD DUPLICATE SAMPLES

Crown Chevrolet Cadillac Isuzu
7544 Dublin Boulevard and 6707 Golden Gate Drive
Dublin, California

Primary Sample ID	Duplicate Sample ID	Collection Date	Compound ¹	Units	Reporting Limit	Primary Sample Result	Duplicate Sample Result	RPD ²	Absolute Difference Between Sample Results ³
Groundwater									
M\\/_01	MW-01 MW-100	7/30/2013	Tetrachloroethene	μg/L	2.50	160	210	27.0%	NA
10100-01			Trichloroethene	μg/L	0.50	1.5	1.6	6.5%	NA
MW-01	MW-100	10/28/2013	Tetrachloroethene	μg/L	2.50	150	150	0.0%	NA
10100-01	10100-100	10/20/2013	Trichloroethene	μg/L	0.50	1.9	1.8	5.4%	NA

Notes

- 1. Only compounds detected in at least one of the field primary or field duplicate samples are shown.
- 2. Relative Percent Difference (RPD) is calculated by:

$$RPD \% = \left| \frac{2(S_1 - S_2)}{S_1 + S_2} \right| \times 100$$

Where S_1 , is the sample concentration and S_2 is the blind duplicate sample concentration.

3. The RPD is not applicable when the sample results are less than two times (organics) or five times (inorganics) the reporting limit. In those cases, duplicate results are acceptable when the absolute difference between the results is less than the reporting limit. When a compound was detected in one duplicate sample, but was not detected at or above the laboratory reporting limit in the other sample, then the results are acceptable when the absolute difference between the detected result and the reporting limit is less than the reporting limit.

Abbreviations

 μ g/L = micrograms per liter NA = not applicable