

Project No. **9432.000.000**

January 4, 2013

Ms. Dilan Roe Hazardous Materials Specialist Alameda County Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6540

RECEIVED

By Alameda County Environmental Health at 10:31 am, Jan 07, 2013

Subject: Crown Chevrolet Cadillac Isuzu 7544 Dublin Boulevard and 6707 Golden Gate Drive Fuel Leak Case No. RO0003014 Dublin, California

GROUNDWATER INVESTIGATION

Dear Ms. Roe:

ENGEO is pleased to present this groundwater investigation for the subject property ("Property"), located at 7544 Dublin Boulevard and 6707 Golden Gate Drive in Dublin, California (Figure 1). We have performed the investigation based on the consulting team's and the Property owner's request to further explore potential upgradient sources for a chlorinated solvent plume that extends across the northern portion of the Property. The plume, consisting primarily of tetrachloroethene (PCE), exhibits maximum on-site concentrations at the western Property border, suggesting a source or origin located off-site, to the west of the Property.

BACKGROUND

The Property, consisting of two parcels measuring a total of 6.33 acres in area, is located within the Coast Ranges geomorphic province of California. The Coast Ranges are dominated by a series of northwest-trending mountain ranges that have been folded and faulted in a tectonic regime that involves both translational and compressional deformation. Specific details pertaining to subsurface stratigraphy are presented in Table 1 and Figures 3, 4, and 5 of the referenced August 2012 AMEC work plan. In general, soils at the Property consist of finer-grained deposits (clays and silts) with interbedded lenses of sand. Groundwater has been encountered at depths between 9 and 15 feet below the ground surface, although fluctuations in groundwater levels may be expected during seasonal changes or over a period of years because of precipitation changes and changes in drainage patterns. Recent sampling and measurement of groundwater monitoring wells at the Property indicate that the shallow groundwater gradient is generally directed toward the east-northeast to east.

As presented in Section 2.0 of the referenced August 2012 AMEC work plan, the Property has been operated as an automotive dealership since 1968, including retail sales of automobiles and related automotive repair services. Operations at the Property have been significantly reduced in recent years. Details of past investigations, remediation activities, and contaminants of concern

(COCs) present at the Property are provided in Section 2.0 of the referenced August 2012 AMEC work plan. A preliminary site conceptual model is presented in Table 1 of the referenced August 2012 AMEC work plan.

Specifically, this study was focused on further assessment of chlorinated solvent plume conditions upgradient from the Property.

DATA GAPS AND OBJECTIVE OF STUDY

Based on a review of the previously reported environmental investigations and mitigation activities, the objective of this study is to address one specific data gap, as presented in the August 2012 AMEC work plan:

• <u>Upgradient delineation of PCE plume</u> – The recent site investigation performed by AMEC, combined with data obtained in prior investigations by Basics Environmental (2009), Ninyo & Moore (2011), and AMEC (2011), identified the presence of a chlorinated solvent plume extending across the northern portion of the Property. Based on the collected data, the highest detected PCE concentrations are present at the western Property boundary, indicating that the plume is likely emanating from an off-site source(s) located to the west of the Property. A sanitary sewer extends in a north/south direction through the middle of Golden Gate Drive, and has been identified as a potential source/origin of the plume. Borings will be situated within Golden Gate Drive to the west of the sewer line in the locations depicted on Figure 2 to assess if the source of PCE in groundwater is west or east of the sewer line. If PCE is detected in the borings at concentrations similar to those detected during AMEC's 2012 investigation, the source may be upgradient of the sewer line; if PCE is not detected or is detected at significantly lower concentrations than at the western Property boundary, the source of PCE to groundwater may be the sewer line.

For convenience, this identified data gap is presented in tabular form in Table 1 with the previous data gaps identified by AMEC and presented in their referenced August 2012 work plan.

FIELD EXPLORATION

Field exploration operations were performed on October 26, 2012. A total of four grab groundwater samples were collected from first encountered groundwater from four borings situated on the west side of Golden Gate Drive, as depicted on Figure 2. This is a deviation from the sampling plan outlined in the ENGEO referenced workplan, dated October 16, 2012; due to minimal groundwater infiltration, grab groundwater samples could not be collected from proposed sample locations CG-1 and CG-2.

ENGEO obtained a soil boring permit from Zone 7 Water Agency and an encroachment permit from the City of Dublin (Appendix A). Additionally, ENGEO marked the proposed boring locations with white paint and contacted Underground Service Alert (USA) for utilities clearance. Further, a private utility locator was used to determine the potential presence of underground utilities at each proposed boring location. Specific method for locating underground utilities included the use of a magnetometer and ground penetrating radar (GPR).

Vironex, Inc., a C-57 licensed drilling contractor based in Concord, California, was retained to advance the groundwater grab sampling borings using Geoprobe® direct push technology. A dual-tube Geoprobe system was used. The first five feet of each boring was advanced using a hand auger. All borings were logged by an ENGEO engineer under the supervision of a Professional Engineer based on the Unified Soil Classification System (USCS) and are presented in Appendix B. Onsite workers possessed OSHA HAZWOPER training (24/40 hour), and a site-specific health and safety plan (HASP) was implemented. A copy of the HASP is presented in the referenced October 16, 2012 workplan.

Borings were advanced to depths ranging between 20 and 25 feet below the ground surface. The groundwater samples were collected from the depth of the first encountered groundwater, which ranged from approximately 17 to 18 feet below the ground surface. Following advancement of the boring to the desired sampling depth, temporary polyvinyl chloride (PVC) casing was placed within the outer drill casing. The PVC included a five-foot-long, 0.01-inch slotted screen. Once the PVC casing was in place, the outer drill casing was retracted approximately 5 feet, exposing the PVC casing screening and allowing for the infiltration of groundwater. The depth to the groundwater surface within each respective casing rose to approximately 13 feet; depths were measured using a decontaminated electronic water level indicator. Prior to groundwater sample collection, a dedicated, single-use disposable polyethylene (PE) bailer was used to purge the PVC casing until the groundwater was relatively sediment-free and field parameters, including dissolved oxygen, oxidation/reduction potential, temperature, pH, and specific conductance, had stabilized. The purge water was transferred into labeled 55-gallon drums to be temporarily stored pending disposal.

Following the completion of purging process for a given sample location, a groundwater sample was collected using the single-use bailer described above. The groundwater samples were placed in laboratory-provided glassware preserved with hydrochloric acid (HCl). Upon collection of samples, a sample label was placed on each container indicating the sample ID and date and time of collection. The samples were placed in an ice-cooled chest for delivery under documented chain-of-custody to TestAmerica Laboratories, Inc., a State-accredited laboratory in Pleasanton, California, for analysis. Additionally, a duplicate sample was collected from Boring CG-3, which was randomly selected from the boring locations. Further, a trip blank sample was included with the collected groundwater samples within the transport cooler.

Soil cuttings were screened with a calibrated photoionization detector (PID) for volatile organic vapors. Because no evidence of soil impact was encountered, no soil samples were collected. A summary of field sampling activities as well as groundwater parameters are presented in a field sampling log (Appendix C). Following completion of sampling, the borings were backfilled with neat cement grout using a tremie pipe to seal the total depth of the boring in accordance with Zone 7 Water Agency protocols.

LABORATORY ANALYTICAL METHODS

The grab groundwater samples were analyzed for the following target analytes:

• Volatile organic compounds (VOCs) and total petroleum hydrocarbons as gasoline (TPH-g) by USEPA Test Method 8260B.

EQUIPMENT DECONTAMINATION

All reusable sampling equipment that came into contact with potentially contaminated soil or water was decontaminated. Decontamination occurred prior to and after each use of a piece of equipment. The following decontamination procedure was carried out in sequence:

- Non-phosphate detergent (e.g., Alconox® and tap water solution), using a brush if necessary, or steam cleaning.
- Tap-water rinse.
- De-ionized/distilled water rinse.

Disposable equipment intended for one-time use was not decontaminated, but was packaged for appropriate disposal.

INVESTIGATION-DERIVED WASTE

Investigation-derived waste, including soil cuttings, excess collected or purged groundwater, and rinsate from equipment decontamination, was placed into 55-gallon drums. The drums were clearly labeled as containing "Investigation-derived Waste". Lids and bungholes were securely closed. The drums have been stored at the Crown Chevrolet pending removal by a licensed transporter for appropriate disposal. Samples will be collected at an upcoming date from the drums and analyzed at the laboratory listed above for waste characterization purposes. The specific analytes for waste characterization and the transporter will be determined at a later date.

RESULTS

The data collected during the investigation are summarized in Table 2 and Figure 2, respectively. Copies of the laboratory analytical reports and sample chain-of-custody records are included in Appendix D. Groundwater results have been compared to the applicable Environmental Screening Levels (ESLs) established by the San Francisco Bay Regional Water Quality Control Board (SFRWQCB)¹. These data have also been provided to AMEC for their inclusion into the overall site conceptual model (SCM).

Lithology of Study Area

As mentioned above, the borings were advanced to depths ranging between 20 and 25 feet below the ground surface. As expected, since all samples were collected from within an existing street, asphaltic concrete was present at the ground surface at all boring locations, with aggregate base present immediately beneath. The aggregate base was approximately four inches thick and was and underlain by lean clays with varying amounts of sand, continuing to the full boring depth

¹ SFRWQCB ESLs, 2008: Tables E-1 and F-1a – Groundwater Screening Levels for Residential Land Use where Groundwater is a Potential Drinking Water Source.

(20 to 25 feet below the ground surface). Groundwater was encountered at depths ranging from 17 to 18 feet below the ground surface and stabilized at approximately 13 feet below the ground surface. Boring logs, including the depth to groundwater, are presented in Appendix B.

As presented in Table 2 and on Figure 2, all of the collected groundwater samples exhibited detectable concentrations of TPH-g and PCE. TPH-g concentrations ranged between 73 micrograms per liter (μ g/l) (Sample CG-6) and 130 μ g/l (Sample CG-4). PCE concentrations ranged between 65 μ g/l (Sample CG-6) and 130 μ g/l (Sample CG-4). Several of these detections exceeded corresponding ESLs, as presented in Table 2. Additionally, one sample, CG-3, exhibited a detected concentration of trichloroethylene (TCE) of 0.66 μ g/l. This detection was confirmed in a corresponding duplicate sample (TCE concentration of 0.59 μ g/l). However, neither of these detections exceeded respective ESLs, as presented in Table 2. No other VOCs were detected in the samples above laboratory reporting limits. The laboratory analysis report is presented in its entirety in Appendix D.

CONCLUSIONS AND RECOMMENDATIONS

Although several of the detected target analyte concentrations exceed respective ESLs, in general, the detected target analytes generally concur with the concentrations reported by AMEC at nearby downgradient locations. The samples were collected from the upgradient side of a sanitary sewer present within Golden Gate Drive. The results provide evidence that the confirmed PCE plume emanates from a location to the west of the sampling locations and the Property. Additional work may be considered if more definitive information pertaining to a potential release source is desired. This could be accomplished through additional groundwater sampling performed at locations to the west of Golden Gate Drive.

If you have any questions on any portion of the work plan, please call and we will be glad to discuss them with you.

Sincerely,

PROFESSION **ENGEO** Incorporated No. 69633 Exp. 6/30/2014 Jeffrev A. Adams, PhD, PE Shawn Munger, CHG OF Associate CAL Principal Attachments: Selected References Figures 1-2Tables 1-2Appendices A – D

SELECTED REFERENCES

- AMEC, Soil, Groundwater, and Soil Vapor Investigation Work Plan, Crown Chevrolet Cadillac Isuzu, 7544 Dublin Boulevard and 6707 Golden Gate Drive, Dublin, California, August 16, 2012.
- AMEC, Soil, Groundwater, and Soil Vapor Investigation Report, Crown Chevrolet Cadillac Isuzu, 7544 Dublin Boulevard and 6707 Golden Gate Drive, Dublin, California, October 19, 2012.
- ENGEO, Groundwater Investigation Workplan, 7544 Dublin Boulevard & 6707 Golden Gate Drive, Dublin, California, October 16, 2012.

FIGURES

Figure 1 – Vicinity Map Figure 2 – Site Plan

9432.000.000 January 4, 2013

C:\Drafting\DRAFTING2_Dwg\9432\000\9432000000-1-VicinityMap-0113.dwg Plot Date:1-02-13 spatters

ORIGINAL FIGURE PRINTED IN COLOR

ORIGINAL FIGURE PRINTED IN COLOR

TABLES

Table 1 – Data Gap Analysis Table 2 – Summary of Laboratory Analysis

9432.000.000 January 4, 2013

TABLE 1SUMMARY OF DATA GAPS AND PROPOSED INVESTIGATION
CROWN CHEVROLET
DUBLIN, CALIFORNIA

ltem	Data Gap	Proposed Investigation	Rationale	Analysis
1	Refine groundwater contours beneath Building A. Collect data relevant to the potential for biodegradation.	Advance two borings to approximately 20 feet bgs within Building A for collection of soil and grab groundwater samples. ¹ Soil samples will be collected at two depths in the vadose zone. Soil samples will be collected based on field indications of impacts (PID readings, odor, staining) or, in the absence of field indications of impacts, at 5 and 10 feet bgs.	The highest concentrations of PCE in groundwater were detected at boring NM-B- 32, just north of Building A. One boring will be advanced approximately 15 feet from the northern building wall to provide data close to the highest concentration area. A second boring will be advanced approximately halfway between the first boring and existing boring NM-B-31 to provide additional spatial data for contouring purposes. These borings will be part of a transect in the highest concentration area.	<i>Groundwater:</i> VOCs by EPA Method 8260, dissolved oxygen, oxidation/reduction potential, temperature, pH, and specific conductance. <i>Soil:</i> VOCs by EPA Method 8260 (soil samples to be collected using field preservation in accordance with EPA Method 5035).
2	Confirm shallow groundwater flow direction. Evaluate VOC concentration trends over time. Collect data relevant to the potential for biodegradation.	 Install seven shallow groundwater monitoring wells to approximately 15 to 20 feet bgs in northern portion of site (monitoring well locations may be adjusted pending results of grab groundwater samples). Three of these wells will be pre-pack wells installed using direct push technology, and a grab groundwater sample will be collected from these borings prior to installation of the well. Four of these wells will be part of nested, multi-port wells that will also allow collection of chemical and water level data from deeper groundwater (see Item 6, below). Soil samples will be collected only if there are field indications of impacts (with the exception of the well planned in the highest PCE concentration area, where soil samples will be collected at two depths in the vadose zone based on field indications of impacts (PID readings, odor, staining) or, in the absence of field indications of impacts, at 5 and 10 feet bgs.). Groundwater monitoring frequency to be determined. 	 To evaluate groundwater flow direction, a minimum of three wells is needed; the seven proposed wells will provide for a more robust analysis. It is proposed that the wells be spaced throughout the northern portion of the north parcel to evaluate concentration trends while also evaluating groundwater flow direction. In the west, one well is proposed at the western property boundary at the location where PCE concentrations are highest (the location may be adjusted based on the results of grab groundwater samples to be collected nearby). A second well is proposed in the area with the highest concentrations of PCE in groundwater, north of Building A. Three wells are proposed in a north-south line through the middle of the northern parking lot to evaluate spatial variations in PCE and TCE concentrations. A sixth well is proposed at the eastern property boundary; its distance from the northern property boundary is based on where existing data indicate the highest concentrations of PCE are present. 	Groundwater: VOCs by EPA Method 8260, dissolved oxygen, oxidation/reduction potential, temperature, pH, and specific conductance. Soil: VOCs by EPA Method 8260 (soil samples to be collected using field preservation in accordance with EPA Method 5035).
3	Evaluate groundwater impacts along western property boundary (presumed upgradient boundary).	Advance a transect of three borings to approximately 20 feet bgs at the western property boundary for collection of soil and grab groundwater samples (one will be converted to a monitoring well; see Item 2, above). Soil samples will be collected at two depths in the vadose zone based on field indications of impacts (PID readings, odor, staining) or, in the absence of field indications of impacts, at 5 and 10 feet bgs.	PCE was detected in boring NM-B-34, at the western property boundary. A transect of three additional borings is proposed at an approximately 15-foot spacing to the south to provide more data regarding PCE at the upgradient property boundary. Data from these borings may be used to modify the location of one of the monitoring wells.	<i>Groundwater:</i> VOCs by EPA Method 8260, dissolved oxygen, oxidation/reduction potential, temperature, pH, and specific conductance. <i>Soil:</i> VOCs by EPA Method 8260 (soil samples to be collected using field preservation in accordance with EPA Method 5035).
4	Evaluate deeper lithology at the site.	Advance two direct push borings to approximately 75 feet bgs (one downgradient of the highest concentration area and one upgradient). Soil samples will be collected only if there are field indications of impacts. Soil lithology will be logged.	One boring is proposed adjacent to the location of the westernmost nested well, and one is proposed between the two nested wells in the central portion of the northern parking lot (see Item 6, below). No borings are proposed in the highest concentration area, as a precaution to avoid potential cross-contamination.	None

TABLE 1SUMMARY OF DATA GAPS AND PROPOSED INVESTIGATION
CROWN CHEVROLET
DUBLIN, CALIFORNIA

Item	Data Gap	Proposed Investigation	Rationale	Analysis
5	Evaluate the possible presence of impacts to deeper groundwater. Evaluate deeper groundwater concentration trends over time. Obtain data regarding the vertical groundwater gradient. Obtain more lithological data below 20 feet bgs.	Install four continuous multichannel tubing (CMT) groundwater monitoring wells (aka multi-port wells) to approximately 65 feet bgs in the northern parking lot with ports at three depths (monitoring well locations may be adjusted pending results of shallow grab groundwater samples; we will discuss any potential changes with ACEH before proceeding). Groundwater monitoring frequency to be determined. Soil samples will be collected only if there are field indications of impacts. Soil lithology will be logged. However, information regarding the moisture content of soil may not be reliable using sonic drilling technology (two borings will be logged using direct push technology; see Item 4, above).	One well is proposed at the western (upgradient) property boundary to confirm that there are no deeper groundwater impacts from upgradient. Two wells are proposed near the center of the northern parking lot to evaluate potential impacts in an area where deeper impacts, if any, would most likely to be found. One well is proposed at the eastern (downgradient) property boundary to confirm that there are no impacts extending off-site. Port depths will be chosen based on the locations of saturated soils (as logged in direct push borings; see Item 4, above), but are expected at approximately 15, 45, and 60 feet bgs.	<i>Groundwater:</i> VOCs by EPA Method 8260, dissolved oxygen, oxidation/reduction potential, temperature, pH, and specific conductance.
6	Evaluate possible off-site migration of impacted soil vapor in the downgradient direction (east). Evaluate concentration trends over time.	Install 4 temporary nested soil vapor probes at approximately 4 and 8 feet bgs along the eastern property boundary. Based on the results of the sampling, two sets of nested probes will be converted to vapor monitoring wells to allow for evaluation of VOC concentration trends over time.	Available data indicate that PCE and TCE are present in soil vapor in the eastern portion of the northern parking lot. Samples are proposed on approximately 50-foot intervals along the eastern property boundary to provide a transect of concentrations through the vapor plume. The depths of 4 and 8 feet bgs are chosen to provide data closest to the source (i.e., groundwater) while avoiding saturated soil, and also provide shallower data to help evaluate potential attenuation within the soil column. Two sets of nested vapor probes will be converted into vapor monitoring wells (by installing well boxes at ground surface); the locations of the permanent wells will be chosen based on the results of samples from the temporary probes.	Soil vapor: VOCs by EPA Method TO-15.
7	Evaluate potential for off-site migration of impacted groundwater in the downgradient direction (east).	Advance two borings to approximately 20 feet bgs in the parking lot of the property east of the Crown site for collection of grab groundwater samples.	Two borings are proposed off-site, on the property east of the Crown site, just east of the building in the expected area of highest potential VOC concentrations.	<i>Groundwater:</i> VOCs by EPA Method 8260, dissolved oxygen, oxidation/reduction potential, temperature, pH, and specific conductance.
8	Evaluate VOC concentrations just north of the highest concentration area.	Advance two borings to approximately 20 feet bgs north of Building A for collection of soil and grab groundwater samples. Soil samples will be collected at two depths in the vadose zone. Soil samples will be collected based on field indications of impacts (PID readings, odor, staining) or, in the absence of field indications of impacts, at 5 and 10 feet bgs.	The highest concentrations of PCE in groundwater were detected at boring NM-B- 32, just north of Building A. The nearest available data to the north are approximately 75 feet away. One of the borings will be advanced approximately 20 feet north of NM-B-32 to provide data close to the highest concentration area. A second boring will be advanced approximately halfway between the first boring and former boring NM-B-33 to provide additional spatial data for contouring purposes. These borings will be part of a transect in the highest concentration area.	<i>Groundwater:</i> VOCs by EPA Method 8260, dissolved oxygen, oxidation/reduction potential, temperature, pH, and specific conductance. <i>Soil:</i> VOCs by EPA Method 8260 (soil samples to be collected using field preservation in accordance with EPA Method 5035).
9	Evaluate VOC concentrations in soil vapor in the south parcel of the site.	Install four temporary soil vapor probes at approximately 5 feet bgs around boring SV-25, where PCE was detected in soil vapor at a low concentration.	PCE was detected in soil vapor sample SV-25 in the southern parcel, although was not detected in groundwater in that area. Three probes will be installed approximately 30 feet from of boring SV-25 to attempt to delineate the extent of impacts. A fourth probe is proposed west of the original sample, close to the property boundary and the location of mapped utility lines, which may be a potential conduit, to evaluate potential impacts from the west.	Soil vapor: VOCs by EPA Method TO-15.
10	Obtain additional information regarding subsurface structures and utilities to further evaluate migration pathways and sources.	Ground penetrating radar (GPR) and other utility locating methodologies will be used, as appropriate, to further evaluate the presence of unknown utilities and structures at the site.	Utilities have been identified at the site that include an on-site sewer lateral and drain line, and shallow water, electric, and gas lines. Given the current understanding of the distribution of PCE in groundwater at the site, it is possible that other subsurface utilities, and specifically sewer laterals, exist that may act as a source or migration pathway for distribution of VOCs in the subsurface.	NA

TABLE 1 SUMMARY OF DATA GAPS AND PROPOSED INVESTIGATION **CROWN CHEVROLET DUBLIN, CALIFORNIA**

Item	Data Gap	Proposed Investigation	Rationale	Analysis
11	Perform a formal well survey to identify water-producing wells.	A formal well survey will be performed to identify water-producing, monitoring, and cathodic protection wells. Data will be obtained regarding nearby, permitted wells from the California Department of Water Resources and Zone 7 Water Agency (Item 11 on Table 2).	If groundwater downgradient of the site is being used for supply purposes, it is possible that VOCs related to the site could be impacting groundwater.	NA
12	Perform a formal well survey to identify water-producing wells.	Advance up to six borings to approximately 15 to 20 feet bgs in the west portion of Golden Gate Drive for collection of grab groundwater samples. Soil samples will be collected based on field indications of impacts (PID readings, odor, staining).	To further assess potnetial upgradient sources of chlorinated solvent plume.	<i>Groundwater:</i> VOCs by EPA Method 8260, dissolved oxygen, oxidation/reduction potential, temperature, pH, and specific conductance. <i>Soil:</i> VOCs by EPA Method 8260 (soil samples to be collected using field preservation in accordance with EPA Method 5035).

<u>Notes</u>

1. Borings for soil/grab groundwater collection may be terminated at 15 feet bgs if groundwater is encountered and grab groundwater sample collection is possible at that depth. Soil lithology will be logged at all borings.

Abbreviations

bgs = below ground surface EPA = U.S. Environmental Protection Agency

PCE = tetrachloroethene

TPHg = total petroleum hydrocarbons quantified as gasoline

VOCs = volatile organic compounds

TABLE 2SUMMARY OF LABORATORY RESULTS

GROUNDWATER SAMPLING												
SAMPLE	SAMPLE	TPH-GASOLINE	TETRACHLOROETHENE	TRICHLOROETHENE	OTHER VOCs							
	DATE	μg/L	μg/L	μg/L	μg/L							
	ESL (Table E-1)		120	530	N/A							
	ESL (Table F-1A)	100	5	5	N/A							
CG-3	10/26/2012	110	100	0.66	ND							
DUP-1 (COLLECTED AT CG-3)	10/26/2012	130	120	0.59	ND							
CG-4	10/26/2012	130	130	ND<0.5	ND							
CG-5	10/26/2012	120	120	ND<0.5	ND							
CG-6	10/26/2012	73	65	ND<0.5	ND							
TB-1	10/26/2012	ND<50	ND<0.5	ND<0.5	ND							

APPENDIX A

Zone 7 Water Agency Permit City of Dublin Encroachment Permit

9432.000.000 January 4, 2013

ZONE 7 WATER AGENCY

100 NORTH CANYONS PARKWAY, LIVERMORE, CALIFORNIA 94551 VOICE (925) 454-5000 FAX (925) 245-9306 E-MAIL whonoficona7water.com

DRILLING PERMIT APPLICATION

FOR APPLICANT TO COMPLETE	FOR OFFICE USE
LOCATION OF PROJECT Intersection of Dublin Blod and Galden Gate Drive in Pleasanton, Garmer	PERMIT NUMBER WELL NUMBER ARN941-1500-015-24
Crown Chevy agrienship	AFR941-1300-013-24
Coordinates Source Google Earth R. Accuracyv R. LAT: 37. 7037 R. LONG:-121.9294 R. APN NIA, Public ROW	PERMIT CONDITIONS (Circled Permit Requirements Apply)
CLIENT Name Keith Fichtner, The Kingsmill Group Address Co68 Kingsmill Terrade Phone 925-833-8765 City Public Zip 99968	 A. GENERAL A permit application should be submitted so as to arrive at the Zone 7 office five days prior to your proposed starting date. Submit to Zone 7 within 60 days after completion of permitted work the original <u>Department of Water Resources Water Weter</u>
APPLICANT Name <u>Connic Inal Jeff Adams</u> , Enges Inc. Emel <u>Ciag & Enges.com</u> <u>Pax 875 279 2698</u> Address <u>2010 Crow Canyon Place</u> Phone <u>925 325 2</u> 551 City San Ramon Zip 94583	Original States in the start of work. Difference in the start of work. Mattria States in the start of work.
TYPE OF PROJECT: Well Construction Geotechnical investigation Well Destruction Contamination Investigation Cathodic Protection Other <u>Ground stater Sampling</u> X PROPOSED WELL USE: Domestic Intestion	 WATER SUPPLY WELLS Minimum surface seal demotor is four inches graater than the well casing diameter. Minimum seal depth is 50 feet for municipal and industrial wells or 20 feet for domestic and irrigation wells unless a lesser depth is specially approved. Grout placed by transp. An access port at least 0.5 inches in diameter is required
Municipal Remediation Industrial Groundwater Monitoring Dewstering Other DRILLING METHOD:	 on the welfheed for water level measurements. 5. A sample port is required on the discharge pipe near the welfheed. C. GROUNDWATER MONITORING WELLS INCLUDING PIEZOMETERS
Mud Rotary <u>Air Rotary</u> Hollow Stern Auger Cable Teel <u>Direct Pueh</u> Other DRULLING COMPANY <u>Vivone×</u> 1641 Chable mac. DR., Concord 44.520 DRULLER'S LICENSE NO. <u>305923</u>	 Minimum surface seal diameter is four inches greater than the well or piezometer casing diameter. Minimum seal depth for monitoring wells is the maximum depth practicable or 20 feet. Grout pieced by tremis.
WELL SPECIFICATIONS: Drill Hole Diameter In. Maximum Casing Diameter In. Depthft. Surface Seel Depth ft. Number	D. GEOTECHNICAL. Backill bore hole with compacted cuttings or heavy bentonits and upper two feet with compacted material. In areas of known or suspected contamination, tremied coment grout shell be used in place of compacted cuttings.
SOIL BORINGS: Number of Borings 6 Hole Diameter 10. Depth 20 ft.	E. CATHODIC. Fill hole above anode zone with concrete placed by tremie.
ESTIMATED STARTING DATE 10/19/12 ESTIMATED COMPLETION DATE 10/19/12	WELL DESTRUCTION. See attached. G. SPECIAL CONDITIONS. Submit to Zone 7 within 60 days after completion of permitted work the well installation report
I hereby agree to comply with all requirements of this permit and Alameda County Ordinance No. 73-68.	Approved Human Han A
SIGNATURE Date 0512	Wyman Hong Date 10/1//12

ENGEO Inc., 2010 Crow Canyon Place, Ste. 250, San Ramon, CA

			1229602	2-1 0032 10	0/22/2012 002 24	1
AT OF DUG	CITY OF DUBLIN	1	Permit	Real Time Porn	004534 \$202.00	040 00440
	Public Works					012-00142
					Application Date:	10/22/2012
ALIOPHIL!					Issue Date:	10/22/2012
Inspection Requests BLD (925) 833-6620	Require 24 Hour Notice FIRE (925) 833-6606	PUBLIC WORKS (925) 83	9- 6630	ermit Type: I	PW ENCROACHMI	ENT PERMIT
Site Address:	0 GOLDEN GATE D DUBLIN CA 94568	R AND DUBLIN BLVD	Parcel / APN:			
Owner: Address:	CITY OF DUBLIN - I 100 CIVIC PLZ DUBLIN CA 94568-;	PUBLIC WORKS 2658	Phone: Fax:	(925) 833-((925) 829-(6630 9248	
Contractor: Address:	ENGEO INCORPOR 2010 CROW CANYO 250 SAN RAMON, CA 9	ATED ON PL 4583	Phone: Fax: Lic. Exp. Date: Business Lic#:	(925) 866-9 (888) 279-2 09/30/2013 BL-107700	9000 2698	
Contact:	URIELIAHU		Phone:	(925) 866-9	0000	
Description:	Drill 6 geoprobe hydr	opunch borings for soi	and groundwater sa	mpling, max	< 20' in depth.	
						1
			. n			1
SUPPLEMENTA	LINFORMATION:		THE REAL PROPERTY OF	No of Concession in		
PERMIT FEE		10				
MISC WORK HO	DURS	1.5	}			
	N RU	DEHL- (925)/66-1152				
				1.S		
FEES:		AND ARTICLE TO THE		and the second second		
ENCROACHMEN	IT FEE	10.00		ROACHME		100.00
						192.00
			54 B)		22	
	¥75	i			Ω.	
			(d ¹²			S. 1
					TOTAL FEES	5: 202.00
hereby have read a	Ind agree to the City of [Dublin provisions and cor	ditions outlined in this		TOTAL FEES	5: 202.00

Signature of Permittee

fos City Engineer

This permit may be revoked at any time at the option of the Director of Public Works, If permittee fails to comply with or violate any City Ordinance, City Standard, safety regulations or any condition of the issuance of the permit.

CONDITIONS

Permit No.: PWEN-2012-001

1. Permittee shall provide and keep a current certificate of Public Liability and Workers Compensation Insurance which names the City of Dublin and its employees and its agents as additional insured.

2. Worksites left in an unsafe condition will be secured by the City Maintenance Department and the cost will be charged to the permittee.

3. Permittee shall remove all U.S.A markings upon completion of the project.

4. All traffic control shall meet current City of Dublin and Caltrans standards and needs approval prior to start of the project.

5. Permittee shall contact Public Works Inspector for all required inspections (i.e. traffic control, backfill, concrete form, etc.)

6. Prosecution of Work: All work authorized by the permit shall be performed in a workman like, diligent, and expeditious manner, and must be complete to the satisfaction of the City Engineer.

7. Liability and Damage: The permittee shall be responsible for all liability imposed by law for personal injury or damage which may arise out of the work permitted and done by permittee under this permit, or which arise out of failure on the part of the permittee to perform his obligations under said permit in respect to maintenance and encroachment. The permittee shall protect and indemnify the City of Dublin, its officers and employees, and save them harmless in every way from all action by law for damage or injury to persons or property that may arise out of or be occasioned in any way because of his operations as provided in this permit.

8. The permittee shall begin work as authorized under this permit within 90 days from the start of issuance, unless a different date is stated in the permit. If the work is not begun within 90 days of the time stated in the permit, the permit shall become void. The permit shall be valid for a term of one year from the date of issuance, or as otherwise stated on the permit unless discontinued by the use or removal of the encroachment for which the permit was issued. (City of Dublin Municipal Code Chapter 7.04)

9. This permit is issued only for that portion of work in the City of Dublin right-of-way.

10. The permittee shall notify Underground Service Alert (U.S.A.) at 800/227-2600 prior to excavation. All underground contractors must have U.S.A. inquiry identification number.

11. Permittee is hereby cautioned that unless otherwise noted herein, traffic signal detector loops, wiring, etc., and irrigation facilities shall not be disturbed. Request marking from City of Dublin Public Works Department at 925/833-6630.

12. All excavations shall conform to the requirements of the State of California Division of Industrial Safety.

13. Permittee shall furnish all safeguards for pedestrians and post warning signs in advance of work area for vehicular traffic and shall clear the roadway of any obstructions or debris at the end of each work day. All safety devised shall conform to the latest edition of the State of California "Manual of Warning Signs, Lights, and Devices for Use in Performance.

14. No public road under the jurisdiction of the City of Dublin shall be closed to travel by the general public without special permission of the City Engineer in writing. No lane closures will be allowed between 6:00 a.m. and 9:00 a.m. or between 3:30 p.m. and 6:30 p.m. At other times, at least one lance of traffic shall be kept open to the general public.

15. The pavement shall be sawed 12" outside the edges of the trench excavation in order to leave a smooth contour of the pavement surface. Cutting with air tools or other devices leaving jagged edges shall not be permitted.

16. No more than 300 linear feet of continuous excavation shall be opened at one time.

Excavate only that length of trench which can be backfilled the same day. a.

b. Except for bedding or shading requirements by utilities Class II Aggregate Base is the only acceptable backfill material. 17. Backfill shall be placed in accordance with the current "State of California Department of Transportation Standard Specification." The structural section of the upper _ inches of the trench backfill within the paved areas shall be _____ inches A.C. on _ inches A.S.B. inches A.B. on

18. Metal plates of sufficient thickness for legal load traffic or temporary paving 1-1/2" minimum thickness shall be placed at the end of each work day. Sidewalk construction areas shall be left in a safe condition.

19. Material excavated from within the City road right-of-way under this permit shall be removed from within the right-of-way and disposed of in a legal manner.

20. The right-of-way shall be left clean and orderly to the satisfaction of the City Engineer or his representative. The permittee shall give particular attention to maintaining the project in a dust-free condition while performing the various items of work and during non-working periods, including weekends.

21. All work shall be done in accordance with the provisions of the Clean Water Act, which protects the storm drain system. No dirt, rock debris, concrete or other materials or fluids will be allowed to enter the storm drain system during the course of work on this permit.

22. Final asphalt concrete surfacing shall be placed within 5 days of completion of each 300 lineal feet of excavation. If the edges of the trench have raveled prior to final surfacing, the edges shall be resawn.

23. Line and grade shall be left to the satisfaction of the City Engineer. All work shall conform to the current "State of California Department of Transportation Standard Specifications" and City requirements, and the City Inspector shall be notified at 925/833-6630 24 hours prior to pouring concrete.

- Line and grade shall conform to grade of existing curb. а.
- Line and grade shall conform to adjacent sidewalk. b.
- Line and grade shall conform to plans prepared by _ C.
- attached hereto and made a part hereof. No concrete shall be poured until forms have been inspected and approved. d.

Where concrete is to be removed, the edges are to be sawn at the nearest joint or score mark.

24. Where concrete is poured in a planter striping, score lines, construction joints, expansion joints, shall be continued across entire sidewalk area. Where curb, gutter, and sidewalk are pursed monolithically, the "back edge" of the curb shall be scored. 25. The permittee shall notify the proper utilities or persons that the location of an existing utility pole, fire hydrant, tree or other encroachment at the side or within the traveled way is such that relocation is necessary for proper execution of the work and/or safety of the general public. Said relocation shall be made at no expense to the City of Dublin. In the event such encroachment is not removed, the permittee will be permitted to construct a blockout with doweled bars in a location and in a manner satisfactory to the inspector. Upon completion of the relocation of each encroachment, permittee shall complete construction of curb, gutter, and/or sidewalk within 90 days.

26. No culverts or storm drains are to be cut or disturbed. Direction of flow and capacity of existing surface water drainage facilities shall no be materially changed.

27. Access to public and private properties adjacent to the public road is which work is authorized shall not be denied by reason of

work. Special measures shall be taken to ensure passage of emergency vehicles over and at the side of work at all times. In the event that any future improvement of the road right-of-way necessitates the relocation of the encroachment for which this permit is issued, the permittee shall relocate same at his sole expense.

29. Priority shall be given to operations preformed under contract let by the City of Dublin for certain work at this location. Coordination shall be effected through said Contractor and the Project Representative for the City.

30. Any existing facilities damaged or removed in the course of the work shall be replaced in kind or better, including ground and pavement surface, signs, striping, markers, curb, gutter, survey monuments, trees, and other vegetation, etc., to the satisfaction of the owner of said facility.

31. The cash bond placed for this work will be held for six (6) months after the final inspection; however, in the event the permittee does not give the City the notice required and the work is performed without inspection, the cash bond will be held for one year after the final inspection.

PERMITTEE SHALL NOTIFY CITY INSPECTOR AT 925/833-6630 WITHIN 3 DAYS AFTER WORK IS COMPLETE.

FAILURE TO COMPLY WITH THESE PROVISIONS WILL RESULT IN THE CITY'S TAKING WHATEVER MEASURES ARE NECESSARY TO CONFORM TO SAID PROVISIONS AND BILLING THE PERMITTEE FOR ALL EXPENSES INCURRED.

CITY OF DUBLIN PUBLIC WORKS DEPARTMENT 100 Civic Plaza Dublin, California 94568 (925) 833-6630

PERMIT NO.

ENCROACHMENT PERMIT

PERMIT TO DO WORK IN ACCORDANCE WITH CITY OF DUBLIN MUNICIPAL CODE CHAPTER 7.04 AND ANY SPECIAL REQUIREMENTS SHOWN OR LISTED HEREIN.

Applicant/Permittee:	Staff use only:	
N C I ENGED L.	Permit Fee:	\$
Name: Connie Ing ENOLU INC	Plancheck Fee:	\$
Address 2010 (AUG. D) SL 150	Resurfacing Surcharge:	\$
Address: <u>2010</u> Crov Canyon P1, Ste 150	Inspection Fees:	\$
San Ramon CA 94583		\$
	· · · · ·	\$
Telephone: <u>925 395 255</u>	Total Fees:	\$
10 II	Cash Bond:	\$
	Surety No.:	\$
	Total Paid:	\$
	Receipt No.:	·
u ucoprobe nyavopurion ourings for sol	T YVONVIAWATCI SAM	ling, max w nde
Length of Excavation <u>N/A</u> I.f. Width <u>N/A</u>	I.f. Depth	ft.
Length of Excavation <u>N/A</u> I.f. Width <u>N/A</u> ATTENTION IS DIRECTED TO THE GENERAL PRO THIS PERMIT AND TO THE FOLLOWING SPECIA	I.f. Depth DVISIONS PRINTED ON THE I L REQUIREMENTS:	ft. REVERSE SIDE OF
Length of Excavation <u>N/A</u> I.f. Width <u>N/A</u> ATTENTION IS DIRECTED TO THE GENERAL PRO THIS PERMIT AND TO THE FOLLOWING SPECIA I. Permittee shall provide and keep a current certificate of Pro names the City of Dublin and its employees and agents as a 2. Worksites left in an unsafe condition will be secured by the	I.f. Depth <u>20</u> DVISIONS PRINTED ON THE I L REQUIREMENTS: ublic Liability and Workers Comper- additional insured. e City Maintenance Department and	ft. REVERSE SIDE OF nsation Insurance which I the cost will be charge
Length of Excavation <u>N/A</u> I.f. Width <u>N/A</u> ATTENTION IS DIRECTED TO THE GENERAL PRO THIS PERMIT AND TO THE FOLLOWING SPECIA 1. Permittee shall provide and keep a current certificate of Pronames the City of Dublin and its employees and agents as a 2. Worksites left in an unsafe condition will be secured by the to the permittee.	I.f. Depth <u>20</u> DVISIONS PRINTED ON THE I L REQUIREMENTS: ublic Liability and Workers Compe- additional insured. e City Maintenance Department and	ft. REVERSE SIDE OF Insation Insurance which I the cost will be charge
Length of Excavation <u>N/A</u> I.f. Width <u>N/A</u> ATTENTION IS DIRECTED TO THE GENERAL PRO THIS PERMIT AND TO THE FOLLOWING SPECIA 1. Permittee shall provide and keep a current certificate of Pronames the City of Dublin and its employees and agents as a 2. Worksites left in an unsafe condition will be secured by the to the permittee. 3. Permittee shall remove all U.S.A. markings upon completi 4. All traffic control shall meet current City of Dublin and Ca start of the project.	I.f. Depth <u>20</u> DVISIONS PRINTED ON THE I L REQUIREMENTS: ablic Liability and Workers Comper- additional insured. c City Maintenance Department and on of the project. altras standards and needs approval	ft. REVERSE SIDE OF Insation Insurance which I the cost will be charge
Length of Excavation <u>N/A</u> I.f. Width <u>N/A</u> ATTENTION IS DIRECTED TO THE GENERAL PRO THIS PERMIT AND TO THE FOLLOWING SPECIA 1. Permittee shall provide and keep a current certificate of Pr names the City of Dublin and its employees and agents as a 2. Worksites left in an unsafe condition will be secured by the to the permittee. 3. Permittee shall remove all U.S.A. markings upon completi 4. All traffic control shall meet current City of Dublin and Ca start of the project. 5. Permittee shall contact Public Works Inspector for all reque etc.)	I.f. Depth <u>20</u> DVISIONS PRINTED ON THE I L REQUIREMENTS: ublic Liability and Workers Competend additional insured. the City Maintenance Department and on of the project. altras standards and needs approval uired inspections.(i.e. traffic control,	ft. REVERSE SIDE OF Insation Insurance which I the cost will be charge I prior to backfill, concrete form,
Length of Excavation <u>N/A</u> I.f. Width <u>N/A</u> ATTENTION IS DIRECTED TO THE GENERAL PRO THIS PERMIT AND TO THE FOLLOWING SPECIA 1. Permittee shall provide and keep a current certificate of Pr names the City of Dublin and its employees and agents as a 2. Worksites left in an unsafe condition will be secured by the to the permittee. 3. Permittee shall remove all U.S.A. markings upon completi 4. All traffic control shall meet current City of Dublin and Ca start of the project. 5. Permittee shall contact Public Works Inspector for all requ etc.)	I.f. Depth <u>20</u> DVISIONS PRINTED ON THE I L REQUIREMENTS: ablic Liability and Workers Comper- additional insured. e City Maintenance Department and on of the project. altras standards and needs approval uired inspections.(i.e. traffic control, uired inspections.(i.e. traffic control,	ft. REVERSE SIDE OF Insation Insurance which I the cost will be charge I prior to backfill, concrete form,
Length of Excavation <u>N/A</u> I.f. Width <u>N/A</u> ATTENTION IS DIRECTED TO THE GENERAL PRO THIS PERMIT AND TO THE FOLLOWING SPECIA 1. Permittee shall provide and keep a current certificate of Pr names the City of Dublin and its employees and agents as a 2. Worksites left in an unsafe condition will be secured by the to the permittee. 3. Permittee shall remove all U.S.A. markings upon completi 4. All traffic control shall meet current City of Dublin and Ca start of the project. 5. Permittee shall contact Public Works Inspector for all reque etc.) Prosecution of Work. All work authorized by the permit shall be performed in a wo satisfaction of the City Engineer.	I.f. Depth DVISIONS PRINTED ON THE I L REQUIREMENTS: ublic Liability and Workers Competend additional insured. e City Maintenance Department and on of the project. altras standards and needs approval uired inspections.(i.e. traffic control, rkman like, diligent, and expeditious manner, and	ft. REVERSE SIDE OF nsation Insurance which I the cost will be charge I prior to backfill, concrete form,

I hereby have read and agree to the City of Dublin General provisions and conditions outlined in this permit

Signature of Permittee:

1.00

City Engineer

n

	Receipt No.:	ψ
PLEASE READ THIS PERMIT CAREFULLY. KEE INSPECTION, PHONE 925-833-6630 AT LEAST 48	P IT AT THE WORK SITE. TO AR HOURS <i>BEFORE YOU START WO</i>	RANGE FOR DRK.
IOB LOCATION: <u>Colden bate</u> Drive 2	4 Dublin Blvd.	· · · · · · · · · · · · · · · · · · ·
DESCRIPTION OF WORK: (Attach 3 copies of plan	1s. Attach additional pages if need	ed.)
6 geophile hydropunch borings for	soil + gronundwater sa	mpling, max 20' in a
Length of Excavation <u>N/A</u> I.f. Width_/	V/A_I.f. Depth_ <u>20</u>	ft.
ATTENTION IS DIRECTED TO THE GENERAL	PROVISIONS PRINTED ON TH	E REVERSE SIDE OF
 Worksites left in an unsafe condition will be secured b to the permittee. Permittee shall remove all U.S.A. markings upon comit. All traffic control shall meet current City of Dublin an start of the project. 	by the City Maintenance Department pletion of the project. Ind Caltras standards and needs appro	and the cost will be charge oval prior to
b. Permittee shall contact Public Works Inspector for all etc.) rosecution of Work. All work authorized by the permit shall be performed in atisfaction of the City Engineer. iability and Damages: The permittee shall be responsible for all liability impermitted and done by permittee under this permit, or which may arise out of a maintenance and encroachment. The permittee shall protect and indemnify II action by law for damage or injury to persons or property that may arise out or a state of the content of the content of the permittee shall protect and indemnify the permittee shall protect and indemnify the permittee of the content of the content of the content of the permittee shall protect and indemnify the permittee shall protect and indemnify the permittee of the content of the content of the permittee shall protect and indemnify the permittee shall performed and performed in the permittee shall protect and indemnify the permittee shall performed and performed in the permittee shall protect and indemnify the performed in the permittee shall performed and per	n a workman like, diligent, and expeditious manne posed by law for personal injury or property dama of failure on the part of the permittee to perform his y the City of Dublin, its officers and employees, and out of or be occasioned in any way because of his of	r, and must be complete to the ge which may arise out of the work s obligations under said permit in respe d save them harmless in every way from perations as provided in this permit.
b. Permittee shall contact Public Works Inspector for all etc.) Prosecution of Work. All work authorized by the permit shall be performed in atisfaction of the City Engineer. Liability and Damages: The permittee shall be responsible for all liability impremitted and done by permittee under this permit, or which may arise out of o maintenance and encroachment. The permittee shall protect and indemnify ill action by law for damage or injury to persons or property that may arise or hereby have read and agree to the City of Dublin General protect and and agree to the City of Dublin General protect and agree to the City of Dublin General protect and protect and agree to the City of Dublin General protect and protect and agree to the City of Dublin General protect and protect	n a workman like, diligent, and expeditious manne posed by law for personal injury or property dama of failure on the part of the permittee to perform his y the City of Dublin, its officers and employees, and out of or be occasioned in any way because of his op rovisions and conditions outlined in this p	rol, DACKIIII, CONCrete form, r, and must be complete to the ge which may arise out of the work s obligations under said permit in respe d save them harmless in every way from perations as provided in this permit.
b. Permittee shall contact Public Works Inspector for all etc.) Prosecution of Work. All work authorized by the permit shall be performed in atisfaction of the City Engineeriability and Damages: The permittee shall be responsible for all liability impermitted and done by permittee under this permit, or which may arise out of the maintenance and encroachment. The permittee shall protect and indemnify action by law for damage or injury to persons or property that may arise or hereby have read and agree to the City of Dublin General problem.	n a workman like, diligent, and expeditious manne posed by law for personal injury or property dama of failure on the part of the permittee to perform hi y the City of Dublin, its officers and employees, and out of or be occasioned in any way because of his of rovisions and conditions outlined in this p City Engineer	rol, DACKIIII, CONCrete form, r, and must be complete to the ge which may arise out of the work s obligations under said permit in respe d save them harmless in every way from perations as provided in this permit
 b. Permittee shall contact Public Works Inspector for all etc.) Prosecution of Work. All work authorized by the permit shall be performed in atisfaction of the City Engineer. Anability and Damages: The permittee shall be responsible for all liability impermitted and done by permittee under this permit, or which may arise out of the maintenance and encroachment. The permittee shall protect and indemnify action by law for damage or injury to persons or property that may arise or hereby have read and agree to the City of Dublin General protect and and agree. by:	n a workman like, diligent, and expeditious manne posed by law for personal injury or property dama of failure on the part of the permittee to perform hi y the City of Dublin, its officers and employees, and out of or be occasioned in any way because of his of rovisions and conditions outlined in this p City Engineer By:	r, and must be complete to the ge which may arise out of the work s obligations under said permit in respe d save them harmless in every way from perations as provided in this permit permit
 b. Permittee shall contact Public Works Inspector for all etc.) Prosecution of Work. All work authorized by the permit shall be performed in atisfaction of the City Engineer. Liability and Damages: The permittee shall be responsible for all liability important and done by permittee under this permit, or which may arise out or o maintenance and encroachment. The permittee shall protect and indemnify ill action by law for damage or injury to persons or property that may arise or hereby have read and agree to the City of Dublin General protect and system is a statement. The permittee is a statement of the city of Dublin General protect and indemnify ill action by law for damage or injury to persons or property that may arise of hereby have read and agree to the City of Dublin General protect and indemnify ill action by law for damage or injury to persons or property that may arise of hereby have read and agree to the City of Dublin General protect and indemnify in the permittee is a statement of the city of Dublin General protect and indemnify in the permittee is a statement. The permittee is a statement of the city of Dublin General protect and indemnify independent of the city of Dublin General protect and independent of the city of Dublin General protect and independent of the city of Dublin General protect and independent of the city of Dublin General protect is a statement of the city of the ci	n a workman like, diligent, and expeditious manne posed by law for personal injury or property dama of failure on the part of the permittee to perform hi y the City of Dublin, its officers and employees, and out of or be occasioned in any way because of his op rovisions and conditions outlined in this p City Engineer By: Date of Issue:	r, and must be complete to the ge which may arise out of the work s obligations under said permit in respe d save them harmless in every way fron perations as provided in this permit
b. Permittee shall contact Public Works Inspector for all etc.) Prosecution of Work. All work authorized by the permit shall be performed in a tisfaction of the City Engineer. Liability and Damages: The permittee shall be responsible for all liability important done by permittee under this permit, or which may arise out or o maintenance and encroachment. The permittee shall protect and indemnify all action by law for damage or injury to persons or property that may arise or hereby have read and agree to the City of Dublin General property. By:	n a workman like, diligent, and expeditious manne posed by law for personal injury or property dama if failure on the part of the permittee to perform his y the City of Dublin, its officers and employees, and out of or be occasioned in any way because of his of rovisions and conditions outlined in this p City Engineer By: Date of Issue: comments.)	r, and must be complete to the ge which may arise out of the work s obligations under said permit in respe d save them harmless in every way from perations as provided in this permit Dermit

CITY OF DUBLIN GENERAL PROVISIONS

- 1. The permittee shall begin work as authorized under this permit within 90 days from the start of issuance, unless a different date is stated in the permit. If the work is not begun within 90 days of the time stated in the permit, the permit shall become void. The permit shall be valid for a term of one year from the date of issuance, or as otherwise stated on the permit unless discontinued by the use or removal of the encroachment for which the permit was issued. (City of Dublin Municipal Code Chapter 7.04)
- 2. This permit is issued only for that portion of work in the City of Dublin right-of-way.
- 3. The permittee shall notify Underground Service Alert (U.S.A.) at 800/227-2600 prior to excavation. All underground contractors must have U.S.A. inquiry identification number.
- 4. Permittee is hereby cautioned that unless otherwise noted herein, traffic signal detector loops, wiring, etc., and irrigation facilities shall not be disturbed. Request marking from City of Dublin Public Works Department at 833-6630.
- 5. All excavations shall conform to the requirements of the State of California Division of Industrial Safety.
- 6. Permittee shall furnish all safeguards for pedestrians and post warning signs in advance of work area for vehicular traffic and shall clear the roadway of any obstructions or debris at the end of each work day. All safety devices shall conform to the latest edition of the State of California "Manual of Warning Signs, Lights, and Devices for Use in Performance of Work Upon Highway."
- 7. No public road under the jurisdiction of the City of Dublin shall be closed to travel by the general public without special permission of the City Engineer in writing. No lane closures will be allowed between 6:00 a.m. and 9:00 a.m. or between 3:30 p.m. and 6:30 p.m. At other times, at least one lane of traffic shall be kept open to the general public.
- 8. The pavement shall be sawed 12" outside the edges of the trench excavation in order to leave a smooth contour of the pavement surface. Cutting with air tools or other devices leaving jagged edges shall not be permitted.
- 9. No more than 300 linear feet of continuous excavation shall be opened at one time.
 - A. Excavate only that length of trench which can be backfilled the same day.
 - B. Except for bedding or shading requirements by utilities, Class II Aggregate Base is the only acceptable backfill material.
- 10. Backfill shall be placed in accordance with the current "State of California Department of Transportation Standard Specification." The structural section of the upper _____ inches of the trench backfill within the paved areas shall be _____ inches A.C. on _____ inches A.B. on _____ inches A.S.B.
- 11. Metal plates of sufficient thickness for legal load traffic or temporary paving 1-1/2" minimum thickness shall be placed at the end of each work day. Sidewalk construction areas shall be left in a safe condition.
- 12. Material excavated from within the City road right-of-way under this permit shall be removed from within the right-of-way and disposed of in a legal manner.
- 13. The right-of-way shall be left clean and orderly to the satisfaction of the City Engineer or his representative. The permittee shall give particular attention to maintaining the project in a dust-free condition while performing the various items of work and during non-working periods, including weekends.
- 14. All work shall be done in accordance with the provisions of the Clean Water Act, which protects the storm drain system. No dirt, rock, debris, concrete, or other materials or fluids will be allowed to enter the storm drain system during the course of work on this permit.
- 15. Final asphalt concrete surfacing shall be placed within 5 days of completion of each 300 lineal feet of excavation. If the edges of the trench have ravelled prior to final surfacing, the edges shall be resawn.
- 16. Line and grade shall be left to the satisfaction of the City Engineer. All work shall conform to the current "State of California Department of Transportation Standard Specifications" and City requirements, and the City Inspector shall be notified at 833-6630 24 hours prior to pouring concrete.
 - A. Line and grade shall conform to grade of existing curb.
 - B. Line and grade shall conform to adjacent sidewalk.
 - C. Line and grade shall conform to plans prepared by ______ attached hereto and made a part hereof.
 - D. No concrete shall be poured until forms have been inspected and approved.
 - E. Where concrete is to be removed, the edges are to be sawn at the nearest joint or score mark.
- 17. Where concrete is poured in a planter strip, score lines, construction joints, expansion joints, shall be continued across entire sidewalk area. Where curb, gutter, and sidewalk are poured monolithically, the "back edge" of the curb shall be scored.
- 18. The permittee will notify the proper utilities or persons that the location of an existing utility pole, fire hydrant, tree, or other encroachment at the site or within the traveled way is such that relocation is necessary for proper execution of the work and/or safety of the general public. Said relocation shall be made at no expense to the City of Dublin. In the event such encroachment is not removed, the permittee will be permitted to construct a blockout with dowelled bars in a location and in a manner satisfactory to the inspector. Upon completion of relocation of such encroachment, permittee shall complete construction of curb, gutter, and/or sidewalk within 30 days.
- 19. No culverts or storm drains are to be cut or disturbed. Direction of flow and capacity of existing surface water drainage facilities shall not be materially changed.
- 20. Access to public and private properties adjacent to the public road in which work is authorized shall not be denied by reason of such work. Special measures shall be taken to insure passage for emergency vehicles over and at the site of work at all times.
- 21. In the event that any future improvement of the road right-of-way necessitates the relocation of the encroachment for which this permit is issued, the permittee shall relocate same at his sole expense.
- 22. Priority shall be given to operations performed under contract let by the City of Dublin for certain work at this location. Coordination shall be effected through said Contractor and the Project Representative for the City.
- 23. Any existing facilities damaged or removed in the course of the work shall be replaced in kind or better, including ground and

- 9. No more than 300 linear feet of continuous excavation shall be opened at one time.
 - A. Excavate only that length of trench which can be backfilled the same day.
 - B. Except for bedding or shading requirements by utilities, Class II Aggregate Base is the only acceptable backfill material.
- 10. Backfill shall be placed in accordance with the current "State of California Department of Transportation Standard Specification." The structural section of the upper _____ inches of the trench backfill within the paved areas shall be _____ inches A.C. on _____ inches A.B. on _____ inches A.S.B.
- 11. Metal plates of sufficient thickness for legal load traffic or temporary paving 1-1/2" minimum thickness shall be placed at the end of each work day. Sidewalk construction areas shall be left in a safe condition.
- 12. Material excavated from within the City road right-of-way under this permit shall be removed from within the right-of-way and disposed of in a legal manner.
- 13. The right-of-way shall be left clean and orderly to the satisfaction of the City Engineer or his representative. The permittee shall give particular attention to maintaining the project in a dust-free condition while performing the various items of work and during non-working periods, including weekends.
- 14. All work shall be done in accordance with the provisions of the Clean Water Act, which protects the storm drain system. No dirt, rock, debris, concrete, or other materials or fluids will be allowed to enter the storm drain system during the course of work on this permit.
- 15. Final asphalt concrete surfacing shall be placed within 5 days of completion of each 300 lineal feet of excavation. If the edges of the trench have ravelled prior to final surfacing, the edges shall be resawn.
- 16. Line and grade shall be left to the satisfaction of the City Engineer. All work shall conform to the current "State of California Department of Transportation Standard Specifications" and City requirements, and the City Inspector shall be notified at 833-6630 24 hours prior to pouring concrete.
 - A. Line and grade shall conform to grade of existing curb.
 - B. Line and grade shall conform to adjacent sidewalk.
 - C. Line and grade shall conform to plans prepared by ______ attached hereto and made a part hereof.
 - D. No concrete shall be poured until forms have been inspected and approved.
 - E. Where concrete is to be removed, the edges are to be sawn at the nearest joint or score mark.
- 17. Where concrete is poured in a planter strip, score lines, construction joints, expansion joints, shall be continued across entire sidewalk area. Where curb, gutter, and sidewalk are poured monolithically, the "back edge" of the curb shall be scored.
- 18. The permittee will notify the proper utilities or persons that the location of an existing utility pole, fire hydrant, tree, or other encroachment at the site or within the traveled way is such that relocation is necessary for proper execution of the work and/or safety of the general public. Said relocation shall be made at no expense to the City of Dublin. In the event such encroachment is not removed, the permittee will be permitted to construct a blockout with dowelled bars in a location and in a manner satisfactory to the inspector. Upon completion of relocation of such encroachment, permittee shall complete construction of curb, gutter, and/or sidewalk within 30 days.
- 19. No culverts or storm drains are to be cut or disturbed. Direction of flow and capacity of existing surface water drainage facilities shall not be materially changed.
- 20. Access to public and private properties adjacent to the public road in which work is authorized shall not be denied by reason of such work. Special measures shall be taken to insure passage for emergency vehicles over and at the site of work at all times.
- 21. In the event that any future improvement of the road right-of-way necessitates the relocation of the encroachment for which this permit is issued, the permittee shall relocate same at his sole expense.
- 22. Priority shall be given to operations performed under contract let by the City of Dublin for certain work at this location. Coordination shall be effected through said Contractor and the Project Representative for the City.
- 23. Any existing facilities damaged or removed in the course of the work shall be replaced in kind or better, including ground and pavement surface, signs, striping, markers, curb, gutter, survey monuments, trees, and other vegetation, etc., to the satisfaction of the owner of said facility.
- 24. The cash bond placed for this work will be held for six (6) months after the final inspection; however, in the event the permittee does not give the City the notice required and the work is performed without inspection, the cash bond will be held for one year after the final inspection.

PERMITTEE SHALL NOTIFY CITY INSPECTOR AT 833-6630 WITHIN 3 DAYS AFTER WORK IS COMPLETED.

FAILURE TO COMPLY WITH THESE PROVISIONS WILL RESULT IN THE CITY'S TAKING WHATEVER MEASURES ARE NECESSARY TO CONFORM TO SAID PROVISIONS AND BILLING THE PERMITTEE FOR ALL EXPENSES INCURRED.

APPENDIX B

Boring Logs

9432.000.000 January 4, 2013

	KEY TO BORING LOGS										
	MAJOR	R TYPES		DESCRIPTION							
HAN 00	GRAVELS	CLEAN GRA	VELS WITH	GW - Well	gradeo	d gravels or gravel-sa	and mixtures				
RE TH AN #2	MORE THAN HALF COARSE FRACTION	LESS THAN	15% FINES	GP - Poorly	GP - Poorly graded gravels or gravel-sand mixtures						
S MO	IS LARGER THAN NO. 4 SIEVE SIZE	GRAVELS WITH OVER		GM - Silty gravels, gravel-sand and silt mixtures							
SOIL ARGE EVE		12 %	6 FINES	GC - Claye	y grav	els, gravel-sand and	clay mixture	s			
E-GRAINED F MAT'L L SI	SANDS MORE THAN HALF COARSE FRACTION IS SMALLER THAN	CLEAN SA LESS THAI	ANDS WITH N 5% FINES	SW - Well (SP - Poorly	gradeo grade	d sands, or gravelly s ed sands or gravelly s	and mixtures sand mixture	S			
COARSE HALF C	NO. 4 SIEVE SIZE	SANDS WI 12 %	ITH OVER	SM - Silty s SC - Claye	and, s y sanc	and-silt mixtures I, sand-clay mixtures					
SOILS MORE AT'L SMALLER) SIEVE	SILTS AND CLAYS LIQ	UID LIMIT 50 % (OR LESS	ML - Inorga CL - Inorga OL - Low pl	nic sil nic cla lasticit	t with low to medium ay with low to medium ay organic silts and cla	plasticity n plasticity ays				
-GRAINED HALF OF M THAN #200	SILTS AND CLAYS LIQUID	LIMIT GREATE	R THAN 50 %	MH - Elasti CH - Fat cla	c silt v ay with	vith high plasticity n high plasticity					
FINE				OH - Highly	/ plast	ic organic silts and cl	ays				
	HIGHLY OR	GANIC SOILS		PT - Peat a	ind oth	ner highly organic soil	ls				
For fin	e-grained soils with >30% retained on	the #200 sieve, the	words "sandy" or "gravel	ly" (whichever is predon	ninant) are	e added to the group name.	me.				
	U.S. STANDARD	SERIES SIE	GR VE SIZE	RAIN SIZES	C	LEAR SQUARE SIEV	E OPENING	S			
SILT	S	SAND			GRA	VEL					
CLAY	S FINE	MEDIUM	COARSE	FINE		COARSE	COBBLES	BOULDERS			
	RELATIN SANDS AND GRAVELS VERY LOOSE LOOSE MEDIUM DENSE DENSE VERY DENSE	VE DENSIT` <u>s</u> BL	Y _OWS/FOOT <u>(S.P.T.)</u> 0-4 4-10 10-30 30-50 OVER 50			CONSIST SILTS AND CLAYS VERY SOFT SOFT MEDIUM STIFF STIFF VERY STIFF HARD	ENCY <u>STRENGTH*</u> 0-1/4 1/4-1/2 1/2-1 1-2 2-4 OVER 4				
				MOIST	FURE (CONDITION					
	SAMPLER S Modified Ca	SYMBOLS lifornia (3" O.D	.) sampler	DRY MOIST WET	Dam Visi	Dusty, dry to touch np but no visible water ble freewater					
	California (2	.5" O.D.) samp	ler	LINE TYPE	S						
	Shelby Tube	piit spoon sam	pier		Sc	olid - Layer Break					
	Continuous C	Core			Da	ashed - Gradational or ap	proximate laye	r break			
	Bag Samples	3		GROUND-WAT	TER S	YMBOLS					
	Grab Sample NR No Recovery	es		∑ ∑	Grour Stabi	ndwater level during drilling lized groundwater level	g				
(* L	S.P.T.) Number of blows of 140 lb. Inconfined compressive strength in	. hammer falling 3(n tons/sq. ft., aster	0" to drive a 2-inch O.D isk on log means deter	9. (1-3/8 inch I.D.) sar mined by pocket pene	npler etrometer						

LOG OF BORING CG-1									CG-1
Er C	nviron rown (Du	me Che Iblir 9432	ntal Assessment evy Golden Gate n, California 2.000.000	DATE DRILLED: 10/26/2012 HOLE DEPTH: Approx. 20 ft. HOLE DIAMETER: 2.0 in. SURF ELEV ():	LO DF	GGE RILLI C	D / RE NG CC RILLIN HAI	VIEWE NTRAC IG MET MMER	D BY: S. Johns / JA CTOR: Vironex HOD: Geoprobe TYPE: Direct Push
Depth in Feet	Depth in Meters	Sample Type	I	DESCRIPTION	Log Symbol	Water Level	Recovery (inches)	PID (ppm)	REMARKS
		j či j j j j j j j j j j j j j j j j j j	Asphalt and Aggregate B SILTY CLAY (CL), yellow Grades to little fine-graine Grades to some fine-grain Grades to some fine-grain Grades to dark brown, tra Bottom of boring at appro Groundwater encountered below ground surface.	ase ish brown, moist, some fine-grained sand ed sand ned sand ce fine-grained sand ximately 20 feet below ground surface. I during drilling at approximately 17 feet		× ∑			Stiff material to approximately 1.5 feet.

		R	GEO P O R A T E D	LOG OF	BC)F	RIN	١G	CG-2
Er Ci	ovironi rown (Du 9	nei Che blin 432	ntal Assessment evy Golden Gate n, California 2.000.000	DATE DRILLED: 10/26/2012 HOLE DEPTH: Approx. 20 ft. HOLE DIAMETER: 2.0 in. SURF ELEV ():	LO DF	gge Rillli E	D / RE NG CC RILLIN HAI	VIEWE NTRAC IG MET MMER	D BY: S. Johns / JA CTOR: Vironex HOD: Geoprobe TYPE: Direct Push
Depth in Feet	Depth in Meters	Sample Type	I	DESCRIPTION	Log Symbol	Water Level	Recovery (inches)	PID (ppm)	REMARKS
DC - ENVIRONMENTAL + PROBE GINT BORING LOGS 10-26-12.GPJ ENGEO INC.GDT 1/3/13		ŬŎ	Asphalt and Aggregate B SILTY CLAY (CL), yellow medium-grained sand Intermittent rock fragmen Grades to trace fine-grain Grades to little fine-graine Grades to little fine-graine Bottom of boring at appro Groundwater encountered below ground surface.	ase ish brown, moist, some fine- to ts to approximately 10 feet red sand ed sand ace fine-grained sand ximately 20 feet below ground surface. d during drilling at approximately 18 feet		<u>≯</u>		0 0 0	Stiff material to approximately 1.5 feet.

		R	GEO P O R A T E D	LOG OF	BC)F	RIN	١G	G-3
E C	nviron rown Du	me Che Iblir 9432	ntal Assessment evy Golden Gate n, California 2.000.000	DATE DRILLED: 10/26/2012 HOLE DEPTH: Approx. 20 ft. HOLE DIAMETER: 2.0 in. SURF ELEV ():	LO DF	GGE RILLI C	D / RE NG CC RILLIN HAI	VIEWE NTRAC NG ME1 MMER	D BY: S. Johns / JA CTOR: Vironex FHOD: Geoprobe TYPE: Direct Push
Depth in Feet	Depth in Meters	Sample Type		DESCRIPTION	C Log Symbol	Water Level	Recovery (inches)	DID DID	REMARKS
10 - 10 - 20 -		Sam	Asphalt and Aggregate B SILTY CLAY (CL), yellow Grades to with fine-graine Grades to little fine-graine Grades to trace fine-grain Bottom of boring at appro Groundwater encountered below ground surface.	ase ish brown, moist, some fine-grained sand ed sand ed sand			Recc	Old 0	

			R P O R A T E D	LOG OF	BC)F	RIN	١G	CG-4
E	inviro Crown D	nme Ch ubl 943	ental Assessment nevy Golden Gate in, California 22.000.000	DATE DRILLED: 10/26/2012 HOLE DEPTH: Approx. 25 ft. HOLE DIAMETER: 2.0 in. SURF ELEV ():	LO DF	gge Rilli C	ED / RE NG CC DRILLII HA	VIEWE ONTRAC NG MET MMER	D BY: S. Johns / JA CTOR: Vironex 'HOD: Geoprobe TYPE: Direct Push
Depth in Feet	Depth in Meters	Samnle Tvne		DESCRIPTION	Log Symbol	Water Level	Recovery (inches)	PID DId	REMARKS
100 - ENVIRONMENTAL + PROBE GINT BORING LOGS 10-26-12. GPJ ENGEO INC. GDT 1/3/13			Asphalt and Aggregate SILTY CLAY (CL), yello Intermittent trace rock f Grades to with fine-grai Grades to trace fine-grai Grades to trace fine-grai Grades to trace fine-grai Bottom of boring at app Groundwater encounter below ground surface.	Base		$\bar{\nabla}$		0.1 0.1 0.1 0 0	

		R	P O R A T E D	LOG OF	BC	t DATE DRILLED: 10/26/2012 LOGGED / REVIEWED BY: S. Johns / JA								
Er Cr	ivironi own (Du 9	me Che blir 432	ntal Assessment evy Golden Gate n, California 2.000.000	DATE DRILLED: 10/26/2012 HOLE DEPTH: Approx. 20 ft. HOLE DIAMETER: 2.0 in. SURF ELEV ():	DATE DRILLED: 10/26/2012 HOLE DEPTH: Approx. 20 ft. HOLE DIAMETER: 2.0 in. SURF ELEV (): LOGGED / REVIEWED BY: S. Johns / DRILLING CONTRACTOR: Vironex DRILLING METHOD: Geoprobe HAMMER TYPE: Direct Pus									
Depth in Feet	Depth in Meters	Sample Type		DESCRIPTION	Log Symbol	Water Level	Recovery (inches)	PID (ppm)	REMARKS					
			Asphalt and Aggregate B SILTY CLAY (CL), yellow Grades to trace fine-grain Grades to some fine-grain Grades to trace fine-grain Bottom of boring at appro Groundwater encountere below ground surface.	ase rish brown, moist, some fine-grained sand hed sand hed sand hed sand, dark brown		Σ		0						

		R	P O R A T E D	LOG OF	BC)F	RIN	١G	CG-6	
E C	nviron rown Du	me Che Iblir 9432	ntal Assessment evy Golden Gate n, California 2.000.000	DATE DRILLED: 10/26/2012 HOLE DEPTH: Approx. 20 ft. HOLE DIAMETER: 2.0 in. SURF ELEV ():	DATE DRILLED: 10/26/2012LOGGED / REVIEWED BY: S. Johns / JAHOLE DEPTH: Approx. 20 ft.DRILLING CONTRACTOR: VironexHOLE DIAMETER: 2.0 in.DRILLING METHOD: GeoprobeSURF ELEV ():HAMMER TYPE: Direct Push					
Depth in Feet	Depth in Meters	Sample Type		DESCRIPTION	Log Symbol	Water Level	Recovery (inches)	PID (ppm)	REMARKS	
LOG - ENVIRONMENTAL + PROBE GINT BORING LOGS 10-26-12.GPJ ENGEO INC.GDT 1/3/13		Sa	Asphalt and Aggregate B SILTY CLAY (CL), yellow Grades to with fine-grained Intermittent rock fragmen ground surface Grades to some fine-grain Grades to some fine-grain Grades to dark brown, tra Bottom of boring at appro Groundwater encountered below ground surface.	ase ish brown, moist, some fine-grained sand ed sand ts from approximately 12 to 16 feet below ned sand ice fine-grained sand ximately 20 feet below ground surface. d during drilling at approximately 18 feet		$\bar{\nabla}$	<u>Re</u>			

APPENDIX C

Field Sampling Records

9432.000.000 January 4, 2013

Project:	Crown Chevro	olet						
Project No.	9432.000.000					Wall	ID	
Location:	Dublin					vven	ID	6.6-2
Technician:	Scott Johns							
Activity:	x	Grab Sample						
WELL SE	CURITY						Date	10/26/2012
Well Box Set	in Concrete?			NA			Comments	
Box Cover Ed	quipped With B	olts and Gasket	:?	NA				
Well Casing I	Equipped With	Well Seal and I	Lock?	NA				
GROUND	WATER DE	TAILS					Date	10/26/2012
Well Type	x	Grab Sample		Extraction W	Vell with Pu	imp	Other	
Well Diamete	er	2-inch		Free I	Product M	easurement		
DTW (fbtoc)		13.30	(Enter	measurement	ts for wells	with free product h	istory)	
BOC (fbtoc)		19.80	Enter	"0.0" if no m	easurable fi	ree product		WCV Factors
WC (f)		6.50	D	TFP (fbtoc)		_		2" = 0.17
WCV (gal)		1.11	Γ	OTW (fbtoc)		_		4" = 0.66
3 X WCV (P	urge Vol)	3.3		FPT (ft)				6" = 1.50
PURGING	, SAMPLIN	G AND DE	CON EQUI	PMENT			Date	10/26/2012
Purging:	X	Disposable		12-V		Subm.	Comments	
		Bailer		Pump		L Pump		
Sampling:	X	Disposable		_ 12-V		Subm.	_	Other
		Bailer		Pump		L Pump		
Decon:	Was purge equ	ipment decont	aminated befor	e and after th	is use?	X Yes	No No	
	Decon Product	t: X	TSP/Alconox		Decon Rins	se:	_	
PURGE W	ATER STO	RAGE/DIS	POSAL (Fo	r Last We	ll Sample	ed Only)	Date	10/26/2012
Drums Onsite	Arrival		Drums All La	beled?	Yes			
Drums Used '	This Event	1	Drums Leakir	ıg?		No		Gallons
Total Drums	Onsite Now	1	Purge Water I	Processed Th	rough GW7	ГS?	Yes	No
PHYSICA	L PARAME	TERS					Date	10/26/2012
Time	Volume	Temp	Conductivity					10/20/2012
		r	Conductivity	DO	pН	ORP	C	omments
	Purged (Gal)	(C degrees)	(µS/cm)	DO (mg/L)	рН	ORP (mv)	Co	omments
11:05	Purged (Gal)	(C degrees) 20.1	(μ S/cm) 1715	DO (mg/L) 10.2	рН 7.07	ORP (mv) 174	C	omments
11:05 11:08	Purged (Gal) 0 0.5	(C degrees) 20.1 20.3	(µS/cm) 1715 1261	DO (mg/L) 10.2 6.7	рН 7.07 7.05	ORP (mv) 174 225	C	omments
11:05 11:08 11:11	Purged (Gal) 0 0.5 1	(C degrees) 20.1 20.3 20.8	(μS/cm) 1715 1261 1257	DO (mg/L) 10.2 6.7 5.5	pH 7.07 7.05 7.07	ORP (mv) 174 225 290	C	omments
11:05 11:08 11:11 11:14	Purged (Gal) 0 0.5 1 1.5	(C degrees) 20.1 20.3 20.8 20.4	(µS/cm) 1715 1261 1257 1256	DO (mg/L) 10.2 6.7 5.5 5.8	pH 7.07 7.05 7.07 7.03	ORP (mv) 174 225 290 410	C(omments
11:05 11:08 11:11 11:14	Purged (Gal) 0 0.5 1 1.5	(C degrees) 20.1 20.3 20.8 20.4	(µS/cm) 1715 1261 1257 1256	DO (mg/L) 10.2 6.7 5.5 5.8	pH 7.07 7.05 7.07 7.03	ORP (mv) 174 225 290 410	C	omments
11:05 11:08 11:11 11:14	Purged (Gal) 0 0.5 1 1.5	(C degrees) 20.1 20.3 20.8 20.4	(µS/cm) 1715 1261 1257 1256	DO (mg/L) 10.2 6.7 5.5 5.8	pH 7.07 7.05 7.07 7.03	ORP (mv) 174 225 290 410		omments
11:05 11:08 11:11 11:14	Purged (Gal) 0 0.5 1 1.5	(C degrees) 20.1 20.3 20.8 20.4	(µS/cm) 1715 1261 1257 1256	DO (mg/L) 10.2 6.7 5.5 5.8	pH 7.07 7.05 7.07 7.03	ORP (mv) 174 225 290 410	C	omments
11:05 11:08 11:11 11:14 LABORATO	Purged (Gal) 0 0.5 1 1.5 DRY ANALYSI	(C degrees) 20.1 20.3 20.8 20.4 (S	(µS/cm) 1715 1261 1257 1256	DO (mg/L) 10.2 6.7 5.5 5.8	pH 7.07 7.05 7.07 7.03	ORP (mv) 174 225 290 410	C (omments
11:05 11:08 11:11 11:14 LABORATC Number/Type	Purged (Gal) 0 0.5 1 1.5 DRY ANALYSI c Containers	(C degrees) 20.1 20.3 20.8 20.4 IS	(µS/cm) 1715 1261 1257 1256 3	DO (mg/L) 10.2 6.7 5.5 5.8 VOA's	pH 7.07 7.05 7.07 7.03 0	ORP (mv) 174 225 290 410 	0	Plastic
11:05 11:08 11:11 11:14 LABORATO Number/Type Preservative:	Purged (Gal) 0 0.5 1 1.5 DRY ANALYS	(C degrees) 20.1 20.3 20.8 20.4 (S HCL	(µS/cm) 1715 1261 1257 1256 3	DO (mg/L) 10.2 6.7 5.5 5.8 VOA's	pH 7.07 7.05 7.07 7.03 0	ORP (mv) 174 225 290 410 125-mL Ambers	0	Plastic
11:05 11:08 11:11 11:14 LABORATO Number/Type Preservative: Analysis:	Purged (Gal) 0 0.5 1 1.5 DRY ANALYS	(C degrees) 20.1 20.3 20.8 20.4 IS HCL VOCs + TPHg	(µS/cm) 1715 1261 1257 1256 3	DO (mg/L) 10.2 6.7 5.5 5.8 VOA's	pH 7.07 7.05 7.07 7.03 0	ORP (mv) 174 225 290 410 	0	Plastic
11:05 11:08 11:11 11:14 LABORATO Number/Type Preservative: Analysis: Laboratory/T.	Purged (Gal) 0 0.5 1 1.5 DRY ANALYS Containers AT: Test A	(C degrees) 20.1 20.3 20.8 20.4 US HCL VOCs + TPHg merica/Standar	(µS/cm) 1715 1261 1257 1256 3 'd TAT	DO (mg/L) 10.2 6.7 5.5 5.8 VOA's	pH 7.07 7.05 7.07 7.03 0	ORP (mv) 174 225 290 410 125-mL Ambers	0	Plastic
11:05 11:08 11:11 11:14 LABORATO Number/Type Preservative: Analysis: Laboratory/T DTW = Depth to	Purged (Gal) 0 0.5 1 1.5 0 RY ANALYS containers AT: Test A Water f Wall Casing	(C degrees) 20.1 20.3 20.8 20.4 IS HCL VOCs + TPHg merica/Standar	(µS/cm) 1715 1261 1257 1256 3 ·d TAT	DO (mg/L) 10.2 6.7 5.5 5.8 VOA's	pH 7.07 7.05 7.07 7.03 0	ORP (mv) 174 225 290 410 125-mL Ambers	0	Plastic
11:05 11:08 11:11 11:14 LABORATO Number/Type Preservative: Analysis: Laboratory/T. DTW = Depth to BOC = Bottom c	Purged (Gal) 0 0 0.5 1 1 1.5 PRY ANALYS Containers AT: Test A Water Water Water The Well Casing	(C degrees) 20.1 20.3 20.8 20.4 IS HCL VOCs + TPHg merica/Standar	(µS/cm) 1715 1261 1257 1256 3 ·d TAT	DO (mg/L) 10.2 6.7 5.5 5.8 VOA's fbtoc = feet below WC = Water Co	pH 7.07 7.05 7.07 7.03 0 0 ow top of casin blumn Height Colump Volum	ORP (mv) 174 225 290 410 125-mL Ambers	0 0 0 0	Plastic
11:05 11:08 11:11 11:14 LABORATO Number/Type Preservative: Analysis: Laboratory/T. DTW = Depth to BOC = Bottom c DTFP = Depth to EPT = Erec President	Purged (Gal) 0 0.5 1 1.5 0 RY ANALYS Containers AT: Test A Water of Well Casing Free Product uct Thickness	(C degrees) 20.1 20.3 20.8 20.4 (S HCL VOCs + TPHg merica/Standar	(µS/cm) 1715 1261 1257 1256 3 ·d TAT	DO (mg/L) 10.2 6.7 5.5 5.8 UOA's fbtoc = feet below WC = Water Cow WCV = Water Cow	pH 7.07 7.05 7.07 7.03 0 0 ow top of casin olumn Height Column Volum	ORP (mv) 174 225 290 410 125-mL Ambers	C c c c c c c c c c c c c c c c c c c c	Plastic

Project:	Crown Chevro	olet							
Project No.	9432.000.000					Wall	ID		
Location:	Dublin					vven	ID	UG-4	
Technician:	Scott Johns								
Activity:	x	Grab Sample							
WELL SE	CURITY						Date	10/26/2012	
Well Box Set	in Concrete?			NA			Comments		
Box Cover Ec	quipped With B	olts and Gasket	?	NA					
Well Casing I	Equipped With	Well Seal and I	.ock?	NA					
GROUND	WATER DE	TAILS					Date	10/26/2012	
Well Type	X	Grab Sample		Extraction V	Vell with Pu	ump	Other		
Well Diamete	er	2-inch		Free	Product M	easurement			
DTW (fbtoc)		13.45	(Enter	measuremen	ts for wells	with free product h	istory)		
BOC (fbtoc)		24.85	Enter	"0.0" if no m	easurable f	ree product		WCV Factors	
WC (f)		11.40	L D	OTFP (fbtoc)				2" = 0.17	
WCV (gal)		1.94	III	OTW (fbtoc)		_		4" = 0.66	
3 X WCV (P	urge Vol)	5.8		FPT (ft)		_		6" = 1.50	
PURGING	, SAMPLIN	G AND DE	CON EQUI	PMENT			Date	10/26/2012	
Purging:		Disposable		12-V		Subm.	Comments		
	LX	Bailer		Pump		L Pump			
Sampling:		Disposable		12-V		Subm.		Other	
1 0	~	Bailer		 Pump		Pump	\Box $_$		
Decon:	Was purge equ	aipment deconta	aminated befor	e and after th	is use?	X Yes	No		
	Decon Produc	t: X	TSP/Alconox		Decon Rin	se:			
PURGE W	ATER STO	RAGE/DIS	POSAL (Fo	r Last We	ll Sample	ed Only)	Date	10/26/2012	
Drums Onsite	e Arrival		Drums All La	beled?	Yes				
Drums Used	This Event	1	Drums Leakin	ng?		No		Gallons	
Total Drums	Onsite Now	1	Purge Water	Processed Th	rough GW	TS?	Yes	No	
PHYSICA	L PARAME	TERS					Date 10/26/201		
Time	Volume	Temp	Conductivity	DO	pН	ORP	Co	omments	
	Purged (Gal)	(C degrees)	(µS/cm)	(mg/L)		(mv)			
12:20	0	22.0	1286	10.3	7.24	476			
12:23	0.5	20.7	1245	8.2	7.25	461			
12:27	1	20.2	1242	5.6	7.04	457			
12:31	1.5	20.4	1240	6.3	7.10	455			
12:36	2	20.3	1238	5.8	7.14	454			
LABORATC	ORY ANALYS	IS							
Number/Type	e Containers		3	VOA's	0	125-mL Ambers	0	Plastic	
Preservative:		HCL							
Analysis:		VOCs + TPHg							
Laboratory/T.	AT: Test A	merica/Standar	d TAT						
DTW = Depth to	Water			fbtoc = feet bel	ow top of casi	ng			
BOC = Bottom o	of Well Casing			WC = Water Column Height					
DTFP = Depth to	Free Product			WCV = Water	Column Volu	me (gallons) = WC X W	CV Factor		
FPT = Free Produ	uct Thickness								

Project:	Crown Chevro	let						
Project No.	9432.000.000					Wall	ID	
Location:	Dublin					vven	ID	6.9-2
Technician:	Scott Johns							
Activity:	x	Grab Sample						
WELL SE	CURITY						Date	10/26/2012
Well Box Set	in Concrete?			NA			Comments	-
Box Cover E	quipped With B	olts and Gasket	?	NA				
Well Casing 1	Equipped With	Well Seal and I	Lock?	NA				
GROUND	WATER DE	TAILS					Date	10/26/2012
Well Type	x	Grab Sample		Extraction V	Vell with Pu	ımp	Other	
Well Diamete	er	2-inch		Free	Product M	easurement		
DTW (fbtoc)		13.25	(Enter	measuremen	ts for wells	with free product h	istory)	
BOC (fbtoc)		19.80	Enter	"0.0" if no m	easurable f	ree product		WCV Factors
WC (f)		6.55	D	TFP (fbtoc)				2" = 0.17
WCV (gal)		1.11] [DTW (fbtoc)				4" = 0.66
3 X WCV (P	urge Vol)	3.3		FPT (ft)				6" = 1.50
PURGING	, SAMPLIN	G AND DE	CON EQUI	PMENT			Date	10/26/2012
Purging:		Disposable		_ 12-V		Subm.	Comments	
	LX	Bailer		Pump		L Pump		
Sampling:	X	Disposable		_ 12-V		Subm.		Other
		Bailer		Pump		L Pump		
Decon:	Was purge equ	ipment decont	aminated befor	e and after th	is use?	X Yes	No No	
	Decon Product	t: 🛛 🗙	TSP/Alconox		Decon Rin	se:		
PURGE W	ATER STO	RAGE/DIS	POSAL (Fo	r Last We	ll Sample	ed Only)	Date	10/26/2012
Drums Onsite	e Arrival		Drums All La	beled?	Yes			
Drums Used	This Event	1	Drums Leakir	ng?		No		Gallons
Total Drums	Onsite Now	1	Purge Water Processed Through GWT			TS?	Yes	No
PHYSICA	L PARAME	TERS	-				Date	10/26/2012
Time	Volume	Temp	Conductivity	DO	pН	ORP	Co	omments
	Purged (Gal)	(C degrees)	(µS/cm)	(mg/L)		(mv)		
13:00	0	20.4	1210	7.8	7.09	617		
13:03	0.5	20.8	1212	5.4	6.99	622		
13:07	1	20.7	1209	5.1	6.96	624		
LADODAT	ND \$7 4 \$14 \$ \$709	10						
LABORAT(JKY ANALYS	15			2		c	
Number/Type	e Containers	N.C.	3	VOA's	0	125-mL Ambers	0	Plastic
Preservative:		HCL						
Analysis:	۸ 	VOCs + TPHg	.1 T A T					
Laboratory/T	AI: Test A	merica/Standai	aIAI					
D I w = Depth to	Watan			flaton f. (1 1	om ton - f ·			
POC - Patter	Water			fbtoc = feet below WC = Wetter C	ow top of casi	ng		
BOC = Bottom c	Water of Well Casing			fbtoc = feet belowWC = Water Co	ow top of casi olumn Height	ng	CV Enster	
BOC = Bottom c DTFP = Depth tc	9 Water of Well Casing o Free Product			fbtoc = feet bel WC = Water Co WCV = Water	ow top of casi olumn Height Column Volur	ng me (gallons) = WC X W	CV Factor	

Project:	Crown Chevro	olet						
Project No.	9432.000.000					Wall	ID	
Location:	Dublin					vven	ID	UG-0
Technician:	Scott Johns							
Activity:	x	Grab Sample						
WELL SE	CURITY						Date	10/26/2012
Well Box Set	in Concrete?			NA			Comments	
Box Cover E	quipped With B	olts and Gasket	?	NA				
Well Casing l	Equipped With	Well Seal and I	Lock?	NA				
GROUND	WATER DE	TAILS					Date	10/26/2012
Well Type	x	Grab Sample		Extraction W	Vell with Pu	imp	Other	
Well Diamete	er	2-inch		Free l	Product M	easurement		
DTW (fbtoc)		13.20	(Enter	measurement	istory)			
BOC (fbtoc)		19.85	Enter	"0.0" if no m	easurable fi	ree product>		WCV Factors
WC (f)		6.65	D	TFP (fbtoc)		_		2" = 0.17
WCV (gal)		1.13	Γ	OTW (fbtoc)		_		4" = 0.66
3 X WCV (P	urge Vol)	3.4		FPT (ft)				6" = 1.50
PURGING	, SAMPLIN	G AND DE	CON EQUI	PMENT			Date	10/26/2012
Purging:	X	Disposable		_ 12-V		Subm.	Comments	
		Bailer		Pump		L Pump		
Sampling:	X	Disposable		□ 12-V		Subm.	_	Other
		Bailer		Pump		Pump		
Decon:	Was purge equ	ipment decont	aminated befor	e and after th	is use?	X Yes	No	
	Decon Product	t: X	TSP/Alconox		Decon Rins	se:	_	
PURGE W	ATER STO	RAGE/DIS	POSAL (Fo	r Last We	ll Sample	ed Only)	Date	10/26/2012
Drums Onsite	Arrival		Drums All La	beled?	Yes			
Drums Used '	This Event	1	Drums Leaking?			No		Gallons
Total Drums	Onsite Now	1	Purge Water I	Processed Th	rough GW7	ГS?	Yes	No
PHYSICA	L PARAME	TERS					Date	10/26/2012
Time	Volume	Temp	Conductivity	DO	pН	ORP	Co	omments
	Purged (Gal)	(C degrees)	(µS/cm)	(mg/L)		(mv)		
16:08	0	• • •	4.4 - 0					
16:11	ů	20.0	1178	7.9	7.25	430		
	0.5	20.0 19.6	1178 1180	7.9 5.5	7.25 6.78	430 508		
16:15	0.5	20.0 19.6 19.5	1178 1180 1177	7.9 5.5 5.2	7.25 6.78 5.60	430 508 581		
16:15 16:19	0.5 1 1.5	20.0 19.6 19.5 19.5	1178 1180 1177 1178	7.9 5.5 5.2 5.1	7.25 6.78 5.60 5.51	430 508 581 638		
16:15 16:19	0.5 1 1.5	20.0 19.6 19.5 19.5	1178 1180 1177 1178	7.9 5.5 5.2 5.1	7.25 6.78 5.60 5.51	430 508 581 638		
16:15 16:19	0.5 1 1.5	20.0 19.6 19.5 19.5	1178 1180 1177 1178	7.9 5.5 5.2 5.1	7.25 6.78 5.60 5.51	430 508 581 638		
16:15 16:19	0.5 1 1.5	20.0 19.6 19.5 19.5	1178 1180 1177 1178	7.9 5.5 5.2 5.1	7.25 6.78 5.60 5.51	430 508 581 638		
16:15 16:19 LABORATO	0.5 1 1.5 DRY ANALYSI	20.0 19.6 19.5 19.5	1178 1180 1177 1178	7.9 5.5 5.2 5.1	7.25 6.78 5.60 5.51	430 508 581 638		Distin
16:15 16:19 LABORATO Number/Type	0.5 1 1.5 DRY ANALYSI c Containers	20.0 19.6 19.5 19.5	1178 1180 1177 1178 3	7.9 5.5 5.2 5.1 VOA's	7.25 6.78 5.60 5.51	430 508 581 638 125-mL Ambers	0	Plastic
16:15 16:19 LABORATO Number/Type Preservative:	0.5 1 1.5 DRY ANALYSI c Containers	20.0 19.6 19.5 19.5 IS HCL	1178 1180 1177 1178 3	7.9 5.5 5.2 5.1 VOA's	7.25 6.78 5.60 5.51	430 508 581 638 125-mL Ambers	0	Plastic
16:15 16:19 LABORATO Number/Type Preservative: Analysis:	0.5 1 1.5 DRY ANALYSI Containers	20.0 19.6 19.5 19.5 IS HCL VOCs + TPHg marice (Standard	1178 1180 1177 1178 3	7.9 5.5 5.2 5.1 VOA's	7.25 6.78 5.60 5.51	430 508 581 638 125-mL Ambers	0	Plastic
16:15 16:19 LABORATO Number/Type Preservative: Analysis: Laboratory/T	0.5 1 1.5 DRY ANALYSI c Containers AT: Test A	20.0 19.6 19.5 19.5 IS HCL VOCs + TPHg merica/Standar	1178 1180 1177 1178 3	7.9 5.5 5.2 5.1 VOA's	7.25 6.78 5.60 5.51	430 508 581 638 125-mL Ambers	0	Plastic
16:15 16:19 LABORATO Number/Type Preservative: Analysis: Laboratory/T DTW = Depth to	0.5 1 1.5 0RY ANALYS Containers AT: Test A Water f Wall Casing	20.0 19.6 19.5 19.5 IS HCL VOCs + TPHg merica/Standar	1178 1180 1177 1178 3	7.9 5.5 5.2 5.1 VOA's	7.25 6.78 5.60 5.51 0	430 508 581 638 125-mL Ambers	0	Plastic
16:15 16:19 LABORATO Number/Type Preservative: Analysis: Laboratory/T DTW = Depth to BOC = Bottom of	0.5 1 1.5 DRY ANALYSI Containers AT: Test A Water f Well Casing Free Product	20.0 19.6 19.5 19.5 (S HCL VOCs + TPHg merica/Standar	1178 1180 1177 1178 3	7.9 5.5 5.2 5.1 VOA's fbtoc = feet bele WC = Water Co	7.25 6.78 5.60 5.51 0 0	430 508 581 638 125-mL Ambers	0 CV Factor	Plastic
16:15 16:19 LABORATO Number/Type Preservative: Analysis: Laboratory/T DTW = Depth to BOC = Bottom of DTFP = Depth to	0.5 1 1.5 0RY ANALYS PRY ANALYS Containers AT: Test A Water f Well Casing Pree Product uct Thickness	20.0 19.6 19.5 19.5 IS HCL VOCs + TPHg merica/Standar	1178 1180 1177 1178 3	7.9 5.5 5.2 5.1 VOA's fbtoc = feet belo WC = Water Co WCV = Water Co	7.25 6.78 5.60 5.51 0 0	430 508 581 638 125-mL Ambers	0 CV Factor	Plastic

APPENDIX D

TESTAMERICA LABORATORIES INC.

Laboratory Analysis Report

9432.000.000 January 4, 2013

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Pleasanton 1220 Quarry Lane Pleasanton, CA 94566 Tel: (925)484-1919

TestAmerica Job ID: 720-45615-1 Client Project/Site: Crown Chevrolet

For:

Engeo, Inc. 2010 Crow Canyon Place Suite 250 San Ramon, California 94583

Attn: Mr. Jeff Adams

Alson f Sal

Authorized for release by: 11/5/2012 2:06:26 PM

Afsaneh Salimpour Project Manager I afsaneh.salimpour@testamericainc.com

LINKS Review your project results through TOTOLACCESS Have a Question? Ask The

Visit us at: www.testamericainc.com

Expert

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
QC Sample Results	15
QC Association Summary	21
Lab Chronicle	22
Certification Summary	23
Method Summary	24
Sample Summary	25
Chain of Custody	26
Receipt Checklists	27

3

5

Qualifiers

GC/MS VOA

Qualifier	Qualifier Description
*	LCS or LCSD exceeds the control limits

Glossary		
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
 ¢	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
CNF	Contains no Free Liquid	
DL, RA, RE, IN	Indicates a Dilution, Reanalysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
EDL	Estimated Detection Limit	
EPA	United States Environmental Protection Agency	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
ND	Not detected at the reporting limit (or MDL or EDL if shown)	
PQL	Practical Quantitation Limit	
QC	Quality Control	
RL	Reporting Limit	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	
TEQ	Toxicity Equivalent Quotient (Dioxin)	
MDA	Minimum detectable activity	
MDC	Minimum detectable concentration	
RER	Relative error ratio	
DER	Duplicate error ratio (normalized absolute difference)	
	Decision level concentration	

Decision level concentration DLC

RL Reporting Limit or Requested Limit (Radiochemistry only)

Job ID: 720-45615-1

Laboratory: TestAmerica Pleasanton

Narrative

Job Narrative 720-45615-1

Comments

No additional comments.

Receipt

The samples were received on 10/26/2012 6:30 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 3.6° C.

GC/MS VOA

Method(s) 8260B: The laboratory control sample (LCS) and / or laboratory control sample duplicate (LCSD) for batch #124534 exceeded control limits for the following analytes: VA. These analytes were biased high in the LCS and were not detected in the associated samples; therefore, the data have been reported.

Method(s) 8260B: The continuing calibration verification (CCV) associated with batch #124534 recovered above the upper control limit for VA. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The following samples are impacted: (CCVIS 720-124534/2).

Method(s) 8260B: The Gasoline Range Organics (GRO) concentration reported for the following sample 45615-1,2,3,4 and 5 is due to the presence of discrete peaks. <<PCE>>

No other analytical or quality issues were noted.

Detection Summary

		Deteo	ction Sum	mary					
Client: Engeo, Inc. Project/Site: Crown Chevrolet						Т	est	America Job ID:	720-45615-1
Client Sample ID: CG-3						La	ab	Sample ID: 7	20-45615-1
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Tetrachloroethene	100		0.50		ug/L	1		8260B/CA_LUFT	Total/NA
Trichloroethene	0.66		0.50		ug/L	1		MS 8260B/CA_LUFT MS	Total/NA 5
Gasoline Range Organics (GRO) C5-C12	110		50		ug/L	1		8260B/CA_LUFT MS	Total/NA
Client Sample ID: CG-4						La	ab	Sample ID: 7	20-45615-2
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type 8
Tetrachloroethene	130		0.50		ug/L	1	_	8260B/CA_LUFT	Total/NA
Gasoline Range Organics (GRO) C5-C12	130		50		ug/L	1		MS 8260B/CA_LUFT MS	Total/NA
Client Sample ID: CG-5						La	ab	Sample ID: 7	20-45615-3
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Tetrachloroethene	120		0.50		ug/L	1	_	8260B/CA_LUFT MS	Total/NA
Gasoline Range Organics (GRO) C5-C12	120		50		ug/L	1		8260B/CA_LUFT MS	Total/NA
Client Sample ID: CG-6						L	ab	Sample ID: 7	20-45615-4
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Tetrachloroethene	65		0.50		ug/L	1	_	8260B/CA_LUFT	Total/NA
Gasoline Range Organics (GRO) C5-C12	73		50		ug/L	1		MS 8260B/CA_LUFT MS	Total/NA
Client Sample ID: DUP-1						La	ab	Sample ID: 7	20-45615-5
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Туре
Tetrachloroethene	120		0.50		ug/L	1	_	8260B/CA_LUFT	Total/NA
Trichloroethene	0.59		0.50		ug/L	1		MS 8260B/CA_LUFT MS	Total/NA
Gasoline Range Organics (GRO) C5-C12	130		50		ug/L	1		8260B/CA_LUFT MS	Total/NA
Client Sample ID: TB-1						La	ab	Sample ID: 7	20-45615-6

No Detections

Client Sample ID: CG-3

Tetrachloroethene

-

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS

Lab Sample ID: 720-45615-1

5 6

Motrix: Mote

Date Collected: 10/26/12 11:25 Date Received: 10/26/12 18:30						Matrix	c: Water
Analyte	Result	Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND		0.50	ug/L		11/03/12 00:19	1
Acetone	ND		50	ug/L		11/03/12 00:19	1
Benzene	ND		0.50	ug/L		11/03/12 00:19	1
Dichlorobromomethane	ND		0.50	ug/L		11/03/12 00:19	1
Bromobenzene	ND		1.0	ug/L		11/03/12 00:19	1
Chlorobromomethane	ND		1.0	ug/L		11/03/12 00:19	1
Bromoform	ND		1.0	ug/L		11/03/12 00:19	1
Bromomethane	ND		1.0	ug/L		11/03/12 00:19	1
2-Butanone (MEK)	ND		50	ug/L		11/03/12 00:19	1
n-Butylbenzene	ND		1.0	ug/L		11/03/12 00:19	1
sec-Butylbenzene	ND		1.0	ug/L		11/03/12 00:19	1
tert-Butylbenzene	ND		1.0	ug/L		11/03/12 00:19	1
Carbon disulfide	ND		5.0	ug/L		11/03/12 00:19	1
Carbon tetrachloride	ND		0.50	ug/L		11/03/12 00:19	1
Chlorobenzene	ND		0.50	ug/L		11/03/12 00:19	1
Chloroethane	ND		1.0	ua/L		11/03/12 00:19	1
Chloroform	ND		1.0	ug/L		11/03/12 00:19	1
Chloromethane	ND		1.0	ug/L		11/03/12 00:19	1
2-Chlorotoluene	ND		0.50	ug/L		11/03/12 00:19	1
4-Chlorotoluene	ND		0.50	ug/L		11/03/12 00:19	1
Chlorodibromomethane	ND		0.50	ug/l		11/03/12 00.19	1
1 2-Dichlorobenzene	ND		0.50	ug/l		11/03/12 00:19	
1 3-Dichlorobenzene	ND		0.50	ug/L		11/03/12 00:19	1
1 4-Dichlorobenzene	ND		0.50	ug/L		11/03/12 00:19	1
1 3-Dichloropropane	ND		1.0	ug/L		11/03/12 00:19	1
1 1-Dichloropropene	ND		0.50	ug/L		11/03/12 00:19	1
1 2-Dibromo-3-Chloropropane	ND		1.0	ug/L		11/03/12 00:19	1
Ethylene Dibromide			0.50	ug/L		11/03/12 00:19	· · · · · · · · · · · · · · · · · · ·
			0.50	ug/L		11/03/12 00:19	1
Dichlorodifluoromethane			0.50	ug/L		11/03/12 00:19	1
1 1 Dichloroethane			0.50	ug/L		11/03/12 00:19	····· 1
1.2 Dichloroothane			0.50	ug/L		11/03/12 00.19	1
	ND		0.50	ug/L		11/03/12 00.19	1
ri, 1-Dichioroethene	ND		0.50	ug/L		11/03/12 00.19	·····
trans 1.2 Dichloroethene	ND		0.50	ug/L		11/03/12 00.19	1
	ND		0.50	ug/L		11/03/12 00.19	1
1,2-Dichloropropane			0.50	ug/L		11/03/12 00:19	1
	ND		0.50	ug/L		11/03/12 00.19	1
trans-1,3-Dichloropropene	ND		0.50	ug/L		11/03/12 00:19	1
Etnyibenzene	ND		0.50	ug/L		11/03/12 00:19	1
	ND		1.0	ug/L		11/03/12 00:19	1
2-Hexanone	ND		50	ug/L		11/03/12 00:19	1
Isopropylbenzene	ND		0.50	ug/L		11/03/12 00:19	1
4-isopropyitoluene	ND		1.0	ug/L		11/03/12 00:19	1
	ND		5.0	ug/L		11/03/12 00:19	1
4-Methyl-2-pentanone (MIBK)	ND		50	ug/L		11/03/12 00:19	1
Naphthalene	ND		1.0	ug/L		11/03/12 00:19	1
N-Propylbenzene	ND		1.0	ug/L		11/03/12 00:19	1
Styrene	ND		0.50	ug/L		11/03/12 00:19	1
1,1,1,2-Tetrachloroethane	ND		0.50	ug/L		11/03/12 00:19	1
1,1,2,2-Tetrachloroethane	ND		0.50	ug/L		11/03/12 00:19	1

1

11/03/12 00:19

0.50

100

ug/L

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Date Collected: 10/26/12 11:25								Matrix	c: Water
Date Received: 10/26/12 18:30									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Toluene	ND		0.50		ug/L			11/03/12 00:19	1
1,2,3-Trichlorobenzene	ND		1.0		ug/L			11/03/12 00:19	1
1,2,4-Trichlorobenzene	ND		1.0		ug/L			11/03/12 00:19	1
1,1,1-Trichloroethane	ND		0.50		ug/L			11/03/12 00:19	1
1,1,2-Trichloroethane	ND		0.50		ug/L			11/03/12 00:19	1
Trichloroethene	0.66		0.50		ug/L			11/03/12 00:19	1
Trichlorofluoromethane	ND		1.0		ug/L			11/03/12 00:19	1
1,2,3-Trichloropropane	ND		0.50		ug/L			11/03/12 00:19	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50		ug/L			11/03/12 00:19	1
1,2,4-Trimethylbenzene	ND		0.50		ug/L			11/03/12 00:19	1
1,3,5-Trimethylbenzene	ND		0.50		ug/L			11/03/12 00:19	1
Vinyl acetate	ND	*	10		ug/L			11/03/12 00:19	1

Gasoline Range Organics (GRO)	110	50	ug/L	11/03/12 00:19	1
2,2-Dichloropropane	ND	0.50	ug/L	11/03/12 00:19	1
Xylenes, Total	ND	1.0	ug/L	11/03/12 00:19	1
Vinyl chloride	ND	0.50	ug/L	11/03/12 00:19	1

Surrogate	%Recovery	Qualifier	Limits	Pi	repared	Analyzed	Dil Fac
4-Bromofluorobenzene	96		67 - 130			11/03/12 00:19	1
1,2-Dichloroethane-d4 (Surr)	99		75 _ 138			11/03/12 00:19	1
Toluene-d8 (Surr)	100		70 - 130			11/03/12 00:19	1

Client Sample ID: CG-4 Date Collected: 10/26/12 12:45

Date Received: 10/26/12 18:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND		0.50		ug/L			11/03/12 00:48	1
Acetone	ND		50		ug/L			11/03/12 00:48	1
Benzene	ND		0.50		ug/L			11/03/12 00:48	1
Dichlorobromomethane	ND		0.50		ug/L			11/03/12 00:48	1
Bromobenzene	ND		1.0		ug/L			11/03/12 00:48	1
Chlorobromomethane	ND		1.0		ug/L			11/03/12 00:48	1
Bromoform	ND		1.0		ug/L			11/03/12 00:48	1
Bromomethane	ND		1.0		ug/L			11/03/12 00:48	1
2-Butanone (MEK)	ND		50		ug/L			11/03/12 00:48	1
n-Butylbenzene	ND		1.0		ug/L			11/03/12 00:48	1
sec-Butylbenzene	ND		1.0		ug/L			11/03/12 00:48	1
tert-Butylbenzene	ND		1.0		ug/L			11/03/12 00:48	1
Carbon disulfide	ND		5.0		ug/L			11/03/12 00:48	1
Carbon tetrachloride	ND		0.50		ug/L			11/03/12 00:48	1
Chlorobenzene	ND		0.50		ug/L			11/03/12 00:48	1
Chloroethane	ND		1.0		ug/L			11/03/12 00:48	1
Chloroform	ND		1.0		ug/L			11/03/12 00:48	1
Chloromethane	ND		1.0		ug/L			11/03/12 00:48	1
2-Chlorotoluene	ND		0.50		ug/L			11/03/12 00:48	1
4-Chlorotoluene	ND		0.50		ug/L			11/03/12 00:48	1
Chlorodibromomethane	ND		0.50		ug/L			11/03/12 00:48	1
1,2-Dichlorobenzene	ND		0.50		ug/L			11/03/12 00:48	1
1,3-Dichlorobenzene	ND		0.50		ug/L			11/03/12 00:48	1
1,4-Dichlorobenzene	ND		0.50		ug/L			11/03/12 00:48	1
1,3-Dichloropropane	ND		1.0		ug/L			11/03/12 00:48	1

TestAmerica Job ID: 720-45615-1

Lab Sample ID: 720-45615-1

2 3 4 5 6 7 8 9 10

Lab Sample ID: 720-45615-2 Matrix: Water **Client Sample ID: CG-4**

Toluene-d8 (Surr)

2 3 4 5 6 7

8 9 10 11

Lab Sample	ID: 720-45615-2
	Matrix: Water

Date Collected: 10/26/12 12:45

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Date Received: 10/26/12 18:30		o				_ .		
Analyte	Result	Qualifier	RL			Prepared	Analyzed	DILFAC
1,1-Dichloropropene	ND		0.50	ug/	L		11/03/12 00:48	1
1,2-Dibromo-3-Chloropropane	ND		1.0	ug/	L 		11/03/12 00:48	1
Ethylene Dibromide	ND		0.50	ug/	L		11/03/12 00:48	1
Dibromomethane	ND		0.50	ug/	L		11/03/12 00:48	1
Dichlorodifluoromethane	ND		0.50	ug/	L 		11/03/12 00:48	1
1,1-Dichloroethane	ND		0.50	ug/	L		11/03/12 00:48	1
1,2-Dichloroethane	ND		0.50	ug/	L		11/03/12 00:48	1
1,1-Dichloroethene	ND		0.50	ug/	L 		11/03/12 00:48	1
cis-1,2-Dichloroethene	ND		0.50	ug/	L		11/03/12 00:48	1
trans-1,2-Dichloroethene	ND		0.50	ug/	L		11/03/12 00:48	1
1,2-Dichloropropane	ND		0.50	ug/	L 		11/03/12 00:48	1
cis-1,3-Dichloropropene	ND		0.50	ug/	L		11/03/12 00:48	1
trans-1,3-Dichloropropene	ND		0.50	ug/	L		11/03/12 00:48	1
Ethylbenzene	ND		0.50	ug/	L		11/03/12 00:48	1
Hexachlorobutadiene	ND		1.0	ug/	L		11/03/12 00:48	1
2-Hexanone	ND		50	ug/	L		11/03/12 00:48	1
Isopropylbenzene	ND		0.50	ug/	L		11/03/12 00:48	1
4-Isopropyltoluene	ND		1.0	ug/	L		11/03/12 00:48	1
Methylene Chloride	ND		5.0	ug/	L		11/03/12 00:48	1
4-Methyl-2-pentanone (MIBK)	ND		50	ug/	L		11/03/12 00:48	1
Naphthalene	ND		1.0	ug/	L		11/03/12 00:48	1
N-Propylbenzene	ND		1.0	ug/	L		11/03/12 00:48	1
Styrene	ND		0.50	ug/	L		11/03/12 00:48	1
1,1,1,2-Tetrachloroethane	ND		0.50	ug/	L		11/03/12 00:48	1
1,1,2,2-Tetrachloroethane	ND		0.50	ug/	L		11/03/12 00:48	1
Tetrachloroethene	130		0.50	ug/	L		11/03/12 00:48	1
Toluene	ND		0.50	ug/			11/03/12 00:48	1
1,2,3-Trichlorobenzene	ND		1.0	ug/	L		11/03/12 00:48	1
1,2,4-Trichlorobenzene	ND		1.0	ug/	L		11/03/12 00:48	1
1,1,1-Trichloroethane	ND		0.50	ug/			11/03/12 00:48	1
1,1,2-Trichloroethane	ND		0.50	ug/	L		11/03/12 00:48	1
Trichloroethene	ND		0.50	ug/	L		11/03/12 00:48	1
Trichlorofluoromethane	ND		1.0	ug/			11/03/12 00:48	1
1,2,3-Trichloropropane	ND		0.50	ug/	L		11/03/12 00:48	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50	ug/	L		11/03/12 00:48	1
1,2,4-Trimethylbenzene	ND		0.50	uq/			11/03/12 00:48	1
1,3,5-Trimethylbenzene	ND		0.50	ua/	L		11/03/12 00:48	1
Vinyl acetate	ND	*	10	ua/	L		11/03/12 00:48	1
Vinvl chloride	ND		0.50	ua/			11/03/12 00:48	1
Xylenes, Total	ND		1.0	ua/	L		11/03/12 00:48	1
2.2-Dichloropropane	ND		0.50	un/	L		11/03/12 00:48	1
Gasoline Range Organics (GRO)	130		50	ua/			11/03/12 00:48	1
-C5-C12				-9- 				
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	101		67 - 130				11/03/12 00:48	1
1,2-Dichloroethane-d4 (Surr)	101		75 - 138				11/03/12 00:48	1

11/03/12 00:48

1

70 - 130

100

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS

Client Sample ID: CG-5	lient Sample ID: CG-5			Lab Sample ID:	Lab Sample ID: 720-45615-3			
Date Collected: 10/26/12 13:15						viatrix: water		
Date Received: 10/26/12 18:30								
Analyte	Result	Qualifier	RL	MDL Unit	D Prepared Analyze	d Dil Fac		
Methyl tert-butyl ether	ND		0.50	ug/L	11/03/12 0	1:17 1		
Acetone	ND		50	ug/L	11/03/12 0	1:17 1		
Benzene	ND		0.50	ug/L	11/03/12 0	1:17 1		
Dichlorobromomethane	ND		0.50	ug/L	11/03/12 0	1:17 1		
Bromobenzene	ND		1.0	ug/L	11/03/12 0	1:17 1		
Chlorobromomethane	ND		1.0	ug/L	11/03/12 0	1:17 1		
Bromoform	ND		1.0	ug/L	11/03/12 0	1:17 1		
Bromomethane	ND		1.0	ug/L	11/03/12 0	1:17 1		
2-Butanone (MEK)	ND		50	ug/L	11/03/12 0	1:17 1		
n-Butylbenzene	ND		1.0	ug/L	11/03/12 0	1:17 1		
sec-Butylbenzene	ND		1.0	ug/L	11/03/12 0	1:17 1		
tert-Butylbenzene	ND		1.0	ug/L	11/03/12 0	1:17 1		
Carbon disulfide	ND		5.0	ug/L	11/03/12 0	1:17 1		
Carbon tetrachloride	ND		0.50	ug/l	11/03/12 0	1.17 1		
Chlorobenzene	ND		0.50	ug/L	11/03/12 0	1·17 1		
Chloroethane	ND		1.0	ug/L	11/03/12 0	1.17 1		
Chloroform			1.0	ug/L	11/03/12 0	1.17 1		
Chloromothana			1.0	ug/L	11/03/12 0	1.17 1		
			0.50	ug/L	11/03/12 0	1.17 1		
			0.50	ug/L	11/03/12 0	1.17 1		
Chlorodibromomothana			0.50	ug/L	11/03/12 0	1.17 1		
			0.50	ug/L	11/03/12 0	1.17 1		
	ND		0.50	ug/L	11/03/12 0	1.17 1		
	ND		0.50	ug/L	11/03/12 0	1:17 1		
	ND		0.50	ug/L	11/03/12 0	1:17 1		
1,3-Dichloropropane	ND		1.0	ug/L	11/03/12 0	1:17 1		
	ND		0.50	ug/L	11/03/12 0	1:17 1		
1,2-Dibromo-3-Chloropropane	ND		1.0	ug/L	11/03/12 0	1:17 1		
Ethylene Dibromide	ND		0.50	ug/L	11/03/12 0	1:17 1		
Dibromomethane	ND		0.50	ug/L	11/03/12 0	1:17 1		
Dichlorodifluoromethane	ND		0.50	ug/L	11/03/12 0	1:17 1		
1,1-Dichloroethane	ND		0.50	ug/L	11/03/12 0	1:17 1		
1,2-Dichloroethane	ND		0.50	ug/L	11/03/12 0	1:17 1		
1,1-Dichloroethene	ND		0.50	ug/L	11/03/12 0	1:17 1		
cis-1,2-Dichloroethene	ND		0.50	ug/L	11/03/12 0	1:17 1		
trans-1,2-Dichloroethene	ND		0.50	ug/L	11/03/12 0	1:17 1		
1,2-Dichloropropane	ND		0.50	ug/L	11/03/12 0	1:17 1		
cis-1,3-Dichloropropene	ND		0.50	ug/L	11/03/12 0	1:17 1		
trans-1,3-Dichloropropene	ND		0.50	ug/L	11/03/12 0	1:17 1		
Ethylbenzene	ND		0.50	ug/L	11/03/12 0	1:17 1		
Hexachlorobutadiene	ND		1.0	ug/L	11/03/12 0	1:17 1		
2-Hexanone	ND		50	ug/L	11/03/12 0	1:17 1		
Isopropylbenzene	ND		0.50	ug/L	11/03/12 0	1:17 1		
4-Isopropyltoluene	ND		1.0	ug/L	11/03/12 0	1:17 1		
Methylene Chloride	ND		5.0	ug/L	11/03/12 0	1:17 1		
4-Methyl-2-pentanone (MIBK)	ND		50	ug/L	11/03/12 0	1:17 1		
Naphthalene	ND		1.0	ug/L	11/03/12 0	1:17 1		
N-Propylbenzene	ND		1.0	ug/L	11/03/12 0	1:17 1		
Styrene	ND		0.50	ug/L	11/03/12 0	1:17 1		
1,1,1,2-Tetrachloroethane	ND		0.50	ug/L	11/03/12 0	1:17 1		
1,1,2,2-Tetrachloroethane	ND		0.50	ug/L	11/03/12 0	1:17 1		
Tetrachloroethene	120		0.50	ug/L	11/03/12 0	1:17 1		

5 6

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Toluene	ND		0.50		ug/L			11/03/12 01:17	1
1,2,3-Trichlorobenzene	ND		1.0		ug/L			11/03/12 01:17	1
1,2,4-Trichlorobenzene	ND		1.0		ug/L			11/03/12 01:17	1
1,1,1-Trichloroethane	ND		0.50		ug/L			11/03/12 01:17	1
1,1,2-Trichloroethane	ND		0.50		ug/L			11/03/12 01:17	1
Trichloroethene	ND		0.50		ug/L			11/03/12 01:17	1
Trichlorofluoromethane	ND		1.0		ug/L			11/03/12 01:17	1
1,2,3-Trichloropropane	ND		0.50		ug/L			11/03/12 01:17	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50		ug/L			11/03/12 01:17	1
1,2,4-Trimethylbenzene	ND		0.50		ug/L			11/03/12 01:17	1
1,3,5-Trimethylbenzene	ND		0.50		ug/L			11/03/12 01:17	1
Vinyl acetate	ND	*	10		ug/L			11/03/12 01:17	1
Vinyl chloride	ND		0.50		ug/L			11/03/12 01:17	1
Xylenes, Total	ND		1.0		ug/L			11/03/12 01:17	1
2,2-Dichloropropane	ND		0.50		ug/L			11/03/12 01:17	1
Gasoline Range Organics (GRO) -C5-C12	120		50		ug/L			11/03/12 01:17	1

Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	98		67 - 130	—		11/03/12 01:17	1
1,2-Dichloroethane-d4 (Surr)	97		75 - 138			11/03/12 01:17	1
Toluene-d8 (Surr)	96		70 - 130			11/03/12 01:17	1

Client Sample ID: CG-6 Date Collected: 10/26/12 16:30

Date Received: 10/26/12 18:30									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND		0.50		ug/L			11/03/12 01:46	1
Acetone	ND		50		ug/L			11/03/12 01:46	1
Benzene	ND		0.50		ug/L			11/03/12 01:46	1
Dichlorobromomethane	ND		0.50		ug/L			11/03/12 01:46	1
Bromobenzene	ND		1.0		ug/L			11/03/12 01:46	1
Chlorobromomethane	ND		1.0		ug/L			11/03/12 01:46	1
Bromoform	ND		1.0		ug/L			11/03/12 01:46	1
Bromomethane	ND		1.0		ug/L			11/03/12 01:46	1
2-Butanone (MEK)	ND		50		ug/L			11/03/12 01:46	1
n-Butylbenzene	ND		1.0		ug/L			11/03/12 01:46	1
sec-Butylbenzene	ND		1.0		ug/L			11/03/12 01:46	1
tert-Butylbenzene	ND		1.0		ug/L			11/03/12 01:46	1
Carbon disulfide	ND		5.0		ug/L			11/03/12 01:46	1
Carbon tetrachloride	ND		0.50		ug/L			11/03/12 01:46	1
Chlorobenzene	ND		0.50		ug/L			11/03/12 01:46	1
Chloroethane	ND		1.0		ug/L			11/03/12 01:46	1
Chloroform	ND		1.0		ug/L			11/03/12 01:46	1
Chloromethane	ND		1.0		ug/L			11/03/12 01:46	1
2-Chlorotoluene	ND		0.50		ug/L			11/03/12 01:46	1
4-Chlorotoluene	ND		0.50		ug/L			11/03/12 01:46	1
Chlorodibromomethane	ND		0.50		ug/L			11/03/12 01:46	1
1,2-Dichlorobenzene	ND		0.50		ug/L			11/03/12 01:46	1
1,3-Dichlorobenzene	ND		0.50		ug/L			11/03/12 01:46	1
1,4-Dichlorobenzene	ND		0.50		ug/L			11/03/12 01:46	1
1,3-Dichloropropane	ND		1.0		ug/L			11/03/12 01:46	1

Lab Sample ID: 720-45615-3

Lab Sample ID: 720-45615-4

Matrix: Water

 Matrix: Water
 4

 and
 Dil Fac
 5

TestAmerica Pleasanton 11/5/2012

TestAmerica Job ID: 720-45615-1

Lab Sample ID: 720-45615-4

5 6

Matrix: Water					
zed	Dil Fac				
01:46	1	-			
01:46	1				
01:46	1				
01.46	1				

•	
1	8
1	
1	Q
1	
1	
1	
1	
1	
1	
1	

Client Sample ID: CG-6 . tod: 10/26/12 16:30 to Colle

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Date Collected:	10/26/12 16:30
Date Received:	10/26/12 18:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloropropene	ND		0.50		ug/L			11/03/12 01:46	1
1,2-Dibromo-3-Chloropropane	ND		1.0		ug/L			11/03/12 01:46	1
Ethylene Dibromide	ND		0.50		ug/L			11/03/12 01:46	1
Dibromomethane	ND		0.50		ug/L			11/03/12 01:46	1
Dichlorodifluoromethane	ND		0.50		ug/L			11/03/12 01:46	1
1,1-Dichloroethane	ND		0.50		ug/L			11/03/12 01:46	1
1,2-Dichloroethane	ND		0.50		ug/L			11/03/12 01:46	1
1,1-Dichloroethene	ND		0.50		ug/L			11/03/12 01:46	1
cis-1,2-Dichloroethene	ND		0.50		ug/L			11/03/12 01:46	1
trans-1,2-Dichloroethene	ND		0.50		ug/L			11/03/12 01:46	1
1,2-Dichloropropane	ND		0.50		ug/L			11/03/12 01:46	1
cis-1,3-Dichloropropene	ND		0.50		ug/L			11/03/12 01:46	1
trans-1,3-Dichloropropene	ND		0.50		ug/L			11/03/12 01:46	1
Ethylbenzene	ND		0.50		ug/L			11/03/12 01:46	1
Hexachlorobutadiene	ND		1.0		ug/L			11/03/12 01:46	1
2-Hexanone	ND		50		ug/L			11/03/12 01:46	1
Isopropylbenzene	ND		0.50		ug/L			11/03/12 01:46	1
4-Isopropyltoluene	ND		1.0		ug/L			11/03/12 01:46	1
Methylene Chloride	ND		5.0		ug/L			11/03/12 01:46	1
4-Methyl-2-pentanone (MIBK)	ND		50		ug/L			11/03/12 01:46	1
Naphthalene	ND		1.0		ug/L			11/03/12 01:46	1
N-Propylbenzene	ND		1.0		ug/L			11/03/12 01:46	1
Styrene	ND		0.50		ug/L			11/03/12 01:46	1
1,1,1,2-Tetrachloroethane	ND		0.50		ug/L			11/03/12 01:46	1
1,1,2,2-Tetrachloroethane	ND		0.50		ug/L			11/03/12 01:46	1
Tetrachloroethene	65		0.50		ug/L			11/03/12 01:46	1
Toluene	ND		0.50		ug/L			11/03/12 01:46	1
1,2,3-Trichlorobenzene	ND		1.0		ug/L			11/03/12 01:46	1
1,2,4-Trichlorobenzene	ND		1.0		ug/L			11/03/12 01:46	1
1,1,1-Trichloroethane	ND		0.50		ug/L			11/03/12 01:46	1
1,1,2-Trichloroethane	ND		0.50		ug/L			11/03/12 01:46	1
Trichloroethene	ND		0.50		ug/L			11/03/12 01:46	1
Trichlorofluoromethane	ND		1.0		ug/L			11/03/12 01:46	1
1,2,3-Trichloropropane	ND		0.50		ug/L			11/03/12 01:46	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50		ug/L			11/03/12 01:46	1
1,2,4-Trimethylbenzene	ND		0.50		ug/L			11/03/12 01:46	1
1,3,5-Trimethylbenzene	ND		0.50		ug/L			11/03/12 01:46	1
Vinyl acetate	ND	*	10		ug/L			11/03/12 01:46	1
Vinyl chloride	ND		0.50		ug/L			11/03/12 01:46	1
Xylenes, Total	ND		1.0		ug/L			11/03/12 01:46	1
2,2-Dichloropropane	ND		0.50		ug/L			11/03/12 01:46	1
Gasoline Range Organics (GRO) -C5-C12	73		50		ug/L			11/03/12 01:46	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	98		67 - 130			-		11/03/12 01:46	1
1,2-Dichloroethane-d4 (Surr)	100		75 - 138					11/03/12 01:46	1
Toluene-d8 (Surr)	99		70 - 130					11/03/12 01:46	1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS

Client Sample ID: DUP-1						Lab	Sample ID: 720-	45615-5
Date Collected: 10/26/12 11:45							Matrix	c: Water
Date Received: 10/26/12 18:30								
Analyte	Result	Qualifier	RL	MDL Unit	t D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND		0.50	ug/L			11/03/12 02:14	1
Acetone	ND		50	ug/L	-		11/03/12 02:14	1
Benzene	ND		0.50	ug/L	-		11/03/12 02:14	1
Dichlorobromomethane	ND		0.50	ug/L			11/03/12 02:14	1
Bromobenzene	ND		1.0	ug/L			11/03/12 02:14	1
Chlorobromomethane	ND		1.0	ug/L			11/03/12 02:14	1
Bromoform	ND		1.0	ug/L			11/03/12 02:14	1
Bromomethane	ND		1.0	ug/L	-		11/03/12 02:14	1
2-Butanone (MEK)	ND		50	ug/L	-		11/03/12 02:14	1
n-Butylbenzene	ND		1.0	ug/L			11/03/12 02:14	1
sec-Butylbenzene	ND		1.0	ug/L	-		11/03/12 02:14	1
tert-Butylbenzene	ND		1.0	ug/L	-		11/03/12 02:14	1
Carbon disulfide	ND		5.0	ug/L			11/03/12 02:14	1
Carbon tetrachloride	ND		0.50	ug/L	_		11/03/12 02:14	1
Chlorobenzene	ND		0.50	ug/L	_		11/03/12 02:14	1
Chloroethane	ND		1.0	ug/L			11/03/12 02:14	1
Chloroform	ND		1.0	ua/L			11/03/12 02:14	1
Chloromethane	ND		1.0	ua/L	_		11/03/12 02:14	1
2-Chlorotoluene	ND		0.50	ug/L	-		11/03/12 02:14	
4-Chlorotoluene	ND		0.50	ug/L	-		11/03/12 02:14	1
Chlorodibromomethane	ND		0.50	ug/L	-		11/03/12 02:14	1
1 2-Dichlorobenzene	ND		0.50	ug/L			11/03/12 02:14	· · · · · · · · · · · · · · · · · · ·
1 3-Dichlorobenzene	ND		0.50	ug/L	-		11/03/12 02:14	1
1 4-Dichlorobenzene	ND		0.50	ug/L	-		11/03/12 02:14	1
1 3-Dichloropropage	ND		1.0	ug/L			11/03/12 02:14	1
1 1-Dichloropropene	ND		0.50	ug/L	-		11/03/12 02:14	1
1,7 Dichloropropene	ND		1.0	ug/L	-		11/03/12 02:14	1
Ethylene Dibromide			0.50	ug/L			11/03/12 02:14	1
Dibromomethane			0.50	ug/L	-		11/03/12 02:14	1
Dichlorodifluoromethane			0.50	ug/L	-		11/03/12 02:14	1
1 1 Dichloroethane			0.50	ug/L	-		11/03/12 02:14	
			0.50	ug/L	-		11/03/12 02:14	1
			0.50	ug/L	-		11/03/12 02:14	1
r, r-Dichloroethene			0.50	ug/L	-		11/03/12 02:14	· · · · · · · · · · · · · · · · · · ·
trops 1.2 Dichloroothono			0.50	ug/L	-		11/03/12 02:14	1
1.2 Dichloropropago			0.50	ug/L	-		11/03/12 02:14	1
			0.50	ug/L	•		11/03/12 02:14	1
trans 1.2 Dichloropropene	ND		0.50	ug/L	-		11/03/12 02.14	1
	ND		0.50	ug/L	-		11/03/12 02.14	1
	ND		0.50	ug/L	<u>.</u>		11/03/12 02.14	
Hexachiorodutadiene	ND		1.0	ug/L	-		11/03/12 02:14	1
	ND		50	ug/L	-		11/03/12 02:14	1
isopropyidenzene	ND		0.50	ug/L			11/03/12 02:14	·····
4-isopropyitoluene	ND		1.0	ug/L	-		11/03/12 02:14	1
	ND		5.0	ug/L	-		11/03/12 02:14	1
4-metnyl-2-pentanone (MIBK)	ND		50	ug/L			11/03/12 02:14	1
Naphthalene	ND		1.0	ug/L	-		11/03/12 02:14	1
N-Propylbenzene	ND		1.0	ug/L	-		11/03/12 02:14	1
Styrene	ND		0.50	ug/L	<u>.</u>		11/03/12 02:14	1
1,1,1,2- I etrachloroethane	ND		0.50	ug/L	-		11/03/12 02:14	1
1,1,2,2-Tetrachloroethane	ND		0.50	ug/L	-		11/03/12 02:14	1
Tetrachloroethene	120		0.50	ug/L	-		11/03/12 02:14	1

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Client Sample ID: DUP-1

Date Collected: 10/26/12 11:45	
Date Received: 10/26/12 18:30	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Toluene	ND		0.50		ug/L			11/03/12 02:14	1
1,2,3-Trichlorobenzene	ND		1.0		ug/L			11/03/12 02:14	1
1,2,4-Trichlorobenzene	ND		1.0		ug/L			11/03/12 02:14	1
1,1,1-Trichloroethane	ND		0.50		ug/L			11/03/12 02:14	1
1,1,2-Trichloroethane	ND		0.50		ug/L			11/03/12 02:14	1
Trichloroethene	0.59		0.50		ug/L			11/03/12 02:14	1
Trichlorofluoromethane	ND		1.0		ug/L			11/03/12 02:14	1
1,2,3-Trichloropropane	ND		0.50		ug/L			11/03/12 02:14	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50		ug/L			11/03/12 02:14	1
1,2,4-Trimethylbenzene	ND		0.50		ug/L			11/03/12 02:14	1
1,3,5-Trimethylbenzene	ND		0.50		ug/L			11/03/12 02:14	1
Vinyl acetate	ND	*	10		ug/L			11/03/12 02:14	1
Vinyl chloride	ND		0.50		ug/L			11/03/12 02:14	1
Xylenes, Total	ND		1.0		ug/L			11/03/12 02:14	1
2,2-Dichloropropane	ND		0.50		ug/L			11/03/12 02:14	1
Gasoline Range Organics (GRO) -C5-C12	130		50		ug/L			11/03/12 02:14	1

Surrogate	%Recovery	Qualifier	Limits	Prep	ared	Analyzed	Dil Fac
4-Bromofluorobenzene	100		67 - 130		·	11/03/12 02:14	1
1,2-Dichloroethane-d4 (Surr)	96		75 - 138			11/03/12 02:14	1
Toluene-d8 (Surr)	97		70 - 130			11/03/12 02:14	1

Client Sample ID: TB-1 Date Collected: 10/26/12 08:00

Date Received: 10/26/12 18:30						
Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND	0.50	ug/L		11/02/12 22:24	1
Acetone	ND	50	ug/L		11/02/12 22:24	1
Benzene	ND	0.50	ug/L		11/02/12 22:24	1
Dichlorobromomethane	ND	0.50	ug/L		11/02/12 22:24	1
Bromobenzene	ND	1.0	ug/L		11/02/12 22:24	1
Chlorobromomethane	ND	1.0	ug/L		11/02/12 22:24	1
Bromoform	ND	1.0	ug/L		11/02/12 22:24	1
Bromomethane	ND	1.0	ug/L		11/02/12 22:24	1
2-Butanone (MEK)	ND	50	ug/L		11/02/12 22:24	1
n-Butylbenzene	ND	1.0	ug/L		11/02/12 22:24	1
sec-Butylbenzene	ND	1.0	ug/L		11/02/12 22:24	1
tert-Butylbenzene	ND	1.0	ug/L		11/02/12 22:24	1
Carbon disulfide	ND	5.0	ug/L		11/02/12 22:24	1
Carbon tetrachloride	ND	0.50	ug/L		11/02/12 22:24	1
Chlorobenzene	ND	0.50	ug/L		11/02/12 22:24	1
Chloroethane	ND	1.0	ug/L		11/02/12 22:24	1
Chloroform	ND	1.0	ug/L		11/02/12 22:24	1
Chloromethane	ND	1.0	ug/L		11/02/12 22:24	1
2-Chlorotoluene	ND	0.50	ug/L		11/02/12 22:24	1
4-Chlorotoluene	ND	0.50	ug/L		11/02/12 22:24	1
Chlorodibromomethane	ND	0.50	ug/L		11/02/12 22:24	1
1,2-Dichlorobenzene	ND	0.50	ug/L		11/02/12 22:24	1
1,3-Dichlorobenzene	ND	0.50	ug/L		11/02/12 22:24	1
1,4-Dichlorobenzene	ND	0.50	ug/L		11/02/12 22:24	1
1,3-Dichloropropane	ND	1.0	ug/L		11/02/12 22:24	1

TestAmerica Job ID: 720-45615-1

Lab Sample ID: 720-45615-5 Matrix: Water

Lab Sample ID: 720-45615-6

Matrix: Water

Toluene-d8 (Surr)

2 3 4 5 6 7

8 9 10 11

Lab Sample	ID: 720-45615-6
	Matrix: Water

Client Sample ID: TB-1 Date Collected: 10/26/12 08:00

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Date Conected: 10/26/12 00:00								Wath	t. Water
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1.1-Dichloropropene	ND		0.50		ua/L			11/02/12 22:24	1
1.2-Dibromo-3-Chloropropane	ND		1.0		ua/L			11/02/12 22:24	1
Ethvlene Dibromide	ND		0.50		ug/L			11/02/12 22:24	1
Dibromomethane	ND		0.50		ug/L			11/02/12 22:24	1
Dichlorodifluoromethane	ND		0.50		ug/L			11/02/12 22:24	1
1,1-Dichloroethane	ND		0.50		ug/L			11/02/12 22:24	1
1,2-Dichloroethane	ND		0.50		ug/L			11/02/12 22:24	1
1,1-Dichloroethene	ND		0.50		ug/L			11/02/12 22:24	1
cis-1,2-Dichloroethene	ND		0.50		ug/L			11/02/12 22:24	
trans-1,2-Dichloroethene	ND		0.50		ug/L			11/02/12 22:24	1
1,2-Dichloropropane	ND		0.50		ug/L			11/02/12 22:24	1
cis-1,3-Dichloropropene	ND		0.50		ug/L			11/02/12 22:24	1
trans-1,3-Dichloropropene	ND		0.50		ug/L			11/02/12 22:24	1
Ethylbenzene	ND		0.50		ug/L			11/02/12 22:24	1
Hexachlorobutadiene	ND		1.0		ug/L			11/02/12 22:24	1
2-Hexanone	ND		50		ug/L			11/02/12 22:24	1
lsopropylbenzene	ND		0.50		ug/L			11/02/12 22:24	1
4-Isopropyltoluene	ND		1.0		ug/L			11/02/12 22:24	1
Methylene Chloride	ND		5.0		ug/L			11/02/12 22:24	1
4-Methyl-2-pentanone (MIBK)	ND		50		ug/L			11/02/12 22:24	1
Naphthalene	ND		1.0		ug/L			11/02/12 22:24	1
N-Propylbenzene	ND		1.0		ug/L			11/02/12 22:24	1
Styrene	ND		0.50		ug/L			11/02/12 22:24	1
1,1,1,2-Tetrachloroethane	ND		0.50		ug/L			11/02/12 22:24	1
1,1,2,2-Tetrachloroethane	ND		0.50		ug/L			11/02/12 22:24	1
Tetrachloroethene	ND		0.50		ug/L			11/02/12 22:24	1
Toluene	ND		0.50		ug/L			11/02/12 22:24	1
1,2,3-Trichlorobenzene	ND		1.0		ug/L			11/02/12 22:24	1
1,2,4-Trichlorobenzene	ND		1.0		ug/L			11/02/12 22:24	1
1,1,1-Trichloroethane	ND		0.50		ug/L			11/02/12 22:24	1
1,1,2-Trichloroethane	ND		0.50		ug/L			11/02/12 22:24	1
Trichloroethene	ND		0.50		ug/L			11/02/12 22:24	1
Trichlorofluoromethane	ND		1.0		ug/L			11/02/12 22:24	1
1,2,3-Trichloropropane	ND		0.50		ug/L			11/02/12 22:24	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50		ug/L			11/02/12 22:24	1
1,2,4-Trimethylbenzene	ND		0.50		ug/L			11/02/12 22:24	1
1,3,5-Trimethylbenzene	ND		0.50		ug/L			11/02/12 22:24	1
Vinyl acetate	ND	*	10		ug/L			11/02/12 22:24	1
Vinyl chloride	ND		0.50		ug/L			11/02/12 22:24	1
Xylenes, Total	ND		1.0		ug/L			11/02/12 22:24	1
2,2-Dichloropropane	ND		0.50		ug/L			11/02/12 22:24	1
Gasoline Range Organics (GRO) -C5-C12	ND		50		ug/L			11/02/12 22:24	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	102		67 - 130					11/02/12 22:24	1
1,2-Dichloroethane-d4 (Surr)	92		75 - 138					11/02/12 22:24	1

11/02/12 22:24

1

70 - 130

100

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS

Lab Sample ID: MB 720-124534/4

Matrix: Water Analysis Batch: 124534

Analyte	Result	Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND		0.50	ug/L		11/02/12 20:00	1
Acetone	ND		50	ug/L		11/02/12 20:00	1
Benzene	ND		0.50	ug/L		11/02/12 20:00	1
Dichlorobromomethane	ND		0.50	ug/L		11/02/12 20:00	1
Bromobenzene	ND		1.0	ug/L		11/02/12 20:00	1
Chlorobromomethane	ND		1.0	ug/L		11/02/12 20:00	1
Bromoform	ND		1.0	ug/L		11/02/12 20:00	1
Bromomethane	ND		1.0	ug/L		11/02/12 20:00	1
2-Butanone (MEK)	ND		50	ug/L		11/02/12 20:00	1
n-Butylbenzene	ND		1.0	ug/L		11/02/12 20:00	1
sec-Butylbenzene	ND		1.0	ug/L		11/02/12 20:00	1
tert-Butylbenzene	ND		1.0	ug/L		11/02/12 20:00	1
Carbon disulfide	ND		5.0	ug/L		11/02/12 20:00	1
Carbon tetrachloride	ND		0.50	ug/L		11/02/12 20:00	1
Chlorobenzene	ND		0.50	ug/L		11/02/12 20:00	1
Chloroethane	ND		1.0	ug/L		11/02/12 20:00	1
Chloroform	ND		1.0	ug/L		11/02/12 20:00	1
Chloromethane	ND		1.0	ug/L		11/02/12 20:00	1
2-Chlorotoluene	ND		0.50	ug/L		11/02/12 20:00	1
4-Chlorotoluene	ND		0.50	ug/L		11/02/12 20:00	1
Chlorodibromomethane	ND		0.50	ug/L		11/02/12 20:00	1
1.2-Dichlorobenzene	ND		0.50	ua/L		11/02/12 20:00	1
1.3-Dichlorobenzene	ND		0.50	ug/L		11/02/12 20:00	1
1,4-Dichlorobenzene	ND		0.50	ug/L		11/02/12 20:00	1
1.3-Dichloropropane	ND		1.0	ua/L		11/02/12 20:00	1
1.1-Dichloropropene	ND		0.50	ug/L		11/02/12 20:00	1
1,2-Dibromo-3-Chloropropane	ND		1.0	ug/L		11/02/12 20:00	1
Ethylene Dibromide	ND		0.50	uq/L		11/02/12 20:00	1
Dibromomethane	ND		0.50	ug/L		11/02/12 20:00	1
Dichlorodifluoromethane	ND		0.50	ug/L		11/02/12 20:00	1
1,1-Dichloroethane	ND		0.50	ug/L		11/02/12 20:00	1
1.2-Dichloroethane	ND		0.50	ug/L		11/02/12 20:00	1
1.1-Dichloroethene	ND		0.50	ug/L		11/02/12 20:00	1
cis-1,2-Dichloroethene	ND		0.50	ug/L		11/02/12 20:00	1
trans-1,2-Dichloroethene	ND		0.50	ug/L		11/02/12 20:00	1
1,2-Dichloropropane	ND		0.50	ug/L		11/02/12 20:00	1
cis-1.3-Dichloropropene	ND		0.50	ua/L		11/02/12 20:00	1
trans-1,3-Dichloropropene	ND		0.50	ug/L		11/02/12 20:00	1
Ethylbenzene	ND		0.50	ug/L		11/02/12 20:00	1
Hexachlorobutadiene	ND		1.0	ua/L		11/02/12 20:00	1
2-Hexanone	ND		50	ug/L		11/02/12 20:00	1
Isopropylbenzene	ND		0.50	ug/L		11/02/12 20:00	1
4-Isopropyltoluene	ND		1.0	uq/L		11/02/12 20:00	1
Methylene Chloride	ND		5.0	ug/L		11/02/12 20:00	1
4-Methyl-2-pentanone (MIBK)	ND		50	ua/L		11/02/12 20:00	1
Naphthalene	ND		1.0	uq/L		11/02/12 20:00	1
N-Propylbenzene	ND		1.0	ua/L		11/02/12 20:00	1
Styrene	ND		0.50	ua/L		11/02/12 20:00	1
1,1,1,2-Tetrachloroethane	ND		0.50	ug/L		11/02/12 20:00	1

Client Sample ID: Method Blank

Prep Type: Total/NA

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Type: Total/NA

2 3 4 5 6 7

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: MB 720-124534/4

Matrix:	Water	

Analysis Batch: 124534

	MB	МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,2,2-Tetrachloroethane	ND		0.50		ug/L			11/02/12 20:00	1
Tetrachloroethene	ND		0.50		ug/L			11/02/12 20:00	1
Toluene	ND		0.50		ug/L			11/02/12 20:00	1
1,2,3-Trichlorobenzene	ND		1.0		ug/L			11/02/12 20:00	1
1,2,4-Trichlorobenzene	ND		1.0		ug/L			11/02/12 20:00	1
1,1,1-Trichloroethane	ND		0.50		ug/L			11/02/12 20:00	1
1,1,2-Trichloroethane	ND		0.50		ug/L			11/02/12 20:00	1
Trichloroethene	ND		0.50		ug/L			11/02/12 20:00	1
Trichlorofluoromethane	ND		1.0		ug/L			11/02/12 20:00	1
1,2,3-Trichloropropane	ND		0.50		ug/L			11/02/12 20:00	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50		ug/L			11/02/12 20:00	1
1,2,4-Trimethylbenzene	ND		0.50		ug/L			11/02/12 20:00	1
1,3,5-Trimethylbenzene	ND		0.50		ug/L			11/02/12 20:00	1
Vinyl acetate	ND		10		ug/L			11/02/12 20:00	1
Vinyl chloride	ND		0.50		ug/L			11/02/12 20:00	1
Xylenes, Total	ND		1.0		ug/L			11/02/12 20:00	1
2,2-Dichloropropane	ND		0.50		ug/L			11/02/12 20:00	1
Gasoline Range Organics (GRO) -C5-C12	ND		50		ug/L			11/02/12 20:00	1

	МВ							
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac		
4-Bromofluorobenzene	98		67 - 130		11/02/12 20:00	1		
1,2-Dichloroethane-d4 (Surr)	96		75 - 138		11/02/12 20:00	1		
Toluene-d8 (Surr)	99		70 - 130		11/02/12 20:00	1		

Lab Sample ID: LCS 720-124534/5 Matrix: Water

Analysis Batch: 124534

-	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Methyl tert-butyl ether	25.0	25.6		ug/L		103	62 - 130	
Acetone	125	122		ug/L		98	26 - 180	
Benzene	25.0	25.5		ug/L		102	79 - 130	
Dichlorobromomethane	25.0	26.5		ug/L		106	70 ₋ 130	
Bromobenzene	25.0	25.5		ug/L		102	70 - 130	
Chlorobromomethane	25.0	26.2		ug/L		105	70 ₋ 130	
Bromoform	25.0	25.3		ug/L		101	68 ₋ 136	
Bromomethane	25.0	27.1		ug/L		108	43 - 151	
2-Butanone (MEK)	125	121		ug/L		97	54 ₋ 130	
n-Butylbenzene	25.0	24.6		ug/L		98	70 - 142	
sec-Butylbenzene	25.0	25.1		ug/L		100	70 ₋ 134	
tert-Butylbenzene	25.0	25.0		ug/L		100	70 - 135	
Carbon disulfide	25.0	28.2		ug/L		113	58 ₋ 130	
Carbon tetrachloride	25.0	24.7		ug/L		99	70 - 146	
Chlorobenzene	25.0	25.1		ug/L		101	70 - 130	
Chloroethane	25.0	27.4		ug/L		110	62 - 138	
Chloroform	25.0	25.2		ug/L		101	70 - 130	
Chloromethane	25.0	26.4		ug/L		106	52 - 175	
2-Chlorotoluene	25.0	25.7		ug/L		103	70 ₋ 130	
4-Chlorotoluene	25.0	25.1		ug/L		100	70 - 130	

Matrix: Water

Lab Sample ID: LCS 720-124534/5

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Analysis Batch: 124534								
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chlorodibromomethane	25.0	27.2		ug/L		109	70 ₋ 145	
1,2-Dichlorobenzene	25.0	26.0		ug/L		104	70 _ 130	
1,3-Dichlorobenzene	25.0	26.0		ug/L		104	70 _ 130	
1,4-Dichlorobenzene	25.0	26.0		ug/L		104	70 - 130	
1,3-Dichloropropane	25.0	26.3		ug/L		105	70 - 130	
1,1-Dichloropropene	25.0	25.4		ug/L		102	70 - 130	
1,2-Dibromo-3-Chloropropane	25.0	22.8		ug/L		91	70 - 136	
Ethylene Dibromide	25.0	26.3		ug/L		105	70 - 130	
Dibromomethane	25.0	24.4		ug/L		98	70 - 130	
Dichlorodifluoromethane	25.0	19.9		ug/L		79	34 - 132	
1,1-Dichloroethane	25.0	25.9		ug/L		104	70 - 130	
1,2-Dichloroethane	25.0	25.6		ug/L		102	61 _ 132	
1,1-Dichloroethene	25.0	21.4		ug/L		85	64 _ 128	
cis-1,2-Dichloroethene	25.0	26.3		ug/L		105	70 ₋ 130	
trans-1,2-Dichloroethene	25.0	25.6		ug/L		102	68 - 130	
1,2-Dichloropropane	25.0	26.2		ug/L		105	70 - 130	
cis-1,3-Dichloropropene	25.0	28.3		ug/L		113	70 ₋ 130	
trans-1,3-Dichloropropene	25.0	27.0		ug/L		108	70 _ 140	
Ethylbenzene	25.0	24.4		ug/L		97	80 - 120	
Hexachlorobutadiene	25.0	23.0		ug/L		92	70 ₋ 130	
2-Hexanone	125	122		ug/L		98	60 - 164	
Isopropylbenzene	25.0	25.5		ug/L		102	70 - 130	
4-Isopropyltoluene	25.0	24.8		ug/L		99	70 - 130	
Methylene Chloride	25.0	25.7		ug/L		103	70 - 147	
4-Methyl-2-pentanone (MIBK)	125	129		ug/L		103	58 - 130	
Naphthalene	25.0	22.9		ug/L		92	70 - 130	
N-Propylbenzene	25.0	25.3		ug/L		101	70 - 130	
Styrene	25.0	23.9		ug/L		96	70 - 130	
1,1,1,2-Tetrachloroethane	25.0	24.9		ug/L		99	70 ₋ 130	
1,1,2,2-Tetrachloroethane	25.0	25.2		ug/L		101	70 ₋ 130	
Tetrachloroethene	25.0	25.6		ug/L		102	70 ₋ 130	
Toluene	25.0	24.9		ug/L		99	78 ₋ 120	
1,2,3-Trichlorobenzene	25.0	23.8		ug/L		95	70 ₋ 130	
1,2,4-Trichlorobenzene	25.0	23.9		ug/L		95	70 ₋ 130	
1,1,1-Trichloroethane	25.0	25.2		ug/L		101	70 ₋ 130	
1.1.2-Trichloroethane	25.0	25.8		ua/L		103	70 - 130	
Trichloroethene	25.0	24.6		ua/L		98	70 - 130	
Trichlorofluoromethane	25.0	25.0		ug/L		100	66 - 132	
1.2.3-Trichloropropane	25.0	22.9		ua/L		92	70 - 130	
1 1 2-Trichloro-1 2 2-trifluoroetha	25.0	23.9		ua/L		96	42 - 162	
ne				3				
1,2,4-Trimethylbenzene	25.0	25.1		ug/L		100	70 - 132	
1,3,5-Trimethylbenzene	25.0	25.2		ug/L		101	70 - 130	
Vinyl acetate	25.0	54.0	*	ug/L		216	43 - 163	
Vinyl chloride	25.0	25.4		ug/L		102	54 _ 135	
m-Xylene & p-Xylene	50.0	50.2		ug/L		100	70 _ 142	
o-Xylene	25.0	25.7		ug/L		103	70 - 130	
2,2-Dichloropropane	25.0	26.6		ug/L		106	70 - 140	

1,2-Dibromo-3-Chloropropane

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: LCS 720-124	1534/5						Client	Sample	e ID: Lab C	ontrol S	ample
Matrix: Water									Prep 1	Sype: To	tal/NA
Analysis Batch: 124534											
	105	100									
Surrogato	%Recovery	Oualifier	l imite								
4-Bromofluorobenzene		Quanner	67 130								
1 2-Dichloroethane-d4 (Surr)	90		75 138								
Toluene-d8 (Surr)	100		70 130								
	100		10 - 150								
_ Lab Sample ID: LCS 720-124	1534/7						Client	Sample) ID: Lab C	ontrol S	ample
Matrix: Water									Prep 1	vpe: To	tal/NA
Analysis Batch: 124534										,,	
			Spike	LCS	LCS				%Rec.		
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits		
Gasoline Range Organics (GRO)			500	530		ug/L		106	62 _ 120		
-C5-C12											
	LCS	LCS									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene			67 - 130								
1.2-Dichloroethane-d4 (Surr)	97		75 - 138								
Toluene-d8 (Surr)	100		70 - 130								
Lab Sample ID: LCSD 720-12	24534/6					Cli	ent San	ple ID:	Lab Contro	ol Sampl	e Dup
Matrix: Water									Prep 1	Type: To	tal/NA
Analysis Batch: 124534											
-			Spike	LCSD	LCSD				%Rec.		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Methyl tert-butyl ether			25.0	26.2		ug/L		105	62 - 130	2	20
Acetone			125	128		ug/L		102	26 _ 180	5	30
Benzene			25.0	25.2		ug/L		101	79 ₋ 130	1	20
Dichlorobromomethane			25.0	27.1		ug/L		108	70 - 130	2	20
Bromobenzene			25.0	25.9		ug/L		104	70 - 130	2	20
Chlorobromomethane			25.0	26.4		ug/L		105	70 ₋ 130	1	20
Bromoform			25.0	26.4		ug/L		106	68 - 136	4	20
Bromomethane			25.0	27.3		ug/L		109	43 _ 151	1	20
2-Butanone (MEK)			125	132		ug/L		106	54 _ 130	8	20
n-Butylbenzene			25.0	25.0		ug/L		100	70 - 142	1	20
sec-Butylbenzene			25.0	25.2		ug/L		101	70 - 134	0	20
tert-Butylbenzene			25.0	25.4		ug/L		102	70 - 135	2	20
Carbon disulfide			25.0	27.7		ug/L		111	58 - 130	2	20
Carbon tetrachloride			25.0	24.9		ug/L		99	70 - 146	1	20
Chlorobenzene			25.0	25.9		ug/L		104	70 - 130	3	20
Chloroethane			25.0	27.0		ug/L		108	62 - 138	1	20
Chloroform			25.0	25.2		ug/L		101	70 - 130	0	20
Chloromethane			25.0	25.4		ug/L		102	52 - 175	4	20
2-Chlorotoluene			25.0	26.2		ug/L		105	70 - 130	2	20
4-Chlorotoluene			25.0	25.7		ug/L		103	70 - 130	2	20
Chlorodibromomethane			25.0	28.5		ug/L		114	70 ₋ 145	4	20
1,2-Dichlorobenzene			25.0	26.4		ug/L		106	70 - 130	2	20
1,3-Dichlorobenzene			25.0	26.5		ug/L		106	70 - 130	2	20
1,4-Dichlorobenzene			25.0	26.6		ug/L		106	70 _ 130	2	20
1,3-Dichloropropane			25.0	26.6		ug/L		107	70 - 130	1	20
1,1-Dichloropropene			25.0	25.1		ug/L		100	70 - 130	1	20

TestAmerica Job ID: 720-45615-1

TestAmerica Pleasanton 11/5/2012

3

20

23.6

ug/L

94

70 - 136

25.0

Spike

LCSD LCSD

Analysis Batch: 124534

1,2-Dichloroethane-d4 (Surr)

Toluene-d8 (Surr)

Matrix: Water

Lab Sample ID: LCSD 720-124534/6

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

2 3 4 5 6

7
8
9

	Prep T	ype: To	tal/NA	ļ
	%Rec.		RPD	
0/ 8	1 1 14			1

Client Sample ID: Lab Control Sample Dup

Analyte	Adde	d Result	Qualifier U	nit D	%Rec	Limits	RPD	Limit
Ethylene Dibromide	25.	0 26.6	ug	ı/L	107	70 _ 130	1	20
Dibromomethane	25.	0 25.4	ug	ı/L	102	70 _ 130	4	20
Dichlorodifluoromethane	25.	0 18.4	ug	I/L	74	34 _ 132	8	20
1,1-Dichloroethane	25	0 25.7	ug	i/L	103	70 - 130	1	20
1,2-Dichloroethane	25	0 25.8	ug	ı/L	103	61 - 132	1	20
1,1-Dichloroethene	25	0 21.6	ug	ı/L	86	64 - 128	1	20
cis-1,2-Dichloroethene	25	0 26.3	ug	ι/L	105	70 _ 130	0	20
trans-1,2-Dichloroethene	25	0 25.1	ug	I/L	100	68 _ 130	2	20
1,2-Dichloropropane	25	0 27.2	ug	I/L	109	70 - 130	4	20
cis-1,3-Dichloropropene	25	0 28.3	ug	i/L	113	70 _ 130	0	20
trans-1,3-Dichloropropene	25	0 27.1	ug	I/L	108	70 - 140	0	20
Ethylbenzene	25	0 24.8	ug	I/L	99	80 - 120	2	20
Hexachlorobutadiene	25	0 22.9	ug	μ/L	92	70 - 130	0	20
2-Hexanone	12	5 131	ug	I/L	105	60 _ 164	7	20
Isopropylbenzene	25	0 25.9	ug	ı/L	104	70 - 130	2	20
4-Isopropyltoluene	25	0 24.6	ug	ı/L	98	70 - 130	1	20
Methylene Chloride	25	0 25.7	ug	ı/L	103	70 - 147	0	20
4-Methyl-2-pentanone (MIBK)	12	5 134	ug	ı/L	107	58 - 130	4	20
Naphthalene	25	0 24.5	ug	ı/L	98	70 - 130	6	20
N-Propylbenzene	25	0 25.9	ug	/L	104	70 - 130	3	20
Styrene	25	0 24.5	uç	ı/L	98	70 - 130	2	20
1,1,1,2-Tetrachloroethane	25	0 25.9	ug	ı/L	104	70 - 130	4	20
1,1,2,2-Tetrachloroethane	25	0 25.6	ug	/L	102	70 - 130	2	20
Tetrachloroethene	25	0 25.6	ug	ı/L	102	70 - 130	0	20
Toluene	25	0 25.3	ug	ı/L	101	78 - 120	2	20
1,2,3-Trichlorobenzene	25	0 24.8	ug	ı/L	99	70 - 130	4	20
1,2,4-Trichlorobenzene	25	0 24.7	ug	ı/L	99	70 - 130	4	20
1,1,1-Trichloroethane	25	0 25.1	ug	μ/L	100	70 - 130	1	20
1,1,2-Trichloroethane	25	0 26.7	uç	ı/L	107	70 - 130	4	20
Trichloroethene	25	0 24.8	ug	/L	99	70 - 130	1	20
Trichlorofluoromethane	25	0 24.3	uç	ı/L	97	66 - 132	3	20
1,2,3-Trichloropropane	25	0 25.5	ug	ı/L	102	70 - 130	11	20
1,1,2-Trichloro-1,2,2-trifluoroetha	25	0 22.9	ug	I/L	92	42 - 162	4	20
ne								
1,2,4-Trimethylbenzene	25	0 25.2	ug	ı/L	101	70 - 132	0	20
1,3,5-Trimethylbenzene	25	0 25.2	ug	ı/L	101	70 - 130	0	20
Vinyl acetate	25	0 54.6	* ug	ı/L	218	43 - 163	1	20
Vinyl chloride	25.	0 25.4	ug	ı/L	102	54 - 135	0	20
m-Xylene & p-Xylene	50.	0 51.2	ug	ı/L	102	70 - 142	2	20
o-Xylene	25	0 26.3	ug	ı/L	105	70 - 130	3	20
2,2-Dichloropropane	25.	0 26.2	ug	ı/L	105	70 _ 140	2	20
1000	LCSD							
Surrogate %Pacovary	Qualifier Limite							
4-Bromofluorobenzene 99	Emilis	0						

75 ₋ 138 70 ₋ 130

94

99

Method: 8260B/CA_LUFTMS - 8260B / CA LUFT MS (Continued)

Lab Sample ID: LCSD 720-12 Matrix: Water	4534/8	Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA						e Dup tal/NA			
Analysis Batch: 124534											
			Spike	LCSD	LCSD				%Rec.		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics (GRO)			500	520		ug/L		104	62 _ 120	2	20
-C5-C12											
	LCSD	LCSD									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene	101		67 _ 130								
1,2-Dichloroethane-d4 (Surr)	95		75 - 138								
Toluene-d8 (Surr)	99		70 - 130								
_											

GC/MS VOA

Analysis Batch: 124534

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-45615-1	CG-3	Total/NA	Water	8260B/CA_LUFT	
				MS	
720-45615-2	CG-4	Total/NA	Water	8260B/CA_LUFT	
				MS	
720-45615-3	CG-5	Total/NA	Water	8260B/CA_LUFT	
				MS	
720-45615-4	CG-6	Total/NA	Water	8260B/CA_LUFT	
				MS	
720-45615-5	DUP-1	Total/NA	Water	8260B/CA_LUFT	
				MS	
720-45615-6	TB-1	Total/NA	Water	8260B/CA_LUFT	
				MS	
LCS 720-124534/5	Lab Control Sample	Total/NA	Water	8260B/CA_LUFT	
		T (1010		MS	
LCS 720-124534/7	Lab Control Sample	I otal/NA	Water	8260B/CA_LUFT	
1000 700 404504/0		T-1-1010		MS	
LCSD 720-124534/6	Lab Control Sample Dup	I otal/NA	vvater	8260B/CA_LUFT	
LCCD 700 404504/0	Lab Control Comple Dup		Watar	MS	
LUSD 720-124534/8	Lab Control Sample Dup	Total/NA	vvater	8260B/CA_LUFT	
MD 700 104524/4	Mothod Blank		Wator		
IVID / 20-124004/4		Total/NA	vvaler	8260B/CA_LUFT	
				IVIS	

Client Sample ID: CG-3

Lab Sample ID:	720-45615-1				
Matrix: Water					
Analyst	Lah	5			
AC	TAL SF				
Lab Sample ID:	720-45615-2				
	Matrix: Water	8			
		_			

9

Date Collected:	10/26/12 11:	25						Matrix: Water
Date Received:	10/26/12 18:3	30						
	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B/CA_LUFTMS		1	124534	11/03/12 00:19	AC	TAL SF
Client Sampl	e ID: CG-4					La	ab Sample	ID: 720-45615-2
Date Collected:	10/26/12 12:4	45						Matrix: Wate
Date Received:	10/26/12 18:3	30						
	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B/CA_LUFTMS		1	124534	11/03/12 00:48	AC	TAL SF
Client Semul							ah Samala	ID: 700 45645 1
Cheft Sampi	e ID: CG-5					L	ab Sample	ID: 720-45015-5
Date Collected:	10/26/12 13:	15						Matrix: Water
Date Received:	10/26/12 18:3	30						
	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B/CA_LUFTMS		1	124534	11/03/12 01:17	AC	TAL SF
Client Sampl	e ID: CG-6					Li	ab Sample	ID: 720-45615-4
Date Collected:	10/26/12 16:	30						Matrix: Water
Date Received:	10/26/12 18:3	30						
	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B/CA_LUFTMS		1	124534	11/03/12 01:46	AC	TAL SF
Client Sampl	e ID: DUP-	1				La	ab Sample	ID: 720-45615-5
Date Collected:	10/26/12 11:4	45					•	Matrix: Water
Date Received:	10/26/12 18:3	30						
	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B/CA_LUFTMS		1	124534	11/03/12 02:14	AC	TAL SF
Client Sampl	e ID: TB-1					Li	ab Sample	ID: 720-45615-6
Date Collected:	10/26/12 08:	00						Matrix: Wate
Date Received:	10/26/12 18:3	30						
	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab

Laboratory References:

Analysis

Total/NA

TAL SF = TestAmerica Pleasanton, 1220 Quarry Lane, Pleasanton, CA 94566, TEL (925)484-1919

8260B/CA_LUFTMS

TAL SF

1

124534

11/02/12 22:24

AC

Certification Summary

Client: Engeo, Inc. Project/Site: Crown Chevrolet

Laboratory: TestAmerica Pleasanton

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
California	State Program	9	2496	01-31-14

Client: Engeo, Inc. Project/Site: Crown Chevrolet

Method	Method Description	Protocol	Laboratory
8260B/CA_LUFTM	8260B / CA LUFT MS	SW846	TAL SF
S			

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL SF = TestAmerica Pleasanton, 1220 Quarry Lane, Pleasanton, CA 94566, TEL (925)484-1919

Client: Engeo, Inc. Project/Site: Crown Chevrolet TestAmerica Job ID: 720-45615-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
720-45615-1	CG-3	Water	10/26/12 11:25	10/26/12 18:30
720-45615-2	CG-4	Water	10/26/12 12:45	10/26/12 18:30
720-45615-3	CG-5	Water	10/26/12 13:15	10/26/12 18:30
720-45615-4	CG-6	Water	10/26/12 16:30	10/26/12 18:30
720-45615-5	DUP-1	Water	10/26/12 11:45	10/26/12 18:30
720-45615-6	TB-1	Water	10/26/12 08:00	10/26/12 18:30

		4 LO (4 0	00	0 10	12	13 14									1	1 A.					
											2	0			2 (Q)				12
	PROJECT NUMBE	R:	PROJECT N	AME:		CH	AIN OF	<u>CU</u>	<u>S</u> T	'OD'	YR	EC	ORI	D				÷	14	11899		5/20
	SAMPLED BY: (SI	OOD,OCO		in c	herrol	et Cas	hillia Isuzi		<u>8</u> /											T		Ę
	PROJECT MANAG	ER: _	Sor 1	<u> </u>	ott Jou	Ms		l a	۴I										-	-		
		Jet A	tolams	Jams P	enges,	<u>692</u>		17												REMA	RKS	
	SAMPLE HUMBER	sionnsi@engeo.c	<u>, 122</u>	, 		Scott Johns		2												VECOMED DE I	CTION LIMITS	
	CI 2		TIME	MATRIX	CONTAINERS	SIZE	PRESERVATIVE									ļ						
(66-4	10/16/12	12140	129	<u> </u>	VOAs	Helle	<u> </u>						1.		•	$\left \right $					-
	66-5		13:45	· · · ·		<u> </u>		X														1
	66		16:30					X														
	Aug-1		11:45					X														
	10-1		3.00		¥ 6	v	<u> </u>	X			_											
_																						
											\Rightarrow	\square		▶-	+			-				27
								5. I.									┝╼╾┠				······································	3 of
																			_			je 2
											+			\rightarrow	+		<u> </u>					Pa
					·.										-						·	
				·																		
									\rightarrow	\leftarrow												
											\square		_		_							
									· [·						\leq	7	7					
	RELINQUISHED BY: (S	SIGNATURE)	J		DATE/	Тіме	RECEIVED BY: (SIGNA	TURE)]		RELINC	UISHED I	3Y: (SIGN/				0.150					
	RELINQUISHED BY: (S	IIGNATURE)			10/26/12 DATE	18:30	PECEWED DV. (DIO)								ì				RECEN	VED BY: (SIGNATURE)		
		AECEIVED BT: (SIGNA	SNATURE) RELINQUISHED BY: (SIGN				BY: (SIGN/	NATURE) DATE/TIME				IME	RECEIVED BY: (SIGNATURE)									
	REI	INQUISHED BY: (SIG	NATURE)		DATE	TIME	RECEIVED FOR LABOR	RATORY	BY: (SIC	NATURE)		DATE/TIN	E	REMARK	s							ļ
	Based BA #		<u> </u>				Jour	M	u	Ulu	10-2	2612 1	830		• 54	and.	5	". Do	י פי	TAT		
ENGEO				NUE, RNIA	SUI7 9511	FE 150		_			• 61	est	zeke	er f	Tom	rest						
	INCORI	PORATE				(408 <u>)</u> 574	-4900 FAX (8	88) 2	79-2	698										210		
						V V	*****.LINGEU.		1	•				DISTRIBU	TION: OR	IGINAL A	CCOMP	NIES SHI	PMENT: (DFILES	

.

South and the second se

.....

Login Sample Receipt Checklist

Client: Engeo, Inc.

Login Number: 45615 List Number: 1

Creator: A	postol	, Ani	ita
------------	--------	-------	-----

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a<br survey meter.	N/A	
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

14

Job Number: 720-45615-1

List Source: TestAmerica Pleasanton

January 4, 2013

Subject: Crown Chevrolet Cadillac Isuzu 7544 Dublin Boulevard and 6707 Golden Gate Drive Fuel Leak Case No. RO0003014 Dublin, California

PERJURY STATEMENT

"I declare, that to the best of my knowledge at the present time, the information and/or recommendations contained in the attached document are true and correct."

Submitted by Responsible Party:

Marshell Tane

Mr. Marshall Torre The Kingsmill Group, LLC 4900 Hopyard Road, Suite 100 Pleasanton, CA 94588