Initial Subsurface Investigation Oakland Processing and Distribution Center 1675 7th Street Oakland, California 94607

United States Postal Service

395 Oyster Point Boulevard, Suite 225 South San Francisco, California 94080-0300

June 2, 2009

Prepared by:

Emmy Andrews
Facilities Environmental Specialist
United States Postal Service

TABLE OF CONTENTS

1.0	EXECUTIVE SUMMARY	3
2.0	BACKGROUND INFORMATION 2.1 Site Setting 2.2 Site Background Information 2.3 VMF LUST Case	3 3 4 4
3.0	SITE INVESTIGATION	5
4.0	SAMPLE RESULTS	6
5.0	CONCLUSIONS	8
6.0	REFERENCES	9

TABLES

- 1 April 2009 Analytical Results
- 2 May 2009 Analytical Results

FIGURES

- 1 Site Location Map
- 2 Site Plan
- 3 Sample Locations

PHOTOGRAPHS

- 1 Air monitoring inside the excavation at 9 feet bgs
- 2 The completed excavation to approximately 10 feet bgs

APPENDICES

- A April 2009 Laboratory Analytical Reports and Chain of Custody
- B May 2009 Laboratory Analytical Reports and Chain of Custody

1.0 EXECUTIVE SUMMARY

This report summarizes findings during elevator construction at the United States Postal Service's (Postal Service) Oakland Processing and Distribution Center at 1675 7th Street, Oakland, California 94607.

The Postal Service is installing an elevator on the front of its building, requiring excavation of an area approximately 15 feet long by 15 feet wide by 10 feet deep. Sampling events conducted on April 23, 2009, and May 12, 2009, have revealed petroleum and petroleum-derivatives in soil at the site exceeding the San Francisco Bay Regional Water Quality Control Board's (SFRWQCB) Environmental Screening Levels (ESLs) for shallow soil (Table 1; SFRWQCB 2008).

The Postal Service and its contractors had no cause to suspect contamination in the area. Upon learning of the sample results, the Postal Service began to research historical actions and conditions at the site in an attempt to determine possible sources of the contaminants. The results of this research are summarized in Section 2.2: Background Information. The Postal Service interviewed a retired employee who recalled that underground storage tanks (USTs) were located in this area approximately 25 years ago. No files documenting these potential USTs or other evidence of potential sources of the contamination could be found.

The Postal Service respectfully submits this report documenting our understanding of current and historical conditions at the site. We are available to discuss the report at your convenience. Please contact:

Emmy Andrews, Facilities Environmental Specialist United States Postal Service 415.531.5732 emmy.andrews@tetratech.com 395 Oyster Point Boulevard, Suite 225 South San Francisco, California 94080-0300

2.0 BACKGROUND INFORMATION

2.1 Site Setting

The site is located at 1675 7th Street in Oakland, California approximately 0.5 mile north of the Oakland Estuary (Figure 1). The Postal Service property includes the Processing and Distribution Center (P&DC) and a Vehicle Maintenance Facility (VMF; Figure 2). The facility is currently used by the Postal Service for mail processing operations. The site is bordered by I-880 to the west and south, 7th Street and the BART to the north, and Peralta Street to the east. Surrounding land uses are primarily industrial to the west and south, and mixed commercial and residential to the north and east.

Groundwater at the site would be expected to flow south toward the Oakland Estuary, although local and temporal variations may exist. The site is at an approximate elevation of 14 feet above mean sea level (EDR 2006). Depth to groundwater is approximately 10

feet below ground surface (bgs) based on observations during excavation conducted on May 12, 2009 (Lloyd 2009).

2.2 Site Background Information

The Postal Service and its contractors had no cause to suspect contamination in the area. Upon learning of the sample results, the Postal Service began to research historical actions and conditions at the site in an attempt to determine possible sources of the contaminants.

The Postal Service interviewed a retired employee who recalled that USTs were located in this area in the 1970s. The Postal Service conducted a review of office files and offsite archive files and found no documents that that confirm or deny that USTs had been located in this portion of the property.

The Postal Service conducted a file review at the San Francisco Bay Regional Water Quality Control Board office on May 13, 2009. No documents that confirm or deny that USTs had been located in this portion of the property were found. Multiple documents related to USTs removed from the VMF portion of the property were found. See Section 2.3: VMF LUST Case for information about this portion of the property.

The Postal Service contacted the City of Oakland's Fire Prevention Bureau on May 5, 2009. The Bureau returned the call on May 19 and reported that they have a number of files, although they did not specify if the files are related to USTs. A file review is pending as of the writing of this report.

2.3 VMF LUST Case

The Postal Service acknowledges that an open leaking underground storage tank (LUST) case exists on this property.

A Phase I Environmental Site Assessment (ESA) performed by Tetra Tech and dated November 2006 indicated that there was an open case concerning leaking fuel tanks at the Vehicle Maintenance Facility, which is on another portion of the property (Figure 2). A GeoTracker search conducted on May 11, 2009, indicated that the case is still open.

The following case numbers are relevant to this site:

State LUST Case Number: 01-0487

Local Case Number: 3775 Global ID: T0600100443

The following information is provided in the Phase I ESA:

Telephone contact with the Alameda County case worker for this site revealed the following:

- The site is near closure;
- A monitoring well had been installed adjacent to the fueling island, and the well had been found to contain free product (diesel); and
- Removal of the free product was conducted, after which the diesel did not return to the well, so Alameda County believes that the product was

due to a one-time spill event rather than due to a tank leak (Tetra Tech 2006).

Given the distance between the two areas and the topography and likely hydrology of the site, the two sites are considered unrelated.

3.0 SITE INVESTIGATION

The initial fieldwork was conducted on April 23, 2009, by Parsons, Inc., who was contracted by the Postal Service to construct the elevator. During fieldwork workers noticed a strong petroleum odor in the affected area. Work was halted by Parsons and their subcontractor, Aztec. Air sampling was conducted. A composite soil sample was submitted for analysis (Shipman 2009).

The follow-up fieldwork was conducted on May 12, 2009, by Parsons, Inc. Parsons reported that groundwater was encountered at approximately 10 to 10.5 feet bgs. There was no noticeable sheen on groundwater. Stained blue soil was observed at approximately 5 to 10 feet bgs. The soil color returned to red-brown below 10 feet bgs. Fuel odor was initially noted but was almost completely gone after placement of 2 feet of base rock at 8 to 10 feet bgs. A fuel filter was found in southeast corner of excavation. Air sampling was conducted during the excavation (Lloyd 2009).

Photographs 1 and 2 show the May 12, 2009 fieldwork.

Photograph 1. Air monitoring inside the excavation at 9 feet bgs.

Photograph 2. The completed excavation to approximately 10 feet bgs.

4.0 SAMPLE RESULTS

Sample results that were not non-detect are presented in Table 1 with comparison to the SFRWQCB's ESLs for shallow soil. Sample results exceeding either ESL are shown in bold text. Appendix A contains the full analytical reports and chains of custody for all samples collected.

A composite soil sample collected on April 23, 2009 and was analyzed for total petroleum hydrocarbons (TPH) gasoline range organics (TPH-g); TPH diesel range organics/middle distillates (TPH-d); TPH motor oil/residual fuels (TPH-mo); volatile organic compounds (VOCs); methyl tert-butyl ether (MTBE); benzene, toluene, ethylbenzene, and xylenes (BTEX); and CAM 17 metals via the accepted EPA Methods (Table 1).

Five additional soil samples were collected on May 12, 2009, to further characterize the site. The sample locations are shown on Figure 3. The samples were analyzed for TPH-g, TPH-d, TPH-mo, VOCs, and SVOCs via the accepted EPA Methods (Table 2).

Table 1. April 2009 Analytical Results

Analyte	Concentration (mg/kg)	ESL, Groundwater not Potential Drinking Water* (mg/kg)	ESL, Groundwater is Potential Drinking Water** (mg/kg)
TPH-g	83	180	83
TPH-d	1000	180	83
TPH-mo	430	2500	2500
Ethylbenzene	0.0087	4.7	3.3
Xylenes	0.053	11	2.3
1,2,4-Trimethylbenzene	0.010	NE	NE
Sec-Butyl benzene	0.017	NE	NE
Isopropylbenzene	0.0071	NE	NE
n-Propyl benzene	0.011	NE	NE
1,3,5-Trimethylbenzene	0.0064	NE	NE
Arsenic	3.4	1.6	1.6
Barium	69	1500	1500
Chromium	45	NE for Total	NE for Total
		Chromium	Chromium
Cobalt	4.9	80	80
Copper	10	230	230
Lead	39	750	750
Mercury	0.085	10	10
Nickel	28	150	150
Vanadium	30	200	200
Zinc	59	600	600

NE – not established

^{*} Commercial Shallow Soil (<3 meters bgs) ESL, Groundwater not Potential Drinking Water (SFRWQCB 2008)

^{**} Commercial Shallow Soil (<3 meters bgs) ESL, Groundwater is Potential Drinking Water (SFRWQCB 2008)

Table 2. May 2009 Analytical Results

Analyte	USPS-EX-BS 9.5-01	USPS-EX-BS 9.5-02	USPS-EX-EW 6.0	USPS-EX-WW 6.5	USPS-EX-NW 6.0	ESL, Groundwater not Potential Drinking Water* (mg/kg)	ESL, Groundwater is Potential Drinking Water** (mg/kg)
TPH-g	140	160	65	400	200	180	83
TPH-d	5,700	2,500	1,700	9,900	12,000	180	83
Naphthalene	ND	0.19	2.0	11.0	2.3	2.8	2.8
2-Methylnaphthalene	ND	1.8	2.4	15.0	13.0	0.25	0.25
Fluorene	ND	0.240	ND	ND	ND	8.9	8.9
Phenanthrene	ND	0.86	1.0	ND	ND	11	11

ND – not detected

5.0 CONCLUSIONS

No conclusions are presented in this initial report. The Postal Service spoke with Ms. Donna Drogos of the Alameda County Environmental Health Department on June 1, 2009, to discuss the proper channels to submit information regarding the site. Ms. Drogos indicated that it would be appropriate to submit a report documenting the known information about the site without a Professional Geologist or Civil Engineer's signature if the report simply presented the data without interpretation. It is our understanding that Alameda County will review the data, assign a case number to the site, and contact the Postal Service to discuss the site.

^{*} Commercial Shallow Soil (<3 meters bgs) ESL, Groundwater not Potential Drinking Water (SFRWQCB 2008)

^{**} Commercial Shallow Soil (<3 meters bgs) ESL, Groundwater is Potential Drinking Water (SFRWQCB 2008)

6.0 REFERENCES

EDR (Environmental Data Resources, Inc.). 2006. EDR RadiusMap with GeoCheck[®], Oakland P&DC, 1675 7th Street, Oakland, California. September 8, 2006.

Lloyd, D'Artagnan. Area Construction Engineer, Parsons, Inc. Personal communication with Emmy Andrews, United States Postal Service regarding May 2009 fieldwork. May 20, 2009.

SFRWQCB (San Francisco Bay Regional Water Quality Control Board). 2008. Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater: Interim Final. May 2008.

Shipman, Wayne. Principal Project Manager, Parsons, Inc. Personal communication with Emmy Andrews, United States Postal Service regarding April 2009 fieldwork. April 29, 2009.

Tetra Tech. 2006. Phase I Environmental Site Assessment, Oakland Main Post Office, Processing and Distribution Center, and Vehicle Maintenance Facility Oakland, California. November 2006.

Young, Les. 2009. Architect/Engineer, United States Postal Service. Personal communication with Emmy Andrews, United States Postal Service regarding interview with retired employee. May 5, 2009.

Figure 1. Site Location Map

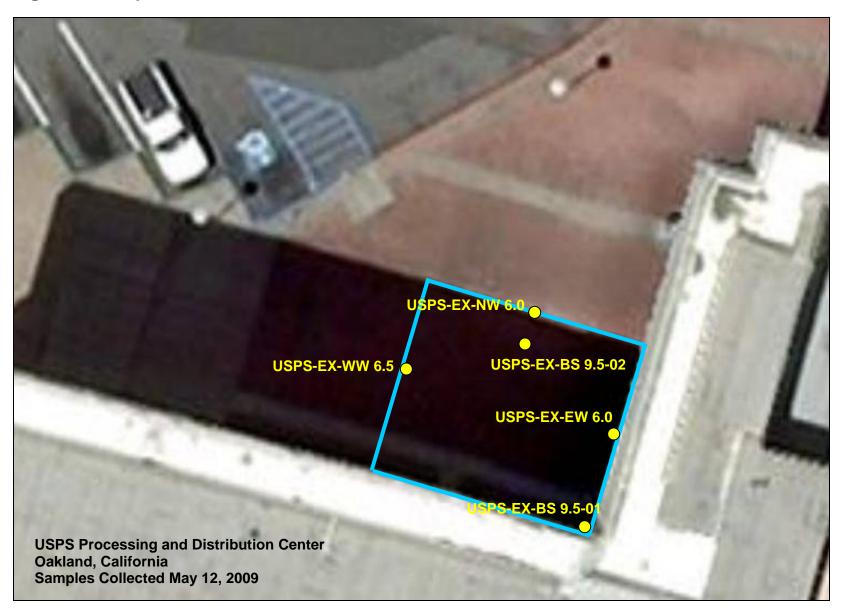

United States Postal Service June 2009

Figure 2. Site Plan

United States Postal Service June 2009

Figure 3. Sample Locations

United States Postal Service June 2009

APPENDIX A

APRIL 2009 LABORATORY REPORTS AND CHAIN OF CUSTODY

McCampbell Analytical, Inc.

"When Ouality Counts"

1534 Willow Pass Road, Pittsburg, CA 94565-1701
Web: www.mccampbell.com E-mail: main@mccampbell.com
Telephone: 877-252-9262 Fax: 925-252-9269

ENV America	Client Project ID: #AZT 0901; Oakland	Date Sampled: 02/23/09
865 Marina Bay Pkwy	Post Office	Date Received: 02/23/09
Richmond, CA 94804	Client Contact: Carlos Duque	Date Reported: 02/27/09
1401110110, 011 7 100 1	Client P.O.:	Date Completed: 02/27/09

WorkOrder: 0902593

February 27, 2009

D	\sim 1	
Dear	('ar	UC.

Enclosed within are:

- 1) The results of the 1 analyzed sample from your project: #AZT 0901; Oakland Post Office,
- 2) A QC report for the above sample,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager

McCampbell Analytical, Inc.

Wel	Project Name: Oakland Post Cott Location: 1675 7th. St. Oakland, CA Soler Signature: SAMPLING SAMPLING								9	3	3		UF			OU	JNI	T	IM	E] SH	24	DY HR Exce		48 I		72	HR	5 DAY (DW)		
Report To: Carlo	s Duque		E	Bill To	o: EN	VE	nvii	onn	nent	al Iı	nt. I	ne							A	Anal	ysis	Re	que	st						C	ther	- 1	Comments
Company: ENV	Environmen	tal Inter	national,	Inc.													6				LS.												E94
			Suite 44											8015)			5520 E/B&F)				gene											- 1	Filter Samples
		804			_	-				ntal	.coı	m		+			20 E/				Con						6	6				- 1	for Metals
									_					802	(21)		155	=	(\$		ors/		ŵ			_	/ 602	602				- 1	analysis:
				rojec	t Nai	me:	Oak	land	Pos	st O	ffic	e	_	602 /	2 / 80		1664	(418	000	(sa	rock		icide			NAS	010	010				- 1	Yes / No
			d, CA										_	Gas (602 / 8021	1 60	8015	sse (suos	E) E	ticid	X; V	des)	Herb	8	000	Is/F	18,	9/8	9050			- 1	
Sampler Signatur	re:	101.10	Dodo	Z	_	_				_			_	8	(EP	Oil (Gres	carl	802	l Pes	ONI	stici	5	NO.	SVC	PAF	200	200.	10 / 6			-1	
1.	SAMPLING MATRIX									HOI		TPH	ALY.	otor	il &	lydro	010) I	B's	IP Pe	cidic	1260	1270	310 (00.7	0.7 /	09/			- 1			
SAMPLE ID	Field Point	Date	Time	# Containers	Type Containe	Water	Soil	Air	Other				Other	MTBE / BTEX &	MTBE / BTEX ONLY (EPA 602 / 8021)	TPH as Diesel / Motor Oil (8015)	Total Petroleum Oil & Grease (1664)	Total Petroleum Hydrocarbons (418.1)	EPA 502.2 / 601 / 8010 / 8021 (HVOCs)	EPA 505/ 608 / 8081 (CI Pesticides)	EPA 608 / 8082 PCB's ONLY; Aroclors / Congeners	EPA 507 / 8141 (NP Pesticides)	EPA 515 / 8151 (Acidic Cl Herbleides)	EPA 524.2 / 624 / 8260 (VOCs)	EPA 525.2 / 625 / 8270 (SVOCs)	EPA 8270 SIM / 8310 (PAHs / PNAs)	CAM 17 Metals (200.7 / 200.8 / 6010 / 6020)	LUFT 5 Metals (200.7 / 200.8 / 6010 / 6020)	Lead (200.7 / 200.8 / 6010 / 6020)				
B-2	Dram B2	02/23/09	blosom	1	G		χ						\neg	1		\/								V			1/					\dashv	
B-1.				1	_				+					X		X								X			X					\dashv	
10	\$10IN 5 1	02/25/04	11.21014	-	_		^	+	+			+	\dashv	/ +		/ 1								/ `			/ \				+	\dashv	
							-	+	+	Н	-	-	\dashv																		-	\dashv	
					-		-	+	-	Н	-	-	-	-				9-7			-											-	<u> </u>
							_			Ш			_																			4	
		1000																															
													\neg																			\dashv	
											1	\neg	\dashv									- 1										+	
							+	+			\forall	_	\dashv																			+	
							-	-			+	+	\dashv			-	-												\vdash		-	+	
							+				-		-						-		-	-	-						\vdash		-	+	-
									-	-	_	-	4			_															-	4	
-/2 -/)						4			1/2	_			_												\perp	
Relinquished By	10	Date:	Time:	Rece	ived B	y /	_				\rightarrow			GO	OD (ON	DIT	SON S) (1								COM	IME	NTS:			
(4110)	70.	02/23/09	100	-	/						0		_	HE	AD S	PAC	EA	BSE	NT\	M	H.	Δ.											
Relinquished By:		Date: 2/33/09	Time:	Rece	ed B	y:	1	0	~	_			Ì	AP	CHL PRO ESEI	PRIA	TE	CON	NTAI	NEF	ts_	J	_										
Relinquished By:		Date:	Time:	Rece	ived B	y:	C.S.						\neg	I K	LISEA	VE	O III	LAI	77	~													
		/												PR	ESEI	RVA	LIO		AS	08		ME pH<		S	ОТН	ER							

McCampbell Analytical, Inc.

1534 Wi Pittsburg (925) 25

1534 Willow Pass Rd Pittsburg, CA 94565-1701 (925) 252-9262

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

WorkOrder: 0902593 ClientCode: ENVR

		WriteOn	EDF	Excel	Fax	✓ Email	HardCopy	ThirdParty	J-flag
Report to:				Bi	I to:		Req	uested TAT:	5 days
Carlos Duque	Email:	cduque@envenv	ironmental.com		Barbara Stev	wart			
ENV America	cc:				ENV America	a			
865 Marina Bay Pkwy	PO:				865 Marina E	Bay Pkwy	Dat	e Received:	02/23/2009
Richmond, CA 94804	ProjectNo:	#AZT 0901; Oakla	and Post Office		Richmond, C	CA 94804	Dat	e Printed:	02/23/2009
(510) 236-8811 FAX (510) 236-8822					bstewart@e	nvamerica.com			

				Requested Tests (See legend below)											
Lab ID	Client ID	Matrix	Collection Date Hold	1	2	3	4	5	6	7	8	9	10	11	12
0902593-001	B-2, B-1	Soil	2/23/2009 11:14	Α	Α	Α	Α								

Test Legend:

1 8260B_S	2 CAM17MS_S	3 G-MBTEX_S	4 TPH(DMO)_S	5
6	7	8	9	10
11	12			

Prepared by: Samantha Arbuckle

Comments:

ENV America

Client Name:

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

Date and Time Received:

2/23/2009 4:07:34 PM

Sample Receipt Checklist

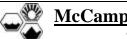
Project Name:	#AZT 0901; Oakla	and Pos	st Office			Check	list completed and revie	ewed by:	Samantha Arbuckle
WorkOrder N°:	0902593	Matrix	<u>Soil</u>			Carrie	r: Rob Pringle (MAI (Courier)	
			Chain	of Cu	stody (C	OC) Informa	ition		
Chain of custody	present?			Yes	V	No 🗆			
Chain of custody	signed when relinquis	shed and	I received?	Yes	V	No 🗆			
Chain of custody	agrees with sample la	abels?		Yes	✓	No 🗌			
Sample IDs noted	by Client on COC?			Yes	✓	No \square			
Date and Time of	collection noted by Clie	ent on CO	OC?	Yes	✓	No \square			
Sampler's name n	noted on COC?			Yes	V	No \square			
			Sa	mple	Receipt	Information			
Custody seals int	act on shipping contai	ner/coole		Yes		No 🗆		V	
Shipping containe	er/cooler in good condi	tion?		Yes	V	No 🗆			
Samples in prope	er containers/bottles?			Yes	~	No 🗆			
Sample container	rs intact?			Yes	✓	No 🗆			
Sufficient sample	volume for indicated t	est?		Yes	✓	No 🗆			
		Sar	mple Preser	vatior	n and Ho	ld Time (HT)) Information		
All samples recei	ved within holding time		-	Yes	✓	No 🗌			
Container/Temp E	Blank temperature			Coole	r Temp:	5.6°C	NA		
Water - VOA vial	s have zero headspac	e / no bu	ubbles?	Yes		No 🗆	No VOA vials submitted	V	
Sample labels ch	ecked for correct pres	ervation	?	Yes	✓	No 🗌			
TTLC Metal - pH	acceptable upon receip	ot (pH<2))?	Yes		No 🗆	NA	V	
Samples Receive	ed on Ice?			Yes	✓	No \square			
			(Ice Type	: WE	T ICE)			
* NOTE: If the "N	lo" box is checked, se	e comm	ents below.						
=====	======		====			====	======		======
Client contacted:			Date contacte	ed:			Contacted by:		
Comments:									

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

ENV America	Client Project ID: #AZT 0901; Oakland	Date Sampled: 02/23/09
865 Marina Bay Pkwy	Post Office	Date Received: 02/23/09
605 Waina Bay I Kwy	Client Contact: Carlos Duque	Date Extracted: 02/23/09
Richmond, CA 94804	Client P.O.:	Date Analyzed 02/25/09

Volatile Organics by P&T and GC/MS (Basic Target List)*

Extraction Method SW5030B Analytical Method SW8260B Work Order: 0902593


Extraction Method: SW5030B		Anaiy	ticai Meth	00 SW8200B	work Order: 0902	.393	
Lab ID				0902593-001A			
Client ID				B-2, B-1			
Matrix				Soil			
Compound	Concentration *	DF	Reporting Limit	Compound	Concentration *	DF	Reporting Limit
Acetone	ND	1.0	0.05	tert-Amyl methyl ether (TAME)	ND	1.0	0.005
Benzene	ND	1.0	0.005	Bromobenzene	ND	1.0	0.005
Bromochloromethane	ND	1.0	0.005	Bromodichloromethane	ND	1.0	0.005
Bromoform	ND	1.0	0.005	Bromomethane	ND	1.0	0.005
2-Butanone (MEK)	ND	1.0	0.02	t-Butyl alcohol (TBA)	ND	1.0	0.05
n-Butyl benzene	ND	1.0	0.005	sec-Butyl benzene	0.017	1.0	0.005
tert-Butyl benzene	ND	1.0	0.005	Carbon Disulfide	ND	1.0	0.005
Carbon Tetrachloride	ND	1.0	0.005	Chlorobenzene	ND	1.0	0.005
Chloroethane	ND	1.0	0.005	Chloroform	ND	1.0	0.005
Chloromethane	ND	1.0	0.005	2-Chlorotoluene	ND	1.0	0.005
4-Chlorotoluene	ND	1.0	0.005	Dibromochloromethane	ND	1.0	0.005
1,2-Dibromo-3-chloropropane	ND	1.0	0.004	1,2-Dibromoethane (EDB)	ND	1.0	0.004
Dibromomethane	ND	1.0	0.005	1,2-Dichlorobenzene	ND	1.0	0.005
1,3-Dichlorobenzene	ND	1.0	0.005	1,4-Dichlorobenzene	ND	1.0	0.005
Dichlorodifluoromethane	ND	1.0	0.005	1,1-Dichloroethane	ND	1.0	0.005
1,2-Dichloroethane (1,2-DCA)	ND	1.0	0.004	1,1-Dichloroethene	ND	1.0	0.005
cis-1,2-Dichloroethene	ND	1.0	0.005	trans-1,2-Dichloroethene	ND	1.0	0.005
1,2-Dichloropropane	ND	1.0	0.005	1,3-Dichloropropane	ND	1.0	0.005
2,2-Dichloropropane	ND	1.0	0.005	1,1-Dichloropropene	ND	1.0	0.005
cis-1,3-Dichloropropene	ND	1.0	0.005	trans-1,3-Dichloropropene	ND	1.0	0.005
Diisopropyl ether (DIPE)	ND	1.0	0.005	Ethylbenzene	ND	1.0	0.005
Ethyl tert-butyl ether (ETBE)	ND	1.0	0.005	Freon 113	ND	1.0	0.1
Hexachlorobutadiene	ND	1.0	0.005	Hexachloroethane	ND	1.0	0.005
2-Hexanone	ND	1.0	0.005	Isopropylbenzene	0.0071	1.0	0.005
4-Isopropyl toluene	ND	1.0	0.005	Methyl-t-butyl ether (MTBE)	ND	1.0	0.005
Methylene chloride	ND	1.0	0.005	4-Methyl-2-pentanone (MIBK)	ND	1.0	0.005
Naphthalene	ND	1.0	0.005	n-Propyl benzene	0.011	1.0	0.005
Styrene	ND	1.0	0.005	1,1,1,2-Tetrachloroethane	ND	1.0	0.005
1,1,2,2-Tetrachloroethane	ND	1.0	0.005	Tetrachloroethene	ND	1.0	0.005
Toluene	ND	1.0	0.005	1,2,3-Trichlorobenzene	ND	1.0	0.005
1,2,4-Trichlorobenzene	ND	1.0	0.005	1.1.1-Trichloroethane	ND	1.0	0.005
1,1,2-Trichloroethane	ND	1.0	0.005	Trichloroethene	ND	1.0	0.005
Trichlorofluoromethane	ND	1.0	0.005	1,2,3-Trichloropropane	ND	1.0	0.005
1,2,4-Trimethylbenzene	0.010	1.0	0.005	1,3,5-Trimethylbenzene	0.0064	1.0	0.005
Vinvl Chloride	ND	1.0		Xvlenes	ND	1.0	0.005
		Sur		Recoveries (%)			
%SS1:	7		<u> </u>	%SS2:	10	6	
%SS3:		22		70552.	10	0	

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or coelutes with another peak; &) low surrogate due to matrix interference.

^{*} water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

McCampbell Analytical, Inc.

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com

"When Ouality	Counts"			Telephon	e: 877-252-9262 Fax: 9	25-252-9269				
ENV America		oject ID:		9901;	Date Sampled:	02/23/09				
865 Marina Bay Pkwy	Oakland	Post Offic	e		Date Received	02/23/09				
603 Marina Bay Pkwy	Client C	ontact: Ca	ırlos Du	ique	Date Extracted	02/23/09				
Richmond, CA 94804	Client P.	O.:			Date Analyzed 02/27/09					
	(CAM / CCI	R 17 Me	tals*						
Lab ID	0902593-001A					Reporting Lin	mit for DF =1;			
Client ID	B-2, B-1						not detected eporting limit			
Matrix	S					S	W			
Extraction Type	TOTAL					mg/Kg	mg/L			
		MS Metals								
Analytical Method 6020A		traction Metho	d: SW305	50B	<u> </u>	Work Order:	0902593			
Dilution Factor	1					1	1			
Antimony Arsenic	ND 3.4					0.5	NA NA			
Barium	69					5.0	NA NA			
Beryllium	ND					0.5	NA NA			
Cadmium	ND					0.25	NA			
Chromium	45					0.5	NA			
Cobalt	4.9					0.5	NA			
Copper	10					0.5	NA			
Lead	39					0.5	NA			
Mercury	0.085					0.05	NA			
Molybdenum	ND					0.5	NA			
Nickel	28					0.5	NA			
Selenium	ND					0.5	NA			
Silver	ND					0.5	NA			
Thallium	ND					0.5	NA			
Vanadium	30					0.5	NA			
Zinc	59					5.0	NA			
%SS:	100									

*water samples are reported in µg/L, product/oil/non-aqueous liquid samples and all TCLP / STLC / DISTLC / SPLP extracts are reported in mg/L, soil/sludge/solid samples in mg/kg, wipe samples in μ g/wipe, filter samples in μ g/filter.

means surrogate diluted out of range; ND means not detected above the reporting limit; N/A means not applicable to this sample or instrument.

TOTAL = acid digestion.

Comments

WET = Waste Extraction Test (STLC).

DI WET = Waste Extraction Test using de-ionized water.

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

ENV America	Client Project ID: #AZT 0901; Oakland Post Office	Date Sampled: 02/23/09
865 Marina Bay Pkwy	Oakland Post Office	Date Received 02/23/09
	Client Contact: Carlos Duque	Date Extracted 02/23/09
Richmond, CA 94804	Client P.O.	Date Analyzed 02/25/09

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE*

Extraction method: SW5030B Analytical methods: SW8021B/8015Bm Work Order: 0902593

LAHaction	illetilod. SW3030B		Athary	tical illetilous. 5 v	7 0021B/0013BI	11		WOIK OI	uei. 090	2373
Lab ID	Client ID	Matrix	TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS
001A	B-2, B-1	S	83,d7,d9	ND	ND	ND	0.0087	0.053	1	83
	ting Limit for DF =1;	W	50	5.0	0.5	0.5	0.5	0.5	ug	g/L
	eans not detected at or we the reporting limit	S	1	0.05	0.005	0.005	0.005	0.005		g/Kg

ı	* water and vapor samples and all TCLP & SPLP extracts are reported in µg/L, soil/sludge/soild samples in mg/kg, wij	pe samples in µg/wipe,
	product/oil/non-aqueous liquid samples in mg/L.	

[#] cluttered chromatogram; sample peak coelutes w/surrogate peak; low surrogate recovery due to matrix interference.

- d7) strongly aged gasoline or diesel range compounds are significant in the TPH(g) chromatogram
- d9) no recognizable pattern

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

McCampbell Analytical, Inc.

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

ENV America				ID: #AZT 0901; Oakland	Date Sampled: 02/	Date Sampled: 02/23/09			
965 Maria - Da	DI	Post C	Office		Date Received: 02/	/23/09			
865 Marina Ba	ly PKWy	Client	Contac	t: Carlos Duque	Date Extracted: 02/	/23/09			
Richmond, CA	94804	Client	P.O.:		Date Analyzed: 02/	/26/09			
	Т	otal Ex	tractable	e Petroleum Hydrocarbons*					
Extraction method:	SW3550C		Analytic	al methods: SW8015B	Wo	ork Order: 0	902593		
Lab ID	Client ID		Matrix	TPH-Diesel (C10-C23)	TPH-Motor Oil (C18-C36)	DF	% SS		
0902593-001A	B-2, B-1		S	1000,e1	430	20	103		
						1			
						+			
						<u> </u>			
	porting Limit for DF =1;		W	NA	NA	ug	:/L		
	means not detected at or pove the reporting limit		S	1.0	5.0	mg/	Кg		
* water samples a and all DISTLC /	re reported in µg/L, wipe sample: 'STLC / SPLP / TCLP extracts a	s in μg/w are repor	vipe, soil/	solid/sludge samples in mg/kg, pr/L.	roduct/oil/non-aqueous liq	uid samples	in mg/L,		

e1)	unmodified	or	weakly	modified	diesel	is	significan

[#] cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation:

1534 Willow Pass Road, Pittsburg, CA 94565-1701

Telephone: 877-252-9262 Fax: 925-252-9269

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Soil QC Matrix: Soil BatchID: 41572 WorkOrder 0902593

EPA Method: SW8260B	Extra	ction SW	5030B					S	Spiked Sar	nple ID:	: 0902550-0	001A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptance	Criteria (%)
7 mary to	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
tert-Amyl methyl ether (TAME)	ND	0.050	80.7	80.5	0.164	84	78.3	7.02	60 - 130	30	60 - 130	30
Benzene	ND	0.050	114	114	0	115	110	4.59	60 - 130	30	60 - 130	30
t-Butyl alcohol (TBA)	ND	0.25	78.2	80.7	3.15	104	89.5	14.7	60 - 130	30	60 - 130	30
Chlorobenzene	ND	0.050	106	108	1.81	106	99.8	6.04	60 - 130	30	60 - 130	30
1,2-Dibromoethane (EDB)	ND	0.050	96.7	97.5	0.867	96.4	88.3	8.77	60 - 130	30	60 - 130	30
1,2-Dichloroethane (1,2-DCA)	ND	0.050	90.5	89.8	0.773	105	99.2	6.11	60 - 130	30	60 - 130	30
1,1-Dichloroethene	ND	0.050	88.1	88	0.0847	81.1	79.7	1.78	60 - 130	30	60 - 130	30
Diisopropyl ether (DIPE)	ND	0.050	96.4	96.1	0.251	118	107	10.1	60 - 130	30	60 - 130	30
Ethyl tert-butyl ether (ETBE)	ND	0.050	102	102	0	108	100	7.76	60 - 130	30	60 - 130	30
Methyl-t-butyl ether (MTBE)	ND	0.050	90.7	89.7	1.16	96.2	88.7	8.05	60 - 130	30	60 - 130	30
Toluene	ND	0.050	130	130	0	126	119	5.31	60 - 130	30	60 - 130	30
Trichloroethene	ND	0.050	111	113	1.55	102	101	0.626	60 - 130	30	60 - 130	30
%SS1:	74	0.12	74	73	1.53	78	77	1.02	70 - 130	30	70 - 130	30
%SS2:	105	0.12	101	100	1.28	107	107	0	70 - 130	30	70 - 130	30
%SS3:	88	0.012	94	98	4.83	78	78	0	70 - 130	30	70 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 41572 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0902593-001A	02/23/09 11:14 AM	1 02/23/09	02/25/09 8:56 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = <math>100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contractions of the following reasons: a) the sample is inhomogenous AND contractions of the following reasons: a) the sample is inhomogenous AND contractions of the following reasons: a) the sample is inhomogenous AND contractions of the following reasons: a) the sample is inhomogenous AND contractions of the following reasons: a) the sample is inhomogenous AND contractions of the following reasons: a) the sample is inhomogenous AND contractions of the following reasons: a) the sample is inhomogenous AND contractions of the following reasons: a) the sample is inhomogenous AND contractions of the following reasons: a) the sample is inhomogenous AND contractions of the following reasons: a) the sample is inhomogenous AND contractions of the following reasons: a) the followin significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels

A QA/QC Officer

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

QC SUMMARY REPORT FOR 6020A

W.O. Sample Matrix: Soil QC Matrix: Soil WorkOrder: 0902593

EPA Method 6	6020A			Extracti	on SW3050)B	В	atchID: 4	1516	Spiked Sa	ample	ID 0902576-	001A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	Spiked	LCS	LCSD	LCS-LCSD	Acc	eptanc	e Criteria (%)
7 wildry to	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	mg/Kg	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
Antimony	6.4	50	109	101	6.37	10	102	110	7.58	75 - 125	20	75 - 125	20
Arsenic	1.1	50	104	104	0	10	104	114	8.71	75 - 125	20	75 - 125	20
Barium	190	500	127, F1	113	8.99	100	96.1	103	7.23	75 - 125	20	75 - 125	20
Beryllium	ND	50	105	101	3.90	10	101	109	7.43	75 - 125	20	75 - 125	20
Cadmium	3.1	50	104	103	0.783	10	102	110	7.66	75 - 125	20	75 - 125	20
Chromium	37	50	97.9	104	3.29	10	103	115	10.6	75 - 125	20	75 - 125	20
Cobalt	15	50	117	110	5.41	10	103	112	7.64	75 - 125	20	75 - 125	20
Copper	160	50	NR	NR	NR	10	87.8	99.4	12.3	75 - 125	20	75 - 125	20
Lead	42	50	104	109	2.77	10	99.6	107	6.98	75 - 125	20	75 - 125	20
Mercury	2.2	1.25	104	104	0	0.25	108	113	4.80	75 - 125	20	75 - 125	20
Molybdenum	36	50	119	105	7.45	10	100	109	8.48	75 - 125	20	75 - 125	20
Nickel	33	50	107	109	1.17	10	105	116	10.4	75 - 125	20	75 - 125	20
Selenium	0.54	50	107	106	0.888	10	106	120	11.7	75 - 125	20	75 - 125	20
Silver	1.1	50	116	110	4.91	10	100	107	5.89	75 - 125	20	75 - 125	20
Thallium	ND	50	96.7	102	5.75	10	98.7	107	7.96	75 - 125	20	75 - 125	20
Vanadium	4.8	50	97.7	99.4	1.55	10	103	114	10.2	75 - 125	20	75 - 125	20
Zinc	460	500	107	113	3.19	100	100	108	7.49	75 - 125	20	75 - 125	20
%SS:	100	250	114	103	9.58	250	104	114	8.85	70 - 130	20	70 - 130	20

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

F1 = MS / MSD outside of acceptance criteria. LCS - LCSD validate prep batch.

BATCH 41516 SUMMARY

	Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
Γ	0902593-001A)2/23/09 11:14 AN	M 02/23/09	02/27/09 1:25 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not applicable to this method.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

1534 Willow Pass Road, Pittsburg, CA 94565-1701

Telephone: 877-252-9262 Fax: 925-252-9269

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Soil QC Matrix: Soil BatchID: 41614 WorkOrder 0902593

EPA Method: SW8021B/8015Bm Extraction SW5030B Spiked Sample ID: 0902586-001A												
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	CS-LCSD Acceptance Criteria (
ruidiyte	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(btex)	ND	0.60	103	105	2.13	105	112	6.34	70 - 130	20	70 - 130	20
MTBE	ND	0.10	103	111	7.41	93.5	108	14.7	70 - 130	20	70 - 130	20
Benzene	ND	0.10	97.8	105	7.26	92.4	94.1	1.88	70 - 130	20	70 - 130	20
Toluene	ND	0.10	109	115	5.73	107	108	1.20	70 - 130	20	70 - 130	20
Ethylbenzene	ND	0.10	107	106	1.24	104	105	1.32	70 - 130	20	70 - 130	20
Xylenes	ND	0.30	119	124	4.26	115	116	0.479	70 - 130	20	70 - 130	20
%SS:	96	0.10	73	87	17.3	96	97	0.678	70 - 130	20	70 - 130	20

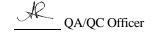
All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 41614 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0902593-001A	02/23/09 11:14 AM	1 02/23/09	02/25/09 12:02 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).


MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contractions of the following reasons: a) the sample is inhomogenous AND contractions of the following reasons: a) the sample is inhomogenous AND contractions of the following reasons: a) the sample is inhomogenous AND contractions of the following reasons: a) the sample is inhomogenous AND contractions of the following reasons: a) the sample is inhomogenous AND contractions of the following reasons: a) the sample is inhomogenous AND contractions of the following reasons: a) the sample is inhomogenous AND contractions of the following reasons: a) the sample is inhomogenous AND contractions of the following reasons: a) the sample is inhomogenous AND contractions of the following reasons: a) the sample is inhomogenous AND contractions of the following reasons: a) the followin significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high ma or analyte content.

1534 Willow Pass Road, Pittsburg, CA 94565-1701

Telephone: 877-252-9262 Fax: 925-252-9269

QC SUMMARY REPORT FOR SW8015B

W.O. Sample Matrix: Soil QC Matrix: Soil BatchID: 41613 WorkOrder 0902593

EPA Method: SW8015B	Extra	ction SW	3550C	Spiked Sample ID: 0902586-001A)01A			
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance Criteria (%)	
7 mary to	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH-Diesel (C10-C23)	2.3	20	102	103	0.575	108	108	0	70 - 130	30	70 - 130	30
%SS:	99	50	97	97	0	107	108	1.09	70 - 130	30	70 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 41613 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0902593-001A	02/23/09 11:14 AM	02/23/09	02/26/09 6:33 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contractions of the following reasons: a) the sample is inhomogenous AND contractions of the following reasons: a) the sample is inhomogenous AND contractions of the following reasons: a) the sample is inhomogenous AND contractions of the following reasons: a) the sample is inhomogenous AND contractions of the following reasons: a) the sample is inhomogenous AND contractions of the following reasons: a) the sample is inhomogenous AND contractions of the following reasons: a) the sample is inhomogenous AND contractions of the following reasons: a) the sample is inhomogenous AND contractions of the following reasons: a) the sample is inhomogenous AND contractions of the following reasons: a) the sample is inhomogenous AND contractions of the following reasons: a) the followin significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

QA/QC Officer

APPENDIX B

MAY 2009 LABORATORY REPORTS AND CHAIN OF CUSTODY

CASE NARRATIVE

Laboratory number: 212084 Client: Parsons

Project: 746218.39383

Location: USPS OAK
Request Date: 05/12/09
Samples Received: 05/12/09

This data package contains sample and QC results for five soil samples, requested for the above referenced project on 05/12/09. The samples were received cold and intact.

TPH-Purgeables and/or BTXE by GC (EPA 8015B):

High surrogate recoveries were observed for bromofluorobenzene (FID) in a number of samples; the corresponding trifluorotoluene (FID) surrogate recoveries were within limits. 212084-003 was analyzed outside of hold time; affected data was qualified with "b". There were qc issues with the in hold run, which were not discovered until the sample was past hold. No other analytical problems were encountered.

TPH-Extractables by GC (EPA 8015B):

No analytical problems were encountered.

Volatile Organics by GC/MS (EPA 8260B):

USPS-EX-BS9.5-01 (lab \sharp 212084-001) and USPS-EX-BS9.5-02 (lab \sharp 212084-002) were diluted due to high non-target analytes. USPS-EX-EW6.0 (lab \sharp 212084-003), USPS-EX-WW6.5 (lab \sharp 212084-004), and USPS-EX-NW6.0 (lab \sharp 212084-005) were diluted due to high hydrocarbons. No other analytical problems were encountered.

Semivolatile Organics by GC/MS (EPA 8270C):

USPS-EX-BS9.5-01 (lab # 212084-001), USPS-EX-WW6.5 (lab # 212084-004), and USPS-EX-NW6.0 (lab # 212084-005) were diluted due to high non-target analytes. No other analytical problems were encountered.

Page 1 of 1

Gasoline by GC/FID (5035 Prep) Lab #: 212084 USPS OAK Location: EPA 5035 Client: Prep: Parsons 746218.39383 Project#: Analysis: EPA 8015B Matrix: Soil Sampled: 05/12/09 05/12/09 Units: mq/Kq Received: Basis: as received

Field ID: USPS-EX-BS9.5-01 Diln Fac: 20.00 Type: SAMPLE Batch#: 151174 Lab ID: 05/19/09 212084-001 Analyzed:

Analyte Result RLGasoline C7-C12 140 Y

Surrogate Limits Trifluorotoluene (FID) Bromofluorobenzene (FID) 89 54-152 218 * 50-152

Field ID: USPS-EX-BS9.5-02 Diln Fac: 20.00 SAMPLE Batch#: 151174 Type: Lab ID: 212084-002 Analyzed: 05/19/09

Analyte Result RLGasoline C7-C12 160 Y

Surrogate %REC Limits Trifluorotoluene (FID) 54-152 88 <u>2</u>15 * 50-152 Bromofluorobenzene (FID)

Field ID: USPS-EX-EW6.0 Diln Fac: 10.00 Type: SAMPLE Batch#: 151256 Lab ID: 212084-003 Analyzed: 05/21/09

Analyte Result Gasoline C7-C12 65 Y b 10

Surrogate %REC Limits Trifluorotoluene (FID) 54-152 93 b Bromofluorobenzene (FID) 114 b 50-152

Field ID: USPS-EX-WW6.5 Diln Fac: 25.00 Type: SAMPLE Batch#: 151174 Lab ID: 212084-004 Analyzed: 05/20/09

Analyte Result RL 400 Y Gasoline C7-C12

%REC Limits Surrogate Trifluorotoluene (FID) 97 54-152 Bromofluorobenzene (FID) 243 50-152

Page 1 of 2

^{*=} Value outside of QC limits; see narrative

Y= Sample exhibits chromatographic pattern which does not resemble standard

b= See narrative ND= Not Detected

RL= Reporting Limit

Gasoline by GC/FID (5035 Prep) 212084 Lab #: Location: USPS OAK EPA 5035 Client: Parsons Prep: Analysis: Sampled: EPA 8015B 05/12/09 Project#: 746218.39383 Matrix: Soil Units: mg/Kg Received: 05/12/09 Basis: as received

Field ID: USPS-EX-NW6.0 Diln Fac: 10.00 Type: SAMPLE Batch#: 151174 Lab ID: 212084-005 Analyzed: 05/20/09

Analyte Result RL
Gasoline C7-C12 200 Y 10

Surrogate %REC Limits
Trifluorotoluene (FID) 94 54-152
Bromofluorobenzene (FID) 278 * 50-152

Type: BLANK Batch#: 151174
Lab ID: QC496682 Analyzed: 05/19/09
Diln Fac: 1.000

Analyte Result RL
Gasoline C7-C12 ND 0.20

Surrogate	%REC	Limits
Trifluorotoluene (FID)	64	54-152
Bromofluorobenzene (FID)	73	50-152

Type: BLANK Batch#: 151256 Lab ID: QC497017 Analyzed: 05/21/09

Diln Fac: 1.000

Analyte	Result	RL	
Gasoline C7-C12	ND	0.20	

Surrogate	%REC	Limits
Trifluorotoluene (FID)	92	54-152
Bromofluorobenzene (FID)	77	50-152

^{*=} Value outside of QC limits; see narrative

Y= Sample exhibits chromatographic pattern which does not resemble standard

b= See narrative

ND= Not Detected

RL= Reporting Limit

Batch QC Report

Gasoline by GC/FID (5035 Prep)							
Lab #:	212084	Location:	USPS OAK				
Client:	Parsons	Prep:	EPA 5035				
Project#:	746218.39383	Analysis:	EPA 8015B				
Type:	LCS	Basis:	as received				
Lab ID:	QC496683	Diln Fac:	1.000				
Matrix:	Soil	Batch#:	151174				
Units:	mg/Kg	Analyzed:	05/19/09				

Analyte	Spiked	Result	%REC	Limits
Gasoline C7-C12	2.000	2.039	102	77-120

Surrogate	%REC	Limits
Trifluorotoluene (FID)	97	54-152
Bromofluorobenzene (FID)	113	50-152

Page 1 of 1 26.0

Batch QC Report

Gasoline by GC/FID (5035 Prep)							
Lab #:	212084	Location:	USPS OAK				
Client:	Parsons	Prep:	EPA 5035				
Project#:	746218.39383	Analysis:	EPA 8015B				
Field ID:	ZZZZZZZZZ	Diln Fac:	1.000				
MSS Lab ID:	212056-003	Batch#:	151174				
Matrix:	Soil	Sampled:	05/07/09				
Units:	mg/Kg	Received:	05/09/09				
Basis:	as received	Analyzed:	05/20/09				

Type: MS Lab ID: QC496684

Analyte	MSS Result	Spiked	Result	%REC	Limits
Gasoline C7-C12	0.08854	9.346	8.061	85	31-120

Surrogate	%REC	Limits	
Trifluorotoluene (FID)	96	54-152	
Bromofluorobenzene (FID)	109	50-152	

Type: MSD Lab ID: QC496685

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Gasoline C7-C12	9.259	8.217	88	31-120	3	34

Surrogate	%REC	Limits
Trifluorotoluene (FID)	98	54-152
Bromofluorobenzene (FID)	112	50-152

Batch QC Report

Gasoline by GC/FID (5035 Prep)					
Lab #:	212084	Location:	USPS OAK		
Client:	Parsons	Prep:	EPA 5035		
Project#:	746218.39383	Analysis:	EPA 8015B		
Matrix:	Soil	Diln Fac:	1.000		
Units:	mg/Kg	Batch#:	151256		
Basis:	as received	Analyzed:	05/21/09		

Type: BS Lab ID: QC497018

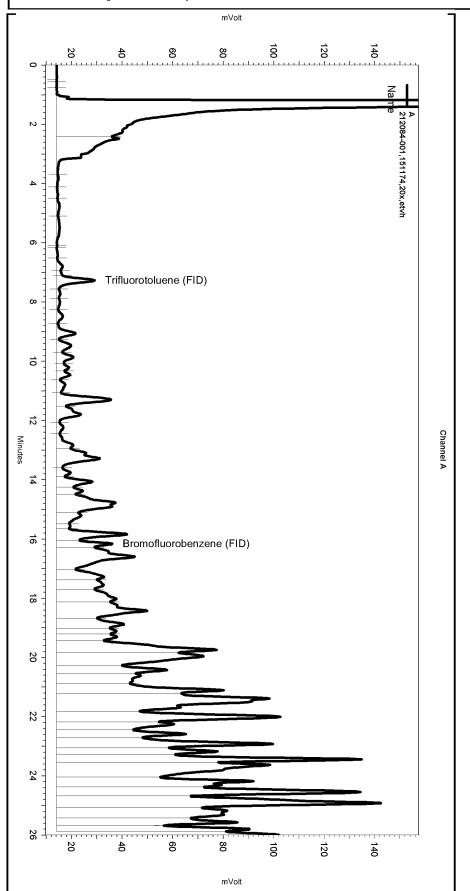
Analyte	Spiked	Result	%REC	Limits
Gasoline C7-C12	5.000	5.641	113	77-120

Surrogate	%REC	Limits
Trifluorotoluene (FID)	110	54-152
• •		
Bromofluorobenzene (FID)	92	50-152

Type: BSD Lab ID: QC497019

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Gasoline C7-C12	5.000	5.011	100	77-120	12	21

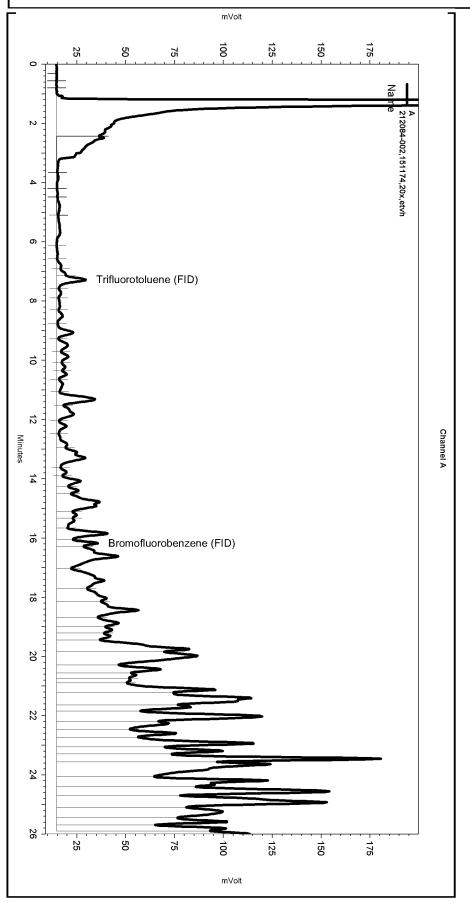
Surrogate	%REC	Limits
Trifluorotoluene (FID)	114	54-152
Bromofluorobenzene (FID)	97	50-152


Sequence File: \\Lims\gdrive\ezchrom\Projects\GC19\Sequence\139.seq Sample Name: 212084-001,151174,20x,etvh

Data File: \\Lims\gdrive\ezchrom\Projects\GC19\Data\139_019

Instrument: GC19 (Offline) Vial: N/A Operator: Tvh 2. Analyst (lims2k3\tvh2)

Method Name: \\Lims\gdrive\ezchrom\Projects\GC19\Method\tvhbtxe138.met

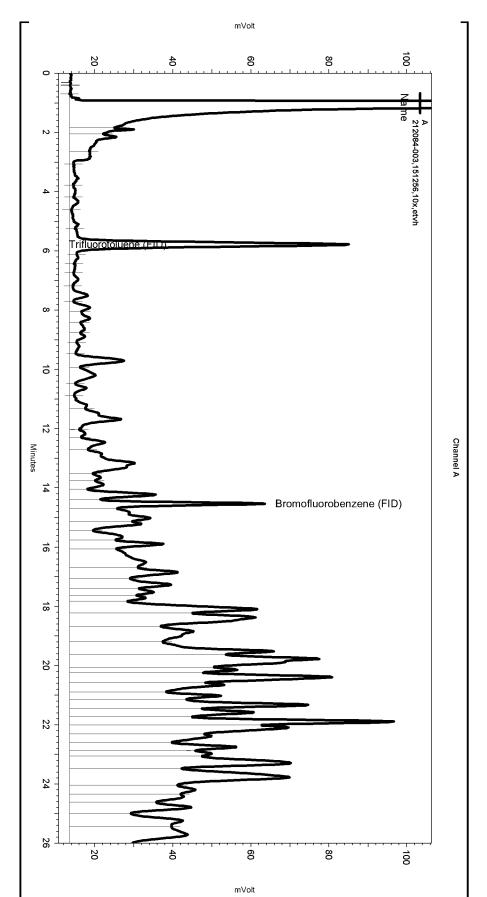

Software Version 3.1.7 Run Date: 5/19/2009 11:00:50 PM Analysis Date: 5/20/2009 11:47:57 AM Sample Amount: 1 Multiplier: 1 Vial & pH or Core ID: D

< General Method Parameters >				
No items selected for this section				
A >				
No items selected for this section				
Integration Events				
Start Stop Enabled Event Type (Minutes) (Minutes) Value				
Yes Width 0 0 0.2 Yes Threshold 0 0 50				
Manual Integration Fixes				
Data File: \\Lims\gdrive\ezchrom\Projects\GC19\Data\139_019				
Start Stop Enabled Event Type (Minutes) (Minutes) Value				
Yes Lowest Point Horizontal Baseli 0.335 26.017 0 Yes Split Peak 7.099 0 0				

Sequence File: \\Lims\gdrive\ezchrom\Projects\GC19\Sequence\139.seq Sample Name: 212084-002,151174,20x,etvh
Data File: \\Lims\gdrive\ezchrom\Projects\GC19\Data\139_020
Instrument: GC19 (Offline) Vial: N/A Operator: Tvh 2. Analyst (lims2k3\tvh2)
Method Name: \\Lims\gdrive\ezchrom\Projects\GC19\Method\tvhbtxe138.met

Software Version 3.1.7 Run Date: 5/19/2009 11:38:27 PM Analysis Date: 5/20/2009 11:48:01 AM Sample Amount: 1 Multiplier: 1 Vial & pH or Core ID: E

< General Method Parameters >				
No items selected for this section				
No items selected for this section				
Integration Events				
Start Stop Enabled Event Type (Minutes) (Minutes) Value				
Yes Width 0 0 0.2 Yes Threshold 0 0 50				
Manual Integration Fixes				
Data File: \\Lims\gdrive\ezchrom\Projects\GC19\Data\139_020				
Start Stop Enabled Event Type (Minutes) (Minutes) Value				
Yes Lowest Point Horizontal Baseli 0.087 26.017 0				


Sequence File: \\Lims\gdrive\ezchrom\Projects\GC04\Sequence\141.seq

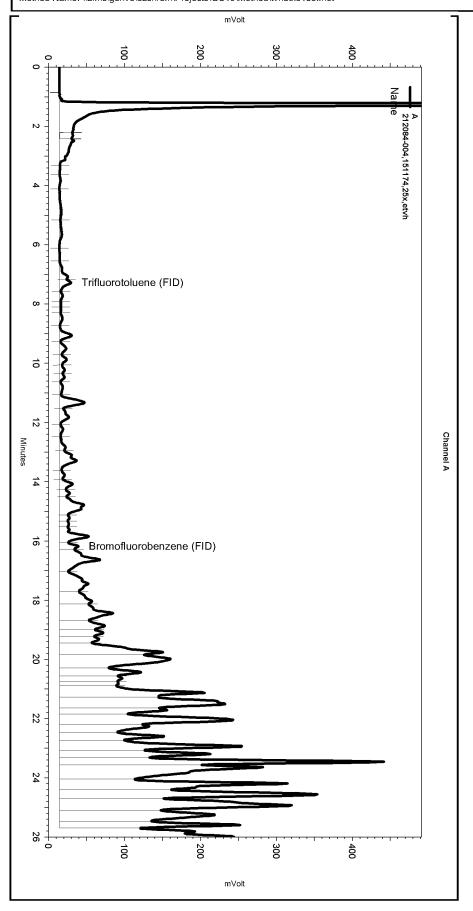
Sample Name: 212084-003,151256,10x,etvh
Data File: \\Lims\gdrive\ezchrom\Projects\GC04\Data\141_013
Instrument: GC04 (Offline) Vial: N/A Operator: Tvh 2. Analyst (lims2k3\tvh2)
Method Name: \\Lims\gdrive\ezchrom\Projects\GC04\Method\tvhbtxe139.met

Software Version 3.1.7

Run Date: 5/21/2009 6:18:54 PM Analysis Date: 5/22/2009 8:24:53 AM Sample Amount: 1 Multiplier: 1

Vial & pH or Core ID: E

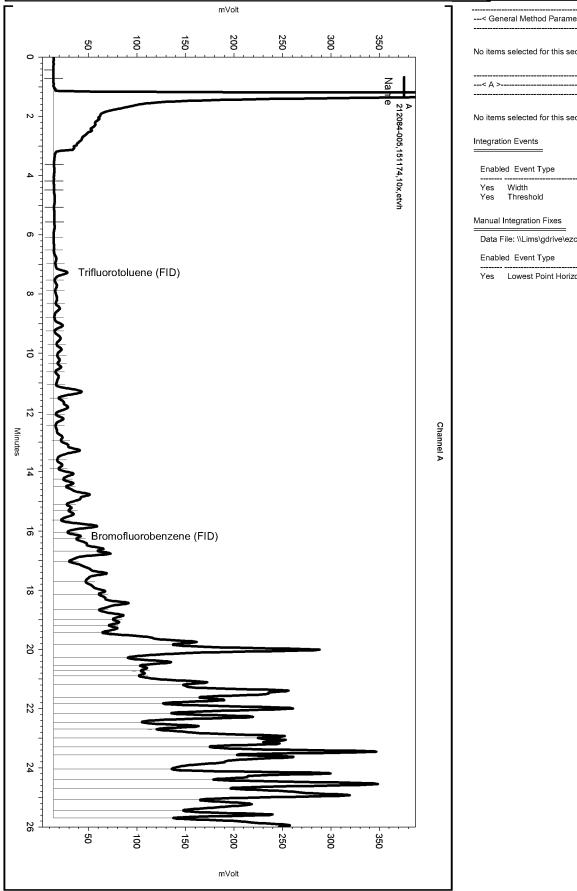
< General Method Parameters >-	
No items selected for this section	
< A >	
No items selected for this section	
Integration Events	
Start Enabled Event Type	t Stop (Minutes) (Minutes) Valu
Yes Width Yes Threshold	0 0 0.2 0 0 50
Manual Integration Fixes	
Data File: \\Lims\gdrive\ezchrom\	
Enabled Event Type	(Minutes) (Minutes) Valu
Yes Lowest Point Horizontal E	 Baseli 0 26.017 0


Sequence File: \\Lims\gdrive\ezchrom\Projects\GC19\Sequence\139.seq Sample Name: 212084-004,151174,25x,etvh

Data File: \\Lims\\gdrive\ezchrom\Projects\GC19\Data\139_021

Instrument: GC19 (Offline) Vial: N/A Operator: Tvh 2. Analyst (lims2k3\tvh2)

Method Name: \\Lims\\gdrive\ezchrom\Projects\GC19\Method\tvhbtxe138.met

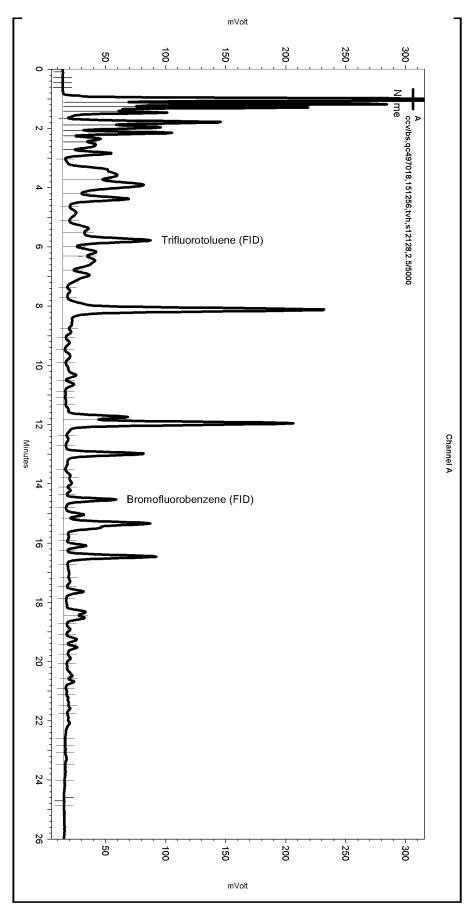

Software Version 3.1.7 Run Date: 5/20/2009 12:16:05 AM Analysis Date: 5/20/2009 11:48:05 AM Sample Amount: 1 Multiplier: 1 Vial & pH or Core ID: D

< General Method Parameters	>			
No items selected for this section				
< A >				
No items selected for this section				
Integration Events				
Sta	art Stop (Minutes) (Minutes) Value			
Yes Width Yes Threshold	0 0 0.2 0 0 50			
Manual Integration Fixes				
Data File: \\Lims\gdrive\ezchrom\Projects\GC19\Data\139_021 Start Stop				
Enabled Event Type	(Minutes) (Minutes) Value			
Yes Lowest Point Horizontal	Baseli 0 26.017 0			

Sequence File: \\Lims\gdrive\ezchrom\Projects\GC19\Sequence\139.seq Sample Name: 212084-005,151174,10x,etvh
Data File: \\Lims\gdrive\ezchrom\Projects\GC19\Data\139_022
Instrument: GC19 (Offline) Vial: N/A Operator: Tvh 2. Analyst (lims2k3\tvh2)
Method Name: \\Lims\gdrive\ezchrom\Projects\GC19\Method\tvhbtxe138.met

Software Version 3.1.7 Run Date: 5/20/2009 12:53:42 AM Analysis Date: 5/20/2009 11:48:09 AM Sample Amount: 1 Multiplier: 1 Vial & pH or Core ID: D

< General Method Parameter	s >
No items selected for this section	on.
< A >	
No items selected for this section	on
Integration Events	
Sinabled Event Type	tart Stop (Minutes) (Minutes) Value
Yes Width Yes Threshold	0 0 0.2 0 0 50
Manual Integration Fixes	
	om\Projects\GC19\Data\139_022 tart Stop
Enabled Event Type	(Minutes) (Minutes) Value
Yes Lowest Point Horizonta	al Baseli 0 26.017 0


Sequence File: \\Lims\gdrive\ezchrom\Projects\GC04\Sequence\141.seq Sample Name: ccv/bs,qc497018,151256,tvh,s12128,2.5/5000

Data File: \\Lims\gdrive\ezchrom\Projects\GC04\Data\141_003

Instrument: GC04 (Offline) Vial: N/A Operator: Tvh 2. Analyst (lims2k3\tvh2)

Method Name: \\Lims\gdrive\ezchrom\Projects\GC04\Method\tvhbtxe139.met Software Version 3.1.7 Run Date: 5/21/2009 10:16:04 AM Analysis Date: 5/22/2009 8:21:09 AM Sample Amount: 1 Multiplier: 1

Vial & pH or Core ID: {Data Description}

< Ger	neral N	Method Para	meters >-				
No item	s sele	cted for this	section				
< A >							
No item	s sele	cted for this	section				
Integrat	ion Ev	rents					
Enabl	ed Ev	ent Type	Start	,		Minutes)	Value
	Widt Thre			0	0	0.2 50	
Yes	Thre			•	•		
Yes Manual	Thre	eshold		0 Projects	0 (GC0	50	↓1_003
Yes Manual Data I	Thre Integr File: \\l	eshold ration Fixes	Start	0 Projects Stop (Minute	0 AGC0 o es) (l	50 50 4\Data\14 Minutes)	_

	Total Ex	tractable Hydrocar	rbons	
Lab #:	212084	Location:	USPS OAK	
Client:	Parsons	Prep:	SHAKER TABLE	
Project#:	746218.39383	Analysis:	EPA 8015B	
Matrix:	Soil	Sampled:	05/12/09	
Units:	mg/Kg	Received:	05/12/09	
Basis:	as received	Prepared:	05/15/09	
Batch#:	151066			

Field ID: USPS-EX-BS9.5-01 Diln Fac: 25.00 Type: SAMPLE Analyzed: 05/20/09

Lab ID: 212084-001

Analyte	Result	RL	
Diesel C10-C24	5,700	25	
Motor Oil C24-C36	ND	120	

Surrogate	%REC	Limits	
o-Terphenyl	DO	53-133	

Field ID: USPS-EX-BS9.5-02 Diln Fac: 20.00 Type: SAMPLE Analyzed: 05/19/09

Lab ID: 212084-002

Analyte	Result	RL	
Diesel C10-C24	2,500	20	
Motor Oil C24-C36	ND	99	

Surrogate	%REC	Limits
o-Terphenyl	DO	53-133

Field ID: USPS-EX-EW6.0 Diln Fac: 10.00 Type: SAMPLE Analyzed: 05/19/09

Lab ID: 212084-003

Analyte	Result	RL	
Diesel C10-C24	1,700	10	
Motor Oil C24-C36	ND	50	

Surrogate	%REC	Limits
o-Terphenyl	DO	53-133

DO= Diluted Out

ND= Not Detected

RL= Reporting Limit

Page 1 of 2 20.0

	Total Ex	tractable Hydrocar	rbons	
Lab #:	212084	Location:	USPS OAK	
Client:	Parsons	Prep:	SHAKER TABLE	
Project#:	746218.39383	Analysis:	EPA 8015B	
Matrix:	Soil	Sampled:	05/12/09	
Units:	mg/Kg	Received:	05/12/09	
Basis:	as received	Prepared:	05/15/09	
Batch#:	151066			

Field ID: USPS-EX-WW6.5 Diln Fac: 50.00 Type: SAMPLE Analyzed: 05/19/09

Lab ID: 212084-004

Analyte	Result	RL	
Diesel C10-C24	9,900	50	
Motor Oil C24-C36	ND	250	

Surrogate	%REC	Limits
o-Terphenyl	DO	53-133

Field ID: USPS-EX-NW6.0 Diln Fac: 50.00 Type: SAMPLE Analyzed: 05/19/09

Lab ID: 212084-005

Analyte	Result	RL	
Diesel C10-C24	12,000	50	
Motor Oil C24-C36	ND	250	

Surrogate	%REC	Limits
o-Terphenyl	DO	53-133

Type: BLANK Diln Fac: 1.000 Lab ID: QC496223 Analyzed: 05/19/09

Analyte	Result	RL	
Diesel C10-C24	ND	1.0	
Motor Oil C24-C36	ND	5.0	

Surrogate	%REC	Limits
o-Terphenyl	97	53-133

DO= Diluted Out ND= Not Detected

RL= Reporting Limit

Page 2 of 2 20.0

	Total Ex	ktractable Hydrocar	rbons	
Lab #:	212084	Location:	USPS OAK	
Client:	Parsons	Prep:	SHAKER TABLE	
Project#:	746218.39383	Analysis:	EPA 8015B	
Type:	LCS	Diln Fac:	1.000	
Lab ID:	QC496224	Batch#:	151066	
Matrix:	Soil	Prepared:	05/15/09	
Units:	mg/Kg	Analyzed:	05/19/09	
Basis:	as received			

Cleanup Method: EPA 3630C

Analyte	Spiked	Result	%REC	Limits
Diesel C10-C24	49.69	37.62	76	52-128

Surrogate	%REC	Limits
o-Terphenyl	81	53-133

Page 1 of 1 21.0

	Total E	ktractable Hydrocar	bons	
Lab #:	212084	Location:	USPS OAK	
Client:	Parsons	Prep:	SHAKER TABLE	
Project#:	746218.39383	Analysis:	EPA 8015B	
Field ID:	ZZZZZZZZZ	Diln Fac:	20.00	
MSS Lab ID:	212145-004	Batch#:	151066	
Matrix:	Soil	Sampled:	05/13/09	
Units:	mg/Kg	Received:	05/13/09	
Basis:	as received	Prepared:	05/15/09	

Type: MS Analyzed: 05/18/09

Lab ID: QC496225

Analyte	MSS Result	Spiked	Result	%REC Limits
Diesel C10-C24	318.0	49.62	280.9	-75 NM 33-145

Surrogate	%REC	Limits
o-Terphenyl	DO	53-133

Type: MSD Analyzed: 05/19/09

Lab ID: QC496226

Analyte	Spiked	Result	%REC	Limits	RPD I	Lim
Diesel C10-C24	49.90	328.9	22 NM	33-145	16 4	44

Surrogate	%REC	Limits
o-Terphenyl	DO	53-133

DO= Diluted Out

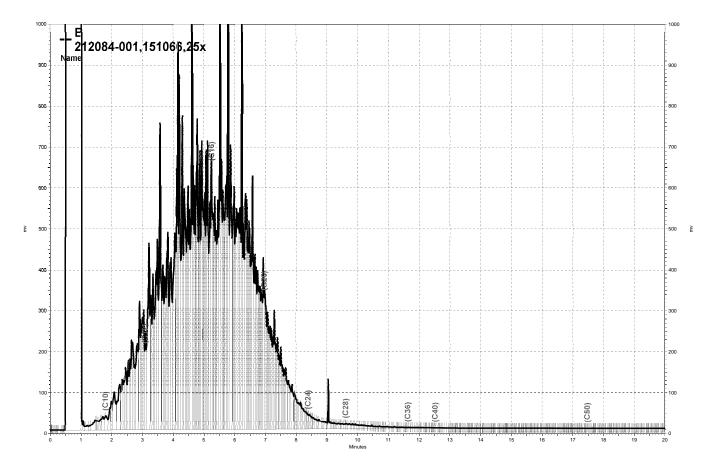
NM= Not Meaningful: Sample concentration > 4% spike concentration

RPD= Relative Percent Difference

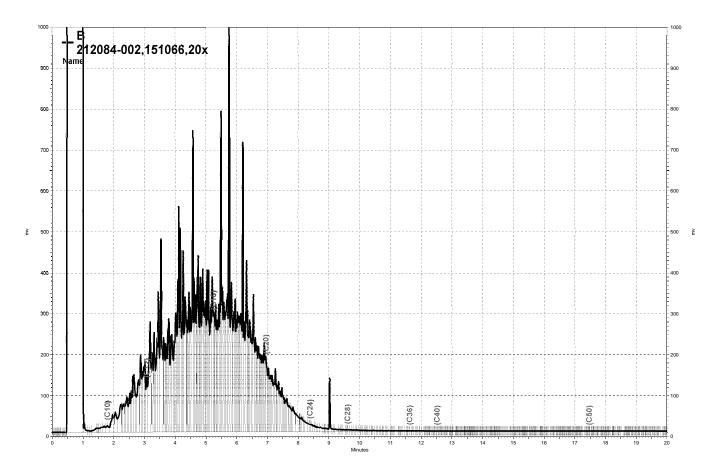
Page 1 of 1 22.0

Total Extractable Hydrocarbons					
Lab #:	212084	Location:	USPS OAK		
Client:	Parsons	Prep:	SHAKER TABLE		
Project#:	746218.39383	Analysis:	EPA 8015B		
Field ID:	ZZZZZZZZZ	Batch#:	151066		
MSS Lab ID:	212145-010	Sampled:	05/13/09		
Matrix:	Soil	Received:	05/13/09		
Units:	mg/Kg	Prepared:	05/15/09		
Basis:	as received	Analyzed:	05/19/09		
Diln Fac:	20.00				

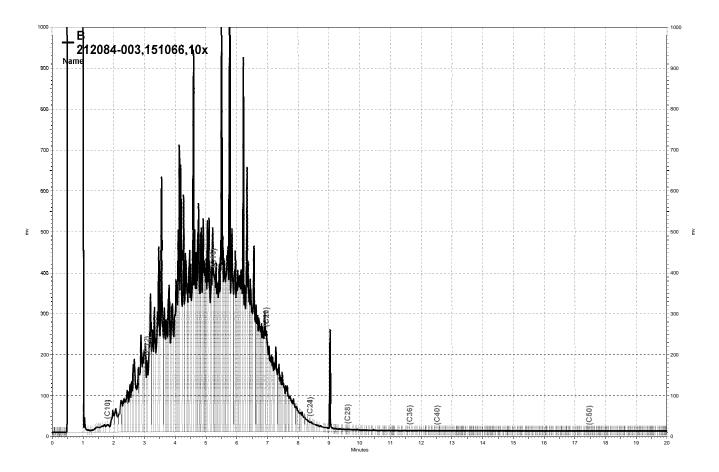
Type: MS Lab ID: QC496227

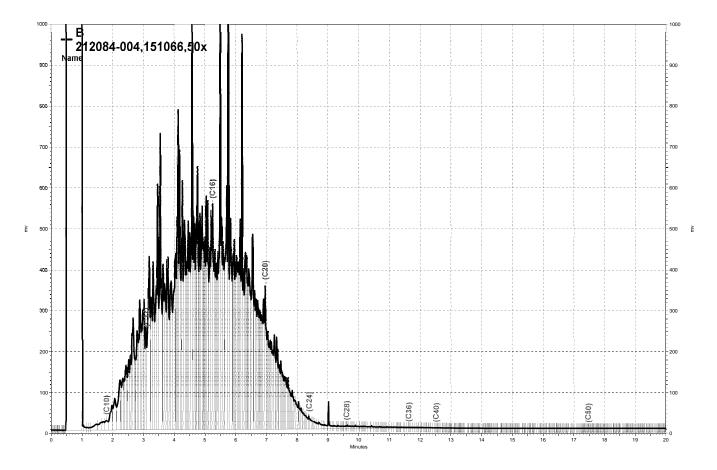

Analyte	MSS Result	Spiked	Result	%REC Li	mits
Diesel C10-C24	210.7	49.55	240.4	60 NM 33	-145

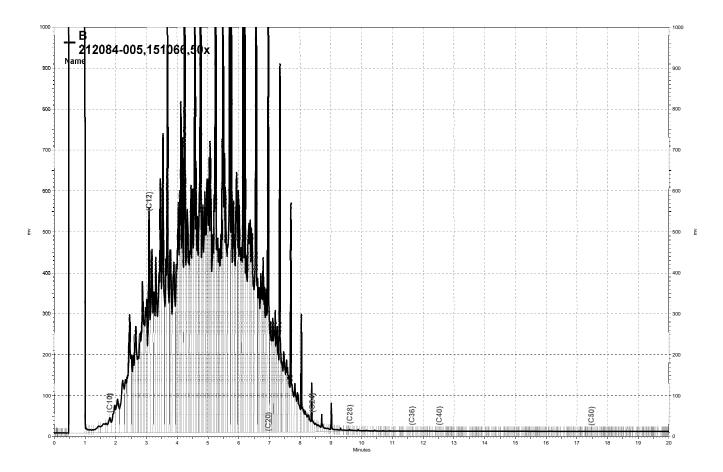
Surrogate	%REC	Limits
o-Terphenyl	DO	53-133

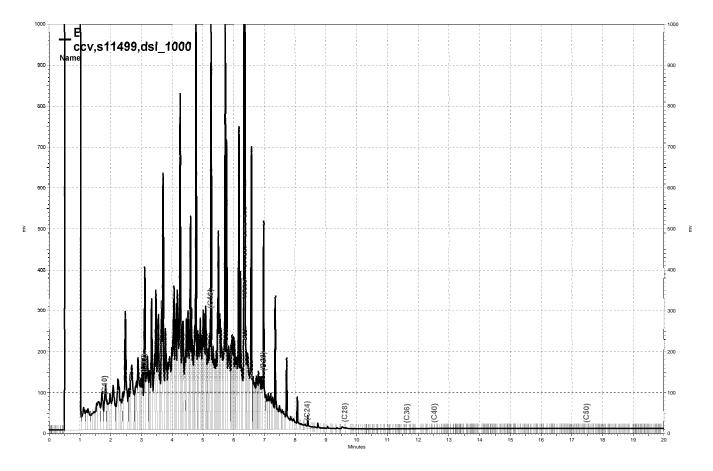

Type: MSD Lab ID: QC496228

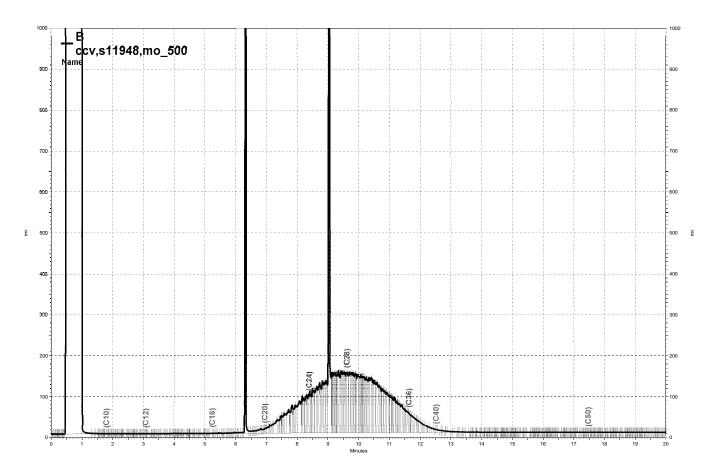
Analyte	Spiked	Result	%REC I	Limits	RPD	Lim
Diesel C10-C24	49.61	198.4	-25 NM -	33-145	19	44


Surrogate %REC Limits
o-Terphenyl DO 53-133


\Lims\gdrive\ezchrom\Projects\GC15B\Data\139b039, B


\Lims\gdrive\ezchrom\Projects\GC15B\Data\139b009, B


\Lims\gdrive\ezchrom\Projects\GC15B\Data\139b008, B


\Lims\gdrive\ezchrom\Projects\GC15B\Data\139b017, B

\Lims\gdrive\ezchrom\Projects\GC15B\Data\139b018, B

\Lims\gdrive\ezchrom\Projects\GC15B\Data\139b004, B

\Lims\gdrive\ezchrom\Projects\GC15B\Data\139b005, B

Purgeable Organics by GC/MS						
Lab #:	212084	Location:	USPS OAK			
Client:	Parsons	Prep:	EPA 5035			
Project#:	746218.39383	Analysis:	EPA 8260B			
Field ID:	USPS-EX-BS9.5-01	Diln Fac:	200.0			
Lab ID:	212084-001	Batch#:	151048			
Matrix:	Soil	Sampled:	05/12/09			
Units:	ug/Kg	Received:	05/12/09			
Basis:	as received	Analyzed:	05/15/09			

Analyte	Result	RL	
Freon 12	ND	2,000	
Chloromethane	ND	2,000	
Vinyl Chloride	ND	2,000	
Bromomethane	ND	2,000	
Chloroethane	ND	2,000	
Trichlorofluoromethane	ND	1,000	
Acetone	ND	4,000	
Freon 113	ND	1,000	
1,1-Dichloroethene	ND	1,000	
Methylene Chloride	ND	4,000	
Carbon Disulfide	ND	1,000	
MTBE	ND	1,000	
trans-1,2-Dichloroethene	ND	1,000	
Vinyl Acetate	ND	10,000	
1,1-Dichloroethane	ND	1,000	
2-Butanone	ND	2,000	
cis-1,2-Dichloroethene	ND	1,000	
2,2-Dichloropropane	ND	1,000	
Chloroform	ND	1,000	
Bromochloromethane	ND	1,000	
1,1,1-Trichloroethane	ND	1,000	
1,1-Dichloropropene	ND	1,000	
Carbon Tetrachloride	ND	1,000	
1,2-Dichloroethane	ND	1,000	
Benzene	ND	1,000	
Trichloroethene	ND	1,000	
1,2-Dichloropropane	ND	1,000	
Bromodichloromethane	ND	1,000	
Dibromomethane	ND	1,000	
4-Methyl-2-Pentanone	ND	2,000	
cis-1,3-Dichloropropene	ND	1,000	
Toluene	ND	1,000	
trans-1,3-Dichloropropene	ND	1,000	
1,1,2-Trichloroethane	ND	1,000	
2-Hexanone	ND	2,000	
1,3-Dichloropropane	ND	1,000	
Tetrachloroethene	ND	1,000	

ND= Not Detected RL= Reporting Limit

Purgeable Organics by GC/MS						
Lab #:	212084	Location:	USPS OAK			
Client:	Parsons	Prep:	EPA 5035			
Project#:	746218.39383	Analysis:	EPA 8260B			
Field ID:	USPS-EX-BS9.5-01	Diln Fac:	200.0			
Lab ID:	212084-001	Batch#:	151048			
Matrix:	Soil	Sampled:	05/12/09			
Units:	ug/Kg	Received:	05/12/09			
Basis:	as received	Analyzed:	05/15/09			

Analyte	Result	RL	
Dibromochloromethane	ND	1,000	
1,2-Dibromoethane	ND	1,000	
Chlorobenzene	ND	1,000	
1,1,1,2-Tetrachloroethane	ND	1,000	
Ethylbenzene	ND	1,000	
m,p-Xylenes	ND	1,000	
o-Xylene	ND	1,000	
Styrene	ND	1,000	
Bromoform	ND	1,000	
Isopropylbenzene	ND	1,000	
1,1,2,2-Tetrachloroethane	ND	1,000	
1,2,3-Trichloropropane	ND	1,000	
Propylbenzene	ND	1,000	
Bromobenzene	ND	1,000	
1,3,5-Trimethylbenzene	ND	1,000	
2-Chlorotoluene	ND	1,000	
4-Chlorotoluene	ND	1,000	
tert-Butylbenzene	ND	1,000	
1,2,4-Trimethylbenzene	ND	1,000	
sec-Butylbenzene	ND	1,000	
para-Isopropyl Toluene	ND	1,000	
1,3-Dichlorobenzene	ND	1,000	
1,4-Dichlorobenzene	ND	1,000	
n-Butylbenzene	ND	1,000	
1,2-Dichlorobenzene	ND	1,000	
1,2-Dibromo-3-Chloropropane	ND	1,000	
1,2,4-Trichlorobenzene	ND	1,000	
Hexachlorobutadiene	ND	1,000	
Naphthalene	ND	1,000	
1,2,3-Trichlorobenzene	ND	1,000	

Surrogate	%REC	Limits
Dibromofluoromethane	89	71-128
1,2-Dichloroethane-d4	82	69-135
Toluene-d8	96	80-120
Bromofluorobenzene	93	77-131
Trifluorotoluene (MeOH)	114	56-147

RL= Reporting Limit

Page 2 of 2

Purgeable Organics by GC/MS						
Lab #:	212084	Location:	USPS OAK			
Client:	Parsons	Prep:	EPA 5035			
Project#:	746218.39383	Analysis:	EPA 8260B			
Field ID:	USPS-EX-BS9.5-02	Diln Fac:	50.00			
Lab ID:	212084-002	Batch#:	151159			
Matrix:	Soil	Sampled:	05/12/09			
Units:	ug/Kg	Received:	05/12/09			
Basis:	as received	Analyzed:	05/19/09			

Analyte	Result	RL	
Freon 12	ND	500	
Chloromethane	ND ND	500	
Vinyl Chloride	ND	500	
Bromomethane	ND ND	500	
Chloroethane			
	ND	500	
Trichlorofluoromethane	ND	250	
Acetone	ND	1,000	
Freon 113	ND	250	
1,1-Dichloroethene	ND	250	
Methylene Chloride	ND	1,000	
Carbon Disulfide	ND	250	
MTBE	ND	250	
trans-1,2-Dichloroethene	ND	250	
Vinyl Acetate	ND	2,500	
1,1-Dichloroethane	ND	250	
2-Butanone	ND	500	
cis-1,2-Dichloroethene	ND	250	
2,2-Dichloropropane	ND	250	
Chloroform	ND	250	
Bromochloromethane	ND	250	
1,1,1-Trichloroethane	ND	250	
1,1-Dichloropropene	ND	250	
Carbon Tetrachloride	ND	250	
1,2-Dichloroethane	ND	250	
Benzene	ND	250	
Trichloroethene	ND	250	
1,2-Dichloropropane	ND	250	
Bromodichloromethane	ND	250	
Dibromomethane	ND	250	
4-Methyl-2-Pentanone	ND	500	
cis-1,3-Dichloropropene	ND	250	
Toluene	ND	250	
trans-1,3-Dichloropropene	ND	250	
1,1,2-Trichloroethane	ND	250	
2-Hexanone	ND	500	
1,3-Dichloropropane	ND	250	
Tetrachloroethene	ND	250	

RL= Reporting Limit

11.0

	Purgeable	e Organics by GC/	'MS	
Lab #:	212084	Location:	USPS OAK	
Client:	Parsons	Prep:	EPA 5035	
Project#:	746218.39383	Analysis:	EPA 8260B	
Field ID:	USPS-EX-BS9.5-02	Diln Fac:	50.00	
Lab ID:	212084-002	Batch#:	151159	
Matrix:	Soil	Sampled:	05/12/09	
Units:	ug/Kg	Received:	05/12/09	
Basis:	as received	Analyzed:	05/19/09	

Analyte	Result	RL	
Dibromochloromethane	ND	250	
1,2-Dibromoethane	ND	250	
Chlorobenzene	ND	250	
1,1,1,2-Tetrachloroethane	ND	250	
Ethylbenzene	ND	250	
m,p-Xylenes	ND	250	
o-Xylene	ND	250	
Styrene	ND	250	
Bromoform	ND	250	
Isopropylbenzene	ND	250	
1,1,2,2-Tetrachloroethane	ND	250	
1,2,3-Trichloropropane	ND	250	
Propylbenzene	ND	250	
Bromobenzene	ND	250	
1,3,5-Trimethylbenzene	ND	250	
2-Chlorotoluene	ND	250	
4-Chlorotoluene	ND	250	
tert-Butylbenzene	ND	250	
1,2,4-Trimethylbenzene	ND	250	
sec-Butylbenzene	ND	250	
para-Isopropyl Toluene	ND	250	
1,3-Dichlorobenzene	ND	250	
1,4-Dichlorobenzene	ND	250	
n-Butylbenzene	ND	250	
1,2-Dichlorobenzene	ND	250	
1,2-Dibromo-3-Chloropropane	ND	250	
1,2,4-Trichlorobenzene	ND	250	
Hexachlorobutadiene	ND	250	
Naphthalene	ND	250	
1,2,3-Trichlorobenzene	ND	250	

Surrogate	%REC	Limits
Dibromofluoromethane	84	71-128
1,2-Dichloroethane-d4	80	69-135
Toluene-d8	104	80-120
Bromofluorobenzene	92	77-131
Trifluorotoluene (MeOH)	109	56-147

ND= Not Detected

RL= Reporting Limit

Page 2 of 2

	Purgeab	le Organics by GC/	MS	
Lab #:	212084	Location:	USPS OAK	
Client:	Parsons	Prep:	EPA 5035	
Project#:	746218.39383	Analysis:	EPA 8260B	
Field ID:	USPS-EX-EW6.0	Diln Fac:	50.00	
Lab ID:	212084-003	Batch#:	151048	
Matrix:	Soil	Sampled:	05/12/09	
Units:	ug/Kg	Received:	05/12/09	
Basis:	as received	Analyzed:	05/15/09	

Analyte	Result	RL	
Freon 12	ND	500	
Chloromethane	ND ND	500	
Vinyl Chloride	ND	500	
Bromomethane	ND ND	500	
Chloroethane			
	ND	500	
Trichlorofluoromethane	ND	250	
Acetone	ND	1,000	
Freon 113	ND	250	
1,1-Dichloroethene	ND	250	
Methylene Chloride	ND	1,000	
Carbon Disulfide	ND	250	
MTBE	ND	250	
trans-1,2-Dichloroethene	ND	250	
Vinyl Acetate	ND	2,500	
1,1-Dichloroethane	ND	250	
2-Butanone	ND	500	
cis-1,2-Dichloroethene	ND	250	
2,2-Dichloropropane	ND	250	
Chloroform	ND	250	
Bromochloromethane	ND	250	
1,1,1-Trichloroethane	ND	250	
1,1-Dichloropropene	ND	250	
Carbon Tetrachloride	ND	250	
1,2-Dichloroethane	ND	250	
Benzene	ND	250	
Trichloroethene	ND	250	
1,2-Dichloropropane	ND	250	
Bromodichloromethane	ND	250	
Dibromomethane	ND	250	
4-Methyl-2-Pentanone	ND	500	
cis-1,3-Dichloropropene	ND	250	
Toluene	ND	250	
trans-1,3-Dichloropropene	ND	250	
1,1,2-Trichloroethane	ND	250	
2-Hexanone	ND	500	
1,3-Dichloropropane	ND	250	
Tetrachloroethene	ND	250	

ND= Not Detected RL= Reporting Limit

	Purgeab	le Organics by GC/	MS	
Lab #:	212084	Location:	USPS OAK	
Client:	Parsons	Prep:	EPA 5035	
Project#:	746218.39383	Analysis:	EPA 8260B	
Field ID:	USPS-EX-EW6.0	Diln Fac:	50.00	
Lab ID:	212084-003	Batch#:	151048	
Matrix:	Soil	Sampled:	05/12/09	
Units:	ug/Kg	Received:	05/12/09	
Basis:	as received	Analyzed:	05/15/09	

Analyte	Result	RL	
Dibromochloromethane	ND	250	
1,2-Dibromoethane	ND	250	
Chlorobenzene	ND	250	
1,1,1,2-Tetrachloroethane	ND	250	
Ethylbenzene	ND	250	
m,p-Xylenes	ND	250	
o-Xylene	ND	250	
Styrene	ND	250	
Bromoform	ND	250	
Isopropylbenzene	ND	250	
1,1,2,2-Tetrachloroethane	ND	250	
1,2,3-Trichloropropane	ND	250	
Propylbenzene	ND	250	
Bromobenzene	ND	250	
1,3,5-Trimethylbenzene	ND	250	
2-Chlorotoluene	ND	250	
4-Chlorotoluene	ND	250	
tert-Butylbenzene	ND	250	
1,2,4-Trimethylbenzene	ND	250	
sec-Butylbenzene	ND	250	
para-Isopropyl Toluene	ND	250	
1,3-Dichlorobenzene	ND	250	
1,4-Dichlorobenzene	ND	250	
n-Butylbenzene	ND	250	
1,2-Dichlorobenzene	ND	250	
1,2-Dibromo-3-Chloropropane	ND	250	
1,2,4-Trichlorobenzene	ND	250	
Hexachlorobutadiene	ND	250	
Naphthalene	2,000	250	
1,2,3-Trichlorobenzene	ND	250	

Surrogate	%REC	Limits
Dibromofluoromethane	85	71-128
1,2-Dichloroethane-d4	81	69-135
Toluene-d8	100	80-120
Bromofluorobenzene	97	77-131
Trifluorotoluene (MeOH)	111	56-147

RL= Reporting Limit

Page 2 of 2

	Purgeab	le Organics by GC/	MS	
Lab #:	212084	Location:	USPS OAK	
Client:	Parsons	Prep:	EPA 5035	
Project#:	746218.39383	Analysis:	EPA 8260B	
Field ID:	USPS-EX-WW6.5	Diln Fac:	500.0	
Lab ID:	212084-004	Batch#:	151048	
Matrix:	Soil	Sampled:	05/12/09	
Units:	ug/Kg	Received:	05/12/09	
Basis:	as received	Analyzed:	05/15/09	

Analyte	Result	RL	
Freon 12	ND	5,000	
Chloromethane	ND	5,000	
Vinyl Chloride	ND	5,000	
Bromomethane	ND	5,000	
Chloroethane	ND	5,000	
Trichlorofluoromethane	ND	2,500	
Acetone	ND	10,000	
Freon 113	ND	2,500	
1,1-Dichloroethene	ND	2,500	
Methylene Chloride	ND	10,000	
Carbon Disulfide	ND	2,500	
MTBE	ND	2,500	
trans-1,2-Dichloroethene	ND	2,500	
Vinyl Acetate	ND	25,000	
1,1-Dichloroethane	ND	2,500	
2-Butanone	ND	5,000	
cis-1,2-Dichloroethene	ND	2,500	
2,2-Dichloropropane	ND	2,500	
Chloroform	ND	2,500	
Bromochloromethane	ND	2,500	
1,1,1-Trichloroethane	ND	2,500	
1,1-Dichloropropene	ND	2,500	
Carbon Tetrachloride	ND	2,500	
1,2-Dichloroethane	ND	2,500	
Benzene	ND	2,500	
Trichloroethene	ND	2,500	
1,2-Dichloropropane	ND	2,500	
Bromodichloromethane	ND	2,500	
Dibromomethane	ND	2,500	
4-Methyl-2-Pentanone	ND	5,000	
cis-1,3-Dichloropropene	ND	2,500	
Toluene	ND	2,500	
trans-1,3-Dichloropropene	ND	2,500	
1,1,2-Trichloroethane	ND	2,500	
2-Hexanone	ND	5,000	
1,3-Dichloropropane	ND	2,500	
Tetrachloroethene	ND	2,500	

ND= Not Detected RL= Reporting Limit

	Purgeab	le Organics by GC/	MS	
Lab #:	212084	Location:	USPS OAK	
Client:	Parsons	Prep:	EPA 5035	
Project#:	746218.39383	Analysis:	EPA 8260B	
Field ID:	USPS-EX-WW6.5	Diln Fac:	500.0	
Lab ID:	212084-004	Batch#:	151048	
Matrix:	Soil	Sampled:	05/12/09	
Units:	ug/Kg	Received:	05/12/09	
Basis:	as received	Analyzed:	05/15/09	

Analyte	Result	RL	
Dibromochloromethane	ND	2,500	
1,2-Dibromoethane	ND	2,500	
Chlorobenzene	ND	2,500	
1,1,1,2-Tetrachloroethane	ND	2,500	
Ethylbenzene	ND	2,500	
m,p-Xylenes	ND	2,500	
o-Xylene	ND	2,500	
Styrene	ND	2,500	
Bromoform	ND	2,500	
Isopropylbenzene	ND	2,500	
1,1,2,2-Tetrachloroethane	ND	2,500	
1,2,3-Trichloropropane	ND	2,500	
Propylbenzene	ND	2,500	
Bromobenzene	ND	2,500	
1,3,5-Trimethylbenzene	ND	2,500	
2-Chlorotoluene	ND	2,500	
4-Chlorotoluene	ND	2,500	
tert-Butylbenzene	ND	2,500	
1,2,4-Trimethylbenzene	ND	2,500	
sec-Butylbenzene	ND	2,500	
para-Isopropyl Toluene	ND	2,500	
1,3-Dichlorobenzene	ND	2,500	
1,4-Dichlorobenzene	ND	2,500	
n-Butylbenzene	ND	2,500	
1,2-Dichlorobenzene	ND	2,500	
1,2-Dibromo-3-Chloropropane	ND	2,500	
1,2,4-Trichlorobenzene	ND	2,500	
Hexachlorobutadiene	ND	2,500	
Naphthalene	11,000	2,500	
1,2,3-Trichlorobenzene	ND	2,500	

Surrogate	%REC	Limits
Dibromofluoromethane	87	71-128
1,2-Dichloroethane-d4	80	69-135
Toluene-d8	96	80-120
Bromofluorobenzene	97	77-131
Trifluorotoluene (MeOH)	118	56-147

RL= Reporting Limit

Page 2 of 2

	Purgeab	le Organics by GC/	MS	
Lab #:	212084	Location:	USPS OAK	
Client:	Parsons	Prep:	EPA 5035	
Project#:	746218.39383	Analysis:	EPA 8260B	
Field ID:	USPS-EX-NW6.0	Diln Fac:	200.0	
Lab ID:	212084-005	Batch#:	151048	
Matrix:	Soil	Sampled:	05/12/09	
Units:	ug/Kg	Received:	05/12/09	
Basis:	as received	Analyzed:	05/15/09	

Analyte	Result	RL	
Freon 12	ND	2,000	
Chloromethane	ND	2,000	
Vinyl Chloride	ND	2,000	
Bromomethane	ND	2,000	
Chloroethane	ND	2,000	
Trichlorofluoromethane	ND	1,000	
Acetone	ND	4,000	
Freon 113	ND	1,000	
1,1-Dichloroethene	ND	1,000	
Methylene Chloride	ND	4,000	
Carbon Disulfide	ND	1,000	
MTBE	ND	1,000	
trans-1,2-Dichloroethene	ND	1,000	
Vinyl Acetate	ND	10,000	
1,1-Dichloroethane	ND	1,000	
2-Butanone	ND	2,000	
cis-1,2-Dichloroethene	ND	1,000	
2,2-Dichloropropane	ND	1,000	
Chloroform	ND	1,000	
Bromochloromethane	ND	1,000	
1,1,1-Trichloroethane	ND	1,000	
1,1-Dichloropropene	ND	1,000	
Carbon Tetrachloride	ND	1,000	
1,2-Dichloroethane	ND	1,000	
Benzene	ND	1,000	
Trichloroethene	ND	1,000	
1,2-Dichloropropane	ND	1,000	
Bromodichloromethane	ND	1,000	
Dibromomethane	ND	1,000	
4-Methyl-2-Pentanone	ND	2,000	
cis-1,3-Dichloropropene	ND	1,000	
Toluene	ND	1,000	
trans-1,3-Dichloropropene	ND	1,000	
1,1,2-Trichloroethane	ND	1,000	
2-Hexanone	ND	2,000	
1,3-Dichloropropane	ND	1,000	
Tetrachloroethene	ND	1,000	

RL= Reporting Limit

	Purgeab	le Organics by GC/	MS	
Lab #:	212084	Location:	USPS OAK	
Client:	Parsons	Prep:	EPA 5035	
Project#:	746218.39383	Analysis:	EPA 8260B	
Field ID:	USPS-EX-NW6.0	Diln Fac:	200.0	
Lab ID:	212084-005	Batch#:	151048	
Matrix:	Soil	Sampled:	05/12/09	
Units:	ug/Kg	Received:	05/12/09	
Basis:	as received	Analyzed:	05/15/09	

Analyte	Result	RL	
Dibromochloromethane	ND	1,000	
1,2-Dibromoethane	ND	1,000	
Chlorobenzene	ND	1,000	
1,1,1,2-Tetrachloroethane	ND	1,000	
Ethylbenzene	ND	1,000	
m,p-Xylenes	ND	1,000	
o-Xylene	ND	1,000	
Styrene	ND	1,000	
Bromoform	ND	1,000	
Isopropylbenzene	ND	1,000	
1,1,2,2-Tetrachloroethane	ND	1,000	
1,2,3-Trichloropropane	ND	1,000	
Propylbenzene	ND	1,000	
Bromobenzene	ND	1,000	
1,3,5-Trimethylbenzene	ND	1,000	
2-Chlorotoluene	ND	1,000	
4-Chlorotoluene	ND	1,000	
tert-Butylbenzene	ND	1,000	
1,2,4-Trimethylbenzene	ND	1,000	
sec-Butylbenzene	ND	1,000	
para-Isopropyl Toluene	ND	1,000	
1,3-Dichlorobenzene	ND	1,000	
1,4-Dichlorobenzene	ND	1,000	
n-Butylbenzene	ND	1,000	
1,2-Dichlorobenzene	ND	1,000	
1,2-Dibromo-3-Chloropropane	ND	1,000	
1,2,4-Trichlorobenzene	ND	1,000	
Hexachlorobutadiene	ND	1,000	
Naphthalene	2,300	1,000	
1,2,3-Trichlorobenzene	ND	1,000	

Surrogate	%REC	Limits
Dibromofluoromethane	83	71-128
1,2-Dichloroethane-d4	85	69-135
Toluene-d8	100	80-120
Bromofluorobenzene	96	77-131
Trifluorotoluene (MeOH)	117	56-147

RL= Reporting Limit

Page 2 of 2

Purgeable Organics by GC/MS						
Lab #:	212084	Location:	USPS OAK			
Client:	Parsons	Prep:	EPA 5035			
Project#:	746218.39383	Analysis:	EPA 8260B			
Type:	BLANK	Basis:	as received			
Lab ID:	QC496148	Diln Fac:	1.000			
Matrix:	Soil	Batch#:	151048			
Units:	ug/Kg	Analyzed:	05/15/09			

Analyte	Result	RL	
Freon 12	ND	10	
Chloromethane	ND	10	
Vinyl Chloride	ND	10	
Bromomethane	ND	10	
Chloroethane	ND	10	
Trichlorofluoromethane	ND	5.0	
Acetone	ND	20	
Freon 113	ND	5.0	
1,1-Dichloroethene	ND	5.0	
Methylene Chloride	ND	20	
Carbon Disulfide	ND	5.0	
MTBE	ND	5.0	
trans-1,2-Dichloroethene	ND	5.0	
Vinyl Acetate	ND	50	
1,1-Dichloroethane	ND	5.0	
2-Butanone	ND	10	
cis-1,2-Dichloroethene	ND	5.0	
2,2-Dichloropropane	ND	5.0	
Chloroform	ND	5.0	
Bromochloromethane	ND	5.0	
1,1,1-Trichloroethane	ND	5.0	
1,1-Dichloropropene	ND	5.0	
Carbon Tetrachloride	ND	5.0	
1,2-Dichloroethane	ND	5.0	
Benzene	ND	5.0	
Trichloroethene	ND	5.0	
1,2-Dichloropropane	ND	5.0	
Bromodichloromethane	ND	5.0	
Dibromomethane	ND	5.0	
4-Methyl-2-Pentanone	ND	10	
cis-1,3-Dichloropropene	ND	5.0	
Toluene	ND	5.0	
trans-1,3-Dichloropropene	ND	5.0	
1,1,2-Trichloroethane	ND	5.0	
2-Hexanone	ND	10	
1,3-Dichloropropane	ND	5.0	
Tetrachloroethene	ND	5.0	

ND= Not Detected

RL= Reporting Limit

	Purge	able Organics by GC/	MS	
Lab #:	212084	Location:	USPS OAK	
Client:	Parsons	Prep:	EPA 5035	
Project#:	746218.39383	Analysis:	EPA 8260B	
Type:	BLANK	Basis:	as received	
Lab ID:	QC496148	Diln Fac:	1.000	
Matrix:	Soil	Batch#:	151048	
Units:	ug/Kg	Analyzed:	05/15/09	

Analyte	Result	RL	
Dibromochloromethane	ND	5.0	
1,2-Dibromoethane	ND	5.0	
Chlorobenzene	ND	5.0	
1,1,1,2-Tetrachloroethane	ND	5.0	
Ethylbenzene	ND	5.0	
m,p-Xylenes	ND	5.0	
o-Xylene	ND	5.0	
Styrene	ND	5.0	
Bromoform	ND	5.0	
Isopropylbenzene	ND	5.0	
1,1,2,2-Tetrachloroethane	ND	5.0	
1,2,3-Trichloropropane	ND	5.0	
Propylbenzene	ND	5.0	
Bromobenzene	ND	5.0	
1,3,5-Trimethylbenzene	ND	5.0	
2-Chlorotoluene	ND	5.0	
4-Chlorotoluene	ND	5.0	
tert-Butylbenzene	ND	5.0	
1,2,4-Trimethylbenzene	ND	5.0	
sec-Butylbenzene	ND	5.0	
para-Isopropyl Toluene	ND	5.0	
1,3-Dichlorobenzene	ND	5.0	
1,4-Dichlorobenzene	ND	5.0	
n-Butylbenzene	ND	5.0	
1,2-Dichlorobenzene	ND	5.0	
1,2-Dibromo-3-Chloropropane	ND	5.0	
1,2,4-Trichlorobenzene	ND	5.0	
Hexachlorobutadiene	ND	5.0	
Naphthalene	ND	5.0	
1,2,3-Trichlorobenzene	ND	5.0	

Surrogate	%REC	Limits	
Dibromofluoromethane	98	71-128	
1,2-Dichloroethane-d4	89	69-135	
Toluene-d8	98	80-120	
Bromofluorobenzene	95	77-131	

ND= Not Detected

RL= Reporting Limit

Page 2 of 2

15.0

Purgeable Organics by GC/MS						
Lab #:	212084	Location:	USPS OAK			
Client:	Parsons	Prep:	EPA 5035			
Project#:	746218.39383	Analysis:	EPA 8260B			
Matrix:	Soil	Diln Fac:	1.000			
Units:	ug/Kg	Batch#:	151048			
Basis:	as received	Analyzed:	05/15/09			

Type: BS Lab ID: QC496149

Analyte	Spiked	Result	%REC	Limits
1,1-Dichloroethene	25.00	25.89	104	73-135
Benzene	25.00	26.17	105	80-125
Trichloroethene	25.00	25.73	103	80-127
Toluene	25.00	27.49	110	80-126
Chlorobenzene	25.00	26.56	106	80-120

Surrogate	%REC	Limits	
Dibromofluoromethane	97	71-128	
1,2-Dichloroethane-d4	89	69-135	
Toluene-d8	98	80-120	
Bromofluorobenzene	90	77-131	

Type: BSD Lab ID: QC496150

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
1,1-Dichloroethene	25.00	24.67	99	73-135	5	20
Benzene	25.00	26.40	106	80-125	1	20
Trichloroethene	25.00	24.96	100	80-127	3	20
Toluene	25.00	26.93	108	80-126	2	20
Chlorobenzene	25.00	25.87	103	80-120	3	20

Surrogate	%REC	Limits	
Dibromofluoromethane	97	71-128	
1,2-Dichloroethane-d4	86	69-135	
Toluene-d8	98	80-120	
Bromofluorobenzene	94	77-131	

	Purgea	ble Organics by GC/	'MS	
Lab #:	212084	Location:	USPS OAK	
Client:	Parsons	Prep:	EPA 5035	
Project#:	746218.39383	Analysis:	EPA 8260B	
Type:	BLANK	Basis:	as received	
Lab ID:	QC496613	Diln Fac:	1.000	
Matrix:	Soil	Batch#:	151159	
Units:	ug/Kg	Analyzed:	05/19/09	

Analyte	Result	RL	
Freon 12	ND	10	
Chloromethane	ND	10	
Vinyl Chloride	ND	10	
Bromomethane	ND	10	
Chloroethane	ND	10	
Trichlorofluoromethane	ND	5.0	
Acetone	ND	20	
Freon 113	ND	5.0	
1,1-Dichloroethene	ND	5.0	
Methylene Chloride	ND	20	
Carbon Disulfide	ND	5.0	
MTBE	ND	5.0	
trans-1,2-Dichloroethene	ND	5.0	
Vinyl Acetate	ND	50	
1,1-Dichloroethane	ND	5.0	
2-Butanone	ND	10	
cis-1,2-Dichloroethene	ND	5.0	
2,2-Dichloropropane	ND	5.0	
Chloroform	ND	5.0	
Bromochloromethane	ND	5.0	
1,1,1-Trichloroethane	ND	5.0	
1,1-Dichloropropene	ND	5.0	
Carbon Tetrachloride	ND	5.0	
1,2-Dichloroethane	ND	5.0	
Benzene	ND	5.0	
Trichloroethene	ND	5.0	
1,2-Dichloropropane	ND	5.0	
Bromodichloromethane	ND	5.0	
Dibromomethane	ND	5.0	
4-Methyl-2-Pentanone	ND	10	
cis-1,3-Dichloropropene	ND	5.0	
Toluene	ND	5.0	
trans-1,3-Dichloropropene	ND	5.0	
1,1,2-Trichloroethane	ND	5.0	
2-Hexanone	ND	10	
1,3-Dichloropropane	ND	5.0	
Tetrachloroethene	ND	5.0	

ND= Not Detected

RL= Reporting Limit

	Purge	able Organics by GC/	MS	
Lab #:	212084	Location:	USPS OAK	
Client:	Parsons	Prep:	EPA 5035	
Project#:	746218.39383	Analysis:	EPA 8260B	
Type:	BLANK	Basis:	as received	
Lab ID:	QC496613	Diln Fac:	1.000	
Matrix:	Soil	Batch#:	151159	
Units:	ug/Kg	Analyzed:	05/19/09	

Analyte	Result	RL	
Dibromochloromethane	ND	5.0	
1,2-Dibromoethane	ND	5.0	
Chlorobenzene	ND	5.0	
1,1,1,2-Tetrachloroethane	ND	5.0	
Ethylbenzene	ND	5.0	
m,p-Xylenes	ND	5.0	
o-Xylene	ND	5.0	
Styrene	ND	5.0	
Bromoform	ND	5.0	
Isopropylbenzene	ND	5.0	
1,1,2,2-Tetrachloroethane	ND	5.0	
1,2,3-Trichloropropane	ND	5.0	
Propylbenzene	ND	5.0	
Bromobenzene	ND	5.0	
1,3,5-Trimethylbenzene	ND	5.0	
2-Chlorotoluene	ND	5.0	
4-Chlorotoluene	ND	5.0	
tert-Butylbenzene	ND	5.0	
1,2,4-Trimethylbenzene	ND	5.0	
sec-Butylbenzene	ND	5.0	
para-Isopropyl Toluene	ND	5.0	
1,3-Dichlorobenzene	ND	5.0	
1,4-Dichlorobenzene	ND	5.0	
n-Butylbenzene	ND	5.0	
1,2-Dichlorobenzene	ND	5.0	
1,2-Dibromo-3-Chloropropane	ND	5.0	
1,2,4-Trichlorobenzene	ND	5.0	
Hexachlorobutadiene	ND	5.0	
Naphthalene	ND	5.0	
1,2,3-Trichlorobenzene	ND	5.0	

Surrogate	%REC	Limits	
Dibromofluoromethane	90	71-128	
1,2-Dichloroethane-d4	87	69-135	
Toluene-d8	102	80-120	
Bromofluorobenzene	93	77-131	

ND= Not Detected

RL= Reporting Limit

Page 2 of 2 17.0

Purgeable Organics by GC/MS				
Lab #:	212084	Location:	USPS OAK	
Client:	Parsons	Prep:	EPA 5035	
Project#:	746218.39383	Analysis:	EPA 8260B	
Type:	LCS	Basis:	as received	
Lab ID:	QC496614	Diln Fac:	1.000	
Matrix:	Soil	Batch#:	151159	
Units:	ug/Kg	Analyzed:	05/19/09	

Analyte	Spiked	Result	%REC	Limits
1,1-Dichloroethene	25.00	20.95	84	73-135
Benzene	25.00	26.26	105	80-125
Trichloroethene	25.00	23.94	96	80-127
Toluene	25.00	26.71	107	80-126
Chlorobenzene	25.00	26.34	105	80-120

Surrogate	%REC	Limits	
Dibromofluoromethane	93	71-128	
1,2-Dichloroethane-d4	82	69-135	
Toluene-d8	97	80-120	
Bromofluorobenzene	92	77-131	

Purgeable Organics by GC/MS				
Lab #:	212084	Location:	USPS OAK	
Client:	Parsons	Prep:	EPA 5035	
Project#:	746218.39383	Analysis:	EPA 8260B	
Field ID:	ZZZZZZZZZ	Diln Fac:	50.00	
MSS Lab ID:	212193-005	Batch#:	151159	
Matrix:	Soil	Sampled:	05/12/09	
Units:	ug/Kg	Received:	05/15/09	
Basis:	as received	Analyzed:	05/19/09	

Type: MS Lab ID: QC496690

Analyte	MSS Result	Spiked	Result	%REC	Limits
1,1-Dichloroethene	<50.00	2,500	2,512	100	58-145
Benzene	1,269	2,500	3,691	97	56-126
Trichloroethene	<50.00	2,500	2,751	110	50-142
Toluene	2,979	2,500	5,367	96	52-125
Chlorobenzene	<50.00	2,500	2,924	117	46-120

Surrogate	%REC	Limits	
Dibromofluoromethane	89	71-128	
1,2-Dichloroethane-d4	77	69-135	
Toluene-d8	93	80-120	
Bromofluorobenzene	87	77–131	
Trifluorotoluene (MeOH)	85	56-147	

Type: MSD Lab ID: QC496691

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
1,1-Dichloroethene	2,500	2,614	105	58-145	4	28
Benzene	2,500	3,763	100	56-126	2	26
Trichloroethene	2,500	2,715	109	50-142	1	29
Toluene	2,500	5,664	107	52-125	5	29
Chlorobenzene	2,500	2,804	112	46-120	4	29

Surrogate	%REC	Limits	
Dibromofluoromethane	88	71-128	
1,2-Dichloroethane-d4	77	69-135	
Toluene-d8	100	80-120	
Bromofluorobenzene	87	77-131	
Trifluorotoluene (MeOH)	90	56-147	

	Semivolat	ile Organics by G	C/MS	
Lab #:	212084	Location:	USPS OAK	
Client:	Parsons	Prep:	EPA 3550B	
Project#:	746218.39383	Analysis:	EPA 8270C	
Field ID:	USPS-EX-BS9.5-01	Batch#:	151044	
Lab ID:	212084-001	Sampled:	05/12/09	
Matrix:	Soil	Received:	05/12/09	
Units:	ug/Kg	Prepared:	05/15/09	
Basis:	as received	Analyzed:	05/18/09	
Diln Fac:	50.00	-		

Analyte	Result	RL
N-Nitrosodimethylamine	ND	17,000
Phenol	ND	17,000
bis(2-Chloroethyl)ether	ND	17,000
2-Chlorophenol	ND	17,000
1,3-Dichlorobenzene	ND	17,000
1,4-Dichlorobenzene	ND	17,000
Benzyl alcohol	ND	17,000
1,2-Dichlorobenzene	ND	17,000
2-Methylphenol	ND	17,000
bis(2-Chloroisopropyl) ether	ND ND	17,000
4-Methylphenol	ND	17,000
N-Nitroso-di-n-propylamine	ND	17,000
Hexachloroethane	ND ND	17,000
Nitrobenzene	ND ND	17,000
	ND ND	17,000
Isophorone	ND ND	17,000
2-Nitrophenol		33,000
2,4-Dimethylphenol	ND	17,000
Benzoic acid	ND	83,000
bis(2-Chloroethoxy)methane	ND	17,000
2,4-Dichlorophenol	ND	17,000
1,2,4-Trichlorobenzene	ND	17,000
Naphthalene	ND	3,300
4-Chloroaniline	ND	17,000
Hexachlorobutadiene	ND	17,000
4-Chloro-3-methylphenol	ND	17,000
2-Methylnaphthalene	ND	3,300
Hexachlorocyclopentadiene	ND	33,000
2,4,6-Trichlorophenol	ND	17,000
2,4,5-Trichlorophenol	ND	17,000
2-Chloronaphthalene	ND	17,000
2-Nitroaniline	ND	33,000
Dimethylphthalate	ND	17,000
Acenaphthylene	ND	3,300
2,6-Dinitrotoluene	ND	17,000
3-Nitroaniline	ND	33,000
Acenaphthene	ND	3,300
2,4-Dinitrophenol	ND	33,000
4-Nitrophenol	ND	33,000
Dibenzofuran	ND	17,000
2,4-Dinitrotoluene	ND	17,000
Diethylphthalate	ND	17,000
Fluorene	ND	3,300
4-Chlorophenyl-phenylether	ND	17,000
4-Nitroaniline	ND	33,000
4,6-Dinitro-2-methylphenol	ND	33,000
N-Nitrosodiphenylamine	ND	17,000
Azobenzene	ND	17,000
4-Bromophenyl-phenylether	ND	17,000
Hexachlorobenzene	ND	17,000
Pentachlorophenol	ND	33,000
Phenanthrene	ND	3,300
Anthracene	ND	3,300
AIICIII aCEIIE	עווו	3,300

DO= Diluted Out ND= Not Detected RL= Reporting Limit Page 1 of 2

	Semivolat	ile Organics by G	C/MS	
Lab #:	212084	Location:	USPS OAK	
Client:	Parsons	Prep:	EPA 3550B	
Project#:	746218.39383	Analysis:	EPA 8270C	
Field ID:	USPS-EX-BS9.5-01	Batch#:	151044	
Lab ID:	212084-001	Sampled:	05/12/09	
Matrix:	Soil	Received:	05/12/09	
Units:	ug/Kg	Prepared:	05/15/09	
Basis:	as received	Analyzed:	05/18/09	
Diln Fac:	50.00	-		

Analyte	Result	RL	
Di-n-butylphthalate	ND	17,000	
Fluoranthene	ND	3,300	
Pyrene	ND	3,300	
Butylbenzylphthalate	ND	17,000	
3,3'-Dichlorobenzidine	ND	33,000	
Benzo(a)anthracene	ND	3,300	
Chrysene	ND	3,300	
bis(2-Ethylhexyl)phthalate	ND	17,000	
Di-n-octylphthalate	ND	17,000	
Benzo(b)fluoranthene	ND	3,300	
Benzo(k)fluoranthene	ND	3,300	
Benzo(a)pyrene	ND	3,300	
Indeno(1,2,3-cd)pyrene	ND	3,300	
Dibenz(a,h)anthracene	ND	3,300	
Benzo(g,h,i)perylene	ND	3,300	

Surrogate	%REC	Limits
2-Fluorophenol	DO	35-120
Phenol-d5	DO	37-120
2,4,6-Tribromophenol	DO	30-120
Nitrobenzene-d5	DO	47-120
2-Fluorobiphenyl	DO	52-120
Terphenyl-d14	DO	45-120

DO= Diluted Out ND= Not Detected
RL= Reporting Limit
Page 2 of 2

	Semivolatile Organics by GC/MS					
Lab #:	212084	Location:	USPS OAK			
Client:	Parsons	Prep:	EPA 3550B			
Project#:	746218.39383	Analysis:	EPA 8270C			
Field ID:	USPS-EX-BS9.5-02	Batch#:	151044			
Lab ID:	212084-002	Sampled:	05/12/09			
Matrix:	Soil	Received:	05/12/09			
Units:	ug/Kg	Prepared:	05/15/09			
Basis:	as received	Analyzed:	05/15/09			
Diln Fac:	1.000	-				

Analyte	Re	sult	RL	
N-Nitrosodimethylamine	ND		330	
Phenol	ND		330	
bis(2-Chloroethyl)ether	ND		330	
2-Chlorophenol	ND		330	
1,3-Dichlorobenzene	ND		330	
1,4-Dichlorobenzene	ND		330	
Benzyl alcohol	ND		330	
1,2-Dichlorobenzene	ND		330	
2-Methylphenol	ND		330	
bis(2-Chloroisopropyl) ether	ND		330	
4-Methylphenol	ND		330	
N-Nitroso-di-n-propylamine	ND		330	
Hexachloroethane	ND		330	
Nitrobenzene	ND		330	
Isophorone	ND		330	
2-Nitrophenol	ND		670	
2,4-Dimethylphenol	ND		330	
Benzoic acid	ND		1,700	
bis(2-Chloroethoxy)methane	ND		330	
2,4-Dichlorophenol	ND		330	
1,2,4-Trichlorobenzene	ND		330	
Naphthalene		190	67	
4-Chloroaniline	ND	100	330	
Hexachlorobutadiene	ND		330	
4-Chloro-3-methylphenol	ND		330	
2-Methylnaphthalene		800	67	
Hexachlorocyclopentadiene	ND ,	000	670	
2,4,6-Trichlorophenol	ND		330	
2,4,5-Trichlorophenol	ND		330	
2-Chloronaphthalene	ND		330	
2-Nitroaniline	ND		670	
Dimethylphthalate	ND		330	
Acenaphthylene	ND		67	
2,6-Dinitrotoluene	ND		330	
3-Nitroaniline	ND		670	
Acenaphthene	ND		67	
2,4-Dinitrophenol	ND		670	
4-Nitrophenol	ND		670	
Dibenzofuran	ND		330	
2,4-Dinitrotoluene	ND		330	
Diethylphthalate	ND		330	
Fluorene		240	67	
4-Chlorophenyl-phenylether	ND	∠ 1∪	330	
4-Nitroaniline	ND		670	
4,6-Dinitro-2-methylphenol	ND		670	
N-Nitrosodiphenylamine	ND		330	
Azobenzene	ND		330	
4-Bromophenyl-phenylether	ND		330	
Hexachlorobenzene	ND		330	
Pentachlorophenol	ND		670	
Phenanthrene		860	67	
Anthracene	ND	000	67	
	ND ND		330	
Di-n-butylphthalate	עוע		330	

ND= Not Detected RL= Reporting Limit Page 1 of 2

Semivolatile Organics by GC/MS					
Lab #: Client:	212084 Parsons	Location: Prep:	USPS OAK EPA 3550B		
Project#:	746218.39383	Analysis:	EPA 8270C		
Field ID:	USPS-EX-BS9.5-02	Batch#:	151044		
Lab ID:	212084-002	Sampled:	05/12/09		
Matrix:	Soil	Received:	05/12/09		
Units:	ug/Kg	Prepared:	05/15/09		
Basis: Diln Fac:	as received 1.000	Analyzed:	05/15/09		

Analyte	Result	RL	
Fluoranthene	ND	67	
Pyrene	ND	67	
Butylbenzylphthalate	ND	330	
3,3'-Dichlorobenzidine	ND	670	
Benzo(a)anthracene	ND	67	
Chrysene	ND	67	
bis(2-Ethylhexyl)phthalate	ND	330	
Di-n-octylphthalate	ND	330	
Benzo(b)fluoranthene	ND	67	
Benzo(k)fluoranthene	ND	67	
Benzo(a)pyrene	ND	67	
Indeno(1,2,3-cd)pyrene	ND	67	
Dibenz(a,h)anthracene	ND	67	
Benzo(g,h,i)perylene	ND	67	

Surrogate	%REC	Limits	
2-Fluorophenol	72	35-120	
Phenol-d5	70	37-120	
2,4,6-Tribromophenol	61	30-120	
Nitrobenzene-d5	70	47-120	
2-Fluorobiphenyl	79	52-120	
Terphenyl-d14	60	45-120	

	Semivolatile Organics by GC/MS					
Lab #:	212084	Location:	USPS OAK			
Client:	Parsons	Prep:	EPA 3550B			
Project#:	746218.39383	Analysis:	EPA 8270C			
Field ID:	USPS-EX-EW6.0	Batch#:	151044			
Lab ID:	212084-003	Sampled:	05/12/09			
Matrix:	Soil	Received:	05/12/09			
Units:	ug/Kg	Prepared:	05/15/09			
Basis:	as received	Analyzed:	05/15/09			
Diln Fac:	1.000	-				

Analyte	Result	RL
N-Nitrosodimethylamine	ND	330
Phenol	ND	330
bis(2-Chloroethyl)ether	ND	330
2-Chlorophenol	ND	330
1,3-Dichlorobenzene	ND	330
1,4-Dichlorobenzene	ND	330
Benzyl alcohol	ND	330
1,2-Dichlorobenzene	ND	330
2-Methylphenol	ND	330
bis(2-Chloroisopropyl) ether	ND	330
4-Methylphenol	ND	330
N-Nitroso-di-n-propylamine	ND	330
Hexachloroethane	ND	330
Nitrobenzene	ND	330
Isophorone	ND	330
2-Nitrophenol	ND	660
2,4-Dimethylphenol	ND	330
Benzoic acid	ND	1,700
bis(2-Chloroethoxy)methane	ND ND	330
2,4-Dichlorophenol	ND	330
1,2,4-Trichlorobenzene	ND ND	330
Naphthalene	320	66
4-Chloroaniline	ND	330
Hexachlorobutadiene	ND ND	330
4-Chloro-3-methylphenol	ND ND	330
2-Methylnaphthalene	2,400	66
Hexachlorocyclopentadiene	ND	660
2,4,6-Trichlorophenol	ND ND	330
2,4,5-Trichlorophenol	ND ND	330
2-Chloronaphthalene	ND ND	330
2-Nitroaniline	ND	660
Dimethylphthalate	ND ND	330
Acenaphthylene	ND ND	66
2,6-Dinitrotoluene	ND ND	330
3-Nitroaniline	ND ND	660
Acenaphthene	ND	66
2,4-Dinitrophenol	ND ND	660
4-Nitrophenol	ND	660
Dibenzofuran	ND ND	330
2,4-Dinitrotoluene	ND ND	330
Diethylphthalate	ND ND	330
Fluorene	ND ND	66
4-Chlorophenyl-phenylether	ND ND	330
4-Chiorophenyi-phenyiether 4-Nitroaniline	ND ND	660
4,6-Dinitro-2-methylphenol	ND ND	660
N-Nitrosodiphenylamine	ND ND	330
Azobenzene	ND ND	330
4-Bromophenyl-phenylether	ND ND	330
Hexachlorobenzene	ND ND	330
Pentachlorophenol	ND	660
Phenanthrene		66
Anthracene	1,000	66
	ND ND	330
Di-n-butylphthalate	עווו	330

ND= Not Detected RL= Reporting Limit Page 1 of 2

Semivolatile Organics by GC/MS					
Lab #:	212084	Location:	USPS OAK		
Client:	Parsons	Prep:	EPA 3550B		
Project#:	746218.39383	Analysis:	EPA 8270C		
Field ID:	USPS-EX-EW6.0	Batch#:	151044		
Lab ID:	212084-003	Sampled:	05/12/09		
Matrix:	Soil	Received:	05/12/09		
Units: Basis: Diln Fac:	ug/Kg as received 1.000	Prepared: Analyzed:	05/15/09 05/15/09		

Analyte	Result	RL	
Fluoranthene	ND	66	
Pyrene	ND	66	
Butylbenzylphthalate	ND	330	
3,3'-Dichlorobenzidine	ND	660	
Benzo(a)anthracene	ND	66	
Chrysene	ND	66	
bis(2-Ethylhexyl)phthalate	ND	330	
Di-n-octylphthalate	ND	330	
Benzo(b)fluoranthene	ND	66	
Benzo(k)fluoranthene	ND	66	
Benzo(a)pyrene	ND	66	
Indeno(1,2,3-cd)pyrene	ND	66	
Dibenz(a,h)anthracene	ND	66	
Benzo(g,h,i)perylene	ND	66	

Surrogate	%REC	Limits
2-Fluorophenol	56	35-120
Phenol-d5	52	37-120
2,4,6-Tribromophenol	41	30-120
Nitrobenzene-d5	56	47-120
2-Fluorobiphenyl	65	52-120
Terphenyl-d14	49	45-120

Semivolatile Organics by GC/MS					
Lab #:	212084	Location:	USPS OAK		
Client:	Parsons	Prep:	EPA 3550B		
Project#:	746218.39383	Analysis:	EPA 8270C		
Field ID:	USPS-EX-WW6.5	Batch#:	151044		
Lab ID:	212084-004	Sampled:	05/12/09		
Matrix:	Soil	Received:	05/12/09		
Units:	ug/Kg	Prepared:	05/15/09		
Basis:	as received	Analyzed:	05/18/09		
Diln Fac:	100.0	-			

Analyte	Result	RL	
N-Nitrosodimethylamine	ND	33,000	
Phenol	ND	33,000	
bis(2-Chloroethyl)ether	ND	33,000	
2-Chlorophenol	ND	33,000	
1,3-Dichlorobenzene	ND	33,000	
1,4-Dichlorobenzene	ND	33,000	
Benzyl alcohol	ND	33,000	
1,2-Dichlorobenzene	ND	33,000	
2-Methylphenol	ND	33,000	
bis(2-Chloroisopropyl) ether	ND	33,000	
4-Methylphenol	ND	33,000	
N-Nitroso-di-n-propylamine	ND	33,000	
Hexachloroethane	ND ND	33,000	
Nitrobenzene	ND	33,000	
Isophorone	ND ND	33,000	
2-Nitrophenol	ND ND	67,000	
	ND ND	22 000	
2,4-Dimethylphenol		33,000	
Benzoic acid	ND	170,000	
bis(2-Chloroethoxy)methane	ND	33,000	
2,4-Dichlorophenol	ND	33,000	
1,2,4-Trichlorobenzene	ND	33,000	
Naphthalene	ND	6,700	
4-Chloroaniline	ND	33,000	
Hexachlorobutadiene	ND	33,000	
4-Chloro-3-methylphenol	ND	33,000	
2-Methylnaphthalene	15,000	6,700	
Hexachlorocyclopentadiene	ND	67,000	
2,4,6-Trichlorophenol	ND	33,000	
2,4,5-Trichlorophenol	ND	33,000	
2-Chloronaphthalene	ND	33,000	
2-Nitroaniline	ND	67,000	
Dimethylphthalate	ND	33,000	
Acenaphthylene	ND	6,700	
2,6-Dinitrotoluene	ND	33,000	
3-Nitroaniline	ND	67,000	
Acenaphthene	ND	6,700	
2,4-Dinitrophenol	ND	67,000	
4-Nitrophenol	ND	67,000	
Dibenzofuran	ND	33,000	
2,4-Dinitrotoluene	ND	33,000	
Diethylphthalate	ND	33,000	
Fluorene	ND	6,700	
4-Chlorophenyl-phenylether	ND	33,000	
4-Nitroaniline	ND	67,000	
4,6-Dinitro-2-methylphenol	ND	67,000	
N-Nitrosodiphenylamine	ND	33,000	
Azobenzene	ND	33,000	
4-Bromophenyl-phenylether	ND	33,000	
Hexachlorobenzene	ND	33,000	
Pentachlorophenol	ND	67,000	
Phenanthrene	ND	6,700	
Anthracene	ND	6,700	

DO= Diluted Out ND= Not Detected RL= Reporting Limit Page 1 of 2

Semivolatile Organics by GC/MS					
Lab #:	212084	Location:	USPS OAK		
Client:	Parsons	Prep:	EPA 3550B		
Project#:	746218.39383	Analysis:	EPA 8270C		
Field ID:	USPS-EX-WW6.5	Batch#:	151044		
Lab ID:	212084-004	Sampled:	05/12/09		
Matrix:	Soil	Received:	05/12/09		
Units:	uq/Kq	Prepared:	05/15/09		
Basis: Diln Fac:	as received 100.0	Analyzed:	05/18/09		

Analyte	Result	RL	
Di-n-butylphthalate	ND	33,000	
Fluoranthene	ND	6,700	
Pyrene	ND	6,700	
Butylbenzylphthalate	ND	33,000	
3,3'-Dichlorobenzidine	ND	67,000	
Benzo(a)anthracene	ND	6,700	
Chrysene	ND	6,700	
bis(2-Ethylhexyl)phthalate	ND	33,000	
Di-n-octylphthalate	ND	33,000	
Benzo(b)fluoranthene	ND	6,700	
Benzo(k)fluoranthene	ND	6,700	
Benzo(a)pyrene	ND	6,700	
Indeno(1,2,3-cd)pyrene	ND	6,700	
Dibenz(a,h)anthracene	ND	6,700	
Benzo(g,h,i)perylene	ND	6,700	

Surrogate	%REC	Limits
2-Fluorophenol	DO	35-120
Phenol-d5	DO	37-120
2,4,6-Tribromophenol	DO	30-120
Nitrobenzene-d5	DO	47-120
2-Fluorobiphenyl	DO	52-120
Terphenyl-d14	DO	45-120

DO= Diluted Out ND= Not Detected RL= Reporting Limit Page 2 of 2

Semivolatile Organics by GC/MS					
Lab #:	212084	Location:	USPS OAK		
Client:	Parsons	Prep:	EPA 3550B		
Project#:	746218.39383	Analysis:	EPA 8270C		
Field ID:	USPS-EX-NW6.0	Batch#:	151044		
Lab ID:	212084-005	Sampled:	05/12/09		
Matrix:	Soil	Received:	05/12/09		
Units:	ug/Kg	Prepared:	05/15/09		
Basis:	as received	Analyzed:	05/18/09		
Diln Fac:	100.0	-			

Analyte	Result	RL	
N-Nitrosodimethylamine	ND	33,000	
Phenol	ND	33,000	
bis(2-Chloroethyl)ether	ND	33,000	
2-Chlorophenol	ND	33,000	
1,3-Dichlorobenzene	ND	33,000	
1,4-Dichlorobenzene	ND	33,000	
Benzyl alcohol	ND	33,000	
1,2-Dichlorobenzene	ND	33,000	
2-Methylphenol	ND	33,000	
bis(2-Chloroisopropyl) ether	ND	33,000	
4-Methylphenol	ND	33,000	
N-Nitroso-di-n-propylamine	ND	33,000	
Hexachloroethane	ND ND	33,000	
Nitrobenzene	ND	33,000	
Isophorone	ND ND	33,000	
	ND ND		
2-Nitrophenol	ND ND	66,000	
2,4-Dimethylphenol	ND	33,000	
Benzoic acid		170,000	
bis(2-Chloroethoxy)methane	ND	33,000	
2,4-Dichlorophenol	ND	33,000	
1,2,4-Trichlorobenzene	ND	33,000	
Naphthalene	ND	6,600	
4-Chloroaniline	ND	33,000	
Hexachlorobutadiene	ND	33,000	
4-Chloro-3-methylphenol	ND	33,000	
2-Methylnaphthalene	13,000	6,600	
Hexachlorocyclopentadiene	ND	66,000	
2,4,6-Trichlorophenol	ND	33,000	
2,4,5-Trichlorophenol	ND	33,000	
2-Chloronaphthalene	ND	33,000	
2-Nitroaniline	ND	66,000	
Dimethylphthalate	ND	33,000	
Acenaphthylene	ND	6,600	
2,6-Dinitrotoluene	ND	33,000	
3-Nitroaniline	ND	66,000	
Acenaphthene	ND	6,600	
2,4-Dinitrophenol	ND	66,000	
4-Nitrophenol	ND	66,000	
Dibenzofuran	ND	33,000	
2,4-Dinitrotoluene	ND	33,000	
Diethylphthalate	ND	33,000	
Fluorene	ND	6,600	
4-Chlorophenyl-phenylether	ND	33,000	
4-Nitroaniline	ND	66,000	
4,6-Dinitro-2-methylphenol	ND	66,000	
N-Nitrosodiphenylamine	ND	33,000	
Azobenzene	ND	33,000	
4-Bromophenyl-phenylether	ND	33,000	
Hexachlorobenzene	ND	33,000	
Pentachlorophenol	ND	66,000	
Phenanthrene	ND	6,600	
Anthracene	ND	6,600	

DO= Diluted Out ND= Not Detected RL= Reporting Limit Page 1 of 2

Semivolatile Organics by GC/MS					
Lab #:	212084	Location:	USPS OAK		
Client:	Parsons	Prep:	EPA 3550B		
Project#:	746218.39383	Analysis:	EPA 8270C		
Field ID:	USPS-EX-NW6.0	Batch#:	151044		
Lab ID:	212084-005	Sampled:	05/12/09		
Matrix:	Soil	Received:	05/12/09		
Units:	ug/Kg	Prepared:	05/15/09		
Basis: Diln Fac:	as received 100.0	Analyzed:	05/18/09		

Analyte	Result	RL	
Di-n-butylphthalate	ND	33,000	
Fluoranthene	ND	6,600	
Pyrene	ND	6,600	
Butylbenzylphthalate	ND	33,000	
3,3'-Dichlorobenzidine	ND	66,000	
Benzo(a)anthracene	ND	6,600	
Chrysene	ND	6,600	
bis(2-Ethylhexyl)phthalate	ND	33,000	
Di-n-octylphthalate	ND	33,000	
Benzo(b)fluoranthene	ND	6,600	
Benzo(k)fluoranthene	ND	6,600	
Benzo(a)pyrene	ND	6,600	
Indeno(1,2,3-cd)pyrene	ND	6,600	
Dibenz(a,h)anthracene	ND	6,600	
Benzo(g,h,i)perylene	ND	6,600	

Surrogate	%REC	Limits
2-Fluorophenol	DO	35-120
Phenol-d5	DO	37-120
2,4,6-Tribromophenol	DO	30-120
Nitrobenzene-d5	DO	47-120
2-Fluorobiphenyl	DO	52-120
Terphenyl-d14	DO	45-120

DO= Diluted Out ND= Not Detected RL= Reporting Limit Page 2 of 2

Datell QC RC	9010				
Semivolatile Organics by GC/MS					
Lab #:	212084	Location:	USPS OAK		
Client:	Parsons	Prep:	EPA 3550B		
Project#:	746218.39383	Analysis:	EPA 8270C		
Type: Lab ID:	BLANK	Diln Fac:	1.000		
Lab ID:	QC496132	Batch#:	151044		
Matrix:	Soil	Prepared:	05/15/09		
Units:	ug/Kg	Analyzed:	05/15/09		
Basis:	as received	-			

Analyte	Result	RL
N-Nitrosodimethylamine	ND	330
Phenol	ND	330
bis(2-Chloroethyl)ether	ND ND	330
	ND ND	330
2-Chlorophenol		330
1,3-Dichlorobenzene	ND	
1,4-Dichlorobenzene	ND	330
Benzyl alcohol	ND	330
1,2-Dichlorobenzene	ND	330
2-Methylphenol	ND	330
bis(2-Chloroisopropyl) ether	ND	330
4-Methylphenol	ND	330
N-Nitroso-di-n-propylamine	ND	330
Hexachloroethane	ND	330
Nitrobenzene	ND	330
Isophorone	ND	330
2-Nitrophenol	ND	660
2,4-Dimethylphenol	ND	330
Benzoic acid	ND	1,600
bis(2-Chloroethoxy)methane	ND	330
2,4-Dichlorophenol	ND	330
1,2,4-Trichlorobenzene	ND	330
	ND ND	66
Naphthalene		330
4-Chloroaniline	ND	
Hexachlorobutadiene	ND	330
4-Chloro-3-methylphenol	ND	330
2-Methylnaphthalene	ND	66
Hexachlorocyclopentadiene	ND	660
2,4,6-Trichlorophenol	ND	330
2,4,5-Trichlorophenol	ND	330
2-Chloronaphthalene	ND	330
2-Nitroaniline	ND	660
Dimethylphthalate	ND	330
Acenaphthylene	ND	66
2,6-Dinitrotoluene	ND	330
3-Nitroaniline	ND	660
Acenaphthene	ND	66
2,4-Dinitrophenol	ND	660
4-Nitrophenol	ND	660
Dibenzofuran	ND	330
2,4-Dinitrotoluene	ND	330
Diethylphthalate	ND	330
Fluorene	ND ND	66
		330
4-Chlorophenyl-phenylether	ND ND	660
4-Nitroaniline	ND	
4,6-Dinitro-2-methylphenol	ND	660
N-Nitrosodiphenylamine	ND	330
Azobenzene	ND	330
4-Bromophenyl-phenylether	ND	330
Hexachlorobenzene	ND	330
Pentachlorophenol	ND	660
Phenanthrene	ND	66
Anthracene	ND	66
Di-n-butylphthalate	ND	330

ND= Not Detected RL= Reporting Limit Page 1 of 2

Semivolatile Organics by GC/MS					
Lab #:	212084	Location:	USPS OAK		
Client:	Parsons	Prep:	EPA 3550B		
Project#:	746218.39383	Analysis:	EPA 8270C		
Type: Lab ID:	BLANK	Diln Fac:	1.000		
Lab ID:	QC496132	Batch#:	151044		
Matrix:	Soil	Prepared:	05/15/09		
Units:	ug/Kg	Analyzed:	05/15/09		
Basis:	as received				

Analyte	Result	RL	
Fluoranthene	ND	66	
Pyrene	ND	66	
Butylbenzylphthalate	ND	330	
3,3'-Dichlorobenzidine	ND	660	
Benzo(a)anthracene	ND	66	
Chrysene	ND	66	
bis(2-Ethylhexyl)phthalate	ND	330	
Di-n-octylphthalate	ND	330	
Benzo(b)fluoranthene	ND	66	
Benzo(k)fluoranthene	ND	66	
Benzo(a)pyrene	ND	66	
Indeno(1,2,3-cd)pyrene	ND	66	
Dibenz(a,h)anthracene	ND	66	
Benzo(g,h,i)perylene	ND	66	

Surrogate	%REC	Limits
2-Fluorophenol	81	35-120
Phenol-d5	76	37-120
2,4,6-Tribromophenol	56	30-120
Nitrobenzene-d5	77	47-120
2-Fluorobiphenyl	77	52-120
Terphenyl-d14	66	45-120

Semivolatile Organics by GC/MS					
Lab #:	212084	Location:	USPS OAK		
Client:	Parsons	Prep:	EPA 3550B		
Project#:	746218.39383	Analysis:	EPA 8270C		
Type:	LCS	Diln Fac:	1.000		
Lab ID:	QC496133	Batch#:	151044		
Matrix:	Soil	Prepared:	05/15/09		
Units:	ug/Kg	Analyzed:	05/18/09		
Basis:	as received				

Analyte	Spiked	Result	%REC	Limits
Phenol	2,632	2,208	84	37-120
2-Chlorophenol	2,632	2,221	84	44-120
1,4-Dichlorobenzene	2,632	1,878	71	51-120
N-Nitroso-di-n-propylamine	2,632	2,018	77	26-120
1,2,4-Trichlorobenzene	2,632	2,001	76	46-120
4-Chloro-3-methylphenol	2,632	2,066	78	48-120
Acenaphthene	987.2	774.1	78	50-120
4-Nitrophenol	2,632	1,820	69	39-120
2,4-Dinitrotoluene	2,632	2,276	86	50-120
Pentachlorophenol	2,632	1,597	61	26-120
Pyrene	987.2	895.0	91	47-120

Surrogate	%REC	Limits	
2-Fluorophenol	90	35-120	
Phenol-d5	85	37-120	
2,4,6-Tribromophenol	79	30-120	
Nitrobenzene-d5	85	47-120	
2-Fluorobiphenyl	82	52-120	
Terphenyl-d14	79	45-120	

Page 1 of 1 8.0

	Semivolatile	Organics by GC/	'MS
Lab #:	212084	Location:	USPS OAK
Client:	Parsons	Prep:	EPA 3550B
Project#:	746218.39383	Analysis:	EPA 8270C
Field ID:	ZZZZZZZZZ	Batch#:	151044
MSS Lab ID:	212083-001	Sampled:	05/11/09
Matrix:	Soil	Received:	05/12/09
Units:	ug/Kg	Prepared:	05/15/09
Basis: Diln Fac:	as received 5.000	Analyzed:	05/18/09

Type: MS Lab ID: QC496134

Analyte	MSS Result	Spiked	Result	%REC	Limits
Phenol	<298.2	2,660	2,144	81	42-120
2-Chlorophenol	<346.1	2,660	2,265	85	45-120
1,4-Dichlorobenzene	<268.8	2,660	1,908	72	50-120
N-Nitroso-di-n-propylamine	<150.1	2,660	2,079	78	35-120
1,2,4-Trichlorobenzene	<212.0	2,660	2,039	77	47-120
4-Chloro-3-methylphenol	<55.08	2,660	2,040	77	48-120
Acenaphthene	<26.39	997.3	766.9	77	49-120
4-Nitrophenol	<173.9	2,660	1,619	61	36-120
2,4-Dinitrotoluene	<105.0	2,660	2,174	82	48-120
Pentachlorophenol	<829.1	2,660	2,462	93	21-120
Pyrene	<26.28	997.3	846.7	85	40-120

Surrogate	%REC	Limits
2-Fluorophenol	85	35-120
Phenol-d5	81	37-120
2,4,6-Tribromophenol	98	30-120
Nitrobenzene-d5	80	47-120
2-Fluorobiphenyl	84	52-120
Terphenyl-d14	72	45-120

Type: MSD Lab ID: QC496135

Analyte	Spiked	Result	%REC	Limits	RPD	Lim
Phenol	2,656	2,121	80	42-120	1	34
2-Chlorophenol	2,656	2,174	82	45-120	4	34
1,4-Dichlorobenzene	2,656	1,869	70	50-120	2	33
N-Nitroso-di-n-propylamine	2,656	2,114	80	35-120	2	41
1,2,4-Trichlorobenzene	2,656	1,948	73	47-120	4	33
4-Chloro-3-methylphenol	2,656	1,965	74	48-120	4	33
Acenaphthene	996.0	745.4	75	49-120	3	32
4-Nitrophenol	2,656	1,594	60	36-120	1	40
2,4-Dinitrotoluene	2,656	2,139	81	48-120	1	33
Pentachlorophenol	2,656	2,298	87	21-120	7	48
Pyrene	996.0	809.4	81	40-120	4	33

Surrogate	%REC	Limits
2-Fluorophenol	82	35-120
Phenol-d5	79	37-120
2,4,6-Tribromophenol	95	30-120
Nitrobenzene-d5	78	47-120
2-Fluorobiphenyl	79	52-120
Terphenyl-d14	69	45-120

PARSONS

2121 N. California Blvd., Suite 500 Walnut Creek, California 94596 Phone: (925) 941-3700 FAX: (925) 979-9781

CHAIN OF CUSTODY RECORD

7 (2084 PAGE LOF

Project Non- 19 6218 . 5758 S Project Name/Location: USPS Oakland Project Manager: Wayne Strip Man Sampler(s): (Printed Name and Signature) Michael Schulman (19 82 82 82 82 82 82 82 82 82 82 82 82 82	
HS (8015 M)	
HS (8015)	
Ho (80)	
CHO HO	1Nno 128
1 1 C	
Sample Location Date Time Matrix Z	
x X 0 S 0 X X	(2) ste=5
USPS-EX-BS 9.52-02 Bottom - Misselle 5/12 1430 S 6 X X X	
NSPS-EX-EXM 6.0 East Wall 6/83 5/12 1445 S 6 X X X	×
1000000000000000000000000000000000000	X
USPS-Ex-NW 6.0 North Wall 5/12 1505 5 7 X X	×
	NOTES:
RELINQUISHED BY: (SIGNATURE) DATE TIME RECEIVED FOR LAB BY: (SIGNATURE) D.	DATE TIME REMARKS/COMMENTS:
DISTRIBUTION: WHITE: ACCOMPANIES SHIPMENT & RETAY WITH AR REPORT CANARY: LAR CODY DINK: EIELD CODY	

COOLER RECEIPT CHECKLIST Curtis & Tompkins, Ltd. Login # 212084 Date Received Number of coolers Client 7M500 S/12/09 By (print) M. JULA PURUSign) Date Logged in \ By (print) 1. Did cooler come with a shipping slip (airbill, etc) Shipping info 2A. Were custody seals present? \(\superset\) YES (circle) on cooler on samples How many Name Date 2B. Were custody seals intact upon arrival? YES NO (N 3. Were custody papers dry and intact when received? NO 4. Were custody papers filled out properly (ink, signed, etc)? NO 5. Is the project identifiable from custody papers? (If so fill out top of form) 6. Indicate the packing in cooler: (if other, describe) Bubble Wrap □ Bags ☐ Foam blocks □None Cloth material ☐ Styrofoam ☐ Cardboard ☐ Paper towels 7. Temperature documentation: Type of ice used: Wet ☐ Blue/Gel None Temp(°C) Samples Received on ice & cold without a temperature blank ☐ Samples received on ice directly from the field. Cooling process had begun 8. Were Method 5035 sampling containers present? (PES) NO If YES, what time were they transferred to freezer? 9. Did all bottles arrive unbroken/unopened? NO 10. Are samples in the appropriate containers for indicated tests? NO 11. Are sample labels present, in good condition and complete? NO 12. Do the sample labels agree with custody papers? 13. Was sufficient amount of sample sent for tests requested? NO 14. Are the samples appropriately preserved? YES 15. Are bubbles > 6mm absent in VOA samples? 16. Was the client contacted concerning this sample delivery? YES If YES, Who was called?_____By____ Date: **COMMENTS**

SOP Volume:

Client Services

Section: Page:

1.1.2

1 of 1

Rev. 6 Number 1 of 3 Effective: 23 July 2008

Z:\qc\forms\checklists\Cooler Receipt Checklist_rv6.doc